septum-mec/actions/longitudinal-comparisons/data/figures/rate_map-gridcell.svg

16418 lines
2.5 MiB (Stored with Git LFS)

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Created with matplotlib (https://matplotlib.org/) -->
<svg height="19714.735177pt" version="1.1" viewBox="0 0 564.414375 19714.735177" width="564.414375pt" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>
<style type="text/css">
*{stroke-linecap:butt;stroke-linejoin:round;}
</style>
</defs>
<g id="figure_1">
<g id="patch_1">
<path d="M 0 19714.735177
L 564.414375 19714.735177
L 564.414375 0
L 0 0
z
" style="fill:#ffffff;"/>
</g>
<g id="axes_1">
<g id="patch_2">
<path d="M 29.174375 131.991764
L 151.464375 131.991764
L 151.464375 9.701764
L 29.174375 9.701764
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p3179e87fd9)">
<image height="122.4" id="image0a18e5154f" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH3VJREFUeJztnUmPZNlZhr+498aQkZFTZVVXtdvV3RK28caAmGSWsGDlX8COP8caiT1ixQoJI1kGt93tdlfXlJlVmTGPN4JFCyTqfQ461SkW9Hmf5dGNuOMXV3riGzp/9+RvDvEO103n3aV4WbWydhVbWZvHTtb2B9lFkvlBv/N6N9O1zUTWFrs17Hufve93Oe0NZe2D3hlu+7A+1s9XPVk773Rl7dO9bveXrZ7zj/9Wt6v+5I/1YKZjWdr987/K2mf/MNDPRsTfN3re/7h9KWtfLq9kbdvq/e/Wjaz1K70O3aqWtU7os3gIfZ5Sz1jutrQd7bvuVLLWwjO23et1WLf6bNNnu5Ver4iIQa3XrNPRY6T90JqeiTGmCBz8xhSKg9+YQnHwG1MozdtahcGkUvmx6KiYWB1UAm5gLUULkmV5UFGy3G9kbZe5nwYkEkHihOROCjoXXAPZtO7o2myncqf96o2sdS6/kLXDrQq/+S9Wsvarw6WsRUS8CN2Wrne3o9f2AM8OXUdaa+D7cu8BCbsUJNlIAtI5k8hbgUzb7fWztN8Knjta+2ZdrwVtS88yyUu/+Y0pFAe/MYXi4DemUBz8xhRK87xWCTHvqKwYg4gj4UeSK5V9tQ3dN8m99V6FCkEZYu8j7XLYJ8RSav1dUPBAEiLlJW6vIUvrt89lbfdiLmtffXEha1+oU4yIiLcHvQctHBHJVLoOFcgmkl+5EpdEYydxn2nftETHTcezDL02FUhAEpAHiINvn3/6DblZiHUFsvCe+zbG/D/FwW9MoTj4jSkUB78xhdJ8EQtZ3O9VTGxATWxBiOTnWXE2IMk9kkO5UiO3BJPWiJSUyv18FwTN8KBrXcj6207ht/rzqSzdfamlul8ctEz3DYjdCBZTvU5eWW7utW1BklH5dQs2tIKs1D6USqfWm8yMQzrueaVl4wRm+N1T76Uy/2S7TAnoN78xheLgN6ZQHPzGFIqD35hCaX63vZNFzKCitKhMUqJiDdKHJCJBAqMHvc9ouw3sl/uw6bGQyImIaGsoZYVrNjjo8RyDB6pBDq0mKq9mb/X7nr05lbXrXl4vvIiIfuj9P4Z+hOtK5Sxd29zyVswOhOtFz2JK+J3UfVkbdfRcBlSeDN93t1fhR+eybCFLErbLzdB7r20hDqjM129+YwrFwW9MoTj4jSkUB78xhdK82WqGWG4vNcokYrHAwi+3jJJKgul4SIjQZ2ktN0NvA6XNESzP6Lwpw4+YH1RgXd/oYJBZq9t92ajkor6MJCQjIoaQzTeHNRoukduvj6AS4WM4lzMYKnJZ61pExGVHP/8A5ODJIa88+QUc46TWnod3lZZV72DwDZ3zoFYhGRFxDPKSoEzCFs7Pb35jCsXBb0yhOPiNKRQHvzGF4uA3plAaGt276ajRvk8jzFRqMKX9knUnk07bUWopQVNXUmm7+tn8en6yxWtYu4OhQs9CjfSrg9r1SVev4Q2kGi/IACfSe+lOp/6xke3gntK/AgN4nshmXzYjWXsC49CfBJvwJ2C5H231vE+gh8UKzuXQUxP/rNJ9U6p5C81yj8Dsnzd6fhERR5BiTenw9I8U/xtljCkSB78xheLgN6ZQHPzGFIpaiQSUEps7leR9yJ58g6m8eSm6JEno/HIbJkbwcW/geO46Kli3kHp7k7lvGp2+wMaqlErN15qatW4CehtkXsdBrfJyCJLsIci9p5XKr08OKr6eJlzvh1BXf9HVmvymC/dqpcf4Zq/NUS8rXXsL0o4k4HGtn30IQjMiYkBp1wd9nmbQc4Ceeb/5jSkUB78xheLgN6ZQHPzGFEpD9ff3adZJpCTefeTgHg4x9/tIFlZQV0211pSRFcFNT1eQaXUNMu3NQQUN3QPKyKOMQ7oKdEdTWXu0nyVMUsrNiqT+ECMQXR9UR7L2eyD3frjR4/uo0slTERHnF1pr3z/Sc9m3+h48wCSlJxs9nk/6etyr7rmsTUDEkcQ7Bxkawb0gsCcDvNIXexgtjnsxxnzncfAbUygOfmMKxcFvTKE0VIqKQiyzMSNOXUnsvKryxCKW+VJjTnQfeU1GSUqR3LtIlFvSFBgSZ+NWxdQKZBpdx9SEnXehc+mDWKLt3gca0U3PBO2nB2vn0FjzI7008bTWa/jw0YyP8SSvzHsBddUtPFADeBaftnptD5CldwXPE2VTppq88qQiaHoK5eA1xJrf/MYUioPfmEJx8BtTKA5+YwoFe/hR6SFlu5HI6dYkd7hymD5PomsF2Un3GYHchXMheXVSa+bWGZRvRkScQH+1MWR0zWFtvFWBReWyJDlJXtL9G0J/PCqrjYgYwLUgYdivoU9d5hSm3J5yA+itNzqFTLkzMIMRUQ+g1Hqs9//uVu/111udAvSm0c9uwc8N4WxG8LyP4Z5uk2IXelnCGmX9DUGm+s1vTKE4+I0pFAe/MYXi4DemUJrcMliScyeNSpITKNUk2RDB2UkkMKgU8m1oRtcSxCDuF4QWlZieg/BLlVv24Hd0DtluJCVpiMgKRCz1KKSeeSRntw30cIOBHxERfRCGJG1z798c7gtdhymUQE/hvmw2+ZmJh52e4921irzPWu0f+Dm43TH0Mtx28kTcCsTnFjL8tolelBSpOI47uw+mMaZIHPzGFIqD35hCcfAbUyjNsFGB1YchCzRB9aJWcXIJkuw4MRukgUykHciKptLfKBJY+x1ljek+aFDCBRw3DWM4S8hLykzsQA84KnmlKbaUuUc982gyMW23gozIJdzniIjRQc+b7kGD7468LEuSUncwgOI3DZRVL09krXqW3w/yl8szWft5T4/769D+fzM4xu1eP0tZdl2497nXJiI1kTdvjcSg3/zGFIqD35hCcfAbUygOfmMKpXl69FAWSZJRz7VTyHY7g/5hx4lecTUIMYJa/S1Bxm2qvH5tlLn3CAZGnEFWW+/Av5crmJZLWx5B6W/dzet7R9Jm0Wr242ynoorKamngRwSLJSyNBoFFroqenV3mJODfgXRbD/S5+2J7oTsO7uv4ZV+l3fO9llXfQWbprNXjocxSiiHKiD2G5yEFiTzq/7iGtQ1kT/rNb0yhOPiNKRQHvzGF4uA3plCaHzUqStaZZYJd+O1oIDNtmJBkpyD8erA2ogy/Cnqf1SpESCwdgcgbgpQiybUBsRfB5Zr0eRI8pyAvT2E7ut7zRuXOTaPy6nY3lzWSgBEJuQf7Hgb0YITrWMEzQdeL+vrNIaPu89C1z6CsNiJiDftZbiFLDzPlVJKRYJ2DYKWMT9pH22iWbGpKNt0vOkbM+oTP+s1vTKE4+I0pFAe/MYXi4DemUJrvh2ZLzUBqzUEYUPkt0U8IjA9aXX+wgywmSPHrd1WSdWvdbg5ZY0cgqugIl3DOJEMjeNoqSdLcTLkBHCNNsT0BeUlHuAYxRJlg3xwPTH6F/TygabBwfmM4v0nA8ZDQgrNZwblMIPMuImIBWXokxKjUmqDP4lqbl21KMjQ1PRknU2fGID13fvMbUygOfmMKxcFvTKE4+I0pFAe/MYXSDCGdtkO/CaDD6R8Aco/sxyOG0PjwSb2UtX5X9/NgBQ03G/0H4LaGEc14LnosV5BGugDTHJGoT6d/SDLTWjdg9vnfA4WM+wC+r4a06QhOQaaeDB/sdW0IN/scJiS9gn3fwfWmKT5LuA50DSN4MhDdA1ojQ07b4T6oiepO6/7J7A8SjVXR2MO/Bbn4zW9MoTj4jSkUB78xheLgN6ZQcJQONR/k2SwqWXaQgrhKKL81pFSS3Lt8rLXoF63WrD+5VeF3t9C1a0hp/nVPj+UtyJTUNBWqT6c0VBJGdBN2NKYZ3A7V2dNUoao+lrVUaugJfP7soEd5Cu0AHrR63CNIz941KrpWVd7YbhpLnjoXEoH0+dztSOS1IK7peHLHs6ckHqYgw2nTceN+cC/GmO88Dn5jCsXBb0yhOPiNKZRmBo0P12ARZiS0krl7/5NlorniBETQYqOy6VGjnx88UoHRP9W1oxvNGttd6W9eDRKQ+hWQxIuIWEKjyTVIFuIIMuCGUD9/cVBJdgLNUZ9ALwC6ByR2IyKO4HadwOibAYozpSVxCsezBSFGU3zepzcBTSXCDD8SeZmZe7RdLijNE5OUWuizQTX+dDzUc8BvfmMKxcFvTKE4+I0pFAe/MYXSvAwtM6Qsti3IPRI01IySmjBGRExh6s7VVsXbxY1m6Z1VWvq7W8NEm6mWp76BDLZbkCkTkHgLWIvgUckkc6i09hjWqFnn452e39OtyqEhSLL3oQv3i8akTyHr73mja88a/b7XUL57fdBmm7et3ufxTrM75zBJJ4Iz21YtTOyB7UgWkmDrgNDsVipdu5VeG5KuyWxFyCTMlZJ0Ln7zG1MoDn5jCsXBb0yhOPiNKZTmFiQLUcPvRJ3ZP6wFSRIRMQbJ9qynoqQ3PpO1yxlk5O31GF+GysJf9/S4vwoVS2/2ujZNTIahktAeZOkNQPqMQO6dQubeg1b38bjW4zk/gT6IRzClpssitu5CeetOr9nVy5Gs/XvnVNb+46Al2a9bXZvt9VxmMP561aqkpvHXEYlyWyytBUkGU3eoj16/0fvXhz58tEaQVIxgEY/lzZR5CWt+8xtTKA5+YwrFwW9MoTj4jSmUZg4Zaw38Jgwoiwm2o4yl1ChvGgV+Balk3a5KssVuKGsw8TteNXqMzyoVRi93KqDebKeytkmU9PahLJeyvCibbwgluL1Eue27tFBq27Z5v+ndIUuy3gNYhMMZTfQ6rhd6r1+1M1l7vn6rn4XMOypFRXmVGLFNg0kO+28/1rpX67M47Kp8Pml0qAw9D7klxxGB02+ozJd6ANJ18JvfmEJx8BtTKA5+YwrFwW9MoTRTKIXsQxYaQXKvA+KFyoEjIsANYdYgDX2oaxA5sI8JlA3TIIgJZJdNdpopl5oGSwMVSBiRTCVBswGpNYFzvoYS6NVUxdJooaXNFxs9v4iI00qvRT2EScIb3Q/1hJxBVuRsq2sk/EjuNSDOBlBKHBHRg2d509H7T5mAKGy7mjF63tWBKCe1Cj+6z1QKnupHuKugLBfk7hbOzyW9xpj/xsFvTKE4+I0pFAe/MYXSTGDa7fCgEqlT0+Re6j+mkqROZKttIDuJfNodyLQajodYwBdST0Ec5ABrqUEXJPdI8Oxg3zPKGoTddCC7bNvR630KEuh4r5mF67csyVroFViBOP1iruW7rwYqkElqkTglaUpid9jo83nWaMZnBMvBJZQEkxiktYtGy5gva933aaWClVTxdK/HQgNgInhgzAzk7AIkvod2GGP+Gwe/MYXi4DemUBz8xhRKQ03/aWgACRrqKUZCKzWrdgdZVZuOSrYGxNkB+uORWJzD921hv9SjcFirWCIJFMEZXZTNtwaJSNdxRgNDOiqRViCWLkCcnUF/w02r5xcRcTtWOTgF8fbzgV7HL1stgyZxelTrcVPp9imUxp43kFEH1+GbfYNghZJu4gLu6ZOOZvg9DCjTPtBkYt3HGJ6xcaJs/A6eiRsQvgQK6axPGmO+czj4jSkUB78xheLgN6ZQGh4soQKjB2KBBBuJhU2iJxllLK1JdsBP1BrkVx8FG0w2BcF2DOKFrsMRrEVEHEFvPoKuxWSvGVkkYqcdFVUrkFIzkF9juH+vElmSpMOew1CTZyD3rrcTWaNzGYDwe9DV7LnHzYmugXQjKRwRMYfrjX0UIQ6+F/pMfA/E6SkMU4G5JwHtFuMOBPJNzRKvC334cHp2nTdd2G9+YwrFwW9MoTj4jSkUB78xheLgN6ZQGqp3plTX3Hp1TgPmBp5cQ59n5+cdTXXsQS8BOkY6l4tKDTL9wzGAfUTwPx/L0PObQ/02jf2mJo5dOB76d2QO5zIAm526L/Tvwy30faDx2VQ3joD5pn8FUg1T3yXVZ6EL6yO4Fpeh/z48yTT7tOc1NJ0l+nB6I0gNjogYQ9r2gJ5ROL8N/EvlN78xheLgN6ZQHPzGFIqD35hCaXYwyYMmmtQH/Z0gQUOk0nu3sE5rNMmFaEB+nFSaovmg0pTYM0z5zG9GSlJyBedC12IOwo+aTFKDSxoZvqpg7DqcS2oU9JKaSsLx5N5/knYkNO9gTDr1llg3eSm7KbpwHU9h0hBdnSWIvCU8Egv4PjwWeJ5Wic9uSaZD2i5Bz47f/MYUioPfmEJx8BtTKA5+YwqlIblD0m3R0awvkgj3hSQSHQ9tR00hL2CaygX0AngQMLGFmjDKyjcsYPoQqRg6F8qKy5WcdB3aWteob8P7fCdB2ZN7EFBUS07nvNzliUaaSEPNViM4K/II+h30oEHpGdTP70B8r0HQTSF7kq4q3RX6voiIOchdqucn+Uzi1G9+YwrFwW9MoTj4jSkUB78xhdKQUMmFRE4HJFBKDFLWWa5Eosk5o1pLWR9BNt9jmLByBiKHSGVuaY4eZwNSU9A+rC2hWSdlY+ZmaHYgM42u9ftA92UPspDk3qbVNTqXFUhAkqEkeyMiuvScNPqcHIEQfQDf2QcJnJdjF7GFZ2dDGYwJ4bomuZcrZz2xxxjzXzj4jSkUB78xheLgN6ZQsKSXRA5thz3XMiVgRESvVsnSr2FKDoiXExjd/L1ap7t8Eip3PmphHPcexAvJx8SUmwUIlR78ttIo6RmIylwRSz0YSYaSdE31x8OsQVijkmDcLlNUbmGNnqfcfUSw8KPznsLko2mlUnKUWRrLco+uKzx3id6KlLlHkGimTEe/+Y0pFAe/MYXi4DemUBz8xhRKk1s6SjKm3UPZYmbGUURa0rwLyT0q1f0eZPN9utXft6c7PecBDdjAgksujZ01IFlAvDTwe0uCbgDikzLySIYOQCoSKyjnjkgNU8mTcbR2H1Ky+F3oWYyI6MB9pYzDBVyLu4OupUaBy/dRL8pEz8R3SYk9Ws+VgITf/MYUioPfmEJx8BtTKA5+YwqlWYH8IlDuUK+w95BAWKoLWX8kumhIw+VBs5ie7FTufHQ8k7WjY70Oy7nuYzc/lbWIiFcNDNSATK0lDdmAARaUxUZZelQOTGXD9H3r1ACSTGlLx5O7hqXfMBWXnhHcB/Tbi+CJzATJzxuYTLyErD8cLEL99kD4Ualt7jGnoEEu1KvTb35jCsXBb0yhOPiNKRQHvzGF0myhlxrJmPv0e0uVjpIIpExClD7UHw/6q40gw+t4pPJjeKlr3Z5+djg/lrWIiBUcz+v9UtZebceyNt6pWKIsNJJ7BEmkeI8BKyScUCxCFiL1ZcShHSQ+Ids0N7MwlQmYm4VIJdR3oVODZ5V2a8Q+inB+JFLpWqd6XuYOycEhMCCV/eY3plAc/MYUioPfmEJx8BtTKA3KOPJzIFRIVsBsiDiAiEuBsgrACbiwuggVUIu5lrw2fZA2K/gsfF9ExHWoUHkJcu96M9H9gHQlwUoyLTsbD37nkwIRqpZpsu1Fo2XVR5B5iT3u4Lgne52+O6YsO5BzJAYjEr0CqdwWZCOJZrovdA9IupFozM2I/Gbf0D8QjgeHn8D5+c1vTKE4+I0pFAe/MYXi4DemUJpciZC7HUkSmhCbPiCVWiRANpC59xrKLX/VUwE1W5zJ2gczlVcdEIgvuyz8Xh+0TJgy90gskTil69DNvDYkBgcwhXYAvQNTnHX6sva40mEjZ1BWTVdsA0Mt3sL9e1Hpfm8qzbybtppNGRExP6hEPICMIwFJpbokpCkrlaQbyXW8f3CfU+skcnPxm9+YQnHwG1MoDn5jCsXBb0yhOPiNKZSm3+TViBNkPmmCdarWmuz1qKtTdygNdQX10s/2atevwWj/sqf7fRC6j4uD/jbedjiNdNKqVaa0z9yR2nTONJ1nBMb9EiYXnUPabS+RRtqFdwI1R/1wq/f1vIXGo7CPFez7daNmv1fn/cuUgu4BTZXKTcfdZ+6azD79K7CFf626iZRt+ieNJzvpNaNY85vfmEJx8BtTKA5+YwrFwW9MoTQPBzqBhpr9UboijUXGOvREuuIQBM8Z1IgfQ4onyY830DBzDjXiVPtNgo3GgNeJ3gQTSC+ltF2SdrRGx0PX4SEc41MQfh/uVSqeq+OKiIiTvV7bh/BMPBroOQ9GeROg5gs955ONnsuqr8c97uhnp4mx5MtKa/+3ld5/ktIkC3H6FEwLOoDmpHghCfg+Y85J5HFqOEzCyt6LMeY7hYPfmEJx8BtTKA5+Ywql+YPj78viq91U1iZQm05NAQnKYIuIOK7zhF8fatEpg4pGXd9ttfZ7vtOpKyQQX8C4cJJzKahWGwUN1N/nTnIZwrU5gczEC0hMfJoYz/79kfYmePixrvUfw7sDlvZLFV2jlypit1/pdTjZ64SkoxqE1ntMuaF7cADJmZvhR9OjashMxHsKmYX0LKY+T6KS4o2eMb/5jSkUB78xheLgN6ZQHPzGFErzs/ZcFn/RU8nyrFHhN93D5JTImyATwaKkBwKLttvCfigja0vjikFU0tSc6UbFSw8kYETEsKvycghCk6RN7hhqykyj67ChclIUVSyWzi41c2/4k5GsVZfaCPWw1mdif6MCuTvTfXRrPb8ePE71e5T0orR7jwy6HHKbqFLWJj2fqSlMtJ8TKIG/bE5k7RSyQ/3mN6ZQHPzGFIqD35hCcfAbUyjNXz24ksVPry5k7TddlTtXtYqTKfS4mybGJ98eVA7NDyrjSGqtoYcflSLTOGYqrcS13JLO4KyxHWU2gsvJHcdN57KCtTGIwVsoO50nxo3vW7KDsG0DawvomTeBstopnF+raxt4PdF0HVr7Zh2m6dAalNbSxB6C7tWo0d6KJLPpWOiYIzhz70mjJfk/rHXtAnow+s1vTKE4+I0pFAe/MYXi4DemUJrzT7W89Qedt7J2dqNZfzdblRpXjUqJ3zb8GzPtqLRbQsbTEjIJaW0GpbpbyNwjkUMlwiT32kQGI2UIVh09RsoQpMwtGmtOx7MEQXqzp++TpRj1uDz5w5eaITb8TJ+J7hstl97d6vHMX2hm29trfZ5etfA8dfV6vwVRPG41AzUi8UzAM0ZwObDev7OulqE/bDQj8hgGp6xJSCdE4yn0LvxJR/fzh1BC3YXhIH7zG1MoDn5jCsXBb0yhOPiNKZRm9rVKiOlEy/82e80QIvVFKoVKTCM4m+9upxJpstPyT8rmyy3VpWy++5Z55pYTE7l9/TaQ1ThpVWitQKTO4FpvKhVVERH7UIl0+y/6TFzUMBAFZOP4oKLqBjIGv1TfF78OFXnPtney9majZcMREYudHiPRh2m3tHbeqKj8sKsZdU86Wmp7Qr0aYQhMF8q+IyJ+sNNr+6ddvRaPfqT9Fhd3eg/85jemUBz8xhSKg9+YQnHwG1MozW9fPJDFcWgW0wSGEIxrFRPXlYqvq+DhENQDkOTeZKvSB0UeSDeWe3mlupT1Rz34/i+gc8HpyZAhRvJyDJlp81qvf0TEFLLTPj9S4XdygAErcH0oo3IMpd/PYcryVzsVWlebsaxNNpzhR/c/N8tyVKuBfAz98T6uVAI+hanID3d6bS53eh0+6auwi4j4+M/1vPt/9BFsqQKy/2/PZc1vfmMKxcFvTKE4+I0pFAe/MYXSPIOpswsoJ53Az8RtB8otQe7dQQlmBE/Vze2vRmskd0ja5W5HUL+9iIgGsvSo/JOy+Ug20X44ixAGfsC50HVNQZ+/rTSTsIF3xwD61NEEXSrdvobsztstZKtB1h4J4PeBRC5lWZ5UGi+PD3rOn271Gn7a0fP7+Me3uo+//hiPsfrpz2Stc6lTtg9XX8pab/tP+n24F2PMdx4HvzGF4uA3plAc/MYUSjMDubcGp7XoUJaWSpY7KB2dJYQflaimhmJ8W3LlHu23A9ItleFHIi83kyx3jff97a9X6lrTQJT9Xret4Hhmofea5CXJ3mmrGX7LFiZB04CNxLmkBO270DNBmYkNnPPpXtce71VKfvjxRNZGP72UterP/gKPsf79n8pap6/ZhW0Xynd/9EzXcC/GmO88Dn5jCsXBb0yhOPiNKRQHvzGF0mxBhub6Y9puA2mkSzC7EVyfnjsWmUx8Lvf5RyG1X1q/j9nPt/0KmWtKVaX044iILmxLZp9GSdMa9U8g279o89J2yeznWv3U53Ece+az2IfNjmo97t4IUqz72iQ0ttx0dH/ztS7ScV9/pdst9Z8Uv/mNKRQHvzGF4uA3plAc/MYUSkNTd0idkNToZUopkkARXGN+HxmXK2juQ0os5Qq63O3u0yiUPksSrwe19//b+rug8IM6fZJ7K0jbzU3lpXtA/RRS5KZ30xqJzyrzsdtDA8/DVEXc4evf4ecPd290cab9Dg6vrmStfa19A/zmN6ZQHPzGFIqD35hCcfAbUygNqZ0aBQbUMR/0t2MIsiglr3DCDqxhRlbmmO37SMAK5FxKLPUgW47WqO6fyD0XWiOpSMc9rCC7LCJGlU7nyWUJU5hI7s222hB0A7KQBBv1SejDyO8Ifp5IIlIjVHwWqTkqPN4tjCrfQzrtYarXYf/8pX5hgsNbHU2+faGNQjfgCv3mN6ZQHPzGFIqD35hCcfAbUyjNEFL8GpBNDTVhhLUByCbKLovIlzHcsPHbj94mqCSXxNJRo80RIyIGMPnouFZxRhIRJ+yQlMqcukPCj7L2jmH6TETEo44eN2VzDuC+zqFxJd3n5S4vm4/uAcnLfs3ykr6TyoTXLWQhQmZiSxOgSPgdMsuvd/DMjlXYRUQc1nrcu9eaIbh6rfdqMdbr4ze/MYXi4DemUBz8xhSKg9+YQvlPvo4Mn7zz7ygAAAAASUVORK5CYII=" y="-9.591764"/>
</g>
<g id="matplotlib.axis_1">
<g id="xtick_1"/>
<g id="xtick_2"/>
<g id="xtick_3"/>
</g>
<g id="matplotlib.axis_2">
<g id="ytick_1"/>
<g id="ytick_2"/>
<g id="ytick_3"/>
<g id="ytick_4"/>
<g id="ytick_5"/>
<g id="text_1">
<!-- 8 1833-20719 -->
<defs>
<path d="M 17.671875 38.8125
Q 12.203125 40.828125 9.5625 44.53125
Q 6.9375 48.25 6.9375 53.421875
Q 6.9375 61.234375 12.546875 66.546875
Q 18.171875 71.875 27.484375 71.875
Q 36.859375 71.875 42.578125 66.421875
Q 48.296875 60.984375 48.296875 53.171875
Q 48.296875 48.1875 45.671875 44.5
Q 43.0625 40.828125 37.75 38.8125
Q 44.34375 36.671875 47.78125 31.875
Q 51.21875 27.09375 51.21875 20.453125
Q 51.21875 11.28125 44.71875 5.03125
Q 38.234375 -1.21875 27.640625 -1.21875
Q 17.046875 -1.21875 10.546875 5.046875
Q 4.046875 11.328125 4.046875 20.703125
Q 4.046875 27.6875 7.59375 32.390625
Q 11.140625 37.109375 17.671875 38.8125
z
M 15.921875 53.71875
Q 15.921875 48.640625 19.1875 45.40625
Q 22.46875 42.1875 27.6875 42.1875
Q 32.765625 42.1875 36.015625 45.375
Q 39.265625 48.578125 39.265625 53.21875
Q 39.265625 58.0625 35.90625 61.359375
Q 32.5625 64.65625 27.59375 64.65625
Q 22.5625 64.65625 19.234375 61.421875
Q 15.921875 58.203125 15.921875 53.71875
z
M 13.09375 20.65625
Q 13.09375 16.890625 14.875 13.375
Q 16.65625 9.859375 20.171875 7.921875
Q 23.6875 6 27.734375 6
Q 34.03125 6 38.125 10.046875
Q 42.234375 14.109375 42.234375 20.359375
Q 42.234375 26.703125 38.015625 30.859375
Q 33.796875 35.015625 27.4375 35.015625
Q 21.234375 35.015625 17.15625 30.90625
Q 13.09375 26.8125 13.09375 20.65625
z
" id="ArialMT-56"/>
<path id="ArialMT-32"/>
<path d="M 37.25 0
L 28.46875 0
L 28.46875 56
Q 25.296875 52.984375 20.140625 49.953125
Q 14.984375 46.921875 10.890625 45.40625
L 10.890625 53.90625
Q 18.265625 57.375 23.78125 62.296875
Q 29.296875 67.234375 31.59375 71.875
L 37.25 71.875
z
" id="ArialMT-49"/>
<path d="M 4.203125 18.890625
L 12.984375 20.0625
Q 14.5 12.59375 18.140625 9.296875
Q 21.78125 6 27 6
Q 33.203125 6 37.46875 10.296875
Q 41.75 14.59375 41.75 20.953125
Q 41.75 27 37.796875 30.921875
Q 33.84375 34.859375 27.734375 34.859375
Q 25.25 34.859375 21.53125 33.890625
L 22.515625 41.609375
Q 23.390625 41.5 23.921875 41.5
Q 29.546875 41.5 34.03125 44.421875
Q 38.53125 47.359375 38.53125 53.46875
Q 38.53125 58.296875 35.25 61.46875
Q 31.984375 64.65625 26.8125 64.65625
Q 21.6875 64.65625 18.265625 61.421875
Q 14.84375 58.203125 13.875 51.765625
L 5.078125 53.328125
Q 6.6875 62.15625 12.390625 67.015625
Q 18.109375 71.875 26.609375 71.875
Q 32.46875 71.875 37.390625 69.359375
Q 42.328125 66.84375 44.9375 62.5
Q 47.5625 58.15625 47.5625 53.265625
Q 47.5625 48.640625 45.0625 44.828125
Q 42.578125 41.015625 37.703125 38.765625
Q 44.046875 37.3125 47.5625 32.6875
Q 51.078125 28.078125 51.078125 21.140625
Q 51.078125 11.765625 44.234375 5.25
Q 37.40625 -1.265625 26.953125 -1.265625
Q 17.53125 -1.265625 11.296875 4.34375
Q 5.078125 9.96875 4.203125 18.890625
z
" id="ArialMT-51"/>
<path d="M 3.171875 21.484375
L 3.171875 30.328125
L 30.171875 30.328125
L 30.171875 21.484375
z
" id="ArialMT-45"/>
<path d="M 50.34375 8.453125
L 50.34375 0
L 3.03125 0
Q 2.9375 3.171875 4.046875 6.109375
Q 5.859375 10.9375 9.828125 15.625
Q 13.8125 20.3125 21.34375 26.46875
Q 33.015625 36.03125 37.109375 41.625
Q 41.21875 47.21875 41.21875 52.203125
Q 41.21875 57.421875 37.46875 61
Q 33.734375 64.59375 27.734375 64.59375
Q 21.390625 64.59375 17.578125 60.78125
Q 13.765625 56.984375 13.71875 50.25
L 4.6875 51.171875
Q 5.609375 61.28125 11.65625 66.578125
Q 17.71875 71.875 27.9375 71.875
Q 38.234375 71.875 44.234375 66.15625
Q 50.25 60.453125 50.25 52
Q 50.25 47.703125 48.484375 43.546875
Q 46.734375 39.40625 42.65625 34.8125
Q 38.578125 30.21875 29.109375 22.21875
Q 21.1875 15.578125 18.9375 13.203125
Q 16.703125 10.84375 15.234375 8.453125
z
" id="ArialMT-50"/>
<path d="M 4.15625 35.296875
Q 4.15625 48 6.765625 55.734375
Q 9.375 63.484375 14.515625 67.671875
Q 19.671875 71.875 27.484375 71.875
Q 33.25 71.875 37.59375 69.546875
Q 41.9375 67.234375 44.765625 62.859375
Q 47.609375 58.5 49.21875 52.21875
Q 50.828125 45.953125 50.828125 35.296875
Q 50.828125 22.703125 48.234375 14.96875
Q 45.65625 7.234375 40.5 3
Q 35.359375 -1.21875 27.484375 -1.21875
Q 17.140625 -1.21875 11.234375 6.203125
Q 4.15625 15.140625 4.15625 35.296875
z
M 13.1875 35.296875
Q 13.1875 17.671875 17.3125 11.828125
Q 21.4375 6 27.484375 6
Q 33.546875 6 37.671875 11.859375
Q 41.796875 17.71875 41.796875 35.296875
Q 41.796875 52.984375 37.671875 58.78125
Q 33.546875 64.59375 27.390625 64.59375
Q 21.34375 64.59375 17.71875 59.46875
Q 13.1875 52.9375 13.1875 35.296875
z
" id="ArialMT-48"/>
<path d="M 4.734375 62.203125
L 4.734375 70.65625
L 51.078125 70.65625
L 51.078125 63.8125
Q 44.234375 56.546875 37.515625 44.484375
Q 30.8125 32.421875 27.15625 19.671875
Q 24.515625 10.6875 23.78125 0
L 14.75 0
Q 14.890625 8.453125 18.0625 20.40625
Q 21.234375 32.375 27.171875 43.484375
Q 33.109375 54.59375 39.796875 62.203125
z
" id="ArialMT-55"/>
<path d="M 5.46875 16.546875
L 13.921875 17.328125
Q 14.984375 11.375 18.015625 8.6875
Q 21.046875 6 25.78125 6
Q 29.828125 6 32.875 7.859375
Q 35.9375 9.71875 37.890625 12.8125
Q 39.84375 15.921875 41.15625 21.1875
Q 42.484375 26.46875 42.484375 31.9375
Q 42.484375 32.515625 42.4375 33.6875
Q 39.796875 29.5 35.234375 26.875
Q 30.671875 24.265625 25.34375 24.265625
Q 16.453125 24.265625 10.296875 30.703125
Q 4.15625 37.15625 4.15625 47.703125
Q 4.15625 58.59375 10.578125 65.234375
Q 17 71.875 26.65625 71.875
Q 33.640625 71.875 39.421875 68.109375
Q 45.21875 64.359375 48.21875 57.390625
Q 51.21875 50.4375 51.21875 37.25
Q 51.21875 23.53125 48.234375 15.40625
Q 45.265625 7.28125 39.375 3.03125
Q 33.5 -1.21875 25.59375 -1.21875
Q 17.1875 -1.21875 11.859375 3.4375
Q 6.546875 8.109375 5.46875 16.546875
z
M 41.453125 48.140625
Q 41.453125 55.71875 37.421875 60.15625
Q 33.40625 64.59375 27.734375 64.59375
Q 21.875 64.59375 17.53125 59.8125
Q 13.1875 55.03125 13.1875 47.40625
Q 13.1875 40.578125 17.3125 36.296875
Q 21.4375 32.03125 27.484375 32.03125
Q 33.59375 32.03125 37.515625 36.296875
Q 41.453125 40.578125 41.453125 48.140625
z
" id="ArialMT-57"/>
</defs>
<g style="fill:#262626;" transform="translate(15.789375 107.877076)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-56"/>
<use x="55.615234" xlink:href="#ArialMT-32"/>
<use x="83.398438" xlink:href="#ArialMT-49"/>
<use x="139.013672" xlink:href="#ArialMT-56"/>
<use x="194.628906" xlink:href="#ArialMT-51"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-45"/>
<use x="339.160156" xlink:href="#ArialMT-50"/>
<use x="394.775391" xlink:href="#ArialMT-48"/>
<use x="450.390625" xlink:href="#ArialMT-55"/>
<use x="506.005859" xlink:href="#ArialMT-49"/>
<use x="561.621094" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_2">
<g id="patch_3">
<path d="M 164.424375 134.493527
L 286.714375 134.493527
L 286.714375 7.2
L 164.424375 7.2
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_3">
<g id="xtick_4"/>
<g id="xtick_5"/>
<g id="xtick_6"/>
</g>
<g id="matplotlib.axis_4">
<g id="ytick_6"/>
<g id="ytick_7"/>
<g id="ytick_8"/>
<g id="ytick_9"/>
<g id="ytick_10"/>
</g>
</g>
<g id="axes_3">
<g id="patch_4">
<path d="M 299.674375 134.493527
L 421.964375 134.493527
L 421.964375 7.2
L 299.674375 7.2
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_5">
<g id="xtick_7"/>
<g id="xtick_8"/>
<g id="xtick_9"/>
</g>
<g id="matplotlib.axis_6">
<g id="ytick_11"/>
<g id="ytick_12"/>
<g id="ytick_13"/>
<g id="ytick_14"/>
<g id="ytick_15"/>
</g>
</g>
<g id="axes_4">
<g id="patch_5">
<path d="M 434.924375 134.493527
L 557.214375 134.493527
L 557.214375 7.2
L 434.924375 7.2
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_7">
<g id="xtick_10"/>
<g id="xtick_11"/>
<g id="xtick_12"/>
</g>
<g id="matplotlib.axis_8">
<g id="ytick_16"/>
<g id="ytick_17"/>
<g id="ytick_18"/>
<g id="ytick_19"/>
<g id="ytick_20"/>
</g>
</g>
<g id="axes_5">
<g id="patch_6">
<path d="M 29.174375 278.412951
L 151.464375 278.412951
L 151.464375 151.119424
L 29.174375 151.119424
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_9">
<g id="xtick_13"/>
<g id="xtick_14"/>
<g id="xtick_15"/>
</g>
<g id="matplotlib.axis_10">
<g id="ytick_21"/>
<g id="ytick_22"/>
<g id="ytick_23"/>
<g id="ytick_24"/>
<g id="ytick_25"/>
<g id="text_2">
<!-- 13 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 255.133062)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_6">
<g id="patch_7">
<path d="M 164.424375 275.911187
L 286.714375 275.911187
L 286.714375 153.621187
L 164.424375 153.621187
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p4b26f301aa)">
<image height="122.4" id="image3d06666251" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPJNd1hW9GRA6VlTX1wGo2WxQlihJlyYK0kC3DKxmwYWtjeO8f6D/gheGNYFgbeZA1UJQoihRZPVRX15iZlVMM6QVtAerzBRBtLQzonW95ERnDi7gRwMlz7+1979HfbOMlxr3+y6EY9DKJ9UNjB71CYo8a3V9ExJc2jcTuxUZiz3oDif1gWEvscJtL7C9Wur+vf+eFxIbfeqgnWOkxbn/wXLeLiP/8+esS+9VA1+K1SpY7vvvuY4nt/f23JdZ780sS216dSaz52XsS2/z0VGLTj/m+nJ1NJPas3pHYItP7P9rq9R1sS92uB2u71fN5f6Cxf8sWEptu9T5HRLyRjSX2EI6jZxPxONYSO2luJbZo9NjjTJ/Z+5muYT96EjttlnA2ESebS4ldbGYSW1V6Ppu6kpjePWNMEjj5jUkUJ78xieLkNyZRigWIMSrZRPR7Q4ndAWHwrVpFrrc2JKdEPCxU2ChyFQHPNyqelHCWT0Es/LgYSezRR3ot949VTOmN9Fq2enoREXHQ02M/qEAQa/S8Fxd6fbsffCSxrIR7NZ9LrDm9ltj6hQpLN1cqQEVEnNW6Zo/7KqbOMr2WDASswVbXW1c2Qq8u4jQjYVC3XG1V0IqImEN8Fnot9BWkZ2yzhfNpVBgsYbuuvKhUxIuIuC5VbOwq7lnwM8b8Fie/MYni5DcmUZz8xiRKMatXEhwWKsfsg0TzeqOxB5UqYvvBYgyxAZGsVA0JuQSX18eFimlvv9iX2Pj9c4kVYxUkby9VDIuIyEH8ugMiSwEi0nql67j51YXE+uA4jFKPsf5Ez/vs5EBiH633dH8R8ZuB3oOnJLyBS68Bh1+W6Q3MQRik2C0IdnVHIS4i4gaeiZ2eCn55T4+9aPTYq0bFxmWtx1j3dLsNXEvV6HnfVOpgjIhYlCoskpBH+2xAqfaX35hEcfIbkyhOfmMSxclvTKIUJYgae1BCexzq5rsLGgs52FpMcbEEN+AKynKnhb6jahCWpuC0+jDX/R31dyW2+OBYYnsg2pRbfl9uQayistVRDmJMo79dn5HKqc69ZqnrcPahCnnvb1Tk/KUa7yIi4jm4FWcgVq1BWCIxjkIjEN3G4LyjZ6eAbxaJhRERJQhd855eyxDuKzldh5k+s6NMc4OEwVmlQiyJheTai2Ahrys9WB9/+Y1JFCe/MYni5DcmUZz8xiRKUWQqsuxDqe4EBJEhiG4kkixAyImIqLcqQsxzPc5Zrnudg2twCaWeH5cqkt0W+tsPdrS89XirsQc1C0uvgbPxTktfuZchwW81pf56UMo6VXH26Vx78J0M9Rgk7EVE3MA6knBG93oLURLtSBjEcmBw3u2B+Nz2GSNh8Q4I2iN4vndJ3IP9DaFv5WWl5beXpZZfsxuPVjYih56JOYmf0G+zBPHZX35jEsXJb0yiOPmNSRQnvzGJUmxBXFjBCINZT2WbKxDnShBE2rgF7ewSxL0n0JvvumPftEWt211VKrx8CkMWPjc4kti7OZfB5uBMzCsVpjaVbjeoVDBabzR2UKtDbLPW7Uhgo7d8myuOhLcCRCT6dQ1REgtp4MsIjrEL6zoBAfkYRLyIiCMQ8h5Ueo59coyCGP4EHKO0uOtcReU5lM+v4JpJhI9oEfzg95TTG3Dy+stvTKI4+Y1JFCe/MYni5DcmUZz8xiRKMYUa45N8KrGSJunkWhC+C0pl2xtmAf8gUBPOK1D25xCrQVWmGNVQU6yAfy6OBlwEf5BrY0/656MA9TrArjqp9TgPz3U77A8AivsY/gIgdT0iYgB3jGy7BE25oeaYu6DY04j1owZGw8Op7Lac3muVqtyHLbbml7ms9R+EBVh+n5NiD2s4ILtwrscYwj9eERFD6BvQh2eshv976Pn2l9+YRHHyG5MoTn5jEsXJb0yiFLNSBb+nsOG8UGviKYhcY7DJkl00gu24a2gUSduRkNdVlCKorprsmBeNxiIinuUq5sxACMLa9p6e9wBsqReNrvfdSn8LDuJYd5x6FMFfBBIRu1qG+7AOd7a6Xq/VsF2t1zcC++qoZXb6GPo+gP6IwBAmBHsTwEF2IDfyPoiFLRb53UxF4AFsu4TmoZehlnZ/+Y1JFCe/MYni5DcmUZz8xiRKQUIX1cCTwEZTScjFRDXHEVx33HQU7dpERNkOhBeaXtKD7agG+qpRgTSCRa0RNHasSKiESx7A/hbgqJyC4NOH65uDm3IBTR0jIhYt465fhibs7MI1H4B4SeLeXRD3xg2Nlu7WODYiYgaj5alhKv2emsnOQZxdg4xLTThpss9uqAi4C8JgRMTdHgh+8P2+zqgBqxt4GmP+Bye/MYni5DcmUZz8xiRKQU0BCXLPkSBGkOjWRtu0kpehUkYSFsktNcqhsSaIQHTeJIZGRJx1PEeCBMhdmJo0gnLpCQmNcAyS8KqWtd60uOXkODRmu6O4dwwTjsZw3ArWhppeVi3PGA1YorVo4PfkiixB3KMGpeT6o2ebRn5P4N5HRNwHcfAurPcUfl8WJJwaY5LEyW9Mojj5jUkUJ78xiVKQI4/cbiRKkcBGIhmNEW4FnGgklJATkFx2Y3BVTaAUmcTLNTgYySkVwUJgBudDa0YjnjNweY1BYNsHoXJMo89BvJq1iL3cw08p4JkYQuyw0V8fQuk2UYKLcJnBVKBXEJULEt7gHHPY5RiOTdOMyBFLz84A+ha2uVdpbe+AovkAblbe17Ht/vIbkyhOfmMSxclvTKI4+Y1JFFWagkWpPrjLSCykwQIDELQiWBwkUaSCGLrioMfZUb4jsX1wQJEj6xzKdy+qW4m1nSO9WUncm8B578PI6T0Qh3ZB8Nsj8QqEqnXLfSG9adXR9YdCLAhQfXDK0Xhvcu6RuNdWhEz9/vZrcBfSoAu4gxcwopuGn4wgNzIQYtvK3Qm6AyXcqwGsN7ks/eU3JlGc/MYkipPfmERx8huTKMWiUmfaqFCxaQemiY6hp9x+pu65tp5kNOBhBc6vJcTorXUAx/58NpbY642KMST4fQqlv21uxSkM86CS3n0Q9w5I3CMxDoScFZwOOe/orI9ALIyI6MOxLzOV1K7gvtyAQ3NKZatwD0o47xn00VvAxUBrvYiI2AOVbBfkwSGc9xLKZQnqW3gEz+IKRGEcctLi8FvBOZ6BDRG0+VjANfvLb0yiOPmNSRQnvzGJ4uQ3JlGKRamCH7nnmgKGEIBT7hCEjsOWnmQ0mIKcZCsQK/rw3noYKqZ9sYSechVM/QXX2LgPQmWupZEREacg7tE6HsBakOOwD26wDQk+oALSsAkq8520mPaOYNs13KtzOPbZVp+njwr9bdnmLnwJEvdKOO6obRI0hDfw7NRwzbdQ8kz7wzLmgD6R8IzQLaDnJiJiQf0DQemk9aFBLP7yG5MoTn5jEsXJb0yiOPmNSZSihimo1H+MhnZQOSKJeOSAiuDprUMQXsjxdAQ1nPdByDsIFaCG4Faj+RXZRgXEesBuxRGIbDS9dQxluRNYByqNvSVxDybtruleQS88EvYiIoawGEdwX09BEHvWaMnzGs7xttBSaxr4QZArru2XaxByb8ACR2bHK3DPLUBgI9GO+kmSQ5PEuTZoOIh2mWwT/Lq5ZI0xCeDkNyZRnPzGJIqT35hEKWhABwl5XXuNUWlsG4eN7vOdjQoTb+7MJbYzUaljs1ZhcQWxLQhd5PA6qPVc3qhYJOtBO8RZpmtBv6aeaw1suYV3NbnBdiB2F4Y7kNMxImIMjsoxlOBeDtXFdgLneFJeS2xebCR2L1MRcALruofTgXkiMjkESQSk0ugrcFTegHhJ7rmueUBZRYLmZ9uC87bjcWiwiL/8xiSKk9+YRHHyG5MoTn5jEsXJb0yiFIMcpu4UquIWoLCS5RctiKCaRkSMQaj8wmQmsQdfV7V/W4H99amed3mxK7HZBrYDtb+EdyONco6IOIRLpB4BS7CHrkHcJb2XavKP4R+TR6Wqz6/nuoZHd3UiUUTEYKj/csynMNZ8cSixJwNtmHrRU8vvi1Lvc12A1TzX/dEI8XVbB08AWjzEFaj4L6A3wUWtjVrXYJ0t4BypeStZ39vUflL2KbO6/gPgL78xieLkNyZRnPzGJIqT35hEKXZgOg+O2YapKw3UfVc0epmK5SNiB8SzAxCh+vehrv5a7aE5zYIG5luwqsLoZRoFnbdcC9VVk8VzBTGqv6e38j2oyf8aNGB9990zie18Qe9pdqRiWkRED2rtD5+rQBc/UNvuSaki4Gmuout5qAhIYjFNuZmFCmw53KsI7gWxAHHvFCYukS35bHMjsarR/e33dW3rga5NBpbm+hXES3rG2vJNjt35KMaYPyic/MYkipPfmERx8huTKMUQxlCPOo6mzkBkIREwy1iMoTr2/q6KJ72Rust6A5XY8qEKRkUBtdaqkeGo4ynU4++0aClUTU7OPRqzTJNYyOW1hQaX9ycLiU2++1Bi2VfekVhvcqAnGBEBjTmz508l9kbzHxL7+j/vSeyjkQp+XaGv0y046kr0unEN/KzRZ+dpqULe49WFxK5XKlRSHhB7IKTugMOvxqeJIcGPcpDwl9+YRHHyG5MoTn5jEsXJb0yioOBHDj8q6aXmkV1FwIgI6CkZ1VLfR9tKxZzeSIWSwaEqeaNLFXcy1WziFsS9854KS/0WcYem7nSTgXh9qCxzQ+tVwXH3dYx474t/LLHs/ufxfHrg+mw+dyqxAZz3Nz9SEfDJJ29IrN/X896Aw6+CdVhCg9EliIARPKnmplYX6QWUGN9u1PVHbr4CJgBRY1yCMqNlcjqW0NOz8/s0DzXGJICT35hEcfIbkyhOfmMSpRjnWi5Lgl8fBL+2XmMv0zaGmEYgX51pKeTOc+0/l++p4Nfr6/6KPo01hjJPOMebLYiFbf3Verpm+yAC0hjqEko4aQrMDUhBn6xU3PvCzz+RWPZHKthFm+C3oy69nFx639aQFq1G/O0//FBib/3kdYmd5io00jNyAiPWn/RUnIuIuG5UBJ5TH75a7zWJdtjzEkRzyqtd6OE3wrzibzKJwBU4Rqmkt4Znx19+YxLFyW9Mojj5jUkUJ78xiVLs5VpmOELBD8Z2w7uDHEdL6JkWEfE0UxHiFwsoM/2xhg7vqUurqVWMeX6m4tUnAxVZnoeKQBfQ161N8KPX6DBUwJrAhtRnbg0CzYvQvoU/H2q585e+r+vw5sN/ldh2CVbHiGiO35RYb++exkAYzL7z1xKb7KsM+Kf/9C8Su/mxuvHOnukxPtioyBkDXYeIiNtMhbwpPN+HAxU0KYauVogdFCpcH4LgRyW9bc/YGkRg8jWWsN0GYv7yG5MoTn5jEsXJb0yiOPmNSZRiN1NRagQiBAl+BJUTUlllRMQJuLK2QxVFXmyOJHZ0oiISlbx+qtpOfBgqFn5aa0nnFEo/yekYwaXMYyj1JLMj9fCbgruQhJwh9Nv70ULXa/KP6vA7PPu+nkxE5G+AuHcEQuyRHifGIMZdX2qsgAnI+zD84lafkeMLfWbfaPS5iYiYwlAMcoL24Tv4Ggh0k63e0xuQ3WiwCB2DxN42RyxBg05I3FuhW9UYkyROfmMSxclvTKI4+Y1JlGIMbqddKE8ddXxPkDONJq1GRMxAhPgQ+rN9mkNfP9DSViAszmp1xU3BuTetdPhFCf3aaKBJBAuBAxi+sAAx9baBPnNwjiT4kRvsZ30oO31yLLF3zmHybkQc3Xumv98/0WPD1JV6BcNPnqvodn6tDrgm1FFXQQn0FTyfbU/nYeha5CAC7sID9ZVSYw8qvVfPChUGPyj0uFMQAalHYVsPPpzI29rx73eh59NffmMSxclvTKI4+Y1JFCe/MYlSHPVUrDgAUYoEEd2K3UkLKN2NiJiDgHW9VYHupJrqb6EPG0F92DYgsK2gh1vVIlQSc3ArUvnnAIQXcmTNQfCrwc1FfAj3rxypyPW05im9D55qGe3kMQ3U0Os7L/T6nhT6TKyHGjsCcW8Cl1yCk3MBfRAjuM8kueroK0h77EN00mhsTNOBYX+bVxDIq47iHj1j/Z66Iv3lNyZRnPzGJIqT35hEcfIbkyjFIbiljkDcm2xBOAFFhCSJTUs58JzKY0HMuQExjQaLTKAEk0qWl+AsPI0bPS64/mhSakTEquk29IGmHW+h7yFNg6WhDXTci56WIpdwZ85hbSIi7gx1bfdo2Aj89iJ0SMYViLhUAn0M9+8QnWndy2BXMNRiDcLpCtbnpKBeero2Fbbc0/Oha6YBG3SvIrh8lyDBbw/utb/8xiSKk9+YRHHyG5MoTn5jEsXJb0yiQNUxQ7XEDaiXRDeNsp0B2FV3oK7+YaY14vtgQp711N5bwyjvDfQHoBr/NkjF7zjVPHL6h6Sj2kv/ANC/FLcwASgi4oLWG2Kkr9/CPynUZ4GaxI6g4Sn9Y0KQTfazY+v9msH5LOC8qW/AvK826Qn8E7KkfIHnoePjEBFcu08W8jGc9wH8S+EvvzGJ4uQ3JlGc/MYkipPfmEQpqKae7IrzV5Imfpe6pdb6tmM9P9laj8AKehdEDaoRH4OIdAlNHc+zucTaaurJupl1HGu+hfWha+4KiXskArZdixqdWYCkWNeeA/TZuW2Z7CTHoOtrqYEnAfIaJjHdQn8IspBvQBi+Cz0xqGcAnTf1G6DYZ3FdNDQgw30ZQcxffmMSxclvTKI4+Y1JFCe/MYlSnG5V6BiASFaAYEBiA8lU5GyKiLgFEWoOgh+5mEgU2SG3E+hP20y3m4DjDAUfaP7Zdo5Ud971t10hcY8m+9B2bdfStXEp9SbAyTD07MC9n8J25A6kevd1i1h4W2t/AerTsILJTv1MnwlyHJa5Tho6AEF6ByY40djuYcsYeGrgWYHASjHqV+AvvzGJ4uQ3JlGc/MYkipPfmEQpzip1sbFo07F8F8S9tqaXJExRGe0uiCfE/102ixjAe5COu86obSWX75JLj8oy8bcg2tB6dTUCkvOuTdjrWrbch0lM2wxcbCAg02dnWne7mFe5FnI2riFG4icd57q87XKKKPYOspHERuT4bPkmr2Cfa3gA5uBqJHehv/zGJIqT35hEcfIbkyhOfmMSpVg06oAisYLEDxKvXkXwo21JWKQefgRJPit4vZEXjMogacrJqkV8XIPIQpC4R+tI603rSGuI96pj7LN9divLbUDIw32SEgsCWwl35vd9xroKebTPBkTEBTgG+9B78Baek73Q52kM4noPpmO1QUInjnyHSUr+8huTKE5+YxLFyW9Mojj5jUkUVNLQeQfCSVen1KtAZbQ9GJVMpZDkqGtAbaL+ajSWfNFTR9Y6ZyfZoul2PgSKZPBabhraXzfxq2usDSrLJaELh40A6FYEuoqcrwILft1EwDzrJnLiMbD8mspvW54xGjZCDkZy+MFx/OU3JlGc/MYkipPfmERx8huTKAU6zkAcQMGvBsGv7uaoimA3X7+vItIQeqkNQVjaaXR/x5Ve3x4IZzPo6xd9dWRtoIw1IuISRMSushS52JY0abers+3308NQ3BvAPSDnJQl+JO7RchM9+j7Bb9vEyy2KpErXYSNYqosTh2FtOg7yWLb0I5yDG5eGjXTt4egvvzGJ4uQ3JlGc/MYkipPfmEQpqMcZlQlSDHupQf+3NjGFxCESmwp4R6FLDwS/r4T2XDt+MJPY5cVYYutqX2IXfS4vXvXUmUiOLiodJpcXvZbpXpG409Vl1zYshITYrlN6USyE/ZF4Sb8lgY3Wta2H3wbKhLlnYrfycrpmGu5BzyyxBrGXnHwREctGB4t0zV/CX35jEsXJb0yiOPmNSRQnvzGJUtxW6hAiQQXdZR1LK9tKMPOOLi9yJ5FYdVSrePLw0Y3E9r+m77zRx7rdx7+cSKzod++vRmIVubyo7BgnE3cU3Qja37bX3QpIx6EpvSMoyeZpvnAt8C0iQXMJJavzmkWurv36uop7NKWXnk+aGnwFui5d37TRnIyIWMIkYRL3upY8+8tvTKI4+Y1JFCe/MYni5DcmUQqayNp1Ii85srr2OIvo7tRagXiyAWcUvcuyHMTCArbrNhckyrbhENB3DR108PMSrqWrS4vEtK4iYJtgS6LWDgww2Yeps3chdgjuxxEM/Nj0dB0uQdw7rdW1OQ8WyQh6RqmdJeUBPcuzaikxKoEnAZimUrf1wcRBLnAP6f6hGxOPYoz5g8fJb0yiOPmNSRQnvzGJ4uQ3JlGKcaGjhEnl5BHGMAWk4z8FbfukfgCkpp7n2szwtFBF+tnJgcTK1Vxi15e63Tn8K1C3KeQdx5qX8K8AjVSmfzjoGGSn7cM/ANgTAbaLiNgFdf5uT9f2EYycflTpOR6A7Zr+y3he6HE/gH9hLuG8SUmP4DWj687zbtZpVPtLfT5vtguJvcqEJIKupbMtGTqm+stvTKI4+Y1JFCe/MYni5DcmUYr7A21SiaOuaYoPiFJkF64KtqqS4Edjn8muON1qbfOvc7WC5lutyT8829X9gSDyJAfbbYtoQ2/RJchaNImHmjASZLHdhdgEBLsjEOwehG4XEfHVja7Fu31tenr3+EJieR9q2+eq2r0413uwbDRGjVrpDtAzEtEi2nW0upKYRnZaEqkpD+hchiBytgmxVPtPxyYKT+wxxvwvTn5jEsXJb0yiOPmNSZTiYV+dbexM61ZzTlX21LQyosVp1dHFRG6nFyACrkG0GxV6XBqVvIDrm0F9+Wfbqvg5hfHJc4jRerNzT9/Vh5k6NB/0NPZ2paLbn/WmEouI+NLf6TUWf/IN3bCv57g9eSyx9Q8/ltjV1Y7EVjBxaYlPlELNPyNYQO5KV6drAcfo57reh30VNI8Hmn9jEGwjIs6hj8HZWhvPUl66nt8Y81uc/MYkipPfmERx8huTKMVbmYoQVHrY5mx7mT68T3a2LYIfTqpRNnDsm56KGucNlPlCY8cMLoUEvzVNi2lx481qLeu8rfV8sLEjCEsD6ChKIudOqNj0eqO//ValJaZvf0/POSKi/1d/qcd++5u6Ya3X0ox/ovt7fCaxLTwTU9DmNiCGkihM7seIFodfBlN8OrpaCRIVDwvNq3cGdyX2ta2OhqdR8xERvwY37n+B4Hteack6lTz7y29Mojj5jUkUJ78xieLkNyZRiq+VKg6RvygDZxN5p2BATitQORpLKK2dwiuqhPHSBYg7NyAC3jbqBKSy2nXHWETEutY4lWAS5HQkl1YFbjcSKodwDw4nKnzmxyogfXZC8ARUumYB59ijaUFwTze1XvMcHp41XPMA1uturo7BiJbeirBm1DNxAc8JTakiN+ZXizsS+/NKpxl9I1OX5d6+PrMREV+8OJRYf6Qi4oeZrsUCnKn+8huTKE5+YxLFyW9Mojj5jUmU4s1KhYB7fRWH+n0Vd8iltS5VjLmp1YUUEXEOLrZrEAHnMLp5AUJQiX0G9byprHZeaWxVq+BDvdki2BXZdXwyvYLJCUgC1DTT2AW4vq7nKja98eRaDxwR2clvJLbdgAjVwMjoT/W3619p/7+zRsVGcm2Sw28Egh+NAY+IGG91WxKLX2zBjdmxNPYIBLYvb3W9vx7qvHv0ZS3JzbXtZEREZPmVxOYv7klsNNQdnGc0MtwYkyROfmMSxclvTKI4+Y1JlGJNJbgjFQEnByqINLWKVzfQm61trsA019+fQbnleej5XINjaUY9/EA4IzGNnHu03f8nJCBS2TGJO+T6Ov6RClAREfdHv5BY/sYLPZ8S1va95xL74EcqSv10pM/dc5hsuwTn3QEMIDnYwjjfiNin0uGO5enk+iQRuO5oa+2B0FivqXyX95dDP8pHmZZllxstE56Aa9NffmMSxclvTKI4+Y1JFCe/MYlSnMEAi3vgBhvudBO/ykr3dwVOvoiIMxBKnocKKuS+mkOp7gIn4Or+SMijaaedHXrBpaO0bdd+fUMoE93N1bm3C8426tf2otDYyZkOjIiIGP3kXGI7508kVqk5LT5+X0tZfzBQAer9gAEUtQp+5JzcgYEYK3CBfoZ+3y5BQD5vVDibwvmsoHR72qg79Hlfn7Ena12H/mN97oqCr6Wq9Fp6sD4H8CzPal0zf/mNSRQnvzGJ4uQ3JlGc/MYkSlGCfjXbqog0mamrKoPpF9NKf3s+YJHsrKfiyQUIeVc0EAO269pzj1xaGxhAQWJTr2UACU1qzTN9t1JJKIl7k1xF16NMY/egfHcPylhJQjpvKYPdf7KnsZmKWtfXKmD9OwyBea+n9+9pre7CKdxnElKJhiaxBAusVyDQnW5UvaQybxKBlyAqn4MD9aQPfQaXutbDjpOJIyJqWJ8pPIvX0HDTX35jEsXJb0yiOPmNSRQnvzGJUuw2KmD0QXBoGn1PlJWKDbNQJ9FVixhzASW4FyD6/D4TcEuILWEARdfyXZrI+iqQ4EexQU/XcQdiuyDujTuKZC8Kfvc3lfaA619o7Cn8/r1C1/YUnHIz6KO4BCGWRFeanrvIeJhKDc/yLRz7ttLnqYbjFNA/kETJVUCpNThaMxh9Q7GICHpCSbC/grL4x6HX5y+/MYni5DcmUZz8xiSKk9+YRHHyG5MoxQCE+BwU1rpRWXFZqfo8zfV9cgWTWCIiXlSqAl9XWudNE3ZoJDYp9mTbRSsvjSAHe26b3bSrlZcgRZvGe9P0mhL+SSnhWsiVvGj54+IZxJdwjheh/8Kcwj8zNxAj2zWNJW+opwLU47eNQ6d9Uk0+/YNAyv5uoXbqcabW9z58V1fwz8M55EvV0sBzBfEF9DG4hH/RqFeCv/zGJIqT35hEcfIbkyhOfmMSpbiCqTnDrQoYZanviQXYEGl/NF0ngoWgGxAByY5Ltl0an12CuFfDaOmugh3V7bdtS5CwSKIW2VIXsI5TmFQzDL1/NCSdRp9H8P26BhFpCj0VZh37LGCvBBBT+3BfRtD/gMS5iIgNTPwh226zBYs1NFbdhT4Le9A8UYHSAAABYUlEQVRTYdxi0X0ZGjW/hMk+ERErEC9vITaF/gLU8NZffmMSxclvTKI4+Y1JFCe/MYlS/CYHBxSIJweNikjkqbqAWuIZiC4RLQ03wX1F03RQJAMhj2Lk5sKeia9Quk9CHtJxig8eA2IluTFBMKLGo3WLk4zu1zUIRtRwk4TYpuNI7K6Tiw5zbYS5Cy67CB5hfgNjrakJJ/VUoGPfhcaqh9DXog+C5hrWhsTQCL5fFKP1JkHaX35jEsXJb0yiOPmNSRQnvzGJUnwCZZkrGAV9B8QYenPcgGts1dIck1xsXSGRjGI4Uhv0FCyrBaGxgFgb6BqE7dDZho0i4Rj0WxD3SGxqW/0VCH4kiJG4R/eU3Hc0RjwDUWoPHHWv5ToV6LUeeRj5vj7rqThII7ppbV/LdErRmwGTlKDhbQ03kPKlbCkb75PjFMTrIaz3CMRLf/mNSRQnvzGJ4uQ3JlGc/MYkyn8DKDXbe/fdeBEAAAAASUVORK5CYII=" y="-153.511187"/>
</g>
<g id="matplotlib.axis_11">
<g id="xtick_16"/>
<g id="xtick_17"/>
<g id="xtick_18"/>
</g>
<g id="matplotlib.axis_12">
<g id="ytick_26"/>
<g id="ytick_27"/>
<g id="ytick_28"/>
<g id="ytick_29"/>
<g id="ytick_30"/>
</g>
</g>
<g id="axes_7">
<g id="patch_8">
<path d="M 299.674375 275.911187
L 421.964375 275.911187
L 421.964375 153.621187
L 299.674375 153.621187
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pdeb91ad32a)">
<image height="122.4" id="image138d6b1a90" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHzFJREFUeJztnUmPJNd1hW9GRM5VXVU9sjlKJDXLgGQIhgEv5I3thZf6jf4TXhteCYYkWzIkikOLZE9VXUPOU2R6I2rR53vAa7btBd/5lrciMl68iJsJnDr33s7Z0YeHeImT3vjlUNzpHUvsQaOx29VAYvuQS0RExB+3lxL7bP5cYgc4//7gRGLf6z+Q2I87RxJ7e1dJrAvrm+hh8WXVwpERn8dKYuftQmJ1Rz/0rUr3+/sH3cfvrfXab/fmEjs7W+IaZX0Xet2IiCftUGI3ta77WdOR2B86ug+/3b6Q2PPNjcS2+x2u52Xawx7O5eeygzidT89l2PQkdtzVvel1Gr1G5K1xA/e83m8lFhGx2K71/FbPrzr6XPq1vuHwehtjSsDJb0yhOPmNKRQnvzGFokrFa1KHig29xHfMWT2S2EVXhS4SRZpOLTESBhcQm8FyBqxJ6nFwfxERx7CV66ovsQrOPwbBaKh6UVRwL4eDfl7baqyu9dyKbyXW8IdJrbFpRxe5BqGrATGtV339V6+BfeiAyBXB78Rhn/ewm0rfsWGlIuAAYiT4rTss5L1MSvgkIa8La+zVurdjyCv/8htTKE5+YwrFyW9MoTj5jSmUhpxNBAlVHFO6CZFsBELXqFaRrAPnk+DXgrgz76ir6goEreODrpzupUncyxDWcwK+wS586glcewSCXzdT8NttdS37Vs/d7vnZLyqNv6j0/BcdFabmmS69Lgm2cA2CHHr0PkREtJUe2+5hczMhYbH/GuIlidkp8ZLygMS9UaM5dNyoM9G//MYUipPfmEJx8htTKE5+YwqlIXGAXEMkQpDjiEjJOCRg9CsVycilRYLRDoSgmwO4qmDZ29DPG8B3Y6o8uQvCGzn3BiDunYHwNgIXWg3XJrPaZsPilxyXEPwmoF89A3fa+V5LTGeHjcToudD71CG3IpxL0DsbkXD4gduRSn8PBxJY80RJerdreJ9IcE+J8P1Gc4OOHTfq5juuLfgZY/6Mk9+YQnHyG1MoTn5jCqWh3nwkapFYQULOGso8twmRbHXIc4ORe4uEjh2UUV6DKLUC19+io2LKCK6bciuSLEXlzSPYxz5sT0NiE3zeDkS7zVYVOxIG54mK7htw2l2CkHe1116B9Ex3h0wxDd4TEvxIaE45/Jo6793BsnEQESs4l8Q9+lWldVNp8xEIdhH5zsajmgQ/Ki83xhSJk9+YQnHyG1MoTn5jCqU5bXRwwwZEGyrf3YCQM88U8SIilpnXIdcfOfwIWiNd9waGbtAwhm7CfdUDh+AtEhHh+3YFQtAEhmTUMJeiBhFoDz38WnDPXYEYFhFxA4LovFWHH+0tCWck+OWSK+4N4B2JiOiSoAYDUWiNJO6dglNuDD389iBo0rqH8I7Aq5QE9wfesRFcx7/8xhSKk9+YQnHyG1MoTn5jCsXJb0yhNENQtMmWStZZapi5hPp5sj+mINUWG3jC9xYdd4B1038zFq3agHNHOUfw1JZto+PBB9AckxRp+l5uQLGvWz23D+uegtL8KNF38hKeIT3rXNASm1nPTzZg2q9boMJHRJzC1KQBvPP0hlIenIBq3ofjlvDeLTP/60FNXiMiatgz+q8C2enJOu1ffmMKxclvTKE4+Y0pFCe/MYXSkJ0WRa1MvYeEuJQVl4SNTeYEIRb3oB4cYmRBXe61Xn0FltZUo0hiDp85BcEILcMQ6nCVeFbsCxD3Pu6oyBkRcQ21+zRyGifIgBhHohTZUuldpGscgbj6RqXj3iMi3g499h42TNVz+7DuATRGADd1PG10Hy5gehCZ4YcJgbwLa6Q+EqsOjKWHPhv+5TemUJz8xhSKk9+YQnHyG1MoDQkvNTitKmqiCcIEOQabhIi3JbkChEU6jtx3JO6t9iraLaipJ4h7JCCmHH7kYiNX5ATcc6SlbmAftyCmUS+AJQg+n4fe8/leexhERGxCnWi5bkeeSqNrJBGYhM8+FLc/qLQe//2W6/k/2Oi9PKjnEht0aVQ2TPZpdY3XG3URzvYaW5BDTyIRR5B/ESxK0tu4pEahdV6TUWNMATj5jSkUJ78xheLkN6ZQGmo8mRLoXoYEmsErdB8kQYwgsYnOXb+Gc4/EPWq4SM1EI7jZJznbbkBkm4eucQLXuQF3II0Bp5JOmriTmphEe0FOu25m88g+NdyEdffgXLq/d/Yae3fL79IbtU4VOjnWZ1DB2O7lQvebxL0/wZj7zxtw2cE7S26+WwnBbwjvEyw7Gji9RUelMaZInPzGFIqT35hCcfIbUyjNAMQYGtFNkMOPvk1SI7pJtCM3Hx5H02JAwMoe8QxCJZWnpgS/fmYpKzkO6V4mUHY6hn50K3C70TOlZ5UqtabyXXLukeBLDs9jGAV+AseNDvp5PRC/xnt4fvCcU7Tg0lsudT1P1lom/HFPj/us1vfuIrMPIgmavdQ7BvfdBXFvTYIffJ5/+Y0pFCe/MYXi5DemUJz8xhRKQ0IQxUis2FEJLYhXKScfHgsxEu1ITKMSUxLoSMgjyOE3gv5xERE9OJZKY2nddM9rEAZpgMUYXH9jEJEoRs85ImKT6bwcwWeewXre2WvsTb296IIuPKtggAwsewHDUCIiZlDq28712AmskcS9j2pd+LODlkvTGHiC8qqXcNg2MFK9D4Io7g+UJ/uX35hCcfIbUyhOfmMKxclvTKE02B8vU8jbkDgHn0ciV+o6BAlvJLDl9pQjmYsGRhCpHn65rDO/b3kASZ4QR/dCVyUnYASX5ZLrk5x774Fw9v21rvskoLcifN4W1kgi4GOyukXEvFVX5BEM3riC8z8B5x6Je3NybcKzoueygrEd80RZ/IQEbbhtelYrT+k1xnyFk9+YQnHyG1MoTn5jCgWtbiTuzWDQxTazXDblJKOSUBKbqN8bOdaGIJTQwAiCREmSI1PlzmsQeEi0W3VU4CEhCNcDMRKWVuAspP54NCU5IkIlMuZeqLj3Ljj37sI04D2KX7qeOYh78wp6IybE0M/BNkh3vYLzz+Gdn2Opbp4QS0dRjN6liIh5h9yveb/fazv8jDFf4eQ3plCc/MYUipPfmEJpyKVFghFBbjdy3tHQhgiewEplotTn7OQA59KwA9DnWnRF5ZHqR3gDYgyWPFfg6IJ+fbmQWJg7/GKY+O7vgYhEyvAD6IV3B9xuZIpcwuCNGUySncG5CxRS+QlOobR2DrFrGKYygRiJrlQiTkNcSPjeQq6R8BkRMYXzyTFKojuK83gVY8w3Hie/MYXi5DemUJz8xhRK0wc1hpxfQ+jNRoIfOe9IVEzFj+DaRzCsgKaTEvTt1gVtqA+fR+dSOWnq4AUImrSPqb6AL3NaDyV2v9LYm+DROwNRcZjYQ9pb2ouzVjeyBwLWDgTEBXwi7e0MhDwS93LLwyPYpUnl6VfbmcS2ez1uUMMzrfUZ9OHZt9BjMtXzkvoCkku2hv3mEmNjTJE4+Y0pFCe/MYXi5DemUJz8xhQKyvBkD61AkR7AcbdB0XwAVs6IiHvgIj4GBZk8utNar30FX2U0rvi01c+71+piGrjuRWLaz1Uvr2kmWTzJEt0DZf9hfSSxb4eO6H4PRrbc3un9DROqMkVbGvGdqbCvwIpNE3amUKdPVt6UxZrowrrJQj4E1Z3+m3W9m0tssYOJPc1Gr1FrDtFEqVSTWGpkS2PWU6PXX8a//MYUipPfmEJx8htTKE5+YwqlIXGHGmESAxAmqM7+wY4FmvdaFUqOeyqUrLYq0LR7FbquQESi0cTXUDd+DPbXGmq3U/beGdha51SrnTm6+ahSe+iDjgpG72x1PR+0Wod+53ghseEIum1GxB76IqwWKkzdzHWN04MeNwUBip7BJNPKS/bcVJPYDoln8Doew96Oa33HptVSYutW95Fi1AtgA/0dSNiLiOhWNLlKc6MLojSJgP7lN6ZQnPzGFIqT35hCcfIbUygN1UH3QCTBuniaNAPH7RJTc0g7Gw1VKKnB+TVaqUBD47gXsKIbKFi/ALGQ+hpMEs1Nz0OFyuleY1ST3UJzRWIAddp3wbn3xp2pxG5/oEJVc49n83QafTC7c61tj99o6PFcRbKnXV33eaX3PIUmqBvYG3qbmtQ7BkejWxHe+WMS/BqNdeDaJO4RNJkpOQEIwh1IogreE8oN//IbUyhOfmMKxclvTKE4+Y0plIYmeZAbqAMiCXnVSLT5smHHUnMAwWmioT64oHK/tcgh9hgmsZDzjiaf0D5EcANI+kwS93CUN5y7AJGMCoyP7+n99X94V2LVOw/h7IgYjSRUPz+X2N3rTyXW/d0tib0AwfYcRpXP4J5JNiOh+RWqfGMDyhm5BqnZ6u2ullXTxJ7Nnu7lFRb5GuRex7/8xhSKk9+YQnHyG1MoTn5jCqVZg/hBzrYOiAgtuJOov9oVSoMRFz0VAp9Bqe4727wRMlDdGjMQ4p632oeNerMRVC4ZkSitpN58mf3VSBi8Pqj7cQalv91T/bzq2+9IrPOtD/niPe0fGKOxhn70XGJvf6Slw/8ZKpLRvVzvtcSbIDdek/gdI/GL/HN09pimVNW6DwPow7cAd+cWREB6zkmHH0D9/sjN12S6do0xBeDkN6ZQnPzGFIqT35hCaZYgiFEZJH1L7NCZBmWZCQHjmnrFgSNv3dPy3bNWz6V+fUvqrQfC0mSnJa97cj8mBL8xjGQ+bVQcGsPwExJYaaQyiak0/KLq06SSM40NjzUWEdGCQFvrfVf3VFm8//CpxM6e6HUW4Np8AUIsvYskrqYGXRDU7+8YnguNmx/SkAwooSUBcg2uxt3rCn5wnT68oyQ0+5ffmEJx8htTKE5+YwrFyW9MoTRzcFpxjzT9nqAySBL3qNw1dT6JMUMYVnCoNTaBay+gTHSXWE/O+lL99uhYKgmmCcgDcgLCcRQj7+R+CWtcgIPx5gLOjjis1KUXV5d63FpdbM1Ar326h72hicp76N8I712qrJqgZ5BbWEvvYh+eQQtCcwtlzF0YaIPvTWoACcToWHJAWvAzxvwFJ78xheLkN6ZQnPzGFEqzIUEMxAFyLNHAAS6hZImFxLM19ACk8s8VOPcmIH9NMstEqQ9bTcMPEk4yKt+l/VnDukm0IbGJeteB0TFmX2iJaf/3H0usc/FCT46IaHWNh6kKhu0XVxLbzHQf+iD4HUG5LO3Dbq9raUDsTZX0kkxGgiENryHx+pApNvZh0nWf3IHwPpHj81Wgd2dkwc8Y8xVOfmMKxclvTKE4+Y0pFKxPJUEk1/VHJYopSBxcgMuLREByDVKpLvVNowmqXXARkuBHjrEUJKbS5N4dlDEPoJyURJsJfH1/9hjKd/9VxbnhbRb8qh4IufBY11e6xutLLWOmKc0jEMRo2u2y1f0iqpqfS26pLw2vmcDkZcoNdALCsxrDPVPZcGrFVNJNQiUJw8fgLvQvvzGF4uQ3plCc/MYUipPfmEJpmswhEv8XkMiyAjffolUhj4QgEhDJuUf3zGWi+SW9tO4tiJIU28DQhx30lCMR6RLE0N91dfDJk6dv6Oc9YedlH+5xDO7JLgiV84Pey7TJc9TR3i52+uw30P8vBQ61AGGRngtNSiaGINodg4PxbmhsBKIyCXsRETPYb4IEP4r5l9+YQnHyG1MoTn5jCsXJb0yhOPmNKZSGrIlUV036I08b0SNTDTNJIZ/C5Jz5biUxUmdzmz3Wdd53Hv33YAv15RHp/wK8zLoC+zKo/aRod0A170EnzHUDtfJg5F5nt7KMODvofx/u72G/4SOf17o3lwf9bw018KT9pr2edfQdiYhowLZdVbk1/nodnpCj17gNav/9FizkEmHLdkREDROuqHloB44j/MtvTKE4+Y0pFCe/MYXi5DemUBoS96jhJol7OxBE1iDEUY1+RMQKLLobqL9PNQD934QEH2rAmRIvad3UN2AHddUkYOVOFTo0eo0JiE0kxKbsq2S7pv4Cdyq1EVOd/gyswRetTgWifejBaHCCnlUE28BRBKZGmmCnHoI4e9bR8ez393ruGWjC9ARWCb0OdEqERMA17I9/+Y0pFCe/MYXi5DemUJz8xhRKswXRjsQTEgbp3AU0qFwkpuYs4VgSfaj+PtfNR405eyBeUfNIIiXEoXAKH5m7bnoGtF+kGC1BlKJrkIMxggVWuvYViHa0t9yoVT8PpyZl7leqsSodmzsKvAb3JPVUoMaq5MYjDyhNXNokXsUtCHlU+48xONe//MYUipPfmEJx8htTKE5+YwqluWm1hJacTbkljyQMpaaukCuOhJfcJqN07lGtLrRbEKNrrMEBN4fGmhERi1pFTRLtaG+p7JQbiuZBbswBiIDk2kuxpPLrVstoSUzLFVP7sEYqoc39vAgWkGmKU+67SA7WKbwnT8CON0XxUpknGnWu0FFLY8TBWQox//IbUyhOfmMKxclvTKE4+Y0plOZyO5MgOa1IqCKot15uf7sIFlloPRQbV1paea/WkdFvV0OJ0Qhj6nF3WXN58vO9CqcTcDaSE63J/A6mslwSd6gv4xDKfMcgsEWwW7ELk2WIVaJ8++uSKz6n2IAFcgdTjqj8mkTAJdzfecCz76jITeIlTQ8id2AEPxd6J3gSlt6Lf/mNKRQnvzGF4uQ3plCc/MYUSkMDMXa1CkHkviIxBsUicLBFBNY45gp+Z/VIYm/XxxL7yV7FvZ+tVKC5f3ojsclUnYD/fVABMSLi1z1d46ewP0sQXkjeye6tmFmS/Sr00FUHZcLgYuuDa5DKoHNHdOeW777KPZO4l8sGnt8M3uMbeC659zdOuEjJkUnvBDlTqY+mf/mNKRQnvzGF4uQ3plCc/MYUCtZ05g4wIBGQyi0bcM9FsNOKzifn3l0Q/L57UIHuZ1sV977/03OJ9b+jYuG9p9cSG/ySHWyzzZnELkA4nUNpLAlB9AwIdHOBuLOBvU71vaOedCcg+NGAjjmIUlQGS8LnMmCCceYwlJSLlAQ6iuX2jqTjlpkTh+m62GMw4SLtwzMghyddm94J//IbUyhOfmMKxclvTKE4+Y0plGZQq5toVKvANgLRrQ/Ou1cZDtFWeaW+R3Dtk1Dx4wSmZAwbKGUc6nGdoV6jvqvrO7mjAmJExJt/uiWx00bX+AT2Ygalv7llq2sQEKlnIou4/N1/F3ocnoBo2wG9eATC4ixAbIT7o7JTEslW0Cdy1bJIRu5CEgxJaM59l0kEpHLg3T5v8jKdG8FO2dxJ0vSZ/uU3plCc/MYUipPfmEJx8htTKM0YxL3c8l3qFZc7VfXPfxBIUKGz11AyeVVDz72VildvnoML8e5c17ICdxmN3o2ILqx7BH3vqI9briOLICGHhlJU8FxOGnVJRkR0Ycdvg+DXBx13AcLZFVy7hamx08w+kXTPi5YnQZPIRkNSuuBWXIFwumjzBL92T6XWGqPnQn0wIyIqGukL4Hro2lmfZoz5xuHkN6ZQnPzGFIqT35hCwZJeckBtwaXFAyM0lhpKQSWlKFaAuPdir70Hu9BT7qgHbrWPTyX2XnMlMTLAzW64h98CDs4VL8nFRgIWPRfq4UZ72IO9Tk3pfRjq+vxwo595BMLUAp714y6UxoL7cd7R667BbZjrYIvgPUNRGvaHxMI1OAm3cFyui7AG4ZOEwdT5RG7Js3/5jSkUJ78xheLkN6ZQnPzGFIqT35hCachGSuo6jxfWGDU9pIk7ERE12F/p2lSzvO3AcdQ3AL7euocjiR1+D41DB2rvvJizJfa8qxe6gTHN1LiS1GJSmlktznsux41OLnqv1h4EERE/X+m6f/jj53od3cZYPdNrf/LZHYlNoUfDFTSoXMF/ALY1qPAJOzTtI6nhOFUIFHJ6F+k4/C8DvYwg4CenD2VOGko1ZpXjso4yxnzjcPIbUyhOfmMKxclvTKE0KHS0VHecJzbhlBOaxR0sgKBoB6AoCQLi07023PwPKBu/qVTIe3OtVt61alIREfFlres5h8ack1bXQ9ZU2ttRoyIZ7Tf1XnjYPZHYz7f6eRERf/2LS/3Mf/xnPbDSNQ5+/SuJPfiXC/28udp2D2R1hffhVcZxkxiX20gzF3pWaH2H/aJYaoR47ohvAkedZ51pjPnG4eQ3plCc/MYUipPfmEJpSDw5gJjWOahgsAeBBr9OEoN5SJgickVAEi+1LWfEI6jJfgK17XcaFaWOEzXwM3DuXewXEpvuVPCj+m0S984atdSNK3XAUewHHT33b8cvJBYR0fzD32vs734hscNyqrHzpxLb7/U61zCt6RJGXV+BQDqF2GLHDTxz6+9znZIo2sFLTwIbTdzpgvs1Vc9PwjC5PmkaEuWQf/mNKRQnvzGF4uQ3plCc/MYUCqtX/0+QY4nIbVy4IzcXxGisNbm+noMYc6vW0tgIdnRdbFUQm++08Sjd3xBEuzO49u1KRcnbUBr7g41+z9/5CY8b7xxpg9OgstXFjcaePpPY5UTXfTFQ8epypwLp1W4mMRL3UoLfaqfPmhx0hwoEsTpvbHev1veEpl7dgrLqI2hQmhK4qalrrhjuEd3GmL/g5DemUJz8xhSKk9+YQmlyyxFzHUtUYkrXSJEqZ8w6N3N6DYl7NDWHxKLUKGi6Drn51vCZw0bFPdpHmrAzhtHSpzBO+3YLPQETBsvDC3Xp7R79Rg/88mMJbX/7hcSexEOJTQ4qfFK583SrseVOnYDk5IvI7+GHwP6Qw29YgzjbVUflw0Z7Jr7RUcEvxWWt9z0n8RostSsLfsaYr3DyG1MoTn5jCsXJb0yhNKdd7VNHpbFUJliBkJdbphvBItkmeNRyznpyIUcdlSy3sA+p4RAkOM22KmqR2NSHcdUECZokXVFsBc9q9ZS/+/sf/RE+QIW3w6PPJXb1XypKPm30OgsQWGlvaV9J8Nu2/N6kymNfpqWSdXhWNIDmVqP9H98Cce+HnWOJvb/L//39I7wnjzvgdoS9Hdd6rn/5jSkUJ78xheLkN6ZQnPzGFErz094DCV6Da2gTX3/QwTYhusz3Kty0ez0Wp6WCrNWACIiDRcC6tevkTWlNOclyRShyStI9L2FvrmEISKcC8RK00Ec97Qn41qdnemBEfPhvf5JY78ETiS0+1T37wzN9n54MQNilKcSZIi6W5GaWtqagoTQUo1LdO42K5t+Bnol/s9I1fvdE+xu2Lf8md5daat121V04A+ct7Y5/+Y0pFCe/MYXi5DemUJz8xhRK809rFQwe9bTM8EUHygQpBuWENyAgRrBot4Jjc3v9NSDukYj0OkNAUoLfJuEwe5mmznNAzqDXH7GqdT2rGso3oR/dqFZnWkTE8lcq2g1AEH0W+p581NfrXISKl8SoVlGShpfQXqfeESxPR3EP3Krg5hvDGu/DhOdvtfqc3x9f6bk/0r6FKd3zr36pn7naqZNwkvmO+ZffmEJx8htTKE5+YwrFyW9MoTRvdUBY2qiQM4CyzCm4y25ATFknxvTWVCac6dIbgNOql1lOvD3o51H5JglLNOE1gt1gPejt1ofSShr6QJ+HU4hbfX507jkM8vgkIQwtKhW16AlegeB7CeLeBMq0SXSlZ0qC3wpE15SIS25AEvyoHyX1VqQhG7egt+KtvV6326U+ipADI34uZ3d05vS7j3UQyM0e+mhmDtQ2xhSAk9+YQnHyG1MoTn5jCqX5pKOCwXmjIsQUpphuQWTZdkA4S7ivNiBgYakuCHk9EFnoOBLJWpCvaIopDXxIQUIe9eajAQ9UJkriV+5AFOqjSPc8B9deRMRziJGb8wrcmEvY7xX164MYufRyh8UMYP8jWMilwRsNfCY6DmF68jDzN3S91nd2fQ6CZMVu0dlEy4TXcO0tCJqUgf7lN6ZQnPzGFIqT35hCcfIbUyhOfmMKpfn3HtSDg+pKddFdUhppVHWinn8J8S2NEgZFm1R8WuMaPo/GbK9aaCYK95IaN04WXVKLjxq1h47ATjvKVPtfp3FlmxhVvYb/2ExBnb856J4tYOoOjYym50ITe+g5E/SOREQ0YEHH/5BA7T79x6WfayEHxX22glHsX2rzz81G1xIR8Witx37a0/XM4D9zhH/5jSkUJ78xheLkN6ZQnPzGFErzcTuVIAl5Q7DTDtBGSvZeFm22EKdYkA04s6nnBoQqao5JE3fI3kvCXgTbe281ap0+hekuY6i1p94EJJyRdZZE1wXU1M86bCMFvS9mcJ0JTBBawKQhqqknuzE9e7Ln5tbjR7C4l3s+CazcEFZZQhPO64MKfqupXuMChMaIiE+gOernle73HC3tuo/+5TemUJz8xhSKk9+YQnHyG1MozRJcVV1wnHVBOOnDdwdN7HmV5ooEubyw/j5zws5ip0LVcpvn8KO67wiuyT9pdJLL3UpFwBGIqRsS9+Ce6fmtIEbiFQm7ERE1uOLWMKJ9Dk5JGi1OkDOR9jt3WhOJeBH8vEgEzBUGCRLTVnDqBNZyA+Piv+jydT/r6H4/2S8lNodnQCKwf/mNKRQnvzGF4uQ3plCc/MYUSkNOsjGIV8ehohSJgKky0VxoYg9B4t4SynIXW3ChQazNbNaZEinJIXZWafnuXRBT6Y6p6Sk1vSRHHZXGkqDVhzLWiIjBQeM7WA+5J+nauZC4R07OVym1JkderuBH7yIJlTuKwUPdQGwNouJlorHqCyihftHqiO8ZTHGifPEvvzGF4uQ3plCc/MYUipPfmEL5H2Q23hK0CBuYAAAAAElFTkSuQmCC" y="-153.511187"/>
</g>
<g id="matplotlib.axis_13">
<g id="xtick_19"/>
<g id="xtick_20"/>
<g id="xtick_21"/>
</g>
<g id="matplotlib.axis_14">
<g id="ytick_31"/>
<g id="ytick_32"/>
<g id="ytick_33"/>
<g id="ytick_34"/>
<g id="ytick_35"/>
</g>
</g>
<g id="axes_8">
<g id="patch_9">
<path d="M 434.924375 275.911187
L 557.214375 275.911187
L 557.214375 153.621187
L 434.924375 153.621187
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p077f49720b)">
<image height="122.4" id="imageb3829d7100" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmvHOd1hk9NXdXTnXhJSrJkWUpi2IGDOAigZJX/kF+cXZCtgwww4oGiJVEUeceeh6rOgoEXfJ8CShCy0fc+y+9Wd42nC3juGbIPL/76FAPII5O1SVnL2pNqLmvPyhl+5ygKWduejrK2PO1l7bHdyNqm1e0uyqmsfTF6Lmt/2ZayVsGVWea6FhFxk3Wy9pDpuVShX3B90uvw2UH38Vmn53x1pmtV3cpaUejxZRnf+tNJ73Xb6nFv15WsvVlOZO0FPCePcB3Heoihe4hY6eHFy0LPOSLid6eVrL06LvQ7262sdaHXp871iKa5nl+R6Qnu6dmG/a7bnaxF8PO9b/U7u5NeyByOp+dRNsb82HHwG5MoDn5jEsXBb0yilLOyGbQhCYxxPpK1KayNM5VpEREj+O0BlxOHUIFRZype2ly3O4G0WYB4uctVupHwewCxFxFxF/qd7Um/oILrWMJ+8kEalqVdWbL8ep8OJF5ERAfCL4f91I1aydlW1yad3qtlrvs+0s0feB1qfHIipvDsTUDakYw7nkCcwv0bZfrs0HYECUTab0TEoYN13TXK+SrX6+A3vzGJ4uA3JlEc/MYkioPfmEQpZ4UKvyxTYVDA7wQJvzPIdpqQlYiIDMTEHoRajgIK1uD7KFvqZa4ZXm2hZqmAfWyCZcwOJM0EZJPmG/IvMMmvFYizZq33oCj1GlYjPb6sxypWkA1YVLrWtXqQo5WKs3qj+6Hkwh2cM+wC9G9E1SP86NkjKU2ZpVvKOAS5N/RZLEjEwfeNegR5C/elO0FmKshr+k6/+Y1JFAe/MYni4DcmURz8xiQKCz8UE/o7QeJkBpl3VMYaEbEDdXOAcsQWtusge66Fz246LYP8en8na8tSxWCfeCHo+uT5WDcEL0UiiFLbNnAd1weQgDsoJQbhVzUsL3NIbcwhDfGwUrFE5cCs4pQDbAiVzd+LBoTaDAqFD7nGAUk7ig167qgcmLJNaR8lHHMEC3aS8/R52o/f/MYkioPfmERx8BuTKA5+YxKlHENJIUmNGiTCWaYCYv49JNkGpB1JkaGQZKEyyA30BNx1qpao3JIysiIiJoVmNpIQpV/bCWSSTTooB0ZhBGuQuVfWupOSmuZFRAZy7wQph8c99PU76P0/gJQCLxjtwHtPgrTu+eglZPjlmd6rCkqMSVQuQSCTpCbo2T4O/GwEizwqHe57Rt/Hb35jEsXBb0yiOPiNSRQHvzGJUjYg6Ej4UXkqyb0ZDKA49AyH2AzMoKK1EocQDMslo4ysfUfDD0B8FTRGIqKk84b9VGC6Llvdz7NQsTQu9RibWkXleKqfJblXTIbL1aN+Zey3ev/3nV4HKsuFCupoKLMUtpvCGn1fBLcA3EA/uzcFiEF4NR4h23QDsphEHvXmozUS1xEs/EYQByQBKYb85jcmURz8xiSKg9+YRHHwG5MoDn5jEqWkMdlYuw/bnYPhnlLNOVjzCJ7YQ/uuTsOMZklTd2CNoCaMZEj7OME5krWlX9saPjutVK9PJ7pWj/U/AKOpGuR8BE00/x9++jM45wZSlWfwHyBqbjqHz56f1K5XPf9RauG/KzuYVHQOI9oPI00DXud6bem/R0NtP00K6nvuhqabl/CUcZNRY0ySOPiNSRQHvzGJ4uA3JlFKUgsN/CacQyrveafbTXC6Du98jWOxh41FLmA/lP5IdfYnqHenJqFEn4yhRop7OJfXkLb7otJGn81+ImsfUZ3+CBqeQp19BvmvJ5BpESwCTx0IUTiepoDJRUeQZPB9xDVcr8vpRtaoh0FExOGgz8QO1gpIsf74qP0Y1qXeq6LQc7nJtrKGvSpoKhCkH0dEzGEa1hga5g4dD+43vzGJ4uA3JlEc/MYkioPfmERBs4CjhEGw0XZUV12DDOv7Tp5dA9lp2GQUxhVDnTZlZB2orvp7NFccOsnl5qSTgX4LhePHWuVOu9UcuI9AnM1hLPkIxuEUVCwfLPKOOz3G9khTivScaxi7Tr0O6GjqQjPgpjPoV1Dz9KHtSoXYaanXtu70eK5aXfsZNbItVM6+LVQWvoKGtxvI8Bv3NMGdg9yrQe5RH4o9mEW/+Y1JFAe/MYni4DcmURz8xiRKuQsVJWv4TXgc2BRwDdlOfZNY9iCC2p7y3/ehUkZao7JayrzLqAkjXJu+5oq0byqjJNF1n+m+X0H246QCobnXjLPTo+6XyoH7suKII8g9yp4jSrjPNdyDFp67stDPNmd6vcopy9kcDPRhr8ed7aFcFp7FK8gEvALX+ClIu5tiLmsruAfTnuzHOeyH3t5rWLyD/fjNb0yiOPiNSRQHvzGJ4uA3JlHKx06zwXaZmoVVpplINyTd4Pekr3iT3B7JwRr6B86gnxnpqx2IJZzsAz+De5oj3QMJvxGNVIZ9kwRchF7vt5CtOD7pdeggm+9qqSfYVLqPiIgCJFsHEuo08PpUkPVHvfVyEKwzmD7UfKD7KK5UfEZElLf6fJ86LbddrjX7bgvHuIL69CmURl+1ei7XIOxIU07gOkRENBCXB+hveR/6TGQVCGncizHmR4+D35hEcfAbkygOfmMSpVy0Kj9WVKo7cBRwAb8nTU9PMuo/RmWLUxBnDayRLCRxNhQaINIHDUogCUjQca9B+tyCdK0LvbY0LjxaLWM978kkm4x0P2Wpx0ODSlimqtYaw5CNCvYxf6rPZ/mRljZnFzPdb0Rk45WsNZtHWSu+0eN5A/f0FjIG8Toe4ZkdmL360PNOvgWRRxm1b6Az58tcsyL95jcmURz8xiSKg9+YRHHwG5MoJU0OJXLqtwclqzQ4g6bsRkSMhk4DhlaDc/hOqlBtYB80RIQy744DB3m8+/ywzEb6Tsrw24CoXMK1WcL1XkFPwCkMWKlOLGKhwjhquLZHmHbb4kRlPb9RCaW6jZ5zAdOFT1uQuPdLXYuI9u1a1pZfazbfi6NKxBfQF3AFWXY7ENp5CQNtQAxu4CF5S40wI2IB+17D8/QAU4xvQOz7zW9Mojj4jUkUB78xieLgNyZRSsrS65tE+z6UzdVAht4MpotGRJzTtiCwZiCRLkCezMDPncP3lTBQgeTltqe08gdBg1pRQEI/OxqmAmsl7IMU0qHnt3/XwWRb6Hu3g8/T2hik1LhTabeHPoGbjT4j46/BSPbcq5uHS1n7z1yHbPym0e/8U6eykLIad1kja0Wuz9glXJslWOpXMJk4IuINlN/T0I8NCL91Bz0ccS/GmB89Dn5jEsXBb0yiOPiNSZRyCjJuqPAjWdjAsIJpz9RRWp+C3JuDEXtyVFHyFAZv5NQT8KTn3MEh3lO/vZ6sv6G5gAWIxQllMMK1eQYZeR8c9fsuYbpsA1mEdG0iIjaQSbiHa7EsQPhR1idl/cE5H+CzK/B4rVbpxq7nkX1dqxD7slvodgfNECRJhoNhICOvgjTSFvpOUjk3TdSNiNiC3FvBMe5hO8rk9ZvfmERx8BuTKA5+YxLFwW9MopSUfUe966jklcRgTRl6IHciIiaYuadrT2Ey6ocgOj44V2kzmet2s1c6LXXXag84SHSLNZRVRvB0YZrSS15qAj33nsJ1+AQS255D1tesoAw4ZU8nGBEbEIsk/GiKLQm/W+gzR5ltD5Cldx96LivYbgVZbRER9wcY0AFDOzatPicnkHEjELGPsEbie6BHj22P8ONy8GGTpKnU3m9+YxLFwW9Mojj4jUkUB78xieLgNyZRykuw/RNI76Rmm1RfTv8VaHoaeF7C+jWZfTCxH15oiuaTz7X+evQTrbVurm5l7eHf9Trsod/AHXX/DE7v7enDKNB1pJTma0hf/vhSr8P0Qv8D0LXQPHKhNecREWsYV93C8ZQwyvt+q9fxvyq9B6/git1AHfvtSdcewNbT5KmIiB1cM0p1bSH9mWihGSml01Iq7mLgBKi+/1xsoQdCC9eRekHU1GR00NEYY350OPiNSRQHvzGJ4uA3JlHKp5kKmjMQcTRtpIYpPpQwStNeIiLGnf7hSasy5tlURR7JvebXT2Ut/0DXmvKFrF39twqjy06FH8mUCJZ7MGwm9uALD7BG12wKo3RohPX4J/qFp6OKofpBr2FExGylwjCvQCw1epBnr/R5evudCsRvIeW3ojHnsDaCVFXqLRHBTWb7th0C3f+h30e1+x2kSB8HyscI7i9AqcU1rPnNb0yiOPiNSRQHvzGJ4uA3JlHKa6glPwO5NwEHUYOsoGkxfWXMVA/eQK32dKZZXvVfaU1+/suf606mul32h69k7QTykhj3uJgJnMvQendam4AMbSrN8KrOoDHnhU6kCRB+J+gF8A69B+S0qGS9ADE4g4y6C5CpB2hwOc71+ZxDvwGsn4+Iu2wja9SYkxtcDhtBTzX+JAHp+6j2nraL6OuzAdl8cDwTyFb1m9+YRHHwG5MoDn5jEsXBb0yilFOQeyS1fojc65sMM3Rs9AHGQyMdHPib17K0f6FlsHfHD2QNpkPjOfcezuBR57Q2bEdQOcrbgUBsV7yP1Wsob97pPQBPGfuB9+ocblUGV2IPOzkH8UViMCJiBDmn95lmRe5B+A2dSNWgBITrhUc4HGqYS2fdJwx1O2NMkjj4jUkUB78xieLgNyZRykMGWWjUpw7EIFRlRglisE91kDDqIOPwmzvN0iv+5UHWpr/5N1lb3aq8+sN3Kvd+V6ndW8JPI2U6RrCMoaRBKumF9nqRw+/y417PZf0dZG41mtXWrvW+3H451R1HxOsHXd+CWipoMgystXBtqJybRNWBekLC81lCduC7dfg8yLgdCL8ZyL0xTr6B44ayXJrEQ+O4KesvgkuCaaoQ9Q+kz/rNb0yiOPiNSRQHvzGJ4uA3JlHKOxhCsMPMJhrRDF9Io7x7ktVIiB3h819Cn8F/fdDefLtH3dEaRMce63K1Px6NEN8W/HtJSvMA+6ZxDPSNW7ze2guv/vZc1q53K1nbbVVefbti4fcW5BlJyZrKjgf2nyNZiENO4DrAbmMGQjoi4giZfwWZZlii+18NLP0mufcA493XA+VcBA8WoRHdW/g8CWm/+Y1JFAe/MYni4DcmURz8xiRKSRKCRNWOBiqAOKFfkz4FtIP9rEFAPsLU0gVNQR3Ym416nM1zlWkXAVl/PQMa9iBjNtALj2RODVdtDdItK2EYw14n4O5uIIMN9nEHk1vf7XuY1KIMT3JVWHY6PBF00GfxWCJijIJuWH89Gpwy9PnO4TmhuKppAEmPVKQSY5oQTGsnyLz1m9+YRHHwG5MoDn5jEsXBb0yilA8g09pQEXQEBzE022kPEi8iYk3ZSVQKCdstTir3ljCEgjKgDnA8JcgUHJLQk8G2Bbm36vTaHkAPTWGgAk2nJdl4U+rasVV5SX5t1SP2aGow9S6k7yS5NybxCR/ewadprEhPMh9Cb7eKhnGgqBwmtFlo0kAayJyFNXoe+jiB/WxbfcaOcA/85jcmURz8xiSKg9+YRHHwG5Mo5RKEH2VaUVnuCQTUETTQBqRbRMQaJAT1PqOBCrjWaWYTZfid4GRQ7oEQo6moESzy+nqxvQ9l/dF13MPaIxwOlUXjfns2I6WJRdDweTrjEgTrBDZcQwktTTCmp6nvLTYCKT3UFw4dSkN5knQPYHZyzCHLsm/oBmUDlnDNOpCNG8h+9ZvfmERx8BuTKA5+YxLFwW9MopSPkBVHoouEGNkdklck9iIiNlB6SMMTdrDdqtXj3kFGXQuqinqhLahXnKz0XIdgEUgZYpRJSNvRddyBqKQehS0c4rDOeu/gQl89RpqgS/0fTzhdVo+bphqv4Vx23yPDj/oCUu9Jgq4DfXbo9+UQVwcYUlP3CL85TQOG566DrD8a7uE3vzGJ4uA3JlEc/MYkioPfmERx8BuTKOUa0v6oweUITCNBaa5k9SMiVrDvNRj7LWy3he3IaNKkkgysOaUB0z6iZxR0RhN2wHyXA/8rQFADSJoM09JEGqB3K0iJpbMmyT30vwo0tvsBunC+KPTZeYDnqS8ldgwTe2aQEjuDc76ExgEzGBdEk4uOcA8OsDam/x70vJPp2uJ/isD2U1z6zW9Mojj4jUkUB78xieLgNyZRSkp1JflF9fNUr74HsUASLyJii+m9JPwgbReOmyaajKBeuqQ0SZCcDci9BrZ793n9ThI3LAEp/ZXSjUHkYKMFPMRB+4jgBplDRV4JteS0my20vXwDubhfdhtZ+67VEeQkeyMiJjCJaZ7Rmt7XTwodDf8xyELqg0oNb+kakpAu+24gLE/geTqHc1nDOfvNb0yiOPiNSRQHvzGJ4uA3JlFKEl0ENdZsQTaRxCNZGMHSjiCRR2s1CDo6vwqFn66R3Bv3XK+hdfq0RiO6Cxx/DtmK2KByWIZf39WnTELVRe/2NIQdSLJlrmsLOKLHk/ZtuD0uZY0kdQQ/E7cDn/k/FWNZ+7w8k7VPT3p1zgeOFaJeAH0ZmpzhB5OB4HqfwxQgv/mNSRQHvzGJ4uA3JlEc/MYkSjkBIUIyjUoC227YdB0akx3Rk90E4i2DFKqhGXkk8oY21qwhC60ZWNrcB++bSmj1eMYg96YDtyNZtKXswOBpQUMz/KiUdQ1NKh9B+K0zyu4EgTxwMlMES+Ud7OfQ6edvDyoWH0dbWVtUV7L2M5CFT0DEYfPPngQ/cohQvRs13IMpxIvf/MYkioPfmERx8BuTKA5+YxKlJMFG5ZEk8kiyHAdm7fVB2XcNZCdNoVRzCttRCS3lT5GII+lG5bcRLERJnPWVnr5PDdLuGsTZRwf9vnMQYjRJ523Bv/330EuPxFQN5btU0ksZazSJZw/PTg6fJSHdly2KPRzpXkOvv22rYvC73YOsURwcqieyts9VAl53VArOzxg9OzRmnTpmUk6j3/zGJIqD35hEcfAbkygOfmMSBXv40XjoHyL3KHsugsULCR7K0jsD4XcFfcoa+H2joylAsA0dnR0Rscz0+qzomuG11TWSPk+Put3n2VrWrp7o2m6ryqdezWUtIqIbWPI6hWEV56CbjnBtx53eq3Gh9/kKJFkH9nHZaeZdBItAKo2m7WjUNY2Bvz9oT8GXlAkKl/WQN7I2BbHbxzbT48ZBLvCM+c1vTKI4+I1JFAe/MYni4DcmUcojygGQHyCqSORRxiBl2UVEFAN/e6iM9hzmxl6f1KhcdVTyqvug0kgavECZaRER9UB5uYIeh3RtiQakzXSsE4ybKQ9JeZ9qxfulbD467Qk8J2cj7blXwMXdbvUbHwvqtziVtWmp233T9mQrtjr0o/sBA1+GDrlZHGHYCGSgUmboqCcuSDZjyTMcD2UH+s1vTKI4+I1JFAe/MYni4DcmUcq+/npDIEnyfQZd1NSvj7aD36gzSJe6BLn30VGFyjn0a+tgz1s4vzWNZI2IBnrSVVAaewMSkCYbkwNs6Rh3MIzhTj+8WOvE2YeefoSUtzmBbL6LXGUjZRcWFUiyV3BtDyr36lKPMc/1XO4yFY0REXehx0PPPGX90RpKwBb6BEIm4M1xIWsLEpI9AhinZ4Pw60AMW/gZY/6Mg9+YRHHwG5MoDn5jEgVLegmclEtCBCTSpEf4TWAoBg2wGJPwgwEIE/AkDYiqCZTfEhUNWejJJCugDJOEUUDZ6iNO81UO8HXLowq/5ULXbiC77L6nhx/drScglp5e61CL2U9UApJBHN+pEJstdMMHkLgVSNc+SUbijSTZ0L5+Q9m0eh1obWh5cQSLPMpWpO0Iv/mNSRQHvzGJ4uA3JlEc/MYkSjm0nDTDYQywRgKiZxosQdl8k4HTTUmIrSDzroZBCTVYqRyuTdVzvcYwsXgLwqiBfnYHkJw0HGQP2z2CnqPjpn3Q0I2IiMtWheiHU5V7Fz/TvnmjD7Un3fGWs+/e5wDnvILX0wKELZWxRrD8oom8xFAZTtLt0KpUHPp9vccDzxjF74liFT7rN78xieLgNyZRHPzGJIqD35hEcfAbkyjDRrNEz3hgsJdbmNhSgK2PiADxjXXslEZMS9RwM0oY0XzU06Ya/3HoWoXV7hG7gb+jtBVN56G9LODDY0jRJVt/DWmufecyH2ka6uUzrYuvnurUnayBR+o0zPZ38B8J+g/OAR4SSj+P4Pp7Su89wBrVz1M67tCeGJRC/H3I4PqcwOIf4VmmNb/5jUkUB78xieLgNyZRHPzGJEpZDxzHPFRW0ASgZcfCZ5upZNnC8Rxg9PYUtqM04BGIoP1A7zKCNFJwLhERsYOU4RzSLHkUOHwfpETfwOSbEZzzdavbXdeaijud8X2px3pfRucktfTIT9AwlahG+n0zEGczqOefQMr2HJ6RiIhHaPa5yVRo0owjEton6r0Az1heaP8EEnZ9opIgUbk+6D0kuUcpv37zG5MoDn5jEsXBb0yiOPiNSZTyaaFTUrDxJEDjhbcwgrqv1npDzRVBsh0yqpVXwZOT9BnYC4Cy+SYjaPTY05tgtSVxCg1K8dMKZbFR/4QtyK8CPjs/V+E3f8bCLyuH9V9oH/T+5Xu41/A4TS9Uuj1d6vSax71ewwfok3AHDUojIm5yXSfJNrSvRQUZg+NCn7sKGtmWcNw80p4bh24hXt5kD7JGwo/6C/jNb0yiOPiNSRQHvzGJ4uA3JlHKX2WzQRvuQYg8gpy7OanIue/J8NtABtUehCGVVpJsHINQyUKFzwj2y9l8es7Hnok9K5B7K5gss6MSVVgjuTe0/WMNgnQCgm30tKfU+ghNL2Hs9/5WP1tO4DqOYBrOXLe7uNKy4Q+/VcF2205k7euKJRmdIY+rhulTIPIuKhXkT8u5rE1BQNJI+ik8N5Me4beEOPgtCE3KBHQDT2PMn3HwG5MoDn5jEsXBb0yilH+/VfmxhqyxO+gV93UBE1aw7x3/xuygxHFPk29AdFC2UwH9+p6BEHkO57dodbvtVsXLbU8m2Z9G+p2PUIJLmXs7mrBDfepASsEuogA1WIx0w2zEYulEJaFgGw9r/fxRk/SiqPXDVMlajnS7WaOicr4by1rbk6G3hueEpvg0IPfmpe7nOci9T3KVgM9BNF9CefJTKL8+hx6MERELKE9u6mtZ2471nKmc2G9+YxLFwW9Mojj4jUkUB78xiVI+L7TU87FV+bGHnnkVCD+UUn2N78DRUN80GqhAwm/TqRw6QZXvbnQma9cd9Q7Uz95BJmBERAuik64FZZeR3CMpVYMlO0Am4OKksmlzC6O8G+pcFwGXMfZL/fxmoRe362DceKXXZtQMG3SRg9Fs4b687ckivT+uZI0yRqksdwJl4w3EQQMZeZeQCfo5lDv/tNbjmz/RmIyI2Kz0vh62F7K2HT2XNToXv/mNSRQHvzGJ4uA3JlEc/MYkStnBEAkqHSVlV4OwqyF7ruyZ0lvCbw/1NNvBSAWSNjTAYNOqvboZgWSB7CmCji8i4kneyNo5ZAPSdWxB7h2x7FTXliD8XhcqpaavVAxdPLBYIj+7g156h5avxfs0lQrbE5R+n0AWrrYqqt6AaL7tILUwItatPhM0wOIAIndH5eUQHZRdSL0az2CC9fmFHvf0KRjXiKgX+vnPX+pzd9tpZmJZXsma3/zGJIqD35hEcfAbkygOfmMSpVx2kDUEWooGXUxAFs5PKoGWPZOAW6pHBUjuUTYfZQcuDipUdpAdWEPp7wgGNMwKFSwREU0FU4OhPxtlg4G/wgw/QhVQxD184R9Dj7va8LkM23NERaWxcA8uoJS1BbnXwXbfgLx6CcNUFnvO8CNoQAdlXpIYpKzNK3jmP9/rMX76/F7Wzj7T5zivOSO2O2oczGv9/PO93te7kT7ffvMbkygOfmMSxcFvTKI4+I1JlHI0sBSV0v72kOH1SP3x+oQfZbHBzxFtR8Jvk4EEpIwskFIkFemcaR8REY9QUjqFTDvqZ0jXO4PyXfosdRSkYtkbkIDrnonDW1inYzwHQfcE6m07WFvs9cjXcM6/h4EfX0E2H96/YGmL5dIgfEnufpLrwJB/3OiD8sUX38ha88VP9QBrKIt++a1uFxGHG81MJWhKc0Wl9oO+zRjzo8PBb0yiOPiNSRQHvzGJUn728Z0sbpYqP+4XMCihVSEyLVQCjmDgRwRLJCrzHYMwHENPsmWmJaonyCIsQCxlA/vtUYlwRMRDrhNm6bip5HlOfeEga6yGYxxTSTb42g1IvPuefoRrMJ0ojCgDEna+gPu/hrrh16Ue45ehIvUB5CrdvwgWeTSRdwpy71mhcu8XR/2+X//8K1kb//M/6DH+4u/0AG9eydLpcanbRUSECj/MlITzozvtN78xieLgNyZRHPzGJIqD35hEcfAbkyjl5T/peOHp77TuOPsf/fDqDmrYyVKDkY5g60qUYOepkSalcuJ+wTQPtf19aaTLo/6nYV3of0iOUFdP//UYw1oD15GuLdn+Lf3nAlu1RuxoHjfN1AZoms5drovf5LqPr0Kv4XeQyvvY6nYdHXPwf3bo2ZnCf4+uMl375KB1+tO/0ftMZr/46a9krYWR9NmYm8nmDaQlj2D60F6/cwxNdP3mNyZRHPzGJIqD35hEcfAbkyhl8be/lMVR+x+yNn2j6auzR5VXl62mP15SkX5EbKnWGsTUHmQOSTuSO7TWOzL8PQ4gY44dCz8ShjsYLQ4+NCqQdiP4PkrvxQlANPIbtuuD7hb2HIDtHuHD30Ea8ZcnfZ5et5q+umhV+NF4dpKzESz3aI2eCUppbuBK5nMQfjOdkJPVKtejArk30e+LiBh9qPF29ajX7OM/alwtjzNZ85vfmERx8BuTKA5+YxLFwW9MopTZJ38hi9mLl7JWzReydjbTuuqPyfgceDJMDlNuoCdkrGBUMjVh7JM+7zM0m4/WqPnnuwPSY9zTccN3Yl8DOBUacERnTEdIuY/jnt/+ipqHgpTcw95f53rOL1qtT3991OeJ5B71T6B7QGI3grM+aVts6grnd4BrdoLpPHGECUL07IAMz5480e0iovgUm5RgAAAA1ElEQVQMxnmXb2Tto3iQtfb3buBpjPk/HPzGJIqD35hEcfAbkyhldvlcFrOZNi4sZzCO+0pLK8sKJgDd9UyGOep+7ioqPaSGhMMm8fQKuvf3MTDrr290dgelvjQK/IDlsnA8sI8jbEdSks6YMgYLSjcMlpIENQD9fasi7+u9NoldQlnuroXr1ZNR+T599w/HbIPw28P9o8zSNTRb7e40W/G00HM+bWHiDmSRxvxc1yIie6YSke7gZK8Tfz7aPcqa3/zGJIqD35hEcfAbkygOfmMS5X8BaRBH80KtnT0AAAAASUVORK5CYII=" y="-153.511187"/>
</g>
<g id="matplotlib.axis_15">
<g id="xtick_22"/>
<g id="xtick_23"/>
<g id="xtick_24"/>
</g>
<g id="matplotlib.axis_16">
<g id="ytick_36"/>
<g id="ytick_37"/>
<g id="ytick_38"/>
<g id="ytick_39"/>
<g id="ytick_40"/>
</g>
</g>
<g id="axes_9">
<g id="patch_10">
<path d="M 29.174375 422.332375
L 151.464375 422.332375
L 151.464375 295.038848
L 29.174375 295.038848
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_17">
<g id="xtick_25"/>
<g id="xtick_26"/>
<g id="xtick_27"/>
</g>
<g id="matplotlib.axis_18">
<g id="ytick_41"/>
<g id="ytick_42"/>
<g id="ytick_43"/>
<g id="ytick_44"/>
<g id="ytick_45"/>
<g id="text_3">
<!-- 14 1833-20719 -->
<defs>
<path d="M 32.328125 0
L 32.328125 17.140625
L 1.265625 17.140625
L 1.265625 25.203125
L 33.9375 71.578125
L 41.109375 71.578125
L 41.109375 25.203125
L 50.78125 25.203125
L 50.78125 17.140625
L 41.109375 17.140625
L 41.109375 0
z
M 32.328125 25.203125
L 32.328125 57.46875
L 9.90625 25.203125
z
" id="ArialMT-52"/>
</defs>
<g style="fill:#262626;" transform="translate(15.789375 399.052486)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-52"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_10">
<g id="patch_11">
<path d="M 164.424375 419.830611
L 286.714375 419.830611
L 286.714375 297.540611
L 164.424375 297.540611
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pf21b50a7ec)">
<image height="122.4" id="imagedde1f73974" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnVmPJOexniO3ylq7unqdHnLYIjmypQPChg8MGILhCwM24F/g32TAt/41hi8Ojm0IB5IIH4LSiBTJGc5MT/f0VvuSVZWZvqB84XmfAsrwHb94LgO5fplRCbz1RkQUpxe1fUASJx+GrNdoSeys1ZfYcdaTWD9uSuyneC6xjum5K9h3WBcSSy2W2MexXvezMpXYAE6S1bI0NoojuBqzl+lWYt9Vc4nNq7XEzpK2xH5tGvtcd7WjSs+bw4q1Et3u5Fivz8zs9Dd6j+m/+9cSi7/4NxKLOvpOWKnntkSfQdzWfcurbyS2+k//WWL/5bdP9Rxm9nflncToGXThXXyWdCX2t5W+T/+2MZTY5X/Udz75zW/0Apv6nOvHW93OzOzxQbcdTyRWvtH9Z/9rJTHNFsdxgsCT33ECxZPfcQLFk99xAiU9aqlAF0f6m3CUq/hx0RhIjMSrjqm4Y2bWhPOkpmLTxlR4a+445oeQWEiSXbPSc7Qr3TuvWPCrI7iepCOhx6ghsR7s2y31PI1ar4d+vbdwh3MQObMRC7G9lyOJdV69klh9eKKxwbkekAS/YimhajHW2IuvJXbzpV73KCr1HGa2gTVb13o9Ra1CM713RN7cSCw60LWxRM9hq4XGxrr+Zmb1gwqL1Z3GNld6zNmjCpX+5XecQPHkd5xA8eR3nEDx5HecQEmfdy8kmEUqTJyCeHUOzr32/8PvCchAVu4psrTACYjb1Sp+teAU3UoFox5cYQ3HMzNLNpnEolpFtj6IPhFcTw4x0ABtButQRCCawr6PcM1mZps/6jF/sf1eYp0HFaaiUxWBiXqmolR1q8ebfqnOtK+m+s4+NtTxacbi3hpckRGIpAvYV6U9s6rUd76ezDT27o3uvIB1uHuEs5hVtyqIbu91fYo7vZ71Wp+pf/kdJ1A8+R0nUDz5HSdQPPkdJ1DSf59pKSS54vq1/k7kYKoiYWkS0RHN5hBfg+BXQWltDu7ADri0Tii21fMex1rm2ck1tkvwaxS6GPFGy0RbcD0FHDIFwW8W6z3Tvg+J7ryAdWW5z+zHWsXdH/6szs3LF+rSO+5fSazZVpmM1nE+1fV6OVPH4Ium7juqod7ZzEpw+NX4jul2W8iEJaiz05le9/rP9xLLprpeNThLqwmLl+VU37FSdUUrIQlBA/Yvv+OEiie/4wSKJ7/jBIonv+MESvofCnUIjWotO41A/NiAK2qcwO9Jyr8xKxJeIEaevwb8bp2CKPmLtV73s1hdVf2erkMDFM2SbHbGAla7UEmtoJLgfYW8WFfiJtZrHNXkQ1MyLG42u4PreZ3rtl/VKnSdLFUYPJvqdR+U+lwK6I/4rqHX8j5ScW8Brr1dpOBgzWJ1Y1JPSCokX5d6vNV7eOcj7ZkYw/3V2x0uVxAH6fOdZFACD6Krf/kdJ1A8+R0nUDz5HSdQPPkdJ1DSowN1HUVT3RBMdlbCb0cMveIWIKaYmQ0TFXhisCKRLNUFcW8AYtwJDPfotlUwShvQHy/RWAnijpnZeqvXs4T1WYCYtoCf4Bk4ya5jFbXew/2V8LCaIHIlOwS/AtxuMxB870GKfYR+hONMhc8jKG2mL9EYRE66v3jHvUTwPqVQBt2OVeTuR3rdgy0Iuw0Q0zJdryiFd7sNw0t2COQxOFOThb4Tccr9DGW7vbZyHOdnhye/4wSKJ7/jBIonv+MEiie/4wRKejPWSTxjMDFmoOwmECtBdYXy8r8eU7elmvwcthuA2t8F+2MCqjlZcbdrPV4F/x4UK/7nYlKqWjwCq/MIfm4XcI0Yq8FuvKeyT1OBmjt++6mJ6grWrMDODwpNvqG+D9S09ADs0FWsKvw2VluxGdvFl5Wq821Q9g9I7QdbcqsHan9Dzxs14B+Ovk7SifraT8HMLIJ/SOoF/Ft3rY0+axhL7l9+xwkUT37HCRRPfscJFE9+xwmU9I+Z1mST3RRKhFGgoV+TJTsvceZOH47QBdGnC1pTA8SvmkZ+b/TMVKdPwuBqw4LfYs/JOTvaAQi0jm0Q8khyo+0GIKR2dzQjJai/wBabgtKz0tghXHgfxLQeTM2hZ/oq5XHjX2d639eR9m5IoSEsWcjpHavg/jZTPW/aVcE2OQeL+8mRxMzM7PhYQhFM/LHolZ57pg1F/cvvOIHiye84geLJ7ziB4snvOIGS3oP9jmq3oRQZxZ1dTSEJEqtIRCSJjWJkJCxItNnCmGz4HdxWMOoYhDMzsxjOTo5D6k5AjSvb1BAUBMQliHs5CFADiB3g9bEjk4TKGK4xI8chOBP7kQp5Z30dP3P4VB1s5J57+l1PL9DMmstDib3I1EE3j/Qac7i/BTyr92M93gSm+ByOVGg8iXQseXyuwp6ZWXzZ1+Chbhsvdc2S24luh2dxHOdnjye/4wSKJ7/jBIonv+MECrYKpBjNQ6FySdqORiL/tL+yAmGpAPcVuefoypvQWDOFJqNU+hvBdbcSngzTNi3rPKxUjFtu9dzU6LMkdyCcl8RC6HlpfZho0wPRzYwHw6zBwUjr0wThrJXpeQ4OVPwafKpCVf78QM/bUTffR4MHiZmZ2e80lC9UOHsDTUYLuL8bUL4fanYXfsjhRIXBz36r9/zL5Xe4vxb/mkWffqbBrpbpR1A67F9+xwkUT37HCRRPfscJFE9+xwmUlEp12yCwUR82EuxI3NuAmGZmtoAj0LQY+oXqwBSgEkSpXql7H4I414BR1+2mbtfrq1BlZtaAck1iuwLXIPQFLJYw+WipfQLnICCSeNlrag+3PGfBryj0mKOVOtY28GSyWJ9fByYkdY910lB2rKIbiXvRgQpa6T9h5+XF+kZi5ZekKquw+CrT7a7hPZmByLklpyPI61eVCnGTLy/0+szsi+FLiR38q1uJxWcDiUUkDONZHMf52ePJ7ziB4snvOIHiye84gZLScAiCxD0a7lDC8ZY7hjvMoD/brFaRbQMiYBOGULQiHdzQAuHlqKeuqnZXRanWQK8lP98xPvkQhKmOimRRS2NE+Voda8OvYPDCg95zAha/dkf3bewQ/CJ4hlmhYhyVN6MrEs6dn8KY7QNYG5oNX+jxInDomZllz7TU9/ROS4fvv1Xh7UfT6xmBh/W+UvFyC+98A9ariFTEjXJ+R6qX5xL7fKQlwf2L1xJL2jTW3HGcIPHkd5xA8eR3nEDx5HecQEnH4E4iNx9Ng92AqEHOJhIGzcyWIPhNQDxZwXYk+C1TFW1oujCJe90LjWXnKsbExzsmqPZUeKPhC9Enn+rOHXWXxa++lVh/8XuJrRYqSpJDr4TS5qJikYz2r6D3IIl7jRSm2J7oNaZPdB2jlq53vYahHSs9nlUsKteF7p9AD8BGtJ+zlKD3m0TqBMq0KddmcC1mZncwpTcb6rszgP6BTRB3/cvvOIHiye84geLJ7ziB4snvOIGCI2eprHYCzrs5uvH2K201YxfUqtrvmEkMfe9APBnDUIv5VAUREvyScxDinp5JzMzMmtDH7US3jT7+pcZ6JxKroKw6+5U6tw7e3Uns8UbFRxoisYRehmZmC3gtNiD45eRia6iw1DjVZxD39RqxeeBSS6irmT6rarGjH+ES3rGRCp0lDOhogu7WSfVeOrBe9FVtgUjd3XPoipnZFgTDOZSxxxsVTgsYVONffscJFE9+xwkUT37HCRRPfscJlLQJU2yp5x5V/pIQV4Abj4Z7mJlV4AZMQOhqxirQDGIV2OiX7F2m0aOZik1H07nEWm0o072EIQlmZm3tK0fUKz2PgehjIGjGT071tL9QwW8xVtH0Zq6OutepCkNmZhNYSOr1+GSrAlSSgFOuDU5CEK/qlbo7qwmUyw5BFJ6wSLYa6z2Oh+oEJZETjIDWg3yhfcnN1wXBrw9lvl0QH814AvK+0Iwb//I7TqB48jtOoHjyO06gePI7TqCkTXBulfCb0I9UtEkTKBMFEZCcfGZmEZz7AM5zAn3O9p0kfA9DJK4SPd6zR3XA9TZwxF3CXkvj9fUr3e6bryVUbaBElRQauB7sHQiDJe5BNH2TsoA0g+fVhmfVAvFrNofhHnfaZy6LpxIj5952CKLyUEWy6SNPyh1OVdwbViACxnrMNYpkIHLCs8pgbTog7g0qGCpT8nM5KPW59OGt72W6jr2uCqf+5XecQPHkd5xA8eR3nEDx5HecQPHkd5xASVtgJYyhRri57+8EKKSs9Zu1YOMLsIweQHPGGxh3TOOTJ9AM8Qpqst89wGSXV/cSi5//KDEzM4MpK/W330ms+Mcria1u9F4imLrTONZYvdbY7b32B7hJdV2nEdfAU1PJHJTqDTzr4Qb+NflGFffunarPUQLNX6GZ6Gyk57ibcGPVWwNlH94dsjQP4Z+iR2h4O4K+Fgn9OwKxASTHack9MQ5jVfEHMH2qf6ax5lM9nn/5HSdQPPkdJ1A8+R0nUDz5HSdQ0h40C4QSeIupwSG4EHOIpTvqkA/BrnjZ1PHJOUwb6Y77EisbKg7dgAg4BBHw60ztoYP/oXX/l+kfJGZmlpyqvXd7NZbY9KVe4/2d7ksNF/NXei/rUrd7Eet134J4tUuIbYM1lWrM6Vlv4HsyheahSaZn752pCJgd6LMvQWmMJtAQ1Mw2YL1dwPtNNvC3ptdzXWo/hiU0nT1KYHR6pMJnH3LgONGmpWZmx8cL3f8T3Tb/XMXr+GMd7+1ffscJFE9+xwkUT37HCRRPfscJlJSaFG727BNIvxwUa9MkFjM7jVVQeforFcmyUxXJWn/UxpXRO21wmYAISOLX20TFtP++PZTY6r+qIGlm9uwzrVknt+MaHGtbqOleg6NutdHYGPof3IJTbg0iZ7ajUWSH+jmAMNwDsaoN9eU0HprEvdY/UxE3PlQxNPv+vcSWcxXDzMweoIHnBhys96ai3dtSew6830z0GuFBd2MVOel9yGE6VrsJ/R3MrHOka9a4VGdj8vkz3fmTX0jIv/yOEyie/I4TKJ78jhMonvyOEyg4o5l+EajIcLln+W4Ws7CUwNbZsYox2RefSOzofCixf/5bFYLa3x9LjNx8r0Hwe5lCw8wtN/DcfqerdnoE03mATlNLNfPtnqPOVQOybq1i0xjEPWqgamZGfT1pYg85NzMQFjs9vcjmL9XtlvzNcz1JE7YrdL1aHX0fzMwqmORDpbp3tV7j41af36IEoRIawlJJL8xl2umyJGCYlUU5TEPqq3AaHT2RmH/5HSdQPPkdJ1A8+R0nUDz5HSdQ0iNwaa3BzVWAaMcd4BRoR/fTecDFRhNaaDRx8unHEuvZW4k9rx4kNn+p5Y3DhFxfei3knjMze7dVEbE90xU6PFInWhecW0lrPymocwUTaR5V5Bzm0Lduh9w0hnnsW+h7t6HR4tDD73ipunIExzN4BlbqGtaFOuDIOWlmNoSpUregkj5W2vduWamwSGPlU1iHJozjJlag4q0KEPHMbLvUbWktjCZAAf7ld5xA8eR3nEDx5HecQPHkd5xAST9vaIlqCYIf9YpbVlB2Cj6m7Q4n2RIMhld/UnfSxfalxFpfaLktiUj5sYp2x69V8DkttTRyA2IROd3MzLY0UhtoDVSMaf1SxcJ4oNdTL2HQBYy6PnlQoapZ6zmotNnMbAFj1msY5HGX6vMbxyDujQZ6Pf/zVmKD9Ve6b0vFr/UrvechnMPM7B7sio+1rs8K+vARDbi/VqwOvwyEvDWs4QjesdFWj2dm1p9ovH2vQmVyryK3HaoY7l9+xwkUT37HCRRPfscJFE9+xwmU9PxSe5KBLmHlWn8nCnBuLecq0AwX6kIzM7uHCapXWxX8Xnx9ILHnf9Jyy7MnKgQVSz33BnrmHYBzq4LfRip3NTPrVupEazQ0loEuFT8B8fJQ79kmKs6mfV2HDpQi03WvoX+cmdmIBLFajzkCZ9ssUodf0dTY+lpdlr/6b9q/sQ+DKtYrPd6yZEddBNOJSYwj0Y4K3ktYswa4+QoQTYcwQKadwDTfmh1+7UcVgZsvVajsNd5ILIUyaP/yO06gePI7TqB48jtOoHjyO06gpK1Lzf9qocJEVYCINNuvz9xixQLGplaR5R2UzM5ArbqptJfesyudjNoCgaYAwYf8eYelnrexY+JwP9L1abVVjImbNAIZYtTDD2I1TFgpoV/fBsp0l9iZ0Wxe63UXIPhRrIT6bWrheAx9FJ8uVMjLMrhnuD/qHWhmdr7V67nMVATOwWk3i/X+aG1mUPo7qWDiMLx3CSxOBs5JM7N8rWuWXKlAfr5R4bs3fScx//I7TqB48jtOoHjyO06gePI7TqCk6Wc62bZ6pwMQNncqYNSlihUVxOodJb05TO8dgPuOhn7Aaew6AyGv3u/3LQcdrwPXRwKimVk7UyEoa+4niNZjGO4B5bvVgzr8Vu+hN1+pQuocapHXO3r4kYuNetclUMa873YHIKZ2YXhJ2tBr2YLbtJHwvRyBSHoJZbntRMW0OYiI15Fe4xKEz0m1khiVRcfg8KP2hmZmWabX3QARsDnU68m7MICGT+M4zs8dT37HCRRPfscJFE9+xwmUNBrARM+RCkv1VgWM9VwFiMVcxaY19PozM2uAAHK2VZGlC4LfBGIL+CkjZxuRoyipsd6OWRopCE5JThuDIDrVtS1XKtCs32vs8aYnsQcQtDYkNu0QYhNwolFXORpMcRirS+/c1OF5WkJ5awfKTuH5FTCgY13yd4yiJDbm4BqcQ8nyFiby3sB2IyjxHkKZL70h1Y7BMEmszsRDcCZ+DD04Izimf/kdJ1A8+R0nUDz5HSdQPPkdJ1A8+R0nUNJ6qE0TqxEo+0No1jhRa+G0UDV0VnN98hrU5g1YQQuIrUGoLqnz6J6Q6koW4mqHQv7/Qw024mquyvDqUVXz6RKaY8Il0hPowHQlM7NNpM+wBKtrN9Lr+cj0ei63+o05TrQxZwKKdLHSKx8u9b17hGs2M1vRaHlYnyY8Az2L2Rx6LxzAuYfwj0sBU4EmpU7c2UUbRpjP4R8AooZ/APzL7ziB4snvOIHiye84geLJ7ziBkq7+cC3B1R2MXn7Q5pjDuUoiI5g2sqAGlWa2AiFvCgLNHJpCoqgFeh/ZduFwKH3tcFkiNNZ8X/2RRotHGVg0sTkmCFVQU099EiqaUmNmzVhXYwM1/n2QET8CK/fZVq2una6KX3R/K2j+egcC2w30cjAzo8HbTXgu1KyV1rEP63iSqsg5jDU3xjgVSmNbsAGbsUV7b2BX//I7TqB48jtOoHjyO06gePI7TqCk3/7hRILrWkWbAn4nFlDHTI6qJY1sMa6/H4LoswD/XQJCXhdi0Ldy7188kldKECnNzDalrsV6rrF8CY0UdfiQxV0Vulon2tRzMFWH2GYETVA3KkoNoBbczGwCAu0ChEWqge+DcNaGyUAJ9D+gZp045rzQc+xq2wD9MfGdSOBp5yByHoDt8yRR4fMeBD9yoK6h+WcD8srMLIP3m0Ruaphbga3Rv/yOEyie/I4TKJ78jhMonvyOEyjpl5k69whyu5HYQBQ7fmJmoNLMQNxbQDlpEybxkOBHp6Z7oZJeKv0kV6KZ2bJU0Wc6ppHKKtC1TUuo01Pdt/FMyzdPO7pv950Kg6cPKvhNZ1S0avaw1m3vQdQq9nRZbuApVOCIbPRV/DrpazPZ5LU+rdMxv8clnDuBp02l2jVNJIIX5aTStTmHCUCULtNam5aSmL0rvoQXfLxWB2TrXt8d//I7TqB48jtOoHjyO06gePI7TqCkNzG555QOuLnaECP31I4hN7YBXaMAEZCcUfSr1dzTcYaiFPXrA8FnVwc/ErXmKxVeqlsYN75REbDf0WLU9Pm5xOKnei3J0aPu+1J75sVXrNiuHvUNeIQ+jCQ2bcBS1wDH6Hqtx4O2d9a4VCHv4lLfqPOZjpX/6aAaqtdQOnyj2z1edyRWzVQ4OwZ35wymGVUwzSgD4XoFrj8zswU4JV8nuu0m1/OcLvRd9C+/4wSKJ7/jBIonv+MEiie/4wRKSmWCOehAJO51QclLoE9ZssMVt4Iw9dxrgQT5+VZjz7fqbDvMNQbzGWwKrqgF9KhLd/RRa0Us0nzIcq2luvFYj9kdTyWW0To29Hh0g1soL55OVRgyM7uDwRs3qZ57CGIxia45lA4vQPDbTGE0OIxsj88OJJY8h7poM4sOdIQ52fTS799IrP4HfQbFWtfxCO6lIMEPhpyQgnwLpcRmZg+VujmHpu/3Szh3JwOBFc/iOM7PHk9+xwkUT37HCRRPfscJlPQYSiuboDd0aIopiHsxxJY7hnbQRN4IBkYcwwyDf5mNJPbR304klnSgH+F7vcHRO3VuzeYqfKXQe87MLM/3E/yKAoQgeAbFg153dq3OPRr4sfpRhaHHGxW+3q+5DPYWBmCMQNxbkvgJAtYcnvOoVoGVHHVJriW9TYPnnPMAEmtC2XJbzxOvtbS29UbP0xupwLaA6cnzUtdwBnkwhff9ViI/MYaJvhsY8NEBJ+EaYv7ld5xA8eR3nEDx5HecQPHkd5xASU+2Ktq0wAHVhMLcbM9eaBlZ6swshXLGAYhDTyoVY04/VSEoe6ZCDgliyVSdW2SeI3Gv2aS5r2YtmDqbZLD/CgTIpYqAs0cVaMo/6DoQ4wcV967n6oB7THg4BEmXVNKdwqJRf0SYc2FDOHdjps+vfqn7HhdzibXX73VDM0tBZIuenGkMhMH0iQqi7bcqujVGKrrRK09l4yvoT0kTkc14om8GAz5asQqQPZjI7F9+xwkUT37HCRRPfscJFE9+xwmU9LiCKagg5KUgTMQgQJBw1tsxQvUE9k9gSu/BQB1rjcGuzoD/N9VMRbLNGEpMoccZlZ3WIHyZ8YRZEvwoVi/AATdVAertUIW8BZQ7L2jKLgifu1awA4+rA6od7U8xevoLeFGuExWqNnO95/KN3svJVgVgM7PO9kpiGQja0emxxOLzI4k1T19LLHkLk6VBzL6NVBi8g6Eds0pdhLtogZDXiyAG5en+5XecQPHkd5xA8eR3nEDx5HecQElJoJmBiFTB0AbqZ9eGEsNBUwU7M7PBiQ6SaB7BsIoeOMkOof8c2KrKkQoq8yFMoS1UYHuEKRLZDpPd4FaP2YONSdBcbvQ8w0pFm3twxT3CkIwZnINKrftQSmxmdlrqW9EDkYyE4RIcnjNwoQ2hr98sBhchDPxorfRZRTcsKm8LGIhSXUssg16I0aH2CiQXaeuFvrNLeOXvTbe7LdWtOCk5XyJyVMJ6U89MetL+5XecQPHkd5xA8eR3nEDx5HecQPHkd5xASf8CKucM7LhbGhYDAutZqcp1voYOnGZ23lVrcfNzraGO+9BoEpTheqrKbrXUi5zPVJm/gxroH2HAymKHVblhqs4fVHqeLixFTseEUnsaGU6/3rTaKzhHa8ckpTYo+xe5/jPT7akqTfbn4Uibo1qpz3QM/wDQFW4hSpOQzMyqB1ihb1Rh76c6sSf97FSvJ9MH0+7qOmT6Ktoa/h1ZVPoPQLnDeJ0bTHuCZ0j9AKhvgH/5HSdQPPkdJ1A8+R0nUDz5HSdQ0heJWlBXOxoIfkgOdeMFjCEerHgU9McLbiD5IVEbpq7QaGqyP3ZUqEqgMScJmmMQSa6N/b0k5jRhfQ6gZv0ELKzncEFHYLslAbG1p3W2t+MxnyUqYH30a52QlD/T51KvVcTtfDeW2PYHvca61OM14V3sxHqOPGVRmRgPVYDc/qM+1/6D2oDjFgjNYMVugJ06A6EyjSCHWFNGcY8owXZP76d/+R0nUDz5HSdQPPkdJ1A8+R0nUNJbaBZIDqMIxIo2NAXs7dlQ0sxsMVGhpH2t1qgoVbEpvqCGiycSy0AkO77RUdfHf9FGkRmMqibhxMxsUcOcm0jXhyYfreE3mNx8bRC/+pEKVecwHnoDAmJ/R3OCZ38zlFjrNx9JLIbJN/VCBdaO/SCx7js9d7ZUYZjWq99RQbLd5XvZrOF9nOt7d3uvE43GIxUgez3NF3KMFnuKc5RXNYiFZmZLmFxFlCBUU8y//I4TKJ78jhMonvyOEyie/I4TKOmoUvEkAddRDk0YSdLIaUT3DgGjKFQQm7/VWDnTEszmFqYK/RpGdD9REbD9fCKxp69VqOrX2sCRxlKbcSPFJvy2dsDN14Yy2ByWrA3Ds0+PYFz1ATQOzXW9GqqZmplZ9ulAYvGgrxs2VDiLChXE6rWeewxNOG+gXPYCJqLnLV2H9imLYdUaJg3B9KERuFCHay07nj7oPdfw7KnCmN6RDHJtFwWU/1KsQUKzj+h2HOf/4MnvOIHiye84geLJ7ziBkhbgTGtBWS6JFS1w85F4leCQ5h191x40lM/0Gg8rdQK2W+8kFp+BeHWswuDJk6nEnrxV198PDRVTzHgMdRNEUlqfHkzO6YMz8bCpYtrgUteh8aneX9yBsuodzkvL9bnUEx2BXQ+1VLd6qw/w3e+1hPb3mQp+PyQqXlXQt+6frvW6aaqTmVncoHvUNSPxuVzqdZO4F8HT78H0qH6q5+jHug7rhMuTx1sVpeelvhNLKDtfxhrzL7/jBIonv+MEiie/4wSKJ7/jBEq6hTLRBH4TmuQaAncSTIe2BfSPMzN7LFWEai9VJOtsQJScqDjUfFC3W9SBcc4Q64Lr71fvVOS6qVQENDN7DffYqMnhR4IfiEO13l/3QMWd7ELXMHmmpbYG473rBUyWMDOba7y8VXFvc6UC1M2fdH3+vlDR9feJPqsZuNXOEnUWbrd6L8mhOtjMzJJzdWl2ztTV+rSrz7/5vb53MygH3pR6PSTYnlW63SzS51cmO8aNQ66uQbBfbPU9WVe6nX/5HSdQPPkdJ1A8+R0nUDz5HSdQ0gX08OtA+R+xBWcTTfi9hSESZmYLEBH7lW77tIQBCC11QcWnKg7Fp0d6YhC/UhDdnt3dSOxffMVrEzdUuJmB+tkAwY8GU7RivT8qZY1Snk4rwORdW+qzNzMKbhceAAAFl0lEQVQrQTgt3ui27745lNjvShXYfpeqgPh2q45KKm8tQPyiCvG4D5OAzSx+eq5BeP7No3uJnXZ0aEfyQtfx4UFLfxuQG0dQSjyH57eGfntmZqtEheoChOFNpe/OqnSHn+M4f8WT33ECxZPfcQLFk99xAiWdblWMyWMVIcjhl4KrDfQsW+wQ/BpQUnoMrrgBlFs2BjCE4GMQdy6eagz6zEXgdmuc63nPu+pqMzM7WYLzC9aCCoJzEBtbuYp71IfPYN8aHHok+FVTdvhtH1QcGr5WUevbjQ66eAHX/b7c4ST8AC4lV0oYSrKTjpY3Ww+E4Z4KlRmsWe9BReD5FIbPLHUdzmBwSgFl3+MdIu4IcrAF4vw60XNvaxDI8SyO4/zs8eR3nEDx5HecQPHkd5xASUtwl22g/G8Zq5MoA3GOXH9THO9hlkF8BWLjk0SFjs2EhmQA5Gyb79ePrpyqSLLd8u8lF2EqGWzYMT1Pt6dlp41DuJcGlOqSc6/Q51fesxC3vNZj3o5V3HsD/fEea3YNfsghuNVOIo0dguOzhPemGvO9JBu976gJbsCuliLH8J7klzrheTBRETgd6rNqLtQFuihVSH2/QyDvgCBKPQAzGH7SiDWH/MvvOIHiye84geLJ7ziB4snvOIGS9lMVHHqJCiI5uIuIApxE5d5ymFlhKpR8m+n1XH6j03e/+Ie/SCz9VIdIVEMoWX2pos3wR12bm5XGzMxGDRrmoBxAefIgU5GsewL9+s5V3KFhHDW4/sqRCojLtyzE3lyp2+11rOe5j/RZr+H50YTng0idaRemsTNYrwRU0wp6OpqZ1VMtHY6oJjgHJ+CRjjFOnmo/ws7ovcTSXN+n+FbP2x7rM22CkG5mdghieDuGfoYwSbpMtPzav/yOEyie/I4TKJ78jhMonvyOEyie/I4TKOmThtY2d0GJJcW2AhW/BCW13qH2078AM2hI+BcQpTe5/gNw83cXEvvk70F1BRvpslT76rjWfziuMv7XYwLNOrs0ehuaK/b6quw3VGi2CJpURl3996Ge6L8Z2we1bN9d6bM3M3sDltMb+DdjBo0moX8r2lJPIPYRWKcvYAR1+1D7DVQFN72sR6r21wu17UYd/YcjasC0p2NVzbOPdb3N9BzNGVjkx9DLgZpimNlRrTmYQYeIQ2gUSq0g/MvvOIHiye84geLJ7ziB4snvOIGSHscqIqVgTKUYApuxFMOC4QrswXMQAf9sKmDd5CpUHoG41wPhpJ1AM1K4vtGOaSokXh5C+8km1O5nDWiuCLXyUUsttgb3bKYC1Gaqxxut4HhmNkx12yUoeQk87B4IUG0Qiz8qdbtLGMX+pKf30gHBD9pS/BQfqfBm45HGOlrPX8NBo0yFyqirOZTANabwnFN4b9o73PAJ9Dbown0PYDx4DvfiX37HCRRPfscJFE9+xwkUT37HCZSUhLwYYhn8TjRgpHIO+yY7HEsliEgzEMQmIO5R34AVSIuPIBZO4RxNmB4Uwb0s4bw/bav0YX0WIAJSU1CqyUfgummKT7nerxGmGX8RcniGfdjyAGIDmLDz2VrX8bKrbrzBhTo0M1C5KtXXzIyblMaPQ92wqw5PK/Ua6zWcKNVnGrdh+lCu72Ir0nf7eEtzipgOCHldOGYj8Yk9juP8FU9+xwkUT37HCRRPfscJlHTf1pok7lGJYXdH80FiAe4mmGJsaxA1qElhE37LmnuWIm8gVsF5lyAWmrHD7x6aK96m6mx7OlWn3dESJtCAA85gIg0KVfCgdz0pGhl+AOudwztBxzzZ6vE+zlTIO3qqbr78FErE6ZZnfDfrB12L5FYFv6StLr2a1nECjkESZ6H0m4TKgyZMONJeqz9dIwjkeabvRJPGuyfu8HMc56948jtOoHjyO06gePI7TqD8b35PMs6odGjLAAAAAElFTkSuQmCC" y="-297.430611"/>
</g>
<g id="matplotlib.axis_19">
<g id="xtick_28"/>
<g id="xtick_29"/>
<g id="xtick_30"/>
</g>
<g id="matplotlib.axis_20">
<g id="ytick_46"/>
<g id="ytick_47"/>
<g id="ytick_48"/>
<g id="ytick_49"/>
<g id="ytick_50"/>
</g>
</g>
<g id="axes_11">
<g id="patch_12">
<path d="M 299.674375 419.830611
L 421.964375 419.830611
L 421.964375 297.540611
L 299.674375 297.540611
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pf370b9cc54)">
<image height="122.4" id="image92110800d3" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPZOeVns8dY47IjByqsgYWKRVJSd1SdwMN+A947b/shQADBmRARqtFSiTFYo05VGQMGfOdvLC8qfcJIwTt9J1n+eWNuOOJCzx5hqjd+qyxTyjq8tMli6NY1tI4kbUM1pJYP2tmNsg6sjbMurLWTVq6XdyWtadJX9aeGXy2ifB4PmUZyaWxaVThtpNmL2uzeidrtel3Po71nH9uen7jSo97C5d2GtWyVsB+Lxu9V2ZmX+70HM8jPZcILmPZ6AGtYT8Pka4tEv3sHM7vp0Sfzz+U97qhmf1p/UHWJpsHWasbvWb0zHfSXNaGud6/ca7P4qN0KGufwzP7ZaX7MDN7XugxjptC1k5yvVfD4VbWOCodx/mHx4PfcQLFg99xAsWD33ECJX3cO5XFZbGRtaJm0fX3UDTHfWcrSmWtG2e6HfyWkdJKTE1VrD7MVOOYlfiNZlWkxwO+CBnDZ/sg93I4xgLWEhBxdKUrkIBmZmsQtA+1HiNdswKu7QYuxCbW7XYkEGGNLmsKAvH/t/4pVa0yLYJjJHmdx/p8dmKVdn24z+eNfvYzEHtmZi+Stax1Oyqa85YK0SzXJ8Df/I4TKB78jhMoHvyOEyge/I4TKOm/9J7L4vtiLmuzciVr61IziUgMUvbUIRLKqgK51wN5klMWImTzZSTJaA3k1SFiAykJx5PA8QwgK47kHsmvLWQhas6XGd2BQ3elgP0sQZzRm4O+s4BUQF7Tz/L56dqhe0UZpwQ/o/rZTqIib5SqGj6NNXv1CrJSX+71uL/uzvAYL14sZS2GB6Xa6nfWhd4tf/M7TqB48DtOoHjwO06gePA7TqCk/60ayeJ3UI74p0xlw7tyIWuzQsXgriYFZRaBpKHMqFGkZbknIPwGUDraBcHWAbfTalSclCClWlTHamZ9XNffVvBXR4uzB0ipm0P57gZ2ksF1OCTJGhBqW8h2Ozbnk/ZC50cZfhs4lgLkXHYgk4/KwXuZrjVw/wctlXZn+UDWnmQaQy+gTPurUp/ZX0UaV1e/1jUzs/yFxmWz17tQ3Wv5brXyDD/Hcf6KB7/jBIoHv+MEige/4wRK+l8fa4+z31yr1Pi9qdT4XaYZSz/EKgGnlZYiHuI86ckaZUZRKWQbpFYfzNIIyje7sFaDquIiWJZaKckq2HIOvesmUJc7A5G3gJ6CFcirGIQYSS4zLrel7DsSdARlT9Ke13B+WxCa9OEulH2bmZ2nKsn2bS157aYgBlN97h7/HXLvnwsVcU+/0my+/HONPzOzeKw9AJu1fqfVeoGiXKW7v/kdJ1A8+B0nUDz4HSdQPPgdJ1DSwc9VGHUf6wCEwfcqFjoPZ7KW5Sey9hpKcs3MSsjUegLy5KpWmTOq1TalIILaILX6IPdOIuiFlkBfN0rRM7MsPS7fbb5VibRuVDYVR8qvLVxDytDL4Hd+deBcSnglUGktZd81sF0EIpbeOnTOVL6bQan0AASwmVkJpbU1zMRYpVqe3oVs07Mj5fOjUu/LeV97Y+ZjSvnkd3Kz02e02eoaCb+4rcfob37HCRQPfscJFA9+xwkUD37HCRQPfscJlJQKq5OO/iYML9X2fzFXe/lTrXb1HmrvzcwqsLsDSEMdwfSaIRhNghtz6mI705TPwUANcLvHvQnSNlh3OO7mHUzi2alVTuB3mX6pyezv6KY2en71AdsfQ28CGi1eUg+EAynDsg9Yo+amLTD7bWh42j7wHkshVbkFz9hDrP9xoW+k/VBvgjXsd77SfQzeQnquaQNdM7NkAD0LIA6aPaX3HvcfF8dxAsCD33ECxYPfcQLFg99xAiUt5sdN0ym3mh5YwW8H1X3v/4aJPTSVBryZtUB0UAvHmGrbaTvYB8m99ljFmZlZ0gNJtoO+ATNNx+xvIcW61qPMUMQpK5B7C7gH+aGml1AbT6ILR53D9x179zltFwQwCD9K7TYzK+Ecl3B+95CC/gDXkdKNbyJ9TnaZ7mNRa+r67K3K3mcTbuB5eqF9MbIujRbXz0apbudvfscJFA9+xwkUD37HCRQPfscJlHTzUUVHWYIkWWh20juYpHML8mN9YGIPTVnZNiq/FpT1B4burAJxBnNlOomKnHZbjzHrwpST9vFju8l0pSBeBnDN+tDDIIemngXsZF5r1tgW7kEP6tXNzGKoge/BPRjAWHKuqldoWhNNV3oCBvhxqfcvP6AVG2qYCufyY65x8AP0T7hrNOtzCms38F69ges9bWsMLXbaJNTM7Nkb3bZPjTnj4xSrv/kdJ1A8+B0nUDz4HSdQPPgdJ1DS6UQn5OxA+N1VKhte65LNGpZ7BDZxhAwqnuQCGXDw2ZMWNGbsQpbdWLfLtT+pxV3OiqthBHK1hYw8kFrUKLRbURNO/SxlTy4qLbXe1yrJDo21JqXZh22fVro2JMkJWZa0j2GlH/68rdlup4810y2m2m0zK7Z6jLcfdYrPtNI4qCBtcFHrc7KqobEmPItzEH5bmFC1y1W4mpndQrl8Bmvw6KAO9Te/4wSKB7/jBIoHv+MEige/4wRKerNTYbCF34TbVMXJdawSaQNiKUa9w33qCJIV9I09yJQbnaj8ao90u9Y5CLYnKmOiDmfFVZOVrq1VDiUg91JYa8HElxjKW/eQwbipVEBVIAZpYpIZ97h7BBmHX+/1Xl+1oOw0AxkKddp5rtuNn+v35VfH9bIzM9vf6T3oQLYqJA3ag+kijZtfVZpRWYPkXEPZ8B4yWrcJT396HVNZPUw5OrKE3t/8jhMoHvyOEyge/I4TKB78jhMo6YdUJQTl6E0gg4p6nJGAOARJO8pia8HaEMZsj3qQzXem8isd6n6TkV6H6EQzweKLsX7YzKL+Qtaa/bWstVZQjrrUtdbuuN6DOxBGlM3Hwo/FEvXme1Lq8fzi0UTWRi8h2w128/CTXu/Zvfa4e7hVOXc6BJEK98/MLIbR6ftCxdkEsvluQe5NC804JMFK7GKNrAp0dnHgvuTQe5A+T1A2p7/5HSdQPPgdJ1A8+B0nUDz4HSdQ0imEPxd6KjRkgSatlgekBMlBWqPjaUNGF2WS4QCDI6d2RC3I5js/hw+bRbCeQk/B1kolYGcBw0GWJH1U+JC0I7lXw9ruQG9FGvqRQcba4DmItxMVdOs/637eX6t1vWv0s91bzUD9bK9TbE8/UzlnZlZt9GYvSpWDNzCl+a5QiftQaMZoWcNzB9K0AWmewMOYHii1rqCnIBHBcJdjpz47jhMAHvyOEyge/I4TKB78jhMoaQ4JeUOQaUOQCDTtdA5rh0oMSQSuoUR1Funabar7Gc+gBDeGc4GhFskAjhGyCK2tWWhmZtHlM1mLY/1tzXcwoGP9UdZ6U80aS6yt+wWx1E5UaFGJKckmM7MtCL+7RLddvlMhGr3Xa/bug2ZFvodzKUG6tuEe0FCZes9l4xFItjY8TwXEwbpSobkpIYPxyGubxsep9EP3hURgStId1jqRPhP+5necQPHgd5xA8eB3nEDx4HecQEnPoMP/CDKW9iCWzkFgTEE2VSDdzFgEUobfPQwC+SNUcD7AdNl/nqgY/Kqlgq31FI4RhB1KQDOLejpZNfry33DbT2mX/1vWxjfaE3D4UbPiLhIVkGV+XCZYC+SsmdkAhkusQGq9+nAqa7Tne5BNJQjkPjx355nK2ZMLzeZrXRw/Pflq+iBrn80uZY0EWwlZmzSgIwFBmsDz1E00q3GY8NCOfqT3heQelWS3vaTXcZz/hwe/4wSKB7/jBIoHv+MEStoBgRWDwKBRFSQLtyB3OiTOzGwNJYokAXegkd7UWlp5BwKybKkQu4RecaNae7Oh3NuoiDMza9YqkaLxU1372a9lLZlriWr7d7+Xte6tXu+zFLLsEug9SBLowG//AERgVuvnp3CvqRB5B5l7XcgiHUeaPXdyCkNXLnQvcZd7+DWwn86p7uflHVzbbCBrbyKVxRU8J1RWS3JvnOq9egSTe83MxiD86B5SWT2pXX/zO06gePA7TqB48DtOoHjwO06gePA7TqCkNVhJGrrTAo97Cba/U6txP084jXQJPz3TWM3pDcwQmpsa2xmMSs4SPb+vt2pYn0zUuCcz/Q9AfHsra2ZmlqvJNepjQLXaVLO+0etISdI0zWgAbpfSO/sN//b3wexTu4MMzo/+q0B9J/vQeLTXhtHpHZidDTQw0tzMMN8YJl3bJTQzvWqp7f8+1z4Ey70+dzk88z2w/aeQyvs40n2YmT2HMeln8O8VarZaQJz7m99xAsWD33ECxYPfcQLFg99xAiXtgnjpQoPDVnyceDkB4fO44t+YVakCg0aGV7A2i1TQrEAC3kAa8B9bKlRefKv1+I9hMkz+Tqe4mJmlb25kLb56JWtRR/dd/eWtrC1nKof2NIkFUjlpklILtuvCmpnZAITfRanPxLMWT8n5lA2MxM5hdHanwxOEPqVa03HzWGv8/I6m5KgZvIig1j7T1HBq4NmCvhYZmMYc3r+HROwljEl/DuPBB5mu7Suv53cc56948DtOoHjwO06gePA7TqCkj1oqxGjUdZIc1xTyb+Gk1N+e9koznnaQ8fSQqozZxnrcq1rlx7exZmQNKhV+L/+ocuck0e8zM2vDiOdu74Nu11OpRUmW641mIeYklkCw7mDtb4GmOI1BsD795UzWslMVS8UUGsLOYepOBWOt4VhKGLvdHGisSkmW24XKuE2jMq4Fl3GY6vNJY9JzkHvUbJOyNgtcNStwOo9u2+/ppKEUmrr6m99xAsWD33ECxYPfcQLFg99xAiW9fAaNJ2HCTrXX34kS1qoD2XxE1oIJLSBZPl+qHFpD88hlrBJwaSo/3lVaqkulv3P4vtOaG0WC77NYEwTtfKLn/FlLm4K2ct3uaqk7mUEmWQH3j3TYDmSRGTfcjKB8Ox3pvc5+eaXbFXrc+fup7veN3qvdTMVZXZLQ5OeuhGy+h4Xe1yk0f60ha7AN04xaMYy/BotbgX1cwzSqBxDXZmZzOMYlZMnq7CGz3livrb/5HSdQPPgdJ1A8+B0nUDz4HSdQ0t5Ljf96q8KhelBpUzyABATBUu5UVJiZFXuYsANZfy3QVSMwWG0Yi0wjv3fQr+0+htJIyNKqoReeGWfFZVAyOwIRRBmVOIYaetyVH8eyVuV63BPojbg/kEk2BWH4FrIsr75R+XV5qVl/8cWJrvX1s00JpahbyJSDbFMqETbjDL/lVvc9TfXZKUDGteCZyEDE7WuNF3rulpCB+nCgfH4JYrGAbM4k1ZNuPfIefo7j/BUPfscJFA9+xwkUD37HCZQ0eXYqi9G9ZsA1pZb+JjAooYH+b1XBYmkLMmeyVbH0LlFB8z7V73xoVJTUUBOagbRLjiyDBRdmZmZtkHunkBX3JNJy4tNHKvc6T/Sz7UKztH5WqmBbzVUCFrke3+RAht8EejjWuV6z7O5c1v7lv+sI67Nfvpe1aqXPzt1POiTjYQNZlgMoQ2+z8COpPGv0ebpL9FrsQTTn8OzkMNJ8b/oskgTcgPDbQomwmRk9ol3IQuzBCPL0isa2O44TJB78jhMoHvyOEyge/I4TKDg+t9mqmGhI2oHco3LgGGSKmVkDkmwOpbqvoIr2B1NxdlOrOKPSyiGU6o5gvzQ8YXhg0MUlyM8XkYqp51+ooOt+rt8X9/UYo6WKnO5Q18YzzSS7q6GMlZMVUZzOYFLysgWZcjMtKP3yt3qvGrBXb0Ds0gNaLaBv4Y4nQd9utQ/jH1p64m9h4MuOhJ/pZ6nMtzgk7T4hBYFIE5XNzMbQ4/Circ9Y61LjLYKsT3/zO06gePA7TqB48DtOoHjwO06gpNVb7aVWTFTu0GRU6qUWZ5RRx/KjDSWq0HLP5vD5D5X2vZtVKj8GIPeGkQqaE1PhN671t/Gq4OEQX2SaFfn0pTbx63ypGYzxSAdBNHuQrvd6cUoQXQmU6nbAuUYHshofoJR1Wqu0uwMxNYGhFn+BASv01lnCfe6CdJ3Uuo+o0jUzs1eQ+feq0Xu1hnLbHkjgHpTV1qb7ptJfut6nsT4Pz03XzMyeF3ouw7HeF6Keggw/6pOO4/zD4cHvOIHiwe84geLB7ziBkhZ3Kjrq/XHlrUlb5VfSPS7rz8xsCFl653PNtMqhBLOA5mw0LZW2K3CEhdKCwz5veErvo6c6/KTzS80uS57DSIUEMrpmC12LVVTVkHGYRXp+7RpErO7BzLiUdVqRMILybSi1XsMQCvrsvALbC3wHIq6AczYzuy/1uNdQRtujrE8QlWcgi88gM3EPzx2VjZ9CDuOLA4NvRhAvRLWCDD/oUelvfscJFA9+xwkUD37HCRQPfscJlBTailkMEyigTZlFKci9jIQfC8RsqCJo3NMsvSd7zXiizCjuh3ZctlobBi+cwT6KA7+XSUsFT3zSk7VorD0TLQP1lkKfQeit2BmoJOvO9ab2d3qt+w2XwVJJaRId955oILuQpCuxgVLiVa3n10BfRpK9ZmZbyNyjHo55onJ2CDLuEq4ZiWE6Y1rjO8CsYOvVEqYGw4CdCKWr4zhB4sHvOIHiwe84geLB7ziB4sHvOIGSQu9Bi2G6C5Z+g+WkSSz1lm1/uVHrmsKo5edLXXvZVpNOqaVTqPHfwr84ppFa5Q9Qk32TcFLsyzk1AIUL1IG68w78VyCFOv0H7WHQvn2n+53rfzNGe0hLrdg1X2Sa1joDG06GnRpcZvCfAkrvHcDDSJ+luvjswHuMUrkpzfYi1vtyDgnQfWhaS+02C3jklzAhaUkj5A80Vo3hPw35Sp+d9KOe8wD+w+VvfscJFA9+xwkUD37HCRQPfscJlJSyNikbsykhpXIJk1MWKkm260OV43BAue78i47Wyu92Q1nr5rr2FmqyZ5DyW1ENO2z3BkScmdnHOx2BPL7T445faH25tUECwlr06ELWsuda99+f6H4HD5r6TBLQzOwczvEeUp0XkE5NI6x7kJbahgfvBOr0acT6CL7vqmZLNoRneQMybg/bHem4bQ0ibw79BaY0thunAh2Ql6len8j0HjZzjYOzjX7W3/yOEyge/I4TKB78jhMoHvyOEyjpfnpc/JeQdrRdqURYLVWw7UqWMZ0cpqSMVIh1RyqWWncqTy5nA1m7hsaMt6nKq3dQ7zwDQbMAuWNmdlfqd37+4V7W4vfXuraDxpV9FYjU6DMeq9zJhioBKXMy3fG5dKApaB8aOuxBag1gu2cgpS5Lfe5gAjVmyo2gdP9nJTf/fHaq8pMSL69ner3fw7PzHvpVTOA63MHI7wU0f61ouhI1zzAeN5+ABGwgM3FRwLODe3Ec5x8eD37HCRQPfscJFA9+xwmU9M1fTo7asIJRySWs7WAtOzAhp2MwohtIOvr50WMt1e2BGPwCjNEOsp1+nI5k7Ztchc8h6FyKuV6L5NsbWYv7IAZhbHfUU6nYPKggpXHqq61Kt3nCv/2rA1LzU3ogpp6YXrPfgIt7Fmt58gpKjKeQ9deCFNRRxpOUeie6cxojHye61kxA7jV6fttYj2cFZePbA01GPyU9EC87WF9SZirc1xrLqh3HCRIPfscJFA9+xwkUD37HCZT0t6lmNtEEEnAkuNaFUdDnMDXFzKyBTLLNEkqCVyqCqBS51VHJ0nus+x60dbvWK9jug0rA5MC48ctHOk2HakKXP0JmW6Hfmeb6fUlLM/caSIu7v9Z7+qZWgfiWK3rtPlIxtQFZ1YJ3xwiE75WplHx0qZl3xV6z0EYLlZwV9NHrdVn40XOSwESq/ljF4MVOj3u0gQk5iR4PTT2iEmHK2mtjV0Aug4a2lbaHHc3hufU3v+MEige/4wSKB7/jBIoHv+MESvpbm8viGIYnUH+1c+ib9gwERAtKHs3M0hQyo6Ak+H6na2uQIqRJBq9V5HUzXatr/R1sQRnsyalmFpqZDb9Q4USyaf9KbcxiplKrrPTDJEipXPrG9Pt+yvX7bmOYz27c43AHwi8FWUUlqvsGykkho46kW97SYyzhnLOcs+ci2I+B/MpPdW2w0UEX/ZVu1wPJOaZ+hLBGA0QyuM9mLPfo81u4B5S16W9+xwkUD37HCRQPfscJFA9+xwmU9G0xk8Ui1V54Way/E5eg2E4qlXhnAxhUYWaDUxUq0zudBnsPouRNpsezApGTgmzqNprt1gLHQtmKz285LS5vT2St91wlVGesAqvYqywk8fmw0+tw3+jxXMO1mYJ0XTUs/Kj0dG+6RpN2aVjFbazHfQGS8yTT5yTv634zeMYOQRmQTQlrcK+rAkrWQXLSKI8M8/mUBOQeSTwzflMXsO8t3IMtlEH7m99xAsWD33ECxYPfcQLFg99xAiUdJiq/TmBYwRkMAngCvuhZrr3Zzp7rmplZ2ldZsV5ARtcOSn8hY4kym6Da0sD3oDiBOQd2DVN/zcw2ry9l7Z/qO1nrUonxpWa2UXbgbqIHROWtNOiCMu8OabMC/rKGsuwa7sEU5N4tXLPLpYrdJNH9tqD8mogOlFoT1YMeY7nXC/4OhsC8htv/MdJjXIE0pXtAtA+8k6lMuCbhB3KPpgH7m99xAsWD33ECxYPfcQLFg99xAiX913Qsi5dQqvsYMqWeVSqqBjAkIaJaROPhEtutyhiiD5lRLciMIg9Ewm8FWVFTmNL7AJmOZmadHLLYrlUYPe1oRmUCTRNpqi5BWx2b/9YcEFB7kFW7A9mAn7KGI1qDGFxCduhyBROed9q/kcRglvH1ylvQjxCmS79a6b36Ltd9v4lVfF7XkKkKa6taY6OBkcHDRLMfzcwuk56sDUyPkbMLfWiH4zh/xYPfcQLFg99xAsWD33ECJf1VocJgWMMUVJg62olVptDghdUNZ8WVpf72bOF4+jWUk8Jn6yPLKB9iKEVNj+tHZ5A9ZWYGSYi2KvVcdksQNCVJKZiqW+l1XKRwDY+cshsduF5UUtqCibxdyObr03aQhTgAmdrvqRDLQNiRDE1bfF9ikM2rpV7bLaRUkhhuQ7++FmTebWot077dab/MHWROjnMdumJm1ofM2yewNoAydupv6W9+xwkUD37HCRQPfscJFA9+xwkUD37HCRRVs2ZGQ06IClJs1zDCmKy+mVkCO+rkaj8fwwjrTaWHXsDxFJjWqO6T0oXnsW5HttfMbAjZpe1EFyMw8TWkTlOa8xys8gIOh+r5czD4z4ybkV6CxSeXTmmkZzBp6PO9mv2n5zpu/PRnmhKbDPScmxKabT6w7V9d67lMVtrDYgb/NaH051O4/1mk37dO9ZwnhY4lXxY6AaqA/26ZmeXwLD+qNQ6+2Ou1GMMUJn/zO06gePA7TqB48DtOoHjwO06gpB8g/bGCVMcKHEQNaZs0IYUkl5lZnmsKZG+gYqICiZQ/qKxabKEeHFIdiRYIvxF8dnhgfPIlpOj2+3p+WQcaKWa61h+o/Dr5qHXei1qvA414PgEf9gJqzs3Mzoc6OYfuIUnJXQWStKPyqzfWa5P0jpN7+ztdm7zhlNhXD0NZ+ylTSfYR5DM1dSVxegYS8GWstffzlvbOILnXSVjEnka6/myvx/hVW2Xq5QuVjf7md5xA8eB3nEDx4HecQPHgd5xASd+ZipciUZFTkASkgmcQS/mBjKUYumu2+tAoknYDYpGEHzXcvIZsrll83EST9gHh14PGle2uysv8FEZOX6jI6X6t+zm9uZG1F9+pBKTx3qcXOjXp9L9ws9Tk689kLYLrWL+9lrX17+9lbfZGp/MsJyBnH6D5J9TeXz+oTPvLgUlKb9p6X+cwYYd6N1AGYxfkXge2o8y7l8lI1uo2SEXI5DTjqVlj6LMxOtWswdYjaG6Le3Ec5x8eD37HCRQPfscJFA9+xwmU9L5R4ccDP0AOgThLoHy3DxOAzHisctoD8dbWA+rsVKaZuia7S/R43kDj0VUE5bf6dZbRdTCzLfyOUqNJknvpr0CwPX+m221U5Fy9ei1r9UfN8IrHZ7r2T7+QNTOz6OpzXdyqMIxBAibf6k2YLrTkdQLNSAu44gu4f7ct3e4a7p+Z2b3pc1JAE9YM7l8bJDdNhSJZ2AUx/FkE55yqBKRx2mYsFitYm92rYC2/0eao/uZ3nEDx4HecQPHgd5xA8eB3nEBJl9TbK1KJkIH8aMN2Q1g7MAna8pZmJ2WnKgfjoUqyplT5Fb/WHT2AVFzAtJgljKDmyTX8ezlN9LhrKEWOT1V+kdyLnr3UnWy11JaOJj7T8k07PdV9PFLRaGZmHR1XbYWK4WajJcGbGxhrXes5/9TSI6cSWkoiXYMQ28KIdTOzCkZg0+NI1zGF+0/PBK1BYqGNQQIuoHx3BpLSzGwDR/4u1eu93Ov9y+50zd/8jhMoHvyOEyge/I4TKB78jhMo6R5E1xZ6162hZHULpYc09rmbssDoPdb15KmKqXioJZxZeSdrecLS51PqQwby76AA0VlRP8OOCp6ow/3nhL1KToMsOxuo3ImGel0t13JgM+Mx5LDvZrGUtflE5d51BmXVkJGHJdTwPFGOZf/AMJUk0q1pGMex5bsjWIMqbRtWeg3pGVnDYJgGJLWZWQHy8g56D27gmWjBV/qb33ECxYPfcQLFg99xAsWD33ECJSVBd+wvApW8dmo1C4OhlhOamWWPVH7FF5CJ1lfhl6w1u2w40Ay406XKtAFkRcWQfUUlnecHypNPQfDkbTBBKQgeyNyLJtofr9moYGPhp2WiNjjRtUPsQO49zHVtpsez2eo93cEla2iQC9wDGqZCE5UPTZYG54oFszSuug8bnsJwlnGk4rqXQak8cLXTMt93B4Z2vIGDpInMEIJ4ffzN7ziB4sHvOIHiwe84geLB7ziBknahJx0NDfh7fiWoV99BSGB1oAz2TAXW2dcTWfvV/1QxuIs0s+0W9kvTbi/JIJnZCHoh0nk3K5iMe3er2+UgfTLIbRuBID291O26UKZbcualLae6dq/XtrxVUVk1KrBInJ3QMwaPyRlMgr4qVLqmuhmPAAAE9UlEQVRdxCyVEyj1LevjnuZuDgMxzlSG9i703ucXUM7d1/tXr7X8+qtXfDz/+YPe1z/TMwHkkB3ob37HCRQPfscJFA9+xwkUD37HCZSU+o8R1F9tBTLlDrLnbu65ZLX/vUqkfl8z2+IYSmNbKsRav9DBFF/OtPR3++1jWdu1VJzM4fzuOcHPOo0ez/D9UNbaf9ChFlRYGz/Sc4kuL3QNMvei8RNda2uWZLOEKSdm1kx1GnAz10EgxUSfiQJkWheenRMob6XMO8oYfZyodPvsS5CUZta+gvcbLDWl7idKIfu1D1mpZ+f62VPNsow6eqebnYrKwbnGgJnZS7hfi1t9Jj7CMJ0dXG9/8ztOoHjwO06gePA7TqB48DtOoKS7BnrzwRqMgbBVpBlQu1SlxjrWDD0zs8l3V7L28oOKpavffC9r+UvoSdfR7LLOz1XQXL6izDSVc69Ns/FoeImZ2SbTfWd7nZba+V6z6q56M1nLB/rZiLK5hiAGT1VoRi0VfpZy6SgKPxrQca9yd9HoMa5B2O7AM5NUtkQ3XO51H2mXs0jTX+i1iM/02WlKfZZtqc+J1aAle5CBCn0UMXu10OehKbkXZQw9KjvUbxHe6cvjvKfjOCHgwe84geLB7ziB4sHvOIHiwe84gZKWkFS5qdVAruvjGhJ+gP4AP8Q8Geb3bV3/otS0yH//H2ri//W11sCPfq0NJQ+Z009ZQEPJ21rTSLMDv5ddGNF9m+q1OF+qxR++gf28WOlOMpj204U00hzsc6JmvoH/UPzfP+g1o2ad04n+B4FGRr8HS70Gs1/APaCpOWfQ4PKrCbXgNOvQyPgT6IFQqe1voAbedhAHZPEraN4KazT1qLyG/zKY2WYF/wGC7bLj/mnib37HCRUPfscJFA9+xwkUD37HCZS0BqmxBeG3qjS9c1tBaiKIHJoKZGaWxyppfsxV7t20NYV19V7TNv9981HWeicqWe62KsTu2ipy7kuVbm0QmmZm81jl2RTO7yZWWXV2q+JsOFXpk4CUonTTZqvH3RiszVWampk1129kbfsnTfD+cf9M1n5q6fHcmF5bGvlOfm0As3QmiV7rzZLvywl8aQRTk3AsOUznaUD4RXQPKA2Yvu+jTkLaa5sLMzPbbiGtGeKNxoNTM1p/8ztOoHjwO06gePA7TqB48DtOoKQVCIN9o2KJ5N62UvmxBylV1pDtdIBVqWIx7qqsGLS0cWH7XsXgo3v9vh8gU+5drc0RJ4VKrs6B8ckDEH6jRAVNH7L+Hm010/HZVPsaZGuVgM0WOi3A+dler0Pz/jvdzszq//hG1n78j7GsfZPrfXkLPRBmMM1oC88YUUZ6LguQplXJ77EIMi8Nsh0Nrq1BDwNbwfhyyvDLYIJQoedcfdTv2y04W7GC6UU5iNMRiNMuTJryN7/jBIoHv+MEige/4wSKB7/jBEpaQrPOHWT44RpIQBJ+tGbGJZM1CMibVLOgXic6Behppk0Ti1Jl2jsoMZ0UmgG32KsE2iRc2txLdD8DEFODWAXUPFIJWGmlp9kSFh90Uk2DQkvFYPNeM/nMzFa/0+/8X/FzWftzpLLqDsqg140+JwU8d0QCzT+3UPpbgwwzM7MMrgU1Yd3ocdcLyIp8AAlIwNScZguxMYH423CpNQm/BK5Fx3Q/1ELX3/yOEyge/I4TKB78jhMoHvyOEyj/B8VbHps4IHh9AAAAAElFTkSuQmCC" y="-297.430611"/>
</g>
<g id="matplotlib.axis_21">
<g id="xtick_31"/>
<g id="xtick_32"/>
<g id="xtick_33"/>
</g>
<g id="matplotlib.axis_22">
<g id="ytick_51"/>
<g id="ytick_52"/>
<g id="ytick_53"/>
<g id="ytick_54"/>
<g id="ytick_55"/>
</g>
</g>
<g id="axes_12">
<g id="patch_13">
<path d="M 434.924375 422.332375
L 557.214375 422.332375
L 557.214375 295.038848
L 434.924375 295.038848
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_23">
<g id="xtick_34"/>
<g id="xtick_35"/>
<g id="xtick_36"/>
</g>
<g id="matplotlib.axis_24">
<g id="ytick_56"/>
<g id="ytick_57"/>
<g id="ytick_58"/>
<g id="ytick_59"/>
<g id="ytick_60"/>
</g>
</g>
<g id="axes_13">
<g id="patch_14">
<path d="M 29.174375 563.750035
L 151.464375 563.750035
L 151.464375 441.460035
L 29.174375 441.460035
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p4285978f63)">
<image height="122.4" id="image25442c5ede" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncuPJPeVnW888p1ZWdVV1exukk1KJEVLpuSxDM9iBvDCK/+1Xg288FKGPRjPiKDG8oxnJD6azX7VO7PynRmRXkg2MH2+AJLQjr/zLS/i+Yu4GcDJc+/Nup2n+3iLXqv9dii6pcbaeSmxIssltqsriUVErKotxt/mvHsksc+6jyX2F/VQYv92u5LYuKux1Ubv5UXdl9jv23p/ERFfZmuJvdovJbbb1xL7aaH395+Wut1P3ruWWO9M1zDTW4n5y5bE/tfLc90wIv5bN5PY7/YzPeZez92Fkw8yPbeeIWK11/dkud9JrA55ZaNPN91w7hFse7zX2Olen/UYXmW9moivS31+v6nvJPbt5kZim1rvOSKiV2gOdnK9P2ILx+Q32Rjzg8fJb0yiOPmNSRQnvzGJUr4zONZgVkgsz1SiyUC2qUDQ+j7QeQr4jcrp3HC8NYg2JYgxJ30V54qpSjn1ZgBnidi2VYwpcr1GEoferUAkyxd4HjkeLTfrRULTLz/F6RmUEOuEvjsDiLVAGO7SviDO9WC7o2DB7wiucVTpczmCdRxXGuzDgq/gXm4LPQeJoSSQUw5EcG6RkEdsQUz1l9+YRHHyG5MoTn5jEsXJb0yilKftkQRJyCNqECA24Mhq4k8RB7ew7zxXOW0CIssZuPmGY3XonffU1VZe8TWXK3UXnoJTknh3q2vW76p7jpZrN1fxK4N12G50u92BzzmCHXkkuh5KC/Ztw7Pq7HW7h3u9l0c7klIjRiTagTTczTTWK/W5FLC29xt9zq/rrsQGBYiXue7btK45iIMkGO73eo0ZiIj+8huTKE5+YxLFyW9Mojj5jUmUclxo2Sr9IpDMhY4jcBK1sw2enMQKOiZttwHR5g5Em4tSRZbxWsWY/lyvcXCsIuDxA3befTTR6360UjEnA49fp6vX3WppbL3U8s21GhMD9J6YzTsSW+RNv/16LyU50UCY2sG+K4i14C0bgBuTxL1P1ro2T0pYiIjoj/S5ksOTRNK8YBFR9gUn6MlG1/uk1Oc3LnoSW4DDNoLzoDhQdK3gvfOX35hEcfIbkyhOfmMSxclvTKKUx7kKEwQJfnsQEdYg+HWg118Elw7vcH8VSqgX3g31lCv09621B1fVrTodz1Z63d0uOxjbbbjuroqDJCLVUGK6Weu5Z3O97m2la7it9Z7v97qG9yWLRfSsDxWW6Pkf6uPsgqA1hDrtM+iXeHzMQmynr8+LKmarrQbrSq+nBschibMnKz3vOfQJvMpVfP4+zkkqjT7UoesvvzGJ4uQ3JlGc/MYkipPfmEQpqa/YoXID+Z+oh9u6wbHUhjiV6h4qNk1A8KNd61JFznWmsUcrFcnOluxWHLXBIdjXWJYdJvitoQR3vlXBbwYiEvWUm5Qau+PHEhVcYwFCFwlL5PCrwHLYpr6M8Kxa8JKVOTgGQXCNiCi7um0N4t4WyrwXILASObgDj3J9F59u9Rx3bX3vKjheRMQGxFTsowh5RTnkL78xieLkNyZRnPzGJIqT35hEcfIbkygl2WTJMkj110SBjQJZrSelcg9KM8GDajR6Dw1FqZlhVaiyv6F/I3ZshwZxN4oVqOYFND3d6nnuoB78FsZNL2AyzAxk8wkoyNOGtSYDc5fq7+GfokO/JkMa5Q31/P0a/ilo6Rq2yQccEe0Hun+1gOavd7re8/Vhav+go//qHPXVgvzBTO9vWqm9d1doLCJiGoeNtKd/UjrYj8EYkyROfmMSxclvTKI4+Y1JlHINjTBJoFOpiaeukI2wyZzbPrApJEENCSl2cB06iF9TEMn6ILBFRAzBupmt4RrBJnsP46WvoPHoFH6qF3Dds0wFrQXEmursaUrOEbwBZxBbgPWWnssAGnOeQx+Ck1pFruFoJbHuYwlFRET5SCcp1Xew/42ep3UPawYaKfV46EHj0HZHt6uuqT8Ai8qvC12zGTxFEs3Jnu0vvzGJ4uQ3JlGc/MYkipPfmEQpqf6+C7ExOrIaCsLfggSfCBbjuNWnQi60pvO8Df7iwa50vNumn8uWXvmkBocguAtJyCOxcUUNUyG2QnFPtxs2PL8TcNqN68MEoyVNVyIBCp79UQXCYEZimopz5UOdPBURkZ+faLB1r8c8u9XrmaswSNOQ+kcg7o1gClNfY+/r4aJ1o81kIyL6tQqBr6hPAzzrOUyz8pffmERx8huTKE5+YxLFyW9MopRPcx0RfAxC0CNoeni+UxGB/G9NMlxx4CyXLYhICyhbJbFpDRe0gdgMBLYlCX4gpkVEzMD514EYCW80wprOQr/UFOuCYNchgQ1cXxEs7nXgIZLoSk046V5IBJzCet1X6iLcrvT93MOEnD+cHMZxd/SYrRM95ggEv3oHwmep97Jbwvh5yKE9rHXZ8I7BafD9vgwVIF9WMD0Kz2KM+cHj5DcmUZz8xiSKk9+YRCk/hVLUxzsVT97rqGAweqCCCJE39IorOyoYkgCymkPp6EL7q02g59odlJ1elzAaHJx3S7huKv2NYNFuBiIbjTUneYfKpfvU447KqsmFBuLesEFvbYONbQPrszrQmXgD7jJar0muz6UFzsnTCy3THb640YuJiM5opkFSJeFeClA5q41uOLvR946m/awg10jQfAP9JCMivobwl6E5+NXuTmLPlpcS85ffmERx8huTKE5+YxLFyW9MopQ/2algcD5Sce8IxL0MxB0S7Don7L5qP1ZRJIMSxd3NUmLrC72e1quBxDYz6HtGDjgQxDogcunK/PF6YPgJlQRvUfDTWA/KqqkMlpx7JBaSQ6+JJQhi5CSj2ILKSWG09AJ6R25BBLws9FldbHWoxfkL7ntXDKYahE/e6pXGZtd6nvt7Pc8UBqws4fnR6PQreN+fl6zEfhs6CORZpff3fHUtsTcLFQH95TcmUZz8xiSKk9+YRHHyG5Mo5dN3JhLsnWhJIGgVKKZhyWPDsNPinSM9T19FlgxcWtVcBYzlCtx8ubqqaIot0SKRrGFXErDmMCF4BTFiABN56dx7mCS8ht/0NZTLgl4bEREVnIdum0pMyZtGw1l24CIkQZME0gkMr7i8UrE3IqKCUta6gr53U33vbisV8siFiGsL10L9Gy/BjvmmYRrvda0i97RSMXxVaf5uK33v/OU3JlGc/MYkipPfmERx8huTKOX4YxUHiN39YRaxPfWFaxLYoJdajFS4yWYq2iyvdN+vah3c8A2cYgtluYc64KgkN4LFvQkINIcKfhWocS0QzqjCmO5vAWLagbpnRHBfwDF8O07B4TmkHowwBIbEPXIrTuHCn+94aMftlYp2FRyThLxpi8q88TQCicXUO5J6Qk4aBD96d/YgnGYgLBL+8huTKE5+YxLFyW9Mojj5jUmUsjhSRaxeqLBA5bs5NYuDskwwof3xAPDbA0MW6ntwNt2qI2sKx1uCoEJXTcISxbIGix8JgVTSW0HpL5X00nY5nLsLizsEcW4IQiz19YvgHoA0PXlYw+TfCp4/7LuAZ0XlrVMQL2/hXVy3+DvWgbUgB+OMRFJ4d0iuJVcjvTtzyI0bEPeWDaIwvU8k7hUkDMN2/vIbkyhOfmMSxclvTKI4+Y1JlLKeqbhQr0GUInsSQCIgtHD7Q3wy1+BaHYfVjQp+ea6OLpoaXFHJK9wKiVykh/UaRLIeONbWUJZbgtBFYuFRrs60B3C8J7Xe3xkoWjSI5UkX1j8ijsaw3oW+E6uFXs9yqfXb651e410FQ1f2ejyanrwCIa7VJF4eWCY8p8Ei8OLS8Uh0pe3IBXq/V8FvC2JvBL8nJECTMMzbGWOSxMlvTKI4+Y1JFCe/MYni5DcmUcrNNUyQ2elvQr1VtbDagnINQiWd4w8H1Sac5GxcXqmSnoMK/LjQZoYtmO5yCw0glzSCGgTkbsPv5YNM1es+1IgTpAyPwVD7fqXHe3erC/5O6Do8eayTXR78OV9f+a8/govUbat//kZid3+tzVZfvdBGrQtQyCfwTCeZvhDLA1X4CFa+l9BsdVLrv0xUP9+Df1yOwOBL592AvXcN11Lh0PaIGmr36wPt4rb3GmP+P05+YxLFyW9Mojj5jUmUcvKqJ8GiBbXkUO9cgY10t1Uh537CvzH1dyCKbFXo2sCElQN7FCLkNl7BJZINuOnXcrzX+34Iot0IGlw+qHRtj6Eu/jyH0ekDHds8PFJ77vinerzy330msYiI7M/+EuNvU/T+RmKji19L7OYCRnSDgEzNLO/A/roBkev7vA5UL4/NVms9d11ovrTAsl3AC7oBoZKsvNTL4Q/b0v4aI7Fx3FE7vL/8xiSKk9+YRHHyG5MoTn5jEqX89lbdV4McnE0tjZUl1ECv1e003VGLw4hFqEi2onHOIJ70oNEnMS1gHDOMVF6BoElnwJ6lETEEkeUExL13t1BX31Yh7/QdrbXvnakAVaiBMTKYNFOcj3TDI332ERFZD7Yttb9APHpXN/v4W4k9+PJKYp3neg5qmDmFcdPkvKOmlU00CWpvU4ILMYd38dAGrNQfgEW8w+v5W3CNJ+2hxM47Y4n5y29Mojj5jUkUJ78xieLkNyZRyu9KLUUdVepMO12r2NSDppArKDudQBlkRMQExDgagUzyRxvKZXkyDMRA3NuRmw/EvU6Dl6wPF3kCLr0xlKiORuDSe0/Xu/0jEOJaMEsHREVi/+IFxuvuFxLLTh7qhuBsyx+dS2zw/huJPfhW769FAjC58SotWW4S/Hq5vt/UbPU4V+WUGnPSJJ4dNQSF6yZhkGg3jLii+BgchwPItxHE/OU3JlGc/MYkipPfmERx8huTKOUM01+DrZ2KJDso6V3BviTsRURcg65Bo5JpwgoJb+S+g8pRPB6Jih1wc3UaNJsBjKsegQuxU6gQRFOO8g6IaecnEsuO1M1VX99q7KXGtl98LbGIiOLFpcY+el83PD3VWAumFD1UUeq0qyW0D2p1HJLItQNXHPWoi2Dx6wlMe3oEffhOapqupFzn+pwvMxU0qdS2Aldjk+DXBUG0TyIglJePYFS5v/zGJIqT35hEcfIbkyhOfmMSpSQvGPWuI9FuASLCLNedbxrqYC9yFW5uwRlFww7IadUD1x+KLIc6reC3MQfRJSKiBsGpBdfdLiHWhRLVM3WcZe8+1hMP1fWXbaH33Fcq4i2/4dLR7PlEYn1weBafaCwDwS/rqcvuaKwuvUfXWnZ6Wuo6LEo9b7/BRfp+MZDYh7Vu+y4kwqiCknV4v7uQG51C77kLjsgVlO+2G9yKQ8i3EYiSYyglPwZB2l9+YxLFyW9Mojj5jUkUJ78xiVJuaBgHiFc0xZZksxnUwV5nNCYj4nqv/dnuai1vPbRnWxdKNVvw+0ZesJKOR07HhpLeZYMr6216Pb3n3kO4vw+fSix770d6wDY08Zvo9OOs1HvZzPlethu9l/KZ9hTsjq91Z3AcBghnZUdjYyiBftBS4WwJDr2jBsHv8V7jD8GZelLpM+jDeJey1rWp4Z3o7DU2zPVa5pAvMIw3IiK6dEwsJdcDnNTgLOXTGGN+6Dj5jUkUJ78xieLkNyZRSnLzkZQHpiEsjZ1BieINCHsRLO7NcSoriBUgfmxAWGyBkNcGl14PJupmIOLtQSCN4NJhog1CV+tcRa3s/Ex3Hmt/POqjF10toQ1wptUgfEVErFcqTC0vYGjL1zd6mqOZxHaXWr47n6hotwFRGToUxgiEXYpFRHThxW2BotaCd7kN71MG+7ZpgAyE9iAMzuAdu4dnFcE52AHnXh+upwvipb/8xiSKk9+YRHHyG5MoTn5jEqUk0Y6g4s817EuTSCkWEbGFo9J005osTyB+UG83gnqk0YCGMYhI1B8tIqJF/QPht5Xcc/VCBbH9dCqxbKJluVGA0AUOv+pWRdf7KQwBiYjJSl2DSxIB7/W6M3Cs3d9rqe7zjZbaftehgRhKD55VDwTgCJ5su23o9/c2/baevduFYSMg4vbHut6tsb7bu5ley9VzcElGxNVcRdI1lp0fhr/8xiSKk9+YRHHyG5MoTn5jEoVtUcDBIgL2suO9O+C0oyEGdMxDoTNTOXAHtqSeaUOyWTWcZwI9BV/egsj29xo6j3+WWOtWe+uRw2/7D68k9urvVUT6Ztkg+EFPurLuSKwAl94antWk0Nh1F4RBmGBM6zre62vbND2ZwKnP4IA7OdUy5uFTvcbWY3VUFh9+KLHsITg0od/i4H//Dq4w4uR/Xkns+rUKp7OVOkYXsGb+8huTKE5+YxLFyW9Mojj5jUkUJ78xiYJqfwHK6aG/EntqmNnQXLEPav+80G2pgeeWbMAHWpXpXkgBJmtpg9gfqtlGXJS68e1eVfPXE1Vn3/sVjLD+/F5iu53ezdVSVeVvSz3vtYYigteihKXdgbJP/RwmUBePlm84xwm8oqfwL0yXhw/hC34CjUJPBzpBqP9Qn2o51vczP1HFnfoxZB98ohfT0X9MivGxbhcRR8Xneu6/VRv47pmOOr/Z6DvmL78xieLkNyZRnPzGJIqT35hEAUkqogPCC02qoUklbYiNGsZa0y8P9QhY5CrQrECWWlAvAbBtUn8A6i0wB6GqyUZKnQSWsCnd3wXYXy9qtYwOlxqj805ByJuCENfU/YCeNUm2a2hmegdrdgtNWXewDgN4T2hq0ilcOE37iYjogjB8WqiYOjzSZrLVCiZXPYNGptfaZ6FLI7H7Ku5ljz/U2PhEYhER+bsq5La/Ust3/q3uO8Px9caYJHHyG5MoTn5jEsXJb0yilDmKOxprclDJAb9H7X0bhMU2NmLU36g1/GzdQvPIK6gRXzRKXf+S7Hs4HckVSZa1FQhvc9huDQJNv2GSy9ts6HgQa7oXdEDCqRdwzHtwY84hRo01u9BngaRimkhzFjwVatDW+KCvsarSc9+8UOfeZA4j0YFHz9WNeXr7NxIrfwFjzkEYjIiIpYqS+42u4wZcnwt4d/zlNyZRnPzGJIqT35hEcfIbkyjlApxtOQgv9YFiU3VgWW0Ei2Q0+ebBDiaigGg3B3noZUu9aZNcCz1JzzwClet0x/fXAifZm1LXcQVuvhk45WiSUgXrRYIYCbZEk4ZLcXqu5IAkl+XmwElK2z9pHfhuChCBt1tdtdlcbZE3WxX3LmBC0hJE7meX6sb88V9pQ9APv/ytxLqfwIj1iNivVDhdXun1LCp957dg0fSX35hEcfIbkyhOfmMSxclvTKKUr0JdQ9RbrwuOM+qPloFDr0mA2kG4hfuraPN4qOJJt6+lox/NVem4XzY0r3uLQUedYEenWg4aEbEHcfDZG+3Ftsn03PWf8BNMvfWIGkQpKquNYJGNnIlYQg0xKpcmZyltRy7CGUwpmu+4T2QGxj+a+D7fgzAMo8BnIHyTs/Q5PJhv9+oY/PS3Ku598gwmM0VErw/TkO50EtMUMnMLueYvvzGJ4uQ3JlGc/MYkipPfmEQpX1YzCXYyFQy6GKOea1CKCttFROR7GtGtykQH3HzH5wuJDX8GY4hVD4n9RvfF6xtDz7Uj7q+2h3LL/n9/I7HZPzyW2LKj63CPPffArXagkEfCGTn0InggyhZUsgWU6pKbbwcxGpNewTk20L+R+tHdQiwiYg1CLDkE1yDkrWBt1yCckUPzCsa4bOCZ3nVVAJ4u+B07vdd1XMM6XoOzlK7RX35jEsXJb0yiOPmNSRQnvzGJUl5utddYJ1e3UxdiPYgdgYOtbHD4FSAOHlUqTBy3VUzrnoOI9ESHGuTvP9ETwxTUbDDS7UYgvHTVpRUREVPtxTbs/A+JffLySmIv5jrRdQL6FU27JUjwW6Ibj8tgSfAjqsai4H8J9UIs4LtTgMBGZ5iDo+4CRK4/oHEapoKlwyTugfh8A+LezV6thTu4mwzuudXSiboREa9LFbSpF+Kc3Jjfo4ejMeYHjpPfmERx8huTKE5+YxKlnO6WEmzn4E4qWIR4m16hImAbXEgREacwKOFxpecejGDIAlTW1hdaCpkdqcUvO3uoscc/llj+8Ee6XQ+EwYioF1CGuVD35NlP/kpiJ38Hbj4oCb2BabdUBktTiElsauq3SAIduzlBBAYnKEFO0BHs29/rO0Li3AWIgBERMxC/aLDIGtZnAzEqWZ7X+n6S05EE8j0478jd2RTnHocQg3fCX35jEsXJb0yiOPmNSRQnvzGJUubgMKrA4UUxgoShEyjdjYh4CAMwBpmKWquVCiVXX6uQN7hSJ+Do6kuJdSoVY/Z9de7tR+q8axL8sg44/44eSKg8VeG0W5NAp1AJ7Qpihw5O6TSUWg9AeDsH5+YZPNdjKKEl1+YI7jkHUWoGQ05uIXYJpb8RESsQ7e5hdee1vnczcOndg9K8rfV45JI9LnQISAu+v9QbMYKnS5MoSYIv4S+/MYni5DcmUZz8xiSKk9+YRClPWiqc1SDulSAOkWNpAAMDhjCIIyKiRT3bQETarsDlBbHWvfbcO5uqg/Hx/huJ0RiP/UzLnetzKBGOiChVyNu/0vNUUxWWSJ4hnxxNNT4U2vcoY9fmB6HC1Kcb3f/jva7tu0/U6Tj6CMqvj/Tcmxcqpr3+JxVYv5ofSaxus3i5gN5+C3AXzqEsdw1C3grcfNta768LjtgOnLfGfoss+N3WKmgvwfVJgh8J+/7yG5MoTn5jEsXJb0yiOPmNSRQnvzGJUv64pRbUJVhGSZWkKT40jpumnERETAr97Sl3eswCa5ah2SNcTzWDBon/qGrqg83Xut3vXkosH+tI5YiIrKv/fNTXWs8/+b2qwDR1pw//kIwyHkP9NmTvJcvuh6DqR0T8+Ur/7fn5k0uJnfx7PWb5y88kln2gvRL2K/2nIP/NbyR2ttBncPdPet0XNT+XPkziGcA/Vyv452q2h/urdd8CRoYPcmhkC30tqB6f8i8iYgZq/4waWwA5nNtffmMSxclvTKI4+Y1JFCe/MYlS/jTTOvS7XAWxGdQYY6NAiN02TJppFWR31NgQar9LsDBCKXncg2jz8lYto9MvVERqt6BOu6P2zoiIolThZQ19CG7mKkzRdZ/U+ru8xklKJOToAR+AbfqXK677/uVHOlr86D/CNKR/8wuNffxnEsv6Y4nVr36n28G46rx9WG06TddpogPfPLKlj3MQRA/rTxpHJPjBc8Gx6w29M0h0PxSa7OMvvzGJ4uQ3JlGc/MYkipPfmEQp/xXUaV+WKixdQF30bUYNJVWsmDQ4lrYwZWUNTrQxKGI9cMCRTLIGgSZHUVEFmtOlCpXHS62fjogoYPLK3V7X8R7WkQS/MdwMjTTfglutD/t+sNVn8Nl76tqLiDj6SxXo8k8/kVh2+kh3holLJO7tf/triW0+/0Zil1+pOPsSmoleFiyGTXDKDfSrADGOHJVdEKmpVwKJirQdTQoqGiZcteBZU6NQEgapAa+//MYkipPfmERx8huTKE5+YxKl/LTUJpXjjTbCbLVUOduC+LGE5oNNDQnnIATOYZrKqDisdHhJ01ngHCTuvAeOrBaMhz7mW4kKBEgS965LEIdAoKOJNmc73fAI1uukq27D86daXjz8jBt4Zuda5h1bdTbu33yrsW9V3Kv/UWNv/otezxeX2hz1y7au18uOPoQbmK4TEbGC5ppUWttF1x8IbCACtuE9oa9qBaIwvbONwEE7IJDTePAVTCTyl9+YRHHyG5MoTn5jEsXJb0yilO/9RCesdL4B0W6urq/XMCqZ5ItVw8hhEiZUfoy4AWcT/WrRCOs1xHog2gxAVFzDdvuGqTk7iM+hf9wURJ8hbPcQxL2nnbnEzp/oivWegIPtTMtT8xMYKx4RsVTBcP/8hcbWKrLVF1OJvfyVPr//unwosS862tfvTa2xGYiPK5hc0wT11zvLtdT6HSjpPYMS8RFYNOn9pNzYwus0AxEvIuIO3HwkaFNsDsf0l9+YRHHyG5MoTn5jEsXJb0yilL2fquhzslxIbPyljvJuHdjQjPqHRURsQfDbgSxSwbCCDAQ2Og+VN7ZBQFzAtdwWUNpc8+CMGq5nBj+tVL4Llc3RhusejlSI67+n2xUP1aGZtfSe9xsutd6vVLSr7/UZ7K5VeJt+ra7BX8/UMfh5S4W83+9uJXa3U5FzWel5NzBOO4LLY0elinttGPH9Dgw1ofLyJ1t9ZwdQQtsBpyt9fScNeXUBpfaXIFTfQA/O+70+F3/5jUkUJ78xieLkNyZRnPzGJEqZf/hYgr3XX0ps+LU6qAYgftEQibLhNyaH6bRbKMEkMSeDfam8sQ0xup4ViDEvcj3vFoSziIaegiDuDSDYBetXC4TPVluvMYOS1wwcg/s5uPFWLJLFTkXE3UTPPX+tz//FxZHEnkHl8HWt4uVkp0Lz3UYFv8VOxUd6byJY8NvDwJeTEtyO8KiPK933w0Kv+/yhOi/bQ73GPUwbub9WB2JExIOJiu4PKl3cCYiASzv8jDH/Dye/MYni5DcmUZz8xiRKmY21VLd8pA6x07GKGqdTdUqd5CosrGBwQkRDSS+IMTvYjhx+NNSgBYIP9XDbgCPrLqBMtOHn8mGt5z4BcY8mDh9Veu5Roedu9XS7rNQLqhe67+aFimTzN9zDb7fVY1Y7FaHmC92fBpVQ2Wpx4HeHhLwllPTuGgS/koakwORfcn3SZOOn4C58+pk6E7ufgsuSntWdCp/lQHMtIqJ4Ce/JvboQK3jvWuVh7kJjTAI4+Y1JFCe/MYni5DcmUcr99Y1GYUDH6EzLPN+7VfHjplBhaA2lsRERKyg9nEGPtDX0Z6Opo1QivIXtCuqmhqKUBjdk+4qIiiaoQqnuaaXXeFqoGHd2qs627iMQ/Pq63tsXKhi9/D8q7D5bqWMsImIBLk0uyla2sDx9cD+ew6Tdq1JFsrtC14HcnU20we02bul5PijUmfgLfSzx8QfXEut9ppOE84cnEtvDpGRyubahf2NExAicjb0RCMMjfcd6P9P785ffmERx8huTKE5+YxIaqM3IAAADxElEQVTFyW9MopSrv/5agqBdYewUpsF+sFZxr2oYQrCF4QkbEAFJyJtVeu4tlP6u6PeNeuuBkEcuQir9jYhYQt+1ilyIIJ0NuiqcDh6ouFMcq6NuD26+6TNd19+vVZT6ssPC2QwGi5AERV8OEvdI7j2D6MNCy2rvWlDSu4W1AZEyImLQVgfcw5aKn5/Vut3Pj68kNvqZnicb6L6xg/eEYnDdGfQTjIgooSQ4hzLvzo9U0Cz+w1/ovngWY8wPHie/MYni5DcmUZz8xiSKk9+YRCmffa7K53Cg6nPRgoaSLVUa31mrCl9vQA2NiKKlim9eqFJJFt1VrSr3GmJR673QZJ8d/J2xy6DhIo3XCbac9ktV3Ue1/iswXOp2w4kq2uUbjVULPe/ry1OJvWrp7/wl3F9ExALiFfRZIGvqAP41OdnruVvwT8gQR6fruzNsaWxV8YjuYanbnsI47qcbfceO31ebdD5Wm2yAbbeew5jzLbxP0ES1nnFj1e1U12y3hB4W5/rOZ2Bz9pffmERx8huTKE5+YxLFyW9MopRfb7Wm++RWxZNxS0WETluFiUFH930MddEREeUGatE7Kvpc5WprfQOCEQl+mwBBBQQ/siCvM933HsaFR0Tc57o+K7CrrtoqNk0qqGN/pff8/lSnwBCXta7rFCy7m8bGqhrHLUEELEAEXMOzouOVsN0ILOALqMfvQMPTiIghCIYDeNZDsJDDrhHQbLW+B5H7Dkaa3+s56hX0jLhne+/0Ri/ofqHrczzR8edPTn8lMX/5jUkUJ78xieLkNyZRnPzGJEp5AVNENjD2t9iquENTQMpSBZGmhoQFjII+9NeIpvisG1xecl6Y2FMU0LQSpusswTEYEXFdqxh3WWjT0+9KFVjfAWHwg66KWj9fHUvsHBqC3sG90NScJqhxKUlQ5PDrwL45xCoQXdvw9B+AG69o63ZLcncGP+vOgW8ZtIzAaUj7BfSReKXv/PJWxbnlQgXu1Zr7X9yAU/YqB5csTNKa/+eZbodnMcb84HHyG5MoTn5jEsXJb0yilLdQolpCE0Ya+5vDvmD6ik3FvzErEGMW4ERb7lVQ2UCMGn0SVNJLzTppu6bS0elGyz/fQEPRl7lOSPquo4Lfy45OfLlvaanuz2BCEq12DZ46KquN4FHnXSjL7cM7QQ08iQlc5BiaoA5hxPY6wOmWcxnsAt6TLrx3W1iL3RzKZacwPWquazsHN97tjYq48x2MtG+YCjWBtbgt9LoXucamlSf2GGP+iJPfmERx8huTKE5+YxLl/wJBFeILIj3qagAAAABJRU5ErkJggg==" y="-441.350035"/>
</g>
<g id="matplotlib.axis_25">
<g id="xtick_37"/>
<g id="xtick_38"/>
<g id="xtick_39"/>
</g>
<g id="matplotlib.axis_26">
<g id="ytick_61"/>
<g id="ytick_62"/>
<g id="ytick_63"/>
<g id="ytick_64"/>
<g id="ytick_65"/>
<g id="text_4">
<!-- 23 1833-200619 -->
<defs>
<path d="M 49.75 54.046875
L 41.015625 53.375
Q 39.84375 58.546875 37.703125 60.890625
Q 34.125 64.65625 28.90625 64.65625
Q 24.703125 64.65625 21.53125 62.3125
Q 17.390625 59.28125 14.984375 53.46875
Q 12.59375 47.65625 12.5 36.921875
Q 15.671875 41.75 20.265625 44.09375
Q 24.859375 46.4375 29.890625 46.4375
Q 38.671875 46.4375 44.84375 39.96875
Q 51.03125 33.5 51.03125 23.25
Q 51.03125 16.5 48.125 10.71875
Q 45.21875 4.9375 40.140625 1.859375
Q 35.0625 -1.21875 28.609375 -1.21875
Q 17.625 -1.21875 10.6875 6.859375
Q 3.765625 14.9375 3.765625 33.5
Q 3.765625 54.25 11.421875 63.671875
Q 18.109375 71.875 29.4375 71.875
Q 37.890625 71.875 43.28125 67.140625
Q 48.6875 62.40625 49.75 54.046875
z
M 13.875 23.1875
Q 13.875 18.65625 15.796875 14.5
Q 17.71875 10.359375 21.1875 8.171875
Q 24.65625 6 28.46875 6
Q 34.03125 6 38.03125 10.484375
Q 42.046875 14.984375 42.046875 22.703125
Q 42.046875 30.125 38.078125 34.390625
Q 34.125 38.671875 28.125 38.671875
Q 22.171875 38.671875 18.015625 34.390625
Q 13.875 30.125 13.875 23.1875
z
" id="ArialMT-54"/>
</defs>
<g style="fill:#262626;" transform="translate(15.789375 546.308473)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_14">
<g id="patch_15">
<path d="M 164.424375 566.251799
L 286.714375 566.251799
L 286.714375 438.958272
L 164.424375 438.958272
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_27">
<g id="xtick_40"/>
<g id="xtick_41"/>
<g id="xtick_42"/>
</g>
<g id="matplotlib.axis_28">
<g id="ytick_66"/>
<g id="ytick_67"/>
<g id="ytick_68"/>
<g id="ytick_69"/>
<g id="ytick_70"/>
</g>
</g>
<g id="axes_15">
<g id="patch_16">
<path d="M 299.674375 566.251799
L 421.964375 566.251799
L 421.964375 438.958272
L 299.674375 438.958272
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_29">
<g id="xtick_43"/>
<g id="xtick_44"/>
<g id="xtick_45"/>
</g>
<g id="matplotlib.axis_30">
<g id="ytick_71"/>
<g id="ytick_72"/>
<g id="ytick_73"/>
<g id="ytick_74"/>
<g id="ytick_75"/>
</g>
</g>
<g id="axes_16">
<g id="patch_17">
<path d="M 434.924375 566.251799
L 557.214375 566.251799
L 557.214375 438.958272
L 434.924375 438.958272
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_31">
<g id="xtick_46"/>
<g id="xtick_47"/>
<g id="xtick_48"/>
</g>
<g id="matplotlib.axis_32">
<g id="ytick_76"/>
<g id="ytick_77"/>
<g id="ytick_78"/>
<g id="ytick_79"/>
<g id="ytick_80"/>
</g>
</g>
<g id="axes_17">
<g id="patch_18">
<path d="M 29.174375 710.171223
L 151.464375 710.171223
L 151.464375 582.877696
L 29.174375 582.877696
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_33">
<g id="xtick_49"/>
<g id="xtick_50"/>
<g id="xtick_51"/>
</g>
<g id="matplotlib.axis_34">
<g id="ytick_81"/>
<g id="ytick_82"/>
<g id="ytick_83"/>
<g id="ytick_84"/>
<g id="ytick_85"/>
<g id="text_5">
<!-- 26 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 690.227897)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_18">
<g id="patch_19">
<path d="M 164.424375 710.171223
L 286.714375 710.171223
L 286.714375 582.877696
L 164.424375 582.877696
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_35">
<g id="xtick_52"/>
<g id="xtick_53"/>
<g id="xtick_54"/>
</g>
<g id="matplotlib.axis_36">
<g id="ytick_86"/>
<g id="ytick_87"/>
<g id="ytick_88"/>
<g id="ytick_89"/>
<g id="ytick_90"/>
</g>
</g>
<g id="axes_19">
<g id="patch_20">
<path d="M 299.674375 707.669459
L 421.964375 707.669459
L 421.964375 585.379459
L 299.674375 585.379459
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pafa107b441)">
<image height="122.4" id="imageb2e97ef8d7" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHjJJREFUeJztnUmTHNd1Rm/lUFN3dTca3SBIkAAp2eFwWLIXUtgb+wfY/tteO7yQJYcpiIQBkhh7qLkqh/KCFBd9z4t4EKiN7neWL6oqM1/m7Yw4fYfBv336rwe7w6Lf3V2y63bl1m4av7bYb9zarm3cmpnZwdyhrRgUbq0uSrc2LCu3VsHnchkMBv4YhT/GqKjx+0flyK2dVlO3dlH4tbOB/80h7MP20Lu1m8Perb3p/H2h+7fp/HfNzNpD59d6v7bvW7fW9f4c6b7Q/cvd7zGspe7LSTl2a/cKv3Zq/vv+iTBr4JltzF9zC58jWrin1/0WP/tif+XWlq3/7OHgj03Pt3/ChBAhUPALERQFvxBBUfALEZSqJVkBEgLlHCiREkRVVbKIo++THKK1svDHod/r4bxJStFfQZJcA9RALCV3IMTWAy8/xwP/3R58UUfXkimW/hzQXtB9ob2ZlEO3RsKvgr0h6D6bmTXwLO9BaO7oHsBv7iFe6Bi596WEPRwP/D6YmU1BKjfwjJKwJQmoN78QQVHwCxEUBb8QQVHwCxGUiuRHB1KDoGw8ytwiCWSWyPz6AOmTm5l2gGynHrOi/Bodw4yz3XaFl3v7gxddlCE2hL/LtIskjFDEwb0qYB/MzAaHvO/TCZEkG4Pcm1UTtzYE0UW/R/IqRZcp42iN7ssW7n9Dgg3OhXa7gGd7mHjejyEzcVf6Z2wLj2hrflFvfiGCouAXIigKfiGCouAXIijVuvdlnSS1SCKRnEtJJCK3hJNkE4m8DVwLCR+yMXTeJJYo09EskWlFayUIKDhOBedD+7AjWQjCCDMvE2JpUMBewHWTJCVOa1/GfFnN3NoIzmd78CJ1C3KVpJsZXzdLUg9dX65AJGp419K9Ghvfl33hM/xWhS+/p/MuQOLqzS9EUBT8QgRFwS9EUBT8QgSlWnW+BxiJIJJzNXwuJV4IknuU5UUybmuUPedFEJX5Uj+zPwdYTgzCiD5HZziGv9UNyCGSSLSvXZGXyZmCroX2mzLTzmGNrm8L/Q0X5sUuiUEzfkapZLaC80Z5TbKYMiph7Qie9zPoHTiibEozawqfKbmEHoUkZ0k+680vRFAU/EIERcEvRFAU/EIEpbpt1m6ReoVhCSZIQCoHTZVgYpkoQBKRshC5LBdEDpxjLqlzxpLZzJ6CJKvWIKUoQwz7INLgE+pRlxh0gZIU1qj0myQgZhfC703gHOuD/y7dAvqcmVkJe0ZiEbPvqMwXzpEy/Kgv4/2BF3YXB3+fU4mTa5C7UxCiJHLbQV7fSiFEABT8QgRFwS9EUBT8QgRFwS9EUCoaqX2ovW4kY0tTV7B+PgE23IRGg/SbOB4aPkeW+kNGeadq4LHxKByH/iOxpJ4KYNLnYHbpr3cq1fUuo8RkGLpGOg41f90e8tKul/A5+i8DHRf/w5F4j9F/Pgj6/88x7M8EjDs2LYU9fABmf9b7I6+hcayZ2RieJ0pVbsH2Y40/HkUI8RePgl+IoCj4hQiKgl+IoFRU50sybdN5KZVLqqknpf3m1sDjGGIaI46NML04SY3evguNmzbjenlKLaWUWNrvZe/7LOROqqGUZkxzTaT31iDJOL2XJt/461t3vsnkW/i9deH3gdJu34chCDp6HHFUNnx3hCnbngpuFT1hDSyCAzQzflPTvaog1Zky2vXmFyIoCn4hgqLgFyIoCn4hglJR5l6u/Mqd7HNI/R4s5x47dwx17qSa3Eaf9DkzHldO5MpLkoC0lnsPxiXLPYL2h4QY9lkAgUyfo32g6TMkKum+pLIVJyA1D9A0k8TwOHPQdgcZeQu45mv4tRKmI6XYZ2bP0jNK48b15hciKAp+IYKi4BciKAp+IYJSnY2O3OII5FBus00i2fQS/vbQZ7H5ZOZY5PcZTX0XkmmpkuX+PSYV5fzmh4jB3NHiyRHdIL/oHmBZdWZTT9zH3pf5EiTnaPqTWWIaEkg2eha39G4EP3cL5cnvIENzB6XNueLaLL8hLD0nDU5XEkKERMEvRFAU/EIERcEvRFCqzyYXWR/EjDMQGLkTW8y4DJZ64ZGMSZUJ+2N4UUX93jZwLfPO9zdMCT8cV51ZWksyDtcyS3o/lFQW411ypStB15crBkmSUY86s3yBTL3wdiAvVyDTXncrt3bV+jXKdMTx3inh9wFToUgC6s0vRFAU/EIERcEvRFAU/EIEpfqknLnFPYiO5cCXW65g2ARJQJJcZmbH5ditnRV+PPgEZAyKElib0thn+Nzbg7+WXBFnlhB+mWXCNNa8g5HKuePGS+gzeFz5vT6tpm7NzOyo8MNYCLrmNYi33HHquRKQ9pWOYWa2g6zBHQw/aQb++ys4zi1k7r1q5m6Nel7S9eWWoZulyuWhDybsLe+jECIkCn4hgqLgFyIoCn4hglKdgvzYUlkmCKg9SBLKYkoJjBOQe58VXkJdwHRTGCRsI5BfM0jIo25vLyo4RunP+w3slxlnCOayzSxlbaA/HpWn0vTk8+rYrV2ULPxIsG7hvm4G/rxJQFFfvw/JDsQMNjiGmdnW/DmW5qUdZf1tBv6eXrVLt7Zs/e+lBKQ7l/cQfkRuVqSEnxDiRxT8QgRFwS9EUBT8QgSloimfDWQIUXlqfukgl4gO4W/POci9j1v//aPeH3sK0mdmXtpMCv+5j7de5J0NJ27t68Twi7fQx20NEpCyJ+ke5JYsU5nvtPQi9V7pr+XewH/OzGyUWTpK5dK5suqnLk9OTbal53EDmanwmGBGJcm9hnoZZpa2Y1Yjzv1N9HWEZx6FXy/hJ4T4AQW/EEFR8AsRFAW/EEHB0aYs8rwwwCmt75Hh16HsgDWSjZnDTWuYoHp65KXN5chnbp1d+4Empx1nxX1Z+2t8Bde9ALNEu1MWfpV6HpIwoom1lLVHYs+MS55JzmIPRliroMS4B2GbKwHfZ3oylcHihODOl6znDk5J9XW8Cw4QobJxkHNmnOGZK/xob/XmFyIoCn4hgqLgFyIoCn4hglKR3Mkd2kCfo8mvuVNxzczmUDpcl5BpBaWsp3AcqMq0e2ALjy+88JnMfNZe/4z35rb3IvAWSoJ3B5r8mjeoZIzTij3Uy5CEXYo8fcWZiTQtlwaxYBZa5pHxuQOpaMaymXrc5U5Abjq/Rr9HwpbigERcqtw51T/yT0VvfiGCouAXIigKfiGCouAXIigKfiGCUp0evIFsISV2BY0r99CAk9I7x2B7zdhKz6EufmvexI7B7l6D2d3C505W3syfN2u3Nrrnj3vvyo/tNjM7Wfp6efovBaby0n9X4FrgtqD/JQs/Mb8Pqf8AkFWmT9Ko8zHY/skHTADKTZ19nyk3tGtk3akGnlJs6bu0h3QuBTyfqf+24TXSZcOWHeDh0ZtfiKAo+IUIioJfiKAo+IUISpVZFo8SaQpyZ2p+jcSQGcuqWxB+2DwSfnMFUquDczyBiTYXL70EvNd7CbjbsbzcQY15Q30RaKRyZv8E6nVAYqnG1GC/dkKpxpZI74UHZQ37PaWJRjAK/PjgR4bTNdPI93Vm7b1Zfkos9gjIXOtA+KHcg+9SWnKy/0VmA88GBHmuxBVCBEDBL0RQFPxCBEXBL0RQqlcwwngOkmUFIm5HzToxW40PTnXQJL844wlGaoMo2UBm00twdk9XJ27t/tdeSr00nnLzbORlzBXsGe0jibxc4UeQYCVBOksIv1x21P8VfnJmXrCSlKRnZwH79e1g7tZu2hWeI8m4XEi8kaDLXaNeBzROPTWtibILCYohTewRQvyIgl+IoCj4hQiKgl+IoFTPey9K9tTMENZyyxZTGUtYJgpNDkewdgSlw1P4HB1jDhLwdyMaS+2F32sY721m9n+9L/W97v1koB3IVBI0JEOJGq55BhKJGrWOEoegPevg+w3cAxw3Dr93BKXkIzjGcuCvpav8ie96LwbNeBIP5ZbmPrfUjJQ+N4Z7QHKPSuBTDTzN/GhxajKai978QgRFwS9EUBT8QgRFwS9EUKpX7cItUkZdWkL86ZCsOoJ+bxVIH5J748y/ZbcDL+1eQRkkjdO+QYFkNu+83Nv2XtDkTqrJFVBT6KOYW6adly/2PSQMZ7DfowM9O3m/V8MjNoVst/sDf83Lyo9TN+NS3U3n7wtN7GngxAuUez5zb1b6no7HpRfIlNVIUjh1jvRM4BpMj9KbX4igKPiFCIqCX4igKPiFCEq1aH1mGgkDKjMkKZWb9Wdm1tM4bhB5e1BGW5AfWMoIayjyei/yciWeGfeaI7mXm7mH9wBHooN0yxyJvqMpIMYSCpLq7Bjk3hZuNWVULkC6wuR07IPYwL5OqHegmTWFl2z0PKYyBO9C94+y9EjuXRReAtK9ojJms3Qc3aXuYZQ7nLfe/EIERcEvRFAU/EIERcEvRFAqEh25AwdyBUSqpJf+9GzhfJYDL+MOhRcY1LuOSpGXBy/tFh+QoZdaR8kC+0j7Q+KTesBNISPyCIZpTChjMHH/KNNukpnguafhHiB23xz8Pd2ANCW5RxK3gfucgvaW5HNHa5SNCff0CATkYxB+5yDnFpDBaGb2XeXv9Wu4/3MoJafSX735hQiKgl+IoCj4hQiKgl+IoFQHkFIkNXIreikLrUsJv8zvL0CokMgjqDxyCyWdJIxI4qWmvqZE4F0GNFADMsRI7h2VXgSRWDqmvn6d38OTxCnX8EyQBNwWcF9A+F2BYP2u870j553PNu1hX6msNiWV6fnOLU+n36T7T30nLyGz8B93/veeDPwk6EXH2YpPay8Mfw99Ab+BMu9byGDVm1+IoCj4hQiKgl+IoCj4hQgKjFn9MElCGq5IyDCSJ7RGAnILf7foHCmzieRcbuZdn9iG3PJmOg5NdB2D8BuRGATZNIBSWxJ2xzC51cxsBBfZwnnfwtoNlOq+g+zJq3bpf6/x8ov2kGQo7ZcZZ9/RfaXP1ZApSd89gX59f3vwa//8xTdu7fgXMJTkivtEPvmtF3mP3t1za18OfT/DlyAg9eYXIigKfiGCouAXIigKfiGCUuVmpuVCspDKMs0SAywy11jGgSzMlHsVyDSayErXZ5afIUhiMHeNsh9bOMYaJglf49AG/ttfwfIK1l7Bcb6DUt0FZJfR4Iwmc+Is3fsO5JyZ2RCcNmXklbQXkK1Iz87D0gu2X239NZ/++6f+ED//uT+/q3f+wGb28NFXbm32X9+5tcfPZm7teiPhJ4T4AQW/EEFR8AsRFAW/EEFR8AsRlGzbT+mPOMobDOkhcYwW0ktzJ9qQiedxxXkWnyas0Ljw1G5toNknNUfNTZOmtFb6j8IOrvkd1M/T1KPvSOubWQf3gKYcLWGyzAL2YZ2YcnSXmv67AvuA6bmpZqTwm9T0dJg55WgMz9NDaLj56OzGrQ0e/cyvnT9wa4eC70ux9WnSR3CvPj1f+HOc+zW9+YUIioJfiKAo+IUIioJfiKBUuVNlSO6xeMlsCGqpppd5ApKk3RQaXE5oog2snYK0OQa50yaE3bzw8msOaa00kSgXmlSzht/bQU393PKkm5nZBkTeqvPX0uaOSYf7XEMPg1yJS88iCWkzTtulyU5DSA+u4dgTeCZmB2j0CT0VDldX/gRHMJ1nPvdrZmYr3+CUKCYgvkGu680vRFAU/EIERcEvRFAU/EIEpcptXIniJVP4lYmMJZx+AiLouPLZdw/qU7d2UU7d2vnAy71z880eZySGwO0tByz83kKGWA3XvQJhRJKM9gb7FcDndpBRR3X/e5hmZMajybedl4D5vRJgZDhMmqEsSxynDfuQuhbaxxakMu0jtwT1bOG7L2+P3drD/3zq1qrH1/4HG76W/hYmGs3hXi+8iG2XJPGFECFR8AsRFAW/EEFR8AsRlIqyqihbKlUymUNqfHIJTSUpS++yPnFrjyu/9jPzwuiL1h/jo9YLlQlkwC0h6+ubGoccmZWgh2DLTmCkNrGF2UdzEHFLKN+lLEIqL05lG9JnafIRgdl3ZaYEhL2hEto9ZDB2ielDdN503QMYN04ilo7yduB/779r/yye/4cX0pefvXVr5ZClMt2CvvHPd7Px+7iDNb35hQiKgl+IoCj4hQiKgl+IoFTU44ygbC4cp01ZXwlZOAJJNqv8aONzyNz7CDL3noD8+IX5UdAff3Hr1sqRP+/5K38u9bXPLDQz6yEf7LTw8pJGZRNXhT+fr0BKrSDzjkptSXJtYWqOWf5Yc5TAkNVIWX9DEHlTGLNN5bfUYzAFlZO3vd8f6o9IopoyDreF368x9EccNmdu7fH/+mk/RwOWqzU8Ez2UDu96f44bkNd68wsRFAW/EEFR8AsRFAW/EEFB20dyp88cnU0UUKZrxv31Tkov2Y5ADo2hb9q09yLo5NQPOph+Cn0Lj71sKsdrt9Y0fC3jpT/vAwixEYy1buFavgZZOB/6/XqdyJ7055InZ1PrNJqcMkFJiPF9hiEpudmPUL6bGvZCco/kZ+6zTBJwDVmpJLn3lRfXf6j8NU8hU9UsXxa3NDgHPqc3vxBBUfALERQFvxBBUfALEZSqyczmwj5zIFkwKyoh/MbQx42kzxiyk4gGRMd+Dz3gdpCtNobMRH96dnqfBycczfxQi6LMMzTLWy+Mrhd+HyaQzYXDJiBrc3Twv9eVLLlw8AaUzNJ9pXt6VvkstsvCC9ITKt+FZ3EFz1hqMAzJvTUMINl3Pg5yJwTnZkTOKy+fqWQ5VQJPGZU1vL9pjTIl9eYXIigKfiGCouAXIigKfiGCUm2grDO3Xx+ValLWV0pgjEHu0RTUGs6HhizMoZz0eg1i6VsvXoZzyBpLZPMRo1lej7v1jRdiN0uf0XVVQVkmlHrS3k7BVFLGWarUmu5/B+WkNHiD+i1+Ufky6I/Nf3cIQvMG+vWV8LlUhh6VLW9bv5ab4ZcSi3chWUiTjimGUtC9xtJoyDgcQ7m03vxCBEXBL0RQFPxCBEXBL0RQKip5JOFDYoJKVksoT01BAqPKLFFdD7x4eQtDQF61XizN3kDftI2XMcShZ0FTQLbccuFF3tO9n976h6E/7xeFz0x7AwM6SFTR8IthCdl4IIHMzE6h9HQIpboPSr+Pn5sXrE+6vPLrJfQopOTOtyC5UlD2HWXzETRdmtZIctN9yS2VTkETrGl/xiBTleEnhPgRBb8QQVHwCxEUBb8QQck3J5lQOWgKEiANlnB6KbmAPm7NwB/7fu3lx8XOZ0AN4LslSLwO5JWZ2WLnj/M/0I/wN2N/3s97P1jktvVZiLQ3NQhSEn4TGHJSg7wyMzuFASRPDv77f7f15/Nk5K9lcgRZdlt/jDdbGJICx72Be/osIS8JekYp25EE27Tyzw5NuiboeSfhnoohEuTUH/GCRGzpRbPe/EIERcEvRFAU/EIERcEvRFAU/EIEpRpXebXflMKYa0grSA1NQdNYaG1v3pLuIeX3NZjY1zQKGpp6jkt/jFXLZvcZ1FD/tvbn/WU3d2tvu5Vb20HjSeIYJt+Q7Z9CSuwl/AfAzOyv4Rp/Bf+R+Pzvr9za6DO/D9b6vd194xuhVl/7z62X/tk5hV4HdM1mPAZ+B2PNCXqWR/DsUF8DStvdw3Oc2zvDzGwM13IOzVH/qpy5tX9oVM8vhPgBBb8QQVHwCxEUBb8QQakuh77hYm76Y26zziMYN/39Ogunu2wOXtDgmGZI0f0GJMlxDefT+LVjEFW3ielDT2F+8vPeS62rzo/9XnWQygtpnzQhpzn4zxFTKPy+6PlaHjX+Ny8/8lKS5F75yT23dlj56yve3eCx79LAM0bV+KkmsSTj9hVM2IGJRPSb2Ncisyaffq+EHhRl4p1MjTlPCy98zw7+vh7D9enNL0RQFPxCBEXBL0RQFPxCBKV6ABNWaBoOTSDBkcGZ9eVmZkP429PCRJQN+JQeJMsOVNBrkG5Uxr4cQqPPg890W0IWoZnZM/MNQN/BsXE8NDSZpOt7n+aod6E8MpqEZGZYTb5awjj15wu3Nty/dWvdwgvE66987f6Lpa85fw7NTa9gr+n5NON6930JGaOZ05DovnTwTFBsUKYrTdxJNValSUyUubmHvXgDDVz15hciKAp+IYKi4BciKAp+IYJSPYLGfnuQbi1NG4EfJIWUmsJDn6XjkGKjUcnUIPG2h+w5+O7VwDeZHIOgoSaaZma3By+h5p0Xflso1c0dD01SC0tHodx5C9eckpdvoGS2Xvky0cVvoJnl76DZauNF1XPIvHvmk9XsBci9N7DXqT0kyUZluT81NRyXyq+PIfuVxtSbmY3gN0nazqHh7QtI5tSbX4igKPiFCIqCX4igKPiFCEr12LxwaEAs7QrKqPOSZQ/ihWSTmdkWylHXUKq76b2MayArjmhBfqzh965BSpK0odJmMy6tbWGNSkIrmrMMUNYY9YVb4fVBJllCxB4qL8SuS//9EWRAUoHxzdjf/5fmz/HNwcvZFZRzk3RNZfhhVh30daTvk0TE+wfHOIPeep+CXD+HPoqp+T8Ul1uKN1gjia83vxBBUfALERQFvxBBUfALEZTq89bHfwNOawdrS+iZdw1ZY68gS8vMbHHw0ueq9b3i1n1+RtdPCZV0prLDqO8afZ/6sJHISwmsHEg+zmEPBwXLSxqJPkVxBiWvcN5zkJKve9/L8AYyIimDkQRbKouUwF56sEb3Be8pZOmR3Pt1P3VrD6FP5DoxOv3b0u/Fq8Lv7S0NvpHwE0L8EQW/EEFR8AsRFAW/EEGpPm5hgAF8cAuiYw4DB/qKeq7x35gdiIklDLCgibUk/HInnuaWxtKU1tQxqFcciSkSg5Q1lgtlHKYGWNyFMgF/+FEHDUSpM3sKUiZnqjT6LnQtJPfeZ9otHgcuugIhSsL3Xun7ET6CzNnP934fHtVefK7bVMmxLwlewzNGco/6curNL0RQFPxCBEXBL0RQFPxCBKUaod7zQHKRtb0XIkewNgYxaGZWZkoaknu0ljstNZfBASbEJqbi0jqV6tKABwNxRlKLhz7klR3nTl42M6vhnTCiDEb4PomlEoQm9akrQbCRDKXBGTTsxcyw0SQO1AC5SwM1TqAP32Xhhd85TMqtcb6wZwJDRczMHoCcX8E51tAfcakMPyHEH1HwCxEUBb8QQVHwCxGUagtSqkQ5RBlefm0KkuwY5IcZT+/NzU5DCdjn9VwbwBrJLxKIqVJiKqOlz9L1HTJLVGkCMg1yIKFF55cqg53Ab9IAE9KF1MORyC3Bpc/tQFLvEj0dScRShifJVBqocR/k3gU8xyPYhjVcyy0MNBkmhqnMYJLw3zT+s180NP2annkhREgU/EIERcEvRFAU/EIEpdqAhDgBSVJTBhVkT60hw2+ayPAbU5YXCTESbyD32j5vSEYBxyiofPc9Sm1RQMLnSLwNYSBKBZIUe8plZtlRBlyV+NtfwW/STlA+JQ2W2MM17zIFKZ03lQNTefj3x87LqsvNnpzBSI0pZGiSsruGONj3XvjN4Dk2M3tQ+nL3xx8t3NrRJ74EvpzAM49HEUL8xaPgFyIoCn4hgqLgFyIoCn4hglKNwJweF94WTmoYnd1487nsoY4ZUn7NOF01txadzD6tESVMRPmQ0dlmif4CcN5Ui06fo0aROEYaxzbnje2mppxmZkclpF3DPaRjr+jYMGZ7A01ZsecA9lSA/wAk0nv3maPcyfbTs1jRf4BgG5fwH5wlvGpHcH2XHQ/pfghrZ7/0a/W//Novnp65Jb35hQiKgl+IoCj4hQiKgl+IoFTnAy+CLu75Mdn1EOrB577eebKCyTUJcUYakFJqc+XevsuTOyU1zIT0XkorJmH3w6fdCqarZqa1DuG+LOBv9b7Iq22nMecNfPf7Y/u9aKFmnXaCxq6TbNykpgXdIVfEpUBJmikMG0jSpX4Fa6i/v4XjUurzEKU3C79BD81RH9/3n/vlP/nfvP8pHEcIERIFvxBBUfALERQFvxBBqe6f+hHBs0tfN1yAg+g6/7djvIJeAAcWGNhcM1PmNJkSEMdxg4AkWTiEiy4SDSrpOJRd1sBxqL8A/h5kz5EQI3JFo5nZAvos0DRuysijzD2SezR2HfsVQDamZTZlTUHXTXu7hvO+GXihvSMxmNmHYAp7fZpobtpBrwyroO/DeObWijOfH6g3vxBBUfALERQFvxBBUfALEZTq6NRLjdpX/yGjhZck44EXSyklRc0naxBYuVN8UO7ROOfM7MB9YlQyQRJp13mpRcfJzWrcV/67tF+UrUgyLVXSu4JsQPo+CVsSZyQ+aY3kJUnF/ELrDxPIt62X4cSIBCmVc8N328ILxBWsmZktO59l2b+89sd++dR/7ujUrenNL0RQFPxCBEXBL0RQFPxCBOX/AcRmXZM/kC1bAAAAAElFTkSuQmCC" y="-585.269459"/>
</g>
<g id="matplotlib.axis_37">
<g id="xtick_55"/>
<g id="xtick_56"/>
<g id="xtick_57"/>
</g>
<g id="matplotlib.axis_38">
<g id="ytick_91"/>
<g id="ytick_92"/>
<g id="ytick_93"/>
<g id="ytick_94"/>
<g id="ytick_95"/>
</g>
</g>
<g id="axes_20">
<g id="patch_21">
<path d="M 434.924375 707.669459
L 557.214375 707.669459
L 557.214375 585.379459
L 434.924375 585.379459
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pf78c5df873)">
<image height="122.4" id="image9cf5df2434" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnVuPHNd1hXdd+jI9PTOcGZIakpLlm2TZMQJbTuwghgMkeQsCJC95yn/Kb8lTHvIPEiSG48AXWRIpUaZFDjm3vt+qOw8SDITrK+AQRPLgs77HjequU6dqdwGr1967+Kc3/3EXL/GwWr8cisfbqcTONxOJTZqFxNooo0g6brHV9Swhttk2Sd9XFaXEikLXUiSur41uWUvstHMgsQf1ocRuFR2J0X5tQ25fVHBcBdfX7PSzERHPd0uJ/WrxVGJPphfwnVuJ1WUlsR2ce9noPV03G1zjy/TqLsbv7OnePuifSuzdzonEftTsSezPqxuJ3f3KWGLNUp+xmwv9vuVK96bX5ed4sL+SWFHqPs4muhfn432J6QqNMVng5DcmU5z8xmSKk9+YTKnXhQoG9ItQQ7RTqFhBsdWORRuVhhgS6Go4T+pPGQl5JQhirwt9ZwNXPd6pkEN0YB9I3OvCRpBY2IBYGBGxSb4zyhaEPBIBU0kVYvu1CqQREf1KxS96RokFPBJXi77E6t/p9c0Xup7nG/0sSXvDFQt+B0sVkInLtZ7nU9gfv/mNyRQnvzGZ4uQ3JlOc/MZkSk1STAcElUGhYsNeqSLCEsS97ZaFJXJ5kbhHMaLcgQMOzvF/Ie6RCNWFPavg93a1U4HneqdOSRKq9sEJ2CUHo0RYLGyL07m7lV4fOQ5TnZwsxOq10HkHdQ+/c7/SeJdEaRA5n5ca+wTOczXVezAp9VpGnbR9ONyyIDnc6HlIGnzW0T17XOmRfvMbkylOfmMyxclvTKY4+Y3JlHoDGkR3p78J+5EmNq3KtLLaiHTBL1VEmoOwWLS42OT7XrOkl9bdA0G0B2W+9AtMIiDFKhCWDuG+9Mj113J5s9DP71fqGtvvaIwEulSBlUp/qUy7B261w84Av/Oo1ngfhNg1uBCfFeC8hNLhw0qvbw2XvARRkaS9acuN6UNezsChe16q6P4MyrT95jcmU5z8xmSKk9+YTHHyG5Mp9QoEMSocHJC7DIShZaECTdEiYOzg3CSyUUloU6SVidJnsYcf9r1LK42NYLGqT4IfiE20DyRAUTkwleXS9/XA/dhtuZYjEAxPKxXOFh0VxBbQ/5EEP3Jezhv4PohRme6tWnvURUQclypKkuC3gf2eg3/uIvT6FnDvCXpiKdfWbe9kEPfGkG+XUCJ+vbXgZ4z5Eie/MZni5DcmU5z8xmRKfQWCwQCcRPQr0Ycouf7qxJLcCBZelqGOJRTJwA22AVcciYA0YONVyouppyDFqFyWPJHoioP7QpIdipcQIxEwImII9/VWqaWsKxhAQi5EEvfWcByVDdM+0L3aL3loxx6Iex24PhpqQtBRqU83CX7U3XLbImaTQ3AK+7iAGPVl9JvfmExx8huTKU5+YzLFyW9Mpjj5jcmUmqyADSj2OPY5sdFnD6uWuU5/Ado3NQVFyy/EqB6cFHv694CgCTIR3JiTvpPUcP4+PQ/9a9Kjfxlec7Q43le4h2SdJVsy7cMS9iF1whE1RqWmnF+cWyFLNO0YXfNdsLTfbvS+LGnaD6j4M4iRqh8RsULLd9pzS/jNb0ymOPmNyRQnvzGZ4uQ3JlPqyU7rk4k+iB/0y0HTfqh5ZETEhiy6ieOhqa4em39iQ8k0227yaPBoEasSa/LJjkvjuEnUotHpJF6RMDRra+AJIhRZdMkmS+smYZcE0g1MyFmU+nyiDbhF5CQBcgv3iq6lD+d5a63HvbvR6UpjqNT/qKuxJyWIwq+g17LdOHFyVfppjDF/SDj5jckUJ78xmeLkNyZTqH8giiQkaOEoZ3SmsYIB/QhbhC5wDUJzzH6lTsDUSTyp9fgkNkWwyEI16yQC8nnSfpfJ37WG6IREvBZ32ALWSM5L+nSqAEX18xX0K3idke0RLdeIz53GKDmOtro3t4dziR2s9J6ON9r/YNzVa2l17cEaYUgVNh51Pb8x5vc4+Y3JFCe/MZni5DcmU+ohlO+S2+l1fiXa3FckxvV3aaPA19BQksSdukhzMJKIROIeOdMi+FqoGSk5/EjfWYH4lQrtwxwcmm1GMhQRU68FwClMVM4NpdvLLUwAgglQbeIlryct1oEGp53E09SV7s3RSoW4243KikXFovIUVjmChdNxJDT7zW9Mpjj5jckUJ78xmeLkNyZT6tuFTjohgYYg0SY19sV5lD6OxVbBj0xeJLrNwR2YKg6R4NfWK64LglpdgnsLHGLrrQpdUzhuCeeehvZgpPtHE22oB19ExBD2jEyaE3AwzkCgo/tPk5RGjTrlZg2NltbFgE4cES0uVHh49uD+7VPJMk3IWaJRVuiCQHrcUKkt518vcRQ4ibv03PrNb0ymOPmNyRQnvzGZ4uQ3JlPqW21KyUuQREa93ibgJFq1OMFIjOmCGDNIHHVNQs4c3IGpgw6oPx4NJYmI6MKxqaWVl42KdisQAakPGw3EoONOOkOJtQl+1LuuArfbHAZMz6En5HijQt4ChEG6Zry+CmIt95SeiSEU6x5C7LShfpQgXm5J2IUS78R3LVxeRLC7cADXdwjP/Em5JzG/+Y3JFCe/MZni5DcmU5z8xmRKvQ9CDslz68RBAtQ/rm3qKIl2JZVRgqhxAAINCVVrED9Siz9pfb0W91UB676k4+DzKyhlnW3U2YY9AcEJSHRL3a9Vhz+Lgy7gOHxOYI1TcOlhqS45E2sVJal/I92rtjiJykMooR5SgzxgDmW5M3DZndd63BW8fufU3DIilhCfJQ6+odzwm9+YTHHyG5MpTn5jMsXJb0ym1NSnDMxJ6Boj8YocWW2OulSnHbnnhhA7xL53KnSkSWSv1heOOgXSXlAp66LRT5PgR33YCLovc3ARXkEJbUREp0p7J0y3+p0k5HH/OOjfWGnZ8aDSXo0DKE9ue5bmsN/Uo3INz8kShMEbEM424Pp8Wuv1PYahMmMQe9vuMl0jiXtrEIHJZes3vzGZ4uQ3JlOc/MZkipPfmEzB+lQqKQT9Aj+Mrr0W9xU5yVZQJrwA0eYYBJojUCrp100llgio3oSCXP5sBK97Bt8waRYSW1BJb9N2pv9Nr1a3W6/SGDn8plsVFSMiXrRMVZbPg3OPBM3USbu0RjqOXIRUIhwRMSl0jWMY+EIPSlWrsPii0r25gnv/aaiY+mwzlRgJ6W0TmlMF9lRB229+YzLFyW9Mpjj5jckUJ78xmVJT+SAJeSQ/kQBBYkXd4kyj7yQBhByHA3Am3t1QjztlDlNel3CONQhfs5ZyS+pneAXi3gj62c03KviRK27QUaHqVndfYsfQr28fRK62MlgSkUicrcHtNoDz9MGRR+fYwb2nfSBRkRyMbXESFkcdvVcXte4jvS3pPr9Yj5PWQoNmaH0RvN8US5047Te/MZni5DcmU5z8xmSKk9+YTHHyG5MpNVkT0wYOs1rfAQX5oGXKzQAsuqR+nuz0819fqzL8VqjqOt3qZ6/h+0ZQw07/UWxafi5voC77ajOT2Hitaj9ZeSsY703NLM+6tzRWwXQeGMVO49Aj+LpnoLBTjTiP46bJTmrHHW31/pHaj41MW/5Ror4IN1u12dJUoeuOHkeqeYM19bpG/BcFR7aTsTzdEt2HBqedymq/MeZLnPzGZIqT35hMcfIbkyn1RajlMHX8depEGxLsIiJOwbd73Kgo8gBskW/dvZFYf19FpIunan9dzVUQm8DvINX4L1oaRS6gdp8m8WxICAJbKwk5R52BxO5Uen33YRzz2VYFn7sbtvceNipCLWE912CTHpd6LRcgKj+FOnuC9nBF9fwl23tJQCZBbbvW9dBkoL2uPjsHsN8E9RyYQU8EGlUe0WKJfoUmsy/jN78xmeLkNyZTnPzGZIqT35hMqWmkNnmlSprYA3pRAVNzqLFmRMR7KxVp3j5VIW94qqJI95aukkxeg7Geo4BBNVNY4gjEq7bJMDRViGqtSYCqwX21B80jqVb+AEaQH8E9OAP18htQhx4RcXaiteh1rZt7eakC5MdrFSDXXV3PNezXHjhB23oOvEy3xUVaJDYjpfvSKfW+HFd6zXdBdCXGMOHoqtSHkdyGEewkrBKfO8JvfmMyxclvTKY4+Y3JFCe/MZlSU1ltReIHCC8kxpDs0uZBauDzDdTMrmcwZnsNn13rZydjLYO9BiHnvAJBqwAnWNvVQJhEqE6VVjBN46p74LKjX++axl9vdYHHAxaWTr6h8XIPhKVHKgw+e6xuty2VbsMaB7Rf4CzdwrWULeXJqdOCKEYOv2NyTxYqxNJqLqFMmwTkLY3MinTBD5t1Qk77zW9Mpjj5jckUJ78xmeLkNyZT6tNQUYPEq9RfCTpu2TLl5jMYL7280Z50RzdaCtmhkdhQOvw5jKt+qFpa/BZKm69ghHWbw4/61JFAQyJSam82mmaEY8DhvCs4R6L5LSIidjANabXQNS7hPPRM7IMo1YcjF9TDD+497eEX5wahmibagBBL94r6UR7t0hx1c1g3uRrXMOGojS5O4oEyZngm/OY3JlOc/MZkipPfmExx8huTKfUhjLrm8QcK9bjbgCA2ahH8JrXGz2F4xnCnLj361bqGEtznhfZDe7FTcW8E5ZZTGCxB46G/iKeNkiYhr4ISXGIB67kGUbIPDsZTGPjx+YRLUasPQLxsdI3PJlreOq7AuQfPWAGuPyovH4MqeQnf1za0gxyZ5HYjEXAAwtseCGwdODWJ3A0ItiTOHbQIfiTuUSk5sYBn0W9+YzLFyW9Mpjj5jckUJ78xmVJzjzSYtJoo7s0gdh0qVEVEjGHOL5UTD0DoIHlnBILYFAYl0CAIcu6lTohtO5Ygwa9NRJRzwzCHCQy/uIDf9IdQTrrtsbD0wexUYiTurrWSNagatQexCkS7CbyKlnCnxyDYTlv6EdIEZHJKUt+7PXD4DcDNRy0qKQ8WcC1UsnxIrtuIOAI3YA/2kUZ+zEoLfsaYL3HyG5MpTn5jMsXJb0ym1DTlE9rjxZzEPShRvAbR7el2hie/abRXXEGTf0EkI5YgiKWKaal93Wh9r3JsAZNtUx1+bX3qXobKN0l0/TXcv4iIBlQ7cspR/8c7hYqIp4nXh2IxPE/03Mw2PPWXRFK6V30o/d6HgSg0hRqMpdFAsAPiHJ3j7o4Fv9ugunfh3EvY7kliqbUxJgOc/MZkipPfmExx8huTKTW5gci5h+WW4JQ736oY83Stk3cjeBopOa3IFfc6UBllDWWwPXBa0UCECC4TJSdZAyJbk9gDjoaA7GPZadp+jUFMi4iYw30lV+QeiFX0OilBBKS3zg2UX0/AobmEWNswFRzGAeLeQaXDOGgfaXgNlSyfwD09AoH0FKyTD9YsxB6Ds5GOnMDonGsolfeb35hMcfIbkylOfmMyxclvTKbU5OYjT9waepLNwT032mpp5c2aHX7kyurC8ARy6ZF7jkQ3Oq4D4l4Bok0NZbDDlv5qNQhLayjzXYBwtoEdJ6GKBLYhxF5nLW1xEvxIbLqBwSkd2EcqJR/BOdrW+DIkFEdE9Gu9Xwe1intHIPgNQTgjce+00dw4g2UPtrpjZ5WK3qd3OF8qmCQ9HWtddXeq/RqjSRNdjTEZ4OQ3JlOc/MZkipPfmExx8huTKfW4UKU51cp7A9NiJtBIkeyYERGbLTQVBMWe7LgFKfugxJKyT9A45qNSVdP7pU6paeMKxn632VBfhn6VqZPABjR3mh5EE1vmLfbeRaJ9toJV0nro3HheOI7+paB732YB78O/ISedocSO4V4fUFNP+IvjqNHgnVJz4/RYVfxbD1Tt7xxzz4hmDid/oqH5AmzpMGLdb35jMsXJb0ymOPmNyRQnvzGZUl+C6EOTRUjcu2xUwJhsVPBrwNYYEUHNQ6kGnki17ZKQN6xU3LlXH0jsO4XGvrnh38s5aDQf1rqe38JWzGHGCglstDM0RpxEsjmMIG8TYmn6EIlsPbBitzU4TTmOPkkTbcjK24f7HJFuk6bzkLGY7nMDe7Pf0/0+uqfiXvceWM27bSK13q+6q/eqLNOmR/nNb0ymOPmNyRQnvzGZ4uQ3JlNqcu6RiHQNU1KuN1OJkYhEwl4EizFUzz+ooWaZxhWTSw/qtO9V+xJ7f6vOvb/YjSR2+0yvOSLixbl+Z70+lFjTUbHxOTRmnCXWtq/AFTcDcW/WqGD7KoIfOejW0NuA7jWKsxDrg5C3giaqKxg33caOmqjCGifwzNNTu4NJPINa1/jWWverhPE67eIenHsLLr0anJc0Qgjwm9+YTHHyG5MpTn5jMsXJb0ym1CtoHjkFwWgKpbrzRo+jMt021xeJe8NaBbG7nSOJHYOQdwKTYe6HioXfXel6/uTkXM/7Y3ChdfX7IiLqn44ldu9jFRE/BdffC/i+NQh5JMSRIxJFLvjsGu7VF98JDj+4h/SdS1j3CkeBJ44lh1gNUSovjohYgU9vBOI1lTGPQUCelTDyu1ax9825Pp/3x3rvOyu4B1B+GxHRTGGS1hyatW5IOKVSeWNMljj5jckUJ78xmeLkNyZTaur31kBJLwlQJCxR6We/rb9apQLdaUfLaN+u1Sn33k4Fla+r/hhfK7Ts+P6bOjL88I9ARHpwV2K7hTrlIiLq/YnEBiCm9mBMM0EuNIqhSxL2ey/S3HgRLARSuTSVHS/BhUijwGliD10f9RkkVyM9sxER623a9KEF7ONyp4IfTY/qwDv0Fz3tE3jvExWu3yqvJdbG5FKf+RdXKjZ+Fiqaf9rziG5jzJc4+Y3JFCe/MZni5DcmU2oa59yB0koSkTaVCiI9KMGkUtsI7qVHgzKOoefam1CN+s1Sy21v31EhrjMAwWgEzsRnV3qSFnabNAdVRRobGCBpUAn1mSPnXZd63EEJ9F7LuPEViGQEiY3UP3AE/R/xvFSyDGshcY+cpREtvQsb6IVHY9thb8lJeF2o+/U34F7t1SoCfvUjdYHWLX0sJ5We+7zWNT6pdM+e7XSNfvMbkylOfmMyxclvTKY4+Y3JlLoLjjMaatBACS310cPhDnBcRMQeCIEkTBHTUs8zhb5p3WsVEKdjLcvtvVAR6PBG3YFgNoyIiA2UVm7IxZYo7pFoF3CvUFSkKJy3bWLwpkqb/EsTeUnwI1ccldBST8HU0maKRbDDj76TDII7UGfp+SZn4vOtlg3/W6Fr+VlP7ym5H79Yop6HJhuPoNR+AqKr3/zGZIqT35hMcfIbkylOfmMypW4rhZQDQYDaB8cRu6JYwGjru/YyCxBzxjCY4AX08GtgrGoFwsneXMVHMLDFYAV1wxGxmEK/NxDoNnDuLuzDAIRPEnyohx85AfuwlrrlvlB0B8E59X8El94EhpJQ6S9dX6q4R6Ji23eSM5EcfvR8Uoye4jlc3xX0DiRXY1updeoE5NQyZr/5jckUJ78xmeLkNyZTnPzGZEpNQxZoGiwJKijugQOqDRJjyDVGwtJ1oZ+9BAEyGhXiqGRy3YBINk4rbY2IGN+ok3BWpolDA3Lzgeazgr1pYB+op1wPRK5By29/fwfHguK3hVs9g/VcFOrcewYu0kvotzgFZxo6Abd8LSSeYd9DEFg7Lb0n5dwgQJLANkkcfNMm+BGpw1ToO/3mNyZTnPzGZIqT35hMcfIbkyk19eubUN8zdAil9Thrc/KR046ECRI1LmDde7U6/KYgunVAT9nf6feRO3CwUGEvImK8U3FoAv3V6JpJYCMhrwGhktyT+7A3h3B9/Zb7cghK3t1Gzz3YwtAOEHyf1lpCfVDpelAE3KpIRs8n9eqL4H5/9DySg5WeRRLyljRYBFx2JFS2ORMJdvili4Mv4ze/MZni5DcmU5z8xmSKk9+YTHHyG5Mp9QEorJNCLZVzUnbpHwCwTpKdMiKShcpx6HrWlaqk81JjA6jTJshiew5TV47BLhwRAQN7sOfAjBTkgmrW05T9A7Cl3t3qtRyDgt9r2f/hVtdzG5TqYaWxeQOW2I2q/bvQ4ypoytqFf2uu4ZpH2PCUn9FUqMnoAv5VWMAEoLaGoi9DudGWL69y7MvQvxl+8xuTKU5+YzLFyW9Mpjj5jcmU+g1oerkodToPTSWZgfjxKs0VUy2Q1KRyVqsIOKl03HEfarLJ3rkHItK0UKHqsOYab/oVXYCQN8P+CXoc9ToYgkh2G2y7b4PGddJosG5RXDtgiR2AuNetaVS2xvYgNoB1H5HNGe7fGta3gGk4ESz40XO7hXtAluHJRu3GK9jbCoRKGlXfhetrG2lPPQfo84cw5v4UYn7zG5MpTn5jMsXJb0ymOPmNyZT6nY0KBv1qX2K3KhUhxhWNPwbhpMVldQ0TTEgwTBVe6LMosoBwsoLjGnDo3bQ4yYjVVsU9aphKTUuxOSoIsT1orHnQ6DkOoIlmBT0DXoXVRt8daxDt1lDjT08ENQQlaNWrFlF5BM/YeKOxJbj0SJAmcY/ohT5PZUUNb9N6C0RE7FcqQN8pVeT+RqGxb6/TmskaYzLAyW9Mpjj5jckUJ78xmVL/WXUjwW9Bk8oLcAKOKz1uBD8n5yWXN34KrqMnILxdrMcSo3JLdBLCqbdUQgsHkojUNiaZmj2u4fPUAJKESmqOChpSXMEeLqA0tklV0yJih1Ng0mJTcCFOYJLSVaX7dV3oft3Afo1g5PcIGn1GsDA8XsOobBDyNiDYEqlltQQ9TyRIR0ScgOD7zULF+e9BL9P3eprnfvMbkylOfmMyxclvTKY4+Y3JlPrtH08k+PZWY80UxKsr/e24OVdR4tHNEZ582NNjK3BBkZh2udY1ksCWKsQ1DZSJBpR+tpTB0nlIyFuDiJQ6/py+79c9FYcG3UP97ErdYftQahsRUSaOc97AGmlCEjwmKO5dobinwu4Y++jxxJ700fKwSAjtqLcijWIHVyOdYwCuvXv1gZ44It4Fce9dcFm+AeLnYF/3x29+YzLFyW9Mpjj5jckUJ78xmVLXXz2VYHFLBaNOB0p/F9pHb/j5C4kd/PszPvujNyS07KtjbVqqELSAnnKzRtfTJtC9DDn8UsW5CO4zSH3hSLSjNZLDbwSlqJ+WV/p94AS87qlYRMM9IiIG4NyjseZg0os1GAnXUDrcgXPUcM20N7SHBQhsESyoUZk3i7NUsq73n4S8g1rF7LPuLYm9V2vs+2t100ZEPNjoevow0IZKtWdT/U6/+Y3JFCe/MZni5DcmU5z8xmRKHV0VP4pDcBgdgUuvVhGhenBfP7r3AZ782wsVB2+eqQh43lPR5qrUc1O5LJVlpopIJO5RX7e2zxPkECOoApdchFSy+nh3KbERDDk5g16NERG3QBA7gCEbx9Cvj6YBn8GWHcH05D6U/q6h/HoK66uKoZ4keLIxQX0UqWycnp1T2Mf3KhXNf7LQ6/vhm59LbO8+P0vL53otN89UWJzOIDfWKtj7zW9Mpjj5jckUJ78xmeLkNyZT6qIHbiJyS4GLqRiAYHR0IqGypXT0+Nl/Suxr/zqT2C93MKwC+pzR9N0GBKMduexAiEMRsKWvW6rgR5BDjGI0kZViJXyWxKvnoXsdEbGtdL+7BUx5Be1ysNXgMQwRCQhVO72WS3CWDuDeH0KPyYiIIRzbh6EYJAuSy/IEhM8/Xei9/+F3Vcgb/sP39Lzf/Rs98RU7Yns//5nE9v77txKbfqIi8PRaRXO/+Y3JFCe/MZni5DcmU5z8xmRKXZwca7QDNaE0nZSEnD0QXg64h195rNNEe3XaoITXmS/bNnjj/wOcygpuNypFpTLR01pF13ulxu6Hfl8bMxBJD8HNR+65CbxOliC60f17Vmv0OQzoWIDzcr9lcEYH3m/kVjyD8uZ3VvrM//GbKsYd/1jF0OpHP5FY+f2/1uPufEVi2+unEouIiBoEX3Dj1m/9TmL7n3lohzHmS5z8xmSKk9+YTHHyG5Mpddy+q9EFO78Ecu6R063l+7YXU4ldLtUh+GIPhjnAYAIq6SWXVo0lofo7SCW0bSW5VOpZg5Nsr1JBdAjTjil2ClNa34FBDn+10H343vvqBLt4qIJrRMS/zG5LbAR2vhn0ihtBY78F7M0YhnY83WqPws83OqEZS7LBlRgR0YX7egiThIfw2H5tqOe+9QNwVH7lTD88gBJjGiqz4WEjyBDE+TMtoS+7+ox1Tq/1uPQzG2P+kHDyG5MpTn5jMsXJb0ymOPmNyZSaavJ3K1XSYwNKJRxXjFVVjBfaqDMiYvZIv/OTWm2oT7b6ndcb/aeAaur3QTU/gBh9Fv8pAAU/IqID8ZOOKr5vQLPHO4Ve8xFYUE+3+lv9/aU25nz/70YSq3/wvsTin3+qsYi4/V+g4sNrYkJNL8EafAP/wlzDmO3zjY5dp/uMI7Zb3mNDqPNv4J8LMnwvlqrsLz7WNfa3n+l6YGz3bqjTebZkm1/pvx4RETHR6Uwx1X8kdjP4dw2s+H7zG5MpTn5jMsXJb0ymOPmNyZQ6YOxvrLXZY5CIcHkhoe1EBZo1NBmMiHj0oVp5P+iB7XOtosbNWtdDYhwJfjX85vWgESYJS1RnHxFxr9K66m+D9fY7K/3OBzsV7fYqjXWg18Hdd3VvyjOderR9+Fhil4/Y3kvQW6IBe++SRl2DMJg6IWnR6LNItus+WLYjIlbwnQ18HobpxJOV7s/8F/qc3P5Mn8WzyUcS6w5gv0EYpGa5ERG7id7ruNE6/d055OWFCpV+8xuTKU5+YzLFyW9Mpjj5jcmUejdXgY5EhO0zdek1j1VYGP1KxZQPH2t9eETEf8C0oIc7FSbGG3U8LaAOuoBJQzTRhtx4ezDym2r871U8CvovG43/pK+jss9+oPtdn4EQtAKh6lqveQcTcja/OZfY6EO9lkdXfF8mHfK7pbVMLeEe9MGtuKKJS7DfWxAGaUz6tFSBNCJiXqtguIDvvALX36ar6/4cpkfdHakIXP1cc+Ps3iM97kib2xa3TiUWEdhEdwc9NXYLGC0+0mfHb35jMsXJb0ymOPmNyRQnvzE6zFWaAAAAzElEQVSZUsdYyz+3z1WsWP1SJ5U8/bk62D4cq4DxEISTiIjPShUmpuDoIjcYxRbgTGxAECEnGU7IgaaQ36rYFfe3bz6R2K2/f1tixTvvaqyr595dqGhXPvxEYiTu3Xygv+kf/07dlE9qdsXN4JWwBsGPYkQHnJI0JhsFPzjHEp6RWYvgN95q/KpU8asLTrsJxPpwLRt4h96+VMfnyUd6r/a+qrFdv8V52VFRutjTZ7TYV1dr0VcXot/8xmSKk9+YTHHyG5MpTn5jMuV/ANii09BtO2BuAAAAAElFTkSuQmCC" y="-585.269459"/>
</g>
<g id="matplotlib.axis_39">
<g id="xtick_58"/>
<g id="xtick_59"/>
<g id="xtick_60"/>
</g>
<g id="matplotlib.axis_40">
<g id="ytick_96"/>
<g id="ytick_97"/>
<g id="ytick_98"/>
<g id="ytick_99"/>
<g id="ytick_100"/>
</g>
</g>
<g id="axes_21">
<g id="patch_22">
<path d="M 29.174375 851.588883
L 151.464375 851.588883
L 151.464375 729.298883
L 29.174375 729.298883
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p8b09dcf524)">
<image height="122.4" id="image9608c0841e" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHvpJREFUeJztnbuTHNd1xs9098zOY3fxWACkCIKkJLPksp3Y5cBVTp25FCh12YH/RVdJoTIpkCWLlh+ySdGSANBYAot9znu6exxIdrDf71ZdCErM+/3Csz3T3bfv2a765jvnDP7ug+/s4xbDqG6Hogs5LG72O4md9yuN7eYSi4iYd2uJbftWYvVAr2dSjyR2UA0l1gxqiY0GjcRmlX4fxWhtIiKGcI1jOHYQA4nROj5vryX2YnMhsflO15u4M5pJ7I+n7+Gx3+7uSuw7f/5MYtO//2uJVX/6Vxqb3pFYd/q5xPoffFdiq+/+VGK/+MmJxD6p9P4iIn5U6x77ZHsqsaeLVxKbb/Wze8iDCp79sIJ9V+u+Gze6x+4MpxKLiDhpjiT2qNb7flJNNNbpuXknG2O+8jj5jSkUJ78xheLkN6ZQGpUvItbRSWy77yW22qs4twHBLgWJXxXE9nu9yg6uh2IkFhJ0XA3XUg80FhFwJNPAkSgWgng5qlS0GYKIROtFXILgGhHxeaPP/9lPVbT7+M8+0Q/PjiXUH6tAFy+fSmj/+lw/u9WP1gO9v2Hilmm9iQE8V4zRnqj0+TUg+FGM9nufeH4VXM8RiNf393qeI00Nv/mNKRUnvzGF4uQ3plCc/MYUSvNwoA6jxV4Fn5uBCnmgu6AokRLdyAXVwrlzxT36bL0Ht+Ig7/tIKyKBJhUncSj3syQCkuBHMRL86LmswVkYEfEiVGX7dHcosfd/9Fxik9k/SmwwVcda//JMYrt/fSGxi1/rZy/aA4ktdRtHRMSKxGsQpXPXjKD9TZ/NFRWH4EqNiDiEXD0Jjd3t9TsndH94FmPMVx4nvzGF4uQ3plCc/MYUSvMnOxWMTmsVHL4EF1MLwtkKhMEtxCK43DbXkUeQMypXBGwDREAo30xBbsC3+c9KYiEJQST40TrQutLaRES87tX59+loLLFvfHJfYh+2n0kMKqNj8d/qYHz6hToBP621PPXXY31Wp7HRk0TEi24hsVWngiYJviTGEbniHgm79Pxmta51RMRJpfET2MvHnT7/g96CnzHmtzj5jSkUJ78xheLkN6ZQmr88VKfV00st3/zPkQo0ba0iwgYcVSlhieIkgOSW6lKMhDNyc+0ynYWpkt4D+D9Kx3ZUngzCIvWKI4F0WqvbLbekN3XcfK+C2DNw/X0S6vpb/bM+vxrE1Beh4tXP9Fbi3/c3+tlWY8uOBb8FxBetCpokkqJrM9PBSrEh7O1DEPceNbquERFfAzffgw7KfHtd7yHsZb/5jSkUJ78xheLkN6ZQnPzGFErz/t8+kOCDH+uAhvs/0UEOg1aHCOxV00j2JOvfwEF3GxK/iA7EJuzDBv8Hybk1TJTpjjN7AK7BFZlan9uQOITOQrjuVa/luxvowRjBQucFiIBfwMCJyV5VuyHc36+Hul4/B3Hv081LidEQmG3H99JnloMTb9Obj4Trw0af38Oh5tCTiod2fNTqed5r9b5nASXLv2cHqjHm/zFOfmMKxclvTKE4+Y0pFCe/MYXS1N/+GwlOPvqBxD5+qI0ZD76vquLB5p7E6mGi6eUbNC+U76RJJ3DcNqFo32YE523gf+Mo8f9yDHXVdOQus0Z8FHo9dypV0h9CbAJnvqp0HV7t2RJLVucpTIaZwI8UY6gbb8hODb/0XMH1XLc6gnzd6i8Pu54t5LlWZ7Lt5qr4ZNudNfpc7oNt9zGMFv9mp1b6iIhv7PQXm0fjpcSaBvpsrPU7/eY3plCc/MYUipPfmEJx8htTKE39+FsabVV4acA++UH8VD/7/QsJ7bYqAkZEbKE546DKnXKj7MC2SZNvyN5JQiN9NlXPX+/zrpsszSRejkFguzNQ0eZxr7ETmNgyB1HqLnxfRMSyUvHsBHzbH8DAn68P1XpLPO91lHduw8zcmvrfHKyhXHsvQeeZ1GpzPoK9/aBW2+57ocLgkx1f3zsTbUZ690QF0UGle2xw4Qaexpjf4uQ3plCc/MYUipPfmEJputPPJbhfaV11TNWJVH/4SGKPvvlUYu/9TMWdiIj/aEBQA+GMmllS/T2LO+DwguNIaqIGjk3m2O0IbsxJnz8MmLoD88+nIEqSr22TeYnTxL1MQdx7r9P1fn+vYtOjr6ngV49UwPr6Zyp+nYy13v24UeGMnKEpEY8cfjSxp004BPXcug7jSoXTY+i9cBdGbB/Dfp8kGt7W0DC3olijseFIv9NvfmMKxclvTKE4+Y0pFCe/MYXS9D/8ngT3Sy0TjLnG+i/PJdYuVJTaJFx7cxA2rnt1F6LglzmdZwvnoO/L1fHIjZf8TmC21/V5BwS2AzjPCs6xpNLYWu95A8elRpAfwTVSYXQLZczrhd7LtFEr4INap+Z8GCoCXozUHXoNI8SpDDmCJ/mQQ3DT6TW+TUkvlWQTcxB2TxvoghsRo7mK7m0LAuRY76UDwdZvfmMKxclvTKE4+Y0pFCe/MYXSLP/hnyTYLVUQaVf6f2K7VGHi9JUKNM9gOktExGvo2XbRqbBIo7zJfUfklm/OwJF1PNByyw4EmoiInspyIfYuCC8f79Rxdm+oa/Nyp263fzlQYekzkOdorakEOiJiBo61DUyb2cL6nJ4/lNijM72/Dt47j2qNfbPWiTbn0LfwEoTiiIhzeAa0n0hApqlQJPgRa+gdebZXoXILE5yuh+oEjIh4WetzedDqsfeu9DunHtFtjPlfnPzGFIqT35hCcfIbUyjND3/8WIK5gyVI+noNZbrPYGBERMQChi+QGLOB8dI0pIHEPRrRTA4v6q23gD5s8z33vRvD/9F7vca+tVNh6o/+UMdQTz6Estr/upLY/rN3JXYx1mt8FTAQIyGSXfRaqvt6oLGnlYpNd0caeyc09n6nYhoNAXnS6zrQOPQq4SJdgfC2qXQ/HYDImcuu13Oc77Xf3kWn1/gKejWewrpGRDwDofNOA+XEQ4hlDpUxxhSAk9+YQnHyG1MoTn5jCqX53jhviu0B9S4DEWEzyJ8GS0wSYsdtSNzbgAi4hWEjdaXXTULjaq/C0Bq75kVUoSLLu60qWH/wvpZBH/7FicQG97Tv4Wz8Qr/v7FJipzcPJHYODr3rAT+Xq1Zdluc99OaDPUHDKuaN3suo1vJUcj+OocfdMZx3AcJZRMQMBpOsYY/R8+9g7vMWxL0lCNIsPkO/PRCfUy5Cyo1prSLgDI6bwDr4zW9MoTj5jSkUJ78xheLkN6ZQmh9vTyVIE2tJRDgExxEN3aA+ehEsGNF5CBJeaEADQYIKObyoJ2CqDJam977bq4Px+FvgOHxXBTpiMAJX3JGWiT660LU5ASfY84RIljvogqBSa3JKXlW6DgeZE5p34MZMfZL2GPVbRBdpptuU+v+RA5UgwW8zgPHHEbEGZ+IK9tgc9vIInrXf/MYUipPfmEJx8htTKE5+YwqlOV1fSJCGEMwaFffIzUUTS0k4S0HOKBJe0JEFnyU336SGaalwL+QOG4KAFBE4oqGB/mwDKHmOpZbL7hcaa1+q82690OdC/QTpqpvEvVB5M603Qa64FmLX4J6kiyRJkgS/ReL6yKV50+naLlp1O9I90zRfitFepDyg/Ukl5xFcnk7CNzkJt+C89ZvfmEJx8htTKE5+YwrFyW9MoTTkTiKxgpxI7IDLG4iQgs5Nk1bJcUafJecexabgLKThFePE9FXyFp7v9Tuv/k2PO1o+k1i/A1Hrucpf55c62fYShl8sB+RWY5GM1jF3+AkLtvBMqTQahyfrHqPpwgvo1RcRsQAHHO2dJQh+JLCRmJa7NuQCpftLDaQhIZA+Tw5GEgb95jemUJz8xhSKk9+YQnHyG1MoTn5jCqUh9ZLIVYBZIWU1NNfKS2o/NebMrecnNTU3RkpqRMQcrLyfj1Sd3z9/JLF3X2hN/rDWdVjs9NeDL2Eazim0RLiiyTUJhTzX1kpQHfsWzkM9HkgNp2dAaj/ZilOfz7Wb5yr7tO9SFt3b0K9oTcW/KFEfitxf0nocc2+MKRInvzGF4uQ3plCc/MYUSkPiAsagqSc1+qwyGyZGJOqOwYZIsVwBiiDRZg2i1IImEiX+X1KN+bLSazwdq2hzb68W3aMexEaYIn1Z6XlfQAPIs15FxZtOYxFv1xw1V8Qly+8ENLIaxDkahz6DvRgR0YDVeTPS+0NbOVh+SVfcDzKFZhD3SLBLiXi5OUgMoDmq3/zGFIqT35hCcfIbUyhOfmMKpRnVKkCRk2hc59XF02dT9c4duOJIHOz6vOOwthmEKhKgFr2KO3Tdo4TAsoIGiZdwPS9BzKHvHNcaI/GLRoZfgCPyrNUR2zetNrKMYDE1t5acQCcoPL8hvIvuQhPVe3tdmylMioqIWA+0wel4SGur5345uJLYolWRFN2mtD8zXX8pwY/EPRLn6V6G0ArVb35jCsXJb0yhOPmNKRQnvzGF0uSOq84V93IdRxH55Za5zihyF+aWPGLJMgiSbULk6kBYJNGn7zPHiMM60r1QWe41TKQhcS81dpvKcnOnzeBzgc/StKAp3POjXmNPoBL5HohuEREbOM9wpNOZ5o26Ii/bhcQ0knjOtB8yXZK5ZfYR7Po7gHHcdJzf/MYUipPfmEJx8htTKE5+YwoFBT+MgYhA4t6bTCAhgY6chFgmCo46clAdwPehgxEEzQm4y0h8TF3jGktZqZdanqC5p/6GmRNpqEw3d9LMm4AOzUR/vdtQqe7DTtfmMTgYj0Gwi4hYdfqsz/qxxBoQL3P7VpIDlcj9vmQJPMRp75BYTCKg3/zGFIqT35hCcfIbUyhOfmMKpSHn3gTGVVMsVd56m+Eb9CQjYZFKFBcg+pBQknuOcWaMRJeIiC2U1qLIBuLXAQiLVL5L90eusZRgdJuUEBsgfuVC97zpVYyjnok0jIN22BB65lVVQnSDVo/kBaRz55aXp/aEHgiOURidnupP2UJPyFzRlhyVfvMbUyhOfmMKxclvTKE4+Y0plIaEvBnEDivohUZDBOD/SapzGckky0rlmHNw5JHIQsISlltiTHmTabDk3KNpt8QQ+rCRe5Km3dI5qCSXSPeKo3JpfYpUekoTmel61iAMrkG0W8HmudrrflhvWXy+gLU9r/W6W5wu/buLqVi+m7mGtJciEhOQIV9oIAqdx29+YwrFyW9MoTj5jSkUJ78xhdKQ241KWY8gljtQ4TAxUIFcbBfQN+8XMGmVSllJ8EOxaaCfJbdbB8Jnbk/ACC5ZJiGPBNYZrC2JjdllpxAj92NExKTW66GS51zRlSDhbAf3dwVTiJ8NYTBMQlW+gM9/Efr8yXGYO0GXngsMWcaS81SJOEHPkARfEobXkJd+8xtTKE5+YwrFyW9MoTj5jSmUJncgxgj+T9wBEeGjVo970rIINIE+fKehTsLNgQ5Z+LLS8QkXcI5dZu+6HlxfJGiR8BXBguEMXJEk7j2upnocCLGghcYZONhySYlN1ONwWuu95A6XoPXOFU6XUL67hme1pMWJiBsQxK5C9yNdIzkvaSoufXYAa5M7aCZZag1gf0u4ZxJY/eY3plCc/MYUipPfmEJx8htTKKrsJMgtZZzCFNp3JjTbNGJ2BFNiX2noTuiQBRpCQAND3kYQeRNICJxB7FGl4uXHexXTjsCytm90Hb6sNDav1nqBoIelHH4UJ2fiDhrk5U6iJXfnBM4xBnfoFp7VKlVqTe47uEacQgzvRhL8qOfegPoR0lTjzEnHqTheNxxHQrPf/MYUipPfmEJx8htTKE5+YwrFyW9MoTSkFpLyvQHVdA2Wyi0otm3H/2ParcZX0JyR1F0Ca8RBiaUmk7ljllOQJZOans5gfe63+tmTTq/nAmy3d2tV+2/AiktWVerlEBExBWW4gffEBurGU80nb0OK9D149h+AM3wFCnlf871QE1ayNec2eqXnjHX6cC254+vp+1LQvdAvM4c0bj77LMaYrxROfmMKxclvTKE4+Y0plIaEDppeQjbJDdRaLyoVIG62KiBFRCx3KkI8azR2Bg03V9AoEuv0IbbtVKjKFVlItIlITdih5oognMK/4KrVtb3T64EPQPBbNDONQcPTlI2URq/nimTUUDLXOjsFK+8R2MVHoP9ewL5LxXv4ztwR3bRPaB1pHVBopua2Ke0ZHlcPIimJiBwzxhSJk9+YQnHyG1MoTn5jCqWhyTcDEEkOQAQiB9QO9IvL4KaXKxBKftWo2nHaryQ277Vmneqqc6fXkChFzT93PdfAr0GApNii1mukJpXEQ3D9fQBuvl19KLHXA10vEiQjWNyjNaPJMOSopIagBAnIVzCticZ2zxMNPElgpdUmB+MB9GOgkdjZU5PARUp7NvVKrvf6B3TjwnO53tOUKmNMkTj5jSkUJ78xheLkN6ZQmptWxbSuhuklIM5tofHkBsSYi4ZFslcQfhoqTJ11S4nRda87cP1llupS40lq9EiCVgQLPCTGUONKis2gOeajgDHSG2huOtImob+Ekt6z/UZiERGLva4jiYOrTkUkcrYNg9yPei9nMMGpa1QspOk853DNERELOA9xFxqhkvBJwjDtE9oPRG4DzghuHporVL9qtYmu3/zGFIqT35hCcfIbUyhOfmMKpVm0KrDljlQ+Hqjgdwa9wjpwaUVEnFYqDr3qVMi7alXwQ7GJ+vW9xSQeEgHfZLIP9cg7gtjDnX7ngwN9Lkd3NHa8VNFuOj+S2PBAn1WqirmFmtIrEPI2mWXVJJLe9HrdX4CT8wLWaw2C1jrhVqTnfzTQEvO7sG9xTHqji0YiZ24OUYychRHslKTP0z0vYb395jemUJz8xhSKk9+YQnHyG1MozRbEE+IGhIWXIJIMGz3uMjEc4gbcVyQEUWlsbvku9S4jpQsHL2Q6vFLgqOS9urTuQqnuBMaXj8a6XsORrsMT0CS3i2OJXY9ZWHoV+gxWUPpNouum1We1r/WCLnc8tv02Y9hjBD2rCO5HSG5VEmJr6K/XVSCm1boOlFcUo2EqKcGPRqeTAJ3rLvSb35hCcfIbUyhOfmMKxclvTKE0uf3HyM11BaW2JLzcgKMqggcl0JTXXFcdij6ZQxaqRBll1jmCr5HKVmmy8Q1MmD291D58s7l+XwPl19tW74WuGsXQ4JLeq50+63WrQhe5+XIFKDpuBj0Kx7Xup2lij01AMCQ3330QYkHbiy2IcecwjXle5Tlncyf3puK0siQM8vcZY4rEyW9MoTj5jSkUJ78xhYLWOxImyFFHDi8S07qKBR8SJkgAoVJG6meWK6iMQGBjMQVKeqHMN3Xueaeizxe1CmefDFXce9aA0LXXPnNDWFowWcYcnvRz6JcYEfGqvdHP76BnIrj5aBItddfLdWgS5IA7TAh+jyvtZ/hRr8feg4pgmp58A4MzpiAg0t7OHYZCovdvPq/nprJxmhhN5/ab35hCcfIbUyhOfmMKxclvTKE0ONQC/iXglFYoUVx2PAiCOIRBCSRWkMCTKnu8DQl5JBYSKHwmxBgSsObQH/FFpWLaDlx6M7i/EQg+DdwfiZxrGALyouOy2rPNtcQWO32uu06ff64bkwZdUFn1BNx8JCo/hL0UEfFxp5//+lbXgjx1X8KwGZpgXcN154rZe/DopYRPLBGvwO0Ie4cGw/jNb0yhOPmNKRQnvzGF4uQ3plCwpJfqBLcwITaX1NTRXHdSDf+jxrWKGrk99+i43EmrqSEgJJwOBlAaCwNI6DxjEG3QNQbXQnIR9eC7hMmtERHLVsU9HIiS6cgjcoXBXNfm/USvv2+AuPdeo27F61Y//wLWe5d53bSPKUYCcmptSLweQw5NKK9gp/jNb0yhOPmNKRQnvzGF4uQ3plCc/MYUCqr9VLOeexyx63lizw5GdNMvA2T7RPskWC8JOkfuOG5SvSMCzLO8ZtQDgY5bggWZ1f68GnFqJkrXkgJHQUMz0tw9gROSyKqcOUnpCBpwRkQ8Hs4ldnystuvr16r2r2A7beGeu/53v2f65YJ+eYrI73dAVl7be40x/4eT35hCcfIbUyhOfmMKpUFxD4QuHE1NrQBITHsDuyJZeenU+wFcN4gxRK5wRgJNrugSwVbgHfRAIItn3es6oBiaOTKcnkHKdj1utEYcBd9dviCac27qs0DNW6mG/d2O1+HBQxX8qgb2zmu9njXssSU8qzWIqSSw4hrCc0kJfvSdO+oHAN9ZYcwYUyROfmMKxclvTKE4+Y0plCYlLghwXPUWjroIrlmfQIyEkrrS70xNOrnNAYhIBAl2m4rmz+RPOULBEB4BiZcoklHdOApnef0BItJNSm+DzV8zoalJExAaD2ttzHkCU3jubHkfty3cI7Sm2IFwuoHtvQQvJ400p/4J1PCWRpqn+iRQQ9grED9JvB7SWHo8izHmK4+T35hCcfIbUyhOfmMKBR1+BLndCBLiqFFnRMQBxKkhIZnYhiBKddi6UiEXIX12A8elRDIcTU6iHXxnbskyCXk0uWha63jvWaUxEoEiIrawtnQ9uHegSpiE04MGpjBBU9YxTeyBDXHW8P785cu7eh54LtewttSscwdi3LpXwW+TGcPGqKkmsZ2e+9VWpyvNaxUGyUnoN78xheLkN6ZQnPzGFIqT35hCwR5+uZNvSKjKLdWMiBiBiDTGiT16nhkIgySTkAxEJY8LEGNyp65EJIRArE6GqSsgdJGQR6LdEcTuQGwSeWPJI3ic9wQm4uQ+602na0vH0RrS/rzeq6r4KxAGIyL6kcaPQRdeYMV65lQhEIvJufcmE6ByITfmxVbLmOc7FQH95jemUJz8xhSKk9+YQnHyG1Mo6PAjnxxV75Lgg7HE/5gGjh2DMHUAnx/BZw9IlNxrbA0OryE4E98Wcn6RYHjUQIlqpaWsJOQdhwqfhySawjrsoEddRMQQjt3D8nTNoR4H++l6oCOxCRKaSdC67nWE+IvEiG7SOe8kBOjb0IAOKpd9G7CPZcJ5OYRSdBKLqXR41apI6je/MYXi5DemUJz8xhSKk9+YQmmoX1j1Fv8TSPBJ9YSj8kjSU8YggNBU1mMQqqYQW4EgdgjnmIIwhCXHwWJV3y4kRmIOfecR9Gb7fYt7m0QJNA9tUei6x3Ddu1qfP5WY5g4g2YCgdT3gicMk5NJakIuU1qfLLIGn/ZA7gZpKtyMiJrC2VL5N0683QxWf/eY3plCc/MYUipPfmEJx8htTKHnTKyIh5EHZ4hrKN6/aJZ+cSnqHGpvBceTmewCTWh+0cI1gV5w0NOgCBKiEJrUYwH2TiASuv12V2XuQHHBw3ByiCxBdacJrChK6WhBsybVJk3ZpP9GEZxLJyCWZKo2le9zQEBhY221mCS5dD91z7pTlVNk49TOkwTc12DHJHeg3vzGF4uQ3plCc/MYUipPfmEJpyGGUO6CDepKtoXSQhMFUnESR4yE4m/Ya+1qrQtfdSq/nuleRZNnrea/JpZWYTExCEJX0rjq9HhI+j6F8dwaizRYErRsQ/C6hDJaGc0Sw242eCzk3SQTEQSWwjnQcTVTOHvYSXA5+QCIiKbnkNoUa4UN4Vn2t+2G71+dCTsdUCTwJgSQY4pRecA36zW9MoTj5jSkUJ78xheLkN6ZQGhqekDugg2IkfFFPsYiIm532djuvdeDAdnhPYodgTpvAsIktCHlr+J+3AXFnCaWfcxBtIiKWvQp5JO4tWxXeiGnmVN0G7mWxV6GRro8EyYjEhGCa0gvPGkt1YZ+gKAXnoPsbQoxEygjeyyNwwE3oekhMo3sB8ZLu77rXwRm7hOiaC729SZylSdl+8xtTKE5+YwrFyW9MoTj5jSkUJ78xhdLkKvuocmY2XCQbcETEulW1+Xqntf+ve/1V4GU9ldikV8svXeES1NmLSlXqm4EqsfOEQr4A+yzW7sMvH4tWz31Za/PPXKsr2W7fdhQ0Qd+ZPYYaFGn6pYCaiW7hV50+0ViT+gt0sGZYA0+/AEBzVHJ8b2DvrKDnA6n91OsgIpK9JG5Dv5BQo0+/+Y0pFCe/MYXi5DemUJz8xhRKdgNPIiXkyXF9YjIMfH6+Uwvks825xH4+0bHW86GOtR6DSrIDEWkBAs3ZnnoBsD2XrLx03yRMUV+DRavrcAXNGknIoXpwEmdpAkwE24gJen4d9Beg++tJ8KNJOvBc1nAvJOylOALhdEoiGYh748z35RWJinDdJO6lxFkUU0EEpPH1M3jWfvMbUyhOfmMKxclvTKE4+Y0pFBT8SITIHU1MLq2U+4rGg+86dcBdbLXG/1fNpcTa5lhi48T0k9usQJS6hPrrcxi7HRGx7FQIxPHnmc1RqQfCAs5Bbkyq3aYYiUAREbOBCovE9V6vZwV9A8jFRrHhQNcrt5ks1bBHcD3/DTVHhX0yhTHwE9jKezgHNQlNXeNtaN9EJETSTOcm9Wjwm9+YQnHyG1MoTn5jCsXJb0yhNLmCAUFCHomFqXOgsAiuuC2IgNedlv6+yix5JafUCppezjtw2UHJcQQ35sx1QBLkiiNREQVE0DhplPMkMeXmZACjoEEwmoAgtqqgeShc9w7urwPBL1cgJUErImINZbRLaMK6BpGzp9Hw1G8TanpHVd447jcB3YCUb+CUpDJfv/mNKRQnvzGF4uQ3plCc/MYUyv8AoW0DrgkvpxAAAAAASUVORK5CYII=" y="-729.188883"/>
</g>
<g id="matplotlib.axis_41">
<g id="xtick_61"/>
<g id="xtick_62"/>
<g id="xtick_63"/>
</g>
<g id="matplotlib.axis_42">
<g id="ytick_101"/>
<g id="ytick_102"/>
<g id="ytick_103"/>
<g id="ytick_104"/>
<g id="ytick_105"/>
<g id="text_6">
<!-- 30 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 834.147321)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-48"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_22">
<g id="patch_23">
<path d="M 164.424375 854.090647
L 286.714375 854.090647
L 286.714375 726.797119
L 164.424375 726.797119
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_43">
<g id="xtick_64"/>
<g id="xtick_65"/>
<g id="xtick_66"/>
</g>
<g id="matplotlib.axis_44">
<g id="ytick_106"/>
<g id="ytick_107"/>
<g id="ytick_108"/>
<g id="ytick_109"/>
<g id="ytick_110"/>
</g>
</g>
<g id="axes_23">
<g id="patch_24">
<path d="M 299.674375 851.588883
L 421.964375 851.588883
L 421.964375 729.298883
L 299.674375 729.298883
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pb24c3eec49)">
<image height="122.4" id="image5bd4b91c6f" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHrhJREFUeJztncuTJNdVxk9lZj26p7vnPdJoPGOMZQsb29gmAoe8wCwcECzxkn+QNfwBRBCAMMK2CNuSxghLmpe6pzU9XdWPemZWsXDAor/fjbjNhDe63295orIy8+Y9lRFffeec3o/v/eUmMlhsWomddDOJvVicSGy8OOfvbFcS24ReTi96OZcYdVVJrOppbFA3WbEajl1veLnadSexbrOW2CZxfA5rWBv6vqaqJUb3t1UP8Dx7/W2JPRjckNjb1XWJ/WixkNiX7kwkduX2UmLNnl5Lq9spPv1Qz/vzakc/GBFPan0Gk57u5cO1XvfHqyOJPZ+PJbbodB8TvV7ePk7tEdp7lC8r2IuUa7q7jTFF4OQ3plCc/MYUipPfmEJp9qqhBNtQkYRCJIjlihqvCp2HhMFccW9Q5Ql+KVYgNnZrXbQ1iIC5Qk7Q98FyV5lrQ2JoBN83SVAT2BT7PRURrxxv6blBiButVYhbr+i69VpST2oFV36+UUFsugHxGZ5L7v7O3Z/0rFL6Nn1nBR9ewjrSvfjNb0yhOPmNKRQnvzGF4uQ3plCaL1UqxpyBIHICrjFy/ZFwRo6ziIi2AlcciFoECSVNrefpk9st8xqbnsZQoImI/ka/s6vyBL8VrDc5BokeiVIgApH7MSVokojUgbg3DhXJnvRHEhstrkhsfajn3p3O9bydfu64VZF6MmRXHF3jeKPuwrO1xsihSWuTKwLinoV9l3outB9pf5Pgh2IjnsUY84XHyW9MoTj5jSkUJ78xhdL8yaovwaNaY89BJCOmfRVOSICIYNfRMvizFyEBi8SPXEGFYigW9ngd6HgSjEjcm3W6ZgStV40Ov7z7S4mXBN3LKTyrJ5XGuqGu47hVEXB3oqXEJHs+Hei9fFrxGh5A2flkrcLilAQ/EDlz15Zcm7QXh5XmGgnSERHbtQqd25U6Klt4Vju13rPf/MYUipPfmEJx8htTKE5+Ywql+dGNQwkevtB+aB/31Ak46INzq59Znhrslpq22kuNxCaCBJVc9xWJNuSoIoEmIi3SXGTa6f21IAKSEzDAKJlbdkprfRk6eIZzuO7PQ+/vFNbxEYh2fXgXrUB0O4by24OW+0ROuqnEUgL0RUi0I5EU9w7UHVPPRBLxdmp1SUZEXK00fhNi27BRpn19Vn7zG1MoTn5jCsXJb0yhOPmNKZTm9b+9K8FbHz6V2I1/V+EkTm9KaDlQl1bbZ8Guht+eSa3nWaxV4MntU0axdS9vcEYfhKqUsEfOPxI6ySFG5ZYk2tF6vYqOlxJSyYWY61acwwWdQVntObgal1TaDOddgOCXckniPoHngv0oc4fFoOCne4eEvKuN5st1EPEiIu5C+f1bnYqI91e6ZsMNlKfjWYwxX3ic/MYUipPfmEJx8htTKE5+Ywqlqf/qJxLs3X1HYrdPfyqxO++oknoVGlle76mFMSJiDkoncdZpLTKR+w/A7wNSkHFEd8LqfBFswkmTdDLvj8Z7p9R+shvjPwDwnTTt6Rxq5Y/BdkuKPa0X2W7pmiPyx6R3vTwLea7VPHdC0hD+JboGU48iIt4EZf8Hndqav/JtHS0+vKfH+s1vTKE4+Y0pFCe/MYXi5DemUJr6/rckuHn6UdbBCxA1aCRy6hdmBGIHjspeZzakhOuhEdavQq7gE5EYvY1NOPOah9K5SchD++olfMArmBaEFmtoHknMYbJTrmU7t8loyoqLcQjR2lKMJinl9oKge55BrK1YxN2G8J1bZxLb+uaexKr7r2kMz2KM+cLj5DemUJz8xhSKk9+YQmnW4wMJbj57IrGzxyrEHTYam+GMFYZEKBLtcl1e2LgSRJLc2m0S0ygWgb01Uazq03hwEIcIOjc520g4yxW0Ini9lyDazUms6un1UNPS3Dr7NSw3rWtaGARXZKbbkcbFY38IvG4QC2laE7gfT6BfQUTEEWzmyVhr/K8+mUis39G4cWNMkTj5jSkUJ78xheLkN6ZQmu5f/0GCy3/5lcSePrsmsQkMr1lBc8ze5hLuKwCdViCe5LrnuNwyT3zEJprBDTwHNPEHYltw7AglRGUKQtwxjKCewKjq6VqFuAh2+OWuWW7pMLoVcUIOXWG+WxHLoDMbeL4KuZOiaB+fJZ7Ls0aFwA8XuxLr3tVz71zR7/Sb35hCcfIbUyhOfmMKxclvTKE053/3bxL87OFViT2CEd3n4DiiX5PL/MLQhBYSoKi0kiDhpYFYds+1xMSeXShvvdPTyStfCu1n+HoH45zB2jYD9eug1s89qvUaUZxrU25FFRF3G33+d2od0b6C57es9PvI2bbGUeV0jXqOlHhcZz7rXEFzQyJwlbfD6V5I+KQS6IiIz0EIfH+gz/plpyLg7umOxPzmN6ZQnPzGFIqT35hCcfIbUyjNO/95T4KfN+oue9lXsYL69dXg5iOnXASPZJ6DELSC8k8S/HCs9Sbv9w3Lb9Ghx4LfLRD3vttp7O3eiR77mg5emJ2pffLxWIXYaU8/NwABipyJKVfbBvoHXgFBcw+GS6xg+MUJHHvWUxfiCsrBufw236GXOySFPpc7Jj21v3POQcNQSAyNiDiGNXtU67OaNLonhlg+b4wpEie/MYXi5DemUJz8xhRK809bIKiElg6SA6oP4l4HJb2LRK+4GfQqo15xqb55cm7oubYGFyL1zLtSqzi3B7GblcYiIt7aqHPvx1deSOzeT9QV19u+K7HZO48l9uwX6tyawXrPwQFHpMqTOzienHun8PzInUbPlCDRlcS9y4CDU2jQCZUTZw6Bwd6KIEiTm4+EylRvRRQbYc2mIMT2cciNMaZInPzGFIqT35hCcfIbUyjN+91YggPoH0d95nYgRkMWjqCnXETEecLJJNcDZbRdDaJUp8ISCSo7DQh5UJ56p9Iy1gdQkhsR8WcLvZc3/gYmDv/whxLbnJ9KrHn/mcRW8Fs9B8GPBCgakLJdQRPGiNjAQxy36kKc9KYSI6ELh3uAs42ELhSawYGYKunNdQhiz71MrZGE5jb3YKCtuFwd7wXE2Vmle5T6SfrNb0yhOPmNKRQnvzGF4uQ3plCaJ4uXEhyBELQDbrdtKNUk0SY1hICmtxIo+MF5yKVFx+6AS4/EvS+DuPeNJQtLX31wJLH6zT/SDw71PHFyrDH4WaZfarqaBqIk2KaY91Q4nbQq7k3bvOdHkBBLsQbEPXqmKcEv5ZbLYUNiKg2LISGOJvxS2TBc9yIxpTd3IMqi1uNpqIzf/MYUipPfmEJx8htTKE5+YwqlOVmpkDMDQYXKMqcg+K1paEOipDNXjMkV93hAhwpGe+CAuht6L19p9bfxD3tneI07X4F7gf5qm+fq3Ns8fSqx1VHeUJI+ThLO6ym3SpT+khBL4t50lSf4oWgHg0X6sO+u1PqsRrU+qxTU/3EJpeg0GGYNgl+V6ULEISmZpj8eVMLuyVmos5TyhfLAb35jCsXJb0yhOPmNKRQnvzGF4uQ3plAarKGmSTqdWgbp2NwxxJeBbJG5TT3JMkpW11sbVUPvtnrP12/O8DzVtn7nZqLTeTafPZfY8n2N0Zj0fVDIxz19VmOonz9a63W/bPmfi6Ol9heYtTRJSc9NKncD/SGGtVrIbw/2JPZGX9dhG55faqz1KfSMOIH+EnNQzXHfwV7uYEoRjfLOfdOm1H76h4tiufnmN78xheLkN6ZQnPzGFIqT35hCaUh4IZGM7YqZ01AS4lxK2Mj6zleY5EL3MgI37QhGRlc1n7c7gSlHnxxIbPlEhbfHv74msV+sVfz69UBFrU/X2lhzv1WhcbzSz522LF6SbXcJzVHRYg3jwYcwMvrmQKcPvTW4JbFvbLT/wfUOptQkXmMHtT7DZ7UKfvuVip8vVip8kshJtvIeWIjJdY2TgqiZaOo8NEY8s1eC3/zGFIqT35hCcfIbUyhOfmMKpdmGeumU4HCRXDdfqrli9kiUTEg8ockwc4rBz+A01El2dsITe5pPQBx8oiLg4f51ib23UfHrvb46zv67UyHvcxClcpttLsC1GcF140QN4h5N0xlCQ9jr9bbEvhzaWPVbC91P9/p6f3ViL72c6/P6YKDTmX5R670soBfAAtyT1DMgbwUvB+URNj2F2n1qeuo3vzGF4uQ3plCc/MYUipPfmEJpaDoPlcuioy6zlDH1G5PrJMxt4EnXTY6sE5ggRE6w642KJKv5jsQiIo4+U7GKRmo/Abfbw74KRo87deS9gBLcE3DpkZBHIh5NlUmBpbok7oFjdAsabg6hLHcbXHHXeyp83n5N12F0g8XLGy/1euZPb0vs2Uiv8aBWd+FJBw1v4RqJXFcqjgsPfgaUQyS60jPwm9+YQnHyG1MoTn5jCsXJb0yhNFgSCKJdB9NdqGyRywlTJ1dhgmLEeU/LMmddXh+2CYg2j2BE96avsd2Gr6+GiT8k70xg/PVnGxUgSZRcgpMsVS59EXzO4NCLiKBBPnQ8Td0hwY9E5Qr22BQm5Myht2Iz1Asc3Obnsl7qmtF2pD0/gr1IbkW6l98HWNIL50YnILzn/eY3plCc/MYUipPfmEJx8htTKM2wBwLGK/TrI0gEjIjok6ACzi86T+o7L0LDRmgE9ZPeRGJntR5LIlAECyp9uMYWXHUnGxUq5xt2rMl5qaQTHF7kfkyVWvcyC1Jx9DaVjsI10njwYxBDj0BgI6o9LrXu7asDcg7Xs4D16V5BTM3NDeIy+ZLtkoX19pvfmEJx8htTKE5+YwrFyW9MoTSvN1qiOgLRjRxQBH2qSRzbh98eEqZOQ4WgFZT5zqG0cgkiEomA49ASWurX1gdBK4KFSoqRGDOD8+ROWs3t4darQMSFkuyIiBU4/6gcNVeAIhYwVfcYRM4jKEWlpal2taQ6IqJXqeA3hbU4CRCG4bmQy5LKpXPLd0kMJSE1gvceCawk5NI1+s1vTKE4+Y0pFCe/MYXi5DemUJpv9nRgxK21/iZsgX5RZZqYUkW6JDe9gCm4n4JINs4s/SVn4prEQhABSXQbbFjw6yoVppparzG3/JM+RwJb4mCh3uT/zg9BdKV1zB3QQUzXKs6Oe+q8fA599I4PdeDH9qMxnuf0UJ1/x1BjPgHBb9KpWEiTjalnIu2dXDdeSjTNnb6bK7r6zW9MoTj5jSkUJ78xheLkN6ZQmu+pxhL3Kx2KsLcDHwTaVn9Puo5/Y84XKg59sgGBp68iG7kDc6ESzNxhITQEJCJiAG45Op7ck1sgkpFLawXThRuIUflmruMsIr9XHPXmo9LmJbj5KDYGge0x9Fb81eyaxBbvsBD7fKXHPxvpmo2hZ+IpXM+sVaEytScu0ssUUlPuTopTjMRi3PN4FmPMFx4nvzGF4uQ3plCc/MYUSnO/0gEWd++dSGz7DRU1yEjUnqmAsZwkymDH6r6aTNQpdxUGZQyobDXTLUXiHglal+nDhmIMehiVLeijOIKBGAsQ91oU/PKEpdT90VpQP0IsWYZjz8FduOyg1Bpcf4drFd1+OdA9Mu7UqRoRcTTSe3wUuudpAvLp6v/v5qN1wP2QPyg5fzgI5GUffLZ+8xtTKE5+YwrFyW9MoTj5jSkUJ78xhdLUUJS/WYPyvQRleADqIxybooJzb0Ozzh2ood+mZoagPlPNOanZuVOKLkPu8dtw3QNqboojrFXtX4KETNbgNiE103XT+pD6jPXlMMqdngGp4efwD8DTSq24s0b/AYiIGENT0Ket/pt1tDyV2LTV81AjTIL+cUlNSLpIBesVwc1Ds4HXvN/8xhSKk9+YQnHyG1MoTn5jCqV5sdJJJ92+Cg47ExVe6prqxvMFP6rzr0HU2gJdagRTZXBSTaa4R3Xo0OcxSXZzRqqLh3NfA8tvH9Z2XuninEKtPE09mibGgC/gs0uwsNJ0JbKR5o5Yp89R7BSuOzVOm+r0j1udzjTvdH93ME79VUTgOrOPBNnUU9AzIMs3abt+8xtTKE5+YwrFyW9MoTj5jSmU5qOBCks7a41tn6tiMFyTQ08/d6XHwtIABMM2c7IMuctIPCHBaAVCDv0MkoCYnKYCX0DXSAIN+exI3Lu10evprzU2Affj80qfwQGtQ0ScgatuBjESpqjGn8D1yuyzQG7FeeI89Fl6LjQWewA9FWoQmkkYJGi96LypEd259fzUX4AauPrNb0yhOPmNKRQnvzGF4uQ3plCaD2oVcka1/iaMQIjbJmcaCFA3WxaBtlsVJmYgqBzB2G5yrM3XKmpRGSSVZbYgptG46QGIaREs5rQgvCxBgJqCI28B594B49YbKw2u4Fp2oOnlAqYMRUQc91Q+m4JTDkeYY1k1CGfkiMxsokpuvpTDj8aa7zY6xYee36LJ208zcAeuoEEpgQ7UhLBHQmBu41luMmqMKRInvzGF4uQ3plCc/MYUSvNxp73LaPw1TWyhqTlXQNy5OmSRbAdExBbEioNQselZq9d92sJI5UwxpoL7a2uYhlNzrzgcVw3CKfXNoxj9Ku+Ao/Jurfe8IWchjKo+BHdnRMRjODuNoZ52+lxIyCORlMRUEufW0Oexhn2TEsmohHqn0klRNDqdREQSlV+uYNpP6HMhoRnLvhMuUnKcUo9KgoRKv/mNKRQnvzGF4uQ3plCc/MYUSrO/HEuQ3E4kqGCJIogSI+hHFxExSrjlLnIKwtLRSgW/81adaYtWBRoSXuheLjOiO1d4aeD3loTTbRC19jpw1A01tmhBOEMnGd9fbn89GrNNtBUJp3rdWyCmVrAO5FajgSYRvLZUTtzRkBQavFFBD0YQL6c9cERmzuNO9fCjPUbCKeYqPn9jTJE4+Y0pFCe/MYXi5DemUJrPlzqxNLdXWK4wSO6538Uzp7eCwLMCxxK5mEioIiEHjGTYm62DIRmpa6S1IAFqN1T43IEefi08lhcLHbpyCm61w74efJYo6UVBDXrA4ZAN+NwKTkOiIrn5cteQHHq/i+cJsSs4D5VfE5QHKZfeRWhdaf1T0Hkoh7iE2hhTJE5+YwrFyW9MoTj5jSmU5nSppYckDuROoSXxgwSICBaMcqfq5oosG3J+Zf7k0XlJLIzgklcSbhq4RiqXJu/cQaOfOwh1xZ2DcHbU0+t7udFy54iIGU3BhXvJ7R9H5D4/cs/tQUnu9Z7GIiK2MwW/aej6nAb08IPPkauVYrSfaF1Tgt+80+vJzReX9Bpj/g8nvzGF4uQ3plCc/MYUSkMutnyRjITBVyuNJWhYAZUyEuQEvIyD6iKpcssW3GAL6Pe2gM+t4HrOofxzVcPEWriWcxD3jkHEO4ZBHBHcm2+duWbk5qTJtiRUUQ+/7UoFzds9dTXeB+EzIuIm2CIb2I5nsJ8OIPYcnIQ1CLEE5QH1mCSXZATvMXpW6LLEacXGmCJx8htTKE5+YwrFyW9MoTQkDpC0gyWrJO7B96VKeolBrYIKTVUl5xe578jZlHsvVG5JokvqO2nAw3StAs+80vubgejagg60hLLcCUz9JXHvqDvXL4yIExh+goJRQvyUz2WWmJKIew3cfCTufXfOz+X+SO9xNNLncnqmIuJH7RWJPRzo9dTQ1w+qtHHv0B4jkTqCc4v6AtJexIEheBZjzBceJ78xheLkN6ZQnPzGFIqT35hCadB6SyFSGsEafJmfk2EN6m5fFdbX+nt6LNgsF6Byn4O6zlZHqLUGJZXslBFca02qK13jHK6HVPwNqOtzOMcpWnlVwR+vWO2nyUe5U464eaSeg9T+LbDy3uxp7MvQhuDr13XyVETE7e/ovVQ7uu92H04kdvhb/Qegibz+AERujf9lwH/X4BmQRd5vfmMKxclvTKE4+Y0pFCe/MYWC9fw4rnoNNmCwoJLFtq75N2a3r7bWb4/uSuxroZ9rQNQ4hjr2g40KdGOwupIISOIcCV8REcte3rQgrMkGge5sA00h4Z6p8eRkrSLXKVh251BLHsGjt3Mt0bkNJSlWk1BFdf8gSA9GbImtb+ne6fVhhHkL6wgiGTVCPYL9dNxNJUbPYAFCMTWDTUG9EkhM7cN73m9+YwrFyW9MoTj5jSkUJ78xhZLt8OP2jSACwWjpPtToR0S8Obwjsb9ebUvsq+BOW230d+sFuME+Hahj8GNwFh7B9JoTrL2nlpkRM/hs7jQWGgU9gxh5wc5BLJxCHwESNFPTh4iU0HkREpvIXUZ17LQO1Hj0SV+f34MDdYFGRIzeP9JrHOm5Xxxck9jzRlec9slLEPfGrbonyTlJgl+qwWz2hCR4pdeV5qDf/MYUipPfmEJx8htTKE5+YwoFG3iispQtAirUgDMi4vvVVYm9vfe5Hn8HHHnnKiLdfqklmDunuxJbD2G6C/wMrqCsdgDCSQSLMSRqoQgIi0tiHJVqkmRHIhA66hKNVXHCzlqPbzsQJal+F6B1OANn4uFaxb1PQEDea1QojohYPdR7GVR67mcb3TuHw7xy6XNw+FGJd24zWdo3vyMvCWkvtuAE9ZvfmEJx8htTKE5+YwrFyW9MoaB6lSsCcr82/T2hvnwREX8MFaU3Idjc0eO7sYpDg311VbW/1et5vlSh8QWUeQ6h51qd+L3E6UUg0OSOB+/TqGtY7yVcD426pv5xFItIlISCSy/3czSFiaCR5lQa+xn0bxwlxmSfVSrkDWF7jysNvgxweEKZNz1TevaUL5xDr9bXj8apL6Ek329+YwrFyW9MoTj5jSkUJ78xhZKnxCQgkYvEnT0QXSIirq7UdUQ916p7tyXWuwHDGEbHErs21nLgG093JLYDgh/1j0uRW76bH8tz6aXdYBeOzRRnI7gEN/dzNGabXJEkiFHvummoe+5lT0VA6lEXEXHa0+vpg4NxkTn8hMqOc0Vcen44TOMSgh/uHejL2XlEtzHmf3HyG1MoTn5jCsXJb0yhoOBXgRBEgzxIrKB+fSkB4yUIQd2hCnT1Axj6cPumXmOt17Nz9Exid/ZVLLy6VhGQhCHsmRYsvJFTkoZ2UP+/E1ibGvoWzkCUmmf28EvdCwmBNHhlq9bSaJq0S07CJTjlyOFHghbd37inzzQiYg7DVHJZQhksnZuukZx7uUIqibMp6Ny0n6gHo9/8xhSKk9+YQnHyG1MoTn5jCqUhcY96uJFYQW4+KiedgUgSEfFwoILTd97T8t0H91/qNX7zhsR69+/pNa5U8Lm3r30C732qPeB+O8orY01BffhIeCGBpteByEklvSCcUa+43P5xKXJLgik2AtcfiZd0f7Q/r9RDidG+i4hYQZM7mr6M/RbhWFpvdLqCYNuPPMHvMtBzpfwF7dJvfmNKxclvTKE4+Y0pFCe/MYXS5Ip7uTHirGP31Qe19tx7Z35dYjd+9lRiV9+CgRF/8HWJVTs6tGPv9F2Jvbl/KrEPNzr5dQtKRCO4d92mpUm0KtBMOy1bze0Bl1sinHLzEejwgxgJdOQEpesmJyAJg7Te1ysQ/BLvsXNYb1oL6s1H/RpRvIS16WAwSG5PR+yhGSwg44COCkTlnorKfvMbUyhOfmMKxclvTKE4+Y0plAYHCWT2ECNhAqevJgS/p+1EYu/2VVD56n9pD78fPFeXXu9P/1xi1fXX9MSTsYRe/+XPJfbgNyr4/abP/QgPa42fVXrf81aFl1kH00uA1JCNHLDE9DJDO8jNR/3nMnsFjmDwxgDOsQuC3y4cm4ImIC+hkr1X6XWTiEjDVFZUVkul1iAqUql1ynlJgiE9F/rcAqYG+81vTKE4+Y0pFCe/MYXi5DemUJz8xhQK2ntzGwhSDTRNXaGa4wj+F+BxfSax94a3JPa9X6nld/QXatGNG29ATL9vdF8V4Lsf6HW/NlBbakTEfq2ThsaV2pcXPe5tcBFSyKlGnJ4V2UCJVA08/QtA/wDlKvv0hqFx46Su0+e49j7fEkvQeXL/fVj2VJ1fwdScGlR8ur5Uw1v6x6aCfyno+VFe+s1vTKE4+Y0pFCe/MYXi5DemUJpcKy9BNsLcmuUIFgLHnU7sedgHYfA/tE7/a598qCehZoYraJg5gtHitX7uxlobfUZEXIUx5DTRhqbSkJC3A3bhbWhcSZBllBilehOAaEdPkKYPEXQs227h+0CvW12iieqSRDaargTH0l4mgY5iublB4l6VeCeTkEdC5U6j+4TFYmNMkTj5jSkUJ78xheLkN6ZQmlw3H9Xuk5BDn0s1JMTxy1DbTq6/fw516d3/+59KbPi21v1vTvT75p+o0DjrtJ6fh5onHGsg0AyhASRNoNkFx+AWHEvkCnGpZqQkQi0yR3yT2IhjyeHYGWwTWtch1POn3Ip4jbBzecy20sD7ss3+PnBE4r7JF/yG1GcBrnEXxGe/+Y0pFCe/MYXi5DemUJz8xhRKdidELD3MHAKTKqtEIQjGVR8stdHnPw5VrBq9e19i3//ZC4lBFWTsL7T096OBLs9+xSW5Z9AgkUQfmuwzAjEmJfrkQGW1JAJdSQiI5IAjUYsgwY/FYohllrySaLoLU3wiWCSj50L3R9f9KiXUJKSiCJh49iQO0vG5+M1vTKE4+Y0pFCe/MYXi5DemUP4H7OcikHB3il4AAAAASUVORK5CYII=" y="-729.188883"/>
</g>
<g id="matplotlib.axis_45">
<g id="xtick_67"/>
<g id="xtick_68"/>
<g id="xtick_69"/>
</g>
<g id="matplotlib.axis_46">
<g id="ytick_111"/>
<g id="ytick_112"/>
<g id="ytick_113"/>
<g id="ytick_114"/>
<g id="ytick_115"/>
</g>
</g>
<g id="axes_24">
<g id="patch_25">
<path d="M 434.924375 854.090647
L 557.214375 854.090647
L 557.214375 726.797119
L 434.924375 726.797119
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_47">
<g id="xtick_70"/>
<g id="xtick_71"/>
<g id="xtick_72"/>
</g>
<g id="matplotlib.axis_48">
<g id="ytick_116"/>
<g id="ytick_117"/>
<g id="ytick_118"/>
<g id="ytick_119"/>
<g id="ytick_120"/>
</g>
</g>
<g id="axes_25">
<g id="patch_26">
<path d="M 29.174375 995.508307
L 151.464375 995.508307
L 151.464375 873.218307
L 29.174375 873.218307
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p6c5d8adf04)">
<image height="122.4" id="image0d0d6f00ef" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHW1JREFUeJztnctvXed1xfc959wHSZGiZFmW4kccx27ioE0zSCdF2lHaTDrrqH9fx+2ks7ZAUaBAG6RAETTpI3Yky7IkSpREiby870cHKTLQ+n3AZqgYiL/1G26e93c2D7Du2nv3vv3m97fxCrP18tVQzDcaW23WqdhmK6cost5u9Jjr3Hl6vZ7E2l4jsWHXl9hON0jtW4LO3YTGiMVmJbHpaiGx+UrXYBv6bBu4brq/N0b7eD1vD69L7IP2qsS+uR1K7Bt6ifGt7kxiH/5oJrH+X/xQd94/lNDmpz+R2NO/vqP7RsTfPr0tsX+M5xL7fKGx8UqvcbaGdYF8WcL7uU3mQSlfNpAbRA/eO34/jTFV4uQ3plKc/MZUipPfmErpul4rwbanYkVWvCIaEBsiWJgg1j0VOtom93+LhA4ChcqeCi+l87ZwLyS8ZUUbAu8FtCG6xq6hdeZ7IcGJhEWiTW63ej6XWHf/M93wqgqN22MV56bnKmhGRIwbvZ4FCMgsnOYEZHq2xHqTW/u28Mpu4FtNeUnrT2vqL78xleLkN6ZSnPzGVIqT35hK6YaNut3IZbcEFxoJdhdxxRHbpIARSd0sKwzSPRPNltUYOs9ln0UGEgH7IEAN2k5iJPZG8HXT09nAo1jD+s2Weu7xPY01//rfGtvV9/P8f9Vld/flLbjCiKMddd+NNyo20vqTSEbPGx11WZdd8ngReSGXILHRX35jKsXJb0ylOPmNqRQnvzGV0u01WpZJLrRVq64oEknWBUGMIEGFnUhwzKSQR/tSaeWayijhFP2eClURLJ6R8EbKWdaFSGRFIBJ2dxp2xY3gHulpL8AVd9rqlo9XI4ktv9Dt+g/04Zxt9brvQ0n2/+yoIB0RcXc91mOupxKjMvbVNldKnnY/gpBKgl8fxNmIiJ02V3ZOObTs6fPxl9+YSnHyG1MpTn5jKsXJb0yldDfbPQn2QUTIOpuoH12pjHUJggpti735sIRWY9n+gSQCYmnrBfoRZqFjUixbYjpoVDAatSqS7bUq9kZE7PV02z58J6YgdD1pNTYGUfKzrYqAzxpd+89D++g93ryU2IuFingREWcrjU/W6vCjPnwkaGffE4LE2SGsy363g/tfafWZ0fovtpqDdM/+8htTKU5+YyrFyW9MpTj5jamU7js9FfyedioEHTcqQjxvVUw5XatAM4ESyoiI8xWUVkLpYQu99Ep9AV+lB6IUObLI4UeCz2LNTrK2p2Wm660Kb+ieBNdYtsQUS0KT4mxX+N8/ArdiB8ecgV2RYmTQnIDY+2BzLrFHixcSOwURj0rOI0ou1NwapIU8EN1I3COH3mFf8+/WQPsWRkS8ATlIWXC60XfxaU+frb/8xlSKk9+YSnHyG1MpTn5jKsXJb0yldD+Yqcp5AvbQIxjxfATW4KNWFfyHmwme/FGokkuqLanzpF5n7b2k7BJk5SQbaAQryKQC073QLwg4ghzuOXt/NGKdGllGRJwV6vz1epQ13N8Sns3LLbwnoOyfLLQeP2vFjchbtDevuSafbLsH/V2JvTO4JrGP2wM893vrXJ+FB43agD9N9mgwxlSAk9+YSnHyG1MpTn5jKqX76PYzCU7GKvi8P9HYyUJtwI+gFvlnfRU/IiIWfRWmyLpJYg5OP8EpKTl7L1p+12ANLYxZzoqIRNa2S5B4RdcyISt1QSSj2u9dqP3fA2FwB3oBEGdwjvFKreHTlVpV0YpbEOxed/09CX4k7l0Fce9rg0OJkbj3/TlP4fmgp+JnCyPIv5jpuduRivP+8htTKU5+YyrFyW9MpTj5jamUbngFRm+DSNa2Kg7tLtVptT9RYei8pwJERMSnMC2IptzMYRY0i3uwHWg76Lyje4bt1oXZ4Jdp9knCUpOsEc+OIKfGqiW34mmoI5OmyJCo9WZfBawhuMvoOVKvg2w9fknEw+aoIA7i8yZxD6YFkXPvVl9r8t9rrkjsHXDt3So4L6/f0HUZjFT87J7q83m20uvxl9+YSnHyG1MpTn5jKsXJb0yldItzFdjOz1SIm0zVzTVbw77QtHJW+BezgCaO2SkpVDpKJa+v3eG1LdwM6IAkImIjzVafI03dGYDoRiJn1vVXaka6hG0bcNqV3I6vst+q65PGX5NL77cxSSlbDp6dhkSTdA5IzIbjjUGRvg+NPiMiNk9VtDvoVLRdbvQ8uyRy4lmMMV95nPzGVIqT35hKcfIbUynd+FTFipNzjR0FTPHp9H/HCQgY93rsWDpZqWOJnGiXGZVMbq5sCS1tRyJQRESvzQlvHTgYd/v6bKmElsQmur8ZOPfOt1ouWyqDJafdBjalMmF6jssOBETYLluqi2ull1ckO+UItwOxkNyK51tdg4dwkc9h0tOdPpf0HgzAXbjV2GgLawAV4v7yG1MpTn5jKsXJb0ylOPmNqZTu8VjLEZ9Ab7b7fVUMHjQqzj3bqoBxvNG+fBERUxgljKW6JLIkxyyTW42EOBJ8qLy4VELbJV1jIxh+QqWxB63G+jA6ewlOubOePm9y1M1XXNJL4HCQtR5zCgJWVmAtlRhnKPU8zLo56b3j4+l7Rz0PH2dFanTe8bWQWNzBO9HCN72jYSN4FmPMVx4nvzGV4uQ3plKc/MZUSvezgTrJnjUqVjwOEvJU6DiF2HzLpaMD6O1G/dC6Ro+ZHUJxkVLPVyERkESXCHbf0TCHfRhqcqPT3m5UEkrC5wyeLYlf2MMPykEj8mJqduJwaTiIbAclwpdZvxJ0NWDQxPUngY6e7XSdGzaCgnTBeUnrnwX7Fv7GRzPG/E7j5DemUpz8xlSKk9+YSun+vdGy2nMQkcbg3JtR+S3IKSXH0h6Ure6Au5CcbeTcImEpW5ZJzj0S93YK/dWoj9vVTsXLG+DcO+zBPcP/5RWINlN4NiQXzUDcm29Y8CNhisQ4Hp6h+2YnGGfFPRLiSlxm/al8m97l7LtIDkYS/LICaQnseQnr5y+/MZXi5DemUpz8xlSKk9+YSun+a3EsQSr/JBGBBBEqMST3W0TEkP73gJbTh/2p3JbOs9uBqAiiHV03CY0k7EVEXAch71ZPt70e6vrTSARJcZMeTQbR0Byck7sgpJbEy2mj4u4CyrfX69yk3cuQHcRSKrWm6bv07mTdcxcRGzP74hThgvCJDshkj0o6pr/8xlSKk9+YSnHyG1MpTn5jKqV7OHue2hBLVhsYGAAxcv1FRGxgii31GlsmB3mQAHmlgwmqIM7tgSA2AuHsGpTaRkTchqEmN7cqLA1ByyFxj6a3LmEYA/YOJAcbPJvSABIUxC4hdBEksNE58LpB3KMJxhHlEuwMWYEOB34ke1Fi2TBNSAkW97IiIOEvvzGV4uQ3plKc/MZUipPfmEpx8htTKd3pXOv5SWFdgpq67qDRI1iDuw0rrjTdheqvaeQ01UbTdZPCSrZdUvb34ReAaz0y40Zc3YCNFK23GpvCrx5zahQJ9t45/OqxCGgUCetSIqu601o18GxpDboW7NSgzNOEI/wFB3onRPB1nyzHEqOGm1llP/ts+snGqCWyI+izfRH85TemUpz8xlSKk9+YSnHyG1MpHU1YIbGCJpUQq0YFjJI1NDsWmZocklBCFk9qUkmjwftU973V2DzYRjoG0W4CsRmIdlOwP69AtJmCaDfe6v2dw/3N4DmUGkVmBSOyztJaj2By0V4/1/D0Zv9AYu+3+xL7OtirIyKW8N7+tDuT2N35U4mdw+htyg3qBUGQYEd9Ekrjxl83/vIbUylOfmMqxclvTKU4+Y2plI4bLsK0mLWKTQsQ7EhEusxo4dIxs6LUpKeiDV1PqefAqwzAmfar/aHWGmJjGucME5LIpUfPgUZ0T0CoIpGTXG0RPHI628B12Km4dzjYk9jNwVWJfaM7lNgfbHWk+R/PZxL78FtfSCwiYrPUa/yXu7cl9ncjve67qxcSo+dIkCC9SDpQvyz85TemUpz8xlSKk9+YSnHyG1MpHU00wbHGWdcfNBQsOvzS5ZEqsqEISGWwIF61IHTReQdQ5kuxiIhFTwWeOTnyQDAab1TAImci3TPF6J4pVionzZaZZkeYU7ntO50697671e3+LE4l9s2/0mtpf/Ajvkho9vnnf/P3Ejv9p69JbNbqc3gcWg48SYqAWS6SL1to6koaoif2GGN+jZPfmEpx8htTKU5+Yyql24EeacRlJraUShRJMKLJQHRuEqUoRkJHVjijvnfjjbrnIiLOQWVZgPsu67QjwY/uj66btsv2fyuBawUl1EMo36Xx4IcwmPyDhd7L1/9UBb/uR38psfYPfyixiIjt7Fxig88/k9i7/3AisVGXK9WlvpVUQk1repGR5tmJP7issJm//MZUipPfmEpx8htTKU5+Yyql2xtoL7XXTalXX1rwg/3nvaQDDhyH1BOQHHAzEOdoXHgEux1LPfJeJet0XEGZL4l7dH/ZARQRPDyDhLwRuPl2W+2lNwRX5BDu7yoIpN27Wvrbu/GOxgrC9Xb+RGNTdVRu4B2jNZ2TiAuCLZVV06CZ7FqV4H6bABzSX35jKsXJb0ylOPmNqRQnvzGV0pFAk506StC+beF/THbiKbrYwFVFQgkJeVkhjtxXJZGMjkn3QiWvw0bFNBT8kqW2WVdjqX9cP1TwI3GWhnHQvdBUZFqBGbwnm2Mtod188h8S2x5/DkeM2H5+V2LzH2vsRaMi4oJ6JoK4h7EVicU5h2aJtJsv6dz0l9+YSnHyG1MpTn5jKsXJb0yldFc6dfiR2ESTSEc9FXd2QPAZFqaYkuBEQyherqcSG4e6tFAYhGEj5JQjkSwrsJWgkldyMJIDkkRS6rdIkDONSnpLRyNhitxpdC+jBlyWIO+RmHbUqfh89GN9n268/GeJlTi7p/t/8uiWxD4Fo+sESnCpTDsrKmede+Wp1sqa1jXp+vOX35hKcfIbUylOfmMqxclvTKV0V1pVOsiRRWWZBz11q73V6PFubHnQBcmALxoVm+7AucdrFfxIQMz2qSORC4eSXAA6N4mpdN1ZlyU57/pJ1xiVO0ew0DlZaolqthci3csxiMW/7HSdu/ENiV37N+it2PJ37KjTZ3Z/RwW6Bxt1Ep6A0IzvCZVLJ/vttfTOFoTBDc3nwEEeORHQX35jKsXJb0ylOPmNqRQnvzGV0u2A8EKC3whi10Dwe2+jx/t4zn3vrvY0/iT0mKPhvsTO+loyedqfSIycaZdx7pX6EZI4SOLQZKXCGe2bLfOlPnooLK3BmRa8LlkhbwplqyQi4kAU6pnY1+f1qNuR2KjT5zAB12ZExAkMWTkF8fIctqM+fFRK3sIkYBJ7G5ioS2IhOSJ/ddBkqS6V1cM1+stvTKU4+Y2pFCe/MZXi5DemUpz8xlRKR8p+P9mEswVV+QBE13dHOiY5IuL6TY1fPd6V2PlCp7Y86usvAM8GatHEaSqg9pJCTpNrSHGPyE8LwglCoMTTulDzT7qewUZtsrOePodSfwBS4rH5JNwLjSCnX1fol4KXK/215iGo/fRLSKkRJo3FphjbdnO/XBDYHDU5Jntb+EVpTVN34L2ld5marfrLb0ylOPmNqRQnvzGV4uQ3plKg2rlQi4zbKX0QJUYjFVgiIkbXVVjanagQtDvTg14BQYx6E9BoaRKg6J6pVp5skhERDYhfbU9jZOek89B103SlEYhf1FAS+wiUpjCx61fINj2dr3Nj0mlfuhcS/EoTpWh/il1khHlmX7L3kkCa3a4EXSM1VqX3yV9+YyrFyW9MpTj5jakUJ78xldKtQXDoqBaZmkcWnEivsl7z/5jVucbHZyranUBzxslWhUGqi6dJQySw5ZseFqapwDE36IrMje0+7PYkdqO7ovtCc9NpkxP8Ss1NcdpMUpja9ED8Stah48QlEAFpDbLTjEpcZKLRq2SvG58XPNfS80I3J0yF2oXJRxTzl9+YSnHyG1MpTn5jKsXJb0yldBMowVyDiNQ2KrIsQdyZwL+TZ2Mt042ImH4GU1vWKnTdGah48myrZblLaq5I5ckQo8aM2ekzEQU3IGxL7rR9KFt9uzvQWKPPcXer53gJjVGpTPsiE4myz3EB5ckkFuKUooJ78lXounuFe6HzkAOOxrbT+mPDTRLyYLusuFdyFpK4t9dXgfxKp7EB5LS//MZUipPfmEpx8htTKU5+YyqlO1lpHz0SpVYwRaSD/x33QPgKECV+hcbvg7h3P3Qc9/lWy4SpzyD1LqMebtkpPkUxBkQkKsGlsuPbrfYj/KinwufvLfX+dkFsOoHzXgWxaKfPo9OfwZj10w2sAYxJp3JZFMlQTPvNe+aVoHWh3ow4kQj6P/L90XXnrg+nKxVE5T6sIU52Sn7T/eU3plKc/MZUipPfmEpx8htTKd3pUgcl9EEkweEHrYofU4g9bLRktcT5Fo4J4h4JNEPqXbbNjbomsJca6JkRLCwdtOrcu9VqWe7HIO790UzP/cH+C4kNd/R5jU9V8Ht7pud4e6DXEhHxGTjE7m30PTkG19gM3hOCxlDTO3ZOI81h7al0O4LLpa9BufSQSqPhel6u9Tmcraa6L4iFNJyF3mMc+BFcyoyl1vBs6Tz+8htTKU5+YyrFyW9MpTj5jamUbrxUlxaVVs5AwJi2GjtrVfzYKQh+WeGNBBCaYnsZyIWGYsoFHGc74L56r1ER8Hu6BPHxzecSO3xfN+z19dnsn+l2V45UONt9otOPIyImQ12vL3CQS65cltaKnjcdb9nkSm33wNUYEfFmp+7J98FReSPA1Qqv53Gn7/yjvrpkj5dnEqMpxCQMXmRoB08Xzr3L/vIbUylOfmMqxclvTKU4+Y2plG66UsGBhlXMe+Tw09ikVWGJyg4juLSSnFokGJELkRxQ2fJdEkSy/doiuNSThKn+Vq9xSCWhUL67PIXBKbsgnMG/9MFIr6/0n/8UejOeQPnuGMp8CewJmewJSA492u4t6HkYEfHtVuO/v9TrubmC9YP36aivgu0duMZPBxp7CHnwfDmW2PmKnyuWQcP7XRoso9sZY6rEyW9MpTj5jakUJ78xldJRmSFBrj9yFw0gtmq5Px4NuiBx7yJ9zuTccD0kzhEkfJYm287XKrycgkj2FETSu9DjsHdyKLE3YYLxwb6eY7gD4uxUxaZnPRZiH4eKwC/X6tykUlYSSXG6LAi2uB2IhdehJPc7IOxFRPzJVNfw42tPJXblOgyBmer1PD3WMujdpcbWAx2wMqMSeBiaQ27aCH5vt5v84JVX8ZffmEpx8htTKU5+YyrFyW9MpXTUD40ENpxECk4wgiaRRkSsGz3mEibMZksUCdqXhDwqJ6XtStCE4DEIfg+hF95+p6IWueLOVioi3X6h212d6XlnC93uqOP//TQBme6FylGzw09I8BuBU27YV1HysNHy3Y9WPIDku289ltgbPwB36M1buvO5CppXfnEisfVP9D25v1FRcgRrSo7W0mAYgt5vwiW9xphf4+Q3plKc/MZUipPfmEpx8htTKSiRojoPAiQp5LTvpqDMU30yjTbG7ZJNDkmxRxspjD9uYLuL/AJAvQSew8QXmmjUQqPPTQdNS1e672yq252AlfqTjm3OjxfafJJqzMnSnFX7iSGMU8ex6zA26daSz3vtuxrvvv89ifVuvCWx7UzXanT4icRuP3wgsYMjtfy28O5Q7X3Jun6ZX6TIBewvvzGV4uQ3plKc/MZUipPfmErpslbCrNhwEWtiVhyk7UqWYT2e0gNbMtuAU6conxuOSSLgKdR0Pwf7K7lxl30Vvx5udcMHMPnmZyudChQR8WiuFlaa7JQV9+idoBhZfvdADL0BfQjeHejUnIiI7kMV8npvgpX38E3dbgGNNE/0mQ0P70ms/wguhkTzC/SqoJ4a2Xp+OqK//MZUipPfmEpx8htTKU5+YyoFHX4k7mWFvIs44HACySXEPazxpxBN4qHR2xAi0SWCnWjUK4HOs9iq0+48NPYEzvsc+h9MeirEfb46ldi92TEcMeJkplNkFtDold4JWv/s2O4RiHvXGm1a+t4amnq+oW68iIhY6DG3D+/rduOXGgPhbXvyQmLTpypAvmxA7A1obgt9ILI1+pfFX35jKsXJb0ylOPmNqRQnvzGV0pG4dxlQrCgIGOjcSzbmvAx0jTi2G5yApeujbcmpRY0+ZyD4kevvDCbpTGHf5ysV7J7MVdA6nbNINl+pC5HIutM2IH6hkxNiHRyvD0Ls+Zk29YyI2P9PlUm7hyraNVdUGIyhCnmre/ocf/FQXYR3RrpWx0t1IY6hVHpZmChF+YJl9ckc8pffmEpx8htTKU5+YyrFyW9MpfCYE4DLb4lcb72IyzmZsk7CrOsvey+bUgkllduCiEglvTTqetrkpuHQJJ3ThQp5YyhPvYiwRGTFYnIHzlYgaLb6HJ51GnvQan/De+N9PPf25xobwQjzrq/X0w30mb14qpN4fj5QYfD+Rkt/X6xU8JusdToSuk2jNOo89/2mY/rLb0ylOPmNqRQnvzGV4uQ3plK6yzjqUATEeR95F2G2TBT3TZYip493yVHJVNJLY60XILzRs6XtpiCcLUFgQwfjJUtHWQTWe16BfkXX3TUq7h23OkDkzlAFv4Ohji+PiJhMrkps75zEL72XIdzLS9DIv9jR5/0Seh5eZqR5REQLg1f6UC6NOQ1r4C+/MZXi5DemUpz8xlSKk9+YSukuK/qkKOhmNAWXXEzUNy9bTkrTdzsQTrJ9/S7yvOgaSeCZQfkuuQNXa4iRkJccfPLbICsC0pRlcgKeQBnsZ42W5MIcj4iIeDbUHoBXYMovvaLDrUaX8GyfbFWonIGTk9YFBelCwlC+EPTezmCisr/8xlSKk9+YSnHyG1MpTn5jKiVd0nsZSg4/Et72+tqLbbfT2KjVnmv7nTq/9hrdl4ZkUGnlNCnEReRFNnLpUZnv74K4dxlI6KJ7oWfzZKF99GhNIyKedlqCOwDBD4eNwHYtbPdio+8ODeOgPKDhJZQXEREdbEvPjMRUKt/2l9+YSnHyG1MpTn5jKsXJb0ylfDmCX6E0dtSpLeutnUOJvTd4Q2ONCjk3Qo83B0HkKFSgedJq37uTlcZIBIxggYfEQRraQWTdYDgkI1le/GUJg5cZDEPi1QTWj55/RMQ59DgcNvqeoLMUvo0kutG5SdjlHnyaghQr7Y9Tnwu9GV/FX35jKsXJb0ylOPmNqRQnvzGV8qUIfiVIwNiHgQwftTqQ4TsrFW1o1MFRq9GDnt72utHz0tPprVm8ImFpus31bKOJteTyohg9QxILqVy2NI2XxMHLkHUhkrgXode9hM2WPRa5SBBbwztBQl621yMJbNm+jE2r73GppJfWmqB7IdHVX35jKsXJb0ylOPmNqRQnvzGV4uQ3plK+FLW/ZCMl++vZWpshPt+qKv2gVUWTmiuOe6D2wvXsQO32QU97ASwbVsJJ7Z9D00RS2EnlpsajVwc6lYb6GpC6PlmpJfasp886ImKy1G1f9y8AaEuFXyR6G6j7h/WjJq8l0BLdg18k6FcTUvaTE5Lo1wMcx13IygH8gazcpRHfcj2prYwxXzmc/MZUipPfmEpx8htTKa9d8KOa81I9PwkTL5daQ//L9kRiy76OXt6lSSwwdYX+41FsAMJQv2CxJOGFhCCKEX2w8u731YJMdmhip1FhsAQJsQsQL7P9ALL1/NlmlNnpShH87pFNetXTe86KkiQC0nVnBb/SvZQae8r1ZAXI1NGMMV85nPzGVIqT35hKcfIbUylfisOvVBdNdcskTJB77gyErkGj45h34P8bXc2aas5hOxL2IlikoXvJuq9K53mVbOPJNTgTh1BLHsFi4xJEpGyTUYLeCbpnEvcuMqWIrnva0z4L2eaYtKbYoyG5fujQw74GeRcjT+yx4GeM+X+c/MZUipPfmEpx8htTKa/f4UeNAguuuKwbkBpcklhIDr8RNDMkcY8m6SzJ4VWYDENTW+i6s644co1N1ypU0fSZATUoxfamTFa0e93HYwfc5aYKkfhFDjgS02hfKm1GFyLKxcoKlqVUPt1sct/qrAPSX35jKsXJb0ylOPmNqRQnvzGV8n8/mLANfdUBVAAAAABJRU5ErkJggg==" y="-873.108307"/>
</g>
<g id="matplotlib.axis_49">
<g id="xtick_73"/>
<g id="xtick_74"/>
<g id="xtick_75"/>
</g>
<g id="matplotlib.axis_50">
<g id="ytick_121"/>
<g id="ytick_122"/>
<g id="ytick_123"/>
<g id="ytick_124"/>
<g id="ytick_125"/>
<g id="text_7">
<!-- 31 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 978.066744)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_26">
<g id="patch_27">
<path d="M 164.424375 998.01007
L 286.714375 998.01007
L 286.714375 870.716543
L 164.424375 870.716543
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_51">
<g id="xtick_76"/>
<g id="xtick_77"/>
<g id="xtick_78"/>
</g>
<g id="matplotlib.axis_52">
<g id="ytick_126"/>
<g id="ytick_127"/>
<g id="ytick_128"/>
<g id="ytick_129"/>
<g id="ytick_130"/>
</g>
</g>
<g id="axes_27">
<g id="patch_28">
<path d="M 299.674375 995.508307
L 421.964375 995.508307
L 421.964375 873.218307
L 299.674375 873.218307
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p5140b31592)">
<image height="122.4" id="image06db60355b" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHZ5JREFUeJztnUmPJddxheNl5htq6hp6Yg+iaFIzLQowZAOGYXhjeFh44T/gjX+kN9oYNgQbBizJpESZosRBbLKH6pqHNz8vSHlR57tAFMvWgvd8y+jMdzNvZnQCp05E9P7olT9bxRUuFpOrobhcTCU2Xy4k1vYaifV6PYlFRFzO9TfPZ2OJTeYziS1XS/zNzNr9ppPYWn+QOm4Vsl0RETFdzCVG+7Nc6fkrisE69Ht0LtHAcxl2fTx2rdO9uDO6JbE/XXtVYv8w1nW+99YzibXr+lzOP9H9/uCTXYm90x9J7FnL74M+lYgF7O1pT/f2xVLzYH95IbGTxaXEKIcW8M5ivgTnC70TdOxef1Ni243uma5sjKkCJ78xleLkN6ZSnPzGVEo3WaqYRsIECQvDVgWjAYhkJWid8TwnGDbJ/7e6ppUYCV0k7vXhXLrm0rFEVqCbgbjXC10bRSDYr7bJC7HZ63m6VKHrP4Z7uvbb9yS2NVCx92Kqz+BFT8XHw1bveb9H0l7EeKXXPYM9G8P9na70Gmfwe/RMSdilPZyiJMnQOuvdUGJrPX2/9yz4GWN+h5PfmEpx8htTKU5+YyqlIxGCxAoStIaNCgvrrQoQJZELBb9WRRY6brEEtxSIWoOWhLycuIfCWen/SwhnBbWsCEiuxtUydy7RFJxkdN2zpQpTz+enEnt7oMJSDNYldH+u78my1XVfgI76rKci9bOlOkMjIs5XOUGbXH9zEPemsA/TFcTgOBTX4T0uge93T9/lHRD3Xgndb3/5jakUJ78xleLkN6ZSnPzGVEpHjjwSRPo9VV42WhUWtkDwK7niSFC57FTwwzJYcHmRm4/uj8ooiWXSPRfBQmB2HRSgINYsqfwzWdpcEPcIEiDJ2XY0O5fY+yBATft6jfcH+p60cI2nIKY9B3Hv5UJLbSMixiCyEfSsaB/onSXRnATSGZR9Z920ESxek8B+r9HYt2aaG/7yG1MpTn5jKsXJb0ylOPmNqZTubl97s5FI0oDQRaWDIxB85gVRisSKzY5KD3VtFErIkZfskYa9+ZLOuwgWG2ltEi8DxCG6RnoGdM9Zx2AJukbqH3gR2qfu+fRYYuSAe96uSawP+3UJ7yL1zKMekyXIzUlOOdrbrDjLIqDG+Pr4m0yO2r1W3ZOvL7UM+gerM4n5y29MpTj5jakUJ78xleLkN6ZSum+22xI8aFQ8GYNoc1OyrkESv3CICLivsoMScHAGxIoOP/jNDu5vAeJnzoPGkAi4gOvOilIlSBCl/WGfnTJe5gS68UJ3ZwzPvuQipedCvScDSofblZ5L4iWV6mYHrOBQGXDyRUTc6lQkfdio4PfdsV7ja28dSMxffmMqxclvTKU4+Y2pFCe/MZXi5DemUro3l2qx/bhV6fMZTC85TTZHLJlNScUndfZGdfHQIJEUcuwZAFdONt7S+VSWTWsTpVHgmXXZqqwhUqSL68APLHsao1Hg84YaYeass/RXnWxdfETBYk33AvtIz4oac45h1HzWfk41+mut2nMjIna6DYk9hsacrwy0sergvq7jL78xleLkN6ZSnPzGVIqT35hK6b49BdFuoPbHUxBtTgLEGLCvXqeBZzZG02tIwMqKWiickU22KTTMzE8m17VvIO5lyYqAEfk9a5ovP5EoWxefPrcw+YZESSLbA4HWpueCwjXU6ZPVeAtsvBERtxuN3wLhdDLXl/H8fRA0cRVjzFceJ78xleLkN6ZSnPzGVEr3YE2nrnw825HYsoHabahjvgTXX0momsCx5OgiVxVNkCHRh2IksNFxWbEpggU1EgdJ9CGBLes4o9hqlRPisiPEP/9NcMVRjT+55yBGzzQrAhKle8k6KrPr0D5kG6uSO5TcfLeguWlExA40zCXR9sPQ81984BHdxpgvcPIbUylOfmMqxclvTKV06xsqsA0PQbwCZYHEvdO5TlOhppUR3EASHX5wHAp0SbEJxaukc2u1ZPGSjiXBj0QfEozIIda0ueNmvaRD7xqCH55Pk5TguUxDxb1sWTWBzVILbsNsiXhWbCQhLztdKXstA2j8GsETjc5BiH8PKoJ1qLm//MZUi5PfmEpx8htTKU5+YyqlW8xBhIADB/D/BAk+NNGEpq5EsMhGcF/AL+/SI2GJRZvU5RXXwWlBsI9doyWYJAzSGiSatuSeg725qSsuC/cjBEGsMJo6Q6nPI01NovsjUZlcpNnS3+u4J69C4vrn16PP8BjE9BMQWPdXOk7dX35jKsXJb0ylOPmNqRQnvzGV0n12tCXBy07Fii1oUrfX6njgCxi9TOWbERGzZLktimlUvnuN3m5XIbHpJqJNRH489EanY8n7IPjR/U1ATCUhdRbg+iuKV19+cErW2TZIipxZ9xwdVzqWoPN7UBqdFfxwDRynrs9qDKXyERGnLTgl4bqPYej74VI9fv7yG1MpTn5jKsXJb0ylOPmNqZTupwPt7XUGZYI0k+IhDBFosM0YiyT7yxOJLW7Q2y1b5kviDolNJLrRFNrP41++Z9t6S/3V9PdICJqAuJMeQFIQQxc9jdNesEiaEwtpb0gEpHPp+ZXesRsN2bhBjJ4fidl0XIkxOA5HhfLfDP7yG1MpTn5jKsXJb0ylOPmNqZTul42W+hFDEDXW4f+O3Z6KV0fgBIyIOG213x+WUULfPBKwsIcfijs511i/VQFqSIpmsFhFIhmVmFKsJGBdJTvhlyiKZMnS6AHIwFknIAlxVJ5MnyfarxIofib3LOtMXGtUxB30cmObaY21wrkbEB9iqb2yBdfoL78xleLkN6ZSnPzGVIqT35hK6T5bqejWwf8JGyDukNhwCoM8qK9fies4nq6S7cOXLdWlayERLyJiBEJgH8QhAvsR3mBi7f8H2YEoJLCRkEf3MsdhIypUde2Xd7VF3EwExEEe8J7Q4A2KrcPkXZzGGxHbIPj1oez4DByaE+j15y+/MZXi5DemUpz8xlSKk9+YSukOFyD4gTAxBrGBBLGzlfbwo8m9ESwEkYiEk1GTMdJxsj3gshNZI25W1pntC5ee/Aqltu1SY8ser0siKa2dFWepp+Aqud/ovIT3s+R0pHvMlvkGiGTUj3Lc03e+S5b+0g4OCi7J0QqeIRxHwz2oHNhffmMqxclvTKU4+Y2pFCe/MZXi5DemUrrD+bkEqWb5EtR+Ur4nYO8tTSDJjujOQsowrZBVyEnNLk2AIaWa1d2ctRR6qKZ7AVBzzEXz+xnRzT0V9DhSw6m56e2+TpTabrVx7BzU7IiIk4VOqjkLjdH5WYv1JUypwkk8DVjfW1i38JeLc7D90rEvYTrPy4Xmub/8xlSKk9+YSnHyG1MpTn5jKqUj6y2JSNigMmmzLNVKo50T6pN/H5DFNluvHhHRwv+jVONP56s8EzHHkdqwbrLJZANj10v9AbJ9A3DPIEYC4gCao+72NyX29f6OxB73dKQ5jdOOiDhoYVz1SpvWnoJodwzW91OIkeV3GhojYfAMBMmjQpNY6g9BQuXZXH/zYqH37C+/MZXi5DemUpz8xlSKk9+YSukmCxVEyA2GbqfklJrSFBecVAP116Ua+quUxLirZJ1bc2o8CXsTweLlEFyRdH80IYeEHBJOKUb72qMifRCqIvINLlGwhd+jseYkSm40Ou3pdk9df9+c67mvzdhFugXNLJfQFPS3vVsS+9eh/ubPZvsSez49lhjlFblfCR1cX4Z6YszgudJx/vIbUylOfmMqxclvTKU4+Y2plI5EGxx/DUJVdspJaaRy20IZLZbl6jokxlFZLolpBIlcJAKW7pkcfkNyQKLDL/d/cFbQJLL7GpF/riTE0jQdcoKiCzFZSry90Ot78+sv8Nidv7mr69zeldj3f/K+xO7+057Ezkd6LrlkLxfq5sOGtdeYzETvclaoRuclrmKM+crj5DemUpz8xlSKk9+YSulIeCEhh1x66Z5yBcGPeuSNGnVfoTgE517MtWwRe9fR/YFYSL3wsm7DEiSy4SQe+H+ZngGLkjkRiGIRLCzhNcKekbg3gt58w0LZ6lWmcH8N7OHW9/g71v7V30mst31PYv29f5bYW0/+RWI/+OWrEvtNty6xo5n2zCMhNTu+PCJivsgdi4I9vXe4ijHmK4+T35hKcfIbUylOfmMqpSPhBXuuQXkqCTnrINitwbCBiIg+DrWAsd9LFfJIRKTSUSqNpXOpFJkoCX5j6M92tKBr1PNnhYETV8Ex4PB7JNiNocS0JPhxHz4QP2FtEklpb+m9oxJoekdGMAWkfai9/iIimkff0dimuvRWr/xG13lDhbzX3ta93e5DT0HYGywRJ4dfwZWadV5m8ZffmEpx8htTKU5+YyrFyW9MpaDDbw1Eu81WRY3dRmN3etqHbSd0jYiIEYhn1OXsk1bFoSmIZBOYBjwGTYsEKNoHEr5oQENExPH8QmLnMCghO/yEyA7JuE4pcpablBOTwErC8G14nx4v9dk/7NQ91xuqOBcRsTo7kBjKaVMty6Xxwm1yH0jcQzcfiHv0nCNYbMbWjHQy/KS//MZUipPfmEpx8htTKU5+YyqlI3Fvr9uQ2CuNCiqvhop7r831/5MHcxbJ1kHe24chDc1QhaCXjU4iPQA3GPVIm4KQQyIZiVw0EOHzeM6lR9Np11vdR5rwm4XKnUksKrkVSUQiJyGtky393oTn/DD0Of/hRJ/Lo28dwQXqhN+IiOX7/ymxHjyD5XvvSuz8FyrYfjzQezle6rtYEoavgn0Lk70MS2QnJfvLb0ylOPmNqRQnvzGV4uQ3plK6Xeg/drdZk9hjEPe+MVMR4duh7qv7D05x8f5IRbI7L/R6xpdarvmir6Lkfqtrn81zYkzWPUcCYgQLhtlegSTG9JN9C6knIN0frVuC3IAk5A3BeUkCMomXW3Dco6WKaW9sHkps/Q2YflyY0hvvvCOhxb4Khuc/1Xf0p796ILFfrGnp9tlM3zEqbSZ3J+11yU1J7yiVDpODddSBkI6rGGO+8jj5jakUJ78xleLkN6ZSOirL3YGee5tLGLABAkTbgLuoZQGjv6Ei2R6Ua775sQoYR4tbEnvRaex8oWLM8UzLb0kky/ZcK9EHkS3rgMs6/KiMGQdswLo0eflzoIcjiFVU5r3VqVi82ahYPIDvzhpcznAEQh5YEJdPwfUXEdMnWqr77JdbEnv74rHEfjLSZ/3bhb6fxBr0tyTBlpyhpd6K9LxIWNzq6zO4N9iG6zHGVImT35hKcfIbUylOfmMqxclvTKV026Gq8mgFdfFw8mGrxz2ZqdLYPGeF/H5fLZVrD/TYx9uq5P7pf+nv7fdU7T/qa002Kftcz0+NMPO11mS9JMWXLJ50jWTlpWk/2Wab9BeAEmQ3pqk7pOyPYBIP3csx/KXoxYHW6a/9Qi2/0wtuEvvrZ69I7CdDVeLfH+h78mylfyk6X+lfH3Af4C8h3D9B7cKlZqtk76W/KuyA9f1rndV+Y8wXOPmNqRQnvzGV4uQ3plK6OYgL454KXcdw8hIEv3aldsO7MxZjyN7bf02Fid5IBZXXBvsS+5Mfay+Aj0Zq5TzucvZenJySd/eioEZCF43PzjYEJaEyO8q7BAmG9JskaJJYRaLkCaz7EYiKG60+008/VDHtAN7FiIh31/S5frTU1U9gutI8+bBp4hLZbhuwyF8H+k3sG5Acde4vvzGV4uQ3plKc/MZUipPfmErp9sHFNATRbh1EhBnU/d+G4zaG3Fxx+AiaVN7f0wOhLr67r3XVj9bOJPZwpa6/D1p1IZ7BBKBsw8TSsdnjqCafBDaKUZ09CT50bqk3AQl0JOSNF+pOe5nsd0DXM2113TEIfusd9HeA9zgi4vlCxd1TEPeIrEhKYvEFrHEJ+5UWmoPFYnqGl0td5xn0IfCX35hKcfIbUylOfmMqxclvTKV0H00PJEiCEZUozlotHXwEAlSJFYzKXp2oaLc6UdHm4l1tzHhweU9iS73sGCQbZqIgVtCzFvAPdH56sk+y0SeN996Aslo6dw7CXkTE+VLFKhKwzqA56nwGJcYgVNH1XHS6xkmna1CJ8LRwLxcgfpF4SdezWulzma5UoDud67t4OtPYBJyciyW8DwWhsQ+fahIMqUEtiY3+8htTKU5+YyrFyW9MpTj5jamU7vlEi3XJNXbWggNuoMLJTqfC2bsTddlFRPT/TUWajZ9rf7bDlyosvjd7pLGRCiWfhAov42R/PHJ4Ndfoe0fQOlnn3man6uUtcCuugfOSJKSSz41m0lCJMYlIkzmIWsmyY3I60hojGA3eFr5jJJ6RuEfnkzBI10hj4C9murvZMu2SszA7Rn7e6DoX8Ab4y29MpTj5jakUJ78xleLkN6ZSuvOpihUT6As2aXNCDgkQlzAeOCLiV7NdiW3uqzBx1Og6Twd6PYcrFYcOl3p/ZxAjYWkGwmDJfYX91UJjeC4IUDTqehfKW7caHdpA4tUMHIgTcKuVIDfgbKHnZ0tUF9AncjWH48ABR89lBMMrIiI2wAFJbk5yDc6S5ck0UpvEPRoCQ5CzMCLwU92jY2EZylV/+Y2pFCe/MZXi5DemUpz8xlRKR8IExUjUoBg5oI468oxFfNDXCazr4E4jnWQMYtUY1p7AVFUqwaSSVRKbBi2XLNO0VJreSuIeleDeBufe3Z46/Dbg9xbgTDuF/VrBVNyIiFMo6aWyYxKRsi40+urQfrcgDFKPwWFhsi3vtz4rckXSO4buwOSQFKhgvxYkNmfXpunS/vIbUylOfmMqxclvTKU4+Y2plC7rOpoucgMDKEa9yyK4B9x2py42Elmolxq5y0iAvJiroFW6xqv0wckXwddI5babIO7daVTIexR63KOlrnEbXHGTBkqbOxUqS27F00bdjjilFwuFFRKgaO1sjKbiUgl0BDv8dmG/t0LPPwfX3wkMdyF34bTNuUNJIKW9jmCxuV8QoGVtEOf95TemUpz8xlSKk9+YSnHyG1Mp3U170l0l26csgoWNGUxqzQ6cOIdeav/XfeZKUL83Yg1EpF1wl90Bce/BTK/xcaNuxR6ISJsTFVLPh7puRMQT2G/uZ5hznGF/xOSgEhLySGDbAnE1ImKv0fg3Qvfi0ULXPgQHJDwqfPZ0L/R+kkv2OmXjJH7iNF+o8/WX35hKcfIbUylOfmMqxclvTKV05FgjwSALCTlU0hlRKAmFtVHAgHOp1HMKfeZIlCSnVdflevBF8D1SjzyaJjtDgUZjUxCCLhcqiHVQBrsEDanUwY+uEacLJx15VDncNiDugVttvVOH3h6Ugj/otnSRiPhuT4/9y7EKvm+8+lJinz3RYTNdpwNkViACkuD3onciMSolp3ex9Jsk2PdIgIT99pffmEpx8htTKU5+YyrFyW9MpTj5jakULAYmxZ4gFR6tnIU/HpC18Rxq7RetKs1Uu09kGxxG0r5agtRwnHIDNkuaDHPS0037pK/38nSlavgEzn0KY5s/WJ5JLCLi5exUYtlJPNi4EtYgqyop+3f6qrj/QX9HYt9fqWU3IuIvpmp/fvPvLyTWfk1Hvg9+9LHEXn9X13k51P4AE7CpTzvYQ8iXkkU+a6cmMA9SZxpjvnI4+Y2pFCe/MZXi5DemUrrsmO0sJAKV6pNJHKRjqQknCRgUG3bqvSSrI9ZVJ6fURLC4l7Uv44Sdnv7eQU8Fo2OYSHQIE3f2JyruHc15ktLpTEUysklnJ/aglRfq9Kl566NOBb8fLtVi+7dras+NiPjaP+oY+OaHfy6x1dMnetzgI4mtwz3vrlS83IbC/wNoJkpNbGl8eQS/39kJQvTe+ctvTKU4+Y2pFCe/MZXi5DemUjoSurKCX6nuOMtyRa4jEAfBh9jAVBpyjZEgQmIT7QM5rUqCH038oXXG4JQ7BSFvDL6406U2I325ULfa4VzFPRLxLuf6exF8L/ROZMVditGzGsHo7L2exl6f6HN5+NcFV9wP/xiC0GT01x9K7OBDFSAPW73uCbyyuTlYNwcbq6JD1yO6jTFf4OQ3plKc/MZUipPfmErpFsucC43ICn4lh99NQBEp6XYispNmaNpPRMQliHHZdWjcOB03Bqfj6VyFPJxcBOJeqSya3ombuPmy70m2eesSnv3ihPe/ffcdPf/JC4k9/5Hu2c9O7kjsfdUf49PQtQ9X6rI8h2adWWdoCRKll1DSTb/pL78xleLkN6ZSnPzGVIqT35hK6ZbXEBe+LKUx4H2Y0EJTW4atlkcOG42N4LgW/n/DyT4gfpHwRU7AiEIPPziW1jlu1aVH4iVBzy8rGJV6NeLUHZrEROfS6G0QAQkS9y5C9/DTTn/v43/niT3b72lZ7rPneuzbvXsS+++Brv00VBh8udTYITgvTxcqzpKbkt7PCBaBqfyXBFb6TX/5jakUJ78xleLkN6ZSnPzGVAoO7ciSLdUkwS4iYr2vPc3o2LVWbVVrUP5JIiCO94a+aSScXUdMI3FvDmIV9cK7bNUhRuXAJIaSCJR9LqWhJHR+SejMrEPPlARNEqrGIFR9AgMxfrzY5gva1/hnfX2GT0DI219p7AT6I57C+3QOsQsYSDPG8unCO5Z0yqLQDO+dv/zGVIqT35hKcfIbUylOfmMqpWtBoMmWYJK4Q6LUxkCnmEZEbHYaJ9GOxL0NGIAwABFpCoIRDQHJlh2XSoQX4HdjcRD2FrS0m5QikzewbcEdVhCW0OFHvfnAzUfPfwSCbR/eHRJnz2EoyZMeDCWB+4tghyANNTmD2AWUadO7QzF0jFJZLU01vsZUa3KhUpnvzIKfMeZ3OPmNqRQnvzGV4uQ3plK6tU7FmGxJaHYqLrnVIvIDNUYgAg57UPoLv9fB/2+Ldk1jyR51JUisWi2g/1xy0AUJQbTfVC7NIhJNaS2InDf4JGSnJxMzKneGMljqe1d6Y2kKLvVbzAp01GeQhE8UrkH4JHGOBMSIiDH0YZyBoEkOQU/pNcb8L05+YyrFyW9MpTj5jamUjhxZJEIQWE4K4kdJQCSRhX5zAOIe/WbXU5Flt1En4N1GBb+jVieyftocS+x5T2Ol65kvaB+Tg05KYtwVSmW5ueP4//7mBn0dSfgkga5Z6fVMA4aIwBaiow4Gn0TwO0bvNwliJPiSwHoLnKpbnb5jfRCkJ3B9VA4cEXHc076AJOTye6f4y29MpTj5jakUJ78xleLkN6ZSuutMBL0KiSRUdlia+ot970AcovNJBNwCwe87KxVjdpcqNr1o9bh3BlQizMISDV+gvmmrUr3mFbIOPxJ8spSeS9bteJO1CXLF0VAKur6SSJ0V97LQM6CS5VuNvk99OHcO7yw5WiMi+uB+pevBvJx4aIcx5guc/MZUipPfmEpx8htTKU5+YyqlI0WaoJrzFVg06bjFIv8XhexkmJ1uQ2J3Q1XXt0DlvNepffLpWNXZ85FaNPe7TbyeM/jN7N5SI9QR9FkgVZmgv5hg88fCX3oonv2rEDWUJKiXAPVyIJvzddR6+qvJAv5Kke3dkLVTk825pbp/UPs3IBYRsQNW9V2wpT+F5rafxoHE/OU3plKc/MZUipPfmEpx8htTKSj4Zcc+r5JTXK4F6EVknZ2BqLUN/5fd684ltrsHddEvdd37SxX39qAXQETEAdRvjxfacJEEIxphvdNXQXMLGo+S+HUKTS/PYNx0SZyjeN7KC8fBMlnbbnbKTXHcOIjSBAl0WbJiYQvv5zrY1EeFb/KQ8rLR9+T19pbEftPXUeX+8htTKU5+YyrFyW9MpTj5jamUjqZ7EOTIyjr8imIMugZzPQJITDvu670cztXt1BzpcScLdc+tYNb1CJowRkSsg6tqvdMYufno3F1wMG6BwwudciAiUSPLi7mOpY7I1/Nnx5pn+z7QNZKATOO9S0Izvnugz2Xvj9ahyVN9+K4OQLBbh3O36MWLiPWVnr8G99KGPv+vN3ck5i+/MZXi5DemUpz8xlSKk9+YSumwMSMOPKZR0HBYzuAVERFtUjCiJoxHM3Xu/Xyg03S6kTqb7qzUATUZ6oU/b1SAukyWHEdErDUqIvIIcj2ORKQOBCMaQb4Jv0ei4lHoHkbkHWvZ46iElj475OSkNVahjkjarxLXGb1+FRIbt2Bvt+gZBAmDeUfsDJILetFGdiqUv/zGVIqT35hKcfIbUylOfmMq5X8At6d2MdkgKTQAAAAASUVORK5CYII=" y="-873.108307"/>
</g>
<g id="matplotlib.axis_53">
<g id="xtick_79"/>
<g id="xtick_80"/>
<g id="xtick_81"/>
</g>
<g id="matplotlib.axis_54">
<g id="ytick_131"/>
<g id="ytick_132"/>
<g id="ytick_133"/>
<g id="ytick_134"/>
<g id="ytick_135"/>
</g>
</g>
<g id="axes_28">
<g id="patch_29">
<path d="M 434.924375 995.508307
L 557.214375 995.508307
L 557.214375 873.218307
L 434.924375 873.218307
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#paecb3281bb)">
<image height="122.4" id="image7df9f5d84e" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHrZJREFUeJztncmSJNlVhk+EewwZETlVVmVXq0chCSGT0ITJjAVvwJpH4DHYseEB2LHiAXgANrDQCgPDQGoTanVXt7qqVUNWVWbGPHkEi0Za5P9d7GYnSBj3/5bHfLzuJ9zsj/+c0/rWgx/t4wbbfXMzFHWrktig6kms26oltg85RUREVK22xIbtrsSOWnqeqtWS2BKue7nfSqwTet4OXMtkt5bYxXYisYiI681cYqvdRmLbnV5js9vlbbfX7VqwDu3QWNXW++tVHYlFRJx0hxJ7s3sqsYeVbvdW9CX27a2+Oz+oryX29vfHeo1/+IbEWieHEts9fi6xiIjLHy8k9sGTBxL7aU/f2w9auu/PNi8l9nx1JbHFVt8dog/P4LBzgNsOK13bDuQlvSdryAN9I4wxReDkN6ZQnPzGFIqT35hCqUkwICHuAIS440qFiT4IfutQ8SoiYgaC2nKnwkSrDaLWXmOLvQpsKzhev60iy0HodXdhbY6rgcQiIvZ7FTWnDVxj6D3TvrngviAC3oYWCIYkiB4ErA98T863+gzO3ppJrPveSK9lBOsN4mVrqGJYRMTgXEXEs6dLiR3t9NxtvT1cb4rtMsVZipG4HhHRg9yiZ7UDgb2C5+IvvzGF4uQ3plCc/MYUipPfmEKpa1A1SMAgkewQREAS/MgpFxExgfMs9yuJLRL734RcTHQvTagY06n0d5DuhRyIERHrSs+9BIcfsSPBKOGK/LKQMERiUwQ7MukaazjmaKexs0qf6ejrIEp97R29mJEKcTGdSmgPImBERH2s7/fZmboxH75Q8fqo1nc+JcbdBIU8yLUe5NWgrY7WiIgD2Jao9roWaxDI/eU3plCc/MYUipPfmEJx8htTKDUJGCSIkWCUS5MQr1bgyJtu1X1FJYq5ohS5FUmMWYOQ1wUHW5VYB3JKtuE8KEDS/WW6/uheqHyXriUFreMayqUX4NwEU2N0Kt2uug/OPRL3VioW7p5daOyCS62bmZ67DULuSei7+M5OXYOf1FrGfFmrAEl02nreUa3nOILS3YiIwxaLzTdZBpSxQx74y29MoTj5jSkUJ78xheLkN6ZQ6n5LXUNLED82IPjMQLCjPnrjnYp4ERHzRsUciq0bcO6B4Eei5EGtIgn1KKTS3/oWwtkK3IVrOGZubz4UL+F6OuAaIycZCZ/U6y91PeSyvN5r7AX0W7xYqXvu3Y+fSqy7/UBi26fqxpt/nueyi4jYrvX5T8Z6jQ2sxTFUoj+s9V6e1Spe0vPrguA3BDffAATJiIgjyFX6eq9AfF6DiO8vvzGF4uQ3plCc/MYUipPfmEKpT8BNNIayTBLEJiDOEctESe4GxC/skQbiHg26yHXUEeQ2pHOQGBYRMWtU1Fw1ekwSggi6FxLtcmPkBEyVDZMgOt/ps75sdKjFYyiD/WlPXXG9f9ZhHAf/qu/Y6+YYr/EmZxWLylVb73G+1WucQg9H+jIewXYDcIfO27pe5ALFUuuEENuD53q412PSG9q0dB385TemUJz8xhSKk9+YQnHyG1MoTn5jCqV+2FK7YhfsoVehaipN3MFeAAlL7EGlKimp3C0oEl9DzTLW+EOM/mUgKy4p+ym1n+J0HoLUeRJ80aJL+wL0z0VqdDr9Q0LnHsMI6wuwpn5YaWzR12df78GKDT0rT+F92Gx4rHWv0ftewjdvCg1cF/AM9qCakzqfsk7L8eAZpJ5LhyzI0KzzAJp1buFy/OU3plCc/MYUipPfmEJx8htTKPVXAqbuQN14FwSfK6obBmtoim2lYswcRMRuG8TGltonVzAhh3oBkO2WtiNQnAuutSe4H4DumxJ9crZrQLDDPgIgAkbk9wOg5q9TsLVewPNDQRNGsWPDVBAQh2BzjYjogCC2gmcwh8d3BdbgS+jbQJOZeEx2HnXimzyAezkGK/4BvDorC37GmF/j5DemUJz8xhSKk9+YQqlJMNiB4BMwLaQHItf2FqOlqangBJoUVvAbRY66ZaNi4XKrMRL36HgkzpEYFhHRhTpv2pYceS1wjeX2KyDIoXebMeC5bkUSWKkB6wSaVA4rfc59ELQC1msD1z0FsfC/DiARcu5NWnrPz6GR7S+bse4LfQ1y3aZEnRCVB5AHJzs9Zh9ic1gff/mNKRQnvzGF4uQ3plCc/MYUSj0FFxPJEl0QYx6QO/AWo7yvWjTiGVxVoYIKCVDkYqPteEIOjcnOF/woTiXLqf1vkltOTDFah1xnYWpbErCoDHoKjUx7bRX3TtraOHYAjkEqYyXIwRbB4uAlinsqDJO493x9LTF6BuSIpHJ3crReQ7PUiIjrSoXTHfgGT6EZ7TGUQfvLb0yhOPmNKRQnvzGF4uQ3plDqpy0VB6j/GLmvzqGM8r019PBLnPxRV4Wgixa49EAUyR7lTROAMqfmUO9BGvkdEXHe18kyJ7VOqqGpLeS+o5HotA7jrYqh89C1IcdglXAMYh9FeIq0jrki4KTWezmE/n81nHdNDj8QiiMi5iCykbj3pJlI7GKjgh+5GkncI4GUJiFtG409l8gX9ODdOewcSey80et571jvxV9+YwrFyW9MoTj5jSkUJ78xhVJfgJuoT04rKOk9g7Z371dz3bdO9PVbHUroZz0YngBC12qrwguO/M4soyRBqwu94h6AsBcR8fu9c4mdwJoRVAZNsRk4t16Ae+4FudBuMbQDh1BklhMT5IBDZxuUc5NDj9YmJV7OQWR7tVMBcgyiJImXJM624Hoohm5MuL7UsBcS4rtdzdVRbySxw7EONfGX35hCcfIbUyhOfmMKxclvTKHUlyB+DEBEGkDp4Ab61jVQBttNuK96IICQ2EgiC5WtUlkuCjQgDpGgRW6+N7os+L3bVjffCFyRJGCtYH024EwbwjOoaz0H9YojEY/careBBCjqUUgOuFmibPUmg7Y+gyH1eYT3LiJiFfqekHBK5ba55JZa0/tJouIWSt0jIiZtdXM+3U4l9m/wTlz2tITaX35jCsXJb0yhOPmNKRQnvzGFUo9B8KNJu1WlgsrPOzCld6vC1zChK11oS7K43s/03DjoIq/slGY50HZ1pfcyqPUCByA2RfAEVepnSL+2MGMBh1WQKPkg9Brb9YnEaPDJJYhFERFLmGJMbsDcyb0EiY1UIkzPiqb5Uql0BAu+NPm3C+XEdH8rEAtJYKV7IeceitQJgRzLpSF/n0BJ74uWioX+8htTKE5+YwrFyW9MoTj5jSmUmnrhbdsw6AIcUOSU+gjcgalfmIbKVmHSLgkvVG5Lrj8itzdfH4Zu0DVHRCxhEEQPehwStD68ZjBRme4FnIBDcMpNkiIZ9AAEYYoukgQ/fH5tfX5HlZadnsJwjyMolU4N96AhMEt4l0kwpFLyaYBATr0jqaQ3s6ya3s8IfgYLyBd0v8J5/OU3plCc/MYUipPfmEJx8htTKDU6rahvGogI16H9+qgnGbmsIiI6MLGWnFZEr1Jhkct89dx0XpqoS9ut9tC4MCJeg/hJTrLcqbNUYLqG6BLWewzXMqM+iImSXixHzXSxYWk0iI33a+0z9w6URb8Dk6DPYOJsnWjVuIDP2zVMpn4K79MC1vFqow7U3xa03vQMF3sQAeE98ZffmEJx8htTKE5+YwrFyW9MoTj5jSmUmmqECaqrpn03EENraLDFk2royR7aAxvxHiRftjWCWgzKPjEDO3REol4aflqH8G8G/QJTo88p/NNwDcruZaPXMm70n5nUs89V9lN15zcZVvpM369U7f/eVpX9b250vU/7arFNMV7puV/CPwijjsZetgcSew73ktvAk6B1pfc9BU4Bgn+9aDt/+Y0pFCe/MYXi5DemUJz8xhRKnVsDTyIENh8EsShl76VtSZigc5Mdtw8WTWqamCvGkCCW2pfuBQYaxUlbBaMu/AZT34AJ2U1htPT1VsW93LrvCBahCFoLWm+yOb+512dF4t475zpuvA8dYddztoXvr2BS0UrX++FWr+drXRX8Xna1OSpBfTIIWuuU+ExxEuJb0OC0suBnjPk1Tn5jCsXJb0yhOPmNKZQ6181FZeg0jrkL9dz7hBOMBAxy/ZGbL3fCCol2cxgPTVNqct2PKV7B9VAj1IPEFKCbUE3+EkTANTgBc5s63gZ6T6hunCZAUVeDCt6THdTuL2e6XtMxjH+KiNfg8JtBg9NjWJ8/Xena/l51LrG/72vj0V+sLyRGvQBu846RuIc9MUBppj4L/vIbUyhOfmMKxclvTKE4+Y0plJpEMhLyaBJLm+ZfAyRURLC4lyvk0YQVLIWEEAliEYk54jnnCHYxLsFVN4a12LTB1QjbpaYFyb6Zz7SdcjomJsZ8WZbQZPKipc/gU3A/rl7BuwjrMCY7ZURcVXnft+/WE4l948+PJPbD02OJ/cFfqsvyr3sqDP777lcSyy2/jUg04dzDuHHIK8xfPIsx5v89Tn5jCsXJb0yhOPmNKZSahAAU4iBGohsJS7RdBIt75ETagNBBk3P2uzzHGcUIEs5ovSLYaUWg2Aj6Tq7w2Qd3YAMCYlPllTFH8MQmIiXk3oSmyjzZaZ/BYUf7+l1T6TbcyiZxKVP4vB3B/oOBirOt73xHYp0/+TOJ/fDVX0jsj/9GR4s/gfujUmvqgxnBQmBu2Tk9K3/5jSkUJ78xheLkN6ZQnPzGFEqdK+7RmOU+lNqigJgSyeC3Zx0qxpFDjNxzJKaR844ELYrhqOpEfzvanwS6ZqfHpJLnHYyR7oGLDcs8Yb1Z2M0v6SUhltYCRSl4Lpc7dcVdgLjXA9ffGdxzqjB2Dmu7h0/eq2vt1/fWx7/QfX+kZbnt731fYj9Y/5PE/rGnI8hfVeosTAmuVEJN672C8nQP7TDG/AYnvzGF4uQ3plCc/MYUSk3ONOqZR5NWj0CMGYLjjIZSRERswNp2Cf31cBBI5nCQ3AEdue6p1ECL1Q4GJWQ6BHcVTBKGfbewXiTEsbiTV/oZwYJhC85D5ajkxuSSbI1RGfMASlaPGl2vWaK8nKYdkwj4M5jI+97fPZLYyenf6klW+s4eVPru0IRmcnKuodw5gp2puaI0Cc3+8htTKE5+YwrFyW9MoTj5jSmUmhxiJEKQuPewpcMKHoQKfv1E6efrlgoY41DnXi4sful25KAi8So3loLWdtDRdSRBbACOygMQYokKftNZIGUxFPv94dQWDdUwEOOo0vfkHAS2c3h3HsByH0Lp9iIh+C1beo9TEM4+rXX/H3/ypsS++1cfSKw/UEfdx/s3JDbbjyVGAmlqkEeueE15QANy/OU3plCc/MYUipPfmEJx8htTKDW5+QYQO2qpAPWV0NjXYfbFAASaiIhPOyosPgGxkYQOnAYLQkluSS9BriiKRbCglhrwcRMqlz5uaw+4I9iOhLhZSx8CXcsM3JQR+ZN26dyjSq/7AYh7D+B9GoBLkkapvIJBHM/AJRnB4h5tuYDoRx09z4vFGe0s/LKr573c6obUw2/d5E/urdrgIs3sJ+kvvzGF4uQ3plCc/MYUipPfmEKpT8B9hWITCHFnjQo059A/bAgCVETEpNFzj0AEJGFpA0673BLcDg0ggRgNuki6rOA86LTKHJIyBNH1HohkPVibOQ38gN/5lPA5blSYonWs4boPwQlK1z2ARnpUavuq1vWeQMc+ikVwmfAplJ0fQOnwCq7nGfVbhPPS9dD7wBOV2a1I4jXlBsVIkPaX35hCcfIbUyhOfmMKxclvTKE4+Y0plPq80ikihzAZZrSHpo4gFm9AaZzsuQ491XTxJjgeHCyMNNoYHKO4b64VN6X2kyUTG1fSueE3mFRqUvaP4bkMqJ4fHtYGRnlH8D0uwWhLVt4TUPvpfSIDKvV3+Hw3lxhN+6kT37HzSq3FffinoQ9qP439bkA1pzaodM/32vrv1rij15d6x8h2Tf/CUI8AN/A0xvwGJ78xheLkN6ZQnPzGFEp9kjlhh6Y5X0Pwo64KHSScREQ8bYNNE0Q7nDZDdf9gxyVLJAmIZLslSHRJkTuxh0aY90ESI0vsISiatF4tsAs3pNhGxB5q48kyTE1dyco7gusmu+kc1nYMPQfmO62BH8K1RPBakJjaIZssvDskuvZALBzA2k5aeo3TeiSx1FSoaaNCJ43j3kCMGs/6y29MoTj5jSkUJ78xheLkN6ZQ6g25iUCgW0PsNdQsb0HoIFdURMQMxL3LndaSr/a6HY2MpmakRO4I6tza+4hUvbvuT664M+ip8DY0R/3qVn+rT7cq5OzgXgbQ9HJf6zkiWAjswb0MQAQkUZKk1CW8E8uAe4F9yRF5m68YbduDV7QDQh5dDx1vBflSwXMZgUC6rtX198W580bQVyCc0nQmf/mNKRQnvzGF4uQ3plCc/MYUSv1qrw6qCkSbDUgdNMUF3VOJctlV5mQYFDXgmOT6I9GOGleuQVTMnewTkRD3ahX37tVaQv1OqOD3LVBYv1FNJHZwqG6uxVKFz95GzzFPiJfTSvcnoYtccSQWzuD5XUP57iIxmvomNTz73JLsiHzBj2Jj2PkFlEZftPReXoJbcbbX55c7ijsikQdUAg954C+/MYXi5DemUJz8xhSKk9+YQqmfblVEInJFt2Nwqx1gl7NIOAlhW/iJonOTW4rERuoBN9+oGIPjkxOiFAmL5DgcQgn1KQis51C2enJf3Y/dPlzPpYa6Gy0nJUErIuVsAyEPZMBNohz1JnNYxzmIrgStNbn+vojnlfTShG+aM/USxL2PYEb3s+1MYjQSPXfU/H8Xv8lBpXlAa+YvvzGF4uQ3plCc/MYUipPfmEKpX6yvJdiifmZYJqoi0gh6qbUTwzlICGzBtnsobx2RcAaxFQiV4wBxDwS2+Va3S1FXUCYM60iuQRoFPYW1WczySpaJGs5LIleKNYh7Y1gzggQ2EhBpbWhfehdTLlIW/PLYwmu7gGu8AiHvCgQ/esdo1HzKWZrbj/KgDSPRIVf95TemUJz8xhSKk9+YQnHyG1Mo9WSj7iQcNpE52Zb67VGZbkREn3rAQawPv1H3QsUv6h/3vKU+rfkOYiDu0aCDTsVuxdzJv1SsOWtp9GWt5zmdq3uy29VrHB7qvdyH4R6XcxYQH9d5g0BItCNI7sVBLCTFwc4k+PUSMh4P46DrUWoq84Xj9cE91wEhjsrGG3j2TcIlSfdNMXLzHYAY7i+/MYXi5DemUJz8xhSKk9+YQqlJ1NonprfeZAnTQMdtFRBTE3CP4KdnCIIfiUNzEEquQFB50qjT6tVGy5hp2ik5qm4DlUGT+DmF2CsQFs+2Ktrc2+jaHj7QkuUR9Grsz7hXXA3iWQ3PgMqTb9PD8Sap4S43ofeBri8iogfnPgDxc7SDCc9wzBGUOx9BKfkMStup7HgNk6pXIEhH5Pf2azL7bfrLb0yhOPmNKRQnvzGF4uQ3plBqFrVA/Gh0O9qXyhGpT1lExLLSaaSHUHp4RUIJCWdQWvl6M9XjrVUEpNJKck+RQBrB/f5I6JxByfMYYi9A+Bx19HjHU13D+gUMxFioKPUSypAjeKDGFp41CXkDEAvJAUdQ+TWJgCQqDhLneLDXdXxrq+d5e68i6QYco9MGBrF0VPhct6GXJQikSxCpySUbETFr9P0mcZDeRdrOX35jCsXJb0yhOPmNKRQnvzGFUpNrCLQ9hMSvDQ1jSPTCm1TqBuzDwAES3shduCShA7Yj6BwkaK62CfcVOMSIPgzyeA2xmvoeghi6amnss4mu4QSO91mHxctfgRvwGsTUHohsJLxRWS31N8wtEabjne5Z8HsXHtc3u+rwPH9XY+upHnP5q/sSu4Spxm34rC5A8FtD/s2Cn8trEIFfQ6/A6QaG0kAO+stvTKE4+Y0pFCe/MYXi5DemUJz8xhRKvW1YWfzS3OJw87YqkNQoFE9D/1KA4o7NHkGdrUCepeNRE8YIHp9cNWQPVSWWmj3S/U3bKl0/h38KOnAvC3gwNGkmIuKq0X9h6L4HMBlmB4+P/gchxX4FW5K9tweq+fGOv2NfhXHsb39Xp1T1vvdQYruXY4m9/w+67/X4nh4PGrCu4A+cDdzfJfSqiAj8VI9ben/0LtI/AP7yG1MoTn5jCsXJb0yhOPmNKRS09+aSa4ndJxphkj14FSpqteA8qWPehCbskLg3qNUmS+dIWZXXjYosdH+5Y79JDL0EcY9EN5ykBCLQDMTHL+J6bnpPxiDOTis95iU0s+yDyEnQFJ8R7DtKvMYP76ltt/eDNyXW/s63NfbiucTOHv9EYl/5l6HEmq3W/S/AYj2F2DX3IsXa/wmIs/MN1P2DLd1ffmMKxclvTKE4+Y0pFCe/MYVS70DIoVprgjQWEsmoqWdqW94wb7M2CF04whiEqgHUyndBWCJ3YETE9XouMeptsNhqzwFqHtoFoZKuZ5V53SQ+LnZ6LRHc7JHFSxBEQai8rnRtcG1B0DyGJq/n0Byzl3hHhid6j63TY411VaDb93Rt62NoUFpRw1O9lktwP34OE3se7bRGPyLi0/Urib1cqQuR3jHKc3/5jSkUJ78xheLkN6ZQnPzGFEqNolue3pctxP0uIXcgQQ42Whtyz0WwQIfjz2miUeZ2uQIpTUjCceEgSKauh5u1gkMTGqaSAEXrRc1bSQSkMt/2bcapT1WA3D/+VGK7py8ktnqq63i5VWHwsYbiP1p63kebK4l9vnytO0fENUyaWmx0bfF9gvXxl9+YQnHyG1MoTn5jCsXJb0yhYF0liQNYVvt/TPHLLf3dQPntvKXONBLEUvecGt19k1z3JPYPDL0emnJDohttl5oydBfBL/fdoePhdiRe0j0nhN3FRAXD4SdaqhuhseUnKqY9/vBUYo9gRPfH0Fvv5xt16H02v5DY9UqFwQh+b+8iDPvLb0yhOPmNKRQnvzGF4uQ3plDyGqklIPHqVv32QKPJFSvoPOS+oxjtm9vLMLUdOgQzBdHcvodYlhtclnsXSAik68nu/5ipC5OgReXF473e8wX0CYyIeH4xklj3J+qqWy81FZ5e6Djuj+A8j6Ck99lORbtXa+0nSMM0aB0iuCz3LvjLb0yhOPmNKRQnvzGF4uQ3plBQ8CNBjMQ9Gn6BDraEqY0Eox12BlSoD1+vVqfVqKO92agPH/WUo3tJiVwkTNGADhqekDtxmATE2wxJuUluufNdoT6KFKN1uN6ocPa0rX3rPuxCDW1EnNbaA3D2mT7/FTzrzzv6Tjyu9BovQHRdwIANdCtmPuf/DfzlN6ZQnPzGFIqT35hCcfIbUyg1DbogckXAW4lId9A16LoHHRV9zrqHErvXUdfXoKUiUKelouIGRJuIiMlOxb2LjQpTr2MqsSX0uKOfZS7BzRuSgqW2CSWWxNTc94SEvFw3Jt3fZK1TaOleqGQ5ImLdVZfeZ5WKwLQWk5aKsxMQ8paRV86NDlQSzRt+Lv/TQqC//MYUipPfmEJx8htTKE5+YwqlJjGGRJu7kCpFzO41BkJJB0SpUa1Czltd7bn2tUpFwDf26uaq4fKu23wvT2A6LUEuNroX6o9HJb3Ur28NJaHknLyN4EeuSHpP0HGY2T+Q1mbbwD2DS5LclBERlz0VWD8EwXfYVrGYBLoOxLoB43cBWu/2LURz2j970jXgL78xheLkN6ZQnPzGFIqT35hCqXPFPRQbMp1kqeEQtD+dhwQocvPd7xxJjMS9P9qoePUmiUjg8HvUZXHnNWx7ABNmB1WesETCGZWEktBFrjgSyVLCEk3QpVjuMA4SIEnQJGE4t+R1u2KX3RLu+7JWEbBf64RgelZDiNF25ASl53cbblMun4O//MYUipPfmEJx8htTKE5+YwrFyW9MoWRP7LlL88hUHXKusn8ASuxpVy2a73aOJfaNRhX3rzeqhh/2tab+2VKbP+4Sv5cbsM+SXZXsnD34V4D+AaC1reFfBnouqX9ciLv0aaDz0D8Ad1H2b/OOrcH+jP0AMtdsA2PbZ43+40LPnv6ZoT4ElAO3IfcfPH/5jSkUJ78xheLkN6ZQnPzGFAoKfncV8nKh5oU0deewq2OR3+iquPdO6Hbvr1Vsun+sU2CI1VKvb9Ji4WxKjR0hljvWmkQfEgGp1wGdI7fuP0XuiO7c6UN3EffuCvYNAFGShDO6xiWsLR0PzwHiahcE7ojEOwE5lNsjwF9+YwrFyW9MoTj5jSkUJ78xhVLfRdzDKTDYEJR/YzpQI05uPmrMedzW2MO9CiIPK63dHh6r02o+1vNOKr3uyxaLZFMa0Q3Or8VOnYQ4yWUHawZjxEnc6UOzTVrXlPiI9fIgVuUKZ7Tdb0vcy+UurkjcN1PYpdHw9Kwi8kfLk+uT3hN/+Y0pFCe/MYXi5DemUJz8xhRKfRdxL5dUiSEJXeRiYgFD6YPGcny41O3uqWhHgt+4rdf9eg/jtCPiCsqEp42ee9HkCX4kInWhASQJOSQ2oTsw0f2RhK5dK9PhR869TFH5d0nu2O8dCJq5JcLkxqNYB0S8iIiDSt9RKgenfKkgY/zlN6ZQnPzGFIqT35hCcfIbUyj/CWkyqQUpsa1NAAAAAElFTkSuQmCC" y="-873.108307"/>
</g>
<g id="matplotlib.axis_55">
<g id="xtick_82"/>
<g id="xtick_83"/>
<g id="xtick_84"/>
</g>
<g id="matplotlib.axis_56">
<g id="ytick_136"/>
<g id="ytick_137"/>
<g id="ytick_138"/>
<g id="ytick_139"/>
<g id="ytick_140"/>
</g>
</g>
<g id="axes_29">
<g id="patch_30">
<path d="M 29.174375 1139.427731
L 151.464375 1139.427731
L 151.464375 1017.137731
L 29.174375 1017.137731
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p2d8182bcef)">
<image height="122.4" id="image80752d4188" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHmFJREFUeJztnUmPJNd1hW/GkJk1V3dVT2yxSYqiREkUbFmGZMg2BHjtjX+mtTdgLbwxLAOyIVgDLZMSKXazh+quuSpryCEy0wsaWvT5AnjJbFGy3vmWtyMyIt6L2wGcOvfeTt390jxeouh0Xg5FJzRGzEN+LmZzjX0Wn+n5Lce+TNEpJNaraomt1j2J7fQ2JPagtyOxNws9bq1T4v2MQp9lDM+31akk9o2Jxr45v9Rr98cSO7xcldhvKn3mk1LXtTvnPR129NgPOkOJvT/el9iz4bHEriYjidE7VtKelrqna1VfYhvVisQiIvqFnj+ZTyU2aK6TYsNG92A8bZJiU3gfFsmBDqxZch7AO6FnGmOywMlvTKY4+Y3JFCe/MZlSkbigEkREAdpQqgj4+4CExelM77yZqbhzPVXR5nyqgtagUBGp2/L/5RTWcQL3eA2rewU/OZ6osNhrNDaB+xnDttCe1i3aag+EwF0QkbZLXZ8jEtgKFb9IvKoKfb5+2ZXYOgh+dC8RET0QWEdzvZ+m1PdkPAPRriTRjnIIFlcvgcxwtzjfSCSlGAms/vIbkylOfmMyxclvTKY4+Y3JlIqEMwqlioAkfqS69paFHFTktLoGl9ZFBYJfqcf1C/7/ktZnSAoPLMVpocGTuQpnnbEedwGOwyHc4gj2qtei13bhHrtzcJKBmNYtNEZCHgl+KORVaxK7Va1LbKfQcyMiavi+nc51Xyf07pRpLr05uCcprygP5jM6jjeG1oxiBN23v/zGZIqT35hMcfIbkylOfmMyBR1+aNwjw9IXJOQRKJ4kuv5G04nELhoV/E4qLekk91QE/y86gtLRIQh0eyCIbXfV2XbVqKh1VupmnXT0mQcduJcW8bIPT3MFv0m7T+uTKgLeqFXIe6PaltgDcF7uzrjUuoF3+Rk895j2qtT3pIHjJuAEXMb9miriRbTkAcTI6eovvzGZ4uQ3JlOc/MZkipPfmExRJSZaHHl/uOrdZFDwA2cTiR9XjfaZO55cSKytH2EFQldDrioQc6in3LjQ3nzbXXX9jUGIO56rUHUFolTZsqk9ECVHVBoN10ntw7deqnh5t4LeiiDu3Z/qa7vFVbDovJxUev6g0B539HzDjroD20TgVw29OwS987QQ/vIbkylOfmMyxclvTKY4+Y3JFBT8CBIBF3EipUK/ucy16dxU19/55Epi1NctIqIGx1qbOPgyZ4Ve56BQsZEGUBDUo45caG3U4Mgr4TsxBRWpBrGwLjV2E0p1b3dgGMccyoEl0t4ej1ZsE8qTN+GZTzt6dmp5MpH6PqQKe8viL78xmeLkNyZTnPzGZIqT35hMcfIbkynJaj82DwTdlccIp6uX2AAUK8fTwL8ewO+lWn7prwJt18HjlvBJ4+j0xL+OLLKuVH9PY7FXYJoOWV1XCj3uJth2b4UetznT51uB2+63KOmr0CCzhAaZ57U+M00for964F+Ulhg/v8g7ktrUs4QeBv7yG5MpTn5jMsXJb0ymOPmNyZRqGSGPrI7dEqa4QKztOiS8kaW2mepxWMecCFl+h1DP3SZeplo3CfrNZSYfpYqAbZA4hHtQq2i3UWlsBWyyd2DCzlsTve7tRvd5I/ReNisWYrduahPW2RRExLObEjvoqwD5CARNGsed2mB2EVLF9CJxlLe//MZkipPfmExx8huTKU5+YzKlKkAIwKkrINqtdWGkcq112luVNqNsu86gUYHmdHKpx030uGGjos8sUQRMHancgGOs7dg/JhYRmxpw1ZEASftHjTnXwOH39lRFwO/VpxK7++5AYt07et3q/pbEIiI6t+5LbH5yJrHmhxr7abOJv/kyJDRTLL2ev+Uf4HR6uzudxOskHWWM+ZPDyW9Mpjj5jckUJ78xmVKlOvI2uyravdZTV9RbtY5Ufi1UBIqImIMw8azSMtqHpQpBe50T+EUVBkkETHVfkUDTJiC+asHvVTdHXeT+UkueqbyZpg/1oannWyM97s1/UOde9YMfSKyz+5rEAsTnz25Sm6POfvoTPWwMDVxLmFI004k9k6neNzlGU/egTaImIRB/E35gWsD0qKS7Mcb8yeHkNyZTnPzGZIqT35hMqVZrHU1M/dru91Xc+7N6V2J/NVbn1pszFfEiIi7mKiz+qqcOwapOnYiS5qoag0CDIuAfmWtvmf5/dOpCImDiOl5Nda/PQSS7LnSfO10VBlHIg96K89NDPS4i5k8+1Wv/6ycS+9nsgcQexrHEyIFK64A9/FJdli2HTRMnV81AdB3CwCZ/+Y3JFCe/MZni5DcmU5z8xmRKtd1V4WWn3pDYV6sbEvvbkYp7f/P6nsQ23mWhavxCXVXbv1ARsYCS4Gmt4scIeu4NwYVGbrWWSt0/GCTuUW89Oo6EJXScLVDmm+r6Ox+ro+7T6khiP17Rd+zBD1V8fvuXP5JYdwfep5bP2FBfx3j/1/ck9pO+iohPR+ospVLyCazDMmLxQvuSeJ3JVI/zl9+YTHHyG5MpTn5jMsXJb0ymVNuVCn53KhD85uq0+ostFXJu/MPrEiu+/k28eP38qcS+tvoziY3/Xf+POu3rcIjDal1iR5X2gBs26jibQh0kltW26CuvepIwiXs0JGWZKb1tjsFUEYlExOuJru3B8FxiPy339ff6tyT2zkf6Pt3/QK97A0S3iIhr+L79R1+f+7+bA4ntj7Sv3zW8O+QsTR2Gs2yp9TLn+stvTKY4+Y3JFCe/MZni5DcmU6puoWW1qx2N7TQqVux8Td1OxXe+J7Hy3e/jxacvPpZY70BFxHv/o+WaNy7VCdiH+6bBEqnQBFQqq4xIF9540qreYw19FPulOirp3FQBagT9DSMiZiR+Jk5uJmGJev3tjbQHI537FETc21Dmuxu6NhERE+gT+cupXvvxtb5jgzG4+aB8lyBxllhkmu+yLs2X8ZffmExx8huTKU5+YzLFyW9MplTUa6yBGMkX1ZaKUrGlLq0OlG9GRHT6EF/Rss5OASWqYE4bQe8yKjtNnar6+4CEMxKHSNxbrXRtahBs6VlInCMBKSKiecVLQXtw2Qwl9jy0hJZ6Ap5AiffTQtcmImI8V4Huk6G6+U5HOvCFxD1yStL+0eCbGo6jvaIS4c9IHA6SKAL6y29Mpjj5jckUJ78xmeLkNyZTqtFM3VdjcHiRBDEnZehSyyBnR0/w4vMDHagwP1LR5/JCxZwLcG6NZiqIjCGWOkF12V5qWNYJMRKC+lVXYhu1ljH3Cz2uAeEztQdfBA94aJtOnAKtN7kLaQ0nsH+XIAKSQBrBPRxPRhd6P3AciXvk+qT9W4H9IzctCX50LxHLlVq7pNcY8zuc/MZkipPfmExx8huTKU5+YzKlGoLaPwRL5Dn4e0d7qip2f/O+xKYn2qwxIiKe6V8Bxh9oXfXB6K7EzlZUqb6CUdCpo5IxtuSIbpy6A/X3vUqV6o1Klf1b9abEVjt67hjUfrpuWwPPqlDrLanzqZNqaG3p3BlNGkpUwwctfRvoLxpDeBZS9onUSUqk7PfgLxKLWM1pDxv8O1wa/vIbkylOfmMyxclvTKY4+Y3JFLT3knD2vFJh4eGHNyX2zo/+Sy+yqw0XIyIme9og8ckvtiT2YVeFkiczncQzaPT3xok12angFJ9YQAiCOu+1Stfnte62xN4udW22Q39v2FHB6EWpAiLFIiIOJ7q25xMdvX3VqM0WR6JP04RBOq6t50AqqQIk2Xax90KpyjfV81Nj1TaBNRUSROldThWv/eU3JlOc/MZkipPfmExx8huTKRXVu19M1eH1tNLYf5Y63vvyxyBolTzlZDBVAevjWuugf17qtR9NtO7/dKJNGNtq1lNIHbMcwaIPOve6KrLd692Q2LfLHYl9f6TXvhO6Nldz3YMnMPnmQ3ARRkR8VGiDzCel9mk4AmHwbAzCYKgwiCLgEi7LNhGXhDwS40icJUcdCbbk5qNnoVyj3gskUkek96FIxV9+YzLFyW9Mpjj5jckUJ78xmVLhNBVokLg31aaHPwe300FfBbu1ucYiIq6h5+IzEIc+mqrYtD/S2NVEz011iKWOoG4bvUwNG5PFva5OOfr7a3XKfeuvddJMdVfFudmpioBf/VD/n7//RMecR0Rs9FQc7NZpjjWcAEVTk2hflqigLlucl+TIo8lH1AC0zc35MugihNgUGuOSuNcmUqc2UU0VAf3lNyZTnPzGZIqT35hMcfIbkyko+A2nWtJ70qh77tOOiilXhYpcq3BcRMQEFJ6DmZblUokpjXgm8SR19DaJO6nTWSIi1mstyyVx771aRba/G6pD7Jt/qf0Ne99+oBeu9dxiTd2P69cnErt/pusaEXF4qfd91tXnu6jA4Qnu0AvoCUiOulShipx39HsRLO7t9qAXIoz4Hs2h3B3EcJwKRb0jlxinvQj0Lruk1xjzO5z8xmSKk9+YTHHyG5MpFQ1PuAbBr4AebjgIolKxYQiDJSIiGnA8nc2gRJVEFuzN9/lLHlPLd9uEpX6pDr971YbEvjVT4ey9LR1UUt9RAWp2fC6x+UDXa3Kg63X1DMTZa3ZeNmBsK6mfHXw76J0g4ZSOo2ppElhrKKtdgfWPiNipdQ/erFXQ3IJ3dH+ua/u8A/0NG80N6mW4LKkuVNIQUdB+FTdljPn/h5PfmExx8huTKU5+YzKlIuEsVSQjMaYCN18D7qmIiCkoE9Q/kKayLuPcW6bvWVsPP1qLdRCR7k70vte2VGCdnetxw0/0uPMXKiCen+vAj5OJ7sEelLFGRPwWws+h1JrEWSoHp71i96QKeeScpAnGN8BtGBHxeqmC3zfmev4uqJwPoUy7BEGbno+EdJIAF3kX6V0u6fsNr6gFP2PM73DyG5MpTn5jMsXJb0ymYEkviRA0ITR16uiwUKGq7TfJXUjiSUGOMxDdcNBBJ23a6SLQ+SRoTkB4GV3D0IdHKsS+eKalqI+n2sNvv9L/0496ei8vCh4O8QyEvL2pOttoaAdN8yVRmQQ/6qO329Vnvl9p7B6UkkdEvDlT0e4rY30ndkHQvNXo/cz6KiAOYYL1ECZdU6k8vTeUFxELlDwnDiDxl9+YTHHyG5MpTn5jMsXJb0ymVCQi0ORQ6jWm0g4fd12y4IdlnQAJQeSoI2GQ3IFcDpz2zG3OwtFMr3MI/Qg/qlWg29q/KbEarv2w1nV43NP7OQTx6mCuseNG7y8i4niiA1rOoGx1MNbz0Y0JoitNuyXBdgcmQX+50Nhbjf5eRMTdRq+9Bb35ejBJ+n5HY38+1v07hSEnJyWsV0fXC9+xlkEzqf3+SETsgMjtL78xmeLkNyZTnPzGZIqT35hMqVJFBBYhwLlFfcZanIBUrrleamwNYjWUDl/OVNQ6GqsL7WSkghb1/yPhpG2C6mCiYs7j4lhiP+np/7d7fRWwahBDj+c6OOUEnvkcHHoDEPfOWwS/q0Z/c9ioaJsq7hFUYkrrTb0DN+a69zen/B73YF+HoefPpnCdUp/vDjj33oa+jI9KcF4WOlkaHX4tonLq2s5A3KP31l9+YzLFyW9Mpjj5jckUJ78xmeLkNyZT0N6LTS+XGCVMVs6IiO1aVe7XYZrKfajV3gTF9wT++vDrUs+lZzkENZRswG1q/9VEFfLD0Ak7ZAN+XGpzTbI+0yhoik0gRhNkSK2PSH/u1AlJqU1UaW2oSeg+qPA3oNlmRMRkyiPVX6YDfwE4m8H4c5oqBKmxBs1baU+xd0ZL3X5qDqbW/fvLb0ymOPmNyRQnvzGZ4uQ3JlNQiUsVbfAHaXJNpfbHiIgv1TpZ5r2ONkj8+livvQui1Emhos9qT2vlL7owBhwsrWSnbKvnJ0HsYgzThxoVq6jhIlmil7Fi0323iZfY9DTx2qnvCf0erc3BREXTjwoV05pC35uIiFtwbJ3YeLaep025OeroOl6CeEl7QM062wS7ZSZNEf7yG5MpTn5jMsXJb0ymOPmNyRS23gEkQBXgWOpVKrDcqnXCSkTEV0Hc++5QRY13b2hd/PpNqGM/VGFxcLkjsY/hfo5qrfsnQWwIolREWz8AjY2mIBiy7iakTkgiSGxqFZZSxb0l7odcbORWPIMJQI/hutc178tzcHiS+66iCVCJ4uUZNAQ9nGrvBZpGtYy4uiz+8huTKU5+YzLFyW9Mpjj5jckUFPzIpUUxmpqzUanA8ka1hRf/3kh/8ztv7Uls/V0oyyxgrPWv1FG3PlDxZB1ESbpvKnltK7ckd1qbG/BlUp1btAepU48WgYQ8ciGS4EvPkroOzRSccuCSJJGMxLSIiONKy6VXC42tgDu0C01iSYwbQBPVw7E6E6kJaluzzi8Cf/mNyRQnvzGZ4uQ3JlOc/MZkSrLDrwCxidx81JfvreCS3vc2TyS2+V2ddNK5qY682TN1/V0P9H4uoOkayWvdji5FD0aDt/W9awoY8T1L78/2MqniHpYD07lzPa5tAgz9JpVq0/2QK5J6ApIISDGcCgTHUd/CCC7VppHvtNc9KAcmwe8SrnEBE5zIHZo6haeN1BJqwl9+YzLFyW9Mpjj5jckUJ78xmbKA4JcmAvWhXHIVeqFFRPRXQTwDwTAuVTwZPdLY08PbEnvWB4EGSjCnkSa80DpEtLgisQyaztXfpEEnFKshRmPSUwW2CN7XVPHrmlxs1KcORmpz78E0gbRNSJ0WaeIgOQRJ0KTr4JAUEPdIDF2kfDdV3EsttfaX35hMcfIbkylOfmMyxclvTKZwSW+yYADCEghnJx0Wlvb31yW2+Vt1/ZEudfCxnvsIpt3ud1R4GYC4Q/3jUktRI3gtUp1yG10tJyan5HqpTskayk6J0Txtmm8Ei5p0HZyq29Gee1S2iuIevDskiLG4x3s1gTAJkKlOOxROE4ekvOqhGxGcq6nCoL/8xmSKk9+YTHHyG5MpTn5jMqVKFgfgOBJOhiAC7YWWPEZEfBAqaq3+XM+vKhVPng504MeLnt7jKbj5rmefX/Brc2TROpIrbqev9/1O/47EXi90bbZAn6X/vUnGu4RJsgMQASMihnMoy4XJIufQu24Mv3ld6noX4ARMBYWzJUpb26D3+4ugTRhMnoCcKCz6y29Mpjj5jckUJ78xmeLkNyZTKnJzkbhHkLAwBDHtaKaDFyIiPqjVsda/1gEfq+Cg2qtU/NoHUeuanG0gaDUQW8SRReWf6/B8b/R2JfadYltiX5noHmxAT8CCSkxh/65AfHxR6aCKiIinha7Z87nu4SB0r5eZ3JtKuuuPS6jJjUnOS8oDyhdyMA6h9yANdlnkHWOhM/l0wV9+YzLFyW9Mpjj5jckUJ78xmVLR4A0idRosueJIdIuIOA4VQB7WKkJ1wNl2COLec3ASUr8+EvdIMFrE4UWC0Vqlgt/tUoeS3Jvq2r4GZceb4JSrSl3vski77/2h3ktExKiv6/0MxV1dW3JKLlPKSucuMqiCRDvaq9UapvlCiXgfhFMqRT4eX0iMngVFwAXeu2XW1l9+YzLFyW9Mpjj5jckUJ78xmeLkNyZTKrKgJp8Mquki9s4hqKTPYNQ11Zcfz1X5PofYYKp/AUit08fGjC2NHmktiClcZwRLNiULKij762v6zBu7asXt3tBztx7r1KOIiIcHdyU2h8ej2n36SwqBE44Spx4tAv3mCtiad7raZ2G30iaxa4WeO2z5a9bLkLKPU3zAxh3x6huA+stvTKY4+Y3JFCe/MZni5DcmU6rtrjaKJKtrquUwdYJMRMQlCCVDaBR5CTbSCxD3yG5KU2XIgkoxmmgzAYEmgtfnCsTG/alOtHkCNuBtsF33xmmCX1/1uqjfuSWxonekB0bEzed6nbrS7wQ9c+oEGbKLY5PYRI2rzX7eL3UdN2u1Nd+ttY/Ea4Uetwkj6EmQntUwvryne0Xi87CluSmKg7b3GmMWxclvTKY4+Y3JFCe/MZlS7dTqbCIRAt1cIECQ8NLm+jqZqcNsAte+hMkwJMZRXTUJdEOolZ9MQQSEGD1zBDv/qkLv+2gykNinhY7o3gB32epMxaZbE2g8uanHdbZ0nzvdY4lFRNQgInXhO1FCDJte0vhyFPwoBk1L4RrdEqfNRw8EPxp1frPQ2JdC6/l3offCpKPXLisVEJu+viMkkJ6NLyUWEXENQiC5BqmhKOEvvzGZ4uQ3JlOc/MZkipPfmEyp7pUqBE1AOLuESTznHS0dJSHuYsoTe6hBZqojj0RJgo4bwTQVmrBC4l5bSe8MhCkSaM4adfgd1BrbK7V09DY0lCSDV3FDnWmdFRW0Ztf8LFeFfhOoFJmg9U4toS7hukRqU862eAUu1LXQ2NZc7+dWA41eoer4ulah8bRUEXfU1Xe7za04KFUgv4QcpPduCu+yv/zGZIqT35hMcfIbkylOfmMypfpyR8WhYQcmkEApI4k2hyDYUWlrBAtvJO61uepSoPJkLN9dwM1HUGllM4WR4SDGHE90usteoeLePRABC5jOU9zZ0RtcV7FpesUi3lGpCtYAJh8ll0vD2tK+kBOwoD6RVCLcIhaSeEZl5104rgd6aAnv/ATuewzH0Wr3CnUHroGw2watGQnpwwmttzEmS5z8xmSKk9+YTHHyG5Mp1dcbFT+uQRB5WmpsBAM2TjvqQiIRKCLiqlEhkMShVDcfQcISCXlUBrlIfzQSoVL7s5HgR8603a669I4vtBz4wcmZ3uBExbnjhzyi+9NS1+ek0X29Btcnibipwmlqrz8S97ognEVE9GCk9joM3tia6/nr8NrR9PPzSu/7pKPvMfWinCQOOYmIqOGdoJJl6ltIgra//MZkipPfmExx8huTKU5+YzKlei9UbLqYwMCIubqOBjDh96RUEWlQ8DTYwRx6+CWKcamQ4EekDptIHV4SwYIhCWLnIy3pJX5bqrj3b93bEtv+x1OJ9fq6zz++0EEen11H+wyewbCRVHEvVbClUttUca8P7seIiK1K38c70DPxdejN9wAE6RpKt89nUC5dghMQ1oEEv7b1oneZ3lvuhQgxvIox5k8eJ78xmeLkNyZTnPzGZEp157VzCfaPVBA5v1SR5WalsW0YfnAMU2gjIgYVuMbAAYdTgyFG4hA55eg4+r3U60awEEjnUw/AUahwdjrSwQ2fdPYl9i8r+ixPZ9sSW7/U4x5VPBzi0fhEYgNy+NHwExD8lnH44T6DeLXSIvhtwoCOO6HHvjFRB9yDXXVKrmzoXq081gEdhzOdfr0PZfEniSW5Ecv1RyT85TcmU5z8xmSKk9+YTHHyG5Mp1fmxinuXQxVExlRuCT+4BhNLN8GZFsGC31WpriqcBgyiHZU3rkEZLPVwSxVT2sSrVKErdRDIDHrmHQ3VeUe/97wLQhWUsVIPvggeLELl1yTOUulo26CTl+mEPssExL1FSrxpkjDRgPA2n2usXtNr7+yocHr/UAW/X9WaG+TQa5tqjb0naaBN4nr7y29Mpjj5jckUJ78xmeLkNyZTqn+aqBushqEN15W6hs5gmm8JAsYmDKCIiLisVBS5qHXqKIla5Nzb7unvUUknnUsiEg4QaRFjqLyVHHAkkkWkiTajBpyAcxWb6Bq9CoautLgVqY9iavkuxeg6qT0Pl4lFRAzn+ix7oevzfk+F4fGxDj+5dQSTl0PX9td9feaDGUzZhQnWNDE6ggXa1GEztAf+8huTKU5+YzLFyW9Mpjj5jckUJ78xmVL98+xAghtgBe2SmRfE4in8BaBpUWKpYSNNWOmW0LCxgqkroOyj2p9o7x0XYKdsU/sLVWJT69OX6SWQOv6a/nJB450j0q3Ky0w5wnWAF4r+6kH30mpVhsajn8Jxl7DXe339C8DWXN+7Cxhp/8lMrdh7E7Vdn0OfhCH8lSgifZoV9QOgd9FffmMyxclvTKY4+Y3JFCe/MZlSPRqq4IeiG0xJIeGMRKS2hoRXU60RJ+GGBCxq4ki23S7cI933nEZBzzVWtwh+1COABKzUiTapo8ULEHJQiJumTxri+1luhPnnha5BgiRZqSO4Xp7esUvoI3EOfShWoAnnEMTUg0YFv5OJWrGpTwLV6EekT5/CsealJ/YYY/4PJ78xmeLkNyZTnPzGZEp1MdF64utCxRMSEUjcS3W1RXDd8hBq0VMbabLbKQ0Shqg3QQkNSiMiehCn+7ku9fnIfVcWaVNuUkl11LUe+0WIe+TwI+clON3aQIcgiLapjsoBCLsjaLZ6NlFnITn3lmnAGdEicoMjlvPXGJMlTn5jMsXJb0ymOPmNyZSKBIdmxqWeKaSOqv7sOp9/nDM2mQTn1hgaONL/eCT4kXsOS5sjogZBpQG58QIaNiYLrMXn3xdyWTbTVysqLkuqKJn6jrRB+0quz1EH3qeOvk/kLiRxj5qgkluxTVxNdbWuVtowl1y7/vIbkylOfmMyxclvTKY4+Y3JlP8FKeuRTEMpijcAAAAASUVORK5CYII=" y="-1017.027731"/>
</g>
<g id="matplotlib.axis_57">
<g id="xtick_85"/>
<g id="xtick_86"/>
<g id="xtick_87"/>
</g>
<g id="matplotlib.axis_58">
<g id="ytick_141"/>
<g id="ytick_142"/>
<g id="ytick_143"/>
<g id="ytick_144"/>
<g id="ytick_145"/>
<g id="text_8">
<!-- 32 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 1121.986168)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-50"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_30">
<g id="patch_31">
<path d="M 164.424375 1139.427731
L 286.714375 1139.427731
L 286.714375 1017.137731
L 164.424375 1017.137731
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p8f18501526)">
<image height="122.4" id="imagefa2f919562" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHyBJREFUeJztnVuPZGd1htc+1KFP090zPeexCRBCgCSEcBAWiXJPIkXK4d8l+Qu5i5RIkXKFkBPAgMGObTxjew490z19rKqu6qraOxeQm36fHX1DDzb4e5/LpX3e36otvfWutYq6d7eNC9RldTEU/aqW2GpvILFrgw2J3e1vSywiYqdckdh+cyaxn48f6XaTE4nNmwWe5yK9Uu9lY6DXQveyXa/jMTcqfRbDQs+zXvQk9tV2VWLfmp3rvvVcYtOlvqu90Gt5t19I7O1iKrGIiMfNRGLHS30vpxAbL2YSa0OWWKzC89qq1yS2Xel7uVoO9XihzyEiYhaNxPZgje0udD09mx1L7PRc950t9L0smqXE6Dm0rcY+LspP7MzGmE8UJ78xmeLkNyZTnPzGZEpdlZr/FBvUKlRt9ECMAUGMhL0IFmkq+D2qCo0VhQpYRWiMoH1J5FyrVFjaAgEqImJYsOB0kSWIPkeFxp6DMFgsdLsl3PMSHoPKXhELuJaIiEWrYtWy1SPUcM/rtT6zHm0Hz3ajVBFwDZ5DL/E9R0Q0cI8l7E9rh9ZdSesuMfZJinuEv/zGZIqT35hMcfIbkylOfmMyRS1owUJHH1xxK2VfYiTaDDvcVyRCnbfq0ruMUELCC4k2dH9riQJUREQFx5yDSLaEezku9Z53a3225QJicLxJqdcyAVFxCsJeRMR5R/wi9P774Gpcg+2u0NqB5diHtViDOEdrKSJiAc+H1jeJkiRokjBclfq8Gnj3bQsiYIfo+nHgL78xmeLkNyZTnPzGZIqT35hMQcGPRDISSUj8IKbBAhIJTqeNloSSuyzVaUWk3t+QREAQtLogdxk5/MbwHJ5UJGGB8xL0omN4Lc8LLTsdNRqLiFjA8x6W4PAEQZTKba8VKu5tt3qRqyCI9eAxkIPxpGDJrwGhs9emCX4kAqPgB2tn8QIuxE8Kf/mNyRQnvzGZ4uQ3JlOc/MZkSk2ljCSmEdSnbNRo77kux9hZq4LTyUL7x83hPE2i6y/1XggqLx50/F7SWZYgIk3AwXgKz+ExHHACZdVDEK9OC31eu43266PnH8Hi3haIezcKFffuhYp7r+qSiJ2lXuNGoc+mBiHvrNHn+qDW64uIOK912yMSr+FdkQhIscussU8Sf/mNyRQnvzGZ4uQ3JlOc/MZkCvfwA0GEXHbjJbjxoLiShLMILt+dwNAHEhYvA5UIn8PAjylcXxc9eGYVlfSCw4+EtzHEnoPYVIHUOIXnNQYhtkuougLi3nahsZ1QYfDeQo/5xRhL7M6rOhBj7Z5ed7mm9zz9CLZ7+4bEIiL2KxUg98nNR8/2JfeO/G3DX35jMsXJb0ymOPmNyRQnvzGZ4uQ3JlPqtR5MWIGaZVI5Z1APTjGakBLB9e6po42JVJslWYPPl6rsn9BY6krHSEdEbLRa+30O/3ygpXmp1ts5WKJTnwP9M0PK9TrU3kekfxHonwv6f2Slr/e8+TX9p6D+5p/qzhtXdLsf/URi1x+qLTwi4sZU/6U4geaoE2jCOan0H5IRvCvbe40xv1M4+Y3JFCe/MZni5DcmU2oas40NCUGAInGORLwu6Dz0c0QCVq/U2Bx6OKZO+5mDvfdorrbUR2B9jYhYhwk0M7AHk7g3gaal1MOAnkMq1IySputEcM8Bsr8ew/s7qDQ2msKkoW2NFX/ymsZWNyXWPnksseHqA4lFRNwbqWi3vtT7Xu+vSmwOTVSPSxUWjyz4GWN+l3DyG5MpTn5jMsXJb0ym1Ou1uryomSGNHCYBipyAA2gIGcHNEKfgEKSmnqeFuu9mS92XhDMSAZeN3svJXM/b5bIjQY2eDzcj1e1IOL3MqHK67jOo8Y/oaFwJ34ke9IKgngP7rYqk7bmKqSTuFUNwVELzzwonHEXcXtfzvFJD89AjPffuiorhD2AtX6aen/LlMu/5RfCX35hMcfIbkylOfmMyxclvTKbUN3taMrlSqKhBjSKpVLdPpaM8CTyGsO0InIQP65HEHpdHEiOBjhqCUvkuiXOTue47W/CUG2qEehkuIyJRiSkJiCTsdsXJ4UejricgiNHkoqIPawKeYTtVwS4WukYKGMUd0S0EXqSB5z2HkmxqOnuZMnR8zx2v/mULgf7yG5MpTn5jMsXJb0ymOPmNyZT66+VVCW61IORBjOQH0l3WOjQX8v2dgGC0XoEwpRWhCAld1MNvudSLJCFnETw9qFjCJJdLuLdoXxLycLtEsXBWsnjZb1SMm8J7WYOX0INz3wzoe3fvlp4YXJYxA8Gvr9fSwvqMiHh8vC6xAxC03x7q/g+WJxKjMm+a9kSQKIyj5ruWyEuuHPaX35hMcfIbkylOfmMyxclvTKbU352pi21rVQWa5VJ/J05mWqo5aaEcuEOpKEHZWAc32AR6zT2FgRNHlV7P2VLLVknoKpq00cupzq0XAXvzwWlI8KthwEqQww+Epa7R5yRg0TXW8O241ej13Lmlwlk72tBr/MF/6MUc6yjv+evvSezhrgrXERFv9nVNfFjp/d1v1B364fmBxE7PtZR8ASXGqQ7NCt4VjbnvOuZlXH/+8huTKU5+YzLFyW9Mpjj5jcmU+kvf3JNg76aKac0Ieuu9qyLJ3lN1VI3m3MNvCQIGlYlS/zhysWEMBBUaFkL7knuuS8hJdd9Rr0A8N8RqcDquwMRZEgFT7y+CB7SQ4Dek0l8QTj94siWx8T/uS6xtNbY/1mEaD+q7Ent/wCLZE3AXPms09mT+67v5SASm99f1vC9SdXyTUWxOFHdpffrLb0ymOPmNyRQnvzGZ4uQ3JlPqwZd3JFjc0lg1UWfTRvORxKZjdQyeHXVNg9X4BMoeJ1AnPIVeanMQqkj8wDLK3wAoQIIYV4CDsQfbXYFJspu1xkoQNGkKcdfQDhosQpOEny5VEPthpfd8fwUGXSzV4XcK7/RwAFONW+3p2Db8TrE3IwyGOV2Cc6/DAZlCqgjI/RY7D5p0Hjom4S+/MZni5DcmU5z8xmSKk9+YTKmjp2JT0QNH3qbG6rs68GPjMTilTtQxGBExbbTc8gAEo+NChaAZiDEkapFbjUSSS0/FTXT4DSp9jqu1PofNngp5NGBlG0qb5yByHYKr7WChwllExKjVbUcLjX0Iz/tpqe8/dYIxll+DOEfC2UrFTR3p3LQm6Nw4jONjEos/DvzlNyZTnPzGZIqT35hMcfIbkyn17KdPNfj4UGLl5oruPVfBp4YJHYMeO6WWahqLCfwczUCMW2IMpqqSCAhCDpXaXrZfH7n0NsGld7u/LbF7tTrgXg0V97ahBPoIHJEfQDnwi9wfCX40AfmoUdcfiWQk+JGzkKDnuuhYYwOaGgznni1VWKTruYxjtC5Th64w6PxLdP1hmW/HeYwxn3Kc/MZkipPfmExx8huTKU5+YzKl/uH3dVTyWqHK57VNbda5cU3V3uUcrJzQ1DEigsKpCjTVypOKm6rsp9LVwJOagg6huea1nqr4v19rg8tvLFXZ/8JcLairhb6DvVbtwlsD/ZdhSKPPI+IJjLDeL9QKvNeqlfdsoddIsdRa+dTa9PNl2pjsiPR1cqlpOMk19bBdx74F/IuDaxmnPdG5jTFZ4uQ3JlOc/MZkipPfmEyp/21FlYBhq2LTXZic8pkjFVk2oPb+FBp1RkQc1/rbcwaiBtWnU7NOsmOSIEK1+xU0Di3b9Kkr/UrvcRVGhm9WapP+bOh2r0Fd/L0/O9ITw8/3vV0V7K49UlFxtQeW7YjogTp0DmOtTyttejmC50PCWbKYljhxid5f17bEIrEfQ+oEKGzgSft2XDdRkEUX3hXlAT1vf/mNyRQnvzGZ4uQ3JlOc/MZkSv3G4kCCA5gg8xiEqkckaIFYSLX3ERHHhQoTh6HC0vNWHWIn0JBymtiEkUh1WtH46wh281FTySuFxu4t9Dx3/0jFvZVv39MT13o9g/1j3ffnOop9+cYNPV5EPBvqNX4IayIVHHWe6IDrkZDaS2t4GhHRh+s+h8lA9P5ThcoGRGp02SWOYu9yBxZwUGpGSvu3IF77y29Mpjj5jckUJ78xmeLkNyZT6r35qQR7MOXkDBxex6WW/q6CwEKOuoiIMxBexq0e8wjGJz8/1+umhpJUvklQeTEJNF2OLJoMQ80j1+H5XF2oaDP8wrrEii9/WWPrWiJcjPTZrG79XGJ3PnousYiI9RGMaE8Uq1KFPIKccisgpF7t67O5Bg1PIyJW4B1MYDT5fugzo7VDjTBxO7iWyzr8aEvcH05eVeBgTT6zMeZThZPfmExx8huTKU5+YzKlJrdT06iooQWmEVMYn1yDaLPoEN3o3DSSeQKjfUZzdfhRHzcq6U2ekpJYnhqRPrWFRLIBKDTFFgh+dz8nsfL6ZyTWnql41Yw1Nlzb5YuEyd3kGusV6i4k0Y72pVgNPQXXanWMXodR5fcqFvxWQ49JQnVXb8YUSPCjWGpfv85rgXAN74DGwJMz1V9+YzLFyW9Mpjj5jckUJ78xmVLTCGsqUSQBYxIqxKWOB+46JpUoUlluaqluah822o6ciV2OQSonHi9VlDyqdbvjUsW99hQk1qkOTmmnMBJ7oiW97aGOXT854B5+J/D+FyCckrhHTkfajsap0+jttVrLd6+XWr77Cowvj4i4AqWsJzCUZAil0eQOfAYx4vRcXakoPr9ISS/E6XkPoZSctvOX35hMcfIbkylOfmMyxclvTKbUJ+cqIpEb6GWXakZ09DRLFOPQsUSiXaLzjoRKEmhoIELXeY4KFeMeVirGvQklqq99T9/L1Z3/lFixpW639kTdfNPXP5TYe6M7EouIeDpUUXICpdYkfqa+K9yX3I8gsG2CYHer4TV2faHvZQZlsDdKFT+flSo2vj/QGAnDJKRP5lByvkx7hhEsiKYKrOTG9JffmExx8huTKU5+YzLFyW9MptSjc3WhXcYVR2IDlRhGRKyCe4tEDRKC1qHUM3Ui63SZVjY8Xajw1XQIfuiAhJ6CT2c6jOP1Sh1rt5+oGPedf9J9N648ldhsqiLQR8e3JPbGkJ/XbqPutBPoo0gl3fQcSEwlsMwXhKo16INIwl5ExL1W30GxBHEXBqeMQ8+zPVBxdtrXNTFaaF7NFvq8ZrAWu6ByclrzqWK4v/zGZIqT35hMcfIbkylOfmMypZ6DEyl1GAOWHsJU1a4SRSrX3KrXdLsSJuCCy+sKxHrw+/akUffc/ZlOsaWyYXL9RbDLi9yAY+g9+P70mcT+FcS4D1t18+0cbcG1KAdDvZZftNCsLyL2l+pMJEGU+i1SH0VyP5JQRZOOt2A69I1GBa1XWn2uERGv3FaRtOpB2flS1+h0rOupOdTn/WhF1+zTvr6r07mKpiT4da6xRLcqbTer9Dz+8huTKU5+YzLFyW9Mpjj5jckUVeeiw5FFWkOiw48GL0RE3OtfldgXKhVKbjfg6AKB5iZMu6WBGN8fbkts1FNBixx6Xb0Du5x/FyFB7HCmwttb7RPdbqCC0TaUovbgHUzh+g6XKnxGRJySmw+EKSpbTe2tuNpTsff2QN/LVyoV2L59ps7LL317H88z+OObEmvHKg7OH2ipdWgVdAwPdT1daXV9rkM58BCcrqc05Cb4GZLDj1yD9A5mS5f0GmN+hZPfmExx8huTKU5+YzLFyW9MptSkIKY26yQbcB/svVs9tT9GRHwOxip/Z6b7/2FPG1Jeu6MK+coNUJ9Heo0H79yT2Js9rdM+6Ok5SOGOYEsl2oPhb5Mz6BtAdfFkxT7qqdrfh3p3Oh6NSP/leWBCUuIkJYL6OdwYbErsq/0bEvvrMz3HN/5Gpxn1vvtXfPK7n5dQ+9Z/S2z59PsSm5yq3fgAGmaOChjRDe852SLfAeUq/TPXNmlr0V9+YzLFyW9Mpjj5jckUJ78xmcL23kQRMHU6CwlQERGr8NuzAzXiN19VgWfl93TfAurBp3sqxpyVet1DaBS5AbXk40otvxFs2yVBrekY8X0RqukmUZEESJriQlAPggiepISNOalOH6bhbPa1QemrYO1+baE28K/95UOJ9f727yRWf/27Euti/uAtiS2OVRDbO1Gh+lFP728PegmMYDw7iW6pNfovAr0Xwl9+YzLFyW9Mpjj5jckUJ78xmZKmDL0AKBZhS8mIU3CNPa1UtLv9RIWXjTMVVA73VaD7r4U6yX7cU1FxDEIjOhg7xLRUpxYJPKkCK9VukxBHPRVw4hLcXwSLdnSNdG4aqb0CDVivQOzaua6H+q72d4h1rftvTp/rdhHR7H0gsfa9dyU2eqTX8zQ0tlvqNT5v0gS/LnfoRbreS+rko1T85TcmU5z8xmSKk9+YTHHyG5MpL13wIxFoutSS1YiIvVpFkfd6KrL0JiralWON/WygQsmblZYDHy60QeUEBL9Jo26+FynpJXCMOOg7JO6gy47GTcM5SMQjcbbr3Kn3R9d41uj7fwbNQ386VCfgV/5d18it4b/o9W1qeXhERPNEG3uOfqil2h/t7kjsMbn5QtfOETQ8PYM1Tw6/VDfebwJ/+Y3JFCe/MZni5DcmU5z8xmTKpQQ/EiuotHUM450jIp6DUPIhjO2u+hojmeQXIMY8bzRG7isSpWgsdZd4iU47ENl6UPKMx4OSXuqtR5Cbj8Q96rcYEdGDeA9KnumeqUyYxK9H54cS+94AzjG6LrGv/TNMzQkdKx4RcRbam/G4VLF4t6fP5z6MtX4Ka3YM64n6LV62fJdcn5cRDP3lNyZTnPzGZIqT35hMcfIbkymo+KQO7Uh1oc3APRfBo6CfQ9+8VRDJ6FdrDCIL9dGj6yFRakZjqUHQjEgvrR1Cn0Hajo5HIiAOY4D3R4MzNmDgR0TEdq0i2UalouscrpHE1FSn5EfnBxKb9nS7d4Za4r0aLKQ2ofvPQ9/1GNbJCYxoP6bx5bCeuvoj/jbhL78xmeLkNyZTnPzGZIqT35hMqUsqMU2Eeo2R46hrmiu56g5BUOnBb1QPrnvUprn06LwkApIoRUJcBItx9NNKz4cGnayCwIblwAAJfmuVDsS4VXMZ7N1SS2uvtjD5F0StgwqEvEbdd7vzY4mRWPhopiLgXglTesGBGMHCG00cRrdionuOhG96VxRLFdcjXn75r7/8xmSKk9+YTHHyG5MpTn5jMqUmsellDwfoEsmm4KA7LrW3Gw39qOB3i4Q8ir2IkHcZSKAhEYnKfNdrFejWShUB+yB0DWAq8tVSj3cn9HgREXeXeswbCxAqYZk87ukxm1I3PKnSBl2MFxo7uYQ4F8HrGwe0QGkzDSWh90fbLWu9blqL87TK7UvjL78xmeLkNyZTnPzGZIqT35hMqQc1CBM0HCJRvCJHVZczifqcndJADXDpkUBDzja6Rpq0S+6rWcBUXHLydZwbXV7Q14+m2G5W6rLbAsFvBcS9zULf6c1WY3cW7C67sVDF6Xqh76ACIa9ZaJnwL6A3H0E9ClPLqrtKaFOddiR8U99D3BdE16pKK9OeluA27XL9veQqYX/5jckUJ78xmeLkNyZTnPzGZEq9Aj3lSJigstwu8esiXe4rEnhSSytROKtAOKtVOBuCwEYuwqO5lqJ2TemtmjRxj5xfdI03SPAL3XcVxKadRmOfgcu+3TFMZQ3Kcge1vqvFkkRSFatOoT9e6kAUEvdo3dCzjmCX3ioMhiHRjpx7fRBY0SVLA21KvRfat6t0uynShPhU/OU3JlOc/MZkipPfmExx8huTKU5+YzKlpkkupCDOS1B7QXWlfbuaFFJd9QL+QSC1H2uyK5hUA+o6TZ85h6aOJ4X2FuiC7pFUW7IWb4Bt91ah9ffXWlWGN5Z63jsLfYavhNbFb25oLCKiafSYk6k+x/2lXuMDDcUjaOB5MB/pOeYw2adjQtJFukafX+npvybX+tq4dAiW6MtAk6LmsMYo/84qHgOP+XYJz6+//MZkipPfmExx8huTKU5+YzKlJkssQaIbWXGpRp+Ejgi2B19GwKDrIeHlDKbz0JhlajDaZWm+jM2Sps1stvq7/ArU3+8s9P7u9FWo3N7WPgnnMxbJjscqkh01uk52axUvH4WKds8XKvidLVTUSrV7kyWWRp9HsLj32d62xDZgWj1NJJqEXuMY1s6o1XdFazHVVhwRMQcLc9uk98+4iL/8xmSKk9+YTHHyG5MpTn5jMqXeqtckmDoKmmrbJ40KPqdzFZsiIhYgnqROziHhjcTGEUx8WVa6L43opljXuHFqIIkCJFzjFIWgNHHvlaGKaZsg7s3PVUR6csQjuh+BCHxW6/XsV3rPR9D0dApTk1LdodQYlQQxGmkeEXG7viKxPwgVNDdAYJ0Wej37hb6Dx7DdCeQBrYfUxq+/3FbjJZw7VTT3l9+YTHHyG5MpTn5jMsXJb0ym1F/qXUvacAEiwqhVcWd/qe6yrqaXZ9CwkYQ8EtNomgq5xqjUdgGOQxKgZgu9P3KhRaS7qujcJAQN4HBbhV7PyorGxqcqft0fqbj3PwN1tUVEHEKjSGpwelzovewv9P3je6apUIlCFTXrXOsQ/G5CafRtaDy6Bk65EygRn3Q0Cr0IuflSxWwS9iJY6KRnYYefMeb/xclvTKY4+Y3JFCe/MZlS/z30ZjsDweEARg5/VKuA8TZsd1Kxw+84VBwiUSR5MhAJRqqHxaJKFPygpLfL4UcU0AuP3FvXKh1r/Sq0cdteU7fiaKxuvLeWKu79ZKjP8Ak8/4iIMxAlz8GNeQJTd/bmJxKbLNLcbgSNYqcYlflGRPRppDYsE+oyCeY5kD0j5hBNFTSxzyNMGera3xN7jDEvjJPfmExx8huTKU5+YzKl/ot/UIHm/AMdqLD/jpZBvnl8VWKjoYpXT2HcdETE8+pUYhPoU0dCB479Bi2OnIB0PHLukbjXdAhVJEJRuSb1TKQBHTegDPZwrNu90dPn/XpPhbzHSxiSASXLEREzcG7SSG0S8sjNR4M3uHyXSlZBNAVXW5cQS+PBD0FQG0LPvREofpPEMdnUm49Gw9N2tJYieC2nCqfskjXGZImT35hMcfIbkylOfmMypa7+/FsSHF5/R2I78VBi936gYtPtRnsC7nQIfgc93ZZcdSSokOBHziiagkoiEjFPnBAbkV6OSmIOOcR+0tcS1YeVXs+PF3u63dmBxGgASRfUC5HKpeldoRALkGjXp5JVEAHpGZ6BQBoR8XCpojKZAYcQnIOYNu4YQHMRmgTdtCr40bqZlPyuTkt1ylKPSiobDxJY8SzGmE89Tn5jMsXJb0ymOPmNyZQ6ejDdtAbXUQ/can0VJm6eq7Bwr6/CYETEqL8lMXIsHZU6mIKEoOt9HdBwFYaSEHtzFYaeTA8ldjrrGECCbkB9FjQI5J3FscTeA1Fy90y32zuHEtq5Ou+IruEQOGwExM/U8mY6D8VWYNJu6gAZchZGRDw613d4UqlINixVGCb3XZ+m6sI3dK3Q46Xeyxo4AX95Pbo/vasxioAW/Iwxv8LJb0ymOPmNyRQnvzGZUsf+Mwm2Iy0JLUoVoNY2VGS5+UyFodsN9yTbK1UIPKy0bJVEMprK+vn+jsS+WKjg1wOH2ONqU2I/q/X63i+fSiwi4miqoiQ5E2li8bvtrsRwAjIIeTRYJHUabNdwCOJFypvTzp3Wh69f6tpJnX4cEXE817VMrjg6D62xzVrdqpulrtkavqsk2BFdZbqpwmnqMf3lNyZTnPzGZIqT35hMcfIbkyl1uwuC36mKUkWtAs3qlgp+289VlBq06naKiJhB0z0S90hsWpQaq0BE2mlgSMZShbhbpYo7V+qbEltZ43t5Kx5J7GAKffNAtKMYDSoh0SZVdIMhtFHSVIrO/dN619FUZHI60v2lDqB4EeELnYmw7miNUekwCYPDQmPUbw8dn9BjsKu34ulS85J6K9I6wR6TeBZjzKceJ78xmeLkNyZTnPzGZIqT35hMqZcf7UtweaQqfgsKeTWESSUV1eOzIr23UEvs8ULtmFSrTaryKTRxXEKvzlWQvq8s9RpX4Z+C9Z5aiCMi2jU95o8WDyRGTS9Tlf1UNTx1uwYHTl/umLRd6oQksuimWn4HUI/fBf0DkNp7oatvwEUO4HhjUOancLx5R5PQ1Ea2BDVM9ZffmExx8huTKU5+YzLFyW9MptTjt0FwOFORpazShIXxXJsP3h9o/XRExO75kcROz9XCSNZLsnOegVVynmhh7YMotbPU85IIGBFxOtRx5e/1ofYf9KJFAeIXiFJLEOhShTjiMvu+0HlwxHpak1CauMS2WxjD8wLQuSl21KpIfTTX2BQmHKUKjSTORbBlmLal3ChhBLm//MZkipPfmExx8huTKU5+YzKlfnSfpuZQc0UVaMjNdx/q4t+da617RMTzqU7JoVHQBAkl9EuW+utWgihVQWyzo35+p1FhilxnswpGkNO5W73yFpyJVKf/2wYJi+RqJGGXRLKVSkXlrrHrqQ0uSYCkseZ03bQvbUeguNexa5koamL/BDfwNMb8H05+YzLFyW9Mpjj5jcmU+v1GJ5A04CRamatgUM1VWHhrqNs9GemY5IiOxpUgTKBjCQSeFRiL3EdnU5pKlrpdRKdGI1ApMjnWPu2QyEmCH5VAU1lt15QbOia570hoZkfer++ypHdPdImXl1k7JED6y29Mpjj5jckUJ78xmeLkNyZT/hdgaL4f/sCdKQAAAABJRU5ErkJggg==" y="-1017.027731"/>
</g>
<g id="matplotlib.axis_59">
<g id="xtick_88"/>
<g id="xtick_89"/>
<g id="xtick_90"/>
</g>
<g id="matplotlib.axis_60">
<g id="ytick_146"/>
<g id="ytick_147"/>
<g id="ytick_148"/>
<g id="ytick_149"/>
<g id="ytick_150"/>
</g>
</g>
<g id="axes_31">
<g id="patch_32">
<path d="M 299.674375 1139.427731
L 421.964375 1139.427731
L 421.964375 1017.137731
L 299.674375 1017.137731
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p446b4b606c)">
<image height="122.4" id="image167b792f24" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHBdJREFUeJztnUuPXNd1hfd91KMfZPMhkaJIS7Ily/ILQYIYyCRABskgo/zHAJnlNwSOgYwCGHFgGUmkxKIUWmST7Orqrq6u172VkTXg+g5w2tWiIp/1DTfu89y76wKr1t67Otz/7jZeoev7V0Ox3cpmsQ2N9bQdxFL7p7bNoaoqidVVLbFRO5DYndGhxD7cfyCxP2lv47m/v2kldm+j6zjYamwB1/is1dhJo2vzsuok9nS7kNjj9alut9RYRMTZai6xZbeWGD3rQd1I7GA4lth+M5LYsNY1pHdk3es903apYw4rjTXwDNZbPc/55lJitF6X65XENnDdPbwPrwu9Y2NMETj5jSkUJ78xheLkN6ZQ2lxxL5caRLeUpLHLeYgq9Nwk5FCMmPVLiR1vVciJiDhqVOiqtyA2bvUaL2uNLeASB7Bch/D7vR96LeNaRU4S5yIiWoiTWEVPlkRXgp7BoNLz0vFIsEudF59/5jevBxGxhWscgKi4qjcS60jcu94UuBL+8htTKE5+YwrFyW9MoTj5jSmUloWcPFDcu2YRLwUJPLkxgsSYy17FvQmIgBERLxoV1KIFJxksz7zSc69BCRqAoNntoBiRQBrBz7Wp9TtRgXhJIiK67CCGrj8Q9wYg4pEQl2IDzr15rw7G1VZFu9y1yRWV6f28biE8hb/8xhSKk9+YQnHyG1MoTn5jCqWlksKUEPQq3WsSJq4bElSoTHQJItAs4fB7AfF1BecBV9x5kBtM990jdxn8fk+3et0LuBd0nCVg96TGRiB83mj3JPbm4KbEbtda+ntU6fFuQWwMbsoIFk6fhYq2X8aFxJawjrQOdWa+EK9L3CP85TemUJz8xhSKk9+YQnHyG1MoLQoOmfpFrjD4TUL3R0IXOR1XvQpxc3D9RUScVioiXVa6/wWISKed9oUjFxq53ahUdwnXPd1on7lFx/eS6/qk0t/9Vl16JO591N6S2Hu93ssDXa54AP0ExxVsGBGnWz3mb0YqQG7BILgEh9+y5vN8G/GX35hCcfIbUyhOfmMKxclvTKG0WAYLQh4PxMgT/FJlvjsN6MgUG3MHi5AISIJfSiSbwO8orc+8U2GQxDg6N5FbykpuxeWGxavUAIxXoVJWKst9p7khsT9bDyX206267O69MdNz3OVnQEy/VHGvn+jgldlY3YXzBgQ/EAFntQ5Jyc2X3iW9xpjXjZPfmEJx8htTKE5+YwrFyW9MobQ0wppsm7s0KUzZRSm+S0PRXSCFddWpsntWqRU3gsc5k7p7Cf8WzNaqFq9B7afpSrs0KL2KqozvBDz/o2ZfYt8NVdJ/0Ok933/rXGLjI6ipb+EfnBWvQ1Xrtjehf8L9Tv+leNnqdU9B2Z9AM1JqZNo1MGmImrIm+izQ89plzL2//MYUipPfmEJx8htTKE5+Ywql3WvVZjkEYWIAMRJ8SKxI2UjJZltBg8tcuymR34wUpuZQPX/CdUvbkhhHguYS6tNpOxynnmlfJlL27NxR5zR15w0Q/N7eQKNPGGF9dqoC2+mJHu8qzFd6jWehMYIac5IUR+tFjUzpfejqvN4SEdxklrZFERBi/vIbUyhOfmMKxclvTKE4+Y0plHZ/oM6mcaMiIDmWCKpDJ1Ejgl2DPUxe2VXA+kNBR12wGJMrSpJrkGIo5GQ6vHLpE7uS67OH85Dgd6uCdwfOcdypuLdY6HlnTd73aZS4GXolZo0GJzA7PXfyEUGOSARuL+Xwo/ckVyymHPKX35hCcfIbUyhOfmMKxclvTKG0NwfqoKIpMOhWgzJWEitSQhy5xrYglOQKfsQuIiCWMUMsgu8FXXqZ04JodHouuzaA7MHHRuInNj2FfZ+CmHYKYuEcRprPq7x1GCecnENYiiWc5ximK02g2SqN7c5ueJpZAp/ajnIw99wW/IwxX+HkN6ZQnPzGFIqT35hCae8OdJrKCMQYEndm0IdtBcJJSsDA0uFMZxRdT64oReIHCXlUqplybtE90nlyxTg6d664g8LQFURA2pZEydlGn//nmzOJDVq9nhvwjm3g/laZwucw8Y61sBYLOOaLXsW9Sa/9GqkHY25/RHJJ7kpu+XUFIqe//MYUipPfmEJx8htTKE5+YwqlfdTelOAIxj4vwc03qVS0wSEgiTHS5BBEkQyEEiplvNyoGNNTqecOQlyK6y63zR2dnnstmbsm96fYxUoFvyfNicQ6cP3drnV09iDTAUcSIIm9ERFr2JrGbJ+DeH0BMRL8cp2cuzhVI3YbnV7Z4WeM+T1OfmMKxclvTKE4+Y0plPbNWnv43dyqQEcC1KJV0WbeqIA4T/S9O4PyyDNwWp116rQ6h2m5ueWyGxA/OprSC25FGPAaEVw6TEMWsLRyF3GPhnbAdugYTAlQmeIg3d90dSExei5TmIA7glJyLJUGoZiEuAjuKUkDVmjKMrr0dpiUmyv47SIUp6B3zF9+YwrFyW9MoTj5jSkUJ78xhdIOIP+PYHDGQxC6HnTg3BpAyWPPCtJ/b1Uc/OVQj/lJPZPY70CVInGHnIAVXA/1zFvDkISUkyy3VyBt10B5ay7ZohTFoMwztT9dNx1zAetNx1uAQIeTbeE5k+BHzzkif7IxkSu6EiiwQewqrr9dHIL0rPzlN6ZQnPzGFIqT35hCcfIbUyjtAsSTJlSAegfKG3/858cSG//ojsS6l+r6iog4+GcVaU6XtzXWqAtxSjEQzgbUjxCmBq86cv2RuJfqKae/o9SPkPoWUhl0ajjIq5CgReJlbs/D1LYECVCbLs8pR85LmkJLItmu90Ju1RrEPdqOYLH3eidGp8gtRcdhOtd9McaYbwdOfmMKxclvTKE4+Y0plJamqhI3huDI+vCWxOp3H0psu3qMx6xgAiv2ZwNHFg5K2GGoRbYIlBBySNwbt0OJ7bcqVB5QrIGSV+iZuIF1WPT6rC5g4uwcYhERC+iFSGIcPS0qjcYed7hvnji3S7lsBH/x0ISaLaZBDO4vV0DctZ9kbv9Hf/mNKRQnvzGF4uQ3plCc/MYUipPfmEJpaSzyGmKbTn8ntktVi7cLtQFvL7nWerFUlXsOP0czmLByAY0+qaY7d5oKcRXbLY3u3gO1/2iwL7H7A+1r8Kg+lNjD0OONt6riTuBflM+2c4n9z/qlxCIijmMqMVLTaRpSrjpP/8ykLLrXDZ0F/wHI7ItA98wta3eD3j36lyk1Rv5V/OU3plCc/MYUipPfmEJx8htTKFjPT4LRk16Fqnc+nkjsoH0qse6EbaTLzYHEZtDA8wzsqrONCovzTZ4ImGsFJYFlmGi2OWq1+SRNoDkE2+69Wtf2o61u96dLXYcHh9or4eJSz/svzQ2JzVsWYmltsR68gyaqMNJoDQob9Rz4OibV5E4qIlvy6yBXQIxguzn1qxhDI9Qe1tZffmMKxclvTKE4+Y0pFCe/MYXSnvQ66nrQ6G/CxyMVpW78x32JfffkVGLbXp1pERFPQdR6DmOxX2x0Ys/ZWh1rl1CHTg4/glxRuQ04IyL2Gr3HA2gyulepGLMfep6bIJLdGaoQ9+Z7ujZv1iruzP5dz/ubsT7TiIgXAxViSYy7rHS9UayCVgDUMHWXSTop5+Uu/QBwuhK4PnPr9LEHxRWERhSg4X3EprVu4GmM+T1OfmMKxclvTKE4+Y0plPbZ+kyCayp5BZ1rNd6T2H9O7kkMqk4jIuLxSMW4TzZaTvp8qbHzlQqV1GQy10FFMRJ3Ug4/cu4dtSqojakJJwhdZ/CzfAol0PfOoZT4ga7r/UMVSN/ZaAPWiIjfNSr40VhsAt1zMCEpd+oOPZcxuCkPBrr+ERFtpeuz7NXZSE1LSQTMLaHFaUYgPucK0qnzkOuPIDHVX35jCsXJb0yhOPmNKRQnvzGF0k5W6hAjcYcmkMwaFU6GIEqsE1OBJhsV7b5caZnwdKViFYl7VCZK5JZ5EtTXL4JdVTRhh0TEBXR8O6409r/gIrz7TMW5e6NzibWtHu/OksWiI3AmTsCZOK+0hBonH2U64AgS2I6Ges/fGd/F/fegrPr5WtfnZaWxBZSD5wp+9D6tyG0IQlyq5JxLkWHqFQiadvgZY77CyW9MoTj5jSkUJ78xhdJS3zuCRIhZoyWm5DhaJ9xhNCL6fP2HO/dyQeEE3GV03kWtTrAIHou9hGEjDazPAmJnUNr8DEZ5P12oi7B5An0Q57pvp1pY8hoJEpHIsbaG2C59FGnwyfdadiu+AULl40rXgpyA040KzXTPJOKig5FGkONa89rQ/lTGnruvv/zGFIqT35hCcfIbUyhOfmMKpV1seHDDq1DTfyqNzHUhRbAQRMIbiT79lmJ/+FRVclrR9c3XLJDm9nG70+r03brWfZcwOGUGsWfQw20+P5LYBPoyHkOpbUTEEgTaFYiXqx5iIJKSCJjrxswVBseJ79iDXtfnoFKH4MFQtztuVXw+61XkvgSxl8TsZZ/nfoT2hhHB72OueO2SXmPMVzj5jSkUJ78xheLkN6ZQWhJjVjB9ldjU+f3H8OSZQzGGINrQwIhcJ2B+GSW5/hJqzEqFoFwXYjPQ3+CDUGfaFAS/xwNdwwDX2JSGoWxZ7D3bglsRxF1yl5EISAIUwW43ha7ljCaDRESEuvneX+t53q61H+Vz6Mv4JZSxf97ppOTfhfadRIEUnksNzzkiYtPn9QXMFb795TemUJz8xhSKk9+YQnHyG1MoLQkBJCLkOtiovHGQmGx7o1WR5RZMiCWH4GQNk3uh1x/1Ydt0en9gsktMbtXtIth9RYLYaaXiEJWTtvC73MP03RPYt6OJuiA2nYMzLSJi0uk6zjYqaNKgizX2VsybgJvb/4+Oh4NmIgKWLB7ANd4MvZfztYqunwy0j+Kq0XNPa12vWaUxcq+u8/TRiMgX9+zwM8Z8hZPfmEJx8htTKE5+YwqlzXW7YaktiHstKGIjGJwQEfHWUPuuvd9qOeoAfqMetyr4/bZ6LrGTpQ5juMy8v5S4R+SWMi9BgDxdqwhIzGotE6VnQM+PSnLJKRfB5aizzN6KuW6+yBT3yAU6hvdpD4TPiIgjMKHeGajwdnig99xe6L3c7PXc41bPTc+Fco3WK7WGWKqbKe7Z4WeM+QonvzGF4uQ3plCc/MYUipPfmEJB3y0qiJlqNm03hPHVERG3oF763dDYPegvcLdR1bUbQf091ZfDda+gHjxbuY5EU1BS3UEhr2DUNV0j2YCJXLU3NUmJLLpkVcbnn5g2kwOtIb07+zBC/Agm80RE3O70GgdjmCq01rWdgb33sgW7ce4/ZpkTjlINb3PXO3vcfNZWxpg/Opz8xhSKk9+YQnHyG1MoWM9PfRRxvDBMIOlgCkxKwKDJMMtKr2ew1fM87PR363lzQ2KTodamr0EEJKh+PiWmpO4xZ7slTE3CngqZDS5zRbfUNBwcL51pLSXouik2ACvvAAS/YaWxUWJtarjGxQoawnYae1Zr7f45fC67TItt7thuevYR+UJ8Lv7yG1MoTn5jCsXJb0yhOPmNKZRsh18P02t6EOKokWWqbvys07rqp1CzfhOcgEcgNj6C6Swng9sS24DQeFprTT25A1NiDMWzRyqD6NPDdJZcckWglOCXWyOeCzn3KIbNX0EEpLr/ZeL6Xrb6ilcbbRy7gOYNL2Gs+RmIwCvIDXJP0juSO3EnYrdnQPjLb0yhOPmNKRQnvzGF4uQ3plC41hZAoQpcXy0IIimRbN6ruDeFsdHzSoW8t8FQ90MYnz0YqOsv1LgVn4HYNF3DBCCY7JICyzpBHNrFpfVNglOcMm+FRDsitzSW3puIiM+gueak0Rj5M2cwKvscYjMQhi9hGhIJyLkTd74O/OU3plCc/MYUipPfmEJx8htTKNmCXy65Ak0qXkNp5tFWf6M+6FWMu3WojsGjcxX8zsc6BnzW5gk05A6MYDdfLrnjz2ltEgfM2qxJbEY96XIF3y2UZBO0L60hlV/PQUx72euzj4joQIAeZ/ZCJGgU+HSrwjVNPWI33xXmcV8z/vIbUyhOfmMKxclvTKE4+Y0plJ0Ev9yBAVdxLNGo5feWKoo8ejiV2OimikOLT/UW72xvSuwAhj7QwAgqO31dkDBITjnqj5frqItIuM6oJx243XL7/xEkiF12Ku6dbVTsTTGtVQgcwDvWwJrlPusJXA9dNwmaqfLd14G//MYUipPfmEJx8htTKE5+Ywrl2h1+ucMKUtvuhYoxd6Fck8S9qtXjQWu2GIDGMoRecTQVNyUCkaCW64ojmlrPQ+egoRa4b647MAG5/tilp89lXUHvug6m08LxaKDJNFRgIzdmBIu2uc81V/CbbVRUnK/B4Qf3fN39Eq+Cv/zGFIqT35hCcfIbUyhOfmMKJVvww8ELO4pIeB6IbSA6f6mN+LpOtztZav+/2VgFFSrVvIozkZxauaWxuZC4t9/q/ZHIRVxFWKL729QqYDW9fk8qEO2I3DLffqNiWmrycktCLsRyxb3cKcuXG3X40b65LtmvA3/5jSkUJ78xheLkN6ZQnPzGFEpbg9Cx00RWEOeuIgwuYHzCZ61OVb149obE5uBs+0L1sPg01JH1vNMpvefdpZ4DxKYIFpywxx2sLT0DEu1I3LszPJTYYa1TjckdSJNkU3HqXUgluAuYyEwltFTySsIZCX60rinnZF2BEzRzQnDuRGW8Hpq8/A326yP85TemUJz8xhSKk9+YQnHyG1MoLbmdSJTK7TV2lZJeKsM87lVk+9dWf6N6KN89hdLfFzDc42Q9033XKviRuLfo2K1Gog8JPCR+DuAZjFrtKXgThM+3Wu1H+J1ah5LcBjPnOjFg4wTW8WSrAt0lbLeAZ0rC6QTWmwQ2ckliaWxCpN70JLDqMyAXaW7PRCqhrra6XQ8xFCoT+vh1O//85TemUJz8xhSKk9+YQnHyG1MoTn5jCqUdNqoC72JhJMgGGsGND5+sJhI7rs8lRiOQL+B4u9hISa2/yoQVnKYDMfrHZb9RK+/dgY4b/6DR2F8s9Zn+cKBrOBxwDfwTGGv+66H+0/BFo/u/qHW9vwR7L9mAU9bpHFIW8haUePp3hfJgQDG4F/xHAt6nJfxTtIB3MZUvPVjfd/kHwF9+YwrFyW9MoTj5jSkUJ78xhYKCH4lfxBaskySIpWqtaarJ0/4Ujqn7rzoVmyiGTRO/hikpKDhlWkHpGRy2WpN/G+r03+vUBvzjka7hu3+lYmjz6I7EIiIefv5CYvd/oYLfL9e3JPZxq/c8qfQ503qT0EXvDommtIYRETdAqLwBNmmKHdQqutIo7xX0Osi1NEdo7HLN7+J1v7f+8htTKE5+YwrFyW9MoTj5jSkUVEmwZhkaHPZYD57vBFzAVBNy32GPgMzmmK9r+gmJUASNys6dIENik+4Z0TRwzyDOxpodfjTXfG9fn8t4ApOP4J0461XwI3cnOeDo+ZG4d3ukjUwjIh6OVdR8BD0Q3q5AYN3q6m7gHXsOTUIf19ozgvJgAQ5UEq4jWBCl9y73nfeX35hCcfIbUyhOfmMKxclvTKGg4IdTdzLdaqD3pYLoBtxmjjH+NpC7jiQEUSnypFGRjKYZfTw/ktj651DGOtTjRURML1QQe7JVQewTmIb0BTRMfb4+k9jFWs9N70Pb6HUfDPVa7o30niMivteqC/Gn232J/WShItvdRt13k05v+tcjHRc/BXfgi0a3o8lMqXHhu4h7hL/8xhSKk9+YQnHyG1MoTn5jCqXFnnIgOLTgJcsty0yVCK+xBPfbKe4RudOLyNV4CqWe6GCE2HSogt2/hTrgBjx8KBZDOGboxsdbFe0er7UH42QFbjdwaJJzb38AvQyH2mPwIbj2IiK+HyqI/mypjsMf/eRYr+dNzYPJb/Qav3x5X2IjmDJF/f8GIPiR4zMi4bLdYey3v/zGFIqT35hCcfIbUyhOfmMKpR012gOuRWGCRYhXQUErMdZ6Bi4vKvPNLd/9Jskda07jpen+eMCDrg0NungOAzqoRx0JUBF83QsYx32+0T51NOr8Eq6b3KH7rYp7t4cqVL49VNfed2p17UVEfABzQD58X3sUHvztBxKrbqiweDt+JbGjn+vzG2QKfuTwo/HsETzSnvItd7iHv/zGFIqT35hCcfIbUyhOfmMKpaVSyGGlIsS4VhGCSlZJgJj1XDraVFrqiQIGiE25pYy5vfW+DugaOypvhluhfXMHlZAIiMJuQsSlc69hMAU5E0mUouPR9VDsRqNCJQ0vOYJ+exERd+B6Dn+ipbX1z/5SYtXRPYkNTtTBeP/nILBWeo79Su/vsNF7oTWMiFjDVGQSkHNdf/7yG1MoTn5jCsXJb0yhOPmNKZT2x0MVNWiwRO6vxBIErdNexY+I1BADFZFI1Nildxm5y0i8zHXtpa5nlyEitB1dI4lu5BhcNLodPeeIiD7zunOdl3Tdm0qfKQldS3IW9uoYfAaCdETEM+ib152qIDoYqbDYPPyBxPqPfiixe3f/SWJ3zt+U2C3o67dqwPGZ6Hm5AdGVyuW7NQ3O0e385TemUJz8xhSKk9+YQnHyG1Mo7UdbFToWMGl1CULOEra72KposwDHYETEXq1izBhcXnMY3JBb0lvTtFsQ/KhkmcS91MRhLNVFt2JeuSWB24FmR30UU9edyy4CK7ksyZlIgzy0sx5P+H0GJcsREefDNyR24xdvS+yv3/p73fnvphpb6rlH+3ov+2d6zyN4F4dQ5kt5ERGx36hguGzBZQlrS++dv/zGFIqT35hCcfIbUyhOfmMKpd3fqjCxBhFpWalgcAbuq9Otuq9Oe2ikFhGX4NQidxkNK9iCQIeThGFfEvcGMDCCHHCpASTLSteC3He5TsBcco9HLrtdQRcilVDD7ZGL7XKt7wOJV2eVTgKetDoYJCJi3um71++p4Df7R+0L+De/+geJ7b0PE3lfqtg4BzF8Afe8AuddSpylHoBUBj2GHoAkAvvLb0yhOPmNKRQnvzGF4uQ3plCc/MYUSjurVZV8UanC+hSacL7sdWLLtFMl9rJTFTeClVhSd2saIw6KPW1HKjcp+yOoB6d/Ctqa1X6CVFtUcl/D8KFd7Lk7nwf+AMjtn0DvA5FSyE9rnSD021abcP5iAKOy/+uRxH76xanEnlzoVKHpWK9nCv96TTvNoXni37FUY89XodzAfMk6mjHmjw4nvzGF4uQ3plCc/MYUSvsMxL0nvYp2TzY6XWeyVksliXtkLUzFuQYexgtf8yQeOh4JfinIMpxqkGkYes65QiU1E03FF/COPm9VZPt0qPXzBxc3JXbS6rM/CRXIz0HIOwfBLyWQk+CHOQT3TO+3v/zGFIqT35hCcfIbUyhOfmMKpX0Gzr3jTl1RL1Yq+J2vVawgR9ZV3GVUz09soQ8BQfXlJJKsQPis6jwXWkRCqHwd1j1zZbCXAPSmOK71nfh8qE7QCbhkj7eaV9ONCuk0Tj0p+EFuoYsUBD838DTGfIWT35hCcfIbUyhOfmMKpZ1uVXA43ajgR+Le5UaFiZTTaheuuxw1VyTZwPjkFCjG0Ajr11Ra+/+d7ClFX4NoiqPhwT13Uuv7/QVMe3oeut3TzbnEcgU/GlMfkRhVD+uTOzrdX35jCsXJb0yhOPmNKRQnvzGF8n8H32niRePHUQAAAABJRU5ErkJggg==" y="-1017.027731"/>
</g>
<g id="matplotlib.axis_61">
<g id="xtick_91"/>
<g id="xtick_92"/>
<g id="xtick_93"/>
</g>
<g id="matplotlib.axis_62">
<g id="ytick_151"/>
<g id="ytick_152"/>
<g id="ytick_153"/>
<g id="ytick_154"/>
<g id="ytick_155"/>
</g>
</g>
<g id="axes_32">
<g id="patch_33">
<path d="M 434.924375 1139.427731
L 557.214375 1139.427731
L 557.214375 1017.137731
L 434.924375 1017.137731
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pbf66d9edb1)">
<image height="122.4" id="image9e7d10d03a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHAhJREFUeJztncmOJOd1hW9mRA5V1VXd1Sx2k9REirYmwIIEGLQAAVoYkKGlAL+A134DP4OXWvgB7IVhLwztDHlpGYIBWwNN2uIgqdliD6yu6hozK4fITC8MeNHnC+Cmstls8T/f8iIyI+L/42YAJ8+9t7Oz9eoqnmC5klCsILZYLVPHVd2uxCIiBlVPYtu9Qeo4olkuJDZdzCVG173TG0rsi1u3JfbVeh/P/XL0JXaw6EjstXkjsVd3zyU2n1cS+8V8T2I/7+s9f7i8kthjiJ0sxhKLiDicnknsdDqSWLPQcxOdjq4DPRPd0OPwsx34LBwXwXs9W+geLJZ6HEHXQ8/8KjRGzyd99lnBWWmM+dTj5DemUJz8xhSKk9+YQqmfxUlIQIxgMYZEkazoQ99H0GfrjgpsJCK1CUsDOPUO3PYw9P6WS/3Oi6kKiI97etzZSsWr0UpFzvFSY1eLmV5g5AUxErU6INploX3udXVfhrWuDe1fRF54m0NsCc8THUffh88xrA1dXxu0PkRWRPSb35hCcfIbUyhOfmMKxclvTKHUWWfTOsKEfLZFgCBRZAKOPBIM24S3zGfJXdbvqvZZb/jbWNF1w3HTmZ77dKWuxpOu7tUFiXsQmyxV3GsT/OZLFfxoD3lf9PtIYKVYVtzbrbdSsYiIQQf2lcRd+Oz5YiKxRzN1Y57N1P24iWOw9dismJo8zG9+YwrFyW9MoTj5jSkUJ78xhVJnXXFE1knUJhayKJJzl5Hgl3UC1qGCD4lNvRbXGEF3QndNx101KkqdVXrui44KpFcgzk3AzUexKcQi2MWWfU5IlKI96Fd6z1S6TULeQW9XYjerbbyebRD8dmD/h7DXk0rX4f1KS87fX4Fw3fDaPgmtV5sISM88umcxlBOfjTEF4OQ3plCc/MYUipPfmEKpqWzxWZEtt+yATEaiCAkiKxDytsA11gdhiESgqsU+BVW5scyWYMJ3Une8OazXHNZmBmW+JO7NoXQ3gnvzkbhLe0CxmvagAudeT8W9G/WOxPYrcPh1uM/jNop7+s4brjS2De/GV6prEnvUU7HxfKr9EdvWexNQBKQDQQT0m9+YQnHyG1MoTn5jCsXJb0yh1E97aMA6JYpZSBjEQQkrEgFzv2+DrgpGQxABey2CX5cEFSonhnvpd1VgG8Jn2879JCSazsAJSE6+iHz5NolN5JQkgZXEvV0Q8q511VG3A+IeCXsRLO71QdzLru0utL3cqXTgC4mclBsouLcsPwl52dJ2FMhTnzTGfOpw8htTKE5+YwrFyW9MoTj5jSmUZzKxZ5MpLmudJ6l8ZhtKrnPV9CtKn5/DkdUSmmMm74Xq7BegC9O/I21KMf5DAiFStAc1KPE1KPagkJOyT/X4W6Ds77T0XiDbLhmBa9gtUtd7NB48OYmH/6ECab9t6+HQxQb/1vnNb0yhOPmNKRQnvzGF4uQ3plDSgh/WblOzRpiGk7XYRuSbgmKzTjg32U2XoJycNjp1ZYtspNBYMyLiOghOlzC+5gHITdOO2l/v1XqND1dTiV3BdB7alyHUz7dBnyd7MK0tNeG8BuLePjTcvNnV4/bgET2ANby+5GcMlhH1NHrqRuDZnkCzzvFC9yU7sYdoywEcib6Bnd5vfmMKxclvTKE4+Y0pFCe/MYVSZ4U8Oi47dYWcYG1knVEECYvkYiMx5nh6oceBe6434HvpVXruMYiDc1CgjlY6KvtweSWxk4U2haRr3IapMtSvYAxjydtYNck9gGeHrufVrjbC/PJSj/tMo/d3C5qRdlqK4C9AMLyE5/Gs0us+hu+8t9Q9eDy/lFhbr4TnCb/5jSkUJ78xheLkN6ZQnPzGFEqdFcl6IO7t9rXh4ov9PYlR+Wbbea6WKn5dLTRGjrNs40n67KTRczyeqpBTt5SOznsq8FCZ8Bju76xREWkErjG6PxphvQOlsV1wG7at16iZYPxJSDiltSVI3Pv+/kcSe+ENaDy5r+7A5sE5nuf0Ld2DOw/2JXYMouSHoXtwd3YssfFcjyPIgUp1w9nnOGKzcnm/+Y0pFCe/MYXi5DemUJz8xhRKTe47KtXc7qkgcmtwXWJf6r8osdc7KtBEROxDf7VTcMDdCXW7PVioGEdiGjngsAQTjiMR8HByJrG27yRIEJsu1LFGrkYSXWnUNZZ+wu/8OmLREq6HSqNpWtAEHHnq74s4+I66EKs/+aYeCKOu66078I0RW/ceSmz5QI97XEEJNbj5Rk1unymHFjBRivaAnsV1yE7x8ZvfmEJx8htTKE5+YwrFyW9ModRDGLJAIiD1gLsOfdhuQx+2r834N+abw1OJbe2oOPTmowOJ/dsQHFkrdaZdgAh4AoMgsq6/0Zzdb3QslUGTkEfCGUFC0GVXr6dPo8WhfHfe4sbLXg/eC8SmIPg97OtxV++oiLs1eEvPO1LRbfobFeciIh786obE7sIQkaOOXuMVXDeJqSSwYY9JEl2hlLizZMEOx3lvgN/8xhSKk9+YQnHyG1MoTn5jCqWmCaok+JGTjCeWKoOWHnw3X1KRZu/b6hr89k/vSWz8P5+VWNNXsXHZ0XOPuyrkUPktQQ62iIgmNJ7thZiFBLbzma4hHUf7TOJc2+ezohZBJdk/X2nPxB/+9+cl9vqbKu51Q5/Fy1BhLyLiXk+Fzju17tVHNBAFxOJ8P8nc1F+YCxJBpb8tX0AiIO0r7imfxRjzacfJb0yhOPmNKRQnvzGFUu/UKpKR+DWEoQ9ZkQxFjYggw9LyItc/DiowYw6KyNVKXWzUH49caNSjrk0kI6BtHo+DTUKCEQ2HuJhrCTQ5GNsEOxI16b5pQAe5EOl6/utKRdzHAz3uc8Ndid2EqcZtT+IZuD6PIHbYqLuQJjfTOq7zTDwLSNxDZ+KzuBhjzPOHk9+YQnHyG1MoTn5jCqXOCnk05bWG347eGn3hxucg3LylYsz9O+reuqOXEw9gsu1HjTrJjucau5iBSAa94tocXps497LfR64xEt2wrBb6BLYJVSTaZct3CezrByXQJAw+Gqjgd6PekVivZZgK9Q+kISkXjZ6brjHbXy/rsqPy6bZnLLsH2UnXfvMbUyhOfmMKxclvTKE4+Y0plJrEPer3RsJgDZ+9Ah/ao1q/LyLit8c60XfrRMWh9zs6ifbdSoXBuzPtCXg00+mtJO5dbSDurAMP1MiJe7RXOPkVIGGorTyZnI103Zs427LuUDrHZa173zaApFnlxMZJcnAKXXdW7CVxD9d6QyGWQAE59UljzKcOJ78xheLkN6ZQnPzGFIqT35hCQRmeLKPEHNTH45Uqqe/U/Btz0VV77xDGGN+t1Gb7m0ZV/EdTHZ9NltFJo8ouKd+o9rao66Q2Z5V9UmJx4gucOztme7XhPxdZZT+rPq+gsSqp4TRVaDnP91kghZxs29QIk9a2qqBpbVLtX8Al0nq1/ctEx+JzQv9I0D9KeBZjzKceJ78xheLkN6ZQnPzGFEo9B/tjvdLaaDqOhIkJNMy86KgIGBFxv0PjwfX36Hihot396Yme5ymLe1xTz7+XOKElOfmGBBqampQV/FC8IlFqDXdu9v42gfaAGpQuwELeNlacm7BqjI6j9abzUCcB+j6MrWHZpT2k56RfqY5PMb/5jSkUJ78xheLkN6ZQnPzGFEpNk2oIqosmSBBpcwySgEFiB03YOZ3BNBVwbmXFPYKEOBJOIvIuLxLosqLNJmPEN20wSmIVTSTaxEdI56DrpiextenlBn0I8Hrg7NnGmps8ixEtk7RqFc13ejqF6xpM5vKb35hCcfIbUyhOfmMKxclvTKHU2UkuDYhSBDmW2koUSQDBEkwo66SGmzxaOidBkXOvrnJCXESLI48EQ2iOStOQqGEqXSMJWrheC12vUYfHoaNw2tG1JfcdSX7pcuA1ptf8rudo+86sIIrP9+J3b6yZLftuAwVkmF60XQ0k5je/MYXi5DemUJz8xhSKk9+YQqlJCCJRo4Ey32w5KZUDR0TMQVgiESnr3KNzbyLurAMJebu1Thq6Xm9rrKvuq13ob1hhn0BlDGXVRwt1RB53dVR5RMRlo0IgCcOdhV4P98ejvcqVO2fJuh8juA9f9vP0fGYdlfgsriHuUV7SvowbdcT2QJD2m9+YQnHyG1MoTn5jCsXJb0yh1FPocbeqcoMESCShkt62UdAkDqXLcjdwg+FxoLs0Cz3vNLgEmtaCXFVb0Lfws90did0OPW53lfutfgxuvF+ByLXpCHIqed0EHJJBfQuTfRAjWOjqgUuTXJYkQJJAPp6rwMaCNJX+5nr9RfBzywIr9bLU6/ab35hCcfIbUyhOfmMKxclvTKHUKBiAmNZfY2Ltk7QJflm3VLYsdxNwWiqUp3IZK4s+JEyRCDivrknsYKlr+4VZro/ir/sqcj0AB2IPSj8jWDzLTm4mSDjDUlQqoYbrprJqKqmOiNiq1ClJzsu9SmN9WJ8JlEsfN+qUpB6TVIZO5dcRFMsPIJlBiTG5af3mN6ZQnPzGFIqT35hCcfIbUyh1mxiXoR8w+fMZTHP9OCDHIIXa1gvLNUEEPKkuJXbauyGxbqgAtQtC0Bx+v5ckVMGwiUnLwJYJlIlSLPvsUO9BEotJ3NuqVbAbgohHwl4EC6wHlToqX+pqqfUtcFn2YVLJ494LEnu3fyaxu9Nj/exUn4dRS75QHtFzhzEcpmOMKRInvzGF4uQ3plCc/MYUSk1CQLYn2aJDzjtwh7X0ZqM4ugaTBj8U7Z4yrdNgO7lyS+qvdrzQEszDeldiL0E5cANreAz7crrU817AeSMiRskefuQEpf0jxyDFyKWHE4zXcCsOYc2ud1UEvB0qGH6x0WvcB/fcrKPXc7N/U2L9gV7j+xJpd7RmHX5Z/OY3plCc/MYUipPfmEJx8htTKHW6nx2IgFlxp63cEnu2wecX3dzkVxI/sscR60xQZRdjbsgClYT+ElxoMdAYrez9UHHvDMQ9Gs4RkZ+AjEIePBNZIY/Khun5nIIzsa0fIbkLxyt1Ty5AsIWZJBhbQuwa9Ft8AYazHNdazj2udf8i8i7LrPDtN78xheLkN6ZQnPzGFIqT35hCcfIbUyjqS4x8PTAdRyou1WRHsFpM6iWpnHNofEjNNckSOV/k7o9oPQ7CpD+T5ZeaPf6qq7Xf057e3wD0/pOlqvinjZ6Dmo62XSNRQ2077f+gorp4ffRwAlRS7b9a6T8UEfwvwBCm89yAZ3S7UnX+HP7NmMA/BYcdvcYRNutU6B+KCF4fHDefdLn7zW9MoTj5jSkUJ78xheLkN6ZQUPDLQgLEtZ6KJPs9tTBGRPShDnq6UqHkbD6W2HgBE3Jg3PgMml424MfMNkJshVy/yQagVON/ND2XGE13odHSk6WKX9kJMhFsfyYRivoxoOAH17gDjTV7IAI2KxBx5znbdETEaKXi53FX7dQ0Op1c6T1YhzMY237U6DN7Chbr0QJ6J7Q0ViXxcq1n9An85jemUJz8xhSKk9+YQnHyG1MoKPiRa4jqtIfgiiJx7zO96y0n1+88h0aTWcchuflIYOOpQniJabJ9EcixRo66y1AhaA7iF4mu2caha00fAjcfQY00Sdy7XuuEnBo+ewXi5bjLzkSC1uJiDg1TOyqwNsnOsWcg7p3MVWCdLGBEN1wfj+3mMdubNK31m9+YQnHyG1MoTn5jCsXJb0yhsOAHShU5t4ZQqrkD01B2wD31fyeHKUBdFTCuQDCarci5pwIWxbIlq5uSFSqzo67bmlRmjiOxaJ1pL1lhiZ8TGKkNrj+67uw9tzVWpc+Ts/G0AwJdslEoCYgosC7ArbiGay9bVp/Fb35jCsXJb0yhOPmNKRQnvzGFUmfdfDhhBdxlJErQKOcIdvjtQJnvHCadLKqcOESuOCr/xDLfDUd+Y381gFx/5FbMniMrArX1isPzgKCWjRETcLGRm+8SSl7JAdc2Br4Hzy2t9xW57+A8JM6SgEiiMgmsmwh2m+I3vzGF4uQ3plCc/MYUipPfmEKpuTdbrl8bCRhTcN4tWkSNPpxnC8o6ByBAUukojvema4RefzjqGOp82wQaEt5QEIPjaG1RiE2OxCbaxqQTdD107l6VawFJ/RZHULJMohuJs7SndH0REVUFg0CSTjnc06SI+0kKeVn85jemUJz8xhSKk9+YQnHyG1MoNQklLO6pgIHuOSqDbOmFRgMQdlcqTO3BJNohCFgVCGxzmGx72ajY1Dax9knaBJ9sGTQJdFlxrw8CG027zYpS9Nm2OPXX61JJNuw1OeVIBGTnpe4frWuboEnXTaCYSv0R4V5I3Mv2k9zURboJfvMbUyhOfmMKxclvTKE4+Y0plLquckIOiRpY3ggurRFM3o2ImGF/Nr2eHlzPNvxuXYdegSfQU3ATkWwdNnHp0cRa6pk4gBiJXOSIpN56EdyHkcTUBYhVIxi6crHSHnf0PFEZbLaHX5vDrwvDRrL9KFHkhD0lkZvyiu6FhOJn5Q70m9+YQnHyG1MoTn5jCsXJb0yh1Nu1ijvZCbgUG4F77tH8Ak8+7Kuo1XT03EMQcxoQRSbkLksO99i0vxqJe/SdS/i9pdJm6j1He7UH025vVFsSG0JvxAGIqxERAxC6SNy7gJ57TUfXdrxGr0A5b/K5a+t52FR6PVmRlF6N2SEbJJqTKJmd7tx67Ab4zW9MoTj5jSkUJ78xheLkN6ZQ6ut9FYzmIIiRi4l64dEAg0edczw5lQSf1DsS2+6qE40ElREIUI9meu7LuYqS2SEZbWRF0m4HRECYTEwutJ1Kh5d8vr4hsVc7uqd78DtftehHcDlxDkLsfXAmTkBgpb0iSExD0RSEr7aJw+iqA3G2Tk7knUNJL11PdhgO0eZqXIKg7Sm9xpi1cfIbUyhOfmMKxclvTKE4+Y0plJrsoaTsh4qc0XThXwH4B+BipvXcEdyw8bwaS4xsrWSVpF4Cp9ORxCbwj0SbWpwla9Ok82TrvPfAtvuFrsa+MdO1uQW18lsd2NSI6MI/F49WugdvD/TfhwnYaU8WuqdEthEm0tKPgZ4T+icl27SUyP5LQWAfCV3CVjb5B8BvfmMKxclvTKE4+Y0pFCe/MYVSU7NGYtaFqSsgStH446ZhYYkaNl51VYy7mKtgiNNU4PuyU2A+Dkh4ISsoQfe3BTX5N5cqSt2Ge35l91Jiu/tqc46IqAcqIt14qMLweLQvsXsDtWJ/2NX6eSK7NiSStY0L3xvodd8eqCX6oL4mMWpaegkW8tNGReXzRp/ZSXYEeZvI+ZT7evrNb0yhOPmNKRQnvzGF4uQ3plDqPZrOQo0GQW0gJyDVOzcLFthIeJuDaDfP1kGDUELX/awmomShKTC0BzR1h6YZDaGJ5vY1FZsGe7wvZE5bLkHcTQ45wvr7DfaF1uZaT92GERGvDG9K7Ou9FyX2OjgYaW0Pa12zX1fag+LD6kxi1FuC3IHdFuelG3gaY54KTn5jCsXJb0yhOPmNKZT6j7vqdroAweiwUgfUh5W6p+52jiR2tOIGnuO5jnMmgS7ryHvehLwsVL5LE3v68Ft9DcS5m9fUXbb7ORX8OjUrdpd31S13PNLS4eM+NFGFpqw0NSkrzmKzTRh/vdvT64uI+IOeCn7fmau490e1TpXq9fReHl3qM/+z/q7E/qOne0XiHrn+xqF58XHgN78xheLkN6ZQnPzGFIqT35hCqf/yK7+V4OgjKMt8eF1iP+3dkti/bqvw8rPQc0REPFyeSIx6AG7aX+/3Eeoft9/RffkyiKaf+75+X/XNNyS2/ID3ZXUHRFs491FX9+V8BWWr4ATN7im5H4cwYnu/p4J0RMSXQgW6b93Q+3vpT3W9O3v62c/cPZbYzR/rcbFQIf2yp+twDOPrycEYwRN/NilP95vfmEJx8htTKE5+YwrFyW9ModTX/uovJLjz8K7EDn72psRu/VCFk8vxCxJ7AD3TIiLOZtr7jPrwPe3eZZ8kOJgiOcijD0LQK9fVPVm98Q2IfU8vpv8jvMbl4rHEDms994PQHoAnS43RMBUedKFrg6XN0K9vr8slvV9oVDC89YaKZPWffVc/fPCKXs/hhxJ77cUfS+xbf6+DSn7ZVzH8Pehv2DbKu7PQe+nC+mQHefjNb0yhOPmNKRQnvzGF4uQ3plDqzk0VNaJWN1f3VN14uwe/kNj2ByBK0LjaFn5fy3KzYC9EcDUeTVXIe7une/DPC3VZ/vkP/l1i+999T2LLxzrIIyLig49UoH1nS4XY3zR6jQ9npxKjoSsTuOfspON1npFtKB2uXtH767z2dT3updcltrjxsh53fCixl2//XGJ7J9o7cAiCXw8mBkdEzGEC8mpBvRBh0SDkN78xheLkN6ZQnPzGFIqT35hCqRc/+kcJdnoqQizu3JfYCUxuPYQyz8s5T4MlNx8JYs8T1FNuU8jtdjFTkezdke7BP2ypcPb2obosX/s77Vs3CHbFvTfUMuE3Zx9J7P5UnYDnM3W2Xc3V4UelqFTm20DlL022fbxQt2hExJ3egcTm76oztbr3jsRoX1ZH6vBbHT6S2GSsOURvWhL3+i0Th2kgDvVCXHYghyDkN78xheLkN6ZQnPzGFIqT35hCqX/y19pD7MWhik3TufY4e7OjAxHeq/T7Hs/ZSYaC3zNw+GVFOxqm8XEIfnTPJIidgZh2J9RddtLoev9nV12bbZw3uv9Ufj2C/oFZIS+7z/RZGvZy/0rFx4iIf4EJujd/8lmJfe/uP0ls92swrRoUyKs7Gvvt2W2JTbb0OJq8TP0bI7i8mcp/sWwcynz95jemUJz8xhSKk9+YQnHyG1Mo9d8M1H13AM6vCiayPlyeSezdqQpQp1N2X20ycOBpQ73QaGAEiYARLASS8EIORhpfQf3smoWu12im+zcHIZWur239qdz2aQt5m0DXcjrhZ+ztjjry/nZbP//WoZZGf/W+Ou1enutnt0NjR1iWq/tC5e5tQztoD9cpl9fPGmOKxMlvTKE4+Y0pFCe/MYXi5DemUOqfjnQ6z1YFDTxBaRw1arOkeu5Jo/XcEc+mdp8UUlLss9bJdey9aLOE+utVclw1WTTJIr1Mriv9exCRV/Y/KbJ26Ajui/BBV+vv6Vk8r7XR51dgMtAfzvSZ2IF93lnBGHB4FqmPQAQ/O9hzAO7FE3uMMf+Pk9+YQnHyG1MoTn5jCqU+msCI5xZ74ZOQyIICVIuA8UlN5yHRjsS9uqsCTdvakMiCAg2aeXPfRyH6PpriQsJSm0j2PIl7m5IVB8dLFaUvV/osT0Hv7cF6DbF+Xi2/MzjHBEaaR3Dj0mxPDHqe/OY3plCc/MYUipPfmEJx8htTKDWNh86SFRaet7Hb5FYkcW9Q0fhkbq5Irjpa2/kGPQyya0sjmrHfwHM+HWkd2pyX6NyEGAq2yd4Lc/i+McTuhzpiTxvtQ0ANSiPyYno23/zmN6ZQnPzGFIqT35hCcfIbUyh11s31vIl2m0BuNxqLvNvb0uOwMWNEs1Ihj9aMXFrEJutN4hXd8+/rnmIjyxbBj4RcatZKNCDvjSF2WOs57lV63PvNqcQeT3W6Egl7EU+/Yarf/MYUipPfmEJx8htTKE5+YwrlfwGbvWg2rSBcuQAAAABJRU5ErkJggg==" y="-1017.027731"/>
</g>
<g id="matplotlib.axis_63">
<g id="xtick_94"/>
<g id="xtick_95"/>
<g id="xtick_96"/>
</g>
<g id="matplotlib.axis_64">
<g id="ytick_156"/>
<g id="ytick_157"/>
<g id="ytick_158"/>
<g id="ytick_159"/>
<g id="ytick_160"/>
</g>
</g>
<g id="axes_33">
<g id="patch_34">
<path d="M 29.174375 1285.848918
L 151.464375 1285.848918
L 151.464375 1158.555391
L 29.174375 1158.555391
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_65">
<g id="xtick_97"/>
<g id="xtick_98"/>
<g id="xtick_99"/>
</g>
<g id="matplotlib.axis_66">
<g id="ytick_161"/>
<g id="ytick_162"/>
<g id="ytick_163"/>
<g id="ytick_164"/>
<g id="ytick_165"/>
<g id="text_9">
<!-- 35 1833-260619 -->
<defs>
<path d="M 4.15625 18.75
L 13.375 19.53125
Q 14.40625 12.796875 18.140625 9.390625
Q 21.875 6 27.15625 6
Q 33.5 6 37.890625 10.78125
Q 42.28125 15.578125 42.28125 23.484375
Q 42.28125 31 38.0625 35.34375
Q 33.84375 39.703125 27 39.703125
Q 22.75 39.703125 19.328125 37.765625
Q 15.921875 35.84375 13.96875 32.765625
L 5.71875 33.84375
L 12.640625 70.609375
L 48.25 70.609375
L 48.25 62.203125
L 19.671875 62.203125
L 15.828125 42.96875
Q 22.265625 47.46875 29.34375 47.46875
Q 38.71875 47.46875 45.15625 40.96875
Q 51.609375 34.46875 51.609375 24.265625
Q 51.609375 14.546875 45.953125 7.46875
Q 39.0625 -1.21875 27.15625 -1.21875
Q 17.390625 -1.21875 11.203125 4.25
Q 5.03125 9.71875 4.15625 18.75
z
" id="ArialMT-53"/>
</defs>
<g style="fill:#262626;" transform="translate(15.789375 1265.905592)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_34">
<g id="patch_35">
<path d="M 164.424375 1283.347155
L 286.714375 1283.347155
L 286.714375 1161.057155
L 164.424375 1161.057155
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p4b79cbee07)">
<image height="122.4" id="image623048a901" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPJFl2na8NPntMGRE5VGZWdVexB5LdBCEQ0F7QUn9YKw0LQSVSoqDqLnZ3FWvIOWP0CJ/d3My1KLEB5vlMcLAALvqdb3lh7mb27F034Pi592a/PP+bXXxA1dQfhmK701i9a/aKtZFHJrEs0xh95xaucbeTW4kyLyR22juQ2M97DyX260yPe77NJRYRMW703BqJuCz1/r7M1xJ72cwltoFn0M30/h7kfYk9i57EHjX62YiIETzCCRz6Xb6R2O2ukthhlHA9XYk93uranG/1nk8zPW+R0WpH3DZ6nm87ej3/p9Bn8EV1JbE36xuJzauVxGjPNrA/ac+25RDt+X3zgOCdbIz5k8fJb0yiOPmNSRQnvzGJosrHj2RfES8iosj2++3ZV8jb9zgSXuYgVE1yFVOOc77m7n4aS1S8FAKtI0GnrSG6BkFs0yKSlbmeewffOYB3Rw1b6gBivR0Iu3DLswLWu1YRb9uyXu86+vlvy60e1ywltmhUBKQ9lsM+RuG6AeEaRFzan/+/+L8Uv/mNSRQnvzGJ4uQ3JlGc/MYkSlmCQ4x+EnIQaNCxhBLU/pC7icSTAgSeHI7r5Co2DQoVjPqZHteBc7AnLvaU5yJyWJ4OiIjk3NsEiEOw3hU5L0Hca/NiFnCNI3j+D2E1HkBsDJ8dw8k7sJ/oGu9BBLwHkTIi4lWha/Zmp0LepFaXHolxJO71i47EaB9vQoXGH+PQi4jIYOeVhT6DUUddn37zG5MoTn5jEsXJb0yiOPmNSZRykKv4RSISCXn7lvSScBLBpcPEvq5BcgySGDOGktezTGMPoeT1pGYx5rCGEk64xgUIU+OdXvcQBMjVDgQjkMQqjOl1k2gaEXEM9zgCd1qJ36mxTqu0+M+p4F00A+HzDgS/K1IpI+JtaPnvNbj5lg2UCcP1jEotjSbhm/Z8BhZGcv215QXlQQ4O1nFX9/Kj/jF8nzEmSZz8xiSKk9+YRHHyG5Mo5Vk5liAJfuhYAlGDhBMqjYxgx9O+7iZyNpHgRw7GEYicZ6HC4HOt8o0ncH8REYNC72UDgmG91XPfgsPvHpyJq0yvcbrT66mw36Kua69lqR80ei+P+wuJjcb6XLt9cKyB3rdZ6/3NZyqmFWsVr26g/99NptccEXFZq7h3D26+GkTJXq7r3YcY7bsFCYiZriE5/Np6+FFuDDu6Zme9Q4k97hxJzG9+YxLFyW9Mojj5jUkUJ78xiVL+OlchYJapCDEFd9k99L2jsto2h98GRJo6288NRiILiYDkiiJn2xB+B88bvb+PTqZ4Pf2RHruaqzjU3KrAelurqHUPDr85PBdy/WGZL7n+WuqQa1ifHZTllh39zu5YryeHBoeduX521+g5ehsV9+bwyroC4TMi4hYEv0WtQiXtJyr9Pi70WfWgjHmZ6WeJDYirbVA/yuPOSGLnHRX8DkDk9pvfmERx8huTKE5+YxLFyW9Mojj5jUmU8j+sVaV+D/bJr7uqXH+3Z/PPumAFn1RpUuypl8C+9t62aUEfQlNuqF794EytoRERvYd6bP9OldzlUtfxYKMWzSHcXx8WtwP3vIZ/V9ag9t+2/LPyutR/Gqq1qsrTd7pPjia6PsORKvH0TwE5u9fQ6+AOuqBOWizkc7DybuAfkgGo87S2A/gXZtja1vWf0wd7NlmIMxjjHsH/PpyU+lzoGulJ+81vTKI4+Y1JFCe/MYni5DcmUcq/+LeXEnzytQpQ/asHEmt6KkCAC7R1zA0JdF0QK8ge3Fbz/CEkDJK4twDx6x5GS2/X/HvZL/XzeReaXsJx5ZoappLwuR90f0sQua4yaFgQEUWpItQcrKWX0K9gvNa9c7LUc5+WKtCVIAxv4P20AvmK7i+CxT1qkFmCdZomH1EPC+qDStdD10JQ09mIiINiILEBCIZkaafr9pvfmERx8huTKE5+YxLFyW9MopSdR1qfPLpWMeb4WsWh81oFsSm5w9pqm+GnB0dTk2MN6qBJUCFRkRpc3kBvgm+6KrCcv9LJJxERz7OJxDKYzrPd6vVsqQfCvjX5IEqtYR3IJUk9AyLY2VbBs5rC/VFT0NsG+hpAM4GPyrnERtDktR8qKrax7wSpZa0uxDtouEl7h3pYUCPb2ZbdoR8yLoYYP4ReAjTZiaTwCvaE3/zGJIqT35hEcfIbkyhOfmMSpWwWKnRVSxXdchCMxo3GHuz0sxW4kCJY1KJfoxKiBYhNpHSQuDOD8s83IHJ1YJJOp0WMiZcaOj1SwYgaYXaglrWkseR7uhVJDK3AwUbrGhFR0tpCaAPBLpYdw1hyaN56/nSmx031WT2/eSixAyh3jWDBlybfrECgq2AdSQQkMZUm8VB5+VFH99MDKNONiDjPVYDuwDMgByQKlXgWY8yfPE5+YxLFyW9Mojj5jUmUcrehySkq2nWh3PJoqyLCHFx/K+r1FxELcCdt9nSxETRmeQ1Td+g4cgfuShDiWvqrjXYq3PxcTX/RK3XNhnB/B42uTa+gKUXKviXQRctvfweeF5WJNnAcCVCnta7jpz+5ltjB3+gaDt6p6+/T/6Ii4JNSxbCIiEsaQQ+CH03xWdW6dxpYR/o+gsZpU5nuaa5OvoiIB9ADkDJjC25Vwm9+YxLFyW9Mojj5jUkUJ78xiVIWh+qMGj3W0sNqo86mzbX+dtyDWNhp0UOKPQdqbAKERXBkkWhDgh9B7jk6x0XGwyG+hlLmzk7FnEfVftczAiVnCIJfCQ42Goay7zpEcElvF9yONERkBLGf7XRM9viXuk+yMYl2KvgNChVnPwXBNSJi1zmT2HsQAa9qPc9NpY7D6VbvZVPvV0JNAzoGMDq70/JOJkfsBgTIJZXAu6TXGPNPOPmNSRQnvzGJ4uQ3JlHK/PxAgr2+ildHjYof9/fqRKK5BOsWXY/ECurXRzES96gPGzrbQNAiBxtBffQiIm6gRPU1DL9oAkQfKI0mT+QBlEuPwPVFg08WO10vWsMfzk3TafU8O+jNOG6gzLeAZ/pWn1V2eSGxq6+0vPVNo8LgEZw3IuLfQL+/BmJ3xaHEXnf0mb5oVBh8t51KjIRBck6SMHgLz+qHuMZoIvMSxF3qKeg3vzGJ4uQ3JlGc/MYkipPfmEQpAybt5n0VRLozFQx6X8NkUxhiSj3FIiLWLfEPIfcdiXYECSoUI9pKXokayjpnmcbuwKVHDEEE/GQLZbVQylrBJGDsZVjzEAlyA86hTHQJzssN3PPVRoXhzu9VYFtuVFT8Bpx7r7q6Dm2r+nir1/MUhOFhofe3hrLqV9mRxP6hq/fy21IF8rcgDM5BdL2vVSyMYPGaYrS/6Ti/+Y1JFCe/MYni5DcmUZz8xiRKGXMVF3YgAgYMciihHx0506ivW0TEEBxP5ICjabc19BSkwQQ0GZV6rlEZLFG03AuVJxcwoAP0MHT4Pc30ug96Kg79ZK6C2KinJatg0IuX2Z0Go8U9CQ6xutDr5sEiGrtbqQh4EbrvSNx7m8M0ZljriIii0D32oNbY+UBL1h8dqkD3ZKOf/ehKBb9OX52z97mu69tKGz1S78CI/YXqfQVyv/mNSRQnvzGJ4uQ3JlGc/MYkSrn+3Y1GQWADXSLWaxU1+iBenTT8G9Pk6qAagjAxBRlxC4IfiVJbKCetYIIqQSJJv2UAyQjKbYcgQg1AszmGOuiPnqgYd/iZXvfDOxWlyi/OJbYGEbCGoSQREe8zdacR1GvuEEybo9D7y9B5qaBbDWJzcBtGREDrwRh0YN/NYAJuBwasHOoee1Rpme/jObgacxC4QXzOW3tb7ifklbBHu5BrfvMbkyhOfmMSxclvTKI4+Y1JFCe/MYlSfv0/TyXISqwqjSuwSZL7ddjiStzu9LeHrMDUm7EH6nofJqLQ6O197Y9dUE2PyCcbEUdwL0NQvjug7paw3t2xKs3lU1Xsy4/0sz+d6j84N98+lti6r98XEdEp9V7mUOPf2/PdUcFx1P+A9k4f/jGhRqZZi0JO/wxcgC05QtX56a0q5Of3atHdwJSq6+5+NfWDAqz0LZCK34NmrbRvqamr3/zGJIqT35hEcfIbkyhOfmMSpfy80IkoNFJ7DLbdDvx0VPsNvomI/X95SLQhyQZtjSB00In3ndjT1pugB8IUnHlvcrDeZiMVpbKBxsa/VFHqz+9VBFzdqtgbEdF0tUfAO6hFp5UgMS3fqajVA8FvA6JdDx7005rGkvNuWkF4CU0V3sF1X4Mdd7jTfNnAs/od9GPYgK18nOvzG4BwHRExhL3cJ8EP1oL6UPjNb0yiOPmNSRQnvzGJ4uQ3JlHKL0HIGYNwdgyuKhrHTCJX24juBQgvM5jiMwWX3gImyNBUGmrMuQOxiURFGg2+BpdWBNedU1NJmsRzDI05+8/BkfXkoZ54qOJcCf0YTu9eSOyTz3kyzJtGRa1podezgvW5gFHlM3AM9kGAGoG4d1brcU+3+uxHcN6IiMlOxbO3pd7LLQh+tG9vM33+k0zX4RqmIVHtfh/q7I9znZgVEXFE490hVykHadf6zW9Mojj5jUkUJ78xieLkNyZRyoudChMrmJxCZbU1OKDIHUifjYhYg0i2AkFlAcLSkkRAaOBZNXocTfahkl4SEKuWqSlUJnxc6708y1Vk++gX2h21/NWf6UmefaznBSEutjDR5uSdxmh8ULB7kqC1qOG5bOAdM6LyVBCVT7f6DH5yrM1NR0f67CMi7q61MWcx08azYyjLJbfqGvZJDY+Aymo71GxzTzdeBE+FInEvA6E5h2ftN78xieLkNyZRnPzGJIqT35hEKStwrNUgDpADjmJU8pq3KUh7lv+SMwrFOBD3VtB7jtx4NCWF3IEb9Erxd45gbR8/upfY4FfHEsuefqSxvopXu4VOi9nNNba9VBfh5ZZLeif9/UTXCtaCxCoqUCX34wkow8+7ei9nP9dx2vmg7T2mAusjGLN9CmXCBWzcu0rF8PtCHXm0DrRzthAl52QET0iiHCRhECcD4VmMMX/yOPmNSRQnvzGJ4uQ3JlHKw1wFjAPoC0YjqA9gUAX1XGvr67cCsQJLcPnje32WBiW0j0D+4PtAJGkTY+5BJF2BowtCkfVBElurQLd781Jj795LrPrilcRef3EosW9gVHVExFWmbrnlnuXSJHR14abHsHfOt/qsHv1ER5B3P9V72VX8XMr3Kg6Ohnp/ZVfPXZb6nZt3RxKbwbO/B7fpfa3iIzlLNznfyzxT8Rp7+MHa0p73m9+YRHHyG5MoTn5jEsXJb0yilAdQFNiH34QeCDkk7g3AxlTBMN+IiCUIRiQskZOMoMEbJKiQ+EHDPUr4bNu13EEft4tShbwJlJgevdaS3si+ldBuruXX1QsVxG6/VsfZq6VO5L3ps5SKz6Cld6EAWiq9YWjvHMF5h8/Amfb8kcR29zO8nHKsDsEc+vXR7S3nKoZ/H/r8vg19Lu8qLTueVHotVArehb5+ETyFug9Tfocg4lPpsN/8xiSKk9+YRHHyG5MoTn5jEqWkElUwtgXMgYge9inbr5QxYv9+fTQ8g4SSHggiGTqb9vss9WFr+7Wk0kpyNq42KuZU1+rcilxFwN1G12G3hbLqrh53AEMthjsWlqgklDyRXI6qx03h0wewtgV8X/lYh5Jkn/xUYyseQNKbanx4rSLp9TsdVHKx1HO/gHkak526+TZQXk6xuoE1BIdlRMQCemb2at2384L2MgyBwbMYY/7kcfIbkyhOfmMSxclvTKKUJFYU8JuwBicgiXsnARN+uUIxbkH0uYNz9+G4ABcTCXQkFtbYew4GKsD30TkiuOT5pFb16+RYBajyBMSYo76epISJrM9BdH1CrrYbiV29eKzniIirngpGaxBnZ2CLm8P0ZBqwUoCCfJPpM91BmW92oGW18fxnGouIogah8/XnErvWmSax2nOgxmmmKuDjrvZlJGfptNL9QMJgRMQG7mXb6P5e1VCyDGKh3/zGJIqT35hEcfIbkyhOfmMSpZw02iuORI0aBLYzcMUdgsh11iJgdGCcQ6dUoWsC5yEn4BqEvBkIULeNlmBSrz+i2/J7eQp90z6B85z+QmOdnz3VLxxp6WjWBxFwqC60fKF96w7zf5TYZxc6QCQi4nWtYtUMXGNU+rsBAXkNgh+JX286en/Va72XDrj5sgMeQBIfqxBYPvmtxkoSgZUjEK8/LlXwKwsVJQfgsnuX6zO4q/SeI1jIq0Dww0nJkIN+8xuTKE5+YxLFyW9Mojj5jUkUJ78xiVLOQe3v0cSegEaBoHA/gUklT461fjoi4nCqivbBWmPUCHMKTQ5pas4LKES/2qmaSutAzT/LlrniZ7XGnz3WJo7dv9Tmk9kzHccdBVma4be6CwXmcFx+plNuzj661M9GxKf/qM0+Zz1d71Wmz+U+03UkRXoN/xSs4PltZ7quO5rC1NN6/IiIONR/AbID/YekKFR1z6FHwwCaXdCz71ATzQLuRSL7//MUEZHBFB+y/FLMb35jEsXJb0yiOPmNSRQnvzGJgh0cqWb9GGqtn29hzPJYxbTBGBpURgRNyi6mKoGMKxW1rgq99KbUL9xAHfrdFgS/GkZig7gzzVUsimDhpn+k952dqnU2RiqwxUavJ8C2GzOYVFPBekOjyN45C0ufXWvz0Gyi19309LnMYbw0CVgHsJ8egHDWe6p7MTt5qLHBgcQiInbTaw3CWtQ1TWfarxltFx7+eKefPYKGqSMQTamZbETEOgdxD4TTbcA4ddjLfvMbkyhOfmMSxclvTKI4+Y1JlPK4UEfdaa6xZ6HizlkN00bWKmqsL9h91TT629OAeNInAQO0yncgNn2/UfHqcqNuroqaI9LI6AIcdRHxstR7XN6qqHVQQ0E4nDvu1B3YvL3Q42i8Uk/PS3QeQX+AiDgFQTT/FsTPW3XPvYdzV7nuk1MUkFXQ6vxC3Y/5019ILOvqno2I2M20cenuXu+vgjnyK3B4zqDx6AJeoTNwK97B1CRqMNsGTakiUZrcfK7nN8b8ESe/MYni5DcmUZz8xiRKeQTTRk7AdTRuVGy4gxLFL3bqtAKvWkRwg8QxOZFyjb0Gb+LvahXJXi6vJDbd8DjnfbiEhosREd+W6oC7vFIR8Hyi5c0ZOOWaN+8lVr+HstOxCmf5iTaPzM4eaAyahEZElIvXeu6v9D1xD6XDK2iYSnRATBtmIH6NtBQ54LPNBEbuRMTuu99LrHqtE41Wla7PEsS9KezFa3CR3oSuww2Uu08h1lbSuwMfKR1LJdQkaPvNb0yiOPmNSRQnvzGJ4uQ3JlHKXsvI6Q+5A1HjHkpoF3DcqsXFRKLPEYy67oOz6XuQEV+vbyVG4t4WXHYZ1BdXIEDR1JSIiMtGz/OyOZHYn32pYlp5oUJlfaP3l3X1GvPPdMx2/vNf6gUeqqAV719oLCLit680dK/38nlPpw99V6ugWYNQdQB9Iqc7FZp3b7XPYPPV/9DjJlC6GxH13/5vid1/C9OHar2eGvb3Gpx7U9gnd40KfvfQJ5J6R1YtE672FffI4VdDGbPf/MYkipPfmERx8huTKE5+YxKlrKArGY5ehuNoJPYcxIq2skUaijEBd2EffqPegcC2gD58DXbX+5fT9n00hvorEOge/rdziR329LqHUAV9/lcqNmbPn2nss7/WWEddhPUtlAhHxOq1Ptff9PRe/rCFculKXYj0nA9gqMWbUh2Hi/+lIu6w/K8SI/djRMTk7/Ve3r5XB+QS/KYdcJv2oTdfh5pRAns79FryhcpySdyjfn0kaPvNb0yiOPmNSRQnvzGJ4uQ3JlFKEuP2FclIBFxCSWer4AfiyQ5KJitwg61AYPvXIG+Z0kvCzQsYslB0tW/eYxhK8tmNCpoP5lCKDAM6dnMVyXZzdRHuvvxSvy8iLr7Xsuw7cjvCs16Ds40EqItCh438rqvDS372GxVIfzrR+1vNedDF21sV9yahx9JT7UNDyWMYLDIDl+wMhOsZTNSl/dRW0kviHtHJ9XpyC37GmH/CyW9Mojj5jUkUJ78xiVIuQDgrWkStD9mC4EfiXpuAkYFQQuIQlYSSgFHC95H4QeWNBJ2DnFIR7MqagCB2gxOQYR1ICFrA1NhvtSw3g4Efu0sdXrH4Oy2XjYh4v3yi5x7oM+jAddNgiQbWZlqrePl1o731Pu9pD7/pKxUB2wrT5+AuJI5oQAvtxUbF5zkMn5nDFOkpiIATWEPadxHslOzCeUrY8+Qu9JvfmERx8huTKE5+YxLFyW9MopS3tU4sJSGnCy47+uUgwafb0idwAALIKNcYCZBd6PU3LtU9Ny1VWCLBj1yNJLBQrI0KhE6YfRI9EJYGpQqxpJtuv9OhJLs/aKnu6o1+9vqNOvkiIm5BMGpgUjK509rEKrmeWsXQq1oFv9+XMBUZhpycgfMuImIALr0zKI097e43yGW30bLjGQh+IxhoMoQc6sN+p1yLiKhgCjUJ0CSw0zRfv/mNSRQnvzGJ4uQ3JlGc/MYkSnm90SEL3VwFh2GhIsso19gABIyDTPu1RUScQvwg9NwVDEooYILqqtDGd5uuijskaFJ/NHJK9eD+IlgIJAmKfm07UEGdwT3Xa/305i2U2k50De9vVQy9mg/haiLuSz3PYqf9A6lvIYlNJKbScdSD8SJXIW5cgCANAz8iIs62ep5HAxUWT85V+K4rmAZ8qbFrcP2Ve7pkSczuQP5FRHTJPVvv51alZ+A3vzGJ4uQ3JlGc/MYkipPfmERx8huTKOW0UjWVaoSxJh9EyRFMYjmHfwUiIj5r9NhD6FE4h5+oDqj9m0KvkXoOkDK/bBm9/SH0T0gE/4NAkDa7pn8uKj3P7EbXMYd7Xsx1XW+XqvZftPxz8bpUZfh6p0o8qfPUZJKspSSGU08Eagg7pX8ZwCoeEXEYeuzxqe75Hmw8+CMM/4Wp4F6o4emk0T1G/S/amsQSDeQlPQOK+c1vTKI4+Y1JFCe/MYni5DcmUcoKbK0kIrQ14fwQsvwWBQsYJyDuPdzq9czAZrvo6O/WDdRB9yA2AFGS7m/bMmmIoM/TRKNFprEJ3N/VVtcx076cUcD3LWoVv0jc+x7WMCLiVawkNmtU3KOmkATVnP+YXgm0E2HQU0REdEF4a6D2f3ENzTVv1P78YqsW8q97enJqRvp2q2PESQxtaxKLFnI4lprgUsxvfmMSxclvTKI4+Y1JFCe/MYlSVuD8qUFSIcGABIhZo2LRvGWc9hpcWfRrNICGm0No4NmHpol9EPwWe7rxUMQDgTQiYgXjl+eZOrru4J6pYeak0Hvp1CpUduBZzWF+zR2szR2IhRER6z1dkdRoknog0Dru/X00hQkccPs90R+4n6jbkRyQL6CHxTdgVv2HnY4bf1OpOrsEhx/1h6A923bsGsbAb6HRpyf2GGP+iJPfmERx8huTKE5+YxKlJIcRTZUhwQBdcSAgUglmRMQt2LIeghA0gPM8qPWzp1Buu4Qmoatcr2eeq4Nt3YCY0uL6IzGHxKo7EG3m4DhsQPQhcY9ifRDEDmCqzNGOf/tP4BpXmSpdy0LXh9aBRNJ9HX4deD916LgWh18Nnydx7xWIey9Bd3sben/30NyUGmZS2TdN7KFJVhEROZR+k+BHk33cwNMY80ec/MYkipPfmERx8huTKOWgVLGJygT3nV5Dos0GxjtHRNyCw2wOTrSzWgWjfg3jikPvpeiouLMFoXEJwskSHHptgh/FVyB+rXd6PdlO1/tkq9933tfec52OHleWuq6fgIr79F7LUyMivir0GvswxYd6Js6h9JfYV/DDGI0GbzlPBWtbwdFr2PM0KaomIQ++77DQUd50jeRqpPuLYNGdekp2aMQ6iOZ+8xuTKE5+YxLFyW9Mojj5jUmU8qQ3luC+5Zb9AkZsQw+/suU3ZgH91aYgVvRBMDwaa+nwaKZCVbnRPmzrrh53V6g4R+IVDaqIYDGGXVUq5hzB+pxmen8FCGw7ELSOn6owOPjVgcSe3E0kFhHx6L+DtW16JqFLEItvc13bH1PS24W1IUGMBmdERKz2LPbdd3R6H/bnITg0+zsuy/0Q2iOrFkdsBeuIPQBhfUjE95vfmERx8huTKE5+YxLFyW9MopSnHRWCSHgZg6hxDOLeGEb3Fi1DCIjbQgWMSaXnPu3oUIQHxwuJVTf6+3bdqPvqJdzfJazDGnr1Rew/4KMLZZ1jcN9Nd+qefL/Q9aZK1u5bFYxG//5UYsVfneM1Pmr+XmKP/yO4LDvQX+9H9OY7gGdwAOWtJKUtwI0XEXFRwn4EkWwOWxRme0QPxLQhiIq0DhWUXy9B3KNYBAvQGzh232EqfvMbkyhOfmMSxclvTKI4+Y1JlPIISg+HINCcQA+3J1BCewq94qg0MiLiAnqNvYIeaas+9JS7UgHrp4OpxIYdFehOt+pCO+7pOYZQsrxoKVklFxuKWjSoBJbnu44+gwsQQ4n+9YnEHv7+tcQ6R4f8BVC+W4CIRE47cu7hOkDPvLNMn8uD0PXqgKtx1rLHtmDwozfeGj5f0T3DuYdwfzMq8UY3nx5HfRAjuEQch+7s6QT0m9+YRHHyG5MoTn5jEsXJb0yilCMQoMid1IfYITjTTmDw67zF4VeB0vWyUefeH8DF9LavYtW/2xxJ7BmU4HZB3HkIJZjvcxVD5zmLMSSoHEAvvFMYIkLewGso373MdB1qOG+vp+f4+D/rtXy8+g2cOWL2DTgOcVquXiMOnADR7QRKfx+CuEeDRah8d93iaiMhj8qqqTcfQROCA65xAU91Q+LeTgVpcu1FcKku9esr4HpIdPWb35hEcfIbkyhOfmMSxclvTKKU5DhbgVgxB7FiQn39YJLoPVnYIuISpptebmcSm9bak25eqpB30H0isWYDPQXhck5AvPwk1/5/ba3ZrnItJ35U6FAMErBucxXOrkDcuwJ34RZEtzUMQ+nVxxL79X/S+4vgoRbvO+D6A7EBXX+AAAAC8UlEQVTxEPYT9eE7AnFvCMf1wVGXgzhHPeoiIkbwXGkG7hI+T2IhibMkFoLuHWvIIXLj9Vqm9I5K3cvkqCRhkMp8/eY3JlGc/MYkipPfmERx8huTKE5+YxKlHIHtjyyj9A/Ae6i93xQqh9+12BVfb7X+/m6rqjlNydk0+p1fgbp+0oHadujMSKXyHzW6NoOcx1q/LfazSV+FXvcELJ4TuOcZ1HOTFfQCzjuBiUTfDVjtp38k1vD8aeISuWR7sMdKUNcb+Cw10SQG8K9ARMTDWr/0CMa7L2A0/HWhsTv452oGp6Z8IVvxCfTTaJtwRfsJeyrgCHNP7DHG/D+c/MYkipPfmERx8huTKOVwp2LMBsyJZGGcglA1B0HrGuy5ERHXIPiRuLeu9Txki7ypVSy8KHQEeQcac5JgRCbLRzX/XhbQkPI3jVqVbxuwKoOQR00cSeTcd1LQJNc+CVcli5dnIJySRZfEPTJy08SmDTy/BZliQeQiDslPGyzuPevpPtnCc+1VKsZVXc2XdyACUqPPU+hh0Id1zVusyhTdV8gjy6/f/MYkipPfmERx8huTKE5+YxKlpIaEfXBkVeD6o5HDt81KYhfVPZ58Wqn4ReLeFqaSUB1zA3ITCktQpw1l39ED0UZlvR+gBpIvthOJzWtdHxLyKEYiJ0EiEE12oXNERCxLFRtHMI6dmkKSu6wPfR/otUN3R41j8f6gkWVExOOW+Id0O7oW3e1+dfrEGO6ZRFOaPtTWTHTfvgEUox4IfvMbkyhOfmMSxclvTKI4+Y1JlJL6UZII2IPfiRU4kZYg2N1v2eG3Iudes5+kQg0beyCykABFwgnN4aFy0nVLiel10H2rk2xZ65n2HalMgiaJX9HiEPsQEgEjImZbFSW3ME69k4OoBc9gCw1KK3jOc1hDEnaJaxIVIyK66tKLzYGEhnA9l6WKhVTSS80xSdxrKzv+EF2FH1jDPqEx4nQ9LAIaY5LEyW9Mojj5jUkUJ78xifJ/AVKT05J2MWSlAAAAAElFTkSuQmCC" y="-1160.947155"/>
</g>
<g id="matplotlib.axis_67">
<g id="xtick_100"/>
<g id="xtick_101"/>
<g id="xtick_102"/>
</g>
<g id="matplotlib.axis_68">
<g id="ytick_166"/>
<g id="ytick_167"/>
<g id="ytick_168"/>
<g id="ytick_169"/>
<g id="ytick_170"/>
</g>
</g>
<g id="axes_35">
<g id="patch_36">
<path d="M 299.674375 1283.347155
L 421.964375 1283.347155
L 421.964375 1161.057155
L 299.674375 1161.057155
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pf08213672a)">
<image height="122.4" id="imagee265bf4257" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnVmvHFd2pXcMOd+R93K4JEWKqmJJLcuTDBsw/GL70faf7F9hoxv9VuhG2+2yqkpQq2QVJZKiKPLOQ+bNKTL7QXY9cH1hHFroF531PW7EeCJ2BrBy7b2Lv7v/N+t4g9fN1ZuhOF1obLKcSWwVcrioilJibfEiCtw2Zd9B1ZXYve6uxD6otiX2eFlLbGel93Jd8PWdVLrtabGS2BXEputGYrPQ7a5hu8l6AdstNbaa676NPr+IiDHEZys9z3qt97zVGUqMnsGtSrfrhT7Tc7i/w2as2y0nEovg+56vdH2WK13bAp71Rt2X2M3OlsRuVxsSu1Ho+9ltyQ2iv9ZtP55r7K9+9o3ERh/rO59+ZmPMjwonvzGZ4uQ3JlOc/MZkSv2TalOC3aKSWAlCHIluJKasQBiKiFiDOLhaq9BFIiJt1y1VtCN6a72XtD3bfy0rWh+IdSBWwnr3Q2MdODvJjw2s1xyeVZsQS+tIz6qBZ1CCSEb7ErhecI01rBeJc22QUEn3QuLzAoTBBQixCxJsQ7dbwrXULaL3JrwTw5Wep5npmq2OVST1l9+YTHHyG5MpTn5jMsXJb0ym1O82Ku401UBi00qFvDk4yUjca0D8iIhYgDhI4gkJNCTwkLBEQmXqL14JOlWvRbzaWOl5mpIEPxVtSNCck8BWgOOQ7gYusU10JUi0I5GNBMPU7fi5pImmb/PFovumdyzV4Tcr1HF41Uwl1i87ElvDC9UjEa9g+ZnuewHXeH6k+Vv1LPgZY/4NJ78xmeLkNyZTnPzGZErdQ1GLBB/9nSAhLtUJ1hYn4YXOU5cqlKSiMiOLe304bx8cVRERu3rZsVvqml1A7LzS9T6G0l8Sr2ZUDgxC7AxKY0mwjUh37tUgTA3LnsRGhYpfQxC6+vCOLaCMNVVUjOD3MdXhR8Ipuf4mpZZAX4LgR+JlAeulxc7/do1wQWeVrsW3l1pOvPiaXLvGmCxx8huTKU5+YzLFyW9MptQvKxU6TkAcuoReaNQfbdbovuSoiohoqBwRYiTa1CAYkRhD7sIpiGlzKqsFEejeQHsZRkSMNnUtmoX+tr46UzHm89C+cK9rvecxlISO6VmB4+xyeS0xKk+NYHGvBwLWoNSedDvgDr1TauzuWo/XA5fkCQh5k1Kv+wpEt++3hX6E4NKjdye15JxEanKvNtDnkb6+bV/kGTg8X8MxG+gVeDjX9faX35hMcfIbkylOfmMyxclvTKbUX4YKQWcrFUmobPFtykSJ5N5ub9F/7k2mILyclyCSQd+6DoiFN++3CH5/oKJWUes1jv7xWGKvvz6QGLUjpL5w5OajYRxXS31+JK5GRHQrPTkJflS2ul+qePnuSrd7b67PvgNi2ncdFWIntbrizsApF8GC3xzK06msmoS8HwKJihTjpxIxAeH8JVhTT6iUHFyk/vIbkylOfmMyxclvTKY4+Y3JFCe/MZlSHzY82vhNNipVcamuelKputo2CppGfM+x2j4NqskmC/L5WmPHharFU/htrEesxVY/vS+x4vZtiW1Vv5LY3aeqxG+u9d+DPtWxJ9pSZ0v9h+Nt1Ow12I17UM9PY6jv6KljG6fcgCINfwjR1KMerE0E/0sxrPRZk+pONmDqBVDSqPm3mCD0JlS3H8H27gXYuxeQB9zc1hiTJU5+YzLFyW9Mpjj5jcmUugNCyR5YNEdQPz+pVIB4tVIB8VVc4Mmp9p+EFwKn3ICVdwJW5dNGLc2HYBk9qlV0m53yNBVquljceSCx6kNdn7t3fimxW6/1iC87YLsF0Q0n5IAA1dZYlYRAsnLTu7MBDTfpib4GC/EhWFBfQu3+EYhcy5Z7oWukPgQ4QQjWjHog0EhzEsO5dp8sv8wS3nnqs3EFMeqp4S+/MZni5DcmU5z8xmSKk9+YTKkPShWWHoWKXzSC+hWIMRfgivr/AdWik7i3bGke+ia70HjyEGInIMRFROy8PNTg40uNDXX/4S1ds52Xen+9TtpYaxJNyYX2NlNuSEyl5qgL2Pc76GtwCU1UX4UKVUdrfabX0MOgrUksCW8DqHdHAZkmGsGSdWB6VGoPioqapbZ8k2u4xnPYjq6bYv7yG5MpTn5jMsXJb0ymOPmNyZT6INTtdH+pIkQFDq9TEE5ILGoT3UhkIVcVucvIhUYxchES446KTZcwzejoWkXAiIi7n72S2GDnE4mtx9Aw9bke8xWIZCR+XSSKnCRKrcBlF8HlqDSpZgxOsrMSmmOCZW1c6DWek3MPREVywHVbSnqJJYiNUzg3kdqEk6D3mGKUAxEs7lIpM7kaMdfwLMaYHz1OfmMyxclvTKY4+Y3JlHpvpfnfX9HYX92ZZDzqH9ZWOkr90LD3GWxHx6RySzpHr9K+blNwQF2QCw3KQSMiXn2+KbGb02cSmxzruf/5VHv9/bqrQt7TRkujj5fqIpxSqTSsa7/meyEnGjnlyPV3CT0YdwJ6/a01tg1l46SlkYDYwPjqiIgJCIZHIJKOCxUvWcjT86SK3DRdiUas1y3OyzpRbCTxE12feBZjzI8eJ78xmeLkNyZTnPzGZEq916hYMaRy2RL6wsEB//OjCtohQYWEPIqlHo8Gi3xbqRvv/3ZHeMzV9Y7E9j/dkNgRuOr+qafi0JdLLdY8XKjgN4bBJyQ20dq0lfSSuIcOwcQR63dWuu9HcxW6DkY6/ny0oULccqnXfXjCz+WLSkuoP+3o/lcgvF0W+vzp3SGXHpZAg0g9Xel5JxW7DalfI14P7Nuhvo54FmPMjx4nvzGZ4uQ3JlOc/MZkSr3fqDg0ApdWD0Sb24261W5D37ujmvvekRNt2qjAkyrkkYsNh1WAoHm6GEvsCYgk45rFmFcdFZy2YMjGJfSpe9bouU+WGqP1olJbEpZoDVsFO1CMSFgalLohTQ2+BaLyR4+1BHrrbx9KrHjwjl7Lk68lNvr7FxKLiJj8loaDqLPx21L7Vh7Ddiu4Fyq1TR0qcw0To6kXZQRPHEZxNjHmL78xmeLkNyZTnPzGZIqT35hMqftQmDuqVZjYLFWYqOZU+quC36qzjycnoeRwTi62qR4ztRwYIEHsfK4C2wTcc2cd3S4i4qirJb274C6je6ZeeASJl1wCrSHsHwcl0BERCxB8a3D4DUAQa+DkeBa47GJTHZEx1Nj6SicdT85VDIuImML3jb54fYj2Cz3motC1oWdAAisKsYnCYBtrKmWGG8RegclnMcb8qHDyG5MpTn5jMsXJb0ym1CvqCwYiwmioolS/B9NAL7ckdtRX91RExHGlrrgZOOhIFCHmTVoZJQ33INffFCYO074RXPK6Ca6xG6UKolvQS28DegWeQuyiUfGLynxnAfey5Huhe6T+iFN4VpcgXn4HDs/D5yrkjT57IrHqVEubp58eSezk9IbEIrgUnURJnmyc5txrqHckbQfvIglxbaXWFXyrO6U6GIfwnriHnzHmdzj5jckUJ78xmeLkNyZTcExrVaoI0R+CELdWEWF4CRNiaRhDcF8xKlEkAQRdVYkiC4l7tB0JLG10ob/aQaWi1vuhgt8uTESZgwPuRVcFzacr7TP3ooLhHgsd7tFWKp3ap47Kr4+gPPlr6Hv4xVSF4c2fH0psdFsHn5w9VwHxouEBJLNKF5L8c6n3fA33PIM+fKll1QSJeBERfSjpHYGovAeisnv4GWN+h5PfmExx8huTKU5+YzLFyW9MptT9QtX5IVl5d1QjXS1USa3AGtxWZU+WQ7RPJlp0yYK6hAalbSPD36QCa2gXJu5ERIyqvsTeCY396VTX8eG2qvNVDU1Gz1TF/Tz0H4V/7up5fw1Kceo6RPB6U9059WP4LazNdm9Xz3F4S2J7r/QcM3hvLsFeHRFxVeq2Uxi9PoOupWMa5Q29JajvA/1TQJCFuFfxc+nDaHlqmLoDfQhG8G+Uv/zGZIqT35hMcfIbkylOfmMypR521Jo43FLBr6P6TKxmKkyMOrrvaKWCT0REBwQ1AsUmqN1fUD0/WHkJalBJsT40rYyI2IFJRfcavb93d04ktv+BWnSrge67c6rbjb6EOv2pPqzDWi22h2ADjmC7Ktmp6blcLvQavyrUttv09Lm87qrldxuEqv4abOEtPR+WED+G3gZHYJO+WGqvhBlMTSKhGSckURPNxKazEemNPcnKOwArvr/8xmSKk9+YTHHyG5MpTn5jMqWm2v1Uyq6KCNToc/uK9++C4Ed11Yt1mkuPBBU6HjkL6wom0kBjze0Ojxu/AzXU96fgngQxNVZ6jUvoi7Acp/1WD+B4NJGm21I3TqOgl/AMCBJdT2f6ApB4dQLTkDZBSB1Bg8oBCINtXIBz73Cp/Q5I3COo30QDjkF6evTOtonU2JsCHbGJ7sKkrYwxPzqc/MZkipPfmExx8huTKfVkruLO4EIFlepQSxmJ6ZTGGvO2LFakOfJo1DW5pajJKDn3hrU2Qtztarns3c4OXs9P1+pivFergLVa6vVcPNVzz6YqYNHans/0WV3XUGoN60XNHyMiGignJoGOhNNUN+blXB119OzHlYpz2zABaBdiEdyElUaik6uRoHeHKOG9YyFPY22j5mm9ac2uYSj6Enr1+stvTKY4+Y3JFCe/MZni5DcmU+rTFZSo6lTkmM9V6JgvNPZ8rqWjL/os4l2A8EJOMhL3SHgh8YNEkkFH73kHpsrc7aq49wim8EREPFJdKgYw5Wh8qSLb+VjFwvFKBZo13Ms1/H6TwNqHSUg0QjyC+yhehQq+JAKS242E2NRSVjreABx+t0oW/MjZSEzhXVyUaa5GBF75Ffa3pD6YLSO6W+JvQmXMCzi3v/zGZIqT35hMcfIbkylOfmMypX5Rq7B0vlJxqDtRUWoKAxGeg4b0DMSiiIhT6JuW2qeMBmpUKxjlDSOaezD8YLPW0tHtUu950PJ7SSLbxUQXg6otz9YqYM1A3Kmo/JN668H1dUBYGsJwh4iISZHmdqNyaYJGTpOj8gY4Km9UKsQ+qDYl9iE4LCMiSGvu1rq28zUMpYH7mzQwoAO2I6dj6ojuNhchDe3ogpBLTFFIN8ZkiZPfmExx8huTKU5+YzKl/hSGdtBQBCoJncKE35O1Hu/lSktbIyIul2mCH/YuSxzGkQo5C69BBKL7i4h42lHhZTRTEWoX9q9AMOrDPZfovAPnJYiPi0Rxrg18BhAjsWoAg07ugHvyYb0tsUcw6fgxqKs/XeuAjTbKUDfgstJzd6Ev4HEJZdpr7f83DXUMkjBIrr22SdB9cDb24RopV+eJPQWNMRng5DcmU5z8xmSKk9+YTKk/WRxLsA+OLOqFRgLGNfRCu2xU2Pt+WxVFUl1QBF0PCYM0jIHExzMoeW0bDnFRqBgzARfiffDfbQx0HQoowVxACfXTqbrixjCIZQKC5oLqTqNlmiyISDTcg8S9/Vqv8ScgsP1Ro+v9Jysd+PHg8aley00uEZ4dwvv0hYZIBNwC4e1rcEUuQKQeL9XVWoHrj8S9YcWl1puVip8jeAbk5qQn7S+/MZni5DcmU5z8xmSKk9+YTKmfTg8lSNNbKUYiIEETSyMiaihHrKDcsgP97IpCSyubhZ5nTcIZCC/XjYpuE5jmug7u4UciSwe0pg2YYnz7A3WIdW6qcDZ/qfuefQJlw6ExEvdo+vH3++uFk7hHwtQ2TNW9V2pZ7s/WaeLez/5SG0p2Pv6pxALE1YiI+skLib3bnOjuT/SeBysVAeddFd1ewjpQvqwqOAdMgt6ouTx5A0TlITg8u5CXUzv8jDH/jpPfmExx8huTKU5+YzKlvphrKST1XKP+YdSHjUSgzVJFoAguRyQRcA7C1NlSSysPiwuJ0TRY6q9GsdSJwREBM1DT6ezp2tYfPpBYuaduzL1/1fvbWKhg1ANBjFx7ETxIgp5Ln0RAeKY9KFvtwdIO++q8rO+pE7B48FB3binxLud6zOHFc4kdXOu7c/ENCGxY7q4xKm0mGY8ckVRKHMHlv3TXVL49hcm9/vIbkylOfmMyxclvTKY4+Y3JFCe/MZlSzxuYVEL13DAZZgT65RbYO2+2jE/eh3r5IY2cBvXyVaXHJEWaVPyrhdZaUx8BUvvb9H9UWEFhpyk+0+dqax0dnEms6Km6fuOOqtQPnqhCfthTVfmy5OlIY2gyShNtaH1m8M/MJex7CP8ovR7rM73/Uv/h6F6pHTq2dzUWEcWWTvcpd/Ud7Qz1GVTwtCuw02ITTrLDw3b0zrZxDc8l9es9gWfgL78xmeLkNyZTnPzGZIqT35hMqVMn36AlFsQdsoZutNgVb6w1vgdjtmmQ9D4IKqGaFjYPTRU5SdAi0SUi4qrUbY8rFXO+XKvYdPXZHYk9fKl17Hvv6710d/W6H/fB5rzQCTmXHW4UeVFo34BxaG+DMfQ7aOvd8CZ9EEN/01EB+Z1f6NM/ePCVxMrfZwt5DFVELPrwogAreJdJniObOvU/IFG5bRw3MYVGoSvoV0Hi/AInQBljssTJb0ymOPmNyRQnvzGZUpOotV6piEAiGU2+mcLEngU0Loxg8WQT9KLdRoP7IGosuyruvIJR0OcL7WEwW+p1z+BeLhp1B0ZEvCpUPFvB5Jzn3bS6+nuTfYn9+f/W6374rk6v2dlTYfDRNyqmfdcyGeZbELDoPZk0KvjRmjUVjPIGt9tvaz3vw2N17u1/8Z3Eeh+wEFvcuKmxm0cS62xADMRLatTaBZfeAMZp00QpevbkBIxgIY9i2FgXWjf4y29Mpjj5jckUJ78xmeLkNyZTai5lhSk3hbr55uA4moEDrgGhIyKit1YV4uZSz3OvVgGrBEfdeq7lm0+6GnsBE1EWiYLmyUJLPyNYpDlfqyBGTisS055XOuWm6eq0oMVXet69ka5XBU6wIaz/99uCQyxxDDVB7wkx6qgr7quOrsMfq94XvWXLOXZvSah4pA7G3gc6uWr/C13HATRH7cA3lJpwtk1IepO3aaxKsVT85TcmU5z8xmSKk9+YTHHyG5MpP2TQDApVbzPlZgMEp4NKRZaDd7S8ddXovsfPtKxzp0gbLX1eqHuOXI2XhV5fBN839XGjMmjiulZRqgPuwGVPXY13ZyBogp3yZcnXcrGCkl5w802WGkstjSaB9LjS6z6CXo3jU3XPbS9aHH4DFXzj/mO9no90bPfNX/2TxLY+V8chjd4mcS/12beVRZNDkMapkwhIPRj95TcmU5z8xmSKk9+YTHHyG5MpyYIfOQEpRqIGDXJoo99VYaIeqABydaSi3RWUVjYBx4PtOtBLjfoWkhMwImIMazEBpxytWQHbEc9AQFxAuezTOq1H3RE4ECMiDpc6FIPKd0kQJcgpOatoMIiu9wTEr/GVPvv1ufYtjIhYU++6He2ZuLqnY7+7B7+QWPW5nuMaxLQJ9DdMFfzaICGPhFN6x0iA9JffmExx8huTKU5+YzLFyW9MpqQLfuAkWoAgdt2oO+wCxI+IiGMQq66mKlYNX6vA892xOreed/S37ArEGIKEE+qPRg62CBYHSchLFfxIJLtcQqku/H6PS92X3GFt/QjpPHR/P4RUJ+AMSpEPr9XJ+ejLF3ie8veeSWw91CnGAQNMilKfywQ+lxcrXUfqE5kq+NE70kbqO8b9A40xWeLkNyZTnPzGZIqT35hMQcGPxD2a5ksOLyrzPIdJuRERR7Xuf7QG4UWrLeN5AUMooK/fFfQUXL1F2fGb0Np8z3++lxoeDYQcmuhKAyMIcs9Rv8UIFt7IXZY6YZbuhcTUJZz3ZK0C8mcwnOXgf7B2/XDv53ruKbyP5zr85OoLvZ4nlb6zh1N1F17MVfDDATmJ4lwb1O8vdb395TcmU5z8xmSKk9+YTHHyG5MpdVVq/pO4R0IXub6ulyrQXLYIfhfgvhuX2nNvdw296+BnawHXSOXE1M+MBkuQg7G1RyFcD05LBUg4oz6DN2CQxwHEahCBSDi7hl59Eex2pPckFRKbcOovOEFfrVQ4+wScd81ce+tFRPzFf9UhK+998g8SW1zp/f335/cl9i/FK4mdzKAEeqH3ktrfss3hR8+ghGdF5el0Zn/5jckUJ78xmeLkNyZTnPzGZEqd6tIiERC3A1FjCuWpERETEN7IJ7fd15LJe9e65QvoXVeDIEJCHvaZW2qs3eGnUElot1In2qCCIRS1utjugLj3bqjTsQurOIL+f/OKS0yvoNR3XuqzWobuj4MlqNcjPIMrmPpLDrYpuOzOoSdgRMRzcAO+8+kDiZ2BO/T/lGot/Xqi03zJ6UrvCfbBTBy60RYncY9y2g4/Y8zvcPIbkylOfmMyxclvTKY4+Y3JlJrUZ6oHLkDZTVU02+rnG2wqqLHBUJXcnUZ/t7ZXaontJSqf1FCS7q+tgSfdN52HxnZv1tqQ8gaMpr5d6L8Ct8HnPKBLrPW856X+UxARcQH/NFDzyWnoc6HtKEb/uBSFHu8C+q/S9BmybEdEXMM/A19DD4TxSs99uFDbLlmfR11dxwqeyxT+PaJ/PegcEfxPUa9WOzyp/digFs9ijPnR4+Q3JlOc/MZkipPfmEyp2wSsN8Ex0rArioUtI6g78NszhW1fHG9J7LRQoeMKJlN3QOigWvkhTGwhq/KySZ9cQ/fdq/S6NyoVjG6AGLezViFnc6UPgQzbo5Veyy5cS0TEHoiNUxDEaH1WTWLNOrw8ZJMle28frntQ8ljyW6WKqUMQ/C7XesxuR7ejZ3UB/SrOS+1DUBW6HVnf2wQ/endoLSz4GWP+Q5z8xmSKk9+YTHHyG5MpNdYiJ7rdUmkTMEgGfAoa1LOOijlTuJ6rAlxecNkbIKZtd1TkonWYBI8bpzp2qr8mh98IxKrNArZr4HiJgi1JeyMQECMidgsVPy9A6BpD3T+tA7onE0eVEz1o8vqTSkXhiIi/nuu93IbGpScwAerLroqFX9W679NSm4TS/S2gSSytTVuzVBL3OvA+YY0/iJz+8huTKU5+YzLFyW9Mpjj5jcmUegGCXyqpAk2bi/B8reLZF4kjp7lRpG5HE3v6JLqBoDWHEeJtU1ewNBOEGxJeBuBW3AYxbq/RG9wlEQmExkWjx5u1CLELKB0elyqIkovtKlQEJFInzfShuekuOBA/WHN58l/cfSmx7T+Epq4v9V188MsbEvuf1YbELqG56euWtX0TKvtuE8hpzWjbtgagcrykrYwxPzqc/MZkipPfmExx8huTKXVbf7034b5+acIC9XCLiDhejiXWVHo9qaIGlX8SJEB2QIgjN17qhKO2Y5LgtwmC3+2VbvcQHHUHu+Qu02vZPNdpPwNwv0VE9KCUdV2p223c2ZYY9dK7LtUVR88U+xvCeQ9AdHt/ysL17p/rPVZ/9ocSq4+PJfZefC6x5/+iYuOvemnfUBKpiVQhPYKdt1iKDjnoL78xmeLkNyZTnPzGZIqT35hMUYUl0sU9Em3IpdUmxFGJ4wQGN/RACKLrSR2y0YQKIiRU0b5t90JCIMWGUL67A4Lf/YVe46P7pxLb/j29lvVS9914og62wTdcBtudq6i16uozuCxVRJx3dB3HVaLgB2XMW6UKdndDYwcddRtGRJTvHkiseE8Xrbila9v75pXE9n+h90K9KFP5oeIeDT+h7ciB6i+/MZni5DcmU5z8xmSKk9+YTKk7NKUXRK26SnPA0fCLYc1OMuo/Vie7+ZQFCHTTtQqIMxhAQbE5CJJtpDrWBtB/7gaU796F0titxyrk1R890ouBwSIb3RcSu7lQd2BExOyFXs/JSkXATXgnSKCj50fuxz7ENkAM3YSn3+/xsyqGet3F1r5u2FfxsjzQ7Xb6ryXWLeAciaW6JD63Qc497hVIU5FpIIoxJkuc/MZkipPfmExx8huTKfVWT8UKgsQK6q82AnGv3zJBlUQfgn6h6HoWIIiQ0HG1VDGNBL9UgSUiooKrxIEMsN1oreLQ1lAdedUtEJb2tM9crKAs+uxSYv3nWsYaEdF/rWtWQf/ACq6b7o9YtJR5vwmJhSel7nt0paW/EREPv1WXXnF1ohuCUE1i4WCg70n/Os2tSAIwvU9tpb/k0qN3lAbx2OFnjPkdTn5jMsXJb0ymOPmNyZR6p6vOJhIRUifO0gTV1pJeEH2otHYB4gmJhTPqHwcTWaeNxsjN1ybuEU0BIhuc5xoch+MSSjCXIIamOg47+gyKoQ61qLmiNyq4nmalz3BW6HZzeKb0XJaJvSNPQfyaV3qOf+zt4v4/+W/fSuzG7Z/rhnfvS2h9eiax5TLte0nvJ+UGicJtPS8pTu8o9vCz4GeM+Xec/MZkipPfmExx8huTKfUA3HckxFFfMAKFs5Z9qfSQRA1y85F4QkLHtElz7qXStm/TpLkBjxbqtPum0uEXT2cqxN79jZblDvc1Vu6B+FVDb8XEYRMREdeg2Y5ByJuAU3JK7kkoZUW3Gk4h1nV91tVBHhERXz/Ttdj65ZcSq67V9bl6rX39pjNoewnL2KWSZXhnuS9fy5TexKE0FZX04vGMMVni5DcmU5z8xmSKk9+YTHHyG5MpNSmnqZNBUlXztjHgtD/FsHYfarpLaJpI58aR37BvA3XxrWp/4j8NFwudLPOiq6PKf93XOv2dX92S2AdLta8OP9ZzlFv670HR5d9+tvLqdjOcfJT2Dw6tV+q7SLR9xUo65ipxVDZMKer31LLdW4D1nSzpYIene6b3sy2eOjKe1ttffmMyxclvTKY4+Y3JFCe/MZlSUzNLEsnI8kuCWKpA0wb1DSigbjyVEkQSiuFY4wDxCoTPNmh9aB2vwf76stLYr7tak998piLghyudKrPxZ6DYlWwXpXANj6CmSUoknCa+TwS9DyOYCrS/xmnzsb9zLrHqvoqpxZ3bGuvBOPVbv5FY/4VaiGllyZ7bJu4RVUkTf1Two2NSzF9+YzLFyW9Mpjj5jckUJ78xmVJfzNUNRpDQRe4kFDVAqIhoESZgW9qOBDoybpEARSSavv6D/VPX55OaAAABIElEQVSdaGmizxKO97qExqowaWbwxZ7EPnyowlfRZXfYYKAutq1LvZ4RjHenOvZU9yQ9U2oSuwk9KO4t+TnvvX8tsfLxn+g1PvovuvOV1vMP31XBr/uN7trQ+0luQ3jObY1j2yb5vEnqdC1/+Y3JFCe/MZni5DcmU5z8xmRKfb1UcQdFiNTSShAb2oSKAqxkJJzR9dBkHxKRSPAjAYrOQSInNZSMYFckuxXBFYdHVBawjieVxv51peOqH36p4tXGR+yKG27pO3HjTNfixlrFvVGhTSpJgMKpMuD6I8GPznGw5OfS+0DFz+JnfySx+r2PJba+1marnff/l8Sqn+szpdJmGheP7/EPLIFPjfnLb0ymOPmNyRQnvzGZ4uQ3JlP+H0572zvtbeoqAAAAAElFTkSuQmCC" y="-1160.947155"/>
</g>
<g id="matplotlib.axis_69">
<g id="xtick_103"/>
<g id="xtick_104"/>
<g id="xtick_105"/>
</g>
<g id="matplotlib.axis_70">
<g id="ytick_171"/>
<g id="ytick_172"/>
<g id="ytick_173"/>
<g id="ytick_174"/>
<g id="ytick_175"/>
</g>
</g>
<g id="axes_36">
<g id="patch_37">
<path d="M 434.924375 1283.347155
L 557.214375 1283.347155
L 557.214375 1161.057155
L 434.924375 1161.057155
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pcde80de619)">
<image height="122.4" id="image15bf4f8b33" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnVmPJOlVhk9mRGRmZWV1bb3N9OyeYWw0eMHCYrMAIfANEvf8AP4WQtzCBXcWCLAEQkIyltcZzz69zHStWZVVuUdGJhczvun3CSnabQvJ3/tcHmXG8sV3MqQ333NO62t3/mATDdhs9GOtVkti3XYhsX67g8fstnKJtUOPqZEIumj63EG7J7E3Y0tiry/1u1vrtcQu8gzOEjFua2y30qv8WmcksVf/Wr+bfevrGqwqCW0+vi+x1YfHErv+uV7LO/dv6Tki4h97et//NvlQYsPFtcTWsE+Ktq5ZN9N9QlQbvRY6xwZ3RMRiVWqs0hgdM2vpQx10dD/tdwcSe6l7KLG38gOJ/f5C1+brO0OJRUQcvjqRGKXW4lyPObnUD8KWNcakgJPfmERx8huTKE5+YxIl74DoRkJHC+S0Ngh+dLxOi0UyYrlZQUyFrhJidI0kA52C2LQPsVtwvD6IgBERvbV+dn+t99LfVmVxozpObB481NhsLrHqwbnEZvf1vOfHNyT2MGfR7WxzpecB4a0pJAyvawS6X/ocKPdG5CA20rlXIKbmmX63yHR/97OuxAZtjR1u9Hh317ofdg70OUdEQGrF7FiDZ0cqQF4u9Hr85jcmUZz8xiSKk9+YRHHyG5MoeQ5iXLcNIiA67zRGYiG59iJYtJuD4DcDUWSxbubSqkKFqhtgi9oDcWdro/dyo2Lhqw/3st3Se1mVep7p+1OJFaefSGyz1Pubn+uzGp7sSOz+XEWgj8DJFxExrGYSK0G8JEgEJsgxStAzJbI2v8c6INB1Nyp0VjVCrnwXHawqph20dI/dXenaHGzpWhfbfC3LC907x5/ps35U9iU2yigvjTFJ4uQ3JlGc/MYkipPfmETJSaAhIY+EwToh70lIdIuIWEGcRMAliE1zKMtcwXep1PMcynxHucYWIF4WNQLULoh7vUyvZzxRcejiPS0xrjbkVtTYAkTJS7CCfdTV734cKjRGRAzLscTKtd4LQXsHY7DvmoqAtGdJiIuI2MpUeCtgL5Prj0TlppBA3qWy4Uxj5YTfyZenKuQ9WG1L7GFHvz9u6Xn85jcmUZz8xiSKk9+YRHHyG5Mo+ZxEDfhJoF8JcvNR6WdVU75J4h59n4RFEn02az3PrFJ34GzTTMjZgx58L3eh/jYiDu+oSLYGR9cRlNa+21Yh51Gu517COpLkOofPHcdCz7HSHnwREZNKP0vCKTo8wWlHPfxI8CNhmPYdlemSsBcRMchUyO2Ag5X2GOXGuNJy2+la1+t8o7FjEJWHExV785zF1RGIxSe5rtBRW9dxBIK03/zGJIqT35hEcfIbkyhOfmMSJZ+AgEFOuRIcVOSUIur6v5GrCoUlEIewdBhidLwMfvNeXKsI9HsHJxK78+fsJGs/96LE1kfaX2/9HyoM/uwcXFqhQuXpBnr4UT86WO8xlEUPV3otEc2dbSS6khhHsbqee09Cz48EuzrBbwvKt3vw/aauVsoNEkhPKhWGPylU3HseyoE71yz4TTd63TQs5hT2zjmIkn7zG5MoTn5jEsXJb0yiOPmNSRQnvzGJkk9XqgIu2zA1B2I9+AeAFPc6SMlFezDEmk4QAsdv3ACF9VtLVdKf+5s7eo5v/ZEeMCKCrvGDdyS2++DHep5jXdvtQpXmR1BTfw0q7gKaoM7B5jwFlTqi+XQeUvGprr7XcBz3EqYeUQNPUvYH0KPh87h+tgsqPu2nAt6Nczje1UqbcI5W2ivhKNM9dh+mJvWW+q/AFxcpTKFO/zpgYhM0ZfWb35hEcfIbkyhOfmMSxclvTKLk1AizaCiwkc2yaFjjHxGxAgGLarqpeSQdk45HlHCOOYxPRrWwTgybq8CzGavFk76+09JncHOtAtYZiFpUhz7eNJtwVPdcaHpN0+dPYhyNsKbrXsA6kLV7N9P+BzchFhHRpxH0cG6ymjftI0HrSH0kTsHy+3Gu65V3dL0iIjrQ1PUqaHx9s8a4fvMbkyhOfmMSxclvTKI4+Y1JlJxcdih+gNDRATGlDw6oRc145xKcSDSdh2Ik7tHnSKg6Ka8k9i+9PYm9+A9aj39v+F2JRUS0OroWy/f1++fvqntruAHRB85xJ1QIugkC2wgcfvdJYKup20chtqHrj/osbIOjkpx3JLD1YI8dwvjrfVwxZgGuuAkIYuPQ9bkGNx+5J4nj1khi1DNgkek49YiIHRBYVzQFCNaxT25cPIsx5jceJ78xieLkNyZRnPzGJEpOAk3TGDm8uiDQrEFgqaOpc4/EPXKmkVBJJZhvFyrGfHd2KLE//ScVCyMitgfq3hqN9iV2tFKX3mMo312B6HoLxnHvVHp/11BqW2U7EpvkLFSR63Pd0CFIz4VE5VttFT5fIEFzrfd8uNLjwYCjiIgYZro+x5le9xk0vfx0pc/6dKmx2aqZ4EflybSGV4Xuz4iIvUzXbBdcn1SyPADR1W9+YxLFyW9Mojj5jUkUJ78xiZLjhBUQDEjwIwGDJprUQcdsOsnlWShBlBpWWpL7XkedVgdLFc4iInaG+tlRpvd3CYNlqA8b6HgxgB53t1YqGG239XPnhZ74MYyvjoi4hJ57tGbkBKXnTz0Fe/De+a0S7q/S7xZQkj0Nnh41zDR+0dJrfAjjyo/mF3qeUvseNnU/0hqSO/AKROra7+caayoC+s1vTKI4+Y1JFCe/MYni5DcmUXJy6ZHgRzGC+oeRwyuCBzxsg/uq6SCPDQhn1AOOhKoliFKjjbrajqHnWkTEFfRXu2jrea6oR2FDB+Sqrb/VfRAVqbi1C0LqVouHaTQVfFs1z7UJ5LykHdaGc5TwzprA2kREjOAZnG5UtDsrVfCjgTa470D4bjpWvgviKvU8rPv+vKHzksrv/eY3JlGc/MYkipPfmERx8huTKDkNWSBxoAc912hKLw3tqHPtUc+2LTgPD/IAxxkIZxkIQSQ0ZvA7WIHYdN1iN9cIbnHY0mscg7C4BIGG3JMnsLanhd7L3kaf3wRcbSRURUQUJPiCE5QgsWoHykmpz9wMRLIpXAs9gRm4Gj//Pg1o0bUgZ2JTcY+gvU3i3m6uw0YoVgf1x5yv1TV4vfGUXmPMFzj5jUkUJ78xieLkNyZR8m0o6+yB82sLRDKagJrD70mvxh1YwGevwVU3ydRpNW7PJUauKhL3buTaC20A60BuxU9b3K+NxMErEF5IbCJ3YVOn5EnDfm0ZOBDncN6IiDYIiyQMk0hKYtU+9Osjx+EcXkVTuG4S/MY1r7ExCX7U/7Gh6EoxciuSQNqDNaR9N4ChJBG8xyq4v6ZTg/3mNyZRnPzGJIqT35hEcfIbkyg5ua+o1HMbhLMeFGF2UfDj3xhy/pGoQZN/ScgjoWOQq6CyA8MPOiCcjTcqkozWKjRG8HWT+wqdZCBhkZOMhLg1uRVhuAdNu+3U9L3bz1S0W8AzIEgY7pDrE4S8BZj0rsC5R587bnPvyM/W6mwbrnTAygIGlfAz0JNj+S44SwsQAalMtw4qRaf+iFTmS4Nv/OY3JlGc/MYkipPfmERx8huTKDm5wci5t0XiHk3uhd+TAsSdiIgKSnDp14hcgyiegNCFvctAoCHhZFKps3C61lhERAmCCkEuPRI+6f564Pyi8lsS97YgltUMh+hBSfAUnJfLhgNaqGR53tbYGJ7zAjbECFxtD4OF2M8q7c13CYIfOeBIYGvam4+gPUJ7rEaHRQF5Ct9vOkTEb35jEsXJb0yiOPmNSRQnvzGJ4uQ3JlFyqrWn8clk0e1voNHjU5y86TBvnu5CDTdVDV2A1ZFUXFLhSQEmdTXiaRRWvRey7ZKCTN+lf0KoOSbF6HgR0XhI+gobq8JThVfMFuwd+veB+nJewj8P52DjjYgYV/ovAFl5q/Uv//wIOl7d3nmSGfSBqD0P7Dv6p4hifvMbkyhOfmMSxclvTKI4+Y1JlJwEDLSbwu8ENWEsGtboR0SUDUc80/WQIEYiywTsuO2GggqJV3XCXtMxzQQKmnB/zUdn6/FopamZaARbeSl2TWIaCKyztq53lsN7B0K07+bYwpOh9SlgLH03h3Hl0N+0qbBLn5uvdB2ozp7WMIKnIVFjVep10fWIbmPML3DyG5MoTn5jEsXJb0yi5CuaDPMUTQWfBZJOViBNkTuNRA1qXEj198/i5iLRLSKiDVY0Et5I3OuQAEUNU1HIAREQzrsAcW8CIl5ExBjWjJxy5IAksaqpeElNVPegh0FOo92h6WxExKCtDVxbBXwfhLNFDiJnqU7CGQh5JPit1jBxp+FejGDBrw/9OA6hAesefM5vfmMSxclvTKI4+Y1JFCe/MYmSkwBFEkQJ0QUIL/xddvKRU4sEPxLeSPxaUKzh9BISpWikMglDEdwolEStnJqewufIkdWn0ek1AuSTXIG4dwUi3ufxqcQmKxUBS2gouYQYre0Uxq7PM/3uGu65Dx0u87pmpLl+ttyoIEZ7jFyND9pDiR2tLyS2WoE7lMQ9eP3WiYA07Ynyl6Zr3QLh1G9+YxLFyW9Mojj5jUkUJ78xiZLTmG0qyyVBhCbu4KjqmhLMMY0XhhiJjeuGJbQkuq3b+t1epiLJXr4tsRuZOsYiIrZBmCJ32h58rgeThuhXmaQ9cruNYb1m0DFxUePwI3FvDm4+Ek7J2baBfULCIE1NWsK97IAYehDs8Lu7UWdbl3oFwndP2jAhp9A1u1iOJUauP4L2cV3ZMPUeJOflpK0j6CtwB/rNb0yiOPmNSRQnvzGJ4uQ3JlHybRDEqG8ajdmmX46SREAQNSJYzKG+cjQKumrYx42deyoO7WQqktD48rrSURL8boUKfl8pdb3vrFRYou56JZZa69peZHqOcaH38rjNbkVyjREkVlEsg8ORqDWF3oozeAYViHs7NXOtb1d68htQWlvSPecqLO5DiTA5QVstdUk2hfpBRnBPSRoEMspUBLxwSa8x5hc4+Y1JFCe/MYni5DcmUXCoLgVpQAf+coBWUSsgwWdpgi5BjkOa3Fs0LHmlEmESC2mabwQLlaOWCnlXMC31BXSxkXuu2RTbYqVP8EUQOY+ygX45Iqa5ikgk5BEk5FGPQhy6QoMuyPEJonLdUx6AuDeowDEKe3QG1/hcrsLwo0LXcbScSGxcNZ1LzdDeozVr6pT0m9+YRHHyG5MoTn5jEsXJb0yi5CcwoGEbSiapjJJEwAWIEtOaabDk3CNRA8tbGw6CWIFw1lRUpGspa8ot6ZhXcI1nICxe49pCaSyV7270nq9BVCR2a9yKu7n2uCvhWRUNz0PDJqjnIT1TEhrpueQ1j7SAeI/EL/jcbZjS+zqUaV93bkqMSm2XFQhxEKvbn3XOvych4bsDMb/5jUkUJ78xieLkNyZRnPzGJEr+UXkuwS0o9aTy1j6INiSHkUsrorngR5Czicp8SagiaFox9lKrMStmNEgCPjwAl97BRkXXna6Wt54ttJz0DMp3T3I9xzkIn3XDVHJ4J5BoN4B+htuwd27A3qEJxjPYJyR+0Xf7sK4REfswtGUfBoaQU7IDTslNqfc366jr76yrIiD1+iPBr25oR9Vu1suSBsPQXvSb35hEcfIbkyhOfmMSxclvTKLkj6Yq+GVt/U2g6bQUI5cdld/WfZbKPwkS8miwBE3pxXJSEAtJWOqByBkRcQOcXy+FCmK/s9Dr/tLLOvmVuLyvwtkFNMg7AnFvGLoOk5qhHTR4ZRtEuz2I3WrpPe9BkTi9dYZQAn2x0Wfah31zWLF4ebenvfR292cSqyq9otaFCnmjEiYlw9CVGyB8Uq+/rK3XQsNQIriHH01KnsOen0JXSL/5jUkUJ78xieLkNyZRnPzGJIqT35hEya8WqobSqOtJW+uTe7mql/0cbKA5j7Umyyip6VRDPwelmv4BIIWUfvLoHwm6lv2WXnNExEuh8W+oizTeeulEYjtvqXpdXajKvfWImlnqeSeg9k/AOlur9sN6D0C9JmX/LkzTOVzrgndBnN+Ff5k6ENuBHgbUlDMior8H/xbc0lg11/OMr3RtyxU1+mw2pYomReXQE6HW3gtxGtt9udLmoTSdyW9+YxLFyW9Mojj5jUkUJ78xiZKTuEPiF02LIbZB8LtT3MDP3s62JUb125fQZJQEv6a9AMi2S5N9tkDwuwNjtyMi3ij1mG/0LyU2eBnWe0cbZm6mKtANtlSoujHXNcygOJ1EU+qnEMFWZ6oR70Bsa00jsfUcfRCvMrDJLuAZ0BsLdLiIiFjDiG5ykLf6zUa+T2BtL1ogSIPtlmzlWyCaYx+JYMFvDoLfaKkiPtX9+81vTKI4+Y1JFCe/MYni5DcmUXIan91uKEwcdnck9ipML3mtZhQ0ObUuoKZ7Do41EiWbTnehSTPUW6CAdejV9CagUdBtGANTTUDwG6l7krhxoLXfrzzQtT3KVdE6hXupa266pBrxNsTg+2uo3S/guZDgt27YmJMajy5rxsCXpT5X7MsKImAF4uUQ+iechgqx5J4koZn6V1CuRUQsVnpMEgenKxXIyQnoN78xieLkNyZRnPzGJIqT35hEyZuKe7sddZLd6+xL7M0MRECYfBIRQabBCsS4cxDj8HgNp7t0YUw2ufky+O68xkV4kus19q7V2bh+V495ONYSzM4BlIRC7OXrkcTOR4cSe9TRe34kkc+hpqfXlYpI120t6a2gxLgHYmgfGkrOweFXwCahfVPn8FuC4FfN4Zgg7l0vNQ9Oeiqwna5ViKUR3ThaHPZ7Z1PTxBbCJAJio08o6fab35hEcfIbkyhOfmMSxclvTKLknUxVhH4B01kKFfwOM51ocrBWAeOgZpoKsSj0+8OWilU0CnpEwiD8vA1AqKLpM30Yuz2H8s2IiHdzvcdPMz35g6WKpG+8pyW9L+xfS2x7T0W3oqPiziE49A5ALaKx6xER0xaUUK/BxQbCILTrixwcfuTmA80N304kAkLlbkRETGCk9uVjXe/pTPfYh9B78lFouexZpYLtFMrQyTlZV77bFOq32RS/+Y1JFCe/MYni5DcmUZz8xiRKvttR8WMbhI4euOKohBZa2UVW44rbgbLOFjiyZh0Q9zK97qtMXVUrKDvdy/T+bsKI7T44zsbQ3y4i4jG4vKis8x1Yxx9vqfD28lRdenev9Lw9eAajXK97DY66HbjniIgrEFNJwKL7ozHbJ7nec4/WFvrjLRrqWXWfO4Gei+ORip/DTPfdu4Wu2WMQ9y5LjdG4eBL3msYi6od5PEkGg05o2/rNb0yiOPmNSRQnvzGJ4uQ3JlHyF7e05x71x6PSWBR8oNfbGESuiIgDcDzdBFFjWer3hx0V7a5y7Wc3AWfaNjgGSYAiaNptRMQZCH7D1VhiJEC+D87EH4EouQuxHRDnCvhNL0Hxud7o2kTw0A5yp52UWk78Mzjeda5l3jfgGdAToBg9qw2IhRERAeInDQc5y1Q4PYbefKMKhN2VCs3URw97TKL7kQVyzEtw+NFwkAJKzv3mNyZRnPzGJIqT35hEcfIbkyj567mWmJKodbVRAWMGnzuGz51B2XBExO2V/vYMwInWhx5wBzDw4yaU6tLgjZx680Gp7hjEuc/WWtIZEXG5UpfXGISgEoQzYppRzzwVm3qZCn49EtNAGJpDSW5ExBT69c3AsYa9/kq9xuNCrYm7OThLQbzsQW/FAdzfTfhuRMQMezMqlzAY5grEYrpnEkOXlcZW0FvvaaB+mzSApguOyi3YJ37zG5MoTn5jEsXJb0yiOPmNSZT8FpQ8FiAOLUGIm4Gr7RwcUJ/UTB3dLTR+E0TAGbi3OmCCItGH3G70i3cN4uUR3N8ZuPYiIiYgkpGbj8o1aXADTQ0mcW8H+vB1QOQi115V04+QHGIECVgkFpLb7TJXgZREqS14pju59o6cZNpjMiJiDENEunB/YxK5oYx5BiIgrQOV3zZ1+NWCjwX2Duynfq7r4De/MYni5DcmUZz8xiSKk9+YRMkn4GyaglA1BWfThPq6hcbu10zZ7eU6xfaqrWIVzMOIgLLHAZRqtkH8KuG7F1CePIMYObwimot7BIl7JGrdg/W611anHK3DoqX3PGzzvTyGEmwSptDtBs62edXwc5mKadNMr4WciSX02/v8mLo+fdgTc3h+lyBek9ORxD2ayEtrSJ+rgwRD7AEI10OTe/3mNyZRnPzGJIqT35hEcfIbkyhOfmMSJf+w0lpranp5vVLlc1xpvTpZQ0nNjojoQnzeVpV7bwM13TCmmWI9qPufg/I9BfsyNS2tU2ebKrEE1WTvg0r9WlstrF8udW0OK7CWwr0MYcR6RMR7YMfudPQa6xpNPslkqfuE1ob+FaB1bdq0MoIV9hlYhsn+TP9mNH2mtHdwnDYsYd0eo3tBizXYqelzfvMbkyhOfmMSxclvTKI4+Y1JlPzD2YkEyapKTQpJgOiAPXfaVgEiIuKspc0wSU5pgQh4e62izQulfpukxhOY4nKV63XTL2Od4IP2XrBZUiNNEqtoqtDBWu/m7kqfy91cBbYi1+ubLHiSUitUbLyGhpuTolkzSxKbZiueFvQktF4kIBc1onLT3gQZPG3ay9RzoMz0nmmfbKARbfUU9fwkBDbtJbBo6bPym9+YRHHyG5MoTn5jEsXJb0yi5Gdzdfg1bSpIjQJJYKmrgR+tePrNk9xp6SSeN5cqsvzubz+WGOlz7/78lsQ+gbrxCgQWErQiuD59DSdvgzBFbjBiDR8rGwpaBdS7Z+AOjEDTGZLBdZNI1nSfED1wGx52dOT3HRgDHhGxCw1OaWLTkkaYg6hc51Z9EnImogsUJW6maV6iQxBCfvMbkyhOfmMSxclvTKI4+Y1JlHxaqvuOXFU0HphKFMnZtIBSzQgWQLrQPHILRJZvfvUziQ3+9i8ltnn7bT3e+yo00ihnahRZN2aZxD2CxC9yp5Focw3i0EUG5cArXUOaLP5ozSW9H3X1Ho826hocQwNXcjoSJPhlbY3tFuosfKnYk9iXWyz43auaTWy6aOt6H2cqFtLI8KZ7nsTiEpbrqab4PAN+8xuTKE5+YxLFyW9Mojj5jUmUnISqDfTCa8GYbBI62OnGAgYJhuSgenGtIsv2H7+gx7v3msRW//qfEns3bkrs07WO3qZx03UlvU37ylFJaA96ynVgHeiXmq6mhE+eV+qSfL/LzsL3NroWj1fQ6xF6OFIfPhKwSFTugsvyEJx71Mvw61w1Hl/KriXWgh6O5wsVP+/nej09KAef57rnr3PteUm99RYN+/r9OvCb35hEcfIbkyhOfmMSxclvTKJwTSdAjjPqFbYM6PVXo2D0Qx1U2yB+deHrix9+KrH807+X2P/8s7rBvteDMeLLC4lRyTGNOq6Dylv3chWrXgHH2lsbdbZ9ZakL8WpHhbitgfbHe3ypwtmIxKaIGMJoahL3cOwzHJPWgcTQQa6i5D4MFrkJvQyf27Did+d5Ffw6u7pHD071WW8f6Uj0NvU3LAYSGxZ6vMvlRI8H67WueS6/auef3/zGJIqT35hEcfIbkyhOfmMSJadSXRIhCJwaWtE00BoBA4TAxUbFmJ9kKub83f++KLESjveDrrrV3lucSuxsocIZDZaoc/iRgFUUKnS9UOxK7NuVioDf7qgA+fw39V6Kl6CUFSYT73z/TGIf3b+n342ID2BC8DxT517ZbvasaZovPfsOlMsW8H4qYTvN4Z4jIlpQqlvsk9ioz/rmXEW72xcqSN+EgS8D6B3YyWAwDPYybC4qPwt+8xuTKE5+YxLFyW9Mojj5jUmUfAuGIqBA03AIAX2uTiQjQe14OZLYBHrF/RBKXmk4yKhU0WayUrcalSLXXTdBImkB/fpuwwCS10u97v0X9LqzXS0xbR+oCy229Bw7mQp+f1FqH8SIiPjseQl9v6MC1nBDgijsExp+Ar3+ZhtdhwnEPm3peT8o9PoiIvYfqsB6L7+ET4KwWOrzq1DQhKNRH0z4Ln2ubohLnVP2l8VvfmMSxclvTKI4+Y1JFCe/MYmS73S0ZJJKNWlYBQli9Lm6Hn5zEPyGcMwrEO0Iup6mQiU59EiMoTLmumPSOk7BvXUOZcynn6lzbwN9BnfWxxLL33hOYtkrKuId3NQS04iIv/r3BxLrv609E3/UUUFs2FLhdAxl3nNwcpIIOAURl+SwLGeRrKy03PbN91UcvNEGsRF6R57nes9zuOenEYv/v/Cb35hEcfIbkyhOfmMSxclvTKLkO4UKfjR4oYQJozSJFB1+8N3PjwniILiYChBPaNotiXY0bKSuxPhJcPpqNJ84TGt2DONyf9pRR954pc69u/e11Pb1S3VEPj84l1j+yssSa3/lqxKLiNAC44jX3tFeeB/AJ4/B73a1VmF3tIapv9AnsKlwRtNzIyLyTJ912VWn5N2Vfr8Lwz3oanob3XfUi7KAXoY07IViEez8e5a+fn7zG5MoTn5jEsXJb0yiOPmNSRQnvzGJktNI7A40PaRR3tx8sDl0zAx+j5qOuqYRz3zeZg0l6d8MupYvjioRUqovYArQB6D2XxR6f7vQKPJkciix7/xApxnt/5n+q9N+7RsSi4jYPPpYYp1c/1VYwppdQo3/eaX3fAWxWaXfJYW7gD07A7twRMQULMNj+GeARmX34P72Kn2mz8GeOIVJQw9zjY0ytVjXWchXEKZ9izEak45nMcb8xuPkNyZRnPzGJIqT35hEQU8kCQZkuyXB7tcBCXlkS+6BpZKucUm15GDF5Rr/5r+XZNOkc1+A1XXZUqHqEoSqKTSufO7jOxL7k3OdUtTevS2xCJ4Xs1ipyHbV0bW9rLTZKol7Y2qi2vAZLDe6H0oQ9iLYjkvQU92CvdOBI64rfS4HMJ1nB0TAfq7P72nGwNP+RsEQHMN+8xuTKE5+YxLFyW9Mojj5jUmUnEQWcrY1nWhDwuCzQsckJ2CvrUIQXuMaeg60mjkYacxyBDuoOlC/TVDjSro/crtdQX+Bn0NT1j85vxEbAAAA9UlEQVT875/qOb6jY8AjIjbDoZ6nUjF1AuIlTVearDRGewwbsEJNPX6uZt81nXKT0fMDca8L+6SAUzQWGmm0O/SqiKi570pPjv0A4Br95jcmUZz8xiSKk9+YRHHyG5Mo+RzKKJs28CQn0bM0FIyIWFUqfi1Wej3zXGM7Qa4/FQFJQCQxhUqbi2AxhsQ4cqdRjEqMSbMpSICE3+8ZiGQP/0vLhr/0k+/pSSJi/eBIYhdtHXU9Cdo7GqPR6SQgozgHr6e6CVBE3bjrJmzgu+VGY2NoEnoJQuwMGpn+qsdu10Hn8ZvfmERx8huTKE5+YxLFyW9MovwfkHzeefN7IisAAAAASUVORK5CYII=" y="-1160.947155"/>
</g>
<g id="matplotlib.axis_71">
<g id="xtick_106"/>
<g id="xtick_107"/>
<g id="xtick_108"/>
</g>
<g id="matplotlib.axis_72">
<g id="ytick_176"/>
<g id="ytick_177"/>
<g id="ytick_178"/>
<g id="ytick_179"/>
<g id="ytick_180"/>
</g>
</g>
<g id="axes_37">
<g id="patch_38">
<path d="M 29.174375 1429.768342
L 151.464375 1429.768342
L 151.464375 1302.474815
L 29.174375 1302.474815
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_73">
<g id="xtick_109"/>
<g id="xtick_110"/>
<g id="xtick_111"/>
</g>
<g id="matplotlib.axis_74">
<g id="ytick_181"/>
<g id="ytick_182"/>
<g id="ytick_183"/>
<g id="ytick_184"/>
<g id="ytick_185"/>
<g id="text_10">
<!-- 37 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 1409.825016)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_38">
<g id="patch_39">
<path d="M 164.424375 1429.768342
L 286.714375 1429.768342
L 286.714375 1302.474815
L 164.424375 1302.474815
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_75">
<g id="xtick_112"/>
<g id="xtick_113"/>
<g id="xtick_114"/>
</g>
<g id="matplotlib.axis_76">
<g id="ytick_186"/>
<g id="ytick_187"/>
<g id="ytick_188"/>
<g id="ytick_189"/>
<g id="ytick_190"/>
</g>
</g>
<g id="axes_39">
<g id="patch_40">
<path d="M 299.674375 1427.266579
L 421.964375 1427.266579
L 421.964375 1304.976579
L 299.674375 1304.976579
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p72b5b299cf)">
<image height="122.4" id="image88f58cce7d" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH4VJREFUeJztnVuPHNd1RndXnb5M99zIGUq0RdlSLAWR7cBJEAcBgiDx308QwHqIrcRyGMqiSA7Vc+t7d1V3HmLnYb5VxiGEvPh86/Gguqv6VO0pYM2+9D578vNDPOCoHjxciqNK146roaw9rcay9nGMZC0i4r22J2tDuZqIeaVrr6u9rP0u1rL2sp3L2n27krW6pycZw2+uQ685IkKvJuIQ+mN68PlT2MePqomsfbBPsgZbE697rax9sb+Xtf/eTuHTEdt9I2sn6UjWvpdOZe3DWq/72b4va0/h3p+2uovzWn/hl0mP+zKWshYRMYV73cJ9GfV0b0e9WtZq2PE+PDsjOG4Aa3SO/oGfMbrX17GTtc+3V7L25fxV1vcZYwrAwW9MoTj4jSkUB78xhaKWI1hqDECITHoqcsYgMNoDWLyIuIE/PfTXaAf+Y91T6bM76FpzUPlFa7nQPkSwCKx6IDRD9+cShN97exJBet5lTxeXIPy2kf+b6bpJXu5Ac27gHoDbiwTPhP7iiLrj2ZFzdBzXwDW2cI2qiiN28Jz0SdDBU7uBNXpGUuZxXevLg8pZIlV63X7zG1MoDn5jCsXBb0yhOPiNKZSEWWggfCiLaQjyg1iCnIuImIPX4COVFciYLayRtCHhV4FM2YNE6lf89/IY5Ocx+NQJ7NklyL1He70eEp8bEH5rEFokQ+k3R3C2I7EB2TQ7aMbZHPZmBQJqBPu9gWdxDUJzudfzRkSsYZ2eCYL2J5HwwzXdQ8rupL0mgRgRMciMt0Glz92w1nvgN78xheLgN6ZQHPzGFIqD35hCwXQ1Eh2U9UeQWJqBVIyI2IDeo6wxuh46jrKdKJuLRN4OMuBIhh51ZPi939MsPRJ5YxB5VMZMkPAjzUV7Q1DWV0RED0pKSVaROLs/bGXtW5KhUKq7h2dsVunmXJNU3Ot5IyLmrebu0TNBUKYjxQHtI+1XrkAcVbpfXZAEpPLk46Rl9X7zG1MoDn5jCsXBb0yhOPiNKRS2V8CeSjpBnCxBSnVlkm0oSw9kFYm3Bs5NGWd03SRyCJIx58Ey5getbuXTRs/dQkbebaXXQ6JrRdl8kD1J1a1YTtqRMZabiUbilO7BzWEja0PIlFzVuoczyOZ7A335bpuFrEVELFs9N0G/j8RnC/vd7nWN9pCgbLyqo4cfiTyKLeqtedE/gc8aY4rEwW9MoTj4jSkUB78xhYLCjzK3SORw5l1ej7Mu6EjqC0fXs4FhEwSJLhI+JFjOOhzp+yD3nkLW2Q1ku71Ouo9TEEsk92gABcFlp3klohF8r3PFKYpheMbo62Zwnymbj0p3Izibj+517jNBdAnth1CpPMrVjnghaUtDP05BSo9T3sAXY0wBOPiNKRQHvzGF4uA3plAc/MYUSiLbuAFzSim2654eR6O8u2rgyaaT6awg5Td3JDaRa3vJ4e4gxTYiYgMpug3U7uNn4bpp6g415sz+zZn15V3ruVZ6SJOdoD6dGpkeH3SNMl0n9IzBWPkI3h+61+NaU2JpOlPufziwJwY9dzgdi/8LQ3F0AmvnB12jCPSb35hCcfAbUygOfmMKxcFvTKEkkhA00WbTqNwjcbKtNR3zUB9lXxClnFJNPpGbjpn7fUtoFPnNgYY5R4zTWNaaYAn1EErbbaBWnnodEPT7aIJMl1jCHgggsOjz51BL/rSnzSMvQe4dgd0b0VjqSp+ndeLU7q6eBQ+ZwHUfgajkvgh5Io8mXA3eYUR3gvUT2MeLg37nMTw6fvMbUygOfmMKxcFvTKE4+I0pFK7n34Pwg6w/kkCUUdVVn9yroUFipowjSBbSualfwRpqxO+gP0DXeOd1revXfRVTExA0s4BR17C2xgalSu5fdMrGi8hvPnmaKfd+CM1NTzIFVA2NPpeQ4beuVbhGsOik/gIkL8ewP3QcSbsj6GtBWY0jkHNd928HsTGEe9WHEKKpUH7zG1MoDn5jCsXBb0yhOPiNKZRE2Xy0tm2hgSeUN1YtZZKxWMJpJXBcroDiSTO6tgVxRmvrViXnomMCzKzSKTJXtcqvMWSNkeSkhpQkG0mw0n7T2Ocu4UdSi7LYTqAZ6Yd7/c4fbfW6j0BVbuD+DWu9lhaur610ryMi+iAMF5C5SVDJ+QREHjXRHFOWHayNIauxK49zBpmgJAHnUHZOceA3vzGF4uA3plAc/MYUioPfmEJJNGY5lwYyAXe9PJkWEbGFDDrK6KIsrVxoYgtm+IHcyx3vHBExCxV+1725rOWWHePewhpBe0g97s77E/z8GWTLjSAZFNoW4ljyzy6uZW1yrhmVm7meYzrVazzZaObkuM/y8rjWvZiCaF7BM0GltROQgFyKDCW9NDod1miMe0TEEoTfDK57VamA3IGU9JvfmEJx8BtTKA5+YwrFwW9MoSTKsiMOYCZIkpFgo+MiOBMtt+caZRfmyr0dlerSGmQ10jkiIkicdh2bwwG+j86xh3NQpuMMMuVWrUq3iIjtQH/3GfQovICsuvFer/HypypOB3/zkZ54o9fz6NevdO3fl7r29lS/LyIuWhWdr5OuXVW6j3MQbPS2pEEuDcUBCFIa2009HSMi3hx0H++hFP0ESp6jp+XXfvMbUygOfmMKxcFvTKE4+I0pFBR+lIWG5btwHAmorsmmLZV1QrklHVdBVhUJNsoupLJckpKUUdcl8UjQUZZeu8+TgCSC6By5U3rf5VroPJiZCK6YchDbBZwnwVTk8yd62Fzl3vGbG1l7vNQMy4iIvSZZxqZV+XUD6YprkMXUW3ELzwQ9swTJWZKFERG3rQ6MWUO8bAN6R0LWn9/8xhSKg9+YQnHwG1MoDn5jCiXRUAuSOzWURg6hL1y2LIr8bD7O3MvL5qNhI2vIbMsVlXVH37tc8UZZerRn34VcMUgZjBERy50K0WaYV078Num9fvH5I1l7tvxS1vp6WLQLve7VjWawdW0hlR3v4L7OoBT9GrLnbvYq3RZwHIlmugck/OhZ7PpOep5omM6tM/yMMX/AwW9MoTj4jSkUB78xhZJIuqHogr8TXZl7D3mXPoEkRfYkq2haLniSLWRkUfYcZSsmyIqitQiWLKuKS2Yfkpv1d4DSURSIsF+5QjKCMxup3+IMssu+gmnFVXuix/1ae/OdwfeNevp9w5QnHyMi1jAV+R5eeXcg0+6ghPau1UzC5V6Po/0icZ17/yJY5NKznIvf/MYUioPfmEJx8BtTKA5+YwolTaDfF01pncBEVhqmsQJxcg9CJCJiS9IO6MP10ATVfaVZTNk9ATMnAfc7eh7myk+SNjQB+btAYomk4ruUJ892Krq+SXeyVvd1H+6S9vo7g56Ck9Bn8aLV7/v+Tp+bUUcJ7Q3crxvo13cLsvEeSmhnJPwafb5xonJmX8Z3kbOUPUvl27NGr9tvfmMKxcFvTKE4+I0pFAe/MYXi4DemUNITGMd8Dmb/8qDWtA+G/FUFjTA7rPI6sz6ZjCamJcP1HGr9DwDVRZP5bsDYdhryzP8WUBrxMOl+U533oM5rtkrXSDX6q4bTj6menD7/qtJGmtS4cp6OZe0U6stp/PWbpGtXsA9ne/6vzhpSot+EPqPTPYxY32n3z/udNhSl/9a8i7F/SFc6PE6pymwUSv8B8JvfmEJx8BtTKA5+YwrFwW9MoaQPQlMvn4I8+XCnYmEEKaMnA03RXFacxjs/qHCiCSSYAkm17XAOEmddDUUfgmmyHcKPZCP1ISBpkyAFdQyi8iTpJBYac05Tj6a9mayRBIqI2LbQPwGOJQl43VNJhinNUJO/BNF8C2L3Dbyzhh19Flq4B29blXavt7eydrPV37Jp8sbS54K9JTrkcQ+eW5LAFC8WfsaY/8PBb0yhOPiNKRQHvzGFkh4dNP6fNCoMHkNDwjFMOVk3KhBfggSMiLgCwbOMvOknmYlNmAGVK/JIknRJMpycAjKnD4LmGOrd3+ufydolZGMOQYjdZTaUnFU81prkHoGTlOA8a5iaNIS1HozX2cC9p4xRfEYiYgXTdO4gS+9uu5C1Nci97zJdieUeHFfxO5kyQUkMYwNe+E6/+Y0pFAe/MYXi4DemUBz8xhQKdqPcgDD4FsZxV/Dx1zCiednj0lFqckjCiGh7Kn1IqOC46symiST3umQYfSdlXx3V0KSyrxNtPki69h6UwfYP+puPINvtLmkzypukGWwRLAdzRRdlNfKIdd3HPqxRhiZlgS6g2WYEy73ZVkXnGsqbqekpiTO6xlzomaXnJoLF8GlSCUwZrAPIIvWb35hCcfAbUygOfmMKxcFvTKGkGxBnm5QnMJZULhkqU161mj0VEfG20TLTDWR+Udlqbg8/KoPcV3rd9H25ArHr2GGtkvQMBM1lreOqn/RUDL4HpdZD+M1DuJZFOpW11aijhx/cVyrfzZ5SRCPWKRMQfgvdl3cptc7N0iS5h+Pi4f4nkIAkBknE0TNy0tfS7QiWe+e1Hkt7NobJXH7zG1MoDn5jCsXBb0yhOPiNKZT0MjQzqgbxsoPS2BmUS97ACOPbhoXfouGsrIf0QECOQIiNIAuRxo3vDnocDaqgoR1d/f9I+JG4OU8q9x7Dbzk/6HWf7eEcexVQp3CNxyAVJwPOJCPB+nVvKmubVuUs9jKkHn40sAV+C+137qjr/w+wTBsyKkdJ7+lxH0aVk8SDZyQiYgIl8DSqvk+Sm/pJ4lmMMX/yOPiNKRQHvzGF4uA3plDSS8iyw2mgNLkVhN+y1UywLrG3bPRYEmcJhMrxQeVJgr9lJEmwApPdl7CuVXJFsJgimXNRgQSEazxv9fsewzCNc8hWG4auPWt0Dy+gRDQioupfyhoJuqvNnayRjMNpxy1l5IFApH50mUNXIvjZyR10QYygj94ERN7FQEuy3+9rluV7lT4j4+ABJASJvFz85jemUBz8xhSKg9+YQnHwG1Mo6brRPm59yIojqA8b9X+jtYj84RDbGr4TBBSVYFJ/NcqAOq20Px5JwK7hEJQVR99J2XyPIJvvEfgwGpxykVSa9mEC7nqn17dtuCT3WdLr/iody9o1TbGF/npdg04ekjvtlvrRjaA3YgT3vRtCJuhhCD0Y4TwnUEI7gcEZx3CfLyq9FpK91JcxIqKFydQ7KpemnonO8DPG/AEHvzGF4uA3plAc/MYUSlq1mqXXQFYUZVVRVhRJm67sKcoG40mmeWstSI01isE8oZlbLhkRcURZeiB9JiBTR1CqO4aechOYijzoU2msXuOq1d9yV/NvWUP5Nt3D3EEnJF0pcy930jE9IzQMJSLiFAQd9bM7gXtFcpbuH+3XksrBM0vlDx29EUmH0jNPcm8R+pz4zW9MoTj4jSkUB78xheLgN6ZQEg1PIJGTW0ZJn+0a7kB9zo5gjUpjx5BVRWxA+DWgTkhK4T50/L0cwPqQ1iB7K4EP3cP1bA/6fYuN7tcKhnu8BCH2FVQ7R0S8CZXAK8jcy4UGWFD2XC4k90jsRUT8MJ3J2p+HHvspzC+5hAEyC7gv/znU63lZwVASKm2mEuh3KNOlY7fwfNO5/eY3plAc/MYUioPfmEJx8BtTKA5+YwolYTouTE7h8dd5I6xpDHEEG3uaVnJRq+2nSTwLMNIrMLZbMJ8E/Qdg1GGpv8u8mB3Uac8q+u+DWuUazjxP+jf9qoZx6pAuHBExg/8AUeotGfu21ueJ6udH8EzQfhNHkJ77BCYSRUT85KBm/xfNUtY++otrWavH+ptvnuv37a4vZG0z1OfzFn7eMtPMR7DZx7iEz9J/o/zmN6ZQHPzGFIqD35hCcfAbUygo/DjVlcRC3jQVEj4RESdJ5QnJvfdgys0IznN/UAH1CuTJbK9NL2kf6LdUnc0VYcQ3CJoVyL09SJ97GEveR5VDfQ30++ZwffMOsURTYIYg9+i+khikdFySdrTftHYMjVGfQnPMiIjPVvq7P/6pyr2jvzrHzz/kbHsja5dTlcrHe73GO5C4GxJ+WLnPjOD+j6EPxTGs+c1vTKE4+I0pFAe/MYXi4DemUBI2TYQDocdkVJDWRjXwXVA2YO7I4TFMuRmCHFqCCFrAaPENyK89SMAWxEkEN1Kkuup7yELMbcxI5OXERVAPVWoeGcH9DnJHWGNTT6pjh3PQ1CNqjHoKjTUvQfZGRJxDb4Kkk7KjNwFhCJmuNR0G572D4JjCtdwedI0m7kRwQ9kTWoPYIFnsN78xheLgN6ZQHPzGFIqD35hCSTjWmjLbMkt6Sdh1jehegXibw9otTs6BcluYxDOC0l/KLsNMRzhH6hhfTtmOJO1ILJIYxFJr+D7ScLnStEvOknBaQFbkrFnpcbu1rFXwPG1h0tABOpkOUt7UpKOOzMs+ZDYeGvjdDWQ7UnPNuZ7nFTVHDd2vb/ZaSkzl5TTZJ4LL2OlI+jy95f3mN6ZQHPzGFIqD35hCcfAbUygpt4yS1nIz9LrEEonA+V6FEbGGiShDECIk3UicPIKpQDSdhz4bwWKRoOy5HUifXJFHe0vCjgQiZdlFRKyh7+E99L2bbVX4LXcqulAMd2SxPYQE6xZKvLveYjWloUJpbexAQK5UPt+/0RS/51Cx/grk3l2r+0X3lEaIR+SP496C5ISBRH7zG1MqDn5jCsXBb0yhOPiNKZREAzVI7mFfP+pHRyXCHSO6CZKAt/uFrN31VKiQHKIy0TH0nqO+cNQLLXVkX1EGJGXu5X6WoMw2osa+cLqvu33HcAgQkJsWhp/AvWrgO0n4rRpVUJQJSPf0FsZxLzqGdrRQi37YwnN7o8/T7o3K5xfTp7o2Usk5bfWZXbf6mynWNh3v5G1P93YFa2SLSRb6zW9MoTj4jSkUB78xheLgN6ZQEg1eIEFHIo+yyxJ8lqRGREQ/MyuOMs66yoQfQgMjAiYBU6848nBdci63fJey7yjLK5H8yvxbTd/XVSZKYDZgZkZe7uTmdg9SEiTgPXzfFKY7v66hMV9EvD3osc+u9F4fILN0+lyfk18N9Hl6udchIItWv4/2cBAqlUm4RkSsoP8jOeU7+OzmoPHiN78xheLgN6ZQHPzGFIqD35hCSf0qT7r1MvvCvcuU3lHHugBuj4QfDtmANRKVJMkaknOQ1RjBvdgWIGhI+OXKOJJpBA4Qoaw9EkgRsQHBmiv8UBbDcViKDNmBVCI8rWay9l/pHq/n18NLWXv88pGsnbxV2fjF7kTWfjnQstyrrV4PCXLKVqR72lVqvWh1L5Y9vW4ShivILvSb35hCcfAbUygOfmMKxcFvTKEkkhCUkVWDayK51680Y2kC5bIRERPIqqMeeWcwaXcGPfcoE5CkIn3fCfRNIxFHWXtd6yT3uJ8hDVnIG7xAaoh6AtKAlCUIpIiIZaPr2zYvo5JKv6llHgmxfeak5NuNlsu+qL/F6/mXI72vy6GKvBFkAn4Bcu+LrZ6H9pGeuy7x/RC6fxERW8jSo0xJCz9jzB/FwW9MoTj4jSkUB78xhZLGIOMow4gEFJXkHoHUILEXEXEM649gbXKAYRwwjGED2Xf0120IE11JVC1h+MF9cFYcQftDmXIkTmkICAlIkopr+D66pySBIri/HvXmI3JLenGNMi/Bj5IsvFpRIWvE57A/X/dV+NH+XG/nskZ9+MZJY+i4VqlMfSIpGzNAzkZ0ZLDikXn4zW9MoTj4jSkUB78xheLgN6ZQHPzGFEqi6TV4INjnEUy0IUs9Cu4ZMIZjz8Hs/2inBvmsBTMMlpvSX7dgpO8hf/ktrKWOkvojNPtQsw7/kSDjm1vjT/XzQ9hvun9d0H8kqN8B/QeorqEhZeZ/Cug4bP5JvRO2PNqd0pKvKv3PAKXJ0rlTDf+FgeeuSXqNuVNz6D9PER39HPLabHDadd5HjTF/ajj4jSkUB78xheLgN6ZQEo2wJt1Acm8Ca0cgm+p3GNFN4PWAyhtDsmOCFN3VnuSX1n3PoRC97ZCXZx3rcm4wNJRGvIPfRwKR/n5TOvU5jLVeJ04jpXHctEa9G6ghLDXmpOk8BIk4El9dY+ApJbZp8sQinSfBfabfR802cYQ87GFXA8/cSUq0RvvjN78xheLgN6ZQHPzGFIqD35hCSZRJ1s+sLye5RyO6u5KQNiAmlnD0Ta3Xc4DRxhMQeWMQRlv4zbeQzbfsmM5DjKFHwBA+PkKJpKwyM/zos/tQ4XcKYmkwYElJ2Xy3O22aSbKKmlSSgJpVek/rRtdIpmFmIXxfFzhuHmWqknsemihFTVRpr7vgbEfIxsycFuQ3vzGF4uA3plAc/MYUioPfmEJJVI6Y4G9CbokpZaFtOzKWdjRKGrLd7kCy7ECcXYN0o99CIu91pYJmAaWjI9iviIgK1FsF14MNG4Ex7PfpQc/9pNHvm0DXy+tam0eO+iz81n3dC3pOSLyNYPIRTZChjDNqeNo1vSbn+v7Y+kNInFGJMck0koCUWUgSkK6v65op4xDvCxx3BPfFb35jCsXBb0yhOPiNKRQHvzGFghl+XeWRD6GyU+yZ1yH86Cx05IYmucCHWxB5VEJ7C1N3pnstwaSx2+OO6UNLWB9BvzeC/gI/PqhA/P5Of8tn/ZmsnZ3raOmrb49lbdVO8HpmtU60oV6P9OzQiPUZZLZheSuUiONYapBpXT0KKQuRRCWdZ02lzTAGnjLvKHOPxCfK0Ey5HsHCj8TpGYy095vfmEJx8BtTKA5+YwrFwW9MoSQq1SXhQHlplKFHoqOrbLGf+beHJCCde03ZgSByrg8qoG5B+K1B7tz1eDjEFGQVCTESNOcwunkMezOGjbh8qmOkx89AItX3svbJN3reiIh2oOOlF3CNNOqc5NdrGFf9OxCk34Kcm7W63zvIlKNS4ggelU1P3RLudR18r3OuB+OAhrjQQJOOsKgp8xaeJ/rNl5WFnzHm9zj4jSkUB78xheLgN6ZQ0g9C5QANkVhDVhVl+Kn66M5YolUqeSW5R6zgepYwyGMFEnABwm8Jgxcouywi4pB5jVRaGf1TPTeU4G5gIAZRH6s4O36mQuuT1S1+/vxW5dAWpicTc+jreNKHToNJh4jQsIrckt5Rh/A7BVFJknsFJd1DEJAk2GhAB2XudU3ffUjXM0b7MwRxegR78bjnkl5jzO9x8BtTKA5+YwrFwW9MoaS/3qqEeNFXYXDdU4Exp+myKAZZhpEwnIOMyy0dXoFkocy921ZLXmeNrr2L8MPJqCR4wEttqJwUvm8OIme9UCl1ApKz/76K3YtY6sVExPiNZkCu5nru5UIl0n6t56FhKifQj/AIsiRzy1uplDgi4hxE12OQZFQift9TWTgFgXgLWYhUIkxZf/TcUNlwBPcApM9TJuDEQzuMMX/AwW9MoTj4jSkUB78xhZIeQUnh273+TbiBKbYEqb2uQRVrEHQbkFVUCknfuQbJMgcZMwPhN29A2rT6fbmZfBGc0UV94ah0eFbruaeQ9Xd9o9l459NrWeu/D8Mdhh0DSBIMU9mojLsBuXcFGYxTeHYWIJC3MFGZMvzoHnRlz52ARPy00bWLFrJDK81CvIJy2bdJex7eQ67rHNZISN/A8/m/36mClvaCMgFrKL/2m9+YQnHwG1MoDn5jCsXBb0yhpCXE/6yCQRe9vF54VC5LWX8RLCa2JAEpswk+S5lRq1avcUFyD85B/ehoUmrXsSRj1nA9d42KnCmIpa9rlWm/CR28cfwfeo5H93qO3ZKz4t6+0QEfXzV6npcDfXauKr0v057el9uDrt0fVH5RphwxArEXEXEJw08+2+l5Pvrejaz1YAjMzVT34cVa154PVM6+pBLhKq9fZgQ/8/Q8reFZ3taUgWqMKRIHvzGF4uA3plAc/MYUioPfmEJJqwpSeaFO/+VebfFVo9NiyLh3TeyhZoi5TQ738B8EapqYWwNNtv5dwBRkOA8dR/99+LbWvX0Bdejjvpr5/uJc1r7/G01VXYEJj4h4kfQ8L4d63Vc9mHwEFn8F92AJFn8Fzw49D9Ss80ml/x2JiPgESuM//fhbWTv9O02T7g31PMdfaOr05t/0vyavD/ofAHrTJvp9Hb0JJtBLgJ7bNdyDG1jzm9+YQnHwG1MoDn5jCsXBb0yhpATCYA611lc7FVCvNzrxhYRfv0Ng9CHd8QhSWAdwHH12v9ffQlIxweQbOg4bLkLNeQSn8pKMwZRmEGLUX+Cqp/dgkPS6BwOVTXeNCr95x5/+byq9/9NQuTdDkaf3v4HfTDKU5N4Y+gNc1irnPjmw8PvZSJ/R03/QCUn1z36Mn39If/FLWdv9q27kFHoiXAf0bcDmrTylqKt5rHweUn5f9HREu9/8xhSKg9+YQnHwG1MoDn5jCiWNQCLQtJjbZiFrd1tdIyFGgi0i4iipzOnDscc9lTmnUO/eQgbUELLBKBOQaKC5KdXeR0Q0W2g8ChKwBqlFWX8kARfQjPQtiM9RrXu4S7pfW8jkjIi4BmnHYor6LORlSpJgpTWq0/+zSoXmz1dc9//hP+ue1X//C1mrPv6JrB0Wd7LW+/xXsvYm9Ll73tOeAZQlu9hDTwxYi+joVwHHbqBJ7HQ7kzW/+Y0pFAe/MYXi4DemUBz8xhRKIhW3oGkjkHG22qlsoEy3rpLeAZSUJsgGfAQZXR9UukYybQ2NC+k4+itI5anPKy3pjIhYNXnihTL8qDyZ1qiZ5T1Md3kFvybB1JweTHGJiFjC1KQtrJHc45HacG44KoHwuwTZ++OdPjc//fRr+MaI/j/9razVf/mPslZdPJO19vVv9Qs3ek9/O9Bf87zVjLq3O5VuJOxI9kbw80RrNGmK1vzmN6ZQHPzGFIqD35hCcfAbUyj/A7umo3hsd/e8AAAAAElFTkSuQmCC" y="-1304.866579"/>
</g>
<g id="matplotlib.axis_77">
<g id="xtick_115"/>
<g id="xtick_116"/>
<g id="xtick_117"/>
</g>
<g id="matplotlib.axis_78">
<g id="ytick_191"/>
<g id="ytick_192"/>
<g id="ytick_193"/>
<g id="ytick_194"/>
<g id="ytick_195"/>
</g>
</g>
<g id="axes_40">
<g id="patch_41">
<path d="M 434.924375 1429.768342
L 557.214375 1429.768342
L 557.214375 1302.474815
L 434.924375 1302.474815
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_79">
<g id="xtick_118"/>
<g id="xtick_119"/>
<g id="xtick_120"/>
</g>
<g id="matplotlib.axis_80">
<g id="ytick_196"/>
<g id="ytick_197"/>
<g id="ytick_198"/>
<g id="ytick_199"/>
<g id="ytick_200"/>
</g>
</g>
<g id="axes_41">
<g id="patch_42">
<path d="M 29.174375 1571.186002
L 151.464375 1571.186002
L 151.464375 1448.896002
L 29.174375 1448.896002
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pb6f98eafa5)">
<image height="122.4" id="image958e4906d6" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHTFJREFUeJztnVlvZNd1hXfVvVUsks0mqR5ktdSSHQ+ZPAUBggQIkpcAeQ6Ql/yY/KTAvyBApocYfkicOA4ES2irJbV6IptDVbGmW5UHG37g+g6w2dWxYZ31PR7cW3fcvMDi2nv1/v79v9vENa5CluIiVrL2bDOTtc+WZ7L2ajmWtYiIq24ha6t1J2u96MnaoN/IWtPr67493bft6b6jZqC/F/p7y42eX0TEZKX3YrzUNbo+Yg3PoFuvdbsNrem+BN2viIimn7uPxCZ57Bae37BpZW0Hngs9vxLLtb63824pazNYW3a6L93bnVbP8WhnX9Yeju7K2ncGuvbdbkfWIiLeW+q7sxf6/IkreJf56RtjvvS4+I2pFBe/MZXi4jemUtqDjdb/oAdiE4lkAaJNT0WbkrCUZQPi168DEt1WBcGvA+HtN3XeRD8p2EWwqJV9grgvHJuEwexav6+/R6JwRMQGhEV6rnTedGzajt7vPpxPB+LcNPR9mvT5vbkiIRb0viXc78vGgp8x5pe4+I2pFBe/MZXi4jemUto7oF+NQVBZgdhAgl9LLruCGEOiSBYSbVoQOujYWfGLBLuSe47Oh45N7jkUyeAwGxTO6PrwFHXfkiAJy13SuUewB01XSTTNinNN4ZmSGDfsqyi9aUDwg2Mvkw7NBTgLz5YTWfusP5S1I3AMRkTswfphp9c3h3sxhs+8v/zGVIqL35hKcfEbUykufmMqpX1npcLEaaNC3hyEk0FSYPtNgm2+cI4oDCZbiSMidjYqxvRb3Z8EI2rLRfFrDaIiCV0kFt7AbfjGnYnwcyQCUssytUAPwG1aEnGzzzrbskyQE3AB7cCXvStZewbv526PBb+d5ras3cf2Zj2fK7g8f/mNqRQXvzGV4uI3plJc/MZUSnt/oCLEYrkna5sW5tmRAwpaXkm8imD31q+DrOtrF9xXNNcvImLZ6nXPNzoXbtrNdW2lazRTLgsJUCSmlYS97AzALOg4hEOQGNrrcoLdsHAt2FoL7yMJi3jPqM0Xro+OQTMBp3199s9Xl/qDEbEL7fLT/kjWRvCOUgX6y29Mpbj4jakUF78xleLiN6ZS2kWnDqFXra696KkgcrbR0I3ZWtcoOCEiL6hk9+1goFm2pfcWCCf3Gw1eOADRpXScK5jPdrJWgfVlo6EmlyvdjoRBCqAgd9ka5jJm7/VNtiWnHM/1yx2DriUr2P3iODnBj8TG7PtJ14xzBpMuwtKcyJfdVNZmG70/I5qjiQ5WY0yVuPiNqRQXvzGV4uI3plJc/MZUSvuTvlp5H7Wqcj4JjZs+BfVx3Ol2Jasq/Rcgm/hCkIpLcc6UKnTc7Mra7/T03ryz5n5++h/ACUzhfAQDPLsmF7NMtmSKuu719L8C6xXYUjs+7k3+C5DZ9033yq+6nDIfwe9ONp0nPdcguVnWVl4abDsDu/jVSv+7RrZ5ThUyxlSJi9+YSnHxG1MpLn5jKqX9j4EKBqdg233WadrIy6X2HY9XKviRBTWi3Od/HUqlaSBymESNUQMpJ60KeQ9B+PzuQn/v/bVeX0REB+f44WBH1r6A8yYBMjtLgPYlyCb7+hMDyqDVNTnoldKM6JmSoFUSKd/0bAICk52SKiDdh9K+s07r8grs9JQWRPjLb0yluPiNqRQXvzGV4uI3plLaj7sLWbxaqxT0aqWCH/Wcz1e6b0nYy7rBWETSv1s7fRX3jlrtyX/YHMjat1e677cH57L21n29DxERl690HsDnUxXtBjAIdQguROrJph7xUu93hlK6Eglv26TckOBHzsRho9dM29F7UxKVqU8fh3DSzltohThEFeqAxLmSs5C2JYdfabbBdfzlN6ZSXPzGVIqL35hKcfEbUyntC3DpLWAo4ASGR2aHK5Yg91ZWbCKoPfJ+e0vWvhnavvv1pQonh3dV0BzssZgymOj6waXei4ONClj7IO7RMNIlCUbwrEgEoudSEuy2cd9ln+kOOC9vtSqa7jXqkpyDIH260CGoEREB94JEQPwKJtuBeVcYHAptxzSUtdTCTvVG4l7WXegvvzGV4uI3plJc/MZUiovfmEppz1c6hy/rRFonxb0BuLQiWBwioSQ7X43WhqHHHlA8NPwdnE1VlCqxmIM7Dc7n9kaPswcOvyu4Nx340K6gzZNmI94kHSkr7pEjLyvkkfPyLiQk3YEkpRNoqyYRL6I82+91t2tefxwh1tVmDW7DwnOh/bPnTfjLb0yluPiNqRQXvzGV4uI3plJaEowwKIEijEGAyLZvRhTms2XFPdiORJ8JBB180aggdmuoQtXm/FDWji70fkVETDcqfr1sSMjLtZOSm4/mtVEr6zYiUETexUbP76BV9+SD4ZGsfdDclrWvhbr57nT6Pj1utFX6fMizFckNuIEAk6yLlN5Fut/ossM239Rhf7l7buOsQO4vvzGV4uI3plJc/MZUiovfmEppScjDGWc0bw9EkpsIfpxGquLJClxQdBwSNSYgkj3pqThE4btXOyoC3uk4JGMJl/K80fN52VOx8RJEqTEEp0w7bf8kkTMbalFMoYXlbEvwrUYdeSTufWet231joffmEO7X/lqFwU8GeoyIiFetzlykd34ROVdkVtzLiq4YaLJFqnFEPl3YX35jKsXFb0yluPiNqRQXvzGV0pJo14IzjSDBjsQKcoJFFFxV0I6aDpGAtRk4/C42KpzByDz80ziG9tuICGooPe/p6gXM3BvDOV52KkrOwM2XbasmSk4+yAZBwZCeP6UL3w8VTt9b6nl/pdVr3h3pNc/H+mAeDFUEjIh4BALkRQ/a2EGgy7pa0ZWadqq+ecEv61b0l9+YSnHxG1MpLn5jKsXFb0yltLcGKojgbL2siECOpeS+JchBRWITHZsEmllSVBzAvL1lsMOPmEKC7pRCNkDwm1H7LjgBbxKScp1SOAQmIMNsvn2YzXfcaEvvMdzHA7gPw4GuDQZ6D/fA9Xe00eNGROyDAIlzIsml94bFPQK32yIduAQmXb/5wxhjfhtw8RtTKS5+YyrFxW9MpbR3h9oKSWJatk30JlAIBYssyTZK2I4CLGbkOATdjM7vAkJAIlg8I3GIxL2LTtOAKRUZE1m3SI0tCbGjVsW9g6EKavfg3XnQ1+3uQ7/z7b7eh9FIn1W/oVZiWYodcMpFROz29FoozXlbUfp12fa4WTcgvZ/+8htTKS5+YyrFxW9Mpbj4jakUF78xldJ+bXAsi6Qgz6FjfQ72VYwhLvgVZ2DxXPRhDePB9dikhk9CVXNS8Wehdlq2ROYtsQT992EMvftTUPsXne6L1tJs4g5YmiN44OoupOQcQnz2W5Bc9NZKn8vBvl7fENT+rtNzXKzJdl2IGyerch/+AwBx4/Q+0b+FuuRw2/8P6FnTe0s17S+/MZXi4jemUlz8xlSKi9+YSml/P/ZlcQkx0pcwjPISBLs5CCIUNx0RcQGpNDOwfV71dLsVCH4kDC5huxnEkuMMg22HkQJ03hSzzWITHDdp2932r3w6thvWBiDGkSt1udC9J2MdzPmyp+LjJU5g5cGc9AzJ8kvi8xrSo3A+wBbW9+wsgIjthEV/+Y2pFBe/MZXi4jemUlz8xlRK+y3VviJARDiDAY4n4Io6B8Fv0i+IV6DRjMF9NQDHGYl25C7sutePSibXXskVVxIC5XzoHGGNzyeZpAS97dlo6dK2KFSSQxN+cwHv0/lEhbzJ+JasPYd37OlQf2/aU9G0BD2r9LOG12nbuRbX2dYdWBrMKtttdRRjzG8tLn5jKsXFb0yluPiNqZT2wVpbK3cbSJVZqvDyYqVOqxetilJPGxYgpuAaxOGhIKjgAE8QqrKJNh1oNn1wja0hfSYioruBOHgdaqElthEV56u8i5D2J/fkgtqq4ffGjZ73OHTQ55NWnz059+jZl0Sy3Z6+tzsw1JNE5TcNtoiTQ3PLiO7sAF5/+Y2pFBe/MZXi4jemUlz8xlRKe7ijTrnDI02QWYNr7PBcZ7gdzlXI6YcKLBEsDhLkLiOxCucHbpFoQ0Jjr+CK64NGQwJdCy492o7WsqIUiXPEZsXXwi3BuraC+00i7vNGz/sK2safQTs3ybUHG/29UmLPHgh+FNt9SXP9qM0X4sE3/dw7RsIuPdObCH70ftN7S/XiL78xleLiN6ZSXPzGVIqL35hKaUcjFVl2j1UEBO0DQxZ6z1VsOJ8f4MH3Wpib94bDDtjZlDsGCnYF0W0ELc87sLYLYhOFSIxIgAKxkO7XZJ2bUTgotAjTPRvACzCHuPHH3UTWZn1oWYbjTkHYHcFUwB0QxEoSJ4lfdN30XKbw/LJiKpF9n7YV/LLBOf7yG1MpLn5jKsXFb0yluPiNqZR2tdL633QgOAxBtGlyzqZVQcAg9xaGZ4CohS40DE94fQGRWnJJ2PvFugpGlGx7q1FX5G1Iu70FbaeH1IoK9+schDgSuU57Y1mLYFGL7u18rcd5sjrX8+lrCvEOOO/o2e/DNS8pKbfgvJzQnEFYI5GNHH60RqLbMulApeTlbedE4na5JWNMDbj4jakUF78xleLiN6ZS2o8nt2Vx8YmKQwcHOutvMYe5fjNt6X0JIQsRERNwdBHY8gqiCM7XS/55y7qvyOkWwY68vb4GU5C4dxfW7kMS7d01uN3Wem9fUCtqA2ITCF8REeNQgY7aqmeQLkxr0z7MiQRH3QjWFhD4opJiWfCjlGaeRwiJvNTSnWz9zraXdzCjsCnMiczWQVogx6MYY770uPiNqRQXvzGV4uI3plLaf1OtKT5Yqwj4lVMQJuAHT6BN9ym0dEZETEPFGGo9pDln2I4KS30I8iBIOCE3F7n2IiL2ybkHa3dA3Hs3VBh8b6UX8/aKngHcr4FeyzNsEWbxkiDH2hKEM2oHJrEwC7UNk5hWOgZtmxXo6DfJkYfJy/DekeCH7bs3+STD650NAvGX35hKcfEbUykufmMqxcVvTKW0/7V+JYuf99Wld3+kotQxhCcECD5jcDFFRHQggDTgRKKgC3TawWEaSIglyD1Fs/X2Gr0PERFHjd6zY3D4vQ3OPRL3vrFUoeu4Uafcag0JuJ2eyx4EZ5AwFMFCF4l75JQjMa10nAzkTEMhrjBbD0Mt4B3NzsKj+0CBGNmwGLo32RmTESyQr+HQG7gWf/mNqRQXvzGV4uI3plJc/MZUiovfmEppP1+o2v+qP5W1k3ZP1u73de0IBi6Weq1J09wm1noDNmBSnwlSXalHn/rxI7gn/y4o+2+v9b8UHyxVQf7asXat7x+p2n95qsd9fKlqPyncpGZHsJUXe+DB6krqM/aXw/3ORpVnh2OWwAGX8DL2YPhr9n1aQlR51t5bSuyh887+J4X+A+AvvzGV4uI3plJc/MZUiovfmEppz5cq7s36ai2ldJZuAPbHRkXAYeFvzIxspNh/nYscJkgQwcGMoPiQvfcO2HgjuCefBm6+u9Rjf3X/UtbufVeHaDa3VUBc/xgGq0IQzwUMqJxClHdE3sKKfeywhuJsUjhLp88UkplofxoeSvMYWtj3oruSNaqh6UqfC84/IIt7IZmHBsqW0n2uQ/fbX35jKsXFb0yluPiNqRQXvzGV0qJLC8SBrMBGgt2Qhm1GxAIEv/Faha5Jp+JJ1tFFgkr2WsjhdwdcexER73R6jV+BgZsPIQ3n7kNV6Np3D/UgfYggX+u+Z41ud7bWeziF+xrBKTd4H5OiHUHiFcWXU/Q59t5j4HvEPsxUeK/VAbVfDRVyKYz9UavP72f9U1l73lOH5uVSxUIa9FmM6IZ1GmRbcghex19+YyrFxW9Mpbj4jakUF78xldKS+EUtk9mWUBKLMF2n8JvkJKR2UnQsJVtC6Zox5YSGiRaGK+6C3nQAYs7+LrvqrtN9oa6/bqL39vTFkaxd9PX6ZiDsllJuskIetuXC/dltVbQ7HKgT9M7gQNaOQLBr4Js1KLjiHvR0/z+e6/v4hzsq0K1hOOqPOoi0B6fruFNhkFx/K0itIhEwohCzDSIwtcA7otsY8ytc/MZUiovfmEpx8RtTKS1GCVPM8loFgw6it0kswnSdYJEtO5+NUk1I3KOY7ezcsytoeX22YVfcvVaPcwAtvXtX6mJbfgytmo/0Pl4t9RifgDPtdEfv4RxaeuleR+Tdk3Qf6VnfBnHv3gBi4Jt9WSNH5a2NPucDWIuI+ED1YxT33v3OhW4IYtr8R/qsPoJn8KiQ7HQdqj8SwiO4LjGxh2LbQQT0l9+YSnHxG1MpLn5jKsXFb0yltDSbjQSDbGzwEtoO+wUxpk8iBLrGXv9vVDYIgtxuU2iDfbTUkJOIiK7Ve3Y+BBfbhhxrKgKSkLOAbuJzaGX9dA1z5lYwq7Fjt2G2zZtaTIeNCn63Wr2+2+DcOwgQTSEGfgfexa7wej6H9uZHV+okHP1Mr/ngLsxR7Ol9oPOhd5baotFNWxBcSRwckOjeQP3CffCX35hKcfEbUykufmMqxcVvTKW06Vl4IKhgaAM5BqHFNCIflEHHyc7hy+5LbcMkxlwVRDKah/cFJBvvQooxpq9Ssi1c8goEv5PVRNZOlzrrb7xUQSsiYtWx8+86QxDoCBILV/BcVnCBE0i7PafnV3iPqeX1+UjP++Tyrqy9/0qf9Ut4P096aiMstUtnKCcBQws9XDa1WlO7u7/8xlSKi9+YSnHxG1MpLn5jKqUlcSHb8prdjoS9CG63JcGPxC8SVFCABJGEtiPBj9ZK89VoPtvZUoU3Evfo/tB2Awi6oOdH4uPFXB1+8xX0uwYLdCQi0X2cd/qbFyt1HNJzplTcCYiKHZzfAmbhlbgE0XU+UMfhy0a3OwNR8ikEzdAsyt8k5Br0l9+YSnHxG1MpLn5jKsXFb0yltNSWiY4zarVNilIjEE4iIg4anX12ALPPqD2ShLwZCHSzjQovpXTa61C7M7W7lsgGgWT3pWRbgs4x26YbwQ5IOm8SG+k4kx61xkLLKxz3AFp/iZJPlb5uaxDtWnACzkCQPoP36WWnYuoCZibi+aEbj98RFIaphR72R2E/c4LGmC8fLn5jKsXFb0yluPiNqZQ2O+MuKwzugLi33+gMt4iIey2FNKjAM0TBD5xtfRXoLiB44yUIJ9SqS4JYqQU664rDVl3YbkPCYK77eqsW6IhCousNhKnrkHBKoiu9T10Dc+tg9iPtG8FicdvT37wCx+gERLtTmo9Igh8lS9/gGRDZ94nAZOqtzsYY81uLi9+YSnHxG1MpLn5jKsXFb0yl5CYwRr7nnHr074CqHxHxfl/XH64p6jqXNjKGxc+TUcnjRi2olz1Vdkuk7ZNJhZx3zdmFKVWGrMFZq3EE/7eHfrOkul+H/gNAPfD0ezQQtg22PtN/JOi/IZPQY0/gP0VnMBx13EE/P8w1wDju4rBOJf3fJ1yy2m+M+SUufmMqxcVvTKW4+I2plBZFBFYMBIxo7qlgd7+vyTUREX+0VCvw93qXuv87utaO9ISmZ5ph/eHzt2Stv6sRzRet2k3HbU7IieCBouTG7YEYNwBRi8Q0ElNpOxKB6FmR6BZREC+T8xwoGSYLWWKzAmLpM5a1v44hjv2yU8F3vNJ3AtOeaKYCbEfPoDRngSDb7gqGmbqf3xjzK1z8xlSKi9+YSnHxG1MpHNENesMGhKrhJpe48yDYZff9/oWsffNvVKxo/uzPZa13/z1ZO3z+may99YN/kbXxvz6QtSdDFQFPWhUaJyD4RNxsQOZ1yGlHQt6oUUFznwaegkhGAyUnkDIUwU67beYVYJISrK07PQYddwlzG0gMjeCBsgSJcSTuZkU7eh9IBKQknRsJfuvXnxHgL78xleLiN6ZSXPzGVIqL35hKaUuR00Lyz8QIBL/jDe/81h0dfNh//wNZ633je7LWfvX7srY+eyprw59/Imt3/1mPS0NCafhjqQ2WW0dzYgy570g4vdXqINR7rQqVdyAJ6QoEvxeNtqdGRFzAQEoacEpCV1bco33JhbZE158KcaU0I4xEp4GpyXZZOu9lco1q7SbiHrHN/v7yG1MpLn5jKsXFb0yluPiNqRR0+GWTWHCGH6WpFESy6Vgda6ufPpa1wc4/6naffyxrm6uxrC1/rL/3uH1X1l5tzmSNXHHbpq7QPdsF5x6Je8cwC/Fb7aGs/W6nv3cBc+8+GrDz8jGIjSehbsdxqNtx2eVaVEncQzcfOQHBbVqahUdCYDbCmsS9rOCHrbpbvjtvGn/5jakUF78xleLiN6ZSXPzGVArO8OPZc7kZbuSAm4FAExHx6aW609b/pKLd7R9/KGujo/+RtW6ux370kc7w+3BHxZiz5Gy2Enh/yLkHEeYHA3XkHbY69/BBc0vW/nShv/cnBy9l7XKsAuIPe/p7ERHrRp8XiZ8zaP3NRpCj6AbnQmIxtekOGm7pzbYYbyPubdOWe5OZhyQY2uFnjLkxLn5jKsXFb0yluPiNqZSWRIRseislf65AtjnpcTjEh0MVqz6dH8taq5260XwBLZggIj0d6naPA1pWIZGVXF+le4PhErDpCAS/vb467e40Kvj9XujaX7ytN+fu3+qMwvWpzksc/oO6GiMinm9uy9oTCGPJkk147lGSLDxTEk1prQS1J2dbkbNuRSIr7pUctnScNdRbWmxMbWWM+dLh4jemUlz8xlSKi9+YSkmrONkZZ1MQzk42uhYRsQEn2RpGsc0gAbdDsVHXaN9Xnbr5KGWXRCly7UVENOvX/ztKDrjbPW3L/YO5Xt+dv1KXZP8v/1rXLk9k7eEnP8Dzuf/vR7h+HUynTTrgsiJZ1lnaQit5CU4XzjkTs0El5FbEYyTF9V/sj6tw7JwI6C+/MZXi4jemUlz8xlSKi9+YSmnTbj6arwapo5erK1l72udwiDNwjc0oTRZERBLoyHGYZQm/d5MWyux8NjoOXcsI/i4fb7SFNloQuhaQJLyE5F1IxY2IWMIrsYTACQrUoLXsvD6C7iul9LZwDyNYCKS1vVZdllnXHyXyZt2B2QCRiJJISseB3yT3JB7FGPOlx8VvTKW4+I2pFBe/MZXSlhxrGcjNdbHUdtmSGEZiI7vGcoIKiSfDvoqKJPigkAPHpbluEXnHWlboGoALjVxjq09OZa33nz/U477Q7Z7+t4aAREQ8A0HtaqWi6zbptFnoudwECkTZB3Fv1Fen5ADeE5plSCL35VLX5p2KrnRv1gUNniqVxD2CnYnGmCpx8RtTKS5+YyrFxW9Mpbj4jamUtpR0koGU6/FSraXT1Rz3z9o+ybZLPdT0n4sVDHak2GaMhy4o+0Q21pyg/3rQry3gb/XVp/Tfg49kZfpz3eonk3fwfD4f6jOkAaf0XxxUr7dQ7EnNXoQq7jhANTjq/N5AB5S+3eh/PvZC35Np6DvxpK/x5fRu038u8L9EW6TwRHAd0HPxl9+YSnHxG1MpLn5jKsXFb0yltJQgg0IciDu0HdlfS/bObA88gSkwG7DEwjluM8CRxMKIiBbEIRJ48NgYIw1iKgg558803nt+qTbSz54eytr/7rBI+WytFu05xHFnrcr5RJvXt6qWnstRq0Lew0atvO+HCoM78FxeQfrUotG180bv4bRT4Rvr5QZlkZ0HYHuvMeZXuPiNqRQXvzGV4uI3plLQ4ZeNISaxYgUOqG2EvRL0m3Q+WbGJXFEkhu60HAVNcwOyvegkxizh+l41eo7PzqEn/1yXfjpQQetjiCqPiDhZ6cBV7EVPXl9aGIS1Fp7LAMS92wONL4+IeG+gQufXQ0XSB6uc2Ng0euwzSFcawRyBkgvxTUNiOKX9+MtvTKW4+I2pFBe/MZXi4jemUloaUrjuZdsRc0M0S6lAtG2WbGT4upDkkvm9dXL4Z0TE7ZYFp+uQU44cfjMQTl9ApPnuWodRTkDd+Wmrx/10pa2oEREXKxUCZ8nhk9sk8WTTo8jNdzTgYaQP+/pcHkIk0XGn1zKH93MO9/YA3pNRT4VhEvxQnCvcB4ql3wZ/+Y2pFBe/MZXi4jemUlz8xlTK/wH2pHGJZWZ+GgAAAABJRU5ErkJggg==" y="-1448.786002"/>
</g>
<g id="matplotlib.axis_81">
<g id="xtick_121"/>
<g id="xtick_122"/>
<g id="xtick_123"/>
</g>
<g id="matplotlib.axis_82">
<g id="ytick_201"/>
<g id="ytick_202"/>
<g id="ytick_203"/>
<g id="ytick_204"/>
<g id="ytick_205"/>
<g id="text_11">
<!-- 45 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 1550.407877)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-52"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-49"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_42">
<g id="patch_43">
<path d="M 164.424375 1573.687766
L 286.714375 1573.687766
L 286.714375 1446.394239
L 164.424375 1446.394239
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_83">
<g id="xtick_124"/>
<g id="xtick_125"/>
<g id="xtick_126"/>
</g>
<g id="matplotlib.axis_84">
<g id="ytick_206"/>
<g id="ytick_207"/>
<g id="ytick_208"/>
<g id="ytick_209"/>
<g id="ytick_210"/>
</g>
</g>
<g id="axes_43">
<g id="patch_44">
<path d="M 299.674375 1573.687766
L 421.964375 1573.687766
L 421.964375 1446.394239
L 299.674375 1446.394239
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_85">
<g id="xtick_127"/>
<g id="xtick_128"/>
<g id="xtick_129"/>
</g>
<g id="matplotlib.axis_86">
<g id="ytick_211"/>
<g id="ytick_212"/>
<g id="ytick_213"/>
<g id="ytick_214"/>
<g id="ytick_215"/>
</g>
</g>
<g id="axes_44">
<g id="patch_45">
<path d="M 434.924375 1573.687766
L 557.214375 1573.687766
L 557.214375 1446.394239
L 434.924375 1446.394239
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_87">
<g id="xtick_130"/>
<g id="xtick_131"/>
<g id="xtick_132"/>
</g>
<g id="matplotlib.axis_88">
<g id="ytick_216"/>
<g id="ytick_217"/>
<g id="ytick_218"/>
<g id="ytick_219"/>
<g id="ytick_220"/>
</g>
</g>
<g id="axes_45">
<g id="patch_46">
<path d="M 29.174375 1715.105426
L 151.464375 1715.105426
L 151.464375 1592.815426
L 29.174375 1592.815426
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pfe61a8de44)">
<image height="122.4" id="image07f87a618f" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHtVJREFUeJztnVmPJOlVhk9ERi6VtXZXd0/PwthjjzeEQPIFMgIJ8Qv4P/wSrv0LkBA3ICFZXIAN2MaLxp7xjHubXqq61qzcMyK4sJmLep9AX01hEPO9z+WpyIwvvohTIb35nnOK6Xf/qo1rFA9/73ooire/IbHe/Xcl1pw+l9jm774rsYiIp3/9TGL/ND3U46pGYifFRmIvm4XEziBWwlr2yqHERkUlsSZkuyIiYtHWEps2K4nN27XEVo1eywa+r251H1atfpa+r2l13f2yJ7GIiEGp111EIbFlo9eyrDVG6y4K/b5eoXemKnSNJXyW1td1LH4nfH4O92+2WUqMrm/Y60ts3NNn7H5/T2LvVLsSi4i4X+jn91rdswFcSwmPLeWBMSYDnPzGZIqT35hMcfIbkylVTK80OofYciqhdqOCSDufaOz4FE9+erklsZOBKhMk7l2S0AUiWSoq2URsQMipOwQ/OnfbceznpUtsTIHWQiJgd/x/9lr+L6G96Lqv10GhEt6hJEDSeUlUvAJROCJiFCDQgijdb0H8hJDf/MZkipPfmExx8huTKU5+YzKlaudzja5VhCjAfUW0k9cSW/1SYxERj4t3JHZUqnBG4t4MYsmiTaIYQ9/XJSrWIBmSiEjiEDnb6PtKEnIAEuxaiNE5IthdSHtG5yFBrMt9lwILlXpc2XmKtHXTedZNmsuSaMiNCc7Lq1AH6jE4ECMiikqvZQX3cJD4Tveb35hMcfIbkylOfmMyxclvTKZU7YU68orFTGLtWoXB5vRTPe7n/y6xZz/kEsUPBxo7blVsnIDjaQ2iFMVIyCFZkNx8JF51uexI1BqAcNOCuEdCXtGkWbLWdZqrEdfdIV6tIUyiZKqDkcpliVRRktaCFrau8ySKe1hW3YAQC88JiqkUgmum7+uKr8uRxKgUvUdlvngWY8wXHie/MZni5DcmU5z8xmRKtfi+inajqYp75dmZxJoVlCP+7YcS+8FaewJGRPy60vOcQM896lNH7jsS/LB3HQhxVQHHSSRi2OG+IufegMQ9EF7WoARNCxU5px2lntchJ9maYh0Ovx6KpL/7kl4WJdPcil2vMRIHb+M47BLjUqDrKyC2gD6IERGTgLwE1x/tBT23fvMbkylOfmMyxclvTKY4+Y3JlOoffqxi3Jd+pMLC4f7HEluvVUT4xextif1spGJTRMRxree5anQoAgl5VFpJrqrU8t1RQC80+N+4De6piIhdiO+3uj874Oaj/8BTmLLwGnoZPilUlqS9QcGvQ1hqQfykGDvt0iDxCx1+cC103j7cv4iIYan7Q5+nGIl7K7gHtEYSdm9b7kzC9wx6AKYOJfGb35hMcfIbkylOfmMyxclvTKY4+Y3JlOp7A1UL3wydpHM4Gyd94cuhKp9HrSr4EREzsKuSeklKder0mlRll1RXUvbfCGhCEBEPa1VY39zoGu/BWOvtUq+vX+o+nm10RPP3RwcSq/swGaaGfe1oRkqqO47P7hjxLeuhvgEd04JSzkvjrw8H3DPiTk+fW1K+F6CkT+GXp2kN9vPEkej068FtfjGJ4DHpV3B9NTxPfvMbkylOfmMyxclvTKY4+Y3JlOqoVQFjDVbOix7bJ69zDiLeBES8iIgFiBUkYJCgQvQTBSiqvaemh3fBOvvlDZ/j/bWu+81tHXW+s6ci0nAHBL9dFWjehW3Y/uk9ib0aqfh10tcR6zdhq6dC5wD2jCzWs1qvmWrWG/hsv9RzPBjsS+yr/TsSi2DbdQ1i3FXANJ1Sr/kcngkSBqn5Z2oj066pQGTvTc2XZanH+c1vTKY4+Y3JFCe/MZni5DcmUypqCklut0WkTYaZklOqo/EkNuYEseM2zSPJQTWCGu89EHLuNSruvbXmfXgw0ilHB/e0X8HoUK+5tw215DsqNrULPffOSMXUcatOwD2Y7NIfsHhJDU63YH/6sLfklDuH7+sVKjTTvd+r1KH3rf6hxN4LveaICDC2xRIE7SmscQI9ArYqjU0bPXdXc1RZC+zXJfS5iIhYbGByFUwawnHz2HPAGJMlTn5jMsXJb0ymOPmNyZRqDg6hBgSRBY2bhi8kwWfe4fDrcjJdhwRILI+E/2XUzJBGZ2+FxoY3aK64qfXcTZ02TaWAqSvtSoWc5SvdryfzHYmdjvSekvC5V6gIGMH7M4IYNTgdwj4WPb2+ITjv6D6/V6mb7082uu47NT9L01K/c1LqumcQ26Y9AxFw0VPBj0rON+AsfA3l7uR87aKBHEotd/eb35hMcfIbkylOfmMyxclvTKZUJC5sChURlom9xqgvHDn5IrhXHI9A/vz/o0hUpHJLKum8AFfbRY/XsrtWR97wjAW16/QvYCLRSs/z8lMtW/3ZUAW285YdYtfpdQiaFKdyVDpuDEJeBc/ObqH7dQD7TeLen989ktgG9isi4sU5lDc3ep4ZCIP0zC/gNHMQQ2mE/ByE9A3EjjvGwJNzL3XyEX3Wb35jMsXJb0ymOPmNyRQnvzGZUmFZLZQjblpwsJHYkChA3BY6D13LulYxjVxRRB/EvV6fRbxNoS6vi5kKS6OpClAlXMsS/i8/7asQ9KRU9+QKyjwJEqUiIlY0Ep3EJnICgsOP3JOH0B/vK7Xu13e2TiX2xl/qoJJ2oiXVERHb/3wisd3neg8mINhegpvvtNJrWcMrlM2d5HRMGypzE9Dh55JeY8x/4eQ3JlOc/MZkipPfmEypqMH/AAYlFOC84yEEGqMS4QgWJoqWvjNNMKR+ZuTwo2um40gWXPdYLLzoq+C3W0FvPhC/0A0GscvQ8s8zKJemCbEskLIwiFcIt2BFAzHApUfOvf1W9+HtjZ758H0dNlJ+69sSKw60r19ExMH+v0is+t5LiT35SN2Tn8JE5meVbsR5ofu4TnxmF3AP6P7dFso1v/mNyRQnvzGZ4uQ3JlOc/MZkCo7epb5326UKWjS04SbupHViuW1qmfA8VPyiCbF0DuozeLrRKbtdA0QWpX7nNghiJJLSgAcSgkigo8/SGmmvu0qtSRAlwWgB19f09DjaBypaLWFr11M48lRdf/Hu1+EbI8pvfE1i/R+9kNinjQ4H+WCoC3oOouuMHJGJot0KhuHQ1N/ffGeaM5XA8vnP/W3GmP/XOPmNyRQnvzGZ4uQ3JlMqnFjb29IYCH7Ur43KN3fhuIiIMZQJL6B/4ASEqdNWBbrjUt1gx+RsI0ELBBE6blLrdNkIHjixAmcbCaIsaGpsA+JeqptvcwPBbwl9HdEBCSNwh+AOXcG6Z7DGEyiXffpUy3fH//hzPe+US3pjCULux/p8fzLQ+/I8tBciPXc0qIb2i5ycJO5NNtyDkZ7H1HJ5T+k1xnyGk9+YTHHyG5MpTn5jMqXa6WlPugMQ9w5gyAIJeXdbjb3HQ3rj3Vr/sAHh7AVMQX0EJbQfVWmTXy9qFYdIELmJWxFdg3AcTRKmc5Mjj3orkuDHPRhBVAQBqSue6i4bw3lIEJsUGjuCnomfNCrODf5VRcC3jh8lrS8i4tOT+xK7GIHLEvYxVZxFByq4SEncm23SHX5Uao9DO+zwM8b8F05+YzLFyW9Mpjj5jckUJ78xmVJtgb13G2ypqcr+2xtVH7/SsF3x3XfOJVZCPfj9V9sS21vsSKw/VGW4qnQ9L2FaDCnSRFc9P8GNMNMaheIvDXDqGkaLk7K/geamdFxE+lhzWjiNfJ+WGjuHnhHUH6IPv+CUa733k4/0nnbxtKfHUl+E1FaytF+0D9RbYlmnWal/F/jNb0ymOPmNyRQnvzGZ4uQ3JlMqspv2QOoYQe39DkzXuVOrWHFnm2vgxw9U7ChHJLNonX79Qo/brFQIagZqXx6Uei3noWtJbaIZwbbPVHEQG6HCfVlDs0ey8rYNNfBMnwyTOmZ9A+shUasP4h5Rw2SnNdjK5wMVpF81aveO4A6159Ap9BKm7qyaVHuviq7UEyG1MWqXrTx1ahZNyOLPGmOyxMlvTKY4+Y3JFCe/MZlSkWBEjQbRhQZ6UQXCUFWxSEbiXrml/48Gu/r58bkKKvsrFVQOGxWMLnoqA81AvKJpKiRHRkSUIKjQ1BYSc0bgnhzQKG8SzuDGrGF60E0ESRIbSURqwIlGQtfFRvsnkEg2LaHeHXpLnENsH5yqERED2O8VrJtGnZ83KlRfQcNNqtPvck9eB8W9joeMelPwcWlCs9/8xmSKk9+YTHHyG5MpTn5jMqUix9oMGy6q2DQBp9wlNGGczrjc8nClQlCpVblUBRvLJYl2usYlaCSpBZMkfNLUnAh2y5GYQ0LeFgh+u+BNIzfXdk+FLhIQLyA2A6EqoqMkGETE1MlH9H1Y3kplsIUedwkl2bvQ5DWC95vgUdm6P7RGuj6ccAR7QyIeicc3gYRmT+wxxnyGk9+YTHHyG5MpTn5jMqVagmgzLVTUwLJTECZ6lQpQ+0vtwRcRcfhcS3XHGz331Wstyz1ajCX2aV/FnSMYIz2BvndUvkt9/WiSTgSXQaeKe/uhe3YAgt8IztHCZ2fQo+4ClNSLVvc6ImIO1017QYLYDBxwJIiR+EWxOYzEJnfgokO8rECophhB7lcqjSVDXerodJyu0+HkS3X44XhwKE/2m9+YTHHyG5MpTn5jMsXJb0ymYEnvEsUdGKgADr8xiCmvKhZYnr/cl9juhQpGr6cq7j0CYfFpT6/lBHrzXUDsEoQlErTIZRcRMQDX2QD2YgcEv204bhd6Jt6p9dy70K+vB0LjDM573OGKe9XT+/8a9ucERGAsEYe+jiQW097i94GgRcJgBItk6LwsdX9IGBzAPrbYexAEZBhJTz38SuiNeRNof0hs9JvfmExx8huTKU5+YzLFyW9MplRUokg93IbQ947EChI/rjr+xXzSquusnGvsZKACyHNw7pG4dwZCEIl7l7X2a1uCA44En4j0AR3kBBwnintvbPSa78O17A40tq5VvHq8hvrpiFgP9BrJFUkCHTnWsJwUBL8+9OEbgThHwhlNxY2IaBMFQ6IHgnYB6yFhkK6P8oWmJ98E2u9U/OY3JlOc/MZkipPfmExx8huTKdXFWvvo1ZUKIkNwQJHUoLJQxDmIcxERV6WKIkv41kmh3zqDMtEp9GGj8lTqXZdaitr175J6IVJfuDUIon0Qzu7Wetwboeu+v69l0Xv3VLzcLKG34jMWL4etuhUbMJ3RIBCcGoxPCpRAk/sRnJMkSNN5IyIWNQmBaX0GKYYlvQCW9CbGbjI9uevY65AA6Te/MZni5DcmU5z8xmSKk9+YTKlmGxW6CCp53INpqdPU6bLB01JpWu4y0QVFQzYoRkIVDaAgJ1hXH7VZoWJcAYLmqNV9JBFwBDrO/kiFPBL3xu/qZ5ulXt/OC3bFlaEi2xoENRpgkjqsogIBqgL3XB+enTE4AZctT+ml9azheaLjqFdgAeW2qa7G25IqIqLzFtbtN78xmeLkNyZTnPzGZIqT35hMQYvXGsSvq40KS2flXL8QpvT2O/7HpA7KILq+8zok2swTp6+muqci0stbqaT3otKhJEtwu1XkvDzUPey9eaDrm+s1b2+x4FesqZdemnBK18zuskSnHJyXevDtlLqHEewGXJVp4i6RKu6RG4/cgRTrerJpmAetmp4xwm9+YzLFyW9Mpjj5jckUJ78xmeLkNyZTqlGPbZHXodrmy1rVfpyG0mHvpXHXqarrCs5D/8lo6s4cGkAuse5bIeU6IqIGWzP90kDrOaFpOHBf1uu00dJRgwo/0+ura67nJ27yy8d1UkdLbxKfB3qeyGoeEbED/QDolwscIw7fRyo+NQ+lXylS97CrqSf9ctGDraVfECgv/eY3JlOc/MZkipPfmExx8huTKdVuX6e2pNZk03HTWvsDrKEXQBdYs3wL8YRsu1S7TzXeXeLebaApQCeNCqdPempXfbrYltj2J7rf4xNtyjo9V+HryXwH1zgZgV318+t9CI7eTmz+SdbgXRD2IiK2QIgdgvhFd5rOQ5b0CYw0P+upHf6k1GarZ+sric2hUWsEC4EkpvZLveY+5KDf/MZkipPfmExx8huTKU5+YzKlGoMzCoUXUHxS65O7xDkS1EjgIacciXZEaq01QddC45j/u/h1SLQ526hA96u+Clj9kQp0R+cPJDY+1eubQTPRoyHvw+tCRclFYoNTHEMNIhm51eg4moQ0hF4Hg4732INQp+QDGFd+CBOSBrA9V9A89LSnBx6BYPu40FwjUfEkJnri6BYCU2Dh1BiTJU5+YzLFyW9Mpjj5jcmUioQqEmPIApVaqtklsKWW9JK4R7FkIS/RFUVlkBTrgq6FRK260eNebFT02UADz2eVikjDxP/pNIUnIuKK9hsmKZG4l+oOpYJZuqd0r+ge1MENPPdbPfabKz3P+4dnEts5VPdkDaPOT4/GEns035XYj0CwXfVpQhWXl6fmBrlV6Ti/+Y3JFCe/MZni5DcmU5z8xmRKRe45ch2lThbh8cAsxNGxBK2H3IE1uRDhs9S3kEaQ0zloZHRE+iSX1B6FC+j1d7TRc5wXWjqaKkp2TXZhl2XaWOtU6LMkdKWW9E47JvasCy1ZPyh1bx/8sV5f/zt/pF84VnHvzuOnErv/988ktvjVWxJ7MtB1v+xxefJVrfeanjuauIUl63gWY8wXHie/MZni5DcmU5z8xmRKNQURgQQjcgKmCoNdkJOQzjPoqRjXB6GS3HO0Ru5nRgJiuqBFZdBNkzaumvaBxFAaLT5r1YWWSpcwmHoPyTVG94BiBDkBSbDdFDBApuF9eNbTPXscKgJ+8+pUz/3l9yVWfvXbEmse/FBi449fauxDfUZu8vZN7aOJfTBpdPoNzm2M+QLh5DcmU5z8xmSKk9+YTKkmax0YQYIYlbxiOTCISF2uuF6px27D8AX6/BpEpCWIgARNeSVhiVxtdN6IjgmqcH2pkEhG5ybRLbVvYVdJduqwEnKNkbssVTgllyWtG4fFgBgaEfG80P6IPxmow/ObP9iT2Nf+9Kf6hVtaqts+/bXEFo/Vrfi60uubhgqVXSW9qcIp3b9Uh64xJgOc/MZkipPfmExx8huTKdVso4JDv1RhgVx26MYj9xwMjIhgIY8Ev20Y0rAi0Qcm4JLzbgCTW7EfXeIAkYh0UYuFl0SBDQQfEsRIdEstn+5aD11fquBHjjMShmlv+q3ee7qnXSLZBZQ8P4Zn7N9qFfwe/s0vJbb96LnEVp9cSuzjD+5J7BkMSbkAZ+JNevgRqX0P/eY3JlOc/MZkipPfmExx8huTKRWJNiTQNCA29EEEJAGK3IERLEyQuHe3UIGmLvQ8W62eZwXiEAlaG+q3R2W1EvnteUAIpDJKFF5Se+6RSJYoFt6sPFmha6FnIrXslL6vavT+tTABF8VHXHXEDJx/J42KgB9V2kvvP37xUGJvPp5K7Gyuk5I/hO97UeharmB9lJO3xSW9xpjPcPIbkylOfmMyxclvTKZUOGyCprd+/vkMnQIGlR6OwH13F4S8PpXghoqFS3LugVg4K9KueV6w+4p66ZEIWLRp7ityP9Jxo1LLU3FYSA3iXIfrjwTRBnRFEip7sLf/G3RNaKYyWBIBX8Egj58Mtdffk/WBxOYwY+Nlqft9Bg7UBblSO8RZytXUYTEe2mGM+QwnvzGZ4uQ3JlOc/MZkipPfmExReTw6FESQvts6TdldlVwDv4TabxD7Y6/V/1EPYFx1BUr6Gn5RmEJ/gROwkZLrlnoGRERcQKPIuvn8P5GQsk99CKoeW6dT6FLICbR8wy8ka2haukm0q5INnPbhJjZnepYXUC9/3Khx+wO4/1t9sCDDea/gl55zqN1f1Porw23vC+33utb1+M1vTKY4+Y3JFCe/MZni5DcmU1DwI7CeGzQWshF2NSScgQAyDRAmQP94CALG/aGKNgXYTS+XQ4k9aTTW9tU6e17qcRERx9CH4KrVunGyNFNsAN+33dNzD+G4JTSoHIIN+CZNPckmS9OCKLYu0hqKpop7OB2poydC6qjzlxttwnlR6v1D2zWIjWuw2F5BH4GrWmNdAimO3ib7OgjNdJzf/MZkipPfmExx8huTKU5+YzKlIhGBSB3bTHQ53Wa1Cn5nIIqclWOJFSBg3Ht4JbGtN0GAPNb/ecNH+xKbb3Yk9gJEwIiOSUU0KhnEIRLj9nraAPJOqfXlIxCgFiDOjQtedyrYzBSE3CmIuHSfSRhMHcddU++FjseYnKlzcNVdrtWhyf0K0mJcU58mkN6E9Pz1xB5jzG9x8huTKU5+YzLFyW9MplQ0dYVEKZLs6D8HiTZ0jggWO85rdek9K1Uwelap+PWlKxW1tod67tEbGjs4VaHx4FyFxnGf/1+SIy91mg66+cCltwei3RgEvxq+b93eTvAjZjDK/azRdZ+A2DTZ6H0mIa6G0lgS07r2OtWZSKI0CraJI9ZpjSTO0Tm63IrkVu01eiyVeRdgx/Wb35hMcfIbkylOfmMyxclvTKYkl/QSJGCQKNE1gWRZq0PscqNOq6elOvd+DE67ndNDif3+D88lNtxSwedyoo66OfT66+rKl/pfFB1rieIQaVo70N9wG1ZDZdFUkh3BZjm67hlE+9DDj1x2qW43KgdHd2CH0y113DwJeQ19Jfa3TIPEvQr6FlYg4v5mPbruDYiuPXgm6AH1m9+YTHHyG5MpTn5jMsXJb0ym3ErwSy3z7SrpXUG/vquNOu2OCu2vRr3U2tGuxI4XdyV2ONX1LOBansPuTMBxFsElr3gciDY0yntBzjY4xx0Qd7660uO24LzzDifZAoTOOezPGTjJllCePC209+C8B+OqQdwjwY963HU9Y+Q47XLQpXwWj0NREc4LYiiJc02HrHyTnosp+M1vTKY4+Y3JFCe/MZni5DcmUyrs7XWLUkY6rst9ReIXuf7OYyoxEj8WfRXJTnvah++w0rJTgsS91zCIIyJiBoMg2LkHLi0qO4UY/ad+CPrjt3bU1bi9q2XRyzmX+Z5fqtvxaKOxBfQt7MOk5AFNHKbhF4lCHIl7XS7S1Gc5tfyaS9YTew/WEINrIWGwCxI/u/LtOn7zG5MpTn5jMsXJb0ymOPmNyZRqVKX1diNBJNnh1yHGkFBCAsY80sQ0HMbQ115xez3t/0eTVpcg+NFU1YiIS+hJN1lrDKelgtA1hmnAa/gs3YHxju7D3teg8LRjGuz2MxUHN490jU9b6BUIJd0rELVoim2qo+620LPch9JaItllB488PbP0vHdN6b3VegC/+Y3JFCe/MZni5DcmU5z8xmRKtT/YliAJL6muISxZ7ZhESu4mOneqKJLaA+68VMcgQX3mFuBAjGBnIq0x1V026alY+LLWdf+kr8Lggxfay/APd19JbPwei1yj+3ot4+e6F1RFS67Iy1YFRJrmm9qbj4Vmfo9Rj7xxpXu21VPXJ5WNE+vEwSALEKTpuVl3CH64F4ku20EPpkjjWYwxX3ic/MZkipPfmExx8huTKdV7Ww8kSKJbqqgxgSm7s42KOxERqyJtAisJZ+QOXNVp01eXpYosdBz2iutwK3b1kLsOlWtSmS+JPpeNugs/hoEmW9DLsPzwDYl9/eo1r7Gv4tB8rbFpX+/BpIVBLOCKnNX6TNA1k4MNBa0Ohx6Je4d93Z97lZZ+H4DLcgDvS+qteNmquHe8UcH2HGK0NxHp04XJrUj74De/MZni5DcmU5z8xmSKk9+YTHHyG5Mp1Xd69yRI6uWiUFXxNSiazzYTiR2HTtyJiKgSxy8TqOxTjXhiz4DkMdkdkAKdehxZUAfQHLMH/6sX8CvMo0LV9cFIexhcvtBfACIiduA7X0Dfh6NS78EU7Ko0kYialtKvHnT/qNHnsMd9KfarscTe7O9J7Mul2tzfafQ79+BHHXpij3ra8PQxWLFfwnFntY6pj+BfAci+TmyVal/2m9+YTHHyG5MpTn5jMsXJb0ymVH+xUOFlDTXCFyBAfTzQ2KqnisgV2FIj0qefbAqYXgPC2aYhW3KaiERroTr7LmEvtZkpWS9JrNoBIWi3p4IRNR69Aovtr2B95yMWyQatrnFa6He+gjr9OYh7qb0gUptRomjaUXs/AqFrv9DYfWhG+tZG13O3pklKetxuo9/XguBHr1+q0e+KoxUfBG2y5/vNb0ymOPmNyRQnvzGZ4uQ3JlOqP/i6NnZcz1Q8OT1WB1Sz1rroX/dVROoSY0hQI/cWxeizqROAUgUorhtXISeCXXpEHz4/BiFvH6YK7RUgGAEzEPxetuoaO76BsISuTxD35jCq/DZTZegepD4jERFV4thvooRl92EUzxDcr/u1nne30mdkhM82Q/uI/S9A3KPj/OY3JlOc/MZkipPfmExx8huTKdXun+l0l+ZEm0L2P9Cy3OMPVZQaD1TU6BLYUoUJEn1SHXWpZaJECf8bu8p8aT0kAo7Azbdb6T7eKdXht1/oZ2ehe3gOIucFNFal/Y/oENkS3xM1CGJUpp08nSdRFO56HjY0yh2uewKi3WVP7992o7ES1t3AesiNt6L96rgvVL5Lbr7UEd9+8xuTKU5+YzLFyW9Mpjj5jcmU/wSNMQAqeJ3cYAAAAABJRU5ErkJggg==" y="-1592.705426"/>
</g>
<g id="matplotlib.axis_89">
<g id="xtick_133"/>
<g id="xtick_134"/>
<g id="xtick_135"/>
</g>
<g id="matplotlib.axis_90">
<g id="ytick_221"/>
<g id="ytick_222"/>
<g id="ytick_223"/>
<g id="ytick_224"/>
<g id="ytick_225"/>
<g id="text_12">
<!-- 46 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 1694.327301)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-52"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-49"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_46">
<g id="patch_47">
<path d="M 164.424375 1717.60719
L 286.714375 1717.60719
L 286.714375 1590.313663
L 164.424375 1590.313663
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_91">
<g id="xtick_136"/>
<g id="xtick_137"/>
<g id="xtick_138"/>
</g>
<g id="matplotlib.axis_92">
<g id="ytick_226"/>
<g id="ytick_227"/>
<g id="ytick_228"/>
<g id="ytick_229"/>
<g id="ytick_230"/>
</g>
</g>
<g id="axes_47">
<g id="patch_48">
<path d="M 299.674375 1717.60719
L 421.964375 1717.60719
L 421.964375 1590.313663
L 299.674375 1590.313663
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_93">
<g id="xtick_139"/>
<g id="xtick_140"/>
<g id="xtick_141"/>
</g>
<g id="matplotlib.axis_94">
<g id="ytick_231"/>
<g id="ytick_232"/>
<g id="ytick_233"/>
<g id="ytick_234"/>
<g id="ytick_235"/>
</g>
</g>
<g id="axes_48">
<g id="patch_49">
<path d="M 434.924375 1717.60719
L 557.214375 1717.60719
L 557.214375 1590.313663
L 434.924375 1590.313663
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_95">
<g id="xtick_142"/>
<g id="xtick_143"/>
<g id="xtick_144"/>
</g>
<g id="matplotlib.axis_96">
<g id="ytick_236"/>
<g id="ytick_237"/>
<g id="ytick_238"/>
<g id="ytick_239"/>
<g id="ytick_240"/>
</g>
</g>
<g id="axes_49">
<g id="patch_50">
<path d="M 29.174375 1859.02485
L 151.464375 1859.02485
L 151.464375 1736.73485
L 29.174375 1736.73485
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p617600d8f7)">
<image height="122.4" id="image397d678339" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHDxJREFUeJztnduSJOdVhXdlZh26qw9z6OkZjQ4+CGEbQ5gguDAEQdg3BG/AK/BO3HLFBfAG8Aa+ACwrZDyWFZam1a2e6unu6joXFzZczPqS2KUcS2H967vckZX5V/65KyNWrb1372j/29tI0Ov1JFb3Kok1VS2xCj4bEbHarCW23m4kttmmlsjn2+j56krXvdcMJDaC2LDq47XpXhB0L5qe3rODeiSxx82hxN7rHUjs+ys938lqJbFZy5ontcZpBxawrWe13u9fx0Ji19tl6hrEFD57vrrBY8/mE4lN5rcSW6z1/mxhRb3gZzkD5dAWnm3Kga7QdXJPrDHma4eT35hCcfIbUyhOfmMKpckeSILBtgcxEEnWLYIdCRtLEO2y6yFxj9ZDZEXF1vXg9wbhhi4DP8EbODD7XVQOi5iCyHkDsYiIawgvYa9VIouY031IxlaRE3vnW73yasvPDd1HEt4GtaYCCcMk7NL5ssLgBp6R2Zp2MGIJoiTdH8oNwm9+YwrFyW9MoTj5jSkUJ78xhZIW/AgSG8hl1waJeyjakagBQk5WtEORhAS25HERLGpm10PiUA2/y4MA9yScbw7BKzhyoqeLiIjLnu4LCX7EHYh2CxC1FiDQLQKuS4LYRgUxikWw6EriHjlT92p1eKLgB/vX5mp9FcqBZjXDY29C4yQC0rNIz63f/MYUipPfmEJx8htTKE5+YwoFBT90l4GIQELHdqsxOl/bObuIe1lnE7mqSHihGLm5IiKqpKOLhKVBpduwD6XDe1D6W8N1pyDOvQRx77JicfYSSmZX2bJq2KtbOB/FSLRbgJtvDsfdrbVsOIL3ZdxoufRxf19i+9VQzwf7vwTxMv0s1nrcqM6XjV8tpnAkiIAgpPvNb0yhOPmNKRQnvzGF4uQ3plAackCROJClTRB73ezivnsV+n49cJfNe9Rnjq+R7WdI/fpIWDqC2D44/Gg9E9iCa3Dtfb5lkexqM5cYlduS4EultTMQ7e42em0S7RabXPluW9+7/Ubv48O+9kI8bbQX4l5PhVhyHJJ4SWXHJFKTgLhfqbMwgl2fBImAG1ij3/zGFIqT35hCcfIbUyhOfmMKpcFhBeTmA2ECyxZ3aIX3ZYmDGUg426U8uQ/iHomAFBuCw6+B32W6tTc9KHkFQewSBLbLzR2cMeJ6raWj5Iok5yYJb+TIm0OfOhT3YA8quIfHA3XoRUS8OXwgsae1inv3euqq68MezEAYHoKISyLgCu5Nkxz2EhExgOusqYQa7qMdfsaY/8PJb0yhOPmNKRQnvzGF4uQ3plAaUnG7jCHeZaxxtub5y4Csl12n+GT/zbhdq52W7tkN2I37oBbPQe1/sVbL52Spo6ojIqawHlLxs+OlSbHPNm+lqTmk7J8OjiUWEfG4HkuMbNLZfgx0v8db+qcH+lpAnwXqx9BGr9JjR2AFJls53Ue/+Y0pFCe/MYXi5DemUJz8xhRKp4k9WbJ19l8lZFXOxn4TJ0FFjyXr5XWozfYGLLZdpsCQiDddaiyCrbfZHg9dmq2SQEq2aarRH0HtfQRPBrqCNU7Btkv23j5OV9LYIayHdo+ekWnLuHH6LmSdzk698pvfmEJx8htTKE5+YwrFyW9MoTTkJPsq6+yz6yG3U1sTx1dhIS9Xe0+xCHZQEdR8crmCZo/JWnlyz1GPBjqurV9BF3EvS9ZFmn0Wpy0juglqolrDpCmq0ydhcQyOwRHESJKcQj3+pKWx6sXqRo8Fl+ZspZ/Hvgh4FWPM1x4nvzGF4uQ3plCc/MYUCtqisu6r7ASSNkj0GdTQzBJcXkRWgCLRDh168F1aBb9kI8Zsc8XsGPGs4LdL+XT2PnYp/SboftO60cEIU4Yi+Lv0Qcij5pgENVbdYGNNve4CYpcg7p2tVdiLiDhfvJTY7VKdoHR/MFfxKsaYrz1OfmMKxclvTKE4+Y0plCbbc6+LCNgmhjU1CC8g+A1rmKYCU24GEBvXWv5JDi9y1O0yCpqOJXFvAW4+KqElIY+EQTquawn16xbysi697HWXcF+ptDWipTcfPI70jJJoR6PK76AcmKYmLeDZ+RymJl0uWfCbrlTUZHHPJb3GmP8HJ78xheLkN6ZQnPzGFEqDzi/QSLJiDLriWspdSaCj/mzjZiSxg1pjjxodvfy00gEPIxD8liCSUF+3Gxi9HBExAYfZZKXlliTQTbf62azgR+JeVpxt29Mvo6SbnhNcI4nKyXLntng2Ng8QbEHI24a67LD8GmIzGJ1O/RYjWOjMOjfpPvrNb0yhOPmNKRQnvzGF4uQ3plDSJb1ZEZBibSW5+30V9+4PVLR71BxK7AlMX/12qAj4dA2DF+DrkVw0h+98WbPA8qtaRZpfwr2gibx1pS4v0BrT4l6WNmFvl7LsL3xtGn4BwjCWX3d0IJJgeAuCLTo0IUbuzl2crnK+lt6KWVjItcPPGPNbnPzGFIqT35hCcfIbUyidpvRmhcE2AekAnHtv9+9L7N1aBb8/WOvSv7lQMWYELq0tCpU54exireXFERGrwUBil5UKmuRqzApBWdDNBdeg8um2z9Nek6hFZHshouAHsV0cfksqywan5N0anHZQQov9EV9z78i282Xvdxa/+Y0pFCe/MYXi5DemUJz8xhRKJ8GPILGiTaigXnqn1Z7EvrfSZX4XhhWcHKhTji49nalot95mh27wceOtfpesEy0r5GQnGJOjctjodz7oq+Da9nkcDpIcQJIu34Xvlx3kQX0QI1gIpM+T4Ddf6TnpfF2ETy615ecme+2sE9RvfmMKxclvTKE4+Y0pFCe/MYXSvO5+bShAtAgiVAq5hOLaIXz8cKACzcGRioAbKOldLFXQulmoIHYDeuhZw+XJzysVvyYrXQ8JS23utFchtxuJc3uNug2PBtrL8H5fy6cjIsbgTJxB78KXq6nE6Pt1KTvGYSogPtLwirY4CWLk3MPPJgU2YtPRoIfDdHYQ2F/Fb35jCsXJb0yhOPmNKRQnvzGF4uQ3plCaLuOYuW48fz6yh15tVS0+r1WpvpyrNXVwBbXboPY/X+j53h+qsv/LShXuTzY6hSci4tPFtcQ+W1xJ7GqRm+JDdd59UPZHoOwf9tUi/WhwJLFTmHAUEXHQ038+aKIR9Su4hClFMxifnR1/jvbcHtXz67MU0W3KEdFFXe8yXSciosJeGfQPUNZGbIwpEie/MYXi5DemUJz8xhRKQ/bQrF2RIAGibUQ3CSW3MLL4142KOXvQMPMTqNOfg9DxbKQi0M+2Ks79aj6R2Ocg7EVE3JKVdwVWXhKg4D409RevyX8Atl0S9570VBiMiDiEPgsbEJv2eyqSDiA2WWufhSlMyJmDMIgWWxD82oTrrEBHNuJs09LXPTWpTTTvQ8NVsnLTSPu9Wo/zm9+YQnHyG1MoTn5jCsXJb0yhNDS1JdsoMDuJpW1EN02vocr2S3D9/bQGN1ila7yGiT3na61DP1+pkDdZqlvtegHjtIMbSGZHLeO4ariPw1oFv8NGRbsHjY4vP+3B+PJQESgi4uEaHGKgaZ3Cvh7D83RW6XUuYA9erlU0nfZUGCQRrwK3aAQ/t9mmnq8bEr6zTs6IiPFA9/DhAMbX948ldq/Sz/rNb0yhOPmNKRQnvzGF4uQ3plDSgh850wgSNUjYa4vTr9FLaB55sVFx6CXEbkBEIifZDAQ7EvHamm12GZ9MLi8SfcildVSr4EdTj74RWn77ruqoERHxBrjvhhVM7Fnqbp33dI3PBuou/DmIlx+Rs3Cl95X2qu3+Y8NNEgGTpb9E1qVHDr0R3AcSdiMijvpain7SV8HvITwTo6CJUsaYInHyG1MoTn5jCsXJb0yhNOQwIjZg8SLhJDtGOoJHEa9BZLkCIe8ahLzsBBly3mVFzjbX3iY5dYfIjm4m198+uOdOQHR7a6nn+8ZW71dExMl9jY/vqQhYD/U7f/OlilonnzyQ2Hqoa7yinoABPQ+h/1/rvsDz1EXco72iHBr39bvQ1KRhpeJeH4TPiIgRCL4NvL9ncH/uwOnqN78xheLkN6ZQnPzGFIqT35hCachJtgTtqqZBCViAq7S54u6gX98ViHYk2txAz7zpWkWpJYxezop7dFy74PfFBSOCxFTqZ7eg4Rc01hqucbtlJ1nvSoWpuzs9dnwAImCt1yZ34MEWHHAgnNEzRsNe2valk3OPSq3BwUp99B7v3ZPYtwYnEhuD4EcDUiLye30Hjtg7cLX6zW9MoTj5jSkUJ78xheLkN6ZQGioTpJJXcsqRmEa0iTHTFQh0NKQBRA0SfWg9dD4U8ta56+5SOtrmbMyck9ZI+/ISBmJ8CiW9+43+zr9oKR3tgxDYhy08eqHrPthojAanTKDfIjnTcJBHUsSNyDsvSdyjwSlUhk7OPRL3/qKnIuCjlV73puWVfF7pdzkLzcuLrYrhMzv8jDH/i5PfmEJx8htTKE5+YwqleXNwX4I30MNtsoIBFqFiEwlxbf3/yOG3qHIiYtaRl3Xz7SLuEVlxLwutcQFC1/VK9+B5dSOxFQw5GfdY8Kup/xwIYuNGxa+DLb1P9D6iULXJlWRnh8rsQrqPIrj57sNU5O/U2lvvh3f6XZ4e617N59zz8pOZDmP5EAZ5fAhCZQ375ze/MYXi5DemUJz8xhSKk9+YQmnerlWsoF5q1D+OhJflIueoa4tXm3wPwFfJDmig2OsuyY1g11gWKmMmpySVMV8sdeLwDJxye9D/LyJiBC62AQx92OvpcUMavAHf5WKjQuX58qXEbpbqViPhc5cpu7Qv2EcRjqOBGieN5tB7K7037z49l9jRu7qnmznny9FHei/6ZyrYVwPd16pWF6Lf/MYUipPfmEJx8htTKE5+YwqleRQqDozA2UQOuLtGHUtUpjtb8ThYdOnBcdQ3LQsJea97QEPbsV2ESgLLfGFiLQ5Dgc8uanZTLrcq+O5DrznuH6fnXMCunoMoOVmoi5SeJxI+d3H4VUkdlvaUSnofVOqye2Omaxw/0b2qT9W1V91wvoxe6OcfvFAR8O2F5u9qoPvnN78xheLkN6ZQnPzGFIqT35hCcfIbUyjNIeU/CKdTGPt8VGujyKtaa7KnlSq2Edxck8g2x9zF4vkqZF+mfxka+Cckgmu/iey/D9hzgBp9Ut1/L9cToY0GLLoN1ukrZEy9hf4QL5aq7JOVF5t1tvSHILr0WaB/dmik9gByaA3X3SxgLWCH3y7y329/T/8BeALj6/sL/QfHb35jCsXJb0yhOPmNKRQnvzGF0ixJbIJx3CQCNvDbQcIXiWltoLgHwhtZWAMttnq+CsZDkzA0gtrtETRwjGCRjIQ8sqZS09PsFB86X7YZaZsYNtiohTW7h0uYukNNRsm2S3X62WarXXonRPC9GNTQryBpc34OE5IuPlIr7+lAG3hCm4SIiKj6usajExX3xsd6b0/n+nz6zW9MoTj5jSkUJ78xheLkN6ZQmrNQh9A11GR/vlFh4cVa3XwzqC9vq7XGZpjJySl9qKvOuuwIcu7t1+qK2qtZ8CNovDTeHxpBnhS/yCPZdaINiZfYwLUHAiQIfrcrGBkNPR6y4uUuZBtz0rNDtfs1vC/n8J2fw4SkX1wf6fl+occdPdL7FRHRjPXY/j2N9UAY7MFIdL/5jSkUJ78xheLkN6ZQnPzGFErz8/WVBK+hBJNcWiTk0EhlEnJaF0TCW6PC22Ffy4lRoIOpNGOIHUDJ8jGMsF61CFAkiF6CIEpi3Hb1xScNsZtP17dLGSyJXySckTBIbkV6JrJTd0icIzdemwORyrLp81mH4BqKlufUoBTKqj8Y6jO2mejEnbemWu4cEfHgoT5Pw0O9TtXAcwIPhd/8xhSKk9+YQnHyG1MoTn5jCqV5NtOxwSTa0GQYEvLQhdYyopuEFxqBPG50IspRoyOH70FPwZNKY2+Fnu+dtYpXj9a67quW6UH/2dd1/xScX5NQMYfcd+T6y5bqZnsezle6p23QHpLIRn0Z6Tq0HhJ7SbDDUlt4btqukxWg6Zkn4bsPwicx7YETcKQi4JsbdQJGRDw5O5TY8ad6zgqekzm85/3mN6ZQnPzGFIqT35hCcfIbUyjNi7n2EMu6wUiU2sVJNgCBh/rmZUsrKdaH2D7EHqz1uzzeqDPteMPizgsQoT4CJyGRLVtlF1pOGMw6BiPYcUiCHzkBSbSjvocquba4COF8VFZNTs42ZlBqPV3negqS4EdlzFeVuvHoOR6Ci5SE64iI+wN1sB4E9VukEe3gBMSrGGO+9jj5jSkUJ78xheLkN6ZQmrulilpdJptm3WUR7BCjyag0oINKK2cgatxC7LpSgeYSBLvRFkowJdJOTeWoHYdLfFFQ3GtZCom2FfTrOxyoMPVkeE9iB7XKeyQW08APEtNI2KXy4ggWP7EfYXIgCvUeJCcg7TMJmrSWT0EYjGChE8VwOCftv9/8xhSKk9+YQnHyG1MoTn5jCqUhUYMEOhywkaRN5Mqek8S9JZQdz+C37BZGnl5uQdyr9bMLEE7aVvxZpeu5oX6GIGB9GezSt45cdSTufXv/scR+0D+R2OlWXWxzEOLOQu/Xpxt1yt2C87LNJUnCIomD5Fakcmly/dE1CJwsDVAZc0TETU/dhSSQE3R//OY3plCc/MYUipPfmEJx8htTKA0KJTT0ITnllcXC/IJoPdQXrgcn7YMwuCCHH8TOYN1TcP21Ofw+22pJ6IuVilXZoSbZAR1tZbmvQuJem7C011cn2enoWGJ/3DyU2F8uVNx7A77zNFRge3+oTsAZuDFpTxc7CKkk0GEfRXD90bOY3oOkkL6G3pFtnydoPejaTJ3NGPO1w8lvTKE4+Y0pFCe/MYWCtYPZnnJIh49GtIgVNNk2KX6RdLKAqapXsO4pHLdsGUByDk60yUoHdEyXuV5xJAKSKEVkxT3qrRcRcTTQgShPB1qq+00oeX4HJjw/vq99IhcLFfxu7vQaz4YqIH4ODr22fSHRjmI0qIbEPT5fbl+oFHmXEvEtiHZdBrn4zW9MoTj5jSkUJ78xheLkN6ZQnPzGFEqTrgdO2k13IW1XpMlA1HARLJ5kBb0FiXUOCjJ95xmowhERlytVtK+XWn9NqnJ21HkWUvZphPV+XyfARETc648l9hBGnd9f6/6N+2rlHY21wWVV6/c7uNX7QNOVhrBX8x7vS/bfI+oPQf/C0L7Q80n/uFBfCqrxz/57ENHNBu43vzGF4uQ3plCc/MYUipPfmEJpBlSznrQHZgW/XZp/khhDHkiuv86JO3fQrJEEGrJy3kHzyIiIm9VMYjTJZbXOiXtdxnaTiEv7PKxUBIyIGEDT04aug60gQOhawoScFVldoUcDXKOBd1ZbM1Kq3acR3XcwiYct1kkhFpbDY9LzudFFYMdeAl/4bMaY32uc/MYUipPfmEJx8htTKA05v7ICHQqDSbdTG1RDvYS6emLWU9HmFsQvGmGMawHH4BJcXxHsBqPvku1NkIXcfDR9JuvkjGCn5B3EJjAV+3KuTTjjUkPTlT53l03SuYdCI9/DOYh707X2HCDBLy3uAbuMqs8e97rHu/vNb0yhOPmNKRQnvzGF4uQ3plAaGr1Mzq9Bpa4vLEcE4YXKWCNYjCFXHJZWknDWYXIKscs1si697Bp/F4LRq7QJWuRivIAGpc8aLQluBtrU83gDI7qhdexntX5nmq40ozJtEPEi2Hl5u9RYdmpSFhJY++CyJOdlmyCNpe3w3KFLFvCb35hCcfIbUyhOfmMKxclvTKE0DweHEjyqVQQ8qlTcGfdUyCGpaQJTXCIinq9eSuxirjESAUnUQNGtg3C2i+CTnpzSQQQkcDoPiU1UxtxyH+jeXsG48Q/h3TGpddrPGK5dw7oXULt9uVXx8Wqjgt3NWmMR3EdxttLnqYubj+7jsNHcONk7ktiD/oHE+iCuR7DzcrLUqVAvF7pX5Db1m9+YQnHyG1MoTn5jCsXJb0yhNI8bFSEeVlqW+SRU8DvdqpDTgHb1cc3DIRYgYFxVKlaQqMX90HLCWRdxp+tAhS7QfWhq3QPs1wel2w0Mv4jgkm7qe/d8eSWxy7UKUNQTcAQuUvp+5DYk8ZGEr4iI6UrFZirLft1uvntDHXzyJ/tvSey7lebfccs7eQpi8U/71xL7oHousaul3jO/+Y0pFCe/MYXi5DemUJz8xhRK80aljqzTUDHmnbWKQ28uVbBrQJRYDdmx9ItKyz/JnUYCFLmqKJYXAbs577LrQfEy2cMv26+vgRiVZLcJfgSVZd+tc33vSBDL7jM500jEm0EPvogWce81D78ggfXJ6L7EftTT2I836mg9OWXxcgNTkX/y/FRi/7yn+ft+fS4xv/mNKRQnvzGF4uQ3plCc/MYUSnMI7qvjjf4m3F+rSHLS41LdV9nbsuBXdZhBQP0DAwQxEu2o9JcmQeBk05YyWBTZkv3ZstOFs9clUNDssfBFx5LgRz0YSWDbxRX5KnQfqN8exSLyZd5ZSLDda1S4/lb/gcR+tFE33nt/ByXZ3/8zvviBlt//zfs/k9g7/6D34l8Gb0vMb35jCsXJb0yhOPmNKRQnvzGF0lDftDk4v2agzs1WObFp3iLszaGkl/qUkWBEYhz1hcsONt1u9BrkTCMRLyJiv69ly/tQykyCH4pacB+6DCqZgRtvvsn38CNBjYap0HE0yCUrxGUHVbS59roMcsESahBYx30tgX+70j6YT7+hpbb1n/+1xKof/BjXWD96R2LbH6qI+L3v/KvEvvVP/6bXwasYY772OPmNKRQnvzGF4uQ3plCaCxqoAT8JFQwhWEJfP+Ljiqf0XsJwASoTTU8d7TDFloQcipGwFxFx0KjoQ9OOs4IfOeqyIiCKc8nPtn2eRLYuQl5WvHzdQ04i8uIelVCT4EvCbn8LAvmVPg9Hz1UE3L71scQiIjawHqL3zh9KbO/vtfTXb35jCsXJb0yhOPmNKRQnvzGF4uQ3plCa840q7mT5nfVUAf68T/8A6Gd/vtYmhRERz+cTid0udNQyjhcmey8o6UR2bDc1x6RGmBHcDLMPsS5NRgn6LKnwpODTfW07lnsgwHqyo8q/JGU/C/du0OeJ/gGiZ3ES+m/Nf5ydSOxP//G/JTb+9w94kWBBX0+hoegj+Jfir/5IYn7zG1MoTn5jCsXJb0yhOPmNKZSGxh1vahAWKqj7h9jdVoWO5wsd5RwR8RLsvfO1NoUkwYhEljWIjVnIykki0O8CtMkmbbtL6omQFPfaml62xTP8Poh7RNYaTtBeXWzVNv+TkTb6/PjsDYlNdbjOb84JovscmrC+94GK0n/7Xx9KzG9+YwrFyW9MoTj5jSkUJ78xhdKQYEQxEqUIqotuE+KyTjJ2jeWunRXtavgdpLW0imQV1cuDw4/uT7KBJ9b4JxtrkuBH47R/E//dC29fpbhHYJPYpBBL+/Jio07VD2p9Ht4Hcf1irUJ4RMTlikd3v8qzgY4CX09cz2+M+S1OfmMKxclvTKE4+Y0pFKxPbaCUcb+n5bsPeupYonLgZzAGvI1Ozi/S9uCj5ObLrqWtDJYaj5K4R2XCJBjhSGxwP9J6skLllyW6tU3T+apIOw7BPUeCH+3LFYh2JOLerFUYfLFkYW+6UtcgORNnMDp9vKf56ze/MYXi5DemUJz8xhSKk9+YQvkfImcez3wjvhAAAAAASUVORK5CYII=" y="-1736.62485"/>
</g>
<g id="matplotlib.axis_97">
<g id="xtick_145"/>
<g id="xtick_146"/>
<g id="xtick_147"/>
</g>
<g id="matplotlib.axis_98">
<g id="ytick_241"/>
<g id="ytick_242"/>
<g id="ytick_243"/>
<g id="ytick_244"/>
<g id="ytick_245"/>
<g id="text_13">
<!-- 47 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 1838.246725)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-52"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-49"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_50">
<g id="patch_51">
<path d="M 164.424375 1859.02485
L 286.714375 1859.02485
L 286.714375 1736.73485
L 164.424375 1736.73485
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p1c9c07b893)">
<image height="122.4" id="image8f5102e22c" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHbtJREFUeJztnVuPHNd1hXfdunvuM5wLSVGiLOtm2UoiR45jI4gDxAiC/Fq/OEYMOECAIE7sGIhsS5Bli5IoUrwNOcO59r07D/JLuL4Czqhp2eFZ3+Oe6j5Vp2pPAavX3rv42u635vEEdVE9GYp5yGFxNhlCbCCx05HGIiIms6muM9d1iKIoJFZCrAiNEXR99NlOVePn6zJtz6azma4D593A9zWwdqfU2FLVkdh6vSyxvWpVYhERV8oliV2KRmJ6JREHMZbY7dmpxD4bHepnR3rceDrRGDw30zmdTUSZeA/p/tF9oftH9zn1OabzpjUiImaJz9Ms8TvLlBM0xjx7OPmNyRQnvzGZ4uQ3JlPqbqlCTqdgUetJiloFERIbRpWKNhEsikzmKuZ8GZC4V1cqAnVr3a+IiG6lcbq+0Yz3QtYGAYrEPbp/FOsVGmsK/t9PctPj0PM+D71XBzMVdx9P+xIbTFUYTBXJSNhte49VcI20txTDtUtdmwRI0plTr4+EvYt8PhW/+Y3JFCe/MZni5DcmU5z8xmRKTYIICUvklCJhogfuskGl4k4EO/zanFp/aFJdduSei4hYrrv6nbBnw5nuBV0zClXgvKTzWS71XFZKPa7XIuxO4b72Qdw7mqnD8wRig+lIYiTs0j7MQORiEY+dnHQsxej5JmhvSICckTZHS1xAw6O9WEQE9JvfmExx8huTKU5+YzLFyW9MptQkGJCwkKiHoPhRlfw/JrUsF8/nKUPn2JCjDpx8ERHLlYpsFfxvJTGVxC8SC8m5twLi3jrE1kjwa/nfPwEV6nwODr+5ipcDEDTHcH2LuPlS3Y+ff/7pvt/omS3mGsO8Siz9nRUtDj+ITxcpgU/6pDHmmcPJb0ymOPmNyRQnvzGZUvdn6r5KFTVSXVptkKuKe+59ccEvtTcfnQuJgOSyi+AyaHKSUb0sutDg//Jq1ZPYNvTb24Ty3Q6s0SYWjcHNN4J7PYTyZHIwLvKcUN9CcjWSGBrBguEiTkK8pwCtQfswKmEPodw5ImIE/QxHhcawTyQ5E3EVY8wzj5PfmExx8huTKU5+YzKlPofBGwQJWlNQry7ixkNhEZ1IifbCLwHuH3cBEREEo1SxiXrukbi3GyqIkbh3WnC/RDp2BA6/AYjFJCD3oaSX+t7hkBRw7pHw2Sb4oasuUUBeAlfkeqlr030ZkkCKe6ji3vmUc/J0CgNxxhobgxBL++03vzGZ4uQ3JlOc/MZkipPfmExx8huTKTUpsVQDXVRpijup4W1qPR57gWksT0K10anKbnKtdcuvGfTLB1032T5xlDeNWSZbKpwLVbaPoBZ80GKxpdr9M1DxUX2GEe00ZpuuJbVOn5rE0kSiiPT73wHb9hZYp79SwKjzuX52Cvt9WmrssNa9uTvTCUcREXcnJxKjX4VOxvp5/jXKGJMlTn5jMsXJb0ymOPmNyZR6OFF7IQkvqbXNLEotZvlN/Q+F8lXi0iTu0bW0jdjGOnawz6auQ80aSXS7V5xLbFBS/TxM4QFhLyLiGKbukLhHYvFgojGqQydIlKIY9Tpos13TsV2wqm9C09MXQwW/t8F5++bGQ4ktrerzcLC/IrH3xmsS+58OP/HTWu8hNUclKy8J1X7zG5MpTn5jMsXJb0ymOPmNyZSaxJgKRBuCBD8StMjhFcGNBgkSAQn6T0YrkDhEa9C10LjpiAs0Ck28Fvos1cqTEHcPXHE02aetGeU5rEPNJ2nEOolNdBxB54NNL0GobMBlFxGxDHX+u+DcezF0f94Cce9bL9yT2NY/XNIDO7pu85O7Evvww1WJUbPciIgKnokGnIk0Wp6a0frNb0ymOPmNyRQnvzGZ4uQ3JlNqEmP6YxV8SJwjEYGcRG3jmFOntqQKfnRclVhi3K1hyg0IZ23nfDxSpx3B5wgl1InXTHtLDs1LjQpLK9AI8w9B6jMxBkckTa8ZVyAgg6AZEbECpb7XQdx7e6Dn89bzDyS2+T115JXXr0ls8ov3JfbB73Yl9g7cgo/mZxqMiAdTjZ9MtXyXXKi0337zG5MpTn5jMsXJb0ymOPmNyZQ6tX8cCS/l7On/70h1wOF470QxjcS93c66xEgQuz96jOfzsH8sMXRPgkiaKvhhT0G4f/R9NFqchMEIdhdeZBLTF2WR61uB6ToREbsgBH5lrJ9/Ze1AYuuvwqjrrj4745++K7Gf/3hHYv+8pPv63uSRxB6M9VmKiDieqLhHjlN67ijP/eY3JlOc/MZkipPfmExx8huTKTTfoUV4IUAQSRTiItJLa6lEMXXAw3Ktgs+VzqbEXq+39PtAWPpvKDGNiDgcnkpsPoVR1yQCtpTWyveBaIO92WAPjwp2jRG039Svj64ltUybSB2wQeO4qQdfRMTWXJ8J2u2DUy3z7fxar694T8W4X+1fltgPe7pf7472JfZgeCSxMxh8EhFB/TaphJryd5HemMaYZwwnvzGZ4uQ3JlOc/MZkCgp+T5s2116nggmstTq1lisVc1Zrdd+tVyra7FY6KOGlUietvjzRczmEqarvt5TBNiA2FkETkPWzyZOEE0tjaUDH+Vgb0rWJcySmUuk3DhtJFCBTZUEsJU8USCMiDgoV7d6r9fpuwfO0dqzP0xTu32+7urfvjlXcuzNQF+HJCEpyW3pe0j1oK5dPwW9+YzLFyW9Mpjj5jckUJ78xmZIs+KEbjyaoQslqt1JHVkTEZlfFuL3OhsS2KhXoelCi2oPpq+twiZsw4GFlpsLJCfxrpMEJES0uxEpjizjgChIGEwVEEgv7LcNZFukpSMfx8JKkr0OR6wRKW/ehV19ExBE8J1QOzlOo007yAProHY7V8Zk6wbhtyA3dVwt+xpgL4+Q3JlOc/MZkipPfmExZyOFH4h659tY66pSKiLgMpbXP19pLbxmEvEHAhFhwnJ2Aw2ufetzVusZxAe65FjceCUYkAqb2HkwVWEkEojJPEpEu0pcvtfdg6nknTyuG42gycZsgeRE3YAoksNHUYBw28pQdeoviN78xmeLkNyZTnPzGZIqT35hMqVN77qGbD0UuFc6o59rni+vnJ1DseQaCyvlcBRX6bDHX8z4DEfA+OMFG0K+PxKYI3jMqjU11RVI/QlqDHHAk5E3JtdciXtJQE3JppvZWpIEhi/QtpFLio3HalOSLrIPHJQ4WaSvLfRK6923ngiXd5PpLdAL6zW9Mpjj5jckUJ78xmeLkNyZTnPzGZEpNamOZaNskSGkczVj5PJtp48PUXxUmoMSPIUbKMKmzMziOvq/tWmgdgtTwHirpqvbTGhOwOadaRknVj+A+C0uVNlbtgO2aftlZgQasS1B/38B9HsI9oBHW+yMea00229T9SbU/U27QfV5tuPnrk5ANOIJ/2aHncTLV4+izfvMbkylOfmMyxclvTKY4+Y3JlDpV3Ett4EgNKsctItn5VAU/ooL/USTa0TpUa40iCdlkEy2fbZ8nyBJL4h4dN53q3qYKmvR9JOxFRDzf25bYKozAbuC+rIDgd7nQz16e6TWvghWbpib9sqOfbbNd06Qiuv+pIiDlAQm2a432sNisdb97sF+TFvF4MNMGoEcTtTWfjLWhKO2D3/zGZIqT35hMcfIbkylOfmMypU4V96jxJIHTYlqEM3SsUZNDaKRJ7rvhTN1c5PAiwWcRN1dE+rjqVOh8yIVIAivdq+VGRTcS9iIivtnsSmxvriJbBZe3ATOsXxvrPfjK9kOJNR29p/cfrEmsC01eD7ss+J1ONN4fqHBGe0s00KB2BZx7O42eIzWn3QEhtW0q1AmI13ebM4l9Vh1KbD/UAek3vzGZ4uQ3JlOc/MZkipPfmEypUxspprrdCmwUmD5NhcRGWptKekncG0As1Y1H5c7TFhEvdfQ2l2uqAEV7Q6IinSOVk+50VWx6pd7Cc/zOSEWtN6oTiW1tqZNs/UV1kvW+fV1ixXN/JrH5sYpSl977RGLNj3UPH9YsXh50dFT22QhEwIl+J+0jTZ/a6aSJe68U6vC7NtH7t9SSaofgJOzB/R81ei39qT5jfvMbkylOfmMyxclvTKY4+Y3JlJpEDexHR9NCSPxKMwL+/lAYOU3TZmASDwln5NyjMl8S57BkOU3Di4j0kmAswYUY3RcSAam33kqtjrNrHRX3roe6yyIirkNvxRfffiyx3t+9KrHyr/5WYtVrf62LQInp9M4HEiu235HYVwc/k9h3f7Kqa0TEuzAG/k51IDGasLPa0X282tN9fK2zI7E358sSe2Ooz8NzpTr02iYpPRjq+Yy7ev8PSl37oNLP+s1vTKY4+Y3JFCe/MZni5DcmU2oaJHA+UTFmPiUhLnH4Qctx5NIjQYxiJOSR6EbCIJbBguA3LdIVPxqUQKR+J/VW7ICba7lW0W6n0TLYvVKdadQzLyJiRrerhNLvvT097NrrelytotTs6IGuMVTHYHSg5PWyXt/l4H6QKzAchPaWBpjs9TYk9o2OXvP3JiqwfbtRgfS5b6qDsd6G4SxH3PNy/QN1CB6dXpLYx43uN/WJ9JvfmExx8huTKU5+YzLFyW9MptRXwLH0YHgkseO5DgegIRLo0GspdyVHHrn+yAFHn02dlJs6cZhKkS8yyIPOh74z1fVH4KRciNGAjWHLNtyFvnJXP1DB8Lnf3pBYsf7vEpuOtZx0fvNjjd1/pJ/d15Lco1/rPfhNdVViEREPp/os095ij8OOimnfnaq49/3t+xLb/ScVJcs31f0YPd3XuHNbYxGx17wvscv/oevUHXDOwnPrN78xmeLkNyZTnPzGZIqT35hMqV9vuPfZk6Q66rDfXkvPPBLtUkW2VHGPymCbSstlu9AfjT5Lw0IieArqcKL9A0l4IUF0WqY5HancmZyXg9DzflTwtTQNTBJ+rOJX54fq0tv47Y8kNn6k53NwS4Wz/WN1sD0IddR91NH78nPoMRgR8emZDgfB8l2YqrsLrsgXB/rZjZehP95LL0isuK4l0MW6lgPPV1XEi4jo3L4nsfX/0rWbUNcuCel+8xuTKU5+YzLFyW9Mpjj5jcmU+uVQUeOoVsHhsFanFZX+TkFMaRPnxnAs9tIDsA8fTqfV8sa1Gspboe8dQcMPItKnGKMICK7I1B6FNJSkX+k5PgbX37zlX/9ZoYLfMfSKO9y/IrH1+3pfjqEU+SGM+H3U1c/uQ6nu3Zn2vft0qO7AiIjDoT63qWLxEMTdhyAWH3+sYnHzvrofq47uYezqHs4HUNocEbGkLsT1VS0T3hqqcLpe6TPvN78xmeLkNyZTnPzGZIqT35hMqZehj1s3VNSoQQQigY1InYobwa46KsFNnU5L4t5Gre4yur7hPM2h17Z2pwKRLVHcI0GTxMLzUgWxk2mLYPQE/Tn3iuuBOHhU6Nr70PduDPtzDuvQ2v2ZrnECA0QOxyrikbAXwXtGzw71k7w/VWHxZ9BTcAbC51s/UCHu2m902EjvVR02UmzyAJJ5X/di47Le69c+1M9+3IESY1zFGPPM4+Q3JlOc/MZkipPfmExx8huTKfWwgPp7sD+2qdyLQMp3CZNhSEmnGI6rrmDiC/yiMCL1Gay8ZKeN4F80aB2aDBMgulPNOcUK6COAfQjg/HolnEtE9GAf+6XGHsKvPf2Z7hnFSF2ncxzCLwBkKz+DfYjg55Ys5PQsPppoj4B3YY3HYIe/FRr7i3fUdvvKDW0wuvOS1u1HRHQu668wnU3N1Vdh7Pftuf6C4De/MZni5DcmU5z8xmSKk9+YTKnPqdlj4uhsgsSUtlp3Eu1ofHKquLdaaU1+F0QtaghKwlJqLIIFI9oLshFTs04Sv6j/wXyi69K5TBroDwB7GMFNSselrk3HkUhKe4bNX+m8SQQE0TV1wlEEC6L0TNC17M/VtotNXUFLbbpqKy9P1vVcbnC+bPdVyIMy/di6pNO13nigueE3vzGZ4uQ3JlOc/MZkipPfmEyp74eKGqdQQ03NI3nsb5pDry1OtdYk0HRKGE0N4h6NsE51nOEY8JZx49RzoAFxjwTNOTSzJFGLSO2VcJGpR3RfaS9oihOJZORMpLVTx7unfjaiTVT+4n0oqIcF9X2gfgVHhZ733Vqfz+qMJ/ZMb+mzs74xwGOfZLuEqUJJnzTGPHM4+Y3JFCe/MZni5DcmU+pPp1q2eDDRZogkQLWJX0+SKrBEsHBDMXKDkahFkPOORxiDiNciXlIZLJUTp04k6oNAMyqg9hcumfYmtSFo27EknJEgRsLgZJrmGG0T7eS4BcvLU/eHystLGpMOMXLJHpfQJLQGtyGI1BERg6EKgTsP9BnrghtzNIPGuLiKMeaZx8lvTKY4+Y3JFCe/MZlS3x4dSPBkrFNA+hMVoKjslMS9NicZCS+plOAko7Xnpa5BZbXLIM6Ri5AcgxERWzAFaLVQEXAEQhA5GKlPHQl009C9TZ161HZfplONk5BHgigKtiDQfVniHn2erptKgqcwzaqG7yN36AAcfscQa+BeDSp+Jz8CAXJ9rqW6y3Rb4bH1m9+YTHHyG5MpTn5jMsXJb0ym1I+G6vBLHRhBIskcRJIRTaVogRxwJNCgQwzEmAocVCuNinu7pQ5UWC20RHgHRLyIiJ05lBiDVnWvAldcaOxRrfflZKRCLIlu6GBMHFQRwW437M2YOJacBEjqW5havkukCohtx5J4nfoskhh6OtVS2wMQi6cgSB+09LxEpyyEoCq+xcFqjMkSJ78xmeLkNyZTnPzGZEp9DtNNSXhJdVrRcW195sjhh060BRxrVIq6W6ob72sFTFAd6xrPg7MwImKj0TLo84kKhr9s1JF1E0REEmgIdknC/Zsu5pSj3orLIJyuNTpFAvvewSAPcpGSqEzX3PZ8kpCXWjZOeZAqXpPISQLiKfSTbIOGg1D/QMo3+qzf/MZkipPfmExx8huTKU5+YzKlJuceQQJbqijVXtKb5hAsoJSRoBLcS5UKea+BuPfdgZ7LG1cfSmzzzZahHesqfp2+oxNdb9y8JrEB9FwjQYzFr8Q9hPtHolQEu/TWOirk7XU3JHa9c0k/C07J47kKXYdTdTCSUEVl1W19Ij8basn6g/6RxOgZJeGMhEUuB4a+ftAHk3pCkkj5eRyeE/jO1CEpfvMbkylOfmMyxclvTKY4+Y3JlJrEChLySOZK1OEuVm5J/d4S3YXUm2+lVPfcxlz/512qVGxae0FFqeYbL/HiXSj1fedDCd2s9VrujVQYTHVepkKCGAl7ERHrXXVAkrj3YrMlsa8XOljihanud7/QNQ7qdYk18Cxem4BTruVZ/Jeeio3Uo5LKpceJQh5Bott5ofeUaFtjkeEnPFHbGJMlTn5jMsXJb0ymOPmNyZQaxTgST2gaLByGTsC2ybSJOmDy1FlwxZFr7BMoO90G11/vVyravNB8gucIRrT46Ufq5vtF81hi9wcaa5ug+yQkzlIZc7dW4Wuzq9ccEbHXUXHvuUZjV0vdxy2YBrsFQ0CuzPSevgIPxNVG79/la9rf8ONP1VkYEfGLrpZQkxMUpz6j6y+tDH0CfRlTh9S0CeSLDD8h/OY3JlOc/MZkipPfmExx8huTKU5+YzKlblXiEyCVs4Qa8brFB7zIhBaqeT4b65SUu+Vh0vedgLX0s9DYq/+psYiIAVzjv3VVqb7R35fYKZw37QM10SRlnxprbnVWJXa9uy2xiIjrlVp0t6CGvoG+AceFnvdHjR7XA4v1lYkq10s9qIFfoQaV/IyRFp46vSi1kS38AIC/wiQ3wV1Awb8IfvMbkylOfmMyxclvTKY4+Y3JlJoEulQhjwQosk62NVfEJodga6VGimS9pIkvETpJh9Y9ARvwnVrtr+/AxJ2IiCmIObdGKjamjkSnPWsSG2tud1Sw+2p3R2J/WahlNyLiddhGkqBuQAuDW6EfPoDYGITB5Y5e37vjTYm99oH2EfiUb0vcnarASk0vU0e+kxiXKppTDiXb69uOBZLPJ+koY8wzh5PfmExx8huTKU5+YzKlJjcYTXJJdZc10ESzTYAYwQSS1LpqOo6EQR77rJ89n2hzxf1SG2u2TbkhaG1yIdL1kTi0XOu9ugTOvStQe/9yqce91Wc35Suret2nfVX37sxVEH0Yuo93JtCgdKrHzUBg+w08T/9aam+C0YgnTz0c6trUrJMnHyUKbKDQUb7QPSXoXD6PP13nn9/8xmSKk9+YTHHyG5MpTn5jMqXe6cGUFBDyUASE/x0k7k2ou2VEnIHINizUfcWjwEkYTBMBqVST3YHppE5JoXNENx/cg6VaRbeVSq1tazClaA1KaJehyWRERF3Tnuk5HoFL72iqgia5J1PF3nPYQ/osTThqi9Oo60XccxQjcY8mJNF9boNciIuUxfvNb0ymOPmNyRQnvzGZ4uQ3JlPqP1/WqTIksFHJ6mCuwkkfpuaczlQEiogYgLjXVv77JKkCzfQpl0G2kSr4EeUFXJFPQmLqAGIHpcZuwRSfiIh4rA7BuyBW3Q69r49B3BskltAStIck4pII2Hbs0+6RR2J4D/Z2DSZFkWuTBW7eM5pSRXtBwqDf/MZkipPfmExx8huTKU5+YzKl/vu5ijsknRyVKpLcKdQVdyfOJTaYp42bbiNV/EoV2NoElT8Wqc5EKjuma0FBrNG7elZrr7+IiG1wEh5DH74bkyOJPR6fSYxEKYKEMxymkeh0i0h/JohU5x6NP9/oaLnzXldzbbNSEbDt+RyRuAt7O4R8o2fCb35jMsXJb0ymOPmNyRQnvzGZUn99pCLSSqXi0GCkLrTf1VpO+stG/5+QEzAi4qRUN1jqEJE/Fm3usEWEpdQJsVR2TELO2USddwdjHV5yqzrA81mF+0oiG4l7JErS9aUOgaF9GCYOdmlbexGoLHcVBrlc6eqwkZcaHTayXai4Sr0MIyL6IPidVzSxGARR+E6/+Y3JFCe/MZni5DcmU5z8xmRK3RQqBFy9qoMOVp5TkeXl+yp+XLm5J7FmSYWOCHYs9acqag0W7K/3pwS5t1IdjCR+kaBFU3+pl91xoW7MCBbe6LyTS0fh+sjNh/0fQchLndq8KHTNNKiGSnX3ah2S8kKoMLg30+9ruxLqmXgOMWi3GJqpfvMbky1OfmMyxclvTKY4+Y3JFNIBorOqQk73m1cltrStQt73fv2RxHZ/pOWNERFVsyuxfkfFveORClMkDs1ayjpTPruoEyy1TJgEIxLYUqFy4OT+hi3SUkGKEa6dXlorayzQq5HclE/byRfB50hCZRemBq8WUOYLg1O2wJjIXsWIqGhwThpLcyhPTvysMeYZw8lvTKY4+Y3JFCe/MZlSd2CYQ9VT8aTY1Gm+xVdf1S/cU4ffG/XPcfF//IGKIh9BKeTt+pHETkZaDpzKQn3dWoQ9Eu1I3KOSUBKRxjRdmFxsiULXha4ZDkWBdREx7unrc380sCQbLnAMj84pvH6HLVroCbj5+rBOA8+oehD95jcmW5z8xmSKk9+YTHHyG5MpTn5jMqXeXFPVvN6A/wlUS358qMedgxV3SZsURkRcWdEGkJdnagUm+yQp5NN2Y+T/IdUKSk0mScGP4Kkt3UpjPYgRNNZ6SKOuwaJLijsp8xdpjJq6Z38Im+2fEvSLC03NeTzT/gk34dm5Xeo9OG95jvvQCJfM1CuF/qK0U2oO+s1vTKY4+Y3JFCe/MZni5DcmU+qdr4HgdxVGN/dhEsuHWrs/O9Dmn+NPT3DxyURHFm8UKoosVSpWYJNJqENfRIAiSyvZcyMilmCsdQ/Ou1Om2XtJWCQhj5tZ6vnRPrRV3oMGhTzr4h5dX+qEpHtjHV9+XOpxE5rCA2JhBDdMJZZA3NttNKf95jcmU5z8xmSKk9+YTHHyG5Mpde9vXoYoiE37Os55+tljiY0fqdtpsM8i2Wii/3vWaoppNXKb0+5pQg64tsaTJNo1cI49cCs2IALSceTSS51oQ7QJdqmzbxbpi/D/Abo+alBKY8kfhgrf9IyQiEcTlyJaxF2q54fn7lGtorvf/MZkipPfmExx8huTKU5+YzKlLt/+jgTnN38nsdkndyRG4t74CJpRDlicIyfZBrj01ksdbUyiBjXX/LJEqdTpLiTurZRdidF5j8kNBmJTWXzx0t/f/yHp2Gfd4UdgSe8E8gDEuRKeT/q+NsE2dTrTEJ5FGtHuN78xmeLkNyZTnPzGZIqT35hM+V+AH40JqkTzKAAAAABJRU5ErkJggg==" y="-1736.62485"/>
</g>
<g id="matplotlib.axis_99">
<g id="xtick_148"/>
<g id="xtick_149"/>
<g id="xtick_150"/>
</g>
<g id="matplotlib.axis_100">
<g id="ytick_246"/>
<g id="ytick_247"/>
<g id="ytick_248"/>
<g id="ytick_249"/>
<g id="ytick_250"/>
</g>
</g>
<g id="axes_51">
<g id="patch_52">
<path d="M 299.674375 1861.526614
L 421.964375 1861.526614
L 421.964375 1734.233087
L 299.674375 1734.233087
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_101">
<g id="xtick_151"/>
<g id="xtick_152"/>
<g id="xtick_153"/>
</g>
<g id="matplotlib.axis_102">
<g id="ytick_251"/>
<g id="ytick_252"/>
<g id="ytick_253"/>
<g id="ytick_254"/>
<g id="ytick_255"/>
</g>
</g>
<g id="axes_52">
<g id="patch_53">
<path d="M 434.924375 1861.526614
L 557.214375 1861.526614
L 557.214375 1734.233087
L 434.924375 1734.233087
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_103">
<g id="xtick_154"/>
<g id="xtick_155"/>
<g id="xtick_156"/>
</g>
<g id="matplotlib.axis_104">
<g id="ytick_256"/>
<g id="ytick_257"/>
<g id="ytick_258"/>
<g id="ytick_259"/>
<g id="ytick_260"/>
</g>
</g>
<g id="axes_53">
<g id="patch_54">
<path d="M 29.174375 2002.944274
L 151.464375 2002.944274
L 151.464375 1880.654274
L 29.174375 1880.654274
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pa8346476eb)">
<image height="122.4" id="image93566bdd99" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnVuvHOl1nldXVZ+7d+8DT5sczogzchw7EmRZtmEbMBAgvgoQwEh+QX5ZfkWuEyBAAgVRgkCGLIUecYYjcnM2uY997uqqzkVgA+H7FFCydKXvfS4XurqOqwt4en1rdf79p//2EB/Ric7HoRh1comdHjT2tMok1pc9/D9u9aNxmdUSu45SYpvQz9WhO6Jd0+cqiGVwHZooD3o8y4Me97LewbYVHI9+3x4+t611H+tK97Gr9xIr4J5GRMy6I4mdFGOJTTo9iWWddtesCL35s05XYscQGx10W7p/ERE3oef97rCR2MX+XmJXu7nESriO3ayQ2Gl3IrHPuicS+7OYSuwvdmuJRUQ8Pl1IbDDW+0/st3qvIf2MMSng5DcmUZz8xiSKk9+YRClOQah0DipthhA7qfW3Y1SDTGuQQJuOfnbVUdG1AZm2CZBkB/0+2jNJKZJ7tG2Du2wNCrGWX0oiNoff7x4IqLzT7nMREcNMRd4QnpMufCdBMo5iW5CcFOvjveJnbABScxp6LstsILGyULm3O2isn+n3TXL9PrpeCzi/b6MvsYiI/Eav2XChxwMpGHsQ8X7zG5MoTn5jEsXJb0yiOPmNSZTik4qlz8dQld4RmIUcPrdo+IlZgfDbgQApIbbDqrh25iwHedkDMZT/GhV+VJFHlYS/bYpMj5uELQlNElUREUcgq4YdfU5IYFGlIxnNCj5H954qOWm/TVWk9OgNIDqCa7HOVbxlILkHsC09T8QKrs11zttO9rqfatfuGT3A/feb35hEcfIbkyhOfmMSxclvTKIUPyp1eePioHKnBGFAlXvzjGJsY7YgO2qo0iNZRVppA9VX9H0kY7BCDMQSVRFGsGw8tBR+VPV3AGlHx0PXJs/0c1QJOGio8Jt1VHRNQPgRWziXNVwzkqE7qNpckqiCy1q1FGwRfK/oOaEYVUrStSVZTGquBOm9bHglUw5mcC55Q77ptsaYJHHyG5MoTn5jEsXJb0yiFN//62sJ3v6t/iZ88+5YYq8zFUPvC5USC1im2wQtwSxBvJBM20B/Naq8+0369TVVEe6xsk3BqkGsLgS5BzKN5CX1x+vC58YNEo/75rWsWOuotOvC8Syhtx4JW+qDWIEkG6ACZu4P2uPwpta+eRvot9ghOQvXkZ6nts9Y2fCxLclGkHvDnl6zDD7nN78xieLkNyZRnPzGJIqT35hEKXp//acSnN79N4lVF2ohrnKIgdzbNQg/Wlrbh9gGRAkOyai3EqvhcxUMBunBMspBtKtqi4g4gIyhYkCqEKNqN5J7JENpqe0o4Fyol12DxDuuYWgL3Be6qws4vzns+w6WIl/DPm7hnm5qrUptYgsS8b5Subeq6NkBsZirDKXhJ22XlxNN266genZTwTMBQ26KQu+W3/zGJIqT35hEcfIbkyhOfmMSxclvTKIUUUEjzJVaxXsw3zdQMnjbUbvKTR0jemCGqRSUynvXUPZJ5ZhEF86F9jsFk97U1JMaTa6ghHXfsgy1B8b+FEZiP4TpMzMYYX2ktzmOKrbKA+xZANOVwD7nEMuwvwD9ewBr/KFc+PagZv52v5RYRMRNqfENjDDHPhLwjws1HqVS7A2Uvrf9B6DpCaHr/aHWZyJgwvdkDyW/rY7GGPM7h5PfmERx8huTKE5+YxKl2P/4pxJ89+VUYm+6KqA+dFQi3IKI28J0nQgu76VpLBvYfgtr97FZJzSpnIKMeZqNJPbFQWXKgBprBsvPi46KpWtYS04iiMpxxxB7AKOXn+z1+ya1XsOmFfo7kHH3ue6HyruvoXSa+jmUJL8gNIbeAkt47tYNspfk3q7SZ4cg4bcJ/T4q2R7k+uygBASJu4V+BRER9yD8tl0op6514tKDknoOGGOSxMlvTKI4+Y1JFCe/MYlSvP3Pmv8/3x5J7HVPhdF7qrSC9ddUFRXBQiWH6jSq/CpAskyLocSOMpUfv1fMJPZnpYqX73fmEpuM9fwiIt7fjSX2P7t6PL8ASbYGodmjKTAgG+9ANM6h6GsP39dUb0Y6bAOVdis47iVM3VmBnCX6Lcek03QlnLgU3HCTJhodGiYxfQxJ5RLOj/oDzDOVhUsQfn045oiAVfqBY4DuQAyuscmoMSZJnPzGJIqT35hEcfIbkyjF13cq99729DfhOlRg3ENV1bpGLYHQMlqqliIR1M9VppEcegaVez8qtWrsT/o3Ejv//kJi3XPdb0TEw8sPEpv8DxWLwxKud6ESicaXU1Xcl7B+822lx72C+0LSNIKnAPVaLm+makWamsRThTQ2hDrEERzLINN7GhHRb4h/DAk/lIU0Jp2at8J1oGaiC4hRdWcEV/6RDF/Btd1Dhabf/MYkipPfmERx8huTKE5+YxKlqEHaUK0TiQUSOSQ6aKJJRMQQlmvSBJomMSXbghx6Vuv3Pd6DZDlWIZaPQZI8UokXEdE/P5XYi8m3eow/Vkn68lbHn3/T1eP+Za7VcyT3Xm3eS2wHVWhN92Vc6NLTESxHHWZancayUGMz+L6HUO12eoCJRDDt57bgyssdCLWsatmbD547umZdOJ62ohEFaVO1IVTz0Wf3UGVJ2/rNb0yiOPmNSRQnvzGJ4uQ3JlGKGfSZm4IkG8AIaxosUUG/NqoOi2C5R9V8RNsBCHsQHXNY0nl9o5WA0wut+ssfw0SEiOg8VuFXfPFYYk+yS/3cT64lVl2eSewlVAIuocpyW6m8JOG3h2W6TdR5uwq4IYiux5lWRT4PFX6flXpfTip9nt4Wuo/bfCKxiIgNVDbS8l8S1TSMowC5R5+ja9N2v03QQl+K0TfuQM77zW9Mojj5jUkUJ78xieLkNyZRihx6wPWhaqgPamEAwo5EXNNkWxITNKCjBFlRwudqqDhbwhTbywKqtEoVfqOvVRadH91JLCIC2uZFZ6D77vSgGmyo+6lxYARcG7gOVJlGson60UVwTzrqtziEoSY0ZOPz0D6K39/oPf2kqz0TB2M9lulC+yV+m+s+IiLmhYrAttN3Cap0peXAFCMZTgNt6oahHbQMGs8FjpEy0G9+YxLFyW9Mojj5jUkUJ78xiVL8qtbqq8seTAMFidADsVRB1V/ZIFOWMNGXBNYaPkeyKgOtsci1kmwBx30HPc5uVnptji+4wi/r32tsovJrfwWTey91KvLbAqoQYcIvLqGGKrQefG4Pk3sjWH7RZ0kiHsOy3BfQ1vHFUOXeg6dLiRVDPZbuGz2Wz+cPdCcRcVmoCKxgkvAGlv7uSD5DjJbQ0nJ3qrJcdzS2gW0jIkaQWyTT277R/eY3JlGc/MYkipPfmERx8huTKMV/76sI2nRIxKmEIAFBFUcrnPsasQCBtYApv1talgn7oUpAqnaiZb7t6rsimtqrHUqo6LrR81u91Wt2sdaKtYuBHtEclu+SnCMRRzKUKgEj+NqOoK/fMQxOeQy1jg8qvf9HxxuJDR7DstOxXq+TYiWx7/5vFrFvofJvB8LvDqQyCWl6UEjuUfnqnmQ23NNlxoNvxpBv/Zb9Len59pvfmERx8huTKE5+YxLFyW9MohSvDipPZrAMdgS99UgsdUEt8IJerqpqOwWVprLS9NYe/L6Naz0i6hV3NtFrM/6Eq+KKMxVi+2uVl+u5CrEPuR73HVR+0ZRXkkgUI7oZ91akoR0Puzpd+EWuseeVXu8zEHTDE5gaDNcwO4MluXBfzt9qxWBExOcfVPhterofmhBMkvQAS+CrGioi4R6QnCWZfQvSOyKigN6TU8hVeqOT+Pab35hEcfIbkyhOfmMSxclvTKI4+Y1JlILGX0/Bms8O7SbpbMjtN+j+NTR73MEUmRwsJ02GobXkD+C4n5dqXX9vpI05z/9IrXL3e08lFhHRgYlGh92FxGr4p6Fs2YTxt02vyfZDSewpTN15CqW8z0v9R+Lssa7THzzXfeefPZJY5+xEY1c6SWn65LXEIiKeXGr57E2ltr+Ef1y20HCT/qFaN/6f9f9DZcD0D8B9xaXKxDbTfKFGn9T3wW9+YxLFyW9Mojj5jUkUJ78xiVI8g2kqTyuVVxNYEEzr4hfQPLKJDYjFHYi8Lkg7mgxDovIEDvJJ6Fryh58tdL8vQDZNdLJPRMRhoXKwWkBTyJ2KM6ILEqlPI83heu0y3S81PG1az08jp6lR5PCgsbNMBdvsC40V3/tCYp0vvquxkfY6iOyX+n2Tb/RzEdEDgQyTznmiEUiyttOjqOFpCTEScU3Tg7AfAEypotJ37vFgjEkSJ78xieLkNyZRnPzGJErxHZB7T/YqHIa0FhmE0TwDCwgjsSMi1iAmaFrJBhqA0vprooLDOdA6bXAs9VLXVXcuPuB+9l9rheD1L7SS7HKtwnCtlwGF3xTkzgqaaNJ46A2sG28SfkTbesPZWGVq7wdaFZn96M8l1nnyuX7hVqsDDxe/0tiej3AHsngNp70EMbiECTsraLhJTTh3UAlIIu/XEX44SQkkIO27B7LYb35jEsXJb0yiOPmNSRQnvzGJUjyExpUPYJJOD6ac7GqoBKtgLDU0/4yImINwuoffoy3Iry2IjptQqfUGlgOfZSrizt5oJVkx0qq/eq8CKiLiwyttNPn1XBtcvilUvNxAU0hiGlQRqRWadd7u+5rEEpHDsuMZ2NSz53p9sj9UuZd9/scam2hFZXXxUg9mpdWUu1t+j93DNVt0QIiSTAP5vCdp1zTG6SNomlUNm5IEjOD7RWO/eeetQsaYFHDyG5MoTn5jEsXJb0yiFBOYNjIuoKKuUMHW3YPIA/9QUZldRNzk+tvzAZYEz6FiaQXjk9fwuQ31BOyq3BstjiVW/kyPpaRzjoivKq3c+1VPz+8GxOkGBE8HlsvSkmWiAuFHy06pEiwioguClmTj01K/s38O7xPojxcVj6EW9lplebjRasr5exWfERF38IxtQPgR1AtvBFWp1JuvA70aqRqPllo3Cb+2n8VKQFhO7De/MYni5DcmUZz8xiSKk9+YRCmOOipeJmOVLEUXRg7v9beju4GRwTxxOOZ7WPLaVdl0DZVRVGm1gWqnHYy6/gokUL+vwu5uP5PYumE+w2VfxQuN2aaaOuqFN4Xf5QI2HkCVZEkVbDnI0Jrl5RiWDvdgP2uonlz8vZ7L8U9/KrHOVAVrfPdPJHTYaMVg/V6HdtzPWfitYIk59eaj86Px1/S6LECQrjpaJUvLgUkCNlUMVjBEpG2VJklJv/mNSRQnvzGJ4uQ3JlGc/MYkSnE80p5rs0c6JTQfgmzY6G/HYAG94u5YSsyXMGQD+v19C0KFBktQtRNNVb2q9fxegby661I1F8uYLYkX+OgEzuUU+sw9VA8UfVj/eQvyssxV2C1BPnao32LwUGWqsnzZ0+sz+1on7f7wP72V2HTyE90JSNdYzyVU36tBXlc8DGUPxYWkOScHkNcwGIZ6K9JAkwMs06YqS+LQUIFIVZ8EVQISfvMbkyhOfmMSxclvTKI4+Y1JlGK7AyMCXqE7g4qzqYqFDJYDlztevjle6mdntR7PGCRgjyQgVGnVIFmoEvB9qATcZLAcGHVYRBd+R8dwjDOQe09h4MSzCvoowvLkaalybw7Loq9gOTDJ0IiIXUB/xFol2ysQhoO+irezl9qb7/d/9lpi3ZO/1YOB6s4DDJXJsXYyogfuawzirA/3leYx0/2nikpaXk5LpanasKlqL4N94/RdeEQ9pdcY8484+Y1JFCe/MYni5DcmUYovK+1nN3irsuLRSCut8jEIiEIFRt4wRGIIy0xPKv3sDHrAXYE8WcJvGS1lpEor6glI3mXY0EePBjKQBJxCb7dH0M/uyUwHhtCy6uJGtdRlpQNExl097uuGKb07mjoLEpAc2xTu1Ztaj/HTL3VZbnaiAzqoCnF/1XJQRUT0odpt1LJSjgb/1lAJOof7TPKZlv6S8Gta0ksakCRgUxWqbmuMSRInvzGJ4uQ3JlGc/MYkSvF/elDttNDpssVXKnyOn2pV3AGEVqdhCu2gp+LmbA2xgy6tfAfy5BYr/HTf1DetguElJJuosjCCl8G2pQsqZzSFCr+JXhvqozi7U8E2pSrJht9+qgajAR8bmNBCS38vC71/1zAVOStuJUZDaK/fqND8cNB+kBERWxCxtGKWNC7d6S5sm8FzQo98F57PA+ylbljSS/K6pdvDZ95vfmMSxclvTKI4+Y1JFCe/MYni5DcmUYprWCP+FkpBT+/UsPb6um1vpHo2ayrvHWlZ69FOLfdJpbZ4CJN9aK01rY0mc51ByWeFDRz597IP8S58J23dAWXbHcJIdBhy07/Tc+nf6jkPwSoPGv65ICu9p+tDDVPBSN+A+v5mPpXY+hd6vXeVHuO7g07n+QbGoUdE3MO+ycTTen5iBSZ+Qf+EtBzHTc9sP2sYxc71ve0+B6fnN78xieLkNyZRnPzGJIqT35hEQbNQghzYQOPJ3RZKRkH45V1uSFiUGi8yjdGkmiGNsKby3rYNEmFbEl/ThvX8D0MbaZ7BFJgn0Hzy4XQlseEnUJY6UiFWXIBYArtDd6BokFw0DYmgCUlbEF13MFr6NZT83lR6bXdwiO+7GvwA4joiYg2Cjhpc9luu8b+BkuZ76AVBzVHpqvbheaI1+hERfeiVsIfSd5q8Ts+83/zGJIqT35hEcfIbkyhOfmMSpaDRxH2ogKKJKLBUmrwZNsKMiNjDWnSq6CL/0aPjxio2FSJ7mMTTA/FylOka8ccg9iIiXsC5fLJX6fNidiex8z/XqsbiDz+T2GGl/ROKL9/p5+D4SpJzDVNuaN04iVO6sXvY9h5k3LtCr9dtyyrCBQjEFcQi+LxpzDZJbtp2BUKTGsLSW5WesWmmz9MAOwkwtB+qQu1BYvrNb0yiOPmNSRQnvzGJ4uQ3JlEKml5CTQor+J1Yr1WmxbWGGgaQxGKpQu2mVgGygIou0lq0RPU41+WfJPLGmZ7Lk45u+8meZcyLvUq7Lx7rVJqzv9Ttix/9QL9wqk1U4+0bCXWPLiTWo6pG/bYoG0xs04joNuxh2yUIsUuacASxvGXlXdPodBLDQ/gsbb8CeUkyrd+wNPpjBiD8xlBk21RFSlWIAzjuIzjnhyVUOuJejDG/8zj5jUkUJ78xieLkNyZRij14kjXErqCvWL3RyTCDDUzDaZAxd1B9966rv0dvchUv1wEjtWEfRx0ViKcg985rPb8zuDgPKpZhj4a6LPfke1rhV/zwX0is8/yFfuFGq/kiV7GU9Ulokd6D5bINFX47mmhES0JBdFFF3u1BZegSlrySsB3A+wk/B5IrImIC2x/BVClQ19GHqrgK8oCWNq+gqpGW6tJRN72RSe6d1LRsXI/n2WHbej/GmN9xnPzGJIqT35hEcfIbkyg4tKPM9TehBPmxqFWT9A8qREpa+xsRN1AY9SZTEfQtyIo1CCMaLT0DqXgM/QifwSjoB5UGpx0VjRERR8cbieXnUKU3g8kbINMOGxWIh62KM4KGgMDpxbLm71tUei4k/LokgWHfa5Cz1B9xCPeKlryi2W0oBMQBHbDvHkjAKVYXwrAYeL5v4YovIEZDTnIQrhERIxwMo58bwrj5UVfvgd/8xiSKk9+YRHHyG5MoTn5jEqX4Va2VZCdQFbcBuTPJ9LeDBvKWMDghIuK6owLkba2y6R6EH008HUHlHklA6uFG4oTk3oMjFXEREePHKs86BQi/6ysJHVZL/dwKhN/9QmLVGqYQg5SiirM1DJuIiFhWer13NQxjAXE2yEECw30ZgsijHnckEKkusWl58gac3Qru/wCk3QS+MgMxGJAH2wzuAYg8GnLS4MdjBZWNG9j3mmJ7Gg5ijEkSJ78xieLkNyZRnPzGJErxrlKJtM2HEluDBJyAoKFqp01DxdJtrcLpBgQkyZweyI+CKqBA7tDRrGB066HS2HDMVXHFDCYEz/VcDi+/llgHBlgcYDLxYa4ytLzTbe/g2ixBmpLEi4jYk5iCe9V22xoscNGy7x31zKN7Ss9dBPfmo09ipRxIZZpsTAKxC9WBtF9aAt201JqqARcg0+9yOJ699q30m9+YRHHyG5MoTn5jEsXJb0yiFO/LewnS1NEy1359a1iCSVJji4qNl5RS/ziSQ2OoEJvC8dDS0Q0IxA+wjPlsD73+diyq6q3Ks/qNVunt9XJHDSNicxqVDOtTF9cqZ2/hXFawBJrkXARXTx4ghn394Amgqcj0fbyAloZ7QGVhQw8/GtBBQy2OQLCOIDaH3dSwjwOIOBpeQ1ON6dpERKwgj+ZwLbpQXbgHqew3vzGJ4uQ3JlGc/MYkipPfmEQp5qVWodEyWIrtoN8efY6kRgQLI6rcm8BU3bOOxmZQcUiVVrTE+BYqrd519Vie3IwlFhHRfa0yZrfV47m/18m/u0r308v1+wZ9vd5LmJS8ACdJ0pWWy0ZEZFAt16FYywm6v21IApLYi4iYgdw7A895UrH8/JgtPGNbeJ5KuLYl5AEt6aUhIE3Q27sEMXwHYtBvfmMSxclvTKI4+Y1JFCe/MYni5DcmUYr1XktsaRJLD2IV2Esq72yCmjg+gDLipx015E9qGNMMzRU3YGKv4LhXHY29g3XRryo9voiI8kJ/R3dgmm+gBJkmGg1LPZ5pqba/hN/vTdHOFlMDzgi+11Tyu4emoFSKTd9HsaLheD6GPjVo+OfhBCT+oz1NYtLY9UHv1RZ2vkOzD+v0wewv6vZ9FtbQCHUF/7iNqM8GXDW/+Y1JFCe/MYni5DcmUZz8xiRKQSW2bRs44ppskFc0sSUi4kGma9H/+KDlsz/YqNR40NXGoweQPm/2uo+/6+tv3gUJH4j9oqcyJSLiqtL90C/rtqUPHYPQ3ILQpLXka5qQhKOq+b7AwB8UefTskEQksTtAKfVPLxceNgi/s70+y0962mehyPVc5ms9Rrq0bY+aSnlpHPoKJiZF8LWl3KLJR7St3/zGJIqT35hEcfIbkyhOfmMSBYXfrlLRte5oJWAJFV5UuTWDqr2IiH/eUbn3r/NbiX32N7pt9vShxA5Xuu35f3knsfKrc4ndgQS8DJgoBLGIiK+hGnBA1W7we9sHWUXjz5c1TPaBY7kFUUkfHDSI2AIqE0kO0rrzLpxzHwTUFCTgGPYxgOs1guObcsuIeJSpPHt0TrJYt9291eNe7/VZPlCTWGiiSRWMKNcrfsao/wLlJeWghZ8x5h9x8huTKE5+YxLFyW9MohR7aFy4CZUINYjBAqTGodDGmjRdJyLi92FSzfN/pfsu/s2/k1j2/A/0GN/r+OvZ8D9K7PP/oMLn5zGVGI1Kvqq1IisiYgMTceiXdQhSawzibRwqbSa5Xm9qmHoHx0Kfo8k3EXzc1FiVvxOmK8E5H0GMGrCeHqCJ6l73+x1Ymh4RcX6uI5JGz2AilbriGPRVvB0tddsVjHK/AWHL48LbVzWSnG8bo6X2fvMbkyhOfmMSxclvTKI4+Y1JlGJft5tU0nb5JvZrAwkUwVNSspkujQ2QJwH77gxV2nWOjyQ26M91F+CLSujrR2IvIuK+0slHJEkzOO4RCNEhSECUhSDJSO504Xe+orW7EbEDB0U9/NqSwzLvCTwT57Wey/NS9/vpQZfkPnt6h/s++gIm4kA14N2FPncXy4nGcj3GK6juvIcJSTQmnfLq1wFHp9PYbws/Y8w/4OQ3JlGc/MYkipPfmEQpqOceLdWsapUIHRAdBMmmiIg9SIjyKxU32f/6scQO717rF9Z63IeL9xJbb2AYQw7nTDKlQdCQ3NtQ30Ma8ABDGjYg/OpcpdQ0189NQQLSUuIm6LzL0GOk5ag0jr0HVXrQjjCG4BTP4NqczlSuDk9ZxFKHvfkrvT4/vzmR2Mu+HvcHWMZ+D7Grgxrk6/1SYtQbs3F0OlUDthynzt9njEkSJ78xieLkNyZRnPzGJEpBy3JzqKgj2dCDaqcRLOntNSwdnecaf/8zlVqnq5f6nY+/klhnopVy5RutBpuXjyS2A+FXgryi6qkIFoEkxEqoqKwz3TcNYzgD4ffPQmMzXGKq+3jbIIZ2UJ22BOFLQpNkEy1lXXb0Xq1AVC6gEnCx1GdscMV977JbPe9Xb08l9jPo4fgayj7nUKW3Ail5B0u/51AFutprj8GmasoMri3lLw1YoW395jcmUZz8xiSKk9+YRHHyG5MoxbBQ8ULCj8TCMNdtTwpdBjmBfnQRESuQEF/dziR299OBxI5eqSgZTVXQ7DYqh+7heEoYv0pVjSVIvAiWX4u9Sh9agknX8ZOuXoe/qvTa/lWhzeeKvh73V3Nd2vyTAfdWnMPQj5tQWbWj5c3gqnJ4x9xler3egwQcdPW5K2FwxvKCnzHiJUjpN3A811CltyOJS4Nv4HM7EIO0pL6pipSW0FNedttKQNyLMeZ3Hie/MYni5DcmUZz8xiRK0S+0kgwnrcLS0eNCp+w+K1QsPQ6eBkv1ZTfQA3Bb6W/U6k6/c7LkKi/ZFoTmHqraqNJtValojIhYgtxblfpZkjHU9/A808q9H+60WvHTf6mxbKDf1/2vNxK7vNNJxxER77p6ba+g4nBR6TmT+CRRtQCZ9i1U+JUgQ6/g/r2rVQpHRHRBQL7LVaitGkTuxxTwvqTzW0MOkXTD5bcN7RLb9lGk6tBRrpLTb35jEsXJb0yiOPmNSRQnvzGJUuCQDYiRMDgF4fccRNV3Sv6NebBXyVKA7Wg7x7SsYTDFQbfeweHQRN4NVGStK54Gu61UdFGlVhcGZZAw6sPvcg9EVacHEmmq8mt8rINKZtdcSXZS6P2fdfT+zzMVmiT8qE/dPchC4iZ0HwMQg0cguSJ4OAiddReek2MQ1Vmmn9tS/0aokhxDDm1yfZ420U5cR7BEHMIQmJNcqyL95jcmUZz8xiSKk9+YRHHyG5MoTn5jEqUgW0ixHhhWsq4Pat320z0b8ocDXSOeg9Emahj5UoPtv92SpdZtF7A2fV3rcdN0nYj2o5ZpRDc2C6LPAAACQklEQVRd2z7Y5w70HKApRUQHGpR2G465D/9IjOAYR2DYl/Ds0D8Ac+gPQKXTVP5Kz+cRNDeNiDiDf5+OYdT5iJ75g94rmrhEE3ZoLD39Y7Yp2jVBjeBeEPTPHF2fvtfzG2P+ASe/MYni5DcmUZz8xiRKgZM8Wo79pV+OLhTjHhcs/E4f6cji7khLfsFpxH4Ncu9S5c79VkuQL0Aqfmg5YaWpvJcm8RC0nn8A4mwMV7ffU9mI5b0FrDnvqSxq+uUnDUhSqwP3mkqVSZItYVINTTgiydWFB6IsWMR2e3o8Y5CXdC4EXZuyaQH+x8dCUhHOha5DBD9jlKs0VYqajPrNb0yiOPmNSRQnvzGJ4uQ3JlEKEh2/ifwguVM0VO31Jioweg9BLE6gyegC1oh/0H2/gYkvvwwVjW9LnXxzvV1IjJpyRvDkFRyfDLERVJwdQwXj8AiqwcbQuHIIzRpB+DWxhXtI/Q6qlqKLGk9uQJxSTwTalkbDk0iN4Mk5dNwUg0LQ2JJM+w2uDdFULVpDnCQgVaHuMo35zW9Mojj5jUkUJ78xieLkNyZRCqrIolgGEpDkHtVZ4VLUYAmVjaBp4kwr96iyrYLJPq9zFSKvSp1e8+1Ghd98B2OpQUpFcCVa2wq4MQi/2R5GeU9J+B1rDCbu/Do/81SxtgFxRkt1aWw3NfBcwzLv7b5d40q61ruGCr+2U25wW4hV8H0k93DpL20LEo/kcUTDeHg4SLovG7gvfvMbkyhOfmMSxclvTKI4+Y1JlP8L7r/3JG2NXDMAAAAASUVORK5CYII=" y="-1880.544274"/>
</g>
<g id="matplotlib.axis_105">
<g id="xtick_157"/>
<g id="xtick_158"/>
<g id="xtick_159"/>
</g>
<g id="matplotlib.axis_106">
<g id="ytick_261"/>
<g id="ytick_262"/>
<g id="ytick_263"/>
<g id="ytick_264"/>
<g id="ytick_265"/>
<g id="text_14">
<!-- 49 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 1982.166149)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-52"/>
<use x="55.615234" xlink:href="#ArialMT-57"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-49"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_54">
<g id="patch_55">
<path d="M 164.424375 2005.446038
L 286.714375 2005.446038
L 286.714375 1878.152511
L 164.424375 1878.152511
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_107">
<g id="xtick_160"/>
<g id="xtick_161"/>
<g id="xtick_162"/>
</g>
<g id="matplotlib.axis_108">
<g id="ytick_266"/>
<g id="ytick_267"/>
<g id="ytick_268"/>
<g id="ytick_269"/>
<g id="ytick_270"/>
</g>
</g>
<g id="axes_55">
<g id="patch_56">
<path d="M 299.674375 2005.446038
L 421.964375 2005.446038
L 421.964375 1878.152511
L 299.674375 1878.152511
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_109">
<g id="xtick_163"/>
<g id="xtick_164"/>
<g id="xtick_165"/>
</g>
<g id="matplotlib.axis_110">
<g id="ytick_271"/>
<g id="ytick_272"/>
<g id="ytick_273"/>
<g id="ytick_274"/>
<g id="ytick_275"/>
</g>
</g>
<g id="axes_56">
<g id="patch_57">
<path d="M 434.924375 2005.446038
L 557.214375 2005.446038
L 557.214375 1878.152511
L 434.924375 1878.152511
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_111">
<g id="xtick_166"/>
<g id="xtick_167"/>
<g id="xtick_168"/>
</g>
<g id="matplotlib.axis_112">
<g id="ytick_276"/>
<g id="ytick_277"/>
<g id="ytick_278"/>
<g id="ytick_279"/>
<g id="ytick_280"/>
</g>
</g>
<g id="axes_57">
<g id="patch_58">
<path d="M 29.174375 2149.365462
L 151.464375 2149.365462
L 151.464375 2022.071935
L 29.174375 2022.071935
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_113">
<g id="xtick_169"/>
<g id="xtick_170"/>
<g id="xtick_171"/>
</g>
<g id="matplotlib.axis_114">
<g id="ytick_281"/>
<g id="ytick_282"/>
<g id="ytick_283"/>
<g id="ytick_284"/>
<g id="ytick_285"/>
<g id="text_15">
<!-- 53 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 2126.085573)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-53"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-49"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_58">
<g id="patch_59">
<path d="M 164.424375 2146.863698
L 286.714375 2146.863698
L 286.714375 2024.573698
L 164.424375 2024.573698
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p68286d1078)">
<image height="122.4" id="image38ea74eec3" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGStJREFUeJztnUuPZGdShuPcMrOyrt3tnmnbeIxgENJcLDSDkFghISEWbPgFXP4DPwH2bIcfwIINO9bACmZlLmZgLKSxNe6xp7u6quuSlbeTycKsKp5Piuysqu7qeJ9l6GSec77vRB7pzTciqqZ7b23XqKv6esh22oGLHQzHLvZ4cOBiR+2ui5mZ+bOYna9mLna2nPjjFlcuNln6z14t5i62WC3xetz1wTq0dYPHNrU/dtn3PrbysdV6FbqeKFVVudgm91LD5+m6KbZeu8fprYLWltaxa1oXa2APZsuFi5Wez5teW8o/IUQClPxCJEXJL0RSlPxCJMWrEgV6EKVI8JmuvIBBMTOzUd35WOVj1nphsa28yELCS7+KXffavJhCwldXEMno3CTwGGg5S9D7thEBK/PXTddSuhcStVYgNlXmr5HW8b4SFU6HjX9mh62P0b5E88rs5tdWb34hkqLkFyIpSn4hkqLkFyIpLYkQJHRFRaDlmsUK4qgeutijysd2K69LzkFs+qy/cLFP7Av/2d6rbiS80NrQOpix4Neaj9HaTsnlBdcYFXzQhdbEBNISdN1vO7T/tGYk7pEISM8YCbGlZ+ymtVS9+YVIipJfiKQo+YVIipJfiKS0VIpKLqYaxI8o5OQzM/tOte9ifzSfuthv/NZTFyMD3D/926+42F+P/PedTL0wOOu96FYUXoLw2sacXySwkVBJZZ4kItH+lUQ8EnIp9jZBe00xckUO6lj5Lgl+rxO9+YVIipJfiKQo+YVIipJfiKS05EQioQpLVuE4Eq92wKFnZvbduT/2+38Opad/+lcutp77Hn6/9xd/6WJ/95MHLvZTcGQtCmWU7rwF4YtKcBv4bSUhaAD93qIuS3ICRikJUFQGTfeNIhns/033noue9zaIisB0z9HYXaE3vxBJUfILkRQlvxBJUfILkZSWxCYaOEAOMRI/qOx0CeW3ZmazGj4/80671Qk4/P73P1zs80+8uDervZCHQxao/x8IYqtCXSUdW4NwVlPpL8SiJdRRcY4EzZLgFy0JbtbgYtuiZyJdN7lNo67UEii8Betlac1wbSt/HDk06bN3JQLqzS9EUpT8QiRFyS9EUpT8QiRFyS9EUtB3G1X2CVIvT2DEtpnZx0Ovfv7m33pV+f1//BsX+8nP33Gxvx/5MeJfzL90MbLYkuK+WsXtmKRyN6D4rsjyS7X2weaRpHxj809U0rmB5wgs3yMY0U7XOIW+CDQ6nUZTk+JOzTHHnW/yitORLD4Rh/aPPkvrOF36MfCUL+Ex53c09UhvfiGSouQXIilKfiGSouQXIiktCXRo7wSxicSPpfnvezY/w5P/GASns8FDFxsdP3Kxp0MvIj6dv3Sx86Wv+6fx3jsgaNE4bWr0aRa3faIluooJPNQzgPaAbMDUH4Cs3WZmBwM/Ev2o2/Wfhz4Nk96Ley8WvmHqmfn9ozU8GPpreTTwjV9Lgt9V78U4ukbaV7LjkkCHjVVBtEMrdtDmfBvozS9EUpT8QiRFyS9EUpT8QiSlJQGDILGCIAGjJJJNQYw57s5dbKfxYhzWrMN4cBK66PsotsnUFXKskfBG1x0dlR11pnGzzVgzUTOeQHPQ7LjYGKYP7dR+HXvo5xAV0x4O9lzsSXfoYiVeVl7wJcitSOtD13219s/xsvf3QoLt60RvfiGSouQXIilKfiGSouQXIik4sQdLD0FMQ7caOc5KTS+DzR53u5GLkUBHzj0s34XjaIw4nWO+4gk5LPhRmSgIS8HJPjghaRWcIEOOs9LEHnIrwv6vQfCj8mTcF7gXukZaG6JUBkvPKAmaFOvgumltjudepD6+8rHFBiXid4He/EIkRckvRFKU/EIkRckvRFLaD3Z9L7yvpqcuRs4mcs8Rm4yCpjJYEtmGINDR1J0OhJwROtN8jEpWn9dcnow9DkHLoTLacet70pHrj5ySUdGUjqM9NTO7WE799YD4NW1iIieVVVOfQdr708WlPwcJgxv08CNx73Hry4Tfq305MfHfzQsXu4K+fudzEoBjDtvbQG9+IZKi5BciKUp+IZKi5BciKe0Ph++54I9BJDmZ+z5sJefedWhU9dd40YfKYEnAmq282ESCX01jpGGYBjkYp3CO0j3j2Ghwu9Hwi/3Ol8sSJF5Fh6mQA64k+J3PvUBHguF5EyuXjY6mpn0+nXnBjwaD0N6bmY3ApXnYeiHvce334ImBEAvneNH6suOnA/99JNjOsAfj3ZT+6s0vRFKU/EIkRckvRFKU/EIkpf3eypfLftr6AQ3k+iKRjKhrFqWw5BXcfFQuS+IQuarIUbfX+ns+ABGo5EwksEw0eG7qezdfxybtblMSWhKWqP/crOI+jNeJuj6jx5FIRmIhDl0xMypZp329XPvznJI7FN6XHYjK48aLhfQ84JReKP01u/nyX735hUiKkl+IpCj5hUiKkl+IpLQXNTiMqNfYFtNES8IZuflIzCFharWMTaLtQGTBMk8o38U+eoXS0WHrhSUS9x503g1GJcYXKy+wls5900T3mo4jrarUX+9VwWnFhXOQoEZTeo9h/+mp3Ye9WsCR2BMQYm0dc7maxdcxun968wuRFCW/EElR8guRFCW/EElp/7l/7oJfznwPP3LPhQWIgoBBYgy7/mICzxoGYlDZ8GThBZ+z2penkmhTEi9pwAO5vA5qLwLugsOvA3HvqvV7MFn6e6ES2k3KRElwovveqq8j7CmVJ1dQFk17T0KxGZf/XtReTCVouvAV7FVJoLsOlR2T668k7FI5OeUWrS3tn978QiRFyS9EUpT8QiRFyS9EUtqPz37mgiSSkLBAgyU2caFFewASJARF+9mRUHUy8z0KSaApiTvk8ENXFU2Nhd/gvdqLhdR77rL14hXtX1RcNTNbgdBFa0bCEvUyjE4cHsBxC4hRiTcNATEzm0AsOrGYyqonIPjRc0c9JmkdaGBL9Dk2K0xUhrVAcTZ8FiHEW4WSX4ikKPmFSIqSX4ikKPmFSEp7OvUTUYiwAgk/J1HLpxmr+KQM03FRSOUmyy9RuhdS08keTKPFq9Z/5xDswtRzgBpU0r8Us6B11oz/paB/AIgKLNbDBqzPHUzDgXsm1ZyUa2o6ama2gsacUUvsDEaQT2r/nNC/VmynhQlOMFFoBHtqxvtFTXQnVfBZDh0lhHjrUPILkRQlvxBJUfILkZQ2Wuddw+8EiVxESSwk4SVa071N3ThZdLEpJB1XOC/afqfeMkzfSaLNfuNHPFN9Odqcg+tVGAyDRBt4kjhL03T229hY8gVMcCJKvSXouskeTM/JHM5Nol10shOJs/S8l55tEkTxWQ4LkEKIlCj5hUiKkl+IpCj5hUiKt4xZ3M2HjR6DNd5mXN/cFsZ5R4gKL9uMOi59tgfRjpqe8mdBbBp4samB32pywNH30V7d9MjnTb6TBDrqQ0BruEkz0qhQuQD1Mypo0/eR6Eq5QeeYNvzc1JAvdG5yQJLIqTe/EElR8guRFCW/EElR8guRlDbqqNvEiXSdUlPPETi/qByVBCwSSvo+PrrZHXcL4hcJUyTG0NQdgtYx2qzzVsQ9cpKBqEWiHU3YmcG9RN14Jei5RREwKAxG2UZUpHXYhKiDVW9+IZKi5BciKUp+IZKi5BciKW1U3ItO4iE3H032MeNeZVT2SIIfiWR1YWrLdbYRckqwIAprAf3sopOP6PtIIKXvW9YgAhZqesMuPTiOSnAvF7Hvi7oQaa2p3LV0LIlfdyGSRkXFFQjXmxB16OrNL0RSlPxCJEXJL0RSlPxCJAVLesm5t8nY4JsGB3kEBcjSSO1XvpbCOpAYR73rdgcjFxs3foAFiaFU0nu1irnncERzVRD8oq5IOA57FEZ7PQYHtpAzdK/z62rG4uflwo81P59fuVhp7PebDq0jDUnRm1+IpCj5hUiKkl+IpCj5hUgKCn5EeMDGBsIgOfdIrEIX1C249K6DTrKCW5EElYPB2MVoWMVO7QUsEjRxvaB3IEEibkk0rYJ9FG/aKUfr3TX+ET0a7rrYu8MH+J0dOP+eVicuRmXHd1UavQ0NPI/7A/+MvTd+6GJ68wuRFCW/EElR8guRFCW/EElpUUwDUYM0IJwGG3RpmcXLLUnciwov3GcQymXhBkncI2HPzOzRcN/FHncHLrZf8+evM1t7d9lZ751pNLQj6qgr7Uu0xJjOw1NjYyWq0VLyYe3dj3uFdaXPD2ovItJx9HzfRjl4FHKR0vNI4t53R0/8993MZQkh7htKfiGSouQXIilKfiGS0pJwRgJNDU4p6h9HAsRuy+WWJLzgIAhytlWvLmqRKEX3Qv0Exy0LSyTufdgeutjDyn/nDO7vy7UX9076iYtd9d6ZNoc+ekTJ4UdrQWJTdCoygWJxcMDGFO6Z1saM75HWh54TdKvegd5XcsmS2/HBcM/FvjXwgt+H5l1/evMLkRQlvxBJUfILkRQlvxBJCZf0EiSS7HdeWPjGwAtfZmY7IH71oKgsoWyVSlkvwAF3sfQxchGSq40GQZAY9vU1gigJwulgDY4z+A0+hhg56qjPHE2x3bYvY7R8l4j25iuVS1+HBrY8r87w2J3Gl0vTWpC4O2/82s6CE3C3gdbLzGwAgt8uCND7UCLeoRtXCJESJb8QSVHyC5EUJb8QSVHyC5EUVPvR8gsxUpXJ8kmTZsxYlaRjSftcgpJ+XPnbof4C9E8BjsSGz5Yah17CPw2f03GNr78fwL8Kz8GueraEqTKguJOSHh3lXYIm/kQbXEaVfVKzS8q3u76CpZnUfmqYumpjk4YoD/i4LazPxalQ1P8C7M/wfL+EEe168wuRFCW/EElR8guRFCW/EEkJ23tJwCAR6Gzuhapn0HDRjAWMwxpGWIOQR/07sQkjNYWE3zya7EKfLVla59Bw83L+0sVKNtTrUJ0+jZYmgZV6DpDtumRVpnNHxS+CRDsS/DpqrAliIdqXC8Jg9NyDtT83jQInoiPRo3ZobjrL60179by/9N9J5wldjRDirUPJL0RSlPxCJEXJL0RSUPDD0dvB6SXT3jvYTuYXeHIS2Qy0wSkIfnNyMQUbXIanuMBv47pikYtEqEvoJUCjoEm0W/axUeUkXo2gNp16Kuw33Iz0eOkFI7puFKZorHkT64tAMXoWaQ9KzURpohFBPSOon8Nu5wVpchfS2kzBhBh1RJaOpd4Gz+ZeVF50cvgJIf4fJb8QSVHyC5EUJb8QSWlJUMFmlsGxzejIKogxVKJKJbPk3iJHHYkfJMZQs8aoCEjlwKXzkMsr6vyKloSSEEvXSIJWCSxvhueEpvjQcbSONH2mNEEoAq2rGT97s9qLgHRuchzS/dFnw2XxcH1Ft2LQcXq28MI3ipJ4FiHEW4+SX4ikKPmFSIqSX4iktCTakBhDZaLkJCNRotRfjdxXy0WsLxy64miiTbDckr5vCKXI5LIzi7u8yMVG94cxmmYE93c5987Cp/bCxV407LykfYk6/EhM3YHSWBKQSbwk4ZOEs9Iztu7h2DomAlNuNOA2peumPOBS3ZhoWoKeCdoreub15hciKUp+IZKi5BciKUp+IZLSRktC96CUca/xMRI6aEy2mdn5wjv8ehjGQa5B7NfXxIQXEj/O5/5aJpV3DNJgCTN2sQ06Hxs2XqAjZ+LVwos2CxC1SPCZLMDpCPdcKh2l8uRoOXG0Nx+JWiS6UoxEQLpmMxZES8dep7Q+16G1wYE2wfNuMu4jKoaTI1ZvfiGSouQXIilKfiGSouQXIiktiRrkdhpDv7f91g+CoHLEUknvpPfCFPX1G8GkVRLYCHJ+nUMpMbniSCQpTbaNrhmV1pJ4SS629TImLJEARWLh4tUHyRZhRx5dY6w8NVoqTcLXttDaLquYAxWFxqBbsUR0Sm/UFak3vxBJUfILkRQlvxBJUfILkZTwlF4S8mioBVES/Og7STh72O252INm7GIdCGcTKE/9svbTc0mgodLIUkkvDXgY1zwU4zq0juRMvASxkcQvKmPepE9gVDzDQSXgLqT9J5GTjsN7CQ40MWOBlkqMh61/7khUpn2O9kdE11+wV6NZfF9oLeizevMLkRQlvxBJUfILkRQlvxBJaUmEmMGk3Yuey3KvQyW5pws/9dXMbLb056HyzwH0TXtU+3LifThuSo4s6nsG03xJJKOYGfe9o/Ps1l5sGkGvQOofOGn9PdNU5CncC4mXFDMzW4CIGHXuRT9Lfe8IEsRIvKK+k2Zmh0MvDB8Ndl2MnjF0XsKeYs/DmtfWfV/w/m4DvfmFSIqSX4ikKPmFSIqSX4iktDj0IejSuqi9CEgiFwl7ZiyeUD+7l72fOnoG/QMH5JQDYYlEtz0Q0y6h92BJJCPBkERSKlkeQOwA7u+w8SXUfefX8HLl15DKmE/mPLTj5QymvIKwyJNoQRjsQfDbYDCF+yzsaam34jvDAxf7YPDQxaLu0AtY29LAkOtEnXd3hd78QiRFyS9EUpT8QiRFyS9EUpT8QiSlZYtmTMVtYdQxjl4uKLs1CJ3UaJLswWS9PAM1fKfyNlmyIJO9kxqHluy9pNqS7fOs96o7nXsH/pE4gn8AhubXex8+O4RzFMeNg0WXG1LG6thvGmo6O+64d8KT7tDFvtP4fwC6tX9GP2/8vzWXK7BJwz89U/hXKDqx567Qm1+IpCj5hUiKkl+IpCj5hUhKi/ZC0Oeik0VIiNtkFDRB/QVegDV10njrJQlnVCtPouQOCH4ldlsvONF5yCZ9BSISWZ9H0OuArnu5QVPIKDgtJmjRJTsuPRM1PDv0fG6yV+82vnb/ozlPXbrOCYxYn63B8guj5umZLTVMfV3ozS9EUpT8QiRFyS9EUpT8QiQFi6BJZCm5wa5DwhCJgF8f7EPRqSbkniNBpW9iteQ0iYUmtlCzTTOzDwYPXOyw8iLUCdSD/7L34iU6HcEdeFl5sXABzjts6gkxs/hek5BHa0v73zZ+vWmCE0FiaIk9cDa+Cw7GCTyMC+iVcAE9HqiJaskJ+iahN78QSVHyC5EUJb8QSVHyC5GU8IhugsQ5KgctjSEm1yCJjdGpLVDdakMDN19QWKLRy6XPUvx9866/d8CJRoLYV8tzFyORc2Y+RutFTSZLzSNRoINSbdo/EnxJBMSR7+D6w2cEnruLBU+U+gzE1J92voEncbL2nyXhlEaG3wf05hciKUp+IZKi5BciKUp+IZISFvzI9YXOO3A7VT2LZNs4ydaN/yyJUiRe0XknPUwKWvjJNSXnFomDi+FjFzuqvQhI60j3TM42FEPhOFoHGoduZjYEV+SCevgFS7JJBIzCU4Fik57MzD6dfuVi/+BbIdoYej3+fPHSxcgV+aZN4omiN78QSVHyC5EUJb8QSVHyC5GUuOCHzjsvAkX7um1CtHSUxC8SqibmxSEq1Tyf+xJacjCamU1grDl951Hne8qRGEeOvJJT8lUplVqTEEgjsHGQB4iAJNBVFQhi9FkQ06h0e7lkIfaryamL0b5Qv0V0VMK4eb4/EKnfMBFQb34hkqLkFyIpSn4hkqLkFyIpW5X0ErchapCDisQmEuMmtRfi1ktwiIFgR27FkqttAecmsfESSk9JYNvGFbdNqW2JqJBHoiT25oNlJMkOhWa4lpJb9Aqm5dK+jFov+JFjlIRPWkcSBumZfZ2DPPTmFyIpSn4hkqLkFyIpSn4hknLjgt9dQULJFMSdaP8/EgvpHJsImvPgpNa29ucmsSkqApKgtcl1R91pJGCxExRceuDwiw6L2eResLwZegWOYcryo8G+P67xx5ET8Nn8zMVOptATEJ7Zu3IC6s0vRFKU/EIkRckvRFKU/EIk5d4KflEBKtpn7jb6sEWvsYbSWiq3JaEqen/R6cdm8fveas1uWNMquRVJOD0cjF3s18bfdLHvdY9c7Fsr7wQ8qfw6ftyduNh/2Rcu9nzihUESim8DvfmFSIqSX4ikKPmFSIqSX4ik3FvBj4g6xF4n1I+wA1Fqr/OTJaj0l9xlMLiXy2BXvDb3dQgFMYRS3W+Ojlzsd9tvuNgfz3yZ969++5cudvILLyA+mHux8Gzky7mpxLs0GOamy3/15hciKUp+IZKi5BciKUp+IZKi5BciKW+V2n9fIQsqTfbZbfw/AJOVV6SpYSYpyCVV+T4q+/QvipnZsPFq/4fdAxf7g6lfi+//mf+++oe/72L7//mJi/3Oj3yd/r8MfX+An8H1XVT+HwAzu3FLtN78QiRFyS9EUpT8QiRFyS9EUiT4vQFQY04aGf2k3XOx2XondA4a+U2NPs3MFv2bb5OOQtbp92tvx/3oo1+4WPOHf+Ji9a//wJ9k6ke579T/42K0hjT16K7Qm1+IpCj5hUiKkl+IpCj5hUiKBL83ABx1DTOsR5XfrqNq4D/b+e+76r3jjMZXmxWcf/dT78PGng/XXgQc/+AdF2u+/dv++3a8S295fOxin5kXYo/7UxdbgBCriT1CiFtFyS9EUpT8QiRFyS9EUiT4vQGQwDbpfanu+coLdKPal/nuVt4duNf6406hnNSsMOocj3zzwQlJUP5bPfZlviTu9c8+d7HFv37qYv8+eNfFjq/OXYxGw9+Vm1JvfiGSouQXIilKfiGSouQXIin/B7K4i138pbH4AAAAAElFTkSuQmCC" y="-2024.463698"/>
</g>
<g id="matplotlib.axis_115">
<g id="xtick_172"/>
<g id="xtick_173"/>
<g id="xtick_174"/>
</g>
<g id="matplotlib.axis_116">
<g id="ytick_286"/>
<g id="ytick_287"/>
<g id="ytick_288"/>
<g id="ytick_289"/>
<g id="ytick_290"/>
</g>
</g>
<g id="axes_59">
<g id="patch_60">
<path d="M 299.674375 2149.365462
L 421.964375 2149.365462
L 421.964375 2022.071935
L 299.674375 2022.071935
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_117">
<g id="xtick_175"/>
<g id="xtick_176"/>
<g id="xtick_177"/>
</g>
<g id="matplotlib.axis_118">
<g id="ytick_291"/>
<g id="ytick_292"/>
<g id="ytick_293"/>
<g id="ytick_294"/>
<g id="ytick_295"/>
</g>
</g>
<g id="axes_60">
<g id="patch_61">
<path d="M 434.924375 2149.365462
L 557.214375 2149.365462
L 557.214375 2022.071935
L 434.924375 2022.071935
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_119">
<g id="xtick_178"/>
<g id="xtick_179"/>
<g id="xtick_180"/>
</g>
<g id="matplotlib.axis_120">
<g id="ytick_296"/>
<g id="ytick_297"/>
<g id="ytick_298"/>
<g id="ytick_299"/>
<g id="ytick_300"/>
</g>
</g>
<g id="axes_61">
<g id="patch_62">
<path d="M 29.174375 2293.284886
L 151.464375 2293.284886
L 151.464375 2165.991358
L 29.174375 2165.991358
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_121">
<g id="xtick_181"/>
<g id="xtick_182"/>
<g id="xtick_183"/>
</g>
<g id="matplotlib.axis_122">
<g id="ytick_301"/>
<g id="ytick_302"/>
<g id="ytick_303"/>
<g id="ytick_304"/>
<g id="ytick_305"/>
<g id="text_16">
<!-- 55 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 2270.004997)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-53"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-49"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_62">
<g id="patch_63">
<path d="M 164.424375 2290.783122
L 286.714375 2290.783122
L 286.714375 2168.493122
L 164.424375 2168.493122
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pa970098718)">
<image height="122.4" id="imageb2d4258ffb" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHtVJREFUeJztnVuvJOdVhld3VR929z7MeA4OTsaOsTEJ4MQIKUSKCBEiF4gbuOfP8Af4J7lBghsuuEKAQoQCAic4sWdsj2f27NnHPh+qmosIS+z3+aRvZyeR4Hufy6Xqrqrvq9Ulvf2utTo/fONPd3GNF4vR9VAsoyuxXshHkUmnwvhFpd8511C08NlNR2PnHT3yh+2FxP51+kSvZTnDa7xO1YULjIiqo/FuRy+y7vJaXGfbNhJbN1uJtTvdA7rGYdWT2GFf9zkiYr8aSmyz0+uZbZd6ja1eI0Hr1YH1ImgdVs0Gj11u1xKjtc2lC9c9qHVtR/VAYnf6Y4m9PXyoseoAz90LXZ8FZMeM9mqna8ZPsjHm/z1OfmMKxclvTKE4+Y0plLrfV3FgtFRxYAhiw8FAxZThUIWX5VIFkYiI50sVnJ6BeHIBP1HLjgpdJ6HXc7ydSGy11WskkawH4twAhLMIFrCIZqcCDcVIyKPYLjNGn02Jc4uOriNdI32exDiC1rvfrSVGAmm/0uN2CfGZrpug9SHweuC66RpJAF6DOLdN3Mtwlycqt/D5BoRBv/mNKRQnvzGF4uQ3plCc/MYUSl3VKgQM6jwH1GiswtD+KyuNbTUWEbH7TMWKyVoFlVNwAp539BpftOo4u9jkOff26r7GKo2Rcysiot9RgYcca6tWxcY5rE/TgkAD39dkClUo2GWKc6nPk1MuV2DbtXrdHRCVaQ27cByJbhERAWESZ+leSAQkEZhEQLpGFF1B8EvtKInuLYiA5MZdg8vWb35jCsXJb0yhOPmNKRQnvzGFUncrlRfqSkWb3Q7EhgYEqPXtfk9WXf1OKtV9vlOR7NnmSmLLRkVJEmhIyNuvtbT1oNqTWETEqKvOPxKWluCKu+zOJUZC126te7XcqYCY6wRMlbaSW44+T+IeHUeQUNkJvZ7csuhUqTTFScglt2Ju6W+qzPs6tK5rKLXdJETTPcjBHj0nID5X8Fm/+Y0pFCe/MYXi5DemUJz8xhRKXYG4R7HlSgWtyVQFsdlcxZS25d+Yz7Yqnj0BA92TUOfex9tLiZ1utHx3A6IN9bMjce+o1pLjw64eFxEx7uh39kDwW4EzsQ/uKxILc0t1b9OjLnWe3LLjXKjsNLf/H4mhAxBcI1jcI/cd9SicNyoqp3oFXgfLamEN6bxL7FrJvSzHLfQ9BJFzCO95v/mNKRQnvzGF4uQ3plCc/MYUSr0DwaCF2LJREWG2UycRlRNOoSQ3IuL5QM/zcQece81UYidrdfNNNguJkXhFgxeoJHQPRLx9iEVEHEG8T6WjUGM6qPIEPyp5JWGJBlWQ0y3Vd5C+swMiIpf05omA2eIluP768NylSnpHlSrIA3DAkfBG7kK6bhIqqWcelkXDea92un8RES+7Kl6+soNSXdiCIZZGG2OKxMlvTKE4+Y0pFCe/MYXi5DemUOrZVBXE5RpUfFAVafQ2jd2+TEylfg5W1zNQOi8aVfFpPDRN4iE2laqzpOKSGj5MjBs/AgX5CNaMLJpT+AdgDOr8uAejoEEBXkKT0Bqum5TmiIhFq3sw2eoeLOBfhQhQvqEZaS70zwNBynxERA/uO9dOTc1WyVpMKn4H6ucb6EtB5ziH5z0i4tPQ61529d+MMRxH/4X4zW9MoTj5jSkUJ78xheLkN6ZQ6k9mB1kHrsFauoBmm1P4ObkEoSMiYgLi0AIaGpIogpbKzJpzEqpmNUzNgWlGvcTv5SutiiyPoDx9DybVzKEB5FmlfQPOQdyb12OJ7cM1rkA4+wT6JEREPAU7NZHbrJNEwBbWITIbjxKpSUFk261gfXLtuLlNS6lZJ9mhl9Af4LzDU6ZI/JxCA1fqLUFWc7/5jSkUJ78xheLkN6ZQnPzGFEr94756fw5BO+mBqLEEt9OyA6JEQvBbZ45zpoaLVNtO5NZfk4Nt1oO6+IrPew96ILzV6iSeo7EKi8uV7sGLtTY3fVbrcSu4nHuNrusViIozcAxGRJyBW5EaZPaghp4ENhojjQIbXo1CohsJZxERVUdFzU0nTyyeQQNPdPNBHuQ+n5vMZzEi8dx29VjaF3Iw+s1vTKE4+Y0pFCe/MYXi5DemUOqPobz1ERQAHlGjT9A0thBLyXoViCJjEJZocs5lrWIaTVMhhx+VmFLTywmUVq56+eWpVGVK05CIGQg0p1BNTGLqCj67gWtZJgTXbXLH/jcsIuUJXbmlugTtHwlnERHLRq+xpQ6XmVCJcAVl7NigNHOKD7ofI+EQ7OhzSwIk4Te/MYXi5DemUJz8xhSKk9+YQqln2MdNBT9y+PVAl7gDYsMG3GURETU4yfrwe7SptGx12lPnFjmgcsdNE/R9py2Xwb5fq1A57apQeTTT2BKW5/lAr/EYSnBpnHMf1pt24GSnDraIiAmNpoayauoBeJsyWOrD16/AbQhrPYYR6xERB7U6JcfQ945YZ5aXU8/D+RbcgZll6CktlFyD1BeQoPP4zW9MoTj5jSkUJ78xheLkN6ZQ6lWmm4t6z5EIOIBhBYOE4HcO5bFX4Bpbd7R33SX0rsMSTHCDkVNqr9Zz9GBwxsuG+6tdtXru96G0clxRfzU9D426nkO/tlw3HjkdrxLi5dVW3ZOLRkUtclSuG+jXB+emkeGjngpxXxjckdjD3qHGuirsRUTchX525Cwl4fsy9P4uYJ9PthOJkeDHI82hRDjhkuTBJOAuzOwf6De/MYXi5DemUJz8xhSKk9+YQqmvYCrurKtuqS2IDQcgkhyAwLYPAy0iInrgJFzAONENCBgkc+FUXRDYAmLDSgU/mmxLbq6IiEvo10fCSx9cjWMY0DEAsZDgnnnQtxDcaiTsRURMNlrKTIIRnYfumfaFBNbX9x5I7M/rL0rsj1oV2GoQ5yIiTuCB+hgcgk9rmGwLz3wLPSqvQFQk0P0I+ZIqyd2BEJi7B3Qev/mNKRQnvzGF4uQ3plCc/MYUSn0OLq9j6Jn3AESyfWjiNwJBpItlwxHVTkWW844e+3SrU2NPNlcSo3LLLohN5NwjUSq3PDWCy38R+LntgGuMymVJCOLJxBrLLTuNyO+FSI4zcqdRWe5BTx15X6rVufcn9bnEfv0v39Pr+88fSSwiYvA9FQdPJq9IrIIy2h49OxCrIZbbRw97GSYmE+/APZv7nRb8jDGf4+Q3plCc/MYUipPfmEKp5yAEPQW32qjal1gLDr05DElYdVmoeAzGqE/g3GdQRkviHopNIO6R4EefJdEtJeyR8EYiIrrv4DvXAf0IyemY2aOQ1ouEvQgWhwg6qgfl27QOFCOZ63SmwuCbx88l1hyrABwRcT45kNgFlJJPQGhe0P6TwHqLASTUyzBFk3ke2j96dvzmN6ZQnPzGFIqT35hCcfIbUyg1iVqnMJ02oCr3rNKeawe1ioApoeIEyonPWj03CVj9zJLXCn7fSGwiR9YO+hZSaWsEl9ai4AcOyNyea+zm+/m/b5O4FxKhaH1o2G2uK5JEzpcg9v7dUMt8h391pudoVdiLiPhRpW7VZzAp+QwE1nN4PicQW4KYmrtXNwH3OlPwxSEpt7oaY8z/WZz8xhSKk9+YQnHyG1MoTn5jCqWmSSypiSHXWXZVLaZ65+TnoakkKZV7XW32mGup7MK90P2RQr4DZZ4mzURELDc0TUfXZws2UlJxSZ3HJpqZ60Bq703UZ9pV/BcHPL9kVV509bk7Xl9K7J/7euZp/67E7kFviIiIOewBKftnoOJfwQjzC/gnjBqhzjd5E3tusge3UfZt7zXGfI6T35hCcfIbUyhOfmMKpSabJVlnSTDAaTE3qG0m6+1+Vy3DRAPKUq7VlerQyebcgn8111YcweOqc5te5tpkcwUjOm+VGJ1OIilBe43NI8neC2szC20me9LVBpwfwCSli8SIbmJO04syxb3zjTaTPV9pbLFVAfEmtfu/CvzmN6ZQnPzGFIqT35hCcfIbUyioXlEdeh9EllFXO3DW8HuScv0NoUlAD8QmGtFNos26o8ISiZJbkPxyfwVpbHcEC2rk6MK6eHIhkjBIoh3G8qYUDWh8eeI8dC8k2pHAmkvuRKIpNJ3NFSkjIhY7dWNeNSo2Xmy1cSyJe9O1fpbWgYTd3Mk+KUg0J2eqJ/YYYz7HyW9MoTj5jSkUJ78xhVIPQfShEtoxxA47cByIeKOESLa/g0aacNwMhDxt4RhxCUJOQ1N84BpbauqJE4DyHX7oOAThhZx2JCzSXvVg/PUAhNi9SveKYilo4s8MRnzTceRso9LolJh6nSXtc2LKEAm+MxD3Jht181GMRE4UZ+HZQXdnpgAcwe7J3FLtDkzN8pvfmEJx8htTKE5+YwrFyW9ModQjKKGlstq9jgpLo0xx7wCEvYiIvV2eu6kh1+AtfrewvBW+j4SXlCh1G6cWOfL2ahBYezp95k5vrMd1hxIbwv7ReSPYVYeuuK4KZ/NWRUAqGydRisd263FL6Ds5TzgLqUclCXlLKMElRj3NjdxR7O0tp/jkjmin55vwm9+YQnHyG1MoTn5jCsXJb0yh1ORYI3Goj6OuQTgDES/tWFIaODQ14vs62GeQzgJfV1Efvcx+dBF8j6keedcZ1OrII3Hv0eAVib1ZHUrsfuj3baDMcwrut4iIOQwW2duBkxCek2mrQuW0VWGQhDjqo0hiIZEaN07i4Aa+kxyH+z0VTu/29yVGjlh6TkgMJZckXV/qOy34GWNujJPfmEJx8htTKE5+YwoF61PpF4Gn3eZ9YS+h19GxLKcpuX66NfXwyxw2QmLTvFGBJvV5ElNJBBzXKizd6x1IjMS9r7f62aNGr+VlpSv2HMo8U+SKSA0MOqESXBRnaTIx7BUONEmU9JKrjnoX0h48Gt6TGO3BnY5+3wqe5Bcg+L2otU8g9Q6MiJjBs0fiIPathLX1m9+YQnHyG1MoTn5jCsXJb0yh1CQOkLONfiWorLYPUtwoUbrL3fD03DP4OA3yWGWKe3MY+rCEGLnQVo2KVxEsOJFrjPrwHdY6YfZBraW6b4SWk761hknAtDYgSp0nBD9ybpIrkoafLKCHH7nslrCOdBwJVSmXJdED0ZXck18e3pfY73XVUfkeVP4ewTVewnk/7OkefADuzo8TZeMv4kpiFyT4QZ9BmhrsN78xheLkN6ZQnPzGFIqT35hCqUkQW8IE3A0M6GBhUMWiQcLhR86/FTjRFlCOegpuqbNmLrE13AsNlqC+bnMot0yJTdTHjZxko1pFu6NaBaiHHXWcvQ5a44Nay2XXDfQEhJJcEmcjImqIr0HcO210zV5sLiU23eo1knCK4h4IqeSmpCnEESywvja4K7HfB3Hvz1qdyPvGN/T+qBXi+U90n3snKipeDTSvTqFEOIL7RJILlcS91VbX229+YwrFyW9MoTj5jSkUJ78xhVKTgLUEEeGqoyIC9b0bgCixn5hsOwLtbAri3slOhbfj7URil1sV/HL7wpGbj0pMaSpqRERVwWARuO9xBX3hKnX4UR++Vxq9ntGBXndnqZ8dbPW6B4lhKiQskQh8CQLrxVrLUUncyxXycqGpuBEssD6qtFz620u9v9/4C+jL+M3v6kmWKnw++IcfSOy1v9bjeqF7T67bCBaqc4VTKqH2m9+YQnHyG1MoTn5jCsXJb0yhOPmNKZQalW9Q9nvgYexAPTjW/SeaPx5AM8sJTItZZDYppHuhBod0HCqkoOynRnFTnCy/I7Bu7kOtPVlvV2TvXFOTUL3uITWyTKj9xBLWG6fuwDre5F+THHCtE9OR6N+V10Nj73zpWL/z69+QWPft9yS2m13oZx8/kVgn1C486ei+TMC6HsHrjf+aZK6t3/zGFIqT35hCcfIbUyhOfmMKpU5NoLlOSui6TgUi4Dhh7yVRqwPNPmlk+LCrIhlNlcmdXvLLgK6HRECSZy5A+PxpX9dht9aR0fdhQg79ylcJXQin6WROzsklV5QiqMEoNUuNiDgE6/SXt7oaB2/lPRO7zz7Q2NlLiW1/+lxiz5oHEnsJ1vVpo/0PIvLHldNzt4O88pvfmEJx8htTKE5+YwrFyW9ModS5TSpJBNqBYlTDtJH1Tmuqf4YeS79GJDVSo1Ai1wGV7YpKOfwyr4eEswlMC9qC82sKTsALaAD5qNH1Hrcg4iUumaYh0XQeeiZoHcnNhzH4vtx1pXHoEREPK22O+pUV1NW/rc01YwOjxX/yY4k1H34qsZc/0Cf5k74+71MQZ1P1/AQJ8V0QlVvok+E3vzGF4uQ3plCc/MYUipPfmEKpaZIHOeCwVLPWGAkQd7os+I1BHJyB2HEBJY4ziJEDqgXxEgXNTMEvJQyiKw7WjNxbdD09WJtzcDpewNoeVyoCHtT62Q2IeBERx61e4xVM58ltHkmxfIefHteH4e4HMOY8IuLtUMHvnXdVoOu++x398FA/uzs/l1hzrE1LL84PNQYCeQPrQC7QCH4maFJR7rPsN78xheLkN6ZQnPzGFIqT35hCqUmUyo2tGxXYcsWriIhlpd85A7fb6VZ7n9F0HpwMkyn4ZZMQU2gtIlQ4owlC5E4jpyQdd5b5WdqD1DqQKHm10fWmUdD0nOS6/gjqzdev9J7v93QKT0TE70LF+vi7b0us+7Vv64ErFfLaSxX8ov5IP7oFpysIfrQ2ScEP9npQ/fzPst/8xhSKk9+YQnHyG1MoTn5jCqUmBxyJEOjcgj5zeFyiRPG01jHbJBgtYVhB7uANKuklsek2olRERAMluCSo0TUuQeChsszcnoBY5gmlsanS0Q2Il7QvuU7J3HXMLU8dVFra/GuV9jKMiHh3/0y/8yt/rLGjhxLbzS71C8cqLHZqvcb1TgW/BZVAQ6xKvJNJ8KU9oO/kZ8IYUyROfmMKxclvTKE4+Y0plBoFMRwjoeSWy5JYFBExqbRMlESt3PLP20x+xe/LXIeI/F5zfC95a5Y7NZgHg0A5Kez9Tc5NYB8+HCLx8zv8hlCy/LDDZeOHr6rgtzs7kVjz73+vx83V4bf76EOJrZ+pIH0O/RZnHRCpE2XVBO1rqndhzmf95jemUJz8xhSKk9+YQnHyG1Mo6PC7DQ24xlLiDsXrKq9PGU1lpRg520iUzC1PTkGCColVBK1DAw5Guh4SGtHBeAPBL/eZoHNTDAY3o8yV62DMFbkiIp5/dCSx3vf+Uc+9B4MuFnqVq1N9xl58ekdj4Pqb7nRPl+RUTTgvKU4xEl0t+BljPsfJb0yhOPmNKRQnvzGFkq+cZEJurpscu1ere+uwp8MTjiC219XPUu+6FYgsS+gduIBY/rAJFuhWrfYZXEIvPILOTb/eLWzBTUptSbQj8TK3dJjExmyHX6Kf3XU+abXHYETE34aW4L7zfS3/HcNedbEEV+9vBtd42dfPLkCco+Ez1EMxImIBpe25A1FINPeb35hCcfIbUyhOfmMKxclvTKFkC365Ql6uWBTBwxcOejpt9fXhfYm9WekU1PuhZZQVXM+6VnHnEtxXkwBhMOG+moJwc7LRHoUk+P3CB4sAWPqb2Bc6FgeLkIiU+Zzk9v+jfn10jrNWy8MjIv6t0ns8Gw4ldgd67u3t9Dw90Clpp06gv+UEBOR5o8/NfAuTRoKHpOCQHNiXHkxz9pvfmEJx8htTKE5+YwrFyW9MoTj5jSkUVPtJ7cXa7Uxll6auRLDaf1Srbff1Si2av7VTxfbhFmyNoM42YPnddPRaFnB75122pf4ImpFeNBrLnRbEjTnz6t2xdvsGjVHpXwBS3fegkSaNB6dz5/7DQc/doKvXkpo+dN6CVRYex0tIhSGo5vjvEej9n8G/Dy82VxKbbfX6aNR8BK8Pre24p7lxr6855De/MYXi5DemUJz8xhSKk9+YQqlvI+7lWjlTx5Fl9KBSe++rocLSPdB3Ri0JfhrbA4FmCHbMDtRznwRPhjkb6jV+AOIXkSvQkZ2WhLjcBpcpwY/OPar0vmmvhiDGkUhGk2qozwI1qKT1Stmhr6A2fgEWaxx1Ts1R4ZmYg233aqv9BSYbFQFJ3EvdC+5LrftCovkIel34zW9MoTj5jSkUJ78xheLkN6ZQbtXAM1cYTDVhJAFrDwSjHpyHPFDLzNEwhyCoHPRVtOl0VNyZLXnJ+lAP3gfXIAl0BK4NOOpIiKPzEmvoYRDBLsT9Sl1jd0HwG4ReN4l7czo3PCZdqKknQSzV9HIKDjqccpM55QinK91iAlTu2PWIVJ1+Xp8Fuhe/+Y0pFCe/MYXi5DemUJz8xhRKtuCXO4L6Jo0iiTWIMZfgvjuvoEQVRtUMwPVHzr31FqauNCqmfdhjwe6yo4JhD9bsoFaRjGI0fegQRLf9jh43AGchCT4zcLpFRKxD13vc0fu+28lrCkmNUFHwA2gC0AbuhRqjRkRcrdVpR40wcycI5Zax537fTaC1IPEytRb6fcaYInHyG1MoTn5jCsXJb0yh1NRfj8S9uoJ+ZpmlqOQEjODxwpeNCjTPu+Akg1gH9MtDuJ75To97tgNxD6p3n3R4msoJ9IqjwswRTE4ZgavxfqVlma91VPC73+q+jED4bGALTrtcOnrZUTFuAO+Jg53G1jjWWlnAOUjsJUhMW0M5cCpOzx19JwrVoOPlity5491TYuEGrnu+0eeR8nLT1c/6zW9MoTj5jSkUJ78xheLkN6ZQahqcQSWBVE5IQkduyWME9y+72Mwk9gzcbn0QNSg2ohHNcM+PKxVEHu9UfDyHQRwREZvMkdoDKME8BBHwUaig+dsb3YO3oJT17kivkdyPZws9R0TEc1hvgvojnoMw3Kn13EtwbS5RBNTYAnrmpQZd3Ma5R2I45UHuqHIS/Eh8JGHvZ5/XZ4zcisS61nX0m9+YQnHyG1MoTn5jCsXJb0yh1Hu1ijs9EMR6mWWiub3LIljYoMEGWE4Mv1u9GoY5QN+7SygxfdxOJfZyqzEqoYzgvnk0wKKGHnd78NkH4J57faturtce6uTXg4fgQoTpwvcmKq5GRHzxStdsB4IhcXqpzsTYamzS03Och143iXuTrT4jKeGLRDYc0AECHYnhlC/Ul5FcrRtwG5JQSXkVEdE2mkckGJLrj47zm9+YQnHyG1MoTn5jCsXJb0yh1CTu0XCIGgQ/Er9I3NsmxKJd5rCDS+jDRmzgek5gsMR8pyLLyUaFs0UDgzwS5cljGp4Bbj5yfvXgN3gIwyqI5VzFpuapft9NWsrVfd2X/ljXjETA0UKPG6/zBmJcQVn06XoisYuVCpX03KQgcY+ceyTuHfZUvKS9J2YNl4NfJyWQN63GW3jmsWTZQzuMMf+Dk9+YQnHyG1MoTn5jCqUm5x4JVeRg24ALDQU/6B+WOpZKMMkZdbFW0WcODrgXIF6S+EHiHgks5PqKYNdYr81zSq6hy90UJgQfQ6ntZKrn2IKgtYFYnVAB70AZ7WEFZbRwf89giMj7fT3P40bdk89XFxIjcW+1BfEx4YojgZb6UQ5qFU4PeioW3+sdSOwOiMoN7OkAHJ9Y+pu4F3oeKV9QiIfP+s1vTKE4+Y0pFCe/MYXi5DemUGrqP0biHokVHXChkdiQEvwIEiYIcjGRy2u6UdfYbfq6UR+1FCRC0QTVCkSpT0GA2vRBMILfb5piuwEBqp9wK95tVbTbh9gZCHlPunp/JO49WZ9K7BJEXBL3aO9T5PajJFcrTU9+WO9L7DUYIEN7OumOJXYCw1mOK3U1RkScdjWeO4V4A7nhN78xheLkN6ZQnPzGFIqT35hCcfIbUyg11emTQopju6EZJVmD2yphvQQ1fQ3NNUndpX8FuJeAfjZ3VDJZL9ewDhH8T8Osq/80ULNHYgxW3nknr26clH1iCPsXETEBC3PV1bV4Gnp/n0JfhJcbqMmHyUykUufWpt8EepZpXw7BtvsqjEl/p9G9+tJG94B6NFxW+n0/7t+RWETE+z1ds4/6ZxI7Bpv01Ur/FfCb35hCcfIbUyhOfmMKxclvTKHUJGpRDXSqxvg6OEkHBMSIhEAHo5vpuFxxD2ug4V7I8tvi2iSmD4HgV3Wh3wFcz7RS4eykUnFnWeU1qSRBk/oI0KSgiIiGJjHBfX+0OZfYyVoFv9lW74/EvdvsFYnHqc/jdB4QqkcdFQEfhMa+ulYL8rtvvZDY/u/kjT7/gx/wPn//6asS+6eB2oP/o9aeA4/rlxLzm9+YQnHyG1MoTn5jCsXJb0yh1CQOUU1+rvBCpKbckNOKwCaFv2BxL/e8N3KXgTZIbkda70mjY6jX0FiT6MJ674FjkFx7ERFL2JdzmKZD4h7V5NMo9puMcs8htae5bk5yuo5B8Lvf6tq8caTC5+F37kms+ta39MR7Ks7df++HeI1/+Dcav/svKgLeHdzV69nT/feb35hCcfIbUyhOfmMKxclvTKHUJDatYUJOrjj3y4DchSTk3Ebc+1VBYhxBe0AxuufcvdqDpqwRERsQ3q4aFfwmGxUlc517JO5Rc9Tb7h+KthAjwW8fHJAPtvrZu1+Ectl3vqax3/ymxo4eSqy580BiERF7S92Dr159ILHVf31BYu1Qm4f6zW9MoTj5jSkUJ78xheLkN6ZQ/huUTb1T44bMGgAAAABJRU5ErkJggg==" y="-2168.383122"/>
</g>
<g id="matplotlib.axis_123">
<g id="xtick_184"/>
<g id="xtick_185"/>
<g id="xtick_186"/>
</g>
<g id="matplotlib.axis_124">
<g id="ytick_306"/>
<g id="ytick_307"/>
<g id="ytick_308"/>
<g id="ytick_309"/>
<g id="ytick_310"/>
</g>
</g>
<g id="axes_63">
<g id="patch_64">
<path d="M 299.674375 2293.284886
L 421.964375 2293.284886
L 421.964375 2165.991358
L 299.674375 2165.991358
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_125">
<g id="xtick_187"/>
<g id="xtick_188"/>
<g id="xtick_189"/>
</g>
<g id="matplotlib.axis_126">
<g id="ytick_311"/>
<g id="ytick_312"/>
<g id="ytick_313"/>
<g id="ytick_314"/>
<g id="ytick_315"/>
</g>
</g>
<g id="axes_64">
<g id="patch_65">
<path d="M 434.924375 2293.284886
L 557.214375 2293.284886
L 557.214375 2165.991358
L 434.924375 2165.991358
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_127">
<g id="xtick_190"/>
<g id="xtick_191"/>
<g id="xtick_192"/>
</g>
<g id="matplotlib.axis_128">
<g id="ytick_316"/>
<g id="ytick_317"/>
<g id="ytick_318"/>
<g id="ytick_319"/>
<g id="ytick_320"/>
</g>
</g>
<g id="axes_65">
<g id="patch_66">
<path d="M 29.174375 2434.702546
L 151.464375 2434.702546
L 151.464375 2312.412546
L 29.174375 2312.412546
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p530dc7bf64)">
<image height="122.4" id="image262998ffd8" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncuP5PiVnW+QjHdkRGZlZleVqlut14wM2BhhvDMMA4YNGF567b/V44U98MKe8ViG5LHV3VJ1V3W9svIZ72CQ9KIxWuT5CLDd8Ea/8y1vkkHyR14SOHnuvb1//+N/18Qj8ug9DsUwMomNernEJo1u14ffi4jYhxw6lnGU2DoqiVWw77Gp8TiPWfT6Ensag07n93Wzwd/8WG8lVsH5zDI9zuf5TGJ/Wep2F5X+3odC1/s+0/Mm+g3flxkso65YxJXe/vgmK3W7Zi+xEtbmpON9WcAzVvGlxNuens/LaiWxd+W9xFbVTmJ1o2ub9fTgk3wosUU+kdhZPpbYi0xjERH/Yq/r86/+ySuJTf/l5xLrPXsqMV1FY0wSOPmNSRQnvzGJ4uQ3JlGKH8VIg7BhD0S7PuhKGWxXg3D23bb/77T9phwDxBgSC+97KiquGxAfGxWQIiIOsC0JflsQq26ag8ReF3oXclgxkjjpXpVwzXWP1zDPdP8eHGgCsRMQge/hvHcg4j7AOlRwjsuMnlDmHu5XBauW9fQcc4jVjZ53V/rwe9OeXsui4eub13rszksBeeAvvzGJ4uQ3JlGc/MYkipPfmEQp/vyoAs0B3FLkoCKxibbbtrivDiBCkUBH2h45rQhyK1KMHGd7uEISC78PLAKqWHiTqbhzmpF7UmngHHcgnOlRv6PE+wWuT1iKGbgGJyACrkKFuA2swx4Etg2IZHRPIyL2ICwe4Dfrju7QHwIJiOScnbRcy4Ay7gd8vv3lNyZRnPzGJIqT35hEcfIbkyjFXzRrCd4ctRxxCWLTBmIreJ2wJy5IQ0Ihr6ubrwBBZRIqNpGrioxSpCnuoOw0IqICCxy508jlRWLVAQSoFZTqTkBgW8Nxb8HBuGtxq1Gpdg1WskUNrk+4Fvq9ApyOxJ6ckyQUt4hkJVzjvtbf/CGOUXJUEiT2HuG4Rcup9FFiB45wX6kUuduvGWP+1HDyG5MoTn5jEsXJb0yiFD/++a0Eh1/PJZbtta9YSeIHCFDHllcMOcxI66AYCS8jeJedggfuvO7WZ3ABQtUIRM6IiFsQEVHM6dgfcQzHPoJoQ+7JOxD33tfaj46chRERI7iWKlMRODJd2zHcrDE8EyQCrunZgfM7fo+yWhIHqaSXIEceQSI1iXubWqXvLTg5jy36IVRaB93CZq+l0b299lH0l9+YRHHyG5MoTn5jEsXJb0yiFINTFSaKb8ENttf3xB0oELc5DeJggWUHrjgStcgBN4D31hzcd5cg7l1A3fG41uNSaetZzg6/FQl+sH+be+sxcDoBhrrYgaB1C33rbmCoCAlQERHDjo3h+nD/L8ArSfdvDM5LFBrh+qhkua3Em7SzPoiNDbgiyTV4AAmS+vqRKLmrVYhbQt/CNTVMjIg9uCKPa+gzeKeu3d7Jg8T85TcmUZz8xiSKk9+YRHHyG5MoTn5jEqU43Gn+f1jrKOE/DFQhfZ2r8nlPTRhb1P6OPTix1prq9OeghlLN+QJGXU86NnC8aHGW0t4wwRrZgI30PtfYLfzgHdhDV6DiL2u1d+4qVZojIvYN1N/Dd4L6IkxgO1L7C7BnD2HFjrCyNIodG7+2QP9V2PX0ud2COl9W3azFZO+lqU4bOMZ9zse4g/NeftSJW4NXoPZnVxLzl9+YRHHyG5MoTn5jEsXJb0yiFPulighv84HEvgFx7zVYRlcdRyJH8MhptPKCHXNI45PhGNDzMgpQGocw2WUANssBCGwREZORXvdwpGtWHvRa7lYq2jSVxu6hl8AWrpom35DdlJpbRkTU4C3eZ/qbBxLj4PdI+OzDvSfLdg0iF3l22yb20HFIQKZx7ETXUewU69roc9NyX971NS8vbk/0OF/p9Z0eVhLzl9+YRHHyG5MoTn5jEsXJb0yiFMMZ1Cd/0A1JhFiDuLcmV9T3aLhIU3eGNJIZaslX0FByCyJZ3XEMODEoWLwcjUHwm+jaZtDvYLjT9QF9NUqoOd/C2tII6qarnTK4jp3EKhLoaLz0FBpz0nenQsegyoXUbHXQMgGIOhPsYR2pseox6ybkEbTdAK5vDM9s2/SgD3A+XxbaWHV/fSqxZ2sVC/3lNyZRnPzGJIqT35hEcfIbkyjF4FzFhfkXKiz0B93eE+Tma5uwQtvuQesoYQINuf62jYoaexBZ9iD4URlrBSJSc2hxaS01tAchr4LmofujHpvOkUZvb8CZ2HWiDTWyjIgYggg1y3RtT6Fh6o9gPNMZlFCTW/EOypgJ2oqcnBHcRHUFz92OXKTwTExhHWiyDzUZpbLoccvId4LGrJOiuYT7976EKVydj2yM+ZPCyW9Mojj5jUkUJ78xiVJUWukXA+qZB+LXEEQSKtPttfVXA5HmWIM7jYSuTB11KygoXYGgsgGxKev4HuyDCBQRsdqr8lKAetmDiz7Ase8LXbM76DO3hD583ONOj1G0CH7TXF1jCxjRfQ5r8azU+/dpf6PnCJOUrvd6jBXcKxJDaVz8d9tqrAJ3aN6xByBOH6KyY4Dcq/R7NKUogsuOSxAvqf/jG3zmjTFJ4uQ3JlGc/MYkipPfmEQpXv9uIcE1ldXCzjT8gEoUMyzpjNjXULcKryMSAdeVDqG4BXHvI4zUnkGPwj1cM70ZoSI3IiKGcI00jptWgkaBX4Nl7QZKqDcdeyaSC41KpSMiZj1dnzlYyWggymno+Vxcqqo8nOu9v7jRp+zDx5nEris9v1XWMiIFxD0qCSboVlO5LW1HQh6VRVP5dFvxNQ2/odgdlG+XJAK3HMcY8yeOk9+YRHHyG5MoTn5jEqX4TaVN/+/6KkLUICycUD1hpsMmdi0DETbgWFuBiLRqdhKjCaofjyos9UHo6oPb6QLcbgNQXgYt4mUF8SHsn4MYswN32RLKN6lnIomm1D+OBD8qi46ImIJou4B7PYN2dmNoPjj5RM979Gcq5I03ut3kixs9v1e67812rCcTEQ+1nncFfQGHIAzSnaapwbTe5J7k3ohK2wASEht3HXtr0jRgf/mNSRQnvzGJ4uQ3JlGc/MYkSvFVn0pMu01fPQFRYwxiyhZHJ0TcBpSjgtBF/dWoT92mVtff1XEtsVlfBa1JqGBEAk1bxzXqITeCabd9cl/l3Rxn6BD7AQNI2qbG0jAOcsXRl6PIof/jOYhfP37W6fdmi48SGz1/kNjze41FROxv9dl7+c2ZxK5zFarfgkhKa0vuORrtQSXwJEi3CX5U6ksDWra1Cn4PlU7U9pffmERx8huTKE5+YxLFyW9MohQ3NAgAIBGC+vqdoEjGAsYWjk3OKJpu2oDCRk4rGp6A5Y1wijNw7U1ahrTOa/3DE3Df9UEKaqBE9QT6sC2gZHkLjkoSKqmvX1uvOHKNbWBCLJVB53Bf8ouJxHqfXOqBwXmZj/X68p/ouQxP1KkaETGF2Ow//q3E3v8HFSBfDvW5u4XvZVf35BTuH00hbrsv9NweYGjLDhx+JJD7y29Mojj5jUkUJ78xieLkNyZRChIXSJ4bQpRiExDJqpaBCH1495ALagIlpgWIjSWIGiQWdmUM4t4pTJyNiFjAsSdQskyQ64/E1HPorVeCwEaln1TSeWgptX5odNtlo/eAJiCPRio2ZZcXEuudnuuBc733zYn2mOzNTjX27Gf6exHRG6nkN+jrOv7yv/wPif1tpce+gmump/sEpvnS/RvBfV6in5YhkZvg/oHGmCRx8huTKE5+YxLFyW9Mojj5jUmUgqy3A1AgJ7DdHJptjsCZSCORIyKGYOckFZ8my6ClEkZG03ZECQr5EU67rfKeNNc1KeTwCyuw8kKbhZjDu3oJ9tAH+I/JFo5btyjFVCO+gyukvfMCogU0CoV7H6DM90ZgDT7/TI978SmcTUTA/a9f/FRil5//tcSefal1/+9BxV/Sf73gvizg+RzRxJ6WxqprajwKuXEA2zzZ4f3lNyZRnPzGJIqT35hEcfIbkyjFCYgQZNE9o3HMFdRug3CWtbxjbkHYuKdmnSQtgSBW4Jht6C/QUQSsQN3btYiXh0aFlz1su4bd6TjEiPoLwGhqEj6pvhybf7ZsS/0cqOr84UHr7y9++0pi/T7YZD9VIa/3/CcaA3tuG81BG1dGpfbZwble37P/rc8d1fiX8HxSE1Syw88gr5qWceN76AdQQp8FyheyfPvLb0yiOPmNSRQnvzGJ4uQ3JlGKT2rNfxLynoBIsuhYrz4qec7NHoSlXa5izoGcaOi+A7civN9mNG6aGjOCorVtEcl2oNHcgatqB8ILuSypeSiN/J6BI3IOwlAN50LNTSO40eQFxOiuvj+oI2/637Q/wMXyS4kNf6Uj1rMcmreeqPOuzvkZa7Y6yae5fqf7l7oWNHGJ+iyQm28Cz/YIxL0pPNokUkdElCAEbuBZ3oLrbwc9AvzlNyZRnPzGJIqT35hEcfIbkyjFLw/acPGkp7H5VMdfj8a6HbFYsyNrvNUSzhzGZ9fQg/Oq0fMhRiDG0GhxEmMKGsfc4sZ76OnGd1BauQeRjZo4DuG9TA4/EgbPMl0wEhXzFvHyDNyKz496PpfQzLSE47y902k6zd/rdp9kKsQNZ/qMUFPPNpr1vQavPkiovNPNSlgf+loOwTFKwuAYnify8pGwG8H3n8riScclcddffmMSxclvTKI4+Y1JFCe/MYlS/PnTGwn2RzD55kRj+QRcY+BYmq1YnJveqPNrfq0Czym4xn4PJaG3ILBRb74eTRWC7agkt83TuAfBbwullUeYzjMkYYlKluG4JAJRmTb3amTB7xJcn8+Oei0LmPizg+/JLTkO72cSK36n9+9y8Y3E+nMex43stKS3vr6V2GEFpbooiFIZezdhcE8/Bxu2yej0jNHYborRiHZ/+Y1JFCe/MYni5DcmUZz8xiRKMf9cxbheAQLGFHrAjbqNvy42LGH05zuJTRYqAp6803M8W84l9vuBns+3mYpIm56KHyoBRZTg3Gprt3cAIYiMWgWISCTQXUBjvzk46m5h4Mc1qIUkVHKnON6WxK8duNhuYcz2Awin981QYvVHHb2d/3e9M+ej/yOxYt/i+AQHXP1B7Xz7LZQOw8911OxQaL6H5w6MpSg+R0Q8gKC9BNGVRq/b4WeM+SNOfmMSxclvTKI4+Y1JFFTscHgr9DOLAgSxAQx8mHB/tWwGfcXGKtzMDyoMzldjiY2o9hdebzu4wE1A+S30Qhu3uOJoyUjIO4ET+oVqnPFn+VJiPRjd+9tK3W5rEJZuGhVdyZkWEVFmMByiDxNiofT3HsRGcjpSKXIdUPr9Xvv1Hf+Tluk++fZ/6b4RkY11vffv9RzXKy0TJjGuoNJouBZy4z3AM0b9KUksjIjY1JovK7iv5PAj/OU3JlGc/MYkipPfmERx8huTKMXuSoWcEiZQFAMVEYZnG4n1L1UEyp+oOBcR0ZuqyyvuVPBb36sQdNNo7BYsaysQv1bogAJwEjC7GqfgdjuH0tjPSj2fX87Ucfb0H68lVulMi3j1Gy2BRncZCENtlCBWbaAvIH05SEwlWbGCdSzArUgi4PLmXGKLa76+MTg8c3omKhU5K3ieQHPFXog7EDkf4Llbfw/B7gCC4Q5EwLLR7Wigjb/8xiSKk9+YRHHyG5MoTn5jEqW4u9L+ePdrFeIqeE9M3qhYcXGpqtTJT0Gpioh8riLL7o1u9+pOy3e/Aifht5mKH9eN2uc2ILyQ220EJb1tkPPvHKYdf5arSHoB6zP4mZa3Nlu9ls+/UGHwaa2uv3voo7cDASmCS0rXsGYkS9G+1D9wR6IbSYMk4kKZ7hBKhCMi5uBMPav4uh9DQuUQ7nMfBNIjrAM9d8ta72lbSW+F/fr0Wqh8N4dn2V9+YxLFyW9Mojj5jUkUJ78xiVLcrkcSfB8qnmygD9uwUvfV6o0KSy8OD3jw6ZmKHVevdZjD60KP822u4sm7Rkt/H1BQgRLTnh6jreS1KznoNmOYbDy4hP6IT5/ozkM9x59uvpLYv/krmKgbtK7sJKOSYCrLJTcffU3IXUYuRHJj9jp+n/otpdY0/KQPxx6Q+AmhBhTIGsS0ZUexmMS5/x9kdvgZY/4BJ78xieLkNyZRnPzGJIqT35hEKe4aVefvoTHnBl4T1LgwoP56cKNKc0TEZq1K/Met1v6voK8jq89Q7wyWSnrjZVCT/X3U/iNsmoGSOxxBI82nasftffapxs6fSqz/Qrf7Ry9+LbFnf6W+6d9+fSmxiIgvBvpMvMvAjgvq/AHuC9Wnb+BelbBvHnouM7iDwxbRfFLrb85zfe5mY40tSlX2J3v9T1gOz/wGGp7egMX6AFN46JmNwH8+4H8L6o4xf/mNSRQnvzGJ4uQ3JlGc/MYkSkEjlUsQr0iCoIkmexDOqDliRMRxp++eFQwRIhNqH95b9CZjQYSmxeh2VFfNUgwzhFpysjRnLz6TWO/TX+h2z34usWav9fzE/OqvJfb8A+97u9fpNft+t+/EPdS2rzqKsyS69sEmW0KzVJqkExExgWOfzbcSWzzXWA0q7uCt9r/YL/V8rnJ95qc0vhyub9ciXlLtPo7jbuBZBnHWX35jEsXJb0yiOPmNSRQnvzGJUlCdPola6IqDGGkV25Z3zBEcgjs4H4Lqtwc9GA+O4p5yADFlA+6rQcu1ZDCOewCrUUyhZn2mDsje/EKPcfZMYvX9Bz0ZcLXVO2jAWWsvh4iIPghGE1B3V7nGSCQl198e/GrkGKUmoxU45UY0Qj4ino5V1Lz8C+370P+5rnd9q/vWpQqDV0sVAfvgnKWaeup10NbA80iCH0zsoUafbuBpjPkjTn5jEsXJb0yiOPmNSZSC3HxdQeGMxhW3iHgVCDzkEKRSRnprkeuvABGQxD0SWagUtU2M6Uq10+trNjrFh5x79fpeY9evdd+XLyW2fQkluQd2XlYdnwl0RZK7DGI1xHpw70kQo/Ld57WOdo+IePGrpe7/r/9Sj/McSqh/9/cS63/1hcTo8aZqd1qvI2TR92nqSSJigLhnwc8Y80ec/MYkipPfmERx8huTKEXXElWSIKikF6p0o2h5x+Qg+pDjcA9logS57yY9LRFmp5WCff0gFhFRwCmW8Kurj9oDbvKlina907+RWP3hlcSaP3wpsf1//YPEbt6qi3Db6Np8d3AOP4aEWOrDRxOSCL5/Ktg+gVLbH52rsBcRMfrnWgad/bN/K7HecCqx5uN7/M3HlKDuUV4d4XlHURliESyIDjMVbUncG8F2/vIbkyhOfmMSxclvTKI4+Y1JlGIFM4xJvOpKTYJYyyuGSjj3sDu5EOknSRxqYKDCDvqZEVMYxzyH0t2IiAFcSwlrcXen5Z+jv9ER5rMbFfx6Iz32/pUOAbl6qeLezVqHoXRbhe+ge7CBdaRhHHvq10fOPbh/C1jv8woGcTzVMt0IHn6SnWus2YJguNPfPK7hHsBzwn0wodwZevDtW4Z2ECTkzTIVlc8g5i+/MYni5DcmUZz8xiSKk9+YRCmueioukNA17uiKC3IxtVnGOjrJ+iBADkBMOwFxaATvtwocg/QWHMBwiDlOJo4Yk8MPzvHDUfvm7b6BabBvVcgjlgcVNJcw+KT6HhOHqaz6AYThJQhTW4hR2eoAnjG6V2dwD84aLd/NJy0qNZRL1++/klgD5dLN9a3Eyi0M2QBH3QaesTX4/ta1DnFZVyxe5jSduNB7PYUeh096+pz4y29Mojj5jUkUJ78xieLkNyZRite1DiG47IFDCEQkEmhaikQRqtTVI0eQMtjvOIyD3m45bEjbdf29NpZQnrzKdIU+wKr1KxUG6Xx2Bbgk4SRzWGsSUiMiYOhs3IEwvAbn3hHKUakPHw1YmUL59TmY3eYDFfxAc4uIiObNO4nVJ7/WDWHQSbOByb2VHogE0iUMfHmoVNxbgbi3OrYIfnCRVNJbwQNOpcP+8huTKE5+YxLFyW9Mojj5jUmU4lV5J8FDcaKxTAWoJ+AkquF9QuJcBJcO00CGacsE1sdQse0Q9h3QYAkQbVYg2O1aevhBW7nYwKt1Cypn1yEZWBIKMiAVhJIQ23ZfSjjOCsQ9gspySaik3ooLcPM9OepxF5+oIJZPudS6qXT/3r0+89GHASY5TH3uQ889uvdw1TtyP5JoWresNTxPtP8OYg8g2PrLb0yiOPmNSRQnvzGJ4uQ3JlGKt3stW6S+YttC+8KtMu0LR6WDDQiDERETKuEEgecEJKw+CGeDTPcdDqB/XKZizBYm1l5X6jdcZfy+JCFwl4OISKWe4AbbgyOLhDgS/GhwBvXMG6NEGjECJxlNQD6BoR8D2Jem085A8JvX8Dz0VNwbn2i5czbjZ6w3As8oint6Pr2hPsv9sd6rPk0cxrPpBjn52uIZxGhIygZy2l9+YxLFyW9Mojj5jUkUJ78xieLkNyZRioe9NjgkZZjGBu9gwPcW/gPQZDqlJiLiAvoGPM+1hvrpU52mQoIoTTam7coDWFDvYawxWEP7LVbjLbxHlxlMcgHl+x6U2GWjijY1wqQ67ZIm5MB/I6jRY0TEOXRVeBK67QlNqoHra+A/HFOw8p6Dq3WY6drU4KWuN9zwNN9rDX3stR9A7LSBZ/X1B4k9XKnNnRq10n9H+vAwFmCH7kPPh+/ium3nXIX/mPnLb0yiOPmNSRQnvzGJ4uQ3JlGKEmqHSTDa1yqoLI/Q4BA6RVKzxoiIEgS/y4u1xE5/BaLGg57P7p2+y1Y3eoyHpYo2t0fdbgPvxgEIWhERRUv8MTQe/AGmtiwhRqIdNcek7UgE2mDlf8QYrLenIPgtYHoRCVAw7CdOat3u4qjnMxiCeLUGW/F7EPEiIjtV+3pWQl39y48S+/o/TyX2d8eFxH4PNf53INhyE81u9y8iogYbMVnxN5Crmev5jTH/gJPfmERx8huTKE5+YxKlINcQ1Q2T2IDCIAgdNLY5IrDoeXqpQlf+6VPd8A2MT/6DCipvb7UPwZtMxb2bPohkcH5z6kYZ3Ch0R+5CdOSBEASizwiEOBp1TfX85PBqWkRKagC5gV4JM/h2TEAEpKasc1ivWXTrvXAs9Zr3DywqF+/AwXqjPQKu/qfW7v+6nEvsNwNdx7cwMvy6hkk8MJ1nC8LuFib7RLQ492Dbbc77P8ZffmMSxclvTKI4+Y1JFCe/MYlSFCD4cZkhCyqPIVGijRFsWqiBKnqnOkEoW6qQ0zQqqNyDM+0Kxlpfg7C0A0HsA0zxiYiYgdB1hFLWIYipJ5mKTSQCUnPMHFRTGn3ewD0ld2BExKjFkfkYmkpDk49KOM4Q1nFT6XEnBxU5G1jrYsNTbvrXGgcDXLy/UWH4agCjt0EMXYOgvapVBFxW6ohdlhrblOxWJDcuMYBmpIS//MYkipPfmERx8huTKE5+YxKlICdZ19JRnCBC27UIS2MQpnokqIEbrDdSkawYqAhIpbYkSZK4dxXqlNrh3hEnNIEGBmPTWGzargTVrug4B4bu3xCcgKOWdz+V7w5BZKPy5I/g0qPTvgdRsYQ13Jfa//FkpwLbes/9CHdbjj/modHtKngm6A6QyH2oob8lufGO3WIREVVHwa+sWhy1j/CX35hEcfIbkyhOfmMSxclvTKIUNOKXxL0+CDTkDhzCIAgqRY0IkoZi8xoEw4s3EmtA9KmhBjf/Ab317sEKtmpYjNnAde9hXPmkZSz2Y0gYJHfgAIZf0GqTuHcOffQiIs4qXbMNiIhfFrrdXeiaraHMmwTITa69FR/g2VnUuq7jRmMREbOt/uakBjcnjSUHkbMPI9rbRmo/poGy+K6xiIgeivM0thvK0+Ga/eU3JlGc/MYkipPfmERx8huTKMVioA6qGQgvk1z73o1B5JpkGpu2CH7Udu2br88k9myjU3prELpub/RaliBUbsA9t6SyTBD31tBzLSKiBMGwgWkV64Z6JqpAQ8LgotF1/AR+75OjHvcFuMueztQRGRExGOpavLvRsupreCa+hrWlNdvQdFkQZzcgms4KvWYSPiMixnCcs1rXcdRNF44h/B6VQE9hbaaF5hU5AUnYa4PERnQcguvPX35jEsXJb0yiOPmNSRQnvzGJUlz0dTDBFHrKUZ+5GQl+IFTN2qb0gpPpZYwldv1ej12B8PKQ67vsHfRhe5up4+wae65pjKaiRkRUIPiR8NInlx4IojkMFhnBNX9W6jF+Uawk9uKX9xIb/1yP0cbw73RIyus3zyT2cqDPxB3c/z2s4z0Mulj3wB0Iv0fDSyJYbF7leo4XNfSthPWegLBIJdBVpuJzgAmRnLOrQtchggfn0OAVEhGxdB+PYoz5k8fJb0yiOPmNSRQnvzGJUszJzUf96MBp9QQEvxkIIgMojYzg3n53oNusMj2fLby2HsBRd9NT8eM9CEt3MEF1AyJg21CSmgQ/iB2o/BNfweAQg3V8DhNif/QzFfcm//RUYvlPXtCBo9nqWsyuv9LjvNZjP4fzvoLnZAOuvyXESNCikvMJCNIREWe5Csgo5MF9WcB603CWgOsbQukvOQGHkGs3x7UeI3jK7x7KzrGPJvbbNMYkiZPfmERx8huTKE5+YxKlwCmvHQdvUI+zEfU9axk2AS3gOr+NSHajnoB72PJI02UpBuLeEaa0tkGlmTlcIfZMhO2m0HPvbKJTXsefg2Pwx8/1BC8/0VhE9O7UzZeN9XzGuYqp8xoEZBBsayrfBUclDbogykKFvQgW1PY5TEWG86HncwLP9xTu3wyGz4xAdKtBpN6CAzWCBb8jDPKgab7kDvSX35hEcfIbkyhOfmMSxclvTKI4+Y1JFOysSY0Ud6Cl78CuSDXnIGhGBDdDnMA4blJdaVjyDv6pQPXzpLiTJZJibdC2Ba0PNDilpqcT2PcE1mY6UzU8O1XFPfowqrrFqtxs9T8I9Zb+G0Jrq9C0IFovsqquSj0Xom1qzqHQ55aeb2IAm51VMPkGtltBb4mA2B31cug4ASiC/2vSFX/FaRHRAAAB/UlEQVT5jUkUJ78xieLkNyZRnPzGJEpBwgs2BQRxaBndpo00Le8YsgIPwYbYB02jhNgQfo8UTZqQQyILxYqWRpFDEO3mmQpv1AgVeyXAdJ4FiE39EdiNQRhsNjqdp03ObG61H8DhRrdbw+QbkhC7WsjJqrqr2Or6mAk0rYyIKMGOTRIZneOUBD84xxyuOq+gkSnU+H+P4TwI1u7DcXhfY0ySOPmNSRQnvzGJ4uQ3JlGKQcs0nS7sQOjo0USblhHdM1A7aBJPBhLNEfY9Um9FEAFRJKGaeqhDH8J0loiIBTSKvMw0Rk1PT2HM9rOKJsNoPXc+gNHgBxC5VjCOe6v18xER9bs7ia0+amNOcqfR+PMDPCc0+YjEvf1RY13HUkeweE3QXZ2BwLrIdc2gdD92R72nJHzT2rT1jMBmph17RmRwkv7yG5MoTn5jEsXJb0yiOPmNSZTiBAQoKhPsWjhYgoCxbBlrfQtixaSAUckg2q3gtbXCCTkao2aGJCJNYUz2HGIREU976uZ7CjLSExDynlR6PqeVij4nA2hmCWITCX4k7rXd0+NHmGh0dyax60Kv5banx75vVLRbVlqquy71uBU46rL8B9riOtKH52Qy0mshl16+0udkD2LoBkrlaXx5BD+3BAna0PvVX35jUsXJb0yiOPmNSRQnvzGJ8n8BBSCcaaRQSi0AAAAASUVORK5CYII=" y="-2312.302546"/>
</g>
<g id="matplotlib.axis_129">
<g id="xtick_193"/>
<g id="xtick_194"/>
<g id="xtick_195"/>
</g>
<g id="matplotlib.axis_130">
<g id="ytick_321"/>
<g id="ytick_322"/>
<g id="ytick_323"/>
<g id="ytick_324"/>
<g id="ytick_325"/>
<g id="text_17">
<!-- 56 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 2413.924421)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-53"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_66">
<g id="patch_67">
<path d="M 164.424375 2437.204309
L 286.714375 2437.204309
L 286.714375 2309.910782
L 164.424375 2309.910782
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_131">
<g id="xtick_196"/>
<g id="xtick_197"/>
<g id="xtick_198"/>
</g>
<g id="matplotlib.axis_132">
<g id="ytick_326"/>
<g id="ytick_327"/>
<g id="ytick_328"/>
<g id="ytick_329"/>
<g id="ytick_330"/>
</g>
</g>
<g id="axes_67">
<g id="patch_68">
<path d="M 299.674375 2437.204309
L 421.964375 2437.204309
L 421.964375 2309.910782
L 299.674375 2309.910782
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_133">
<g id="xtick_199"/>
<g id="xtick_200"/>
<g id="xtick_201"/>
</g>
<g id="matplotlib.axis_134">
<g id="ytick_331"/>
<g id="ytick_332"/>
<g id="ytick_333"/>
<g id="ytick_334"/>
<g id="ytick_335"/>
</g>
</g>
<g id="axes_68">
<g id="patch_69">
<path d="M 434.924375 2437.204309
L 557.214375 2437.204309
L 557.214375 2309.910782
L 434.924375 2309.910782
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_135">
<g id="xtick_202"/>
<g id="xtick_203"/>
<g id="xtick_204"/>
</g>
<g id="matplotlib.axis_136">
<g id="ytick_336"/>
<g id="ytick_337"/>
<g id="ytick_338"/>
<g id="ytick_339"/>
<g id="ytick_340"/>
</g>
</g>
<g id="axes_69">
<g id="patch_70">
<path d="M 29.174375 2578.62197
L 151.464375 2578.62197
L 151.464375 2456.33197
L 29.174375 2456.33197
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p28c2579062)">
<image height="122.4" id="image3b28c1c052" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHwxJREFUeJztnVtzJNlVhXdlZl1UkkqXlnrUbY/dMx57AnAADsAGAgcP/A9+JjwQwQPYwR3bQNiEx6ZnPD3dPd0tlaS6qG6ZxUPbL72+jDgaDQ/0Wd/jVl5P5lZGrFp7784fnX1/G2/Q6XTeDMVmW0ts2awltqg1Vm8bibWxDbmc2G41RlRFKbF+0ZXYQTXUWLkjseNiILGvhMYiIh7Veu53NnrfXbiX80r3/VFX1/Gfls8k9mw5lhitd6+oJHa/dyCxiIg/7T+U2F/Wc4l94y80FoW+O4vHK4l9/nhfYr+62ZPY//T0uj8uNxJ7ul3otUTEeX2jsc1UY6uJxCZr3fdmrfdC603v4qDSd7FfaoyeVUTEoOxJbLfs63aFbtft6PUUeBZjzFuPk9+YTHHyG5MpTn5jMqUalSxgvcliqyILCR1lR4VBEvEiIppEIQ/3hWNuGj03nYOuZwX3twRhKVQ3iYiICtZxDSLLHmifc/gXXMM1khBbdnTnInQ7Ej73Wp793laPWZXwrE9VoOvcO5TYTu+5xI6mKhaOf6XX09+q+NXd6v31Wr5jBawZQWtLlIWepwPX0wXBrwtCHol7tF3bMQt4/iiaQ8xffmMyxclvTKY4+Y3JFCe/MZlSHRfqbFsGCGcgVKHYRMLJF9f1Xp870fW3DrhIcCY2IFSuQSwkAbEVEAJvwH21B4LRGu7vaqsOP3JZEiQC7YA7bKfDwhIxW+r+zURFu/KhbtfZ1XUoyqXEahAq1/A6rTsg9raIxyRKp8YIFl1BgCxB3IMYOQFJ2IuIqEBAphzswDoS/vIbkylOfmMyxclvTKY4+Y3JlOq0UDHmfKtli7PQ2F0h11GqGJNa5kvUIAx2QEyb1SpKpTrBIiLmhToEhyCybeD+LhooJ631GdA6kIhEYlEbE3BpfhIqDH/tx1pOPOp9JrH6lQqD07G+d1cddSFeFiSG6rpOGn4/ZxAnN2eq4EfuSXL9dUnwS3T49VqEWIpTqW4J33QS4v3lNyZTnPzGZIqT35hMcfIbkynVaKuCwRhEDSoxJZGESmjbSne/bKcVQQINCWLkiiJBkkS3tvMsQfAjgYYEyGmtPemoZ2Iq5Gqcg4swIuIlCL4fQS+9k8enEvtgcSGxulYh7/mllgO/6Oq36KKja3jeqBB7Dj0GI3gd6RnWZGEFUNwD0Y5KqMllSeJcW0kviYM7IJKmlnn7y29Mpjj5jckUJ78xmeLkNyZTqhKEAHKcLRsVXqjElGIkNkXczaWXLGrAdrQvga6oFqGRhMoFuMuWsD/tmyrukfBJQuUCjleAGBYRUcE3YVBqrN/XnntXz+/r8RIHlTyFPoEkPl6AuHfdIvjNNioOruBdpjVLLY1lETDNZUmxNoffLgzj2OtorA/HpDvxl9+YTHHyG5MpTn5jMsXJb0ymOPmNyZSKbLs3NL0GrKA0jpuaXrZZdqkxJ0HqfGqM1NTkKS6gkQ7AthnBlkz69SH1num6G2hcSdbp1F8P2iYp4XQXWLMGPh0v+zAeGtZhBbbdMbx3L6GvwdVGlX1S9SMi1qTsw5rRsyYVn6DnnArZvYct79hBR3sgUD+OPbDs0534y29Mpjj5jckUJ78xmeLkNyZTKhI6SARMFfKwxv8WI3tSbbsE3QsJValTTlCMgSk8ERF7ILwQZH+m8eep/QXoeKvEZ9U2kYimF9H+q0q3Owe7aZfWG8Zak9B8sZnpdmCbbrOQE/j8QUwlYfDLngBEVt4jmKIVEfFViL9b6/4HcOo+3Iu//MZkipPfmExx8huTKU5+YzKlGoKw1EscBUyxBsW0u83oJsEQBrnEFkQbgsQ0ao7Yh+aIo0Jr2F/HVegiFiDQdRpwz8G9LENdeqkOP2pQeZveBAQJsetS74+EU4J6DlADTqrHbxOVUxu9Ul8LaqxKp0kV/ChfDkt9n77SIvh9uNF39NFa1+wIxp/3u/pc/OU3JlOc/MZkipPfmExx8huTKdUIxKZDEK8uQJigUccEudDaSB7RDQINucZIEEPXH/wf7IMIOGgRrwaRVkZJZsU1HHOZ2GQUx5yDuEcOOFrDiBaXJawZlR2nTpBZkTMR3qfbvDt3gdx86PBLnOxD+5Kb76SjefU+uPYiIr6xVmfju4fXEtu/p4JftQOCL57FGPPW4+Q3JlOc/MZkipPfmEypuuBYOgbRZlyq62gJAg2O427RSFDISxRZSAZKnV5D0L7kBEwvHG1xEpKwCMLZNLGkl8XQtF5/bf/5aS1o5PQulDePoLSZ7m8O7w6V6qaWX9+lj15ExBqe7G36Ub4JOQ5J8DuA2P0Nv7PHPXU7Dke6ZtUuuPlAQ/SX35hMcfIbkylOfmMyxclvTKZUlP1H0PSfnEiLMs2R1Sa61XVav7/U/mx36SmIDq87liLTsIoKnIA1lO9SWXXqyGiC74WPR+IZDkSBbwf169uBey5BVJyCs3TeUbfaupPu+qP7TnbzJfY9JIGUtqNrKcGV2vbWLdaq2k3GkJczPXdTk0hqjMkSJ78xmeLkNyZTnPzGZArWDvZBcdgHi9AeDGiYgDvwJtSFFHGbctS0slzadwPi0KYAQYTEGJrS21LSO6QBH/C/lcqOK7iXGxC/rkgQK1QQQ7EJRMW2/nYUJxEwddoxOg5pvUlULHRduzSFFtY1oqXHYaJPk/ZFByvE6BlQj8JL6Mv4aZcHwNzUQ4ntzVTwK6a67wafqTEmS5z8xmSKk9+YTHHyG5Mp1RVMv5jRxFIQaMjNlTqgIeIWwyGo3DZRbEp1/dF1H8CAjjNwOkZEnDUg+FFPQdh3Uug6buHf8hKm4pJ4RU7ARQ2TbVu8ZDzFNq0/Yk3iF7xP68RnT4NTyhKGxbTcC7lDSXhbwyCQZEEz0R1IA0g+a+Z6LTSRJiKGXX3HqES8C+9dQYNv8CzGmLceJ78xmeLkNyZTnPzGZEr1aZE28XRFpbGJzru20lgSSogicYjEXdgF99x7hTqqfm/Fgua7IKhVHV2zy60KWM8qdU+uIbaA6a11Rc5EXa9pkTbtNqLlGaJTLs25R1TwTAdgOK1A3CNxltyYEREbEETH9Y1uR0NEYH1KcIdij0mITTZ63s86Y72+UkXACO4BSKJ7H7ajPor+8huTKU5+YzLFyW9Mpjj5jcmUihxGAxAMSE7hrnBp/d8i2DVWgtstFRKlSICiayTB72swLfV3Sp2KGhFx9mii1wMmtpdP9yU2WWuMBKwu/K+mZzWAARs0AbfNYUkC7RoEMdqfrnsPrpG2OyQ3H5VVg/2x7a2Zg+jag56C80oF2xsQcbFsHEbI0Lu9rNVZeL7V9+aqYMGPpiJ3oeSZBqyQWOgvvzGZ4uQ3JlOc/MZkipPfmExx8huTKdWrWpXFPRizTI0rSSum/yakNEZE9KApaOpYZJ7sk9ZckaDpM9TIdDBgSyyNRY4GFPsuKMMqAscS7m8aeu5pow085zDqmqyqt1H7aX/6BYDspidbGE0Nin0J600j5OltWre4vcfw69EaGs++KrVPwyX9agJ2eCLVIo3rCjkQwb+ElY3GFvBC0fX4y29Mpjj5jckUJ78xmeLkNyZTKmoqiIAISNZLsiAOwDobEbEuVdiYhwpYTQO15DVM4gGh5C5TZW5g1+mc72X/UmWoLQh+iyXU7sN5VmBLnULjyWt4fvNa15CEJaphb4Ms0WQZJnm1B/veg1Pvwcj2AYiS9MWat1nIYQj9tEybPjUoVfBbwjNItaSj/RxibcejqUl0zDU8FxLI/eU3JlOc/MZkipPfmExx8huTKRUJAZtER12P6ovh/0lRauPJiHQxjoQ8msRCjrWCmj2COERNL0mIm9cqAkVEXF9Ac81aD3C1VmFpUaVN9qHnQqJdaiy1gWoETwaiKTdzEJtWMLGHhtIcwDXe62nTyx64JOcLfi69tT6XFbwTr6A56lW1JzF6xxZQp4/vJ6xhD8Q9aljbBp0HxV0Sw5PPYox5q3DyG5MpTn5jMsXJb0ymVEMq34VSRpr4MYRSXRoZvAuCTwSXCZOLiQQMaq5IUCPFu7j+5tD8MSLieq7ruISx3S/A7XgNh1wnTr4hsLT5FiSPPwcBi9aMjjYE1+Y7OzONvacNLrtHerzNhO957zGIdtNDiY37+lzGpU5sonJpEgGX4FbkdxEmEkFTzjboPHQ9qxpGkCefxRjzVuHkNyZTnPzGZIqT35hMqUjcI+deH4SuXYhxrz8WY7ogBdXQyG1aatnqpFDnF01TwVJUEBAnWxVyzgs93gsYnR0Rsd7oeebg3voc3HznUL47owk7iSIgCZqdLchuLboerVmqSEr7jqBf38PQ3pFn39RpSMPvnem1nJ1KbDu+wuspB7+S2NW/ar++40bFvRGIs5QvE3qPE12yJHA3sF4R6ZOUSNyjvoD+8huTKU5+YzLFyW9Mpjj5jcmUikQEggQfGtBA45NbAQ2pv6UxxCqy0RjiLYiF5HajUckv1io2/aIHZaLVrsYi4qTU66a1HXdUeLmC2JyEHIiR4EPizm369WGvOBSm0t6dAdQnH49UsN35LR1VXvzutyXWefBID/jsYzx39cvnEitBYKW3lnpU8tqkjYYnQZpOTD0r20gdckPl2/7yG5MpTn5jMsXJb0ymOPmNyZRqCW63CpxpKO6AYEf+N3LyRUQEiHtUOtyH0mEaqHCX6bLjtZaTUrnlqmLh7LRQ1xj1M1xDGeySSjBR8NN7oSESFCNhqA1y6dEgCRrQgqIkPP6yAjfmnoqpncMTjR3cl9j22cd6kohYPVPn5otan9U1jANewbPC/paQGzygA/aFktxNopsygp9ram9Gf/mNyRQnvzGZ4uQ3JlOc/MZkSnJJL7n5yAFF4t4elZNGxAC2nZGbj3oFQmzVUUGMBnSQSLKAnoDnK+0fR6JNRMQMnH87cI1dGiJC7jk4Bw0WIej+qMyzTRiiXnNdEGfXcC/TRicEvwJx7+pKh2S880rXu3j5VC9woeXA9Q//WbeLiP/+iYqDP+3rdT/tqEh6CdOOl1vdDst3YW1pO+QWLRixjB2eHwm2/vIbkylOfmMyxclvTKY4+Y3JlOorpQ41IAFqSEM7oHx3COLeEUyrfX0eZYrinm6ZOliCRK3UksdFqAh4fYsJqptSnWR7MCSFhEEafrID4uwO9JmbFtrzkAS/20DrTbEZCH6fhF7Pf4S+d6O/0+1OL38gseZGn99P/0WFvYiIv+3rej+G6xnDdV81sI7gGE0ti78rJCLiIBC6HNruy7goY8z/P5z8xmSKk9+YTHHyG5Mp1QehTivqP1aBkDeA2CFUjh5D2WIbOzDUgiDRjmLUz45cUanuqzUIPhERCyijpT6DdHc06KQP/5crKjHuat87Klkmp2PbPVOfugomx2JJL6zPk1qdez+s9HrO51q++84P9F2cFHp9vxzwc3m61VLtSxD3yJk4B4dfai9E6nlJz4Bo640It410yI1rh58x5jc4+Y3JFCe/MZni5DcmU5z8xmRK9b6K1Kj2kmWwC2rxkGLBCuk1tPskzZa0T7JUUh17agzHJ8OvGaSkR7AKTGo6re0AjM77YPndhWssS6i97+v/9MtKJ+S0/XJB94hTaRKt0xfrqcSoceyzUn952q30F5Mauh0san4uC2h6So1Qbxq1crc96zchFZ9+HSFY2edfYVIH+dC5qeGtv/zGZIqT35hMcfIbkylOfmMypXoXGlfulCqIdGFSTa+rsQqaNdY1/49ZTrWmm6r8ydVIU2UIEqqSGyneEWykCOJQH2LUK6FPzVHh//cuCD4XHa1rv97qs49gqysJYjQZiOy9FKPjXdfamJMatZKtuM06S+8JvRM4pQiOSfvSdiTsYu29RNKFvQi2EXPM9l5jzK9x8huTKU5+YzLFyW9MplR7lYo2h4cqvOweq0DTHcG0EKjH31zzyRcfqZhz1Gh9+iE0vXxVaowaV0aoeEWuKhJJSASiiTsRXLs/hOaaVLtPzTppytEIJx+ROxDEQqrnbpmkRILoCr2Xifu2OAlTtuvBBCdqWkrr37Z/AetNz5UcfiRy1h29Z3LZNaDkpfYHuCskVPrLb0ymOPmNyRQnvzGZ4uQ3JlOqogCxoguxIcQOVNQoRirEdU/ZUfdwfSWxb32kZZ0XA42tq0OJ0dQdKlulBp5U0ktND7sgIEVE7MF0nqNCY8cdFauOYPz1UaNi3OlGr7sL93xV6nU3Xb3ueVupdeKEJBJOU8t86VltO9A4NvFaSNiLiNjppI2gJ0feCtZnguPUv/jEHpwoBQLirzdOOiZOV6Iy/aSjGWPeOpz8xmSKk9+YTHHyG5Mp1RZcXvOpilLEYAFTalbqsiuPVQSMiNh5pP97Pry6kFjz4lhiw76WA3d7erzU3nrLWu+FXFq74CyMiDguhxI7K1SofLhVAeqrG30GDzZ6PUeluhVpistwo9d4Aw64i4pFsi6VspJAh3390sQ9gkpjUx1+NPo8ImIXBL9dKhMGQWwBvfTKxElKcyw7Vpds6pSpiBYXKpYJgzMV3mV/+Y3JFCe/MZni5DcmU5z8xmRKtapVCLiZqiDycqKCVvFcD7j/WEWN41MdkxwRsXOi7rudfRWHHox14MR0rYLfVU8ddefdkcSof9xkrefow6CDXXDyRUQcg5vvAYh778GQlK83eu6zEx1rvXsEgyVuYHT2SxWRrle63fOSy5N7UCZMkDCV6nZDoeoOgt8+OCcjIu5B/ACGxVB/xGtw2iVO2UZIIF109IUgZ2lExBZKgsm5R0I1lzYbY7LEyW9Mpjj5jckUJ78xmVKdNyqITEEwOIfefDMY3TvYqvB19pSGc0Q8/Ewda4NSRaQxONbmcD0EObz2YRoslaKS42zQ0ituBK6x++Dc+1qjDsh3H1zq8b6p61Ae6jrUF7qG20YF1ntPdd+9LbviyOFHQh6503ACMq5t2rAJKukdwFqP4DlHRJyExk8a6HEIOuUA7JMreP6zzhfvb0giYJsjkuIknKbiL78xmeLkNyZTnPzGZIqT35hMqX7WV/HkCpxNL0PdZdQDrgdi0ac9FmPOtiq8QavAWIJ5awy9B686VL6rIgm5ndqEvDdp+2/Zhb8c1XqNpyMV4/bfg6nIH5xKrDNS4bQ4ULFw90bLokevVBgcNiz4kcGPSqOxP2JiSW/bwBC5FHifdkDwO4BYRMQJTIg+rfV6qBciPe0xleqCy2651bWZ1/oMqJScRNOI9OnSqYNT/OU3JlOc/MZkipPfmExx8huTKdU/hA7OmMEk0hmUwZJzi4SzcUt/tcuOxocVTDeFfRcgQM1IlEqcgkpOKeyv1iK60H/RIQwH2T1Q0ae6r8Jn5/hAY/s6wTig/LM60rHIgz4IPjTUOCI2iYIRlfS2iVVy7q1eN4l7u/Du0OCTk4bLkI9B3Duo9Rq7iaXI5zAQpQ8iIImctIYUaxP2eEgKrPcmrVegv/zGZIqT35hMcfIbkylOfmMypfrJ/IkESbQhwQBLXksVY64rFbQiImbVrsRGIAJS+SdOg6XySDgvDTWge0ktwXx9TIVEpKJMnOi6ASFnpUJO3Khq18x135uFCrHXLf/6p1sVfEmYogEdNAGZ+/VpjHrz3YPBJw9Ct7tfs2PwtNbrPq10zQZ9vefDhZ5nudZelq96+s4+g+EuOHEY3sU2Ut2TlL8rWAd/+Y3JFCe/MZni5DcmU5z8xmSKk9+YTKk+n2s9OCnpBI397cEY6SXYhV+fB2yMUFa/C0EalUwq/gAU1gDLKCmxNE2lR8eLiDUo+xPYdnKhDU77n2iNf3ehv8IQq2f6C8BnPzuU2I+2ag3+RUefVUTEeDOXGNXuEzRthhRt6qmwD78K3Ydn9c5Gz/Fww9f3/qG+36e/rROSqgeq4jfXan0/+Yk+q+Jcey9MumrPnnV1vWldUy3SEfzrCv0itYHeG/7yG5MpTn5jMsXJb0ymOPmNyZRquWEx7k3Ioon2zsQmgxERfaj9vw8jtWnqThdEJDrzGqIV/M8jYXAN520bQX0FDRt/3lNRazM5ltjZv2tjzn4B/QoaPd6TSi2oP6/0nj+uVKh6stG6/4iIKxD8CBoFTXX6ZOWl8ecjGHN+H8acP9zo/b1/oOJcRMSD78Pz/7M/lljnnYcS2168lNg7D/5LYt/7K91ufH1fYucgAk5qFR9varBxR+ALTuIeCfbYRJXPYox523HyG5MpTn5jMsXJb0ymVCTa4dhf0LlIYOMmgyySkUNwBM0ZTyFG/7Wm1MATrpLq/lNlSto3IuJlo8LNAkS7xyACDtE1qHdI93e+VaHrAgS7WZPuvKTpPAX0OyCXHgmiOHUHavdHEDuDOv33+ypUnn2X3YrVn/+JxIrf/3OJdbrqJGzix7odTE3a2ddnMBpDc9uuPue71vinQs5Lf/mNyRQnvzGZ4uQ3JlOc/MZkCs81/pIhsSEiYgACzz646vbBNUZFj1OIzsB5NwXxa5U47adtAhA5rZ7DdiTmUCkygWOyIZbaeLRNWCKBrulQc1QQ9xKbo5K7kybxPFqrKPnVP1DBr/f970gsgsW98uwbEmsunkpsO1dXZHM5kdjsUsXCi1LXgSZhkeiKpe7BLj16htTwtirBjYlnMca89Tj5jckUJ78xmeLkNyZTKnJutU2l+aK0CUskdJGDjnxodI0L8OmRuDeu1QFHZZQkxtDkmjbo/tpKglP2pWdFLkkWgdJGYredu1PAM0wsMSUnIDn89rd6LyddfVa9D7RHYee9b+nFRERxrKW6xHbySoOvXkho86m6+T6/PJHYs74KsVcbnRS0rPUdu82I7tsIuW/iL78xmeLkNyZTnPzGZIqT35hMqagPG5EqLFC/tjZW4L6bwHjoCQhGfRLTQBBZg3hC4t5koyW5JMbQqOM2aC1S14yeC/W9I9GOykS7ECMBMaJlhHlibz6i19Hn16WR6OAinG/0nrdX6vDbXqg4FxHRPPso5RJj+0S3a559LrHpY73uj2GwyLPQ94nKqkncSx2a0wYO7ag9tMMY82uc/MZkipPfmExx8huTKVWvVDGGevilildUvkvniGCxisQmGtAxBAHqCMqBX4GT7BzuhYQXmpZ6m6EkdaJug+uQ6Mij0liMgejW5vAjqHS4alRErMH2R+/JAsTeT6AP4j/2dLrw6G9UOHu0+YHEIiKqDx9rsKtrsb1Q597yP1VE/PhTHcbxi74+6DGIe7eZvptK6oAOwl9+YzLFyW9Mpjj5jckUJ78xmVKRQNcFRx2JdqllosNSHVAREaeVijlfL3Yk9qiGQRegu41LGHRRDCV2Xmpvtmmh5ZYbGLrRRqrwQiW9tF2qo5LcfLvgOOvBdtRv7/W5Fdp23dH1IScZOTlnta73TaPOy0UFLtCOTrv97l/vSiwi4r2/11Ld4a6eZ73S9Xk2VnHvRz2dJPwk4F7AqUqkiutt4DuWKEr7y29Mpjj5jckUJ78xmeLkNyZTKhLoSNwj1xj1ZqPYcaWTTSMiPixHEvvDpQovDxoVVGoQoHYadfM978EQEBDELuH+SPBrK4Em4SXVNXgX8PmBuDckh1/L/35y6ZHDj4aIzOq0acC0XlRqTT0TF12NfT7Qdyki4t2N9vu7d0GDU5RzcO590tH7ewHORBoCQ9Dzu82UXhIMaX9ab3/5jckUJ78xmeLkNyZTnPzGZEqFDqPEoQ/UF46GMdwv1WUXEfHttYps3xmpI6u/owLPxbke8wKOR//dUodapPY3bINEllVH74WEQTo3OirhDrsQIxGQtouIWN+hNyP2jwORkxyR5H6cwqALmn7c5qj7vFTn33Gp72gP1mIOU5+pVHe6hYEv4Gok8Jm2TLWmOLn5tlsQ/GBt/eU3JlOc/MZkipPfmExx8huTKU5+YzKlIuWbVFecLALb0S8Axx1VVyMi3tuoSnr8SEcybzd6jVdjPfcSxkgvO3rdNAacICW2bZoKNsMEgZwac5JiS7/CkHW6TxZrsveGxkjhjohYUN8A2JbendRfUnC+N20FazMHC3FbY1WyB89K7RkxBHs3TXuaQc8B6ldwm0avb9LWWJXiNb1PMPmogOfnL78xmeLkNyZTnPzGZIqT35hMwVE6qbXpJKZQ3XebsDQq1boJ7uBYzVREmq9UoJmD4LdKFJZS66rLFpsr2p/BokuCIa1taiPUIUwp2oXa/RFs1wcb6Otz6zO8pgagOGkIRMDEmnMCheYmbQ0jWhqhwvVQ/T3tS7ZdHrOdJpD/X0DPoHY9vzHmNzj5jckUJ78xmeLkNyZTqtQ6bWrWuAXhhdxX1y211uNaBazpExWmJlc6JeVlA/vyJHChm9ibYJMo2EWw+46O2QFRkqA6fWo8egAxGlV+b6vXMmgT/ECMO4d7ob4PqfCkGRDyEo/X9h6TKLmARqF1kSYMkwiYOpmJhcG0dbgr3LfDGJMlTn5jMsXJb0ymOPmNyRSUyNCJlOhMu9poSe7j+hpP/m99HYFcPz2V2BJEm+ddGset10ji1Q653bCkE+SmFo0LpxfRlBxyxcFBqSz3oFDh8xDu5WSr5z2p9RzdFl2pLul60r4TqQ7G1KaeJLARbc1W0ZlKLr0m0Qma+L3EUex3iEWwsHgX/OU3JlOc/MZkipPfmExx8huTKf8L7R0XYNyBtIsAAAAASUVORK5CYII=" y="-2456.22197"/>
</g>
<g id="matplotlib.axis_137">
<g id="xtick_205"/>
<g id="xtick_206"/>
<g id="xtick_207"/>
</g>
<g id="matplotlib.axis_138">
<g id="ytick_341"/>
<g id="ytick_342"/>
<g id="ytick_343"/>
<g id="ytick_344"/>
<g id="ytick_345"/>
<g id="text_18">
<!-- 57 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 2557.843845)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-53"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_70">
<g id="patch_71">
<path d="M 164.424375 2581.123733
L 286.714375 2581.123733
L 286.714375 2453.830206
L 164.424375 2453.830206
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_139">
<g id="xtick_208"/>
<g id="xtick_209"/>
<g id="xtick_210"/>
</g>
<g id="matplotlib.axis_140">
<g id="ytick_346"/>
<g id="ytick_347"/>
<g id="ytick_348"/>
<g id="ytick_349"/>
<g id="ytick_350"/>
</g>
</g>
<g id="axes_71">
<g id="patch_72">
<path d="M 299.674375 2578.62197
L 421.964375 2578.62197
L 421.964375 2456.33197
L 299.674375 2456.33197
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p1655941fc4)">
<image height="122.4" id="imagee2dfbd9f8b" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHttJREFUeJztnUmPJNd1hW8MOVRmzT13k2yKokjCgmBZkC1T3tjeeemlf6P/gJdeWYBgSDIsmJIpUs2eyOqaK7NyjkwvbGlR5wvjlVre+J1veRGZ8eJF3Azg5Ln3Flv9p5u4Qaesboaihli3qiVWFaXEms1aYhERk+VcYtfLmcQ2G1liFEWRtEaK0WcJupZBp4fHPuofSOzj7j2JfX8z0OPmuj+HxVJizUbX/XXZldjPuvp9/9qcSOxocSmxiIj9eiix9zv7EnsafYm90+h+P1zperbgmRiXut9vao19VTYSexFTiUVEHDXXEjtfaexiqTF6FmeN3pdVo+tZrTW2CX2OO6Xm0G5Pn5GIiDu9HYnt1Fv6nYXeA8pB3VljTBY4+Y3JFCe/MZni5DcmU+p+3ZFgESosVSDGkHCGQhwIEBHpAh2JJ7RGiv2xIfExggUVWk0fRLsuCEEFxNbwjWs4Cf2iV/DZskX4JMGoD99KsSFsz/ZG79+g0Fi11vPOGl3jLjyL/eBnjJ6JFayHnrE2ofoPBZ9ZuAdt94Wg57EJXfcSrtlvfmMyxclvTKY4+Y3JFCe/MZlSH4JriASRNqHrJiW44sjZFMEOwcVaY0SqKEkuvVSHHwkvqZ+9DQu4louNCrEjEENf1/rZ41hIbLJWZ1obHdizYQFONBDjthsVm4bFSmKDDqxnqW7F7gZcpPA4lS23hUQ7cunNIbYkEXCt39f2fN+Enh16Zkn0jmAhFp9vyg04zm9+YzLFyW9Mpjj5jckUJ78xmVJ/d/BYgldrLbUdNVDeuFZhiQSW2zil6FgSKwgUNd5CoEOBJnEtERENCEFXpcZedFXImcOyT8AV9yr0Xr1sxnreZqLra7kv5MgcbPS6t+HjQ/jO7Z6Kaf0+CGxQDqxXHDErdA/HGxUVIyKu4Vmeg/i5aPTzVKqb+iynlpxv1SpybtdaKh3Bpda7pZaY0zM6g/3xm9+YTHHyG5MpTn5jMsXJb0ym1N8rdiU4qVXUOKpUOHkDItJlo73USGCJSHcn9SqSfZQysaR3DUJcap/ALvRcazv3DJySLwsVSV/CT/BVqEBztlbR9RzuwdVKY9NGz3uba0mlhL0tS32e6g6U9IKQN4e1nEJ/wzN47iIirkGoJnGPngkS99ZYuv2Hi3sH3W2JPelqP8iIiKeV5ur9SCvJH0HfQ7/5jckUJ78xmeLkNyZTnPzGZEp9d035r7E9EDAGFZSYgjvsEoSqiIjFWoWXLRhCQf3HqOx4DaIdlVumHpdaGtkGXfcMylsXcC3kTJs0aTEqT+UegyzsXYNz86zU7zyuYKgJlOAOZ+BCg7rcJTyLY9Akzze6losWwY/Kd4m3ETmpLHero8/xnb6Wz7/bO5TYR7UOSImI+KTR73yyBDEVnu9LKJ/3m9+YTHHyG5MpTn5jMsXJb0ymOPmNyRQYgMwNEvdgNMwSlPk5WTlbFPIlHLuAumOqRZ6BZZhsxPyvQJpdmP4BaGvWSOumHggT2AtaI11LauNJ+heFGk+2NSM9XY0k9hyswPRHUQMjzJul1qc/ABl/Du+iU3hGLuCfEOotEcF2XOrxkNpIcw0Tl3qVWmz3ulp7/wSU/W9XexL7Dqj6EREfLPS+Purovxy9LuTLXNfoN78xmeLkNyZTnPzGZIqT35hMqXehHyG3QlR6YIncgckubTRQv72ASTUTsHNW8LtFYlwDE2ToOBrRTDXebePGyfaLYlPiaHG6vtRmpCTu4QhqsIa2QZbopgujoCutT592VPA7A5GMOIb+B2Q/bmusSROk6F6RuNcl5RsYgMh5CHX6DyoVAR+Hinv3Gz7vDmQmiXtbQ82X4bbumd/8xmSKk9+YTHHyG5MpTn5jMqX+EOqgRyC6nUHt/gh+Omi88yBYJFtSs0cQtZoAAQscZwuoJV9A/TyR2tRzAyJlBIt2JDa1Nc28CQqIsMY5NLMkQZPGTbeRPo49UYAE4WxUsYvtJt+s9fmcguDX1pugA0Je6kjtVOiekjBcJfYMWLbs6yjg2bnektDWTPO3Bw1T/eY3JlOc/MZkipPfmExx8huTKfWHH59IcHSsjqzXp9p88LzS4+jXpE1eQWEKxD0adU2OMxLJOiC8kBjTFGlOwDbBjuIDKHneKtMmrFCZLwlxk1LLW4lUES+CxcHZSkW2cQkThBKvb1pC2THs9/HqWj97C4cfQeuh8mY6jlyb5J6kSUFHpV5LD5qgNrU6BiMi3oDoHiim6+c7UJLvN78xmeLkNyZTnPzGZIqT35hMqYffVyGv92ossc0vVTB4fqXCwhr0h2mwu2wKohaV786hPx5NuSERkFx25PpCwQiMVj0QtCIiBqXuBYl7fSh5JmFpCbFUd2DqRKJW4NDUMmEaBX4FAivdU+rLOAIHKvUopGuOaOnDSOXJieO46Tjqo3i51DHptMZJrZ89rbX0NyKiC+IeCeQ04Yr6aPrNb0ymOPmNyRQnvzGZ4uQ3JlPq8ukjCXa6xxLbObrQD1/qF85AbLjc8ECFETi1aDQ1ud0I6nuXCpWnkhDXJrr1QdwjgSa1rJPAPnqJjjMUAVtEMhpgQeXEWAaN5cQq0K0KXSMOG0kU3eia26B10+fJ6YjrAdGNQLEQRE5yB0awgxWFSrg++qzf/MZkipPfmExx8huTKU5+YzKlLvb3Jbg5UyVvOVHx6rRW8eoiVMA4B5dWRMQYhA0q1yThBct3caoqDAZJFJbo+1p7xWE5scbo8zwNWCHhM3Ui721KegkaNkLl0smiVKILEXvhURksTPON4P1J3bNk4RTE4kWT5kJMPW8Eu1X5OF0P7aPf/MZkipPfmExx8huTKU5+YzKl3pycSnD2828k9tlLdQK+6ENJJ5RqUolhRLp7i2LkGpvBaVKHcVAPt2qTNgk4goW8Gn5bqbSS3XNwDlhj8rWAa68NnlirzkYSoFIdcFx+DY5KKIGmsuo25yWJe1QmfLbWMnYq1eVyYHgmaLvhprLYy88Y3RcSYuk4O/yMMb/HyW9Mpjj5jckUJ78xmVKf/eMzCf7788cS+0VPRYST0PLbJQg+ba44EqbIiUQ/UUsQT8gBlzrMoQvnJRFpCwZxRETsFho/hFiVONn2GvoeXkGfwD5Mu51DXzhySZJYFMHiIIl71ONuBiIZkSrudeAe7MKwmB58NiKiKdNcg7Q/KCpDj0kUAcG5lyoC3gYS9/A4O/yMMb/DyW9Mpjj5jckUJ78xmVL/02sV974E594bEPcuoDffAhx+bY4lEpzIiUSxQaXiF4l75PBKnb67U21J7EG1LbGIiHdKPfYuTDCpYSt0hREnILqdFupsG8JEVxKqyK3WBgmxJNClujHp/tF7B+8zCKxDiFG/xIiIBQinA3AI7nUGEqN9JLDXHwh+PFgEFL8WEZBdenpfyAG5V+v1+c1vTKY4+Y3JFCe/MZni5DcmU5z8xmRK/dNam2iOQH+mOv052WkTJ7v8b/GbpNpsqaEk9RKgfwDI/ngPRiW/W6pqGhHxQaNrvL8C5RsueVbCiO4O2I1hjaTskiU2ta9BBKv9BH1nm2X4JtQctQ/3dJtGn4OVt+28pLDTvabnaaej/+AQZGmmJpypU4Xa9p/idK+3a7U/H1ZW+40x/4OT35hMcfIbkylOfmMypX6xvpZgag08QbX7qSLQbb6TxnGTIEZNNClEteTbYKc92LCN9M5KhaW7MH65D6OpR42e51UNte1kfU60yVKszXZNoOWX7nXiuUmoHCaKe91bvLNWZH+F56SBe72EvgHceFTXQ6O3ycdNuUZW6oj0KVXY9NT1/MaY3+HkNyZTnPzGZIqT35hMqS9hegkJC9hcMbG+eAPiTgTX/lMTTmoUSc69cgNOOTiOxoA3BfQCgBr9MRwXEXFcgxC4UtfYAOq8xzBy+roAp2TidB4SjOi+kBuzjdTJMOTGTHXUbcFz0idX4y3eWfBI4IQdEov7IALOSxXyyDGaKnInTwCKiBWIxdSnYVrp830NjUf95jcmU5z8xmSKk9+YTHHyG5MpNTmRyH21AQEq1c1XtwhL5E4jSBhcr/U7ZyDkzeD6SKDpV3rNJ7AP2IsyIi5IrIIpR/TxFTSZHME1j0G0IYcYCYM8Bjxd8AtyosEIc4KeiT7sF009elSo628I520rlr0EkYyuewHCMI7PRoGORsinTY9KvX8R6fcr2Y2Z9G3GmP93OPmNyRQnvzGZ4uQ3JlNqKkekXnjYP47GaQNNywgSLD2F3yMS/FJFFhI0SbQhcecsxvp9FU9xOQZnG61xlVgunTohh6bK3KZUl6BpMyv4TloPnbsG9yP15vuk0J6JP5zq9x0WND2KXaSfd6FUt9R1X8BEKhKLKUb3gPr1JYuzLc/IptFjp/j5NKHSb35jMsXJb0ymOPmNyRQnvzGZUlOpLo5FhvJGKulFd1JLdeMSzkMUa/0CEvKoHHjRpI1ZJlfUNYhAJD5GsNuRy5N1f7CEGgREcmlRyXKbQywVEu1QwAIhN9Vd9hDKpf9ypt/3g0++llhnF8TZL3jAxvj8rsSe9XS/V3AtdK/JHZoqfL4t9J0kzi4KXeNkpc+y3/zGZIqT35hMcfIbkylOfmMypSYnWR9EwCENAoDfDtDmohfsBKxL/Tydm0TJy5hIbNpoSS+5pVIFMXJFzekCb/F5EvcCxD0SC1MHb+A5gLY+c1S+3ebSTIF6/d0LFXvfG15JrP8IrhkGpCwX/IxdVnqNY9jbJYl2OKAj7f6TAJzK23w2gtdN7le/+Y3JFCe/MZni5DcmU5z8xmRKnSp+deB3ggYqVDS0o8XttANC3gTEmAs4zwz62aUKHaklvW2llangxFoY0JE6VTeV/4spvVgmCp/H4SCwjzMYfnI10TLf62cq7E6u9Lj/GO9LLCLi1311u52u1e1G10K9LNH1V6aV9OJAGxAQb/PUpQqQLuk1xvweJ78xmeLkNyZTnPzGZEpN/fpItKtp8AIMTxjAcZ1bOJZmAaWs8PGjRGEpdcgCDQG5jauNSlm74C6j41J7GRI0yKEDzkmalNvm8MNyYlgj9a6j6yPn5W+akcT+uXsgsafPtVT3Ah6I/+yrABwR8Wx9LbERDHchV92wUmGRIDGUBD8Sn0lzbRPxaG/fBr/5jckUJ78xmeLkNyZTnPzGZEo9hD56AyzpVcHoYK2/HXtQ8roLYlpERA3hMYhVlx1dD4FiGnxf08C0VOiFRpNf28QYEtRIRKLjSGCjMmYS94pNWs+8DpyDxN6IiF7LAIybjKG0lnrcTRp11D1fnEms6er37db6fFK/vSvoURcRMQNHHompfdifGo6rQMQlYXgGIue8YFHyJrcR9uhep37eb35jMsXJb0ymOPmNyRQnvzGZ4uQ3JlPqAxiVfAjTee6vVRl+DMNr7sGEnL1Clc+ICBIl36x0Pf06bYw4KenUPJKU/TX0ESBr8G1qrTtw7q0K/l2Be9CHWnKqOU+d2NNLVLMjIlZQa08Tkgge7w09GkJtt6k19beBlP0t+IeL9oKeMfrfCq3Tb9GPgZ67NqifbElDs3CSkjEmS5z8xmSKk9+YTHHyG5Mp9ePoS/AO2HafgLj3LlgY7++okDPYZsGPpqxMTzXWCxV9emB/7Vd6HNWcb6o0QYXq/tvoVmCJrnVvtyuN7UDdOE0uIrswrXEJsmRb7T7BQmdaXwSqYychj67luoCR6NAc8zYNT8kmTSLpggRf+D5q4EnTlVKvmbjViHVqrEo2d3jP+81vTKY4+Y3JFCe/MZni5DcmU+r3GxXY9qH+/kGjDq+7Q52msnd3KrHOkIWz+ZXGO2fg8qLmitSHAIQzapqIbqfEBpVtkHNvp9bmk9vk5gNRaosETRh1Ts1NlyA2zUGUmmPHgogFNZV8i7HRJGDRNCQUZ+FayFG3hrHibXEW/PTcJBZS7T71MCCoFwTW3rcIfqnOP8q2AvbBb35jMsXJb0ymOPmNyRQnvzGZUj9eqTwwAEFkCE6rEmoH1w240BYsFq3mKtwsoSElGfKwySiIaatKr4VKbWfQXHEOTsc20aUH7kIqy8VSZGooCeLePpRab8PUJBL8Lgq9f+cbdl7OYY3UAJREzgWUdFPD1FQhFmO3cSsmOhNxRDuUNqeeg0TJPjQjJWbB5dNULk2QsEiCrd/8xmSKk9+YTHHyG5MpTn5jMqWuEl1Dc+jhN5qAo24JglbNQsV0pgLWOYha1KesD79bA3D9zStwX4GxrSnTHGcNFnqyiy21JLgD7sIBCEZ3Nhq7SwIr9XWDn/lpwQ6/KYiIVEJNk4ZoQhLud2I5MPVgpPLdtklKqeW/qX346LMdGCvfh2eRSn/H5UzPu1SXbETEHFy2b4Pf/MZkipPfmExx8huTKU5+YzKl/roDPfNAWOqAoNWBUc69GRzXIpLNQTw5gQEdCyhSJJcXuZhQZGlUZJnAiGcSoNqGMZDLi+iDsLQDgtH+RmOHoOQ9XsLQDhC/pl0971nLiO4xXONtXHU3IVckudXw/sE9IJdk2/po6AcN7SA3ZuogDxJsiSWInOellsXfBiqNThWf/eY3JlOc/MZkipPfmExx8huTKfVntbrYBuTwAkFlC8pv6bP9FqMbOdHOoUz4CkorRzA19qJRZ9TZYqzft1CRhfqwkZurV/HvJTnEqM/gQaGuyAehxz2EcuJ3QNx7Uus1U7+2yWpbYkcgAkZEnMB9xb53sGck0GEJbeJgEDqOynypvDgi4kFnV2J3S+2t2HuL92CVKIbO4DmmfR1BeXgET0qmEurUidN+8xuTKU5+YzLFyW9Mpjj5jcmU+vPmSoIDKKslZ9oQYttQgjmkMs+IqEEouYQy0+ONuu9O1ip0Xax0QjA590ioQscZTMRoKx2lvoBUBnsAsScr3Z/3l7rGpzt6r+4+1WsmVp/pOb5aD/DYL0F4m6213x+VmJLgR+DgFHJtUrkzDGd5v3sHz/PjUMHv45ne6znc61fgNj2G0m8S8ubgSp2AENdWIk5geTLkFrn+eL+NMVni5DcmU5z8xmSKk9+YTKlfLS8kSNNJqV8bT5dVsXAI5ZIREV347VmAWHEKzr3LJs2lR5CwtGkR8v7YdMA99xAGp3x0/0xid/8chkM8fSKxzUxFziejc4kdvB7iGhtwWU5B8Evdb+yZBwIbiaaDWsW9h919if1V7OG5/+Hha4ntfapC5/LFSGK//ame5+erHYl9qWkQl6F7cwV7SOXlqfsawXu7gX0k/OY3JlOc/MZkipPfmExx8huTKfU5lLwmDysAYYFKW6lnWkTEEJxaVB4526gAQiWKtJ4+lEdSvz0qjSQ3HzmlIt6ux93eRp1yd76nsc6nf6Yf3j/UtRx9LbGtB8cS673i9dB+kwhFveJQ3KvhOYF7RWW5dzoqsH27Utfep3MedHHw9+9KrPjoY4mVX/1WYh/Un+tnfwLl0mtdzzcgml7DfZ6sVZylCcYR/IxRj0LKwTlMofab35hMcfIbkylOfmMyxclvTKY4+Y3JlDpVxSVIDScVd17xaOEGap7pnwGy45LKSUo8W0t1jZNCVVdqPEkTW9rWSFAvU/oFrg61yWQc3pVQ0dfjNg3UjU9gik/LkhdQd47KPtSSV3A1ZA3fqXXd96DZJin7P1r1JfbR955LLCKi+FD/ISn2dR9jdCmhzod63HujNxL7k5/pep5v6fP5DNaXOsY9gveR/uHChqnwD5ff/MZkipPfmExx8huTKU5+YzKlJpFsnTh1heyGqZbPCLaMkuDXBZGNLIwdGC1OAlTqumm8N4mFEe3XeJMlTNM5hx4I8y/Udr31/hf6hT21SK8+eyaxb75Qm+ybisWmAkYpkU2aIGFpu1ZB7L2u2pL/tNT6+R/ByPcffkt9ycO/U8tuRETxHsSh8WiAcFrsq9jYeaTC4Dt72gvgnak2FP1NqffqFHpiLKGJbUS6nZ7gkfbGmCxx8huTKU5+YzLFyW9MpkDrQYZdf+AaggaVbS4mEodIoKPJN4R69NrFk5uQW5GupQ0aL70CP981iIgvOnp9v/r5PYm98/VXEisrPe/JG23M+QuoOT/uaEPJCG7Mul/rd44LbT5JY6QHIHS9X+nI8L+Z6t784C+0N0H/bz+RWPmjv5ZYRET1RAW/9fk3euBAG31u4L4UMMWn09N178MgpZ1aRdMOuPYq2MM2KLdISF9CzG9+YzLFyW9Mpjj5jckUJ78xmVJTI0wS9+g4IrUcOIJdRx1wyvUSXUxUirqAZpTTJm36DIkp6zVfHwldM/jOy1KPe1ZRibG64gan6kIjKXUCLsI3HV3LCPYmgsex71a6nlSxiVykdzYqdH0ITUb7P/6WxMrvfl9j9/W4iIiip0Jl0YUyaLgHAaXR67E+O9NrnQA0T9SK20rEidTyexL3qCmo3/zGZIqT35hMcfIbkylOfmMypV4llu+Sgy2Vtv521IdvCCW9u4XGliB1jULFGBLiKEYTe9awD6uWiT1U0juu1AF3vlahaw0C3QkJQXDq1LvSYMlyS0kvnKim0mjYC3JtUmn0Eo4rYMpN9GDaE42lHp3qcRHRTLQEdwMOv82p9ubbHOl3Tp+DmAqC33Ffj5vRPkCM9jCiJS/hvtJ9oXJgv/mNyRQnvzGZ4uQ3JlOc/MZkSk3OH2z6nygs0CCHXkv/t91KnVZ3Ci3/vBMq+kygVPc80S1F15cqfN4GGrJAJcuLSs9No8oJdknqPlAfxLZf/iaxPJmEPNozclQegTj7+hstO77zTEtti33t9bd581JiERFxfi6h9cmZfv5EhUHqo3j0XM/9vNZn9hhGYl80KgDP1roPbSO6CRLyCOr15ze/MZni5DcmU5z8xmSKk9+YTMHmeOjISxT3SOQaVCqIRETsQm83Evcer1WsuIZzX5VadnoC5xgVU4ktC3X4raB8t83pSIIhCV3kBCTHYerE4S7026PBJ0SbqEjuySmska6ZIBHwaK334N9qHeTx7k8uJLa3+qWeZMFrmX6hnR0np7o/q5Xu7fVYxb0vFtp78Lc9vb7XaxX3zhpt7Dde6XFUuhvBQu56o+umfpSE3/zGZIqT35hMcfIbkylOfmMype5WaQMxyOFXUr89cPO1CVADEKt24ffoTqPn3lurqDGBabBXHXWNUV8/EvJwcm+LyEXHUpnwOFTgIfcVinsgpgYYvGha8RrO0SYLtZWU3oQmFm+BYEvXN4d78KtaRcWHLx5K7Dun4MZb8DP2cqnTcscViGRwydNSd+grEPe+hHt61Kg7kMQ9ep7a+mU2IMQW4LIsYNgM3VO/+Y3JFCe/MZni5DcmU5z8xmRKPYByRBIcyKVFLjQSd8iFFhHRh9+ePogVXVhPH9bzcK3fN6p0aMO8oyJJanlqsPkquUyY2IDatAExrQI3V+owFaIGUTEiogMqIro54V43MDWYnIQ0eflso4Lfv/T0vL9eqfNu3lLZellT/0C9ibRGEskuQai82qiTk/ojUvkt5d/blpKnDt3xm9+YTHHyG5MpTn5jMsXJb0ym1Du19tFLFr+APgzi6JMzLXgabAdOUyY6znpw2A643WgIyABKf69LLQddlSzibaD8N9Upl1q+S6Wa5EykQRB0/+qCeyuS87JoOVbOk3jNdBR99kVo6e8zOI4mNEdEzHE6re7jEK5vCPtAb0v67BL6U9L9w8m7bWXjifc1NeY3vzGZ4uQ3JlOc/MZkipPfmExx8huTKfV2pTXw1FAyWe2vVEmnKTX//Z2qak5gXPUlWEvJzUnOWzpzB5R0/JcCehPQ3kRENOu0/SGbLFqi4R8SOo5sm9SvYA7/emyg9j4iYgi7exi6F6T/0+5MCt2ba1jjCO7gNez3GOy0E5h8E8EKOfWX6FZ6zWQ/34Z7QOPGu4l26Fmp19yWazQ1aQ7/FlDdv9V+Y8zvcfIbkylOfmMyxclvTKbUVGvfgEBDoC2VRlCDuBMRcbSBhoYk+NUqLe1BbXuP6sYhtgODinbA3jsBMZSm8ETwxJ9U2y4JiyRK0felWjmpYeayRVjahrrzD5e67oNGP38JzTFf1mBrhWesAYv0DNY9AxFw0qgVO6LN1gy2cnhuD+A5OYCeEQvohFolTs2ZwHkbyIEItjD3oAEviZx0p/3mNyZTnPzGZIqT35hMcfIbkyl16jhfokhsejhpccWRmDMuVLi5KrU2+iGM436wUfFjGyb7PAIxbVHCWOoKmjWWE4lFRExbmmHehMSm1BgCty+1qWdb3fgAxNRPGr3uB/d0Ks3p6UBi80bHWn8NLR5oNDgJleSybBtrTYIf7Q/V7t+H0fA0PYom+zTgGJyByEn3YNVyX6jJaBeObUjEt8PPGPM7nPzGZIqT35hMcfIbkyk1TfegkkASJgoSG8hxhv6iiFWjTqQJCGfLCqafwHGHUIp6AILfDsTGtYqAx9CYEcdkBzdnJMjhRzFy8xE0jpm+jybktE3sIWHp3uG1xj7V47Y/P5fYq89UBKzJ9QfONHLzUayt1Jqg/bkL9/rRikbD6xovoVz6ErY21fXXdhQ981RWTXIhlQP7zW9Mpjj5jckUJ78xmeLkNyZT/gvA7zEu2HSK3QAAAABJRU5ErkJggg==" y="-2456.22197"/>
</g>
<g id="matplotlib.axis_141">
<g id="xtick_211"/>
<g id="xtick_212"/>
<g id="xtick_213"/>
</g>
<g id="matplotlib.axis_142">
<g id="ytick_351"/>
<g id="ytick_352"/>
<g id="ytick_353"/>
<g id="ytick_354"/>
<g id="ytick_355"/>
</g>
</g>
<g id="axes_72">
<g id="patch_73">
<path d="M 434.924375 2581.123733
L 557.214375 2581.123733
L 557.214375 2453.830206
L 434.924375 2453.830206
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_143">
<g id="xtick_214"/>
<g id="xtick_215"/>
<g id="xtick_216"/>
</g>
<g id="matplotlib.axis_144">
<g id="ytick_356"/>
<g id="ytick_357"/>
<g id="ytick_358"/>
<g id="ytick_359"/>
<g id="ytick_360"/>
</g>
</g>
<g id="axes_73">
<g id="patch_74">
<path d="M 29.174375 2722.541394
L 151.464375 2722.541394
L 151.464375 2600.251394
L 29.174375 2600.251394
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pa54df521ac)">
<image height="122.4" id="imageec1a4b6d2b" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncuPHGeW3W9mRGZlVWW9i0UWKUoiW6LUo+7paY+nFwMvvDbgf9iAPVt77MEM1N3qGYkURYpkvR9Z+c7IyPBi0AbM8wsg2NrpO7/lRUTGF/HFrQBOnXtva3H+vIr3qKbD90OxunylsT/+o8SKf9DY8/+2IbGIiP/R3pLYv7TGEjsrNTZczTW2nErsZjGS2KiYSSxrtSW21V2X2E6H76XX7jb6zXa0JNZt5RJ7lOuz+fvVpsT+QzGR2NGB3vPaxlJi48GaxCIivh7uSey/dwuJ/fPiTGJn81uJzUo9t92C59DW59CGZ7isSonN4RoREeVqJbGsrb9Je0W0YN20p3QcQdfdyfkd+1XvgcT+S6HH/m73UmL7v9DcaHbHxpifHU5+YxLFyW9Mojj5jUmUfDW6kWA1ONfYjYo7MVMRodVT0aa/qeJcRMT2WEWtTqZ/j8oQTTKKlQpY85WKPqtKzyVhaS3vSGw9UxEvb2USq4OEoA6cv97Wa2+HrnG71HvpdfQ5ZJket5jp7w1GPYlFRNyBIEbyVQ/W3YFnS4LfcqWiXVmBONdQiKuDxL0W3A29JwSupqEISOIlvYs9eO8iIjZC3521la67DfvfymmNxpgkcfIbkyhOfmMSxclvTKLkqzffaPTqVELVBcROQRgcLSTWaqkwFBGxBhpLhtKSUoDLi0SbThsEtlwFlX6u4ldT115ERAZ/R5uKe7ttddodhR63X+o9d3saKxZ63buh3t+rSh2MEREnHX2Os2gmxqGrEQSxApx3oOtGSdf9AIdeU0feTyGHd4yEYXoXyd25Ae9dREQH7nEFt7IqNQhaqr/8xqSKk9+YRHHyG5MoTn5jEiWv/uV/SnB1piWBq2so873W0tjZiSoLk4mWokZEUBFm079GWBqLbilwz0HJ5G6m4lcOqyG3Yd16eiD6bLdUzDkOjT1d6rUP2vq8V6D4XN7q/b1s6/09Z10pTkJF27tKYyS6VvB8SIilWAWxpg49Et0iItbQhajH0m8SdH8kNpKQhw4/OK5b4yKlZzaC5zMZ68Zu3+m74y+/MYni5DcmUZz8xiSKk9+YRMkX/+tfJbg40zLRYqgixGKiYsV4pGLDxZydZKBLoKDWVODpY0ydbfczFSD3QYgjFuA4i2Bn4i649B6tdI2fFPqbjzPtw9ff0tLou5G6A5+DuPenjl7jDIS9iIhBpVLsGGILKKumstwVxEjcawo5BknYi2DnZj/T2Dq4UOk6TUt/m/ZvJMjJF8Hv3iWU757OVPBdP4E+io1WY4z52eHkNyZRnPzGJIqT35hEyQd/VBFiPOxLbDpTQWS6VMFvWOlxFxk7lgZtFSvmIGqQq4pKJnsg2hyBuHcMIuB+BY4siUSN3BfRr/Q5frLQo5927nSNH6u41zsg0VVXdDbQ+3sFrfnehIqFtzD4JCJiEercm0J/xEXVVPD7y8U9Es5I7CUnZ0TETqbi13Gu7/cBCL5rDR2eM7jnJRxH7zEdR7EIzo23bd2DXlefxepmV2L+8huTKE5+YxLFyW9Mojj5jUkUJ78xiZKfnm1LcFiqWjiAuuMhTNcZwZ+TW1D1IyKuW6pUTsEySnXjPOqaGiRCY02apANLJAV/o0buf7TUdT87upbYwVeqmmfHOrko2jD2+bmOvy6+0/u7aenzui61nnu0YnsvPW9S9pvae0nlJqh2v5NBg8tMLc1b0I8hIuIQ1P4nocd+ugRrOEzDmYDl9wYstqMW/ScLYnDcGJ51BNuuTyroqdHWPRj09L8Z/vIbkyhOfmMSxclvTKI4+Y1JlPx5qCAygXG+d+DQJVGDJrtMWqyS3YCAMWloGSVIWJrC7w1g1HFGNeJw3F7Ja3m6q2Lc4W9VOMuePpBYa03FmOpOLb/VQu9vCELsbaW23SFYee9KHbEeEbFsOA2pqeBH/RhI3OvBJKXdjtqX73d3JPZRBqJpRDwJ9Tr/cgFW7Gqi64Hx5+NC1/h2pQLkZQ5iOOTLiOzCNXX/c7BdD0G0vQ7d1wuYCuUvvzGJ4uQ3JlGc/MYkipPfmETJn0MZNI1FbupOKuBcqnf+9zg5yUBsgmuTw6+A65AgUoLjcAyuuBJEkoc101Q2d/Q62X11T7Y6KtCRuLd8qe7Ayxcqfv3Q0b/fFyt1fd0sxxIbLfW4CG64SaOuScijqUltEJCpTv+gq6Ldk+6BxL5oaT3+ZzDhKCLi6VKFzuNdnT61daDHteA9GV3rO5Fd6/NqL6GpQkMRcALCXkSNuLeEdwdy6AK+8/7yG5MoTn5jEsXJb0yiOPmNSZT8ZajoQ9NncoiBVoHFm3UlnX95W0eGrkMC4qLU2LgFI6ihNHK/o2JTRMSvL7VMdPtGXWOtJTR7/FGbep7/XgWjfxrtS+ybju7f2UIFrbtC1zIraUg604XS2vUMml7C5BwSAbehBPdZpk0m/6ZUge3zQvfquK+CZkTE/rHGew/1uPaGrnE1UodfBaLbfKbn7oz1OVxVME4b3K+DmlJrcmQOlxqblno+TUjyl9+YRHHyG5MoTn5jEsXJb0yi5G9LdQhRL7wNmIazDseRMFg3gYSceyQ2rkHZKp1L4JQUcLBR3zpyob2B/nERES/G6uY7/O6dxHqPVUSavNF7/rfbPYn973Vd47eFlhJfLFRAnIDTra5Umibi0LMgcW8n1xJxmpr0Obj0/hZKbZ+29f3cO1LxcmOXRbLescbyR7pX1DNxNRpIbDnX5zBf6Ps5g+8q9bccQMk5OfkiImYQp7Lq+VKF3OWK+mAaY5LEyW9Mojj5jUkUJ78xiZJfQUlgG8SdrUwdZ9tQ8kp97+ogMa4H4h6JTU0HQVDvuQxcVSR+UWxYM1DhXUfdbndn6mLL+ypWTYf6bN929Dn+sFIB6rzQ2BhKdRclr5v4KYLfNow//7itgt/vZiqw/ebgUmL9QxUqwTAY7R6/D+2+vqOtdeiZOAWH543+5s2lCponhe7zO9i/Sygbv4M+ltMawY/EPRLy6L0tLPgZY/6Mk9+YRHHyG5MoTn5jEiW/g5JAEtPIXTSHCajbIAyu1fS9IzffOgh+WyA2NXX4ESWIgBMQXugKddcdQr+32zt9FhsX+hzv4LhzmPx607B8s1yp4NO0D2JEc3FvEwTfPYg9XumefrFxI7F7fwui1D0t840CSm1nLGi2tqCXXlfvpTpXV+T4QoXB05m+8z9CX8YfM92Dd6Hi5dVK93QEE5UjIuZQgk2CH8WoL6O//MYkipPfmERx8huTKE5+YxIln4FgROIQiwjNRLdd6NcWEbHeVkFlK1Q86YAARaIdyVc9EBvX4MhRGyaggpuvU/P3cg4XPyn1vhevdT0vwRX3uq3i0Bgm7RJtGLBB4h4N4ojgnnsbUMpMDs9dKP0+KnSvdu6r0JU90jLm9icf6QJ7IOLNa54N9GusRtrXr7zTPLi50dLfM+hleALi3hvojUnl8xeFCo3UbzGCy7KpDyMJvhTzl9+YRHHyG5MoTn5jEsXJb0yi5FT+R0JeBRM62iAW0iCHVrDgtwni3n6oYNSpVJiiqcElrHGnUoHtsIQJvyAMnkFp6x2UZUZEDGCy6h/XyNkI4h4MDHlVqhBUQEknufE6IEoRVLodEdGDPeSSbj1up9Jr91dQVt1p6NAEca+1f09iVV3J8lBLnuNK3YUzbbcY7xbq5nsHLRzPQkW3k1JFxdOF9lskcY+cfBFclo3iHuQ0uXb95TcmUZz8xiSKk9+YRHHyG5MoOQlGLRL3aso/34emgeY1wtIWlO8ermBgCMyWgPkOMYd190EsvFeCSAL3N+zquq9revidh4p2J7CeKZx/BaW6g1KFIBos0oJ1d6iEGkJ4XERsgptvB1yI+y0V/HZXsB5YNw2/qIb6HGKggl1VQPn1SN1zERHVlYpsy+8vJPb2pZYOP+9CqW5b9/lspW4+6o1J4t50CSXZNcNUfkoZO70n/vIbkyhOfmMSxclvTKI4+Y1JFCe/MYmSk5Wz6TQcaupIsW7NFJ91UOL3wD17tGRL7fsUUJ/eAeV0A6y411DDTrr+BM6NiLgGxXcOyv4YGqFOSq3TJmWf6vSp9p6O64Dtls6NiNjNdcLOgxZM4lnpXt9f6ruzRg1hx3pu8VYtsRGvNUTjtG+56WVxpf8ZuP1B7+VPld7zn6Cnwhuw7V6Asj9YqrJPE3cI2r+IiArypaLeDRCj/hf+8huTKE5+YxLFyW9Mojj5jUmUfKejNctN6YI9lyb2UBPNiJqJPSBM3APhZWtdY2Wpf8uWEJsudd1zaDw5CxULZyDERbBtl0Ytz1cqQJFtk8Q4ElPJdl1nD30fsvFGRHyU9SX25UqP/Wqh97LZ0hi5u6dTvZfBC322vQsVziqwEJNdOCJiNtb3++xW7+/5mu7B99BT4RRGoo9gJDrtM1lsu9B7ob4xrr5jK+iVQNch/OU3JlGc/MYkipPfmERx8huTKPn9XKeSkFxAwhJN0qER29sQi+DGnDDpOtY7KnRs7ajIslyqsDgeqoNxUGhsAq6xWUuFs6JGTCORjVx6RNPx17sgpta5J98nA9cX1eNHRHxZavzvwLH28RNthLmC5qg3Fyq6jWZ6jeG5xtrnf3kNe0TEDBq4vs712b4Mvb+3C72/m4W6+Wjvc2j+ugHX7cBxtU5ACJM4WMJ7m7U1V/3lNyZRnPzGJIqT35hEcfIbkyj5E3Bz1Y2hfh86ag1EvM2Kf28PxKFeQ3dasVChZDJWweh6qtOCzmDSzEWmwskIBLtFjYi3AIffquG9oFMSBL8jKKs9hAlHG7AzW+CKe1zw+r7YUKHr4d+p0NV5ok0vyxN1xU3u9NmcTbWE9hJcjWMQYj9EAhzBq/c8U+flcxD3bgst36VpOtQElxya27m+iyQMkjswgpvj0jtGx5UkruNVjDE/e5z8xiSKk9+YRHHyG5Mo+S/BzUXTk0kaohh5+WhEc0TEDowcPoCJKHmuItvdnYpfpzBS+W2uK3qT68rfwcSdy0pdhKOVlhJHcPkuObWov9oajSUHEWkXjvu0VMHoUaHXfZDrvdx/rOJcRMT2V3rt/ItPJdbaU8Gv1X6l5/4eJtXAd+cs12dz3da9moLktwBXW0TETaXi2atC7/tkroLffNmsLLeXaw71c30/N6CEmsTCOopM84DKwWn0OgmD/vIbkyhOfmMSxclvTKI4+Y1JlPwRuLwyLBOEQQn0g3DuFo6/iNjtQm++LY1Rz7bhVMWTEZQt3oBz76Kl63kHI7EvYUDDuOThEDNwflGpJ5VwliBqdaHv4QE4JY8LFYEedvVeDo/0XvqfsEiW3Qchr6+OvMignBj2gIyOEzhuCPXcV7BXQ3BTjmpccZewr6cLHds9Wep7R+IsiXu7HX02O7mKz+vQJxIH5NR9kkFNJ8FwScKgh3YYY/6Mk9+YRHHyG5MoTn5jEgWb65Efr1lxakQHzu61uAy2t6bCTQ7uu/mMewDK74GTcHOlf986UCa6hDskcW8MwlBE8/LdFjzydSgxpqm4n8/1/h7mU4mtdUHwgfLp5bBG8LvS8t3IzjUGItLi2yuJXd/sSewm0/UMGop7g0rdlDelPoeIiAtw85G4Rz3u+tAzca+jJfCHuca2oT8iuTYX1PuxJtsWbV3PItPnQ2XnNDHaX35jEsXJb0yiOPmNSRQnvzGJkl9mIELA1A7QiwLMc9grLqBsOCIin4DYUahrjCbttlt68T44Cffh3B1wptHwCyrfJNfXv8fhN6GP21amfdyOQTD660LP/Zt7Krqtb6mzbTJQJ9l8qr/XqhmIUc7A7fbyQq9zpdd5c3oosW/hnl+DC+2chDwoob6D2M1SHYwRLO4RW9Bf715XB9p8BENuHoI4uwPDQqj8dgHvcc3IjijBATkBce8OfmEMpc3+8huTKE5+YxLFyW9Mojj5jUmU/CwHEaFhj7QWDALYAOfWbcYOvcFSSyG3Zipg9ENjXXANZrDuDrjQOiDkUQktTc+t67mWw/k9OH8HXFqPQ8Wmz8FdePAbFXKyfS0d7X43lNjoREXXxZz3ZfxWy6WvRnqd78AB98OavidnoaLbNYh7tyu95zuIkfNyWLDDj/oo0rRcEvee5epMfFbpPX+itxK7K30/2/B+zuH7W9SIylQGfQm59Q6E5mt4P/3lNyZRnPzGJIqT35hEcfIbkyj5LQhnNJ12BqWH5FiiCb+DGsHvCgSMg5Uee7RUsaIPgkoBYtxVrrE7EBCppHcDSm1J2IuI6MGk3R4cu9dSsenhCo7b0FLU/JH21ms/eyqx9WN14+W/fy2x228kFBER7662JPaHjgpd3+bqGnuzUuHtGmJ3UII7KVUYpN6IBYh4JOxF8BRcKtUl596vVyrE/nqh6t7He7pX2/f1/kCHi8VQ1zcesCP2aqCia6fSNRYd6KMIF/eX35hEcfIbkyhOfmMSxclvTKI4+Y1JlPwa6nwnoIZTU8AS1P4MrLPjmgrlITSzHMN/Bu5AsV2r9LgZ1EbTxJdTGL09gwaH/bYq832YuhLByv4a/G2lMdt70K+xC004AxqPtg6ONPbwscQ6YBntfK/jtCMiLqH55Emmi7zE+nt9tteFNgQdLGFs91J/jxqj0vQZasAZEbGe6b3c6+h/M74IVdJ/u9D/Pjz7xaXE+r/Sa2SPHkmsgnX33mjD0/w7tirPZvrurM/0He1CL4EuTHvyl9+YRHHyG5MoTn5jEsXJb0yi5Bcg0JD4RfZXgppekggYETEGS+wQYudkqYWfnIIoOYHRzSReduAa22Dv3QHBLiKiC9Ziuu8N6IFAI9GpkenqRptUtocDibWyfVyjXGPGVuUxCIsTsIFPwVI7huaaI6i/p8aai1J/r+mYc7LxRnBjzk8ytfL+NfT5/OwTFeO2/qMKg9mzT/XkgwMJtUYqfFZDFT5bbW46So1spyB0UlPQAsR5f/mNSRQnvzGJ4uQ3JlGc/MYkSn621GaPCxD8yJ3UAtcYNbjMav7GjEFkI+GNfnMJol0BMTqXnHu7ENsDN18f3FMRETBMBX2NNCNnAgLbYKzrOXqp7rL24XcSa23rBKDlt2/1GjcqhkXUCH7wbGkKDDXXnJbq3CNxj2IE7Sm9NxER+zAN6Unos/1sTWvyt/4KXHGfPtSL3D+WUGtDm9NWhT6vgLHyyynny2Sp7+MQGuaOoNnuDGL+8huTKE5+YxLFyW9Mojj5jUmU/BZGGxfQHLOi8l0S9yBW1/Sy6fkEOb/o3J1MHVlbULK6C+LeHpQN92rcilCAGzNwRZLT6gbUwjcw9nnzX3ckdjTRsd1Z90xigxP9vVczFcMiIk57uu4rKN+9gneHJufMoFSXxD0SlQkak05TeCIijmD/P4MJO8d/pYJfBuJea1ebqLbW9NnGChyx4PBbXekzHN/yvQzgfRxBukzhHZuBYOsvvzGJ4uQ3JlGc/MYkipPfmETJyX1FYhrRBvGLSitLcBdF/DTBj0qHuzCVZB3GZG+DuHcIYsr+SteyVqNJzUAHXIFTbgZizACez/cwdWW0VMFv+zvtR7eCtdxB6edrEPYiIr4NLTN9vbyV2OVCRbJRoQ6/nyLu5Rn0Rsx0/3ZzddRFRDyB8ee/7Oq6179S8bN9CKXRub4n1Vh/L6YqfK5eqcty9K3uwclNjRAL175p6/lD8JaOQZL2l9+YRHHyG5MoTn5jEsXJb0yi5CTuleROAipwWrWgR92HgD0AQQQkcW8TynLJzbcPffgeQX+040JFkhyLciNuQJhawrqpF94ABJozEAG/hRHPMNEch6nMweF1twKrW0ScFypgXS209JvcfNiHr+H7RCXi1K9vM1dH3WHGgt8vYLz78Zd6f+2PfqEnk7h3pX394k6de+XZjcTGX+vz+reX9yT2TZcdfj+2dQ8vQvfwFtyYVH7tL78xieLkNyZRnPzGJIqT35hEyYuGfdOICsS5DxH8SNxrgyuuBy69fqaiz16mbq57IAI+KlUE+hKcaY8OwblVw9tLHQRx29Y1LnIolwXh7Wql4hANxJjDUBIUcSG2gKEbEREzcH3SBF0q/aYJukRTcY/cfJsZCLswYCUiYnMJvSdzjVUTmIw71XeiPLmW2OyFOiIvvlfn5Z/GWiL8NVQD/wAOy4iIKxiwM4J3Zwoxek/85TcmUZz8xiSKk9+YRHHyG5MoedNBCU0HdJCIV/cnpmlJ7xYIeffB0XUMAtvHKxWMni30nj99qI6sna9AGFqwW23yjyrGFKWu5xqcVpcrFXiuC3WN0bTbeam/17QHY11ZLYl2dD4JdBSj36M+fB1wbVJvvl7G4h5xlet1Ll5oyezx1kmj37t7off3w7sjif2ho3v/+zUVbF+U4KZc6t5H8P6TaLuE/SfB119+YxLFyW9Mojj5jUkUJ78xiZKTc4vEmDZNRgVxB4Wl4KEdNFm1B06tY5i0+stQwe8pVKh+DCLJR0cqsmx/DhN+76lrj4YsRETMFipWnXX0N89B3LuB4RdNxb2mgl/TvowRXC7dy3Vf6DgUfBvSAzcfib3bIOzW8Q563P1hrIM3lv8HxOdM3+V3I30Xv17Tdf+xpY7B59AH8d1chea7gh1+82UzN2dT/OU3JlGc/MYkipPfmERx8huTKHlJZZko+DVziOUg7tWJQO1c//YcwPCFX4G4959mqu59eqziydZjPS6/p66xdl+vUc1VYJm+Ykfki0rPfwWlmTjZdqniUFMhD914DWPk2ozgwSs7HZ12u51rjETcpvRaKiD2oSS7C9+sVU1vxTPocfd1V8XLQaEi4NpCf/MU2ut911Jx9odSex6eLlTwGyxgSm+hTsCIiJ9Sfk977S+/MYni5DcmUZz8xiSKk9+YRHHyG5MoMO+FQQUZ/gNA01mqNiuxZOd80tbGh/95rmrqL393IbHusz2JtbZ0Ikosod79Vmuoi7eq1p++1DHZERHPocT8vFQl926pv0lj0knZbVoX3810W5ueG8E19Pc6anV+kKnVtQdqP+0+qfMd+Bb1IFbAuUPokxARcV7pf1IuQZ3/FiYu5WBpp8k3N/DfmstC1f7Rstn48tUHWHbJTk//XaP89ZffmERx8huTKE5+YxLFyW9MouRUp5+1mzXmpOPIGkq14BFsD/1ipWLTs69+lNjab491jWTRHanotjofSGzxVkWb0Vtd98Vc68sjIq7WVUQcwoQdEvdm0FOBhFNsogo19TTlpmmz1IiIHdiX+yDuPWnpcVsNvyf6tJg5CFpXAX0Nan7xqlSBdViCnRom2pCduoCGmVRT37SJJkE5FME9NVCIr7E6y+81OsoY87PDyW9Mojj5jUkUJ78xiZL3OipqNRWHSJggd1k/54aLRyAiPYCRynBYBIiN1Z269JY/XEps/FyvcXuhzsLrsYp7J3B/ERHDSsU9GnVNji6csEO9EsA9R00012GizRqMOadzIyL2MhXyjhqOOj8oYf9AfyrBXDgHQfMStK9bGOM+h2cYweLe1ULddxOoof8p7jsS5yg3KEbn1kHraTpxyV9+YxLFyW9Mojj5jUkUJ78xiZIf9FToaiz44cQdFZbIMRYR8aCtgloGwsToNYgiazpSuSr03LuXup6TMy1PPa1UlHwHDUZf5txE8U2pYuN0pYJfU8GI3Hw8EhscfrAH6zAJaTODbpQRsQf7slfpdfZA3NsvVXjrBJR5g2N0BO/TCN2mSp17jkZYU7k0iXvk0qsba/4+7azZhKumk5AimucluXFxChdexRjzs8fJb0yiOPmNSRQnvzGJkv9m83GjA0lEoJ5rHRAgNmtGdN8LFTtuQCj55p324bt3rv3Q2jCO+Wqh4tWPuQpib3MVcl4HTGJZqjssIuKk0GksVL5LQh4JPCTQkDhEbj4S9/qZCpp7NaOuH0L8Qan7sgPi3jqU1rZAxF3AO0GSHfn2ShDdypoy1sblrVQuDe9yCaukc1GcBTffBoiuJJpHNBdy+xCjfoT+8huTKE5+YxLFyW9Mojj5jUmU/L+WOpqYaPpXggSaBc+GiAn86CnUf57CQIWNSut810Hbmaxp8Lytbq53UJL7FsS980L7/0VEDAstHSXXGbq0QOSkcmkSh7ZycONBSe49cO09Dhb8Pit0PY+X2uNus6WxFQjDU3AHDsDNdwGOyvO2vlG30MNvBj34IuqGlTQrty1aem0aQd+GeyZxlvaPyt37NUIsCXkHcOx+i3tmvo+//MYkipPfmERx8huTKE5+YxIl//v1aw3mMDACJu2uoBHbbKYupKsZCxjfdVQAeQMlsxcVlMbChGByF5Lza1CquHcNwx2uCy3THcOk1QguHUVXZMOyXHLukUvvINNBJY/aKvg9g5LlX825PPnprr4TG9u6B/OJrvvqRtdzutJ7ftXVvfoRhNjTSp/3OezVDMqnI2p614EjjwRWitGeklhI+0dDag5yfV6HIM5GRNxvab48gGe7CXlZgOjuL78xieLkNyZRnPzGJIqT35hEyXcO1ZnW7oBIAiWvK1AR1kYwxfSKLX79UkWRObjiTkudtHsHwxhwgAGVk4I4R+W3NLmV+rrVQeIeTdAlcWgDhmTsgWB0CA6vT0LP/QrEva8+upBYRMTOr3W/Wl1d9+yFinEX1+q8PO3oN+ZFW5/3j7DPNyvd5wkIth/i8PspQ2mwrJbEvUxFu3sgzj4GcfbTknv40UCb7Ybv48QlvcaYP+PkNyZRnPzGJIqT35hEycmlh0C57Gqp51arhr8X3LNtAdEBOLpo0uq8hBLThkMWmkIOr4ifJu71Gg7U2AaHF5Vv3gch9n5HhbPNj9jhlz3UnokBz7H1Sn9zDo6zK3CHnq1ULLwEwW+w1L1fVipy1Q3tIIcfiXvksqQ9wBJqcOQdQewJCLFfznR9j9v6HCIiel0Q0yHfCpievAkxf/mNSRQnvzGJ4uQ3JlGc/MYkSr6Y0cAIEHdAtCFxbw6/NyvYsTTKYVJr1dAQjbfDAAADBklEQVR9B+JeU8GvaUlnUydYRPNpuRSjIQ3rLY1ttfQaO5Wup7+Ccuc1GKZR96e/hKm6M92D5Vh/YAI97mYg4k5hn8m5R7EPcVnSkBSaLk3i3i6V20J/xIcg7j0tdf++XOg9f7J1J7GNPpcnU65Op3qdAh5PpwXDRvAqxpifPU5+YxLFyW9Mojj5jUkUJ78xiZLPp6zEv0+bGniC2j+bw3SWiieIDOA3SQWus26+D1lv2+DGrbPoynGgFFMsovl/BjL4e0uxLijS6xDrr8CqCs9rCSO2lyO2PudDte3GQiXkYqrrmcM9F6A0F2DRpZp8+g/OB/VUaNhcswexXWiYeh/6Jzxe6TWewvN6vKmW9K09tTnXWeSLQp/3ZKFq/xjWU1Ju4FWMMT97nPzGJIqT35hEcfIbkyj5ctks/6tKBQOqJR4XKpzcgnU2ImIAQtAChKCmdlyy8lJTT6KpCFgH1Y1TrASrK8WIHNYIfVWD9CKq8S6nNXsPYlVT6MwCnsMS7pnq9EncW5QwHalGiG1q2+6BnXoTYrswbvwQemIctNSiu76p4mUGzXIXNLs+WPCbQv8EslgX8Hz85TcmUZz8xiSKk9+YRHHyG5Mozex9weIe1ekPQBC5hbr9iIgRCH4k2nWhjr0L9fMECUZNa/w/BPrNAq5NwiI5/BZtcNSBcFZA7wUSd2j/6jTO1pa62Frr4IrbP5dY9w2IrnANcvjRXtEzJMcn1ehHsBCIDTxJBIR96YPwvQP9DzY6Ku6tratQ2e7Q0+F7oT1cwSaWcM8W/Iwx/w8nvzGJ4uQ3JlGc/MYkSr6+ocJECa6/JbjBZpUKEzcZTGzJuHR01tDNh80xK3VfNeVDSkLfp6qZAFSB8EaONVK/SICaVrov1Nx0BGLotLYz5/9Pd5edhe2PH0is9UBjG4Wu594ftOFmFioW0ph0ijUt56aJSRHcMJUEZBJiOw0Fvz7sy8a67l9nU9+HrKfvTT7le+7ken5egHiNgrb+nr/8xiSKk9+YRHHyG5MoTn5jEuX/Aipl7DC6dHeiAAAAAElFTkSuQmCC" y="-2600.141394"/>
</g>
<g id="matplotlib.axis_145">
<g id="xtick_217"/>
<g id="xtick_218"/>
<g id="xtick_219"/>
</g>
<g id="matplotlib.axis_146">
<g id="ytick_361"/>
<g id="ytick_362"/>
<g id="ytick_363"/>
<g id="ytick_364"/>
<g id="ytick_365"/>
<g id="text_19">
<!-- 58 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 2701.763269)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-53"/>
<use x="55.615234" xlink:href="#ArialMT-56"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_74">
<g id="patch_75">
<path d="M 164.424375 2722.541394
L 286.714375 2722.541394
L 286.714375 2600.251394
L 164.424375 2600.251394
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pf152049a53)">
<image height="122.4" id="imageca196dee03" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUuPJGd2nk9kRN4q69bV3exuNodNkcPRZUjBFuyNFt5pJRjw//KP8Eob7wwDhi1AkGBYN2gACaI0NDkcXvpa1XXJyvslIjK1IKFFv08A0cOdvvdZnorIiPy+OBnAW+85J1v+j/+6jzfY19WboYiLVxJa/+k/SOyv/vKRxP7PUC4RERH/v7qV2HU1l9hqt5XYbq+f2e3kEsujo7FMYx2I7fY7ic3rtcQiImblSmLVrpbYYXcosY+G70js58Udif1O1ZXYT8tSYvf7ei/1LpPYRan3EhHxrFtI7Ntcv8vT0LW43vH6vMlBptfIQu9xDJ/3ajuW2Lzi6w7znsTudY8l9n73RGLvZgOJDfb6nEwyzZfnu6XELquFxPahzzE9nxERNTyPOzi/A+uIzzxexRjzbx4nvzGJ4uQ3JlGc/MYkSpF98IlGx+cS2n3za4ndfNGX2Bd9FXIu9yriRURUoQJGtwNCUKYCxqpWEXC7U+GFRCQSBovQ2NtA90gxEniWOxXt5nsV2NaZCn66ghGdjkY78DOflyzElnrbscn02BpEVxKb4ONa08t0X46LA7gGX6UDe0CxNaz3Tei+EFMQpEncW+42EiMhLgdR8a2A70cCud/8xiSKk9+YRHHyG5MoTn5jEqXIH30sweriW4mVv/hKYv989VBir4YqutU7Fpb64PIqQJmqQSQjgee2VJGlBiGHnFK9Dt9jm3MjIvYgqNA90vmbvQpLi9B1LEF0y2FtDkYqQO33IHypEfD760CM9iCH7zeEPe2CqNWD904Bn3cEIie5A68gFhFRwv6POur6o/spQU7dwv5NQcijPW16dt6EhOKIJpceCaztJFa/+Y1JFCe/MYni5DcmUZz8xiRKEVQm+Df/T2Jf/MWpxL7sq/tqFSo2keATETEKFXNIqyCxicSTWaYK1gbcc1VLEZAowUUYwQ4qcvORMEj3uNrrdegOj3I9d3RH92A91bVeNfz2L0D8pGsfhopsRy0Fvy45L0mUhOuOWpZuR0TUcOenmQp+xyAs0ifOQIjddsCNCftXgFuRBLsuHBfBgh+Je/TckfDpN78xieLkNyZRnPzGJIqT35hEKarP/1KCL/7kSmJ/nd/T4zoqaqxAWCAnWAQ7tejYLYg2CxBFelAOvKzVfbWFHoVbEHIIElMiWMijvoAEiYXEAQhih0MV9+qtXvf6eiSxi4KFpVnoHlKvuBHsAfW4K9p9PRQB6cnJYR2KTsMzBvfzXq33fVaDSAYf+RLWjEqEe7keR47BpueJaCvubSAHCb/5jUkUJ78xieLkNyZRnPzGJEpR/+//KcE/m6u491muQxGm4EwjYajf4FgaQt88En3I4UciCzmjyFVF4h4N2KBrNEHiXg7lyQW50+DcAn6XD8Fmt96oyDl5qm7Mrzo6oOO7Lrsab2l9QJQsWvYoVMk1ooby5AyEPHoeqHj3/R24RSPidzf6XT48uZZYf6DHjce6Zt3ySGLLnl6bBEhaQxIBN+injCjBhUp9MMk1SA5Wv/mNSRQnvzGJ4uQ3JlGc/MYkipPfmEQp/v6/qTL4572ZxJ6VE4mRsn8AzRHPQGmOaF/7HS3r76nxIVl+S7Alk0pNdkpS8CP4Pw30HwCaFkTn0v1M4dLflmrbfV3ogTRi+yXq8BEzaD7Jtmv4T0NLe/YG/rtC1ziEZ+Rh6KSoJ1tWyD99/7XEjj/V9c5AnR98MZXY7Zd67YudxoKeO9jTeab3XcL6R/A6Ut+AJUwQotHyfvMbkyhOfmMSxclvTKI4+Y1JlOJP+ip0fL6+kNis0uaYJIiddHV8cr/L01SokSJNoKH6ZLI6ck091X63G8dNtlsaIR4RMcjV4klNJenafWgeSWt7A6O3655e43Wm6/U8VPB5XS8lFhGxAMGIBMhew5ScN9mCKEWC7aCj63CW6/N0H56bUUNPhN4h2LaPYMT3QD9z+HgssQcvdc3eXYK9F0TXKViaVxAjy28E78scpgWRuDevLPgZY37AyW9Mojj5jUkUJ78xiVL8srqR4LRUUWNdg+sL3G6rWkWJFUyViYhYgNNuDTXdC3A8tRWRqDkmCXl5rrE+CFCH+UBiTfFeywktAzjuXqausQGsDbvGVOSaQ++F6U5FoIiIaaX7v22YVPQmJFSS6Ep7QNN1yDG6BuHzJmfx8fK7Q4k96Klzr/dY17tzqPt/7/25xD78Uo/rlioqRle/s7bKjdg2NOBcQR6QuEdNa5eVxvzmNyZRnPzGJIqT35hEcfIbkyjFBoQzKkUl0YbEK3KCkTgXETEDxxJ95hKEDho5TCXG7NIDlx2Ie6OOikDkOIuIuAsC3SFNFYIJMkP4zg9qPe5BpULXLQiV13BdEuJoVHkEi0MUI7ogvFHJMjklNxmIkiBovQKH3xddLW2OiMhX2sx0/U+6148mWrI++kA/r/8I9mWuAuL8qV7jfK/PCAm2TRN36JknkZtilJd+8xuTKE5+YxLFyW9Mojj5jUmUghxUowLcTi2n11DPPBLdIgKHE9N0HhKrqPwTxT0Qm0466sY7AXFvAL+No4Yy1nt7jd+r9L5pFPQJ9LO701Ghq5urkPOy0v6Ir0EEJBchrWsEC0Yl3CNBfRQ70B8vA/FqjZdQt+FLKtOGEtqIiKyn67Pfgjj4TEMPd+AEPNKb3Cz12VnCNKpZR/d+AWJ4k8MPp+7QWrQcX+83vzGJ4uQ3JlGc/MYkipPfmEQpDqB/3DG42KgfHTnqhiQgQiwiYgTXpqEdu9DzqVSXzr0PzrsntYofA9BYUKBBmTJiCOERxI5AODvKVPTJaZjDDpyXNDgFSn9JqGzqwdd2jDi6y3YQg+9C47iJ7Q4cn1Cyet3RHpMRESP4LsMuDNmA4Sfj7/S4LpQdz0HcewZ9K8+hhP2mZV++iIgSyqoxD+A7dyAP/OY3JlGc/MYkipPfmERx8huTKFjSS5Dgk9EgB3ASDUHYi4i4C6WZRzD5tQtOtAL0ojMQxH661e93P19IbF2rSPI8V5HkGV04IlYQHsNPa1Xo9xvvaUoviFJwjQrup4bjBrB/TULsAXzvbaHruKm0BJdKR0kYzKG0mdyB5FajknMa4hIRcbOHsnG4znVP96UPQl5gTJmDiHu+V9fmDQxOIUEzork0/jfFb35jEsXJb0yiOPmNSRQnvzGJUpyX2ruMINEGPxAEmhqGLEREdGHox30Q7Y7A5TXaqbD0LgwMeThSca/bVZfdYqni150tiHMNwyFW4GK7JYcglLcSWxDOSO4hhx/1hVvD/lG5cwQPIGm7/2Wtd0mlw+QipEnHw1z3hcrQyd0ZEbECkewZxNrtCveYRPcjOB0nMCRlXOnzSYNvIlhMbSrLlvuhcuBWZxpj/s3h5DcmUZz8xiSKk9+YRClutyo4tC3pJLGBBi/QlN3v41CiCA6/PpTGDqCUkcSvbanfZQcCInEQKgyegBMwImIOrrFpBsIblISWcNySetzBudTzkGJrXGsuTx6Bw48gp9y6o3tNJaZU+k3OQjpuCKXIJMRFRGxhD1cwsXgNMZoaTFC5O7GEUt0FDEPZtRRX3wYLfsaYf8XJb0yiOPmNSRQnvzGJUmyhLxiVVraddtvkGiPIibYE8WsCrrgJuAMvYQrqg1JdY/e2Ku4Mc3J9QX801siQNbj+SMjbghizBKFqAaIUCVo45AREsiMoqY7g3opUlk2DUzZQ+kvTju92dJjGEJ6doqWDjdYrIqIGJygJnTSxmERActlh2THcNw0+oc9rEmL3IHI3HdvmXL/5jUkUJ78xieLkNyZRnPzGJIqT35hEKajumHoUktpPE18GLe2YETwCm/4DcN5RlXSWaYymlzyH+vv3a1WfH5dkGdXPmzXU44/hfq6geeSK1H5QqjdwHNlSyWJ7v6MTl55kGjtu+O2nPZjAHtzAqHO67zP4r8JH8J+Zu9CwYAm3eA79IV4F18CvoJEmPbclfL8SvssG9oCga9B/x8h2S8p8BNu28T8ADee/id/8xiSKk9+YRHHyG5MoTn5jEqUgwYisiWRh7MJ0nj7EyFoawU0XUWyCWnQabbwFgeYcrvEa6sbPoVHkMUzSuQbLbkTEy9C67Mudjo2mCUkk+pDYRMfdKw4l9gehsf+wVqHqtOCx1jS96AImCD3tqr33FsS4Y5jO88FWj7sLfR/GYCue9uCZbXAB5/As96jJLFyHelPQHpDA1gOhmcRwEgabJvNQY0+y51dgI3Y9vzHmX3HyG5MoTn5jEsXJb0yiFNSsk4Q8qtNv29SzCRqrvITTqVabJrGsQDDawASZm0zHIr+CmvNDEIGqhuaKt9CccVqroEZ14+TSouaRJLrSPf7eRs/9/U8uJNZ/wvX8Uen5P3uh63j5rQqLL+ca28B3oa4Pc4he5fqMTcBNSc1NIwKjTc0+34T2igQ2ygPKKxJn+7Cn5JKMiJjWOvHnFib+zCp97na16/mNMT/g5DcmUZz8xiSKk9+YRCmOutpIkSan9KFZI4mA9GtCzruIiAUINwUIatTgkgSxDYgxNCWFRJubbK738hbNSOkzqfyz7ahrEk5Hhe5LAWJTH9am9wiaY37yAV/77Exi3VK/y+jlucTe/eylxK5+qff94vpYYk/BZXleqFB1E3ovywZXHD17NL1oDWIx7SmJsyTuneUjiX2UH0nsZK/i+rphpP0FlFC/BHGemoJO9ipy+81vTKI4+Y1JFCe/MYni5DcmUYrTQoUJmsTCU0kUEqrKBvcVje6mEkxyPJE7kERAcmmREEdlkG8DluBCf0Qav0wTkvp5uz0gxiACVdcqXnXhuhER2YN3NXjvPT3uU/3M/m9/LrEH//dvJbb6X+pC+6pUYXACPfgWsNZz6JcYEbGA0m+axEPPBJXqDkCUfLd/R2KfFhr7d1vdvxFMFJpBOXBExDeFZlyd6/mLXEVuKgf2m9+YRHHyG5MoTn5jEsXJb0yiFGcg+HXhN4F6/ZEgQiODadhARMSSHHAtxydTLzwSbWgsMol7P0aw+z4OAxVajk/uQh+3IQhLh7k6vHqwV3NoaDd7Aa7Np+rQi4jI7qhYlfXUCRqjEz3u7B2J5R+qgHj34dcS6z3Vz1uBiDsB1+YtlE9HRCzrdg5P2qseCKcPe6cS+8P8nsT+aKUC25NHV3iPb3J1qaW/ERGdUnP1pqf7+hqek0nHDj9jzA84+Y1JFCe/MYni5DcmUYpT6F1HLjvqe7bLVCQh590GevBFRMzIqQV9ylbg0iIRkES3tiW0JO6RMNhWxGuCyj8PoFT3qFCB7QRKOg/A9Ud3OB7r5x3+8hbvcVB+JrHOd8/0wAKuvYC+hV9fS+zypZa3vgRj2ysYfHJRzSR2W2ovu4iIEsQ9EqVJ3CP368/BufdfShXTfvafNZb/RMXQ3VTv++AfbyQWEbH4R73Hb2DaMeX0oqvfxW9+YxLFyW9Mojj5jUkUJ78xiVKMQkWEAsQ9Kv4k1x859GjoRkREBRNvp3A+lSOSm49EyQ70uCPBh3gbca/t4AYS9+501dH1TqGC2IOOinb3oAcccb3Vc3u/4n05eq2ia95VN+Bmpdce3xxI7Nv6kcQ+02WIz/ZTiX29VbFwvNV+i/SMRLTvuUeCH8Vovd95qM69/Hc+kFj2+LEeN9XvPAB3YETE/W9URHy8UhF4DOLeaVcdo37zG5MoTn5jEsXJb0yiOPmNSZSCxL0RuMYGe/2d6LbUw7YgKkZE9Dr6mZsceraB628NAg/1CuyAw48EPxL3qB8hiUURET3ou0ZluceFCmIPQNx7kqsI+N5O+/rdr/UeD0DkmsCelgu9bkTEwULvsYK1uIRej1/B4N8vC3XpPa1U6LosNTYF99yq0r1v6+SM4J6Jb3O+nFvqc7yfqiiZnWgstvpdMujVFxFxeKJ58MFMz+/vdV9oLrLf/MYkipPfmERx8huTKE5+YxKlyEH8OARx72ynsRFoJCSHrXg2ROS5/mEKLrZxrqIP9WEjl1fbSaskAg0LVa/IoRfB/fUGHT3/CCYg34VS3XdBtPktNTXGKfajUzbgQJyD4BoRMYFdnMJefZurQ/DLvZaoPiu1dPi61LJc2r+y1u9H4hztaRNtj6Up1Ad7XYeq0nWsvr6UWH4Lgh9Q33A/wv6xrvcH93RtH6312cmg/N5vfmMSxclvTKI4+Y1JFCe/MYni5DcmUQoS4ntg5TwGZf+k1mABSuo059+YK1CQ6X5oNDXFqKa+augl8CbYwLGnddF3wYobEXEMTRN7dI/wDYegrg9BVSZl/26uls8a/lszB2swqfoREWN4Kp7lutdf7fW/MG2V/Xmp903TkKgp69tA/8Uh6Hmihql34XHagcV6+TX8R+lb/U9IBiO28wF/5+6pXufsVCcS7dbwTKypKa8xJkmc/MYkipPfmERx8huTKMUWRJYtjtluJ5xUILAsYWR0RMQkg9p9aMxJdkwS99o20aRGn6MCxB0Q9x4VPD75NKiGWtlCzwGCGqGSDFSAEJfTeu10HTYgckZEXHf0/KehItLTSsW9y63W5C8qPZemIf0Yca9J2KNnop/rXh3DhKT7mYq4xyByV5Wu7XKi19iDiNvt6TocFODjjoj8SPcrO1QL+X4JzW0n1PDWGJMkTn5jEsXJb0yiOPmNSZRislchoAt13r1CBYwtiCmgacRlh0Wui726k5ZwPzU15gSBh1x6KAKCm+sUppzcy7WRJYlAEREne/1MEu2mmQo8FQhdc6i/noJ4eVyCsASC5k2mx71oGPbzTab78h003Hy9meg9btv1XmjbU4HEWTyuQfBrOzXpDMZxn4GIS1fZbGECUF+/M4l7vQONQe/W76/dY0dmGzJw0/rNb0yiOPmNSRQnvzGJ4uQ3JlGKm502CyQX2hqEqlGhihFNw5nuVfyIiLiCa6/B4UeTc3oZjBbP25X5jqD8tq24R8JeRMQhKJ07HHWusRms7RL24EVXv/O2UmfiChyV34ET8OvQEtOIiOcg7p1v1M032er564rdaW/SJND9ptC6RkTkJF6DMDwEQZTejGMoTz+m8edrcO4da4PS3okelzU4YstLFWLrJbhx1yDEQ9mx3/zGJIqT35hEcfIbkyhOfmMSpbitQXQDgW4Ori9yytE0lU2D4EfiHgmGBzD5ZgjjoXvQk24Ex1H57QmMET+E38YBWRgjog/VqNCeLYbkToOf4DGUO3/dUcHoVzAn/Wavx51XOi3mCnrrRUTMKn0mlqXu/xam6RAkupEQSyLgj+3hR9AzugJn6UXoOu5gitMMnrENjD8vbvS6WUfLnctzfidfvtbPvATBdw1rS50s/eY3JlGc/MYkipPfmERx8huTKMWGeuaB6LYNFXdInKv2Ki3QNSJYeKFR1+8VxxL7ONRVdQzDKgagdIxQnGsnLIFRKiIiOlSiCseVIGptIHYBDr9zcERe11pCS0MySMRbVypoRUTUO7027RXRy1U4pZ55JAJSme+P7fVH58+hp+BlpmtG3/gW3KFXEJsONDabnUns0UT3YN4wTOXzvq7tt109/xZK5VcguvvNb0yiOPmNSRQnvzGJ4uQ3JlGwixuJO9RHj8S9da3i3rpmYYkEQxL8HkJp7R+s9NxTGCxB/ewyuG4OPfPo3A2IihERa/gdLcFpNW/5c7uB9SZx72KrpbbUR4/2hYS9twHLZUHwo555XeitR88d9f8jEa9JkCQRcQNrcQvlzfR8rnMVmpc5DJ/paOymr+twf6+OQZiZEhER32T6fP8ayq9J8F3UKgL6zW9Mojj5jUkUJ78xieLkNyZRCiqtJJGEBD8SkZYgLDQ5yajv2ranQskM3EljmKrbrfS+uyDajDK97wO4bgYi4KZsGJxQq3BTwm8ruflWGawtOSWh7JTEq5IEsbcQ96i0lgZlkGhHbr5D2KuDXMUvdPiRqAyOURIGIyJKiJM4SOLeCoRqGiJCuUFl7NNMP+8S3IEjKJWPiLgG594ERODbUsXLZWXBzxjzA05+YxLFyW9Mojj5jUmUok/9x0BQKet2pbobGNrQ1OuNRKQFCBNUyvoV9FLbwCCPu5WKMTkIPgUcR7MTlrWuV0TEDK49gQEPE9ByZiD4rUCoIlGLxD0SztqKeBHcX6+tuHfS1eEnD7snEnsHhqQMoJSVBsgsQPic7vS5iYhY7FRkW1EMxD3s9QfnliBKLsCNl8O79grybwRiaAQLnW3FPRLn/eY3JlGc/MYkipPfmERx8huTKEUX3ERrGPpATqu2pZWNPdcgTuW/WMra0dLKk446yQ5BtZvXKs6ta12HFQhfNwX/Xo5hQscChDyKXcF6zyFGohT2uAO3WluHXkREAfFhrgLrUVf34HHvjsR+np9K7HdL3YOzGpyOsH8vCxULnxfcJ/IS1vEaBORxBk65SsW01nvQss8g7UEXpgh//5m6PvNShcUVOGrpHv3mNyZRnPzGJIqT35hEcfIbkyhOfmMSpWjbrJMgGyhZPsla2gSp0lTHvqYaaqi/X8HnlQUp+3ov16Dgv4Ka7IiIKdRvl3CPJdTVkzX1ptSR2guYNEOWX6rdp2ab1E8hgveQlH2y7f4s19h/3Oh6//uja4mdPICpQhO9l68udPJNp8+26wq6YW4ysOPC+HOCRpVTT4Ufo/bTXkXwvpJ1npR9msLlN78xieLkNyZRnPzGJIqT35hEQR8h1fhTLTI1YUQBsWmaCogQBdiNhx21ltZw7gwEtrrBjvsmG/i820zFlIudim4REWOIY6NJEAbXUCM+KdVuSmJTBX0W2kLTdSK4Jv8dEPfezQ8l9pOdfuZ70Hjy7IlaZwcfjzT2WkXAsxtd64MdC37dBvHsTUigw0ao8CyTwEZiKq33APpSNNmuUdyF+6G8ou/nN78xieLkNyZRnPzGJIqT35hEKe5AI0WqBydoekkOsbdx+NH5PRABCzjuVaiwRMIgXYM+bwNiCjWPjIiY1ipMzSqNYdNTcIhRjMSdtnX6JCzd7R9JLCLio/59ib3X0efk7l4FrNFO72cHj9O+goai4NLrHOo6dAuoTecesSh+0TNB/SoIWts9OCLJpXfc0zW81zvW42AMeETEvFah89VmLLEF1PiTeOk3vzGJ4uQ3JlGc/MYkipPfmEQpPspV9KFfhC4IYt29xgZwdtMvTAXCC0mN5A8cg/vuaa2usQk476gU+SBjh9ibTEF0iWBxbwouPSrBbOuKJHFvAK6xg0Kdl3d66sYjYS8i4pNMn4lHla4Z+QOhCjpuQ9d2/ELFr/6DmcT2oBbudnovZYOmvIZ1XIPLksrY6TlBRx7sATU8fdDTRqY/62p58nvBE3vGhd73L8Fl+2JzI7E5lIP7zW9Mojj5jUkUJ78xieLkNyZRij/cqFgBJq3oQklgH8SYPNRJVIJwEsEjrKdw6Bx6802oNx+INuS8oxHWM5iSQg5GcllFcH89cuk1jSt/ExL3enCPQxCgSNyjSTofdrSENiLiJyDu3YFpOjW5ImHCDu3zNxMtEc7+Xvel19fn6Wqjk5nGA3alTkL3YAkl1FQuS85U2gMq3z0s9B4fFrovPw097tM1l8Bv4NoHvXsS6w/0uPNyIjG/+Y1JFCe/MYni5DcmUZz8xiRK8Z+evJTgcqoi0q5WUaOu9bdju1Wx4WbDjqX5Xq+zAZFlRqOuyaXV0CvwTVYg+FCMIGEooqHfGwxZaAuVjvaLdsM07hQq5N2HkeZ39twrrg/a2Q5ELXLVLSC2zDV4A664m9ldiR3e6ho+6+l9Pw0WYl/DePdJpTEavU3PE4mAFCN3YAHv2kNQ1x/m/F2ODrRk/XCmJcHDgYq7n/c01/zmNyZRnPzGJIqT35hEcfIbkyjF6R8/luDRiyuJVRfQj+5SxYrxuZZqlhvuSTYBIegKJqjegEtrBoIf9Wsj4YUcWdTDjQYdkDswokH0gT5uO3BFkpOwIMEPhqlQjAafEDSoJCLiFlx6BcRosvEcxFkSbGnK8lNwAlLZ+C30any606nGERHXpZYJT6H8ugQhl3pZ0vNEMRKGV/DMLsG9WkLJckTEyT29798/U3Fw9J2WCR9Bv0a/+Y1JFCe/MYni5DcmUZz8xiRKkX3yiQbvv5JY5+kLiWW5CoOd1ypgjKEUMSLiZUdFn5cg5tCgjLKlm4+mC5NAw+5A/S5Uatv0mSTakdhIwiD1gBvAcIi24t4aBM2bhkkXaxDeCDqbrrPAmO5pWz/kAtyY1xULfiTu0eCUtm7MDgifJDSTgLyC73yV63EXDT38Hi81j04+0rX47eGlxLpfqHvSb35jEsXJb0yiOPmNSRQnvzGJUmR33oEoTEvtgti0UHdR8bkKEHMQSSIiLkDce73TcksS97oNfQF/U0i0eRtI8OuDQNcBV2OXevOB4DfsgAgIDj9aG9oBEuciIjYgvdFkW4pRH0VytpFot4X7qWjoBpxLwl7EjxP3SIilfe60fBZpWMjVXr/L1zDNNyLi3oX2Pfz48Fpigwf6/d5//1ZifvMbkyhOfmMSxclvTKI4+Y1JlCIW2swfOdJeYZ13tFfY8Oi5nqtaQ0RELMAjdgtDNsgt1YepulRWS+diDHrwUUknld9+f22Y/AuCH5XgHnTU0XUAx/UyFQZJ3BvB2hzDTN2DBncgCX5UQr2EGIlaGzoXhLgNOOCoNJZEvDX04IuIKFsOSSE3ZhfWp61rE+8FnrspfOcXDc7LX8EgkNF3KgI+zjXhho/02n7zG5MoTn5jEsXJb0yiOPmNSRQnvzGJUux+8XcSzE5V2Y+BKo1E90hVxRE0rWyClFyaprIFRZTUWZzOQ58HqnDbhqAREQcFKPa5xo5zbWZ6DGr/EJT9HvxWD0O/8wjWgabzdBtcrlNqSEnjz2F9lqBe00hs2mdW8VseV7HaT1ZeVOxxEk87ey/2aGhp+aX/AKwabNdjmHJ0CePKT2/UBt47Uyu93/zGJIqT35hEcfIbkyhhALZxAAAB40lEQVROfmMSpXj137UJ5+kHatHtPdGxz7FVYWJzq6JE1eB+JKssTcQhO25dQ904XIPEoWWp4scGhCWCxKKIiB7U5NN3yUkcahnrw291j2zFe4qBoNWgw3ZgigzV7lP9PYl7yxrWmwQ/2AMU/CBGgm0TJO41TWL6TaHGsX20Z7drwBoRsYZ9uYXn8Xqsudp7bnuvMeYHnPzGJIqT35hEcfIbkyjFn020gefHv1CB5r1f66hjKFePV5da43/eY8WP6sFrcJJRrT1N2KH6e6rnbisYofjYYfdVl+rBQQSkGDnEalDjahLi4B67IGh1qea8QYidwZj0GdTVUxNOqqsnR2Vblx4JfrSnTU052bkH603PE8RqEE5pahKOWG/p2mxiDrlxXoBbsdIGoKvnem2/+Y1JFCe/MYni5DcmUZz8xiRK8be5+uJe51om+OFUR/weQKnu60J/T5522D03qXTiDzVspFhbEZCEIIqRuEOC376hPHkBrkEqCcUmowU4Jfda5ruGpp5baNaJDSUhVDZMKbqGKTLjnT4nM2i2SiXUJAK2FV1J3KO9b3ToQbiiPYDP3GYtm3/mKrpRs9UBxAp4RlbBojJR5voFpyA2nu/0efKb35hEcfIbkyhOfmMSxclvTKL8C0XEaP58Z8BgAAAAAElFTkSuQmCC" y="-2600.141394"/>
</g>
<g id="matplotlib.axis_147">
<g id="xtick_220"/>
<g id="xtick_221"/>
<g id="xtick_222"/>
</g>
<g id="matplotlib.axis_148">
<g id="ytick_366"/>
<g id="ytick_367"/>
<g id="ytick_368"/>
<g id="ytick_369"/>
<g id="ytick_370"/>
</g>
</g>
<g id="axes_75">
<g id="patch_76">
<path d="M 299.674375 2722.541394
L 421.964375 2722.541394
L 421.964375 2600.251394
L 299.674375 2600.251394
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p2ec1c61613)">
<image height="122.4" id="imagead6691d02c" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnVuPI9d1hTdZVSSbfb/OTaOxZMlyZAQK8hogT/m1/gEB8hQgF8QIYBiJA9nwRTOjmdFM35ts3ppVReYhlh96fRWUPEaA6KzvcaPIqjqnNgtYXHvvzvLsd+u4x7qu7odi9fa3GvvyZxKr/vXnEnvx95nEIiJ+ut6R2D9VpxK7qiYS60RHYsOsL7HNrsbWIbcc0/pOYqNqJrFxqbGIiHm1lFi9Xkms180lttfflNhRT9fmJNuS2MPuhsQ+DL3nj0sJxVat1xcRMcq6ErvKdL0XHV3HOcTOO/o8fbOaS+wM9nlc63pPqoXEpqXGInhfVmu9xo28JzHal61sILGso+u1gmdsDeclNuEcEREfFXsS+8l6qMfBXu+uaonpVRtjksDJb0yiOPmNSRQnvzGJkldf/rMEO9v7EluPL/XTCxZZ7rMxBAUiIh7e6m/PNgh0446KQ8uVikiLWsWdaq1CB3G30mukWAXCSQSLOV0QJXuZCn79biGxDH6XaxCRFqGi3QRi466Krv2VXl8TJFWV8PElHFnD2pDo2u3oF+YdvW6KdUF0i4jowHe2feORMEji3qCrYiHdCwnAJAwWcH8RESV8/rajsZuMPg9rhmcxxnzvcfIbkyhOfmMSxclvTKLk9T/+gwS7H36gRxYqaqxHIz1uqYJYnrOzabfW+G6hgt87EFlIPKFYdw1uRRBySEC8q1Xwo3NENAg3JLJlKu5tZLq2AxABiwZR6z4LEIFGXf1sDk6+iIg7CN9024lNUxBYR6HruIB9KeGzKKSCmJbB/UXwHpQg2pIAuWrYazkHCHS4VyCQ0hkyOjBY8J3AHlzDWqzgO/3mNyZRnPzGJIqT35hEcfIbkyj5259eSfDo87d64LNd/fQK3Fw34LKrVMSLiCAdMAdhgkSftoIfQUIOiU3k5iOxMIKdXyTubeVarrmbaVnmHjgdNzrqDixgvSoQhkYgDFU5//bP4POnoft6S67I0DWbruizWkI9g7JqcmiisNsgktG+dLrtBcNW5wYBskd7RdfScN1tuQXhtA/3V5Ir8r3ObIz5f4uT35hEcfIbkyhOfmMSJf/59ZEEP/gXLdV98puxxIaHIO7N9fdkPOaeZNQXbg4CD4lxJLyQS6utWEjiXltxJyKigN58O4UKeceF9uZ7mGmvuO3Q78vg3CRAUgntuKP3N0N/WcT1WoW8M+i5NwHRjpySSxCl5lB+TSXUtH/kpqRYREQBJdQkDmKpLjgvaZ97IKZtdlTsHcBx5OZbNuwLuSLHa13HEj4/ckmvMeZbnPzGJIqT35hEcfIbkyj5q0IFh+uVDoI4PVPH2cmZig0dEF5edVjwe95XAeO6UmGprXMP3VIY0iDFcigHpaEbERHbha7Zo572Qvww25bYcaiwtEHOPdC0ZuDcW4BASkLqDNx4ERGXte7BNQzPwB6HcB4SAUnwa+qPeB8S5yjWFCfRjsqqaQjMPrgxj2FwynZLN2YJ+bJseN5nJJzCHrDj0IKfMeYPOPmNSRQnvzGJ4uQ3JlGc/MYkSn4Fts9rsN2eQWy4VhWf1MvXXZ7Y86LWkcw3oDSTbZdUXG7CqOdFeyfUc9M5qB4/IuKk0H4HPwBl/1lAPT9MzqFfZZqQoybSiBL+AZiA4n5aT+HTETeVxhegKrftqVDCuUsYA0+NNWkP8hwaZjb8C0P/zmyCir+Xq8WabNdPYP9O1jBVCAR7aoL6DfZJ0FhExAhyY1KrFZ/ygP7N8pvfmERx8huTKE5+YxLFyW9MouRvQmuyCaqWrjvQKBJqvC+WLCxRw8a2Vl6yMKK4ByLZmgQ/+B1ksYgFv8NMLZ6PQ4WlJ5Wee4suHCDBrw9Td2ZgS55Cjf55qT0aIiKmlYpIVC/f1DSzzWcJHNEN90JW3K2GfaH9OgSL7lMQ9z6v9TyfL/WZ3cpUiHtX6/PwHwPdq9tQ4fMSrNQREaNK4++VQ62OMsZ873DyG5MoTn5jEsXJb0yi5C8rFn3uQ64hcn3dgguJarcj2HVEI5Xb1t+TuEdaGn22bY14U904TdPZWet59msVY3ahTjuH9a7guvtrPe+7HjVGbVdT/7/F74PTcBoanN6nS8492Hvqk3BYqHOS6uwjIvZh8tFjcOl9Vuq5/yrUgfrwmebLYqp78OZSr+ca3LSX0L9i3CD43cKxNEa+bV8Ev/mNSRQnvzGJ4uQ3JlGc/MYkSv52eS1BEsRI8KMSTCrfbKKpDPPPCU/Yafeb913GJ5OHjVaiprJccGRt5u3WcVHpvazg/tpOOIpoP+VoDQ5PEvKoXHoA48v3CnXZPertSeywq4LdHkzIiYg4WWucXJYfV+qU2z0EgW2uz+zzC23U+p8DPceLlTpdqTHqFK4lImJRqRC7AMGvXsFewZ76zW9Mojj5jUkUJ78xieLkNyZR8gmUb1KpZtuyzAImg/RB3ImI6Hc13vbcbQWstlN82vYJbCpjpWucUckziF/DFUx3ASdg1oVzwPdNwUlWN4x9JmjsN8f0PAW8TnrgfjzsqUvvk56Oi3/WUafcFryzdkhJjYjDWq/7GPoH7hYwMnyh1/1qqtf9b1Cq+19rdQK+ATctuvbAORsRsYTrruqW4+st+BljvsXJb0yiOPmNSRQnvzGJktPwBCrLJPFrAL3U9sGltZtzuWUfhCASK+6gHHUGgw1ItMtxNHE7UZFEEhKvIlgQm8GQhhvoudeHoQ9d6B8HOl686+n3XaxVRKLya7q/7wKVXw9zLaElce/D3oHEHsOo69213t8+iHvHIJBGRBzBfe/kGssz/fzZVJ/bX/T1nn+11tLft9WtxEjco/Hl5NCLaHhGWz63dJzf/MYkipPfmERx8huTKE5+YxIlJ9cQ9VKjyag0sfYY+qsdgZATETEM/c4ahIkJCH53mapf5Obrwe8blfkuwa22gFiT05GuewafH4FwSoM3OrA2d3DdX2UwfRem7NJwh6Z7oRJcEjr3e1sSe9DTacUPYCDGLswXLsGF+BYmDk8zXZseiKYREUegnZG4V1b6+a9BvHzZgaE0UJZL613B89BUVv1/gd/8xiSKk9+YRHHyG5MoTn5jEiWnPnxED4ZDkFMOh2k0lMEW5BqEYzdBbOrTceAG68PgjAWILKOursMVTLalabcRLPjRBFYSG2sQWK9BdLvt6Pf9vlYn2RUIfiQsUUl1RPspuB/1DjXWVVcc7cuS9iB0D25B7D1bq5j2GgTpiIjfgGj3Sa2xXZju8rqnsas19NEDF+F3KaG+D/edZJctDXLBwSk0wfo7X5kx5nuBk9+YRHHyG5MoTn5jEiVfQQktDX2gklUSOiYrFWOGDWWwGYgVQyjBHcL1nKz0uEcw56IP10199Ipcr6WCHnzkQouImMJaXK61P+JN6PpQ30M8B0zPHa/0HMQwU5GLXJtN13MIU3A/66jD75Oy3fvkGk5NY0pmIAIuQAS8XGm5bETE61BB9DcwufcJlJ3XVKYNgi+Vobel7cTopji5MfERBQ3Qb35jEsXJb0yiOPmNSRQnvzGJkuNUVRpWQc40EDpIBJx22RXXowEf4AZbgVhxB7FZV4MblYo2QxByBuAEzOGem9yKJASOaxXj7v7MghFdD00/HsAU20HDlOQNOPawoyLZ45Xu1dNK74/urgDHaJ3r95XgQlxCb8QFlKZHRIxgD8a1ioM3XT1us6tORxIbqTS6tZBHel3D80Cl9sQ6g16W8Fm/+Y1JFCe/MYni5DcmUZz8xiSKk9+YRMk3clU0SRmkMds9UIvRgtjwG0PNNQf0eVDix6AhzzM9bgL2xwGIqTROe0INOMG+HMG25hnE5mDRJbWf1pEm5FBjTfwHAL6PVP2IiB2IH0DDzZNKr/u4zzbb+3TvtKlrDeddQSPTNanwXVb7pzDZiZpr0ljsBfQwoGeZ1rvJonsf+ldgBaPYmyjh+W77D5Df/MYkipPfmERx8huTKE5+YxIl3+vrNBUSK6jZI9WI73RVJNlqEJb2Ib7XMHnlPrc0yQVqv6dg0S3ABkzNOl/VOnr5stJYRMQURCQav0xTW9AyTGIqWp/bWUtpVHlTnwXal8c19E+AfgX7h9o8dFXDO+YGTgxaKtmAI9fYBOzHERE3Xf3SG7B8016RuEfPPI60f4/3KgnpEZyXOTxPBI+qN8YkiZPfmERx8huTKE5+YxIlP+rtSJDEigEIfpsgDG3CcXvgDotgce8QasRJ0gDtC+v+l+AEvAZx7xsQ996VI4mNSh3HHBFxV+t3rqFvAIlD5J4kqKcCikA0CQnEvZ1gYenRSuM/Xqog9uyDa4kNH0K/ghm42MC1Gbrckd2pwFaCuHdR8L28bum0IyF2CbX7/bXuVWtXKzbRJDcmi97kBC0hEdr2h/Cb35hEcfIbkyhOfmMSxclvTKLkj3IV/Ar4TaAx2QM4rk9iE6lzEVGQ2AHVjFsQo+8cgnPvAs1lMIkFSjqp/JaEvYiIZUMDyfuQuEeCEbm8yKVFJb0bILpugzh70iDEfrrU9fn88bnEdr/Q6+70dPJN+UZF0mKsAluvp2s4WOr9FSCkNkGTpkgQI3GWPsvNOtsdR9CeNpUDY+k35AGODIfP+s1vTKI4+Y1JFCe/MYni5DcmUfJjcEvtgoi0CcLCBrm0QOeg6ToREUs4+BZ+jvq1fsFerZ8lt9QIXHEliB/k8CLBpwly31EvROqZSGWiGIPedVswbvoQyqofhh73tOLf/qdddTtufaAiUnZ8hJ+/T+dM+/otF7o2lxMVC5/D/f0aVOHnK3ZeXtcaR/GrZc/EpolNbWg7xafJ4UfiLrkQCQt+xpg/4uQ3JlGc/MYkipPfmETJSdx7ACWd+1BX2wdB7A6ErysYGRwRcQPayRh60vXAuUfCS0lju6nXHzigSDihUcnkBItgMYdcelu5inHbmQ6w2IGBEfsk5HU09nilgtEJiKYPKhaLhpswZlvNjrEaqZjWgTHb1a2u2dtLdZb+rKf38suOnuNlNZbYVUNvRRrQQeJXW/ckHbcG4XrdUhjEfpkNvRVJCBxAWfYSHJ70fPrNb0yiOPmNSRQnvzGJ4uQ3JlFyknz6oGntrFQk6a/0wDlMDV2AYBcRMQVxj1x/E5haSoLKTVev8WKtShW5viaVDqBYQPluU380ElSofHcnUxfbSb4lMXJePgOX3l/O9Xqe9m71WgbthjtERBSFHnt3rcLSGlx1q6Wuw7vnexL7eaHi3r+HXvdXy0uJXS1V3KMpuxHt+yhmWbv3IDk5qTkfCmzwWZqUvAOuxgguqyfhu8ayY8VvfmMSxclvTKI4+Y1JFCe/MYmSX4Igtg+ljFsg5AUMxCCoL18E9/BbUJkvnOcGXINv1+rmelnpJIjLUoWlKQh+bQdxRET0MhVjyOG3D26+Z10VAX9YqxD0xVKv8bMfa2+94Wcqpq0rKGM+h7G4ETE/1eueT/R6Lk91wvP5Qu/vt4WWIv8y03v5utTRvSTuzSq97mrVXtDM4FmuOn/60A5yAg7gHOTcO2hZfh0RsQPvasrAsmX/QL/5jUkUJ78xieLkNyZRnPzGJEp+vtL+agU48upcRYgDmKhL4h6YviKChYkFlODSVN1TcOm9W6q4d1NOJUaCUQmCEfc945uhHnB9KK3cBffWEyih/myp9/zxh1cS2/xC3YHdx8d6gaWKV90tnbIbEVEvVBB990ZLcH+1VsHvhepX8Tp0vd+sdF8WMCSFymW/C20/T3u9XOmalV19TrCPIgi7VH79FPb+uOJrps5+VEI/hxhUdPvNb0yqOPmNSRQnvzGJ4uQ3JlHyca1OK+yPB2W111CyOmyYyEtQfz1yHL4A59ebhZZ63pYqXpKQR7Qu/USnIw94wL5w8Hs7hOEnmx0Vm/IB+LmgrHo903Wg4zAWEfVCr/FNpQLWl3A9X4c+TzcrFfwmEKPJtriG4KZsgvowUrkt7XXbIRvbMEzlo9D1+oulfvYRuEh7wc/sEiS/GTxPVFZvwc8Y80ec/MYkipPfmERx8huTKE5+YxIlp5rlmxpUcxhhPQWVcwNqlvsNvzElKOyXYDe+KHVCy2ip9t5l3W5cMTVSJBWXlP0CavSb4jRhhRTtOSixN1A3Pj5Te2jvldpki4WuwxqU/foaxvBExO25KtWvC72Xl6HnfldrbA7jfihGFlucaAO2aTougv/FodHpNBJ9C6YmHUAD1kddXa8fVHqOZ/DP2nZP16Gq+V6gP2104P4G0Gy39sQeY8y3OPmNSRQnvzGJ4uQ3JlHyCoQ8HDkMglEF7QPLjoqAmyDQNFGC6EMW3aZGmvchcY8EH7TnQoym8EREbGR63yRCLWHNTrvQKLIHAuLNrp7jd/p9OxNuzHmf+RWLl6c32iPgrA9WbBBnaVQ2TdNpa7tuK84OGvZlCLX2u1BrT+PP9+FZPoCR2I9qfU4elnp/g6x9k1Eig2dnAFOvaJpVCRZyv/mNSRQnvzGJ4uQ3JlGc/MYkSk5NCgmaaEKOrE6mwkLRUONP9dJtBci2tfbUm4DqwUnIQ9dXDh0qI2ID3I4DcDvOwVH5FhpcljCRqO7pNXYv9iX2eKGiWweEoauJCl8REb8FZ9s7uEZygo5KdV42jc++D004omk4JM5uwjVHRDzJtfHopx0VNJ+s9DsPoZHmEITvPuzpAGry65U+i6u13l/VkC8k2q3g+V7CO30GIqnf/MYkipPfmERx8huTKE5+YxIln8OUFGJJbjUQOqhktWlqCgl+YxCR2o5fJnGPXHokLO0WWqr5sFBH3YNMp9RERGR0LzBpaA6xOxA559DAcwZutXlfY8/mexKD/qtxWvD0oeeZXuOLWqf4jCsV92jqDu0fTTjqwKQobOAJIuAQBNeIiP2Ors8jEPc+Xup6H3T0XjJYyCV83x2IdjMQ99Yg4s0b3slTELSnsGa38PFLqAf2m9+YRHHyG5MoTn5jEsXJb0yi5OS+aj29BkZ0k2NwCr3LmqDx2fMKRjfDNZLDr5+rK26/pw6vT/s61vqLjrrDnlQsko1gfvIvOypeXoOgSf3srmG9r0HUuoRS1N8XKnLlIEhew3SkiIhzEPLOoY/ipNJ9XcG+kLhHLkty7lEfRBIB84b3GN03FTLT+Oucmua9B1RqSxN33kG/xIiIM3B9XnQ0f69AVD6H8mu/+Y1JFCe/MYni5DcmUZz8xiRKfle1K7ckSGCjwRnUhy2CxSFyg+EwBzj3MFeh66SvLr0f908k9je1Ovf+ulbha7PPItmL+bbEvt5QaamGPmwTEETpnm9BQLzqaPkuuRqJplLbKYiu5Nyj/UPRFXo4ksuSBL+mYRz3qRtcpHMorZ1BeTOVvG6t9Bqpjx5NOs/heqh4nsZpvwNhLyLiOYw/PwMB+QL6KN5UOkzFb35jEsXJb0yiOPmNSRQnvzGJ0rqHH5XLkijVJO4RJBgRJAQNcnW7HfZUdPtB70Bin4WW735cQknnngp+eY9dXwcLFcQO1uq+2+i0G2BC+7KC9aY9aB2Daa5NxxLk0iMhbxOEWBIBqcSboLJxKi+P4LLqcyjz3c3BXVhCX0cQENsyAx/hJfS8pJ6OERFvahXyzmiCNTg0yTnrN78xieLkNyZRnPzGJIqT35hEyataBQwq311DjASaup2GFxHte+6RuEc99w5yLdU9BHFnH4YnFDRxuNRrqWv+vaRyzV04D02DvYIJv+S+W4B7ksqdyWVJYmETtK95pmtBx6HgBwM1qOde2yEuJcSaRMoplEufZip+FXCNd1A6vAX9+oqWwvUIxL0Xme7VG3CWRkScV9pH8apUEXDR8pnwm9+YRHHyG5MoTn5jEsXJb0yi5DRQg/rj0XABEga/i8Mv4FgS/MgNNoQBFjsQ2wv97BZoQ11Yh7tluyELERETGMhAv6zb4PDbhOsehYo+VO5MQk4JMZx03OCooz0gcZacl7RXdH/bLQW/JYh7C3DzNQl+9DxO4fMvoVz6HZTbboDwuQE73YHn5BaKet+ttEz3FIS9iIibUstyZ6WKl+QOJTen3/zGJIqT35hEcfIbkyhOfmMSheYXvBdt+7o1xUlE2gAH3BY4skhM24LftyE0XSugr1sFQ0nmNS/ZCK57At/ZVnij40oQ/EgEbHuOpl5/VKpLLstBy30hIXYH9op8crOWZb5L7JDHz+Mcjh2vYFgMlAMTA5gaTINFSLwcgZtvVLLDD92cIO6Ra5eeCb/5jUkUJ78xieLkNyZRnPzGJIqT35hE+bOr/WSnJGtoREPtPijIu7nW7lNd/DaorkXLMnaaukLK/nVDA86LXO/xqqtK7C2oswtQlVHFx/HXMDod1qGtgh8RsQHxYUZNL3VfTqCnwoOO7tUAJuTMyMoLzw7V888apg9RPwCamsT9E2Bf4PtoqhCp/aS4k1p/B+eNiChb2nbJ6ozPDp7FGPO9x8lvTKI4+Y1JFCe/MYmSd1uOQCZIbKIaf4r9z8mhQWKu4tB+d0NiR9CYc3vdbjT1bResrmsVuaD/ZlxmvF5nXRVZrkDIu12rRZNEJFozEu3IIk0C1Gah67pX6FjyCG6EShbdg46u2XGA5RfeMRMQpa5D12sKaziGGvjbSuvxIyJmtdp2SUxta51uO82IhVio+6dmuS0bgjadh2K1BT9jzLc4+Y1JFCe/MYni5DcmUXKqnyeaRLs2NJ2DprtsQGNHava4DQ6qATRNvIOa+m/A13gO01Tol3HeYcHnsqPuqwk5skAwIjcYCZ9tXWPURJPceA9yHWkeEfEQHHkn0Aj1BPodUHPUKTw6o1yvewIuu5tahTwS9xoFP2hw2VbIo14AbScf4TQjEGz7ua5rAcdFRHQbRqrLuVEEdANPY8wfcPIbkyhOfmMSxclvTKLkw0KdWyR0vA9NDTxJ8OtRM0QQT2giyhLErzkIfiWUdObkyKIR5NhmMmIOLj06sgeiHU20IWhtyKG5DU00qQT6ETgnIyIerVWEeljpWhzW7QSoea7XeAerM4NJOgsYsY0TaRqEuLZTjtqWwbaF3KsUG+a69yT2RnBeYgNPehbt8DPGfIuT35hEcfIbkyhOfmMSJd/vafkmiR9tY+Q4o1LGCBb8qBxxCQLdrKOiBrGg64ZrLEDcI8GvSQK6g2ukXnE5rEUvVAiqQNyjn+qC3IFQarsPJdBHMFY8ImK/1vvegiaHGQlQsH8zuO6y5bPTdgx8U59Igt18f7rgR6IridzUG/Gg0Pzby7nUmp7Hip47uj9P7DHGfIuT35hEcfIbkyhOfmMSJf/R4IEEaVzxpNa+aUtwZJFI0lQOTI41KoWk0cbzgOEJLR15TS69+5Q0JhsEloiIKawFXTdBAk3VsnQ0g99vchHSQJO9mn/790DcG0I5aRfWZ5LpucdQTkoiLu093R8d912gZ/R93Hwk7vUzdUnuFFpWfQj9Eg8zdl6SqEnPSQECZAHr6De/MYni5DcmUZz8xiSKk9+YRMn/br0rwa9yFa9ed7VH2mitwmBbkSuCBTrqU0fSFznqBuCUo183+j4S8siFRkMkIiJuQSRdQE+6tkMa2B2o94clwiDu7a51JfYbNMWDWvdwC3oULmBICq3OLQh+1N+QSlHJmUYCKZW2RvAwDnISEuwu1HWkacd7fXXpPe7tSexppoIfibMRERW59OAa92Ff9qHfot/8xiSKk9+YRHHyG5MoTn5jEiX/2+xGgh/OdZjDl30VJr7OtEz0CqbQknAWwcILOvJIeAvowwb9+tq6/hYgNpHTcVTPJBbBQyPounFSKw14gHJnco3RQJMjKOl9WOl5TyoWyQ4yve8iAyG31PNkMNyDdh9LUWFfSAQsQdyjvnwRXKpL652DMxHXu6fuOyqLf9Lbl9jHmebVBys9x5DGQ0fEEp7vHvSyfFjpcY9gsrHf/MYkipPfmERx8huTKE5+YxIlP346keDgXMWTjWt1Ag56Kvi8yPT35AZ9XzykoYZS3Tm46pbg3CJI3CGhkdx4o0rFvWmlwkkEO9FoWi4NByGXFsH9+mh6rh73uNT1Osr4XvqFHltB+e8MnGTUr69tCTUNpUD3Y8t+khG8/zQZl4S8k74+8x+AkPdBV918D0H4fAyi61Gl1z1scMlSlN7e+10V3Y8Op60+a4xJACe/MYni5DcmUZz8xiRKvoYBDb2BCnH7ubq+jmt1oZ1BP7OrBsHnDiSMW5jKSv0D53AcucF4QAP05gPX2LzWc9TQyy4igqYdb2QqiA5ABCTaDqsg6Bc9w3JQ/nxZqZB3Xunk2BeF7v+rru7BJbg+aZ9pT0mIpT1tGtpBzj2ajPtgoOW2P+odS+wnHXXzfQR69gNwHO5l6gId9PW4Djj5IiLmS312FrXeXw2uv9lUn0W/+Y1JFCe/MYni5DcmUZz8xiSKk9+YRMkvvlFr4vROlcE3a1V7X+ph8U3ovwKnK66BH4OKP6vbNcKkho1t1X6yjFZgF6bmj03jxilOMWrC2TTR6D50LyNQ0l/BPwrbhcaKUlXviIgVKOek7P861315BXt9WavKfQuxKew9PQ9Uu0/26oiIottO7T+CyTkfdtXy+4kud3waap09fqCxwY6u1xpq9ydXvC/jBfTPgN4NC3ieOkvNX7/5jUkUJ78xieLkNyZRnPzGJEr+HJp1nuUqkrzMVWx6HiruvK5uJXZTqfgRwXZOEtmoCWMJ4h6Jdk12XDmuZY14k8UWxz5jg1Jo6gnTdIgS7NDUZPQb+E0vcrputhoXoJ29gAaeX9XaC+JtNZYYNTe9ayniliDu0XFNI7apnn8AjTm3uiqmHUBfhBO4HhL3dn+oz3a2q+etrnUdxhf8jJ2HXuOLAvpndKk5quI3vzGJ4uQ3JlGc/MYkipPfmETJf9dXUeNtF0Z0r9WN97ZSwecSBL9ppaJUBDvyCGziCEIexloKefTZJhGJoO9EhyD83tYwwprq08nFRmIhjRG/ACfgEJqtRkQMoR78NPTzp7Asqpw4AAAA8klEQVTXF0sV/OYV9F4gcbblXlUwQryJLgid5LIcQGwD3HcbMKp8sKvrnT9Qd2B3W112q4lOzFosWIg9y3W/XmZ6PTQ1C8d741mMMd97nPzGJIqT35hEcfIbkyj5KxD3ztYq0J3BaGpy7lHTyyZhr62g1lSu2Ya2ghEJUOTQa4JcZ3247yWIaR2I0XQeKv2lZqR0z0twFs5AaIxgUbKEz5NDcwbi7l3Vrgnn+0zsaXJe0ndSqXUB96w7EJHRGPiexjobUO++waW695mXWj4dEXEN1stzyNWLlToqF/B8+s1vTKI4+Y1JFCe/MYni5DcmUf4baivHx7w2dqAAAAAASUVORK5CYII=" y="-2600.141394"/>
</g>
<g id="matplotlib.axis_149">
<g id="xtick_223"/>
<g id="xtick_224"/>
<g id="xtick_225"/>
</g>
<g id="matplotlib.axis_150">
<g id="ytick_371"/>
<g id="ytick_372"/>
<g id="ytick_373"/>
<g id="ytick_374"/>
<g id="ytick_375"/>
</g>
</g>
<g id="axes_76">
<g id="patch_77">
<path d="M 434.924375 2725.043157
L 557.214375 2725.043157
L 557.214375 2597.74963
L 434.924375 2597.74963
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_151">
<g id="xtick_226"/>
<g id="xtick_227"/>
<g id="xtick_228"/>
</g>
<g id="matplotlib.axis_152">
<g id="ytick_376"/>
<g id="ytick_377"/>
<g id="ytick_378"/>
<g id="ytick_379"/>
<g id="ytick_380"/>
</g>
</g>
<g id="axes_77">
<g id="patch_78">
<path d="M 29.174375 2868.962581
L 151.464375 2868.962581
L 151.464375 2741.669054
L 29.174375 2741.669054
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_153">
<g id="xtick_229"/>
<g id="xtick_230"/>
<g id="xtick_231"/>
</g>
<g id="matplotlib.axis_154">
<g id="ytick_381"/>
<g id="ytick_382"/>
<g id="ytick_383"/>
<g id="ytick_384"/>
<g id="ytick_385"/>
<g id="text_20">
<!-- 59 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 2845.682693)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-53"/>
<use x="55.615234" xlink:href="#ArialMT-57"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_78">
<g id="patch_79">
<path d="M 164.424375 2866.460818
L 286.714375 2866.460818
L 286.714375 2744.170818
L 164.424375 2744.170818
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pdbf2946181)">
<image height="122.4" id="imageba2902378f" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGrtJREFUeJztnUmPHGdyhiOXWnoj2ZRILRyPN8EGxmcf/Sd98j8xYPhiGHOwD4YXjaCxjdFIGooUt+6urq6uqqzM8sGGDh3PZ0cpSclQvM8xkOuXGZXAW29EVNsX/7m3Owyvf3c3ZMPTX7vY/rN/drHbv/2Vi332D49czMzsl9OZi/1btXKx33QXLvbb1QsXu1gvXWw39C6237tbRqqqcrG6qnHbBuK0P1HDdgNcI1333nyM9qVzlKD9ieg60jVG9/2pc8g7NmsnLnY6mbvYvcmxi91vfYzPIoT4yaPkFyIpSn4hkqLkFyIpbf/1py64f/XUxYZfgbj3N5+72L/+0wcu9o+zKZ7836u1i10OG9z2LvPGH7OtGxfrh8HFSIAiKiMxhoWzpva/oyQC4nngmCSI9Xt/L3R/dVzbG0X0ukUZesfoPTYzm9ati80aLwLSdvQu6ssvRFKU/EIkRckvRFKU/EIkpR3+/q9dcPjGu+eu/s677P7li49d7NOZFyue1js8+RoErBaEiaPai3snrXcHLkD82PZwbtCkSLyiWFGMaWIiC54HRB8SJcmt2FU+hiJn0B1oFncc/n8i6qYs8baFyuhzpveJ3iUzdvhFxT1CX34hkqLkFyIpSn4hkqLkFyIp7Rd/+bULvlz68r9fT5642DdzLyxdgQC1BWHPzKwFAeSo8gLGrvL7z0EEJEFk1XnH4ADHIzGGhJOSGDNv4Xpqfz1RMSYq+G0HL2iSyEn7kmPQbJxrsP8BhMGomFbalsCy4xFOUHJ8krhHsSN4l8zi7xOJl93eP399+YVIipJfiKQo+YVIipJfiKS0f9WfumAHQt7WbkMHrPbgYiqIMTP47SGJpS7sfxcSP9rGCyokfqGbD/Y9BmehGfdNO278tlMQNMM9/GB1SMhZ9V7kvN7550diqJnZtvKCYdQ1+GOV+ZaEvbDAWr17cW8CMSrJnYBrz4zdfMR2H3t++vILkRQlvxBJUfILkRQlvxBJaX+59gM6yD13DO6io8rHTmC7uXEZLP3ybEDAutl3LkaiFgl5JBaSQEOQQFMS/B5OvHB6v/YDFeYk+KG70MemsGI9iIAX0AfxeX3lYq/t2sXMzFY7v//WvIjUwXoHTXFh5x0JbIeUWtMzJEpux8i56Rwk2pE7lES8tirkC5wb+zpCTD38hBDfoeQXIilKfiGSouQXIilKfiGS0j5b+8acJ61XqU/AqnrS+O225rejfwVKLEGpft15Vfpm56f9kNpP0AhksqBiPX/BYnkC/5Dcr/1azOH3tgFFew6K7/He77sBWypsZkt4VjcN23vJMkwKMqr9QKnW3m0HajY9A/q3ptRngVR3skmT/TX6D0D0GqM29VIfgS54jbQ/Tp8KXY0Q4ieHkl+IpCj5hUiKkl+IpLS3u60LUi052ggN6v6hlngOlt/SMZe9F/IW3crF1r23/NJ1k4iEY7aDdtOm8Hs5BQsziXsk5E1AjCFxbwrbddToE9Z1gO1K48ZJmIqKdsQYIY/2xVHV0Ly1tC1B7yI1Qh2CIiDWz0MX1GGI9zogUZqea1So1pdfiKQo+YVIipJfiKQo+YVISkuuOKpP7mAyzLqP/XbQvmYsDlIt+W3vRUm6bmx6GRQBCXIClvadgpB3ArX7Z3to4ghi2gx0IJKa3oDD7xbWdT14gZSm/ZjFa8RpbUlEpHWkdywqDOJY64Kwd9R452W0qee6jvWR6IITkihGbrxDxqHTelNT0L5WA08hxP+g5BciKUp+IZKi5BciKaiSHCI4RPYdjEs/SXAi5x45raICFIGuv2CjTxqTbGZ2BmXLj/d+eR/2MJY8uNwX0NeRHF4dSIMkupZKoMeIVSTuUbltVPAjZ2G0EaYZT0iiZ0hNM+e1XzMS2C6HGxfbBd9ZnIRUKOml3CLxMrqdvvxCJEXJL0RSlPxCJEXJL0RS2qi4F3VfRcdNm7EAQiWTtN2ujwlQ0YkvDYlSJAIV+hFS+e79wZ/ng52/lzmVNoMg9rrxx9vS2lAPPhABSz3qqDcfCVMEPX9+T2LfnejxSlNu5uDwO4Z+iy08vwm4MTfg+qPrwXc2uK4lwY+gfNnvYvvryy9EUpT8QiRFyS9EUpT8QiSljQps5J6LChMlYQl7kgXLcqOlkNA2LSxUkihFwpmZ2RbiSyi3XTT+mEv4Db6An+Vn4Di7glLdNZT0kohXGroRLekl8PlRn0Eap47l0t9/wIoZi7az4Jj0LQinY4iK61Gnagla25ut742pL78QSVHyC5EUJb8QSVHyC5GUlhxGVEI7xtlUEjpoGuwh7qa7kGA0CZZ/Ul84uhbq4WZm9rL2gsoESoJfTcA1BmLhNYh2CxD3rgZ/3uvdrYutoQ9iqbciuifDoisIZ/A+0buDAzrA1UiMeW/M+F28HfyaUT/JqBhKjL1uPGbwWenLL0RSlPxCJEXJL0RSlPxCJKWNuq+i03xJOCsxTtyLTXmdwwADGmoQHeRwUxD8vq2uXWzb+nWkab5b6HF4C+LeCgSoNcSWOy8C0jCU9c6fw6w0EOX7T6fFsmoQ8poRk4APgd47cvOR4EfC6ZgBMj8m+vILkRQlvxBJUfILkRQlvxBJ4UkHQLRUk4Sh0mTbMUM2jMp3QTBCYTDYU47ubwNCnJnZ5c4PbqApxHRuEoxoXxpoQtezASGPBFuaLmv29l1n4SEpI55VU/iO0XmwZBlcljRUJloaHRVIf0wRUF9+IZKi5BciKUp+IZKi5BciKW10qurJZO5ix+3M71uYlkrQcAlyopFrjLqr0cRaEl5ou+ivYGmyLYlDVP5JkOhDIlJ0em5035KwN0aEwoEo4LwkJ2g0RhN+Sw5NnGIM7wQ9vzGDN8YO4/gh0JdfiKQo+YVIipJfiKQo+YVIipJfiKS0pOw/mJ242Puzey72sD11sSOYhlJiCfXSz6tLF6MGkNGpQtHpM6URz5F9zcZdIynSeC/BMdlRVZnq7M1YsX/bSjVPSIrZgAlqwGnGDVfp/tAmDbHoPy7hZ1CwvkcZ88+MvvxCJEXJL0RSlPxCJEXJL0RS2rPpkQt+OD93sU+m7/ntKm/5Pd3735OuIH48q6Gp5N6LLItu5WIlm+1dSNSK1pIfInKNsYLGx4376yb7K91LVFQsXWNUvOQx2x66v2gjTLqWLYwvNyuLmv48/phr6oFA4t4YO/TYpqXY6iJ2PfryC5EUJb8QSVHyC5EUJb8QSWkfz+674B9NHrrYn9qxi/2sgwk5IDasoJ7bzMwa3w/gWe1FRJqwQ446IlojHhX8DmlGGhXOCBLOaB1IsJ1ATwUStKiG3YzXlralUd5RaG07EkOhkekm6A40i09iImgdaB3HOCrl8BNC/OAo+YVIipJfiKQo+YVISvtocuaCH4Ho9njnfyce72gEtRcgbgb+jXkNQuBJPXWxo8bHNg1PzrkLCn5QvouTdKBMtCSwoIMuKARFxb2Hc/+snsy9OHsPnt8ahLNl70d5m5mtBu+8pLHf19tbFyuJiHeJOveiomJJOKO1pWdN+9MzfdtEHZEl9nvYP+j605dfiKQo+YVIipJfiKQo+YVISkviF3nQSFcYyGkFok2pO94MlIkT6AF40ngBq2uhlxoIdNGxzwQJUCRUmcWdVnTuWevFvfOZ74/48/n7LvYn7QMX+9i8QEpct+w2fANl1c8HX1b9rPX9Fl9srlxs1XkBMTz5JuqILJTGkiA2VP5Z0VSh8Aj5YFlu1M1XOl7YcUqXDZvpyy9EUpT8QiRFyS9EUpT8QiSlXYDL62XtS23PaFRy6387zsGQNRQEjBqEiVMQ/N5r/RARggY0oEsPFBFyplGsKzjYSAgk4YaGpFBZLpVaP2m9w+/n5p/VJzAZ/D4Nmyg8l0sQWL+EEe2fzyEG78nv9q9dbLGJ9WWMuiTR6WYsiKE4GNMVR5XlkpvvkB5+vK1KeoUQB6LkFyIpSn4hkqLkFyIp7eXuxgVn0ANu0sDvBAhDK3CwTQuaxAacVnPY/xxKVIcmJnRc73zZaXT66i0MbSj1DqTebjWtBQh+p62/vweNFwEfVN4JeDx4EegY7uVB5e9l2rDKdd77a5xuvbDYgVC5aL1QeTnx7xiVA5O4F+5RV9LNYHe+69jzI3EvOuF5bPkuOSDpmL2Gdggh/jeU/EIkRckvRFKU/EIkpSXx6waccpeVLxOdQxlkX3tRikp3zcw2oMaswJFHAgaVxk6CvfmoTHS1g4nBu5gwWKKmMkoq6YU1OwJxbwq/1SReLUCcbXr//I6hB6OZWQ/nIQNdE5x2PHoS7VuGRDJ6LlTmOwkOfIm6/saUMZsd9j7eRV9+IZKi5BciKUp+IZKi5BciKS2JCz3ISFvzwsIV9HrrwLVX4gYGSVwM3vl1M3h3WvS6Cdq3o5JXKjEtuKewdPSAabJuO4j1IJAuK38vz6HUegWuzdOBnWlUav2m8df9pvLP/wpKxNe9f360jmMmzh7yXAgS9+YwOOW49U5HGgxDIieVl9M7Vhp8gpOgg++8hnYIIb5DyS9EUpT8QiRFyS9EUlosZQWBZlF5IaerY2IDCR1mZovei3tXne/tRn3zSGTBSbtwfx2U5ZLTaowAVYJ6/dF5OhAltxC7AkFrC8LgBlx/m4IYRtXSbyD4cu/fkzfd0sWoNPoQF9vbhsQ4cu7dmx672IOJ7yfZwDeUnLO3IFwTpbWJipdR9OUXIilKfiGSouQXIilKfiGSouQXIikt2Vpp8g0pkKSQ0nYluyLV0JMyTGo4qf3czDBm5aUGnGMhZZ/O08G/IR3YNjcQo5r6fXRsM1hazcxa2Pai8tf4Gv6tWUDDVHr+7+KflChk5SXb7uOpb0b6cXvPxXbwXF7s/L8eW7Czv4teB9EpR/ryC5EUJb8QSVHyC5EUJb8QSWlJgNr0379xJQlspX1p+g2JcVgDD/rcEJz4QlZeHLE90k6J4l6wfpss0XR/dN3UGBUG++B2ZobTb77de3H2FYhaNztvA9/133/0dpTSs6I42cBPYGrSRzAS/ZPK23tX0FNh04BtHuy99OwPee/GrKO+/EIkRckvRFKU/EIkRckvRFKwgefQx0QEEhsOmUBCYhWJe1EBJCru0XXTeen6DoH2Z8ehF322NLmI1htiHcSuwV1G+5bO/ar3fRbebL3gt4EpR7Te6GwL6ly0b+kdIXGPxqQfNX6i0XuVd/09gaanHUyKWtVeGLxt/NqQ4EeC+7tAX34hkqLkFyIpSn4hkqLkFyIpLQliBLnLxja9jLqvqHwXoVuBn7eokEcjtkulv9Fj0ppRSe8K3GBLmJC0hZtewXZLON7N4F17Ztx8cgnOvWXny3e5XDrmnhxT3krvjRmLexOI0Zj0YxDyzkEMpxLo26kXC2/BMUjPntbfzGzZ+WcQbQhL6MsvRFKU/EIkRckvRFKU/EIkpR1TBktuNdq36L6C3x4S904nvtyStiO3FI7yDrr+cNpPoTw5Kn6Sk5AmCF1DL7znIGrVIJJdQ2+9axDn1gUnGd13dC1IEI2OJY8LsSAUF/oRkuCH4l7tHX4ne3gXB3+NZ+CebLb+vPXETwBqJjBxCY5nVniGNA0J9/boyy9EUpT8QiRFyS9EUpT8QiTFqxJWcA0FhUHsKVbScUAHIoHmw/m5i30EwxPo3DfgbFv04FaDGA0vKZVbUj9CFBuDff0WMKp8DaPT6Xg0+ATF0IK7M/pcxwh0b5tDevhNa/+OHVdeBLy39/ueghj3/sy/Ow9hac43Ry52BGPAFxM/LMTM7Nvm0sWi5c0oPuNZhBA/eZT8QiRFyS9EUpT8QiSlpVLIfUXi3rsXbczMZo0XXn7ePnCxP7dTFzuByRSvGn8vXzZeoPm69/3oXu6uXWxZ+X3NzNraC4EkDpIwSO45Kt8kN190SMrYfoRjpupipTWIUmP6KB5yfTi0AwS/+/A+3Wu8mHpy6oXhGt67ZuFjjzsvXJ9O/LWYmbVQYjwGffmFSIqSX4ikKPmFSIqSX4ikoODXw9RRAl1VoLuU3Fdt4wUMKrc8q7wj6yMw2n0EDrjf66AP29Q7rZrGX+MOpKrSABIU3iqYTgvCFIlaQ3Aq8pgebmMJD+MYwdhyYFoLeudnIKYdwSEbEsNBGFxv/Dv7eu1L019M/b43hZJemtw8Bn35hUiKkl+IpCj5hUiKkl+IpLTUCw9LUUkEDOpKJdEGJ6hCueUcxBjqpfb4yJfBTqdeJHm48GWU/cSLgJfg2ruq/DnM4j0AqWci9b0b68i7y1hxDku1o9tBKOr6i1LaF8tb4YI2IKZdwKfxYuuHcawv/ft5uffC9W+m/t3+vPbuwG877yw1Y3coEZ2ArC+/EElR8guRFCW/EElR8guRlHYCgl8H/d6ilNx8RLRXHB1xDiLZ/XM/1OD4sRftzq58uez6i0cu9tsj78j6CgRJs3hvvuhUZBKwSMih9erfgcMveu6oiIhOR9guug4laL1vdl5k+6b1IttnrRftNjMv+B2DuHdV+/v7yvx790W/cLE3nS8vN2NhuDSs5C70rPTlFyIpSn4hkqLkFyIpSn4hkqLkFyIpLU1yIZU6WiMeVXHNCtNmoCZ/AfXNq8or8eAWNpi8bM3Mn/e48uc42ftz0Fhxs/h0nug6jpnEMhY6zxjr7Q9hVS79i7Ix/2/PYust2qSkr2d+32/aMxej5p9kF37d+/O+BisvjWf/72v09032fHp+tD768guRFCW/EElR8guRFCW/EElpV523OkYnvpDYdIi9l0QImlTzDKbpfDXxNfm//9yLMfdu/PGul96i+WXl6/mvKi/4lJoohoW8kU1Pv+85qHcCiUVmPCY9aqkdM0Fo3GhwXv++ByEW3jsSvkl8vpj4d5GaztI60Mj3aP6ZjXsnCH35hUiKkl+IpCj5hUiKkl+IpLSbHYy+ecsc4g6jXgLfdr7m+dO5H2083/ux3Q+uTlxsAdN5nk69QPNy8GLMtjBNhcCR2rAdiVooppLrD2JTmIR01Hqr48OZF0jNzB5M/JrR9axgfUgkw1Hl8JzpXeSmlfEpRdG1RaGy90+LrpFq6kmUpHshZ2GJmiysQPT+9OUXIilKfiGSouQXIilKfiGS0kYnsURLTA9puEj7k1BCItLT4cbFzlrvTLvX+N+3DRQZv4HSz+Xex0rCEt1L1JEVLXmt4XDk0juDEeQfHz10sT+bPsbzPDHvgFzAuPFngy89fd372O3gnx+JhVedL3ldbHyMBMSibBasJibhLSycBd/jqIOxRFW+y/8TNfAUQnyHkl+IpCj5hUiKkl+IpOD4mbct7pWEL9qfJghROSoJGGsot23h1Bsc0QxjsmE7upZSfEzfOxQW4XhUfns+9U7HX4C49xc7XxZtZvbRzjvRXoBD8D9a/6yewpQbEk6vQQSk/ogksJnflbezuPAW7bd4SI/Ku0TLuUsiYNStGEVffiGSouQXIilKfiGSouQXIiktlQmOFfKisIjor2cKY7FbEodAEOmoB1zQVTWBc7QV970rxe8yRqChZ4AOv9Y7/H4Grr0/hlHVZmbvH8Go81t/zNvKH3NofOwNPNMK7Iqb1guQ5A6kNeTS33gPQBy6Ar3+6NxU0hsdsEL9+koDSA5xA0bQl1+IpCj5hUiKkl+IpCj5hUhKS860tz0c4BBIbOReeF78uDYv+qyDzr0tbNeNKKEcCw7eAGGJBL9Z5QXSJjh0w8ysrv36TCu/FmeD324O/RHp+REkaNJAjE0NJb0FIZVKdSsqbw26TaOiKz0rEvKwv2FBvKR7oWNG+wLqyy9EUpT8QiRFyS9EUpT8QiSlbWHAAxF1Ox3kQgJdghxP6wH660EPuDH91XZwMRsaLAHXYsbTe7GcNLg+0am6JIiR23ANgt0r2NfMbLqa+/33/pg7WNstrOMShNjl3jv31lD6WyrVjRLtjxhe78av2TG4Guewth28I8udnyK9hp6VZnFxkHKIYvryC5EUJb8QSVHyC5EUJb8QSWmPWyjLBJFlDUMtaIpptGeameFPDwkYNyCKkPtqXfs+cwQ6pSBGE3nXILqYsRhDIktUgCKHH90zlTtPQLyi0uYrcKGZmZ3uvFhFstsGjHtLEBYvey/OXsJwj+sdDPwA8YuEM1rrUpzdk34d541/n85hgvHD1sdOa59XW7jui8YPJbna+ZhZYQIyCNDrHYipMF1YX34hkqLkFyIpSn4hkqLkFyIp7aP5PRckYaHqvBizHLwQt4cyz5KrjVyDW3CDraDXHIk2XeMFFXJubcG510GMtiuVW0bdV9EecNhHMTg45V1AX4keTk2DU1bg3Lvp/buzAmFwjKvNjIVcckCScHp/4nsKPp74fPmw9tudQVn1CtbmkKc3geu+HWJDbsitqC+/EElR8guRFCW/EElR8guRFCW/EElp/3D6vgteDF7Zp8aFbF/16mpJiaV/AWjb247rm93xSEkPqv1RVbk0TYVUZW4e+XbHdndBC/F079dhXrAaNzTCHL4TZHQmGzHZcem66RlQjPYtPReC3omT1vcweNSeudiT2lt5PzBvAz7a++d8Af/MLCoYaQ7/FJiZbWv/PrbQZ4F6PFATVX35hUiKkl+IpCj5hUiKkl+IpLS/qL1d8Wuoi6cmmlRnT3XDZgXBL9jgcgdazqrzVlASgkjcIXGuC4p7JatyePQ26H0k0IXHSEOMrpElJGYFNtJrGKm9hMk+NOVozL3QM6U+EqXnQiPfo2PNP2y8uPcExL3zwZ9jgOe8godPvRfonTVjsZgsv/RJp2Pqyy9EUpT8QiRFyS9EUpT8QiSl/YPeCwYbaOr5vPGCyEuogcY69IKrLTq9hpxy1DfgEJdX5FrCIt47gM4dnQBEq0BdCK5gnLaZ2QLEvYvGn+dF5Y96C+7JHq4IBT94fhij96HwrCq4F2qE+gDe7w/N58FjEPcmcGovR5tNIDem8P2dkohnZlNy/pG4B25OnGaFZxFC/ORR8guRFCW/EElR8guRlPa892rFvSYmQlBDyR+K0ePBfySi172vYgIkxWhc+DVIfs9BDDPjcd5XML3ozeBLrRcwOp2ao0anJtF2FCtBa0tuN5qw8wiEs1M4NV0NmB/tPpUSg/g4L5b0wkh1GnMPjlps/opnEUL85FHyC5EUJb8QSVHyC5GU/wIVLLUyd2pkjwAAAABJRU5ErkJggg==" y="-2744.060818"/>
</g>
<g id="matplotlib.axis_155">
<g id="xtick_232"/>
<g id="xtick_233"/>
<g id="xtick_234"/>
</g>
<g id="matplotlib.axis_156">
<g id="ytick_386"/>
<g id="ytick_387"/>
<g id="ytick_388"/>
<g id="ytick_389"/>
<g id="ytick_390"/>
</g>
</g>
<g id="axes_79">
<g id="patch_80">
<path d="M 299.674375 2868.962581
L 421.964375 2868.962581
L 421.964375 2741.669054
L 299.674375 2741.669054
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_157">
<g id="xtick_235"/>
<g id="xtick_236"/>
<g id="xtick_237"/>
</g>
<g id="matplotlib.axis_158">
<g id="ytick_391"/>
<g id="ytick_392"/>
<g id="ytick_393"/>
<g id="ytick_394"/>
<g id="ytick_395"/>
</g>
</g>
<g id="axes_80">
<g id="patch_81">
<path d="M 434.924375 2868.962581
L 557.214375 2868.962581
L 557.214375 2741.669054
L 434.924375 2741.669054
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_159">
<g id="xtick_238"/>
<g id="xtick_239"/>
<g id="xtick_240"/>
</g>
<g id="matplotlib.axis_160">
<g id="ytick_396"/>
<g id="ytick_397"/>
<g id="ytick_398"/>
<g id="ytick_399"/>
<g id="ytick_400"/>
</g>
</g>
<g id="axes_81">
<g id="patch_82">
<path d="M 29.174375 3012.882005
L 151.464375 3012.882005
L 151.464375 2885.588478
L 29.174375 2885.588478
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_161">
<g id="xtick_241"/>
<g id="xtick_242"/>
<g id="xtick_243"/>
</g>
<g id="matplotlib.axis_162">
<g id="ytick_401"/>
<g id="ytick_402"/>
<g id="ytick_403"/>
<g id="ytick_404"/>
<g id="ytick_405"/>
<g id="text_21">
<!-- 61 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 2989.602116)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_82">
<g id="patch_83">
<path d="M 164.424375 3012.882005
L 286.714375 3012.882005
L 286.714375 2885.588478
L 164.424375 2885.588478
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_163">
<g id="xtick_244"/>
<g id="xtick_245"/>
<g id="xtick_246"/>
</g>
<g id="matplotlib.axis_164">
<g id="ytick_406"/>
<g id="ytick_407"/>
<g id="ytick_408"/>
<g id="ytick_409"/>
<g id="ytick_410"/>
</g>
</g>
<g id="axes_83">
<g id="patch_84">
<path d="M 299.674375 3012.882005
L 421.964375 3012.882005
L 421.964375 2885.588478
L 299.674375 2885.588478
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_165">
<g id="xtick_247"/>
<g id="xtick_248"/>
<g id="xtick_249"/>
</g>
<g id="matplotlib.axis_166">
<g id="ytick_411"/>
<g id="ytick_412"/>
<g id="ytick_413"/>
<g id="ytick_414"/>
<g id="ytick_415"/>
</g>
</g>
<g id="axes_84">
<g id="patch_85">
<path d="M 434.924375 3010.380241
L 557.214375 3010.380241
L 557.214375 2888.090241
L 434.924375 2888.090241
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pce73451527)">
<image height="122.4" id="image58e41c109d" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztndmOHed1hXcNZ+652U2KoyQ7ciRPcWIEjmEggJ8iT5K3yQvkKWIEyZXjCLJj2JGsiBIlNptN9njmqjq5UGwgXF8BRSsGAv3ru9yo4a9hnwLWWXvv7O8f/t0mXmF3k78aisMmkxjxuGgk9n5zgdv+bnEqsav1TGLLei2xZiPLjkHRk9huf6zb5bpdvdF1E0Wm9yYiYpT39dzFSGLbsN0wK3W70NgBxLbhWc0yvTdfxFJiz5uFxCIiFptKYnTdB/lQYt8MveaHle57Weh5P8n1Oc82tcT24X7dauCAETGHe/EY7sXj+kpiz1aXup5a993AuzguBxLbKycSu11uS+xOpvc1IuJWwPsNz38HXuWdWtfIb7Ix5muPk9+YRHHyG5MoTn5jEqUchgp5pO3NIaayC8d2QOSKiDjobUksz/RE83olsVWjolQO10JsQsWPrnQ9R0REDedZgIBF2y1Dt5tlGuuDEEfHu96omEbbtUHXTXeCZNM1bNhNXmVo317LcxnAyzyD9/ECxMvLXMVnEvxILKZ3tsxUlCSheBuE6wgWgYkBPNa9Rt8df/mNSRQnvzGJ4uQ3JlGc/MYkSjnaqCBSgXayAqfUmsRCOMk42H11q1DHUx/cW/NCxZN5o7EKxLSM1giOrK4iYN0iVdG5aY11pvuTe66AdU8zFe1IiGvgWkiUeh3Br+i4Ld2dGt4n+uq0iXZyPFjLumV92/B+b8HZJ/De5SSmwn0kB+oaBDaiRyIgrCUiYqeANW50/61a17ib6bvoL78xieLkNyZRnPzGJIqT35hEKUlYIvFkRaINCGfEEESNCHb+9UBkmUEJ7rzRfRfgYluDE3DRgNutY0lvG6vQ8zQNCFPg0iPRh4RKcj+SeEmiJJWdtpUn03roPSHhjWJ0Z8mFNoby1AWskY63bNEKxxCntxGFU3gnKhDy6N2h5zKvVHS7ybWseg6lv21r3IKbsQ3icwml9v7yG5MoTn5jEsXJb0yiOPmNSZSya/aTXwnMU/hr0m/5jRlAfNPibup0IhA/yFFHwhkZxEi0yVqdbuCgI8EIBL8KBDYq/8zhhpO4R+XO5GCkc0RE1PAMykK3reH+rHMSAZUxPKtDeKh5rmshbW+npccknaeGIxQ5lCzDe1LmdB869n/M9froGezl2v8vIuLtWoXvP1trifFuT4XFDBy6/vIbkyhOfmMSxclvTKI4+Y1JlBL0GVRUqEy0a1+3tl8Yco117ZD3Vfr1sZAHIhAJgy10LRPGc4PYxO67P/6aqcS0AREoIiKH9XBJsMZoyMYNiGRbINDdgsESd6C+fBeu5bjUfnsREeORil8XN9qvb9nXYSMvyl2J0X24qdSlR89gVKgr9WH/UGI/ih2JRUT8NNchInfe02EjxM2Zioj+8huTKE5+YxLFyW9Mojj5jUkUJ78xiVKSfkwx0oWXHeu525ordq0Hx2OCqryC0dJLqN3v2ugTbcAtkIrfFfrnYpCplXPYcbQ4XUuEqt5ta6Z/dvAfBDj3FOzLZxmM/IZmlA90s3i0mWvsrXOJbb3D37FsSxX2o9+dSezl+3cldjLS8dl0by4LVfvp3u7DyPbv5PqPwo+XPDr90U9vJNb71j2JbRZq+e1/+EJi/vIbkyhOfmMSxclvTKI4+Y1JlLJj9TyKdnOc4gP15S31zhVOlukmLC1B3KPxyTQqmWirbe8Ki4PdbLsDEPJ2CrWg7mQqXpEYSucgwY6aUUbwvaBj0rkvGn0GSxABl3AtZamxt6Bz7OgNmHr05rHEIiIy6EOQfzaVWEOiK+ihhzDKe9CxAetRphbbN2vd93hP1xcRUT7Y1/M8UMEvg74B/bGKjf7yG5MoTn5jEsXJb0yiOPmNSZSSJn7Q6O0F1HivoDXjAtxzbe0NyV9GNeILEvdg/DU5/Ah2wP3fQ+fhvgH6GzyEJpr7IJKRaFrl0DgUnssSnHcREQV8E6j3At1vEgHnMElpmet6qI/APRDY3vwcGp4equsvIqKZ6bmffKCuut8M9JqfB0zT6egOpSlVYxrHDUmQYZONiM0CxOsaRNstdSZmd+9IzF9+YxLFyW9Mojj5jUkUJ78xiVLeh7HBY5iS0vT0d+IaXG3URpHEoojuvzwkLNHobRJe+nQtHctvX6dMl0Q7cv11bTzK54AJMnC8SahjcA0iYLn5aq7GFYmI8KxoPDiJuHS/P+hpM8vdx+rmu/uUG3i+XO1J7OcDvT+/CC2XfV7rMamUvE/iLAiVNFSIxPDpDU/sWX50IbFB+TuJ5ff0/mRDXY+//MYkipPfmERx8huTKE5+YxKlvL97LcHxlZb/LSqNnYIIqDNFuJy0DSrfXUAfPhJeCJ58o+egiTbUH4+Px3FyytGIZxIq6Z4tYT09EjnhvDu5ugNHGy7oJiFvCi49clmSEEuQ45AEvw/hvq5HE4mNN1t4nrOhrvvTRt2AzyqdfEMl4vSstkvNjQn0YKRy9xm8Tl8sxxqMiOp93Xj/UxUlt+/8VmLDRxb8jDH/g5PfmERx8huTKE5+YxKl7A1UeBmU4GICfY2ce1TSuWgp6qV+fTcbFZG+yuCNDcRI3KNzkOD3Og69HvSPo/54A3AhEiQY0e83PZdJ6DmggjYiIpYZiK61Cnn0DEiIJacjPSs63nmjZbXLjmJvRMQNiJI3cEwS91YgXmIvQ3hPaLhHBe/7CyjfXff5fXgMoub+mYqf957rtTw8U5HTX35jEsXJb0yiOPmNSRQnvzGJUl5eqPPnfK0lhTOY57tp7c73v5m39Nabgcg27Si8kGjHYoyel1xoKxK04ByvM7mXyom3qY8buMEGAcMmaJJw17XQsJCWvcck2kKJ6mWmE3Q3MMiFhpKMwHHY7zg4ZUY9AVuchVQOTiXGJMSuoUcluRAbEPwqyI05HO8002s5bbkNVL59ANOO15C/g2fa189ffmMSxclvTKI4+Y1JFCe/MYlSPl6ra+iy1N+EcxAhuhVvRlQtU3pxmAOIgF1Lgrtul1FvPYgVMO30daBjTkDougVi2hgEv17HSbnknMT1tcSLDZSOwsCQaanvDgld1M/uEI5HAuQ1CHZfNFrGumx5G0kk3cBzIREQnXsQu6nVMdgDsZdKvKfQ/4+eaURED/anacc9mHYclToB/eU3JlGc/MYkipPfmERx8huTKOVHfc3/Gbi0liBCrKD0E3ZtpWspZNfJtiSwkXOrB7G6/OP7+kWwm2+vVJHlfq4i2ZsBjiy4j1O4Ny8zXeMMnGRLOB5N+I1gNyCVCd/JtdfcAQwM+Wat9/veWgW6Hqznaali4Qc9vdcft7gDz2t1IVJJLz1rEvfQbdqxH+GyVDGb3I9tZeM0HGSR63oWMKDlKZQJ+8tvTKI4+Y1JFCe/MYni5DcmUcr/yrXHGTnESIIgYYJcSEMQKiIihiB2zKHnWldxj7bbLnSgwu1Syxtp0MUShTPuHzcAwekeCGLfrtR9dbeCnnlwfU9gSMrzTAWfa3BO0lRcEj4jInrg8CN34R6UIn97rcf80eSFxA7fmkqMXpOLT8D9+PKWxIo+D+34EC5xAfeHIPGZBN9No9tdN7oduVfpnSWBO4JF5QvIoWcQQ1crnsUY87XHyW9Mojj5jUkUJ78xieLkNyZRymdgdSRll+rLRxDbBcl2u0Xt36XGlbDty0qV4a7K6S6o/e9mqgzfBwvqCkTXG5iwEhHRg/DxWg/wRqWq+wD+VajBJktnprHdNE77CmrO65YGrFR3Tv/MZIXalweNbnf0LX1+wx890hP3dN/e7c8k9t4/6SD489W+Hi8iLgq1Tp/De/c6jVlfhf4BILtw1/HlbWo/jXfv2nOihn8f/OU3JlGc/MYkipPfmERx8huTKOUK7KpUu12AIDLeqABxDLHbVUvdOGz7aU/tnD/vqSX2s0pFH6qrJtvtPthX34b68hIktpsWS+ySeglQPTjc2xWMz74pqFkj2E07WlBpcg2Jpm3Q+OwbaEZ6UXQTzrLdHQ0OVJzLd88kNhypeLk/Z/HyoFBxb4vWDUJz13HsJKZx88+OjVVbxEeaIEWCH50Hp091Wo0x5muHk9+YRHHyG5MoTn5jEqUkN1/X2GCjwsQW6C53axaWjkc6eeXRUsWYpqeOvKtC6/6fV9cSozHg54Uu8hqEkwNwZA1bGnjW8Ds6z/X+zEBEqkDguYGfZWqiSr/eVKdPsQqaf74Oa7gXp4Wu8cWH2tfgjbcfSywb6rNff6LC7myq/RjgtBERsQvi7l6uwuJZoecuwRUJZkyERMDOk6cgryIiGhB8qecATh+yw88Y83uc/MYkipPfmERx8huTKOUEyhupmSVJECR9LWHDGZT+RkRUNYiIpYpsd6ESchvGED8FF9Nl6MSWx4UKOQc9LU/trdT11Sb40f3BElwQ95bwE0xTk8jNxw1T9X5TSe7rgFOO4A14GirE/sfFgcT6PzvV2FhLf69faEn25UJdoG3sgHh2Cxx+pzBG/CKDJqPwpFF0I+cliG4ENduM4FLrr3JMf/mNSRQnvzGJ4uQ3JlGc/MYkSjkBMQ5HXYPQsQZR4xp63D0rWfCLFYhscMx5T889AgFqDP3aqLTyollK7Ak4vPahHPSopTyZol27wlFnt6rjzjROewQlwgsQdjNwIEZ0d6KRw+/5Ru/trwZ6bwdPderOXqZi4QrKvklAbjHFxRj0sAOYfDMGQZTLcsG517FU908B5SqJezj16k+yImPM/3uc/MYkipPfmERx8huTKOUYhDPyDHX9laCy0xctel8F5x6AdkKuwVuZikg3MHqbxD3q9fd8o2LTxyBUzmBwQgSvm4S8Gq4FZnsgPZAQh1CyOgRBjEqy1y0qGclX5C6kvn5XKKaqEHvQ09idStdIfRTXIGhRWXRERAli3AgukEaYz2q9llWt23XtzYcuO4xxtvU6Du3A4R4W/Iwxv8fJb0yiOPmNSRQnvzGJUpJgRA4vKmWkItERiEjDFmGp6y/PCBTIYxALp5mWZS6hT90cxJ2XMK24yvTEJ+AOi2DH4QCukPoekpBHg1P6EKM7OwNxhwak0L2JiKBBLuR2W8J9JDH1PFcx9RLKavfAcTjsVrHa6kmk+0NC7EWtpd9rEveojyKKjSCwwWYk4vULfsdICEQRkMQ9C37GmN/j5DcmUZz8xiSKk9+YRCkHKImAKAWKym6j2x3UuuEYeuu1sQRVZAGCComIIxA/qPfcbKODPGaNilLz0O2eSeRLSPQZwOTXHXAmHsEQif2N7ktiIU2SHYPDj0p/81aHnz5DEvcWtd4z4qbQ+7iE0m96x8YgNPLbxN8xcv6Ro5KuhZx7OLkXS2h1M3LjDaBsnGJfHrPbt5rEecJffmMSxclvTKI4+Y1JFCe/MYmC3fVIWNohl12lwduhTrnxgDxVETcrFTZeNCqILUA9odJY+iWjASQlxNYgI61B5KIy1gh2wJE4tCq1b+EWCIP70IePoGumGDkGya0WEbGAycYkiM1BJCWRjNxz02IHzgyCGD0X2E6Lb7+khEskYZFdcSDkgWhHAhtt1wd36KRUV+oI+km2Qe/jGgR2EnH95TcmUZz8xiSKk9+YRHHyG5MoZVdx7xDEvVswkXV3otJLv0Xwq6+gRHWtYgdOtgUBg6o/aWItDmhoYKoqiHht7ikS93B4AmxH5cA74J7sw7O6AafcGib8ViDEUeluRMQSBD8S95a1bkdMaxWBv4DhHp/0xhK7qdX9+DoM4LqPQS0+7qkAeVpcSozENBL3yFlK4t5uqdfcNlGZyqXpudA7yoK0MSZJnPzGJIqT35hEcfIbkyhOfmMSpdwCiXy/BmUfauC3B6o0lqUqkg15cSOiBkWbprHM4SdqAYo2WRh78Ps2gXHVa2jWWUGDyzZLLNlDqZ5/L1fF985G1/MAhPQKrpnuF9zWqKguHmIRrCqTbZf+zUClGf6HOamnEnsfvOYTMKDT9KFdaFAaEXG/1vht+Ofq++WexD7vn0vsulKrMj17svKSbbcP7wj9IxQR0F2ipbEu/NPgiT3GmD/g5DcmUZz8xiSKk9+YRCn3oOHmLbB37g3UjjkaqeC3IQvqlC2aL2oVvy5L/T2akdAFwhsJJVsgfvRgjQ3YZFdQz98q+MHv6BZMpTmGZp1vQEfJ+xu1xK5RINXjXYO4cwXC0mXL9CESjFZd691hOxKlLuuZxKiPQAnHK2F9+yCkRkSswT6bQ6+EN0D7fNg/kNjTDCy/LTbpV9mAaLoAIX3V0liVhdhuI40s+Blj/oCT35hEcfIbkyhOfmMSpdyF+uTdngp5W9sqQNEAketLFV5OKxZjTkoVXs7BqLWk6Sck7oFQQtLJGibaEHMQ7Nbgfoxg19k27H8Ik3iOKngGI73fJKYuFzR6W8+xBnfZTcZ9FqaFPn9yA7aJn132ndUqIM+hPwQJVSRI1gU/lwFsOyz0mA9qjf2gUNffpK9uzOeNipdTuD4SkOk+kFO1DWweSiIpjQzvfBZjzNcKJ78xieLkNyZRnPzGJEo5CRUhShBPGhBEVnMVU86WKu6RsBfB4t68o5uPfrXGIIj1QBCh5p8zGO/dhzLRtjHJFKdR2bsbEAZh3sxwyGLcq+ytVCQ7rvQcCxC+zkGQjIi4hPgq7za9iFxoJPitGj0einvwXLqOqm5jH57BXzRaYvwDaOr6QbYtsV/1RhL7NNfjnYGr8QqmGVED1Qi+j+zcozHiGvKX35hEcfIbkyhOfmMSxclvTKKUNSgB06W6mK6XKgJdQ++5s0IFmquWnxgS3lYQo+1wHDeVmIJZCipoYwV95tYQa+t7R45Dcl8NYfdRDlNgetBTcKVXDVWiUUJwDNttt4wBpx6Hc5giMwNBLO9YYkpC3gDOsV2omLZdaBnzYa7bRUS8G1rS+5NKxbh3fqL9+vKx3p87v7yW2PGTY4n9+1AnAH1U6vWdUKk1iIARPJ3nddyAr+IvvzGJ4uQ3JlGc/MYkipPfmEQpz0HcyYOGWujOMyiNvIGfE9o3godLkJtvBsMzaOT0Ass/9SQzEPKeN+qyOwfhZQrbRURswBVXdxQqB6W63frg8FsvVeiaguh6Bc9l/hoOryGIUH1wCK4htoFeiBMqdwYh736p7rn7oY7RbVj5Hr1MEfHdlZZGf+OHLyTW/+5D3Xmia9zf+UJi3//nU4nVT29LLB/o8frwrM5aRnRfwKjzrn0myfXnL78xieLkNyZRnPzGJIqT35hEKU9gSAb9ItCgXSo8bNFdEPImLaGkdwplolMQOrqanaYwKOEcyi2vQfBbQ8/DiIhNCUIlrJHEzxxi5UBFyQzuzRye1otCD/gyhz56MJk4gifyUukoTqcF1+BOqaLdt6E/3t+CKvnNrSs9L5Sc11ByHhFx+PaNxIbv6TCO7OhQdx7quuksu2cfSezBqb5PJ/WWxK4KFfdWLc+FWk8u4B3jfouKv/zGJIqT35hEcfIbkyhOfmMSpXxSQDnpV3AD0b5tIzLIzbcEaWIRusYZTjfV7eaw3XWlQt4VxKiXGvZHCxa/bkoQFsEBR+XSB9Afsao0dg0OsVMQ957DQIxZy3TZeUcRieiDO/B2rmW1P17ouv/me08kNv7hUafzNudaphsRkU1UWMzuagluTFSMi6E68ujpF0cTieUosOq+V9BD8xre2YiIGbyP9M5TmS+7/owxSeLkNyZRnPzGJIqT35hEKR+Hlgn24TeBhl/QZFradwDDNCIianCsUakuUcK5Sai6gTLIi7WKQ7NKS3XJzUe95yIiVoWem9xX51Ce/HmmpbqDp1reelWrMPiZ7hpP4JmeNRqj9UWwuEfDOEhY6ucq+O1D2fgdGlTylgps+duPdIG7KuLlSy61jhqusQcls32YJE3DZgqNNdd67o8qFSp/3ddn8GmtPQHbevhR+e6mY75kUNruL78xieLkNyZRnPzGJIqT35hEKU9qFb+oX9uAYjDFlrYjETAisASXBmXg/uAkm0GRMU2SXdTglAJhiFxRvRa/Yg6CCgmiJJKdlLrvolHH2XMQ9/4zU3HoSa1lrJdQsly1lCd3pQTxcxQ8+fdV5ht9futnKogV1yqI5fdBBHzrPp9oCeLZtfbw28zAITjT+7j5/HOJnfyL3od/hZLsj9YXEntZ6TnmtboxI/hdJmhYDE/zNcYkiZPfmERx8huTKE5+YxLFyW9MopRXYCXskWLfcYoL7UuqdwSrkqTs74I9tIR9VcNli26DDQ672STzlmsZwcSerUxjww1NOdJzn0LsBCyxzxp9fguo+yYbaI1tHdublL4KGGKxecMS7vfTQu/Nyw/1iHfefiax/N3vaOz4LVwj2XubE224GQv4V+DsTEKrX3wisV9e3pXYF33994CmPVHPCIpF8D9SBP3zRP/M+MtvTKI4+Y1JFCe/MYni5DcmUcp1A1NloKngMoNmlh2nuLQ1vSRxcDdX0YcEvx78btG5vwo41hjElIiIHtSxD+H6iJdQ4/+SpgptVDCiBo4DWAv1PyBhMCJiDs0+yVratUZ8BcLiS5gqdH6h9fzHl2C7pXdsvAtnZjZXKuRFps1DmxlMbDoHsRheiS0QyCe5+rOXOVjNISfbIIs2vaM0hclffmMSxclvTKI4+Y1JFCe/MYlSksuLBAcUDFrEr1chJ19ExDBXIa/fI5FMhaAhiD5jEFnoHOR2Kr5ibTtRg2vwJfQcWIAD7mqjohs13KRnMApoUAmPYAD3K4KF03mj6yHXZwkiJ/kIZzRuvNbjbRYgfq1U+NysuOllUMNVdEDCKnvgar2tsXd+qzX5H2+0Aes1NHmlxqhtdfuUlyjYN3THQRjEsxhjvvY4+Y1JFCe/MYni5DcmUUpqFkjCAk1xoTJREovI/RYRMSlgUg2WDkOZLzQPXWTqDjwrdTw0TfEhQZPcU20uQnID4qhrEAFJyKMY7Usj0Ye5rrGkKUwt10KuwTW4EEnco/VQufQNCH7PoQR6+rGur/ebX2twqM/5y0XqMTfnp7rdGcTW+gyKI22seu9dbcz5vfd1PScjFa6vC82/KbyfbVD5dY2Cn+IvvzGJ4uQ3JlGc/MYkipPfmEQpL5ZaMklTZQhy7o1AYJmUMGomIg5LFU9u5yqK3ILpLse1/m5tQR+9WamlnlTKSoLfAsTQNsGPRK1rcMWRIFaBB46cX7RG7LcIYiiV9NLxIvj5U9/DClxjdC1zuJaTTF16/zbQ5zf/VPvj/fU/fCGx4+//o8QiIoo9ePcavb5NBYL2Cpx23bS02Mv02e9sVJAmobit1Hq2hh6AVbd+jR7RbYz5A05+YxLFyW9Mojj5jUmU8mqpo5ux5BVcY4NCS0cptlOw++oI4rdhxPNRo+c+qFXUOAB9ZtlXAfGqtyOxGQxUoHLJtuEe15WWlFJpZls/wy7nISGH3JPosuzYT/B11rMCF+IURE76xMygR+EFiGRnPRXsTua3JPa9n7FIdnugz6Xf13VvNiDEVrrwDJyJtO/FRt9j6sxHTs5Zre9iBIt7JMQi8Nr6y29Mojj5jUkUJ78xieLkNyZRShIMNh0HYgxKFffGUKa7U+A819gOGGwA594CTaMP4tcaXEw9EDr6MEqW3IokctU191ejkmdyCHYddNI1VsK10PTkHRh80qY90nUvqewYro/caUXHcmJyB9JzeQYi52nBZeO9pb6PxVLFuGt4F8+LbiLpCByDV6Ve3yzTe0iiMAm7ERF9uEYS4sm5Scf0l9+YRHHyG5MoTn5jEsXJb0yilAW4+XogLHQV97ZA3JuQ2BQ8eGMAI08LECtqEKsuYfLrSa4iyzm48ahvIbnx2kZ7rGsQc6DvHYl2fRCwcnBKkktvp1AH491cnZMPgsuqiRG8EyTGnZFYRc5EiJGQ11UYHG5oEjSzAEF0Ccc8BYHupIDSZriWCTj8luAEnIJoSkxKFsjJzUmCPZWDLyoQnzutxhjztcPJb0yiOPmNSRQnvzGJUh6OdJooiVLDQl1Ruz0VlvahTHe3RfAbg3BDjjz6hSI333muO7+AabdYdgqQwEK90CIilrU623B4AlwMiUgkiNEzOICeh3dA3LsDPQ/bikFrEBsvcxWhpnlHhx9NVIbpySMY2HIAgzy2QBRuu5ZLEC+vQBj+vNAjnMJEZfLelbkebwVC3IuNlurScz7saU5GcB9GEvdoKM1VpqX7/vIbkyhOfmMSxclvTKI4+Y1JlPIbkzsSnOOwCZiUC+6yQxCGDqEvX0TEPgh+VL47hJJJcvhVIMYtQRAheiAMIS3K0go6tOUt4uCrYLkl7DsE4XQMIhnLq93pgQg1BqfcCNaTg/i1BaLdMUxU3oOVb5EoDOu7bHl81NnvRa4P8TlseQmxGp4VDnwBNx9Pbda1TGD4TFuc3JNDEFMJf/mNSRQnvzGJ4uQ3JlGc/MYkipPfmEQp/6p3JMHHjVoB5zBhhVTcA1CAjxuWYo9AiN+vNLgNSnoNKvCkgRp4aHCIzTHhd3AN1fttE1JIdaWmnnQeAuv+oZ5/CMcrQQ1fwx8PFIuIWHe0G+N64N+He9Bf4CFMtNnvaNudgo37FGIREVeZHuGaJg3BO7aCf4rW1KgVlX3NF+oZQXZxuocRPN6d3qcx5OA2/DPnL78xieLkNyZRnPzGJIqT35hEKX+wVnGggTr9k0ZrhIcg+GxvNLbf4rAlcW8XhJftXrf6+8NahZJhR9su1UWTQEOxiIiqAXEIYg00dqSGqSXdW7B3HoAldheEM+qTsIC1REQsQfBbg/RGwtRtsHf/ea3rvrfW4/VATLso9Pv0Eh4p1d5HRFyQ8AbPuuOga7wPNM2ILPL0jpDg1yYK0ztBz4Aaz5I12F9+YxLFyW9Mojj5jUkUJ78xiVK+U6ub70mpbqAp1o2Duwiml0ygHj8iYgIOOhL3tre08WEODRffOFOxaauvIgnVX89h3PSs0vNSo86IiBVM7MFRyx3bBgygJvsotJ4lAAABIUlEQVQIauDvgXvyTqX3pgYRaNnSb6AGtxzVsVNj1vdA3PvuSsXi3YHe71Wl79Om1ncx68H465ZZSlNoKEoNU6k5Jrkaia5iMY3jpo6gJNhFcI+HGhyM5LykaU/+8huTKE5+YxLFyW9Mojj5jUmU8uhgKsHDK3X4PStV8KMSwwEIfuTciogYgFgxHKhQMt5RcagcqXjyxvxGY9We7gvizhKEIRL8aBR3RMt0HgAdXbAemnz0CMpgH630Phxkei1LKIFeNtwo8hk04aRnfRcmA/3lWgXkBw8vJFYOoDT2SgXE6lTXvdfovaGx4hERV3BvGxDeSNyjLyOJcSQgkrhHjk8S8UhAbIuTkIejziHmL78xieLkNyZRnPzGJIqT35hE+W/qHNdOXrj4UwAAAABJRU5ErkJggg==" y="-2887.980241"/>
</g>
<g id="matplotlib.axis_167">
<g id="xtick_250"/>
<g id="xtick_251"/>
<g id="xtick_252"/>
</g>
<g id="matplotlib.axis_168">
<g id="ytick_416"/>
<g id="ytick_417"/>
<g id="ytick_418"/>
<g id="ytick_419"/>
<g id="ytick_420"/>
</g>
</g>
<g id="axes_85">
<g id="patch_86">
<path d="M 29.174375 3156.801429
L 151.464375 3156.801429
L 151.464375 3029.507902
L 29.174375 3029.507902
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_169">
<g id="xtick_253"/>
<g id="xtick_254"/>
<g id="xtick_255"/>
</g>
<g id="matplotlib.axis_170">
<g id="ytick_421"/>
<g id="ytick_422"/>
<g id="ytick_423"/>
<g id="ytick_424"/>
<g id="ytick_425"/>
<g id="text_22">
<!-- 63 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 3133.52154)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_86">
<g id="patch_87">
<path d="M 164.424375 3156.801429
L 286.714375 3156.801429
L 286.714375 3029.507902
L 164.424375 3029.507902
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_171">
<g id="xtick_256"/>
<g id="xtick_257"/>
<g id="xtick_258"/>
</g>
<g id="matplotlib.axis_172">
<g id="ytick_426"/>
<g id="ytick_427"/>
<g id="ytick_428"/>
<g id="ytick_429"/>
<g id="ytick_430"/>
</g>
</g>
<g id="axes_87">
<g id="patch_88">
<path d="M 299.674375 3156.801429
L 421.964375 3156.801429
L 421.964375 3029.507902
L 299.674375 3029.507902
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_173">
<g id="xtick_259"/>
<g id="xtick_260"/>
<g id="xtick_261"/>
</g>
<g id="matplotlib.axis_174">
<g id="ytick_431"/>
<g id="ytick_432"/>
<g id="ytick_433"/>
<g id="ytick_434"/>
<g id="ytick_435"/>
</g>
</g>
<g id="axes_88">
<g id="patch_89">
<path d="M 434.924375 3154.299665
L 557.214375 3154.299665
L 557.214375 3032.009665
L 434.924375 3032.009665
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p6c227f0a2e)">
<image height="122.4" id="image9d139f53cd" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHn1JREFUeJztnUmPJNd1hW8MmVmVWWN3symSEimL1GB4gATI9kIGDPsne2N455UhGLAEwzAogZRIdqun6q4p5ykyvSDsRZ/vAa9U4obvfMtbkRkRL97NAE6de2+1/PTf9vEW1dH526GoBiOJ7RcTiXW//5XEdr/+pcQiIrrPnkps82wusfnzRmLPn51K7N8bvcZ/jUuJfbV6o+fddXiNudRVJbFB3ZPYsBlorO5LrAn9vs1+J7HlfiOx1U5j824lsclmIbGIiFWnn9/tZZtEU9USG7R6z/26ldgW1pvOS8+lg3VIsYfr7nb6efpO+izRa/T+TgdDib17cCaxj/oPJPb9WvdxRMS7Oz3PyV73yRCW56TToD49Y0wROPmNKRQnvzGF4uQ3plDa3dUzCVbTKz0SBL/othrbrPX7av6N2S/186vXeuzlqyOJ/WF3qMf1QMgBoYPEne0+T/CrQIiLiGgqFWNqOLaB39sWYr1KRc4IXa8u9Liu0vtr4fvams6RL37VIPiRuEcxWkc6LwmNRFKcAyEWX3kgknUUBEjspXshIXay03y5rVQUjog4hmd4BILfKez5TwYqzvvNb0yhOPmNKRQnvzGF4uQ3plDa/asnEiTppAIXE7G/UUfd7pU66iIill+o2PH0S3U8/TbULfW7gV7lV7GU2HSnzjZyjZHjrAIhh4SzCBZ9SFAbgPg1AodfH36XVyCwoSZFh4EAta5BsE1AAhY5/Gh9cgU/El3RzQehfcWCHzoTaYEyRcA9ZodCLsL5VvfibaOO1nHNgt+q0n1y3un1/Hh4K7Hv/b3mht/8xhSKk9+YQnHyG1MoTn5jCqXd/+4zje5URMiTOSL2N2OJrT99jcc++1zLcv+nUifhp60KQc9A3LvoZhKjUtZcYQmFITb4oYBF4tew0pLXByDkHMBn53DdVQ0uwr1eN7kNU8w6/TytGd0ziXu0DnTddA4syQUHY8oJSAIdiXH5wmmm4EcC604FVtqf85aF2CGIyh/vtCz7vb+aSqz94fck5je/MYXi5DemUJz8xhSKk9+YQmk3v/q9BKuWHFAqNuy3UBp7rWLF5efq0IuI+GKjpbpfDvQ7X4aKIpcgdEzIzZdZqktCTpVwjRHk8KOy3FNwb70bKvgNQbS7BkfdDgQt6v/XQlk1OfQiuFR3CaWnJGrROuA5MsVCEhXpulP3QoLfotN7mW1UQF5CT0E6CzlBc9eBGEJ5eETE+yDEPjpTh2DdgxLjpyq6+81vTKE4+Y0pFCe/MYXi5DemUNo//FLFuMORCh29vgpnOxAgpuNjiT2daSwi4klfP/+mUjFmAr3PluCWyi4JBUigIXcZlcZ+Hddj+yDcnIPD74MOSn/hNFWrx23g+0hMG4D42NtzeTKJbLnCGQ7ZAEde7nlPe7o/Txrt30jOyRQkDD+rtG9lt1KnHLkDGxBTeyBeHjQq7J60en/vVAcSi4g4h95867U+w6vf6nlWCz3Ob35jCsXJb0yhOPmNKRQnvzGF4uQ3plDa/1jpOO6HM1VsRwG11qDOXkPTypeg6kdEXNT6ndO9qvhrUPHJtkvKfu70mfvUaUewGk422xNQ2KkJYw+uZ7XTdZzDeoMTO1Zw3W3CgrqvQdkHe+8cbNdUs07/ISFLLI0vJ2X/vUZt4WcJtZ/u8BIaps7gPwD43wyYUkWNWlnZ13s5g/sbJZrELmHNXsx0LULbWsQl/PfBb35jCsXJb0yhOPmNKRQnvzGF0v66p9bZI6jnH4YKKiR9LSE6r/QcERFTEO0WueIenOc+9l4Cmz8mvo9srSRUjiuN3YBgdAanIcvvGfURgLHdSxwDzr/9WxIv4Vi65yWIZLnTfga17jEaX34SKl492HMNfO4eParVUnvUamwFe5n6Hxw0ei9k+aUmsXR9EREvwd69BqGzA5XzGkRcv/mNKRQnvzGF4uQ3plCc/MYUSvtkp3YgqqvOnGDMI4wT5jly1a3BSbgC198GnGQkQOWOzqZGmFS7nXICkqhFrriXO20UOQCB9b2dikMnsOAPQN0ZwT1P7iD4TOAvdN/0DGjUOTZHBRsiujHhudAzhdtL0sL+PgSx8byn7rlVo4IfCc0EOR0Xe/2+N+A2jIggffaapiHB/S2hp4Lf/MYUipPfmEJx8htTKE5+Ywqlve508g1Bgtg3Abn5SFgiMY3EIZoCk1vmu7/DxB5iDULlGMScVyDaNFTyCs69cxIlUbDV2KLJnyrzp26OmjvRpkOXJYiPif1Jw65pL4/AKdc0Oi6+a6jcWUU7KhGmNZx0KgCnROXxXvf8ATSJ7dE7Hb7Sb35jCsXJb0yhOPmNKRQnvzGF0pIw0ZIAhSWh3Gvsbaj8NoLFPRJFSDjLFZtyRzxTWWZq7HMuJCKSW3EGsWUNoiSs98GOxCGNTanXH3a4Y0EsV/CldSRxbwAlryPq4QcjzanH3QGMNI+IWMF1D+Hzdeh5otLYBvbyLZT5Urn0DETqFYiFl9uJXkuwEHifUeB+8xtTKE5+YwrFyW9MoTj5jSmUloYstI0KIiMYdHAMMRLYqJddBJfvbqjsEcZ2T0OdUXQvuWWixF0EPxJeSOhEByP2KMy7RjpqB9eyAV0o5YojaC2oNJpi1JvvFEZTv987ldhfVzre/cdr6FuYcMXNYXz2gvoR0qAT6oUHpbHkxsx9rdKzX26552Vuf8RcB6vf/MYUipPfmEJx8htTKE5+YwqlJXGAnF8k7j2udKgBOZvmCcEvV9RaNvr5N/VcY9upnrtTB2OuCEiTZO8CnQfdiuSow7JVhQStFfTHox5+cxCvIiJIOxvC8yfRjqbTvteeSOz7tZbL/uVGy1N/3owl9u7HGkttpdm1Xs9yoQLkbKnHve7U4ff7vl7jutEYDd5YQPntXURlcllSz0Tad+gOzD6zMeZbhZPfmEJx8htTKE5+YwqlJaGLRIhDECvOYVpqbw/lmwnhjOQm+nwHvfT6DQyWgO8j8YNEQHImEqkSytzP50LuuzGIdlWr553Del3V0D8OxMeIiBUItDQt9wEMtfikUZfe325VGP5Zp+Lshz+5ltjw796RWP3RTyUWa3W/RUQcff5EYsvfqGB49aWKl4sbGpyisRGIrn1Yr9wdktpjJMSTKF1BDu1R2DfGFImT35hCcfIbUyhOfmMKpcUed/Cb0MBxvdwYCBAp+iSLwOfPYcjCrFZhaQlTVUkEzJ20ehdhj4RTWltiCeXOF9Ar7haET3JUziA2Twh+M5gcS2XZR+D6+4udPoNfHF5J7L2fqkOz9yMQ9370scSqD38osVjptOmIiPrqRmLbuYqNtxO97jEI2ihSw56gScBkQsx1430T+M1vTKE4+Y0pFCe/MYXi5DemUFoavEEOI5IgaCACyWH3db/RuUmAHIEL8RgGQaxA0FpAfzTiLkMScu+bxLQxDHhYQwkunWELstQSzrGAdYiImIEDkkqRsRwVLqhpoM/cAnrhXajzrho81S9c6fXtZyz4rf7rmcRefaUuxBfdocRITF3A/ZFUvIVdS2u4zBzkEZHoUQlTmrOnJ2cdZYz51uHkN6ZQnPzGFIqT35hCcfIbUygtTVghqMZ7CjXisafx3qx6DyA+AGl/Cx+nkcxHoPbPKrWgTsAavK3y7L0paDoPWYYXoO5iY0ZY2wWNTgfFnRuHgr0XriWC+x2Q0kz15b8Z6Ge/M34osQ//U+vnRwNVuY9O3khscPhSYsuZPvuIiItLPffzUCvvdQvKPrwaqVfCBPbOBBT7yU7Xhv7LtO7Ydk3xfGVfn5Xf/MYUipPfmEJx8htTKE5+YwqlPYSabGrWSJZRqhEnbe8ERMCIiEOq0+9IBFSRZQFNE09gFPQOBJpxrcILWX5zxx9HsCC2gWkqdaXHURNVEmjop7q5w5jtXOh6KLYEUet3HUzT6evEngcgug1CLbaDW/263m2+xXqn2xvvhey4sBVjAcddg233eqcj5Gdd3lj5XWKP0ZhtihG7P36KuDHm24aT35hCcfIbUyhOfmMKpX3c6KhkajJJo7fJmbYEsaJN1MAP6Txw3HfBBTUKFUouN1q7HwNVfK6g0ecKa61V0CJhMAUJSzvQZ1BYBIGV1psaRdIvegPuwACxNyIxrpzOA8/1utPGnJ+CMEz7KZcW7mUI7s6IiCNwc5ITlCbs0BWSyH2xW0jsqtP+AuTmy3Xo3YXccdx+8xtTKE5+YwrFyW9MoTj5jSmU9nu1llaSBLEBYYLGSKMTLCFqjOFM48wS47NjFVnamX7fo+5YYz0VBtdwLdNKnYCzhFBFYlwuJGD1SZTCmH62lynY0jNNXQ+JwNSQkppPUonwXdyTb9ODPTIAd2dExEmjrsHjWp//KcSIGyjLvdhOJHa7UeGT3Hy5Dr37kisCGmMKwMlvTKE4+Y0pFCe/MYXSPtiriNSBeLWB34kFlMsuwAFF5ZIREXPofXYNpbqvwIl2cKtC5WSvos8UTGw0UvkYnGD005iSpEiswrJcYAhThU4adSGO4BoPMt1q1EeRJgBFBN4k9RTcdhqjXo/Yp+4e4lcFzsJ+zQ4/EiBnsN4TEPzI9TneqpA33UKpLvTbIzGc8IhuY8w3ipPfmEJx8htTKE5+YwqlpTHbJJ0cwO9EH4QJGsQxTwhL5Iqbg9r0h546uq52KvjNav2+l7UKL1MQpehaSCRLDSCh4Rk9EKFoJPp5o/fyCMqOj0HcG0J/RBI0yY05gbLoiIgVnGeJMT03iVVb6GVIsfsIfqnPUpx6K04qdYySULnqoNdj5pjs3PHuKcEv10VK56E185vfmEJx8htTKE5+YwrFyW9MobSvQkWNIxByTkFYOoKhGyMQm0iAioiYghC4Atfgm4DhIFD5S5+dgEtrAd9H5a00qCTXpRXBDr8DKD09B3fZu6Gx8x1MJoZnQL/oNF02En3vyPm3guteQD9DKrclsSmX+3w2IlEmTANWQATeZE7FJYGOhEaSvUmcSwuD+mRz92MDzlm/+Y0pFCe/MYXi5DemUJz8xhRK+2av5YgLGJ2xhXLSCryAR3v9PUl1R5tg6TBNS81z2lEpcu6vGw3JIBHwLiMWSKyiCcgDiA3h/s5h1Op5p/fcA7Fp0sDkZYhFRCzBmUjCKfUUxP5/4H6kGLosUajKc7CljqXzkLhHTkCCxD101JHzLnMYytfHgrBIQi5A6+03vzGF4uQ3plCc/MYUipPfmEJpbzoV/JZQBruCfnvrShvkHYNYlBLJaJgHij4gIpE3rQdiI5kL6bzYtxBcXylHFZXq5pZgpnocvs0IRvw+gh51B/CsBlsVbMeJvnf0RqB72cL6kAOORC0SoPog7lFZNH029VxItNvAmt2nbx6JknjPcBzdSwocdALlxLmuP7/5jSkUJ78xheLkN6ZQnPzGFEo7g6mji52W+c5qjY3B9TeCARs0NTaCJ8ceg5R3AELeEQ6mUFrQPubwWRJ8SARMgQLPHdxbb0Nl0CT4nbX6XPo9KEVdQKk1DGyJYJflDMp3pyAWU987EgbJATdodD8dwn4ikYzE2QgW/EgkI6g8majJwUjiJYjCd+lHSINOyJlKe5ncgX7zG1MoTn5jCsXJb0yhOPmNKRQnvzGF0uZaNOfwX4EJ/HaQHZOaVkZEnNJUGvj8CZznGGrbEVBdD2i6Dim20BwzVeHdZKr4VM9/CP+nOKHa/b0q6cNDjbWtPr+DtV45/SckIqIDtZjGVS/BJrshRRr2Eynfub0AiJSlleIUO2zBqt47zLqeXPsy9RagtaF1jUhYrOm/GbAUdJzf/MYUipPfmEJx8htTKE5+YwqlJSshiYBokwSxgkdVs02yA2HqIYiARA9EDfol24BodwIC2wJ6E3Qw8nueEGPICsxik0Ji4RAcqIe1PoOmybOqNtDo8SBhI+2T+JmYuvQ2JErh9Bq4Htp3y8yOqWR9jWChi/boB4cPJfaz3mOJ0YpNYdT5ggRSuD+aejTudFz41+fOE/xyc9VvfmMKxclvTKE4+Y0pFCe/MYXS4qQTUDVIMCA314oacMJo6Qh2Rl006qp60KgYNwQn4ACum1xsx/SbB4IfmQg3ML46ImIGIg0JWDhanNYWzr2Fvgarla5DDULlBp4BV/NHDOC5kPsutzcB1ZevYUIOgc06qfcCjeIOFr8OoG/An/XOJfYP67w98bzVmVSvoAnuFYh7N/u8ngERLGouoM8GPRd6Bn7zG1MoTn5jCsXJb0yhOPmNKRR0+JE4QO4inCCC03ASIlloA8iLeiyxIY2CrkcSe7RT8WQADr8jiFGp7QJKkV8Hu69WIOaQQEMC1rJRUWoOP8u31HBzqY5I6PMZtzB2/bLPgt0cnheJl7hPcD/l7RMSkO8y0YYgQZtKdb9b6Tq+B41sh40+5/OVfvaoB6XtMBKd3J1JURmamc5rLbVfgaO2AXeo3/zGFIqT35hCcfIbUyhOfmMKpZ11KhiQuIPTQjJHBqecYPSdt9u5xJ6Bm69tYepOrUIOiYBDEPwIFDkTveKotDK3P+KGeiZCyeubVtfhFhxic1jvy0a/71nN5clPu5nErjt9LvT8cseS0z6htUFnGtxfShg87uueeNgeS+wU1rGp9P5Oj1WkHm11HXvTI4ntQHRdgdtwAu7ACO6FOYAYuf6orN5vfmMKxclvTKE4+Y0pFCe/MYXSzrYqYOQ6/FKjhHO+LxUn4WwGo6BfVSpKkRDU1VpuOQJxZw2uqjcwJGMKw0siItbQsy3X7UgiIrnsLsAhNgNh8AqEqku4l4utrmFExBXEx1t1Nq4S/Qz/WHJFQBT8YG0iIg6gHPwE9gToodj/sT/Q/Xl0rnui60B0XZ1K7KKBcyTeyX0oq6bhJ30QyLd2+Blj/g8nvzGF4uQ3plCc/MYUSrvqVLS5Txllbl+31LFUgkmiz3QHIiCILAtwSw2gkd4K3HjX0JdvAsJXBPeKI3AqK4iFtyDQrEjcg1LiC7juS3Dtpe5lTq5PuL9cN19Nk23vsE9yaBODYahfH+1vWtspdDncbvWzo5E+09ExlAMvaHCGft82sa5rcowmyuXfhqcGG2OKxMlvTKE4+Y0pFCe/MYWSmtsg/KkFmtR30iCPXAGSypPn0Ictt3/cEhxsqWmw5ICke6HPT8A1+LpSoaoH63AFwic59KhUetnp2qSuMZfcfZIr9tawhiQg9hveyjRshJ7/DQisF60+gw/G0K/voT4/miEyr+H5kRszMaWXnuEUHLok4pNg6ze/MYXi5DemUJz8xhSKk9+YQmlJTMsV4ggSvu4CCUF9GNpxCAMMSMhZgOBHDjYSSVKTXwlaM1pbEtOuQaDbwrkHUKpJouQcBEQ6b0rYy71v2hO5bxMUdkEQa+AbqR8dle5G8N7ZgCuOnJJPWj3P+UqHxfSeqph2tdDegZ+pVhhf7VTEe72Z6IHBgt9iq/ubxD0sjcazGGO+9Tj5jSkUJ78xheLkN6ZQWnJL5ZblpnrzvU2q1x/FyZF13Kh4cgSC3wJKY6nPHF13bnlqysFGTjQStUh4QQESrpsGNNB5swW71HOGpcBnCB/vMif3EiTk0RqSm+8wIfih6AqlseSUpFfjbqCq3cX2TGIvD/QZfLqfSuzFVqdSk7AXkS/u5ZZf+81vTKE4+Y0pFCe/MYXi5DemUJz8xhRKex9lf0cTae5giW2hkSaNIT4Htf8Y6t1vwNY6A0ssNXUkpfku5E45ovVBxTY0Rso3qdyHlcbovyg9GF8eEbGAOv91B+O4M5917n+Fci2/qWadeG54BjRdiWJzsPzeVLrHvoBnQP95uoAmqmNQ9slqHpGv7OOkKJiG5De/MYXi5DemUJz8xhSKk9+YQmlzBbrc8cm5Vs6IiKpVgWfY6PjkdyoYs0112jVMTtnDOGb4zcOxz3Bcql9Bbl09iWm5vQBo9PIQxk2TaErXvUrU888bvW5qFEkNQLFHAOyJ3AaePGlGj0s9F2rMuq0yRTKI3YJweg17lpjCqHlar1RO5grI2aPO8SzGmG89Tn5jCsXJb0yhOPmNKZSWnFsECXnknqLjUhN3qD79FNx874Q6qI52KvpsoMafRMB15jScFscnsxhzXamYQ4IfQe47ciEeNVpLfka9DuD+BjS5pmGRbE4jw1u9vzfQaJLGfpNjjVx/uSIg7bvUiPQGJuKQNkifJzGOrpHENHIh0nG57sfUsSTukeuPxEK/+Y0pFCe/MYXi5DemUJz8xhQKCn65Zb65UFlmRMKxRtN5wNH1uNNYD4TBAZx7Bg0cc+94BqW2ERGXexW6SEQi0aYP4hCJoTSl6Awcfo/BEXm6J0GT73peqYj0BlxsA3hWL0E4nVS6NiSm3UdU3sIz/fo8eU+WnhW5AwkstYa9SNeY69pLxdFlm7lmfvMbUyhOfmMKxclvTKE4+Y0plJb7sP3xU3zuM947ImIJoshtrbHvhIpNH230Xs5BVLyGiS9TELlmEJuA+y2CR4GjqEVOK1gzcv0dgsB2AuvwwU5j72/BeZkwl9020O+v0Wucw3MZ1+oEXFQwaQaE0y5zahKJXNWe91huyTrlQe4UJxwND+XOdBy5H1Ou201mH8Xcsnq/+Y0pFCe/MYXi5DemUJz8xhRKS46zioSOzHJL6q+WEgtJELvudIjBC3CxjVr93Wq2GjuBkkf6zduAoHVT6TrMEoIfDX3IdVrRM6D+gSMo1X0cGiPh8/29lhfvE0LsYKvutCk4JYc0CARiuaW6KAxnilcpYY/KW5Ojyd+C7wX2XaJkXa4FxGwS91KCH5Xv3qVn5tv4zW9MoTj5jSkUJ78xheLkN6ZQWhIM9iB0ESTupcp3CRJAaLDBRa0iYK+BUt2eil9DKGVdgbvsNlRkITffMiH4ESRg5Tr8BuBMfATC5w82en8/qKcSOzmGgRFrnnbbzfR6HnZ67rNW13sEZcd9cCauobce7kVYQ3ICkhgWEfh6IzGVRDuK4bRjKMnGfns0OONPXD5/F/zmN6ZQnPzGFIqT35hCcfIbUyhtrtuJIHGPhhXkOqAiIlYw7Xa8U7GKhJJrEJa2ILLQ4A0S5xoSmzJLRFPkOttoYMjZHsp3t7peZ49UIG2gfnezYcHvsFEx7vFWj70BUfKqHkps0YOhHSDaLULLYHewH3Y7cknyc9l14IqDPUqvQRL3qO8k9Vak50yfpetOOfzIrVhnTpJ2Dz9jzP/j5DemUJz8xhSKk9+YQmlRoAMhD91O8FkSNe4i+JGgNu+gHDWzlJFchCQ2kQuNhJwuMaWXypNxSAMNnIBeeOhio+m0IBauluq8IxaJ4zoYdDECB+R3wV04HagTcN0cS4wccK/3Y4nR4AwStO4y7Zb2WANOUHZe5k2WPoD9tKz1XnL7/0WkhsDAIA9yO4Ku7ze/MYXi5DemUJz8xhSKk9+YQmmP+gdZB5ILjUoZSQS8y9AOEm7I9ZdbHpnryNtW0F8NyndT02BnW3Uh0kAGEvxIEKXS5jeNft/zVp/f2UxFt2GfBj5IKEkPBpicwlp8Z6uC2E1PhdMbKE++AUdd7vNLlcaS0+4+5bsHIPidUI9JEPxme/2+MU0/bliIXYPzEt2A8EonEdBvfmMKxclvTKE4+Y0pFCe/MYXi5DemUNphq2ojKaykUt+nF0AKsm6SrZF+tmhMc64VdA32VYJqqiPYkrmCWnuCpsDQfxrI3ku/3qMB1Pg/0Br/LdToR0Qs56o2r6DZ52YNCjlMECK9fg1NVJfwXx0cc0616QkLee5/pMiWTsr+IUxNGoKyPww9xxYa49JUILqWiIg+jJantYCBTbhR/OY3plCc/MYUipPfmEJx8htTKC2JCySyUB07iQ10HE32SZErIpIomTshh0Q7+r7cWATbLFGoBAZwjWQtfQBi0w+22uvgg5/e6jk+1pr6/ZJFzs2LicRmz/XcmxdgV4XXyfO9WpVfbbR2f7xRUZJE09zGsRERPdjfueLeAfRzGNJx8A7tkYUYBGnKDXr2EWnb79tUnX4n7U+/+Y0pFCe/MYXi5DemUJz8xhRKS3XMKJxljhwG7Sop4mFddaY4SC69PYiNdI0k+FGMz8FF8DheOtMVSet93ujkmz/fqFD1k5+8kNjhP/5QYvUnP9brS0yGaZ58KbH2v7+Q2JsLXbMnUHP+xfpaYhcrFSWnGxUGt52eowX3HAl7Kcj1R405Sdw7BDffAY3thmdKO5tyIOXww/HueJ68/PWb35hCcfIbUyhOfmMKxclvTKFkqyQ05SZXEKNS24iIugaxAgSx3MacJNqRy46mwFCDQ7rnb4IDcG59CFNu/gYm2hz/0wcSq3/+C4k1n/xcYtVghNfTvfhMj23/WWKrf3kpsc+rmcReLlXwm6wX+n3g5sudzLSBaTgREbs9lBhnCrE0xYlKdYcw7YeE61xxjsTHFLnNcWmyj9/8xhSKk9+YQnHyG1MoTn5jCuV/AcjzEzbV0E8wAAAAAElFTkSuQmCC" y="-3031.899665"/>
</g>
<g id="matplotlib.axis_175">
<g id="xtick_262"/>
<g id="xtick_263"/>
<g id="xtick_264"/>
</g>
<g id="matplotlib.axis_176">
<g id="ytick_436"/>
<g id="ytick_437"/>
<g id="ytick_438"/>
<g id="ytick_439"/>
<g id="ytick_440"/>
</g>
</g>
<g id="axes_89">
<g id="patch_90">
<path d="M 29.174375 3298.219089
L 151.464375 3298.219089
L 151.464375 3175.929089
L 29.174375 3175.929089
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p7f320251c8)">
<image height="122.4" id="image94f36656e3" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztndmu5OZ1hTeHmutMfbpbPUjWYMuKAsNBrhIgyKvkcfIKeZk8gGA4cBLEcGzZmlo6re4z11xFsioXdgS410eAsu78r+9yg1X8+ZO7CKxae+9s8a//cog3qD+9eDMUq99VEru+mGhsOZLYXfQkFhFxWRYSe1nKcuKb2OlnD1uJLQ563Hqv664ODa7nTYosl9go42s5zgcSO836Eptmes39g57nkOk+bENju8MejtPY8lBLbA77FRHRwHeOc73uUVZKrIhMYhvYb7pXy73G6F7VENvt9foiIrZw/7eNxtYNPDu1xuqm27PTL3Rvxj14RvqaQ8flGL/zOB9K7FGhx74betyPa33u9KkzxiSBk9+YRHHyG5MoTn5jEqXMfvKhBgcqVE3Kr/TT2VJDqhVGrodFRETVqDh0X+jvUZHrcYeDil8kVNUQ24NwVsDvYI/EOYhFRAwhPgTBcAziXh9EssNBY5HptTSZHlfAZ+HbIsdoRMC6S9ifccD+wHED+L4G7sEmVLTbHFScq/fdRMCIiAqOpeek2WuMnjEig3tAMRKQ+yCanhYqmkdEPM9VHHwfxL13dcviYaN76ze/MYni5DcmUZz8xiSKk9+YRCmzp+9BFJxbIIiMN19IrFptJLZcsysu26uwSEJQDcLLllxeHd1gDTjgSPvKIEgiYETEgASxgx47IUEMBLqK9gE+W8O6aQ97IDb1Wn7797DfA7juEcTomncgVJILcQFrpPu3Bidgm8MPxT2IEV2FvLyjuNfLNa+GhebAGTj5Iti59x6Ie49B3JtkFvyMMX/CyW9Mojj5jUkUJ78xiVJmxw81SoLIYi6h/PxSv3Cgxx1anGQbcO4toJR1Ac6vLZSobqh8E2Lk8MtgLQQ52CJY/JqCm+94DyIiGMm2ICKBITIaEgvhswMsG24RYuE801Cxagri3hDudQ7nJoGUBFYS8ha1isrk+otg4Q2Py0kQZXH3TcgpSd83LHS/qUz3HErBIyIegrp71lHcGxa6P37zG5MoTn5jEsXJb0yiOPmNSZQyau2Fh/RAHAKRrKk0tmxULIqIuO3rsbcgVsygv9oKhLyubj5ysB2wzFfXN4YSzIiIk4PGT0DcO23oPMoaVDcSTvcgLO1BQCzh+0ZwzRHs/KNS5CmIjfQ2IaGSPHZrKN9dgri33GmMRNyIiHGpffNGpQpqVL67CV0PiZL07PTBzTfK9bxHEKNnKSJiBJfY9e2dgZDuN78xieLkNyZRnPzGJIqT35hEKQ/XLzW6nGns5lpC+2ttzre8V4HlCgY+RERc5ir7XNPgDRCCsCwXIIGmoBJM+B0cgrh31CL4PWr0809qFVlOWpxob7IBZxqV/vYh1gMRcEvOuxbnJQlLvY59AUHvRTFuRyW9jQp5i0pjO3C1kaOuLT4u9BmlstwyVymWhnuQWDgAN98QxL0JuCwHLfeFnpwFXF+21+88gDvQb35jEsXJb0yiOPmNSRQnvzGJ4uQ3JlHKw+uvNXpzI6H9VzqKZ/tCVfir2YnEXvf4N+YqU+V0DmoqNeYkpToHhbwApZk+W0I9PjW9PIIa9oiIp6DsvxtriY2H8M8F2IA3FdTPN6ri9tAKCt8HVuy8ZSAN/TcD7lC07ZLVFafzQD8GUtK7Nttsq9snm+0JjMCmxqyLTP9poH+PaI0D+IdrCDHqD9FmVV7APdyC2j/bgxV77xHdxpg/4eQ3JlGc/MYkipPfmEQpD1+9kOD+6k5i1ecau/tGRwm/CrVOvgYbb0TELdh2ycpLY7YJFAHbxlD/hYxbvu8xTJF59HAhsV5fxcstTTSCsea7nYo2JVhLS6r716+LilS8CKhiZ0s0CXlr2J4NTezpaHPuFzA9CsQ9qtGPiDjvH0nsrVJj1Luha/PPCgRpshCPwBpOZ9i0CH7XkEd0D6gZbdfeC8aYBHDyG5MoTn5jEsXJb0yilNtffCHB7ZWKA/ev1BX15f2xxD4b6O/J1+B0i4i43mt8CcIZCSrkJKO66q4OMWr+SW6uKbjxIiKOS5XJikLXs4e6/6pSIW9bqzi0gFafs0K/7x6sezMQ97YtwhK9EUgQo3uwAHHvHvsx6GfJAXfan0iM3JgPelOJRUS8X55K7BmI0vOs28j3bQ7TcOC8RyD4jaF2n55OWktERAXP8oYa1MLeTjuKjcaYBHDyG5MoTn5jEsXJb0yilL/95FyCM2gA+AqcVn8YqrDwe7CmXTTqdIuIuK9XEttBqSdN2OkKCX7UrLEHI6hpOs9pN2NaRESsluo6q2v9vaXy3QXcg9tCha4rEBUvQXSb0Zjzjk1QIyJ6VMoKwtIKRLI13FMSC0m0K+H9dAZjrX+Uq9s0IuJHMC1qAI/TZ1CpTQ4/Kv2l46j5K5WIUyPTNexhRMSKyqBJTIVnfgZio9/8xiSKk9+YRHHyG5MoTn5jEqX8BPqZ3ULp4KtQ593XexX3XtVziS1hEktExG6vAgaJFeTcIzIQ8silR33dxjBN5QGIJEOafx0RG+jt10B9a9biqutyXAXXR466GyjKvT3oKPZNi7DE61HoSlCwheNIEHtaqGh3nul9ebrXzz6hUUERcdLo2efgiuwKicUElaFvceYOfLZFiKWx9CT4kSN2k+l98ZvfmERx8huTKE5+YxLFyW9MopS/ytVltwAR4brR8tubWp17q0aFpa5ltW3HdhUB0ZEF4t6oUBHpDMSmUxDx8hbBrj7oufsg8ExGurf9AZSJgjtwvtVreVHCgA447xxKpUksiuD9pjJRugd0HJXqPgRH3nuhsWdQAn3WQMlq01283IJm10DJcw/uKZU2U+nvAvZwDaIbfR85JyO47LxrvqDTFc9ijPmrx8lvTKI4+Y1JFCe/MYlSflnPJLgBIYiEvK5TVannWgQ77QgSOsgdSAwLFZumhZaEnoCTbACDDtqkS3Lk0UTek3MVTvtHen39G72+swtd9/igveKodJScac2er2YLTjJy7nW910ew30+hLPdvdrrGp42uZQTC2aHFeXcPU4xpsAj1M6RvJMfoBvaL9pAgkZqcqm10FV0t+BljvsPJb0yiOPmNSRQnvzGJUi73KuTtOzryermKOz0YLDEAh1dExAjKaKlHGpUodhWl+lA6OoHzDuB3kKpEFzABNSJis2dR803ysltJb13DPsAaqRceQUIVxSJYMKpgqi4JsSX0GaSeez9u9Jn4CPo/PjhXB2pZQrnshsXjFQyWoZL1m4OK18uOU6QXULK+rDVG+0qCX5tATsfS/aeel3Sv/OY3JlGc/MYkipPfmERx8huTKCUJbAGxQdCE0W5i0xB64UVEjEAIHMC5qR/aKgcXIpStFvD7RoMgcAAF+PluWvq/9cFJli91CEX9tV5fWaoYc7vS8tYXpe7XJUx0peEOVHZKIlBbnByV5Bocw3Ta57n2ifzJWr/vyTN1m07f1vuc9fS828sWRx0Ift9Cj0MaLDMHIY+crrNKRclVrccRJYjmFIuIyEGgRTcfODdrEGz95jcmUZz8xiSKk9+YRHHyG5Mo5TRXgYacRCQ2dIVKTCMiJiAE9uH3aAeDKdCECKchF1sJ66Gv20Jft1mLyLkDEeoGyolPwdk2rmCqKgiLX4Gz7VWosHQPAzrIhbYCd2cEl2qT67MHgu0p9EJ8DGLoeaEi2eQJ9Dd8V0XTGOh5s/Jej4uI5nd6X65gf64qHTZD4t4WSozXte7XrlFBk0p1yY3XdUhNREu/vpZS7Tfxm9+YRHHyG5MoTn5jEsXJb0yiOPmNSZTyHNTZHvwm0GQRnOICJ+m1/FMwgVp7OnYOdtUN2IBpPfQvRR96DtCvINVKb+Cfh4gI1a4jLguaXqNnGsPZt/D/A41JvwXFfknTeSgGqn5Ei5UX9pH6NIxorDk0QsVR5XQTSNmfaH+ArK9qfQT/i0P3lVRz2gdS+8k6+0Og3gkR3Zt10nH9Auznf8HajDF/BTj5jUkUJ78xieLkNyZRyrczFU/6MJqY2iNW1OgRLLEFCD4REVMagQw6UAG2SDpPH0RAFvxonHa330G65oiIFdTAb0BuIuF0TOIliDZzaB65ATGUGp4SbQ08uzaVpIlLtIsbuFf3jdrK16/1+4qJ2nbzodbeb17wNTdwjccwnYnGtpO9lyy6GIPzdrXIt9l7u4p7tB627BtjksTJb0yiOPmNSRQnvzGJUj5vVGSZgi2KWnBSy8T19/g5GZDJC2Il1LYfwF22RuceiB9U49+yRj1Hy1hriG9AeCPJh7aMBEhqbjoEl2RDPRpI5GwZkU6ONRKRSASkRqgz2JvX4Dg7/uZEYif3MPlmr2u5W+hnIyLu4dk5gj07BqfrPNdx6ivon0DuQHTjwc2n5/370HXEd27Bzxjz/zj5jUkUJ78xieLkNyZRyvNGFYdHjQo+Jxk0dQT5almrmLL9Hr8xFTU5BLFiDWITCXl0ZiobJiGOBE1q6hnBQleDDr9u5dInIEFO4ZrHMN1lFeA2zCEG7sC2+Lbl2DchZ+IORmLPYN0XtYpul/cqXq6gLPq25GeMyqpJiCXRrmuzzgqaddI+kDhXwLXQcREs0NLnyV1Ix/nNb0yiOPmNSRQnvzGJ4uQ3JlHKhyDuvTPRfminD9XtlJcqaqzn6rxbzrVcMiJisdH45QFKPUGNo/HZ1F+PxLQMSozJwUi/jG1jyVnwg3JLiPVB4Dnba6wH6z4CEZD2ZgtWsl2LW5F6Js4OKnSRMEiOQyoRpzMvcr2+DXzfLYh4dy29Fe8yXeM19D2cNfp8U4/DGvKFHJHk8Du0iMVvUpY8optEOxIByeFH6/Gb35hEcfIbkyhOfmMSxclvTKKUj0stmXzwREdQjN/TD2dDFRuGtyqmDL5hd1h1AWJVo79HV+AQu4QBFhtwaZUg+I2g9HfY4qp6k3VLf7wdxLdU0kvllrBGGnQx6tjfcATXUsNnty3XPIY4uSJXIMYdgTPxmMqTcT16DhL3rkHcuw9+xki8XEEMe+GRWAxr7AoNC8HY9xjR3bVfH7lN/eY3JlGc/MYkipPfmERx8huTKGVZqBCQgciS9WFAwxSce3v9bHlDxbERBxC17gqNkbh3uVehsq1E9U3IhYbONBBOKhAV2+Ik5pDjcEAx0Hy69jzsdRSlDi3HTSBOe7EC4W0E93RKzeuADbyKZjTwA8S9JZQxR/B9oSnUJ+VYYus+lO/C5N49nKPZ83PShTYXKboGSRyE7fbQDmPMdzj5jUkUJ78xieLkNyZRysVOi1mnNyrklWMV2HobKGUEK1mz5d+YTaNOuwVoiPfQTe+6URfiZk99BkGApOEXMARkkuti+uAOjIjIyWkHhcJHmcZOD/qdZ9BbsQRxZwVlsCQqIi1GMhIMhxAjhyCJnMQCHokFqJfzjHoPgsDWct4S1ohTekHwLQZQitzRfbep9Zn9IRN1247tOkzFgp8x5juc/MYkipPfmERx8huTKOVFpj3zmivopbYGYfBYy3eLnoox65Yefjvo7UaCUQNCCYl7s1r7sNH3Uakm9UKrSh0icQrTXCMijkP3kabBPoHj3gcD5POD7u0W9qs66H3Zgd7XQKzNg0bxHjkJIUYC5AyEvC3cF+rBWHV0SVKZdgSXao9BYCWR81Gp92ow0nv6OZzjbreUGLkD6VksYaBJREQP4vTcjgoQquE4v/mNSRQnvzGJ4uQ3JlGc/MYkSvlFTwWH+2YosbOViggnS3VfTXMu3yUW0O+N6JE7qaO7bAciC0FTWnvglNrnujcREUcgqLwN4t6Hle73x4UOSTk5V0fl9bWWnV6C4EfuuQ2UxtYtRkAqE6ayYxL81nCeW3DpUS9EmmlB9/6ESrJBDI2IOIVy4gegfk6gFH0NDs/z8kzPDSLgF8W1xOYgSJNjkNyiEd2dqUMQ/AawZ37zG5MoTn5jEsXJb0yiOPmNSRQnvzGJUr7IYRwzqIrX0FhzCkrzSaOq4qClBnpR6m/PEiyepH2OQYldgfJJKj7F6J8C6gXQh72JiDiFOv0fVXp9Pw21fT774F5i5RTU56WeA/qYorJPjTDJOhsRuOFjsqGCKj0Dc/DsoP8AbeC4IU32gdgUlH0aaR4R8bzW8zwF6/Skp3bxbQ3Th7b6b082OJJY0de9eZnrvzpb2Js2UO2H546eUfrnym9+YxLFyW9Mojj5jUkUJ78xiVLeg+BQgRizgFriMQgvM2pk2WK9JCvoPdV0w/QTEjXGhdppSchbNyrudB2LTA0hI3gvjmHd07Geu3eq31ccQZ32RO9VoY5RtO3uYF/XLRX9tBM7GlcNMRqJTTESU8nVOoTjyLDNMmzE2V5txE8fziQ2OtK9Xc1UVN5d631+Bnb4O+gFcSj1WpaQf21NQkm0Q3Gv4zvdb35jEsXJb0yiOPmNSRQnvzGJUu5a2zj+ORWIEDsQvyjWbxH8SIQicYjkj661zdt9NwdVBfXlJAzOoXFoRMS81M8vYD2LtYpItepPUahpLAYj3RtyTx5AiKOGmVRTH8HOPxLoaErOBr5zBzGq02+X7f4cbPLacmwGx07O9B4OHoMAmetxk3u9B1PoBTCBJqE0Kaik929LnwXas67Tmehe+c1vTKI4+Y1JFCe/MYni5DcmUUqahrMG+WQDsR0INFsqy2xxxZGTicScPk1dgeaf20zFGBpNTM60HGI1CFXLvZaDRkTcglPrqtA1Xm/VhfjwSmPlVGt1940KiAXsITngVnAt5O6MiNiA6FqDMExCHgmnBTwTx7leMwlavY7OwjYqOHdWwPjzx+rIGx7UPjl+DWLhQhurjmCNVLK8x1Jbvj4S9yhfSLC14GeM+Q4nvzGJ4uQ3JlGc/MYkSrkC0YfEARIWCnDuYalty2SeCQiGIypRhPM0UA5MbilyAk5g9HK1h4kmUGPaJsaQs20Ba1zkusbFDMSvC/2++Z2Wji7h+6g/3hzu8z01AIyIJbgYySm5A2GQGIO4N4EejPQmYnFWgcE8EcHOvwNM7MkfTCXWG0APv29WEhvPdb8LcPjlML68rY0iQXlJ5fc76lsJx/nNb0yiOPmNSRQnvzGJ4uQ3JlHKOTjWyKVFgy4yEMRoiEAU6p6KiDiCscFjEEq49Leby4vKfPtw3o7VpChURbA7DZ12INDdblTIW13oul/vVTh7oaG4ChXnbvbqVrupdYBIRMSy0WeC3I7k0CRHJTn8SIAiur6dwLQXEREDEMnKCTzLD040dnosseH57yXW+xKEOHg8SRSmWNuIbnL4VZCXJAJS/vrNb0yiOPmNSRQnvzGJ4uQ3JlHKWaNC0G5PffS6iTsknDUHUKUiogDHUw+EvAqEDuopR0LJKEDwgwEkbcM45LiW30salECOrDv4+G97uj8LOO7bTMWhV6H379VeXWhX9UJi95UeF8HiHjkbc9gz7q/XTYAiCbCA52EKsUcNK35PJ3rdww/VzZc9eCCxw92drhFU3BXc+zncq3twSa7BJdk2dIOePdzvjiKg3/zGJIqT35hEcfIbkyhOfmMSpbyr1OXFbiAVWcZQGkvH8YAG7mlGvc8aEHj69FlwF1IV5QSOI/cUiYptDGA9FZT0vsyhVBfEoUtwXt41WoJL5bdLOG5WqzBYkXoV7Nwkca/NifYm9DxRn0DqE0nF4E+gJPfjAiafRMTb/6iiZvGzn+uBA5jwfHUrsdmFujG/7amA/Pqg5yWX5QZEQJrGGxExArcqlTyTYOsefsaY73DyG5MoTn5jEsXJb0yilHdbFfxIyOnlKr0MCy1vJbFiRCW0EXEEvfkegJgzgDLYCkpryRlFv27DFkFFzgFCVZsEWMKe0fCEORT6voZeerfgvFyAkLcGwY8cmnu4lhKcjhHc95AgIY8cZ7SeOQiQ1yDEnpd6n6fwjDz/6T2usffz9zU4UYff4fVriW1/fSmxz6+eSOyzoQpsLxvNq8tKRUnam7b9H0G+0bFd74vf/MYkipPfmERx8huTKE5+YxKlXO5URCpAYBtDaz5yEpHjaNjSIO9sr+d5q1axYlFQfzz9zkFHxxmVDW9BEKGhGzTVuC1ew3cuwcW2hX2sseS1m+OQ7gG5MUct/QjJzbchJ2ENvf72cC04OkMhAfIlrPGip/32dgt+xg4LddodPtU+fJv/eCmx//nlWxL7ZKji9e8Pc4m9BnGPSqh3DUyWhvyLiFg3eg/6IMR3xW9+YxLFyW9Mojj5jUkUJ78xieLkNyZRSrJ9UifFClRcsibS2OayZaz1MZznhCbDwHEjUEQbUKnpzCWJ5nCgarg8/jqClXgcqQz7Tb0ExlC7TaAVFEJHhdahP8h5khJZQV/WuhubRmvRNcLQtB/6p2AGfQ0+K/UZ+/SrczzPR/+uFt3Frf7z8avZOxL75UjX8+lebcRfV9rok/pkbGpV6ymv8pZ5402uz05d6OepsW7XUefGmARw8huTKE5+YxLFyW9MopTUrLHNXvgmOBkEBLs2eiD69EBQG4INeAq6G4kaBBkiScYjEW8FgmZERA3fQN/J/QWgVwLEpjk0mYQ19kHxewyffXxgUXEBK68Ksl2rNZyeCWJY6LmpZwQxO6is+F99Fi+/+eqZxL4t9Tn5TV/7C3wBIifV5M/AtrsC6zNZeekZO7SMn8/AJk29Nw5gSyfrtN/8xiSKk9+YRHHyG5MoTn5jEqUkkYUEvx4KBt0Etjbol6fMVDA6BpGtgSaOYxBK8o5Dd2oQgejyti216VSTT/tDzUMpNgVZcgjOrT40QT2GnX1a6VqOyToZEZeFrmdWjDVWqqjV9ZkYgINxUkDPAWjqSY1RvyjYW/hloeu5OajT7qLRUd7XlQp+P0Tc6yqGthj8eKw5iOZwyYjf/MYkipPfmERx8huTKE5+YxKlHJQwrhqEJXIIUYzLCRkS43pQtjjKVTzp1yqwVU2337IKfvMWe2hmCV9HJbkR3MyU90KFvCOIPQ9dz+Nad/Ks0fU8gLHPx4WKXIeWhqeDSst/b2FazKI8khiNY6fS5hI2l6Y9kYNtA3t9I5F2yKXZTYpjSHQjcY5EQIKem4iIHJQ82h/KS5f0GmO+w8lvTKI4+Y1JFCe/MYlSDqC0khx+NBlkDI6sMY3ObhEwChCCetCTbDxSAWsKZYsElUfezrX8s8503eQka5uaQ6JWBkLQAMSYx6H34KOdfvbHhbrQHjxSx9nwWPfrALaxxY3ev4iIza2u8VmtIuCm1H0cgjtwCWPJdyDakUuSYhXIc7sW5yX1RyRxj55RciGSI5ZEtwbck9Qv8wDPCAl7ESzk0SQmylXqt+k3vzGJ4uQ3JlGc/MYkipPfmEQpuwoGQxA/SPCbgnDWa/H4kcOvhF5xw7EKWGW/mydrs9RrWe41dt3XxWxARKKeeRHs6ML+iLAXD6BH4TuhQt6z93VgxOhdcBGCMFRd6x5md3wtB1gj9Vt8COvuQa/AOfQjvAUR8C7Uhbimcm7ql9gyOr0H7zd0xcFxVGK8BffkPNP+fwSKeyQ0gggfEXEEfQrPetNO597tVSz2m9+YRHHyG5MoTn5jEsXJb0yilOd9Lcvsg0BDU2Opv9oIPktOuYiI20J/e9Y7EBYrFYKKHog+UPJ6fTuR2P/2VZS8yPQcG5ig2taHrab+anDd6Fjr2HOtAFEyn0IpMnB4pULVdsNDMtY05heYwFZMwEm4JncouEhz2Id7EB9336MAF/tEkrhHgjYMNcl6cH17fXa2MMGYBOB+oXtz0td+iRERlKvHhYqAtB4SRP3mNyZRnPzGJIqT35hEcfIbkyjlj3qnEuxDLzVySpGgRaWtNCQhIuI3IJ5klQp0H1ypKDLKVTib7VWg+e+Bxn4Djqw7EEmoVxxd3x/jKkLVez32PtcBDy9BtLk4aAnt2zMY+AFryUq9V6RT7ioW9nYdB2+MQUQawjXT4OYC1liBs43ceGt0XjLkqBzAszyCZ57muDwCB+MEhO9poXdm2ei9p2E4E/hsRMRxrnHqe7gGpyT1mPSb35hEcfIbkyhOfmMSxclvTKKU7+TqJqLJrwfombcAEWEGpZqLA09QJUFtBSXGfyjJiaaxb0IFlYvmVs8BZZldIWEvggUVYg3nvsg3EnsBpZp/t9JrzgYQO9J72jvREmEqn/4+FDR0hQZYtAwH6QJ9suzYly+CBb8+lNEewzN/BDF6W74F7sAPhnr/7qE8mcrGm5byZBLYqRciCvGg+PrNb0yiOPmNSRQnvzGJ4uQ3JlFKKrc9ApGkgOEXUL0ZGxAWqo4lohHsBnwZ6si7blTAuq7mEls3UA5MU4jBKUXHkeMsgqeg0ue3IPrMwV24oAaHdN6Jur6yBycSK5/rfp38gXvP9dcqVpFot4WtWIFjbQWvmAuYxvwKnGnzjj382iC3aknPMjyjJdyCIzj1YzjuHXD93YMweA37cAtTqSPa9kJPXsA7HZ9lPIsx5q8eJ78xieLkNyZRnPzGJIqT35hEKS/2qvg2mSrIE1BN2xpzvknbiO6ups81jBfegE12A00TaTQxTU7B6Tqwboq1xekfBDr3FmrESezvD8FCXOo5sh7UxT99KLGTj77U74uIx5f6TLw6aPPIG/D3zsAGfpPpPXi1V0vzDTyLVANP9lVqOhsRcQy18UP4R4L+P6DncwT376zR+0Lj56dwXuprsIeGpxHcuJTsyyU8izSFy29+YxLFyW9Mojj5jUkUJ78xiVLeNiqygC4R61ARieQ+bnrJdkyyIZI4OAQxhyaVbEsV/PaVnnsHNskapvNUcBwJgxEtgh9sJI34pt2ZggW1PwXbJzXMrGBazKlafnv/8CGcOeK99W8l9uoT3e/PQKz6GnoqfAtW7Jt6KbH7Wo/bgD2bGBY8uYjEr4AeFiSx9eABpwalx5nudx8azOaNCrsLGHM+otFFwbmRw3NC2N5rjPkOJ78xieLkNyZRnPzGJEpJ4tcKYl0rqCsQ/Nqnqei3ZiC9YMNFcMVtQATExpqB1+qJAAABJ0lEQVSgm5ETkD5LwuAfv7LbOG9yWpGQcwwbXk5hJ/dwYA1rPFHBL//47/W4iBidn0vsZ1//QmK/vnwqsSVs7j2IynOK1Rrb1iqmkWhKz11ExFGpzwQ5BHvU6BO2ewT3dNwHwa+n69mtVAAe7eF5aEkY0prpWvCzcH1+8xuTKE5+YxLFyW9Mojj5jUmUsusUECIHEeH7NFfM4LeH5As6zxhcf5NcXV4biDU/YFLNvmkZ0Q1CEJXvEn1oHjkGIa8YwW81lPRGD6b4nD3Sj/7tP/OCPv4nCZ1/ruW/H/ybrvE/B93eJ7RfJKZuoUybaCu13kLpN90VdPPRCHIQdgd9jfVA8OtvoPQXn5G/fMJRBIuA1HjWb35jEsXJb0yiOPmNSRQnvzGJ8n82yT/bneFGPwAAAABJRU5ErkJggg==" y="-3175.819089"/>
</g>
<g id="matplotlib.axis_177">
<g id="xtick_265"/>
<g id="xtick_266"/>
<g id="xtick_267"/>
</g>
<g id="matplotlib.axis_178">
<g id="ytick_441"/>
<g id="ytick_442"/>
<g id="ytick_443"/>
<g id="ytick_444"/>
<g id="ytick_445"/>
<g id="text_23">
<!-- 78 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 3280.777527)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-55"/>
<use x="55.615234" xlink:href="#ArialMT-56"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_90">
<g id="patch_91">
<path d="M 164.424375 3300.720853
L 286.714375 3300.720853
L 286.714375 3173.427326
L 164.424375 3173.427326
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_179">
<g id="xtick_268"/>
<g id="xtick_269"/>
<g id="xtick_270"/>
</g>
<g id="matplotlib.axis_180">
<g id="ytick_446"/>
<g id="ytick_447"/>
<g id="ytick_448"/>
<g id="ytick_449"/>
<g id="ytick_450"/>
</g>
</g>
<g id="axes_91">
<g id="patch_92">
<path d="M 299.674375 3300.720853
L 421.964375 3300.720853
L 421.964375 3173.427326
L 299.674375 3173.427326
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_181">
<g id="xtick_271"/>
<g id="xtick_272"/>
<g id="xtick_273"/>
</g>
<g id="matplotlib.axis_182">
<g id="ytick_451"/>
<g id="ytick_452"/>
<g id="ytick_453"/>
<g id="ytick_454"/>
<g id="ytick_455"/>
</g>
</g>
<g id="axes_92">
<g id="patch_93">
<path d="M 434.924375 3300.720853
L 557.214375 3300.720853
L 557.214375 3173.427326
L 434.924375 3173.427326
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_183">
<g id="xtick_274"/>
<g id="xtick_275"/>
<g id="xtick_276"/>
</g>
<g id="matplotlib.axis_184">
<g id="ytick_456"/>
<g id="ytick_457"/>
<g id="ytick_458"/>
<g id="ytick_459"/>
<g id="ytick_460"/>
</g>
</g>
<g id="axes_93">
<g id="patch_94">
<path d="M 29.174375 3442.138513
L 151.464375 3442.138513
L 151.464375 3319.848513
L 29.174375 3319.848513
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pc25b721745)">
<image height="122.4" id="image0019741837" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncuPHOd1xW89uqsf8x5yOCRFiZYUy3k4sWEEcJBNVlnnL80yAbIIEDtAAiSLBLZlWTJNSiRFcjjv6e7pV1VnoSQLnl8FpXin7/yWd6rqq9edAk6fe2/2F/f/ahPv0MuKd0PIcrPuFFs3dafjRUT08lJi47zS7bJcYgXEBhkcL+tJrB+6bxNya6KMTGIREUO4Z0M4ZrbR/VeZrrOBtQ82ei0/mjcS+/F7JxLb+QPdrp7yczl/MpTYl2e7EntR9iV2Uuh5n2W69lXoezINPZ8ZvmO6XZ7xc6FnPQx9VjXcb1p7HXotXVnAeb9dTyT2anGB+1/Mddv5eimxzUavhdC30xiTBE5+YxLFyW9Mojj5jUmUkgQ63BDEtK7CYJazGEOiFol2eEwQ3hoQOhYgIpXwP68EwaiC7fIWwY8klgVEe7C7yngR/Y3e2zu17nxczCU2OlpJLD8YSywb8bPfW95KbNPo2r2LLYlVjYqzRU+vZZWTwKbPioS4JTzTumEhbgVi45TEYniuBTz/IQjI9J7Q+znN9H7PCr1fw0KF1IiIaaFrk5jeVWD3l9+YRHHyG5MoTn5jEsXJb0yilItGxSH6l5CDU4rEr66CXQQ76NoEtXchIYgExCWIHxsQm2hdEgHb/F2rjf6lR4Ih3J8RiHuHjW733kqv5eBwJrFiGwQoEN0oFhHRv6/3Zz90nQzuY32m9+waRMAe3FsSTVcgAs4bFc5ou4iIZabxilyfuYpsQ3hWWyDPkruT3kVy3tG5DOFcIiIG4KhcdRT3SBD1l9+YRHHyG5MoTn5jEsXJb0yilDUIVQ3EaLsCxApySrVqeHBMogaZjcSTBZVgghC0hNLYrCDxklxffDEkQPYgRqXDW1Dm+2il1/x4oCWd23fV4ZeVusZmofcmq8hbGJHvjyRWwTG357r24FydhOQjnJHzDsTnSaMlq5NG16X3M4LFs20oEd8BQXsfYrsgzg7A/biC12QNpdtUcj5ocfiR829V6N11Sa8x5v/EyW9Mojj5jUkUJ78xiYKKDznvKEZgL7UN/48hIY/WyUDAoH3JrbgEN9gaXF/kTCRxj0qbI7icuA/Orx0QeHZBMHo/n0rs6P0bXeMAzuUWBNKlimTFHgtL2a728MtG4PAsFxKbgZh6Dn393m5039NaXYTn0OPutlYRkEpoIyKGfb3Gg3wgsfdDY8e1Pus7a3DpwbO/oTL2nt7DayjzvWpx+JHgtyj0ne/q+vOX35hEcfIbkyhOfmMSxclvTKKg4EcOIXJQ1eDSymEgApU3fhtI3KPzITcfbUeiJJWEkmNwCW68b85Rr3EF5z3fqGhD/4Grnp4PldCur3Xf1RRKemGRQa2iW0RECW6+AAGrXmrsBgTNUxC1ztbaJ5DEvZuVbkfPqq2fJD3/Mbyjj9d6zZ/UKpLe29Nz7PX1fM7P1SW5Xm9L7BREwDNwFkZEVLnGq0JjJPhRTvvLb0yiOPmNSRQnvzGJ4uQ3JlGc/MYkSklKPDZDhHJpbLYJ/07I+vrNIf//vwLQeZPFsw8jv0k1HYDCSscjVT+CR5OT0nydqR3zNUxt+XKu03BWv1WVuix0jQzqxnd2ofb+ntpkIyKysZ5Ptg01/neheejn3SbxXENN/rzWe9O1yWvWMqKboPHux2t9fo/fP5fYzh/C2gNowvmbS4mdf6YW4t+V+kzJFv5NvNu7vC70flOPDn/5jUkUJ78xieLkNyZRnPzGJAo28GyrjRZABPw2U3hIpKGxyGTHRdEHLKi03ZjGIqPgpyxbJsMQJAJeQx37C1h7WOk5Xq21OebuQh/CnUzXOKi0P0B5X0W8iIjiBx9JLHvwSGLV4D8ldvyvKnT1M65Pl3VBiCNBi94H2i4iYqtQkW0L+ktsh4qNgwN9fsU9aKDQAyHuXJ/B7hca29roM6UmrxFsYR7AddcgAnNeGmOSxMlvTKI4+Y1JFCe/MYny+wl+BIiAZd7iWIJ2AiRqkCMLel5GD8Q4uhYai9zmqnqXNodfDnX+JA3SeOlLcv2BM7Eoqf2C3psDuDnlABxeuyz4xR6IWnfek1D2+Epi9x/+TGMn93WJQpuEUj8GooRnNYYpPBERDwt1St6BqTsBgt/sBMTGzy8kRq/O7df6XBZNtwlXg5Z3cUhuPspfEshRNDfGJImT35hEcfIbkyhOfmMSpbPg17URJk3DqYLdV/2im/DWVYxbkzAI5cQkstB/QboPbSO6SYTqymyjYtM5TL7pwf3uFbruca37Lie6Xf0Gun9GRPb8Sw3WMGj7St18wyPd7qMXuuvnfRUb5zmMmwaBlQTbfZjCExFxD9yFA9AVT2G75dd3dN9X3UTJCTy/VyDYTqAJbtnyjvWh8WgFwjCJz/Qu+8tvTKI4+Y1JFCe/MYni5DcmUUqcztNxQg7ti73UcC4Ql1uSw2/UsdyW3Hcb6GdHZcP9jiO6yW0YEdED1xiV/9K9XUPsAkp/a7iWAGfbTgklwq/2JLZa6sjviIjdl7+RWPVIRUAa2w1VzHGv0V6BByCwgcwYM9iXPll0DyMiVvBOTGHy0cueHvQ5LFTDu7iANSbwrG7AyXmDZd/cW3HesU8kitzw3vrLb0yiOPmNSRQnvzGJ4uQ3JlFQiiMRYQUOL9qOhIWm4DJYGkKwBwLWPogsFfX6gzUycDv1QMgbdixjvgIHY0TEVej9mcK2MxBtbsHhN2tggAWISD3oWzgqVUhdZFpC++KcXXF3TnXtB090NPX+fe0LuKnJoanvyRAccCSGzkHwowEUbQ7LIbxjBdyzCt6TFdzvWzhHFu30Hk5gJDqJwjQaPqL7CHqCeln6y29Mojj5jUkUJ78xieLkNyZRypwcayAskGuIYiWIKTQpNyJiDxx+H4YKU99f6jEPaj3HHvbXA5EMRJseiDsXGxUan/X5Wl7CdRML6OxH95FKWcnBOIdrOc1UMFpA6e+o4HO+WcOQjRvthZeDU64a6No5nPcAvjvjXNe9zdnt9i5zEEgjIi5hgAl98khAXsFzmYKQd93oGpf1rcRmIPh17VvYBpbqgsvWJb3GmP/FyW9Mojj5jUkUJ78xiVKSOEAuPRq8Qb3CSNwbFjyl9TBTN9+fgLj303tvJLb3AxjQMdBz3Cx1u81ahZzVhQpnLz7TMtiTZkdiERE5/BslgY5KT0nco2fQtZfhjEQk0vZweEXEAsTLJXwn5nOYEFvrdjNw89HU2DE4OefQm4+cgG2ToMktB48aWcF9JDfmpJ5LjMS9JQxsobL4Nqhc/vcZsOMvvzGJ4uQ3JlGc/MYkipPfmERBuxqJJwUoWtQLryqg/BaEnIiIMZRbPoTedQc/1e3Kn/5ED1jBpNbTUwk1X6uA2Hyq261JvGrR3Gj4Aglvq44lmHRv2waGyBogiM1AV6qo32JENOR2g7Vvlirkgtkt3sA7MYNzpGsegIBM95BE0wgumZ1CmTCJe1Q6TNstwF24akBo/hbiHkH7oxOUzhvOx19+YxLFyW9Mojj5jUkUJ78xiVJSOSk5iVCAIhcaCDRly6ALoiD31ra6vLKDu7oznHfz8qXE1k/PJXb6mZYSP9voJNlXOZdgnsOghSkIQUtwnJEESA44EndoO+4Ap6vQsImIiDmUN18X+gzXjQp+cygT/rrU2Az6G9JMkpIGZ8C1LFuEVBr6QQJd1/54Xcuv2TnbMr2mw7rfrN1tmA45CZfQg9NffmMSxclvTKI4+Y1JFCe/MYni5DcmUbCevwHVFWv8ob6cYm01x6TQnm9UQa7fvJVY/va1HnClKm79+QuJnf1K7aZPLrV2/1ml530e3ChyjuO44ZcUbKQIanFHKy9tV9Jocfg/T5OLIvjXhzm8JytQ9hdwyAVNGiIrL7w7SzibW/jFpK2BJ038ITW8q7JPdP3Vi7Yj2pp6zmuwEdN718AYeNt7jTH/g5PfmERx8huTKE5+YxKlJAGqaKnzfpceNPXsdWwyGRExg+k1L3tak3/5C913f+tXEtvMVBC5+VTFj5NTFfeu4FrIJjtsub6DUKFyBtt2FQapdp8EsVFojLbb2uj/+d2G//cf1br2Tk319wpJVRWsXcIEoYCJPST4XcH9IstuBNexEzz5Rrcj0a7KVUAewrWQCEii4gKahLZB4iDawGEdf/mNSRQnvzGJ4uQ3JlGc/MYkSkmiHUGCCAkYPYq1OJtI6LqAsc9fvdqX2OqfriW2mKtYeD3T2LTRc9wGqerjlZ73oxbBbwbXfQbXcg79AKiZZU3jz0GI3YKpO/sg5B2CiHdvzWLYvUIn0GyN1SnX6+n+67WufQPPYLTSXgmLvl7LGXyfcFx8S28CglyoeccR65QHJPiNC7hmaGRLAjk1HY2IuMx07DdBtfsreO/85TcmUZz8xiSKk9+YRHHyG5MoJTmWuOwUSkdBrCAB49uMEaaS0FeZuqWuTg8kdgPiZQPHuwPevUeDqcT2DmYS62+1lFteqZjz4mRXYk8KbUb6olSx6oYKa0HT2gf33DGIe++tVbB7sD3RA0bEwUO9F4P78J7QSPQ5TMh5pkLV9KkKpF9BOXcPRE6a4kOOum/271Z2TlCzVXLUUYxEyTEIg/dhBHlbqfVFriLpV3DdlG/YZBRXMcZ853HyG5MoTn5jEsXJb0yilH2YIvL7TOwhoaOmUSwRsQChhEZdv4Xyz02pa1/DOhWIH/sgiB0cgeD3FzrFJ38Ak4IiYvvsUmK9f9LJQDdfHknsNVzfAtyBNO+l2IDrD8pvdwoV/LZ2YZ52RAweQgnux3re2b4KmjFTcW8c2kdx57mWrY426oobg7i3m+l2GUwFimjvh/cu5Kojpxz1+iOBjaYKVSA03ge36SMeuRS3kKtHpYqIg6pb/0B/+Y1JFCe/MYni5DcmUZz8xiRKuV2AqNWxhx8NDKAYOaUiePjCZaZC0AkMhyAX1BxHWCuTXP/nLecgp8F9yIbqyIqI2FQwbGSl+5+CuPcq1/twDn3cdjqOeKant4FoA8Jn6zFB3Ms//qTTvj245gdffSmxx0/03k5AvApwxVVQ2hwRMYN3jMQ9Ki8nuOclDEQBcY/6MlYg2N6rVZyNiNgrwaU513uxXWmPyp2Bvp/+8huTKE5+YxLFyW9Mojj5jUmU8hAEP4LceFrw2l0EjGAhcAq99K7A9UdDKLr+J7sodMvnUH5b/cuZxMavPsNjLt+qYPTF1/ck9uuBXsvzRu8kCVA0oINKNVcgVN7WKpxNb9QpFxGxfXMjsX4FrroP/0xi+a46AWPnUEOzv5fYH0/0fs9P1FG5JhGwu3bJ05NBeKPS3wLenQp68w2pXx+cJJ32ION8uXNXS7DvZvqsjk62JfZxo+XA/vIbkyhOfmMSxclvTKI4+Y1JlHIfyiNX4Isr4f/EGrabk5OsxT1Fwgs5sq5h7RwElRGIgCSdvC103Umu9+H5i/sSO/ySxZgZuLx+PdB78duNijantQp+Fbj5VjAI4hYUoxsYQNHb6P2KiYpAERHj51rqO3irYlwsdbhHVo0llh9/JLHND38oscPXP5fY9/5OS63f1ipoXYEQF8GuOhJJKTaAnntU2j6E7Xagt942PNMtsKCOejyld3RXHX7VfV17L1QE/HByITF/+Y1JFCe/MYni5DcmUZz8xiRKuQ8ixC0WwipTENiwn1mLw2/eqLBBAg39i6IzrOFa+nCOS3AMzkAa/BQ0sl6PrWQb2P98owLNm1oFv2kDvfTgmq+gzPcUetxFCW4+KGO+atjh18BU5NHPXkpsPPxb3ffRe3rAPpRBQ3+84kMVWO+/r6W/h09VVHzWMoeDBOQZvHfUm4/EvS0Q8nZBLL4Lg2Yegcvyg7Wey+EDFTkjIqpHuk75gTogs0N9fj1waPrLb0yiOPmNSRQnvzGJ4uQ3JlHKg0aVkisoCZ2T648GAcC+TcMC4qxRMWYBYsw0V+FsCiLLFHq7katqDYNFrkFMuwYhjoShNqiUeQbHpMESGzhHKjGl6clzcD9eFXofBiACRkRcgJNw9ksV4z5+/kpiW3vPJDZ6qNdX/eihxLJHGtv5Sx2G8uGX6oj8j2C3IvWJvIVnTc+VHH4DeJ8OQdx7XOu+nyz1XB4f6vXtfMQCeXGsQl52V8ulY1+3i7Ue019+YxLFyW9Mojj5jUkUJ78xieLkNyZRyv1G1eJFxwk5ZMUl9blNISd7L9VV3zaq9i8LVU5p36JQFXgAjTAHoKTfwq8ZdC4R3Ix03ajCStdM96fONZbX3ZqW0r7UGLVs6Xr5Fq77DCa+PJ+p0nx4o2s/eq51/z8ovpZY9b0PJJb/6R9L7PEvte7/4S+2JBYR8Sn8okFj5GnqDr3fFKNmsvfXusb7Y62z33ukI82LO/zLRQZToaKGXwYutHZ/A/0Y/OU3JlGc/MYkipPfmERx8huTKOVOo8IENoAE4aQAoYOEk6xl5DcJdCTGZNRwEbbrg/XyOFPL72OoqyZe5jrN6FlGc4q4Tv96o2IOXTMJfjlMkMF9OzZBXcEabY1VSbSd5WBBLvTermjKzUq3O/qNilf3Pn+i53L3QI831nfseM2i8h6IZBOw7RLURLWC6+uTCAhi72CoYi+0B4jNku29zfm1Bq+19n9zowLr/Km+i/7yG5MoTn5jEsXJb0yiOPmNSRRUvsjFVEGMXHF9jLHARk40ogKBZg9Gi39U6CSXv1adI/7se9qMMu+p+PXq2Y7E/m2jsYiIfy/1HJ/CvTiFfWehNf7sOOvaMFXv6xocfiQWtgKPalaoWlWDe5Km6eBI9H/Qu9PffS2xkyf6nM+/xcQeEvJI5BzCdtQfYh+cl1vBU3feZXkJU6Zm7CJt1hpfXOv5XJxpg9MXC63x95ffmERx8huTKE5+YxLFyW9MopSvS3BzZeCyA8fZAP53jKF55BIaQkZwQ8oKJtBsQYPEY3Df/Xila//kj55LbPtv/lBPZktLQreffqXr/qOKhRER+0+1weXPKxVZPgNh6S0cDyfIgAhIkJBHTUIX4ARsowDX5xzO8TrXtRdg8LyF0fAnz48l1jzXnb8Cg97vSph6FBFnG2jCCvenB+/iCMS9OxuN3YPy3VGhgt9yofsuvtaLmcN2ERGn4JR8DkLzs1Kfy6uBioX+8huTKE5+YxLFyW9Mojj5jUmU8qtchQlyjWF/PBAByRXVwCSdiMB/PSSybIMR8ThU6Dhaq4DV24N1t9Uhlr33PYkVd1WA2j38HA4Y8Vd/95kGf6njqmd9XZuENxrbTc8Fe/jBs6I1aDpSBJdLkyB2ASPIGxCLCyjpLkBoLiE2AaHydKMlqzc1u+JIOO2BcFrDnQSNM0bwzo9gItUa1jifqEh9vdH3+LTgeeNPIY1+G1pi/hLKy69q3c5ffmMSxclvTKI4+Y1JFCe/MYlSvgXRhoY5VCSIUJkvlHSS4NO2P60zoFHgILxMcl37+qkKKv3fQK+4Sh1n2d0Hut33wR0YEeOVCmp//kbdhc8ujyT2GsaNr1Go0usjEZDuNol4bYIf9VHsNVA6mqnwNsm6lbLiujiwBUa2gxjaBo3Z7sM7SqzgfCYgaJ6VerxFo+rcAvLgCgbknIFLMiLiKyj9JnHv7Up7/U3W+qz85TcmUZz8xiSKk9+YRHHyG5Mo5RWIJwPquQexEU671f8nPRDnIiLm0BhuBr3mFiB+0SCQV6We47NXWlY7+NcTiW3FpxLLv68iSeyQZTAi29K+aTsf6L09OtPz3i61ZHm26SacdR0CUsO9bpueTCIiQa7BWzjvFbj0SIAkwY9KkWnfEsTeCBaVia7DT05J0ISyWnIC1nAqa8wBFvyWsC3dH4o1NBgGVzHGfOdx8huTKE5+YxLFyW9MopQ3IPitYZgGuvFI3IP/J+sWAYMElUlHoWsJ59iDGsz9Ut1z209UtHsYZxIbXegE1PxQe/1FRGxudDrIzXMV8mBGQ9QgYBGLRu8XiTsk7pGbr03YQ1dcy+AVWZvERohhiTi8O7QulQ23QaIkuSdLeJdXGUzLhec3z/R4IxAgqedlBcJg253uwfPC4S7kiKVYyzrGmO84Tn5jEsXJb0yiOPmNSZTyaq29veYg+NQFuOzgXwd5xlYYjZiCuHcBvcbI+TWngRNg8qpK7ZtWLVW0W36uOx+81nMpyhtdJCKmExUWf7m6J7Ff91RgvazVSThrYCIriHYUWzXgioN7OIQpuxER40LLUUkEJEhEpFJkmua8A6XNJXyfSBQ+q1WcjYiY1SBog0hK503XPM31uUxgKM0uDCXZh+EzOdwH6o35+5KDI9ZffmMSxclvTKI4+Y1JFCe/MYlSTkBsugWxCcsEwYpE7sA2bqkkFNZegrNtnul2cxC/ZiXsW2n57fl6JLG9GxULVy39CF8XKqh9AeLel7X2V7uGZ0BCHl0fbUeOOp6IzCLeOFdhigQ6goQlGpKxA+LXvdBYBULcCZTVUilxRMTZUgVaEgEJcsrRPZuDqAwzZZA1bEhOvoiICeQLvRMk+K4h5i+/MYni5DcmUZz8xiSKk9+YRHHyG5Mo5aJWtZBUToKaaJKNtK1unH5p6GpXXUOtNTWKxAaQPWgUWarld3ej92FKNd4R8WqjCvIrsJxe11r3T+e4BGWXfvUgFZfoF/rTzFbL6PR9iG9BXT31bujDuzOC+7gN++413Wyta1DchxnL6/TLx3ytvxTVMGab3u9F0a3fRC+Hn8LgBxNqytlv+SbTr2NtTVi74C+/MYni5DcmUZz8xiSKk9+YRClJ1KAYQWLTFMYIUz1+RMS8o5WXRI2Map7hXxkJZzOyzoKQNwShctbamwAEOoiRIErQmGyaukL3pipU/NoGC+qdQi3NERHv5brtUaNq1T4IdDu1nvcArqWA8ybr9EUBjSexjwTfVxJTUUCuoca/Yx6QCDiv9d2egkWampFuWmzXZJ2mngO3IDbSe+IvvzGJ4uQ3JlGc/MYkipPfmEQpqc6bHH60HYECC8QiIubgLiTBj6AJQg04yQis0+44WrxNAqKVu06gWcFY8h5MfJnDbaRrocacR+W2xB7lLPg9rvUcHy918Yc9bXC6d0cdjNVQn+lqrtf3+q2e41XoOV6BOHsFzsmINqELJt+AikiCX1f3K73z9G6T87KNIU1NKlScpYlEhL/8xiSKk9+YRHHyG5MoTn5jEqUkcagPDiESOqhUl1xoJAK2xTcdx1UHTSDpKNCMQDgZgFhYwPWRWBTB94LW7kFdJ21H95HKRHPYbhtEoGNw7T2iDqwRcbzWY97J1Ll55+5EYjsfQaPIHZgAdaEOuNlU16jnKvidb2Dfjk05IyJKEFPJMUrvE+3bVQQkFyKPKm8ZnQ7vDpVQL4pupe3+8huTKE5+YxLFyW9Mojj5jUmU8m5vR4I0nYXED3JPUblsm8OPhJINlDgSeUcX4hCmz4yh3xtNSWkrE8XzQXFQIWGQtqPrIyGWnssuCH4HcM1bLe3/GjjH042OnO6fqCOvN7yS2IAmQE1g7PpCr28CNwd72bWUWnd189HuKCDDvl0FPxL3qHS7DRICK3h7KsgDyg1/+Y1JFCe/MYni5DcmUZz8xiRK+XG5J0EqbyXP0RwEv+tcBb9TGmAQEedw1FsYvU2iCIks1M9sK1ehagROqRrEGNLD2kTAbt3euK9fV+dXD0Qbcv2RYEtyGIlpERG3OIxFj3nS6KCTyycqsB6/1uElda2Lv1ipm+/tQM98AT34qHw6gh151MOPxD0q6W1zeHaBxF4aXz6g0t2IGNHzh2PeCR26UpbQCxFXMcZ853HyG5MoTn5jEsXJb0yilD9sVBwYgzpEMgcJRhfgqHsNZcMREc/BdXa61jJREsmwdx2sTZNkb0HKO4fzo2tetTiyKEoiW9dJwgRdM7okYd8buIcnLUMpcgjTtVzAhlfwrJ8t+PnL+VR65mehAjAxaHnH6N0hZ+qy7tY7sqvrk8TZMYjPNDjlONPtInhwyoBKkUMFwwZEQH/5jUkUJ78xieLkNyZRnPzGJEr5J0sVVEYZudBUWLheg2BXqCixU7KAMYRtaTDBddOtPxuJX0sQ9940Omyi7FgaSS6tiIgl9SMEcYhLf7u5xqjMl/YlUfFqo85LGLIbEezwpHLSFcQmmYppz3K9DysS3UBWXEBsBELxUaFuwwh2/pFjlHpHkjBI0DsxLlRge7/U8vlPQsuvP2jROPdhkvAWvN97lebL1vZcYv7yG5MoTn5jEsXJb0yiOPmNSZTyaKji13AE4lCtokb/RkWNooZebxsuURzAhNJeMZbYG9huCs6tCQxzuITprSuYlkpiGpUI05TdCBbEKLYFQlBXFxq5yyhG4uMUBD8qY42ICHheWx17wN2CQHcJa9PzI2jAyh4IfkGx4JLZrveb3hNiUOjax6UKkD/cqLj344Wu8WBLXa4REeNtFfIGu3pvB4+gh99DLd33l9+YRHHyG5MoTn5jEsXJb0yilG9uVWA7BJGs6quI1C9VJNkBcadq2Ck1gimxKxCWbqAP2xWUes5BoCHR5haGSJDrawaTaUkEjODJuFtUYgzXtwSBbQKuxkVHoWoe+gwKmEI82vC1VDCYYnsD5aTUk476MoILTd8whkRTEvHaPJIDKG+l0tpVAe9OS+/Jd6Fnv5fps99f61nul/qc9+6qCB8RMXwAk5sfaP7m9w8llu1b8DPG/DdOfmMSxclvTKI4+Y1JFCe/MYlS/vNAVdxHa607Pp6oGroLdf9DUE1HfVWfIyJGK1D2a1UvnxRQk91ArTzYVWk0MdVfL2G0eANK+rrgZpsV/ArQy1QFHoNdlZqMLuHezuEcqfknnfcc1qhB9Y6IGIOyf9TArwXwIw79MrOGXz1oGg79KrCA65vhiG5urHkLvz5Rv4OuzVHJBk5ToehXigV8aqdLfR/qFX+Ts1KvMRtC41L4tWYz0alJ/vIbkyhOfmMSxclvTKI4+Y1JlPILMFpOeypgTMA5x/gGAAAB5UlEQVTq+AEIEw9BjBkMWPArwR48mqqoUXW0eFZg5VzlKu70YPLJAgQoGgWNc7sjYlnCVCE47wGMui5g7RkIgySSkc5FNf4kDFITzYiIHqxzWOsxd6GhJDVlXcGzquF9WsL5nEOPhiuwn5NlO4Ltz9RYlcdn67VQPwcaiU7MMl33Bt7Z2Q1PHxpNVbQrpmoPzkvtB7CZQz8HXMUY853HyW9Mojj5jUkUJ78xiVJeQd34ABxCY4jdA2GogOksA2gIGhGxXOi2vQnULMMY4kFLI813qWGCzDyHendwsNE0nK4jmtv2p3r3EkRAuj4SoFZB05U6NvpsUy8BmhZzr6fCW2+lDUovwf04IBEQzpH6GlyuVfi6rbsLfvRcKmjCWYCztITzphixBL12Bnk1n3OfhXqmB9jM9F3e5PpcGtjOX35jEsXJb0yiOPmNSRQnvzGJUpLIQmORSbKjponjkQovg72WySeXGiKvFDnl+vB/KwORDHQ8LPOcUlNIEDTbxmnTKGhy7lGMoDJfWgPPsbsm2bK2ctzXppIPP76SWPk7LQd/ud6VGLnsyHFIZczzWmO3axb8qLwZnZJAv2MDT3o/6T2hx9J0HM8eEYG6Yt5t/wy285ffmERx8huTKE5+YxLFyW9MovwXgP/Mcr0kuO0AAAAASUVORK5CYII=" y="-3319.738513"/>
</g>
<g id="matplotlib.axis_185">
<g id="xtick_277"/>
<g id="xtick_278"/>
<g id="xtick_279"/>
</g>
<g id="matplotlib.axis_186">
<g id="ytick_461"/>
<g id="ytick_462"/>
<g id="ytick_463"/>
<g id="ytick_464"/>
<g id="ytick_465"/>
<g id="text_24">
<!-- 79 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 3424.696951)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-55"/>
<use x="55.615234" xlink:href="#ArialMT-57"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_94">
<g id="patch_95">
<path d="M 164.424375 3442.138513
L 286.714375 3442.138513
L 286.714375 3319.848513
L 164.424375 3319.848513
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pb746bc7bf4)">
<image height="122.4" id="image543ec3adfe" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHm9JREFUeJztnU2PJNlVhk9E3Miv+uzq6vaYNjNgG9kIhIQQYgMCfgYLJLb8Jbbs2LBgwcIbBAIJWLFBMjbG9ox7xl1dXVn5nRkZGSwGe1Hnuei2BrOY8z7Lq/i4cW+cDOnN95xTfXTzW4M9YdaMnw7xWD1yY+MqubG2atyYmdlX65kb+7O9P+63//Toxvq7lRv7x7+9dWN/Nenc2He7ezd2GPw9Esx7GNxyfT4fO+H4U64a/8yvmvOic5eDf5Yajruu/L5cVq0b642f5d1wcGNbWJ/KKpiPH+tgbQa499j8el/BvCewL/cwZzOzz/q1G5vCO/qt5tKN/Wbnj7s99m6MVvEh+Tl+nPyR37OtG/t+9wBXNHu9f+fvs/NxsD36tagr2ishREgU/EIERcEvRFAU/EIEJZFo0w9eoOlOXvDZwbmn2osaOWFpAQLWv7UXbuz5X3uho669EPS28SLLybz4Qc9MQl6piJe7ZlP539YGjiPoOBojgY3m4qUrPtfMbAbCWwvPMi78dmzNi2S7wY8RHbw7NbyfuVWdgLhHY83gr7CHiz42/pl3IKb9FMS9T+Bd/BQEyfnRj5mZHU9+zcbJx8Gs9eL87dgLmvryCxEUBb8QQVHwCxEUBb8QQUkkShEkfh1BtKlAOMmxBsHve40fm2xv3NgYBLr/8tqHbQuFpQpEGyInkhEN/LaWrjeJe+RsIym1JbEQ9iX3JCMSKmG9x3AciY0nOPdYwRgIeQd4707w1DlRuVQ47WA+jyBer2p/7qryc7yrvED+2cm7+R76jRujuDIzS7Xf/1ny4t6z1jtGf7317ld9+YUIioJfiKAo+IUIioJfiKCUC37k+gPnFpriMrdYn7zj6ZPKiyInEPLGINq8AwGRREVKJy1NT80Jg3RsKnT40RVJTEuFYuoMhMEWziX3nBmLiCSo7eGdIOg+paLdEVKJ8R6ZuVA6cQtjS7jPAIIfvSdrOPcdvNvzfufGTjDvMbhXzcwu0tSN3SYv7n0D0pM/hCDSl1+IoCj4hQiKgl+IoCj4hQhKGtU+vXF/8iJZdwKnFbiiSCTJZsbCT8/DyYsiJAS1cPKGBD8QXki8JBEQtUvWyMxACCwVEQkSBmcgAk4GGoP7wrwfYP/MzFYgYJGoRWtG0DrSueTwo72n/Tu+R/o17cHC/LtDqcgkVB7AkUdCMzGBOphXEJNmZrdQ8/KXay8Cvjx5wXcLe60vvxBBUfALERQFvxBBUfALERQU/Da975xxgBp+5A5EESjzE3M6lQlGdM0EFyXhZQuCHzXoyDXjeErO4Zeg7h2tDwpYhQ64yeDv8fxEgp+fH6WnzkHkMjN7C6Lr6uTfia4wXZprGZZ9d+ge71NbkZrIkFBNTkByDaIwDO8OvZ/nIO5RQxtqsGJm9hKascxA8H1b+zX7KTQ10ZdfiKAo+IUIioJfiKAo+IUIioJfiKCgj5CU/X3vlWFU+wtVczNWXQm6JrXPJhWfrMr0fGQZJXL1D+hfEzqW1OsD2lXL7JikC9OT3EORyTeDV/XNzO6hi8yu92pxqdpP7aG/SHFT+sdlnFHIp5AbfwbHjjNt5EtoYD5URJXs3nQcdUcyM9vDO/HW/L8wD/DPzBL+9dKXX4igKPiFCIqCX4igKPiFCEoi8evQ+zFqDzyAYEdiTHXK5LDDT88Alt8exCoSh6jTCT7fL0DwI9snWTcPlZ8jWUtJ8KMZkkF3C1bee2gPvQBhyIzFvR0Ip7TeZHUlaB1JNJ01viPNdeNz2M9rf5wZW2WvYOwcbLLc7cczhvoJpKQfIAzm8D68ASuuGQt5tIckxJLoqi+/EEFR8AsRFAW/EEFR8AsRFBT8SnOWKziO3Hg5Ma0DEZG6ANXQ7pigOVJHlGJnGgg+uaKVdG9284EACcd1IHJS5xsqzLihMVjXPey9GefL0x6WrjdBAtS08fnqH7bXbuxX6jM39gxqHZiZjWG7znp/7+e9P/AK3s8prGOCvdoOXvL7UfJC409bf9/X/cqNmZm9O3rnJe0LtfI+q7wgqi+/EEFR8AsRFAW/EEFR8AsRFBT8CHJkkWhD5NJ8T4WFGKlbEEHuQhLtStNvS1NMc5ADjlKM15V3dE2h8OQK5k0poRsSC2ENSzvu/CKgPbhpvJD3jcq3oP7dvX/mZ5n3eAvftwTP/TL59OYXHyzd2OTa3+fU+fncfeLn/ZPOi5dz6Ozz0G/cmJnZClp8U5rwBM7dg2iuL78QQVHwCxEUBb8QQVHwCxGU1JUKfrX/nSCx4X2grjQk0JFjiWr4TRrvoBqBcFaDkEfpt/R8uW4xpTXuKDWW1oHExgnMkURX6jRDXYFyYGtxuM+ADsiy2nW0L7QH9HU64T34+Ujco7e2rv2ajc79/rXP/Lndg7/H7uCf7x7yfOeQkksds8y4jiaJ3OT6I2epvvxCBEXBL0RQFPxCBEXBL0RQih1+pSJQroU1USruUarni/bSjd3WMzdGDRCO2HrZQ80YKP3WzGxee5FmDimY1DJ8C2Lh3Py59CxQeg4FxB0IPnRcDhIg6Z0gIbbUCbqA1uA/gHp7/djX8LseuGnHiFJ6oabk4eDdhelj/55cLv0cF3Pvqfvh4N/Fn9R+Dx47fz16H3Lj5J4tjUF9+YUIioJfiKAo+IUIioJfiKBgl14ScsjhV5rySsKe2RcT977V+PTIDwd/Lmlaj5Dyuoe6d/R0OzjXzGxU2uUV9FUSAcmRtQTnF+0VperSuZRenGMM3W7JpVfamZjSncnZ9inMZQ1psOR+NDNLsIuTxh/7H1Bf79Xpyo3d3vn3jiTg16A0voauyA8gCq9BBDQz2x79e1LaJIWEQX35hQiKgl+IoCj4hQiKgl+IoCR0boFD6IvUvcul/tI1zxvvlnoBzr1X5sW9j8rMivYGBJ8FdLbFNNiMeWpEwhIIYpMaRMlCyClHjkMSEKn+W87d2YIQO4MuuJewVyTubkGg28AcMRUV5ng/eJEsR65+5FPovT2DvbqCZz6DfaYuy6+PvibgvAMXKAh7Ztwpuy+sb0kisL78QgRFwS9EUBT8QgRFwS9EUBK57Ej8IHEORUD4PWnhODN2iJGIdE5OMtBxyGkFTVCNkj8pvXUFbj5qsmBmtoBxSqMl4YUEVlpHEtNIJCPnHo3l3GHTygtdJH5dwHFEQzX3aj9G9Q3J6dhBLTs6zow7QdOa0b5QHMwaL3ySSE3nvut8991N512NORGPxksbr8jhJ4T4OQp+IYKi4BciKAp+IYKSKFWTHF5Um42aLNBxNGZmNoN7kyuOHIJLEONeJxAb4dwFnHsHXUzfDd5p9QB15szM5v3WjZHIRmITCXmUQk1QExG6B4l7tM9mGTcfjF3AXhFUe5B6n/SwLyj4gasx51ZEVxysDwmDJKZR44xt498TWtvN0Yt7NL//r+7J+vILERQFvxBBUfALERQFvxBBUfALEZREba3pHwCym5ItFbvwZAp9YqHQwrbfZL2lMWpXvQYj8ByKRz6Csr8AVd+Mi0+SqoztqsH+PKu8uj6FfaF7bEFpbgc/RvtsxlbeGdUmgH9x0MoL6nwH19vBPy67wnbq9E+BmeHnre/9saS609gB5kh7MIa4wveBul5lYqD0WKxhAJfUl1+IoCj4hQiKgl+IoCj4hQgK2nvH0BY5J9o95X3aPpONsXRsRx1fQMhbQZ79EopHrk9esNtBS2QqjmnG9lISeHJW56dQrYNzyJ/vodMQFR4lwZaERjO2WJdCb0kiYRfEKxLyJvAuGixhri01CbH0jpK4R5Zfsl2XFrxFsbfxx+WKjqIFGY4d4J0ge7e+/EIERcEvRFAU/EIERcEvRFASFoosdBLhcSRAZERAEqZIyFtBX2sSIDeQ+70GgY4KRXYg2FHeeGlLZLN8a3J3HBXwLBRYyVE3poKnDYhNGWGvtN14D2tBQh6BNQxIEIO50Pt0rKh8K+9X18Neg5h2AsGW1qy0qOeh9velVuWlXXjMyms3VOrYI4T4GQp+IYKi4BciKAp+IYKSyO1EbjVyppUKWjlOIHbgcSRWDNC9BqpClkonmJ5cOGbGDjpaHhJOSaAhUXJdmEJLY1SUM+fkI0deSw5BECXH6Obz86ZnPsJ8SBSmtuQ5VxwKaiiSlaVfU2FOcvNRK/Z68OvVNeXPQsVDS11/nH4vhAiJgl+IoCj4hQiKgl+IoCQSOo4osngRkFxoKHxlKHWxkUBDoDBYKErSvLFuYeZ6uBYwVuqU3GVSh59CXY+ou84zqAmY67jTgphKnY9mcNwUxmj3llSbD9Jlaeupjl6deZfK96DM6dpCCu60gfbl4PqrzLv+JrB/dD0zTk+mLkAkAqJ4jXcRQnzpUfALERQFvxBBUfALEZTUgjuJWkuTU4qcgCSwUG02M3Yd0ZFHUH1IgCTxMicElZxLjsGcw68qrJFH64P142C9a3jmM/Pi0BnUvfsKHPei57WZgMFsCmMzSD2dFKajLht/74vk59jUZYItNWcxM9s3/l3eJz9WKu49H124sV9KV27sVT1zY9Tk5ND4eT/C/MzMHqDO5Jvj0o0tjhs3hiIg3kUI8aVHwS9EUBT8QgRFwS9EUNJtc+YGt1BrjJpV0BgJg+/TyANTPeGa5IArdTZhZ1OYY2l9NDNO9STQAQlDJLrSHElAnMAFz8F597LnZ7np/TrOoI7iBNJRm0Tr6O991UODjpMX/FJb1rSjyyRv4zvaTt3YZesFupv23I19BOLet82f+xFodmcnWBvYv0dIBzYz+zj5eX9/5J2EP64f3di7buXG9OUXIigKfiGCouAXIigKfiGCkr5Wg+AH3W7XIAIuwHG0OO3cGAl2ZiyokauOGmrssJ6ZP45chKVptSTu5RqQDCDm0Pl97Z+PrkniJXVUJrAZCnbzZfdcC3tA4h41guhO4GCE2nUD3Psc3pMPjv64NTgn59TN18ymIJ7RO/Gs8aLd1xvv5vu13l/v6wc/7682Wzd2fu7Fx7r2a7haexHPzOxm7+fYjP3YCURXSm3Xl1+IoCj4hQiKgl+IoCj4hQhKem5eKDlA6uGWupNSN1hwLL07rvHm5L4iEZAEw1InITWwKHX9GVwv11CBUoyPIJyic6+wycLkBHsF6/A4+HtQ99xRy8JSQ+9EJv33KVvqngxpuT0+H+2fHzsDUXEC9f/MzM5A8JvC830AKbgvBv9+n4ORkObYgJA3nfl9SWO/f6llgfxw759xefTzXoETsG/UpVcI8T8o+IUIioJfiKAo+IUISsK2DeDIIkGMnGQLEAvJtWdmtu3LUoJLm3aQ2DiD5gk0RpA4R3POHUs1Dsn1V1p7kGoCrnrvqCTH4BYaXXQgSpmZDa1vLnEL96YvxwoGHyr/fHt4J57De3cF4t4e3IptplbjOTj/SPClNOgDrOM9CGeVgfDdedGtXUCq9BmI3sdMAxLYL6qjeAXPQg1a9OUXIigKfiGCouAXIigKfiGCouAXIijpsWIr4VNIb9+BSr2mQp/vo5D3XpUuLVw5gv8ublufk01FGKkFNdlk3/a+G4qZ2T10Tnns/LG7Y1nh0QYUbfr3AC3SsFubquw4M7MW7LgdtI0m6zS9T3eDv/cO/tVZVv4et41X6zuqI5D5R2ic6Rbl5gNr8dbg3x7416ODe9TwD0Da+toZVwduk06se+iu1fg9oH8p6N8VffmFCIqCX4igKPiFCIqCX4igpNdQcLMss91sMfgCnm+PvjPIpvfHmXFramyVDWMDCGIkAn7Q+K4rv9/7HOiXR3+PZe1trv8JXVzMzP4dOh99r7pzY28G302FRE4S42i9SASkYo09WGznbuRzJmAFbSFffgTfjjmIpPfwjlH9AypuuoN5U92GQ0a85CKsHlpv6q5EwtkAFuIKxOcT1BF4Bp2L2lzNCLAlP4Dg9whW7hWI6/ryCxEUBb8QQVHwCxEUBb8QQUmf9t6Z1oJjiYSTFQg5y6PvVLKH7jpm5Xn63GGnLN/9GbjGXnVeEPn6xaJoLl9bemHPzGw69kLguvXPTa6/TeUFUSrqSU5AWsMO3HMoXoEIZGa2BNfgCtZxBr2yqVU2CciJ3jE4blHoDiQB0YxF4NIW7bRmpe3mOxCkl8k/87OmrIZBjkfI8V/CWpDzVl9+IYKi4BciKAp+IYKi4BciKIkEulSXpUGSYMSuPRZJeig+SDTgLpsmL0BdJy/GUaean7RQzHB56cZm0HFnByKXmdlkgKKQIGqRAEVj5DjjVt4sdD2FilbSfc3M1tB6fVv7gpR0TdrpC+iacwEpryOYzwM5Bnv/zi5h7PM5QlFXmM8YXI0JlEraAxQgYf9W8K1dgUhN3bHMOO38AVKo5yDuLWFP9eUXIigKfiGCouAXIigKfiGCksgNVoF4RWmiBAksJAz9b+NPIQHyPPl025eQVns2+HPvwRV1Pwa3Ggh2+4zD6xFq5C2hXh89M4mX5CRD1x+1KodW10RO8KPxN5Vvsz4BsYpccde175B0DemtM3jvqLYePfM6kzZeKnSewxxJqJyA4Eudq/Ywxy0IyLhTmbBoYW3vIK3+Te/3at75MX35hQiKgl+IoCj4hQiKgl+IoCRyLJGwZCCcUGokiSmljsHPbwOCGDSMIDffi8qLgNSumH7xqI30nXnBbg4ppmZmCxCcqJ4hcQbiJaXqkqOS0qVzqbpPyQmu5NKkxiu01+PaC3mH1rsnp41/Jw4gsK6p1l+h+9HMrId3mdZ2BPe+gTTmCxCQqWX4HBp+bOBZKAV6kUlPJichpeR/tvfVGddHn36vL78QQVHwCxEUBb8QQVHwCxGU4hahpbXLUPDLdEptoH4ZHXvWePcVObLO6Ny+1Jnox47wzGtIMTUzm0NKaa5ZyVNozXIC1lOwkQc0AaG06pzgR+dvav8sJPiOGv9KlT4L7ekW1psE6dw7RuIeNYahOVIK7Qy+l2MSFSEtl5yAJOKtwbVnZvYWnHsk7q06/y7SnurLL0RQFPxCBEXBL0RQFPxCBAUFPxL3KJ1wKHT4UTONz88vE26wxh1184XrkaRFv3gk7lAac64eITZ9gHnT+fgshWN4PaiNSOfmBD/sWDuU1R6ka5I7cFF7xxlVdCxdV2o0kzuf1mIDrsgldLulmpDEofD9RIcf1NszM3vXeccoiXs7cH3SO6EvvxBBUfALERQFvxBBUfALEZSEAlaZpsGCFqUIZxxeVGruSLXP4MAFdAh+C+m2NyA2Uq04SqIsdTWace06Ei+PUMetVNzDVOsvQE68JFGLnHvjxqfv0tgMHJpTqI93VvlziQrsmFTXz8ys68s6+q5AZLuH9GSqKUjvyQHmU9pdmJqmmJntQDgl594RnpliUF9+IYKi4BciKAp+IYKi4BciKGi9I3GARI3SRh45YekAHWap6yzV9SNB7BMQjNrkf99uQMjBfsEwbar1ZmY2wWuCu6wvE/dKux1jUwroaswPyIyTf5ab8YUfa8/d2Hnj6xFeQqrui8qPXUEaLE37LlNHkaB6huQ4XPVeQCbX4K4uS5cmwY9EyffpvIwOz0KBHd8dvIsQ4kuPgl+IoCj4hQiKgl+IoCj4hQgKduwhZRDzomGM7LlkS/x83CuxpHITZHWd177A4adg7+3qqRu7gn8KzkF9HmqvZpuV//OxO/m1oGcmZZfA+glgxe0qf4/cnK9GMzf2anzjxn41Xbmxa1jHZ9Dl5iUUVr3uodU1WHl/lKCdesPrRSo+/cuEqju8ywmehWOjrEgo7XPOqvx/bfnWl1+IoCj4hQiKgl+IoCj4hQhKIhHhi+Tpk5hCY2bcXprm0xa2+CaRZQ0C2xREqZn5e8zA3nkBIqCZWVf7e1O3GaK0MCdZeWuYYwX1CgjaZzOzFkTSCYxRh6TnIIjdgLj3HGzOF1BkcgeFQ6/AvnwF9moz7vZEojQ98yVYlSew/x3sH3UzOkDVCBL3aH5m5WI43Zs6UunLL0RQFPxCBEXBL0RQFPxCBIULeBZCwkJORCJK3Ul0zdJuOCQ2risvAo5ARCIHYw7snFPo6ELnFnUfKlzbUsEvt/eUT74Ap9wcnJIknLawtgm+OzsQNPcwtqrL6k2YsbhbpTM3RjUHbipfZLSBd/7RQLgG8bkH8ZLz+csdfqXxiyJg0ZlCiC8dCn4hgqLgFyIoCn4hgpLINUbiABUzpMKaxKFhhx85lnJix1OwSwoIVZuKu588hcS5dcbNR1DBxnXv7136fAS1WSZOhcLQkEkbplRrSo1dNF44PQenXA3reGygvTd8ivaVn+MjjHUZ4esSOgN9aF7we2X+uKuTf793lb/PDyAODiD4UachEvxW0L7czCyB07UFZym6cVXAUwjxMxT8QgRFwS9EUBT8QgQlURtpEvfouBGIO2NwVL2P629z9CIZiRXkdqLuLJQe2dV+jM6lNM9c3TtydOVSmZ9CQg659EjwKxf3yt2KmDpc6Oak1elBJNsVtobfkbgHa03p12Zm3xx8Wu7v7fy+fPMrb9zY5NK/E28+9p2L/uHkaxnWjX+YDYnC4CI8jco7XBHF3Z6KriaE+NKh4BciKAp+IYKi4BciKGnaeMFhBI6sKTilplA3rYXfkwuoo2ZWLgRuj95JRuIXiW4kXpEgsq+9uFMqcprxs5B7C5tswDWxsQQIZ6dCHY8aeZDQaGZ20fpU3WtIg70Gseqc1gxSWenOJCrWcO4E3rErOM7M7I/7lRv79p/752v+6E/w/Kdc/N133Nj+L/w9OvPty+fgxltDDOV8s5vWi+Ek+B4q/+6QQK4vvxBBUfALERQFvxBBUfALEZR01fiOrC2IUmMQAc+o+QUcl6uFl1LZb8+88t13qeEHpTKyK66sK24PAg0JiGYs5JFgSGmdPTSwKHU14lwgN5aE3cvW772Z2U3yYtUtvCckvBEkfA6FNeXG4HSkOnrPM5nSLz9Y+vN/5w/cWPqNP3Rj/d2P3Vg1BpFz9ujvu/HPTGL4FN6nLdQTNDO7S34PKG2ckOAnhPg5Cn4hgqLgFyIoCn4hgpJeNt651YAIMSKxAnxaiRx1mXTSHQiGJEBSTcEO6gJSx1NK1d32ZY7B90mDLRX8SHihtGNy+NEcSYAk595Z8qmtX2kv3ZhZTtyDZwEhbwnPQkIsufkmsIYzeO9aOLeHFFozs+9+cuvGLv7yb/w1//Vf/DU/eefG7v7Z3+eHyxs3tk1l9S3p60vCoBmL7pNMd+KnSPATQvwcBb8QQVHwCxEUBb8QQUmvoNMq/SKU/krsQdzZG9uvNoMX4w5DWZ0yqq+XMFHUg6IbzLG0KYlZvrbfU7CxCNQt3B/92hAk7tFcKG34qvYioJnZtXkRicS9DazZDgS/HezpHsZIIL2AtOEJpQ1n0sPvJ/5ZfvBPX3Njz//evxPb+qW/HgiLqwk5GKHLMsxvB8fNIS7MzDYnEKohjZ32msb05RciKAp+IYKi4BciKAp+IYKSLrG+mpcmsCsujG2hycIyI2A8nnw30sfjxo2RS49cf+R2K+2KSw69GptSsLDHXYO9QLPo/POV1iikVF0SlkqhfTbjlO6emp+AcEriHu0zdf0lFpDeSjUhRxmx9wG6NH/WeBFwBF2DaW33ILDRDiRYWxpbwXq97n0aspnZ3WHhxki8PoP1OYN11JdfiKAo+IUIioJfiKAo+IUIioJfiKAkNtOWKchUTvIA6uNq8Gq2mdnyuPXHHr0K3FFuO9znfey4T0G1H47LFfCknPxl55+PlH2qG0DKPtYMAHtvaSek9/mfgP4ZoH8Faii4SdB6cc453ReU/cwj97C2e7g3rQVZzQ9UMwKOo+ejTlE7+CeL/t0y4/XJdZB6Cv47VnSmEOJLh4JfiKAo+IUIioJfiKCkZeVFCBJ36FcCc7xB6FhkrJxk8dxBcU0SSkj8OIG4U1qEk4SzcSorjmhm1sL5O+gqRILhGOymJPjRHEnwGUNRRxIBO5Rs2apMRV1bsIaTCEgCHeXuE6Uibs52TdB7S0LeoveC7QLs5yTsUkcpotRWbsZt1ul8WjMqbqsvvxBBUfALERQFvxBBUfALEZT0CLn25KqiX4kjFR88+fzp+dG32DbjwpWHvszNh0U4+zJhkCDhhIptUqcgMxbtSsU9EmhKizDSGIlpI2qdnlkbcmmikIc56yBUwhiKklhboizPngS7HPTcK6g58Hbv8+fn+7J28SRApqbMmZgT/EqLxNLzkVtRX34hgqLgFyIoCn4hgqLgFyIoaYGCXxlUwPFt7wWRRyhaacZCCRWuLHXzkRPwVCj49dB9hq5HoqKZ2an185km322GKG3vjYIfCHl0LrnscunJ5IAjryOJgGMopDmBOR5rvzbkQqN9phTaNQjNZpweS85LcuktD37sUOjcIzcmUVqINgetD8ULpcXryy9EUBT8QgRFwS9EUBT8QgTlvwFN97FyMVb59AAAAABJRU5ErkJggg==" y="-3319.738513"/>
</g>
<g id="matplotlib.axis_187">
<g id="xtick_280"/>
<g id="xtick_281"/>
<g id="xtick_282"/>
</g>
<g id="matplotlib.axis_188">
<g id="ytick_466"/>
<g id="ytick_467"/>
<g id="ytick_468"/>
<g id="ytick_469"/>
<g id="ytick_470"/>
</g>
</g>
<g id="axes_95">
<g id="patch_96">
<path d="M 299.674375 3444.640277
L 421.964375 3444.640277
L 421.964375 3317.34675
L 299.674375 3317.34675
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_189">
<g id="xtick_283"/>
<g id="xtick_284"/>
<g id="xtick_285"/>
</g>
<g id="matplotlib.axis_190">
<g id="ytick_471"/>
<g id="ytick_472"/>
<g id="ytick_473"/>
<g id="ytick_474"/>
<g id="ytick_475"/>
</g>
</g>
<g id="axes_96">
<g id="patch_97">
<path d="M 434.924375 3444.640277
L 557.214375 3444.640277
L 557.214375 3317.34675
L 434.924375 3317.34675
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_191">
<g id="xtick_286"/>
<g id="xtick_287"/>
<g id="xtick_288"/>
</g>
<g id="matplotlib.axis_192">
<g id="ytick_476"/>
<g id="ytick_477"/>
<g id="ytick_478"/>
<g id="ytick_479"/>
<g id="ytick_480"/>
</g>
</g>
<g id="axes_97">
<g id="patch_98">
<path d="M 29.174375 3588.559701
L 151.464375 3588.559701
L 151.464375 3461.266173
L 29.174375 3461.266173
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_193">
<g id="xtick_289"/>
<g id="xtick_290"/>
<g id="xtick_291"/>
</g>
<g id="matplotlib.axis_194">
<g id="ytick_481"/>
<g id="ytick_482"/>
<g id="ytick_483"/>
<g id="ytick_484"/>
<g id="ytick_485"/>
<g id="text_25">
<!-- 83 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 3568.616375)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-56"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_98">
<g id="patch_99">
<path d="M 164.424375 3588.559701
L 286.714375 3588.559701
L 286.714375 3461.266173
L 164.424375 3461.266173
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_195">
<g id="xtick_292"/>
<g id="xtick_293"/>
<g id="xtick_294"/>
</g>
<g id="matplotlib.axis_196">
<g id="ytick_486"/>
<g id="ytick_487"/>
<g id="ytick_488"/>
<g id="ytick_489"/>
<g id="ytick_490"/>
</g>
</g>
<g id="axes_99">
<g id="patch_100">
<path d="M 299.674375 3586.057937
L 421.964375 3586.057937
L 421.964375 3463.767937
L 299.674375 3463.767937
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pc768613630)">
<image height="122.4" id="imageeb4ad49f33" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH41JREFUeJztncmPHOd5h9+uql5nJ4ekSEoipdhx5MQSbMROcrAdBEYC/5m55pBLTgFycBYgjuFYjiHJlrWRFJcZcvatp7u6qnOw4AD8PQV8NIUc9P2e44vuruqqeqeBZ96lV1Q3l5FAr9eTWFWUEuuXlcQGhcZehAKOPSz7EptUQ4lVPT3H88WlxI5m5xKbLuapp4jnWPQKiY0qPe8b402JvTO+LbG3lysSu7PQc3m9nUns5tUTiQ1Gjb45Ig73JhL79XxdYj8b6vvfb44kdtRMJVaEXq8exPpw/1aLgcRuFXrOERGvhj4TWy3cK3jvTF8WZz1Nl6e9WmL3mjOJPZwfSmx/fiqxi4Xev4iIutXr3bStvq7Rh6Jd6uvoOxtjMsDJb0ymOPmNyRQnvzGZUpHII0jGpLIMdoolCDGC5N7WYFVir/Q3JDYp9L1PapVfl41KmzmIky7KQr8LCdFRpbJqUqqUGsDfZfBUQcquXuoL5zOVrm3D179e6HlXS72HG0t93UZPv8u80LOslywbU1533Kqw7bLWs0JF1xpI6X7i7yA9y5cg0wh6HujZbju+TQXCb7bQ55bkXttY+BljvsDJb0ymOPmNyRQnvzGZUr2MyCOWIIZeBJIiK9VIYrcGWhX3VqmxIcivRaXy42l1LDGqtOr6fqkyZ1yq8Bv0VEDRUWqILkCaNvA3fT6HY3RItxYOPoDvvdXqcbZBXp4vVUpdwHFJ7s2XKl0XIL6mLVdjnhcapwrBSQ/uFVQXjkNj9AtKn7dejiXWgJzrEuHTRr8LPY8kqkns+5ffmExx8huTKU5+YzLFyW9MpmCFX6q0a+F1qbGIiBJcI8mOVRB+twtob21UatXQgkkyhlp/6Vy6qhX71N4MMfpMkj6nIMmOQVSdQWXhFP6mz6Bqr6GSwYhYgMir4HuvQmHbJrRvP4PrfQHfj67DAiQgiq+O+zIvVH7NS32eGpBxJVQrkvAbwbOj6jmiKfS48QLd7pRHC6ierEo9H5Kk/uU3JlOc/MZkipPfmExx8huTKdXLVuSl0HWMLhH4PCTjqOWV5N45xMgN0ZxBlHOR1r4Zwa2Z81YF1FmjLapP4Tv3Kz2fMcyuW62gJXcBbcPQ5hkRUZMwTGy/Jn9VglSme0/Cj6B5iU3Hs9QlAp+npPmBcB0GJKSXMKuRflepJbuAFuFCZWhExAzi9IxiDMSwf/mNyRQnvzGZ4uQ3JlOc/MZkSvIMP4LEC9E1k4yqjkiIXUJF11Ff5cc+tMaSQqKzRuEHkqTpkGQoq6C1kpYskBAlUUWxtqKYVj+ewPcbdrgw+EjkHH46piQ5oUqPxCk9i0OoDqQW6K5njJZ+rEOF32ahQvQKHJvmFvbhiaL260sS1/R58LqIF5B7EKMFMv7lNyZTnPzGZIqT35hMcfIbkylOfmMypRrCyujUkl8eCpj+3wMsfwVDTuWvh7C1ZQO284zAcnLZphpkGsrZtcWH5xio5S6h3HhO/zWBw6SWxE4rffNj6CVfgd70iIgJ2OYJlLA2cP8OQv8LcwnXgZ6TNTDuqxCj+1d3lF3Tf0hWwOLfgN79K2DiiVM49mlPv/NF4n89Xhb6L5zLe40xv8fJb0ymOPmNyRQnvzGZUq32YZghSCQsS03sle7s208UWLQ553ChO182+iptNkLlDomqrvLQ5+kqaU6dTUDXjMqcU6EBlxetXq+ntKUGYhEs2dbhtdQDfw4bdmjrzgCk4lahQzRvgahcAxF31mNxRudDPflrIDSpzHkPBmbuLrX8/LRV8UkbiWZwfhSL4Nyg55ZKeWmYrH/5jckUJ78xmeLkNyZTnPzGZEq1OdDe78sGqrSgp55EVeoQxoj0akCSaSS1DtqpxBYFCEQQKjXMESC6VpoXL7HpHEVOkyZDe40eeAb3r+zptaEKxoiIIVRKTmD19gheR/eUrtkY3rsCVZZXlhrbhu98ARVsEREHODxUX1fBOU6hGvMQnp0jeBZpLTnJWZSAIAsjIupEMUzVfDRa1b/8xmSKk9+YTHHyG5MpTn5jMqXaqlYleNLT6rmWqv5I7oFM6Rz0CXGSUKNS5VBJbZ206rpVUUkDJbFS6gXak1MheZnaQk2CleQO3Suq+goQgxERZwEt1L0ziQ3hvtA69RUYmEmDK5OrLCHWNYy0D89YmtqNmFPLObTgUjsx5QbJPap+7BJ+JAwJGgBalm7pNcZ8gZPfmExx8huTKU5+YzKlqmjjB/xNoHl9VLlFsS7h1y+16mit0rbOzb5WIW6XGqPZbARJG4IES5eUqmk7D4o3qDhLOhsmeTsLrrXmI9OcQoqRbJzBJqW6D6IKbtUEqv6ewqahFp6bLhVGs/ToGa2gpTdVDFJrMz7z8OjQPaCtVRHprd89uC94jkmfZoz5yuHkNyZTnPzGZIqT35hMqQ4X5xKcJrbv0jw6kkCTSttBIyKuDtYk9mp/U2J3C5V7r7Yqh9YTzdkFuJjHUOn4W6hMu18c4GcezrUCjlqjU+ceEiSq6HqjBKQ10h0VYyT3qGqwhXXl054+OySL6Trg/MZSr+EDaP3tWtpB0nYMYvgazAocUaXcktaIw3KXRFlMcq9L+FEcnwm4/7xgxxiTJU5+YzLFyW9Mpjj5jcmUikQVzQoj4UNQm+eNoUq8iIg/H9yQ2F/M9f3f7KmUvP3GrsQmb6p46a3qsolmT+fZPfq5SsWf1FsS+4+hyqaIiI9AshzAtU1tyySo9TdV7pAY6qqHHEAFHQlfOg4vh0ibM/isOdZYaIzEWVe1Ih2bBPRupff/CsQmIBtnics4aA4myfWuTdB4D+D70dZnCz9jzO9x8huTKU5+YzLFyW9MplQkXnDOHEgWmrdHMuVOxcLvby5Vnnz/Tx/qZ/6VisHi238rsfLtH+rrNl+R2OLeLyV295/+Qc/l71U2HcW6xCIiTqo0mUMxurY4169rFmICdAySQBEsbQfQWkv3v4JqN2pvJamMQmyRLsQIbDuGZx5jMEuP5hHS97toYJEHxGhZTFcVKMk9ei1dHzpH//IbkylOfmMyxclvTKY4+Y3JlIrkHr4Q5M641Oo5msG30TFbbwJVWaV21kZvdaKxAbcJP8+S5NDFqcamKmN6sKV13LIkGySKrmS59yWT2voZEbFR6fWmGL1/BgLrEhannIdebxJ+uMGYthV3LFhpWpiRB9P5sCqSRCVU89F1oPbb1OrOru3JdBy6PvQ84TzJpLMxxnzlcPIbkylOfmMyxclvTKZgfyqJKqrwomq+cQEttB0VSwelio3T+yoHqy2t+ivPYJPwR7/Rg9CyivfvSezev+h5/+dCKxM/KlVURUQcLrRNGNs1O+azPQ9tWk1dxkHyi+4fydmIiFerDYm9Vqjwo4fnYKlVcY9bvVc70KpLVXHUktsl91LBlmAQg1T1RzKN7kuq2CW59yLfj+QnPWNtQ1uojTFZ4uQ3JlOc/MZkipPfmExx8huTKRXZYjKQ1ONNZp8s9aLD9p8UeuzjQzXQ4/sneo77O/CJGqtP9BiffnhVYj8Z6HHfK3Vw6KMFlAZHxLNaz5FsP63yRuML14aMPcWGsOp6pdD/zFyHNecREW/21OzfXeg5XoWNPWeFXscP+no+ZMPpes0qmDeRaOsjutfDy/vJmuPmIrL9aaXTdJ9xTgLkUARfM5qLkLoa3r/8xmSKk9+YTHHyG5MpTn5jMqUikdcHCUG9+/Q6Kk3sKu+dgYu5gI09Z3sqq5ZP9b3zmZ7P2YWe9/ulCq33YSvQJ7Wu4z6q9XURXJpKco9kTA/WPqdu5yHpugpDJrdgBfUtiEVE3GxUON2uVSzdGelGon5fX7d9quXC9VhjJ/1LidEQTbo21KMf0b3JJ+UzG1r7DSEcZArCFiUgrQHvmLOAwi/SVoGjqMSjGGO+8jj5jckUJ78xmeLkNyZTqq2BTsykKj2SeyMYzEmDLMuO/uQ5DMg8afUzm2dr+rqlvu4CREkNlU07fT3uUavC7hR69EnsRXA1GFVfkVhCSVqoWaIBkCSl6HqvwGrpGy2vG79T62f+0apWMN74E612rLb0M1d/rdfs6c5Nid2v9D4fLVSwUp99l9hr27ThqCTJCnorPMpcPZc2hyD1vRERNXxHeiZINNN6b//yG5MpTn5jMsXJb0ymOPmNyZRqu6+ShYQRyQoSgysgASfBLYpU4XcP2j9n8Jl7IMRmIG1oV9BxT+XHnGQaCJZOsZS4OQXbUeG9JAspRsMamxI2DcE9uNWwWPrjlSOJ3f6uDuHsf+uOvnkCG5uqTyV296G2716DgbCflxq7KFQgdq3tJnlG9+DLXomeClXe0aaoCK7wS31G6dnxL78xmeLkNyZTnPzGZIqT35hMqajVk5QWyYYK/nasQSXZpGMmWQ2y416pR38E65z3W23/JE0ygmNT0dc5rJFGmdIxKw5XSVPVWOKq7LL4cv8uD+AY1xcsyahyr/+9b0isePPrElvWeh2LBzpbca3UKr21XtoGKNqQ03W9UNAmrkRHMdjRnp5C6qw/musXEVHAenh67WXi9fEvvzGZ4uQ3JlOc/MZkipPfmEypxiDoLrF1NA3SYV1T1KYgT56FCqOP60OJHS50fhyBi0VAklCrLrVLUiVfBItAknvDSmsOaY5i6jIOitE9HZJo7JBX1QYsEdne1heurGvsqa5Tb3ZVIB40NyRWJwrSF4EkG2yrTiZ1/flKpSKdVqJvwTxJqpKNiLhcqqDda7TlmSTixYLWnxtjssTJb0ymOPmNyRQnvzGZUo2g1XMOiu58CcsTQNAs4L30eV3sgMDYnWuL6VmtFX59WJ5APb29xLlpJE7ovV1xOh8SQasQI5GHLdQgNEkY0R3YK7mSbPoAWqN3dvWFM5VIzQcfS+zhT1VqvTfUYz9udU7gSaNzFGmRB82oi+iuyHweun8jELFbQ515+fpQtz6/UaoMvRNawXhrAc9NRwXiE7hdH/b12j6B7ctTyF//8huTKU5+YzLFyW9Mpjj5jcmUitptT0EO0Iy7s0alG7VBdm0dpQq641pnxR3NVAJSqyYJNhJn66VWWtGYQTpvmrn2u9dqZSJtb6Vtx2twPhM4b9zymvj3+xyu9f2KW63f+0ir7775j59JrKj0WnzyscqvfxvonMh3Q6v+7lMl51wrOS/q9Bl+uO0Y2lvHld6XG+NNiX1ndFtiP57r/fv2RDc8X31DV0v3t/Qe1IcsLz//QM/nSqNi8QF8F5pv6V9+YzLFyW9Mpjj5jckUJ78xmVLRgo4KxBJV801h7h22xnZUX9UgoWaLtOotkjbUqrtaavXcBswt7MPfwaoC4dfRBksyjtpJqUqPwLo0mikIr6QzpFjbsRziYqTC6P1HKrpOYY3tJ0OVwPcbFV17tQq/E5C9VMlJcq+r1Zqgar6Vvj4Tbwy0jfnvapV7P3r7c4mNv/uKxIprsORkqFV//Wf7+rqIuDN4ILH2F/rcXZ1p1V9LG4LxKMaYrzxOfmMyxclvTKY4+Y3JlIrm9ZHUotllBMm5aaNiMCK93XIAraepLbQDXCKisQH8HWwLlTGzkivJCKouo6o/knZUPUmvw5ly8P2mhYrU845Zcc96MO8Nbv8RyN19EHn0XWi78KxJb9V9nq7nM7Wab6NSSfZKoXLvdaguHNzW56S3qp8XJZWRQozeGxH917RV95VdbYPuPdbnbrbQ4/iX35hMcfIbkylOfmMyxclvTKY4+Y3JlOo01LpS7z79laBSVbLZZdvxNwbCuK6a+uoTVyVTWTJ54SHZfrDmcygNjuBzpJkDqTMCzpdqlal0mo5BG2QGLWwp6lgFXcK1SC3vJrNPFr8Gi5/63x+iImseEZNKTfzGQG06bdPpw706XWqsfgL/HVl9JrHeUAfRxljPr4selJuPrmn+bk516OnpsT63/uU3JlOc/MZkipPfmExx8huTKdU5rP2lPnsC10PDgMoX6ed/GahkNPUYA5A7VPI7hHLRiIhL2MbS0EYjEHQzWIBO530C76XSaZJpdaGxPtz7iIgqceYAyUaC5Cz139PnUYzmJNB2nYiItb6KPJJ7I5C7Mzj2YygN3vlQB5ReOdbZBEUfBPAIBoxOOkrpKQy3YDDS+zqYasy//MZkipPfmExx8huTKU5+YzKlOmu1Ool6oylG66FJ7pCAiohoE4d9kjhLhVZvr4bKnetLGP7Z0nVgsXQJwzBPIHbQ02q3Z1DNR1KLSJVkVKHXJez6xR9emUjQXAN6b+rr6Np0rU7H18IzQVeCNlfRNpyVqW7S2fxEJSDRhyOvFCxi18YwS2Cg+UK3Zbn0AE9jzBc4+Y3JFCe/MZni5DcmU6pTEH5DqHYaQzXfAMQZ/TmZlSpOIiJmrcabXuJQT2hHpSGMtyoVL283Wo33Z7AZZnOk16aL/UttmfxgoMc5KlW8zKki7yWqH0mcYZVlx5/+ZZsm8kgYUpUlHZsEJEHCjiRg14rui0XaPcSNP/B4f1zqRZsO9N5P4OLSHaX26ZUlS+Vt2MSzfa6fug5t+oNeWpu+MSYDnPzGZIqT35hMcfIbkynV6ULnfS1hrTVJwALWuJAEpA0yEdw6SsKPXrcObZm3B1sS+85St5z8aGVPYjd/CJVk1zcktjw5l1hExPbP9DN379+SWAtrrWtas51YPUcVjFQRSZWXJOcieJZeagtuauVeKli5lyo0o2PFN20LAil9CUJ60YcNV5Wezyj0maX7TPeKZgdGRGz2VQTeqDS3bixgbiHcU//yG5MpTn5jMsXJb0ymOPmNyZSKZsDRMo45tO8W0CZYkxjChkmu3iK5R/PZVkBKbsNCjbtzFSo3fqDfufrRX0usd+N1icXhU41FxHr8q8RufqbHWYXvN4QYtdASPB8PezrhdXxfSORRW/aX3YKLC1tocB1cmq6FH1T5h23QJDnh2o6g0nVaqnym0z4HgTiFtuGuGtd9EOcHsEb+WV9zdXPpFd3GmC9w8huTKU5+YzLFyW9MplQkfeawzOEcWn/pdSRTqHW367UEiaCKYmBZhtCeWqyqEOltazVecfsbEltuvcLnuPNIYq9d/7XEXj26LrGnIFMPQQKSTEutxiNSZ/BF8D3ADcgwt5DowzbnPrRpl7AkhUQjbQKO6BB+cM0W0HBL76VWa1rEQpV7czgGtdRfgoTvYh+W5DwBCTimCt3koxhjvlI4+Y3JFCe/MZni5DcmU6rUOWwR2hqZusihq3W0qw3zeai6jNotT0FA7sCW1vl93aBaPX0oseU1qPAruT05NrT9d+26ypzNA31rBa3RM/guJE5JdJEQI3FWgXTriqdWHOJWXRKxULW5ClWbJAFreJ6OF3pPIyJO5hq/XMDsSGxPTsuNs1YF3QIWn5zD684bzauzhcYiOF9SKyWpcta//MZkipPfmExx8huTKU5+YzKlSp3tRkKEtp2+yDbYVOGXykMQHe9Ce+PdX9yU2F9e+3eJ9S91vmGs8PbV5W8/ltjhQ5WNj0u9PjutHueo1lmBFzVUWUIVGrXQ0nIIWnwSEbHe1+UQazAzkeY6EiSgVnvQdgqVadTSe7JUcfagOMJj0zOW2p5Mzy3NvCTo2lJenYPcmy64wi81X0gC0jPhX35jMsXJb0ymOPmNyRQnvzGZUqHoSFwigQsVgC5RQXFsCYYqNtq+etEkth2PtC139s/aavu9+z+V2PAaf+eDD1Vg/dfpNYm939eKs8dzlVUklkgY4UIMuC9UKbc50IUmERGvDq5I7Hahr70SWqU3BkE3gVmPqxCbQCFoDZf7fqlisK5YKp9Uer3p2cH2XXg+W5CuNby3D5WgdK/ouC+yTOVl8tK//MZkipPfmExx8huTKU5+YzLFyW9MplRYCgjGlnq8qUeYoM+L6NgM08B/ABItJ5VFkk0lipGW/B599KrErvyG/3PxBFYl/3Kg5/N4cSYx6t8mg0zQ/aN7Na70vxFXKy5V/ka5LrF3ajX7d8Gabw40Nhnrf2sqWnXd6G/R0Qmsi1+uSmyn0tdFRHzWUcKcQup/wspl2m8o3Recf9B25AvEqJyeQoR/+Y3JFCe/MZni5DcmU5z8xmRKRX3HFBvDVpkhrCsmAdW1saeotfSS5N4M1hjTlhQqFz6vVabtXmo57a+gN/2svyWxjYF+54iIs6V+l91GYzRocgFbYFLBPm1aiQ3SddAhbLeXei3e6Z1K7M53DiXWv6mlt70RSDdoWV/sa0nz4DMVn3tPVO6t9VnskZSm+QL03OIgVHjvsNJnYgNmIlAO0SDao0JnOUREnM9BDKctZ3I/vzHm/3DyG5MpTn5jMsXJb0ymVDSYkTanrFOsp3KnD0LkHIRdRMQjkDEvI79IFlLsdK5i6WFvX2I0H2AEK5EjOtZGg8w5h88kUUmbj+gY9DqK0XU9g/XQERHHVdo9GLymz055R+ciBKxJbw9O9HUHfD7Pk9at/juourSAZ5ReR4V2JPwmMF9gs9L5B5RDNYjr1O1IERGXUNVKzzxtbPIvvzGZ4uQ3JlOc/MZkipPfmEyptvva1rlVqJh4pVC5cw0qwYYwmPGwx2VIbaUiiFYWkxCjVsZ5aDUYyS/cxAISkAaHdq21TpU0KAbhOLg1iVqb4TrQ9aJjdK21/rTSCrN3l7qC/OZ7Ku3WRrCDHITfYgdWZ+/oNTw50mfxoNR7cLrktdZ0r0l+YWs7tMbS/e9DbAAVoyOIDeD+XZaaaxER8yqtzTt1s49/+Y3JFCe/MZni5DcmU5z8xmRKdbPUeWi3oHLv6wuVFa/XKiDGMGnsUUdV3Cm0Pe6C7JiWUMUEIidV7hG4KWihkmwWXK1IEqlLDqYcG6sV4XW4sQWq1bBVuqPV+mmjwu/nMCNv81Ode/itfRV+41U9TgMzAU9P9LnbnWql3OOhfr8DWNsdwRub6JpRy2uT+DqihorKSzgXWp3e72i1HkMe4XPbg+tNswLxKMaYrzxOfmMyxclvTKY4+Y3JlOqtUOn21qWKjrc39yS2/ZZWxVG/5bX/UakYEfGo3pTYPWiFPG30OFj1R+uqwffh64AWqq+63ttCFRtBlYAkKv8/6DouVRfug1D71VCl3fT0qsS2j/RekRiehoquh7AM5V6h5/J0rstQIiKmzR8ui4lUqUxzJ2kZB1UCdklFmpnZlGlCm1q6/ctvTKY4+Y3JFCe/MZni5DcmU6ofL7Sa643vapXW6Ptfk1jv9i39xD0VgzdmH+DB3/xvbRP9YKgCcg9mn13AhtgvG5rr1nSsQE2dr9dLXKFKFYN0jGUPjpFYhdYFiU6qTtsrNNaD5Rl7JbS3Qjv4DE77YanHuNeo3DuE7ccRvLmZZDFXwMEiD2olB0FKopEoivRlKiuFVkDijEKIUaWjf/mNyRQnvzGZ4uQ3JlOc/MZkSvW17x9LcPCDdyTW+9pb+m6oVlue6jbXAlowIyKuQdXYrVCp8QDafPdha2zqoguc15YoyXowo7DrOPg6EEZ8bPi7DB6IWnVTv0vb0e5cg8A6g3u10+o5XvS07XQX5OUQnp0ZnM+TVqs7H9W6ZfkYNj5H8Heha0aQBCRZSMKPNl3TM0JbhNdB7EVw++8FVAhSSzBtA/YvvzGZ4uQ3JlOc/MZkipPfmEypFscqMPrHsEF153ONnWlVVfPBJxI7/zxtll1ExNWl/j3aBAFCixJIplG1Gm0S7oOgoWO8CKnCiKBKQBJ5uF0W3kvnQqIqIuIMFqc00Bt9WujrRtB2SgKKqthoY+0RVKAeQvtu3aQttIhg4VtiNWfibMVEgUjP2EpPr9cqxCIixmB8VxKF33lPha1/+Y3JFCe/MZni5DcmU5z8xmRKde9XVyR4Nz6TWP/GI4nVuyoRdn+rW38fnF3Hg+/BtlVSJyRFaJ4ZLasgIUavI7k3qVQ0jgteQEISiZZinNZp24BJ7tGYwNTtslRdNu+QZCQHqUWV5hFSLPV6E3RtLiHWBZ9j2nsLqOakKlJc2ALSbQhyjs6PntmIiAG8liRgH94/gbZq//IbkylOfmMyxclvTKY4+Y3JFCe/MZlS/TJ0m87lu2oQRyWs3l5on/3HQ33v3ohLWuuexmssTaUSXT0OWVcqpyWTTuu0V2Fw6BXYKBTBm1eOYNMQldSS0U7dKoODQxOHhHaVGmMp8AuUzz4PXW/6DwDdPyJ1WGrXsQn6rwnNbiipNJiMPbyO1nZPYbMPlRpH8H1dheduArkxgv8K+JffmExx8huTKU5+YzLFyW9MplQfVSohLgoVeTU4iAd9lRWPWx2keNqmbS+JiOjD36Mai34Vkkip22vovSMo5d2CaxMRMQLJQoLmEHq66RybBvrGX2K1NJYLd1waKg9OXVf+MuvGSfi9/EwF2ppEZeBpJM9UoHJq2JpzDrnR9Ph5n0OZ+xSkOfX4r9EqcDyKMeYrj5PfmExx8huTKU5+YzKlehK66voMen9PQFbswHDFg0Zj1NfeeUIgzihG1VJYIQZFbFgpl7o6u0MgUlUWxWgOAW13mff0erfQ0N+1dUcBmQaVaRHpMwJoXTmuEafBqonVikRXv3sq9P2WyZ+Z9jr6ziRs8Tnu+E0uQe7Ra+cgyC/hOP7lNyZTnPzGZIqT35hMcfIbkynVCbQUnkFsH9pT9xe6JvtsoVtcujbDENSqOyq10o7aKOm9BJ3PdKGVVqcVfOeOAZ4TEHkLEC8k/FYqbR2mc6S22lRxVpQwyLKjhZYq4Gh7Db2OSD1HOgYJ29SqzYj0duIltO/iZh84dJE4yDT1mR3DMxIRsQbrz6mab4U+E37n/ctvTKY4+Y3JFCe/MZni5DcmU/4X9W6uzUdUqjMAAAAASUVORK5CYII=" y="-3463.657937"/>
</g>
<g id="matplotlib.axis_197">
<g id="xtick_295"/>
<g id="xtick_296"/>
<g id="xtick_297"/>
</g>
<g id="matplotlib.axis_198">
<g id="ytick_491"/>
<g id="ytick_492"/>
<g id="ytick_493"/>
<g id="ytick_494"/>
<g id="ytick_495"/>
</g>
</g>
<g id="axes_100">
<g id="patch_101">
<path d="M 434.924375 3588.559701
L 557.214375 3588.559701
L 557.214375 3461.266173
L 434.924375 3461.266173
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_199">
<g id="xtick_298"/>
<g id="xtick_299"/>
<g id="xtick_300"/>
</g>
<g id="matplotlib.axis_200">
<g id="ytick_496"/>
<g id="ytick_497"/>
<g id="ytick_498"/>
<g id="ytick_499"/>
<g id="ytick_500"/>
</g>
</g>
<g id="axes_101">
<g id="patch_102">
<path d="M 29.174375 3732.479124
L 151.464375 3732.479124
L 151.464375 3605.185597
L 29.174375 3605.185597
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_201">
<g id="xtick_301"/>
<g id="xtick_302"/>
<g id="xtick_303"/>
</g>
<g id="matplotlib.axis_202">
<g id="ytick_501"/>
<g id="ytick_502"/>
<g id="ytick_503"/>
<g id="ytick_504"/>
<g id="ytick_505"/>
<g id="text_26">
<!-- 86 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 3712.535798)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-56"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_102">
<g id="patch_103">
<path d="M 164.424375 3732.479124
L 286.714375 3732.479124
L 286.714375 3605.185597
L 164.424375 3605.185597
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_203">
<g id="xtick_304"/>
<g id="xtick_305"/>
<g id="xtick_306"/>
</g>
<g id="matplotlib.axis_204">
<g id="ytick_506"/>
<g id="ytick_507"/>
<g id="ytick_508"/>
<g id="ytick_509"/>
<g id="ytick_510"/>
</g>
</g>
<g id="axes_103">
<g id="patch_104">
<path d="M 299.674375 3732.479124
L 421.964375 3732.479124
L 421.964375 3605.185597
L 299.674375 3605.185597
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_205">
<g id="xtick_307"/>
<g id="xtick_308"/>
<g id="xtick_309"/>
</g>
<g id="matplotlib.axis_206">
<g id="ytick_511"/>
<g id="ytick_512"/>
<g id="ytick_513"/>
<g id="ytick_514"/>
<g id="ytick_515"/>
</g>
</g>
<g id="axes_104">
<g id="patch_105">
<path d="M 434.924375 3729.977361
L 557.214375 3729.977361
L 557.214375 3607.687361
L 434.924375 3607.687361
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p92420f4190)">
<image height="122.4" id="image1d0a895ff1" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHFFJREFUeJztncmOJGlWRq8NPkR4TJUZkTVRVT2DgBZiFk/D2yH1UyCxZwELFnQ11NRdnZkVGRnu4eGTmRuLhk3c80vXyxuQ8n5n+cvC5hsmHb9DdXPxh4MFGIbQZtbWjVs7H53gth9Pnrm1T5pzt/aiGru1Pezv5bBxa5/v3ri1L5av3Nr9ZumPAdc8aUdwZLOT1p/juG7dGt2ffvBXs+l3bm3Vbd1a1/duraoqtzaF874cz9yamdkPTm7c2vuN33Y7+GPf7ddu7c3uwa099H67Ve+vb7n12z3u/HMejN/PceOv+2rqr+WDyZVbO2um/nz2/tgPnT/HDu5NW/lnP639+TVV7dbMzNZ7/07Md49u7X7r1zad/1s+ihDinUfBL0RSFPxCJEXBL0RS2pJccHiHhIT3Z2abfefWlrVfu4f/UT0InvneC6PH3guabu9lDFGDOCtdH4m8Ccgm+nsSi0S/J80Zo4o+QDPbgayic5xWXmieVv6alyC1SF7RvWnq2FrpHtIzJBF72kz8Wu0lLt0bOgb5R5KAq73fsHQt9C6TECW518M7ry+/EElR8AuRFAW/EElR8AuRFBR+h0i7p1B2WYk1CLo3+5XfrvISkITffe//lrKvKKOOIEmGcsf4ntHfU5ZXXfvtRiAQEe928ProvEtZcdH7c25enNGrs2n881vBs98EJeCo8cctZaCOg9uigIRvIwk/ul8klWm7PTyDkpAmkUeZoPvg89OXX4ikKPiFSIqCX4ikKPiFSEo7gmwnyoAi8ULCCKVGQcYsIWNpO3g5ROKFIGlDEomETx3NLivIUNpnSag9ZQqZZDXIwqiIJQl0SIYfSagWjn0O8vLE/Nq29u/EvIZS3cq/D/Rc6P0siVjKvCRp93pz79beBo+zA0FHx0AJCFmbJeFKx6G/j5bf68svRFIU/EIkRcEvRFIU/EIkpSV5MoPyRhKDxJr6sIHYK2372IM4A4FBmYS0HQkR+lvKqCNZRALKjCUZiTfMWANxNgMJSNmB4XJgkEglCUiysYW12eCvhf52DqW/9N7huVBZNYjYQ4QmvROdeZm2huc3hTJteifomQ4VvNuw1kGZbwl6l+leoOQOH0UI8U6h4BciKQp+IZKi4BciKS1loeHQB+jNRjIGs5MKwi+aBRXNWIqWE5N0o7Laktwjdr3PTIwee9v6vz0zL11JAnYN3EO4r1H5eAhUeEql1jtaC5bG0hq+D4VH31PmJayROKX3m8TuKUhAkm4j6FlJffkOyfCjc6xBNmJ5Oh5FCPHOo+AXIikKfiGSouAXIikKfiGS0m7BQNKoZKqppxRNah5YspdYy3zEVBoLGttD6vSfUmquuAXbT2aYrDL2VICUWBrnTL9wRK+l9FyoB8ItjN5u4RcS2uNraMq66Pwa/SKB9epwX6M9H8ziKdF0bynFegajvOn5UcNaupbSO9bUfn0E/ROoaSlNj9KXX4ikKPiFSIqCX4ikKPiFSEr72MVGWJMEIvlBApHq9s3ik0WikNwjaROtJadroRTL0jo29YS1xc7LL7qWMxBLJO2oDp2upSS+6LlQc9TXcD50v5e9l4Uk/EiaxqcrxUd0R9+Tk8anU9+ML9zaR6NLfww4l/nexxpJYXpWZiw/Se5djE7d2mXr1/TlFyIpCn4hkqLgFyIpCn4hktKuOi/jtjASm7bDemdqonmA2MNa+6CgoZplzHaCTLkopewrgrK36P5QZhuJ2Og0JPrb3QHCj7alfd5WC7cW7fFA9xHr1amZKDRWpedsxu8T/f0pNK39ePyeW/uz1q9dDn5/t5W/lleQ9Uf9DyjD1ozvI0lJknvX7Zlb05dfiKQo+IVIioJfiKQo+IVISkuNJzuQLNHmmNHpOmbx0tqo3KP9UTYfTV2JUsq+onJLKjOlyUBU0kvXHBVnWFZ9QKk0Nb3ssViX/jY+ov0pWH7dwBjw1kuu89EJ7vMC5Nd7jV/7rPZC7G87LwE/XXkZ9xqe6X7s15ZQfnsKjXFJ4plxlm2URg08hRD/g4JfiKQo+IVIioJfiKS00RHWhYrJEJSlZWZWDzGJiNNGqFSTRGVwdHNUzpXKgas2ll1IModKoyk7kDLg+ipY8hocaX4IUbkXLd1u4N5iNl7rRdzNyJfampl91vpy25+Zl4N/vvb39qdX37m11co/v287L+0eQZCuYY2eAPX/M+N3jwT0ffcY+lt9+YVIioJfiKQo+IVIioJfiKSgWThGBJFYKveKix2HMvdQ7gWz4kiSkBikvy1lK5KEumi9WJqC8CPZSBl1NM6Zym//N6Bec0T03aFnf8x7VxpUcgpZdZd7/wwvoYydWGz98/tu5Pf3xnw23nyA8vkB3sXCO0ZieAeD0qln5qvtvVvTl1+IpCj4hUiKgl+IpCj4hUhKbHpFARIT2G+vkGVHGXST1mdLUc89yoDDktfBC5Guh0y5YBksXZ+Z2enICz867wlkb9H9wYEf1BMw2CeQ9heVeMW/j55j8HzoftMgD+pxR1ltZmYvaz9Y5BzKhM/2frvHt367l5C1+evGn+MbmMhLQztoGAq9syVIdEbX9OUXIikKfiGSouAXIikKfiGSEhZ+UblXg1ggsWdmdj72GXDXE1+aeVL7rKpF76e8PnR+Gixl85FYol54JAFL14ICErL0NpDRRfKL+rUtYXAGDfzAvn5wfqWMOuyZiCXUnv0RVcLRHoVrGCDzpnoIH2c18vds0Z67tY+gVyCV6n4z+Pfuzd6/nyQlKcOvNAma3jF6HyleaCiJvvxCJEXBL0RSFPxCJEXBL0RS2ugwjmjmHgmI2dhnT5mx3Pvx+NqtPau8wPi6Wbq1/9y/dmulIRtPoesb4PrKk229pCFptzUYkgIZXevg5N5N57eLliIfMtmWRC715sM+g0cOEYkcg+5N6dhLKI1+O/KC7rcgAWn4BWXuzUlI914MkrAtZV5SHz4SeTSll4aD6MsvRFIU/EIkRcEvRFIU/EIkpS2VqD4lOhWXhixQaauZ2XvtzK39sPay4o92XnS8T9lXY5/5hSW9Vaxkcgd/WxJVJL+ispG2IxFE/fpIDpHcI4lHz8rMbAJTjKl/HO2TstDo+qhUl7L5aH9E6bmsqW8eHJvkLK1dNDwN+PtC71gp85KEHw34GMOzmsCavvxCJEXBL0RSFPxCJEXBL0RSFPxCJKWltM0oaJXhF4BSDTxZycvBr30CKayTwVvOf2/P3Npy5FMvyT5HLTU1jyxBqaVEtDkmEZ1cRM+gZPvJ4k/hFwBKLSX7TL9ILDqf/rqM9mOA+1oy5HQfe6ih3+/8PvEXEnhnT6F+nu4D/eq1quDXiMKvRHQt9GvWFtZoKpS+/EIkRcEvRFIU/EIkRcEvRFJaEnRRSDYRJfG1BrFx13hZ8Qrqzuc1SC0QNNTMkKQN0ZiXMaVrwaaZR4ycprRrHEMNS5SKjY1VC/eB0khJVp3BNJznkP5KYve72svCl9XcrVFTVkq7pftvZjYEewngSHToEXDW+Gvew72hZ4XpubBG6cdmfN3UI4AE6yOco778QiRFwS9EUhT8QiRFwS9EUlqsyT5CVNHflmQMTd35Ahpz7sa+xn8LIud27+VHtF46Ota4BIlAEi/RfUan5mDmVjBDb9p4GWpmNoPMvXMQeST3Pqz92hlkbRosLaARJmW7YY8G43eM5B41AKV3gu73auQl8HTw95FGsVPWH2VJlqQy9XhY7HwMkaikbE59+YVIioJfiKQo+IVIioJfiKTgyBYSHVEJSFltJN3MzOZQ1vlV9dat3dZ+O9onCUQqweWJNP6aSTaVJsOQ1KT7WCqjfUr0fkcn8ZyPvIi7ggaqZmYXkLl3AZmSN5WXVR/v/bHpC/MbegbBCVDt3q9Fm7KacbNVem8p046e/3nr7+0MMhijErCUeXlnXoZTGTROAYLr05dfiKQo+IVIioJfiKQo+IVICk7sITkQHeVNlKapbCovJm63C7d2Vz24teiUGxRxWPLq1w4ZLU3ZfCSw+hp6xUFZdVT4kUCkrLEXo0u39mHDwu8KxjlfQs/E9/b+vK/Au901/lo2BQn8FMpgpGxFyvozi7+3dL9pDacPwdq49c/lAkbN9/DeUGm6Gb+PNMUpOg1JX34hkqLgFyIpCn4hkqLgFyIpLWb+BCUgQcMvKKPKrDAq2by0w55rsE+SGiVB9xSSbodITpJDJHOgVdxR0DlOoV/bBWScXYOAMjN7BnLvbIDsO7i8FXxOXlf+opfQjy5aAt1CPXCpL2N0BH0UFINw3lPI3LuGZ0CUemM+Nv6eLRufcUgly5jVGjobIcQ7h4JfiKQo+IVIioJfiKRghl8UlFw0cbZiWViDCAqLxSME5DGUZMw+eBuxXPqIc2TR6O/raoCBD4WsuDF8E3aUAQnP9RGe6evBl1U/7P0aZemRBETZW7gWkl/RDNaoBKYsxHPIkvyDvV+j96YULwsYGLJu/X2MCnt9+YVIioJfiKQo+IVIioJfiKS00Z5ylCkXFTRDIcsO5Ul0eAaIEhIvdAy6FtqO5F4p669Uhvl9iZ4j9p6DMs+30N+Q7peZ2RL69U0hq46e9QoE293eH3sJAzooQ5N6NdK0WirnNmMhSkKMBp1QL8QTGHRCw09uIHvyJ9uY2K1HnHm5rv3wmr7178kUnh9ec+hshBDvHAp+IZKi4BciKQp+IZLSzlqfNUQluLsaMqi8V+KJvAVJRhlUo9pLFurZRoKGMuVWnc+AWsMayauokPzd+cTkIGdFfv8632iGJvV6m1d+4IMZ34tTKFGls15C5h7JxjVshz0Tg6XbJUhoo1SGd3HawvRdeBdpGMd08Pt7AaLypIEg2vkhIGZm/djH6qjxz39B+wT05RciKQp+IZKi4BciKQp+IZLSzlrfV4wkyxoyqOo2JrlK/dWi2XzUk45EDp03HZuEEa1h/7hCRmRU+EX7EeIQEGoJGBSIlCm3BgFVYgtTcOk4lLm3gGnMlIVI8ERlv0aZd2ZmYxDIdN70rGhaLp0PDYHZQmlzB9udnXjx+Zm/XWZmtt/6DL/pyEvAezj2BofKCCFSouAXIikKfiGSouAXIikKfiGS0o4hNXFn3uyeQBrhRevTEK9aP/Z5BvXFZmbrwRtfssUE1aL3ZFgbfy1Up02Q2R8VbD9ZYOxtUGjOGIH2R79SkEmn8yulFVO9PPU2oPPB0emwv+ivK7RGz6CHiUJmZhWsN5B6e0x6Nz97zxJ6IlAfWvoFwMzs06U/n5ON/7XuDsaD38FnXl9+IZKi4BciKQp+IZKi4BciKS1JH5I7DaRJXrdnbu0nzaVbOy2k934NjR0p5XQD02ZoKg2dN6X3Ug+DCYjBaCqnGfcSIKlF6biYogtpwNEpRXUX6yNwyAjyQ+7F7/PYdF9pKlRJXtJ69D5GU9VPQJrTV5VE3O0SpPmUpffFqV8fb/z1nXZeAu5b6ImBRxFCvPMo+IVIioJfiKQo+IVISruCRookd8YWy4ojlbIsjE9+u/cNJBfQ7JGyxqh+nmQM1XPfjC/cGtVuE1QXb2b22HsZMx/8tZDAIgGFayQVe6jTh/PDGvagsDPjbEfKlEQxSNNigomOUWFXei60LY6rhnOcwBplxE7g3VmBkP6yhQazlZfPH2w4I/aj2r9PkxZEdQf9HOBR68svRFIU/EIkRcEvRFIU/EIkpX3svKgiabOtYw0XtyBeukL21dtu6dZInFGmHEmkCTT6pLUXkJl4DeKlBSG2gnJnM7NXTaHr4hNocs62it1bIioQoyO/S39Px6EpN6WJRk+hElqUe/uYsKPzO4QqWKpLazs479dQmn5X+UzVLxu/v5tCM9If9b5c/vnWH3ve+n1+3VBGrBAiJQp+IZKi4BciKQp+IZLSbmgSD/VNA6lBmXdvd17ilcotdyDyouKGstOopJeYVV4CXptfu4Reb6X/lh/WvozydOKzwUiykfwioqOpo+WypeeCJa+wabg0Fp5LVErSuPhohp4Z3wvK+qTR8JQxSs9qTnLPvACmLER6Z3/dePlsZvZt4yf2PIMx4j1I6dvBZ/Lqyy9EUhT8QiRFwS9EUhT8QiSlZXniN8QBFCBotr2XgFFRZcZZYySMaLsolJG1rqEXGvxvvO5ZLD0fvByatudurRrHROVttXBrq95LG7q30THgtF2JBjLRsPQbxBkKv2CGHyT4HUQ0Sw8lII13B2l3D30n6VnR8BLiDWSlmpndwpCci8avjYJZiPryC5EUBb8QSVHwC5EUBb8QSWkpM6qULRUhKnKKwKbUP46kDW1HzAcoY4Zprh1M1D0pyJgZiMCbvT/Hj0DQzKHEeAsTjKPSLrpdKZuSMjypXx8NP3k28tdCwm/Z+06Dc8iKW5sXZ4e8TzgkJZpFCnFAx6Yy9IfOX98OZDid32PNQzvoOAsoJT+BkuBTyEDVl1+IpCj4hUiKgl+IpCj4hUhKS2W1BEmgY/umRcEBHSD3sAQTBM0cZBOJnDFktS1haIOZ2QpLdT0NyC/KJKNrIQGFgjUo90pDO0junbZeGF2NfE+59yGrkb4wt3B9NHmZMuq6DrIaCxIQS79J5EGGJ4pTWKOyeMy8DJYn9z1fC+2TMmr7EWSrjiX8hBD/jYJfiKQo+IVIioJfiKS0JBGov1q01JYERrSnXGnbY3rSraGMkjK8aPoqldrSII/f7dOzgU23sCWJLnoGdD50v6OUyqJHIFNR+EG24rPKZ5fRe9I3/rwfYGozQc+ZxJdZYUIwrJFYpB6VUQkYnQ5MlHoj9rhP/37T86OMUX35hUiKgl+IpCj4hUiKgl+IpGAPP9JXe2imFh2SUdouWlpJGWtb8wKDRAmJHBI0ZzAoYQL/G6dQ+mtmRnl/lFW3hvNZgZSkAQ/R+0VgH8TCRN1J48uWz0HuPa9hzXjC7FPWlb++qHTFMt2STKMMOsjmI/FN9+eYEmECxeAh+4O/p4zDu92DW9OXX4ikKPiFSIqCX4ikKPiFSIqCX4iktMdMvjnGcpoVxjQHU13JpFPtPvUr6JvYuHG6vkPu1hZ+GHiANMsH6C9AzRqjdeN0b6gfQ+nZk+2/BNt/A6m8L/ZUp+/PZwmNUE9qvz/q23BI09noLwP0C9Ahk6a+L8fGEP0aQtcy3z7C3wohUqLgFyIpCn4hkqLgFyIpLdX+khAp1Ri7v6VR3gfUnGO6I7gcms0TbnAJQmS195NhFpBC/AhTfMwM55q/gRTWO5B7952XMcud327VxUZ08+kdkN4LMm4GMm4GY8nPsPekP/YlNPCcVf64NDqbzrvU84GuENPA4T5G+0jQ/qJ9BA75/tJ1R6dr0TuvL78QSVHwC5EUBb8QSVHwC5GU9mJ86hajTQpp5HB0KokZy4rohBXKQqO18NQVqKn/tvM10OOW/1+egsB6BQ0pX+3mbo2yr5Y7n+EXbbYaFVWU9WfGko22pMy9HRx6BI9/hJOLYt+i6Ahys4JshsMcM7mKoPeY3k+SeCURi81t4TjUw4KyQ/XlFyIpCn4hkqLgFyIpCn4hktL+xexTtzjfe9m0pAy4fuXWVr3frjQ+mcQGjaYmAUVZaFTeSOWydI4kfG67hVujySdmPGZ7Dvfnduv3SZl7JFOpZJmog//TDynn3sGxFzVkMMI+T8C57SjzEtao1Jqe1SHltwM0o8XtgpOrqOz4pPEZkecjXxZ90XjhPoV3uwS9j1QOPu/8u6gvvxBJUfALkRQFvxBJUfALkZT27zdnbvHzyaVb+6qFDDjIYLsfvGwoZfidUh83mNoygv9RNPnmZe8z8khKRsXZIfKSeOz8vXiAUl0aLx09x2MolVpThhhJ4N+CsN1V/rxPQYg9wjEWIJUpM+0YGWpmNhSmLrl9Qvk2layT8CO597PJC7f208rH33nhm0xKcw09L+9HfsvX8Pz05RciKQp+IZKi4BciKQp+IZLS/mDqJVm3Ofdbjr2cG0HfuofBZzadQfabGQ94OO/9PqlM9FeNF0Gv+qVbW4MwojUqGya5U5KXOI4bjvP/JfeI0rVQVt1978uO1wOMgoZefyfQm4/u7dvOPz8Sfsf0mDQzaimIJcEk/AjKVH3e+hj6K7twa3+z9td30XhJbWbWD/44271f6+EC1+YFpL78QiRFwS9EUhT8QiRFwS9EUtpfgtx7CX3qHoLy49x8ht4NSAkzs0+967Dn0EtvRRl+E3+cL5qpW/uGRB5OZA1Oc61ZzpEwYlkVm0Ichfq6RUt1SVKa8XlTZuPCWEw9hcq0SZKRaCTob4fC+1m6xu8LiWEqOX+/mbm1v9z46/v5H790a6P3CgeHSyFXXI+gD+YFlcALIVKi4BciKQp+IZKi4BciKe0/T2BiKRQP9kHhN4XsonMas2tm11DC+cHMZ3l1nRdG650vhfzV2GcxkQRcVF5U9dADru/BphRaxZEQ6/rjes09JTq0gdZIkpUGXazMPxe6bpyoDGskyUZNbPoulctOWuhxV3CF0RJsOkca0DGG8z5tJ27tw9q/dz96/tatzf7uxh/3/Ws+yYYzZR0nPg7smd+nvvxCJEXBL0RSFPxCJEXBL0RS2i/N95Sbwv+EMZQTTiFzi8YN0NAGM7Or1oulq2vouQdlvi++8ZLlArILabhHaQrqU0jOlcpgKXOvJNQihOUebRec0luSYV0H1w3pZdHMxOj9HkDu0f1GMViQYQ28t5gVCfsckWyESbszkMrXg38Xrz6BwRl/8tf+/H78c7dmZlZNodSesjlBQNZnPm1QX34hkqLgFyIpCn4hkqLgFyIp7WvozTaDPmwzGKZBvmcEUmpZ8E9ryNzroWEfDVnYUJkvDIzoYajBMZQkV0kERjhG7pGoomw1onQtNAWXto2WE9N2WC4dLHemMl2a0GxmVsH5kMijjEOSxVS+O4bYiL511fmVW6tf/BC3rc+fh/Y5QJ9I3F9oKyHEO4eCX4ikKPiFSIqCX4ikKPiFSEp7DyOstzA+eQu/AKwrv90GjHvb+L81M7vY+7RI+9bbzwFM7i9hgtBv9nO3RmO2j+H33RDy/4pD0nOPMfv060P0Fwk6Lv0CQGnTpZTmqNk/gXeUzD5dC400/8r8SOzP/9XX1P/pP/6TP8bbW7dmZtbPIL1369Pz7cFP4bJH/6uevvxCJEXBL0RSFPxCJEXBL0RS2se9FxOUErsDqbECIbKsYNpLzWJpNPLCb9355oNbcDn/1niR93LnRQcJIxI5XX1cs81oGmp4Og9cM6X8HsMhKckk90imkRCL9hdAgqdYSmmmBqCYohuUe8QKGtF+3vlmnb+YeOH3+S/8+/7BP/wHHodShh+gp8aigYlbcCn68guRFAW/EElR8AuRFAW/EElpKQOOJNm28jXCjzB6m2qgJyAlzMweIWtwA2JpAy5nDQKSBFY0c4uguvZjJu4cC0pFmKQUzYArycdo3wCSaVFJRkSn60TPzywu/FBUgmClbD4aLU5x9bD32Xj/0njh1xZGrFPm7Xrwgp1GrFNTVn35hUiKgl+IpCj4hUiKgl+IpLQkK3jMst8OSzWDI6PNzC4HL2M+3EFJMJzPZuKzA+9bX/K4HKBsGBiBlCRps+64RPiobD7aH/0t3Mao3Cs1uCSiZbnRtWg5cXTcOKX90TjtQ86RIAFJEpjekx000ZzvfFntIYI0Wt5MUpr+Vl9+IZKi4BciKQp+IZKi4BciKf8FG1CVEkN3Vv8AAAAASUVORK5CYII=" y="-3607.577361"/>
</g>
<g id="matplotlib.axis_207">
<g id="xtick_310"/>
<g id="xtick_311"/>
<g id="xtick_312"/>
</g>
<g id="matplotlib.axis_208">
<g id="ytick_516"/>
<g id="ytick_517"/>
<g id="ytick_518"/>
<g id="ytick_519"/>
<g id="ytick_520"/>
</g>
</g>
<g id="axes_105">
<g id="patch_106">
<path d="M 29.174375 3876.398548
L 151.464375 3876.398548
L 151.464375 3749.105021
L 29.174375 3749.105021
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_209">
<g id="xtick_313"/>
<g id="xtick_314"/>
<g id="xtick_315"/>
</g>
<g id="matplotlib.axis_210">
<g id="ytick_521"/>
<g id="ytick_522"/>
<g id="ytick_523"/>
<g id="ytick_524"/>
<g id="ytick_525"/>
<g id="text_27">
<!-- 89 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 3856.455222)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-56"/>
<use x="55.615234" xlink:href="#ArialMT-57"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-57"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-53"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_106">
<g id="patch_107">
<path d="M 164.424375 3873.896785
L 286.714375 3873.896785
L 286.714375 3751.606785
L 164.424375 3751.606785
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pad2073ccd6)">
<image height="122.4" id="image23139c94b6" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmu5Nh1RU8EGYw+4nWZL7MqVY0swRIMDw3/gOE/9Vd45JkHhg1oZAuQXF1mVTaviz4YJMODkia5FwEWyqO6ew3vI3kvL3mCwH77nNP7p0//+RwfcZ2NPx6KeeQylkVPxk4hl4tD1DIWEXE6NzLW7+k1fw7NWdejIxEZzDuJTMYWvQHOc33WY3990uN+G1s993onY4NC96ypdY29nt5NNoB7hpsuD/pMIyKqsi9jp5Pe3+Goe7GqdGwD704N+92HRU5C35GrwUHGnt1uZCwiYnyjD2H1ZiRj//PuSsb+XOi6H/q6xh2s8QjPpYY3j+LlCHERwXFEMUTzVLBGfcrGmCRw8BuTKA5+YxLFwW9MouTTfiGDBfwmFD0dG8BxGQgLNalNEVGDKEICxhkEjIzmBhEph3UTOYiXo56KXOMzC5IZ3CLJnGWj1zwddYzEvVMJ54IQV9V6z3Wj16vPvDc13CONHUAQPcBzqei5wDtRwHMe9XQXR8NKrzdkkey01jVu1/rOV/D8QTeNEewD3R8JeQ3NoVPEAN67iIgR7C2JezR2tOBnjPkrDn5jEsXBb0yiOPiNSZT8tqduJxL3JiAOkcOvBD2sBLEhIkJ9WixWkODXgzEWIHVBNEZiyhxce9OW38sBXBM0tihhHw8HlX36fd2zfQmOulrFqx2ssenoqGuDzj92dGMOOzr3xj0V8sa5jpGr8eHtBOd+2g5l7P6se7btw7sD2zOEMdqHDIVBEq5JaOR9pXeMpEESmnc9C37GmL/g4DcmURz8xiSKg9+YRMmvIN2yAVGjq9hwBrFi0OKyI1GEBBASMOg4cumNYZUkaM5AiFvCGDm82iBB7QS/t7uSU2s/Zn1Wwe9DpufuQICiVZMQFxGRw3AFF6C03CG8PLOzPsHL/ChjoyHkQAO7vQp2bypNQ4+I+JDr89/B6whaXBQdBT86rg/7RVFAMTDCpxUxpWM7vo8PsCB/+Y1JFAe/MYni4DcmURz8xiQK+KciTqB+HMlR11FsaDtqSL89KJR0c+RNIBVyCi69BVjvljBG4s6q5efyAHu2B5FlQym9sI+U/rkDF9qenHewRnKr0b5GsKOS0lbJtzmBc6c9FfJmUxX8hiN9G2tIbV7v1bX3lPGDeQBVmt7lnARNEq9hH3uwjzRGz4CEdBqLYHFvAg8BtgzfZX/5jUkUB78xieLgNyZRHPzGJEq+DhVZDlBHrwGRhAQ7cvO11fAjZuA4vIAxct+hkFfr3Je1Os6GcH93fZ33dYsZ7w5qze1gL44wNm50jCQf+qWm5cxABCK3IVeKa6HjMxyBwy8jpQvIBrrwAhStxUHFwsVGRcCIiKcMBNaOJk1ylpJzjwRSouvzI4dl2/l4XMfag/7yG5MoDn5jEsXBb0yiOPiNSRQHvzGJkm9B0zxA/jWp/RXYaQtQhakoZ9s4dcl5WevYb0r9L8V1v5SxSaHW0sFE728PRTQ/1DMZo3bMERGrs86zBc1+39d5lmDbncJ/Li5h6stK74WKY1LB07rFRnqi1uvwXwr6D8IY5j7BfzM2UFgzH+i9zBf6nC9vtaX5qyP/G+Z0msrYA1iBqfBstyoL3CmKG8Er9DZR7YSIiIq6QsGxY/iPyxx8/P7yG5MoDn5jEsXBb0yiOPiNSZScRDcS9wjSJdpykQmah7rkfFmqEPS7m3sZW3yiPYAybUgU9U7X+PhaC0AOHlUsaqPq3BaZ8rdVBFzAcctar/ci03ueT9T+mmUgxEF774iIw1HXU1Lbb7Ry67q3Z5XOtpWO9Ve6xtFUlarhpY69eLWSsYiI7I0+l7dHfdbUWpy6FJFANwAB8QnUwi10zTlSwdq2OhkgDA9B8buA9+TTgYqk/vIbkygOfmMSxcFvTKI4+I1JlJy63AS47Oi4ZU+Foecg7syoV3Wwk+kF2Jh+d3EnY8/+EYowfvmZXnCo3V3OD08y1v/Dexm7+Y+5jI1CrxfB+9PmbPwY3cWIS6hDcAtNza8uVMgZz9Rt2IMk74oqfUbE8KiC2vGgz5WEwVWlYxt4n07kiitViBvdg8NvqPc8mLLz8vp2o8fed3N4kvDWUFHPSt2KX0NF0HtwgZ5AQhy1VFq4gHhb9PS5LKBGxzPYB3/5jUkUB78xieLgNyZRHPzGJEpOLayJMYg2n0D3mV+XJFSp46yNog/tnF/tZSz/7Rcy1v+7v9cL3nyiY3sVP8aX/y5jr776TsaWq+d6vYgowH1FXVsWkCh6DSmvN7WKNgvoctOH4pg1VqjUMWqnHhHRg+5DpM/RcQSlne6oEibszXSjImABIiA5ASMiGlCVye04yPW9K+D+8lzPrTc6x/Ss1tIGrrdqNA2dUsEjIhoQba/7GoPHjt90f/mNSRQHvzGJ4uA3JlEc/MYkSl5AWuaQ3HyQakttrTNwta3B9RfBteKmkDq6v9fzJ3t1u8XyRoby3/yDHgf3XMHYzX/+i4zd/huLXN8XkKIKxz0HkfTTk4pIF1CPkNis1F12qnQOEudI5IrgDjvUsAevSWMd20OTTlmCGNpQenFLG54SavuVpe4PiZ8k7k3n3dKlv4Dn8lioeDkEoZhSwSPYRbqHeHuATlOrBxUg/eU3JlEc/MYkioPfmERx8BuTKDmJe1Nof00tfklj+XbQrS11BLciflHpsc/uJzJ28Y2m+fbfqSOv+eSdjJ0PWx377k967lGFl2eNpmVGRHxRa6ovyTbPoL7azVnFvXGhjrUahK7VUYUlElhJiJ1XfC/TITQ6gYYao6GukYSzCdQKPLSkecsc0Pp8stD9ygoWySoQP/vglGvgdBI0M1AvRxPdr5tHHXvRgDjb1/fmMfi5ENQefAci4t1WxUZ/+Y1JFAe/MYni4DcmURz8xiRKfgHOvTGINkMQ546g2dxBY4IdjEVETEBYnJHjCQSj+klFkfzbr/W4+l9l7Pz9Gxmr/ksFv91rnff5WOvHRUSEZh3HFtKlByDQZCAsQaPViLZmDh2gjrxNS+ooCV0FiHvkBCQxbbeCun7w3lHqbwbXy4bQhRiOi4g4w6tHIuD+pCLpEY6rQJDeHlW0+1Ou4t43me7hm7M6BrdQ6y8iIodv9QDi5QnSfO97ukZ/+Y1JFAe/MYni4DcmURz8xiRK/jeQOdrr2GziKVOF5glKApILqQ2qKJhDymQDtQLP77Vzb6zVzVe/Vnfg6U5FlmKu93fd1+tFRPTf6Xo+bNWZuIc7PID4dQb7ZAaewWEfuthC04YKUmML2NcITmUdFOq0yzsKb+MtrBG69GJ3WnghtvfcOIU47FVsJHFv0+hxO/g2Vgd1yt1Dl94/Qrr0N42qwvcwtmtxkebglC3POk8GcdlAww9/+Y1JFAe/MYni4DcmURz8xiRK/quz1sI7kxsMNLtlo8LJANJJ34EAERExgHkuIeU1H0CjhB2s8Q46kV5CA4oCnHe36siim87uuLbeeKsizXAP3WChht8BfoNLSqsOvd71QOddLPWZkjPtBLXsIljwo6xsGqMmIlQr8KIGgRUatswmut9Ul4/uLyKiAaEza3GcfswGhDzqLkzdpgmSvU9gQSzP3IDkCIUUKzi/wTRfFZ/95TcmURz8xiSKg9+YRHHwG5Mo+axQ4aWCWnHEFJxkE3BuXVfqLopg8WQGjiVqQrH5oAJdvlChqxjr3L2pNjDI5urcOpd6f/0dizHkgBvmsD8lNJzomG5LTwUbZ4y6reW05+dMKa/1SY+ldFms4TdV0W620FTWYqRrpC67+213h1+/r4uE/ioxamDPQJydgJi2hHmfINX2fU8nLqD79b4l1ZrEvSPU+3uAXizkBPSX35hEcfAbkygOfmMSxcFvTKI4+I1JlJzUYrLy1mA3JQZgnbxoKUh4gmuStfjppOpufQf57pCfvhyo5Td/oVbHHqj9PwWytVJHmz4IuaRIUyHMwxFy00sde/yg9zKdQZcbsE1H8D5St6AeFXqdwX84xt3ajdfw3we656Zjt58I3kfqpUS1Esj8PALFfQL/9bqp9T9Ky4Gq/Q99eKYt8VJDW6EzWH7pPwBVbbXfGPMXHPzGJIqD35hEcfAbkyg52TGp2OMO8vRP8NsBzsJWOJtcOcGRJEBlH0jc0YKb07WKgMWt2k0p7785di9GikUvIVd+OFaBhlpBP37QOb7ZzmXsu50KfrMt1ALI9Z4jImZTHR+DRXd8Azn5t/qe9HJ4d97q9XYb6Jpz0DES/ChvPyKigheSjiXxmToInUCQRpEb6lIsc32fplBYcws24B/Xo9c8QcRRwdzK9l5jzF9x8BuTKA5+YxLFwW9MoqDDr6aCkjC2gZzlA+TotzEHKyHl83dlDU7A6p2ucbpSsWn+DmoBgCuuPrJMud+ocEMFMsk9R+IetaEmVtCO+YdcnwG1d36CvP2IiF9DU6LFje7P8CV0gXk2k7HzVgXEplSxkPaLxT0dq1tcf2Wt1yxJ0A4oCgrvMtWgGEK3H2rFPgNRcQr5/GMQAX+cu1uxzpoKLZCzFGcxxvzicfAbkygOfmMSxcFvTKLkKEBBeiNB4scWclbJKfXjPMoM9L4CXEzkLtzAFR9AjMm2kG65VVfccqiCH6U7R0QcoXApCUvkBqOCmVT08liy86sLlCR6/AnibD7VZ9CbQJcjsNQ1KxX8TlsqCApFSyElN4P06RJamkdwh6QdOUZbimZ+zBHe7w8tjryPyWCOEQh+U0jzjYioQdwroL17Bq2UJrBGf/mNSRQHvzGJ4uA3JlEc/MYkSk6aD46B0EXl0Ugq5IpkETuYaN/x9+hItf4yFT9WHQXIa2jxfD6CU66lvfMWUp6fwH1HIul8o8LZJbT8JrFxAjt+29Ku+mOuGu4+tLhUN1+mGikKec1+L2PH93rPmwe94BFab5O4R+24y5YuUyTuHUEQG4Irbgw182o4l4RTeHViB0FEIuBFsOB3m+l7cgPv3a+gy9Gnlb5P/vIbkygOfmMSxcFvTKI4+I1JlPx0UkEE+gBEDu6iARxYQE3AFvNVlDC+hTThGq5JIssjiHsPIBid4F4i13nnkGI6aXH47cCpRW2aV2BrfAChcgui1hLSnSfgflyAkJeB2DQtuJkG1RSsVQOM8kGvublXIW+9VqFqd2JR62MG0NCE0ne357Y0WN3HMYh7Fz3dixzm3tcqsK0hHfgHqFtYwXtHX9+bFsHvc2iT/gUIeVcDSL+eQgMZnMUY84vHwW9Mojj4jUkUB78xiZJvoMtrBbXGyNfGXUxV1Oi11Fcj7YxSJis4kGoFbsFyuIaV1yB+jeF6JMQdWppD7GDdGzh0T1ZJcHmRSErPoI+7qJxANN1CzcOIiPyhW9pxVeoN3q+0A/Jjo/NQ84sh3OEQml/QPrQloU9AJL3M1Jn47EYLF46W0O32APf8bipjx6M2U3mX6T0fYB8m8KwiOLaIIz0reG/95TcmURz8xiSKg9+YRHHwG5Mo+d1ZxRiSG0hqoPYa0H8CnYAR7PDbg3BGIiClTG6pAQmM9Tq6ED+AQJPBWNv55CTMcX90jGahOnOUsnoAV9sm6ybiRkTc7FUEflWrIDafq3A2zCFNuNR3jN6IpmMdPaLtK9YjVx1MM5zpuidfgvu11F07NzsZW34HnZIh1siBOGjZB3rHHiBtfAN1/ehh+8tvTKI4+I1JFAe/MYni4DcmUfLvBtAllDJeyblHF4RzsxYXWkPCFPwcbUC0o+6kxATcirRuSre8oyKFLZBIQ/s4ALGRBD9iDynCJJo+gii5gnuhZxUR0QcR8Ra63U4WmgY7vdCx7LVO9OagrrgS9vAAHWtJ+GrrDk2p3zNo5BJf69Dn83sZG1zqPvQhbXwACtsERDcScYuW50IC7QMIuSSGHyCG/OU3JlEc/MYkioPfmERx8BuTKPkHECtmIEqNIC2XhAk2wLEYs4KfnhU0xaCmH0O4Jq2bIAFxA3LKoaVBBzEHV9UEfltpz+gXmFKESeiiRhBbWDe5MYctIhm18iCnXLHUq5Ig9iw2Mnb3J63199VAa/2tQagkQWvV4lfc9XSNY9jxu3omY6c/6HGffvIkY4ctiJL47CHWIK6GLY7YBp7XGvbih77e8/tQIdZffmMSxcFvTKI4+I1JFAe/MYni4DcmUXLKOSd1PQOlsaO4HvuW455Ald7AGFliFzA2A8GXFPInUMhJFT5AZ5e85T8X9c/4He3azpnGjh27wBT035GWwqpT6AVOrbLP0Ar6DNVWzzDPASzE32e633c9/d8DPZct/o8i4tDocy1gh5pM8+8XtY4Vb/V6GfxHoqQ5IIboCbTZe7GVFvxXaAcx9B5aLvnLb0yiOPiNSRQHvzGJ4uA3JlHyEUgOlJuuDYcZEq9I2IuIuAcx5whizgzaX1ckqMAcXcdqEFNOLT1yCCoUStesQfTpatslMZRWOAYxdApjly3u5Umjf9hBC+x3/6uW2P7XUBdho118/lzoG3UHbbK30HGnhLsu4biIiDMW8NS9oK0o4bgS6hoUaJ5WSJKkZ9+m903huVw2up4lFPW86Kt12l9+YxLFwW9Mojj4jUkUB78xiZJPwX0F5Q2DOkuTw68GuYJcaBEs7tH5JMaQM5GKOJKDilqLkwhEhioWAVnM6SoXUp1QclRmsOF9eDAk2FLb5xE4+SJ4zz6Edpv55qAi0gocZx+GOs/3IO6tz7qLtJYR7OK4p2uJ4L0gAfk5CGfX0B68yLuKe92E3QOMUYeqiIgbEPxeVjp2hKKn/UzrJ/jLb0yiOPiNSRQHvzGJ4uA3JlFyyMpEixEV5iRBi4Svtl+YEXTsIajrTltqrR6nDKlrDrq+KF2W58V5yD3ZsR03dfs5wRpr6goEV4SM3Oi3CLE0D3WG+QFa/rztaUL43RnEvVrHChDiliBeTXu620tqSx0Rl/DuXMNLelmpkHcF93KGd2db6XqeYL928LqTcE1dhiI43hZ9XePzqpsj1l9+YxLFwW9Mojj4jUkUB78xiZKvIU2U3GVg0ooMhCX6NaHONT9es1s68QiOo/bS5EwkoWuMc+gaR+AFbPu1JFGS9uz/GxJYyVFJ7se2ttakQFLr9B3NA6m1B3DukZOTxNRex5RzSk2PiLgEQ94ViHuLlhqAH/NYqdPxfR/SnXNokw6xRq9I1uLwe4JU3Sns7QyewQKcvP7yG5MoDn5jEsXBb0yiOPiNSZR8D5JDDmMZuPHIrUYi3qxF+OqRkMeHCt3kGRYGNbmRnWANuMvOlNsc3FiEmp+Qo5JSPbcwzxM0FtmBuEOC2KmvO3tscVjS+SQikmg3gGteh6bbTkC8ojbnNC/V5WvTVikBlxyMG3IIwkU3sO63IO7dgbhHLd/JtdeWAn8e6N6eKn2bl7XeNbX99pffmERx8BuTKA5+YxLFwW9MouQLiH/yF5GQNwG1YgZ14SYtteLol4dcZxtwPJ3gZPwlg6mpC20O95dlKu6Qqy2ChZs9iHa0RmzaAfOQuLc+q6xI9QgpdXQH4lVEW0pwN4fY1VmFxZtGj/zbUiXbq2wvY38MaPgBVk5yckZEUCPiA71PIPhRynOJdfioo7K+EXt4fkd4cyiVPCLiLTzXrwpd90tosPK8tsPPGPMXHPzGJIqD35hEcfAbkyj552BDoxpi5EyjlFUS9y5BlGrjBK66PQg0JYgsBYl2MEcB6y6oQwdJn1TMMCKOLc6/LtAVsSYguOdqOJJ+0flcXjOl5Rbk3ANx72UN4t7pKGNf3j7KWDYAkew7neMhU8cgiaYRbUIsNGihRw1PButWwrOn5i4b8KVuISV30+h+RUTsGo2jCp5VDrUQX+ZzGfOX35hEcfAbkygOfmMSxcFvTKLkL2sVHB7A+bXrQ8orXLAEMWXX0lCBfnlonl1HMa2rADlrVCThX0FoftBW9w5ESUo97Qq57KgxxRzWSOdSyvGupePwuls/lChgHupsez06yFg+1GdQHlTcoxWOYRB0xojgLrhraIt8hONoG0gs5lqGukgS954a3ZtVrU7HiIg9NDrpKvgR/vIbkygOfmMSxcFvTKI4+I1JlHwAkkrWItB9DIkke3DAbaB+XBvUHILchWOqFQji3g24ohaZCifUJ2FSqduwj61BInKoAbiFi25AbDp0FAan8Fs9hZzVUUed8QnE1TZqSk+GeRqqHwhdY3crbX6x3+vYCe55BG7Miix6wYLfBu7lAeojUmptDoLvkcQ9cPPtwel6bLpWo4wYQXOQQX8sY9fZVMaew3H+8huTKA5+YxLFwW9Mojj4jUkUB78xiZKvIB+cChzuO7Zt/jl57RHceYUsnlSwcQHW0qtC7ZOLBdhNIZd8vte9KZ60oGRExKjSHPP7XFXuNbW6hmKPVDB1DP9RWMLmjOG/HpTvXrdZleGbQBUZyEZM78SbSpXm5SPUIcCceqgPAR1pxlAkNCLiIdPxRzj0BIp9CW8etQyn3H26Xkb/renrfzgWPeopFTGFWhdXPT3/WejYRccCrMaYBHDwG5MoDn5jEsXBb0yi5CRKkbhHOdBkk6SW323QLw+NocgCYhWJQ6Oh2ifHc5WvsqEKNMVEhaUs5xz46UavOTmo0LUBgWcPNtsh3PMC+k1fV7BG2AdqLU0t1iMiJlS4Eo4l0zYJi+/gHduBQLeEOgsTsMlOejpWtljSm0ZFsjsQv4bwDPpUFwHGerATSxDnSASk7kqTlm/yVaP3eA2deKiGBT1qf/mNSRQHvzGJ4uA3JlEc/MYkSv7Q0aVH4t4GnGnsimqZHMUTKoSp16Ss+hN0lWkg3/10gMKcRz23gjz0pqVS5BCExcVJ6wbcQI2AKgfBDxSa5yDuPetpdxfKqa9hH0gEjOAuRzTWtUrDAbaM3IVUEwGdjn1yz7F6Oap1lROY5wJbdOvcl7CPzytq+U4t0XUtVBB21rCofAm5/yOoQ1DDnm3gCfrLb0yiOPiNSRQHvzGJ4uA3JlHyLTj3TiCeHGGMxD10MbVIflxzUeepQTzZUmcgELC2B3XUlSc97lipGLNtdIwKSkZEUCFUOrYG5WxGablwz8XP6ADUtQ14RAQYCbFYJ4muVI6SCr2SE5BasW9AsOvDArOfkEo+gf3OQAScg1Pus1oF1lc3TzI2KHSRm5Wm6h5LfSFGYy7qOZ3r3KBxxxFS0ddrTTn3l9+YRHHwG5MoDn5jEsXBb0yi5JzqB+4rEJsovREViBYySh2FeSoYI1FyDyLgmrrugIi0AflrDfXfKJW4Dap7V8Lp5OYjgW0He3s6q5BDUF3GDETFiIgJiXuU0gvnb2DPyB1KDGCNfaonCGm6g5Z7ISchdXa6gPOvoMPOy4u1nvuZ1oTsj8GZuNZzG3ghiisZioiI/FZTxHtDfW/Pe133zf1K18jTGGN+6Tj4jUkUB78xieLgNyZR0ORFAtQQfieo1hgJcZygyJCTkNoiX5116QtIhRxC2nGPxEsQfEYgDEEH8ohgQW3b8aeVnGTUhrrrvDUJqbBuVHtb5p6c1bFGt3ekdFIQ/Ep4LjkmDner3zikIoMRUcC9UK3AeU9FssuZCnnjGci4sBH9QgeLa1hgDuL6ywUcGNH/zRc6ePNchnoDdbXmu41eD2cxxvzicfAbkygOfmMSxcFvTKKg4Deipgbo8KKzuzvgiAodcCoEfVZpfbxXS3VQDUeaHnmCNMrxRp1yTycVTjYgNEZE1OC+G3Tcx2fQdfair/dHtdn2kHa8IyEWRLK2JzUDcW+R6XpIOH2CxhL0haGkVXI/UuovdWhuE2JHcCyJey+u9d2ZXuk9Z8XP6EIN4l4P6jfGoCXZenkhQ/3Pf6/XXKoIeN486Lk8izHml46D35hEcfAbkygOfmMSBXvOktwwBQcVdQMdQQ2/CVaFiyjA5TXK9Njlcq9jn+pYPoeGHyeoR3gHTTsq/R3cQTrwTymjR+IepZNiJ9oCOglnul8zaCyyK/UJPp5VvDz9BHGWauT1oXnGoIZ3gmoZgnhJacwk7tH72eZWHND7CHs7vVRxr7jq9rB74LI8k+PwAOnqe33258MdzjMY/lHGKH5786Ve8/0PMuYvvzGJ4uA3JlEc/MYkioPfmETJsSMraBVkbJqCmLLsqXAyG+lYRMR4osLLEBoWjK70uOIZrJzSW5/0ejXYxg5HqOsHbr5dn38vsdEFjJGE9ETtLzSbNGYD3YccREBiDw7Ee6i3FxExhAYWOxBEqTPuA7xRZziO6jd2/RJR7cG2FOg5ialj3ccGrKWnRxA5QW3sgdrYo2Y4G6hveKd1+ciBGhEx+e93Onb9Wg+EufcfoJYlzmKM+cXj4DcmURz8xiSKg9+YRMlJyCO3FNW4G4LMNcx1rICOpREROfoLFWpsUG+hNh/8lJ1W0M13pW63x1JTeh+h6+8GRMUIrpFHjrUtnH+ChZeNrvEA3YWHJ92HJ/DAfTXUOX7o8XMhxgNd9wBrOOp69iD4Yf0/SDs+UIo3HDeANOSIiOVQxebBUI/dPurzb+ChZvDOUkde4rBT0e3DaiJjb4MbsWx3up7qPb1Peu6e3k+cxRjzi8fBb0yiOPiNSRQHvzGJ4uA3JlGwUuDPKcF5hjxtypWPiIiDTp9VpOKTzRIUVjiu2usc250q6U89VWLvoSrkoeVWyBJNmi0Xs4Q9g4dwBNvtAa74ZqD/Ffi2rzbXH87gIY6IE9i2B1SgFOamtu1k5aXrHeA/BWSn3sJYDkVeIyJe1HrsEd6JDbwTe2jlPqAaFAPd2wzexSP8t+bxrO/da+j2ExHxbV/f+RXYl/fwX7i6439cjDEJ4OA3JlEc/MYkioPfmETJjyQswVgJlsojiCx7KOBYk0czInIoADkeaa41tUXGHGrKtSYREEQgsu3u4KfxCIUsIyLGlJ+ONmk4F4o9jqHd+ABEmx0IZ08w8f1Zba4PDQt+JVhlSbTLe/r8R/AQRnBcn4RhEBpptzN4F98XbImtTjMZe7lWkYz2sYTHh4crAAABn0lEQVR3guoGzEuoQQHW6TPsIbVTP7S8Y4+hcfD+fJSxbaPPugIx1V9+YxLFwW9Mojj4jUkUB78xiZI/gDCRQR57js4t6MQCLaOHNbuvRo3OPTqreDK81LHiFopeAk0JnW9AEAOtCSERL6LF4QdjExDyZjA2BedWAQLpGfL+m9D9PoCId2ioUXZECc+ghy49WA8VroS5SYBa1ypeHUC8OjT6TEd9fh++K65l7Pe5ioAT6iAE15uBy/IaOjstGz2ugHsmKbyAtUSw0EnFUUmw3cM++stvTKI4+I1JFAe/MYni4DcmUfI1iDskLAxABMxA/GhAwji1dFMh+1ZOBUA/VfdW/uWtXq4GAbHQdsfzb1VYGj1NZWwGBRxr2JuIiCEIhiNw7s1B3LvoqxgzH+saqeBpDQVKh5Cp3Yd119jgmQU6As+HIZp7VWuL9ftyI2NP5VbG1kc9t2lRbF9P7nWe+SsZ+yQDERCE0zm07FmBg/EZpANf1eBohXU/A5dsRMQDiJrrnsbvGrpm0bPyl9+YRHHwG5MoDn5jEsXBb0yi/B+2HHn/nr96lwAAAABJRU5ErkJggg==" y="-3751.496785"/>
</g>
<g id="matplotlib.axis_211">
<g id="xtick_316"/>
<g id="xtick_317"/>
<g id="xtick_318"/>
</g>
<g id="matplotlib.axis_212">
<g id="ytick_526"/>
<g id="ytick_527"/>
<g id="ytick_528"/>
<g id="ytick_529"/>
<g id="ytick_530"/>
</g>
</g>
<g id="axes_107">
<g id="patch_108">
<path d="M 299.674375 3876.398548
L 421.964375 3876.398548
L 421.964375 3749.105021
L 299.674375 3749.105021
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_213">
<g id="xtick_319"/>
<g id="xtick_320"/>
<g id="xtick_321"/>
</g>
<g id="matplotlib.axis_214">
<g id="ytick_531"/>
<g id="ytick_532"/>
<g id="ytick_533"/>
<g id="ytick_534"/>
<g id="ytick_535"/>
</g>
</g>
<g id="axes_108">
<g id="patch_109">
<path d="M 434.924375 3876.398548
L 557.214375 3876.398548
L 557.214375 3749.105021
L 434.924375 3749.105021
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_215">
<g id="xtick_322"/>
<g id="xtick_323"/>
<g id="xtick_324"/>
</g>
<g id="matplotlib.axis_216">
<g id="ytick_536"/>
<g id="ytick_537"/>
<g id="ytick_538"/>
<g id="ytick_539"/>
<g id="ytick_540"/>
</g>
</g>
<g id="axes_109">
<g id="patch_110">
<path d="M 29.174375 4020.317972
L 151.464375 4020.317972
L 151.464375 3893.024445
L 29.174375 3893.024445
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_217">
<g id="xtick_325"/>
<g id="xtick_326"/>
<g id="xtick_327"/>
</g>
<g id="matplotlib.axis_218">
<g id="ytick_541"/>
<g id="ytick_542"/>
<g id="ytick_543"/>
<g id="ytick_544"/>
<g id="ytick_545"/>
<g id="text_28">
<!-- 91 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 4000.374646)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-57"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-50"/>
<use x="450.390625" xlink:href="#ArialMT-57"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-53"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_110">
<g id="patch_111">
<path d="M 164.424375 4017.816209
L 286.714375 4017.816209
L 286.714375 3895.526209
L 164.424375 3895.526209
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p9b1d98ca56)">
<image height="122.4" id="image63b16946e9" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPJFlWha9NPobHkJGZVZlZU4+gXrQQEhJIrFn0nv/Av2OFQOyQkGBBI9QIdVVXdVVOFZkZmTF4hM9u5s6i6F7E+Uyy7GLV73zLKxuf2XWTjp97b/bzh3+5jztMyuHdUIzznsQGWSmxer+T2HpfSywiYrHbwrYaWzRriU23C4ndbpYS2zZ67t1ebjn2ECvyXGLjaiCxiIjPDh5K7Gc9jX0auv/JXs+jqxixyPQat6GxKjKJFXC8XHdthY45gos83OlBjxrdsA93uINz0CX2YN/DYgNbRgx6+vwvl/p+/3tf3+//yuYSe1XPJDbbrSS2bPR66D1e1BDbaiwiot41Emt2uhZZputY5voG6FtnjEkCJ78xieLkNyZRnPzGJErZgHiy2alIUmUqGBTw21GAaFPCvt8dE84N4mBGAlYG54ZYAzGU00AkofOScBIRMSRBFNdHIdGu1lPHGrbbQ4zuOId7afvl7+9126pl27usUGzSM4EuDFfIZHDlFw0LsfOVbnvW09jrXN+7BsTLCt6nfqar0+R6g/VeBbs6BxGvILmXoXeUqCz4GWN+h5PfmERx8huTKE5+YxKl3IJraJOp+NHbq5uvDw6/Hoh7JDZFRNSZnhuFxY7iHokaDSlLHfUUcvjROSL4uhsQ4+YkcsL60CU24PCj7dD1ByLeAMVQFiUrsNrBIWMNMRKBSbQrwWVJzOG6L0p+x85AeLvOwH0HYlwB4iU5XQkS99aZuldJQO4VmldtkLBI0DH95TcmUZz8xiSKk9+YRHHyG5MoJbn5cnJpgaA1BGcTiSR5y29MDYLhBkRAEvfoekg8qUDwIwFyByIZnZfKJSNYWLwFt2KNJbjkGuvmniRRkUqWyZmG9bLB990m2sp2cMwt7NpArIR9a1jvtyDuPS+4bPx8r+LeCkRueud78Fx6mQp+Wa77Url6V6dqm4uUQEEb6Beaq/7yG5MoTn5jEsXJb0yiOPmNSZRyDcIElYmSWDFCt1NfIig2RUQFXjIS8nogDA5AwCBXFUHOQhJOupZLRkTMGu3jRvcyBpGUXJEDWBsSBkmoJPooAvL9VbAtlwnDvnRMuMQCYiN4BlBVGxfgNqVy54iIDZWsQ6yCPookAo7hWdGZL1ve+S60iaskDn6fY/rLb0yiOPmNSRQnvzGJ4uQ3JlFKGgSAG4LQQQM6SNyjXnYRETXEcf9cRTIUuqASkkQScjV2XYc2ljt1kpUNiEOgdPXhwlfgDuQ+itBvj8qdYa3JHRgRQV65ro48EvKoHHgIwyYOoeS1gpLVGazrQcHv2DXc9yb+8GdN6zjuKFwT5MZsE3EpTvsTWxDD/eU3JlGc/MYkipPfmERx8huTKE5+YxKlc6dAUs2pmeEp1Dsf7luUT1CQZzCimxqF9qEh4SZXa/Es7zY+mf4B6GpzbotjE0c4zw4ac2JPBTgeWYMLmq8Dl/0+9mXakpqCjqG8nL4wa6iBX+3gPYHj9eG5TMCeG8FNSrcdlXj6J4XOMsBeF/p+drXn0rj4CB7HTe8o7b+DMen+8huTKE5+YxLFyW9Mojj5jUmUclzqaONermLFvepAYo+KscR+0oAI2LCAMaj03Guwc27BRtzvOCHndqci4E2+lhjZc2lceJsYQ409KUYj0bF+mwQssthSs82WOv3vAzXm7HVzlsYN3MrrQq/xbK/vzgEIftQQdA2TkCLa6tg7jrWG7Wh8OQmnxyA+Xxb6vnftQRHR3jz2LvSO0mQuf/mNSRQnvzGJ4uQ3JlGc/MYkSvmj4UMJkqPuQT6U2M/2KmD8fKNi2kcnt3jyH09HEjsqVUQ87ziGmNxOi0JFpCsQY652et1zcBuuoOFpRHfhpqsANQDRlZp/kpOMmn+S063N3tnV9rmCT8ctPIPXua7NBUzSIR1uBNNrSPZatNTok2N0Dc9qAOu4hxiJgOQEpGdwCIIf1eiPCr6XAr7VJAJuwUV6Uy8l5i+/MYni5DcmUZz8xiSKk9+YRCn/Jn8gwQG4mE63Kkx8utNy2U8+upbYwac8Pvl4qiJE9bmKe1/XKgzOchojTajwcg0NQb8FEfDb0Pu7zDQWEbEEIRCbJtIoaHArHkBp9BEIfmMQpUbgDqRnSuJVG2soO74Ft+IUpiG9gffkCmIkmlIjTHrObc1I6RlQ08sRvBP9AkQ7kENLODddD4mKp+CSbZtwRYIvCYbXIF6TMOgvvzGJ4uQ3JlGc/MYkipPfmEQpf1GqQFdVKpL0hyra9ScwVQZqMOspC0vztypqlYXu/wh67oGJKSY93W4yUfFjMdfzfrGZSGzYU1fjU+g9FxFxBb+j5BAkFyKNIB9B7B4IPsfQH/Fwp9d4SL31WsqTb+EeL6Ht3RTKaKdwzzfknoQYOdOwVPo9ynRpf3LKcTm4vk+X4Dgk4ZSO1wPxeUhOzhaPZZ/6EUK5+xaeywz6bfrLb0yiOPmNSRQnvzGJ4uQ3JlHK+x/PNHgAQyT6KmpQFev6rYoaV2/UoRcRMZ2rq27VNuDjDuNCxaF7pwuJTT5W0WbwWkWpe89V3Pu4VpFkUvC9fAulw893c4mRiEQloT34XZ7A2nxQ674f1PpgTmD89a6lB9/lDoRYuJ4dOOCWIFZdo0vvD+9HRyJe20hsGmtODjoSEUm0W0LpcAX3TGO7e3BeEoDbvsgNrAVdI71PQxCL/eU3JlGc/MYkipPfmERx8huTKOV2QUIJlKJuYBDALYh75yqIvZu3CH4glND0VhoYsW6gT92VioB5ASWPFyruzUGgmYAi9gTEtIiI0xJ6wFV63y9wb6XEXnHKCESgDwotlz09UfFxD2W+ERHDa12faqv954q93nNTqrA0g3LpJQxEacCtRiWrAyi/pXLZiO6TcanMlwas0HN5EiqQ0spSCfQMSqBXsA4REVvYn2IErY+//MYkipPfmERx8huTKE5+YxKlvLlUcSe7UvGDxKH1RiWo242KHzctJYqzQn97FuDeAhNb3ECfuv1K+6HFOw01UPI6BpFzsIPpwC0Cy0mj1/NBofe9yFT8ooETBU34BeGTrmZQqZh2+KGW0LZRlnrU4hKcZFt9d7YgLF2V8E5k6nTcgzjbtb8hudoi2AG3ArFxGd0mMt+Hc38K80fmIFw38L6v4frqln6EbX0K74J9IkEu9pffmERx8huTKE5+YxLFyW9MopTvZirarEAc2GLfNIVklwYEiIiIJcSvQPSZw8CIPgiQfSh5fQLnPTnRYSG9mYpuVwtdm6u9ussiIqYg5tCW9yA6oLJTWMktCD503tUWBFawSZYTfi7jUAUro/2vwHG2OpDYOQift7k6BifglJuAWDyB9cpa3IoLcNBdU2/Fbka5eLjTcx834EyEa+yDXten59ySLzu8Rxpeoycip6S//MYkipPfmERx8huTKE5+YxKl/G2pwssCfhJID4H5HHEArrimxX11C+d5natAcwuOrBEMTziBUs8anHdlX8/R22hsMddzvKi4V9wUBLEGbnsCv7enO+iPB+e4AeHzPNctn9UqVB4/1/Li48cqfEZEZCWU0R6pSFYNdM32Z3rT5/WhxLalOh3pnkfUjw4cmlT2HRExh2nOJQhqGxh0QSLZAYhuQ7jyATzTAbj++nAt27ZvMrxPNHgFHYK0L5/FGPPHjpPfmERx8huTKE5+YxLFyW9MopRflKrYNqAqF6ByjkBJPYA6+7Y65LNcVfxvd6pAU/31BEYO3wcb6eVK/80YXEI990r/KXgDx/sWRohHRMzBRjqCtSB76EMo1KezbCtQ0jO9l1/3oLHmzanEPp2y2n/vUOOH97UpaP9U7/n+TidAffZMn8EerLxL+BTR16nqVtb+HfDPwBTeW6KGp7DsNmgohvCv1xiePfaveB+1n3KV8g1C/vIbkyhOfmMSxclvTKI4+Y1JlPIstLEjaAjRh9+JW5iGcg6iRNsEknc7FZGuGhWbatifJpW8LlS0+7pSYWkxU7vpEkSg57prvIb1iojYgs0yYCwy1XlDC4POv8ormJP+EhqCLnp6LW93PEnpT6a67Z+OtcZ//GPoYfBAX4Afby4ltn+lAiTV/VNtO4qhLULcGl5mEmevG30X1yA0P6+0SewP4ZkO4Z0dwDsyAiG97V6oiS44hqMmZdD2XmPM73DyG5MoTn5jEsXJb0yilDd7FXJo+skKGwWCWAFCxwzOERFxAyLLolFBjcYs93MVh25AoPmqUDHmrIB6bpCR3kAjy8uWe6FfUVrHc7iXpupYz99xHPMKtnsL9xLgkoyIeAhrm0ONf/HoWGLZiYqpJ/m3Evv4X28kVk+PJDaH9aIx7uuWppcLEPzoGV42OsJ82eh2X8O48U969yT2Q1huWEJ0K1Kjz4iIHdwjNS7NwM63h3395TcmUZz8xiSKk9+YRHHyG5MoJZXLEhlZhECY2IDjbLljkYziGQgTAxCmaEwzST7XoY0n1W8WsQRX3C1c3wa2++7c3cRPGk39DBxiPfhdHsIkpR4IYlR+TWXVHYfUfHdMUqYqFQazsboG8xONDUYqsPWnurYbuJe6ZToPQSOw6bnO6m7i8+tChcrPe3p/VaVlzGNYcGry2vZFJoGdknALIucU8txffmMSxclvTKI4+Y1JFCe/MYlSLncqiFEJbVcakJGaluP1YcLOGBxUJzDO+RgEvz6IXzsoo6RyYLpnmthCx4vg+16Ak4zKRGl9JoXe80fFRGN7Xa9Rx9/0QYtwNtqp8FavYW1fX0tsv1SRbPu1bnfxTt2B5yDszsDNR09g1nLLMyjfXcIz2Owg1mjseqtC5TcgAjZQpz2BkmW67Lbs28B7cgXv2Fl9K7FX66tO5zbGJICT35hEcfIbkyhOfmMSpZzWCwmSeEUONnIclTA6e9hSOnoIQt4hbHsUKgwOwRVHv2TkdiLNjnrrkSuubQBJDSISiXtzKGMmsakGp+QhiKFZpmv4qNbncrDT6y7bhFh4/lfv1MW2/6W+O1muQztevzqR2K+yA4k97el5VyDY0VUvYL0iIt7uVIBsc5zKeWB9qMz31UbFtJtCe1FSaTrlELppg98Jyt/rjYqS60aFfX/5jUkUJ78xieLkNyZRnPzGJAoKfntQxHIQKyoQ9yb5UGLjFsHvGASsMZStlh37j1EpKw016NOQBThv9R6/jSTGkHNvC+45EvxI9KGBJhelrveTTNf1AUyNbSuMncH6fL1Wd2F1pgMs1vCevIIehU8LvedzcKvNwIG6hrWmUvLvtgXnHsRQjIPYFlx/09Acut3yBOS7UAk7l+4y9O6QUEm56i+/MYni5DcmUZz8xiSKk9+YRCnJ+UMiRAHOtmKvvx0kVPVATIuIKGFbcm9RKWMO11jB8Q72em6ajErcgOBD4mNExAacaDehbr59i0PwLiQgzsAd+DJXN9e41HveZFpOqr7J/zs3xHTviP5O1wfMhTEDl2UFz+AIphqTo5ImE9cthbD0PpLjdA8TNUiwXYHDrwExtSZ3KGxH0Lv9PpBQ2etYTmyMSQAnvzGJ4uQ3JlGc/MYkSkkluOQwQhEBprkOoC9fBftGsJhTw1AMkj9oqMUEYp+qnhkn4NLawjW+K2Cibsky2RTum9aHnGQUI6GKnGmXjbrLfgvHu4Xy6QmIgBERfRLjQNwdwDU+qFXUegKO0SEIdEt4fl/01UX4ObyzV3st3Y1gAZmEvCGIjfTO39bq3Otakl2DKEx9Att6XhLsTATBHsuJjTFJ4uQ3JlGc/MYkipPfmEQpR4WWfxIkGAwLdUr1WkQkoqtTixyC5LR7ACNPPwFX3EGlKuDtVu9lsdcYiVwRESO4xgGsBQ0qoUEgJNp0FQGp9LfOdV2PoKQ6ImICfr4CBLGHJPhBWe7jUx0icfREr7FZgqPyyw8lNh2AQw9chBERK3ifaGgLcVhouTTlAbn+tlR2DMJgmUPJMrhuI9ghSO8OxWooJfeX35hEcfIbkyhOfmMSxclvTKI4+Y1JlJIU+872XqoRp6aHLXbFDVh5adsJ1F+T8t0HwbfK9Hh7sK/WcLwtKO5tE3sK2J8al65g9DYpyNRElfss0HpDLwCYUtN2L1sYf97L9TzUrJPWezBW9boYwXrfduvvQH0b2pqtktpPE6kI+remgI6w9AzWe73nChqjDgr9F2UF/wBE8L8K9M/AFv5V8MQeY8zvcfIbkyhOfmMSxclvTKKUJYgQWHMOvxMkYFAt8rxFYOk6KpmEFxKr6CwraODZNGDRJOEMjrd7H8EPLLFZofXpK7DZUj04iaEk7pGgtQIBag9juyMCPwk9qOc/h6aQb7cwhelc7/nmUq/x5UzHdn/Z03NcZnovbSO6abpPm9B5lx683yRo4yh3sOIWIJpS/k0Kvr5Foz0LLjZqnZ5utMcDTRryl9+YRHHyG5MoTn5jEsXJb0yiYPE9O/y6TRGhUck0JjmCxUESEUlkGYAANQIBawBNE+lW+uCoG0HsAM4bEbGi2n1qXAruOZruMod1vIFa+ZudikBzEFJJGNyCwzKCn9cNHPMZCFj5QB2MV/WRxGp4Jb4e6PvwgsZfw9huur82SnQmkoNV30WqlV9QvlDfB3jxRtDfod/SE4Oa45JoToKf6/mNMb/HyW9Mojj5jUkUJ78xiVLuQHRrWppU3oUEIxLx2sZSk7vpANxuJ5nGHoJz7yGIX/eOtFFkBs0eh0to1rnR2MGaJ/acwljsJdwfAX1H4ybXa3xDE4Dg95ucjjtYm/eByq8vYErOFtb2vIKmpfBOvN5ps9U3zUxiKxD8yJUaETGG92kMw8nRzQdr28D9tZ37LlSGTjEUC4OvkXKIoBJxf/mNSRQnvzGJ4uQ3JlGc/MYkSkkOIRIRSIRoK2+9C42qjogYQMnrIQg0x7DdMTjEhrmKUv0BTEnp63ajQ12Hh5Xe34/0tBERMbvU676+UbfbeqdrQWXHUxJDQTirChrHrLELnPbDrrgSvgkkLNYg7l6DCLjI9BlQCfQMHIzTWt1qVNraJnzVpd7jHibxELSOlAckaFNuNLTeoM5uwJUa0VK+/R7jvO/iL78xieLkNyZRnPzGJIqT35hEKZcwCIBcR20uPTlgx56AbXESgog5HPKiVkfe8FrFnXsP5hIbP1bXWO9T7SmXHWssIuLgUnupHX95KbHlOxXt1kuN3c5UQKw2I4k1fehvCKLpDhyDVCIcwc+g39WtSEIXxOh4B6HPj0q8qTy1bilPpveWRLJtASWvIPjRuHjsrQiDM8iZuAgVL9vK5+m6aZBHV/zlNyZRnPzGJIqT35hEcfIbkyglluBC+V9XJ9EehKUNiB8RLICsYbLtDQyceAPTUksY8FCsVSQ7WGnp6OFY7y871H2zoYppERFZX49ZTvQah7AW1RLODes4uYCy4x2UotLaUN+6ln6EJMRSOWlX12cPvjEn4NqsoVx2Vk0kRq7URc0lyzSdlvrwEUO4Rvpc0oAVfLchRuJlm3OWcnBd6zFpYAhNePaX35hEcfIbkyhOfmMSxclvTKLglF4y2RUgNpAwQbE2wW/eqEhGjq6ygKEduW43hiESq4791ehncH+j5aTN2TXuvn2rItTmCoY+1CCSQRO/7Ub3XYG7bAXXvYQ6USq/bYNWjFx/1OOugu1G8ExHIDYuQfA7hP6Nh6UKsW20vXt3IZG7hnWkqb9dS21J3KPraxPXaf8txIgc8sBffmMSxclvTKI4+Y1JFCe/MYlSHpTaZ46cWw2IHyQ2kNupTcCYQy82ciINoAfg0V7dVyXEDuB6Rkfqisp6IM7d6PWtXrCAdHsO/fpWej1kLqtrPfe7tR7vrNR1uMp0bTc4OKU79LRof/py9MhJCO8TreKS3h24GhrEwfOmubQWXYgwGZdK2+ld7trLEgVyctOCQ69t266Qa9NffmMSxclvTKI4+Y1JFCe/MYlSHhQqLJHQQULeOlQ4W4FWsYaS3AgWY2a1uv6GUOZ7P9fefP29XvdpT6f0jj7RaykeHUlsP9drKd5qr76IiD2ce7VWEWm2VRHwMtP7O6v0d/lVoYt7CQMx1h1FKeqtFxGx3XdzxQWIZFQmDKbG2MJgihmcl65xAOcdFC2KHxhYyZFHvf4oDwgSyFlgg7JaKrVt6eG3x+uB7ze5VT2l1xjzO5z8xiSKk9+YRHHyG5MoTn5jEqWk+nmcsAMqft0ySvgupDRGtNRBN3qi20YV+1V5KLEBnOb+Bzqdp/zpQ4nlTx5JbL/Qev7+7qWeJCIObnXb6VT/kXgD/1x8XamK+yrXf0imoIbTtBhSyKk2fdOi6tP+pIZTjf8A3p0hSO4lTQWCb1EDyv4YJ+m0NCNFq7reywom/tAIc6rnJ2sw5VXVMqr+LmRxj4jIwfZLNf70bwFZg/3lNyZRnPzGJIqT35hEcfIbkyioQJCtsc1yeBcShlonkICAQRIijRFfgVg13ul5xh/pdvnjDyWWPf5YT7yB8ckNi5zVb7+U2KxWK++zvv7ePs/1/q7BEk3iHoG9F96jgSeJZCU16wRxbwBC1/09jOPe6TluQRCbgqhMMmUF9uoI7iVA7+gamofO4W2cgZ2a2BTd+gigDbil6SgJ7JSXXadw+ctvTKI4+Y1JFCe/MYni5DcmUUqa5EJTfKgWmSAnUZvDj4QX2hanmsC+IxD8igkUdA+0h0FU6rzLYALQvoDjRcRmqvGnpTaafAri3pud9g0gQfP/G3KmRbDgRyO6yVV3vNdj/vlKhaqf3r+U2PW1TuL5ajeW2HkJE45aXs8CXj364pGMO4epUNeUGzASnd5PEtJXmb4P6LANHvGNzXY7irv+8huTKE5+YxLFyW9Mojj5jUmUkso6S2rC+P88qSSCxT0SK7oKGHjuBTRrfPcONoRzzLUcuPmfp3ieF0+PJfabSo/5cqelv1dQskzlzl3Xm8pJh5m6DUnEi2hxjXVsAHoITru/+LMziY3/7hcSe/TNbyX2yT/8RmJPf30isYsGRNzgEe0k7tVwzwsQ8nog+K5zXds1uPH2pD5+T0ic79qM1F9+YxLFyW9Mojj5jUkUJ78xiVIuYEw292vr9juBE0ha3IHkBuReYzARBWJLEGhmz9Rxlo++0djghcS2b9R59+1/a+/AiIj/zNWJ9jRUMDyvZxKjZ0BCLI1Ep2fVg9LYUaFuQxx1Hewww+k18EoMQPAb/tUTiVV//bcSaz7+lV7jXMXQH42eS+zDMxXdIiJmU73H6VzFwdlO98+h9+ANuD771I8QhDgS0vvwrOiZRkTk8Fy+36QhY0ySOPmNSRQnvzGJ4uQ3JlFKKpclwagPLibarq0ckSDH2rbR66FhByWch0o9f/PyVGIPL9RlV4D76mo+kdhXhQ7iiIj4stLrvgDnHpVlkpuPxD3al4Y2rDPdjp7zEsqLI9ghWEJ5KzkEK9Cq9u+mEqv/7e91u+cqxNbfvMFrvMvoQx4DX410fYpzdV6ur/VZr6HkeQW9/ggSpEkEpGEqBQjXbXyffpv+8huTKE5+YxLFyW9Mojj5jUmUclho77qjQnupnYLQRYLPCsSrq5zLLS/yW4nNanXVDQoVGxcgfn1e6L4XA72/052W3x5Ay7w1mMZe51xe/HqvLr0ViGzk0iL33fsIp3chEZAGn9B2ERF9WO9RptdYwbeDeum9+Cc4x7/8s8TeXahLcrM7ktjJSIXUwxN99hERWQ4DOtYq5J2DoP0Mnv+UBqKAcD2Atdl1LKtuc8SSiEhDSWg7wl9+YxLFyW9Mojj5jUkUJ78xiVJOQMi7D4LffRB8SnASrUAQAXNYRHQvR6TtLhstl53vVNQagJAzBuHlEITPAZR0LrEDXMQlDN6g675fHkhsRE4yEk4bdSZOa41hiTCIj117AkZwrzgSJV9B77p/3NyT2Gyr537X02scQBnsT9cqIP/gJbsVB3A9LzPd/5c9fW/PQoVFEjmPYNg1xU4gRoJdr0Ww60O5dB8eIcVA9/SX35hUcfIbkyhOfmMSxclvTKKUJIhR6SHR0ETe9+j/1weha5ir8LYEIY9ErdleRbcK1EYqT55CPztyX7WND6lBoDsBMfUT6PU32et55rke7xUIlSS60TOgwSdt05NpW7q/KYicX8Cj/goErDk4NG8aeH7wDM5KLb99UXKp9WCva/YcJuN+s1O3KfWTfABieA9EyYfwTE9BKz6pNTgJLk8eFyqIjgd6L8MxTPOFUmR/+Y1JFCe/MYni5DcmUZz8xiRK2Tap9S5bkLrIjVeT4NfSU2wEwhv1NKMBFuRYI6GqADGm61CDDfXWg1gEOwmf5CoOfQbDIciRdQV93FaZiqGXIJoSOP2YJhO/B/QMrnJ1XlKJKj1TKjum635b3EjsRaUiYASLyrNdtyEphyDY0ptDQzuO4DV5VKsQ90FfXYQnp7qGERFj6FPY+1ivMf9QpxhnQ3U1+stvTKI4+Y1JFCe/MYni5DcmUZz8xiRKeQ+aaw6hjr3s3BRQf0/a9qV/AepM1d05KLY0lSaHfy5wXDVYiIeg1m9BaW6rgSdV+XivsQMQ2Elz7zqzhfYlFZ6adbap/WQPpglCNPGH7Mak9tM6bmBaE133LdTZX6zVnhvBzV9pAtQh2IOpESbfi9LAA2xg37LU+xveZ3tv/yf6j0b+Ax1/nn3ymcbuP9Z98SzGmD96nPzGJIqT35hEcfIbkyjlY2jMmUGjwD3UA8OQGxSL2kykPbKcQqfBWxDjFmDRpPprajxJ4twAYhk066T7i+g+JWUNm9GUmwWch5qHrqAuvqvg1wYJgSwC6r5knS7ybt8YukYSGuum+72sChBi+9pToStkc1+ASD0Fe/aw0HfxcKGC++mS7b1RwTt6oA1hs5OHEssf/0RjfBZjzB87Tn5jEsXJb0yiOPmNSZTy/q5bk8o1CT6wXfMeU2AacPhRU1AS6LApKAgvRA7nLWmkMtxL3SLs0V3fwrSYPghBNOL5OlPRbg5CHtX0FbqeAAAA/ElEQVShUw08iaG0Dm3Q/m0NQLtcD52bhEYS90gYbBNiCRJEaR1pDPwtNP8cUJNYWttS37GiVsHv8KWKeBERw0+0j0H+0UxiWQ3Ti0oV9v3lNyZRnPzGJIqT35hEcfIbkyjlANx8uCHE0K32HiffwbnXVJbbcTw0C13gIoQY6Xh0jhLKnSMiGpBJL/cgvNCawfXcggA13+vqbkG86irE0f21sYcLp+umc5Prr4FLJMEPJw2BuNd2zyQOLkEQm+Y66hxFTjh3CetYkaAJpcTLCt6nzZHGIqL3H3ovjw+eSSw7PZXY/sMfSsxffmMSxclvTKI4+Y1JFCe/MYnyv8Yl99MyNrf5AAAAAElFTkSuQmCC" y="-3895.416209"/>
</g>
<g id="matplotlib.axis_219">
<g id="xtick_328"/>
<g id="xtick_329"/>
<g id="xtick_330"/>
</g>
<g id="matplotlib.axis_220">
<g id="ytick_546"/>
<g id="ytick_547"/>
<g id="ytick_548"/>
<g id="ytick_549"/>
<g id="ytick_550"/>
</g>
</g>
<g id="axes_111">
<g id="patch_112">
<path d="M 299.674375 4020.317972
L 421.964375 4020.317972
L 421.964375 3893.024445
L 299.674375 3893.024445
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_221">
<g id="xtick_331"/>
<g id="xtick_332"/>
<g id="xtick_333"/>
</g>
<g id="matplotlib.axis_222">
<g id="ytick_551"/>
<g id="ytick_552"/>
<g id="ytick_553"/>
<g id="ytick_554"/>
<g id="ytick_555"/>
</g>
</g>
<g id="axes_112">
<g id="patch_113">
<path d="M 434.924375 4020.317972
L 557.214375 4020.317972
L 557.214375 3893.024445
L 434.924375 3893.024445
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_223">
<g id="xtick_334"/>
<g id="xtick_335"/>
<g id="xtick_336"/>
</g>
<g id="matplotlib.axis_224">
<g id="ytick_556"/>
<g id="ytick_557"/>
<g id="ytick_558"/>
<g id="ytick_559"/>
<g id="ytick_560"/>
</g>
</g>
<g id="axes_113">
<g id="patch_114">
<path d="M 29.174375 4161.735633
L 151.464375 4161.735633
L 151.464375 4039.445633
L 29.174375 4039.445633
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p7c5b860486)">
<image height="122.4" id="imaged3bc6b6fbc" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmOJGeWna/b4FOMmREZmUkyORWzitU1LKogqCA0hIZ2gt5AT6PH0VJ7CdoIaEglSGxI3cVmk8WhyJwiY/R5MjMturoAxfkMMCq7F+J/vuWFudtvv9l1A46fe2/v3737b5u4QxUSioMmk9gHm1piPx5OJDYY7CQWEfHlzbHEfjvMJfZJo9/5xfpcYuerW4lVta5xVPQlNi4GEhtkpcTKnq4vIqLX6+m5Gz03xXZNJbFtrTGizHQ9e/lQYuNMr7mNvKf3Og+9vg2se1ItJbasNp3OO4T9PihGEruXaeyg5foKWDc935Na1/jt9lpj8wv97HohsXGpz9NPDt+W2L/pP9HYbi6xiIjHT/T5zgfwPC31mZjf6v7oXTbGJIGT35hEcfIbkyhOfmMSpbhXqyASIJIcVyqSPGhUJBkOVdxbLFiMeVUUGuvpd95WK4nNd2uJbSo99w6EswzEuTLTtZDgR8JeREQP9ixDsen/nQaEqrrRGAmICxC02qB1E3SeTa33gNZN+9UVEuzWsJaIiB2cZxcqkm063pkCBNZBoc8JxTaN7s13oc/xp80ennv1tZ67zPRa5pU+yxfwLPvNb0yiOPmNSRQnvzGJ4uQ3JlGKs52KJwWISPebrcQeHKizKctVgLhYq+MsIuK7oZ7nolYBZAqC3xaEJRL3KEbC4DaH7wMRKQenYwSLZDUIU11Fu67Q99G6GzgHre/78CbOxD4IZySmdRUfSQSM4P1pO/Yu5HTs5yqm1Y0K2vTZda059HU1ldhBX88RETHZqbNxBJcyA339EoRBv/mNSRQnvzGJ4uQ3JlGc/MYkSvFuoyWYw1LFr6NjFd1GBypgTC+1lPFVru6iiIhXPT3PDEQREpZIrCLhjEp616Hn6IMrilx/baDDD9yAbyLudYXOUYODjcSwts8TVJ5M31lAGXSfHJU9fU5GWFat76zv8xZ7E3chCXkZxIhVpc/d5W4msc9aysYXuTr/9uHYLdyDKbgL/eY3JlGc/MYkipPfmERx8huTKMVHv9CeZOURiBqHKrzUMxUWrl+pAHGds8CyACGvgnJLcnmx8NJNyCFBi5xp5CJsg85NayTxi/rwZU23a3kTobFN2GsTArucpwfvExL3xpkKw/dydbCNQQTMv4eQSm6+Cp67FdxrcuRRyXLXsvFdpsctodT6NYiAERG7AvpRwv7QG30L4qzf/MYkipPfmERx8huTKE5+YxKl2PuL9zQ6ghLctQoTu8+eSez7GNhooEI/oEcauLxIOKP+ehSj0lEq1SSHH4l4bZDQRQM1Br1uTsIdDQEBgZSEyu33cPhRD0ce5KEx2u8RDNQ4hH04AhFwCOcgB9scXJsREVMQ1Ca1ulWnO3W63mx1eMZ8Q+Xlurf4PHUc4kIiYEREtdNjKQ/ovhRv6Io0xvyAcPIbkyhOfmMSxclvTKI4+Y1JlKKZq8oZS22i2UxU+Vw/U1VysdqXWN7yEzMEBXIPlP0lNEgkJZ1ssk2uyjApsQelWkuPS62fJiU1glXuPVCvT2G89BFYNIeg4pJV9RYaq55X2liVFG7qkxDBluE+/CMx6NjvAPssgMq9gJrzNaxlCcddVjzW+nqrVtnZTvdivdN9XEP9PTV/peaoZO+l474P2Iw2qE6/ox3+jVZjjPn/Fie/MYni5DcmUZz8xiRK8eI/6MSQDESyaqu/E5PpfYk9q8cSW3E/wihBmBiDvXcfhLP9Qu2hi1KFyiJT0WaUq4B4Uh5I7El5LLEDEOciInK4FmqueNqoSHa/0s+ewEj0MTQjvSr0Wv5HqbGvKxW+2sZSF/BOoLp66jgwAwHyulYB8hZEyUvsTaBrIaHydqvfFxEx7yjukUW3pgal/8gNWN+kmWgEW7Q3sD896A/hN78xieLkNyZRnPzGJIqT35hEKf7T5IEES9A0BuTSAhfTDPSwecYiCYkQffg92gN32WmhTkISY1bQhHEfasnfL+9J7Gc9PcfbOxZoaH8KuOwjEJZOcxWlzh6qQDd+ALXpz/VaJpMziV1CTT056iL4HnR1HKJzr1IhdgL18ySwDWDaE7k725q3kqBGbsw8g/egLid6WcfvA6GSjiPBrq3PAjXhpP2mGOE3vzGJ4uQ3JlGc/MYkipPfmEQpvsxVgKJCTWqkWNIUGNBdqOFi23kGIJRUjYpNJ1Aa2y9pXLGKH3vgVnsXvu/JVi/mR+AYi4g46KsYNxzAqPNTFbr2PoImox89lFhvrGvM/8sXEis/0fWRWLRqEfwaGhENt5Duatfx3jzhSJ+Iw0Idowcg2N722OHXVfyictkGhOquE5KoSWwJ+9p1elQEOxtp3TS+3iW9xpg/4eQ3JlGc/MYkipPfmEQpqh64tOhIEE5qEDqof1gbJJ5QaWxJvf5AVxqBaEcuNColLjuWPPYzFpAOD1UIPHpHY8Ofq5Mw/8XHEus9ekdizfRWj/uvv5cYOQtpDysoEY6IUD8eu9Nof0hYGudakk3TkA5hRPe7uZZaH4Ng+xWUfUew+EXPHYlp9CyTkEdTc0gEJPGRBD8aAx7RMompRRzssh6/+Y1JFCe/MYni5DcmUZz8xiRKkXcVukgkgxi6vlpO3j4i+v+GRMAcRJYBCTnwfUsQdyY9jZ3DtJHTnZbGRkQcLFWEOoRBGb0B1DwPQKwCYSlW6g6kEtOznV7LA+jrN4f+hhHs/KO+cCQilvD03M/VpUc9Ad8GwfaXWxUGT+D6joaHEouI2JXdxlqT4EfHDWGoDAmDNE59BaO351DuvIYy9AgeItJVRLTgZ4z5E05+YxLFyW9Mojj5jUmUYtNTwWDckJAD/fZAryOBbd1i+tuiuxDKEeHcAxAqD+C3bAXftwQP4xRErmcgpg37LUM75upE638LItnRhcaav5FY7/AbiTVTnUTb1Hp97w30uD/bqSC2gNLYiIhnjZbHbmB/KtjvEQh5Jz0VGx+Hxn6yVYHtl9lEYmfvaX/Dkz+oczIiIhto/NO+nnsKYhwJeSSckbi3A5mbPrsFoXEK/Q0j2M2HJb0g+OEkYTyLMeYHj5PfmERx8huTKE5+YxKluAUhpweizfgfdzhpK+jmA3FvTMM9oIEgaJdYdLwDYZD25gUNd4iIcaFOtP0bHfrR/0K/c3z7WteYaQzb0cE13ztRwe/j5ypyXbeUwd701Ek2q9WJ1oMF7cMEZCrBfbtSce9tmJ578pZey8HHes0/faj7FRGx+632QqyH6jj8Cu4rOUErnuQhIWplSD38qAS6bRIwDuiAsmx2/YEAiWcxxvzgcfIbkyhOfmMSxclvTKIUk0adTQP4TVhQ2SJOHVXaSnqpbx5BPdeoNxs5CencVIpadFwLuRIjImbwM3q1U6Fr9FpFwNGUSzjv0oNzD0YqIGZw3NFA7/OTHQt+X0P57wRKWQmaqHwEqus+3JghlFVn1JAQxLnybRXxIiLee3gjsbeuVAR8masYR05Q1FxpgjUcSUIclRK3DT4hxyH1VsQBK3b4GWP+ASe/MYni5DcmUZz8xiRKsQbBYQ1lvguI7UDIoV+Ttl8YKhMmhx+V+VKp7qpFjOtyjn0Qqvqw8gOYGBzBE4cXIEy93mkZ7WimYloO19LP9F5tNnRmWAscl7donGeh61lkLKjJZ6F897jSfRhCKXIP7ulurftdTVS8zOH7IiKGR7pnj19p7DjX/Zn1YEgGuexg3dTzcA4uyflOY229LfuwxhyesRXU1VdQ+us3vzGJ4uQ3JlGc/MYkipPfmERx8huTKMUQVG76RSBbY0PqOthkSV2PaFH74SuhZB3XQ81I0d4L5z1tdB9Oa92JwzavMrCEBqBbmgID/5qQGr5f6fetoC5+C3fwFu7zFNYXEdBak1V86rNwVut6Tiu9ljGNB4flrFe67vVrtUMX8xaLNOztu9Dg9BU1OAWb8wbU/jlY5KeVTmu63Wpj1AWo/WRnj2C1n6AeAa7nN8b8CSe/MYni5DcmUZz8xiRK8R7YNqnOnsQdkh9I3CtbXLckvOGvEX0eNJEMxB2qv6dpP/dA3Hu0U5GEhLiIiDnYLK/AP7sBkY32gerdtyD40X6toMZ7AmuhHgQRvN00xWkM+/hgp58+qdRaOoRa+Qq+bzLTngMV2IX7A5oVFZGBgjwaqUD39EaFt5tczz0Fy+8l7NgCRm/PdyoC0sSdQcG9E8qMLNq6FxSjXgJ+8xuTKE5+YxLFyW9Mojj5jUmU4jdraNZJ00tAYAP9CSHXXkT3X54h1fiDqEX1/DzsWKFLqfG8/Hly8y3gAmmN9JVruL45CDm0h9TIlM7bOjodBCw6D45JB+feAdbF62evwEVY1Rrbm+k5jhcq4kVEjEo9d1GAyAa9Eh6CePkMRrSfg3uyK1SPT4JdWxwn/mTqsiwg5je/MYni5DcmUZz8xiSKk9+YRCl+fXohwdsbbTJ5tdHYPFREoCk+RcsEko56ITrOtnCeBYhu5LKbZuDIAkHsoujmdGz7zgmJbC3NGe8yh9PkbR0370BVx9Rkso0K1k3XTaXWOdxrmjS0AH/oeQGlqLA+MMXFCEqJIyJycGlWsHByFw5hz6hkeZKNJDYrDyRG03m2cDEliHMREQWUg1OzTxrbvalgshOexRjzg8fJb0yiOPmNSRQnvzGJUtz/qTqjxs9hbPcLFSZmS3Vf1SCcjPpcbtmHeAOf325V6KAJNFcV9FwD99UChKpb6P933VWRDO4fuKKRzCDQkGhDQhf9UlMJNY5ypu+j8c7BI6JzOHYA33pe6L1a1VoaO8v1aqjEeAgbMYCy6gL2PyKC2hSS4EdQn8GzSp+nqlAxvC6OJUZuvDmU/tL4+Qjuw7eqtXchlQmvd3qc3/zGJIqT35hEcfIbkyhOfmMSpciGKtDk0A9tMFTBgIx7Zaliw+ED7V0WEdE/AXfSAtxgr2GMxJX2HlysVYwZtLgL7zLr6bpvGr1mGtoQwT3SyFVHYlqbwHOXAgSjAbgsh+AEG8FxbZAQSCLiBES235UaI3dgBj38qJfhY3g/9WG/yozvC7kL6VpoJPoQ7ulxpbEt3Jcl9P+jMecFXB+N9/77uOYlxehZJBHQb35jEsXJb0yiOPmNSRQnvzGJUiy+VCFgM1fhrIZBCSTujQ/BHXjGglZxpqWQOQxP2NyqgEFCTgNCDp2Z+vCRG++6hsELNfeKq9CTp7D7jgQo3e8RlMHuZ9pT7hR64R3A0I2ipTy5a0nwDAS/1zCx9gb2kb7vXqYi2TBXkWyzhZLcFtde28Tbf2rItUlCKvblaxGAey336y7o0IRegX7zG5MoTn5jEsXJb0yiOPmNSZTis88fSHCUg8MPBh0MwfWXw0jerN/yG0P1lnAomfR2IEBuQdzZgMiyBklrBY4zck+twPUXwf3ZSGzqQ4nxAKavDuG4g0yFvMc9Fcme7vSzp9TLDkTTiIgZiEMTuFdb6FtIbsUJCqcaW+a6t+NcnYkPSi2h7W/BBRoRI5gQTOzgXi3AFUnDWagU+RYco/OKHKM0rbibeBwRkZMDMofnqdD98ZvfmERx8huTKE5+YxLFyW9MohSf9FUwOoFeeKdrFSbOKi3VHY5V1BjM2RXX62u8XqnYUYOARY4uEm14Yi0MNYB+bdxHj11WJLyQe2sIjrxDcLYd9vS4h6HH/Rj6G/68Xkjs5FhjszmLZM836qpbl3oPSNCk/SFnGzngqB/deabP2Be57k0N7seIiMOWYR76eYUGw0zgdXkF4t4VOB2XIBZ3FYojWkq64Xk6KvX+4X3BsxhjfvA4+Y1JFCe/MYni5DcmUYovwVV1CVNCb8A1tN1oSW55Db3ZhuyyGoDAA6Y6HORB5kCCyndpUi6V5NIvIzn0IiIyWFAfeukdgiPvAQh+DxsVcp7s9Bw/a+YS+/CXl7qWx1Dm+3vurTj/XI/9BgQ1GlSy7ehOI4G0qzvwW3oWYXBGRMQ+lDITXMas0TW4IkncozLmtt58dyGhOIKfxwIckDTNl/bbb35jEsXJb0yiOPmNSRQnvzGJ4uQ3JlGKS1AqV1DHvAYbYfT1uHK1J7H8nBXgo2qpCxp0a9bZL/VvgRHUrGdwLaQqk6VyAMr+qGWsNSn7Y/j8Mdh2n9R63NONrvHDwUQ/+yuNDf75hxLr7et92et/IbGIiINv9JloGlXTZ6Bez+EfnC0ch1OKoHEDWX6ve/ovBf3bEhExgfcbjUlfwRo3oPY3sMY1fHYNf1uhHRqnIzHY6BWOo/4QVbie3xjzR5z8xiSKk9+YRHHyG5MoxYr8tNhXU4MvQWQZQN13f65iU0QEaWd7B2qLJPp9FVlGK72Wca0C2yCHumi0ROoCD0Cw+/u4XvcYrKUntcY+3Kiw9GdHVxJ7+M9UiOv/5ucS6330sS6w0r3JLvQcERHj8bV+50yPI0FsDjXrS5hy9H2aVN6FLMQkukVE5PCQkdi4g2vpusauz84GmsTSedss0tQDga4FR3TD/vjNb0yiOPmNSRQnvzGJ4uQ3JlEKEkp4ZDSNllYyaK6YNdwoMkBEur9R8aQPo8ArmNiTgfgxrjVG46oXUK9ewuSas4br+e9B44Ah6Db3Kg0+ybW55v33NVY+fUdivXfe05Mcn2lsfqufHWs/hoiI4d65xA4m4LIE4ZTeJuSKI6iOvQQxjc7R1lh1CEfv0dSkUAcjmQax7h8cqEs4kty0F5Xe5wUcF8GiHYl7FNvUIPjiWYwxP3ic/MYkipPfmERx8huTKAU1FSR5pqIySHAsLWB6ybrQBpUREUsYOf1gp4LhcNtNMCKP1wpUm2OY9lPCWvZBxHu047Xsg6BSkgAJ+zMescBzl2am4lBzo806e0MQ8rZwjpYy2OGxXsvpd7ru01Lv1Tk0I13ByHcSpWiaEZVK96GQdQjHRUQ8gFLWjzd63e9V6iylUfVrKL+eggh8DiOx/67Q41YZlUXz89DVubetoTzZgp8x5h9w8huTKE5+YxLFyW9MohQkLnBfMXL9UWksiBogckVEzHMVh57BtKCy43hhKqMcgLtsHyYAvaeVqHEPymAPAkqgI6KE6TU1rhvKSXd6NZtb2Idn6tIr9v6g51h3K4turvT7IiJ6ha7xJNfvfLvSUu2LXJ1y24z2Rs9BpbEFTZqB55OcfBERx3CvP6y1B+DHv3qt63l6oF/YA/HyUoXYyad63qNnDyU2Heo47VnG928N/QxreL5JGKwh5je/MYni5DcmUZz8xiSKk9+YRCmmMDiD6Cz4gUtrAy6miIg1ePJI4CEhr4Rzj8H5dQo99/YbGLABpb/k0NvgmISIFXxnReuG7yygh99yqusuX8OwirE6/GKpglEz18+ufw811RFx/Y2KUJsaBEgwCA7gvgxbxprfpQ+fpeeOytCnIMRFRDyHARbPYUz6j+Hj+ccw/OTDH0usWGkO3f+rTyT2s3+vPRO/WJxK7FtwSUZEXPdUWGSHn14MDU7xm9+YRHHyG5MoTn5jEsXJb0yiFNOdihUk5FGsAEcWTl9tgZxIeG4QfUhEaqAsdwxrXEOMSn83UKq5bCmDXcDPKPV7O4Qg6DMxmKlAM7iBsswCRMBLFfzWr3Xdr/5wDCuMeLFWwe8i1z17AU7AKxjaQYNhSLBt4F1E4t4MzkElqxFcMjvuq3PvR5/ek9jH/0onIPf29bjYO5JQdqLH7R2/lNg+aK7UOzKie28+iu2gzNdvfmMSxclvTKI4+Y1JFCe/MYlSrCsVTwYweIOEuK60TTutoAyWhy+wyHYXEhu3EFvAkIXLnKa5KrOMBc0pTVuF8+yDmLMEF2K10nLZ5hVMDV6p4Ifru9VS21drHtpxBeLey0LP/V2osPiymktsDYIflX5XsLdUskpl6CsQASN44u1z6K/31U73++lXKtD1PvpaT0IltJc66Xi31nuPQ0Aw2n1AR9eY3/zGJIqT35hEcfIbkyhOfmMSBWstyblHpbo0QZU+S7GIiD6IPiOIjUEQo/LPAfyWUf8/klO2oCnSoJJFi4NxCn0KZyB0XcBnL2GYwzXs9+VOnWmPzlW060Op9ApKkWct92UJPfJuQZx93ajYOIH+eFR2WoO4l0G/PaKBe9A2CXhLg2Xgvkxy3cftK72W/Ksv4STQW++5lu+ul3pPuz53EXzdBE3ZJvzmNyZRnPzGJIqT35hEcfIbkyjFMFe30x4M0xhDjAS/riW5ERF7UIJ7Av3VDkHwI6UyB8Fov9H13IMpvUNQAdcgfC1ZI0Mn2YRKT0H8uob9uYG9uejr3jyudW+OK43R8JIdXF9ExBReCVfQI29aqdOOxD0S48i5RzEa0NG1vDyiTZSGz9P+aEVvVF+/0OAG+uiBWLjZqGALg6BbyeFd3YcehQQP4jHGJImT35hEcfIbkyhOfmMSxclvTKIUR6U2a9yHMcsjUNxJSaWa+ja1/6inivY7oYr2aQX/IIDTkXTPw0oPPIIGhznW/cMUnpa+Bi+wAShYfutu47Op6eUGRl2vYLrLKVmk4Z+QHfQbiIi4AqvyBaybro8U6R7szRv9UwShvKWxKlnI98DqXMJWLC71+ex9plNzqHfodgGj6teaQzAIqTVf6J85zDfYxy3cU7/5jUkUJ78xieLkNyZRnPzGJEoxBsGIbLck+NEvB9XKly2/MfdB8Huy1WPf2amiMg6N7RUaOzxSm+VwD2y3K1Verq5VDF1U2ugxImIITS+JHdiAu9Zpz8Eu3Af7Mrl2LyG2ammsOq31PJNGrbwE2U1JBBxBv4JBi0X3LlT3n7XYXAcg7g3hPBNo4Pr7Vzp15+BC9yYH4bSCNb6uNNdWMPVoyG024hh6DtDeUhPcHOzZfvMbkyhOfmMSxclvTKI4+Y1JlILqfLs2AKTjqGHmHrisIiJOGhVeHu7UifTu/lRi99/SyTDjp1D3/8FDPXEJ02K+1Drt4rc6P/nFC55yMwbhjYQl2m/qBUDC4BYcdRs47iaojwCMd4bmlm3nJhGJRDsSL0mUanOx3QXr/uEcPOmJmYJ78lOYSPQSJlftNypSD0CvJQfqFMS9S3DeUV+KiIg9EN234PpcgzBc1Z7YY4z5I05+YxLFyW9Mojj5jUmUgoQSnIiCLjRohAki1zEIFRER96B74RhEqPGeusv2fqZlx8Vf/EZi2S/+XE+8Uddf77/9Rz3HN59IbPiCXXEjcGXR9CEqZV3CyOktiFIEfd8WXG10/0hMi2CnXR9ibc5NXQ+JlyBy0nEQoyah6xaT5BbuwQa+cw77/RLEWZwUBTHKA2IB19IGNvCk6VqQb1RW7Te/MYni5DcmUZz8xiSKk9+YRCnGUL5L7it084HQcQgCy1vUqCwiTnYkLOp55jNd473ZUtc43pdYfvaBnmOpjsG6r+cgqNdfRMQQXFljEGNoHxcV9MeDxnCbXGMDKGUlJxgJUC0De3DUObk0ydVIwuICxntPoSSbnHdrEIBJLGyjaOlTeJcFuOLI6UgMYW8OQ5+ncUchtg3KtzEIzRmNGwdh0W9+YxLFyW9Mojj5jUkUJ78xiVLcz9QphyWdoA7tgdhw1qjY9K5qKRERcVSrCLGE36OXc+2bd/ipuvRO/vZ3EqveeSqxZqXlwM23zyS2ONdrWbX8XlKU3GB03BJGXS92KgKSI+9xqd/4CO7pEZRPU/l1BA+wGMNYcyrUXsNXzqikl0qbQfyawlqwbLhlmAq5EOnICr5zCb0MCXLPkZiK19xd78O7xeKu3hku0zbGJImT35hEcfIbkyhOfmMSpaByWyqjJI7IzbdVWeLtRsW5iEAF4wUM8pjCGsfPjiR28NsvJTY4/M96EhgCsvqfKvg9f3kisYuC+xGu36Cv3A6ET4rRQIxHuYqhP6l0vx5v9Z6WLQ62DK6lgmuZ5frumID4VUNsS+WpHQdQfB+o398aS4L1mSBXHJVQk6hIsQoE23XHcueIiAJETRJtyUlI2+g3vzGJ4uQ3JlGc/MYkipPfmEQpxpD/u47OtGNwjZ3B0I17e1p+GxExX6m4twZlgkSkF7W62E7/WmMPx38tsaZW4eXV36hw9k1oaeRlS2u2FZSOkthEE5AfDXUa7BZKet/t35fYr2udJPwvYqLn+FDLmIsRC0vbud7tm9d6nj/MDiS2BhF4BS62EtxuJF51LS9vYwOiHfUKXEAfxQYEOhL8yF1IjsEVlCdT78A2qOXiEPsHdhMG/eY3JlGc/MYkipPfmERx8huTKAVNBCU5hXxtI/jsEMSUtl5xq0rFk0mpB1/DyNMCfrde3WgPv/7/upFYU+tnz6cq+K1gcmvWUoJJ5ZrUC++0B+W20D+QHGJPm4HE/rzSScIf/Wt1VBa/+rnE4uBQYxHRXLyW2N5//1xi1V/qNU/X+p2TTK+FxFDaWj4OHIgtA0jo8xvqFQjlu+QurCETyAk4CRUQV3BcBflCwzki+BkjQXQPhPh9yFW/+Y1JFCe/MYni5DcmUZz8xiQK1qd2/UUgF9MMHFAXM3XKRUR8Vaj49VWhYswSRJEq17LVo0oFseKVClA5DJFYQBlkDiISDeeI4Cmx5Ko6oMm98J1HJPht9CRvfXgrseIXP5FY79f/UmLZ8SOJRUTU188l1i+hTPjyf0vs4q/0Xp+H3pcFPDu3oaLbDJx35MZr6+E3gP0mSNzrtSnVd6ByYHIWklBJbsVRxjbSIyhtfwuGg3wEZfUnlYd2GGP+iJPfmERx8huTKE5+YxLFyW9MohSU/VTlTbE51LC/hG+8blTVj4j4vFAF8otap+mQfXKVaX35uNTzFBuNDWu9mhkorFtQe9tam+46lpgPaJQ3/AY/qPS4h6G23eEjWNF9bTza29eeAb2R1uNHRPQWanVujo4lNniie3vyt7rGEv6FoRHd59VCYpc77UNQQYPLca7niIjYyzRO/wCMoM8C5Qb9q0B2XLLd9uGfMBp9fgpNbCMi3q/02J9u9B+S90/U0r5/XydA+c1vTKI4+Y1JFCe/MYl1Fb+BAAACFklEQVTi5DcmUQpukKhwQ0KNXUHtfRuvoeb5tlbBaNVxVPJBroJIUWps2OhvHo2WBpckjpGOiNhAnMRBnLACIuC9Sj99eqiCWPmO9jDoHeg0o6hUYKsvv4MVRjTffaaxVy/18yv9zsEAJtqohhsLaGZ5s9MDZzt9HtgSyyIZjas+hGMpD94EmppzGmrPPav1uCcwXSki4oNCxc9HH2iz1r339bPZsYqzfvMbkyhOfmMSxclvTKI4+Y1JlGIIQodKMRHqD4rYQF38BNxXDTgBIyLWcCyJOdSEcdGoCPi60VUWUBrdB8GPBM2qZd1Et6HmLQ4/+PApiJxHD3XyUfbW+/rhA3XjxUY/27z6mpYY9We/k1j1dyoObl7ANJxdt2lPXXeWngdy2WUt9fxDcNUdgfA2guO6ul+JU2ii+SPVt+NJo/flwREopBFxeAYOz8d6XH6q7tfeocb85jcmUZz8xiSKk9+YRHHyG5MoBU3dYfFLP6zyQ8QWRED6vjZG4MhqYExODc01adzxLTitSATCa26ZAkOQP6zE8k/lAEaGnwx1d8cf6Kd7b4HiA+W7DQl+L5/BaiKqLzS+/FzXM7vQctnVWsU0Esn68N7Zz9WFRuW7BI3ObqOAUu0xiMCDjq6/Eh6TD8CU+tNSHXonD3Xi0uCQJPeIXM2ckQ2hQWkO73RQvv3mNyZRnPzGJIqT35hEcfIbkyj/Bzr/wTkr1iZyAAAAAElFTkSuQmCC" y="-4039.335633"/>
</g>
<g id="matplotlib.axis_225">
<g id="xtick_337"/>
<g id="xtick_338"/>
<g id="xtick_339"/>
</g>
<g id="matplotlib.axis_226">
<g id="ytick_561"/>
<g id="ytick_562"/>
<g id="ytick_563"/>
<g id="ytick_564"/>
<g id="ytick_565"/>
<g id="text_29">
<!-- 96 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 4140.957508)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-57"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-32"/>
<use x="139.013672" xlink:href="#ArialMT-49"/>
<use x="194.628906" xlink:href="#ArialMT-56"/>
<use x="250.244141" xlink:href="#ArialMT-51"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-45"/>
<use x="394.775391" xlink:href="#ArialMT-49"/>
<use x="450.390625" xlink:href="#ArialMT-48"/>
<use x="506.005859" xlink:href="#ArialMT-55"/>
<use x="561.621094" xlink:href="#ArialMT-49"/>
<use x="617.236328" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_114">
<g id="patch_115">
<path d="M 164.424375 4161.735633
L 286.714375 4161.735633
L 286.714375 4039.445633
L 164.424375 4039.445633
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p6a73490581)">
<image height="122.4" id="imagec0cbbde575" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncuOHNl1RU9mROSrMquKRRbJZrOblgzZliVYMgQP/An+Af+A5/4Lf45nNvQDBmzAmlhtQDKkbnWTbJLFKtYj36+I9KDhgblXGJdqa9J3r+FBRkbEjXsygJ37nNP5+2d/e4j3uDhs3g/Fu3olsWmzltiu2Uus2+lKLCKi6hQS60QHP5vCoFtJrAfnuNzPJPZqdS2x1X4rsWHZw3M/GpxK7EmlMeJdvZDYzW6u11Pr9dSHJukcBTyDYcH3cr+aSOxRqbHjjq63bKaIWBx2ElsedJ/sD7XE8LrhvKNOCWeO2MB3vtzfSexicyux2Vb3PO2JfaPn6Jd6jT88fiqxf2g+kthf/51+X0REZ3IksfrFW73GXy0ldvV8LDHOSmPMdx4nvzGZ4uQ3JlOc/MZkSlmBwDYKFcnq7kBiJKbtizQBqo3moJLRAWUkpQeiTx16PSTQdDq6DlUXBEn4XETEFoTOeaPCKa3ZAe6Z6MKzOiQKpHRsGw2sNwmL247G6PnVid+3gxgdW8A7q2i5P9o7dHyq0EzPikTJXlf3Iq3rL/sqDP7k31/juQd/PJLY7jUI8Reaq1fzocT85jcmU5z8xmSKk9+YTHHyG5MppcpUET34TSA316TFVZUKSYPrUDFuCy4tEoJIbFrhsXpmEm2i0PsjV2IEu9Om4Ios4fhNow64HYiSJBgRbaJkKijuwXOpDmnCGcVovavE+6N1aBOFaY/RMxwUur8XXRAWKUYuRHCCkuj6ZVef/W8/eyCxiIhnsxu9xlsV8l7dqBvza3Bz+s1vTKY4+Y3JFCe/MZni5DcmU8oZlFaS629Aogb8dvRABFIp5RtIopmDa+w2VBSh656Fllsum7QyWBJtKPYhJcfk+tvAvaxrjZEImOouI2HpQ0TAJtF918BX0t4hBujGTHsXoaOuRYglxl0VvxaFuuJWJeydRtehBCfoAAQ2EntpH39WqpMvImL5O12zBbhxX1Uae1fo3vGb35hMcfIbkylOfmMyxclvTKaUVwftw3fcUbFiEio2dA4q7gxB8BmTMhQBUkVE1dXPLsn1B7E7cNQtar2/VMGPaPtc6vHkQiSBjcqOSfDrFLpeJYh7JDa1XTP1XEx9S9CTpnJbEiUrFF31c+RAHeJu4uMrcOnVpa4tuTYJEoGPir7EqMckOVW/aimLfwfHrzt6/LSjIiI5Xf3mNyZTnPzGZIqT35hMcfIbkynlDBxwBYhuKNlBsAu2PRJyIiIGIBiS1EGC37taBxNcbqcSSx0i0gVhKLUUNYIFNerjRmIjlaPuqBQZ3GV0PX0aXgLXQrEIFqbo/mglyLVJe4di9AwGIOQdwbWMDyz4VbDHRiQswp6vy7R+lPRMRyT4JZbAX4JTNSLiFYh7NPxkm7jH/OY3JlOc/MZkipPfmExx8huTKU5+YzKlHIICSRNNyIa4JPsj/QPQcvIdqK6zjn7nTQ0jw3c6Znu2U3svWWf70KyxAuWbbKBtav8QasTHUCNO0KQhnPgC9l46x3HiedvA3gbwYEkLbzCaBvWCABE++rCjRi27bAh/P9A/CPTPTl3ASGzIgxX8Y0b/mNAa0gjxBfR8iGBlfwOx1LHtfvMbkylOfmMyxclvTKY4+Y3JlPJxV5sF9r9FbTqxAVviN8erMHEHAsZdozX5y72KgGTlJWgaDjVhJEici4i4B00XH3R1mkoFv7dL+NwWhLMB2FqfdFTcm4Bw9gZEpEvo5RARsU6ckFTDs6I6/dRJQwe4vz6Ni6draT0H9AOAjw7BWnyE1mKoyYemswT1oKDGqG19BGhyFdrALfgZY/4vnPzGZIqT35hMcfIbkynlp6F1x8d1Wj0/NQ+cg/CyaRFjdnD8jhpcpo6mJpdWYm0zQS67NtfeIxBOPw397Ajqy2G5cb3vwQcf7/X+6Pu2Pb2XSzhHRMQ60TWW2gPh27ABkWwJ76y2iUQ76skAsTWIdmu453Zh8X9DYjit64fw/z2i3W9+YzLFyW9Mpjj5jckUJ78xmVI+2as48HCvIkuPSnrBCfim1NgVjAeOYEFlAg66e+CAuy5VTKOR2NtaYyRKUYPKSaHnfVDw+OSHMOXoQa1rcQzmqxLEoYpKUUl0g2OXUIpMYhGVk0Zwieq3GWuOI8Mhdkh0lu7gXmjUdUTEIukbuTz9plEX6RTcpiTulYnj3Uk0baMLjsNURyVdo9/8xmSKk9+YTHHyG5MpTn5jMqXsgxAwgnLSIYz97R5UnDuGcdxrasQWXN5Kvdga6KW26mmJKolSi44KNCRKHZcq7j0pjzUG4mNExAQmxqT+slKJKYmAc1jHKYh7CxibRGXVbX4xKhOlMlPq9ViCKEWfq0BgLWk/gABcgchFImBExBr2MpXRLg66n+Yg+C2hnyRBAjLG4J7b+kQmT5Cikt4P6K1pjPmO4+Q3JlOc/MZkipPfmEwprwsYiwzi1arR34kduJNqiJFbLYKFmwK0igoGIGwLFeMarU6O62LOJ3+P82oisacg7j0AkTOC75H8czsQXmh5NiDu3cGzegfiHolcBA1siWDXGAl+GIO7pv6I5GzrgyB2HuqcHML1zVv66JFzbwufTXXakXtuttdhMetGBUQS53B0estzIZE01WVJHSr95jcmU5z8xmSKk9+YTHHyG5Mp5esuCCIVOK1gEARBhZXUUy4igip9SZggYfAERJGHUG5bgfhBTsAxlOTSedvES1od7FFI7rTEqs7UDnB03T3oHbiAe46IuAAR6navxbFUQk0utiGJdjDV+Biu52dbXdlPDyqwvYZ+iRERLyq9l5uuPv8ZiIALEJpJdKMS6OlWr5EgwY8m/EZEDApdnxGsWY+EQdihfvMbkylOfmMyxclvTKY4+Y3JlHLWUcGPyj/7IBiRsPRBwOHk01qCGHN9UJGFpstSGSQO9wDnFglsbb+Wqd+5gnsuwM1XgrBI56YhICXE6EktCnaSkThEk433ECuKtB5+Q5h2S26+n06uJfbx36ig9fRf7iQWEdF/eS6xL2GASQnPgPb3BgS2KxAvidQp0m0lvVR+T/tuAGI4uTn95jcmU5z8xmSKk9+YTHHyG5MpJTXzn4HUNQXxKnUia9tkU4rvQPLbgrBE4t4WBjdQvzaa0tsFkYyupWop6aU+fFsoE4UZKbGEn2Co1MVj/xBQeSvFSJgih18fHGsTEMlOqNdfX59z9+yexI6eziQWEXH2tQrDV40+wyWs7YrKjuEaSWCroIy5SZx03FZeTOXEtJcpp8np6je/MZni5DcmU5z8xmSKk9+YTCmnIO6RSLaF3mx7+ByJeCRKRLRMLU2cOrpNFPyo7LQGIW8Dx152tCngx+BMi4iYwLASFgE1RiW9a3BZriC2pbVNFAZnLVN6STCi0tPUnnRUvkuOM1qvm2st0z777JXEmjXvsUGlz3W0h4nD4Ew8wD6hvUjrQCJn6tCNNiGdBMMFDBGpoWSZxGu/+Y3JFCe/MZni5DcmU5z8xmSKk9+YTClf12kTbajpJan9RJtdMXVMc+r1UCz1HwDiFVzfpGS1v1voPwMn8A9An8Zxw/cdcCoNjO2GXgdbWAdSqZc4U4ifF02RqeHcpPaTtZTGs1Ovg980Op699wt9fsenOoo9IqKEEVCjLdm29XrITp068pv+tSLLL0H7OIInJNE/M/PEf2H85jcmU5z8xmSKk9+YTHHyG5Mp5d1+mfRBEoxI1OiAWFTiHJ704wmyDKeKgBQjkYsmsXzd6OSaiIgDFOA/ggkrD2D8+YjGksM5+iQi0QQgvEKlaLGRUnNNmhZDAhTV85OFleymFx298g0029xvTyT2J29ZiC3B6tqHvUNCLLE46DVOa53Os2uxTqfQJvi1xX/f7/Sb35hMcfIbkylOfmMyxclvTKaU5IAj11Aq5NrrwDSUiIgGHGupDQnJXZhaa51cmw6uNuojEBHxplHRZ9aBRqhddQI+BIGNJvHQePAR/H6TkHeAtd609FnYg3hJAtYKxC+a9kP16SvYdxS7JWdhpeO46706ASMiHu30O+muaVz8FhyMN7U6CdcgDNM+xv4V2BiVm8SSQE77dgD9E2jst9/8xmSKk9+YTHHyG5MpTn5jMqXkZoFp7jkCBYw/gGOJBBUSG0kQIVGqDyJgH8cas3hJ4hfFyNm2BmHpHlzPEZSdksOPYjWIpg2cNyKiB+tzBCJSAddDYmMfnktqk1iazESvrG6pImBExAqe4VGja3EHJtQrGAM/A8GPILGY3Ku0n8gl2RYnIY+ao9JUIb/5jckUJ78xmeLkNyZTnPzGZEpJIhmXy6Z9IbnxaEJOBLvG0KUHv1EkqFCvOBRJ4NgRTZCB8y7AhRYRMW90cgrdHwliXfgJxvHlJF5BiTD9opOouGhxK24Tp7sckTMRrpHueRoqpq2ht+IOJkrNoDfi25b+eL1CP3sMC37VIQejnhtF5ULFRtqzbb0sU46NYPGaPrmH5zcH8dJvfmMyxclvTKY4+Y3JFCe/MZlSjkGsmIOLicpvUx16bX35yN2Eww5AZCHHGQlQQzh2TIIf/A7S3ZEYFsFiTOoIc3SxgSBGYugOngut9grOMW8RLzctwzze54gEyJZ+je+zSHzvkPhMLsm257LGEeb6WRp/PoRxKo/KCZ4nBewnSSXsbaXWOJYeXJGQv0sQpP3mNyZTnPzGZIqT35hMcfIbkynlExAwLkC8ChjuQf3/yJ30ISWKJO4NqLwVxL1z6I93Ag64HvTHI4nlBlxfVIoaEdGje0z8acU+iok94FK7LW5AGGoT9kioJCEWRWAU6NJcnySa0g1SiXDbAJJN4jUS5x3dT48ghuclURLWlSYlk7MwImIGx2/gszMYIjLfqwjoN78xmeLkNyZTnPzGZIqT35hMKX8cOuxgVKig8gJ+J6aNiggHKOmlIRkR6WW5VII7gdjZQWMn0GeORKBLGLBxAfe3hL58ERE9cLaVcC/kyCIBipxtFCNI+qJy0hLWJiJ9UjI5E1dQgksiKQl+JGjSs+/DWrcJfnSNtN4jEBEfwH66B+XEsJ1iCUt7B87COxCVr/XQiIhYwBRjyrfUoTt+8xuTKU5+YzLFyW9Mpjj5jcmU8mdrFRzuV0OJHZUqfnxZzyVGvcLawJ57NFADBB4qJz0GMYYm296BQnMNQt4U7qWtjHkEwxMGUBJK7jRy35HTcQyuxhOIEeQu27QM7SBBjK7xGiYT39TqBCVRqiLXJjg0+y29+d5n3eJWXCSKpBXsuwnsp0+28KzgHHdw3d1Kz0G9FdsgIY/E2QrOXTZpvR6NMRng5DcmU5z8xmSKk9+YTCkfVira9HfaH68JFWN2xUhiX4N+QdNXI1jcSx2oMQJ3GjnEdmD8moPIsoSBESTutbnsqAz2CETA09BYAaLNAB1nGru/12M3cM83XRja0SI2rcB9N4XPkVtxttf9RELVsICpv7AfSBSmcud5i6uNyqVp+vIZXM8RLM95R3vhDSo9R2+rvTFvGz3HHl6/3NORhdjUKb8kAvrNb0ymOPmNyRQnvzGZ4uQ3JlOc/MZkSjkDZX9HI7FBTJ2AffUYJumQtTSCLbpUpz8AZb9Pyj7ZUsHKS9NrUps6tpE6eYXU/k/Aevl4r2v29KBK+v0TtdMulvoMvtiMJfay4j4LV/DPwAr+sWmbLPM+9K8JT59R1XwNa7OFGvgN/FsTwf/O9AroI0GTovAblV6l1zPYaYzetDR9iEZst0E28Ab+ZSKLtd/8xmSKk9+YTHHyG5MpTn5jMqX8z57adqkh4V1Xg1uwh/ZBnDsFASIi4lkD9el1ml11DhdJ4h5ZWDfUUDJx3Pi3ZQTC0h9Bjfifnt5I7PxHKvj1fvw46bxP//WlxH71y4f42c96ak296oIITM014VmT7ZpiDTwDEgFJZ2x7ftQ8lkRpmuxEEuLlQfNludBzbOG9Svu4Tmy2GcFWZ4r14F7IOu03vzGZ4uQ3JlOc/MZkipPfmEwpP+tqfXIvsYaanHIETT6JiPj+Vr9zAN95Bc1D59DXkcS9OTnJwEGV6lYjoSqC66ppikwJsRFIS+N7+lyqZyd63p/8RGPf/wuJTf7qvyT203/8ucQiIuLnpxJ6M1CR7DUIZ+tCm7+uO9oINXW9d/D8cK1pvHdEHHdVvKQx2w/qtPfgZakb7x00mCX5cQqiOblS2yDRjnYjTYrqdPWTfvMbkylOfmMyxclvTKY4+Y3JlPI39Z0Ee9QAkBxC0HjyCCbIkMgVEdEDV9YaxIpLEPe+7uqEnVuYukPjoUnwI9mFRCRahwhuPDqGkmeaILSG71zNdB0nK5iGBM677kc/kFjn6Q/12JoF2z9//U8S++qzTyR2BZOd9oWu7QzWcQPOvdSGqSSmDWH9IyLuwRSgjxv97MM9jURX5iCckXOPYgu4cpo0RHs2gkVS2o+0b0kk9ZvfmExx8huTKU5+YzLFyW9MppQvN+80SIIfTgFR4eQUHF7npTrBIiJeVCpqXRUqanwe2qfuba3lratGBT8U7RJHgx93oPSzZSR2au9B+rW9LnRtL6+1597x51cSGz//UmLN9z7X85490RMfHcPVRPSf6TP83n+o4/A5THGadVXIo8k+qQ4/gvbiMQh7ERHn4OZ7rNskHjfkQlSOQCxcgOh6XajARiXCH9I7ksVP6FFI/Qhhf/rNb0ymOPmNyRQnvzGZ4uQ3JlPK2+0i6YMknPULFb/2MMDgRYsYsym03PLyoMLSRT2X2LxeS4wGEwxg9PIErocEo3OIfXRgwe8Ieg/uoKcg9oUroUR1r6Jb/9daavv9cy3V7RX/LLHmwbnEDs+fw9VEbL5SMTViIpHjRq97DCLwFMSm1HHTVEI9gHPch9LdiIjHMPTjDJyN9wa6n4ZDcIzu9PumS+iDWevzewsi4ADKgdcgaEZE1Ac9nty4NAxnBOfxm9+YTHHyG5MpTn5jMsXJb0ymlNs6rbSSBL8GBDYaknDbqIgXEdHAT89do8LLstbjacorDyZQkaQPgsgQhJMxDD8Yg8gVEdEHo9YeSp7X0GdwBl6yVQX3slXRrfdvug6P7z6TWHmi97J5zaWjX/9WhcWLgGnOsBTU/5HKnWk6Lb2JSPAbg/PyQYvz8uFejz/pQM/EY91jk4ca68K46pN3KpAeQEu9qUcSm5V63W3uxz0IyANYtTNYi4cgfPrNb0ymOPmNyRQnvzGZ4uQ3JlNKEvJI8KMYTVUlgYZcSBERExJp4OeogTJfmt5K90JDG84gRqW6MGMhljTCOCJ2IO7NQNy76cAQEVjHFTm3YHjJZKEi4PaXemwJvfVuVuyKe1moY+1tpfdHk5L78Pyp3LnGfnZpg0/IwXYK4mxExP29rvfxQIW80amW9PbOYfjFSM9dHKkT8KP1TGJXF7quV1DOvQQ3XkTEGtaMevj1oJR8AO5Av/mNyRQnvzGZ4uQ3JlOc/MZkSkmDN7C0Ej5XFSp+nJTqYvqke4Qnfwo94HYdFaGuSo1NoTiWvHck5NHU4BE498Ac1ir4LUHIoyEi80avm77xNPS6510Vgm5AMIqtPgOCph9HRLwCgZWEyhrWogBh6RSeAQnDs9D1ov15Bg6/c3pYETGhCcjg5uudgng9glLdAfTCa8B5d6z30r+g6dD6/iVhLyJiASL3GtZnDztqCbnqN78xmeLkNyZTnPzGZIqT35hMKUm0K0FYIvfcBKa0flTpIAgS9iIinoFIQ1Ns59BL766rog/JJBPorXe/BmcalCfTRNYX0G8vIuI1CEuXUJ68hamsVIpMg0XmcIfvQPDbgQOO1uYahL2IiKuuXuMMxKYuiHtH4EwcgeOsAkFzBPuuAmGQpuw+2LNINoR7qXoa64CDEYHzHLb6feup3t9byLW3HZg2DQNEIiLW8AxILZ6FHv8VPT88izHmO4+T35hMcfIbkylOfmMyxclvTKaUHw3uJX2QFOkxTNx5APbcMajCERHjWpXTCTTmPAPFfgsqcANWxwF832lX1dBhT9XQzR6ss3u2zn7d+/1/R6lhIym716AMw3TomEGQtHD69yCClf1NYi05TeKhGKn4J1CTfwx758kOmmiSEh4RvRLGg8N+2s9g/PVGbcB0mtWVKvu/u9AmqF9A+4RLaG47b2l4u4O+D8QabOXvttpfwG9+YzLFyW9Mpjj5jckUJ78xmVL+oPdAgjSJh+iDlfMErKXQO/Kb84AOSE0zRzBhJZVeoYLPeKiC3/hYrbhE/ZrFyxeNWp2nYEuegRiDDVNBJJuBhZiWtg/WYGINYmhEez35+5QoVOqxS7A07xJFwIDa/Q0Immsa/xQR8x00ib3S/hLX71TIXe90L89gRPs1TKl6AY72l6FC3vSge3HZ6B6JiDjAmu3gGd7sdKT9zUZjfvMbkylOfmMyxclvTKY4+Y3JlPJZqFC1A9WNBCiapkIuLarRj4ho4PgdTW0Bl1cPpuH0oHZ7AM69owlMbHmoIks50d/Gsn8jsYiIH/1OFZ7lQC1dJA4tQbRZg0hWgxC7gsaa6U4wFvy2iW4+MFSiuLcAAYscjDTZifZilLrWL0uectOD/dg76HOhceN3fV2HOey7LTQepWd6C+LeCtaGplFF8Fj6+V6FahL35lv9nN/8xmSKk9+YTHHyG5MpTn5jMqUcQ/5vQFhKLcsckTjXIvhBZWUswZ22h+88BlFkVKh4cjRRkWV0DuOYP1YRqbivTrDJA3YC/uXurX7ny3OJXZTqWJvCT/DbrgpLV1DSS+IcTcOh59cGOcmo7Ji+k0TEBbgaSdSi89L93YHIedEiXt6BGFeBQ5DEazr3CiYu7UFgpdWme6ZR5dQsNyKigfOQCLitwQkKx/rNb0ymOPmNyRQnvzGZ4uQ3JlPKFYks4GLqgOgGxZIo2qxg8k1ExBa+s4TPjmEE8rDW361epeLH0RmMYz5X11d3pHdzoCkwLfcy/lRFlj/bvZPYkzt1l212ej1vtuq8fN5TUfJdohtzA7G7FmGJSodpbDuJZKlOUOoJ2SZ0vQ85GOmaIyKum1XSecZQOkx7mcptNy2OvJTz9qAEnmIREVtwQK5guk8PJgNt9tD/Ec9ijPnO4+Q3JlOc/MZkipPfmEwp30BfMbIn9fB3AoQJ0MMWnXR3WQlfsIHa0QkIfhUIftVx2rn3b5YSq1cqLLVMT45mC6JWpcePjsBxCN93tFGB5myhYuHioM+ghjVcgdh0BaWxERGXhYpf5J8j1x+VLBfw/GawkKmiIvUYpO+LYIGuJOGNxoPD57pwL6k9L3twLyWIeLQO38SVSaHC8Kqna0HX6De/MZni5DcmU5z8xmSKk9+YTCnvoNySRJYxuI7ICRgHmNzaIvjR4AZiA2LMaaHn2YFTrl5Cn8Ap9Ga7UvFrvVLXX0OTRiKiKNLuhbShsoR+hH11jT0e6KTVEkRFEhoPcN3zOxb87kBY3MNz3UDsotA1+6LSvfOyq58jl96OxD3qZdci+FHJKzn3qKdgt6PXWML7sgLRjgQ2EveoNyIJqRHsEBx2VZy935tIrAdCrN/8xmSKk9+YTHHyG5MpTn5jMqWkEsw2h1EKBxD32oQ9GmxAfdMWVK5ZqVg1WZ5IrPkcBL+9Ci/XOxW5VvDbSJNpIyIG4IErEgXNQeIkYRo20p/o2lRjKkWG857xNNiz7UIPpypTKCdeXqoA9ej1mcR+0dfP/RoE5EsoySVxbw3C9YdAeUCiHYl7Pdiz1JuPxD1yEbaOXIHtNAThlIafnBTqI/Wb35hMcfIbkylOfmMyxclvTKaUOxDdqAQzFer1F60OP3JvqXBTQ882nN7aV9FuvlURcAQ9AZcFCIOwDmVL+SZNgyVoGmwfvvOjhX5fUcDgBXIW0iXSY6E1jIhiAELXPSg9PVXRtbqnQ02ezHVq7HijIuAahnHc1Cr4bWCP0KCSCHbFkWhHwhvF6Dy9gOnCsHe4h1+aO/Cb4/U7ya3Ygc9heTKexRjzncfJb0ymOPmNyRQnvzGZUq6glJF6nO1BWKBYgEuLhiy0HU8CJMkfJBbS9NY3pTqgnoBhsETdDFxfLWLoDMJz+Gm9hem75Kjc7KDcdqqhk60KRn0oByZhkEqJIyL6Yz2+OILrBuH0sIchMFu1B05BBJ6Cc2/ZqKuRynRpCEhERBcccAVM6aVS3bbvfB8qwaW9Q7E6sf9fBO8TEiD7ICIO4F785jcmU5z8xmSKk9+YTHHyG5MpTn5jMqXEEb+gFu5BnV2Dik+/JpuWCuW2fwHeB62XieolKawVKKwPYbLLHpTU25bxyW8qPfslKPuXoetNteQ19CsI+Afg8Uqf1dFa76UH1uDhgGvgu/DZagH/wuyg1v6lquuvNlpLfj3U71vsdG1Wtca2Dfwb0TLem5T4AfwDgJN48B8uXRsa0b2FfyR28E8Y5Rrt2TboXwpiYHuvMeZ/cPIbkylOfmMyxclvTKaUGxC6tjAFZPMt6v5J0IpgQSXVwpgKOHmjge8bFmBzBsFuvePfyx38ji7AbjwDcWgNa0sCa1NBvwIQrx5Cg9L7exhVvWPBtYHx59s7/c7FrQqQr2/GEvsKJvZcH1QspCacJO6tQQSkng8RETs4vg9rNu7qvZBot4JrnNbaw4DyqoIuqCQ+toFjtiEHNx295xp6N/jNb0ymOPmNyRQnvzGZ4uQ3JlNKEkowRrX34HYiwa5t5HAq2MAT3FLkOFyCcLaEeu5tDQ0zWxqPEnvQJDdwPSQiLcBlueqoYLQCAfGuVBFwDaOlK6ipPw2tlY/gxp7zGxXEvrg9ldhzEPeew0Si24PeM9XpN7CGm1rXZg2CZkTEpqvxQaGC9qTQdaRR9STu3e51whEJlWN4VjgBqMVFCj1m0Q1Ie+yu0ev2m9+YTHHyG5MpTn5jMsXJb0ymoLJAriFsZknNB39/M94335lYRkmhogvOPRBU5iD4zfe6FEWtJyF3YASvD40mJ6cklYRuQDDkhIUtAAAAc0lEQVSagUC3KFTQagp12U1KFbk+btIf1vVUy3I/7+mavejq/b2G655SY85GjyXqBoRUEAEjIjZ7FRanUC59Wh1JjBp4zmCC0N12ied+H3IWFqWe4wgcthFc2k5QXrKb1hiTJU5+YzLFyW9Mpjj5jcmU/wZ94LZcnH9FOQAAAABJRU5ErkJggg==" y="-4039.335633"/>
</g>
<g id="matplotlib.axis_227">
<g id="xtick_340"/>
<g id="xtick_341"/>
<g id="xtick_342"/>
</g>
<g id="matplotlib.axis_228">
<g id="ytick_566"/>
<g id="ytick_567"/>
<g id="ytick_568"/>
<g id="ytick_569"/>
<g id="ytick_570"/>
</g>
</g>
<g id="axes_115">
<g id="patch_116">
<path d="M 299.674375 4164.237396
L 421.964375 4164.237396
L 421.964375 4036.943869
L 299.674375 4036.943869
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_229">
<g id="xtick_343"/>
<g id="xtick_344"/>
<g id="xtick_345"/>
</g>
<g id="matplotlib.axis_230">
<g id="ytick_571"/>
<g id="ytick_572"/>
<g id="ytick_573"/>
<g id="ytick_574"/>
<g id="ytick_575"/>
</g>
</g>
<g id="axes_116">
<g id="patch_117">
<path d="M 434.924375 4164.237396
L 557.214375 4164.237396
L 557.214375 4036.943869
L 434.924375 4036.943869
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_231">
<g id="xtick_346"/>
<g id="xtick_347"/>
<g id="xtick_348"/>
</g>
<g id="matplotlib.axis_232">
<g id="ytick_576"/>
<g id="ytick_577"/>
<g id="ytick_578"/>
<g id="ytick_579"/>
<g id="ytick_580"/>
</g>
</g>
<g id="axes_117">
<g id="patch_118">
<path d="M 29.174375 4305.655056
L 151.464375 4305.655056
L 151.464375 4183.365056
L 29.174375 4183.365056
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p367e4425e9)">
<image height="122.4" id="imagedbe989f200" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAG+JJREFUeJztnVmP5OZ1hk+RrKWrt5mekWaRRpaNsZE4iwEbRhDkwv8hf9YIkosEgYBEiSEbkJQAtmSNtc3aS3V1dVeRrMpFHF/M+xD5SmyNLH/vc/k1WWSRPE3gqbMMiureJq6RYlDIWlWUuG1Z6LajspK1cTmUtYPhVNbujm7I2neqA1l7Oyay9rAeyNpb7UrPb9DKWkTEZwP9zH8br3Vt9UTWPrp4LGsX9RUe52V2qpGsHYz02twY7sraYanbRUTsDvR6jwZ6DyewdgP2fbDWtTcaPa4+DREfDPXx/MX6WNY+unwKe0c8v5rJ2lWj97VZ633dbL56aAwG+jzhdpG23TafmXredL2NMRng4DcmUxz8xmSKg9+YTFG7tgUkIFKlRERECXKQ1kgYDjsk4stcbNQsPRnUsjYYqpS6KMaytrdmmTIr6Hur8BsXesnpu6ReRxKsJJFIAjUblpc1iLxRwD2Ad8cY1ugNs4Tvt4ANT+FeXa31nm6C7ws9T3R9ULylP8pJ4HHhOhRbxBAfKPHZ6XcUY8y3FQe/MZni4DcmUxz8xmRKL+GXyjYSEAVIonmpQWDN1ktZawoVcZeQuXcO2XP7G/5/ScLpokOovQxJqdTvnCqH1h1CjCCRtzvQR+UIsvmONioGd9d6ji2c9lmh53i80Wy8C7in7UbvaReporpPht/XQaowJOg58ZvfmExx8BuTKQ5+YzLFwW9MpvTL8AMBgWJhC+FHkoVkFQmeqzWUaoJ0m4MwOi9U7s0gw+8AJFcEC7oZyaq2n6x6mTVcL5KPdH5jkHgRETfhe78JZdD3W3133K31u0zgHiygnPtxqed4CRmay7Vm/VFJbkTHtehRbtuVSZgC7ZucbRjp2YCp0txvfmMyxcFvTKY4+I3JFAe/MZmSLPxSe/NRD75tMvxIfq1alT6XA5VptG+qlJwPtGferFC5NwUx2HWcSxCQp82FrC1bFVipEpBEF63RPTgAsRcR8Ubo+sNG7/8P2ktZu3vrXNbGU71/Zy92ZG22vClr75dppdvbZDCSJP02kCr3KGMUP6/3GRljvpU4+I3JFAe/MZni4DcmUyosbwR5NQSRN6lUiNGAjS7h165VapGsqqFn2xoyyZYgILGHW6IkmYdKwNMOmULZWys4bxoYcZk4RIKg70LHTf28iIgh3P/DVq83yb3XfqrblfeP9POO57LW/vxM1n410MEiH0GPwdQS6Ij0LNT2msVgqnzuipfUzD3KkuV9jTFZ4uA3JlMc/MZkioPfmExx8BuTKRWl7ZL5prTdCTS4HENKbFf9dAuNNCnVdVFrDfwK6rxxAhDUjaf+AkDWtCvtln65oG1Tf+FIr/3WfZeFXsNZo6m4X5Zq6yMidofQrBNGoj+caxrwnT09n+LPvq9rI9337dU7svb9fzyUtfdK3bcrpTV1KlQL05XQusMPAKk1/qm/rPWe2APQs+w3vzGZ4uA3JlMc/MZkioPfmEypxpCiS0IkdST2GiRXAemYXcehHgEE1rGD/CrWX/271Im18hEsVFJFUPJkGPBAqf0P5jUIv47DkPwqhnrwW/WBrN37r89kbe9HKmwHdx/IWnlX5d4B+NURNB7tem5ona5ZSZOY4Nh0beg2p6aQb9Prgugz4ttvfmMyxcFvTKY4+I3JFAe/MZlSTSvNliJhQE0PaxBLdegaZRFGcPYdCbXUTDliPYAJQInNMekYqft+k9B5X0HmZBd0/x9B49L3RiqL33j/dVn7yb/+Staqp89kbf6Orn1RvilrTZvemyBVvNEaPTtUP09PRPIknS3q+VNFPElOHgNvjMkSB78xmeLgNyZTHPzGZEq1P9TJKZSZRqW2l42KF2oeuQ2U7UYZa3SO2LgQGxymZUD1Gcf8xwZJwHrA4uyy1YaiJzBp6FGhz867431ZK/9BJ/Hc+JdTWftwpXLvo5FmB17BiO6uKTyp2ZOpMo6enQIeJ3ruSHCTQOwSfiT3qKx+CiXPe5WOWPeb35hMcfAbkykOfmMyxcFvTKZUuyAH6k1all1q6WBXRhYJNRJTqXIPj0HbJVZRJpfafoNgKTFkppG73KYfIUnA47WWCX8AvR5PJtBzL1RUPQG596id6bnA6PMuOUsikNboOuJ2iRKY5B4JO8y868iIncA0LBL2tyqVrrdL7cHoN78xmeLgNyZTHPzGZIqD35hMqWjIBtUo4sCIROHXJUmuW+4RfXqkbbNvn+tD9OkJSKKKstC6yqJpJPqiVRn3rFYZt4R9P4dnjGQjibzFWo9L8rFLXhJYIg5r1/3cDQuVoTQMZwTbRXDm3u2hyr175Z6s3R1A6T4exRjzJ4+D35hMcfAbkykOfmMyBc0CDSZIFXHfZFZc6hTU1H2xv1rH51VlWvYWQbKJsiJTpRRPF4YMNsoEjIgrqMomiUj9FufllaxhfzzMqIOyY8o2TRTFXdum9oRMlYipvfVI7pHE2yk1+zEi4hCy9F4rdO11kHuvr/V8/OY3JlMc/MZkioPfmExx8BuTKVUDQoX68NHaNllVfUjNlEvNskudlorZV7AWwVlZ9Jkk42gacF3APYBehjjkJHGgSZecpWEsJOPo/lOvx1TxmVpCm1qSG9FP7vWZnow9/BLFIGbdRsQuDE6ZwsTiHegzOITz8ZvfmExx8BuTKQ5+YzLFwW9MplRURknSJlUsdQ1PIFDkpTqWHiKP+qvtwPCDXRh0sAtTjSMiSvg/uqYehSCWSKZeQdkqfT+SgCuYlLyN0ErtrRh0HNgutddjKqnZgV3b9imXTpXK9Hl0n6k8mZ6liIg5yL3JQIXhFCTiFD7Tb35jMsXBb0ymOPiNyRQHvzGZUpFwoDJKnIDbY7Lp7//y/59hx3FIfpHIo+3GlWZQ3Rjtytot6I92UKoE7KImubdJ64+XKi8JlHvrtDLfLpIlILxO4NBIqizepmy8j8jD7RKzNknE4qTkUrdblircI3g68XKo+9cliHgo/fWb35hMcfAbkykOfmMyxcFvTKY4+I3JlIpSeclojmE8MI0SJttP6aYRbKApSRMbaSauVZTqCCm6ZPbfrA5l7caAa60LsMWXob+aXMIvKTOo06ZrS+aa0q77TArqSx9jn2rmiS5bT9exzy8pqX0N2jYtzRl7OcBa53Hol50hTGwaup7fGPN7HPzGZIqD35hMcfAbkykVCYMdEFA0XnhcqligdOEuCcQ14l9d+pDImQ5B7o1grHGlaw+KHVm7DZNPInj00RIc0myg3/kJ1GSv4drS6OzLQq83ycevAxR01zywqU9T1giepETNVrsas74MCfJFrenZ3CQ0fWpSKth4Fr7fDCYD+c1vTKY4+I3JFAe/MZni4DcmU9ByUFYUSYRUKAuta50yo0gYFuC0SNrcGGqd/oPhTVl7u9Dt3mr18+40LGgmNIkHzvEZCKgAGTMvVCyd9LgH2zRWvW5S+z4Q9Cymjr+O4MxUXIMpOXSO80ZHkJPcu9yoiE3tQ9C1HcULTVciCTxrL2XNb35jMsXBb0ymOPiNyRQHvzGZ0iH80gQNZl8ljiaOSBdBLPx0u51SMxNfGx7I2n3I3LsLmXuvtXrcOzDhKCLicKjrzRpkVaPHfl5CiSlcx9RyUpoURNdrmwaeBN5raKKaKu1oX8ospZLsrklKE8hWnYDcG0KWJVHBdpcNNMEFOdc1VSgVigNqFLoYaMYhxnSvszHGfGtx8BuTKQ5+YzLFwW9MplSUTZTch+266ze3ACfxQObWDow1HsH/vCFMFZpC5tbRWGVKRMThDc2gqlcqh45PVEwt4XzmkCE2bzW7jDK8UjPJOvvWwe6p/REp0w7XsERc798eTEg6rHT6zM1SRWpExC70XCwTS56voN9iXeoajXen0l+Sc9tA9xXFYqPPKJWD+81vTKY4+I3JFAe/MZni4DcmUzDDD8cxJ2YnYcbZFplk11162sAYkAsYk30B8qqAc5lOOcNvcqCCpznW/61ncJwnoYLmRXMhawsQOamjoLchVe6R6NobqqCbQOYlZdlNobT5Zqly7x6Mm74XeoyIiCmI3DX4vgU8808Geq+fQ4YfjotPHCHfR7j/77Z6r5tGJeAy9Pn0m9+YTHHwG5MpDn5jMsXBb0ymoPAjadc1OfRlSBb2zQQkKULnSFlVM8iKOx6oHNqHjLMFSK6m4f+X9aVue3KqWWcfw5Dfz9cq92bNQtbo++GUVrjeJJG6MgG5tDZN+O0P9TvvQ/bdLpTa3oRS6/uFCsTvtnoR7zcsOafw3C7g+31e6doLaBRJ1zG5tBlMI8nHsiPzku4X9fVLnYDsN78xmeLgNyZTHPzGZIqD35hMqShzi0jN8CPZQEIkgqfJpvaaw0EJMCH4DMTZCMp8p7D2Kciro3Od5hsRsTsHuQey6jcDFZCPV2eydl5riXBqNt82ci+V1Ky/aaFZekeQpXcH5N6bofs+XOlx32w105F6KEZEVCO9PqdXepxnG71XS8gOraHMNxW6hkPIBOyKl9QYxH3hOfGb35hMcfAbkykOfmMyxcFvTKZU1DetSziksM1E1s4ecglghl+jGXDnpYozKrfEcwQXOpuoGIqImECy5JOBCrrfNjNZO601wy91EARm+L2iibz0nFBvvhsgAR+A3PtraI/43eG5rO3fgKEUZfp3blp65+l9vQq93isoB6d7gNcGehnSs9gVFyjtaJgOxqCFnzHm9zj4jckUB78xmeLgNyZTqv1KM61IYDSQ2YTb9e0fR5N/E8UgCbFFzUM2XmYFQw1mlcrCzzqGQ4ygt9sFTPR9Ctl8F7Vm/VGpZt8pr68CytocwzvmFkwwvj/QbMxbt1WGlkPI+Kz5GWkavS8t1NHCfBUc2rFcq1Sm+0Il0JQRicKvK8OvoPJtLY3G4R7wXfzmNyZTHPzGZIqD35hMcfAbkykOfmMypbo91Pr0JZjvxVqtOdXPt5BG2DWBBGv/KTUR7Cd9JllXanpJzQyvIJ12Vqt9fg7pqxERBVhbOh+6ZlfUmLPHryZ0DV9Vyi9ZZaqLX4LQXsEvAMtLTT8vVvp5qyXfl9VK15+3msr7bKifOYe+AWT76TtTmjP9skbbbdP/ooJfmSjl17bfGPMHHPzGZIqD35hMcfAbkynVd8oDWTwvVGqcrVW8nA40/TXUFUZTcNPDGqaarGniT0uyKm0qDaXJkkxL7UPQlWpMMoaglGg6n75TjlLo+i4knOha0DmSEJtRmjM0N/1tBTX1Jyq0hiAQ24732ByE2Ccj3fZRaBrxMYxJnzeail1DY1USeUM4lz24DpMOqbwzgLHm0HiW7mrriT3GmP/DwW9Mpjj4jckUB78xmVI9hMaFp4WKhecgG2jM8jMQEF0NPEnuraH+nrIGSbCROGsSa+BTm5Z2Cr8ezUi7MiC/Kl/HdB6qOycok+xioxLwcUATzkqbej6GppfTDZxfx1e+KPQPHw/02J812ij0BBqrUn8IkriU8XlV6nXYKzX+9mCEfETEHZCD+xvoEQDPskd0G2P+gIPfmExx8BuTKQ5+YzKleksdROyBZNmFbLx9yEQaV9C4sEMWUcNNypaiLL1mDZmAlB2YKL9o321KYzcgofpMJEoViCQLU4/bdYwS7jV9ZqokpSk3x2vNlFsO9D4/AYG8C40whx3vsUsQkI/Wc1l7Wmtj1XnimHRsmFlAWTyUCF+UKvfulHuyFhFxe6PX4h5MH4L+pnh1/OY3JlMc/MZkioPfmExx8BuTKdVhS+OFSSLo2k6hwmcymMpaUbEYWkCpJ0kRGldNkuW6+9Sl9hjchtSRzKnlxKnfeZsswm2myMj5gDilaUhnocLvHLL+qEcdTUfqFn5qtJ/Vms13Bv0aqbci9WVMvTYkrunatFCyHBGxDzH4oNb992C0OOE3vzGZ4uA3JlMc/MZkioPfmEypShA0Y5BD++AgRpDVNixhJDKUIkZEzCodGHJaahnlxUDl0B8bJONoJDONbqaMOtqX1ggsbaZehluM/CaRR2PbcQAJSbI2reyUICFZdrzHsMQY+vDR0JamTRNndP/wHGENB8jAOUdELKE8eQj7T6F0uIGBKH7zG5MpDn5jMsXBb0ymOPiNyZRqCRKiBnm1xpJOZQIO6SZkZEVE3AIReACTTE8KLcHETLtrnnOxTRkrybhJpX0Ph1AGPSl1uwmUek6gtyKdI4m4i0az5xawFhFRQ9YZlbKSWFzCwJc+2YEEfR5JtwjOgCT5SeXldD6pmZLUw4/uFR13BuXOERGfFiolXxtq38NlTWIRzhGPYoz5k8fBb0ymOPiNyRQHvzGZUh2XGv9L+JcAw3cRSNzqKFCMmMD/nmmpAmMEPQWp5DUtH6sfXVl2JPemMIQCRR4Iv/1SxedeoZ9Hk1+vqGfeQKUpicEIFn5YjgrHIfr0I0z9vG2mJ9OwGMrmSz0f2o5kIWU6Yrlzo+XFERGfkSCH2KjhmaChJn7zG5MpDn5jMsXBb0ymOPiNyZTq0wrKP2HDPtlX7RapdyMY0jCCrLjUrLFUuI+e/m8k+RgRMalU5JHwG0OWHq3hdQCRM4Ht6MrQ55EMi2CBxWv67LyKicOpPQ8j+mUXpvdHTCuhxknHsLRcwySdiDhpdYjIY5CAQ1ibwnXwm9+YTHHwG5MpDn5jMsXBb0ymVJ/A8AQiVeMMQSxMOkp66UN3QExRGSyW2yYOtegj90jsRUTsVSBZIFuRhlCQCKLBDZeQUdfAdivI3COJ1NXDL3UgCma29ZiKTFy32H1VULnzGnrw0fXqui9LGEByutay7ClkoS7gufOb35hMcfAbkykOfmMyxcFvTKY4+I3JlOrTVscVpxpW+s+xM4Da9IINOdXzU306pfdiw0YoTyeLT/sOwexTeu7ReE8PEhE3K13f7fjeL0PGnibNXIGxv4B9yezPW/1VZwnTdSLYNvdJf6V96RmjX2FSR5p3NfBMBe38oEfKL12vxF84ulKksfYfmn1SqvNOUHq3MSZLHPzGZIqD35hMcfAbkynV49WpLKJkAUFDcm4CkqvuaOE5hVTeizWMSu5oNPkyqZNcxtAwc3ek6bm3RjpC/K3RER77zWJX1nbg+tC1mFHDTRA5JHcWIO3mMIKapvPQFJ4Ill+0dt0Tdki6kuxNHVUekS4qV4ktaql2P1WQU43/NixavYf0/RYQQxTTfvMbkykOfmMyxcFvTKY4+I3JlOp4qZNcSMaQMKDa9J1SBVSXsJvB/guoTyaBRQKKMr94dLZKyaORZui9Pbola39VHMpaRMSf13rsw1bPcQHNOr+E8/k1yK9P4LiXIHcoQ49kU1fdeGqGH9FH7u3AddiBCUckbLukG503jcWuSxV+l41eW8qySxakVLsP2zVF1yQl6NMAwncw0Ik/dGy/+Y3JFAe/MZni4DcmUxz8xmRKdVGrTCO5R9KGZBrJPZIkEVx6SAJjUasEpEwrgr4LiaUjKMm9X0xl7UHL/y/fgOyro7GutWv9zgcrHcfdjPUcz2BE9wlN4uk5Eju1bJUg6Zoq96iE+rDSe7Bf6fWiUvKIjik5AGXFHTcqw49Xunax0hii7MmWhB9kfA7gGYmIqEEEpo4gJ7HoN78xmeLgNyZTHPzGZIqD35hMqUhMkDAq1iQBIWsMxMKqSBd+lImG8iQxw4/WqEx0B8dk63eGRL6IiDinHmnq+7C4eQ4ydQn942jUOfX6owy96x6dHcFZdTTliOTe/lCl3Y2hlkXfqQ5k7Q0QsfeC+yUewXNLb7znMKr+N3Ds/x48lbXP18eyRtl4ySPNO25VquROLb/2m9+YTHHwG5MpDn5jMsXBb0ymVCQRNhvIGkocYLDNyGESfqmiBEtMezitGo5xBiORv+wYDtGONNtxutG1JQjD54Ue+3cwOv1LyDibNVq+SaWo2/SPI0lK1xYHnQw1S+8mlEvfHd2QtbdAsP0gVAz+cKkn83Csw2ciIg5u6nVsGr2HX7zQfo17YxWL50M975P6QtaoZ+IaSry3gUQekdq30G9+YzLFwW9Mpjj4jckUB78xmVJh+SZlscFmVI6IS1tkl6X2OUuFZCOVGM/aS1l7Cj0G24K/ywz6ylVwIReQkXe8UUH3rFWJ9GR1JmtnKxV+VyD8SKRuU7pLJd2UzXcwVEn21lh7If5FdVPW/map1/vHBy9k7c7fqUyr3tZjREREocJw/VgH1VTv6rX96MUdWZskDhYZUrl7S9L1+jMvU/Gb35hMcfAbkykOfmMyxcFvTKaoqegJZvNt4TQwazAxY4ky02g76hN43qjwI5qyawCJCj/qpTaHXnHnIBtncD4XMLwkVe4ll5N2UEB5Mwo/6K/3RqkZfj9ZqRD72Xe/kLXDv/+ensuP/1ZPcKoZehER8fiRrv3yPV1797ksncGr8QKyPlOnSPcFMy8Juq2wq9/8xmSKg9+YTHHwG5MpDn5jMuXahR/RlUmWKvL6QFKLegIuoOEeDXygIQkREYuBiqAlyCESi1T+SVKSzpvkHpXvpgrSCP7eJPdoWi5Nbh7DO+Y2ZLvt/VA/r/jRT/UYf/kzWYuO4RwNDHzZnGtW5OdPtZz444negxcrzbxMndzbFyqBpz6KGyi/pzjwm9+YTHHwG5MpDn5jMsXBb0ymvBLh18V1T4NNhbIQcVgIiJzLgWbURbAIvIRsvnmPLD2SSKlyj+QqyaKIiKpUaYdTdUvt1zeB4SdE8p2/1L6F7TPI2oNJuRERmw9+IWsn/6yf+R/De7L2SXsia9QzkeQsPWPYdxLomixMZdWpWa2e0muM+QMOfmMyxcFvTKY4+I3JFAe/MZnyjdr+6ybZfCba/uVaLe421PBrAR2HTCyt8XSlNLNPdFnlCaTt7lYTWTustFnnXqG/ANCoc0p+rZ9BivWH78va4He/1c/79Ev4xIhnP9dJPv/0Qs3+f1aatvsFNEylX2so7ZrSaenXlXGlIUjXP4InJBE1nA+do9/8xmSKg9+YTHHwG5MpDn5jMiVZ+F33SOyvA5RfUNtMMm0VKkRIIHaNGydI7tEaNfokSCL1aW7alSJdwbSZnVLTe/dKlYB70Mh0H0aVl6D8ls/gXfTOx7K0eKyP7a9/xxN73pm8Lmu/LGey9milqbwvVioLF9AfIDXFGhuewhjw10baWyAiYr/U5qg0NesMUpBPYYy43/zGZIqD35hMcfAbkykOfmMyBYXfNs0eU0jNONvqMxNHi2MjRfiXV5PHUwcYqwEsdkDnSHIPRWXi2tcB3eshNOYcwdp0AFJro5+3EyrJFmcqCx9/qpN4frlWIfbuREVcRMSHzWP9zJWO6E7ts0CZcvSMUe397kgF6b2xjir/3uhI1iIi7g90/xKu7ZNKr8UnlWYr+s1vTKY4+I3JFAe/MZni4DcmU1D49ZF7f2yQbEyVgKv21Qg2OsfU8dmvSgIS1LSUpvPsgZTaq6DpZaP7flzreO9/H6vQem/1BM/xi6tjWZvXaWW5qeXgNEmHsvkOh5rNd6dSofmd0Ey+iIiHtQrWo1bP57zU43xQaam13/zGZIqD35hMcfAbkykOfmMy5X8AJBFk1dxer5AAAAAASUVORK5CYII=" y="-4183.255056"/>
</g>
<g id="matplotlib.axis_233">
<g id="xtick_349"/>
<g id="xtick_350"/>
<g id="xtick_351"/>
</g>
<g id="matplotlib.axis_234">
<g id="ytick_581"/>
<g id="ytick_582"/>
<g id="ytick_583"/>
<g id="ytick_584"/>
<g id="ytick_585"/>
<g id="text_30">
<!-- 106 1833-50619 -->
<g style="fill:#262626;" transform="translate(15.789375 4288.213494)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-48"/>
<use x="111.230469" xlink:href="#ArialMT-54"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-53"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_118">
<g id="patch_119">
<path d="M 164.424375 4305.655056
L 286.714375 4305.655056
L 286.714375 4183.365056
L 164.424375 4183.365056
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p7746a6fb0b)">
<image height="122.4" id="imagee37891fdf6" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGcZJREFUeJztnUmPXFdyheMNOdbEIiWyOcmUetCi24ZgoJdeeOM/7ZXhldFaWS0I7lbLsCGJIsWpKqsq50wv1PCi4ruNSD6yKFacbxl4Q757X9QDTp2IqOr27tYuUVXV5ZBV5mNRtuZuUbxmU9cuNmz7LnZvfNPF/mn0dy72283AxU5q/3v+c3vmYn+aP3Wx54uJi5nxmh20Ixcb1j0X69Wtj1UN3ucys83SxSaraSg2Wy3wmputX59B43/3/ZHfg98P7rnYZ2u/BwN4JX5ofPDL6sLH5k9c7PvpC39BM5vM/XOvtxsXayr/3tGebmFt6HobiNG5u0C/p4bfTc9CeeUjQogUKPmFSIqSX4ikKPmFSIpXmt4CJbGQBIy29kLXuOcFozv9Ixe7AY+zhFufmRdjlhCj31eCRB+KEXUHMZWEJboviU2lfWngufd7Qxe72/N7QOLeP4+fu9hoz4uN3//grzfo7bnYef+Wi12s5y5mZrZYr1xsvvIiaRQSr7sKeV2oYa9I3CMRUF9+IZKi5BciKUp+IZKi5BciKVci+JUgsQIFv8aLSPuVd/2RvHZa+eiJeRFotvWxqGBnZrbe+GNX27WLbUAwolgFIhJdbwG/G+8L16P1N+M9OGrHLvao2Xexz+bekXf/X8CZdueuix1+8a3/Mf/uQ6f9Ax8beBHQzGy69sIi7etq7deMhDxaxzctApaEZnLzkWiLDl1yB77GbxNCXAOU/EIkRckvRFKU/EIkpZPgFy157AoJU+TIOwUh7xzOfb7xItDpeuZii42/3nLjhaGf4uAkW3sn2QBKesl9tSYXItxjBvcgQYvFPf7bP269wPphz4tsv1570fXRr3wZdPOPv3ex6t5HLjY49ALiL59/5WL/8OV9F/th4N2BZmYnAy9A0r6cbfz+r2Cv30ap7mVKzkvaw11cqO56r32mEOK9RskvRFKU/EIkRckvRFLCgl8XYaEEuaVIZCGX1ovVuYv1WihbJMFv7UWgV3A9KhOl32fGQuDFyp+P4l6wpxyW6oK7jM6lP/OlUmLqPXi/9qW1n868ALn39/7c6tGnPnbnkb/xzPfbG378jYvd/tK/DzfMC6lmZqPai5K0PuzmuwJx7y3kFfYZBAFZX34hkqLkFyIpSn4hkqLkFyIpYcEvKnSUBnREr0mC2mThhSDiDFx6JPidgxBH4hw5wagnnBmLQ1QmSqW/456/Jg3JIHcgxaJ7gMKgmR23Xtx7YN719/HRS3/NR75Ut7rpB3nUR7ddbH3sY9UelG7D411A6baZ2RTcnPSORfseXgUlEZCcf6Wy7MvQs+jLL0RSlPxCJEXJL0RSlPxCJEXJL0RS2qi9cBcV351bUE3p3qSG0yhpUmfPl17tJ8iKi8r8DgpwdH3oOGrgSfRhlDfFSir+ZdrCGPCj2k/n+WDjr3lw0693dXzDx4b+vwfVwMcMjjNY7wn8k+rVlseNk0Wb9v8qlH1srElj6gv71zZ+v6LTnrDHQ+hMIcS1Q8kvRFKU/EIkRckvRFLaHghGJEqREBcVubrWLFPd/xJsthTDCStXMHWlBK2jQePReQ3NP8HyS/XqtN4kIvUKgl8DIhKNOp+dg7V4MvGxKcRAxDWwca+f+d4LT9tjF3uxOfXXs3iD06gYF30notfrNT7/hi33JqD9p30lAZlyQ19+IZKi5BciKUp+IZKi5BciKe0NcFVRHft0GauL7uIE3IWfm5AXJSqmzlZ+D9rau9VIRBqCMERuPuoFYGZ2Vvu9/t/G/56vnt50sRv/9icXG43/1cW2D//sYpuv/uhiP3zu3YZft369Xi6558N84383QXXx2y3EaJw6jb8GIa4P4t645/skHPb8OHQzs/3WrwXtK41op3XQl1+IpCj5hUiKkl+IpCj5hUhKe9z3Y5FpQg4JSxfL2ESbkghI12TxxMdQ8PuZiXtdoHWMrvcFlf6C2FQS/EgwIqqRL999+YcHLvbpH/7HxcbDr13s8bl/F/9j6EXFLzavXOz50rsIzXh9cGJPzW5Hdxx0D6X3mNb7cOCFvNswWvxO7xDvvVfxfl1mBvs328rhJ4T4K0p+IZKi5BciKUp+IZLS0jhmKvVEZxqURq6XULL6fmpuOxEt4YwKmnQuTpohd2Dl3VwkQM3BtWfGbrDFxgtGM5g09B1M+9mr/L2Xa/98ZwM/Jv0UevD9uPTlu+erWP9GM16LHgh+VA5MQjPtH5Xfftj3Qt4v+x+42B3ooWhm2K1vBjm4gOlFdK6+/EIkRckvRFKU/EIkRckvRFLavdqXFBILcAhdNDDWGkpRl3BuERAH1x1cetH+gV3EudL5NGSBhmy0IDaRwEprSyPDo6PPS9D5JO6SE/BV7UU7ctTR+0T3oAEbJEjScaV743rDM5O4t65jg1zoPaF+mQfg2usXvslLiw3eOASB9YOtj+nLL0RSlPxCJEXJL0RSlPxCJKUdgjiwqrx4QoIWsUsPv2jPvS6iXVP7v2/UX42OI7GoOEEVRKRx68XUI+jPRqW1MyirfrE8c7EJDLqIinulcmcSz0j8IhZ1TNwlcY+g34hTdktl48E9pPP53YHJ0kGB9HztXYhPN37/ZjXvH03kHcL3+3Dr38VbMGVZX34hkqLkFyIpSn4hkqLkFyIpXu0zsxWVCUJJJ7nLiKJYGBzeG3XfYZ86KK2k40iwI2Go9CxUEnoDylvv9XzPNip5fQXuSXpmEsTOll5YwvLrgugWnk4L278qiFWR65EQS1zVsBgql0bXH6wjDV15MfeCLb1jhw0P7ThsfKnvh7UvyV9W/jdeQExffiGSouQXIilKfiGSouQXIintsxW4xtbedUQ90ki0ibrszOL90KLlsjSdllx2VFpJgh0KXx2FpQaueQC6a1P746ZtbMAKibPTlT+u5NrbgtBFYuMG1qLeBFVcIOrkJIFtF7ci7TWtBQnaJDZuqBR57a93DkIsDqTp87NgmTB9vyE0BxepvvxCJEXJL0RSlPxCJEXJL0RS2sfzly5IQscSRCQSfEjcKwlLLYhaJPpES2vJIUa/EZ1tECr164tCferOtl54G4PDj+7ch2EqQxByqE/g3Ki3Ijv8cL8gREJXlKhrk6D7lt4x2sPVOuZCpPeE7o1iIzwKiYUUIxHXzOykunAxKqE+h2Esp3XfxfTlFyIpSn4hkqLkFyIpSn4hkqLkFyIp7encK4hvmpK9N6ri0/k8YcUrsXMYs7yAQvRoA88WFHczthbTsaRK8ySWmPJNfQiwNwHtQUH0jqr4m6DTOdr8Nar2l6y8BD0J/JMJ9yWs7AeJ9iug/6yZmU1W3nY/rfx/Bsief9J4m7u+/EIkRckvRFKU/EIkRckvRFJaqnfGmvpg80iiJF5RXXVUFKG6emxSuY6JVySIUfPPQetjZmZjEFRuNL654nHtmzBSPT/9arIBj8C2OWp8bFp7YagytpESXYSuaKPWaH8IvEVBLIz2hyARcLt9/X4OfA+o3Q9OJPpb8ch9JpUXAfXlFyIpSn4hkqLkFyIpSn4hkoITe6JOqyhlMaaLm89fjyasREdBN/B3kBx+VCtvZrZXe8HvGKap3AXB7+aWBD//gAPqlQC/Zbn1wtDFyk8Amuywz2/6negCORhpClPpWILq6qkHwhZevKgYSuIeCYi79EmIXpPQl1+IpCj5hUiKkl+IpCj5hUhKWyq3jRCduLMLLO4Fm3AGiTYJjY7tLkGiXQ+cX7dgyk0P3GU9cBzOK78OJ+D6o2cu7VXUZRl1z3VxxZGQN+55cXWv9UKqGbsdyXE63Xi34/PZxMVo6g6JhQS92+ja6/hJRhGQcrXbbYQQ7ytKfiGSouQXIilKfiGS0kZ7xUXHIq+pLLMgLGGPNPg96NwLuvm6iHskQJWExtnGu8FmME3lAjx5U1ieJjY0x2bQiO8UerhRL8MS0T6KJMZFBT8SpajE+6i/52If9g9d7LgZu5iZ2V7lRVJ6G09hkhK5OR9f+AlXJAKG388dRprvIjZfBsepv/bVhBDvNUp+IZKi5BciKUp+IZLSkmiDriMUoGJCznYd7/9GAiSJFVEnYC84GITOXUFp7KIwUGFVw7Fw/hmM7X4Kwz2eQSXqY/Nluf+9fOVizxfemUZj10tCbFTcG7feaUfCKe4V7Cn1Qbw3OHaxh82Bix2BsGfGjkriYuudgE0/du7T2YmLnS28CMijxUH0LuTLto6L6ZchAVJffiGSouQXIilKfiGSouQXIiktDaYgoiW0JO6sCud2KQkmJ1nbxCbW0uCNqNMxWp5aYgYi4HeVF4cmUGL6eHXqYiTuUb8+KjvdZRAHrjesLYl2UQ5a3/PwJvRBvF15cW5vG/+O0V6PqYdjs+9ivQG8T7V/n57UXog9WfiJ2EsQYku5RgNoovmCuRY6Uwhx7VDyC5EUJb8QSVHyC5GU8NAOcsWtouNXC6xBhNoE+8L1wHE2ar0QdNDzghH1dSNBpOTmi7IGcfB860trp3Cf50sv5L1anvtz114YJHGPHHX0zCWiJd09cCsOYb3puBG49MihSbtS6qJHXzeKjaFn4tD87xmB+xH0Pnx3KEbOuw2Iwj/F6Vg8NIS+/EIkRckvRFKU/EIkRckvRFJa6u1G4k6XIRldiZaY0uCGo9b3dutBb7Y59OAjgYbKfM146ENv4++zqKCv39o78s7W3vU3g70icY9EpF3cfF2gtb3V+D58xzDVuBf8Fk1hD+qC9jwAIY+g0t8x9Nfrg1B5Uvln+RYGp+AQGHi3o0NAzLrtq778QiRFyS9EUpT8QiRFyS9EUtrpygtV0SmfXUVAchKSm4+mxtKABwKHaUCMRDcqjSUxzcxsWvt1JMGQ3IVRNxg5vNAhBm4+dm0WevjBepPASuXgh413VH4MpbGfbPw6DGFpJ9C37qzyMRpyYhbv4Ue8aYmUcuiqhFhCX34hkqLkFyIpSn4hkqLkFyIpSn4hktLSJBeiiypJCn4JsjtSjJhBbTvFyD5J60CTi0rrQL+R1Pl5ExuVjbXfHf67gmO3CyOfSdmnmvxDsE5/BNN0Plv6c3+79s0sx33/zM/m3rL9GP7LMC/854J2aw6PTf9BeF779X4J9uwfN/6/QmQXxz4LHZuodmmpoS+/EElR8guRFCW/EElR8guRlJZEqSgkQERHBneFxDiKRevdu1qVt9BJkazT9Btp6krUtkvQRBq6R0lIRXsv1OnfACvvA/O17b9Z+d4EDx74sdY1eHQ3j/3vmyyh72zhM7aG557Ccacg+H0PI9Gfrv3Zz1ZnLkb9GKJNUItTeIJ2+GgO6ssvRFKU/EIkRckvRFKU/EIkpSXBISoY0HEkVuziYqJjV2tw2kGdN54bdOlFR2+X3IokF0bFRlrH6L6gOBTcv1JvgnUVE0RpIhFd8QIGQ52deGFwAw0znyy8i/BZ679Z05LgB7FX4Nx7Yl6c/WHjXYgvVn5q0gREQO7HEO2zwA9DDUBRyC2c784NHSWEuHYo+YVIipJfiKQo+YVICo7oJqJlubuIe12EN3LURRuPRu/xNqB7l4S3yzTwt7oKljtHhUYzM5riRGv7pPYuvS8Gvnz3YuTLfO8tjvHel3kJXT1PKy/OlaApQOdbKB3eekfeCQh50UlKJJBGXZal5rQ48QfEPTn8hBB/EyW/EElR8guRFCW/EEkJC35R3obAxtOCgsIg3DvqntulXJLEHDo/uhZRcYjKdwkqB94GhUazUo9DH5usvEj2l9aX/u43vjcflQ2jiAvPMqx9Xz8zs3Hl47QDpxsv5JG4F52khO8Y7BU9M/VQNCs4/ILvKJYO412EENceJb8QSVHyC5EUJb8QSWlp/HW4dBSICnG7QALPLoNAXpddyi2jg0VIwKrhUeh6JA7RvuCwEepbWBD8aL2j5dLTpXffvWp8GSy52KIONoLGhZuZ7bcgLFZ+HZdb/yw4eAOOi45EJyGPnq/0LG0VK+kl0HEYOlMIce1Q8guRFCW/EElR8guRlLZHIkRQvIq6mEoDMbpM/u1C1M1HYkzbcLllVJgiSLTpgbg3an25LP3ucxiSgb0MC27DaIlxVNyl/Z+bF9O6lKeW3tnzxq/FENaR7k3vJzol4TgcfAK5Rk7HPYiZmQ3gnYgK37TX+vILkRQlvxBJUfILkRQlvxBJaYetdxNFhRcutfXiDjnOzFhYipYER/v1RQURdNSBQLNLuWVYrIL1HjVelCJxiAQoKrW9gImzu/Rb7EJU2CX3HEHrSoKmGQ98oZ57Ufck3Zv2fgQlxse9fRe72x662P3aDyoxM7tp/pojeL8HsNz9Lbh28S5CiGuPkl+IpCj5hUiKkl+IpLR7PS8iRfvCETjNteDwI5GGxMHotNs1zIiN9uujMspxz0+SHbc+ZmY2AIEn6vrrQanmsPaC3xjucb7xJbR036hAahYvoY4Kml2cnNF7lMD3cQWidOVFUip3p1LkpuePGzf+Pbnd+uElnzReBPzdkkt6f73you3tA18uffwLP1149ECCnxDiryj5hUiKkl+IpCj5hUhKSz3OupQJkrBUEvzIiUbuKwLdaUFdiRxZB30/WOK478UYctmZ8dCINvi3tQ+C3wBia3jAycaLQNSP7l1OKyb35FX0YDTb4R0NCsgEiZIjEGyPay8Cfrj1zsI7K3YrfrDnhbxbD73gN/rUv8vNbx66mL78QiRFyS9EUpT8QiRFyS9EUpT8QiSljTauDAMibqlOO1q/TaB6HbTyUk0+Kfu/6B252CEotmZmTVC9xmad8DeYrvYSlP3Z2tt75yv/HxP6j8tOtlv6QXA6jhGH9ynaJJaIjqU242eMWsij71j0vaPVXkL0orA28wWMMF/BWvSht8SQbPxCiJQo+YVIipJfiKQo+YVISjtZTX0wOAo4KgzuUs8fjXWxplJNNjVwPACL5kHFtdbUSHMKguYS1qIJ1qwvDJpRwhjpzuIegOfDzybrbAszyKOiHb13ZM+m/TMrNDhdx2zldBy9dws47nTlrbiP4X1qGxCAwWpuZnY48/FbE2/v3bvwz7I988fpyy9EUpT8QiRFyS9EUpT8QiSlnSy84EdCXrQmmwSa0mQYEvIWUOMfbeBJREXJOQhnp+Co2xQuR0IQNdckViQEwd/lBQiI5JIkwS86ltzszY9Op/2vKhhrDb8Hp+HANKNSY1V6xkXj37EBOCUvoGHmDNyTcxALn81O/blw3KTvR4jPejddzMysHXgX6vDxsT/w85cutP/d1y6mL78QSVHyC5EUJb8QSVHyC5GUlso/UdzbxFxaBLmszFi029CElaC4R6JWtHT0HMSdJ+ZFm1MQ50qQGEfuSXo6auo5BzG05J7sQnRKTlTwjRJ1kZIISOtqxtOQyA1IsahYPF16sfBs4YW86cofd77yx036XoQ3M3sx8ELgX4Z+xPeDl3dcbPDCX09ffiGSouQXIilKfiGSouQXIiktln9u3r7Dy+zNT5EhgYbEK/o95PDbrqB8s/aimxmXCdN9mirWt5Ce5WztxSFyP0bZZWpOtNw22q8P9wp+D72f5AItiXM1lBNHS4JXMLad7k0lvSSk04QqOpfEQjN2Df4XjJEnByStj778QiRFyS9EUpT8QiRFyS9EUlpy1G23r+/S6jr2OVpOGhXy6HokIlG/NqLkJOubF4x6ILLQ+GwS8qJCF8W6luSiUzIopkbFPRIL6d0hd+fcYmPcS4zMC2LRkufo2hD8Lvr3gXLSjN9RKsmntUU3Jt5FCHHtUfILkRQlvxBJUfILkZT2Tbvsroro7ybBCEtWQWMht5qx3oelo3T+cu0Fnin0j6NyYHKDkcOv5KiMEi3LfdPHsWALJd47lDFT2TkKdLBk5PrEfpJvuKy6JNhiXkIo6vnUl1+IpCj5hUiKkl+IpCj5hUgKjza9RpBIEhULyWlFQpwZiz4k+NF9sNQzOLyEREB2bcZFQBLeoDK2ULIcdJfhcf56tN70LKXS5kUFzk0IUZ9JGsZBffhoD94H0VxffiGSouQXIilKfiGSouQXIinXSvCLiizRqbF0HAlxZmZTmMhLItIShCmKRd180QnGUeHTjAU6LPNGA2RsyAZN1SURkES3XcqYaQ9pWi6tI92bHZXdBNZ3hb78QiRFyS9EUpT8QiRFyS9EUq5E8ItOfd2FqKCCJb1kV6N7BEuEzViEig4HiQ5ziE4wLvWAi4JrC0tG9+5ByfON/p6LfTS45WJ7MAH5ZOP7Gz5ZnLjY6fLC39jYeRkVTqOxqxL3uvQZxAErb+ZnCSHeN5T8QiRFyS9EUpT8QiRFyS9EUq6XvTeqUoMC3Gz930FsKFmwEKMyDK0UyTI6g3HOPzcbaXRtqWHmXuOtvJ80hy72ECbpTJp9F/vjwI/O/sZ+9D/GzE7gvwC0r/RORCdAdSGq4JvxNCQcN974tNaIbiHE/6PkFyIpSn4hkqLkFyIp74Xg10Vk6TLZh0SSkr13CeIeCXTUAJJGL+9Sf/8+0oe1/cgvjQ2hj0DTv+FiJz1vAzYzmyz9CGsS996GTfoybLuNjTQ3YyFv2HqRdL83dLExiK768guRFCW/EElR8guRFCW/EEm5EsGv2CgSBJCrELVQ8AuOgq6okaWZbTexZp3ROv3rTg9cbEdrvw73Wy/YNfOxi30z8I5BM7Nv6+cu9q7q9KOTi8jJZ8ZuvhEIfgftyMWOW99TQV9+IZKi5BciKUp+IZKi5BciKe/U4feuHGtdXH+7IHHvJ8jFNoQS6iPzpc23bp27WPvKr+FD84KWmdnnlRfJrsLNR3Qd243iIKxtC888qnwZtL78QiRFyS9EUpT8QiRFyS9EUv4PG/Q/VAL90psAAAAASUVORK5CYII=" y="-4183.255056"/>
</g>
<g id="matplotlib.axis_235">
<g id="xtick_352"/>
<g id="xtick_353"/>
<g id="xtick_354"/>
</g>
<g id="matplotlib.axis_236">
<g id="ytick_586"/>
<g id="ytick_587"/>
<g id="ytick_588"/>
<g id="ytick_589"/>
<g id="ytick_590"/>
</g>
</g>
<g id="axes_119">
<g id="patch_120">
<path d="M 299.674375 4308.15682
L 421.964375 4308.15682
L 421.964375 4180.863293
L 299.674375 4180.863293
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_237">
<g id="xtick_355"/>
<g id="xtick_356"/>
<g id="xtick_357"/>
</g>
<g id="matplotlib.axis_238">
<g id="ytick_591"/>
<g id="ytick_592"/>
<g id="ytick_593"/>
<g id="ytick_594"/>
<g id="ytick_595"/>
</g>
</g>
<g id="axes_120">
<g id="patch_121">
<path d="M 434.924375 4308.15682
L 557.214375 4308.15682
L 557.214375 4180.863293
L 434.924375 4180.863293
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_239">
<g id="xtick_358"/>
<g id="xtick_359"/>
<g id="xtick_360"/>
</g>
<g id="matplotlib.axis_240">
<g id="ytick_596"/>
<g id="ytick_597"/>
<g id="ytick_598"/>
<g id="ytick_599"/>
<g id="ytick_600"/>
</g>
</g>
<g id="axes_121">
<g id="patch_122">
<path d="M 29.174375 4452.076244
L 151.464375 4452.076244
L 151.464375 4324.782717
L 29.174375 4324.782717
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_241">
<g id="xtick_361"/>
<g id="xtick_362"/>
<g id="xtick_363"/>
</g>
<g id="matplotlib.axis_242">
<g id="ytick_601"/>
<g id="ytick_602"/>
<g id="ytick_603"/>
<g id="ytick_604"/>
<g id="ytick_605"/>
<g id="text_31">
<!-- 108 1833-50619 -->
<g style="fill:#262626;" transform="translate(15.789375 4432.132918)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-48"/>
<use x="111.230469" xlink:href="#ArialMT-56"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-53"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_122">
<g id="patch_123">
<path d="M 164.424375 4449.57448
L 286.714375 4449.57448
L 286.714375 4327.28448
L 164.424375 4327.28448
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p365bff183c)">
<image height="122.4" id="imagedb72cf87fb" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHLRJREFUeJztnVmPZedVhtfZe5+xhq7q6qmq2247tmObKIkcEgQJNwQQQkhIXCB+Dv8B/gHX/IAggUDxBSIMMuAkdmzHbrvn6u4aT9WZ9jlcOHDR77PRVz49xP7e53Jp77PHVVt6an1rtYpqexEJtFotjQXEYLsCYk37E4vQU5wvKDbXfWG7LwNFq5BYt2pLbNDuSqxfdiS2UvUkttPZwGN/o9qU2Eu1HntY6L39z8WxxH4+viuxo+mpxHpw3jtdPZfr5brELrT0/CIi2gt9x2aw3bSl16JPIKILv0fv8UFLj3Jrrtd8e3ogsd3JIRw54tHoSGIn07HEKA8Iuj5jTAY4+Y3JFCe/MZni5DcmU6rneXASeQTJPRJ5X1a5hzI1MVaCGGwX+lg7EKN9IyJOFrXEPitBai1Uau2B1CIhRnKPzpGe/TRUaDUprjYdG2IlvDqbtW53eaZHasM53q/0+vptvd+Ltu47nk/1ZCLiuNR7ezqb6IaJaeAvvzGZ4uQ3JlOc/MZkipPfmEx5rsJvGVJl4VeJgkQVSDuKVa0y+ThHUAM3BAm4P9fqssN6JDF6VqnnTUyggm3cYuU3gO/bAF6dSyD33qhPJHZ1WyvyFlD198kdrUzcA8l5GyoTSdhGcNUnVc/qk2L85TcmU5z8xmSKk9+YTHHyG5MpSwm/1IqzsuC/MbQ/VenV87QlinOo8/qyVv2RyKH7RfASaL03E5B4ESzyatj/cK5y7wT2ncxVIFLVHz2rKZzj0UKr2hp8X5y2dP+tloq3l+b6jr7wwr7EVq/rgU5v67VM4bt6DMuGj+Z6LSOIRUTM5mkqLzWv/OU3JlOc/MZkipPfmExx8huTKSj8uA8fVI0VWjXWgz5zTRVLbdifmILoGNe67HEEyxtJkjxPCZjcCzFViMH1kWAbtfR+FVCN9/m2+lxIvJ3UKvdoOWqqqCJRSferBrF7ELrcNSJiDr/Zg6q6UXdLYlufXpTYpfta9Xd7tCKxn/T0Hr670N58n033JLY/GUos4gzCj3pjQshffmMyxclvTKY4+Y3JFCe/MZnCwg/sQKfUTfvQp2xQ6RAJikVEdAsVL1QhSKJjCLLpAETJ8USl1hSE2NOQgMsMOiFIXtG9IRlKzBoq/OgcqcKP7iPJRjpHuma6Purhd9oCsdtwLXQ+xKOZDhu53b0ksSutvsQOe3o+n85U7t2ZqNw7mKhAJHEdwXKXnhVV1FKVrL/8xmSKk9+YTHHyG5MpTn5jMsXJb0ymVGRdqWyXbH+3VFtP+zY1jyTbT6WX9CeKJr5gM0Ow1PUEYg22+HlBpa5kbCfQbBP3hftwGmyVU88ntdyYjk3NSLGXQ5m2Lx3387jeH7qPNOr6cKomnt47ur7hDHodwDEmddrzi0j/TxFuV0DJPh7FGPOVx8lvTKY4+Y3JFCe/MZlS0Tp9Kg9MnaZCkBBpjEOlaweEIZ1PXcEkl7aWupIcGk3Tml42kVqiS5Do4iNDg9L6i4u4s5xPKqnj1Je5X0TT9aFQS7w/VCZN7x2WXddp4vMs9wacHU9nAulOMtxffmMyxclvTKY4+Y3JFCe/MZlSkTDAtdZUfQUCg9ZuN8lCqr6atrSSkIRfD7aLUtdazzppDS5J0EznafLqaYDVbolyaAHnTdAzbYKE0VIkHhoFYmJfg8/313eUfpMrDtOah6ZWY6bSdK/bS/TU6EATXX/5jckUJ78xmeLkNyZTnPzGZEpVlVANRPIjcZkoxZqaKNLSQ5wCFLrMdwUkIIlBalE67mjlFlVzLaDqL3VqyrOChdZyv8kNPJ9slV65xLhxXDbcINhSpSa+i5AbBB478bNKEq+p4e1aW4X2+faqxiqdILQOY8n95TcmU5z8xmSKk9+YTHHyG5MpFcm9VFKXRtKSx6b9CeoB2IcKvxXo/7dWqOg4BSFy0tb+amep0qJtm3qxPW2WrkJMfSUSD7PMRKJ5otw7y72mCjqSe6kj5CmHaqgOpD6Y57trErvaPY/HebFal9hOqBy8sIB8gdvjL78xmeLkNyZTnPzGZIqT35hMqUiypEpArp6CirOaxdmsBb30oNIOxy+rx4u6HEiMrqUHw0I22ioB6d4MpzqMISLidKoDMFJ7thG4VJeq7OhZQegsEjB5Wzz0F6/cSxWs2POw4Zyxdx0sMV9GfBP0/Khy7+XeRYl9v9zC3/yWOum4sND3bgI5eB9ko7/8xmSKk9+YTHHyG5MpTn5jMqVCeULuA2QMSqmziJNEr3Q40WmptLR21Fb5QZOA6bxpO1ouSb3QIiLaBUxlnamhmcIQibP00vuqkCqLSSCSLFy2xyBWoSYKyKahNI9DvSy3SxXN3xvx7319c19ik4lW831wck5iv2iT2DfGZImT35hMcfIbkylOfmMypSJxRpKFJBlN8y1g+S315YtgAYLHoYosiE0WMAQEhnHQ76XG1irtoxbBwrBXauwA5OVoBtWBSwx9+LLCEjBNhp5F+JHkxiEpicdOFbap1bRNX+TjoZa13pyoMHynp/u+uzhOPo4x5iuOk9+YTHHyG5MpTn5jMqUisUQiL1WIdUFyNQ0hWC3VTKxQDPrwDUCwVfC37BiWPB7WWo03nutSYoL6CUZwfzaSUDTAZEJVf63nNyH4SZN63lS5l7pEuEmPporAZaos6fooh2i7h3N9F9/pgrGLiPWF9vC71VOh/dFiKLE7syOJ+ctvTKY4+Y3JFCe/MZni5DcmUyqqqKPqOarS61cq4miS6FZbBxNERFyrdOnh1UL3vzLXY2/VsCwXhMpdWIH7AQzouD3XyrujOSzJpX6CwdVbJKtIktJwCJy+C8f90krAxOq5VAnYdB/onhXkAGH31GEjJPdIfK9UKvKmcIbvtU7xODAHJA5BaD+s9V0+hJi//MZkipPfmExx8huTKU5+YzLFyW9MplRk8XtVWoku2Usy+y+1N/Dgr4dO2HlV5WVcrTV4vq9GtNNRE3/vQNc7Dzp63p1S/w7eBDO/V7OJHSWWB5Ptp2dAo85xGhJstex/AMhyp5bZEmTsl5lctCyp/SqoNJi2o6auG119717pXZLYG6WW7DaVKu8u9L9Pw7nmxinE6H3yl9+YTHHyG5MpTn5jMsXJb0ymVFii29ES23OVyrmNSqXGdqVTbl4Lbnr55kSlz7WFrm/eWNPY2qbGihKaMNb69+3SiV7zXZA2ey0Vn6NC195HpPc7oHHjtMafGqtO6rQGl6lju5skHpWrprJM49Fl5F7Tvqnr+Wk7fKZwbwZtleFXu+cl9t1CxfdvnurzO224/+93NAcX0F5iAu/YuFAh7S+/MZni5DcmU5z8xmSKk9+YTKnWQSJsdbRK71IFMVh7fz1UfrwxYelybaHVcusDrWJqQ+XeAuaI1xAbwwjjKcidGuqqOvC38QJcc0REL+A4pf7mbWhGSiOeqaknVv0lrkOnxqPUdLQJOkeSeyjeyFM++cK9ZEja0b2gykus5mur+L4OvSre0lc7vr29K7HxKT+X1X0VhkVP83de6Q2nPhT+8huTKU5+YzLFyW9Mpjj5jcmUahWW5W6WKhFI7l0DuXd9pn9PtqERZkTEoAuTakjajVSATMYaG0Hsk5nKmBvq3OK4pfJqBSTehQVPH9qa63WPQWr1S/3NI2goejRVGTqutUortbHqhZ4uHW0aNz6EiUaPxjrieTjV7RZzlU1Y8wcSMLWpJ/5c0xLh1CacUM3XL2FSFCxt34RK18st3Xen0Ge6dl2f6RosyY2IaH2gsem+VhKedjV/R5WFnzHmVzj5jckUJ78xmeLkNyZTKhIdqZDImYJfOQFxFhFRTqjaTX9gCn+jTiB2t63H+WVXRcedgOXAcNwdEJrXQGhGRGzWejeOoS/gg0ql5Fqhx8HqMqhCW2mrsH19sC2x75cXJPZCw7V8CBWVb1d3dbvhHYkdT/TepvYeTJWAZxGDWIWYWF7Yhmo+GiG/Cs+vhPfptNbfm+7DcdXNRkTEYF1F4M6hSsTrtQrIR3De/vIbkylOfmMyxclvTKY4+Y3JlOoUBmIcF1pxtgtLQutCxcsQBn7chqq2iIg+VMuRCBq39Dj7LRjQAUuE78NoYlqeegGqGhdQpdUELRM+Ba9E11KDwOoWMDilp/frG32Ve38+VWP0+29+JrH+b7BZOv3ZocS233tRYn/T13fnl/U9iY1n0D8O7k3qAJIzDSXBFcbwDOCdoL5+nZZKO9KHu6H35iddlW4n7+nzu9zmwTAl5NuohgpPuL5zIIv95TcmU5z8xmSKk9+YTHHyG5Mp1QiE30ErTZIdF7rvXRCDTRVZU/hN2nYG240XKpFOahWV1PeuV6pMo0rHe7BdG5Z0RkQMoKLrEJYJ34dJq3RvL3ZUxr3c3pTYn05UVP7xH2o1Xucv/kxirZ3XJBYRUX74jsT+5C/fltjbx1sSu1PtSYz6ES47STgVOs488dj0XGjoysFcqxppmvMnIHHf6Wk13k6Ll1qfn2tutbv63p2AVD4IfQb+8huTKU5+YzLFyW9Mpjj5jcmUipYtknQbz1WwTRZpIue0oSfZ8UxFCU2nTV2CSedN+9K1ECR3HkElYETEACq/xrD/IfQz7IMIeq1QuffbM60Q+8G12xJr//B7Eive/IHG1lTYRUQs9lQYrmzoM1wb6kRmWopMlXLQ6u+pSMDUyb+09JemJx9Df8OAWSokn+ndvgFSmSZiR0SslSoCe5C/LZDPY8hVf/mNyRQnvzGZ4uQ3JlOc/MZkSvX1/hUJzrHKTmXFCYizI6hsOpnx0I6jiW5L4oWmqhYg8kjukGwi8UIDMfaLocRuwyCHCB7wQBNduy0VPFcqFWfbAYM3oE9gPdV7s7ilEnD+0X9oTCK/+s23/1Fi732kPQD3uvr8nlXl3uM0iT0Svql9K6nCj5bAz2E7euep0vG4pQLxqOQlvfQ+pV4L5bS//MZkipPfmExx8huTKU5+YzKl+r2WTvmkPnMHoIfulio1Pgbxsj9VcRbBco9kHAkVEjmpwo+Yz9JEFcnHCJYxg7Yu/z3fVrk3hsqtvULl0M87Kgv3dlXYvvJXMMhh+28lVtd8LT+9r5V/P+rr/bk51okTVBVH0LLa1GEcBUguqiyM4EEnFKPpuyswwZrELklAug8k/Egq0nb/XzwFErH+8huTKU5+YzLFyW9Mpjj5jckUJ78xmVL9cH4kweOpWuVPS7Whi46az5vQwPMskJWsIYZmH/4DsIC1zWSVU5s60n8jIiLqIq0ZKZVj0nQemuJzC3oGtGEM+DpMTbq6d0nPpaFPws2e/hfnFzBLmv6LQ/eH/quTWgZM/9Vp46hybqy63tG18ZvwH5ftShumvlBqc83zCz32Xkst/LvtRxK7MdqVGJWVN5Xs0juPDUpprLltvzHmf3HyG5MpTn5jMsXJb0ymVC+9pRNWjm+qMDq5fVFiVGw4hMaFTWWJydJnibLdVLm3zLl8/ptpZZrDqa7fvg+/dzDTqUltKGEdFCq6XoLJPoPQ7c7N+VpqKGF9CCXIuyAqU5utpkL3m+7DSltLcSMiLnXOSezVtpa0f2euYvCbp1q2e7Gngnw40vvwzx0tu/7xip7jETS3XSu4Z8QK9IJokraPQ1v5y29Mpjj5jckUJ78xmeLkNyZTqs51rXbq7KtsOoGqo92FrhsnUUVVTBENE3YS5V6qWKL10qmkTntpgsTiCO4FnSNWAsJ0l5W+SqQ3W1qZ9gczrca7eEnlVUTE7v01iW0WKs5Ouio0D6dpzx+fS2LvT3ou1E8hIuIciMqvhd6z70xUxL72ykOJdbe0gnGyr8+q/Agq6soNic3g8/vqhN/ZnULzbbWvgr030PvdX9OYv/zGZIqT35hMcfIbkylOfmMypaofgbS7p5Lko45Kltv1scSGiWO3nwapDSCpmm9Z0bjMKOjUKUXUpPJSqcL2d0d6v1/7I5V75Us6hSciYuOmLked/0i3+6CjYvBDqA5stVQC4thuPBsFl7E2VGj2YBn0FWhcurOl92fwNZj2swFjyTdVul0dH0jsrRvQOLRUEffyt/X+R0T03tBlx8W2Vt62LkFs50XdF49ijPnK4+Q3JlOc/MZkipPfmEypPvqxSoR/CxU5/1IcSuzWWMUEjSZO7Y93FpaRe6mkTgWKOMNkoMTlxCQB6dibsKR3Z1VFbPmiTuEptnTpb0TE4kglcKfS86Frocq9Jz22m44xbZgURNvC8KFY2dClteVFzYPivOZLa10l9+pEqwOvDVUCdgd63r3X9bgREeWrKu3iyo6ez9Wv6b4vvyUxf/mNyRQnvzGZ4uQ3JlOc/MZkSvXXMADhRn1PYp+ePJDY/liXiVLfOupv93n8ycq41CXCRKqwayL1WpaRX1QpebjQCrEHx1qhefVDHRhRPFCJGxFx/F8qbX86U7F0q9RBHuM5LN8FebnMs6ffI9EcEbE3V3m5X6jonI0Tv4N9FaytrlY1lpf0uCubmi8L6KO4GDX0vBxqpWQLliITrUrP0V9+YzLFyW9Mpjj5jckUJ78xmVL93cHPJUg910jk4fTVJSbgRnDvOlremjqxFJfQLtHX70lXq0WkLycm4ffxWEXsP/Re1t/7J63wG1TcW/HTmQ61+PeeHvv+RCsJl1m+vcwgltOZVuhFRNwdq5T87xW9vm/c1OXN3373jsT6NVxfW6X59Kbem7272ltxNNZ9L05134iItcMbEqtOVCzSF70eaP9Af/mNyRQnvzGZ4uQ3JlOc/MZkSqvduSb25ElLraYqO5J7Val96mggA/WzS52US7HUJcJnkZcksIpEoVlABSNtN6i04uyVgU6IfautQuvKXO9hRMRhS6/x/YVKqPfHWgl671QF2zFUoWE1ZuIglrPsO2jr/bk2UPn53d5Vif3OTId7vFGrYBu0VZzuTrTK8pdtHboygtM+1+Cjr8z0vd3patXf5etaubnyTT0ff/mNyRQnvzGZ4uQ3JlOc/MZkSquotsWeLDOd9ix97zqwnLgPSw9JatHEWpJxJ7Uu9TyZaix1KfKy1YokNGm7NghNkoUkFVcqFVVXulrhdRkGfjTxoFaxdGeyJ7GHIx1+QdV3ywxOSe2DGMH3m96xjY5W3213dOnv1Ur7662HvscTGEFytAD5HFox2PSOzUF0tlt6fT2IrcE5+stvTKY4+Y3JFCe/MZni5DcmU9QCnIFUuUdCK4KFXw9kDAmsQakSkKrieiAGCVrmO6+/+NLfJugcSe614d7QfaTfowEWtLT1oFSJ13ScCfwmLf0mSNrVILVSl/SeZcIvicDxTM/7fq0DNfYn2nPvBsjnVXg/K5Bu9I7hfYU+iBEsTulZp0ppf/mNyRQnvzGZ4uQ3JlOc/MZkipPfmEypyM4vY/FpzTlZ/Qgu0SWLv1bpWuT1Qg0rWeCy1vM5LdWaDiNt8slZeh0sYF38MpDZp74G1P+AnimZ5oiI2SK95DTlfKip5xzuDR0jtby3Cdp2DtdH0H8FqDT8EP5r0oZnQNC9afovCm2b2kSX8JffmExx8huTKU5+YzLFyW9MplQkgkjaoVgCkUcSr1dqyW5ERB/iJPc2y4HEVlp6nBmtoYbrw1LexElDqTKlaX869hREDgnWNqxNJ0F6oa1rzrstfVZjWF8eETGEHggkAacQqwrdF/sinOE+Pg59sZokYKqgTZ00NZvpNZOIK1oq7VLlZdNIex51/sVL0P3lNyZTnPzGZIqT35hMcfIbkylY4UeNIkn4kdyjtffrIPEiIlZLWKdfgARsaYxWfh+DwDqCCSsnMxBaMHqZZEqTQEptenqW6rTHoWewWWnjyRdKFX6bIEjHDbJoWELVGci9U7jfD2pdA0+0ax6p/ThNvSAep2k0OK2BTx43nyh8aV/6rC4WX7wxbhOpo+oJf/mNyRQnvzGZ4uQ3JlOc/MZkSnIDT6pOWmayTxNUATcMrZYagWx6ONVpMQ/GOq6YRkaTMFp2VDnJql6l4o3EKcWoIrJf6HarUM13YaGxdsPlTeGxTmEJ7mGhz2oFzqcHsRE0qezAea+AAC5B9x7OVeJGRNyfamPOh2N9T+idmIIYJFKrA8vEfGkaN06Vt6lVqBTzl9+YTHHyG5MpTn5jMsXJb0ymoPAj0UVVTCREaAYMLQeNiDiuVbI0yY7Hof5zx1Ot5htCzzU672WWRkZwVWS/rbJqs6tjsanSkXrA0ThmEqQHC5Vpa6H7XoBYRMQq3gp9LqsgsPotrebcoKlJcOhz8DpeWMA0IxCV9yt+fu+Vej6/gGeVuly2qZLwcbA6EKTpWUba47Yk9+A4dH3+8huTKU5+YzLFyW9Mpjj5jcmUKlVM4DJIGjlMErBBYODoZhIvicsoSdA86b5nTTKGqvlW2iryLnc2JLYBUoqOMgFxWsO9eThXkVoWNHRFzy8ior0AeQmS7RwsUR2AlLwMdq8Lv7cz1evbLo8lVpX6/D4b6dLmiIhFTwXrXlvvz36lS5FpOXBEYiUoPMBlqv6WBZfuP5MjG2N+7XDyG5MpTn5jMsXJb0ymVKk9ybBX2ByGGoAQaaraS10KmdpL7XlC96cLS1nXoZpvHZat1onLiUkC0r05he2OCq5W64McLOZQ4QfedBXeiTZcyzmolHthTZfaXnxFhR+19eu8z9fy8XRTYn3oZ5jaK3AZUuX603i16dj+8huTKU5+YzLFyW9Mpjj5jcmU5B5+JAzS6+TSJ6g+C5H3NHoPEqnXQj3pKNSlSjmoqOtBL7w1eNRNf/kPWjCRl/rHwS9sgXfrggRcgym2a5taedfZ5gnPst3HLPyoDR8tB6fYMpWgqVV/qXJ92WO7h58x5v9w8huTKU5+YzLFyW9MpuCS3sQ2ektXIj1puZfa/49Y9lxIDpFEomXQJPy68Hd5BUQeLaHdhL53A1h+e9hwzfdCl7LehsrNNegzuAPVijtwjq1ZV2KruwOJVR9qhd9kqL/30/3zEouIeK+rEnEXhruMaxWQqdWmqSTn2jPKK3/5jckUJ78xmeLkNyZTnPzGZEry0A7k2RTKPRNIFp5FApIcon6G9JubsMR0e66PZhOW1a7XaUtoD0vd97ji69tfgPCb6bTjKSwT/gD6EV6qVOSdh4EmlxfnJHbhE+15OIJP1s9A7EVEvDvdldjuRK9lNCPht9wglxTOUuWaWvmXmr/+8huTKU5+YzLFyW9Mpjj5jckUJ78xmZK8np9ItYpPY/38MqW8z+oYZG0rKHV9pVbb/4OFlqBeuaaWegH/Abh7a11i74ROrnnUgsXuEbE70+k1d8f7EhvOYDIQNMK8UWkpb79U2z8odLuVUmNz+A/HPpxzRMTDid7HExjbTu/ysv8BetIsU1pM+MtvTKY4+Y3JFCe/MZni5DcmU5YSfqk0iYpn1UjzeZFaurkBAuva6yrYVn5rS39vqNLt5O81djRU4XdrfiKxiIi7Ez32wUSFGpUvk/CbwXSek0Kl26OWrt0vQLqljmxvOjadY6dMS4UpNCN90iLuWeEvvzGZ4uQ3JlOc/MZkipPfmEx5JsKvCayqesIScJmKrLNU+NG1TEE27c1Usr3X0eaT3/pI17a/fF0r/FodrRiczTS2W6gQuzU5kFhExN5YxdvpVNf4472FzwndB2pkmtowk4Rf04jtbgnjuGH6UDnXGJ33Vwl/+Y3JFCe/MZni5DcmU5z8xmTKcxV+v+6cRRaSHKTqsnuwNPZfoellv7wgsd//kT6uS1sq5z47WpPY7Z5W1D2ARpYREUNY8krXQnI2deQ0FDWi3Guq3HucdlslZwRX7qVWIX5ZK/dS8ZffmExx8huTKU5+YzLFyW9MpvwP+TgWLgc7GxMAAAAASUVORK5CYII=" y="-4327.17448"/>
</g>
<g id="matplotlib.axis_243">
<g id="xtick_364"/>
<g id="xtick_365"/>
<g id="xtick_366"/>
</g>
<g id="matplotlib.axis_244">
<g id="ytick_606"/>
<g id="ytick_607"/>
<g id="ytick_608"/>
<g id="ytick_609"/>
<g id="ytick_610"/>
</g>
</g>
<g id="axes_123">
<g id="patch_124">
<path d="M 299.674375 4452.076244
L 421.964375 4452.076244
L 421.964375 4324.782717
L 299.674375 4324.782717
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_245">
<g id="xtick_367"/>
<g id="xtick_368"/>
<g id="xtick_369"/>
</g>
<g id="matplotlib.axis_246">
<g id="ytick_611"/>
<g id="ytick_612"/>
<g id="ytick_613"/>
<g id="ytick_614"/>
<g id="ytick_615"/>
</g>
</g>
<g id="axes_124">
<g id="patch_125">
<path d="M 434.924375 4452.076244
L 557.214375 4452.076244
L 557.214375 4324.782717
L 434.924375 4324.782717
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_247">
<g id="xtick_370"/>
<g id="xtick_371"/>
<g id="xtick_372"/>
</g>
<g id="matplotlib.axis_248">
<g id="ytick_616"/>
<g id="ytick_617"/>
<g id="ytick_618"/>
<g id="ytick_619"/>
<g id="ytick_620"/>
</g>
</g>
<g id="axes_125">
<g id="patch_126">
<path d="M 29.174375 4595.995668
L 151.464375 4595.995668
L 151.464375 4468.702141
L 29.174375 4468.702141
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_249">
<g id="xtick_373"/>
<g id="xtick_374"/>
<g id="xtick_375"/>
</g>
<g id="matplotlib.axis_250">
<g id="ytick_621"/>
<g id="ytick_622"/>
<g id="ytick_623"/>
<g id="ytick_624"/>
<g id="ytick_625"/>
<g id="text_32">
<!-- 117 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 4579.382342)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.505859" xlink:href="#ArialMT-49"/>
<use x="111.121094" xlink:href="#ArialMT-55"/>
<use x="166.736328" xlink:href="#ArialMT-32"/>
<use x="194.519531" xlink:href="#ArialMT-49"/>
<use x="250.134766" xlink:href="#ArialMT-56"/>
<use x="305.75" xlink:href="#ArialMT-51"/>
<use x="361.365234" xlink:href="#ArialMT-51"/>
<use x="416.980469" xlink:href="#ArialMT-45"/>
<use x="450.28125" xlink:href="#ArialMT-50"/>
<use x="505.896484" xlink:href="#ArialMT-57"/>
<use x="561.511719" xlink:href="#ArialMT-48"/>
<use x="617.126953" xlink:href="#ArialMT-53"/>
<use x="672.742188" xlink:href="#ArialMT-49"/>
<use x="728.357422" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_126">
<g id="patch_127">
<path d="M 164.424375 4593.493904
L 286.714375 4593.493904
L 286.714375 4471.203904
L 164.424375 4471.203904
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p806f42d525)">
<image height="122.4" id="image3b54cbcc06" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnduOJOlVhXdGRJ6qKiu7+lDdc+gZ2zONZSyBjAQIwSUgQGBegvfgAXgShJAlbnxhJIQEMliWjOxh7PG4p3vGfaqqrlOeKjMjIpML4KbWF1IULXwx//oud8Xxj9gV0sq19+48GH9jG9fYbCUUm+1GYjXEyk0tsarWWBNFnkusm2msE51Wx8uzTGK7xUBiHwwPJfZX9T2Jffuv7/KJ7t2X0PnffE9i33n+jsR+mF1J7OVmrserFhK72qwltqhXul2t262qUmIRERU8w05H1zuDGD3/eqPvCUHPip59cYP3YRv6LtP10LtM97dT9CV22B9L7MOevicfdHYkNt7qPWvkv1nDLWZ6e7G/1Q3fW+tzaTqPMeZLjpPfmERx8huTKE5+YxKlIAGDBL9qq4LBuq5a7Vt3WPDZwrYUo2NmIH6Q6EMxEnJouxrOsT060WBExOmZhD57ekdivxjomh3XKvhN6qXE1lvdlwStvAPCWUdFsjprJ8TdhIzWEbZ7k2dPgmQTbcU9FjR1zTaw3iXkxnyrYuok0+0G8P3d37B4uQPiXh8e4UGtwbsdFYH95TcmUZz8xiSKk9+YRHHyG5MoxV6ubrc62jn3SNwhMYYEtoiIGsQc3o6EKf2/lbd0oZEgRtutIFY9OcJrrE7VQfdR8Z7EXmymEpttVIxZbVQwItGVBDG6P3LF9UC8aoKERRLo2joB6YmiWIzOUri+hneprbuQrpvWkc5Dz2UBgt8FxIZwjj4IjRERAxACB/T8Yd/FtpCYv/zGJIqT35hEcfIbkyhOfmMSpRjkPQmSqLHutHOXLWsVNdYb3bcJdPPBdnTullW+CAlL56CcHP+AxZiTMy3hfA72KxI525YnEyymaqwgt1qHRbIt1Imi8AayHYqpOQh+6Npstw4k4q0bXH/4ngD0DNo6DkkMX8E7f5VpbBYqxO3CGkZE7LQUpZew3k8zzXN/+Y1JFCe/MYni5DcmUZz8xiRK0e+o4ED6U7Floes6V7k63ZaVxpqgXoFb6ElG/7Y6sF1b19gaXFpPMxUv/3Giff0iIlZdukQ9z4NMHZXklCRmGy3zRVGKRC5Yr7ZiWEREB9aHbHp53s5dSMIgxQjqRxhrXZsILjsnsMy7pQBJ0NqiTxXOUdD7HhE5PK4VbHoGGz4Nl/QaY/4HJ78xieLkNyZRnPzGJErRA+cXuZ36pLmBWLHIVViYdrRHXQQLb23LREk9IWGJrrGXqchJ93y2pTJdFsl2QBAdw//WdzaqDGbQkJDcc/SsSFgqYV2XUE6aBwuxnYBhHrDedN0ZiHZ7MCSFSskHma4NCbYXlQ40aSrpJUgQJbGxl+t7MizUKTfI9bp7IKTvQOwWlNoeUvPIiNjb6HXP4BlcdlScfV7rmvnLb0yiOPmNSRQnvzGJ4uQ3JlGc/MYkSjHsqFLZ1maZgQ2xD4pt2+NFsL237dSdtiOVD4o9id3PdyU2glrrJk15CVOJhrA+I/h/excU3002lNitjirNOGkIrnICv1ycNvwKc1nrKHD8VQF+AdiF9X6nd6CxTNd7B37NWIKt+AXUptOvI01Qk1n6pYh6XbT/5UKfKb1PDzb6PrxVcm+CLjyDGZznHCY7nVTaONZffmMSxclvTKI4+Y1JFCe/MYlS7JJA11JEotHENAo6z97sf0xb6yYJizu5ClCHIPi9DQIbCXaLBmGphPVZgAi4A8e8A5NY9kDco2fQpR4G4A59Dcd7UnCPBhLPaIIQfToOu2OJ/V52W2LfWoK1G67l8x5YZ6FnwLrLIhnZg6kfAL07bcW9HBaC+kNMQ4W4JTyXsqGPwBry8nmu6/h5PZHY8epSYv7yG5MoTn5jEsXJb0yiOPmNSZSCmkeS8EI14itwEpEI2DSRhkSWOli4uU77cc4wVYb6FYBw1oXtmu6FzlPCRBw691tgldunhpktWcD/9G5Pxb3X4A6LYAGLGILT7tdyFfz+cqvusq/80Uxi65d6z6OPDiU2Geh5z/MdvEYSAme5NvukiUYDcL924Z2db1RAvCi1fv4yU+fksqdi6PMB3wuJyj+rLiT2ePFKYudLXW9/+Y1JFCe/MYni5DcmUZz8xiRKcQZTYEi8InFvUmtJ6KzS41GZbgQ7/zIocaT9KUbTWcjNNdlok9FLcAK2LTGN4KaQva3eywHs/hCEoMNDFWg6ICDOJuo4eznTctlNwL00uBWp2SdB7slHW4197Y/VXdb98z/R2GefSuzhyy8ktjfVqUmDBhfpLXDk7YFQWYCQR+IuinvQUPT4Su+Z8uq4q9v9GEqJIyIqcg2uNQfnpeZgCbnhL78xieLkNyZRnPzGJIqT35hEKV6u1SFEJZ3rTTsxbVWrWFRCz7QmaDpPk6vuOuT6o95zFdzfHJyFNRyPXFYREQP4P3oPBL93Kl3H8S0VaPojGC1Np9bqzbiEyTDPM72/kw338KPyXXoGNGFnDI86/+p9iWXf/H3d8EDdfAff+0T3/QjO0fCO3O2Q4AduPnhWKxBYPwXRjURuEt2od+AcRovfZDQ4lbu3Hb3uL78xieLkNyZRnPzGJIqT35hEKS4rdZeRMEGiHW1HMXI2RUTUm/aDFq5DAhQ5BofgljrIVAS6DeWbdI5Jg/uNSj13YdRyH4TFslQBanKs1zhf6L28WGv55ycwT/3zrbrQzmE4RwQ7ydqyAq1qu1JhuLOnpazZV35DYv1HI4nt/FjPcRfEx4iIw42u7VuVCmJjEuPgmS776p78CN4TFJ+pFyVpe+2njSMokEPIX35jEsXJb0yiOPmNSRQnvzGJUrTte0cltO33ba9g0KTdtv+jqB8h9WbrUQwcXltweDU5/C5BCDzK9Ty3NjCMYw5lzHCO41yde09VF4yfhQp5L2BK67xWd1lExBJcmvRcluAEvCx0fTav1EW6nWssG6vDL7uvwuCdGqbsQslyRMSHUHb+7gMtox2M9V7mZ1qe/PNLLSfOQBjE9xichQTnQHsw3yDkL78xieLkNyZRnPzGJIqT35hEKUgQa/svAQdnwGTaxsO1FDbaCoZUCknlqacgAtHk1wIGedCk3Aju4XcUeu68q4LfRYM77TrHMJH1Saho9wzEPeozRyXZEezSJBaZ9kJ83dN9l4/1Gruf/0Ri27GKadVjHUBRh243qtktuj/Qa9y5o8+lewdceqVuBwNwUQwnEbDzptY9oG35LuEvvzGJ4uQ3JlGc/MYkipPfmEQpBrmKTfVWRcCyo0IOTdnNYegGljJG+15lVPrbVCZ8Heqv9jJTdxn19budDSU2gtLfiIg+/B/N4f4uqaQXxEa6u1MQEI826uZrK+5Rv8WI9i7NOQh+R1uNPf74jsS++bd/r+e90H3/9Z8fSOznULI83vC7tHelJbjF53p/o4m+Jyev9iT2BdwzToKG8nJ6j5ty41eBv/zGJIqT35hEcfIbkyhOfmMSpRjlKmrR0I62wgQ53W4C9Y+bVyqyLEHAattT8LJUkSyH/4M7PRX37kP/v4iIMYiknZYOwSW4IhfwDM5oQiy4Fee1rtdNhqnQmpGTbA5i6pNSxdS/6+vQjn/7rvYePMn0np8NuOz4OncLnmy7BoF2OrslsfFU7/l5ofsed/T+CCov34IATMLur0oE9JffmERx8huTKE5+YxLFyW9Mojj5jUmU4l6hFkbSGmkE8hBGQZP9dYd6BkTEGmyRJ1uw4+Zan35WziS2AJW77QQhakZJlt+mUdA78H+0CwtZguI7o0ao9KvAVsd2071QA8ibjH0myJp6tdVfH55eHUuM7MY03puguvhRrr+4zBp+hVlAfNbXXwbGG72e8wzGu8M6dDPNA7T3NvQcuE7Ts3qTXwHo1xp/+Y1JFCe/MYni5DcmUZz8xiRK8X6ugh/Vbg9AtLsDltaHlYoVh5UKVRERVyAOftJTMeanXd3uGQhGr0sVBqmOHcUPEFlKENMo1sQA7L07oNn0QdQKEFNnma7NHOzZ1FCSxjaTBTUiYt1SHCQxdboGu/FaRdweTB/qQ28Jii3B5rzMuTdBCU1P6ZNXwvtEb+0Angv1xJhRA09a17ajvP8f8JffmERx8huTKE5+YxLFyW9MohQf0MhoEMQG0CDxsNLt3ttqrfzdA41FRGzgmMPLsV7PAEStHEZBg1By2dFzrzcq5ZDgtwZH3QIacEZwXfY+BO9Uuj/JaxfQ1LPf1XWgydTkQiQX2rxhZDT1TyCxKqthbDf0DVjX7ZyJ9PyoP8RNxsB3QagegXA6Cl2fLqzjDgh+QzjemzoqibbTedoKhv7yG5MoTn5jEsXJb0yiOPmNSZTi11cgaoE7qQsiyxgmyOzvqljUhbHNERHlWsWYAQhqextwg0HJJIl2JH6QYFSDRkJlvpMtO8mWnb5e41av8UGubre9oTrWJgs9XpQq+JVdLVnNchD8QPhqcviRGzCv9V5W8J7g2HaauASxCqZCkahI111l/I6tQLQll2YN5bsQai2m0hrSu0huzCbajqpvi7/8xiSKk9+YRHHyG5MoTn5jEqX4zQ+OJHhxrMLScqWiBlGDMHR2ptNZIiLOSxW1nsHklVcg5lxA/7gFlXqCaEfTfggSECe5CpoREWfQV+481/ubrPX+8iWVdeo5diF4fwMuvUzP282gr5/u2QiJbLQ+JKaSo7Kq2/VWbCtyFQ19InfAfbcLLr0ulF+TFLeGKE2ZIjdeW+GzrZPvJnBJtzEmSZz8xiSKk9+YRHHyG5Moxfgv3pPg8EefS2z2RP9PnJ+okPf6SsXCZzmPT34BJrbXmYpDRyDuTUHcK0lYAjGGBCgSm4hJrj3qIiLOMr3vV9AXLod+hLvgYKR/y9Rbrw/a0F0aFw4OxKZ//STuzeBeSGAlYYl6/S22LJxeh8SvHJyFw4Z37DY8l/uh294BN+YpjE6n946GxZCQ1xZaw4iGsmoa0AL7477/h2szxnwJcPIbkyhOfmMSxclvTKIUnQ8fafD4XGL5Mx2IMVuqcPJpV4Wljwsugz0BIW8F4tAaRDuaoEuQ+EGuMRKlrkKvb15rSW5ExBzu8RzEyxyGVXShBJco4LqpzxwxhO1uw9CUiIgulEtXAa7PXNfsGKbikihFXFW63m37+t0EKsulGDv8uHT4OjSUhETlAsTZJkjobCv4Ef7yG5MoTn5jEsXJb0yiOPmNSZRi+0t189VHMO12quLQxRbKb2GYxrNNgysO4iTwkNBBUC+1bsNgiuu0dWTRUIqIiCvo7XcFQuUc+yO2FG0gVID4RXdSttwuImIE5bE9cMDRcJcuDBtZdVX4pHUk0ZWeCw0BuSx5MMwzuJe60Ou+Aw5Iur8CvpcHhU66phLjRaFOQLrnJt5kEAj1D/SX35hEcfIbkyhOfmMSxclvTKIUy3/6RILrcxB3So3RgI2dLQzYaOivRo4n6rlHQgcNocjhf1lbt9Obgq5BEIxUqsJBuxGwb9nR2ApkuzUNpSBxDkS8iIgeDeOA8tYlnHsKz6+6wWCK69CzpzLfFZw3IuL1eiKxaaVCM5UE74Fb8SBXp+NbxUhit2C72UYFPxoq0lReTgM+aJJ0CSIilbb7y29Mojj5jUkUJ78xieLkNyZRirPHKkz0hyoiDEdabvn2Ziax6aUKfq8HKpxERFxmKoCUIExQrC08CEJjJCz1c3U17he6XhERt2BoxwiGQ+yAyEb/gZfUPw7EnTMoi76C7YghXF9ExE60G9ByAQLWUaXu0NNSY/NKS6PJzVeAQ5NiTROHyUG3AnfhBByC0wKGn/T1aR3mu7odOTkhtmw5RTiCxfDNBoRhEOJJkPaX35hEcfIbkyhOfmMSxclvTKI4+Y1JlGINo7dJ7S8GqkDuhqq978zVOvlerfXOERFHYIEku+McpqRQE0eyMFKMoLr/3UIV/Ae9Me7/Qab3+LVa1xaWMc6gB8IlWHlPYMrNWa0qNU3SIWh8dUTEEKbzEBe1PmtS9idrvUZq1km/uJCy34fra2oSij0CyCYLPQLIJntEU5hAxe+BaZuaf1Jz2qZft8jKS/fSdsS3v/zGJIqT35hEcfIbkyhOfmMSpViC4BcXKnTlUxUWVrDveaWWyDXrSjw5BcQTHPsM4sdVDROAwMpJVkeasDLu6gjy90DYi4j41loFnq+H2p+3cC8/qdUe+hjsvZcbtcReViqmkTBE0EjziIgFNEIlaHoRPQMSzugZkP2Vnkuv5fVFRFQgspFIRrGq0n1P1ypoksBGoiQKjW8wLj6ChU5anyGIu/7yG5MoTn5jEsXJb0yiOPmNSZTiqIT6dOiFuAIx5hyms7zqw8SejB1nr0HAuoKa5RVMw1nU6nabluo4W1S6XdupQH0YYX0vWL38AKYPvfu1S4nNzlQQ7U1UWKTGnHO45ytw85GIhFOPGv71l3U7pyStbQlOOZoWk8MYcKzdh0atAxDTmsZ203V3amgKCtdIQuV0rc+ZXITUC4Kg8zZBx6Qmo7vQW6IPIqC//MYkipPfmERx8huTKE5+YxKl+EVPhQDyF80yFSaOOirEHYGIdw7NGiMaJpiA4EeNC8lJRmWiJNpQs8e2JcI0+SYiope3c2VdXaloM830ehbg0qO1oXUgAYpcX03TjMixRudZwnq3HXVOAiQJfgMQuQYwXaepgSc+axDZsAwWDJDoBIT1pnuhKVMdED6bRtLTVKGdXAXkEcSoxNhffmMSxclvTKI4+Y1JFCe/MYlSfJKraNOF/wk0LeYl9I87recSIzdeRPv+Y21Flra9y8hdRlBp7KzD/dXmlQpqk9fqtDpeqpvvbAACG7j0yM23KHVtcUoR9AlscsWR64zEvWXFY7GvQ/0RKTYsVNAaQZ/Hg1zXkN7ZiIgNbFtBH8YpvKMXVbt3mVyIe9D/EXsP3mCEPAmBA5i6VMBaULm0v/zGJIqT35hEcfIbkyhOfmMSpXhaa585EhFo7PNRNZHYRakiCYlzEREZjTEGIYgcWTTggRxrbZ1k5IDrwTo0CTRTGGvdm6pYdQ7nXoCnkkY3U6ku9oBr6bJrAkXXts49EFOpD99BX3shvte/I7EPchXn9mGthw3PZW+r8dFGY7U+lvhlV9/bT7eaL0twgu5COTiJbkSTEEt5QI5TitHT85ffmERx8huTKE5+YxLFyW9MohTnMGmVSg/JXXZZwoTYlj3zIrhcswNiTt4wgbUNNNQA+/WB+2oXSiNp0EhExJSEyo3uf1nouRdQGk3TW99E3KN1aJpsm1PpaaHb9kFYIjH1VleHknxj8EBif1rvS+y3Q/sg5lA+Xdf8Hdsd6fs4fldLzIuR7v/6Y31+353ek9inuT4/upouvDsdECSbRpIMSCCH1LqEgS8vYKK2v/zGJIqT35hEcfIbkyhOfmMSpVjS0AcQFqh/HPW4axL3iDdx+JHTjgSsDVwOuQNpX3IMkpsrIuJZF1xnW72XU+iFeAZDSWbQC5GcknTdJLrtFCpeUS+8CH4GbSFX5Du9A4n9wVbFvT97/7nExt9+X08CLsLt6QVfEIi22duPdLsdLf29f/vHEnv4DyqmvYTrIRl2AO/T/lb3Paw4hx5CH8XDkTpqi0LP/ux8JDF/+Y1JFCe/MYni5DcmUZz8xiRKUZKA1dJdRpBYRAJbBJfRktOOhS7oSQaxTqedAEmiIvXwO9vyxOEcBm/0W/ZCPKVpxSDukABJfe92u9o/blRoeTGtfwT3pOuDkMeTjXW7R7mKTb+7VHfo/h8eSiz7rd/RC6xVIN0+/rluFxGb12caO36t+0/V6XryfX0nnnZhWjW45wawhgcb3fedUs/xKNey4YiIdx6pqDn8KrhkwUW6/+mxxPzlNyZRnPzGJIqT35hEcfIbkyhFW5ceDYIgSNxrmjpKcXKIUQ+4pj5n1ylbCpW0DrNahbgTEHIiIlbRro9bBetIwiKVVe+BkEfi3LhQtxqVJzdN6aVec3sdFRZJ1NqBabBfrXUdHj48kVj24Jt6MTSc5eSVxOqfPdF9I+LyB/oMXz1Xd+HTWnsK/hj6DP6sM5UYDVh5kKnA2oVi3TvgnL19T8XQiIjebY1tl/DePtXYR0+0hNpffmMSxclvTKI4+Y1JFCe/MYni5DcmUYq2yn5btf8m0GQYUqB3M1WaSQ2nGv9JpbZN6k1A9uUp7Eu/CkRErGAUdBTauJJ+ARhnquKHbha7uW43ADv0CNaLxjY3jTTv0S8IcEEj2G4A9el3aujHQCPDXxxJrHNyKrH1f76Q2JPvq4IfEfHv27cl9pOuWqdf5Krin1Wqus837UZ009SrRUd/cbmC5zK5hPchIsqf6nkmU932462+d/8xBIs8nsUY86XHyW9Mojj5jUkUJ78xiVKQxfZNxL2mEdZvwg6IWj1ojrnMVMiLUNGOptxUYM+lPgJNfQ1IqLwHgh+Nl+6CQHcL7LQlTKqhngFkzyVht8kgTZNhxrDeAxh1TR0CSrB8P/vilsSuvqP16uuVHvH59L7EftTn3gQ/BDvuZyut8Z+AuFc2jJa/Dk2eeg3P9AvYrt9XEfCs0rHkERGhtxLHIJx+DnnwcqN54C+/MYni5DcmUZz8xiSKk9+YRCnIKbeFqTI0ggSFQdD7murGKY4jtWm0MVw31fhzv4J2DkYSAdc1C35DmH5D1z0GSWwMjR0zEgbheAN6LrDcM2hkSttFRPThmLsg7vXgNVnDMSfwifmXjoqh9VRdkiQ9TwYgcgXXwH+2VnHv1fJcYjRanqBpSPSOnXW0CecX8M6WkGsvumDvDP5Sz+HclzABagXb+ctvTKI4+Y1JFCe/MYni5DcmUdDh19m2E+LofweVid6kgSdRwzFLEOioVJeEPHK7vUnT0gh2g5GgOYaS1/dBQxzXerxxRzfsZxqbQcPMI3CczWHKUERED9ZiB1yR1Mp0Acf8DPSrn2xVEJvANKQuORghdg5TjyIiLkodYT0rddtlxZOY5NzQTJaYZXqO00r37RS6Xmsq8Y6IAdx32zeUS+CNMUni5DcmUZz8xiSKk9+YRClI1CJxryB5B/Qi2rfJ4UcjoqkkmNxJVyDukdOKjpdnUMZcg+sPRK4m2k4GOgRb3aNQ8evefRWqBmO95w44xOZnWiY6ONHpMxeVioARLCL1W05Iqjf6nmgxacRRrfd3XF5KjN4dem+aSq0XtTr3qFS77bPukOsThNirTAXEoqMrQUJcv2EqVA5l3uT6pKlJPRppj2cxxnzpcfIbkyhOfmMSxclvTKIUVAZLQwioZJUGRtxkOAReUMthHDXIUiQO9aFvGo0R34KrjYQhcgJGcDkx3fc+CEtvvTuR2OgROCXvahlswL0MTlRM632q/fH6L0d6vIiYlvqsK1jbNTntco2dhopuSyg7pbLaZU19GRUq047gEmx6rm3fUdqOjreq9LrpPe5CifAQ3JgREUNwF+7AMJUhjXcHZ6m//MYkipPfmERx8huTKE5+YxKl2MnBDQaTZO/kQ4kddrT0cA976zFL+MsSXHqzrYo25Kragym25KBaQxksiTEk7pG403QeAmYsRH9fj5m/pUMtsrfuSqyzp8697KE6BvcHX0hsvSTvXcT0WAWn1yDuHkM56qe5Cl2fVSpo0gTkEp79CgS/mzj0yMFK4i6JxeQEzVqWoaMICPcyB5GTyoEjePryCKYBH8CAla9DxbK//MYkipPfmERx8huTKE5+YxKlOMh1UMIARIQ7HRUG74O76Fat/0+apLAVVPpedlSgeQ0iS5W1K8Fcg1C1AgGxD9uRuEN9AiMiBuCAHMI6EjUtxAZEqZE68jpvP9QYnKOoVIAafPw5Xs8EBoY8hT58TzoqVj2utCz3+VqHZExLFfyaxNTr3KTfIjn/SNyj3nyDAhys4MgjAZGg94mub7HhASIXtQqBe3CNfbicDzN1ffrLb0yiOPmNSRQnvzGJ4uQ3JlEKEveIFbjxSJyDysHoNfTwK0CYoJ5kfRBKhiBK1dDPrgDXWH8LPeDA1UjlxdQTLoLdhWM6JohDq5lez+4UXF4wyCNGBxrbHUuo8+q5xjIW/JYweOMKpvyW8E7QMBXqr0cxEs5osAuVwTaJbtiPEvbf7YJbFWLUP5AESCr9bSoHv05TP8KLCvo6wvWcwtCPNQjx/vIbkyhOfmMSxclvTKI4+Y1JlGICbiIafjEHYXCWqdttHwYL7DaUu+6D9y+n0lrcW6H+gdSvj/r/8RRihUp/I7jv2i6UVubU628DPQXXIO6R4Ad0QCRr30UxYgDuwge13ksXRM4KVNxprW6+q1prTMnhV8C9kGDXa5ieS86/Lohko66WrI+76n7tg4iL54V3jPKK1oFiERHlRteRekcO+3qNP+iqCOwvvzGJ4uQ3JlGc/MYkipPfmERx8huTKMVZpc0eSSGlevcKFM0N/DvZQN1/REQBCjvZe9dwPXXLCTkEjhHfagy3a/hVgLZFqzKsWd6FmvMBqNfddkrztgK1GH4pyPv8O8q9TH8B2ivB6gyxfl8V8vOuNiOdQAPPZcBYa5poA70TyIodwQo7vd/0aw3Fei3t8HResiDTe9M0fYimF1F/CcqDvA/vN57FGPOlx8lvTKI4+Y1JFCe/MYlSXJYLCVINNY7JhiaaOCGlwTlb0rhjiF2Fiic02YcmvhAkC5JAswQxpWyotS5xtLgy6Oh5ent6zM5IJ/FED0Y30wSZEnoOwESbYo8F0rsHWjdOlGuYzjRVG+njgYqAzwu10xJ7hVqI7xa6NrczPt4cRoEfVVOJ3WSM/HXonad3kd6xEizNTfX8NPEHUgOFxZ9D/vrLb0yiOPmNSRQnvzGJ4uQ3JlEKcgiRg4qcbeSq6kGMavQjGiavgPAyhwk78426wWhf+u9G/qkrON4MJqQ01Vo3Of+uM8z1Xrr7MJ1nqBOSoguCH7nBaojBuOl8zG618Vt63x2o068Wesy3r/Qa74cKftTwlGrTSdz7MFdR8d2AtYmIExjHvgARcALzfYkHAAAA0UlEQVQ9B0jIW4ceD0eLQ161bWTaNLmI4m2bgl54Yo8x5n9x8huTKE5+YxLFyW9MohQoIsDkG5yc0jLWJPgRNBmIXFos+EFjTmwICk0mocSUYuua3Ve0PmVPz9MtdL073Zbrswbn3pW61aIAsRAEyWwftouIXgXTggrdP1/ovYxPdc3uTFW0G1KJOAhsd2GE/Fe2Ku69zY8lFl0VoGlEN7r0wD6HIiAI0iQMkwh4BeXXVLobwYIf3Qs5/Ghff/mNSRQnvzGJ4uQ3JlGc/MYkyn8Ba1YOlHH5iFwAAAAASUVORK5CYII=" y="-4471.093904"/>
</g>
<g id="matplotlib.axis_251">
<g id="xtick_376"/>
<g id="xtick_377"/>
<g id="xtick_378"/>
</g>
<g id="matplotlib.axis_252">
<g id="ytick_626"/>
<g id="ytick_627"/>
<g id="ytick_628"/>
<g id="ytick_629"/>
<g id="ytick_630"/>
</g>
</g>
<g id="axes_127">
<g id="patch_128">
<path d="M 299.674375 4595.995668
L 421.964375 4595.995668
L 421.964375 4468.702141
L 299.674375 4468.702141
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_253">
<g id="xtick_379"/>
<g id="xtick_380"/>
<g id="xtick_381"/>
</g>
<g id="matplotlib.axis_254">
<g id="ytick_631"/>
<g id="ytick_632"/>
<g id="ytick_633"/>
<g id="ytick_634"/>
<g id="ytick_635"/>
</g>
</g>
<g id="axes_128">
<g id="patch_129">
<path d="M 434.924375 4595.995668
L 557.214375 4595.995668
L 557.214375 4468.702141
L 434.924375 4468.702141
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_255">
<g id="xtick_382"/>
<g id="xtick_383"/>
<g id="xtick_384"/>
</g>
<g id="matplotlib.axis_256">
<g id="ytick_636"/>
<g id="ytick_637"/>
<g id="ytick_638"/>
<g id="ytick_639"/>
<g id="ytick_640"/>
</g>
</g>
<g id="axes_129">
<g id="patch_130">
<path d="M 29.174375 4737.413328
L 151.464375 4737.413328
L 151.464375 4615.123328
L 29.174375 4615.123328
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pb4c5cfb1d5)">
<image height="122.4" id="imagef978def229" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmT4+Z5h19s3JrsZaZ7pqUZS7IdO14OuSS55ZD/Nqf8CTmkKrkkqWy2VJZie6TRLN3TO5cmCYLMwXaq0r8HKXR08/d7jl+BAAjgJaoevktWVi920YEyL2RtVPVl7elgImvH1T7u86Tck7WDrKfHCTh2pmtHO1072GayVsE3rnWzWGa64VY3a12nfU6zRtd2unYfupaH7vBJVsnajzalrP2sXsra8fheTzAiVmu9jt+u9V79pqfbfVNsZO1qV8ta3Xol/zf0nR8DfZr2Sedzt13L2nkz0+02C1lrdrq/Ep5Z2m664fuyqFedPl9keac1XTHGJIGD35hEcfAbkygOfmMSpdyFSq0c5ECWqSTJYY3EwihXKRURsQeyiuReAcep4bxnIG0qOJ8BCB+ynqSkNi3+SfVcxBL2cA9rK1hr6L7AedOvN533Eq7rcqViMCJis9W91nQP4FrQeRPFdxB5dIy24za7buez7Xjeo1yFdFHq9apA7u3BZxu4Wx/qKR77KlfZuN6qYCUs/Iwx/4OD35hEcfAbkygOfmMSpcw6iheSe5T11we5t59rJmBExCEIvwH8HpHMWVFmFGTkNbA22kEGFFwHOi6JxogI0i7rTM9xAwKqqySr4Bx78F3oF72Gz642ev8iIrYdhShBzxNdWzpH+iwJaTqXNTwPEY/JJIQ1eubp2YFnnuQeZa/24ch7PRbklCE4bTQbkLL+tvDc+c1vTKI4+I1JFAe/MYni4DcmUcoi1/hHkVeA1CgHsvakHMva06xF+O00w4xyzmYgztYgcmYds536IE56HX8Hu8q5iIgcNiX9RMoVRVCmV2cfSpb7eFzI0AN51UYBJ0ml0f2dbriG7DIUUCDYOENPryJlIP7uON0EJGWC1iDOangWKUsPj9HxnvbgXH6/A+E9PMvzRsu3l1stq/ab35hEcfAbkygOfmMSxcFvTKKUk95QFknuTSrd7gR6831UaK+3YzIVETHqmElGv1ALKKL9sNVeagvow1bAHqkEkwRUGyR4hpDBOIHMryGU205ABJ1udbvTRo970KiAGsH1KiD7MSJiR1l6IN6G8PERXNstbEeZl1ieDLdghefXIvxIVNLn4V5TH0USvstdN9GM5fOw3Rh6UUZEnGQq2FeFnuMazuce4sBvfmMSxcFvTKI4+I1JFAe/MYlSfm90LItUljuGstzDXAXEBHP0GOp7R0KF+t7dbHWAwQX0PrtvVHQQFWQ1di13jmjp2Vbo9aFeaodwvZ+B3PtMk7TixU6zuSY9/c5lCfKq4d/+xVrPpwThR5mEIxBv1BOSJCBrLmUHW65aMi/bSrAfQs8dOUTaH/VWJIFIzxNlfLa9kYfwjB1AXE5zjY15ps+J3/zGJIqD35hEcfAbkygOfmMSxcFvTKKUT2BMNhnpktI2wXxOoZVlm28dtNUtP+AO0hVvoXHhbKNGs4Yaf5o+RKmXdB2oDj0iYgOjt6kvAh2H0k3Jmh9DiuanL69lbfwJ3APQyvNv+Z+Z+r2OWd9Aniz8+YDfj6DU4AkcYwx/C9ARLgt+ls5zGH8OqcXU6JN6CVDfhwqeJ6rdp+ed+h+0/ctE/65QE9xlMZK1GsbA+81vTKI4+I1JFAe/MYni4DcmUUpKLyRJRrXtKxBxc0hBvIfa9IiIPajzp7r4JcgKmkpCsomkJMkYmobSy/W8N3AubfTge/chNZUEzxKk1LTlOj6k/EiFz26msrD5Lf/232y058B5qed9Vuo53oD4pNTbCfUwgOtAvQnW8Cz+mrqJRsQFaMklTbTpmLZLchbTbqE57ZCaiVKz1ZascuqzUJEwzLX3Bo0R95vfmERx8BuTKA5+YxLFwW9MopQksEjk7SDTijLlqK697SemB9sOoB/APmQxUWbiAmr8qZ6f5N6wUMlFwq5N+JGAxGsB3MM+z+Gabfq6v/rtc1l7+bea6TjfabPV1yU3Vn0PqWTXIPIom3MKzw5NviF5WRZam96HZpYzuDbfhn7niIjLnT4TdK9wHHfHCTs0XekQRNwBmDwS7qsW4Qe9WoNmYeXUUwOumd/8xiSKg9+YRHHwG5MoDn5jEqUk6bYBIbKmUl3YjqbhUKZURMQIsrxoug9NgTkoVGoUPT3O+82drO2gVJMkIJX0PgYSp7cgoGjcOE2geQ3X8YselJjC9Wog060Jbm5K958qmakMlqbXkGCbwfWuc9iuUqW1guNebFn4zaEMmiQbXbMePJ+DjhKXMu9akhCFtqeOSqhXWE6sDDEujTFJ4uA3JlEc/MYkioPfmEQpn8NI7etMpdQMsueoL1gfymDHkKEXEfEE1p83KlQOwdCcQhZTVR7IWlnp79tNo3KoAQ1E/fpIDLZBpdEftjpVCHsKwrGp7BT7LcI5UrZhWwYiZbYRG7hm9Exw/zj9ziTnrmH6DJV9z3ekw3hcdZuAfkj5HYRvTX0C4T5TXz5ai4jIYX0Dp0iT5Ukg+81vTKI4+I1JFAe/MYni4DcmUcpPQ/t9jWDYxDnID8rmGlL5bablshERxzCG+vlGrcYT6ikI+ysgt2lVjWXtDWRuTXcqm6h8l7LDIiIaKD2dgySdg2yksmMSfjTqelDod6YR63TBKBszImIHsopGWC+3KtlWsEbCjyB5SddwQN+vBZK2VL5LErEPQpTKd+kqUlnuPZXk0pjzLT9lJAyp4V8D21HfQ7/5jUkUB78xieLgNyZRHPzGJEp5tNP4r2nyZ6YSgjLBqOTxgHqKRcQxNCV7DoLn6UAlWVFAGexch1UscuhyVqjkPIfrQFljbVN6a7g+lDW4hCw2GtrRdWow9RnEYSG4HWf4kRCjbEXKniMJ2LVnHg5iAflIGXpt5dddMyAHcH2GsEbPdwbZczUJUvB1NX2Xlgy/PojAItfvh1N+YYqx3/zGJIqD35hEcfAbkygOfmMSpaRpsGuQVyS6KCuqa7lkRMQeDAJ5treQtSenupZBfWP+XtdmU5U2931da2B/9P1WwdlqBci9NQy6IBnXgLyk602DRcbFQLcDYUvii75fBJfqkrzcbLtNT8aBGB1LjCmrkaDjRrRMae7Yr5H6+rVds4eoCo24h1i7KajMl4+xB1+xgueEtqOsP7/5jUkUB78xieLgNyZRHPzGJEr5BgY3zKEEcw1ChWQKDXKYgviKiJhD6XBVQV/Ap/D5HKagbu5l7eN7lWTzWvsWrnqQhQjeZd4ifGg6LcmhCnocdu3NtwfZige5Cr89KHklEbtqKbWlzMY2ofaQCu4pZhzCOXadakwlwlRKHBHRtJTHPoQkKWVt0r2iLERKBKURKVcQG0voOxkRMdnCMwFfr6ty95vfmERx8BuTKA5+YxLFwW9MopQfYGosZXh17YVGveducb5oxOtSRdC7m4msjT/oOfaPVJRUYD+OT2ay1pxDGeVay3z3SpVAb6GEMiJiA9JnjqWj0HMPJg5Tue0YhB/1R9wDwUYsW7IViVWuQpPEWwlCjIQf9eGjEnEqbabjUnlxRMSyoenE+pyMcriOOz3HDZzPhgwbDe2gMl8QqWctnSIHBZTLg2CdQHn6yEM7jDF/wMFvTKI4+I1JFAe/MYni4DcmUcquqZxk9qlxIaW00rSXiIhvwWj/oqfpqr1XR7L2bKoWf3Sg32V4pGufjK9l7en1XNa+d6XTfr7ItUloRERTqS1e53odqQEkTc7pQXrvGBqh7sPaGGwvsWj77Qd7Tf0OqFEkTTmi7bAXBE2agWeRzD5NPYqIWIHtp38Q5jAKfAT/zHADTz0ufZclXBtKC6dJWBGc8n0L/6ScwL9CxzBRym9+YxLFwW9Mojj4jUkUB78xiVLSGOIlplSCBIQdNiSBWtIVr0Mly28g1XW0Vcm2vNDzPl2ptHvyQteGL/UcRz9QGTN5fSlr68/59/KiUMnSgHihNGAa+1yATK3g2o5gbQxjm+ms+y3NMRvoOUCpqQX0VCBZtQbRxWm7+pysYFIQ1e6vYbv/a/0hi0KfxdlWJS71HGjgnpIEJOE3g9HwdL0iIsib03Qtui9V6LPoN78xieLgNyZRHPzGJIqD35hEKU8zrWO/glaDU1hjkQNyr2XkMGV+3UDG4ZtSJUu5UxkTU13qX6nw6T1VuVOMVHLlPZr20lJrDYJuAllVRL/jmGb6pabjUlNHOpMcxFBERA3nDQ4xRiC/FvBM3IHUmsKo8g3KQugjAJOCqI9EBD9j1IST6v5nOYyGB0nawDNB25EMvQd5uWrJ8MPR5HAP5/D5O5qGhEcxxvzR4+A3JlEc/MYkioPfmEQpX4aKM6hG5BHNIHfqFvFCUNkjsYBjvy9pfDKMsL7U7MDhRCVLNYcMr3eaFXWx07WIiFXHMSldf21pO8rw68Pl7uM4dWVLFi8iDuA4EygdpjahC0ht+xqaTBINjGxHyQUyrex4jIiIjBrPggSk0nbajgRiwGdpfxs6RlsMwXmTfu56jn7zG5MoDn5jEsXBb0yiOPiNSZSSMsQqmkoDDoJ681FGVtvoZZpKU8Hv0T3VR4LqqGCiydEaRlifqfDr3eh5v7/S6UGvK/4uNGqZz1shcdaD60DdA/sdpSlBYjAiYn+j688hI+94rCPRV2u9Pl+s9Tr+G1zHV/DckSSjZ4zk82Mo4VkcQUn2Pq3B1CTqUUiZdyQv20p6SeRVJD/h2aHeg37zG5MoDn5jEsXBb0yiOPiNSZTyGsoRqaz2bqsZcNNGSx63IGiKgn9jaJVGIFPvswZERw/KG89hDPhgpuqsmOlxf1uqLHxVsIz5ACXP1JOOFBvJoQFcnQMY0ECiqoLrMILsOVqLiDiGEtyPn2q99NGnKvyynh77ydcLWZu8O5G1cqD3ZQ3X+zHCj4QhMSxU2h0VWu7+EZTAPwntozeEe0oC+Apk4V1wSe8CvjdJQOrLOYJBLn7zG5MoDn5jEsXBb0yiOPiNSZTyLQzOuAG5N4cMLxqeQCWYtNZG20RfAUTOEn7LPkBC3hYGGJAu+k2pq1/vVF5FRFxvVX62DSt5CGVk7eUqgmhwBv1851DAS0NAxi3Xuq1P4UO2a91n7wBE5Y9VVP280YEot5cqAa8rFWwrkID1dxR+lM13CGtHkI95BDLtKZxOBZf7Do5xVqhAjIi4yPU6zkAC0hAYKgf3m9+YRHHwG5MoDn5jEsXBb0yilGuQUtRbj0oPqVQ3p8y7lpLeouNvD21F57gCgXUN328KNbQzkFzvdyo+r7aa1RYRcQfZjpSJRv3ZKpiKS2WddQ6ZjrnubwOyMANRtdfSw2+9hWEcc91nDwai5D2QwEM9TgkylTIOqXcgibimYLFHspn62U1gyvIIxGkPpyLrcU83em2OcpDmtR7jaQMDaSLiTaXr5y2x9ZCBhZ8x5g84+I1JFAe/MYni4DcmUco9kBol9YUDr9BVplDZaQT3H6NMpB72Kes2eOE2U/GyhKyvG8hgpDLmBWQ1RnBJKa1Rxlnd6HZUGk1ZbJRFWOe6VuZanjwuqHtgxASE37DWbedTlWRwqyKHkcMfzrWv35tKPzyFDFR67qi3XgRLaRR+UFpLU4hJkh42ur/jQgXw0aHK4hp6HpazlqzEWu9hHyZY0xNKOYN+8xuTKA5+YxLFwW9Mojj4jUmUkvqPkW4YgvzICpUfM5BkbSW9tErDBaj/GLGELL05SLJryNy76ZihhxNZg7P0MiijXW+79Z9bgljkKa8gFSHbrYI+igcw5CQi4rCBe9BA/8AlTZiFzEuQWl9t92Ttm0qvzQd4nkhy9nEOccQRiEB6Himb73Cna8eNfvY5nON4ogK56um9yqCv33DJPfz2a7jXcK8ofstu1eDGmBRw8BuTKA5+YxLFwW9Mojj4jUmU8hiMJjGGvE3KAn5H9eUtTRTRulIzRFijPV7D2hXYeWpGeg9rZPbbxo1TvwPqV5DBNJ0cUkYb+IZ0PvSPxBTsM6VY77ek9x6Umuo6qPVfoRzySGew3QWkzn4J2bjfQK+Etv4JDzmC9OWIiAn8m0Vpu2N67rawtlHjPoQ+C5uNfpZSeYkCYigiYo8m+UCjUPoXrYRnx29+YxLFwW9Mojj4jUkUB78xiVKe8KATYQ52r4bJIvNMdzjHCuOIHvz2TGCNUipLaoQJtc0zSLu9hFHXJOyyRwi/jDQLpBuTBNzlOFbo/w2l/C5AaF5CQ8mIiAu4ZkNID663ev8buA6voZj8t6Hp1GfNXNamjQo/kpdjkIoRgfaLekbQSHSasFNDHMzgOkAbgihLvamjsd6DA6j7j4gYrmAMPDQA7Yrf/MYkioPfmERx8BuTKA5+YxKlfAIZS2uQGhsQPjQFZAIyjQRLRMQBbLsPcm+/UVHSA+HXgyytplIZs8m1lpymCtHUnLZ6fpJsNJ2n67jyDO4B7Y+g7aj55z1kB0ZEXEPG2gh6N9zner2XUJ/+ClIB32xmsnbb6PhzGgPfz/We3u9YKi9DRWDXEdbX8P2ihDW4jAO43iT8hkd63uW+7q+N3abjSHsQyH7zG5MoDn5jEsXBb0yiOPiNSZRyCCZgASJuAT8TC5BfXZtyRnD5LmVVERUc+wiaYw5XeozTQiXQFBo90nc+y1mSvYWmoJdQjrqFMdTU6JMgCUgCkbYjUdk2fegmI8kGWXFw/6aQ4fkWrsN1R7m3BXlJjUyXLfLyBsqba8i8nMEzStmhdaayEUedk2CDxqrFCCZcHXG2YjaCTEJ4nmhtB01B/eY3JlEc/MYkioPfmERx8BuTKOUdiI7zUgXGO8j6uobUJhp/XbRktTUgoaiStWtPsgHIpuNSS0d/fqAC6vAz3S7vwXX4jzGcTcTfr45k7d+gR977TI99A+WtS8hYoyzCrpAko16GERGXNNYa+spRptwUpOsFlOouqWciyD3sjQhr9P0iIhZwHVcgB2mfdyD3Gshg3C9UFk+2Ku2ySx1L3kCvv8MFl/T2nup5ZwN4f4Pw28J0Jb/5jUkUB78xieLgNyZRHPzGJEr5qqfx/w6y2K5AnMxAnJDE67dk+K0gk5DAfn2gBoeFns8ByL3jP9Pv0vvrP5e17LMfy9r3X32J53jyN/8ia6e/fCFr/9RXifSq1LUPkAFHgq6rBKQMv7bP3m27jSunXnr3kKU33eg9qLdQAg3nSCKOSnoHsBYRUVLPRDgOnfc99J5schBnUO58CdmBo50OFjmaD2Xts885W/HFUMugD4702kJrzQgYQe43vzGJ4uA3JlEc/MYkioPfmEQpv8q05PEO5A6VTNaQVUViiQRLREQDgxbo16hAEQSlkFAy2R9BNtdH2iQt+8FPdLsf/aWsbU8+gTOMGNcqh/5q8O+yNvnnU1n7h8FIdwiONIdSXRJVbX0GvwvUz5CeiSWcD00cJkju0ZCUAWTeDWEtgrNL6frQGc6hHPgSRCxJ7jMaDEM9L8HOnUPGYETEn6wPZO3FWxWGk0rFcFXq/fOb35hEcfAbkygOfmMSxcFvTKKUb7YqMFjaKV3FUpvuoXVao8mvNfS9a6CXGjiyyIYgVPZUpmRDLcHMYLuIiDg+kaXepzoc5OVXU1n7/uyJrN329Bw3NPUXBkuQYKPpwG3QfaWSWZKA1FOQMgEz6AmIwg8y5Soq820pG6dt6RnbwCr2CuyYZTnMVWbTuaygVL6khzYi+iX19tO1I5jcW9U0QMYYkyQOfmMSxcFvTKI4+I1JlHIOpbo0sZaESptkeUjbLwxlRtGgjDuYEBwNiCCYWNrUcI4lpM+BjEHatltpNlhzoeWWs/mhrG1B8NBAk0lLFpscF64ryabqEb/9S5Ba053KLyzLhe/SVRZTht9jyOAZzSnDD8rGSeTdg/CjCcj02QFIQJKcs4xLei8paxCe5RuQpDD82m9+Y1LFwW9Mojj4jUkUB78xiVKStCMRNCDZ0JKJJNt1FIMRETPIYrsG4beDc+yBBNx1nIAbjYrPXQPihdYiIqZ3srT4Ro/9dqMlmJeQcLgCKVXSvQJhRJ0R96BGeK+lh2IF12wBmWgViDy615Q91xUScVTa3AYJyK4ZfmsYQEJrdXTrR0jTk6ut3pd5q/BT2bgEuUev9AVmYxpjksTBb0yiOPiNSRQHvzGJ4uA3JlHKPUg5HIEFHoIt7nesq35MQ8kp2H76iWpgcbTVtfUSbOgKRlPPbmRpe/VW1nZ35/rZiNhdXsva7YWa/QtIx7yF77yEtQ2Yb4L+FTgMTQ3+uOHU2QEcZpbrtkPoJbAH29WUbtwxXXwJFn4BjUPbrgz9L9C1dp+M/Q7uAW1H/wpQKi/1OriD5zgiooYR9CXskxrrUrNVv/mNSRQHvzGJ4uA3JlEc/MYkSkkpnhNIEB2BmKCac/o1WZDEi4hbkBBzSJVcwrHXIJZ6INOu71S6Pfv6StbyL38pa7vL97IW5yz8Vv/6WtauZseyNoOS/HsQRiRtsFYelNYY7ukzSCN9seH7MtjqcZbQcPMQUktnsEbS7RAOPWl0cQ7HfQsOl6RpRMQKJjtN6bnLqa+FHmhbdBN+JPdof4/pV0ANU+87Tk2i/gJ+8xuTKA5+YxLFwW9Mojj4jUmU8hCaQo533eQeqYo1NeVsqef+sNOml/fUUBSONM1hog2MNt7b6dSc4T/qMU7PfiFreQ9k0Rsen/zNmU7s+aocyNpFrtdiGiptFiA+sTEn/H7vwf0bU+LkIyZ5j7a6gwmsDeG893t6n08+nukxPoa6+LWe5PXXKnHPrsayFhFxudMM1v/q631Zwn1ZV3o+80a/C9Xp0xjxowLGacN2bd0KNnD/p9BQtAH5SVLSb35jEsXBb0yiOPiNSRQHvzGJUn66VeFADRxJQtAUkCVkVM0gCyki4rrRiTZTWMshW+oOhN8chMqyGsna5Van5jz7omX09gNuC9YxHwYqWa4yFYs3IDRpahLJPZo+Q8KIftFnVBZd8W8/3MIYwtrpRu/r6YGKvJOf6hj4/s9VkOYvP9KDQNnw4L1mWZ58CdmYEXH5n3p9Fhd67Fd93W6eqxgcwvWmLMtDeD5PQ9f2H/H+nYE4fwcZkCiGO2bjGmMSwMFvTKI4+I1JFAe/MYlS/mQF/cwgY2kFazOQDSsQYuUjJqysQQ7WDZT55prZROOT56XKtMscMq2qbhOJqNQ2gnvNTaG0cg7n2HWiTUmTlArN5qP+fxewv23LbdmB8RuAMGqg9Pv5QjPqnhUq/LJ9yMg7OuITekBe63Utns9x295XKiCJPpZGq9yjyVU9uC/PQ6/DD6Bn4hGUMdct8XIO93paQFk1lAmTlPSb35hEcfAbkygOfmMSxcFvTKKUPxzraOm6VmGwWKtYuNmo1NiBBLqooHFdRNDAkFuQFUvIgNuABKy3ukYCcV6odKPMrR6cCw1JiIjYgAjknmv6XWrYroDf5SLXc2xgiASVA9MaDdP43fnod6HS4W2pGWuTtYq8yedaBvv88I2slXBPYwOlzWc6IGX5K5WKERFnb1Ui3oCUziCrlQbVUFkt9bc8Bbn3p7VeByp3XtZto9M14/CS+ijCs7wGCew3vzGJ4uA3JlEc/MYkioPfmEQpjz/RDKhtDZlt9yowDm5UQBQzFT6XkIUUEfEWhN8lSK37TAUdTUFdUWksyCtaW8O5DOBcSAJGcLktZe7ReTeU4QdJXpQHSJ+lwSc0KXkJojGCBWRO05ehCWDZ02civ30iaz/5OxXNTz//VtY2K30/3Vxpmfb75amsRUS8LvUensPgjZrqmGGJ3paU/fis0Q9/dDiVtdE+ZKpO9VmMiAgdJB2zjV6LHHpH0mAYv/mNSRQHvzGJ4uA3JlEc/MYkStl/oQIrg1LdHUx0HV2rwMi+UrFwtuBSzV9DGS0NO+hBFhMNISCR15USRN4QhB9lAkZwyST15pvGUtZWNFUVpF1XKugduIVMQOr1FsETXUlo0ufBfcWqp5mAHzbaR/HwG+2jSOWtl+Bcr6GHYkTEFK4FZTZSpmQNMpUyHUdwbZ41KnbHR5rNV+3BgA14HiIi9tf6+R/O9XyON/yMPsRvfmMSxcFvTKI4+I1JFAe/MYlSZj21J/kIhAEMNcgPNTvp6VJ7qX38OU9QPYZSX8r6W8L03QoEHWWxkcg7hOEezwud5nuS6XFpWnEE9817tdVrQaJy2ajgwe2oJ2CuApHkHEHHaPt8AaXMVGq9pBLqXLe7gHs6KPUYa5C4NNX4vmUwzAYmCdOzQ334+rDdAATkUaOfPSq1xJjkXlbqPSgqlpcVTA1+uqdDbj4Z38ra/qcqC/3mNyZRHPzGJIqD35hEcfAbkyhl/U5FQHmk8iTfBwkBmYDlvm523FcpFRHxYqsbn8FADdJS61zPEafYgkD8CI7x2Va3OwGHxFop4huuWhZ2kElGULbiBnoULiERkMQn7a/tXMqceheCJIPMSxqmMi/0GbuBKbb0JiKBSMNZqFT6d/vUZ2IEsnEM57MPa4eQ4TmG0KhKKKuGU6Rq95Y2kdHr6z6HY5Wp+z/V+9r7i5/Jmt/8xiSKg9+YRHHwG5MoDn5jEsXBb0yilG+/UOO+f6h2fnSi6YrlGGq8YSJyRs0RI+Joo+unYFjpJ4pGYpdk+2Gk8ve2amxf1jCJBVJDr0tu4LkCw76Cungy8ZRmSya+q8WnfwVorY011KLTPwA1/OOyglTermnJ9F3uGzX7K0iHpn4FERGDAqYcdRyJTmnANM0I+t3GYq3HXd7qWrWCiUQ1v5MzaJja34d79eKpfvjlJ7LkN78xieLgNyZRHPzGJIqD35hEKb9cqvB7/l4nfjy7V5O3fwLSZg113y0jh0lBDUHa7UNK5bCj8KP6e2q2CYNhYgt5ljctP5fTTL/NClJTSWp1rr8HqdV1rU2IEZC1jcKwaxNV+mwGdfEkGhcbTQ1uQMT2WqZCkfDDZqQ4Yl3Ph3oJXBYwearWtf6lTtfpQY3+ZsNSmcgy7RkxnGqNfw7XzG9+YxLFwW9Mojj4jUkMKhVeAAABU0lEQVQUB78xiVJ+3dP435KsmKoEHIx4sshD5g3LmKueipfbTIUKTU4hudcDuUdV3lcg55bQPJI03LRlks4tNLNcQ4ZfW9PMLlCGX1eRl4Ngewx03igBIZuzgeamJO3uN5rNV4MEJFm4V0FmaERMKu3dMC70WSYJSNl8M7jPF7leh/NSn/liDeO019CoteWdTHdwdQaTpr66lLXxT9/qsfEoxpg/ehz8xiSKg9+YRHHwG5Mo5TXImINcfxNWIO12u24SaRos/M5IlOygOSMIvz3YJ1QYx6bjOOZbkEj07ZYtY8DnkA1WU0nvIzLtHtK1+WcOmYm01saWylZJ7lEmYUv59kNIFpLco3OpoHHoqGTh96TUaVHUrJOy+XD6EDQPvYEx4JeQcZjDM0vKHKZu//7zynKjQnPv1xNZG/7qVaf9GWMSwMFvTKI4+I1JFAe/MYny3yZZ80bZFEPZAAAAAElFTkSuQmCC" y="-4615.013328"/>
</g>
<g id="matplotlib.axis_257">
<g id="xtick_385"/>
<g id="xtick_386"/>
<g id="xtick_387"/>
</g>
<g id="matplotlib.axis_258">
<g id="ytick_641"/>
<g id="ytick_642"/>
<g id="ytick_643"/>
<g id="ytick_644"/>
<g id="ytick_645"/>
<g id="text_33">
<!-- 118 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 4719.965203)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.505859" xlink:href="#ArialMT-49"/>
<use x="111.121094" xlink:href="#ArialMT-56"/>
<use x="166.736328" xlink:href="#ArialMT-32"/>
<use x="194.519531" xlink:href="#ArialMT-49"/>
<use x="250.134766" xlink:href="#ArialMT-56"/>
<use x="305.75" xlink:href="#ArialMT-51"/>
<use x="361.365234" xlink:href="#ArialMT-51"/>
<use x="416.980469" xlink:href="#ArialMT-45"/>
<use x="450.28125" xlink:href="#ArialMT-49"/>
<use x="505.896484" xlink:href="#ArialMT-48"/>
<use x="561.511719" xlink:href="#ArialMT-55"/>
<use x="617.126953" xlink:href="#ArialMT-49"/>
<use x="672.742188" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_130">
<g id="patch_131">
<path d="M 164.424375 4739.915092
L 286.714375 4739.915092
L 286.714375 4612.621565
L 164.424375 4612.621565
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_259">
<g id="xtick_388"/>
<g id="xtick_389"/>
<g id="xtick_390"/>
</g>
<g id="matplotlib.axis_260">
<g id="ytick_646"/>
<g id="ytick_647"/>
<g id="ytick_648"/>
<g id="ytick_649"/>
<g id="ytick_650"/>
</g>
</g>
<g id="axes_131">
<g id="patch_132">
<path d="M 299.674375 4739.915092
L 421.964375 4739.915092
L 421.964375 4612.621565
L 299.674375 4612.621565
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_261">
<g id="xtick_391"/>
<g id="xtick_392"/>
<g id="xtick_393"/>
</g>
<g id="matplotlib.axis_262">
<g id="ytick_651"/>
<g id="ytick_652"/>
<g id="ytick_653"/>
<g id="ytick_654"/>
<g id="ytick_655"/>
</g>
</g>
<g id="axes_132">
<g id="patch_133">
<path d="M 434.924375 4739.915092
L 557.214375 4739.915092
L 557.214375 4612.621565
L 434.924375 4612.621565
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_263">
<g id="xtick_394"/>
<g id="xtick_395"/>
<g id="xtick_396"/>
</g>
<g id="matplotlib.axis_264">
<g id="ytick_656"/>
<g id="ytick_657"/>
<g id="ytick_658"/>
<g id="ytick_659"/>
<g id="ytick_660"/>
</g>
</g>
<g id="axes_133">
<g id="patch_134">
<path d="M 29.174375 4881.332752
L 151.464375 4881.332752
L 151.464375 4759.042752
L 29.174375 4759.042752
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p7a1bbf1c30)">
<image height="122.4" id="image6feb1b58e0" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGmBJREFUeJztncuOI9lxhiNvJOte1XPp6cFIHi1swRLglWEYBryQvPITeOV38wt4awNeeOfdwLYgQAsBkix5Lt09PXVjkUUWk0wvPJ5Fx3eM4GSh5xL/twwkmSdPZjCBn39EVN3kg8Feo66q10NWmY81de1ik6Z1sa72sf+NN/47K/+dFawHj4M1boedi622Dy72sO1djPahg+szMztuZy52UE9crIVrHgZ3C/gcjT/H++2Ji/3IDlzsZPD79are4nl+u1u42G/Wn7vYy9WNiy02Kxfrd3yeCHRPB/P7tSvsIe0tfT56D+hZfFPQXkTXQ9fnnwghRAqU/EIkRckvRFKU/EIkBdWrqLhH4hWJeyTsldgMIA6BFkOCX1vFzkMiCYl7RA17Y8aC0w4WTgIkiTG0Rvq+DXzfXe1jm8p/9mbwIqeZ2QriJJIRUQGK9ovuQfS8Y6F1R/NgjCi5g/u3D1GhktCbX4ikKPmFSIqSX4ikKPmFSEqLbj6Ikbh30HoH26Tg5iNI3CM3GIkaWxD8DPS+kkAX4U25uaIORroWEpYWINjN4bzzYYPrud/5eFSgG0PJpffYjBG0ow5UEnb7bczpOEbEM4uLpHrzC5EUJb8QSVHyC5EUJb8QSWlJ/KCy3MNu6mJUxkouu3sooTUzG3ZemNruvFBC4kldgVMOhA4SaIiow6skApL4RQLdpPJ7S9/ZwT4e1F1ojXcg+K3Ni02LHd+Xe4jT3qJTkvYMRddvzrlHQh4989PG7zcJg/TMhsuY4bCtsesvWp4c/aze/EIkRckvRFKU/EIkRckvRFLaqLj3ZHLsYieN7xWHziYq0zWzZR8reeWY/z5yiKFTDkt6/XHRHoNmLGpRefMp9OE7ol5/8LvcBcXLe3L4gYi32K3x82tw+G2CzksqOx7TM4+IOiLNzNrG38PDFsTrzt+XKQisdC0kaN/3Pobl3DU9yD5kZjZAWTaJjXL4CSH+X5T8QiRFyS9EUpT8QiSlxcEbIFSRM41caCT4lEo1qX8ZinsgaiDBn7Ia1h0t6Sz1CSRx8BCEvKfNkYs9q7wANYMhG2vY20vz4tx8AAEKBL/llgU/ErBIBIyWX0dLdUmoIiGW7ssRiNRmZmcTv99POi9e00AUepyWsA9NtcRzRyChcgs9GM04NyqwCNJxO1AR9eYXIilKfiGSouQXIilKfiGSouQXIikt2TbJmngDiuYKlE9SbEkpNosr+/SvAKnARLRBKamu0ZgZ/wtwXHsF+u0K/gHY+X9SDkAgvwN754Lqy4P3oNRngf4FWPf+8w/QjyH6D0BU2Sf7+en00MXem567mJnZe92Z/zz8C9PBe5D2cVH7fWiD4+LpGSHre6kXAO33QwUxGDffwx8IevMLkRQlvxBJUfILkRQlvxBJaUnIIYFmA2ID2SyJkoARrRGPEm0eGZ2GQ7ZUqqkufZ7q72k9S/jOJfS8nFd+vy7BynvZL1zsauNji37lT2Is7tG9GiPuoSCGtl1vu31ncupiJOyZmV2A6DqD0U4t3X9Yd0ticUONWv05Fk3MNk1WbDOzZc927NfBe6AGnkKI/0PJL0RSlPxCJEXJL0RSWnLPkeBD4k7UZbcPUfcdTtjBxpyxMdLRxqGlZqS0RpqIc12BUw6mD63h3FfQcPOT/tbFPl1dutj84d6fF5xgZizQofgZFGejk4+op8IMpuYcNl7EizY3NSs1uIT1QOwQxMIpnPsY1r2o/X7f7Lzo+goa25qZreDZQRcq7GMD/SH05hciKUp+IZKi5BciKUp+IZLSRh1Zw45cWtBQcA/RLTwlBwQMgkQpbGZI436AqDOtdB4cx41ju2GsOUzduQbn3sv1jYtdru5cbAPiXmmyS+kaI5RGmL9OdKR5lFKT0C24J3u8rz7WBV2bhygMgjsQjluAiFciKsQSPE5dCJESJb8QSVHyC5EUJb8QSfGKVAF0c5E+g+apkuD39fvr0XG0RnTpgVuRyjf3YQBX1ufm3XdUrkm93ahfG5XgknOPxD1ychaB2zVGBORTxEpoN+CopFjp/m2xLDuywjjU629DfRRBIMcefgUXKYrXwT6YFNObX4ikKPmFSIqSX4ikKPmFSEpY8IuCpbYFsSgq7uGo7OD4bOo9uN5CWS2IZCywsLDEfQ+9cLN48KJdVLwM99ELipdRN94+0Lrx+shFCp+l66N7Wrri6BWyaEdl3jAkA56TBxidvQYhj8q+Sew1472IlqKrh58Q4iuU/EIkRckvRFKU/EIkJSz4UflteNptoSR3UsN02tZPUD1q/eCGk/bAxWa175t2t/UC29WDL3klViAMWkHwQ9fgiL53UaICa1R024fw5+Ewct4RJMSSS5Jcf2ZmVvlnAqfvDv5e30LPxDnEaPBG9D7TukmQNuO9IBEYHX406TqyQCHE9w8lvxBJUfILkRQlvxBJQcEvOhAD3XiNd9mRiGdmdjE5drH3pxcu9rQ5crG3Kv+dJCL9ofZ976KuKBRTwPVlxuJetIw26oojIY/Lov192af/22OLkrQPdH0kVJGQStNqb1pf2mzGzyid53Lrn5ObzdLFVlsvNtKzQ0SdnKVhKuT867cxh6ccfkKIr1DyC5EUJb8QSVHyC5GUlodsgEsv6NyjoRun3SGe/KcHz1zsr4czF/vjlRc6piBqPIfJqNOJX+N95x1U9yDkREt/92GMmBa9V9HJxCWi4iUJZ2NETqq/JcHvbuNdmy+qazwPOTypR94d9Edc9SDuwTWPgXoPls5Bext1kZIIqDe/EElR8guRFCW/EElR8guRlDbuGos5/Doo0z2F8lszsx9X3uH3Mxh08f6feTFn6P16fvCJFxbruycuturOXWw58eIOubmwzNdYmMLehUEtLnpfiKg4S8eZsYjEfeWglx5Mc46KnDh0BcQvFOIKQuN8451/tLfR/njRqbhRooNmSseOQW9+IZKi5BciKUp+IZKi5BciKUp+IZLC9fyghqJaDLFJ479yVnM9/8ngP3984m2W02fetltNvI24O/f113/+KxiVfPe2i911/l+B5RaaNRbU/qjVNWrHjFp5yU49bf1+UbNUmnpUWg/Zn+k4tAZDD4TwPwBgS402SzUz6yt/bKmh7OvQPR3b9PR19vn3gJ+JWN8H2XuFEF+h5BciKUp+IZKi5BciKaNGdKMwSE09CzbSDbhVV/derNotvdjUzEDAemvqYk8+9CLgn/zCWz7/CyzIL7pTF5v33CgyOj47KviFxVRojnrY+H04gljJ3ktTZKINN6P17thkcoSYFu0jYGZWDV/f0h4VOaNEBTszbo5LQi49JygWRhYohPj+oeQXIilKfiGSouQXIiko+EUnfkShJoVmZitwfl0tvfD25FMv2s2gMSOxvvKX+ADOwg5ElgMY7zyFMeBm7LRj515sH+n7Tjq/N+cdTDPqTlzsovZjzruC4LeAkdMv6jke+zr07Kx6/32P3YyyuJ5gM9IBRMDolKO4QzPm2iTBziw+vp7EXQl+QoivUPILkRQlvxBJUfILkRSc2EOQ0EGNBsnVRo4xM7N7EL8uBy+onX7iG302z/25FysviDzfekHkd1AO/LKC6TwWG39cApueBjt4TmH6EE0++mDiR5r/aeOdiT/eeBHpac/3ZVl7EfFXEz9J6aPW35dfV89d7MruXIxKo9ExSCPR4RaU7gvFH3vqTpSouEf33sxs1vjn+wBi1ESXRE69+YVIipJfiKQo+YVIipJfiKSES3qjk0Vosgv1wjMzux686PMpuNiWD17Aumy8cPZZ59fzCsZxz827A69hja96L1RRLzuz8pSVCOT8ov56VKr7YeNFt59D1fFf/tV/u9js5z/lBU28iPS3//ZLF/vXf3nqYv9w6N8nvxj8ufsVTMghcQ8Y60Clz5M4G+1lGe2tSPeUYvTZEpRvNIKcJk3pzS9EUpT8QiRFyS9EUpT8QiQFBT9y89VgTCOn1BrKN283viTXzOzjzpeJHrVe7Dho/W/Uy8ELby93Xum6hdLfNQiNJORRv77FhkuJqYdfDYJRVFgiusrvzVuDv4U/efbSxWZ/9zP/fX/z96HzmplVT//Rxf7i1//sYv/x2TMX+3jiS4xpHx+2MPL7kcdSm40T9zrqowiOPOqtSOXg6EAsiMfk0iMxnVy25KjUm1+IpCj5hUiKkl+IpCj5hUhKGxVUChKEi2yhF9qyZ4ffJw9XofPMKi+y3O68YHTTe2GRBBFyRZEgct97EbBUDkouPQv3caP+ajERkI5qJ7BGEKp217781sxsuPGC4fD73/rPb/3Zn279++Rp6x2aL9sbF1ts/L2KuvmipelmLO5FpyLTkIzD1jsvqbfiUePLy8nVuCq4SBfwLNPzTc8tCfF68wuRFCW/EElR8guRFCW/EEkZNaWXIHcgObfMzG7A+UdiDIksaxgsQcIiOfdoPRTbZ/JrDe477OEHIhIJS/RZ2ttFBWXMz32Z7/lH/+5idn3pY2Y2fOHjm//8vYvdXvqeggegH19AKTL1nkPRFNjHJRkdnhF1+FGMeu6dt17wOwfBj+7pXc2CH13LBsTraPm93vxCJEXJL0RSlPxCJEXJL0RSwkM7oiJJVLQxY9fRvPJltCT4UdkiiXt0Diq/pe8jStc3Rtyj7yTRhkqRqbT5l70voT35p89d7OyHH7mYmdlu5ddz85kXqy4Xvt8izAaxDt4xtDdjKD3HdJ6oCIjngWeeSnWPay9onlU+tqWpzQWdeQlCIPUA5D6DmtIrhPgSJb8QSVHyC5EUJb8QSWmjwssYkWS3xwTVqPBGx1GMnE0kpkWvhQQ7s/iQhuh5aN13vS9j/rTxg0U+mngBanX5rot98JKdl1OYTrw0fy1XjY993oALcQBHJTjTotNz9xGaSfzC7wwKtnSfD0jcq72r8QRK03tyxIJr08xsCp8nMZwch7S3evMLkRQlvxBJUfILkRQlvxBJUfILkZR2Ao0dSfkkhZxUfDqu1CSUFMhdHWsoGq3pxuPGTM0pjE9mK2/s3LQ/ZEGmZo3PN74R5hbuy2eNr71/p/OKtJnZKUwBov15qPwaX4EF+bOtn8x0BxN7omPOo802zcbZiCk3Tju/j2+3vn/CO2DlPR/8s7OCe7UuqP3H8A/CuvXroWueUf8EPIsQ4nuPkl+IpCj5hUiKkl+IpKDgR1CjQbLTboJ2WjPDnx5qmkmfJ1GDroVEtw0IVWPEphI46hyOo3NH7csUW0Aj0xcg+BxDQ8lSfAINSsmePQdR8sXDtYtRs9Xo9Ci6p0UhFuy9UXvwSef7Fbzd+V4Jz2ovuj3d+WfxbOfPMQeBewWWXTOzbe3vywFZhlu/xmWniT1CiC9R8guRFCW/EElR8guRlHADzwFEKXL4kWBHwteXX+Ag8YvWSE0TKUbfR9N+NjCxJyoClo6l6yaRjJyO5PDDpp4wWnxZeTGNxNB565ulmpkdwoQdqhsnqInq7YOfzET7TXtDRJ2cZvEGnjh6G/bhDES3J+afuwsQ92ia0RKupSu4TakfwCnEWvh8D8Ki3vxCJEXJL0RSlPxCJEXJL0RSWmx6CQJU1IUWbcJoZka6BjW9PG69yHIBZZQzEPxIRFruvCi12PoSU2qYed/z+GQalUxNKkm0i+4jNzyNiV8kIJaEWFwjNIUkSIDk8eex0m8sgSbRtCDONgOUWuOR8Flq4AmxKYl2sLV+Z8zuoHz3buAmtlSqTesh6E7rzS9EUpT8QiRFyS9EUpT8QiSlXcEI66hLL1qCWXJfRXukfTB54mI/bHzZ4hm4nUgGugdB5bL1Qt7LduFj0DPPzOxy7SfnREeBYy/DoLuQxC9ywG22sXtVgtycJIihsBh17gX7G9J+VTBlqER0dDoJtit4dpa1X89l46/lFsZxf2zejfnFzgvNZryPHZRa0xt9DevWm1+IpCj5hUiKkl+IpCj5hUhKS6WVj01pfDIJfmcg+D1rjlzsQ/Pllk96EIzg1EsQSc5BLJy18RHbJHSR220dLPMdAwqxsOx97j056Khv3hhhOMo+Dj/SAQcqb4X7SuXJdzsv0H1ae4HuFQiIV/DZF70faLKE48x4b0nwI7YgfevNL0RSlPxCJEXJL0RSlPxCJKUd0zcNj9tjAi65qiYgvHXwG0UlkxOINRDDEkwQrzYw6OIWJqWamR1Bv7c5lMGug47KxwanJxfuPQmBtMYtDUmBvS32cHxEipOgyeMJIRrksgLB76r3rk9y3pEAeQ2fvdnE+hua8T5Gh5LQvdabX4ikKPmFSIqSX4ikKPmFSEo7pm8aCgtBd1npOx8GL3bMBy+SvYIhCz0596DH3QWUtx6DxtKD+Piq8iKgGQ94mIHgt2z8GqnM97Fdf/tA5yaxCfs1ggBFkKNuIDtmcChycb8gjCIgOAHvKxD8Kl+6vYTJxCT4Uf9Hmlbcb7k8OZqD0UE8evMLkRQlvxBJUfILkRQlvxBJwdGrjy4CFsQYErrmvZ8c+6L2zijiHtx3beVFt2c7v54LEBWrjRf3Xk7Y4fei8YNFvgDBj5yE66Arckxp7D7OS3KN0TAViiH0iiHjHfS4e+xy4NJ3kghIw0bmg38+l7UX7Uggped9n8E30XyLoje/EElR8guRFCW/EElR8guRlDbqBgoLL/B1pZJO6ntHjqdrEPxwWio4/DYg+NEvXgdi0zGs762BRa4jOE8L6yGBhtxuoEmGoVLpqIhnZjYFoZL6LdKzQ2IVCl3BIRs9CYN7lECPcabSuvHcwXkhlAf0ffuInGOcoHrzC5EUJb8QSVHyC5EUJb8QSVHyC5GUNmrHjY5PJorNFUEZpik3C6iXnkFzzbPaW2zvQcWf19DAc+vV7Dtq6ln4c6SCWvTSdB/32UdujtqBMn888Xtz1PqYmdkB7C2Nte5h7POKphTtfKzZwT8SEHvY+usba4mNKuT03I75FyZ6jjeF3vxCJEXJL0RSlPxCJEXJL0RSsJ7/0UXAgp5F1kaqoaYGibOtt6BeQT3/CxCvph0c1/qtmFd+fZ+Yb8JoZnYLY5WpieNji4Bk0T2ZHLjYu7MzF7to/ehzM7PD2u8Z3f/FDkZYw7hqun8PO3+f6dnZtDD6HKYekVBsFhcH38TUpG8bevMLkRQlvxBJUfILkRQlvxBJCdfzh8uG9+gnSGIMwhqbA6fKdF7I+aLxghj9Ct6CUHW99Q0czVjUuocRz2PGVdO9ojr7k85f31l76GIXsA9mZgcwqYhGbx9AD4MOehiQOxAFv+Co6/va72vT83tsuYk11/wGByR9Y+jNL0RSlPxCJEXJL0RSlPxCJKUlxxm6yyCEAg24p/ZpMshNE2NCEDm/aALQBMZ70zk2IEpR01Gz+DXSuqPQvSKHH00FIsGuL6xlA9NrqGFqA985BbHwAByDBArA8NyRgEgxs/i46jdBdC0ld+eYUmRCb34hkqLkFyIpSn4hkqLkFyIpbXS6CwlGO5yGAiWUBWEpWkZJAgaV/pJgRKWe0VLkfdx4Y/Zs1NQVnPYD4iX027sf/B6amfUg+DWDvz66lgc4D60Hy3fhs9T/j+4pPQ9m5d5+r/PYwiDlVVScLUF5FB37TfutN78QSVHyC5EUJb8QSVHyC5GUloQqEiHIQRUVxIZt6Tj/nSRMRMUYWk9JCIqclyithT5Pe8tjmoPnxvHesd/vBxL3ClrYKtjDkQSoLXxpVNyjISBU+kuxUnk4Cl14D2P7GH0+D1rvajyd+rJqGpBSgoTO+cY7WKmMmfZHb34hkqLkFyIpSn4hkqLkFyIpLYl75EQqlUy+TrTM18xsBwLPYzutSKAZ46jba6oqXDZOjQ1+J7oIya0I5yCnXA9uTDN27pEYVypv/rrQOVBUhOdpn1JpEklhcHMYyqHzqR+I8v7siYudNn5SckkAvoPBMC/rm9DnV73ve6g3vxBJUfILkRQlvxBJUfILkZQ22g8NHX5Y0vv4PdOik22JbdSFOGKYhpnZLuhsi4qNtI8k5JBza9l7YWhdxUqbzeKlo1GRjZ6daFk1OTTJ4Rct3TVj4ZREO3ZU+tgM3HxPp+cu9qPuwsWOzJ93U3hGrqEXIoqzcK/oHujNL0RSlPxCJEXJL0RSlPxCJKWNuvlIoKlBlxgjzn2XeXQnIXx2A+LXHbm5Gi/uUT/BEthnMFiKTPd/jOA31uEXXQ+JdofN1MWoBPcEph3/sDtzsT8y7+abwft3Wai1buBats2xi9Uzf9z9RA4/IcSXKPmFSIqSX4ikKPmFSEo7bToX3GcK6uuQkFOcbPvIIhkOhxhRQvttg4acbHYxh9ebAoXhESJwdOBH6bmpq5igfdb5/nrvTbxL753aH/ek8iLgM/Ox97YgPsKy54VBHg3UHU8bfy0/aHw58fngpyfrzS9EUpT8QiRFyS9EUpT8QiRFyS9EUtpp7dX+Se2VQTquAyV1Wfta8pL1MjpeOKr4PjakXJf6FUT/pXjsdT/2PyajgVPv3kBT1hJRC/Kk8s/8ae3tve9A7Nngc+O93p/jYhvtOcDv5A1NBjJ/7nfhX4Wf9KvgWYQQ33uU/EIkRckvRFKU/EIkpSVxj+qYT2tfi3wIIuACmgwutl4ENDNbVF6EKE2RiTDGysu21NiEnBLYVBI+/l21G0f5tl0fCdA0wnyx8zXwi8rnxgCi2wFc8xTOu4JnbFl4Jd9WwclOg3/IzmYS/IQQX6LkFyIpSn4hkqLkFyIpLbn0DkG0OwfB77zyQscN1CI/h54BZvFx3FEX2xhhiZx7VPfdNlxrzd8ZczB+o4687zn0TFB/ifnm3sVekfsVnIBP4PnewHFreJ5etD72h8aLj2ZmrwbfmLWB53baelHy6t7nr978QiRFyS9EUpT8QiRFyS9EUtoWBL8piBUnEDsHZ9MONLxiGWxwCsxjC2JYqkuTXYKjnM1YHNxQ01PQcqgJ57fNFfddJTr5iMaaX9cLFyPB77L2E3tuwTm7gOfhd61fy+92SxczM7vd+TWSYA+Prf0eXLt68wuRFCW/EElR8guRFCW/EEn5HxiTusiFjP0BAAAAAElFTkSuQmCC" y="-4758.932752"/>
</g>
<g id="matplotlib.axis_265">
<g id="xtick_397"/>
<g id="xtick_398"/>
<g id="xtick_399"/>
</g>
<g id="matplotlib.axis_266">
<g id="ytick_661"/>
<g id="ytick_662"/>
<g id="ytick_663"/>
<g id="ytick_664"/>
<g id="ytick_665"/>
<g id="text_34">
<!-- 121 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 4863.89119)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-50"/>
<use x="111.230469" xlink:href="#ArialMT-49"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-55"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_134">
<g id="patch_135">
<path d="M 164.424375 4881.332752
L 286.714375 4881.332752
L 286.714375 4759.042752
L 164.424375 4759.042752
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p6f2c248f50)">
<image height="122.4" id="image940aba3d17" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHKNJREFUeJztnUuPJGdWhk9GRF7qXtXlbtu0L+MZrpKHWYxALFggsQCxZ8NfYMO/QWLPkhUrNsx2EBpGAsnDjMf2eGjbfauue14jMlmMxKLfJ9BJV9sM/t5neSoyv4gv4lRIb77nnMH33/jjTbzEabP3cihOqx2J7UQtsVl0EvusvZZYRMSjxZnEzuZ67HS1kNh6s8bvfJlqUElsVDcSayq9lnE9lNhOM8J1BjGQ2LTV86ZY2+meEXWl11Inr4+u5Xik9zki4sHwSGKTgX7n8/ZGYk+XlxK7Xc1xnQyrte7Nsmv1OIj1MYT9oT3LPid0Dzp4Puk5plgH1/xVoGdtjCkCJ78xheLkN6ZQnPzGFEpzUE8keFJp7MFgLLHTjYofbYh+GKOG/8fM1kuJ3YA4tGhXEssLfirEZUWy/SHszXAf19mtVAi8XauY82KpItnNaiYxErUGyWshkZOOI5EyIqLdqOA0g/u6WOt9IaGLzoege0W0IIjR3kREbDZ63tm1R5U+E0OI0WcXne7N/yW0P37zG1MoTn5jCsXJb0yhOPmNKZRmZ6DOr71QUeNoo/8n7nUqIjQgIm1qFQsjIs6aA40NweFHrrikC4pELRI/yAF31OxK7M3mENe5DyIpiZ9P4Zofr9QVdw7C4AqEuAquj1xoKF4N9Lg+Fmtw1cH5EORMpPMm1gPdQxY5+fs6EPxIBFwnhUFaewP3mYRPihF94mWW7DPvN78xheLkN6ZQnPzGFIqT35hCaUhaoP8IJO0s4cMkmwx7xJ29Ckpma3XKDUHAWoGIRKJN1hVHgthBrWXMD6C0OSLinVBRcwc247zS4z4dq1j4CNa+6tQJSOJV9prHIPb2HUviHgldKOSRQJcUpYiWnoceAZgEw6xAR9/ZVBqjz5JDM+s27HNeomiHsaSjMnWUMeYbh5PfmEJx8htTKE5+YwqluaayU+jXtgYN4rKGfmYgVsx6nGDXUNJLoh0JUORio8+yIAKuOHC77YAgeQR7ExHxoNXvPOn0fF6D856Ak3Cn0eOegwi4SApxJErRvkaw4LSIfI+8LwudT12DsAvX1+f4zIpsdNwKXI20Ddn9zj6f0SN8kpBHYjg5Kume+s1vTKE4+Y0pFCe/MYXi5DemUJpnqysJkpvrEnrUkUhGzq3lhsWiqw769UFfuOzgDSJd3oglj1D6u2Ex5nCtYs4DEDQXaxAqoYS6g+EgQzjH6UDvFZUSr0CA6vPTLUOPvYG1s2WrJNBV8Oyg4JcciLFKPg990DNBzw71jsyWA3PZcf79S+Ie5QH2cMSyamNMkTj5jSkUJ78xheLkN6ZQnPzGFEpzsbyVII4XJrUf1MesQhrBvwKQcpq1MGJzRWrWmG24CKp3H2NQ+w8b/eViMNBfALqV2nan0F9gCnbqKfwyQ9c3xIk9DFmGl2B1pVh6Ug30Dh2H2qnpFyXqvbDsUftJ+c5OcaJY9tmh544syNQzINvos49sbvjNb0yhOPmNKRQnvzGF4uQ3plCa6Urr+cnquK5h9PZGRZa+GnEiK+4RWdGG1qAR1HTcEo5bQEPIiIiWBJVKhZvxSL/zqFXhbGete7uAe/B0rU09p2Ar3ofGodR7ISLiZqOfn0LfBxL8SMDKTsghIY9i2IwUei9EBL7eJjCdiT4/or4WIPiRoE0W+Wmne0gj6eet7n/f2iQODqi3AeyD3/zGFIqT35hCcfIbUyhOfmMKpaHJIjUIDtmRyluNgk6Kg4PqyzuyiKzgN4feAhcbdrB90eh17y+1MefRSvf7aah78r8aFXI+6nR8+SfzZxKj6zse7kmsb2LPAq5xDs69bp2r56fjSLyawXNHDj+6zyTiRbCQd9LoXpzAiPUJCH7UF2EK+0WxF9TrAkVT7n/RQa5S/tJ+tzBpyG9+YwrFyW9MoTj5jSkUJ78xhdJkRxNTbAgOtqzzLiJiAKIPTT+h/1EkImZLjIcbGPEMIhnFHoOjLiKirfS8P9tRIW93o7HnAxVtftZeSOwX8+cSO1/cSIzuAe3DXq2uv4ievQARipxt7OaD42Ca0arSNUi8JHFvFxyMERH3QNx7WGnsTRBdabT8OQhnj6Gp6xQEUmxkCmts45KlMuE2wOGXM/0ZY0rAyW9MoTj5jSkUJ78xhdJkJ9VQXzAqv82WRkawsESOp+x46Rr+l5HjkK6PBDHirNOehxERj1eXEiN3GpVLU6nn+VKFvOulio0sxOq6847LRAkSXVkEzDkleaINlKeCM4328ABGlb9Wq4gXEfE2xL+zVnHvFASxBTwSHYwM/wyu76rTezWDe7BNvz56dgjaR7qnfvMbUyhOfmMKxclvTKE4+Y0plIaELhr7u1OrSLJfaxnkPpVGgugWETGDktk59J9bUokiCFDEHgwbIYfXe6HnvQCR5IeduuwiIj5aqOA3bVXII+GFyjIp1jf85GVWcBiVy5LjLIJdejSMg9xl9FkeTZ2DBNuTWkulH1Yai4j4jQ24AWF/SNy7glfj1UA/fAX9Da9bFfxuW+3XR3tI9z6ipzQa9pueMbwvuIox5huPk9+YQnHyG1MoTn5jCqVB594dBL9jiI1pJGtENLD2zUBFkduNCio0QLdu9PtI3PuLhZZ//uHDxxJ79mRfY/WRLhwRv6zOJEZlsNmeayTasFOO0O8jwa7PXUbiEB1L50MutKx7kgRIcnzSt/XtzMVABbXrWr9hBcNYbkFUfgGC9Hk7lRi5+Uh0JcGPnoeI/DRgihF+8xtTKE5+YwrFyW9MoTj5jSkUtN5RySuV5Y4htgOxPV4GGdLQDyhRpVLPHXDz3YPBFA9BVDz+Plzfh9pH7/7HDyUWwU40IiuSsYKVE3KyZbXbCH70eewVeAc3H617udQS6kf1ucQWQ3bF7cD9p/NuQWSjKc23IPhdguCXdURuI/hlnXtZ/OY3plCc/MYUipPfmEJx8htTKA2JCzg5FMSPrAttDi6riIgFTRIASEwjAbIGoXIKbrfPN+pCfO+n6tBb3ugafUW1WRcbgSWvFIPFSbTDwSngpuwbDsGDU3QdEvey05z7yolf5nal7s7P44XEbjoVcSPYmdrXU/Jl6JlfQBk6lW4v2pzgl3V3RtxN3CP85jemUJz8xhSKk9+YQnHyG1MoDYkLJFZcrdTFRILRqlYBY9gjLJGDigSs7PAL+r7n0F/tR2MVfOYfviUxGLwbL0Y8/CI7COQurriswFbRQBOIUa/GiJ5eceucu6yD54nOGz8L69LzQMNL+vrejRsYIgMCcvYcaVAJufmyA01etWtvG/zmN6ZQnPzGFIqT35hCcfIbUyhOfmMKBSf2kPWSGhJW8AsATdLps1NmFdYsy40qvudrtX3+FGT8J0O1gY5BIb/YqLIbwX0ISE0ni2eWDan98EtIA/0Pdhq9vglYXyO48eimzU0aQkW7pz5djrtDvwJS3CNYdc9anbONTLO/UtD3oS18C6e46/mNMVvj5DemUJz8xhSKk9+YQmlIdOur834ZEvfmJLzwwJ5o4A9oV71DjfgCRMAr0J/aSoPjjZ5f21PRj/ZZEAHb+svbPmv4X01C49FIx1UfNzq56BCmK0VETKFm/elSR5BTc02aStNlJ8jAHjYVCNJbTKmhsebrDka+wzOW7VeBQl6yp8I2pO3BHtFtjPnfcPIbUyhOfmMKxclvTKHgiG4Sr8g1RnX22WabESxWZcU9gtxSd2msuQ103rRnE3Da4YQcEG1ob09HBxL71vCexL49UMHvAQiaERHn0JPhg0bHlX9SP5fYs+WVxOYgAhLjWmvvsWcEuPbIldh3LPYrSDr3SEzL9m0gQXOb/g53OW9KA7/5jSkUJ78xheLkN6ZQnPzGFErDDSBzrj8anT2pVLQhd1lExB6MTyaWMNlnRSWT6IqjceN63mNwG+6DUDntmTKUnUAzhv2hvaXYQbMjsd8enkrsD9bq8PveQkub7x+oay8iYjpTUfLbcSSxf52oQ/BnQx1r/mylIiC51YZwXwgq3aapORFcik6lyFiePMiJe3j/kkL6Nq4/ytVukxO0SQT0m9+YQnHyG1MoTn5jCsXJb0yhYElvtrceiTb02UmPw++4Guvn4bg5lA7PAkQbEONIoBmDsHQA4uMBnHfbUzpKPdtobRJJdyoV2HZr3ZsHtQqn74WKbu8vVfz6zfd0BPnkdS5P3ixvJHb0qU7JeXCmTsK3Jg8k9mGtLsTn0FtxBv0RaUz2bE1lw3wtNG4+Czs09TnJOhNJFM72CYzg54kmKWVdrX7zG1MoTn5jCsXJb0yhOPmNKZSG3HxZEYJ6+JHAQo6siIgV9MMbwf+jhpxRcNygRyiR40iIw96BComPEf0lpS9DZdATEPxOKnXznQ5UBDzaQO/AAbgf13CfYRBHRMRgpMcev62C33cbLek9eapOwJOhOg5/DM62R2sVGhc0QCQpPkf0PLdQ5kt5cDDSe/Dm5ERi94cqaNIzdgPj4i9a7YN406oYGsH9Ee8yBMZvfmMKxclvTKE4+Y0pFCe/MYXSoEsPnEgkLJCbjwQ/GgIRETGr9NgOSms7EAaXILzRgA4UguBfHpX+XkDs8+5aPxwRt52KOVhiDOLlGHrz7UHpLzkOYdZIXGz0s2dP1B24P+My2NFE97EeQgnuRO/Bya4Kg6czFSrHY90HuqfXnX7fFPb6ZpUXyai8dXeo5/jO7n2J/dHoDYm9v9L9pmL1Txpd9z9qfZ5+MXgBn454ttHSaBSaQQOkZ9FvfmMKxclvTKE4+Y0pFCe/MYXSkAOKHFTUa2wAIuA2Dj8SAltyp8FnqfzzulPRhwSRSxAqn4EQR9dytZrC2fB0YizfrdXNR5AASf+pF9Bn7kWt6w7n6rI7XHIPxRruQQdOwtla13kCbsX/HOk5Pl6rkHcObrdzKC+mfn3Ug68vTqW6hzDZ+PeGr0nsz2Z6X777zucSq2q95p9/ov0WVxN1B141LMRetvrs6Y6xuEf4zW9MoTj5jSkUJ78xheLkN6ZQGizfBcEg2yuMpob2lbsuwOFHpZXk0puDWEjOLxragKXIIAwtQMTrK6Gkc6R+byQ27UIvw1mlvfmm0GeQxMtho2us4bMv1txbcQHf+bjR6/tkoHv7BFxo562Ke2etOttegLh3u1QRl+4LTqbtgcTrQxiI8m7offmtU+2FePQ93cf1XJ+nk8d6LbsbXYNcoBGvfuK03/zGFIqT35hCcfIbUyhOfmMKBUt6SQSk8t0OnGA0ZIFKciO4n90R9KmbgEh2DuWt5CRcgDC4bPW4OZR+kgjYN1CBmK1yTisSeGhvSJ+bD9RRt4Jy4KseEYm4GOh1f9ypGPfR/Jl+dqWeMxJJKUb7TceRuNfnaquS06VJiMWpuK1+X3elgmZ3ref4Yqai4sUO7ENPn0ielK0PxbDO9fXzm9+YQnHyG1MoTn5jCsXJb0yhOPmNKRS096JyCqGs8k321YiI7zY6/eRP5qq63tuoEv/BUD/7g6Eqnx+A2n+9AnWW+hok66IjeqYcwa8cs5VeywCqsulXmAX0MLiFsd3TWlXlCTRGXfb8CvMM6sYfLbWp5JPZhcTo+mgf+ybsyGezz+cdoV8Vvgi9lp9c6XPX/UjfoYul7vfPG82D841afvtsvNQLoh3mlH3qQuE3vzGF4uQ3plCc/MYUipPfmEJpsmJMDfZesj8OwZb6LohzERF/tVRB5f2/VgFr8MY7Evv9f/o3ia1/+JbEHjdqSz0b8NSdDCRAbXMsiYDTFTdslO+jSUpNbnIR2YVna93/CG4UebbQPaPzvsvI6Fddr94H2YNpLz5b6z78aKwjyC/n+nzXcO8fw9Qjuqc7YF2PYOF8A41Cs2Kq3/zGFIqT35hCcfIbUyhOfmMKpSGRpUrqLlTjP661lvxbA52GEhHxu3/+XE/oL/9Gz+dUhbzB/X+Q2J/++w8k9i8LFWg+a9St1jfi+VWDjjWYukPCGY2bJvqEvJehiUR965C4h3X1SbGJnp2vwrlH57OGdVaw31drveYvKt2bCTj3jteQG3B5p9CPoa14HyhKe0aiskd0G2P+Bye/MYXi5DemUJz8xhRK08A456yQQ2Ww5C4a9zi3qhMVAjew9vrmHM5Hjzt9T0tjv/cTHYv88VgdWST4XXUqApFQ9avzebViFYlSNA2JpteQYJdtohnB4hcdexeB7lXvVx90v8iZSpOiqGEmvS1hmFHsQ7X0CVzzLjQOHdc6rSkiokkq8ZSXXa0xv/mNKRQnvzGF4uQ3plCc/MYUSoNTSeBAdBKBOEdjsh8Fl6y++Gcttz09+Ds9sAUB6hfqDrz5Qp1W7y71HH9nfE9i1xPt60cCW5/LLjtFJltuSdBnacoNOfdWcFzfuWT75n1dot2rhkZ0j2DyDZXWHkDstNUceh2mQo0hs/Y7/b4K+i1GRHTQw29R6XO3rGHyEUwB8pvfmEJx8htTKE5+YwrFyW9MoTTkJMtCgg+Vfn6w1FHOERF/f/a2xN7/WxUwhvA/qosHEFPhZVFr7K1Q4eTpSEVAKo28abn0l0S2RavuO3LkkVhIsWXoGnQP7jrWOkuf2/HL8lUIiNlzzPYPrDd63ATOex/GnI8rEF07/b79Nb+T92qN74I4OAJRkkZ5+81vTKE4+Y0pFCe/MYXi5DemUJps+W5F5Y3Uhw0++2h+hov/I3znj2EowuFA+wLuwhCKfRJjYN05CF3HMBDhLRAB+6aizmFQxkWrJcY0/OJ6qe5CEu3WXa6EOiuc0T39VZxKXnP3P3s+2anIX4WzkJ75WxBynzd6/z6D5+RoqKXpuwsVlQ87fWZv4Dm+BJE6IuICRMRLmEJ9Cz0cyXnrN78xheLkN6ZQnPzGFIqT35hCaUhYwt5lyR5n5Kjqm0L70fqxxM5GKogdNiqoHECfs30YgLBXqVhYYxmzikgPqh1YgyeodiBCfQriEDkBaX+WICDeReii+9JA/7iIiFGt10jDWOg4KhGfg6tx2uo1U9kxiXN3HeZLYiP1cPw8dLjLvFMx7WKkPSGfTw4l9sZa92sB1/JkwGXjn69VGH7aalk8Cc0kaPrNb0yhOPmNKRQnvzGF4uQ3plAadF9BKesA3HMDmC4b9H0k2gT3n8NS1pEeN29UFLkFgW0Cgt8OxA4H+tkdcF8db1jwW4FgiKXINOiEJqiCQDdICqwEfV+f4HcwUqHzeLgnsSMQYoewZ9edik3PFpcSu1xOJTaHnol9zxNB102QENsuVAwncfZipQLbk7EKfvdq3UOCHHoREbewjzSRmcrGSXT1m9+YQnHyG1MoTn5jCsXJb0yhNNjHDUJYYgriFdE3HIIcgrQOCRj0WVqHxLQxuPRqmIBKUtH1gEt6n6xVjPnlUh1iFwsVh1qaBgyrk6OORLusyNUn+O036p58fagC1pv1vsT2oKfcNQyRICE2Qgex4MTZHkGMoH0kkZSE7xWsTSI1DXK5Xqkb74tGHaj0HG8D709umrPf/MYUipPfmEJx8htTKE5+YwrFyW9MoaC9l34BINV0g5bffLE1jv1OKqy0Dqn9+ItCnWuEuQL78sWGexN82l5I7ClYWEkZpmsmJZ5iu0O1JTdgsSX6lObdWr9zr1Kl+hgaq97b6Nr3AnoqNNBTYaL7sILR0vTrCO1hH9m+COnGo+vc1KQ5THCiceHDnl9hslOFsiPa/eY3plCc/MYUipPfmEJx8htTKFicTmJa1iaZtZb2QdbEFiy1FYw2Jui4KxhXTE09ZzAh5Xajok0E13STpZIs0VkBCgU/EOfIOruNEEsjnonseHcy8h7AGq83BxJbTkio0msh23REflw5kRURX3UebNOvICuQ03PnN78xheLkN6ZQnPzGFIqT35hCySk7waJGdmJPH1mhi0SNFQg5d2EBo45r+N9Ik3QieCJKVrjJCkbk/BqBeDmpoW58i//z1ISTmMN9uRxAfTkIg1ewj3SfD2ttJjqY5J2l53OdaEOCWPZZzOZBU+fu1Tb9GEi8JMcounYh5je/MYXi5DemUJz8xhSKk9+YQmlYbNL/CVlRg9xXfWSbD1K5LYkfWUj8mMHoZaJvXZw+BNdHTsn6DmIq7TfGaI2e//3DZHPUGTgvseklTIC6BYF1DiIgOS/3YDLTQaPCYETEdaWNNBdQWpstY8d9hLLcCYw03xtqY1RyaPYJfjR1J5sbVHbsN78xheLkN6ZQnPzGFIqT35hCae4i7tFxW5UykgEO/h3hJJ5kfzVaI1uqSeJj32f7phK9DIlD2UlD2BeOnIlwX4bgLtvmXq1gIy/X2s+QdoH68C0hRqIb9SO883MHoBAL94oceTRJaQLTeUiUPAAHYx/NQPebnKlUSk7Pst/8xhSKk9+YQnHyG1MoTn5jCqUhAYNKR+k4EkTIPdc7ohs+jyIgBFGMg9gGBm/gCnjeObdhBAtOJKZmoWuZrlTwofNZNCr4jKGv3w6U/vYdS27ADu4L3n8Q8kjcozUm+IjoZ29bHqaSdYKSe5Ke+TE49/bBuXc83NNYo7EJCLHkkoyIaEEkpXtFAiQ5UP3mN6ZQnPzGFIqT35hCcfIbUygNiQM74E4ioYOgCaF9ogv2TSOBB8oRCRboUh9F4Szb1y2CdcoBCFN0XHYaLF0f9TKcQ183Eq/oPkfwvSYH3DaTcV+GXYh6jrO1Xgs9Y1fLKa6D/fpIbCRXK5zP4WhXYvdHhxpr9iV2BKXILezhTfBgmFnS2UjXgq5IXMUY843HyW9MoTj5jSkUJ78xhYKC316jjqVDKEckV9QNDK+Yduy+otLD5OBXFG2yQzLos1lI+NqGu4h7LF5CHz0QuchNifsf7BDLCn50fdmhJNm+hSTikcgZwfuYhfbhBJx77w5PJPaw0nzZ2UC+VLky9IiIW5hsTCXP5Czl/o/GmCJx8htTKE5+YwrFyW9MoTQ85RXKFmsVAccgQIwg1gcJRiTmtJ2KWjzc48uLO8Q2E4ezPeRIbMxOVc2Ca4Ba2FeenO1HmC15zoqAWXC/ekTcvACp70FyOlJZ7tsg7n2r0zwYwyleUll7pbkWEbEAcfdmrQI7OSVJ8PWb35hCcfIbUyhOfmMKxclvTKFgDz/qpZYtEyTBbwJ9xiIipjCE4C4OuK+DbYQqEqFQELuD4zB9LlusSyXYJGhiz8SkoPk1XHIv2QEd1B/voNIy6JON5tD9Vi9wF/brpNJzmTScL3WtZcLrRtdZjlQ0pzJov/mNKRQnvzGF4uQ3plCc/MYUipPfmEJpqB6YWIBa2A1UvVxs4Li+AuUkd7G6vmr6ziXbmDOthn8N9P7KAOHu1/xatoF+sSFLLNncG3hf0r1fwY9CQ9iv0432IXiTPhwRD1f6S8Mbo2OJHU70uJ9Q3T+uYoz5xuPkN6ZQnPzGFIqT35hCaci2uQTRLjqtGybhhMYIk7UwIl9rjZbar0FXQvGqx92bFbp+nQSx3nNJOph/na5lG+iZz9rcW5D3Xgz0+R43anOvQ9d4LTSvTk95+tDbta79nRc6QejbS7UB35+8LTG/+Y0pFCe/MYXi5DemUJz8xhRKQ/Xlq7VOclkNVMijen6cpLNF7T2JMVhLnv7GV8v/V5FrG0q4xpehGv81PMtTyI0n0JeirfSz41qddw+X6iJ8AMJeRMTuqa69c3IpsYPnKiK+9vRIYn7zG1MoTn5jCsXJb0yhOPmNKZRmRaW6NHoZHFAk7qFwsoWAlB2BTa6/EoUqsz30jJGoTM/3zRqazpLIDYLfCUzHugyNzafcwHO8D004h7rOZE+FwbdOrvWzuIox5huPk9+YQnHyG1MoTn5jCuW/AQ7YjPC7E6c7AAAAAElFTkSuQmCC" y="-4758.932752"/>
</g>
<g id="matplotlib.axis_267">
<g id="xtick_400"/>
<g id="xtick_401"/>
<g id="xtick_402"/>
</g>
<g id="matplotlib.axis_268">
<g id="ytick_666"/>
<g id="ytick_667"/>
<g id="ytick_668"/>
<g id="ytick_669"/>
<g id="ytick_670"/>
</g>
</g>
<g id="axes_135">
<g id="patch_136">
<path d="M 299.674375 4883.834516
L 421.964375 4883.834516
L 421.964375 4756.540988
L 299.674375 4756.540988
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_269">
<g id="xtick_403"/>
<g id="xtick_404"/>
<g id="xtick_405"/>
</g>
<g id="matplotlib.axis_270">
<g id="ytick_671"/>
<g id="ytick_672"/>
<g id="ytick_673"/>
<g id="ytick_674"/>
<g id="ytick_675"/>
</g>
</g>
<g id="axes_136">
<g id="patch_137">
<path d="M 434.924375 4883.834516
L 557.214375 4883.834516
L 557.214375 4756.540988
L 434.924375 4756.540988
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_271">
<g id="xtick_406"/>
<g id="xtick_407"/>
<g id="xtick_408"/>
</g>
<g id="matplotlib.axis_272">
<g id="ytick_676"/>
<g id="ytick_677"/>
<g id="ytick_678"/>
<g id="ytick_679"/>
<g id="ytick_680"/>
</g>
</g>
<g id="axes_137">
<g id="patch_138">
<path d="M 29.174375 5027.753939
L 151.464375 5027.753939
L 151.464375 4900.460412
L 29.174375 4900.460412
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_273">
<g id="xtick_409"/>
<g id="xtick_410"/>
<g id="xtick_411"/>
</g>
<g id="matplotlib.axis_274">
<g id="ytick_681"/>
<g id="ytick_682"/>
<g id="ytick_683"/>
<g id="ytick_684"/>
<g id="ytick_685"/>
<g id="text_35">
<!-- 124 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 5007.810613)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-50"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-55"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_138">
<g id="patch_139">
<path d="M 164.424375 5025.252176
L 286.714375 5025.252176
L 286.714375 4902.962176
L 164.424375 4902.962176
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pbd3a491149)">
<image height="122.4" id="image22f293b3fe" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnU2PJNlVhk9GRH5nZVVWVVdNd4978GAjYwsBksVf4ZciIZYsEAsWGDDgGctjz0x3T1XXV1Z+Z0RksrC96fcJKQbY3fdZXkVm3Lj3ngzpzfec0/m7q789xkcMov54KLoduSzqY0fGlpHL2GOuYxERd7l+/j47yNhDp5Kxp2Op1x22eu96jff+mMt8LGPX2VDGpp0ufr4Mnfd3MJ9vq7mM3e8XMrY76PNloevVzQoZG+Y9GZvkAxm7KiYyFhHxw0zHf1bqfT6tdF+6sA5Z6Nm5GOjavPzRs352oJ+9+e8TGfun7UzGIiL+Ptfv/NXuRsYOR73PaTGSMVqzq46u7YuAPYB40VWNmNV6XUTES1jvVz0931cvlzI2fkP7YoxJEge/MYni4DcmURz8xiRKcQJiWi9TwS9vKfgd9KOxPfBvTBcEP6IGMaY8qoBRHWHe8Ps2BfHrVabizksQbU4bnqUGUauf6bXHgtZRn2VRbVpdl3f0HiQMfh/oCekbYaujhk+XMMd6q2P9b/Qsjk93+n2lCshVwyMfYV/oTAxyld5IBH5N5+SoIvDkoBMi2ZvWmiVl/jxxAMGwXlnwM8b8AQe/MYni4DcmURz8xiRKMSrUSVbkKg4glUoQOQgsXRDsIiJyHhYO8J01OMlo1uNMRbtPQLR5E329DlSkyaHlpCPiBESkfq4Osbyrv8HvM3X9LWt1xR1hbUkE7IBkV4GAGBGxhZV8BLWpAH8afeMGxLjeEYTB+amMXSxV8FvVet+1bl8jnY5OiITBDK4bkFgIwncPjgm5+bpw3aDhjBUwxyPce7sCyfBWh/zmNyZRHPzGJIqD35hEcfAbkygFiXs5jFUg7u1r/e3Ygg9pA063iIgdCEHbjt57C8LUDtx8dJdZpm6+T0Hcew3i3kWl9+iB6NIEiVrFUdenW6iTbFjodTeZpm+uDvtWcyFXG7kSIzhd+i3s4bqjc6Q9KOE+ZMhbQnry7KBjkF0c93BuIiJIOytg3gc4Y9ujOg53IGmSWFjAEw5hMiQMDg/8LB24z6bSxaifwV241DPvN78xieLgNyZRHPzGJIqD35hEKdZ7dQNlkL67P6hIsjiq2ED1+j40pO7eQOrw7VEFrA8HTW9dHtT51QUh5wRq7l1CWu6sVpFlBOJOjh42TmXtg4hEqZ5XMJ8OCJWjTJ/voaPrtQLBrmopVDV9/h4ErLID9QNbvk9oFdeZzucWvk5luIiH0DlHRJQgDPdg3hUkKO/hsxsYqyAJl5x7IxD8BnBGug37UsMePEM68aGmMf2s3/zGJIqD35hEcfAbkygOfmMSpXh3VGGpC8LEHtIbnwv97aDUz7sOVXuLuAkVq+6g0cVDtZKxDTjbRrm6mLa53pt6IpAAxWNNNfxIENNrqdYc6KsxhlTNKxAvByACPoEQ+wRCKjnYIjjVtwQHXQXpxPR8lMpKrOCcLGGOWxDddlhRkIVOEoaLlmnQ5PCj81TA2vRgjMQ9OksRERuY4zqDOWLKsuI3vzGJ4uA3JlEc/MYkioPfmERx8BuTKMVbKB45BJmbVNwl/HTMQRV+RENmxBxspGTbJWW/bQvrW8iB/6bQfwWmUGwTROXGXjik+G5BdV2AOruGdaRaB8QEagYcwb66/x723oKKVEKdhh6oz0P4l6JLxUPhvlTLYQVq/xL+uaBuRhH8jw0VOCVymDf90/AM897AvzBU6HMP9R1IwY+IWMH4Fi7dwd9HJVznN78xieLgNyZRHPzGJIqD35hEKW4zyDkHoYp+JagTyxLEj0WDjZSEmy0IedR6+wBWyT3cZ15rLYCvoYvPqDjR+4IwRHnaESz40fqsQYxZUv2EhoKUHzMAwe8URKQdmGxhmyMiogu7fQIiIt1nBKJWn6zPIDauYb1JlCRxr2WPqUbavgU3cMbedaCTEojK45yKqCrUjSqCn7GGs0PRVsKn/eY3JlEc/MYkioPfmERx8BuTKAXl1O8gb5xEmx2IMSTuPTd0laFuMyTatYWEIHIH3tZaH2BYqKBV5EMZOwGBLYKFKXLprUF42YBoQ99HTrkBjI2hSGiVQdvmBqg19Qieewri3incmzrVUM75Mwh+5Dbsg/jYvo8SQ9onfSedz/e1jt2EnjES7Og0UYHR349DtyfYl5bmUL/5jUkVB78xieLgNyZRHPzGJEpxf9QUWtBsYgBizB4EtmdI06UOMBER+0M7cQ9TMGGIXH8knJEIeAddgahDTgliaAQXe6QW2OTIol/gHIScIdyDWjzTDEfw2VVDaiumwZLYCILftNYJnRzUx7aFe78r9PuosOaIOuQ0PMsAVpccjMQa/HfUPepDtZCxp1IFv13NcfAxg1wdqBERYyhQS0VrByDuDuHc+s1vTKI4+I1JFAe/MYni4DcmUQoS48hJVEP65qGlr6pJjCngPvSdVJuP0h4PKKbpZ0mco3bMKxB8BjDnCBbESPCj5yvgs+SoJOfWHu1c1AVGaUqD5T1Qcth+6kpDK0aictv1otqB1x0VviIiXh/ULXcBi0FuzG9y6FwEKfAfQgW/RanC4GKnY+jkhHqSEREjSBOedLXj1mkxkrFOMZYxv/mNSRQHvzGJ4uA3JlEc/MYkSrGBmnlTEE+oj0AfpBwS9xoFP/jtWYL7rgQxrqnhhN4b6sxBDb+LTIWTl7AOlNoawTXpsDYfuCKpJXMP1oZ8XyTkreC+K6gJSA0oIhr2EOZIshS1ct9SG3E4UCU8Da3DBFJeP69ZJPvpXh2sk1zP/F2l+7+G+9xkOtYH9xy5UunMlpAOTGON14JLlpyuGczHb35jEsXBb0yiOPiNSRQHvzGJUlCTDDKxkfAyggv7kOZ5wCTTiLNcxz90VKAhFyIZ20YgvExh7BLm88lBn+UULHAFiCkREYtM1+cBmjTcgyBGzrYuNb+AMfr1XlMzFRD3Fg3dk8+OkDLbskjecw5diLHDMzkB9cI3oULcVa1P/ZM914m8HKqrbl+qaFe2dFTSmT+BtNpxAQJirme7PoBTtaHjcAWp0esSUvJbprb7zW9Mojj4jUkUB78xieLgNyZRiqaOoB/TB4cQNbCYwtio4RY7Ek/ADXbXaVf7DMUYSEV+cdA5flKpIHIGAkvW4CwcgWCYwW/rIdfrqJEH1eujDrgEdQKmenTUcTYiYgzOthJu/Qyvjh3em1KModYfrNcPYes/P65lbHaqwl5ERA3i4Garz7cBwZZ2ugfne9JR7+W00IYv2x6Lkh9TwrmLiDg2iM0fs6t00R6PSxnzm9+YRHHwG5MoDn5jEsXBb0yiFE0dQT+GUjonIH5QfbTTmhU/lDW6UNcPfqK2kKLato7eCtxlS0gxHUGhufa9bhmaDz0LqU2UakvPTOnFdN+qwUm27ejOPMLYku4Ngl8JgiY1zpjBdEbQ4Xc6Vldbt88iWbXS+5QgnJYtX4MULSSQnkCH501XBb8OOT4b9oUEP3LzkUOQRES/+Y1JFAe/MYni4DcmURz8xiRKMck0HRGFJRBJKM1zAAJNt0HAOFCtOPhOamBBXikSlqipxQKkxpuuXnhZqJBzWbdz2UVE3EFXi7cw8/sDCFjwu/wC9oocjCS6dUGc7Tc0IKE6gw8wb2o2QkIlNUlpquv4MSTEflhqU4pZtcXP1yDa1rC2NQhvtI50kmkdhtAp9wwaZ/ThuiYnX9smOZS+SyKi3/zGJIqD35hEcfAbkygOfmMSxcFvTKIUZ9CpZgSdeOhXgrRHUtfXkCsdEVGCwkop66RJk611B4omFal8hq5AW8htH4ES+xJsmxERJ2D8fAjNq/661nbO9xXkWoMavi2mMvYqU+V7CCt20tLGHRGxhrXYQAHQHPaP/qUYwdiwZTHS20KvW8K/Hq8hRz8iYgr7T8U6ScWns0z1CipQ50ew3nmue1XDeWqy9xIZ7EEOK0nx4je/MYni4DcmURz8xiSKg9+YRCkGYPEkcYAkCLI/bqiXd3v9IsARG2PKv4bfLSpSSW2on8FOuwERcAnXVTk/zBg6Az0f9Ts/VCr4LSotPlnAvoxB6JrB2PSoYtME1qsLYlEE5/6TCMg1B3SshzZuvXBDYjHsaR+6AmUoC0fUFQhi1MIaPouCNhxmum4Agh+dEYq1fsM7uWgpsNLaUj0Ov/mNSRQHvzGJ4uA3JlEc/MYkCvinWMAgcU/lsIgdOfQahKUeCC99uDkVXOy3vU/L1tKUK30AsXB+4LzxJeS7z2vtLEPiHjm6chDJ2nZXInFnQMVNGzoA0SiJgP8XdljIVNebipEG1jBof+8+rOME6jQMoMU6HTG6NQl51OZ+BsLgFXR/ioi4BPFyCsVxKa4oEPzmNyZRHPzGJIqD35hEcfAbkygFuYlIwCCpaQMiAjm8MnL9RcQRiiu2hSQRKqRIhSIHmYosJKaRENeUbrkEIfCpXLX6fA/mM8y07TO5xih9l9p790HcWzUsP8tF1AVIwY5EIJxu4dMlCFUknJ3AM5MzNCJiBPee5SpV57Wud3HUMbpNBaMlnRMSC2Ffxg1x8bJSl+WLQs/dcKCp5B0Q7P3mNyZRHPzGJIqD35hEcfAbkyjFKYhIJGlhSi8IHZSW2cQGUjNJWIJk0ti3dJyRq2oIqZUdECVpLtQSuYmqULGJutdMcq2jSJ2UXkANuHOoHTgDwQj0nljC+kfwmvUaUmY/pm3LcOquRGIhzYXq6H0fh18FPd/voF7j21xP3gOkaW8g3ZlqQq6ha1IXzt0UzkNExBScf91KRcmDmkijV7hjjzHmDzj4jUkUB78xieLgNyZRinMQEUhQ2ZL4BV9Iri/IRIyIJiGoneBHYhyJaeRgnILgdwJjA2pA0dDWegECz1Oh4hDNkRo8jEFgm4G49xr277ICNx7swb6hTfYWxC+q90fSJ6VV1yCSkuBHYuq+o9dRA5HnjPdlDuNLSAn+lepm8e1R3XOrg7rnSKjck6uR6iACJD5HROy6Osn7XMcmBx3LIDD95jcmURz8xiSKg9+YRHHwG5MoxYjq42FqbDtxjurH9RpMcSQYNomDbT5Lv2TUlARdfzB2CWLaCSlnEbGCtNynjrr0SKgkYXEC+3IKos0F1HAbQDrpnroaN4iXFYyT4Ef7T+LXEmTgDOZDx4TEwg3U+iNBOiJiC/M+gKC26KgYdzjodw5BnKU70ynZgHS9AxHwDoTGCH7u9yBokmtwCxHjN78xieLgNyZRHPzGJIqD35hEKUismIGw9AIuJIcYfV9TqT5K/yUh7whiI92Hfsm4OykImiCwkfi4bfi5pFTWF/DgA5j4Wa2DpwcVgk5AlOqBdWsPQuUCOvf2G9KTh7AWJJytwX1HTscVdk/W66juHTVToeNETWUiIio4owU89xm4/iIb4nfKvWGOc1hv6tpM9Q3X4CKMiFhAYxiqCUmicgn38ZvfmERx8BuTKA5+YxLFwW9MohQkal1WKg687mrHWWoEsCo1nfAuIF8yIu6gC2oJdeVI/qAur5xiTM5EhVxot/DZoqHj8Bmk274B4e0HpQpdL7tadO30XMcGYxDJtnqPx0cVqrb7djX4IrjT8hzcZTdHbX7xfCBRS+ddtUzpzWC9SbBdZ9xMZQNuxTPQBt/AofgU3HzEE7xC32cwiAJ3u/WK4K7Pm1o/T2tWwDr4zW9Mojj4jUkUB78xieLgNyZRChLEppB6+PLNs4wNrlVk2X2AlN7fzPDmi6M2ocC0zpYNOljc07EdprzqGLmvyHEWEVGC2+0i0+YLp+DSu361kLHxG0jBnKgAVT2q4FNV+pv+dK/pxbsG8fIZnuXuqIrYPXQm3oA7jdxlFYwRJFT1c10H2qsIrkdI9exmBx0kR2UO5+QBGmdET+e4hnmvQdyjztIRET0QIGsQOmnNRtD12W9+YxLFwW9Mojj4jUkUB78xieLgNyZRijkou89gVa2hB3I21N+OwStVw88f1JYYETF6UBvqATyQbVuGYxtxUPbbtocmZb/pn4clqLYfYG0fjqo+v4G17RQwNtB9KU6hyOREFff8Hv71aKizsKA8fVDxqSsN5ZJjq/PW/+DAXuGeNvwL0/I+OVq59T79Qvf5DPbvvFbF/QYsv2voFFU0qP2Tjir2tAe0tn3be40xf8TBb0yiOPiNSRQHvzGJUnwVmjd+3p/I2OU3ZzL2Wf4oY90TsBsWnGvdo/ztloJfDbUE2tp720lAPJcmwY/y0+8hV/uLvoqcZ+/U/vwnoWs7vISaCvDzXe1VGKrhWUCnioiIHTwLPV9bqC057zPsFZwREhCbQGEYnnsH78FHaHXdgbXdwiY8Q10KmssAPksdnCIijiAOklWdBG3Cb35jEsXBb0yiOPiNSRQHvzGJUvyufJLBQVfdQMOu5t7Xv9XfjqvTpV5XNwgYMIYuPcrJb1kAkjrptO0C07JbeERwPvkDCH5fQUvlaVfz/rP3KgJeLFTwy3Nw4y31+xbg2vzfS3i/5/sIb/+f5CCSjRrajY9A3esfwDUItQ0W6MjT65ZwvB8hz34LjsHvA53HAkVpKoLrFt3GmD/g4DcmURz8xiSKg9+YRCkWtTr83mYq2o0LFVQ6RxWWPn9SYWkI3XAiIh7hO6kzzDMUFCVnE7Xj7mOLZr1uA3NUuY5TKCMiVtCpZgmCGAmQ30Bhx1mtTrJ8qc+cZ3qPZ/jskrojNSiaKMSCmEpjVKyTUnApVZfIQcgbQCHLM2iJHRHxgtqfU0FR2JdF6L1J3FvBHlDPHXI6kmhKZzuCRbsKPw9n2S26jTF/xMFvTKI4+I1JFAe/MYlSkGizg3p090dwqxX627HNVHiZHFiMeQvutG9D2z4/HXSMOIGuJDP4faM0ShJZqFXyEwikEREknJITbQgdZBbQQmYO151WOtatdd5LEMnImbaFtOgIFvKoiww9H322rbhHgliXOvaAEDc78nvsGlpYnxU6tqr0jI4O+p17WEcSmofUJhvm9wh70JSSu4SuSdTxh+J3CzUY/eY3JlEc/MYkioPfmERx8BuTKEUPBLoeFvhXAWMH7qJ7au+cs7BE4t7XlbYC34B7jtoQU329HqRlUo20FYgkt7U6He/2Or8IdrFNCnVAkqiFacfgvtvCvGlsmemHV/AzT/sXweLeNKCeHdyH3iZrEJvI2UZrQ/tM8+s2aIoDcIx2QGTLYewMzsQY2p+T53MJqds5COQbcAfO4fsiuAHNEsTwRaXiM8WQ3/zGJIqD35hEcfAbkygOfmMSpRiCK26a9WXsDBoGnB7JfaWiDXUCjoh4qLd6ba116vYHFV6Guc67PMIYuKVIYFuDe+q50rk877njcAECz1l3rGOwtuewjpNDu/p4GxA0t+Au27dschLBjrVz2n9IrR3D2DxTsYnSTkkELOD9RPtXN6QnbyDVlzpOE6OOnrtBV8dA94ynne7z+qBjd/DhbsM7OYN9JchRSTHkN78xieLgNyZRHPzGJIqD35hEKaa5utBmHRUmro8q+Fw2qSwfsYH6cRERBdXXA0dXDp8/zbWJyBWMvYRn6UH6ZwlNFm5gbZ6ylYxFcHrrBD5/DfP5BASo05qqwLWDG5C06xrbxADWjFJUyT1JDTXW4LyjenTUYKUP96DGLhER9+BgnYJ9cgQ+vQLORK8LtfDApdfbt2uSQqJrUzMUEjqHIMQeIA7GcBb95jcmURz8xiSKg9+YRHHwG5MoxSkIUCfg0pqCuHcGLrQSa5wxlx0VIYY9SDGG36jr0Hl/Xquw9LoEIQekl7eFiiQn/Zcy9guorRcRsQS34mWuDj9yRZJwRp1WScjrQ828DPalBkFynrNguyWHGLk0G+rmfQw1TqEU8RqehRhTmi80YolgZ+OOUoKpliXVntRtxsYpKxDI59BI+BHae6wbmtyQYDiC83iWaVxdgbPUb35jEsXBb0yiOPiNSRQHvzGJUoxA3OuDeAJaRYDOERm4k4YNYszLjqbg9kHI+6TSz/9ZpcrLm+s7GRtfa40z0HviZ7cqnPzpu3MZuxqoCBgR8UWhqb4DWDWqm/cd1Djcgag1gwYdJwcdG1FHXRDYPjQIfndQK27dsuMw0VLHw2+jen0zEE2nrJHhud2BKF1TR14Y69caLzl0Ar6Dzst3LTtQb6B2YBNDiN9PQUj/mx2JrsaYJHHwG5MoDn5jEsXBb0yiOPiNSRTsnV2CJXIJY31Qi+kfgEGD2kuFIl9UevFPQjvn/PCvHvQ+Pz3T+Zxf642haOJwpV1Opr/+IGO9f7zQ74uIuj+UsZvQoqB3MLaAIpxr/BdGr7uEbjg9sOKWkMPeh+KWERE17PUTFDhFuzH8S0E5/qTiE1QQ9hSehf4JieA5LqA+xIr+AYAP0x504Xw/w+MtcV90rIJ/WyK4XfkpmOc/hX8kzt2xxxjzRxz8xiSKg9+YRHHwG5MoBbWmJmpQ8siCOgFBpOkXpg9CyRkIN9evFjI2+PFE7/P6hYx1JnpddFUk6YDw0huriPfZV2/1+yLi9OaVjH0Fds4FCGdUULQLomSJ3Wt0EbtQeDIH+yutfwS3NacuMgV29lHL9gV1dgJNi04inZ0Z2Gk/gXbvERFHmOMi1P56m+uEViDQUSHTAdxjC/uyByGPCpRSYdsIrmtxAjFIMu67XM+83/zGJIqD35hEcfAbkygOfmMSpXg+qlCyBRFwD628S+gWUoLcMGrI+6aiiwXljZOFivoiU1vrUgW2qPT5jnDdcaNrU5BSFREDGC5BRNpDa2pyu1GuPOWmU6HP8qDfR9oeLWtExBQEurZ59a+h+xCJuGDSizUIjSQCTmtdwxdn3EmpP9RvmL+/lLFfFjqhm6O64kh0G8DaUDHSJTwNdeyh7koR7J4k7kGcv4fXvN/8xiSKg9+YRHHwG5MoDn5jEqUgAYpcR9QuhIxIkBkZNQhDEREBAs88g0KKT1rUc3KrBTM747mMHdeaqhuQvlu91c+ufqMf/fp3WtQzIqIEW9WIJDoQTskVd3XQz46oEw/8fm9BSK1ARGpy+M0odRi+83WpX/DyoIVVc0gRXkE3HEoHpw5Q5GqsKj5jo66KdtSOew+H+QG6MJH7bggi94E6AMF9dxB/TYVRd7DX1PFn2dDx52P85jcmURz8xiSKg9+YRHHwG5MoBQkTVMNtDyLCEtJTS0hbXEE9ugiuU9fr6tjlfCpj069VjBkPVLTr9FQI2n+jgt+7/9J7fLnVsa+7/Hv5Lmsn3LyAluivQfz6AVjbZgcdzEGJpe485JycQBpzREQB4t4Yrv0sV9F1eqr7st+DGLfWtNoSOzvpepcgut0stcV60/iXXd2Du6M6BOckXsJ8dtAmm1qQ78E5SzvQVN+QOvmQQ5DuTfjNb0yiOPiNSRQHvzGJ4uA3JlEKEiE6ILzswWm1BXdRDmJFryEV8RkEvzrTunknXXDAvdXafAU4/IjvvlQh7xf7Uxn7EixwNw214ihdkzgBNxg3odDvO+mowJqDLe4A+zeAsRGk/jYxG6j4dfVGayt2Jyph7R51/w/fwRnbgFsR3k/30HTjt5mKeBERT1DP8DvYw9taxcsNNLrokUhNDtaWTUnoKhIVIyIybC1OtQJVfGZh0BiTJA5+YxLFwW9Mojj4jUmU4r5U0YZqiHUh1baghgEwRt1FI9gZRYxz/fzV7kTv/RsVd8DAGF+Ac4/EvW9BGHqCum4REVsQWUjoLCF9t4A5dqm2Gxi3KF22Q+IOfLiL/rKIYU+FxRc/0E7J479QcTY70bHuBz1jEeqoW/1O12YN6/XbQuf9PnhfqEkKOVM3MEZneQgp2ScwRqJdCU1AiEFDvFD9QGIP96Hz6Te/MYni4DcmURz8xiSKg9+YRCnme3U25VBbrw/i3LhQVxWlE1JjiYiIHaSoLkC4eZuru+yf+5oS+s1+pnMEjeUdiHvvW4p7KxCGIthVRe7JFQhYK1jbDfwud6juXcu6fjvYg6Zf/ss9NE6BriT5ta535xo6JU8fZGxw/7XO52u973Ou834Ap+MTuPEiOA22hL0agHNvAq7BMxi7gD2lrsYkuhFNgt8QXJokzpcg+K4h5dxvfmMSxcFvTKI4+I1JFAe/MYlSlCC6HaHZBAl+lN44yVWII6dUREM6I6RCLkDM+fdQEfDfQOgY5jrvATwfCXZrEIu2sF4REdsGIfBjPkBn4xtwiE0KneMUUn+pXt8WOhhv2pV1i4iIqlSX3icPOu/RTvelQx2Q4brqWe+7qvU8UWbsCDvl8hmjVFZyXpJ7bgLn+xz27xIarPRBnCtbdtkdUAvj4CYr1Oikgo9v4d5+8xuTKA5+YxLFwW9Mojj4jUkUbNpBotswh+6yxVjHoAZfv0HooG7Ae2j6sQCn3bzWxhvzSt2KexDoxrm6tMYgVFIaLH1fBLv5KhAR38PzDaBRyajQGoVlrftCSaIrUIFI8Gv65e9DTbqne93X6W/v9TvvNH13+5Xu1dtfn8nYI4hpPRC0zkFgK0E0jWCnHT33CYh7Z7AOF7AHF7VOcgRNTrqw9xQZGXXJDhZ3yTNITU3oOr/5jUkUB78xieLgNyZRHPzGJIqD35hEKY6g9vfBEnveVfX5Mtf2x+eQ20ytqiNY2Z9DrnYNyinlZJMSv6rUBrwoVX0eQW2CaaEKN/0TEhFRw7Nsa32WVaV1A6jA6eue3vsUFGlS+3ew3JTj3W3YF1KGl1vd1w//qs+32+ocv1t9ImPv4YytC7IvK32Y95i65kQEOWXpuc/h89fgk72sdUbn8G/U2UD3eXap/0b1p9B2e8dnbHGvZ3S+0H+plrWu7Q7+V/Cb35hEcfAbkygOfmMSxcFvTKIUVKzztFAh7ypXK+9ZqLBA4l4JYlhERAlyDl1bwXVknT2CqEX2ZaphsIN21XWowNIHC2oTS3gWEiAfMu2G89yFdtxHqJ9AOd4ti6iO2EUaVxWIqSAY/cfDhYzdFrqOz9A9mwVIhboZ0Wdp7yP47Ua59lQr4RxQ7rWAAAABwElEQVTEvWuoI/HiQrsPzX6oovLgL690fq+uZew4h2IHETH65bcy1v9PqJ9wq92syBruN78xieLgNyZRHPzGJIqD35hEKQYF5OmDm2/WUdUmh3x36kqya2gFvYdxKqRJ7jlyJpK4R0IQtiCnoo7gqGsqRlrDsxxg3rtKhbx1rm6wB3CNbaFWwvVe73FRQdFKWIdzuG9ExNmZilW3cz0TX/Z0HW8zFaA6ILCNYA9I3KvgjK2hLflzh7vhbGEPutSuHO59CjUaLmfq0kNx76/V1Zj//Ocy1vn0xzJ2nH/QyUREd/QvOsf9FzK2Xaso+TzXOPeb35hEcfAbkygOfmMSxcFvTKIUIyhmeZppmiClQVJK7haEr11Da2IS/Mj1V8F92gpsJAwSGaTqdkAYaoLuQ0JleQBBFFJ/5wcVbe5zdW69hjm+IhfaubrQzn+s10VEFDP12j39g877sQN7DcLiDN4xF+CoHIIuvILX0w4Ev6eGjkkrEO3ojVeAe/KsgFTd1yru9X801Xt8/pmMdT77qYzln/65jB3Wc5hhRKy1OGr33a2MjX+nDsHuXBfXb35jEsXBb0yiOPiNSRQHvzGJ8j9/hed6cV9ILwAAAABJRU5ErkJggg==" y="-4902.852176"/>
</g>
<g id="matplotlib.axis_275">
<g id="xtick_412"/>
<g id="xtick_413"/>
<g id="xtick_414"/>
</g>
<g id="matplotlib.axis_276">
<g id="ytick_686"/>
<g id="ytick_687"/>
<g id="ytick_688"/>
<g id="ytick_689"/>
<g id="ytick_690"/>
</g>
</g>
<g id="axes_139">
<g id="patch_140">
<path d="M 299.674375 5027.753939
L 421.964375 5027.753939
L 421.964375 4900.460412
L 299.674375 4900.460412
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_277">
<g id="xtick_415"/>
<g id="xtick_416"/>
<g id="xtick_417"/>
</g>
<g id="matplotlib.axis_278">
<g id="ytick_691"/>
<g id="ytick_692"/>
<g id="ytick_693"/>
<g id="ytick_694"/>
<g id="ytick_695"/>
</g>
</g>
<g id="axes_140">
<g id="patch_141">
<path d="M 434.924375 5027.753939
L 557.214375 5027.753939
L 557.214375 4900.460412
L 434.924375 4900.460412
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_279">
<g id="xtick_418"/>
<g id="xtick_419"/>
<g id="xtick_420"/>
</g>
<g id="matplotlib.axis_280">
<g id="ytick_696"/>
<g id="ytick_697"/>
<g id="ytick_698"/>
<g id="ytick_699"/>
<g id="ytick_700"/>
</g>
</g>
<g id="axes_141">
<g id="patch_142">
<path d="M 29.174375 5171.673363
L 151.464375 5171.673363
L 151.464375 5044.379836
L 29.174375 5044.379836
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_281">
<g id="xtick_421"/>
<g id="xtick_422"/>
<g id="xtick_423"/>
</g>
<g id="matplotlib.axis_282">
<g id="ytick_701"/>
<g id="ytick_702"/>
<g id="ytick_703"/>
<g id="ytick_704"/>
<g id="ytick_705"/>
<g id="text_36">
<!-- 128 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 5151.730037)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-50"/>
<use x="111.230469" xlink:href="#ArialMT-56"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-55"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_142">
<g id="patch_143">
<path d="M 164.424375 5169.1716
L 286.714375 5169.1716
L 286.714375 5046.8816
L 164.424375 5046.8816
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pe666768ad3)">
<image height="122.4" id="image32b0ed50cc" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHvpJREFUeJztncuSHNd1RU9WZj26Gv1CNwgQJEBQtGhRtqWwLf+AP8HhkSf6Ao/9Gf4SjxyaeOqQR1KEQ7IUlAg+QBAg2Oh3db0zszywPOm9MuI2YTvCvHsNb1RVZt7M0xmxe5+zi58+/ptN3GCyWd9cQsZFJWuD6MlaE3KIiIiYbmpZm2xWsjZrdW29aWRttxzJ2t+2R7L2d3+v593/6T/IWlENZK3++T/JWkTE5T/+TNb++ekjWftFtZS1l+1M1hawN72ikLUK9rtflLJWhn63jlbWIiKmsN+TVs97Us9lbdbo51atXstmo89EAdfXg/Om31s1uhYR0Wz0Guk3y57uYwGfo3vQL/V52qm2ZG2r1OeJ9vB8eS1rERGLWuuS9pGumT6nV2yMyQIXvzGZ4uI3JlNc/MZkSjWC+l8UurYCgW0Ja6CHoMASEbiKYgycD3HUU5HlR81Uj/vBX+oaiHubpX530yEsDe/reX/wsYpfr+A4y54KNKftQta6hNMU6Lt0/yL4Xq9BZEsVlmithbU+3GcSAaueCppd1C1fYwob3G89n0FPBb9Rr6+fI4Ecvtt1fWVPr6Vp9R6U9E7HujTGZImL35hMcfEbkykufmMyRdWGYDFmDeLOGhxiJJGQkNMFOdHIxbYFgsrjUIff4w++lrViX11/7eRU11491RP86ktdi4h2qVe+11en3PfW4BrsD2UNDGdxBu5HEt3I/UiCHzknIyKm4Oabw2fJaUfnQ88TiWn03QrciuRg7PVYVCaxmI5DwhlBYhyJdn1Yo3MhEXBY6rMd8WbiJeE3vzGZ4uI3JlNc/MZkiovfmEyprkJFmzm0k86hzZckEhIBh8GOJWqZJEYgiuz0VDh73Ohxth7BMVbaRtl+8StZ23z6W1mrf/0ZnuPkmYo0KzifAxBtPoT96fdVvKTter1RJ+AS7t+s1fs3A2EvImLepIl7NQiL7Ru4EMnNRyIZPTf03YiIYgOfpTX4TRIlSfAbgviMbdVwLSQMUutvBAt+9JsksFIrst/8xmSKi9+YTHHxG5MpLn5jMqV6UU9ksQHRjlxRRA1CB61FdLi34O8RCX7bIJINQWuqL1UkGXz2CZ7PTZpPnsna9W95vuE3x/uydtqqcNOCsHTQ6Dn2Nnp9q4E6AS8KFedOGz3HSaMiJwl7ESzkUVsuQS3ZGxTjYBYePA/kniNxjs45oqPF+A3OEUU7Om94ZlGcK/T8SECMiFiX0GpdqBCbKrr6zW9Mprj4jckUF78xmeLiNyZTquP1pSymihUk2L0pZYdT6ybUovq80rXf/1Lbdz/aUudeeVfFtOUzFclOXu7i+bxq1JF3WpEoqed4p1ExdQSfO2r1HmyDOLQihyaIezSXLyJ9bh4JbyQMl7BGxyChi2bhoSANe/i/AQd5UKtumsNv06PZithpHyNo9SXnHjkBSQT0m9+YTHHxG5MpLn5jMsXFb0ymuPiNyZRqAVbQovz2qTmkhnbZDUmxp9joGcwSoLkBNVgl+wNN8Sl+flfW3nv/XNZWM7XnXi30vwIREeeg7J/CP0P60Es+B2WY9F4ysFIkOlpsE3vTI/i/OGSzpeOkWsPpeSK1n9Jn6L8ZPbC53oaueQB6nG9v+aVBtmRLxsSdjuPQvSLLcGBUuTEmS1z8xmSKi9+YTHHxG5MpFQkYBAkiqSIJDRSM4EGTTQFW0MS+6lWh4snH8Odt2B/r4ue6tDvWAZerDf+9XMJWXMO1rOFz54l/gqfwewsQjEicIzGNI6g7UmRIjEsUgdlaClHXcFw6xxrmH3SBzy1ZdGEr0OacmCBElUGpVxSH3jWboKuObkI13cJX/eY3JlNc/MZkiovfmExx8RuTKRWJNiQY8CBEiFkGUapr+Cd9H5Ku0fGE0csoFiqfgLNtr6ci4A+n+t2uv5YlnDeN+jyD1TXsAzkYV7CPlK5EAhT1xVOUd0R6DDUNViVBjMQ9imInriGWnOhKf0oVJelZJMGv3+GKvAmmXkHM+axRUXkB6UoRfI6pIiDhN78xmeLiNyZTXPzGZIqL35hMQcGPIJcWOpFAf+gS/FKdX/QnCodHokim53gKItInlYpXu60O5aTBmhERMzjHKTgOJyAEkZBH10K7SIIPDY+8U+q1dAl+JBiOIRJ9t9C1nUKFxTENs4T7dwWt21NoOcfnpsNt2tUeK8DXUyPkaR9JtCNxj6LPbyOQE6kR5n7zG5MpLn5jMsXFb0ymuPiNyRQU/EgwIIcfzeAjMaZLqCCxiqKSS2qjRV0wbXbdAkS3rwsVY/59oCJZv0MEeg1R2a9bcG/BsekekCBG3jJKiyGRa1SmRV1HRIxAoNsLFfIOYe0tSBW610AMNfSYPoX9flVoahLRJVynOg5JEEuNJV9AGtKbxNx3iZfUlkvPd6ow6De/MZni4jcmU1z8xmSKi9+YTMEsYGzVTRQRUMRL/O5/kRb6QWIMhRWQxELtsqftQtYuQcSrO0QbauGkcAkS47ag3XYbnHIU+kDgfDw47h605EZE7G9UJDsEIe8AhLxdmK+3F7oPW6WuDZYq+H0+2pa1895M1mivIyKGsI/U3kwCKwXITMGlR626BLVFo9ibeJ8j2CG4BHchfc5vfmMyxcVvTKa4+I3JFBe/MZlSkRCQ2sqYGvjRRepxSNyrKbMWtDia61djyEKaO7CrDZYEJzpvcuTRPtJ8vBJ/L00gpb/y444AkrcaXd8HexkFXVyX+t35Rlt/x41e3xju6V80mop8Vu3J2nEDAxeD25tpb2kfl3Cv1730kA05LrRF75R6fbsFJ0EPKKgGBOiTVgXRk/VE1vzmNyZTXPzGZIqL35hMcfEbkykVOfJ6bzDPjD5HM+EiOByCoFZIWiOhixx19N3UxOE1CKQRLASSYEjtycsC3IEw/28DDsa6pfl/+rkJtbHSjY6IbRDtGtgfShyewzkSd1q99w9r/cEna3WrfR9cf9MeB13QfaH9aUhUhu+mhmT0wc13WGowzKNSr+XdVh2IERGHDbkQla/hN5/Cmt/8xmSKi9+YTHHxG5MpLn5jMqV6NDqUxRm0KHYJXTchoYMCHyLYfbUGMe660XbbFUodCs4eBNcfdR3Td7taR9etikPkGiNhkea90ay/FZzjNDH5lcTQeZ+vpVfuytoOzAAk4YwSh0lW3AWxt1/qGs3620ps+47g0BZq1SURmII3Up2cFF7yoLcla39Sa2386Vqf94iI+3vqYixAYL2caGv0ZxsLfsaYP+DiNyZTXPzGZIqL35hMqf66fEsWf19qUMIxtAmSmFLB35MxzEyL4LlpMxDyKHiBRDKCxBic/5eYQkzCXgS7+QrYC5rPhsnEAImAJIZerfVepToQI1iIpUReEjTpWkawD0PYhyn0CD8f6Lm8CBU0ryEgJYJn16Xe69RZePR8boPI/f5GW3V/XGutffD9U1mLiNh6DALySIXY+6sr/c3Juaz5zW9Mprj4jckUF78xmeLiNyZTXPzGZEr15wtVOS+3VKm8gvQasuLy0EtW5qkDm/6DwEp62sBNAucDJP73oN8xg4DmBtC8AlKGu+Yd3IR6yVNnHdB/OOYQLR0RcVarjXRJCTtw3ltgax3AfwrKDQzMhH96nMJcgy9bPb8LOOcI3jP6LwUm3zT6hNJ/Te5UaqfdgiGhe60ed6uCVKctfhZ7d9Qe3DvakbViX+3Zg8O7+l08ijHmO4+L35hMcfEbkykufmMypVqCzXIOFlvuL6fYX+pXZyGOxBgcuAgCFh2HZBK06CYmrJAVd6tjNgGtU6Q2nWOqUElCFYmFw1JFN9prEh8j2NZKgijFX5cw/JPmhPbh/tEsgAt4Fq8gTn1as723pWcH7ktqOhM9EzuVCnF0789KPcaXS+2zr37Pgh/ZdsewudXbatkvHn1P1vzmNyZTXPzGZIqL35hMcfEbkynV7wYqGBxDb/QEhkKS4EeCCKXURLCIlCruYcJOYppKKrcR/A5LFX1otsEq8Zrp2JvQYw/ASTaE+QkkfHalFOHQUzhHikknkSxV5CTHZw2fI5GzKy5+VnOST8r3yaF5t39H1g4giYdcrV+BS7Yd6j09rzWCPCLi+7/TeQB/1JzI2s7dY1nrPbzQNTyKMeY7j4vfmExx8RuTKS5+YzKl+k2hwx6/qa9lbQYiIAlDAYk9XfMpMWab2n9B/OrD361NsjCoSyT4kJh2p0vwK1SMoQGl5HYc9PRa7mxUbKLfu4CW0Jc9HQp5BfevK33oTeLPaR/puyQC0vWNQdzb62kLLbnsIrhteVHrGrWID+BZJhGQxL1LcCHOIYp90oO1vj5LERFt6HVvP9P23dFTFQEH+09lzW9+YzLFxW9Mprj4jckUF78xmVI9r7VN8LKmdJ5UN1+aQy+CXV6pYlMqdGxyiNG1bJcqvNyHmOWIiIfgviOolfWg1rW7DaTKwDY+r9TNNwFh6QpSbqjNtwvaM1ojV2MqQ3pOQPi8X6jwtervJx/nogczChPn9V2s9buznu4tPU8kIM8rdQeWJdfLEUSYny71eTz6VM9xJz6TNb/5jckUF78xmeLiNyZTXPzGZEp11agbDNsyQRwqSIgDraKrdbSA4AYS9xqIxW6KtDZYEvzocyNw7t0Fce89cFlFRLwPnaN92J5xq+e9A3PqStiH1xB+sYCtvQA332UDIi4EVUR0iHvgdksNG0mF3kQkAu6HnkvR01l4EREHQxVtT/vqvnu1vpS1k6WK4ZO11gu5A0twbZJjkDgAB2NExAyEznNwHL54CS3BL3XJb35jMsXFb0ymuPiNyRQXvzGZUtFsNwLdfCSw0ee6/saAWEUCHc1xI7EK57CBKEXCyxDW9iCU4q2GxcvHMOPwYKTC0miUNlPucqLizjxUvHoBzr2XtYpXZytt0+4KC6H9GcOx6b5uQWDIED5H7bupjOC7Ox0Oy+FGz/sMBLVf9fU3r2toy4V2YNrHGhJ5NxDaMS/192YdrdZXPRWLX1Z6r45DXYPPe1rnfvMbkykufmMyxcVvTKa4+I3JlCo1MIJcTOTworbFEYRIRHD7bpBpDDTJxUaFMxIByQmIScIgplBq7LJDpxqXej73n6hDjDpP15qnEPO5ClhXICKdbFSUorbTKYhXXdQgDpHDs1fBZkB4CYl7aV43BtuiO4TYnRZEzUofsm0Qd/vgniPnXg0OVBYB9XM0Y/ASXLcRES/A4TmB2rrY6G8+Xzm0wxjzB1z8xmSKi9+YTHHxG5Mp1QJml5HQQem01OY5BgFiuyPogoSg2Ua/fwmfo7ZjEvxa+FxVpKXLUmvs5+Bgi4h4d62uqkeNiizVoX6/AJdX9VzPZwHGr0mr36V5dKsmzRHZBbVlL1q9/wtwpy0gomOJISB6jCHodQcgfL5VUwwIh4OQx5LSk7mNHYJhYC11PiU5Bl8XKhRHRCxbPXO6L5NaBcPLlbZ0+81vTKa4+I3JFBe/MZni4jcmU6pZraLWCEQtao0dk0ADDr89cCZFRGyBne8aAieWICJp0ypDbsXUAIo1iEDfbHS/IiJ+OVRn294n92XtR/1Xeo5jcIPVej4kkr1JyElXaAelL9NxaI3CXSbgxhyDqDyEmY47rd6/J2v9vXe2tWU5ImK60Gfvi9B5f+g2BUgkpbUG9pD2ew0iNc0JjIhYgBuQSBZ8k37NGPOdw8VvTKa4+I3JFBe/MZni4jcmU6o2UcVNXatBIW861GdSpVfwm0tQRMk+SbZkHEYJ0dv0X4o+/G1cdQw8fVHofwH+baT/AWh/+0DWHozUevlyqXbhy5HuDe4DJu6kp+vgENbUtcT3CSnfZO+lqPJHOxNZu/8Rq/2zV3pf773QvR1Aj3/qNbdF2n9XMOHqFlC90GwKun8V3H+/+Y3JFBe/MZni4jcmU1z8xmRKNQQrL/Xpk9DRgLg3geSaLhsp/eYcepYX0LNOdmOaOTBMnC8wgN+j8+tiCrbWZwUMzRxpWsxRo5HKJyPds2ehgzlnsDfU490v00dm0nWTcLpV6j7egb09KlRgvR96Xx7Wet4PW93Do/dV3Bt8eCBrERHR05kK28/TxEay7eJw2zJtLgLZpomu5y61LkkEJsuv3/zGZIqL35hMcfEbkykufmMypRpXKsZwhLUKNOTmon5uEhsiWAChQZokYFAy0A6kxZC410dn2rcfzBjBzsYzSE5ZQILQ56WeD6WuvFzrFANK56FkGIxT74jJJsGQBNaDUp1yT8o7svZRo/fgg5U+J+9s6eDKBz9QN9/4J/dkrbh3V9YiInrPdc8o3KfLhXoTcsrRc5IqFtPzRHsdkV6XxBISpfzmNyZTXPzGZIqL35hMcfEbkykVtreiK04/RyIZCV9XHZHDU3ADpkaGDys9R3LpUfRyCYIWuRBJBOoShmbgTKT23xNqeYZrvm7U2UZJLJT4QlC0dHSJUrAXJDY9BHHvr9Yq7v1keC5r93+oQt7wPYj3fucdWSveeyRr0XCrdbvUazkHgXUOQjVBYlzqkNhUusTCEYjXO1C/IxDDl/As+s1vTKa4+I3JFBe/MZni4jcmU6oxCHm7pbad3u3p2jYk7qxBEPu6Q/yYgeC3alX84kSU9FmBNyGhkr5L4iVFUEdEzCGVhq5vDi24c0hiISGP0l0a2C9s6d3QvUqnqSCRCMTUP251HuHDH2sLbv/Jvqz19lVAjF1YA3Fvc8kZTpNneo7PShClaxVYcc5goriX6gQkugS/IYiuJGgfQgt1HwRfv/mNyRQXvzGZ4uI3JlNc/MZkSkXi3r2eijvvhooId0FE4jANFjrOSxWHUkWW1JZJCjogcY/iuMkVte6IciYBktqTF9DeTDHpy1o/t4ZWXYIEUmqfTo3yjoi4Wuu9eg1x5asWZgXS7V+reNleQPDGlbYsR6sx5+svWPD75St1CH48UHchuScJeu5I3CMnYFcL9ZtAIuIIjn200fviN78xmeLiNyZTXPzGZIqL35hMqUjcewDi3tutigj36jTB6GqgrYgREXswcw/daRTQAc6mHWh5JPEDW3VBsOMEXP57uYE2aBL8lj0V8jAIAvaBhLxUSNzrCpEg1yCJkp+tzmTtF8PHsnbvV9uydnCsAiJRL3VvZld6nz+9eBu//y8j3e8vlnreC2jJThWacYYfvFfp/nErOYvKlFY9LfS8Jxt9Fsd0PngUY8x3Hhe/MZni4jcmU1z8xmRKtQvzvsYbagnVL/dBrKgp2bTj4LvQTjym+YEg7lE7caq4dwHtt6ntwIOOq6lICEwc44YzCiE9mcI4sLWZ1kDEo9+LCHwl0PePV+qq+9e+rvWWGqjxzqfQ0gu3YAbu0NeVrn08gkTkiPiP9YmsUVt1aiIv0cJ+r0LFORIBU4XmrvUltJhT4AuZbP3mNyZTXPzGZIqL35hMcfEbkynVFFxo2HlYqjDYgCBC3qSLoiMQAXSNLRAgDwt1dB1AO3ELv3cOx6Y5fJQuTLQdIhC1a5ILcVjp9e2D05ECP+pEcYiuheYE0ozBCJ4fSOIgpS8/XR7L2nqg370/gIAO2MMFpR+3Ku6d1ND6GxELuG5KeEZHJc16RHEPhFgQSAlyB3YFfmDwCkDnSOnQfvMbkykufmMyxcVvTKa4+I3JlOqrBtJSQRC5ADfeRcmtujf5GgSaiIhrcCKVGwhFAKGjLcBdCI7DM3BzXbUwew4ENhJjWnBudUGpwWPY2wHs7QD+Lu/Ad7fgcxSccgki4HHLc+terdWld7bW+XoraDGdrPU3P9+oy+4EQkBI6KKWVxI0yWUXEdGHoIvUBF1qyaZjT6HdmYRGupYRODm3K52rGRExDEicpnZiEKVJLPab35hMcfEbkykufmMyxcVvTKa4+I3JlOrl6kIWR9BTP4Fkn3NQqckZfA2KewT3VZNSSXbcY/gcpenQYMYaVNzUYY2pqTkRESU0UbewQaTYHoGl+aO1Ktfv1vTfB/29M7h/zzpU5d8M9b5+Bs/E6Vr/U0SWX7IWkwW1D8k31ANPCTmk6kewsk+2XVLD6Tmha5lCvPdszdbpm9B/Kej6IrguU4fRrtzPb4z5b1z8xmSKi9+YTHHxG5MpFUUvL8FyiLbGXpqoQTbQCO5FJ0vtEkQ7AgdXQj84HWMIYgoO1uwQlsgSPYI1EvdoXGMJQ1QPGr2W+4O05Jv+SsW9NYiKERGXIAROqx1ZY5st2a5hFgDcU3pOaLDmVuh5V2XitNRgcW8B4jPFdl+tdL+vVyr4dQ5HTaDXMTOCn0d4bkFoLuB58pvfmExx8RuTKS5+YzLFxW9MplQkstAwQ4IENhLT6HMRLPilpqSknk/Xsb/tuRyWY/z+uz1dH8OQ0WmhQtACBLENzCu4AFHr5UqPu4Tzvqx07bRDI2vg2H2Ys1CRew6enQ1MVqXIcEyvoX5+eGa77vMWxLYTUxhmer1WIW8Kzr01nE9X/PlNlnWamB3BAzxJ8MPvwjPhN78xmeLiNyZTXPzGZIqL35hMQbtaqlhBbi6KAr4N9JskflGr5wbEJhrqSYJR6sDFw3Jb1iIidkHce9zo2hJEsvMeCV16jONSF09ABJzDflGqzBo+FxExocGV8H1y7pHwRuIePWO0ho5BcM91tVoPIfcbxa9EkftNICGd1rrSfhaQpHTdU1GSWpap5dlvfmMyxcVvTKa4+I3JFBe/MZlSkSMv1eFHrrgGBJou9xULhtB6CO2Ib+JCpDlzqU7A41Ln1kVEfDnQuXc74Pp70Oh577b6N3gOlzcB8eocopevwUW4ouvr0HUpFhtjzUE4JTEudW8Jeh5oxt12qfsfEbEHjkwS/KgOZqW6+WbQxl7APaVhltSqS9fSJT6SEDiDtCC6vhHcU7/5jckUF78xmeLiNyZTXPzGZAoPpAPQuYWOrPS2WnJ+kTuJo43xJwUSoFZNekvoTS7WU1z/CgJMxhWES0B4xv1ar28XxLgGhKBrEkgxWhx+r0PxW8OnKRAl1eGX6hglEZfEqx2I9z7s64zBiIh9uC/kDu1TWAzM9SOBrW6gJRv2lsS9roAOgvaR2okpRITuld/8xmSKi9+YTHHxG5MpLn5jMqUiYYJEMmqrJVKFwYj00A4itQVznShKpYYsLEueuTZpNODhdanC1H6hM9fGIPoMYMuWcMlr2EMS50jEW6EMGLGCPUsV91LXSMgbQNvpGJx79/q7snbY072OiLgLwSQjOPb+Bmbhwfg/cjVSOzGJym/aSozuWXD9LSPNweo3vzGZ4uI3JlNc/MZkiovfmEypcF4Y/El4k7bMVIdXRGArJDkBSXih46S2mOLswMTfi+DE2vlGhZdJoZ+7hDAG4qSnxz6jY8DaHM6PxNCIiBqEwBm43VKfCRJxydlG4t4ROPeOoE33sCNx+G1Q7d6qYW4eCLE7pQqQq6HuGbn+Ljea5kvPcXGb2kiEahrb5//Hj2yM+X+Bi9+YTHHxG5MpLn5jMqXCFkxIVSVS3XhdkLuJfjM1qZXaibF9FwQRDIwAgabLrUj7SE45ctVNYA7fDNa+2aiwdN5CkiyIc5hs2+Hww2tJTMbltlxdIzffHWh3PgCX5L1ChcF3yY4XET9Y6v16UkJbNtzW3UYDWk5AgHzVv5A1SvilZzHVOdsF7Te1dBN+8xuTKS5+YzLFxW9Mprj4jckUFPwa0CBIREidudbVtkghBvTZ1KTW1PRWEgb/r6AjL0H0OQeX3nGjrrFLWFu2aS2dt2m1Tm2DJuE0tX2Xgjf2wLlHrr0PV3wtf7Z3JmtHP9D262am35//Ws/xCM5nG4TKPjgYU8Xn21CSOzSxTdhvfmMyxcVvTKa4+I3JFBe/MZni4jcmUypKG0lVEEnFpT5tUj67vk+W2tRI7dS0mOQhofA53JvgayFokOYMbMDXoPZfwZDQSa1r9B8OUvBvQ+p/UpKTagpd24Ke+j1YewD9+E8KTlI6+lD/GzL88K6s1S8uZa2Ee1VCXHwfrmVY6nnT80l7SDXZ9X204sOjSClFfvMbkykufmMyxcVvTKa4+I3JFEzswQ+CaLNVqdWxD7ZNsnJGsEhGfeOpaTp4DBDoUnug6btdwh6JiGSfpUGaDdh7J9CTT3HMbNtNHKzZYQPlKGi9ByTEkj2bxC8SyUawtrPRtYNGr29vV/vnIyKqA0jigej0+pKGo+rzPSvSnkW6ZhKzS7D88pVEbMB3nzqsk+rXb35jMsXFb0ymuPiNyRQXvzGZgkociQPDSgWMUQnxxyB0DHsgugSLZCSoUX86Dv9MdCGS47BL/JLj3mJoKQ3InIJzD9dA8CNITEXn5C2SYei8U6Pc6dgkINIshwG5/mC/h7fogW+uVVCLb65k6fJL7cn/utK9vYIkHhJd0cEI9XKbe0XiHt0rEnzXIBb6zW9Mprj4jckUF78xmeLiNyZTKhJeSBAj0Y7EvVFPRY1BwQ6/rsGeNyHxhMRCEuPoWkbgTCRu4ywkQYwisOcgXtaY9qNCFbZLg2ZL+0DusrojonveqNh4DSIUCVBF+e2FUz5vZdnTz11PdfhnRMT2V3ot5Wu9By9fH8naV0M9+tVGf4/2kZ7tKvT+teDupPscwY7Tuk1LuCIR0G9+YzLFxW9Mprj4jckUF78xmfKfi82SM5xu+N4AAAAASUVORK5CYII=" y="-5046.7716"/>
</g>
<g id="matplotlib.axis_283">
<g id="xtick_424"/>
<g id="xtick_425"/>
<g id="xtick_426"/>
</g>
<g id="matplotlib.axis_284">
<g id="ytick_706"/>
<g id="ytick_707"/>
<g id="ytick_708"/>
<g id="ytick_709"/>
<g id="ytick_710"/>
</g>
</g>
<g id="axes_143">
<g id="patch_144">
<path d="M 299.674375 5171.673363
L 421.964375 5171.673363
L 421.964375 5044.379836
L 299.674375 5044.379836
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_285">
<g id="xtick_427"/>
<g id="xtick_428"/>
<g id="xtick_429"/>
</g>
<g id="matplotlib.axis_286">
<g id="ytick_711"/>
<g id="ytick_712"/>
<g id="ytick_713"/>
<g id="ytick_714"/>
<g id="ytick_715"/>
</g>
</g>
<g id="axes_144">
<g id="patch_145">
<path d="M 434.924375 5171.673363
L 557.214375 5171.673363
L 557.214375 5044.379836
L 434.924375 5044.379836
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_287">
<g id="xtick_430"/>
<g id="xtick_431"/>
<g id="xtick_432"/>
</g>
<g id="matplotlib.axis_288">
<g id="ytick_716"/>
<g id="ytick_717"/>
<g id="ytick_718"/>
<g id="ytick_719"/>
<g id="ytick_720"/>
</g>
</g>
<g id="axes_145">
<g id="patch_146">
<path d="M 29.174375 5313.091024
L 151.464375 5313.091024
L 151.464375 5190.801024
L 29.174375 5190.801024
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p012c928cbe)">
<image height="122.4" id="imagebfd23d871d" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHehJREFUeJztnctvLNdxxqunT88MOeTl4z50JV0Jke3EiRMlAZQsggT5n41ss/LWAYLYgOHYiu9DvtJ98Dkz5DSnu2eyiJMF63eMohgvrPP9loXu6e5zutjAx6+qqi+e/tPWbtFt+tshW23WLraG44btxsVGVrmYmVlVcfw22627RbwOxfrN4GIb+L00ql1sJ41dbD/t4D1ORg3Gb3Oz6VxsNfi1JaZ17Br0e7QOufWvYL/ovtveX2fY+D2g69TVyMXGdXIx2pdU+VhubWb11MWO6l0fG/nj9iv/mxO47xrWi2LN1seGyr+Lb7Y3LmZm9p/r9y72tr1wsQ72uh75+/YRIUQRKPmFKBQlvxCFouQXolC8wmJmG/MiBIlkBAk5FPt98duQkFeBeFJvQUQa+Uek5yMRaaf2gt9uPcF73B35Y0k4W8F1tnA/UTGVoOuScBZdfzO+x2Hk76euYvc4usO1/bnwfLCuZrwvhyDuPR75fT3Y+nengTSgzPC7l9lniLVbOvsOAntQYNWXX4hCUfILUShKfiEKRckvRKGkfuvdQNEYOe/IzUUClBmLEHTsfY4jd+FgMVGKRKRJhRqp7YAbjFxeYLSyNQg8JO6Qc4vEHYptYnrt744NirvkGgMhFs+lPQ0KeRQjYdfMbA+EvIeVFwGfbv3+HWxgbeEaK3jkSxA+FxA733rn5MWGHX7k3EQxPJNvt9GXX4hCUfILUShKfiEKRckvRKEkLNUcfIyEBRL8avh7soWyxRwkBDUkvEEJ7RRiJH6QeNnCOpATMCteUgknPMsa1icq0JBDLCrksYvQr4MZ7yutBYmpoJGFXZ8Ui4p7ExBczcz2IH5sPvZo8De+B4uLbr7an9uC+/EMxL33m5U/rl/CVcyuBy8EUgk1CbFcai+EKBIlvxCFouQXolCU/EIUSiJxbxMsHY32V7tLSS+JOTNwaZFzawbiDklpN+aFrgXcN4mAJJyZma3hN8kp18Ha0nrTuRQbwQNG+xtGS4RzkOAXjUXFvbgwyO8Yia4T7K+HpzvW4EJcjvzJl+DaPN20LnbWX7nYovcioJnZTe/fR3KCNsblzbfRl1+IQlHyC1EoSn4hCkXJL0ShJBrQ0YDotgtDEchlR6JNbmgHCTfk0nsA4t4DKMucwt8ykrQa+psX/DNI5bdmZisQBwkSESmGjkoQG3tweHXgYCQnWA4qCY4OWCHCPSGDl6C1oTU0M1uCq+5y5NenqUG8ht9bgVv1XeWvcQpluXMQ/JaDj+WGuGAPP9hXdGiSWIxXEUJ851HyC1EoSn4hCkXJL0ShKPmFKJREyuku2Hb3az+aeg/GH0+hwSXVupuZjeE/AzQW+QB+cwrTeWjc8Qr0flJDO7BEdnDdnCW2BVWZ+gZQ/wSK0bnRngo0jvtukKUWavdBxUelmeriwRJL/82INm8lJTx3j13y60h1/2QZpt9rYb3noPbTfySwWW5m/0jZZyu+6vmFEL8HJb8QhaLkF6JQlPxCFEqKikNk76Ra6SmIeCSmmJk9AovuJ4MX2Q5A06ApKWc1iF9w3Apq76mcm8Sd3LQfEm5IhKIY7QHW35OVk5qMwl6REHcXoufTs9CkoaitvAHxmaC9MuOmlxedr6Gfgn0dm4eSoA15QBbrduNtu9H3wez+e3gbffmFKBQlvxCFouQXolCU/EIUCjr8SIQgF9oKxI8E00Jygt/x1gsqf7r21943H3s78mLhNY2MBsGvA3HoChx6c6i1vs6MT4468qiumgQ6EpYqeBiqvf9DNPDEUefB31wP7L5z58KUmx4EP55cxGIYTpWC9wSbgsK1J8G+FrQvJHzeQANdOs4svl/0zuNxscOEEN81lPxCFIqSX4hCUfILUSiJhBIS/Ja9F7+wfDP5GJX5mhk2bCRxb6+BJoydF1miU1duQJxbUsPF4drFrnoW/Ki0koQ8co3t1r5BKcVochGOAafno0aR4DgzY8GJm4fGRM4aGmb2AzgiQRiMioW5SUpU/lvBHHEUAeH56JnXtb9HEhApX0jwo7XJnc/7EjtXX34hCkXJL0ShKPmFKBQlvxCFkrCfHYgsXvrKONhAgNjJOPwW9czFLg2EPFIwABL86i2Ut8K5PTxLtBTVLN9D7ja7yYt2h7AOz5pDF/ug8j0Td0BAHOAJT5MX996DoGlmdjn4EdEkDq7Mx2j/SXRr4VwSv8JlzJk+kVHRNToKnARyGp1NDj8c2R4UTc34uVF0h7JzEqT15ReiUJT8QhSKkl+IQlHyC1EoaL1DwSHotBpv/E+S48zM7My8UPKbsRe12t7HNiTkwDV2QQiiPoM0oOEuo6pJmKJ1pDJRgoaXfABi6PHg73sCiuYC+uO9SCzEvoT1ed8vXQwHQQQFNgLFr0zPxCg4Bh6ee5p8iTidS89MAnlUyMu5+e5DtNefvvxCFIqSX4hCUfILUShKfiEKBQU/7DOXKZm8DYkkOS6hb96van/+WxDJZiDkkdBFveem8DePJgZTH72ceEVC1xpEQHKD0TCHlqa3gtZIG3g4+IU4BF2parzIZWa2GHmB9XLkS4KbjV8LWgd6J6jn4bj2TxMtYx1l3rs9EJD3Gz9xeqfmtbgNOTmvzZd5Uw5xuTPc9x00TnLzSfATQvxelPxCFIqSX4hCUfILUSgp6jiLDjrAIRIZBeNy64WSJZR1Up+6GTjg9kGgG+MEVRjkEBzakBM0c86/21APOOqP+DZ5R91OAmciiHMT2KsDEB93oZedmVldxwZ0RMt3o+WyNJF3C5OXid3Gl0qbmT2ZHLjYw2bf3w/cNzlTqbQ5WiJMYuFdhpxQnKrdoyKgvvxCFIqSX4hCUfILUShKfiEKJZFQcpfprbehUsbccIgWJv9G+7PtwpReitHAkA6FHLiXoFMqB51P/fWuYRDIm/WFi1GfwXXjBa2b5B1sR1v/d35e8T6foxDrRUkSsMZQOoyDMyh2hxLq2+SEaxp+8nDk14eEYXJZruAdm8E12rTrYvTekbtz0fkeirn4qov19UNXJF5FCPGdR8kvRKEo+YUoFCW/EIWSSBAhIYdKMHHqKAlnfXyCKkHOL4IcZyvoE9hCKXE7eOFlvaXebOy+oh5+BE5FBufW5doP1MAyUXBzLWr/LLvgiGwzz/K2X7jY9cDTiW/TWHCvQLyM9kGk9+664/s7q71T8kHtXZEfVF6gO4A1m+HEaf97DZSmEydbL6R+VZ3jsfR+0zsBg67RCagvvxCFouQXolCU/EIUipJfiEJR8gtRKInsmKjsb779eGGqYTdj6ybdDynI1JiTYmSppP9IkNWY1oF+zyxjS4bno7+2pF7TmtF/JC66Kxej56O1ydm4r0DZX8G1CVSfAfo9GtFN64D/9cj8t+Ws8v+5mI68iv9g4v/r9RR6JeyCTXoPdvUIeiXQ/1b+q/bv9gLGqZvxvqxr/6v0PkXfRSFEASj5hSgUJb8QhaLkF6JQEglV0WaNBIkxm4xIRk1B6XxqkLhDtfsgFlITRqqhpoaLtDZNZmJPDxZkehb6TYKOI4EVbckZ2270Xkhki8ZuwE5N12lhchGLezF77ybTm+AKbL+XjbdOt2O/Znsg7j0b/D5/0vn7Pqr8851vvdB4MoV3Gy3EPFXoJvnrEAnWVl9+IQpFyS9EoSj5hSgUJb8QhZLIaZVz5N2GBDtykuXEQjoWrwNi3A64tHZpYg+4AzcwBYZGPJNTLudgI5GU+hWQgBUVBuncFlxxOPb5DwD3JqA1i9Xu0zNHm6jmjqN3mRqmnm98c8yu9pN9noG498NDX3+/d+Sv8f5r/3svNg9c7HDE04cWtW88Si5UgtZBX34hCkXJL0ShKPmFKBQlvxCFkkj8IKgkEEd004jmO/wmNeskh98EYjS2mzTFMZxLY8AXQddfLp4b530bHNNMTVTDJdSwB8ER62a8LzQRJ9qAte1j5cDReyFygh/FV3A/p50v/T1Pxy42hbf56FPvGJx87N14ozR3sU++3HOxF1MW/OZQYnwDJb0oxFb+OH35hSgUJb8QhaLkF6JQlPxCFEqivmko5FFsBA420GdywhI797xQ8gCEDhL3xvC3LIEoReOYJ9BLbQKOwVxJbw3XXo9ipbXRXojkOERnIQmpJLtm/vSP6bmhXHpUQ184uHa0D19UQERxL3aqmbG7kJyuK4N9Mb8O9S6sw5GfADR+eOlix7/21z3asuC3D7mx3PpYX4ObTz38hBD/i5JfiEJR8gtRKEp+IQol4bAD+JNAIhKJTSR85Vxx5Bo7SF4o+aT2Lqh9EKW6YH+8GYhfH4Bw0oHQ+AZiZmav4X4uB+/8IufeAP3naL2pNDpafh0tjTVjIXYSdHjSnlIMy5iDwybouGhvRDMWv0hs7OD9nsOzrE/BEXnk937w08JtTSXn/rDf3aOH3KoTEMO3FZSxZ64jhPiOo+QXolCU/EIUipJfiELB6QAkfmAsWG5J7kAznpZ6XHvB76l5x1MD+s4ChLMBhKB9GsbQ+9gUhKXHyfdRMzNrwO32Ao672Pqpumuc3xojN532NtHpuWa81yjkgdgUFRZJdLPg+xQ+zuJl48Ri6913r6Bq/PmXvvT3w7kvEZ5f+n59r5P/wXMovzUz64J7TaBD91v/mhDijxolvxCFouQXolCU/EIUSsLebjSMA0sCv70IaMYi0gyccpNgX8BmSyWm/rgJHLe/8ULVEU675Qmqp413CJ7B8IXVCEpHg1ODo+sdnWy7HuJCI+1/U/u1iAqQYbE4+MwoIFq8TLiDvT7pvSXvP8be4dmPvUj97MQLwyt4Gb9M3qH5bst9NZdbX9LdkmMUPILkgNSXX4hCUfILUShKfiEKRckvRKGkqJuPoBLTERi8NpkiRSoJpjLKDssRSQSE+6b7gcPWELsGB1t7B0FzCueTq5GcckR08Ea05DXnxiM3IMWik3bpHqMDTe5Sqhs9n56FelmerP2QDfq9k+RLzo8aLv2+zcXGi3vXIACbmd1sYZALTOmlvKKYvvxCFIqSX4hCUfILUShKfiEKJZEzikUSOJtEIDhsQyqgZSbRgjhIvfmmIO6RE5Duh2KnUJI7h9hF5llaKCeuwUmIomQQ7K0HJaHVEHP9Za8TdHjiuXSPDQxYgSEgBL0jNPU351YkoYvg/oFejKPfu+x8vz4qGyYhnX7vLiJnVJwn9OUXolCU/EIUipJfiEJR8gtRKEp+IQolYWPHOzR7/P+GtFmKjeEWqZ6/B5X6BuzCS1Dx6brXGatyC6rtmmyWNHUnaNEkSFUmZZ7GgOcgJZ56L2BzTLAqz5K3utJkJvpPwXJoXezUfHPMrNof7C9Q1zGbNF0nOjWJuEtj1ai9m6zvhL78QhSKkl+IQlHyC1EoSn4hCiXdR6wgSAQaQ1NOs3hNN9XzkwNySrX7pKdAI8UWrkH9Cga6FzO7AYHuChouzoeVi60Gb1elfSFxiMQ9WtcN9UTIWHajY7apD8G09lbewzRzsaPaN7gksXAK707U8msWb1JKe03rXcE6DvcQyElUzIm9PTSiIBGQLL9q4CmE+D+U/EIUipJfiEJR8gtRKImEjijkJCIRKTedhc5fg9ttAY0LL0DUqkDIS/B41B+AJJZETULBRfg/v+l/Yb7x7rRFD4JfsD6dxKGo4IP7knGC0W9OoPHoTu2nFO2DkPcQxq4fwjQj6nVQw55eg4B4lfxam5m10JizC64tCm/Btgg44YoEbtqCTEpiY87hHmO7v/WZQog/apT8QhSKkl+IQlHyC1EoiUpCo847AscnZ4SlDsQ9EskauJ8OGmYuQJSipp4kkVA5MDUJzckrVL57PcA0lt7HaFpM1OFHgm20eSS59sy4pHcPynKPYVLNExD3jisvDE7hu0PlzsR8BL8H4qMZr0U/QAk1lP6Gx4ijyO2fj+7lLkRF4KiIry+/EIWi5BeiUJT8QhSKkl+IQkkzGCUcnaZCAhSVDuacZNS7jhxw5GxagOhzXsFkGCgTJQFxZv6Z96GclJx8ZmbXGy/arWDUctTNR4IfusYyjsPb0GQfcuiZmR023kH3UTpwse/VXvB7tvHX2YWqcRgqZJfQR5HKuXFPM2IajgcHB+NdeulFrjGB0mYSTelcKvE2M1uaF8NJLM4MlfLHxQ4TQnzXUPILUShKfiEKRckvRKGkaKkmCRPR8cI5MYWObUE4IyfgzcgfdwVC5QREO+o9NwOxcAWiYp/pr3YJzkQSbnAsObr5YG1B3KMyUdor2tOHzb6LmZk9a7y496PKH/sFVNF+Ui9djPrena29+PUSRMl5gqEkdxhLTS7GcR0TtEmoxnJnEPcOGu90fNw8cLFdeO+WIBSbmZ3WflgJjQcnEZCcgPryC1EoSn4hCkXJL0ShKPmFKJSErjESOoLTQKmckIQ9MxbyhntMrOUhG/5cuu+2AoceDN3IQdNkyc1H5aQs7tHAiJjQRceRsHsEk3LNzD4deYffX/tKZPv84YmLHf4JqICwfQ9e+l5/N6dHLvYqxb5Pd3Ho4cThYN9DdPPB2lIvww/BEflR5XsZ9pnK369rvy9fJy8CnnVedL0BIV1ffiEKRckvRKEo+YUoFCW/EIWSov36SIAiSEzL9WYjITDqGqRS1mh5K0HlxUN0QoPFJ+3mxM/bRMW9+5Ayf/sfbr3i9NHWC3n7T7wKmA78uZvWr+N44p2OTXCYytr8upJz0ux+pbp0bg3bQuXEO+AOPQI338eDdxvStGkzs6cjEAwbLyy+g/LrBbgG9eUXolCU/EIUipJfiEJR8gtRKOnp+NAFcz33bkPi3Bom6pK7yMxss4m5AXEwQTBGoh06E+GRSQTMCZ8kOEWdidH1joqAdI9YSnwHQXML97g69wJWv/Jrdj335bvvz7xb7Sso6X1vXlScg5uS9sos/j7dpRQ9chxNHKapz0Tui3wEL+lTEAwnGxBdK+/m1JdfiEJR8gtRKEp+IQpFyS9EoaS/qx+54BrKYHvqtweC1hzKYE83fhCHWUYwBGGKhK6wM5FchOSyo1BQQDQz6+4j+MHzRR2VBF2XRNfz3vd/MzN7M/G95n4LpafdN74Ed4DvyTk44L5u/HEvar+Gvx2uXIymH+fA3pOwh+TGpMm99D6R2Ehi6jUcdwprc5URBg9B8Pt+5517P/zUl1rvfUbCtxCiSJT8QhSKkl+IQlHyC1EoSn4hCiV9sfb5fw0KJJknb+BPx+nIq8JfZ0ZB06hsUmLpPwBRtb8jFTeowtM1ss1IqXb/Hoo9/QcAm61CjOymNMXltPPNH83MvoTGnrtjr+w/2fq9pvWZw8SeE7DtvoGpRyeg9pOFPAftYdi2S5Zf2Gfq5bAAC/LZyNfek7A/gylTZmY7EH9Q+2sf/A1MqfrnL1xMX34hCkXJL0ShKPmFKBQlvxCFkj7deuvtde8Fg1Gw8eTS/LlPGy8MmZml5NWORe2FoHfDpYvdBKfp4Pjr4LPQKG8S2Mx4dDOJdjwZJnQ7eG5UGCTxcdnBdB0ze169d7HNxJ//pPbC4AS+Jzcg4i5h/84HeBfBynuX3gkUpwlJ92n0Se/YFQh+JyNvpx5qf90u834+hPdx2MJ7t+/7J1TPvu9i+vILUShKfiEKRckvRKEo+YUolDSbeOFlAmOkm+Rj4zHUMff+78neFY+CPoepJr8YecGwBQcVOepIdKNmndH+AGO4lymMYzYz2wEXI/3mFYhs9CwE/R5Ni4k2+iThy8zsYu1ddSSIzcf7LjYDhyc1s8R6d5gqQ30IyK2YW0Os0w+ORMdR9fCO0XtCXG1ifQiGEe/LrPZ7/Wbrxb2/vDqFk/0UH335hSgUJb8QhaLkF6JQlPxCFEqawKjkau2FBRL3mgmIbsmLFTswxSXHDbi3Vn1s/PUEJr5Mah8jgYZis9qLKQ+TnzRjZjY2v2bnyTvW3tdzF1v0/jhqHknOvai4F21GaWa2HvwezI2bfd6mb/y+0LjqBtxq9ynTbuEdMbtfE1USU6fJP8ss+feE3h165hacjluYZGVm9g5Kel83/n421/43R08+8zG8ihDiO4+SX4hCUfILUShKfiEKJZEjb956l9awIlccTS/xv/dVpoff88qLNOf90sWohJMcWVTySkLeBFx6u7V/5sPa91x7RH3YzGwfSplncB1yjZGQR33houIVOthoctEdymBvei8itSN/j+R0JMGPXH8kiNGekthLIqUZPze+J7XfvwbeHXpPDqDn4QG8O3Qv1+Bg7DLjxq9BHIS0tApqxEd7vgejvvxCFIqSX4hCUfILUShKfiEKJf3myo9jfpu88HIKvcZWIPi1IGq8N+4V98vuzMXObrzgR+40LN8NlupSWe4+OLKOQNw7rli83AWhs4b7WUPfOxJ46L5J+Iz2s6M1zJbBQkk3OeDo/Og90menBfGLxl9HBU2z+LtDfR3puCk4Rvfg3XkApc04Gh5YZwQ/EkQb+MlNC2v2za9dTF9+IQpFyS9EoSj5hSgUJb8QhZJ+suMVg8stTBjdejfXEnqutSDuLGH6qpnZ6dpPiaX+bFEhL9qHbx/cVx/Wey72sXkh5/GG/16Sa2wCsaHyvwnmQHTFUQ84LAcOCmIk7OXOJ2ci7RX1WyRor+i6JBbytOLMdwzC1I8QBVFwDZLISaIk9SgkV+MEynRpWIwZT+9twKR59cI/9OQn/+Ji+vILUShKfiEKRckvRKEo+YUolPTT7sQFBxAryH3VguAXdngZ9+YjEvRSo958UygnPU5eyPuzdOhin2+8EPe9tb/vPeN7XkIPv3cJegVCD7gpPN8hOAnPwDWGQhzslR/DkYfKpan4lwS6FkRAgvaUREAqv67H4LxL/I5RKTIJlST40ft5UcVWsk3+GjMoBx6DuLdT8WCYPVCGOyjpffXKv9/jH//cxfTlF6JQlPxCFIqSX4hCUfILUSjp9Y0vqyVI3KEpr3hcsJTRLD51FksrYXjCs+RLlv+h98f9454XPh/9LQyqgP5oZmaLl/5+Xn7jhZdm60WfGfSPO4VyUioRXo686y/qfswN/KBSVnIwRvsRkrhHZbDUH28MrjZiBeKzmdlF7wU6mkKMg2HAAXnd+/WmPCDRNdr/bwpCsZnBaptdjnxu/RLKxtc/+8DF9OUXolCU/EIUipJfiEJR8gtRKKkD9x0JdNG+cASJQPk4iFUgQJGItAsOuKeVj/354IW8J5/7suPmRx/62+vYSWab9y50dOF/82rlxZwBRK0eBLpLEkNRBoqR2xfag6iQhyXUyZdQf9B4IZYGohyA241Kck+h5NyMhU4qy8UpxsHS37XBpOvKC4P0e7Re7ZbfsavK3/e7Cpy32IOT3KFCiCJR8gtRKEp+IQpFyS9EoSj5hSiUhI0PSdm/x0VyNlKyh1YwBYiOC0/igUk6swk0Cd0DSyX8l8H6zJSbJUzn6aD+Gp6F/mdCDTfXsC8rGNscneKT3xcPHRttpEn/hfl4NHOxH2yhYWoP/QrgBl+Cam5m1tbQUDb5/8KQHZf2gP5TQGtDyj5NZqLrzgdueEv/2ZlDPwBqFEp9A/TlF6JQlPxCFIqSX4hCUfILUShpB5pe0gSSEUyq6cDWSOSEJQSEEjqfBL/oX7JhA6LbNUyGObl0se41N3B8+3zfxb4afF31m8bf5QJqss8rL9Cdg4WVJvZQbXrUvmrG9tno2tK+7IIQ+9j8e/eDzl/3w623yXYgAu4mLyqamXWN35fN2F+Hxl+fVn6i1AomEuXW8TbYJBR+L2fZJnEwO6kogL78QhSKkl+IQlHyC1EoSn4hCiVRI0US/FqoGyZxh87N0YNbCsUT0D9IlOrAxXYFwtli7cWm9ht/jfp86WLf/OrAH2hm/977+POJv/ZlBRONwOO3gJruk40X9+Yg+NFEGnKmRYUqM3Yh0h4Q6MaETd0HQex4zz/feOLX5njJgt/HK98j4C+aYxf7xdQLgz9P5y72qvWNXq8HL0rSu00xaghKx5mZrcDFSGsbRV9+IQpFyS9EoSj5hSgUJb8QhZIegOC3JodfcAoMlZOSM8mMy0xzYoe7DghnVxsvnrwDV9yr2otAh6+84NNCSe6/QSmqmdnPkr/2my2IcSS8YfmuP+6k844zEozWg1+b6LrmoLJq2j96FoLeiHWwGen+Y1/y+uiv/DqYmX0GguHfn/t34vlP/XSlH9ePXOxfx/7OX7enLtaBYBsVAYcRN8btRv5Yam4bFQH15ReiUJT8QhSKkl+IQlHyC1Eo/w3OsNIuYy46gwAAAABJRU5ErkJggg==" y="-5190.691024"/>
</g>
<g id="matplotlib.axis_289">
<g id="xtick_433"/>
<g id="xtick_434"/>
<g id="xtick_435"/>
</g>
<g id="matplotlib.axis_290">
<g id="ytick_721"/>
<g id="ytick_722"/>
<g id="ytick_723"/>
<g id="ytick_724"/>
<g id="ytick_725"/>
<g id="text_37">
<!-- 129 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 5295.649461)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-50"/>
<use x="111.230469" xlink:href="#ArialMT-57"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-55"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_146">
<g id="patch_147">
<path d="M 164.424375 5315.592787
L 286.714375 5315.592787
L 286.714375 5188.29926
L 164.424375 5188.29926
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_291">
<g id="xtick_436"/>
<g id="xtick_437"/>
<g id="xtick_438"/>
</g>
<g id="matplotlib.axis_292">
<g id="ytick_726"/>
<g id="ytick_727"/>
<g id="ytick_728"/>
<g id="ytick_729"/>
<g id="ytick_730"/>
</g>
</g>
<g id="axes_147">
<g id="patch_148">
<path d="M 299.674375 5315.592787
L 421.964375 5315.592787
L 421.964375 5188.29926
L 299.674375 5188.29926
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_293">
<g id="xtick_439"/>
<g id="xtick_440"/>
<g id="xtick_441"/>
</g>
<g id="matplotlib.axis_294">
<g id="ytick_731"/>
<g id="ytick_732"/>
<g id="ytick_733"/>
<g id="ytick_734"/>
<g id="ytick_735"/>
</g>
</g>
<g id="axes_148">
<g id="patch_149">
<path d="M 434.924375 5315.592787
L 557.214375 5315.592787
L 557.214375 5188.29926
L 434.924375 5188.29926
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_295">
<g id="xtick_442"/>
<g id="xtick_443"/>
<g id="xtick_444"/>
</g>
<g id="matplotlib.axis_296">
<g id="ytick_736"/>
<g id="ytick_737"/>
<g id="ytick_738"/>
<g id="ytick_739"/>
<g id="ytick_740"/>
</g>
</g>
<g id="axes_149">
<g id="patch_150">
<path d="M 29.174375 5457.010448
L 151.464375 5457.010448
L 151.464375 5334.720448
L 29.174375 5334.720448
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p8ec3173711)">
<image height="122.4" id="image96a11ac3d9" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncuTHGdWxW8+6l3VD7VkSZYlP8bDDK8Z2PDYsoEV/yQL2LEg2BMBMRAMxIBnsMNj2ZZktaRudatf9a7MKhYmWPj8MiKFg81857e8UZX55Zd5KyNOnXtv9ufv/cUuvkMvK74biiIyiWUQ62S5xCZRSiwi4lZ0JHa00+8Pd3qeLRzvIpdLiZNsI7E3u7XEFrtKYtVOzzLMdM0REZNMr3EEsSFc372t7vcfb+YS+72/nEms/LM/lVj+O38iseL+DyXWRPXpP0ps89d/I7F/+NtDif1dX/f7vzbnEjvbXEtsUet9qba1xLY7vc+brd6/iIhlpevZwn2lYxbwLJcF5AZ8DmO5xoh1zdeygmuh697BtRDtVmOM+Y3DyW9Mojj5jUkUJ78xiVLOtyCygOBXQqwDvx0k+FEsIqIPQl4HYsQGPrYJEIJA3CFx77JetjpvnvP6+rA/dO5Vpt9fZLRu2LOy3W/17uKVxOr1Qj83u+LvP/6VxLZTfU4OQUw9ABG3n2uMBDEig/2ib5L4HNEgsoFa3Cnguc3biXs5PfPwXbqWGp4REjmbwOtul0J+8xuTKk5+YxLFyW9Mojj5jUmUcrZdSXADzrQuxPK8KzESASc7FT8iIvZA1OqCOYnEPRLJ5pmKJ0sQVOZbFapoH3JQTvo5uxVrEBsptoMY/QIPChUl89t7Essm+/rltYqX25NnupYnT+DMEdWn+tnrz3Qvrna6FzXcFxK1KEbQPQgQzkoQ2CJ4v0mM68B97RYaI+E7h/WQMNjWmbhpEENJvKTro/MQfvMbkyhOfmMSxclvTKI4+Y1JlJLKKOscxBj4mRiFCn7DUEFkn9xqETFup/nEHDSfJQgdK7BubSBWUWynrioSm8i19+33oUwUxCFyZJHTcTzU+5IdvqMnHoHgd3mma/n0M4ktf36s342I08/HEju+mUjsq64KYq93Woo83aoAuapVdCVnW9ty2abXGIlxJA6Oy77EhkVPz/093pc1PHfzWoXmJjG0bdnxloRm+K7f/MYkipPfmERx8huTKE5+YxKlRKELBKi2jqyCBJYGwxG03Is1iHsrcI2tyFEHogaJJBQjQWQLa2naB3Lz0S8rlSz3YB+KAs6zgd5uNxcS2n79WGIk7j375ABWGPF0o4LfN129mi8LFe1OaxD8KhX81uBsY0FL10cltBSLiOjB8zguVNw76qigeZjr56g8nZ47EvdILL7KdW8ay5Ph3BvI33qr52nrLDXGJICT35hEcfIbkyhOfmMSpSThpa1rCB1LIEBcQjlwREQGag4JE+TmW0P57ppKR+G7RGunVMvjvQ016DuXNwOJ3fvVU4kVc+3Nt/7khcSe/1LFPRL2IiKOO7oXL3O9ryc7daddVCr4kYuN3Hwk2tF9oZLcbkOpNZWi3wFx74NcY++Cg7UDt58E6Tk8J3PYw0soi++CMzQi4qLQvaX8JRGfhGq/+Y1JFCe/MYni5DcmUZz8xiSKk9+YRCm/TyNFsitew/hrsvxGRCxBoS3A/noTqmjOQNFcYgxGGIMSS9NUAmybVLcfwT0CaIIQ/UtxAY0ZH9dDifX+Qa9v8gsdf316diSxJ6H/Hrzq8H05h34OF3APbmDa0wqao5J1mvabVPxeodN+yJ5LtfcREYe5XvcPClX2f7LRZ/FRpddXwj09h7HtZ6VeyxXc5zEo+z2YHhQRMc71Ghc7GNsNz+ga8sBvfmMSxclvTKI4+Y1JFCe/MYlSkn2SLJE0qYSYg7DQJCkuQgUskqBopPYKxD0y3lK9M9FUQ/1dSDiJiJiB+FWCwIPjpUls7Oh+T2ud2NN5o7EL1Z/iLNN9uIZYBE85ugFhie4LWb7p+qiJJol7k1IFu8NCxdDbEIuI+BCEzj9c6Xr+YF+bnt76UO204KaNi2d67uNLFRVPwMo7BGFwCH0EIiImIJBP4flet2xk6ze/MYni5DcmUZz8xiSKk9+YRClJyKNxxR0aTQwHJPfcukF0w9HNLfsGEDRNBSe+wOfo+rawPhqpHBFxGVpXT6veUddS+hzUiF+VKlRRI9MrEOdmIM4tG64F3YqwF0tw8xE8ZhuEZnjuRuBqI3HvfRD2IiJ+e6Pn+XHvSmJ3/0ivpfzJD/GY36X/6+cSG4LzcnSs05VGaxX3+iACRkQMQRCdwnO7prHdcDy/+Y1JFCe/MYni5DcmUZz8xiQKdz0ESDgjsZDEnSbv3PcR97owCpzWyKJiS8GPxLkGkYyEwGsQARH4CaZx47RfMxDdZiD4kThHjR4juHEpinYAPhN0X1pP7AFhEDZs2PAe68Mx+31oWntfxbj84x/pASfaCDW7e09ih4c6Er33byoCDr5UJ2BnwY1VezsoE4byX5JhSUL0m9+YRHHyG5MoTn5jEsXJb0yiYA+/tuN8eyDukBDXJBWR120NZb5ECSsiUYqccvQ5cv31Qx1VnYLdVzQ5hcp/r2sVAUl4o6kt5JScQykxHY9iJLBFRORQgtvLdS+w9BvuPx0PJ0XVei10fQuYfHMDsYiIi0LXeDNV1+BupqOyd5Ab2UDFuOzhDySWU6nu9hOJ3V6o23DxBGqyI2K5VRfjisrBIVkhDfzmNyZVnPzGJIqT35hEcfIbkygliXskAlKPuxEMK5iAabBsGNpRg+C0bNl/DI9HwzhgCAhdCwls2FuvgQX8jtZbXTcNtSAxjkRJui8kKtLnSNxrGjfeNO66DVQGTeuhEd1zGPl9DSO/z6HMd9DQY3IIDrj7Sy0JfviZjjUf3f2VHvBGBbqYqDswQGjM9lQszDsXEqu3/NzNcxhoA6/vSxi6QmW+fvMbkyhOfmMSxclvTKI4+Y1JlJLEL5qqimIaHLAPJZjDXfvfmA1YkWjaLcVWICyRu4xWQ5JiAVfYVNqagxizhNLaFRRckuBHpbEkQHZBYN2AS5KEwSaHX1uBjtyTC3DkkZuPxFAq575czySGfSfhuYuI6MHglCdd7Zt397NbEnu00t58g0fHup4HKviRuFcf62CQq1fq2nsRPLTjG9BhX+W6t5ctezj6zW9Mojj5jUkUJ78xieLkNyZRSnJkkWhzVavTilxxfZi+OsIOYhFjcN91IEbMQWyagmA0ByGI3HgkIJLgR8Lnt9/Xc/eg5HUDMRLyaFgFHY/WQ/dvWmvJ6rxWR11ExAbEvQyESnIIrmoQNOF4BPUOpONdblQEpF5/ERFlB0q1sSx7JJEXj1WMu/NY9+z2nubG5JY6AWeXek8/vVKh8b96nAPPQ899vtXYDdx/miLtN78xieLkNyZRnPzGJIqT35hEKTc0uAFCTW6w79LrqJhyC0p/IyL2t/rbc69S4awD576BUs1X0DftHEQ7KjEmwY8gF2EEi4PkROvnXYn1oIR2DwS/vUy/S9LQdd5uei6VF0dEVBCnz5ITFJ8noADnXdbyGSMBcVqpoBkRcZLdtDrmTa7i3pd9vS8HO70vdxb63f1nei1UkvtVT6/laaiAGBFxDv0fr7d63XSvKOY3vzGJ4uQ3JlGc/MYkipPfmEQpqbSybc0rOcRmhTqJ6pKFnKNa4x92phIbj8CxNlPxa7xSl1avq6LbBQgvBEl7VxkLWgtQSckBSXtLn6P+iHvg8OvAAWm3r2joRkOvvrY9HDEEDs22E37xWQRIfF7CwI+IiGsQd8mZOM31+33YnwH1rYS9HYLTtYLznkPfwtNKcyAi4gYEPxLyyKFJTl6/+Y1JFCe/MYni5DcmUZz8xiSKk9+YREG5l2ybLPb+31XziIgBqLu339Fa7ckPVL08WqnyOflCldPRuTZXvCTVHK55Bf8KHJeskK8KvZZlpk0TSWkmxb4Lsb2dKshkK15A/4Qh/XtQ6OSaiIhRoQ0kqZcAQSO1Z9RLoNJ7tYSeAaRSU2zT8JAt4F8AbFpbUF8E3ccZ/AMwg73Ff3qAacv9iuB/18jqTH0R6B8Xv/mNSRQnvzGJ4uQ3JlGc/MYkStkBGyI1lCzhc2QPpUaKTSO2F2CLzEF4KR/CRJSRilJ3Jq8l1v9cp6QsZ3reDBqCzsFC3FtMJBYRcd3XY15mYL0EsYrtvRq7DQJUj7y8sK9VruLePvQMiIjok9gIohY1W30dKmAd12pXfZ1rnT015lxUerym0eJtIfsy9SGgPMBpRhlZZ1tamluOn49goTKHfKM3OuWl3/zGJIqT35hEcfIbkyhOfmMSpewVIH6BsEDiXg+EpQJ+T9YNTS9flXqeN6cgTK1UOMvu35ZY+ZGeY79/IbHJEppRrnWNoxfQR+CxioAREeOdrpvGRtPIcHLpkZvvXqVC16TWde9Bc9Pb4Nprks2oz8LdWt2KPehh8AzO88uO7tmX0Mj0ObgI32QqFjY1HiVQ6IJ7QGPSSYujxqPfhw4Iu5RX3y5H7wsJkIQFP2PM/+LkNyZRnPzGJIqT35hEKYeFurzIQdWlMlgQK8jX1DQN5yxXseJrcNDd+/xYYsPbOtUkG6jYlL93pLE1CH7Xerz8tTrO6obfS7pGcja2dfiR6NrfghBXaPnnXVrfhkZVczPSwyPdi/1Hep5yX9f98WNd9+2n70hsr7+n6+nqM/YE9uay0vuCgt1bsIRR4HnLkmxyAmbgnqT7TKXSWcHuQJoAtd7pGgmX9Bpj/hcnvzGJ4uQ3JlGc/MYkSjkApxWVGZJzj2IkLJAzKSJiCaWQp9Aj7+zrscQePNRS3eKuikhRQC816Ne3navgs7wEx9mO3VfXUBK8ADFmCTFy+M1BDF1CWXUB5x0O1JnY6aogNtzjKTejDzRW/viBxPIH9yV2+PvnEvvDv38qseoL/e6qr6Oul6XuFz2fTX3vaHoNiYObrZ6HnluaFkRCHAl5JPhR/8YCBMSIiAJ6SvagDWfbiUt+8xuTKE5+YxLFyW9Mojj5jUmUcgQOvxWIH237ptVUdtjwXfImLeDn6M1UhaD9T3VoR+9Ee/jlXRjQAFWQq9d64pMT7R34uuRhDHNwg7VtNbeG0tgbEAYvoaz6cqOC7Wam19Jb6fGoX2JExBD65mV9fU6yeyoCxsEtPd5vvZDY3a9UoDvc6Yh1GlVOztIm6LklQYxiJO7tcojB56iElsQ9KvtuoqT+mLRuEIEJv/mNSRQnvzGJ4uQ3JlGc/MYkSrmfaxksTZf9PiWTJEpERCxB6LoGF9uLTMWm4umhxCanOsWUzFJ1rcHrpZ7jeaZ7c1aymELCEolVW/i5XcPe0t68AYHu+U4FvwJciD3o/3f3lPsRdvtvJHb4Qx2ysVvrfgeIhVGBwLbVe0Bl0SQW04CNNYjUERErKNUl5x4JdCU46qiXZb/QfRzAvZ+Am7ZE5x07/Gjda3DJ1jRlG/Cb35hEcfIbkyhOfmMSxclvTKKU78P01jkKUCosrOBzFXyuyeF3Ax6/1yC8jEooo61UjJvAVF1iA4LKFQy6oKEi1yCwRER04Ji3yJ1G5w4VpWjQyWkOQiw4DkkwGsBE3WXFU3r3T7SEevJURcDO3ucS291of73ZY72W1zs99xXs7WwHpda1iorzCsTHYOceTZwm0Y7cr9Tzcr9QB+oRCOlHmZ5juGs/TIPyaAFuPhKL6bt+8xuTKE5+YxLFyW9Mojj5jUmU8oNaRakZuJjmIBjMchUWpiAC3oBoExExazlwYAQCTafU360lOPfIK7UC298N/AzOQUzRnfmWAUzVJWjAwxwEmhlMoj3fqdC1gRVRmegQfue71N8wIs5WKlYdfKqDPAYvn0hsda3reX6sbswXHT33RahoN4d9IIdfU59I2m8S7e50tf/jUaFi+Jice3AP3gn93EMYnHIIU5abmMOE4EsY8DGFkmd6lv3mNyZRnPzGJIqT35hEcfIbkyjl7RqGPoAbbArljTi+AhS2Nbj+ItghSM42EhavQcipQPwggY5WU8G6B6Ah9cGRFRExoL6AJCLCPlKvOOzrt4VyWThHCfdvHTBYAtYSEfGsVCfa+uVtiXVe6rpX8ADQIJbjQjeMHJ/kGKXy217Ow1RyeE4OOtor8FGp/Rofhgqf+3D/x7Df72503R93r3Utd1RIXS9ZVr681vWcrzV2BQL5FMRCv/mNSRQnvzGJ4uQ3JlGc/MYkipPfmEQpe6A0r0C9hEElqKTSKGDWlCO6oEB3QckldZ7siuDuDRpKQzX1HfjcCJpMjrdsI+3APl7SbyuEcMoR/OuxJAsrbA6p4VPoGbBq6E2wArX/vFAFeghfp3twBuPGX4b+c3EN/2aQlZeujxprRkR0QPneg1r7d6BJ7MNav3sI/47t1/ovxXs9VfEf/vRSYt33tXdCfcnjxsdfqf15+Erv6/5cr2Ve6f74zW9Mojj5jUkUJ78xieLkNyZRyiuw/U3hJ+EaFL+bTMWYxVtM9hlA3fEQRED6hZqDWKUSS0QB4t4+HHEM4t4ExL3hlkUykgEpRh0MqOEmiVo0+YgaXNLIaGIJ9y8iYgv3uoZpMxO4fyu46nMQG892KmpdbTW2ABHwbaZHkQBNQjXJhX241WOov9+HCVfjiV5L54H2Byh+/KGub6pNUCMiRvk3Ettt9anPz/Qe9FcW/Iwx/4OT35hEcfIbkyhOfmMSpXxegogEYho15lyCALUBy1nTyGES96j5ZAUiEp2bPteH442hJpscfuR+bGIFtfFUz0+Q8LmEhqA17O0SmqCSK47IGur5qbHqFbwnVjQtBs59vlNn2mWtgtgUYiT40Thu6onQxAKags6hv8AGtqcDz1gX+k30hrrG/FAbmcb9BxLKwDEYEVFuND6cP5fYDoTTzlT7HfjNb0yiOPmNSRQnvzGJ4uQ3JlHKE3Bf0YhuasJZg8hCElIPBK0myMVG56aR4Xhu+H3rgTY0gGvpwFqa2MJ5qJyY3IUbGN1cgctuvYXRy+A43IAgRpNrmpxyCxD8dEB3RAGl36uWjUdnWxUBlyDELWuY2APX9zbMYT1X4JScg6uxQjcmTHbqwfM5VodfdviOLrCrJccREbHRdXcWKu6N8jM95Ll+zm9+YxLFyW9Mojj5jUkUJ78xiVKSmEZOOXJQFSAiUQktxSLYDbhCF1s7x9oExicf7LSU8QgazR2Cq2oCpZoNLfwCDGJRgpNwQDHoj7cDwW8O67mBsdYE9gQEgS2Cx13P4D1BpbE4fYhciCDakXOPREm6liYK+OwKrpv6B57nA4m9U+g+7FX63K1nKnLvwKEXUFKf7el0pIiIeO9j/fpGr6VT6rmLFxf6XT6LMeY3HSe/MYni5DcmUZz8xiRKST3OSKDLoDS2Q662xhEdyhLcYOQuI3lnlKlIdjfUkfVRpWv8qFKR7PZgIbHhCEZiN1BtoCx3qULQdK2xw0rXve3p527ACTgjFxqOPgeBDWIREWsQP6ksO4dngj5HAiKVJ+/gc9SP8G3Kd+ncJCxOd3qvT2CwyKCjAzE2MPCjfHkgscknLyTW/+gLiTU6/HoqQGYHRxobv5bYrjqXmN/8xiSKk9+YRHHyG5MoTn5jEqUsQaCpW07aJXGPfk02OL6Cy3dpYi1N870F4tejSj/3I+gL9/C+TkudPFRxpzxU0S0a+t7tllB6eqHDF+anesz+6URi02oksdOOXvMlCH4LKE+tahUBm3r9kYOOxDgUi0EEJEi0o+OVMGWXypPbDiqJ4Ou7gefkFThGa3BeXsNU40Wm4lzxzyrO/Sh+JrHen5xILCIi29+T2O5Uy3cXP3smsS//U8/tN78xieLkNyZRnPzGJIqT35hEKamslmIsp7QrraQS4W/j1IdPxZw+9ACcwFCLW7We53Cozj0S97ofqyMrv6+lldmA3Vc7mKyaP1XhZlfpegbXKtANZ3otY/it7sLeFPA5Esmo/18EO+DaltGS4EcxKgfu5uraHIF7jiDHYAT3ACTxcl6r6/MM1r0GkfQm1zXeFBq7ghLh45/p0I5H/0IdEyP63VOJnS60L+B/9h5J7NcdvT6/+Y1JFCe/MYni5DcmUZz8xiRKSRNUyXlHbj6aqEuCHbn2Ilh4KeH3qA8x8N4hda3fJe0qG6mQl71zR2NQQhkREa9faewbFWg2M13PcqVCV7uuhQzta1vXXlN8C9/Hkl4Q8jrg0utCSfYQRLK9XO8LiZw0rTgi4qyaSuy6mktsUasITPuwyfU8i0JFxVmusTfgSn3c033oNDzdKxC5z7sqNJ9XWtI7hyEpfvMbkyhOfmMSxclvTKI4+Y1JlPJ4cyVB6sNG7isSbdqKgBEsIg7gPHRMMPPFeanHe7VUB9TeN1q+2X3/RmJ5B4SXvVsai4g4V3GvPlM33+VrLdU926iodd7Ra56CDEgDTVYgflHJa9N9KUFQ65W6F4NCBawxCHR9uKcDGrACgth96Ms4gnfWm5wl0q/gGX0Ce3ZRqzA4rfQ52cB5qDR6CYLfFewr9RikoSJNcXIwkjhL+M1vTKI4+Y1JFCe/MYni5DcmUZz8xiRKebFRlZNUXFIltxnYSEHRJLU+IqIAJZZYgXp5lYG6S6fpQhPGE7Xo/v7PVa2/9bHW42cPPuJFUr38TNd9MVM1/Bko6U8Kvb7jUPX5Ta1WVapNJ3tvU7PNcaFr3C+0Fv1eof9c3AHFfgxjycc73a9blcber1TN7mcaewY19RER266u8aLQf2GuMt3HNVl+4V8TsgHT1CSCeidQ7Nv1cPy7kMWaGqH6zW9Mojj5jUkUJ78xieLkNyZRShIXennbavl2NNlICRrRTaO8b0BEmoGAeFVo7HVfxY/r5/cl9md//2uJjQ+00WdERKxVHNrChO83OxXEnpYqxj3eqQD1slYL8mWl9dx0T+kedECcjWDB74flvsR+F0aLf7jRcx/mKlROBipKHtyDMekP9N7XcxXYer9k2/XXOxX8yG5MIhmJpDhpCL7blmqr10exiOb+C0q79fjNb0yiOPmNSRQnvzGJ4uQ3JlFKqt0nIYjcYGXL6SxNTjI69xxqlmnkNK1xCjXi5C58Ab95J111iK0/e09if/5X/yqxiIj+QxWR3jxVsellR9f9IlToOq1VyLuCxpNtnXsk+DUJVbRnd3e6tz+F6UMf/UCnzQw/0HMU93XcdH7/Q11jX8XH7dNjiR1+o2uJiOhO9R60FfIIEt3ajgenPglv8/rFdcN6Wk9Nan9qY8xvEk5+YxLFyW9Mojj5jUmUclRCw0Uo6R3mGqMGnNj8scFJRqzB3UQlqsQSnIkkiBBnIBbOOypK3XzxEL//7mcqxpyW+tv6WakOuNe1OuAWYA/ExqrgaiQhj0QpOl4Ei190Bw9Huu7x7+g+Fr/7ga7x/rsam6iLMDYq9mZzGHM+fgIrjOje/N/dd01CdZvPUR5QE9wCnKpN520rSradkOQ3vzGJ4uQ3JlGc/MYkipPfmEQpH/W0nx0JdCTukWuMRUD+jaFR4MQaynzJ7USfI5GEXFrzlqJkVbLoMoHS4QWUIl+BkHe1VeGsjnbOPRqTjSO64XhNYmgFn51BrKrASThSYTg70mcs2z/UExcqFu5mWsYcC92vJjpwiSTGkUhWwUhsdMTSNCuIUal823Hqb3PuCfQzpGv2m9+YRHHyG5MoTn5jEsXJb0yilD/NtSddDcM42o0L4F+Tpl8YGjk9aznamPrUbcAd2LbvWZarmLKEUuLzLZeO3oAHbk3XB4IfORhp7DNRtCwxJXGvaW/msMaTQmPHSy2XffTylcTy83M8jwBuvt3zFxJb/YeW9L46BgExImYFuBVhYEhbRx6J3H0QKgfgiKXY25TakkvvAMS9ETyLJCH6zW9Mojj5jUkUJ78xieLkNyZRyke1igM1VEGSYEAzdvvwwW5DKeIluOLo52gNZbBncDwUzra6IBrQgDEQd5rKKjcZOQ5VtFtCj0KKrSCGpbYty06/L8eF9hT897469979Fy2DfrT5XGLFIUyCnuo133ypz+fXz+9I7NOOlqZHRDzJQWCFyb8E7S2JgEMQ3WjwyR6JcyDiTTCzIm6FCouHUBJMnMFUa7/5jUkUJ78xieLkNyZRnPzGJAp0mYvogmg3BLFpv1YR4VamAsuoxwLLcqPCRgemqq6LCX7/u6AIGCoCknBGZZTksiMRL4KddvT9LZynbVknTW+lnaUefiReNg3tWMIlnlVTiX3SUQGrHyr4/eRnA4ntgZNzsVVx7zn0k/yyr/v1FAafREQcw7rfbDRGAiv2o4Sy3Lbi3lGmsfuh1/ew5nfyA5iAPIQn4AL6Ue66HtphjPkfnPzGJIqT35hEcfIbkyjlHNKfXHr7WxVZjsA9df/utcQmD/VzERHQci/qX6gI9QoElSsQjOYQo9LfFZTq0ucitFdc1SD4kThEQl7bqarkJKNSXSz9xb6F1G+x4bcfdEASxI4rvdf/Cua0s/5QYkc7FQHXcN6TTO/LN1udVnxSQa+/iLis1Jk4rfS+0t6WJQ2ggfJdcunB5/bhc/dA3PsASpsjIu719bo7Hb3/o7kKi8tK74Hf/MYkipPfmERx8huTKE5+YxKlvIJS1Br62e1tYWAAfHd0V8W97m9xfzXizlMVaA5uVKzowZAFGg5Cpbrk8CPnHbr+wGUXwUMf2k5vpRj9LNN66rrdMA50/TWUA7fdsxlMF9buehHrUvfsENxutG4acvIKxL2ztYqPERHTDYi2cA+7UF5O+9BpOYW6A6ppD3oHkrjeh96PERH9vgqBwz3dn/G+ulonVxrzm9+YRHHyG5MoTn5jEsXJb0yiOPmNSZTyHOyTK5j40S80ttzA2N8+qMp3GtR+6AfQG2itdcbOzf93yPJJo64jInJQcmm6CzcPbfcbTMfDSTzUZBSss7SWiKZR4PpZshbTPwDEstDnjq5vulWV+rpSm+u80s9FRKzqds06CdoHirUdVc//AOi9GsDeRESM9lXZH76n96C8pf+kHEJ/U7/5jUkUJ78xieLkNyZRnPzGJEp5AbXtFYhIfbD8nu+0+eDmUk/SB2Hv2xNBQ8rwFtdEAAABrUlEQVR1uwlCBAsv7UQbgkSupu+SRZesoK3tvS2pYSJRW5qupe3+UL8CEgGXYNFtOzqdpjAtQcQj63MTbe8rPjsk5MF3KdYHi/we2LP3D1g0HdzXve28vy+x/O4tiWWHB/o5PIsx5jceJ78xieLkNyZRnPzGJEo5A8GvAEFkBqLUq47WQJ880Yktgy9e4skzmBd0eaGNHedFu0aYKLxAI8wuiFIkGJEIRCJeBNfLtxX3qA9BBY5BbAgK66a1tHWrRbDQhT0CWjoYaT2032vo6LoAsXCDzVYZvO683XOCzw7W7sPxYG8GcE9HULs/GLMrsTxSgT0/GEssO1ARMPY0L/3mNyZRnPzGJIqT35hEcfIbkyhlRc4ocNSRxHKVqwj01UrHaXf+iR1+vYEe9flGm3VeF+3cWz2YiDKCUckETeIhca6t+y2Cx2KjINayVJdEMmqsSQIiTgWC/Wr6bAbroesroZHpIFehitZN4h5NUmpqokrQeqhZ5wBGgQ9h3X3YM3L90T0lo2pJE5w6/LxnJdwvmCoUDaXa38VvfmMSxclvTKI4+Y1JFCe/MYny33NRUBitDOA9AAAAAElFTkSuQmCC" y="-5334.610448"/>
</g>
<g id="matplotlib.axis_297">
<g id="xtick_445"/>
<g id="xtick_446"/>
<g id="xtick_447"/>
</g>
<g id="matplotlib.axis_298">
<g id="ytick_741"/>
<g id="ytick_742"/>
<g id="ytick_743"/>
<g id="ytick_744"/>
<g id="ytick_745"/>
<g id="text_38">
<!-- 130 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 5439.568885)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-48"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-55"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_150">
<g id="patch_151">
<path d="M 164.424375 5457.010448
L 286.714375 5457.010448
L 286.714375 5334.720448
L 164.424375 5334.720448
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pef7f88a188)">
<image height="122.4" id="image4ae5049384" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH6VJREFUeJztnUuTJNlRhT0jIh+VlZVV1V09/ZgeSaMXGsAMrWCBsdD/YMtfZMECjBVgSCYESDMyCaSenp5+1Tuz8h2RLIZVn++a3bbezT3f0i0y48aN8Ayzk8fde1XzeB8Z9Ho9ifWrRmIH/YHERo3GIiIG8Pm6V0lsXA8l9oPhA4l91ptI7Hiv33fb00v+KlYaa+cSu2kXEouI2O/1Oyf1SGI/bE4k9rOtHvdX0wuJHT9eSqwe6Xl7uq3I5lr3JiLi4sWhxH6zPJbYLwd67v/Z6/68gn18u72V2PXmTtfY7nCN77LrWoxvIV5Xet39qoaYbmQFedDBvd+Hxho4Bz3blBcREe2+k9i620ps0+mebWEf+e4bY771OPmNKRQnvzGF4uQ3plCaGkQIEt0GtYoQhwMVqg5qFfdSAgadp4bfIxJKVnsVMBaVCiKH8H30i1eFCjl0HK0vIqJX6eeHoLz14DxbEJF2Oz1PrwFxb6CfRTr4bMVabwXxIXye9nYC13xQ9SU2gOPoeSDhjAS2Do6LYIGO7jWdm0RAOo7EcKLp6fdRvtD6IngvPgS/+Y0pFCe/MYXi5DemUJz8xhRKM+6rw2jSVyHvdKDuuaP6QGJ9EDVSQsUOHEu57Pbq3Lraq9tpDL9v5Bnbhq6lhXWnxB0S90YQo1/bBQQXSxWC2iWIl42uGwxe+Nm7K3Ze0rmJw073YlqruHfT0+8bgghIYhpBTjdyWKa+kwTkPgja5PAj8TrXqYpiIYh7XSov4BLp8yQY0nPrN78xheLkN6ZQnPzGFIqT35hCac5GUwl+b3QmsSe1Cn5D+O1Yg3B2B268CHbp7eDzWxBASIy76LQstwLnXQ2CyBzEwi2IiimH36RS4fQEYkcgApK8c7fT49ZzckqC0/FGBbbrKxVnz6GUOCJiBqLtstY9g2piLKG+7qm4NwLBr8oU/EjcS4mF5EylEnMSIEnII0feQaUxEr7JmdjC3aeS3NQaCXI14nFZRxljvnU4+Y0pFCe/MYXi5DemUBoS9/6sOZXYwy7PrUb98a4rFjCuQWS7gxiJWnfdRmLnEJtDrA/iEImPJPidgKsxIuJRpfGnoYLfWavn/minezaA8uQWPksuvVcXRxJ7Vqm49yZRDryFezjYQ8kyCH4TEPwOwVFH5a25Djg6btiwGDbtjzXWgDOV+vXBuUnIo2vBcnAQ4khA7tf6fRERo71e4xpEwFWrzzztmd/8xhSKk9+YQnHyG1MoTn5jCqU5BaHqcK+Cw5CEFxB8yK22SbivFvDbs6Aed+DwIxfUEsS92V4HXeQOXqCBCtOexiIinoC49x3ow/dgpyLiMQiaB0NwP270+2ZzFfJewVpeNXrN573EoAsQ/A5ByJtCjMq3P6TzHA3YoNjJQAeNREQ8Hd6X2Bk88/RMLKlPJAzJILcpxchZOgCxsJ94J5NbdQ2i9AJcpE2XJ0oaYwrAyW9MoTj5jSkUJ78xheLkN6ZQGrLTftXTuvgZ2AjpHwAy8qbq+Wdk7wXFfkVjiOE7qbEjxTYdNIAEdZZqzlOV0rQXWH0PqvIc/l1Zr8FGDDGqvX/b0FhyvebbhNq/gj1bwD82i9Bzt2TvhvtM948U9yE0BKU6+8cDtaRHRPy41tHij0Mt0Vu4/297uu7XoLjPu7XEulxbMk3xScxYp38B1qH3kP4VIPzmN6ZQnPzGFIqT35hCcfIbUyjNRXsnQRIwaCIN1TaT1EBNOSMiVmDRpRp6anKYO2YZmxnCcsguTEIjWT4jIm4qXfcQ6rKvwZq6JyEHhLNd5jRuspYuILaEvY6IuNyr6Lrt9Fi6/+TlpeeJ9paEPKqVn9RqaX7caIPZiIiPQdz7GDaSBLo+NPpcg3DaQowmQOWKe2MQUiPYHkwhEgFzew4YYwrAyW9MoTj5jSkUJ78xhdLctermo5p6FPdATKOGi+/DAAQQEhupprsCMY7GHXcgphEkAl60Czz2S1jjDEZT1+C+on4Fq8yR4YcgDo3hXpGDbZ6YDHMJ13iz01gH30miXe4zMcqcfDMFwe8Q/ZQRfbjVQ+jdMOygJp9cjTCxp61AYCUHI4nU75EvuX0DqDcFveX95jemUJz8xhSKk9+YQnHyG1MoDYlaJNCQi4mngEBpK0xsiWBxb0yjkuE4cv2toEkhNfXsw7VQk1Eq8yWBNCLiFXz+Bq6FJrSQq3ENghHt9zFM4jkKPS+JczSWPCLittWmp5fbucSoXJpGWFMjVBprTWIh3fsBiJx0ryIiliDuUnlyH46bgAh4Bs/yHNZNQhw12yTH6Oo9REByz27A4UceW7/5jSkUJ78xheLkN6ZQnPzGFEqzblX0wXHFVBoLkChF5YQREYcg+kwqFYcG8BtFQkcP3HMpIUg+C9dHglaKOQiBd1DKSuygXJYEOhLJGtibPTjOdnAttx2Ll0sY8UzPSQu9EEnwJSFvB+JXD8aAE+SKW4DI9U0cSpnhlTeGc9NEqjE8EgfgNr2A89IY+A3sQ+qZJRGRxGKKEX7zG1MoTn5jCsXJb0yhOPmNKZSGxB2iD84mEvdILDwEEe+bOLjBwNGFMhBoIiQEUTnwsM5zZNFgiZSYQuIgiVoUo/54tLckAtK6SVjCsmHooxfB10LroVcHrTHbRQrn3cJ520qPo1HXEVyCW4FDsA9lsASW5WYKlSTuLcFlmXrGtrCP+IzC80T4zW9MoTj5jSkUJ78xheLkN6ZQmk2bVzo62kM/Opw6SmWZLMaQO40gKYYcfnQc9YAjYZCEKjoOB1UEizSbLtOxBg6xXOGU9jb3+lLXcggluAQJUHQe6imX656k0u0OSm3nicm2GxAHybk3gu9cUb/FvBkwKAySc4/E0HVCiMVp1XQPqG8lnNtvfmMKxclvTKE4+Y0pFCe/MYWCKkmuWw0dWSR8JRxLJEyRY42EEnKx0Xpw4Af2HsxzeFEPvggWL0nIa/Z5/edG0P9v3MuL4frIoZeAhEASIEmYouckF9qHNtN5R063CC71XYFot4WS7jXEFtDrbwsxFDkzXaTUdzKCxT165vfZbkVjTJE4+Y0pFCe/MYXi5DemUBrqzUeCAfVwo7LMTQUCRsUCBvWkI6GLIKGD3G4kdFFPQOxRSG6uhJjSguhDoiQN4yCHGF0LiXuDTCGP1j1KuOJoL6gPYwuOQxLtcCgJiIXkYGMnIAyqSAh+NJjkTaXrGTQw2Rju/y0MfFlmitzrTDcf5VoE7wX1nqQhOSxyG2OKxMlvTKE4+Y0pFCe/MYXSkBCQO8BiBf3/cvvWReQ7kUgEJOceCVgHNAkYeriNMktjocozIiK2IHTNQIS63euekTBIUHlr+x4TXd8lNYhlBMbPAziW3hzkdCRn23m7kBiXRZOrTc+77iUmDsPglK+gr9+6oV5/ygzWeAX39A6Extx+e1R+G5HfM3NUa76MQFz3m9+YQnHyG1MoTn5jCsXJb0yhOPmNKZSGrICk9lNDQjqOwGkvETEC1fWsPpTYFJRKAsdDw+/bEfwDMNlD01JS+xN/UKzA3ktC/Jpsn1Bznju6mZT0AU2koaascFxExBD2rA8xuvs1PBM7+FdnV+s/F3MYGU4Tpeifp1RD0BmMTn8BK7+FZ4z+7aHJRzR1ZwG2XWp4SqTyhSzWk2YksWl9oMeBFdtvfmMKxclvTKE4+Y0pFCe/MYWCgh8JC2QFJWFiAHbDIxAgIiKeNscS+35vrJ+H36gNCF3LzCacfRipTOLeYebEnQiu/SZohSRWkRV0B+umJqEkkJ5AL4AjaCYaETGB81DlP8lXC7jCm56Klw0IrAMQYmk0fAXrS/VZWEEzTLKb08QfygMi19KOU5Pg+voJIZb2Z1Kr4EfiHtnc/eY3plCc/MYUipPfmEJx8htTKFjPnxsjcW8M453JtRcR8T0Q93660fOcQM3zNQglF41+9hYnrOhaqB5/Dj+NqcHSMxC1FiD6UO0+ufmojh3ruSH2KPQefH+n+/Vox1dzBI414hpEpK/7up4VuPnIjYnPGJxjC47IlMOP9nEDUuWmpzHqI5Hb64JiNAlpCOegvYlgAZL2hyAnqN/8xhSKk9+YQnHyG1MoTn5jCqXBKSCZYgzFqLEmuYsiIu6Dy+uTvZZgPji5k9jNTJ1Ng60KiD0QAS9rEPeoXBams5AwGMHNOq8zGzuuIEbNOhtwfh2Cc++TTo/7KTTMfPL4RmIREaMTmCoEKuntW70Hx9fq2mwHusZzEItp/Dk9Y9ToMyX4kdOOGsd2UKuNzzw1KIVz02dJDKems6mS3pSLUdYDz84S1ug3vzGF4uQ3plCc/MYUipPfmEJBwY8cRtQ/DoWTzLLab47NYzRWQWwPZZ3TGxVULkFUpPNuQNwjh94C3GURPAqa+rhRqW7u5CIaN05esAO4wHtTFfymP+JraR5NstYzvlZx9vTFK419cSqxZU9dn9c1TTPK3MPEc7cDdyhRQR6kJk29C4p7UFY7rVQgTYnhxA6eUeoJSY5RznNjTJE4+Y0pFCe/MYXi5DemUJoPGcZB4h4JC8vECOqrSo99DeWo43MVh7pOf7fmUPJIZbkLkPxI3LsBsYkcehF8jR8iGJF+taaR39Cj7nWjTsfZXMWm+3cqAkZE1FDqWx3qfamfam/G8WP97A/uX0rsr/9Zha7zA73Pyzpv+MUq8sqQI/i57eC5JUcd9Uwkce8E+lZSb0UaKpOSf1fwPG0zZXNy/fnNb0yhOPmNKRQnvzGF4uQ3plCaPpRW0oAOKvMlsZAFPxZjXsVaYv89VKHkajeFcyvnA5VKvq5UHLqEUttbWCOte5WYtEquMyK3NJrKVjtwq131lhJ7Vukefr5XMe3gC74vZ4u5xIYP1c1XTWF6MpRQ73d6X0a1XstkT4JY3hTp5GRb6PVIjsqK+iPCZ3PFvQmUWpO4RxORk4AOT+IlyfUDGsSTf2ZjzLcJJ78xheLkN6ZQnPzGFEozadT5ReWR1LuMxEIaLJDyIF12KiL9GoZf/KHJmzBK5bZLEOi41BbKIGHlqT5qJLzkluqSmEqQmDpvdQ+/rFSw++VA93C/PMHz/OgLFbUevNHvHB+rcNpCr7/LNyrY/jbUhfgSBOCrTgXNNdy/VEkvPY97GOSSOzBkDEM2qCyXyq9JIKehK/3E8zAG8XOaWRJ8ABnjN78xheLkN6ZQnPzGFIqT35hCaT4eaH81Kh0laEDHGGLkLoqIaEEQo154r1sd2kECD52HhBz6LLkaKxBYkj0KIUxDP3BICp5bY+RWo++72mmp7m/g++763Kvv7V7FuB+dqwh470IFvx30THxRq3Pv876u+0Wn677e6b2/26kwmIJcer3M4SDk+sPjMgVbetOSuHe853wZQ99K+vwIFPaTzlN6jTH/j5PfmEJx8htTKE5+Ywql+V6los9twJRWULTIcXQEgt8IRKCIiBX18ANRg8pbSdy7B0MRDmGNG3Du0UTdBQif5PqLYMEQp8nC58nh10CvOILOQeXFb3cziS0rLumdN0cSux1p2erTncY60L7ewFTk1wFl1eD4XLW6Ruq3R+JcRP7Eabp/udTwWSrf7WOMPstrOYLNPQIhrw/i84jKmPEsxphvPU5+YwrFyW9MoTj5jSkUJ78xhdKMQTUn220Lav8IPjsGZX+U+o0BVZL+QehAxT/tqWX0SWjsAM5xDfXcO4jR+OMqYVWmfgcNxGjMMvUIwIaL1LgS9rttoYkqTPa57LRGPyLxLwVIyLO+3pca/q2hf4+oiSqdF23XmbbbVDx1rJyH/oWBe0rP7CH86zUkZR/uX5NwkNOqO9ifJfxZcIcNeI0xReLkN6ZQnPzGFIqT35hCaWg09RosqCT4UahPNtdEDfwSzrNC66Z+5zRUUDkF++MQTr2Dn7whNVKk5o+JayEbKVl5N9BkFMcnZ05Nym3+SeveJKYPUY8AWs8Kpu6QhZWumZqoksA2hIaZ7yPiUQPP3LH0BzBS+whi92A6zwnU5MNAKaQPomkKMmhv4OPQV9VvfmNKxclvTKE4+Y0pFCe/MYXSkPtqC4IPi1f620FiYZ0QpVYgNt5BA88RTSWBr4SycYzRjBOanDIC51YKEpF2JOTBcSvqn4DTfmAqUKqhaAap6UNruAeXW3UDkiOPmrrmipIk2o1rbRxKguT7fCdPzgGXHoh7h/D0kLj3ZAcCItTew2EozkWkJ1+9Cz3fdKf95jemUJz8xhSKk9+YQnHyG1MoDZWtkohEYsMWGkWuaHJNQpSiRpM0Kpt+orYVlB2DUALfhtdCDRdPQp1bqUaPFKXrXsHZ70BYXIB3i/YmJdq9C5Ucp1xxO3J9giMPdMpYw9h2GnU9gONIiKN1Z+qHye8kcY+cgCQC047BoxhTKKt+AGXMe1jfFTgGIyLmFbhIqXkoCIs6g8lvfmOKxclvTKE4+Y0pFCe/MYXSnEAvPBL8SKhagOJzB73iUiO/F3AsTWOhfnYf4mwbQsnkGbi0Koilyi3pV5QEP+qvdlOpwHa5V0HsFgSjGezhFvZr19NzpAQ/ctBRLFUSLMBp2i7Pr5a7lhR0jS0KkPDMQ3+9WU+v+QYEunmt9+ABbNcA7ksF9z4iYo3XoseRo5a+0W9+YwrFyW9MoTj5jSkUJ78xhdI8hUEXGxCqbkCY2IHwMiexkNxhEbFo1xIjIa8FfxINOzhp9bPH4LSiQQcVOOXGIHKOYB8iInqw7h2s8Qakl1d9jb2o9bMvYd0tCFVLKMklUqJprphKx5E7kIaI0Ge3HTkY8wQ/6sEXwYIfuQupV+AWehRSefKoguE1jQ402YXGhvDcndd8LVcw0p76Y5IMu4WhNH7zG1MoTn5jCsXJb0yhOPmNKZTmtNP8n4OItAZhoQExhbxXVLobkSgTBahstQ/Cy71WBZqnw4XERiM978GhOuUOzvS4/in/Xvag3HJ7peu5fn4gsfHFiX4WXGO3tQpVNBWX9gsn7yaccrmuuorODcJS7sCQbQsxEAH3mWXMERF1pfdrWOvebmo9N14zlh3DPkAOvQFhl65klsoXuIcbyDgSfJc4JMUYUyROfmMKxclvTKE4+Y0plGYDAs0qs6QXBQgQK5atimkREetWRYgG3FIkVt2B024BnyUmJ+osnPwQRMXPviOx3pNH/KVQwtl/+UpizS+eSWzx7ypKvtgdwzk0RANWyGVHsVRJLsVJZCP3XMpp9y4knOXS0fCShAjYQT87nHYM66brm7ernCXGEvKA3rS5A3IiWMilfFtBmTfloN/8xhSKk9+YQnHyG1MoTn5jCqV5XkEfPhARZiAC3XQqflCZ7ioh+JGwRGIOTo2F2PO+OrfGay0H7l+o+DX5oYpuvY8fa+zHfyGxb75Up8nG+HMJNS/PJXZwoNdS31JpMzj3QBwicY+ccjuIReT312vA1ZhbLovnzRQv6blJiZfkGiRIMKT9WYQ+33TuVH/Ed0EXYXIwDEyChv0hcY/Edb/5jSkUJ78xheLkN6ZQnPzGFErz692VBHFKK4iAVJI736kImBJjUoLTu5CAcd2p8PKy1n6EEyijnMxVBHx4M5PY4EDLb6uHn/IioUy0u1KHX+9AhcGqnkuMpq9uMgWx3JLc9xp+AaWxB7Dfp/2JxO7XhxKbQMkylYiTA+52r/f+fKd7GBFxvb2TGIlfuUNJVvBZKlkmcS4l5L1LSizEASSwbrq+DQiffvMbUyhOfmMKxclvTKE4+Y0pFCe/MYXSPFu9lSDVDedCE1ZSkCKKNktQtFf07wOorrSaA2jW2JzqvwK90wcSq064nn9PNlLoL7DfwT8pK2jWCT/LM5jFQvtA9eCoSCen3Gh8XOu/FB8NtOfAdxuNfRr6r8kZNI7tw82aQSPMP1b6LwPOoI78fzToH6XchqJ0jg/pf5BU++EfF7Ji078UO2hu6ze/MYXi5DemUJz8xhSKk9+YQmkWO7VKkgjR76l4VYEwQQ046biI/JrnBs49gNjxXmMfb1XoePz0Vs/xfRX3YnpfYwkBqbv8Wg999nuJrX+jduov508k9nyk677M7J9AohSR2n+qv78Htt2nzVRin8E49c/WKn49Du2f0IEA/LynY61vB7q+ix70U4iIZa1iI4lx2Esgcx8JFs31HDW9fxMu4A8R93j6kDGmSJz8xhSKk9+YQnHyG1MozQhqskkIosaMIxCGSJxLQdNGSIw5alS0uV+pEPQIXGMPa63nHp2AGw8mu+xf/lFiu9sL/WxEdJ//l8Tu/v4Lif3qP7Up6M9HumfP9lqfftWqSLaE6Swk7pCbku5pBNfpT2rd7zGMEJp0ep6HoULlk0cqum43+n2zC33GpiDs3uuB6y8itrUKkNQkdgW9KdY9aKwKuUF1+jjKGxx6o0bXnWp4Su7Z+TZvglAP7ovf/MYUipPfmEJx8htTKE5+YwqleTw81SCIGsOeikNjECYGIAKlRg7fwdQdEqsmlbq3JrAeOsus1TXevFTxqvqlNtvsf/WPur5bXXNExMtfqQPuF8tPJPbrka7yObjd3nYay3Xz5U6BSYmz5OYkaGw7leCuQKCroX63qvWzk56Ks6ed3vs5NFCNiNjRCHqYUnUD4ieW24JoR2LqqMlreHrS1+amU3AlRrAo+bZS4XS2XUqM3Ip+8xtTKE5+YwrFyW9MoTj5jSmU5i8HDyW4gp55fRAB+6naw3e4g++L4HLGbU+FoBEIUDTJ5WUFosZARZbrSy3VPbyAiTYSiXjTsCvuWQNCXl/dVxcwbea61eNmrYo2NCGJ+hsSYGBMlo4S1AMQp+nA/TsHYfjRhYpaDezhdg+iG1zLMHExQ3hua5qmkxkjhx+5ZKfgSj1pVNw7AwfiMUwzioiYg1BJ0BpX0KPQb35jCsXJb0yhOPmNKRQnvzGF0vwtlAT+vlNhYl6p+LEFjWUOPydvEsMhlj0Qq0DMoX5oC/jsa/jwolaB7jm4tOhabqDk+HavQlxExB2IcUtwMC6gBJfEGCrVpX5tVAJNJaskXqXEwi3Ecwe5tOCou6r13H+8O5JYH9Z9Cc67GzAgLhIuUhIlc4U86kdZ7/W4SaOO0ft9vb6zSkVAKkUep5yX8K5ewvhzuv931FsTz2KM+dbj5DemUJz8xhSKk9+YQml+8ncqQjz9p68kdv5cS1avFvrZFzA8oe3zb8wCxJw200m2gRiJTdtMoWoGgt0NDMm4g7LaCC5bptJaEu3QuQclmLlCHomAW1hfh7Y/7u2XKsuW74TYBVjy1lCSTauZQ4nwLXgvSQCOiFjDPaB9xMEwsA8kfGJ/S7g+cqqSczb1Rj6Azz+AXpbEFQ3dyfqkMeZbh5PfmEJx8htTKE5+Ywqlqf/mZxKc3v8PiR3+7pnEHv72jX72i2OJbbc6zTUiYt7PE/xIzKGyYxIGSejaUe85cNTNoNR2BcdFvIcDjoTKzBh+H+wXCVokIO6waJndbssanIlQYnpHg1hAiH0NJjYScZewRrrm1PavYD1LiNEAGYL2hnr45UJv3wG4CCMijuA8x/ANR+Bq/RoESL/5jSkUJ78xheLkN6ZQnPzGFEoTU+1n1/uTP5dY/eiJxMaffimxT8a/ldjtv6jrLyLiolN3Ugf93qjE8Sao3BZKaCG2BnGHBiJQyWuuEBfBrjESjOg7SYyj40hopGmuNNyDnICpOLnYbmCYCjnWbkDA2oDoSuLcJrNHIfUYjODy5DkIufOdxuj+0z2l/c51Y1IfzHFCQLzfanwKj+MaegDeg96TfvMbUyhOfmMKxclvTKE4+Y0plCbeqGgXNIn05CzruMFnlxJ7+PkcT/7gloRA6q+nsTEJZ+Akm+3BmQbCUu7wCxLsIiIGNMW41usjgS63v952BzEoESZxb9fmXV8KEsSuqjuJkduNREAS8kh0Jecd7U3KYUnHrls4D+wjsYcS41wRGMU9EENPOhb8PtrpeR6GlpiPar3mT1b6LPrNb0yhOPmNKRQnvzGF4uQ3plCc/MYUStP+279KsDfVZp2901P99A5qt9eqpNZ9VkOPWrJFwuQUEHKnNYwhbtTW+BYU1lx1Fps6gqofEXEIyv4EprFQLTo1x6RGoWRhbTvoBQAx+uz71KFTP4AFrBEtrNgIE2r3cZqRPk+5/3BE5O9Z7v70YPoU3T/ahwH863HUaYxU/YiIJz39x+WjM/0nbXys+/hok98o1BjzLcfJb0yhOPmNKRQnvzGF0tz8gzbhPHjySg/8SKfzEJvnC4ktYRxzREQDIssxiIA0urmG363jWgW6IYh22DATRBsS/PqJ8clDEALJ1hqZI6NzobpxooK1DKDRYypO46ppH0m0o5p6+ixNLlru4PveQ/D7EOi+NB3V85NYqIz3MHEHlv1JqLAXEfHxkxuJTb6re9HcU/F5D9OZ/OY3plCc/MYUipPfmEJx8htTKM3v/qB1+h+da5328dlSYqRnzS/HErtdcAPPGsSqQeYo6DZUPNlmil8k7pHYRD+NJDRGcH06CUYkflGMHGephptyXnChkWB30KgDMSJiWKtTMtXH4F1ym4yi4AduPoztNJZq4EkuvRr6UBA4DSnbHarnmMKz852duiQ/+e41fufRT+BaHkMD3rE2xqVnx29+YwrFyW9MoTj5jSkUJ78xhdL8b6Ni3HYG5bJrcH3VKn5stnrcBpxNESz49UGM24C4t6xU/KBR3m2mSEYOMRKLGnARRuQ3miRxj8RGKqHNHQNO9EHwG8O9j4g4qFUIJKGTrgWvGa6FXHqbNi9Ge5MS/MjZ2NvnOSpJOKWSXjpuAM/sPZi48/R0JrGjP+V3cvPpR7qek6keSM/oVp8xv/mNKRQnvzGF4uQ3plCc/MYUyv8BlwWiMJZ9AfoAAAAASUVORK5CYII=" y="-5334.610448"/>
</g>
<g id="matplotlib.axis_299">
<g id="xtick_448"/>
<g id="xtick_449"/>
<g id="xtick_450"/>
</g>
<g id="matplotlib.axis_300">
<g id="ytick_746"/>
<g id="ytick_747"/>
<g id="ytick_748"/>
<g id="ytick_749"/>
<g id="ytick_750"/>
</g>
</g>
<g id="axes_151">
<g id="patch_152">
<path d="M 299.674375 5457.010448
L 421.964375 5457.010448
L 421.964375 5334.720448
L 299.674375 5334.720448
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p2f16d6885a)">
<image height="122.4" id="image188f809904" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPJNd1hW8MOVTWXNXzwObQpARZtiDZsLX2wj/AWwP+h94aMOCdAVmwCUsyKFOUmhTZzZ5q7MqqnDMyvSC9qfOF8UjaG77zLS8i4sV0M4CT595bvHf403Vc405v73oo3qp3JfYo+hK7v6ok1sZH5UxinzRvJDZdLSS2UXYltlP2JDYoaolVUUhMIxElRFchtysiIkbrpcQuVlPdbjWXWKfQe3av3pbYz9abEvubuJTY47/X51L/7d9JrHr4Y4lFRKzOXmjsyYca+/gjiU3/5YnEfvXL2xL7p75e86+aU4k9m51JbLgYS2y80HcpImLW6LuzaPRZEb1a37Hd3kBim7Xe726p7x0xX+m5zOB9j4hYr/XdG9T6zt/pav4+rjVWppygMeb7h5PfmExx8huTKU5+YzIlTZUIFsn68NuxtdJ9BysIRsTbHRVUTksVVM5jIrEuCHkdOB8S8hoQ7RZrPcdFQGzdwBEjZiD4TSFWwBl1QfAjsXECF/N6uiGxB796KbHB41/ozrBuRMR6MtTYaxABn72W2PS1PoM5PBf66lSFRilWFCDYQiyC73fbttcpYbvUc6R9VyDYEXS8iIi61Oe139mSGInF74I47y+/MZni5DcmU5z8xmSKk9+YTKnJiURiE0kkPdAvthoVyQ7W7FhqFir4Pe+pMEHCG/1qdUh4gTOn481DhbwxOK1I2IuIWIJguAZhkYTKHsRITCV34Tk8v6NPVAR68ItfS6wuW377KxWWVp98KrHJR+oufP1cnaCncLxZofc7VRAjOiCGRQRK2kWj7wS550hgSxUL6VqaxHekTfDbqMjVqvlyuwDX30LP219+YzLFyW9Mpjj5jckUJ78xmVI/7B1IkFxRXN6qkBzSKVjI2QTn3+5aRZbX8Bu1hNVJEEOHH4gxM3DuTUCopBLMtrVJ3OuDQLdZdHQ7cv2t9WouS419cbkjsd6/amnszVpFwIiIcltdg+MPtdz284/3JfZ0pQ7Nl6pTYQk0PVMSyehd7FV6D9viTa3HXK70+aeKe3SO32W7NsGPxPk+vGPddZqj0l9+YzLFyW9Mpjj5jckUJ78xmVL/vFTB77hQMYZEsjEIeeeV/p7USxZjzmsVtS4LFdmuwGlH5bLk8KsTf9+WIPiRQNOgzMkiKfXmI4GmB9uR1DSFtY/hfi9hjfpIxbneh8ewSkT/cCSxl0/Uuff5WsW9Z109n2Nw810GlEDDc051wJEbLyKibilbvg4JuSsSGxPLdymW+q1tcytWsD+Vp9O9JZelv/zGZIqT35hMcfIbkylOfmMypf75VEWNz6G33vNKtxsXGnsKJZRHIEpFRJyDEPRspQMZThsVoKaNDr8g0YcEHxLiUkswSdhrOyYJkLQ/lRhfgqA5h+2u4JrHcC71WkXXnS9VxIuI2D7TARjH0CvwotbrG8I7QQLUBK6P+iOiww/ua9uQjF6p103vBAmL5PojsPS35T25DpbPtzgLsa8juFCP1jospgQnqL/8xmSKk9+YTHHyG5MpTn5jMsXJb0ym1Le7qq43c7VtLsAy+jn8A/A0VClegAIcwYrvaaPTeUjZJytoQIyskmSTRMto4j8FbfsTpGiT0jwHZXdEdeyh5zOFWAXjpnsLfc4REdtXUM9fwfnAJVOrVrKg0r8rdB/QNg2NR2lke0TEdqXXsgXbDqCnQipV4nQe6ldAfSTamsSSpZ3y4AiOOYWYv/zGZIqT35hMcfIbkylOfmMypZ4taWKPQtN5iOFaxblRy8Se1AktHbBuUl39AuyYVKeNY7JhDRL82oQ9EhFJ5iTRh24D3zFlDkLOCiytr+Gaxx22xG7BtdDzp6alJO4RVO9O97sPDTjJsntQbeI6dyB+L3Sizd2Vrr0HD7C3AvES3LhDsNO+AoH8FfSvOFmraB4RsVqpbfcKYjPqfwExf/mNyRQnvzGZ4uQ3JlOc/MZkSv1JqS6vCZjYTisVOi7AcTSGWNukEhLPqMEliUPktJsUKjaS4Jc6KpkgYS+Cz5Gags7h/tAx6XgoVMJ9WMD1DaEpK9XZR0T0wSG4DYJoDyYILWg6E4SosWofXHbrUnfer/WdfavUseQREe+sVdx7F9TUR6FO1xv72kdiY0t3XsHI7/MTPccns22J9brqNly1TLiaQ/+LptRnPQWBnScfGWOyxMlvTKY4+Y3JFCe/MZlSf9ShUckKNZQ8gUaB5DgjUSqibVINiFogQNVQ1kkCYqoISJCDrU0YJJFtsvr2a9O1kLOtW6mwRPeVoJLqiIhp6DOkJqMDeC7kVpyRqxHuI4mcVKq7W6iIdzO4pPceiHF3wRW3v6ul5FsH6rTr7MK1wG1cQyPaR0cgzi7UgTgDETAiYgHiJzWJXYDISc5Lf/mNyRQnvzGZ4uQ3JlOc/MZkSv0CygdJvKKy3BEIWujGa/mNISGP+qE1iT33qjU45RInp9B0FhrRTD34IthBNW703o6XGqN9aQrMLjjberW6xvbAKUcj1mcg7EVwrzgqRZ7A8yORlPalNejeprofuTg5ogPXDdW2sVzqOtOh3sfVUs97DTW9q0aPt7Wpz/7BUO/hRaN9ByMiLmo4HyqrbnEIXsdffmMyxclvTKY4+Y3JFCe/MZlSk5BHgwQm0AOMylM3CnUnkUATweIeiYMd2J22o18yKgldUkkviCQkprQJfiQOkpuPYiQ2Uj/CrbqvMRD3bq5V/prDtVxBmW9ExBX0YbyCwSlE8uANEGw3EgdnkIt0DKWtEREzKBGfgTA8mup7O1+As3So61RQ7l7Xeo4FvGODjubVVqPPOYJFTRK0E9tt+stvTK44+Y3JFCe/MZni5DcmU+rhSl1HNEyDhmSkT6Zt6eEHDjMSAXvwG9WFWJ3Y9476npFQRc67okW8JMGPoGO29TiUteFaqKx2E3rrkehK+0awq476wlGPws1Sy0l3ILbdMlX3OiQ+k2PwZcugi0EN78lahcXdBiYyN/pOdGHtzVKF00FX71ddg2MU1l20vGMznOasxyRBm/CX35hMcfIbkylOfmMyxclvTKbUJ4tLCdLE2h64r2oQ/Ei8mrYMhyBIbOrBOgPoU1eCgEViYQU1nV1wgqHI2fJ7OQfRhxyQE3DKkcOPIIGVerMNwUlG21Ut5c7kGmwqLTMlAfJmqdsdkusT1h2DuDeEU5yCS/IIeuZ9tb/e7+cdPccHHT3HPZjcuw9a2sESyq+n5FTVnd+sdd1j1UcjgvtoUmk0yX10v/3lNyZTnPzGZIqT35hMcfIbkyn1cKFCyTYIInUF5Y2J/dXafmFIcOqCqLUJYtwWlGV24Hib5IADQXMEri+Czi8iYg5CJwp0ie4r2rcGkfMKBJ9z6P9Xw71pE/z2YQDGFjwDei53VxobQI+7KYiSR3BrhzT1mZxuLaXWE3Amkqv1FTgOSby8C9vdhfu9Dz38aqi1PYZ69acljBGOiDfQM5OujyBx1l9+YzLFyW9Mpjj5jckUJ78xmVKnlphS+WYPBB+ayLsFDq+IiAOI3wgot1yl9esjHyGJgLfgeGvokEZyWNtwiCsQsEpwEi66MKAD7hkJfoe1TnSlibzUw40En16L4Ec9E7dBOL0BDrj78BBocMZppYucglhM5an0frb1iQwQhqkP41mjwjdNMR6BCHhOk4RBVCbewFv7As4lIuICpgvPWiYtX2dNw0uS9jTGfO9w8huTKU5+YzLFyW9Mpjj5jcmUuq0h5beFxm7fKLhA+T2oZX4IbsUuKJWXlf5uDeGnrAfS9/2FKqR7hS68BjX8CqbhRES8rDU+hJHK56AWwx8c0Yd/UvapESZs10+cZlRAo8+ICHpadMx9sO3uNqqkl/D/w2WiGk5WXqLNqkzvNzVrJdV8AnbaU1hjBO8OTSSixrhkz70E+3FExAymZtG/cPRvCE2A8pffmExx8huTKU5+YzLFyW9MptSpdeOpFlQSOrZh34iIhzD1+YPqSteBMdsnMx1jfAYi0mCl4sfj3QuJ7dxQ6+TVmUpfzfm2xL5C16ZfVrLj7oGQtwFC3i401iQhrmoR8lLOL4It0Tsg7u03em8HMIWpgePRGTZgkSZbKr13JOJFRBQ4fQpEQNhuAa0wCxLdirQGrGRVJsGOGr+2bUtCHgt+ekx/+Y3JFCe/MZni5DcmU5z8xmRKTdN5KNYhwa/FVXWdtpaVfRBZDm+M9HwGKmpsnKpaeDCGxpObut3h+1wvfZ030FHyHES3iIgL+BmdwoQW0LTQzdcHpyTd7+8yiYWEvYiIXaiBf3uh1/Koo+JsXel2wykImuCU7IFQiU1iaex6i+BHcarnJzFtlegubBLPMRUSNCPS+xjAZHF0OvrLb0ymOPmNyRQnvzGZ4uQ3JlPQ4UdjqFMFjAWIEqOWaSonFUzOuVRxqL+rwtLOLXXkbS20FLKzrWsX0KFy8kKv+ehSG2a+6vDv5XkJrioQjGhkOEmINGGHBKgVTT2C2AbEdsG1FxHxeK5usD9960hi2z/QfZsL3XfjUy1jHp2CgxHKovs4pUhddm0Te6bgyKPSWBIB8Z1P1PGoYSqNtKf8o3OJiFjT6PXECVCEv/zGZIqT35hMcfIbkylOfmMyBQU/EpaoHBHFCvDzXQSPEf49CDy9yZ7E3v+9ioD72xOJdXrg0mpA3DvR2PGRluo+rdQxeFSx6+sK3HwEjbUm5nAfaWX69d4Dp9wdqBJ9q+Fece+/cyKx3b8+1LUfPZDY+uxcYgfxR4mdnMP0IRiTTmW+V9Dj7qpRATiCxTMq/yWBDsXwRIGcHLFU7k7Q8SJY8CsLfbB0fegOTDobY8z3Die/MZni5DcmU5z8xmRK3StVZEl189EQggaEKhp1HBHxvFCRZtpVke3VSh1i9680dgvcZTuVlvQuYET3Cxgs8gqsdxct/dqmcN1UMktlqyQVLuARNHC/aQ0S934YWip9/x3tZRgRsfMXem/LD96TWPFQYzE8k1D3pQqI8aGGjsEleQTjqs+W6vicNiwqU8lrask69a2k3Eh17lGMhEaKRUQ0cN7kVsS8tOBnjPkfnPzGZIqT35hMcfIbkyn1VqnDLwgSTtqEievMWkoUyTU4BcfSqFARcNhRge4KxMv9RkWbBq7luNbYEFx7s5aOhCTGVbAO7U0uNjoeOfyofPcmTMq9fe9SYoO32K1Y3lSXZbGnDr9i96buDGXaxd6WxOYwbOJVqHPvrFGhcrTU7dqGdtTQCxFFNnq/v8M7T19V6kdIQiOJ5l/F9RrrUvcnQZPuj7/8xmSKk9+YTHHyG5MpTn5jMqXeAJEsdRgHSSxUDtzWZ2wJ287ADbgA4a0q9Rw7lYqAE5zoqgxhEjAN3Ugb4/AVeC9I3IPtaB16KuQY3IBJuWWdfuY0sXa9gJHKF8e63fELia2O1Ek4jV2JzULXYAdbet+6qkzrR/ld+laSCNiF0u0BTVkGwW9Fk10iooRnjbkFVeP9FTl5jTFZ4uQ3JlOc/MZkipPfmEypSdyjqbE8GRUccODmY38fD/igY5KgMoajnkO57QwEH3I7TUBkmcK10CCOtmMGTLstYZ3UabDUA64DItAYXG0Xp1qmWxTaBzEiYqv7WtfpgGuseiKx5qnue/lrdeRN4btDA02orJYgN14El9GSKy61BJfowjnulOpKvQll41vwjnABfMQpnQ/cHnLjzsA56y+/MZni5DcmU5z8xmSKk9+YTKlTXUfEAkVAGPjRUqJIOhe6r0DooO1QoAOX3hIcbBPYl45H1xfBrki8j7A7OgGpfBPWmIGAeFLBuiMdSnI6UhEwIuLmmfbNO3j2VGKkP41PVeg6O9uR2ASE2A24XxsgnF1ByWobVDJL7jvajiDxeQAu2XuFlsq/t9R1d1YwlATcqxERG+BgJaGzhntLpfL+8huTKU5+YzLFyW9Mpjj5jckUJ78xmVLvgNrfAxmXGkqqJhwx/wYTSFjFVwagzpK6Tgo5nTdN1xmttW58DL0F2hpFkiWaGjZOwJacXM8PVt5LuJbXtSrXQ2qsuWbVfHusqvLd3+m/BRugIC/Brkp240tomErX3AclfQNGp7c9lw78M0Bq/3ex8h6CbffdRtf4k4XanHulvg9vFnp9ERE9eF7dWtd+A9c8hvfEX35jMsXJb0ymOPmNyRQnvzGZUu+T+AHC0oLq0FFMS2+ESKIdCSobZMfEJoxpIiDZaam3wBzsvW2/lmSzpPOhpqVTEBbJEE2NHcnyu4BmpERbbwI67xsgNh02KsZ14JANPP6jCmytcB/oXLaqtClTESzu0TuWaiHfK1VgexAg+M31Wu7u6dSkqtYn3Rvy9fXmus4hWIavwN49wR4dxpgscfIbkylOfmMyxclvTKbUfWoySVuCkIMNJWFvEhAjIgoQXjbBcbgFI0j6sDaJZCWceAeESrqWDViX+h9ERBzCGHE65htwElLTU+qBsKD+AiACXsIzIEGThMY2jqCufq8GwS9R5LyEtc9X6oCjZ0oiHjWtjEifPkWQ0LwPz//2Uu/3dqHTh+quXk2nq890e633ISKiN9Ntb4CaulhqXo2XnthjjPkaJ78xmeLkNyZTnPzGZErNDjgVEUh4ISmFHGdU7hoRUYFIsxsqTOyA8EaTaqisk5yJtC5Ni9mAyS73Vtzo8WCpxzwDF9sYpgqRz266goaLNIklUbQjcY8ExAh2tlHJ81li08slNVZNnNaUyrpFVG6bFnWdLpQdVyDibsB7QkufrfU9rk+2JLYzUHGv2+NnOthUEXEFi09GuvbVwoKfMeZrnPzGZIqT35hMcfIbkyn1FUy0Sf1FIKGKhDNyukVwr8ABjW4GUYOcZDjtBzSkDTjerUav5v0Y6Xa3rvSAETGbqCj5m+GBxL7okTORJvZAifEqTRAjIW+2UsGure9dhQ5BKm9OG9u+XKXJblgWDe9IW09IYgXCIjGAaThphdERQxCVP+uqgPhiPZDY4VjLdx+MprjO7qaKgw04/M4mOonpM+j15y+/MZni5DcmU5z8xmSKk9+YTKmptJLKIFFgA4Gmm1jmG8EuPfICsgtR2YLjPQCz1I8KFe3e/atzifV+9lB37uzByhGLj3SE9d1/VkfWFji/6P6QmEY99xoQtEjcmzR6Lm2CXw3OPRIlCTqftnWuQ0NJ2kp1U9b93+K6DgyqAbV4Am/eCbze9KzI1bgNw1TOGxUGIyLuXqlo18D9edbVE/q00nfCX35jMsXJb0ymOPmNyRQnvzGZUk+h6LGLAlSaKEWxNsFnAVrONFEoIdfgDgyWuNHo9d15NJRY9/G+xIpDjUXJv5fVbZ1ie3MHHILTQ4m9gEEQVIK7hPuwgO3mUA68gFirSFamiXap7jvajga+YEk2uBppOzpeBJcTE3R/aEoz9WCklakEmno1Urn7tGbB7xjEQRIWX4U6Ab9s9F30l9+YTHHyG5MpTn5jMsXJb0ym1DSJliomSdRYtIgs1yGHXkTEAtxS00SB5iC0vxr5AzskDkEZZPNaJ6hGPNNQh/sRxlLP++CRiiw/+U8VBi/6WtY5LaEsFwQoEu24Zx70Dmx7fqADkpBXlODwhL6H3bLlnl0j9VqItjJfOiYKorDOFQwRoePR+z1ZqaNyDs+PBpCQszAi4gKEYVr7dKUlwefNWGL+8huTKU5+YzLFyW9Mpjj5jcmUegiiBpV0YtlpYrll2zTYCZSekqg1gAmxm+R2gtOZwHmPL/V4/ecqiHTGbyRW7vCU3nJX+6Zt/ECHNPxodCyxN5/dldhJX8WdI3Bp4eReEKXIeRltk22pLBuEvH6p92KzUvGStqOycRKvUktyW12kJOQ1KoiRsHi5nEhsUkJpNAinU3i36VroXrdd8wTKcokRiI1TKOn2l9+YTHHyG5MpTn5jMsXJb0ym1OT8IdcRxUisIOFlBo6qiIgpCBPUK65fsMgm68C+F5We4xB6oW0OVfistlQEqgctgt8tKP8F0W5rqb3+3nmqQt4uDHige5sqiNUg2NHzi4jYqEhgVSFvp9TYPsVo2i2IynR9U7i+MZShD9f6LkVEnDcq2uGwEVhnAses12mTiclFmOpWbNuOHIIkzqc6PP3lNyZTnPzGZIqT35hMcfIbkylOfmMypR43qnKvS6iBh1i1TvvtIJUygpV9UqC7iXZj0r2voOZ8vFDFvqz0XLoPN/X8fvgOrBIR92G6zwIslcdnEuv3VJEOuGXUwJNUaqptJ3sujaWOiLhRqy35RqX/PtwudP8HK723D+d6b3dgbPcEnvOrWo/3HOrdP4cx2RERp6H/ZtF7R/eMa/fBOg02aYqtV2n/1rT1WaBzpF4Jqf8K+ctvTKY4+Y3JFCe/MZni5DcmU2oUNUgcIBspNfpMnMQSwTZL7CUAMaoHpzaRqb9unU245vceSKz48Z/j/sWW2ntXzz7R2Ik2Cr0YqbC46Os9q0EMbbPoXoeEoV0Q8SIiHlTaZPRxqG33g5me4wcdnYZ0+7HGChCQj77QddfTHYmdVTAVqKWBJ71jdM9S7yOROqWILNZNo+9d2zh0su2WMNacpheR3dhffmMyxclvTKY4+Y3JFCe/MZlSkzhALqYqsW78m1BSo8hEcY9+tUjyAeNezGDvN8+hAeenX+oabx/BKoFuvvXvPpbY2b+paPOk1LUnoc0at2Biy6yjYiEJQ9SPYQ9q9CMibsM0pB+CuPeTg1OJ3fpLXbt6WxuUro60OerGsV4z9JfFsdRtIlmquEfvHdEmXqesQWI2OWdT14iIWIBTMnXykb/8xmSKk9+YTHHyG5MpTn5jMqVOdTahoELlpIlTfCJapsgANMllBqLkHLa7hMt7BmWi5xeHEnv0D1pq+/6n/4jn2H2kbrk3/64C1i9f35HYb7t6LUMog+7As6ImmiQYkdi02dIYdQDfhBvQzPLgPb0/9Y8eS6y4dVNj8J70N19JrNIKaBZ2W94lildwfU2RNuVosSLhm0S7NNffZq0ibtu4cXquqYIfXYu//MZkipPfmExx8huTKU5+YzKl3mzp43adbyLkyb6Jwl5ESzkiiF8jiJ3R9BL4eSspBufyJNR594ffQK++iLjxHyq8POuoq+6/eioCvlzpyOjRWrdbYpdChYSlXqJz8ptQbug6xZY6DmOgseJQS6A3HzyX2K1nKjTur1TkfA3lshEsdBJUip5a7k5CHImKPRhVTn0UaSR929pjmHpFbj66Pn/5jckUJ78xmeLkNyZTnPzGZEp9v7MnwSmIaSQ2kQDRVlr5XVjg+GQ9x3MQsCZF2lhkOmuSw551WEDqdqFMeK0DI04bFfcmIO6R8Jla6llAX7cChpcswNUWETGGZz2EDomLc92ue6Xjxot9GF++pYNBOu/qu3jvifb/e36iItnTXpqwF8El6xhLFPcIErlJ8COH5maL4EdrU5k3vbdUsuwvvzGZ4uQ3JlOc/MZkipPfmEypf1ruSvACRLJzEKUm4CSah8ZIvIrgUt0FHDN1uzmIGrQ0iZK0Bgk+53q41v1H4L6aQIzOh0owU12WWCoN2h5NOo6IuABh6jWUnh5/pkM2eh99IbF6ptdc7KjgV2xrWfT2Hb3jO0f/9/3o2t7R66QO6CDn7D4MSbkFsUGweEm9C0HHjW3o17i9tuBnjPkaJ78xmeLkNyZTnPzGZEr9ZzAU4bxSwee4UhHhAhxiY4iRQy8iYgoqFJXqjkFsJFIHeRAk7i3g/NocXnMQIEncoxgdk4QlcmmlioB0fW30QTD6rNbYYKKOvNE/q8Pvzm9fSmzznj7TsqdPcPZG152AwDYJfW8iuLyVKOE+UlluTb0HQSDdq7WM+X6lIuejAGFwxd9kevNW8Ph34FYcwDRgf/mNyRQnvzGZ4uQ3JlOc/MZkSk1eou2VSgsdEKAOQYCaQWxasEj2BuKnIOaQpEUlxiSS0cro5kudvtrye1knDsogaPACiYA0WCJ1uuwSnJdUxtoKLHPV1XLUP65V6Lr9SoWuG8917T6IkiN4Hz7u6XN+BX0QIyIuYczvbKVi43zFguF16JnStOkubDeA2M1G931/zgL3fqXXsmwRB6/Tqz2l1xjzNU5+YzLFyW9Mpjj5jcmU+g9dKB0F4WwD9LDdRoN3wEk0o7rDiHhR62/PuFJR5Ap+o+Y4UOHblwPTdiTaUCyiRZQs1Z02X6sbjNx3JEDR8BKcLgsuNCpZLeF4ERFLECDpng1BgHpdqGPtoNaedNvgGKzhLo6hvJyGnLxcXkosIuLNQh2H00ZdlvQMyD3ZhWdK95uGaVyW4F6FScltX+SdLb3fVQ39Lcd6zCUIi/7yG5MpTn5jMsXJb0ymOPmNyRQnvzGZUv+m0Kky1NhxG1TOh1D33VlDDXRLc8TUXx7am9TnGajXVGdP+1ITxjZln6CmmTVcYdv4ZTkeKMipNuDFKrEPQYujmf5BICsw1co3FawND3oKa9DIcGoSew5q/2Uz0UUiYrTUbWdN2oQkegZ0fbQv2YBPYbrOi0rfh1u1qvUREf2hWqc3Kn3nJ43m5dUa/qXAVYwx33uc/MZkipPfmExx8huTKfWXYIvsgPi1A2JFU27oETsqVgxI8YmIYfnt6+oJqk5fJo4Rp34FRFsjTDomCYZUf0/bjUFMHRdptekrEMm+ychv2pYE0W/UD+D/mbbngjbpRmOpU5PwPlZp9+u8VHH9FQjAT2qd4hMRsQjtnzCA81lUet4jeL395TcmU5z8xmSKk9+YTHHyG5Mp9RW4pXpQY0w1/jTZ5UWpvye7LYJf2hwervPugUiGYmHizxuKc9/gt7EmhyB0vSQxdQk1/uQQI4FuDYLPChqjYkPQxLHUEfz8u/D8OabX3IN7S5JrA9vRsyKBLYLvDzklcV+ahgS6IjkBSYi9ajTXziuNvShbRnRDX4Q+Nq3Va56hoGmMyRInvzGZ4uQ3JlOc/MZkiqozLZCIMIUS2hGIXDWIQBERxVrFCvo1InFf9ay9AAAAgElEQVSogWOmipK0Bk3iIddXmwORylG3Ye0NEKuWJOTBGjNoAElNPTs0WhymMJFbrQ0uedbr6ycKpxWOxAbxCk6RxN62yUXUhJNEQHY7gigJYiq5C6kJKrkNR9Do8wwE94iIJaxNuUFeRxo37y+/MZni5DcmU5z8xmSKk9+YTPlvrMKvxUrddKAAAAAASUVORK5CYII=" y="-5334.610448"/>
</g>
<g id="matplotlib.axis_301">
<g id="xtick_451"/>
<g id="xtick_452"/>
<g id="xtick_453"/>
</g>
<g id="matplotlib.axis_302">
<g id="ytick_751"/>
<g id="ytick_752"/>
<g id="ytick_753"/>
<g id="ytick_754"/>
<g id="ytick_755"/>
</g>
</g>
<g id="axes_152">
<g id="patch_153">
<path d="M 434.924375 5459.512211
L 557.214375 5459.512211
L 557.214375 5332.218684
L 434.924375 5332.218684
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_303">
<g id="xtick_454"/>
<g id="xtick_455"/>
<g id="xtick_456"/>
</g>
<g id="matplotlib.axis_304">
<g id="ytick_756"/>
<g id="ytick_757"/>
<g id="ytick_758"/>
<g id="ytick_759"/>
<g id="ytick_760"/>
</g>
</g>
<g id="axes_153">
<g id="patch_154">
<path d="M 29.174375 5600.929872
L 151.464375 5600.929872
L 151.464375 5478.639872
L 29.174375 5478.639872
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p64fac3725c)">
<image height="122.4" id="image38d0740252" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHjxJREFUeJztnUmPJNd1hW9MmVmZNfZYzWZTFMWmJluEPMA2DMMr/wX/Ta/spQDbMix4QUuyZJJqtsgeyK7urnnMyiHSC1Fa9PkCeMVsSTDf+ZYXMb6ImwGcPPfeomreWEQCRRQaKzRWQqwuKzxmv2okttZbkdjt/qbEvtlsSezbMZTYn17qed8bHEts8/qFxPZfjiT248W6HjAi/qs8l9jT+anEzlq9oMVCH8E8WokdTs8ktnuh93Ixm+A1vkqvqjG+UvckNoBYCe/EpJ1pbA4x2G4K283aucRovZaF3mV6b2kdaL2qopTYfKHPlNaG7rkLeoYNxOh6NGKMyQInvzGZ4uQ3JlOc/MZkSl2CEECQkEeQMNhFVeq5VyoVTzYrEAGLvsTenOrx3q5UdHvj+yqSNddVfJz/VEXA4R4Lfn24l16hgtEEYiTukTjUgtCVKrouC4lsBdwziWR0L9UCBDF4FwtYG3rFlhUBUXRt0wQ6oukQuZehDbhGWNsSrrss4T15PZdljPn/hpPfmExx8huTKU5+YzKl7nJ5fVVIgCJ3UUREr9Rzj6qBxG6V6tx7s1WB7q3ZVGK331Jxr/8ddQcWa3qO0bPPJXb9ObuvNhq9l71CY/MCRKTQY5K4Q+uIzq1EEbfruaQ+wxrES9qOxLRlYuiA69A4lxECF/AMruK+e5VUEZDW/zcXpNdDIjBdN71P/vIbkylOfmMyxclvTKY4+Y3JlHrUqMBGggE6oMBdRHQJSw0Ifuvo5lPX3/ZUr+d6reWy/U11ZJXrWqob66u67109751fqusvIuJ2q/vvw3W3sBTVQq+R3GUkGJFgS8+Fnl+X2EtCLD2rAZRkkwD1h6BTiEt0A3aKbAn7LiMqkhtzfoXDLSOc+stvTKY4+Y3JFCe/MZni5DcmU2oUbRKdTcVCxQoUFjoFP+iRBq64EZR/DlsQbWoQJce6b3uoZb7ligqf5Qa4DW/pvhERb7xQEfF5T9d2nFi+S/3xqFyaSmhTXZtXEWKp1HpYaVk1XfdFqz0FyR1I91IWui+Kcx2Vtih+wvv9ukkVyK9SAv+68ZffmExx8huTKU5+YzLFyW9MpiTX85LIQoLfVfQLEkCmCxUWJyDQnEH/uN2pCnTNEz1es3oosT446ojhTR6IceOZKk6DRVoJJ5X0jlstTyahCkttQTgjAaprmAo5/Fah1Hqr0jLoAQh5Zwu9l5NS3ZhjEAZPy7HGZhrrgnrutYn9EZdxAqL7Ne0VW5pUl6W//MZkipPfmExx8huTKU5+YzLFyW9Mprze7p3RUdvcIZDSmOajudbLP61gznaj1tKdWm9nd7Ihsen/qCJ9b6L/APTu6HZdvTErUOIvIXYEI7oP4Z5P56po03oRZLFt4RnQdhEdan+p671dau+FNbBnn0C/gv1Crc/HsDakrqcq8xH8bwitI/VPSP5XgCbp0PGKRBX+ChOX6Lni9aCF3BiTJU5+YzLFyW9Mpjj5jckUHtGNNdDQaDDxJCR+RERMoAj7cHYmsYdgGd2DRp+rICI96akt9WC+JrHzX8IEoP0DiUXodhERJyB07YfaVQ9A3DuenUvsYq77ptb9k8hVgAjUZe9tYL1Hpdbz3w6NbUGH0pdwPZcwuWhagM0ZnikJkjPoS3EV6F1cQCdNmHTdYaeFGIRI3INWFRHBtf805n4KvTfoGv3lNyZTnPzGZIqT35hMcfIbkyk1NdGcYikyiR9pYkVXw8QpOK1OpiqIkdB1Uul2KyBKHdVac35WarPNYxAG33t2W2KjjilFv+5Df4GFuvSO52niHjZMpZ4KieO0SSwi4SwiYgDrOAJBcwMaq96Y63kmtW6395q/O12NMGl96L3FZqagh7J4/dX7A8yv0DOAxEa6Htp/DtfoL78xmeLkNyZTnPzGZIqT35hMqV/3SOXkRp/BQiA1XCRQUIGJPdUcGlzSbx6EjvoqfDUdv5dfhAqQL6fqVkwV91IhoYqEvH6pDrghlOlGRGyBe3INqr8bENlWQPG9CSLgcyi/JrciCVU4Qn7JKTxcRqtrW4LqNof3m55pqrjXNUmJ3Hyp2OFnjPkdTn5jMsXJb0ymOPmNyZSaXHapoJOMBL8O9xWJIqn9x1IFHjo37Ul95qjsdNLh8Ntt1bm3Nz2RGAl+qZNhSrhwWkMS/Mj9SMJeRMS1Ut2ONImH3JxTeNR92G4Nphk1XQ0SE+jq4Ufx5Ik2JAJSjByx1K8Pbu8qI9b7ULbcJQ6+inv4GWN+h5PfmExx8huTKU5+YzKlXqYklEDXXsGiIm2LpaxwbuxnBr9ldaIgQmOyz2BM9ikMloiI2J+d6v4wSvpypsckYYl6K86WcLGNYMQ29eqLiBhCLWsDLrYpXM8JOOBIBDwHMZUccOT6S30XI5YbskGkjuimZ9qAy3IEpeQbjZahR/AzHMAxKQ9c0muM+R1OfmMyxclvTKY4+Y3JlPp6TwdY1CAEkfAyXahIdj5XQaxrumyXK+tVeFoqDH2A67kE514FvefGIGiNQfA7g+m5ERGnJO7Ndf/U8l0q30ztC0ex40odiKcdDr91cJL1QIBU/2LEuNJ1PAZx7wk4Ig9hbemZkpjWJcSlinvkgCNSxUZy7q02KthtD7Yk9lazice8Wej+I8jVit5leAb+8huTKU5+YzLFyW9Mpjj5jcmU+l6jgsMQBjTQ0I7jVstTd2jABvS3i2CRhcQYKo+k0tjUc4xL3ZcEoxmITWMQ8brOk1o6SmsbtA6JDj+a0no+UyF2t1JXYgQ7PMeF9vujycTEAbgiX4Aj8hQEv9Ry7s6hHRCndUwdfkFfS1qvlVpLqN8YXJPYD3s6GOb7LfdWvDvRa1yFd5SkyyMo8/aX35hMcfIbkylOfmMyxclvTKbU2+AaWgXXEA3eOAQRYd6o3HAGrr8IdsCRWBUgnFFpLIk2JNBRjzQSba5S2kzb9msot2yh3BKuG0WtRAGRrgUnHc/ShdhjKCelvoB03Scg5B3P1OHX5QR9ldS+dRHslMT1AQccQSIgvU9bvVWJfa93U2L/cKnvyJ/feo7nXv+mCtVlHwTNC72X8x0LfsaYL3HyG5MpTn5jMsXJb0ym1EMQ9zZgoMIABL8NEE6aSmPTPosp5KCjklea3DsHYamFKRLsvNNYA6LNSqWCFg3EiIgYFCrcEOT6I6HrEsqJaR1IYCNBi0pMu8pYsTwZrofWgu6P3JhjiNG+qYIdlZx3xXF/EPLwemDfYa2OvJvNusS+t1DR9G/e/kJim//4rsQiIsp37muw0fducXIkscEXn+vx8CzGmK89Tn5jMsXJb0ymOPmNyRQnvzGZUlOzv9VWY9fnqnw24DbdAoU8am5IOO6Bog3K9xyaPabagBfQC4CU3T6owqRmr9Xc9HJUquI7gn8AevDvyhiajL6Eenca+U0W6dQpTF3gvzBzaI4K56Z/EFJt3PRcFjA9iD5Ziw61P7UHwjK1+/RPygDena055Nr3wHb7l3+H11jd/yuJFfAvVbv3VGNrH+h58CzGmK89Tn5jMsXJb0ymOPmNyZSahK4haCSbcxVyhjDWerBQAeIMxghHROw3G7ot1H6jsDRNa/5ZJNpDGxL3YKLNdq0TjiIi7pY6VvnNVu97A8TUo1IX/EMY3fwhiFd7CxUBSbBLnUjTtS1NAaLtyIJMlm2yzjYgnNGzwmvpEPZSR3SnkjpW/gLs0MegXbbH0BD2ghurxkT7L9CdtPtq5V18+onE/OU3JlOc/MZkipPfmExx8huTKTVoEDjxY1yC+6oFtxq5yzrcV5uhgtj1RgW1Y2g0SQ086aeMRKQ+jKBerVVgu1aPJPZ2qbGIiPeneszvgjNxY6SC5t6pioVtX8XGnUq3OyzOJJYq+HWNSE8VyVJHXdN2qdC1pE5Cikjvd0DvDrkQU6chHcz0uTxu9J199lN9pt/4zx/rxUTE4nBXgyCwth9+rNf4HzsS85ffmExx8huTKU5+YzLFyW9MptRnMKnkc1ABdysV7Wh6zRQElrMCym8jYgLiEJW8DkCgozJKmipEzj1quLhRq/CyDa69+3N2K75fqNPu7b84kFi9Ba6/X6mg+fjxGxL7GYiSJGhSc8zUqUAR3ULgq1AJLjrywMFIJbT0TClGTT27GnimQkIeCYupDWbPYUrVs1bF3l+cabn7+j+rOBcRsfrxM4nNz/S57n6kYvGDwzsS85ffmExx8huTKU5+YzLFyW9MptSPWxWbusojX4VEFpJduvQj6l133qpYRX39SKxCAQrEoRpExRGMm74ZGntrwuLl3e8cSqz//rbEimtaxrzWeySxNz9VwWgdprPQvVDfOppSdBWnHEFrm1qWS/uS85L6KJLQTM++i9Ty5mniyHACJzOBd3an1nX49PE1POb6c30nDscqXj8AYfjxQM/tL78xmeLkNyZTnPzGZIqT35hMqR/NVKiiklDcGcSmBmJVx2/MHASQEyjfpZJJ7NcHog9tRwLiNFEEWg0Wgfq3QYS6py69uHFLQtWlipzbm88ltnWpbjBa79R+e1cptSWBjoQ33I6GpEBfRxqJPoDt6Hhd0H3TyPDLgBLxROh6SPhsIA+mcCu7IDRHROxeavxRT4/5sNJ72QF3ob/8xmSKk9+YTHHyG5MpTn5jMqV+cXkkQRL8yKVF7iuKkTAYwcIU9utLnAaLJcYg7lHJ6/Fcz3sIwslRwWJMewHiGdwfTVVd9EHoGuq5h+M0MY3cZan99rqOyU9QwbJcclRCWfWoUmfaEJyX1BOyS7q8SHSMEss6IFOgEviDir/JxxB+UOn9fTbXoR/7c+0n6S+/MZni5DcmU5z8xmSKk9+YTKlPpyp0kdBBJZMTEK/IuUVupwgWnMjNl9pfjX7JUh1+YxCGjhYquu2BKBURcfpU77v/UEt1iwN1VM4fam+23ZerEjuv0xx5OGDjCg4/cumlbkfiHjn3hqUKfmsQWymgzLdDQCYaEKonVEoOPfdI5J7BZGoSrnG4B71PJTgQa3Yw7kMvTBL3nk1VxD+F6df+8huTKU5+YzLFyW9Mpjj5jcmUmgYOEDgoAQSjGYgS7ZyFpSk4CdHNt8SUVyK15JX8XacdP5cvX+h04d5PVNyrejrI48WnKu7990KP92KhLq3UfnRXAR1+1IcPYiTuDisYklLpYIl1EPxGhYrKqxBrOoZ2nC7AIQh980gEpneRhnZQz0Rykb6cqTj3sAFHZMc3+ahVUfL59Fi3m+p7ctnqvfjLb0ymOPmNyRQnvzGZ4uQ3JlNqEit4GMdygxIInByb6C4ksLw1cQAJgT0GYeJsRMSTqU70HT9QMWeygJ5rUN7680YFmudQlknl1/SsaG26euGRkIfTcmE7cnhugrh3pxpJ7AaUS28t9Lxbc71umEkREREncD19KJk9q1WgI9cfCawkAtJ2LycqzpHbsGviMG17Bo5YEhvpGv3lNyZTnPzGZIqT35hMcfIbkylOfmMypSZ1PUAFJsU91QZK6nMEW4Yp1rZfXbEn5RTHJ4O98xjslJ9Dw8SIiKqnSvVnC1W5j+HfgqehtdZP5mcS2wV7KE2foXp+oqtuP/nfFVhbauC6UWoPhLuh/3C8PVNl/+5Un8udRntQDAZsU98/02fQFno9O/CPxD7Ykkk1n5ZpNf6kwlODWcqhCP7niv5VoPebctVffmMyxclvTKY4+Y3JFCe/MZlSkzhQgd6zTI13l+BH46VnHc0+X4WuG8VLIHVs88vpicS6xJhDELXots+grvoIxidTw0WK/T76H+DEn8S+AdTAcwj19xtgc74zVeHs/qb2RLj5fRX86msqzkVEXH+gIunBRzo6/aOB7k8iIK0D1crTc8EYNPW8kkBOOUi9N8iej2cxxnztcfIbkylOfmMyxclvTKbUqc49EiFI3CGHV5eAQedOrb/nRooKiYDovpqp4HdYqMuOavwjInahbpzOQzXZNN2F6vTJhUgxcvh11YinktpnYQATdoYw4Huw0H2HMA1ndUtdlr371yVWbN+QWETEsPdEYm98ooLhjVBxbw0cfiTQoQgYadtRA92uPgu90Nzq1TA1q4IpR5CX/vIbkylOfmMyxclvTKY4+Y3JlLoHY7YbEAeG0GRyvQaRBGJVx2/MBYzFJnEw2bkHzjYS6NCtBvvSuPAuQZKcVjgFKPFe6DwkcqLwmVrS2SEscbPWtHHcND6bzgI9OGMC78nkXN/FxYU+l2Ku6xARUZRwLzAWmyb+0OQcfD+XGIlOsS7BrwTrLYl7G7U2kx2UWnLuL78xmeLkNyZTnPzGZIqT35hMqUeNlqKuVCoObNY6YeV2rWOkb5Uq+A06ymBPwO32tNISzJ1CyzpPZurSmgT0cQNtj0Q3EtjIeVdAWWYXeJ5EwQ9FJBKMQFhatrciCYEUo2ucgDPxHJx7R4Ve9w641dZebEis+cm+xIZPP5FYRMR4R+/7yWRbYrsr+u6cgiA9htgyo7yJLiGWpibR+PNrkKvUR9FffmMyxclvTKY4+Y3JFCe/MZlSX2tWJTiqVBy4A+LeO4UKC2/PVZS4Oecy2HmoO+mjnp77g75u91mxJ7HD0BLcVPdVJPatoxLMLpZx89G+ONIc9kUhL6014pfHhP1hyUjoOpmrELsL7rIanHczcJGeg1D1/LEKdqNH/I7tV3rjP4V53g/nOj775VRjJDRjH0V4d0h0Jdde1zAVEvxWYG1J3LtR6Nr6y29Mpjj5jckUJ78xmeLkNyZT6u2eOqhWCxUR7pVaJvguTFX99lTLLe9eV+EkImK0qW6p7z5VYXGl2JTYvAclr+AuI6cVOajmoM2R6EbnuAqpDr9lIBFwBiWvC5gYHMEOwbbQbWnQydHsPOl400qv57RUMXUPBK0HA/1mzTrccwcLmLQ802EsL6ZHEjuZqrh3Ab0eab1J3BuAg/EqvRX70CdyQDEoq649pdcY81uc/MZkipPfmExx8huTKfW71boESYS41aqIcGOmLqabqyr4XP+2TpeNiOi9p8MXRi9VjPnbf1HR5/FAnYm7UA58WqZNtiWWmQQc0VFamzhBlfalc1PZcUv947BvoYa6zl2CI48chyQCkvhF93JR6XPZhQm/BPWDjGDH4eks7Z0gNyetY0OltuBWHNXqvKNJ1V2DYagXJvVR5Im8FvyMMV/i5DcmU5z8xmSKk9+YTKnvteoQOgU3Fw01KKmcFPYtR1xPWtzcklgF5bs319UheO1S9x1BPzMSRLp6173KVcQ9EvKoBJPEIdoudQgICVXjGQmaaeXAXee+ytCPVyFR8qJQgW4K7km6RjreGITGCBYgUwed0POndaDnN4A+mKtQKk9rTesQwWuB6wPPmsrG/eU3JlOc/MZkipPfmExx8huTKTWJe/sFDDCg/mM9dV8NTtQxuPqhllVGRGyufi6xxbmKVS+PVdw7hT5sJNqQoIIuuxaEHOj/1lWCSdOOaYIqCUED2I7cXCQEnYFbjSARsEvQTBX3uqbJpkDiJT2/SavvIk1PnsJ2v4mDiJjaW5HeJ3h3Usu0yblH+3aVjdN1jwt9rmcQG4Ao6S+/MZni5DcmU5z8xmSKk9+YTHHyG5Mp9ccLnXJz3KqaSpbYFzAZ5NmKWmyf7tzBk9//J1Bt4ffo3weqVD6Yw9huqN0myI4ZaWXj0St5Q7RzQv32eqUjzIfQpLIhtR/U4oNa+yc0cI3HpW53iTbg9FHSpD6nNj0tF/DvAbxjqU1ZSdWP4J4DBN4LrEML06fGcN1n8I5hTwW6lo71T7WlH1GNvxt4GmN+i5PfmExx8huTKU5+YzKl/nS6L8HzuQpxJELswLSQx1Cz/HGpIldExOZAxcHLhdZfP4FpKvtTbdZJVlASjEjcIRsw2XM3ap1cFBGxWeu48luVxm6Wes/XFirQrYIgRnLRC5i49FmtFusvYA33ptosNYIn1VAzyxbWluyqqfbX1Eafy5Is7iUKmhfwzpK4V0MzWRzb3WGbJqGazoMTl1zPb4z5LU5+YzLFyW9Mpjj5jcmUem+ios9lq84vckqRMLELAsYzEM4iuLlmav02ubxSIXGHxBRy891sdIR4RMR3a+058Cczve93LnVtb69og9L1rbQ6/ecv9Ho+KFUE/EVfRdeHIFJGRDwu9yS2e6nXSA5BFFgTHYPUEwGF2Br6H7T8HSOhkt4ddgKm1v1DY1Vam1LPS669rj4J1EuA7oXWmxqZ+stvTKY4+Y3JFCe/MZni5DcmU+pTcHNReWRqOSLR1fSShA06T2pZZvL1LNF4cgPKmCMi3p+qCPX3Gy8lduuvwfn1nXsSK65f05Nc6LPa+uBXElv5kYpNzXRTj9chXp43Kg5Ro9BU4QydciBKkbi3AqXSJBR3iYokdJ1O9V7GM5ggBPeHQnOiCZGdjhDrOB6OXof1putGJyGfxhjzdcfJb0ymOPmNyRQnvzGZUo9hxDOVLZKwkOrc6iK11PN1g+OvCxBTriBy0q/oyqqubf2tu7rvD34osWL7WxJbnGr5dQNr+MazX0js/gcqVO7UWl4cEfEZlB2njhGnhSAXG7knhzBinUqlN6EP4gBEwIiIS3Ac7va0b+XuRB2MxxPte3gBwuAygvSyOUS5Sq5Gwl9+YzLFyW9Mpjj5jckUJ78xmVIvI+6l9jhbVtQgrlIK+Sp4LxCj8uKDlkttH9WrEvvssZb5jn72RGJ9cvM1LMYJAxXymju6741VdQduTtit2IB4lrre5L5DcQ/ERuqPuA3regd6Qm5BH8SIiApeicNKnY2PoO/hZ3VaaTOJgOh+TBxLfhVS3ap0Hn/5jckUJ78xmeLkNyZTnPzGZEr9usW9q0D7k4i0jLhHgggdj67lEtyPhzN1h0VEfAIDOrYajS3+7YbE3nn8c4mt/eAjiVV3r+vx5tDD7VyFysVCS2O7fGAkTKWKtuT6I3dgHwa+jGBa8c1CRclvtLrvrTm/D6swVTdCr+d+o30Pf9ZXUfJDGEqzc6kTo6kEGt2BV3KR6j1SXz/KVTqPv/zGZIqT35hMcfIbkylOfmMypU4V9wgS3a4iAqaKdrTdMn346J5J+KTSyIMpC35PKx1+0tT623oAItK9J1rm+86nOqjkrRu7EhtdUxFpfKSC2Odn6pR7MWCx6QyEztR+fYsibSAKut3gWip4zlszjb0Ng10iIm6t6fMarkKPwhN9LusX2vdw3qhrcwplw3R/uIYoSDKpYngJqbGAqc/+8huTKU5+YzLFyW9Mpjj5jcmU+nX30UMRr+MUJLyRgLEM6fcHDj+YtHpaamlsRMSz8kBiJATtVVq2+qhW19ivoeT13cNbEtveVVHyAlx2D/q6rr8OFi/3pipeUq9HErBQlIJ9yQl4OldX3HlFk22V7Y1TiEZs/5kes7qjJb2bz/WeL/5VhdNfhT6/JzDI5bDUtU0VyLveWRJTqfckOQGpZN1ffmMyxclvTKY4+Y3JFCe/MZmCPfyIVDfeH5M/RE9BKsuMiCgKFXioB+BJrYLhAfSuO4QS4X0QBjdq7V13XqhI9kWr5300UZEyImJ/quIZlTejiARLS8IgHe+8VZfe4ULX+xx6+PUHXKBcv6ciaXlPHZXFxjOJ3fhfnbJ8fU+dkkMoTyYHaqq4h5OAO46ZKpCjSzZpT2PM1w4nvzGZ4uQ3JlOc/MZkipPfmEzBen4kcbOr/CuwjJX3jzUtqGscM1mB6XpIyaV/BSa1xk4rVcPJJnvWqkJ+NNNx04cdvQnOpmqJTW00Sf8AFIkNJclCjPdSgRV7zBN7igpGd6/pdJ5iqE04m4E+qyG8TjWNKgeWbYKLU3cghbjG32q/MeZLnPzGZIqT35hMcfIbkylo78W649csDHadhyCx4nX3IVgWErCmyfXu3HzyVS5A/JpBz4CLuW5HtmSy2EZw41KCngsJkKnNVukdm8D9HYB9+fmR2qEjIu48Uotuvabbts91HPfFidp2p4kaderUnKsI0qn2Xprig88l+czGmK8VTn5jMsXJb0ymOPmNyRS0Rb3uGn8SICIiykRxiMW9tIkvyffymhuHdp2bHIIzELDGAZN4QMgjdyAJeSTidbkV00UoEpZ0q9Sx3bTdHJ7q0ULv5QH0OoiI2PqRuhVvfPSJxEjce7ir03loytFZq+uN4t7vQaRGAZmEWMhBf/mNyRQnvzGZ4uQ3JlOc/MZkCtdBJkICRgnCQr9SMSUiYlD39Jjk8gKxil1oJLKkuRVTx4Av28gUx4ODOERCHm6XuDYt7Nsl+BG8Pqnb6TvRFCr4kehK93y8UIHt45rfsf12Q2LVUx29PYXncgTi3uPQRqhHc41dgghI5c5Xcaq+blHaX35jMsXJb0ymOPmNyRQnvzGZ8n+vN6WLf/bEnQAAAABJRU5ErkJggg==" y="-5478.529872"/>
</g>
<g id="matplotlib.axis_305">
<g id="xtick_457"/>
<g id="xtick_458"/>
<g id="xtick_459"/>
</g>
<g id="matplotlib.axis_306">
<g id="ytick_761"/>
<g id="ytick_762"/>
<g id="ytick_763"/>
<g id="ytick_764"/>
<g id="ytick_765"/>
<g id="text_39">
<!-- 132 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 5583.488309)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-50"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-55"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_154">
<g id="patch_155">
<path d="M 164.424375 5603.431635
L 286.714375 5603.431635
L 286.714375 5476.138108
L 164.424375 5476.138108
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_307">
<g id="xtick_460"/>
<g id="xtick_461"/>
<g id="xtick_462"/>
</g>
<g id="matplotlib.axis_308">
<g id="ytick_766"/>
<g id="ytick_767"/>
<g id="ytick_768"/>
<g id="ytick_769"/>
<g id="ytick_770"/>
</g>
</g>
<g id="axes_155">
<g id="patch_156">
<path d="M 299.674375 5600.929872
L 421.964375 5600.929872
L 421.964375 5478.639872
L 299.674375 5478.639872
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p6c4de31fa3)">
<image height="122.4" id="imagec0ae40d39f" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHiNJREFUeJztnVlvZelZhd89nMFTuWyX3V1VnVSqQ3eTJrkgF0hMQoCUv8EdP4qfAOIOIQQogCIFkFBIgkjSM+rU7PJ47DPts8/hgjQXXs9Gn9udapRvPZef9tnz6y0tr/ddRVnfXcWXRFmUsrbRH8raGxt7svYHaw9k7U9XE1n7+p+s63HfeUtPZjqVpeWHn8jaxfdf6m8j4r2f7cvaD+Ba/r0c62+bI1l7Mj2WtdFcr2/eLmRtuVrCmj5m2u460POrYK0oiqT9pZ73itaCX2PalqBrGdQ9Wdvo6TNdrwey1i/rpLW1si9r+/UmnuOvVVuydnep+6xC7/dZofdWr9gYkwUufmMyxcVvTKa4+I3JFFULvmRKEIeGIIrsrfTU79y90P29+a6sFffflLXVyQvdbvO5rPVVe4yIiP0tFfJev1QhaHugIlKvqGSNhDNa65X62whda0FMWyxb+G1Eu9RtSbSj86mrtGvB48I50rmQiEe/jWAhMHWN7k+zVIF1tvz831ASAel9iIgYrkCUXOlzWYC+OrXgZ4z5DBe/MZni4jcmU1z8xmTK/zvBjyABZAvEj+G+CjTF62/IWnlXHX7LWkXFuPNMz+UNdd5FROydqNj44KfqBnt/tSZrwwJcWiSmgbhXleCoA4cXiVfdzjsVtWif/QpcbLCG5w3XlypK0nbNNcRL2mequ5COU8MavbMkKlbw/e11fJN78AyIWaHHuVjpOfrLb0ymuPiNyRQXvzGZ4uI3JlO+VMGPBBASWUjgmYKoMT/Rv2XrU22DLda0NbLYva/nd/BI1srjE1mLiBhezGXtzlN1/d261BbjGsQhWiMxrUwUgRoQBkHXiwh20JFARy2v1N66VqmYStdHz3mOjrpGt4PW5oiIWavbYktwYusvbUdiKLUIk5uP7sOyoz35glx68FjHsN1opffHX35jMsXFb0ymuPiNyRQXvzGZ8qUKfiSUkKAyXs5k7ZPQmXs//OB1Wfvdv/0HPfCtXT2X17+uaxu39LdbPF+tGOqtXEBv5UWp1zcDsYrEL5yPlyj4qTQXsSjZFdeH16IHYtUmzLPbrHRtq1ZX4wa0adM1n7f6nEetirgX8D5EsHOPrjtVfCZXJLVVb9ZwHyq9D+ulPpk5uPEiIp4s9boP4Z1owNV4sVLh019+YzLFxW9Mprj4jckUF78xmfJKBL+u1lFap7VJq+65T9uRrP3jUAfsrf2lCnTfnv+5rNXf+T09QRBOli84tGP8n+rm+8mFugZ/OtDtDptzWSMXG5EqApJrrEssJHGPnHsk5G1X6mDcA6HrVqGCH50jOeDm4FYbh4rCXeB7hy49/S05KlEMBeFzB+5DDc9v3PHsT0DwIwck3UcSPv3lNyZTXPzGZIqL35hMcfEbkykufmMy5dWo/R2qMinVlNhDts9TsHh+WF7K2j8NtXe/+iu17X7z9Lu63YGqs5c/1uNGRPzwg7uy9r01tWm+P9P/FpzO9bxJxcX7RZI0LF0n1pr6zocV9O6X+h+A26RyF7rdLhqOlWmh9/BlR6INQRbdVwG986TsE1323rOF/qdotND3EQeUwrP2l9+YTHHxG5MpLn5jMsXFb0ymfOGCX6pl9/9avwoJfmR/PQb744cw9LIaqJA3+p7OArhTaY/4s/Y2nuOPhvp39OP2VNZOGxX3aMgk9pKDuIdCDmhcdA+7hlbSPklspJ78bbDt7kAi0Q7EWi/hdViH3xJdEd3Jsd+J/fyU2DNeqLX4pNIEJ0zsgfs6WaqdPYJt7pOFrtH7RPfBX35jMsXFb0ymuPiNyRQXvzGZUqeKbqmJJteB9kliDKWxTEoVOs5LFfyegtNqBgMcj9dUBLy71FkAbc334VHo+ZwtVTBswLnXJVZdhQQjuocknJF4dR33GznWSPB7LdTNd6+FiHW45Bmcd6+CIa8kznW4FVPfW7oX9NsG3sXRPM1lN+6pMDgA52QXiw7n31XYJQvbJR/ZGPMrhYvfmExx8RuTKS5+YzKlpihhjCEGEYGEl9QEma7fk/hF4gkJZyiyFOp2Sm23pPjjYsXXdxZ6nDE4tRoQbVLFJnKDoRsPrq+Ci+lq6aUhlQNIltmHVt23FyruPQQX2nqhz+9JaDvwErp32a3W0TYO142/R5EsrQ2a3jty3tFx12oVTamlOoJrkFqtKcrdDj9jzP/i4jcmU1z8xmSKi9+YTKlriBcmKPHjlzEfLXWfdN7DSsWTrUpFqSG0iZJcNCNBsmA33gjaLcetOrpIHEp1+NF25A8j8WtFImDHTDlKoLkNaTNvrfTefrvQJKV7b53J2hLiy0efHMhaDefdh+dH5xwRUZcqLFJb7k1AlyW1EieK2V2CH4muXc/wKiRU+stvTKa4+I3JFBe/MZni4jcmU+phndZSSK22JJxcp/WXHEvkyKK1NRD3diAemqKgCTrrEURBT6MjUAHad0nwo/ZkurcECXkkGNGf9Os8lx6IqbulCn7vzPS8772t4l5vU7d7/r6GqTyFd3ELnIBv9LZlrQ2+h9QGS88gLRCd3aFfdFs8uW4jIoYg+JHwneqy9ZffmExx8RuTKS5+YzLFxW9MptTrtbq0SMAgdxLNM7upe4paK0nUIJcXtbIuQAiaggiUet5dCaqnCw3joLZOTFBNdvjp9ZF4hSLgNSCHWQuS6AxCRB5/rKEmzxbaqvveQI9xXut9uAM9vQehKct3IYglIuI/IEn4k3gha+i8TBRiiVRhkMQ9atP9n3UVrwfoVk1zc/rLb0ymuPiNyRQXvzGZ4uI3JlPqg4G6pah1cA5ut9FCwwoosbRLTEudAUjOtiml9LZjPM5VKAU1NRChq/32YqEOP0pL/aKFpV9GWzXx0fylrP3NQN+TDZjrd1bDPLvQ9+QOuDH3l3qMr831XXwnuDX9/kDTl/95QwXIH8fPZe1wci5r9PxIpCZXKgmpJLjfqtWpGhGxV23oPgu9bvqiV7DqL78xmeLiNyZTXPzGZIqL35hMqb8x0LlpA/ibMIZW1peVCmyHpc5wOwdhMIJFttS2RxQboYUWk4ATHXUYVNJxfuTmS23f7QrPSPntskhtE00PU5kuVKh8OjmRtX+B4BRqOyUX2y2YCdirdLsGphQuQQAedrT0PmwgtKOvLsT5hr6LUxBsz2f6ztN7Qq7UzZ4KjSS4P6j1/CIi9sGt2Ev8ftNUQH/5jckUF78xmeLiNyZTXPzGZEr9Gyt2E13lAoSlDUgDpdbBrhlnZ42KJw04CeeJibypTjmcHUgtj7Bdl6OOzic17ThR70NSj0HnfR0RkNyKRzMVd2n+3wBaVEnkPAdB60Wprr9hT4+xtkoLn4mI2IHX5GGpMwU/HWzK2hSEXUpKpvTdvb4e42FvR9beCa7Jg4W+oyTkzeCxTqF+/eU3JlNc/MZkiovfmExx8RuTKS5+YzKlfqBCeoxBBR5UutYUquJelmphHJVqu42IuCgg5QZUc7LJ0lrqIEwccEhJQdf4zwWtD1LTkCjOmay8rygmnaD/KtB/OHBAKajhNfShH5Vq2f60Vj17Bj3w2x1q/yYMPSWGcD5bYEHuw3+46Plh7z7Exd8G+/Lekr/Juy3Nv1DOoFbPYJf+8huTKS5+YzLFxW9Mprj4jcmUen2pIsIYBIMZiDYN9ZLDUpeNlCyeqSLSdSKnU0iNCyeratc6CTwkBE1atYyeg/U5dWbAqxIGSeii57Ja6BqJqUcLtQvTO3IJUez7MDg0IuI2iNI9kMkmMFuC3okeCH5FYkISzZs4rHTtMbwjERFtraIkvY1kxT8pYPAoHsUY8yuPi9+YTHHxG5MpLn5jMqWegqhxUqlg8KJUweBopQLUCNJwUgdmdpEqxnW5765CCUDkxluDSOStHkdB79Xaq30f1nZAgDpcqujzUX0kay9nmiAzatQVd9PBoalDT5cgFuN8gWXafAE6Bs1ymNY6W2Bea+99RMQ4cejlyUqfwRSEWIIco3QtlyD4PSWRs+bncgbu2S3s6FemMODUX35jMsXFb0ymuPiNyRQXvzGZUj+vVax4XEJiy1Lbby9Wut0lCH5NR/w1ubyoZZK4zvBJ/a0elwYubkNU8m6PhaWvVCrufXOl4uB9vWXxGMTGXl/P8UNoOyWRczQHEbBIEwG7wFZdcvMlOgnJhUjHaEC8pMh3ipCPiDivVCQjwfei1febkqZS3aYttBLPIFb+dHEpa100ld6zPRABN+A96Tui2xjzGS5+YzLFxW9Mprj4jcmU+lGlQskTEPeOlip+TEHAaMFJ1DVbj5xRFG2Mv00U/EiMSZ2vtlWrYLcDAktExEGhgiGJe/fBNTZcquA3G6jY2PY+v8A2Xqi7jMSriK42Yd2Onmvq+axgh6ltx+Se63LjHcH7RIJfqruQ7g2JzwUIfnS/Z4W+JKOWI+1rEshB3FuHtVsrC37GmF/g4jcmU1z8xmSKi9+YTKmfQivjCYh7l9B2uuhw7l2FQhuuAwpBiZHT5CJMnbe3Ce2gt0HYi4i4s1SR5TWItb6zobP5BhM9znyuYuOkryLgpKcCFDnJCIrdjuD73SUOfl4wOAWeFa3R+Y0bDoZJffdIBEzmBm5TvNcddUUC+7QE5ybss4Lr85ffmExx8RuTKS5+YzLFxW9MptTUltvcIO2W6BJTUttysY0ShBwSh2oIOhiUKvhtgLi3BeLeLszgi4j4GhjMHh6c6j5fV/fk5qGKVe0zvTfHrYqAT0CofArXR6m4CwhyiOhIJ4ZnSGv0XJIDUWiOIrRaE+S8i2BRk1qZU1OayYFKbegkKtMzSL3XEdy2fAEt9IdwnKbwDD9jzC9w8RuTKS5+YzLFxW9MptQUskFC3DqIX6ktmF0z/Mh9NSn0fEhEIoGHxJMhCEY4OxBEko1ChZz7Lc8YfHeg4t7+78PMvcFtXfuJ/nb9SIWqwZIDQ1JIdT9GdIhfsEZCLIl7qa3b6720tmp6Hy4KFVIj0gNj6HxIbNyoYWYeiK4kKpPgRy3wXe3J5Nw8WmnoB7UE09xKf/mNyRQXvzGZ4uI3JlNc/MZkSn28uJDFTQg6WANnWz9xPloDokYX41LdbpiCCi6tZZEmDNJsthZEpAH8bTxoWeS8+64m6NbvfkvWVhca0rD68Zmsnc9VRHox0GOfQlIyOcEwZfeGrdap4h6JjSiwQSoyBaekzm+MYFES27zBXbjb14CW/d4t3a5UUXJILjt4BsfQPj+GNN+IiAkIgamiK+EvvzGZ4uI3JlNc/MZkiovfmEypT5u0lNAetMYOQ91uJKbQTLEIdmqRMEWiBjq34DDThYoklxUkDsPapOJEXqIcgshS6/1ZjVXgOXuqAuvHtQp+nxYwbxGSZMkJlnwPIz14A8MqaDZfYrssOgEplALcc4uaXaTY0lvqdW/1VLTbqzV5+S68E3vgfqWZeUeh7+IYntXFgt2K1wleScFffmMyxcVvTKa4+I3JFBe/MZni4jcmU+rLRpXF5OSUMm2I5gRmBkREnC70Pw2jRtVrjoxOswzTby/gmoeVJum8rHW7J2A3jYg4/0QV3/5PPpS12Ufaf/3h0T1Z+6+hXt8hpCtRklJqD3sXNKeB1nCoZ+LcAPpPAf73B6zhtL/tip9L29ffk02WEpvW4L8KZJydwryKKZz341at9C/mZO3WdzGiO2Hp8+IvvzGZ4uI3JlNc/MZkiovfmEyppyAilCCIkeAzqVjIu0pXZDSJexS1fBMBi+yPJJycNyqyPK+1R/99iMmOiPjhi31Ze+evdTDn4ehA1n7WVxvw8wBxD9KVKM4ZxTkQ2MpVepISrWEUNFh5qXef1ojU69sqOdmnAovuScGC2lUm8N6+BFGSzud8qTV0NFex93ima5OG6yq1DlJt1/7yG5MpLn5jMsXFb0ymuPiNyZSaBmGSIEbuqwYGYRJNR88xO/f0OOgGA7GKzjE17YeExuNKHVmfVCoCRkR8f7Ana8+mu7LWgC51CP3lM3CIkeBDvfd4H8i11zHAMzWJqa5gxgNEU6/DbILUCGtiAfemK9Z6A4TACQin5DalQZr4PkEdUO/9BGZL0LwJqskurjPM9Cr+8huTKS5+YzLFxW9Mprj4jcmU+ibDFQkSIHodbi4ST4jUIYUklKSKX9z6qw7En5fHeOx6qNc4ryHdZaVuPvoL3KNBmNRWnShA0fV13dfUFJh+qdeyCYMwd3obsjbscOSlgAlO13CB0rbU5ps6MJPuLYnc9NtUwTbiGjWY2GrtL78xmeLiNyZTXPzGZIqL35hMqcl9RS4tcmQNYMZZD1xaXU4yavWltBKaM4hz5iCimw6dmhR0Ca6/LoZwL/aHKn7dgZQjFPcSxZ1UByM6yTpEslSXJYnFKAJC5Pt2qWt0jMUN2lgjImbQEtzAGt0LWsPId1hLdWMSXcIeinaJDj86tr/8xmSKi9+YTHHxG5MpLn5jMqXehpl0JNBsVSpe3Soh6KCAWOqOg5/CnLNnhYYYoBiT2PZI4R4kaJEg0oCQ0xVoftbTuXAjaB2dFHpvCQp9mCcKVTeJPu9GvxOp7jQSsOg92YQ10r7oyTe4yoJhqrM01VFHkBBHZ8jzEl/NN9lffmMyxcVvTKa4+I3JFBe/MZlS36613XIX1l4vVRi8G9qWeWelDj8I842IiMe1iojkEKTgBhL8Kmhlpe1S2y1ZLGRhieazHbcUBKIiKf0FPl3p/iiRl64l1UnWNauPfl+UaW201E48BeGzBdFtDZ79JrxP5H6cF/xcVnBzD+GO36RlHefowa2tEl2SXYEmKCImitfksvWX35hMcfEbkykufmMyxcVvTKbU+/WmLN4Dce+roULVmxC++2Cpc+/Wag73eDzR4xTDbVmb9tPCQagdmNotA8Q5dKslCmcRLARetJDUWqloRwLWOYh7U5gzR2IocZ12UErfJXGPxEYU/OC8JxW0xsIxKmiB3oTAllnHd6wP6yR+0X0kEfhGrbpwv0nco/b5CBYH6dipjlh/+Y3JFBe/MZni4jcmU1z8xmRK/Wa1JYt3lyqy3GtVrDiANN+dTRW5NrZ4Fl59oiLE01YFv0M4RzAXxmmpDbckuhGprbFd7qtepfeMZhwOwcVGgh+ttYnJvSQsUeBH29E6SschYWnRwnw8EFgnSxX8zqGdm9p8yRU3hWdALdAREc/AZXnSaPryaK5CNadIp7WIk5hKLkLarivkpgfzEVNdf3Te/vIbkykufmMyxcVvTKa4+I3JlJrEvQMQ9zbbtJl5FxNV4lrYX0REs1BhY3upYsW9St2FbUUtoXotJ4lpsDdJpo2I2O5By3OtQuXbodutg2Pt/Ur/LpNIRumy2JJ7jXl0JA6RQ4zEximIwJR2OypVYOvTDD/4PK2D6+8S2oYjIp41OhPydKbCMIaaJKY+Eyt4ptQWjeJcxzFICEwNziH85TcmU1z8xmSKi9+YTHHxG5MpLn5jMgWla9IaG1C+z0NVxaZVZX59wgp5AUcaQMz2DkxhHIHK2cKkUBoUOaMknZ6qveVCr5kizSMiDnpqS36r0FkJvzVVBfl2oeezDcNNR/VtWSPFfVyquk796vSfgi5IDSelmiy/M/gPAFl+aa0PyjU90wuYfxDRMeMhcdArKfvJMx7gnyupqUldSUp0v+m/T7cgXWut0Hrxl9+YTHHxG5MpLn5jMsXFb0ym1C9KSKoBkWWyhJhlWBvScMUl/40ZkI0UtqNfkwWyof1RvzuoMWjbhaXbPU0zioi4C4NQv9bqfbzXP5e1nR21uq5e6DkeDfQYvb7enUPoYb8EMe2y5FkHZWLf+XShQh4JYtQXTyIgCZXEOZzfFK4vImLc6j5T491vAqfmpNmmuwS/hoRKeL9rqJhNC37GmM9w8RuTKS5+YzLFxW9MptSHK0iGAaVrCwSxdehP3gQ33iYIgxERG7A+gX2eQPzyCbj0jiAt6HihwxpTXV81CJ/DiucDbME964EZbLrQ7SZjFWP2NlW0++NLvQ8PC50P8F5PHV4fVXpvnsPA04j0FJlRo/ukqHJ0IUKPP5E6gJUExIiIcaPHuU4S01VoxkPq/nAIKqUeUcpURExLcEqCS/OyTHNK+stvTKa4+I3JFBe/MZni4jcmU+pzaq0sVHA4h+GKG9DSuwHC4GZHMsygAsEPXFBPQkWbZ62KVc/mp7J23qhw1iUOXWVYq7jXFYk9Bm/iSxgy+ulSxbhqrNs9/MaxrL3xjm737oUOqPzN72vb8Xdnu7L2bzAkNCJiQM+61H2SK/IoRrJ20ahoR4M+U92Y1GpL7a4R3W65q1D8dWqb741EQNhfl+BXFSTugZBHbkyoc3/5jckUF78xmeLiNyZTXPzGZEqNSSegVfRBBJyCMDQDwW4KwmAXo9DjPAdx7wUksZzM1c1HDi9qB6YI6xKEl9FCXW0RES8qFRYfg2C4WatT7tcLFaXWf/s1Pcc/+o4eGKLBH7z197L2O3+mrcSHoS3CETwLkdp8Z5Xen4tKxT16BiTuNSDO0XG7Em0Ieq4VCJ10PiX8NjWiG+f/Jc4EpNbfCL4/qeI1uQP95TcmU1z8xmSKi9+YTHHxG5MpdWrL5BBCMkpov6XWwS7mIGwctSqovYS23NO5ioDkJKMQCWJFIhc4pagdOCLiRamC2i1wxX0VZqnd3lWxsPzmt2Wt/tYf4rGv0rx8Imuv3f87WTt4dAt//7zSZziG50pR0CSwUYtwBd8d+m0qJM5FcKw1QSIiOfwwvjxRvGxAQL7pPEESG+l8AlrW/eU3JlNc/MZkiovfmExx8RuTKfVRoy2YNLtuUal4RQJNf5WWqhoRMQZ34flSBbUzaMslcS9VUKEWTDJVzcFt2MVpoQLky1oDPqb1VtoOx7q/9vBT3W4Gc/iePpalZavXvLXk57JZ6zM8vcF3ggQ/ElOpRZh+S9utlTxbcQBCNYp7JJIB5Dhs4eWhd/ZkluZA7WpDJjcgnXf6tRhjssTFb0ymuPiNyRQXvzGZUh9NVfDrQ5vorE6budbUKlaQEywiYroEwW8BCbMUspEo7lEbJS2RaENLDbTfRnB4wulCxbjHtW733tM9Wdv8i3+VteFPP8BjX2X2/omsnR1p++56h+C3DaLtc/hOpIpN+AwwCRgCX6qhrO33VDS9V3F78ha0nbfYgqv04Xx6cN5nK30XP6605ZzmP1JYTJdgR/eRxEESBmlGob/8xmSKi9+YTHHxG5MpLn5jMqUmhxGJabRG88POYcZdV6smCSCU8kprKHQkzkgDzQYVn1WRuL+O86F78VGrrb/fHWqgxssffUXW7v9A78MazNFbrlRAnC1BdOXwZEwXXsK9mIPQRQIW3ZsFhJwQa5CKTK3Sb4eGoUREPNBbFjVc3wLuBT3pUwia+QDCWShshNbIMdgFtxintaIX4PD0l9+YTHHxG5MpLn5jMsXFb0ym1DSTrGkpBVW3IxFwXKqAiC20kd6iSIIRnU9yMmqiCNiV/ErQtlNw/T2eq/tu1dffPgcX235Pxa+9la5tL/ViNkCwm8AMxoiI80Lv7QW0X49bfdazhW7XlTp7FbqH/VLdnRQ0ww29EXdBlL5VgajcqhPwEbSxPyv13jxeqiuV3J0NiKHXCSDBdGISATvq7Sr+8huTKS5+YzLFxW9Mprj4jckUF78xmaISZ7CqSNZC6oEnZZ7shl1g3HGi6t71X4XPu7+bQv+5OIfBjrhdrSr3Tr0ua9uFKtK7YIndgRkNVYe19DBUDT+BJCVKL0q195LVlaD9XS71/C7JsxsRNbzLwz5Ei0900OeTWs/x41AV/xHFxTe6HdnhcQZFx/t5o/9mAf7yG5MpLn5jMsXFb0ymuPiNyRQU/AgewogbCjcLIWZSBaOOH78SSMyhFKAWREASuiYgdJ2CBfUY+t2pB34NhltGRFxCn/45CH4kYFEkOvec46GTwMGhHdtWYGsuIY59BKXwqNTrewIJV8eNJvHQ0Nkp3C+0qV/D8nsT/OU3JlNc/MZkiovfmExx8RuTKcmCXyqpCTm/DFIdfnyKac7Crh5/2pYGgJLbjZySdBwSh2aQekQzFU4hqnoDRMCu86HefUxNSoyHJsGWBr1iRDcIlcMOFXejpyJpr6fP4KzSYz+BPv2XIPiNGhBDYa4BiaHXcfh90fjLb0ymuPiNyRQXvzGZ4uI3JlO+cMHvVUHiXmrrMEU0EzgwsUPQalc0AZSWwHEGYhUKkNRqTYNVS3AHFip8kTDYxXih26bGQ9OzojUS9wYoVMIgU0ikiYjYvaOi3QoGnB6Pde1Fq2251JI9hUSpVDH0Vbn5CH/5jckUF78xmeLiNyZTXPzGZMp/A5iXVcK/UQaFAAAAAElFTkSuQmCC" y="-5478.529872"/>
</g>
<g id="matplotlib.axis_309">
<g id="xtick_463"/>
<g id="xtick_464"/>
<g id="xtick_465"/>
</g>
<g id="matplotlib.axis_310">
<g id="ytick_771"/>
<g id="ytick_772"/>
<g id="ytick_773"/>
<g id="ytick_774"/>
<g id="ytick_775"/>
</g>
</g>
<g id="axes_156">
<g id="patch_157">
<path d="M 434.924375 5603.431635
L 557.214375 5603.431635
L 557.214375 5476.138108
L 434.924375 5476.138108
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_311">
<g id="xtick_466"/>
<g id="xtick_467"/>
<g id="xtick_468"/>
</g>
<g id="matplotlib.axis_312">
<g id="ytick_776"/>
<g id="ytick_777"/>
<g id="ytick_778"/>
<g id="ytick_779"/>
<g id="ytick_780"/>
</g>
</g>
<g id="axes_157">
<g id="patch_158">
<path d="M 29.174375 5747.351059
L 151.464375 5747.351059
L 151.464375 5620.057532
L 29.174375 5620.057532
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_313">
<g id="xtick_469"/>
<g id="xtick_470"/>
<g id="xtick_471"/>
</g>
<g id="matplotlib.axis_314">
<g id="ytick_781"/>
<g id="ytick_782"/>
<g id="ytick_783"/>
<g id="ytick_784"/>
<g id="ytick_785"/>
<g id="text_40">
<!-- 134 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 5727.407733)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-55"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_158">
<g id="patch_159">
<path d="M 164.424375 5744.849295
L 286.714375 5744.849295
L 286.714375 5622.559295
L 164.424375 5622.559295
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pbbb272700b)">
<image height="122.4" id="imagedb76fe6dbe" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHmtJREFUeJztncmSJFdWhk/4EJGZlWNNKqlUpakl0d1Ad6NuNQaGscCMRa/hAXgoNux4AFjxAGDQTGYY1qAeRKukKqlUWVNWzjF5DGyARf7fNbupULcZdf9vecwj/Pp1P+Fmf/znnF7VvLqMr0iv19NYQAyOuwx1r5LYoGklttVfl9hGPZDYet3X76v0+/bqDYm9U2/hGn841c9/pz2RWNMsJPZP4z2J/U19LLGfj/YldtINJTZbzCXWQWwy6ySW+vwy9DH5uu/1cqnnoPPScSlWWQ9dX13ps7jW6PO02a5JrK0aiU0Weg9OpyNcz7ibSmyx1OcpF70SY0wROPmNKRQnvzGF4uQ3plBUgUhAwkkFQhyJc6sKfhV8ns5TgUDTVrXESNy7UqkweKWnxw0Sv5czWOO40+3dbFS0uTZX0eaVRgWjR40KkNPFTM8beo45CEOp+4Jx0NjouFXuP4lXJD5e5nn6VQjQFyEBkvY74F6R6Dqb6zVHsPi5Cn7zG1MoTn5jCsXJb0yhOPmNKRQU/HLFvQbENHJAkRB3GWg9dG5yUF2pVTi7Xl+R2C4Ifrsg+G0t+feyg0s8mOl3zs9BlARx6EaA4xAEv7P5WNcCwhIJXySkRrBoR7eQ7gsJrPRMLEAkm8513VUvz+GXEvHoWnLXk+skJHGProUEOzoOxcIEueIlXYvf/MYUipPfmEJx8htTKE5+YwqFBb9McYiEExRYSECKfMcSrYeEpe1GS3rfaa9K7LtLFc7uqCkualjfOCGwTCD8uNHtPVzqusnPpVJhxHZPo2vgVjzNFIFS96VX532e7gGJrvScoAAF657ONTZf5LsVaY10LK2HyqDJhUjrGS3hgQLo+1JCI+VBLijif+VvM8b8v8bJb0yhOPmNKRQnvzGFkl3SS6AwcQlNIlfAyC3p3QEH3B/O1c33pz/4QmKD79+V2OzeY4l98bfary0i4ifjXT0WdncIjjX1eEWc91RsGlP5LvSAy3WXkRAXEaESGUPi3kaT1zORGM4nGptpjMp8U9BzQm6+2RL6FsJx9Fmqd851tfL3Mey8zSy1R+etMaZInPzGFIqT35hCcfIbUygo+JE4RMJErtMqVTpKgh+fGz8uNPBbdqdT8WvtT/5AYu0f/5nEqp/+ncRePfhLPPdH/6qC3/NKRaSn4Pwagdg0BCFvv9NBHofTM4lN5jyM4yIphx8eS8MqanUXkstyt1HRtYVzny90b04bHWAxhutLlcHSUAzqm0efp1jukIzlMq934GXKkymP2jpPdKUhIn7zG1MoTn5jCsXJb0yhOPmNKRQnvzGF0pAVkMDxyWBVpX8AUpAFkv8t0M+SEjtZqrJPNfXL+w80NjrVk/RVIU1xBos8hvUcg9qPKvdCba2H3bnEhp0eR3tDDU9T/8LQM4GTj0Dt3wK1/xVomLoFzVHHtf7rcQKfHS1hrDXsV0TE86mOSR/PYKIRPLe5tfao4lOvihUH7tA9JGX/5tqOxO72ta+F3/zGFIqT35hCcfIbUyhOfmMKpSERIdfeS6D9MaEBLkEo4Rp//Y0iUWsIwtkv+yoiHfz1U4ld3/4LXd+JioD7/7kJ64v4stH9OYVK/QlYeTsaTQ3HUWyRqSKRuEf3PiKiD3X6WLtfw1jzSmv3d0DcuwoTiRYQuwq9AIawD/u9ocQiIk4rtQfn2spzWUUEvMwkJbpfO33tYfHO4IbEfje29Tx4FmPMS4+T35hCcfIbUyhOfmMKpVlvVVAhtxNNL8kdYZw6jnTA+hL9AC5Co6k/Dx1h/ff7tyT2gz//VGLTqQosP57u4bk/r/U8pyBATkGsmsNOkKCZu98kNlHtPgl7ERFrILLRsQOYFkQ9FWoQtdYgdgVq4BcwEv05uCkPeixecoPLXKH5q3OZOv3ctZDLkhyVb1bqivz9sTog/eY3plCc/MYUipPfmEJx8htTKA2VBE5BOOvRqOTMccUpVhnxTTESzg4WKsT9W1+v+eD8usRo7Pa9mktHny7USTaCkl5y6XWZbr5Uk8qL5JdK828/CUsk+NXw7mhBeNuA2I25fvbVLvP6+vp9DxLvMRLPaC8w9jU7Aen7MAcSk5RyBcN1EE5fvaalzX7zG1MoTn5jCsXJb0yhOPmNKZSGSjVzhQUaBX2Zn5NcIQ9HDmeOXj6D3m6f9rQX3gsoRZ2DuPMCBMSIiCH0lcOJL/Cd5AYjR+VlRlNf5DKloyh0wRorcNpt9PR5urVQge5bU70vr+9pCTWZGqtj7Uf36YDHgJMLkUuWdY3Yww/GR+W6+XJF1z5M4YngddO5X0Ap+dGRlv76zW9MoTj5jSkUJ78xheLkN6ZQmlzHUq5gNCeBJlGimFtumVvSS9cygrLafXDPPQcXGq2b3HgRLO5haW3m723ufSHBZwHbRd+XcgySu5AggbUP13cT3KGv7eho8d072odvPtbvu3GsYuHNUNdmRMRurSWvR7UKvpNaBVsSXXtUiA77TUIe9eBba1SQJNdtRMR2q6LdZq2DZTpY48+WWubrN78xheLkN6ZQnPzGFIqT35hCaVZxjeWSGizRI2dUrgCZWYI5WdBEVy2/RcHuEq44chw2ICLScSTa5ZbvElRWTfeZSrdT0LVQ+e40NaHl4npmug+TI3Wwjc9VEDtZaix1JbhunFicV1pLPQUJ+r71Rl2Im60KdiTsRUTsNSraXa/12C1wWZ6DG9NvfmMKxclvTKE4+Y0pFCe/MYXS5JbQUunvZKHH9WYqsKWEpVxRi8S93FJNOvdkrmscQ4xccbRfEezeyi1ZJqccCZVYIgyfzS0RpnsVETGv9DwkfpH4eQBi6heNilLXz7cktnWubrzT0Hv6SV9jT2A4S0TEyVzjuUInirOJycYXobLcXHFvB/YrImKrUuffOoh7JFSfVlCSjWcxxrz0OPmNKRQnvzGF4uQ3plAaEveuQElhH4SFKQylOKtUYDnvWIwhkY0gJ9k6TZKFNc57eaW2BDnlaDBIBAtvqeELFyGBjhx5tJ7cyb2psmqCetct5ho7A5Ht8fRYYj9fUyFvBrHtpQpio55e36Oelmk/nGuJcETE0UzLd0dz/TxdMwmaJOwSdByJ5vRs55Z9R0RMYd0vQq9vjCXrxpgicfIbUyhOfmMKxclvTKE0KGqAOLAGQy1acF+RCy3lqCLXGa0nV6Cj48j1R+7AaQUTdS9R7oy9BzNFNuq5l1tiWmeWmOY69FKguxAcgs9Cp8H+FL7vqL8nsW14xkhIPQTX3tNOzxsRcdJpX8DxTAUxgpxybaaIi1OkYQ+pJyQJ6RERI7jXMxCgT0ADpnP7zW9MoTj5jSkUJ78xheLkN6ZQnPzGFEpDKiBZRqm2fVVrKanNpO6S6k5TZdZD1eJ1UJDhTwr8PrLTpuCxz3mjoHMbfdIaj0HNHnY60YagvY5ITPfJ3IvZVNfYwSj3o05ttzSphizbY+h1cD5LjE6f6V7Qv0wE3SsczwPQ3pKFmO5pSu2nf3Zmy7ypUsO57oPf/MYUipPfmEJx8htTKE5+YwoFBT8SHHrgQUW7ItWhrzB9JiI98eciJJJdAcEP6/5XXCMJfhu1Clibldas78EY6Ws9/WwLYtO9Vm2tvxg+ktjpNG9KUURi7Hdmo1BiCoLf2VQFuqbOm66Ta52N4OeR1k3WcBbtcsXCrMMQshVHsHBOezGB/KU+FH7zG1MoTn5jCsXJb0yhOPmNKRTwuiVcduSAA5FlVeEst8ac1kiCSAO/bySSbMA0lKqhEd38e7kBwuIOiHu3KhX33oPGle+Pdb83QmM/XrsusacgApLgN5uzeLXKPcx1hxLo5ATBj6bhpHo+4IQl7J/w1Z+7XIE0V7impp4R/Iy18Hw30HPA9fzGmP/DyW9MoTj5jSkUJ78xhdJQOekq4sdlICdTbjkpjt4GZ1N/mTdhha6ZHHrXah6ffLOnot0rUGL8Xqfn+W7/SGKvfV9Fu8VYP/viZ7cldqPV8df79aHEyHkXEUG61CpCXq4TkIQ4OgcJZ21CiCXBL7chLK+bRG54Zql8FwRNyqGUw28DnKm7PX3GOtifvif2GGP+Fye/MYXi5DemUJz8xhRKg4JIZp+yXGEwV2CJyO/hN4E+bqczcLHV+lm6PnIH7jUq7r1ZXZFYRMT3Op0C9N5c++vduaPi3s53VMip9q5KbPKLFxIbLHS/rrbqItzt67pTffkmMDqdxEEUATPFPXomyD2JMbhXqWeWzpP7fONhK2jc6A6EL0zl1RoIfld7+txtQK+/azDS3m9+YwrFyW9MoTj5jSkUJ78xhdJQqS6YmNAplevwSkHCxpzcZXAeEqVIbKJhBeRq3G5UJNuGPnrvzlVgiYj4cF3FuNu/B+f+5h2J9TZVjFt8rn34Rk9U8OlgD/fA9bXXbkosNTo9YII1C7FwHD08AA00GTS6t1S+20CZb2owDLkB6TnB8nQQRNGRB/cAS4mBy5TF0xWSuHdzobHr8J73m9+YQnHyG1MoTn5jCsXJb0yhNDTFlAQVEjBIZMkVWFLgeUBQQXEProXcXCQskeB3BRxVt6Ysxtz41pnE2g++pev5xvsSW56fauz+lxLrxnnlyesgaG5Bj8ITcH1FRExqFVO5HJX2Iu/+bfZheMlARcktuC81nIOGUkQkSr/BHTqaq8o5XmpsBo5KYtnLc/PR+kYLUFwj4myp6z6B+7oB+z2Aab5+8xtTKE5+YwrFyW9MoTj5jSmUZjKD8s2eihAk2uS6mC7T64/OQ2Wd6C6EUO4Aityy41HFx02PVWTbOFERME6PIab9+pbHWp7cTfMEPxJ3aDJx6v5hGSzESBime00uve2+lkvfHmgZ8x4MPiHBr0sIfiMQyUYg+J3Mdb+PeucSmy+1TJvKnRcgDJJjkGKp+0LO1Fmjn38Be0Y9Dv3mN6ZQnPzGFIqT35hCcfIbUygNiRXcXy1P8LtMvz6GHGJ6FIlNFCP6UE5KjsEjcHh93KqjKiJi57NbEvvtv3osse23v9Bzd3Du+yra7B+qA+6w0f0a91TQ6jKnLEfwXqDzss7rj0eOSnLukbh3DcqqyVk6ggnGERFrIJJtQskzTcCl81Ap+RhE8wU4IgnKv9R9ITfgeTuW2GMYNkOCr9/8xhSKk9+YQnHyG1MoTn5jCqXJdcrFCkJeaghB7hADipFotw4lquSKou8jQezJDEptG3YrHq9rH75fvlAR8MZTENPg+6g33wlU4O5Xuu79hYpAx+BgG4N4FcH3pa70PUECa+592axV3GvgXVRnDtgYJN5jLcQb2NsdGH4REDqb696edRrrOhhyktnzct6x4IfDa0BsJIGVS/KNMUXi5DemUJz8xhSKk9+YQnHyG1MoKs0myK3xzm3AGRHRy1T2CVLxN8DWOAAVl6YUDRfa/PNopvXc0yVPuTmt1Qr8COyqO62uhxpukkpNNevPYN2P5vovBV0LNTyN4MacpOyTik/3gJT9TWg82cCz02U+D6m32Cbs7e4yb+JPD3zlT+FaWtgb1f/zG9mmph6Rsk/9AMgGTNfnN78xheLkN6ZQnPzGFIqT35hCacjK2YCVkwQDEjpya+oj8sciEyQikghIIlKuqNiBnfJsSVIOX8u0hmksIAJugig5gGsZg1D5fKENJQ86FfxOO2gImhrRDbRQD077vQ518VcgtkHfl2nlpfvXwloiIm4s9TxvgKuZ3oJnIM7SaHHqYbAKKWGQrpvGpNOziI1xL780Y8zLgJPfmEJx8htTKE5+YwqlwcacIPitNSrarEOM6rlTYDPE0FjKIXgREkoWMCqZxojn9hZINVeksc8ECaf0EzyBhpRDOMchOPfOZipK0l6nxFUSbdEhtkKPBx7uDc0/QbDtw4btgWsvIuItuC1vL1X8PF+AANnChJxLNEL9dZDbjyNvmLoxpgic/MYUipPfmEJx8htTKE0L45M3W3Wh7fV1Wsz1dktiNPkk5ag7gWaILzoda01iGrmq5iBrUHkjfR8dRyJgYkI3fp6EIBKMxpWuh0qjad2nMxWvSNyja0lNVyLBl45FVyOUPJ8vtNyZ3IFzcDpugZD36kJjdxJNL9/p6/O0taPP3RdPdyR23AOHJ4ip1FjzVwGNqs9trMoirjGmSJz8xhSKk9+YQnHyG1MoDYl71wYq5N3u70nszUqPuwZjTlK/MMe1CiWPGxVe9qEnHU1OwYkm4BgczVWAIpGMICEugsUvchISpz0V7Ujcod56dC009pncjynBj47N3VsSYsm5NwVhmNiCp+etqa7l3a1j/Pz1N9QBSZXMk6d6nhdL7XE4nGuMxFQid3w93fsInsSz09+Q2G5fp0dt1ToS3W9+YwrFyW9MoTj5jSkUJ78xhdKQc+9Guy2x25WKCG8sVbS5NVdRY33BgsgC+ridgIh4r1Wx4qNKBZ796ZHEyJFFwyqovBWdbol+beRiJOEN+6vBd+b2QsQ+iLklpqlecfO8a5lWeT0A16p8Efgiud65ts9H1htQln2kZz+G/T4BZ2Kum4+enVwGNcwGj4hbGyq6f2PtpsTerzV/355rrvnNb0yhOPmNKRQnvzGF4uQ3plAaEvduVOoaugrllpsLGOSBffT45CRLbYM4+DqIFc9hjS8qdXNhWS2INiT45Q73iGCXV+55sCwz8soya/j9zhUaU8MhppmiFn0nXctGoxN5O/jsEMqBn0K5838NoHfkgYphERF3J/rszEGUPqhhQjCUXxPUy3C5zHPzketvq68Cd0TEe2uvSOyPQq/7hxMd5PLGW08k5je/MYXi5DemUJz8xhSKk9+YQmlu1urcu16pQLMLvdQGoBcNocndccXC0jkM1GjB7UbC2wB+t2hCLPWKI3CQxyV6s+HAEIiRIEaOrt0BlGU2KgRRT0CayEuuxnFmGXME34NckZPKjk8rKmPWez8CEfAA7vP+upamR0Tcnaogtg6P430oL5/M8qcY50B7SI7RlMPvLuTqB2N1sL77wXOJrX1HnYB+8xtTKE5+YwrFyW9MoTj5jSmU5iaIezeXIECBTa8G4eQY9LXHFQtnxyDmbIJAt7bU36gZiCe5U2NJqCLn3SpTaCMS045BzNkbaFn164NrErsFgs8EBL/9WnsePp1Cj7upOiIjIkaZ4mXu/tBAk+OZutDOoT8eTpGGHnefJHoC7tXqBN2GZ36cucZc12auo7IHAnmqJyBOMYay6voKlKJv6bPjN78xheLkN6ZQnPzGFIqT35hCafaWWvJIzr0RaDsnoPg9B3HvMQw/iIgYg+DXwdCPTej1NwKha5USzFzxKjV4oYVyW3JqbbcqQN0eXJXYN5tdib29UFGLyqI/h5LQX9bqgHtQqRMsIuJgooLhZAYDOjL3rIMSY4qR0JXrLEzdP7oHFCOn3RiciaNZXl+/3HJwEgZpGnNExJOFuvnuLVUs3vmJHnejuy8xv/mNKRQnvzGF4uQ3plCc/MYUipPfmEJp9kPVyyXU2Y9BV6aGi2dUNw7HRbBdcULWS2geOkWdWyE7bQcNJUntJSWWVP2IiCs06ryv04futFpf/n5PFdsPJrqeN3tnEgN3aBxM9Po+7qtd+F8SNfD/0duX2NOx2oNzVe4OjlvFJnsZRj19vulfCvq3gNZD66bR6bnQfo3hH4WIiIezE4n9w0Dv9aPRdYm99s/wD0nOAo0xLx9OfmMKxclvTKE4+Y0plOYnU53kQU0hqSabjiNxJwWJZ+fQpHIHarK3oH6bmpFuVypqHTRax37YqZhGTS9To7NfA4vub7UqvHx/pgLN7/TUTnvnNw8lNnhVxcvlVMWmuwd6D976Qvdw70RFwIiI0eCGxIZQa380gQlJIJJhc1TqqXCJqUIXSVmNUTDMHMREQl7uenLJFUgjIg46fU5+Vqn1/SGI5v1Wn1u/+Y0pFCe/MYXi5DemUJz8xhRK8/nwmQRJ1CDhJNVo8CKpWmsSz2i6y6xVAWR3oGLab/TUUUcOuM9AEPkUHH7k+tts2BX37VbFsx+NVYz58L2H+p0f7kisuv2+noTGiD9TYbDXVzfe1khrvG8esvNyt82bfLRKg1P6LD0Pq7jnIvgeEiS80Zjty4xt/6rM5iz4nc50ytETaGZ6CCIg4Te/MYXi5DemUJz8xhSKk9+YQmlOJyoifN2k3FdVTwWnKTR2JG622xIDE1PsLfT37biGEc/gGFyH415p9LwREd+dqxD4g3e+lNj2j96QWO/uHf1CEH2Wj9WNuTjWqTKTL3UP9x+oqPhxn0dBHyx5ks9FUm7Hi+SKxTjmHN5PVAqeesZoug+W78Ia6Vmkkl4sbV7BCZgSFanU9wT2gu4LrcdvfmMKxclvTKE4+Y0pFCe/MYXSkFiRO4klFxJoIthBRSWhxMPmhcQ+WlPn3iswqebFEiaxLLhv2kW2E6OgXx/rPq6/DiOZ93QST8Ao73iu03QW+xrr9lWwPXyoZdGfzLRP4L0BT4Y5gVJmEsn64CTDZwen8+Q9d31wFg4aFSpJnI2I2IT7P6j081R2TI66k04F1tOpHkcTjlZ1B1JuTOZ6nty+h37zG1MoTn5jCsXJb0yhOPmNKZRmFXGPRCAqobzMOciJRE4rGiP9EXz2PpTgUj/Cs5mWvJI77LxlkexZo4La8HNwX/38nsR6GypULg6hP95zXWN3pGsZjVT8OgZR8QyEzwgedU73tSL3XKbYRKIUCcNNrYLfbqu9Gl/rg5AaEXdrLfO+FbrfVAT7ZV/357O5Ds54MNay+OcjPY7EOYL2NYLzKDeG58k6yhjz0uHkN6ZQnPzGFIqT35hCwWZfJHSRiFCDiESfpVhE/sACcjaNoLxxvlCR5bDSYRy502AHMOF3v9VzRET8+0BFqBuf3ZLYN4+0596V3bwS2sVc93F8rms8m2psBNW7qUnHJPjRgBbqr4f3L1MEpGeMBrtswWCXN2outf4QSq2/Dc69DRByH3Qq4v7jQHs1zgd503xPOz0vlTaneiNSHlH5bguuSDrOb35jCsXJb0yhOPmNKRQnvzGFktfdP1jcWwNBjESyVK83EoKoT9k0oCQUxEJy7i3nMIAEBD8Sm0h4oWm+EREf12q1W1/Xyb0nMBn39qFe83pFfeH0vMOl3sJnULL6vNJrPkk4/GgiLw1TIccaCV203yTktVAivAaluhtQVn09uB/h252u8a23tBy83dJ1Vx/r932yVGFxF8qGt1udikx5cJnJxNgLMbNMGHsZZn3SGPPS4eQ3plCc/MYUipPfmEJpSFxY9nKn7+pvBwl+1DMtgl1jOLgBYigsgSCS6+ajclJ0FoLwFRHxrNMS4497et2zvpaYPl5oiekmmOLol7oDM9hhpfv1MFTEezZjZyH1rht2+nm6ByRAkdhEz8lWq8496sFHff1Sb7EWXIxkOJ2PNXg6VWFxOIDcgNBGrfc0lQcXmSy49DdXiB2DEEuuTb/5jSkUJ78xheLkN6ZQnPzGFEpDZbXogAsVDLoKpuyCyy5V0ktCHoG9AqnsEbWY3GmwCpWndokpwicgkj2qjiU2XurnH1Uqam2BILYJQlcLQuUZiDtPFrq+o4TgN4ShHXRf6Tmhe1VVGiPBj8S9nUadcms9dQJOEiL1AYiuzx9p+fUMyqU/q1S0e9oDMQ32YQBrJJcskRpyQ/eA6OC44cyCnzHmf3DyG1MoTn5jCsXJb0yhOPmNKRS294JCPgM5fNSptZAU/GnNKiUpw2gZzfxXgKDPZv8DACPEyToZkZ6ycpFpA9OCalXXt0H5vl6p/XUH1OwOrm8E/zKkbKS5Y9JTjSZzoAlADfybQVbeGj47hH84IiK+bFV1b0dqsR7DPxIPYOr3Cewj7cIm/FNA657Cv2jDxL7m/jOX+y+V3/zGFIqT35hCcfIbUyhOfmMKJbuBJ4uAUI8/yxuxHbGaYETgekjwyxQQ6ftSTGhSEdg52wWIWtC4khjAb/XWkia26L6ScEaiW0TCokv9DjKbR7Iopc/EaKEC8tpCBU3a19MeP2MHUEO/3uhejOA1eAzfSS7ia2DPXg84B4h7zxcwdj1h4yV7b27DVJwMhGcxxrz0OPmNKRQnvzGF4uQ3plCyBb9cSFhYJNxXq5DrTMwV93LPkXK/rSK8kLNts6f2sqvg5ttZgNAI4hzVwNPUnAjulZDbPyH3/tOI9bo3hFPo940rcCYmnuQjmPizXeuekSuS7vRNuC+vz/Xk67A392sQ/EIFPxI+I3jPSASk0ekU85vfmEJx8htTKE5+YwrFyW9Moawk+OWOtU6V5OaKdrmf/XWQWh+Le3mlsWsk5EGM3HwbUHacama5CrmTlHKvmcQr2lsStEYNC2IEue+ugvhJb8HNpUbfhRFJ31s7lNhioceN5rsSo0k61EA1gsfXU6ludkl21lHGmJcOJ78xheLkN6ZQnPzGFMp/A0cmEYTUUqG5AAAAAElFTkSuQmCC" y="-5622.449295"/>
</g>
<g id="matplotlib.axis_315">
<g id="xtick_472"/>
<g id="xtick_473"/>
<g id="xtick_474"/>
</g>
<g id="matplotlib.axis_316">
<g id="ytick_786"/>
<g id="ytick_787"/>
<g id="ytick_788"/>
<g id="ytick_789"/>
<g id="ytick_790"/>
</g>
</g>
<g id="axes_159">
<g id="patch_160">
<path d="M 299.674375 5747.351059
L 421.964375 5747.351059
L 421.964375 5620.057532
L 299.674375 5620.057532
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_317">
<g id="xtick_475"/>
<g id="xtick_476"/>
<g id="xtick_477"/>
</g>
<g id="matplotlib.axis_318">
<g id="ytick_791"/>
<g id="ytick_792"/>
<g id="ytick_793"/>
<g id="ytick_794"/>
<g id="ytick_795"/>
</g>
</g>
<g id="axes_160">
<g id="patch_161">
<path d="M 434.924375 5747.351059
L 557.214375 5747.351059
L 557.214375 5620.057532
L 434.924375 5620.057532
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_319">
<g id="xtick_478"/>
<g id="xtick_479"/>
<g id="xtick_480"/>
</g>
<g id="matplotlib.axis_320">
<g id="ytick_796"/>
<g id="ytick_797"/>
<g id="ytick_798"/>
<g id="ytick_799"/>
<g id="ytick_800"/>
</g>
</g>
<g id="axes_161">
<g id="patch_162">
<path d="M 29.174375 5891.270483
L 151.464375 5891.270483
L 151.464375 5763.976956
L 29.174375 5763.976956
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_321">
<g id="xtick_481"/>
<g id="xtick_482"/>
<g id="xtick_483"/>
</g>
<g id="matplotlib.axis_322">
<g id="ytick_801"/>
<g id="ytick_802"/>
<g id="ytick_803"/>
<g id="ytick_804"/>
<g id="ytick_805"/>
<g id="text_41">
<!-- 135 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 5871.327157)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-55"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_162">
<g id="patch_163">
<path d="M 164.424375 5888.768719
L 286.714375 5888.768719
L 286.714375 5766.478719
L 164.424375 5766.478719
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p27947f559f)">
<image height="122.4" id="image0f1250ad88" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnVmPJNdxhaMys5buqt6nZyUlDilSkGwL3mQYMPQPDPjXGjb8ZMC2/CQJoCBQpExtJGemZ3qv6toys8oPtF7mfGnc8ejFvOd7DGRV3ryZUQmcOhHRK/uPt/EaVVG+Hor94a7E7o8OJPawr7GjYkdiERE7PT0PcbutJXbWTCVWb1uJ7ZUjiR3Deh4WetzBtpLYTvRwjQcbjT9sNhLbwOd/NtDj/qM5k9hv5y8lNquXuJ7XKXuFxOg+R0SUhR5bwLrbra6bYj347G41lNij4ZHEnlT7EluH3ufPlrpfERHP7i71820jMbpm2p/UfaTvI1aNPtuLZo3H1rDuXk/3ltYzqvoSS1uhMeYbh5PfmExx8huTKU5+YzKlIjGGBINhqYLBGMS0YU9Fsi6aEK0R2cJxJLxs4Dhaz0FPr+UIxL2DLQlfTAmXQuJetdUD6TwHIECOyoHE1hsVgdqNim4FCEO0rxERW1hjC8du4Dh6nlLFr+VGha6zdgbHqUg2a1j4JAGSrpuuhT6LwGFde/s6zUbFy03HeUnco/tKMcoXv/mNyRQnvzGZ4uQ3JlOc/MZkSkUiAol7kypN3COZoyZFJFhkSaUP7sASfsv2eyqSPQx1l3270c+OYH0r2K+IiBrCy0KDfbjkna0ed0KOw766LFcgfq1CYyTiUSwiou24XymwsMR79jqzVkW7BYiAJHKuWr3mLgpYYyq4jz0QC0F0JUikJtE0IgIeJ7wWugf4fUlHGWO+cTj5jckUJ78xmeLkNyZTqkEJZauVimQDEPdIrKCy2i76JFYkikMDEPwq+L4PeiqS/WipYszTgyuJLZcqfH650u+LiHhR6f7c0aWAYNjAcXvkTCz13LNSRTISpVKdgF9/Pk2sSi157Rd6LXQcOepo3eSK64LE6z825KgjIZ3oR1pZewTfVzoPOSrRHZh8ZmPMNwonvzGZ4uQ3JlOc/MZkSkWiDcVI3CMxpgAbUnd5I5T/UqluYunoQaHOvb9a6XF/9w/a1636sw8k1nzyGz3un7V3YETE1fJQYueg5czBDbaC/WngmkcgAo5LvWYsWW3SHX51YkkwQeIeuUPJoUliMT1jFXyWyp0j0t1uDZybnjva2659lO9LLE3vWnOqI5bytw8xv/mNyRQnvzGZ4uQ3JlOc/MZkSkVCADmtqHQUhSWKFeyyItGOZKXUwt+KREAQckjcK37093rc8Y8ldvLxv+O5i1+r4HcL4t51TwWsOazxbqvHLSFG4tcQ9rsu9BxdDr8S1k0MQNwbwzCO42oisR1YIz53cM30jJED9eu47s+a9nuz0nPDM4+Ow0RXK10flTt3uQNJWEx1VNJ98ZvfmExx8huTKU5+YzLFyW9Mpjj5jcmUihoAkiq5aLWRYg111W2Z3vyxX4INEeqbSd0laALQFzCauP7JZxIbvP+pfuFKFeB2zb+Xc1Bop6Ds38C48SWq/aA0JyrfpACPoK69azJMnTiimyy1e6WOP79fjiV2DI1VSeNeJzYTHXWMeydL7G3oPl7C52c9vf/z0FgNE5dSpwLRP14FfF/Xd9I/O3sV3INqT8+DZzHGfONx8huTKU5+YzLFyW9MpmADTxL8qGli20sTY0iU6IIaeFKMhK4VCGf/VekaP/0XtZt+N/5RYttGP/vFF2rjjYh4MdD1TNGiCzXrEMOx5PBbjaPK4f69SQ18Hz5PNvBd6CVwDE1GT0DcexD6TNDkImpuSvLvpkMTnoFgWMM3jGFsOz7foCuS5Rdt7rCvqY1MI7inwi70sHjcP5DYdwoVXf3mNyZTnPzGZIqT35hMcfIbkykVNVecN+piIncZ1ReTqNElYJC7iab40HENCDkU+zJ0os2/QX357T+pKFWBaPPxQAWWr8+je3a7VVckiZKkVdE1U206NpRMrMenZqsRXE9OguEhuPmOYbT4ETRqPdrofZ7AY0JXMoNX1lXBz9gSRLs6cSIRNUwl0S21GSk5/Co6rsPRSuIg3YMnhcb+tIZrwbMYY77xOPmNyRQnvzGZ4uQ3JlOqcakCDQkTJEJ0CXmpkHOPRBZqzElOuQWIkldbFeJ+DkLXxUiFPPIlnoGwFxFxDueZw3qwiSONWabfZRxpnuj6g/vX1SiSxUYY5Q6uuEOI3duoIPYAJggdgIu0hrWs+/p98w63KbksF/DskFhM+7iT+L4kwY/EWRJSadR817F0DyZbPe5RoyXifvMbkylOfmMyxclvTKY4+Y3JlIrcSVS+WYIjK3U0MfV/i2Bn1Ah+j3ZoKg0c14KgcrVRh9+iVfFjWmhsF0SuuqOnHAlGdN3bxFHXLZWi4iSlNFGxe0y6QsfSekhEHEH/uce1HvdeLCS2P1HRdLnSe7BqtTz1y5L3lXoA0uQjuq84TYfOAeLeMnHC1U6hztJhx/QhEsMHlAc4Bp76MhpjssTJb0ymOPmNyRQnvzGZUuEgiEQhD11jbyAskXhCAsYuOJao9HcKwxjo+kiMITHtENyPQ2ri1hEvQdxbwfaQYESjqVPHSNP9w1HOHYMuaJALibu0boKce8eHc4ntTPRaBgsVuY4voHfglvsRPqceefCMLmAfSeQkqIdfDTEanU0i3j705YuI2AM33xju4RhE1ztwtfrNb0ymOPmNyRQnvzGZ4uQ3JlOqWaMOOHKIYWwDggj8nFB5YwS74kiMSaUFUYrOTWLMEoSh1VYFFuqjF8ECJOmmReI1zzfa/4/u1RKmJxO7lYpIExA0IyLG4DpLLd6e90C8BFGraXQfVwsQ4uZ6D7bU+7HjsemD6ErPBImp9JykTowmgXUMQt4x9Ns77RD89kH4JnHvqIWSbColx7MYY77xOPmNyRQnvzGZ4uQ3JlMqcidhTznqH1ekOcEWHaLUdatlnQc9FTvIKVfDeaYwJCO1zyAdRw62uqNXXOKcDIR+gbEcmCa/Qow+SxN1H1f7uJ5TuAckSt5s1RVH/fG+6KuAOJrtSWxyR1ONVeQ6B6fcvOMGrECqXMC65y0MqnmL3KBS3XswwfhbIPjdh56HEREjmGJcwmUPIVbDuv3mNyZTnPzGZIqT35hMcfIbkykVTdUtwZE1LNRpRcMdyBVFZacRERfrqcSozHQBogj1XLtt1QFHIhkNq6DjqPS3y+FXYrml7iMNtWhDnXbX4PKidffiTmLUg/G0UoHt24UKUBERTzbcQ+51noPw9hJE11+Vuo+roe7DUZt23hu4BS8Lfe4iIm7hHtJ9bUCo5F6IaROMyT35Luz3hw1MMG5ZVK6hBv4WSnVpf84h5je/MZni5DcmU5z8xmSKk9+YTKlI1BiCsEQiEkECYg1DMiIi7rYq0L2Ia4nNKj2OXFVvQwN95nogppAwFBExKlTgeQeEvG+30KNwo2LjRaki5yd9/b7PixuJkVz0EMSmI3DPRURMqFIbXGNzELrO4Pt+284kRoLmKTgBh+Bqo4m8ZzAlOSLiBoa2YKkuOEZ50AnkBuzDCYjU74Og+X6tuTGCsuiIiMuNiqSvSj33cxA/z0CI9ZvfmExx8huTKU5+YzLFyW9Mpjj5jckUVPtJ+Uyd4kN0jYduoAEo1VUTA7CWUiz1XwGazlLC3pClOSJiEnruxzDW/MNar+/BRKfXNI1+9uFa6+8HwyOJXYCyuwuKdNNxT2c03QUOXcF9XcG/IS9B7X/W6L8U+/APx6Sn/wBQb4EZNOCMiJiB5ZsaeOJYcrL30p7BnyZk7T5p9LNHla67KtneO4Nx5WvoY3AO/Qq+gnvgN78xmeLkNyZTnPzGZIqT35hMqUjIS53Y0yXkvU6X6IY11CAC1j21K6YKeSX8vmE9P+wDjaruqucf0Ahs2B6ybo73VPQZTvSae1/qF75oDyV2B/bOOez1JexDRMQS7itNvpnSdB44D00VumlU5LwI7e9AIi7Vz1NjzQgWqlOf73VLNmA9rgLr+zWIroueCpo9EOyqiu29w5XGSxCaqakrjar3m9+YTHHyG5MpTn5jMsXJb0ymVDR1h2r3U+v5CRLYuuIkvJGAkey+glPTRBsSEAfg0hpBLCJiBKOSyRVHVAPoqXCqHz4NdWk9/lxdfx+rKQ4FqDmIQBERE7xuGKlNvRvIMZp4/0hgW/WgiSqIgH2IfR3Xdae6+VbQhwL7PsBzfN5qY9UXMCFputSb1eXwG0AfgwPQBif9tOfWb35jMsXJb0ymOPmNyRQnvzGZUu2UKjjQeOEuQUW+EIShLjde6sQfEmPIHUilmj1oAEmCH4k2I5hSdAwlphERD6EZ5v1G13MwUTff7jt63ODDE4lVpyoivfdrdcrtwYjtFxsdh74Ibqy6CnAhhu5FScIpxGjaE8XovtC9p3vV5fDrKsFOOQ8+dyD4UYymAl2DI/IcJjiVq/Ty+UOY7vOg0u+8hPHgfvMbkylOfmMyxclvTKY4+Y3JFBT8SNwjtxtBos0WyhYjItoiTcjbQpkviSyLUBcbiTbkEJvAxB2auvJ0q2JaRMQPVirwPL13pd/5PV3j4G8+kFjv6fsSKy7PJfbeb34qsY8++ZbEXpW67kuYZhPBZbkknA3g3UElz/eqicTGMLFnsYEyWIiRQ49KtyPYXYjPGE3sSexbSYI2xajn4UUFn21YVB7Bs9yH73wIU6Fm0B/Rb35jMsXJb0ymOPmNyRQnvzGZkqbiRbeD6nVSHVUR6f3V0FUFLrQajttWeg5y7h2BA+q9nsa+1+G++s6DS4kd/7Ue1/+L70us9+d/K7Hi0YcS27z4XGI7n/1GYh99rOLjZ5WKSKuOUdANDDBJfUtQ6e8DEFMPoNQ2dfT2NQzoWHWUJ89BMCTBj1yDGIPnm3r4DUEgp2EjN1D3XZS827vgVi3hcaTekSdUco5nMcZ843HyG5MpTn5jMsXJb0ymVGsooe1yS70OuflSS227jiVxj4Q8EgaxD18J/czA1fioAMGvVSHnYU9LaCMidk9UWCpPtSw3Hr8jIRL3ioP7Ettev5BYb6jiZR8Eux6Nkn0DuKucMoLzPNrqGr+j2xU13L9nld6/l6UKiDcdgt95oS5Gem4pD1aFCqeprj965qewxpfQQ/OuowR+CIJfn8qgaYoxuGz95jcmU5z8xmSKk9+YTHHyG5MpFYlpAaWxNOWT3E5UbkliSkR6PzQa5oBTdcu0fn270KPwABxZY9B21hv+vZyda4nq6OxW1wNluZvz30uMxL3Npz/R9XzySmLPCxUVr7cqfN2CUy6CHX4VvSdgH+n+k1i4KqDX30Y/e9JSn0Aoye4SyUBQq6CMlsC+fqu0YSOXtQ5Y+T08Y7cgXu50lM+X1LsQnm8qY6ZhKn7zG5MpTn5jMsXJb0ymOPmNyZRqQ9NSQXhJLdVNnYDaFacyX6IqoYwShhUMy7RhEyuQpV6BKW4TKtBERMxfqkhT//hGYg+XP5NY9dVz/UIY+LH+xZnEfvmf6iL85VD38CUM7bhoVJSKYHcaDdmgez2C+3LeA8EXnHv7GxL3FHpjDTqezwMYprKBoSZttScxErlJkKZpvtNG95ue9wt4PmnwTQQ7WCkvSQQk/OY3JlOc/MZkipPfmExx8huTKck9/EjcIZcduYu6BD8S96hXIJXl7g10CMFxH4ZDgIOKhJOLLQyHgJ/G8w4x5lml8bM7FeM++Fd12p3+9FpiTaMn/+LukcR+PtTz/iq07PgcxL2bhsuTSdQi4ZSEJRruUoCbbw0C65yGqcD7ieQsLhpnIfCYJg7DGtsKxPCBioDXtU5Ppmf+rtF7TzHqHRgR0YdnjwbsjBJFRL/5jckUJ78xmeLkNyZTnPzGZIqT35hMqcjK2QdTZZcC+TbQPwjEDkybORmoHfNx/1A/C+oznXcBVs5X8G/ErEPtv4E9m4KF9Rqm15zO1G5aw35/OdL1/DpULf6qmer6QNmfN1zPj3XsECMFmWJYX97Te7qBJpMruH/9xEaWERETOPaEYrAecAbHbaV7Ro1ol2D5raGvBU6Z6vh3rA/WaVL2d2H8OY2l95vfmExx8huTKU5+YzLFyW9MplRk5SQ7Jgk5JALCxOHYvsHYbqpPJmvpUTWW2AmIaSP4fZuDGfQOBL8aLKjUC+BNoP6fU2gySed+GSoivYA6/ZsWxL1WhSpqPBnB4h5Zue96KjaSBbUCOzXZaftwHLSWQHFvr8OpPgGP9rt12vyhOUxD+h00LZ1CjCzk643uDfUC6GJc6fN9CHkwAcGPrNh+8xuTKU5+YzLFyW9Mpjj5jckUFPyqAsQ9EAz6iceRA6qLtqdizA6M1J6AI2uP3GCwnjqxSShOn+n6LOiAVLN+Gyqy3YFwugLR7Rp6DtxuVHRbtHoc3ecuhyWJeyQC0iSm5UYFrBGIqbsBDr9Exyf1fKDx1RERh61+5wNwRa7BzldudY0knFFNfR8EyF1Qw2kMeNdI+71Ke1gcgMi921OhsoVn0W9+YzLFyW9Mpjj5jckUJ78xmVKRE4nK/ybgLppAc0xyeHUJGOQ6W2xUrNot1bFEpboD+C1rQURagsNvBuOqyQe2ATGlC3Ks0WSg9QaaPW5VCCJxjybDrEB0e5PpSCS89ahZK8RSy7T7cK/IpXcPmm0egE3yHozyjoh4BA66ETThnK71PFcgPs/g+aS9HYPLbgecqmsqB4b7FxExhLwcQr4N4Llr7fAzxvwBJ78xmeLkNyZTnPzGZEo16YNrqL8rsVMYYXxS6mfHINp0iUCzSoWXW3CxkatqAoIfiXtTcJedQ8krTbQhp9sCxMcILqMc0fQacKfNQeC5aVXIm7Vpbj5y3rUgKnZNUkqFroUE5CHswxhGfp+C6+99mFz0pNHrOyl1byIixhPdW5qGdA5ToZ7B5KPLWp8TGuVNwvd+6DMyBJfs276RSUzdteBnjPkDTn5jMsXJb0ymOPmNyZTqdLAvwaNKBb8HhcbuQ1ntAZZG8snJlLWAwQ1zcFqRuDcHt9Qr6HFH4h6NWUbBDxxeERGrUoUlckBSL0RydNF5yLm3oQEbIO6lOu+6IHGPejjS9e2AuHcIzr1TcO49BnHvyY7ev/1DFvyIi3Pte3dR6rVcgKPyNtFRScM42j6Uq0P/Pyq/jWABeQyO0wcgnJ5AL0O/+Y3JFCe/MZni5DcmU5z8xmRKda+aSPAI3GrHieLebkcvNaIFQW0ITqRdmIB73YPBGyBqkTCY2qOO+t51Qb0LqTR2AKINQQ4xKm1e91QQo/O+reBHfR1pjeTGLOEdM6RSchzQocGyS0EGmhrKqhtddwuV2uSUI+Fz1ajgRzEqYaf+lNSrLyLi3uBEYk9DReUPa13jQxjQ4je/MZni5DcmU5z8xmSKk9+YTKn2wWF0AK4hmnY6AnGPvElzcO1FRCzhaBqyQbESzk0TdKnH2RAcZ9S3kCBXW0T6UAv6uSWX1z64A0ksvAMn4CU4GKc9dabh+jogcY+GVZAwSNTUWxH2Zg4bdrfQ+0dluhERNYh7862uew8e3IcgvD3rqztwWuvezmuYigz73VQqKncJfg97aeLeR1CKfHyiMb/5jckUJ78xmeLkNyZTnPzGZEpFgxLG4Nwb0RhaYAXi3hTceBERCxD8duHcdGYSFklEahL71FEp6gauhRxeEdy7LvU4EvfeKdR5SQMsbgoVkX4LguZLuL47cJxFsHiZOtyF9pGGtlzDUJLnhZ6jP9Bz1LWWl/eXLCrXcL+gcjgG4Pp8BKWxx6UKfi/LG4ktGhViyVlK+0oCcAQPNdlv9V6NRvpMDIZ2+Blj/gcnvzGZ4uQ3JlOc/MZkSkUlmDUIXTcknIH2NadS244pvVR6SoJaH0RAWuMcHFRzEJaajvWkrIVKd7uOJUFsHwadUH/E7261fPddGN46g/Lr3T648eB3/mWhTsCIiCUMAiFS3XzkQqTptNNCj7sqdL++GqqgSS7QCBaGyctJEhv1jqT7TDlEsaCeh4ml0hERS1jPs77uRW+pYvHdcz3Ob35jMsXJb0ymOPmNyRQnvzGZ4uQ3JlOqsy1MOgGnJFk+a9BS32Ts8wBUTWgbECWopNiYE85B66F/Gd4WsrUelKriPypVif0wVNH+/krV8HdHOlVoVcN5V3revcGBxD7paCb6rDeVGE0Voqag9E/KfKM2Yrovl2B1vYLpUS8KtUNT34a3ZQkNXM/qW4ml9kUowb5M9t4VjPyOiPhiozX5c2jq+mml93Wy1T3zm9+YTHHyG5MpTn5jMsXJb0ymVJ+vXkmQxJhUIY8EjBHUl38dV1MlSXFloYLfHohVh9B4tAbRjSy6ZMckkaurnv+o0jrvp5WKbH+yVXHvBys9z0cPLiW290SFs2au65l8pTbZg+mexHaGKj5GRICbOp6HioAkdKWKqSQMpgpnbZnWbyAiYgM19HRuitGY9FmjAvmqhdHpsA8VPGNU4z+FMeBda3wOQidNSGJbsjEmS5z8xmSKk9+YTHHyG5Mp1dnyWoIkQtCkmtSmjiTQRHBjxzW4m9pKPz8sVMA6harsMaxnF8TCl3Att62KO12Tfd4Dce+HrYp7P9xoDf07H2gDyJ13oNfBrl5fcati0yFMkFmvdd2PG93DiIjfD9Q1tqT7UsBzAt/XgBN0Cs1D72C/STgjIQ7r54OfsVSxkYQ8irWbdFfr69D67kBU/N/iKWDvjP/ztxlj/l/j5DcmU5z8xmSKk9+YTKlolDAJeVSOSD8dJCx0NczcbkDMgeaRSxB4yoGefFzuS2wfaoTbngpnq0LXSDLOXsc0FSrL/ctWSzCf/kCde8N3tdwywNW4XesaexUIsUNdeQWjoKPDUEfNMA+hUSiORIeHgp6Jm55+3ysQU2/btNHi6w4HKpUdY5k3iNx/bLAsvoWx3R0TrkiIT1037YPf/MZkipPfmExx8huTKU5+YzIF7Wqpbj6KkdOqS5RowTXWQN+01AkyoOPFQ5iGk9rCr0/jkzv63h1s9Lr3d1VMrfZIOIU9m8N4HhBIy3296OFA93V8oXvY58rRGIBIOoL3BO0PiYUNbDhNEKKejgPab9jCrklK9IzSRBxy2s3BhUglvfOeHkdOQIJyg3pWRnBe0ts7VQT0m9+YTHHyG5MpTn5jMsXJb0ymoHqFo6kTY28COZZS+wder3WABYk+s0qFrhE4yWhkNPXwo/5oERHnha7x1UzFxsnnUCZ8poJRD8plB8d63vJUBb/qSM87fn6lsTN2xe1SP0MQyci5t4R7NQUr4TUM8liCc48Eu30Y270PDsSIiCNwEh6AiEg7cQ3j3V/C4Ixnay2Lv1hrz0Ny86WK613x1BykXPOb35hMcfIbkylOfmMyxclvTKZU5KhLFSGwxLCXLiwki4iJU4OpHPg6VBisChWv6Puw11vHBNVf9FVEGg21R97Ns/sSOwWHGLkDDxdqyRuX2hOwN4LJr7d6zUWH1XEMDr853EUS8q62eg8uN7ruOyjTJgFxCOLcBKycT8jJGREfbODYNTgO4Vk+r3QIzK8q/b7eAFyN8OzMeir2pvbLjEh32aIwiINqjDFZ4uQ3JlOc/MZkipPfmExhwQ/EgTXESJgYgGmwy7FEbEEwpBidG/u1kXcLQnTcEsoyKRYR8TvYn7IPTrmRTvN9v1Gx6v6dCkvThbrVds9oiISe93KtfQJfVFyeTCW4xDz02TkHce+yUVGSBDEq3+2XKlRSKfHhlq/lSa3X8rSnLr0+9DgcrvW+vIT1jGE69G6p94pKbUlopue461j6zh6VUEMPTr/5jckUJ78xmeLkNyZTnPzGZEpFDqNU11+1UfEjIEQlwl2kuv5SewWiIAICYqrwQnsTEXFdq5PwSxCwqr7+3taVinFXUHa8t9FYAYbDBWz3zVCv5apjOMQdxKfgbHzR6jW/qm8lRn3v+uCyrEBMo/v8Jm61Idx/Eve2W/3OOYhktyAMUzk4lX6PSQR8gyE3JDavoOy8htLoJXyl3/zGZIqT35hMcfIbkylOfmMyBW1RJHRtqOQVxC+aoNpVokjCDX1nu4G+fvR9cB5aD4lNqe4rGu4QEbGBgRrXjQpiv4c1Lktd4zn0pDss1Em2A3u4gvt3DeW3r7YqxEVEXMOwCpqWO22gVBfEPdrHAnrrkROUBnnQdOC2wxW3hO+crtU9OYdU+AomQV+EXvMCev3RtVRwLSSG0zPbBYmDVNpOeeU3vzGZ4uQ3JlOc/MZkipPfmExx8huTKaz2k/INivsaFGSiyxJbUFNQUG1pPQSNRSalebhV1Zwg1bXrWqjnAI14JvBfhRIUchjlXcEtbGEtN6BIf9WoFTci4nyt8Xmj17KGCTR0LaR8D8u0e4BWXlDIV3DNERG3pR7b36raf1vqGl8Ueq9pH2nazwj+maF/Luj65h3jxql5bNdo8tehvPKb35hMcfIbkylOfmMyxclvTKZw10MAhTiI1SCIUc1yBNdqE28zCpwEurqXJlTStZCgFcGWYYLEr64pQK8zgM/uwnSdBQikS7CBUg+CiIjrlcZJTCVLNEF7Q2Iq1aavoGHBHRw3hf4HERFXdF8q3bMbGIl+A4I2PfN7hQqIQ2hsQY1HF3DvF8FNYsnKSzGy4pNg7ze/MZni5DcmU5z8xmSKk9+YTEGVBJtopjZSfANxrksIFEBYwgaeNLEHTkECGzf/ZHGPIBciiXt0HqrzJhHpaAvHwXSeBsQr6kNAAltEek8FEr/omSCRdNWAaNfTWnlcH7gfu6ZC7aEQqPs4A4dgDddH03lOYGT4Pgixs56u+3dUjw/jyyMi7sBlSUIsOS9JvPab35hMcfIbkylOfmMyxclvTKYkO/xKmF5CE1ZSnW4RHY05E0U2atiIY7sTp/iQyPUmgh9BIgsxAhHpEGJHrd6DHRA0r+AcDRSedu116j0guPmrxsjhN6vTmn+uqzTnXUTEuA9jv3s6IakGwa+CKT5PQj/73bUeN4SGrj8f6v27gxLhm0ZHiEdwc9RFA8062zRnqt/8xmSKk9+YTHHc+vPRAAAAD0lEQVTyG5MpTn5jMuW/ARWspZ14sWw6AAAAAElFTkSuQmCC" y="-5766.368719"/>
</g>
<g id="matplotlib.axis_323">
<g id="xtick_484"/>
<g id="xtick_485"/>
<g id="xtick_486"/>
</g>
<g id="matplotlib.axis_324">
<g id="ytick_806"/>
<g id="ytick_807"/>
<g id="ytick_808"/>
<g id="ytick_809"/>
<g id="ytick_810"/>
</g>
</g>
<g id="axes_163">
<g id="patch_164">
<path d="M 299.674375 5891.270483
L 421.964375 5891.270483
L 421.964375 5763.976956
L 299.674375 5763.976956
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_325">
<g id="xtick_487"/>
<g id="xtick_488"/>
<g id="xtick_489"/>
</g>
<g id="matplotlib.axis_326">
<g id="ytick_811"/>
<g id="ytick_812"/>
<g id="ytick_813"/>
<g id="ytick_814"/>
<g id="ytick_815"/>
</g>
</g>
<g id="axes_164">
<g id="patch_165">
<path d="M 434.924375 5891.270483
L 557.214375 5891.270483
L 557.214375 5763.976956
L 434.924375 5763.976956
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_327">
<g id="xtick_490"/>
<g id="xtick_491"/>
<g id="xtick_492"/>
</g>
<g id="matplotlib.axis_328">
<g id="ytick_816"/>
<g id="ytick_817"/>
<g id="ytick_818"/>
<g id="ytick_819"/>
<g id="ytick_820"/>
</g>
</g>
<g id="axes_165">
<g id="patch_166">
<path d="M 29.174375 6035.189907
L 151.464375 6035.189907
L 151.464375 5907.89638
L 29.174375 5907.89638
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_329">
<g id="xtick_493"/>
<g id="xtick_494"/>
<g id="xtick_495"/>
</g>
<g id="matplotlib.axis_330">
<g id="ytick_821"/>
<g id="ytick_822"/>
<g id="ytick_823"/>
<g id="ytick_824"/>
<g id="ytick_825"/>
<g id="text_42">
<!-- 136 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 6015.246581)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-54"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-55"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_166">
<g id="patch_167">
<path d="M 164.424375 6035.189907
L 286.714375 6035.189907
L 286.714375 5907.89638
L 164.424375 5907.89638
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_331">
<g id="xtick_496"/>
<g id="xtick_497"/>
<g id="xtick_498"/>
</g>
<g id="matplotlib.axis_332">
<g id="ytick_826"/>
<g id="ytick_827"/>
<g id="ytick_828"/>
<g id="ytick_829"/>
<g id="ytick_830"/>
</g>
</g>
<g id="axes_167">
<g id="patch_168">
<path d="M 299.674375 6032.688143
L 421.964375 6032.688143
L 421.964375 5910.398143
L 299.674375 5910.398143
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p5f945cb182)">
<image height="122.4" id="imageda26468587" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGyFJREFUeJztnUuvJedVhldVffty7t2+pWM5DpiAEyYgAYEMrAiJH8CAKT+QAWLEgB8QQCJSQArBERjbTdxt9+nTp89l33ftzaBRJLyeT1q79+kEer3P8OuqXdfVJT1nXZq2fHNrd0jXdm7t3vgIt/3D0w/c2g/a+25tvG3c2mft0q39dPXMbzd74tZuVjO3tuzXbm296d1ajbZp3VrXwhptB2tEv924tX3Ou3bc0vlnSNu2jX8uxGbrXzG6li1sN+yKW3trfOrW/ujwfTz2XywO3NpHf/ALt3bww++4teb0xK1tPvf7zv/53K09/cS/859f+fP+ychf3z/atVszM/vZ7JFb+2r63K3N1j42engnYm+dEOK1Q8EvRFIU/EIkRcEvRFK8bajQBOUOURNQl/3Urd22Z25tbF5ADeD/rWED27X+Ekle0fWRxCMp9WJbvz8dhwTWEM6RWMF9pPPBNfNrtWfa2suLvCh4jOA7ttx4yXm5WeC2nw+8ePvgp/4dezD9JHTsyy8O3dp/XX3TrT2G5/xo5H/vk8af97O1jwszs1kPIi8oTgl9+YVIioJfiKQo+IVIioJfiKQUklpRSBiR5KqJoZveZ9qdD7zUGDXelKzMiw6SbgPIOCywNgiKE7/VC+hekNw7LP5aDrph5Vf/NyR8SKaSBOo3tTO/W+ie4XsC2Y9EA2KQro/ksZnZxyD8Br0Xfm9+7LPvevCPl51ffDL253PRrPza1j+/J3De5yvO8Jtj5t7LP1d9+YVIioJfiKQo+IVIioJfiKSUAUipDQgVEi9RkVMrHaWMtWcgRY4gA262jZWtDhu/76gbuLW4JGPBgtl8cN7HZezWDlsvAXs4Dp0j3e9m8/LZmLXj0POP0tG7A2t4LbAdZQcutz7rz8zsy+2cTsgxLn6R3to5PJcbOPaz3h/3Gci9Z6tbt3a9YnlJ5dsExSXfRyFEShT8QiRFwS9EUhT8QiSljIuXXyTiCJJclFFHUtEsXsq6BAG1phJVkBpjyJ5bgSwMC79KQhXfC5CNrb/fBUqR8Xz2KN8kavv2e/wmAoINy6rh+VGWJAnbUePXXhwaMgTh3eE1D92bBbxP063P8KOM1snai8FF7/c1M9vAOWKmZDDpT19+IZKi4BciKQp+IZKi4BciKYWkFJXgkhyiEloqlz3soHmZmZ0V3w/tBMTNAQgxOscRbDeG3+s7EGcgU+iaazKGSqPp/lD/uYX535zDce66hxtds9l+vfkQMGeUpUf3i7YjUTyqyOMBPJcxvCcnWyj9ht+7hXO8DX5D6VmRxKtlU5JMp2dFMpWOrS+/EElR8AuRFAW/EElR8AuRFAW/EEkpaFhhbUU13kHTeFSx/cdQx34IuaAjGNHdg7EdgrGlKT4Gx42mm05bngxDhp0M680axoPDXwCoMSetke3Fem6ahlOR+i1sGv0LEEG9CaK16dxvwh+XUrbNzGZQaz+Bd2wM30H6S8MCrmUCx5huYn+ZGcD72Ra2/fSXAUpBp/ekw+sTQqREwS9EUhT8QiRFwS9EUgqmHN7x2GdKITbjMdskNYgRyJgjaNa5an09/xDk0JH57VDGVMZIU+otiTwSXSvYjkQO3RtMk6X0UKj7rk57gUeAEpB23SO1mPpILNY+zZmka+250DO4BgF9QRIY7uMNPOeLtW/CeQsNPCnWKB2+UAOEyv5ryJ2me0vPWl9+IZKi4BciKQp+IZKi4BciKYUEVFQCNs1+dd+YsUQiCI4zgKy/ExB+9L8bDbSh4xLThjP8Jlu/TplWJPdIdEXFGV3LPhKwdmwURuTYKuItAh0Xhd3ST7SZwfhqs0pDWRDQtB1B/Ryo9wIJSOpDQMJvF6KCnNCXX4ikKPiFSIqCX4ikKPiFSAoKv3CWVjATkEZ+m7Fko0k8xAAE1hmU9FKpZg8CEUcvUzlwhTVkDaJMBXHG9yx2b7FUNzgmva3capKINBkm2uizln0Xge4Xrc2hCaoZnzfJPbo/dH04Jh32JZGHgnuHBqxUtkxSOZqNqy+/EElR8AuRFAW/EElR8AuRlELCgCBpQ7KJpEatvxpJMpKApAvpfy2SgLSGI6jBSVHJcY1oz727LqHGpei+O4Cl2tT3ELZD2Rh8n+geRkWqmdm6j73fmz2yVUkq0hplWUZ7P5pV3icSyMFnrS+/EElR8AuRFAW/EElR8AuRlBLNGqMR1OPOj78etX4Ny0nNbAnCLzpkoUD5LpX51sYdfx1SLF3wPphVMu1+BUTlzj6ln2aVUdkwUIMy20j40RrRt7GMOiqrNYtnq0aJDnfB7aLvSOWUoyI3nHkZOxshxOuGgl+IpCj4hUiKgl+IpBQSBiQrDoofanF/dOzWjruxP0ilNHYNmUzPN74X3gb+i5rCsAIassD97DwrkCSTjZdINcGGUovKYDeYkoe/GSEqNHcRX5ilR6WxIPxo0Mlex4WnNQLRXJNp0ZL1aNlxdDu830Hft4uc3Wd6sr78QiRFwS9EUhT8QiRFwS9EUnB8LkkkyuY6gAm4hzABlaSNmVkPeXVzkGxLyPq73OP/LZI2JE5mGz8Igqbx1sA+biRj4FKwRJUcUrA0dhdIkmJZLmxHsiosG4Ob0TFq4pPOewvlu7T/Pr0Ho/36iNr9imbuRYWhvvxCJEXBL0RSFPxCJEXBL0RSUPgRJCuoNx9JiQGOczXbQgkuyT2a1Ir9/4L98aLCj467ACFpVu8h93Wi/exIpkWFUZRaqTVl80X7NW7hPuwz3AMz2HaQitGSZ5KzJLlxwErwGOHJy3teS1TE6ssvRFIU/EIkRcEvRFIU/EIkJS78QOSQ/FpsQYhVPBUJDBJ5dJwVDckITjHF7Cu4vuggjtpvRuUeES1vZZHz8sfYBbpnNJE5Ll39MaLCLyoVa9D5HHQ+g5UyAXHSbvAc8X7VxidDuEYlIJYxh/YUQrx2KPiFSIqCX4ikKPiFSIqCX4ikFJpAQxaYrOICpqTcNnO31nfxtFRKqaU1MqzRNWrqGB2nHU3jNTPbgrWNTnKJN2G8+3p+MtrRaTHRFOt+Dzl/11N4zOKp0/QXgCFMj4pOJKJ09loK+V2nSevLL0RSFPxCJEXBL0RSFPxCJKXsk4JKKbZzaHBJabdm8VRJTIEM1nSzbIqJQdq3JtPonr2K5pqv+vfMaqmpse0w5XfP8eARoinNNejdoXeCpk8dQdPawwbG18O+pBlpdL0ZN7yNTmyi39SXX4ikKPiFSIqCX4ikKPiFSEqJNmvkzDYYf0x17TRju3KcKFG5R5l7tC+dyyCYjWfGwo9lKtTkU3PU4HlHr2UXOJMsKFjvuJklXcu+ci8KyTR6piPI8CPhNw6OL+/h92rQnaD7swJZqC+/EElR8AuRFAW/EElR8AuRFDQLmO1EWV+Q9kVicKesuOCo5Ltu7EgiZ5fsRxJ5A5gCQ/eCSqP3kWnV/o8v+Xu18yGisjFaxozH3VNokuQewHSecUdZejEZR4INR6yHfu0F9O4N4Pvdkag0/y7qyy9EUhT8QiRFwS9EUhT8QiQF7QXKtGAmGRUjkmAx4z5u+2RvYTYYltUGx2QH+7CZxcdao0wFSRotMSa2r6DMN9w/DtaiEjA+dWcHqRzM0qPefKPWCz9iRpOrGp/9ihmDwfMzM+tgpD2VCRd4CjwGXgiREgW/EElR8AuRFAW/EEkpXDLpiY6qiPb/e3EcyNyLZrEFRckQMreigzP2LR2la8HR4jQwBCRgfBxzrHfgTs/qjiUil2S//HjvmpxtIcuStqXefCTo5iD3qLdeVJDT2PWavBzAOdLAkCFspxHdQohfouAXIikKfiGSouAXIimFyk6jGX4ktHaZGosSKTgFl0TeYfHDE8aQuRUtJSZq0g2nAcN0YSw7Doq8qPzal2hGXrTMF+VlMNMRf4+OW/mMbeAfotOFV/D8iBUMxKBjRMvVa5AcHLQ+DkgMcqwKIVKi4BciKQp+IZKi4BciKTilt6EBDQ0M44Af3FdqNK3ftoCUvDc8cmtvD0/dGmVA0dRgkjYkSUgM1X6TWDQ+Q4yeQd/445DwIV7F5N4oUVlM9zGawUjvWK0cmCQiZVTSdGki2k9yH2r3ga57sPVSkrIVCX35hUiKgl+IpCj4hUiKgl+IpBQSLyQWoiKPyiV3ymKC/e8Pj93ad0ffcGvfbg/c2grkydOtlzvXG7+2hI6Ey4rYW0A2GGb9dX47LOmFfaMZcK8i6++u4XO8+28RycZlH+uvR8+g1l/P/V6wRJykci1zEntm4jnG5LO+/EIkRcEvRFIU/EIkRcEvRFIKSSQaQMETa19+Mq0ZC5ARTEZ9f/iGW/u9xkvA91b+92Zw6MedP8encNxbyJ6aV4TfBDL3SlAOcT87EFUWKzGNHmOXbaNZg5gBB9tF+ygS0fu1y7ZUfr2P8ONhMbEhLjVo/zXIvfA5ho8shHitUPALkRQFvxBJUfALkRQFvxBJwRHdBE4bCY6lrk2+oW1pLPJh49cKSNIBmNMxqOay9ed9Ao0+53DcGfQ1MDObtN66XkG68ZctNBSNTi7yf1Dgungy3PAIdkkjxWcYtPPDDibkwF+FhtCMEnsdBJulmpkt1v6m0dQk7DkAf6egY+/StDZy3FpDV5xStcdf5vTlFyIpCn4hkqLgFyIpCn4hkhIWfvtQFRiwTM0L55Bm+7Tz0uYQpvi82fvfO4OU5jMQg3R+JM7MzObQKPSr4oXhABqULgaQRkyjoGmqDNSmY5NR6gVQkVIkq6Jp2ySbKGX7uIzd2mHrJy5Fa9jn0I/BzOxqNXVrk9XcrVGNfzT1Ft+JO55mZMb3AmMLPukSfkKIX6LgFyIpCn4hkqLgFyIpKPzCU1dIVlQy4IiozLmFhptfwRrJNJor9DYkg51B1tdJA9NQsDrdbNH746wbL7AGg5evB+fJPsGGknBvao0+ByBOKfOSJCBtd1YO3dp9yH4cgzSlLLsF9FS4rQg/guQeZf1FG6ZG5R7vCrFWEeQoAklUQyZgAXutL78QSVHwC5EUBb8QSVHwC5GU8MSedhudAhP//4S2JPEy6Rdu7QLKbTuQWhsooV0MvKha9F42LXool9ywjLmBstXPir+3jzYzt3a5nri1GYyMpsk+JIewsSqcH8k5M7Oj4kXlGO7jIawdkPAD8flG4/cdwHkvSQCDiK0ptxuQiCQ6Ubz9ikZvf51dRn438JuU9Ufvjr78QiRFwS9EUhT8QiRFwS9EUsITe2g7zhrb74TWkL01g+yt570XZyQ6piCHzkECfQoSsBv4i1lRuayZTWCc95ONLyd9tHzu1i6Xt25t0fuSXhJBJK9GUEp8UnxGHa2ZmR1Bae0B3LNR4+/ZEYjYe7D2xtbvOwCpPIVnSq/YDJ6zWaUMNjjFJyroouwi8ojoFKDw7+1zMkKI/78o+IVIioJfiKQo+IVIyp338CNJEh0ZbMYlvZTthr3+QAxewiAIKnmk45J8XFVGdKOohPOO9o8jeUnnPQyW3741OPFrnS+1NWO518GxB/DtOIF9H2y83Hunh98DIXYJmYkG13dTEX4FpOSvi1oJdXx/yNyk4SfwTtCQFH35hUiKgl+IpCj4hUiKgl+IpJTSkQi420yiGiQCo3JwDhlwS+q5B7KJxAtlX+00DRaGbMzXXvjNYWoslY7S/d4GnwFJICq/PYWyWjOzcfCbMAaZ9hZk7n0bpgu/t/Xis4OGdOe9zzbcDP0xnsNgkBfn6NdJiNEalcFGs/T2ycarTbUmaXdQoDSaJDdOXhZCpETBL0RSFPxCJEXBL0RSCgmDKNjrj0pMKzKGJrWeQtYZ/eYU+vrRZFuig//zhlDGTIwrfe8m0O+PhJEZCD/I5uP+cVBqTZN74bgzEpItZytSNl/BNc8pjKx9GzIv37nny5jL0F/L6NKf42J95NaegOQyMzsC0Xk28O8YieYZCNtVRfhGfo+EXXTSsVklXmAgygBELGWm6ssvRFIU/EIkRcEvRFIU/EIkpdwfHrtFKk+NZjZRdtlx50WFmdk7g1O39qD1AqMHIfa48cLo6dqv0bWQZKGsKMoOq/V1I5lDx6ZeiPv066PtSIY+g3tDQzLMzJbQw28IEokGMs9hux4zRv2+pfj7dTD29+bwxt/DssN3bAhlxyTTSLzRsyLwfQLxTedS6634XvHx8m7jz5u6TD7f+vPWl1+IpCj4hUiKgl+IpCj4hUhKeXd03y1ew0AMylYjcUYC46jzAsmMBzyM4P+jBSgMyi6krDjKdqOhJJj1t0P/t1UDsqrz2WVrkFok8ui8o1NjqZT40rzwqzHtvHCizMY5iEGalHwy8Pehu/Ty6vTan/di49+nSyhDv6z08Lve+NLh296v0f3e0ARreudB7h3CO0/i+z5ktP5W5/stmpl9tPDX/eHwxq0tVn67hxvInMWjCCFeexT8QiRFwS9EUhT8QiRFwS9EUsr3irf9X4DFvd74lNFoCirVh5uZzbcwPhvSZxeQJnsFf5GYQFor1V9TDTylY46gYr2W5ryEa6FtKWV0AM0jySpTajBdC21HtelNM3FrZpyWTH/FuW7hGXT+OLPOp5B/CTb83ob+OuLP7wn8ZeXhhq/lfHnt1p4v/bZ0zwj8S1GwES31Fni/9b0J/mzG3+Qf/uljtzb8wYdubXvt/7Lz2//yC7emL78QSVHwC5EUBb8QSVHwC5GU8v2VlxD/Vnx64CNIVZ1AjfAcZBHJMDOzKex/C80eZ7B2A8JvDiOxacIOrUVHftegCUIkG6mRIsmmaCovQeO9KT2bRoObmU0NmqM2UA8OUvJm7Z/LZZm6tUfFS0BK96ZeDtcgdp+srtyamdnl0suv6SomrwnqV0Fyj9K4aVz4b2x9XP3xd72cMzMb/eWfu7X2wz9xa5unD/2+7/yD3xePIoR47VHwC5EUBb8QSVHwC5GU8r2tz3bqVr7293Dga7xpSgo1CnxeSZ66gaxBmrpD46+x/hrkEMk0EpDUmPEaRM4uo8qj0o5kEwnIaIYfyivITOOJQmbLHabIfJ3p1j9TkoDPO//eUV08XR+9D5OVr9F/se7Pp3bdX4eEZr/1ayhTg5N93uz97x1/32fdmpm1v/uRXzv2224e/qtb2z698PtGTlAI8fqh4BciKQp+IZKi4BciKeXN+168/OYFjBde+uaDx9CY8TGNuq78F7OEbLc5jLAmkVebnBMBG33SqGuD5p8V8UXrJIyikLSLlu8SdM21e0jHiUJZgyTEpo0XcXQP6RxJ9q4q2YrR+4MEnx89KzrHBYjmCbxO/Tk3W+3+48d+28efu7X53/y9W/v0n+65NX35hUiKgl+IpCj4hUiKgl+IpJQy8ELkZORLWb8xh2w3KAceFGi6Vhl8s2yh1xxkCE6D/QOxNDYoBlvoM0hjtw+Kv2Yz7gFIUH88EmK0RtJuQ3Oyg+wiw7bB40RLh/eRirvIyyg0AYqIilgq56Yek5+N/HY/+zs/zcjM7P2P/8qt/fzTt9zaj8bvubWHnT+2vvxCJEXBL0RSFPxCJEXBL0RSyu21H56wWkOfMhAqpySlYN95ZdT1JfRsu4DhEASJMxqpTIIGxyzD4Iyj4rMa3xzy+GQatbyG0eJXa9/PjkQQ9SNsaTgEDSUBkUdZkrRmZraB59rDtRCU2YbykrI2g89qF6Iib5/j0HlTSS/1nfz33g8V+esRC7/B4wdu7ecjnw34xeqJW8P3CY8ihHjtUfALkRQFvxBJUfALkZTyk7kv9Svggbo2mOEF3qQmXUpQxmApazBDjMpEKXPvBHoUPhj5e/MdmGpsZva+gTgFqfVp56XPV70vq77pfU+6KYjBydpvN6PhJZBlV+sxiBlrsEb7075RuUfQu0NyrlZqHRV50azB6DXT/b5aedn7n3bu1s47Luklnq/9u0PPn85RX34hkqLgFyIpCn4hkqLgFyIp5W8HXhicmM92u2c+G+80+H/HZcP91S6DE3kpW4qy2EjujCBz7xgy9x4Mvdz7EOTe7/d+XzOzD1b+HKcgoYYjnwlIJc9DyIoct/4ZUJ9A7HkY7DNnVhG0QdFFWZZ4DDhvErGjzl8zZWNS9qNZfPgJZSHuU3ZM+06WXs7O1/59v2hv8DfpuexTyqwvvxBJUfALkRQFvxBJUfALkZTy48lDt3jU+Wy1s+JF1RtQxnoIJbmLili62sSy2KIloZTlNQJJdn9w7Na+VXwZ5e9svdz71oqvZQQDPm6Ck22pfyDJnQ7+ry4gBvH3dsiKo/U1XF80S4+2I7l3PPT3+/7IP6t75Sh0XDPu/zhZ+7UprFEfvpokjYCZk2v/e21FkNNz6WBIDr07JIb15RciKQp+IZKi4BciKQp+IZJSzmdXbvESZMxF8VlHTwde+JGMocw0M+7DFy3BjPZmI0kyAEl2CGl29D/js8L9CJ/C/hew6bPGDyWZbGhQic/8moC8IkFKGZEk3UgWmcXFEkFCjI49Kv6dOIay6neGZ27t3c73UaxNRL6AvnnnjX+XsXx3DX0Pg5mOUXaZ5EyZmw1KVypPlvATQvwPCn4hkqLgFyIpCn4hkqLgFyIpZdF70xyduoJmF0xjLR2TrDulplKtNtaxR8cnw18ZJpC++qTxa7eF/7/s4bqvYP+Lrbf412DxL6Ex483am2tKS4026yTjbsapt93WX/e2i03YoWc1hlHn1GfhrPVrbzR+365izXtoPDtp/TOYtv4+zsxvtw/7Th+i2IhCPQz05RciKQp+IZKi4BciKQp+IZJSSJIZjGNeQQZjA7LwZuWlVC0Vl4QfyTiSiHTetB3VZE9gGs6T1gu2DQitMXXbNP5fdArXQummJPeuYboL3VuSeyRno5NvzFj40bOi5pooC0HYHhbfM+K483JvDP0hRpSyXXnHhjSxKdhn4ddFTexFZSrFBqUG/9++C0KIV4aCX4ikKPiFSIqCX4ikeJtSgTLESCxRxhnJBjOWSLRttIEnZTEttl5K0qhkkiTXnReD1NzUjCfs0Fjrq94fm87ndkXTXfy14L2Jjr/uKyKWhB/0MSDhhyPR4d6Q3DuFNWoIi/Jyu19dPLHPNBx6BijsdsjaI7mHjV6DmYT68guRFAW/EElR8AuRFAW/EElB4UfyqwWHQIJtaTxthFgEJ4sQ0Qy/ZR8rRaZRydedF3GUmWbGAovE0u3ai7wJrFETThp/TWIpKqpIFppx1iCV4NI0pIPOb3fQQvlu6+/jKZTqUmNVemm3DV8zuU8s8w6K0+ganwtk3sHrvq8ErGwZWBFCpEDBL0RSFPxCJEXBL0RS/hvT+99iSuLMUgAAAABJRU5ErkJggg==" y="-5910.288143"/>
</g>
<g id="matplotlib.axis_333">
<g id="xtick_499"/>
<g id="xtick_500"/>
<g id="xtick_501"/>
</g>
<g id="matplotlib.axis_334">
<g id="ytick_831"/>
<g id="ytick_832"/>
<g id="ytick_833"/>
<g id="ytick_834"/>
<g id="ytick_835"/>
</g>
</g>
<g id="axes_168">
<g id="patch_169">
<path d="M 434.924375 6035.189907
L 557.214375 6035.189907
L 557.214375 5907.89638
L 434.924375 5907.89638
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_335">
<g id="xtick_502"/>
<g id="xtick_503"/>
<g id="xtick_504"/>
</g>
<g id="matplotlib.axis_336">
<g id="ytick_836"/>
<g id="ytick_837"/>
<g id="ytick_838"/>
<g id="ytick_839"/>
<g id="ytick_840"/>
</g>
</g>
<g id="axes_169">
<g id="patch_170">
<path d="M 29.174375 6179.109331
L 151.464375 6179.109331
L 151.464375 6051.815804
L 29.174375 6051.815804
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_337">
<g id="xtick_505"/>
<g id="xtick_506"/>
<g id="xtick_507"/>
</g>
<g id="matplotlib.axis_338">
<g id="ytick_841"/>
<g id="ytick_842"/>
<g id="ytick_843"/>
<g id="ytick_844"/>
<g id="ytick_845"/>
<g id="text_43">
<!-- 144 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 6162.502567)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-52"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_170">
<g id="patch_171">
<path d="M 164.424375 6176.607567
L 286.714375 6176.607567
L 286.714375 6054.317567
L 164.424375 6054.317567
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p2a231270d7)">
<image height="122.4" id="imageb8f6c2f207" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmPJGmal19bfA2P8FgzKyuzKqu6p+ipQUJICBDiwoUL/yc3DghBowFx4DAIjTRCdNMzXV1dS2ZlVVZkrL4v5ubOoWgk8veYZEOLC9/vOb7h5rZ+btIT75L9+tN/cYj3uHo5fz8Ug8/6Eis+/UBi2TONxdGxxiIiZhMJ1b/5ncTe/YeVxP7d4xOJ/cd4kNhkv5bYKO9J7NNiJLF/WHUl9vfyqcQiIo6GW4l98XgmsV/2dxL76929xOa1HneZFRIbFXpfXsC5/LPdUGKf75cSi4hY7EuJ3ecaW+a5xFaZft8kl0csKvjcea3BF1UtsePQa7gOvTYREXeFxm8L3c+3RSWxV3B9Hmp9FvNMv+8y1+v9UT6Q2OeVXte/W/N9uTzV+PWj3uv/2tVn4qtsIzG9e8aYJPDiNyZRvPiNSRQvfmMSpfy3u1MJfvJbjX32pUrAZx+/ltjgw1cSy/r8G7NfqMxZfq+C5u7uRGJDEEYfd44k9iNIsjpUQM0OKpH+ptRtF7UeS0TEyUy/8616xbg/qBjcwL6JDMRSF87vOFOJdLkDcXakEigiItRpxXav97DQU44eHGN50NgGHgk96ogKvm9z0HPeZPyMrWH7VQYHDnTh3dgH8bk/tPu+PcS28BwvDh3cvga59w3I6+tcnyd6vv3mNyZRvPiNSRQvfmMSxYvfmEQpf51p1tCXXRUqfxMq0/70GxUQL79WWzRuEEtlqRJqs1GhsoGMsxFIm0/2mpFX5mpUbkG6zQ+a4fV7yCT7oSAtFXFcthNBm4Oecx4gyUDk9TMVQceZnvMHIIyeFnqfRycNwg+olyAbQbwdQO6d7jVWwTmT3KO3E21LYi8iYg5fsIRnZwcSuASJSOdcw/cVJD7h+Oj8lg3v5Ad4Jt7Alz6A3FtZ+Blj/oAXvzGJ4sVvTKJ48RuTKCWJrikIsW2u+Ul5V0sUs63GXixYxgw7um+izHTfl3vdNofyyE6p8msP1Z+v4To8QvlmjXlaEQOQcUe5yrgCZNVZoeWfxAj28QLKRD8Dj3d5uZBY75gzC6utXqBhpdenW4O8hFtdFnrNMpBk1U73O9/pOU9AnS1oxxExhXLiWabHvT3AMcL3dUACUj7eEEqMhwfdtoTkQCqVjoi4K/WI7iGbbwVSeY2i2RiTJF78xiSKF78xieLFb0yiYLraHrKd2sbo16RoKKHsdlRClKWKl2GobDre6Z6O1yrYelvtZ7bu6WnfgUy7C82KW4NojIioQUpSue0H0NvtHPY9JDEIZbUv17rfz0+0J+DJh9oTcLfg334SfnvYd1u5NxioQO4P9Trua5BpE71/q7Vmm0L7v4iIWIOgpfJW+lyFElB3RBK3AyuBPkclvffQYzAi4gak+4TOBWIkqv3mNyZRvPiNSRQvfmMSxYvfmEQpu5CJNIA+Zacgpa5A0JzvVe4cgfCJiBgcqfTpDVRWFD3Oqnuf47lKrc4t9AmsdIjIu572QltA5t0Uhh9EsMwZwjW7hHywv7/V6/jzTDPyriBL7+SlHk/nIxVih7nud/ErFkuPc5Vs1FcuA+Hbh6w/yubr9vRzRUfvcwekcAckZ9MTQjmMVL5Lco8kGe2HSrIr+OScpFuh976C44uIuM30bCYgoCmbj87Pb35jEsWL35hE8eI3JlG8+I1JFC9+YxKlvIKJH0P4TXgKTTSfV2oQT0s1+92u2seIiAJSQcnsd08hzbIDKZUjShnVmvyn13rOH9Uaqwq15rMMxvAETwGi/wAQBWz79OlMYmf/BBqU/uLn+oUjbay6/+3vJXbY638PIiJmYPZpRDf05Yw+PCe7NaS6wr3vD+D+wU6W8B8qGgMeEbGGtGuaINSFOv01TuJpN52H/qOwhD4CZPapHj8i4h7+kzZrOQGqcj2/MeYPePEbkyhe/MYkihe/MYlSfrJXudOnqSs1pHJCyuC6VhlTzbTJZEREd6kCa7TSdNVRpbHuWAUGHE5kIIJIsB3Dts9h1PUKavQjIpZ/hOC5K6Bx5VRTbM9Jah1rqnJ2fqWxD6cSG158od8XEb1rvRg7kHsbmEoDZf8xhGdis9VrS70c1hto4AkpsdOGnhEkYvtwD7vQXJOm7rQVuwOQksQWUn4n0L8ior3cqzGVt900JGNMAnjxG5MoXvzGJIoXvzGJUpKsoPyiKTQV3IIQK6EnKM+F4Wkl/almp40f9YhOc5Ufg47uaQNTYG5hrDUkoUWHGjOCDI2IKEk4UQg+R2OkHxYq/D58dyexYqlNRuNcQ9nFhcQGn+k+IiKuXut3Tuc0JQcabmJWnLLagUydamwK2YZrmFzDSjniACO1CarTH4IYJOFHzwkJRPK1lIG4bpCFtN6oUWgOnVVpnfvNb0yiePEbkyhe/MYkihe/MYlSvoMsNKpExV8JCJLcqxuyr9pSgGQbhMqqMUiWHriTFcwpWsMxktrrNpxKD+IjKBPdgBAjifQIomv1BgTkD9cSy6GkNwo96fxDMIMRcfWz7/UYv9R9T9da3ryDe7ACgfUm0/v3AFJ5DTeBRmJfNozsqUDabeCjdA9aVu+i8KPnoQOxCp6R84Ys0gmK6nbNbekY/eY3JlG8+I1JFC9+YxLFi9+YRCnfhE65ofI/giQJje1uEie0H9qepo0QVKp5DFlR9DnK3KP55RWUeUZE9GB7kj4B21fwlT+Wuvc3344l9vPf3Oh+Sz2/7Ey3zfrcj3DwZycS++hsLrHqTvsMTt6qyPv93ZnEXoO1+z7XUlbKTHsGfQI/gJLzCH67LeEebCgrDr4SR9DD53ogdod7jQ3g2W562idQ+v2Ya4yyVWmt+s1vTKJ48RuTKF78xiSKF78xiVJe1zq4oQQhxiWBkHEGGUt9kG4REV347SHhR7EdaJEV9DOjCtwtSBY6P4r14PwieNBJF0c3K1TWWZWQrVjpEJH+f9dz/nD3Vrf9uQq7/EpFXERE8bMXGvsM+t5NtC9g+VevJfb9X2gW6RSu48NBrw71wtvA89mUjNcDyUZ9BnECCUCfoq+jcvUTGJxx0dWhMr2GITertVrSm0oF6w2IQSrJ95vfmETx4jcmUbz4jUkUL35jEqWc7XUgRg8EHcWGuQqIo0xjpxCLiDhu2V9tC2WLSxB+axAqG/jcjAYdNOZV/Z8UULIawVmDfRSaSg3ZYGv4vmGp13G41my8+I2GPtiqnBt0WMQWV9rvL841lkHpcOet9hkclSryeqHlqe0zS5VdQ+blHkq1ScbB0Gckh3tFpbrjvR7leUezaS8uVbh3j1j4baCPYnarOz9U1NFQnye/+Y1JFC9+YxLFi9+YRPHiNyZRygMNWQD5UUBGVgm/HSS5zhrE3hNItRqBEaNy2xoExnWpEumrTIXmOyhjXoIE3IFAbNKClA14lOvxHJFMhWtGPddoUu49TKx9vVIRV3yt9/mD/oN+YUT0uiCWVpqJFpVes/1Ur3cGwvcYMupOC/0c3fshxJreYjQoI0ACUrktlepSCe5xptdhPNBnbHym13BwqTIUHpufgP0cr/V6bx5hUnat5dt+8xuTKF78xiSKF78xieLFb0yilN1c5U63ZUkvQb3CmrY8g75rfxI6IfbJpZaj9k9UlNy8UdH1y732rqMSWgLm38YGxGAEZ53RNTuHwQvnIERPa/1dHsNhD0BUbUDOXs+HEjtAJmBExNnNvcT6V9orMINpucvv9VzmlYq8HiR9XsB1oD6IJ3Ad+nAdIiivLaIDn+3Ac3sEI2iOuzodenyqcm94qp8r+nDgID5revAiYg/NHvNCv7MP06rHW2f4GWP+F178xiSKF78xieLFb0yilKNcM3868JtAGX4EldCuGzqsDcF/vPjkUWIn/1TLVvMXTyV29IX2j/vFv9Z93/UghYqyGuk6NOhLKkc9BblHAydegEM8r0HaQIZXL6fMRD3uLaivdwuVgBERd99oSejgte6nW0IfxUrP7xpS1mj6Ll3ZrKVopsEnEREH6jMJn+tQqS6I4aOhirzRpWbZlVBpXT3qscxvYdJxxRmxe5CDFDvQABo4F7/5jUkUL35jEsWL35hE8eI3JlG8+I1JlPIqp2Z/Ck3NaZqS8j4V1E9HNIw2vtBE2fzZpcSyJ0/0cw8TiZ0fwM6GGtYFpDS3HkEeET3Yfgy1+2c1pPyC2b/I9bjPTzTvczDSNOe6gmk4D3qf77Z87x9oIs5ejX2hh4hpzg8wfWgBhfZLuLZbeHYOME571dDAkyjhPwAjGuMD/4UZbfSkaYL8YavHvXrQ5+7dnaakLw7c8LaA/6TR23uHk6L0k37zG5MoXvzGJIoXvzGJ4sVvTKKUV5CCSqKLoKp4EmLUhDEiYgLNJyevdeRw53+8klhxo80nq2+0Dv0QVxIb4MSWdiO6aTJPREQf0mdHkGZL++7BNSta9hwoeyCBwKQWINiqhtTZGdyXRXufJqzhFbNFuUep4QodN92/iOaGq+9zAtv393pPd9Bn4QASt4YD36xVAM9A7k3ypklW7SZcVXAuU5CkfvMbkyhe/MYkihe/MYnixW9MopT9hpHTbaAtSbAcGgTit5DIVN1r5t7H/16zqp4MNNutLLU+vYAMsScgaLaQjUcSidt3RgzhOp7TRKJarxBlbm1BNs3mKkNrElAgWG/Wms33Y8kjut+BMFw2ZGm+D0lSEshLkHtzmJBEe93AfaGpR00UKKA1Nti3q+cvoMtovYVnDJpokrwkYdcErbclyL1buKd+8xuTKF78xiSKF78xieLFb0yilCRj6BehbSNF2nbdIIteH7Tx4TelfvYCRm//ojqV2J+tVQKeH+lY5KOtSpuP11puOQsVYk0yBvooRgdqPYcgtQq4BzVJu50KvzVM4lnDMd50NfYu5/y3WdZuNDnJPVKIGzi/GUw+ojHpOWXewWSfhiRSHBk/pElKIIGvYLw7lVDvwQIvH/WZnaz1/s0gm6+pPJnWVgmNR+leVS3XuTEmAbz4jUkUL35jEsWL35hEKUnudOE3oaTR22BZDiD3lg2FlQvo+LYG6VOAAKmhtHbUV5F39bOZxDpjPT8aN00/jfs1n8v8laqum2vtz0bjqmmqDPVhm+V6QK86GruFe0pjyXcNmZc0fahD5c0ts0OXMGloAfeZ7j0dCz0PWUO5K5VVX0Hm5dUO1gFNJJrr/Zs+qMi7hWlI3xcqAW8KyvCTUEREgAtH6UrZmFNP7DHG/AEvfmMSxYvfmETx4jcmUcp7GGpxDHla1LsOXAWW79aQhdTEAEprT2Go8geVCprzDzXDr/9SZUz+ROcnZ6cQu7zQAwTpFhFR/uWvJLb6T5ohNoHMrw3IKrpiNcidDcidOQg/EmfjA5f0noDIHUIMKlm55LmA3nUgAWsQw1147uj5vGw4F5J7T3ZQqgvyeVXrd04fjyVGmaA3pR73PZTVPoKIo2y8iAhy0qSf6f7f7PVZ9JvfmETx4jcmUbz4jUkUL35jEqW8rhcS3OYqyU5DRdUAZAyJpSao3JK+88NaYxeZlup2xyqRsr6eS5O0Ezp6ztHnybZZT6VkBVJyCXJvk/3fT1AdgIg7gX0M4Rupl2FExCUIMSpFzkFMUU+6Hsi4stT7Ms31elNvxCcg8c5rlmRD6sMHpdaUwbqE0uEZPJ+PNHwGEg6nIGcXlI1JY3+DMzIrUH6rPTx3By1F9pvfmETx4jcmUbz4jUkUL35jEqW8qaYSrEoVBjVkJ52F9r0bghApG3qSdSEzagyS5Rj8Rwf6zx12UGK8hpyzqUrOw+NcYtndo24LYi8iYvNb/ezdQgeQzKFnG3k3GKobGxjGALclzuA3/RiaDFKWZETEeaZyqFtA70EQWBnEKMvuozVlOlK/Pb1/fZBk24byYsqe7IAkoxJqOp4V3IMN3D/K0qN+maT2mkqtSe7Rd3ZBIHcyXat+8xuTKF78xiSKF78xieLFb0yilBVkA632WuY7pZJeElAgAY+hTDciogfZaX0QL6Q/FlBuuXpQGde501LGbKrnt5tAaeVMswi3S+4Vd/1Oy3/fFHot7qAOmrQbDQFpC5XfjvZ6FTsNYimDOMm9stBr1u+rLBwc6fX+aAA95TogceFC0ECMh3vtmRcRMQXfu8dnjPpEtos1DQx5n9Z9EBu+b9/yXV1S30OI+c1vTKJ48RuTKF78xiSKF78xiVIOYJAATeStocxwA2WeNLSDdR/LvS44KJJfVBq7mEHG4VQFVDHUc9lCDebtWx268W7NYulVqbLxWxj6cBMqv5ag/Mj5DOGcn0B/wycgkWjgAxeOcrZcAcKQWK70eOpav++kVJnau4B9wOtpB1mbJB8jIjpQ6lvBbqgUmb4xh36UHep52FK6dWC90Pf9dIzte2G2wW9+YxLFi9+YRPHiNyZRvPiNSRQvfmMSpexC6m0GKYz7lvXJfxsjieOXyYi2/EocDASF8XkPGmbCTjaV2vW3MH0mIuJrMPtfHLRHwHeV1v3P67XEOpBOfd7R/z5UxVhixxk0LQUozTUiooZ3Av23Zwcp1pOdxqoKRmIv9Bifb7S3RH+s/63ZbfTatPxnxE+fpf9mtUx/7ZPth/xsGrNNvQByiDWldtM0rBX8t2AN/4VbwH+U/OY3JlG8+I1JFC9+YxLFi9+YRCk3exUqxIZqm0EC9UBUUVpqBNc390g2wecqaFK43mhq6XYCQjPX9NDNTNOcb2uVUq8aXNp3odLuzW6isfWdxGZbTXXtQKPPRU97EwwGes7PYPLNB3D/aEpNREQX5BA1TKUR1tSgdAlSK2pNxR5ATf7RWtOhF0s9v/uKb8wcnkfwjwg1R+2jWdTYlqQ5xFbwddDyoRGS7pQufrfX59NvfmMSxYvfmETx4jcmUbz4jUmUclGrRCKRR2wKlYXUC6As+TeGBvkUmQqsPgijPtQ8/7hT6bN+DRNb3kCdPQioX/V029+FyrmIiO9rzea7284kNt0sJbaq9B4UIM46uQq2aU9FzhJr20nE8sSe465KtuEAGnNuIdMOLs9sr8dNzUPnld77+4ne0x8hy/Khy5aMpunQ0ziCS3ZW06jydqmEW1gH0EsUoZ4WERE1SG7yjzVk7a5gXfnNb0yiePEbkyhe/MYkihe/MYlS7qD8j4TfAUQHlRh2MxVQc5hcExExBDExgowsEh0V2MLbUr/vLbQPXcBP3j1Mi/kG5N7rnZadRkRMahV5lD1Z79vJ1BzOr8ihsSb8ftMv+h/7K19AyfL5qYrKcaXXbAbS7nGpsRuY9vSqo0f+Ntdndg5ju5sYwNW4JCEKtbVaVM2NPmmcOo1ipwLxsqGBZx/k3gkc9zE8J0ewrvzmNyZRvPiNSRQvfmMSxYvfmEQpu5A1RsKPYgWIOIpR1t9PcaWgsd1gVHogIJcgye6gLvMh0y+cQP7V4qDCrgJB2sSoVKmVD/UYt3vdN13H0+6R7gPKd2niy4oEKWR9RURMt/pMjO90PxdrlXujE5WAvb6eX72ADE2Qe68L3fb6oPtYw6j5CO4TeQSiuQPX5wyyLIf7du9LnvajMZJ49GxH8NSlHSwiGtHeg3Pxm9+YRPHiNyZRvPiNSRQvfmMSpXzWPZMgSS3KBCQpdQQC6jTnDL8RiBcq1R2A6OiAFKFhI20pYNsjGH99UfCIbjpvytKDJDaUqVVLwToEabeBQQ63ID4nBf/205CU0V6F0eNC932+hJHooL/uM71eczicDWxL12Z94IJZUmd0ryu4ZjR4gzJL6Vmka1ji5yBLtkH4UXRFWZ+4XjTmN78xieLFb0yiePEbkyhe/MYkSvkPOpcSXINk2VDWHygInLLbkOFHn6U8rRX1YQPRQSWTbfdLZZ4lyLSThim9NZY8KzTtmCYbL0BgUcZhDfdqBtvC5cJsygjOdqPsyRWUic4hA44GXdAgD5JS44Ne7zVkaG4xpy5iC6Iap0M3XIv3oXtK0m4I64WGpJAMbXojb+AvezjuGg7yAOXJfvMbkyhe/MYkihe/MYnixW9MopT/nIYs0HAIMEYPMHwXy2Uzzr5aU3ksDfKA/ZwcQH7APpaQubWFY6Rth7CPY4hFsNScw35mFANBR2KQ5N4G5M4S+tnlIIa6kDEYEdGHc6TJsQVN3yWZCrKQ9kyZnGdwLBWI2HVDDz/qM9kWemrBm+EAkhE8813oPVjA84mDgCNiQOXJIFhrMN9Vy16PxpgE8OI3JlG8+I1JFC9+YxKl/HQ8keBiqeWW95X2oyuh5HVdqmx4bNg5l2uq7SCvRE6E9NMSBNuqIRvsffowUmHUkAk2pD6DlFYHoQoy5Trwwe4BPkd9FOFKYL/EhsxLymGkrDiSaTXIPe24x/3oCMr668E+eg3vsVXDOb4PZQ0uWw6LIUjudQoQftDYLwMJGBFRQK1uWep3ll3ILoTP+c1vTKJ48RuTKF78xiSKF78xiVIuVyrtljuNTUFKwdwFLE9tUiQkkdpCW/ZAxh3o963lbntY+smfpb5rJaSD0dCHMxCDI4hNChWxeB3gnOnaUCZfBEs2ymBs2xeOSq2XJD7h2VmB/CKJ25QVV8IRkejcwb7XsO8FCL8tlabDve9Apur/C3I47rLXvnTYGPP/OV78xiSKF78xieLFb0yiePEbkyjlF7tjCc6hePsRTCXVpq/AmjZZfTLIZGKprv4UrPkIUmx3lG7aUMf+Pj0wyCcNWnlU686PoB1pH+rOa5izfA0TgN6VGttQc1M4RLoDTVeB4g0Zp622pck3ZPEnkHZNvQlW0AeiakjZpvTnpoay77Ohxqpwcacw+WhYw/hz7b8alC1cN6SQU/zQ8lxKWKt+8xuTKF78xiSKF78xieLFb0yilL/uUoNLFSpLECo0pYbFUvuJPT0aQw3Cj+TeGUg3mpzCxwjjk+GcRwVYm4gYn64ldjTe6n6gkH01UznUuRnpTnbaU4Eaq/6xtG15SdeRegFQGvCGTBeEtjS+/G/RlJNSnalXAj2jpBBpetQEBHkOV6IHY853sN+q4ZauSV7DZ7ldruI3vzGJ4sVvTKJ48RuTKF78xiRK+V2oqFruVRnQqGPKnupnKjq6DXXjPM67HVQaTXLvstDzGx9rrD9Ukdc90nPuXbFs6jw/0mBPsyf3dwuJZV+pGCzvSLDC6Gy4tCSqKFuRRNxPn9U/gBfGz3VwlLsedwl3sIJMuQqmR+XwLDbluZFARtFME40wA1UhCbiBRrakiilDkzILI1jEk/xs157Wb35jksWL35hE8eI3JlG8+I1JlPJxr/NUHvY6t3sLErCfq54b5T2JHcFI5QgWhuQ6lvAbtYGGogVsfDLS87v4k6XEui9V2OWnGstOIPMuIrKBZt8dljD/fKPaJ8s1toOS5QVkktEIcvpFL2l0doPwG0Om5BjyxgaFxsochB80szzaaXly56DPSVnqfZ6ixGPKhvJY3bfGhrAtXVsSfu9Azk3gGpKwqxuEH2XU0mdpvDvhN78xieLFb0yiePEbkyhe/MYkSrk4qGya7FSIkfDbgPCjms6mlnkdyvKC/KQSShnHUMpKmWRHYxV+vb9zKrHis5d6gH2VeFFxSW+sNWvwsNLYfq7ZfNVSr8MWxnHT5BvqR9eHFC/qPXgCYi8i4ioDSTrWZ2J4AiXLMNKohhrV8VyfneFkKLEOjIa/gUzAdcMzRkKNsuoIkoA0WnwJ5zwH4Tc9gPCDjMgmYUdyr8aSZ43ROHW/+Y1JFC9+YxLFi9+YRPHiNyZRyi1ICJIDJBZo2w3Eegfq7MYCg4Z+bGH4xSBXIfYZmMXuSLfNn1/pwTx7rrE9CLH7W40FZ/MdJlq+u3tQYbiaDTQGMpSGcbTtZXgOwva0VGEXEXFxocd98imUHV/AyPAceuGtdd/DBxWI/R8g+/FHPb7NXq/XouE1NoFhFRvIiuzTKG84F8qKpJ551BOw7UD6pgy/CkqZqdR+B8KPtvWb35hE8eI3JlG8+I1JFC9+YxKlPIJpsNu8Xdv/DBQGiQ4SEBER2z1MYN2zhHqfoqP7edsZ675X+vuW9bTsOOurRKJsvsZiyS18dgWlulPddLXSbLdtS2E0gMy9MVzXq74KybNLlW4REcef6vblS82KzI4gAxKOJ99AJuCJZhHmXT2es4Ued4cEaYNNW4Lwo6exA3eWsgNzGjYC0KCZGkrblyCz1xBrgp7HA5b+titPNsYkgBe/MYnixW9MonjxG5Mo5Ytce9INOiomJnstT6WsoQ701tuDgIhguTer2/UPzEC8fNvVnns3P+jgjPHNncSKl1CqS3KnaOgWByXGh61enxrGqm4qKG2Gfbf9pSa5k0FWW++ExW5xqkKUOMwgqxF6FAZchwOIwQwkblGqnqOJyjR0IyLiGDIl6Q4OYHsql6YsS0gEjD5uq3seQlbqBmcdswhcUwYjZQKC5vSb35hE8eI3JlG8+I1JFC9+YxKl/DhU7pzBZNRJpp9bgIBYQknvoiFrb0HluzQhmPoH7lUs3UI/wm+2KjRf/vYHieW/eJRY9uSFxOLsQmMREZOJbt8ltdQue4v0FW25Atu0gUnJ1UrFZ/d7PpbyRDPtyh30hQORt1/B53YtLRlIQIJ6653BYJCIiDFO5IXDgW2pW2NT6fD7kCwkKUkCcdeQRFiBqtxSWTx8qYWfMeZ/48VvTKJ48RuTKF78xiRKSaKEsvQoE4n67S1ymE4KAiqCyyOpf+AOSlTHhQ54oF+yWxjwsPhWYz0YupFdfayxi2ewl4j9TqVkfnMvsfLone67A5mSa5A2IIKuCxU5c8j6+qaETLLZmX5hRPyjV6q6TgqN5X0ol4ZJwmQvqdcftInEzMQcMkaHDbKQ5GAHtqet5/DstFOSEUewrvotRWPTUJE1xVt60xzWr9/8xiSKF78xieLFb0yiePEbkyhe/MYkSjkEw1pT6iXQAVs/hBTGMVZQR5wX2jz0Sa4Wn1KGC9CcXfgtm8Ku79/pPs7nc4llJ5cSy485vffKAjIAAAAC9UlEQVRQg+3/4Y3EytGNxDpg+w/6z4dYQNrmXab7fYQ0Z6LX1esQEfGzG02JPn75ILF8BBN7MKW5HfWjnnS903tKFn7T0FizbGn2d7A9NQWlaT/0zD+vdGGdQJ39Cp7Z65Kv4QP80+weRoFP4P6v4T9mfvMbkyhe/MYkihe/MYnixW9MopQjyAWk5pF7iNUgU3og4k4afmOe7alxpTYP/RGkxl1ojwCqWX6AVNfrlTb6/PTL1xLLbl5pbKB18U3Q2O75a7U2r2YnEvsOxNkNXIcZ9U+AGDVbfQ1jziMiftjpRJxPdpqqnB3B5KOBSsCAkeF7aP65e9DjfvuogvULyJPdNSTeXu312RtB6i3V0E9AsFLq7UfQr+DzkfaHGF/qOU9u9VpXc52OFBHxQ6k7J7n7tlZ5/QiNcf3mNyZRvPiNSRQvfmMSxYvfmEQpaZxzTVN3QOStW2YCjnhCd1xAU0hSUHuQX48gIKmh6AQk2dsCGpT+pWaXnT37NxI7XP4FHGFE/ZsvJfbX/0rl1y87TyV23adR4JQNprE5CJ8VxLYg/N7tVQJFRLzu6ujtf7yEe001+TCxZ3+jAmrzvcq9H79S8fnfuioV/2qv8nEFkjMi4nmh2YpPIbO0DyO1NzQZCNbBGQjNp5/rOff+9Fxiw1cqBlf/RaV3RMTrvcrmGqTktNZn+Xars+H95jcmUbz4jUkUL35jEsWL35hEKU9zzZSraxUiFTTh3EJSVYUNFxvGJ4OE6oPUOq1VQHU6+ru1B+lTY5NRPZ7vvtOsqtW/1GabD48ziUVE/OdSm2H+ea7bv15qJuEg1+t9WmoWYh8mKVXQ9XIL1wGnHkE5cETEt10VS5up7nswgSy9+43E5q9024dblXvfrlXOfT1Qgfj1Usuir1cqziIiXvX0O1/0NGvwaaHXewjP/CVkoHYhs7TzHBrMfv6Zbnul4+KfX38lsYiIZ7/TcxmADN/TFJ+drnO/+Y1JFC9+YxLFi9+YRPHiNyZR/ic9MJCBiLh+QAAAAABJRU5ErkJggg==" y="-6054.207567"/>
</g>
<g id="matplotlib.axis_339">
<g id="xtick_508"/>
<g id="xtick_509"/>
<g id="xtick_510"/>
</g>
<g id="matplotlib.axis_340">
<g id="ytick_846"/>
<g id="ytick_847"/>
<g id="ytick_848"/>
<g id="ytick_849"/>
<g id="ytick_850"/>
</g>
</g>
<g id="axes_171">
<g id="patch_172">
<path d="M 299.674375 6179.109331
L 421.964375 6179.109331
L 421.964375 6051.815804
L 299.674375 6051.815804
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_341">
<g id="xtick_511"/>
<g id="xtick_512"/>
<g id="xtick_513"/>
</g>
<g id="matplotlib.axis_342">
<g id="ytick_851"/>
<g id="ytick_852"/>
<g id="ytick_853"/>
<g id="ytick_854"/>
<g id="ytick_855"/>
</g>
</g>
<g id="axes_172">
<g id="patch_173">
<path d="M 434.924375 6179.109331
L 557.214375 6179.109331
L 557.214375 6051.815804
L 434.924375 6051.815804
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_343">
<g id="xtick_514"/>
<g id="xtick_515"/>
<g id="xtick_516"/>
</g>
<g id="matplotlib.axis_344">
<g id="ytick_856"/>
<g id="ytick_857"/>
<g id="ytick_858"/>
<g id="ytick_859"/>
<g id="ytick_860"/>
</g>
</g>
<g id="axes_173">
<g id="patch_174">
<path d="M 29.174375 6323.028755
L 151.464375 6323.028755
L 151.464375 6195.735227
L 29.174375 6195.735227
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_345">
<g id="xtick_517"/>
<g id="xtick_518"/>
<g id="xtick_519"/>
</g>
<g id="matplotlib.axis_346">
<g id="ytick_861"/>
<g id="ytick_862"/>
<g id="ytick_863"/>
<g id="ytick_864"/>
<g id="ytick_865"/>
<g id="text_44">
<!-- 149 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 6306.421991)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-52"/>
<use x="111.230469" xlink:href="#ArialMT-57"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_174">
<g id="patch_175">
<path d="M 164.424375 6323.028755
L 286.714375 6323.028755
L 286.714375 6195.735227
L 164.424375 6195.735227
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_347">
<g id="xtick_520"/>
<g id="xtick_521"/>
<g id="xtick_522"/>
</g>
<g id="matplotlib.axis_348">
<g id="ytick_866"/>
<g id="ytick_867"/>
<g id="ytick_868"/>
<g id="ytick_869"/>
<g id="ytick_870"/>
</g>
</g>
<g id="axes_175">
<g id="patch_176">
<path d="M 299.674375 6320.526991
L 421.964375 6320.526991
L 421.964375 6198.236991
L 299.674375 6198.236991
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pf89b7b5ccb)">
<image height="122.4" id="imagefd7931c772" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmPJHeSnc2X2CNyrczKJFksVjfJJqenR8tIDQgQoJOOuuifFXTrgSAdBAEjzLBbo+FeZC2ZVbnFvnro0NOXep8DPiid+ve+o6UvP18sHHj5zCz764t/v493aGXFu6Ho5i2JtWG7ai+Hi9V+K7GIiM1+JzE6dw/OPciaxfoB15Llut1eYyOI9feZxCIidMuIlt6KON9WGou1xFZw7udlW2I/lnq8N5ne74f9RmLrve4bEVEFLBzYwXb0TAk6wy50PTtYYxb6DPKMnwuxgWPSeehalpU+q3XN+/0u3Vyf36NyKLFfFQe4/39e6Hr+1X8aS6z8d38lsezJLyRG76wxJgGc/MYkipPfmERx8huTKCUJeSS6dbJSYl2IgRYTeY1IllXNhBsSeAgSqjjWDPpl7NRoYSTu0f60+3Kv93sBe5OUVsK9acO+JHwWNSIZCXkUCxDJVA5jQYxEtz2cg549Cc1FzXeMrjCD626+bn0KJBYSVcNrHsH7EBHx7KO3Eit/85nEsg+e6M49FRb95TcmUZz8xiSKk9+YRHHyG5Mo5UHelWABMkkPBT8VJnLYt1XzG1PkGieBjtbTXARU0JmWaayZb+uPtMHZSCsEjTMW4OZbgyi1hX3pHC0QWOlZFTVC7Bru2qahmErPip4BiWl0PBKaCTpvREQL3JxNWUCMBDpytZJwTde3BgFxmrGAuF7qM9xv1LkZS115Vqiw7y+/MYni5DcmUZz8xiSKk9+YRCmP844ESaAbgGB0AE4kEuImOYs2tyB0LUEAIZGFBB6K0a8bCTQk+K1RGGxeOlo2q4xFcY/O09SZSHe7RYJYjRgGtwfPnpHgS+uuwDEIolbTcmA6R1FzLewGbHZvxw2F5vdxpdI1v9mvcNvfvz2V2On//FZibbjfcXoiIX/5jUkUJ78xieLkNyZRnPzGJEo5BHmIxL2LSmOPds0EtuuCxY8i1/h9QK85kGNItCGhss759S5bEvewtLU5dOa8oQhI/P/+pa47XkmiJoiz6hmL6EHpcBucnCUIdDPoj4frg5VTGXMElzLTe7IDwZdK20lYJEGaIPcrlQO/rchbGPE/uurGPfqbRxL78kZFwO4vX8B6jDFJ4uQ3JlGc/MYkipPfmEQpSZQagrjzIdS3PgVhYgdlovleXYQREbMWlbI2Kz2lXy10/TV05JEIRK44ErkiuIdfr2rY2w0FNj1gD+5DB2JLOF6OohTfG1p1jWYrkPBGIiD1HixBGKTyazrHsKb09wAGudCW5Pocw5ANKkVeVVBWC+QNy4upzDci4vv9XGK/62pvvslXlxJ79sNE19NoNcaYPzuc/MYkipPfmERx8huTKE5+YxKlHIH2eVLpb8LJTlXOUVftmMuNHo+U8AhWqvugiJJi/z6/WlRrTSO6Dym244sZgLLfamgPrhpakLtQp31G/5EA1XwCVupFjS21glp7Ut1p1fQfiQE8rUOIncD0KGqiSmo9Pb+IiC50TAVXOjZWpV4X1IRzAf9paDp9iOzCdZb0Bfyn4ftsqRuCDfh2cSQxf/mNSRQnvzGJ4uQ3JlGc/MYkSvkE6vQ/3Kjgc5ipuDdfq0BzXalIct+qE7RUFCHhRuULhmypVJNP9EBkOQB1bkjNESOiA2cnIW8DAg/ZcWk6Dwmn51sVgS7hmm+hierPYK+O4Hu2pvWQkNfQGj5E5zNNcFLoCZBgFxExB6HzDi57ASIp9QJYZ2r5pb4UJJBSPT82na2xpJNgOAcR8CpXu3He8sQeY8w/4eQ3JlGc/MYkipPfmEQpP1mrqvW4UNdQAQ0OX257Evu+rSLJ27zprJmIDjnWQOEhoYRcVQsQT1Y0AQjOQbJLXQPPFfyOkjC1gvXMQDDawMl7cMBH4Cw872nd92ipQtW46sMKI97qI8T73bTvw5fZTGLHZ7rGdrfZUPTdRs87HXPPiBczrXfflCp+jeEZ0FjzLkiQO4itoCYfx9e/xwjxCH7HNtAUdA5r9JffmERx8huTKE5+YxLFyW9MopRnuY4D7rZUeBmvVFB5WzYT9+6yZkJOBI/9pvLPDhrtSKLTDckNtgJB8xqEr9uaTpbkTCQXWw6NIqnElGJbuOYdOcRgLBCZxlZ1rriGJb19KN+93Km77PwjbR45+EjfiWIEI99BiKvmum/nit+x3XMob16NJHZfkLO0WVNXYttwoDo1DqVpRrX7w3mWEKNn6i+/MYni5DcmUZz8xiSKk9+YRCnvKnB+LdUBRSWhNyCIkbCwqJlAQmOxSVgK6JFWNRRjSAai1Uxh3TPYu65EeJBDaTRMi7kAJa8HZcIdUOioh18LxJ3tVtcyrnQtdzXzwidQJkpUcH0EOfKqJZS8tkAka+t9yCDWfczXch4qNi6/1fdpuhtoDOZZ3cA5qKx20XCKTxtchDsoJY5ghyAxh+1IvPSX35hEcfIbkyhOfmMSxclvTKKU/7uj4gINXliAA+4hU+lsBuLeqsbttIbSwy2ch0S2KQhsJPjRrxvJWTMQbW732rewbnzyDERJGp5xWul2F1s9Zh9kyTbc735H153BPaSSYxRXgwdTkNi0hu3ewuCN/rU66g6mKjR3eyqS9UYa6z6GASmXWl4eETG80Ot+1r6V2Pr3+j7dFNo9ckWCNoh7S4hlDcfF13kD3+dLvYT3019+YxLFyW9Mojj5jUkUJ78xiVJ+n2lJbx/ENGIK4tdkr0IHTReNYMGpALFxDiWO97Ad9UPrgluKhEEqg6T1kRhWF68T1N5lBCXPp0PtcVeWukaoCI3JVIWqOYiP3AEuolfjMHsXeqo0DfjNVsvBZzMVBtszfZ+OZ9pP8vJwLLH8kPsRZqc6nbZ/oPt/unorsW+//0gPCCOCqXckvifwsDYg7Na+Y7A/nXsNwjD1I/SX35hEcfIbkyhOfmMSxclvTKKUJHSR3kCuIxL3HvYqIM4qdcpFsGusQ045EKDIK7XFKa96MSR+0HY0qKKA9UVEDCBOff2oinYJfQsXUFZdwM7ztZ73CuYav4ZJyYsaL1kBTjQSm8h5OYPPyQpEwBaO1YWpuBso54aRwfs1i8p0luzoQGKDL1QE/PwbFV1/X+q9Hef6ftP7tAGBHIXiiq9lDcL5Fo5J03wJf/mNSRQnvzGJ4uQ3JlGc/MYkSnkEfdhI6FqDODQB8YomhK5rBIwCHHkk+NF6chClaDsagFCS0Eg9AWHfOvfVENbdBRfiFrSYO3BUzjfqWNvANdOwidcllNqCi5DKmCMidiDusTSo+9+BuHcE7sIRTBcuyGUJ93B5r/e6c6W9+urIymbfvA8vHyT2168vJLbpaMnyc3h3xpWK4Uvq/wel5BERKyodhiEpFeQg7esvvzGJ4uQ3JlGc/MYkipPfmEQp/2qjgh8YqOKugMmv8NNB00nrfmFI8OuBANmCI5CHicQ9Kk8dgThHfQs3DfsJRkS0wc1HpcM0fXdM5bYQmkPsBqYiX4WKO7fgsmw6STaCBT96LvRgDgot6T3ckftR7+14p73+Wm91wEb+9RRWGNG7u9clgklzp5XDEaHv4rNMXX/zja6nVQ4l9qKAwTfVQmLkBIyIKKksF4TcDYip061eoL/8xiSKk9+YRHHyG5MoTn5jEsXJb0yilL8t1cK4gRHP90tVXV8WqoY+b2nsqmQb6RxUTW6G2AxS10nZv6jgPwBQX74C5XpSM9aa1gguW2x6ucT/mihTOPcEJsiMwTJ6V6naW9dgtOkXgdRnskQ/wH9wpmAD3sFzoV4Ai7Wq69sXvOqDB7XU0kQjGmu+2UDfB/iv0DGo66dgu76H+zWHe1PVvGNkfW/nGltAf4H5Tu+Dv/zGJIqT35hEcfIbkyhOfmMSpbz8XAW/PRSdX8xUrHjyoCLgLx5UjPkx16aHERE/lipW3OYqAlKjSZJEuvBb9ghEpA9BTTveaXAKttvXNbXgcxCRiDVsR9XbZLGew1WTaDoHwW+FzR9ZSsUeCDjxpVlPBYLu1hb6FcwhtiphotCWR3RPH6hfBU1XgqalENvTdnDJ9JY0vV99GHMeEdEHu/EwV+v0soB3GfzL/vIbkyhOfmMSxclvTKI4+Y1JlLL7VMW4/VpFpPZcY52J1jYPwVE1eqW1zRERrbU2PvyupWLOA4g+5IAbwm/ZGRTQP4Kmh6NMY5tKxRSutGbBj32NCrka0QkIbr4ZCH7rhpNhqAlqBIt7bYjR5CNyWZKsuIJzt6Cen1ZIzstbEgEjYl5BnwWaa94Q+lqua+5jE+jZ18ENamHCFQi2LEAaY5LEyW9Mojj5jUkUJ78xiVLmF0caXannLJtBSeBQRbLWsYpNRUfHH0dErL5WkWa6U3FwC646Et4OwGo1qlRQ6YAEtYEGnDcgIr0EB2JExBgkOpKBSGSj7UgGWtEkFhD3qAEkusuoA2uwuNeBWAHfji2s/A6aTFbg7jyCctk23Ai6N9TcNCKiAyXBHXhP2FPXDM0CdnLSvVnCs6IpPhHNJ1fR1KwFNHD1l9+YRHHyG5MoTn5jEsXJb0yilEHOqErFmFwrdWPf05LeAIGt19epJBERF1Mdq/zws7rqKpBjqO9dH6xkHXBzreA37wHGZP9Y6gFfBo52QZFlBP3ZyIVI037oV7kNAh05xFZQErqH5/K+7EA4XcBppnuVxF6DeDUAt9qjXN+xIdyvuklKBQhiQ4j1QWwkZyIJeeQ4fMhUyJvAmOwx9FZcwnYRLNoSWxIRPaLbGPMnnPzGJIqT35hEcfIbkyjl9h9eSzDrqviV9VVEyg/7sK8KdlkbZiJHxOCjG4k9magbsHhQ19809Jgk+ZBEMgG32ktwEV6FuhoXNe6rLohVNDDkHHoKnoLj7GAHw0vgYt7A2OevCz3Hz7przGuEJRKMCBrRvUERUM9D527Bc1kUqjSfQ9+6Ts13rAUvxQYEvyUJpzROHa5vRuJew8Ep1FtvVfNc6hyZ77KpoMy70vX4y29Mojj5jUkUJ78xieLkNyZRyr//3akET4fam+/0yUxivc9U/MgvQNxrseDXOlPh5nis5y5bKmDMprrvZKVusJs9xEDcu85ByIHC4bLm93IEAuTxXgWsD6Cn4CdbFRYvDqcSGxzqdrMHvQ9n0xOJ/fe2irM/7fWZRnBJ6Q4cjE3Lk7GHH4qAen0kcpETsB/cw28Ez2tAyikwg56J1EdxCvfrHq6F3HyLnZba1gmuWdOSXhD8Nhb8jDF/wslvTKI4+Y1JFCe/MYlS/teOCmJPFzrI49f/R2PPtrcSG8S9xLKBilJ/PDsMVDjWzQZbmmOrkOD3UMCk3ULdXLfQiY0GXVAvuwgut22B0jXaaZDEvYt/reJQ+emZxI6h3+Lgd68ktntxqetr8zCVVyBMrUG2a/rl2MK+JF6R0EW955YF9ShkSNwbwnOhqcjle0wcXoNYvGwo7lU1Q0WgHWHsYFsq88ahLXgWY8yfPU5+YxLFyW9Mojj5jUmU8jn0pJu3VDjbZlC++40e8OPNncR6l9z3jvSU3QyGHSxVZJvPdI234OZ7DebCK5jISyWYBE2hjYjYgaBCk3tpomtvoEIQiXv5r79ossQ4bv1BYv/hv2jp9uDVY9z/Dx0VAq9h8AYOnMCBKBqj8t0NfItIqKIpxLu8pocfxKivIwmQVA7cajiRlxyRNEyFtqun2eCVpjF/+Y1JFCe/MYni5DcmUZz8xiRKSb3P5iBMPC+gnDBUBFx8rxLLxVsuHe30YHorlLwu5to/8HbRk9g1DCB507C/2hqEF3Lt1UETdGlww32h17LdgixFw1RKGJIC026zMy3pPfqNCrF/OVeHZkREea82y+/b8Axg0MkdXPMKYj0YxkGi2wC260FJbwuGbkREgJkThbwMhMUuHLMLA0Pa7/ENpWuug0S7Dgxoaed6f2iisr/8xiSKk9+YRHHyG5MoTn5jEsXJb0yilI9D1dQJqLNjqE/+ulSFdAzTVJ7OVJGMiDifqM22k+t5tqCw3sH46wn8lFHDxRU0OKRx0/TbWGfGrOAvS1CVJ6DETh60V8LZS1Xis8PnekCwqlYvriW2vdN7vQc7dEREF67lZEdqscboHySbDM5Dn51c/4NzDPtewMj2c1hfRMQZ9E8YVhrjp0/mYJhSBIr7DeRBr+D7/S5Ujx/Baj8p+/SfFLJT+8tvTKI4+Y1JFCe/MYni5DcmUcrTigSMZg0ux6E22Qeo+562WehYbTT+aEfNGWF8MnQz3DZ0StKUE9JYSHahuv36uMpIY6jxv1qq0PX4DzqqvDeHBgpbuDdXet77l2rFfgmjzyMi3sLYb+pD0AeVjETAAEGMxpf3wer60VaPd7nVd+wk454Rg46+t2WpC9+BrXy51jU+WoOQ19LrW5Z6v5cl5ctCYlT3H8FCINmDaX9qCuovvzGJ4uQ3JlGc/MYkipPfmEQpSSPbgSi1hHr18V4bT06oEWLOvzHn4EQ6BOGF/IEkAvag/roP7sAuOLeoUWTTWAQ3qdzAvbjLVfT5ARqmHn93JLGzMfdFeJfZFMaSz1RUvIL7HxFxB70b4JWIDsS6IAKekRMQ9v1gqzt/XE4kdnqp96F/qsJeRETBmqawX+uCdku9D2c3es9G1yOJbaHXxRoW8xqcdxOYUhQRsaz0GtfQm4LGcW9BsPWX35hEcfIbkyhOfmMSxclvTKKUtzk0ngQRYbZXsWEFTiIaYV035WYAok8fSodJ3FvD6GUSm4YgNk5hjTgZBhx6NC0mgqfX0DELECV/BEfdwW4gsdW1bteGEujlTq/vHmTTGc18jgAvZwSZIunLAVXe2DDzcKfBJ8VcYh988iCx3scwueZSBdKIiGyg5dJRwVjrxUq3W0HJ+a068lrf6Fj65Y8wZQrKfAt4Bm+wlDjinvKIxo2D8zaHff3lNyZRnPzGJIqT35hEcfIbkyjliwCXXkNxrwARYQi99R5XMCc7Ii63ep5HHS3NBH0mYNkxBTcfiU0d6IW2ht/BLQh2dSW95LSibccgVF5BH7aDlopD1VZjfbg5G+xlqOcFM2VEsKOSetytYH8wxaHc229Yfl2AjbB4pGJofvkI988ODzUIPfxiqe/dfqUvWXai7sJR+VZiTxcqVE6vT/W8Hei3VyPEtqiHH4jXK3gXqfTXX35jEsXJb0yiOPmNSRQnvzGJUt5DWS4JVeQQIrHhCAS/0xpl6ajQcx8eqYMqg56COUyXnqxgNDGMuq4bvNEE6oVWd8y6XmzvMgaB9TWIgDlcC5UsN6VTcyOGcIkLeIRTFBZ1ZxJO9/Ddeb1WN97RaxU525f6juSXKnJFRAT01wsqMYdY1tFzRwveMXACHr5REfDjBxULd2st823RmiOiD2u8g/dkDi5ZzmljTJI4+Y1JFCe/MYni5DcmUUoaBIC/COAuIsdRC/YGvS4iIgoQh9p9FW5aA1KmtPzz4ZW6pTr7ZtNJ6QzkYKRrjuBrJHGQ3FfjTMtJu7Ru6Lk3BMGP1k399gqq042IDrgGK9h2Bc9vStOKYVLypNDYtgMi59sTiZVfqZh20n8tsYiaa2yDoLZtJs6iO7DQZ1Aeghh+ou/sxZVec7WBMuSIaIHgO4BzzyGnNxb8jDF/wslvTKI4+Y1JFCe/MYlSkkuPhKoazU7YgOCzqPmJ2cAE1hxqcEuoyuxDp7mjOxXOjjbq0qK+fisS8uCiN3C/IiJKiO+h7phcf2PoZ0fPYAMi2REU4HZhLX0SYmueyw5EsjmIezN41tNMr2/SsNx5DvsGuOz6r44l1v2/17pvRPRzFQKzUi98vwSHIJTWZl0oT8eac6Vs6/3qwOTe/pqtl0dQDk7O22HD8m1/+Y1JFCe/MYni5DcmUZz8xiRK2Yb8pym9db3r3mUN02qp11sdraHuX57rxNNiCP3/ZlOJPf1eBaNFDg4qGJxxBwIUXV9EBDklqa/fdKu94nZwzAco1ZyVKiAuSy0JPQp1Au4ycM/VDIeg50XOvXsYDjGFa6aBJvQ+0Xv3Itc1npX6TM9faF+/iIi8re9EgHC2mUFJL3wa24daTlyMIIcm4HSc6Xu3gQErdRSQgr2G05NLEJD95TcmUZz8xiSKk9+YRHHyG5MoJfVXex/IcUSTWyMiRj115LWfgrj3+RPdea2C37B8IbGnS52gunmlZaIBItkGFJbbmvu1qHQ99xvt2TZea1nnpoKBKKA2zdt6v0hoLMoDifXB9Vf3y0+SJpXlNhX3mpaNk6txBqLiy0Kv5ZsJ2EAj4uErFdl2MCl5C6XRvULP/ehUn+ngRJ/L8kHfp9s7fbfvd7rdsqZsnKDy6wLudx9Kkf3lNyZRnPzGJIqT35hEcfIbkyhOfmMSpZyDYku/CAVE26BKdiF2CvXqERGnT1U5Lb/8QmLZLz6T2H4B+270Wg7uf5LY07WOT97dHElsmmut/PMaq/J0p7bdyUatoJO1xnagxBZQbJ9TnX0J/wGAf6+MoCHo5Y5/+8ke2gH78xa6lo7hvz003p3eCIot4X8PP+f6n5U51dlHRCd6EqP/ZtAo9w92aiP+/A3Uz09UsX9Y6n8ZruA/SouCau/5JaN10xOkse1kIvaX35hEcfIbkyhOfmMSxclvTKKUfajzrsgyCkJOF2SEAQhLo5oGh+1jkDBGI40N1LqZtVQ8iSO1tbY+0Drvk43WeGc0febmkcT+EabKRHBN/nqnAuQWrLx7sLWSwJqBEFRCvftBpvfmSaXbfblRsTAiYtTSvgGTlR7zHOrqvyv1/ryEiUQPMJZ8S9N+KppwpOt7Ce9nBH/dMtj2EEbLr+D68r0KiK2Vxm5aeo4x9cnAZTe33FON/wGIxUs4kb/8xiSKk9+YRHHyG5MoTn5jEqW8yFTUmDdsuEgOP3JKbWpccQsYT9x98Uo3PD6VUAaOs4A672wEAs2HKiyddtSh98XfqhPwq606ASMiBoU6utqwxpxqteH+dAoVoA5aWg9+VqpA+jT0mX6xVpHs2Qe3euKIGFyoGEefiU9egAj4SkXS/9bV7e5hmtG4UmFwBYIf9QcgES8iooT7TVOqcpjOcwtNVPct3ZfGX99CH4IVevQUEtzroJHxh7BumlLlL78xieLkNyZRnPzGJIqT35hEKY/BkQcDTWLdUKyAIcsxrZkFff1Kp80M/v5nibUHKtrFobr+9lMt892vVXihEc3FuZ7j7BcTif3qKxb8/q6lwtvb9lhiVL5LpbqHbXUmftJVMe0vC70P/1K1y3h2ro1MD3/Fz7R8diax7FjP04X7/W/+RgXb62+0Aet3hT6D8U7LnVfQGJXEPWp4GhHRBgdrBuLeGt5cciFSHixg3zHsu4AYOUProGscgDORBNHVP6OBqzHmzxwnvzGJ4uQ3JlGc/MYkSonjfEHwW0LZKUFup0WNw+9+rU60ybcqTBwdPZdYfg6C30yVrv0E1C+iredtHetv48d7FaUiIj7KVTB81dIS4xKEly70Crxo6fX9RaHH++1K1/jlwZ3Ejj9T91z56WOJRUTknz6TWHZ6LrH9Uu/FcKvi17/4VoXT/5Xrs/8axC8aaU7CVwfuYQQ79zbgYJ2TsEjCIEwuagpNJFrDWurdivru9EDQHEGsDROJ/OU3JlGc/MYkipPfmERx8huTKKX635j3GeRd9wuzgh6At2/U2Zb9rfbc61+81u1IqQQy6K+W96FEGLSdYVdLUSMiHkFvt/NSHYwHUPp7BOLXR5lu98utrvFxpYLY4BDEvRPoR/dYHYMREdmJOvyirw7GDASs7ESFysuPv5PYZz99KLG/g3tzt9ZnvwWRrM7htwGhq4T9SXhr0XmolyUIcdQbcw9DTugdq7sWek9OoF/jEbh2OzCW3F9+YxLFyW9Mojj5jUkUJ78xiVLOYZAAufSaDvJoQQyGxkZExBKEjVcr7VM3/UndW0c3KnQND1ToavdVtCkHIOQsVMjbjMHhteGhHV2YtnoG/RELEPIOQ495Wum96VF/RPj9Xs70fo2men37sTrvIiLi5x81toNhI7O5xKo36i7MW6pqXW71Yh63VCC9LZsJfr0chrhExKhUIbYHZbB9cAiSe64PIjUJfjsQQyvINYpRiXcE5xt9vZuK8/7yG5MoTn5jEsXJb0yiOPmNSZTyLoNJsiBW5A2dTeQkWtcY726gj1sJv0ezncbWM4htYGowCHnlRAUoaqU2nag498NOBcmIiEmpB6ChJn2aYgzX3Ib7SG7MGQhQ47Gue/gCJvKWL+CIEfv1TxLbwT2DeRpRwcOevNH1dOAde5yDw6/NPRPf5aJQZ2hExJPQYx6D64+EalLOyKS3hV3voPSXRHMS/Or6ZS5B6LwNLUVewv5tD+0wxvwJJ78xieLkNyZRnPzGJEo5a1i22KeyRRBOChBE5jU/MTOa/AtCVwGxDYiAW4hNZ+qyW49BJKvU4XUFU3a/oaaHEfFDqOMQhVNwbw3hPtJZdiAsLUDImW70Wma36oDbrbige/agIhndR6IARWwBrsg59MfrwreIhLxzcE7+27U+04iI37R10vLJY3UmZrBucko+3Ou9ebNSF+HzUvdtlfoMSIib7GueC8RvoKT7NeQ0DfLwl9+YRHHyG5MoTn5jEsXJb0yiwLzaiC4400bgTBs27AtGZcMR7EQit9sp7FuAgLEHoXIKYtMVlH++but5X+QqnPwEwl5ExPVOJ9buYI3bXB2C3UxjJLDmYPzKGxZw7rbgnHzgMtjbMZRVgyBKtOCZzsGFeNcGEReu5QDKnT+DXoa/PXqD67n4j7ru4tMvdEMQYqvrtxI7/cdriR3/QYeXdK+0l2F/r0LlAYiAN1BKHBFxlalbdbrX2KuNTmS+X+v76S+/MYni5DcmUZz8xiSKk9+YRHHyG5Mo5QE0MzwGZf+gUjWUyvRJ2X/IVDWPYBvjFtZzDso3Na6c7HTft9CY8TkI1y9zsE6CknpT8Yjuu51aRnfQJKCAqUKPSrDOwjPogl14WMEJf3sBAAACtUlEQVR/TNq67nZHn8EW/gMQEVFALXoBKn4FbwA9lylYWMdUxw73i/7z9Hir2x0/5edSfPapxLLPf60bguqen7+UWKuj2x3nP+t5W9rIdHilDUpPwBr8qmS1v4Q13sPEHnrvHtb6fvrLb0yiOPmNSRQnvzGJ4uQ3JlHKDyuYFgP6XAvEpinUZN9CXfTtXpsMRkS8AfFsAtbbXql2012NBfJdrqHBwKtM13MPa5xUKpzNIBYRsYZuliS8LEHkpMaMZHUlWrBdp63H6x7o9e1BxK2jM9NjrqBh6mKnz2UDz4qE4S32d9Dv0wDua96ruRYSz0A4i9GxhPCIG33+ZHw+7OoI+e6Parsd/qyNVTv3Og49ImIFfQyuCo0dw2j4h7YFP2PMP+HkNyZRnPzGJIqT35hEKZ9sVGQ5rEiAglr5XAUfcvO9BvdbRMTrjTZXLMDRNSu1NvpVoc4oajw6C13PpFLxaw2i2xrEuQ1sF8ENEulaCvi9JaGLBDGacBRQ796aqkA6nMFI849YiG0fqhA7eFChazFRqevuVs+dVypKNRU0h3C/Rhn3VCD2Ux3xnS10NHl2fKE7P/5EY12Y2ASxsq/vZz5Sx2DeHUts+w/cjPQWGoqeFhq7LFUw3Hb1vfWX35hEcfIbkyhOfmMSxclvTKKU5+BYa0NJ5+1eXVFT+Ol4A2WwJOxFRFyvNL4HJ+ECSlQfWipqtKH0l4Ydb2tEuybQ+iIiSjg3xbq5CnQlCJVLeAbXcL/vIPYArq94eSKhvzjRZpQREd1f6lSa1mO9Z+0rFd42K73mYsJjzd+lAwLpOcy/Ph7oeTMolf7jgmiOuN7brK+icn7ygcT2p0/0cEO9t/u2PoMM3Iad3Q8SO7phgfxoqtOLzirNywmI4S1oUOsvvzGJ4uQ3JlGc/MYkipPfmET5f0jKeMHJveieAAAAAElFTkSuQmCC" y="-6198.126991"/>
</g>
<g id="matplotlib.axis_349">
<g id="xtick_523"/>
<g id="xtick_524"/>
<g id="xtick_525"/>
</g>
<g id="matplotlib.axis_350">
<g id="ytick_871"/>
<g id="ytick_872"/>
<g id="ytick_873"/>
<g id="ytick_874"/>
<g id="ytick_875"/>
</g>
</g>
<g id="axes_176">
<g id="patch_177">
<path d="M 434.924375 6320.526991
L 557.214375 6320.526991
L 557.214375 6198.236991
L 434.924375 6198.236991
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p98a2466da5)">
<image height="122.4" id="image51f9d4e009" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncuSHGd6nr/KzDp39RFoAARAkRpxJFOh8EJaeGXfgre6P20c4TvQ0uGFvfBIHAYpzYwIgiAIoM/ddczKQ3lBy+HA+6Sj6Nn5f5/l31mVx68y4unv0PvbT//jLj7iy5h8vBR/tpWlOGtrWcujlbUqMv1wRMx7uay9Gui2v+2tZO2nZoHf+TFH2UjWJr1C1nrw2Trk0kS90/OLiOj39LhPewNZO9/pvkvYz09Rytr7di1rD+0Gj+djBnDO014ftz3PxrL2xW4oa8/19kfZ0yt5kev5verp+f2uvpO115tLWZtv9TqMC73WERHPx2ey9qw4lDV6QuetPvQ1PN+PMo2Xz3q6drbTvdB+4bJGRITewYjRTq/3caPX+7Rp9tq3MSYBHPzGJIqD35hEcfAbkyjFRbOUxccgTw4LlUObVtdIVmw6fmJWPRUTlz0VE1uQLAXIwiGskdybhG7XgnQL2G8LQuuX0IfdjOA3uARZWGf64TGcH5GB0sw7zqWC877I9L5EoddRV/g+kzbN4HhyEKl5pmu9jnMp20rWbhsVhrSf7U6f5nan5/IA8vI1HMt7eD7pqOn5jIg4AuX3iJ5luBYVnJ/f/MYkioPfmERx8BuTKA5+YxKleGg0Q+w+V9Fxn6lsaEFXbEHuLGEtIkJVTEQF2452KjUoOw2FHwiREcgPzNvjw0ZIqPVhbQgZWRPaT6bHnfU0y26T6XWo4MA3OxV2qwCJFxFLEF2U7bgC2TiEa7vv8RAo/GBtByIuImLVqIxrIEuT7h/RwJOyanUf1/As9mFtBPfvBLJSIyJyyLw8gqzBCs6FMi/95jcmURz8xiSKg9+YRHHwG5MoBckTynbjQlalB7KhOwdN93MAAiNA7pFMI2kzJckC+9jBsfRBkgz2vhIRE9jPCLzUQauLOYjBLNdzWcHv9wLLqmGtozx5g8JPty1BGGZw3CTJaN+UPUeZnPTMdrGFsnMSfvTc0nbVnt9XgLAdgtw7LFTiFQWf3zFkfZYgXbeY4aff5ze/MYni4DcmURz8xiSKg9+YRClOcu01RllxYxRVuka/JpRdFBFRwTrlfY0y3W4MgoazA/WIJiClCvi+Gs65AgHVxQHsh67jEIQfnHLsKAst3zebC8plO7LaRiCR6PMk8uY7zdusIZuvAcFawXb7lvl2sa8wJOFbtSA5Gz2/baMScJDDNSz0XDZQclyCcI2I2MD13tBxw22lWPOb35hEcfAbkygOfmMSxcFvTKIUz2DgAPUKI0l20qiAGEK2U9MhltbQi20DpgvFFHy2ggwxKqFFEbdn4l7bUflJH8d+fSD3BnDctNaCqCrhXIYgd8bYP44HXezLEvRsCdKOhpKQ3EMx2JGF+DGUURcRMco1q44kIJUEU9YfHfe+x0N9Bkk0dgm/JcjUBWQNziE2Ggs/Y8y/4uA3JlEc/MYkioPfmERx8BuTKMV5qC2cwm/CEKTrGEzscU/HGlOjz4iIOUz8aSgdk9JxqV8jGE2q+ycLPwTbS/4YZH1EsE3N4TvHkDJ6BK1Mc0hV7jdwveAoKb23he2ajt9++u8KNeEklnD/1mCvyeLva/vJmlOtfETEKNP/aNC4crLu9J3jXL+PegbQuVC/AlqjKUMRPDL8miY2QbhRY1W/+Y1JFAe/MYni4DcmURz8xiRKMaCGm3tOqqHESyrdzztkUQPLJKu28J31npOy6Vz2PT9K5Kw7exPoGsnGEVy1s6mOjB6OVCIdLHRiz67U9OwtSKA+NQjYc0pNRMQKNl1ACmsB/RO6+gZ8DMk9WqN6/Emu1yYiYprpen/PKUCU3tuH9yX1JrhulrL2UK/0s3uKz4iIBUzXIpY9FYbUF8FvfmMSxcFvTKI4+I1JFAe/MYlSkFogebWEn4k5CJ8+Ze11CJ+rQsXUPexnmalQIWeXw+K+mqsFIUJV1ZuOn8s1fOkEjOgINOLsSEXO6Fj3Pj5QkdO+0320W5WAK6jx7sq8pPtPjUL7kHn5x8g0nBRFWZKQZUdi7+d13ZaOsYD3IG03/b/Mn/o/oUtIPQNovHcXlPlHcvABjpu285vfmERx8BuTKA5+YxLFwW9MohSUnUQKgoakFDCBZA3Cr+xI8LoGQ7fas3SUCjj3zSQjMpAxlK7IxZYRKyjBzTCrDvYNKYc5zPLuFSoBzyrNJBvcQzkpdB6tam56eVONdFsYkz6G8xtB6fAQynz7e07SGWQq2I4KFZonuY66joiYQLYjTWeiNcrmG+w50v4YBOQOXOEC4mUFpbsRPB58DdtWrd7/TaPb+c1vTKI4+I1JFAe/MYni4DcmUTBdiSasbHqarnYPwqeAn5M1yLCIiCX1doN9k3iZgTAqqOse7Jp+8aivH+cRssSj8clkSedwyVcPmoWWgQwlMdiHUUNPzueyVhzBdCTIDoyIqP8FejiCrRpBht8Esj6noGerbL9JPEcwQv5ZcSBrT3qc4Ucj2vcuMYb7v4AMzQ2U5dIze5apSB2DkLztGAN/H1oSvKlhxDdkAq5rCz9jzP/CwW9Mojj4jUkUB78xiVJQaeW2p1LjHuTcHEYG1yC+eiCGfgkkTyoQZ3QulDVGI6wpG4+y+ai8OCLiFgqAqST0faHy6/h+KmubDYyWLmAk+kiP8vgIyjcPKCeS8xW3rQqnCkp6MxBiExBsLWYHwj5AiNG9fw6jxT+t+D12CENSqPS7gUf0faHH+M+5Xtsl3HuSijN4ZiljsOl4xrYQg2UG/froZAC/+Y1JFAe/MYni4DcmURz8xiQKZvjVIHIoG+8SBhOUsN2so7/aGEQQDRfYQlbVHWRVQdVqVDBpdQWShQZsUKbjTYcku9xpITTJqjcgkcY7FV2zjUqtAo5nsNDr8HihQ0BOLjQ77O5aM+UiIi5AqD3Aa4J6/Q3hOk52eg8oh22L5eW6dgRS8U8g0y0i4vlMsx0nB5rttt1oKHx7eyJrb0d65Hdwzhms0aRcGmhDZdERHC8b6FG4zTUGaZKw3/zGJIqD35hEcfAbkygOfmMSpdhCqW4D/ewayNyrYBAADSYoOkoUpyDjKDOqArlXggR82EE/MzjuB/jNo+xA+iyJz4iIhz2HL7zO9Vrs+ipEJ1Abzb/U+n2TViXQ2U+HstY16fhioH+4heeEZBwJvyMq/YWK3mt4TB5ov/CMDXCmcsTJMxWd4+d6PM1Sn50Xv9H78rKd6U4gM5Hu1QCuwz2cH8nCXwINOqmhr5/f/MYkioPfmERx8BuTKA5+YxKlWIHUot5lNMWUJqCSOKMBBhERpz2YoAqfp/54tyD36LipOLLCVV0j4Uf7iOBS5mWjEnALkvQOBk7QsAmSoXQ8LQ0QAYnXpZW2IFhJulIGI93TIa7RuSh4D0Agd81H6R9ASe8jzWzMTvWafXJ3L2t//Qfd92cgWCvI5rsAiXsPZdqrDqm8hAEdy0YnPNOAjgbun9/8xiSKg9+YRHHwG5MoDn5jEqWgbKAJCJURrJ2AyCFowEZExGwH01vBp5UgsKbQA66kwRkASkAQIuSQuoQfQcMTFiBo5o2W4I5AplK5M4kcmty6AvlYNlwGS99ZwPWeFSoqPxkcy1ovo6w4PT/KGKTpuXhfOvpENhtd39Ugv450OMjs36mo/vILLREuX+v1/un3R7J20WqWJWWMdmWLktxbg9yjqcHT/n5ZiMaYBHDwG5MoDn5jEsXBb0yiOPiNSZTiBTRrfAyF3kcN1G5j3b9Sg6WOiCjg831YoyaHDTjfh1z7AzxA3idN3XmA/yjMYXIRNTftokeTgShFF+z6Bow9fR81ZlzUaoUftlrXPt/qfxkiIhqo/R7Atd2Odd9jsPgnAzXN9B8lglKxN7B2Dc0tIyLu3+l/JHqFXovBE73e/T//RNaKT851J+13srT+RtOz3w/0uKnxK/1HKCJiA/89Isa53gP6z4zf/MYkioPfmERx8BuTKA5+YxKl+A+lCocnxwtZO36ucqh/tl+jwWbOabftFoQYSJF8Bg03C6j7f6v7uXitqaUXa03l/ABC61Vfpc1VqBiK4KaJA6jJJyHW31N+1SAGG2oASaIR1mh8eUREC9/5x0DXptxzH5R2vYDPXhQ4fCp+vNX7v1jqPTh4o/f18eZHWSueay+A9SsVcW9CJec7eHYWkMpbQ8+HLgYZjP2mNXgW/eY3JlEc/MYkioPfmERx8BuTKMWffnYti9M/hQ0/eyxr2TPIdjrSOuboEEvRQKPCDLZtQQ7da3PF/Pc/yNrjRuXl7g1k2UHd9yVIwLyrUyRA4oXGLA9A+BVwzUj40XaUMbgt9FqTiPv583qMfajnH9LEJTge2gtNhcr3zYikDL+cz+X7ndbkH1Z63Me38Cx+rUvj15od+ObNmay9Huh1eAjdBwnNrCNeprmeC9Xu0zXj7YwxSeLgNyZRHPzGJIqD35hEKdoGGhxuVULsSs1i2tUqMHp9lSm9s6e897FmSyFLlXu7Co6nhdHEpf6+lZXKqxYkyRAc0gFkSkVE9EHSUAkmZfNNoRHqlPYDrpGEH41Op9Lfrgw/grYloUliaQuF3ltotjqCceMkAUn43UH5dUREU+h3HoJUrmt9bkd3U90OMga/hRHr32eazTeHZpvECERqREQO72p67va9r37zG5MoDn5jEsXBb0yiOPiNSZTi3VudIvK4XMrabH0ra0OQgFmj4qXXIfZ6p890caxCZTdS8RK3l/p9MAJ51+6XkZeBRBqD8JvClKEIHk0+r7UMusz0mg2hdPgQMgHHewqxKteSZRJxFUjAiIg+iDwSlZRJSNeBsthW1B8Rsv5oYg+xwe6REXNYL0GozUACXtcqYi9AIH5T6D39HjJL71vtzUfXsKvEewzHfZypbKQx6fTc+s1vTKI4+I1JFAe/MYni4DcmUYp3jTbzby4ha2yrwuB4q1Jj3AcR9+Il7rw30XHO2akOStgNVfg1o9/rF0KGH5HD0I5+A+Klo+SVqCFjjUZ0c7ntfj3bRpC5NYLf7wLKjqcgELtU2gy2JfF2H3p+cxg2QldxDaOpN7CPHXyaSpG7RqfTaPkByL0Kru0KtvtQ6H7etlrme1lrbNDodIJKpSNY+E1AAj+BkuxHkMnrN78xieLgNyZRHPzGJIqD35hEgdEXEWWrEoEGHQyvIFvtWrMD8w1PgyV6OZSJbmFq6bu3slS+UsmyuNfswrrV3zwq6SUNt+0YNrFvthuVW1JZJmXzzSBLawj7eBwwtEFWIqYd2Y9UyryB18R7EFA/Qa+/m52Krg0Iv5LWIAuRhlpQBmNExCzX4RlnPeqFB30LaRDLbr+Mwy2cyxpKeklo0rMUETGFbD54lDmbE/sjGmOSxMFvTKI4+I1JFAe/MYlSPO9rdlKvBwMVICtuW6pYqm9V7hXvP+DOdz9+q59f3uh2v/uNrG3+/itZ+/G3mjF4V6okWYNM24I4W0OmXNUhlohxrpptAoMXjkBAnYK0OwO7MwM3dAzZiscgoIqOc6Hrc5Pr2gok0i0Iv/5Oj3tJZb6QAbdsVPZSP0KSq12scpXAJDRrOD+SpCdwTycg51Y9nci7bam0mTM+sTcjZJbOQUpXcH5+8xuTKA5+YxLFwW9Mojj4jUmU4vzZXBbrUqUNlfRSf7zyGoTPd+947wMVeTT0Y/tfVQz+4b+dyBqVJ5cg7SibbwPbLeCnkfrRRUQUUDpKcu8412N8BHLoEWRZnjcq6GYg9w5hGuwAeuZtOvoRzqGU9TbX63MHYmkD16cBKUXsqFSXSqA7eg8S451K1w2Isyu4Pm1fr88GZDhl6Q2hDyKV6pKo7BraMaGpyNQzkbIG4fz85jcmURz8xiSKg9+YRHHwG5MoRZarHOhBNh9R1/rbsZ6rlBh+gJLciOjNLnQRBoFc/Va/86rRUs01iCo6kxqSwdawtgK509UrjsTLJFPZdAjZfMc7lUMnkORFcq8Px1PCb/oK5N4CrldExGWu6xeZ7vuaevjtoG8hHCOVNpM0/SWZe0QGn6e1FchL0oo0bGQFApGOewzPA0nhGQjgiIiTTGUx9fCjZ5HutN/8xiSKg9+YRHHwG5MoDn5jEsXBb0yiFJc/6UjsBtJ2cQ3qtIelOtLhO07HLI604eZuC5NvNjpymhzwuN0vjZRSfjfQmLGmRogdtj+D2u8xNIWk8cmPoU7/rFaDfAD+uQTbuwJrvoHjW8B1iIhYwn971vhfBTLk+90DMtI0mprW6D8FtBYRcVTos/M00/8UPWn1Py4ENUylnp4V/HeEzpmOm6Yr/byux1jAfe3DAdHZ+c1vTKI4+I1JFAe/MYni4DcmUYo/bLWZ4b7QFJAeuL35a5oXE/F5cytrw0MVJTQpewzzdCgpkmr3+yDYSIiR2is7mitSOucxpGl+ArNzntfQcBNSZ8nPlXCQ+ym3AB35M9SkcgspvyQWt6CW8JrBudDkoq5x1fJZqJ+PiHiRq9D+stbv/Kzar8FpCQd+Veg9/a7Q4/keplGt4drQdYjgN3UDwVFBWnoGEtBvfmMSxcFvTKI4+I1JFAe/MYlSvOnDuGoSSyA/FiAWKAPuZMf1yVdvn8jaZx90xDeN1O7BfgYkOkjbQf18DzLl6Fy6Oh304XeUxmwfgHihUdAVfN8GMirnMCGHmED242lHRiRJ0htoKLqDZquUFQkuNbZwHVrIbMsLPWdq6jmE7LeIiFP4znMQrC+n2sh2dqR9KPpjyEBd6L5ffNAGs/2R1uO/6uk+urJI6dq2oHe3cH3o+fSb35hEcfAbkygOfmMSxcFvTKIUD1C+uQKJcAflpDc7Ham8gVHQ4w4ZcwMC5F2jGVkHIIwmUDJ5BOOOh3AuG/jNe4D0OWrq+AsmdMcGshDf0+QUmAwzgEkzK/ippiajQzjGl9Bs9bTVLMKIiEGmx9g0Km1HkMVGco8uGRUTj+A5GUHGIO2DSqojIkqQX1eFSsBf1XoPpk/1+gx/pRmxs74e4/Tr97K2/Oq5rC1Gep8vQ+MqgkuolxBvS2iiuoVMQr/5jUkUB78xieLgNyZRHPzGJEpB2UQLkFI3rUqI63Yta1sQEA30TIuIuN+peHkPU2QakJLUD+1Zo9933ILQBDl0BZOLSBb9EhYgXt6Cl7qBLL2CpsqAQKRx0yMotV339R7kW868PGz0Oy9A7l3Ac3IHpchLEIsk6Ap4F+H0GfhsS3XfEfEANeZvchB+G70+L+D7eqcqpLMzzeYbg0D+s+8eZO27rX72rmOS0j08TzcQgzeV9sZ8qHU7v/mNSRQHvzGJ4uA3JlEc/MYkCgo/KgmsILuIfjmOQO69yKa4879oVTg9rfV47mhkNAi6OY4WhwEdcOAbOj8QS4OO38stCToQXXPI3qIS1R31jwOZWrXQew6E37x/pMc34P6NZzDO+xrk3uvdStYuW10r4RiH0HOPynK5FBWGX3SM8iaJuIHMzTnsu17RNA49l90aRtDD0JXBUD87KOGjHWmkC8ionTe6b5Lu9Cz7zW9Mojj4jUkUB78xieLgNyZRihvIyKJMMhIqJ5mW5D6GQRVfNDy048+3Kiae9CFrsFEBdVHpftaYGQViEPrHlSAVabZw2yFjqHyXyijvau1RuIbsyQrKk0kC7iCzrQdyh/axHnBJ7wlIWzqXq0bl3kOj94+EZgl9FMeZPic0pXcIZb6HMP04IuIEevidQj/CjCT3SrdrL7XXX28J0u2Vbnd580jW5gMQ7h1jVyiLka7PcaGCnbbzm9+YRHHwG5MoDn5jEsXBb0yiFN83KiZymBJKmVYzEDSUAdc1VoJysopcZccIMqPytW5Hwz1oAMUDTGntgUQKkIC7jiEZdzhkQ4Xafa2SbFVrmheJvD5MeSWRQ4LtodL9kkCMiJjnE1mjDLFVo8e9blQs1iALt5D1t4OszRE8Y0O4DlTGHBFxBmLxaaPnMqVy6aU+J+O3KjQjU+F3/Qe9hj/0VJDfQ7Zhl1QewDke5fqd1AtxAmt+8xuTKA5+YxLFwW9Mojj4jUmU4rrWfl8HuWZ4UbllTlNjQe9ddfQkO4S+cEPopXbUV4lEYnDYh8xE2G4MmYVRqTgp4ZzvO4ZDNCDoSijpXdd6LmWt2+VwzUYgYke5CjESeZQxSGIwgktC+3BfKZMQvw/kXgkylI6b9lFD78euWSp0hEO4VwV8w2qp17b3A0zKbfS+vL3TXn/vBiCfoVS66pieTKXMBTwTU3huD0Bo+81vTKI4+I1JFAe/MYni4DcmUQrq90Zyj7KGiDmInA8dYigvVKjkMJ0Wqo7jIKdBECpKaNfTiUq3J5oAF7et9rh7VXRkxUHJLGXA1SDeiAIyCYcZZJyB8CMxVMHk3QH00YuImEJZNmWX1QHiDWTavsKvbHSNns8BPIvzjMuT55AhuILPrygPFeTzvNTvq0F8v4X7cg2TpZeU/dhR0ot9NKE8nT6/punQuBdjzP/3OPiNSRQHvzGJ4uA3JlEc/MYkSnEKzf4eQ2POCdhQmixCRrLssJdzMJALMtAgyHc0IWcLKci1HvfBWM38eKS2+GBOk4s6pqm0avapTp9SaimFlWw/2Xn6DwDZ/iGYeeoFEBFxAIZ8Ao0wG7ivebFfyi/1NaAGlZTyS+nHdP0jIu6gsecd9AM4gKaeJVj8vGMUuHyWxoh3JiH/v1PBfwvm2LRWP+s3vzGJ4uA3JlEc/MYkioPfmEQpZiBEDiH98QgaIaoCwkzczl+Yp1AH/Ve1Nkh8+cmd7mcLY6RvVV5uYNpPvgFJBqmXNUobhlJYaY3Se0nuURNVFH5wrygllujDPn7+Tkqppcasut0IZBql4/bhXKj/AV0HOr+u+7IAOXgLaeDH0D+h36glm8CeRmCkMxg1X9G9yjWVetrRJPYWUqIprXwJ2y1BiPrNb0yiOPiNSRQHvzGJ4uA3JlEwH4vykOhXYgq1xNNW157UrGN+PVKR9+JvdIJQ/1Nththc6qjr3T9o1tjljUrABUzsqeAMl/l+2WoRHXXnILUaaCg6AEk2ARFEjVVnUHtPTR0JGrsewbX7NLFpgtvpdx7CdRiD/HoAKdXA00hn1yU5adLQFoTfFq4ZXR2Sewd9FWwjELujSvf7tNbrcA29ACIifoCGt68yPcol9EUgmeo3vzGJ4uA3JlEc/MYkioPfmEQpKJuL6Mqg+phZq4LmZQZjjSPik798kLXBv30ua9mjU1nrDd7qZ79VWbjdQSYglKduSJzA2gTKPCMizgtt9lmPoDkjZJxRWe4JjMmmUutjOBc6whJKiUmmdUHZgFO4thPUZPCMwWa7DKYeQckq0VWejCPjQVTD1G58Jq5aKBGu9B7kcG0nIAufhI73noEEjIioIBv3Iofs0A6R+zF+8xuTKA5+YxLFwW9Mojj4jUmUgoTRCKTWECTCAMTJBMYLnxyz8Bt+rpIs+/QFbKhZbLtXP8raGkYq38L53eZ6fiU4EpJAs47fy5eZCrrJQMVNBeKNRiqfwnE/b3W7PykhYxD6zN0U+n0/5Sz87iEDjtzghLL+4JnY9PTDJBtJ7m1hjeQeZSD+fIxQdgzPMn16BdmBl31du4VycOoxeQ7379MtTdLh+4LP6J7Slkqj/eY3JlEc/MYkioPfmERx8BuTKAVlrJHcG4NXoLUpCK3JofYZi4joPXqiiwdavhullnq211rS+7BQgTiHLK0F/ORVe1bvdkzojiMQSxlkZEHFcxzAPXgEQyS+KFUO/dWTK1k7+RJGYn/Q+/Lbb+D6R8TXAz3uLUi7Psi9Gs7vGoazvG9UAt/CGpXkkvCbdYyQPwkY0AHXewSOk76RrsNlT6/3HfTRewe9+a5HKrO73sjvehpH11AGTZKURqf7zW9Mojj4jUkUB78xieLgNyZRCuq5RmuUzTeG8t0hDTDosmRbGPFxr339dlfXsrZ5rZ9dNTBGBCo9UeRAptQS5A4NJfl5fc9Mqz2vNwmow1CxNH2iwqf/N1/I2uBAZehf/t0/4jF++E7Lqi+hnyFJ0iuQez+0Kmc/1Fp+vYYBFNjLELIfX4RuFxHxDAbDHMJzO2v0gvepfyCUMS/7+kSBp4w1iLhvQ68NDeL4+fMwGAbWNtCvj7bzm9+YRHHwG5MoDn5jEsXBb0yiFFSCOYa1AxBQUxAnAygHXd3TPN+I0T9d6gHdqQCp3+swjtu3WkJLgzfoGCmZrwahdQnnch0sY0rocghJVbjvLZVVQ18/Kk9eflDRNX6nWX/5Fyr8+jPuzLgGW3UP/fVuKXNvpz3prhq9fyvITGvhgo3gnD+FXoZfUr1rRDyH45n29R6OJirEikKvz/lCr/eTjQ5TuYX790Nf1/6hB4Nm6oWsRUQsGj2XHUhJuo41yEa/+Y1JFAe/MYni4DcmURz8xiRKcQ6N6oYgDCYgzk6gbHGQq1hYgiSJiNh+pZlRxTcgDFdHsnZT6ndWoNMOQHSM4ZwXMEl2BULrEqRLRMR9q+uUadUDmXacq8CqMhB0AxVLow9nsvYXf68ZkbNvfiNrv/vNI1mLiHg7hB6AULZ6C/efstNKyC4jqM/cIUwhfgK98M5BIEZEnB+rPJud6baDE73XNOx48kHP7+Bev+94rvd0W6uknvY1Y5CekQietFvCRN4WJKBLeo0x/xsHvzGJ4uA3JlEc/MYkSvG0VhlDpYwTkF+TvsqG0RBKDEvur3a5USmyhBrcBxiyURVQGgtS4xBKNQlKEKMSzIcOsXRVQYlqo3JoAGKRetItM933DdyD76GcdHXxWL/vSk/wf8AU4YiI5Q7OEbIVa1j8JZN/PyajcmewblQhTpmlERHDsT6PJPeKE3hGa5BksHPycwUM8sjhEOn88o53cgP9Mde1PmN1q+dHEtBvfmMSxcFvTKI4+I1JFAe/MYni4DcmUYrjHqTogmke9iFNdqyfzUBpLtdcz38FNc9vYQQyjowGezmCPgTDQk06GemLTK3wPaRTbiClNYJNbB8mtMwvpnHbAAACuElEQVQK/Q/HeT6Vtccw7WcKk2bovxT/PNDFb3s6DedHaKIZETGBGvpZpsfTwH9XqL78j4HuPE096hprXQzAuo/1OvYGeq92LTS97MNI9BH8x2yj/z3I4Z8odA2p9j6CLf4WjrFqdI0+6ze/MYni4DcmURz8xiSKg9+YRCnGhcqB4QAEBgg/knsbkHtvW61jjoj4GurGX4eKqRIEyBFIqVNYowk5NzB35z3U499A40kSexERU5gsMwJJdl5onf7LTK8P1azT6HRqrPkq9Fx+bFTuVV1iCdKNN3s2gKTUVFrrwblQCiodYwWTlDpK4KMYw3FPYMJOocdICnH4GKYrPQMZ/kGv98U3ep8LOHC6Dl3rlBK9L37zG5MoDn5jEsXBb0yiOPiNSRQstG8hhaqqVALdz7Wh5Pc7lRr/paNu/L9v38va1fZB1mhM86+H57L2aU+3O4VmnZGDlNyp3HtoVD5Sk8mIiBk04TwA4XcKmXsTyNyj8df3MP78R5B7b2q9hjWIyhM45gjO8COtlHVZto+/DzI5aWIPZavRWOoVSM4MJGBERP8Q5OCB3oOoQeRm0F/gc20mm336iW53p/fgV9cfZO3pvT7HU2haGhExzvW4d32YmpVrWFfO8DPG/CsOfmMSxcFvTKI4+I1JlGJRqYzJal0rQUp9AHH2NZRQflXpBJmIiFdLFSDzUiXbbKhi6qTQMtgoZrL060qz+T4Hm7YbHcraba7Hsmq4gSdB2VfU9PIeGnNeQenwJTTWfFPdytq81uN+NjiRtScw6joiYtpTYURl0BVIxBKEaAUl2SROqZR1DROA1rkeS94h/IoTkJdjFWfttY6Gp6y/7POXut1f/3td2+j3Pbr6z7L2b/6THvdXA3i2I2Je6H2lhrCUPUml1n7zG5MoDn5jEsXBb0yiOPiNSZT/CXjg8CSYL8sFAAAAAElFTkSuQmCC" y="-6198.126991"/>
</g>
<g id="matplotlib.axis_351">
<g id="xtick_526"/>
<g id="xtick_527"/>
<g id="xtick_528"/>
</g>
<g id="matplotlib.axis_352">
<g id="ytick_876"/>
<g id="ytick_877"/>
<g id="ytick_878"/>
<g id="ytick_879"/>
<g id="ytick_880"/>
</g>
</g>
<g id="axes_177">
<g id="patch_178">
<path d="M 29.174375 6464.446415
L 151.464375 6464.446415
L 151.464375 6342.156415
L 29.174375 6342.156415
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pb721af257d)">
<image height="122.4" id="image3cae17e1fe" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmvHOd1hk9XVc99R16SlyJFTZadWEac5EdkEWSZ35pVAm+C2EhsGLAFw7JsWeIgjnfoeaiu6ixsBwjfp4ASssv3PssP3TWfLuDpM3R+cu+fD/EO68jfXYoyOrImX4yAT0VUHVqNuMkzWXuZ61YXHV07Peg2LypdO65qWesedHvjqHQt28vautZrExHxpOjLGp3LHi7Fca2Ll3s97keHjaydH69lbbfTY/zN9kTW/rOv5xwR8bTWbc4PO1lb1Ftdq/QY9wfdTx567zvwnNB315Uey67WexURsat0fbPX72+rUtaqGp6dvJC1YdFrtTbI4XOwdlaMZS0i4lFxLGs/iJGu6enFRa3np3fAGJMEDn5jEsXBb0yiOPiNSZSi6KjUKA76m7Dp6NoWBE0JQos+FxExBXc2h+NZwVqAlMxzOh497kkNqhLc167W784yFn4L+BnNQX8O4FSOYW0EsglOJbZbFVDLbVePD64NXdUIlrZdeE8MO7qfOtNruz2obOqgQNbvVoemo/zfZHjUEV24XzVIuxr2XcC5FLC9Hmyvn+u16WX6OVrrd3QtIuIodP0MZPEE5GcB5+c3vzGJ4uA3JlEc/MYkioPfmEQphoXKgV1JvwkqOnbgWJaZLpIMi4iYgsi7CT2eFWR5rcDQ7UCenHb0uPcgh7qQMYiesQESeZrzx7LxpNZzOerodehmupNtqec3PWjW2AbuAQm2iIgCzCIJvxqeiT3cgwOcM4m8Co6HMvzouyTsIiJyOBeScZRdeIBMUBJ+lLnXz3QfA1jrgzQdweciIo5J+FV6jCOIjV5H1/zmNyZRHPzGJIqD35hEcfAbkyhFv6diqbdXsZCB/NiDTFnBz8miwZxNQULMD3o8S1gjAUXCCBKgogfS5hQ+eALipEvZgRExgVOkXMCTjtZbToa61uvpvvd7yDhcqVZcwX3RHLuIbkNWXI/kHohTuqsFle/S8bQs1V3stUSYSnJJ2EVEjKDUepwPZG1AAhLW6FwGIBAHGZT0kgSEbL5hQ4bfEEW1fq4LJfAFyGK/+Y1JFAe/MYni4DcmURz8xiQKmwWAdAoJny1It2WD8CO5t4Y1kkOQSBgl7HsDR7kkAUWZYPDd4572rYuI6IOgG41VTA1OVL31TtulEm7eqHSrXkCp7UZl0xGUJ582lCdTn8EZiCXKqtuBGFxDSW8JZadLkHuz7UrWqN8eZd5FsPCbFCr8qMS4BuFHYrEHgo6z+fRzI1pDVcxQlm0J8noIn/Ob35hEcfAbkygOfmMSxcFvTKIUtyuVH8uDSogNGLYtSIQNZBctQNhFRGwgg47UF2VBjSkzCkQJZatRvzfsEgjncudiCZ+MOP5Ez6X4QAdlZBen+uUueNctZP1dz2Rt/FzX7j5ZyNqjb3UQxLP1RPcbEV/19Hiewv3HIRtwJRdwvXcgdhelCr9VqYKVRFwTeyiXpoEh41zFYNv+gQVITsrSG1P5bstnOyJwSs4c7su80u93ofTXb35jEsXBb0yiOPiNSRQHvzGJ4uA3JlGKbzK1/eTmaeoO1e7TdJ1NgzWtoUcA2U+y+CMwrAOYNDSExpxDsKYFHEsO5np4zqOgez9+X9Y6P/qRrp3d0y9v9B+Ew3yqx5Pp+RU9tdS9vaa/nnz9law9/q8v9Vgi4vHPdOzz52v9l+IL2PcB/iGZdcjYQ38IMPNNTUbfhdJzIzgFuYL7SsdD28wgDrqUGg7PJz3bR7A2gef4T8ejUAy+KaCxKoyv95vfmERx8BuTKA5+YxLFwW9MohRfwXCQPjgWqjCmVF6qqW+apkJSZAC/R23lXp9GYoPwo7UOHjd8rmgQUBOVZJ3xsX6u0Fr7yDStNQoVQZ3jc/3qo7/WtbNLWau+/41u7+Inut+IeDz5uawNf/pG1kav7+iXByqQF5lK0mtIp+0X+jCWIAFJug3pugbX7lP9PUFiMEjGgYkjWUgNU0ewPYqBCH5TUwy+hWDdgCz2m9+YRHHwG5MoDn5jEsXBb0yiFM9C68aPKesIRzS3y74qGrKvSIr0IFsqb/i+bk+hXzfKNyxBIm0Oak7KOTdXrJ+81MXqF7LUASFGco84TG90v5AdWJ/c1S/Pr3Rteov76YxVxp19qhmHn4Vus//6TNZG/SNZK/p6Z6g/wLy31u+CAD4ttF9BRMRloT0LjjsqB1c4KUozJemJp+eT1qiPxHd5+5JMR8EOgbCAa+s3vzGJ4uA3JlEc/MYkioPfmETp/NOjfxRjcAfKfC+g+WAPspOopHfd0MBzD7KCsqByKqOE360+ZO5R1h9nWunaBzs9l0/7c1mLiDi/p+KtN4ER3+rDorg3lLXOUKXUYQuDtvftmkwedtAsdcXlyYd9O5FL9mu/0MXbp5r9+OtbzVb8GaSWXoGQpgaXD2uWpu/DKXahfPdloc/TSxhrPe3oBqlkncbF03M3AHnZJLhpmzvYN8UVSXe/+Y1JFAe/MYni4DcmURz8xiRK8baCDDEyOfAzQaW2RFMmIPVnW2EZJR1Ou6yqpuzCdxnCiOcMJunkW81Wi4h480Sl3aCjku1srOW75w/0HnSPdDT1bqrHOHurcna1VjmbZ3oRxxMeNz4+h2lBMEa8ONP9dD/WjLrR3+tx3/nNM1l79AstEX5TwYht6DJ5MeZsxaM7er0hiTRur/T+PYeJRs+hdPhpodfmDYjBBWQRrkCGk9iLiNjBZ8uWsrFt9qsxJgEc/MYkioPfmERx8BuTKMV0r2IJhxXQmOVM5QePxGYoN41kRVupQQKR9kGfG4fKqyGMP+7BQISIiOFBr8Ww1v0sFyoR909h2MhQs/k2G/3u9VpF1QI6Lh6FyibaRxO1OsDYT3Wb3QEItjMtty3uqsh7/LGWLD9Y67l0Ryq+SEhGRORjuF8kr6c66vzoqQrR0Ssdu77tqHS9LqhEXI97AWXDNL78T+v6/S18dk8SEWLIb35jEsXBb0yiOPiNSRQHvzGJUqwryObKVCx1IZuPMvfGUPpLZYsRnH1HWXoVlPTuQWBsQXTsW05kzUHuzTLd3nXOv5c0CKQP2ywrvbb1RoXYZKsip4J9zEK3R9eLksY6kPUXEVGX+v3FCxV06xVkEv5Wr/dgpP3/KMuu6EOp9aUKseIEsjFH0BsxIg4gXesFiE7whVmuizkMyYDbgnKPegIuwaQ2CT+SdiT3Sljb1bpNv/mNSRQHvzGJ4uA3JlEc/MYkCjY+I4mwAVmRQw+/AkwO9dv7087b9eajNRruUcDnSLLsoc8g5Yct4Tq8JpkWEV1Yp56CCzjuLQ1JqVVq0a6rdhXL0QXReH2rvfUiImYzyFgrde1lrtvcwkEez/TqPjio6Lo81/6I3SMd2tGBfnsBcjUiorrWLL3rL1RevrnW8t3bWrM2X8CAlecghm/huVvBGsXVAYR0BAt2GnSSQxzk8Nz5zW9Mojj4jUkUB78xieLgNyZRimEOZbkgoAjKOKLy2xJ1Gg/joCEbJPeOwFXuQOR1QUquGzKo3mWJk1vbfTciogvHfZppVhwJv9OaxKcCCWeYcXYLWZsvDw33GbZ5DQM13sD1PsAB3YeBGt2dPnfjuYq40VTFYD6GbLWG4SXLpypOf36tU4y/1MPBfpKrjgq6tyAvZwcVjZtav0sx1ASV1XdIfENGbR+eO7/5jUkUB78xieLgNyZRHPzGJEpx3tXMJirfpVJbyhoiydUE5TGR/qAMv7MDlHVC77oBHM8tbG8FgyCoZ9qcmtkF91Kj67OBCciRaR++CgQdTRKmxDaoyEV5tSZbGNwfkUpUN7DNAQjWE3ieVnDgy1Kt2+JGJWDW1T6BGQzOiIh4+lQHgfwK5OXXoZmEG7inUCGMz8ka5B6V2lI/ScrQi+BSe5LzPbjeA/ic3/zGJIqD35hEcfAbkygOfmMSxcFvTKIU7+U6cppq8gmqL6Z/BZrq+fmz0MQRDPIFFLKPwcSOoOY8g8PpgEkn600NQSMiFhVMqmmo/X8XtrOU3kv/wihk9q9hYs9Nwz8Xu4ZzbAU0cF3A9m5ySEGF+vmY6r9Rm43uo6r5Wv82154F34LZv6p1jSw+TbMiY08NZik9l4Znk9WPiBjCtT2CqVnURPfYtt8Y8xcc/MYkioPfmERx8BuTKMVHHW7i+C4VpIKWmKCr9EDYRbDcI9VxAt+/D/XbY5AsOaQBb2HM9ham1yxBktG0nwhO3dzXukb0qZ4f6q/PQO8VcDjkvih9eQZ16BGcmkpQKvcBriN5zxL6SNxmen6vKk2HPio15XfXIFefQNov9WTYwEQbmpzDjTDbid22zTYpFTeC5d5ZR6/FGXz/HBrC+s1vTKI4+I1JFAe/MYni4DcmUYpLEAFECcJvC56D1MekIfvqGBLJuiDUaG2EGVT6ORJipFMoW5GakVYN2W/YzBSE3yq0seMCRM4uUxHbcjgPytkNHMui1mOJiFhVup6B6KJacsqKXIUKxKuOZkSS0DrNVXxOQNjm1LU0IhYdPW+6V5SlR5+jNRJ5bRtzkkCkBpwRnLlHcu8exPQ9yIj1m9+YRHHwG5MoDn5jEsXBb0yiFG2nwHCprX5uBJ7jzp4z3c5h+kkHxMv8oEe5BFGyhqaQM1hbwKSZNY4l1wyvJpGTgfShNaIpa1D2DWsbuFk3OGlIr/UOstoi2kuttudHzU2XUE5Mk5R2mWawbULF4KhBklVwbaksl4QvyV2UhdDVk75L+83g+WzKGGxb7n4Cgv0cYtBvfmMSxcFvTKI4+I1JFAe/MYlSXEEJJk2GIZF3Xul3L0Ai3e1rf7SIiOEQpM9aZc5sq8Jvluvv1gJ+yhYgxEj4bUDkUL8+ysiKiBiBmKKxyJQVd5brxJ4xfK4EeTWHDDYqWSUB1dQrjs5xAOcygoyzPoi3LU20gWOkK0tZljSKHR7jiOAJUHRfSbqS3NvDuVAmJ32XBClOdWoYA7+F425bVt+Fz/nNb0yiOPiNSRQHvzGJ4uA3JlGKF6HS7QRk0wMaLAGS5BzGJ0+OdK2J3V5/j2bQ220FP1tUYryl8lYQJySlSAI19VcbFyoquT+bnssd6sMGvQdpyAnRg/0ewz4m0EcvgnvzDaB/4BjOpYBjJJk6hTJfkoAECbFtw7UhuUdj1qlfH8k9yook4UclwrREwm/dMEyFSr9nIGIXEC87yi7EvRhj/t/j4DcmURz8xiSKg9+YRCleHlTG7ToqFvqQwXYXyhF3FWR4wVTViIiy1M/eVLqfeUFluWpP1rB2Cxlw1zCsYgFrJItowEYE91cjuTcCcXYfSlQvav1dppLeLcidnEptYYnKQSMiJpDhSWtU+k0i9gYy8ugYp3CQlK24ainnIiJWMIBkC+XNW/hcW7lXg9DECdYg9ygTkI4lgkXlDTx3r+G5m3Q9tMMY82cc/MYkioPfmERx8BuTKMVNBeW20A6tB7JiAllt3RKmqi44k6wEwXMLpbozOB4SflOQe1cg8q7gnGd1uyzEIuPfSxJYlBVH2ZP3Kt3mw5JKWaEktNDvlnCvqCT7DEqyIyLOQHQdQb/FHWQh/r5QYXsDjpTy8frwLtrAJ0nuzRsGkGyqdtl8bYeuNInFd6E+fNTDr20/wYiIDYjA246edw4ifgPdOv3mNyZRHPzGJIqD35hEcfAbkyjFBrKdljDl8zbXtacgv5Y9/dwQxFATJZXlUlkmyL1bOJdrEHk0nZbEEGVk7bOGKb0te6QdwbX4cKfn8vF4JmvbnZqzk532/1vDcfdBaB0Fl9Ae9fRaDPr62cVKRW4WMGSjZc9EgsQZfbPtVNwIlmxtQZHXsjcfTd+lPopNfSKpTHgNz/wVXIolCFu/+Y1JFAe/MYni4DcmURz8xiRK0TQR9F12kNl0Df3/qCzzu/gV6gFHgmYHgmcO8qNtRhZJG6LtRN0ILum9t9f9fDJRuffe3y1lbT+HEuMvVcRdLVUC7iDbkNYiImY7lXarEganwPTkKSRzrmhoBxQoU2bbDj5H4qvbMKWXpuDmUMq8AUlWQxZp28EbJPJoYEuXhF/DO7loEIHvgtOFYZt+8xuTKA5+YxLFwW9Mojj4jUkUB78xiVIMYQoITaUhA0nGnewsTcOJaD/GmGw/GV8y8fRdOue2DBrGWo/gmlEq7729nvOdTxay1v3hpawV13NZO36r6cs3K7X9UzD7C+idEMGTjyh5lpp1vsio4abef5q6QynSe3hGhtC0smn6EG1zCY0w2/7bQ8/nAJ6nYxi7TnH1XRKNOYVct9CDfz5o5Lvf/MYkioPfmERx8BuTKA5+YxKlOIVJPG3FRElND2Ft1TBymBoSUmpiWyh9cgwyhoRIwOdISPYaUmJpLDapwRKE0X4N26xBXo61OWong34FB93ztz09vtcNvQkWUH9fwn2hmvw5TcihVF6Qs5QmS5OQJnCfhw3pvcRtpsf4ttZtLjN9bimN+CIbydplpvdqAmnFJaQQL5qmD8F1JAnYhWfxyMLPGPMXHPzGJIqD35hEcfAbkyjFEEQATU4hKprRDEuUpRURsQYRSPX3JN4oc2+QqRwiQdM2Y5DWSLBEROxAiF11NIvtSVeP8esnZ7L22W9fy1p+qlJyt9H7dwtju19kel2fB0+5WcLEHurnQM0jKXOPstCGcK+OQZEegfCjqUcnDU1ij2vdd0ljrXMV31PIVhzB8/S41u19AA0CBvAcT6Ex7uucs0hfwz2cQSNbekIpov3mNyZRHPzGJIqD35hEcfAbkygFCayyQWq9SwVZWtSEkcRZ0/oOZFPbbLC2YBPGA01iIVnIbEhUUgkmNJT8HZR/3vtcM8ROHuho8cXsWNZmue6DxpffVCz8FjDWnLIxV/B9Gn9NmZedYixrTWW570LP57bhGevBff0UJiT9GL6/6kC5O0i7e10ttT461WtTlvo8vVlodmDZUfkYETGDCVnXcL2nQePU9Zz95jcmURz8xiSKg9+YRHHwG5MoxRqEweb/MMWHMvSaRiJTX0ASeeCvog8ZYkeFirMzkGlUJkqikoRmt0E00hmSgqJ+dm8ho+vJjYq8CxiJ/WKrwmjaB3nVso9eRMQSRB5lY5Lwo2zMOtPjodHwdDxzuLIbKG3dYQF1xAgk4g9KPca/+uCtrPXPIFuxZfvH7ZXKvbffquRcUG/FhlcySdu3MG7+bbXSbcKoer/5jUkUB78xieLgNyZRHPzGJEpBAzWwlBVEDmWwtS21bdoPDU/A3m7Qe/A8V/l1v6OZclQ6Sr+CWxBVTdmKRNtMyRsoB/68p2apX+vaDci9Z9Cj7haE3bZB+FGW3hYy/PZ1uzHbJIFLyOTcQgktUdDdanDUq9Bnr6Jn9I7ue/Cjc9i5Crr9N9e63690v8/XE1n7pgv9Fht6K76FzMspiLzbvY53X1QWfsaYP+PgNyZRHPzGJIqD35hEKShLj+UeTNQFcdKH8k0ckhERXZgSS3KQBM8xCT8owbwPwue8bvebt4IehRvqWxg8xZbWlpCl9SJU5PwR+rVR2TD10VuXkD0Hwo7EXgTLPSq1puekLSQGaeBLDgNEMijTpTLtiIg+PKM5TXje6efqpWbPdaAke/dG78vrK+3L+DXIvee5nt81lORGRCwpGxfWypYx7Te/MYni4DcmURz8xiSKg9+YRCmoVJOEAWW2UW82En79BuE3BhlXQJ+yIZQ9TmCbNLjhAuTeWQWyCYRRCbXEm4asvbbqiybbvqg1I+tNqX3hZnvt4UeZciTTuFSaf/tJ7m0rmKhcg6CD+0f7oaw/EpA5TLalgR80hTYi4qzSe9iFu7W+hj6Df9D7Qo7z9qlmlr4IzSx9net9mYMALqGUPIIFOw2l6WV6LhZ+xpj/wcFvTKI4+I1JFAe/MYlSUPkfDckgKBuPJGATJ9BL735olh5JO6hkxbXjSkVHF87vBko1KZtvBhlnEVzeTOJtDlJrCdKVSjCpZ15ZtSuDzUC6NWXFkdzb7HWtBolUwITgQ8vniUTjEJrm9Xq6j25Tn0jY9RJKut+8PpK1wRTKmPcweGOrfSJf9PR6z2FqMz03/QYRS+J7RP0oobSdel76zW9Mojj4jUkUB78xieLgNyZRitudCj+CeutVUI5IYiFgcEZExDlk+H2/1P08AAGVt8ypG0JpbA490upKJcnTQo9lDZlpERFbOB6SOSsQfiRYqRciZXjRfWkL9eCLYLm3g3tAIo+y/gjKOFuUKjlJINI5n2eaURcRcZrr9zMQfle1DtTI9HBiDfu+gaG6r6Af4RyenRy2N2h6J4NM34Dwg6TI6EH2q9/8xiSKg9+YRHHwG5MoDn5jEsXBb0yiFKsSmhS2nJrTtk4bJ6xExD0wkB9AWuvpQI9xX7X73To+1u0d39e189c61nh+c1fW3kLaZgSn7dI0JOqVUMB1pNTpfc52/l0orZj+KaigEWZERLdlii4Ze3om2v4j0baPwNtsJmvPGv5RKuAfm9sC0tJBkR8gvXuL/+BQY1UaVa8cHaD/ReNIexjnDfX8u5b/hPnNb0yiOPiNSRQHvzGJ4uA3JlEKkjaYWgrShiQQ1Y0fQQpiRMTDnX7/8nQha4MR1JevdJvklUjujT7TVM7hpypoPvsXPZZvDjpmOSJiGjBNBdYIano6zjld9V3oXrUVcU31/ONC900ityk9uM2+iXUFY8Qh1biE/d5AX4qIiAKE2JR6BIBMo16tNLmK0riJIdznLo2fp/zcBpawTZrsQ3fab35jEsXBb0yiOPiNSRQHvzGJUlAtOdUYk7TpwmSQEcgUqtuPiHhQa+beyaVOpSkmeoyDFUgN+Cnrvw+NCx9f6gdhrPX5+Utdu9ZGjxERL6EBaAl14yToKMOvSca1gbIIaYrLpEEqTmD8eQ7HTePd9y2zy0hKziq993OYUkTPLE2UiuBGqPRZkq6UFUnQp+ieEiQLmzTqCDIyRy33Q/fKb35jEsXBb0yiOPiNSRQHvzGJUpBYopLOfq7i7LjQMsoLmBbysOYR3ZenN7I2eF8/m59zuea7dIYqqjqXF7Cmwu/w9Jl+LlMZM2xI5ppAeTLJHMroKkGSUcZZnrcTg5ta5SWJ2MucsxU/6Og9vAtZZ3swXXOYaLSANcpCu4Ky3NeZZlm2lXgREVu4FlRi3MlAcoPKw0xJ+ByVc9PaMvT4KAMxgseQ08j3xUEzJW8qLVn3m9+YRHHwG5MoDn5jEsXBb0yiFL0csvQKFWenPS2DfdA7lbUPM/3cR2vOWTr9HmTzvQ+C7t4dXTs707U793Qndx7o2k6FUf3Fl7K2WrB4IQYgfUooJ+22/b0FmbaEfm8kEOcdFT5UTnq/YcrN90s97g+htJamJr0GWfW0q9t7AYKNph4tYXsk8ZYwvjwiYgdl1dTjkMrTcQQ9lf4CKzjGDYxi32H5LWcWUpZmD+4rZXjSvv3mNyZRHPzGJIqD35hEcfAbkyjFWV+zvE4KzfC67J7I2keQIfbpXgXEw0KztCIi+g9gwMPdc1179FjXHn4sa/mjH+rnhlqCu//Vv+na71/J2vVCpeJWTy8isN0b/rIOIFNuAp+kTMIt9foDCXQFPRNp7PODmk/m3l6F0SRTgUWMYER3AdmP7Qp/OaOO+vI1lUBvqnYj0SlDkMRgDRKQtreELETKTKShJE0McpWflGU7AEl6gGxVv/mNSRQHvzGJ4uA3JlEc/MYkSnEfsvQuCxV5lLlHcu970Avv9ELLCSMiOgMQTm1719EkWZI7z7+Qteon/yprz3+q4uRZRzPgFg0/lyXIIVrrQfbWca1rd6p2gyDOoNR6BmKQ1N5lw0yRAei4PYjKLaytMihZhmm3VMZcQnkqQRKQMt0iImoQXW0hCUi9B2mNMvdoyAlJRcrki4gY55B5W8AAGrgW85pKkY0xSeLgNyZRHPzGJIqD35hEKR5D5t77ofLre3sVbJ+UWib43pFm800uuNwyQBjWzzTTrnMz1bU//F6/C5lW2//8WtZ+/R93Ze13hWbz3XR1ezPoRxcRsQWpRZ8kldMDJ3Va6bcnNPUXqqW3UHZa0rCQltNlIyLmUE68AvF2k+t+qIcf9Z5bgyQjCUjCr2mq8QgkWdvBKbSf1sNLYI1uPh3LEDL5IiKOocfhEWTz0THOYXt+8xuTKA5+YxLFwW9Mojj4jUmU4m8OmiF0BzLOHpYqYy76WqJ4dKZrNGU3IqKa6zZXf1S5N32lYvHNTIXKlyB9vijek7XbAfVNUylJ04qbJrfSr2gfPjuCT47h8pDcO+3BMUIG277SfewqlYDbhmEqMzBTUxgYQnLvBo7npqP3ak497igrDsRZF0p6+01ZcVDePIIMOLqrbXUoZentoNydshqbho20hYThBnv46fX2m9+YRHHwG5MoDn5jEsXBb0yiFP9QLWVxXUFJaKayotuFEkUY3bq9YrG0WaqMefpaMw5/2dMsrV/2tUz4y1In7c43OhikD33YKHvqONP9Hncasq9AIp1C77oTkKmDup302ZSQEQnCpzrQdFndR9GQrZhBpuQKhmxcwTNxDXJvelDZtIXURJpqTEKrB8LvqOG+3IV7eArZivQWpJJsgga2dEEW0+iaBUjAOWVyRsQM1ucwjGMN13tVqyz2m9+YRHHwG5MoDn5jEsXBb0yiOPiNSZTiw7+9lsXbrzVNdrlQa1rCKOfpjVrzEnoBRES8LXU/X/bUxH+eacrwb3ZvZO35+krWaCJKF1JBj7p63KddTX3eQnPTiIgBNDjtUnovCPYMrPIU0lJfgdFegIUnaArPw0L/CYmIuAQvvaj0/F5Cei8Ze1prOzWnAhu+qdV6D2DUfASn7Y5glfp8VmDsocVDnME/OBP4B4ds/yzX2LiCJqgRPJVoC/+u1LBvut5+8xuTKA5+YxLFwW9Mojj4jUmUojiB2uiRChUSfqudSpYNpLQusG1lxKtCP/stpIzOIV2R6rxJapQwJYXW2k5naarnP+9xA8nsR/w0AAAB6ElEQVR3oStRwTYXINNe5nqM15neqxzSe2tIif2o4DTSex9ou8feN9B7odRpT9tCz5Dq2NfQHHMLE5fmlUpJui9rSHONiOh3IcUaUrFHINPgcscAri3JvbOK9B5tD8bUQ++EiIgtSM0FnMsChDY1BfWb35hEcfAbkygOfmMSxcFvTKIU9RrGMW9VDlCW3vJA46Eh669BYNyAUVlBjXkBv1En+UjWFl3NBKxBDpHwo/HJm0olEgmoiIgVNJ8kN0i18qQQSRetoCZ/DuKTGo/OYKR5E6MfqLx8/ED7PpT/DtvcH8lSUejztITMNBprPSu1b8MGsjbXBQu/IUy0ud/V8xtBjT81YB1DhuYIhN8I7mAHpHIOTVRJAEdELCGbcwpybwHZoZtMz9lvfmMSxcFvTKI4+I1JFAe/MYlS7LSiN7YbyNyDiS8r+O0gKbFo+IlZgsCi8s8CBMgZNNzc9FQ2UebeolQxSMKPMsl2UE7a9Fk6bdJuBUhAKgemRpE9yJQjvsuvfHam5bv5wzuy9v6VNkzd/poElsrZV5AJSPdqtdfGk+u9yj26fxER0y4Iw0IzEwsQflR+PYJ7NYB73wOhSU1wYSm2Nd+tMcjBCQj2IWT9jUF8+s1vTKI4+I1JFAe/MYni4DcmUf4bhT4xENP1sbkAAAAASUVORK5CYII=" y="-6342.046415"/>
</g>
<g id="matplotlib.axis_353">
<g id="xtick_529"/>
<g id="xtick_530"/>
<g id="xtick_531"/>
</g>
<g id="matplotlib.axis_354">
<g id="ytick_881"/>
<g id="ytick_882"/>
<g id="ytick_883"/>
<g id="ytick_884"/>
<g id="ytick_885"/>
<g id="text_45">
<!-- 150 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 6450.341415)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-48"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-54"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_178">
<g id="patch_179">
<path d="M 164.424375 6464.446415
L 286.714375 6464.446415
L 286.714375 6342.156415
L 164.424375 6342.156415
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pc282257bb0)">
<image height="122.4" id="imaged3f5a62805" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHCtJREFUeJztnUuPJFlShc3dr8crX/XqmlYXggbRIEZMS6NhVqPZIAQSYs2fgL/JAgn2MDMgHiOqu7q6sjIz3hHuwaIYFmnflSwrZ1V2vuWVu9/r193CpRPHzJq//72/Pdk9ptbcH7Lu5MeIXeMuZ6vTEY+9OR1gbOfPH/ehuSdNcWMzGKM72cAat6NfX42+6fzcrZ97Yv64rmnd2P40uLEN7BetcQP7tR78vq6PfszMbDf4a44n/1y71q+7tP7+TnDufvD7vTn6dR/guPE0urGH0MEa52XixmYwNun8My3w7NvGv2UNvHkn83szVO5vP/q9GEZ/LO1PA+vxT08IkQIFvxBJUfALkRQFvxBJKQcQB0YQB0glG0jIgeutzYtXZmY7GK+JHZHj9sbC4n16ENjoV5BEPBJyzMwKXIHGSNyjuTsSXWkMrhcdIxGoNk5rJAGLoGd1HP2zJ2GQaB9wL/S8SJQkIQ/HQMSNCn4kmh5B2K3FQFTco/PH0c+tL78QSVHwC5EUBb8QSVHwC5GUcgCH0QGECXIikSyxh1Fyq32YB4QJPNIzkjMKHFCHxs89BdcfCnEg2pDoZsbiII3R+S2MjTBNIXcg7GEHv+kkztG8ZrwXtN818TMCXY9A8RHH+DtGLkR+1iDYwvOjMboecYK3OyqGmsXFvQOcT05JffmFSIqCX4ikKPiFSIqCX4ikeOXLzIagGBMVbR4LCVOYJgppuSdwNh1bL4jMW0jfBGGQBJ8Px4JrjFx/QXGItnaA6x0pHTjo8KuJZOiWC7rv6LnQGD1TmpfEy6iIV71mUNx9DNFU3ehYbTwq7pG7UF9+IZKi4BciKQp+IZKi4BciKSj4RdM3exgrIHQcK78xDaT0PubXCN1S4C6k9EYS8qj+X19ZIYl706DDD4VTEKUOJH4F3XwEiVJmLNCRu+wUnIdAIQ6EPCKasvwQoum23Snq5qM9jImAtdTmx4h7lMasL78QSVHwC5EUBb8QSVHwC5GUskXRzYsxk2BNOYJq5plxjTsSBxtM/f14BxUJYtHagbV7mYG4Nw3+tlJrkBHSP6OuMRKqcKySOkrjuD+kU1Lq8CNcdtHr1Wr4EehChJuh42gfou7AmsAamcOMa/gRJO6dT2ZuTF9+IZKi4BciKQp+IZKi4BciKQp+IZJSXg8rN0i56ReNz3efV3Lb71OrD0BK7mOtqff5beduk53WjJX9Ccx9JAU5WPR0S23EYYzqGmyh7Ta1fDardHyhfPDH7GPQyovnPqBjDxFVzYnoPxcEWciPlW5W4bmhg9Cs693Yokz99cIzCyE+KRT8QiRFwS9EUhT8QiSlvN5fu0EqZrnp5m7sHI6jLjU1cY469mB+M5xPwhu1TyaLJgk02F0Hj+PfS277Tbn7/v52KO7BGHUkilp5YayWN07iXvS4FnW3mEjGrcGDhT4fkM9PIhvZxema0S4+2A0Jlng8wfXAnluDjp13IM7DmL78QiRFwS9EUhT8QiRFwS9EUsryuHWDY0dCTswpV0hYqgh+5Pzj/HTIyYe5p413NhEkFs5af+4ZXO+Ca57aGQg3pwa6CgXz02nL0OEFBSVrLsT7RIW9GtH8e3pWJFSRYBst1llzhpLQScdSgVJaY09jIPih4xCMhdRCnvahth4UJeE4btEuhEiJgl+IpCj4hUiKgl+IpJRo4cpo8UhySpELzYxTT0l4QcEIRBYSXshpRSIJpTFTx55aGvPiRKLdx6cst2CV60HcW8H1diefvvuQ1ObhETogisBBF9p554tMzoIu0to7th53bmzX+P2JpiyTmIpiOLWVBwEYXak1gRxiIyqIYuFRnEUI8cmj4BciKQp+IZKi4BciKSXavYQg5x1BApSZ2WbYu7GoqLHofE0ydLaRpkUuQkjzpPp4m4rDbw4TzWA959jq3DsJZ3DPdL0OhEGq/7dsvZNz1/JziTr/SBDrO78/9KyelDM39gzGnrT+XGqHvqkIftfjxo2tRv/ekfgcJSoqk3BNAnk1Bb7SYSkCXVNffiGSouAXIikKfiGSouAXIillP0DThw7GoH5cwwXbQufWxknwozRKcgIODdUEjKyQhZdmjNVhMzM7QFOTC3AIUuovSYh0XBdMoR0gJXtbvLhXc3c2jXfFEeS0OyvepUfi3vNu4cdaOBfSqqfgnFy2LIZR6/QVCJ1rEPx26ED9+GYxWJ8SXH9HSPM14/eb1kNjEvyEEP+Pgl+IpCj4hUiKgl+IpBQS3TZH74CiFFoSEUiAelg3WBrzv1Ek0EUbU0Q7umJa5siCzw5EmjWko14F3XxdMPV3Ac/lyvy8h3Ieup5ZvYbcfS6Kb+TyBJq7UC1EGqN7oZUMIJJhkwwzuwTRlcaoe/IBiu4dKLUdxqgRywqcrhtwG9aE2Gj3ZILcmPryC5EUBb8QSVHwC5EUBb8QSUFl5wipg1tIv8XuuUFnU+38qBgXFfdIGGyp3l7wZ5Cu92HcM4A4uAdhsICgyQINOfw81P2YjqNuzGb8DMjNdwWOvAUIeeRMJKgz8Q52lgS2GiQiXoB78hxegClM08O7swEB8tvWi9y/AjftbgQREGLNjOMy2rG4gMipL78QSVHwC5EUBb8QSVHwC5GUMuu8QBPtBkqQ46jWqCJ6zehxUUi0I1GSO5vyvewtlp5Mgh8Jn7UmFPfBDrGU5ktreUDdOmxWEXQhEuSA81UGKy47OJf2wcxsDDoqe1Bsnw7+/q5GEiBhvydeYPtXeM7k8Ks5YknQpucygTqKT3qfVq0vvxBJUfALkRQFvxBJUfALkZRyOfG11LADLoiAJCxFu/maxdMRae4JOZaC3VIHco0F04u5zUVFRIR56J4PIPBwB2N/Lgld0xZELhirOfwonZi6GPNY7HtCLr01pLxSA5Ij7GtXES9PrZ+nUOMUcMrN4L3DbszAEe6P7oUacZCwZ8Zuvhl0O37eX7ixr/pnbkxffiGSouAXIikKfiGSouAXIikKfiGSUq6KV/t7KOBINsKosk+597VjSTUney+tkZRvWjep8FvIqyYVvvbPxTGYfx+12VJON6nAtA/UEvuL4hXgLxqfj29mtoD6AlS4cgd57GTHpfbZeziONG5S9nfwXKptrekfm9aPraHjzx0o6e8wNvxz/rX550dWXqrbUCugSs/6+cQ/1z8EZf/nRx/n+vILkRQFvxBJUfALkRQFvxBJKWQFJetsNKeeBK1abjoJgVhwEwQVEvIw5xwElVPQohnN+/9w0dAl8Xws4ghdk8hufNb7ezkD2+4fmxd8frrhezkHE/P3UJjzTfEC6xtoD/4/QeszCZ8k7m0f0OVmbb7d+LL1lQOu4Z1/A/s4h+MKxMbt6OddD34Mi212XJvgHNqfvyqXbuzrk3/WP5u/c2P68guRFAW/EElR8AuRFAW/EElBK1HNLXUfcjZhTn2lYwt1qjmCcBNdDzsOY8Ux6dyH1CagYyn/Hh1+IGqhuxCKR067WKHPS9jrz7oNHjstkHe+8+evR/9cb+hzAo+fCniuQfhcDV6cIzdmzUVKNFCYk4Q3dJZSwVR4v6PPmaD6FWZm59Ah6SW4NH9/5+d+8dXKjenLL0RSFPxCJEXBL0RSFPxCJKVgocigwNZSCi2IJE2tUGew4UtUBCQhL+rSY9EtJgyasbjHIiAUD6UuMDAWvZcVOOC+AWHw38EJZmbWHfw81z0IfvD81g04GCktF967NbjiliD47QYv+NXeWXofyTFKKdlUoHYfFAaJuJDO16OCqT3MvWn9ur/5N5/6qy+/EElR8AuRFAW/EElR8AuRlHIkUQtqs9HPBLqiYJKaw6+D1NoxqAKSwEM17ih1lO6ZBL+oI8usInQ+wgFJrjFoPoOC393gnXu/KHf+uMncX7CyHqqFRw5PqvX3/uQFSHLzYWoz1DI8DP650H6ZGb63J3rHginZJ3DfkZD3mPbzlGZvxqnaU7iX686P/ePhiRvTl1+IpCj4hUiKgl+IpCj4hUhKQQdU0BVFoMhVORdbZUfHarX07kEiIDkBo2m1NWGJRDJqdU77Ta6/IzSRoHum65Ez8fXh1o19367d2If1xNSvabCBxTbo5qNngO5H2IemUpcR28jXxMH75wZTdWkOg3eWoHek1jr9WePHr07+/AMs523x69GXX4ikKPiFSIqCX4ikKPiFSEp5Us7cIDmWSNTAGn7UmbYifpBrDJ12IBgR6LKjph3BVFtsIBJ0gtXWE3V+RdOqqSMvNXegfaCusWaVDsFBFxuLX56oYIvux2gueIXoc6E9i94z1RQk8ZncfLNKl945CciwjRtw6N40fj368guRFAW/EElR8AuRFAW/EEkpl60XjEiMGUgkC3ZfrYk7JOSRCEWpniSyzEA8KZCC+VjBiCBXHIlVExBzSPSZd97NRW6wJ51Py6XUT7pn6iRrxsIUNcqIinYECsjUsRae30PmnXR+v0kkpedC4jW98+GmK8FalLX728L4NdRMPIDg9+7kn5++/EIkRcEvRFIU/EIkRcEvRFIKufQo5THalILECnLymVUEP3CXbWEs6tybmxe/aI1RR91DUnqp+cK0IUeXH6NfZRLynjdevLqEOWhv3sFxZuzcvB1984yoiy1ab5EgIY6oOSdJ3LsoXiSl7ruU+k3icxR6dyiu9pWOw7cg2g0g7lG8vQdxV19+IZKi4BciKQp+IZKi4BciKWUDohu59EiYOMJxJJLUHEvUPIOcUdiVlRp0kDMRch6j56IoVTEHRpsvXHY+3XbRxEStcxDonsHYE6jrRvQV8XLs/H2TILYBAYqef/SdoDp8tK9Rh56Z2Rk4WKew39F3OSpUUh1MCzr81pVU6/eNF10PIALT3lKc68svRFIU/EIkRcEvRFIU/EIkRcEvRFLKe2jnTETz9Emtr1lno3nZaIGEeU7Hj7eR0j8PBOWXm7GyfwW59i9bPzaHxuY72O8e/mroQSGfwC3TcVa5lwN0hjnRZyKYVh+1htMe0r8Mc/iHY1Fpa13g+0b2WaptELWBo7U7WKiV5thW1P4beP50LzQ3WbH15RciKQp+IZKi4BciKQp+IZJSbgdu03wftPdGbZsVT2wPglNPBS4L5KeDuEftnPcW6/YTbX9dazdObZVfdgs39sq83ZT25w46rBAk5FE+Pslh52OldTo8gy2oe6vG23s3IDZiBygQyWZkVQY79BUIkgsQTc3M9rDu7+i9RUt7TNGMFiON1r9YHbmwKlnVqb4AidJUW0JffiGSouAXIikKfiGSouAXIimFCmaSuEdEW3lPKk4y6kBTOhArgi2V9wPkLIOwhLn7Y8y5VSvgSUU4n4Ew9WKEQpFU4DL4uzwjwS/YRrxWRWAO589aaE0Nc0ddcSRATeB9OAMR8ArGyP1oZnYIFhR9TFFXek9OtB643EO6D+1BoG1aev7w7pDBMzyzEOKTQsEvRFIU/EIkRcEvRFIKpbKSqMVCnpeMSMSjtEyzePtsOp8EP3JAkShJ6cBUJPQhYgyLWv5epiD6kGtwAfdHktacUnWBHRxWuzs6ltpDUwFPbOVNM6EeFus+Q669oSLE4rFBIY/gtt2/XaouUmjb/rxcuLFzKupJqcgfsTYhxCeAgl+IpCj4hUiKgl+IpBTqLEJi2qzzrqoJdD4hwa/a1hqEDRL8TtCGmNZNKZhR0Y6ETzqXhEEzs+Xgu6ncFWhBHuzOQy49OpOycncg7uxgD/cV4WvZQBostOim+o9rqIVHjlEScWtC1332rX9WBYsMstAVrs1H4h455YL6YdQ5S2ntZmaf91du7OvyzI2dw158a/691ZdfiKQo+IVIioJfiKQo+IVISiGXHqWnYltkEK+izQoeAjm/KG2RnHso7gRbdKMIWPFz3Rx8LcRf90s3Nu1ATIXf4A6ce5S22pK4R22foSbgCmrZmZm9h6YRb47+Xm6P/p4pRZwap5CoRaIbtclewfpqLlJ0gkbbsQNRETBqIqTrkZPPzOx3O+/m++mO6vVBvEz8NfXlFyIpCn4hkqLgFyIpCn4hklJI3JuB4HAGaYLULfUhgh8JeSjGBdWTLbiYSDCiZiOPqVtoxt2Jvzvcha45gYYTPewj1bjr4febhLMNrO+u1g0WnHvkYCRxL5oaTc8l2tQCu+JWvmPRtPHac/1YonUn6V6oAYyZ2TOqZ0gp+XDu89ELrPryC5EUBb8QSVHwC5EUBb8QSSmUbssNFbxgcAZiIQlQNUjI25kXMLYnL1aRQPeYlF4UkaiOXiU9mY4lUesWhLNaF+P70BrJ2UbX28MekohnZrYefFouCXnkqKTGKVExbd/EOirT/dHemJmVk98fcrVG04lJTCV3YLTmJa2bRPgPc3tuQNBcQLfqczhZX34hkqLgFyIpCn4hkqLgFyIpZQdNFqgOX7QpxQLcajUphRoqjFBrbgt6EboDqQ4bCCp0f7BsdIfVmEKNwykINyScUpowNb8gYWkPv98kSpIDkRx6tXFKb6axqGsTm8VEhU+q/VgR/OjzRungHYhx0TTfaP2/Ht6HaA1NM7MbEG3/s/fv6BV0gh7UpVcI8RsU/EIkRcEvRFIU/EIkpSyP3uVFAg0JVQsc82LDrFZfjVu1Og4wzx5q0lEqJIl7J+iIQeIOiW6UDmzG4t5FN3NjT1s/Rp1ob2BvaD0kdEXdajXnHe0FCXThNGismUjnkpOTUnr9N6uviLOPqSlJ8zQkfJNoB99Vcu49ZH1vT+DIhEe9KNQQxaMvvxBJUfALkRQFvxBJUfALkRQFvxBJKdiGGlTl28F3ZymkhnZefvzMfLcfM/5noIB6jfnbbSz/vqbO34dypVfQbpr2xozV/svW3/fTxo9RC3KC9oGswaTCV+2vANlVia6NfTto3fTvAdUCwHoT8Jxr/1yQRTvasYeLcFKxVT82h/eBCt7SWjYnfseorsVb8/8AULty2h99+YVIioJfiKQo+IVIioJfiKQUFE/I6goFHK9t5cZI3OlABDQza0H8mpAtktosWzAvnloqBzvDzECgmXZ+XjOzBViLSdx7ZiD6UA2D1q9nD8VNqV01FeskoZIKcJqxGEeQmIaiK1ixsTvPAG3SBzi3jdVtMKvUIWhBbISW6PSezBv/nKdU3Ja6WcG7Te9sra4BnY8WeQBF89CZQohPDgW/EElR8AuRFAW/EEkpWMwSIIGGBKPl6B1H1FrajEWaMxDy6Bcq2rabRBts0Q3n0roXlW4qz0Hc+4F5cegC3FdrWOOMCnNSJx54BtRxh4pybo5cwDNaXJPqBuD7BA8Q23YHhcYBOtIMDXdmonlojPbxAAIrQQ4/KhJK+0WuvZpbcQaxQe9oVATUl1+IpCj4hUiKgl+IpCj4hUhKocKHlBJK4hyNkTtwB6KGmdl7SJmlwpwFfqNIEiEREJ1kMEaCFol7nzdzmNnsCxD3no4x4WUXTOlFoQr2FgVNLIQZbzf+GLDDTlBAJKLdmmpw4dFYK/dal6P70DtPDj26l9r+H0DUxEKo2J1HDj8hxP+h4BciKQp+IZKi4BciKYVqz5EIQQINOZvoerUURRJFSKwi19g06EzkNEgvnNAcV5C++QNIyTUzewE9kKegxSzh53YFQs4NpOBSbTcSWCfQbppEpAKtnM3Y7UZiI9XXe4wYR9fD2oNwuZpYiB2NgnUiCay5Ry3Ng+8xjdXWQtdcm38nSCAn15++/EIkRcEvRFIU/EIkRcEvRFLKooMmEsGmDySmUSOPmpMM0zrJ8QTH0c/WDGqp9eiWiqVGnsP1ZhXXHpSAsyWMvYXafG9OXjC6htRoEuKojt4MhEqi1tAkWu8vmi4bhUTJSaVmYvQ4Ej9JZIu6GlHQxBbksdp8LALGv8noaoW5Rwl+QojfoOAXIikKfiGSouAXIimFGlNQ19gjdTbF+ngg4lWEpWh9vSgddO6NpokSlC65rqTfHmCaLTgJ34Aj6xpSm+lX+bKbuTFMjQ125D1UxLlt49e4bbwouQVhkJ4f1uYDcyGll5PQTCIZCXu1cXKhkluV9pbeeXq/DyCQ0r3QvNQAxowbgdD7jZ2b4Xr68guRFAW/EElR8AuRFAW/EEnBLr0k2mDTDkjJfYjrC+vrBR1i5EIkyOFHQtcejutb+G2saGkdiDlb2Mcl7NklCDxf2CI0B90LCY0H6mBcEVfDnV9hPeQEpHdsPEFzlkeIe7XmMySokRMUXX/BfdjDPm5aL4bSu33eeoftq/YM5/nhyQu+V/AIb2Ar3kJtTH35hUiKgl+IpCj4hUiKgl+IpBTuWBsT4qibK4mA0e6rD8M7zkiAmoC4Q/eyQucWCIMd38v05FUWErA+A4HnTwYv+L08gmgH13sPrsab1t/LNdQJfAdOPjPDTwKJsy3kMVOaN71j0ZqAJMRF3Xi19dA7MQ+mg5OjjlytE3gfjiC6vmy9sPvzoxf2zMz++of/5cYWP3vlD9xDSva/fOfG9OUXIikKfiGSouAXIikKfiGSUigtk+A0wVg9MxKLHgJec4x1N6X0ZJwD1riEOnq1e7kAIe/L9tyN/fnWC0t/evXWjc0W/rnsNj6l827p532384LRa6hx96ueU0f3IA4ewCGGwOdkhGdF+02uzaPFOg5jcw/j5zWDGo4k5E3gZnq6wWBTmR7m+Mnguz6TsGdmdvF3f+PG2h//hR9bXPm51zf+OJxFCPHJo+AXIikKfiGSouAXIikKfiGSUsiOS8pntM3yQyCLJym+ODcM0b8Ch9arxfSvAFlxaS1bKMBpZva086rtjw9eTSdl//Iz/69C0/m5+7nfr9mZX8/FyhcEvbz169sdOW/8TfFK9R2o15THHoX2lgphDmOsvkOtaOkJrM4HKpAJp0/h27gIqvg9WJ+/HPy5f/nsWzd29ldf+cWYmT154YZOt/59Gpbv/LmbOzekL78QSVHwC5EUBb8QSVHwC5GUggU3gyejYEddeCr5/CTwoOAXLNZ5BAsqtZumfPCW2kNDociajRTbL8Nx//HeWy8XN94GPG29EDub+LHpFApmFv9cLhZeBHy29CKgmVnXQxcYEN6oPXTU3k128WgbcBL3KEf/w7GUz++f/wWc/4VRnQV/vSm8nmdgaf6DZuXnfeWfy+mdt+KamY3/9A9+8OD37HS79Od+78f05RciKQp+IZKi4BciKQp+IZJSorn2JOSQGEOizfroRY3a+US0DfUBRClaN3aGgfbQBxD8amu+7jZu7J97X5zxvPjf2wvoXvN89Dn5L7d+7s933h349MKvpZ94MXQR3H+zxzk8ac+oqCsdR27M8+L35kXxoqmZ2cvOuxhfmT//Rwc/z9fFu+Iunvr93qx8nYXtzo9Neh8by9deVDzcedeemdmw98695Xtfz+Fm6e/v3fDUjenLL0RSFPxCJEXBL0RSFPxCJKWQmBZts02dWEjcWx1Y8CM6aIuNhTlh3SgigQhIgh8dd4R04Fr3oe/aWzf2CxAMLxsv0DxpvDi07LwQNMJv9fnBn/vUvOA3ASfgvOLl7C1WkJIglyUW5gy2gZ/DPnw5ee7G/qy5xPX8CETSL2fe7fY7P/GuuskfeZHMdv6Zbn/phcH3/+3dkysotvrtmws3tnnNbsW38J580/t34k3v7/kGBF99+YVIioJfiKQo+IVIioJfiKT8L9pZwe87f74qAAAAAElFTkSuQmCC" y="-6342.046415"/>
</g>
<g id="matplotlib.axis_355">
<g id="xtick_532"/>
<g id="xtick_533"/>
<g id="xtick_534"/>
</g>
<g id="matplotlib.axis_356">
<g id="ytick_886"/>
<g id="ytick_887"/>
<g id="ytick_888"/>
<g id="ytick_889"/>
<g id="ytick_890"/>
</g>
</g>
<g id="axes_179">
<g id="patch_180">
<path d="M 299.674375 6466.948178
L 421.964375 6466.948178
L 421.964375 6339.654651
L 299.674375 6339.654651
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_357">
<g id="xtick_535"/>
<g id="xtick_536"/>
<g id="xtick_537"/>
</g>
<g id="matplotlib.axis_358">
<g id="ytick_891"/>
<g id="ytick_892"/>
<g id="ytick_893"/>
<g id="ytick_894"/>
<g id="ytick_895"/>
</g>
</g>
<g id="axes_180">
<g id="patch_181">
<path d="M 434.924375 6466.948178
L 557.214375 6466.948178
L 557.214375 6339.654651
L 434.924375 6339.654651
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_359">
<g id="xtick_538"/>
<g id="xtick_539"/>
<g id="xtick_540"/>
</g>
<g id="matplotlib.axis_360">
<g id="ytick_896"/>
<g id="ytick_897"/>
<g id="ytick_898"/>
<g id="ytick_899"/>
<g id="ytick_900"/>
</g>
</g>
<g id="axes_181">
<g id="patch_182">
<path d="M 29.174375 6608.365839
L 151.464375 6608.365839
L 151.464375 6486.075839
L 29.174375 6486.075839
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p1dc0ab2463)">
<image height="122.4" id="imagea131ef4189" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGp5JREFUeJztnUuTHGdWhk9WZl261a1utSzrMtJYvo3HjDGGsTezABasCFjwC/hhbPgVbNgQMTERBBAzgxmGsT0Wki3bUkt9V1VXVVZWsYDwQu+TxNfKtmT7e5/libx/eSoj3nrPOcVweGsV58hy1e1wK9h/FRCD7YqikFiv6Ems6pUSG5RVUoz2jYiom4XEnsynut1St6N7yRFaPyJ17SMiitB4H9Z1YzCS2NXRtsTeG92Q2F/O1yT2x5v7Eqv6jcSOjnTf+/W6xCIi7gz03btX6vv02XKssfpQYpoZxpgscPIbkylOfmMyxclvTKZUJIh0oQeHaxMBz1voonvpoQiYFuv6bFIFrBzp8mxo37a1YhH42de6jqXEnsBL/2Q8lNj62lxizVL3nVESRcRxT/Pl0WomsQeLJxLbm59IzF9+YzLFyW9Mpjj5jckUJ78xmaJWpxaSBRrU8NKFvS5uPoKEnBJcfxjrpW0XEdFAPFVYons27dAzbHsfyJFJsT7FCo2ReD2GV2Ja677k26tKFRDLGjaMiBrek/FKHX7jRp2l00bFRn/5jckUJ78xmeLkNyZTnPzGZEpFYtN5u/66kuroQoEuMYZlvj3VQ9ueTdMD4QZEQBSmvgN634tyK6aKe21CLK01lWoPy77E+rD+JOJOUIjTfS+tdN8BlPn25/xCLOFZzFe6fw2xZqXvp7/8xmSKk9+YTHHyG5MpTn5jMqVqliBUgUhColRXESjV2ZYq7lG/PhKCSMgZlQOJrUGsjSUIKt/Vkt6zlMw+Teqapro2uwrSqW7OCtx85PAjnhR6jQ9BVLww1j6Bg56Kc9OWkt55oe9YqrhH+MtvTKY4+Y3JFCe/MZni5DcmU9DhRyIg9kJLFYFaevWlurfIfZdabkturvVK+6tt9bXgcq2ngt8cSigjImZLrcMkN5hpJ1kEpPep5VHTtlSWi3kAwhk56o56+k7c66tjcLbQAR1DuJYHumtEROyutCz3dKXvnQU/Y8z/i5PfmExx8huTKU5+YzLFyW9MplTJyilslqYptttcSQ1PbbiYquyTbXdnsCGxK9Wm7lvo8Q6aU4lFRJwUGu86rvy7SGqD0vOe2NNmKyblm8akTxY6+WbYU9n9GP4BquAbOgUr7oN+2rf2uOUfpa8ancRzstD3LnUMvL/8xmSKk9+YTHHyG5MpTn5jMiV5Yg+Rasdss7li00wQ7bD+GvalJoyX+hckdqt/SWKv9GieitJmndxNnNhDJFtYv2V0mZqUen9neZ+IxVLtuCTEpoqzZGmfV3qOfegFQM+hAaHydKk23oiIExCbnyxoOk+a5ddffmMyxclvTKY4+Y3JFCe/MZmCgl+q6y+1kSI11oxgcY+aa6bW7pMja7tSwe+tQh1+P5nr8Q5Lvb/9nvYCiIgYgBsw1a1YN2n15edNu/Py2ceNE3Qvqe7QrmPOSchrwAFHDVjZHaji3riv7kCa9kQsoD/AHK6vLV43EINrJOHTX35jMsXJb0ymOPmNyRQnvzGZkuzw61L62+bIInFvo69TTXCaCghnF0t16b1aXpTYBzO9nh+NjiT2xakKg3fXeIrPZqXNGQ/LscTmZZrYtFo+B8GvRbBLLbVOhd1zaZLfNzEunsRBEsSoke2i0e1m4KgjMZvuhdaeBLsIFiApL+m67fAzxnyNk9+YTHHyG5MpTn5jMuW5lPS2OclGUIK7DSW4O6XGLpcqsL0SGvvpXM/9/rVdiW3e0jLK4ccqzt2evCSxiIg7cI37lfZcO230PHNwaRUgiKWOq+7qDsSR6Ill1SQWpjrlSKhKpvWWn31kOD3HGoTYpobJPrCmXc4b0TJpKLEUmY7pL78xmeLkNyZTnPzGZIqT35hM6ST4dRm8EMGloy9V6qr7k5723PspuPRe66vAduWmxi7cVLGpvKSlupcm2jPt9m/YfXV1pM7EL0uNHfcmEsOyVXq2iTpeqiuubf2ohHpUqbOR3JhUVk2C36TRMlhyyqU679p6K5JTsot5Ekd+gzhLZdpdezV2EXI9tMMY8zVOfmMyxclvTKY4+Y3JlKqraJdCm3OLBIyNQoWld2r9jXrv8iOJbd3UAQa9EYgscDmLPXXeNSAqVi2iS0VlsFCKTE6557EGxFmGqWz21T15Y6hC7A6UVdM6Hza6VvsLFWd5KIWu1emCB13Qu3fersjUcvdv2yAWf/mNyRQnvzGZ4uQ3JlOc/MZkSieHH0HCSZvQwX3FVCnZgb5pF2+oEDS4qu6y1RzKLR9pbPxIhcZHj7VM9/cDfmR7KxWrZit1rC2xtPLZh1+kQiJXmxOQ+s9RqfVr1bbEfrRS19/6Ss9zUOka/Hel/RbvLY4l9mB+KLE2h19qae1500Xce14CsL/8xmSKk9+YTHHyG5MpTn5jMuXcBT+iTaiics0xiGTzUNcYDkGt9LdsNdFznO7rzp893JLYfwxUvPp1T8t8IyI+q3Xox8lCt6V7Pm9Q3CMHYsmDONYrLW9+udqU2B8t1fX3Z6EC3fXbGlvWej137l6W2D8OX5bYz+FeqEQ4ImJScPzbzPNyAvrLb0ymOPmNyRQnvzGZ4uQ3JlOq1MEbqZxlqir1bNtdnEjsIygd/fEdFQG3oOfe6YE69z59qMf75VDdgf9e6JTdO/WBxCIiducq+E0WKjaR46zNnZYCPW8qySXX3npfhb0IdvPdLrW34s/m+nx+9Lf6HMuf/bWepAIX4b/9q8Q2/07Fwt1SnYVflrwuh7CGRNf+ei+KLtftL78xmeLkNyZTnPzGZIqT35hMcfIbkyndJvYkKvs0WjgiYrpQtf/hTGu1f9FX6+0ARmVf+1jPs1fqNX6ypor7J42qxV+Bgr83138jIiKe1NpfAKfNgLKfOpo6VdkfVqq4r8HEHWrKGRGxA1OTbqz0mD98XUedl3/6N3qN7/+VxFZz/WdmNdXYjbf+Qc/70S2JXSj5n4vUhqkvStk/yz9rXSYxeUS3MeZrnPzGZIqT35hMcfIbkynPZWJPm5hCgtjhTO2YHxb3dbuRCmwXoQ59HnAOEJsOaz3vGKbFkGU3gsVLum8SXkgQTbVd0zhtsvIOSxXsaJx2REQfRLIarntyqCLi1uGexJZHKgyuDh/oiT+7K6Hpvl7jEl5ZGvcewYIfTSpaQZPR8566Q+tHIh6tadu2qVjwM8Z8jZPfmExx8huTKU5+YzKl6iIifBPUUO/+eKo13SS8kYuN7m8JLrv5Us9LtfdtE2DomOTcO++pOwQKjRBr6yNwulTx8n5PR2D/y+MrEvuLv/8nia3f+0yvB3ovTH6hIuCH969L7N5I1366bBnR3aFXQhe6iHtt4iUJlXQemgDF2xljssTJb0ymOPmNyRQnvzGZUlFJaKooRc40FCVahKpUd+ECRnSPV+q+o4agfbg/Oi+5DWsqyW0pv+0i7nVpokprQNc9hWdDax8R8aTRZ3u/pyPIfz7Ub8fxf/5QYm/9Oq2J5ieVlur+ak2FvI+giepJzZOUugh+ndx8iaIbbUc5FMFuRRIMscwbHJ7+8huTKU5+YzLFyW9Mpjj5jcmUaq2vrrjUElOCBAgSKiLSe6mlOu26XHdqb72zCEgk5pAI2KWsmu6PxEtaA3I1RkRMweF3DCLgXfh2HEEvvV9CiXEd+hwfLVXI+3KW1keReihGnH8Jbqo4i466xO3Ocj0k7q2VmtM0dt1ffmMyxclvTKY4+Y3JFCe/MZlS0eCGZaIzrSpgFHRPxR1y2bVBTrTjeiIxEvxI6EoVaJIFzTbxspd2TBL8Uod24PGKtOMtirQBIm3xGYiAhwEj0Ve6XQnC53yl13O00HWm3opUzk1r/20j1c3XJgLStvQ+kptvs9Q895ffmExx8huTKU5+YzLFyW9MplQX++sSpB5g6CTqqZPoAsTKlt+Y6UpFu/1CS0epXJOEM+xTB04yup5UZ2JbGSztn+xWjDTxkiBxj66FRDzqlxgRMS24H17KMecrFXzpOfK+ej20HTk520TqtgnRKXRxB6I4B+uCg1jOMICExL2Lleb0FZi87C+/MZni5DcmU5z8xmSKk9+YTKnWoQRzWKhoswYTXTcKKB2EfZsWMWaPnGjg/CLxK1XISRVecIptpTEql4xgZyP10ps06k4rao2tFmnOvVTH4FmEL+wLCOsy76lANzrDNOCU83adIv2ihqmk9vDDvnwtgl8fSqM3K3Xu3exvS+yN3gWJ+ctvTKY4+Y3JFCe/MZni5DcmUyos6wSNpc2l9zRTEIbGUOYZEXEAJZxHUL5LwzhS3VckvKBbESb8kvtxu1LhJCJiBKIW9cI7XKQNsEB3YKITEMUrCLVPHE7rC1iXun8NfQHrMq2nIIm9qevcth32dUx0h6aSKhaSc/YsLlIS56/1tyT2brEpsfdPYcAOnsUY873HyW9Mpjj5jckUJ78xmVIdg+g266lQNelpmWdqqeZ0ySWih3MVv07mWr7bJkw9DTqowM1HPQVH4Nzb6WsZ5M3qIp57M9R9NQGhaxdKnskdeAixMQymOF3os+3iiGzfH0qCEycb03AQumcqy6VrSR2w8iLBUmQSGiFG72xExAUQ/K6XKkC/Pdc8+MOrjyTmL78xmeLkNyZTnPzGZIqT35hMcfIbkykVKe5nqTF+GmzM2KLWk22XR2/rMcm2m3rdVBdNdfovgZL6RqjlNyLieqPnmcIj+wpGJX9Z6jF3K12Xh9WxxA7m2vA09R8AUubbtsUeATAtCJuo0jtR6DpT7wX6l4KO1zrlhsakr2BbCHWxFpOKv2j0udL1df3nYgbTo04naj/3l9+YTHHyG5MpTn5jMsXJb0ymVE/mahkl4SUVnKbSNgo6sZFi6phtilFtNDWU3IIpJz/oaXPEd2b8bF4JtUk3C932Uajg90VfhcU7IAz+Fkaip4pfJKQWILhG8PNOrbVPHRlOnx0U4gCyZ7eNgadzJ09I6iICJlqViTbxkkaYf1Lv63n6eu7fLNSW7i+/MZni5DcmU5z8xmSKk9+YTKnaxjSfJ2eZhtKlkSJBtdGpbr7bS93u1YIbcF67qu67Jbj+1vbBIVjrufdIqATBrw+xCmKrXroAlSqmEj1wVI5g8lGqY5SOR+Je2/Fo0lC1UKEz1RWJgnTi+50qAtK0poiIA8iNyUKnPX3eeywxEr795TcmU5z8xmSKk9+YTHHyG5MpVZv77ttOshMQbFok+F0u1FF3BbTQUZ8F0moIDS6nUFq50HLi3Up/g3cLFaCOYbw3TQUiNx45AbuMpY5gkY3EvQv9kcTaRp0/DTlG6bxtrlS6bxJJaf9UEbCLUxW3W/K60HnoGlMduv7yG5MpTn5jMsXJb0ymOPmNyRRVn77DpLqvaNx4BcIgSXvTmh/Z6YkKXZOxilqfFyp+fVLpme422pvvcX0isfFCS7KpNyIJX209/EiYIhGpKsGFWOpz2Ky0NJpGnQ9hig859EjkpNHgERF1wPQhcDsOS5gC9IImA7W5XFNHr6cVDvvLb0y2OPmNyRQnvzGZ4uQ3JlO+s4IfiSI44IF6uK1UHDoBee8xuNAezlSwi4iIAw0dNrr/p7D775daJvxFfSixvTkIftCDsU3Ie5qzCEtUWktOOxq9TYIfjTq/0lOXZQPXuLvSe95tuNT6ZAEj32GtaXz2WcaaP815l6Z/E/jLb0ymOPmNyRQnvzGZ4uQ3JlO+s4IfQeXJc3B+kQj0AKbiXoRpvuVQRamIiN1GHWv7QxV9/guGe3xeq1q4OzuS2Mlcr3sG/ehSxaa2vnzU74365g3g+ZDDb7tUwe/1QnsZvj1P+xbd66uQ+ruKX+V7EDtdahksCcPo8PsGSqNfFP7yG5MpTn5jMsXJb0ymOPmNyZQqdRhDF56X24nOQ4LYwUzLZcmtthioU26v3MBzr1UqiB2tVFi6P1fn3sOpxlLFPRI5k6ca0xja4EEnQ+jNR3341ksVRC/11NZ4s9Hn9epSnXsFiGmDuR6vHqioGBExLXUNTytdFyqDphiVNre03Dt3zjtX/eU3JlOc/MZkipPfmExx8huTKVUfSjDJsZRa3oji3hl0ivMWB0kQm9Q6/GJ3pY46moD6sNLtIlgwRHdhrULeuFahaw7Tk1PFvVTahjuQm4+ce+uVinsbpYpxO4UKg1cavZcLfRXilkt9rusL3XdrpdccEfESDGM5KtVdSCLgFAS/1KEd9M53FWJp29QBHZS//vIbkylOfmMyxclvTKY4+Y3JlIqcW1i2mNgzL3USaUQ3oSQV2rcGMY2uhRx1R6WW5Eaw4EfPcdGoYEQiUuqU1y60CUtU0jvsgeAHbr6L4OYjMW4DnncJwzRmC32uY3AgTgp+NtSbb1ioyE33MqlU8CXX36L37CIgrQE5LCO4j6IFP2PMmXHyG5MpTn5jMsXJb0ymOPmNyZSKmjCmqso4ISex6WFERAHDhGnbZZyvrZUg62wNhdqkzHflRSn7bfXh9M8FWn4L/QdgVEDzT/xXQe+Pxp/vLlWFvwc9VO+GKvP/u7/aqZ9AA08c5Z44pYj+HaHnndrok1T9CP4XgK4nFX/5jckUJ78xmeLkNyZTnPzGZEpFYkWPLIeJwgIJdmSJjIjQKvaIVUPiF/oiYbvzFcnOYlU+7+aKXY6XKu6lWkPboGcxW6kgegD218/7KhY+Xuq7eA9Gmn8cKuLdb3R8eUTE0ULt2DSxh3ovnDZpwiDW5CfW6dManEWIxViiMOgvvzGZ4uQ3JlOc/MZkipPfmEyp+uDIomaNVM9N+5Lg96QhaS8i5irGUB30Emq1n9cUoC601csn7ZsoxqWKdlg3fgZ3GK3rpGFX3dPQSp3A2O6y1GvcW0Gz1YVOXDpc6Ij1CL5GEqCpYSqJgPR+pr6LqUJcWz0/ifMDaMCbmr/+8huTKU5+YzLFyW9Mpjj5jcmUiqauXKx0osk2CDQbMImFHFCPG256SSXBJLx8E2W0z4PzdtWlCoip520Tlmj/GtZgCWLcGAS2/UIFus9BqCJnaQ2OQRLiZkt2kdL7lCr4YWPVDuJe6naUk23xzQryEpqobvQ0V/3lNyZTnPzGZIqT35hMcfIbkynVtcG2BK+WFyR2s1AR4eqSRBvl076KEhERUxBpxotnH1f9IkkW4zq4/vB4qQ6/M4yCJuGNWIAYlyqmYWlsYskr0TZCnpyJqeJe6kh0erapI+3JjXdpsIHb3hrsSOx6T8X5l0OPuQNTk/zlNyZTnPzGZIqT35hMcfIbkynVW6UKfm/BoIQ35yqSXO9r3zTqt7fVsIDxqH9JYvt9dYOdLrSX2osa7nGW3nqp/dm6uP5ShaWzPAe6Rio9JcGPhDMca53o2jzLsBGC7hvfnURxj6BrpPLb9b7m1fZAxfXXhi/heT4otiT23lSf482hljdv76jL1l9+YzLFyW9Mpjj5jckUJ78xmVJdBTfQ63MVEd7YOpLY1ss6PGEx09+T259pOWFExC1w/t3rqzh4Uut5sNcfiI0kiHVxB7a54ljIS5t2S2WddJ7UCcj0bLqSOkmYn3da7Hn1ZewyFZnWdFhpDm0O9N2+PNyU2CuDyxJ7r7iI5/7zmbpff/z+I4mN3r0isd61NzSGZzHGfO9x8huTKU5+YzLFyW9MplQPQt1Xj6FX2I2xxvpH0OMMtKY+OO8iInZWUHpYqePpcMADGZ6GXGPU723R6HYknBFtbjwcqFBqyfOoUvGTBi+QAEX97KbkfkQxVI/X5rLDEly6Hti/S9+7LrRNT8ZtU517iX0Pybn30lBFO3Lu/QTEvQ+m/C6+/uaexEYf/EBivT94W2LF5Wu6HZ7FGPO9x8lvTKY4+Y3JFCe/MZlS/W5xIMGi0lLbyVKdd7d21cW0DuLeMUzzbWO9UPGLBhOQA44GN1A58Kx49hLTtsm2JORtgoNxq68914aFCp9ULkvTjo/JCQiCH06hhVhExBLEM+rrl+ouJDEOhdMOvfDanJco7sGm2JsPewrq+mP5bqki4KVCY9eWerzLPZ5q3d/UZ4vlzbSuc3XJ+stvTKY4+Y3JFCe/MZni5DcmU6r7M3UNkZPssK/9w26NoGxxlTbIIyLicUFOOxVeUBDrgZMMhKXU7ciNR+IeDVmIiNiCycYv99W9dQ0GoozgCU1BON1bqhD0sDzG63ma/an2RmwTORe1xklY6uKUS+1b2KW/YUSgtzR18AaBTkcQ2I4X2jPvq1Kdqp/Qe7fSdykiYvUrdQi+Pv1CYut7Wn5f7Oi76C+/MZni5DcmU5z8xmSKk9+YTHHyG5Mp1eFMFUiybc5Waok9qVRBvNrTfwAGLb8xxytVScdLteOS1bUBHZfqywmqnyeL5lqplt1t6DcQEXG90uaMr/V029uNnnsDJOkxiM9flTom/c5ALaO0fmRzPgHLZwT/G7IE227y5Bz4U6BLi1GchNQ6VjzNtotNPSFGz3ZczyS2XKniPlnodl/2DyX2YcUTrv4ZegS8++ktib33W83Vl0f6b4+//MZkipPfmExx8huTKU5+YzKlIiGIwDHEUKdfkSU2uJ7/aKUCyGGjItSk0e2odp+EQYJsu3QvF0BguwrCXkTEm4WKNO/M9TyvL9X2uT5Q4XO20Ot5WOv1bAzVCnoCo88PYPT5BISqiIgmUTjtYpM9b87UwLPDxB4aA183ac1R6Xnvl7ouX/TUch8RcRf6Q3w80rX+1WhHYjcKFZ/95TcmU5z8xmSKk9+YTHHyG5MpFQkd5GIiMa2GaTgTEOImMBUoIuKgUfHroFYBZNbo/qluPh5/nebmohg1GI2IuLZUge7VpYqXN65p/X1/BJN4xto3YAgTkuZzFRo/H6m4cxcah+71TiQWEVEsO9TugzCcWs+f2qyTtuta958KPQcUG8nVWJArFcTeliax0wU0qG1UsD8YaA6RM9VffmMyxclvTKY4+Y3JFCe/MZnC6lUi1OjzCBx65MaLiDiCJofjWptU0mQZHJ8MQgkKeUWasETjveuWUd4jOOT2ut7LaEufxaohQUwPWFX6vLdmGrsGo883wK3YNn0olVQ3X2oJbg8OR+IeiW5tJcLPYzx4KqnX0rQ4VWn/k5nmG7kLT0pP7DHG/B9OfmMyxclvTKY4+Y3JlP8BJn79XIYZiCEAAAAASUVORK5CYII=" y="-6485.965839"/>
</g>
<g id="matplotlib.axis_361">
<g id="xtick_541"/>
<g id="xtick_542"/>
<g id="xtick_543"/>
</g>
<g id="matplotlib.axis_362">
<g id="ytick_901"/>
<g id="ytick_902"/>
<g id="ytick_903"/>
<g id="ytick_904"/>
<g id="ytick_905"/>
<g id="text_46">
<!-- 168 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 6594.260839)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-56"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_182">
<g id="patch_183">
<path d="M 164.424375 6608.365839
L 286.714375 6608.365839
L 286.714375 6486.075839
L 164.424375 6486.075839
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pac701a1843)">
<image height="122.4" id="image9725d7f001" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGZ1JREFUeJztnUuvJGdShiNvdTn3vtDttvHMGA8DRhYrLtJs2CAh8bP4I/Az2CDBCgkxSCOxwNO2mcE9bve9z6Xq1KmqrGJjeXHi+aQ4ncd97I73WYayKjO/L6NSeuuNiKpuH2ztR0hd1aHjtuZvb7v9Yd1yVVU+ZhCD46JsthsX+6GtwxBKz8OkG7nYvemhi/3p9IGL/VV9y8V+uVi72Ke/eOJiB3//U3+Nf/N3Ltb+8V+72HZ57mJmZut//icXe/gPn7nYP1a7Lvafq6f+evAsQoh3HiW/EElR8guRFCW/EElpb/oCIkSFLjwONC0SATNSWtd3SggE4XRcdy52VI9d7P21/+y9ydzFRrdhvda9jz195A+rGzjuKx8zs+W//MrF/mP9gYv9pn7pYt9cvHYxvfmFSIqSX4ikKPmFSIqSX4ik/CgEP4LEqhpi3tdmVsNvHjng3iXIMViirv36kAh4U+5JdEQWxMsG7mXaeNff/coLfj9br1zs7odnLtbe8gLi9nzhYpvPvRvPvnzoQv3nXhg0M/vsX49c7FfdhYt9DeLe6cq7BvXmFyIpSn4hkqLkFyIpSn4hkvKjFfwIErVaEHxQ3IPQUEEr7EyE6yahKiraoYMRrqUld5nxddN9rzfexdZv/EJGxdQhpc1NoaSX4tPaC37vbfxa3J8eu9jkvr+XqvWCX/+N/+zm8+cutnrh1/Xx5wcuZmb2b+2Oi33R++88XnkX4mrjS5H15hciKUp+IZKi5BciKUp+IZJyo4LfEEGM3HwkkrEQ5MWdvvZCDglam4EONrpu6j9H90LlqZugKEnrMAahqnRsD6Ldsvci0gW44labNxdOaR1IqCwJfnRsV/nYaBt7FpcvYQ8W3s23nvvrOX02cbEnr/dc7L9bf5yZ2a+bmYs9XZ242KJfuhgJsXrzC5EUJb8QSVHyC5EUJb8QSXkrgl9J2Iu6t8IiGcRGjb/FccNC12WW4IoikctsWCkr3XMHQlXUeUfiHAlfO60vYzUzG9V+zVYgfjYVCEtwboptwFLJwm5sTzu4ZjPeaxJtnzf+er5YeKfd2UPvDpx0/Exc5nTpP/t/jd+Dhy1/39drX0581oPYSEI1CMN68wuRFCW/EElR8guRFCW/EElR8guRlGtX+1mtj9dak50z+llSgUnRPur8COMdUF1XW6+aznvfMNHM7BwslRcbb3WN1sBHLb9cP++VXewZUNiX6LG410ErNjh+w0T33oz/uVhuvZr+O/OquY29zfbuxtfUH0C7gincILQMsFeNX5uXW//cmJmd9L4JJ/0jRf+u0L9CevMLkRQlvxBJUfILkRQlvxBJGST4keCD9dMFMQYtrMEmlSQikZVzv5u62L3O2zY/aHxddQfX8rogxjzpvfXyGdRaU3NFEu24l0BM3CPBhxqUkkhpxvXuZA+l6x5CtGEq3XPJXk3Hkmj7qD71x9VeTNsFAXEfnu+9rV/DCTxPC9iYV1sWlc/WXpS86P3zSPuien4hxHco+YVIipJfiKQo+YVIyiDBj1xoJLpNWl/HbFZ2ZV2GBCxykk1g9PJB4x1ZDxrv8Pu5eTfXwcaf4ylMezEzA43M5hsvqM3XXsy5sJgTkBgixKEwaPFeAtHz0HNSVzHRjkRAcrU1m/h7jPsL+PPMar9X5BgcVT42hdhO5XNjBYLf71d+2o+Z2enaO/zO1/4ZW/fgIsUcEkKkRMkvRFKU/EIkRckvRFLCgl90LHK0rNaMhSVyZNF4YWICYuNB44W8WyC83Fr7+9uHssyLQhnsPnznpPYxEr9I1KKGmVFBLDpVqOSK2zY+TvuKzVFhChCJlzzZJ3bPJGjNC664Jbj0+LmDiUQNCIuF/Y8cRzESL18tvVvUzOx0CSW90FA2+pzozS9EUpT8QiRFyS9EUpT8QiSljY7JjvaUu8r4ZB4F7QWM6BhqgpyAK/i+lyByLWr/2bOKXW09CiowYSfoyCORLCrkfB+QS/N258ugxyByUi/D1ys/bvps5UtWsUddsGS1FF/Xb+6epD2NTikaMubcrPBMDMoNIURKlPxCJEXJL0RSlPxCJKUdMiabIFGj5NAjsYJEDYrRNWI/OyiZfLbxbrDTyl/jhATJgsB2svWllQsQuqJCEPeue/OeeVfZUxJt91vfC/HB6MjFjmrv5pzBOtBIbRKVZ9S3LugONOM1IxFwQb3w4LOUL3RcdDgLlhcX9nnIGHhCb34hkqLkFyIpSn4hkqLkFyIp6PCLinsksJFjqTSIo4EpuCRqkChCfdOovxpd4+utF5FIyGvgummghRlPfiVnG60PCUFvw7lXmp5Mgh+VJ+9CGfP9Csq3YQLyBPaP3HNhClXf/TbWe5DKhClGRF2bQ9x43wd68wuRFCW/EElR8guRFCW/EEnBHn7RHnA0+pUErRIdTDIlAZIEQ3KITWGgBomX5yDErUB8pJLjNY27tYJzD45F0eeGxD0qyTaLD+0gQfT21u/Lvd4fdx/2rxu9+buoVDZOz+MS3JyraxZib1LIi6I3vxBJUfILkRQlvxBJUfILkZSWygdJYGN3Ejiy4OckOnHWjMUmEqbwOOwJCCXGIO5RDCfgFsotyeF33sMEVSpPprLq4B4Q0QErtIalz0cFrFsw2fiTFU0mhsm9Yz9Red3B8wnXd7Ke4/XQVGSKcQl1cJLwj0DcI/TmFyIpSn4hkqLkFyIpSn4hkoI9/MIupmApY6mkF8uJQUSst7HppvPeCzmbOibakfBJMRIGzVjcoyEUpV5zl4k6HYmom6/kigsPpoD97+DR2Wm8o3IK5/jZyrv+LkZ+MMik80LlI+gdaGb2rDpxsaiQiw6/GxycEn0momX6evMLkRQlvxBJUfILkRQlvxBJUfILkZS2a7zCGlU0o3X/JTUUm3XiqGXoEQCh48pbPDctNOYsqNyXiVp2zdgyekFTYAqjpK8TUnapKSftvZnZuPGNOal/Au3rMfy78njlp/109E9B5WN/tIJeDjA9yNipzGOx4Z8iqvtfNTB1J2qHH2D5JbXejP/FwX2F2Aj2Wm9+IZKi5BciKUp+IZKi5BciKe3RZNcFo2Oyyap6FUGLBUOw2W7eXGwkcW8HJsgQOJGoMG6cBCNas+u2h0Z7AZAING18w1MzHsd9q/G19nswsWcO9/K/IxCl4JZ3ITaGvT+EngGHrb8WM7NdaOpK9z1vYoItialwiWGu1FgVRLtp6+9lp/XP91478eeOXKAQ4t1DyS9EUpT8QiRFyS9EUtqjzgt+JGqtyBUVdEqVGnhyXT0IYjRS2WLuKxJPooIY3V/pXigenfgSbRQZpW38vZBrb6/xIpAZi3v3KFZ5samDfgzk+sNeALAvE/i+BTgBl4XGqlS7T/0KBo0HD4KNVak5bcF5GRX3Dlu/V0etz3O9+YVIipJfiKQo+YVIipJfiKS05HYiVxzF0J0EsfM1l8H2fbSRZnByCog7s6VvokmfpdJIEhBL94JuR/j8oFJPEKWi04wmsM8lp+MeNMPcg2nuI2isuoY9INffvKL1AnGu9ve8gnV9ueV9oXHsVKod3ash4iztH+XQCMqnzfgZbatCLfMlqPGs3vxCJEXJL0RSlPxCJEXJL0RSUFkgt1NpnPNlSLArlSiCSQ8FFfpOIjoKnMS54jVePkcfdyuSEFTqz3YZnLASLP+M9nUr9TIk4XQOmxV1z11AmfYCx6TH1pDcgacbFvzONl7wpT6M7GqNlWQTOF0nOkmn1MMvOElpASJnD3ugN78QSVHyC5EUJb8QSVHyC5GUFstqo2Wn0VHeBZEk7Nwb4IojEbAC8WMNfeFKwksUEuOioh2JO1HBiJxkJF6RMGRmdlL5fnZz42Mj1xMl+oyRMEjCnpnZ8coPcqEBK1SKTkLzkH6LUcdgqT8l5SWBQ1vACag3vxBJUfILkRQlvxBJUfILkRQU/Ci2BkcWuqLgOPo+s+sfYBE9B7Vri5ZblpyAXPIcE+PoO6OThKPDSy5A3Dtdn+Ox1K+RINdYA+8TmvDbBUtR6dmhezkp3Mts7YXAi7X/PAmi0bUlou5OdDAW8oVE4F3o4Xe73XOxw1pDO4QQ36LkFyIpSn4hkqLkFyIpLQl5JH5Eh3bQZFNyT5mVhY3vGxLdqAx2b+RFkv3OT7A1475r0b5+RFQsjIqzBAlnpXhUmCKhkgaGlPrUXYaeMXLoUcyMn73oMBWC9oBCUTGbYiWxl/ow3mn3XewDiP0BDFjRm1+IpCj5hUiKkl+IpCj5hUhKuwCBjkoZh4h7JcEPSyYHuKoIclVFxb0/nN5xsY9Hd/E8U3CsPYcy0xf9zMWiAhuVdGLJKwiNJAKWxEcUEek7gz0T6dkhwY/uj56dBQxOoXs2iw+BuW6wh190aEdhSu9e65/RAxiwclR5gfVwq5JeIcS3KPmFSIqSX4ikKPmFSEpLJY9RNxcKS1gaGS/pHUJU3Jt23u10d3zgYp+O77vY367Y4XcIE4f/a+IFml+DMPhkfepi5zSEAtaLSmgrmGzb0ETdghOQBLq+8vc3pESVBmeQ846ep6s4Q7GEekCfQSpjJnMgCbG0XiTukSPSjJ1/JJJe0HrjgBUhREqU/EIkRckvRFKU/EIkRckvRFLasyVPOonwtqyTUaskKfvj1iunB6MdF/twfNvF/mLjj/vlrad4jd3Iq9LHT95zsYcd1P2D6k5qOCnINImFrLPU/LFUw06qMjXcrOFfBbQgB/8BCNfUw/PQFWrgo1NuolQw2QltznDaaJPXEnSeM/hX6AXs1Qr+rdGbX4ikKPmFSIqSX4ikKPmFSEq7KtTa3xQ8htr/RpG4R1bJ/ZG3494deSvvT2o/5eTPFl5MufMJ2G7NrD/3gsrOY7B4wmfJZks1/iSSTaGpYwe128RV6vkJErCqYM8BBF5F0clF9NyYXW0izpuCwnf4s9DDoDAx6ayPifNkQT6rSAQWQqREyS9EUpT8QiRFyS9EUtpSrf1lSoLK24BcUB014ex8/fztzgt592GiyX3zwtluDQJL4eeyaqFWG+vvY+s4pKdCW/kYiW4lYekcGmRGJ8ugCEh17CBAkYhLTk66lpKIR/dYBRuP4h6AmIZTfILCJ44ghxHixeuBzy9ALKYc0ptfiKQo+YVIipJfiKQo+YVISmxOsrHYEBUBhzbqjJbv0gjj/dY7/A5hygl54p5t/HHv/Q83VxzteGGpBYFnB840rv13kquxDpbBYgNOauoIwp4ZT8QJj+OGEupdmDRzq9t1saPWx+jtNAdBa1Zwv816P7p7Vfn1odJfumeKUZkvmRrJzYdNS40FSdprKvOdV/6eKQf15hciKUp+IZKi5BciKUp+IZISFvxu0uFHQkc0hg4qKKE9rv1xX46gDPKJH9ttZnZUeRHqrPa/rTuwjLsgQFIfPir9xdHZIBiRE5CEPTMeix0V/EiIPQDR9ecw6vyjyvdMJN/eN40XtB7XZ3Aki6k0DYnWlsbXk1gYBceuo2uTPx8tRSZhUYKfEOI7lPxCJEXJL0RSlPxCJKUlJ1mUcG+2q3wniiI+RgIWDbo47c9d7CWIQFRqu228M205Zo10d+Pjs9pf9wIkrOgOkLhH4hztC45T79lJhkMogG0V2/+dxguaH4O49+nKrwRdyV7nBcSmYUH6GZQOz7deyDsFhyC6+Qa4WlGQBocfjgEvnDvqnqVz680vRFKU/EIkRckvRFKU/EIkpR3i3MP+aiRAFE4RFSvQBQVC13zlnV80nZYExIvWf99542PHtRcBzcwmjf8dXYJw82Ljr/EExKYFiJdUgouC3wCxqXQs96mLQU7Aw62P3QIBkq5wBu7HUyglNjNbgXOz3/j7m8H9YUkvrBk9n+hADe5LkWvW1/XmFyIpSn4hkqLkFyIpSn4hktJSM/+ouBN1HJVKETfhWaYeEl5Kww4i10NTcWeNF+JegOvPzGwMIhQJi2cb/52vVzMXm6+9MEjiHrnxhgpLtP+DpieDy26yhUEs5Eyk/o1wKx18X4mLrV9HmoCLewD9EaMltD809OYXIilKfiGSouQXIilKfiGSgvWpJO400I8O3XPkDqOhBma2Br0vKlZFBxgYtFyLipIk7pysfYmwGbvYiBV8J5UiU/84XJsB4l5J2MX9h/sbNf7x2Ydy2weNH8bx4YVf70PozXfWe+deF289aTMQ916ufL+/V0sfI8coOUujk65/aOjNL0RSlPxCJEXJL0RSlPxCJKUl0YfEvQ6cWyQC4STSigURcheSaEduviFDO6ifXdVDSSecl9amRFRYpOuJ3nOU6D6bsXNvAiWzJO79ZOKHcfzlxgt+f377mYvtHHjh89VT3+tvPvPP4u9amrNsdg79+o7Xcxc7W3mHH4l7pTLoHyN68wuRFCW/EElR8guRFCW/EElR8guRFGzgScp+B/XqdBzZe0sKKan9xJB66ehYZPyXAf6lqAtWZSK6FnQ9dM9DiNbjm7Gyv9P6qTt3Rvsu9nFz4GJ/svCq+e6RV/absV+HydSr9fsz/33jLav9K+rdANZpml4U/pfpLexV8dhg7w1N7BFCfIeSX4ikKPmFSIqSX4iktFSTPW684EOxtmKR5TLrujDyGWrtSWQhYRCGriBXmVRzmWgjy+K5g7X2gwTNoOWX1rBk76UmnCT4jmHUOfGo9Z+dfuFtwDsNCHEbf42vzZ93XhgXvt6CkBedsHND4t5V+ixERXNCb34hkqLkFyIpSn4hkqLkFyIp7f7I12Tvtz6203iHF9XzkyBC03DMWNggpx1NqsHx4EHxKyoCosBSEmMGXA9+X3Aa0tuC7uV84116X2389KEN9Nv8ElyEh9uRi3WwriTu/da4sepJ7+P0jF331J2oo/IqE7OiYjML5HL4CSG+RckvRFKU/EIkRckvRFLa9ye3XfAOTFjZq7xAQ8LCEhxVrzd+8okZl7ySOEiTc6Ki3RARkISXUhlsVGQhEakJCjlbELqi57iKoEXrSHtwCtOL6DvPWr//v6+9gLxfgeAH6z2HKTyP1ycuZmb2YnnqYgsY5T5k6k50VHnb+FhJQI5yFcepP7cQIiVKfiGSouQXIilKfiGS0n7S+dLK2yDu7WxjvxNntRdO2sJvzHnjHWJzGNO8akDwGyhqXQYn2gTHUpfAa8Ream8u2lB5alT4LJU2r6vrHXW+ABH3rPHi3qtgifC8988Ijdg2Mzte+uk8NIkn/JwES6PH4GCkZyc62v0q1xN9nvTmFyIpSn4hkqLkFyIpSn4hktJ+ZBMX3IPBFJOgAeq49p+dgYBoZvay9qLPFISgC+jtFh5rHeyjFxVySgINHRsVJckdWHIS+u+LjfymsuiSq40+T0JldCQ69XAkxyANgaHvo3HaM4iZmV1cs5uPoL2ie4n2wSw9Y/Sc0OdH0G+RjtObX4ikKPmFSIqSX4ikKPmFSEp7B8S9DsxOOzAlg345ehAlJiB+mJmNq9ggCBJKSDCi3mzRIRnYS+0KQxKohJOEG3Jf0Wej01dJECv1TLzMYu0dlmalHncg5MFkWxI+Lyp/PeR2o/UmEZem7JKwZ3b94h4RdQeiYxTEOYqZmXUg2lG+7JKQTiX5eBYhxDuPkl+IpCj5hUiKkl+IpLQNaBVQvYmQCLgC0Wa/IPjtgggxhljUBRUtt41O6SVKzjtyJtKgE4qR8EmC3wr6I15svdBFJa8kSpHrz8ysJzE1KJytQUAmIY9EO1pbuu6oIPm2IFGZXJJ03SVxj4hO9KUY9ULUm1+IpCj5hUiKkl+IpCj5hUhK+1XjhZIZ9HDb33rR7cPe/3ZMQQQ82rJb7RDEvefgWCJXHQl+KH4ES3XJ9UeUHH4k+N3vDlzsQbPnYndgWAX9Kp/CsIqXW+/Se177vnXkBJyveJjKkB530eEnW3gmNjCUpLTeNwX2LQQBmcQ9EjnR1VgQL8nVuqxJnIUSaojpzS9EUpT8QiRFyS9EUpT8QiSl/ff+mQvOwCE2hTLBn7Ze0Pqo8T0Bu0J56oT6j0GMiDqoon39opSmoo7ApXe7nrrYL8zHPlmQSOb57civ7RcgXp6DMEiln1RK/LagdYxeDwmDpRLoIXsdhURO7pkYO44EabNCifiA/oF68wuRFCW/EElR8guRFCW/EElR8guRlPaz2dcuSArpBOyri7G3K563Ry5G9lUzsz444pmU/RVYHXHSDHxf1MpbQW36VXoBUA313d5/5/t27mKvt37NTkDQfr7x/8ycbPz0GmrqWbLOov25v+4pNzHbNTU85UlIN1jPj6PY4TnuY70JrmJpHmJp15tfiKQo+YVIipJfiKQo+YVISvt6MXNBEhzWrRcmyEZIU0WWzQ6evAGx4gKsqSQCkmgXrbUmOyaxoZrz0lhrrKGG8dLwc/uo8rbdL0f+3J+Z36tH6xMXe7U+c7Hz3tf9l4TPqIgUtc5Gm0y+S0RHw1No8330MPCPp978QmRFyS9EUpT8QiRFyS9EUlpq1khuIKo7nq+9u+wYmkeWhKUxTCshwY/qmElsXFb+s9ctVJUm9hCn0FzzN7V3370c+VrrV+YdeS967wQ86f16n63B4QfNI0vCZ6lnwZtC58EmlSBKEaUGl+8Kb6MHgZne/EKkRckvRFKU/EIkRckvRFJaFGPAFbeCKT4kIpHYVKI3P66amEDzwQXEuGkiuQP9OUjcaxsvKu60fM170LiUJqc823qRtAOBtYPf5UlwlHfU6VgqTyaHJ54n6JSMlrwOmQr0tkSydwm9+YVIipJfiKQo+YVIipJfiKT8PxPQ3hvru2xLAAAAAElFTkSuQmCC" y="-6485.965839"/>
</g>
<g id="matplotlib.axis_363">
<g id="xtick_544"/>
<g id="xtick_545"/>
<g id="xtick_546"/>
</g>
<g id="matplotlib.axis_364">
<g id="ytick_906"/>
<g id="ytick_907"/>
<g id="ytick_908"/>
<g id="ytick_909"/>
<g id="ytick_910"/>
</g>
</g>
<g id="axes_183">
<g id="patch_184">
<path d="M 299.674375 6608.365839
L 421.964375 6608.365839
L 421.964375 6486.075839
L 299.674375 6486.075839
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pb88da7210d)">
<image height="122.4" id="image31fa01ec1c" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHG9JREFUeJztndmSI9d1RQ9yAFCouXpgN6lmS01JpmzJ0g/oweEI/4L/0b9g61mO8BAMS0FKjqYkkt3sqeYqVAHIRMIPCumh90r5ltAc716PJzJxM/PmqYzYtc85g9HowSpeY1TWr4diUo8kNi6HEluF/FxctwuJRURctXOJzdtGYt2q03VWuo7pZzAYSKwuKjx2aziW2GatsSGcXw1KiZWDIuncnXJDYpOBvouL1VJiL5tziUVEnDZTidF9f3d8W2J/V+1L7P1Wr+dRo+/sg+0Lid1571Ji5UT35eSx5lpExH8c3pHYvw41h/5z9lRiT66OJKa7YozJAie/MZni5DcmU5z8xmRKNQgVHMoiTaChGAl+y1IFu4iI+VKFkgKEqe5rpO2RcHYTvglCZQfXSNdNxy0DxFl4J+CwmIaKV10B1wK/19EaPXE+XxmuNA/2lnrufqnXvbmtMWJ+qO/T4dEmHvupao1xuJpJ7LpTgX0Jorm//MZkipPfmExx8huTKU5+YzKFLV6JkDgXICAWEPsmQOIeCaR9kLBEv/lViYAoxAWLQ4uuTfrNJbj5iHKgLr0WnHsUI+adiscREW2Xdj7dcw17fRuew73vqJtv66EeV4zV/bg402t5sVQ3ZUTE50O9l9NGBT/aK3rH/OU3JlOc/MZkipPfmExx8huTKRUJHcsOYnBcA2IKiYB0bsR6QleqcJbqyCMh7yZuPlwbfrNPZPsqIIdeRMRiCWJV4r6mCqL0e1T6e12oW43WmC25bJxcpHTds5UeR2r4Qa0C2/b3NA/q927pyZBX8TtV/E5L/iYfr64lNu3USYj7As/bX35jMsXJb0ymOPmNyRQnvzGZUpFQRUJeXx++1yFhoc8dRsJEnwiVQgGCEV0PCUup4l6fSImlrIn38mW4/uj3+sRHcsXNYAvLAgTfN+zmpPJyekf6nHwkXo8qrY0lwXBeU2lz4v0VsKet/t5sqtfyquI1zlZ6jU2qm8+CnzHmTzj5jckUJ78xmeLkNyZTKhqI0YDDi8C+YOQEI2fTX4i/Tqr7riq0ZHJYQu9BiNG5JJz0CZ/kikMRCjS2L8P1h6Ji37oQpnuhd+eNuxrTKnJvJBTTvVDfu8NQ19/zVsttbz+GASTLQ4mR0fXZKx0W8tmY84/Kd2dQykx9C2lf/OU3JlOc/MZkipPfmExx8huTKU5+YzIFG3im/gcgVe3tg1Rg+m/BAOy4Vanq/EalI8MnlY47HhVqqRxDjGzAl0tVXCMiThc6Cvpyocem/geAHuPXbdoPK+xp1/hV3gtd9zXYe593VxL79UjHdsczVezvH2rtPVmDP6h1LPmnHXT1jIjTVt8xsiXTO4a5hqsYY771OPmNyRQnvzGZ4uQ3JlOSJ/bg6G2w56bWz0dE1GCzpWPJjjsqVaDbqtR6uVGoCEiCHx03Hui6i4rHJ9O4cuLrJALeRJx906zTP+EmdmG0G8Nvkj37eXsusQ+G+p4cjVW0u7vaTrq+3wz0fXja6LoREWetCpAkVNK9eES3MebPOPmNyRQnvzGZ4uQ3JlPWGtFNpAp2ERGTWt13O/VEYqlCHgl0eD0B7kA4dwKxZY/YRJ0JSIxJbY6JLq0vyRWH013WGFd+k8lHr0MuUhKa1+2JQI0wD+cqvFEz2s9BBN4t9J0dDvS9OwHH6DkIexE8fSi1jwQ9M3/5jckUJ78xmeLkNyZTnPzGZEqy4EfiDk1ToVif4Efi3oPRgcQeljsSOwh16RHNIE0IqqHcsqZR0ANuOjotVLx8VWrsslCBp4HJNyR04bSYRC3tJiPISSSlfeWxz2nr0BqpLtJFJDZL7ftNGtHdwihvWPsSmmgeVRcSI5F6Au9Du4Jmoj3jxlHISxRE7fAzxvwZJ78xmeLkNyZTnPzGZMpaDj8UAanfHkzDiYjYKNWld7tUEfDHnYonP1moKLJX0QhjvZ5pp7c9BdffWan390nN9/IE/o7W4Oiq4VnQM2tTBbpEYxsJdjTSvO/Y1Oum36RzU8eS9413l3NvMG6ce1Smjf0mpyNNcZrBu0hl6PQceseNowicVvKMY7txFWPMtx4nvzGZ4uQ3JlOc/MZkynqCHw7YSO/hh04yELq2wFT3/fvHErv1j1paWRxorDvUoQjXvz6V2P/+6o7EPgkVHyMipit1iDXg3kp9PiS6rToVbchviKIrDDkhIS6CBVocfw59CysQOVkYhFHuIGiVS3gOIF41PSLZAJ4QCmKJIhlsAa+R2CfwJuXO9Jvk5ksdV+4vvzGZ4uQ3JlOc/MZkipPfmEx54z38eMouixrkZDrvYFpqpa6/6YWWR94e6u0MHn1PYuUjvZZJ9T8S2/hIBZqTAQtLJ0udynrZavkniT4kNnEfPXJP6nFUQl2DONcn+NGxY3CnUR9FOrdM/MYsQTibFVze+jp9gh+5+focdH8ttH+0BsVS+yV+EfjLb0ymOPmNyRQnvzGZ4uQ3JlPWmtKbOlCBhg1ERJwNdDjBUxC1PhqpsPTf13sS2/m3ZxLbm30gseLuvsSWL7QP29PmrsSeFDxQ4aS9lNhVO5cYPQsuO01zaZHzblKpGEoxcuNFRIxhivFWqc5GGkyxDSJgldhocAGC32mpz5Acg11PSS+79NLe5XVIHSKS6iKMuFkfxpTj/OU3JlOc/MZkipPfmExx8huTKemCX2I54Txg+EGPmJI6hIBcY/8+hKEdT+9L6Ef/MpXY/oEKg0dH2xL7z7GKJE8andwawW6+1KmqJDaRKJVaGptafjsGcS4iYhvEvfvllsQeQHnz/U7X3oHtpzfiAj5FT+FaHsP05D5wqAXEUvcllXUmKq9b5pvaH9FffmMyxclvTKY4+Y3JFCe/MZmyVklv6lTVm1AOtITzaKHuuw9BrJrWOs33w9iQ2ORc+/odDVV8/M3yRI9r9FoibuLcS3NFEiuYOEzn0ro0/GIETr6IiBEIavcG6hD82Vy/HT+qVRDdu6OuyCX05js51tLtx63u1XCo4uyy5mc466C3Ioh79BzXGYiRCvbB7HFE3kQITMFffmMyxclvTKY4+Y3JFCe/MZni5DcmU6p1FERUOeHn+tRsUjWpEeMUrLOfzY4kdl5rE83HPRbW17mGxqEXbVpTzoj0mnyKpdZ+07lkVaWR0bTPffX89D+g7ZV+Jx6u9Pk8+KlOPho+VGvwaqaK+9bH+t+V4rHe31Wr/9U5giavf4zrfwumle7hLPG/NW9a2aemrH0TrlJzFa34YKj2l9+YTHHyG5MpTn5jMsXJb0ymVFQrz806E62OieJV37EkspCARcfNlnoc1baT0NjCOG20yYI1NCLdHvqmQXsvTBUi+3GfvZdERGrCOa71WVR31AZcvHUgsdWVioX1sTbrnGzodU8u9Llu9IiXE7jHEUwfon4HTQHTlaC7ZmpNPYl7NF2JYhE9jUth7dQ+Gf7yG5MpTn5jMsXJb0ymOPmNyZRqa6gNEkkcIOddcl10jwiYWseeKmrQNdIYahJeUnsT9I13prXXqf3uq+lOgabX3ER8pKagtFMt1OR35yrQdafaA2E1VXGvPdM1plfq0LyCseQNXiFDwhkJw/SeROg+o0uv0Ni40nuZ1CqQbpTsSk0Vqql3A723/vIbkylOfmMyxclvTKY4+Y3JlGp/pOWWWCYK7rnpAqbUwMSePpEsVWTroHElilLkQqTJNyDGEKkltH3rEFiWmajF0T3z6OW043pLR+H8OVzk4VLF4oOPVKzafK5KXgvNP8+O9F180WgD1jPQw2Y9+7K8geM0BXo2qeLe3kjLiw9qvWcah9639myl+TaHpqUkAvrLb0ymOPmNyRQnvzGZ4uQ3JlOqW7VOP2nANTQsVNzDXmE3mEiTWhKMk1NWIJzBn7IGx0PTuGJytaWLRamTV8CcljwZZh3oWvrWmK9UHDoCIfe3Q3WnnR/fkdjkkFyfSgPP8LTSTT0v9OxFj8NvDkIX9etr4Lh13JhUlrtdqXh5B/LvVqHHRUSM4QVvqSweYjPYU3/5jckUJ78xmeLkNyZTnPzGZEpVQ+8z7hWmgsqsBCdRmVbmG5E+wprEtNQ+g1iMCqFVonuuzxU3LDWeWpZLIin1CqRnQ6IUCZV0LvX1i4g4aacS+wTGds8L/c3HI32fqP9fDbEJiLgD2Kyzgcam4GqLiLjqtHT4qtXYrE0c2rGGSE0MQ5/X/oB7K95daXynA7ERlqaugP7yG5MpTn5jMsXJb0ymOPmNyZSK3HwEiV9jGH4wrzRG5YQRLHShEy1xKAKLXwQMMEgUPmngQ0TEBpRw0hRcumcqwSRIBESXJQisi+A9IOjZ0nWfl+r6JAGZGMJxe4WWstIwjgVcy9FSh4BERJw1VxIjwY/6UZJISpDQTD0dsdQWegL2sQvi3qOFnn+v1Gext6N75S+/MZni5DcmU5z8xmSKk9+YTKkWUOqX6hojqDS2zxXHffiSllkLEhVJ5CJxb7vmcssdKNekCchUOnq5TCuXphgOC0k8rq8fIToO6bqhzJv2lKCpuOfVRGKTQoVUEqmPGh0MEhFxvlDBj8S9dUqoU0vbyVF5sVTxcVqwCLiER1vDdW9NtN/m1oGu4y+/MZni5DcmU5z8xmSKk9+YTKmwrJb6goHIwr3Q0oUlLsH96yHRjqav0uTeETgTt2oYSgFDFiIi9kGsonLNWaFiEzkB6dng82pV3KE9ILdan7hKDkH6zVmha/eJu69D+0LvE7lIUXxsVHyMiLiG54OTpNd4F0ksbJf6vMhZeArl0y9LFpWfg/i5X6lwOrrQ4SCLhR7nL78xmeLkNyZTnPzGZIqT35hMqZZQ3prq8KISRXKw9fXwSyV1IAaJdttDFU+2KhXyJqUOoNivVDi5XaiwFxGxB33XSrjGKyjhHEN/vNS+hdjLsIXYMn2YCpE6UZkcfiQCkoBI4vO0VSGP1u3rR5jah28dSCykdUl8PFlcSqyvLLoe6XNc1PqOvixVGNzt9P32l9+YTHHyG5MpTn5jMsXJb0ymOPmNyZSKlP1UJZZiqfXlfaSOkiZ7KCn7b48PJHa/2pHYHWgeSQr+/oqV2C1orthC/fUlTJvZBQsrNbgkyPKLewV20z7Qrgq/WQz0OJz2BMcRtAbB1ueeMfCpY7YT+xCkrkHPkBqwki2571roP3PntVqGP4F3eRNGhvvLb0ymOPmNyRQnvzGZ4uQ3JlMqFPegdp+aJqJ1MlH8uAkkAlalCmJk232r2pbYo1Jr8t/tVHS71+h17/YIZ9RIcQ5/W09hlPcW2JLrAkQfmLNMdmocQT1Imwp0E3CvSdxL3P42cUIOcZPeEKmj0990U88OBDtqJnqx4OlDZGuewl5vVmrlHRX6jvnLb0ymOPmNyRQnvzGZ4uQ3JlOqK5gYQsJCqpuPzl23USc5nshJlto8kursJ6A13QYx5t5YJ8BERIxGILxdq8gyWqgLsQUn4RU4/HbhuK1SRc4huLm+CFL7LJSF7kuqo44mQKWOZ4/g3hTYwDOxXwEdd5PrSVkjesapT3ESU5rgS01r/eU3JlOc/MZkipPfmExx8huTKdVVA4JfokjCU2DSRkv3gYIKlfnCb14voUHiUt1SLwp1QB2AY/BBo+uOx+yUm+zA9JoKHFnH2lwxQoW8OToGQYhNdMWljs7uA4U8EFjJeUnjuEmUHEPjyQ2I0brkSo1g8QsdkNgANK0ZbaoTEPMAtqWvsSrlFh27oKlQFvyMMX/CyW9Mpjj5jckUJ78xmVJRX7F1hLw3PQ2lbx267in0QzsqLiQ2gfLG25UKS2cgSs1mem5ExGgDnuNS1Zz5Sv/eXsKf4NOB/t7RUu9vCrHUXnh9kLiHLktw7tFI7U0Ydb4Hk2ZuV1pqfVCoI3IE7serFbvijjsVfF815xI7mut7crHSc9edPvU6qSJg37GpOYjTlf7/yzPGfBtx8huTKU5+YzLFyW9MplRfVh++dUABA0RJGoF8Uapoc1pp7KzUXn8nIF4dzVS8iohoXqkINW1VMHwFYuNRofdy2KkL7WSp5cTnrd4Li7hppah9kEOMXHoT6B93a6jP9jv1nsZg/Pm9lT6v8Uqvm4ahRER8Dg5BGoiCY+nhOaYOr/kqIXGP9tpffmMyxclvTKY4+Y3JFCe/MZlS9U03fZOkDkmISBcW6bpJ6KChCLNOhcHzlcZeQunvGAStiIjRSoWlWaX3/arU+3sRWk560qlz77xVwY/KUxfQ141E3L4y3wJKZscwWGS7VvcdiXsP6n2J/WCgbr7vtyrE3W3BmQZ7f1LxVOMC9msGAiuKwJU+bxKVB1BqfYNXHk5ds/w6uT+iMSZLnPzGZIqT35hMcfIbkynJ0x3WESH6BAgSobBfX6IISC4tGixCk00PQdz5PYhclzX14IuowXXWwMTaCyg9fQ5lp0ftpZ7b6HEzEKBamCRMz6ZvyAkNeKCy3NujHYmRuPc3IO79bKFr/6DQe97ZU+FzsdDrezrVNSIiTsFROYZS5Bpcf/R8SCTF9zvREJs6kKZ3nURQ8P2rf80Y843GyW9Mpjj5jckUJ78xmVKlTlUl1hHn/vgDej5O9MVQWj8zKsu8BOHs88GJxGadOu9eVlp2GhExHqh22oLj8Gqlv3ncqNBFsYuFXvcchk2k9plbgSAZwftPwzP2S30Wb0PPvUfg3HtvoPf37vu6B8P7em57AqW2v2KH3x86Ffzo6TQw9INE0nVIFff6pizTvqROpqa88pffmExx8huTKU5+YzLFyW9MplTUm40mrRaJDr8uUYiL6OkrR/36QKJJ7TNIJb1TuBZ2Aqq77BUIXxE8iZauhwQ6mi5MpaN0L6k9GElsQnE1ekqjE/vUDeF7stHpOuOh3svwDkz9/e5tiRU7MIjlY31eERENbPY5iK40/ISeN07pTZxCTe5AnGrcI/iNoKckCX4u6TXG/EWc/MZkipPfmExx8huTKU5+YzKlGkHNOqmKVONNyj6pz312U1TnSb1e6nEgICePOyYVlxqCojW4UFW4D7oeUthTm5GmWprXhfa1gaagFzBV6BSU9CNQr0+utT/AWy9UxS8ONNYd6x6cnOsEoIiIz2p9n561+punC/23wIys04mWX1Lc0UoPaj3lX0TEGP7TRHlZpfYmwFWMMd96nPzGZIqT35hMcfIbkynVFjRm3Kw0RvZVgqbFUCyCRSSytVJDylRSRUAS2MhW3NzgUtYZa/5FCHmv0zuxBx4QCV0XMB78WanC2SZZWOG9Kz9SK++9lyrOXV7oVKBflpsSi4j4sNMeAc/mGqNeCSQMr7MvVI9PVl4S9iIitiAvR9SgdKAxGkvuL78xmeLkNyZTnPzGZIqT35hMqfaHOulkv1LxZFKwCPE6C2iESI0wIyKuwCF2Ao0dSTAkJyEJeVj3n9gL4JtKqrusbwoTCVP0m7QvR60KfiV8Y1oQ6C4KmAp0qg1BT6BX53/BtJ+IiI+vX+n5cz2W+izgOwbQcyQxNdXNt1PpPUdE3Ko0V3dgjPwmNJPdhpi//MZkipPfmExx8huTKU5+YzKlenuopZB3C53EsoOCAYhA4AS7Klk4OV+pm4/KEanBZWozSxKqvgz3XN/ab3yNxMaqKAL2XF/qb5JIOut0r06WOv6cyoavYNrPuNLvE5UNfzw/xGs8nJ/rOo0Kzes0QqVYDc69Sa3i3K2huhXfHR5ILCLiUaEi6f1O17kDhtqDVu/PX35jMsXJb0ymOPmNyRQnvzGZUr1f7krwHRARdpfgWALdbA5a0VXPn5iTAZQO1yr4ndbqGiPRJrXv3RdBqriXKqatswbRV75LpPYKpDJf6sE4H6hAdwlut9S9Ihfhy/kZHnu50H5/60zdof2jstztoYqXd4Y7Ens0vCWxn680JyMifg5j299+qPc9vqf3V93V6/GX35hMcfIbkylOfmMyxclvTKZUP2m0pPCdVi1CuwNw4xU0bEL/nswbqMGMiEPoNbYcqbvw97U6m45L7e2WOjBkHRFwXVccnU9iHA54SCy1XUfQ6jt/EdyHMYVUsbGBcnDq83gMwhf14Ivoce4l7j89Wxppvwn9CEnce2e4L7GfDNTh90+19hiMiHj4zyDa/ewfJDa4dU9P3lQR0V9+YzLFyW9Mpjj5jckUJ78xmVLdA3Hvbq3iye6uxsabem45VLGoa1nw2X+mPcmedCpMbJcwrAB6n81amKoKgzdSy3xTe+FF9IhxiaId9Xaj40hsojVSJw6TG6/vWHLzkZiWGpsVulckDFJvvctGXXt0XAQ/i1Txs6CeezDVem+ogvStWoW8+1Aq/8NG7/mtH6uYHRFRvP/3Gvv+TzV2+6HEBht6Pf7yG5MpTn5jMsXJb0ymOPmNyZTqaa3liFuNDujYarWEthypmDK6TWIKCyyTc3UNBmgdJYhaJH6RSNZ2b1bcozX6rodiNcRIWKLjSBhEhx+IXHRc1/K+UH9EEgFJoKPjZqWKcXQvRKqASK7Em0B7QPtHffg2SxqcocLgFvSnHHW6B92sxxF5puW7qwt1A64m2pdzRfvHqxhjvu04+Y3JFCe/MZni5DcmU6pfFKqwPR2rY+lvz7XX2KML7aV261QHNJQlizHPj9V1dAgi4gIGDrzpwRup4h6JQBHcx41ciMNCj+v7zRRSp++uCn1ebcEOv3ZJzxscfhDD30scpkJ8EROVaW3aaxJdaxDtSCykoSQzeF6f1/qOfPZbFewiIt775UcSo9nZy3tP8PzX8ZffmExx8huTKU5+YzLFyW9MplQfXKs48KTW/mOPYZrvo9ASxXdOtEx3o0efeQVqxaehguHlUks4F9DbjYUqcPOtIe6RsBcRMa7AFVlpKfIE3GDkdiORjHrckZuPnHckkvUJjeuIcXgcCXSJmt0XMQwl1c2Z6p6kycRnnb6zNNW6AyG2WakQHhFx8Qt9x37wOxUBJ+9+KLFVo+v4y29Mpjj5jckUJ78xmeLkNyZTnPzGZEr14upUgqeV2nZf1HrcY2hSeFCpNXizUAtjRMQSJN9DGL980mjsulWFNXU6C9kxKUbKPk1niYjYrnSayh48ix1qRgqW0QZU5SmoytcQm3daP9+BMt9XU3+Tcd5fBanKfATfCz0Lek+oN8E1TK6item/UReFNsE9gvfhJbw3ERGfbmj8h0/ekdi9P9CUKsVffmMyxclvTKY4+Y3JFCe/MZlSkXBG00+uGm3geVqqEPc52Fyprj2CBScUSmD8Mll5CbTywrpjmMRC4t4ejAuPiDio1Na8X4IIONDns0mNHeHvMrlxL8Dy+6TTfXnaqGB7tdQ9/SaQOuY8os/2q/IXNQDtBnpcqtA8K/W4C7KLFyBwVzqCPCLiFbxjn9F7N1ILeQXPwV9+YzLFyW9Mpjj5jckUJ78xmVLRCGMYIoKCCMVILOyrG6cGiUSqc4+gOv1U595BrWIKxSIidgoVWbZhassExL39lV7PvU6v+xZM2Ong934LTSGXtZ571mjvhIj0GvqvEzep5yfofaJ+Bc0S9gByiOr+SWgmx+D1EiZZ9cSvOhVtd0BorqjxKK5ijPnW4+Q3JlOc/MZkipPfmEypkiffgJ5CokbcYFIyubJSyzVTj6NSXWq2uVtrM1IS93YLLukdwt9RkqAoVkN0H4SlByttCjkcqBhaLtSF+HKo9/IUGoxGRBzTnPRvKKlCHp5Lx1EeJI4HX0JypDYJ7YNERLruGiZF+ctvTKY4+Y3JFCe/MZni5DcmU/4P98FDmz3f578AAAAASUVORK5CYII=" y="-6485.965839"/>
</g>
<g id="matplotlib.axis_365">
<g id="xtick_547"/>
<g id="xtick_548"/>
<g id="xtick_549"/>
</g>
<g id="matplotlib.axis_366">
<g id="ytick_911"/>
<g id="ytick_912"/>
<g id="ytick_913"/>
<g id="ytick_914"/>
<g id="ytick_915"/>
</g>
</g>
<g id="axes_184">
<g id="patch_185">
<path d="M 434.924375 6608.365839
L 557.214375 6608.365839
L 557.214375 6486.075839
L 434.924375 6486.075839
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p169460c289)">
<image height="122.4" id="image302165875b" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAG6pJREFUeJztndmvHHdWx09XVS/3Xvsu3pOZkIlGszDDzAAPzANiEbwgJMQTfy0PgEAChBCzJJmYGRTHdpxrX9997e7qbh6C5sHfT0mn3bYT/Pt+Hk+6b1VX1UlJH5+lVzXvLOJrTtWrJNbr9d7AcfUYveDjLkIv43yRu7TLHCfDbDGHc9HYInl+XdA9oPOmz2WPTdd1Veh5GjZ9iV0frEns3nBbYj8e3pPYX0+GEvuL338ssfW/+6me3x/8mcQiIqp735ZYrxlIbDE+l9j8cFf/Hh7FGPPW4+Q3plCc/MYUipPfmEJpvuoTeJE3IfKyskkVWUQsIaBWOU61wmVYVeQRWblHfJVybxVxWsF3h5WKwRG8Q2v4KeBcIyYT/dz5EZ7P/PkjDYLcW+w91NjDTyXmN78xheLkN6ZQnPzGFIqT35hC+doJP4JkE1XFEdkqO2IZcbaSrIKvsmx8tXTJ1WyVHt0Dut7Z60jHpeu6isTrooaqv+t9rfC701yT2N1QCXhtMZPYooXfd3SsJ/NUhV1ERDx/ot/f/Vxis/sq9y5/ocfxm9+YQnHyG1MoTn5jCsXJb0yh/L8Qfqu0vGKlXFJUEUtJQPgstreS8VvJH776Vt2mqiVG92U2V1U5A325igRcFZJ7a9Aae7u/KbFvVOsSe7cFWdi7kti81XOZf/FcYtUUPhgRs6NTiV19eCixRx9r2/H99pt6HDyKMeatx8lvTKE4+Y0pFCe/MYXytRN+WF0GsbrK/X8rW3FWJ0VcV+Vdum01Kwxfseei49Isuy/juWo+bPOl78KPyVYwvo45g02t8nK90Zl765VKwI2FfneYPMWrY60ErD4+kdh8omIvImL/sVYXfnKuIu/jof7mXw8u9dh4FGPMW4+T35hCcfIbUyhOfmMK5SsVfllhlP0uQSKPIClFTOfaqhkR0YLBmr+RxtyvjlVkXLYdeJWFH11QhR/FWmjLPe9p7BCqH5/ORhKb74IM3dXfcrRQ0RgR8ZuBpuv9kc4AfDA7k9huq2LRb35jCsXJb0yhOPmNKRQnvzGF4uQ3plC+duW9RNbs98G6Uh86md3s59oO23/RjiV21U5T33/VG3Zw6GV2jkCwdafzzg7czB7jq2QCzfZHMy2J/RxKfvu1XodpT1PryVwHgi7g0d6r+F+JHoWez6NWzf6zqZr9o6lu9vGb35hCcfIbUyhOfmMKxclvTKG8EeG3zGaYbC85yT3qyd7s68DFEa1ZBpFDn6OSz4iIw1aFyuFEZczZVAc7TmYqm+awzzk7m2AVEdd17AWYqTexTv11QPKShO1hT+8fXcdpo9frDAZ9bjW5dDtaqCiOiNidq/A7mOlzdzbTZ+xqpn/Tb35jCsXJb0yhOPmNKRQnvzGF0ryOfuksvPY512s9rFXG3RrqhpX3BzckttkDuQf/Hxz1VCpOQIZFRDytVfA8BmH4vNLqq9OJipwxCBoSVTOSgCtu7MmyyiYlAgemZgejdv1mCNNWoTFUY1Ie0D2g2LSvsdvwjAzguTtf8Maes7lKyfE8WUUKF8JvfmMKxclvTKE4+Y0pFCe/MYXSoKCB0CoSsEsCZav5aDvPRqMDEt/r70jsJz2VgLfm+vfo/4Kk9i56fB0GcI6TRsULCRpqJ0WxFFxd+LJ0bezBAZfw+7KfI7Jtw1nJ2QWJrhlIW6yyTH6XPpetflwHKXwBz8iXcR3W2TVQ9kXoXvnNb0yhOPmNKRQnvzGF4uQ3plCwwg+LpZIScJk2T1zHTSuVoX13o9b23XehjfJ7U/17d2cqToiL0OMeNBqLiBjDzLaDSs9xH877tNIKv4tX3C5Lcm9Qc4spVU8OG431oQIyyxRao6cg3S5bvVfZ1uYu6LMz0LuLGXwOqgOJBq4NbYU6hs+RFI6IuKJqPriO2Rzym9+YQnHyG1MoTn5jCsXJb0yhNG+qfZfItp6SGBzV2pa7CSMJt2YqRG4MdMbZAFow21YlydpYFy9ERJz3VIh9AUJtHWYFDir9HM0onIC0I1FF14sqvNYaXgW9NdiQ2DWoqKS/SRVwJKWoMm1SqfDjKkS9f9SSG8HPGMYgD+bweFZQ4XkFHbh1TyUuXQeSgHQNI7iSkL6fbdP3m9+YQnHyG1MoTn5jCsXJb0yhNK963hsKxI5itWylFrX5jkCwrdESEPh9daWxtQ1YatCDSsAjDUVEPJ+qtBtBNWAD/7+lajDcGgztsu08VwnY1LklJxER230VfjcbjdXwWyYwf+4KYiS1KHbZ6D04hGtzCoItgmchUpVefrswCE3wc1SZSJJzGeGebavOVtn6zW9MoTj5jSkUJ78xheLkN6ZQsKczvXhhxa5TrqoCQUftqCDJajihMXx3PNXvjiYw46yGOXMz/v/lZaXHpuULY4iRbMKFJsmtxgRVDFLrbgRXIV6jRSdwDxbBElG+m1yScgwba39TH0jsacUm9hy2ItPGWmonzopBkoA0E5DmES5Ds4BnPin8XOFnjPktTn5jCsXJb0yhOPmNKZSGKsmykJwj+dFFurUSPtdCK+txT4XK531wmlOd9Xd5xPPsXuQxzOCLiPh4oILnQXsqsb0pbOmdwpZeaFHtavV8EWqD7UPbMFUWdkHXO2DG4Q5UXr4319h3JnpP74Zuof0M5jL+fR8q3TreY4f1mcTOWpWAF1M9NlbpgcjDxSAg9+ZJObvUpmP62cmiQb/5jSkUJ78xheLkN6ZQnPzGFAoKv2yFEG9a1YN0tS1mN6iS/DqYqsj5NVShHVc6c+/RUAXU1kJFHnXLfgZSKiLi/vRQj3O1L7EzkHtUDUbtn1mZSq2ftKCja+kGLdQ4mqkkays9n9sgRH8w1s/90fefSGztA70v3/zZscT29+9JbNrfllhExAi24B7XFxI7qs4lRtWTZ/AsT2HLMpFt311q8U2yEpTwm9+YQnHyG1MoTn5jCsXJb0yhOPmNKRRc0Y22ED7Xg+0lRJflzJar0hDGZ2O1wLTC+AlsmlmDfvURrNiewvntQ8luRMT+WONUMpq1+NnhptmhjrhdB0t2Iy5met4X8K8cV7Ve77vwrytrMDZi9B4MLf3gjsS2r76Q2Pf+QY+7O+JNSlCBjLMgiAlY/HO4p6tA+Uf3NILnL4xg6xJ9n2YT+M1vTKE4+Y0pFCe/MYXi5DemUHBFN5W14vBIWgUNZaRd4DpnWKlNgw+Px1qiSf3XB1C+TP3uVMpJx6VS3IjVtrFk5d4q0G+hvvZljj2c6/V+Umv//YPmpsR+9EjPp76psw7aUxCk+CwyffgvFOuaB/CykMjD1ekg5/odObQxUHl9vVHRSXKX5KXf/MYUipPfmEJx8htTKE5+YwqlocofrDACgZFdI90FHZugoYkUI6lF8iPLMuvLSeZk+7JJNrXQU5+FROpFq5VpXdeGBCQJUTrOQat98feHWxL7/v3bEnvvWLfufPH0lsR+PtTn7tNQARwRsT9XqXk2hwpGiGU37GTvPW6eArlHYi+CV6dfq/mzL3LR09/nN78xheLkN6ZQnPzGFIqT35hC4RXdyTbDbDtpJ/DRisoLgfS2H5BS2Y0o2O68xHBF+mx2OCqvgk4OUYUqSWzp7PgtWVlFlWgkKp/Dmu1Paq1MO/hCJeCnA5V7H/VU7j1qtTowIuIMBo9S6/flTKsVSWjSNSPx3dSwBh5actcbHXi62dcqyYiIrUbjNISVfh/hN78xheLkN6ZQnPzGFIqT35hCaUhM9ElgUDUfSKBlto1QAR2t416l5RUFGxwj2+bbJQuxhTMpzqoq910UeSClUFTBeS8W/Fu4wlND9Ddp7Te9YS4huN/od5/DVqCThco5EntdcWpvpRhJUrovVKW33leRd72vknMTJN4myNAInj04Xuh5j5NC029+YwrFyW9MoTj5jSkUJ78xhdIMKpUVJPeylW3ZVd4RLFQo9qrn2a0i97qEJn2fhBjJVDofEoOotKDrlIQft+nSH+y+Xy+SlZzEmAQivIrGIGdb+H20VjyCRRctgaH2XZrLSNKVpDndv3VYX74Ncm8DlspE8BIZquY7h6UrFn7GmN/i5DemUJz8xhSKk9+YQmmoOinblpsVS12z8Oj7q8g9bsHNzU2jWLb1N4J/I30f2z8hlr0OJAEXs5dvB46I6CXbpUmSUXXZAVTkPQbRvL7Qe3UQ+vfOYFkIbRaO4E3JJPxQPq/wfNIx6NrMlpgTSVJzAhV+2WpFv/mNKRQnvzGF4uQ3plCc/MYUSpNtyyXRwS2rue9GcLVbW+W29Ga3oK41Wi21OdQ2Stp2SvPRqOU4okOygDDKgjIVjo0tvbgMJfu5iBl8lrYT0z04murSjsc0Z67Rv7feUwl4Ass09qY6r+90eimxCN7cTM8TzXrMQveArhdV2V2AvKTW3Yi8HKS8IqHtN78xheLkN6ZQnPzGFIqT35hCQeFH0C6NCvwDtnQu0TqangsIx6YlEttD3Wz6/pouh7hXX5PYNRBQXVroHCqtThYqq06hEo02xFLFGi3EIMlJ7cXzJQonSX6htNWfHCewUIOE2DnM1htWutSCJNnJVI8xbnlRBS5ESVbpZSU3Xe/stmq6p5cdSzdI+NLMRJLX1E7sN78xheLkN6ZQnPzGFIqT35hCaaidFCvTkvKD6BIsuIk2WcWUXZ6wM1CR951mR2K/Nx9J7E4Lc+86Tu8MBuLtNnrsh5WKvIfzM/3u4lhiF61+N9tWvUyrdXZrcAuPyeVUBR1uEoYqO3oWsW0Y2mW7IPFGvwWrHdFdv3ybNslsavPtyhd65kn40dKPIchrv/mNKRQnvzGF4uQ3plCc/MYUipPfmEJpqOwPS0vBuuZNMxfFUs/zFGJkP8ni4qrkSn/f3dAe/x9M1Lp+a1uN+/qm2uyIiHmrJnbv2XWJ/UdP/wXgqtbrs9c7lVh2HXe6PHdF0JrDsbPGPvuMEWTXIyLq5PstuwZ+pS1FNDgUfl/X4FjarkWlvDQP4Haln/Ob35hCcfIbUyhOfmMKxclvTKE0W40Os6RhlJeRW3VMZZK06jiCxRSu6E6W/JKgwY0mPT3GCHZd7/yO9o2vfU+FXURE9FXGbHxyILEH/6XXe1bnxFkWEkYkSLs29sw7pxa8HHQceiZocCiVe1OZLA2O7SLbk08zEHBzEaztHsOmIRpOm71XERFtrfMOSALS39wIWA2PRzHGvPU4+Y0pFCe/MYXi5DemUBqqgCL5kRV5VKHXtRmGRF62qookElUMnra6yeVhX2OfwQDP9/e0EnD0HZZk1Zp+Frxp7Pb1eu/P9XxIVJLoIuFTgfDJb/Zh8hubcs8TkZ3lQOdCsnCZ7xMkzniugeYBrmyf5aoDs8M/IyImtT4nNBSUfrHf/MYUipPfmEJx8htTKE5+YwqlOZ5pFRttScF2SxBGqw6KzH6OqtBI+B1NdGX0g+ZQYv821Nbfjd07EvvDf9nDc9y4+0xi//PhLYl9ONB26cOJ3gO6jn2QewEhqrykazPvdVz/5CYmkntNrZVktDK6q201Aw5+7RoSmxxmSmRX1WclIP3m7DEiIiY9vYdXtNEItiE9r3RArd/8xhSKk9+YQnHyG1MoTn5jCqV5Pj6RILX0ksAgqJprseiQO7R5e4VZc3SOtOXm6fhIYh/Ceuje6KbEDvfv4rFvP9Vj/3Kk/2/9dL4vsTMQNFSRR4Jtnl2xjpJstdbdtARMbrTpw+w5OgZdm64tPiQ6s88oLGEKel9mZyZi1d8S4pN+y9lUn52m0vmPdP/95jemUJz8xhSKk9+YQnHyG1MoDQkxXLxBwiApTrpaFPk4Ly+hSKhQi/ExVNR9Xum8PZIxJ80mHnvU6G/chVbd3YkuAqGKyqyMu0pW8y3Tak1kF1MQJAFpWcy1RqvQaAX1FIT0SU+v9ZeoEEOpnHwN4ozJJapaM9/tyoHpLNcCT0KUxKDf/MYUipPfmEJx8htTKE5+YwqlybY30ly4OTggaunsqtrLCqdVhAodY9yqJDsaa+svcTpjsURCjEQezRSk6rRsKypVY2blXvYa/t+HU5AEHsKyiZsD3WB8r9HYEJZNnC/0eu1BheYykCTNikGcRQkbP1ZpYe86zhSOM5vmnnm/+Y0pFCe/MYXi5DemUJz8xhRKk12oEPC5XlZgdNkikicgMFAL0gZVEi/J+Wok3U6nOTkXwcIvexycr7fKfMOkIO0SS6tU89GcQZJ7P+zrfMPvLrTCrwbR/BQWVaz3WPjRb9FpixFUCUj3BefwrTCP8E1B999vfmMKxclvTKE4+Y0pFCe/MYXSULtlVvhkZVPXBtW8PHn5uX5ZspWAsyrfBkutlSz3cn9zFbGE313iz9EzQcs4tgcbEvvRQOce/s1YW3q/u6GzFc8udfvxf8e6xEZ9PW5E4FITui90D+iZyG7kfR3QPaggfymnqa3eb35jCsXJb0yhOPmNKRQnvzGF0vRrNSIkDIjs/DCKRbBQyx4nK1nSm1GxXVLlDs0yjOi4FiCM6FrQd1nu4KHhc9B+DZ/rEoh0/4eNVtDtDK9J7Idr70jsb0Hu/fmfPpFY/9u6JGXyyXOJ9f5dr9e41XOJiLjor0nsHFqHL2Y6y5JasgN212SrMQm6z533BaQdfRY/R89T5gSNMW8fTn5jCsXJb0yhOPmNKRQnvzGF0gxh8OEAerLJAJMhJ5tN1ryLZT77ItnyV/5XCihV7q221hr76pNmfxXouFmDHxGx1mhJ7WZfS2o/GN2W2F/OtyT2xz96qMf+q59KrHf3Xf3czi8l9s7jBxL7/JGeX0TEjUZLkG9WOjfgea2xoyo31DU7mLNOrirv2nBFQ3RXwW9+YwrFyW9MoTj5jSkUJ78xhdLsQB/0qFLh04dVyQRJwKs5l/GShKJ+d+yhTpb8piVgcsAlzBdd6jhctvuKRQ78PdqkdK2vkiuCB27e7Gvs27XGfvdSy2RHH2iJbWztQEwFYu8dLRdeu/MbiQ0fsogdLPR3D5I98ER6w1VSsK43WvpMcxIiuLScSsizUtpvfmMKxclvTKE4+Y0pFCe/MYXS/M7ghgTXe1rhN4D/T9D/OVqQEucLlXgRLL+or5ok4HSW3EqT7PvPVml1As6OpA/JuPTMgRXOkYTWqFaxGxFxvVFBt12pmNoEmRYB68GP9J42Tx5LbDHRrTmLp7sSG+/rcfdBaEZE7PVUfp3Aiu8xSOmsaKZ7NYA5GSRYqXKSKmwjOgbCwor2dqHnTd/1m9+YQnHyG1MoTn5jCsXJb0yhND/uaZXW9QVUJ4FroubbMbTB7oN0+fLoGjofqPShQZ8kXlbZppIVbF3ttyTtsnKvq4UTDi4hqvDKsuqmmUu418+gOnT/I43dqn4lsWpTPzf+TNekf/ipVv39fI1bwX89P9NzbDV23F5IjEQzrrqmikqo0qNqvht9HTw6gjb7CJZ2VD07AcFu4WeM+S1OfmMKxclvTKE4+Y0plOYnWnwVm1AB1YedL2P4f8cxiI7rHdVXs0armw77OgPuDCRgVu6REFtFAna17pLgoTZamsO20kr05JxBkldnU72uEREHlQqxGu51A7FfwIru6aG26n7rH/XBG1Z6jrszrUD9V+hE/lm7r8GIeDLRtd/nrf7ui1bPh54xaukl4UcVlWtQUblTaw7sQDVlF1dQzddCruJ5p49ijHmrcPIbUyhOfmMKxclvTKE0OyD3tvq6mripYRlHCwsHWpUa0x5XLG1BS+gOLFS41mjsvFZpQ1KLyM7bI2ileUTECOazDWuNZWfFYfsm/D76XAuDBucghk4nWj335Wf1b9K66uO+VsUdNnpfPoO21ds9lVrrC312Dvr6fN6fqcR7cLknsYiIk4meI4k8WhaTbemlykuCnrs1aJ+/C9cmIuIG5MsQ/mYfTpGeOr/5jSkUJ78xheLkN6ZQnPzGFEpzADKugh0bazArbDaHFlMQENMOITKGSqRV20xfFqqywyot2GAbEXF9oHPv1msVN/Q3s7PZer1cFRpVnFGl47RDkJ5S6+hMH4qzqQrDw0arAx9DK+sGbMUdgPy6mqto3JucSKxLXpIkJaG5SiUoVc/RfaH5lCdzjc0r3jj8bqv39bsz/d23t3S78PqmXke/+Y0pFCe/MYXi5DemUJz8xhRK86uhSoR7rQqa63MQXeDxLmoN7tYsTp6GSojDuVaIUXUZVWSt0qpLIo62qpLYi4jYhm3H69Ca2cBxplB9R3JoChKQ5v/1ZjCPMLmFOCJiARWCWWF42UIlYKVVdlT9SNtpSYaOQT7S5yK6Ni2//HKX7DFINFK14bNa5eUdaPONiJiCEN3Z0Hy58xON9b9/V2J+8xtTKE5+YwrFyW9MoTj5jSmU5j8XKhxuQ0XWFsiGekHVfCo/ni9UAkVEPJlpNdjeVM+HZs1x5ZYem4QYbc/NblWl9uKIiGtQsbYBCyxo7h3OXAMB1QcJuEp7chcksFAYYutwLobHfQ3VnSR3aY7iAp7llSQgfJeeWVoW8mymsYiIJ7XK5uNzzdV3Qyv8qvff0xgexRjz1uPkN6ZQnPzGFIqT35hCaX558ViCVK22CbJh0ONlHC9yCZtEIyIOWxUTRxONXUHVGLVlZrelUnUZVfPRVlWq2otgubcB7dJZ4TeptOrvCEQlVvgll428DsFG94BkKrVG033pqtx7kU6pCK+3xSy3fRm3NCcFK51PtlrxsEP4fVbrRt+PoBrwzkcq0t/9E/2bfvMbUyhOfmMKxclvTKE4+Y0pFCe/MYXSPLs8liCV05KdpZXD2QGVEbwWmfrBcVMN9JeT2SfTTGaffssaGPxRxduHBqHHHkFJdAO2eAIx+lcB6nfP2ufXY/b1HEfwnGwP9V+P6F+U6HqP4V+KqCT2NPIDPGc9eB5pEc8rLp2mZ5bO77Tl3/K4PpXYz/r6TGwd3JLYzX/+WGJ+8xtTKE5+YwrFyW9MoTj5jSmUZtzCMEQa1gjDIy8rlXMkpbqg0sbscMb0sE5aYQxlyYNK5VwfYk1HSXMf5BfJPYpd0cYXKPml30Llva8DKn8lwbre1/LnW4NNiX2jvyWxzZ4Kv1NYIf8YrjVtyIngZ/lNgDMRYNYFnXeX8Hta6awL3Co13JbY3X9SCeg3vzGF4uQ3plCc/MYUipPfmEJpqC++BUdyOVVZMa1VVpCA6IJkR3alMgkV+nsUy/aIrwopySlELxf6m6+gsq2FzT5dW3feBCQbqVJyB3rOvwFrqLcXKlgPQLCewGyJo0rnQETwfIGvCurxp81TNL8iIuIwtE8fxTcs1xqMbkjMb35jCsXJb0yhOPmNKRQnvzGF0uAKY6guo8+ROFtGsFD11TKrpDPfJYE4gWpFEi8tDNGcgJyLiBiDrKIBpzP4LedQxXY5h9ZmOG+sfnxDEpA231AF5Dq0QV9f6Oc2YWvOOUjFGo67qth7E9csK6mv+BHrqLzV71NsNoRc5cMYY952nPzGFIqT35hCcfIbUyj/C8408qVMP0crAAAAAElFTkSuQmCC" y="-6485.965839"/>
</g>
<g id="matplotlib.axis_367">
<g id="xtick_550"/>
<g id="xtick_551"/>
<g id="xtick_552"/>
</g>
<g id="matplotlib.axis_368">
<g id="ytick_916"/>
<g id="ytick_917"/>
<g id="ytick_918"/>
<g id="ytick_919"/>
<g id="ytick_920"/>
</g>
</g>
<g id="axes_185">
<g id="patch_186">
<path d="M 29.174375 6754.787026
L 151.464375 6754.787026
L 151.464375 6627.493499
L 29.174375 6627.493499
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_369">
<g id="xtick_553"/>
<g id="xtick_554"/>
<g id="xtick_555"/>
</g>
<g id="matplotlib.axis_370">
<g id="ytick_921"/>
<g id="ytick_922"/>
<g id="ytick_923"/>
<g id="ytick_924"/>
<g id="ytick_925"/>
<g id="text_47">
<!-- 171 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 6738.180263)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-49"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_186">
<g id="patch_187">
<path d="M 164.424375 6752.285263
L 286.714375 6752.285263
L 286.714375 6629.995263
L 164.424375 6629.995263
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p81bb93b853)">
<image height="122.4" id="imagebf9e74f4c0" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmP5OZ5h39FsvaqXmeXJVlyYifIJT4FyCV/aI75MwIk9xyyIDts2R5JoxnNdPd0d21kFcnKQbKB9PsQ4Fg3fb/n+DWruL5F4Ol3GTw++cVRDxhlxcMlzYtJWDstZmFtkcfthoMsrEnSqqnC2tv9XVg7tHVY+2hyGdb+YhjXPtE4rM2Og7gPhcugu0Eb1u4HTViTpPIYt90oHvdtG8951x7CWg7XbDKI92UyyMPafDAMaz+B6/BRGz8rScN4KRTPTprCdr9ot2HtT//yKu7j6Sis7X4br8M//c+LsPYPsOPr4x6OUHoB5/15E8+7io+E/jeP3/llswlru2M87hHcq/MsHsujQbwOueBgJH3d7sLav5ffhLWv1vF675v4LHJUGmN+9Dj4jUkUB78xieLgNyZRihfTi7gIEmmWRTExBqmRDaKsILEnSVeH+7C2hW3HWRRYY5CSJL/A4+keRB7JvVsQOeWRhR9JGlqbwTWjn+AMPjuC80MJCF847JBIfaG3xLiNF3eU8/V5yHEftzu28RjHoBpnx3gdNh3vMboHUX1JB7g8zTGeXwsPVANr5THu5T1Y01vF533dsrx8Vd2EtW93t2GN5N4oh1jFvRhjfvQ4+I1JFAe/MYni4DcmUQrOyItChWRTC0LkvinD2s1hjTtfHWLGEkEZh1PIYhuTdAPhtx3ERZJ71208F5I7krSA41nCGmU75vAbTGJpTMIPPkviM4esRhJfklANjuC05200WMvTKLDyORnNuJdBFr9voigGz47xeSjhGZE4W5HkHkngLey7BgHZQHYncQ8SsITszuv9Cj9/VUZBXtWQXQhybz6Mce43vzGJ4uA3JlEc/MYkioPfmEQpSNqRbDqA6NhBJtJtHUseVzWLPRIl0zxmEi6gnJgE2+jYL7NtAGt0fpSldewQfkc4ngnIvTH83tLaDmRTAcc9hM9SVhvd031H0t8RPk/lu+eDKJtOnsZ7nT+Jpd9EMYvPznIUn7FHTXweanF5MrHK4sl8q37Cl8qv657Cr4bs0A0I8k0d1ySpAcFKcm82hDL2Iq75zW9Mojj4jUkUB78xieLgNyZRij1ILRITBAm/bR0zvI4gFSVpnENW3HAa1i7yedyuZ4ZfAbueQtkxSTfKauQz4cw9Kj096VluSy6OsgtpO5KSe1iDpD9J0gjWT6Hcdj6M93/yEQjI57G34rGKny1uouhaLuPz9Ow6PrMVlUpLugO5dwV9GF9Df7wr6NdHkpoyYkkqD+C5o+2KjOXlHEReRr0eIa4oS9ZvfmMSxcFvTKI4+I1JFAe/MYlSlCDtKOsPJRIM08BSVBAQkrQsotx7PDwJa0/ymCG2pP6BNGwC5BWVeS5BiGyhbyFdG0maQ4YZCUja9xBEEAnEI8imLgH5ECrfrTs+TflqDYmpPG6ZncXsu8FZvKfaxOEeg0m8hkUR95FTBmqHvLzvWb69gjgguUe9FXuXwMPxZUX8PuqDKUllE4+boIEvFn7GmD/g4DcmURz8xiSKg9+YRHHwG5Moxd0hWleynJSiS+mKVI9/NozpuZL0uFiGtSdZ/A/AOaTyTiE3lS019SuIUC+AuaIhbcAeS9IIDCsMtNEOPk/HSDX5Bf1XAH6/F3AulDC67bD9FaxX8JqoG1oEIw116DrAf4rWcW2zjs/OqyI+D1/kbMLfwehu6tNAb8G+abs04YqmWVED1iX8R2kKa5K0g5Hhh56p+PQfAL/5jUkUB78xieLgNyZRHPzGJEpxW0HNMggaSjmkKSCzUaw5JrEnSc+ymLZ7QY0wQWDRrxaJswqOG8UgiDiSnJS+LEk1bLuFKTBUdU7HQ+nU1HNgBtfmHNaIPdS1S9IBrgXptKoGIXoTp8pk7+Jo6eNtnOJUvon7eLuJz8hvJvGK/abhqVBrEH4FXMeuSUx/LAXV2YMEpKas4456/gpE4AHkPD2jJJD95jcmURz8xiSKg9+YRHHwG5MoRXmIQoRkEzUVbHs2MyTRIfF46WFXV8kHHHoKmn6zVPj7Kvj0vmM6Sw2SjCQgCZ6+YBYhbNdXXlG2miRREiM2FIV7dbgDWfx1FH6Hd/G5u38X5d4aFCndqz1MOJJ4BDZnu/VrrtkXnIQFFzaDGKDmtJJ0Lsj8g0Oko6b+EH7zG5MoDn5jEsXBb0yiOPiNSZSCpB1Rt1GoUOkvlRjuO8oOS8iAyzuyzuK+IYsJsvlOYGoOZTsRpM2aDoVI14IEzw/Zd0FlzJSZCAW8IxzvzZxAhuBlE/czyeO9amHuN8m93dso8soyHlEBV+IS7ukjKAWXOAOOplSR3JtkXVfo/0P3lEe+x+tFEpeyXCXpAs57Dh1qR/Dw0Jrf/MYkioPfmERx8BuTKA5+YxKloD582K+vp6ii8d47mJAiSbcgMEqQVTxBKDKC3zLqe0clwj+0pJM+T4IHPwtSir6PsrRo6g4lSV4co2B7Tj34JL2o4/G8yOII6/MLmLoDX9mW8YCaQ7/3Dk3nWYLkelRw37tNFuXefc+0T5q6Qz0TCSqrpU9SmTaJPUn6BMLooonnN4NsxxHIdb/5jUkUB78xieLgNyZRHPzGJEoxgvHZJPyKHEp1QbLQAAMSWhKLQMoQJBWHo8BBFuLwC1hbw7jxHWSCfYgYpGOka0EZkFRWPYWMM+5HF+XeBM75GYg9SfpsFPvhnYHcG04gww9mZR9B0OEamEoaDd536IokzaCcfDeg566fBfwhwy9IIM5gbUpz5SXNoLfm6SA+o8tRzKiczeKa3/zGJIqD35hEcfAbkygOfmMSpViOuBTyIaM8ipNFEYd20IRRkiRdkFDrmwHXt6yW+r2tmgr20a9HoSSNQCyRbCSRRwNRcvhdpl6IEzgeKm0Gh6sDbCdJVR2/c7OKw1gG6z8+K7Ku4/mt91FobuHZgaphHTumJ3M/wn73pe8adc2j+9c3O7BLKldZ3E8FWZpz+Hg+dIafMeZ7HPzGJIqD35hEcfAbkyjFcthP+A1haAfJvVHWT3xJ/cULCRAqHaZssBqk3aopw1rZxgwoYtzR1y0DGTOC60MZZySHSNpNIIORSkKpv+EbyGqrRzxM5X0zD2uX2/icLCDjjEpw6Q1Tw73agNx7V4AYzOB5gH18CFQ2TmKYnlkUefDIH2CxBEm97pCX9xlI4Dbew+E+PneTXbxCfvMbkygOfmMSxcFvTKI4+I1JlGICJb0EiQ7q/4eDPDoGXdAqCT8q86X9UPZdi8MK+mVkEVTuLPE0WCpvXg6ijFn2zNwb9ixvvYNS6Xs4vlfwWUl6mcdjfAprz0A2ncMBZXDNNiBI13AL1tB7rqRnpGuYSk9ZTIM8SAIeYKgMZXeSBOzbl3HbkUVa0rZwHTdNPJ7pNt4/v/mNSRQHvzGJ4uA3JlEc/MYkSnFZLMNiCcKIBBvJORQnHSWKOfRdwww/2DfJRuqRNiYZA+KkhMzEPfT1o/OTpDVkDVJJMB3jvGc5MAm/A5adRko47nUby5gl6W4Qz2UFU3DLPK4dep7LFrLY7kCmbeEaUr+9qrNPJN3DuJ8KhCiJZipPJ7FLErCFzMQRZM7WHfNxOlr7xc/D9a5AzvrNb0yiOPiNSRQHvzGJ4uA3JlEc/MYkSvHL4aOw+OYYbe/7FgwwNL2s4D8FlE4psdkni09rZPFPsthk8gTSabdggDdw3CvF89vVXPdPtpgac3ZNL3oIGfIcJtocwJqTFKZ0065mpHSMdH1uYOx3DummQzjuCo6bRppvoaZ+D/8BIIP/3XfGe13BGpl9em5xDf5LcQSzP4ZJSgQ3Ce1Kh4808NxV8J81v/mNSRQHvzGJ4uA3JlEc/MYkSvFXVZQ+/z2ahbUvIQ2RxkOv2rhGguVDoPp7Gld9PojC70IwBQbOZQhChJp/rrsm9kB68IwEJKydkrzsGDn9kKhhGZr205V2DX4OU6Kphv7q2K8RagY7IclJ9/5DoD4NJIvrDIQhGDacCtXR4yEeC5wzyLkuJUwp0bc5ydS4difX8xtjvsfBb0yiOPiNSRQHvzGJUsxg6sryGKXWGQi2BrKYChBDq45pODtYp3p5qo0ewfSaBcg4EmczkE0FZePB+R0K1jHLY6xtv4R694+zKFNftPG46Rh34L620OASm0eCLMoh+1HiiT+k3Uh0bWB2DmWsTalpKWTATeB5GsM9rTpE7BSuD/VUoLXNID6f9Mxivwm4Ylj3/wHvX+pt0EBGJTh37PvgN78xieLgNyZRHPzGJIqD35hEKa6LKCFIDlAx4gykGzVwrKDkUZI21AAUmmbmMJqYMs6owWUOyVeUaXUK5yLIGJzlLJZIsl1CduGTBrZroPwTJNIWrsOB7gGISljC+yxJB5BktCVlCLIs7DfWmqYUTUF8knIlodlFBaJzA2s3WZR7N802fhYaoVJmIq1hqXVHViO9qSu4B1QuvQKR7je/MYni4DcmURz8xiSKg9+YRCm+KaIc2IJEIMlCWoJkWldPsr797HgiCou3h5D8KHpOw7mAHnWPO/qwLWCcyhmc3qKJixO4DnR2JC/PQXxSthv1Qdx19L2jN0K/O8UilhiT6AK5N6GSXLgO445xNjSAPnYjlDZQkr2ENaLuOc0KBWlHbBAkTrOen6dn3m9+YxLFwW9Mojj4jUkUB78xiVK8G/Trr1f3lBW41iH2SIrQCOQxiBfKjOJ99GMIG5IEnHSYr2Ubv2AOa1OUeySH+gkaWqPjHlNjvq5+hPCtfd8S9JzQPaBjJOE3hQ8/g0f2ccPP8RSGfuxAp64ge3JRRF1YZZP4fXlUiDsY4kJxQANkSHJKQsNOjyMNP6F+i37zG5MoDn5jEsXBb0yiOPiNSZSixP5j/eib9UWZSRIPVKBMNBoOQt84AGE0gi1PIBtsASczhPLULoFIx0PbHmBLuo4k/GgYQwU77tuvjcplJWnQ853wQ94c9NkFHM+TJq59BhOjnz+6x/0UQ5g4vIql2nebuKY6yr2bUZSAN1D6TSdIcUCDYTYgKSWJYpVE3g4kIj1jfvMbkygOfmMSxcFvTKI4+I1JlKKv3MtANlFWHPb1g8m0XewhO4my/giUSCD3ntVRf5y3sF/QJKuOkl7qr1fDNcOcOriO9NkSBjSQ8CPRiEMk6FjUX15S+TaV2056Zu6dQi/Dj45R7v3kyV1Ym13yYBhKLh1AmXcDYnG5i339TqHM+xz6//XteUjXkCSeJG3hZNYwFXkDg0VowIrf/MYkioPfmERx8BuTKA5+YxIFnQ/JPZJA1K+NerPRMAZJmsGADypxJKikdwxHSX30HkG55ekQpq+CLDzA0A1J2sHxkPShLL0jZe6B3FvDrqmEmiTSoGep7XffGeEsRCrJBjEMH74E6fpCkLn3ZBXWFs/jkIx8xuq6LaFc+gB9FHfxuZvB2qKNz+xJHtdakopwvSgbs+rorVhCbJDcu603YW3XxO385jcmURz8xiSKg9+YRHHwG5MoBUkISAZC4YdZf9T37si/MSMQhkuQgJSdRBJxBoJuDH30qGceyb1dE4/lLmN5eZ1TRl7cjgTPDuQQbYc9D3sOIKEJsZ1TeklM9TzGmHsnbWGy8QieiY/hPs+fRrk3/mwW1gZjzlc87qLczSZRLB5gu/yWpifHfZx0dFJ8SAnTjzcg8WhojsTZryXI600dr9ndPkpAv/mNSRQHvzGJ4uA3JlEc/MYkioPfmEQpqFlg39Hb1OAyo3HaHb8xJ1DnXWOabNwPTXchy02W+gbqr7Mm2tl1Ho/lTUcHhLeDeB1vYBj03ZGmu/RLaZ7Af0Iu4VwegWmma9PVgLWBa1bC1nQuZK/ncNzjIhr7n5fx2SmW0BPhp8/C2uDyIqxJkspo9ge//jJ+56ttWKvhPxJ0p2h0+hj+E9a3eSs19exab/uOB3c9vzHm9zj4jUkUB78xieLgNyZRihXUA1PaLgk/ElBUz0919hJPziFI2hEZbHYPabe3sHaAQ9nCft93jDS/Afn1tt2Ftat6HdZ2dA/gmi2LaVgb5Muwdgr3habhUO29JGUguraQmkqTYXZwHejZqXre03wRz4Xk3uDpC/z8sQLh9+1VWKv3cbt7aHexgtclPSeUyrsHYUfNOuuOkfZEQWnueWyYexxZ+BljvsfBb0yiOPiNSRQHvzGJUlBTQJJNOE6bGkUOYnbZZYfY+wgaKWaQiUSZduue02vuQcasQMaQ0NpC/fSBmh2IM9uoueK6iWJp28T6axI5wywKqCO0F5jAfbmEiTTcmYB7E6yh98IIjpGeiQvIQnzcQi+HEUzdgftMWXvHDY/oVhWvraq4n2oXr+0tPHfvM8h0hOzOPUi7CuQebdcFjaqfZvHa0oSraQ5Zrb33bIz5UeHgNyZRHPzGJIqD35hEKahMMIdssEFHNthDKMPvOYg9Sfr5PLZ7pPHJN+uY2fbNMWYxvSkoMw2aTIKgWYGw65qc0hfKlMTsSRA0Q2gUOodR52coWOP3PWriPSg77ukBTGAJ14KmJtHxfHKMsunzffy+2WnMDqzfQwNOKMnNbjuEH9C+h/LdOh73jqYmwbNDsrev3NvjfCSGBCutHRWvdwPH4ze/MYni4DcmURz8xiSKg9+YRCmo3JKyy8awRlNzllAO+hxGL0vS48/j+OVjHY9n/wVM8TlMwhrJvRUImjVNSYE1kqGjjry4KVyLR1nsUwft9bTJYhbaJIsbPs3ncQ3kzgn4VSpZ7upH+HIQj+fNMZYnU1+4URblLJV0j6DPXFnGc77/bTy/RRnl3vBxlHiSlE3is1Nfx/M7HqHvISRzkgwnnU2ClEqgScRRJp/EJfQUgxTTlJfqN78xieLgNyZRHPzGJIqD35hEKaaQkUVZQzR4gUo1n9Xx9+RkBmWVkqAaUftN/PxNFTPbXo+i1HibRaFyB5JlDX3mSPjR8IMCsvEkaQYicAkluCRotiDJSNrQ9aZhHDvweLeQ/firHEpoJX3VxHHO65bvYR9O83gdzgsYqV1FQVpdxetVwzO22PLxFbMom+ttv3feCWRFnsB1vId36D2NOQcJSM/YBJ4bSTqFWKWMyglI9wb24ze/MYni4DcmURz8xiSKg9+YRCkus5gpNwcpdXqMEuJFE387fnqI4qyYcUnv3Zdx36/fxSEU/zWKwu9lHvdzfYwCawVyj+TVtoXSUSh5nYC86oJKXucgBml4RguChrK0KINRedwHlTG/gaEiknTfRklWwvWhUmQa2kEDTb4pKFMyXtsDZHy27+NaAxJQkophPO8aapY3JdhngLL+Cij9LUC6DSGu6D4vQOJJ0iVkcz5pYWgHhBskJvrNb0yqOPiNSRQHvzGJ4uA3JlGKF4K+cDBk4wkMfXheR5HzeBQlUlWxJPvmbhHWfjWMx/O7HyD3aHAGrVUgtKi0uYahDRILFTrrMUgymgNC01tp7Q4+TANIqIx5A9dL4kw0Aoe7dGRAPqQE0XUH4qwBMVi2URTf3vUTdpK0hWO8gwEdVzDZ9iqjUt24Rhl1BJXKU7aoJJ2DRHxax/0s255TrXttZYz50eHgNyZRHPzGJIqD35hEKWha6mUThcHjJgqjMygJpaGqt2WUeJL0ZRHXX+Ukq/oJFSqPpD58DQxPoKEkIyzJZXm5BHFD2Vc0xXYNgm4Dayu4DjQcgiYv0wASOhZJGsM5ttAfka7FySDe01PYLgcntcniIpUn0xThrpnD1NfxPQ7egKxPGKixa+O1pet9gGeMns8BNHUcZfxOPgXp/rSJ0pbicuCSXmPM73HwG5MoDn5jEsXBb0yiFDMQL5DYpAyEwR6E1gay+V7nnH31VdFPxhwgi63AQRA0bATkFYglYgFNBh+D0JKk523cz8cwnXjWxvMrIePsW+hx95qy0AT9CEFUDWEfSygRlaQxlAQTcyg9fQx9Bh9BOTgpuwM9YyDsKhrOAtJNkq5B5N03cW0PQrQGaVfDdnvq/0jPLExeHkEGIz3bknQCmXuXRTyX84s4wKQo4nH7zW9Mojj4jUkUB78xieLgNyZRHPzGJEpBaZZEBb8TJdQXvwd7SVZfkr5WTEOkunOqGycfStNwBmC0qQknTcihCSlPaMa2pCdQV/0U+gYsR3GthRTr5SH+V2FMY6SLeH70H5M9pTl31JxTU0n8b8ERGr3CudBUoRKMPUEpyDTWusRB2dyzgJq10ncSZPZ3Tbyne0gDpnTxBTTQrTuCklYHcB2HI/hvz8y23xjzPQ5+YxLFwW9Mojj4jUkULE6HsmFtoMZ4DcX7b0DufSken0ypl1QHTbKpgN8taoa4oFpykEi0jzkIrXMQWpJ00kShMi+i9JlNuWlmIE7JVgPTa+gWDnFiD4izDumWQzfSGcjdE2j0SkdINfWUykvQA0ojqLuaXlIKMqV3c619PJsKnifqD1GCBKS1DUyPuu9IVX5TxHM5hbHmxzfxuJeLOIXJb35jEsXBb0yiOPiNSRQHvzGJUpQQ/iWIDtJUtzC95t0gyoobyHSTuifGPKSB2ughySrqTQDCZwZikCVSXKNeB5I0oqw4qqEG2dSSOKPMLdjHFK7NFITdGoRfl3QjdTaGTSnXkVQVCeR++XT8dhrD83nB7lqjLAqxDfQcILlHdfXUK4EmO1HW36aO0u2+jrX3r/J1WJOkEfRzqCYxE/RdHSdhXd7F6+A3vzGJ4uA3JlEc/MYkioPfmEQp3oK0owkyW2hcuAH5sYFyyW1HxhJJFsq+IygTkD46Bn1Vw28eCSgqbe1qrljQBCEQb4cDHE8dj2dXR4G1g+OuSOSBLNz3vKcSZzuS/Jz0c644nWfYU0DSGpUI0/hqSbqALM0DyEHShSMSpyRs4QRfZ+/DWgXTdVpq9AkC8bsDiku7fB7W3g7jhksotfeb35hEcfAbkygOfmMSxcFvTKIUX2gXFm9hoknVcwxxRqOuOwQGlVvStjRNpYQ1Op4t5JyRsqMed5zDxtAI5LqJv60NZPNVNUw+gik3VFa9hZ9vGmu9g/MjYStJQ7iOC3hPLOBeDUHuUcYhTYCiTEAqBqenaQb7kKQTGDffwjNK5CDj6OnJobSdRF7TQh9FyH69z2LWn8SxRT0Fb7KY9TeDUmS/+Y1JFAe/MYni4DcmURz8xiRKcd3GMsO7JkrACjL3iEUehxBMYTCBJJ1AaSVl+OXUf46ywUBUkSykNcpqm8BIZdZNTAMSigZ0lJCFRkNSDuCp6K7QAIsdnPOqo6R6CPs+y6L8hORQLP0llUrZnXx+8QuppHfWUSM8g7HWFUrS+J0bEHnv4aQ3HRmsDxnQcwzPLGUCStIaSoJJLO7yKBEpa9BvfmMSxcFvTKI4+I1JFAe/MYlSUJbddhCFwQEmv+ZU+plFiXcC+5CkOUgIyqkikUdikLTLHrLY6PsmHT3gHgIVnZKkIxxPC8KPksboF5hKhPuqRroOJAHXMDBCYjlUKmaNQbKichBvdNzk5yY0LAQ+/QwmIj+HrNTv9h23vWrjM3pbxH3fQKku9aikMnbMdIXp0PumnyyUpLqNz3I1gInDPTNv/eY3JlEc/MYkioPfmERx8BuTKMXHMNSApt3eghyiHneUtTf9oKw46D8HeoikXd1zOxIiQyiXpUEeXcWgFfxlBNl8Q+ilN86gtBaMWAXfN4EsNFKXdc/sx45dYwn1GnoFjuF4xvCFNPxkDofzkzrK5589jf3x5o95MExTwcTalydhbdMsw9prEH4ryOaj60gyfJxH8U2ZjjQxWOJ4IwnYdkxffojf/MYkioPfmERx8BuTKA5+YxKloP5qlyDtRiDESMTRUAsSFZJUUjkiZOStoM/ZDsQLiTyCyndJVJ7Cb2PXr2UJ35lBH745HPc0i2sFZGTR2VEZbN+cMZJSEp8jZQjeQdbnEGTxCUjABZzM0zoe+Z99ehXWzv4mCrvB85/GL5Qk6Js3//WrsDb++9uwdrs/D2sv4eLUIPxI5I2hLJogiSdJR4iXA/VhhOOhz/rNb0yiOPiNSRQHvzGJ4uA3JlGK14LMKPBz1DOv90TdDuFH30kTfUnu0bCCDI6HylMXMNSAJOcZTJEY4iAH6QCCbgu/rQOQgAcY7nEFcug34IteZ7Gk8xZ681UghrruH10zyhDcwnduqcwbpDJdx1MoJZ99FPeRffpRWBv87OdhTZJ0/ix+/pd3Ye3TZ/8Y1v76b9dh7XfQo/LrDnH6EMrcIxHXJa5pW4J6BVr4GWP+gIPfmERx8BuTKA5+YxLFwW9MohSvmmg0KUWTUmJHUKc/gu0o5VdiO0+jhKl5KP1qUUrlBL7vDMz+JUzNoRTUokO41nCKOAoaavLvobHjfwzjfzN+127C2gamu9AUl64acYL+C0ANIOkb6T84NHqbGqHmsNhs4Vzu7sPaAGrlJSl/8Yu47TTW7gue28/+5e/C2if//HFY+xU8T+/h+/pO5+lq6klp8pSiTWtu4GmM+QMOfmMSxcFvTKI4+I1JlOK6jsKP0jsnkG5KabIDxe3GHemPU9jPEtpPTmFU9gaq1kl0kUB8rChozmH8DKWgUv28JO2gZp2SNMcgXt5Ao8iX7TZuB/eqgb2QSEUx1PHbP6JJPPCddCkO0DxyC6LqPocJOYf4PC2/WIS1p6OXYW16AhJPUvvs87CWk/Cbn8btlvG5m8NNnRcQG5AGvIWpQitqWPsBU3yOIEkzuLYDkoC992KM+VHh4DcmURz8xiSKg9+YRCnu6iiWSPjt8yjJKKNumEM9d8f46wVk1V3ClJw9SLtbzAQE4Qff96SF/cLYZxJ+1wX/Xr4FaUfC7wWkAp5AvfsSBOsV3ZcWGpnCfim7jOq+JWkI16wBSUp9GlbQPHIHU4q2eTyXiu7pKoq48l/jdp9m/xnWJGkK+zn+yZ/HtTdfhbXdSxhrDrd/CO9QkuHrPK6t8l3cL0wpkrix5wCeHRLfFKt+8xuTKA5+YxLFwW9Mojj4jUmUgoQRjfilDLFsLw3rAAAArElEQVQ9TJqhRo95h1g6BbH0caxwRK6LKH1wZDQIkSdN3O4MZAqJs7rj9/Iayo6JT0F+Pt3Hz76fxAyx2zyKoAMItgoaeOI47v5VvhqDjNvDOVNJb01TcwZRaO7yaVjLRiCL9/OwVPwbN718Uf9bWBt/9kVYa26iePvqi7Owdj3sNxWKMksp629VRAnYJfxaiC1qzNm30aff/MYkioPfmERx8BuTKA5+YxLl/wCV/8Jpwn9aSgAAAABJRU5ErkJggg==" y="-6629.885263"/>
</g>
<g id="matplotlib.axis_371">
<g id="xtick_556"/>
<g id="xtick_557"/>
<g id="xtick_558"/>
</g>
<g id="matplotlib.axis_372">
<g id="ytick_926"/>
<g id="ytick_927"/>
<g id="ytick_928"/>
<g id="ytick_929"/>
<g id="ytick_930"/>
</g>
</g>
<g id="axes_187">
<g id="patch_188">
<path d="M 299.674375 6754.787026
L 421.964375 6754.787026
L 421.964375 6627.493499
L 299.674375 6627.493499
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_373">
<g id="xtick_559"/>
<g id="xtick_560"/>
<g id="xtick_561"/>
</g>
<g id="matplotlib.axis_374">
<g id="ytick_931"/>
<g id="ytick_932"/>
<g id="ytick_933"/>
<g id="ytick_934"/>
<g id="ytick_935"/>
</g>
</g>
<g id="axes_188">
<g id="patch_189">
<path d="M 434.924375 6754.787026
L 557.214375 6754.787026
L 557.214375 6627.493499
L 434.924375 6627.493499
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_375">
<g id="xtick_562"/>
<g id="xtick_563"/>
<g id="xtick_564"/>
</g>
<g id="matplotlib.axis_376">
<g id="ytick_936"/>
<g id="ytick_937"/>
<g id="ytick_938"/>
<g id="ytick_939"/>
<g id="ytick_940"/>
</g>
</g>
<g id="axes_189">
<g id="patch_190">
<path d="M 29.174375 6896.204687
L 151.464375 6896.204687
L 151.464375 6773.914687
L 29.174375 6773.914687
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#paf84ff641b)">
<image height="122.4" id="image08892350aa" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHS9JREFUeJztncmPJOlZh9+MJTNr7+nu6mlmswcZMNJgyTLIAgkQEjf+F478NZwRd4TEFSEh22wW8tiecU/P2ntV15KVa0RkcpiRD/17Qvpqso1H/f2e46fI2N8K6al3GRTV72ziG0QxKGStKkpZ26mHsjYq66S1zUYvebVuZW3ZNbpdp9tFRLTrTta69VrWBoOBrO0Px7J2e3woawfVju4vdH/tRs+FrrmPxVqve9YtZW3aLPS3rf6W7s16o/fmOuf4IiW8IxERu/VI1t7YvSlrf7X7bVn729GlrL39d+/JWvH9P5e1zdkTWVv/149kbfFv92Tti/89krWIiHvLA1m7P9R4+bhYydon3ZWs6S+NMVng4DcmUxz8xmSKg9+YTKl+2yfwdVlvIYdSpWIHUookXkREF7yeAu1z3qm0KeG8aY0gMdjHJvTe0r0gChCaqee4hntIEpCkaR907HGhEngHvoNdp2ubiwtdA7kXs4mudSCFZ3ot5wuVlBERn4PcuzdQEftRq+f4cHUua/7yG5MpDn5jMsXBb0ymOPiNyZRvnPAj2YRrIIJIAtJ2ZQHiDP4OkgRsC5U2ERGDtYobElN0Pg1kwC1aFX70WzpHknt1TwYcQdmOfaJTjk3CD+73Zk3CVrcjCUjXR6Kx79jVQO/FcKPbFQWc43SuaxOVaRvKBG31ObdzPe7zgWavRkQ8gnfvi/VU1h43KvzOG93OX35jMsXBb0ymOPiNyRQHvzGZ8o0TfiRzUrPTSAyuaY2yxkgiwVpfthqJJSpbJW1GJa/TRjO3SAyS6CIJSGt910LZfHgtcB/pnoEL5YzKRKlIXCeDkWjgPZnNNRNwfaJyb/D8me5wBFl6cH3tUp/BpOBrOQ8tl75Ya1n1tNV3Zwml1v7yG5MpDn5jMsXBb0ymOPiNyZQqtTxym/5qfVBpLWZklSCrYLtUaUeSjH67SSzzjYiok8t/08RZat87FKRwfcNS3W5qqW1EepYlQc8g6L2j04FbSOfS9x5jv8aNZt9dhq49XO3K2ls/eyRru7v39Xxu3ZC19aVm2TUrfcfmPcJvFvpOUDYm9XCk99ZffmMyxcFvTKY4+I3JFAe/MZlSoegCobINJPYiOMtrVEF/tUpLHIeFCizcH/Rrox5udI4NyJQp9EyLYGnXFSpZGvSFabKwSxRsqaXEJFIjegTdFqRK5VR5eZ3Xk54LSbLnGy2hvjfUIRnHv9CBH99qT2Rt51uaCbieqYibT/dkDdr6RUTEAkQeyT2CJLe//MZkioPfmExx8BuTKQ5+YzLFwW9MpiTX86ca5NQGjhE8ZvtwqCmVNJp6v9Sx1nsF7K/Quuq9gdp+EqxzMKlPO03RjIh4PFC7qysRa6i13nRp95HuN/5nhmw4SfOe/x5Q/X0qlDJMpjl14tJW19yzLdn+Cdj+B9Aw84NO38/4lS7dfk7vif535THY/rMxp5DPYHQ6p+2m9aHwl9+YTHHwG5MpDn5jMsXBb0ymVNuk8pKUojTZUamCLSLioFaRd7Pel7XjWtMs7xRQax0q997pVLK8BoKtA8l1WurifTjniIj3YQoMyRiq00epBRNtKL03NSWW1igdOoLlEDZHTZR2qZOUUuUeNg7tkZSUJk1p2xedTuJ5UuizPoTnXzb6Lk6fprn0jyF1/UlwCvnVWqVkk5jeS8/aX35jMsXBb0ymOPiNyRQHvzGZstXEHpJNJBZ2a5heEhGHtYqSm5VmPN0C8XIX5N7vtXrs78WVrN1+XdeokeLJmZ7LjY6FXzfUho3ToQqaRadrlHG2DZRRRw08+0QsjfOmyUcNjKGmqUI4Th32R3IuVRb2zfqh85nDMzhvNSPvIWSMViCB17Vmm15BZimd42elnt/jDYwBj4gJSMklZP3RvUU5j0cxxrzyOPiNyRQHvzGZ4uA3JlO2E36JYmm3YuFHZbk7UG47hL9RNcjGEYig/X3Nltq9pZKknYMYmum53JyrBIqIeHOt1/2g0mzF02oia1eNjlnWM2RSsywpa4/E3pfrei2UaUeCrhh8/caj29BbngxZlvNWhd9FMZM1umcdjfIGaXcC7zx9aZ9s9P18BvIxIuKq0/dk2embQpKT8JffmExx8BuTKQ5+YzLFwW9MpuDEHgJ78yWKpb7STyp5JaFCGUskoBo49myu0m73XIXWaqHya9Xoduue+zXa6PoeTAaiSUN0z1JLdXESS+Ja3yQd2paaAJLcTS4RB1mIvR5pRPcgvbwYx593KsSmK5VpJDQpO/Cy1sy7M5C944HerymU6U5B7EWw3EsVfiRE/eU3JlMc/MZkioPfmExx8BuTKVWqRCLotyTxqGdaRMQcZMdqo9uSBGxA+pzDn7IvVlqWu3yo4qWA/U06FXaTkv9ensM47skGMgkTe66R/BqAVKRnxYMzdI3kY0TETqlZjCV8J1aFPisaGLGAfMVB6H2gY6yLtJJeeu8iuGcibZsqzhaQHUi/XQ313hxVWsJOQpIEd986Ck26ZsrGxKMYY155HPzGZIqD35hMcfAbkykVZn4lZv3Rb0nG9PWoo2ypRQV94UDQXIEw+gQqVJ+P9e/bnbWKlyMa5FHp9X1esYz5ILQk9GFzIWszmNJLcPZk0k+xj+IODId4DQakRES8Vur9ofNZgpyl0tjUUlQScX1ZiC+ygn6CEXy/ly2IWCyD1TXeTknNfh1BFmgNA2AiWNAuCyj+hlPkab7GmCxx8BuTKQ5+YzLFwW9MpmzVw4/LKNMm00ZwthvJwTlkkj2F4yzgOCXIy1uF9g48hgENxKcbFVoREfeb57J21uhwEBIvWMq6BVRqS9ll79Q6aCQi4m2YgDzcQLn0QO/3aakZlWdrFX6TTkUcvQ+U1UbbTVoedEE9/GjYCAxFTp4anDoYZAxrFcg9ysaMYDk4L3SfqZLUX35jMsXBb0ymOPiNyRQHvzGZgsIvuQ8bbEYDGhoQQxGc5UVlvhcgjFoQOQv4LcmPqxL6sIEEJB61OnQjguUeyUs6H5qW20GJMJVl0rOiTLDdUodI3IXpxxERf9To+bwNWXGUhzYN3ecz6Gf3qNbzfjzQYzxbqxg8Wavc6yvpnRX6exZq+o6mijMSgyS56X0geUkSMIIz/+hZ0zCWZkDl18aYLHHwG5MpDn5jMsXBb0ymoPDrG4CgpG23gXLZiIhZqIw5L3RCaWrfO8q0orJjkjHLkktCX+Si5Qw/2ieVcKYO7aBroftFx8XpyTAw4mDDYul3oQz2e3/8RNbGf/KmHnusYnH96ETWJv+hz/mnH70uaz8aa8bg+9DXj0qJI/r6GX79MnYidYIx9bLEcvdrfJLp+qikmySnv/zGZIqD35hMcfAbkykOfmMyxcFvTKZUZAEHZC8hfTK13plqpfs4X6oFpikpaC8Tx1AvIY10CvXlRN9/Hug4NPmG0mwpnZPGNM/gHMkq47NKTdmOiD34z8f4vduyVv713+jaO+/J2vrqTNZufP9fZO37f/9jWXvw8Vuy9nGl/7noS4lNTdGl7ej9Tt0f9SGg50K2P3ViVgT/l4L+A0Apv/7yG5MpDn5jMsXBb0ymOPiNyZRqr1YBRamlWJ8MjRBRAvakC6eOEqaGiyT8UhthpqZ8po66juCJODvQFPSw1Hp3kjapci/1uUyhLv4iOKX5vNPz7p5pg9ISRF7A+1QevyNrm2//gaztvPUTWRvfB+mmR+19x/rWU0gdX0/Pj0aVU9o8C3I+59R3lFLI2xJS3/EoxphXHge/MZni4DcmUxz8xmRKdTjU6SwkkWgCCUHjj/uyy1IzBDeQIjjAyUBpggaGGnOmFAhEqpWO4Ck5lOVFMqejUdCQSUjPheTsABqjnjeaOflZpWsRET8f3pS1d/9dr/uNu/+qP17A5Jxbd2Vp8+C+rDVnei0LeH4revY9mZd0f7ARaqIYHJBgg2c/qrQJKkphyAKlyTwRESV8q9ue5rgvQu+iv/zGZIqD35hMcfAbkykOfmMypTqoNOMsddJMasYZCbuIdMmC20GaF2cXppX5FrA/zMi6RrYiSVL6fQcC66qFKUVwDBpBTRl+lyttcPmghAy9iPjvsU4v2p9oSe8P/+Fc1t58/59lrX5TpXJ3omLw85/ryPAnld6v6VqF5gLWInrex8TyZpyuBCLvCKT5Ya1rNCZ9D7JAx9BsNYKl9Hyj103CELNV8SjGmFceB78xmeLgNyZTHPzGZAqaBZIDv4nJJ6n90JL3B8emY9C14HaQ4ddXNkxycAHCbwliCmUh9C2kbDWCpCJJwOcwVjwi4sPyVBch6ezZ+kjWvvOTQ1m7Dde8DP3t/Vpfx89hShGNbKcS6Ig+SZom/CibcxdKlm+P9JrfqPT6aCT6Eci9EiR1REQz0PM+B+E3hOHpXHZsjMkSB78xmeLgNyZTHPzGZEpFmWSUAbWEMlEaQkD09b3bpr8akSr3qlKFCA01uE4PPxKBDZSZdl1aViTdb8rmI3lVwn2gkk46RkTEyeoS119kWqno+nSo2YEHMFCDugeebzTr70GnUvKkmei5NPoeR7DoJFLlLvXHGw3Uhh5A5t7roWt3Ohiw0RMWM3j1RiTNYTuX9Bpjfo2D35hMcfAbkykOfmMypZo00HMNSO0fR/ROHf1/yPAjuUfShvqr1bBd37WQeGugNLoF8ZI6vCQ1My0VOkYElyKfrlSyUd+8MxhKUsE3poP7MF/rcc9b7TP4fKkScNpwhl/qdGl6F2nwBv2W7kNDchZenRGcym5PCfwIMv/W8H63A32X28LCzxjzFQ5+YzLFwW9Mpjj4jcmUiqRUau+65EEH1yjz3QbKyKLMPZJ7B7WKqr1Ss9VqyFaLiFht9D5S9mRQb75ChVG50WuhXojbSMC+XnYkIGdQWkuia1KoQKZMSRJx1Dty1upxZyD36Jwjtssipaw4Om8q055sVF5eFFoOPAc5d9hzyjsgaAv6foME3EDGob/8xmSKg9+YTHHwG5MpDn5jMqXaRhhRCS2tvezS3escm2TTqNQSzEMYqHC73JO1PSjfjODJsWcgv04LzZSjc7wKFYP8rCCDjUQVyqL0bEUSaotQqZUqd1PPkQRbX2biNuD0ZDgO9Va8KvVZnXU6JOUxvDtHkEV6qyeL9Aacz7iF57oBKV1BtioexRjzyuPgNyZTHPzGZIqD35hMqX4TMi4Vkj7bZAOSOKtLKN8tIauq0Gy+12HIwjH0YYvgv6JPK83o2oEJqk8H2jOPsstIuq06yLyE3/I0X372L3uYyssGxW7fd4ymOSdO6aV7RsKvt2Q9gXGtcu4uiOaIiDvwvHZA+K47PZ8lZKb6y29Mpjj4jckUB78xmeLgNyZTHPzGZErFkzzS7CU2OATz2fZM9qGUyoIGkNDIcJqmAmZ/BHZ9F+qqD2Htbujadxu+N0cwiedhrf9B2K/Iuuo+F1Ajvkgc203/weHUYLbeqc8/dSQ6jnJ/2Wng1zDuqf0qKLV4DT0MqHkoHYPu1x68dw+gj0RExDGkAh9R7wWIjSv4zPvLb0ymOPiNyRQHvzGZ4uA3JlMqqlkmafdNS/mkxpxUp79fqTw5BKFye6Di5d1W/zb+YOcMz+fOd7RO/+xT7RGwf3lL1pa1pnOeVjqp5rzUtRpGUHPabnoDVtKzJO1wrHWinMXjJko3Ou/rvJ90Nqik4fbQsRt4BnS/ptC8lSYSfd6T3rs/hPdprRLwCqbzPBpAWjIexRjzyuPgNyZTHPzGZIqD35hMwXr+LlGokNRIzWz68vcpp8iQWKLR27tlWjbfrVBZ+C5k1L31l7oWEVH/xZ/K2s4nn8naD//xVNYezVQC3oNzpGzFZaGZgJS1GTDQpmPNhVCWZQXSlbIs6fmnNvDE9zPxt9chNbswtRcA9V6gXgAXrTb6fFCqPI6IWFd67Bpk6gymR110Khv95TcmUxz8xmSKg9+YTHHwG5MpVarAQIf0W2z+mTppiBo7jgcqpQ43KqVuj1SSVL//Jh6n+N6fydrg5rGs3fqff5K1m/+pxx6BvKSsRhJs9ExxxDqM/I5gQUdZepRRSedD0PmsQkUVZfilZt59uWlqs86vP4KeIAG5gkzASaNTnR4NOIt00um2JGIbGHU+XzvDzxjzFQ5+YzLFwW9Mpjj4jcmUapsJOUSyQLzOPhNHRq9AdLTQc40y4Eq4D3UNaXE9bBoVKhsQPOuFHnsBf4Ipiw3LZbdY6x1yA5mbY5B7uzSRCKYhEUvoUUik9tbrYxuR97LfZXpnr1YqlWm7iIiLQrMBKcs2day5v/zGZIqD35hMcfAbkykOfmMypRpVKnKIVImQPjDiOkDfNJAiy04lEmU2LUACkmBroYff5oLLLTef/kLX7t+Xtaf3DmTtYUGjoPVa6Jp5sERaSXYFY5sjtht1frPe1/3BN2a61kEXk4FmsBGp72JE9M0lgc2+/juaKs1T+//1CT+UtonQ9fnLb0ymOPiNyRQHvzGZ4uA3JlOqIxgEQEKFsueWIKVSB0ZEpGdapU50JVEy61QsXYJsOiv1ms8WOtxj9cuneI7D9U912w+1X9+HUy0J/gJKh6l8c9GpvKRrJrlDsoiywyL4ftPvx9BT8DYMnLg5UDE4g6aCT0vNYHtWXCadS58MW4AEbrs0cbpNSW+qQMRj9Px0PdiuT+GL+MtvTKY4+I3JFAe/MZni4DcmU6o3xjdlESVZqwIqtdyyr1fcNsNBCMqAm7V6Lc/bK1mjyag/G+razo/1fkVE3PxAp62enOkwjvdHei1P13pvr2DIAmUwUl84Fnbpk5dThVoNfQaPYdrxdzcqTmt4JT6Dico0vOQJDLWg4RcRERN4bxcwPGMbMbi+RonxNmwjIAl/+Y3JFAe/MZni4DcmUxz8xmRK9Ye1SqnTSiXZY5AsqSWGJFMiIgY0Opa2S8zwo7JOkmTnjcq5T4pzWatqPe5ZoRmRERFHE5WDF0M9x18GZLG1em+vWhV+JPeoH2FBSWOD7WQR3e8CSln3YCDKt5b6XI43Kt3ugNwbDrUEeq/WYzwpuHfgCUjJs1DhS+gTiNhABusGBr6kZvj1SVfCws8Y81Jw8BuTKQ5+YzLFwW9MplQ/6HZk8Ump4uW1Wtc+A0HzmATLigXLfKDSJ7W0krIDcfIrSLJpoyrnyUCF32qjv31SqdiLiNgZaHnrCjIOTyC78HSlwo+y0FL79W1IIl0jCY3kIMldGrwxhXs2g/ek62BIClwLTU8+glLiqx7hdwkCsoJpxzTtlq65g7U13K/Uvn6p2asRL3+SsL/8xmSKg9+YTHHwG5MpDn5jMsXBb0ymVO+B+X6jVXN6u9b/ChxUalJrsKF9qY5kr+dgudFywj5xO+glkHqMOTTMPC14Ys8Q/stB50j9BWhtAc1RU+vGqX0CGWlKDY6I6BL/NTCFvg+PoTfBR7W+T0uo+1+B+J5D08ol3IclTGGK4P/YpE6QIhNfFvB+J+6Pfsv/eeD/AKTa/r7nKsdJ2soY88rh4DcmUxz8xmSKg9+YTKleP9La9v2ZyqbdlTZXLIaaZrkodETztFZxFsGii6YAtYljv1PTgAnaH00pmg30nCNY0tA+acIOrW0/1lz2mLQUwenB1ByVmmM+anXCzq+GKvymkC5eQirvZKDHPYOJSxcw4SiCm9E28FxJpqY+AxJ5VKdfg9wblRpDJI/79kmkSkB/+Y3JFAe/MZni4DcmUxz8xmRKNRqr/CC6K5UNdxsVGKcjFTnnpTZhjIiY1CppKKuOZBNl7lFGHdVVs8iBPgLQrLHtaTqa2rDx5Ys8heRjan15HyQlqecA9Sb4BGrqJ6U2QqX6+Sm8DyT3zlsV1xEslUnkpvaRSM3mo+amlM03LlWG7sPkooiIHehZQPesgWxHkpz+8huTKQ5+YzLFwW9Mpjj4jcmUarlQGdO2+jehAF+0B5LkTqf7e7PScuCIiMnwhqzN1yp4OANOj00Te1DEUckrnuF2DRNTx41T80g8my1k4TajzyNYVJKIncKkoaeDC1m7LHVyEe2PmoSmjiqPuEbpd+K4+VRhW0HAUOYeyb3j+hD3eQMaoZbw/Z5u9P5cQVakv/zGZIqD35hMcfAbkykOfmMypfrigrPvXmQDGUsrWKvBh7y20cymiIjjQkXgWa0lwZT1R3JvDmOfMUtrC5HXlylHQo0yuqisk0pCCbrmbaRUH6m/p3tGcnbSaEYerVEWGklAFLtbilgi9d1JzZ6sQfi9BhOg3unJiD0OzfDroDfjM4g3l/QaY36Ng9+YTHHwG5MpDn5jMqX6GfRXI2k3xEEQunYFf04WPflzJCHqAfQ5g5HMJNOovDFV2hAkcui4ERHDUmXOqErrz0YCikQeyTTKbKPfoiyEtetAv8bzSRSVqdttnWWZKOhSMwFJ2FL25F6lGXrHpQq/d4NLeu/CWPM5XQq8orOBS3qNMV/h4DcmUxz8xmSKg9+YTKneL7QEcxek2+5G/06UIE4akGkXweWWU5igSv3VSNBhn7rUNThv2h/JvV0YNhERcQBTjHegPxsdm6QW3YcGpA1JTpJuK3gGfcIvVahhhh+JSuh7mCrTUuVsL/Dz1EEuvLvEQR7wXCqIqzGsHZJJj4g7baqgVak8hXJgf/mNyRQHvzGZ4uA3JlMc/MZkSnWv0/5q+wMVVQcwMGAHUolIiFyB2IvgvmLUsy11ii1JOxIvqRNUx5Ve842hZmRFRNyqtQxzFzITO7g/S5B7K7hn1LeQtpvCoAqciAy98CLS+9mRMEwVeXjcLeTetkNJiG3Oh+4DvdvnEAOnUOoeEfE2rN2Gfn3rRt+7i5G+y/7yG5MpDn5jMsXBb0ymOPiNyZTqs8WJLO6XWlJ4VOlU1QPIGqpAsC1hamhExBQGdCxAitDUURJQBJVbkgSkktz9Wu/DTegxGBFxDL3YhiBEOyiEbQZp10JCcwHC76S4+tr7i2DBisIPzpt67tH+SAJuI+36+vJdZzDJi2wjL+mar2CgyePyUtY+HXJJ750aYnCl7/I+xMuttUpAf/mNyRQHvzGZ4uA3JlMc/MZkSnW6mMjirNKsI5qeuwDJNYasNirz7NtnC7IiVUARWFoJ2XyjUs+bxOfNUqVLRMQRZEVWILBayBqjwQt14t/lczgGTW5NzX78cmNdGmzSSqNT2Wbi8HXYZjoxljwnXjL1p1y0+r6fF1NZ+6LUmIyIuAE9IUc1vLdrPfZ54aEdxpivcPAbkykOfmMyxcFvTKY4+I3JlGrWqNknu06Q7V1B08q+CSnUpBLN/paTZeR8sJ5f03sPKq2rvgEpzRERRwO1rmR8W2p6SSPDYW0GjTAvoR58BmvYE6GnXp0MOf0HIfXTkToSOxX6T0HftdC7R+eDk3hKvUA6DjYehTVqrHrVaMrvM0j5jYj4CN6xrtJ08zE8mCcbfSf85TcmUxz8xmSKg9+YTHHwG5MpFTWFJDlEzR4XhaYrXgcSfrS2zZhmEjSpzT/HA6jxh2koETzRiNJ251ADTxKQ5N5pN9e1RlNBJ41uR/eV7kMfOCGJUoupfwJ8Y2hUOaUbp04z6p0+lDqOnca7w29pQHvyCHJYo7g6X2nK75fH1nO8glR8uo+TTsWiv/zGZIqD35hMcfAbkykOfmMyBe0ViSBaI/GC++uRLiQWKQsqWe7RdjR9BqQbySsaqTzsqYEfQb17A6czh2S3FTT1vIReB887FUEX7UyP0UGfBLjXffX4JPc2iYXstE9qjkrZk9QLInUiEU3DiYho4H1KFb4oASk2QOziaPDECUezgV5fBMfRZatyl2ggVv3lNyZTHPzGZIqD35hMcfAbkykVyjRwO5SdtE1jzYjtMqO2GgVNv03MBOv7a1nCTaM7Qdl8ExizfLnWjCya+DKHppDLFsY2w/X1lVpv0/QSm6OCyKPJRztQsroE4UeZbpc97pmeNcrPxAxGWkq9N/SO0fkt4PlFcLwsC92WjkO/9ZffmExx8BuTKQ5+YzLFwW9Mpvwfptc0u27Z5uQAAAAASUVORK5CYII=" y="-6773.804687"/>
</g>
<g id="matplotlib.axis_377">
<g id="xtick_565"/>
<g id="xtick_566"/>
<g id="xtick_567"/>
</g>
<g id="matplotlib.axis_378">
<g id="ytick_941"/>
<g id="ytick_942"/>
<g id="ytick_943"/>
<g id="ytick_944"/>
<g id="ytick_945"/>
<g id="text_48">
<!-- 174 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 6882.099687)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_190">
<g id="patch_191">
<path d="M 164.424375 6898.70645
L 286.714375 6898.70645
L 286.714375 6771.412923
L 164.424375 6771.412923
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_379">
<g id="xtick_568"/>
<g id="xtick_569"/>
<g id="xtick_570"/>
</g>
<g id="matplotlib.axis_380">
<g id="ytick_946"/>
<g id="ytick_947"/>
<g id="ytick_948"/>
<g id="ytick_949"/>
<g id="ytick_950"/>
</g>
</g>
<g id="axes_191">
<g id="patch_192">
<path d="M 299.674375 6898.70645
L 421.964375 6898.70645
L 421.964375 6771.412923
L 299.674375 6771.412923
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_381">
<g id="xtick_571"/>
<g id="xtick_572"/>
<g id="xtick_573"/>
</g>
<g id="matplotlib.axis_382">
<g id="ytick_951"/>
<g id="ytick_952"/>
<g id="ytick_953"/>
<g id="ytick_954"/>
<g id="ytick_955"/>
</g>
</g>
<g id="axes_192">
<g id="patch_193">
<path d="M 434.924375 6898.70645
L 557.214375 6898.70645
L 557.214375 6771.412923
L 434.924375 6771.412923
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_383">
<g id="xtick_574"/>
<g id="xtick_575"/>
<g id="xtick_576"/>
</g>
<g id="matplotlib.axis_384">
<g id="ytick_956"/>
<g id="ytick_957"/>
<g id="ytick_958"/>
<g id="ytick_959"/>
<g id="ytick_960"/>
</g>
</g>
<g id="axes_193">
<g id="patch_194">
<path d="M 29.174375 7042.625874
L 151.464375 7042.625874
L 151.464375 6915.332347
L 29.174375 6915.332347
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_385">
<g id="xtick_577"/>
<g id="xtick_578"/>
<g id="xtick_579"/>
</g>
<g id="matplotlib.axis_386">
<g id="ytick_961"/>
<g id="ytick_962"/>
<g id="ytick_963"/>
<g id="ytick_964"/>
<g id="ytick_965"/>
<g id="text_49">
<!-- 176 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 7026.01911)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-54"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_194">
<g id="patch_195">
<path d="M 164.424375 7042.625874
L 286.714375 7042.625874
L 286.714375 6915.332347
L 164.424375 6915.332347
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_387">
<g id="xtick_580"/>
<g id="xtick_581"/>
<g id="xtick_582"/>
</g>
<g id="matplotlib.axis_388">
<g id="ytick_966"/>
<g id="ytick_967"/>
<g id="ytick_968"/>
<g id="ytick_969"/>
<g id="ytick_970"/>
</g>
</g>
<g id="axes_195">
<g id="patch_196">
<path d="M 299.674375 7040.12411
L 421.964375 7040.12411
L 421.964375 6917.83411
L 299.674375 6917.83411
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pf7f340440d)">
<image height="122.4" id="imageae4decd15b" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnVuPHNd1hXd1Vd/nfiU5HFGWJdmObMsGAgR5yXt+Qv5inpKH/IAAThAksWUYcuREZkSJ5mU4M5yZnul7V3UebL9wfQUUwzee9T1udPc5dap2N7B67b2zVnF/Hf9PsiyTWNHKJbbVHeD77/d2JXbS0dhpayix42hLbHvdklgF604yveTbrJTY3Vpjt7GCT4wYVQuJTddLiS3gM+dr/cxZqZ83q+DzKn3vEmIE3auIiE6rkFie6dnS2lPY96rSa16v9R7Q8/SudHN9Tu539Rn7285Dif1d90pie4/GEluN9RwnN7ruYq7nulho7PeLDYlFRPxjdyaxL2bPJPZ6cSexZan3Su+oMSYJnPzGJIqT35hEcfIbkyiqNrwjWTQXbapQ0acEiW4Fr6NVNkDdG1T63jkIS7cgcl239LuxDcJXRARojVHC2iT4lWvdOJ1NU95VOKN7SIIfCYMVCHkt+Dy8Znjv+h3OIYKFxRXcg/NMBbF/G+9LrPXbPYmNW83Oewueh71S9/IWKYTnWFYQg9f5l9+YRHHyG5MoTn5jEsXJb0yiNBb8SERqgQiUg0hWJwKSmLMEYWKJPj2FxL0jcDZVsJ9b2Pcg11iR87XQHseZOvJIyCMBigQaOq8W3Je84Xc6iXh18SJTF1sn08eHXkeuvzm4FZuKV+8qAtI9uAY35pdtPYcJ3Gd6ZgdwDg8rdf1tlnr/tuF5iIjYyfT9dN4EC7HGmCRx8huTKE5+YxLFyW9MohQk5KHDCwQxEvyoTLRdUzpKkPg1g9gCynLJSbYJolvRUoGmW6qY0lprbFkjkt3kIIitm103Cl0QI+hekQhEwmCdWNRr6XV3IdaG95OYhsIiVB1jKTK8lVx7JGjVrU0xEu0uQp+dMZRfE/Qs0pOzDWtsdlQgjYg4Xm9KrN/q6DoNHZ7+5TcmUZz8xiSKk9+YRHHyG5MoBQl0JCJ1cnBzwXu7BYhF0Ectgp1oJBjNQwW/EfTcu4b9LEtdo9vS93bASdYBEaldYy7rQE1v/g6lteRiI1GrqaBF4lwbSnIjIgYgInXBzdchYRGeHVqbRDvtjheRrZuVA9PnRdQ8o+CUqyvVlv3QGvDeTbjmBwvd4/G2XnUJz2xERH+pq5PgR9dMIqB/+Y1JFCe/MYni5DcmUZz8xiRK0bQslwQ/EvIo1s9VlIhgwYkEI3JfjcBpdQFrv17p2u2Vft4CBLsZ9Gab1mh4y4ZlpiRykkBHoiu1iqP30nmTyEVOvoiIHoh7fYj1SESE6+uvQViEpcltSqW/SxgCUgedxZBEMjjvLt4rOEe4ByelXvPpeqqfV4CzcMRDbkZd6MNHJd0NRWD/8huTKE5+YxLFyW9Mojj5jUkUJ78xiVI0rf0laympszTFpQfq6h/jqpySKomWXxqfDbbdG/iXYncFNmD4HryDfz3uWqzqj8FuvATLMJ03NcJcwzo0zYj+PaDPG8BZk+odEdENPZ8BfOYQ1P4N6GEwh7XJElvAtYwqHUtN/wDU2XsHeVdiZDcuqbEqxJr+K0D/o4zhX49vL7cl9qTg+3KeaZ3/EvIAlX2r/caYP+PkNyZRnPzGJIqT35hEwYJuEk/epob6Teomw5DwQqIPWX4JannZgj12QJzLQdxpg0BTZyydw/msGk4awkaacGRNx3Y3bepJZx3Btl0S9/bhfPaqZr8nAxBTezAh6RyExrsWTQDixppNm4xSY06awkRCJd37Mtc1znvNGrrewLjwiIiLai6xxj0eqAFvo90YY947nPzGJIqT35hEcfIbkyhF3aSTNyFnGjn8iLrpMxQnQYVWwTpmaPbYg+vb29K66qINY7Iv1H11BY6xiIhXIFZR88kcxThyZOnr3uVe0VnXuTvJsbYFzr0jEPfuLZuJnO1C37umvg/w89SCc72tEYXpuqfgEFyACExNPQvo+0CC9CXspWlNPUyaj4iIBbj5SNAkVyPef17GGPO+4+Q3JlGc/MYkipPfmEQpyKVXwLhpmgJCrjFyl1U1gh+VI+J4aZogRI0iaUQ3lNXunkwk1j0B4eR/LySWPd6XWERE1elJbEVluRm4wci59xYCnewFPg/XqIEcfkelxj5Y6P07zrUEdwbvnVcqSt2AC20Ezx2NPq/7FaPx7jQGnsRrKpcmcZbOu6k4i6XNNaPTSYCksmwUKjGvjDFJ4uQ3JlGc/MYkipPfmEQpcDoP9OGjWBvEGJw+UyNUkThIYsUmiBoHmcbur2BySn8ksf6PdCJKfnqk6+6p4PeD9rnEIiL6X+9KrLve0BeClvMULF3jtZat4tjuxqO8YbxzjbB0DKW63wdx79Pta4kNNnXf15d9id1MtcvdAIRmchvS01TnKyRxbwHlu2u4B3Wl6Lq2vpeEdPo8EuJ6NcvSSHQSZ+l1WO7Oyxhj3nec/MYkipPfmERx8huTKAU69yBG47RJrKASQxoiEcFDO7YzdX6dhrrnPlnqOp9V6tw7+bkKfvmHH0ss6+saGZT+9h+pgy0i4rRU8Wv1exr6oWLjTUtLTKdrjc1hNDWJgHTeWy091w/hXCMifjbTdX7yQIXO7c/AxQbCWfa13pfRU93P60qFwQsQpEkUroMGnSyg319d2fmbNHVZotMV7hUN06gDy8Hh95u8hXRm/uU3JlGc/MYkipPfmERx8huTKAW59Dow2RZfByJgF0S8fs002B0QoR60VPQhce+n6zuJPfrhle7xoy1dGMp8q3Ptula9vtUYiGERgbazQUeFpV14+2ah53gJ38szkHLINbYB530KQuPnrF3G5x+8ktjOX+t9aT08lth6pPdlOD2T2OFoLLHpNQ3o0OfpnNymbyMCgrhHIiCJqTgQo2GsKXUlvV2IU4zKt7n3oDEmSZz8xiSKk9+YRHHyG5MoRRvEvaYlvU3FPSrJjYjYgbLcfejPtl+qQDMcqgOONJbqSl161dVTiS3OwFF3pde8nOk1R0SM7/RazuZQysozPwQs34TzJocXCamPSr2WT3rqSoyI2PoMxKEPH0gsOzjQ2MZQYm0Q93auVRicz3WPNzMVbJ/AtNu6icPUh4/EOBL3SBgk514OYi+9jnpRkiO2V+OIHWZQBg014iu4ljl8pn/5jUkUJ78xieLkNyZRnPzGJEpBoh0KfiAYkFhBTqsONa4LHrzRhnpE8tTdTWFYwTMV2LqvVcibTfSaX91oD76rtb6urCnpXEL4vK3XdwlDO6iYlEQfEoxIvCIRaBMW2dydw8oRrV11A2abmxrb0jNb91Xwa01gSMrrbyQ2vND+f+0puOxgSi89ixEsklJpLTEp9XxIGGQRUO8L5doGiLO7EIuI2AHBrw1rL3Foi77Xv/zGJIqT35hEcfIbkyhOfmMSpejnKpw1HbxBwyEoRpNpI7j0cJJp7LyA76iVinvXV3AtV/p5r0HQfNrRNa5q9k2Q3ET948YZyJegP9EwBurhRtIVnWsJgmQFwlktMFAjhuq+y9rg5iy1XDZ/oQNR1pW6MW9yvS+TTD8PBiJHREQfRLamJbjUr49Kf1F0zUHIy1VIPYIS9uNgwW8DynKJOZYik+PQGJMkTn5jEsXJb0yiOPmNSRQnvzGJUpAqWUEdM40cnodaZ2nUcR0dUJCHYGvNoWB6QpNcQA0la/BlS6/vRWg3y1uYmlPXKHIjaKKR7ruEc8RGkaTsw9pzGEE9g38ZbkAOn465N8F6qjbbgH0H3IPowOSjIViDu7r2bKpK+lmh53AD94X+4YjgOn/8N6vV7J+PPPRsaMLVVkvP4R40UX0Iyv5Bxc9YnwYkwetm8NyN4fr8y29Mojj5jUkUJ78xieLkNyZRioNiQ4LztQovk0qFjnmlwsuk0hrouvHHVLN+C9ZbmoZzS3ZVWAPFLxCMrmDfSxDTBmAXjWD7ZB+akVJzRYqRgLWEc1zB9ZE4OwLb9PWER3Q/eKXW2/xKpyHFlk72yTbUoru+u9HYWAXW+QIm9uR6fTO4L6uaZ4x6IFA9Pwm5XWqkCS5n6iVATWv3oB7/qNR1j1YsXg5g0hSxgGdxasHPGPNnnPzGJIqT35hEcfIbkyjFo5YKfjfg3LsG8WMErjgS/FYg0EREzEBYnIEnr65W+03mIH5NYe0JCH60F3LZ9WumqWxAnBqULmCPJORRbAFnQ/umhqlzEPxG0KA0ImL6HNyTT15IrEUOv4G62NbXKviVZzrFp6y2dV1wd9LjQMJnBDfXJKgPBUETgKi5LYnZVI+/W+q6+9AzICJimMGUqoYtGcrKgp8x5k84+Y1JFCe/MYni5DcmUYrTUCdSh5oZNix5JOoEP3KxLcipBUvze3UdKnklcYgcXtuZlluehjZcjIg4qmB6EWhIMxDeLkA4O4PS0SkIQeieBMfZGta9gVLUiIiLFyoCt78aSay3+E5irW09n+pWheHFue6bHrF96Dy6CWPlR2uePkTPBEHnSK7BpuXXPfhd3UTBT+/pbsHX0mmzEPgmFZQEr8BJ6F9+YxLFyW9Mojj5jUkUJ78xiVIMwfnTAwGKBAxyMS2g5HUN/e3q3k/lliQCktuNXHE0NYdcX5uZCp+PMnWr/WjFItm9lYoxbSrLhbUvoZfhk7YKZ9+AInYJU3eobx1JRefQHy8i4slMBb/Vf0Pp6ehWYr09LemtFrrO3YWKqUsQqoYgVG4W0Oex5ndsvFbhlMQ9eu7odVQiTJC7cx+0x3uFiqHb23qGdcxnehbThT5Pt6VHdBtj/oST35hEcfIbkyhOfmMSpXjVUhViBPLQBAS2pu6pDjjOIpqPoW7az24B5a0k7g2gT+AeCH6n4Nr7YAUDLSLioKvCTbut50OVowczFWM25io25jQQg/q1wb0aw9k8rXFt3nX1N+G81MEb975TUXLvqZ4PlZ0uQNy7CT2HUUffTD0PSbCL4D6M1HuS+h5yrz99Juj5JMfowUr3cnD/TmLdTXbyLe507clYn9txqc83jaX3L78xieLkNyZRnPzGJIqT35hEKR6vJxKcgjg0bdj3jnqhtWoGXZTg3soalurS2lRuSeXJXehxtwUuxB3orzZssRjT6+n5dHvNSjCLQsXL+Uj3c1Sq4PeqDeWtIGidg4h7Db0aIyJegqj1DNbZBafd1lpFwB64EAkqdz7P9N5fwbNIg2YiIpZQBr2AGD07JBaTw4/e24XXHWRaqjs8VoE0H9ScF+RBdkUuUn3maXKvf/mNSRQnvzGJ4uQ3JlGc/MYkSvG60vLBpu45ckoRJIhEsDOKRBZam0SbDriYBjAZdQClxANYtwPbboEoFRGRg2hXdMHhByXU1URjc+j3NoOvappYe12p2/AOhqnUQUMo+iDa0jkO4byHICCSA46ehwkOXWkmNEewS6/ueWwCOSqJHETObgEDaXogxIHDMiKiGOr7+wPNweFMz2cAblX/8huTKE5+YxLFyW9Mojj5jUmUgkQWEkRIOKEYDehYllz6OylVhKKee9RLrQARqQeiFAlQexA7WsFABRA0h0Mu6e0N9bXtAZzFRPd9N9GyzBe57vEZlF+fw7CKm1JF3FuI4cCPaH62XYhttLQ33xbEhuCo7MJvUZtKsrF3pJ5hBIvFVL5Lpb+thuIeOwGVFZQxL6/pE2smDkMrzI19vf/kGN250/PxL78xieLkNyZRnPzGJIqT35hEKZoOMCCovJE+b1mx4EfiYNNBCcNCy1upV+Au9eaDHmefLlWw+3Bf1ZitY3XPRUS0dzAsrGAew6jUPT5VjSz+ECrukENzWqkoOSv1+qoawW8JZbRY8gqC2Ar68BH9hmXVVBo7h70MayYOk5PwHD6zqSBKgjSJineZvu4llGT3nmxJbGOL3ZjdPrhaN/VebX+s938Pnk//8huTKE5+YxLFyW9Mojj5jUkUJ78xiVKQrbFp48IWKKk5xBY4IJpr8stKVdJODiOZqTEn+B93QEE+Xeoa3zu4ktjBz3V/+THL+hlMv6lu9Z+B/FxjM/gOvgK1+Bpq8sdgkSZlvg1qeAU9AyJqzpas0w2tvDQN6Rj+FTgA++sG/CFB/1HcwJjziIgBXPcy10+YwNlSvwr6h4ps6me53uffdnX0+eVqW2Jb5/wvzDasfdjVfykOH+jo9GFHn2X/8huTKE5+YxLFyW9Mojj5jUmUgsS9oqGQ11nT2F/9vDp7L9G0uSLtpweC3zaIWsdgk939WGPtzz6UWLa3yxtaQJ3/8zMJ5X2dkERSFU0zWsDobbKbEtTclO59BIt7m7laU3dbGtvPVPB7EGCxhv4JhzDCutfw+ragQWVExBImDZ1B7f8ZNRQley/ExvA8vSx19PaXha7xLUw9Ktp8XwZrvcbDtY5OP/lOY0ffWPAzxvwJJ78xieLkNyZRnPzGJEoxAHGHJrZQXTRBNfV1/QFwVDKN+G7oOKQ9DmBCznZP3Vftk4HEsvv3JBbbNYLf1aXGQGyiPpNdEPJyEFNJbFo1FFNJ3CMRMIKdeyTuHWYg+IFz76hsJu5tgxM0B+GzhGk4OYhhddCzk8PvIJ0ZPZ/kBHy9UsGP3LSUa3WNQym3tkBgfdzWh2yLnkVcxRjz3uPkNyZRnPzGJIqT35hEKXZbfQn2QFjoNPyemMGkmTZ8XgSXR77L+GQa00y77nRgOssQOmb29GwyKC+OiFjTVKI5jDAHw1obRC1ahaYrkYhE50pTeOocfjSOewvKcqlcegfEuCHc0nbD+0zi3hzu6gxKqiMi5hBegXBKzUjJRUpD6UmIvVupqExOV1qDYhEs0M5aKpJOWrpLcr/6l9+YRHHyG5MoTn5jEsXJb0yiFKcg+A2gDJZGJdM3xxKEnAsQASPY+UfiybTUcll67wLUtBmIaZOp7qe8HEusdTuS2Lpmys36Th1d1a32V1vegogEohZBgia5JEnwq+Ac+jmPte6CODiE2AY8J0NwVA6oLyPcqw5MCiJWDc8r4t2mTzUd0d3Uedl01Hyd85KEQJ4gREK64l9+YxLFyW9Mojj5jUkUJ78xiVJ8slJxoQ/qQLfSYE6CHQgnz6HEMCJi1tIy2hEMO2g6ynu6VmfTeUtf981Chyfs/qeKc/u9rySWnx5JLCJiPVLBr3yln3n3Wp2EV5kKkBMQv0jcIUcknU2dm48o4DdhA0pmN0Hc2y91P0dQ8now1F6G/SH555TpWM9rOda+dRER/UL3TT0q6XxIYEWRGgRNGn+ODtS8udBI5b99eHaGUDeeNxTsjTEJ4OQ3JlGc/MYkipPfmEQpTpYqLPVBWOpn6iRrg5i2hEmrsdRebxERL7rNxIpbcEGRqDUqVSz8NlNhqeiq0HhzeSyxH/+Dinin3/9WYhERxQCGOZzptTy/VGHqWUfP7GatgyCofJd4F7da3fu7ENsDce8E9n3/QJ2Sux9BH8VjeE6gVHfxTKfQLn7DZePd9ZbEVuiKa+aUpOeOxD16HUECYl1Jbx9yYwd6K+6ACEj9Lf3Lb0yiOPmNSRQnvzGJ4uQ3JlGK3UxdVf1cxY9eV19HvfCWSxVebu+4pBdLh0HcIwFqDmLMzUrFPeImV1Hqca7Ou99AufMPvnmIn3lvReXEuu8/dDX2pKUly+elugNpOARB/ejIwVYnStE0YHrlEFyfe0PdN4l73R8fSqx1AkNSYIpttvlEP+93+sxGRFzDfbmp9P7PKr0HWJYLbj4WAUnIwy0KdW5MGtoxBNffHgxO2QYh3r/8xiSKk9+YRHHyG5MoTn5jEqUYtlXo6IKQ1xuA4NeDqaozFSAGdyzGtENFNio9JEhkoaEI1OPuuqX9+qhc8imIgI/zIe5nt6uvpb5po7We9/VSBbExiFJ0LSQO1TnE3qRO8BuD+HVb6NnOanrNvUlWNFS6QNyLnjrYso6+bjRhh9/Ljj631yCm0tk2dfMR5KhswX2hfn11PfxIDO/C7/cuCOknkIL+5TcmUZz8xiSKk9+YRHHyG5MoxdaWik1FW0WNdg8m27ZJ0gJ3YM6lqD0YvkBiFTnWCBJjqCyTnHLkIhytVBi6LTQWEfECyi2pvx6tTWIT9ntreA4kAr5NSe8E9ngBQuUrGMbyeqyuyM3v9BnbzC8lVsx03ayv57r8Wt/7fP1AYhERV2sVd5dNxT24f3RfiKKl4tygUFF4s9Dz2so1FhGxAaW6NCn5FMS9n3RuJOZffmMSxclvTKI4+Y1JFCe/MYni5DcmUYrth6rEkjsU3K/YXDGfqNS4faNrRETcu9NGmodtmGiT6+twYk9ATXbDJoxN1V4aFx7B1mJS+0nZX6OyT9/LGqN/R2hdeh39w1H3/jE0uHzV0mt+kak6332hTUund/pM9B6rMp+3tYnqxUttyvm4w9dCdmps1tmwdr/p2dL48922WsP3CohBH4mIiMOW5sZJqf8q/LClDU4f/Y3+S+VffmMSxclvTKI4+Y1JFCe/MYlSdE9hSkoBFluIkeC3hoaJRxvcWPPzL1SsGK12JLYstvH9b3IdKhjNwKraVAQkm2wBNdURXINN65A41HRqC61Btl1uHqmf121xY1XqbYATkkDwe1nAOPaVCrbdaxW1qhtoMgr7e9nWa/ldi23XN2DRJtF2VupzQjZgOtsC8oCsvCTuHUN/iAMQTSMijiu9LydLyLdTFfyKH51KzL/8xiSKk9+YRHHyG5MoTn5jEqXIejQRRcWYbACuoy4IE4UKYvmxCnEREaft5xL7y19AjTg4/K5g6s5sDfXgIIg1FfxIJBuAyyoiogfi2RycZFTPTw4/qgcnIY6gUd7k5qORz39ch0XNNxnDOq9obDsIdCW5J8GkN4NZQa9C3YFPS3UCRkTcNmzWSQ4/cm0S+JxA89cDeI4fhgruBxWf/z5s5wBGovcPoNHr3q7E/MtvTKI4+Y1JFCe/MYni5DcmUYpqpIJBvrMhsWxLY7GppZo4dWWgQkdERDFSIXBvR92A27fqguqD221QI2C9SQ4TTVB0A+FrKwdHZERsgBBI36wkdJGTsAPvboOwNKNR5ZUKYouGbsM6aGw3lcuegcC6hMaTtPJdBuO0QcS9gOu7KtlFSs49LN8FwZeeCRx/DrEhPA/3Mn12PljpM3ZY8lSgPRAq7++q0Nn5nuZLdl9Hy/uX35hEcfIbkyhOfmMSxclvTKIU82cqIvQPVQSMFnxPtEFgg/LGWKroEhGxvoGJOLcqikwy6HFHIhkIdBWITQt47xIELRJy6kSyAbjvdmDt7bXucRMEyD5MM1qCWPgSymqfwx6vaeQ3iIAREVMQ2aif3TSDMlhw+FVwZLsN3YoruOYZOCep/Daibsx2s6k7TSdFoTAIz9gW3OdjKIF/AA7GiIjjIxX39j/X6y4+/6nu5+EnEvMvvzGJ4uQ3JlGc/MYkipPfmEQpzp+oc+/Bro7zzTbVpUffHOsV9D17/Adc/OxfVRT5VaUDGb5rq5NsCQJUATtq2uOOynxp5PcCBLaIwPEXJO6dQLnm/kr306aeeble3wJEzhn0gCtBNL1YsytuUqo4OK30HpCoNctB3AVtrwWDKQZwLTmsgbEaIZbuP8Vw+ElDYZCeJyovH4GDcQ6l28M2C+R7P9B70Pmrv5BY9sOfSax1/H2N4SrGmPceJ78xieLkNyZRnPzGJErx1VgHYmS/VgHjaPxM37z7UmKrGxjk8BWU/kbEvywOJfbvhbqbXkC5Jk1apULIOTi/ZjC0gfre4YCNGhGoDd+jQ4gNYJMkFq4auss6sJ0B7LsHYhoJdhE86GSyAtcngMNPGopuR9DPbhggkOYqFtL03LcB91g2E4vpWkg0/a7SEvaNtubG3kxLciMiHi5HGhxC+e7WgcY6emb+5TcmUZz8xiSKk9+YRHHyG5MoxS+7KmBcT/ckdvorFSa6ILHdgJ3r2w4PIfgvGLzxXakTRqk/GznyyJFVwh5paANBgzi2aoZ2HIa66vZBMOpXVJ5M+waxCdYl0S6DcmByxdVBoh3FCDpbEr9G0G9xO9cYDbU4Cr0vezQdOCJewv16CWtfr1SMG2fQCxGuj4Rhej4v4Dn+H3Bt9nrQLzMi7n+h4vzHn34tsezgWGJlDhOecRVjzHuPk9+YRHHyG5MoTn5jEqX4slLX0EWhbqCvCxVZ2uC+moN4dRvsDjuHCaN30GtuXKrwQsMYyOXVdPDCRqHC0iG4rz7KWYz5CIYvHEF/tgL2s6RBF/C1TB42vGYo312+hYiHfe9gHeqj2PTzmk4SPoQGgEel7uV+zcCW7VzvS6+t4tezhpOJY8X99d6ErvkOnuMzuOYvCz7Xfmi5e/b3Wn7/6Ok/Saz49D8k5l9+YxLFyW9Mojj5jUkUJ78xiVI8X6lgMIU+bOfglKIyVoJcdhEREyjLbeouIwcVvY5EpB6IQ1u59ih82FJx75NShc+IiA+Xei0bGZQTg0h6AzESAadw3GMQ9yZw3lM4a+rLF9HczUegAAkxKo0lF+ImbOUYxN7tkp/FChyn80Kf5Umu5zMG8XkO5c5Np/7SeZOQSmJoRMSi0Pir0Gf0o1+oE3D3nyk3jDFJ4uQ3JlGc/MYkipPfmERx8huTKMXtSsdkkyV23IJpITBmmZoZ1jWKbGojJdBaCnXVBdg2+1A3vgtNIU+gRv/DBfcCOOnr+OSi0Ou7vlMbMan9I/havoDx169C1edLUJUvS73PZDeNaN4roYJb0PTfGvoHoIB72oV1N+HfqAFtJiLuSj3bV1RDT9OC4HnC2n0Y7970HwDqDzDN+F8Ysrm/zPW5+yX0ochyaFCKqxhj3nuc/MYkipPfmERx8huTKMUUptcQNCEnh+8OEkSofr4OEkXoM7s5iBogGLVhBPIgV3vnJlh+D6CW/F7BY60PHmgDyLwL9fwvNPb6SteewZmdgbj3vNL9XJS6l1sQ/KixZkTEooRpSA0n8WAvgQzGn4PgR08JNTwdDsAmWyP4bUz1bKkPBdmNm4qXdC043htCi9CzruuTMAMhkERbyhe2vhtjksT5qOGXAAABQklEQVTJb0yiOPmNSRQnvzGJUpATaQ7C0hJeR8ICQa6/t4HW6YNAV4C4R6JkL6NmpM3Gae/ssOA3+AgcVBvqGswH+v57v1bX35O11mkvM93QCGrOXy/V9UXiHgl7EexOwxHYFALBb9Vq5hjM4TkZgFDV7em+lwtuwFmBeDaDjY/WKqbRmb1LrwMUC+EcVjUu16ZCXuO8bPQqY8x7h5PfmERx8huTKE5+YxKlaDxNhV7XcJG6Ml10QQE9KMHttlW064KQR2IjxWiPHdjfcI8dkcUHBxLL9rSRYrd/LrHD5zqWfP/lUGK9ropaJMRRmehspfsmETeipny3Yal1BYJfu6ErjkTXITjgqFR6MuaJPddQvnsGE6RoDDy5X99F8CPIOUkiYASLqXTe9JNObkz/8huTKE5+YxLFyW9Mojj5jUmU/wPaBtRJP6O8uwAAAABJRU5ErkJggg==" y="-6917.72411"/>
</g>
<g id="matplotlib.axis_389">
<g id="xtick_583"/>
<g id="xtick_584"/>
<g id="xtick_585"/>
</g>
<g id="matplotlib.axis_390">
<g id="ytick_971"/>
<g id="ytick_972"/>
<g id="ytick_973"/>
<g id="ytick_974"/>
<g id="ytick_975"/>
</g>
</g>
<g id="axes_196">
<g id="patch_197">
<path d="M 434.924375 7042.625874
L 557.214375 7042.625874
L 557.214375 6915.332347
L 434.924375 6915.332347
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_391">
<g id="xtick_586"/>
<g id="xtick_587"/>
<g id="xtick_588"/>
</g>
<g id="matplotlib.axis_392">
<g id="ytick_976"/>
<g id="ytick_977"/>
<g id="ytick_978"/>
<g id="ytick_979"/>
<g id="ytick_980"/>
</g>
</g>
<g id="axes_197">
<g id="patch_198">
<path d="M 29.174375 7184.043534
L 151.464375 7184.043534
L 151.464375 7061.753534
L 29.174375 7061.753534
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p3313b30c94)">
<image height="122.4" id="image716c84d413" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmzHNdxhbOGHl4Pb8ADHgACIEVSokjKCoWsYWX7H/sHeOGFHY5wWFJIsi2ZFCcREzG9ueehqr2QuDDOVxFF0Svd8y0zqrtu1a3sijh9MjP7yZ2/28VrdLLi9VB0s1JiRZZLjFjvthifVkuJTbYLiVW7WmKDoiexe90jif2sOJbYe1td98NSbkN8EnOJXdQriUVEVKFrzCLDY9uQw2e7sC+d0GtZwv1e7DbwfbqnERH38oHE3t/1JfbBSs9zrz/TNXYqiW02ei27nV5zVWvs5WZPYr/q6/dFRPxbfSaxj2dfSexypeum527Y0ftwq78vsRvlSGI9uN95ptdX7/RZjIioguPynRAr4dlpl73GmL86nPzGJIqT35hEcfIbkyjlYaHiCQlVJEwQJJIUDb8xJEKQkEfCIgkq7xYqvHyw0XXfrFSoel6AIALX3HQX2op7OxBt6J7R9xUoAuq96UBsDXvQtGJdTcQG1k3HFYVGuz293zUIeddz3furXVdiz0oVzs4yFpUXtQqddL/rlmLatlbxclnpOeb5Wj8MaVAGC5VtaSvu9Sz4GWO+xslvTKI4+Y1JFCe/MYlSDnMVVMhhRIIISSR0XJNY2M87rWK0xnv5UGI/rFQw+n5MJVbl+pvX36mrjcU0FmjyliLSaqeC0RpiKPjBerothSoSXZuupQPn7oH7rg+SX38PnIR9vb7VUvd5vlMh7yrXNS7gcWp6i+3RM1bo87QqdN0bEPfoWd7UKjbOwL1awzPSyfWam/aF9rBoKe71QFj0m9+YRHHyG5MoTn5jEsXJb0yilOQay0igA7GCSgxJEClALIqIKDMQY6Ds8TjXMsr3qMR0o+W2h0cqvFxcq6uRilt7ILAN8MiIDYhf61DBaAH63Kal4NfZ6Xq2IO7gZ+Fahg0lvTdC9+XuVhd+Z6hlsOMT3YMMyqWXMz3HDtYNBs2oINZpeMZGmYp7Bx0Vd7ewB+Tmo9ygGLkIqbS9rkFIz1jE3QPhm8RBEvf6dvgZY77GyW9Mojj5jUkUJ78xiVKSaLcFsaIt5EIqG3r9kRNpBCLg3VCh4w2o4ByBS2u5VFHrHJyA0FIOnW7dpt9L0JvIuccfbVcO3HZXSNzpgwh0G+5rRMT7oLJ92LuS2N0fqnuy+5aWWgeIWgHOy+uJirgXNbndoO8dHBXBvRBJODsoVQREgQ7cryhywzNPuUHrQ8G94TuxryMc18NzG2OSxMlvTKI4+Y1JFCe/MYlSbtC595f3lCNxr2z4jSGH2REIfuMaylFBQ5rW+tmLhYp7r6Bf36LBVfU63+TXEsUhOK4HZZ10b/fg3uyDg+0GHHcDymXfUX00IiL+du9SYvf/Xp17nR9/oB8+OdHYVoXPwc0vJHZv+Uxi00/0Wl7tQLBt2D/aAxpWMixUbOyBYNu21983EfLkvA3OS3K/kgBNzw7hN78xieLkNyZRnPzGJIqT35hEcfIbkygsKwKkXpKy321ZSxwRMQL1cgA167TIaQ4WT1C+N6CwXsJP3ir7y//haIJsn124GvpGUnbb/jtyC5T9+1s9CzU3jYi49zMdTd75h59KLPsQYvuk9sNY89FYQ6dqIb7zQtf4bKL73Ct4X+i5JftrAZZfmq7U1mLd9q1Kll3a+4iIPYjTiHaCJi75zW9Mojj5jUkUJ78xieLkNyZRSqoH3rW0DGItMXy2qQa+rXi2hsMuQUOcQhNH0LliBVZQcrrSqkksiojo0pQjEGh6ILyQcNqHs+/RSHMQSHNwoOI4bTowIooTrW3PHryrx73xfT1uT4W8enKmx3XVopvtqei2N5xI7PBKbbdHOxaVSSSlZqttdVxqzElgjT+chMS9cYMOTxOkyJ6/huujc/vNb0yiOPmNSRQnvzGJ4uQ3JlFKEuPYuddOBKSGoCiwRMSc9CYQXqj/45JqoyFEziaq/V7BGisQ8ZoYkBgHbkdaNrnQ6N7SVBpyIdKUmyv4mX+x1slFERHvPH8usXKp03l227V+eKEC3e5S6/R3Zy8lVl8tJLbdkqisezWuWSQ7KNsJfm13uoZnh3oGtBVxD8Gh2SReFpBGU1jPGtyqKAzjWYwxf/U4+Y1JFCe/MYni5DcmUUpyIpUgItHED2pmOIOx1MuGyTXkBmTBEBp4gqBC61mCA2oGk1jIKUVCXFN5MrmyxiDc9P6fp/MQJHJew8/8UxDDIiLOP1Kn3Z3P/qAH7h9LKBseSGx3ToKfuv7qaxUQt2t1AhLDBsWO9mAOQiyBpb/klKOR4XAciW43KorxxdCTc1Xo51ew7n1IQb/5jUkUJ78xieLkNyZRnPzGJEpJLraqpQOOBDacANRQBklCCbmv0EmI01SUWai4d12rsLQEEZB+GWlqTkQEVfoOIJiBS4/EISzLhftFUiqLphq7aNC9Hr9U0e74l59KrNtTMW53955+4Wqpsan2CawW4LzD+6XHjSp+xg5AEFvChCRyT9KkqAEc14O9olgHcm1QkxuPr2VDeQACNLlIaav95jcmUZz8xiSKk9+YRHHyG5MoJZbbglgBOgc6jrAUtaHvHY3uJlcdD09oeRz11oPj6LMkpjWVJ5OL8QrERurr1wfn14AGfrTszUeDSkjwmzWMtf6yVCHvjV9r7M7oE4kVUy39JeoX5xJbn+m65wsVWCsaf91wHhrlPoT7vQ+xY3gAxiAs9kCgI4GthD0ovoGXcwMu0hVcOPW8rLCU3BiTJE5+YxLFyW9Mojj5jUmUcgNC1a5lnzIS97gtX/vJtm3hXy1wX2FvPRVOSGikVXcaSnqJOUiG5Kik/ohLOA/1gGO/oaLSY8QSer1FRDwp9cofXqjrb/DbVxIbXn7Raj3zR3qOp48OJfas0j6D81zvw4zsohExh2eZ9noEt+IAxL0xOEHJcdiwnFZQz8oIzi3aVxpUQzvtN78xieLkNyZRnPzGJIqT35hEKdcg+G2xrLZdP7MC3HzNvzDtVBESDNs6CQuwJhbggBuBMES9DJvA4SBwH0kEXNJxsC/UR5F6ClKJMJX5Un/DCC7pfliqtDh6rALd+HSl51npZ59v+xJ73FEh9qqkoSsSQtdmRMQK4tRHkUpwB7AH/UxjRYNT8nVoBgw5VZvyokPXAt+5hhiJgH7zG5MoTn5jEsXJb0yiOPmNSZSSxL0aLEY83IMcZyBANZb0KiR1kPBGQlcPxL0a1kjiHvVw69IEXFhfRMRVpl6rGQhGa7jfWxDeyLlFZdWkc1Vwv8lZuMCi5YgVrOfLEpyN24GEukt15F0WuvCzvp7jMtO7S8InD1PhZ4zKpek56cMz34O96uQay6gcHM5L4l4Fa6GS5T+dR9mDfV3CkfQ8+c1vTKI4+Y1JFCe/MYni5DcmUUpyypFbikp6yQlGJaZ0joiIEkQaEvdKEBtJtBmQAAmCGJjGYggTMcYgAtU0ESEirnOdbHsK4tAZCYMgvNEe0FRjEj7pfm+gfLdEBZEHtLwIGHQCjjxyVFLpMAl5FFtTfzzagx0XNw9BgB7DXh/Uui+DQgVIKtWlElwS8tYgAtIEanb9MT04eQcWubDDzxjzNU5+YxLFyW9Mojj5jUkUJ78xiVIOQaWmcdU0ZrukWnJU8Nu222TaVUuzsj+ifwWgjP1kq0rzrVxr03sFGSUjtpVe4+laa9a/6Or9fprruVfwTwr+wwEKMjGnu92wAaReUx+CTcumrmhBxqlJCvVEqODATUNjVbo7Q/j8Qab/Zgz6qvavN3qe5Ub/aVjs9J+QOaxm9Q06fRZYp9/OykvPk9/8xiSKk9+YRHHyG5MoTn5jEqW8k2n99RXUVdMIaoIEH+oF0MSWGmGC2LgBYZHaURYQPIRJLPe7Olr6zoOJxHq32o9UvvcCRkF/eUNig0L34Bp+lqn/AYmcc7jdm28gLHGzT2o8Sg0uadJQu+lDxBJi9DysGqYP0bW0Jc/hWaz0Ws53KuKeQ/+DKVwy9YdomglFe00juslWfgWNR/3mNyZRnPzGJIqT35hEcfIbkyjlrZZDnqm+fAWCDwl2OxpVEuz8y0EwItGGJ+TAuUFsPADx6u53riU2+rmOpc5vH0ssIiJqFVm6z04l9k5+rt/5xZHEXlTqDlzCtdBo6hlYwS5A8LnccTvSKcTJ9UlTnAhstkoNN9FZCMeByEW9Dv4Uh4lN8DxSDf16rRLredWT2JddvT4S3RZwgbRqmigUwWL6BPb1xU7dite1xvzmNyZRnPzGJIqT35hEcfIbkyhl2+ynSTMkAuFJGn5jqIEnjt5uOR6coOnJ+4WKH8MfqMBW/PRH+n033+ATzVQwjO6nEhq8+ExiN8/nEttc6DW/CnWSTUHwOwcR6BxEoMtaS5YjIhYtS7ppHHvb5qE1+NhwdDr6GpUbGQvXt7e6xpNKBc1RT2NU2nyV67pfgrh3AY1aSfYmQbJuLNPWbzgFcfZ5pW7VKey13/zGJIqT35hEcfIbkyhOfmMSpZy2nKZC4t4ajstw4k6D+wri40wFHhqzTCO1STxp++uW9fS82cl9jd15Bz+/O/9Kj33+VNczUmFqb6xiXP8a3JNwzXNQNGniDrkkm8pdt7Cv5PAkhx+Vb9NZ6Pv24PsGIAySA+4uCHsREd/f6L1980jF2eGhCmLzaxVYy/MRnqcNJFFTvjQ9s9SHb1Kr4HddayH0vLLgZ4z5M05+YxLFyW9Mojj5jUmUkso65y0dXgSJeH0Q8SIixuDeOti1E3hoNdRlcAJ92B5vtWfeW7/VUtv9H6lDLzu4BWf5BoAjr4DmbBkIYmtQjEgEIni8N+9LBSIwiYNDcNUdZVryegjHHYCIO0JhV9c3hM2/v2W36VvHVxK78T0VxIohiJePVSS7eab5chfKfIuChna0G3PftKcTyMu2A3Yo5je/MYni5DcmUZz8xiSKk9+YRClp+iqJO1S+2aFhDNCvbdxQbkmCX79lqe4SJL85lY7C1y3AzXfj4xOJ/eTffiuxzlj7+kVEZKOxBlcqGNVzmPw613s2r/SezTp6MbRXJdzDIexV0yyVbt7OuXecqQPurVrXfRdaBR5V+tx18FkkJ6de8+09LWONiDh8sNDP3x3ogSDEdi70O28Otfz6uzO9X3s7vQ9flVCSC9dMwl5ExAKOJffsuNDy9PxbuF+NMX9lOPmNSRQnvzGJ4uQ3JlHKbsuyzKahCK/TJYdfw2cpSi69FQg8F6GiyDUIJTTRdQkC5B86KpK882s97623P4YVRsSRCoHb3/9RYqe/UbHx0al+9mmhYtoSh1WAuAcuSdqDAYizEYG1pwNw392DMtrvQQktuezGt9Rlt6v0xMtr3asKjhufcD/C3lvq5sxPQLRdqSpZjFUsPDjWWA2qcr4Y6ingubsEk2VTqTX1RzwA0XVU6HkWOYmAxpgkcfIbkyhOfmMSxclvTKKUJyAYkL+I3EVt3YHkxouIyGG4BB27BNFuAqucQXlyDRNZ5yBKXkHp7+W5OsEOP9K+fBER9fKxxB79SoWljzbqBDzrqpBDe0Dy3AGITRUItjTBuEFXih70CjyALbwDZbT3DyYSu/mhinGdt3Uy8W6rJxlcqcAWW31u8mN2XuZv3pFYdqTnjulUQuVar29vdimxaqPi5RIm/A5r6BMJ95r6G0awuLsPIiLtXwXPt9/8xiSKk9+YRHHyG5MoTn5jEqW8CyIEiXZnICLRcAjq/7dE+SpiDq4xKlHcguBHU4PpuLaTgInVViW2yaf82ZfPDiX2652Ke0+67Xqp7YOQNwDRjbrwQQVtrKBktQk6z1GlwTFMou30YJBLH65wCM67jl5NfghDMroqcmW3tSQ7IiJ7400N7h9r7OqVnnuuYmP+pboVq0qvr4Jnm/aAhWvOFyqX30GukpuzhPX4zW9Mojj5jUkUJ78xieLkNyZRnPzGJErZAydhDWr4AFTzHvx2zOCz9A9ARMQS7ME0rISaDxKk7HfBFEtjnwdgiVzXetyzp/t47s93Wr/9EJT9CViaqf6e/pHoglWZ7kwN/8y0HOwTEREdOM8Axnb3Ct3XooC/CrZw8gXU3xdgYIZ/BbITVfaz++/qZyMiu6PxbE//halzMk//p0SWL/QZe3mq/0g83Wn9PDXwfLlTa/BppU1CIyJ6MGFpk+v93uQ6QWgMz5jf/MYkipPfmERx8huTKE5+YxKlJCsoSR97oNkcggBBU2DIlhjRYAWmJpxg5UVBDFa+RxOEwBRLo6BPQ3sdzEPFlIiIhzCU6ALsr9SbgFS7KTVRpakysG7ob4mxpl9+indgD/pdvb7uAETcATwnAxXEUNwbqziX3YIafRD2IiLyG29IbLfQngPx6omEqk809vyxrudh6Lqfw3Sll5k2Nz3dqrj3anOt6wuemjUrtOfEAmLHbuBpjPkaJ78xieLkNyZRnPzGJEo5Av2J5LkOCFAFuKKO4feE23dGXIPt7HGmjqezWmPUc4Bqm2lcNTGBBofTrl7LBMaAR0RcgHOPJgitwClHTsctrGcFAuuIeiKQaxNuQ9Hg+qMrJNdnAV/QGeu1FHe0fj5764GeZAjiXl/FtDgCwW/IDTxJ3Kt/9y8S2/7TP0vsq3/V5/vxWp2cVyDuLeHZ3oJzcgXPyHzL04eosWfVsodFH54dv/mNSRQnvzGJ4uQ3JlGc/MYkSvmdrXr8tlSWCyLCEhxnJCKVIHRERFwU4FjqwBjjUAFkjY1C2zVIzEC8nOUgVMK6qXFoBDv3aIIQCX45lRODsLiE2EGuQg6N06ZpLyClRUTEHPZ1Vqn4tVzpudHASM69Y2i4eXhLYxWUg69gTPaj3+lxEbH7/PcSW/zjv0vsf36p6/kjlMZOQNzbtHRP9iGHBrm6SEssL47Y1iCmtvzOY5jM5Te/MYni5DcmUZz8xiSKk9+YRClP+lpSuIFJNdOtCnFXlQo+WxDTqJw0ImIFPz0kp+VUJwwa4gbEtBl83xocdTTRhCBnYUTEmpx7IEpu4ThiA45B6tdGAuSQehRCafOm4bc/A8GvV+rnhxsVxG680Fj/6ame46aONI8F7NZEy1t3T76S2ObT5/rZiHjxSxW6fjFRd+Fn0MxyDveWhdN2wncXnrEDKLU97qjTMSKigvXcKbWn5Ie5uh3fg5z2m9+YRHHyG5MoTn5jEsXJb0yilDRkYQsjh0mIW4Ar7qwAlx2Up0ZEnIGodQWuOBq9nZHIAm4nHGqBzj1dC5ZQfhPBr6ZrgR53IGjSuWkTdnBvN1C+SQ7EVUNvRRr8XcJe93MVgYevVKwq/kPHWo+e/UZPC5u1+ErP++yxClpfVlrmGxHxRyjLftTVfZk0DJZ5HRpUQ849KoFfwAYO4F7f73B58lGmYur7MBzkg6Vey0kxlZjf/MYkipPfmERx8huTKE5+YxKl3ILzZ7FVEeI8U3HnMZQ3PslVTLkAES8iYgHiFwlv28YugP+XDvyWDUGUouNIyCOHHpXkRvAQEeqlRn0GSdwjUXILJb1N63kdGnxCsYhA4a0D97EL4u6u0vLdiyfqshs8AQcj7MsZlCw/L/W8FyVfyxUMTpnDPWu8F69BzwmJhRsQWOkcXbjmB7kO3YiI+JuN7sEHlZY33zxQ124B98dvfmMSxclvTKI4+Y1JFCe/MYlSrkDwu96psPAEnFKfZ9pb72mlYsN0p9NJI1jUwvLdb0EfylsPwAFHTOC3kfroRTQNVAD3HYg+5A6k8k10NUKMHJF03iYhNYfv7IF4mRd6b2fwOnmxo6nIGqNeeFNwME5AFN7AkIwIFljpWna4VzRkA8rGQdCeQ4ye95NCh4Dcq/n5JHHvzXuXEuuOVICsN7B/eBZjzF89Tn5jEsXJb0yiOPmNSZTyvNIywa9KFRyeFCoiPKtVgDittA/bombBj4SlEspMqeSVPltA77l1qLuMZC7qzTYGYfCwYeovTcsdtRToFiBqXWK5s+7BDMQvciYuydVGEzYiYg6DTi5h3SsQP0lM68O96cH3kXtuSq5G2EESVyMiCiqXbjj2dUgkXdBUXRL84Jkv4F3bgfs1bmh6eXNfxfTx2zDI41BzuoYyX7/5jUkUJ78xieLkNyZRnPzGJEr5ZUdFrafQ1++rnbr5LsBxNK/0OBqmEcFuPuxdByES/MgBdwUuxC70ozuEkuXDnYqPt2r+vXyw1mu831HxczSE+7PR8zydjST2h672a3sEQuwp/KZnoaIUOQsj2Pl3CS7NKQh5AxBJhyDiUi88ctRR+e0SRM4mCa/B+Kfnph6HcJ5FS3FvU0NPQChPxtLfBpNrXcMz3wfn3rE+OzmI4X7zG5MoTn5jEsXJb0yiOPmNSRQnvzGJUn5aqir5CpTdM7Dy0kQaUuuppjoioobwFhRWUvF3WMeun11Rc0VQsw9AuX4PZNe3a7VYRkTcvT2R2PiBKvvlWJXv7UTX3fkMruXySGJVF2q/mwbxvMaswapMTVTJHhxwHFl0KUY2Z1LxyU5LNfVNz1jbHggE/euBTV1bTmYiXzn1AjiFUewREc8nWvu//8lSYoPZGX7+dfzmNyZRnPzGJIqT35hEcfIbkyjlExDyrkHwm4GFkcQ9rLOHmuUmSKD5NtC5ycr7A9Xm4kf7KpwcvqH3KyKic6ixvKfK224LjSKvdI2LhfYhIMagDd0EOy25kpt2ZYJCbLsGoCRgkUhG8hz2IQAxjZqbNtH2eaRaexIR12DbrcCiS7FNy94LZzBlKCLi047W6S8fnkis+5DO7Qaexpg/4+Q3JlGc/MYkipPfmEQppyDQUJ03NT1EIQ9qlouGRpEkirSFzt2Fc+9nKpJ8t1Ix7cO9C4ndfF/FvWLIv5ck5FUzcOmdqRh3/lxHMr9a6ajrOfQhoNkuY6j7Jttfr2E6UhfuLTWanIAITILfGkQtEs7IFYf9HQAS9iLaP2NlDo1j4Ttr+L4md+Hr0BppfddwvyIivoAJSc8hVsM7fY3ivDEmSZz8xiSKk9+YRHHyG5MoJbv0lA64xrjXpga/iaxH6yFxr0PiXq4NLt+A2DsLFZaO7mmpbgHlt1nZJPiB80urLWM11XXPl+o43LR0OuYgxI5hX/Z2+n0jELkiIvogLPZh/0toCllDnTZNbCIREEeD53pv6FlsmsJD50HRDj5Pz3JTM9rXQRchjQaHc5DDNiKihm6kdM9wXLwFP2PM1zj5jUkUJ78xieLkNyZRSupntgNhggSDlsamRpdW29JMEkqGuTr3jiB2u1aB7QZM8ekMdS15X78v65OnLiLrUvmuKn7diQpQ+yNdTzWB3+VanYlTEOdg4ncUsAc9EAEjImoSG0EcLDNdD02God3v0mSfXL+P9rQPbsV1w7PEJcY0rrxd/8cpqLgkKrYtTadz0CSsiIhJpkLgt3l7+81vTKI4+Y1JFCe/MYni5DcmUcq2o67bgkM7GtxXbcuEe9Bzbwzi0AgKXDtYlqlrocpPEveymwd6YPC48Ww41eO6Otyj6Km7MAM31/oSxlrXem9qWAs5AfMGwQ8dnnDPhnBkEbov46LdYJGTnR53UoHrD9Yya3hkzws9+CJXce8KhDcaS07P59VW948ERIqtKz2vDnb/87lp9DrsNeVbWyevMSYBnPzGJIqT35hEcfIbkyglCVVkySInYNvPNkGfp3LNPpR1lvC7RdN3LzKNPQPX2P1Tje1twfU30N56ERHZnpYO5xDL+not/fxcYosLmkSr92sBDj8YLtzwWVbJFhCmtoAkplLp8L1a9/TeRu/tW4VKXeMR1EUDTUNOXix1vx6VugdPoFS7R+5JEpBBVLyqVASkHoWbWmM44TdYIKfyZOyPCOfxm9+YRHHyG5MoTn5jEsXJb0yicH0qQK4/chyRA2rbMByi2MEQCuoVCCzAkUVlxyRU7XVViLv7cl9iBw9fSqx/dMULIvGsAw5BEAxp4MfVpR73tFBR63kJQh64A0mHbS61bqfakgjcg9gdEE5/eKgi5+2fa/ltfmukJ96qeFW9UudkRMTNz9RlOXx0JLEiQMgtdf9WICBPQJBe73SvqPSXcmjd4LxcVOo4nG+1HHy6VpF0AyKg3/zGJIqT35hEcfIbkyhOfmMSpWwadtAGHEwAIh5O8w3u4UciFA59yFTAIHfgOlNxqAPi3KelioC3Px9K7Fb5SmIREZ3bKjhlAyi3vVQx5vR36i78aDOW2CddvTevsnY96ohuw2//AO4j9fujWbLkfxzVus+HD9QBV/74fYll99/UL4Qy2OL8DM4ccXD3kcTe/QUc++mxhBaZXs0pOQFbulIpNzbwfGY4ZZndgFTSS1CZr9/8xiSKk9+YRHHyG5MoTn5jEqV1SS8dR+WNO5ieW4Hg0wSVKK4gRkLHhqa3gtvtEnoCvixUdDu9Hkis/1gFtoiI3oWKkvVWj718pd/58Uz7An4EjeqehLq5LkEMbSv4DeE+RERUofEK7i25PnvQnI8kqc4B9KM7VtEtO76jH97qNTfJ1sVG92A40/t451wF28fnKgJ3QPCj+0Axyhei6bh+ofuyA4mVzr2Ee+Y3vzGJ4uQ3JlGc/MYkipPfmERx8huTKCXX6WuM9GNSJXv070HDT8wclOoVjFQma2LbqUIbqpeGq5nDvwIzmCAzn3KjyM1aVe75TI99ulTL8Bc9XeNLUPYnUA8+hxiNfcbmjzTLOyIK2MMKPt+Be7sH+7Khf4VobBIo8zG91M/OtUY/JtcaayA/0H9cBgcXEuuctbO+72hKFcRoYk9Ts05iAI1nD0t9nqqu/jtGo8X95jcmUZz8xiSKk9+YRHHyG5MorRt4ElR7j00dMz4N1TJvoEqcJvGQVoXCCwh5G7ALV3DcCn4b5w2TYcq1fufVSo99CU0haarQEq6Z7gNdM4l71DthUbNVGe2lMBJ92FJ0rUBA3E5gr56/0A9PVdzbTXWyz26l4nFERFZAQ9gCGsfutbOgY5NYut/wjJHgR2J2UxPbg0KtvLcKFS/3wGLc7SlyAAABWElEQVQ967iBpzHmzzj5jUkUJ78xieLkNyZRShIm1iBMkNCBvxwgVjTVJ9O0EgJFLTo1HEfXR0IlNaOcgDD0aqs13hEROUzdmcK9uIRLXoLgR446oq3TER1+6NvkyTJ5qLvsBOr+b8M47gKep9kL/b7ufz+RWNbVG1bP27viipswOv1IXXF5n1ykCj07lBsk7lGvCupLQc0/IyL2weF3kkEM9qCC4/zmNyZRnPzGJIqT35hEcfIbkyjlsmVJ6BbEihIm8WDjwgbHEjUFxQkkbd185LRCMQ0cdXDcS3CHTaFBaUREB9ZIshSVDm9ajsQm6D60Pa5JLKT4GMyg9yu9Pw82etV7IM9eXKhbbftfWsa8g+k1mw001uywCHh4b6Hr+QGIknv6LHfQuddO3EPBD/aghPdvtyFf+hAfwRSgY7hne1BC7Te/MYni5DcmUZz8xiSKk9+YRPlfCkmBPlQETcsAAAAASUVORK5CYII=" y="-7061.643534"/>
</g>
<g id="matplotlib.axis_393">
<g id="xtick_589"/>
<g id="xtick_590"/>
<g id="xtick_591"/>
</g>
<g id="matplotlib.axis_394">
<g id="ytick_981"/>
<g id="ytick_982"/>
<g id="ytick_983"/>
<g id="ytick_984"/>
<g id="ytick_985"/>
<g id="text_50">
<!-- 179 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 7169.938534)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-57"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_198">
<g id="patch_199">
<path d="M 164.424375 7186.545298
L 286.714375 7186.545298
L 286.714375 7059.251771
L 164.424375 7059.251771
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_395">
<g id="xtick_592"/>
<g id="xtick_593"/>
<g id="xtick_594"/>
</g>
<g id="matplotlib.axis_396">
<g id="ytick_986"/>
<g id="ytick_987"/>
<g id="ytick_988"/>
<g id="ytick_989"/>
<g id="ytick_990"/>
</g>
</g>
<g id="axes_199">
<g id="patch_200">
<path d="M 299.674375 7186.545298
L 421.964375 7186.545298
L 421.964375 7059.251771
L 299.674375 7059.251771
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_397">
<g id="xtick_595"/>
<g id="xtick_596"/>
<g id="xtick_597"/>
</g>
<g id="matplotlib.axis_398">
<g id="ytick_991"/>
<g id="ytick_992"/>
<g id="ytick_993"/>
<g id="ytick_994"/>
<g id="ytick_995"/>
</g>
</g>
<g id="axes_200">
<g id="patch_201">
<path d="M 434.924375 7186.545298
L 557.214375 7186.545298
L 557.214375 7059.251771
L 434.924375 7059.251771
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_399">
<g id="xtick_598"/>
<g id="xtick_599"/>
<g id="xtick_600"/>
</g>
<g id="matplotlib.axis_400">
<g id="ytick_996"/>
<g id="ytick_997"/>
<g id="ytick_998"/>
<g id="ytick_999"/>
<g id="ytick_1000"/>
</g>
</g>
<g id="axes_201">
<g id="patch_202">
<path d="M 29.174375 7327.962958
L 151.464375 7327.962958
L 151.464375 7205.672958
L 29.174375 7205.672958
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pb47bde964c)">
<image height="122.4" id="image490a37af6a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHPJJREFUeJztncuPJFdWh09E3HxU1qtfHr8Yj/GIBRKM2CCNxIIF/zmCDWKDYKQRWGMLsD10u7u6qvIZGRHJwmYWdb4rTrl2c37f8iozI+JGnArpq/NoFoufn+wBbdM+XLKu9Wvztri1q/nKrb2cX7o1M7Or7sz/ZtO5tZO5U0Smk//c7nR0a+tx79b6aXBrHezDJZyzmdlH5cKtfdaeu7VXJ399BS5v1/jFHvbhAJ+7P/lreXM6uLXXw9of2MzeDxu3Np4mt7ZsZ27tsvj9OWv85wi6V7fD1q3dDzu3RvfPzKy1xq3N4LkltoPfs/sejj368yYaOBd6tk/wHJtxXC6K39vVbOHWLmf+vvhfE0KkQMEvRFIU/EIkRcEvRFIKSbLmERLiIW3jpQZJlx/WY4RFSVAMRqmdNzHCsfen0a1t4apbOMwRfm8EuUfHJTq4lkVFfJHII+FH4mwGwpbEKdGdQDSTfIa12r1q6HmENXrG5p2/viUItmhs0LlMsK8Uk7Xzicq96+JFvN78QiRFwS9EUhT8QiRFwS9EUgrJitG8hGhOMXFSQPhQJmDtsyRuJpBaJEX8WbOoomsmWUjHpb0xMzuQ3Gv82owEVlBo4vXhOfo1FH4N35dV5yXSEa6Pvk9ry8pxHnJqIUNz8t+l52aAvTZjyUbfn7XwLMJ3h8kfh57FqASc4P1b+26Bc1x0XkAuQNhyrAkhUqLgFyIpCn4hkqLgFyIphcQSZlCROAEBQXJvXhE+M8x2A8kC0m6gjLrJl1bupj70ORKDE2TU1bLV1o0v/6TrgyQ2m9M+4FE8JAFpbwqc97lxqe3Y+F/t4Iyo/HoF9/osKPzomvft3K3tWn9P6f6Z8fN01vnfpGeUsv7o2PRM1MSwOz9we1MlsZSuhaCY7qHMW29+IZKi4BciKQp+IZKi4BciKWVZvPwggYG9worPBDsDQUNiyIyz3Uiy0NIWsqC2E/Rcg35vlKVFjHB+tbLhATLg+tZLll3nZeNF6/eRZCHtV5QCm9hU7ksP8ouum8p3Se5dQw8/Uld0zYfW7+seMhBr94Uy21aw3yTTDiCGicf04XsK4+Ql4gH6B6KABCGqN78QSVHwC5EUBb8QSVHwC5GU8uHqmVukEkUqeaTST8rwq/ZXg3UqPR1h7QBDGtaDH8axGyEbDMQJDSWh/LfDWCnpBfGygay/defPkTLOzkFKRctlaY0y2Gr3hcTiHkq66dt0/2bB+0yZiXQtK5DKNcEW7eFHJcu0hpmgWF7+04Vf7VqoVLsffRxQXA0gTvXmFyIpCn4hkqLgFyIpCn4hkqLgFyIp5eXMj8/m2l+a+OJ9ONV912qbo40mKX2S0mmP8B8ASuUlm9qCzaZ6/qqJDVpgOkf6j8S6jf1XgMacW7t0S49JDT7CtdC9GuC+hqcUUa28gV2H4+J/iSrXhxYf7gF9jp4xOm869pPSe4N1+7Xj0PXRZCC9+YVIioJfiKQo+IVIioJfiKQUSn8kaYdTTp4wjtmsNmbbQ+KMZAylVD5FvOD0oIqLmabYFCASgw1cywl+Lzp9yKBfZnSUt5nZHoQv7TexM5DFwbHtJBrpXEhI05oZC1+Se9Hx7ti0FkZnR4k25TTjOIiK5hEkoN78QiRFwS9EUhT8QiRFwS9EUkpU5JDco/pyatZJ3zUzW9JngxmCM+gbQLKRhOZTJGBNaFK/AxKQtRr6h0Tl3ga+S9dMkqt2LbXpNxF6mvYE2ZPctyEmdvtgJqdZvCYfR6LDftOeUQ8LugdEdCS9WSVblcQw9KtQA08hxB9Q8AuRFAW/EElR8AuRFExNomaPZzB15QqaTJLEu+DD2HlFBLrzgb9R227l14pvmEmig5oeRqlJstL5a4lm+EXl3pFKo2GJJs2QWGqfMAHoh0NDuS2kQFJpNGW20T5sYMQ6jV2vietoBlw0w4/AJqHU8JSyaR9RDnyCfYyOAsdzDH1TCPFHh4JfiKQo+IVIioJfiKSUaxBnNCXlGci9KxB517R24r8xK5BDPUiNGWXptf68zbe4Q6Fy06/9canvWbB/nFklww/ETe37D4lmXtI5Rks/HwMfB34TbnW0hJY+twe5h/eqJsmC+xMlKnExSy+YMRjNDqzBAtJ/Tm9+IZKi4BciKQp+IZKi4BciKeXT7sItLuFvwjVIwOuTl1zXIPGejyxYZiBA1i3Ijs6fT9d4ATmDMdtD8RKJhmTg0AYooaz2KCT3FRQ31B+xg2smsUTnQ8d9jEQiWUXHppHaI4wwp3PEzEvqzQdyD/sgVkRq9B5gP8mgOD3Cc0Iy9Cllvj/8ZkxU4jUrw08I8X8o+IVIioJfiKQo+IVISnkGpboXkJF3DmtXQbl3DRLIzKxgGaWXX0cSWCAGj9hT0K9FJRBKKRBQZmZjQz3SYmW01AOOJFl0DQXiI0pHSbzhkBQSYrAPBe7pUzLvHjOllyCnPAblXrR/IF1L9LmryUvs4RcsRabf1JtfiKQo+IVIioJfiKQo+IVIStmCyKES2mWwCpL+mrDYs2Bxa/wvVA+yiTL3nlTSWfku9VI7BYUfyaqzztcnn0NZ9ar1n6OSbGJ38r3+zMzejzu3RqLrBNfcwN2KyjiSuNQLD78bfpri0i76ORqSwYM3YtK1JvGeIklJcurNL0RSFPxCJEXBL0RSFPxCJKV8M/k5r/t26dYmKKFtoW8dZbVR5p2ZGeXK3cAcjy309duCbLqFzDSa/EoCiiYJt2BJamWZ0em70SmvZyDynndnbu2jxq9Rb8UR9vB9RfiRPItOy6V9pIxDYrBYCTXtde2+oLQLXgsNd3lKL8RoqXVNXrLciwk/zDgMfVMI8UeHgl+IpCj4hUiKgl+IpJQ3w71bbIsXDtQfj7zEFiTZUPkTcwfKb0vSJ1iO2IMEnIEwuui80CQZ85iyzGimFcm9FQ1EAen6EqTrh+ZLsmlIyhHOjzI5zcyOMOHhVPzaDqYBE9GegDwkJTb4pJZFSCXG+DnI0qtlcz4kKiALCHJ6Hh4FXF50ErTe/EIkRcEvRFIU/EIkRcEvRFIU/EIkpWzHg1vctH6izQYafRLvYe2+kkb6bvJ142QlL8GGX8Ma/VfgGgz5vHjrujl5u07nUqu1HoJpn5T+egXX8hzWXsA9WEITVTqT4RFTn+fwTrhofLpxoQlJcPQe0mmjexutd8dx4ZXjULrxovi9bcef/h8g6ttAY9zpvwK1/zJ09B83AHsgxKapCyEyoOAXIikKfiGSouAXIimFxgvvJi/87lsvRKhpJWmX22mPB78ZfC8BSpVcBBtS0mjxFcidJazNYdz4nibX4BWaHYPC7wyu5SWk8n5s0MAT0nbBSWGvgz2kue4q10LTa0imYg8EkE38nPhjYBNN6tHwiJp6Svs977xMpbU9pC9T3X9NNv5kKmnXJTi5igQk7a3e/EIkRcEvRFIU/EIkRcEvRFLQpJFkWU8+E5BqpSn7isSJGWcyUVNQbAoJAmoebPZISXrU4JIgCWhmdsSJPf43CwkouL7nE2SIgUy7aaGRaePlzh6y7I6VbEW+Fg/2WYDr6+EdQ9KORPN2gOcOvluri7+ardzay9ml/xxkVNK0J5LX69Gv7UZ/LdQ4lKg1PKUMQR5BD5mXcGy9+YVIioJfiKQo+IVIioJfiKQUyoAiOUClv33j5ReVKNYysmYgaS6huSZl5BE9NimkklevrxY4WhrKLSuSbAciMDw+OTjt5whScgfncwsl1CT8as1ISeSRTCWi13IDnzuMsYw6ojaxhyYfvWz9lKNPIMuS9uG29QLxpvOxcQNicAMxRFSFXzgO/J4dQLrrzS9EUhT8QiRFwS9EUhT8QiSlkPShMt8eputEJ6fURMUKyiipfJeOQwJrB9N+SAPRFB8SfrTWV2UMZRd66FpIVL6F7EnKQvwe5N4NZWOCGDzjBE9bQq9Akl9R9rATOJo6OK563sHUI3iWzFj4kUC+hJLul5Bl+QXs2WBeFr7rfBbh687fK5pQRffKjJ+Tu5O/1+vBy8b7wffL1JtfiKQo+IVIioJfiKQo+IVISqHsO8qqwiEL1OsNhxWwWKLP9iBoorKJRAmW1UIvvBVILspqo/52ZmYF/o5S+S5dyzo4qnwPIpaEzz1kkmE2H2S1mVVGTsPnqJ8h3YMtZJcd4RkjubcqXuRdFH/eNHbdzOwMek9GuYbE1M+hxPjZ3K8dev/Mf9n4zMLXxV/zXWWs+LsWnokxls1312/dmt78QiRFwS9EUhT8QiRFwS9EUgqVUVLvMmr6T8LvMSW9JKFIDnbBwQR0HBqmQd+lSbIkJGuQJKOsP2IDJZg7yNwjkbeFbD4SPixXuVz2PWTAkTil/cZhHLC30XM867wAfl7O3doF9OAz42y+qEA+m/y1vDrzmXIf/Hzt1vq1P+7uW8oO9de3qk3jha//HjJiKUN3P6ikVwjxIwp+IZKi4BciKQp+IZKCGX4k8miNetTRXxMSELV1kkOUNRbtFUdyj857gKyq4RHTV+cglmY0rAKuheTezeAzsm5hbQ/DIUjY0n6tW56eHBWdlJH3FGgoBZXkXkNm4hV8zsxsCZbsAu7V1eSv5RKez9W53+/ZBWTJgvA7wLlQvmht96P9KFHEYn9LIURKFPxCJEXBL0RSFPxCJAWHdkT7q41TbDJtbTgErXfw92gJWUyUPUfTZUdYe4qnig7iMIsLwz2Ut96PPpOM+rAdIHMrSu2+0L2m56SAoKPP4XdButHE2SWU5J7B5140LPyuoTffBci9jyDZ8UXj5d5iBcNZev9797deSt7Cft1D9uq28kq+h+nLfUWmP4Qm9+rNL0RSFPxCJEXBL0RSFPxCJKWQCCCZRiJvAAFBGUe1qaPUd+0FlGu+gowuGqhxgCy9noRfEJJ7faW/GmXVkRokAbmnqbpQar0fvIAi6dpBSShJt6q8pFJtEFOYCUpXTe0DQSqSQMTMSbiWC+jLaMaDN57DLfwAeuFdncem6t793pcT/37jn+M19Ovbw2mvK8/YGp6xHno9YqZk8UJUb34hkqLgFyIpCn4hkqLgFyIpCn4hkoLpvWQLcVQyNNvEqSuV8ckflyu39ksYbfz56I+zAKlMaZE0/WQDawew1JQuTJN0zMzuYI3q9KlRKPZUqIxpfgil4lITVLqntcaqtfWH0H92+P86MejZoTWua2cgkxc/e4Tf3Oy9Id9+49ONv5lWfm3uH8YdnAv1d+hrI7qD/7miHggXM/8fM735hUiKgl+IpCj4hUiKgl+IpBQSQZSOS5KFZOESZMNns2s8+K9OPgXyr3c+zfLzl2/8cc69TNvd+2N/d3Ph1r6CEc+vOy9Z7hq/5s/kx88aTT6iCUKx+mu6ByTySAzOOxCkUBdfk4rREe3RJqqURozTleC4PYyl3sKEo9tKCjlkJduhIxnnv/89PJ938Lr8ZubP8d58ajA1Dl1CWvIRnjszswH2kUbDUwxezvx4cL35hUiKgl+IpCj4hUiKgl+IpJSo3KNMMmIFYulPGi/YzMx+vff16X/1N6/d2vJv/9x/+dUrv3Zz45Y+/KffurXnf+/lx28PPtvwm+L/Nr7reB+i04dI+OE0Fczc8/eKsuwo85JGXdeE3b6BzESQcUR02g/t13SK1c8TIwhbM7NN45/HJZzjHO41cQ+y8e3kJx9R5t4zGCNOjUdrfRboNwtcC8Wgmc9C1JtfiKQo+IVIioJfiKQo+IVISiE5RNlXtDZQOSJJrkom2Qwymea/fO7Wml//nVvrfvErtza9/sofY/Tn88HvvAT8/j+8BLw5eUHTPWLcD8k4koA9SCSSPjgNB45LEpcy/GhCTu2zdI4EnSPJwvXgJdlh8qKRR7bHMyfXcC1PGS1+gH3YTl5cU/bkoYtlMFLWnhkLP3pO6P6v4Cf15hciKQp+IZKi4BciKQp+IZKCGX4o94K959ajFznfdX7NzOzr1pfb/uV379xad/SZXw2UrdrgPzf9z/du7e23vlTzO8iA24IXWlRk0QoyybaQKben/nPBsd84XQmy/mis9QrKPGmtBgksGqdO3Ixbt7YbvSSjkl6SeyikK/3t9iDo6PskNGkiEYlFio1oGfOh9cflDL2a8KU16HsIcldvfiGSouAXIikKfiGSouAXIimFhAGJjmjW3x6ytN5NOzz4lzMv3t7+ixcTH//mn93aAGOoT9997daOX3rh97vNx27t35f+mjcwgryWrbgEcXoGEpDKZaODU+bm94YyNGn0+SWUk5KkNOMR2AUkEo1Jp6Em68mLWCpZ5n3w13fZ+WzMZ7BmxkIMMyonf1/3kLkXjQMSfiQ5OeOTRSyJXHrGZvAskqbWm1+IpCj4hUiKgl+IpCj4hUhKIfFC/fqivdmIDYgTM7NvO7/+5Wtf0vvqH//VrVGp7mnrM8n6N1683MLQhjcg4m5hym6NnqQPyMHotOPZKTZM5RwmIF+3XvhdgRgiYWfGvf3mcP/p29TjjrLiaB8KZSt2/rzpms8r8pLKYwcUYv58SHyTGMSBJmDYKEuSehk2MADGrDI4h8R3cMKz3vxCJEXBL0RSFPxCJEXBL0RSyhJK/SbIBiPhN9DgBezrx/3fXp98qe+/LZ65tU//wQusT/deAjZzf47vv4XefDB4g+TeXUVUEkcoKd1BtiOVnkblF5Xgvmj99X0Iwu8SBGINLI4Fh0QZkBu4ZhJ+JKVoH6Jlw7W+fJStOIPfHFvIyINngvoMkjQHL4ifewwUW7S30R6HevMLkRQFvxBJUfALkRQFvxBJKSSMzkEsUZYe9ag7gCShTCkzs7fQ2+03BUpPe5/19xcwaXcB/dC+PvnppF8v/OfuoNyS+r/VpA0NK9lHhRHIKirLpPLNDxq/X59N0MPv5I9xqPinPQxTuQOJRNl8G7hm6s1HJa+YAQf7eoDf60E+mpktYB+pxx32vaN+i8HsOey3h1mS8WzaaJYtDUnZQfzqzS9EUhT8QiRFwS9EUhT8QiSlvGi83KM+dXPIOMMySEht2p04U44GfHzV3Lm1CZLTvoOyziVM1X0NU1D/c9q4tTvoM0fUMs5ITJHoop5tmOEHGXkkpa6hr98nkFC5hLLTWygHNTN7A/u9b/33KZuPxFI0ww+HacAebuFeUX87M7PZyV/jnAbV4ERlfz7hclkQw1S6TZOSa2KP5CCdI2XUUv9AvfmFSIqCX4ikKPiFSIqCX4ikKPiFSEqhSTMLMrGwtgdTeWjANFYOTqmu745rf2wwmjcwoYWaNW5GaMw5+jMiQ0pmn4xt7RwpFZTSWqnZI46mpt+Dc6HK/RlI6ukR6b1bSrOl0dRBGx6F9pXM9W3jU8VrnMFzS+nZ9J+ZKNioFY5LqfQ12097QbafzpvW9OYXIikKfiGSouAXIikKfiGSUqKNFGcoMCAF9RGTfWhayRFGPJNEOlCtPZwj14NDY00QJ1RTXxNadOxorTZ9ju4BXct7mO7yX9ATYQFpru8hZdfM7AZq42kiEZ33giQwSFLab7rmaMrv/cBamb5/BpKNoHuN6d0gTuk+k/CjHg01jthLwt9/ksq0t3rzC5EUBb8QSVHwC5EUBb8QSSnhDDEQGEv4JEnAGiRjSEBSRtdTBB19F8+PputUsr5I8NCoc5I+KFiDNec09Wjf+PPu4FxoypCZ2XGKZRdizTpljEKtPTV1pf0meUXZarV7uh78/hxaL8midfV4n6kfA+zDkkaxw+/Vns4jXCPtGcUQ3Su9+YVIioJfiKQo+IVIioJfiKSUBckmmO4yA7lHMm0HGUskU2rQ2O8RBBaWN0KTURIvT5mcQhLPrD4iOnIcOscCx6Zrfg9NUG+qRdQxUHSFsxBjMpWPAftN9c4APTdmLMToOLNgc83omG367gU0y6WS+toe+jvNTWIpA5L2R29+IZKi4BciKQp+IZKi4BciKeWaJsNA1eoInqOFaTEbEn6VvnckfQ4gEU+UcQYSkDK/KLvsrPPihT4XzeYyi0+geQp0jD2UJ2PJMmUrVq4lmtlGWXrR6TzRrEYSZ/S5mhikjEPMQsRR3nT/Y9DvXQbF9xbK2s14/Hm05FnCTwjxBxT8QiRFwS9EUhT8QiSlXMDkBpIapCAGyHZaQSbgsiI6ZpCRRwdCcQZS8gTDJqIZftHxybURzeEy4WhZJsg0yqikYSMkAaOjwc3iWWzUgzE66IIEawtj1wm6pzSIw8zsWet/8xJENZU8j3APCPruBYj0S+ijuKc+gZX9J5lOmYn0fJMg15tfiKQo+IVIioJfiKQo+IVICloS+otA7qOAmCBZQYKmto6yotrV7P//LklFkk00LZWm/tYUEAmVAtJnN/l+hCTtCJKAlM1FaxMNyaiJPZKpcOw9TEB+1HEeQNIVBSkNEKkcA4epBOUe9S0kZvCcLOG45zQWGYJtXxGx5yA1n3crt3Yo/r5QH0y9+YVIioJfiKQo+IVIioJfiKSUA2TF0V8EUm5UfkvihPq/mXFpJpaTtrGee5TtRBNZLyHr66rxa/Ngrz8znmJMvG+9eHk9btwaicHahOAI+N1gBpsZSzaSe5T1R4KN7jNlB5IMJZHaP6IMdg/HoQEmlM1Jz/KFeYG8xD6BUAL9iHu6gN982Z25NdrbHq5Zb34hkqLgFyIpCn4hkqLgFyIpZR0UfpSDtmm8RNiCWBiCGXpmXGZKAoOyA8+Ll3bXxWdA/aw792sg/K6gBJPKMs3MnlMpMjjAr6F/YOn8b75r/OCNPcivvollB27Hg1urDbogOUgZfk+Bpu9iiXAbk4D7ibNIj5B5GS2DJpaQHXpol26thZ6CfXBCc1+JF7ovVJ78UefP5wKeW735hUiKgl+IpCj4hUiKgl+IpJR7kHYEZSLdgzh5O/lZoncwSdaMxQtmVQV77q0gc+8VlDz+wrwQ+eLohdHPBr83z3BWqtmy8599O/jzWcN5v4PprUPrpc/85L+7B+GHvf5okEMlKy4q91osofafI7mHx4XzJglY4JndQyafmdkIA1/uB5CpUPJaoBz8AmRaW7y0oyvGHnw4GIah7NIrkIi/GP3aF70y/IQQP6LgFyIpCn4hkqLgFyIpCn4hklLenGJ140eo3V7Dd2+GrVu7H71dNTPbDj7llKw0mX1qzHkFJvaj1tc7fz747/4ZnMuLM3/eyyWn0w6D/zt6fw92lxqhQipogXTMDtI+yRbTf0eopv4p/QFqv0nvE5qeTT0a6L8M0RHUtf9Q0MjwzeD/Y3OAZqSzLjYNpxv9Gh4XzDyNC6djmPHkqzns9w5S9teQQq43vxBJUfALkRQFvxBJUfALkZRCzSMJEn6byUuyDaTyrkGwmJntBy8Mo6OuO/i79Rzk3icnL90+PXphdDX311IKNK2kqStm1veQegvneISvk6qiNRJ0tF/UCJPSZCn11YwbcxI0iQeFWFhKxt5F0WfEjOVgdAqQjf67W/PPCaUvz1svEKNj4GsTrgboJdCBTf1vkKnbmT+O3vxCJEXBL0RSFPxCJEXBL0RSSq3W/iE0JvsATQ9pbHMP4qS2TuIlKoxeQl38n0KZ90uYmjNN0ERz7QXiHqbFmJltza+/Ln7tDhpKHmjyDew3NUKlpp50X44gvmjNrC4CH0JZeg0IqEUXG5Ney2x7CpSFGB0ZHn0+SaYuO399PQg/+hxJwBq4Z3D71vCbevMLkRQFvxBJUfALkRQFvxBJKSSHSIhESyspu6w2GYZESXTsM2W7vYBRyZ9BFuLVOWQm7vx33528QCSJZ2b2rvPnQ3LvBhpu7nA0NTSphP2mUd47aEZJJas1EUvCj54JugcLEFgk9y6KL7+mzDYq1aXj1rIS+5M/b8q0O8J9OUKD0+MAMhWmCtH5LEuwhJofMWvgWgqIanqlj7BnevMLkRQFvxBJUfALkRQFvxBJ+V8GrfyLPlRTvQAAAABJRU5ErkJggg==" y="-7205.562958"/>
</g>
<g id="matplotlib.axis_401">
<g id="xtick_601"/>
<g id="xtick_602"/>
<g id="xtick_603"/>
</g>
<g id="matplotlib.axis_402">
<g id="ytick_1001"/>
<g id="ytick_1002"/>
<g id="ytick_1003"/>
<g id="ytick_1004"/>
<g id="ytick_1005"/>
<g id="text_51">
<!-- 185 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 7310.521396)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-56"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-55"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_202">
<g id="patch_203">
<path d="M 164.424375 7330.464722
L 286.714375 7330.464722
L 286.714375 7203.171195
L 164.424375 7203.171195
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_403">
<g id="xtick_604"/>
<g id="xtick_605"/>
<g id="xtick_606"/>
</g>
<g id="matplotlib.axis_404">
<g id="ytick_1006"/>
<g id="ytick_1007"/>
<g id="ytick_1008"/>
<g id="ytick_1009"/>
<g id="ytick_1010"/>
</g>
</g>
<g id="axes_203">
<g id="patch_204">
<path d="M 299.674375 7330.464722
L 421.964375 7330.464722
L 421.964375 7203.171195
L 299.674375 7203.171195
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_405">
<g id="xtick_607"/>
<g id="xtick_608"/>
<g id="xtick_609"/>
</g>
<g id="matplotlib.axis_406">
<g id="ytick_1011"/>
<g id="ytick_1012"/>
<g id="ytick_1013"/>
<g id="ytick_1014"/>
<g id="ytick_1015"/>
</g>
</g>
<g id="axes_204">
<g id="patch_205">
<path d="M 434.924375 7330.464722
L 557.214375 7330.464722
L 557.214375 7203.171195
L 434.924375 7203.171195
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_407">
<g id="xtick_610"/>
<g id="xtick_611"/>
<g id="xtick_612"/>
</g>
<g id="matplotlib.axis_408">
<g id="ytick_1016"/>
<g id="ytick_1017"/>
<g id="ytick_1018"/>
<g id="ytick_1019"/>
<g id="ytick_1020"/>
</g>
</g>
<g id="axes_205">
<g id="patch_206">
<path d="M 29.174375 7471.882382
L 151.464375 7471.882382
L 151.464375 7349.592382
L 29.174375 7349.592382
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p46d960d9e5)">
<image height="122.4" id="imageb28a12670d" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGmBJREFUeJztnUmPJddxhSOHN9TUM+lu0pREmzQhywNsL7yxl/bOv9UrA/ZOG3tBCzQsGaBMCiTYavZY3V3VVW/OfM8LyVxUfBeIx+ymIMb5loHMl5k3b1QCp05EVHV7b2e/I6qqih1n/ri2blzs2uTQxd6aXnOxW+2xi40r/3u9xZdmUrX+fqqxi42q2sWWu97FzrdLFzvrFz62mbnYrPPnLrq1i637zsXMzLa7LcT8WtQD3h+9e/o9Om4H97IP0X3X9f69dFsf2wX3SXQfjxu/l8zMJu3IxQ4av8dORgcuRnve70QhRAqU/EIkRckvRFKU/EIkhZWF10xJYCEBZAibrRewFr0Xumb1ysW2tRdOahKqSvcM4detpEaFJRLn9hHJ6BmboBhHol1ULGxADEXBD9ZhW1gbfIdBEZGOw70cXNqmjj1fKV9IHDxsJy520njB76T2x+nLL0RSlPxCJEXJL0RSlPxCJOW1C34oYOwh7EXdVyT6bMB9Ne+8uNeCm2/X+N+j40iUMjNrdj6+qbxTrgJxiJyEGAPnHcXQobeH/EjvgMSq0lpcJSqmRUVAgtbBLC420tl03JBzhwrcJF7S+oxof+PvCSFSouQXIilKfiGSouQXIim/U4cfES0TJfqtl16olDXqGhvXfnmawt/LDZTlEgdQ+tuBZLQCt+IaYuRqJPFrH4cfvYMRuMtGtD4gDEavTQ42ErTo95b9Bn8zWoJLv0liIfG6xb2SeEnvn2KzrRe5O/hNffmFSIqSX4ikKPmFSIqSX4ikDBL8om6+kog3RBTBsk4QNUp96iKQ4FeChKnl1ouN02Dp8ALOnfdeyCHBh4TPfUDXGKwFlZNOG99njn6P3JNjEEPpuNXOi3vUy9DM7GLj+x7SntjHARmB9iftdxIaqXegmdnCQLyG36Q9Qe9AX34hkqLkFyIpSn4hkqLkFyIpYUWLSzBBRNjD7RQu3w06rciRtQ067+i+uxrcYXs45S4qLzaRi40EPxKgNiBUURlzVLwiN54Z3yMJeddHfkjKzfbIxY5heMlN6Cl3s/LXGMHanILg92l16mJm3MORBL+hg0AisEgdv27fQUk3iLvLoKtVX34hkqLkFyIpSn4hkqLkFyIpSn4hktJGLbrY1DE4YWVIjb4ZN0gkdTaq2FKN9xJcwKM63ghzqKX2KtFx1dGmjvQPl1JzTBoFfdROXewaTIa5U/v/ALxT+3Pf7/01/mTtX8Kh+Xf1KYygftr4/zKYmT2sXrhYfG09u11wglBwL+I+3sNqvOnBHgz7m9CXX4ikKPmFSIqSX4ikKPmFSEqL45jB9hltrhgdf7wPFYy52YHQQaB4AiFs9LiHGDNkLHZUJEU7dfC90PujppxmhTr92gt0xHLnRbtLsFjPoXafJNPDxlt5252/v7Vx34aoINrD1bcgksZHdMf2wz7iXpTovtOXX4ikKPmFSIqSX4ikKPmFSEqLQh4IfuMGprMMFPyiLii6nx7cdyuY2oLNGoMTbei4oQxqWkr3SMJStJ4/OP7azGwNQt55N3exee1ryS8bH5uBI28+9e7Ae/2xi33WQgPPle+dsA8s5H17MY4E255Glb+B8fVRR62+/EIkRckvRFKU/EIkRckvRFLatok5v2hiCx1HokRp5DAJWNFpMTghB5o1nq+9KLXqvGAUFQH3YZ/R5N+WaCkxTnYp3B+JiCSm0vPhhJ2tP5dGkF+AMPhF4918z0BonPVLFzMr772rREvEh+yJofthyChwNfAUQnyDkl+IpCj5hUiKkl+IpLQ0hpocdTSxhdyBJEBERRczFvLwHoPTgkioohHIKOQM1OuivRCjjqxoeXK0dLTU6w3Lk4OuQXpXdC7FaKT5Y1gbGlV+2bHghyPMYT+SyBnuwzegLPdNTLiKXkdffiGSouQXIilKfiGSouQXIiktDWggMW0Cgh+JO0RJOBkilAwZlICDSga4p0oMGWoypCcgQb9XFdcfRkEPKG+mZ6b7WVRe8KPrLmAEdUm8pPOHOPfiPfw8NfUEDPbQfBPoyy9EUpT8QiRFyS9EUpT8QiSlHUEJJjn3qFSTYiRylcSUDQxz6CBGos0aSlmppJfOJYGNnnkfgQ2nGINwE3UmElS+O6hkFYah/OY3Y2Iq9z2MHUcDSAgS8ig2RJA0K02hDjovg+tA4h69+1JvxWh/zOha6MsvRFKU/EIkRckvRFKU/EIkpaVSxiFEy1jNzGoQJjYg5myCZZlUvkmE+5ntUULJghH1I/TCIk7fpWvDUF1ah2hfv30cllFhabuNlQ5Hy1PxuvB8pWeJOuhomm9UYKNpvtGvKvZBLExP5kEgsXdAa6YvvxBJUfILkRQlvxBJUfILkZSWxBgq1Y06kUg4KYmK5PCjAQ80aTcKCj7kQgyKXyWhin6ThBuadkxOSRIGo45KEoFoXRfgiDQrDDWB9RniOIy6Golo6fZvrvOtL/OdQPlSKunFEvFdrFy6hzJtffmFSIqSX4ikKPmFSIqSX4iktCTQkEg2rrxQRTGi37FgR448GrJBwlK0XLYCxacJ/s3DdQDBzsxsUvseh0cwYfYQYlM4dwzi3kHlj5vCcWsQUp/3Cxd7ujl3MTOzF9tL/5tB92QUEqWGiICl8muSH2k/VQ24Pl+v+TVMqXckCcjNLlZCT8K+vvxCJEXJL0RSlPxCJEXJL0RSlPxCJKUdMqkkOtGmZPnEZp1RyyiEUNmH/wpEm5aSMn+9PfQXNrM/aI5d7G49dbE7O//fgmug2E7h+Vp4VSt4BY9qv66fgZp93s/9yRZX3bGHAXxPwtbp4H4iy+6w9p2lEe1xq3oE+g8HvJa9+ixwQ9hg49jwVYQQ3yuU/EIkRckvRFKU/EIkBe29JMSRPbBtuNHgVYqCX3DyCh1XmjZzFRKvRmDRvT7yQt6d1ot49+ojvM4fmxf3Plz54/6omrnY2297O+3kxNtp15d+vX/96IaLfTI6cLH71Dh04AhyWtsqOF6aBDZurBoT3QZPVwpOECLLLzbRDN5PtE+CmVlXxRqh4vh6iOnLL0RSlPxCJEXJL0RSlPxCJKUlYYJqt5fQADIq0JCAaFaYNhOcQEMNCUnUwOkscN8TqJW/VnmH3y04zszspPe/eQBC5eGRX8eT93wjzfEPvdjYny1dbDHzLr3DmRf8arDFldxqUbEq2qAU+ywE987rHku9z7WJ6EQpOg4nDQVr783izj+6dternl8I8VuU/EIkRckvRFKU/EIkBbtRkuBAE18IEndIgDCLC0tRoYMEFXoWEjSjAuKmcC/nYP16MIJJPLMTFxt/7u/xVuddf/3Si1Kz+djFLuFP+hJE11JTzi2IZySIkbh3Y+wdkFQajSJgUHSj+ysJfuxsizn8SBikNZv33sp5ufHi7LLzwi7ddylfKB4enY7vVAiREiW/EElR8guRFCW/EElBwY+EM5qkQ2ID9Q8rOfxIhIiWZrJYGBNPFiC8XDR+os157YWqCfT/MzNbw7UvQRCbw/jzl69uu9itT3ypLj3x163/vc9b/3yPNhcudtH5Zzbjkegkfh22fn1utF7wu96A4zDYExJdfy5Shs6PX9uzgT17ufPr/ax55WNLH5t3UPddmj4ULB2O5pW+/EIkRckvRFKU/EIkRckvRFJwaAe53UgEio5ZLrmvSk6mq7Dzi4QOKI+EUsaleYHmVe1LY8n1ReOvzcxOQBy8DrELGGv+aEyjl8FdVvl1PN35noBfwejtB8vnLvZqxUM76L2Qmy+6d3p4VyODcmAQU69BCfV1iE0KMiCtI0E7lNZ7Du//DAaxrBqfL+eNX290/RXu8XWjL78QSVHyC5EUJb8QSVHyC5GUlsQdEu1oSEa0b9rggQo0CAIuTfdD5cB0HDkYyQFXKi/eNFAyC+LQrPZiFYlS5CRb7Pw9voRJu6cr7yQ7W3lhkJ65BK3ZEs4/2/jr0PsnJ+BtmGr8pzvvDvyR18hsUthjG9D7lrDHLqDH4YvG77unqD37dSDhk9Zhn6m/UeGbjqN9qy+/EElR8guRFCW/EElR8guRFHb4kTAxYCouiXhm7KAjlxeJFWuD/nPxuQ3+1ODwhFLfu0UV688224JaBax3NDgFSpE3XpSkGIl7pWmwJLBGy7zx9+A9k+D3jnlH5N+tfS+8j/7ymYuBcdLMzGYPvcD6/NRf+/HaT2luoeL9EkRAgnpe0t4ZLIbD9xsnWMOr1pdfiKQo+YVIipJfiKQo+YVICsokJLCRMIGOIxIlQPAxMzto/cCJMfS4I+EMy22h7JjOLQmQVyH3VcnVSAJPDyWhBP0mTkruveBH/QiXXVzcI0j8rGAtStNkr0LP0sDeub3z7/QH75652NE//bm/yL138doHX33pYjd+7mN3fuGdiSdf33SxzrwL8QmUO9M7pfWKDq4xK4jpIM5Gc1VffiGSouQXIilKfiGSouQXIiko+EWnpZITrK29Q+9w5J1bZmYnrS/XPIKJrhsojaVy26ryAxBIBCRBBEt/QSRbV+zwIzbQjS1aYoyCH4h79HxRIW4foutDYirdD/X1I0ly28NevOmFuOav/xHONrOfeCGv/uA/Xez2h//tYkcf33ex9mM/YOXrxouA/0Ol2yBSk4hXgs6nHKT87WtN6RVC/BYlvxBJUfILkRQlvxBJUfILkRRW+0GBJFWSpricjLyCf3N8jBe/0/r4Ue0tv3Owzo4Ko7KvQso+NS1F5RrU+n3U2ej9oNoPKn5U2d+nRpzgRpMe6HkZfr7Z1v9n5mnrn+X0md8jbz165C+85nHj9e0/9MGP4JvX+P00Wfh7vPVL3xz1cOn3/CHs40nj/wNAe7H0/rCeH/4DQP9xI/TlFyIpSn4hkqLkFyIpSn4hktJGxT0SEY5G3tZ4d+qtlx+NvCXSzOxHUBs9Bmvis9YLXV9Ax8ZoDXV0NHj090rHRienkMATrf2O1oNHexiU7icqAkYboZI9+9etj32684LfBz/7wsXqH/8M7sZs94Of+NjcjzDfPXnoYqtfPHGxX56942IPD7wgTZZ0tOdCjKb9mMWb40ZFQH35hUiKkl+IpCj5hUiKkl+IpLRRcY/cSddHfsrJD9sbLvb3nT/OzOyv7NLFaqg7/lXnRZ/R5MTFliMvDC5gyg1NmiH3HFEcSx401UVFwOiochTnYGLLPo0ihxB1VM46P4nnfuebdX489qLw+z+95WJ/cePf8H7aH/+vi21fesHv/F8fu9hP73t34L+DuPcZ3Pd550enkwg4FNpPtHfUwFMI8Q1KfiGSouQXIilKfiGS0pK4R6W6NF1nCmWLJ5UXBu/0LJK9+4EXSkbX/bHjT71Q8mztnYSPGi8svoAmofPOl2qSIEZCXImooEZlsCTGNEHnJcHlyfHno7cVLROONihdwPSh07Uvl/0vKN2up2+52PN/9vvBzOy9f/HOvWdrvyf+Y3rPxT5p/P58uAKxcOPFPRI0oxOlSkQbgNbBBrz68guRFCW/EElR8guRFCW/EElpyblHgt8EJpBQH70NyEUvG/4bc3Hq3VsnFQglm1g54tT8cQcgSk4bHyPhhWIl4WsbdG+h0yo6MhwuPcJSTf97OG68MLabxEHSkNCZSA5GWDMSv17tvHAWfS+nUEpuZnaj8nvs1dS79L7snrnYo9VLF7vY+LLjqJCHo7P3GGlPREu16V3pyy9EUpT8QiRFyS9EUpT8QiSlJXFvXMdiJEysQfB73LBI9uXL6y52cuZdeg9AtDkdQ+koXLuBv28kkuGgA9DDSDgzM2ugjBZFlmAfNr5G7Dh6FuzBV/OzRMWqqIhI7kd0tkGIyq+pTPv51gvFZmbLyguxi12s9JtciPONd4fSM0fdoTWJe4VPcrOLlXRTD0CV9AohvkHJL0RSlPxCJEXJL0RSWhLtSByIsgEh50XN7rfPx+Aa3PnYMxAMH1ckBMHE06DwgoLWHmW+7NIjNx8MboDefOTSi7rBog6xUjnpeguONRC1aBjH2mLnolMSlhBLzmFgy6jwHaN1HMH6TKAUnRys9A5oT9DeoT0SHZBiFh8iswXxmUt/hRApUfILkRQlvxBJUfILkZQ26hAisYGEoUXtY6c7L86ZmUEFLnIOjqyzrf/NM3B5zcG5RfcdFblKoKACwhL2R4QS4xbEJhKgSBCjc4kVrKGZ2bz3LjZyu21hT5DARnJvtOchCtKw1n2xH2HsOm14sm2wP94eU5GjREXpCgS/ngTI13NbQojfN5T8QiRFyS9EUpT8QiSlJSGPRBISh0iMOet9j7OS6HIBrioSbhYgGF6AKDXfQoyOg6Ed0T5sZfccDVTwR9H5VC590vjBEsf1xMWOoEchud3WILud9VwGS89NpbUkNkUFtig89ZeEZhYvSXajO+yCvQL5GjHX35uArhMVBvXlFyIpSn4hkqLkFyIpSn4hktKSQLMLlmBGe7MtwWVnxk60DoZfLEFsJAESS0xBHCLxCksjqdwS3FNmhn9GqX8gCqxwHSpbvQ0i4F3ob+jPZJflRcXvBd8hrFnUFRkdVkGuOJzwC/up7dnVSH0K6Tq0R3FPfAdCXsn9SM69Co+N7TF9+YVIipJfiKQo+YVIipJfiKQo+YVISssTVsDqWMXsj3TuGmr8S5B1k5RmvMegkh49jq6x23GdNtaYk/JdmJJzFVKkT0DHf3frYy1c4gKaqJJqbmY267ztl/5DEm7MCUTr3VHth94CJdbQC4Is1jOwgW9A7Y82VqV/Cgy1/NLa0n/HontRX34hkqLkFyIpSn4hkqLkFyIpLQlsCGgV1OhzH7BvANlIg7X2UbEJbbtkQQVxh6brmLEQNKSJYwt/lw/BDn0DXt8aLnsBk3RebC7x2hcb35Nh1fn3EhWwaB2jY8mjtms6zsxsUXtxkAS/0vnu3ML7v0pUVCZK+ya6b8MThEJ3I4T43qHkFyIpSn4hkqLkFyIpLYlpUTFmBBNN9iE6njgaCwt5NOoahBwcf10QfOhYmtgTrWMnOhByzuAVPK28eHW/O/fnrmd4ncXGi2TRZpbRZ8FJUeQ2xf4J/vlIKDbjPXrY+kaoI2iiShN7oj0jKK+iomIJqufv+mAfCgl+Qoj/R8kvRFKU/EIkRckvRFKwpJcgoYvLYN/8FJd9GCTuoYgXL+klos0xz2vvsntQ+wlHryovLD3uvZD3YPncxWYbnthDwhS5xsi5R6OgcW1g27G4F4NGn5uZHY18g9N7k5sudq3xx+G7ghLhS5h8dNH590eTovYRAcOuVlhbajyrL78QSVHyC5EUJb8QSVHyC5GUNlqWOaScsOQOi5bgoqsOfzLoQhtQflssyww+Cwk8JLpSbzbquUfjvc83cxc7W3kRkFxoZvGxzzj/mn/QQeXg2B8PYm3jnXfXx4d46Y8O77nY39S3XOwa9Ga8hH6LL0BgPW28kPek8ev9tPYuSxIBS/lCTsJomTChL78QSVHyC5EUJb8QSVHyC5GUlgSVKOTcizoGzeJludFeetttsPSX3GpU8rjH0kQFUbo2CTnR0lFyIS47LwySuFcSXKNCbPQ43GJ0atCNSSW5d6fetWdm9rcg7v3Dyq/PBAbLPO79SPQn7djFHrbeeXnYeiF2AyIuiXul8mTKAxKqqRSZjtOXX4ikKPmFSIqSX4ikKPmFSEpL5ZZhISdI6fdwkADcT3TqKA5jAJGFYHEuDvakGzC4oYM+dXUP6wDPTNNlaeJwie9iT3AvQ/8sk8aLacdQpnunOcLrvNf537x768LFxhMv+I2f+zWbrLwIODJ/j5cgDH4FbkzaIyTsmsXLf6lvIa2tvvxCJEXJL0RSlPxCJEXJL0RS2iFCDpVg7nV+UNwLT8sFTatuYvcYdTqWSqBJTmvgbysNXiDo+ci5ReC67vGuolN1h0zpJXGWhCp65gn0MhzBBGMzsxVsk5dnXrQ7OvCuuq6He4Q3PSJ3J7zn5dZfg9x8JYcfCbmUg00TGzajL78QSVHyC5EUJb8QSVHyC5GUcA8/Oiw6jKM00AIn6EbFPYBEJLo2iUNRVxuVZZqx+wodWcGS56johoJPcLpwUbyMisDRit6gsIvDVCBGrrjLre+FZ2b2eevFs60du9gxzC+hXdfBbJDTxi/Ew52/n/PO91YkcY+EPTN2te7I/QrrU8O5+vILkRQlvxBJUfILkRQlvxBJaaNltUMouQi5rDMoYJG4B+IXDbU4aHy5Jf3eChxZi973fzMzm4PAQ2W5UZEUh58EBR8U0+D5ylNxY6IkHTXEMUp7kZ6Z3suzjS/TNTP7OazjrypwCMIgkCboilzA5N6H6zMXe7m+dDGa0FzqgxktO+fz/T3qyy9EUpT8QiRFyS9EUpT8QiRFyS9EUsCsyKprE7S/8nhh/hszplptaNhI9duk4tNxR7Wf7nIAx5G6/qr3ns+S9XVVcQ22u05QDafrUBPOHSjSpPbSfxled1NOs7KVO3Jt2jsbamYJodJYa7LURu+HoOcjGzfZdknZ7/pYU859oHe9xV4AQoiUKPmFSIqSX4ikKPmFSAo28IyKNgT9XgvWSTMetXzc+GksU7DjkpB3u/aNGW9X/txDqOefQ53+Y7CBloQltv16y2+0Vh6vExy6g2IaWYOH1vMPAJ8vqH3R/ZWm2dAzUr3867Yl0+/RvUT7NpSg60RFRH35hUiKkl+IpCj5hUiKkl+IpKDDjyCxgoSOtvZixRRce2ZmN0e+keLN5tDFjmov2t0AIe9982Lh+2C8m8J9n4Nj8MvW33czYjGGasxnHXSFNH9cWKALTvuJugNLdeNDGOTwI0UTtKu+gmaUhetGxcE34Xa8CvdZGCbuRRvwYt+O8JWFEN8rlPxCJEXJL0RSlPxCJCUs+EWhRpEnI++8MzN7uz1xsTu1F+2OK3+bd3Y+9mcrL2p8OH3lYuOxF3xmcy8gvr304uPh1N+zmVk3gSkyUBK86LwTcNP7GlUUd3YxcYjcc0PEor0ID/sJuuKCDtR9BD8SP78L9hmTPoSo41BffiGSouQXIilKfiGSouQXIin/BxgfUR6XC1sKAAAAAElFTkSuQmCC" y="-7349.482382"/>
</g>
<g id="matplotlib.axis_409">
<g id="xtick_613"/>
<g id="xtick_614"/>
<g id="xtick_615"/>
</g>
<g id="matplotlib.axis_410">
<g id="ytick_1021"/>
<g id="ytick_1022"/>
<g id="ytick_1023"/>
<g id="ytick_1024"/>
<g id="ytick_1025"/>
<g id="text_52">
<!-- 186 1833-10719 -->
<g style="fill:#262626;" transform="translate(15.789375 7454.44082)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-56"/>
<use x="111.230469" xlink:href="#ArialMT-54"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-55"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_206">
<g id="patch_207">
<path d="M 164.424375 7474.384146
L 286.714375 7474.384146
L 286.714375 7347.090619
L 164.424375 7347.090619
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_411">
<g id="xtick_616"/>
<g id="xtick_617"/>
<g id="xtick_618"/>
</g>
<g id="matplotlib.axis_412">
<g id="ytick_1026"/>
<g id="ytick_1027"/>
<g id="ytick_1028"/>
<g id="ytick_1029"/>
<g id="ytick_1030"/>
</g>
</g>
<g id="axes_207">
<g id="patch_208">
<path d="M 299.674375 7474.384146
L 421.964375 7474.384146
L 421.964375 7347.090619
L 299.674375 7347.090619
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_413">
<g id="xtick_619"/>
<g id="xtick_620"/>
<g id="xtick_621"/>
</g>
<g id="matplotlib.axis_414">
<g id="ytick_1031"/>
<g id="ytick_1032"/>
<g id="ytick_1033"/>
<g id="ytick_1034"/>
<g id="ytick_1035"/>
</g>
</g>
<g id="axes_208">
<g id="patch_209">
<path d="M 434.924375 7474.384146
L 557.214375 7474.384146
L 557.214375 7347.090619
L 434.924375 7347.090619
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_415">
<g id="xtick_622"/>
<g id="xtick_623"/>
<g id="xtick_624"/>
</g>
<g id="matplotlib.axis_416">
<g id="ytick_1036"/>
<g id="ytick_1037"/>
<g id="ytick_1038"/>
<g id="ytick_1039"/>
<g id="ytick_1040"/>
</g>
</g>
<g id="axes_209">
<g id="patch_210">
<path d="M 29.174375 7618.30357
L 151.464375 7618.30357
L 151.464375 7491.010042
L 29.174375 7491.010042
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_417">
<g id="xtick_625"/>
<g id="xtick_626"/>
<g id="xtick_627"/>
</g>
<g id="matplotlib.axis_418">
<g id="ytick_1041"/>
<g id="ytick_1042"/>
<g id="ytick_1043"/>
<g id="ytick_1044"/>
<g id="ytick_1045"/>
<g id="text_53">
<!-- 195 1833-20719 -->
<g style="fill:#262626;" transform="translate(15.789375 7598.360244)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-49"/>
<use x="55.615234" xlink:href="#ArialMT-57"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-55"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_210">
<g id="patch_211">
<path d="M 164.424375 7618.30357
L 286.714375 7618.30357
L 286.714375 7491.010042
L 164.424375 7491.010042
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_419">
<g id="xtick_628"/>
<g id="xtick_629"/>
<g id="xtick_630"/>
</g>
<g id="matplotlib.axis_420">
<g id="ytick_1046"/>
<g id="ytick_1047"/>
<g id="ytick_1048"/>
<g id="ytick_1049"/>
<g id="ytick_1050"/>
</g>
</g>
<g id="axes_211">
<g id="patch_212">
<path d="M 299.674375 7615.801806
L 421.964375 7615.801806
L 421.964375 7493.511806
L 299.674375 7493.511806
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pbbb526383a)">
<image height="122.4" id="image07810fd037" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHTpJREFUeJztnUmPZOlVhs+dIiLnzKrq6ip3l7uRwMayhRg2bNiwYcceseN38Evgn7BDiIU3BpnGGOi2aZp2u5xVlVPMce8NFra8yPN80kmnzYLzPstPN+KOJ670xBmqv/naX+7tHn/24qv7S/b0Lz52a82f/rlfe/Udt9b/6Htuzczsy7/6W7f21/NDt/bp9q3fT1W7taN66tZmVevWBhvd2nY/uLXN2Lu1vbnLZWZmlVW4fp+68tsd1RO3dlb5czmpOrfWwn53cH43+51bezeu8BiX49Z/J1yLFWw379dubbHza+veH8+498c97vl634euq5lZ1/j7fzI5cGsvZxdu7VXn107hHvTwTCzget+OG7d21S/c2vXOr5mZbeEeTGt/PE8mx27tw+7crfkIEkKkQMEvRFIU/EIkRcEvRFLan7ReVry7PHJrT1576bZ/68Xg+PSVW6um/vvMzJ5+2wujV9996tZeNzP8/H06kID/V5AIJClJAvIAJNK0atwand0I+/XajGmCktLMbAAZtxu9JO1hLSrtopDcKwnXGtZpDc8PJLDBvZrAnenN378J3NMJPQ+NF8BmZpPab3vYeDH8Xnvi1l5WXnLqzS9EUhT8QiRFwS9EUhT8QiSl/cx8ltcPd14YfPD9L9za0W/9q1sbO5AVOy/2zMzqYy9Pnu+9FDmu/HdSFlsX/C0bH5GNNzxAXjVwPFMQPDMQQSTjdiD36DpsQV6t9z47rCQG93COJL8o64/EGX1fFLoHNYjUCWTymZlNG8iKrP31pmOkrM8B7gFlWZJ8bvewBvee1krrxyDDzyHT9cL89dGbX4ikKPiFSIqCX4ikKPiFSEr7w+0bt3g2fenWnv3zC7f2B7Pvu7XZpc8ELDH/AQgjECooffYkgmKZX5RxRoJtoM8+ICuOpA9l7rHcI2nnBRSJvBWs9STsKIOtsC2Vk9LnSZxVcF+aGt47wdTEWesl3knnM9jMzI5aL8QoU+4Ayqq74L0i0Uyn0sLzUCpF/nVDx6M3vxBJUfALkRQFvxBJUfALkZT28+WlW6Qy0eHAS8Dr737g1r71yY1baxo2OZ/c+u/8bOr7nN0NPkOQSmgHKKOkLDtSLFR+22C5LGer0X7oO0lozqHf2wZk2mr0263hs9HMuxLU47DUu/A+KPeCootKbUkMHrY+g+2847Lxs9b3hOQsS79GmXJnUNLbwXFXcLlaEoMgSEm4mnEJNV3bK5CXh5DVqDe/EElR8AuRFAW/EElR8AuRlPZu60t6P9//zK1tQDa9mb7v1r7Vn7m1rucspi+mXuR9Nty6tWsYbEBiiUoeSe6USibvQzKGpFQJKglFaQdrJH1I2pGco+3oXDqQQCVILFEGHL1OKMsy2vOQym9n0OOO1szMDkF+nUKJOIm8M3h2jqAsl1ToCI9JA1mpdP/Wg38efr4eG6aC/Qg7v6Y3vxBJUfALkRQFvxBJUfALkRQFvxBJaWnCCv0DQAaR/gF4PfFjjWlSiZnZHEYWzwc/zpnMN6bOVv4Y+8p/lmw/WfxSKm8UurYrMLZUKx+14bRGdn0C1hxtfYER8lWHGv5VGOGawSsGm3qCIcfaezD7ZPXNzI7A4l+A7X9qfrtzUPZ0bddwbeitSqnd2GcBngczsw38C7AdYn0W6BnTm1+IpCj4hUiKgl+IpCj4hUhKO2IqqN9wvvUijlJGSUp0IG0eAosuvx1JpGj6K0HfV5KAJOhIspDwo/3gOTd+jRpPzmCNmkeWzoWEEaYWg2AlMYgjseG+UMo2pe2eNL5Z55OaG3i+qH0Dzxd7mBQ1+H1PKQ7gdbmEZ3ET7IlAfSAopdmMZSPdl3Xvn7FhVHqvEOIXKPiFSIqCX4ikKPiFSAqaOBZdMbFAjRlnLWdfUfYWrWGd9yOy9HCMdHA7aqJoFp9yQ1l/RPQ60IjmCxBiJGcX0PyztC1JqC4otQaargR18XR+1Jjzw/bUrX1U+UadZmavBn/cL3p/3CdwX7bwPC06/31zuA53MDVpB88TPceUwWhmtm3hOyHDj+4fiX29+YVIioJfiKQo+IVIioJfiKS0JHKiUuqxUMYSSZ+o/EKodBQgSULCrzRNJVpuSdeWMtsIFHHUtBQmF/WQjUejpc3MBvhOEnl7yOajCTs4yhu+j87laQPCD7L5Pu45K+7Vzu/7SUWi2h/Pm72f2HNX++1+ar40/cth7tZWIzTghGtTajA7rX1m4kMayvrPCiFSouAXIikKfiGSouAXIiktZd+RqKKsv7YB2dR4KUGiwowzmWawLQkQ7OEXzdzDo4lRKgcmkUdr+HlqewcSkDIGeYoPZWh6SLiamXU4UtvfF7oHKLCCJcJ0n+lYaPINld+amR3C3Z7U1FvRS+U3rT+e/6q83Pu892PpL3d+8hTdv2gPRjOesBSdukTfqTe/EElR8AuRFAW/EElR8AuRlPYAhB/JJsouI7l32PqsqMPGr5lx/zmSPtR/jiCpQSW9DWWrkXV7wMwOLKMk8RbMOKTSYRrmsIayXCrVpUwwPGcrlFDD51t4d1BPOt/9kaHjuYXBLpfwPD2HMmYzs6cg8sj4XsM47h+1Xkr+eLxza6+3Xvgten/WJDnpWpfGjUczXeleUxap3vxCJEXBL0RSFPxCJEXBL0RSWhIB0SEbJAspa6+U4UcCgybHNijyYuyhvDXar+83AclU3C5YqkkScFWB8AtK3NK20Xuwpd51cIyUCUjnfGt+YvSP4bi3IOfMzG6mXgQ+G/0zegOlup/awq1d7rzwWw5eSlI2H4HCrvCMRIUfSVcJPyHEL1HwC5EUBb8QSVHwC5GUlgZvkESgbD7KxuPSQRYYtE5iCcseSVbB8VCWXQUloSQBo9l4Zty7rgPZSGAvQ/o+ED4kcjhzD+5LQSxhP0PQexuQeyS/NiMPB7kPlmnDdFn6vne975lnZvYZZANeNH7Ax3Tv79XbYenWFnB+UVlM95l6aJLYMyuVPMfK3SnW9OYXIikKfiGSouAXIikKfiGS0q52XvhNW+jDB8KP+oeRrKC+fGZmB7A+g9JKKh2lIRRrEFADTIN9zKCD0rAQOm+SOdQLkaQdZUUet34i71HthdYJrE0LgyAI6gFI13YJsphkHA00oXOO9rOL9mo0M7vrfYbgVe3lIN0/Ep+UuYfimsqi4Xmg+zyDUnczswnFRvCasQQUQqREwS9EUhT8QiRFwS9EUlqUJ0EpRQLiFHqpPYGpqmZm55UXG8dBMXUDAuqa5BCIwR3sg86FEvTGPWdf7ZtYmTAJI7reJKCOGy/8LuB6n8J1ncDvfOmXfwfy7A62vq1ifeqofJf8XHjy8iPBicrBEtzHCFsqdz+Ce3pYEH7R6xMd0KE3vxBJUfALkRQFvxBJUfALkRQFvxBJabEBINSSYy0xGOmz2tvLDwu2/+ujN6KnIF1X8BP1BRzjFsz+tgLTDN83DaZ3RhtwmpltwCDfDT7ddDX4NFlKiT4CC3wEo7OP4G+KKdznUhV6Q/9SBOvGCTLk0Z4B0etdOhYy8VGi/4TRvunfGppQRWZ/8oBU7MegN78QSVHwC5EUBb8QSVHwC5GUdtJ4MRGt3afmgR38npxBc0Qzs4+2Xqi8t/fy69r88Wym/jvvIEV3A8KvI0EDkoy2o1HVJda13/cbEHlvzU+BIZmK9dxwPHTc1Bi1dCYj1dpD01M6HhJd29qLz+0Aac44SQnSabFe3S2ZWaFx5QOm5LjjQSkJ1xv3Eau9p7USpT4GEfTmFyIpCn4hkqLgFyIpCn4hktJSs87oKGDKgMJGj3Uplwzk4NQLv8nOf/6m91mD7zp/3EsQfiuoL5/A+R2CBKTtzFi8beDzW7gWi8ZPgcGsuEfIHRJ2xTwyOMcZ3CvKLjxt/TQcYlVB80+os/9NjE4nuUcZrLRGx4MZfiBDoxmR1EC1hISfEOLBKPiFSIqCX4ikKPiFSEpLU0QoEwmnl4Dcuxl9U8f/puaYZnY2PXZrs7UXRifm9zOBn61D+C2jjMOVeeFH2oRUU0mv0LZRcdPAMW7hnLcgKnvYRwfy8Rj2MS0c3gjrc8pYq2OTYSgT9Kby46+JaMPTh0AZdJTBSveFwOk8wXHaJB9LEi9aBk3b0XfqzS9EUhT8QiRFwS9EUhT8QiSljY6rJmFA45hvQDbgxBYzWzVe5rw58BLww9H3BWzBiSxB5JF0ozOOFlGSTDHj7LsNyBiSdixt6LOxqTIXUEL9kb9VdkRmz8wGuBhXDWRAwgSaBiQgPTsk8ja1P8h+jN3TUiZgdBQ4CTqauhONFyw7hnctbVcSflzyHJuQ1MOa3vxCJEXBL0RSFPxCJEXBL0RSWhIiUbFA8musHiD8Rl/WSRmCP2m8BHxSGGN8H5JDbbDHHY41LvR64+yrWFbkDuQXXTPaB5Xavur9MX7TFm5tOuH7crcFkdf7tRH2vYaekNdQ+kvP3Y7kHjx30bJas8Ko89YL5GMYNkO9EHd0PMXxJ78aD+nhR9eC5B4JVr35hUiKgl+IpCj4hUiKgl+IpHCtLcATa/12ONm0kLE0DDFZ0VOvwMaX/h49IiOLII1TyvAjaMtodhqWYIIkO4DMtCe9v4ZnZ16klljt/GNRw8ng9YE1un8oOWGNMvyo5HwG2YZmZhedl8Xvtydu7aye+uOB476DoTIbkLiPnfAchTJLoyXPevMLkRQFvxBJUfALkRQFvxBJCQu/3wQktSjLa2FeVlE/NJJplLlHmVsznIBL4oSlTROcbItTWeGzFQ7ZiP1WL2u/3c3cZ7BVBRF7O3pxetP677xq/OffmS/LXez9GmUwkvikazODKdIX3ZFbMzP7oDtzay8qP/DlBJ6nVeWPp9vDtR390JUePhulVJ78mKEtJBv15hciKQp+IZKi4BciKQp+IZLSklygrDgSL4+Fs+X8GpX+Dj1M7gVpQ9NSjxsvv07hZ3BS+awxkoVmZjMQQTRQA8UiHDdBgvQOsss+nXghNu+9EJsUMsFWnb/XlyD3vqq8yHsL92oJwo/OhQbINHBdD1ufjfekZeF3Ufltz8FzH8N+zmCO8TGsnULZ8AL6SW6o1BZyIheQRWgWH8YRFch68wuRFAW/EElR8AuRFAW/EElpqWRyD334UMaEhxA8rifZMPq1Ze+zqkh00OAFypQikXcCvedoAq6Z2SGsDyggYVIrfZbKmGFIylvoefgp1Fq/7ryUKp0LsQRZ9Q7k3u3e3xc6bgLFJxwiSVxaM+Meh1P40kMQYjNItHsGwo/u8y3E0JvaX8PXcL1WIFLNyqXx98EydpqyHPo2IcT/OxT8QiRFwS9EUhT8QiRFwS9EUtrt4NNDafoJpRY2UDeOk1N+9TJkMytMJYF/KeifBjKfNFqcRmfvHjCJhfZDv6w4DQn2Q41MKc353bB0a3Qu1P+g5PqjTU/XkFq8Ctbu072i6TpUh87/PMX7LHRBs/908PfqDJ67KaTy3kEK8X9MaZqRv16lJrHY6DXcrFPpvUKIX6DgFyIpCn4hkqLgFyIpKPxIspBgQ/ECErA0cpj2E+0bUBrJHCE6gpwmtmwKjRnXcI5zEF0kyejaUiPTHYglOu5VzfXg9ynJIroHdL0pvZu2I9nYNJB2C6nYxBFM1zkopPce7v2+KZX3CC7FBUwQejHzgvXgwEu7+cL3grjp/aSgzzp/HagRrRlLYJKp0X4cevMLkRQFvxBJUfALkRQFvxBJaUcQRiP4BspCI9nUgmApyTmSg1TTjZ8HL0iig6QkQTX+PTZX9ILl59v6z19BI8a7IVbvTuOq6XpTtmI0Q680AYY+30H23WnrJ99wc1Qv6AiSoXTO1BNhVmiCSrX7RKzjgFnT+ONpOogD2O5wF+sjUarbJ7lHEpAgOas3vxBJUfALkRQFvxBJUfALkZS2lH0XASeI0Bo0MzTjzD+Se1EJ2IHco89S6ShBAur6AdfrFkY330IJ7hIk4GaAKTfB8s0opWxKkqQdlKiSBDwHufde5SUgcVf5672Ee0BvrJLk3IA8m8PzuANf2JnPOKwXx25tsqCx8v7aXMGY89H8+T2kpLc0zjuynd78QiRFwS9EUhT8QiRFwS9EUtpp66VGVCxFSz9LWXYk6Kis86Dx5ZGHjRdLp7UXSye1/yxliJFkofHJJAHNzDawftN7uTfv/YSd5c4LPyrzLWXk3QfLb1Gk8m8/leCSJMVSXSzzhRJT2G8LpbYdfB9dh1K/xUUFE6ng81SSPULZ8TU8n3sQg4saxqlTr7/C80TQPcS+fnB+9HzrzS9EUhT8QiRFwS9EUhT8QiSlPe5i2VdRuFdYPJPsCETeeXvk1l62PtPq2+a3+721FyLPa8i8G720+WTq135Qe2FnZvbluMD1+5DIw/6BNDodpA1m6cFPejQj8ufrMAI7KPxIxq2DQzuoLJpEXlRylRgg+24C12dDmYCwHxpfvga5Rz0hSSpTb0szvgc40AaORxl+QohfouAXIikKfiGSouAXIint+cRLMsrSIqJ9/Uplh1RuO4NsvqeN7xX3DTt0a3+y9j3zvvOHr93a9HfP3dp4c+fWPv5Hf3wX82duzczsnzq/LYmX237l1lZ9bMgGQT0Ya8iUI0olvSSWDoKZkiR3SZLRs0PluzT1l6YQl3zfAo5xVXmRewRZevh9cDx3MD2Z+j9iCTsN2CgJ8mBp+xb6P9KzqDe/EElR8AuRFAW/EElR8AuRlPZ5d+YWaZAAQeKFBlDQYAkzzgbDclJYOwapdTrxmXvdS58x2Hz8NbdWD/5c3l9/6tZ+/x9u3ZqZ2ao/dWuLxk9lve2gpBd6+JG02cFEZSrVHEaQrnWs15sZ3wMSfkcgzujZofu8CU4wXsGzQ89YaXgF7ZvE2SGcH4m3NQg/GrBC1HBtJjBduFRqHR3GEp1CrTe/EElR8AuRFAW/EElR8AuRlPZF4zP8SCsMwVLNFnu48W8MSS0SWLSfWyi3vN14uTfesqC7TzXzpc3NE59ZeHrKJb3vv/Ulxu9BtuIzKEW+bn05MPb1gztT/+ozV4oCifooktw7JuEH95/KVul5ig6gILaFXnirwWff0XMX7XtIEpAEW3QgzQyudannZXTfpaEf99GbX4ikKPiFSIqCX4ikKPiFSEp7YF4uUN80UghUjkjZYSR3zMyGikSQX1tAyeRl4zOt/rP1wu+DH/i1Fx995dbqZ1DmO4dSzR2Xfo7gzjq4PgeQ0UUDSKaN3w/2rgO5Q8KIvu8QrpeZ2RmUUD+FgSjnIPyIW8iKo7cOPTvUz47EV0n40TVbQwk1bUeCjrL08BiDvSw3tb82pSnSlJkYlaS0b735hUiKgl+IpCj4hUiKgl+IpCj4hUgKakVKx6TafZpAQrb+QdNU4DupiePl3qfZ/hs00Ty89g03//jvLt3ak2/duLX1T/zxXd76fwXMzC5b/zs6r7yBHsjOYyNTGgUdSyOdNP62Hrfe1n8wuXBrZma/0/oeD1+HiUbH8BfHBv71+BJeMWt4TqhxLD1PFeQ0L0ZOiaUJSevBP0/UA6GpY1OOSunr96F/AGgyU19zbwL6F4fuPzV1JfTmFyIpCn4hkqLgFyIpCn4hktKSRCKRRzX1O1ijSSWbQoND+jzJCmrYeFV54UfyYzfxqapX18/d2jf/npuM3ueLllNav2z8cb/d+zRSkpcETS4i4UOpoEeNl3vPW99M9BuNbzpqZvZHW7+fr0OT0Qk0Bb0a/XEPU/99NyA5NzDWmhp9UlNPaoJqZrYBuddDs9Zo6jStkWCNSkCMP5CAZtyMNNrUkz8rhEiJgl+IpCj4hUiKgl+IpGCGH078CGf9gQQsTFOhdaxPLnz+PtS4cAV13j+FOvR/mXlRdQ6XZwQpZWb2zrxYugXhtw5Odzkg4QeS7ATk3rPajy9/VXvx+Z0d141/w3xD0WfP/Rryxjconez98Wyhl8PN6CXu7eDX7gY/5vxmt8TDofHnYbkHTWLpGaO1DrIDSQySsCM591io94be/EIkRcEvRFIU/EIkRcEvRFJayoqjNYLEYFQWmrF4QRlD+xlJvFDzT5/5RZLlNUxOOal9g0uaXGNWmmjk5R6dC48l93KIprucwzE+h7WXo/++s4HvS1XDuSz9vjeQCfjTvReQP4NMwLcg9y53d27tpvcijyQeNeU045JegsptcepOsMyXSrKpYSpNRypl7UVlOsUQSUm9+YVIioJfiKQo+IVIioJfiKS0LWb+BOUHlC2SlHgI0RLHHWTa7Sq/Fp34soEy0U3jhd2y9pl3ZjyanDIgKXuLhB9l801gjcc2e0hILgrzvb8afDZgN/cibw7y60cT/52fm5d2b/q5W7vewajy3gvb7eDvS6kMlqBngojKPZqGdAQ9E89an+lI05GmcJ/NzJbwjN5AtiNNLyIJqDe/EElR8AuRFAW/EElR8AuRlHYC0m4Cvwnd3q/1QQlY7WOCxYwzkUgC0nYoNYLCbw9ZbVS9S6WfZizoaN8kU0nkRXvAUc/EOQift7CPvuN9TFs4F9huDiWv/2Ne0H01eJFHmXs4TIOy1R5Q8ooZrHRfYC066pzk3nl75NZeQh/F92H0OcWfmdnPKn9t6f43o/+8evgJIX6Jgl+IpCj4hUiKgl+IpLRney81ttC7bg3Zc1swYvUD5F60JJj7psUmke5B+JCcI0gMlSBhRFNnSe7NoHyXBA0ORIEswoWR8IPJtqXrAKdN94Am7VKp7i1koZX6OvpDiUnl0muMBC0Kv+B+aEgK9Vt8D4Tfb1d+7eM+9iyaGXbcvKt8KXMLmYmE3vxCJEXBL0RSFPxCJEXBL0RS2mMQdGvIbFqRBIRMMqIk56IDEFACkiwkuRMUObRGYpD66JmxyMM+fFS+S+XAINN6uI4kzlZY5uuvTQNZm2bcc5FKgmma82L0AoruP8o0GGqBxFyvmfF5PybDrwPhdwg9Ey8qv/Zi9N/3wS5einwFx/MW9r0EiU9CU29+IZKi4BciKQp+IZKi4BciKe0SyjJjGo+hHn6lvn5bmFgbHUJAwxhou3CGGBAVg2bxnnuU9UcFquEyZtgOe7iBJSNhZ8b3gO4hSddoCS5eL5BpJKoGEF+lHn4kG+k6Ur8+GrxxDOW7pzAp+RDvvWd4SBYprHX0fJPcw6xGIURKFPxCJEXBL0RSFPxCJKX91Hy55RJEHGVu0dpy8H3GaM3MbBPs2YZrY2w7EnTRTMDStNQoJMlIvMXLd2FYRbA0lvaxg/tsZraG4RCP6Y9IYOYdlV+D3GtBnVHmnRmfI8lBOhf6zgMY2nIImZwk4nZwaW4a/3yuCpfwLZTV3+z9vZrvYWIxWGW9+YVIioJfiKQo+IVIioJfiKQo+IVISvvv20u3SGm30TVKDaWRymZsYsniR2v3ibqJ2eeo2afUUDOzHpqZ0llzXTxcM7reYPvpekenGdE+St9J15v+SSFDjv+4BJu3EjgdqTBuPDqOm4imd0f/4djA+V3DcV/VnHb9GqYhXQUbplKas978QiRFwS9EUhT8QiRFwS9EUtrX62u3+JgUW5I2pVprlHvBSTwEiZehip0LSrdgg1IzswF+R1GywXduIJ2WZBxdRxRnQeFXui/UK4Hq3an+vg2KvOgzFpVuxR4NsEznFx37HW0w28PaBnpnUMrvO0jjNTO7gXT6+eCF313vhR89T3rzC5EUBb8QSVHwC5EUBb8QSWlXvZcIKGgekXlHnzVj8RLN8opmVRF0ziSMKNNtWpjYQ58ngUVyj/oaROv0o5mO0SaoZuX7dZ8Ksicfc18eQ0n4YVNXyvoLXkeMDRJ+8H3boBikGn0zszvqnzH6rL/14LdbwzOmN78QSVHwC5EUBb8QSVHwC5GUloQISaTHyL2SWHpMNl9UDO5Gv90SfApdhylMbKEpLmbcaDJaRovik5qMPqI8Fe9pQXJhpl3wPREtoS3t+9cNHQ9dC1wLjoanc+kxmw+y/uD7VoV4ocaq0VJ7Kp/Xm1+IpCj4hUiKgl+IpCj4hUjK/wKYcO0fyFRVpgAAAABJRU5ErkJggg==" y="-7493.401806"/>
</g>
<g id="matplotlib.axis_421">
<g id="xtick_631"/>
<g id="xtick_632"/>
<g id="xtick_633"/>
</g>
<g id="matplotlib.axis_422">
<g id="ytick_1051"/>
<g id="ytick_1052"/>
<g id="ytick_1053"/>
<g id="ytick_1054"/>
<g id="ytick_1055"/>
</g>
</g>
<g id="axes_212">
<g id="patch_213">
<path d="M 434.924375 7615.801806
L 557.214375 7615.801806
L 557.214375 7493.511806
L 434.924375 7493.511806
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p451e540040)">
<image height="122.4" id="image1d05f4bbf3" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGxZJREFUeJztnU2vJFdShiMzT33cul/t7rbHLUZtEDDeDIIdC3awHLHl9/ED+AFIbJCQEGsWSEgIm8GaabfdH/d23frOTBajmcWN56BI13jT8T7LUFZlnpMZldJbb0Q0F8svRntE17aPQzZrOxdbdLNQbN4WFzMzK43/Tjr2op272E23dLHn7YWLLc2f49WwcbHvTmsX2w9HFzuMJxczMzsOvYu1TeNii9bvzxWshdY8h/3qzJ+jNP7+ncbBxdbDwcXMzD70W39sv3OxzWnvYrQPxADX00NsGN3jiYyV4wbz8X7w5yHomV8Wf18uIFZ75t21wJpPlT08jj5Ox1KM1uyfEiFECpT8QiRFyS9EUpT8QiSlkLjXgWBUQPwgUYNiJOzVOIGosa0IU48h8eSqXYQ+S6IbraV2LfvGi4MkVuGeNT42g3vQgrgXhT5L99nMrIU4HduAoEmMILpFIdE0KgKa1YXAyHkoN+bd7/+Zf0zfVARJWAqtj8Q9yg29+YVIipJfiKQo+YVIipJfiKQUEoJI/GjgOBJ86Lia4EMixLGPOcTWjXec3YHwQkIexcgpNwPRZlcR3WjdJNotGu/wuwDX3wLOTUIXOdjIzTdFcqNngtZXEwzduYOiG52DaOGwmmePvpOumgRtcquuOi8gX3Te4Ud7g6LbGBc0D+bdpfSdUaek3vxCJEXJL0RSlPxCJEXJL0RSyjkurajY0Ff0HiyZ7b2oEXWIkWhDjkGCSmh7kJGmuNVI9FmCuHcJIiCJhQfza9nB+ui6SfChe1UjKgKTK24c/LlJBKRzEA3sTU1U7MbY+43Kcm9mKxe7LT5GwjAJsVSS2w5+zccm9syaVURgiOF+h88ihPioUPILkRQlvxBJUfILkZSCQgkIL1g6SA69wQt2JH6YsbiHnz+jjxuV2u5bHyNxjq67JiyRK47KOpdQvrsM9uY7kpAXFWLpuKovztPBe4L27KyyY/o+KrWdUF5Mx1IJ7g0IeU863xOS7imJwMegmHoCca/qiA2W6lJ/REJvfiGSouQXIilKfiGSouQXIikFxTgQFhqoo0QRMChKmcXdctGS0Cm93SJgaWtNWILfUS55jp2HVhJ2WQaPO3e/SExDMY5WDSES98i1iUIqlN+acX/ESyjpJnGPhFiS0si5F3VZHkDg3vdekDZjMZxEQDn8hBD/L0p+IZKi5BciKUp+IZKi5BciKQVH94LCSpCazWpvxa4Iimi0UWhUGZ7RNJXg+qYQtdnuYcT3w8jq7mO4dj9Wz30u0b4PBNX403OH95kaowb/ATDjkegLeCbITk3KfvTfFbL37mDa07b3sV1F7ac9i/4TRujNL0RSlPxCJEXJL0RSlPxCJMUrH8bCC40mJjGFxJgpjSLR8gsfJxGJLJ44TQV+83jyjRfYTgM3VyTxktb9Hj5L4hA18CTwqOC0mFI5B62FJsuQ6Io1+XT/4f7x9CgYFw/iHjXRrB1bYNdoLVinD3tzgOdkByLuDhrWcv8KzpeaTT4CrUVvfiGSouQXIilKfiGSouQXIimFBDoU90BMuyx+XDGJaVTvbMYiFI59hhA1YVyCuFcTgh4TFfdqa2G8yEIuLxJ4SEylaT9zFLS8eNVD7FRp4ElTbk5BNyfFRpqkBHsbdXLSOWi/zMxWNCEJpjNh7X50JDpMUopC31dzaJKbj4S8qOtPb34hkqLkFyIpSn4hkqLkFyIphZxyVPJKAhs1RyRHVW1MclRkIyGISnWjU3cOUFYbHTc+ZUQ30VMTRwOXF4y1prU0rRddSQREIbWylAE+T/eKxF0SkHFEdxMcuw7XQuPUb6App5nZbeP35xZGos/JFUnPDjzzO/PXcwHnIAcjNfDcNV4U/jHQm1+IpCj5hUiKkl+IpCj5hUgKlvSGRwGTAEW99SzeX60psdLKKWWdj6G1kKD1Y/TCi07dOYJrjK6RPrsCQYxEQJykY+yqw+lD5L4LjvIeQPCj8+I4bRD3Pmv9iG0zs6cgvF2PJEr7z1InvSPdP1jLDTlQQSwkx+im38OZubcf3cNoz0S9+YVIipJfiKQo+YVIipJfiKSUIznqQESgscEkxpCLqTZQYdV59xXFqESRxKboyPCocEaCH4lSNejzfJ5Yj8PDAOXSLQiDnY+twAlYE0ijZaJ0r0nwo+eEnjHaW3TzwVpuQEwzY3FviSXPHurXR+IevUFXsLdH8+LjDYwGf1MpT963seEueK+ot2Lo24QQHx1KfiGSouQXIilKfiGSUlAkI8cZCINRx9Gq49+YFbivSByM/kJRCeYGeuZRCW2UKa6/qJOwNggkdj3g3Ar2vZtSnhwdGEHl4OTwrInAkeNIHt1WeivSXtzBcXcwZOMeYh0ML7mG53gJTy3tN00HJoHUjHtr0vrC4jWeRQjx0aPkFyIpSn4hkqLkFyIphZxyBIkVJDZNEZFIHKTptDRVldxpdG46B01GZREwvpbouqMCa3TwAlEG6MEIDjgq/TSrDM+AfRypzLdSJhz5PhIV9yC6ve03LratuN/o2dlDD8f7fue/E8RiKkN/Vi5d7JPWlx3Tmoma4EeDc0jIjfaj1JtfiKQo+YVIipJfiKQo+YVISiERAnu4wXHY142+ryJ0kFgxBzfYNZR1XsJx5JZagONs23ohh8SdfoLmxiWq/jhaM302OjCkAcdZdLpsDRTjYC107mi59Dll1evGi3M4lKQCDcogEZhYwWRq6pl4iYNBYn0naxOHD62/Rlo3rY9skXrzC5EUJb8QSVHyC5EUJb8QSSmLAoMzqMwQyglxcm8wZsZDDJ5Af7ZPGy+oPAcX2wKu+zWcY915N9gaHF40WOJcGlABSYzD4R4weCHqqCNqImATdSvCcSTkbXsvplIZc9SZNsURGe31SMdFew+icA1C3hJE6iM8n5eQA2bcm7E24OMxcvgJIX6Hkl+IpCj5hUiKkl+IpCj5hUhKIbsiqZfUSHEJNkSyJpKqb2Z2A7bIn4Cy/4e9//znR69ezkDRXMz9df8vqKnfgrJLyvWUsdY0vYag/SaLbd+C2n9Gs87opKBzwYawwUamFKNmsvRPiBn3LKD9QXswhM5R9qmp5xE+e1Gx924H/4xuLfZPyv7k/+HSm1+IpCj5hUiKkl+IpCj5hUhKuSq+0SA31ozVHdNI5UuImZmtQBS5hZHKL0Dce2Hejkta3F3vRyDPSQQK/g7WGnV2sBbaHxLoaMoNCUskQBIkztI9rdb44xSgmAg8giWabLJo24Wi83Psy2YsBLbUaIFCcK8oD0jQJnGvo8ao0BNhSv8LtIEHJ27pzS9EUpT8QiRFyS9EUpT8QiSloChF9fwgaqxI8KPGhSCG1diDgHFEFxs51vxxB5w+45nSAJLAZqZR1x/oOySSdWPsGkkwik7hmXIsrWUEQYyEQdrvGQifxJSpUFS7T0InOTTpumdwXxbwfPPobBDnyHlZWV+0wSmJnLQPevMLkRQlvxBJUfILkRQlvxBJKSjGwG8Cle+SCEgjtsnZZGZ2AmHjQ+OdSK+hyejVwZflDiBKraGaeAbrIxciTfaJuuzMKuO4m1hDSgJFNyoHDpYI14QlLP8lJxmNgQGiJbS0N1SSO4LARsKXWfwaac8uOv9MXEM5OD3zJO4d4Vr2VNpcecZoLdFnh0VcIURKlPxCJEXJL0RSlPxCJKUsQLRDgSZYWknyQ02MAUOebUDs+GXnD7xbxtxgG/PfV0D8eNr60t+++OvewChvs/rEmMfQKGjqZ0eiG4mzUfccMdSEpeBEnIHGjQfdgdFS3ei+kqPuN5+PuR2pl+Xn8ycu9pPu0n826GDdQ3bsRv88UMyMR2/Tc4L9JEE41ZtfiKQo+YVIipJfiKQo+YVISqGBAwQJCyRU4bjpyjnIBbWB414NW39uEE/IuXcNzr05lMaSS+sG3Fy1/SKRbDP4QQkHEHPoszwcwouz1DORoPPWSmOjZbDU64/codHBIgSJxVERsAaVDn+2uHWxl921i92SQA7i5RH2awbPHa2E8sosLsRG91tvfiGSouQXIilKfiGSouQXIimFnFanYOkgi0A+tK38xpDgtAORbDPsXYyGEFAJ5tNy5WIkAhLHoKBlZlaorLP169uPMC0VBBrq4UfiHk10pZLQA92qCcJZtC8g9y0E11/FkfeY6FCKmos06uZ7UW5c7An0o7wgWyrAImDMOVsr043mIN1X9fATQvwOJb8QSVHyC5EUJb8QSSkHEIfIYUQiEsWi01fNWLTbkysOShkJup7otFsSPum6p0xQxX2ENeP3we8yuQvJ1UiTcn8MzinVPaektybuEXRfSPB70oCYCuLeLLw+D/e3jPVbNIuLn9GY3vxCJEXJL0RSlPxCJEXJL0RSyg4cZ+gQA9GNYiQs1IYQ0OdJEKOpo+QQI6Fk3ez893UxIa821CIK7UVUvOxbEk5jU16jTrDa+nCKbVDoIqLDRiiGPQHJWVi5vnkHU3XBFbkkgRW+kwQ/MHLaAJczQknvJZQIU19Gs7hIGp3cqze/EElR8guRFCW/EElR8guRlEJDJKjfGwlV5NAbQGyq9SQjcY9i2McNxA+6xq73QzaiAzGIWt87Iuq0Imgtu8aLsyOoTee4vsxqa4yJTVFxj0S3UxdzjJLwVSsRptLoqHh5BQLdFWzZ5eD3awnP7B72YTbzw2IeCovCOxgYs4PnGwVRTekVQvwWJb8QSVHyC5EUJb8QSVHyC5GUQg0zyY5Lyj4dF20eWIuHJ7SAeknH0T8NDXkv4Wcwaqc0i1tOsW9A0Aa8aXwj0+gkHrRNB/95MDODKenhyTDRGF03PQ/02dpa2mCfBeLne7+3L68+uNjTFw8utvgUnsX3/hx/8B+fudh26ZvOmpndF3//H3p4Jsh2L3uvEOK3KPmFSIqSX4ikKPmFSEqhhpnn2kOjRBsxdm2w8WFw7DMJg7QWsvzSeGezyiQfEMlwRHcfE/xIEAs3wpxgS47W1dOaUdwLvmNoBDnZc6Ojqs1YlMZnHvbnz//4Wxe7/cVPXax5+Rf+xDNvX1589ZWL/cn9Ny72xesX/vvM7OvWW4Hfd74ZaTSn9eYXIilKfiGSouQXIilKfiGSUva9FweiY3+jTJmwQk65AiIbxaLTT0i8Cl9Lpe6fxCqa+ENOKwInJPUxZ1oU2i8zrrUPN+GE90nU/RgVEIkpPSNI/Ho1bF3sm69vXez6129crHv21J947icAjQ/+HA30Y7jpOV9uQERcgeC37n3T2lPr90FvfiGSouQXIilKfiGSouQXIimFSnWJaFNAYpxUOgrNHjtwS5EoFbyeaJkoiXvVaSp0btBtcJoOTTkKClVRIZauj9xztXh04s/vu/kngVOhKs/x/gQj3xvvnvzq8L2L/f3FFy721/+wcrE/+6f/dLHbz7241+/9M/bdq2sXq+3CNYjKV60X/O4gN/bQ/FVvfiGSouQXIilKfiGSouQXIimFymWjrrjwWOvKTwyKbODcuypLF7vufHkjXSM55bi8EcYxg/A1qwh+0ZJnEljJnRYV/Ei8JOGT3HO1Ed3RMest9EJs26CbD64x6izFEfI9T7mJCtrf7e5d7F8bX277av7Mxf5094mP/ddzF/v0BP0k4Vr6wpIfTRC6bryTkFx/W5rsg2cRQnz0KPmFSIqSX4ikKPmFSEohAYuEMxZtgj3zJvSPu+i8gPGseBfU8847rWZwPVvombenYSM0tnvCb+Nm9A4q6qVG54n2FIyWRvMI65iwWzs39RTEtoVj8DmBpZDwiT0PJzgdow5IKm1/d1i72NewZ/uZv+7dzD+zL8GpegN6JBgBzcygQJyf+QU4Aan3pN78QiRFyS9EUpT8QiRFyS9EUgoKQWdMX6WS15owSMded97N99POiydfmD9uBWLTpvGCz7oFQQvkFBLYNlZxjIEaswGHYHR/cHAGiZIg5JC4E3VomlWmHYNTDiftBsVL6m+4AxfaDoS4aB/EKZCjklxxNBV33fnj7lovVL6Be78GN98GpT2zb82f5+3g+/VtBn8c3T+9+YVIipJfiKQo+YVIipJfiKSUaN87co2ReHXReofeEnqK/eZYH38Gk0h/Zj725cELS1cgaqyhZPld54W4e/gZJLHwXVMZDgHDF8hdeOxijrUoVHaMQhyIhVPOGx28Ee3rSM69LQpV/jjqeTgFXDeESAQk1+YO3J0bWN8buC9HOPHb0e+Dmdn3/YOLfTj5XoEkStJ1680vRFKU/EIkRckvRFKU/EIkpXD5ZyxG5cA08IGEPTOzm8b3GvscYl/uvVj15fyDizUg0L3derGwNy9KUjc16kd3rPxePpjfi8vGr3sHguix++HTd8nNR5wjKpqxuEv3mqYV0zMWLRumGPZBrPTqi5b/jvDs0HduT16M2xQvsL1rvfNuDYMzHkDkXINrz8xsffJxEvKi/R/15hciKUp+IZKi5BciKUp+IZJSyA0WLemNlonSwAgz7j92DYMJXoDj6ZPnGxdb33mxcA1C3PsOyijhEo8Teg92NPQDS55jvfSi/RFJTCO4RJg/S/efhDyalEzHUflutLceDu0AQWuK6y/aozJ67g046t40vv8fDSUhQZNEvNqxWC4dLHnWm1+IpCj5hUiKkl+IpCj5hUiKkl+IpBSqtT9HxSdFk9ReM7MTWQ6D9eDbtb/uVx8uXey/5159fg0NPEnZp1/GI9hAzcx6alwJ37mjenCIkYpLVt7ovwJIZavpXlOjULr/1DeAJvEQ/M9T7F+mGuf0IaAYrY+m/dybr7MncNw4TUcyVvHpenC6FvS10JtfiKQo+YVIipJfiKQo+YVISlnCSOyaHfeHcqgIPntohnkHsW+gxv/Dey/k/c/Mx37dxs5B03k6FHyYPYiaNAqcrJsk8ESFqui0H7qnNbEwahkmsYnESxK1SASm65lDs1Vq6nnq+RmbMh7efZZEXBDdqO6/wHNHTBk3TpAQS7brC8hzvfmFSIqSX4ikKPmFSIqSX4iklJvWj7qOusbQnYQiFzuW7iH2DdTfL+YrF7sd/XGbxosnFCM3HjkTj9TosSIgkZsvKjZFXY342eAkpRU0Dr1qqJGp2RJq8g8wmvx97xtK3g2+zwIJmlFnGq1vyqQgbNZJ94qeCbh9Azg8Cwh+9H3kVsRcq6QfHXtVfP7edD5fLuH+680vRFKU/EIkRckvRFKU/EIkpTwBwY+kExK0tnAkCn4wwtjMbAfTT3atP3bd+dgzuO5LEAupsSatj4qOaXxyTcKj/SFXHTkqqeSVxNTomO0lnPempelIfpqRmdkT84LfHoSuX8JOPgwwHtr8/SNHJUEiGbnaaqIpiXbR0lgS7To4N32WrnvZQfl80E1pZrbq/D18Xq5c7AaEXJzCFT6zEOKjQskvRFKU/EIkRckvRFJKVG44gfi1G71zi0o6az3JqLz1/uR7n71vH1zsdecFPxI/SBicwW8eiXuHKVNgIEYTe5YwtnsPImffx0pH6ed7BQLUHMTQa3ACmpndDv5Ld/Cdn0Cp9X3nRcSoUEluPuoxOaVv4ebkBcgBBOghOOWGwFJkGF9+Cc8sTTiaVe7LFbj0noCQSyL3DgRkvfmFSIqSX4ikKPmFSIqSX4iklAcQP8ittgdxbzN4h94BjqsKfjDsgNxu48lfz7r15aT3J19O+m4GDigQAaNltSScmbG4Ry42dloFh0OAQEr97KiHG4mz60pvRSqP7cHhR6XRFyBoHmG/a4NcIuBocBDYzHhYBXHs/Zrp/i2KP/cM+gzS9ZB4SaW2VFJtZnYBcRL3DrC3lOd68wuRFCW/EElR8guRFCW/EEkpaxDtoiWmOIxhgiuOoHLLAb7z0IO7EEqEyeH1rnhXFJVLXoEjqwPxysysBYGO+t7R3tKekZuP1kzCYAGX5PcgLJGwa8bCUjuCCAjCEn0niaFnzNJgMW30YpoZD6s4Fb+3PCHYr3kBZbl0jujglAKxmqhMwvCJSu1B3KWY3vxCJEXJL0RSlPxCJEXJL0RS0EpEQgeJFeQEa0AYqg2vOMHgjRmIX3sobyWR7AQN2+g4GtBBvdQuQCSjz5rxRN4duO+o5JlEQBI5OQZOQHBOvjl+cLE1DN0wY0GNBoEsQBik46LDS+g4HqZyntBMYtxF8fcahUUQ98i5Ry7EqIu05n6ke009M8nNR8+d3vxCJEXJL0RSlPxCJEXJL0RSyh+VWxeM9rPbgLBATqKHxrvszOIDC6IOuOg5yCkVPS8JLGYsVm3BPbmjMmgQBknookEQDZbawr0Cp+O28ddiVpn8C8MqyBVJMRKLo339UPALCqlmZqfgc0IiIIl7l7A+EvdqffgeQ70xa/NMaC+orJ5i5MbVm1+IpCj5hUiKkl+IpCj5hUhK+budFyteFe9s+lXxYsOvYNjEt4N3jdUcXiTwoHOvhXJiiJEDag791Wbg3JqBoEVOK5pCa8aCyraPiXv0WYL60ZGgFd1XmkJbgwQ/gsRCEtNIvIpeN8Wov6HZeW5Aem7J1UrrI6GZzruFWG0oCQq5Z4jKevMLkRQlvxBJUfILkRQlvxBJUfILkZTyV79444Kv/83/Jvz722cudlh41fwObI00VcQsrgyT0kwxnLASbLhIo5JJsa2pyhTfQV091eSfAyn2tA/RmvoqcNn0T8Oh9aoy2Xuj10jHTfnnghrCUmwEmzT1RcBpQTRhBx55+ueBmFUaeEb3LPoPid78QiRFyS9EUpT8QiRFyS9EUsrsb//GBZ/f/6OL3f6LF3Ia6P9Jdf+1Gniyz6KlMigMdiCykEATFfzIgloT/Mg+SXXnBFlGCRK1UNwBQWsKbGH1x9H+kCjVBMXG6D2l6UE1QbODZ4/uyxH2jOzZJCDTMxa1L9N11/pNYB7QxB96lkHQ1JtfiKQo+YVIipJfiKQo+YVISmm//EsX7J7/s4sd4XfirvECxj3Uu9dq4KP17iSyUQNPqsmn2KIh0caLJFFHllncVUWQaENg7T452IKTfWoTZKLTmaJjrfG4oIhLHGH0eQ/PYu07udYeekbAfpPr7wiuxpH6QwSfh9rEHlwL7De5X+coLAohUqLkFyIpSn4hkqLkFyIppfv0pQs2xf8mvAcR4fW4cbF3Jx/7cNriyUk8IcHv0IOgAgJGtLyxUNkwlZ1OcF9F3XckNtHUHfo+EjkpFi0bHsEpZ2bWgK0u7rL84bHoBKcO7ktNLMRzQyNU0thob/H5hClVNKqeGrVimS48D2ZxwS/6Wb35hUiKkl+IpCj5hUiKkl+IpPwf18HELYfoF2UAAAAASUVORK5CYII=" y="-7493.401806"/>
</g>
<g id="matplotlib.axis_423">
<g id="xtick_634"/>
<g id="xtick_635"/>
<g id="xtick_636"/>
</g>
<g id="matplotlib.axis_424">
<g id="ytick_1056"/>
<g id="ytick_1057"/>
<g id="ytick_1058"/>
<g id="ytick_1059"/>
<g id="ytick_1060"/>
</g>
</g>
<g id="axes_213">
<g id="patch_214">
<path d="M 29.174375 7762.222993
L 151.464375 7762.222993
L 151.464375 7634.929466
L 29.174375 7634.929466
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_425">
<g id="xtick_637"/>
<g id="xtick_638"/>
<g id="xtick_639"/>
</g>
<g id="matplotlib.axis_426">
<g id="ytick_1061"/>
<g id="ytick_1062"/>
<g id="ytick_1063"/>
<g id="ytick_1064"/>
<g id="ytick_1065"/>
<g id="text_54">
<!-- 202 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 7745.61623)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-48"/>
<use x="111.230469" xlink:href="#ArialMT-50"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_214">
<g id="patch_215">
<path d="M 164.424375 7759.72123
L 286.714375 7759.72123
L 286.714375 7637.43123
L 164.424375 7637.43123
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p6f64546474)">
<image height="122.4" id="image7d2f0158cb" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHRdJREFUeJztnUmPZGdWhs8dYszIrMqqcrlst7rVboEsRCMWSKxYwJYVP5D/wZYVEt0LoBGi2+rGdnmoqqwhIzPmGzeCBdiLPM8nnXC6Nz7vs/zyRtzx5JWeOEM1GP7kaHc4HA93l+x4dJv9Uaiqyq+ZX2vrxq81fq0/+HOh8zvA+TVV7dYmg6FbMzMbt36dPh+9jnR+k8bvY1i1of2uDzu3ttpvcd90D+g76ZptD51b2+z9vkfNwK19ML50a38xeubW/uowcWt/vuNzefZg4daa1t//l29nbu3fW7+f3zR+P58d/D5edTdu7V23dGuLbu3Wlh2fS9fv3Ro9ywTdU39HhRApUPALkRQFvxBJUfALkZR21HrxQpJsf+jd2n3FYFTu0XZRmhqkW++PsYZdkEAc1F6wmZnN2rFbG8K2u4OXNh1c2wEIP5J7o9rfP7peu6Pfb+m60j08WOy+Dip/3BaUoXQ8A3geHu/9sXzw8BaP5/HHK1y/y2rpj7HuvfCjq1CTkIbrQPe0hutQn/C83yeG9OYXIikKfiGSouAXIikKfiGS0o4h06qvvcjrDv7/BGUckSw8BmWRWUFMBAUIiaqoLCRJQlJq2LDwmzYjtzZrvAQk4bc6+IyuBv4v0z7GIPx6ELEb+D465///QwgSWJX56+OvQiF7svbSbQzi7H3IVnzvz3ymnJnZ8JcfuLXj3GfaTT/332k+Sc/28Cz3FsuyIyg2KHPyFKIZmnrzC5EUBb8QSVHwC5EUBb8QSWmxNNZI5HiJgJlgJCsK/iIq94piKrTvH7YUmbK5zDj77rL2GWKH2h/P7QGy9GA/ZyDEGthuY14qkvAhYWfGwhDlJ2QwUsbhqPJrlAl4UXuheXn02z0799l8o7/5U7dmZlb/5V+7teMXn7q1s1/9q/8wCL+ehB9cr/3RZ23SdijIT8mSDYpqynTVm1+IpCj4hUiKgl+IpCj4hUhKGy2tJJlGZb4k7Er5T1ExQcdDUoTkyQ9NKWOQ5NclCKwZiME5bEdiaQj/q2m7Lngd6PqX1lH4wbnMap/P9xAyHUcglc9BDF5CZumDJz6br/6TT9yamVn7y791a/uhP5727F/w898XKoEm4UcZfqWM2LAgD67pzS9EUhT8QiRFwS9EUhT8QiQFhR9BIg6zhkDQUH88My6Ppawzko1UGhsVg1FIplBvNjOzCckqWHvv6M/5HOTXoqIMMX8uS/PbRbPLSqDwg/cE9TMcw9pF5TMTH8K1mR5BKsLtW9/6zx4/+73f0Mz25//st/3Nr93a1R/O3docsjFJsOJQGXhOSArTNWxr/2ybsWCPZr8SevMLkRQFvxBJUfALkRQFvxBJUfALkRSs5ye7XoMtxlpi+AWgVDdOY5rpeMhyYlokTpqJQWY/WsNuxrX251CLPjvALxJwzRZg8W+hTv8amn9e9z79lUZ0l+Aacb8d1qcHf1UYwT7GsLaC19PvXj9ya+0//o73M/svt/bN5xdu7VdHPx78q9aPG1/CCHL6BYD6PlCvg2nrU7s7+CXLLN7Yk55lig29+YVIioJfiKQo+IVIioJfiKS0JCFwjDR8mMQCTQAaFKbc0L6j03lIAnIduv8s9gygFE0cqRxPp+yo1h4+TopsDSm6r3o/bvpt76fPzDu/3ab3wq+U2k1NRo+wdjhAM1L4zhHU/Q8g53tLvQ4qmD409vflxdUzt2ZmNnjlj/E1PBTPW//Mvzn6a7aCUeeUTo3Hco+UXzOzroa0bejdEBaDoa2EED86FPxCJEXBL0RSFPxCJKWNjnjGiS9Ujw9SoyQw6Dtp35QtVQfHZ+NEIhJ5wbroUgbbDWTavYWR2tTbYFt5QTOHTLI3+4Vf2/npNWuQe5jhVRB+PIHGXzO6fySLSYjd1v56UQ08HSFNQno1oEHgZmPoEbCCXgk3IPKicm8fzGqkpp4ECWmzcqbsXaJTgPTmFyIpCn4hkqLgFyIpCn4hktKOoRQ1KiZGsN0UJBdl8pmxWNpA6SltR5mEJPJmNC0GjodEzrL3Uqok/OaQffc1ZKxtYaLNDr7zZR+Te7edL9/FrK9g2amZ2R6uYzQrkjIgl/uN/2wwU5KkIj1j3wxm+HkqtaYMOCoRjzbHxClVwaazWxC7JUic0zHuoRy8o+la4T0LIX5UKPiFSIqCX4ikKPiFSEr7uJm6xRGIBZJkNMXlAgTbFMSXmdkWJNv84OUQ7YcE1oPWn8vT5sytjeF4bkE0vqy8YFv0/vjMWNy8hnLb1dFvt4HPvtrN/TGC3Nv1XiJFSzr3he1QDgUFXVTkEdEsy9vaX4frzl9rMy6ZJYmI/fVALNJY8h6Ksul5WIFA3vZ+u1Kp9bD18pIEND0TDchGvfmFSIqCX4ikKPiFSIqCX4iktD8FIXZ99GJhUXsxQWLpYe0lyXlB+HUgK0bU5ww+TxlZl5A99wzKP1Erwb/BNcjLUvYjCZ4lyMGbvc8EXO29CFp0/rMk4oionCsVolL5J5WtUnYZCb/o8dDwC3rG6DqQOCsdDwm1Cci0HfT1Kw1tuQuVVdMx0vmNmsIY+MYfI7Gp/H66Q6xcWgiRAAW/EElR8AuRFAW/EElpPz54ifACpNsVSJIN9EIbw/+TaeF/zKGQyXQXKiftQFedVdSP0AuVFU3ApVJiEFCl7CvKTluC9KHhGSSCKHOLerhFy2qJUiYgDUSJZv3h4BS4f9GyY6Py26CQNOPrQwNISsLQbRfto0d9EOEakpAslRLjtYXYqmAoCX1Wb34hkqLgFyIpCn4hkqLgFyIp7QUkjS1a/z/hNlhW21DW15EFBnX2G4KYGBv0lKP9wPeR3LuGARs0dGMNEnAHgxxK6x2UUZIIIukTHUBCQ1JoO5JIpX6EUSlJkFiKSi3qcffHIJo1SJC0i4LDcCiuCvcF71ewgprkrN78QiRFwS9EUhT8QiRFwS9EUtobSFjqQOSNMLvIS4QB/D9pCy3lSGvQppRpt4P+fwOa3AvHM4ES4a72R0O92ag/mhkLo5JQu0u4zxwMKqHec9hvEb6PBpWYmS1gyMYKpupGJypjthuIWMrcK8mvKFT6TUvRybZYshy1bgS8fjf3LE8moUnXUW9+IZKi4BciKQp+IZKi4BciKe1n0JuP/iOQ3JseSbDFhcgKhNoGJBSV2+5AGLVw5I9Afo0pi/DozSf1EyyVwa4rf4wkaFrqUQjCj/q1TaE/Ik0hptJmEkObQrbiCD5Px0MijwQbCUQsY6Yy3+AAktOISUDKiqPMRJxgHB1eAudcwbNtZrbe+2cs3B9Rwk8I8S0KfiGSouAXIikKfiGSouAXIintZ/3CLV7U3uw+BAM8NRjlXajdJw6w6QZ+AVjTWGsw1VXtv/DBkWy/N+5T6BnQwzlvYGyzmdkK+gFQ+izZ4jP4zvPWTxq6gIlEl/ALwKPK378B7JeutZnZHPazLPwycBdKu/66unZrZK5p0gz39LzfLwD0iwTdF7o6LZj9aNPSaLPV0i8FdNzUoJauj2y/EOI7FPxCJEXBL0RSFPxCJKX9Zn/jFteNl007GHW9q7xEOIdU1UFBAm7g8x2kO9Io7w2MxO5ANlFqMY0Rb2myi1vhhotmPEacUmLp8yT3LuF6PwYR96H5c/lo7/dxBiezLrjZN9A3YFXFJNuyhr4GoM7mnR9VvgEJSPLqCMdSSgPGmvxg/T3JOJqaNGr99aKU7WgvgJLwi04BKvVp8PsWQqREwS9EUhT8QiRFwS9EUtp3nc/w20D9/E3ta7JfQ2baBLLiKKPOjCf5LI6Q+QUZflsQfiREaGrOEoTmBOr+qRkpySszzvIiCYj1/LDdGNYoy/Lnnd/vJ72/V5PGX4frzgtJM7OHvd/PdQNj0sFLvYbXCfUXIBlK4oymQnGjz7jwizZWremewiSls9aLWDo/mq5ElJ4xmmi0NhgtD+d3OPjroDe/EElR8AuRFAW/EElR8AuRlPa2W7vFNYxovq38dgPK5oMMKBJaZjxKmmQFyT2SHyR9UJKA0JxAGTNNvillh1F2Ickqyr6ibMUVXLOjebH0pPfX6ydP526tqkF8vTp3a2Zm84PfN2WibeFSLCBrcwX3gMpTSZrS80SNPptC0h7dgwpqyUkMUlnuuPXPyYPB1K1dgFQm2UvPw7ZQPl1ZbGoSZf1pRLcQ4jsU/EIkRcEvRFIU/EIkpaVeatiTLNinLPrZ0no4owsLbj0kqjZQ8biqvEyhkdgkbUqQzCEpuYR970D6nIOUXNRnsA8Yk73xx33dc4bf64G/L1eNP+7rCvr1HX124dv90q3RGGq6NvSMUK/GUziC/KR90/0nufeknfntoPyapl7tIJtvCUK6BGbzwb3icmIhREoU/EIkRcEvRFIU/EIkpSWZRqKqh8ytBkZ0k6ApjRGOjjGODjsgabMPCkSCpBSVdJqxWKSsP8q+IiircQrC77cgoC5fPXJrPRzf/wxZXn4FffiuzR/PWxBTV72Xe/O979dH50dZf8Qpgy6izw5lm5Lcezp44NaeNH67BwZ9/SA2ejjnWyiBNuOSYOoJSf0D6XrrzS9EUhT8QiRFwS9EUhT8QiSljUo3Elr3hWQMCTXKqiM5RDKtgzXKisIppiA5D4X+b3Qdd73P0ov2jyMpedX4ASv/CbJpM/FZfzSC5PXRl2mbmb07+ozDW5B7S5hMfLv337mBEnEqy42KWLrWpSxSEnkkxGaNz8h7NPCZe09gmMo5TKs+g2f2HAQ5TU9ewsRoM7MBZDZS1iCJwVvz90VvfiGSouAXIikKfiGSouAXIiltVORhSWBQFpJ0MTM7H3h5ctF6gUUCg0peF3tfTrrqvZRCwMORVCwPh4j1Uit9/i4dlMuu9v5cnnfv3Nqi8duRXF3DMBQzvmbUZ5D6I9KQFNqOri09Y9EMvVPKxmmgBk9K9hLwAWTfnUG/xSnIvRmsTeBxGBXKxlcgKq/h/OjaotDGvQghfvQo+IVIioJfiKQo+IVISksiALP+QFQdoVccyb0xCBYzs6dDXx75YeMHSdCU3xuQVa8qP3GYhj5sav9ZKmMmYVfK0KNto9eRoGw3KjF+u/PnvG5ifRlL5xIdkoKZkpC5R5SGn9wlKvdKwo+y+cZQGn0Bcu+iAjEIco9E3gxiYwaXZgSPw7bQJpLK07fw3FLm5RIkrt78QiRFwS9EUhT8QiRFwS9EUlrKOAv/RyAZA4M8KKPKzOwxlKP+FEomHxy9AVlUI7d2PvDZV29gWioNRdiAQCTxRWtmnH1H13YL+6HtaCgJZc9tepg4C589adgIyMvo2n3g8vJYvz6aGG1mNm3gOYHy3TPI3BtDJIxA5I1h7QwmAV8cIPPOrRh0S/w/9vCcUA/AaF9OvfmFSIqCX4ikKPiFSIqCX4ikKPiFSEpLdp5q/KNNEymdkoyrGadPPjp4K/0MjLZBk8PHYPavar/va0jvnYOFvzn6XwXmPTe9JGO/hsaVpHfJzt4nTRatOfybL6XEEnR+OB4a08Bjv2bQ8UTHpM9ab/DNzC5b38z0Ap4JmqZDidjbyq8O6ZcZuAdbWFvDrVpA41gzsw6aTlADT7o+tKY3vxBJUfALkRQFvxBJUfALkZR2DEKFiAo/EjRnIFjMuDb6AtIiL3svOqaQrvhs7z97A/X8c0jvfAVS8gWIwS9LzRWhXjpas07puDi9BjzQHgxiC9L0CKLqlCFM2BQSpCRNSIpO4qmbWLNOemYnUKNvZjaFtN0RyGIclW0+nXoFz90c3qHXjd/HFOR6B/flbaGxKknpPUlAiEvqa6E3vxBJUfALkRQFvxBJUfALkZSWBF0UkoCUSTQoZJJRvfQYpNYMJMtl6wXbZOyFSAVCZbfzonG+8cLoJUikfxte+AM0s5uBP543u1vc9vsSFWdRSvX4HVxvknuc4RfL+iMpFZXKJFJLzUjXMNmJqKEmnzLqqC6eoDigSTwHqPHfYZW/2YYmJMHx0Nqo9nGuN78QSVHwC5EUBb8QSVHwC5GUlqbpkDyhDK/7Qv95hiCHJpUXHRfnfhz37JGXbs0IzgXc0PuQWfjxxh/hh88v/YfNbDV+7NZeD73wo0af0fJdKr/GkmwQZ1RCWxJ+uz42Zjs6bhxLvxsvXWmNPkvHcmtcak0NV0l+kaCjZ55Gw5dk412oVJ6ge3XKd9K5XEC5u978QiRFwS9EUhT8QiRFwS9EUlqapkNChTKbosKnVNo6gKyqIXzlsPb7bgYwWrzxH6bkQlqrIbVw8jO/4SdPr/yHzezvfv2RW/ti9J5bW+y9qKTrSDIuOpqa1nCKS0n40TjuoJSkEe0k8iizNJptShJvQ/0SjbMGqc8kZsDBZ3EseXAtGi+0X7NCCT0cN40gv5TwE0J8i4JfiKQo+IVIioJfiKS0JAyII5QeUlM5khWDQt87HoEM/ezgO7ut/87VtRcdNZT0Hkg0jr3kmrbQH++cz+Vn44Vb+4XN3NoXw3O3hgJr7wUWiVMSbCSG7ps1RvcgKtMmrb8vlFlKzw7JR8pAPGVc+K6G72z8WnSsOclwOh6SgHRPKWvTjOMI5S7ca9qP3vxCJEXBL0RSFPxCJEXBL0RSvJ0pEB1AQfQ0bcLMtiAmNjTJtIfDXMBUVu/cbAcDLDZHECdwjI9e+vLbBw+5dHS1g4y1IQycAMEazdKrg1ORKVMOp+w2fF+w5x68J8JDW2CCLh03iTOc8AvirCT8SHSSEMOsOng10vFEpSQJP5KrJeG3B7lLkKikoSZ68wuRFAW/EElR8AuRFAW/EElpl70vMSUxQdNXowMarnuWZM9r6MM38KWHh72XFdODF0skC68Gfm1eQ3krSKDZ0U/uvXzDQzs24CSvzAtDkkPRYRwkgkiwlSbWRomWBFN24Qzk3jmUk5KIu9375yT6LNKaWaGfIclP6sNHS8HSaPq+fR/LQqygn6SZ2aCGfpTRMmFl+AkhvkXBL0RSFPxCJEXBL0RS2uvdMrQhiY5o6eDr6ga/k7LGDgMQQQMvkabw2RswNFfmS2Nvjn5tC9llJEmGDWdZ9XAt5iBTF7BGkEyjkk7KlJs2XlTSZ6ms1oz74ZGgo3Lwy2bq1h7W/v7dHL0MJeFHIg+HyhTEF+UwooyD/RyhHJzKmLlcNlYCTdK8dC67HrIdg6XatJ3e/EIkRcEvRFIU/EIkRcEvRFLaRecFVHSaaJRTJvxS+e+75sytDUFgrY++F95t78XS5uCFVkd92E4YVBId3EBEh1Wg3Ku93JvB2hlk/ZXuSwelvvREnFX+uN+DfU+hhPoz+D7KxqNjjGa1laDP01CSqqYJuP59SXKWwPJikHil+0LrlDVISpnLiYUQKVHwC5EUBb8QSVHwC5EUBb8QSWnJFlIaIkF2lj5LzQzNzNa1t+7XnU837qAGnvZDk2+wuSKNIA/WiJcaRZKJJQs8bb0Nn0A67rDyZp8aM84anzp7Qbafvq/0qw4sj2Hfj47+Ox/3/n2yhjTZ58E0WZxoA8a9an7YX6hK0DPPzVZjx3PK6HT+pSn2CwLFud78QiRFwS9EUhT8QiRFwS9EUloSZ1GRR+AEEhAiJSgNcXeE6SeQjrnpvfAjWRit5z5F+BHRSTwk96hWnmryB7QPuAcD+D9fEn4t3OsZpOhewKhzSnRdgfDbBfsnUNPSaDqtWbyBJ0H7obV47X6scWjp+A7BiUZ9uKmnECIlCn4hkqLgFyIpCn4hktLOhj5DLCpUWDZQLTiLpWjfgGitPNXfk7SjbDxsUHpC3Xh0pDYRPT+6jiTOlubFJ9WhD0v/+49+vQdpt4TruIDtruB4ViBxCbquKN0KQpp6IESh+zeAfdN9ifZyoAaepc/ytvF+AHfRm1+IpCj4hUiKgl+IpCj4hUhK+4uzZ26RMsm2IGhovPdy7xtmUqltieio5GiWHk5iCQo/opStSJlotJ8tZCGiMIKTppJezH6kUc5uhRtwmpn1sB/weNbB4hbuy2uYzrMKNlGNUpLUVEJNGZUoFuE60HbUmJOmHmEDztqfc1PIIu3p2YMlyn6lfevNL0RSFPxCJEXBL0RSFPxCJKX9+8FHbnEJsukbGHX9ZX3r1l7Y3K11O87mouw74gCi4z7CLzrWOFqqWYLEyxamCtG5kCQlAUUZZ13tr/ehhWxMEINmZp15EUgZfi2U9C5BQL47xEaVU29FHMd9whQfEnQPWj9GnKYcTUAMUgn1BkTl22rl1kji3mfSkxn3xzyQnYUlvfmFSIqCX4ikKPiFSIqCX4iktP/QXrvFzxfnbu0/Rr70d9OA6Nj7oRslwRbth3eo7zeS+S7hUt1gf0MzztIjMbWD4QkkbShjMFreumtAAsGx9DCK28xsB1lna5CNlBVJmaAk95YwOh37LVK2Guy39IzRfZlAf8QntX++H1V+rPkEJOcKxCn1UaRjjA4lMTNbVf6aRaFY05tfiKQo+IVIioJfiKQo+IVISvv+Jz5Lz/7bL73YXLq1ceslEGYsgbQpQUKN+rBFRQn1YYuKJcrmK/YjhG2pvxqKN9g3SUA6Hsrwi2aIUUZd6TtJ7kV7JtJ20eeE+tadAklXuodTGDfy9ODXHh9gOjTI0DEIW4qXN5BZOO/Xbs3MbF77rMG29tuuOiirh1JyvfmFSIqCX4ikKPiFSIqCX4iktG9/78sbb1ZeQqxg9sHN0Zf5rqE3W0naRCewkvDDXmpHvx19luQHrZ1SWkmU5OBdosNPKIktmq1I221r7q1Ici8qSXHYCGVKBify0jWMTso1YwG5hnLpDrJIp5DN91Hnr8MIbsxTeO6etWdu7WvILHxZT9yamdmrxq9fNV7YX9c+y/a282JQb34hkqLgFyIpCn4hkqLgFyIp7T8tn7jF+dALjE/NZxd9sfPlwCQWSuKsgf892DcvuDagMliYOFsqmbzLKRLwEKwSjk4mDos86NcW7Y1YOpdoxmFUiFL2I2VeUvYjCdtSWTVBwzOuuhu3dgGZdqvKr83MX9un516wfQCZgB+tvLD7CvbxxYCF32cN9BSEGKK4onjRm1+IpCj4hUiKgl+IpCj4hUhK+2njpdYVTFX9cu8lyZudzy5a771gKfXqw/5zkElGcohEEP0vI7lHZZ5RCVie5gtTUINiijLgKNuNrgNuFxw2Ep1MfArcX89TBQen0L06ZdAFHQ9NA/668f36vhz5jLy5+efuKex3OPT7mGz9sz3o/X6rwjuZniYaIjKGHoUTOD+9+YVIioJfiKQo+IVIioJfiKQo+IVISjuiySLB+nKq04+OzjaLN/ZEG07mO2j2o+d3X6scHeeNTUvBzg4hvTP6K8UpjVVplDT9qkAan9KNMT07eG2wZ8AJDWGxYSpci9u9T0t/MfBrvx1duLVu8TB0LFetv4ZfjHxsfAmp9GZmr3q/fg3NPlcwDWkNac568wuRFAW/EElR8AuRFAW/EElpz48+xXZWebFEKYPRRoqlNNIjNXvs/edHjd/3sfHfyamg33/SDE6fgRHbpX1HRReJvNnAN3YcU4omTgqCenxIm94ZT+zBfFx4TdC5RGUcHTdJ0x3cA7rWJU4ZgX2XFYwb/0Ptxdnzsf++JXz2GhrevgHROAexZ2a22PtR51toRkqCXSO6hRDfoeAXIikKfiGSouAXIintBNzJBETeCCRgC6OJMROsAGffff9MQhKLtI+oECF5VcpWjELXhwQUyb2zxjd7JOlGQjMqucz4mtUwvSaa4ceTfYLCFj57ivCjHggkG+lZHsHaLUjSN70XcVd73+uChB01GN1A41gznppEUhp7KsCa3vxCJEXBL0RSFPxCJEXBL0RS2mhxZBPMlIqOpS7B46FBxp1Qbuv2AcIoKh9Lsik6YYckGR13tMkoStd7lPmW1km81VVMuuL5BYVf+LqWgMeRnlFqCHtW+czSEbwvVzCWnprb3u58Nh8J5NLEJZbh339Eu978QiRFwS9EUhT8QiRFwS9EUv4XwxlBgtb9cI4AAAAASUVORK5CYII=" y="-7637.32123"/>
</g>
<g id="matplotlib.axis_427">
<g id="xtick_640"/>
<g id="xtick_641"/>
<g id="xtick_642"/>
</g>
<g id="matplotlib.axis_428">
<g id="ytick_1066"/>
<g id="ytick_1067"/>
<g id="ytick_1068"/>
<g id="ytick_1069"/>
<g id="ytick_1070"/>
</g>
</g>
<g id="axes_215">
<g id="patch_216">
<path d="M 299.674375 7762.222993
L 421.964375 7762.222993
L 421.964375 7634.929466
L 299.674375 7634.929466
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_429">
<g id="xtick_643"/>
<g id="xtick_644"/>
<g id="xtick_645"/>
</g>
<g id="matplotlib.axis_430">
<g id="ytick_1071"/>
<g id="ytick_1072"/>
<g id="ytick_1073"/>
<g id="ytick_1074"/>
<g id="ytick_1075"/>
</g>
</g>
<g id="axes_216">
<g id="patch_217">
<path d="M 434.924375 7762.222993
L 557.214375 7762.222993
L 557.214375 7634.929466
L 434.924375 7634.929466
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_431">
<g id="xtick_646"/>
<g id="xtick_647"/>
<g id="xtick_648"/>
</g>
<g id="matplotlib.axis_432">
<g id="ytick_1076"/>
<g id="ytick_1077"/>
<g id="ytick_1078"/>
<g id="ytick_1079"/>
<g id="ytick_1080"/>
</g>
</g>
<g id="axes_217">
<g id="patch_218">
<path d="M 29.174375 7906.142417
L 151.464375 7906.142417
L 151.464375 7778.84889
L 29.174375 7778.84889
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_433">
<g id="xtick_649"/>
<g id="xtick_650"/>
<g id="xtick_651"/>
</g>
<g id="matplotlib.axis_434">
<g id="ytick_1081"/>
<g id="ytick_1082"/>
<g id="ytick_1083"/>
<g id="ytick_1084"/>
<g id="ytick_1085"/>
<g id="text_55">
<!-- 204 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 7889.535654)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-48"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_218">
<g id="patch_219">
<path d="M 164.424375 7906.142417
L 286.714375 7906.142417
L 286.714375 7778.84889
L 164.424375 7778.84889
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_435">
<g id="xtick_652"/>
<g id="xtick_653"/>
<g id="xtick_654"/>
</g>
<g id="matplotlib.axis_436">
<g id="ytick_1086"/>
<g id="ytick_1087"/>
<g id="ytick_1088"/>
<g id="ytick_1089"/>
<g id="ytick_1090"/>
</g>
</g>
<g id="axes_219">
<g id="patch_220">
<path d="M 299.674375 7903.640654
L 421.964375 7903.640654
L 421.964375 7781.350654
L 299.674375 7781.350654
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p269f2df32a)">
<image height="122.4" id="image72578a7c1d" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH5pJREFUeJztnVmLJNl5hr+MiFwqq7KqunqbmZ6xpNEYjSQwFhaWrn1hMNjg/+sbY2QQCIwxXrR51p7pnp5auir3JSJ8pQH3+xw47bYvPOd9Lg+ZGREn4quAp75l8OHDn/bxCs2gfnUpDn0ra6vDVtbW7U7W6kElaxERk3qU9Vk69rbdy1rXy6XEsNJrmQ2PZO3h8FTW3m107Z3BWNYiIh53jay9t9fz+aBaytr5+UrWVkvdm8/WJ7L2+5Ee9+Na9+ZZt5G1624taxERy07vYRewt/Cc1MH3+lV6+D06Rtt3sjaIgaxNqyEe50E9lbV3BhNZo7P+9/ZO1n6zfiZrdzu9f/tOn9lqoOf9OrQd7AX8Zu5x8u6UMeZbh4PfmEJx8BtTKA5+YwqlyRUq9DmChF1K+BEkgggSHT2cI4mXDcjCZa3y8hokWVOxTKnhfE5rFWK7Q95eNI1ei/5a4G7R/WvgHowGKgsjItoKZBzIVLzX9Oxkijy+Gji/0O/uQApHRCw7vde3lV73BK6FBCTJ8Aakci70HL8OdF9orYc1v/mNKRQHvzGF4uA3plAc/MYUSkNCrBuAMMiUMSOQKVVC+OWKQPocZZf1cN4kPzBbsVXhdwPHSFGBCJzVmkl2u9fMvfOt7lnXkThT9nDNexBixDCx/12ACAQvNYR3B90rknst3St4xkjk0e+9TvYcXTVdC66B3CPhh9INro/kbG6sRfBekNyj8/Gb35hCcfAbUygOfmMKxcFvTKE0GyjBJWnHpYOQNQbfJUkSwRIiF8q0onOk0l+SJJT1NwgteU1lOvaNXssUMvzealT4nS1UDNaQZbeAfVyAOFuDJNtnZmhGRIwpiw3eE/Q5yvAjF0cyjUTXFuTlJpHNR8wGWur7OPQejHs9yedQJkxZkfQsthVITijJfR1yM/cOJPEt/Iwxf8DBb0yhOPiNKRQHvzGF0qwP0K+tVjlwBKJqUqsQmdba4y7V141KM3PJzfIiIbKnnoBQ+tnBMehzERH77iBr9Uive9acydq4156CJ52e9+VQr+9moMddwLnsMD+QIWlH2YD0OVo7BiF21oMYhnMhJUxZjZQpFxFxr9fzfucAzwQ8O8+H+szPar1XG3gmSF7uQu8LZ+PJUkS8eQ9A+b3/1V8zxvy/wcFvTKE4+I0pFAe/MYWCTdxILFDmHsm9owoGcbzG35jcckaSdsSuAvl10DUSiAeQZIOWpcsOJBsxGkP551CHcZCouh3o+Vz1KmwXPchL2FeScxERNWWskZiC/aFegVPoPngEx55BGfMYHocjWDtrWR4/hCzN6VD352qnIu8FCO07GORC8XJz0OEsi4P2hCSBnMwihX2kzD3KdKXsQr/5jSkUB78xheLgN6ZQHPzGFIqD35hCaSht97jR+vJZozb0FFIdx1DvTHXfEfmTgagh5bZXu05Ge1upTV0P1JAf2rwa6BSUCnw70NHNT6uXstbCdJ5T+K8JTb65galCazDI1FhzlGpQipet+0Mfq6EunqYcLcBcUwox1dmT2f/OcAFnE/HobV2n21p9pWsfbo9lbTrSkd+PIYY+qjSGPhvovX+51/8KUKp4BDeJzW0A6ok9xphvcPAbUygOfmMKxcFvTKE0p0MVGGeNrl00Kj/OK03vnYDIGb/G35g1pLAuQe4R7UBFEDVcrECSkNzDngGJlFicDASNFJetCroXILoWvUokOsa6A3kJqc9DSM8OkIoR3GeBZCOdD0m7IaQqX8LntnCOa5SAuvZel5gKNYKJNpBGfHyiE5v+CH5vulWRN4S6/wVMa7qE/V5W+jyk0nspbTd3PLiFnzHmGxz8xhSKg9+YQnHwG1MozeORNpR8UKvwezhQgXEK7QCoTjtVN04S6Q6yzkiyURYTCT8SXSRJqCa7hUwwki6p7xM8LShP2uU2I6XvEtvE3366FjoOnU9L+93nSaklNLicwzPWQkbddKdCOiJi9FR/83im+z2ApqCjkX53vKO+D8oKMiJpD3GSTuJZGmSORKcJWZ7YY4z5Bge/MYXi4DemUBz8xhRK80FzLosPYYTxGWRVjUnugSTDLqEREfD9KWYx6TfxrxYsUukvjvema6Ey2Jqvhhqcklgk8bKDc8wd50wCEcuiQTY1CTFIe5ErIAdQgkv3gM6R9nsZUJJdgTgbaXl5RES11Yab391pqfV0osc5HPT+3fTa1POLWq/lEkutVTTSPqRKyaGiN1GqDVmtlX7Ob35jCsXBb0yhOPiNKRQHvzGF0vwQxkPTRBQSefiD8LlpQmDMoBfbEDL3rmsVL583sAaCbQ9C5TJTzjVQnkxjyVPfT42NfpXXkT6vQpmO9F3MiEyNSIdDo9zLzGpcgejKhbI7FzClaAsSMCIiRjoNKXaawfpoCWIR7v/vYOLSp6F9+O5A+KE0pX57yalVeZmudF8mlT63fvMbUygOfmMKxcFvTKE4+I0plOYcPAlpnMRkaoF02IOWe/B98OhG1i5+oDKn26qYevovWor8q72ubWAgxlfQX23d5EkpyuSLSJUEZ2bfQTYfZW7RMUgqjkA+UtYXraV+s4eSVxy6AhKRSpY3MFgE5RVen573ptbfi4joyUCPZrL0pNV+lCt4Nf52oCLvptP+f3Sf6Vpy196UGt7zfvMbUygOfmMKxcFvTKE4+I0pFMiTi1Tel0Aaj4Tf8YCF34OfwHCJv/4L/SAIw++c/ULWXvydZm79rtEzetyo8KEy320PZZ4wiCMivz9b6vs51CDojmotvz4BoXkCA1ZS05MPJCozM9FoQvAyVJItD7q2g+m0JD7HkGWZ6ltI5dLzWgXkRzBxmljD79G9zy0Rp7VUht+bZIySiPWb35hCcfAbUygOfmMKxcFvTKE0Rx2UhIJXWINsWMOfjj189+7AZbDtQuXJcKXlkf31tawtf6/nfQWZX2OQJ9+vIcOrUll4BaWjL1o9v4iIlwdd30L/OYJKMCmLLXd68v1Khd8MOimmhkOsQGCtQHQdQCINoNEcDWLp4L5sD7pfNfSeI0m2S0jlPQjW27328HsKWZHHIE5nsEZDaRo4R5LKNGAjXWmdN0maxOl6oM+y3/zGFIqD35hCcfAbUygOfmMKpXkIGVktCIwbEFBzkDsvKxUQnw65dPSP/ln7q73d/lLWlk/1+//69LGsfTGm8kiVJO91+nunra49h2mw/0ETRIIzyWgNhyzA3s4g4+xRo/tFovLdTgXrFIZpbKBMNyLiCsTUHZz3GibRUhbaFLILsSw3U+5Rv0T6XES+EKOMQyoT7ob6e5RRSftAffQYLi/ftJBxCnJ2B7m3dM1+8xtTKA5+YwrFwW9MoTj4jSmUZgqZUR3IilWvkuUAGWIrEGyXiYkfv1lpz73LX6rAegGi5NOx/t26HeSVLZ5ABtXbB92HKVzz3VDlTkTEba3nnVtaeVTBVGTI0ns00LXvgtz70VYl0AVkeL3s9bgREZ+DoP2i1nt9RX0L4f7PahV+J41eS+7kXvouZc9FsBCjUusWnp0tyPBFq2KwgnOkTMDJQPd7COedKk/uQQRSiTjtI2Wb+s1vTKE4+I0pFAe/MYXi4DemUBz8xhRK82uw1EOwoQtI5Z2DId1Dyug+MW76OaTKPg81w9fw34I7SC2lY48hrXUNZex7MLa0D2eJv5cXYOdbmBazA5M7gcac55ASewHtUd+GMvYPzm5l7f73tN/A6gWnm06+vJC1/UDPZw1ptpTyezzQ49zPbKJKULpwqjcBTQZqa31uc2vlaY3sPI5d/z9411JfBDo2jVj3m9+YQnHwG1MoDn5jCsXBb0yhNP/QrGWRGhKSENlCquqwB3EWnEZ6AyJvA8eZD1SobFFq6DH2IIIuQV42Q6glh9+j9NWIiONQWbUHMbUBOTSEv8HUcPM+7O0jmGZ09ljv6fg72h+gGunnIiLOvtY00kkHki3z1XEEQvMBiOYjSOMmmUZikCRXBKft0mjyrgIhBs/OGM6Rfo+mHnWQYkvTflLpvQT2MYAlCz9jzDc4+I0pFAe/MYXi4DemUJrf7nUaTvaXQTZMoTadZEpExA4yv/Yg1EiSHRLi7VUqyPAjabepoSkkNr1MiCUQKiTySCKN4HP3QPhdtPrde/VWj3uaN2S94z6RsWt1LzbQg3ULGZUwACrGcH0TkHZTEGe5k4JIFEdwI80hNA+dwKhzepan8MxSHGxp6hFs+B4aa9KUoRQk/Cq45g7uld/8xhSKg9+YQnHwG1MoDn5jCqW52s9lkbL5CJIN1Ixy2/D45DsogyVJRlABJ8k0kh8bKDt92UPpJ0g8av6Ygo5dwzlSRuUE9uG0U9E1GevegiOL9lrF4PIrzrz8GrL5bkDaLuFAe5BxdH1HeJ91rQUxuKER1FC6G8HP8ilNQ4KMw3egYeoZNHUlris9x88HOhqcSo5T8ZdbYkzZfPQ5v/mNKRQHvzGF4uA3plAc/MYUSjM/aFknZghlSsDVQMUSTTmJiLiBSS4kDI8z1xooeSWoj94ahN/qNWQMTV4Z4RqkysFpL6Bf3x30zLvb6B7OnulaPNOlT78618WI+GSkx7kcwP7APu6ptBbEMGVoDrGUXL+7pN9LlPTSfn+vPpW1nx9U7v24VUF3OtXne7PVe/V5qwLxV2PtWzivNetv3nKpNfYPzJzY45JeY8w3OPiNKRQHvzGF4uA3plCaPfSAGyQGILwKSYR96O9tWs6+2ta6vobSyn2jGVnEEZRbEhvITFtCueWqVblDI7YjuK8cyaYJ9IAjnkODvCGMpq5C92b+lR5jBZLsIxhzHhHxWaX3hTIgSX2OYR8oW3EGe3MCwpZKvA9QnrqtuQx2BmOxf9LpPv7Vky9l7fwvH8ja4FilXffsUtbe+uVzWVs8fVvWfg/39Bn15Yv8zD36HGWm+s1vTKE4+I0pFAe/MYXi4DemUBqSe9T3DMn82JuWKHb0OZpOCmuZp4jlyQ1k1HXUpC74vHcgPwfQF7CBMtE5CLbncK/2jQqtT2D68R30HrzqOfNyBSWzVJY7A8F6jyYOw/XdO+jvncLerkB8HiAzNJXceQ7n+P4aBp38uYq3+mc/0x88PpOlwdP/lLXZ3a9k7cGnMKF5qHuTmlacK+IJLnc3xhSJg9+YQnHwG1MoDn5jCqU5gow6gkp6KZPodRjXKmPofKZU+gsih6bBUnkyZaHVYIxq+Nu4gdLWiIgtlP+SBKQhDRs4zhAE5Es47gomGFNZ7TLz/CIiJrCP92Di8CMoO34MAz8uWn1OZtCPcAjnQzL0HkjAPZR4R0Tcg+8fh2ZudgvN8Oy/1iy92EC57WKh3z2QpM6DntkIltK0lspC1eMYY4rEwW9MoTj4jSkUB78xhdIcQ0khZeRx5l3e50hKRLDcO2u099kZDPc4AwF1HCDyQJ7scLAEnCMs9YkMvwOItx3IvZRkk0NDRlabmBD8KtR7cAdlzMewhxERp7B+j7L5Ot2gk7xTjEVFUgsGdGBWm96DaSLF77SjwSlQEvw5iNy//yc9Mtz/dq73/u5jfbYvGxWpB5CPVSJecoUf4ZJeY8w3OPiNKRQHvzGF4uA3plCaGfTHO8AwBhoOsKfPwVpKSoyhnx1l7h3D2mlAFhqskfCbg5zbUFYUuL1UuTOtkzjNlYCUUbmBzEQqd6bJrwQOEInU0BZlQeIMfpIGdOTmhtI+bLO/HZCDGFHB9++eq+TcfqLfvlxAz0R47qgU+eMR3CsQsakMv1Glx8Gp0fiM0XGMMUXi4DemUBz8xhSKg9+YQnHwG1MozRTqoLdgC3swu2T7XweymjTqmhpFPgaP+6jVv2XQLxP/5F3DudD5Udpt6rNEbpo0Qf81of8e5P7HZQtNQiMi5r3WttewkXNIxyVym63mQv8BGCXeYyeV2vmvezX7q0s16V9Bv4kvICN6CbFBkfFV6L5u4V6lpjrRddN9XeojEXv4b53f/MYUioPfmEJx8BtTKA5+YwqlofTX3Hp+EkuvVc8PsvEtEDQf9lrP/4OtHvtioM0V73qVJ/uRyp1LmM4zB/mYao64paag2bXW//O9zf0cQbIwImIN6cH0nFC6MX2O5B6lte4yr4XuAYniiIhdDSm1E33GJiCQKQ188QaSew4TnHjMOaddN3XeGHia+OOJPcaYb3DwG1MoDn5jCsXBb0yhNCRZaPoM1YinhNGrUN1+RMSTZiZrf9aqjPlZrxNR3vn+razVY5U7N19oQ9D13T393FjPkabhpGQaCRXK3MudckT9AegY1Hg097up0emUuUnPCQKyKVcgU5NR7H8Awg/m6EQEX8u80kw7muJEvVrpbUkTjoh5p8d9nSzZEQlWaISK99oNPI0xf8DBb0yhOPiNKRQHvzGF0qxAQuTKPZIIQ2gyeFqrxIuIeBKQubfX8yG5d/QOySoVHafbjf7eXNeetyoGacLK7UDPL4IFFokumsZCmYDUrDGVxfYqVPqJ5dNwjIiIBsc+628eQLy9ydR2kpeUrYbNUhMHpuf2ul9l/SbtA53PEMa20/NAWY0khVP3mYaQk9wbQqk1SXe/+Y0pFAe/MYXi4DemUBz8xhRKs2xVfqHcA+HTQBnsca1NzmaJUdBHIFn28PdofqXf7w7QZw4morR7PcZ0pILmfA/ihc4vkeFHgofk0ElDwgjWQMZRqWdqgtCrkFQcJkqO6TepdJj2AmVjou9hzvnQedOzmMqUw5LgzDLh7WtMbHoVKtOmc6TrS2XE0j42MJqczpGO4ze/MYXi4DemUBz8xhSKg9+YQmlWh60s5g4HIKFFsiKVsbSG43wBWXXx8lyWZrcq7WZjlYCTiX6ux0keCqm9VA+/AcgY6lFIAxlI5NGeUX88LvMFMQR/51PCj7L51pCdRsKPdpYy5Sg7kI6bWw7cJd5jdL9YXuaVb6fKoHO+S2C/vYRUbLFfX+Z9hWfRb35jCsXBb0yhOPiNKRQHvzGF0lA2H8krzBCivnUgRFL93+4GeuxnjR5nQ2XCrYqSBxuVaff3KjQ38N27IQylgPNOTdTlLD1dm8LEYVqrYW/bzHpZEj40xXaS+NtP93Ufeg868FINZpfp2gr29g6mA+M9yBSDEal+hCAvYYoticHcicoEZivChN8UlLlH/QOPYK2iXn/ZRzbGfKtw8BtTKA5+YwrFwW9MoTQHEB3UZ64dQIkifHcL/cwWnUq3iIhrEF2jSo+9BnF2AwJjDmLwDuTeotHvflLrtVyDgKLMtAjOysKMPFgjgZUrlnKPOwUhed5zD79zMHkjyIqkb5O/2oEYfFFBRh18mbII9QlLQyIQh6lkfo5KdQmKIRKpuSXCESwMZ5C593Cga1Mo/fWb35hCcfAbUygOfmMKxcFvTKE0LJZggmqbN7Qjt5QxggUGsaSSV/i7dQX98T6rIbsM5OXXvUrJBQi/lIijayFZteu1Z2LukA0q/T2F/oiUuXcBcu+7B97/D6DM++IoNQf3v3O70UEsTwd6jotRXsYhZStu4BbQHqbI7QvYvUb23atQdieW72b2N4zILyeegNx70FPpsDGmSBz8xhSKg9+YQnHwG1MomOLFmU1U3piX9ZcrKiIitrWKRep7R1lsJHLoc3Q22MMNPjnKnJQbEbEEYUhDUmgqMomgGUw7pgyvMxCD74Hc+5N+IWsREe//9FrWRk/02IdLvZbxv+n9u3kJZcwgoI4hQ3MVel+WkEVKQjqCB9CQlMZy2Zqeu7whGzRlmY5L5cWpicNbuJbbgcrZCWTJUlm83/zGFIqD35hCcfAbUygOfmMKxcFvTKE0s5FaXDSkXd70Elqj34uIWBzUFm/BfL/JGGqyriOw4fS5I2q2mRifTP8hWYbafmwoCftDtv8ANfBkn8/ApL+91+++9e5c1iIixt+fydrg4lTWmualHvtqJWuP5/qMXbfHsnYH928eef9dWXe61xH8jBF0/0/qqaw9bnRv3qr0+ibwX6E5mP2rTs9v2XPHAootmqT0Sav3Ff+jhEcxxnzrcfAbUygOfmMKxcFvTKE07x89lsXbVqXNqqXJNyoRchscRrDA2MJvkiQjaGrOjkRerSmxOGIbhB+Nuo7gySs0PplEHo7ZptHLKCX1mk+gAecQ9nqzZHm5/Z0Ko+a+1vMPYLrS6L7+3sXX+jydXaskG0JjVXpGNiBI1y0Lvw2s506kIglIcu9PW+1h8PigcXDV6H5/Wmuvg+tEi9IN9NmYgxy8hPi92us99ZvfmEJx8BtTKA5+YwrFwW9MoTQ/bM5l8Rk0hbyqVPgs6rwMParxj2CZQ5+tKZOQeg7A56iGms6RGmaSQBxB9lzq+wRl5FFjR2oAeQz3ZQbZinQm17X+Xn+j9z4i4vylZradHavwPQMJONIEuOhBQJIW3sH9o6y4BWTF7RNZpATdKxSxmROXTjs97+81S1l7QmPlDyoLr0ECRkQs4FX9Avo5VNC09rZWCeg3vzGF4uA3plAc/MYUioPfmEJp/rhVYdCAMCBRRdNU5tBQkMZ2R+Q3UuxBqLSJUdny3UwJSI0UF9BsM5VtSHIwNzORssuoKeQE5F4L4vNFpdd3A3/mj2DCUUTErFPhd7HSzLaHCy3LPa01o27R6rU8H+oJXQ70uy/hHqSy+QjK0mtAph6BOCMRu4aGopc0FWqv13w81PN+tNe1kwPflxUJaLiHd40Kw8tG75Xf/MYUioPfmEJx8BtTKA5+YwqleW+vcmgBkmQzUCHSglgiUtlvqb5rchwQdLRGx8FpQXA61IOPMgFT/QgJHPsMx6HsMrq+NZRvftFp5tbzzMlFxyAQIyLOoPR0BhmCpz1IyV6fk12j1/xlpfv4ZacZg7etrtG+TqBMOyK/VJeEHwlWmqXzHHor/rrWzL1HO5oAROPZmQqenRGc0AlkoZ5Vej5+8xtTKA5+YwrFwW9MoTj4jSmU5h5IpHutZgjd1io/1tDjrq0oG49HDnNfQJWAm4OukRCjHncNZECR8KGMOpJFKeGXKwepFLmC45AYPEDG4GWm5KQMzZQkm0Hp8DEIsSMQYpT1Sff/Fu79ZatlsCSFaehKA0Iy9VmUgPA5GrwxyXxffl3rNS8gs5CE3VFion0Dz8QO5PUEnokLEPZ+8xtTKA5+YwrFwW9MoTj4jSmUpsvsPUe5YGP42zGCqaqUXRbBJa+rg4qgNQg/gkQOlWWeNlqyel7TpFW96m2iTPfysJC1u4Nm36EEzJxsTGskAUmGkmik/YpIDAcBOUhrtN8ECVIq1aXsxyn0uKMMvQgutSaZSqLyGIT2RejavT7vHXoHMpx2q4WehxE8jIXk4MMOzgckrt/8xhSKg9+YQnHwG1MoDn5jCqW5hMy2OYiJxQCGX4BYwsEZiQw/klU0tKPtoNcfiCCCsvnu1Sr8nlTa4+yMeuYlruUchMpn8P2XB81iI5FH0o72a9fqd2nSMQm/FHWl74RVpSL2qFHJlpspiX0UYR9oeAldS6pfYm4fRRrGQtl8JPdOen0WFzC1mabsUs/KceLZvgfXfb/NG3LzBMSn3/zGFIqD35hCcfAbUygOfmMKpXnWqFx4Af3VXkLp7xLWKAOO5E4EZ1rlQlKKSmNJ+E1BxJ2AEJmB3GkS2Yoj+juq7gsz1m4hE5Ay4A4gdzoSg28oTUna5ko77JkI0D7QMegZWUI5cNBa4nzoOMMhZALiLypU5L0C4bcCaU6ME88YtEKMd480s/The7o2PKGel8aYInHwG1MoDn5jCsXBb0yhNFcweIPk3hzWNjDZlrLQDgnhR9IHRRDIPcr8mtRq2KjEdA/nM4drIe9yDJlgESxpqG/astLS4R0IVtpHGkpCQixXpNK+RvDekkwlcYYyjcpqSQzC6VDWH/V+JMkZkSjfheujzMS7Wp/5GyjzpYy824GeDz5jAMrjiOhgb++/pRmjp3/zvqxVP/yxrmWdjTHmW4eD35hCcfAbUygOfmMKxcFvTKE0l6FG8xbMPo2HxtHZmemdEWzix2DsCWoySRNoyDTvQk3sVa8GeQsJngewvRERU/gvACVppppmvkruWHJKX6X/mAzA7FPqc0REk/mfFDLkufX8VJNP14eTi8DsUw+DCE5rPsD1LeqNrF01Oh58ApOBhnCnN3AtlPpOzW2P4PwiIlpqmHsG/xX68Eey1vz8b/VzeBRjzLceB78xheLgN6ZQHPzGFErzvFfRcdep/CIZg2IJBAZJt4iIk3oiaz3MLF4c9BxxzDIILDqfJYx93lBVNpz2BGesRDSwFyR96NiLVq+PJhdRqisJMarTx5TWhuVl7ghznOIDk3PoHhxAug6pSSxcCz2L1Pg1gnsg0PeX8Ixd7eeyRoJ1lDmliPaBpkK9TpeL/gAj2rd6LT1MvfKb35hCcfAbUygOfmMKxcFvTKE0zw53skhChKTdCAZ3D1E2cSbZMcihU5CAN7U2uCQJSDJmC5mJfUdZcfp38AgkVw+NGSMiDnDsJUjE61brr2922nCRxpJj1h9ksBEk/FIiNlfk0ahsElh0hhtYbKG3RE3jpoHUPmAzU9jHxT5PKu+gJp/2YQT7MIHnifaLMgYjeJz3fgnZkx9/JGvt/X+UNb/5jSkUB78xheLgN6ZQHPzGFEpzB9NiqNS2qkBCwBJJkhNoZBnBDS6pxPEZyKbP+xtZo0w5yvzCLC2QkjjtJSFjdiCRbjo9n2uQeySb9jB6m6AMPyqXpWzMtmFJRvd/AvfgBMaSjzMbpvYwBp6y8QiSeOkGnnCN4Gw3+7y8OpSuQ12j7FWSgPQ8jWBSVEREDae4nqtEPPn157LWdL+QNb/5jSkUB78xheLgN6ZQHPzGFMp/AfkYRSd01VZmAAAAAElFTkSuQmCC" y="-7781.240654"/>
</g>
<g id="matplotlib.axis_437">
<g id="xtick_655"/>
<g id="xtick_656"/>
<g id="xtick_657"/>
</g>
<g id="matplotlib.axis_438">
<g id="ytick_1091"/>
<g id="ytick_1092"/>
<g id="ytick_1093"/>
<g id="ytick_1094"/>
<g id="ytick_1095"/>
</g>
</g>
<g id="axes_220">
<g id="patch_221">
<path d="M 434.924375 7906.142417
L 557.214375 7906.142417
L 557.214375 7778.84889
L 434.924375 7778.84889
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_439">
<g id="xtick_658"/>
<g id="xtick_659"/>
<g id="xtick_660"/>
</g>
<g id="matplotlib.axis_440">
<g id="ytick_1096"/>
<g id="ytick_1097"/>
<g id="ytick_1098"/>
<g id="ytick_1099"/>
<g id="ytick_1100"/>
</g>
</g>
<g id="axes_221">
<g id="patch_222">
<path d="M 29.174375 8047.560078
L 151.464375 8047.560078
L 151.464375 7925.270078
L 29.174375 7925.270078
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p96744a351e)">
<image height="122.4" id="image20f845cea0" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmOHWmSnc2HO8aNiRFBBsmcmdmlLqm6BC0EoXZ6B72DXlILAQ2hIfVGDalQXSUgs8gcmCRjuhE37uSTFgUIaJ7PBS+VVv2fb2nhft39dzd34MQxs+w/fvYfuviIIss+DoVsFBHbrpHYXbeX2FWzhr0jlrXG910tsXFWSuygmErsiGLZWGIX+URil91IYtNO16HBlYgoQrddtLrd01qDX5SPEnv56k5ikws4n0f9vbs3ug53d3OJbZtCTzAifg5dn/+uofif3YPErhq9Frp/XxSHEvsXnZ73V3td769GK4k9//xeTzAi8pHu//r3pxL7L8VCYv+QbyT2ptFr/lDpsR9q3bduNV8yyrWOn7FdU0nssdpJrGo0h9pOn5Mcj2KM+WePk9+YRHHyG5MoTn5jEqW8DxDYumHvhG2ogEEiYA1iQx8ZCGckihA1HHsD1/fQqdA1y+iadbuCtZjIQQis4Ly3ucY2tQpi1VqPXW5AyNnr7xVwkrOpikWjWtcrIqLZ6m8+b1SMe1eoCrjP9TdJDKWYXl1EDWvYtnqv2rrnGYEw3IIYw309yPQeHGQqDD/COjTwzNewNvS8074RES08Y6OB4l5AyF9+YxLFyW9Mojj5jUkUJ78xiVLeteoQGoPQQW+JCoSFLTj0SIjro0DhTaHfXIOo0eSg5MB2JalAEDroeV+2KGopGxCwNp0KfttHFZYm22HrWE50u3Gt96Uo+FpmlZ75SavreFzqeS9BECONNIf1akmcg73LAtxq4OSLiCimuu10ouLnyVb3P4X7cg/u0E2nv9fAOVYtSZpK1ZMvtH+Z670iYTADcd5ffmMSxclvTKI4+Y1JFCe/MYlS3rdbCY5A8CNHFvmQqCSXBIgIdu6RPkciIP3mDoQXKoOswGmFwKuxBUErImIOrkh6s+5I8IMtN2s9zsFGy6Xzkd4FMkRmWY81ESDtc9Lo/ofglDyG9angXo3hnpbwQPU5Kj8mL3nD0ake5/SplpJ/8t1MYne5uhpXpZaIP4IIuAfRbgUCObn58h5HK4l740JFSYJyyF9+YxLFyW9Mojj5jUkUJ78xiVJuWxDEMhUrSARElxb0H6PtIliEIBGQtqM+ZySykBOQeqmRI4tExZoUyYg4BaErB4/fDK7vMdfrW25VbCregXA2UYG12utxtzsoG+7p4bdpdFuooo0F9Dg8gXXYZ7q2JJBO4Pe2cNx3OxXnxt+ze+7ZkfYUnH+m233yqH34lu/1Wm4LXbMbuOY7yBeiAdm8r6SXGOd6r4b2BfSX35hEcfIbkyhOfmMSxclvTKKUJMYV8E6gwQvk+ivBSbYHISeCxcGSnF8gnpCQ10LZKYkn6EIEBxsJfn1DO7B0GAaGFGCfK0qN7VoV/H5Yq5OsWNM5DiuX7XPP0T2kfoQT2P8I7l8F938OMfJO3sF63ee65Wp1AntHjP6XPicXf6NOycNLdbpeXGm5+0mrw09m4LxjRyysK4nPf4bgl8N60/lQr0B/+Y1JFCe/MYni5DcmUZz8xiSKk9+YRCkXMNZ6Csr+DGITVOFVqdyAuh7B6icdm6e76HHu4XzuYd9Nq2ov/ffgsVEFuE+JrQvdf5/rtmuwgt6AZZS6f1JdfNMzzvljpqAKn0A9fkTEKXh5Sdkf1o4yYgT3gMafU8uBNXye8D8uJX/HbmA0+dlO72u50POZjfQKoTdqFAUo6QMttvQ8/TlqP1nfpwWMm8/1P0/+8huTKE5+YxLFyW9Mojj5jUmU8hSaFM5BdJtjbToIRmAjrbDVZ8QI3j2zHivwx6yhRvyKxEKaAARK1RomF5H1smo3eD40TeWh0N+8AuGFJiThMWjs88BpSAtoMnkKsYiI80LPkerviQpUO9q3hAdlRtolPDodiGknYM+OiFjMVdwtz/S6u1oPNBrB2pLgRzZ3eLYnYEsmq3kHNvWInl4ZsBZkxT8qtAeCv/zGJIqT35hEcfIbkyhOfmMSpTwYKO7NQZQ6BCHnAGu3earIAsScEYgaNOWGGimOoPab6uwraNY5tJEiiYAREStwA1KM6qqpCSPFyCFG45w7cMCtQGh8BBEoIuIOtp2DM5Gm7kzBNVhApT5Mzo7nMEa8pGk/oLo9O9ZGnRERl/9WRdfil68k1r5+K7EGbvV+mB6N63UEblpinek5R/CzR4I29b8g56y//MYkipPfmERx8huTKE5+YxKlJKdVAQLbCIQ8EveeNhp7BkJORMRxpu6rCkTEJQhGDYiSSxKgYDty1JErqoGSXHJZRUTsYPLRHlx/KNqBuFdDWSaJhXQMcv1tYK2ptDkiYglONHKnHYBD8CxXEfEUru8AXGwvZyuJHZ+qo3J6otc8/VJFyoiI8l+puJcdH0usffijxG422hT0ZkoNavU5oRyagQjYUjU3uVIjYp8Pe55wEhb8nr/8xiSKk9+YRHHyG5MoTn5jEgWtdzTFZwqxUxD3ntcqfD2fsftqAuOlNxsVbvY7co1pjAqH9wOdezSCvABHVp8Y09UwzpumsfRM/BkCOfcotm9AGILtNjULfiOY+DIBAXJLjjUYu3MIYupNobHNXnee7fR5Gu30/nVrFpW7m6XG7nQc9+M/6v5voLT5KtPtlp2e4xZEV7r39DSR+BzBzx5O3Op5Rocc2xiTAE5+YxLFyW9Mojj5jUmUcgz5vwCX3RkMcvgMxL2vn95K7PgzLW2NCFToVm/BsfZBj33fQNkijLomSPyiMkhyAtL48oiIOgeBB0qHSQQcgQOOHHV/ibhD4l7bMxxi1wwTSSlGg1hovWnQxWOuAzYuYejGxbWu4efvVcSLiDi//hnjH/PttxcSew0tDq86Xcd7cEpuoTcfrRetDTk5I1iUpl6BtB3F/OU3JlGc/MYkipPfmERx8huTKOUTsGSdguD3slKxgsS9p/9ef6949RUevFup86/83Y+6/+9VzGl1s1jWC4m9G6lLawfiHIlpKLv0vC43INBRfz3srwb7TsFdNulxfn3MIwwLWeUqulIZcsTwKbFUTrqq9TgkalFp9LI4kNjFWFW3552u1/LxFM/xy9/q/hWI1/9QainyD6HreAvDXe5bvWYqtSZIsO0TcQsw5JKQR0I1Dcjxl9+YRHHyG5MoTn5jEsXJb0yilGcg7p3CsIJnIH48+Wt1NhW/+Y3Esle/woNnt+8kNoq/k9j84Y3EjpZ6PudLFW2elSqStDCZmKhBlKp7Jg6vQbQbOkF3CkMyDgsVqg6gBxw5DrdwfY+FOuX6evjR5FgSsIb2Ldw0epxltsZjyzFgQMc20+urxtzDb9moiLgC3fTbXM/xHQh5KxD81o3GSDQd6sYcut1fir/8xiSKk9+YRHHyG5MoTn5jEqUsoKVcCULXtAC32lMVkbLnX0is+OSXePB2eqj7n/1eY4UKfk0z7L01oanB0P+vyWAhMhVtptz2MOYg2vWVZn7MDMTCExiIcQxuTJqUS73iqKfcDkqO+7a9B6HrtlHR7r7WGIlfJAISND25hmEqFcQiIm5KXbM1XB8590jc24EYOnRSMomzQ/vy/SmuUAk1OjThJ/3lNyZRnPzGJIqT35hEcfIbkyjlHoSuPUwYRUYgfk3UZZeV7L7Kpuq+CnBqkVFuu9Njr/Nh4lcH11yhcAK9/nrEmMMMSnALGCwCvzmDUt0z+L3zTrdbQHkqsYNr7vMf0rY34Dj8HkpHSeh6qHXSLrkfhzrlaFrtpuAS2mtYWxqbQqJdRT334P6xQAeTrqFXIw3o6HP4kYCMQ1vgzhZ43saYJHHyG5MoTn5jEsXJb0yiOPmNSZTyEZTdA1D7mxYUzRZshJUqtl3PKGjcHxT7aGkMNVl0ddcRKKRj6GGwy8iiqfSp/dOBTRNp90OwDFOTys+h3+YpjOMmdqAgVz3/1aH4+1LV/hym7uB/V0Bpvof/AOyagf0BMn2e1mDFjYiYg02aGqaSwo7TdGBtaF9q1EoWcGrK2mfvJSsv/deE7kEBNml/+Y1JFCe/MYni5DcmUZz8xiRK+QA16wsQ3TYVNMK81Uk63dVPut3xazx4t9OJPVGp6DNwgEyMQFhagFBZ5RCD92DV06yTKAZO/CHB8AQEvy9B3PvVeKn7nqlw1oLyuV6p2LTZqvAVEbGpwUa8V+GsBSt2latluy5VlKImodgQFMbAF/B8kjgXwTX0JMaRaEd2Whx1Dc8T2Xbn0IB1OnAKU0TEHsS9Gqy8aFWG3/OX35hEcfIbkyhOfmMSxclvTKKUd51KAVMQP65BrFh/p8LC0e//UWJt1ePwA3da99PPutka6phB36E3GTUopaaeE3BurSGWwb5/OrYeiBx+cxCMnrYa+0W2kthnv4GR5i+PJdZtdL2P32tjzf0HFsnW1yrkja50/Pm61gauSxiJfpdrj4e7XIXKxwxcero0MQGH3vFIzyUi4qjQY8/gWR7BM0+9F8g9R847EoBJ8JvB89AHOf+odr8FRyw1QvWX35hEcfIbkyhOfmMSxclvTKKUd52KQzQF5seROrze/vFI9/277yQ2eqOjuCMCS3WrtyoELd+qaLPsQFgq9bxvQU9ZD2zgSQJLX0kvOcTG8G496/SEvtirGPPpX99KbPRvvpZYdnoqse5enZejkzuJFSfqGIyIKOZ6D6q9nvfprT4Ti1K3o3JnKqtdlDp6ewxNL89LFR+f5Sz4nUMj1AWUdJOX8yFXMW1J48thbxIB6Xmg6VF5T6n1UMFvkw0rjfaX35hEcfIbkyhOfmMSxclvTKKUaxAwbkJFwO9BePldpSO267/X98nit+zw60B42WxVwPpQqxD0Q6nn81OpIsst9OYjgWbgjCIUQyMiJvALhyDuXda63ae5Ovemn+r1ZRMV2GIHrrhqWF+/bMYlveWx3q+DEz3O4Z0eZwJThUYgYB1AP7sxTIA6B3fg15mWDX9d8315CSXBp4W6HdeNrsXvQOR+U+hxlvCM0bQfEuzIWdgH9aMsB479JvzlNyZRnPzGJIqT35hEcfIbkygljUDehAo5P0O55W9HKsTdNeq+Olxz6SixA3HoESZ8L3P9zffgbLoHQZPKMsl9NcX+bywNjqDUdw6xQ3A1TsZQlrmGYQx//FEPvNNrbu9hcAq4CDs4l4iIrgK34wjKoGFU9hh+kspWz0DIm4Hb7ZtORbdfb3VtXp3e6IEj4uwbFffGX6pQ3bxXt+Pib7VcOofn+0cYXrKC3pjkIiUnYF+20HNLIuJ4oKPSX35jEsXJb0yiOPmNSRQnvzGJUlL5IJUJ3tEUVHh1PJYwmACcfD27Y2llAyW4OxA/tiBe0uANcl+1cAzsCdg7QVUhgYYmCe8qFWge34DY+EHLcnf36orbrtm59zFFyUNJRiBA1rWeY93COcKiHYPrj0pZX0Avw1/v9bn7q8+vJXb0r3vciv/ylxLLvv6FxIrHB4l9Xf5niW3/k55jGypevoVSchIBt/CM0PMZEVH3SoH/lDGsbQv9A/3lNyZRnPzGJIqT35hEcfIbkyjo8EOhivqUgUNsB+WN855JpH3i2ceAmQ/3nUApYwNltXRYGtCwA4Gmb2gH/Sad4y2UhF7t1SlZvqX1hh6FtTrg1gPf6fOeKcRTuIfEVaj1cgfrMIN1OAMR+Ju9OgZfvVDn3tHf6PNUfPWcT/L5C40dX0gog9j432nvyVevfyuxuz9cSmwFJfAbEuxgvcgJGMGl6CRok2uQhH1/+Y1JFCe/MYni5DcmUZz8xiRKuYWSVyoTzKBMkGQJipGAGMGCGPUpIyFvDoJRAWIcTRxewnZbELnorDfgfoyI2HQwPAG2raB3XYxVHLqvtey0AnHoHkptt/BKJ9F0SmJoRMy6YQ7BOzgOlVrT/ccSaFiv8UJj2VwF0oBhIRERsVLnXvdaJ0nTABkaBT3/Rtfm0zfag/F9reXAy1Kv+QGOQSJeRMQWnjHKXxLxOywHNsYkiZPfmERx8huTKE5+YxKlJGfbKFfx5ABKAo9AvFqEilckukVwqe8C3kfHUAd70gwrb7wp9Hze5eC8A6HxHnoZPrQ8gASFU3BVLaHP4EOuLr1TEAEJGs/RQXkyiaEkrkYEFISy+Ill1eCKROCReFvo8/TsJx3QMblYSWw0usLDZHcg+D1uIQYl6yQC1np9T56q4Hf5Rs/75wIm8sKzWLW8hnsQ/ChGgh8NB/GX35hEcfIbkyhOfmMSxclvTKI4+Y1JlHIEtt1FpqrrWa6WyifwH4BDUPBnLavKNNHmFFT8540q7OcTVWyJq52e96LU6/uWrJegpa86VvsfGj0fsklvYcoNxa5hbWk8+Aje32TlzQYPIe+3Yw+B/ntEv/cA512N9L5UMLL9V/9N/xPy4oNO3ImIGB1BDfxSj71e6rFz+K/JeE5KPPw3KtPn5KibS2xoT4sI7qlRg9pP9fwFPSeDj2yM+WeFk9+YRHHyG5MoTn5jEqWcQqPBGTTcPABhkMS9E2gyedjj+Dxp9A/PQoWSyzO1aB6/3EiMSuWf/KzCWfnDE4ktC7XYfg/23F1LhtqICuIZjfOGtaBa612mvzcDEXAK94okJBLdyJIcwZZRgo5dgCg59PdWcM2bkU7DuW+018E3f9DtIiLOChViadLQGqYKjeBmHY71+aQR68QU7v0ExnuXPXZ40mFJ3CN7bw29EvzlNyZRnPzGJIqT35hEcfIbkyhlCflPggO51agefAGixhkIexERl5mKMZcXIO69UpFl9NmRxLKpKn7l8a3EnlyrWDhpVPAj5Yxq9Psg4WUPrkGafETq5RgENhR8ILbptI/AY19vgla3pfvfFOqeJMchCX4VNaMEwa8G0W0DbtOrKTcdfdouJDbB6UrKAurqqz0I2o2u1x6ao+LId3C59j1h5NIkRyWtLcX85TcmUZz8xiSKk9+YRHHyG5MoJQkqO2oUCNtR4eccBIgXuQpsEREvXmoZ5uEr3b/88lxi2alORAkQaPJbba44BkfWRDeLaa7vRhLdItjN17TDmitSw82a3HMg+FCMHIN0XBKB+vbP+lxn/4/HIVFxGyScQRNVKJf9QPbOiDiB+FGh4uAZCHSXNUyKAnfgpNV9q4HfVbp/JK5G8H2hkt4tCLkVPIv+8huTKE5+YxLFyW9Mojj5jUmUktxXG3ChrUGAqkGAoBZnpycs+C0+143Lz7XcNjvWEk6iW60l1t6Ti00dYhMaxwxlzGOIRfQ44ED8IqgMlpyEtN0EzodcmxVM0gHtKiJYWKLrpuPQ80QuNBKq9lAWTeIVPYurnB1+dyD4ncCEpH2uJcFzmCD0tB7u8Pz/Da0jCaJbcBxSybm//MYkipPfmERx8huTKE5+YxKlpJ50BYwN3mIJJvWe0/dJDU6piIgOSlm7LQh0t/e6HYxZbq5UWNz8AL3rtioOkYw3hh6FJLBFROQDHXAECXnUH+8AYkcQK0F8PIRejRvo69a3/xSum56JGxhqsuvpFfgxOIACnpEqG+ac/L/FP4YEzSewtvcFuD4b3W4Pa7gBrZDKr6lMu29bdFRCTpOY6i+/MYni5DcmUZz8xiSKk9+YRCmx/BNiFZT0rkB4uS5UOLle6XTSiIjF653EDioV9zKYoFvrZrG9A+fXUt1cD3t1bjXwGqQ3I7naIiJo2vEYRDYS985L7TP3otDYy9BrOYdyUhoOUYHYtAfBNiJiDH3lRrDpTQHTYMGZuM+HlfTusYffsIEYfSIZQWW05J57gPP+viR3ocYaWO9rGJ9MObSH0vQIFkSHCpqEv/zGJIqT35hEcfIbkyhOfmMSpaSedH2i1sfsQWxYgqjxLri/2vydilr7rbr0ChCW9jsVujYbPc56r9f3ABNZN+BqJEgsioiY9fSQ+5jjQktHvyl0AMk3jboQX1S63uediqbzQsW0jhxn4EyLiKhh2y08E2NYx1Wp572E6cIbmIpMoh2JXB2IcyMQ3SIiDuA4h3CvyMG4hmP/AM/3j5AuNZwjOSo30FvvEQasRHAvRO63CINAIOYvvzGJ4uQ3JlGc/MYkipPfmEQpFyB+oFsN3hPkLVqBa+xDye+YaaXi1/5Gjz3KYdotWPK2MHhhC8W697nGdqDj0fX1lfSSiHQEveI+zdXt+OtKBbGvaxXyzg+0R+HRqZY2z85VMKJZI7trvpbrnw8k9sNGxdkd3NYd3P8GxC+aODuFPnwtiIokctG+ERHHMNH3KNN7NaG+h/AErEGMW0HsAXoPUr896v3Y51ak/cmZSNBx/OU3JlGc/MYkipPfmERx8huTKOUZCCIEyQpU+vsIJYpXBbviShBzdiDklTX0CqQ+gxCrwdlE5a0k+BEkfEawiET99ci590Wt4tDl8Upix8/U/Th9rudSXuqQk+xA7/PoxzvdOSIebqBUe6/i4E8gxF5DD78NCFUk2qEoRW412K5vmArdLxL3SjoO9HCkQTUkuq0aFWI3IAJSiXfZcy31wKnPFCMR0V9+YxLFyW9Mojj5jUkUJ78xieLkNyZRymfQFHIP45y3oCDuwP5I292jUTZiBNNPNvkwGzFNCyIVn/5PQZtV1LQUjgHl3BERcQA24qedKvuXtV7NxVRV/OOnQ5V9teLmF6e64UT/G5Gv1UL8J1RVXsJ/bG4CxmcPnM5DPSOo5pz+K/DnMHRv+g/ACJ4UGttOn9BH6KnQ9OTBx9B/ACIi2r9gKhT1QPCX35hEcfIbkyhOfmMSxclvTKKUl1ADv4J3wi3YdsnWSDZCEs4iIpYggCzReksThIYdmyyjJOSQVXlFY8l7JsjMQfAjk+YcprEsjlR4m17qvuVzranPTtXKGyUcmabAgLgaETGZwvk86nYk2E7gqukeNCCc7WC9abw3yWZk+f1TXCEr7yFYeRcQIwVxCkIcpBWOXScRsOj5Jm9yFRFp8hGN6Cb85TcmUZz8xiSKk9+YRHHyG5Mo5YtKFYxrGIndgjhEog0JZxSLiLgf6CTcgBBUw3Yl1UaD5EMxqtOmxoxVz0jkDhp4ruE3dwNdWvlc15Zq8jMYid7t1HkXe5gCU7EwNDvV/V++023fwrjqFsTZLYha+4Futz3c+xEIdtRPISLiHJqonkEfiYtW78tRAyPI4RgncE8npTanPSr0uDTZp6+1xBrE5hZmp9OUI9fzG2P+D05+YxLFyW9Mojj5jUmU8tNOGw1OKxVJYgSCH7w6HsAJSGJaBAt5SxDZaGQxlXoW4Miixo4jeOftQUyhqSu9JaagXy0LLem9KVSYurtVcejw7a3EpuN7iWVTneLTQdlwt4fxzhCLiCBN8qLU5+R5rY7DDYiAXaZiIY13J2GYGnjOYOT3kx7B7wLEvafw4F40ej6H4Ios4RzXNM0KnrsCnoc9Pcc9kh+JdhOYhkXP6E2tDWH95TcmUZz8xiSKk9+YRHHyG5Mo5fOLBwlOYWJLVDpaukIRUMWGJYiAEdwDkKa7rEF4q9D5pSLLBMooqUcaOcnIKdXHHq7xHq7lNQhik0qFs/X/UHHo6RsVbQ7PtNff6BDEPRAkmw2/+x+uVIDcNrC2cK8nVL4LLrYtrC25J6m89QDu6WHADPKIOAHn3hk4955Caeys0PtXwe9tOhUbyTtJTxNtl/WIyrNO1/aTTMX5pjyR2M/gdPSX35hEcfIbkyhOfmMSxclvTKKUx5+oc6sowH31HkZi1yoCbkAEXEPpbgQ7uvYgklGfMtquAsGvBVFqDOLQCERAcgf2ua+onJh60v2UaX+8h7Gez+tOBZovHjT2Vw/q8Ds/04Z7JPitHng8+81Oj3MDrroVjESvQMQdGiPoHlC/xEXPd+wYDvMUBOTzA13HsoQBNCtdm6rVdVjD6VBpMw+G4Wuh6AJEwEsQATO4V/7yG5MoTn5jEsXJb0yiOPmNSZSyPFbxZLZVge14rcLgkyWUp7YqDC3/jOmi5PLa0WACct/BYQqYQnwCbifqATeFH6QS0z521I+QJuC26tK7ARdbO4K+cFsV7cpbPW4NzrQPDZRuR8QN9AW8hym99yBWUUn3Gu4VOSoJKr+mSbnHDd+Xy1qF4RfH6pQ8fqb3YOiI39kS7gGIdgU8OwUIdiTiRUQcgLBIvsaGhFgQbP3lNyZRnPzGJIqT35hEcfIbkyhlVw9TNQpwO81B3Fm0KkHMYZprBIs5NLUU3XytHnuaq6hxVqhI9lV+ILHzVkWkKQgvfW9Lkq9uc72WH0PdZctOXX/kflzCYJBbKBEeV1CSC6Lre3BjRkTcgityBS5NKtX+ANdy3aiYVsN9LmF1MxCqaCLvrOcxPiv0fE5fqptv8hzWAtyBxUzdk+13ILA9HEtsOoIhN6DtTXvMj2Moja5BRBzDczuD7fzlNyZRnPzGJIqT35hEcfIbkyjl3R9UUGlAhdhtoRceKCJHMPzgPKfZphG3pQpY70HUuumdW/pPOQRx7wsQ935R6bWcw3lPwYWW99i+1jQcBAS1axA/c7g+cjBSz8N7eH3n4NDbgOvrfcHXcgVDNh5AdL2D0tjbVp2gj42KbsQM7v0OpFQa9rIBR2QfaDgFka1rdX3KQ13Hs09VBKy+hSnLW+3V+ADPQ1+xcwOi3Q5So4IY/aa//MYkipPfmERx8huTKE5+YxKl/NurpxJ80oB7DiQDEr/GEHsGU2MjIhoQaR5yEEVKFYxoEumXpbqqPmv0GM9qvb5z6K03n9BIBeYO+t79BH34aIAFufmILZQIX4GLcI3CkB7jtmeYyi1OSta1oOnJu1a3I9dmB+uwAQGRSqgLEC+Pchb8vge348F3+oxNf9ZrIWGQ+lvWFfRvrMjNR/dlmIgXwULeFu7ramCptb/8xiSKk9+YRHHyG5MoTn5jEsXJb0yilP91rCrnZaeW31Oq0wcRvwQVtw968xzCfwAuSrXoTmBqy+fQrPMCxjHPwTJagmqeQ6zraa5YwdUMndpCangDyv4t1f2DskuNIum/I1XPvaL/PpAFeQz3gHoqkE12h/9NW8dNAAACNklEQVQpGBZ7zHUdKug3ERFRTo4kttqdSuxwrftP4B7Qf71KWK81rM0KmqDSM7LpUftJ2V/D+VCfhTtYb3/5jUkUJ78xieLkNyZRnPzGJEp53amlkgSfe7BPTgaO/e2rT14NbABZg/ByClN3FjAlZQT7diBe7aGBZ7eHOnuYfBMRsYR6fmp6OXQ0NU0uokaYt5nWz7cDRVcaSx4RcQRrOwMhtoDmmnR5DazDHnoGbBsVpbaNPp/EqtF1iIioJmB/HqkI+KzQ61t0GjuC65u3GmzhGSMrLxnIyYodMVzcu2o1h25gKpS//MYkipPfmERx8huTKE5+YxKlJHFoCwJNh9KEUoNYuO8RudZQ+30PYgVNd9kGNHsEoYRElg2882pwNdIYnn1PM9G7Un+TxL1ioFNuEyp+kahFjT7JHUiMe2rgwcwZGYq7wxqrUk0+1fOTuPdQqVBF05pWFQt+5GycTvUCM2j02nbUeFavpaVR7rAnTechaa9Prq2odh/6LNyDiH8HYrG//MYkipPfmERx8huTKE5+YxKlJDGmBclhA+oXOQH3IDZtQZToi2+g9JAErE0ODSVBqFzDtKASnIAkXZHwUvdoXNR0kd6sE4iOwR1YgPuOxL0NiGRDBb8afi+ChbwGGlf2OQQ/hkRlesbovPeN3uddDaW/mcYiIkq4/7cjFb8us6nEqEy7Gthws4SHh7KgHThdp29/Etg3UAa9hqlJ/vIbkyhOfmMSxclvTKI4+Y1JlP8NgH99ltKLXkQAAAAASUVORK5CYII=" y="-7925.160078"/>
</g>
<g id="matplotlib.axis_441">
<g id="xtick_661"/>
<g id="xtick_662"/>
<g id="xtick_663"/>
</g>
<g id="matplotlib.axis_442">
<g id="ytick_1101"/>
<g id="ytick_1102"/>
<g id="ytick_1103"/>
<g id="ytick_1104"/>
<g id="ytick_1105"/>
<g id="text_56">
<!-- 205 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 8033.455078)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-48"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-54"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_222">
<g id="patch_223">
<path d="M 164.424375 8050.061841
L 286.714375 8050.061841
L 286.714375 7922.768314
L 164.424375 7922.768314
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_443">
<g id="xtick_664"/>
<g id="xtick_665"/>
<g id="xtick_666"/>
</g>
<g id="matplotlib.axis_444">
<g id="ytick_1106"/>
<g id="ytick_1107"/>
<g id="ytick_1108"/>
<g id="ytick_1109"/>
<g id="ytick_1110"/>
</g>
</g>
<g id="axes_223">
<g id="patch_224">
<path d="M 299.674375 8050.061841
L 421.964375 8050.061841
L 421.964375 7922.768314
L 299.674375 7922.768314
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_445">
<g id="xtick_667"/>
<g id="xtick_668"/>
<g id="xtick_669"/>
</g>
<g id="matplotlib.axis_446">
<g id="ytick_1111"/>
<g id="ytick_1112"/>
<g id="ytick_1113"/>
<g id="ytick_1114"/>
<g id="ytick_1115"/>
</g>
</g>
<g id="axes_224">
<g id="patch_225">
<path d="M 434.924375 8050.061841
L 557.214375 8050.061841
L 557.214375 7922.768314
L 434.924375 7922.768314
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_447">
<g id="xtick_670"/>
<g id="xtick_671"/>
<g id="xtick_672"/>
</g>
<g id="matplotlib.axis_448">
<g id="ytick_1116"/>
<g id="ytick_1117"/>
<g id="ytick_1118"/>
<g id="ytick_1119"/>
<g id="ytick_1120"/>
</g>
</g>
<g id="axes_225">
<g id="patch_226">
<path d="M 29.174375 8193.981265
L 151.464375 8193.981265
L 151.464375 8066.687738
L 29.174375 8066.687738
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_449">
<g id="xtick_673"/>
<g id="xtick_674"/>
<g id="xtick_675"/>
</g>
<g id="matplotlib.axis_450">
<g id="ytick_1121"/>
<g id="ytick_1122"/>
<g id="ytick_1123"/>
<g id="ytick_1124"/>
<g id="ytick_1125"/>
<g id="text_57">
<!-- 206 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 8177.374502)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-48"/>
<use x="111.230469" xlink:href="#ArialMT-54"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-54"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_226">
<g id="patch_227">
<path d="M 164.424375 8191.479502
L 286.714375 8191.479502
L 286.714375 8069.189502
L 164.424375 8069.189502
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p58c9d22744)">
<image height="122.4" id="imageda2bf58558" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPJNd1hW/GkFNl1tDV1d0cxEGiKImGDNsbQjIs2Csb0MLw1vBv8z+QAUMbL+yFIViyYEGgIUoi2U022XNXd1VXVVaOkZHphWQu6nwBRENeGHznW15EZkS8eDcDOHnuvZ1/eOPvtnGFm53u1VDc3BQSe3UtH43X6pUedzCRWETEzv5SYrfvXpfYP/Zrif3X/L7EzquZxOrNRmJ5lklsVPQldqu7L7FXi7HEIiL2opRY0elILAuKKYutXvcsdB302yIGkUssh2tZbPX7IiIm27XEnm90bZ9VFxKbrvWZ7hQ9id0q9yT2Rq5r+yebgcR+uH+s3/f3r0gsIiJK3beTH9+R2I8+/ZrEftw5kdjt+ROJnS2nElttdA3p2ReZPqtBofkXEdHPNd7N9P7Kjn5nB/eiMSZJnPzGJIqT35hEcfIbkyjF4/pSgp18JLF+R38nDiDWCRUBe4MKT17uqKjVy1SEGnVU1BhkKn7MOio2ZVk7kaUAkaQLsRwlNma91bXYhN4zCUFrWMcNxOizdBxdd9O9UJSOxTUDASqHd4yuQsQCok8yjX14fKjn/ScVgCMiyqHupzsfq6j8sKfnWdYq2hEkIJcouupxvVyF4iEIpBERvUyPJXEvg/NsQED2m9+YRHHyG5MoTn5jEsXJb0yiFC9qdW71QGAb5Ro7BNFtBULHpubfmPVc46uNxkhsIlGDXEydlkLVANxTg44KLL2G30sS2SqI1RBrC32SzovnAMFnibJbxBri9J20jju5ilV92CcD2GMkNE47Kth91gXh694N+HTETqho9wVc43lHRekNCLYk2pGATPuuhONI3BvC9UWw4EeC7wocmhfrOXzWGJMkTn5jEsXJb0yiOPmNSZTicr2Q4CRTweE5iF97IGA8AWFw97k6BiMiemcq5jwFcajaskPwKlsQaChGdEGA6kOsyRVH0tkKoksoo92SmAa/yxkImgQJebQKCxCGIiImGy3LruC6cc3AsbYL+2kM+2mHXHGw3mfg+rsLpbsREYOtxk/0NFhCTetNIie57MpcY+TmG+VaSk4CadP1UOkwlbY/m5/r9+FZjDFfeZz8xiSKk9+YRHHyG5MoxazWMtiLWt1AVN7aA1EjL1XAWKx38ORD6AH4pFRRYwq969YgQJEotd5ojBxZNQg+L0MFIhsJatQ3r20Jbg8FMXBJwnrN4FouN/rsI1hEIvdkH0Q7EveOOhrbh56HA3LFbaEUGdTLVYMWWkN81iE3pj4/cviR6EZuUyzfpZJcKIFuEnYXGxW+X1Rakv98rr0VZxWUu+NZjDFfeZz8xiSKk9+YRHHyG5MoxbRShx/1YaPSwQpEsmmuosRzGIgREbEXep5FR79zAkIHCX4k7lFsWev3zUD8mmzV6dYFISeC14LEvSm459DhBwIrufTylkIjlW5Pa332ESx04Z7IdU/QvQzhXm5sNLYPM0TAjAdyZsT6JQQ/Kk8mNyYJyBXspz8E2scLGHwTEXFW6XCQk4UOxFlB78ESnLd+8xuTKE5+YxLFyW9Mojj5jUkUJ78xiVKQMngJ/wCQAjwH5fpyo589y4d48oNM/wXIwc5JCjmprlS7TyO6l6Fq/6RSS/Nppuoq/EHRCNlnyaLZVu2v4Z8QsoJOwbJNSjFZu5sgtZ+um2r8Fx0dsz0CN/Uba12bHqjw5/AQznN+j81hYhM2hIVYjX0RYJIS/NNDx9F6Uz+NKcQiIiZL3aNkS++Csj/u6jPwm9+YRHHyG5MoTn5jEsXJb0yiFINCmwWSWLFsKVS1nZATwcILNUNcgl21bV01QWLhbK1izEmm1kmyY0ZwvTutGZ2b7oWEsxoaVxJk2yURiWzOTdC5SWCl/gLPUfDVGv/rpV5jv6fPfn2p/SEuG95jPfBE7210vXdB0BxCI80LGn9NdmEQL0kYXMAzWFRs7yX6pV7jCHpq7Jb6DPzmNyZRnPzGJIqT35hEcfIbkyjF9f6uBEmEoIaENNZ6nKuT6ABiERE70ACSatYrGNNMY4wXRTtRklyNJMRdrLQGvkkko/Uh9xU264TPkqOuC9NnCBIv52sVkWgdIliAJIcnMc3AxQZ9ERZQZ59DY80OxFbwzpo3NL0cwHUfgWY7AXHvWab79jzTPTELvWfqI0FNNCtqltowFaqtuLcD/TMoV/3mNyZRnPzGJIqT35hEcfIbkyjF691rElzhOGZ13tF0luswneUIprNERIygfHcOAs8TECvoeshdRmLaDESpCsQvEsRIDG06T1vhDEcvg+BH46/JWUjXSAIUOc5+F8ew0FbkpNgaXjvnSxjPvlTx6gsYx/0i44s+gg6ee1DmvbfRC9qDCTs0dYcmQNEzzTN614KwCyW5ERHDUnOrT7kBe4fwm9+YRHHyG5MoTn5jEsXJb0yiFO8WexKkfmajLQgiEDsAgeVwzcLSDgiLKzj3/S4JHXpuKgcmUepsrf3sLjtaTkquv/WaXXFVtHdqtaHKoUdhS3cgCXkkNLZ17TUdS9fTtjx5AcLuJ+BMu4Bq8PuZrjVN4YmIyEBQ68A7r2r5qGiPkcDWh1J5EmepLJoExKbz0HpT2XldQ/9HPIsx5iuPk9+YRHHyG5MoTn5jEqV4b63CxAC0kyHYvgbglOrSiGYQwyIiBrnGtyCS5SsV/KquOq0qKB2u83aOMxL3FpmWotLAjwgeDkKCGAk8JAQR6wxqUVv+fJO7rMnh1xYSG6lfI426/iR0AMVtMKbRmHO67CNwm0bw8ixhuZcNguFV6P52chUq2/aypJLeJrBEHPKS9hjhN78xieLkNyZRnPzGJIqT35hEKd6uVHDYAYGuhAmxNQg+FZTpkogXEbHaQCkkucbgs10SJeHIHSjB7EOMS3KhRBjLMrlktrXwQsJZrmtDrjEqMSUhj85RNTjJSLyk+6bvXNQqkt5dPJPYg+xUz0G9DMEdeKPUvpNvbXkSNA3ooEEeM9ijO3RuGEAygOPO4bmcxqXEyI3X1CeSy7Lb7jGaTGyMSRInvzGJ4uQ3JlGc/MYkSkHiHjnvCnDKLSoVOmbQr2/Z8BuTUZkpCC8TKN+dQs828krRJGASljAGIhcd13RsB8RPKtccddUhdtgbS+xWd19iAxh8crHR8uTTSsWmWa29DCMiVi1dZyQMTip17pEoRevYK/ReRlDmu1/olN4KSoQjeE9QR0kSAW/AkJRx6PObwgCZ++Dmm6x1bUjcu1zp84toLyqTYxT7DOJZjDFfeZz8xiSKk9+YRHHyG5MoxRR6nAVUjo4yFSZ6BfQKg2kM5PqLiJiBSFaBWDGjPmVULtuyLJNEQHZAtRNOItpP3x13tez41b4OTnm3PJTYO6GfJaHqXqnP6jYIg8/WE/1wRFyuqZ8h9c1rVxKMzj0YTEH98ag0drXVaznbsivuGMRi6kdJb8Eh7NsxxGh/voD1puvGyb0N05PJuUniXlvx2m9+YxLFyW9Mojj5jUkUJ78xiVI8KlR4GUGp7Sugp+z3VawYQ9+7DRvJot5AOWqmAsYQxLRdEF7OUcjR40hEohj2qGsQ/Cg+LNT59RqIe39cXpfY91a6Nu9l6tLLwel4ZzGS2H5PBcQ7mbrnIiKe5jrUBAedZCoMUp+5tr3+2g78oGe6IJU6Ik47NBhG16yE7yTBj8RignoPzqHcGd2PDWXjBbgLsfQbpjmXILD6zW9Mojj5jUkUJ78xieLkNyZRnPzGJEpxr1B1dkRNOCtVrvMlTPEp1JqYN9Ra56B00hSgHG27qnKeUP19SxWfxh+XEGuarkONNI+62mjyO4Wq/X8Oyv4PXnsssf3va/PIzlCfy5u3H0nsvQ/0sx9fan+AiIjfdvXfgk8L/cvmeKP16VOw2S42GqPGlbS2fbDJHsJkpjHZ1Bs4h38A6KnOYY8N0Mqr3/cE+ifM16r296GHwcuM6O6Bsk/H4b8reBZjzFceJ78xieLkNyZRnPzGJErxIFTI6YPgsKSR2JXaQ69VUOPfYImcg0BXgAjYhVgPRhOXIFSWIND0aMwyjHjeFu36A0REjEGEer3QJpzvbnXNvts9k9jBX6vlN3//fT3xzp4e9z39vrf+8q5e3we39fsi4r2f6HP51bkKlY9KvZdjaPR6L1cb8Ak0GSWugQX5Vuiz2m14j12A3fgkVHibgT34jMRiiJ3Uei9PVvoMqB6fLOA70LQ0ImIHGoWS0NzUZPYqfvMbkyhOfmMSxclvTKI4+Y1JlOJkq4JfAXXxSxjRPS91ZPRuoWJaUw10Dc69IZz7oNbPU6NPmtpCtd9dcm6BcEI1/mWDmHKQqeD3SkcFmtdXeo1H31A3WPb2t/V6Xv+WxsZapx8g2G7feE9ixe5P9LMRcXT6U4m98wu9xmtLvb/jTPdEDhOJMujbQLwO4t5b0CS21zCq+n6hx57C3plDc80KBDpqWnpCvQ6gCSrV7pObj0bIR7C4h/0O4P6oz4Lf/MYkipPfmERx8huTKE5+YxKlWIDQQULXGoSOOZQy9kEQo+9rog+uvwMqt4XPTuB61jgeGkpHoSS0A6JUk3g5INcgiJdDKlmmsTsNpcNyWF/HVXd6GtvAZJiYa0luRMTqBA6Fcez05hjBGOn9jX72DBpK0j65VetZvr7Weykbysa3axAlu3ruE3CHUm5QeTKNOqfR2QSN3aZzRHDJcw1CPB1H1+M3vzGJ4uQ3JlGc/MYkipPfmEQpyHUU4LybQs+1KZRG/qGQY+kZ9HEbwXEdEG0qECpx9Db8DpLISa7ECJ7QMs308xcwYWV2ove3c/xMYttT7c23KdRRF9DXbXv3A4lV//Er/WxE3PlYy4nvQmkttZqjod3kvCRxbwDP7/paP3tzNJNYt8djresT/c4nG12zE9hjtL+p9yC554i2zrtlg+BH1LDHaNQ5Xk/rsxhjvlI4+Y1JFCe/MYni5DcmUYplS4dfBULHEgY0kGNp0yCSkfBGgzIuoUx0DwSoHepnhuO4FTqOxL3ZhkXOZUfXke66X6r77pXH2h9v9+fac6+3hHPv6oCNWKjjrPrvexL77b8fwBVG/LLU8uQTEJaKlms7ARlwBbERuCx3YT+N97VcthzyiO7rCxUHX1vofjruamyRgWMUrpsEuiWIruS8oxxocgeSONhabITz+M1vTKI4+Y1JFCe/MYni5DcmUYqLmss6r9LWibSsNdY02ZYmh/ZBUKEhBFRu2d3q95XgBCRxjwSoOdzf+VoFpAgWRC9yXdtJoaLdsq/Tcmc/fVVir0MfvTyb6PdVug7H9U2J3YHS1oiIxyB0LaB0lFiDzLmAvUOiVg6C3xiE1OENfS75mN9j12p9Xm9/pmW+VaVTjMeFiqkPQMi7D3uMevNRXz9yDL4MlJfbBoH9Kn7zG5MoTn5jEsXJb0yiOPmNSZRiXqsARYIBlf5WGxp0oAJG3vAbQ0MIKDYEh98OxIYgvAxhQAeJUiuY0joHN98U+rVFsPg5Wavgd16pAPWiq7FHfXX9vdJRUaoLfQJp5sMGYhXccwSX4BJtxb0FnKcHe2IHSnoPhrqG3degvPhIJyJHROT7KpJ+vdQmhdce63m+NVGn4/3Qc38I7sCPYKDNIxBnaY+sQMyO4BykXF2Ry9Y9/Iwx/4uT35hEcfIbkyhOfmMSpWhbEkjCAjn3ShDY+jn0mYuIw1JFmqNCS173Ovp56uG3Aw6/Abj5zmG4xxMYpkEiHomcEexsrOE7p6Eur0mlos9ZVye/0nrt5ipAkfDZh9gAnlVExAji5UsMXrkKOSq7JPht9LheH0rOxyD4fU0dkRER2Zt6ntGtJxIbPDiV2NGz5xK79YW6A/eeqjg77Kk7sAcTrB/Cc2ly3dJ+XMF+pJym4/zmNyZRnPzGJIqT35hEcfIbkygo+NFwAerrRyW5OUzZJaEqIuLdUoWSN0MFlYONficNti0hRr9u9wuY0kulv1BK3ASVqFI/wwpi8y2U+YKASNNgx4W60EYgAg7AEbkPx0VEZOBi24H1IaivHz2FPuydLjy/TQ3fB9OT4/oRXk/nxuv68WuHelz+EXxaB6cMLvRZHb1Qge6tSvf8ZVfXtcrbCe4REZfU7w8dfiru0V70m9+YRHHyG5MoTn5jEsXJb0yiOPmNSZSCGghS/T0p+yU0KSRV+QY0QoyIeHer6uefLvV6DnOtd9/SVCH4V2C6VZV6BgXv+zQVqND6+UXD+GRSWBeg2JPqWkMMj6MmqnCOaa4WYrJYL2B6UEREDv+GECX8G0Kf7MNxI+hD0IN/TKj3awdssp1dnj7UufG2Ble6PhuYhlQ91n9XJs/035VppWsLrQmiD6vTJyt1w79Mbf992sA+sdpvjPkSJ78xieLkNyZRnPzGJArbe2mcL1gqu2D5JGvpYUctuxERr4N29vbeucT2bqp9clPp9Zw9U4FufqliYw420muhIuA0V0FsQx7iaKihrqHBKUygoTaaJNos17pgbW3Fbeu+IyJKEHc7ua73GNaMGnOWEBuCIjbcgOCXQdPKFYxDn2v/g4iImGhN/vbpQ4mtP9Omnse3de/cn6ht93Gh63AMm+wZPPsJCMg0KSqC7d3UgJdiC9g7fvMbkyhOfmMSxclvTKI4+Y1JlIKaTOY5ObegWWcGE3LAKUcOr4jA9pEZCDzlrl5jdaHfeT5VYfGTUsWY5yDGULX6NWgcWuUqKkZELMp29fckvBE4YaVh1PlV6JmuQs+bd1QYiog4rXTKDYnAqwzq/sE9SQOAFrAnzmDfPX8BDV0/VBFvuPNLPUlEZA/uSaz+7IGe+yPdjV9MdiV2G8aa38t1bY+hR8PzWp2FL2CE+KShgScJebO17jEShisQn/3mNyZRnPzGJIqT35hEcfIbkygFucGoCSe5wbB0EEqEpxCLiHhSqKD29ExdVd2HKlZMJyru/RrEuN8U4HaC66aJNKC5NZZbktA5gDLaZUFOKz1320lKNDWJYgQ1E41gofIUvnOR6b1QSfcEYheZPr8TEGePN1pC++hX2pTzm7cvJBYRcXCkjTnXSxX3Hh+ruPe4UHHvfqZrdnejot3TWkVTGsdNI98phyLal3lvoKknNfr0m9+YRHHyG5MoTn5jEsXJb0yiFCQEkEOMSlHnGxXTLmoVU44bpr18muuxvVJdY5PH1yV2CaLkxz29xicbdVWtQFDhfnTgamsQY6qGeJvv/P8GlQm3dSaSWEX75LSjItk9eAafdFQE/LCnwu6t4D6Rrz3dl9ghPKo12E2pLPcCnJKX4OYj0ZTEPRr5ToJdBAu5XXDZ1hnkb2aHnzHm9zj5jUkUJ78xieLkNyZRCiodJeceCVo0lOIPFbTqTEs4T/pQWguiyFMQXkiMWbQUr6iEtsl5dwnlmlSC2VbgoQENJPjQcd1cRaBersIZORAjuDdjAQNaaLgLXQ/dH4mAJJLR/nwM93IHHIMREXu5OgRvwDCWPRAWaSfPIQ8K6lsIQlwfrvtloLWlGJ3bDj9jzJc4+Y1JFCe/MYni5DcmUdB6RyILuf7WnXbDIS5DxbAmNoWeewK94gqQYyZb6F1GwzS27QZYkMBG7rcIdrbRsSjaQO86EtjIzUXTd8eFilz7IHwNQOSKYKFzDetTtHRFLmC9n20nEqO9Qz3qLmCmBa1NRMQJiGzPYH2uwSTpA9h3fRhoMoaSZaIHQuo00/trEpVxmA4JfnCN/H3GmCRx8huTKE5+YxLFyW9MohRtB0GQQ4gELRIrmnqSkcvrRU1ik36exKqmUsg2kLhHAksVLMaQSEpOKxLyeCCKHjfM1cV2HYSqV3KNHcEAkh5Myo2ImMOUDXK2EfQMdP4t3zP1qKMBFDgRGUpWI1hExIEocD15Ac8FhNMd0M378Pz6IPh1QZy7ALdoRIOo3NIdulPo3vGb35hEcfIbkyhOfmMSxclvTKIUJA60pe1wgCbHUtu+cPT5CvqU9UFgy0HI6cMkWRKBqIyZyp0j+L6phJPKZUlsLEAIIpfeqyDuvRt63BswkLfboI++yPV6nkO/xRmIn5cdjdW0tvDsaYgID4tpJz5HNJW8guhKbk54pjw9Wc9LZb41OfzgOdcNojKVjdP1tM1pv/mNSRQnvzGJ4uQ3JlGc/MYkSlFCv7cm8aQNJNA0fV8N4hC5mNpOrCW3Ijmoii2JMXqNCygRpnLgJmhiLbn0qASTBKNDEPzeCC07/fZS7+Wdrk6N7Xb5Xk4v9TyfbGFabqHXeB76/GYbXUdyd5LDj6Ap0n2Y+BwRsd/VnpD7hcZIBCbhbA1i3AJiJDSTO5RExSYh/HKtgl9V67Ftez36zW9Mojj5jUkUJ78xieLkNyZRnPzGJEpBSnOH/IotIWW/aXz1dqPH4mQYmgID/wAsQSWlfxTIlty2D0HTRKIeqMV9UPt3INYNvecBWEGPOvpPwWtrXZu3clX2X/3mucTyYYMl9hNdiyfneu6HUO8+gzW73GiTSppm1LaJKvY6gHr1iIgD6HdwBGp/28ajM4hRk1ga+U7/WaFVuaEvBf0bMl+Dbxuw2m+M+RInvzGJ4uQ3JlGc/MYkSkFCCYkfLBjocWR/JVtiRMQCRB+ihtp9bOII517ApKG2jT7p/kjYi+A6fRJTsR4cBNYhfN+1rX7fYa33N97V9c76et71JYuX5xO1DJ/BVKEZWHmn8AyWYO99GRv4VWgvNo2/PqAR3R29PxLjXkDsjMRLsIGT4Ed7pG7ZMyCi/frQ5ztgX/eb35hEcfIbkyhOfmMSxclvTKIUh+VYgjn8JrR1CFHtdlM9/gLcSSuoT6bxy3UO30lNIVtOOcGpOVRn3zD+mHoJUCPGKbi06Hqu5ypKjaAPQR++b7FQ8evkzlBj5xqLiPg0U5HsONdrvIAR7fT88RmgKAVCMzwXcoFS74SIiP1MBe2bocfiDgU9dAH3fLaZS6zJpXcVEqmbJlyRkNckDrbBb35jEsXJb0yiOPmNSRQnvzGJUnynuNbqQBJEqCHheaYi3gKaNUZEnHWmEluD4LeowUFF03lAlGw/daVdGXMOoltERAfGXZOoRWIOCYslqE0jeAgk99xfaMnqZKXneFbyPZ+Ao/IMhK4X4GybQYzumZ5VF5rJkhDbz9s1Ro2IuAajyQ9raMwJS7GCPXYBo+GnHd3fuO/g+l5GxKPvpD1Gx2WwP/3mNyZRnPzGJIqT35hEcfIbkyjF3y5U1JjBRJRziD0D19cXIF6d5DM+OTi1LjdQ/gtOQJraQk7App57V9nCcfTZJrdip6WLjRhAmfC10NgIeh5eQKntQ12GeJ6BG69hFDT14ZuCe/IMntUExkjTmpHgR+Xl9ExH4H48zNmteABl0GO47Qq2yYRKh2F/073gPWOJuN5fU3ly29Hbbfe83/zGJIqT35hEcfIbkyhOfmMSpfiLH55IcHlf+5SdfqGusc/O9yRW99VR9QhKRCOa++Fdhcp8i7U6yTIYItF2CEjbGJWdRrC4R70CqSSY+vXRyhzD/T3MdG0+36hzcgKiaVPZKcmACyjVJefmtNa9U0HZMT0XcumNoQcf9eW7Dn35IiKG/8fONnr61K+PYgNwB9K1bAp+LtOy3dq2FVj95jcmUZz8xiSKk9+YRHHyG5MoRfmDP5Ng/vk9PXD8SGLrD/S343h5ILF7BQt+T7u7EqNBHrNKhY5eoeLJfldFySH0cCPXGJVRUilq08APmhrMIqAeR5Nf73bUKTcNPe7xaiKxk0pjbctqI9ghRuIgiU10HloHcvORc48m6h7AtOJRQ2/FOVz3MRy6BCXvHMqYa7iXHRDyCnivjuE4Kt3uF2DRjIhFr125NOUL4Te/MYni5DcmUZz8xiSKk9+YRCmC+qaV0B9vBKWVuyos3HysotSbIO5ERJyVKg6SoLboqQh4o1R34R8V+n1vbECMAc3uEZS8fr7VUuTjWt1zERGTWgc30LAKGuRxDp+dkXsOJsSeV3qNU5iKvAZxrqlXXNt+hvR5EgZ5qq46QWmKbS/a9TdcNJRaP4JJwjVMrKVPk7hHjEDIG8J1kyhZggOx1yDETgsdsDMD1x8JrCsoyfab35hEcfIbkyhOfmMSxclvTKIUmw9/K8HNuYpI9QQEAxAL92CAwWHN/dWOQAhcgZC3BjHnnVzFj7+Zq3jy3quPJZaXKog8faTf94vQ2M8a3Fd3QDKiMliCSjApRqIdQQIbTYNdwjCUiIh6w+LZVai8mcRCKt8lZxqJoQSWHIOwFxFxsdX9WLXsr9cHAXIAot0YjhtB78AeiHvt7vh3kGuQXJHrUtdiDs5Zv/mNSRQnvzGJ4uQ3JlGc/MYkSnH6r+cSzGAYR4BjqYLJr2QOa/qFIZFlAOJJDl+6A4LKCMTG8VvQ/++mlhiP31Pn3q2PLiR24/NXJBYR8c89dRd+DMISudi6ICKtQBAjmkqMr0ICYpPgR8IiiXs5PNkODFNpez0UK3BwBvSja1gGfYLsvIyGkuCr9OCehyTuwd6u4FlR2fAZTDqOiJiDaEsTnndABKR+mX7zG5MoTn5jEsXJb0yiOPmNSRQnvzGJUnz24JoEu6BA9ktVGnOQWJcbVR9n7IhFm2UXfo9IYSXOt3qieqbXWA60ljy7pWr93ht6fX91R+3CERHZv92S2I/6urZrUHyXoD5fQO3+CifD6HrX0KB0DWOfZx1u9Ejjz8mi2wV7Nx2H52g5IWkceo43oUfDqqEFwQbiJ1m7KT478M8MWXnJtksq/tOtrvcF2G7Jiv27uH7nEo5tmsR0Fb/5jUkUJ78xieLkNyZRnPzGJErxOdTUlzRhpYIYCBCXIECdZVy1TLLEAGzEXRCCqAnnEo6rJmC9nKvI0hmr5bezrxOFuu+rMBgR8f2T30jsPz96TWIPQ0WfKVR1k7hDQhBaVQFsolmo8BnBgh9N2OmBiEhQo0+amkQjrG/BsPLvLvWey4bK+P2uWl2/AKvrFpp6jsG2OwQF8RTEvQcbbcr6tL6Ho9p9AAABhklEQVSUGDXWbLJsUw+EJfSMaDu2229+YxLFyW9Mojj5jUkUJ78xiVI8gtp9MuT1tyACbTS2gJ+T8w47lkBjiZKEKTh3F+qlC6oRr2Dc9ExFku1Up9x0ShCGRtyMNB/qeeZwg1MQeCYtp/OQuENCDlGAEDtoEPz2Mr3Hg3IksT4IdCRALqE+nXoB7MI49Ru1HveNg1O9vje16WxExDce63eenur9deBZbcG597DSz/5MNcVYgDhL4h6JuCTsRUQsoP8CjbSnPg0W/IwxX+LkNyZRnPzGJIqT35hEKY5hNDX9IlDZYhdKI6n14KKlCy2Cm3rSSGa6nj64vKih6Halx23B9bfN1JEVFTdXnD4AZyMIXZcwQaatuEfOLYLLZWENwekWEXHUVWfjtwotTx6CiHgK93eyUTGVyk6phLYLovBgrOcYvM+NVXde1VLrm31Q6Jb6DKqf/1pi638BQTpUBOzB2pDo+jLPmY6dr3UtKFbVHtFtjPk9Tn5jEsXJb0yiOPmNSZT/AfC8eDlLOF0HAAAAAElFTkSuQmCC" y="-8069.079502"/>
</g>
<g id="matplotlib.axis_451">
<g id="xtick_676"/>
<g id="xtick_677"/>
<g id="xtick_678"/>
</g>
<g id="matplotlib.axis_452">
<g id="ytick_1126"/>
<g id="ytick_1127"/>
<g id="ytick_1128"/>
<g id="ytick_1129"/>
<g id="ytick_1130"/>
</g>
</g>
<g id="axes_227">
<g id="patch_228">
<path d="M 299.674375 8191.479502
L 421.964375 8191.479502
L 421.964375 8069.189502
L 299.674375 8069.189502
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p212d85d928)">
<image height="122.4" id="image7eb671a808" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnVmPJNdxhSOXWnrvnn3IGZEmOKQWWrRsyZahBwN+MeAH/2QBhgHDgFfZtCWK4mg4a08v011d+5KZfqAtwH2+BJIePfGe7zGQVXnzZkYlcOpERJaX95u4RpZl10NR5oXE9vpbEru3dSSxu719ibVxUc0kNtksJNaELDvKTNe4VfQltpMPJPZ+eSCxv1rr9f3Z0anEIiKOPlxKrNjT9TSrWmLz57rfv/7ylsQ+7+m6z3Pdh4tMzzHNKonVjX42IqKA+5+HxtaNnmcN92WY5RK71/Qk9v5a1/JutZJYn66vKfXDEXFSaPys0Gs5zfU7T0PPfVzP9fuqqcRGG32Op/Aczzb63KxrvVcREXnHvFxudCPnG70WvSvGmCRw8huTKE5+YxLFyW9MorBKAmQg+OQg5BAkDEWwaFfBsXTc20DXUsE5TkAYOr/Ywe/cOVdBZZCrcNNs9DzLiQp5kwAhR5cTa4hVmZ6jTdwjSNzrUQwEVrrTg0Y/uw2xAdz7rm+nouUZ2apBgMxhPXB9e5mmxxLE4jVc9brRe7+qNxLLMxXnCrh/Xx8LNxuoYS8auP9+8xuTKE5+YxLFyW9Mojj5jUmUktx8JOQVucZIgCBxbtWo0BHRXZgoYD0k2vVzFWj6INr04PtIYrkA19dLcP1FROwdq1PrYKNusLoCd9mZiohvChXTJiAELUBsIvGSaBOQSNwbNrpnAxKB4fsGsJwjMLHt1XotJJrmsA+bit9jfXiedkAEXNNegHsuMnWMruA5meT6PNB+d421UcGeUQ4RfvMbkyhOfmMSxclvTKI4+Y1JlJJKAknw60NpJH2WnGRtgl9XSLQjEbDXUfCj0l9iDsLZOQhxEREnYxXtFks993StgtETcI091YrXuISy3DkIfhu4Bxu4FhLsIiIKcN9twbHk0tsGi99hpee+W6sgdnOoJa+9HjjlVrqvVc3XQmsE8130QNDcBidgCfd/munNOoHnjkRqEtzboNwiRywdh8J+5zMbY75VOPmNSRQnvzGJ4uQ3JlHKHgh55JQblCpq0HHEpqUnGYl2JCKSQEflpAX8ltE5CHIbrsFJNm75ule5CnnHG42d9VR4eVKoIHrWaKnnqqU0ugsliE0liGFt0JHk3CNx72GjQt6D+yOJ7dzVsuhqoWcenw4lVo9hgRFRwHq2obS2AsFvsqHnW2PHPRDN4ZPo5vsmIiAIeViq27HXn9/8xiSKk9+YRHHyG5MoTn5jEqXcLtVdNixU3BtAjAQ/Et3aBAx0EoIzagDnIbcUlRN37RO4AtvXNFQYOgHXV0TEtK/XQgMsXuMgCBXEJuCAo1LdEvZ7CHtIsbbS0RUMxSBBjNgDcffeLVXjjn4IQtXNQz3v6URjS93D5YLF57oGJyi4BgsYftJf63FvGhjEAveFpNmurtQ2VvA8EpiDHcuvjTEJ4OQ3JlGc/MYkipPfmERx8huTKOVBf1uCg/z3q+yThTGCFUiy7dJxBNUxsxILtt0arKWgAI8zVlz7sBdUQ38JKj6NJZ/DegiyPm+D1XgNsbZdpQae2/ie0HPvhirk+/egmeVtVfYz+CeFRppXaz3vCmIREVO06CrDAv7tqfSz531d4wVYsekfJcqrrNTv21DDgYhYVHqetmOvQ/80+M1vTKI4+Y1JFCe/MYni5DcmUco7/QMJYsPMjqLbNxmn3XWyTFeL7gZiFU20geOmcN4RTNdpa/5JQiWtewqC36zS2LqlB8J1SMhZ5ypK1iVMQmqxKpfwnds4jhvExkJFqXwIoivYdpev9LMXT1WQvhzr1KTLSgXNiIgxrHtDojSIxRc93Ycv4fou4P7Rvd8C0XUHmreSIB0RsYBzL95CGPab35hEcfIbkyhOfmMSxclvTKKU75Uq+JG4R261JbiLSMQjgS0iYgVusDWJdh3FPXI70bQgOo4ENhJt2hqCUpwch7hGaCjZdcxyRc4tELTWuDctTjLYswmIezMQhlc1HHeszrbVEz3u1fmRxJ5nKohNQahcw4SjiAjo/4mNWTfwzF/AhKTXjYp7tF84Qh5EN+qzQMdFRKxhXPkYBOQlrIdctn7zG5MoTn5jEsXJb0yiOPmNSZTyw1C3FDGGpo4jaCg4JxEP2xlySXAJn9/AuXOYNlPVelxTw8hwENiWUC5J0OSTiO6CX5v4eR0qjcYSaFgPlY4OQFgiV2IEN58cQ9nqKzj341yn6Sye35TYFATEZ32NneS6miWssG1XKxD3qLEqCdUTEM6mte5DV2G4B7Eh3IMtuFcREQ3EURaGzSDXoN/8xiSKk9+YRHHyG5MoTn5jEqX8aA3CGRz4uoSJL/DTAW3vom4RlrC/HjmyQMGYghhDAtsyU4GGjmsro+zy2YiIAtZNTruGRjLDbzB9lkSk7UIdcPuFirj7UDo6ANHt6zUqUxD8noArcg09Ie83Lfa7a4ygP+II7jMJdm1UJLp27OtIDsg28boLXXtRtve8VEgwXFEMrsVvfmMSxclvTKI4+Y1JFCe/MYlS3gVnG4lSvUYFvxJEwANwffVa9BkqHSYxZwIurXMQ8ipwgy1AqFrm3YYskCDZNta6q5iDw09AyCP3I41zph5wJO7tZCq6lS1rXoGoRSXUo0pHi0+hp9xrcP1tg1uNxNQVnJdEt7bekbRuok1k+31C5dzLjqW/ERFDEGjJDbgGRyztgt/8xiSKk9+YRHHyG5MoTn5jEqUsQSgpoXfZO+DmurtSsWIL+owd7KgwFBHRQFnu64k6xJ6WKmA9K3UAwgbshV0dWf1MhSrqe/dNhpLQoISu045JBKRhKjswCKIPwhCJq20iV9cBLbQ/Cyh5JRFwCGXHZcd30QbuKa0lgkVEEm2pvJn2gZ6mrmIxicIliNltDGF/aJgKbWMFpe1+8xuTKE5+YxLFyW9Mojj5jUmUcgbi0D7IGvcOdarq7R/MJTb4yfsSy+58gCevf/tUYkc/P5VY//ENieWNusY2PRW/GhABByCSjHMVpeYgVNEQkDYG4KojoQvFOBClSBCja6FecSThtQl7BT0TMDxjBeLuFCbW0p6tKo2R8Em9DElgqzs6+SJYiK1BeKN7QAJiV3FvAGIvDe04DC6BvgvxEkTzHqx7RX0w8SzGmG89Tn5jEsXJb0yiOPmNSZRyBuLQPhx49J2ZxIZ/8+cSK3761xJrJm/w5M25xovBaz1PocLSTqUiy1Gt1zItVCShicMZTH4l4YymCEeweLYH7jsqwezqvqNfavosxkAEGrT89u82Gj8CsYr63pEYN4VJshtwjK5gCMzbltqSYNgVupY2J+F1yI1Jpbp7IArfaRH83qmgzBsMgoNCz73I9Fn0m9+YRHHyG5MoTn5jEsXJb0yilDQkowduoMG7KhhkH30qsfzmA4ltTr/Ck9evzyU2OVMn2WSjAsgaBDqiIAcUldBSuSUc19ZfbR/Evdvgijtq9PPbsMYBCTkQ4yEpENNQ7ECZZ0TEHsSPoV/jBAaGzHMYsgEi2QZGw9D0ZHLZkXuOSqAj+F6TCEjnIXGX+vA1VDYMzye5A+kpbnuySdw7qnSN2/AA1OB+9ZvfmERx8huTKE5+YxLFyW9Mojj5jUmUcgDK7taWNmHM91XZDZjOU89Getyl1uhHRNQXahlezFSVnEN9OUwWj6qjyk1NPWlsM0H11xERN8A++bDWYx+u9dx3wf56a1d7JRze1v3q7an6XENj1cVI/zGZTXTNERGjqfZKuGi0sSqNh94Fu+oaJgh1tc6Suv5NaPsXoNN64N+HJTQobRvbfp0p7NcI+jucgZU6ImK/0Pt1ANtzC9bYrPU8fvMbkyhOfmMSxclvTKI4+Y1JlHII4le/DxbGBUhnJ88kVEMtcTMBETAimpWepwLVbg2GxxnYJ2mU9wKsyjj2GafzKFQXHxGxDTXwdzb6De9nKtq9896VxPa+r99XfqKNULMHD3Ux0Bxz94svJTb925f62Yg4/6WKe1fwmqDGlbsgiPYK/T6akFPBszjeqPC5hl4AFdzntjUS1DcAG7iCCEh2Y2pamoGwewE1+m2Ti2g6z50cei9Ar4s+WZDxLMaYbz1OfmMSxclvTKI4+Y1JlHIB+T8Fl93q2YXEil/8m8Sy1yoiNSfs8NucqygyX6kTaVToGs+hkH0Eo8VnIOTh2OaOjSKpPjwiYhviR5We++imClhb9/W44v6RxLI7dyCm/ROirw69fKFj0ovtF/rZiFhAz4EFiKkksW2BKLUPDSkHIFTNC3WmTTa6bprO09Ka4K0g1x+Je9QLgCC34gxExQm4/iIiprne1xm4bCeViq5jyCG/+Y1JFCe/MYni5DcmUZz8xiRK+awPZbnrHYkV/6mKyq1zFfeK/nOJTd5AOXBEvDxXAesraAr5FPSPMxD3puCqolJdKkXtKtrsQHlxRMQBNE28kamYM9xRUYuqTpupCl3N2ZkeONzS7zu8pccVcM2DthHd3cZd8wQhjZL7seo40YZKcnOI9UD4iogYgHhG4i65C0nc6zpAqGvj0bdlCV/5ptS9OIXt8ZvfmERx8huTKE5+YxLFyW9MopSPCxXJLkE8Odvo4O7t53sSW4LQcc5aTFwMVWSZgZC3AGcUleUSQ/h96zp6m0xje8H91XZgOf2i2xrrBbjnLlXwy051pHk2VNcXmt3A4UdjySMiCvgGmmhEkMDataya6EM/O4rdKHfx8zvQU3DeqOg6hnJb6uHXFRpfTkIjlTa39Ymke4Bl7JBvp3AP/OY3JlGc/MYkipPfmERx8huTKOVxo0LHJfwmPC+7/U4swCm1gHHMEREVlNZSyWxJZZQQox5nB1Ce2oOR2BMQKqkceNXSK+4CSiZPlirG7Y50v0sQPosdPXe+UKEq1hCbTSXUXGofxWreTXSL6P6WIOF0AeLXFJ4JKrXeLXQPj3J1NT4qVHyO4Pt/kumeHdcqiE5BGFx1HCyygX0oQWjeAgfiVovgR3t7ksMzCjk4gmvxm9+YRHHyG5MoTn5jEsXJb0yilCRqXHadoArCAh3Xxha4r27DgIdtKKMdgHiyB+LOzVqPI6/aBn4Gx6EOrzewXxHsTFwOtTx5MzqU2EfwfUVfh3sUN1QsbK4m+uG5ilfV41cSmx1zr7g1vBMKsA2S4wwdfvCcLOE5IWfbIfSt+zjTkvOftoiX90oVP083+p1Pe+pgPYGLvoD7TM/EDMrLSfDrKmZHsEj6BnoALuG4KRznN78xieLkNyZRnPzGJIqT35hEKcmJROLABBxQNLGUBh1QCWZExG5PBbHbmQ4MuVvr5wfg0tsHrfGoAlES3Hzrnv4OjmCwxKhmwW8cUCaa6f7MoOfebHxDYo8+h30YjyW2faqTkqladvpc9/DVKxW5IiIuQXhbgwZF4t4aYl37KN7K9Hl4r9F9+NlChc9P/vREFxgR/Q9VYP14rVOR1y9UGJw+1zW+fql79kWtAuTLnm7YFQifU3CMXoBYGBExBmGRBPs5PKMLO/yMMf+Lk9+YRHHyG5MoTn5jEqVE0QbcVyTkUSkjQYMTIiJuQ2nmRxs99r21CiA9EpHA2dTPdd3zWoWczUaFpXFPha8rEPEiIqYosuixn4NDbDTQfXhWa4nqw2fap+7eVyrOliAiXTW6r8clC7Enfd3bk1yv5azRc1O/RRL3boO49yFMl/3jtTodv/cX2stw8Jc/klhERPbeBxosdC+K8aXEhq90ivHBZ19K7PDvdI1fnKmI+wSepxfQb6/hLoxYTryEZ4zEvSU8n37zG5MoTn5jEsXJb0yiOPmNSZSSBAMSHKjMsA9OMBL37pXcX+17jQpdP6m1RPXdP9D+c8RmCcM4VqqozKYq7q3n+tlzEIZOWqbBjkHUWoFT8hJ6JpJL6zU4HX/TB0dk6BqHcK9WcE9H0MsuImIMz8QY3Jy0birzJefe+yDufbpWF+mjT3Uycf+nH0sse/QDiUVEZDcfaHCj94BGJTfQCzG/cyCxgwdaLn3jQs/xqtFrpkJkckl+HYfSaLgvNGyEBHu/+Y1JFCe/MYni5DcmUZz8xiSKk9+YRCkXYPsjZTCDGvgBNOA8KFTBfzfXppwRER/DaOrvfHwhsZ0/4n8LrlOdqjq7OgVF+jVMkFmqur5bg5JesNpfQH8B+teELNF0D6aZ/lNwkaka/hLuQR/+eaC1rGtueknjpUl/puNoJPYNGGv+cK3nvndD+xX039V/CrIdrZ+PlmtpLo81dvpSDzzWWH16rrEz7QXQbPTeZ7A3XZV9stxHtPwLB3lZwv2n/PWb35hEcfIbkyhOfmMSxclvTKKUVLtPwkID45NpsAgJEL2WCSRdf3mybRB9YBoO0VupXbg30msuoAaeqt1pvHcE21oLsIxmHUc3EygMBlhVgYJGn7ecdwC2bZqmswvi3q1c78udSgWoXbAGN7Xu4eZUry//1WONnak4FxHRzPXz9bHW7m/O4TgQpOuVrnF6qmLxVaWxiYZw5HvGeh/eA0qinVxPlOFkIGNMkjj5jUkUJ78xieLkNyZRShL3yOFHgh+5htbw2VlLo88LqJcfn+r45O0Lde4V98n5pZ/N90EwKqneWX8HQX9q/bUcgKtqCJJhAVOAWEJU5lBnP6nU9UcuwgrEvRwEuwgWKnegTwM14bwFNevQDzQuaIrThdbKX/6z3tP9z/Welr3X+n0RUcHs9cVC113Vep6ygBr4XC9mPNfve16q6HYCzWQndK9aHH4lPH37cA96cP+G8Fm/+Y1JFCe/MYni5DcmUZz8xiRKSc4vUqBIGCTXENHWkHACp57PQITaaHlrdqijkrOhijbR1+/rvdBJLASVYLa5FbdDBb8aBDUyCNI30o6VIErSfSEnIN0rdIwFl+UeQqPQvQauGdbzoqCYnncAAuk+lFUfTHVy0XbNz1gFm7vsWN463Oh3bkPp8BRE3N+WetwxuDGpWWqFTx7fwz6Ie7uwjzsgSPvNb0yiOPmNSRQnvzGJ4uQ3JlFK6vdFIiC5+XrwWeof1+ZYWpKwCIpYtgdC3oPv6HH7OhY5hzHU5X/phJUc6ijpl3HQIviRoEKXTVNXupKRIw8WSSW5NHFpq0XwO4RpQdt0X8H1OYIR5JdQvrsCJ2gBz9geOAFvgNtwt+U9toGbsIJ7QIPXt2DPDkDkXMI5jkOv+bLjSPM2KLd4kpbuxQDyym9+YxLFyW9Mojj5jUkUJ78xiVIOQTzp2o+OjqO+cG2C3wT6ly3XMHCgDwIkjKsOcFrFWoWXeq7nXddQ8kgutJb+aiQELrDkmT9/Hdpbcm4NYL83KF6Cw6/lt3+XypPBXUhC1wKEvCm42KYwvpzcinPoR7eE54Ycll9/p7IEwY+E2B7szw48FHSON3B9NNIcB+S0iMr0TNRwr8llue4oaBtjEsDJb0yiOPmNSRQnvzGJUpJriEo9+9QDDAQtcn2RABERMQXhZlZBGex8prGLM/3CE3XuVV88kdj4mYpIU+g9R/Rbhnb0Ou4FlTfTN27BfdkHd1kfPs0TdZW2X366RurDR6WxK1j3FMS4OXx2UavbjYRBWviiRfAjyOFHw2tIJB13nIA8A5GT+lvSZ9uuhIRzckpOQ69lDjG/+Y1JFCe/MYni5DcmUZz8xiRKScMmSNyjQQAkiFBpbFunv4LKd2lC8Axceo+faOz4QmJX/6KC0VevtPT3DZSOYg+/Foceua8IEm1ov7dB3HsA027vbrqVCF8Veo5Zy08/TYnd6uhMHMIgFnrFVORMg9gG7sIMehSuQTxug8S9Vcdp1W8DTsoF4bPtSmjdOs4mYoF9Ae3wM8b8D05+YxLFyW9Mojj5jUmUsg9+IhIhSPogEYFkr2GLZ+kAykT3+irQ1RMQeP71pcRe/YcOc/hsfl9izwbgxoNroRm2beXJC5BpyNlIwiANAqGedPdA3Hs0vJJYv6/C0OnVjsRe1FAWHRFruIn7lZ57CNe8W4MDrqdi6gL6BC4ymEIMfe9InKNYBIt2S3Lf1eTI+/+LgH1wyQ6gfL4PZdp5i3ZMV9h0FPeWcH1+8xuTKE5+YxLFyW9Mojj5jUmUcgeECRIMqMcZlazS4IWyxf22BQ6/GnrpXf5KRaTnx+rS+8felsQ+6y8kNoZeakNwOu7C3rT5+Ki0knrFkbhHAzG2axoYoeu+cUfLnYe3VdwZvgCX5KtDiUVETGlabgZ7VqgE1duoqHVVqbB43NNrJhcp6WsrErlg/yMiNigOkuDXbXgGieHYcw9D3Vygbcd1fVPTXtA1+81vTKI4+Y1JFCe/MYni5DcmUZz8xiRKSaOlSbnu+g9ATU0rW2qtL3KNf1arRbc+1djjgX72MVQ3H1caI+WTmpbuwLQYskNH8L8A1CuBGnMeQu3+TRCfd3JddwH7UO7BPxf31Sb7zmqsJ4mI+UwV++FQzw23OlYjfZ/06V8h7OUA//7Q8wQKPqn6Ed0n4uyWOgZ+ACPRaSIVNcGlMek00p7W1zbGnY7FvIS9WEIPBL/5jUkUJ78xieLkNyZRnPzGJEo5gPynoTQlChMwghrEijEIbBERT6Bh429hcA7ZcadV1zpvPTfV2ZOwRGxAyIlgcY/6GFBjzttgab610WvZGoDoVkFvAhhBTj/zO4cwDScihju63yUIi4srFcRqeCZWNM0I7n3T8R6QcEb18xERA2jMugVC3mGuFuT9jiPRsUcDWddhfZdgm34DPQwiIq6apcTo+Z7DlKM55Ivf/MYkipPfmERx8huTKE5+YxKlpOynmnMSBjcg2pALiSaIRERc1HOJvdmoI48EDHJpDaFBYgniUEF14wAJNG2SVNdjG9izAg7soSipxy0n0HMgh9r9jV7z9JIbeC4WIHSB2FhV+p0LEDQXNLEHm7/SPQXBDlqr7kFD0IiIQxD3boce+xCu5TY0TCV/5wIEzSl04RzRh0Fcn2XsVpyQcFrrGsntSDG/+Y1JFCe/MYni5DcmUZz8xiRKmYETqQ8qRAZiA5VlliR+BAt+o1qba04qja1g2giJQzRNZQvKcknwo1JN+mUkd2BEi9AJM1YmELvIVQnaLzRWrrRBaX0O49RHeo7ZSoWvZ6FlrBERJyADDyd63G1wIS5B6JqDqIXjz+Ee7IC4twVuvlstgt/9Wo99X/XQ+P7gUmI3H6j4vFnqGk9P9iT2pNqW2DiHJwr2Jm9p4Pm2DUD1PMaYJHHyG5MoTn5jEsXJb0yilFQISYJfDuO0a/jtWEAZ5AhcdhERU3Ci9cHRRdNUSNyj40pwS/VgjSQCdhUVI7iUOQdxbwzi52sQgioYa30JDsZ9ELQCBK3zUq/lacFC7GmjomsPhLx7pToEt2HPZrA3axBI+/A89eG+HIFrj4S9CBb3vtfXseYPf6yKZvlwX2LVK+17OB3DWPmpCn5LcHeuIdZWXk5CYFdxj55vv/mNSRQnvzGJ4uQ3JlGc/MYkSkni3iH0lNsFSxaV/i5Bfzgp+DfmKleH2RvopbbOoTcfuP5IjKNSRuoVR8IJjWNuE2MaFPz08+T6Ow0VjEYgDL6AfRyAG4/cc1Moqz6vtSdcRMS0Ywn1ea6fH0DRK7knqe8dCX67IBaTuPfBmu/Lh6UKeQ9+ONJz//gDiWX76tyL6rGEchg+s4Znh3KDhOL2snHoe9h69P8Fn+9OnzTGfOtw8huTKE5+YxLFyW9MopQ3Qdy7B73LjsA91wOxYg6CT69h99V5T8W900LLVqmHH04shRgJdCSckABVYt9CnqC67jhNlvxY1OOQZJyqZXprF3AaLMS+jndzVJIwSFBvRRqSMcw0dgA9Ad8BY+IH+QzP/Z1PtFR3+DMV9/I//FQ/XOhzm59fSKzsneC5u8Cuve50FQHt8DPG/A4nvzGJ4uQ3JlGc/MYkSvn+SsWdu4WWdA6HMLShBpFsreLODAYiRETcgT51xyD4XUGvP3LukR5GLj0SWeg4mrxLImBERA2ThDewoE2LyHYdEuiWIAziPgAFrJv6MkawA5LERnRK0nfCJS9pqi58lIRYWnVZ8L6WR3oPs3t3NfbOI/1wXx2o2emxxPbuPNPYma5nt9S1zOC+zHA0CD+PdF8pVkPpsN/8xiSKk9+YRHHyG5MoTn5jEqXchdLRAsSBDYh2s42KeyNw8y0KFpYGVE4MQxr2ofR3ndMgDxXdsDcfiFJU8tgHgaVtoAIJKldQMktuRYLWSCLgBpyXJM69reDXNqzkOj0Sqzpa1mhy7wh6MP6mB89ipf32IiJmP9fn8bvzf5DYcKYOwezRD/QLB+pC7N/WC9yHvBrWujcDyI1hyxTpAbgdyT25BPGZpvn6zW9Mojj5jUkUJ78xieLkNyZRyhOYYntRqYiwAnHoDQyCGOUq2tCwgoiIFfW9g/PswBrnhQovBIlkJGhhGSQoVdst7qsCSlSpVHcC10xr7HccLFJDDMud4bx13daPsNsgCVoPlo52dFkuYI0vYYAIlSL/EoaKRET8Yqj35dE/PZTYj/5enXvf/e6/S2z7Edznl3pecunN4FU7gxLxVUcXaARPNi5BqF6BAOk3vzGJ4uQ3JlGc/MYkipPfmERx8huTKOXnKqTDTJmIUaZq4RuwES6oaWWLM5Tqk+nYHvxGDaEefJGBrbGr8g1q9gDOeztgw4KtqXUB/3zAPwBTsAGTat4juzGo3FVFzTr1vrT1AqA96zoKmmizRF+H/h0hi/RVpf8AtDU3fQn/FL0odHz250PtI/HJY/1X4E9+zY1C5RylPp+vwZL+ulG79xTyKoJzi/75oP12A09jzO9w8huTKE5+YxLFyW9MopSfhwoYSxAWrioVXiYgxlDd9zBTu3AE23a3qLEjQBZGqm0mSDgjAfEGrPuDdVutNVx3D6YPFdSEs5udk0QbopfrtawrqPtvOS/1CMg72nbfBhKvxvCMjau5xNquZZmreEbi5wLuSwPbnYFYuAUi9eNSz/Gy0Wt5A81pSRSO4HW3jYyJcBOMAAABVElEQVS/jgU/Y8zvcPIbkyhOfmMSxclvTKKULzZjCZKwMAVX1QqECRIWqpzFGKwH7zhNh1x/R7kKbDU0/yzhvLcyPe5BBc0fQWyKiNjtq7BUrvYkdgxTYC5y3dtFrd+3rKEm+y0mErWJZG3x69SgiFGvBPwsCMPkkiQX4pqaln6DGvgi1FU3hufpFATfJzC2uwf7/TT0np5WKq7TmPM2t2JX514BvQRIDPeb35hEcfIbkyhOfmMSxclvTKKUIxAhSGRZVN3KZXu5ig39FtcenWdFE3Yammqi3/kwV/fVEUw5ITllG87xYK1H3rupAmlExM4NFW4mX8D0oZaS4OvQZB8SfNqm7lyHnGBvK/jlHculCZIFu56XnrGOp/36PHAwiddjuAfHhbr0iLNaheGu4h5NV4qIGIBzcwB5QLlBArnf/MYkipPfmERx8huTKE5+YxLlvwGcgiH4knr3UgAAAABJRU5ErkJggg==" y="-8069.079502"/>
</g>
<g id="matplotlib.axis_453">
<g id="xtick_679"/>
<g id="xtick_680"/>
<g id="xtick_681"/>
</g>
<g id="matplotlib.axis_454">
<g id="ytick_1131"/>
<g id="ytick_1132"/>
<g id="ytick_1133"/>
<g id="ytick_1134"/>
<g id="ytick_1135"/>
</g>
</g>
<g id="axes_228">
<g id="patch_229">
<path d="M 434.924375 8193.981265
L 557.214375 8193.981265
L 557.214375 8066.687738
L 434.924375 8066.687738
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_455">
<g id="xtick_682"/>
<g id="xtick_683"/>
<g id="xtick_684"/>
</g>
<g id="matplotlib.axis_456">
<g id="ytick_1136"/>
<g id="ytick_1137"/>
<g id="ytick_1138"/>
<g id="ytick_1139"/>
<g id="ytick_1140"/>
</g>
</g>
<g id="axes_229">
<g id="patch_230">
<path d="M 29.174375 8337.900689
L 151.464375 8337.900689
L 151.464375 8210.607162
L 29.174375 8210.607162
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_457">
<g id="xtick_685"/>
<g id="xtick_686"/>
<g id="xtick_687"/>
</g>
<g id="matplotlib.axis_458">
<g id="ytick_1141"/>
<g id="ytick_1142"/>
<g id="ytick_1143"/>
<g id="ytick_1144"/>
<g id="ytick_1145"/>
<g id="text_58">
<!-- 210 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 8321.293925)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-48"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-54"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_230">
<g id="patch_231">
<path d="M 164.424375 8337.900689
L 286.714375 8337.900689
L 286.714375 8210.607162
L 164.424375 8210.607162
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_459">
<g id="xtick_688"/>
<g id="xtick_689"/>
<g id="xtick_690"/>
</g>
<g id="matplotlib.axis_460">
<g id="ytick_1146"/>
<g id="ytick_1147"/>
<g id="ytick_1148"/>
<g id="ytick_1149"/>
<g id="ytick_1150"/>
</g>
</g>
<g id="axes_231">
<g id="patch_232">
<path d="M 299.674375 8337.900689
L 421.964375 8337.900689
L 421.964375 8210.607162
L 299.674375 8210.607162
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_461">
<g id="xtick_691"/>
<g id="xtick_692"/>
<g id="xtick_693"/>
</g>
<g id="matplotlib.axis_462">
<g id="ytick_1151"/>
<g id="ytick_1152"/>
<g id="ytick_1153"/>
<g id="ytick_1154"/>
<g id="ytick_1155"/>
</g>
</g>
<g id="axes_232">
<g id="patch_233">
<path d="M 434.924375 8335.398925
L 557.214375 8335.398925
L 557.214375 8213.108925
L 434.924375 8213.108925
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pa6148b907d)">
<image height="122.4" id="imagef5e8f10254" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHr5JREFUeJztnUmPHNl1hW8MOdQ8kN0km+rJakmwINiAJS8MAVoZ+hH+S/4xXngjb2wDgiVZhgUPQhuWemCTbE41ZmVlVWZGDl407EWd7wGvVCvznW95ERkv4kXcCuDUufdWTe+9ddygrZuboeg1rcSGTS/ruH6tsYiIttJ16NhhDevAcYNKYxvw20f1lsS+ux5qbC5bE/fXncQiIgb1UmL9RmO9VmODwUJibX+lx23ocb0tPV/d1+tezSuJnX29KbGIiJ9P7knsZ82FxJ515xK7Xs0ltg69Hnz28Py2moHENip9pvO17k1ExNnySmLn3URil91UYtOF3ku30v1eQGy11udHVKHPpalrPHa11n1cQyx3bV7FGPPW4+Q3plCc/MYUipPfmEJpSXAgajiuqkCsqPL/npAQtASxoluroFKtdW26xsFaRaQGjutBbAa38matYlNERAPx3U6v+2A90982ug+wtbHq5z0regSkAc1mLMRewu/n8AwWmbFc6N2h96GBzdmq+3hOkr5IJKM8qGGdq06fHwlsK10C16X0W67yBLsIzqFc/OU3plCc/MYUipPfmEJx8htTKKj4kPhB4l6uWJiCnFHLSsUOEpHmK3V0kTuwB04ydJyBblJDrCMlLiKmEG6X+rd1Y6nXU810oa7T44h2oPtV1bCH13q+86m65yIijob6+8lSnY3TlcbIAUdUtW4YiXsreFYkxA2C96up9R77PT12p9mQ2HmjTsA3MZIY33PePuSKgLeBcpXW8ZffmEJx8htTKE5+YwrFyW9MobQo5CVErRxIWEiVW5KTicS43LJHEvwotoA1hqC77FH5ZkKNWcKe9WGdNfz+slN3YAd/l3cWIBaCKjmY6X5fnGnJ8lMol42IeBVa3jpZqbONhFh25Om9kGhHDk0qY53BuuT6i+B3Zx9EwHu17s9+ozESIGcghnZLfQZ3ceNF5AvsmEO438aYInHyG1MoTn5jCsXJb0yhtCS8ECTkkUMPy3QTJYokDqHjCSABo6tVZNlouNTzJgdLXfdB71pibZO4l1XePs4WKkAerVWAOm9A0ISy4ckJ9S3U53Ky0n34jFTOiDhaqeA3AzcfkSu6DqC3Igl+BJUXU5l2RMQm9PvrwzdvExyCm+AOvertSey8p07A6077/y3g1bmNuE65SoIo6YqUl/7yG1MoTn5jCsXJb0yhOPmNKZS2zuy5R+IcNUi7jYhHbqls6JxwPVT6S+yCeLl3qIJff8ilmrQ9c+iRNzvT2BjEvedQbD2r9J5frlQsJB3vGAZ5fBF6fxERIxD86BmSaLcBvfS2wSlHAt0CHiC9T/TGUul2RMQQ4tswHGQTzkp9It9pdNDJ81bv76LRYSHosruF4EfiXkUCOyUClaxnr2yMeatw8htTKE5+YwrFyW9MoTj5jSmUbHsvKZWk1pOKm7IwpiyZOdB1U70zqcXXYA9906oCvHOyK7Gtnto2I9j220H9/RnYbI9gEs/rWu20I+iL8Czzz/cIRosfw/jqCK7dp7HtpOzfAzX8oOK+ATcZwzVO4Z4HoODvV2zj3qGx32u4l8x3cQJ24U3oi9CHUfV36ZMRwf9xyf4vHAT95TemUJz8xhSKk9+YQnHyG1MoLQk5uZDoRue7yxopqCkkxaiW/MvuVGJ/01MR8KPelsQ+XqoIGBHxAKbuEK9B3HvSqKj1Aiy25xDLtcTSdJ1UY1Wqqx+CuHdQ65SbR5XGvhX6W3AbxzkIg3OYPrS51ue8DVbciIge9FmgIevgnI4OTnncQDNZ+Ib27iD4Je3wmZb2FdwMPVN/+Y0pFCe/MYXi5DemUJz8xhRKS04kIndqDtV4k+gWkT/JBdem38JxJGq9np1L7NX0TGJP+jsSezl4V2IRER/31dnWg+sZVSTuaV09ue/GSz0OHV4AiU20hxERLTjoqF6eHJ4kVd1b6trf71S83Gph7HoPmrJuqXi5XPC9nI1VgLxY6Ts6hvt71dNzjuF9IvccvfM4kYj2MCH4UcPcu7gG/eU3plCc/MYUipPfmEJx8htTKC1NtMkVh0jUoDJPcodFsIjEQl4eVP457VQcopHK1wst1aXjUm5FGKYTW1BOOoVy4gmWskIMXHok+PXgGodQ8tqH64uIaOEZkKg1htLf1/BMR/D8/+gDdVke/tUnEqu//V29wEbXWH/5mR4XEQ9/8anE3vxGnYSfn+1L7KTWPHgF4ixNM8oVqVvItZTglyvuYRNdmEjlL78xheLkN6ZQnPzGFIqT35hCaYcg+JEwMQTnHvUu265hgkxCWOrRlBQ4bgkuKBT3IEajiQkaI369VhHwdH6Jv99t1Em2gpJX6ltI+7MF+ziDvn5XSxXdsPQTIGEvItULUYXKa9hvcqw9gYk2qwWUmP75T/Qav/cX+tvRG72+ue5DRERz+KXE1iCInYKI+CL0+Z+B85KmQuFIbMqrRvMq5bzEfpS1XiOtM6v03fGX35hCcfIbUyhOfmMKxclvTKG05NLLde7t1irkbMFQg43E+OSNyCsTpYET1LuuA1GKwHuG0mYSWBaJNWht7IUHezGEfWjAXbaEwSAkNuVed2q/SPCjY3PXftmoK+7TF+9I7P6v/kHXPXquF/jyawkt/u13elxEnPxKr+eL83sSewZzRc5A8CU3X25ZNb13+632iaRcS60zaVTovKIYCMP+8htTKE5+YwrFyW9MoTj5jSmUlspqqYcblX/2wElEsU0QtCIidgJENhg4QILflFxV4Gyj694Cxxm5qkjQoh6FqXX6cE4SOQnah35mCfT1UoUqcpylhCp6J3JFRDruaDGR2M82VOga/PWFxL518I8S6zq9vuNL7bcYEfEcXKhfgbj3nKYig0iWGnRyExL3dlp1fN5vdB92E4JfB3t7Ae/jBbyLdymVN8a8ZTj5jSkUJ78xheLkN6ZQWir/w9564PoiJ9gQ/p7sgbAXEXF/retMQZh6Ab3LyHFG7sAeCC8kflDfOxL8Uu4rEuOIBVxjB25FKpe9Jqcj7AOJe3QvqdLfBewFPetcJksd0PEvcy3LfTnQCcgfXh9IbBfesW7I93ICpaxH0HvwdKEuRCrfJUGT3icShncaFZoPoHR7D1yyERHT0GdNTtfLzF5//vIbUyhOfmMKxclvTKE4+Y0plJZ681FPORIB6S8HCYODhFjUA41mBofSOWmab70GUZKOy5yWWkFZLQmIESyyoWgXGpuBaEcDMcYgSnUwuZUgUequU3rpOIJESZo4/NlKnYmvoTfiLohkKS6hLPcMHIdU8kriHt0zOmLhPWkzv7X0LkZwL8sresdgH6kU2V9+YwrFyW9MoTj5jSkUJ78xhdJugWOtgb8JJLoRU3AcjSoWpVbwp2dawYRR0D+w7BR+S6JNSlC5SUoQI6jEeA73TdczA9GGBJrcclK6bnLokWia+j0JnUNwotE5abpwt4QhICBUkZNzVOU57yJ4H6nkmX5Poh059+hdxGuB53cBrs055FBExATuhVyIlwt1VNLEaX/5jSkUJ78xheLkN6ZQnPzGFIqT35hCaclymBrdfBNqKDgOVRXJvhoRcYqNIlWJn4AiStdNTTSncD0rsMRS80+yBqeYwjWuV9A0E5RcWpti+N8HCJFyTbFca3Dqeta1xsjqSmuTHZr6C9B/OMguTP0Kkmtn7m2uzZnekwXs7eVaVXj6b0bqv0z0XxOyfJNVeb7U/fGX35hCcfIbUyhOfmMKxclvTKG0ZHQl4YUssdQ8cEkjjDPttBEs0JA1FSeQZNb450J1/7ex/ObaiKmJam6tPAmIZGmdgr0zNW58AdbbeaWCEQlQuftDzzllN77JCoRUEthS6xC57xM903WmmMrXooJdChZtwVZOo9NXsN/ZKxtj3iqc/MYUipPfmEJx8htTKO0UHFQ0ZpuYg2BEIhAJUN/8Pm+KDLmqho32IaDj7lK7vwnjnTcS01RI1KS9IOi6aQIQ9jAAwW8CdfGj0LpvcodFsHg2h8ajRK5ISs+PauXpfCQAk2MwguvYCXLpYe8FErRpfDnsIbn5yG14G9DNCeIe7Y+//MYUipPfmEJx8htTKE5+YwqlvYTxyTTFh0QWEjBIEJlAiWFExBQaKRLUPJKEPGq4mCuobMP45IfNtsQOKx7R3cH1XNTgtAORk8Q9GtO8AyXL1Fj1HNZ9Ar9NOfyo9HQNIhKJs3hG+MTQSHQaf05l2jswxWfesiBJ7yhBwiLtD73L6LyD35IIeNdScoKciVQq7y+/MYXi5DemUJz8xhSKk9+YQmlHC3V+zcF9RSWm5Bq6lcMv0XftJlTySiILnY+EnBbEpr1aBb8PahWW3l1xqW0PSocvYZT0qFbRh377ANZ5v9N73gZh6TWIl7/o6R5etyy44t5CSW9ufzzabxLyaHrUATwDEl13g0enb+P0KYUE2xeh+/O7xbnEXs01livuYZlvQqPmsmP4fpNeCOf0l9+YQnHyG1MoTn5jCsXJb0yhtFTWSc4mcs8RJLrdZqACiUO36ZuXA4mXW+RqBCFunjBfkYi0t9KDD0CY2gbN55OlPpf3H6mwNNjVvX315Z7EnsaOxJ6AUy6CR2WTwzN3GAe9O0MQ93ZBIP0QBL8fdHq+P6kvJBYR8fD9scTaDb3u61M956cv3pHY323cl9ivM52uVF5M5bcpqhrKm6s/vCTYX35jCsXJb0yhOPmNKRQnvzGF0s4WMF0WnEgLcKbl9j27jahB4l72gA7q9wbHUS88Ygx966YJ8bGBdQYgGJLj7D7ooe/uTyS2+x0qT4V9+AqEVHgEg8Q+kPuOJvJS/0ASBqlU916zKbFHIO59e6HX8mc9FT4/+im7SNsf/qkGDw4ltD3Sc/74n3+r5/vbA4mdDDV2vtDnd7Xg0vZcSEylXMVSaw/tMMb8L05+YwrFyW9MoTj5jSmUltx3JCyQiIBTTFGAYMGPyhFz3Xy0DrmdqMcdcQ299XC6cMJQRT0FaW0qR30XhoMQVQsC6wSGdsx0jas+PBeYdhvBIik5LwehrkgS995ttiT2GMS9xysV9x53KnLuP1D3Y31fRbdvFn8ooerRx3pcp2Jc26mI+P3fqgj4w68fS+xocE9ilGuTSvslpiYOc27llQnT++kvvzGF4uQ3plCc/MYUipPfmEJpsa8YOvJUrMgV51JDCJpaf0/lttmuv0xxj4SXs1ARidYggSUFTTteglPuRaPC2cszHRiy/QQGRnS6XycrFd0uKxgsAQ69CN5HEvJ2oe/hQxDyPg44rtM1NnGwhMZOj1RAHPzySGIREZuXP9dzfvyFxCp4Fxf/qcedH6kzcR+28Tu9XYmtN/ReXs1HEqO+mhFcEoy9AmmKMbhN/eU3plCc/MYUipPfmEJx8htTKC05twgWulTpIJEstcZ2q0LQbquCCpWYElRiSv0Ir1YqnNG04lyhMRUn8ZIkti8bvb9fD3Qfpp+/K7EhzMV92er5RjB5dwauxhQk7r1fq/D2yVrdit+d6TUeVjTBWPfrGPr//WapYtrgv7VHYUTEg091nfd2nuvvN0AEPtVn8NlK7/lNT3OjB6LbfRBDu16eGy9FruuPxHV/+Y0pFCe/MYXi5DemUJz8xhSKk9+YQmkHYC3NbRRItl06315PVdOIiIc9nSxzCIooMQfd/Hqtyu54Ccr+SpXvKziObK69xOQimkpD/wGg/z5Q/fW00eNOh7qPh2vd7+NKf3uy1vubwD1H8HVvV7rOA6jnf7/T9+RRo9bp7U2dCjS+0v8UvIQJR19BN9J5QiH/utVrfH2ltf87Yz3nuNF9eKani5c1/KcA3sUOnnMf/iOUmo6V28iWlH3KX3/5jSkUJ78xheLkN6ZQnPzGFEpL4gBBYsNGozXe96GO+aPePp7zQ6jzHsLfozEIWGdgTb2A3y5rFVnOQCSZL/MamZI4lzqW9oxGN19VIMaBBfmiVZFsH8Zaz0FUfLO4lBiN4o6I2G70ubRwL30QRAcgLLUg0NXQ12BFI9FhLPUUxN5ZYlR1H57LBVld1xq7gLWPQdx7AQLyBQis2GwTro+mHt0VEuf95TemUJz8xhSKk9+YQnHyG1MoLbnYqP5+p1Xn3Qd9HXX8w1rFve/PWcDYhuaDZ1D6/6zV4AwEo2uobadeANSMsgf3TA0Tu8Q0FXTzwfXk1mpTk9EpCHTHcC8ECY3kNoyI6CA+BYH1CkS2SxDJrjpwkYK4dw6NR8dgdptCM9JZQoiFIUcxgmtcgiB2Au/YSxDyXi7HEkPHaGbT2dRzya3dJ0hE9JffmEJx8htTKE5+YwrFyW9MobRUokqNNd/rq5BH4t5PZyp0vP/oHBefz3Ttr0/UIXgBLrZjEG1IVqQx2UMQyagUmcQ9cvJFsEBHpByCOcfRdJYJuAOpJHRY6/0NIJbiAhyHr2G0+D14d7bnetwQREBqPPqm1nsegfg4BXE1ImIC4tmImrDCy3O6VoH1+UIn7Jx16p6kd+cuZd8RCdE2IUDfhER8f/mNKRQnvzGF4uQ3plCc/MYUSkvi3v2eTj95DNNZPljo346H99TttPudhGNplieSjU7USXjaqIBxCn/LqMdZD/qmUXkyiXjJkl4q14Rjafw5XSMeRyIn3R+IO/utPj8aIR7Bbr4JuAtfVTpKegemDzU9jbXwrF5B+fXL0HXPwGV3BWJYRMQCyn+xZyKVWoPIOe60H+EUnKBEB+XA9PxS79h0oXtBwmLuqHp/+Y0pFCe/MYXi5DemUJz8xhRKe9huS3APxjEPQSRbgq4wm6pzq6pZEOk90nXu1SqofPIfFxI7m+rghTcgLE1AvKJBCeR2IzE0VUJJoh2JMV2mE5AcWTTym5x7W9CDb5/68iX+9jfgbDtf6nM5g9hTuMZreJ+otHkEgy4u4FpotDgJdhFcWku9C7F8mwasgBBLLjtygq7u4O6M4PeJrofkddpvf/mNKRQnvzGF4uQ3plCc/MYUSkviFwkOJMZ8BW6ux5fqDjx4qk6wiIjtbV2nvafln4ePJhJ78HtdZw96/Z1kTjalXn9Vk3dcBLsGSTCag1hFjiwsy4W1SQSkMmYS91JOsA2YyEvDT8hV9wqGg5xUKgwuwXmHjko4jkiJZLTfJO6RSy9Vvn0Tep9W8NPcfnvJdeB5rXFtcJuSY/ROV2OM+X+Lk9+YQnHyG1MoTn5jCqWlUs1ZpSLJNQh+HYhAvaGWjg4/fwcX/153LLHBropkl6fqEJuD+AHzPpBpZqkuuucSQzL6mavTVFYqrd0C0W0D1mhhH2YgknUQSwl+ffgmNNgzUWMjcP2NIXabcmm5lkQpMkH98EiIzXXf0eCNFsrLc6FS8BQrnGys150rLPrLb0yhOPmNKRQnvzGF4uQ3plDayXL6B/943EC5ZAP93zbUjRcR8fTFexJ7+BTERhBZXvY1NgGhcgIutPOFOgZJBNqvVLxMlcGS+47ktBbuhYS8HTjf3lp/24NV5iAqXkNsCVN2IyI6OHYSurcLEHxJQCZIiKPS2NypximwtyK43QgS96g/Ig2+IdcfQeJcylmIk3ZhHTqOrttffmMKxclvTKE4+Y0pFCe/MYXSUskjDpuA2MVCnVvntYppb3pa5hkR8UWrE3kf9zYltg2iSAfi3hvo93YE4t55pzESd3jQBbu5+vB7Lq3V2CaccxfEvYMVXCNoVw3oRWtYdwKuvYiIETjJ3sCxV9AtbgDi14SaPQIk7uW6/m4DiWQNXDeVVVMMy6rhfSAhj+7vNn0iae0NcKFSzF9+YwrFyW9MoTj5jSkUJ78xheLkN6ZQsBslqY1kvaSa7KuFWn4nC7YQj3v634JjGA9+2Oh/AJq1Kp9nK13nuNNpP5edHrfZ08ahBCn4qTgp+2S9JJWbNO4eiMAHC30u71T6DPoNWHE7bkb6vNG9mPVUVT6mun+650yrK/UXIBWelHTa19SxZHWliU2pZq055P7ngiY4dThzh/9bQDGyTtOUIn/5jSkUJ78xheLkN6ZQnPzGFEpL9sAV1HnTAGQSBlHASIylppHDM6i/v2hVGKTrpt4Eo7lOCyLxksQYEk6oAWcqnhvrqE4fhKoOYkOQBu/t6T1vbOu+Xo25GelopOLXqqeC2gLvJc8azjXnKrBtNHqN2zBufLtmwZYarh5WGtuHhqnECOzwJ2sVWC9WIHxDjPIqZWmm3MjtgUB9DfzlN6ZQnPzGFIqT35hCcfIbUygtOZsIEr/qhJB3k1TDxCW4jkjAuF7qcVRXT45DGsdMjjNyl6H4CKJNRMS8YlfWTUiMoeafA/i7PMdx3Hq+zV3dr+Gh7s18yr0JplC7P6r0GY7huUxhshMJWDgmHQS/vVbdnY8adYG+X29ILCLi2ws95/c6ve7Dvoqk3VL357PQ6/nXvq7xe7jny7UK0tRPYwr7+k1c95be7/lSz2nBzxjzfzj5jSkUJ78xheLkN6ZQ2i1wRpH4ldt8EGMJwY8cfhQjIY+uMXe6CzZhhDJPOt9lYsIRTRUiqMS0pkaaEKJy2QEIcf1t3cNmS3+7XPA1nzQaH0NzVBzbnjl6mxx+VEJLzr13IPbHifLkH2+cSuzxX+q9NA+0mezyaCyxw1+pMHhxoSPoXzQqpGOpLYmmIOJF5DtTaWw3/dZffmMKxclvTKE4+Y0pFCe/MYXSUuloDT3cqISW3IF03GitE3IiWNwjYYJiBE40ASGvqfN6wJHISY6siIgaegoStGck5A1pvzOH1yxncH9j3cPTC3WrRUSc9GnEN4izmYIv7SOPm4aSZRAB99ca+2jBItl7P9Jy8N5PfqQHHtzT6/n6mcTunf9WYh/+k74TO01e/z8syU2U9OZOL6K9xf3OOpsx5q3DyW9MoTj5jSkUJ78xhdKOoUR1CP3MNkGo2gyNkbBApbEREdcLLl28CZUjkohEf8uofDdX3CNBskqMtaYR2LQ2uQY76MM3AWHxBYiXVav97EafP5DYNgh2T1rue3dU6fOawDNcwnXnuiwJcm324Znugrh60HKpdfNYnXvVg/f0wK09Ca0v1eHXHuqe7Vf6Hu9An0ASw3MHmtwGOieJ3P7yG1MoTn5jCsXJb0yhOPmNKZSWBl3UDZVbQukvCQvg0qJYKk6OPBL8CBQ6yMGYKbLkljFHRKxJWARhivqzvQIx7bi6lNh/gWC0AUMp9gf6rA7o+QWXJ5+ACEy9C6cJITeH3CEpCxAVO3h88yW/Y+uxukvXF2cSqzq4l9MTCS0v8kTqTRjEQs/qNiIgvbdreMfoXaTj/OU3plCc/MYUipPfmEJx8htTKC31x+tqFV5I/FqBDoclnQnBDktraaAGOeVoCAEcN4BeahRD4QUcZynBbwHXQ9eYK3TRnpF7jlxxJJrStNvcgS0Rt+jXeIfYNQxxOVlqSS45E/8dhntEROz/vYqajxe/lFi9p0M/Fs8uJHb8qa59tNYYvSUbsN9DeBdTQzsW4NK8m6PSGFMkTn5jCsXJb0yhOPmNKZSWhgaQEHQFvdQIKt9NiWTs8MsrwcXzgYBI90IiS664R+JcBIt71IuNzkmlw6k+bjnrEpMKnJyZg0a+OTbPPUmCba5Dc16p+Hy6AKcjPIOzdhvP+bTTUt0f/Eyv+z5Mtp3GlsSOWhVTXw31/kZQFo3iLE1evsVzob2lITk4KTl7FWPMW4WT35hCcfIbUyhOfmMKpZ3BRNBLEIdQMABxZ7LQ0s+U4JfbX4+EPBQLQTwhcY+Oy3WhpQQ2HExxh/6BtE72cZkCW8odRr/PLZfOLaEmFyINsLgKfZ9IpD5f8GCYNz2N/w7EwZ2evie0P3Pw7i0z3Z2pgS8560YkhDyI0T7Su+MvvzGF4uQ3plCc/MYUipPfmEJx8htTKC2phVRPnGs37cB6mVLIeUwzNRrMU5p7NI4bjsttzMlTgRi0umbaknP/A0DPKreeO9cGGpH/n50lqf2Z/5mh/x7gf1egaQQdl5oKRdDve/AfoEWmvZvuZQB2eMoN6qeRei70rG/zjt7EX35jCsXJb0yhOPmNKRQnvzGFgkX6JNCRWIFNJjOtpRGpscF5o65zybXopur0b0KiYgRbhkkkm69ghDnUfuc2/8zdbxT8UtOH8FhYhz4ddEo4jkStDhpUotBIVmxcOGJW695So9AZvHf0zueKoQvoI0G/JcEvV1z/Zm0QU6Enhu29xpj/w8lvTKE4+Y0pFCe/MYXSoiMLYnchdT5yVZGAketiokaYyyqvTp8gEa9fcyNTahSa6/Cj2vbcMeIkDuWKgClhKbeen9cBQYzGSGNvAnJZguAHYmHqHcsV2Wi/8X2C8+U23KTzdXAtKbBXAoh7ua5Pf/mNKRQnvzGF4uQ3plCc/MYUSksCVu7UlSUICyS8kLAXEdFLiGeydmYJLglGNDo7V7QhEW+z1nHMERFbjcZzBb9JpU0qc39L0LOiPcxt9Jk6dpVp5+NpRiAqklCV60xMaLi5U5cqECXpuNzS7zWUIpPQyNOa+LmgCEyNVeG3ONIeVzHGvPU4+Y0pFCe/MYXi5DemUP4HsTnuiM7U7AAAAAAASUVORK5CYII=" y="-8212.998925"/>
</g>
<g id="matplotlib.axis_463">
<g id="xtick_694"/>
<g id="xtick_695"/>
<g id="xtick_696"/>
</g>
<g id="matplotlib.axis_464">
<g id="ytick_1156"/>
<g id="ytick_1157"/>
<g id="ytick_1158"/>
<g id="ytick_1159"/>
<g id="ytick_1160"/>
</g>
</g>
<g id="axes_233">
<g id="patch_234">
<path d="M 29.174375 8479.318349
L 151.464375 8479.318349
L 151.464375 8357.028349
L 29.174375 8357.028349
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p226fa2e566)">
<image height="122.4" id="image3c3da2be61" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnduPG+d5h98ZzpBccrnck7SyZMV2HDhG2qBA/+b+FT1c9KJAEAToRYugTWzFjiRL1mpPPJPDGfbCSS70ewYYI73K93suP5CcmW/m3QGefQ9ZXnx0iA8Y9YcfLsW0P5K1SXkka0d5X9baWNZbXdtvZG3X7Dv9Xj8vZG3Y0/PJs0zWtnXV6bj1ocFjHw6yjdHAGkHnU+Q9WTsp9R58OryUtS97U1m7anRvzho9bkTEk71e45NM78uor3t2s9Fn59cDvQe/jpms/W77Tn9vO5c1ugdZ8LX08lzXMl0b9QaydtXXffy00LWzrJS1h4M+OzeN7uH6oHtYtT1jAc8YrcFztz/Usqa7YIxJAge/MYni4DcmURz8xiRKkYFsIkiykBAj8UJCq/WEQHTROeZwnEFPxQsJSJIkVaNChI7ba/t7CZfY9bzxOCClStgbkjsVSSA4P9ZKERs4n/tG93G90fN5APlFx+ln+t1RrtKtKvW+oPhqkaskuuhZpt8kSrj/04NeyyR0bdpT6bqC89u23JkdrG/g+8tmJ2uLRuW63/zGJIqD35hEcfAbkygOfmMSpSDBRlKqq/Aj8UKiKoLlIGXpdf3uMFfZRNdH501SkqRbm7zM4bNdv99VkhYgyUhUbeFekQSsWq5lndM56rGLg17fCr5bdfS9tF9jyLwjQboHYRvBWaSUjfnXUML9m4BhfQLv2ib0mV1lfH43md7XtxlkyYYKP4pfv/mNSRQHvzGJ4uA3JlEc/MYkSjEqVaiQeCHayls/JD+w8RmAoCtBanXNQiRIBFHWF0k3Or+2vSGpiSKvpfRUvttR+NEdoEwwLRyNqFtOZUvrIPLoWpbwXcpYaytb1cOCNCUhDTLsh++TTNXfpHs9guxQknt05CNwdhdQKj2CfVi1PGN5X9dv4PpIAtdwln7zG5MoDn5jEsXBb0yiOPiNSZRiXGrPta4iryttkuwI+usd53o+JG02jSqsNZQy7qCXGl1f1xLafsYZiCSRiKbj3nYtB+YMPxWam1yPu27re/dXCNZlruezzOB8OvZHpOvbw+dI4kZwxillkU562o9yknXrR7kBmbYmcQ3fnWS6D8MWQX7dqJwve90yS+m59ZvfmERx8BuTKA5+YxLFwW9MohSU2dS17xn+IIgOOkZExAlIlstcB1P0QWCscxiKUK9l7SFWskbXR735ShoC0nItJOMqOM6Osq+o3JKqOsED0TGWMAji9gDCp8Xr1SA6Bx2rYB8g044GWGxJxII4owxN3NeWwS60tyRySSpXcD6zoPOGzYHX6lEBg1gqXStbevjRPTiCeDvJoAy6RwLZGJMkDn5jEsXBb0yiOPiNSRQHvzGJUpD5PDSqFbs2PaTfo/HHERHnudr+Z7B2ARNRKmhy+KbQ47yGmmwai4yNRzumSUawqaYlSjfGvQX7TJOGyGYvIM2ZjPQGJuREREyhqWQfRl0TNIFmdqC0627/UaL92sA49S2ke0e0jU7vlt5N/1UYwkSiI/gP0JymDxWauk4NPC9qtv20OoUmqjs49oT+24NHMcb8zePgNyZRHPzGJIqD35hEKajJZFeo5pxSeU8hjTci4gnU7n9Sq5h4Bo0PhyAl34FQeVGo8LuFdpbU9PLH7M06VA7dw99WkkgHkJddx3YTJMl2ta6tWyTZDCTpENJIKSWaxCeNkSa6TooiubeqdHJNBKcH094uqo2sDQp9lun5HoNofoBnfl0cw5qms38Eo+YjOL2XGoqeo9yz8DPG/AkHvzGJ4uA3JlEc/MYkSkENEinbjbLLCvjbcdxT6fYYavQjIh4fKLtJj3MFGWsXY63df7IB2bjVY9+AoKEpNZRRtWkZn3wHdew9KJinfVyBTKMmlQROZ+nY4HINo5wjWBgeQ9ZYH86bwOxHoOtkprrR32vrN0GikzL81qHCMN9BhmdPxdkSpl5tSsgipVjrUeYlC/Ip9JcYQLNPkoAj+Jzf/MYkioPfmERx8BuTKA5+YxKloMaHJJGoMedJoWLiaXEia0+CS0cpY2nfUfoUBYw7HqpkOV/qWlmpOGk6Hnfb8rkhNGesYCJRDZ05S/gbvKEsPWpc2bERJmUWtkFj0seQ9dcDsdS1VJfkF0FZjUPIgKNnNoKzBtd7KHmGTMAaG7B2O8dVrgJxWOt5z6BEmErJfzg2NCOF66P7QiXZfvMbkygOfmMSxcFvTKI4+I1JlKLruGrqw/esfyZrP83Gsva04UwwWqW/RhWs7naQFVdTiamukdzLqYcfSKRey/jkMVxjCRl+BciYMZSJ9qFvIUnAFZ0PJLtlcC7jlh5+nxVTWTsHMbUEIfYeMuWoZyJBJcJHIBr7pQrbk5KzSElo3+0WsrbYaUkvZQLSKHaSlxVkFi73ujcjuAdbuOYI3p8ZlJLPISOWRtr7zW9Mojj4jUkUB78xieLgNyZRsIdfH0oHJzhOW8t3Se49r1qGEICrGkBvvjGM46YMPxJ+FVwfZunRGpSOtmUCbuHP6CKjjDwQrFSCCYLtPFMRtKWx1lAmSqLxJ6H3LyLiZ3u9GCp5/grGPt9BDhw9Y5RFSOWyBL2x2votkmwkyU1lwpj9CmKY1qiUeBFahk5ynSRnRMSgp3u2ApF3u1eh+VDpqHq/+Y1JFAe/MYni4DcmURz8xiQK9vAjeZJTVhyJHDjIpKWcdATZSf2erk1Gmhk1OILebGAQ+zvI0qKsP7gWkntVS+XvDHr7zSAjbwmCZgiTfyew9lGoCLqAax6CX6XJr5+UKoYiIo4nKu2+ujuVtZc93UcqrMWyXBgiQfvQo3tAPQpb+gTSxGkS2j2aQkyDlzsKPyqrbusz2OX82qCS7lWt8VKBvPSb35hEcfAbkygOfmMSxcFvTKJgSS8NeKBsp9lBxdAdZP1tW/7GnGQqvwaFHpuy+Qr43BBmHZztVH4cwNrtQfgVoK8esBA5YgvCj6bTUsZZBXLoBDL8jqF89yc7PcZVT8tTT6eaXXb+qWZ9RUQUE+gp+BuVgyeNlv72O8s93ccJfI6YZ/osbuD5jGA5SKC0owzPjtmBeAx4nja1Pg/31bLT77VRQT9Cwm9+YxLFwW9Mojj4jUkUB78xiYLCj+TeqlFxdteoWHoNU3ovYYppRERUun6yVREESVpR9lVqjM9UQA7Hei0nCz3vA2TK7aG0NZsf68lERAm5jZQMSEMtqDffPQi/Rab7lYNEGg91H04e6TUPnnNJb/5Es/mert/K2s9/M5G1m6H+5vcZTwPuQgXXRz3qHuBZjIhYw2dJaHfO3AO51zYwpMsx6Pe2e+55OM9U2tIwHaKErEG/+Y1JFAe/MYni4DcmURz8xiRKsYdsIJxsWkM2X6aZSC9BVNEE24iIBUiIE+gB+NEOMsRWIPI+USlZXmkZ7An8yTvsdR+qN5oBt/4vKlqOOGn0OCWUidKABxqocJepwHpXqExbwR4ejfX3Rj+DMtYvPpa1iIjsREXecKv3/xd/uJW12f2lHgeE703oOa6hxHsBGZF3tYqvWc3ZiiSvt5BV9/9NW0/BD6FS+TaBSHKehB9NMe5DubTf/MYkioPfmERx8BuTKA5+YxLFwW9MohSUXliBdc3ASi72aqTfZjNZq1vs5U2uBfgXBUylAVP5aKnm+3GjNefZVI+RTWCc81INcvW9/vdgV/N/LmooRaf/mtAaQY0ZqSHoBv67Mj7X8y5+/qmsZc+e8sEXuo+HnR77GI7z+a3u46rW/a5gOs8KnrsVXPMW/gNAVj+CzT5Zc7Lu9MzjWteGt9DrgJqbdv1PQdv3Rz1Im4eJW37zG5MoDn5jEsXBb0yiOPiNSZSCJpVQeiGlAWO9M8iULaSvRkQ8gISYF5paepRrDf11o1Ljo9cqC/PBvaz1TjQtuZ7BqOOvVVS9bBlr/TbvJqtwek3eLR2TNBBNFYJDMLeanhsRUb94JWvr36rI3cz0HgxLveZLGNF+DdN+7uFdNID01QFIzm3Ozxg9jw00iCAZV+bdauUJEn507yn+cHpQy/fpHGnE9xQa6/rNb0yiOPiNSRQHvzGJ4uA3JlGKo57KAZIkKE5IDEJzxOVeM8EiuKEhia5bqGN/V6hs+u7tiaytoFknNf9cr/QY36xVPv5uyNlXr0Iz26ipJO0jjaYeg7Q5gmlBlNd2/52K1OJX3+i5rDjz8vbbsazdzbVOn4BbGiUsHjf63plC1l8Vep+bHjTb7NhEsw2S1w2cD2X4kdwrQMSRsKPPtY3oHoAYPoaGuce57tkEJKnf/MYkioPfmERx8BuTKA5+YxKlOC1V7tCUEyqNJOFHJattMgblIEwGuoVR4K+h9HdwgBLhOTTWpNHbkEn21UCv5avgyTBvas0anEGjSZI+AxB+fZB7PRBLd5CE9tuHc1k7/pXuNV1zRMR1AY1H4aPnte7jBO5pBec9hqnWV7APQ9qvlgw4gp5REs24Bt8lQTeAhplUVkuZnEMQuyP4XETEEUi7PtzDEezjiRt4GmP+jIPfmERx8BuTKA5+YxKleFxqVtwMMtNmmU5E2fyVk09IslD5702j4uxbyL6KUrOdNiA6jqGk87anUuo1lImS2IuIuKnmemy4FsreGoLIIdlUQXbg+wxGfg/0b3oFAnGWgXWLiA30yBuBWKJpQU/3MEEG9nsKvSOncDpbkIUXJNOgRDiCBWtXKd3QhJyeXt9VX0eafwSl6ZcwYv08dA+nB76WEs57kcEEqNDzzg7UT9IYkyQOfmMSxcFvTKI4+I1JlOJ5T/vj3UCGEZU8Em3DE7pC4oXE2W2uWX9jEFBTyqqCSwEfgsNGNi3Xt6w1M3EDY833kA1GPddq6G9IrEDaPUDvQBqIsWy5FrruMYgpyr57BGuXcD4TGNF9PNT9ynM9l7uV7s1Zw70V+4U+33ApXLIOzzxl6ZHc+/tMj/vlTh+y5weV68d9FukrGFX/NQy+eQMZmlt4vv3mNyZRHPzGJIqD35hEcfAbkyjFRahs2kPW0Bx6hVHpbw0Cqm3qKGW7UU+yE1ijskXKgCJNSWtDyC47h/M7gf5oERFvQXRVMOiEesBRaTPRg+ujrL85dPZbgnTbtRyXsgv79J6A2zqp9Xw+Ptapv+dPNVNycNlNKp+90WzT4tsz/OwSJgTfQ4bgAp6xGjLlqMckZwwq1MuwD8Ne8pwzLyvI/KvheeKjK37zG5MoDn5jEsXBb0yiOPiNSRTIBWKBQZ+jckmSeCRJIiImkMV21dOeglcwYXR6gN5ljZ43d0NTxlB2+qzW63ugjLGIeOh3G9BBFC299D6k61gKytCjzMmyZZzvAMp/H4HofLbX739aaGnz1Ze6Nvhcs+Ki1Ofk8KDl3OVMsykHBWcrDuAWDHHyL8hneO5oz0iQ3kGp9R/6+jSu9vq8Z+rRIyJiUerzPYcMyHXHbFW/+Y1JFAe/MYni4DcmURz8xiRKsYGMvBWUerZlg8kPgkyhwQQRLPd+CaWQPwUBAp4jlnm3TCvKiRpBT7kh1PmuWgYq3BbaC3EPwm8L/fFIkpKg20LGGWX9kbClISAkviIiLjK9X5/Weo5fVHotl081m6+8UlmYHavsPayhBPpW5d78nf7ezY5LoGFmC8ovmpRMr8YChB9JQMq8vAUJOAeJt21Ru1vIvO0KPU9+8xuTKA5+YxLFwW9Mojj4jUmUgnLQ9iCWKhB+1NePSlbLFrF0BmLpF1v9zZ+PHmRts1Xx9t1epc8SJrpSaeUIBx3o585qlpfnpa7fQwbjvNHzoZJnEkZLKNXtmnFGnxuBBIzgoREXMJH3GIaaEPW9irwsn3X63OyF3udX71SuflOwiL2G8tiaevPBM9qWAfkhVO6cQxxUcF9W8NwtWuT6BtZJXtL17aCHo9/8xiSKg9+YRHHwG5MoDn5jEsXBb0yiFMdgdinVsc3Y/zXQxJePQuviL59rymi10vPJ36o5vd9pKij9xRtAI8UdmPk2BmDsRzB6e5upsd9Ac801pAGTxafae0rl7VHj0JY00iVNAYKR6Hc7/Q/H0Y2mbDc11OQPocnog9bPv73XdO8/QgPO617btYA5h48OYc/IpO/AztM+buG/NdRrk8z8Gsx8RMQSnok5NNFdNpoSvaw1rvzmNyZRHPzGJIqD35hEcfAbkyjFGQi/9yD3+rBW5N0kIKU6RnAtegHpmOUJiK5H8DlIAz67Uym13ai8Wq70c3eNrlFzxIiIHtT+U8ooNT2toZcANv+EP9VYuw/Hpc+RvIqIeA9iCTOB+7qP250Kuun3KugaOJ97EM130GL2DuTeHCRlBKfU0i0cwH0haUdp1ysScXAUEul0LtsW4Udy76HW6UUPla6tYIS83/zGJIqD35hEcfAbkygOfmMShUfpAFRzTs06SSwdQaZbBEuyRa2fBc8R5XOtlR891s8N3ml22exrlTZvH1RUfVfo9jxQ59CIFnWmkMijNRyTfdDzocy9PjWZhPtCDUEjOJMM5SBIwDVIrVGjwm8Dr50ZSLsNyK8KGlluWq5lBTXwJJpLuK3U9LKC46whQ3PT6B5S80+aFNQmyGmU+x7GwFfQgLeqdc1vfmMSxcFvTKI4+I1JFAe/MYlSfAtNGG+gJJBKTElUlTDRhgRLRARNC3rT06y6T77TUs9Hn+h386lKwKbQUsY5lI6+huO+h0yyTcvUFJJQlA1GazU1D23Zsw8hOUTStevvRbC83IJsuoOGovQ6KeEcV3DvqXElicaGGlS2jEOnxpVU8nzUsWS969uS7ik1vO0qzSN+3D38ENozv/mNSRQHvzGJ4uA3JlEc/MYkSvHf1a0sLhqVZOta0+xI+FU5ZBIVLCquQQ6+KDXj6WOY0DL5wztZGzwDYXQNk282KvcqkFKkgDhXMaKEbMUS/rZSuW2fxkMDJPdoDHgFMo3uQJtY6jqBhqAS2ga+SuWylM2H2XMgBklIR7DoGsPIeMyU7Hj/qFT30JIJ2uW7bTvd9R50/a7f/MYkioPfmERx8BuTKA5+YxKleL1V4YclgSBZsC8cCD/KdorgjKUxlNF+VGhG3uWLiaw9zud6DHBpF2dLWfviRs/lcq9iaNHSt/CmB5laMFyCLCL1rqPMNILuAWZz/Qjh04PzoSzNEckv6AlJx6mhvHUF0pSeHHoWt/DMRvB1kzYjuTcg8UnPPOxD16xNEojYv7FlnUq/cyrphqErfvMbkygOfmMSxcFvTKI4+I1JlGILvcawzxwNluh4kHXNmUn3oeLtLWRfvSh07dlChd/JrfbrO/k7/fv2+HOVLI8WOvCjnqtE2qkfjYiIm1faA/B/llNZ+9++lh2/pgm4kLG2gmw3yiI8BmE3hjWaLBwRkWG2oq4dQ+reEXyXyp1JaRVwDHo70eCTIWSLtn2fpifTntE1U9kxXUubtPsQzaVt/y7JPZqePezp9TnDzxjzFxz8xiSKg9+YRHHwG5MoRT9X0UGDAPK8WzlhBmKhTWDQYINbmDr6MtcMv9/3R7L2/EZl2umxSpLeL7/QkznRsuESRONwR4om4vj3X8va2T+/kbXR11d6nIEeBxLlUM8NIWXwHAqPHzX6gxOqtY2II6hGHTa6OAIJTNz3YAJuqWsP8C6ikleCxGfrZ0EY0k7Q1VFPwQ2I2BWJdPguCbtey7XQ+hAEOeEefsaYv+DgNyZRHPzGJIqD35hEKQY0ZAOESNfpsjSYgNYieOroqtaBIdc9zdx7mWu57PslSMCZpuT1Sr3m7OKJnuDJhX5uqJmFP3xfRd7k4V9k7elrzWp8UWsmINwCLDE9AyH2tFaJ9Gyv9+oKhrNERJwdqdQ8GqnAymmoyUr39s1iLGtLEFXrjplpG9iHLfQtjOBhHjSAZAbKj8qYqX/gDtdUAjYUL5D92JatiAM+sK8jCHtn+Blj/oyD35hEcfAbkygOfmMSpSC5R3SdEEpZTD+mJxmJklWjA0Nm0CvwDko1q2sVVcWDlu/G9F6WMsjwO0D5bSu1ipflVkXl3aDb1Fkqy33cqAR6stffu4I9vJqqfIyImF6pYO2fdsvm293rcQ6v9XPLpZ73hoQWZKAu4Jldg+SKiHjI9P5voN/fHp7bAY5tUShjkAax7KEIvmv8RUQcaCAKyHQq/a0oa7fzkY0xf1M4+I1JFAe/MYni4DcmURz8xiRKsQPz2dkqdkzlbUvvpf8MkJXcwn8AtvDdBfQcWL9X6zq8AbN/CeZ7rNY7Vmz7Dzffy1r1aiFr7w/aN2AO10KppecHtc+PoTnqKdzTEtJf93v+2795gPRSaChaTvU3++d6r88q7dHw6Bv4r0ej6dlr6g8Be0MTgCIiSmqMANCzXORg8eF9SXad/lFQUXovfbcF+u8YxQZN3KLj+M1vTKI4+I1JFAe/MYni4DcmUYpNremYXek6MrhN+FHKcNceATUcZ0O130uQV5UKkWwCNfWPf6LfhRTUiIhD7xv9KAjIgqauYONKPc4YGm5SE80cjjE/6D7cLluaP4L7nL7TPfv4saZJn36hYvDoqZ7j5b1KwOs7lYAzGIm+hftM03Xa1mksNjEGa8eTj2AkNgjIrr0AqCFoBI8mp3ihlOHjnjbB9ZvfmERx8BuTKA5+YxLFwW9MomCGH0GTeNpEXpfvRrCYoAlC1LiQMuAIajKZnUITzmef63effilrhxX0AoiIbKjZafmxXssIarqpblx1WMQOLnkFWWgN7M0c5OM17E1EBE1Uf1yD6Hqvz87pl5o92f9cG6FeHm5k7flvVEBu9zr6vC5ApuXdpTLW38N78BQmH00hY7CC747hmZ2H7tdDqCAlsddGDtc37Kk4pf4CfvMbkygOfmMSxcFvTKI4+I1JFKxPJUFHYqEH2Vf03bYmhSTyjnoqfcYw3WUE3x2BgByOVahkUy2rzUaQ4QfNOg8VT7k5bFTRNSsVPGuQe2vIyFuR9AERdyhAhoL7uoWGp/MWsTSE+zWCKTLbve5P1tfv5p89l7XBozNZ+6T5Sr/7n3p+daXC9qbPArjCQdvKCO7LFN6NV/tuk33WsId3PT3GdyBs1y0ZfmtoRkoi7xjiZQJrfvMbkygOfmMSxcFvTKI4+I1JlKIAaUdyjz5HIo/W2qb9lCDtaGQ4lWBSqSapnR303Dtca3bZ4fqPslbDcQ83L+EoEYc338naRpfiPUgfmipzDz3z5iCCbuHvdw1jn1eQyUn3OSLicaYZYiQRC+gLSGXMMVFBl108krXB/VzP5fpa1r7/+kjWSnbXWPpN/fp6cN59eKCOG/3uKfSdpNLtOxidHn193h9AzkXwtdAdnML4+gnsj9/8xiSKg9+YRHHwG5MoDn5jEqUYQflfDll6lI3XJow+5MeU9NJvUrEmZcC9KVRq/O77c1kb/quauJP+v8ta9plKwJjP4Gwi6v/Vz16/0nLUt4VeH8m9GYzUpv6IPOYcer2BDj3Jta/bD7/Z0ttPPqfXsr+DkegvX8ladqTHPtzrkBNinKm8PGmgV2NElJBBt4Gy6g0NxIDHFhL8YgSluqdDzQQ93uk5biqVl8uS78sQpDtlMFJPSIpAv/mNSRQHvzGJ4uA3JlEc/MYkSnFRavYVyaGuUF8/nGIaLdOAYW0NQuzmAKW1YDWWQ5VXD189lbV//Kc3snb5DyD8KIMtIpZf6Xm/WWuZ8Puhyqb7Rq9lAWt7kFJ7kHvbBsqYadBFy/CKHU1PhsteH1Swzl+CLPyPF7K0X+gPzr5X0bVaQg8/EI2jlnaSNFBjBs8YXfOK1kC6raC/4XENU41z/b3zvd6/n0KZbkTEpAdlwpBlOQMBSf0D/eY3JlEc/MYkioPfmERx8BuTKMUEMvw2UP5JgwRI2AWIpaalVxzJwS3IPcpi28I5znKVZNdQ3vi2r2Lp9eyxrP3y3zTL7tFwLWsREdtKRdA76AE4h/Jd6tm2AWlHInYP5aQ7+L0MJFnbcIg9TVqGtQoM6+xe95bW3q81s+0dlLKSx4Otbh1AsoZsvgqepwrE2RpKo+9gOEgOmaXzeixrAygH3kO8UC/KiIjHNE0FJOCMxDc8E37zG5MoDn5jEsXBb0yiOPiNSZRiCNlENcgPkk11xym9bZBwwhJVyE7aZCrjVg1MRgUJuMz1u+ueCprFUKXUJxWXjo5A5jyUJD9BGMHvdS3fpfuCx+hWfR0REQVNtgVhSMw2KljnB92zVyDJSNqtqB8hPJ/vD3pPIyLeNxtZoz0rYfruEp6793CzaEDHDH5vAOGCvRFbworyMUdwX/pQxtyDz/nNb0yiOPiNSRQHvzGJ4uA3JlGKcaYypgHJQoM3aDgEZYL1QH5ERDQksDqvwe/B+RBrKGVdQGbh21ylVFOy8DsCoUIZYtQf8RiyEDeQkbUGqUh7Q8eg+9fWg5F6wPVha/fw/Rvo/3cNk4RJ7lF56n1AOTeUO1NZdETEGnohUilzDyTZMlMhncN9xr2Fe09nCC0dY9giV0/hob+AJM0NSPwKBrH4zW9Mojj4jUkUB78xieLgNyZRHPzGJEpxCraf0gNpyknX9N4dfDeCbTOlte6gdp/+q9B10lAfbCiNAaerewADHBFxB4KWpqlswc6TXT+C+1LBsTEVG45BtDVWpXp+auC5hOdkAXnEZPbncN4ruL4lpIDPweAvW2x/Bc8O7Rk9J1toUDqEVN4d/N4GtraG55PM/lHL7buq9VouCr3uZ1t9dqalbb8x5k84+I1JFAe/MYni4DcmUYrpQUXHCKTGPlQiUHpvDbJoAamqERHbHKbNtHxWjkPiDKTNMNfznkCjyClc3xD+Nm5bphmRmOoqSam+nMaXD0BU7lsEpHyOxNmem5G+y3X9DexjXep+U0rzPZzjFp4TGpNNac577C3B94XWUSrDcWjUeQX3gM6bMqdHkOY+hWfssuZreT6Z62c/g7HmjR788mudzOU3vzGJ4uA3JlEc/MYkioPfmEQpJiAhSDeQVtrAJxeQ7dRGD6xID/4NQ3kVAAABKklEQVQekfwiKEuLGpSeZCr8TkM/B8NZYtmSFTeHfgBLWCPx1vX6qG4cpx7BtJ/VHsaAZ9rcMqJlRDtM3n7IR7JGWZaU1UjQmGwSyNwElWvgaTQ57RllkVYwUnsL9w8OgemhfXi2h7A1l8HNSE8fq4gdfqZNZrMjlbMfn6gs9JvfmERx8BuTKA5+YxLFwW9MohQliRKQFRvI3KJcvA0IERI5LYfBUt3OTT07ykYUL7APGziXtgw/ykRbQJkpiSUSlQVIQJpwRKO8F5WKvCWskTiL4LHfJGJr6Op5BIKVZFwfro/OhqcPgShukaZ03iRdcfw5PcvwjNE2Ug/OCZWXkxiEzNeIiAJqfbO+/mY2URFbPoNGr3gUY8zfPA5+YxLFwW9Mojj4jUmU/wP18EnoUq/iXwAAAABJRU5ErkJggg==" y="-8356.918349"/>
</g>
<g id="matplotlib.axis_465">
<g id="xtick_697"/>
<g id="xtick_698"/>
<g id="xtick_699"/>
</g>
<g id="matplotlib.axis_466">
<g id="ytick_1161"/>
<g id="ytick_1162"/>
<g id="ytick_1163"/>
<g id="ytick_1164"/>
<g id="ytick_1165"/>
<g id="text_59">
<!-- 214 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 8465.213349)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_234">
<g id="patch_235">
<path d="M 164.424375 8481.820113
L 286.714375 8481.820113
L 286.714375 8354.526586
L 164.424375 8354.526586
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_467">
<g id="xtick_700"/>
<g id="xtick_701"/>
<g id="xtick_702"/>
</g>
<g id="matplotlib.axis_468">
<g id="ytick_1166"/>
<g id="ytick_1167"/>
<g id="ytick_1168"/>
<g id="ytick_1169"/>
<g id="ytick_1170"/>
</g>
</g>
<g id="axes_235">
<g id="patch_236">
<path d="M 299.674375 8481.820113
L 421.964375 8481.820113
L 421.964375 8354.526586
L 299.674375 8354.526586
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_469">
<g id="xtick_703"/>
<g id="xtick_704"/>
<g id="xtick_705"/>
</g>
<g id="matplotlib.axis_470">
<g id="ytick_1171"/>
<g id="ytick_1172"/>
<g id="ytick_1173"/>
<g id="ytick_1174"/>
<g id="ytick_1175"/>
</g>
</g>
<g id="axes_236">
<g id="patch_237">
<path d="M 434.924375 8481.820113
L 557.214375 8481.820113
L 557.214375 8354.526586
L 434.924375 8354.526586
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_471">
<g id="xtick_706"/>
<g id="xtick_707"/>
<g id="xtick_708"/>
</g>
<g id="matplotlib.axis_472">
<g id="ytick_1176"/>
<g id="ytick_1177"/>
<g id="ytick_1178"/>
<g id="ytick_1179"/>
<g id="ytick_1180"/>
</g>
</g>
<g id="axes_237">
<g id="patch_238">
<path d="M 29.174375 8625.739537
L 151.464375 8625.739537
L 151.464375 8498.44601
L 29.174375 8498.44601
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_473">
<g id="xtick_709"/>
<g id="xtick_710"/>
<g id="xtick_711"/>
</g>
<g id="matplotlib.axis_474">
<g id="ytick_1181"/>
<g id="ytick_1182"/>
<g id="ytick_1183"/>
<g id="ytick_1184"/>
<g id="ytick_1185"/>
<g id="text_60">
<!-- 218 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 8609.132773)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-56"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_238">
<g id="patch_239">
<path d="M 164.424375 8625.739537
L 286.714375 8625.739537
L 286.714375 8498.44601
L 164.424375 8498.44601
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_475">
<g id="xtick_712"/>
<g id="xtick_713"/>
<g id="xtick_714"/>
</g>
<g id="matplotlib.axis_476">
<g id="ytick_1186"/>
<g id="ytick_1187"/>
<g id="ytick_1188"/>
<g id="ytick_1189"/>
<g id="ytick_1190"/>
</g>
</g>
<g id="axes_239">
<g id="patch_240">
<path d="M 299.674375 8625.739537
L 421.964375 8625.739537
L 421.964375 8498.44601
L 299.674375 8498.44601
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_477">
<g id="xtick_715"/>
<g id="xtick_716"/>
<g id="xtick_717"/>
</g>
<g id="matplotlib.axis_478">
<g id="ytick_1191"/>
<g id="ytick_1192"/>
<g id="ytick_1193"/>
<g id="ytick_1194"/>
<g id="ytick_1195"/>
</g>
</g>
<g id="axes_240">
<g id="patch_241">
<path d="M 434.924375 8623.237773
L 557.214375 8623.237773
L 557.214375 8500.947773
L 434.924375 8500.947773
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p5578310cd7)">
<image height="122.4" id="imagebdeb548cb3" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHm9JREFUeJztnUuPJVdWhXdEnLjvm1lVWa6yy3Z3QwtPEOpBM6AlGCAx5H/w8xASgiFTCyGBUAsa1O1X265HVlbem/d948XAYKTc35FO2ahp9VnfcCviRsQ5sTOklWvvXVT1s8HuUVhxP2R1FVxsEmoXm9cTF7saLV3MzOzd+tLFHpX+/AD387o/utgvjy9dbH3eu1hVli5WF5WLFYW/bjf0LmZmdu5aF2v7Do9NYTC3Ldb1fO37jGCvFvXUx4JfazOzaTlKik1Kf5154d+Jh8XYxWrY05U1Lva83brYuvN7GtuXqvB7fVH5tfggXLjY+8brc5/PBn8/nzQ3LrZqdi526vwzx54lFv+u+JURQmSBkl+ITFHyC5EpSn4hMsUrNhGGwQtQPcRIlGgHFr7o2B6ErgHEIYKESoKEuKHw10XBLyK69fAsJNrRPZZwHYPjijLt+UicJeGLYmb83ATuP6zj2WhtSEz15xIlnJv6jpiZNfA+bvqzi92BoBlgbWgdRoU/d1x6MZTOtd6LxzHwfIDeRX35hcgUJb8QmaLkFyJTlPxCZEqy4EeQCEixmDOpBSGIRJ8SRCQSBuvSu/TIzUeCH94jaCn0fNHzE0kV2AIIdPTMk8q78eaVd9mRa8+MxaoROCBjguF9GtjnIvG7Q9cl4YxEvLfhbCACmhfeRoO/7w5eFFqbEQiI9N6QOGdm1vf4QuKx90GhOelMIcTvHEp+ITJFyS9Epij5hcgUFPxSBahUYi6kEziZjoWPdfA3ioSSkCgOkWhHIiDdd1SMSRReqlRxD4Q8epYpiHuLypeiXkBsUXoR0MyshvWmu6Yn7kDcw3WEH5zA/l3APZKYdhrYFUfvCbod4ZkbcqvC85HYSC5Eej9JsI05YtHZmOg45N8TQmSJkl+ITFHyC5EpSn4hMiWUiaWeofLCBPWKS3V9mZmdBt+/bDv40soArqoziCJ07UkFgl9EtHPXgL58MTEl5vy7DwliJDaRG4x67i2hH91DiD0tfewR9NszM5vBepN/8RbE2RvYP9orEq/moD9PCi9ozsCBuI8IfnRtdIeCGEfHkZuPREA6l56Z9p6EQTOztkh7FspAem/15RciU5T8QmSKkl+ITFHyC5EpgZxkJORhDESpGmLco45FMizNhNNJOKOyxe/j+sMedV2khx/1HoTz6R5TjyNRagzrPQFBbAmxpz1XdD9tQRADPfOXI7+ON+YFvx0Iu0cSbKFH4QMQJScGZcyR79ix8Pt1gmuTkEdi4QGeZQf9/84gQKaWfcdEc8otKvONOQTvoy+/EJmi5BciU5T8QmSKkl+ITFHyC5EpYRq8fZL+A0A22THESF2fgLpuxnXnS6jfJvX6CGoq2SeJ1Ok1b9PX4Nh6xZcU5NQGp6TY7rqTi9E9BvibvgbV/EHERvoOrMW88/czGfz51AjzrvPj1FOZwLt4Ce+DRZ6lgfWmCUJ3vV/bLdz3gZT9xAk79F8veu9i/x2j2n+exJM2Wl5ffiEyRckvRKYo+YXIFCW/EJkSxsELQWTbTW0eSVNgYo0in1QzF3ta+GPH0O1xXXph6RpErVUBog1YNM9Qm/42vQloRDf1AyDIykvnvs00pPuQNXgC04zMeF8NLLVbsM7uQfzag1CZOmFnCuJeTYJWpEfD7eCv/arduti63bvYofPiHu0zQX0ySLCjvY+9dzhJCWz3XZXWRFVffiEyRckvRKYo+YXIFCW/EJkSSMgjwS91MsxDaBT5fumFPTOzHw9e3HvWUNNEz8uQJmDRFJgVuLnW5oXBU++FQRJozFjgofHg2HMAhCByeZG4R/dIAttd6Z/vmpxyZlbDfR9gHV+DSHqA+6Ha9mPnjyNIQK6rtIauZizu3TQbFyNxj6Y4Eanu0FRxj/LPzGxMvQ0gf2v4TQl+QohvUfILkSlKfiEyRckvRKaEi+AFOmzqCeIQOfeegbj3Rx07/H7SHlxsOfbCy+YEU1vO/jdDDc1DodLzBJNPXoJQRSWdJLDFSBWCSBhMdRemlm9SKeoa3I9mZhX85h7Eph0IeanTkMgpR6LbXeffkdQSbzOzDZxP10FHJTxL8p4mOvxIcJ9HHLEPQGC/AkfsRWQS03305RciU5T8QmSKkl+ITFHyC5Ep4Ul9kXQgCRiPSi9A/N7gxbk/rdb4mz/4E++0IjafeqGkfu7vu2+9eLkDkeVreBaaAETCWWwUN/ddS+vPRuW2cxjHTcelQve9j4iXWGJc+rUYwfPNwJFHLr1DAY46cOkdQai8671QGSttfps9vA+Oqk8U7ajn5QyEvHnlY5eQV2ZmTwsf/8D82j5qYSoUvJ768guRKUp+ITJFyS9Epij5hciUcFV5kaxLFEQegpPoJ0cv2vz4r7ikt/rZX7jY8PxLf9zH/+pi/T9CWeZz7/y6AXfhEvqekShFA0hacAea8YjuCsQ9cuSRiHQZoL9hWOK170Mjo0/ggKN7Nos42+C+qVzaQIA6wDt2B+7OE5T5rpu03noxRyQJfuTIo154OICGhDwQ7eh9ImfiGGK8rmZziC87/yxz2FZf5K0vvxDZouQXIlOU/EJkipJfiEwJBxCC2sTBBOfBix/vBBBjfvbnfPE//kt/7V/9kz//+QsXm336uYs9vPXOr/ePXlB5AaLNCxggsg8kkzDkTkt1klHPNiqX/iGUS48G//f7uvJ7QMMrmsg+z0HInYMwRYJhS07JRPckCX77Jm0ycWyyLZbWgriHoh30raTjaLL0HAS/WP/H+8SmTdNuHQu/B6vSn0/H6csvRKYo+YXIFCW/EJmi5BciU8KL1jvlUie/nisvcn1cvuNiH/3N3+P5w37ng+tbF+pfQ0lw70WNxYUXh34EQsf+dOliq/HcxU61f746MlDhSH3hyFUHIiD3cYNSzcFf+wLWIcC5pCF1sDZmZnOYyEuC2puBym39HqT2QqQ+el2f9i7GoP6ItAckulIeNDCFuCN3KHxXx+DQI9E0JgseQVS+xf6BPtbAdfTlFyJTlPxCZIqSX4hMUfILkSnhtvFTTEnoIJFkV3kh52/HMOH17x7jxX/61//sYovKC0Ft78WYorhysccPvYD4+JmPffRrf4/rFnoCBh+7jgxUWFUgdIH4dQShiyatLsFlNwV9bgF62AFcbQe4Rhcp6Z2Aa/AI/jISoFYwJGND5butXwcS91LF5xhDD4IaCGL71u8VTek9gDBIpb+PYFo19TxklyTvy515sfEM+1InftP15RciU5T8QmSKkl+ITFHyC5EpYdt60S61FJVcWv/RPXex1yMvKpqZ/cPI96RbgNA1AcvTB+YHGPzZjXdafVS9cbHxyAs5j3deOPkQxJ0xlEuamc3h2BVNti39mlF/PBKHaA7tGW4HTH9vRQPOPyr/PYPgh849csV9DyGP3k8S8WKQsJjqLuyqtAnIXNoM6wrHUZm9GU8ipjLhGZRfTyGmL78QmaLkFyJTlPxCZIqSX4hMUfILkSmBbJaxZogpNKCaknXSzOwaRnePobnmMnir5LH29t4Pa//fg0c3vk6/h3nFDdVF05QasL6amc3A4tmZfxZqzogNLkEZ3oIK38NwlzX83t3g9/mELSH5uem+abLMovL/haEJO+cq7T8AXZv2X4HYf6jo7IIstWDlHajpJbwn9B8OUuapxp+O28J/D7451l+HnnsL/3misd/68guRKUp+ITJFyS9Epij5hciUQEIHNT0kGyGJH9z0kMdaUzNEsoLS1JVz7a+zhT9lm8aLboFsliCcUdPDWA18bNx1CvSbexCCbmAddhB7A8LQCnoLROv5ScgDq/JV4XsbTGovNo3AWnpd3rkYvXcEidQxwY/iJLCiMgi3g6IkxI7wHhdgDT+AWLiDvTJjYZHGqVPjWEJffiEyRckvRKYo+YXIFCW/EJkSSKwowAFHU0AIFgbTb4gahaaC4gf8ffOyidkWbnJf+LWhmJnZEdaRRDtydJ3NC6JU50014hU4DjcwSYeEpehY60RxdwlC3qX5WBW+u1hM4l5TpI+Vp/eRREBy89G7SL9HDTxTn4/EORLCzXgMPN1jD8+yNd+3Q19+ITJFyS9Epij5hcgUJb8QmcLzpgESMKhpIv01gaEpUcjlRYIKiVIkk6xLf24DOteryt/kK5AGNxH3FDVdJMHvBLHUZpZHEpbgOGqsSQ7EEkZxvw0VCMMz2JerwjdW3UGJ6W0Fo65h/1hU/n7fMfpNehenwd/jZZj5GDwfCdL0PsRIdRdSjMRCffmFyBQlvxCZouQXIlOU/EJkSqByWYq9zUSU+8ScZPSbdO06UfDbg7Ppy9r/3hZcei9A3LsevCtqE+mvRsJNAyILjj9PLAemtaHeeqnn0hqa8X7RV4LU4imIgDUIi2cYYb0KCxdbh72LYSk49I58G2h9xsGXMc+CL2OmvoU0Yp1Wuy2hHBimOpnxeHdy+A3gBCXXrr78QmSKkl+ITFHyC5EpSn4hMiWQqPF9eBthkEQWcvNRjHgDpZ5v4Ha2IM7RUIt17wW/Xcf91ag0k8Q9cnmRu4ygcwlar2npnWmxy9L9UGwEscedjz3o/Dp8AG6+Wf3Ixaqp/70vYez6uvHCoBkPkSGRDN18cI+0jjUJ5HAvUxA+l/B7W9orMztFhMD7pL4n+vILkSlKfiEyRckvRKYo+YXIlEAlk9TjLLW3HrnDSNiLxScwpZdEFrrOCkQ7KqulktcDnEvi3iHi8Evtr5YqxqSWatJe0Z62lb+/mNA4BXcaHToH19gPoefeh5d+QEffQ0/A7QN/kclDF6L35qvi1p9rZpv24GI4qAbfxbQSY4IGorRYVu3XYR4R/Mo6rS9gqoCsL78QmaLkFyJTlPxCZIqSX4hMwZJeEqWqROMeCSKjklsFjksvLFF55CIigNyHxL0tTDwlwY9KclNde2bp4h4dx5ONaZiDv2/cq97vKV0j5pwkwYmuU4PgtwAX2uKB34P2DI66DQ0l8dcYpzoYjYXOMzhBsYcflkGnfS8bek8gh6ic+wr6/5mZXRS+5Hkx+LWo4UKJQ4iFEDmg5BciU5T8QmSKkl+ITAlUtoh95kCoqkHcm1W+x9lF5fu1mZktSn/sHNxlIxQlPeiKI6dVolOOYjG4TyGJSP6oAaaa4OCFRMGPJs5SqfUJesKZ8TTgE8Ruof/cZ+b3+vw5TUr2sU9rLwy/gemye7jvDiWt9Km6RKpbdQSlulTmS24+ir1rPi/MzH568r/5AfSZJA6DX1t9+YXIFCW/EJmi5BciU5T8QmRKuIAJo+QuIycSOfSuwtzFnpT+GmZmFwWJEF4AOYP4tTeYOgoCzdRAQKy8QHMAEYnKdGPCUgfiYGppZerglFRRkacnp5daEztwO/7Cdi72xcjv6QwEthF8dxrz5dIr2Je3mXTMop2/R3RKwj2O4NwpxMZwLk4XdhGedGxm9h64VT98tvLXgR/drr2IqC+/EJmi5BciU5T8QmSKkl+ITFHyC5Ep4UlYuuAOmlRSbTvVUJOy/yxiVxxDrfaJauDBrkp13mQNJoGclO+7wj8zqcpHaFBpFlebU6A6fVLs64r7ItyHVHyyXS8jtmtq4EkNTl923lpKDU5pvSfw7lxALweC7NkxyMqb+l8OUvun8B8u6i9Qo9oP16AXNOIqX8N/rnYbv6/1yL9PbUt2YyFElij5hcgUJb8QmaLkFyJTwvsg0F2DgHEH1sIRHDeD2uZxos3VjBsNEmSfnECMrKX0F4/u8AbOjU3cSe2BQOenTudJtejOgheBrmov7D6uvBXbzGwCz72C/Sdxb9V4yy/1Iaihqeux9vdDDV3JYk1rY2ZWwvrUifX8tLYk7lWpE3JIxIW3MdZF4nkN9725dKEZWN+HRGuxECIDlPxCZIqSX4hMUfILkSnhqXmn1b7wgsEOaq1JlKJGj/si3ZFFDj+qlaemnpcwveSSptfANfYgQKVOZzFLH5+dKu4RMNUaG0Vyzbl3h5GwZ2Y2AdF2Wfj3ZA0uvbXtXQyfufPv0x08C/WRIGLNVskpSb+JYmri/p8TZWqacFTD/TWRZ76u4L0l0R3yYApNYvXlFyJTlPxCZIqSX4hMUfILkSmBxLgDNPCkks4GGlySe6qByS5m7IwiqYNGDi9AlHoC4t7Dzv/iEUQWcvPRqGoS08zMOnhGKtUlUkWt1EafqWPXcYy0sZi6hOcmh+A+wDhueE/OHZRLgwjI4+LTntnMrAehK3WiETXcPEKZNzk5yf1KAmsJIiDdi5lZA869XemPncE3fYFNXYUQWaLkFyJTlPxCZIqSX4hMCf/WrV3wTevLMjfdwcXIubXvvOBzA/3jzMzGNOkEYg9KX9b5CBxrM9CvLjofnIL48QzGja+g3LkbsUh2B/3sqO8hrc+x82IqCV0jcCFSH0WapER3vR28wGZmdgaBbgnXmcBeUa/Adetdf/R8J1gHEk2rMl3wozVLFgzBAFn3PtiBaN7AipOzlKqB24hbMfVLTYLtDN5vffmFyBQlvxCZouQXIlOU/EJkSvjk+MoFz+Dwoz5s5Ezbmxe07gov+JhxH7fL2ots6Bo0LwKyO9BHZyBUFjCLo6r9NR6AmGZmdlN68WwDgt9t5YXTFYipxAxENxoiQZCIdwtC3DfH+vtOZdP6Z9k1XgwlkTMVLL8FEdDM7IijzqGvHwhiNPCjgXJ37MsIsVj/R3eN2Bh4OJ/2Ffs6gjirL78QmaLkFyJTlPxCZIqSX4hMCauzd/MRVN5IUBErOaCi55MYB8dROTAf50WSaeEFrQnc+fQMbsOK+969gYm369Jf+xUM1LirFi5Gz0eDSkgcuhm86LoBZ+EeBnGYmR2gtDZVBKZSXTq369PeCRp0QcJXB07Ot2EEE5CXtd9TGhhCOh5NEqY8oBgJjWYs7tHgFGICwrC+/EJkipJfiExR8guRKUp+ITIlkPBCbikSXmK9xu4TG6hAkDuJSkcnA0xQhevUINCMSioT9ecGEJGqjh11cyj1vIL+ao/BpbeHGP1VpoEmz0svppHgR330UoeFmEXKYCsfC+CUqzp/HImFqdclh150ejK83yRAUh8+ciFOYb0HEOgoN2i9qQ9mTFw/QR9NEmexHFwOPyHE/6DkFyJTlPxCZIqSX4hMCSTkkciCQg4JLzSZNlKimDoogUo4aXRGAM2HHH6hAlcVxIgxCHtmZj0MX5iBpnUFsQOs4xHEwpsqTWClYRypg0HM2GFGvfmofyC9E6feC1U7cBySUEXXmFe+1JocbGZmO3Axvjyt/HFQdtyAMEj3Pa1AsIX3IZWYEHuEdaS1pfNROP0O9yaE+B1AyS9Epij5hcgUJb8QmRLILUXiHolAJBaiOSmipZG419MgEHA23cFU3BWUZT7ofWwOQo6B4NfC1N8DTXIwLmWeQXQCPeAuYB1W4CS8hefD8lZY8NRpt2ZmAfb1MvjeijSl91Hhxa8avjFr83tKJasPCy80/sB87LJnge3Tkb/Ox3Dci+HWxch9lzpJOFaWm3JuTPCjoSappdaEvvxCZIqSX4hMUfILkSlKfiEyRckvRKYErN1PbNZJan3qVJLYsWRhXPfeevk1jOgeV16RDgPUMbdeLV5CzfkezqUJMFFALR6HtF4Ch5O/Ns3RQSsvWKxpr6rI334a8b0o/ZpdgRL/I1Di32vJsg2NTOF2HoBw/V7r35F9RF1/Ce/3Ep5lB806d21aXwRS4Tv4bxTtASn7dA0zbo5KFmQaa059DfTlFyJTlPxCZIqSX4hMUfILkSlUFp/c2JGsuATZJM245vkEs7K3nRf8XkNDwgANJcvga78L84LWuyBK9YnCp5lZnbgWHdhQB1iHA1liQRjco7HYgw0coWeAmdkIRqeTRZdoUfD115n2/jhabxI5X4LNOdbr4BZGxtNaUI8Agpp6knCdOuGKiOUfiXtHED/J3kt9NvTlFyJTlPxCZIqSX4hMUfILkSk4sYckpAaiJHSQsECOMzMei0xiB9UsU2PGN+DyGoHDawYi4Hjw5z7sYGx3RIwpsK7eX/um89cm1+AnYx/73A4udgvrQPsyp6lAkYlLqWLVDuS4l3DuMcDEpUR3KK02fbH20CfBzOwI+zWB9+SiTBP8Uuv0qVcCvdvUgDPm8KM8ItGdYhL8hBDfouQXIlOU/EJkipJfiEwJ30e0IwGDYrESYSonpmvTPWJp5eAFqLvBN1y8gZLV98D1RQ04F5UXaMzMTtAo9JV5ke157Z/5BZR/fm57F/uq27rYoffPR9NrHoGg9Q6U5JqxELiFtT2DHLcBEfAIx43hu1PR9CgsRU4vJa/JXQh7Db1akQ7KgWtqggvP19J6wQSgGPvGH0t5STlE6MsvRKYo+YXIFCW/EJmi5BciUwI6kWjiS6JriByDQ8RJRtDYboKufQIn4L4AdyCIVwNUN0/LtH57Zmbbzp//65Ff21+UXrT5ot+52OvWi3t7cPORG49ik8o7035/8IKkmdljKG9+UXkR8csSyq9hbWmq0AHE1Hrw60WCXQ0uOzrXzHCCVAfvzhm+gzMQTkcwsWkJAiK5COm6axBiQ6RP5LrxIjCNFu8hh+TwE0J8i5JfiExR8guRKUp+ITIloMCWOHeD3HxcTpheOkolk7FR0vch19+BhoBAn8ATCC+71gs51z274j4Z+fv+z8q7737V3rnY82blYtvWCzkk2tTQb4+GbtCWLiNjrf9w8ALkk5N/7n7ir/M1/OQe9oVEwAaE5hK+TzW8T1Qi/M1v+ngD1z6DAEnuOSoRv4ABMpcxAfIeS3jfzxWX9L4MfrDIqYZ3GfoMUl8/ffmFyBQlvxCZouQXIlOU/EJkCvbwI3GAJoRSLLWcMAYNjKAhCyQMUozKU08g7vw7iHPXE3/dXcE9/J6DSPa89bHrxgt+5Nwi0YYg0XUPa7iB0t9TMcffXEz9sXMojX51euhi6+D34AjrfcYybXKH+vs7wh50EcFvNfh1XIFTcgvPR4I0OQmP5A5NdF7uQeQ8RXr4XQY/hbqa+vuhvoD0PunLL0SmKPmFyBQlvxCZouQXIlPCsfVCBwl5OPkzsf9frEyXRAgq15zAwIkxOduoDx/EqIfbDQg+n/a+rHYHwpmZ2bb3jjxy6e2hZxvtQQPrTZBgS47I18GLj5+NlvibL7deWHq68KLkZQe9+QJNO/bsQIg7QjkwWRNXUFZLjsHYb54hRm4+Eot3IPit4J1Nlb3XsA6xZ5lX3mVJIjc5Xdsgh58Q4r9R8guRKUp+ITJFyS9EpgQaBJAq5KUSO/fUerFjB4LYvIKpuiDaLQsvDKb2V6Oy0xuIrTsvfJmxuHfswFUHIicJrH2yZOQ5wHVvmo2L/RyEVDOzMH3kYn8Abr6Dr2S1DZRL0yThV9CjcNP5KcSpQlyMikqCQSzGsnEQ9xqaIk0DZMhtivfnn4VE6m/OhxJ4KDEmwZByWl9+ITJFyS9Epij5hcgUJb8QmRKo595vCnINvjl5YYrKfGkSbQ3ixxzEkwUNhyA3F/T1O0Sm9KZOLCbnHvdR/L8VWElofAnlxWZm/wKxL0rfP46GS9yAaPfV+dYfB/tMwmcovXA2qtJKvM3MJjBspIL9JzFtKNKEs9QMGpH4SLFIz8oJlDKTg5EEPxRO8SpCiN95lPxCZIqSX4hMUfILkSlKfiEyhX2EvyHoPw1kN74pvTJMav9DUOfHoKQvQe0dgdp7ArtwU3HTS+pDQP+lIBtpBf+lIOsz/feArK703wOyC1Pdt5nZBuy4BFldb1q/V9dH/1+FzZmsvP73alD2SXGHEn8zM+sGGpVN6wj7wj/pz4UYjRaf0TQq6FDawX8ZzMxO8H+FI9wlTT6i39SXX4hMUfILkSlKfiEyRckvRKb8vwp+BFl+d42vlX8TfD34VVi4WF/6ZpQLEFlmEDuCYHcEEdDM8M8oTWjBKTBgYd0XXnSjOn1q4Jnae4HuJQbZSLed3xeaPrRv/bPQPqdazUk0JRvwN79Jdtzvbp2mNcOeAXCPNFp8TO9IZKT9Aq5D48ahDaoEPyHE/6LkFyJTlPxCZIqSX4hM+a0T/EisojpvFAFHfirNvrpwsWqAyT6gAS3AebeJ1I2fYSmbwotaXemnrpBjLbU/wAEmCJHIRefGoD04wESjTetderQvDTUopXHcdN8gaNL7QKKpmVkLoi06BAEW90CwBXGPJDsS3Rq4FXIHxuITEAcpqclJqC+/EJmi5BciU5T8QmSKkl+ITPmtE/wIFKBgrDW5y25qGEFeeNFt2ftrjEGMGUWaK1Jzxgk0D21LmviS1pAyNurcXQPcc2UHpaOBRUAq9SU336bxgt+RSpG/hwuRxDl6PhIBzczGFYiuieInlUvTngYQ4jp4vj004KQtpaaeZmZTEO0m8D6O4bgLqN7Wl1+ITFHyC5EpSn4hMkXJL0Sm/BfX8SLvRV+1HgAAAABJRU5ErkJggg==" y="-8500.837773"/>
</g>
<g id="matplotlib.axis_479">
<g id="xtick_718"/>
<g id="xtick_719"/>
<g id="xtick_720"/>
</g>
<g id="matplotlib.axis_480">
<g id="ytick_1196"/>
<g id="ytick_1197"/>
<g id="ytick_1198"/>
<g id="ytick_1199"/>
<g id="ytick_1200"/>
</g>
</g>
<g id="axes_241">
<g id="patch_242">
<path d="M 29.174375 8767.157197
L 151.464375 8767.157197
L 151.464375 8644.867197
L 29.174375 8644.867197
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p743867ffea)">
<image height="122.4" id="image3e36e22b4a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPJFlWha+bmc8eU0ZmVGXNVc3QDE0XSKxQSwiJ/8kvYMkKFiCQQAghMTVdPdSYlRmZMbiHz25mbiy6Vnk+E1bUinrnW94w92f2zG6YdPzce3vT8QdNvMahrl4PRX2sJUbkWS6xQV7wsb1MYr1er9NxGRx3bORSogmN0fcN877EpsVIYjOIRUQMe/r5Oo4S29UHidE1PylOJPZRfiqx32qGEnv/oOtOG43pznxzbOj9f//pXGIXH+tn8/cuJdYbDnTt+VJi23+7k9gX/3khsWflRGKLXO9pRMQe9nYHhz70dDeuM92H58edxO4htjruJVbDPZjl+jw9zad6ghHxgxhL7Me6TPz48kZij39cSox3zBjzvcfJb0yiOPmNSRQnvzGJUpwPVVzYVKoibEsVqkjAIDHt/yskFjYgKkZEZJkKS9HoXtD+0D5uGxVo7hu9By96KqZmfRVdR3AuNZxyRMRprZ8fv5xJbPpcBbrR2Vq/8ET37LjYSmz+pQpa/33UdX820u9b9FSciwiQXPmNt4d7MId7sGg0N9ZHvS+HRs+Hnp2qUSG9hHOJiADtMvokcjd6YHmr63x/MtUY861w8huTKE5+YxLFyW9MohRvj9WRNS9VtFkWKtBU4PojUYMcbG30ovuxuk43gS7r6Cykc6HPRkTk8H80h0s5dBT8DkcVjB4yFZZegeBXg1sxBxGojQs4x7O9inGXX6s7rf9kA2uD0HWjrrjru8cS+2Son/0kdI0HcE5GsMuS7mtX0XV31BiJdgSJvRTrtzxjQ7iHBVzfdqP3v/cV5AGuYoz53uPkNyZRnPzGJIqT35hEKX6vryLL1zmUTNYq+JUdhY5ji2OJXFAliIgkxpDIQsd1FSAHmQpnfSpPBoEtImIEnydoz6oexOC4DTjJbuH/9wbcbgWISIOW//1NpoLRy0Kv7+ZW3aGTz+8lNlyv9Byf6d5+1VMB8ctQYfB5pd+3hOczgvebnJv03HUV8ooeOCphDwt4nsZQCn4S/CxNQPCjzFrttIR6vdeY3/zGJIqT35hEcfIbkyhOfmMSpfijozq33shUHFjk2lOuK5sW4WQOJaoP0PtsVavos6UySnDFkQhIkOA3gn04ybVnXkTEaU/jRxCWjpnGWPjUGAl+xArEvQL+z5/A9UVEDOHY60LFqk8PKgz3fqnXd3oN93St+/W8UEHrFfTHuyPBr2LBj1yoKO6RWxXuH4p2ue4jPk8g7p3CPXgUelxExKzboxy7Rs/xCGKh3/zGJIqT35hEcfIbkyhOfmMSpfi4VKHkvUZFiB0IGEcojTxA5egdCCIREdcgdlzDsdfgqrsHR9emp8JSV5cWOfdOYKDCRcZDO85BpKFufzn0+qvAp7VotGyVnJJUYkp0HXwSETEAx1oOx5YD3bNFrT33Hj+oMFjC990Wen0P0E+SxL11qcJgRHfHaH3UWNfBMF37MlKpLrn5TlvKrwewNuVg3fGd7je/MYni5DcmUZz8xiSKk9+YRHHyG5MoxQ9+81aCH+z1f0J10NgOGgUuVqqG3x5aLLFQI94v9NhNportCqyuVFdNZKCQTsC2+zhTlfp9GJMcEXHWcSLOCdhDSQUmO+4BfrnoqjTjuHCwEEdE3EMN/QF6DqzArrou9Neae7jmHO4BTd3ZQRPNfQ2NNSEWwSo+9Xjg6UzQ1BV+AcD9hhi5cym2b+m1uoRfiqhxLP3A1Yfr85vfmERx8huTKE5+YxLFyW9MohSzP9QmjMRxriLQ5lO1WR6PIIisWMHY1jCtBGq6SegiIYisvCTu9GGizVWu+/AHPbWqftTiph0eoSkkiENrsEk/zlUQ+7LQc3yAuv8dNfqEvaHYvkXwI5GMBL89NR6FfgV7sHEPQfBbdhxrTRbbttHpXcW97wKtQb0lqC/FSxBNG9jDiIglPBPnULt/Ds8T9QLwm9+YRHHyG5MoTn5jEsXJb0yiFNlTndjT7NU919xB/fxchZw5OPxuGnb43fT1f8+z0Prtm1pr26mmm1xV1EjxFGryf9TTBqU/2ek+PBq3TIapVGTZVrp2Vek1vwmfvQSn3FfgiHzRUyHvEFDDTiIeCGwRLQIWvCfqDNxz8H3UtHQKdewbOB+crpTrZ3ewrxERx45j24muo+VJgNzByPBXhweJ7aEfw6JQZ2lExBk8txeZ5tYFCNrkLPWb35hEcfIbkyhOfmMSxclvTKIUzRpcei8XEnv4qYofv3p5ITFypt22VNo+y1Tg+azWaSyvShVKltB4lCbkzAoVSUbQrPN9EIw+eudOYpMrtvgdFiD4LXUv6hLKpWHtJxsVcialCkGHvl7LK3DP0ahqmgoUwftIpcNUj9qDtUk2IyGuhnVpyg1NyNnlPM2IrgXraL8DJDRT2TFPDwLXZktT1k2h17jNtcR8DcLgec8juo0x3+DkNyZRnPzGJIqT35hEKTb/9EKCi2cqIvzi9onEfg4TW16A62sOvdkiIq5h/PINjF9eVVBODJNciD709StB8aG5Pv2xRgcfcgl0f6fXOLrXczwewHEG23O2UEGz94V+9tVRy44/x+lKJLB1V76o7yH2s4Pv3MMFFh37Fk6hHPgUHHBUQttGCaXIXV1/BH22phjsDbkD26AJQiTEDkHQbkA49ZvfmERx8huTKE5+YxLFyW9MohT/+G9vS/BloSLZ85EKEy+hnHQBveIeWhxLOGa7hjHb4IwioaRt5LR8H7jd1vBvsNzqPvT6bFfMTlQk7Y30+pqN7kVTqRCUT/Ucr3Yqhr77QsWvn49U3JmAcNbm8CMhbwqlozTKm8DBFDiARNcdg3h1WajoSuPLf/2dMPwErptcevTcsbj3fxfyuj6z3+Y7SUwdwb3ym9+YRHHyG5MoTn5jEsXJb0yiFH8zVrFiBaLdOlQkWUPZ4pYGRrSVKB5V3KOeZgQJOQVNwAW3G03zLUF32a1VODsu2VmY1SD6PIDDb01eQgDOZ3Sme/PWtbofPziqCPiQa4/CNsGOhCUqg6bpwiTk0dAVGpxBJb1DeD/NoDw1+np9ETx9mQQ/EoGpxyF9tmuMxEJ6ZqnvZFuc3Hw0ARkFclzFGPO9x8lvTKI4+Y1JFCe/MYlS/KzW/ng4FReEOBJEyDVG/eMiWGQhtxSJezS4gcSTEQwwGHZ0pm02Kiwdns3x2Gyg4l75AL30Nt3W7k90b0gHevPJUmJ/eK0HZkMVAX8JexgRMccJyN3Kf2FIMw/y+A6Tcun+9Xvaty4i4jJT5yUJYuSzIwGyhH0ggfy2XktsDVN6SYjDfonBgh/t4xrO5yV8n9/8xiSKk9+YRHHyG5MoTn5jEqVYQFktuexI8KPjqAyyDSodpaEPJOTljf7f6vp9JLJsYJLszU5FpOmXKiBFRAyGIHQe9LwPe+iv1ug5TmBSMjn8pk/0uA9qFSWXtzqN+WHIgt8OOhquOvb7G8D7hJyAJFRRn0AqT6U1yAkYEXEK04Av4dk5A6XyvIbpwjDteJ3p9/374Fxi/1WoOHsDwmBbP0LaMxTi4fO3uN/GmCRx8huTKE5+YxLFyW9MohTkqCNHHokINIm0BMEvB0EkImIIgwT6IO4RXfumkYuQyo4XMMjhJtPzO52z4DebqPBGQt6uo+BH7dqyXK95AL3+qlL3cAdi6KFFxCs7ltuSU24GJaYk0HVdlxiBCHjWsHj55KjHvg09Ez/oqfD27m+ocDr9Edz/o573j/9a1/3LUqda/2uue3jXUxE+ImJPvQdpAA31I4Q88JvfmERx8huTKE5+YxLFyW9Mojj5jUmUglRAaq5IkJ226xjhCFb2xzBZhujaXJF+AdjBZ9ewDwuod1+V+gtARESxh18fQGleVfr5PfwPntS6dl3rcflC13221rHdv4Ry9+vQXygiuB6cfhegKTCn8AvOKdhpiT39ytADiy183xXsTUTEW6Dsv1eAsv/boOz/+YcSy/7kz3QReL7fO/tLif3RX+gz9vVYbwz9shIRsYNR99gIFdR++k6/+Y1JFCe/MYni5DcmUZz8xiRKsT2q6EM18CTaDcH+StNw2gQ/+jzFEFKgYJnO9fxQw76AGv8FCFoRERloZ9vQvbjJu1lvZ0cV/M53YA2Gc/nFQI/7PLR55KujxiJYEKXpPjnsxRisyicg0PXhxA8g7oFzNi6g9v7dkmvg35tqDf3VhzrqfPyx1t/3fvuHEst/44/1uEJF6ubz/5bYR2f/IrF3do8kRiJnRMS+B6IyPAFdG6b6zW9Mojj5jUkUJ78xieLkNyZRChLjcvifQNNCyElEjiMS3dq+kwRDcg0SXZt69mGNHTj8XoHAMi2438DyqKLPA9Rqv8z0O/egXp7APTgFEZDapX6eq/j1EsS9RYvgh9N5wHnJwhJ8FGJTOPCchGYQZy9qvb53xiriRURc/UAFv/Hv6Djv7Kk2OA1o1tk83Eis9+gtjT39QGJvfPz3EvuDv9U7OBzqWPGIiBUJot9h8pHf/MYkipPfmERx8huTKE5+YxKleLN/1ulAKgns2vyzbUQ3rwNKEAh5JAxSjMQ9cqsdQDq7Dhi7DW6uiIghONtW0BSUxl/T2OcJNMKcgDuQ3Ip34Nqcw3joB5jWFBHRUPdQYA0i4AYcmjXcvxEscVbrPozheZhluocnp3qvIiL6ZyACD8GludXPN59/KrEjjTX//Z9IKHvrNyU2/NMfSezjz/5TYv3Pn+gaEXFHM9pBJB3A/RvDM+Y3vzGJ4uQ3JlGc/MYkipPfmEQpPi60pJB6qa2hzHMJsQ0IWls4LoLHC1NPwRqcdiTkkTOxrZz4dfaw7m0Drrge970jSnCIUbksCad03jTqmtyTe1hjBW6+bc3XgtOQ4JkYggA1gzLfKxAv6a4MQdwbgBCbw/NQVXyfy3safaT9+nrZAj//Ov2l9v+Lyzd1iSfv63FP35bQ7KP/kNjjr9l5GaX2+xvB/lyM9fOXb+p5+81vTKI4+Y1JFCe/MYni5DcmUYqfbFUwWoCT7LpQIeclOdh6KuItgwW/NRxLAyNIgKIy37bSYfk+dCuC0NjRwRjRfdAJgX3YqHkdQCXL5NCjgSYUi2gRXWEvSHS9yFSU2vY0tgfxkoaX0NsJqqJjueQy2GMNg2We6/6UBxCQYST6VfW1xIZP/lnXfeelnswXn0lo+wwcmiDsRUQsYMgN7cVwqPd19IYdfsaYb3DyG5MoTn5jEsXJb0yiFL97eSfBxWIssfO9xmZ9Gkqh/08eggddrHMtCWXXIIhVIEqRe64C1xiVwZJgR73saDpw2+e7Og4zECpRlIRr6UEpMYGOQRCQIiKOUFrbdRoslSfvQJV6yOB84NkpYUBHBdcMVcy/XrtUd+Gh0etewYCVIfWjVENeXBUazK9+pefyM+0n+NNP3tDYgPOlhFu9q6Ckd65TmpufgvCJqxhjvvc4+Y1JFCe/MYni5DcmUYqzt7WPW5aDA+oGxJhKnUgZ/D+ZtAhLWzh2EyrQrDOYoAvC27xR1WcNShD16yNI5CJx7tdovGtPQYLKmEmo7DrQ5ADCWU32sG+xTkGOMziuhH1cwQRk2tsSvg/0yKhhoElEBCwTKxAbFxCjnS3vdZrv6h82Esth4c92WtL77yNd96bHojL1iSwL/fwWXJafr9QB6Te/MYni5DcmUZz8xiSKk9+YRCloqMF4DUMR1jrU4GKtgk9dqzupD0MbIiJmIOZUKPqQQKMCz3M47iUs/XDUayF3IJXatk1FJQdd0bEPH32WypNJEKPzoR5+u9B72laGjJOb8fr0/tN5k+tvCW7FMtPP7uAZoXJgEgYjWPDD6ckgclewPwsY2vHl8VRiWxAln41gEnRovz0SXCMiZtALsYbJvbewF4fCJb3GmG9w8huTKE5+YxLFyW9MohT5uZbVDvcqQpyV6gQkjWW0VifRsuISxRrEobxjL7wliE2Tga5dgiCyAQdVDU7AEnrctQl+JJ7hYBEQq8Yw6GKEQ0lAEIPS5g1cy45itYqAEd37EVJJLwmnS9pvWGMAe7OG2Bb2hoTBNubgbCRXXQ3C25ycgCBU0pAbmtBMZdojEPYiIvaw37SPW3CwrmBAjt/8xiSKk9+YRHHyG5MoTn5jEsXJb0yiFL0zbcxJ2vzJVNXC8ZU2JLy419rmw4Zr2Ou62/+e6gD23iVMhqmmEvtsoJ/t2owSJ+m0WC+7fifZXyeg7p7DLwCk9t+Gqvh03uVRFWCazNMGjgIHBXlR669CtDf0C8cAbOD0qwc127yHKVMRrIZjk1j4ZYfs2QXU1NMaK1D2yeY86PirTkRE0XEiVVf85jcmUZz8xiSKk9+YRHHyG5MoRbNUKy+Nh+5NVJTqQ6y4UBFpAmLTr9H4caeiyP4ViE17qG2GkSbbjuOmadQ1Tdxp01zo2AEIeWTdJHHvccMWz9c5QMNTEtOmOTRwbLHEkjhIoh0Jfp0n++Qq2I5hb2ji0o4asLY4kg/weZr2RIxhb6nfxB7OhxrHkmhKgl+/5SGbwrH09iZhsN9x/LkxJgGc/MYkipPfmERx8huTKMWLvwOhqw/CxEgdUIOZCh2F9jKM4ozFq95EhaleATXmr6A+ead9CL4cqurz6qiCJtWck2BHI6zbJu4MQayakpDXU+HtjQaOq7uNVO7DmPPI9SZMMz2OGplGRKxq3bMNHHsAVxyJe1SzTsd1NbB9GxGPRqp3ddpRjNjD2rQGNW/Fe9ryTh6BA5IyiwTDrmsbYxLAyW9Mojj5jUkUJ78xiVL81fqxBPvgljoF19/jWoWOp0Mt6X385goXH13qseVK/x+9+nImsV9kWor8KUw/uanXEtuC+2qYURNNFecuYPxxBAt5j0COedyoiPRmpXt7UZMoqcc9qfT7HhV6Lte5Xt9LcNlFRLzI9PO0j5uaBcPXGVKDUpi4RO5HKm+lEtpvAzVR7TrqnKBJSl2nHpHQ3HYmLA52O294xPzmNyZVnPzGJIqT35hEcfIbkyjF3/UWEqTy1gmMJr4cqGvsXRhX/NEXKthFRDz5QgWjClxMz8DF9gmoktdH7R+3qKCnIDjTyCp1CuLeeQ8cdRHxfqPxD8Gs+BjKYC8K3YfxDMplQbRZg9PxpNTY+VEv8ASEwYiIPkylGcB7YgX7Q446ErrI/dh1StG3EfzIpUdvPC7Jpv6PCpUdl9DrjzhAOfAy4PkMdulNIF9oStUaXIh+8xuTKE5+YxLFyW9Mojj5jUmU4leH224H0khsKBP9NFfn3SdDjUVEvBEqOJHAs+ypWPG8UZHsHgZGbOtuo7dJlCIR8KRlfPK7IO591FOx8eJCz3F6rteSD1VEqrZQYrzQvektVfDJsOKVryUrVIw7gft/19OLnofGqNyWhLghiW4d308kFrYxhHtN69DKOxD3KijfXcIwlRU4IucdR7tHRNyC85KEUxotvoKSbL/5jUkUJ78xieLkNyZRnPzGJEqxrFSAOoJgQCWPcxDn7nIt333RUjp6DuIglXWWRxVUHqA3332la+9A8KP+cX3qRwdiDDmqIri8+RGULE/PoZz4EtxXQxCgFtCPbqfi0Givx1U7/b4L6BMYEZFB2fEk18+PqX8gMIdlSNgl0W1GQy3APUcDMSJY0pwd9dgRTt9V7jN9djYgSNME5Luy2/PZxgj2ewCl0fR8k/DtN78xieLkNyZRnPzGJIqT35hEKSqYyHqkwsWOVZQkdOxqsL9FxCZX1xEJGHSOa3BLrSsVAfcta78OTZel/4zjFmFpDPJQeVCxar+CycZjmBoMJctNpWvTGocSRFMQKtuKTvsg+E5hxsYmA+GMBp3AM0Frk/PuBMTHGYhzIzi/iIgpPLcnNQi+IJJtoLS5X0BpM/RHfA49ISk3ViVMyW5Jtk0FLj3YsyNNRYYc8pvfmERx8huTKE5+YxLFyW9MohTkBqIefg01kANoImsb5Dqi/np76Hu3BqHkAIMuSLwkUZFiY+oz19KbbQ//R18tJ7rOWvfn0R6cgEvdm82DOrye32t/xBvoM3gAcQ6MbhHBzrYtfR6O6zo1lhiAKHkKJ3lV6z19BA7LiIjLXJ+TEUyc3h30zG9rdaY2MCSlgqteZycSu+/rfaYc2JQ8DKWm3pMAPfM1uGT95jcmUZz8xiSKk9+YRHHyG5Mo2MSNxD10/QEZmgP5sw0MFyAXFDn8yLFE4iX15hsXMNSimErsCQylOGVdKXbwf3QBbjfan/0cXGwr6I9XQc9EuJZXOdw/0NwGLbeUymOpvHkL949EwD7sTQGi8ikIfo9B3HsP+tE9ffwAK0ecvqWCH7VrXHwFA0huoZceXOAJVOXOYCBKNbiSGAnk1zHXLwx2+JGQR/TpWez0SWPM9w4nvzGJ4uQ3JlGc/MYkipPfmEQpSMVHtb+jvbcBFbeNDNRdahRKiv0ARobTZ/tg2z3pa+PQi0KtuJehSvrkyPuwhdrvRa7nQwbN7VHXGR7VWvyqr2t8lUOjSFiF7jPV3kewHZfeEnQt9KvAqGOd/lPoV/BerWr9u09VDT//If8Mk799ocG9/pJS79YSmy31F4C81Osb93Unrir4haOCUfWDNyX0Xy1ToV7s9bq5xh+ao0Ie+M1vTKI4+Y1JFCe/MYni5DcmUVBZIHGPLLpc4w9CB9SCR7CQRzZEHJ8NlDCHmsYdD0BQyeG8yX5MTSvbIJvtDvbxDoRBstjOeyosXTfqLZ2D/bUEGynZbiMixrA/fbgHXUdqn8FjdnXU496vVIh7G2y7px/pccWHjyUWEdE7VZGtuVvo52c6TWc6030cwTmOJhqjxqrv3Kqw+0OYZlX3LyUWwc/yfaVCJR03ydVu7De/MYni5DcmUZz8xiSKk9+YRCmoHpgmfhDU6JMEuyFML4mIGMGkE4IESFo7o9HNcBy53Q6Niml3jQo5z2BUdQRPoLmD0c1rWIfGVWcQW8Fnb2lUea2NIqkJahvjTIWpacfYGTQPJcEPhhTFGATN0RT267TbcxMR0cyXEquvNVat4Fke6P0bjuF8+nox+y2MzoZ7OoF9eNIy+nxXaFPQCdwDEnJP4Ti/+Y1JFCe/MYni5DcmUZz8xiRKUXacAoJltVAmOIHGhSQgtX0nCW8kVnUdvZ1D2TC5FUsQOUlgu2kpgyXRbgmffwBHHpXB0vftoLnpot7qupXGaHx5W1NWEmi3hTrRylzLoAsQRDfwfQ+57uO80uPWC312Rq9U0DxubiUWEVHe6jUuX+ozut9qrCj0mRhN9bmr9nrNy5XuFzV0PYBSzAW9ESfwlz6Ukk9C1xmD689vfmMSxclvTKI4+Y1JFCe/MYmCDr8ChIk+9MwbgRNpBiWKbQ4/Epy2lQpiFCPBjwREuhYq36WSVeqFVrf1MgThBkclQ2wDgiYdt4PjVtDjblNrKeoO9qt1khJcIzk3tz29LysQgeeNxl7Afk/6etxsrq62+IWGmpbR6TcPKkrOm24OwfOe7tkjEFOPMA7ptlIB8RZ6MD7ACCeahBTBDtZTKL++guubwDn6zW9Mojj5jUkUJ78xieLkNyZRihGMeCZxB8U9cH2R4DcAd1FExA4ccASN6D7U+lka5EEiIPUzo/JU6kf3XaHy5Ar665G4R0IexQ7g2iRxj/oERrBISsfSOPX1UUXAW9jHI80qh2enaPRerWCk+bHlWm4KPfYBbiu56h5XIHIu9cgK1n5e6HE30NPxDsqYyRnaxqNGn9t3YfjJWa3PmN/8xiSKk9+YRHHyG5MoTn5jEqUYg+BHIhn126NSXeopNmwR/AqY1HrIVezY9LtNIiWh6qTQibynICxNe3p9RYuIRFBJMLn0yPVHImAJYhrFaliXHHpd3Y8R7Mik/aby67LSc9xlKl7u4D7XIIg1fb1XcxB2ixbj5QqExT3cgyEJmoXG7sE9t4FX6A30b7wJ3YcFCLsHEIAjIk7gGR3B+3sI938Mz4nf/MYkipPfmERx8huTKE5+YxKlIHGorbfb65CIRMLZOQxyiIiggbfnA3V0XRRalklOMppOepapYETCSb+juLdvEWOwBBcEOtpZ7I8IpZoVTCEmwY/ceF1F3AgW/Gidru5CKv2lwTD0JqpBsFvA/Zu0iJdd2cGe0UTmEspt72mYSqN7s4ABK3vYryGURUdEjKDvIYmXc+jrV0NfP7/5jUkUJ78xieLkNyZRnPzGJEpBAg05v0ooq6VJslPqKRYsLE3gf88+VBzcgSOvB2LMBQzomEHfswWINi+gX9sDCDkk4kVElCAEHsiRB8dR/8Ac3ZO6j2VOzkIS03Qf2kqtSTAkgZWenT1MNqbzIbcirUFC6hKesQnEIvgaaS9oSAqxgWu+ByHvrlpJbAWDU4jz/hTjFyBer0EEvsnh/sFr3m9+YxLFyW9Mojj5jUkUJ78xiVLQQIwhOL9oIm8FLi0qgz0BIS6CxbgaPn8EQewCdLcfgKByOdUhC1+udRDEP45g2ASUYLb1HaQ4iVUEiU0kVJ2ACDhtnen6v59L2/ntQYyjkt4diYBZt/6BFKMS4eORSnKh7BuekQgWL+laukK9FZcwKXlR6iThHeQaietT6DEZwferoonTdF/hmv3mNyZRnPzGJIqT35hEcfIbkyhOfmMSpSAFsuuIZrJy7sDKCdOBIyJiyKXxujYc97RSxfedqweJnb2jvwBkP9fr+/n+kcR+RfXcLfX8NHWHauCpVwKNDKf6+z4c9wis09SbYNPTc9m2WJXJ6VrALzYF/CJBzwnuA00uAgt5A1bsCpTrfcsPK7Q2xQj8RYL6FdSaQ+tSnzuyyKthl+3QbQzhmaBf0YYQ85vfmERx8huTKE5+YxLFyW9MohQljLrOQGwisYLED7K5HkC0iYjIQISYgBA0AYvno1wbJE7OVHjJxrDGTI+bqUMz+tRh9DtCQtcxwE4Le0O22xIaXNL0667W0AgWNenzPRDeqPFoCddHkNBF+0V7Q+cSweI1CX40bpy9Xbd5AAABWklEQVSeeTqORHP6LJ1L23kTZFUmIe8CFPbTGvax88rGmO8VTn5jEsXJb0yiOPmNSRQsBqd6Z5ruMoG6Y6pDb/MrUfvIi1qFknOY+HIyUcGPnGlNSSKLxmZHPcsROdha/l9WtHhLjbl8tqMLbQ2Oynmjt5DGNm9AqGpz+JFoS0IXORNx7Dc8AF1dbNRskyAxLYKdkiSyNSAqk1DZVbQjpyOJl7RfJOxF8H1ZZSBeQmZN4Pn2m9+YRHHyG5MoTn5jEsXJb0yiFDkIDpM+jMkezCR2lWvsvGOJaRsnPRU1njxaS2xyqiJgPujWMLOAWuITEERoolBr88duS6OYQ6PFiT0IPvcwCpoagtKkIWqYGdEu0L5O1/Om6UoB7lCCBLuuI+QjuOyYPl9DyXMfxDSCBL820e51qDFum8hJ9/+20Tx4BqO8x41HdBtjvsHJb0yiOPmNSRQnvzGJ8j/oDgPwGK70LQAAAABJRU5ErkJggg==" y="-8644.757197"/>
</g>
<g id="matplotlib.axis_481">
<g id="xtick_721"/>
<g id="xtick_722"/>
<g id="xtick_723"/>
</g>
<g id="matplotlib.axis_482">
<g id="ytick_1201"/>
<g id="ytick_1202"/>
<g id="ytick_1203"/>
<g id="ytick_1204"/>
<g id="ytick_1205"/>
<g id="text_61">
<!-- 231 1833-50619 -->
<g style="fill:#262626;" transform="translate(15.789375 8749.715635)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-49"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-53"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_242">
<g id="patch_243">
<path d="M 164.424375 8767.157197
L 286.714375 8767.157197
L 286.714375 8644.867197
L 164.424375 8644.867197
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pb0bea55b5b)">
<image height="122.4" id="image37760279a9" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHpRJREFUeJztnUuvJOlRhiMzv7qfOrc+09MzxswY2yAZgQRigcSCBRILWLJF4rfwh1jwMxAbLGELY3vQqHv6dvrc6l6VmcXCA4sTz4e+QwsWE++zDOX1y4xK6a03Iqpm8PnRCqir2sWGTXKx2WDsYtM0wmMOa79/A+cZVI2LjZuhP0/tY92xd7Flt3Wxh3bjYqvWb7frDi5mZtb1/jx07o+B1ibVfm3oudB6nQ2meJ7vDy5c7A/qMxf7823nYn/447cuNv3dgYv1D34dr3/m35O3Nycutj/6dcjRWdm2rVUudgdr+wu/jPavx6WLve1WLjaE9/iHzamL/aTnfHnW+VS9bfx1v6r9c7mvfKx8FYUQ3ymU/EIERckvRFCU/EIEJZFgVEpVebHhaEX6YRYU/EAYnNVeFBlXfruttS6WQHgZwDrQ2rS9F07MzDorE/f6Y9n61LC2HwMdbwjrZWY2q71Ad370+w/gnu/fTVzs9o3f92bpha435p/psoH3AdZw3PO6jkB0HcN1T80/1y0Iiw0Ig4nEcHrHILaG85JgZ2a2hPPsKhC0IbY+SvATQnyLkl+IoCj5hQiKkl+IoKTpwIsspW61GsQPEuxy4lWxmw8EqAmIVbQvCXF03tIYOR3NzJrax3sSoQoFP4IEVlpb2q5CoYrF3rn5tb3oQPCrwHG28ILfO3CsvRz4c9/X/ng9nGME4uO053dsDvFL0NNqEKrXtd93Ae/TAXKDBL8Rvp/+vAtw45mx2Ej0cEyK6csvRFCU/EIERckvRFCU/EIEJZ0OfVknudj2vXfKEVSmSzEzFvLGUJY7g9i08vs2hY7DLYiFJH6VOgFz50E3X+HPLYmNo8bfM11PqehKzjQzszHc9xTuhfTMu6N/ViTuvW7AhQbONLrCAQhfCyhtNeOS1xsoeZ4cfewVXONL82Xe26PPDRKfE9wNiuYZYW9C28IzOBg4UyX4CSH+CyW/EEFR8gsRFCW/EEFJV0NfWnkAcW/T72E7LwySuDcBwc7MbNp459cEhLwZxvx56JeMnE1juMbt0Z+jbfz95fry0XkIck+SGDdOfs0m0IePnHskPtJ2uWumOHnOVuAEvG682HQNqtRt5d+xFkRFEnEplvuKkdC1r/0zWMEdLuCdJ3EP3aGF31US98aZHoVn4FYc0CMEt+kRhGF9+YUIipJfiKAo+YUIipJfiKCkzxIIflC2+ACDLlYQI6gHnxn33CM3Hwl+Y3JLgRBEgs8OhCoa+HEkhx7fitVQ8roHUesIZaskGM2SH35Cgh9BDs0D9HDLuTbvjn6gxpvkn8EGnusHuL9rWIcFCGdU3tpA+W4CkYwEzdwxV3Du294PbVn3fh1GcM8DcNTRV5UcleRWHOUcfqA1k/PSYP8OHIf68gsRFCW/EEFR8gsRFCW/EEFR8gsRlPTDZu6CG1CGX5KCCP8KkP2VapvNcrbIsvpmUvapfp60UDreiKbXPGGYEanNdH+0PqWNTGnCDu27hylFNFBoD6q3mdlrGC89gMk580Q2abDJwnloO7Il07PCaThP+I7he4uWZr8dPWe6Hvoni/6hmtK+8A+HmZn/v8XspIN8w/2pl4AQIiRKfiGCouQXIihKfiGCkn7cemHiLYg792B/XYMNdAeW0VxtM8WpoSHRgbiHVl4QltBGWig05pqR8kQUvz/ZbEm8JEs0CX4DasIJoZbsvRnB78Nh4WJbsLpOoQFraX8BegYENb0kMY0mOJllhGHYjoTY0hi9JxNQi+dwjSdQu3+SmT40hV4Q5+afyxgm/nzWyt4rhPgWJb8QQVHyCxEUJb8QQUmnMHZlCw0Az6Cm/gFi9HOSm0CCIlthc0YS2KgPAQlLpU5AIidIkiOvhhHPA2gIQC496i9AU4po7PMQps/QPR86HgVN4h41cKWJRiSI5kaBP4aEQdq3q33j11wzUqq1pyacO4rBOhAn8KxS5a+RxL0zFPz4PHMQ/D49827Mqx/72PB7fnS6vvxCBEXJL0RQlPxCBEXJL0RQ0o6mxYDg8AzGQy9BeIEpy1lKSzNzzRkfUyzaFZYDl5bp/k/xEmgdTkEwOgfBjxx+a3Dz0QrmHH4kdNF0pg4eNol2xwpEV9iOXIi0rtRYtctMhaL96Tzbzguay9Y3qF1XOzzPY6YD/6zOaTQ8vLRDbMppdgKNUC+/8OLe9C9/4mLVn/6Fi+nLL0RQlPxCBEXJL0RQlPxCBCXdgvmKRIhT6Av2CQh+5GrLlW/S5JUR/B6RqEUCHTkGad8a7oWdheVjrWkaC5cJ++0mIPhdVl7AujqCixAE1htwaK5BLKISYTN21fUg2mEPRnpWVNILpbEkKtJ5d1DGmnsupX0USfykUfU05Yhi2I9wCLJr7Z135Eo0M6xFHj7z21Y/+JGLpd/5Y39qPosQ4ruOkl+IoCj5hQiKkl+IoKR30O9rCuIXiXNUomggVFGpbQ6SbT6mBLdUBGyg1Ba0y2x58hCOSeIljZyewDEvurJSzw08gvvM0IfHkEhpZjaG3nyl4l6pSEqiG8H9/2CYBrj2cvuTQ7DURdpBWe2q907Ad0VHM9sPLlysr09w2++Zz63dWxja8atfuFjb/KOL6csvRFCU/EIERckvRFCU/EIEJb03X8o4A4fXhEptC4WlHFsQfTbmhRsavFEKCVAkzs3AVXUBIuAFiZxmNu9AWARVslSopImshC/oNNuBK46GnOR6642hPHYEV146oIMGlbQgNJeKirkhMASJewROSoZ+hIcaXIjkGOy86+/u4J8W3Usz4Ps7G3khcPqzFy72g9df++1Of+li+vILERQlvxBBUfILERQlvxBBSbdH35NsDaWjOA0WIH0lJ9itYMrvsvfXQ0MkSMgjAYtcbNQzbw+llSMojb2EtTEzm8HwExL8DqCR9uCobApdjcdCZxoLn3wvA5jSTOJe6RTiFQz8IMGvoiEnNAyF+voVS6kMldHOki9Zp6Ek1BOwtCfksvPuwFfVA18kVGC/n4xd7GrzzMWm67JhOEKIACj5hQiKkl+IoCj5hQhKIjFuDUIc9eGjskwqtyQRyMxs3YHYCLEWertVJJIVipK03U3jhZO75B1Vt80Mj/lqCK44cECOqHy397E5xKjjHjkBp+BCpD6BfcZHWNwLEbZbQy+80rJcep9I8KPnl3vHSh1+qfbnmVdeBC59x/Ce4f5IzN5B/pmZfd3eudgH6KM5g+EuY+jXqC+/EEFR8gsRFCW/EEFR8gsRlETCxA5EmzW5tEBkwYEIMNTAjCejbiBGfdMacN+VlpgS69oLjSsQH+/TBvc/AcGQhJdzEGg2EHsBQhf18IPqXZvCOpzRhN/Mb/+AhqngMA64HohtQWw6wIRfmvpLgh9OT87cC00IJicoPas5lDaPqQS30P1I3Bz9+/66W+C2JIbfQW4t0ekKTsmSCxRCfPdQ8gsRFCW/EEFR8gsRFCW/EEFJOCqZGi4Wxp6i9lOclH2c7gKhGiy/pdB46B1YL6n++jeXA/X3DYxpBuvtmKb9wL308A8H/XqT0ZW2y/3y07hynmjj749UbrKWUh9UsvySio9Xknn0pMTT9ZzTPzNgfyZ7Nq0jXQ49F/rX40NmdPri6P9pYlsz9L/AEfRCiJAo+YUIipJfiKAo+YUICioLaJ8EUYqEOB6n/XHNFUmsoGNCD03cF3sBgJhGlkhq4GhmNgSRhsQmuu4tCF330OCSeioQaxCRbqFGfAU2bjO2/Q4hRmPbiTGsY2lD2FLrbG50Oo1Jp4lU1Jj1HHoqELSKMMDJHuC5tE8YX06icmnzUEJffiGCouQXIihKfiGCouQXIiiJhKquBmGh88JCac3y/xelIiBN8RnV3s11mnwDx/PEDTyp9jsV1n6TkHcPAt0ajkf7rsA5edd7Z+Im0yiSHHAn2CjSb0cC2wnoyglEV9qXmqBSvwGK/WZ/H5uBGnfZ+Q3H2KDWs4NJQ0uI3cOAJBT8sFPCx0G5oS+/EEFR8gsRFCW/EEFR8gsRlHQCpYzkJNpWXhzCMlaKZRxHpU6k0u0IKk8l19+k8YIdiXtXMMrbzOwExC9ySh5AzNmCS4tcfyQD7QtHYi9B8Ms5yToQL0kYJsGP3HwzcM+dQE3vGTjqSIibgorbUydTM+tplDvc9xRi88oLpw09v87f3/XR59X7psyZSGttxu5SyjcqTyf05RciKEp+IYKi5BciKEp+IYKSpiAubDKlno/B/n8gNuSEJRQHnyAYPoZKdQkaxzwGh9+kUNAy45JXumovxZntQUQi0a4lsYlGPEOMtstBzs19TaO3veuPBKwJxKbg3DuH1+QSnKVjFE35O7aAZ70G913T+/2fN/6enz1buVgHjsHhh7mLfejIMerfuxW4Kc34S72q/HtCz4pyUF9+IYKi5BciKEp+IYKi5BciKGkKAtYKhC7sUQelsR8zOCNH6ThuEvJoX3JK1XAvJNhRCaYZi3Ykc+7AkUeltRQj0e4A5bs0yIEEn1xvxVXntyUxlXocJhDTIIQFuCN4Vk0D/f/AMbilk5jZBsL0XAawFIPk13H+fT8mux7CgJWf+3v55M4LeZ82kFc1l40vKhjv3oA7FAR7eu/05RciKEp+IYKi5BciKEp+IYKSzo9QPgg/CVS+S5AImBt0kZve+xgSlug8pcNB6HjoagPhZJVxkh2MnX+PWaOQ589TKu7RNX7sMBWctLyHc8P1bBIMB2mmLnaox/7E8J7sSFT2ez4JGJ5sLQiDHZQYk/n1CD0v93v/PrQgmp7COchZamZWQ67SXBHq60j3py+/EEFR8gsRFCW/EEFR8gsRlPRFB06kyvdwuwQx5m3y271vfNniQ+9dUTkuQAg6h+vZwviED9Cnbk2lsVTeCGIMCSfknjLjcluS09C5B7FSce8pJdSP6TPbkUOwhfNQ6TCdm8TZM+gdeYDhHmvozUfic25iMIl7CTalIRvv9/5dHv/KP4O29ff379tTF/vav8a2g/ujcmczszk8rnNwY87h+c2hB6e+/EIERckvRFCU/EIERckvRFDSiwOIOyB+PQdB5HnjxbnX0AvvXcM9yUik+eHRqyK/DY3vrkG1+Vnjz/1NtXExGnRBIhK5/p5SsEzC2Q6EPBTOCie1cgl1mfuRJhibcc9EEvxouz30vSt1XuIACtjugMfLnKPwga1goEZv/n1aLM9djKb0fgWv/FsYAkKi8izjFj009K32sWnr353ZSIKfEOJblPxCBEXJL0RQlPxCBCU1IDg0IOQkGEzQQHnrAHquDUFMMTPw6JldwXmeg0Owbr0Y8wp6+N1T70FQgUpFKeodaMbiYAJnG4mN5IAjqI8i9dYjIY6cdzR52YzFTyoJHsB607TjEVw3yZn3lV+bA1w3iWQ5eZS3hXcent9beJe/SmWl27fgxrwDtyldHw3SMTNbQHwJQz+24Mbtt74voL78QgRFyS9EUJT8QgRFyS9EUJT8QgQlLUGxHZDaD7FJTxqr/z3pM78xWwjTeXZgdzygrbVMxaUY/fNADDLK/BiucQb16Q3880Fqf1v4rwD9+0D/XJCtmCYcmbFl+FD766HGrGfJN+scg0pNE44WYHNeQa8Dur/cvzBoGaZ/EAonGtF5SpvJ0jMgpmCRNzNbw+jubeWvewk29+WImtYKIUKi5BciKEp+IYKi5BciKOkeBKgT0PHmHQh+INo0UCTewYQcM7M1NCqkUcmlYhwJeWS7JUpr94eZ38sZ3OMURknPQGQbwr4bsIeSxZasqjvYl0S8KtMocgSCE1mLaTsS9wgS8hZgf6XJRWSbzlmkqafCBs5DPRWoOWqpDbxUnOVx8fxchjCxZ21lIuKhhqa1RXsKIb5zKPmFCIqSX4igKPmFCEp6ByNNahCC5rBzA4JfDU63XK31HnSNDTRDbOA3ageiSOkYcRJUSPAjcW+eEbQuQdy76P3+BxIGIfYAzR43UO++AnGPBD8ap00uQjPuB0ACFsXoWdOUIuwvAKJb7hpLIcGP1oJiJPgROYHuMSTuTcG1d1H7SUFmZqe175UwhXzLuVAfoy+/EEFR8gsRFCW/EEFR8gsRlPQGmjiOoCRwDuJV3XuxYQEOtg+ZBp6LmkomPSNoFLqF0cY3MN9lXeh2oykp5zCx5Tncs5nZ562/nqsOXGNwhxfJC0E3MJ3lAe75beXdag/mG57SBKCniGnkTiOBlUS7faEgVuqeo3shkdKM75FiJECiK7KwpJeam85hfP1nyUvpn2cEvzmIyiQ/0ySmHU6kEkKERMkvRFCU/EIERckvRFDSq96PsB7V/jdhCKLUhEoMQdv5AOWEZmYLcKzRlj0IXSsQbd7DvZDb7QRcVZ9A7AWIe1/u+V6+TCsXO3/mr6fd+7V99uD73t213s11AxNk+oHf7g1OKfLnTZlSa6J0WxLTqBQZHYNwjewipL58LF5+jHOPzk3rMIAYlTufgeD3/do/+y86dpFOQcijgl7qjfkAvf705RciKEp+IYKi5BciKEp+IYKSXh7uXPAIjfRW4Do6RX+RZw3CnhmLdgeQ/Law3fLonW237drFyA2GbjW4vyloe2cgIJqZzab+ekYTGJSR/LnPuq2LDbf+nuvD2MXOQYidgdg0a7ygST3hzMr7HrbgituDBFXqJCSBbQz3Qs+PHHpm7BokEZC2I3GPynKpv+EEym9PKx+7AtfeC3CLmpkNQTgl9+QDrM8OSuX15RciKEp+IYKi5BciKEp+IYKSrvcPLkgCzUOaudhZ7QWoGYgfmWpL22L/ORiyANstQSRbdN5RR+4yEmNa2O4Autd9poff6MGvz27nt63ArXhoveizoxhOQPYMYLtTcDCSYGdGs47ZQddDCTWV1lKspyuH9R7Bel/Ce5cbpvJw9ELu62rhYvQ+kfBZ6vrjyb2eNQ1dAYetmdkQBueUSbNmHWyoL78QQVHyCxEUJb8QQVHyCxGURG6n+4N3ytF2i8aLJDMQlmgKrZlZV9gDbgdDHzYdTHSFnnnUh43cYFQm+gA9BrsB/17e9F6EutrBkIVCtxuJezeJhnuU3csQehTStFszfi7klOx6iMHa0r6kfpHLblZ5h98X5tc611vxAcTB8cCLiP9h3um6hWm+JF6Sq5HWhoT0Q+O3ux9wD7/nya8F3fUa1pv6W+rLL0RQlPxCBEXJL0RQlPxCBCWRMLEDcYDEChLdViACUsljDnKS0blx6iz0ZiOnFUFetwVE7zOHG0HJ5AqcWqc0/ASOtwFH1i0IkPcwzbcDUQoFu8yQDHJZbqkX3kcMxCBrGpXqTsnh94Qy2CkMjLlNXpS+g/5613AvOxpKAg7UXImxu5bW9358CWXMZlzeTNBzWXd+kIu+/EIERckvRFCU/EIERckvRFBST263zse8zGFWgXuOBJFS0c0s4xADURKvG4SuYeMFIxJotuZFksUTrvsAv6NUmbkEYfAAwtsKnHsLEHLuwf24gmewwe28YGvG60NiKoqIhUIXlcFOQdCagoeNngqVX5uxkDs6+o1PwEm4gb6HdM+H7n8vSJMbMzdxmLYtzQ0aVKIvvxBBUfILERQlvxBBUfILERQlvxBBQd8t1rvnunA+ghRNsm3moJru0rpxgra72S9d7G3jRyV3ECP12cysgX8+NnAvtzC96AamDy1BsaeGp3u0oPrtVtCgkppWmrFSTc0sU1020YYapp5DQ9grWO85/CtAE99pck2OKXzzrqAPBb3xCfa9hbXB9xj/yQKLdGaEOP7jArlRir78QgRFyS9EUJT8QgRFyS9EUNIA7K9VobBQasUlG7AZ2xhLj1ks+MG+D5VvUPp1/cHFtkMvfD0DUcrMrAWBZw2/rXdgqX3f+ZruVe/rr0vtobQ23PCU7b20P4m2E3iuZNudQ638FYxE/7TyotsVNOacw6Of9WWCtJnZgOy9jRclz+Be3jXeBjyGngPvCq3hlAMtWM1z5HLrMQMQZ/XlFyIoSn4hgqLkFyIoSn4hgpImIHTsoSkkTSXBQSwwgjrnDiytT0ahi0QpED9oYg8d737vRUCqgV4kPwbczOwseSGQJhVRDf19689NfRFyzq8SqKljTjQlEaqB5gTUp4EcfjNw+F1UPvZp7/d9AbOlL1p/L7OMSDaAl/TYgxsTRqLfgUj2JvkJQL9u/HalQiy9Y/SszDLPBfQ+EvGn0JtAX34hgqLkFyIoSn4hgqLkFyIoaVQ4BSTXVPAxJMRxG0WzIzitSh1LBLnQqOyUYsS69S47EuLMzB5aLwSOwQ1G4icdcwfjxvcdiK4AiZwfCz0XEvzI4TeG2ClUkz8DIe4SxL0zaCc7S7w245HfNiUQlVt/L2drL5INDl7wewCR85snTKkqpYb1JufeDERJEqT15RciKEp+IYKi5BciKEp+IYKCDj8sq6XGaUBHIh7EzFgwIicZCVgkftHxRiC6TZK/ZxK0SsuLzcy20IePxlVTLzxydNH9UW89uh5ar9K1zm1LlPZ1pL53I1iHERwuZcaIP6YCZ6mZ2Wjs12xy4kXADkb+bHf+3WlBlMSJSzAhicZkk9ibe8eoL+DHoC+/EEFR8gsRFCW/EEFR8gsRlEQDFfY1jBcGUYrKd4mnuPZQCALRjst8/fVMB96lRa5GElNIYMvdM5YTw72UljHT9ZDLkkeV++vr4bpzz4XKRIv7LVIM7oVEsiV8igZQLnuAMt+m5edyCrHhHMqbd/Cs4JA0Yn0BJfAbcm1CjIRddskyVBJM56EBLfryCxEUJb8QQVHyCxEUJb8QQUkN5D8JVeT66iovTNDxqowzCV1nEKNS3dIpqHQ8csDtQHh5Ss88Pk/ZWtD10D2TQFe6Nh8LiakkApPYtIHpwvcgko1ATFvDPc+hjLU6eOHazOwKSnXrIQinUBHcHf2+O/hcknhZ+kz/L6A84MnLQoiQKPmFCIqSX4igKPmFCErqoL9eqbCEAgaEmozQQf3eqCdZqQhIkPhBpZU0xZYEv1y561NKZh9D5dIksJGQV+oipO2e0uuvVGAlYYkGldxU3mW5BwF5AOt6CkMpeuO+jJ8s/DTg2bV//vutP+Zt70XE+wFMYwbhk95PfLfhHTk+YeIwPcPSZ60vvxBBUfILERQlvxBBUfILEZS0BUdWqcOPYuT6yolzOOUVhh0MYCgCbZfgeGsQm0jco7Ja7lHH5ZYkstH9jaGcmISgbeWfy6H325HoVioWlg5iyUFrtoW1ve/8FGK6HnpPSKg6gQm/23SC1zg8+mEVm69hHeE7+NXAv2Ovan9/t70XECmvUAQE0ZtE+Bw8mdrfC5Xu68svRFCU/EIERckvRFCU/EIEJZWKUmMQDLYgpq3APUeilBkLYiTuzRs/dXREwiD8lpGLcNX4fmZrEN3IaZUTL0kkpYEoVyBM0TF3UAZLItIetqOy2i1M/c1NHC4tZSbRjs5zvXtwsdtq6WKlJdnzgXft7Yd8zYc0d7E3MLQFjHv2uvb38rL34uX7duVilBu5PHhMqTPUjAXDWfJ9KzWlVwjx3yj5hQiKkl+IoCj5hQiKkl+IoKQpqPhTqLWmGOnet71X0j+0XtnNMau9Ull6PQTZbmfw78G68f9SlFpQzczGoOx/Akrz76cLFzuDRpFbmmhTeUX7FkZBv+u8+nwNz+Du4LczK5/OU7rdoXC0OE2fIeWbRppT41gzs8PAn+cdvGNDUM0XYFW+hrVdtBsXo74GZH0v/YfDzGwI/4SdwLv8bODfu6va/0OiL78QQVHyCxEUJb8QQVHyCxGUdArix0XlY5cgsJ0dvUiya2Yu9svaixJmZte9F0rGYNslcY8aOxJj88c7bbz4sR14cYdqpXNizPPhmYv9SXPpYn+19QLd5cyvw3LjBcRven/dvxz67X7ekEhW1sjUzGwHFl0eD144or1w+hDV7mPPgNY/q7uKxUsSB29AOCtthEq9IFatF7lpDWm9EtjKp2DPNTM7H/jc+jT5IeSf1d7Ke2k+h/TlFyIoSn4hgqLkFyIoSn4hgpKegbj3wnzs887/Trw4eDFmCKLGi6F3HJmZ/UvjRYgHcKyRuFc6a4b2nYGAeJ68mEK9AEbQ68DM7I+Gn7jY3za+jv2Lv4N6/qnft3/5zsV+65/vXOzkq+cuthj75/cGnJw58fJjwMkw1PyVRsPDvnsYnU5OwHXL4iUJfgQJfiTGUa8DOve25V4Jj5lAb4HcczkB4fwKYs9B3LsAF6m+/EIERckvRFCU/EIERckvRFDS5yDufdn634QvwVX1fOKbGY5GXqD5fMkOv9HRi18/Tf7cC2hSybN0YGoONdYEF6FByeMEhMEX4GA0M/ubjT/3D/7+R/40f/bXuL/b7tW/udj5Z//kYr/3D9+42K/ffuZiPwXxqtShl6NU3KOJRKWQuIeuP2OBjQRDek/oGkcgSONYchIlIUauRiyVxreb15ua1g7hnR8eNaJbCPEtSn4hgqLkFyIoSn4hgvKf1fun9jH0aFUAAAAASUVORK5CYII=" y="-8644.757197"/>
</g>
<g id="matplotlib.axis_483">
<g id="xtick_724"/>
<g id="xtick_725"/>
<g id="xtick_726"/>
</g>
<g id="matplotlib.axis_484">
<g id="ytick_1206"/>
<g id="ytick_1207"/>
<g id="ytick_1208"/>
<g id="ytick_1209"/>
<g id="ytick_1210"/>
</g>
</g>
<g id="axes_243">
<g id="patch_244">
<path d="M 299.674375 8769.658961
L 421.964375 8769.658961
L 421.964375 8642.365434
L 299.674375 8642.365434
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_485">
<g id="xtick_727"/>
<g id="xtick_728"/>
<g id="xtick_729"/>
</g>
<g id="matplotlib.axis_486">
<g id="ytick_1211"/>
<g id="ytick_1212"/>
<g id="ytick_1213"/>
<g id="ytick_1214"/>
<g id="ytick_1215"/>
</g>
</g>
<g id="axes_244">
<g id="patch_245">
<path d="M 434.924375 8769.658961
L 557.214375 8769.658961
L 557.214375 8642.365434
L 434.924375 8642.365434
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_487">
<g id="xtick_730"/>
<g id="xtick_731"/>
<g id="xtick_732"/>
</g>
<g id="matplotlib.axis_488">
<g id="ytick_1216"/>
<g id="ytick_1217"/>
<g id="ytick_1218"/>
<g id="ytick_1219"/>
<g id="ytick_1220"/>
</g>
</g>
<g id="axes_245">
<g id="patch_246">
<path d="M 29.174375 8911.076621
L 151.464375 8911.076621
L 151.464375 8788.786621
L 29.174375 8788.786621
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pbcf9c31a70)">
<image height="122.4" id="imagefeaeacc8df" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH0xJREFUeJztncmOJEdyhi0iPHKvzKqu6n2a5HBIjSBA0EFHPYgeRG+nqw4CdNWJmkWzsNlkd9eS+xJL6jCCDmWfA97TgA70/zs6ItM93MMygD9/Myv+5ct/PtsjJufy8ZDVVrix1txHbV30buzj+eTGzMzu+6Mb258bN1bA3NNy4MZeFCM39vXZX/f1ya/7l2Hrxl59tfTz/q3/PjOz6lcv3VgxGbux7jd/cmNv/9Wv59+2127sP8LBjf2uW7mxH08PbmzV7NzYqW/dmJnZ+ezXUxT+DEJZubFBGfx1hb+uKvwzVsIcdPZneO6avnNjsWuHZe3GJtXQjV1U/nkaFv7+KowNHwcH2G9aH+1XbB7as1T8CQghskDBL0SmKPiFyBQFvxCZEkjyaUCE8PKF2RGu25698LIBEc+Mxb0OvnMA4tAEhJcn5oWcZ50XRG5AgJxO/Fg19GuxMiKwnPy9nGu/Rhv6Nc4u136NK7/jN8F/9rb0QtUGhKoWzqWAvTEz68502h4S7UigI1Hqc8Q9Wl/qmmPXps7Tmt/HM+xDD6Ip37P/7LTw52xmNoZnfgjiIInzNcyjN78QmaLgFyJTFPxCZIqCX4hMCXsQgjpyX8GHDyCI3IOYtu7Z4bfrvUgWYO5B4V11c/Pix7Pef/ZZ6yXNy6F3Fo6nfo3lCAS/COedd99ZB66zHgTNhV/jU/NrvDl7x+A72JspuNX2cAYxkYzEKoIEv88ZI0iopHX3nyn4kduRBMgm0a2YyghEvEHE4bcAIXABn5+CQ3cGY3rzC5EpCn4hMkXBL0SmKPiFyJSwNC+61SAOEAcQY9Yg+G0jgh+JOTWIHeRsIjffdeeFqsvCzz0e+7Ew9CJQEcBx1kZEsqVPmSXOJ3/PkAVrs4E/l3nnBb9JDWm1iaIUpd+asdBF50JpvijuwTuGPoviXpcu5H0OnzM3pifDHlIKdFWmfdbMbARnsDj7sSfg3JyD0Kw3vxCZouAXIlMU/EJkioJfiEwJKxDjqFYY0UCi7wmEk1idMRKC6sT03dnZf+cYRI2qpHp0fi3JJq2Y4LfzDrFuD6mjLdSf21BKqJ+DdpHH0oQ4qmUXG59AzcSA5wfCIM7i2VGKd6Ibr4wcID17tBepacKYDozpu36OUeX3ler1UVyZmfWQdkx7SzJuTdnpOIsQ4mePgl+ITFHwC5EpCn4hMiWczty44TEkIhEk2FXgxjMz6woQ6EiMAaHjAJ9dVf6z29bLHxetvw4zQkF163fcHKJZgjC19HN3jd/H09Ff93DyablLP4Rp1SRKkbhKjjMzswuoCziHMao1N4J5UgXktaU9iySwNSA0m6Wn25KIiDX8oDkICXElfJbExwbmPURikupjbg0csXCuNQjkevMLkSkKfiEyRcEvRKYo+IXIFAW/EJkSUruk0BgpqWT5jIm9pOKTwnrXQ3FMmKYN0FIZWnTP995GOjl4m3Nx6+do9vx7uVlN3dgBVPyu95ux6bxq/pvaq+t/Kv26H8CeTe2hCfoHwCyS+w821DnYrq/PaVZsUp83YCGuqrTOPgcoBhuD/uGi547moToElljwlAqj0r8U+8i9rKA2RY1edT/UwT9hevMLkSkKfiEyRcEvRKYo+IXIFKzgmCrEFTBG9l7KWTZjEfEIYsx954tj3hd7N7YNMz9JfeGGqpMX57bv/FYcwDp5Hyl6eQKRpQUxhrpir8C2S+LeDyB8rnrf2YfEr45EwIhO1SR2vxnCu+MGuia9bvz3XUOh1x3st4180dK28gtfFn4fzFj83MMaUzsD0TZSwU2y/FJXoSOc1brzz7ZZpC4GvL7JNr+HGg168wuRKQp+ITJFwS9Epij4hciUQAIbuY5oDF1/lDceEfxIwCCxatd5MWcHLazJuXUMft23Ay/4TcGtdkCnHLuvBnDf9MtKYuqO8rRh7GQgSpGwlCjYxpyXdK4kao2gs9MldE36svKC7dNnaze2WXmH5o+HKz9We/Gqh0KtZlxQlrrk0J4R9MxSLYDUsdR5o4D+DHqmHeFZ1ptfiExR8AuRKQp+ITJFwS9EpoQdpISSEwm7l4CIkNre2YyFQJqbBKgGCinSGg9wfz+WKzc2AMGPUlunkHZqZjaGYpZUuJLuhSDhlL6PHJWxFs+PiRVlpfTdKbjv5pCWu4C21heX3pk4eeaF0wrayrz4o3doPgt+r9vIvu4T05Npb+kMtuAkLEB8pkKf9Hz2IJDGzg9T6Lu0e6HXvN78QmSKgl+ITFHwC5EpCn4hMiVQKiN1ROH2wNQFBMYiXVOoHhrWTUsUsFJdVVsQaLBuHaTv7isW/IYg+MVakz+GxMKLxJbYI3ImwlhXeLGJ7s/MbF74HOOn5tfzAvKTF9B1B8vegeFwcOGfxdejrRv72MzdWA+uPzOzJYh7B3jma3D9pUIiLj136JJNrP9nxjUAMXUYPsuuTSFElij4hcgUBb8QmaLgFyJTUPEhIY5cQ6niXszhl9owhMQ4GqPPkqsKBc1EVyMJpGZme2ioQOvB9OYwcUNTENhS3XwNiIUkPpLTzczsEgTIF5An+rz1ota4AqGr8fNQ+3IS/K5ufDrwN29B3Gt8rT8zsx+Cn3uFzxPUW4Q0YaxvCRJbW/Fz8pjkZ8TMxiA2T+CsqXU6jenNL0SmKPiFyBQFvxCZouAXIlMCpbJiJ1KAxKZUN55ZRKDDWmOQylqCKJLWawLnwHRLcmT1kVpx4GwjyFVHbrCu9OshUYoaZ/Qg7hCY+hkZh2xbqxM3nLoVVw/eRTjpvGhKLKbeoflyw/fc0l7Ao9PAINVwPEK8NDBHD41FRhF36GNiAjmlky/AjblAwc+vW29+ITJFwS9Epij4hcgUBb8QmRLmlW+UkJoSSCmGJKZRKqOZWZOY9kiQC4qaMTTQWIIEtlShMjVNNwbNg002YIykRvq+IezNERp+tJFuvFu49j0IWNcdGETh+ALUqTuuQGA7eKEqQNOV48nPG5Me6e32//HGm0BX3CGIbpSSPYExM7M5jF+d/RjVVhz15NAVQmSJgl+ITFHwC5EpCn4hMiVclT4VkrrBHlO7xiamxsbGSVgkF+IQBBUSvygF91j4hhGf2y01tRkHrZHSk2k9VHuOdEoSC4k2IpM99N5B9z2IqcPau8uOrT+XMbgiCwNx7wjX+aVYA6LrMvB7bAnD2wL2FmocbqHr8wr2ZgNj5NJblF5cfwoOvRvYGzOzK0irvoJHghqnzOBe9OYXIlMU/EJkioJfiExR8AuRKeFJ4dMEN9R4AZQlEuywrt8ndB2tyfEEqYzjRMHvBCJZrFlFCuRqNGNnI0GdX0dwL7RnNAdoZAg2fIjcywHO//bsRa0BiIAtNM8Yg8uSRMk20WUJZrWoyEnC6Ym6PsOzvAeR7L7zNQXX7d6N0ZlelF7cq0AEHIJDz8xsBI/YBMTUGTzz18Gfn978QmSKgl+ITFHwC5EpCn4hMkXBL0SmhBEo7u3ZWxM7sER2oMyjzTXyE0PzkC2SlH3KgyaoGCV1qkntSJRqnTVD5y3eX+rc9H0h0Rr8Kf/C0L84ZC2+PfuCm7Q/1P76BHMcE/8xqWHdo0jRS7qW1njAe/Zq/6H397zrvJJOcbA7e1v5GuYYR1raV1C0NmCxVX/dRUfdnoQQWaLgFyJTFPxCZIqCX4hMCQ0WikwTjKhldM9dvxGy9wb4PYp1lkmBBLERzEEdTWq4LvZrSWukDjtECzZbEr9ShTwStBrcV74btMSCMPUA1tJD4YVB6HTN9SFgjJ4RKnA5jjx32MIc9nbbezFuC+JeqqWdrNMHmGNZ+jliQmwLx9Wh0Am1Fxpo246zCCF+9ij4hcgUBb8QmaLgFyJTwhJcR5TbTMUeyY9FYgV11zEzKxILeJIQROvBXHmY+xJqGLw2P0YFEwcRgx/9itL+LEH9uiv9/YGh0kicTYXE2Tby209dk+gMdiBgbRJFTpqDiq3SmR4rnxe/jTxjJLzRvZCgSWukYrJVnS6mPob2sCp5D7HILDzL5AQcBrXoFkL8Lwp+ITJFwS9Epij4hciUcA/dRqhQJAkn5L5Cp1vEsXQGcYhSPRvqNgJFDqkF8hyKf1JHlG8a/31f974w42zgBRozMzC72frk5/4exCoLIFbBz/IezqWDc2HxEdqXR377qQ1500PnIxCrYt2Z3PeBmEafrUG8IuGLhDgzFpBT10jfOa99hytMyYY9JBGQhNhYu/gW7oW6Ct3BsfYgiOrNL0SmKPiFyBQFvxCZouAXIlPCQ+dFLRJJSIQYQucbro8XSR0FsQrdZb0XNUhspFp/A5h7Qim9oNjdzH13lsuXfszMrATr3/HB78/o7cKN9e3EjQUQAR/gnqm1NKYDgyD5KanSJLKlinb0PNHZf851sRbp3BXK7y09t1MQi6cFtBYnVyulwMNzRycQqxNJDs8DisBeiN3Bc6I3vxCZouAXIlMU/EJkioJfiEwJ1ISAKKmRAOf0OopIMwZK4SRxj9ItB59QK/AxJJzsII3yePRzRPopWLgAR9fIr/vJ1guGz269sHQEYcnACLiCDacW1ic4g1iCMIp2kXbejyFnW8EPRRLcxAWEOBgz4+YuA9jIMc0D11FdRrqVMYnK0KqcmoocIidzV/jniVLy1xBXJALrzS9Epij4hcgUBb8QmaLgFyJTArm0iCrRVdX1aemSZiwsNSD4kbusp67BWHuQGkv46zbgVlwdffrt4h6EODMrAginoLz1XZrSNQCBbQJpzCf4OvIgosgJYpEZd6clcZbqNVYgnNWwt+T6pAYr5Lwbgxh6ERH8LkAYJnFvAmIcvRkphdrvltkY9uYysSbkOvJKXoPYSG7Ak6U5L/XmFyJTFPxCZIqCX4hMUfALkSkhtZ5Zai20E8ofTGr6J6Vl9ljrD9JbQahqQCw8gHC2PoMI+DDyF0Y4g+C33vjPHxNTPYdwVAO4kBx+VOstJviRy5LAdFkQ96alF04pNZbceNR0BdO0I007ZiDkkdNuCptGZ3CCZ4dE1yGIsxMQ96iDcQwSr1OfeUJvfiEyRcEvRKYo+IXIFAW/EJkSyLmF/PUNYrEO2yd9HkSWAlJwsaYcLJyEkz3M8bECt9p+ims8NZD+C9+5ar3Q1YBzK8CWDRNrK+5hH1Zn35zlAE03YlCnZRL8qNEFiXvXpRc+b+A6ct4hkUdsBMLbjMQ4EFMpabyH/aYIIvlxCHFwhLNP98iyy5Jgh6YQIksU/EJkioJfiExR8AuRKYHcXKmuv1RiokSB9dD8GLn+qEsviRokApIg9rH0v4Nd7WWbLTQGMTN72vprR7CPHd6fpwZxqIf9OoKoeH/26cWr7uDG9pH6jSTukZDH9fXS0m2fmx/7GvZw3oGrDR6nPQjAZuygoxMcQlcTSqsO1K0aTrBOVMjXsIcbeBbNzGZnf+0+0p34MQdw3urNL0SmKPiFyBQFvxCZouAXIlMU/EJkCqr9bQ822cTCnBUolQPI8TaLtO6m/HQQTrGWAOSs72HsDtRwanW8BpPmpmK1f1P6a6+6tFbgqaryHjZnC+veQJ4+KfvRvH04FlL2yd5LOfmXYNt90/nv+7bxFuQnQz92av28u4bPpYGbaRMtugTZdgMo+2PorlOX/qwmPXxjw8VI6d8ng39SBnAuOzg/vfmFyBQFvxCZouAXIlMU/EJkSnKfa7LYpkLCkJlZAJEs1d5LkAhIQhd93wGEKmqTTcUxzQyFynNF9+0vrMHCSlDeP9l7ydJMLbZjNm5snQ7CaQ1204o61UAh1DcnP8cvrtZu7OLG25KpMOpxw4/yfufPcLPzItl954uMkki2pFbucC6T3q/nReefxUnlxdmnEfWxaf0aexABa1iPBD8hxP+h4BciUxT8QmSKgl+ITAmz4Aspprr+qHU2OcFGFTuWahD8CBKmqCgoXXeEIpV0XQfuqxLEHeogY2a2oe41IH4VFQmaaR177ip/z0sQ4qhoKVGCMBQD25/DGAl+c6i9cF145x6Je6NXfi2kHw+3/vvMzAYf/P4c3noxbgNOu3e1n+g9PCdLcPONoPDoFyAqvoHCr7NI16sLiMHrDuosgMv2AGetN78QmaLgFyJTFPxCZIqCX4hMCbPKC34kfqFrLLGdNhV/NONCkR2kqGKKcQGiXaLDL3VevBdwtZlxkVJKE74DMWYSKdjoPgupuj/0Oze26vZujO6P3JSxcbo/EgxpbASOvHHwolY1hjOY++ezmHoBuWxiSblbP/TWD30M/gx+W/k1/tD7vd2AqDyAZ+yu8oIfjX0VSem97vw93rR+jRfw3JIErDe/EJmi4BciUxT8QmSKgl+ITAkTEBwIctSlptqS68+MhSUSpk7geCLnHomSlJ56AOGMxD1yOh4gBdPMbBnp5PMYuudxYteVDYiXy84LfntIHU0VZ81i4p6/Fq9LbBl9BtffuYUxqHlYDmC/QuQZC35/+t7fywo+/h7amn8AgZVandPeHkr/PO1K6DJVj/1izCyA2PwcnolL8+uh+oF68wuRKQp+ITJFwS9Epij4hciUMCu94EdpmalCDqX5fkr1PxLtqBEIzUNuvmMHwiA4BkkQ27Y+xfShBMeYsWuQ3G7UwIREV/q+BgTI1JRlArKLPwkSL+lcDlBn8KH1Lrarj/AsjqCG3wFSXiO3fPwAjU5afwa74Ne4g3RpEvfomcW1wPet4Jl9G0l1n9R+fwYnLzQ/Ny9UDoNfo978QmSKgl+ITFHwC5EpCn4hMiXMCy+81OBOShUBSfCJ1ZSj8Q6chDtw5FETCXIhkktv33qRpYV0yU8BuxNXIO4FaLwA6x5H6h66ecmlB0M0Rww6wx5ERBK6tiCIvYXU2EXt7+/8/sqNPVt5R91kCg7GSDeVh5VPCf4TCKwfoQ7fqvPCGTaBgb2ls6c0XxKFt5EafiQEzmov+M1PVBfQn4ve/EJkioJfiExR8AuRKQp+ITIlXEAnWmo2kSoCEqlNJMzMOnCDLaEBAqW3YtOO1gsdNEaCFgk5MQoQnLo+rW4edSumhiZUC5GcgExa4xMzs9bSxM8ChNh7qHFHolYXJm6M0qJfNXM3NrkDQTLyKN5Dp+TfVv7+ft/5DsG3jR/bdN5xSK7NBcTLDMR1iiESvc3MdnAu1El6ANctLuFccBYhxM8eBb8QmaLgFyJTFPxCZEqYgGBEIkQNNdeo8hyJhTFhsE7U0wbgnvup8Km1JNpxh9/PE/c+B1oPuRAp7ThUqeJe2rwxwe+cKORSGi3tIwqxILptSl+77v3Ai2RDeBYbEIrNzO6gDh81Onl3enBjy9ZfR/dCLksSYicg2NJOtxGBPMDVIziD66kX9xbfeIFcb34hMkXBL0SmKPiFyBQFvxCZEih9M9W5R9cNYOwyYr9adH7uIQhGw9oLJb8DZ1MBTjIaowYUqQ1I6Pv+8p0giIJAR+JQan1EnBcFVnBjYoMOLnwX6977GNozSrXuurR04COk/t7COQdqiAGiqZnZChx5a+hijI1O4Fmk/U7dL7qqhrMqI8/iGETEJxBDV8+8UDn49Q3MI4TIEgW/EJmi4BciUxT8QmSKgl+ITAktWTwLaOcLCmsPNssBfB2p+mZmX/XeermADi2T/cyN/efIF2akopeUa32uqEAlKLuJ/x6YsZqORRxhPcMKcrLpOsh3J2WfVHhq7xzr7EMqN3diSvuHhJT9BgqmUvch2ldaH/3LYMbW6dSzruEMCKq9QHu7hTWOQMGnfwDM2NY8hZoRw2u/t8XTJ25Mb34hMkXBL0SmKPiFyBQFvxCZEo6YlA2WQ8iXHqI12H92HumGc33hbYiLG2+9PP3ZCy83BQh+pRf8qDhmC7ny1K6aBLtR4E46qWJjqvWWxD26P+oCQ0JcAwJUG2ktjdbbxNbUqSIgzb2DDjkknKUKkjFq7JyTZsUmyN5LAuSy92L2hoRi47oNQ6hrsYVnAmrbInrzC5EpCn4hMkXBL0SmKPiFyJRwiuR0PyY1x5+Kck4icwyG4L7qQDzpQBQJaSIZua96EPJIGJzXvqvMdX3hxszMrit/7QgKNpIwdQLxi64joSrmBntMA65NmtfMbA+deFDco9z9xCKq5LyjMRJnqRMSOfT+Mg7idUnFaNPaZ5O4R8Igi4DgdAR1LrU+gJnZH6HV+fYn34J8stq4Mb35hcgUBb8QmaLgFyJTFPxCZErYgWjTk7AE6YQ9iSQwSRFxX7WN//zp3otkd2cvapCTbASCH6XLUlruLHjH4IvBpRv7svIto83MXpkXWWawZ6Bn2rKE7jUgDlGrcyooSWIhOTm9BPQXDvBMoGsQxDgS7Qhy6aV2TYqJezjPJzj/UiDRdVb5Z2dW+ueBOMJeHyN7SOeyLP25rld+7usf7tyY3vxCZIqCX4hMUfALkSkKfiEyJWygjl4HXVIqcEVNwcHmvWFm20iK4v3at2RuIZ34Hjrf9CBgjWHdJMb0UMPvSfB1An9ReTffFyDsmZm9af26F+BE60GgW4Lj8B4chxtIqyYRkOSiAzj8YuyKNNGO0nJpDLvcgGhH4mxqy28SHz+FWLvyx5ATdFH6Z+xV6R2f5JLdml/3tqQoirgL6TuPXiDf/2btxvTmFyJTFPxCZIqCX4hMUfALkSnhAdoVn8BxhimmUFNsAmODmgW/Y+eFEspmXEKBvQbELxI/RlBbbwhC5fNq6scK/9kbSC82M3sCbaivITWWmPTQoCP4PfsA+7ABIY/8byXWZfQCm5lZW/q93ZReGF6ar8FIkEiG6dfgniNhkFyEVP/PjFOCY41X/lqGsO6X5p+dJ70/gxM8x/cFi8p01uS8/fHs46r+rys3pje/EJmi4BciUxT8QmSKgl+ITAnbzjcSaEBQaSpq0ODpQSw6RBpd3IFzj2oA7kDoWEJ6YwOuvxGIWteVdxa+BJfWs96v7yrScXgOzrZJBV1nYX9CC+67FlxaICztQAQ8wz6QGDqFzr1mZi3s2QPszwM58uCpoIYml8ELrHOYg5qSbKHu3W3LCcqr1gvaBNV6TO2KfKAGJJBq+xJE11nvz6Wt+J28LPw878zvRTn0+33beger3vxCZIqCX4hMUfALkSkKfiEyJRw6aNAAwkIHIhI2Y6iozhgLfsPERgnU7GAFqchrGCPB7xKcey/BZfcCMlsX4OQzMxtAamYqNYhDE+hsPAWH2BB+vhvYQ/qVjyXupla9G4BTkrK3Sdz7Iizc2Bvzgt8ViGQrSMn+LYiFZmY/Vl4IpAYkdC81NOOgFGqqrfffvXc/HoMXmmsQYj+euc3uu3abtJ7b0s/zrvauQb35hcgUBb8QmaLgFyJTFPxCZEroQbQjKI2SaopR6i8JcTGoBhx2b6XOtlCHjbrqUmfbC3BaXUANvjoih+3MC0brzo910LWDEkxpFvLjjSCls4EvPMI3bkHYNTO7A8GJOvcSIxB3r0CA+sr82D/CY/KmBJELRMDfF97BZmb2Xe3FxlViPUNy7j1Alcr73rtk73rvLFzCdSTYrcF1a8ZpyySQr0o/93toIqI3vxCZouAXIlMU/EJkioJfiEwJ5Haiym4dCEskup17L2DEGiKQQ5C+k64jBiUIbOBM3IMbbwmptgNIrSwiv5c7GD5AfTZy1YFPzgaw33QdiXsNiUgg7sWcZCRgbSM18h5DTrkppMa+ALfit6MHN/b6H3yzibDwc/zN8hbX809/9HN//ODFwR9b7xD8w8CLZL+nBjJwzh/PXnRbgZB37L2AeALHoBk3JqEU6n3nz/UeejLrzS9Epij4hcgUBb8QmaLgFyJTFPxCZEpoOlAWwUdagPpMKjwp+zG1/nOU/QCFHWmM2kOvwKr6PfxTcA/fdwZl18xsD/8qtLAX2PkI8sapuOYY7oV0YbLt3sE9P0Rs12tQ9umssM027OMA3jFzOObr197KO/z7526sfPPKjdVD7nIzXvt/C66/+4Mbe/bv/rr6+xs3th/6fw+2UB9iU/j93iZ2CqLn2MwswD8NdC6k9u9bKPSZtBohxM8OBb8QmaLgFyJTFPxCZEo4geBHQk5FxQxBnKMc/5iIR+NnEMmoxTNZeWmMoNz0D2A3fYB7jlmVG7gXytWmX9sxGXdBGypBBOxAgNxQwVOw8m6g842Z2TExd5+svNT+fAIK8gRqJYye+nWXv/zCjRW/+ju/mJHP2zczs4f3/jtb/8zPfvjOjT197y26150X/N5CC3rqkETdfiaVFypnkHtvZjYBm/QRzvoOCn1+sJUb05tfiExR8AuRKQp+ITJFwS9EpgTKEa5A/CLBj9xzJBZGHX4wN32eoPWQWEj1Cg5QELQq4Z6pOCY4+cwiBUXhOnLzkUi6gE5D1N2FKn3SGneQN76NOPzoXFB0JXEPxmbgWCPBL1z5ey5evHZj5etfuzEjp6qZ9SD4WQMid/B7O6ih1sXBbzjl1JPYW8M+zKDg6S9KFi9fmb+Wam/8NJy7se+ga5Le/EJkioJfiExR8AuRKQp+ITIloEhGIiAJVdQKOjH118yM3IVECWJMB22tiQ6EJRIq6f7IpdVGBD8SFskNeAYXIqUJk+w5RNeYhzyI5Gqk4pExyJ02gnuZglA5hQ47M+h8U87B2bZ46q+7fOHG+jUX8Dxvfaru+cOdG2tu/a4dT/7+dqU/gzUU3KQinCT2XkNr8S/P3NL+1ye/xufmRdsDOEG/HVy7Mb35hcgUBb8QmaLgFyJTFPxCZMr/AO159f1D/ziQAAAAAElFTkSuQmCC" y="-8788.676621"/>
</g>
<g id="matplotlib.axis_489">
<g id="xtick_733"/>
<g id="xtick_734"/>
<g id="xtick_735"/>
</g>
<g id="matplotlib.axis_490">
<g id="ytick_1221"/>
<g id="ytick_1222"/>
<g id="ytick_1223"/>
<g id="ytick_1224"/>
<g id="ytick_1225"/>
<g id="text_62">
<!-- 232 1833-50619 -->
<g style="fill:#262626;" transform="translate(15.789375 8893.635059)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-50"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-53"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_246">
<g id="patch_247">
<path d="M 164.424375 8911.076621
L 286.714375 8911.076621
L 286.714375 8788.786621
L 164.424375 8788.786621
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p8b5f2a5feb)">
<image height="122.4" id="image8568c98480" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUuvHFlWhXdmROQ778vX1y67XUXTPLpb3QiGLQRMEY8Rf4HfxojfwASEGtTQQjQgUaWq6oKyfe37yvcrIpJBAQOvL6QwNcJnfcOtiIyIE2dnSivX3rvz5x//2THeIYvOu6EoOl2J0XHHkI+LEmLfHNuOAq5zccwl9ht7Pfe3Rg8Se/qjpcR6L8Z6cr+QUPnLGd7jT//6qcT+clBK7PNKz9/WB4kVnUxil9lIYt/vTCX2472u15NaF2cZuoYRET8f6Lv+x6Pe96vDXGJV1BLL4Vm6uMf0OOJwrCS2rnZ47KxcS2xT6lpkXX3mUdaX2BhjA4mdZUONdfVcXYWIObyrCM7B3zueSuxPT95I7Op39Ur6acaYJHDyG5MoTn5jEsXJb0yi5NMOiz7v0vZbogYJQyWgb6hA8iMBhIRFkobo3COoisdSg8e9ikjdsQo5+fMJXCXi1x7dS+zj1aXEblD0oefTGB237ujqviz0nc5rve5tlyXXL2IL56ugloEAddpVoesEnpmej/bDHsS97VGF1Cb2cGxZ62d2OvAO4PnoOBK5VyDa0b3QM9e0aSPiKlNRegSHwm3z/sarGGM+eJz8xiSKk9+YRHHyG5Mo+flRpbNDS+8dCXl07qHDn1eBsFHTtUHJ28P31h7EmP1Bn6/egmizVTHmWIIwdApOwIi4/OG1xH70N/osL/sqiGVdkioVcngtQET6koQ8+JqfHdVZGBFxXasrblfrdYbdnsSuwIX4pKOCX3FsJ17S860gRuJcBO+n6qjXoVjR1b1D16FzN0dyVOpxR8iBfledpRENLlt41eVej6uXej/+5TcmUZz8xiSKk9+YRHHyG5MoOQkG5L6ibwkS/GYg7q3BpRURsQDBiRxPA/DzofjVVWfb9qCx/UI/L1+oiNQZqautM1VBKyKi+O6ZxH78izuJfQWuv16mz7KFNdvBis9hDW+Pet/kQmtyypE7rQtiKjn3HoO496LSd9CDfTeDstoCxFAq8ab9ENHkDtVjd7CO6LyE65BoR6XNdBw5BnsNrtse3PcBtOLlSt/B2e1GYv7lNyZRnPzGJIqT35hEcfIbkyj5Pbiq+iB0DCC2BxHpLlQ4eQWOsYiIea2lo9TbbQLCUh/EoRk4sm6Oeu7prbrsIlQQGdYa6/VZjCEh8PIHWub7O38LImJP7/Eanu9VqBC3BqFq17LktanUmnrp9UGEuuiAw6/Wc59CCfUAxK8hCJ9YvE2HNZlSYe8M4FlIaN7A2pIYeggVZ3O4bxJNB+Dmm8C6RkT04cHXsBY3Oy1Fn77SPe9ffmMSxclvTKI4+Y1JFCe/MYmSvwURaQyCTw5C3B0IIq+rlR4HsYiIHQyroAEP5Kpah4oiN10VXr7sgcNvpYMOzpZaqnv+UsW5q5cLiUVEDC50gMXqWu+xhHUcg/JGZb4kSpHORc40EvGaXHE5/CZMOypMPQsV055VNDBE13HQ0Xc1KHW9ahgscoBn2YFwHRGxhXLbMQh+QxDo1vDMOg4jYgP7mCDRlMTHcUNJLxV+L8FRe53pZ44etPekf/mNSRQnvzGJ4uQ3JlGc/MYkipPfmETJSUEuwXo5D7WMvgHb7qxSSyyp+hERB5icQl9HNMJ60dF/KW7AErvLVO39CmykGTQyHYUqpI9e60jsiIj+S40t4VlWA6r9hlp7Uq/b9TaNHqjhY1CuTyH2TVzV4kuw7T4HF/ELGJV9OdZ90ofx5ZM19BHY6L8wW1DD79EazOtD/1zRP1z0D8AO/qWoGxrUvgu9F2zKiXfN+4Sagr7N9TqDg/6T4l9+YxLFyW9Mojj5jUkUJ78xiYIjukluOIBNkmI0IYXsphFc30zjiUkwXILgR2xA1KJ7pAaX1OixAFExIlp/jZLYNGn5Dgiy7ZJgROLeR2CRjoh4XurDPD+oQPc0134MJ+caG53ouyrGKpxNShgD/lLfy2yt9uyXDe9l3nIl6ezBEUaQwzqWXc0DasDaFhL2muJ7EIZn8Mz9XJ/Fv/zGJIqT35hEcfIbkyhOfmMSJd+BaEfQOG2Cau9JlGq+DgmLKp6soEacRDsSY6henRqHVuDc2jcIOW3Fzz6sBQk51KyRPo/EvQFcg4Tdq4q/+1+AuPd8oD0ZLq40Vox0fTJwNeZTvXZnoLHHvaXEnv2LNqj8uqamrBErqG2nPU9ZQO+lB/t7CD0H8PNaXpf2YgQL5yW5/kAErOFV+5ffmERx8huTKE5+YxLFyW9MouRvYCoNjiFuKTaRuHdsWfL4PpQgvFHpL4kkQygJzVuWVpKwF8FiHIqX8JlbmPhCmg8JUCQOFfCdPiK3WsXv5aSj6zgag0sPxL1CJ5VHtwCBdaIiWfYYmkyeqLD7/K02S71+o81EIyIOIHTSlKoNrO0Mytj38E7biq707kkAnoKAGMFiI/16b0FGXMMe8y+/MYni5DcmUZz8xiSKk9+YRMlXMHWHBCMqb6WS3AyEJRIQm+iiqNGuLLMD91OB+EEjrEnQJCdgE3Q+gcIglWq2dAwSJEDR2PW84eOqI4xj38FY6x24OaEvYwfKSTsDELX60GcOSnUHJ3cSO73mseQXFZQtQ78/6s23aCv40eht6P93Rn0UQdybNOy7Gt7XGvZ3Cc9yQLHYGJMkTn5jEsXJb0yiOPmNSZScBgmQwMaDBNqJex0QkJqOHYIji+6RBDYqtyVxj5yAdC80UrlJvCQnIR1Ja0vHkVBJwiC9F1ob8iXuYAx4RMSsVmGqC1PWqcr7DByjg8f6DvKuOvc6uZbv1nM9bv5WS3pn8K4iIg4tmyHyO4A9Bk65Hgx8KUAEfA49Ez+BeTaDhvL5OYifdyBekrhrwc8Y8784+Y1JFCe/MYni5DcmUfKn3ZEE9+QaAmfTBsQ0gpyAERFd+O7hSabU9w4ccHA/VPpbgguNyyDblSxHROQ0GTfTMtO2E3SJ3bcYBEGCz6rpvYCItD7qsyxWKrKttipqnc1UBBxOVOnK+3rc6kE/79MHrRv+jx7/ji27+ty0FrST2zpLCRycUmvsuzUMOcl5qvUMJu2eV7p31iDk7lqWAxtjEsDJb0yiOPmNSRQnvzGJkn831C11DyWBt6E93JZQDkx965ogVxy5qkq4zq5WiYZEwB44v/IMBES4bxILaYBIBJfbDo8q0ExB3HvS0ePIFbnuglAJ993WrbZt+OqvQAgkp9zXVI5aa+x8rgM1ihndo7IE8fF1X5/lFvZsBA9eoR26ArGYBFYSvrmUvF35NYl7FxdrPHayU7fjo63up+1B38G8hHLpNjdojPnwcPIbkyhOfmMSxclvTKLk5+A6IofQFiflqgi4BXGuySlFzj8S3kjIo7LVcVddaOddFTQLcDvRMA7qb7iE6cARXCbMpbUaG0DfwwkIftTbbQZCF7kVd3DdOUpfgQNDZjToAvZED/r1jUC0I3Y0FRm8dzRlt0lgA4MfTrYlwW951P1N+4RKyTPIoVcwLOZ6q2IoCXsR7Iqk2G4DIve8nTBsjEkAJ78xieLkNyZRnPzGJEo+A0WEppPOjypCbEDwI3GOyl0j2OFHJa8BAxCKrsbOQfB7Bg7GEVx3D2LTfUfX4U1Dr7ibUFcWiXskLC3AudcH9xx9U2cgDNJ1aQDFtqEfIQlqD/CuqaSbptNSyTJJwDQQg8Q0EvdoL0XwmpFotwFxd91SxKVrl5AHX4DwedHXycSjh6nEIiKeZzqdmAS/ogfTk3NP6TXG/DdOfmMSxclvTKI4+Y1JFCe/MYmS34CivQAVlxRSqmOmEd00+SYiYgh2xxHV38N3FFl0L6Eu/qpW9fkEXK0bEIsLsGjuweYaEbHutmseSpC6TqOXCbofUs13ZJFuuD+yNc/B1kxW7LoLvQlaToAihZxq6kntbzsiPaJB7Yd/M3ag9hOUB0eYp72BPXIH9uxXsIYREcMHbbZ7VmnTU+JQ0mQuY0ySOPmNSRQnvzGJ4uQ3JlFyEmNGYKedNogQbRg0CH4TsH2SPbTtyHAeI65koA2pMTiigM+j+4uIOANrcQWjlqewFviZcI8HsCDT9BmSCmkNyQYcEVHDfVOM9g4Jb20FuvatX9vTtjHrHkVuPY7um0RuahJL60XPPM94H7896B47zGgSD9nKYew6XsUY88Hj5DcmUZz8xiSKk9+YRMk/qVSAWkKtfNHV74kbEAZJ3Ok3iGQDcu5BjIQpEkrIxbYEBxw9SwUaC4lpvYbvyycdFWMKcH6NQRwaQhPVEu5nTUIcHJfBdWkNyQkYEbGF9zXosmj7LuTGZHGvnTib02hpWIcm6oaeBe+yg2em5qEofIIQSwIr721l3bA0dyAi7up2o7eXICL6l9+YRHHyG5MoTn5jEsXJb0yi5E9LmOQC4kCdqUOIppKswRXV9A1DZbkEiSwkLK7o2jQVCC5LkiSJMacg2EVE9KGR5hBiA9Cqcoht4DI5CEF9uHMSKtcgfNJknwh2Sja5NN+lqZFmG7BBKTwf7bsmdyfFSS6cgEPzrqNNWZfVFq/zLgUIiCTE0gjxJY0ZCl7bHXwmsYLF9S+/MYni5DcmUZz8xiSKk9+YRMmXIJ5QPzuiDwJEBSIeCXZNcTqSBKxtQG83csDBueS8Oz/CpBm4mR6IeBERfTi2oNLhtu40sO7VKHQpCxCRZlCyenNk8YreyxAEP3Ju0nqTOEvvigQxclQO4amHDS7SEQi0Kl1HHDo62el1rmXsL7sqAq6h/x/1pyTxkVyp8wbx8gDvn/KX9EIaf+5ffmMSxclvTKI4+Y1JFCe/MYmSfwaje8l1RKIbxqBMlASfCHbQHSC6BecejYdmcU+FHHLjXUBNLwl+71NOSoJfgb3wFHLz0ZFL+Pped3UNb2oV924rFa8iInog7tH484+w8yHcD7oL2w00of6GJOJNGpyXUxBOx7DxaLknme4dKge/66jgR+LlgErgYT/QOPVv4go5WMn0R7vWv/zGJIqT35hEcfIbkyhOfmMSJf9FPZMglSNS/zESNfC4BscSCXQk7t2DWEVTVQfgqqIrT0EcelypCjSASatVQwklyVck7o3hyD4IYtSbrXdUIW4HAhRN+F3AetEaRkR0wTVGw0Z+FSa/ksh5C73n7sAJSkNJMiqLhrdKDsum+ADeC5VVn8K7fgSl7T14B7TnC3iWLbz7GUxJjojY0MRimpQM51IfRf/yG5MoTn5jEsXJb0yiOPmNSZT8i92NBHswoGEEDq8TcEA96mrscYcn/JIr6xW4pe5DBT8SC3sgVE5Dn2VCIlKtMkkfpJNDQ0kvlYmOQNy76O/0uJE+836vz5KvRhK7q2E6MNR0kjB0bHAr5uiq09ijUj9zBNcp4NxurrE5rDcJqXTX+4Yy9B3EcxJtaWgLxOg9T+H5RvCBPbjxBzhu1eDwI/frBsRBctnSZGL/8huTKE5+YxLFyW9Mojj5jUmU/OGwkmAG7qt1pkJVBQLEGQiDlzX3V3sBukavgOEJICKSg+ocjiPBj4ScVwX1o6MYQ+W/H8FAlKJQ4aU30IUgLS4HNxj1BOzB+6MBKX1wREa0H9CxASfgABS6ITglz6GEegD3SEIeOQGboCNpgAUdR5OSC9h3tFpjKCUmwQ+MnDGDKdkREQUI5NuWQ1JIIPcvvzGJ4uQ3JlGc/MYkipPfmETJSdwj9rWKUotyI7EbEPxuchXiIiJOwUlI0gv1cStbDkWgfmiLjsbWmSpVVF7cxDm4GL8Pa9FfqkuvAvFrf9C1WRz1mffgViPn5CmIoU0TdUkcpHX8GoZaHEAsPIFy6aelft4U3kuvq+/gACrZBsqdIyKWsHcWIFSuIKYSNwuDTSLwu9AdUj/JfsNvMr0XKnnmacca9S+/MYni5DcmUZz8xiSKk9+YRHHyG5Mo+VkxliDV/h5qjdE/ANeHucR+3jCx52Wm16YGoCuYzkM1y/dH1WdvQv+R2MJ9r2o9d1drrXS3QSEfQ2+DZXEmsU5Pn/mTrar4pCAvclDh4eubVPxpR69Bdf8R3OxxTmo/NK4soOL9Cur+vzNcSuzxdzQ2eIa3KBxu+Vlmr/S9XN9NNAZ9Ed7Aeq/h9a/Bbkx9BGjs+vtYlQk6G0eiw47yL78xieLkNyZRnPzGJIqT35hEyZ8UJxJcwSSXdaWCGE18WZbabJOEwYiIRa7HnmRDiVFjThKlNiDQLat20342lcao6WWT4LeC9UGRpdDz7/oqSg3Attl2dDpNgSFlqGmSUgkH70AEpjHbGViQL6Ap6/ljHQ/ev4JJOlcqkEYfrN1n+p4jIjq5Cr4HaI76sNDP3IKd9g7sxvcgSBOnmRp8aYrPusFWTiI37bEaejxQzL/8xiSKk9+YRHHyG5MoTn5jEiV/Ai67e6jJJvGLhDMS4ujcCHYSosgG90P1yQcQuqhxIbkVS4jRcU0cSKSBCdifUc+BfCqxE3DkUZ031XiTMLQHYYje1ftA176o9DNPx1QZr2xf6+fVG3X9FY+h8SjU40dEULuKI4hsS2iaedvVNbuBCTkPR33RtB/m8E7pPTf9Ig9B+M46KhbXIAx3oe+Df/mNSRQnvzGJ4uQ3JlGc/MYkSn4KgsMGGil2aKwxQOWkNPI7gifGDOBYauCZU0NCuMcSHIMkKrYVH0kYjIgoy3YiIl2HXIhTuO9ppmWnE2gcSs49KvNsajxJ75DEvTNomvlRpXtnMFKRbDWDRq9zbW6agXj1+EJFwOkVi4rlRvfOaqP77j7TZ55BHizARUpjsvfwnktYcRLxLhtG2j+Gxqw0c6mAPKBGof7lNyZRnPzGJIqT35hEcfIbkyg5ucGwdBBiJAwNMpUghhkLGGOYaDMEAXIIDr8BjM+mGIXIfUVlx7tKhZwmtyK5AY/gdtuDILYuVayaZ1ryOi1UBHwE7sBJV9ebSpHJ/RgRkYO4N4KFfAaTc64GC4kVPSiDvVNx7wuYKrQE597TWz3u45mOmo+I6Pd0vWeV7rtFDqXRJAK3dLBiWS2cS67Npw0j7S9hstOk1muPYC8O3MPPGPM/OPmNSRQnvzGJ4uQ3JlFyGr28h95sBTiRxuA464JYRMJeRMQUhCkaLjEmcQ/uh8QYkrTWcD+LrvZ6IyoQWCIiygoEPxKH4HxyApIwSMJSD8RQHOXcchR7BLsnyYl2CoJmVkA58VbP3VYQA5fdbabXWMOwkHWpgzgiIs5XurYzKN/dg4GVRFIaKkPvIIPy8gEcdwqxp6ozR0TEM+gzeV6oWDwc6wf0+rqf/MtvTKI4+Y1JFCe/MYni5DcmUXIqPSTB5wSm0NYgnJGwNAJRIyLiBEoXp3DsCEoZMyhRpAEW5EwbQSkx9QQkl1aTw+/b9sNrAznE6H7IoUl33fTNTw6/yVHXsQ/rs4aJw/uDnruBcuC2LKHM95cNH/c6b3cden8kck6jncBKBfB07gW4+cY176WLnpZ+P7pUZ+PoSgW/4lyv419+YxLFyW9Mojj5jUkUJ78xiZKTEERuvgGIFRn0CiPn3aRB8JuCiETTaQuQT0gSoW+yHO6RxEIS02oqY27oZZiDa4yOJdcYHdeDia7U87CAnofUy5Bocv2RQDulnokk+NV6j9T2cAn7pCaXHbzoNQh+ND03ImIL75D2BAmaQ+p7Bw5UyiE69xSE6yk89PuIx8NLFfeGv30pse4Pfl1jra9ijPmgcPIbkyhOfmMSxclvTKLkJC6Qw68PAs0Q3HMTckWBmBIRMaABH6B1UK9AKt89tCzLbNuHjcqTqUdhxLcT/Eh468N1JuCypHJpGtpBohS5GiMiBlTSCwIWya5r2BM7eL4F9OZbwu0soDT2HsrQH2BwRkTECoZs0HqftXSb9mFtpyDkPYb+hhN4CSSalg2C7a4EcRfaY3Y/eS6x7Cd/osfhVYwxHzxOfmMSxclvTKI4+Y1JlLwEoYuceyQikfOuB+JH0zcM+ZhUyonothT3diRAQcny9qhXIeGTxD0S9iJ4MAn1diMREQU/EpuwV5yeS+JlReuAq83i2Rtwtg1yEHfBsbaH/XQPy3jd1fu5PmrfujnE1iDsRUTs4F2TgLwHh+ABxNQzWIcLELRPoL/hFEp1SfDrNTj8xkN97m6fVG7dE8e99qj0L78xieLkNyZRnPzGJIqT35hEcfIbkyjcwBMUZKp3J02yglrrTUN5Mqnz9E8DfUNtwfZ5Byr121qbHs4rjeVgSz4rxhIbNIwbn4IyPIEY9Tsgyy9B/8yUYNzdwcQlOm7boJC/gevsM/3MO7AbX8A/JPRP0ayjKvzbWqfP3NWqUtO/NTR2PaLBtt1yvakx5wT6WtD+HIGyfwH/UoxzfZbpRPdnRMT5d3Qtihc6oj0KfQfHh9cS8y+/MYni5DcmUZz8xiSKk9+YRMlJCKKJLwc6DkS3LYkpDfoKhXOIliAMLkD0uQFx76ZcSmwP545g3PhJVwUtGisewdOHyAp6AvZnWoctPPMSLKi0DmRfJc21AzX13xwL612rWLUF0e4NWJB7UONPe2wOgt8SxNkSxD0SpJsgwY8EQxJY6WWRoNmDc88G+nyXH+n+HH3Mz5K/OJNY9/mVHjjQfRvzWz0Xr2KM+eBx8huTKE5+YxLFyW9MouQ4crqdAQqbQu7g85omkJCQR+zhSg/kBit1XPEOXGw05eY8G0nsaVdjFyDiRUScQk33aQWTYWDRaJ7RDt7BPdRpv4EYCVroVjvys9Bb2YNrkGro78GRR5BAR47DQ62i4rcV9wJcpLRHud8ECLEgfC8yXe9DCe7OAlyuZyo+R0R0prof6Vni/l5C9Zs3em28ijHmg8fJb0yiOPmNSRQnvzGJkpMbjPQ+GvuMY61pGk6DQLNt2VxzDaW6s3Kt54Jg1ANxbwqlqGdQfkvi3lXNDTzPoXElNXEc1SoOFbA+JbyFEYhIAU006St9By47GlUdwUIuOQnJ4TmrVPDbgDuQhOa2o6mpaWnT9CE6tmnM+rvQXl5B09OXcO6hUMfnsppI7O2/6168+oJF05OTO4kNxtcS62awn3btG+saYz5wnPzGJIqT35hEcfIbkyg5CSI41homi+xB8KnpOJSQIjYg5C0qde7NKxX3VqUeR8/Ck3RU/CrgezCDsdRUvhkR0QWtCjTAOJDYhOfqcTkcRxNyaiqhxd6BzAFuiN4hCWLkqFyUKmCR4Efvj3orZiB80rkR7Sck0XQletdUivw2dC++CS1F/gymPfUHtBfJ8xnRW51IbLIGZym4TUewl/3Lb0yiOPmNSRQnvzGJ4uQ3JlFyyn4stwSHF4l75OajnmsREStwfpFzb1WqeLKHUs8+DIxoC/UopMEgy6Z6ZxChViCyHDMQ6GjKMoh75C0EM1ecwgfCrTTIsBEz2BRUykrjr8lluas0RoIfjT+nPoPkSiVhsClOQ2mo5JmEb3IhUv+/GfSTJKdjWbfvR9hWqDwBB+sJOFj9y29Mojj5jUkUJ78xieLkNyZR0EpEk3tJ6CBxDx1+IAxF8ECGNTj8tiAYYc81uDbFSGwi5xaVbzbMuQiad5vDsWsQEXFaMYhNExj4cQ6xU9BXhzA1dtdQ2jqHnwR6123Lcum4CkqbsVSXXJswOIVErggW/NqWDmMpOvW8bMmmUsGPxOymicMErc9dV4XvAYjh/uU3JlGc/MYkipPfmERx8huTKDk598jZhP360OEHgha4viJYACE3WP0tRBbq10YiCYlAO3iWouFe6Dqkpi5BzFnDQAyaVhzQU5BKNakLYx8Ev6avfiodzuj5QEwj911byOF3Vowl9qLQabVPYaJyREQfHnIF72AB4u4acgPFQggVDY7DdyGnKuVABIukRAaDXLh03xiTJE5+YxLFyW9Mojj5jUmU/O6wlOAAHELUCw17/YFI1lTSS3ESESlGogaJbjyUpJ0oRT4wKv2NYEdeRT3gWvbHo3NpyMka3ssSbIgVHMe+y4hDR++xgPsZQDkp7R0anFJDzfJFoUMtfrN3KbHfr1QE/OFenXIRERk85atQcfDznpa8ftVV4e32qCL1Fq6Rg/OyrQh4gDLfiIiyaue8Bf0Y97x/+Y1JFCe/MYni5DcmUZz8xiRKPj9oz7w9DboA0YZiVELbJGC0LQmlCcFthTxyB5LQWIEYU1Lpb9OEV/hMuh8qE16BA5KeGc18wDaDQRBwcpPgt+7os8xpSi88MznJxrkKbCQMfty7kNhPahX3/viZzsU9+wMdaBEROMX4B5/q+d//uV7n77bnEvsnaBP5CvYJvb+2JcskpL8PJJAf6R6/1VWMMf9vcfIbkyhOfmMSxclvTKI4+Y1JlJzqickmS8o8nUvqZZO9lz6zLaSmEqRIUw+D3lH/uaB1ACE1IgKGNEeUYNud13okTS6i/gl9sNNOYBLLEI6jiTRNrKCenCbQ0HQlWu9xpvd4mo8k9hhq8p/vdA1Pf6LnZn/4RxKLiIihWoa7119J7JPv/b3Edn8xl9jXx6nE7uGfoiXYe6n/AU2Z2uf8PwztR5r4Q3X/ZLv3L78xieLkNyZRnPzGJIqT35hEyUkc2IPxs+r+38U5svxGvMckl5a1+wSJjTRGmmqtSSTZN3xf0rEbuM682kiMGpySJZpEzj7YZCcwvYam3DRNrqF7XJRw3yAMFmD5xvuBZqQ9WFvcdbQfrn6Fjozs6ff0My+e64GvvpZQv/e5xArorTmCvTOG51vCu6L3t8+ajNcKCuxgz95X1KjXGJMkTn5jEsXJb0yiOPmNSZQcXXYQQicRCXZUo98g+JFoV8DUFqJtzTPdzxYcdUQPnHJN0BhyGjdOrki6R+w5AMdtOvosdC6JSE0OyyWMjaZnofdKU3fI2TYgtxuIV1toRnr4cqbXuP1PiUVE1CfaALR++al+5k//VWL/tnoisWVfn5meZQzzmsihSYJdE20bz+KUKhBJ/ctvTKI4+Y1JFCe/MYni5DcmUXIU8jrtnHfYHBM+r0nwoylAUagTjUQkLLc06kg2AAAAf0lEQVQFxxoKfuBMI0fd+4gx5NKjtWjrTKQ1o3dQwniWtmIoNXqMiDiAKEn303b8ObkncdoPlMGSJLn4Es7955/BkRHV7Wv9zJ/9g8Q++yst/f2sB1OTwD1HsjCNBm87sacpX9qK7k3nv4t/+Y1JFCe/MYni5DcmUZz8xiTKfwEBXuxlGkCJVAAAAABJRU5ErkJggg==" y="-8788.676621"/>
</g>
<g id="matplotlib.axis_491">
<g id="xtick_736"/>
<g id="xtick_737"/>
<g id="xtick_738"/>
</g>
<g id="matplotlib.axis_492">
<g id="ytick_1226"/>
<g id="ytick_1227"/>
<g id="ytick_1228"/>
<g id="ytick_1229"/>
<g id="ytick_1230"/>
</g>
</g>
<g id="axes_247">
<g id="patch_248">
<path d="M 299.674375 8913.578385
L 421.964375 8913.578385
L 421.964375 8786.284857
L 299.674375 8786.284857
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_493">
<g id="xtick_739"/>
<g id="xtick_740"/>
<g id="xtick_741"/>
</g>
<g id="matplotlib.axis_494">
<g id="ytick_1231"/>
<g id="ytick_1232"/>
<g id="ytick_1233"/>
<g id="ytick_1234"/>
<g id="ytick_1235"/>
</g>
</g>
<g id="axes_248">
<g id="patch_249">
<path d="M 434.924375 8913.578385
L 557.214375 8913.578385
L 557.214375 8786.284857
L 434.924375 8786.284857
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_495">
<g id="xtick_742"/>
<g id="xtick_743"/>
<g id="xtick_744"/>
</g>
<g id="matplotlib.axis_496">
<g id="ytick_1236"/>
<g id="ytick_1237"/>
<g id="ytick_1238"/>
<g id="ytick_1239"/>
<g id="ytick_1240"/>
</g>
</g>
<g id="axes_249">
<g id="patch_250">
<path d="M 29.174375 9054.996045
L 151.464375 9054.996045
L 151.464375 8932.706045
L 29.174375 8932.706045
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p26f7dc0170)">
<image height="122.4" id="imagef835c6bcdb" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztndmPHHl2nW9kRC6VS2UVa2GRbDabvVHtmZ4ZSJY1sCXDD4YAPwjwux/0nxqGB/IiYGRbHnVPd0+T7OZSZFVl7blnZPphBnrg+QKIVgN+0O98jxcRGcsvbgRw8tx7sz89+otNvMM6JBQbiBFFlkus22jhtncaWxI7anQktr8p9DiRSew61hIbxUJjm7nuu9bYfL2SWAnHiIhYwrYXy7HEJis9zmpd4m++S7fZlti99q7E/qi1L7HPN12JfTrn4z5q63nvH91KrDXQ/cenutbP3u5I7DjX7RrwiHXXer87sAYlPA8RESeFPjtfF7r/i5hJbLTW2EU50e2WNxK7Wuh29IwQRUNzqCreauj19QvNoYPmtsQatc7GGPPPDie/MYni5DcmUZz8xiRKsZ2rOFCCuLfe1BP8mpm+T3pVgl+m8cNNU2L7pYo5EIp5g0WfOuQgGDVBvKzSPZcQa2T6mxQjSGBdlCoY3ZYgSoF4ed5QsfA653f/dKkiUrnU8yb9qqS1gm/MEu4DHCLW8DzNN7rhvOK+jmAJbzIVKidwMbONxpabeuJs3qB7q/e1CSJeE0S8iIhOrrmxBbk1LFTc3W9ozF9+YxLFyW9Mojj5jUkUJ78xiVIMwVFX182XoUim75NhqFAREXEE8fsr/c0OiI0XuW43ydS5NQGBZrlhl967oDhXcWvIFUlk8JskDpHrbw3nPSlV3Dsr1aF3DOt8mKvDMiLiaKHrspirCJVP9ZpXSxWwVvCckEA6hk/RHPbNQPCbVHzGTkDcu9zo0W836gSdrjU2X+u+JawLicVbTRXnurkKsX0Q4SNYOG9nui7dTNdvANv5y29Mojj5jUkUJ78xieLkNyZRih1w2VG5bAFCVRveHf2NxvbX/I45WqlQ0gen1ShX8eSsofu+hVLdCyjLnMExSOQkEa+qpJdEH6IB9zYHkXST1XNZzksVoM6XWn77Chx+d4oKIRYcZns3uv8a3HxXtypWjeH6SNy7gZreJawBFcaSay8i4hyEvEtwQI5B3CPBb1GzLLcNbrxtcN4dFgOJ7YM4GxHRB9GOqOvG9ZffmERx8huTKE5+YxLFyW9MohRdcCINNhrbWau4cwcEnwcrFUQebF3jwbf3VIy7ulDX2ZvVUGJvoTffW3C2XZZTiZFTrgGiFEH7RtQX/EjcI9df3WOgCAguNOo99zZXASoi4k3Rk9jOQrdtL1QEPAd32eumXvM5CLYXINqNoaz2FmJjuOaIiClsO4NtZzXdfCtwjJLTlUpt74K49yTX3nrvlyzstUHHu4XH9gKcriSI+stvTKI4+Y1JFCe/MYni5DcmUQpy5O1C7OFS1YZPch1W8P4vLiTW+akOloiIyAoVO1q/0v3jOxX8plGvVJcEGhRtoEyU3HhVpbt1xTgs6YXjNKAfIe4LAiINcsB+hBXMwV14Bi7LGTjO3ha673mmotsVCHHUe5DceFcgXpI4F1FfiF1CCXXdfTu53gfqo3cf+ug9Wem+nyz1miMimrQuocLiKxBY38Bn3l9+YxLFyW9Mojj5jUkUJ78xieLkNyZRirtrVXEPSlUVH2eqsL7/E1Xmu3/+vsSyDx7x0c9HEmo0NdYE1XwINtLdioaU7zIGBZlsuziqvEIBpn4AGKtZa03jmLdgrPU2WHQH0BRyD8ahPwq+X4dg2y7gvC/BhXqcqep+gio+WLvBin25Usv27Ur3rTvmPILtuNSslf5JoTr9HjTc3Id1uQfK/L2lnvfdvuZaRESrrf+QdK/12DlYsbOmPk/+8huTKE5+YxLFyW9Mojj5jUmU4rOFCjS7uQo0R/fUytt+pIJRtqOW3YDR0hER6zenErs5VQGD3lCHG5hAAvbJAQiDZBmdwhSXBdiAqRa8CrKHVjUAfZcC7Lg7UGf/qFDr8/3Qe3gEPRoeLvlc7m1UUFuC/fl8rcLiCiyoJO6NVtpk9GKp4t4YxL35Steg7sSkiIomqjA1iUZldwu95h40R6XGuAOwzW/B7CIS9iIiOr16z155CYLmsl5eGWMSwMlvTKI4+Y1JFCe/MYlSfLBzJcGtvgoL3UMQGxoqpm3OLzU2ghr9iFh8dSaxi0ut/SfvVh8aimYk0MD7bQD11zTKe0LNIxssulyWKqiRaFe3ASSNbr6b9yX2Ebj0PljpNR9CY9WjQsW0iIjhUJ12Jfzm5Eqv7zncW3LPkXBKNfkLEIvr9k6oOnZJ05nW0HuB+jnAccgJ2Kz5XV3CMWgcekREswVNOHM9n25H7+PBjPpVGGOSxMlvTKI4+Y1JFCe/MYlS9HfV7daAJowlCAbLYxWGNpO3Gluwk2z8QgWjSaki4qqoN9EGJjxHCwQfmkjUBdFmCQ0qr8BZGBHRhP0na3V58b56PrvgGnsM4t4nS5iaVOqaDps6kWZ7mwW/7bsab7RAEHuusePbfYm9KvS8z6A8+XrJpaz/P6BSaxIWlzCiewHC8BKcnDRu/BpKt6/GuvYRESWUWjfgoV+t9DczOLa//MYkipPfmERx8huTKE5+YxKlKJea/+NLFd0WCxARQIejckRyIUVE3F6rsHEdKqjRGOIRjHi+gjHEM3DUET04bgtKMIcgAkbwW3QIolYbtqTfvLvW2IcgnD5uaqn17r4Ksc2O3ofWgO9N666eY2Nb1+qgq8f56f9Q0e4ZCJWnuZYn3xT6e/NS3WokxP3Yr9iPGZO+hGeMJG7QZuMGJjMdl1p+GxHRn2pe5j+glPld/OU3JlGc/MYkipPfmERx8huTKMX5qQovp3MVaC7AiTQHkaQJJq12RbklCSBvWvo+epqriPhqreLQBQx9oLHdW1CKvNdQkWUH+v9VlWpuw7Zt6HtH48+PVrrdeyt15D3cuZbY3od6w5sHei5RgGALJdAREVkX9ocR3VlTnYBbTV2rHbgPg4aKoX0YfjEvoF8fPE9VQzuotx/18CPBrwXlydTXrwNr3wXXZhNUwDE8TnPoJxgRkcGzQ9BWYNr1l9+YVHHyG5MoTn5jEsXJb0yiFM8W2hfudVPfCWfg0puBj4n6nrGsFEGjCc5Dy1GPQdw7gaEP07WKZCTu0OAMEvLaILwUFU6wLogxJO49hBaAH4SKdvfva2/F4RM97+LDQ4lld3SQBzLW+xoRsZmokFeeqpNw+lLvBYnFtx1QmyBEYhpNxV1AWe0Pgfr60VTkFpxPvwBhGITKAyj9HkLfyQU8TqfgXo2ImMBNW8KQFILEZ3/5jUkUJ78xieLkNyZRnPzGJErxTUuFgJOGCirnMMWWBD+iqliSpIobEO2uYMorDXigPmxUd4xTWqEHX4sGfkD/v4iILrnYQOC5A+d9sK/i5fAzECU/f19i2fsPNdbTScmbqR4jznRoSkTE5va1xJZvVYh982JHYt8VKtBdZFSWC8Mv4H6T6EYiIK1fBDv3aFsasNKB49wpVCC/l6nI+RCGnOyVuqajXLe7qPgkX4NEfgv9AymvCnjm/eU3JlGc/MYkipPfmERx8huTKMU3mQo5lyBKXW90u0XNibM00KIK+s05iBoEurSgP14fBmLsZRq7F1p2ug+DEyIitkBl6a9V4Ollei2dnsby/a7Esrvg5ju4j+cj3KhjkCYqR0SsXui259/q+Txdqvj1fRt6K4JYTHSg1LoMdc+RMEiluxH1xV1yF/bgObkHvQefrHW7n6zVtTnsq3B9eqP3dZlxD78JlGVPIV8oRhnkL78xieLkNyZRnPzGJIqT35hEKb4ttS/ceK3i3qxU5x2JLDRxlsSUCBZjCHLukSOLYoMcxD3o1/cAxL370FtvCCJeRER7refYAQdkK4cBDyAibmYg0UxURNpcgkvv4lxC5W+fSmz6Gxb8Tr4dSOyriZYJ/0Nbz/tlqKhFg1MK+O7sgMBGvf5WeT1naQQ/Y1TS2wp9dqiH40cbPcc/g+nCn/yJrktzT39v/9VYYoOvuSR7Z67r8m0LJiA36omA/vIbkyhOfmMSxclvTKI4+Y1JFCe/MYlSfDc7lSA1SOSxyKqaUq011WRHsDpf147ZBitoF2LbYNvdy1RBHq7hGBWThog1KMhrqPGfw+jt6wv996H5parA3dXXEmt0n0ls8UL3Pf1SbaTPrtga/Lyp5/i8rWrxy9AGoFOwYpMdt03/1sDab4EK34HGqs2Kf45yWAOiDfvvwzPxs4X+E/bpH6uy3/nTBxLLOvosNg4uJPaoz//CDL7RY793rv8AvIJn/qzQNfWX35hEcfIbkyhOfmMSxclvTKIUZ1O199YlB+GFxMJKwQ/q7+s2UmyHxnBfshuDCFSCVfmmoduNK4Qleos2YWLP1lrP53ys13LytQp0W79T0a2Eaxlt1B76uqnHPe6wTfYYLLonG42NodlqG/onDKjPAomAENuGeU8HIMTtVvRZ6IPtuglCbgcE7YNcBc1Hf6TW6c7P9iWWddV2G3O9XwHnl/f4mzx8oOfTamu+DS/02BdTFZX95TcmUZz8xiSKk9+YRHHyG5MoBTn3aMoJArXtaxBTyooaeBIMSQSk+mswfuGYbboSGmt8C4LfFI5BwmBExLIi/i7kRKOmp0sQNBcgXk6hZ8ACGmbOYfT5uKIxKk1IuoEeD9RnYbdQoTInJyisVQecnDQJicS991fcJPSgpSLZYKDX0t1WMa73gf5e8zN17sWWimnrVycSW77QMecr7ZUaqyl/k1dzfSbWJUw5aqkw3Fm4nt8Y8wec/MYkipPfmERx8huTKEXVaON3qS0CAiQqRkRswN1E0Dlu5yqyUAPIPjjOyG9Igh3FpiAWRrB4RiPMlyjQqRgzgd+bgKOu7jQjKpWuWhcaf76A45Cjcmut5dJgdERxbwjjz3fAzTeA52Y3VxEvIuLgSEeT9x7q/W4+Uldk/uSxxLIjFfw2L55LbP47dc6efaPTfiZTEPHgmn8I01Kf8LfQoNZffmMSxclvTKI4+Y1JFCe/MYlSkMuOHGfksqsrApITrAoq/90pVCj5KN+W2HtrKP2t2cONpK85iHvrCpFMu+ZFjMFpdw1OOSqNnZK4R0IclFCTy5JEU3ROVuy/IQcjfDpIGJzTKHc4Nrn5unBY6q2Y5/yMFTAyPN8B8etwV3feO9DYYEdCm5Ve8/QERLcrEPxAfq6fLRFLyNXrXBfmBajc/vIbkyhOfmMSxclvTKI4+Y1JlIJKaEkcqhv7sQya2n/sYaHuqz9eqmjzpNRS1BykvBk4yW5AeLkodLsTEFMiImZwH0eg3MxAEPsx4t681O2WayjfBIGN1j6iaqy1XjcJgyT4kfBJjsgVOAZJx2vAcVcVrrjFWH+zfan3O7/UctvsXIdxbFa672akQzbmE32eSNy7AcG9rOgTCRPjYw7reg437W1D77e//MYkipPfmERx8huTKE5+YxKl2MpVOKs7TKOuCEgCUkREE9x8h4VOHf0860vsl22dbvrgX6rPrtHR856/UvHj7Dt1X7260XOZZ+oijIg4gQEf5AVcgtttBTEqt6UYiXtLEAbJtUmCXUREE9afHHnk+lvB+VAp8hVMSh7DvS3huaOJyFTGGhExOtN1XczVZTkYjSS29VbLchvbWja+fKllw+NbdaAuqFcjXAuJeL+Pa+wWPt+jTJ+TGxBY/eU3JlGc/MYkipPfmERx8huTKMVuS8W0FvW9A+GlAHGPJ+WyGLPdUNHn49ChD38xU8Ho4X9Q0ab57/5MD9JT0a549lRi+d98K7HZ3+l5v4Ky4YgfJ+6Rc4+EPBLTSHSrGpLyLlUlvTQRhQRDipXkqAS34rgB5c4NEAvheboFcXW54XU5Xukztr7UZ6J7rvfxzm/1ues39bw3Gy0HvoTjzum8UfCTUERETOBTfUPiXkY9IT20wxjzB5z8xiSKk9+YRHHyG5MoxUetfQnSVFUSh8i514H3yU6FK+7BWgW1n81VUPnJL95KrPknP5VY9vgzjQ1UjNl01fXVvtBxqcOnWuaZj1QsioiYg9BFAzXqinvk0iOHH/VHJDfeDynpJedlJ9c1JGGYHJ50PjTteAHXd90gFyIJZ7BZRFxCH8YxCGJEF0TEXqjDb3utB+/X7JlHs4WrroUGxlzXdPONQXT1l9+YRHHyG5MoTn5jEsXJb0yiFD+Bclnyh1GM3hx9GLxwn1SNiPh4PZHYR/9CSyu7//o9iWUPP9Af7IIYV6hAE9t7Emrcvyux3h3t4VZoKCIiViC8kahF1BXjchh3SwJbM1e1iYahUDl3RMQWOC87EGvDb5JYTOdY5fp8F5p0XIJTjoSviIjRRl16ExBTiSadN7gfh3C/D+De7Jb1BshUOvzgeaJeiDfYM9GCnzHmDzj5jUkUJ78xieLkNyZRnPzGJErxoIRJLLAhxUiv7a5VkXxQquIaEfHgvlpqu7/Q6TzZk0915/37uh2os5s5DM9e6GSfyKFfAcyHrqfX/p42KNrDQvsVdHP4R6ImZPmlMeLUZ6FXcdwu2LFJnW9Tjwe4QxRrwXenC7+Xwb9HU1C9r0HNjmDlm/oskFWd/q2p+w9OThZraowL+04rHrIF/KNRVjRhrYO//MYkipPfmERx8huTKE5+YxKl2AKBrq6oRW+ODvxeE+qQIyKaWypgNO7opJNs70hj/Tv6gytt6hk3OtlnM3oDMd1uNlI5ZgbW0oiIFoiNRw0V9/KG9hJo1uyfsAQh7yZg5DdYPqnZZrfCYtsDC2sHxLgu2I278FRQvTtoqdGEGIlfb3MQOXWziKjogQDbrSHagNgSjjSpOQ1n3tB9mz/y+0vrMggVbDfQF8FffmMSxclvTKI4+Y1JFCe/MYlSLEBYalFTSNiZ2iDiBJI1v2OWU4jTtJkm1J1DDfVmcqmxs9ca++Ybic3+9nuJPf/+QGIjLoFH8etudCR2f6X3Z7uE0dtwH0eFxl6DiHTZoOafuqZbIBZFRGzDtfRBtBtA7Gil5/MwV5fl/oGOtc6buu/pG+038euVisInBT9jJJwuwOFHrEAsJGaQHVw/X6/XQa9CiB2C85LEYmqiu4Tf9JffmERx8huTKE5+YxLFyW9MohQzSP8llFHW7D0YbdBI2hsWMKZjGJ98fi2xxvW5xDYtFdNidKzbffW1xG7/8wuJ/cMX2sDz/7S05PVNxbSXPrxHP12oyPakpdfX21Fn4gTuzfFU3YHdQkWgM5iuQy0rt0Cwi4jYhTUcgii5H3re9/b0+vY/V/Gr+fP39SBNfU56f/M7ib34b+CSbPJ3bAUC8gwaeNKocxL8aDtyB9IkJRrPTqXWw3xLYhERm1wdo1vgxiQXIgm+/vIbkyhOfmMSxclvTKI4+Y1JlOIWym2XJAKi0KF0oOR1DS6miIg7Vyrc3PniRGK9o/8rseyBTvbZnOi+4/+qzr3/+cUDif26o+f9FgStKvY2KtDd3+j+Rx+qINbUKeLRH+m+7TcqVG1fqwg0XakItCYnWIV4ud3RYw8PpxLrHqqQ134MZcyffiyx7NFjPfBSez3mg+cSW6Nrj9145OabgfuOxDgS7ahEuIRMoLHrdQU/EhCrGMAkpZwcfnCO/vIbkyhOfmMSxclvTKI4+Y1JlOIaBL8bEIImJIiAMEHDGG6g/DYiYp6pS2/x9/ck9uT8pcQGj7/TfUd6Pr/+Qod7/ArMga9CBS0SXobQHy0iogOuyH5LhaVCq1Ej78NIbegLt9PQc9w+1AEkeUfFnRyuOe9xSW++rw6zxoE6IGNby22zrgp+0VVhNyZa5rt5rmt6/aWuwVleT9CK4JLeZkUp87uQkIfbgQhI4t4KRMA15N9szUNuxjXHmrdqXp+//MYkipPfmERx8huTKE5+YxKluMpUWLoEB9QYBKi6005PKwSI44YKGN9vqWPpyxMVAY9eq8hy29B32f/a0mv5tlSXHV0LuqcgFhHRBlPWAiYgT17DpNZzcNqBgEiNFNsHMCTlvYHEGgdqI8x2dSJyRETsguWwq+IeMptobKRuzPKZirg3/13X5Tffq9D4pkM9Jrk8eTvTsuwtKHkm0W4BXSqpHPh2raLrrNTnLqN+mZADrZrCXgRPDZ5DrtJ2/vIbkyhOfmMSxclvTKI4+Y1JlGIMQheJe2NwHVG5JAln5ASMYJHmBQggX8Kwgg70e6PzOVuok2xSaslqE45LAxVoUm5ExC28Rl+toNz2ez1OMwNHHkxVHXT1vO809PqKfejYV4Do2q8Q8ag/Igl5V1cS2oy032L54lRiN/9br+WrZ/saa+n9ugCRuiCBNCKOGnotHRhKQlNsryAPRpmeN/b/y+sNBumB9XKQq0gZEVHAt5qEvOkaBPu1nre//MYkipPfmERx8huTKE5+YxKlmIGLifuUqbCwAEFkSsIguKKq4iSekDBIpZpr6Lm2hGNQqW67oaIiCX6dCvdVtwGCWkt/c7dUgWcLzru9hnLiG3UXrr7TczxY6wTcXryRWE4TkSMimnrem5FOQF59dyGx2bH+5vVbLRE+vtiT2NNCha4zmEI8g1LbVkWfyHtrXa/7NSfQvCSRFHYtc5iADM9TD4TrQyhrH0ZVCbwe5xT6RL4lIR7ywF9+YxLFyW9Mojj5jUkUJ78xiVJMa5b/kRBXt3fZHBxHERFzKHtEERAEMRL3iLoCIjmySFSkkuWICNJo1g11+JWw4RCm5Tbh2FNwsU2mWr47/VaFpaNbLZftH2vPvIgIMjHevlKx8eRES4LflCruXUHPvdumXssVuOzmsH45rEEfXHsREYcg7j1eaQluC4TFzkKvZdGCMm9Yqw4IwB+XuvY/X+i5DFrq2oyIeDnT5+nXHXCRNjSHzjP9TX/5jUkUJ78xieLkNyZRnPzGJIqT35hEKa6hzpfU1LrqOm1H/wpEVIwxhlgJNlSy6NK/AtQ0kRR7UvanpVqVL0E1raJV6Lu1n6k628UxzcotjD8f5brvaK0Tckav1Tq7c8yTYWYb/c230Lj0NSj2J01oegn19y1Q57uwLhTbgvMbVqj9Bys9n4OB9iYY7Krq3jvV+1PMdOTSKdiSd0p9Fn/e014H7/0VNNYcwtSjiLj7K7VoXz3VcfPfNXWtaBS4v/zGJIqT35hEcfIbkyhOfmMSpbgudexz3YkhdUcYV0HWWxIM64p7dSERkCDxcbJSgbQKuo+DQq23XZg01ITLo3HqM2z+qdf3CmrTOxsWliZwnLPak53Ayg3XcgB17HsbFap2wfpM05EGJT+LR7kKecN9feZ7H8JvfqLi7v5zjZ29VoF1k+t5H36ifRbyDz6WWLYFDVQjorV3JrH27+rZ11n4NsYkiZPfmERx8huTKE5+YxKlIBdbCbXNlXXs724HwgI1woyoHqv8T4VEDTp2E2qtG7AdNgSFfgUR7AY8z1TgeQWNHekVDJpd3ISKbjMQJUlIbYVeM9WhR0TMaIoTXB+Ngia64A4s4AKPVvVq7/tNFRW3+twzAsW9D3S74oH2Jsh2tFfC9kMV/Fp/r0Lc1UsV7ZY3utCtp6/1uC0eaX/9TO/jW3CR3oDoSn02/OU3JlGc/MYkipPfmERx8huTKEXdJpw5vCdIYKPSQYpFsPBGrjps4AlaVV1xr4AYXcuPcRFGsPB2CyXUz+B+0xrMoBEqbfdjHZE0iYmeExJst3IVpWh6TR/Kcu+u9LjvHULj0X29h4VW2v4+PlSXZWNXG3NGD2IwuSjrqpCXtfQ+zCa672ikjsrOS2pYy0Lsl4tDiX3RViH2bKUiJzXR9ZffmERx8huTKE5+YxLFyW9MotSr3a2ABLa6IlBERUkvxBowdYXcd+QuJHGv1dDLrlvmWyVe9nLt4zYsVOBpwf6XUFZ9vdI+c3WnGeGI9ZqxCBZd6X63cr2PZVOv+aBQp1wTnpMCSsTzHGIdWPt2xXcMHHBB5b9jXYMN9I7c3Oh2i5Fey9mtCojfwTNyCc/2BUwuioh41lK349Oljk4/X6mzdAbTsfzlNyZRnPzGJIqT35hEcfIbkygFluDCO6EJIhn1qGuTmFZRutvP1S21BeWft6UKHSR+ESRKtsFxRk5A7MGXgxMsIvZzELoyFXgWIGrNwFE3AtGNRpqjkAdC1Q8S/Mp6ZcIkDLZzvbc08p1i1yCGjs60P95yAf0Ie1zSW3Q03uzDoJqePieNvq7/6kJ/7/SlCprfg7j3DKq5j0PP5dVaxd6IiFck7i1V3KN1oTzwl9+YRHHyG5MoTn5jEsXJb0yiFCR+UYz6sLVBEOtlsG/FEBBy892CcHYJgt8YSmOxdx0cm2IdECqHINjdb7Dg96jU/Xeh3d/rXM9xBNc8ym8kRmWZJbjVSMgjJ+APKfPFYSo13YVUdnwLw0bewECTzUoFv95I16A5YvGyDcdpN1Rg7YIw2GrBeY91rb5aqeD3FEytr0PLb083+myflCriRUSMFvpM3C51f4LcmP7yG5MoTn5jEsXJb0yiOPmNSRQU/Ejc62caG8B221AlvFtROdwC598CprfeNlX0ocESNFikVdPZRCWmh2t1kj2sGNJ7FwRIOs46VETcL/Saj8FJSINBljA9twQdDweaVL37IZxBX7kcpgvTGqxABByDq/E41/s9puklMIBkBbEI7vVYbHQN2kuYbAumwSsot33b1g3PN7pWU7jma3huxiBwR3BZLrn5aK1pO3/5jUkUJ78xieLkNyZRnPzGJEpR1+VFpb8teHcMQdy7B8JZRMQeKFNNOJ0SfnNd4RqswxKupQH3YbDW2C5MQI2IaDdUUFmsoTQajjOEa9mGcuerhpZ6TjMVlhrgaqOy6gaKaQyJSNSbca+lbreDQgVbenYmcN5Xmd6vGxDOaDJtRMSC+hHSUBPYlyYyT1d6HBqmsqYhJzWFuPGKVWXsrUg9L+FisOclHsUY888eJ78xieLkNyZRnPzGJEpBE1kzsEUV8J7oQ7+2NghLBysWFR9tdABCv6MCFk0tnS9pwq+e4wKmwc5rvvOa0G+vivFaRbsJuM5m5LSD69s0d2+/AAADJklEQVSC0ugOuDGpVJPEpkbNCcYR3IdvUKjjkIZxfJjruNyPwVG3Ay0Yr+F0njegZ95an5vzkvveTdf6PFGJMfWErBsjIY7AITc1RcCqOAr2NQfQ+MtvTKI4+Y1JFCe/MYni5DcmUZz8xiRKUXfyzRSmqSzQwqj77lSol3cPtVFh745aG1dTPfbtpSrIt2ONrWEEMnk5V/AvxRLejbOK9+UEattvwT57AQ08J1k9tZjGjeMklprK/qDJzUj3mqriPy52JPb5Rvf/fKbXcr9zJbEMfNyvpn2JTTr6b8b3cH3U3DQiYlLq81RXxZ+t9J+CRQn9E2iUN9luca3g3x/Yroq6o+Wpsaq//MYkipPfmERx8huTKE5+YxIFBT8SIarGOb/LFlhV93JuSDh8X+PNuyrarUbQuHIGAs0MRm/D+ZBrd73R9+AY7LkXBVtiL+E1Ss0eL0Dcu4Ba9CnEyMpJ4hA11qQR67uFCmwREZ8VdyT2b5e6Lr/cOZPY/r+CRqY1R13nv9Hr+36+K7Ee2I+rhK9lzVHnJOTVjZGdmsjgwWuCPbuV8zeZBF+CbMAkSvrLb0yiOPmNSRQnvzGJ4uQ3JlGKukJeExx+A2g8ub8CwW+Pa61bj7SxY35XBZ5GXx1i3Wt1B65WIHTNQWyC7SYLFZEm0HiUfWQs7p3AyJdTmNByDvXp1zC1hRpKUmNOWitqtnkP6vEjIv7NSpuH/uWTFxIb/MfPdOd79zV2cy2h/NvnEts9HWns2VBiPZjsUzV9iGr3SRCrGyNxr24TXJyaBOIs9VOIiOjAGpI4T5OdyK3oL78xieLkNyZRnPzGJIqT35hEKUgwoLHdd/KuxO7DuOmHMNFkcMQOv/zuexLLjg4l1mir0NG5pN/U2Gqq77fVHITBG72W+Q0JSzwpaA4lnJfg0jtdq/h5tdIYNVatK86SE6yb6/V9nKngGhHx5zsnEhv89S/1OP/+P0ksa+tvli+/hKP8F4l0fnsqseG3Krp1QdD8IWWwNL2GJt/QdnXFPYIEPyq1rhL8eoWuIQmdJALb4WeM+Uec/MYkipPfmERx8huTKP8Pr2FtVyW0J5IAAAAASUVORK5CYII=" y="-8932.596045"/>
</g>
<g id="matplotlib.axis_497">
<g id="xtick_745"/>
<g id="xtick_746"/>
<g id="xtick_747"/>
</g>
<g id="matplotlib.axis_498">
<g id="ytick_1241"/>
<g id="ytick_1242"/>
<g id="ytick_1243"/>
<g id="ytick_1244"/>
<g id="ytick_1245"/>
<g id="text_63">
<!-- 233 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 9040.891045)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-51"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_250">
<g id="patch_251">
<path d="M 164.424375 9054.996045
L 286.714375 9054.996045
L 286.714375 8932.706045
L 164.424375 8932.706045
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p362bcd0ac8)">
<image height="122.4" id="image2eaa27a8ec" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnclvJed1xW8Nbyb5yB7Y7FZLasmWZQuKHSFOAmRAFs6/m02WAbIyskiQxIGD2BEkuQf1wGZzfvNQ72UhedPnV0B1GGTh7/yWF1Wvqr6vLgs4PPfe7E+O/mobDWhnpcQGeVti+3lXYrczPS4iYhj6m63IJNaBWAF3/TRbSuw/VicSezk/l9iyWkusV+p9H7aHeuGI+HH7jsS+2PQldrvSGz8r9PmO80piV6H3uIyNxApYr/uhz/LzOW/9w/ZEYmWh1zmd9ST2Lx29zr/FWGIv1tcSu1zrdReblcTaub439H5GRKy2uo7Xq6nExqu5xKqtPnNO72KeSyyD49oF5FCp+fJ+97bEIiI+Kw8kdmerv/k6dM2+qXS99a6NMUng5DcmUZz8xiSKk9+YRClvlwMJbrYqBOWZChiDrAUxFSC6WYEXL7YgnsBxHdClWnBuL9ezO3A/RaZ/8+j5trAOaxCQIlh4W2VwPlxno6HGkLCEohTEesHPsren4lenr2Lj5rWuY3/b0Xts+Hy0B7RX9MxZzUVwLRru/3qj+1eFxjZwXAveRYLEy71c1zAi4mir+XZYwXMXetyoUPHZX35jEsXJb0yiOPmNSRQnvzGJUpaQ/xUIVVsQOlbggFpmGpvViGQlaBWtrd4PiXsqafBxbRAbSfAhkZPcYZNqAVeOOK3UNfYS3FstcGQtYG1xD0D4pL/eJH3RcQWIlBERvV1w1Q11LfojdVS21MyHN0Tv000gcfZdoP2nGNH0C0rvHQp+NY7YozU4N9cqxHbgHduW6sb0l9+YRHHyG5MoTn5jEsXJb0yilIutCgbkoCJn04oEIwgVObuvuvC3hxxZJO41pQTBj2LEegOC31rdbxERr3MtmeyBA3Jb7EiMypjHIDYuagS6tyE3H7FpeFzt+WBNpDsk2YzKZUlgo3cR76VGQFzBHtK1CXL9kZOQ3HwtEPI64Lzrg5uvrgT+IYh77/VUYb290PN3Fio++8tvTKI4+Y1JFCe/MYni5DcmUcrJBlxaIIiRoELi3ArOJbEwgsUcKt+lfn0L0IGohJbEL3JVkWizqNTpttyo6BIRcbnS/nNP4LhZS3+zroSzCeRgJCG1BWu4qvnbP77Q+2lPVTg7v1bX2KQNTjkqg23o8CNXHMXqHINUgk2CH/1mqwQhD/rwdXIobS91DQeFim5HpQrAn6y5H+End7Qf5f4HKkCvRvosByd2+BljvsfJb0yiOPmNSRQnvzGJUo4rFQxIECNXHPXHa8HfExKgIiJ6UILbgRidvQRxj4RFEi93QHiZFSp8kjBErr8IFgcvo9kQin4BAhusbQ+GpNwuVMjpwuCUXer1VsNorOdvRnrc69DjxrQv1BOyaW89OK4kcRbWNYL3i5yENKClW2hsAHtFQt4uHLcDzr2PM+2h+cVay8MjIu7+KQiV93RYTPtKz2+/0pi//MYkipPfmERx8huTKE5+YxLFyW9MopRjqE8ntZ9Uzj4ppKRS19TPt0HZJ02arLwUI2iC0BAU8lVLVWGyjJKqH8F2VWoqWWcPfpsqV2WX9qUHz3e00fV+uNLnG8JI8zqW8Jsr2AOqlMfmoQ2VfaqfJwV/XrMvtN5Up0+19k2V/X14n/bgPzO3QO3/sNJ1ffTxhcQiIsrPPpJY1tP7yfqXcLaOpfeX35hEcfIbkyhOfmMSxclvTKKU80pFn7ox1G/TBVHjXf6ckEQzypvVec9AYKPa/Z1QQayC+vl1oc9M61DX/LPpmlEPg6Y16wNY7zsgIj2AhT0qVNgd7nAz0hz2oD3XdRzNVCTb2+r6kChJtmsS90iwIyvveMXPsoLzyR7cdDpPU7gRrcaGFViNH9b0v7hzu9nFx2orz0oSWI0xSeLkNyZRnPzGJIqT35hEKcktRXXs5Fajppd7VNsMI4Mj2GmlUkXEihpAwv2Q4FfCNbogSlFvAqqfr6Npo0iCREASFgcwAegOrO3dSu/l4GAmseF9jUVEFF2YzgRNITfPNPaq2pPYbqn3SI1H6R1rKu7N183dirTetH9LmGbVgthsCyPN4R1bgPj8Tl/fiWbHdqEj4zcn6hBcvdBz/eU3JlGc/MYkipPfmERx8huTKCU6myC2ChpXrWLDVaEiEpX5RvDIafI2LUhMgyO7QdNroBS14ahrcqFVNc9Cjq4KrkMxAh1+JPhBY87Dlu7BwYfawLH76S5eO9vTppLtc+3geQhdPQ+/6UtspwVuPpr2RKIbOPSwKWfNxB4SETMoJaffpGuXmYp7tFckIMNlcRrV/JXGIiLyX30lsc213s8EhNjT46H+Hl/GGPOHjpPfmERx8huTKE5+YxKlpD51JGAQG3Cw0QQgEs4iImYw2rip+4pkswmc24drlDTCmib7QOkvOdMiIlawFuQQoxiJUiQY9UG83NvouUNw83V+oCJe8eOPJfbdD4A4dHqq93P+pcR2v6EehfosS9jTm7gkSXCNYGG46SQmEvyall9TD8Zuw7x6/VRdkhER7Vd6P1cTFW2Pt+qyPXZJrzHm9zj5jUkUJ78xieLkNyZRShIrqJdakTf7O0ElmFc1I4fnJMaBoEalvwSJPjnYqoaZCnlDcM+1YG3qnGRUdjzF8k+NzSFGrsh2Q8GoMZsaMQ3KRLcLLZndLEDkBFFyCvLsHMpgVzXjz9+G3sU6YZAEZBJY6dp5BQM/GpZfk5BO9zLKNfbNckdiERErmJJyWmrsDYiN5+BM9JffmERx8huTKE5+YxLFyW9MopQo7jV0MdG5JLzMQQSMYPGsAyJgC0Skpi5EcvMdwKCLo9Dr3t7ouf0ajQwqa2MMt3iaq7B0lZGzDdYGBKOLQmOvztQhNvg1OPSm6tCLiMjaut7rU3Vunn2pTrKTQoXK+VbPvYlzj/ae+klGBFpBqayaREBysFLZMYl7BJWSX8JtT2rE9TEMU7mCUvvrUKFyBKKyv/zGJIqT35hEcfIbkyhOfmMSBRvS3UgEJEdVXX+1hkJJG91uqpRQWe7dvCex90MFv49Ak7xfqdNtv62xOiZLvc5ruPbrUmMX0NxtCqLUCxAQZ20V4k6/fiCx9x+z87Lfg8nNay0dPZ3p2r5pQ0k27DPtabdQ0ZXIQHSjdzYiIieXZtNhKg3zgBx+9HwkXk4zEBohFhExyfS+yT05w3JpPc5ffmMSxclvTKI4+Y1JFCe/MYmCgh8JEyTkNRX86kpyyc23V6iIdJDD5F8owe2D8PLRRsW0ny5U3Xu0f6XXfai98EptbxcREduVijTLS12fozMtJ35zrv31nlW6Dl+DmPY4VJx7mqmj7nlX1+FRxaWjRxN9lj6U/44LfT5yobXIZQn7XML7NClUYKWy8bpyYBKVyV3YfDK1pswOTKbegwnP3W2zEnH2wzItyLfdhv0f/eU3JlGc/MYkipPfmERx8huTKCUJdDdxNjV1AkZE7ICQd1jolNejTI872Oq1h1BX+8dLFYw++/xEYv2f35ZY/hCGWtSIl9sLFQw712OJDa5URBw+1nLb9m9uSex4owLdJNdSzdfVRGIjKGNe5LrWERHjth57q4I+dbAUNCRjB96T93MVOSu4nymVrG5U5JxBT8AIHg6ygPJWEhFpaEebBD8Y7jIALZ2yYAnrRWNPIiJasOAD+NUOHNeDmL/8xiSKk9+YRHHyG5MoTn5jEsXJb0yilNT4sGmDRFI+m/4HICKiC+eTSroDtsgelDxT7KCrVtfeT1Rpzj//icSyBx/qDy5VrY+IiFfPNTa41OsM9D8AnTn89+GxKto5tBKg0eDYMBW24GyL7u7IYYrMAhpzdsnyDb93F65DinQL9o8ao15Bj4bTjDXyS/gvwAj+W3Cd6eLOMj2u6X/C6L8eY2jU2qyjxXcM4D9cB7COh7Bo99Zu4GmM+R4nvzGJ4uQ3JlGc/MYkCis+wAZqm5tOU6HjIlismoC58Rx+cwTCywUc995cxb2H376SWO+za73Budpkt/MawW800mPP1fK7OdHY7Ck883hfYlcd3YM5WFBpqsxmo+de1OwL1ZjPoX/CHsRugyh1BwSo/UqvMYCeAS24lwns8/OWWpIjIp5Dz4HXIGjSNB1aR4J6BtB4dhIBaa2p/0EEj2gvQPDbrfRZ7rW1Wau//MYkipPfmERx8huTKE5+YxKlJMGBmhmuQfxYgqhBwlIdM3BaTTbqtHoNzRALEKt6IEBtujquevjPdyX2ees/Jdb+ozOJbSsWgapneuzssbrLzl+oAPlidCSx37b1WZ6EuhWvNhqbw7oSKxALIyKmud73uNCa9Sn0Yyih98IQGkqS1NgD0W0IDTz3wfGZrfS6ERFLcJxOwVl6DcdRQ1HKFxLDZyBcL+H58OsL61UHDHaKDuRvt2OHnzHme5z8xiSKk9+YRHHyG5MoqCzQpBISAeeVCkMFlC3SuRH1gtPb0JhlKjHugyhVQZ1o0VH33PSX9yT26ddaalu2+VnOT7T55LPZHYl929Ilf9XV33we6iT8ttJy4POVxkbrGhfiW9SVWtMkJRIRq1Lvuw2Oum4O1yk1tl3DKHYQWAelvjd7axZihxt9lgGN1MZiZIXEvSU0GSU3H4VIuK77JM8hXUnQrOA3t27gaYz5PU5+YxLFyW9Mojj5jUmUsgWCQVOajjomd2BExLIChyCcT33TOoUKOSRgXVRayvglOKjKrk7DGR8fSuygZjLMCbgQn6j+GC/APXe+VTHtDJx75zSJB8S9yUrPJUoQTSMiqgKcaLAH860+4Az2+irXGGmAFYiA2VqvcbTmUmQCqqCjg6XoGsPSZhA+FzVTnN6GhHQSs2nKUERgg8QOLORuS3Njf6x9D/3lNyZRnPzGJIqT35hEcfIbkyjlfgtGJUPpYVNxb7WBwQQgdNRB4h6NEb/JyHASVM5g1PVxqSLedq1iSkTECPrCXYHbcQRl0GMQEWmM9BrWtukeUB/FOsGvaW/GAr4dJH2RcLaC2CzTGK1rfwOCbc34C/JjUqwi5x44UMeViqm0B/TOkmhKx81zLsmmEvgVuCyjVPG6glJrf/mNSRQnvzGJ4uQ3JlGc/MYkSvlRR8tO5yA2TUFswFilPddoqEEEC0EkDpIwRWWnVNJLff26DXuk0YTYOkg6I2GJ+rjR8JKmAyOaTlRueu5350NpLawZi67Nhra0IEbOO5JX6W2a1TzLGMJXMNH3GnpHTiE2q6C0GfavqWhKAveCpiwHTw2mPpo0gOQq15Jzf/mNSRQnvzGJ4uQ3JlGc/MYkSvnTbFeC5LS6Bgfcm626nU5zLaE9fYcbIsGPynd3SnUs7cEQiX2I0XTZPkyXpYEI7Rq3Yqehi3EN4hCJNiQikWBEImfTHoxtEPYiWDAkYYqg5+vAubc2+ixHa73vIbgViTHVCEfEVQ7TicFReVlpaTSJezcpQ0eXZEMRMIIdnhQjwfC0sMPPGPM9Tn5jEsXJb0yiOPmNSZTy47XmP43SGIMIdAsEo26pMXLyRbDzj4QpcvMNC3Us3S+0PPl+qCC2C3/zBhsVWQZw23nNsxDk8Fs3dPjRmlG/t16hZccEiUB1Dr+m5bu0f7Q6XZiq+2Ctz/woU7GYNMkz6Os3htLfCHbzXYILdQKluiT4kbiHJb0wJIM+tbTW5A787kc1Tte+Wuk6jlYqaPrLb0yiOPmNSRQnvzGJ4uQ3JlHKghx16GzT2BYKWacgQF2Cyy4iYpw3E1lIFNmFIRmfhA4m+GKuDqjdgPJNmIA6AtfYRcHlsmeFijEjkE4n4C6j3mzk+sM+fNC3sAsCKUE95SK4fJfcgCV8O2j4BV6bxFQa5AHC2RSe+brmMzaC0ugxlOpO1hpr2jORJvfW6I9C04E0EbzXNBBnAdOzaaK2v/zGJIqT35hEcfIbkyhOfmMSxclvTKKUX7dUqeyBwlqA0lyBmROn69TZFYGmI77pOreg4+ajwUhiu0PoQ/BGp5yMKrULk6ofEfEaxlDT6O1rsJE2nQJDdfYd6E1ADTib1uNHsJ2a/gNAjVBb8D1ZwHvyptRnaa9ojDTU48Mo71FGZmr+j8scrM5k2206aaruvyZvQ+8srfVeqdb1iIg+/IeLoOejd8xffmMSxclvTKI4+Y1JFCe/MYlS/vvmSoJtsBH2SfCBvx006pgmiESwkEexFTR7nIFN9qTQ67yYqJB3MFeR5bRSC/KbFghL5EsNbnq6bNisk54Zp8BQjThA9t7NVvevbpJSC/af3okevBN9sHxTm9A5PMqoALsw3OIMzqWR3xHcFwHHwEOM+ifgNRoKgwX4l6kfwwH0qoiIuF2oINqF9aZnnsM75i+/MYni5DcmUZz8xiSKk9+YRCkfL3WeDjVrJCfSAKbFdEAEolHeERGrhhNIqJ6fnHJf5dqkcNLTe2xvVVCZtlVgm2+1xrvTUASKYGcj1WTj1BY4l1x2PXB90VjyLQiS5NCM4Dr93Uyvc4tiMFR7H4TKHdCAOxtyjNL9NXeRtuFZurA+JLyR6EoTe6hVK9b4056CG5N6VUREHGUqSh9t9H3ahWa01KPDX35jEsXJb0yiOPmNSRQnvzGJUl4uJ80OpHJSEAFJOKkrjaQpMiQCkvvqaq1TSb4GgeYJCGwVCDQ4whoEtvfKPYlFRNzNYTIQCEvk3iJHHQlGHRCHSNwj8WsZuq4knEVEDOA3b4O4dw/EvcNKvyd7IOTtbGAyE+zBDMTQFdx2nXhJdElkA/ccCbHjTIXmKTT/3DacwkS5QYJrRMQQJh+9D/rjBxu9x7t7muf+8huTKE5+YxLFyW9Mojj5jUmUcrlRxYBECDpukalg9y6joOk3yeFXV3r6NpO1Ch0kspC4R5B4SeJcRMQ+iGT3AhxwMI1lCv3/SMCiu15CdATlzgElnXWuuA66EMGtCM69HmzVsNJ77IMAuYJv0RRG34zBrTiu6eG3hneZeg/eLbX0e7lVEfBNpj0hm77HFYicVOI9g1hExByeewN72Cv0/OGhR3QbY77HyW9Mojj5jUkUJ78xiVLSOOCbjCZGwQ6EiojmQxGaiid4DRLO4LokSlKMxmnXcR/KLe+tqWwVRp2D0HUCDe2+zVXcozHg78KKnHYg0F3DfR+AE7SEPRjkICDDepVb6lGnkLD73bV1HQ8ydWMOwfVH10HXHwjNKyj9pXeRRtKfVuy6fUxDUlo6WKazVBdp/1iv4y+/MYni5DcmUZz8xiSKk9+YRCkfdG9JcFppiSI595o65W4K9U2jazcVEHlAA/SFA3GHevBFRLTh2FuV3s89EAxbIIier1WIvSigPBmemdyBuFc1M0BoyMoCYnNw1U1hHegt6bf1feqBs22xAIGt0rWpwGEZEbEDomQXHvxwDQNoaLBIrmLacam99SiH6P2kfaFy9QgWNRelCrHTjroVpzPNc3/5jUkUJ78xieLkNyZRnPzGJEr5RetQgmelilKX0BdsAuLVAtxlVPIYEbGGUtYSXF4kvC2q/70ASb/XLbX8drfUks4jKP2MiPhwAyW9IFS2QSS73Oq5T9u6Dr/Ldb2PYV+uNyo2raCkt43zcyO6NY7MtyEBina6oiEbMFG5LDV2G3oCFuCSvFPxs4xgMu4SxN02iHGXhR5Hz0zvE/W3JN6lbJxE9+O1lhgvCt3rUalOQH/5jUkUJ78xieLkNyZRnPzGJEr5+UbLG49BrHgNpb8nuYpNF5X2CqujBeWaNCiDJpnSEJGm/QjpXBL3HrT3JfazjId2/PVSn/vhB5cSuz7X6zyeqUPsN7mKdl+vr/T3YFox9YUj+jBoJCKiB3tADkgql4UBsXFd6DfmdKJOuf2OPvPOQGP7LXXAbUAYjIg4u9LrPIXefC9aeuPPoFz6BN5veu9aDYfcDEu9v0HNlF6a3ExlwjQN+Hzrkl5jzPc4+Y1JFCe/MYni5DcmUcohlJ1OQdy5AKcUtU1bv0OpLZXWtkBsKmA6Kf5eQ0GEBEQSXh7luxL7s7m6pyIiPv2LM4m13lc3YPkr7c+2/UaFRRJoLioVuqh/XJ2j8m0qcNRF8DTgPrgQ51Aue5np+ixbun9nhYqNny70937QV9F0/5E+c1ZyffL2vzX25FoFv1O47+cbFffO17p/5LwjeiDk3Sv0HXmQ6/1FRPQhD2jwCmVLp+FxxpgEcPIbkyhOfmMSxclvTKI4+Y1JFCyCJq14Dio+1fNPoZa8Tn1GyyjUMjdtzFk3CvxtSHUdFmDvhRHb7/XUYhsRUd4DhRaebznW55vBdB5aG/pvxhrq9OcwBYamFG1q+h+QPXRTwn+FwP5aNtyDw1wtzb2Wxh7M9L8MeRv6A+xyPX+7Q6PJ9VlW0MNgRmPpGzaypXeR3rsjWIdPoUFpRMTRSq+zC/s/yPS+97qal/7yG5MoTn5jEsXJb0yiOPmNSZSyAmEJxQ8Y0TwF8YPEvTr7IwlYBdgsCRK6SNSiuuoW2Fd3MxVj9qg4nXsrxvKpWm9np3qd/3qpDVNfdFXIoUk8JMQRJEDR1COyPkew7ZoagI6gPp3OLegbA5rWS2hmeTJX2/XhG21a2euweFl29Bm7G3hPtiSwKvR8BL3bbRCz96CnxR1oUBoR8SDU1ry/q7GDI30Xe490D/zlNyZRnPzGJIqT35hEcfIbkyjlNaT/mMYxQ1PICo6rE5EIOrapkEfuNJymQjXQNLEHxJg2aEjLFTvJXv5WG3t+NdfYr9XQFU9AyLneglMS9mC90fWqNiQgNhMBI1isohhB02ZKGC1OezrJ9R5PQZy9OFYRsOhonX1ExGYNzV/pPYHvILkV6d1p6iyl0eljmOBEo9gjIoYrFUT7S93DzRoco11oyopXMcb8wePkNyZRnPzGJIqT35hEKb8p1H13Cs0jJzB6mxxnNHEng5LVCBb8SAhag7sQTFpY+ttUgGzD38F9coK12IF4PdeGlM+gceVzEPdOYcz2xVpdWtOqWbl002euK5Vuej4Kp+DSG8BkoAG4A8llt4JXZzzVa7SPWbycjPXaV+D6nIKzdEFiKginKziO1vBspc7EbyBfqpox8FewZpcrbTK7eKbP90F5ITF/+Y1JFCe/MYni5DcmUZz8xiRK+Zu1TkRZgsuO3Hzk+hoUamGjfnQRLO6Ri20OvQJnAX3qQKCjazTtCZijqFgnXjYbV72EdZyBmDqDZyZxjwQoomk5cMTNeiaSw49GfvehNnoA36Iu3EsFx11equsvIuLlGkaiw2TyY3BU0vhzEl2pZyK5JxeV7vMcyt0vWzzm/hiEwBcdfe7jaiCxs6/0of3lNyZRnPzGJIqT35hEcfIbkyjli6U6f0i06YC7aAfEvT1yc4HgE8EljiMQus5hNDW5qpYwboRKf6mn4DWIbi9hiMStBY9PrmgEMuhmrYbDOJrStPy2gBHrJIbWQetI5dckQNJVsMcdHFhA7BrGhV/VNFd80tHrPM5UtDuptCT4Gt676VrPna2bCX4k2NJxJCpGRFyWeo/HpYp734Iw+LueCoP+8huTKE5+YxLFyW9Mojj5jUmUcrJWF1O/VNGun2nsACaMfpirsDCEwQQREXNwu70AYWoMIuBNIFcVCT5flVo62mqDPSwi9sBoRw6/XkMHHAmsC5iKWxXNHH4k2GU1pbs5OPdwkAeIrrNM94qcgIMMylNhcMpxqecu4fde5lxq/SZUPHuzUQfdZaWxyQ3EPeqtiKJpBcJ1zVTr6Urvh0TAk0InST8rVaj2l9+YRHHyG5MoTn5jEsXJb0yilDixtlBx4F6pvcJ+mKm76IcrmIpbc/E3MJzgHAQxKgkmEalseC71V5tsVEw5g16GxyDEfX8libRATxtudb33wRU5zvXaq5wcjM2m+daJSAT24QMRmERJcu7RPY5gbV+C8HlV6p5egBvzDES8CC5PJ8GXysbJCUpCXlNxj/pO0nrVlWmvMt1DEiBHua7FRT6WmL/8xiSKk9+YRHHyG5MoTn5jEqX8Wf+hBH8EQt4naxVe3l+rIDKAcsl5jcOv2KqwdNKCfm/gBuuBKNV0WioJYv1cf4/ceDs1PfzI4dei6cLw93YEz3IJ97MqVFgqYQAFCVUz6DNXV9J70NL934fSUXIm0tqS6NqBElwq8T4BIZbcmNTzsA7qR0luxabTjm8Cic91PRRZMIRnAbPjIqOhO8aYJHHyG5MoTn5jEsXJb0yilH+z3ZPgn69VUPngY+311zkEsQLEhpXOBYmIiHvPtddYPtuX2KStx5Ekcg3TbkmgIWHwbqGC1kehJcs/WrIYcwTTd2mQR75Vp9xrKGOmktcSylvX8HwzGHxylWs/ujrXH4l77xW6B3sg+LXge0JfmAIn8uravtyqW20FL9mmrjz5Bv0RCSptRhcpPN+7iHtNaTpRmQ7zl9+YRHHyG5MoTn5jEsXJb0yiOPmNSZTyaK1q8eFdrf0dfKYqdfHxfYllA23g2V2zqrxzciax3X84ltj4tV5nDj0HCBp/XcLfvDvQoPSjtR73w/Y1Xuf2PV2z5VzV8PHJLYkVcD+7oPbfCrX8VqCQj2ByUQGq9wwagkZE3Ml1bek/H/dgfXqgKpegaK9BIb+CT9EEegYcw39rFjWqOVmGeaqQHkdTjtrQ/4L+e0Q1/tTocwP23Jv+B6Ap/vIbkyhOfmMSxclvTKI4+Y1JlHIOwssahJwAa2l2947G3vtQY20W57YXJxLbv/qlxD7+OxWmvipp4gs0vQQraBdsqVS734d67t4O14139vQ6WxjZMwVxaJrpdQ4CGqtCXwQStLrwLDTBerLh0en3YRLTz9S9HB+1VPzs93WvMhAlV9Do9XSiYvGqo0LsS2h4eg0TdyJ4jDj1MaAYCXk9mOJEUGNNusaqAstvU8vuDfGX35hEcfIbkyhOfmMSxclvTKKUx6D5nF5oPffdc63nD5i4kx1+oLGButoiIjYFNIC8pZOBDkpt4ri71Xtsg9BFok2LYlB/PQaH15PLocQiIo4vtd79WaFFAYltAAABNUlEQVTC1D91VAg6h+aTNA3pTkW16RprF1RzrmeOoPlnRMR7IAT+/L46L2/9pT5ftqf3HbCOAaOpH36rjs/OP2p/hycdXetXKx1LHdG8cSmJbNiMFNaM6vmpvwD1T1jTHPf/H73PX35jUsXJb0yiOPmNSRQnvzGJUr6Asc9PQx15Hz5Twa891aaQWV8FmvzWA7z4djbS83fU5bUz0OP2Zir6tEFYooaSVNJLnBaqvDyBkdEREc+hjPZxpQ7G45l2M90r9Znvt9Vl19lCo08Y49Km5pElNNsEoSoi4ggqfW//rQqxxS9+oQfuHEgo64IIWKhDs3j+pcQ+nf69xH7wr+9L7Fc1o9NZZFOxERtzguBHI+1ZVG4mPqNYWLMv/9elvv7yG5MoTn5jEsXJb0yiOPmNSZT/AaVnJ80bWDEYAAAAAElFTkSuQmCC" y="-8932.596045"/>
</g>
<g id="matplotlib.axis_499">
<g id="xtick_748"/>
<g id="xtick_749"/>
<g id="xtick_750"/>
</g>
<g id="matplotlib.axis_500">
<g id="ytick_1246"/>
<g id="ytick_1247"/>
<g id="ytick_1248"/>
<g id="ytick_1249"/>
<g id="ytick_1250"/>
</g>
</g>
<g id="axes_251">
<g id="patch_252">
<path d="M 299.674375 9057.497809
L 421.964375 9057.497809
L 421.964375 8930.204281
L 299.674375 8930.204281
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_501">
<g id="xtick_751"/>
<g id="xtick_752"/>
<g id="xtick_753"/>
</g>
<g id="matplotlib.axis_502">
<g id="ytick_1251"/>
<g id="ytick_1252"/>
<g id="ytick_1253"/>
<g id="ytick_1254"/>
<g id="ytick_1255"/>
</g>
</g>
<g id="axes_252">
<g id="patch_253">
<path d="M 434.924375 9057.497809
L 557.214375 9057.497809
L 557.214375 8930.204281
L 434.924375 8930.204281
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_503">
<g id="xtick_754"/>
<g id="xtick_755"/>
<g id="xtick_756"/>
</g>
<g id="matplotlib.axis_504">
<g id="ytick_1256"/>
<g id="ytick_1257"/>
<g id="ytick_1258"/>
<g id="ytick_1259"/>
<g id="ytick_1260"/>
</g>
</g>
<g id="axes_253">
<g id="patch_254">
<path d="M 29.174375 9201.417232
L 151.464375 9201.417232
L 151.464375 9074.123705
L 29.174375 9074.123705
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_505">
<g id="xtick_757"/>
<g id="xtick_758"/>
<g id="xtick_759"/>
</g>
<g id="matplotlib.axis_506">
<g id="ytick_1261"/>
<g id="ytick_1262"/>
<g id="ytick_1263"/>
<g id="ytick_1264"/>
<g id="ytick_1265"/>
<g id="text_64">
<!-- 234 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 9184.810469)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_254">
<g id="patch_255">
<path d="M 164.424375 9201.417232
L 286.714375 9201.417232
L 286.714375 9074.123705
L 164.424375 9074.123705
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_507">
<g id="xtick_760"/>
<g id="xtick_761"/>
<g id="xtick_762"/>
</g>
<g id="matplotlib.axis_508">
<g id="ytick_1266"/>
<g id="ytick_1267"/>
<g id="ytick_1268"/>
<g id="ytick_1269"/>
<g id="ytick_1270"/>
</g>
</g>
<g id="axes_255">
<g id="patch_256">
<path d="M 299.674375 9198.915469
L 421.964375 9198.915469
L 421.964375 9076.625469
L 299.674375 9076.625469
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p048dc10d5a)">
<image height="122.4" id="imagef1d0205a23" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAG3xJREFUeJztnduSG+d1hTe6G8AcSA6PEiXLrsiKkziOo6TKqZwqb5EHzQv4KrnwhV2pSlVctk4WRVLikJzhHIAZDNAN5MJxLrS+Tm2oR5Tkf32X/zTQx42uWrP2XqPx5J1NfIlqNPryUoxC1+qq0rWRrk3qRtYiIqb1WNZ26oms7ddTWduDtf1KP0vHfdpdytrR6lzWzpYXsrboVrIWEdGt17LWrjtZW290u81GbsEgKrgHTVXL2gju83b7gWcC9k376eA6rLpW1ugabnO9ajjvaaPP3V6jz9Nuo88TnR8d42W3lLWL1VXqs/TMRnC9reFaZJ87/TZjTBG4+I0pFBe/MYXi4jemUBoSgkhYGNN2SWFpUrHglxX3btQ7ulbpdjsj3ffVRsUPggQoElO2gQSxzQbW4qvvJyva4T622C3tJ7v2OthmvyQY0vWh7dbf1L0KFpWzx01rfvMbUygufmMKxcVvTKG4+I0plIZcTOTII9FujGvgqKrUURURsQei3U0Q/G6NYLuR7pucUa9CXVVdqHBCgt8QIW4bskIQnR99NuvQHEoF30n7JuF0iKtxqKiYdcUtR+o4JEE7ey58vfT92/d99DzitU0+t37zG1MoLn5jCsXFb0yhuPiNKZTm9nRfFqldllx2u9BCOwGX3Q6IcxERN0cqBN6GtYMNfCeIJxcgdJyHtuCSoJJ1+PWKMeQGSwpBWSGPhFhqiybRjc6PHGMR7GIjNyet0b4DBFbcL1wvujYkaG0jaNK9WkI7MUHXMbtvEguJFYiPEXnnXha/+Y0pFBe/MYXi4jemUFz8xhRK8+bktiy+0dyQtberXVm7u1EBag9aVqc9gsgN0DVudSpg7CdbGR9NVFB5BO3JXwfX7QYkcejmRO/BnYneKxLd5q06HRcwZy6CRa1s+zZxBXMPSdRioTIn7m3j+kM35zp3/0iURDEUnrvs9aLj+/2+dQ3Pm04FNvOb35hCcfEbUygufmMKxcVvTKE0JO79aKRrf73U34n31hp+sT9VcaeuWcCoKlUmxhMIMRjpdrNzdRy+6G7BTnSJHGzUbkkMnetHkGhDrdEULHG7UYdmQ+IcOC9JqIqIWK3V7UatpzvgLqTvvKxYWPwyWbfadbcIR7AHkfbTJ8ZlvpBEwG1gJ6EdfsaYLXHxG1MoLn5jCsXFb0yhuPiNKZRmD3rtD+A34X6nKvy92xphvbOnan8zZYW0hvV6B/ril9C7P9dZAqewj5O12lqXoGZnk1j6VOV0734y1pqsoDQIdQ/WdmEmAvbe9/yHY7GG/9jA53GeAwx1peNGJR1s3LTdGlKYBtur4eMUa00qPg2Exfj6TW5YZ9+zlD3HrOXXb35jCsXFb0yhuPiNKRQXvzGF0pDQtYK14xp6kU90FsD4RMWP/YqHI969pYLhzXsq0K1bFTBeXmpv+6e7KlQdL3Ufl9DHToktQy2jBPWskzg0bVQku9noOb9Rq72XhqAuNmCHHqlgFxEx3+h1JHZBLB6DjXgOx9M2er2vQGgkcZbuVR/pewgaGQqQYDXHKHaYS7EBO/tQsglJmOx07UdjjPlO4OI3plBc/MYUiovfmEJpaEDivFKh4/NGxR1aW4AgMt1wRPf3zlXAevdUZwRMYB7Ab8fa2/7Z+kTWTtq5rJGwhOLO1xDRTT3Z5ObbrVWMuw/i3o8CruFKf9PJY/kcUpgiIo7g/i9HuT52EotfwjtmXqvoOqsXsnZV6b1qRyr4oRtvC1AYTLbP054bEHGzQ0b738g5h2BNAiTOsDDGFImL35hCcfEbUygufmMKpTnfqPByDEk8a/iZIHHnfAPtsiACRkQ8m6io9aLbk7Vd+PhvGhWCni9nskZuvhXEMWOKCw2K/BpEQHJpURvsA0hN+gtod35//1i/b1fP+fyUBb/jhYqpp+DSe1XrQ/GsBscoiIXHcH50zuR0JIdf32DNDtp/rxu6fzSAlYRdep76otNpkC3Gzfd8/sv4zW9Mobj4jSkUF78xheLiN6ZQmhftOazq0qJScYgccHNyz/WIZJfg1JrDXLgGBJWnkBZ03ukaxUOTOERrQ9N5SAgilxe5/mhm3g7NVoSW1wfvqfA5/b7ev3szuPcR8fALnYZ4/kI/f3isyU6rkYqSn9U5ZxudM7UIk3DWlz60BrGRRLKs+w5bY5MzGCc1COno0GPBjmLNaX4gQfvxm9+YQnHxG1MoLn5jCsXFb0yhNM+vVNyhuWkXGAWtoka7haNqOYL9jHLz416BuLdIinssfkAbJIpAfb+XSVdVcoYfHQ85Kq9gOxitF9WDm7p2jwXN3T0VAqtG223nM3UCxloFv3mAsLtW5yW5MbMz/LZxXmZFVxb3cmsEiZITuPd9reQVOFNR0CbB0KEdxpg/4OI3plBc/MYUiovfmEJpzq401GIJwsIMBB+aM5cVPyIiavjtwTRZWKM5fFmxEY+RRKCNrvW1jpLeN8RJtoJzOdpooMknE3Xe/fnvINzjzTNZqw50u4iIUQPz5xo9l7bT7U6hpfccQkBmnT5PF52e32ULIiC1ZCfbWL9J0LUJNdTnVqR5hhgYgsm/en385jemUFz8xhSKi9+YQnHxG1MoDTmEqHVwAcILtSiSONcHut2orbMCyxqQTdolNxeB4Qc9bb5ZX2N25tq8VUHs8eqVrP1iAkm5Zw9k7Z9+rk7ON36gImBERL0Dx3Oobr4XrYqNR41+dgZCHgm2NFsRxb0tAjqy9zrr5ss6ATF5uc4lL/cJfuNOHbXkVqVrRjXtN78xheLiN6ZQXPzGFIqL35hCaTCdFsIByCGEIsIWDj+CxA6ah0ZrdIzbiEP6fXAdBoZ20HeSUDlbqeBH7a3UBns6vS9rT+O2rP3VR7fwGN+AdttF6PX+AMTGw4DZimsQ/JLt10TWoTkUnK0IQh4FdOw1KpDehrb4u7BG7dwREWfQQr+EkJwLmnGIbePGmCJx8RtTKC5+YwrFxW9MoaB1DlsC8eMUiDBMeCGxkYQgEslIjOtz5H0ZcmlxayR/X3Y/tB2GMcA5k+BHbi5yz51PVXR7NDnAY3xzpG2m1N58BOLek07n/5212jaO8xZBfGYBedg7K9tqTfsmoXmn0etFzr37jYacPITk5T7Zk67EZQ2zEBtdo3rxm9+YQnHxG1MoLn5jCsXFb0yhuPiNKZRco/xrJPufhjUMuByi7Ael+GyRzkLHOOQ/AF3ys6SQU3oNqb1nE1XrIyIe1apAUzrTJdiAT9q5rJ2uVO1fwX8uCFThU5/sJ2v4xj79ZIz4LkTN36nU8vswIPWoh7qCgbIwWDU7w8JvfmMKxcVvTKG4+I0pFBe/MYXyrRP8sok2Q8S9bCT2NozIlkxiXPK4s9AMg0Wr1lkc9Ngjup3UKtqR0EUWZErYIXGPrg2Ke3C51qjX8nXts2NfJzS0dgJDZ/dgJsJtsE1PeizyFYiI9Pqux2BLBlHSb35jCsXFb0yhuPiNKRQXvzGFkhb8ss47MCH1Qq6jbK/1kP7rvkSUIZCrjvimRMArEAH7BmbScE28V3DOOBAWtiOBle4fHuEWcxaGkL0vmDxF8fM0EBTWxj27vQFC4AEIi8tKk5RaSFLym9+YQnHxG1MoLn5jCsXFb0yhNNnBlVlIeOlrgyXBKBupTCkpFBlOscgk+JEoRYLYNk4yOpcWwrxpP/R92wwUVWC7nlzx7CDN7DGiaxNclqPX4MaLyD/f1FbdVbl71YFUeQEX/OVI13Zqfiev4B6SIEoVNAF3od/8xhSKi9+YQnHxG1MoLn5jCgUdftm22ix9olQ2zpvEPUpJOZjsydqNWt1O1ILZwkxAWqN0nQhuj6XknIAuWkrDoZl77RYCZIYNtCH//g+6dN0zCnEt6ZLc5pzTx5jcNyUkXbSahnS8mskauf5O4fncH6lIHRHRoCNWt1vAc9uhy9IYUyQufmMKxcVvTKG4+I0plCYruhFfRxslzdcj5x6Je29N7sja/Vq3G4PgtwSRhISTyw2IeBFx1mkABoVVkABFIlI3ykZLKEOckxH5dukR3KusCxEdkX0CZOKzfcIeXYvsc4vnAsc4Xy1S+73oVBh8UWtox24Ns/qCg0Amo1xXPonXfvMbUygufmMKxcVvTKG4+I0plEGhHUPEwu32o79R5Nz7QXNL1t4N3W4HHHUrOJULEN1OyaIXEV9AAiuJbNS+S2sVJFPQ93HiMB5i6vsiWHSlNuhsm2+2Nfq6Zxn2HQ8xxK1Igi1Brs2LSkVACvyIiBjDOrlfsWWdWu1xL8aYP3pc/MYUiovfmEJx8RtTKNzSm3SDXff8v22YVtr2+H0Q93620OO5FerSu4LfwRkkmz5vVNiLiNhpdNurBlyD62SKLc2KS87ho/lxJAI1tR5zBAtOJAJmoWcChc9k4Ee9zXMHRsm+sBL5zqxyCpuRuMfzLfXeX470GYngezgkgMZvfmMKxcVvTKG4+I0pFBe/MYXSZF1jaTdf0vU1FGpl/NNWf8v+5p0vZG3nrgp+y1P9vtOjXVmbzm7i8bwE8WwHjrEBETHrnqNkW7pXNCuOxL0+J9m0UTF1DMc9ZNYjiW7klKPEYaLvGVuCoLbpSIAcMAsxm1acbFnu47odtX7zG1MoLn5jCsXFb0yhuPiNKRRM6cV5bQPEhr5fGJ7jBgIWuMv2YZ7ZW0sVd26+C7PLbtCMNHVVdc/1WM6hhTIi4hWkrV5CaAfNUkPnXhIUgWAtm2ocwTPkaI1EVxI06fzI1XhZk/uRnHIgFsL3RbCw2G4xz/CrQiLgUPfr+pp1c7/5jSkUF78xheLiN6ZQXPzGFIqL35hCGTTAk8gmtvRBFlayoVKMMYVnn32s6nMLNuDDF/dl7aNK7b3/PWG76cdrjWR+2eraZaeKdrb3O/tfgWzfd5+9dw9SZO6P1dZ8v9I0pH34DwDFQ59t9DqcdJp8cw5JSHNIvsn26H8d0DP/Tc66yP5nzm9+YwrFxW9Mobj4jSkUF78xhdKgQAcbZn8ltolPJmGC1sgySnw0UbHp1eFDWTuqdR+HUxXdDkMFqM/XGrsdEfF8dSZrZ62KVVedWn6zKT5ZwYjs0GOw8u70REGTuPfjRuPPf9Lq599u9bgpDelpo2LhJ2O9Np/Vc/3s6lTWrsBK/U3yusS97L7Rxv86DsYY8+3DxW9Mobj4jSkUF78xhYL9/MQ2Qt51Q+LX0VrFtF9RAg38vJ2s1SE2A+cdOcku4LMREfNW10mEIjcfrWWvLYqmSZfkAYhuERHv1hp1/i9X6qj857d1OOrB+3rBR5Uez8WHer1++5sHsvbvOweytm7AMdiyEPu6YuS/7dDz5De/MYXi4jemUFz8xhSKi9+YQmloiGPWXTYk5aQP2ve8Vafdk6sjWTuutYWWjnsBQhwNgKRBkSsYwBnBCS0o5CXTXeg6YMQzHAuJXDSA80FzAz4d8eONtjL/3d3nsnbvX9/Rff/sH/ULb6o78NbjD2Xtb3/+H7I2/je9Di929LgfQxtyxLC4eeqgTsd2fwfwm9+YQnHxG1MoLn5jCsXFb0yhNNNanVtZFxr9dGwzr4/EuLbT/Vxs1A1Gx9NAKg0JPiTkoYNxC3En64CkOXzZuYfo+ku2RVO6zgOYURgR8WcLvbb3/kEdkKP33pO16t33de3gDVnrpvuyVj9+pMd49zNZuz/XeYt7FQt+9ExQy/MG4nBwKiA9Etn0+mTEeh90/4ckA/nNb0yhuPiNKRQXvzGF4uI3plCavUaFkgW0t5JrLOtC6wtUIHGPBIxlp+47csWRkENhFURWiOv9/DW7Ha+7XZqEpZ2e3/59iD8ZNSBMzc5laf1SBbrN7JWuPfq1fvaTp7J2eqqi5CW09Pa17lI0OT0T6xFdb3i+YSsS8mgfDbScU6t137lQHWBtJB26fvMbUygufmMKxcVvTKG4+I0plOZWo4IKiRU0jw7DJkCIW0G7bN+2tIafhX2PNuSgyglng1x23zLoGlLL8nnwfXkB6bvnH+q1PbjxX7JWfaIuvQBht/3dsawd/qeKz7/eqBPwMNTxSefXBwZYYKouCXkQKgNC3m6jLdQ3x1prd8banrxTqes2IuKk1QCT46W2sV+s4PqAMOg3vzGF4uI3plBc/MYUiovfmEJp/mR6TxaPOg1AmHU6R49EwEtwB25aFsnqSoUgarclAYtEG2x5TCaWZun77Otw5BEkSlK789lK7+mjsabdRkT8aqrCW/1E047feqz3mjxwi4262Gajt2TtWaPvog8nKlR9Ac9nX5gKOTez0D0gx+D+ZEfWHk5vy9q7E621H45U0Jz29Ah/1Oh5f1TpLMuXlSZGX0CojN/8xhSKi9+YQnHxG1MoLn5jCqX52UhTUJ+A6+/zSsUGEgbrka71iWE4KxDcYASGiFDDJSwNEfz62i1zvsRhAmRWVCQ31/lSU42fgFgUEfELWDucqIB1e6RONBLYuKUbhEFYe9HpcT9vtZWYUpIjhiUgU4v4tNFzfmOqNfST6Zuy9vdrdU7+6EpF81MQFSMiLqYqLL6stVYXDQmxit/8xhSKi9+YQnHxG1MoLn5jCqV5f6Eiy42JOrxoFF4H4k4LKbbLmtstFx2k5Va6bTbtNuvwIyFnaKACCYHZuX5ZAYrOObsPEgFPrrRFtO94Tscq5N6oVYCidvAqOeOOzmW2VmfpKbgVae5kRH7GHUHHTSE3dyHt+Ieh1+YvlypK3tvR81ssOD05Kypnk4n95jemUFz8xhSKi9+YQnHxG1MoLn5jCqV5u1H75GmnPcZPYUhhnVQV+1JzUHUfYHW97j79Sa196H3nQko8DihNzivYJh48A30fxq5HxGylCjQOAK312aHrg+k1I7awfhn67xEp+6TqR+RTpei/NTjoM/nMN8ntVq1eh1nNz9gyYIhu0k5Na37zG1MoLn5jCsXFb0yhuPiNKZSmqUFsAu3kEsyF8w0M8FyrGEM23ohhQy9JjMGoZBAVG+iXJnGPrJwUqdx3PCSykDBFiUYrEONwkGlSGMTr1SOQkhBI53IF9xXtvbCWjs5OClpDBdJsOhPtm575o0av4THMP+haPefZmO/LKileZq3vfvMbUygufmMKxcVvTKG4+I0plOb0SqOED6cqOLyARJRTSk7pdDtK9okYNlxxiLhH8ck7sLZX61yD3Vq3i2DHGgkv5JSjlCN0scFnUZxLxpz3gSIbDFbNzkogIa8lwS95/0iopO0ielyWuGUOFD7h+T7a6P17NNEBnnc6PefTimtgBfdlBQ5IEotpzW9+YwrFxW9Mobj4jSkUF78xhdJ83OigwY9HKto9a2eydt5qSye5vvpaR7PtllnISUYuvf2xnvPtsbYx34I0lN1Kvy8iokn+jraUVANC3hwE1gU4ySiphuKYyUXYJwySkEfR6XSvuk63I8GP7v0k1D2ZFXb7hlZiW26y9TvbIr4ES+wRDB79AETJu42e8+WIa+AchMUrcNmSAEk16De/MYXi4jemUFz8xhSKi9+YQml+OVYR6YP2VNZerM5kjYWlr+7ai8jPUiOykcp3x5qI8r2xRlDfq1QYnG7xe9mSU45cf5WKXxcbFRtnIAK+guh0Yt7mZgxGsJCXbXklNiBgoVgIx1OPcrHrfS299DxlW4ezwiA5L5+ttIZmtd6/GxWkY/Xs5zSbXtTm3KF+8xtTKC5+YwrFxW9Mobj4jSmU5pdXz2TxaHUuaxTkkHV9bcMQRxYFKlBb7lvjA1n7aaVr34d2y75fyxn8YQZC1wWoVRcgau3AnupKz4/mus0qvVcXyRCJPvAeZO9LdoYfCLYEPXd9sdskIpK4x/vJBZ2cr9TpOmv1HpDQOAXHKF2bCJ6FOYf9XILgZ4efMeb/cPEbUygufmMKxcVvTKE0n148l0UKluCUz2Sy6RbpufSdJBhlU3p3oKX37Upnqf10qZ/98VhdjXt7KqZERJzPVFg8XKlL7ym0cH7e6PktQRgkdyDNcCNITKOgkgieh0cOOhLEMKU3OZuP7j2Jcyt4PvuE5iFt4+RMRGERhLis+5GuQ5/gR8dNzj0UOR3aYYz5Ay5+YwrFxW9Mobj4jSmU5uwq1xJKkBDHLq1hvzEkGGZjKWi2282RCl3vbLTd8p2fnMja9D1tB46IeLhQl9f3PtTP3/ngnqxdrVWAfALBDXOY4XcBbb4tiIBjCBWZjnkeIV7vpIBFgh8JWBRyQlCgCT2xfQ4/gsQ4TrbNCdrZ78u2SvedCwmi+XOx4GeM+V9c/MYUiovfmEJx8RtTKA21+pFIxnP0VJjYdCA29KSOZsWTIW3CKLzAdjWs1vvQ0vtAZ/1FRMQUUn4nh7L28JW2Sx+8VCdgBe27SxDyKKCBBCNMK+5JHJ6AIJplXOln9yrdzxT2QffqrNOW1ZN2nj6e7KxAdMDRIw+PYlbc4+MD5ywIjRER62Fd2bqf6/06Y8x3BRe/MYXi4jemUFz8xhRKWtlBIQ62I5GkLxxiCENah+eQqnq8UVFqoXpdNG9rGENExGhXW3o3M3WnrTfgdgNtiM6kgytOISko+IGjrk/Yo7lyBLn59kHcuwPhJweh+6BzPqtUDH0O+8g6BiP62nJ1CZ1ySXEvHVSzhZuS3tSDUq2/8ieNMd9pXPzGFIqL35hCcfEbUygufmMKBeVeUjTJ8pulLz55CGhBpgGQoIaeh6r9j8eqSL/96S1ZexPSjCIiRhCVffJclepH5/qdT6Z63HSMNKyRevexdxtU5T6FnHr/Sdlv4N2xP1IVn5T9B7C2A/dvAdvt1rnji2BlnyztFzDPgbbLKvvZGqLvG/XUC/3PLGuHp+Pxm9+YQnHxG1MoLn5jCsXFb0yhpO29WTvtEGEwYptBjDBLAEQNEsTOYBDmZ7Vut7+6KWuPPuUBnqe1/o4+Bt/uF7vaf/9srZbhZ6uZrB3DGsUxEygs9dihqdd+AiIgCYO7+FmIpoae9VvQsH6LEpzA3rsAG3BExKtahdwzEGeXVS75ZgPPZ1bQxu1giWzcET2JRgOsxX7zG1MoLn5jCsXFb0yhuPiNKRQU/LKiHW1HiT19PcdZYSI7S4AEGup3n0HKzdNK11YTFZauesSdw7UOlXzRqbB01mmyD6bSdHo885UOs1xAPDQJQ5Sa0yeukpB3E0S2Cbw7xsn3SQvXsQYRcAqX+wYIleMehx+JmuQGRPE6uTbEwJoVASMiumy9OLHHGPP/4eI3plBc/MYUiovfmEJpSAhIu/mSAzP7BmsOETBoaY3DFVXUuoIBnqcbFd0uwR14slbRLSLiqFX33Vmr4t4K2nJXsJ9Vp9uRuEfbEXWrv/MkKkZERKPOxn3Qhm8kh2aSMEyiZDbcfQmP0wXc0whONKLnBI8xOyQ2OYQzLXBvoSCmB4UCfvMbUygufmMKxcVvTKG4+I0plP8B5dfoTbqIZngAAAAASUVORK5CYII=" y="-9076.515469"/>
</g>
<g id="matplotlib.axis_509">
<g id="xtick_763"/>
<g id="xtick_764"/>
<g id="xtick_765"/>
</g>
<g id="matplotlib.axis_510">
<g id="ytick_1271"/>
<g id="ytick_1272"/>
<g id="ytick_1273"/>
<g id="ytick_1274"/>
<g id="ytick_1275"/>
</g>
</g>
<g id="axes_256">
<g id="patch_257">
<path d="M 434.924375 9198.915469
L 557.214375 9198.915469
L 557.214375 9076.625469
L 434.924375 9076.625469
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p06c90ce220)">
<image height="122.4" id="imagebe987d545e" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHCZJREFUeJztnVmvbOdRhmtN3b17T2f2EE9RCCZOFAkU5QYxCSEGIfG7+Ef8AbgAOSgkEIjMcezYPvbxOXvevXtYq5uLQC52PV+odh9biut9Lkur1/B9q/aS3v1WVfV3r//txm5xOtzcDtlgaxfrqsbFRhDbrzoXMzM7gPjU/O/ncO2PhksX+2R55mKXvX+WxbBysX49uNgKYv3gY2Zmw8bf4xpim41b7hdOVVUu1tWti41b3pe9dhQ6Jz0LrcOw9rHoetM1NhZfwzX8fpd9oXWoq9rFRo1fb4q1tX/fK/PXMOPnjq4t7Yu/ayFECpT8QiRFyS9EUpT8QiSl/cv1sQv+pNtzsZPN0sVWICIQYxABzczG8LfnAI49ABFw1ez7WAeiBgg0l+ZFwBvzz0diCgk+ZmZbaFBfOiQYoVhU2D8SjEjUIsIiYFB020bci4KCWmFbb0PrQKIdiXvjxgus9NsSKOSBGB5FX34hkqLkFyIpSn4hkqLkFyIp7TuruQue12MX62oSznoX60GgqQtqSkfOqI2PjeH368rf49D6a+M1Ki/GnPczFyMBal0QoMg1tv4KRMCiAHn7uKiiZeyKq6rYw9BvcR2/AqejGQu+KJHB7dDaRsU9clTSbxt4P0tuQ3YX+hgdR/uvL78QSVHyC5EUJb8QSVHyC5EUr0qYWQfiQAOxDv92xB1HJPoMQcHweOPFk7qauNg+iDH7tS9ZJedWtOzUzKyHe4w67aJEy0lJRGpqH+sK7jI6ls4ZFe1KIultvgw3H0HPgqY/WG8S9/B8wK4Oxl3KwSmH9OUXIilKfiGSouQXIilKfiGS0n7UeKfceeVFu9nGC10LEPdWECvJFPT7JcTm4Mgjwe/emvoHQgkmCDnXjS/pvWyg9BeOMzNbDt7tSER74e0i7rUNuNC26OFHvRmJFbwT5HQksYll0xcPia5RVyS556LQOqxIC9/x87uLU1JffiGSouQXIilKfiGSouQXIintT6Hv3VPzQy0uNj5G4h4OryhIfuTmI6Yg+M3BzfcyDAFBtyKVaoLIRQ64kpuLXHH9+ouLe1iCSfcN4t4EesVNWy/sThrvdDTjZ+xB3CPVbgCxmNaG+wd+Nd+iqFNuCB63gXJnembaZ8qNUgk8lkvD76PPpy+/EElR8guRFCW/EElR8guRFCW/EElpf7w+d8H5xltVccIKKI3b1LCT0knXmYESv6rhvwq1nzQ0AuX62Xrhr7GGiT1wLyVrKNZLo5U32HBzB3tvBzXnpPYftVO8Nj3LbPBrhv0Ygu9JuNFntBdAQeGmqUvR+6H9o/PRJ7QK7jNReubofUfXTF9+IZKi5BciKUp+IZKi5BciKe17889CB2LdOAhxVDfebPE3hsQKqhsnyG5MnA++Tv8SYvPBW5q3maYSrSVH2y5YiylGY5+n0KOBxL1HzYGLmfGUozNoekrvBE6QGWLi1y7iHNqPC7/favR6gGhNPb0P20zsIbApqOy9QojfhJJfiKQo+YVIipJfiKS0z+eXLhgVoEhs2oMa8XHNjSJLdcu3ITGGRMArcu6BM+2i9+LeYu3FPXKrcR36FiLLDs49FPfAuXfceXHv5fbQxd6q9/Ee96E56knj+yd8DP0TntXXLnZW+Rjt/bKCke8wIWlYgwOVnHe/If4iiTb6pOOi04PM+N2jvgGke3PfACFESpT8QiRFyS9EUpT8QiSlvel9KSuOaAbhJepsKolk5BDEElWDCTIgitB1bqBU97qfu1h04k6pPDlayornDDb1pH05aKGRaXvkYt+uvZvv7RVOaLfDtb+f5+AanLSx/SOxKVqKGm0I+1WN944SFfcoB7aZFETvCYmk9I7pyy9EUpT8QiRFyS9EUpT8QiSlpVHC5BCiqSQECS99zeWWHZT/0rQZEkrQfUfjvaEsl8S9JbjGtmGXUckECzRe3KHy3Vdr7/D7Vu/X+o3er42Z2QRG8XQb79y8BNfnReWPu669KLlqYn0iSbyKOkPN4kIgldvicVSyHBX3YL3IEVsakT5A30pyukbFZ335hUiKkl+IpCj5hUiKkl+IpLQsVIFgAEMIooMXjI1kxXHXkXMuzQtGVJYbLdWNXrcEu7Jiz7eNo8tfAURAEIwOwLVXurslOCppJWj8+R5cex/6/11DbAki4AqE2EUNQmWszWMRdlmC0xVcliRS73de5LzT+RLqu62PjWEkfYldBpDoyy9EUpT8QiRFyS9EUpT8QiQlrCyQsEAiyQq0tNGGL0O966JlvkuYJDzrfb++VbBUd5tealFIZIk6AfG3wYEml7A2n7ZelJpDDz4zfuwFBBdwPx18TyawpxPo6zhf+/eE3hFiV4dltISaeibeGXnR7l7nS6hfgj6KDysolS44/IgB9qAhEXgDA1bCVxFCfK1Q8guRFCW/EElR8guRlLDgF59EGuvDZlYqM4yVTK4GL3RR+S4OOohOl4XYNq6/6ORXOmfUPUlDST5Zz/xF4M/8fsfbT4JRBw5PIipAjbB3HUysJZEz2KOuFI/uy6jx63PY7bnYy6M7LvYm9FF8y7zr76UBhrMUXrE57CEJscQUUlBffiGSouQXIilKfiGSouQXIimo+ETFPRJTqNdfaVIq9Wcj5x79nkp16Xz0LE1Q3KO+blGxyCxeqku9Bw3um56PBL/Pez95uW/8b0uloy0IbyMo8yUnGrV6JBGQwP6P8Mw9iL3bDO1AcRC2ivafynfvwATjR9DL8Bu9X9c3Vv593yvUJ1/BHjxt/R6ewyf9slYPPyHE/6LkFyIpSn4hkqLkFyIp7TaOtQgksJEjy8yMJgQTJLItwM1H4hARHUBCJZ1fCnA7JGAN1MuQetyBGHpd+bWeGQ/tQAESIMFwD0p1G/jGLEDYpWdBN1+wvHxX6DokApKDkVbwBkTFJfz2uOL3+BCe8Slo9p/CkJwz6HmpL78QSVHyC5EUJb8QSVHyC5EUJb8QSQnX85PijlNAgrXyZgW7KjThJEqW4dvQfdOo5BGMC6cR4iVw1DlA/QWi46Hj9+JVYfoPAFmpzcxuBv+fARyVDXu9Dw0up7WP0X8UotclSrbr6H8BosdRLwjavzk83ymM2D5q/bs47UuNVaGfA3y+n8F/cZ6ub1xMX34hkqLkFyIpSn4hkqLkFyIpbVTII5GMxA86riT4kTBFghiJMXSdMUylISFvr/G11mOwpdL0oB4m5JgVBDWwq1Y06hzHLPu1jfZZoHu8Hvy6Xvdz/D2JriSw0rtDv6UpN/ROkGUbm7yiqFxo4ElWYLLtBnsv0Dsxpr4G8Ft6c8jye7HFxJ5TqNO/2Ph1PF/7vdaXX4ikKPmFSIqSX4ikKPmFSEqLol0Tc8ChCAg18DSFx4yFLnJ0kYPqeDR1sfudH4F8AO6yCdShkwDVg/g4AzHFzOy891NySKCjWGl9ImBzUxDOaJT3bMVuykUfE95oX0iwJfdjdDoPXYMm6ZREZVqf6HWwdh/uew8aa043IAwG93le83EXEP8U+jScDt7NdwExffmFSIqSX4ikKPmFSIqSX4iktCTQRcW9DmLoGCwIHVSi2DT+fg5aPxHlzfEDF/tW4wW/uxsQh+BebuBeLirv0Hu2YZFsBRNx5uD6i46cJuEsKl6RwEbXWA5c0lsaqX4b0qXoHudQYkrCGb1P9N61ILDR+czMlrCH0fJdEhHRbQrv95Sm/YC7k+6ahD0zs182fm0/gnHsz/orFztbXYeuLYRIgJJfiKQo+YVIipJfiKSES3opRg49qDAMj2g2MxvDCOSH3ZGLvdMcu9jvL70QdB/GOfcgxpyD0PgUSlEnhSk+N9AP77LyrioSjHBUOYhx0WlItFckxEWFvdI5o70HoyOxiW0co3htmnwU7P9I6301+NLYzzc+VnpPbrMCce+qUJ782Ly49/Hq3MVOl17wo1JrffmFSIqSX4ikKPmFSIqSX4ikYElvtJ8ZCTmrHUUkup/j2jv8Xll7594bIMY8OPCiG3Ez90Lj/YW/bj3igQrn9Z6LnTX+2iQYoZgaFAajbDPCmvYfS16DwnD0fYq6Q+kdGar4e0dCNa3Peu1jzxYXLvYzON8zEKnvNb4M/bDy79O80CfysyHm3KPhJyQg68svRFKU/EIkRckvRFKU/EIkpY06t0iMQZGESlELIiAJN+hig4mnVyDwXMPQ4fugc+3t+xLT0RjKW715yi76fR80s6cjPwjkrD1wsdnaO62o594cYiT4RacDb0N0/8l9R3saHQJDMbouDzlhQRMHw4DDj9YR30UQzm56L7CdtF6co76Th60XipvCNxnfHSgbjzoY9eUXIilKfiGSouQXIilKfiGS0kbLMonoUIrydFkYOAECxknvXUzvjbz7bm/sBZX1te/r9+rKl0aOOhLTXMjGhWe5B0MaHla+JPiCRMDBCzkkIvVVTPCL96jjv/3R/nrRqcgo5EXLgYNuPBIfzczqdew68f6Isd/2UEq+gqnNs9bvPZW1m7FwHnV9sntSCJESJb8QSVHyC5EUJb8QSUGHH0EiC4oxQYHGzGyAOLndTlbeLfUYRKlVCy6tsRfYFksfO1qCQAOiVGmCaguPuA/i1z6UcI5rH4u63aJgmW7hfDSleR8E1juddzveaX1sAs9H4tU1ONjmay988iRgfse6yj8LQcIpiWnRPOjBZHezgmcBsfCm9sdtA90P9uXc6SpCiN9alPxCJEXJL0RSlPxCJKUlYYmIl0aCK2qLoR0kslz3sb53JO68Dy60MYhXd4fY38FZ4bArmFayBAfjNmsRAZ1yGIqV1ZqZTWFYycOR70n3TZiU/HblxdRH4H5cwTp8Ci7L99de7L0GEbBUxHoxxHo44qTkoOuPYBEQBMTg1OYS0Z6JWGodvooQ4muFkl+IpCj5hUiKkl+IpCj5hUhKS/XXbJ+MKZDbTIbBiT+gdJJSvai9DZjsoc83PvYxPPMM/lNA5tdlQe09h1r7k41Xpa9AqV5CnTdBNevrTawJKin7+51X9c3MHk68sv/W+L6L/dD8cX8OvRLeevvE38+Bv8fTx/6/MP9w8cjFfkSTkGBEuplZByo3WYZphDU161wPL75h6m22ySGyyKNtGz7z+vILkRQlvxBJUfILkRQlvxBJaVEcAL0hWrtP9tXSBJFthI3bkEhGo4lPG28NHoG4NzOwAYNY1BcEv0sQnM5AgLwEuyk9C4l7JM7y1CQfm4DN+S70OjAze3Pkxb0/qI5d7I8Xfm1/72+8Hbf7679wserRa/4e3/1HF3vn789c7F8n/p293ngB2MxsDmtbbij7/xOdXBX9bXQ60jbQ/VAO6ssvRFKU/EIkRckvRFKU/EIkpUXBKNiEk4QTbHBYEER4Igo4lmDqyhLcVzT5hpp/0jWWjR+VfAAiYFf4e0lCYA+uyGXBieauQ40nvd6HkENz0voR4o9GXsQzM/t+7eN/Ovdr+90/eu5i3Z/9oYs1P/grF6sP7rrY6skvXOyg+dzFBvNrczJ4Z6EZC6yXPYiu5Obb4l2+DQl50dr7aFPdEiSv033ryy9EUpT8QiRFyS9EUpT8QiSlxXHAUL1L46F3JSqo0DQVmuxTr2LuqwEkEYqtGz995ggm7phx+S8JLyTGETixZ+OvMtTg3ILj9hoQ/OD5zMy+t/LfhO98/6mLjf/ke/4ev/kdf0IqRT771B93dupCDTRGHcM3i0a7m5mdLf1496uVdyay4Pfll+9GRUAzsxreMmwIGx3RHjpKCPG1Q8kvRFKU/EIkRckvRFLaV0beaXXWe5EkWsqIgl3FAgQJGNSTrFQSfJubHia50PmCI57p/jbgBCzeD/SKox6FPAUmVv5JgtGGpvOAY5DGhZuZ3Rv8PY5fh35/D/zEHqO1/fCn/rCPH7tY/28/d7FF79d71Ma/WVQuTeJeVIgldi3BvQ1N1ykeS1Iz/FwlvUKIX6PkFyIpSn4hkqLkFyIp7Xe7ey74i9q7waKCH4ofhSrWFWgsJA5Ge5JFiY5ZJhHoCnoCmvFzU09BOmfYhQi/pbHP6Jyk3oqFdViR0DmDTbzy5dKbZ5/440596e/wk/9ysZN/8i69Dyv/fs5gEEtJsNulTyQR7cNHPRjJtYmjswsCIo5jj6KhHUKI/0PJL0RSlPxCJEXJL0RS2h+uvLjXdIcuRr3nqEcdURJdqByRyijJ9YcCVlAEJEGMYuTGmzVebDKLu7KiPRMHuDY9X9SZRs9SGnTxrPWlvrMP/XHtBx+5WEUi4FMv+F39y4WL/ceTl31s4tfm2caLrqvCuxjtkYdOSSiNpvPR3o8a33CRYvUWgh9B720T/Kbryy9EUpT8QiRFyS9EUpT8QiSl/cHY9027XkKZb+Mnus5BBNxmAiod20M5KYHlxORYIz0M/uSRUw6vW3DFRd1bRNS5R4IfliKDYETi7AVMETYz+2Xrz/nB+/6d+Pa7vg9f94p/n1ZP/HX++72HLvbuxK/hz82Xl5/CII7SvtAeUIwcleTSI4Fuv/PlzgedL0WeQL9Mcu2VRNxdyo5R5PzCZxNC/Faj5BciKUp+IZKi5BciKe2D170j6/X/PHKxDxsvaswb7wScVN7FdNrwBFVyS5HQFRXjiGj5LoEDFbYoq4y6+VbQUw57/UXFVLhvEovOe96X9xovqN1tpy62+NFL/riJd989n99xsX8ee2fpv4O499ngYzPojVgChVgQ8poNDBaB9SaX3vHIOyK/MfalyEe1zyEqqyYh3cxsDoNJSMgl8VJTeoUQv0bJL0RSlPxCJEXJL0RS2vm5dx2RrHQMgsibtXcx3a+8kPN5PQnf0Kz3bjAaxrGDjoeQ64vEog5ipWOJqHhJAh0OXgBxb72GMk8QFU9XXkwzM3uvPnGxeevv+/Ge3//pxovA53v+2k/WvqT3GQiQUZFrG2cpibZY+gu/pf2PTkB+NZgH5wXB77T2uUEuTVqzFYze1pdfiKQo+YVIipJfiKQo+YVIipJfiKS0P3vixyx/MPKK5qLySvPhxh93aGSnZEvsCYy73mY8cQRUdoNq76j2Vs5DqNM2MxuBrZlsljTFh6y8BFk0e/ivAD0fzRkqjZZ+Yr4mn6zAj0HlpuaR0WlPUVsq/iekUOuOfRGCU5PovqMj3+lZJvAfsw72aoFNKLZ4l4MWdH35hUiKkl+IpCj5hUiKkl+IpLQ/HnuB7knt7YFzEDX2KrC/wpSTm8I0FbRuBsWvklj1RSGhcdr6+utH3TH+fq/2NmmqOz+FmvXl2ts5FwOsDVg02dYKMVjWZcU2UmxwCft/2fu6f/rtGNaGxNQahCqcZrSF4BcV97ARKp7RQ/s3A4vurIYmofDMlwV77w1MWCKrM/WwoLXVl1+IpCj5hUiKkl+IpCj5hUhK+37lRanP194PRgIGiRUtCD6XhYaLJyvfPDTqdouONqbjqCabGjNOoWnpfXAlmpkdQR+DM3D9LWAdr3q/3iScocgZLGMnEajUEBTFs+CwmE0FvQTItQnni46m/lJq94Ojt6lvA03ioUa25OZbwb7cFBt4QqNX6m0A56SYvvxCJEXJL0RSlPxCJEXJL0RS2o/WsRHI14MXpUhsIGGJHFBm3KyTxKao+EVC3rj1YswYBBpqwjiFCSt7IOSYmR0X4re5gHOS2y06aSY6qpyELxKBzAouS/hM0Dkb0OxIoCNhcAgKedGx5GYs5KIDLij4HXS+Cef91jctfRWa2z5Y+z09hVL5EpRvy4I4eBvKK335hUiKkl+IpCj5hUiKkl+IpLRPVucueD14Ie4aXGgk5NFUmdKYbC6jBNdgA+IXleB2Xkw7bL3wctB60Wav9oLfEUxYmUKPQjOzKY14BhGQBEMS/EjcI0EzWp5K0F5tQwf3HXXPRYk+S6lvXQtl55s6dk4SXcn1SaO396G/JUnCJHyuCvtC5bvYoxDsk+Sc1ZdfiKQo+YVIipJfiKQo+YVISvv50o9KJhGBxmSj2ABiRanfHolaJOR11BcOXHp3Oj8W+WF35GJUlrtf+fORuHcHZRuzKfwdhUnZdgjCIolIV7UXWPs61sOP9gVddgUxrR9iZdXRseRRogMxtoHE5pKzMQLdzzX01vsYxqQ8h/f4DMrdnw08Ov0KXLbRfoYL6JepL78QSVHyC5EUJb8QSVHyC5GU9mLhp6+SIEIi0C7TTkvUMNG3wb5pXji703rB75X2wMVeq7xz7w44svZgAEnJHNbDI67guQ9BMLwDAuR1CyXU4KiMDjmJlv6asVuOnJckzkanLEeFql3fMTwniNLoTIXrXFa+3J2u8by+DN0jTW2eQ6x0nWhuLQf/7ujLL0RSlPxCJEXJL0RSlPxCJKWlabBRN1hJMIIDkTUKPNBrDq5N5a374J67B8M0Xlp70e3l3l9jDPc3LwgsZ9C8bgbHTqHE9KjyDr9TKBMlsYnA/dvC1UYl1NQLkURX6oVIJb1UYkriJQlV20DPjYIfvov+fOuVL3dHMS0oxNF1oyKuGbssSbClc+rLL0RSlPxCJEXJL0RSlPxCJKXdxSFGbOPm2wUeGOH/lo3g79sYHmUP6m+nNOig4GC7AWdiB9fpYH0mIAJOai+w0dpGxVlaLxL2zMymLfRC7LwL8bibutgB9D2kfaHyVOpRZyhIv/gyX1ozdBdCzz0iWq6+DSRU0v7TdTS0Qwjxa5T8QiRFyS9EUpT8QiSljQp5u1ASAUk8i06nxfOBqIUOL/htD/dI2g6JgGZmN2v/+wsQAYkB7pEmskZLXmm9aVotTZw1MzsCIY/KpR9C7AGUS3ewL0/BwUgTZ8mBuhhiwpdZ3OFHjkMUTsHJSW4+GsRCQ05IvJybf+ZfHevjKFTC0A5CX34hkqLkFyIpSn4hkqLkFyIpSn4hksLjZ3Ygars145p8UqXp9zQefE5qMU0vobHIIMy3oBRPKrZDk0v6HJ6FdNgZ3PcMxqTPYWoSKde0rqTs3x8dwt2Y3et809OHtf8PwGu1t/y+Mfhnpt3vGh89haall73vYUB7vyn8Fyaq7GO9e9CqTv+1ivY6oP9GlCzkBDV1xQasNDo9fBUhxNcKJb8QSVHyC5EUJb8QSXnhgh9RsvdSnOyKJPCQrfXp6tzF7oMo9QDGcW9AJCFx73DE01Sapb+fk8ELbzTV+gZsm9cg+EUbRU5aLyxFLbtmZnehJv8B2HFfB3Hvd5YguoKAdQpW1yO4BolkNOWm1OgzKu7Re0cSIh1He0Ci6xh6NBBDw+Il9jsIQhZ5ffmFSIqSX4ikKPmFSIqSX4ikfCWCX6lnAAkv0ZHK0etMQUS6P/Ii0u+aj01bL8QdHHoXmplZfe1/fziHZpYwkQintgTFHXI/7oHgd9h64ZMmHJmZtfBNaEAQncK2HpoX3poN1LbDSPSRUSNTf49UK7+ouAaeCE+fghC9i9H3OAo59Mx4r0lYXMON02/15RciKUp+IZKi5BciKUp+IZLywgU/Ek5KU4Gioki0yeglnO+T5sTFXu2OXayHMdmTsRevRhN+ln7l490NPR9M3cEzwi/BSYaCH7jiDkH4pElBZuxYoyaj/Fsfo+2DfqcoKtLkInq+RcOCHzUAJfAdg3ukd5bcheRCJIdftOnsr24ntv8VlQlTmS9eRQjxtUfJL0RSlPxCJEXJL0RS/geYFv2vdjoyyQAAAABJRU5ErkJggg==" y="-9076.515469"/>
</g>
<g id="matplotlib.axis_511">
<g id="xtick_766"/>
<g id="xtick_767"/>
<g id="xtick_768"/>
</g>
<g id="matplotlib.axis_512">
<g id="ytick_1276"/>
<g id="ytick_1277"/>
<g id="ytick_1278"/>
<g id="ytick_1279"/>
<g id="ytick_1280"/>
</g>
</g>
<g id="axes_257">
<g id="patch_258">
<path d="M 29.174375 9345.336656
L 151.464375 9345.336656
L 151.464375 9218.043129
L 29.174375 9218.043129
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_513">
<g id="xtick_769"/>
<g id="xtick_770"/>
<g id="xtick_771"/>
</g>
<g id="matplotlib.axis_514">
<g id="ytick_1281"/>
<g id="ytick_1282"/>
<g id="ytick_1283"/>
<g id="ytick_1284"/>
<g id="ytick_1285"/>
<g id="text_65">
<!-- 240 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 9328.729893)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-52"/>
<use x="111.230469" xlink:href="#ArialMT-48"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_258">
<g id="patch_259">
<path d="M 164.424375 9345.336656
L 286.714375 9345.336656
L 286.714375 9218.043129
L 164.424375 9218.043129
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_515">
<g id="xtick_772"/>
<g id="xtick_773"/>
<g id="xtick_774"/>
</g>
<g id="matplotlib.axis_516">
<g id="ytick_1286"/>
<g id="ytick_1287"/>
<g id="ytick_1288"/>
<g id="ytick_1289"/>
<g id="ytick_1290"/>
</g>
</g>
<g id="axes_259">
<g id="patch_260">
<path d="M 299.674375 9342.834893
L 421.964375 9342.834893
L 421.964375 9220.544893
L 299.674375 9220.544893
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p9ab1cb806c)">
<image height="122.4" id="image84bd16a9bc" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHidJREFUeJztnUmPJNd1hW8MOdbU1dUzm6Q4SBQsCQIXXhiQARsw5J/nv+KtBcGAYcALQ4ZkyiJENs3m0OqhurpryKqsHCIyvRDNRZ0vhFdKQQu98y1vR2S8iBe3Azh17r3FX9/723VcoS6qq6EYlLXE6igl1oNzqygkFhGxCrl0LNatxObrRmIXq7nETpdTPa6Z6XXXet1eCesu9P7a9UpiEXwva7gOXXsN5/bheT8Y3pTYh/27Evu7RV9if3P3hcQOfqLHRURU331Lg7duaWy8rbGjQwkt//2/Jfbrn92Q2M8GA4n9YnUisf+d6TVezk51LRFxvqD91z0s4B2t4Z0Y9fSZDWuN7dQjPbfi532VaavvdkTEZbuQGL2PzQpyqFlKTN9uY0wWOPmNyRQnvzGZ4uQ3JlNqEqoIEkSGhYpSO6WKGnWH4LcIFSsuQdxbr3SNcxAWSbQrCrg2iG50XAmCH8V+H+d7vEqqQINiIzyvaei5r2pdy+GhinNbj17jGkej5xIrS7jvyURCq6d67uxr3dPJuofXvkof9nlY6rk9EEgjWLRbtonvPOwp7csA1rNVqXi5XQ11LSBwd4rK8N42cD7RlHqcv/zGZIqT35hMcfIbkylOfmMypZ6v1PlD/yUMQgWVHogfQ3L9dfwfQ7LLJR6plB0iYspx60RxjsQdct5FsLORBCNy/c1gD0j0oXOnIJAelnruF81YYoPfslh0f6VC4HCiTrmiD2Lak3OJvfp6S2KnJMSBoEnQvpDY2xUnhx9eB0ROdP2Bc2+v1ue9V6rgR/s8AtE8ImJR614vVho7b3WvJiRe41WMMX/xOPmNyRQnvzGZ4uQ3JlPqcyh5XdcqLJGrKk02iWg6XIRzLN/V2BJEEXJGkQMqFRLTSFjqKsskkaaC/1tp3SQikZBDAuLFWsXCw0Jjn/Z1fdNmT2IRES8/0nLUO4+0XHo41DVeXu5K7OlMBb+jvt7LWaHPZgHuR3KlopMzWLQrV2nfPBJ3t2oV7W71diR2v1JH5e0CyoHXupauvGoLve8JCL7PVyqbP6vOJOYvvzGZ4uQ3JlOc/MZkipPfmEypZ9AXjMpThyBoLaFMcAqiTdshxJ2ttVfZxUrXQw44ciZSeSM5qCjWJRhdhfobRnB5M5VB07NtV1DmC6W6VPp7Bm6uZ7DGWaHXeNbje/lNrfHdtYqD2xdQ8gq/Nxvo/h+WKlS9Wuven630/qiXHT2bLkgEJCfgTh+Ez74+hzdrFTnfDj33naVe941Gn8ONQu8vIqKFb/UzEBE/7Ws5McX85TcmU5z8xmSKk9+YTHHyG5Mp9aJVwYGcbdMShmSA64968C0gFsHDCejY1N5l5IojISjVCZgqIEawC5HEvTmskcTLC3g2tJ5LEEjpGZ5B/zjqjxfBQiUNXhnA+TTIhbiE9+4YnGmvl1oiPGn0OHqPI1hMpfebXJZUlvsQxL13QNz7TqPX+E6je/Xe3WO97nss+BHfeaLrfvi1DkS5V+m9+MtvTKY4+Y3JFCe/MZni5DcmU5z8xmRKTeOhl6CQkzJPajYpxaTCR7DKTdBvUhPGeau/R/dClOu0dXeNT06F7pl+83ypttYlrIeUa1r3rFYFuQ+W5Ih0qzPtC71POKUI/nIxg/2jZzMD1Tx1nyP4Lxepk3j2wU57B/oDHLR6z7uVrnu0r7H6rv71ICKiGMCErC3ts/DOUBuwbn8NNn68ijHmLx4nvzGZ4uQ3JlOc/MZkCio+JKaRTZYEGqqL7rLEptba09Sd1FHX2JgT6rlTRa6ukcgzsNmSjZgEP6pPJ/GSLKypo8HpOQwqHpNNQh7+ZqJYTEIl7R89L3oX6Ti6vy5o3QSNRJ9TDB5XuvwINB0tPLUkP8pdDY7eVLH4Xl/HqfvLb0ymOPmNyRQnvzGZ4uQ3JlPY4gWQIEbiHrmiupxkJFalNmdMrdNPHbNM01noXigWwSO6lyD7pIppBDoqIUbPgSYFdalSqaPFSbQjwQ+FWBDdyGVX4jhuCXUKfl1i81XomZG78EmrwtmgAndgT4W4B9DAk1iv+F7ozSlGMCmqhFxt1AnoL78xmeLkNyZTnPzGZIqT35hMQSWOBB9seggiFwli5NDr+k0SXlJFm36lt7OJuLdVqWgzhlgEC37UrJMg1+ASJtqQqEV7RcIgnUuC5O8P1hA1wiT3HQl+qeuuSaiC/Ss6BGSCXKgE3ctkqY1Cv6bn2Ndz+70Dib290HfnjTN4F895zeW2insFPLMVCIarucb85TcmU5z8xmSKk9+YTHHyG5MpdepEExJtSMijWJerjd1bKvD0Vhqr6rSea6NKRRI6bkjnFhobdzj8qC/ctADRDtQ06rk3L1X0wdHiOAY80Ul2DVccCoYg7mGZNr1j4LxMFgZBXO2B2Nu1xtTydDqXSq1JsKVpSPtDFQH7T29L7P25TvGJiNifqLuw2tHn2E70eZ98pROb/OU3JlOc/MZkipPfmExx8huTKXXqsAMSVGgUdL3msc8ECV20HhJ99modbHC7p+OT90oYTQ3/5/VIfITjSNiLiGipRBXOb0oYsw2iJI4v7xhDfRUSFTuqRJNJHWtOoh3FmhZGrKeKl/CKdYmXWIoMAiTRgANyASIuiZyP6T3RVzGmo32JHZ3cwvV870TLcnfGMNRkrrn6YuER3caYb3DyG5MpTn5jMsXJb0ym1OR2IuYNTFAtVGy4zrRUGuZAveaoBPdmvS2x96s9id0PFdP6JCxRGStoNucwtCEi4jT0XhaJZdAUQ5clCnmwcFhiav+/LrBMmNyc1/jNq3BPwDSXZJeIh27F1OdIwGHTZeJgEVr3UGOX/Rt46eN2S2K3L1TIa2ALDgfkxjXGZImT35hMcfIbkylOfmMypSYHFPUzo1JGgoShLjEltTdfr6+C2E6p/dAewhjT92HZ++Auq0CMmYAQ93mf/7+cQC+1BkSoVAEqdeosTjVG0S1diKMyYRLyUgeGkCOPIJGT1pI6QGRT0K2Y6J6cLlUMp33BQSUd67msdiR2c8Al5lc5BTeuv/zGZIqT35hMcfIbkylOfmMypaahFqniDrkDSXjpEvxIWCSBZ9mjKa/KeK3n3oWpv2/eONNzd/W445fqnjpesvvqC/hvdAFWuwU4GHHi8AYuNDqugN+rO3r9pboBSRCjwSlE6jAVEsToHesSpEl4a9GlmSbupQqxK7jGDFyypwst030KQnNExKynot02CN/EdKXvt7/8xmSKk9+YTHHyG5MpTn5jMqWuKxUXaPAGDVlAAYoqTDvcV6m91Kic+HylQs6kBkcd3MtgpMLJ+J7GVo1Oad1+rmXDEdzbD0s4QQiiMuZNHGvoTCvSBK2IiAJdZ+AQBBEQJyBXMPyEJiCDeEXTj6l35GmjwtnvlwjrXsw0BP0Ru97bPxb6vVmjQtxJeYHnz1eaB/S8KS+pX6a//MZkipPfmExx8huTKU5+YzLFyW9MpqAXM7UJ46ZNIbvU5quQdfN1cy6xJ7Vabz/v6WSf3jOdknLztf71YN6o0rzsuL3hGkaGQyE7TfGh54jjz+G4Fvt3UjBducax32DHJYsuqfi3elqHvl/pvmzDSHSamnQBan+/YFtxqkWXnhmOG4e/zBDYEwFidF36C0BExDJxYlNq81B/+Y3JFCe/MZni5DcmU5z8xmQKqiRYs7zBJJZNIQHjolGB7ulKLZ7/U6so9Rzspj2Y7APOyVh1PAZ6kPuF/uZlqaLNeal2000m32CDSxQB+fyqoH/Q5ziC0eI0Jv2tWmN34dlsgWhKTErdPxQ5I+IS6tgXte4B9VSgMeItjO3+U9M19YpszSjuJfYc8JffmExx8huTKU5+YzLFyW9MptTkJEsVmzYRGzalAafVaav190+gHvw5/J9HDihy4+2wRho74DAbwvk3oGb9FGJUpz2DOvsV1OlTz4BUV1sE7yu5+XbApXefRqeHHvc2WCX3Wmj+Cus7hiahVa3jqyMiFrW+J1QXP680NoMYjgzf4J1P7WnRdR2cAGWHnzHmD+HkNyZTnPzGZIqT35hMqQe1uqVwLDIIBuSKIromzaSOgu6B2ERCJTmgjkEETC3fpGkxk44JKQflUGLbHeLgVWoQJSlWUmNNcONRme91IHGP3Hz7tU40elDoc3gXKlQ/CC3JPritDs3+UPf04lT34PYpT1Jaj7ScmCbfzEAEvITS2nmhx9F0HlwLCazX2KtNxD06zl9+YzLFyW9Mpjj5jckUJ78xmVLv9lS0IchRN4WyWipHpN5zEezeIpGNBCiKEXMQAcmlRVNzaC2pY7IjIi7B9TeH61DZKTqy4DluVtLJ+0IC66hUwW8bynLHUJY7Xul6bh6ouHfwY92X+g0V8m5caAn09n++kFhExPmT+xI77Kkb8HWtU3ImtYrFJAI2Gwz2Se1jea3fdEmvMeYP4eQ3JlOc/MZkipPfmEypb/a0BJNAUQqEBXL9dQkQJFaR2EQuxAH0caMS3NQySBI06bgukYyEm3MQDMlJdtGqgHXZ6vPeZGw3l+lu1peR+gLOwHE4gRLc+Uz3rxyD4/PeLY3BWnbOP8c1PvxSRem9PrxPNDAEXJb0fqYKbKml8t2/98dfxw4/Y8y3OPmNyRQnvzGZ4uQ3JlPq3UpLMKnUlnrKkUi2APfcdVxxJKiQ8ELuO4qRSEYlvbxGELRAsItghyBdm4Q86ilHE1lTSzpT6TqXXJok+FK59DPqZVjrvuyf6yCPGx89l9ju8HcSK0Za0rt8yZNtT0OFPCr9JsGWhLOqhPcucdgIvZ90jU5hFyroqV8j6oKgNfrLb0ymOPmNyRQnvzGZ4uQ3JlPqXehJR4IfiRo01OCySnemoeuIymhBwSBhcQETcPG6iU4pOo6u23UsuR3pfBQl/wzDT7r2Zd7qvp4utQQ3tdfjooLrDLWstnh8T2IfHB9LrD+YSOzJ4R29RkR8NNT36cVaHZUkutL7mdp3ksS9PjgdU59hRERT6vtE4iwNAlmhW9UYkyVOfmMyxclvTKY4+Y3JlPo2DFmgwsMBuOwWlYoNF5WKKV0iWerQDzqOhieUra6chl8Q1B9vCcJJp3hJrkGa/JvoTFyVUIoM6ynI9oVLTBcVF+AuxNJoWA/t9bQHInAPBKihDtg4mRxIrFK9L77UdoIREfFJqAvxqNV+fRct9KNMdG2icA3l0uSS7UGsq+clXRvL0yFfKOYvvzGZ4uQ3JlOc/MZkipPfmEyp31urUkLy3GsotZ2D4+i0UscgDfeI4HJEFM5AlyJhiUuR00S3VLrEmAL+H6U+g3R+6nAQuucZlAjTYIkVPcTO3oq6L/M2TWyic1MnIA97Kn5d9lSQpt17EVzS+6zVacAnjQp+9ByprJqEMxI+W+hlSAJw6oCUCB5UQ+98aqm9v/zGZIqT35hMcfIbkylOfmMyxclvTKbU312oAjkHRXq7ViV2Cs0/j0qNnZZaCx7B9slNGlKSykl9CLoUezk30YobETEEZZ/U/j40uEz96wM10STlOtUGis0fI72XACnfM+gFQPXuJ2Br/R1MzZlVqlLTZKbJmtX+41bfvQv46xOtm2zOqOzDs6U6e/rrwRL+Yjau+P3chtwawTuGPRUgN/zlNyZTnPzGZIqT35hMcfIbkyn13lqFjvlabYSzlQo0O2A33AJr4qhiu2KqPZQgq2TqOO5e6Lqp7p+sl2OwL0dE7IEYswUC1hCuU3eM/b7KOTQoJbEQm5uC2NQlfKYKoth8MrHun+y0JF7SdB2a4NQ1SWlKdfrwfEi8xHcssfkrvccoAtJaQJyL4H2hPhs1fNPbwiO6jTHf4OQ3JlOc/MZkipPfmEypD0Ggm0HzwWP4b2IOIkIFIlCXSEZgQ0IQQGiqzBKbVKYJiNRcca8aS+xepZNmIiIeFHqPeyCc9kAvohWuQHObwvMe1GniF40G72qsSlOTSGyi+nIcsQ6TauhcchzSJJ15gBsPhMEIdu51jsC+QgnvMj2bjo6pQuoEJxIGIyLmJA6CqFwlCrb+8huTKU5+YzLFyW9Mpjj5jcmU+qO+ikjTAibxgKByAmLMAibIDKCMNSICjHYo7pFYRaIPQS4tKlmlUtuDciSx90NjEREfLFRkuQWuOmIG/wfPQXSdltAktNb1THo3NNbo5BoqMY2IaEtwRYIgSiOnSTilGDWpxOk1ILrhnlKD0o5rp4rABLr+2jQnIL13qVOPIiLm4MadrvX+qHyX1uMvvzGZ4uQ3JlOc/MZkipPfmEypH61hXDEIeTMQ/MhVleqe6oJKQlPLKOlcEhAb6JtG5ak3CxWlPliye+rD8bHE9u9r/7g1jBG/nKhL62Ki1z6+1LLhVWjsRU9FwBe9bYmRey6C95D6EVKpdmrfQup52EvsZYjCWcku0gX0AKQy3/NWR8tPYLw39kKE6Tz4HtP7mVjmG8H7NSEXYqJI6i+/MZni5DcmU5z8xmSKk9+YTKmPVipKTUD8ILEhVdy7zkhs7D9HZY8k5HWUQqYcV8Mab4eKUj+oJ/ibD38K5c3vvgcX12vvPH0psfmjM/29T/UaL6Yquo3h//RNeyuSI49KtUnI60OfuT7YO+k9oTeHhoBQKXkElyJfggh42Ogobywvh3eHYuu1XpfWTXSV9JLTNTUH6Th/+Y3JFCe/MZni5DcmU5z8xmRKfQFupwsQ/KgXGpVGohjTIfilCiokgKQKL8SgUlGKhnbcb3Xdb354gr9Z//1PJVa+8wOJrc9eSaz49NcS651/rMc9UsFvRoJWYk85uucIdjtivz4S8iA2Shxe0oNvEUlkNOSk3/EdG8C7twTnZlXrb5KDlcRnnNILZfEE5UuXo5X6Vqa+83b4GWO+xclvTKY4+Y3JFCe/MZlST1otW5w2KgJ29RW7SqqLKYJLHGmaLIkaWFoJ/dAq6HtH4gc5xHagL1zvPvfwK+69pbG9OxJbX4JDcAnuyWN1c70+35XYEzDpvVzp/k0g1rWnJDihEAui1gB6yg1BLKRyaXImFuCUo46QvQ6H3ximn9AXb4vET9Up8Z0lpkt93puUpkdcIwcTpz77y29Mpjj5jckUJ78xmeLkNyZT6tOllvRyiWKaWLGp4LeJww8Bsxude7FSge0JKEunv+S+dzff/VeJrQ9+pbHnhxJb/PqJxA5/oxOCH5far+9Jqet52eienkFsBiWiEemDTmivqXR4COW7N0EYvLPSb9Eu7F8P1jLoGNqxBaXfIxgscwwuxL2BCqwrEFhpKjIJ19Sbjwd5pAl714H2yl9+YzLFyW9Mpjj5jckUJ78xmVLPGhV9Uh1CSKIwGLGZ4ylVgKRbISfgSaPDS/4L+vWNnj/Ay/z4n/T8repUYouVil/ztToBT2DQxZcwl+IInHtn4Nqk/m+pjrEILsumgSgtiYUQG8LGPFjqvrzf1956B3c1NrjB91KNoWS20fUcP1bn5uz4lsQe93UTaBIwQe8dOVVJBIxIH2hD+WvBzxjzLU5+YzLFyW9Mpjj5jckUJ78xmVKTMkg18HQcKY2kaHap+nQsKcN0/kYqJ8RoItGzRtX+/4BGjxERvx2q77MGyyg1qRyvNUb68VGhazwDW/Im05UiuFln6tQlmqS0AI81mbP34NyHP9KGqaN/+L7Einv3eEGvtGFq86tHElt+ovf8utK9Plvrs6XnTRbyVNs0NcbtOpb+AoAWe0hBf/mNyRQnvzGZ4uQ3JlOc/MZkSk3iHtkVcbIINeCMtAacESyAoAh4Dcvwn5IWhKrJmmvgFyBhNXAvJYiSQ7Dy9kFguwQ77lnidCUS/LpEPNr/AYze7pr4c5UFCHnzQve0D89w8P19iZU/+UeN7bPtuv3Fv+i1v9YJSR+fP9TYUPf6xVKtxdTwNlVgJfGZxnt/8y9Jv5kqAvrLb0ymOPmNyRQnvzGZ4uQ3JlNqcnOlOrxSmzpepz9AcqPQRDcfkSogoqAJ4lVXnEY807Vp1DW7EPX3qA8BOc4I2ucIFvwoRoIfCZokfZFDs4TtK29qE83q/nclVgy24CoR7VSfz+svtDnqZ329+LOV9kU4hUaoqWO7CRRdOz7Ja2hSmurbpPfJX35jMsXJb0ymOPmNyRQnvzGZUpNAQyIEijug0KxgEgu5wyJYmCpC3VLXKXtMgcQYEm0uoVy28zdBekltkEl7QJCAiOPUYVpMapl2BO91akkvQWfStesC9rTStdCY89Xrp3jt1WePJfbqVAW/84G+Y8vEkvNNHKgkUqc6J7uuTeKeHX7GmG9x8huTKU5+YzLFyW9MptSpAgYJRkMQ8nrgBOty7ZHglyp2zKFsNRV07oFINi1BTOsQ8UhETJ1IlApdm9ZNYmjZWSaqYG9G+k0Q7RqaQAPXSP3qrF9pDz8q011/8SWef/Lz1xJ7Umi/vyXcM4mc5HSk3Eh1qpJoPqhYIE8tq08VAf3lNyZTnPzGZIqT35hMcfIbkyk1Dtko08SPcaXjirdLjVUdTrI5ONZSR0ETqYMSUs8lUbEt052FyWPEAexvmCgqkuBD53Y9V+oB2IP7pr0qQFi8hEEXk1Kv/XQ9lNiDn7+Q2PAX/yaxo6+2JRYR8ZupinufQPnuUaibcwbvJ70n6T3zNDauNV8O+jsSi+B8oyEpOEQEjvOX35hMcfIbkylOfmMyxclvTKbg0I5UZ9NWqZNpb5Yq2oyCXXtL8H7RtamUFXukgfkuVQRE4SxxEnAEO6jYPZlWJorXSCy/XsNADBJ2Zx0DSBoQ41L7Oi7KtDLmz+i7M1Sh66uj+xLrHempZ3DPERGHA72Xw7U6N1+22pvvVaMDOk6W2hMQS6jh2YxqzZf9vgqVb/R1UElExC7kG/WOPFnp/VF5ur/8xmSKk9+YTHHyG5MpTn5jMqVOncg6ArFhr1DH0T2I3Vmx4NeAdjYCYWnZU7GKBL+TtYoxKAySIyuxj15XmS7MU0gWEVMdYql99FrohbemvoUtO/yWIJJiXzjqwwf7d9mq2DRtVZQ6qnX/PgYBuU9l3x2a6aLRezkHQYyGn5wuVQScNXovOIgFnsOwAsGv1mEjt+CeIyL2C83LGYnmIOJPcMCKMSZLnPzGZIqT35hMcfIbkyk19mYDcYfcfHdBmPirpQqI78NgiS4eQYlj1HsSanoq5JBQRe6r1NJYcsU1wSIZCXSpk1pTh3akkipepk41jmBRi0TE1NJoEs7O65nETqCMlUTqrmdIw1RIgDxf6rVpjbSnWNoMzxbF9UJj4w5H7HgNzlv6fsOj6MEa/eU3JlOc/MZkipPfmExx8huTKfV0qWIcDc5owWW3t9bjPmhVOPnghy/x4tVYRaTbH2tZ52KuJY6ntR531l5K7KLR9WCZLwlaiX30IlhkS+3htwKBhvoeYolwYnkyiVLVNXRG7AsIYhrdMz4zCBUgDJKQR/fXJXJS7zoafpI69Zkn8qY9h1S6zqR7BHk8dkNFxJEdfsaY/8fJb0ymOPmNyRQnvzGZ4uQ3JlPqS7AwUj3wCSjp01pVznGtiu3ohzyBpHr3ocTefOMLiX34z1pX/bhWa/GzaiyxSa3rJrU/1YrbZYnFWns4lNRr+k3868E1/vrwx16jG7JE018kALQGp8VSR8j34J2NiOiDfZb+msW9EvQvRfS8aT1kNadJOjTN6DR4/Hwf1rgNlt8x/VVgZXuvMeYbnPzGZIqT35hMcfIbkyk12RrnjQoOZ42Kbi/60IRxqULc99oJX/3hW7qgsYp2b//qlxJ763dvSOwxCH6nta6b6sspRoIY1WRHcNNTEpF6IDZR00u69hJsqedgp57CRBoSObv0vlSLbuoocBTy4Np0bqqg2dXcFPcFvnlTaOpJNmAaX76CZ0vPm8T110udCkTri4hoK32Od0poorvWez6AB+4vvzGZ4uQ3JlOc/MZkipPfmExB9YpcVSR+0Cjgr2ACyYefqKgREbH9o0MN9lSsGN5W8eTelyoE3e6r+PGyGklsUqnrjxxZ/QqaK0JDyYiI7Qomy4A4SIIfNXGken4ax0xiIQlx5yu9Z2puGrGZ4Jdax06OQ3I/UhPVNQhfXSLZAKbc0B5Q3X/qhCR6DiT4TRMb2XaJnEtoWlv1tLntLUjr/VbX6C+/MZni5DcmU5z8xmSKk9+YTKlLbOwIE0hAjJmvVTB6Xquw8PJzLukdf/aFXuf2TT2w1GvvgBC0D0LHGCYNYUknlISSYEfCXkTELsTpOgOIjRIFvxk1o4TYtFJhicSmZqWOswgW2VKde6mg4AexrpHofw5Sy45ZIKVSZHUHovuxQ/CjZ0GTtBYgco9hhry//MZkipPfmExx8huTKU5+YzLl/wCIQp+CzkHFFgAAAABJRU5ErkJggg==" y="-9220.434893"/>
</g>
<g id="matplotlib.axis_517">
<g id="xtick_775"/>
<g id="xtick_776"/>
<g id="xtick_777"/>
</g>
<g id="matplotlib.axis_518">
<g id="ytick_1291"/>
<g id="ytick_1292"/>
<g id="ytick_1293"/>
<g id="ytick_1294"/>
<g id="ytick_1295"/>
</g>
</g>
<g id="axes_260">
<g id="patch_261">
<path d="M 434.924375 9342.834893
L 557.214375 9342.834893
L 557.214375 9220.544893
L 434.924375 9220.544893
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p8826a84318)">
<image height="122.4" id="imageb59b878a15" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHfhJREFUeJztnUmPbNlVhfdtoss+X5OvqfeqypSrTGGwhKUCCSTGICYw4Vcw4H/4NzBlCnOQQEJIjDAylO3CVON69fqXfWRmRNxoGFgweOs70gnCAslnfcOdN+Lee87deaUVa+9dbY/eX8VbzJeLt0OxXMlhSFPVEus3LR47aHsSGzV9ibV1I7EqqqzrWYVeN91LXen3DWq9voN2G8/zoN2V2L16mHXuF6uJxJ50pxIbz/W4HqzNXrMlsUftnsQ+Cb3miIg/avXc7/2p7mHzyW/rhy8vJHT6lz+U2F89e0di/xz62efzS4ldLXQdrhZTvZaImCxmElvCM0F7vd0Oso7rV7A2kAcEPQ+DmvNlp9LcuA3P2L3Q4+6s9DnJu0JjzK8cTn5jCsXJb0yhOPmNKZT2zkiFoNPJWGKzxTzrCysQzjaFxL1cQYUEv4hl1jlIBKRYREQNnycxp4Prmax0bWfLvPUmFnB/41UnsacNn+PzK30mjn70VGJb/X/Tc79U0e5nX96R2NcjvZ5zEDQnSxXsZrBevM/8PK6Wuj7LFcX0O9tKhTMS/Og5oe/r1SA0w/dFRGyTKAnXs7XS3BjB8vjNb0yhOPmNKRQnvzGF4uQ3plDao/6+BFFsmqkY04ETMCWIbUKu8EaiHQlBue7A3OMiIjoQ2a5C12ey0th4qe402oPce1mR0AjnvQThLCLiVauusZOfq7Ox2XojsZvnKkA9Adfm+epGYtdLFQFJ3FtkinPrQN9J603Cbg/EZxKkKTYEwW67UmEvIuIA4rfAuXe41Gvc0tvzm9+YUnHyG1MoTn5jCsXJb0yhtLegRPWkUYfftFYxhqByyZTrj8QqOhaP28T1V+WJQyTukDAUEXEFTrSuUpHtGpx2Z/MriZHgR+W7m5BaLdCLYjpV19nsWA8cn2kZ7DW42Ej4JHGPRGWKkUMvRa4LlUREeu7I9bcH5beHEDsIXdfdxM7sLPTcO3DbI7ju4ZLES2NMkTj5jSkUJ78xheLkN6ZQ2gGVKEIPMerDRw4okqRSQhwJWCSe5LqlSKDDkk4QRHKFypTgdwNCHomA1H/uslO3G51nE/dkrrssImJvAaWnQxDZ5nnX01A5Ke0L7EFubB3oOSHoPFQuTTl0p1bh84OlCn6PO/2+/UQ5N2URPY10XIVuRWNMkTj5jSkUJ78xheLkN6ZQWuofR+IQDc7ILaNMOdMGjZYoDiFGImCuaENCHsVQWCJhMOEOpJLZDoQbGi5Bn6VzkwiITkBYLxQQJfILGlwLXe9uAs8E2AMPFiBqwcCWAZSsXle6XvR8khAXEVHDdi0ynwlyEs5hr4h9KLUlce+jnrppt7ZUKI6I6Dr9zgk4LxewB2Cy9JvfmFJx8htTKE5+YwrFyW9MoTj5jSmU9hhqyUnRRNttm/e/gz4bwTbi3BHIVFdNiu8UmkLS/WHtNkikKWspfSeq+JnWVLqe6QLuJVORrkEhfw2jvCMinkGPhztjPfZgBvbsRvfgXqh6/e2VNgl9A2POaU8v52qHTk046jIbgBK0V7zeMAEK7MtUUz8a6dqMdlntbyY8yedt6Ec4cob7zW9MoTj5jSkUJ78xheLkN6ZQ2tNO7YUkNmXX1Gc24IxI9A0AcW8IIiB95yRT3CNxaJ3pPLnQ+tA903pPVir6kNg0hT4CdH8kcpENOCJi2AP77GAksW+DtfRR71pi9w70GfudUz3v5XBHYjcwRpxs0yTsRmw23Ycs1ngcnReiM8gNsuzOp7wvi073hS6RLNY1+Jz95jemUJz8xhSKk9+YQnHyG1Mo7bjThpJUf9/AmGU6LndMdgTX5GMvgQ3+R+UKPr06T5wb1boOEfn9BTr4PNWs05rNFip05cZILMwVtCIilr3bEhv2VAR8B+r+d+/qM9Yf6jV++OqexD7vaSPMlyCcpUS83NHbmwi+1AtgUul5T6FXxfGVruF8nhD8QMibwrHLzHvxm9+YQnHyG1MoTn5jCsXJb0yhtCQE4YG1HreAJoVE0lEF/3p6KxXZyImWW9JLkFBJQt5OrWWnh40KNBER/cz/ozO4xlNwNZJb8apS4YzWloS8WajARkJjRMQJuD5PW3XfzSpdixqErgrcZTQB6M5CY/t9FckaWOuUqEzrs1jqNTYg+OL3UZkvuEgvoZT4Wav73AQ8YzMWlRu6FxI/4bO0On7zG1MoTn5jCsXJb0yhOPmNKRRsCoalo9A/joSl3JHYERFzEAzRIZhZYkzCC/b/g958eyDk3Wu0l93DmgW/nZVeTwcyy0noOk5qmLoDoiT14aMSahJ8aF/WgfZFpThmSaWo4FbbqXQdDlYqfpE4mxoDj2O2qYcfhDoQualcmkaxv6y0z+ASLvGyp6t4p2EhnZ6xAVw3fZpWx29+YwrFyW9MoTj5jSkUJ78xhYKCX245KQkn65RG9jb4PPYPJFEKynK3QDC6BQMs3gVx78M5D07YgYEMp41e47QB8RKum9aBXGg05pz2j9aLPps6lqCued1C5abuBvaqhQEW0K/vaJnnsnwF+xzBYjEJ2gtwJoIpMruXJToBQVWcgIt0WmsZc0TELRDID+D9vQ+3sgtj0v3mN6ZQnPzGFIqT35hCcfIbUyh5Yz8j4ZSC0sjcz6biuU60IYhV5Oaj2C4IKvcqFV4eLPWzjzueBrtN6lDoeXo4+TcPKm2u27w+iLSu64izNzAc5HWt+/9ypuu4c6EOuMFQv6+qdCUGsDhD6jGZKVJGJErMSRgMcPiB8H1T6f3lCtJUntxPlBcP4dgDOG4PxL3HtQ5T8ZvfmEJx8htTKE5+YwrFyW9MobS5vcsIEvxwSEJqoAJ8Ho8FWZIElWGrzr3dRkW32+CqugcFqkdzvZbDWsWdiIhBq0LQsONebG9DvQdJDKWSXnIwUjkw7QuWtgaXrb6Za1+//4SBGnsD7fUX4z0J3brSdbyB/o1jMLtdQX/D1L2Q0EnPPD2L5NJLiddvQ+XlN1D6SyJuPzE9eQviHTkOcy4w/OY3plic/MYUipPfmEJx8htTKC1NoiVI/CAW4C7qMgeDpM5Dos2gVoGOxJPtSo87hNidhf4fPIK+hXs7POiC3GntDAQjOC53kjD168t1ttH3kbCXup4OjiVxdtHX2PlQeyE+WmhZLj2Jbyp9dsYgnKWesdwSXHoN5k6RJmhtKTYF8XIKAz8iIhYNlOU2MLl3oM/3T1a6B37zG1MoTn5jCsXJb0yhOPmNKZS2zXSDUcnjpizJDbgAYQqGOczbPBGRylaxPx7cXkMOr8QydJ3KVVMo353Dd5I3jcS9lkp64TjaPxKWJnN2K5J4RuchAQsdnlCXu2zUCXibBp+AQEo9D6nEO3U9JNrhvZDrDx4AWlv+LAh2cC03C96Xq1anNB83Wqr7ExDxp3B/fvMbUyhOfmMKxclvTKE4+Y0pFCe/MYXSokWTar8za+9Ttfu5UL107shwqpcerzR2DHXjPbBJdpXW47+cJKbcwG2/gOaaV3A9BNmXKUbrfbVQCzI1nqRYBFus4UcY/NVkvFBF+hrsqjChG1X8LfgF4A5MV0o1I51Cn4UJqPN03ZdzHbNNv5BMu7z+AmQXpl/bUrbr8Vyv8Wque02/KtB3+s1vTKE4+Y0pFCe/MYXi5DemUFoSJkhgw7HGmQ08U5C1kcQKOg8JfiTQkJVzUqv4cQxju7+AaT/7PRb89qBHAImXl4la7bfZhqlCOAoaBL8OmkduColVxDqNQuUcNJ0HbMWPQ3sBPGq1KWsETtmOC5g+9GKpz86T6kRiL+G5o9wgmkbFvUGrz82o4cavubbkCVwjCZV+8xtTKE5+YwrFyW9MoTj5jSmUFt1cJORtIO5RLXgEi1W5Y6PpeqgOGkUSEPzO4Tiqn98CYTAiYh+mANHklZtMwW+A48b1++ZVXr36OpC4lzs6nZ4JGu99CVLcGCbpkHPy4UrXYTdfZ47nLawjqI1njQqLx/Vl1jloD2i60hZMlNpJiJf0neT6m1a63oTf/MYUipPfmEJx8htTKE5+YwqlJRGh3+RN8aHOk7mTfSL4P88auo2Q6wTcZBoOTa6JiOgadXn1QbTLHfHcg/JdAh2a4PDLPe+mUIkxlVqfhe7LIczsOQJx7wjqi3dgUlRExLjRPSTpsoXoAAQ6ct9d11pWiyPkocnoNgh+W+DujOA9zJ1IRGPJ/eY3plCc/MYUipPfmEJx8htTKC05jFZgq5o1eSOHO+gLl3ICkvCW2/uMREkSNQicKgPnwPJUcNRFcBktjQwnpxw5CUk4beB/NYlp1NcNS7IT+0LXSP31ckVEEgFp74cgVD3u9BofhrrausR77LhSt9xlQE9IkJpb+M6dRr9v2lPxkqcegfgIa02CbSqeOzWJ8JvfmEJx8htTKE5+YwrFyW9MobS3e7saJGcbiA3XMByCBChy2UVwrzFy0FGZLw07yBXYqE/gMtMAlxT8QESawzWS+2pe6WdpHUgEpDLmcUfDJvLKPCP4jYDiXmaZLwldA9iro4V+30fDc4ndfTyW2MmzbTz3T6cq0I1hvWfgDiXX5xAcflutiubXJLpCDuX2nYxgERHHg2eOJfeb35hCcfIbUyhOfmMKxclvTKG03+odSHAYKsZ04IA6b6FUE6adni+u8eQkdpBQQm4wEjBI3MudQkzkOt1S15MbI3KF03Gn630DAxrI4Ze8lkwhj4TY3F5/dNQeqK53Hl5JbOtDLY2dXupz84s/aGgOz8QMBNtJpnsu91mk/UuJ4USuU5KEShLI/eY3plCc/MYUipPfmEJx8htTKO0nS3VG9cDMdQ3/Jp7DAItvQCxMDe0gAYOEqdyps7kTYqnXH5UD05CMQaK33hDi5AYjFyLfnwp5JIZSSWfu1NgUuaIduf5oT8mteAXDS85qPe/sGvbgGITmk328xgt4bq9B3LsEgfVyoYI0CbHkVKU9mK1R7k7wIBBwukK5Oz23fvMbUyhOfmMKxclvTKE4+Y0plPb3FloeSf3sjjstWxz0VVjooMfZPDGKYwp9ASdQoriE0mEUSkBsIgEKxb3MAQ2jxJRe6u22A8MXhij4gXsSBn6QuEduvkUNPQppInKmsBeRGMYCwild4xXs3+uFOve+7G1J7GfPb0ts75Xe86cVl/R+2dNjX4Hj9GSueUAO1FyBlcQ97KMIa5jalx5MFyZxj55bej795jemUJz8xhSKk9+YQnHyG1Mo7aP3tUfafAo9116roHI925HYBQhnMxicEBExgcm210sVh6hPWa6AlSvukQOKYlsJwY/iO5V+/rDS41pwtl2AWJhbDnw6VfGKXGjrgKXRIAKS0EVTbElg+6zW52Q4VOdeHSOJfRVcNv4NnOd1dyGxi04/T+IeldCSkJcr7pFLkkqlU3F6Jui5Jbep3/zGFIqT35hCcfIbUyhOfmMKxclvTKGo7B0RNYzo7vdV+dyfqqJ5d6FK4yVYECMiTkAN74OtlRRNmpxDx5GyT2PJybZLNfpU4x8RMYTr3oLY3dDvvL+A0dvwq0CvUbV3AuOhN1GpIxJW3l8yZM8+X2oPgx/CtVyv9J7P56z2j6GhLE05ol8pCOxhADEeA5/XgLNKrD9+Z2YDTxrv7je/MYXi5DemUJz8xhSKk9+YQmlffaMjumuoB7+ZwZSUhA1Rvi8RJ2FpAbX/uY058RwgiBDUWHMAgh2Nlo6I6MFdbsOx3+70uI9XWtt+s9BzLwZqfz1u1WJNjSdJ3EtNi6G1zZ0M08vsi7AN9eUtrBeJgCTukYgXwc1DceoO2MAJbDoLDUFpvXKfRRyHHnzdNLabjms9otsY8984+Y0pFCe/MYXi5DemUNrPoSaf/iOMoeb8vA+NPmsVK06C3VPjFYyhhtr93HppEl6IBhx15CwkwS+SDj+NP1ipSPq9WmvJ3/u+9lSAvqoR/34koVcj3b/jVgWxder5NxlhTsIpuSzJjTmHyUXU0JWOS4lkPGb9f//Oo3OTkEfC4KbQd6bu+21ITPWb35hCcfIbUyhOfmMKxclvTKG0n4NoNwXj3gU4764qFT/GMHr5FJpyRkScgRONhKncMdu54kcNzkQadUwlvdvBDTwPoDz544lez3ufnOl5vv9IYiTu/Eb9VGJf/fhdiX3RaLPVs0ZdhCReRURUq/xJPjnwFB917k3gXUTjy9cZa50LrTc6UDdwm+aSauCZeyyJqSMQr/3mN6ZQnPzGFIqT35hCcfIbUyjtZ5WKcTfglLuCvmkTEHJmINBcL7nckkSfbAdVZj80nDSTWRo5h+OoL19ExLtLEPx2TiTW/+hQYtXD+xobaJ/BrZnuwcefqpD3j5V+9mu47nWEpVywHHiZtwe510OlxKly2VyBLldAJmdprvOOrptIjegmIY++k9aRStH95jemUJz8xhSKk9+YQnHyG1Mo7RcLLSedopBHgyDyxBRyaUWw8yt32MH/BdT3bBRc0nsIt9i24Pya55Udx0hdetXdWxK7c/sriR1d3JYYjW3eFHJKLkGr4vHeeUNXcmOpQRf4jOKR/z/UmSJeRFoIfBsSzUmw95vfmEJx8htTKE5+YwrFyW9MobQvZlpiuomjjkgJdrm9+ch9lXtuIlc4IWYgVEVEPAFx71/PVaCr/+6NxI6mP5ZY89FjPcmluvmaRs+7v4IBIjCFmMqYIyJW4MgjyEmGwhssN/WUGzYqSm7V6laknoAkHkfwABMa8EH9H9EJCPtPzxOtzabCNQmnNF14PFfn7LNK89xvfmMKxclvTKE4+Y0pFCe/MYXSXnYqiBAkapDDax1yp8HmCiXk/GpB1KLjSPyiHm4XMGgkIuJLWIqTgQpYX1zeldjHf63r8J39byQ23FKX1s+fH0jsZqjXTQIbCWfrkLtXdO6dVqf03oLeg3ebLYltg8vyOuHbe7lQkfRkrrExlJenRMS3QWGwAmEYHmMuOU+4Fau8PoOrLk8Y9JvfmEJx8htTKE5+YwrFyW9MobRTGJKRW2aIpZVruOdQrNhA3Os3MGmXXGONusaG5IADoapLDGg4XWkvxNPQ2NewPv8y0PPcme1K7GCq97cAce9ZgHgFZZ6pMl8S6NBdhmXeetw2rPf9dk9ij2sV/N6BISmHUDdMg2YiIp600M8QXIMv5joW+QyEQVqHeZ3pDkSn6hoDP3IFQzhPBYKo3/zGFIqT35hCcfIbUyhOfmMKpc0V6DYpgyVRYh1yhUUUAcHFRtN3KdbC/0YSKSNY/JpALHdYxWu4broeEmJJlJwsVdjtJwaQ0NpiKSsIb7TXB60KeQ9rde69u1Jx7zGY7I5IpNbDIiLiLojAo96OHghLQXtK5cAkkKfKpQUyAibyJfeZb+q858RvfmMKxclvTKE4+Y0pFCe/MYXi5DemUFqqdyeodp+URoKmuERE1CBq0neS0pwLqeuk4rZLGGFc0/gZPs8UvpMmpxAN/A/ObaJJoG0aFOTkKGjY69z9p19X7tQjiT0A2+4jUPYfg7p+f1+tuL0Br/X+sf6qcLNQtf9lo9fznMZak2qeqcJv+qrFPQBlP/fXMb/5jSkUJ78xheLkN6ZQnPzGFEpL4kCuOJQ7qaRNCEtU+91kjvimyT7UcJHEL/rsTa3CEolXdH8pSAiiWnlexzzRjsRQrCWHWKoBa66QS7bW/UbFvXu1Nut8Z66f/bWlNpN9791Tie1+AGJoy/fSfnqp1/hC7cb9Biy6sFe0fyhSZzbwzF3r1LEk+NEzanuvMeZ/cPIbUyhOfmMKxclvTKG0JH6RANWD/xMkLJBIlqptps+jaLfQRpgdOOo6EgFpUskGzUhTjki6bxQMwTWYK7pmi5dLFS9pbVJiE43Kpmaf29AI8xaIe/dWug7vdrovJO4d/IE2Mm0+fF9iqwsV9iIiRs8/l1j9AoRm2OstaOpKzUjJyZk73ptMpKl9yW2sm9t7w29+YwrFyW9MoTj5jSkUJ78xhYKCXw+aHpKIQILWCEojt0AYiogYwOevQawi8WQSehzdC04vIcGPmh6SIFnx2OZ5o+deNeCUzHQI5oqAJO5dz0EgpX1OiJcUp7LjPdjX25Xu/9253vNRT918ux+CEPdbvy6x6v3vSCw+/7HGImK1VMGvyxS09+BebsDBSM1RZ3Ve81baUxL2IvKfUYLEYr/5jSkUJ78xheLkN6ZQnPzGFAqObKFSRnJ4kbi306jD6xB6uEVEHIBgdFWreDKBPm7noeOTSdwjkQV75pGjjrSUxDSV6VyvOxe6RhLd6DiaIENj11FsSjQknMDnt2Ff+/Cc7K40trfQ8wxG4Lzc0ecphvDs3Kibb/XNMz0uIk6fag+/M7DV0Vq0VEKb6bLL7nm5hsMvt/w3W1jM+jZjzK8cTn5jCsXJb0yhOPmNKZSW3EQDKOncaVXw2YHyzQMQhu5XLPjdDz3PrAIRsK8C1PFMRZ+rSp1tuQ6oTcHhIFBOnPvZbpn3fxldjfh9ee7HCHYhUpnvVUvONv3OKTg5J1P9vu657mn908/0Am90n8/+/kyPi4hPL+5L7PlAr/EcSsSvViA+g5uP1pvILhsHITWChUU6N/XGpOfEb35jCsXJb0yhOPmNKRQnvzGF0pKTjNx8JO4d0oCGSo/71gqcWxHxnRkN7dDjrkf7Enva135vVMqaK7plTxxOjekFcMgGiGyz0GvcxM1Fgg8P/Ei4FcHhN55PJHbaXkvsJbg5jxp9xp5N9bjhp9qvb/vnb/S8p/rZ/5g/kFhExGdQTf4s9F5ew8CQ04XGzubqLKW1ye0d2a/yej+mPk9C7jw0Rs+E3/zGFIqT35hCcfIbUyhOfmMKpcUBHeAwGoIIsVepMEiuPRL2IiK+d1fFnK19LVG9/OIdif2otyexk3aM5/mlknDFUfkviYPoBqOBrlXepGQSELE8OVMETJ2HBKzLuQpirxoVAZ+AO7Df19jl5EBi3VSv5TUY4F71VeSKiDiGXo/HKxWGTxZ63SedPk8XnR6HJdSwLzhRF9Z6kBBiK3hXkzBMg2W4/58xpkic/MYUipPfmEJx8htTKG3uNFj8MJR+7qz0/8ndUGEoImL/kTqj+o/VvfXdr7XU825ob7YnMEE1JWq9DQpia7j5luC0InL7q+VOWqXPkutrmVl2moI+T/0Dz8AV9xSE4QW4Q79p9NmZwh5cQfntGGIRETcQv1iq4HcNk6ApRuIeiaH0PFFetbBXtH8RES04JcmhS05Awm9+YwrFyW9MoTj5jSkUJ78xhdKSgEFCx1Wj4s4Y+u2NKxWGLlcq+ERE3LyB0sVaBaPlSs+zC2XH1GeuW4IYA8ILlryCyLUgO15wr8Dc3m5YWgshFJE2KOkl19c60Lnp2XlTqStuslJRi4aAYG9EKFntEms9A8GP+vB1cD20p9TfEMVZLKHNFHHXEJqpJLiGfR3VWlbvN78xheLkN6ZQnPzGFIqT35hCcfIbUyjtzVxV/EGjiu0lqPDnoCC+gbHbT1tu4Ln/ROu3t1+pEvtiplbeW0NVTg/abYnRuOkpqL0EqebrQCrwJrX2pAJjPf8aajGRe42oxMOvK+OF2rinoMKTGk6/zMxBmc/9ZSUiMa6axmzTiG6qi4dmDjXYbqnOnpp1php4Up8NarZLyj79kuI3vzGF4uQ3plCc/MYUipPfmEJpSTAiy+/NUoXBGQovJFStcUGtXs+jkTZS/OMbrQcfDXUc89+CEPRsciKxCQhV6whnaJWFtaVGn01m/TXtFdmNN+lhkIrTWuQ2KCWL7XKZd40k7lG9e2qvaNw1CWcNvAdz6+JJ2MXpPI0KeVstWNdbHmm/DWL6CAS/beifMCIbMJ7FGPMrj5PfmEJx8htTKE5+YwqlxZp1iNFkkFswjvk3lypK/P5IBbaIiAff1zrv9h2dxFMf7EjsA5j48t1/+FJiy58+ktjfQJNJcgJuWgNPa0ZrSzXiBI9eBlFxked2SzX1XK7yRkH3SICs856n3HvGhqdrCLEkvJHTLlckzYX2ftio8+6wp8/27UadqhEs5A1BvOzDO30I1+M3vzGF4uQ3plCc/MYUipPfmEJpcwWRuzAS+3djV2J/8uCZxA7/7Ft48uqDDzV2eCSx+v4HGrutQl7zhz+R2J//xQ8k9sVXDyX2T52KgFSemiq3JJfXHESy3NJTdI0t8oS43FLilMhFTsIaGrPS/bEjD0ZT13qNOG4aBC0SC1NuPGpwSTFySuaKkrk5tAfOvaMGBL96iOfZJrcivL97INhSzG9+YwrFyW9MoTj5jSkUJ78xhfJfytCkCUrANuUAAAAASUVORK5CYII=" y="-9220.434893"/>
</g>
<g id="matplotlib.axis_519">
<g id="xtick_778"/>
<g id="xtick_779"/>
<g id="xtick_780"/>
</g>
<g id="matplotlib.axis_520">
<g id="ytick_1296"/>
<g id="ytick_1297"/>
<g id="ytick_1298"/>
<g id="ytick_1299"/>
<g id="ytick_1300"/>
</g>
</g>
<g id="axes_261">
<g id="patch_262">
<path d="M 29.174375 9486.754317
L 151.464375 9486.754317
L 151.464375 9364.464317
L 29.174375 9364.464317
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pba32665bcf)">
<image height="122.4" id="image2fa7ba7021" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmvLNl1nXd02d2+eU21r6pIVlEUKZElybA9sOGJoZk9NuA/Z8C/gDMDAmQY8IBqQJECRRWreVWs1942b/ZNZHhQIAdvfQHHY8141jfciMw4cSJ2BrBy7b2z//buf23iFdbN7tVQTJq1xMb1Qo+D2Hq3lVhERC8vJXZa7kvsKB9IbBey7Bjvlrqera5nudtIbNvUEqthHyjWeuxOY7uO37nZwXrg+7pS5LnE8sjwWNrbptHYDmJ5pt/ZK/Q+H/ZGEnujfyKx71anEvsohhL705WuJSLiR2eXEnvw1/r54uMfSSw71PU0i5nGHj+W2PrvP5fYs3/Ua14sK4m9/b1biUVE7P27exLLH72tBw71+iKj+2+MSRInvzGJ4uQ3JlGc/MYkSjmKQoIViAMkDdV5N/GqzPQcERH9XMWOg7wvsTMQ/IgSRQ1deblbSYzWTSLXBoTBiIgViIjrTIXOLQh5ATreLgMBC36qaY0E7UMG4lxERAHHNiAC0sLpO7MWYVG/Tc9RQ2wDsWXLtexq2LQdXAvFaG9rEK9BiM1KeO5KPW611dy4eaLCYERE//Mr/U5aY6UCK12f3/zGJIqT35hEcfIbkyhOfmMSpRyAGFehuKOs857EtiACDRoV9iIi9kHce5ir2PF26HlKEJGe53otJF714Jo3JPjBPqwadisWICx1FrpAtClA8EOXXbdTvBbk0guKdTQckruw6CjObuG+zGFvZnCOiIjlUsWvZqaCb9ze6HFrOG461eNu7iRWz3Td262ucQa5sR6zQF78Qr/z8IU6GLOyqwhsjEkSJ78xieLkNyZRnPzGJEpJghhBx1Xw27GfqTjXAyEuIuI8U8Hv/UY//0jNc7jqUaWfbeDnrYB1r0OddyTYtZX03mUq3EwyLSee1t32m8RGdNlR2TAcR7Gu974NcvORWFjC/R8Weq8G4Pgkh99dqOj6suD32MuFCsj3/uWlxEbLf5VYNlCxcDeHcvAbXc/0iV7f9VRLbS+hrH3bcltWV8cSO7zR9RRZNyXWb35jEsXJb0yiOPmNSRQnvzGJUi6hRBVLJkEQIw7A9XcGImBExHdqFXg+XKt4cr/U3nybnf5uNRsVVMY9FVRWIIhsoLQZy51bnGQTKDu+gL0ggafI5hIjt9syQPkE8WsHZcPkDqxbLXrgvmspmX0Vcu5R6TbFSGBdgKPyBTyfWyqBjoh+X+/L5pOHEjv9TN185LKsGxUQ1zt9TsaN3udnpcauChJnmXGhezbaaazrG91vfmMSxclvTKI4+Y1JFCe/MYlSPm9ATKMBFiCykMPvIFOB5V0QJSIi/gxKJh/dH0usPwQH1a26A2/GKrAdgfAyJ1cVrO+8USHnrMV+tQGH3zMQ/L6CMuZnELvOtXR0utV7NYMYDfegkuW2X35yEnYdF0KuPxIBSdxbg7hHA1aIRcHH1bley9VA97sfKuSRK7Ira/jsNIM+j3BfihZxdQB3rJ//4S5Nv/mNSRQnvzGJ4uQ3JlGc/MYkipPfmEQpH691CggeCE0vDwu1096H8clnLc7gN49U0T56V9Vrkpo3S7DjjvVEhzWo/XAtpJk+BGX/va2OKo+I2MtVqb6Dfzl+09uT2D/DCOvHsMZLiJEyj1OBgNaJPaDOd6Vr01IaiT6vu49EfxX6pyAioi7087e53kMck97xP462UedyDvg+6i1BDWYj+N+1rlo/2bP95jcmUZz8xiSKk9+YRHHyG5Mo5cuV2mkrEBwG0HCRjluDwNImP9Uw5WY7hRHP8BOVgW1zWKjocwSi2wp6ARAnIEDdH2rtfUTEvXdgkgs06zx+rE0YV5mKgHcgIE5ztUOTENuHuu+usYiIHtifSRBb1Cx+doEEP4LOSxOO2kan03muYyYxEgw3IJyScNZV5CQhlfa6l8GI7dc4D8Hj640xSeLkNyZRnPzGJIqT35hEKWdrddT1wHFGrKCGmhqCUpPCiIivpgf6nZ+rgNWruolD1HBxH0S7FQhxNQg5h3Atx2c6hSciYvgIfke3up6zsYpN9260lnxQdRthTYJRBS7CvUL7LByDQzMiYgCC0wr24qZW8XNew1hrgMTirvXzO1hLm4C42kIN/U7FPXJFkrCIU5MAEudoVDkKfhBr+05aD57bgp8x5nc4+Y1JFCe/MYni5DcmUUpyMZHwQuWfMxB37hqNPW8Rlg4qFTZutyoCDja6nhEIPFXHEswKNJsKxJ09aLg4OOVGkflABbX6Th1w5FYc7cCtSM49EOJOShX39qEh6Fs5jKoOnqQ0pMk5IKZe5Hruq1LvP4nABJW8LkGcm+30HG1C46oGURrKsikPaMpRV0jca2ACFDVbXcFz922hMel+8xuTKE5+YxLFyW9Mojj5jUmUcgclk02tQscKxkPPCxD8anUM3uUsYMxQhKBeY+BYasAt1VGgWdFUGThus9Vz1Av+vSRxb7fS9ZSlCktHIIg9bLTc9q5QgY0mKb2ZqeD3/Y2KhW9uue9dD4S3NbwnLgs9z/NSY1Mov6biVHpKbqFM+8VOn7EXMOEogkuCyeFHx9XwPJHwXcFzTOXS5LKjUuS2HoxdXYiEHX7GmN/j5DcmUZz8xiSKk9+YRClJMKCpvyic1CqcUC+07WuMOi7h0DWsZwoKHQlGG/jsCgQt8gYuYNx477NTODLi3e2NxPpn+q39Q92f+9daGvtocyixVaXr2cDevrfVzfkIhNgHJyyS9Qa6xmYHDs+pOgRv5urmrBsol+51K/39YrMvsV/11QX6SdmtDP2b9eh9ISGPHH4knFF/y0FLf8RXWYIDcR68N+QGbKjHITwTdM1+8xuTKE5+YxLFyW9Mojj5jUkUVEm+zXAAEknaBL8VnIYMdHTcJIMhEnCeJRw3AVFy0qjw8jX0MhznXJ78V1+owPPBTEXA4YGepyx1jSNwBx6Bq5Ecfsfg0DwaqOB3+ID7EfZA08wKvQl7YxWmjm71O6uROtP2fqyiXZQqVL71j08kdv6rexIb9LVkOSJiBwoyuep6W73XNKCDhqRQjFyp1Gdwk2msbUoylwlDboEwSPjNb0yiOPmNSRQnvzGJ4uQ3JlFK7O1FQgccR6WMxAzEtIiIJ5mWwV4V+p0b6u1GJZggfqzhuFvoAXdV6zAN4grKaiMirofqyPvzKxWm3nipezGB3nxPYWjHEvro9UHvodLm4UjP23/Awm75ll4L2T6LMYh7J3pPy3d0MnHx4x92Osfe8BOJfbR7IbH61/f1+yJiPFCB9hbuIQ0RoVgJ70t67hY73QdyvxJtgh/lIA/o6DbZ2G9+YxLFyW9Mojj5jUkUJ78xiVLuVdpzjcobSYSoYJoolQ7egcAWEbEDAatrnzMSWcjttKH11CpUTbYaI0fWJGdX3LhSB93XlQpn93q63wUImnWA8wvEnfsN9I+Da+4PVWwqztmtmN8/wfirNCDQZXta3pq//UCPOz3XL6z1mvN7ajccPrqS2MMnLNier/Tzo0zdmDX0GaRpxT14X67h/tGzSIIfTeRtE/z6Oawb7jU9ty7pNcb8Hie/MYni5DcmUZz8xiRKeT5QUaprSS85AUksXO7Y4UeCH0HTW3HYAcRoQMOiVvfVCtZIIglNfW37/HirvfkOYGLxAQy/2M9UODuFWA0utM5sW0o/13otVKrdrP7wabLNHAS6tYqmzVwF1gamGrdRd6xOr+A9OIC9PYpuvfkqKL9Fd2DR3XlHd4ue+Tm4C5cQ85vfmERx8huTKE5+YxLFyW9Mojj5jUmU8geDNyS4BV1xBariAhTuJdTu0wSRCFbxqfEh1SKjylmrjRiVfVDsSdkn2v4JoWukkcr0r8CqAZttqZNqRmA3pYk9c1CaJ7c67Wf45UTPGxHV/LnEdnO4lguwgffAJrv8Uo+702lBzQZGZ399LbH553qOiwk38BwPutW24yQeGNx+Cj1v9+Adegz3agyTfYiqxd5Lz9gC8uC20Weeelj4zW9Mojj5jUkUJ78xieLkNyZRyv+8U3vvFH4SrnIVTp7mKiK83KkdcwbWwjZI7KCJKFuo/UZhEEQ3Evdo/DFBU1PaPt+AfZlEG7q+RQ5iKkx3uYP78hLGVR9MdULO9tctdeNfqPB2N1UL8mWtIiLJoQ8+UZvz0fGlxHbgxb2702abLzcqkD6ueET3TdbNqkz23hHcl9Odxh5uoY8EfHZODThBC6emrG2Mwd19CTbwS7CQ+81vTKI4+Y1JFCe/MYni5DcmUcq/vvdMgpOxCjlPZuo4+0VfhRfSw9Qv9g3Y0BCcUcQWmhkuoBniCkQWdPPBurGGHWIR3LCxa9k5uf5m4Mi6ARGJBLam0Ps37+vevNge4XqqjS78BkZ0X1S6j2vYh0Go2Dgcw4huYAWC1rzQ805B2IuIGIPjtAf7uAfOvfNGY8equUYfngmK7cNjN4CH5Cj4WiqYxLPZ6oM7hp4Dtxb8jDG/w8lvTKI4+Y1JFCe/MYlSnv0XHW18ejmW2PkvVbbLf/1QYuOBCgvTjEcTa1EnC1g0Kvkgh0lDpX6aJqJQmW/X5p8Ui2hx+LWUMr8KORPpPHehDS5pItEChNRxriLg84qbUfYb3ccFWNGuoXR0CgLbEvaWoHtPTS+prBoG7rR+/gAm9twHkeyo0c+uSNAGlZv8ohWs8QyekdMWUfneqTY93T9TYbgiZRHwm9+YRHHyG5MoTn5jEsXJb0yilPn3P9Lo5E5Ce/3PJPbexa3EPr27J7GLlt5l1CuQpArqXdeDssV7uToO69CSZRKgJiBejWmUN8QiIpYd+wJSr7gh7M8w1xh9lnomkvi4BBHwDs4RETGE/a5BhLqDUu2bWst3ac82UGqNffTAyTmAddNxERGHIAyXIBj2IEYi5w3EpuC8m8F+07N9Wui651senX44V3Hv/Ica6338gcSyd96WmN/8xiSKk9+YRHHyG5MoTn5jEqWMsYp2sVQnGTHYU7Hp5EYFkcOCy3Tn4LSqwfF0COWWD8CR9Q6UN57VMIAExoh/BXrRZ5UKWk8LFbQiIqYgGNIYcRpK0geBbQCxdYBQSYNKaEQzlIkuQCyM6F5WjWXHG/VtTjYq+K1rFcRKKL8elTC+vIS+jCin8dutR+Ozc3ANwr2agJB3A/twW2sOUQn7PgiSk1JF6oiI/lpLsI8/0709/QEM6Dh7oDE8izHmjx4nvzGJ4uQ3JlGc/MYkSrn6m59LsIEhBNsJOLyutQ8bFSP2WybbjmAKagFi3JuNqnEfL1X0+cn3nkps78/ULdVMVRB78TM9x9/dnUnsX1vKYG9goMYaHH40tKNo2Z9XoRLaBfSum8FAExIfly3DVIqO74Ql9B6cb0GA3Op5cHAKxCoQAannYRt4HrgHKxBT6b7ckchJrsatCnG0lgm4O2l9ERFF71hjT7Ws/t//VMvvT2d/IzG/+Y1JFCe/MYni5DcmUZz8xiRK+Yv/fS7BAsoWa+jrdgsuu4ueHrdqcV+RuHfQqMDz4VrX85c/1GEj+//930os+/7HeuKLryX05oP/I7G/+umVnuPmRL8vIm5K3QuSpdag7cHWxpzGt8Jx19DfkERFEsmod2BERA73hfrmEeTSG5YqatH05AzOS99Ha8FBLNFdHGz7/KuQq3G8UcFvCX0i6b7QebvudUTEuqduwOcv35DYh/9D3YV+8xuTKE5+YxLFyW9Mojj5jUmU8m9hyEa/63RZ0CXGMKBjDKWMEdwX7gBcf+cg2oz+jQqV+Y//o8SKt7RHYT3S0sj80ecSO33/lxJ7f8nlrvdX3A/vD+Vmp983G6io+BWU39KwEBKW2iYO0zthCL3m9mEaMPUepFLWKZW8wqAScviVIHK2XQv1BaTYFvaHBrl0HfhC4h6tka6Z3IFt55mVKkA+LfYk9jPIc7/5jUkUJ78xieLkNyZRnPzGJEr5T40O6KDJpuT6IocYCSc0SbaNAnqpXYKItLu5lliznGhs0TG2UVExA7ficMSOsbLUa6RYb6ACT1HpcaOXKtqc7FSo7FoOTJCjLiJiAOLeabUvsfdLLTF9M1RYorv/vFKh6mqnIiANG+Ey3e7PGPXmo+eWhEoS6LqKqeiohBj1YGw7NwmQd9Bnkvoy+s1vTKI4+Y1JFCe/MYni5DcmUZz8xiRK+XitqjnZJ0kZJtX0dWqRCbJF/ktPFeQf/61+9q3v/i8N/ok29WzubjT2/FJitQ6faaWBovz1Gmrtd7CPuV7zcgMTe0qy7XZUlQGyuUawMnxWjCT2J402R/3JSi2oFSjxzwr97JeVxq6hMeoMbK5j7J4QMQNrOE0qomakpKRTnT6p8O3W6f8/bfdvA+fZgJ1+BePi6V77zW9Mojj5jUkUJ78xieLkNyZRypvNTIIkDlBdNYl7r9P8kQRD4tNc68b/70Tr+f/T/3wssZO/+C2cGMS5J1pDvbxVm+t6xfX845mKkteN2pJXLSLbq8xhjRcZWFBBBCK61rVHcNPMPvRZeAdO/f0H2vR0cKgC1KNr3a8Pb1VUvK5hX2HKzRNoEhoR8WWh5/56p/bX21rvPzX/JDGNxo0TBYwGfx1YCASrM4ylJ/zmNyZRnPzGJIqT35hEcfIbkyglOZZI8KHmgSQYdRUB244lJ+HzWkXJn1UqvC0udFLJBz9VgWZA45gzrVenyUWLne5NRMTXIEI9BW3wDr6TGm5uIfYitAaeeiVU4NCkn/lWwQ8+PwLX3zmMAj98pGssz3Rvhkt97k5nKrqtb3SNk0sVgN+91fsXEXEKTUZh0FTc5Hpuej5JdOs67YdaDlCutUETrrBZ667b+HO/+Y1JFCe/MYni5DcmUZz8xiRKiWIFhGpwl3GZIAl+/BtDnyfH2k2tjqxPQOi4zLUk9OcDFZv2QLw6gdHgB1B+W7eYEp9D6elVqKg1B7GRRCTycs2gFJUEnwGIjyO4L22C3yE4Kqkx51tDaP4K4l5+os49clmS9FXNVEDsPVNxbviUm14On+oI69ioOHhXanPUu6qb669rA08S93qFPottjVVJyCPH4QbGn9NIdL/5jUkUJ78xieLkNyZRnPzGJErZJvq8CgkYOCXlW/YKIychjSye1yoEXebadI/60dEY6WNwgu3lagWjHoMR3CsOp820fF6Ow8lHujfEXq7i3F6m13IA+xAR8TDTz/+FDtOJ+x/p5KOsB446cAJmJdjs+t3GnJdH4Npccg+/e1td449eqKA23emEpHlPy8YpD24zdaDSc9LL9VmkWFsPP3rmSfAjca+24GeM+R1OfmMSxclvTKI4+Y1JlHKvVIGGXGPfZhAEiRptkMNv23FMM4kx5Jai9VyBK47Ewja6inFdBVYcQw0xupYBCJVn4Np7P0Cci4g/Xeo+/vAIhruMQAS+VVEqy9V9lw2gJ+QIRECg2el5W7TL6O3rfTmeq4D8/q3uxYuBioDrnn5fH/aboPtC5dNtI7rp/s8yUGI74je/MYni5DcmUZz8xiSKk9+YRCkf9o8l2NVdRsJgAb8nJGpEsJtvGipgbLYq+NGgBHI20RqXILrNcxWqSJxrc/h1ncqKfQ9BlOzaF47EJorlxYHE3tpy6egHlbri+kPd7/lLcEA+6zaIJS90v/qHWrpdncBne7CHVctgGJpsXMN9hXswgDJoEk6LCgaiwGcPwGVJx92CQBoRsQbhe7JR8RKfWyjJ95vfmERx8huTKE5+YxLFyW9MopTvlyr4rUCIW3XsPYcTflt+Y6jklcTBrm63HR7XccgChLYdr/l11vhtoP6IdannmBQqAk1K3es2ibJpQIS61j58k7Xa6qaNOg43HacxH4WWp755puLj6XdgwEaL4LeZ6fN0MdFreQIi4iTTPStgb44z3YcjcIc+2EF5OXzfyxbH4BLu4W2l5cTLrQqGHtphjPk9Tn5jEsXJb0yiOPmNSZTyEZR1LnMVBxagiJGY1gfBb9Dwb0yd6+efQW0mTZ29ylUImm1hii2UCJNLD3sUkmDXIvjR5ynWtTQazwEuNHI10mCJSaMi0BW47CIinq10+MkK7uvzUmPX8J1TenZgWnHVqND1nfE9iX38cx0Wcnqm7sCIiMsLHdDxCZSxf17oc3IBe0bPzn6okHcKwuc7eoo4A6fqWcGO2MsKhMpS79WkVEHUgp8x5vc4+Y1JFCe/MYni5DcmUcqHOyhvBWFpAaIbiR97MNn2pGW0Lcka5yB2DEqNDcEFdVdoOfAS+qEtQRAjkYwGIqwDVJvg0uEM3FsoAnYUILuel8SdOezDs4qvZdDTvZ2DQPcs1/25BpFsBk7OJQixtO5PYZjKbzMV8b7zUkuWIyImMA3416Wu+6udOuVmsGfU17HKqaRXGULvweNMz1HV7PA7rzROA2ior+Mq02v2m9+YRHHyG5MoTn5jEsXJb0yiOPmNSZTysIaafFBIadAMzagZgcJ9WnNd+xGowCc1TMnp6cho+tnqwz8Ssx0o16Dsz2r9p4B6E5S7lmakYLMlFb/eQXNUUr7hOPo+sgvT1KMpXN+XBVtipzDiew0W3VsYGT1rYFQ5/ZMCx9G6LzK1cd+AffXTSqfrRPBI9Jdbve7rrY53p39c9miUOzTmXMO/I1v4F42aKgwynv50BJZhUvvLXJ9RivnNb0yiOPmNSRQnvzGJ4uQ3JlHKbq0VWThZgKhBE0jajKqHhVobT2Byzm6tYs6qr6JUA+vJQLzsSgU2SbLTRrDgR1OOSNTqai2mcxAkFo5B5Hrcci0v2uZdvwJdH01hotgGroX2hvZ7DkLji1xr/CPYMkz7TcdRM1kSgakRLeXGHGzAs62KhRV1k42II7DOH4M4Oyo0ti11v/3mNyZRnPzGJIqT35hEcfIbkyjlClxHS9DIpiBgTGHsL0lSqxbRbdBToeT4TN1b1RWIQ6sjPQ84ATew7jU5qOBn8DjT5ogkaEZEbECkWWEdu4pNJGDNQPgkoaqrCEhi2s1aXW0REbfwTGRw3TkcR45DEu1o3V2nHi2CR1h/G3qFirtUF4/j1OH6ZvCMXRbgGAXX3gjq/iP4TX0vU8fhVXUosQGNbcezGGP+6HHyG5MoTn5jEsXJb0yilFNI/ylM0pmDuLcA5xZpezW2M4zo91WEGj1UUat/qMdtfqPfOd1qE8cZND1cghgzhMaMpzB6eQSur4iIDTnRYH+WhcYWMHqZmkdSbEGxWmPksmsbIY7Ti0DQbECYIufetxH3CBpVTkJcBIuSVN5KkJuPhM81CLuXOxVsaUrRRaXPXb91pLnuTw/W+G6pgt+m1KanfvMbkyhOfmMSxclvTKI4+Y1JlJLEvQWIVytysEGMHHALcEpFRNS1/vbkPf18saexBzPt7fb+l+rwuypI8FMhbwhC3iPoJ3gGPQ/bWEBp7AK0nA3EljDq+q7Q/b4At9vznZbv3tQao96BEd0nCM3AmbjZqUOza3kylSKTkEeCXQHlst+gcTpPDWPpUbzMNUY9IYkZTM2h8fNtLlIih56ZFYiAAxDd/eY3JlGc/MYkipPfmERx8huTKOWLDNxz4LSagUNsTiWrUNT7BMolIyIuJiOJnVyoMNU7U7GpHOp5Tns6mOK8VtFtU2rsHVDdftBoyev9+1wG2xvB0I6tfudmqcLLdqu/weuV7tl4poLmp7mWHf+y0uv7EkTOKQzOiGDBjxyC1OOQjltuVZQkV1xXSHxsG2mOI8xBqCYBksZaFyBSkxOQ2vBtwCVLDsTXgRyHXce2+81vTKI4+Y1JFCe/MYni5DcmUcrPanXKkSBCIiCJNlRuuQO3WkTEeU9LcPe+ONbjpiqykTtwtVUBqoSft0egc/15NZbYOx/rIIjeh2f64YjIznTdAeWaMVcHXDNVkXM31tiDLy8ltvfP2stwt9VYlCquvsjUoRfBpdrz0E0bgYORBkasqm4OuK4lveT6o+eu9ViIYRkzrKdraTQNkMGyaHDokYgXweumc093Knzfbmb6fXgWY8wfPU5+YxLFyW9Mojj5jUmU8rPlSwmSQ4iGMRDkdtpUPFjin6C/3nCnvcbefaYi0g5EkSelCmwvQWz8APSn/UMVv8p7OhAhO1aRMiIiO4Q4ubfgmmMEw0H2VaCj2bn3x1Da/Bvdr9tcr2XW4rwkwY/uPt3r/ULPQwvvQ6l11wEkbf36vg0kGOZwfV0n92KpbseegG0lvfT5LThqSQScb/X59pvfmERx8huTKE5+YxLFyW9MopQXS3W2dYXECpp2SgJiRMTnMDk0QIP6tKQ+fCpqPN11cyuuwFn48KW64ka/utDY+okuMCKywQuJNUt1QDZrFWiygV50vg8q2RZ6JvZ1b4/6WkJ7XIN42TK7Yg0i0gZEQBKmjgoVL/fA9TeHYSMkVJHI1YcBK1hWG/yM4sAQeE66Og67Cnn4WThuANcXwb35VvB5EiUJv/mNSRQnvzGJ4uQ3JlGc/MYkSrmu//BeauS0IpGkzR1I8Uml5YgDEAbnMDDiBsoWKxjwMOmfS2wz0FLd8W/ekNijr/QcERFlqYLY3VxderNGr2U/V8vh/XMtY+4P9V7N71Rgm67BPQcaUJtnc0Vlq3A0TTbey/TcJTnTYEgGCVpH8H3HjZ539BqDLuZwLTOY3DyFfbhtVKgcQwnthKb0wrAQerbbxMui47uaPk8xv/mNSRQnvzGJ4uQ3JlGc/MYkipPfmEQp0ZrYsV666+QUGtEcwbbfZa1qKo1kpu+cb1RhpdHNOHp5qErseHgise/WhxKLiKAelc/78J2gKu83an9970b/KTi7gMaqcK/uSo1dQF+DVUf7agQr8aTs38v1Wo5InYd1n9Qae2ej+3UvV3V91Gt5xqBBJv0b8iJ03b+F3gufFfoszmDyET3HSxjlvYJ/emoYxf7Nsboe+sesbfT6q/jNb0yiOPmNSRQnvzGJ4uQ3JlHKAYyrpskgJCzsqC76Ney9ZHfc5d1ERKzJpqlCGxU/ujYj3QxUbLoLKUnXAAAB00lEQVQqWwQ/+B297mj7pPr0Z4U2Mj2FvgYkDa2phwHszQLq9r9Zj4paVJ9+CmO/P9hp7L21nvsEbLKnfd2b07fVTj08h9HZey0Te0D8rGe6ngdfqE16eKWC7wR6L3wF+4V9JEDwW4M4R1OBIiJ68JzQOPUFiI10Hr/5jUkUJ78xieLkNyZRnPzGJEq5X0Fjx45ND0nACOwPwI4lcu71chizDYIKCR2rLbil4NzUw+BurSOxSfgk4SSC67LJ0UVjzfvwWWriWIMYSnX2VI9Pbsq2JpO90P0ewD14A0bx/GSlot13377Wc+yDANXTNZYHMNHmUM+bjaAZbETke+rcoyPP+jcSm/+Dio2f77TRa69jw0yaSER51ebQIzcu5QE934utioB+8xuTKE5+YxLFyW9Mojj5jUmU8qBUZxNBQheJSCRqZFBWGcGCGokaJALSuWlaEJXvkmOQrm+6UYdem0hGU2m6NlKkcc60N11bVNLekDDYJlPRGgfwnjiHEtzvvXslseP/wGPNX6UZLzQGU4qyHjgQy5b3WKXPRHasLk0af37+VKdZnX2pnx3AeqjZJolzlC8kCrdB95oEPzqP3/zGJIqT35hEcfIbkyhOfmMS5f8B1QJcpbqbuW0AAAAASUVORK5CYII=" y="-9364.354317"/>
</g>
<g id="matplotlib.axis_521">
<g id="xtick_781"/>
<g id="xtick_782"/>
<g id="xtick_783"/>
</g>
<g id="matplotlib.axis_522">
<g id="ytick_1301"/>
<g id="ytick_1302"/>
<g id="ytick_1303"/>
<g id="ytick_1304"/>
<g id="ytick_1305"/>
<g id="text_66">
<!-- 243 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 9472.649317)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-52"/>
<use x="111.230469" xlink:href="#ArialMT-51"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-54"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_262">
<g id="patch_263">
<path d="M 164.424375 9486.754317
L 286.714375 9486.754317
L 286.714375 9364.464317
L 164.424375 9364.464317
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p902fee3535)">
<image height="122.4" id="image1956908c71" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncuPI2l23W88+EoyX1WVWVVd0+PuhlpjawQZliCMYENLe2d46Y3/RO8MaGV4YS0kAZI91qjHmp7prq6uzHrki8lnkgwG6cWMBKjOL4BotDea7/yWF0HGF1/EZQCH596b/ecf/qd9fMBiV30YislupbHtUmKLei2xJgZFV2KHxUBiZZZLbLvfSayTFXqOvCOxHhw3220kdlVNJDbf6j40UcC6d3vZ7ljAd663eg92oZ8l9nAOIssyjOeh8aZj25y7hntFe3PQ6Unsaf9EYp93zyT2WXaA63my13v9g0rX+G8O7yT24j/q81n8259ILDv/gZ640udpP77S41aaQ9nwSI+LiIDzZMfnusbzT/XcmweJ6R0wxiSBk9+YRHHyG5MoTn5jEqWsQIypQVgiga0OjRGdXEWXiIgeiXF5KbEMBCgSv6p9LbF8r58lAYpidN4SxMImSNTaZ7ruLlzzNtdriZ2usa0I+F0gcY+uJYfjSNDM4B7QZ+m8KCDCc9f0FjuAR/Rwp3vb62/1wC3c67sbCe1BtIv5XI9bLCSWdTQHmu5oNrnWYx/0PNvrb/W4119JzG9+YxLFyW9Mojj5jUkUJ78xiVJuQTwh4YxEFhLE+oUKGN1MBa2IiMOiL7FRpq6qtqLWaq+uOLoWWHbs4RzkGAxwJUawIEbX3VYkrUCU2sH15bA1O7q+lq6/70KOIiAc2O6S0VlIkCDdRBcO7bX8/G6srrjspYppxH4BTlASQ4+GGls3uGTHY/3KlZ5nd6nC4Js/U8eh3/zGJIqT35hEcfIbkyhOfmMSpVyjuKfCRAG/E4NcxS9ywB0WWqoZEXGaq+A3DBXJSIy736uAMYVzkIOxrXOvD9enK/6HY1Xo7IAgRushSPCjfdjU4ExrKe41iYAkSpKgSZBzr60TsC0F3L9ug1h4AOfphu7teqXP3eJXKqaVIKbt4BbsKt2vcqD7Wh6pQy8f6DkiInYr/fzspa77f719KrH/2nNJrzHmNzj5jUkUJ78xieLkNyZRyvVe1Qp07qGgpUIeOfSewHEREY9Dv3NEJbig5Vy1LP2dgzBIkKDZLVQEJLEpImKYtesVuAKBFYW8Uu/LDsRCEu32NZXBaqxJdKM3whYESPzs/2dxr4Ry8BHs9emO32PHIIiSC/Fmqj0A30/UfVfB7lCshP0eZLqWAdznPeRARMTVVuXmv+nr/vzPUsuOv5heSMxvfmMSxclvTKI4+Y1JFCe/MYlS0uANGpwxBLfbSa5C3jMQ917suKT32VZFkeO6nbD0CnqfgTkw3kF9awUOti78DpJDrx/cw+8Qynfpl3UWKvCsQCRdgityA1YyLL8GYXC3A2EQegJGtO/X2HYYB0FCHn2WXKSnIPidNBgnqXx3CYM8bgq9f9eFPjsTqKGu0BGrDPd6DhKQ59DnMSLiq1Jdej/fqBvw26XG7lfaP9BvfmMSxclvTKI4+Y1JFCe/MYni5DcmUcpxpSog1baPQHUdgqZ5vtPYZxuWYn9Y6rkfn8N6uvr5x691dPMqV4tmDeosWWxJ7R/BPgz3/Hs5hH8VNuDSrEDJbauQt4Vszt8FtuPSvwXtpukUOdlfdW87YNkewT9KQ1Dr8wYL8Rzu4Rz8va/hn6LLXK3h99BEdUP/ruA/AGBdh+PGNY+Bf7vRBp7vH+4lNt/o52uwZ/vNb0yiOPmNSRQnvzGJ4uQ3JlHK9U4FjIedCh002YcEjAOoRT4EkSQi4vhY7YpHn+qx5ZnWMX/Su5PY+EuYptPT2DTTa+nAtYygkcCowUZKBuZr8HjWIPg9wP6sar0HFKM6e+oPQNNwaCR207E1WIFrmkBD3wl7ti9gQhJYfvstbdP3YMVtit/muqA3oXt7vdPJOVOIrSCHtiAqU4w+O9tqXkRETNdqxX/Y6rpJ3CP85jcmUZz8xiSKk9+YRHHyG5MoWGhPghHVbpOnag26y6xhRPdkon0DBm9VABn2VNToPdGzf/JWZ/ZksyOJ3YOwRGOteyBy9Rsm7tRUl03nAZFsBXX6JLquat0bauBJjsEMZ2czG2gASkJe27Hf9DzRPlCM+hXMchhf3vAau4emme92Kqjd1hqbQYwEOhLNqfcCTVeq4LjVlgXyCj5Pe9sk5H6I3/zGJIqT35hEcfIbkyhOfmMSpRwU6oCjklAqPaRmlG9B5Kq63PTypj6U2POXKgJ+cjWT2PFjFWMORiqSfbzTzz5a6TU/1CpKbmEfeuAOjIiA6tZYbvW39bCr56FGoSR+0TScAspgSfAjcY7cYREN4i5cYLth4wyth0SyOQifd7kKYhN4FiMi3tXqintXTSR2D6XttD/kqKT9ouPwsyAqk4j3Xcjh/uPo9O91FmPMP1uc/MYkipPfmERx8huTKOUBTIbpQN8zclrd7bRXWAWC2DV8X0TEq1Ljj0udxnK1PpXY777WMt8nRyrujI60BHMIwuB0ot83XeveZA1iTL/Q6z6B6UNn0H/uONdzj0qNoeAH4k4XHJV0/75v70ASq4gSRp334D7TejYwQn4BJdBNK7nbqpBH4t5sowIyCX40Jr2taNfWEdnk0CMhnvoj0nH0nX7zG5MoTn5jEsXJb0yiOPmNSZSyl6vwQmIFlTISm0yFJXKwRUR0YXDDHIaDRAmlvzsQyVa6xpPnKgKWB3p9W3DjjVd6jiVXQUe3bid+0XCPJyC6Tkt1P24KHUpyBEMtBiD4rUPvyzWIYRERN4WWRs8qFcTIsdaBUdfHHV33sNC9JaHyAJ5P2ukNCJoRPESEBDESU6mnYAUn30Ffxu8j7pFD79fxdsfScRb8jDH/iJPfmERx8huTKE5+YxKlRMdSQ5+6VsDPyR6EvYgIGiZLE0+XMGThHoSl5UZjexi8QeWp65V+9jZTsWlS8O/lAL6zC6LPEHSgjwJEzkJ7DxYg2nyy0zU+h+rWGj570TnWAyPiZeexxC53Kg6SyHYKbsUnGTkllSWIkg9wDhLxaCpuRMQABOTTzlBiw1LXSGXVVHa8rNVFSo5B6sHXtnQ7or1QyeKeBT9jzG9w8huTKE5+YxLFyW9MopQ0HIJECCq3LPYaI7GQSoQjWMAgNiDwjHNd46tMnYDF11oO3CtVRHq1VhHo655e3xrcXBERpyAsPgLT2QicgB/Bb3AHeiuWcOrfW+tJfudYe9T1D2DYxAO7Fe9nuo+3tYqDy5YlwRUIULelxl7BMI73mYppC3g+aZpvREQHSl6phLqEa+mBUE29LO9gCMjr4lZiNyt1Tq4bBnS0hXO1Xemv3/zGJIqT35hEcfIbkyhOfmMSpSTH0vfp7UZOKxIlIiL2IJ5VIO7NoI/bBSxxBsNBXu21nLQAofGmr2LTJFRsGjWIlyMQnDpw3QcgiD7sdT00NXgKe/uu1PM+W6hbbXQC1wLlzhERT0/12OKJ7iNNKll/NZfY+y+1PPmLpQqIb7rtBOAe3INuw3ushz0ONXYA4vUBfCc939fQb7Ho67XQNF8c+AG9H78LlL8dGO7iN78xieLkNyZRnPzGJIqT35hEwR5+3ZaTXwv47aDSwSZICKygrJOErhkMbnjT8rw0wGILwgu5xj7J1AkYETGCKugTECr3sD/zXGNvM3Ve3sM1rzrQw2+ja+xe6Vo+eqyOs4iI8rMzieV/9IcSy4Zadpz/9K8ldjp5qcd9rYIfuefoeRrCc3dGZdERcbaDSclwr4YgXpJguwX33Gmp514WKnK+66jzclmpuNq2/18E52Wv0Jw+6eoz4Te/MYni5DcmUZz8xiSKk9+YRHHyG5Mo5dOuqq5dsE+SMr+lRootewE0xUnnXIFqTs0jaaoQjXgmSzNNKXoMU3OyfAQrjBjAdXfIqgwTfybQm+B2D2PEofdCAf8UvCnVivtDmD70bDOTWEREwOj0qPTc+8mdxHaXVxK7utB9vOjovSc7NXESqmb/y4r/ZfoUxsgf9fQ8vZ4+EzncF5rsdD5TJX3c139hflXqcbOO9gKg2vsI/heAJiQdwoSrZ90TifnNb0yiOPmNSRQnvzGJ4uQ3JlHKHxUqBBArEK+mIEqtQIhrmqZCdfV0JImIVAf9fWJbWPccxKI7uOaIiGsYn53vYfR2odd8lavYtKjBygvi5QJidzAm/Qrsr8/f6foiIsq/VaN08bUKeavXeu7/+/Nzif15X8/995lOALrfqRA3hKlJBzAB6CPYr4iIf/GDsX7+XI/NoJdA3oNpOF19Xz55q9cy/uKFxH7RUzv0Q0+fp/lWn7sIFqXJnn8Mgu/TwvZeY8xvcPIbkyhOfmMSxclvTKKUn4MoRQO6J5lGr8GhNw4VMNZQox/BNfQkDtIY4oNMRaQBiB/kBJzVKqjQmOWHWq/lotYGlRERJQh5j3q6ngqu7y0IixOIUR8C4gJcX8dddX11bnQUd0TE6a0KYvO9fuc3HY39bKB79vfba4ldV9pLgASts46KZB+Bg23V8B6jafMk7hVD6E0x0mcsf6wOz+KpCp+ff6XX99ler2XV0YlS04KdjiRKk0t2BLnRB9eu3/zGJIqT35hEcfIbkyhOfmMSpTwCDYmKI2nU8Q4Eti1M4WnsRwgn2rcc8X0EosYBjFRegth4DY0572AxVA68ABdaRMRr+DydhwTNGXznZKvTdGqQYmnEOjkYoZI4JlB2GhHRATfgBFyD13t1tl2AkPdmrS67WaWlrCTsEq9zFfx+3tOy4YiI0ZtHEvt4q400D8/1HnRBvM6P24muVCL8+AEaj4JbsdtQ0kvCOYnmBDlv/eY3JlGc/MYkipPfmERx8huTKOW4UAFqCPOhOyDaHcFo6RVM+6Gx2xFcqkuC2ACEs2ehQsmzvQp+5EzEloIgiLV1VEXw9CKaQEMuPeo9SELeGspWMxDJyJlI4uV1ocJZBJdak1PyASYIkVC5gvVU0EeRnodZrsLg20J7D/4duA0jInY9vcbx9ROJfTpR5+bZQs8z3KlYuFvrM3Y7UffkuttuIlGn4RkjcY8KmSnfchAL/eY3JlGc/MYkipPfmERx8huTKOWbXIWAU3LUgQjYB8HvcK+/J0tw3kVErECEILGDnHvnIO69qFRQGRX6fVMYqbwCB1sNbsUmMaYDv6MdEHOopJcg4QxLeltOc76rVNCiMuaIiA6ItiRMkeOQ3IU43h33UT9LA1amte7NG3CbRkTUIGiPezrA5Har5bY/+kafk/Ox7uNiqcd9CT0db6BX4xLu6abBtUcCclN/zDb4zW9Mojj5jUkUJ78xieLkNyZRynd77RW3gXLZCkSgEQh+JQhDTaWaJYpkGnsMJaZPtyp0nII4tAF3IHnBShKgqLy44feSRMkjONMA9mdY6GcXHZiKC+IOCWclCLYECXYREVlLZ2MG19KF52RfUp9IvZZNrfePHIwkKi7AERkR8R5iCxDe5h3oC5jDZOOJPotLmJT8CiyxExy6oh69dctejRHsxqRnuQvPp9/8xiSKk9+YRHHyG5MoTn5jEqW82GrPtSkIHZNcRZsTcFX14PekanAskTj4BMTGH1UqVnwKQy26hQolNyC6kcuO1oilyA2Gqj6ILOTwe7RrN2RhCcMcDgu9B1RKTPLqA4hN01rLZSMiduTSg/OQuJeDOFvlGuuCEDvPeTrth5CgiX0Lg4VAKk/GKm8YxDKGayao5yE596i3Hk1jjmBxrwt7QUL6wEM7jDH/gJPfmERx8huTKE5+YxKlfLe+l+AMhKUpTEa9B2HwEMQdEioiIkYgxr3Yaex3tlp6+uyx9lert1AOPNV1d6HsuAAnGVQIN4K92OC4AXznAJySnxS6t8eFfiPtLTkB78BJ1vTLT0NEeiDQHYIIPMy4tPZDFoWuZwwC5BLWQntNTsAmqBceOe1oevIM9qFL/RuhHyE590jcaxoMQ9c9gHyjITf8fcaYJHHyG5MoTn5jEsXJb0yilIutiho0UIEGS6xKGDYBgyCaRCCc/AvHbakX3kZFjaLQTz/L9Pr+1Vb7q+UgaN5k7UWyQxBZRuDmo+EnFWhVXXI/7qFEGL6P/GEZlJ0uQbBtggS/M5iW+wTudQcEzXmu9+o9fPZupyIgOfSaypjbdQpkh+cYyt3ncJ5+S5cduSxpOMtsy85LEnLXuT6jNeQBtdH0m9+YRHHyG5MoTn5jEsXJb0yiOPmNSZSSmiZSbTRNi6ER1hTbgFU1gps4fgPNLDtdtTAuZscSe16oSvrRMx2p/KxWa/Dz9zpS+ecw2WUKI78jIgYw0WgEh5KyP8l1H5awN/SfSQa/3zl8ln7lew0K+RAso0fQc+AMavfPd6B8wz8SffinJ+DfB1ojj6Bmey89Ywv454obaWpubOHcdI6266bR6WtYX0TEdge5Bc1IKVfpXwW/+Y1JFCe/MYni5DcmUZz8xiRKSZbBeqfCxB7qkym2gxiNWY6I2BQaJ+Emh0aK0VX563Cjsc+eqXjS/VhtqT/+m2s9x8WZhL7tcAPHB1jiEn5a5zD2e0zNHkEcorpxEgY3IEpSPf+sYcoNTec5BHsviXtnMGyGJFLqQ9CBczyBGAlsTTNuZrC312B1rnf6ne3aibLtluzCJKTT1KMmq3IN95W+k+zBs9CY3/zGJIqT35hEcfIbkyhOfmMSpSRxh0Q7iqETEMQ9EkSa4iR2nECjSBq9vYai5cmFusZGK+hhsNFzDEBGyqGmPiJiDDXUdyA2zcDRRZNcyK9GYmjd0sE2haaQ6wYh9hR6MlAvgR+v9fPnpe7tqtb7Mt2qOEt9G8itWMEzOyn4Pfaq1O+cQccDqsknURKnOAE0/pye9wNqeNvhayHn37LW+7qEhrcPWzv8jDG/wclvTKI4+Y1JFCe/MYlSdgoVcsjhl8NEFBrR3KGxzQ3TVEhEXIMTjcot55kKed+A++6b8bnEBne6llEN4iU4weYNP5c3mYpIF7ulxGhCCzV7pKkrJLDyxBcVd1YQa5py088OJfavYYjMT/7krcQ6z1UsrN6qu2xxAaPToSlrDo7I9Uo/+2Yy0gVGxC1Mn6LrphHkpLqS6IpuPhD3yM1HU4/OsqGeOLhx6dtsKjES/NZ1+2a0xpjfcpz8xiSKk9+YRHHyG5Mo5QEIIjVMU+nkMJEGevP18nYjmiO41xgJKksQtS4zFbAuoRJyAW4uKo097ei6h3v9wg249iIixiBKXm8XEqOR010a+wzCKUHl0tQXjsqvhw0Te34XBKc//fGlxAb/5d9LLIO+h8XP/o8eV3wrsdU7fe62axinvoXnE4TBiAhojxh7OJYceQS5/jIUZ6FkGfoWUm9EmnoU0TBpCKLvs3uJUf8/v/mNSRQnvzGJ4uQ3JlGc/MYkSjkEwY96pA2g9PC01FHXR5l+X9HgJCNnFLmYaD3vwD1HI5BptHgJJaHvQajsgxDXUJ0c97WWst5U6r6aVep2I8cZOfzIPUkl2RQbFHr/npfq5IuI+KO1rufgTz+SWPbx5/rhhQ5J2a9hDPVLcGO+OdXjAhyoILrdltz37hrE6xWIZPQskjOV3Jh9vAe67gMoOX8Kg08+3vI7mQqwLyAvCXLT+s1vTKI4+Y1JFCe/MYni5DcmUcqTkssHP2QAgthZruWbZ+BYOtjzbwwMto1ZroLf+52Kadcg+C2gnxlNDabSWJWpGBIfIyIeahW1ppWucVnpGlGMoRJqKL/ul7rfxx0VYodYOqqxiIhH4Fbcz/T69l/+VGOXbyQ2/e9XEvurd88l9ndgOJzDoAq6B6s91BxHxN0e7gvE6DkpQaCjMt8eHDcCofIxzFn+BMS9z6AkNyLiisQ9SC1ycxJ+8xuTKE5+YxLFyW9Mojj5jUmU8tPyWILUf6wDSscJlB7S5NZjUvaCSxTfg8ZyDeIXlQNTWSaJQ/RZGohAfc8qKI38dVz9V3QsiXsk0NQ07Rg8XiWUWpOgSdB9joi4AWFp9hc3Ehu8+gs97qWu528vnkrspyDu/WqvJdATKIEmF2jTABIqb97B/tCwGIr1qWQdXqED+GwPcugUekeOCn3uIiIuwQ24bpxP/E8hAdlvfmMSxclvTKI4+Y1JFCe/MYlS/qRWl94SfhKW0PeM2qb1qXdZg+GIzjMFR9cU3HMPMISC+pQ1Dab4EOqFR8MPNjULS21dejjApOUaqVS37VrWIHyR+y0i4hdddf6NvlLR7uhr6FsY+tlf9vT63gWUQO+03Pm2mkmMnJwk2EawmEr72CtUyKN+lOQEJHogxC5BIF9CX79xzc7Ld7CPNKCFRG4aGOI3vzGJ4uQ3JlGc/MYkipPfmEQp/3g/l+D9Wp1E70EQuS5URNiACnjF7dXiDsp3v92py+tqq6LPEkQfEjVoIAa7nTRGwhlNMG6EesCBENRWyMNTwLpxmi+IpjeZlhxHRHxR6nomA7XkHe41VoHYdBN67vcg7t3DkJP7SmPzSsVCEmwjWPCj0ui2Ihn1ViQRkJx3E3BoXkJJ9lXJQzu+zPS6x7XeQ3pGSfj2m9+YRHHyG5MoTn5jEsXJb0yiOPmNSZTy5ETVwmyiyueiUpXzqtDYNdhz74Otl7dQq31Vq7rbZN38EFJiSe2nOu2qUHV2BXXVTbXypCqTsk820j7ESJ1tW6e/pwaXsId3W/2nJyJiVqsS/xKmBR1CU1Da7wdoCDoGZX+80fXQhKPVVr+PrN0R/M9O239XaEx6H3odUHNbaupJ/RMuc/0HYAL7FRHxzVbbzN7BntFeFGAj9pvfmERx8huTKE5+YxLFyW9MopS7WvN/vVWxYlrocbcw/vgarJzjhmkqVItM0HhwsmO2FfyIvGwnsGE9fsOxJBgNS7XE0pj0HEQpahJKQh7aTeE4skhHcM8Cuu62NfBt7cYPW43RWkhcbbovZNElIZZEYLqWo0Lv3+McrM8wsYfWeA/i3kWtdvaIiHebe4lRzwkSfMm+7je/MYni5DcmUZz8xiSKk9+YRCk3GxU6JnsV2G6hdv8uU7HiHkS8WYOwR8LEAJocDqHmmWrtiSYhqM1xNAGoA2JRBItaJBiNQDAagVOO1vMAol1Ra433HGJU774CgS2iuUlpm+Me8nYiLrnQmlx6H0JutcZjQTilz9OzSMIpHdeDd2gfBMQNPE9LaKw6g/sXwWPgac9a50aro4wxv3U4+Y1JFCe/MYni5DcmUcrFSsW0exC1xuDmm4FYQa49mq4T0TA5BVxxB+TSAx2vAtGNnIAlnLcP5zgA8XEDpb9NkGhXwu8tua8qEIfIrUalvyhyQYycbhEsXlJTSBK/aPw1NkJtea/aCna0NxHtS3ppPSSwTXMV40aZ5hCth+7pAhx+TSXsJO7RPSAHJO2t3/zGJIqT35hEcfIbkyhOfmMSpfxFHEjwAgaG3GQwwhpcY5uW5aQRLFZRWS4JfiSc7UDzIUmLvu8MRJtHez2uadz4GiYVLUFkmcLUlgn0OLyH/oYbEFixlBiur4ApPFRy3BRnwQimHMFx6BhsOfioreD3XaYe0bF0LeSKpP6G1/DMPkBvvgpyYwLf11RqTYIfCbF0D7AMGs9ijPmtx8lvTKI4+Y1JFCe/MYlS/o8OlH+CGlOBsEBDCDokpjSIMdSTbpmpq6oHAlYPRyVDCS4cR+Lev1vrcT8+0J5p3R6Xu06nWqp7WamY+m1Xy3cvQWC7BFGLxD0SkUgQO4A+iE3Qd7aFRDIqMSZRiwQtHi3dzukY0TBmG5yNTQ7BD6lgjdfVVGJ32IOxnRhOvQybPt9W3COXpd/8xiSKk9+YRHHyG5MoTn5jEqX82ea9BGlIxhBiVAZLPfgy6P8XEbHJ2wlL5BqkGP2SUVnuD3ca+8mztxJ7/B+O9Qs7Q1zj2Tc3EnvyhU5QffJWv/NJNpBYv6uxFezXGlx/5GA7y1V8fATC568/TwNMVDCqQGxagINxCiXd0127PoMkaGHZMBwXwW5Her6p9HdNgjQ4LyeVTrqmoSTkdETXXsM0ZhTtWvaoJPzmNyZRnPzGJIqT35hEcfIbkyjlfbWQYF2q4FDA70QXnFIDEFhoimlERJ/62YGAQb0C70AwIo5A8DsGk15nAD3zjlTcy46P8DxlrcLNcHwtsUcLLeGcTECAgmJkkrTImVZA7BTEvc/36jaM4P2pQFea5FCyDOdZwBTiqhhJbE3TfEP3dQViL7lNI7h8mybobqn8Olf33VWt+UK9/uaV3mdy7pF42QT1XOwWUL7dsrzZb35jEsXJb0yiOPmNSRQnvzGJUpJgRA6jFQwXGISKaSdQQvuDYGHpRa2/PQPQbW4LFZEuIbYEIYjEnTn85P3sq3OJ/f5/u9Dv+wN2xe03eu6HKz33u4kKXb/s6nHfhgqa0726y7CkF4d26H1+3DCM98VW7zXJUmMoRZ7jBF0YzkKOQVjjGJowjjMobW4Q/EZ4bj1uDj0YS1jPCnrzzUDQnObq+iMxe7uD8zYMUxnAtOqjrjo3aRI0faff/MYkipPfmERx8huTKE5+YxKlPCq1dLSpH9qH4MAI+D053/FvzMeViid0ZLEHAaRUsWkMQhcJVTcwcfgv+/p9v7x8IbHPX/IAkrOuOrrebFSM+d99vZavQj97tdMYTUDeYrmz3r85uCTXDSW9Hdi1bgbCIohVx3CvRzDw5ain4mUNU1eu1/p8XoGrbd3gaiNhkaTB20I/Py/0XlEZey9X4fugVBGQynfJoddpGKYy6qiQdwj5e1Ro7DDX9fjNb0yiOPmNSRQnvzGJ4uQ3JlGc/MYkSklWwLaQXbEEu/BBQ8kymRippWcJ8ix95xwahd7RaHFQyFegcH8BCvdfw78CERHPAxp7wtZeharcC1Di247Epn9mqBEm/XvwpuHef1KB7RpsrQdwHmLU138pjk91PTnc6O4tNGpdqEV6CrbyiIiypY14kcNkH/jXhGzSNBVqAPbzrAvTh+D76N+DpvPQNCyyfM/hnyK/+Y1JFCe/MYni5DcmUZz8xiRKOWgQFz6EpoVQU09I1wM3AAAB90lEQVQSqlYNPzF3YJ8k2g6Mpprum70KHfcwdYUm36wg1jRN5bZQwe8Pc53O8yJUCDoEO+d0r7EJNCN9gDU+QO8FmnB0DWJoREQN97Xf0WP3IIgR/b5+FhumFiD4dcFWvIBx8Q2CXwWCGNl7qUHpGmr8F7XuLY0gJ9GV+iyQMHgAVtwIFvxI3CPL9wwEX7/5jUkUJ78xieLkNyZRnPzGJErZRZ+dsgPxg1iCPHfZMIr7Hpo9DkBEooaLVFU/h8aO41rFPRoPTcIJiXtNE1aGHRXj/kBPHStwko2hpnsMDReXUH8/h94ENOFoBiIgjd1u4mCowmkGzwSJgN0eiIWwjTU4C1erdsLnm5LfYytY4xbEPXKCfrvT6Tyvq7HEbtZTiVVQu98vdN0daqzZ0E+jA4IhNgWF6VH0fPvNb0yiOPmNSRQnvzGJ4uQ3JlFKEhFQ0gKFhsYij8E9twEhLqJhfDa43Q737X6j7kHUQrcbuK/ImbinstqGRpGPQYw7DxXJZrVeXw4NSkcgDO5AnK3A9TWBPbyEGI3EjogYg/NyV+t6+gftSnqJ1ULv/foBnI4rdbvdQLPNrwpurPoexN0NXPcGBLqb7Vxi443G5pWeY4+NQzXWAxGQns+IiA7dFzhP2wa8fvMbkyhOfmMSxclvTKI4+Y1JlP8HAas6O13HxwUAAAAASUVORK5CYII=" y="-9364.354317"/>
</g>
<g id="matplotlib.axis_523">
<g id="xtick_784"/>
<g id="xtick_785"/>
<g id="xtick_786"/>
</g>
<g id="matplotlib.axis_524">
<g id="ytick_1306"/>
<g id="ytick_1307"/>
<g id="ytick_1308"/>
<g id="ytick_1309"/>
<g id="ytick_1310"/>
</g>
</g>
<g id="axes_263">
<g id="patch_264">
<path d="M 299.674375 9486.754317
L 421.964375 9486.754317
L 421.964375 9364.464317
L 299.674375 9364.464317
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p24337d17ce)">
<image height="122.4" id="image2c670a150a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUuPJNdxhaMybz27ql+cFzkkRYmiDUu2YEheeeuFFgb8S721AQNeGYYBG5IMgwTEoUhK8+SwZ7pnqutdlVnlBUEC7vOlkcR4Y93zLaOzKjPvzegETp2I6JyPPzrEDYpO52YoumWS2CQNJXa7dyyxYacrsYiI6/1aYpfbmcQWlR63rSuJHUJuJTqh99KDe+kVGtsdaoktdxuJNV3P/rCHmF4jQZ89tPws7RXGihI/nyBO61N2ConVcN27va4jPWOTrj5P93qnEns36TN21vCMjQ96L5PQ6x7v9Xr0jiN2FOvovujTEHDWiMFBzzts2OaVHhq/LfR5/NX2K4l9vX7d6nqMMRng5DcmU5z8xmSKk9+YTEnD1NMgCD7jNJDYve6JxN4tJxLrN/yPeVn0JVaAQEfC0rrYSozEpg4ISyRepY7ecwLBrwm6xgqErj2IkiTk0Wcp1hZaVxJD/7d4G2i9Sdyj40gMrWBPKZbg+yIiBnAvQxDZuiCy0VNLZ+lClAQ/0vFq+MJXICBGRFwUuv/P6qXEVrXmBj13fvMbkylOfmMyxclvTKY4+Y3JlESuqlGpQtxdcFV9BOLeB7U6rdh7FfG80L8Muiq8HRUqSl7X6vrb7NV/VQeIgCDQkCC2B48XCYMREX24lwoEQxIlSchbVSraECSSFSA+ksBWFvy/n+L0+bagCEh70PIcdFzZIFKmluLlDg4jh18JWlzSLY0Svo/OsQMhbtqBL4yIq4M+3wuIkdOVRGW/+Y3JFCe/MZni5DcmU5z8xmRKOk1HEjwvRxL7qFTB7+dbFb9+tF9JrGxwLF3uVch7u6vX86RUd+HXpQpiL6BEeAqxNQiDBAlVY7iWiAYhDwS/7UG9X4uKy4RvQqJNvdfzkmBHDkSKRTSIcW/g+mvr2qRYouPw+pgKxC8qjaXPk3NPpXD+bIJHnmS8Cq5l2SD4Lfb67NCzTM8ixfzmNyZTnPzGZIqT35hMcfIbkylpDGW1twt1/X1Qq9/pT2Mhsfd+pL3CemdcivohmNh+dqVOuedfqZPwk85YYv/Z1Wv8A55ZoTLRAbj2jhp6xXVBmNrBd5IASexA3KlKXcddR2MonEGZdpPgR3ESP8kp2aHCVRC1+LPtRMUazrFEOY0FtbbiHpUD1+gEbScMElTSu4bnJiJiCW6+DcS28OyQMOw3vzGZ4uQ3JlOc/MZkipPfmExJVB5JPfeOQIMY9lRsGL6jYkz3J2/jyYs7tyQ2rlXAOv34S4kd/lGv++FBhcpnUIJLwhI5yYYdFRDPQCCNiBjDsZsG4eYm846KgCTQUYzoQo/CQalCZdP3vUkPP+zX9wbfRw62V+TaBOEzgt9uJUQH8JwchcYGsGbUE3ByANEVrmVFDsTge1mBO5TK2Enwo7Jxv/mNyRQnvzGZ4uQ3JlOc/MZkipPfmExJa1AGZ4XGXpVaez9fa2y/gYaZfT0uIiJu3dZYV48tXk0lNh5eSyxV2ofgTaA69G7D/8sRxHvwC8IMfhWgpqBt7a+k7I+S/iJBE5doclFE+94EBCnpbUd5U6+DWa39IUjh/j6/XNC+0loMYK/QOg33fAK/Ck1A76d+A3Ow7EZErPbqh1/XeuwOxsW7nt8Y8x1OfmMyxclvTKY4+Y3JlDSFEb89EKAewyjvhx21097+AmInT/nkOxUmOiP9/OGlCn67nYone3CR4vQSiFE9/xZslusG6+UOrKDUaJLq/ts2s+y2rMk/6arweberDVh7cM0REWtqMgpiE4mATRONboJ16CBUkaC1PGjD0zeZKBTR0MOgpS2ZxMJJ0uf4tNQYiYVk441gwa+tEMtTk4wxWeLkNyZTnPzGZIqT35hMSbNKHVQk2nxdqEPsi5420Zxcnkls9a9zPPn5Z19LrH+mYsd2qtfzYnNHYsuBinbURJPEPRrlTe7HRYfFmAHVfpOzDcRGEpZY8GtXp38GU5juFxo7bmhGOgPB6aKjzwmNh6a3Ce0BuflaN/Ck/YMGlRE8wpwEX4ImJJFw1oc9INBZCC5CWpsIrtPH0dstxWK/+Y3JFCe/MZni5DcmU5z8xmRK2oCDag3jr6lp4mMo801Qvnu1PcGT336oguHpYz13DQ0SHycVWaahzi9y6RFUikrNKJvEIhLyaPIKubdI4GkrSpFI1gcR6RzEvfswhSkiYk7lsfCauIQmlSTGdQJKTGEaUtt7RkAMi4jYgwOOxEG6bhLTaPx528aqBD1jJFJG8PrsIUbfSQKy3/zGZIqT35hMcfIbkylOfmMyJZFYQeLHNQh+z0G0ocrKDfTli4hYgWNtUVFppTKFf1tbcOmReELTecjVSBN7KBbBI553IMZQaeyyVqGShFgSd8j1Nd/r980KGOWNM2Qi7sFc6x2UdPdB/CI3H4qhsFczWJvrQu9lWmgZOq1hRMSqhjnwwGGv10j3QtJeF54dKvMdFrqGVD5fd9pNeopgURIdkO7hZ4z5Fie/MZni5DcmU5z8xmRKOkna742EpR0IS69rFQH7pQoYkwaRbANix6aAXmMtjV80UIPEmArEJhJe+hBrGtpBEs2yZS88GkKxa9mbjfZlWqkg9gRKsm+DYBsR8We17sFHO43dBQGLdnoIYtoWlOGLUp/FL5IKeY9gX17AeSMaSnohRiOs25dV6zocQ7++Ca4XuCQbBD8SpSlX6V6oP6Lf/MZkipPfmExx8huTKU5+YzIl3etpuS2JUmsQpdbQw436ui3BXRbBgt8ShCByDYIJLUr6LJyX3E4ruO4DKI3kVovgAR3kWCMnGl0PiU0E9ZSjQQ5zuJZpyfsyrvXcPxzOJHaAUuuU9F4GI1hb0LSeX04k1u2pcPYKXH+XLfv/NUFlsAW5PsHpSAM6JjCldwxl1dTXb9vhfemDQEuCtsrwXMbsN78xmeLkNyZTnPzGZIqT35hMSbcKFSuonx05paj33BRKf582TG5dgbBx1FUHVR9EEerYNiWxkURJKHkl19ccxv7S2jRBzr0FCH4k7lFJKPXro2EMJAwN4PtoXSMizjt63e/9lQ5e6QzgOVmCWAUa6X4NYiqUcx8v9PmkLSCn2zenbtkLsWXfO9qXETj3BuBqJXcoPU1NZeNHICIuksaojJl6D/rNb0ymOPmNyRQnvzGZ4uQ3JlMSOdO61OCfhguAa2gOZb5N/dWetex9RpNM6Rqp5xoJbNT3jlxxbXuhfZ9jydFFU17HpZbgjkoVd4bgGqPS0Tsd/b4PGoZ23D6eSqy8pZ8PKL8+rHWab72A6clz3b+qopLVdtC6RrBoRzHqZUnPIu3LGIS4ETyz/ZbvWiol/+Y8uq8rKB1eJxVs7fAzxnyHk9+YTHHyG5MpTn5jMiWtQOjatOwfR7QV0yKap5HehISXAZU3wnFNzq+b7KDvGfXHW8MwjQjum0aQsEQxupc75ZHE3gaH5v29rs0PYXbFB6G9/iIiUlfvZfprXYs91FVvNyp+kXNvu9V7vlqBeAXzXsjpWDSUQLcV9wqYODxOKu6dJ92DMxD8jmC8Rx+upYLnswul0hHsGjwCEXgJrj96lv3mNyZTnPzGZIqT35hMcfIbkylOfmMyJc0OKgOTOk917FQ3TpZW+gUgghVIUuepJhtV3AOouKAM0zXSPZOyT9f8Tfz/9heSpvPc5NZBFeA/3+j9/cnJa4n1B3yO5y+0kebjK1W+l1AjXsIvOF34waWAPb1O+n0X0PyVei+QBTwiYgfxDtiS6Rel8zSWGP3iMoE5RWQ/J6tyy2FUEcFNYvtwfwPqL1Dqs+w3vzGZ4uQ3JlOc/MZkipPfmExJJKaReNKnqTkgdJBgR40+I9qLWkTbOu22dfZoSwYRj+qiI1iEoqaQbT+7ggk7r6A56guYFrMAIbYCi+3iSkdiR0T8ttD45zCJZwaNPkmUGoF1luS5eUf34CUI0msQZ6nfRASPzz6B5/sM6uLf6qhNdgC19nRm6i1B054oRpbfCBYRJ6H3V8G92N5rjPkOJ78xmeLkNyZTnPzGZEo6BlGj13I89AqEvC04sjYF18DXZTsxjpyE3NSTGx/ehIRBcgKSiNQk4iU4N058KeG6wV1GUDPSp4XW5H/cO5bYfn0qsVXDvTxIuodPYfDzAiYSUa19D94xCdZmDaLUNUxXWsJ564ZWnzRN5y649N4LFcnGcN0bEGcXMHlqC9ezAyGPBPLU0Ix0TG5FOJRESVodv/mNyRQnvzGZ4uQ3JlOc/MZkSroNzQdJbqBGnws4rmmiDUFllFQ6TC4tEnJ6NAEIynzJXkbiHo06bmrUSfdN4iCOz4aJPSQgkjj0qtYJOb8r9bOznpbkkrssIuL5Xr/zEs5Do84JEmdpvcllSU5HKr+m9YrgsdYnoev9FrgQz2BEO4mkL2lkOCRRQc+IHhajhns5h2f5CE40p+a2JQjaeBZjzB89Tn5jMsXJb0ymOPmNyZR0Cj3gth0YdR3gYqK+d+C+opLVCBZpRiDQHMNY5CMYTU3OJioxJQ1wA642cjAuDuxWnNbqtNu0dcC1FD5J8KP1fnq4lthlAaOzG8RZEvIWMHq9aXrRTcjpSJCQRyIgPU8jmFITEXGABoIkstEVjvb62TM4d7+E/pYgsK1oOg+c96zm9bpX6eePYX02sN4nXXUw+s1vTKY4+Y3JFCe/MZni5DcmU1If5I8djAgmsWkHAg2VVjaNySZH3hE49+7AGOpbHT1uQmOWIdZvOSlhA8rQFZQsR0Q8gjLRJ9VMYm1dcbRmexDoqFfcMvQcr0EsahqdTiJb2x6HBAl+NJ4d7+8NzhHx/RynN6FvPIPrOYHYaa0i7gKGnPRhHU5qvudbHd3XUR8G38DzfbZVQdRvfmMyxclvTKY4+Y3JFCe/MZmS1tRrrAPDBUCYoIEf3wdyuw2g/PMcxL33QFAhB9QEhCoqmCSJhZxSZ1AuGxFRwvCMHfQofA5rRiIgudhIvCLRta1TrkmwI5GNjm27/yQC02dJBKR1KEE4SwXvC/dWBCUXboWkwg4cOIFhI10Y7rLetxv40W3oR0hU4AbsQP72oM+g3/zGZIqT35hMcfIbkylOfmMyJX0V2iONhBcqb6UecG2Fqm/O084NSCMtzuAr34Z+b30aIgLCyxxkwO8jZ47AFUn9EWmYAwmfNNmYxL092LlI8KN9aXJeEtRzj0Rgena+30r+T0jI6ycthB0nLfuOiBjScBcsl1amUJa7A/E5HfR6VgV9Vs8B2lyjA7UP5+nD/pfw+S3sn9/8xmSKk9+YTHHyG5MpTn5jMiU9qrXslPrekbi3BIGNhKqm0tE1qCxL6JG3od5n1Met1M8mcNlttyT4QM81EG3WDf8uaUjDGJoF3uuoMDUBAWvZsn/gFIZptHXPJfQ6BlogSbRdVbr/O3AS0rlJQKSy3D4MNKEhLgMoBY/gyc07kPeu4dxT6GW5AjVtTb0s4RyUQ5Rrg4Z38hiH0oDbET5bwbn95jcmU5z8xmSKk9+YTHHyG5Mp6WI31SAICwX2+gOhAwY50PCKpu+cwoTRWXkssS6IaWdnKn6lpMJLOQVn4pqmxuq1XIMI2AT1RzwDOeYEYjUIWFcg+JG4R+IcT8rl//0kkpEb8LrUQSWzne4BlROTq7ELbj5y+JEwSM9SBK/PGtanCl3bJRR6X4PIvYTnmwbaUL4QA8iBCC5350E17d7pfvMbkylOfmMyxclvTKY4+Y3JFCe/MZmSpjtVbElNbTt1heydm5ajnCMiujCuetnT7xyBEn/+kY6RLo/0ugeP1NLceQL25RWozw3/LwuooaY+kWTnJJNtCf0BhjThCEaV72CkOUG17k3fmWD/r8qRxF6UurazSn8BaDuJh2zAbwrZe9f0awYo+9fQbHUFx9EvXKT2068RTdOH6BcbyhdS++kXHL/5jckUJ78xmeLkNyZTnPzGZEpa7lTAIJGlyQp6E5rsQvbOiAbLMBzLzUPBHnpfBajy/i048VMJDa9AlFSdCsd2fxMHGylZb+G4HY0/R1tqO5GMRp+TNfStjjYYjYi4H2otPtvr/m86ut6P+hOJPUxzib2sFxJb1vosolUZRK6zpNcSEXEG99iHd9482jWopX4VSxIBaxUB2440b8q1bQHTp2BfyJ5Pa+Y3vzGZ4uQ3JlOc/MZkipPfmExJ1ISRRiBjDTUIg23HLEdw00sSeKhx5bMuNGZ8rCJScedUr2cL55irMHSRVCR5WfD0oWto9kiCEdXFV7A+G3ShwfShtjXiIAKRsBcR8Yu1Xs9P3nohseFY9+XxY13vf+ueS+zjro40fw79AagufgK9Du4XLPjdOugeUkNYcv0RJPgtKhX81iD4tW1k2jRu/ADTeUjc24OoTE5Cv/mNyRQnvzGZ4uQ3JlOc/MZkCtd0vgEk7nUayjLJ4UeC37zWUt0HfRVe/us/7krswycXEpu+Gkvs0506077s6bXQSPMIHlfdg/+tJaxF26LVHTaehDHncC00lvp+zf/7f/7+M4md/907euBYRbbRvzyQ2PzftER409ey41EJIi7c82no971Ts0g2Aq15CvXX8waR7SbkVl2C4EdOVWpaSuJek0BOecRu3HZ55Te/MZni5DcmU5z8xmSKk9+YTElHXXW2NQl0N0FhAv6d7FuWMjZB/dAe7dXN988DFe0evHhbYjXc3jMQ956ECo1zcBtGcG+/E+iFRz38CHICkmOQhBychgOxk5qFpaN3db86d7Q0+rBUR169BMEXrnsEPQrPwY1HMtxtKGO9U7FDDyZqR1Hq519RGSzEaL2pVLfew6QocM4SjT38oCyXphzR/hN+8xuTKU5+YzLFyW9Mpjj5jcmUdHtwIsG2Y5/J7fR9BnSQE42gYQev9irGfQkOsatSRTdyQL0GIe8KzkElphHcI4/O0zvo/1sS8qhv4QqukRxwQxjxTA4/Ej4jIjYv4br/8Fhi+1cqul4/U+feAmQ72nkSJYdw4BkIleeNfSJpsIyWBB/B+uD465a9LAn6LAl2g5JLrcdJ17YPojLhkl5jzHc4+Y3JFCe/MZni5DcmU9JHgzsSJBFpTb3LYFgBTWSlYQwRLA6SKEJixQK+8xL+l60LFehooi71CZzREImGXm9VR89DQiXdXwXH0XqTwEo93I6gNx9pe6sGJ+fshQpLg99dSqyaQfn1tQrIK3C20ZATGlRCJdC0AyTsRUR04TxDcN/1DyTuwURl2D8qyyWxd5B0X066WhZ9mo4kFhFxUkAZdEvBj55bv/mNyRQnvzGZ4uQ3JlOc/MZkSvpp51iCWxhMsQTBYA6i1HVS4WwKTrmIiBn05iPxC3v9wfVcw3k2cI1U8kjDGKiUmJyOERG7DvR2A3FoT2IqnIfEPRKRJkmHX+xDhSESr5pYr2HQxQuYWDtXsWmx0diy1HPPYcjJFETTNezVUanXN9yz8HUE600CJImN5LwkwW/c1fUmIfa8q70j305ahn6v0D2N4JJnckW2vRe/+Y3JFCe/MZni5DcmU5z8xmRK+nFFJabgyIJ/E5uOOpaW4Kialyp0RETMkwo8KxD8Xh90UMZlrU7C1V6PWxzUpUe9B7FkGUTAtmXITZCQRwMe6HpIbKLYtlTXGF1103/+CoZ5LK601+Nipvv/8qDHXUIjvisQSKfgsqSeh3v4vh0IbBERR3sVyZZw4xcFlFDDvlAJ7d2eTiZ+C/bgR5AHH9b6fffXLCqPITd2sD4zcBzuaLgHnsUY80ePk9+YTHHyG5MpTn5jMiW9VamIsCdxoKJhDO1oksg2MIRgWaiI9BB6lz1I+tmn1Uxi01oHS5CLcAeDF+i4JocfiYg4eAM+TwMeqIyZIAGRhE9yY85hrSMirra63usXut4k7n3ZU7HpUaFC3tfgxqSyanJ3rsEJOGsobR0kvZ4licqwZlRWfVzq2kxA+P6go4LfX271XftRzCV2csKOWDJpLpd67tlWY2tQSf3mNyZTnPzGZIqT35hMcfIbkylOfmMyJS1bjg1WjTNiAmroCGybJXXMjIgtKJDTSlXl1/CrwBFYGGmkMtVVtx0tXtegwjfYe0nFJ7WfoDp9+i2FrLxtexNcgrr+AOriIyLWfZj4c1AF+RX0fXgKY82fwy8u1OOBfrkgXsOevoQpRRERXVgz3iuFnidS9s8hdgaTmU5q/ZVhPNFfGfpDXofdFsZxg52eRqITfvMbkylOfmMyxclvTKY4+Y3JlPQ5ODxJfjre6/+J25WKLCdwHLgxIyJiCqLdH+B6ft/RmvyLQ7vx2TgWuVRbKglnA6jxbpw+BE0429b+k5WXhEWaDNMDMZSYwXSlzxumDz2BceMdECXXINDN4TxzaNS6qlXoIiGurc25aXQ2rU8fxMEhWJ1p7HrbRqhrEOIuwJI+nul0nvGKbdf1Qc+9qPU750G2eV0fv/mNyRQnvzGZ4uQ3JlOc/MZkSvo01H1FTRPPShVJpiCmjKFhIo1jjoh4DHXev6+1vnkB4hCNv6YpPiX8f2tbk03fNyv1WiJY6CKnXQV9A+heSOgit2IXYnTPNLloWfG9kHhJ7ru2Ah3dM30fHdfUP+EmJIZGRAxL3dddqefpJBB8QfBbgXOPFPIK1mGTNIfmhYrPdyoW/PrUeBbOvSk0uHQDT2PMtzj5jckUJ78xmeLkNyZT0uPqWoJUyrgoVCRbgkjWK/X/yQzEpoiIx9Bw82qngh9Bjq4CYn0QJUncuwf3NwBxZ51YgKJpMwu4b2pSuYTmkRUIXallSS8JlTQGvMmtSPFNrZ9vC4l2m0q/j5qoktOR3IaDBqPjFkrM6fMlTCni0fB6PcvQe5lhDkFjTXCbrkFojIg4h2skEZCm89DELb/5jckUJ78xmeLkNyZTnPzGZEp6VS0kSOWNJCwV4CQid+BrcL9FRNC5adoMiXspqIdfu753PYidHPT77kB58pDmQ0fEHibGLMF99QL63l2C03EV5GBUcWcLYto1jCUnF2ETtNdNJbM3aTuRCCckQYwgp2MTVFZN59l0YDx4y3umsuGKyqUh1IVSW3o+IyLKUu97vIcR5vDZFTyLfvMbkylOfmMyxclvTKY4+Y3JlIQCDUgGJGDQCGMSWKjcNYJLR0kI2kNJMMXaDrUYgFh4DP3R3tvpPb9Xagl0RMTxWPvUVZVez+VcRzd/BY5DKvWcw7/qCxAQH7UUxJoGkNA6th1rvoby67Z9+P6/Qs88jmeHZ3YD67osWPi8ptphEAxJ8Jt1NOo3vzGZ4uQ3JlOc/MZkipPfmExJPCFWIYfYPNr11ptVK/xO7OMGn9+TKEnDOKCPG/13G4Egdh8qVn96eiWxu3/NYkz5/i2JHWYqDt797EJiP3im7sDNSl1ji7mKgJ9vxnotfZipDAuREv/vX0LZ8Qb2ag1uTHqeUPwC1x8JkCQW0jlI2I2IKEEQazv8pG2M+igmWHByvxLk2oyIWGNfRyjpheOuLfgZY77FyW9Mpjj5jckUJ78xmZLIndR2aANBgt26of8bnafJdXYT6sPWg4EhJARNoHz3xzC85O2/VYEt/fKXfEFndyV0+OJjuMbfSKwYah/FcaXrPbkEF+Hn+v97XqkIWCcVAfsghkVwP8INuM6We3UmjmEgyrzU656CU3K2U2F4W+s6kAOxDwMxIiJG0CPvCGJ4HJS296G/HvX6I5GTjiPn7KZhevIaRLsSnKkk+K0gL/3mNyZTnPzGZIqT35hMcfIbkymJRDecvtpSiMMS4QbHUtt+bwS5vDbQC48EFRqJcDpRsan86V9o7Gd/g9fTKfVbd09+J7H9VM9TTfUaqY3bfgdOslI/e7ZRceceuR9B0IqIGMCx5Drbg7hHu7eFQSeXXRUBv+6q8NnkDr0JCXYREWfpSGMwoOUYyqoH8G6kPooL6Lc4hTJ2KoFfQ1rVBecaCYYUwh5+FvyMMd/i5DcmU5z8xmSKk9+YTEkr6Ln2JqIbQS7CiPYlnG2vJ4HgN6tVWHqZVHi5utbeeu++vJTY/vIxn3wHves++URiL/5d1+ziUsuBiS04E5fQj5CmtI5hCTcNwyFoVwuQSYewrT1wnNHuvwbR7WFvKLGnpU5t3oJ4NW4QL+8VsK+hx74FA1podahn4uehouQGxL0liOsEDvwI7ltZQ6/HHlz52oKfMeZbnPzGZIqT35hMcfIbkylOfmMyJa0rValxRDPUfndALaZa6yZrMAzEQUjlpDHLK7iX1zsdA/4wqYL8m/JcYh/+0xcSG/f/Hq/xsIFz/8NTif3q6h2JfQ7O1AVOTVKGsFfnNFoctqDBRRpHNOUIVPyzWr9gDL/MdMEavITn6airvwB0Sz0v9RuYwIj0iIj3Qxf3hyC6n0PfgB08y8teu5p8svJSrwvqS0HNUiMCX9X1XvdgAA1FyZbsN78xmeLkNyZTnPzGZIqT35hMSdQgsQe16TTlpF+oyEKW36Z6fhI7SMijz5NlmO7leqeNIp+UryT264FaS9/9RMW5X8w+k1gTnz68LbEHMEznM2geelFrjCyjI7C1/qDQBp7vgaW1SfCjN0IXjh2C2DQGUWvQ0dhoD40nK73G6y5cNzw3k4ax5HcqPfYuNJQ9LVWwXdQwneegAmIFjTWbnvk3gaZh8SStdrZ7v/mNyRQnvzGZ4uQ3JlOc/MZkSqJa+Q64qmgMMY3EJndg0/hk4gBuPhIbi46KXyT4zbdaz3/RmUrst9AA8nh4T2K7RxqLiLh9UMHoCsY5k9NqBULeVa3OxCmIlyR+zXvaPHKf1MF42uCKI9dgHxumwqQanmAulLAOAxAQR+AsHIA7cHDg99gxfOcx9H0Y9qCR7ZqeZYWkPZrYQ5D7tYKGoBEsItIkLYqRu9BvfmMyxclvTKY4+Y3JFCe/MZlCw2uwfJdEt9TgqmoLNusEtxRBDr+a3IEQU7kv4llxJbFPS3X9vdNT4Swi4nSja3YHGjber1VYfFSqi62E/8s7EHKoAesGHGyDkW5uBBdcAAAAY0lEQVT1++VEYhERExhDXYK4R2W+/b0+E3s4roC9p8ajO1DYNiB8HUEj04iILjwnvVKfiQRThag/Lcl45LJjV2o7JyB9XwQLeeuW+09iuN/8xmSKk9+YTHHyG5MpTn5jMuW/AcmOrxuQ4QFYAAAAAElFTkSuQmCC" y="-9364.354317"/>
</g>
<g id="matplotlib.axis_525">
<g id="xtick_787"/>
<g id="xtick_788"/>
<g id="xtick_789"/>
</g>
<g id="matplotlib.axis_526">
<g id="ytick_1311"/>
<g id="ytick_1312"/>
<g id="ytick_1313"/>
<g id="ytick_1314"/>
<g id="ytick_1315"/>
</g>
</g>
<g id="axes_264">
<g id="patch_265">
<path d="M 434.924375 9489.25608
L 557.214375 9489.25608
L 557.214375 9361.962553
L 434.924375 9361.962553
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_527">
<g id="xtick_790"/>
<g id="xtick_791"/>
<g id="xtick_792"/>
</g>
<g id="matplotlib.axis_528">
<g id="ytick_1316"/>
<g id="ytick_1317"/>
<g id="ytick_1318"/>
<g id="ytick_1319"/>
<g id="ytick_1320"/>
</g>
</g>
<g id="axes_265">
<g id="patch_266">
<path d="M 29.174375 9633.175504
L 151.464375 9633.175504
L 151.464375 9505.881977
L 29.174375 9505.881977
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_529">
<g id="xtick_793"/>
<g id="xtick_794"/>
<g id="xtick_795"/>
</g>
<g id="matplotlib.axis_530">
<g id="ytick_1321"/>
<g id="ytick_1322"/>
<g id="ytick_1323"/>
<g id="ytick_1324"/>
<g id="ytick_1325"/>
<g id="text_67">
<!-- 244 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 9616.568741)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-52"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_266">
<g id="patch_267">
<path d="M 164.424375 9630.673741
L 286.714375 9630.673741
L 286.714375 9508.383741
L 164.424375 9508.383741
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pf005da43cb)">
<image height="122.4" id="image68159b9c87" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHHxJREFUeJztnVuPJedVhlftqn3oc0/PjMczjmxsJ0ER4IAQilC4QQL+A/8OiTsu+AcooIhIKIkSkSOJEzvY45npOfW593lzEcUX/T6ftHb22ML53udyqWpX1Vff6pLeftdazZu3/mwVNxgvZjdDMV8uUrHFapk6LiJisdRjVyG3gzTRpM5drXK/h9do9BolNrlO9tr0zNlziSW8q4j8s7S9VmLb/aHEXts6kNjXtu5L7B+WhxL7u51nEjt4/Vpijz/Qa0RE/FvsS+zbcSqx9yfHEnsxvZDY1WwiMcwD2NuUG7TWpRyg9z/s+hKjd7DTjSTWw6sYY/7gcfIbUylOfmMqxclvTKV0+/1tCfaascSu5ip0kICxXKpYsSwISFlxLwsKYhAikWUdcQ+vDee/ahHwVVMUEJNL0YNnphi9//PlVGKPWt1P5xcqVN3evZLYa186x3t859e7EvvpUAWxj3oqnPVgIej56N23Pfiugr66avL50iUF1sPBjsRu9XUd/OU3plKc/MZUipPfmEpx8htTKd12q4LBfKWOpdlyLrEJOAHRsbSh8EXCVFag+yzEvSxfRBEwYg0nIb2XpPPyGgU/jX20UEH6zfFLiQ3vslvxwYfqBrzV6J7vGhXTsi5LEgaXsIQkApK41yss/wjcfHv9LYnd7u9J7H6nMX/5jakUJ78xleLkN6ZSnPzGVEo3alREmIDb6bqnYgy5nTYlK+5lnWRZAWpTsiJZ9jCC7jt93TXIrndWOCUnKAl+j5fq3PvZQMW5d97XMt3X3mSHXwsOusEq983Llqwvs2XosF79Ru8F3YERsd3pWux1KvgdtBo7bAYS85ffmEpx8htTKU5+YyrFyW9MpXSjXifB8UoFvwEc14JYga6okjAEOgmWR8J10j8IbCIClgS2rEhGkFBZ6q+XIesiLL0XFPeS5a20jlNwh14ttET8aaM9834Mgt/uUvv1feUXWsYaEXECZbAnjTpT6X7IwTqZg6sVnrmXFPIo1odci4gYtSraDUGcH4JbsUVnojGmSpz8xlSKk9+YSnHyG1Mp3ahRcWG7p8LCFQgL/RZEwGSZb0Sg263kbroJlkLCDy42GdqxRikxiZJdq8IL36OKe9OFimQkAmZdf+sIkiRWZR1+NKyCRDKC1oGY9fW4n450z0ZEjEOv/cFMh3a8hAEd1zN1IZYG0NxkCc5CgvZNKQdIdO+DuEe5MWl0zfzlN6ZSnPzGVIqT35hKcfIbUylOfmMqpesg/4f0HwBo9HnVqiVy1qpKPSvYczexv5LqCsOC0mQV8pLVeAD/+aBYViEn6D8ARNaeW1KV83ZqhWrbySZL72/S0+PIGnyx0IlSpISXzj+fa1PP06n2EuA9pu8K/wMEexH/WwN7u7jHyGIP+UvvYAxNef3lN6ZSnPzGVIqT35hKcfIbUyndCOyBZEFdtSC69UkQ0eNo2k8ECxMkgJDwQsctYAbyJlNzspbdCBb3aKRydgpMtr8ArTfWjZONdANhL4LtuCsQL0nQnIe+UxI0sRfATIXmrC28dJ35AvZY8h286qlQND0oImIAQjw1AKX8nUNu+MtvTKU4+Y2pFCe/MZXi5DemUroDmNgzA3GAhIVFC0JOp8LJJTRHjGAhkES7BdQiZxuF4vhkuBdyxXFzRRZjsGFjssFprzST+ea5SWGQhMZ1xL1sQ9FF0lGZFc5QQISLkDhXEvzSo9w/gylOGXCKT2GPjaCnRkkcvMnEDj9jzO9w8htTKU5+YyrFyW9MpXR7KxUMJiQOgR6yA40+z0CUGC+5geM8Wd5KDqqsQEfqXkNNL5PluyXhLOuqy4pxWMYMog2vTe5eSg0zSYidJuul6b43gfYDujYL90dr8arJiopYVk17pCDiZQXf8Urf3wRi/vIbUylOfmMqxclvTKU4+Y2plK5PY3NAOxmTWJEUMNZxl2Wde9S7rAGnHLkDSeiie8yW6Ubw5JRhq+In9ULc7mmMfm8Kog3FcJw2xOjciIiLufbImyXLqrPl0p8XeI+wwbNCZbYkO72P1yhFJvfrDPYyCexXS3XZ+stvTKU4+Y2pFCe/MZXi5DemUjqSr3IDlbk0FsWmNcZak9DVtrm/USTuUA846uFGZZQk2A3BwRjBAxV225HE7nV7EnvQ25bYCNZmDOLOFfTCo5LsKbgDz0AEimBxkFx/1FuRxFR0bSZLaLPOy7V65uGlX61QSXs+O0ylODqdxPkk6AT9vX/NGPOFxslvTKU4+Y2pFCe/MZWCDr9pUvygvxxYalv4G0OliyTu4WAKEH1QRAITW3YqLgkspf5qJO496B9I7L1GBb8vz/Q6I3jmCQxtuAJX4xks93Gj4txDcDBGsGvsupvCcblBFzO4NpbqJvcdueJKzkvaj7SfcJBHbpukyTr81smXAcRWPdg7ULrvL78xleLkN6ZSnPzGVIqT35hK6UAbiCUYiRZUBpm8SMl9lS31paEW5Iwipj0VckgcQvdV0pEVEbEF/QzvNSoCvjPXZ35roSW0oxYGUzTwsiB0NlEX4q86LRue9vWeIyJegIuRJ8TqOs4LwttNeJhKTvDLujEjCv0R4Tr0myQCkoORBETaT3QNcoYWXaQkkCdL7Uks9JffmEpx8htTKU5+YyrFyW9MpXTPeiosnUNvt9OVFvpeLpOur0J/tKz7igUV/EmBhI6tToUuEvJGICJttSySjUC46eD5JnDf5wFOO13G2Bvoeu/uaGww1vf3cgwiXsd/+7NiHMVoHfuwNqPCtW9Ce4dEvJLgl51iOweBlcS9bBkzgWXfnYrCdFwEuydhm6BDk+7RX35jKsXJb0ylOPmNqRQnvzGV0v1ycS7B7JTPKxD8xhArCSIk5KGosYGrisQhcuORg42cVjswdCMiYgTnz+EeH7dU8qrn7i9UqLo71eOWS+j1B+e+hFLpy0bfVQS///yEYH0H2eElJHTRu6c9UiqDzfb7yw46IWj4Cd03DnaBPVZ6ljH0USSBfQLi/PVC37W//MZUipPfmEpx8htTKU5+YyrFyW9MpXQfTJ9JkMYxo9VxDStvFrKMkqUyq/aPwI7btaq6kgWVlP3thm2kw9DfpGc5hWaWM2jieAHPMoX/ClwudNrPBSj7H3b6/l6sWO2n95oeQw3HkSX6sNuR2A78F4beKdlX6Z4j+B2Qij+EtaX7GeHodL32GGLZeymNTic7/TXFQNmfwNhuf/mNqRQnvzGV4uQ3plKc/MZUSvd8ovbeVz5muWCTzNbzo8UTjsuOaSbL56jQNPEmZNH8bZwaRSpjiC6gMecM/i7PoQaebLvnjV7jKQxeXxTE2S1YC5pIRCIbiU1ER+8ARDeKLWG9yJIcwWIc7buDRsXdB70tid2ByTe0vekdXFEM7u+kIMRSE10S/DB/Xc9vjPkdTn5jKsXJb0ylOPmNqZRusgAhCMS9bE39OkJcVvDLQr93PVdBhO6HpqmMlurwmoJDLyJiAH9HW7gOrc8EFCMSBscgktE1JiQ1wrIeFtyKWzQKutPYAq4zhZrzMeyxs961xEiIpXc6ADflsCDEkrBI59/vqaD53kzFxq8u6L51cU9g7zyFkeifdBr7CByfESz4zaDxKAmxFvyMMZ/i5DemUpz8xlSKk9+YSumofJdEqU0cfnTuOuD4bJwqo1A58NVskrouXaP0zAtwwE1gEg+NT04Dl6ZmjyTYHTUqQO2u+G//jC4Eh76EkldaMyonPZldSgzFwk5Llo9aje0UxUu98QM49t2Fxr4xeimxN/5aBb8GnJeTj/SZjz/Yldj21YHEZkN+lksQm6kJ6zU4NGlUvb/8xlSKk9+YSnHyG1MpTn5jKqUjcY9cdujSS5rxsuO0I/K94kgEzDJd5CaskFhYKlm9gFHLNBmIRkZnpxSRo44Ev7udCku3YGrOaBPxMXhazAxEu8lcxa9ZA1OBSHyGtaF1PezxJCUSOu+tVIj98lTv5/5fXUhs8Dd/jte5SXv3NxK7u1QB8exnet+fLFXQjIgYgfOvVGJ+Ezv8jDGf4uQ3plKc/MZUipPfmErpsLwVXFFZsn30SmTdfHQciRroYATH4YxEQDiOxMKIiDEIgTSaOusazPYtpDJYGg5xQIJY4VWN4drHS3W2nc2vJEYl4uTco/smaJgKDbUoOSfJxXi41GO3A/bJDErWr8Hht60CXbOrscHtE4ntb6vb9HCsvQMjIrZp2AyNICfRHEeQG2OqxMlvTKU4+Y2pFCe/MZXSUe+6LhkjdxGeWxp0AceSYy3bK47cd2Po4TeGe5kvcqXNJcGPBDrqH7hJ30IU/MD11QMR6H+hzPMU+tZFRFyDoHY8O5XYi4k64OiZ8fngs9OCOEf96MZQInxZGNpxBc99BetzDMc9+smexN4Y/kJi/XePJLaaw6TjDiYY7+izHF1yn8jXlpovJzBsZAIOT8pVf/mNqRQnvzGV4uQ3plKc/MZUSkcOqhE407Y7FRb2ob/anXZHYg96XKJ4J/Q61IfvaaiI9HCpPeCezM4kdtLoceRCnPdg0AE4/Mg9F1EQB0GUfNWQ0HgxUxfao0bLSV8UJhNTz71z+E3qhUhluaUpzRloXccwmfbZQt2GEez8a2D6bh+GZ2xfquDX/5E+3+3LZ3rdHf2uzk5hPy2gtyK4DSMiHsxVtJv3VbQdgRPwBMRdf/mNqRQnvzGV4uQ3plKc/MZUSkcOMRIBd2Aoxf1uX2J/0Wjs7ycqFkVEfPlPPpEY6Ffx65/flti3+hr73kAFrI8bfZbzVu+HJslSP7qSiEfOPxK/sgNMsqXR5J6jZ1lOVPgs9UEkEXEMffjo+YgO9hiV9NJeJIH1cq5CY0lUpGekib67cO1dEAGHJzBk43/098i5N5/qNU7OVXy8gCnCJXagPPkQ8rdPfTDTVzHG/EHh5DemUpz8xlSKk9+YSul6yf54JNDswbTTt1XniD/+xnO8+NY//q3EmqPXJPbeD78nsTv/9FBi/Yu7EvvBQMWPRwstRT1bgINtocJSaWgHQe40+nNLoh32MtxkUMkabkN0NiZ7CmYHrKDgl+zrR0IsvauIiFMS92CQxw6Ul/c63d8TcEW+vFYRcO+SplrD/cF1Hw/4Pb/s6W+e0eReKG+eeGiHMeZ3OPmNqRQnvzGV4uQ3plKc/MZUSkcTbUgZphrvK1AV56T29lm9bA7Vott7++t64JY2JLz/9F8l9s1/1pru86HaJ+egmpLi/nnU40fklX36z8wm/wHA/0ZExAp+c7UCxR4ssdna/eyUogauS/dXelfU7PNipf+xOYbmoecwRvwRqPN7Q/2P0h78XgdrcwEdLKh/RUTEC7jvS/jv0wTyksap+8tvTKU4+Y2pFCe/MZXi5DemUjqqyaapK8QnPbVJvt9Xce7sV1yfPHz4G4ktbz9IXbu5fSixO4ePJXZ0qc1DRyDaEDQtZp16fhKwslberLhHU49oYs86k4LIykvCMO0d+k2K0e8R2fHsJbITf87hO3gWahleFBq43mRA06zgGlO4v4slW5XJwkzPQnuU1sFffmMqxclvTKU4+Y2pFCe/MZXSkdOK6qVXcz3uuNGxzT/vdMrJTz/ROvuIiG9+98d6QyTmwPjsxfva/PP5qYqNpwO974sVjHgGkSU78jsiL34RWZce1bv3W5g00+p0JZrCVCI7/pwm9tC51B+A3IUkAm7qaqT7mZIzFaZHkSvudK4uUhLi6N1n+xWQOBeRX1sSbNkxaoypEie/MZXi5DemUpz8xlSKqkUFSNC6gskpH89UBPzBUKf4RES8++8au/viuxJbQDPED394JLFv97V89ycrbdb5cA6jvGc60YacjiVnWlbcy7r5OnDuDUDc2+10ktLtvoquR606Hem6ERFnIH6+mOs6EquZrgOJe+h0hN8jRx2WDRcGIU1gehEJdAOY7ESCH51L48vJ8Ums41bMukNp72y16sb1l9+YSnHyG1MpTn5jKsXJb0yldCSeUCkqQSLgOUy+eX8wxvO/f6o9/B78hwoqT6B0+Afg3Pvx8kRiD2caQ5cWiJfkdCyR7cNHJbgk0AzBkUfOvbsDFVMftCr43enpuTTFJYLHYl/DO5i0KqZly5g3cUSyMMjPQsLbxVz3I12b3K+0TyYwvpyE4VLPxCzUM5FEYNo7h/0difnLb0ylOPmNqRQnvzGV4uQ3plKwpDdLtjfb46WKgBER3x+qMPGjlQpLH4cKNB/O1Un4dKbOPRJ3yPVFwhAJNCVXXNAYahBo+j0owe1UjNvv1K14BP0R77Uq5Dxo1PU3giESpeEQtCNIvBzAs5CTLFvSSza9rAhYggRIKsum90+lsXQc7h1YxU2fBTVNaEdJpcMkKvvLb0ylOPmNqRQnvzGV4uQ3plK6jUWIG5Ar7nh+zsdCyeQcVI1nMz3/bJZ16f3+wyaIUgkmCSrknsyW5d6Fstw7UJZ7u1GBbRvEPaLk46Qn7MMQihG4/rJTeklMyw6LIUpCLIlfLFTn3IokVGJPQdhOPapEJmdhYS+Si5H2Nwna1IPRX35jKsXJb0ylOPmNqRQnvzGVgj38sqWHJECQ6PYktKw2IuJ5o0IeTlUFIWgMokZ2gEFWZCEhpzR4geJtq7FhT12Ne626+Q56KgLuwOvqQOgiIY9e9DaIeBERO43e46Kn68MioJ5LYtx1m3unkdyL5KaMKDjb4L1uIu6RyJmddEzuQBKkS/czg/OvYLow4S+/MZXi5DemUpz8xlSKk9+YSumy4h71dVuBwEbCSXaAQel8EvKyfQZJeEmDta18aFYcpDLYbRDJRiCm0V/qrLi3B66/fulhQGzsw/ljEGenNGEWboiGpBC4P9cQYrc6dSGS6EoiIIq4ye8luVfJZXcJJec0/TiC84hy43qVGzbjL78xleLkN6ZSnPzGVIqT35hKQYcfinvJSaskAq7TJ3CdEsffl+zvoZurUNKbFYxoLWgSLd0hOeWoN98BxG6BDjcpPMsSyo5JG7wMFaDO4UC67+weI2hdRyDsRfCwin1wVHYgsPapFx58L+n5ZiDFni1U3HvW076T65DtPUlOQH/5jakUJ78xleLkN6ZSnPzGVIqT35hK6Uh1zU9YUf6/KfuvmlIDz2zjSpwgA80jJz2V52+BLXUXlP1d8PwOYV0XhXvmEdh6/sVKFeSXMJ3pxfxCYtSjgfYD1ekPu9wI6oiIB/1DPRbGlQ/gqVtYnyH9pwHOJdv1U7BN034iK25EqV9Fdvy5nusvvzGV4uQ3plKc/MZUipPfmErp5gsWF25CQh6JXBRbRwQs2WflNzcQBrPXyB5XgsQ9nLACgt8YxLQx/N4E1vYMRsNcwbOcQVPOiIhHMLr7EQh5xyDkvZhp7GSqtfvYrBOgBpw7MOHo9f4Bnv92q2PN76zUvryz0vXpQ2wAS7YFMRL8Pur0W3vdgkW645H2tE+yjUcJf/mNqRQnvzGV4uQ3plKc/MZUSpdthEnQyOHPAnTVJcW4TUaQl9x8xCaNSy+hqedpq7XfHbjLpo1e9wk1s0zW40dEPFvo+PNnIO5RE87Lmd53droSrXcfBD8aaf56yw6/ryy0zv+tmV77aKVNM3c6XZ+uzeXLyURdhGNwFu7DmPOdVp8vIuKy1XskNx+KgAvNA3/5jakUJ78xleLkN6ZSnPzGVEq3yUSbFTig1nHFkcBDDkEq6yxNaMmwSRlzSUAkcS87CprWjM6dLqGEFsp8CXpm+r2IiAtoNHk2UxGQxrHTOmwiutLa0NSj/QZ70ca9uV77zU6Fyte/pI00tx7Au+r0fsaP9Lrnv7wjsasG9hO8FxpzHhExajU+WcI49eRe9pffmEpx8htTKU5+YyrFyW9MpaRHdCNkvCPBriDOkZBHJZw4ZhnED7oOiU0zELom4ELDkcgFgZRElnly3Di9Axy93GmpLU2ayVJ6Fiwxhp572ZHRRHYaEu6nNb5ZM9ijk7mu2fRKBcMRjMqmCeRnxzoB6Jfg0vuop+t6CXuxVAJP75pilFfNkiYpGWOqxMlvTKU4+Y2pFCe/MZXCtqgkWXGPhixEsGi33WnZ4y0YyHDUaWwILq85dFN7OVe32vPZucTOZ9pLLVumG1EQ98hpR644OI6Eyo2cjgWxl4RALB1NPl92oAkJn/R7c1DdLkmJi4jHsPeWi22JPTlWge7giQp0S3iWD0GQ/lFfz3241H13tlRRkYa4RJQF2pvQetMYcX/5jakUJ78xleLkN6ZSnPzGVEpa8CP3FTmJBq3+JDn0Inj4wlFfhyz8Uf+WxN5tVLS5BRNrr0Fr+mCgYuEvkk65q0YFmoiCQxB65G3Sc40GrGw6WIRAx+EGwyHwHuFUEi9JVCRB7PlSy5AjIj5s9b0+hXcNVcJB6bGAstxnKxhostDYGdwjTmguCH4UJ/EzOyTHX35jKsXJb0ylOPmNqRQnvzGV0mUFox6IMRSjklzquRYRsdWqEHinU8Hvq40KdH8JutsbPe3NNlnqtf+70xLMaf9QYiSmlNxqtI7koONYzj33eUGC0Ual33Bqdt+R0EjC17OFvvuIiBk4PPvwzSNHJd4PHDeBicqXC92gdN9TOLfk5KMJz5uIrv7yG1MpTn5jKsXJb0ylOPmNqZSOhbxcLzU6jsSikoDRB6fVLZhk+s5c7/Fr+88lducrKvostfVcDH9yJLEXMOX1EsoyFyAgRfAzzno5hx+tY1buy74rovReNhL3kmTLd+k4WsOTOQt+NIAk64CjXoHZEuoZiLg0JIVE5U3fC90jTTv2l9+YSnHyG1MpTn5jKsXJb0yldCQOZN1X5FajfnQlkYSEjV0oo7w/1988eksFnuFX1aXXdHrtt3svJPb1H6rr79mWioDjjnv4kZiDji7qAQjLgyXUSSGHXJbENQziiIi4gmEVS5AgPw9hEHsZgkhGE4MjeI+VphPfhJypfYzpemeHxdCzfBbraoefMeZTnPzGVIqT35hKcfIbUylOfmMqZaOJPUtQUpcgVJam3FAtcwuq5EGjqvTgLtgV76ltt9nfk9jWllqI33vyVGJPnr4usQvoNxDB/wW4Xuh9z1qYzgPqLjVCJfWZph7RcWT5vWi56SWpzfSfgaxNFq+RPDdr7y3ZrklhxwlJcB1sUAtrm/3vCt03xdYBVfxsj46NrmyM+cLi5DemUpz8xlSKk9+YSuk2adZYGvEsxxXEnez5XU/FnN62Cl3N4YHG3nhTz713X2K3T78jsT/9Fx2p/DjUBhwR8bLV+EmrwuJVyzbUm6C419NnpiaoWz2NDWB8+TbcX0S+xjwrVuF7TmqFdA0S7EoiFzW9zI4bny/1N2cNXTv3Dc32MFgHEnLTTXk3urIx5guLk9+YSnHyG1MpTn5jKqUjoYMEg3TzQHBFUb1zRKFeGhuF6rnNCMyJByD43X9HYwMQ7S7PJfSl7/yXxPYe62jw3/6ohqhWe1ZwO96kBz9I60XHjUAY3G1UBDxsdER6RMRiCGOxweFHrj8WcfX3Fknxi/bnZK59EkoiF7lQ6Tezwjc5WCNyk502FfeIbLNW1/MbYz7FyW9MpTj5jakUJ78xlbKRww/dRRCjpocR7DDbW6k4OBqCwLOnol1zeFtjd9+SWG9bhcHVs48lNjz8T4ldPeG1OYYR0c8nKiJeTLWMNjvemxp4kpuP3sEIHH77jQqDERFNX89/3tdnGS/0vaxATKNnye47Om4GqltW+Frn2pvwWYh7m1wHJ2696psxxnwxcPIbUylOfmMqxclvTKX8H0Qs/62wNxAhAAAAAElFTkSuQmCC" y="-9508.273741"/>
</g>
<g id="matplotlib.axis_531">
<g id="xtick_796"/>
<g id="xtick_797"/>
<g id="xtick_798"/>
</g>
<g id="matplotlib.axis_532">
<g id="ytick_1326"/>
<g id="ytick_1327"/>
<g id="ytick_1328"/>
<g id="ytick_1329"/>
<g id="ytick_1330"/>
</g>
</g>
<g id="axes_267">
<g id="patch_268">
<path d="M 299.674375 9630.673741
L 421.964375 9630.673741
L 421.964375 9508.383741
L 299.674375 9508.383741
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p5d662bb005)">
<image height="122.4" id="image7168be708d" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHSBJREFUeJztncuTZOdRxbPq3nr0u3tG0vRYsi3L2BiHwg8EmAUQsCGCJX8oC1YEEay8wEtvEJYNkoWQRjOa6emu7npX3So2Ros+v0tkucZA6Du/ZUbVfXzfzboRp05mdurem9t4hXQ6HYl1IbYLm+1vf4l07rpbSaxf1RLrhH53vWnwPM12o9+Hcx/UfYk9Hl5I7E+Gb0rsL1YDiZ02et5Pe3p/H9QriX3U3EksIuLZWuOLjX7/oKv38rXemcTe7ZxI7L2Fnve7RyOJnT2c4TXeZ3yjaxMR8Z+jU4m93+9prDuX2IfNrcS+WOk13iwnEpuu9QbpOabn4bR3KLGIiEd9Xdt36nOJ/XBzILHvL3X/ungWY8xXHie/MYXi5DemUJz8xhRKTaLU/xYkqBFV8hr3uRcSY7pwuE3kxccu3B/dMwmQw47GDjZ6brrjbfK62+5ki5/N3TcJn3ddFUmf1Cq6HY+PJbZe6/tpMFhLbDrT40VETOH9tko+JlVy/+i5o8/Rc1x19PooFhFRwzPRw2tUNhD1m9+YQnHyG1MoTn5jCsXJb0yh1CQukLiTddmRoy4r7EXkHYJZcW+bvG4SqraknLWwj9hIrsHpVmOzrroQQy87ph295znc33KrwlkErwXtfwMnX4Ze9wjO86wCQXOrot1mrm63o4Ueb7KFtYmIq1rPM+7odTc7CLm/LdnneBdH7Aqum/Z/AnnuN78xheLkN6ZQnPzGFIqT35hCqamUlQSfZgOC2J4iyT7iHgmV9F26bhb3QOT8HZgfSdwbN1pO+ulmLLFf9qD8E0TJz7oqiL3Y6DnuNlBXGxHLjX6f1ozuZQalvzedpcSG5GyD8tZVR0XAg40+s7cVb9bTrl73i9BrHIMouQZBE3MDYgQ+7zuI4WsQgadw3dcgaD4H4dNvfmMKxclvTKE4+Y0pFCe/MYVSn/S139cKhJxFoyIJCT679NvbR9xrK3vMkL3GbClx63lAECVxaLxSMe6T7pXEVn397hEIYuO1Cmyj9VRis41+LoL3nyCH4ARERBRnYfsacKbd1ezcu891i1vxdqvP7RRiC/j+HQixs0bXjPKAnm1aByrnbnPEruHZmcC9vOxAv0UQRP3mN6ZQnPzGFIqT35hCcfIbUyj1o6E2/SdRioSOyVoFERIG2wSkbLlttsQRS5H3cCHS9e3b85COuQJHHQ2CoD0gESntYNxhbVBgpXLiUMGPrmcBLsS7LjkBwYEK1z1vEfzm4DikUmRyz43p+abjgYs0PSwGyrQp1sYSrvtmq+tI/Sj95jemUJz8xhSKk9+YQnHyG1MoTn5jCqV+u/dAgjSpZAkK6ctGLaMvVjre+Xaln4vgfwb2GcdN383+o/B/CV33ssnV1GfZpYkqKdVbsN5SjFTzOezzuKNKeg/UcJpSs4u1O/svB/UwmMO/KyvYF/qXqZO0pA+60K8ARp9HRPRgLYgZ/PNxBdfoN78xheLkN6ZQnPzGFIqT35hCqb/bOZLgyVZ/E6iZ5ZOe9gL4EASMJy0CDQmBJA5tkhNk/r+JeziiO9uvAAres6LdPiO2IyIaEsloYg80isR9oetJWqfJEksiGYmFEbxmdD0k+JGdOtvrIHsttPd9sDRHsNU5K+POQYj1m9+YQnHyG1MoTn5jCsXJb0yh1D9cav6fgaixBGlhMFAn0rirI5VntYp4EexYI9En2zyUvssiy6sfxbOPuEdTk6imm45Hwll2qswujkESyUgYpNp2bPSaFCBJyGtgCg+tYUS+3wE5KrMuS9p72pes8NlrEcgPQPDLunGp34Hf/MYUipPfmEJx8htTKE5+YwqlfvfgRoO1CgbXd+rme7pRce+gUoHmABxZERGH1UBi2Ukn5L4iujDCep+y4bZmoigsgkuPhLxBBWWdlYqpFfxWUzNKcklS40lqwBmx3/rg8UDoWjc5pxyW5GKMb4ZE0qwoSW4+uh7a52wTVaLNyTmAkl765JIETTv8jDH/jZPfmEJx8htTKE5+YwqlfnCpZbXrhf4mjCcqzhEkQJBQFRFxCL3KyC1FZN1pdVIwytIm+GF/tqSQd1QNNdbV9UY3Fwg5d52ZxEbrfAl0B3rz0b6g220P9yS6CEGcI9qeB3RAwjH36Y9Iwummu8cz1pIDJJzSs0xuPhrH7je/MYXi5DemUJz8xhSKk9+YQqk7FQgiK/1NWDYaWycnCQ9bhg004Pwjd9MSBAzse0elkEn9KVuSS0MkIljIO6nUFXkOsQsQ904it7g3weXS98FR1S0iV9adRuuTFVNx1Dl8dd+R6NmegsSrHtGeLatuGzdeQSNNEgEX8H3KIb/5jSkUJ78xheLkN6ZQnPzGFEo9H6noNrpRUepmq4LWErQP6j92kBSvIiJWMAiChBcqwSTxhETA7ORX6h9HZcgREReVlje/UelAlMuOfv/xRtfnAipeF7Den0LvulWl6zDZLCRGgyoiWlxxSfddVkwjJ2AHSmOzQmz7iTS0bcDBSId8xb0eSZwj590Ipl9HRCyTjtgVuD5pT/3mN6ZQnPzGFIqT35hCcfIbUyj1J8/OJPgMhIUnff2deNJVYWFKYkPLyclfRqIdCRgUIxGQft6y7kCaBnsKDr0IFvfeDv3st8A9+dZahbfzrgpBy41+93SjAuK6p9eyrGlfeGdGMD151ahgSH3zSARE0Q7Evey0YqK1Px49ZGDS3GfCMwmQJGjSOUh0vVtrSXZExKKrLs2seE34zW9MoTj5jSkUJ78xheLkN6ZQ6p8OVTB62lFh4XqrsTtwJ5ETrG0i6xpEuzmcJ1timu33RoIIiV99mIp63FExNCLiIcQvoQz6MYh7j/oqsB0d6tquVirubCcqLM3BRdj0TiTWJgxRWTXt1WKdKycm0a4Hw0to0m62dyAN2IiIqKgfYXKa8z79CLtJUTkrAkbs52DtQcxvfmMKxclvTKE4+Y0pFCe/MYVS/+P6cwlOwc1FPcDwgCAstPW9I5GNxA4Sm/YBJ62CcDIEh98JuB8jIk62eo/HoD8eht5LBQMeGhALKdaBNTzZaIzKhhdddiuSG3AO4u4CpgETNZVG1ypKDmHICfXgo2ekTVTOTn0eQg9GKumm69ln4Ad9t23iMOVBAyXwFFt3PKXXGPMbnPzGFIqT35hCcfIbUyhOfmMKpf7l3WcSJEWTVFNScftg26TPRbClkq2boO6SYg82Ujo3Kbs0XecEJukcUDF4BLYoJc12Bb+38xUo8WDlXYBifxOqkE+hGyX9yh/DPxQREafwjwatz6TSf4Wotp2eCZpwRP+uEOlpTcHP7Umt93JZn0rsHPZ/Bv963UJz1ClMSKJ/TKiB56zRWAT3q8hOSKL18ZvfmEJx8htTKE5+YwrFyW9ModR3S20WSEJcVkxbQ1NPqm3ehTa7Y+Z6SFg66+l0nTMQtI46KkC13ckM7KUj0NOOQLQDx29UcLwJiI3Pa429hLHrY6hrX0AsIqK71f2nenCy42JfBKrdhxjV+BPYtLLmnTkC8fJxdSyxH2z1mfjmUp+755We5+NKN/AZiKEvNnOJfbG+k1hbb4I1PCjYtBZoQH72m9+YQnHyG1MoTn5jCsXJb0yh1Ozm0w9m65hp/PFOI5WTkGMp7S4DEegQ3GU0bpwalEZETKBe+gv6YE/FqtUaBDE4zRg25mmtH3wB1zKDWnCKRXBj1gU427J17PTsYANWOB41UT0CEfe8O8RzvwEuvd9v9Pt/FrcSe/tPRxJbvNA9+PDfHkrs/VoFxF/W3AtCzgHuwLY4rWPW9ec3vzGF4uQ3plCc/MYUipPfmEKp95legqOXk6OJI7jpYvaYWdCtCL959Dm66gUW6kas4B7ps/OuxkYgAg7BZTeFxozPQ0WgF1BiOoFJSCTiRUTcNepEo7HR1MCTRqdvwUk4gz2l56FXQdk4OPxeB2EvIuI7IO794Urv5dt/PdFz/+3fSOygVmH4Rz/7mcS+/g/aGPfi6SOJrQY6SWlSc0kvCX7k8Fs2uWa7fvMbUyhOfmMKxclvTKE4+Y0plBpHCeNIZZjE09Kb7z5to7Op/DNbToyiZLInIE0fmiVHg+8CiaTXIOQ9gd/gCr67guuh/nGjRgUt6hXX5iSjiTgUo32lPaVyUpxUA6XI5NCkfR62vMcu13rMt79xLbHeH39PYtW7f67nPr/Uk5y/LqGH27+X2A/+Ts/7fKruwKtaRcAI3kNaRxLISRj0m9+YQnHyG1MoTn5jCsXJb0yh1FlxbwD92kiMIbFhF+EMS3XRfZcrE6WxxmNwsNE1tg2CILJuRfoclrcmRTIS4kjIQxGvxQmW7ZmYhUexa4wEZFobElKHW96r12AtDt+EUuahlgRvR1qUvaE1W+rz1DnUnpDH5yr4PbrVtX69pfT3CsqESbym55b2329+YwrFyW9MoTj5jSkUJ78xhVKTuEfDE0jwG1DfOzgeCXYRPAiCBjIQ5HaaNup2I5GMPkciGQknbf3RSNTC3nXkgINrxP6I1K8tKyDSOXZwXhLZ0m/sE5k6Az8PB9DX7xyckxERhx0VulY3cJ6f/0Ji1RfPJdY5PpLYdqzlwKv3dfr16EoFuxn0ZWzLlz4MbaF+lCQ0r2iYDp7FGPOVx8lvTKE4+Y0pFCe/MYVSk7hH01dJ3KMJuPS5IUy7jeAJqkMQeEiWGkMp68uOCi/k5qMpqA04pbICWwSXTKZFu6QwyANW8oJR5hxt5yFouEuT/G4HxFQU9+AZOQoacsL3PNrq9z/6QMtoe7+CgSE9deQNBioCNo3ey9VYz/Fr6DP4q56u1/OtPtsRXHaOzlJY2z724DTGFImT35hCcfIbUyhOfmMKpUZxD2JDEvxIjIHYactAhYuOxk/AvaWRiFlXSyafQ+xpM5bY9VqFQXL9UbkkCXsRXB5Ln20TDH9bYCgyOhOzsYiIDrkGkwIkkRUl0W2aLKuewmCQiIhPevr0fARP1BROM6cS8bnG5rA2d0Pd+5vtVGIjEK7vIBYRMYF4tlyeXH9+8xtTKE5+YwrFyW9MoTj5jSmUegguPerNh849iJHgR8JeRMSboZ99A9xSZ6Bq9bYqDl3BvfxrT8/9IVzj09VIYqOVCjQkAkbkHX5pl94ek4lJyDuAvnBtQ1fIhUg94LL3TNA9EzSoZBJ6LS/gmY2ImMNa0LTjl+CeG0GMhqSQ25RKznENocdkVkiN4L3GATvgnvSb35hCcfIbUyhOfmMKxclvTKE4+Y0pFG7gmWysOQAr7jHU7j8Irud/DMr+2ytVRB8PVHU/PFQ19Ysbba44B8vvTVens9x2te5/2lUVt7UGfg/7Kyn7pOKSQk79GM762ijyYU/HPtO/NRERC1Clb8ASfQv/hiwaHvt9H7pnWi9SzW8h1ofJUxERE2h6OQWF/eVG9/8aRp3TOkzW+t3svyPZf38iInqV7jX11OjBPVvtN8Z8iZPfmEJx8htTKE5+YwqlRlEK9AYUm+C34wRqpV9vGZ98uVab5deGKqi8/qbW5BPPbo4lNoM67yU11txDsNuFfUaiU+wMxjZ/o/9AYu9UujYnYJGOiBjVKkx9WN1J7JPOlcRulrp/ZPml+nKyupLgdwNCXJtZ+BAE6GXA2HY4zx2ch8S96VqFYW4Sm2vo2tpngYRA2MI+CPFH0FPDb35jCsXJb0yhOPmNKRQnvzGFUpPIsoTpJ70t10vfhybuPFizHPN6qHhydqEiS7enQsnVpypgfVCpc+/XcI6rjZ4jO967DRKwIinuHdbQyLSnzsTzWh2Mb9VnEvtx6Nq8N1PH2Xml6xAR8bTRdTwe6nlWvZxjjUQyWltyxWWnGbU5LxfQu4F2lYRFGttO10jiXtbNR3RampESJA6Sm28ITlC/+Y0pFCe/MYXi5DemUJz8xhRKTSWYJEyQiLCseHrNfY43LGBcHKkQNDhRQWU+UpfW+1MVoH4+UNHm1+tbiV2t1K02AcGPxNA2qBkmuiKhLPOoVoHtolbR7nGtZbnf6agI+N5c1/BH338qscFj/u1/89/1ulefXErsenAqsXVf5bRncI50GSy48TYgFpLoFhGxqMDZBiLZCs69T9PSfdyhKB4HP2Mk+JETkF2WxpgicfIbUyhOfmMKxclvTKHUKxK1wAJFbqcZxbp6vBWIhRERpImspvrZz5+psPSLvooaH8M4bhL3xk1ObCKRhEZLR0T0QcgjMYYmJB2D4HcKbsXXYPLR5UbP8fhARc6DP9DS3+objyQWEXF6+ERi73yua/udre7LLZQOT2sVYmeNxkgkI3GPRDd8joP3lSZSodM1+UwQ2YlEJM61TVKi3pr0jFGZ8BwmTfnNb0yhOPmNKRQnvzGF4uQ3plDqZgMCBvwkkPgxgdHE11sVcj6H8dAREQ8n6lg7mmgp6yfg0nrWUbGRRiXTSO2sS4vWpk3IIZGGxprTkIUB9Jk7pD5sIPicw/jygxNdm+6RrmvnVNc/IqL7UEW7s3MV/C6v9PsXfeg9CPdCkLiXdc+1Oeq2lcbJzUdgbgDkyNtQhTd8jno6kngc0S4E3gfHfoPL1m9+YwrFyW9MoTj5jSkUJ78xhVKTyEIOv2VHRRLqe/e80smtH7QIGIsh9Irb6Gevu3pBoy2UIkMfN3LkkXDSNCA2SaQdclpRvz5ylw0gNqQJyDD85BCEnF4frpym2FYtAtJARTs6Zhc0NpLdFiC6kuiWFffIwdZgZz4Wd+mVR/tHYlwXxNkGnk+6RoIcfjicI3gtsJSZ7g+eHb/5jSkUJ78xheLkN6ZQnPzGFEq9T/+xaYDg19Fy0rbjjSoV7U7AFbcCMecG3Hx0LyjkJGOrnSQ/hcRGFCDhN3gIsUMYpnIIbi4a+rCdq/MylhBrYdPouW8qjT2FgSg3K53cS47R3wX07JGghlOR4Vmk54SeOyqBx0EeNICkJV/IubcFwZeuh8Rnv/mNKRQnvzGF4uQ3plCc/MYUCpb0osMIDFTaCY9pG6gwrvUIBzBVlaCpquQ4pHNj+W6yN1tr6Si5zuCYbdNk70PCYNXSP/A+i5kKVWvowdc5pHEaEds7Fe3mUz3mFZTLXq1zE5DReZekzQFHkEvvEErELwfnEntcQck5OC/nIAy/aNTpeg2xMQwvofWK4DWjoSbrDsS2FvyMMb/ByW9MoTj5jSkUJ78xhYK1tiRebcE1RuXAuww6IBcUTQMmkYymC1NsH0jca+vhR0MjOnB/vQ1MO6ZBJ6CwLmAPxiBoXY10QEfnX/S7x0+uJBYRsV7oMZ+MHkpsNNRrnEOpdVZMJWi9s2XaERFnfV2Lbw5ek9gP6wuJvbvS9Hiw1r16Weu536+1Z+IHUA78GTxjlBcREQta22SfSRK+/eY3plCc/MYUipPfmEJx8htTKE5+YwoF1X6yT1IdcxdiRJu9N1vTTbbGZaPfzfYhQAUZYtkJKxERAddD0GjqSVftnLeg7N6A9flJDXbTRpXmj69hYs81X+O8C3X6A13bZ6FWXqw5zzazTK43KfsnoK5HRLw9VGX/J90HEvvLma737731XGLDc93n0efaiHZwree9hX8eritdw9FabcBtsFUdPykRv/mNKRQnvzGF4uQ3plCc/MYUCgp+JIiRuNcqft1j22LvJCGPxMF1k6vJJ+hettAIkwS/LcRo1HFExAastwQJp1S/fd1VIegJ1JLPKrB3QmPNJazXtKVB6QJEuwV89iZZi55tElvBetOEo5OeinuXfa3Hj4j4XnUmsT+a6bm/9+0XEjv+kQp53RM9Xv8/VDn99k+1aekvQgW/j0HEJYt7GySmUlNQwm9+YwrFyW9MoTj5jSkUJ78xhcIOv2SjSBQbqJEl1By3xbPiHp0729gR3Xw7NIUksg08SeSk+u3xRsW0pw3U7oOAuATBbgJCXFvdeFYwIjcfNaSke6b16oKzsAeC32mtwtnj6hiv8a2N1tBfVtrMdPAQHHAn4Io8PZJY9Uhdmw8u1KX34Fav8bijgt8QJgVFsFhMtOXbffzmN6ZQnPzGFIqT35hCcfIbUyjcwBMEHxJtSCTDEsM2wW+fiTZJ0Y6cifQ5ElN2mQxDkHCKgiisA5X+ZkVFmmZEx9tlak5WbMIGrrD/WVGRHH5HXZ24cxDsiqOrHjcqqI0/1Vh38FJi1Wsq5G2n0Fhzrcc7gFs+A3GPJgpF8FrMOvkx6/fxm9+YQnHyG1MoTn5jCsXJb0yh1CS8bHC6R078ouO19XDjiTjUsy1Zgpt0/ZF4xT0K84LfLtN97kPXTe65SZObkDQHcY+mGWWdYBFcvk2CJomI2fLrrIhLovAkuIfiZ12ND/oqqI2fvCGxy2daVn16TOOzobfiSN18K5g+P4Ty3bYx9VnxmmL4fOJZjDFfeZz8xhSKk9+YQnHyG1ModXagQpN0ZBFtwzRImOhX6mIa1iyA3IcELBKHssMhiLb12mcMNYmkbYNO9HO5kei0Nm3XnHUhZkXXfcRQ+u4cSpFvOiTEBb7eVuCguxpC6fBGRbvhVGM1PBIzeGSvurqG463u32TD94J7nS3fxaE0xpgicfIbUyhOfmMKxclvTKHU2cm2vwvIVXdYqxhz3te+aTTYgEQpcsCRey7bJ7CJvEiWLU9+1WIhQYJmA47BiLbS4Zx7Mus4y4qFuKcgks1a+hH24P1WgWN0Bfv6ogJHHZyDVpEE8ju47s8a7Sd4tbyDI0ZM1yoEZoVhC37GmC9x8htTKE5+YwrFyW9MoXAPv1csAra558jNh4JfrYLfWVcnqA5IBATh5RYcVLeNlm9S37u2QRdEdjrtLsJi5rvkYMRYi8su27sw2wsxew6KoVtxh96PtP8r+P68o7EVrC0Jg3Mqv97qc3IHz93LtQp+Exh8ErGfmw9L1lNHM8Z85XDyG1MoTn5jCsXJb0yh1Js93GXELsIS9SQbwBADEvfeqU4k9jZMZD0DA9SLSoWcDyoVWT5p1GlFAk0E33e23Dbr0suWy9KeZt2Gu5AV7dDhl+wJSW5Mcm0uoFdfRMRB6DOxBtFuCTHaF5qAfAdDUsYg7o0bfcbm0FuxTTQlgTwrzlrwM8Z8iZPfmEJx8htTKE5+Ywql3mVww314IAaVDrIoQc4/EvwedQ8k9uOVfu4nw2uJPfyWCnQ3nx9K7J8nDyX2s3q/Kb3TRkUfEquypazkViMhL93Dr2Xvs8NPsmTFPbqeJQzjmEK/vraegPTsraCXXjf0mLTeCxqSAoIf9Rkk8TJb1h4RUXfVwTpb67mzIr7f/MYUipPfmEJx8htTKE5+YwrFyW9ModR72T7pqyC6tinFqHTCeOK3QtXP9+qRxL7+V6qwdt/6msQOPvpCYu/+k/4r8CS0j8AN/PMQETHvwghsmnIDC5RV7Omfgk2T27+shTii5V8c+GeGlPTsSO1s49jtBv7hWOfWK4LXjJq/ZveAGmaSuk7rTc87/btFsbbvE/QPAI1O95vfmEJx8htTKE5+YwrFyW9MoaRHdO9j72yDBKM+iDEXG/2NOn9tqse7VItu9+GFxLZ3+t2Lc23g+fqtjmM+gZrqiIhDEGnIztnvQk12UgSk5qHjjtaIoyBG48t3aOCJ9eDJZ4LOne9hoOfAEeItVuUF1MvzeXKiZFa8pLUhey610M2uaxtZ8dJvfmMKxclvTKE4+Y0pFCe/MYXC6hXwqmu826BpKrOunns+VYFtOwHxawWCD7jGCDhtVC216eQaOwC3ItEDMY1EwBm4CFEsTE4FWjbc9JLICn7ZBqVZoXkDy037QuJqRL5/Ap47uY5Z6gqchXA8cuNF5Cca0fft8DPGfImT35hCcfIbUyhOfmMKJS347SPutYkkWDIJws0Ixiff3Glp7eW1TtjpvqHljduFCmczEBDH8NO4anGmkRBIbsUexOhzCJjY5lQSWmmM1rWtDDZbbpt12r1qF+kuAmJ2olH2u0T2/rKNVduEWCqrpmu04GeM+R9x8htTKE5+YwrFyW9MofwXNE/uH1qEuT0AAAAASUVORK5CYII=" y="-9508.273741"/>
</g>
<g id="matplotlib.axis_533">
<g id="xtick_799"/>
<g id="xtick_800"/>
<g id="xtick_801"/>
</g>
<g id="matplotlib.axis_534">
<g id="ytick_1331"/>
<g id="ytick_1332"/>
<g id="ytick_1333"/>
<g id="ytick_1334"/>
<g id="ytick_1335"/>
</g>
</g>
<g id="axes_268">
<g id="patch_269">
<path d="M 434.924375 9633.175504
L 557.214375 9633.175504
L 557.214375 9505.881977
L 434.924375 9505.881977
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_535">
<g id="xtick_802"/>
<g id="xtick_803"/>
<g id="xtick_804"/>
</g>
<g id="matplotlib.axis_536">
<g id="ytick_1336"/>
<g id="ytick_1337"/>
<g id="ytick_1338"/>
<g id="ytick_1339"/>
<g id="ytick_1340"/>
</g>
</g>
<g id="axes_269">
<g id="patch_270">
<path d="M 29.174375 9777.094928
L 151.464375 9777.094928
L 151.464375 9649.801401
L 29.174375 9649.801401
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_537">
<g id="xtick_805"/>
<g id="xtick_806"/>
<g id="xtick_807"/>
</g>
<g id="matplotlib.axis_538">
<g id="ytick_1341"/>
<g id="ytick_1342"/>
<g id="ytick_1343"/>
<g id="ytick_1344"/>
<g id="ytick_1345"/>
<g id="text_68">
<!-- 245 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 9760.488164)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-52"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_270">
<g id="patch_271">
<path d="M 164.424375 9777.094928
L 286.714375 9777.094928
L 286.714375 9649.801401
L 164.424375 9649.801401
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_539">
<g id="xtick_808"/>
<g id="xtick_809"/>
<g id="xtick_810"/>
</g>
<g id="matplotlib.axis_540">
<g id="ytick_1346"/>
<g id="ytick_1347"/>
<g id="ytick_1348"/>
<g id="ytick_1349"/>
<g id="ytick_1350"/>
</g>
</g>
<g id="axes_271">
<g id="patch_272">
<path d="M 299.674375 9774.593164
L 421.964375 9774.593164
L 421.964375 9652.303164
L 299.674375 9652.303164
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p890bf9b635)">
<image height="122.4" id="image065bcc988a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH59JREFUeJztnUmPJNd1hW9mRGRmZVVldQ1dPZFNcTAJmZJgyYJteOWFf4Lhv+eFV157aRuGFjYgmdQESSSbdJPssbq7qmvIoXKKTG8sLfp8AbxGy6TJd77lrch8ES/iVgAnz7231e2+vo4XqIryxVBslB2NFRrrFpXE+kVXYhERu+WmxA7afYldbevnb6x1ndeXLYndXs4ktgo97oOuft+/rY4l9tH4ocQiIp5PRxJb1EuJrUO2O8p2IbFBV/fhoDuQWLul1zJcXErsfD6R2GShexMRsV7rOdIz0St1z6q2HrdaryR2uZxLbA77RZ+l/aLzi4jowfNIz+hm2ZPYtc6OxootiXVabYk9rXW/706fSuzJ5ExiU9ibCL4vr4KetTEmC5z8xmSKk9+YTHHyG5MpJYknJO5tVxsSIyGvA4LPRlu/LyJiAELefkuPvb1SgeZP5ip+fKdU0W1jeyGxo6EKjSorRRQg5JCgFRFRtPXY5UrFOND7kHqlZ7Rc1xJrrXWNGkQyijXRAhGRhEV6dmgfVnX62nIuIM624b70SxaV6bmlZ5RidP/hjkYbovxZ+vTXh9/8xmSKk9+YTHHyG5MpTn5jMqVMdTtdqVQk2wTBrmypCNRrsUg2AHHvMPR83gFx7/3BqcT23hhLbHamaz8aqkuLtLlu6LWQMBQRUYH4VbdV6CLHGglB5ARcrFTwo3VXiaoiiXhNkIBFkAttlRhLdbDRNTcJfnuV3uteW5+x1D1bkjQMHyVxlkRX2oevCr/5jckUJ78xmeLkNyZTnPzGZErZr1Qo2QVx76BU4WSzpcJJAf9PqgaxiNx8t5Z67JvlUGJX31Nxr7yq17IYaploDQJbB3QXuj4qY47gMtFXE7WghBbW6ICYWhfgDixVgCJnWhPk5iOhkq6ZhK7UfSC3IcWaBEkSoDsQqxMFv8lan6cC9mEKx5GI+3XiN78xmeLkNyZTnPzGZIqT35hMKXcq7RW3D+LejbaKgNsNzr0XqRqEpcOVCi/XFypMDfanEis29bPrqYoskwsV6GbwP68HpbEDuL4+uBojInoNQuCLkCBGZbBb4LK80dmV2G5bjztd6X6dFCqajmvu4fcy5b8vsljpPaBYqpBHLkQSC6c19707XWqZ9xRKzElg7cL9n4c+nyTkXa70fJbg0KRr+WP36mvCb35jMsXJb0ymOPmNyRQnvzGZUg4KEPwK7Xt2LVQk2V3p/w5yO2006Bc7tf5hEwSVVa3feflQPzsfqQh4/0QHXTwt9bhRK9F5B+6wCHbfpUIlqvvVtsReg4ERB+CS3AFnIrkVz0EYjIiYrrTvYWrJ6xSELhLyiAU8T6kuxAkMZ4mImNV6LeTGHIDw3S41hmvDNY+WurdzED6/Ttef3/zGZIqT35hMcfIbkylOfmMyxclvTKaU2zB1ZzPA1gr/J/pgid0CZ+huw8SWnbUqsZ2WHjueqKI9vaeK7aOpWpB/19Vrud9W1fUMzuV0rQoy2TYjGmy7UGNOMeoRMCjUtlvBPViAWtyB466ALbmpBn4K+0OqNNXzz7DePU3FX0DTS4JGn09B1Y/gXy7IvoyTq+C+0DkOlzoS/WKhI7ppLDlNZvqq8JvfmExx8huTKU5+YzLFyW9MppQl5H8JYgw1OJyC87IPn90GESgi4uaO1lqXlQoq00sV947GaeLenZaKdk/A1nqx0uNGtR53ttTGoRFs5yS6MC2GhCUS06Zgfa5BaOyS4Af23qZ+DDMa8Q33nyy/lyTagfOZPjsjWzHV7sPezEEEjIhYwufpWLIB0z0l4XO4UMFvtNDPzpZ0fRb8jDFfMU5+YzLFyW9Mpjj5jcmUkpxWKORQ3TEJfm0Q/Ap2X13/sYoi5bvXJVbffSqx4b+oY+0cBKzz0LUvwc03B1GSBKjLhkaRk4UKhticsdIYNeuk+0K9Enrw/3sPFLbDGkTABq2pDed9Cff1vK3HHbWhHwOJxQ3PxIuQwIYNM9t8X0jcI1cdCX5naxV3SaAjd+H/N3GP8JvfmExx8huTKU5+YzLFyW9MppQ0gWQMMRyzveZmli+ys8Xut85f/6nEir/9e43d/0hib3z2TxLbfnBL14Dz7oSe9zTx/2DTNBWaxkLCEk3noRJTGiO9B806aerRTWh4+ja4FV+/fiaxiIj+PgiiQ13n4YMdif0SJjtNQdAcFVDeis5CjWEpcckCIgl5dF8WcP/IXUj3OXUSD513anPTiPSy6lT85jcmU5z8xmSKk9+YTHHyG5Mp5elSe41BCz/8N0FiGhjYotdvcHPt6sjp9v5rEltP1WnVvaqizdY9XaJfqFA1BjGN+tmRM61pfDWJSChgJR5HffhI3HsNKlmvgch14+BCYrs/YrGouH1TYhtDfU7KD55L7ORjdV5+BveARNcOjMmmvWmB25Cm8EREdAr9zhU4E+nzNB6cBESiTbkBfQJJACbxMeKPP7rbb35jMsXJb0ymOPmNyRQnvzGZUp6T4EcHllASmjiWejJSZ1pExOo36txbFP8osfUXX0js/i/UXXa/UHHo+VqdZOPEkl5yVJHrK6LBqQWHpoqItEoFbq4ODQshJxj8myfhrInUYxfUexAGsUxhv2nAxhJ6AlIsVYiLiNgo9XncpLJquKc03KNopY0lpzHgNNq9qWyc4qkiID1jfvMbkylOfmMyxclvTKY4+Y3JlJJELepdNwGRbAiizSNwVH04USdfRMTJP2jfu0H3Q11npgLNTzsDiX2yVhfbg+W5xEgwotLIEpyAJNBEREzaaT38qDcfQYLYaVtFm35BE3D1HuydqaC1/bnuTUREZ3IksXqsa589VgHrWQmOShBd5yTa0XNXw6RkEL6mMAG3CRLjUicqkwtxXaQ5Bm92NQ/2Ct3DEQyQiYh4DgNjxrA/6Cy14GeM+T1OfmMyxclvTKY4+Y3JlJJEDYKEhQdw3ElLe8X9CkSgCP7P0wOxaqOrAs1lqPjxeDGU2OlCJwETV0rtPddva3nqpGAxhso1iW6pQhCJiOQEfBYgdJW6X8dQQjtbbOtnf8tTene+ABEJ+gI+vNyS2PNumuNsA6YV0wRjmpRLPfOanmNy5FUg5BLk8KN1KhABt8sNiV0vdL9ut/W4UUvF2YiI+zCU5klLn3kSSecrFZD95jcmU5z8xmSKk9+YTHHyG5MpJTl/puDmu1yp2HQCAhuJMQtwc0WwA44cVFQKSceROEQxEnzmBTTDA5p6+JFDkM6RSke3CxV9ShCWqDz50Qp668FnH1e6xuO1xiIirl9qnHozPq/0mi+gfLdHA0jaug/zQp+TJoH1RTYKLhvvgYhIkMCKk5Kh514HnJdbhV7fbuLQle0GQXLYBtdn61JiF2t9JkgE9JvfmExx8huTKU5+YzLFyW9MppTU+4xKHknoos9eQmnlomYxjfrhkYNqWKmoQa6qVWIp45JcXyQMwnFN/dVoHfp8qhNwAuWtMyjzvah1b+hcTsHBeFaq6y8i4mZHxar+Wu/LDCbojlsk+MK0YhDTaBI0CXn9Qp2Xhw3XsgsuzRrEvSEI2peJfQZpkvBGS4XGkhyDa4hhB0eGek9Olirujef6fPvNb0ymOPmNyRQnvzGZ4uQ3JlOc/MZkSpnazDAVHEENsYimiTjw+bnGcHIKWC9JXafPUu02/RrR1IAz9fP0C8l5C+yYLVVsSWkm2yap/fQrBf16EBFxUegvAxtQS073bwH3mp4n+uwUas6Jflt/AdgHu3BExFWw1JLa34aJREu4ljlN8YEeFAP4lWGwhl9/QNi/aLHaPwWb/BR+paBnbA6/uPnNb0ymOPmNyRQnvzGZ4uQ3JlPKLagvp9p0agA4h/piEr6aoHp+EiDpOzswGYhGL/fAHrpZqhjTAUHrZaB6cOptQMIb7S1B30fiHt0/or3g42hyDu0PXTMJefRZOkcSr6iPBHGyUvtqRETdBlES9uwMPn9ap42v3wfr9E1ozPnWQgW/wyX0uuiwBbwHQjXtbaoY7je/MZni5DcmU5z8xmSKk9+YTCmpeWRTk8oXSR033QSJeyRWbFbQDLGr00+uVCq8pDZwpGumxqNNjSLJSTgFpxWJaTRemj6bKpDSBKCXcW3SCHPsiwDHLUCUJME2VVReQCx1XyMijkAQo/tKQixd8w40k90CF+Htld6D70Gz1f1djW2fcm+C0x6M8+7o2O+mhrkv4je/MZni5DcmU5z8xmSKk9+YTCnJIbQIFQzIuUWCCJWxNtEGEaoHLr2D3kBit7v7EtttKOt8kTFMJJpArLUCMa1BQCzo/yiYBofQcPMkdPIRiVpUGl3COG4STWl6EMUiGhx51NS1hqauILxROSk9TwRdC9HkkryEKUdU8kpCJblISeTuwoSdPmhu/Y6uu7WnJdm3GrbmB+d7Ept1NTdCDawo+PrNb0ymOPmNyRQnvzGZ4uQ3JlNKKpkk5xYJKlRiSi60JkiEoLLca50diX2nUBfUXqgYN4N+aM+hl1oXYgsYN93klOsk/h/tgchGvflGCy0xXdZp+033BcuBYbR0RESbeiGCqLWE6Tx0PiSwkVhMzkRyVO6U6nSjCU4REVNw7pEoTcIiTQai2BKu5UmhsY/mKs6N7+o1d+CzERE7IEq/s9TzmVfqfl1Bs0C/+Y3JFCe/MZni5DcmU5z8xmRKebJQdxkJIlRaiSO2QSxqgo4l11kXHGc7EDtYgWgH59htqUgyTSz9Te2PFxFxCcLpDNyTJKbR3pDLDvsEQokw0eSe24QwOkHbujZ9Z6oITI5PEvyuQM+8TRiJHRExaute0D4SAyh334ZhHMTD0HUnXd3DT9e6xl7N57cJmuYMDqVx6gMYdOI3vzGZ4uQ3JlOc/MZkipPfmEwphwstMSVRi/qwpQ4HaJrSi73dIDZH4QyEPNCVBmv9vgEIbBHg+oPTbpKKRvBv9AEsc5RogCQnIe3tCspqSQSkstrUXo0RfK9IqCwhRqWxtDZdH5VKF3AXqkbnZdo5ElwGC6Jr6LWcrrVU9wRidNab4HSMiNiEayHOQp2AT2EAid/8xmSKk9+YTHHyG5MpTn5jMqUkMY7dZeS+UmGCxJSmfm0kTJHIQmXH51DeuACX19Wlrt2Ha94JFcS2K3KH8bU8mWuZ6bCXJtAQqX346P6tXkLII1L7NRLkyFt30sqOUUCG5wHPr+EZSx02QkM7qB/hEJyg5H6kc5yvoZchuB+bypPJ6UrlxONay8HPlxb8jDH/i5PfmExx8huTKU5+YzKFlQWAnE3o5moQK4iXmRz7IksQVEiSInHvtUrFj2s3tbS5f0uFodW8waL3aw0Va+0zuKBBJ3AtqQ4/iq3rtFLrpv0nhyfFNqBMlGJ1mTYBmUQyEtPouaN9jYiYgsg2qdVpR05XdCHCnqWWCBOUV02CH02CpmEjk6VeH02C9pvfmExx8huTKU5+YzLFyW9MppRUqkmQKEVOqTaU0DZBggqJORSj8sYBaD4VnHdV6nl3d1UYKna1X9v6mYopERGThTq/hlATTAINCV3k/ErthUfiHolI3Ya+hX0Q7QbQu24DxLheYrnsNLG/IQl5NUi7Y3DjRUSMwO1GgthkobFXmS6MoinkWmofy6ZjU8u36Ti/+Y3JFCe/MZni5DcmU5z8xmSKk9+YTEn24lLd+Bxq4ElVfBlahSqiPVClb4Qq0rcWoNiDOvvkUie+zH+jW7H1uSrAFyP9bETEHZjuct5Km5xDyjD9EkK/FNB9IRsojb+mcdMREVug7G/DLwDb8Pj0Ei3bE3jvjCF2Bk0vx9DfgSy7TXHaR/o1i+7Bq/RKoIlE9H1NDW8J+gUo9bz95jcmU5z8xmSKk9+YTHHyG5MpJVkOUyf2kNiA9eoNIgmtTTbUHthIb9T6f+uw0Dr901rFqzuVil/nsG413ZLYumR751lLr3EG143juEkIeoUmmjQhp1+CiFf08PM07rqEZ4LOcUE1+fCOoRHrFRw3aaVNGqL+AE2QIIr9E6h5KNmu4ZpTc4iOa7Jx03Wnng/hN78xmeLkNyZTnPzGZIqT35hMKal2GEcTJzq3XmbaC08rUTGGxi9DT8iYr/Sz5/B99woVh74MbeBIbDaYIkkQW2BL0TRS6/lxdDYIftRYsw/CXkTEJohx/cQ6fRL3bq30+95YUJ2+rvHbDjyfpV7zs4bzo3r+FezjfJXmVqVnmUQ7yiESYkn0bswXaMxaw7XQ+RB+8xuTKU5+YzLFyW9Mpjj5jcmUkpxfJFZQE01yq5EwSFNJIrgBKAkgMzjuk0oFmgsoqz0F593dtToBH9c6saeA/427sEYEi2Q0NvpVnHt/7GkxdP8iIvZACLwBol0fTvvKSq/v/fJCYrf/6jzhDCPe+2BHYv/eGkjslyULsV9CjEa+4zMPYnHqftP3daGsmppyLqABZ0R6A1cS/MoCcjXp24wx3zqc/MZkipPfmExx8huTKSU5v1IFP+qtR/3fOg3CEpVhjkCMOa1VoPsvmNDSA7fiAvqhnS3HEhtDr7eXGTe+hvJYEl5wyhEcR2u3OlAmmjgZ5mVKXnfXer/em+nnb8Go8yv76pTc/77eq+rP3pbYeqT35cbxE4m99amWWt/tpd8r6uFHe7ZRam6QO5AgpyoJfpRXkxb3I6TzJshJ2INr8ZvfmExx8huTKU5+YzLFyW9MppQ0ppnEDxKWsO8ZHdfg8Kupfxk44MZQlvlkeaafBTGGHHWpo5dT3Y9NkABJrj9ykm2WKiCmjlOn8lS6viYRkOTZAQxo2dlRca9/RQXbNcwuWf7unsRmD/XAh3f3JPaopOEePKL7otZznIFYTM93RY68xPtPgu1GAeI6vH+b7vOs1vOm8yGhEp8nXMUY863HyW9Mpjj5jckUJ78xmVIOwJk2ByFomTgoYRSg7jSYoujzNFX1stbvHC9UBJyCIJI68TR1KAk5siIiOlDSS9+ZWr5L7klamwRNgtadNIhkx9Dj8D6IVatjLbetTkB0vQPnAwLbMVzzl5W+n/4bHHCP6pEuEhHnC3UhkuCLvSMhRvcAy3fhWmhICrlfm0RFcviRY5TW3oSJzH7zG5MpTn5jMsXJb0ymOPmNyZTy7UJFm2drFdNOwClFvdAmaxVjmpxkJFaQaDcFwY+Oo95nJPiR2416D5LTsQfusAi+Frpuct+R44wgcY9ESRQ+QfAbgnMyIuKo0Hv4UaW9C+9WKgJOYFBJ3dJz7K2hdx1c3zMYpnIfxL2juTo+IyLGS73GVIdnCUNg6HWJAzpAAB5AufsW9EvcaBimQiXi8zWIlyAioiCNqxhjvvU4+Y3JFCe/MZni5DcmU8q/mato82uYjHqnULHhEYgNk5WKReMl9yQjoYtEOxJoljVMUE0U94gVCGK0BpVVRrD4SQIdXTM5GEncSXUMkqjYNDiFoInD9JYYgbh3FCT46nF7LX3uKlh3Cp8dwTM2aXrGlvCMJU7fpeeJymXLSgW2bXDU3WipaLoXKu5N2uwC7UAp8wXUS9Mzj6XDuIox5luPk9+YTHHyG5MpTn5jMqX84fZzCa5G2jdt0lGxYlSo2DAC1xiJaRHp4l5qGSz1wiPxgwYvkFMOy2AXLCwR5PyitUnIox5wa3J4gbhH+1rBIAdyfUVEHIAY985Cr2UGGuK0VAHrhJr4AeT624SOgjRopmoYsEIuTXoeVzWIxVTSDc8YlV/fam9K7HsrFQEPl7ruCdyriIga+vDNQZS8hFJtcpv6zW9Mpjj5jckUJ78xmeLkNyZTnPzGZEq5vafq/OG5qsV7a1UgN6HumJoHUq18U5zGC5NiS0psKmTvJBsoWmdBSY9gKyhOPkocBZ06zrluQWPVxPObgiU5IuIcbNtj+GWANGm601P4vnM4rqL+CaD2HxZ9XaOjfSkiIhbwawjdV/qFhO4fPZ9XSlX23wpV5n8EzUT3dzR2/2wgsYiII1j7CHb8nPpk4JQiY0yWOPmNyRQnvzGZ4uQ3JlPK6ViFpUv4n0DNFQmytPZAvIpoqDtOnH6S+n1kp6WpQCTETUEEbCJ1fDaRajdut3UNEgHJgkprnC9VbIqI+KRQy/ew2JZYH0TAZ9Do9bgeS4yaTI4LFc6o7n8HauBvlHp+ERHjSgVtqv2nfgc9EGKvVHqO1+G8353rfr/93ROJdW9A49ifX0gsIuLq+EBinbZ+ngRNHktujMkSJ78xmeLkNyZTnPzGZEr54Km6ie52VIx5EiCcgHOLGgU2CXbUpJIEvz6OF4Y6bRD8SPygNVJrt6nOvunYVIdgAaINOfy2S+2pQHtIzj1qEroEp2NExMOpCn7P2ipC0Qjr1IaidN6jUp+xy0qfz2ttdfhVDS5SevboXhFblbr0DioVFm+Bm+87LRVT+z/Qz7av70tsf/g5ns/hB7q3PchVwvX8xpg/4OQ3JlOc/MZkipPfmEwpP+iqWPFxS4WXRysVMGYg+JUgvFDDxQgW7bDckgQjcNSR242cZCQgkghIn90pVWyKiNgCJxqWsoIDjoTKXShbvQFOsi1w2Z1BA8eHy6HEni3YSTZc6jmO5/pMkGhHIiDtLXG2UCcgjT6/LPX66FwiIoaw3/SMYfkuiLt9KGPfSnyHrsdQQg3rVtc0JyMiDsGl14O9TX2W/eY3JlOc/MZkipPfmExx8huTKeVPQ4Wgo+VIYtQDjIQFmgJDYkNExLylghg50ajnHq29CUJer1AhbrtQQeUQSkKvt9VR986axZj9lQo3F/Cv9QGIVRMQta6Gnvf7C11jF8aIfw5lpx/CeGdyfUVwyTP1ACRI8GuapvMiVHb6fK7P4jn0wmuCJiyR45DOm46bgJj6AMaS/6Tcktj5P+vz+d5r9yXWLrh8fgT9DNcwJr2Ed3oPRHe/+Y3JFCe/MZni5DcmU5z8xmRK+ZvpYwmS6EY96sgpl9pvr2md0VKdZNOlHpc6jpvEJnJpvQM96n4818/+5UD7sEVEXHldRajJMxVZPnus488fwz4OYGT025s66qK3oQLU6ljX+BRGZ5MbM4LdcnT/yRVH+01CLN0/eh7I9Xcx070mUTiiYRw3jWNv63Gjtj6LR+0ziY0LFfw+gn34j64Kse+cXJXYwYoF8uMNvcajlToYyXlbgzDoN78xmeLkNyZTnPzGZIqT35hMKR9NtF9baj+7y1IFmpcR/KYk+C1UZKEJqjThl86bzqeqrkjstZUe9+d93Zubf8cTVNvv/lBim/cfSGzjX+9JbPsTFejm4IqcLzR2MlYX4kddFZvurVQsPF2qmBbBJdR0/6nP4C64C/fB7bYNjrNhAX0GwYVI5cVN/QhJ8Gsq/02BXH/Pai2NJrfiF7DunUpLt5vKxsk9Sy7NGbgQUcTHVYwx33qc/MZkipPfmExx8huTKSWJJwQNlpjVaWW+TZAri8Q9cu61wLFE8lWvVAcUiSQDqKLcu6Xf2H7rfVglonXrTQ2OtBy1VX4psdVahaDztYo7D5bqlLsDFcY/X6sL7e7sWGLUqy+iYXBKqWvTEJGrUBp9E4ZsXAGX5Rn0QbyAKbvnpTr8aBhKBIvA9Cz3wAG5Xen1kVtxDCXQ9BxfglOVBO6zioVY2m/qM4h9Dy34GWN+j5PfmExx8huTKU5+YzKlJAcUsV6pcEKuqpdxT5GQRwJN6mdJZKEebsOVxi6ginJ2oWLK+rm6/iIiogIh7/4jiZ0/VNHm6UpFpKNKT+gIert9BDLnw4W6+UgEopLsCC7fJafkoNBr2QbRbgDiHpWt0gCK83JHYtNeWsl5RMRwzqLmi5BbcQP6P+KEXzAXUtkw5QvFmnIAHaxw3nScBT9jzB9w8huTKU5+YzLFyW9MpqRNU4hXE+K+KmhtKsE8XuigkjvlrsQ+fnQgsR//5FNcu3pdxb3ppyrGHT0/lNgDEPeeFCrE0nCIp3XaAIvrHS1jpsnCERGXUBI6gRJV7IUHzkuiD67GqzX0iQTH4HZPRa7PwP0WEfGg0J6LF3PdM7oWEsnoeaLSdDqO1kgV3CN4mjM5G1EMB2HRb35jMsXJb0ymOPmNyRQnvzGZ4uQ3JlOS1f5vAmQtptHSVMf+OTRh/FlPp6l0f3YN1z74rSrIpxNV9j+G8eCfl6rYPlhrnfeTGqbX1HotO4XWz78Pv2YcQM+AiIh78KvCl6H7swClugalmWIb8KPQ20td97swuejdltqSf9Hh+/KfPX2/3an1lxmqtW9qCppyHFnNSdmnX9Gam5GCig9j7jEPYG2/+Y3JFCe/MZni5DcmU5z8xmTKN1bwo/HQVGvdKaAmH4STU7DJ3ilUTCu6bCPdnasINezoOg/bapP9cqVr31+cSuxkrrZkEncO+joh5zZMJHpt0WDF7ui1TAudxDMHEWkTpsr01vqO6cLSh5u6D4dvahPUN8f6fVufs+B3r6f24LvwnMyWel9Sreqptt1ki3zDcTX0ZFg19DFIwW9+YzLFyW9Mpjj5jckUJ78xmfKNFfxoRDeJe9sdaDIJtd8ljMQeQl37A5iQEhFxDFNgplDbfgzNQ4/Bufd8rkIX1aETTyp14z3paT3/TbjmiIibS6irB8GvAl2qDbFJK03oKkvdr+7rKlRS29H9e7qvEREFCKIkqJEDLrm5baKQ93/Bq6ztN78xmeLkNyZTnPzGZIqT35hM+UYIfuTmwzHSlUpB+x11eB2U6oDbgKkyPRDEqIw1gstWL2GUywxi1OyRJuxQE8ZlrbEnUx3R/StohHml0galERHfn+p3/kWpAuTuVShjPtZy4g+XOnVnDMa085GWO189UTG0hqny91fsvDxZ6V7QfpNw9nUKeV8FfvMbkylOfmMyxclvTKY4+Y3JlP8BF2NZ3AAX+VsAAAAASUVORK5CYII=" y="-9652.193164"/>
</g>
<g id="matplotlib.axis_541">
<g id="xtick_811"/>
<g id="xtick_812"/>
<g id="xtick_813"/>
</g>
<g id="matplotlib.axis_542">
<g id="ytick_1351"/>
<g id="ytick_1352"/>
<g id="ytick_1353"/>
<g id="ytick_1354"/>
<g id="ytick_1355"/>
</g>
</g>
<g id="axes_272">
<g id="patch_273">
<path d="M 434.924375 9777.094928
L 557.214375 9777.094928
L 557.214375 9649.801401
L 434.924375 9649.801401
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_543">
<g id="xtick_814"/>
<g id="xtick_815"/>
<g id="xtick_816"/>
</g>
<g id="matplotlib.axis_544">
<g id="ytick_1356"/>
<g id="ytick_1357"/>
<g id="ytick_1358"/>
<g id="ytick_1359"/>
<g id="ytick_1360"/>
</g>
</g>
<g id="axes_273">
<g id="patch_274">
<path d="M 29.174375 9921.014352
L 151.464375 9921.014352
L 151.464375 9793.720825
L 29.174375 9793.720825
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_545">
<g id="xtick_817"/>
<g id="xtick_818"/>
<g id="xtick_819"/>
</g>
<g id="matplotlib.axis_546">
<g id="ytick_1361"/>
<g id="ytick_1362"/>
<g id="ytick_1363"/>
<g id="ytick_1364"/>
<g id="ytick_1365"/>
<g id="text_69">
<!-- 246 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 9904.407588)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-52"/>
<use x="111.230469" xlink:href="#ArialMT-54"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_274">
<g id="patch_275">
<path d="M 164.424375 9921.014352
L 286.714375 9921.014352
L 286.714375 9793.720825
L 164.424375 9793.720825
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_547">
<g id="xtick_820"/>
<g id="xtick_821"/>
<g id="xtick_822"/>
</g>
<g id="matplotlib.axis_548">
<g id="ytick_1366"/>
<g id="ytick_1367"/>
<g id="ytick_1368"/>
<g id="ytick_1369"/>
<g id="ytick_1370"/>
</g>
</g>
<g id="axes_275">
<g id="patch_276">
<path d="M 299.674375 9918.512588
L 421.964375 9918.512588
L 421.964375 9796.222588
L 299.674375 9796.222588
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p8608acce2f)">
<image height="122.4" id="image0f122a8987" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHRpJREFUeJztncmOZOdxhSPvkGNlVldXcWjSMiFI0FJreeWtH8Arv6L3hh/C8MJry5IFkRTJLlZVzsO9mV7QbcAV3w9EuQwuOs63/HEz7xh5gZMn4gx+9+5vL/aM46V7vmSXi9vMqkHl12zg1no7uzUzs21/8GudXztderfWDmq3Nm8nfq32a/RZ2kd/8cd9Nn8dzMzOsC195+F88mu9X6PPdme/duz9vaI1un+XwrkM4B4SeH1gjfaN+x3E9hv9PjN+RqftyK29Gc38WuvX5o1/nq4q/32fVH67X9rYrb09++NbVXx+v7e9W/tD9+TWvj/5Naorv2chRApU/EIkRcUvRFJU/EIkpaFFEnxQtANxx0BgKQk0tB8SaGoQpkZ169ZmtRdUFrDWwG/ekcQ5ED73INiZWUHS9NA5k9BVXfxaDdfmNZSEvajwRuLuBY6bdhMVFQk6vqJ4GTwXEnJpjUROWjvBE7Ed+LW68sf3NPDPopnZ5uyfR6rL4QDKGpb05hciKSp+IZKi4hciKSp+IZLSkKhB4gmJdiRqkDhXogIxhkQt2m5UecFvDk6rm8oLfkMS/OBcHs8xt6EZO/dICKJrS+JXU3kX4iAoAtL16uH+lcQw+nxUlKRzKYlxPwckIKNgCNeng3tN7tfdxe9jefb37/vKb7cFcW5beMa2Fxabn9NW/jtrOEa9+YVIiopfiKSo+IVIiopfiKQ0J3INBdtTaTsSoF7iTGtJ6AIRaVp7cY9aK28HQ7e2uEBL7wBalsF9tT0f3VoJbnn1+6FzpmtGn4226p7ANUYOPTOzGoSpqJDXg4ut1AYdgc4PxccXuBXpehMnaKHemb//R6ihfQVt2rX/vnnln8++cL3IcUpQy7rBmt78QiRFxS9EUlT8QiRFxS9EUpoNzNEjyO0UFfwaEiBesO0QHEtTEEpm4Ja6vvi1T2BuGgEmLXsEUdHMbD3w89XIKUe/t3R+Ezg/ul5R8YpEqRLcah1z/ZFAR0JllKgjkq/168Bnvo81b+8GXhgkF+gmOGPSjNt3qQaj10dvfiGSouIXIikqfiGSouIXIinNqtu5RQzeCM4uI7FhWOOoQGzLndRe6CIRkObwEUdwnJ1A/JhCe+pbcALeQouwmdm6jgmnJJKRuLeA/URnyu1rLyyRWEifLR0jPRPUdkz36jViHImF0WfRjEU7FCXh2lJISpQDfB8JfiTEkgBsVmjfpvsC96CGetGbX4ikqPiFSIqKX4ikqPiFSIqKX4ikNJujt6VGifZpl1TTqoV/BkDpJHWWep430O/8HaihO9jHDdiAx/DZz2A+gJnZob5ya0uy6MJ3zgb+X48WlN0lzBIgyyep66jMW8wabMZKM/5bA+cctSoTpNZvYLAqxb2bmR3P/lrQ83iG/VA/fxSKKj/Ac0xx6mNIozLjexidn4H/wuBehBAfPSp+IZKi4hciKSp+IZLSkOAQjmgObleyXtJQUBJ4aK0Ulf2cIwyu3IPAtgcb8FuDGHBIPjEz+2owdWurgjj4HLqOa0yGidlDyWJN4txLBqvStlOYbfAG+tMXIPi1wffOAe79E5zLQ+H7qK/+OIDZBr3frjPo5z/H+vmjFuRoqpOZ2aD/v89ZYGuwECIlKn4hkqLiFyIpKn4hksKNw0A4thnEppcIS9S/TcJgBYIYRUYTtBU56o7giroCJ6CZ2TWJbCAYUp/3FoSlHZzzFkROEodoqCcJfkMYeGpWiAyH63MNMwc+rbzgdwP7aeFekZR2qPz50T2YtOyKW4IbkByCS3iWMaUKBL9oBDnVBtUVOVrN4uIg1ZAGeAoh/gcVvxBJUfELkRQVvxBJaZqaWv3+f9NPSk7AaDti9HhoSOEQRLspOPwm0N46BjffpKDtkEhGsd9ER62eIAKSuIPDTemcwWVXSlKiNwKJg2/A4XcHIucdRB+1cGnoanVw6+/guEut1g+1FyXvK+/m+xN8ltyT0XbZ1yQplVrgaVty6EYHj+rNL0RSVPxCJEXFL0RSVPxCJKWZNLG2U3I2keMo6gQ0Y/GEEntoBhwKUCDu3Ayg7RQEvxtI57mG+W8kVJmZbeFnlJqOMUGIos5BQIzOwosKnyUhFlOXMAUG3JywRtdsAXa+FoTPJpjufSq4SO9rf///vfbH+AhuxVPjxbQW5j/e1jO3dgNi6BHu83f92q29P63cmpnZ8rR1a1FxD11/oU8KIT46VPxCJEXFL0RSVPxCJKV5M/RiBbbVkrsI1kgELLX0Rt1pY2xH9dtNQAS8A3Hvyx5CO0CAquE6PIFYZGb2BELeI8yK29OMQvC20fktUETy5xINU3kJ5C6k4JQtXIctCIszEAavz9S+669XC82/h0IASQfPxBTcd3MQU63xQSw3IAz+EuY3vgNX40NFD5lf2kI4i5nZDuYM1gMvK6PALsFPCPEBFb8QSVHxC5EUFb8QSWneDW9CG+4hMGLV7dzapvOpv6XQDlonYXELwQsH+N0ioXIMLcvXIPiMYabcofJrf64h8MHMvrv4Y9zCufCMw5hTbkaz8OA6bOFedSCSle4LOfw6WDtA2/HG/Dmv4Pyu4B6Atofi3hiCWGDUn5mZjcC5OQkmJQ/g/l/DdnO4ByM4nte2yr9mjib5APXmFyIpKn4hkqLiFyIpKn4hktJ81Sz8IggGexBevq82bu0vgye3tjp5YdCMxb0liIiUyEuOs0dwxW0aEOLgnO8a756jpNxvO3/OZpygS621E3ArjsDmNYQ1kotOcF+OoJzR8ZFAasYBHdHttiRAwn3Z0mdBYJv2MB/vBQ5GEgJbuJJjOG5qEz7A9X4PAuQKnKA/mH8WH87+eae6MCu0WkOL8aX2J83CoBAiJSp+IZKi4hciKSp+IZLS/Mp8qir9ImwpQxXaEZe9d/itB37NzOzUe6HkBDPJDhVNw4ux7X0i66r3IgvNxzuA0LiG8zPjtuUrmCnYk0AHzj1y+BHk3KOWUDqXEhjmAQ9FDaEmJFRSCvETXK+2obZcv0Zj60oRGSe4jOxrhM+CA3IDwumD+WeM2p03cF8oMbjUkk3iHkFzBgm9+YVIiopfiKSo+IVIiopfiKQ0X1IMKrCCFsyn2rvVZhCSUBIqjlUsYfQESaRRKGyEZg8SdCzksjIzo/CTU+U/j3MPYe4d7Qfn6IEoReIeCY0lSLzsYD+07yO43cj19x72uwM73roF1yY8TwuY//fTd0J6Ms4A9GtraNN+6HxwxmuuN7lA20J6MtURhdzQd9IcTL35hUiKil+IpKj4hUiKil+IpKj4hUhKMwOVlPRsGgr4FtRHSjRZNt5CbMZW3tdEgbc12GRBub5AH3s0aaj0zwWprrQtfWfpH4TnkO2TVGXajvZRUpVHMKQS1WK4B2SJXYJqvqahpTBE9R6OZQ3/KH0O/0aVOJD1FmY33MPshseTX6P+e+qfp+dhCudSsufy8Ff/PM3Aqr6AqHq9+YVIiopfiKSo+IVIiopfiKQ0ZH+cgAjYgkh2Df3ctyAsLGsfYWxmdmy8UHJGy6g/xgYEHhZP/HacFAQpMEHRxsxsCvHZNCOAorcJ6gc/giiFYigIQyRAlYSlaCQ62nvNW11PMFCUhoeSfZmOpYcBlTbwQrOZ2RSuxRYsyBuw6G5gdgPNhyBamDBA4hzNTiB7rhlfn9IQVnc8sG+9+YVIiopfiKSo+IVIiopfiKQ0T1D+J0r3AF2hgbU59VqDGGZmtgKBjvrdo+LevPZOQkqVoQQgmi1AwtkIBCgzFqYm5JQDgaeB32AcABlM3TnDfAB0BxYiuklY7EC0O8B2+967+Ujwi7o2hzDclNyKNSTkmJnN4fMrOG5KOaJjJHcoCXkkppIAPIW1EjSYlQRyEgYJvfmFSIqKX4ikqPiFSIqKX4ikNA8VpJKAoELi3gE0FhKqSNAyMxuDIEatscQCxL1raCcmoYtcVSRy8SDEgisOhCVKr5nAvkmUIrHx6RLb7p5SfMCZVhpkukdhyV9HGlxJ30kiGTkOSTjr4fl8hFbb0ltsBWIzCZCYnBMU90iQJicoicXknKS2aDMW8ui5PcLAW7pXevMLkRQVvxBJUfELkRQVvxBJaR6gvZHioaHzF8W9LYgpJb8RtRmSKELCGzmjsO0U9k6x1u3Afx859GYgzpmZjUHca+A6kuB3cwFhEC7aNbkD4cbQXD9y6K06H1VuxtHp9HlywFHKEUEiGUEC4gYisUlANDPbgyBGgh9dCzrnqFBJbkUSn8lZSMdnxtc72hq9B3eo3vxCJEXFL0RSVPxCJEXFL0RSmicUAkDwgw9TayXFH5egds0p9A5jCyesoXhCoRYgklDQAc0jfGvc0nsFV4gkrdHZH/cCLhnNUbyuYB/Q2tzBNdxDy/Kh8vferBBgEn1PwGbk8IvuN/rZqmfBDyPf4Tl5iQMyso/jgByj3jnZQYx76ZxLLdhuP8FgGL35hUiKil+IpKj4hUiKil+IpDTLoPOHBJ8hBgFQGmyhpRckMXJBkWOJXHpRtxQJjS2cH7XafnpmZ9obMGWNQLgZwtoUkolbcoOBqFWDO/DYeBFwA8EpJScZ3WtqHaWgk6gTMCruldpb3fGBwGZm+DDjcQcTo6P7GICwS0LcGYTdkrAXnXtIOduUyKw3vxBJUfELkRQVvxBJUfELkZRmCbPL6BeB5t5NzQtiNMuOvVfsOiJI9CFhicI4qL21JqccpdheILSjYDibglg17/2+r8wLUxNwedUQvHEksbHzzsQ1tMs+1X6+YdewsERBJ2tIrDVwrF1AwCIh7wL3ntqvSdCKttWaFZxtwdRnIipURl1/PQWsvMDhF02SPg/g2uJehBAfPSp+IZKi4hciKSp+IZLSLHue4/YccsX10AbbQzsptd+ame2jya8UDkFhBdCCSY7DCxxjT+4y2G4NwomZ2QSElymJiCBqTYf+/NoWBKOjvwfdwf9+v+1hDUSgFcwtNOP2X7oHUcG2ohZTEu0usUAMmvNIKcklenBFkqBN7bZRV2NUBCTBL9rGbFYQToMCud78QiRFxS9EUlT8QiRFxS9EUppltw1tSK4hDIeAtZIwFHXpYRosCH4kdNBxUyvr0SC5FfaxKoRDNDX9jkLLcwdJrSe/bxL8aG0Enx2CXhTzr/0EOczoXtP1pnvdgqMy6rybgKh8BW5FEuxKxxh9duic6Vnc9TCbLxheQpQCSKLXjEB34MsOSwjxsaDiFyIpKn4hkqLiFyIpKn4hktJsO9/PT5zA6kiq8AmsoSX1kmyMUdtuNE2FOAy8Yrs5e8V2U4ONtKAqkxILblzbgV31dJq4tc/X/nd50tB1gN77xh/LI/SSP0JKjZnZ8ux790nRjvaXkxJPAyVb+GdmUftrs6j8gFIawGrGiU0YdR2Mz14PYvWyg1kHBM0hKM0miIL/1kjtF0J8QMUvRFJU/EIkRcUvRFKaaOyvReOKQSQpCRgkTNDnozHLtB86P7IQr2CQKcV2TwpGWRqQuAER8AmsruuhX3vovdB11ft97EDc+w8YzPmfZ2/j/rZbujUzM7J8Ux87iXs1CHlksab5EDOIG7+t/HV4M/BCbCkVKgo9i1uwfL+H80MBMdiTT8JnSSAnqF7OlFxF9y+8FyHER4WKX4ikqPiFSIqKX4ikNNGkEoKis0lYoCGFZiyKnEE8KUVJP4eGdUZFxT042JaVFwHrisWYMaQX0ZbkRNvAPfgehEG63ms4l29B3Pv6+ODWHk8bOEK+3nRtx7UXREnIo4GbM3Dp3VS+T/9T2u4C+4B0JTOzFnS3NpgWdA/PbQdDXTcV9PMHo8pJpC4JflFhkdyvNIdAb34hkqLiFyIpKn4hkqLiFyIpDYkxJCxRyypt93NBAhQlw7RBQZNErhXEUpecW8Ng2yptt4GkGhoeuYK2Y2q/JSFv1flkplMfb4seQXsziVUkII/BkfcGhLzPQfB7d/GfXZzj0ekTiAxv4R4eQMg9Nv78xvC+pHtKzyI9Y+TGK5UViYjUak2CH91rvfmFSIqKX4ikqPiFSIqKX4ikNCSIRdsRX8sF2mB7cGoNaA0EP2odjc5DI/FyCzPuToXWZpo/x4Jf7BhpliGJdmsQJWku46H3Dq8SJNq9Zq4cCWILiAf/FMS9T3qIPgcRryk8siTuETt0/XmCDfBINDqbXLI/rYOQR5Hh5LLVDD8hxAdU/EIkRcUvRFJU/EIkpSHhrH7BDLEIJbEIW3BBeCOxggS6qJgWjW3GOOYLhzHQfkiAJBGQPktuMHJzkZB3BDdXf4Z2UmgbNitHqrvvJAGLxCowWY7gvTMBbY6ceyMQ8aDT1szMwAxoWzjvBzjGpwHEtoPoRrH0BM08pPtCz51ZPPabY7shLj70bUKIjw4VvxBJUfELkRQVvxBJaUgcIMGHxDmaNYZtnoVk2zr420PtrZTwG008JTGt72Pi1b7glKPreACnHImAdL1JTCOHF7VvRh1eJZ2qhtl1OEcRPr+H630AMZXScw+gU9HaiARJcIv+9Hm/LQQg2xOc8+MF0pxh7RAMtKHnPZpgbGbW1n6d3JjR9nu9+YVIiopfiKSo+IVIiopfiKSgw48Eh9e0rFJLpxkHWJBwhuEewfmBtNWeBKigaBPdzqzgTAy2mKILkZx7sB2ugZOMkoVfcjynoHvyAZ6d72CG3xCcdx3MDqT9TsnKZ9yWu4NN1yD4reBeryHNeQ+zFTFgA55GEqSnjb82ZlxbFJwygu1YxBdCpETFL0RSVPxCJEXFL0RSGhImyIVGwQtXlRcb5rA2gwRbM7NRcC5cdKbgCQSVjXnR5gwz4ChkgdZKqcYk5GFLL6xhoisIdFFxjyA3Zkl8xKRl2A99Z3Q7coweWn+vlvXMrW1qL4jdFV2kfj/k5nsPrdrvIe34x27tjwdmJuKxBB2oYwjSMTObwnnPoN4mUKtjEAH15hciKSp+IZKi4hciKSp+IZLS0LwwEqqIEYgscxD37owFjPk5NleM2jq3lGJLM9dA0yJRioSXCbinSsnE5KCagVOLXFr7wsy255AIWDiYnwUSDOkYtycviNFnd5RC3PhQklUzd2tP1QSPcQj3lVp1v+m9kPf14Uf/2aNPQD50/vtoPuK48c/TVeOTiUszL2mdZ3DCvilJGPcihPjoUfELkRQVvxBJUfELkRQVvxBJaWjYIw2F3Fde0dxfvHp5AOtkqQOeBjFOQdB+gDiWA6w9gYq7ol5r6quG30GyWZbstDSHYAzWS/pOGuJI/yqQQl6Kc44c34tUZfg8PSekfNMzFo0Rp+3Wrf8H4L7xNmAzvt4Ua35/Wrm1h4P/B4D+uaB/ONra/6tTsoY/h2zlZmyJpvtKczLGSuwRQnxAxS9EUlT8QiRFxS9EUhoaKkj95WQDXg68cIIUfmLagbc2kthxgEGTSxD3liDu7WBYJ4l2TbCfn+OPC0NGaYgjbEeCH/Vuk5WT7hXxkiSlqL1723vx6/Hi7a+cPuSP+wTjNikhadeRDdj33puxyEZCJQl5UfGSiA5qjcahmxVi4CH/fEK2e/XzCyE+oOIXIikqfiGSouIXIimo7GBaDIkk5kUSErQoYtvM+Ken8iIgDeY8wHdS7HOp//7nIJoqNAKBbQozEG7qqVsjt2J04GlJvKShl6dg+tC6CorAQHQ+QNd70Y1EQDPuq8f0omDKEUGiXTS+Hp2cL5gZQYM5Sdy7uaifXwjx36j4hUiKil+IpKj4hUhKQyILCUbkJNuDHoKpMgXBj9poWxBoMNkHNBFqZexAJCEhLirOldpgGxB4MFIZWkwXEFc9h9SVKbi5iB055eD+HQv35UgJQubdbtEEIXrGos8dEW13NjM79zEhL/qdJOSRi3ACwzppO6y1govwUkMqFEV8g7h3BRHmevMLkRQVvxBJUfELkRQVvxBJwYjuGlsw4dOow1FEDu/8kQQ/EDAW5sUTcraRY21wibVMRsUmEvHMOHp7DkLeNTgY3w78+X0G53wLCUfEfQUR1AMv2P0IsdRmZjsQ9zbQvktrp947Qal9lxx10fbWl7TBElHXH+2G2rxHDYizrb/31EJN9UfJRWZmW1jfV9AaDfMtN7CmN78QSVHxC5EUFb8QSVHxC5EUVK/I7TaANRRyYN4erZmxW+qh979HJxCwSPIhEbCj1l90sMXaN0nYMzNbgJB3A2t3IALeXfx3/qLz1+FdV4o/+d+MW4gBb7zYdF/QODcgLFHQxb732x1B8Iu7+YIiLsVSg4hXAvcd/DiFcZCbj5ygJHLSs1iayziqvMD6BC3UJJpvoNT15hciKSp+IZKi4hciKSp+IZLSkDCBKa3BhFBy+JWSbXcgGJHYsYZwEHJLkYCIc+FA3KNjpFRUask1M3sD4t4X1cStfX72x33X+/38AgIjPhvtcN+Og5/19wDtpN8U2pPpWtB9Kd3X59B9oWuLnw2Ke7SP0n4GIEBXQScoBZpQvdDMS3I/0jUc1fyM0T3YQpjOvfnn5JECaHAvQoiPHhW/EElR8QuRFBW/EElpouECUcEPQzsKwhDOBQQRkKDWyqh4GaUFkWxuXsQzM1vAzL0vQNz7Ekx6b0EIumu9yDm/9mtnEAvnB+84W4CLcFZK6YW2ZUz5heszBAdcVIglIY/28ZJ7GhaBgy3G9EzQPnoIFiH3I7lp6ZxLx3iAtGpqT2ZBWwiREhW/EElR8QuRFBW/EElpKCCA3HMUphGllDpKLqhooELU+RV2koFoM8HZgSxeNuQGBNfYFM5vav46jEd+rR2CiLSHuXBwLNQMXPLnkZAbFVOp5RXFWbhXk9pfb1ojQZL2Ycb3H0NbggEkdP/xOQ66H6PJxGZmh96Le9H7QseoN78QSVHxC5EUFb8QSVHxC5EUbOklFxO1MhJ7ECVKqaO0XkpbddvRvL6ukA4SgEQuEotIODEzW4Oktqy8WLWq/HeOenDf7b1jcLjz+zjs/WefwG34AHMQV+AOM+NwCJrXSKAAVUPQBbRGv2lnbu228WvXAz8HcVoIUxnD+62Ge30EgW4DaTOPZz9H7323dmt0vfaVv649pAiX6oVa4Em8pOeWZgXqzS9EUlT8QiRFxS9EUlT8QiRFxS9EUppZ4wdPXjd+AOSs9gorWRifbOvWTgWFHKOWg+nLZIEklZTUUIL+4XhJfPL92ffa/wG+c9V6lfsW0nTedV7l/vze34MOLtg3rf9N/xEiujcw/NHM7ADrr7Gw0j8AYxhSOa8p4cjPT/gr89t9CbMTzMy+gGz5GT238O/D162/tn8EuzE9Y0+dr4NotHjpmS39CxDZD/07pje/EElR8QuRFBW/EElR8QuRlIbEvbvmyq29gWhpEiaGMAugJGBUkMQTTfw5WMxGTHbhUrrLc+i4S/beH7qVW9uCnfPPICzNwI5720KUN4iFU/j93lHPeVCcM3tdYg8n5Pg1mhlBz84VREt/evHb/fbobbdmZr/51Xu3NroF2+4fIWL9+xu31o/88fxlEIvoxvkAhd79KDhYtY4NPdWbX4ikqPiFSIqKX4ikqPiFSEpzA4LfLcRNvwVRqiMhD4xWfUHwoxkBJNodLzR8MJbEQikp0ZSi6CBEM7PH08atkduRznkK7snH2jvbfgDRdQ73hXrY6XqNCok9UbEKh78GE3ZoCGcDx93AvbqFW/Drr+79opld//2v3drg7s4fz7/8m1s7/fPSrf1pc+vW2iYo7gWvYQl6bs+Vf+ZbuK/k5NWbX4ikqPiFSIqKX4ikqPiFSEqzgGGICxBj5uCqIiGvMy9AHUFANOPWw93Au+Lqs/+NOteQukLJPsGIZkqaIaGKkl3MzE7g1KLjIacct1vSQFEAFnu4f0PYMNpiahZvoUZxD0TOCQw3nYJ4OYXn7rPOK37Xf+OFazOz+u/+wa998td+w/k/uqW73/+T3+xf37q16H3uILa79DwRdL3RZQn34ArapfXmFyIpKn4hkqLiFyIpKn4hkvJfxhMNJkVXMU0AAAAASUVORK5CYII=" y="-9796.112588"/>
</g>
<g id="matplotlib.axis_549">
<g id="xtick_823"/>
<g id="xtick_824"/>
<g id="xtick_825"/>
</g>
<g id="matplotlib.axis_550">
<g id="ytick_1371"/>
<g id="ytick_1372"/>
<g id="ytick_1373"/>
<g id="ytick_1374"/>
<g id="ytick_1375"/>
</g>
</g>
<g id="axes_276">
<g id="patch_277">
<path d="M 434.924375 9921.014352
L 557.214375 9921.014352
L 557.214375 9793.720825
L 434.924375 9793.720825
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_551">
<g id="xtick_826"/>
<g id="xtick_827"/>
<g id="xtick_828"/>
</g>
<g id="matplotlib.axis_552">
<g id="ytick_1376"/>
<g id="ytick_1377"/>
<g id="ytick_1378"/>
<g id="ytick_1379"/>
<g id="ytick_1380"/>
</g>
</g>
<g id="axes_277">
<g id="patch_278">
<path d="M 29.174375 10064.933776
L 151.464375 10064.933776
L 151.464375 9937.640249
L 29.174375 9937.640249
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_553">
<g id="xtick_829"/>
<g id="xtick_830"/>
<g id="xtick_831"/>
</g>
<g id="matplotlib.axis_554">
<g id="ytick_1381"/>
<g id="ytick_1382"/>
<g id="ytick_1383"/>
<g id="ytick_1384"/>
<g id="ytick_1385"/>
<g id="text_70">
<!-- 248 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 10048.327012)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-52"/>
<use x="111.230469" xlink:href="#ArialMT-56"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_278">
<g id="patch_279">
<path d="M 164.424375 10064.933776
L 286.714375 10064.933776
L 286.714375 9937.640249
L 164.424375 9937.640249
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_555">
<g id="xtick_832"/>
<g id="xtick_833"/>
<g id="xtick_834"/>
</g>
<g id="matplotlib.axis_556">
<g id="ytick_1386"/>
<g id="ytick_1387"/>
<g id="ytick_1388"/>
<g id="ytick_1389"/>
<g id="ytick_1390"/>
</g>
</g>
<g id="axes_279">
<g id="patch_280">
<path d="M 299.674375 10064.933776
L 421.964375 10064.933776
L 421.964375 9937.640249
L 299.674375 9937.640249
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_557">
<g id="xtick_835"/>
<g id="xtick_836"/>
<g id="xtick_837"/>
</g>
<g id="matplotlib.axis_558">
<g id="ytick_1391"/>
<g id="ytick_1392"/>
<g id="ytick_1393"/>
<g id="ytick_1394"/>
<g id="ytick_1395"/>
</g>
</g>
<g id="axes_280">
<g id="patch_281">
<path d="M 434.924375 10062.432012
L 557.214375 10062.432012
L 557.214375 9940.142012
L 434.924375 9940.142012
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p3d5c8ba492)">
<image height="122.4" id="imagef2144b3d7a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztndmOJelVhXcMZ8gz5FBZ1TX07HZ7xG0wEo0FSEhIcIFkiRfghXgPsLjiCZAQF5aQDcbdTQ/Vg6urq6syK6tyOPMQcbho+4JaX0hRtrjpf32XO2P+Y2dI66y9d/bqtbd28QyravNsKOqdbBadvJDYoOxJ7HpnX2IREd/sHEnsB7uBxG5u9dyLPJPYXEOxynTfFWw3ySqJPd3pc5jutrpzROhZIjpZLrEi9OQ17N0J3XeY6fPeg+2KnZ6jgufQRHenx+zBdY/gPC/AWl2v9NnmcM8VnKMD2x2VK4m99M1ziUVEjP7ipgZXawl9+E96np8W+i7+bHsisYcrPTfly365J7Fh0ZdYB9Y5ImIHz2Kz02db7WqNhcZ0lY0xSeDkNyZRnPzGJIqT35hEKV/qH0vw6WYqsUWlIglRgMiVZ6CwNUCiBtGBzTpwmi2ISCQ2kUhGohuJeBEs+JG4R0+CzjMA0Wd/BwIr7Evn2IAApXLmV5QQ68ENjlRDilGtG9LzXsJ1r0DEzeG89VZF5f79kW4YEd33VKArb4LwNtBzD1ZDPU+mT6eXdyRGohuxBcGuKQfomLQ/bUeisr/8xiSKk9+YRHHyG5MoTn5jEqX8bnlNgvdzFVSebmcSW9QqApLgVzT8jyFZg/1zSgkCFol2JF6Rf6oAUbIL99IH0S0iYgMOqraQMEhC3hicd+Syo6e9gPtbNrj+SDCk8xxv9Z4PwBVZwRVt4HpWJAxDqKh1Da7m+s5GRBw9nEtsdKQi2fiavnnHD8BlmXf1eODSW4MTlHKDaBILyaXX1s1H+MtvTKI4+Y1JFCe/MYni5DcmUcpXQ4WSHJxW/Y5KZ5f1UmJUYtjkiiOoBHeRU9mq7luBOLSB421aGg6pjLVuuBdyolUgaZIU06FSVhDY6Hr24IB0e2iyhHWO4C/CAM4zhrXeyzU2q0Hco5Lslg6/Ei57XpO0G7GYqPtuMFWhGkx6sQ/3vF+q4Dcv1DG4hmdDkJuP3HgRnFu0WAUIwxm8AP7yG5MoTn5jEsXJb0yiOPmNSZTyGFSyTaHqBwlG/UKdVrMa+v81CRggf11mGisLEsT0eFu4xiX1PWtZ3ki97DKU07hseQ4CDZW30tNZgFA5pV5/IJJR+S1RNmxHd0iOyhq2rECo3MDTJcfhVctP0Rb27exY8HtyrmW51X/riZ5car++J6rtoTg7Btcfib0E9fpryhc6ZtvSYeoL6C+/MYni5DcmUZz8xiSKk9+YRCmH0HPtCFxsO7BAkXOvA268GZR5RkRsQKx4Euq+WkPftD6VDv8ewyp6LR11Tf8t1evIAg2JnFvYbgXPZhkqIE5zfTYHcJV0f033QmJqDSLbGp7PAoS3JazVJVRGn8HgFHJo9uBaLuG9i4h4XKvgl8809hhU0i8zfRdJxKWSdXw/qacjqKt5g6jcFjoPCZX+8huTKE5+YxLFyW9Mojj5jUkUJ78xiVJ2Qdk9RMcg/J+AEKnZG7DsRkQsQTmlGFFBG05quNm2Vv73VUPXoM7PoYkj/QJAv5qQ4ruGZ0uxTaa/zBzB86KmnF+dux30C8AGjrkkKy+8EyfwS88E7OJEr2Gsdb9odzc0ep2s6vTbURfOTVOYSIXvwXb0HkdE9FuOTqd3mZ6Ov/zGJIqT35hEcfIbkyhOfmMSpdyrVXghQYz+T6xByJnmKi2QJTKiYWwwHJOEEgJtjS1trVTjTzGqs49gO27bmu62QlDbmUBsK4Za8MYjwBpA3XkH7rloec+01QxEt7NKJ+4sG+ziRA+s4SUIdFQXTw0zSxDj9sD63t7Kq3Qbvskk7h2ACEjNVqnbgb/8xiSKk9+YRHHyG5MoTn5jEqXsgvRC4k4FIsIAaqjJhTQC0SWCRS0Uv0Bkoeaav4+4R5OCyG1ITr6vjqlxcp31afQ2PB+6vx1NH4J7oSajJAJOG3RUGpNONfQbcqLB84GBPdGHteqTEAfPdbJdSGzbICp3od9BF543TbTZQR6QWEijt9cgp2KdPoS6jU05wUkIyukexaBvh7/8xiSKk9+YRHHyG5MoTn5jEqXkCTLtJuSQk+gQZ0Gz4EdiFW3ZBXFor6W4t6Kx3S0ba2K5bIODjcTLIQhL13Yq2uzXJF7qOUjSIschiZe4b8O90P51CVN3cHS6xmgkeg3nOIRS5FGuI+QvspnE1hXJlA0TbaC+NcP3iVx6MLadpu60bBxL5ygwh3hcOb3zHbiePsT85TcmUZz8xiSKk9+YRHHyG5MoqMS1LR0dQTlwTaWo3F4trloOJinJ9Yd9+BQ6xQYElRVcN03SaSpZJZfedbjxF2Ak+gjcVzgSm8RLuJcFOM6m8G/+khSkiJjA5JwzkAyfNqzrs9AXhqYrUe+547wvsctiT2LrmgU/FOOoPJkm7ECsB6JkH1yEQxIv4R2h92YIonAEuyKJikTJlmPpjTEJ4OQ3JlGc/MYkipPfmEQpe+hiU8EhB5FkADFi2jA++RIGN5C7LMA11gdRowtKJYmAfRCWtvB/MG/Zcy0i4gBEmhsg7t3YqnA2hiJaFBbJ4dVSNJ1v9fpOCnZe3uvotqeZXuMV9NwjkZQEW+pTRy7JAxDO7pT7EiNBKyJiVunwdCp5JudeD3rzjQt1HF7PVYC8nnUldtjS3QnTwiOivRBP4i6+3y2PZ4z5muHkNyZRnPzGJIqT35hEKbvg5spBmKCSUPIh9cCt1iRgUL8+Em52LQdB4GACKo2lfnSwb9WybDgiYgT2u+vQ+PBWoQLUsK/TaamqMwMxdG+gV753pMerVnrlR58f6EkiYrsdSWwKJb1z7BWo90yrV5N8BRtSeesAXHGDXAW2iIhlpc+ChnEQ9C524a0fw5t3Y6exW1u9lyN4R8jdGRFxBROHLwsYnAPvyePSDj9jzG9w8huTKE5+YxLFyW9MopQ1iDYbipECBbrEFrZr+g9DTrucpo6C8LYPehEJi9TDDytZqc8cbNY0MXgMG7/enUrszpuXEitBd9ttQPiEqtXOTRW6ipdu6r4TnXab5XotERHnn6iL7QzcgHOYyFzRwBecEAxDUlqKgBOY0juvVdiLiFjWui2V/9J0aGIBPQXpuklSJEF6BOIjuW6/Oqge4QrW4DLX/U9B0vaX35hEcfIbkyhOfmMSxclvTKKUT3cqGJ2XKiKQcFa0HCLA3dV48MaIYiju0bAK6men++KgCxKlYDsSHyMiXtzqXb7yJyqo9f7iWxLLxmOJ7SYTPckCylMPtLw1Dg71eCePJNb9+K7uGxHjTMWhg1rLWy9gYi0NOpmD/EWCHw5OAUHsvNIpvVS6G8HiHk303YEzlUp/J8VKYhcgAp6CENcrqMAcev3RSOyImEP99jkkIYl7p7U+M3/5jUkUJ78xieLkNyZRnPzGJEr5YU+FiSn01iPHEg5joKmjDSfvgmDYg/3JkEeljBdg3VuisNRusi2VEo/AgRgR8eLelcS6P7wjsfwHf6w7D1W0yy4f6/XMdTpt1tf+cQE9E0nwq5csXlawsiTuknxFJbg0JGMD03OpHHgOtsYlOPzoHF9dT8vvGzyKLgzj6ENPQSox7sAzJKH5ESUHvNsREXPY/4x6K4KrkfCX35hEcfIbkyhOfmMSxclvTKI4+Y1JlPKdTOu8yXrZlhxkUxq9HBExptHGNJ6YxkuDyrkA2yb/+tAuNoBrOWzo/Tg8gCacPW4qKWygFh3Gn5OKHx21lsZS13T3+FxiFw/gl4KIOAu97jmcuu1bwvX8pPa3+8WlA7biccn3QvRaNgCl8eAvhcZegPek365HaGwgNaYNo9PpV7g5vPM0bryf6XviL78xieLkNyZRnPzGJIqT35hEKX+91ZpzskRSbTOJMRXYNmnfiIguCDcUI1Zg+6TzjEHI2YfxyQfQXnFAo5wbrmd6pYLK9u6XEusMfqk793Tf3ULrr4MsrIOBbnahazr/zzOJfXGujT4jIk47uv5XIEItYP3JZksiMEH7UmwIazqCNY2IuA5C1x0QNL8BjthvbnUNjg9UOF2v9Z09n6sAOYUpPhMQcU9hOlJExGXLeew0En0AJnt/+Y1JFCe/MYni5DcmUZz8xiRKOYXGhx1w3hEk7m2gYSK5uRovCAQ/ipGIRPXXBdTf74HDqy3Thn+Xn660CWf5b3rfN+69L7FiAM42eGRZCQIk6KPrJxr77KPrEvu8BHdgRJyDuDehWnsY776mC28JjcQm9qCm/vVchc+IiB+CGPdWR3svvPy2xno/fkNi2QtvSqz6+TsS2/+ZCoNPHw8l1lmpY3BaNzhD4d2jpqfklKT+Av7yG5MoTn5jEsXJb0yiOPmNSZTfXfkKdviRaEPCYBNdEOOGMBGFnIA0ZpmEDoKucA33ctlQbvlxV89zvjyS2PV3tVnnCGYa9UFM63dotLRey8VKn9f9QkWkxw1myitoFDmF65lBOSk13GxbIl62bLY5BsHvds2v8rdDx6S/8rZOQ+r91R9JLH/7ryWWHd3Sk1T6HPbu/oce7wmJc+2mTEWwwDqFZp1LWIOZHX7GmN/i5DcmUZz8xiSKk9+YRCnJzUf9zKhclkYdF/D/pMnhR+LeC+VIY5m6oKhP2RKuh6bzdFv+z9uA8LXB2UURlyDSnIEA+SWUax7WKtAdVXru8bqdcHpR6DlOwB04gZ5wERFziFN/xBlO0yFRUs9dwhr0IDbMVdzbh/fmoGEO/OE+OFhf1RHm2SuvS6y4o26+gPeugvHsq3O9xtOFuhDvl3p/Dwtel3OYVHRV68jwWaUxwl9+YxLFyW9Mojj5jUkUJ78xiVIeFtprjPqhkcBWQX+1Za7iR1OpJg1F+Fbo9bwC/dVWICKdlHqeC3BFkTZE/wVpOxIVIyLWIGrSIJAKxKoc3IoZWPdodHYNz+EcboYGPqwa1oXKRFcQW4P4SWtN5dc43IWGTYAzbQRDMvYaRnR3+7CKe1DK3NNy291GhbP65BOJVR99JrEnJ3q8L0rNq/ulPteTgCEuEXHZUtybw3abWtfKX35jEsXJb0yiOPmNSRQnvzGJUh7nKrAdQsnkAMUmPSBNDSWHV0TE69Cr7E/X6si6eahlmZOpijafrUBk6ajARmW5cxC0JlTG2uDwo1LWHgh5Q6iipudI01svCg0uwYV4ATFy7TWV2m5BPKNtyfVJZbkkfBJ0NTSAokcCYkPV8HYD37cFOOCunkqouvcrie0++C+JrT++kNh8fSyxFZRQz2BdqFQ6ImIB7xi5bEncW0NvTX/5jUkUJ78xieLkNyZRnPzGJEpJ4t4hTBMd7VRkIVGqQ84t2Dci4uWNqjTfeE0nToz/QK/x+LGKLL13VNQo5gcS+zVMoZ3Dv0ESL6927L5awbbU43ADzzvAxUbPdg5C3jn21oMSU+ij2NRZj8S9Tcs+jCTuUZl3OwmQoX3peUVEzEAY3t7XKcbZRx9o7It7Eqvuamz2hebLotY1hRC6SOldimjfC5MEdoy1Opox5muHk9+YRHHyG5MoTn5jEqWkfnZ7JNqhqwokI3B4kVgYEXG7Vjff+C11/ZVv/0BixZVOVX1p767Elv+uAtuD0D6B5ICbgyuKetRFsCBGA0PYPaesQNy7BHHv8Q7KPGlwBlxf26m4zwM5/DI4DwuD5BiEGLxP6wYX6flSy8YPP5xLbL/+VGJ5XxW65X19tmenKiqfQh/Ms0KfwxX05Wt6x0i068N5cliDMtPz+MtvTKI4+Y1JFCe/MYni5DcmUXC0KfmIoD0ellaOYeebW3YmvXpbXXrFd3R4QvbG9zS2UaddB6alHr13X098oYIf9eZbUY+6hl5xbf+LbkH8ol56dLwJCEFTEIzmMLmVXHtN11xCKTKJlyQYbkFYzGh6Mvbr09g+9OvrwBJMG27mAUwnLh7q9OTjiYqAna6u//nFWGJ3Q0vJ3+/qRX4WC4mdVnreVYPgR/Rg6E4/VOTeFSp8+stvTKI4+Y1JFCe/MYni5DcmUZz8xiRKSSo3TYbpgqXyGo2RhuaBL/VU0YyI2P+GqtLZUJVTpKvqZTZSFX9vrOfoaa/GyGFCzvNAzSzJjok1/hDb0Xhw+KWBzluAkp7DOWhMdkREH6YKkfV2C78Lta37p18PxnDe4U63414HfN4prOu00nfneEpj6ZWH0Aviw0LfsU+ricQeb7UR7Qp+mWmiA8r+AOy9ezDWnNbaX35jEsXJb0yiOPmNSRQnvzGJUl6ECg4H4PolHzCJezcKrS8fjmBCSgR2kKwfnkgs77yvG/a0MePuCSh5wEGt4tAYLK1PwVq6zNpbL9vWrFcg7pF81SP7KzQEHdIY8JY9Gpquka6HxpIvwRJdgPBJ4t4BPG+ylV+CuEcjyCPYgnxZ6Hm+hGlIJMU9Aovu51sQ9zYaW9RqSSe7OAm2Ee3Hn5M9uwsxf/mNSRQnvzGJ4uQ3JlGc/MYkSnkFIsS8UDFtBYLBEoSJSaUCVHahY8AjIvKPVcA43D6QWPcMJqwM1aW1vXcusfOTgcQqEEn64CTrwz3PYbuvjtnOfdd2X2IPR35rrAA3Jgm2TddHLsQFiJLkDu2AuEfnoZHvMNAGz0viHvU6iGBR8hykPHoStC4XtYrXF5WKgEvqqUBNVBv6QxA0jnsN903n7hR2+BljfoOT35hEcfIbkyhOfmMSpWwrdFzl4C6C8sYnOygxrGksdcSNUxXtXpxo2eP1JzOJZYWWCT/9UsuBP5jpNJX7eokoIpEYQ46qCB533bZ8l0aBd3HykcaOITauaUy6Xl/TWGsaVz6l64ZnQaW1axC6FuQZhOuh5qYX0LR0ArGIiBkI2uuGEdjPQk47Et1quD8q585AiCX3I+3bxA7eUbrGJUyf8pffmERx8huTKE5+YxLFyW9MopTXchXdaHIKSSRPQAQksbAD5ZIRERPoSbZZ6ESUxa9VMKxA1LqXqZPw/Z5ez4NQl9YVuKJoVHLT+GQS9xgVoKjccrzTZzOGSSzfXqnY9GKpjjPiasNC7Bn0gDsHh9hl3s419hTEvSt4jhfwDMlFOANxbwrOu4iIeaVxcsWRC7EHz4FEQCq1peN1cl3ntr0fm7alaUgVlVrDM/OX35hEcfIbkyhOfmMSxclvTKKUNzK1u43BNUblluuW46YXTWIYiEh0potay3Jn4E38vFBxiMYin8FYZHJ9te2ZFsFiTAWloyQ29aCf3RjE0Je2eo63bp5J7PA7et7dBkpjP8cJ7XFwosNPzjYqDJ8Wun9dkjCo172E/o+TnYqhCxRiIVbpvhH8vKm0loS8DvQUbFr/NsejGPXba3zHWjr/aH8e5GKMSRInvzGJ4uQ3JlGc/MYkSkm962iYA5j5gvQH+m/SNLf1Cv4yB2WxhtgkU8HoMbi8zmoV966g5xqJQF0Q4vZgKmpERB8EOoKm2JIrcgBC0BvVUmLXfgTTd7/zGpxYha/yxmO8xv4nFxIbP1D35OBChcEKJuCew73QmVcgztGgCxLxmiBBDYdawPr1YCBKh44HwiA5PvvgGCR35/P0ViQKmrLtoR3GmN/i5DcmUZz8xiSKk9+YRClnIJxVJAK2dBexWMFCxRzOTcMXZigEQQycX3MQjKjvGbmiSKAZNQl+LSfjbqDHHf0HHoKItN9T8TI/UIEtO9S+hdGB8tQhD1PZG5/q7kc6OKX7sa7B6uE1iZ0Weu4vQYBqCwl2VC4b0eDcaznFdgTuVxrk0nboShdWugOxJmGP+j+2daGiiI9nMcZ87XHyG5MoTn5jEsXJb0yilPfBAUfiFU2DHZIDDgYTNLEEt9tZrS42moJKgwnakrcUgQYg7o0bBL8BPB8SPzfgaiR5h/yCs5UKZ9uHTyWW34apxscqxGVDHXISEZHfOGp1PfuVOgFvT3TAyrWlHq8Ppb9U2lzl+rzouTY5LIfg0mv7fl+DnokHLR2xbUVAqNKOZcO+bacT02TiJcT85TcmUZz8xiSKk9+YRHHyG5Mo5b3NuQSpbPUAhnvczNUhVoLA0gRNb6XhCxMQ/MgFRaWM5PCiXmg4tAFEwCFKX1yCSyxByyFxiNxcD0PX4M5Hej1HowcSK+6osBs1F1vXFyraVae6Bqsz6M230utZYel3u+cd8C4WsO9B3tN9I+IYXHpH4J48qmECcqVrcL1SobkPI21WICDO4V2cQB/Lxw1DbmgCMgnIc+pbiE5AY0ySOPmNSRQnvzGJ4uQ3JlGc/MYkSnm2upJgD+qvq46qimSTpHpnUmcjIlZg0d1AjKy8NdTk19nv3uBwB/vyLwD8/7IH21KbSVK5SXPfwPU8LfTZPjzZl1j5rtpu+yeP9BxXfC+nn+uY9PvLWxI7h+s5A6X6XqFPgmyp9LwH8I6N4Bel28Fq/2tbvcY7G32frmVqK9/v6S9Pg0PtD5HBWs1n+ivD2UJ/HZvAdZONNyJiBnlAVl76JYwa1PrLb0yiOPmNSRQnvzGJ4uQ3JlHKZaVNL6kp4DRXQWRaqN10sFOBhuqdI1isoHM/T1NQ2ResvFTP33aEcZN4WUAfg21LAZIgsXAKF3S6VcEo/0IbePYewYSjFTfw/GVPBbWP+2C7Do3R+m3ARrxtnOP0f6GpSdfAsvvmhu3Vb+2mEnvpDe130L8FglgXhOEt3N8lvMf3dd/lQq/xUaHHO8t4ItECBD8SkEt6c1tO1zLGJICT35hEcfIbkyhOfmMSpSzydvlPLrtFrWLhJNMYTSqJYDcfCRgkxhE4Zhmm7vSpqSPsS8JJ05VQnGIkF9J25NKawpz0Rx0Vkab1QGKbSs/8RZ8FyQ9Da/8fVCqc0TuxR2OoobYdJ+nAk+jDvtRE8+WtvncREa+9pQ1Oh3/5qsSy2+pgjDVMezrR4eLZXXVP7j7Xwz0BR+Rprs/wqmEEOYmpJeYLiJ+w1P7yG5MoTn5jEsXJb0yiOPmNSZSSRDISY2gsMkGlg1XDeO+24l7bMct9mrBTqAOOSpFJ3Hue8uQu3QtNL4LQCp2OyhSiW2r2CEs1gXHoj3bq0IuIeAji3uUWxoPDutCo6y6sC5Xq9mENaCrUYaXbHRbaYDQioveyrn/25psae/37uvMKjjl4T0LFYy2hhj6fcQlrRaXNVOoeEVFSXja8j8+yIadrqz2NMV87nPzGJIqT35hEcfIbkyglCXltnXK0L4lzOIklWPDbA/cdjWkmwW8MU1topHaT4/BZes/h8OuBuEelzH2IzSC2oL5w0NvtEgTWGUyQuahU3LuC6UgRPCFpUavbjdZ/A2tA60wjzfdhGtI+uPmOQA0t4R2JiKin4Py7VIEOpxf1oOQZXHr1VJ/NZK59EK9KWFNYKyp1jwiuYqeJVPC8yT3pL78xieLkNyZRnPzGJIqT35hEwXnTbV125HYjYaFJYOtTqS6MAkc3H8T2obfbELbjwRktB36Qay/4QY5At9knkTPXa3wCos+TUPHqDFx65zX0W6w0RiJeRMS6VtcZxQpwDVKvRyrzJece0SchFQa2zCseDX/xgcavjd7RY25AGByNJFS/877Ezn6h7/HHoWXVJ7k+wymUxS8bSnoDxHCSBoeQV+Se9JffmERx8huTKE5+YxLFyW9MopR5Q7ltG6jPXFvhLILFwTEIQV0QMMghdhgqiAwaBLpnoQ5wFdxL48RhCHchNgSFpk/mMij/pNLfSxD3nm61JHdRqbhHPfgiGsqyIUb7T7d6PeQEpLLqMThLK3D4zeGdfZDxlN75yTWJ3f7XmcRu3fuVxArV++LkvaHEfj6/IbF3YKr12Y7WoN3wkgjON/p671FpNDxHf/mNSRQnvzGJ4uQ3JlGc/MYkCpb0th2SQVLFGkSgTUNJL5W8khuQYgfgqTsGUYMcYiRzrbCEVrejstqIgDEXEdNcDzCCISkd0EhXIO4s4conUJZLotsGHHr/H5AotQNHXlu2sAZX8DpdUS/DiHi0UxH4weZQYrfeVXWvgHv5tKPHu9vVZ3sCzssl5AaVuw9AuI6I6LR12cI7f1Rb8DPG/AYnvzGJ4uQ3JlGc/MYkStmHcssOOK2orJbEnQ3IgOsGF9OA+vCBkHcA/6P2a+gLR73d4LzkxqvBNUZuxWmDK4765hFUWtkFEXAJz+wKSnDn0JuPxD1y6JVQShzRXvCl7QYwJOWg0F5416D8erxrNxhmDuIsCaQRERVsewZC7CPozUecQVkuiXuzprLcZyAxu6nnJUEuVBKvKQ/85TcmUZz8xiSKk9+YRHHyG5MoJQ3jIBGQqMG5tQbha9PgiqNS3W9tVOx4a6clmL1Sz3O21f5/T0G83IDAtgHhhNx8NFU1gsU4Ej+pfyB507aw7wUM01hBDzgS9wgazhIRsQeDTtqKwCMY2nGr0DLYGwGTe+FJkIxH4t7zCH501A2cm4Szp1CW23btqYR9BzlA+0ZEVJBvM9iW3uUBvPP+8huTKE5+YxLFyW9Mojj5jUkUJ78xiVKSRbNs+T+BlP22SnNExPFOFeQfZROJffvvdbv81k2J3f4Xnabyq/+5JbEnBTWFBCUVrLxNtk0ad73ctVPia4it4TzLCqa7QGNOmq5Dyj6p+hERxx0dL82jzttNUroGk2aozwJByjXFdqjqM22/eFR/P4U1pQk7ZH0vWlrI6Ve0CO6VQTk4h+vZwAhzf/mNSRQnvzGJ4uQ3JlGc/MYkSokCXcshPm2n/ZAIFBFxu9L/Pa98/1xixZ//nZ77u38msfHonyX26j+8K7F7k+sSW4DwMgkVTkjYi4iYwuQcqrUnMW4FQt6mViGHhEHajqDa/aZ6/n2w6N7M1DpN9uy2E5tmYJ1uGn+u52gPbUtfPNoOxUaaZvQcU6qehYTBJujZ4nQl2O6s0vfEX35jEsXJb0yiOPmNSRQnvzGJUpKTbA3OOxL3MlAGh+DmutEwPvmFLYg+QxB9QKzI9tSFlv/4byV2+28+kNiLP9V7/rDU85JTatYg+E22WmtPk3NWWxX3SPBrcnm1oYDxMoQJAAABB0lEQVTabZqa0+TGJBGqhPXvwfrPSTht2cyS6t33QCzutZzCFBGxpoaysB2JlzksATli2wqVtKIkzjWN7aYeD7QlresKYv7yG5MoTn5jEsXJb0yiOPmNSZRyASWhJA7RKO/9Ql1fx7nGXgABMSIipzHUj2CCyScfSSx75XsSK+68KbHdT34isT/8xT9K7Bf3X5QYlVCSay+Cxb3JGhpuguBXtXTpZSC6UWNNahJKAiI1/4yImEFDygWItiQCUhnsJZU2U5PJTO+FJtrQ/fGqRMzhesgpN4Zz0/hrcqtWsC814ayo2SasfZNjkIQ8EmdJMKTt/OU3JlGc/MYkipPfmERx8huTKP8Lwp1f4e/mrSQAAAAASUVORK5CYII=" y="-9940.032012"/>
</g>
<g id="matplotlib.axis_559">
<g id="xtick_838"/>
<g id="xtick_839"/>
<g id="xtick_840"/>
</g>
<g id="matplotlib.axis_560">
<g id="ytick_1396"/>
<g id="ytick_1397"/>
<g id="ytick_1398"/>
<g id="ytick_1399"/>
<g id="ytick_1400"/>
</g>
</g>
<g id="axes_281">
<g id="patch_282">
<path d="M 29.174375 10208.8532
L 151.464375 10208.8532
L 151.464375 10081.559673
L 29.174375 10081.559673
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_561">
<g id="xtick_841"/>
<g id="xtick_842"/>
<g id="xtick_843"/>
</g>
<g id="matplotlib.axis_562">
<g id="ytick_1401"/>
<g id="ytick_1402"/>
<g id="ytick_1403"/>
<g id="ytick_1404"/>
<g id="ytick_1405"/>
<g id="text_71">
<!-- 249 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 10192.246436)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-52"/>
<use x="111.230469" xlink:href="#ArialMT-57"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_282">
<g id="patch_283">
<path d="M 164.424375 10208.8532
L 286.714375 10208.8532
L 286.714375 10081.559673
L 164.424375 10081.559673
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_563">
<g id="xtick_844"/>
<g id="xtick_845"/>
<g id="xtick_846"/>
</g>
<g id="matplotlib.axis_564">
<g id="ytick_1406"/>
<g id="ytick_1407"/>
<g id="ytick_1408"/>
<g id="ytick_1409"/>
<g id="ytick_1410"/>
</g>
</g>
<g id="axes_283">
<g id="patch_284">
<path d="M 299.674375 10208.8532
L 421.964375 10208.8532
L 421.964375 10081.559673
L 299.674375 10081.559673
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_565">
<g id="xtick_847"/>
<g id="xtick_848"/>
<g id="xtick_849"/>
</g>
<g id="matplotlib.axis_566">
<g id="ytick_1411"/>
<g id="ytick_1412"/>
<g id="ytick_1413"/>
<g id="ytick_1414"/>
<g id="ytick_1415"/>
</g>
</g>
<g id="axes_284">
<g id="patch_285">
<path d="M 434.924375 10206.351436
L 557.214375 10206.351436
L 557.214375 10084.061436
L 434.924375 10084.061436
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pcc81493df7)">
<image height="122.4" id="imagee738d59c9a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncuyJNdVhlfe63qq+pzTrZZk2ZKN7AECEwTBgBET3oEH4bmYMwGmMIKBsY2FbAVqtdTnUqfuWZWVmQxkGPT6NpEdMNL+v+GKysqdmXtVRvz1r7WSv/nhX/f2FoekfTtkx97HDuZjbe++LkiZpC52m5Qu9nFbuNiL1p9n1PlYm/jz1okPHlMfa+DYQ8LXt4H4yXxsYf6aX178iU5w7n/Jahf7RfPgYg/N1sWKNHOxF8XCn8TMXmQTF0vNL2jdnVxs1R5drO7OLtb2nYsl8FzyxK+7gNg09fvGzGyWVi7mn4DZob/g8W+zhO97L/Gxae/X2MJ+OAX2E5FDLOv9PavgWZUQo/sghIgAJb8QkaLkFyJSlPxCREq+MS90XEC0u4BYQSJQB58LQccT3bCPWQ7rriA2p2NBQLzA+p5AODMzu8v97+gOxJwZCDRjWGMNAuTJvEh2ASGWxLQUzkufMzPrYD0ZinH+mkmMa1MvVSWw7h7O28EaGxcx24OoGGKceAGZOIEIuIHNOIE9MYL36gRic0iXUAaRgEwiYjMwB/XmFyJSlPxCRIqSX4hIUfILESk5CXQFCF25eVGDRMAWRCASJczMMjgPxQo4vAI3XwnnmSVetLmeehfa8vnBr6XyYtNxxU6y12+8jPitjVwM7zcIXSQs0l2k70tBnMvguVDMjIW8oeIsnqf3sR73jr/fJEp2JBaG9hicu0y8AEn7joTPGgTyHQiDy9SLirCdbARC7Dng+iPXZwOfJRkX0kVvfiFiRckvRKQo+YWIFCW/EJGSkxg3ApcWCSIkspAISI5BM0MJaQICzRLcd9e993lNMy+8jEv/uZsf7Fxs9ufPXCz94QcuNm/IX2Z28/lXLvbjX/hy2+2dFwE3Gx9bdzMXG2X+3oxAWGqgvHWU+dgVlKeasTuNXGMXEONoT5CASJ8jgY0gJ2BI8EO3Iuy8EYiAsBUHO1jJjdlgXnnOAW0VnwF8bugbXW9+ISJFyS9EpCj5hYgUJb8QkZLXIEyUIORQqSa5vhISBsG59d1nPeR4um69o+vlfO9i44kX47ICru8G1vL+cx/7wz91sfQKDjaz9LPXLnb12S9dbPqrL1xs/q9PLrb7lRfyflB4ge4xA2EQxCvqcfcces99d7x/1o899OEbKH7RnqD9RGIaCXkUSwNuRRJEx3B/JhCjHpN0xSQgUi/LDYqAVBbPUJyummJDjxVCRICSX4hIUfILESlKfiEiJd+DUy4HEYLEPRQ6QBKpoQTTjIWgmo4PiDlvM1qA4FeCODTxYlNSQF+3iS/TTW4+4pOPoTNg69eT1n7wxuj+cxe7/cqXHX9y9ALdtvQDNlYw+GQGAtsCBkuYmTUgVq1x6MMwwbeA/UTQsQ28n3ooY6UyXTOzOQidFdwLgvY3kQ/MgzMJ32AjDO12um4S8sgJ2MCAHb35hYgUJb8QkaLkFyJSlPxCRIqSX4hIyWnSSQLTYki9JDWU6vmbwGQY0lJJGf6ihPr07ZWL/az0iuazH3nVPJ1BE05SpC9Quw8K/ndxqKzu4LrhPAlM+ykKfy3zvb+3tx2NsIapMqAqzwKjkPapP88EKs+nMPmG9gQ1FEVlH/4VuoCeTU09Q81Ih/4jRTHqV0DQvwcFvFexOe3APhlmZn4gutkemofuQdmnEeR68wsRKUp+ISJFyS9EpCj5hYiUnCSNGsQBEiGwdv8dGjOSEPQEA5i/IC2uAhHwYeFi8+feTluCoNmfQfhcfetiXR4Y71z7/gL9du0/B70JktILRuXIP4MKBKiqpzr0YVOPJoFy/AyEwGuoiyfFtgERkGvO/cHHxN+bHdjPD9C2MiSSkdicgCBGx59AgBw6uWgOY8lRdIX+FZeAHZoESGoUuu68NLiFmN78QkSKkl+ISFHyCxEpSn4hIiUvaKTywDrtoZCwFzoPCTQbGLP9BkZY34ModTnCqOudF/f6b/10nT77jYvZ3Tc+ZmZGouaJPFmeZO4n9oyfebFw+Y1f96LzwhI1hSxBWBrT3GYzq+D4E+yTHMQ9miBDlfa0I/bglKMVklvtHOoZQePKqUfAUNcfNbzFuTueCq56As8l1Be1Tf26N3BumpCEo9z5NEKI7ztKfiEiRckvRKQo+YWIlDyH/KcSxXLgxJ53gUQIcgMOneSSDxzx3G69YNTVjy6WvPKTdNIJO/ySsY8ni6mPgTPRwHGY+4plu77y5ckv1/77UpTYPKPA/YKJ6FbBGk/kJITvI3dhBULXDISqBsqLn6C4NSStkqhcwp4fKu6xrPj/S+iNXMF9nILwPYOncIJx7HrzCxEpSn4hIkXJL0SkKPmFiJSc3EDkgBqBk2hCY5ZBRDoHhg7TePChY5+xHxqJhS2UTG789zV7KDHdeuEsAQHKzGx2u3Wx8ae+HJXcfN3qMGiNCUxsWSbe9deBza4ZOPXIzKz5P7wSqIcjuexGcBuXoKalIF51MJZ8DaW/ZmYLcCHOoLT2ANN0HuE7afoUuWSJE9ybwzto5if4bAHC6RwE31aCnxDiv1HyCxEpSn4hIkXJL0Sk5FSOWIKAMUIREBxZIErVgeEHVL7bgAiY0BhjED86KkU9DhPt9msviNxv/PjrlkowzezleediOTjysoMXkZo7r9Bt33hhcLf3a+xA+BzBPSSd8hgQqqgkmMjhO/uBx5JsSo7DD09eYPs5HF0FrmWcee9f3fo9/3Xi7+3vCr93vk79ekgEpLtAgh99MPRGpnLpFvKNBoZModej3vxCRIqSX4hIUfILESlKfiEiJV8OnLQ6AjcfQSJeHSiEpOEgVL6LfQZBeKOzbLdeyGnO/lrOZy+InEForAP92tZbL9BNX3v3XbkDwejJP4PD3pfqni7+3CRAplQq7SJm59BwCIhlVJZLE3kHOjRL+Nii9av89GblYi/+zK8we98PbDEz68/+Oy9Qqv3Rb/y9ffH1tYv9uvD76VXm98kO7jiJ4SSahkrlsVAb9qiBW7GDHNKbX4hIUfILESlKfiEiRckvRKTkt1AyiU4iEHIaiFH5bhvqFTdQHCLBj8SmI9j+7s5jF5s2IBiBGEO/jCH/2qH19/Hp3p97fPQOPzJAZqCwVbkXCzMYvEEONnICXgIXQ0+F7gWV5dJwEDp2CY0CP8i9I/L2M+/Qyz/7sYslYy+4mpn1MDilmPrPLsp7F/u492Jj8/rGxS6UQ6ALn0GIK+G5LDt+J5PUTGW+3mtq7+QkFEJ8z1HyCxEpSn4hIkXJL0Sk5M/AIbTHslx/MDmWaJpvFnCSUTkxCksDf6NWmT9PTT3cYLLtvPNi2gQ8g+N3GNuwOXg3GDGeehFwdlW7WAXOxP0OHIwkGA3TVs3MrKNyafgcOc5osARNA76FRoPPbn0vw+zWi6bW+dX0uz2sxszO0NsPhOFs6UXAyY3/zsUbLyCOe7/H6N6QG3MKsRuammJmE7iPJHJ/k0OpPXyf3vxCRIqSX4hIUfILESlKfiEiJb+FoRZTEOgO8DOxo5JOEItCDr+hQ36pJxn2SIPgCWxRe1jkEUTAW7DAXcOQDDN2CNJld6CmFaUXEfMKRC0Qh/Lcfy47Q1k0LCakAdIgiSOVo8KxC7i+Kzh3CcJpC9NCLq+9CJjkd/7EWaDkvPXn6S8kGPrn2p79tZw7f54djCbeUVktLI92UygtpmAFLSB/NzC5twYxXG9+ISJFyS9EpCj5hYgUJb8QkaLkFyJS8vcv3mZJBtYaaupX0Lgwzb2qSDZgs//lX4C3oAlCV2BhfX7x33ehKT70rwDEDqk/x7PAxJ4q9wZK+ueD6vSpoSjFaPrQCT6X0j8Pfim2AQXYzOwbmEqzhi4P1GfhnPg1juEfgG3rP5c9TV2s+4U/dnHvbbfFFU+FokE+HUjszdbfx9W3fj002ec/4X49wXhvaow7hhip9WZmM9jzBfwDcA324BybrQohokTJL0SkKPmFiBQlvxCRki9Ttqu+zRFsjafeT5UZNtcnDE3sISag77zfgigFpsodrJIETbLEJgHxsgKLblGAtZRGZe9hYk/tY0cQyfqBHukV2F9JqDIz+9J8I80tqGQjEPe61NfFj3O/Tzo4dt37NT6s/bHLtRfiFhXv4zSFyTnQXXPX+Pt9l/hz/3sFTWINxoCDbF7Cu5ZswCSkm5mNoffGDYjcS+hNcQ29APTmFyJSlPxCRIqSX4hIUfILESn5QJMdjqbegYXtQKOJaSSN8cQeEvwOvRcwVqkXjHYwRvw5ONMWcI4RjToGRhmLZKOJd3SN5z52OfnznB78tdAEIBIqaRJPA67GV1B8/zUIVWZmD60X/M7wDNoUGkpCM8s1iFotuAvJAVeAUPkGxOfRhZul0vamppfQB9U2sO77xD9T2t+hMdtDjt1i5b/ZA9yLCvbt+60XPxeFj+nNL0SkKPmFiBQlvxCRouQXIlLyLQg0LYgVJDasQPCpqXFhQFQkgYdkEhr7/Sr1wktRekdWe/ZKzrIf5gQswR02HtHsExb3Ru9Bo0iaNtN5ge14BtcfjN4+gHhFDrG7xAt2eyg7NTO7BASnt6HnR0ceYE80NNmJBD8QL3fUJDagr5EATa66GgRNGkEPW97m2MrUQ99HsS08K7NASTA86xk4QWcdlJzjWYQQ33uU/EJEipJfiEhR8gsRKfmbDPrCgciypYk95NwCAYP6h5mZpfDbQ4IRlUeuQKxKQfyqCi+cldD37hpElhLcfFSma2aWQG++tIJJQ6WPjW9hRPfGO7K2MBqmAVfjBp7VAa4vCfUjhHLbFPYElfTS22QHYhqB54BvJOHrDHvRzGwL4u4OxoOTqEwsocx3MVDwewK36Q5i54AjltKoSv2eKApwgl4mLqY3vxCRouQXIlKU/EJEipJfiEjJPy+8UEWi3QliLfSzS0CVmIIoZca/PHQeKns8goi0B/HkAKIUUUI/u6r035dmLMZ0jb/uy9p/ZzqC42lsNwiLOT0DWEsNz4VKTEm8MjObwj2jPUHfSY61Gp7LhUQtcM/RYBAS/EKtH0nIo2sh6Dx4boByg0rTnzouqya61LtVaaBNCm7chj43+MxCiO8VSn4hIkXJL0SkKPmFiJT8C6tdkAQREjomMGThCtxOs8BvDLrBQKCp4ZMkqBTwOTpHQT38QNwbT73zrhz5z5nxNNhmBw6/A0zQhXrUBGpHM7hmmkJMfRAn0Ost9FyGluWSe24PsRpiDQlxIAL2tBfhZk8T73QLxScgQJNQXdCeh2OpZJ1cjVRCvX0Hwa+Ac88g33ZUKg8Tp/XmFyJSlPxCRIqSX4hIUfILESn5HfSPI5GFyjeLxDuOSCSZBUpHqR/aCcpyyeVF30lOwhG45yrwxY1AyJssfVltuWSHX5L78/QwQbX1+qq1NVwzTP2tUnAcwlooNoLnUgWeC9wyFIHX2JOO+vUNE/doMEgNIhkJX9OMBb8r2LdXIFSjuAf3J4PYAYRYmvqcgeiaw7WE3sgkaOcg+BawRso1vfmFiBQlvxCRouQXIlKU/EJESk4iC/0i0CCHCwgd1EvtGCqDhDCVhNLR5CS86fzKr0CfK2Dd5Nwrr8FF+N4YVmOWzEc+CNavfu8dXe0jubxAgNxAr7+Dv8AZuLnICRj65T8OLOmmQRe8n0jEJQHZi1893EPqMXgD4rOZ2QsYSkNiMVS225j2DpxjAyJ1m1JZrS+hHkH5bRl4MrdwdtrzU1BsSwl+Qoj/RskvRKQo+YWIFCW/EJGSU6kuDU+grmdUvnkP30floCFO4Pwix9IYznMDpbETmIpLJZg9iCRUppuMuCdgMvdDEZKZjxHp3QrW8+Bi4ycv+L138C5Ea7ywRNN89xAzM9tBy0XqP0clqmfYE9PUr4cEOhK6ttC3jspYP+m5H+FL2BNpT0K1/xw96QKOHcPemVGpNZQXX4OItww4L6/hWp61lC/gnnwHwVcI8T1HyS9EpCj5hYgUJb8QkaLkFyJSULruQNFscZQwjBxOvPqcBX5jSNMki+d1YLLM21zgC3dgdc1AGZ49emW+nECzzmSH5y7gL4QEFFabgj0Y/pFo9/AMGn8tVOO/aEGu73zsGFD7yWJNk2/I8k3MQOX+xLwd+gWo2Wv4p4D+/flhw2tZ0D8SsB83YMeF5SDU/4BWQ3OrqGcA2XPNzGawx8ag7NO5NbFHCPE/KPmFiBQlvxCRouQXIlLy48AGiQ3Vbnc0epmGRjNF6vXGZeYFsQ4EPxI1YEAONplcgwjYXqYudvydX9+zO+jAaWaz3/r4+PqViyW5X8/+W399b95cu9im9Z+jaUZbEK8eMy8irTIeVb0DOzaJwNTUNQOR8wMQ9/4AXMlL2E93UO9OZvOrwL67yvyJepCa5yCItiC8HUC2ozHwR2rqSWPO4X6FhEaYAm9HEPLo+Cd4/nrzCxEpSn4hIkXJL0SkKPmFiJT82HlBhOqOaYoPiXt15wXEEClNNYHfI5qmQpBQdaBOBPB1+9Kf96H14uPVERp1mlkFjjx77UM0kegAos8FfpahV6PVEFvBfVglVHvPrrgWxD3q+3AFQuwEBLEXMCFnAeIeTVKa0kUDJRxrZpZn/hrLwn92CbEs98eu135P3HczFzvDvsO+FrBtKmokYWYFNQqlvQPHbmFkj978QkSKkl+ISFHyCxEpSn4hIiUfQ8lkqATXAR8jES/EBM49AnchiU1UdlqDq2oLomSHx/rzbjMogyTDmZmd4Nx7ODeNq6bGlTO6D1D+uQZ55673E4D2IMTSyGczs2nqBd8RCHkVHE9j0kE3Q4cmTVK67aFEHD43ylnwC1QtO8oKRqLPwMHawHOBKu8G9yKUxcM97MAxaGZ2gf04hj1B49RJBNabX4hIUfILESlKfiEiRckvRKTkP8ivXJDKN6lfWwMOMRIbQpC4t6QxxvA5mrpzhDUewflFa2zgmg8gNNYBJ9lT60W2HbgnMxBEb1LvGmthkguJZN90Bxe7u3gFikTOKUzDMeMy0wLWTVoaiZJEB0dTP8JR6WM5KIh94Lz1yYtnl5O/t/SdOYiAHZT50o6gvbiF8vkneC67gOC3hZabI1CgyY1LYqPe/EJEipJfiEhR8gsRKUp+ISIl/6n5YRXkVqvBIUQuO4IcemZmFcQnvf89KkHMoZLJGr6PxD0qZSUhj47ddF7YMzN7uuz9d4KrbpJ5kW1oLzxy6b1u1i62vngRMAfRlEe2mJXw2QqEpQl8jsqvvbxmlmI/O/+5DPoMkjjXgPPOjPvwXaBMuK79Kqmk93z2N41GnZO7cwduxTONPg+8k3fgvCyhXJqgcep68wsRKUp+ISJFyS9EpCj5hYiU/CNoFkfTbhty2dEXQmwUGOZagauuAA2RhhU8QHnjEfuUgUsP3E4U24NDb9se/WLMbHfxQzs6ckBCjIak0HrWLbj5zhsXO7Ve3ClhQAo5+ULrIVFyAb0eSdyjZ9rCc9lc/NH1HtaSeZEsTUP9CKFkFs59hjxI9t5tujv7Ne5giDQJyCTu0TCcUMtK2hPk3CRoorbe/EJEipJfiEhR8gsRKUp+ISIlJ9FtAfWyJNqMQLyaJV5YmOQ8yKOAQQkduK/WJ1BUzDvlVuC04v5/ft2bzgt2G3DKHVsYL2tml25Yr0CD458S7w7cJX49BygbJnGP1kIcLuxWJDcg9XpsYPounfkEAtZd7s9xB30CSUBetP75LS6BPQZu1ZYco63fdzQV+RGE0y24X4cOPslASEU3pplNQWCdwvE0OIUco3rzCxEpSn4hIkXJL0SkKPmFiJScyhFLUG3mUBJ4XXpRarH0scmSRbIMrH/NFsSOr+cuND57MWYKQs4USlErEFQamBpL4t4ZPmdm1oPAk8O5CxCMSizp9b/LFZR0tlB2SiIg9WVEd5mZnaB0eA+lzBvoAbiCaz5BrIVSXfLoUYn3i9THXl5IFDaboRDr9wkNaHmC3HiEdT/ABGTQGW0KoilBwp6Z2Q30t/yo83vnRevXPQeRVG9+ISJFyS9EpCj5hYgUJb8QkZLvIP1p8mcPvdAyKKEtQC0sZlxumc3h5J3/bALqCVU9jmDdi94LIhsQTkhMI9GNYmYs7o0zf5557gd0zEE4o/PUIDbuMy/EoRMQRDwSAUPQ8fdQYnwCEZHKqsllSVODb1LvIkzhfuU5P5caBDGSbEnIu0v8tWzhaOoJSYNmKnDeUc/Dq4Dg93Hrr+WTs1/j88Q//wkMP9GbX4hIUfILESlKfiEiRckvRKQo+YWIlJym8+yh9ncH6uUMmhmOdtDUcRyoL4emi+etVzTrxsdIpx7DnwpLmnwDyv5tNvVrKbxCGqqVp38LZplXqudg8RwHRjK/TQ3qM03XGcFayJbcoqF2OGT5PWGjSP8MqNcBNQ6lJqMj+CckhWs2MzvA8aT2r6Emn5T9euA9G4OyT+sm+/J1x/X8Ly/+ni0NpkKBsj8ee6u63vxCRIqSX4hIUfILESlKfiEiJa9BeNnCT8IK6p0rqKHOtlA3DNZJM7PRCerG1966uW29mHOBWmuSfOZgS74Fge2QetttWvhjyb5qxhNtyOJJzRXJ1kqCGDZhhGeFY5vhcyTEmfFocppeVOPYZ2pSCdNwwFpM04y2cN4cLrqhAnozm1FPBVgjiYB0LQVYyOlzJVzzHJ7LMxD8ngX08TFY3wmyw9O4cb35hYgUJb8QkaLkFyJSlPxCREq+BddYQ78JIPh1ME+lu3hXmz3xySc11NofvOC3BjGNxnanICKRQ4ymD02hsebCvKB5BieYmdmIHF1wH0kEpF9gEt1gkJK12OuAXHG0PnaSnQe62NqBAlRGVzhwyk0NfQRWcI4jTIoy42aYVC8/hz02BYGuByGP7kIGwiAJjTS+nqZomXEPiz40z/vt75yonl8I8XuU/EJEipJfiEhR8gsRKfkaSjAPICLU4JQ6gIh0AOGsbiZ48sXei40H+D1aQ3NGGvtMIuAOBLHHFBozwn0YKnyZ8fjlGYls4OgiTlTyCuuh8xpN+4H7OgmMgoa+rFZQM1P4TpoC1MHg7gt+DgRbuL4jKJ81lLaamZ1T/1xLEK9vey8CkvuO7g3uRRJsIXYGQTo0YL2Fz1Jte1H4bxjfSvATQvweJb8QkaLkFyJSlPxCREq+HViWSf3MVvDbscq8cLICEdDM7CWU6lYDBZUtKC9PJO6BEPQIZaJ7uA8XENjGgWkqS4gvwCE2AecXiUNQsWwtCXRwv+j7yF2GYqEFynIhRu5JKsul8eckDPaw7hyuGR2DIUCz3YMI2MB+qqAcvIT7DfqhbWAvUvn8A/Sx7AJToToYvT26gGMUriVfDHOWCiEiQMkvRKQo+YWIFCW/EJGSk9BFwguVb1Lp6ApKI7cwZtnMrMl8+e6Hrf89ykFkoQLOJyjrvIPBEuuudrF64LCJKQiaZmYLKG9+AQLNhNxpNJgCFL8JfO4EghgNlqDhLCFIBhwqspHgdyb3JIiANDK8AEEMRcCASHaGnbKDPXEPgu0MegXOQLA9wg17glJ5ctNS6fZ9wHn5kPs17iHfqvXMxab/4a9Zb34hIkXJL0SkKPmFiBQlvxCRkp/BaUV900i0IWGwAuGEShnNzEYgqNwkXgS8AZGMHGsNiE1HEpuonBTEphKcibOAw4+HL/j1LGDKb0tlqyBg0V08gTB4l3nB6BGEs12gHyGdh54h3bMOngGJgHQsCs1wLAl+oQEkFKd9sgPhew2Tfzvoe7gGce+u9wLbEwiNVNpcBqY2P8Dee8h8n8l7iH316n0X05tfiEhR8gsRKUp+ISJFyS9EpORDHVknEAER+Dk59CxgPEG57QOILLNuoLuMBCNwu5F4lYPARpN3x4FBFyRAVuCKvEr9NY8Lf7/z3AtB1QjEy5Nf45e7uYv9svKfOwaE2AvEqbyZBLoEXIgkYGVUBwuQuFfBHhkFhNiSJiXD8c8T70L9sIN1w3Mm4ZQGkJDQTIIf7ePv4pCr0PFvZb5k/cvCX4ve/EJEipJfiEhR8gsRKUp+ISIFlTjs4RYomXSfg98TcnOZsfvuLvGC2AQcSzX2SCPxcpibb+j1NYFBHkdYT0MTgsFp9+xm72JXP/HrLj7zLi0DUfH677/x6/v8AxfbVXzNgaHKDrpn49Q/qxRciHQslYjTsBCavEsxM7MJCLRL2PY/g154n7a+9PsRhnucKn/sFtZTQ8m5f/IspJqx2/EAzsQDCOn3OBBFCBElSn4hIkXJL0SkKPmFiJT8CAMsyEk0tIzyXfqrkfC2A1HkFQhGFzj2kXrzDXUmAnQfdiBSmpk9weTfp8wLS2fqUVj58xQ/vXWx7C//yp94NHWhuf2ti33y5c7FXnVX/vvM7B5KgksaQAKiVgH9GufwORLichBIx/B+msNarmDAhpnZBLSzl41/Vj+Zrvy5p37vtG8WcA5fhj6DqdZbcDqSgHwK7DF2CIK7kL4T8kBvfiEiRckvRKQo+YWIFCW/EJGi5BciUvJtexz2QVDxqcEl2XuDdkWIn0G9XIFdcQv/Uqzag4uRykn15T3Yc+nfiBM0azTjaSykmt9dvDK8vB+72Px+62Lp6o2LJSN/bL/2ptEOatNDP/0ULuEfmxKard4m3t77Ppz7Gajzi9bf7xfwnJelf85Vyc+F+iJMF/47q2dgvf3WX8sR/qWAwUyDrcopTAAK2eHpnyvqB0Djz8karDe/EJGi5BciUpT8QkSKkl+ISMl3F2+J7UFwyMGuiI0UIUYChJlZA5ZYqnmmXygaqb2H+usGJuSkGYgsUONNQiVNezEzW4Mo+RruWVHBFJjd0q/xH73d9OXm7/yJc38t3/yzF+J+2Xtb6j30FjAzq1Ec8ueZg3D6ceuv78dn/wxeZv5ZvfeeFzmf/TH0XvjYW5+Tguv5+2aYvbt/9OfevfbH1iDa0V0c+lYlK24NNfpmLF6HcsutB6zTevMLESlKfiEiRckvRKQo+YWIlPzQwNjzeR4CAAABa0lEQVRgEMloEktBghbUsIfq+SlOrkESFulYnD7UeWGQjh1B40m6ZhJozHjE81cwWvwADsFV5c/9sL9xsY//wTvTiN/m/vu+KPx5H43rxncQJ8/ZCN4dL8Cl92HuXaTvfbBxscXP/bPP/+LnLpZ8+kd+MaV3OpqZ2X49KNb9+t/8uf/pty5WwB6jiVKTgQ1h9+Bg3F7YdTt0ahbmFYizevMLESlKfiEiRckvRKQo+YWIlPx48YLDufXCArn+CBLJqLzRzCxLQXgDsWoOYs6imLgYiRoNCGxUBhkqO3bfF3D4bTsvnNLkmxWIl4/Q9PKx8LFXObgDYd2PMPVoDYLkOSBe0jVSOWoF5ajzFsaSP/NuvslLEGJ/5KcKJR//zH/ukz/xn6t8I1Mzs/4E5c2PX/vjH3y5dDn73MUW4EDdtdCsE5rOwu1CcW/T+JJls4BblUaig2hOOag3vxCRouQXIlKU/EJEipJfiEj5Lz1UyugRwNmOAAAAAElFTkSuQmCC" y="-10083.951436"/>
</g>
<g id="matplotlib.axis_567">
<g id="xtick_850"/>
<g id="xtick_851"/>
<g id="xtick_852"/>
</g>
<g id="matplotlib.axis_568">
<g id="ytick_1416"/>
<g id="ytick_1417"/>
<g id="ytick_1418"/>
<g id="ytick_1419"/>
<g id="ytick_1420"/>
</g>
</g>
<g id="axes_285">
<g id="patch_286">
<path d="M 29.174375 10350.27086
L 151.464375 10350.27086
L 151.464375 10227.98086
L 29.174375 10227.98086
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p5b6b7ff97e)">
<image height="122.4" id="image19af02504a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmS4+h1hS8BcCaTOVVWdXVXd4dalsKWHR6exe/gl/MjeOmVFo5wWJIlhdRzdU05MTkTBOiFSlrk+WCho3f9n295EyR+AP9NRByee2/n3z7+12M84st6+TgUb8sHiW3qvcT6WVdiT4qpxCIiPswnEnsaPYldHXOJPS9l2fEU1jPMKond1XqOz3uFxL6Bzy46GouIqI+6nrzTkVgWGiuPtcRuj3otDxDbH3k9bTiGrjkiYlXtJDY/rHU9pcY2B1hjdZDYoW637mlvKLGPRhcS+7h3jp9/kg0kNuzofiLujqXE3lYriW2Pen0zOO+LbCyxj4+6F59XukciImaV7pMc9l0J+45iGZ7FGPOjx8lvTKI4+Y1JFCe/MYlSvDpuJPhQbSW2rVX82NcqdBDLWgWkiIiHTMWOUaZizAT+R20yFTC2tX42U40EJLeIs4rEL/2+dYf/X9KdgFMHyVxzEBEXcM3ZsZ1ok8Mae3AtdYPgV2ca32Qq5PUyFUnrnIRPXU/bvdPL9Rz0fU3XUkI8B4G1guNIiO3A7um2FBBphTVsRto3Ebx36pbi3hryxW9+YxLFyW9Mojj5jUkUJ78xiVLcg7i3B8cSucEqEES2lQqDy46eIyLiHgS/QUcFnimIVRsQWUiMq0FlqUG0GcGBE3BUsfcqokLhRY9bZrrGbq7XsoDre4CzkwBFsR58X7dBvCRhagPP6lCoBJXBd9LeIYcfiXbDXM/bBaGRnJNN30ni3qFBMJRzw32kc/8QEXDXsMmWOQmdygY+v4ZH7Te/MYni5DcmUZz8xiSKk9+YRClKKAklBxWV6lIZKzm3duAOjIh4qNRdOATB7zTXc69AOCNBpAQLVQ4yy7RW6eSqq+ubjNmtCHpfbLd6LXcbLfWM0NhtVz97CyISlZOSwEai1ACE1D8drCLbPqd1K7RPiCPsHRLnyEU4gvVl9ACiwVX315cXEVySTU7JqqXzkkTFHcSW4MaLiNjCxZQdDa4gtsY9YYxJEie/MYni5DcmUZz8xiRKQUJJv0OlthobQmwN/d9IVIyIOEB8BwLWGo5bgTBIQskBhK4TcPOdQsnq1QcLiY2e87WQWW5/q7HeK7iWuV7Ld4UKS/2WrjFyXlYdjXUbXHH9ANEuH0moB8+g6Vk/Bh2jVH4LayzgPpCrMaK9w48+TecewLnLRt/n4+P0GSzhuTQJkkcQ8jYUg2ewhoJgv/mNSRQnvzGJ4uQ3JlGc/MYkiio2EdEHIWfcAREo04EKm1wFuxUM04hgV9YYREQSXvbkjALxowvnIDffk0sdVDL5RI8rnunghYiI414FlWOtpczDB70XpxA7qVVgG1A5MAhQVJJNIleTsDSG7+zBe2IK7jvqmUdC1x5ESTqOwL6FDe8xcjaSCEh7rN/y3ViC2rsD0W0P13cPg0FWDQIiPcMt3McVfOcaXLZ+8xuTKE5+YxLFyW9Mojj5jUkUJ78xiVKQFRRrv0EBntCPBZ2+hHbwq0AEK6wjOE+fFFuobabGhzBAJs5ztSBPrzSWX+q6O0P9NSIi4khTiWCRR6j9JmjdXfhfTfeQQPUZrKUR/BPQ2REm58CRW1CkaSLRCmYc0S8F7a6uuYHnD4F+4eiDsk91+qTYb8FiuwBlnlT9CLZt7+E7t9BTYwO/uPnNb0yiOPmNSRQnvzGJ4uQ3JlEKEgKoTnsC9t4c6ufHR5gM0yDGDGnSCWhQOPkGrJJriJVU+w3NI0FLifqhnYgXEVGvYYT5nf5vnd+piPiGGniC4rcBcYfEIaxXbzmWOiIiB1HyqtLYKYw1f4Amqt2cekaQ7Vbpw1qodp/6A0Rwg0tqmkl2Y2rgOTi2E11pGtIt7LvFUfNvDSJgBAt+ZFWmngpk+fab35hEcfIbkyhOfmMSxclvTKIUi4NOpaFpKjTimVx/IxA6hiCSRESMWrrdNiTugTuNRJvXIDZ9c9Ba+fyPes2za703oxn3JuiAQHf3Ws/zzVb7Afyhr/fnZajY+ABCEAk5JIhRn4RT6tEQEc8qfa4/KfXcFwWssdTvHNZ67ttcRWVyFp6AqNjFyTW8lx7g+d9k+gW3nXaOwwoExAHs4xHs+QW8a0l0XTf0v6CGtwTlL8X85jcmUZz8xiSKk9+YRHHyG5MoxaJUUYtGb9PoZRKRJuAOpNLIiAiYno0CyAOIewuc7KOxAwg00dd1v62mEru4VXHu6TWLMbO+xhd7Pc9LGL39KtN134LoQ+O4aZw6uTGfddRF+GnNgt9n0Iz0k9mDxGZXundOrvU85d1MYh2Q94bgnnwGwufpSBujHg48zejNDsqyu3rdi0I3I+0xajJKLlJyK9IkHRLxyMkXEbGHUl0sySf3pAU/Y8yfcfIbkyhOfmMSxclvTKIUh1oFhxrLP0HoALGCRJKm9mokBJLgt4LvpN5nNKmEYptM1/2uUBHoHFxoH1YqaEVEXIG4R66zd+AEnJNQCfebR0brui+hj+IHoev7EB5VRMSH3bXEzl9orPeBCl3Uy7B/B+PBQYcdwL67nOl5L/9mJbF8yO+x2e9VlFy8fSKxL8EJuITnQlN3wDCIgt8e8oWOoylMEREH6IVIpcwk7tFxfvMbkyhOfmMSxclvTKI4+Y1JlGJQqBA0KlQwGoKbjwYl0HCIJqi3Hw1AIGcUCXlLEJvIAUU90hYdvb5lpvdhC/crIuIuU5EG2t7FWygd3cL1YVkuiHtTiJ2De+4SFnNZca+4iysV1AafqdCZXaorsnf3VmMgVPVBlJrBvSEX4eAfr3Qtz59KLCLi8sU3EvvJv+s49l+HXgtBLssmR95jyHlHpfIZ5FoE74kdlXm3dQLiWYwxP3qc/MYkipPfmERx8huTKMV5byLBaa5lkBMQv2gwAfYkI9dfA/R5ElkeKi3rXFQqDpH40QVxbp2roEUTUPcZizt3UMpM/1l3ILzQuIk+CEHkiJzAcdNaj5tCuexpzuXJ0xcaz3/6U4l1TkDwe6ulv6cTfVYd1RTjybkKceO/B6HxH/5Ov+8jXV9ERH6lQuCL3/yHxn51IrHvQNwlh18J+4TEcMoXEvEq2EtNx5JF8Ahl7Bb8jDF/wclvTKI4+Y1JFCe/MYlSXHW1vxo5yQYgQlClLpWikoMtggdOkOC3A9FuBYLfulKHHwl+GbjdSihtJpGkylnw24IgSgJdgaKPQuW7ffg+Gg4xgSES01rXPR6x4FdcqNDVubzQA6e6d7JnryR28eKNxE5W+vwmP9VnX/ztz3UtTz/W2FjXEhERQ+3D2H0CDsiDPv+TQo9bQ25QDz+c3NvyXUt9AiMCX9WUL5RXLuk1xvwFJ78xieLkNyZRnPzGJErxYa4OPyq1JWiKKU3KXTVMHV3WMHyBegrCeWjYAQ8maHctJO6VIBaWDQ4/6mdIji4C3WDwf3nY0s13CpNtJ7C+jJrPRUT1oGWixfWNxDp7fa7HjYquxQSEvBNdT/7BqS6mr0LqEcqGKRYRcfz6S4nt30BvPii3PcKwGJoBQ8+Kcqit4Edi4Z9OrqEK1rjt6PPbwl70m9+YRHHyG5MoTn5jEsXJb0yiFD8LLd8lSWsN0fuAYRoBYgP0GYuImJc6kGFXg9hE5a0ZTHnNoc8gCDlUGkmDEmgy8QDOGxExAufXGFyR5NIrYI0kDp20dPP1QPjsUG/ELU/pvfmtltFO3n2Oxz5mfQ/DS3bqshtNSQS+l0h39TuJdcZf6kdLLhvff6Vlwl//5lxiX/X03l4fVbykATIk7ObBgzceQ8++aar1AOL9DIQ8Ei/t8DPG/BknvzGJ4uQ3JlGc/MYkipPfmEQp/nmrNssdqJfXhaqXX8FY4zlYC/OG/zFkqd0eVAXukBreUwV5Ak04xznU2WP9dbs6e+prEBFxSqOyAybsgGLfBcWe1FkCf5nJ9Pvuj7rufcnP5dWN/gK0vdVjl7nGVnDT6I6dLXTl59+qkn5a6H4Y9HWP1TVbYu82Oo77V13dJ7/tqNX8da2/RtGeHcOEHW7WqQxb9miIYMtwCXd3DL9IFYXtvcaY9zj5jUkUJ78xieLkNyZRip+dqaWyLFUQe7ccSewQKqbNYcrJHYhuERH3YMddljB1p4L6a6i1J8vveabi1QAEP4KaIzbVWo/gOy9rjV0d9DuH0FzzAcS0G1j2Amry17DEO/i+foOwREbZJZznFkZqz8H+Sg0pu7CeAYhkk6M+v2mlYm8fRNOIiOVAz/1dqLj3Ta0jhGgqFNnAe9SgFpvg6mdnR4g1iJd90IAPZFUHIX7f0Rz0m9+YRHHyG5MoTn5jEsXJb0yiFKMTcNSBuNOBzoV3SxU13uYqut2D6BYRsShUuFkVKrIsS40dWzbrpFHXo5a11tSglJqJfh8K+DitBsd70zPowKQhOA57GDSIZOTIK+E7Sdy7PuqzuoPR6Wto6kpNWamXwwmMkKcpUxG8J9bQM2IH10LTlXKIkQhIe2wGAus5TI86gXHqERFdCJObk44bUN0/nsUY86PHyW9Mojj5jUkUJ78xiVIc9tBQsgeOrJ6KMQMobxyCY2nSUAZ7BsLNuqcThIh+rgIPiUM4KrlluWUGomKT4EfnoXLbHQg0MHQFXXZ0ZhIl1yCcfR+3Yh/uD01D2sMV7uDcq1obYd6X6qhbH/Q4Ou8Anv240DLdCG7q2if3HTRrpX1SUAku7O9TkE2f0HQlEPe6cM0REVXLPUbPdQp56Te/MYni5DcmUZz8xiSKk9+YRCnmdyq6DYfqgNpsVBBZgSCyBifYoUEkI2cUubeOYFkipxX15uNRye1iGGpwxQ0hTiWYAxB4RlDSS860JQhGS3BukRBHZbUUi+Ax6wSJewT1RyRxtsg01racuwDXXgSXeXfhPNSbkXs96nOhSToDcpvCbaUp6SX0rIyIoLtNUvoFHHgBa/Sb35hEcfIbkyhOfmMSxclvTKIUf9hNJXgCgzw28H/iGxhr/DbAzXWkccwRm4bR3Y8Z4eANlTpItCGBpgellaOWIiCV5EZwD7mzSg++BGGKBlNsKxWb6oO62PZdvZYSBK0DuMYqlJBYyCOHIA0WoftNg1MIEuf2uYp7dF4SEJviNMIanaCw53tU0gvH0Z1dwauWSq2b3sjk/JtVqiLOIK/GcB/95jcmUZz8xiSKk9+YRHHyG5MoxS/BhjYB3xC59N6AuPcaerjNa41FRGxB/KKSWXKIUbklgUIVuBD74J6bgIhH/dEiIoYQvwJ32kezhcRmT7XHXblWoer48kxi81pFwHtyXoKwxE+F7xnFCHJtTkh0hanPg1pdpLRHqNff94Em7VLfwxyEwQH05iMRkNrwbeEcGZR4DxsMlhMQ/M5A3Dsf6n6anWnMb35jEsXJb0yiOPmNSRQnvzGJUvyqnkuQnHLEBgYdLKFfG/Vwi2DhhUpZM+ivRprIHoSgJXTDo2mpY5wQ265MN4KdVs8Ga4ld/UJj3U9nEqvnKtA8XS0l9mquPerewZTWOYhXWUN5MtHWzYcuSzg3uQhzKE8m1qCm1Q1lyLTuEh2M7fYi9Tfst3TpHeB2k8e13/6xIBkN3YEF+c1vTKI4+Y1JFCe/MYni5DcmUYp3BxWRmsojH0MiSQn91fYgDEaw4EeluuT6I5cXFQ7raIiILpX0giIyBqFq2DToAq7lZKYeuu7HWkKdf/ZCYtlCn8v5qy8k9vS/dMjJa3D9XefgQmtw7R3guR7wWakQOwV36Bj2044mlUBo26FS1HbDKyK4ZJb6P2KfwZZl3nlL4XRP9xs+SiXHERFdEES7R5hOvBrpuUsP7TDGvMfJb0yiOPmNSRQnvzGJUmxqlclIEGkLlks2uK9oAmuDntaKEs+jgtEKJpbOoVSTRMARlGBGRJSw8HIPZbkrvd/HPUiVA+17132i4s6sr5/tguBHJbnbhtLYNZTRklOuD0IelbdOQWAlV9weBMRdBm48eM5NojKVGI8ydUWeQGwEe4J22BbES/VxMiQgbhucjhsQAh/g2LdH3Tv9WmN+8xuTKE5+YxLFyW9Mojj5jUkUJ78xiVKQckrKLk8WaWedbIJsjF2Y2tLHGnFqmtiu8eQWlOEFqcIQGzRYL++gIeWbe7XeDv/7VmInB7XtZhNVn/dvVIVf7lUhX+pHY0G9FxomKVFPhqZfbB5z2iHVvN14aOqzcBJwMeA+5196uNHrCazxHH5pICV+DXr/HO4t7bu2U4G2DTm0aNh7j6FmuzSxyW9+YxLFyW9Mojj5jUkUJ78xiVKQuEceWxL3ChgFTXXRTZbdDggYJO71QAgiAZKmrtD1US8AsrouwBpM9tWIiAzr5dVmu/v6UmIf3GrXgf5Axb2buwuJ/T4fSuxVBoImWHap4WkEN7ikPg0ruBf3GdiN4bghjc6GtUxhP5AQd4BnHxHRh2+dwXeOwYJM9fc7EPxWLQW/HqyFWgFUZHuPiD2eW5/rAiz7y0p7S/jNb0yiOPmNSRQnvzGJ4uQ3JlEKcsXBwBd01FGzTRLiWFT8YWCTQzgNSVpYk02uP/jfSNNnIiKO4Ezcgaj1AHXj3241lm30Ym7hwbyEevc3R3Xo0XSlJqgGnl4TtCfIabfp6BqpOeYQTjICIe4UmoQ2vcVIHOzDBqDPlz+gtwTtecoCaqLaNA59Ds7L60rF4pu9joFflB7RbYx5j5PfmERx8huTKE5+YxIFZ3HTxJ4BCFV9ELm4rJbLLalMlAQQ+jQJRiTGHcmtRqIUlYS2NysiO3Cd3YFoB0ZJFH2WcC0P4PAi1xe59oqG//2TTJs9EiQMjmGc+pCao0IT1TMQ907AAjeBR9VtcMXR3qlgn6zgwe7guUzgmktII3LjtaVpkhI5MteVioAk7j3stKWo3/zGJIqT35hEcfIbkyhOfmMSpRiAQHMCZaIkAlFPsj24uZpKRwnsC0guLRBe6LgtrREccDtwwJWVrvuYt3crbkH0ISGPBMg9eBN3NJYcYiSkUlktlU//6dh25bZUan0aup/OQBC7BMHvean35gmUp05zFTTzhpLestaVbyo99x308MvQ1kj9JHWPUc9E2g/fB34u7SRochz6zW9Mojj5jUkUJ78xieLkNyZRime9mQQvMhX8yKVVtuxntgoVaCJYoKOS4BGJkjB4gXqkLeDc+46ukQQ/Gvu8qllgqUFwIoGGnHYbcOS1dT+S4EMiLpVfk2gawX0Y6app4AQN3jgD0Y3EvRdH7TN3daYlq4Mx7yeCxqRv1zCgY6V7vqp0j1U0LAYsmtRPcgfPlAZsUF5E8L0d5SrEjwqN7Sq9Z37zG5MoTn5jEsXJb0yiOPmNSZTiF/mpBM/AfUUSxAIEv2sQRJpcSGUHnGjw/+gE3Fc0eIHA0lia+gvCILmi9jC8IiKigmshdjA8YwMuNhL8qNR6kutgEJwGC88FB6xE+7JlOg89lR6U5Y5qFT5Pxyr4TZ9orBiBcLbma6krKvPW4ypYY5lpbEelvzTcA8vGobwccoiEvQh+XmMotZ91RxKzw88Y8xec/MYkipPfmERx8huTKMVnB5VoTup2AwfucxUm+iCSTKHXXwSLHST4TaC3WxcEmnXLksmmnoKPoSnCx6YJqi2HYpDDj0REcmTRVGRyEdYgApJzsmkASZPDTM5N30nCGYlksE8IEvdoUPJ2rqJwRMTrd1OJvavVAfe20Pv4utBn/aajz+X2qILtA4i41FsR7zWIeE3HUlk2leST6O43vzGJ4uQ3JlGc/MYkipPfmEQp9qQ3wIGTSoWXKZS3XoCQs2lw45FbCgxZeNwWSiZLiG1b9r0jBxQ5qrKWQlUEiyxUWtvWSXgAVxy5A1cwzXUA5212koFDEO4FuQbJUTkHgfV1AWW+axUqz+Y6bOKw089+9UadqhERv+uquPeuR2vUe3sTem9fVzoQ467SNdJzoWc/Q3GOofvdhdJ2EoFHICL6zW9Mojj5jUkUJ78xieLkNyZRij/kKkzsoIT2E3DZPYHy1KcNJa/E6qjnuQE34A1Mtt22nGxb0dRgmsgLUO/AIdybCBZjaAourfEahKASxL3VQctbyQm46KgoRSJQk5MvA3GoaFm2ugXhjO72AoZfDGvoo/fFhcT20E/yf3v8XD7PdT/e42RjOK7W+31zWEpsWelx2IsSxEfaYyTORnCPSnJZTmk/gTDoN78xieLkNyZRnPzGJIqT35hEcfIbkyjFt7VaE6sOWA67MCFnr6riGKbhDLv8C0B+AIsu+Hu38AvAGurGu1CfTjXrNFqaYmcwuegcVNOIiCF8nnoOkAWZbMCrQi26aPkFq/K60s9mVLvf0AOVfpEgKzCp+DR9aAvrHoLKXXa19v4OJtLQeV9mPMXnNSj2C6i/38AvVwuw8j4cNEbPYFKoVZkmKdEvLoemX6PgEebwy8cAfnkauJ7fGPNnnPzGJIqT35hEcfIbkyjFAuqOiwxshBDLwVJZliqSXewaBD+QbshwOoCGohMQsJYgdExB1SozFWPInvuko2LT0yOrZCcgVNJ/1iUIfvtMz/NQjCVWgnBG1lKyL28qfc5NlLkKWAOwNVMfAuolQAJkH8Qv+r5lptNnSCC9h30cEbGE9WzBykv1920nKdG1jOCZEmtYC92H938QJiBAzwJGtFNvir++PGPMjxEnvzGJ4uQ3JlGc/MYkSkHiwgZEiHdHFU6qTD/70FNB7KLmWuuzSj8/BHGPgGEqWNvcQxEQaqjh/yCNKn9CHUYj4uKgQhD0N4081/NcQv01CV11Vy+axKY1iVxQ90+xiIbR3dA/gYQ3EsRq6KlAo8rvDuo23YP4SLXyTROTyBVZw56n5qi07h64TcfgQqTjMNfgPjRNlKL73YGGstw41oKfMeY9Tn5jEsXJb0yiOPmNSZSCxBMSHMgJWHb0uCWIV7c5C36XIIqc1TSOWz+7hn9b9x0VbRYgBFHJar/l/0FaS0TEGISuDAQj+nwfmqMOYJLLrND7+A6Ou4YJMtcdbTz5fVx/JCLheHAQINtC++4BympJnKPR5xENk5hoxjdAZdAFXDOJrtSEk3LtCI5PFFwbQJclNijVz/rNb0yiOPmNSRQnvzGJ4uQ3JlEKKmUlDiDGkLCA5ZIgxEVErFAc1FgPBLEKhBKaxLKEGEHizhrEnbLhftFEm1muTrtnXb4Xj7nbatnxy1zLN18Wer++KmDiDlzLu84Cz03CFE78gXvRhxLqHMrBSdwjdyCVMW/BFUeOwSZo3RSj+0DXQqO3J1DS2zQS/THkLIxgoZrGzVMO7iDmN78xieLkNyZRnPzGJIqT35hEQYcfQU4iEmhIziKhIiJiDWLcLYgiJJSMoNyWIKdVieuGslOKNdyuDgl+U+2vd/6puu+6Z3otz+/mEvvgSy3z/fBeB11cFio2DbsziX3eMAqahNy21PA+6cM9o/tNQt6hQSxuC+3RIwhqNQjI3azlHgOn6in11mu434/ZNZT0riG7uCSfxqlb8DPGvMfJb0yiOPmNSRQnvzGJUtCE0bYiIEECBLmQIni6KfVXG8LAiG6uQy1O4Tg9KmILwgkJUN/nP2NGk21HKmD1PlQxrvjkicYqXeOzD24kdvLHdxK7fKlXfbZWwe+0fyKxiIhvO1rq+xDgtKO+eTgMmBx+MKADXHatheaGybZt9zI5POmz5JTsQYNDKhGnFW7Jodcg+NGxO4jRvSWR029+YxLFyW9Mojj5jUkUJ78xiVI8wJRXGjiAJZ0giJBUQcJeRMSa+gJCCSdNjT2BkslzEPyoHJg0IBJTsKSzoYcf/Rc9HkFEKqB09FSFt85MBbrs2ZXETn7+ILHJSxUBT3/5WmL9r/T7IiJ6fXWnfQXDIe7hs7QnZvBciHuYgEz97NqWHEewgIwOPxR89TwD6NdH5cBLEEiX4GCk3phN4iWJn7RuGlRCJc9+8xuTKE5+YxLFyW9Mojj5jUmU4qbUPm4jmDo6ybWnHIkfJMaQKBERUYOwQdNWa5jmO89UqBxByeT0B5T00n/GfoPg14PS0w6UiR63PE1WPvv0uQbPnsE5QBD74tcSmy7/U2IX32qPwYiI0VEdggU8Vxzk0XLa8RSE2DMq3Yay2h4ct2koQ8apwS2PI4Ft2HIoyR1MSr6pVhJbgeDe1MOv7bARuhYSAf3mNyZRnPzGJIqT35hEcfIbkyjF/U5FiKqnggGJDTSsoAfHNbmvsh8gYCxAUOmTuJepW41caFSCOSJRqmL31clI19MbQ881mEJ8LFWs6gy1N1/+6T/pcTBE4nD9rcTqNQxTqbin3A7CJYhfJUhnXbi3I3A6flTC90FZ7YAGkIDbcHFkIY6kMxKgSQSmQTVUnkxsweHXthS5SfBrix1+xpj/Fye/MYni5DcmUZz8xiSKk9+YRCk2B60npjHEQxgPXeWqVGb0CwA0OIyIGENNfltI2ScqUE5pLPkYvu9Zpcc9jQ2eZzpTm2Yxpl8G4P/tBmy2pT6XDowvP8KvNcfvvpHY8gs973VDnf0abMmkhpMqnYNiPwG1/wnUsVMT1E7ovotC171oOf46gu29u6zdrxlkc6ZfQugkO7DIt7W4N0HPAJvoVrb3GmPe4+Q3JlGc/MYkipPfmEQpShACSBwgyyBZE6mev98gxgxzFW6oMSfZMWn0No3yJtsuHXcJzSMvD1DPXbAYQ806D2s9dzbXz+fv7iTWudGGm/Xtd3rexbXEqt/+UWLfvdSGoG+gmWhExBImGpFIVoBwSvd2Bv0YLvsqkFL/g2pLU3z0Wa0axmlX0KyVroVEzgNN5wFtj8a2k3N9D2feZdCwFqY1RbBFF628lR63BWHfb35jEsXJb0yiOPmNSRQnvzGJUpAbiCaatIVq5YcNbrwROf9aCjQs5LWb7kKrIbmohLXclurSioio3kId+4MKL+O5Ci8n2VJig+dfSqw+/x+JHee3Etv9VgXEb+uPJHbd5ee87cAdh0OncCefgnD6otJrPnuqzkQSyYp7Xctq/EfvAAAA9klEQVRwpc9g1dSbAPbJGhysS+gRQHenD7mxgM+uc91RNyAgkmjaNLFnfVAnKDl0UQQ8uJ7fGPMeJ78xieLkNyZRnPzGJErRVtyjBp7UmJPcfGOU2HiaDgmQVDJJwiKN4z5SeSp83wJkxdeFXkvVUAY7r+C6V/qdF1so/e2ro6v79RuJdU5/J7Hjg05cmn+tgthbcPPNO+xW3IHgNILnSuLev2z1Wj77+EZik09Y1JLzrvT6Tu/WEtss+LmsluoYvdnq/SkaGoA+pgv5Qk5AgsrLSxgNT4JdBDv3SPAj1y6VDvvNb0yiOPmNSRQnvzGJ4uQ3JlH+DyqQCrxhwBIgAAAAAElFTkSuQmCC" y="-10227.87086"/>
</g>
<g id="matplotlib.axis_569">
<g id="xtick_853"/>
<g id="xtick_854"/>
<g id="xtick_855"/>
</g>
<g id="matplotlib.axis_570">
<g id="ytick_1421"/>
<g id="ytick_1422"/>
<g id="ytick_1423"/>
<g id="ytick_1424"/>
<g id="ytick_1425"/>
<g id="text_72">
<!-- 250 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 10336.16586)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-48"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_286">
<g id="patch_287">
<path d="M 164.424375 10352.772624
L 286.714375 10352.772624
L 286.714375 10225.479096
L 164.424375 10225.479096
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_571">
<g id="xtick_856"/>
<g id="xtick_857"/>
<g id="xtick_858"/>
</g>
<g id="matplotlib.axis_572">
<g id="ytick_1426"/>
<g id="ytick_1427"/>
<g id="ytick_1428"/>
<g id="ytick_1429"/>
<g id="ytick_1430"/>
</g>
</g>
<g id="axes_287">
<g id="patch_288">
<path d="M 299.674375 10350.27086
L 421.964375 10350.27086
L 421.964375 10227.98086
L 299.674375 10227.98086
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pc8dcc547d5)">
<image height="122.4" id="image176fbf39ce" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmT5FhWha9LcpdP4RGeEVk5NF1N0dU0rBiMBTt+BX+CfwgrDGMB1myAbuvqGqmsqhwiMwYPn10uOYsqFuT5ZKYCVrzzLa/JNbynGzI7ce69vb/52V+f4j1uTof3Q/Gu3kjsdbWQ2O1hJbHTSS4RERGX5ZnEnvUvNJZPJPYkSj3fKZNYHj2J7Xt6P8toJLbq1RKrW54l6+l1+nBtvUrE+nSU2C3swS3swUO9ldi21t8eT/osTcuznELjtIe7upLY5rjv9NtRMZDYuNA9LfO+xAZZocdlelxExCTTc44zvTa9J6tG13HV7CRG612fdKfpvp/0ZxL7vVzzIiJiF7qH1/BOrBvdA7ofzRZjTBI4+Y1JFCe/MYni5DcmUYoMhA6KkVBF0G/zLMdjSaTp9/TYAs6p0gmLNmO48RGIc4Oe/h0cw9/GCsSwiAgK01OrZBOR6e3EHlZ8C+u1AVGKaBP3iAL2IIOb7ME6NiAskdhUwDtBMaJqfoR4CfEevCcjWNsc3okc3gkS8uiZ6XwHEGLvTirYRUTsQBjewv6zuEd5boxJEie/MYni5DcmUZz8xiQK6WbRkMMLYiSykKgxzNVRFRExAqfVAMQmEmi6CpADEuIgNoRrVCDE1SBytUH3uIef03E72Jp1r5tAStD+0bpGRPRBeCNxlmK0/+SAo/tuu5/3IUGLnu/7Y7utT9lxHUkMrWEHUWCDtaFnruD52uKUq7S2FPOX35hEcfIbkyhOfmMSxclvTKIUO3AYUdkqiXtUxkri3rQY4sWHPdQbhQMIKruexvb4twzcXA0IlSCcZB1de98fqwdXsD53ud7jrujmOBxQyTIcR/tCwhIJexEs5I2hNJauQ243FMlaRK33ofeOxT0WC2l9yM03BTEVy8HJzdd0EyDpXvoQIxEvosU1CO98SSXPkGv+8huTKE5+YxLFyW9Mojj5jUmU4mWjPcCOILCRi6mrMDTNWfAjIagCAfKB3IXobFKBZg5CxxBEpClcd9TTEsphTkW5EUUOAuQRXGz1SGJ3ObnB8DJ6HJVQk1gIIhDFIth5Oe7o5uvq3NvUWrZ6aHS9u7r52t2K+owX8I4+6ukzL+HbuIe+jvQJ7VrSS/dNZb4REbuT9kzEEmPYgwkImv7yG5MoTn5jEsXJb0yiOPmNSZTiq/07CY7zboMO5vlYYgMQ2MgpFRFRgYi4AVGjAUfeLlNxKAeV7Am5nUCMedTXYQyzmcZGU72/iIge2AGXtyp0vl3o2h5AoNmA6LPHDoAK7UGR6zVI2IuImIIgRiISiY0F9b0jQZOGZISu976B94Gcl3DdiIghCF1j8GkOwT2ZwTo2me5pH8qGSbQj0XwHIicNBolgQZT2EF1/Luk1xvwXTn5jEsXJb0yiOPmNSRQnvzGJUtzslxKsB6pKjgdQpw+q8BBrt7k+uYIx1GTvRdsnjtSGiTYwjnsAv716rKPFpx/CfxQm/PeyXup9L2/1uAWo7rdgGb2BMcsPEKP1Itv1EGvYWe3vquwTOVisz0KvMwGV+gH+y7QmGzBMriGreATX7hMVvCc0Yn0O71gJ39AlWMNvYJw6KfvLox4X0b1hLr0ThL/8xiSKk9+YRHHyG5MoTn5jEqU4wrjjIwgGx4511SRKtDUkJNsvWROxSWXHKT507RKaf06eqo108PFcYr2yRUD68kZC+73aQx/AgrwEAWsNNmcSv0j4nIIF9XGmVuxzEK8ieF9q7KmgDGGvpjQ1B/TDTTGR2DoH+yusF/WgiIgo4H06wrOs4ZzUXJNkzzb7+vvs4RrU12Bfs4Uczwn25y28Oxu4tr/8xiSKk9+YRHHyG5MoTn5jEqXIs25NBUlY2oDYUIGY1iaHkAxIjqwBCEY4Labj37IeTVMB5152cdbpfG2cTt2EIBIvaQ96NB4cFpGEKhL3noHzLoKdbVWLaCvXafTaj4/62zEU5R+hfn4F78MStvkmY8HvDpx2axC0N9QrAY6jvdrDcXfg3FsctVkujS9vm2ZE+0/uV3II0jn95TcmUZz8xiSKk9+YRHHyG5MoBU1tITGNXH/kJKLGhXS+CHZG0ShhKlHl30I5MVx3edLz7V7rcb3BdxJrtizGrF7ofdPEnhKWYgL3PYZ12EMZ7B4En66OyEGLFDtrYJw3iJcTEO2eg4D1bLqWWDnUd6c+6n2vN/rM9wct/X3T0oz0q77u9Qso393Bm0LvMo20v4dS3bujlogvKpiOBQ7b9ulD+p6Qo3bb6B6QO9RffmMSxclvTKI4+Y1JFCe/MYmCM5orECHIiYQnpP5vLU43GudMv6cJKwMaD03uK3CmfVfARJvPnkjs+BmU34IjMiKihmv3QYzpw2SfOTgYFz0VtcA8Fwfo/0c9+LCMtaUMdgLrPQdx7yNwsX30kTYunHwMbsUBiLN3KpydvVGhavwOyq8ftGQ5IqI6annzCkTANQh+9ye99nX1ILG3B40tD/osKO6RU7VldDoJfm2TiuTa6FY0xiSJk9+YRHHyG5MoTn5jEqWgfmFtPffeh3r44XhoECoi2p1M70ODIGhQQh9iOygxflHo+W5zKCcFJ9gKzhfBDrinjT73B7We8+kRHJWFOtZKEBvJcUbrOgYRsNcixILBL0Yg+D2aqqhF4l7/l8/1hAUIw9d3Ejs1C4mN9yo+X4A7MCLi+Vqv85Dr2t7CO/o1OOWu93o/tzt181W1Oi8pX/og7pGwF8HiILo54Th6J/zlNyZRnPzGJIqT35hEcfIbkygFufm60kBfsEOmQkcJJbQREQWJPihMdBMwSBgkNiDaHeHv4AGOa+tlRyXGdDdDEM6msI49cNn1C+hnB8fRX/TxCYZpkLIXEWegaY7hHosC7huGkkSpAltvPJJYdlDxuZhrGezgXo8rt/reRUSc7fTYqyNMLC51HTcg+K0qdTWSuEe5QZAI2CaEk7jX1eFHIqC//MYkipPfmERx8huTKE5+YxKFaweBuoEpveCAq8BxRn3GIiJG4LQiaEJwDUIHXYdKf3NwttFCFCCSceFoxBjOOQPNp+tfW7qfAQ7oAEcdCEZnIO7R/UWwm48kqMMBSocX6vortiqSxVQn8sYERMCpviP5sFt5eUREDc9NxkZ6J8itOgAn6B4ceUdYW3Lo9eF8JQi7ES29LDsKftzX0RiTJE5+YxLFyW9Mojj5jUmUggQMKsEllx1N/jyB6EYuprZjSTA8UF9AHMeh0H2X4Iojhx4VVkILvoiIGIJgRHe4yPXv7R4EqAf4s3xPwybAhTgEobLu6H6MYHGPnmW9UzFu90avPXh7L7FspL31Akp1mw0MhlnoziyX2vMwIuL2BEM/oKSbtM/LXOXd+3ImMRLTqFSenHsjKN2e9VlWJoGczonuQnif/OU3JlGc/MYkipPfmERx8huTKMUVCBhtU3XfhwQ/irUPIdB4DeLg7qQlk3htEMSoHyG54kiwIxGwpQo2NnAdMMAFFZ7u4b7XIOStQAytQTStQSCdwfORGBrBw0boK7Gr9Tr3b1WsKr9YSmxwgAnIIO6tP9d7efXNucReHtUdGBHxBsrGb3LYK1jvCTjqng8uJDbNVbzEIRkgDI5hujBNqo5gYZHygKYLHyCH/OU3JlGc/MYkipPfmERx8huTKE5+YxKl+OPhUwmWNN0FfkzTYragKpLSGMHKPqmXW1I0Qfk8gAm1DlVsaeR3BhX0VD9/aFP7qbcBPF8Fx+3BXLqDZ951tDTT5CL6z8UYejRERExhX/twjzSWfLEGm+2nGhp/p1bezVoV+5erqcRegyX9bsAbc5Ppfd/DWPMlquF6zvNMlf15pvfdh/dzgFOmuv2XKSLQJF/BvtD7RHnpL78xieLkNyZRnPzGJIqT35hEKf7qpPbeKehKZPncwHSWl7mKDd/EHi/+utFmjw8nmIhCVkmwqx5BqCxgrDU1cByBmjIBLy+U40dExIEEP6q/R3FPn28D4l4FIiBOCoLn68Pz0fSgiIgxCGI53jfYe6l+fqWx4wrEQljc61KPo9Hpyx6LygsQukjcI0ss1coP4R07A7F4CsfRGHfaPxIBv/89hoUKfk59H/zlNyZRnPzGJIqT35hEcfIbkyjFX9YrCZZ9ED9AZNke1D13CXXVp5KbK9731OX1AMdRo8+2uvr3IZdWAYrYGE54WVNvAb5wBsJiDoIoCTzkdKSWmdwIlaYPdRvH3NbUs8JmpCpg7SH2AM1f73I93x10Qr0DUWoJHRBINN00LPitT9ojYA+CH4t7KuRNIDYGcW8CTVRpX8hj2Sbs0VSoEo6lc3ITXGNMkjj5jUkUJ78xieLkNyZRip98uJBgU4PgU0GJ4kZFqR1MU3lSw3SWiHgBE0jueurwq0EIomaG1PhwRDH4m1eCSjIHEanfUgb7CFxeGxABdyCI3eQaewXH3Ua3KTDkEKOpQO9a7IobcOmV4AY8gmC4ApGTxL3rTN+dmxMIwBBbNxqjJq8RLe5QEvegWSc1sqVy6TGIe1OamgSC7ZZKvLsPV4oK7pGEYTqnv/zGJIqT35hEcfIbkyhOfmMSpShG0APsQcWrw05j+73GQO+JWUvp6KNCRZabHowhhpNSj7RJD/r1geCXt7j03mcILrvLiZYhR0R80OmMXG67h9E+b7Y6+ebLvronb2H6zBEckUsQTe94MAxIlxFTWDNynIF+hV8YugbtCpUxk+C3hdj31yZxr9uUHBKLqVR3Bu7QGejCWxJIsacj58sOjiXHKAl+VF7uL78xieLkNyZRnPzGJIqT35hEKe6+U2HpYaUluKtaxbQdlXnSGOGW0lFyRl1keu0cjiOn1QjEGCq3JMHvCLd4IrFopC67iIjJXAWnHMTUYgrltqU+y4eLe4n9/Cvdq8/vdGT0b0sVqr7M9P7uoNw1gsean4OY+hRi86bbYAp0xYHAtoNr7ECwo2EvERE9ePfOcn3H6L27gIEv59C3kHo9jkHkrqC0mQa7bKCHYgSLl20DPt6H3IX+8huTKE5+YxLFyW9Mojj5jUmU4lerRxKkYRxb1TnQh6QSSUAXtnZogm4Ook0Jf7eGIDaS2ER/8ajksaJpt+Coi4gYzEHcewzi5RMdktI7P5MYDUl5+tG1HvePNxK7vnkisU/A4Xff8DAVKoOtoSx3BGXHJexVVzffBMS0BhyftIHk+GzjvNdR3IM7H4JYTM9HIjdNcl6CuLeB9Y9gca+E5+7aJ9JffmMSxclvTKI4+Y1JFCe/MYlS/Mvgx8hx/x0UIKjMs8WFRJND6Zw0BfUMxKERXJt8X+RgIxmvoiELLeXAvT4Ii3N15GVPH+uPnzzVWK7PXJxNJXb++td6uje6p1Q+vQD3XETElpxkHXvF0YRYlq+UEgeQQNk4CNIFOAYjIo7g/CO3Ir1jw47uORSLIUZDSRbgsqSpzRERJbhV6cUlEZDwl9+YRHHyG5MoTn5jEsXJb0yiFC8bHZJBbikS4rrGeLpsRAUuNpJYSKAhcYh6ypHgR3IKSCn8WxheEhEovPQG4P06P9fjLkHwG+igk9NRy3KLD7Sv3+NC9/T3axULs1wFyYiIBxioQRNmqbyV9oDoKgLSYJCOw4p/uI4efAHi3hzLxrs55Ujco3eHBnQcYAhM2wASujYJsX3YA8ppf/mNSRQnvzGJ4uQ3JlGc/MYkSnEA6YUGJXQV8kiU2Lc4lo4QL8DFROatIU3apRLcjiW9VKnbwG8PMGAjIuK40hMMjvDc4NyLIQhv5NKC850OsIa57t9FpffXoMzJk4ShojeGEJtA7zrS4qjklWQuGBiNgzPOfkRJ7yUN2ahpCrHGaApxV1cjCXG4Ni0CeQ1CIL3f/Y7Thf3lNyZRnPzGJIqT35hEcfIbkyhOfmMSpRiA4kv17qRAHkCt30J98rrmRpEHUC9J7acOiYMM7JjQ7FHNrwyU48cGrnG/UdttRMTZO7XUDhc6zjvbwYjv9UJjB12z04sXeo+f6Xq/3WtT1lUB/61pscQOwZtKTSppKs281ndiCtp3D3sqUB8BPa6AunhwircygP+G9ODfPYtK36c3J4090CQeWFuyCxfwX4pTy8NQvtF/zKjZKk0G8pffmERx8huTKE5+YxLFyW9MohQXNAIZqpE3IM7VcNyuUQFq22gdekTEHo4dZCotbemcUHO+ASGoBlULxxrDn8EbEHKKo057iYgYXuvUnfHXt3qZ5680BjXdp9s7ie3+6WuJffGZNgT9vK97+q5l0hBRwqEDWEeazlOCsPR4upHY7JEKn4Op7ml/rvdCPQx6E96X2Ou7U7/Ta+9e6R6U32gPhN1aBekVvLN7eJ9IdENxvWXc+L7pmIOQq1sYa+4vvzGJ4uQ3JlGc/MYkipPfmEQpznrg3QLBYAciGU3ioVjeUmtNbr4B3M8AjqOGkl0nyOxRZIHmn7ned9VWN15pTX7/ExWwnjXfSWxw+Vpih7cq5Lz4RJ17n+Qqfn0HDrYViKHk2ouIGMM3QaWvCKpG74MAReLe+Z+pKJl/9FO9wjNtbtp78lxvZQrKYAS6J/PPP5FY9usvJHax1fu+WZNnVFfyAdZ7CR0LyLXHcl9L/4wWcfB9diAW+stvTKI4+Y1JFCe/MYni5DcmUQrK/q5jrYlhpkJOn8p0IyKHq49A8LvI1L1FQiWVTFJTSBqBrAW5EXu47wrKfCMi6oHGt9VMYi//bSKxEZS8rqDU+ru+PvM3IO7d9UhY0uNoiksEr2MfuqhOaz3nWV/dnOUFiE3Pn0is9/EvNPZTjWVXH+pxUxVDIyJOGxX86P3O7/S4wRdaQt0HIe8AovISjnsAIb2tuS1BeUQxEshH4OT1l9+YRHHyG5MoTn5jEsXJb0yiFOR2q0ASyUAEGoLoNoYYiXgREWMQtYYgVgxBbCo7juOueiqoHODIIwmaEIJWeBER8Q4OvqHGgH19lhrWtoLedftQMW0HQh6JeyTYjls03D441s5hcR9Bv8bZTKXTfEwzrOGENcizDQhiHV1tERG9QktZY6AuvRP0HjwsdB3uoYffHfX/I5csxGgLSLCL4Dwag5A3weNgChNexRjz/x4nvzGJ4uQ3JlGc/MYkSkFuLhLiMujXRtDo7HlL8eg5CXkwPpmufABBbA0xkoZI3CPhpeszR0Rs6X5AEKOyzjX0KOwquuIIcrhvOq78EQ6/Gbj5ZoXed38AJao7KEX9Vvsb9kotqw0YctJcf6vHzdjhRyLi6Xf/rpf5Zy21/vRrdSH+ttR3+WVPhdgl7CkNviGXJQ3SiYiYgbj3KDR2Djk4grzyl9+YRHHyG5MoTn5jEsXJb0yiFI9O4KiDvwk7KFEkxiDiXTb8N+ayVgFkCO4tcsDdw0CNPesknSBpr4FpqeS8i4jYw32TuPcAA0xWjU7kpeEnBPVBpDLPIQyWIIdmREvJK8R6sBaHnZ6zfqn7n7+BIRmffaOxKy2rzSYgSI9V+IqIOB1UgHz4jV771y+0L+C/lnqdr3q6V7ewpwco0yYKyDVy6EVEzCH+QaP3eAmXponK/vIbkyhOfmMSxclvTKI4+Y1JlOICnD8DUL+25PqDEw6h1HbeohVeQRnlGfSf24OI2IDb6Q5uqAFRiiQ7cl+tQbShctkIdg3SQAYq69yAYLSDGA1ooIEoJAJWJ+2D2Cb4kbi7g+usKt2Dzb3GlicYapHpPZ7e6L0MP9N1ncK6DloEtg24S98U0AtxqNf5Fkqo3560ZJmcnDS8pmwp1X2ftn6Z1I+SBnn04edTKI32l9+YRHHyG5MoTn5jEsXJb0yiFCXoV01GJaEKtC6LCZxvfmQx5jJXt9TZWGOHgwo0h73+3brO9Tia5kuQEEeQIyuCy2hpOMiqBsEIYrtaRSQSd0jwG4Cbj0TAtoERD5nG3xT6+3UzlNgSluclnO82dJ+pjLmE9T6nHnXQW+/7c+qabUFU3sJaLEL3YAPvCQm7VEJNdB2GE8Hvcgnv3QTE1Fntkl5jzA84+Y1JFCe/MYni5DcmUYoj6BL0F6EEXYLEwjn0ensMZZAREZfztcTG5yqyHDYqYGxeq+gzbTQ2aJmq+z7k8KOSXhLY2o5dg0vv/qjPvKy0T11XN1+Zq6OO3GXU/48ExIiIJYha/5HDc4MKfA9ut5tGBc0HKGOuQDgjIXWSqbjXWp4M+0IiG60PvRN7GsYB5de0BwUMkEHBtqWHHwu+ep0p7NUMyur95TcmUZz8xiSKk9+YRHHyG5MoTn5jEqVYZt3shWRXxAnUoK6OS7bOTuaqhvfPVOWmEvoi02DX+TpdLZWkNNOElYiII47KBhtprc+8BysvqdSk7JNtd5SrGj7JtZ6/zapMI8xJxSc1fAnHrU7UtFT/A7AH1ZzWYQnP3PpfGJrOBOcswBJLa0u/rWG9/je9F6hXRURED2z3NLZ7BfdD/RP85TcmUZz8xiSKk9+YRHHyG5MoxTXUWuPEFmjMSTbCDCYAXey51np6p/HBFias3Gnd+HWtsVvwIFMzStBs0I5JIidNM4qIONJYbBB4yEZKoNgIog2Je7N8pLFMBT8SiyIiBvCMXevTaXVI/DpCQ8muPQyOYJNtg65NIiKuLdiI+9ArgUTAI1iV6V5IxDu1TIUisBktTVLqaOM3xiSAk9+YRHHyG5MoTn5jEqV4daK6ahUmSIAaQ93xplCRpOmpOBcRsX4H9ffkLgNh6tuB/t16C0IQNdEk2MGo1xi1TF0hIe8yH0ts0ddY1/rys74KeVf9M4k9yScSOw9yB3b1RHavd9/BO0FiKrni2voLvA8Jdm2/JZGtK+T6G4MISH0IGhyJDQJypvtC14iIOOuBcxPWewgTrmAgkb/8xqSKk9+YRHHyG5MoTn5jEqW4h0aK247Ta8ghVlGJMJSTRkSswC1FU4Co7PgOpq6sQXjZg7DUuaSXRMCWv5dzcDb2s6nEilJ/f9vXBp4kks0zFU6fZyoCfgAjsUna25HVMdgVSW8ECX5doeejGEHic9WwsEfuux78HkujQXibglOS3qc+nI+ebwrXuIBrRERcQKnvFez181rfsQ8r3UF/+Y1JFCe/MYni5DcmUZz8xiRKcQRBbAuTZsgpdQDBjuhD2WJExB7cTTSmmSbIHDo6t8gNRs+M4hWEqFwyImLW6DP+FCYI/bI3k9geYn24zGWl9/0B9L0b9FRAfHdSEenLAbsVX4HAugH35AYEVnKHklOyhL0nl17XktwfAwlvJNBRbEAx+IaOYVw8MQPX3lVLD78n8D49P+pa/KRWEf/5fCkxf/mNSRQnvzGJ4uQ3JlGc/MYkSkHiBzmWaADFsYaRyp1HZ0QseipWkbuQRl0TJMaQaEPQM1OMRK4IHrTw7KjP8nyoI7pn5zrAYgijyssrGNF8DuIQlJOuPlXhrPjqif42IhZDXbN7El07luWW4ASdQ7nzAZxtOPgE3gdy/UVEHBr9PboLO5Y34/h6eMeGUGpLMmVJYiGU5EZEXMKr9wT6Hl5NNhI7u9J3zF9+YxLFyW9Mojj5jUkUJ78xiYI2JBLtqDTyEKpALI4qNmwyFuzoOiTwkGhDAg+5xkoQ4kgEpAEbNDxhjcWtEQ9QBluAxDO/AjHm57qOxTMtB86uLiTWm+lxxGz+rcR+9lZdXxERvzvMJfYtuP7IzUcMQfCjslUqlybH5womAT9AaXpExLJWoauB+6Z3h6YYdy07JnEP3atw5KBl4vA80/gGhMVDpbFq6ym9xpgfcPIbkyhOfmMSxclvTKIUexDYqIyShizQVNUfMyShzZX1P6WCya9HmEJM4g71a6NBHocWh98yg9Jomnbb1+PymV67d66DN1DcOz/XGPSz641VYOtB6W9ExB6Ezh3tP707KGCp2ETOtscBPfPgOLq/RdGyL7ne46bjfXcd5EK/3cN7QutFHEE8jojIc5gEPYCpwQd9d6pXFvyMMT/g5DcmUZz8xiSKk9+YRCnujlpiSo66PfSK23cU/Np6ruXgWMJhBx2FQboOiYoFuKIIcv21QYLYGoTFuup2zl4O90gxvBl1tdVvHiR2vVTHYETE9UjFqnvoC0euOhKGB+Dw68PeX0I/uzn0RpxCrO07tgWH5woOXYHItobYCoS8B3B9krhH5epUAk09JiMiMJzr0JZ9qet9V6sI6C+/MYni5DcmUZz8xiSKk9+YRCluDlrWiQ4/cI2RWEGlv62AgJHBgA8qo6RyYBIG6bc5Oe9A3COHF/02IqKG574HR9ZqoU672UqddtkeyqArFVh7Gy0Rbq7fSWzzqf7284Knwb496TlJ3Fs1ICzCu0MTcGltH3IV/CoQZ89rvcY5lPlG8NeNymAXmcbeFiqcvYL3cwOl7ZQFXZ2zbaxDn/EepvQW8NAb2AN/+Y1JFCe/MYni5DcmUZz8xiSKk9+YRCke9qrskmpONllU4X9EjX7XkcyksPfAHjqAkeFDsNhSDGvOcQJQ97+XC2h6+Xapk2rm3+oejMcLieWgcp9KsBC/uJHYq691DPg3BSvN96Ds05Scba2xI9hfSe0nG/ciBws5WH778I48KrmB53Co5zwedQ+XW/3Px/gA/w2BseZb+C/FFkaaVxA7wL8F2pqEFvDu0dtIXQNW8F8Ff/mNSRQnvzGJ4uQ3JlGc/MYkSkE1+WWuIlIO9seMBIj/46acbZAdl4S8aT6U2Agn++jzkQhYtIgxRxAvb6Ae/IsC7udLrat//KB9FobntxLLh3qNw0KFz9cHFRpvoW4/ImJ1UiFvAyIg9XhACyusAwmIOxALSZKcgp12fqnrFRExear3mA11D+uN2tyfvVEh79Fr3av+Sfc0Cq2zJ7F4DbbkNsFvAn0RRiSmnvT3FTQ99ZffmERx8huTKE5+YxLFyW9MohQk2pUFTLQBF1MBIiDRNsUHxaGOE39IFOmDw49FO31mitHI6DbB7wDS1JtQkSyDGvqq1kk8V9cq0JVvyP2oUC35N31dm+WJJ/asoVlU+IGdAAABFklEQVQnufmo0Sv1cyDBj35Lez+C9b6aqCNy9gsWL/t/9Exi2U80FmNtcDm5Vafkxa8+ldjZP+j+lZU6Kr+EQvs7EJ/bOmIM4X0cnrp9v+n99JffmERx8huTKE5+YxLFyW9MohSTvgpQ84EKGFNwppHo1oBoQ26uCBaRcOIPNQrtGCP5kAQV+i1Je+Tki4hYglOLprYcYJR3DWv7Gqbz1DSumsqiwc1VUfPHln1Z1dqYE/cKmroSNJmJ9pkccM8qfZYP/nAlscGffIjXzv70zzX28V9o7NFziTWrO4mVH/29xP5g+Hf627/VexkdziT2toCmpS0mWagQDxpetIL9V/+iv/zGJIuT35hEcfIbkyhOfmMS5T8Bx5qCPWRew1cAAAAASUVORK5CYII=" y="-10227.87086"/>
</g>
<g id="matplotlib.axis_573">
<g id="xtick_859"/>
<g id="xtick_860"/>
<g id="xtick_861"/>
</g>
<g id="matplotlib.axis_574">
<g id="ytick_1431"/>
<g id="ytick_1432"/>
<g id="ytick_1433"/>
<g id="ytick_1434"/>
<g id="ytick_1435"/>
</g>
</g>
<g id="axes_288">
<g id="patch_289">
<path d="M 434.924375 10352.772624
L 557.214375 10352.772624
L 557.214375 10225.479096
L 434.924375 10225.479096
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_575">
<g id="xtick_862"/>
<g id="xtick_863"/>
<g id="xtick_864"/>
</g>
<g id="matplotlib.axis_576">
<g id="ytick_1436"/>
<g id="ytick_1437"/>
<g id="ytick_1438"/>
<g id="ytick_1439"/>
<g id="ytick_1440"/>
</g>
</g>
<g id="axes_289">
<g id="patch_290">
<path d="M 29.174375 10494.190284
L 151.464375 10494.190284
L 151.464375 10371.900284
L 29.174375 10371.900284
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p10fb4361f8)">
<image height="122.4" id="imagef75dc02628" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH1hJREFUeJztnUmPJNd1hW9kRGRmZVZ2dVX1QDZJNSkJmiCbWhiCtfPCa/8E/z3/A68MWCtpIcggZNOSOE/dXd01V2XlPHhBW4s+3zNesUkv/M63vIjxRdwM4OS591Z1+2gbGVRRSazudLK2qyqNRURst3rqbWiMjtnUtcQ6sN0GjrdarzW20dhmu5FYitQ9ynaZ69jWjcS6HY01HV2HnaYrsbvtUGL3mxFe46ij+zeh19iBe97AM12FruPNdimx2WYlMXofdjqtxiqNpfa/2SyyYpP1XGJT2G68mum+S913De9TXeWta0RibeG9XW/0PLQOemZjTBE4+Y0pFCe/MYXi5DemUJoOCA7fNiTsRbAAQnRA/0BRI1N0I0iwI3EuuX/mtrnCIEFCUEocehVI3NutQICE7Wp4WCTELuDZjzsq+E23GiPqxHdsDWJjU6lISsIbian1Fu4Z9m1z9wWxl44XwYIfbbuqQASE9faX35hCcfIbUyhOfmMKxclvTKE0vUadUSTQkdhA5Lr2brP/ms6NP1t5v2UkupEo9V38NpJAR2IhXQ9dN4pSmSJu6rnQNZK4twvCWR9ErT45NOHUY3DpnVTqBLwJELQS91JBuAfXvQJBcxEqNqJDkwQ/cGgS6NqE64vg50UOv+laXYiLtd6Lv/zGFIqT35hCcfIbUyhOfmMKpenXKrKQuEcOIRQGQZQgN97/bK3nyRMHWYDU4+WWGLOQ8+275wi6HnJ+kbhH4lCugy3lSqwh3pKotdXtSNy7u9HYAF6JEa03vJ/EAp59RMSGrpu+eRCagbuw3sBzofWu85x7PShPbhOCH7GAa8x1kfrLb0yhOPmNKRQnvzGF4uQ3plCaQdOT4HKb1+MuVaorx4MSw9QxibRg+M2g60bXHwmD34EISELQtx6j8tuEE5AEP9oSnYn5Zs4sSPrqUd+7W5RfL0GoXIJgSMIbrRmJ5rTeJO6Rw+82gt9sow7IXMHeX35jCsXJb0yhOPmNKRQnvzGFgoLfAoYn5PYFI1LljUsoM5ytVcCooITzNmXC3xR03iVEMurZRv0RcwddkMMvV9SitSHnZXp/ZQXRWQUOTbjGGToYSXTTc4zhHLRdquScorQ/OQTpmOTmIyFvAINPelA2TG7D2wztaOA9WdaaL5TT/vIbUyhOfmMKxclvTKE4+Y0pFCe/MYXS3G10dPMcLINkI8Qa/1uoyguY0EIK+zS0ISGN2f6/+AeAVP2IiD6MxSYVmP4toHVcgcWatltmjrVuoBHmBMZNR0RcgyqdapD5MvSvAjYjhX3xX4ZMa3fq6mhizwRq4Gkt5rBdF9ZmVOs/ZnuVxmjqEd0dWY1TcVpv+qdhWVvtN8b8N05+YwrFyW9MoTj5jSmU5lFzR4I3WxWHpiQCwna5QlXELcQvqPvHEd2ZNllqhJlrz6Xa7YiIYdOX2ACEIIIE1sl6LjFahwWsN/VjyJ24lNo/t8Y8X/DT2KvakgmytVLTS3rvqNZ+CM/0Doh79zuw3VbXcAkjha5h/SMixpVedw86HqxAaF7V+n76y29MoTj5jSkUJ78xheLkN6ZQmh9V6vC77KjgcNlRUeoKXFHjrcau1zM8+Tz0mLnjwWk7EugGrQov+91diZGQQ7XbqQaeJIiR0EWusVxBDKchgVBFzSNxvHNCWCKxkcgddU7b0fPDxrGvKF7SfeOa0WQfauAJ99eFfXfgGbSw7wpuJdW1gc+dJ8Q2MEHIX35jCsXJb0yhOPmNKRQnvzGF0vx8qfl/1KiI8Aycclv46biBBpxUdhrBzTrJkZXbKLQLjUIPeyOJfb93X7frqAOKmCVEsjk0GZ2Ac28F95LbKJQcZ7kTe8ht2AcnWOp6csexE/T80HkHMXI/8vSZxLhxbKJK48rzBMgbELkvSOyFBqUk+M2hTHeZ+b5HRDQkNkLp8LDSZ+0vvzGF4uQ3plCc/MYUipPfmEJp3gQ317xS8esIRCDqhTYGN9800SuOhMDcUl0CBb9WBb+3a3X4PdiqIEJ9687B/RgRcQHlzTSVhqaxkGhDveKoFBUnscA5qJ8gORhTUC88Esmo7Jj6P5KQR/dCU51yJxxFsEhKgh85Aadr6B0JIuBkozl0AutNomRuCXQEC7QDEPL68O7kjl03xhSAk9+YQnHyG1MoTn5jCqVZQA+wS/hJOIbBGWfricRI8CMhJyJ/6EeuwNOD/nq7mb3U9jYqiKxBOOM7iVhDL7YBrO3dSgcqTEBEJCfhDAS/3N6KtNa5zskUtD+Je1QiPAd3J4mFueXcqYEt1K8xFxySsoKBH/HNS6BzS9MjuH8kOTd7IAIS/vIbUyhOfmMKxclvTKE4+Y0plOY/uioO/GdHRbuv1tcSu1yp4EfOLRJyUnFy+BEk5JCbi0SbcaWxA3C7taAhtYkGa4PMnm3ktJqDWEUi4ALu5Qa2O91MJXYOz4ocgynIdZY7XXgBLj16ziTukVuxojLmhMOPrpuOSaW/5GDEXojwHi9RvMy755R4eQPv/LjWXCXnJh3TX35jCsXJb0yhOPmNKRQnvzGF0vy2UiHvaDWW2PnqRmJU8ohlmQnBj+LYnw0EGpqqS6IN9Vx7vlGRZAD77sNvY6rcsgsNDXe3ui3FSOJcwPUs4NQ3sHcDpcSLGoQ4cKulaEFMbcApSYIflVqzkJcnxOXGIm7R9xCeNZXb0v3NYPgM7ruCZ5BZ1v41MD27o+936h3V7YwxReLkN6ZQnPzGFIqT35hCaT5YHEuQSjBJmMh1NqUcfrklpeTmGzRQypgYQvEyCxDJJuD62wMRr5doJ7gDIssIyoTvrqE8mSbJ0kRX0HEua12bea1lw6dQ5jlJrBdNp93v7EiMJsSe19r/8aKjYjENxMgW9+CblRL8UvGXyZ38S70MuxVMq16DIxKEPMqNVeJa0FEJ+5OYiu5JPIsx5v89Tn5jCsXJb0yhOPmNKZTmfKFuPhJjuAQzry9cyuFH/ctIoNlpVMAatSpA7TdDie3B9N0D6KO3n9nXLyX4qY8sYnetazGE9WloQiwIfhNYmzG4+fD6YN9+otfbbkfX53s1rO1W7/o5iI1HMERiRc7ETEclugMzXW0R/H7T9dAxqTT2Gq6bhEHqWzjPdDpG5Dv3cvse+stvTKE4+Y0pFCe/MYXi5DemUJz8xhRK8yrKfq6VN2WdpKaLVPvdBwV5VKva/6jRcdxvwrjxBxtV9g/Ajjnc6HW3iXuheBebJsIoaPgNvqg1dlbrNZ509LmcwcSeJTy/NmF9HcK/ADTlaADq8x4o+0v4x4VWMbfh6W3mDNGY9QVYuVewPj2wL9Px6F+BGfSRIJs69aVIjaRfQy8IgvKN8tdffmMKxclvTKE4+Y0pFCe/MYXSUA38EgZRz8GqSsJE7tSVCLby5ooiO2BBfQTi3o+XKkDtw72QBDUH6+w4MRmG6MBa3MAxT2rd7kWlz+AaJuxcg7h3tYGR2LBvyhJLVterCizaoEvVIEqRnbqF7UjwI0h0W8KI9IiIGdxLD/o0DOEdOwCRkxqmrkBAvIS8omaiCxC4U/ZeEuLJbkzbkVjoL78xheLkN6ZQnPzGFIqT35hCae406pS7gQaeNIGEavdpu1Qd8qtMY6HmkSMQcvZA/OjDdV+D4HOc6aiL4LHf1Cj0AgS63JHaNC3mVZ4BTeGJYOcfrXen0iaqJJLtrzW2C8tIX6IlvDpziM0Sgt8YG4DqAR7Dib630jx4Bm7T81ZjxyD4YYNZeASp/hfosqXeBJnOW3/5jSkUJ78xheLkN6ZQnPzGFAo6/Kj5IAlLW3Cm3aaRIrn5yN2Ue0yV0iIm4MijpoknIO59Xqsr7suNCnEREedrHft9A06765WKexSjZo8EOiJBnCNxrwXXX4oulOoegvi1v9H1/v5Cxab9Su+vAqFyBgLiEr5Zi8Q7MobS6B6Uar9d61Shw4cwaej5gcTabp6oOKhVIKVYqqSXBN8plA5PQKhcgGPUX35jCsXJb0yhOPmNKRQnvzGF0pC4RwIblSNSqW6vVgExJWCQuEduPjoPlag+DxU/Aqb9EKew71drFXyOVle4/+VShcD5RkWt2UrPMwNxb7VWcYfWq9+QawzuGRx1uSPSIyKmMHqbnuoQDrkHUuz+QEVOqmRdrV7t+7RagxjX6JUPBvpcbsa6jp+0ut7PN9cSm8Czp9HiAxDcGxBsIyIWIPh14P7ouVLMX35jCsXJb0yhOPmNKRQnvzGF0lCpH9EHYaKGkk4SpVKCH5WeEiSAUCnjk40KdKeVup1o32tw452v9HjkxouImIKQt9yoKLlYa4yeAfVhIzcf9UykffFnHtbh62NCyXOtDsYxOCCn0FtxEXrdi6XGmpr6REIpcqvXPRzp84uI6A50W9I5p9f6fj+52ZPYxzt6zyfwTtyA45Nyg9yYJHpHcL8+elapITkv4y+/MYXi5DemUJz8xhSKk9+YQmlIhOhB+SYJfjswzZV6vaXkB5wQnCkCEuT6uwLhhSaoUt9CcuilSm1zhZdcMSY1uOFleHAKCGdQxpqcBgv9CEnoPG90zV7ARN59GEyxWgwkRhOMN+A2PVzpMz14XcXZiIidN0GAXsHQj4/0ns/B1Xq21XNTWe0C3sUNPANiuuHeinTMSeZ7S30B/eU3plCc/MYUipPfmEJx8htTKA1NuyVx705H3Xz74PAbgViYcvLdgOA3C40tQcCiSbI3ILxQyfKMhDyI5bofIyI6OGxE77uGnoLbNWxHvQwzYwSJe6mSXoqTsPRiPZbY5/CebFoVAe804FaEa6HJvT+d6/HeWPE6VH0QoCfgvJzpe3sKfR1pUjIJ1yTsLsDxiaW2qSm9sC0dM9dF6i+/MYXi5DemUJz8xhSKk9+YQmnuQG+23UpFwAOIvRkq7rwB005TvzAnMPTjHNxlVx0VK2ja7QwGE+T2M0u53V4mVW4J2hCCIhu3bMs6dxfcc7TdbdyGVDpKzsbThfau+wCOdwSuP+zVCOLeXRAQO72hxB58oeW3ERGvLfUa51M95gfndyXG5bt5vRppDQkaxFFBGfNtjkmCIQnN/vIbUyhOfmMKxclvTKE4+Y0plOZeZ0eCe1Cq+3CrsR/BjIyftjrUYrSnZZAREednWtb5+VpjX7QwPAEUtisYvEEiEgknOEAEfhvJyZc6Zr57i9yBGqMefizkkBMQSnpfoXw6IuIGSmtna30GRziIRWMt3N9+uyuxutX7WzcqAkZEvPZM49OO7v8hiHvvry8k9nxxKTES/Ah69hU8e1qHiHwhl0REl/QaY/6Ck9+YQnHyG1MoTn5jCsXJb0yhNA+hJv/eRtXGR2tVKh9v1er42juqhg7fVcU2IuL+SmvE3/h3VVgPP7gvsXlP/wE4hd4Ep5kTUSiGE1YSSmyujZhiaNvFkeik9n5z+zKNYv/6PHleZaoRn4PtmqB7pvHutN0X8G/UvObeCyMYqU1NYl+stUHp04W+i1cwip1o4fnRM6XYLljuIyJ2yeoMz4r6X1DzT3/5jSkUJ78xheLkN6ZQnPzGFErz1loFhwfQUPIh2DbvDFWwA/0iok7YFd9+JLHR3XOJ/WB2KrEnT16X2Ketnjx3BDKNAScxpgfNTSPYKkv7bxrdbqdWobIHohbZNscwkYhst7dpFIk24kyRlOr+6dw4WjyzQeUFjE6nJpoREYPE83oZmuw0hnWk6yHhNHcNqYHuQa0W94iI+2DF78H3e0lNayHmL78xheLkN6ZQnPzGFIqT35hCaX6yUAHjsFahY3ekgl+3p/vOr1ToaJ9ojX9ERDtSAaPaUXfT4DU9z/4XKvB0u1Q3TjXUec49EmP2GxZj7oBTsg8i4gC6dY5gO5pec7LVZ/AUpuYcV9q08gpGbKcYNnovA3CX0TSkS3DAkQBJ7kAS/EhAxGk44GCLiLiBCVLk3MRx7JlTnOh9ImGQBGASAQcg9kZEHEB8sNX9ycE4gca4/vIbUyhOfmMKxclvTKE4+Y0plObdHzyXYHcvbzT1/ByEKij9Xd/wKOj6RIXAzlCFpYCGi10Qm1r4LSMxhhtc5rmvXu9wo8hfbFS8/PlcBbrXd9Wd1jS63seXep73QWz8Y6PX+BmIc2dNXilqBDvMHlZcZvoynzcqQH4xV4fmxRJcejBaerrSNZxXKsRNoDw8goVcct+R2Iii5AbciiCwbVcao/eOyndTI+0J8s7WVKoNwqC//MYUipPfmEJx8htTKE5+YwqlGf3qjgSrBgSRY3WNrWcqxixvdN+E+Sq2Y91/s4BpI9pKLRbwu0WyIv265Zb03gHh7DGMJY+I+LtKxcsf/iOILH/117rzUgWs13//vsQe/lrFtHtnhxrr6TN92qoguU6M6D4IdaK9AX0dYcJ6DOHdWXSh1x856lYQy3T40eSiiERZdqNOORSBURiGCVAgAi5AvCTGjbofLzc84eqMnH8QaxMjvl/GX35jCsXJb0yhOPmNKRQnvzGF0lTgntveQA+4cxXnFmNw+K30eKsJ/8ZUpyDmzFQoef6ZClgfdFXIebFV19iMhhVkuvnuguD3aM338vAdcCv+8u8l1vzqHyS2XeraVvd/LbHXWo1V/3KiF3N6T0LdrgpDYxjbHRHRB8GohU13Nhp8AMLgIfSeewF9C68qdSGSuEcDSFKQEEh9GEkYJNcfOQZJlKSR2OQOvF5qqfVxR8X1CBYgZ7WuLZWNk/vVX35jCsXJb0yhOPmNKRQnvzGF0hz9s4os65X+JsxmKrqtQPxqoTy1P024nY41dHqp5aS/g1LW30Cfuk8WZxKbrLXUkxx+IyitJOFkACJXRARWYc7y+uZ1dvcltnnwlm73mrr5dkZfSGxwosJSf6uC1jxhBFtC/LyjNzgGsXgOImKf1hHE1D6UJ5PgR3RrmhYTMWz0ue61+j6R4EuC33Sj4uwUBtrMMJbXE/BsqU7OCO6ZeAPXM6p1bbvwDPzlN6ZQnPzGFIqT35hCcfIbUyjNP43vS7AHGgu5vu7AdnszcEVNuYffJUzvfb+rB/23jfaA+3SqauE1DKYgN1gf3GUDEEmWNQyRSEy2HZ/p/nc++VRi63f+ILFqeFdi28/+qPt+eiSxyxN1eE1A0CRShZ9LUC/JDbikGIhSJNodNNqjEF12fX53XobcbxE8pbkP52ngO0hS4y4IlatGr3ECQtzVSsX1iwW4UqFvYQQLkLNaRcRreL9pbf3lN6ZQnPzGFIqT35hCcfIbUyjNv65VOBtCX7ARlbzWuh31cCPHWETEEZTgkkvv2fxcYjdLLTumMkrqzUYC1KRRJ+B1o87ES5qSEBEn5ypg3f/zM4l1H/5OYtuVnmf13ocSe/FbPe+T65FeY6O/6eTmmyWGQ1xXuo7nWxWWpjixVhnApNyf13sSe0BTjUFo1iuJOO+wMHhS6dpeQ5n3fAsluLA+NHmZ2IEcIvF50tH3LtX/j4RAKhOm/ojUo9JffmMKxclvTKE4+Y0pFCe/MYXSPJmrwNaHHmfkiuuDqNEBBxy5nSIizqF0kRxPk6WKIiR0EDRkoYLSyvFKBcTTVh2DXzbqqIuI+Cw0fu89vZfD6XsSA40znn6igtjny12JHbX6+30K0zQuwXl3gdJZxOlG1/sCYisQyUbU9xB6+P1yrtf9iz11co7u6XNZwGCY589V+IyI+HOoEPtRqwLkcUdFtjEIgyQCkmxKbyeKbpluzAgWqqkkmFiDIOovvzGF4uQ3plCc/MYUipPfmEJx8htTKA01uCQVdwHK5wTUS2x6CM0MIyJuQGGfZloYtwlrKmwokEJK1/JieSmxD8GqGhHRgbHY00vtlfDgN7COMFXmuNbYJfQ6ICvuJcROQK0/2XCD0bOV/gtDltEurMVuV9X+va3ey5tbXe+Dd7TevfuOqvXDlb4Pwyfwl0lE7H2k5zm80P4JH3X136xnMJ1nXME4bnjnN9DroAFln5rJ0j9mERErah6bN40bc8hffmMKxclvTKE4+Y0pFCe/MYXSkPhFIgRB21EsJc4tNyp+LaD+eg0iC9VGp5o4yvGoBnqlgtbZQoWv1ASZSVf3fwpNKu82ZInOsyrTuRdgJL0Ece54rVbjo8UFnofGRtO5d1udhkMj0clEPKEJQucqsDX7Kth1dlWca+9rLCLiXqP3svOVXtH+U7VTk2X7GPpVXMI0oxpEuwvoiUGNNcmSnopTbm1IgITn5y+/MYXi5DemUJz8xhSKk9+YQmlIcKBYD2r8acwyTUhZQK10BAt0m0znXm4dM0HiBzkTSQS8CnWhRbAr8rxWkW0XRoEPQQjqg3uuhvVawnVfgZvveHml1zfnUdDksiSxiZxol2tdn6Nar+fPrYpp208fSOzgKxX8dod6vNEhvw/dfX3Wg9f0ub4R6uZsj3RtDxb6zr+A8eCbVvPlpILnDHnVgLMwght70ru8oWak8J74y29MoTj5jSkUJ78xheLkN6ZQmkGjAgY1GiTBj8SKLuzb3SamnEB1LAkT5OabQxPOlPvum0KCVkqQpOuhe8EYjAKfgeBHbi5qjkqjys/BrTheqJiWukYSoUh0pRLxJxsVPuta1/bTBtxu24Fey0xjb3zJ79hPPtb1eTTSteiAS6+B53IYen89KDGeVZpXT5u80fAkuEdEzCt9x+gZ0Dvqkl5jzF9w8htTKE5+YwrFyW9MoTRDcJwRNOqahCH28jHk8EN3IYwCR+EMRI0a+uPlliwTt9mXBEgS7eheZlAIS2IaiXs0vvwGph6lXJK5bj7aju7lYq3XSNsRC3CrLSG2Ay7JiIg3+zrl6GeLfYm9BS/uwVrPc7/Rtd3va+zNmQqQX0I595cdzT8S1yMS47yhLJ7ygMp8/eU3plCc/MYUipPfmEJx8htTKM0QynKn4BojkQWFqkT/MYLKYCmW26+PxD0SENuEgyrnWkj4jMgXyQhyZG2pxBh685GzkEo/cQ0T10duvi6UrWL/OVgfum7q30jvGAlaFEv1iXzRaKnus1aHdvyg1aErPwP3XbtQYfFBq2XMe5Xm0P5GnYl9cMSmROXcHpX0rN3DzxjzF5z8xhSKk9+YQnHyG1MoqHytYRAEiSwECWIpYSlXmKD9SYCic5O414KghfcHGhKJUqltc4ea1Jm/wbQvuR+JVF84gta2X6vQtQMxEgHpOU+3IFRminvcy44dgyiIwjFXPdi/VmGwbVUEXEz1uVzBej+p9bznNKk6MdWaHJm0tiR+0nb+8htTKE5+YwrFyW9MoTj5jSmUhtx8WCaYWYLZAccS9QT8eltw6YGoRb0CUQSEvne0HTn3eAJunlMugtdnCRNrc3v4jRodarFfa3nqg1bXNlewTT2XETjbhlWesHgN79M5DPKYwUCU3J6HuWXRERHrdd7EWmLThZ6JjToB/wSlumdbLWP+eHEusWdzjV0teDAM9onE8t28+/OX35hCcfIbUyhOfmMKxclvTKE0FysdqECQEEcCG/UEJAEpImIHRCT6NSIHXJfcbrDdEsShs426qo4zfwcnMLQhgoWlJTiyKEbOxMN2JLEfttp77mHo2m4rcElu9Rz3t3zPb6muFEMQli5r3f8PrW73HpzjZq3PIHdgS0p0JUj8onLiSxDZSCQ9rnXaMQnXNyt9T27IzQcTkVfQOzAif30IEkn95TemUJz8xhSKk9+YQnHyG1MozcVCBT8qy6SSzgGUN94Bwe9RR3uXRUQ8DD3mHohQPRCr+mDoakH7mMDP25fQt/CzVsXHJ+CAS/XlIzFmDi426tdHIiC57+5Vul5vr3S7g7We49FGBajHr19ILCJi74cqdHUGep7p57rd3p8eSeyoP5TYk1BnG5Ws4hTazFLwFLki4HKhsatQYZBcdvRMc8tv6XipbXE7O/yMMf8bTn5jCsXJb0yhOPmNKRQnvzGF0kxgdDPVl5O9l1TFGqyqQ7ABR0Q8XKuC/Gil594F5XRUqRI7aKDeea3X83ihtfJ7MMq5bvN6AUREjMG6Sb0Etpnjk2dQF38GTS/fhrV9DLXkP/qbE4nt/O33JBYRUb39WIMd6L3w4ccS+/GRqviHc22ESf+akLJPqvl3AdbFZzbCpH1Jmb/NPxK53Mbq/DL+8htTKE5+YwrFyW9MoTj5jSmUhkQWEqpwfDI0qJyAKPUc6ucjIuoazgMC1qOVbjcCO+bdfRW6hgcqaD68upZY+/S+xI531Ab8RaoZaeb4ZFpbEoKuVnovXzV63Y+hV8LeUO+5/+4DiXXe/QVf5OvvaAym5HRm+lxHh0cS23mSd89E7pjzV2X9CsIZCrvf8vFe9ZiEv/zGFIqT35hCcfIbUyhOfmMKpSF3UtPJczGR++pqrUJVaqz11RZcbB11381aje3OtP7+4RIafR7oeZtdFSUHT8FdBiIeOe8iuNkjj0XOE7AmaxXtjpcq+J012tSzogaed3XSTNyBxYmIarAnse3kErd9mSWMq55UeQ64DrhIc8W0V3XP0XkgDWIDj4++oFvoQYFz3HHfb98JSPjLb0yhOPmNKRQnvzGF4uQ3plCw1pbEj7aT18zyNuO9adu20d+jK2i4OYZpMdOpioDLCxUgF2O97SfQoPT5RgU2ct5F8OQVEkTrDpRGU1NPcNTRuU9BNJ1M9V62E7juCy3zjYjYLvWY25OnElv9/n2J/enpPYl92YOml/BO7DR63bRdbqPPFOigg1eURp1TyTptl0tuU8/vAn/5jSkUJ78xheLkN6ZQnPzGFMp/ATyoK+ic2rJDAAAAAElFTkSuQmCC" y="-10371.790284"/>
</g>
<g id="matplotlib.axis_577">
<g id="xtick_865"/>
<g id="xtick_866"/>
<g id="xtick_867"/>
</g>
<g id="matplotlib.axis_578">
<g id="ytick_1441"/>
<g id="ytick_1442"/>
<g id="ytick_1443"/>
<g id="ytick_1444"/>
<g id="ytick_1445"/>
<g id="text_73">
<!-- 251 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 10480.085284)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-49"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_290">
<g id="patch_291">
<path d="M 164.424375 10496.692047
L 286.714375 10496.692047
L 286.714375 10369.39852
L 164.424375 10369.39852
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_579">
<g id="xtick_868"/>
<g id="xtick_869"/>
<g id="xtick_870"/>
</g>
<g id="matplotlib.axis_580">
<g id="ytick_1446"/>
<g id="ytick_1447"/>
<g id="ytick_1448"/>
<g id="ytick_1449"/>
<g id="ytick_1450"/>
</g>
</g>
<g id="axes_291">
<g id="patch_292">
<path d="M 299.674375 10496.692047
L 421.964375 10496.692047
L 421.964375 10369.39852
L 299.674375 10369.39852
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_581">
<g id="xtick_871"/>
<g id="xtick_872"/>
<g id="xtick_873"/>
</g>
<g id="matplotlib.axis_582">
<g id="ytick_1451"/>
<g id="ytick_1452"/>
<g id="ytick_1453"/>
<g id="ytick_1454"/>
<g id="ytick_1455"/>
</g>
</g>
<g id="axes_292">
<g id="patch_293">
<path d="M 434.924375 10496.692047
L 557.214375 10496.692047
L 557.214375 10369.39852
L 434.924375 10369.39852
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_583">
<g id="xtick_874"/>
<g id="xtick_875"/>
<g id="xtick_876"/>
</g>
<g id="matplotlib.axis_584">
<g id="ytick_1456"/>
<g id="ytick_1457"/>
<g id="ytick_1458"/>
<g id="ytick_1459"/>
<g id="ytick_1460"/>
</g>
</g>
<g id="axes_293">
<g id="patch_294">
<path d="M 29.174375 10638.109708
L 151.464375 10638.109708
L 151.464375 10515.819708
L 29.174375 10515.819708
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p7546519536)">
<image height="122.4" id="image9cfd09015d" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH+ZJREFUeJztnUmPZOlVhs8dYsi5KjNrrrbL3Y3bBmPZMoOAhVfIlpDYIi/4X/wAVghWLCwLCclCCAsZN8LC7Xa5p+qaMivniIz5RrCw24t8n2t9RcKmv/dZHt3xu/fEld54zznF5vqXVnGFbllfDUVZFBJbrmTXmC0XElvBdhERBRyzU1YQ0+tZq7sS2+tuSeytzp7EvlisS2xe6DU+WV5K7IPpkcQiIg6n5xIbzMYSmzVp61PDOqx19J43On2JbdYaqws93qiZSiwiYjDX614sG4nRc7m3dlNif9i7L7HvTvVe/uydZxLb/t43JFZ9568lVm7qeSMiFu/+QGKzv/0Hif3wB7cl9o/9ucTeW5xIbLDQ9Wpiidcj2610uzmsdUTEYqVxyrc5vGN0zDLlAo0xnz+c/MZkipPfmExx8huTKXUZKrqRuEMsQ4WqZpkmdEREVCD4pVLAdRPT0HuZFHqNHTheF0QyErkiIqpCf0dTY6niEAmsBK1NB+6lV3Zw/2mpQheJkksQq87nI4n9slYx9N/6KsSu/fyexP74+/+p291QcW/5hS9LLCJidaAiYjMAQewa7yLlAQlsJM6RiNcmkF83367iL78xmeLkNyZTnPzGZIqT35hMqXu1ij4kIpATKUCYICfgdaFjkhOwgt+yBVz3DGI9EMS2QsW9G9UaXuNlZyIxWjNyNaa6/ihG4iyJSEu4FxIfI1jUJAGLBL85iFon86HEPip1Hd/vbkvsrZ/rdg8f/1JiAe7HiIg4P5PQcpYmnJKURs802XkHsddxxF4Hetb+8huTKU5+YzLFyW9Mpjj5jcmUeruj5a2pAgaKTSgMpQsY5E6j8lYqO8ZSZHIwglOqWul2N0LF0PvVpsQiIpagN1EZ7VmpZcJU+jtdqMuORLfxYiax67gN2+LdSteWxC/al5xpk5W+Txelbje87OnxDrSstrqpTr6IiNVAxUY4NdLAdc9g50mjz4pyiJ4fiesrOG8Ery3lBonKlAf+8huTKU5+YzLFyW9Mpjj5jcmU+nZ3R4LTlQoY40aFJYpNlyBUgYMtgoXAqkwUq+B3i2IECTkN9PBbX+nx7oQKUBERZUVltOSq0u3QNZYoppIwSI5IWsN+xa442pbKf+k8tN3NekNiO6WuYw90rulCBa3pR6dw3o9154hYTUCgO1HxclLqvUygHBzfb3TzQakuvHe0hnVL2Xiv0rWl9Sbh2w4/Y8xvcPIbkylOfmMyxclvTKbUb3W0H9rFSoW8s1JLVs8KdasNm/SSXnI3keBHrj/smwauKnKSDUDQpF/BaaHCCfX6i4jogzi4UagYQyJbqkBD7rIgFxoIrBPoy9fWj5CuZw2ue6dSd+hNKHm+Uei+u7Q2S13bs5Xu+/y/tfR361MeQNLA+/jyWN/5Z6B9DpaaB1yqm1buXJKQCiX1NHQlImK71vWmEvM1WNvKDj9jzGc4+Y3JFCe/MZni5DcmU5z8xmRK/Y2VKogvC7VePgNVkkidPhMR0ZRp9eA45QbU1NFSFV+yVJK997JQNZyaenZDYxH87wOpxWQFxeao14Bs07QObXXjpPbfqnX8+ZdrtYY/gsYGNdzeAv40oat5Vuu1HM30vMGT02MK9tnjrp7pg0LfnQGMMH+d3hRXoX+ytmpV6+92b+D+D6CXxC34J2UT/nmi/6j85TcmU5z8xmSKk9+YTHHyG5Mp9bemKmq8KFVEWOuqMLGoYLIPCH5to6BpMgmJX3RMEl6waSLEAoQ4baGZPnEngu+Far+HjdqkqU6fzkPNGum8qRbptjHnXbA13620Jv9bc31P3lro/U1AJCUB+WWl93IIauEQRqxftnTlnMC7Q5bvS3hWE4ilTo+ag8hJY9JvQK+DL1QqrkZEvB1q+70z1+tZp0laoFP6y29Mpjj5jckUJ78xmeLkNyZT6kf3tBnizVMV9zpTFSGWPRUr+rWKGm1izJimtixVMBqB02oWum+bgHUVcuMlTykiATFahMrExpzkYFyrVUwjYQlFSVgHEgHbxqmT2NiH78Qm9GNYq6DevdF9x3Dqg1L3fbpUKfYURNNLcHdGpE8VwsaqIBYmO1BBlKT+CVuVumnvtzSJ/aLqj7EPvRs6cN0lNQ/FsxhjPvc4+Y3JFCe/MZni5DcmU+r1PVURqo4KBo+eq9g0nqvgtw0liqcgfkREvCjUaUciCwlvJOSkCnmpsdSpK23gSOVK17FNeLsKuRpTRcnXGdFN4tcUnsvLWvefN/pOHHb1eI8rffYfNgPdd34hsYuFioBtQiyVJ6dOuSFxNlXYJXD0Obgf11uE682lPv8tKEXvlnrdMJDIX35jcsXJb0ymOPmNyRQnvzGZUjczVQIWUxD3GhVE5jCWmjqxtU256SWO2SbHGYl7yS47EIeuI9pEsGBEpbE19QVM3Jemroxh+tAABDEqbaYS0wi+xzHs/0Gl5/4Q3onDFZSNL4YSO5qr4HcxH+m1wGh4Km2OiGjAKUkOyFTBl9ymNIKepvPg9VHvx5Y+mANwaW5CXpYgDHah/N5ffmMyxclvTKY4+Y3JFCe/MZlSD15pX7CjMx3k8X6l2z2uQRBpcfMR80SR7TpCHp430blHwlAXRJeIiPVSyzC3Yc16IOStw0jlbYhtgkA3gXU4qLTk9aRR4YxE0wgWG6nv3adLPeYEnsEpnPt8oTEs3SZ3J5QSt0EuvUmoYEhMGhU0aegKkSr4XUI/yRcllyf3O/o+jcGteLPR96S/cEmvMebXOPmNyRQnvzGZ4uQ3JlPqgzOd/PkRiFck7j0NFZbmIMbQtNsIdjfxgA6N0UAMKnkltxr1wiNo33XouRYRsVNpKfM2rOM6iGnbEHuwVCHnIfRwg4Gz8aLW875fq1j0Cpx3ESzuzeG50KAL6qWXKuThABIqg610vdpIdYeSMEgxIvUaqXR7Ag7NY+hjGRFRQ13upFIH400QpXswuddffmMyxclvTKY4+Y3JFCe/MZlSH4UKBge1CgvnMCSDhm5MafhFS4kiuepmtD+cJ7UEl0SW65TfrsEE41/tr9t2QAii4Rf7Kz33V2e6Nl/bPZbYzgMt3708UMHvJ4e3JPbjHgtnTwoVnM5AyPs/L42G58Lzna8HvXfXmXbcr/Qq+yDE0TtGUA5ERAwgD+gda0DQ7qz0uv3lNyZTnPzGZIqT35hMcfIbkyn1FASxOQkisDNJO1MQJYZQthjBbr4xbJs6tIOGTRAk5PVByOtDuST10Yvg9WlARKKS4IdzjX3j9oHEbv/VXYkVb70lsY2PPpLYH/zdU4mNDvR4ERHTrgqGMyjVnhbgBIS1XZXpg06uQn0GqVy2rbciQWW5QxA5K5guTOdeI3EPxEt676hnZev0ZIwqlJfzwiW9xphf4+Q3JlOc/MZkipPfmEypB1QmCOLOAiQtGgQxACfYZcMliiTkUX89EmhI8KvB2URlvgSJLOSeIoHmV3FwEsL+e+Tma9Sld+svb+o5/uJ7Eis2dbtm9X2JbdxXEfD2c+5HtwvXeA49BSco+KX1W0wV8jagLHoDxFlyWEbw1436DB6DQDdq6aV3FRIbSXxGZyHE2t5ZMOklU9jhZ4z5DCe/MZni5DcmU5z8xmSKk9+YTKk/hMacp1C7fwGNBs+h0eDZ/FL3hTHLEdwgkZROtPK2WCCvQpZKqkOnfx6o/rpNVd4CBfpWoUr12zAS/e13jiRWfvM7Gtt/KLHl6Uu9mGOt+18MqZElryE1Be2BLblPk33gH4AGlPQKGkqSnXqn1Maju4Wu9UZLrTyPNdfnvwH/ZpyV+n7ThB3qN0Hv2Aqa2xbwb1tbPf8sND6EXF1ADtWwDv7yG5MpTn5jMsXJb0ymOPmNyZT6/dVQgjQ6+wJsuzRmebBQq+p40VLPn9jskZor0iQWtvfqOUjco8aMdI5uxYIfN+bUbe80eu56k8buPJPQ4l/+XmKrT55IbPrvauU9+lQnM521TC4agw5IvQlILmwTRK9CzTFJdLsDgt+dFYw0b1i8pKtpQsXBMYiIR7VOYfpwqYL2wWIgMbKk06Qgej/JNh8RMYIJSQuwU5O1mM7tL78xmeLkNyZTnPzGZIqT35hMqZ/Oz5M2JBcTjV5uwMXU1lyRXHq0P43yJkgYJEhoJEcWjQEfFzAnOyJGpe5/Ca0UD2B08wfv7kls7+PHeo3zDyV2cqGi1KvVfYkd1yp9PScrX0Qcwj0OycXWMonpKuvg3FsDRx45It9sdN9Hcz3vbsu48Q4IYmQO7ZS63fFUr+ef+yqcDqHuP3XKFInK9C5GsLtwTDkE5+GGt8aYLHHyG5MpTn5jMsXJb0ym1ENorklCHJXapo4rppHBEew6IsEP3VKJrj86B15LYilxm/uKxpWTcBYdXZ8nsS6x1VBjx4We+6Kn55iGPlMSTdtKR6dQas0Tm8g1ps+Aymo3wGV3GxqH/s5M1/Wrt08ktvMFbhJb9sC5CWW0RV+/g28803U4fF/Lqj/tbEiMXLKpImDbOzuFsvrVElyDiSPI/eU3JlOc/MZkipPfmExx8huTKTVPDNENSQTcqNQBFRCjUdy/Ok+ayEZOOyrLJaiHH8U6IErSmGWaNNPGBHquvUgUIAcg7rxaaDkplVW3iZJXaXNe0n33oNy2B9txSS9M54GterA0W9Cjbuehinu9r+jkooiIogu9/RYgaE51vatTLdXda3Tf+zDSfFrpdtTzklx7y5bnR6Ld6wiGV/GX35hMcfIbkylOfmMyxclvTKbUJLpV1LsOSjDXQdyj7UhUjGgrrU0rtx2DUELbkbhHghZt1weRaxOGc0RE9LBbnEIiILkDz8B5ebLQfouDufZMJMGPxCLqeRjBzxUMeVHC2Gdy881B8KUx8MNCr/E89BlMT0GwPeXBMEWt37flSMW9ZgADMZ7ps57D/W3BAJIdeHdm4NCkWKpg20bq2G9/+Y3JFCe/MZni5DcmU5z8xmQKOvzIzdcBkWwbBipstwhiBJWUTmmCLsRItCMBkQTIDjjbqDyZ3Go0WCIiYrNlSuxVqBfeBGKXMCRl0qhQReIQTT8mwY9EoAh2/nWWuhYVfDtKKJfFc4BIdgDr/TG45+48uSGxB0vuRVl1YdDFVM89udR3+fRM+yNeVCAgQg51YG1oXem9o7LoiIgFCXlUFu8efsaY34aT35hMcfIbkylOfmMypSbBgYQcKmUl8etuocJJD5xgERFDGHRxAeIXlbdS77IGHGIk2vVBnCNnWg3r0G8p6W2LX2UKbrcl3Au5FUm0SR1Uwj0PeV8SDKmEmlyRBTxresdI5DyHnofPQNj9aKH9DYunfC/dGkrEF3rdAxgO8gqGjbwAvXcAbsUxPD90XiaKeBHpJb3YexKeqb/8xmSKk9+YTHHyG5MpTn5jMqUmNx85kUgEJJHrwVIFmodzFjCGUFL6tNb9n8L1NCCykIhEoh2V39K91IkDKP4/wOEXsA7kdCRhifZtc/gRJBgtQLBdC3V4boDr82apzj0qgy3hEl/WujarhQ7OiIio4N0blboWp2BMPYT7OwwVJS+gx+RgpSXnF1CmTYM4SLCLuJ6bb2mHnzHmM5z8xmSKk9+YTHHyG5MpNQlB2M8OhKUNEM5I3Puj/Vd48qpSEeLjFzp84Uc9FYdmpe57BjoJle9uUW++VIdeixhDcexdl+jywhLqWktMUfCB86Jg19Irjo6JYiM4JXcqvcY3ShXjHoIwuNOkialz2OwTrrSOKQjag0KF4RMakgJDNk6X2jOR+knSoBkqyU5d67Z4ssMPnrW//MZkipPfmExx8huTKU5+YzLFyW9MptSk2K6BHXO7UMX9NkxTebjSxpP732KFvH7rrp7n3U8lNv1X3e64D6PAwQtKdtwtuOdtaCg5BxWe6vEjIsYwiWeU2KyTjrgOz6CGhqnUZ4HU/jGoz9QkNCJi3Kh6TUrzFij790uttf/iSu/lPij7mw1MawK1/rTS2GHLnzVHqOzr/R2Dsn+SOBI9dYR8amPVtklKbfGr4CQs1/MbYz7DyW9Mpjj5jckUJ78xmVL3oEnhNtRa34bYF+b623FzXe2PAQ0qIyKip0JQ9519iX3pZzqN5Y1L3e4CLLE05YR+8Uh0o9isRfAbgMVzCMIS2yxB/IL1phr4TZqdTddXqgB1DFbViIiLQsUvYo8Ev9BrvAvi3g6IeyVNFQIrb9tEG2IO4hdZrKcgxKYKeRSbNxAD0Q0n6cC+ESz4UT8O6tPgiT3GmN/g5DcmU5z8xmSKk9+YTKn7IPhtgbtsf6XC0h45smAaytlP+eRbww/0gnZVMNraV+HsPhTvP+nrualOe0AjsUFEIjffKTgYI9LrvAlyVFJD0f1Ct7sFz2UNpuYMYd8XIJBGRLyEfgc0Jv0GHHN/qd+TbXhPiCGMv76Akd/n4OQctgix5NJsUhth0nSlxKlJqaLbouGeCgRO3QHBLxV/+Y3JFCe/MZni5DcmU5z8xmQKKj40GURls4gjEGjm802J9Z/zNJX9Fyqe3d4bSqyqVIDaAQFqY6Ui2QHcyxk672jMMoiFLWWwlzCNhQQeKqGuYILMNohp92Aa0pvQMPU2CI1z+J3/pFZxNSLiMUxNOoLx2esgSpKXcwyi3RyEqqNK9z4u9DkPIUYjsSMiRlBqTS7LRWIjzOvESBjEEd0tk5TI2dhmnr0KjUn3l9+YTHHyG5MpTn5jMsXJb0ym1CR+XEIp48tSha5JR4W4HrjLOi0lmFsr7fd2/1TLRHfBBTUAkYygqTlUfnsJsQnE2lx75L7CaUiVimSb4PC7BRNtSNz7+tapxPa+pL3naNDQ/Q+3NBgR26Mdif2iq+LgAA56Ae476sM3KXS7Q+i3dwzi7IRKaFsmKZGbbwYOT3bzpalpKOQl7lvCOwL66GsdkyjgGfjLb0ymOPmNyRQnvzGZ4uQ3JlNqEjXI2XYMQt45bEcupKql7JDKVp92YewzOPdI3nkFPkQSL+n+UsU96tcWwQ6qLpTMbsLgjV2I3YV7flSo+/H213SIRPd3dchJTPVe7tQnul1ETH6q1z0F5+YnHf12XMKTGcHjJ5feK3BPnsIwDSovbiO15JWGn2xUKnKSI49AsRBeWpg/go7P1wHdfBb8jDGf4eQ3JlOc/MZkipPfmEypeyBKkWBA02UJEjraRBJywL2C36MeiDEEDWO4AMFo1KiwROIeufba6MBABZx2DIM3bkDPvB1Y7n5Xg2Uffr9rWC8oB642+Ld/axMmLYPzkoakzEDBOgVx7wxE1wtw85HzcgHPmd6liIguVK2vQd/KHRBdV5U6UMkdelapo/K01NhooetKPQHbpvGiYxS2rSFfaF9/+Y3JFCe/MZni5DcmU5z8xmRKvQ5iU2rhIJVBkrhHZZURETNw31H/QHINkihJ5ckjcI2R4Nfm3LsKufYiuDcfC35pA1E2oDnb5VT3HTxWh9/m4oXEynU9RzPmMtgCynJ70AtvA66byrdnIGoNSfCDPojkvKQy2DVY/4gWgRViW7A/3cu8VBHwBITBg1pjr+YXEhsu0iYiR/C7R1O26b2jff3lNyZTnPzGZIqT35hMcfIbkyl1DeJJau+yKqDUFo43bXEHTmlqaWK5JvUkox5ndDxy7tGQBXJKUSyCnVYdWItNcJztLaEcGK7ncKVC1cWTWxK79VInBt+8qbEIHtpxcaFutyFc9xTKUccg2A5Cn/+rBbjiFlqyTM9lq1a3Yb9FiL0J4t4uDETZXOmzWocydjrLHRDN92o9xxM477PiTGJtfSJJVN6o9Flt4NRnC37GmF/j5DcmU5z8xmSKk9+YTKkvwAFH7jkSr6rE3442h98UXF7ktOO+gGnnJvGS+pmRmEKuqD44qiLS14I6ysH8ihjB5IYh9HYbgdC4vtRrvHWoPfjWWwZdnMMxD7p6PYel7v889H16ulBn28FMha7hXN1uVCpNrjZ6ZyMi1kCU3gZxbwdi26A9r8P71AM35ptUNtzRYShNR/c9gPWKYLF5GwS/LRAWuy7pNcZ8hpPfmExx8huTKU5+YzLFyW9MptRUY0zKdQeUb5pyQvX4U6jbj4gYN2nNGfHfB1CB2xTfq6xVpIam1Uq3/ctA/yqQlj6CuviDCsaIk9pfQF08xGjgy4sKniko4RER59Bw8xQs2mfQcPOgUYvui6mOET+dgpV3Cf0han0G9I60NYmlN6IPtt09UPbvLPSe7/fVlrx/T++FXpO9D+5I7FVf6/7PCrJiM1XiP3P0j5m//MZkipPfmExx8huTKU5+YzKlHsxVXKDa9Gr5v7fTzluaY1KtNkHXswJLJdkfyY6bWgOdKmhG8L3Q/jRV6FmhwlkPVLuG1jZxDQcg+ExRkow4hkaa5zD5aEjbzbWh6MVMY7NG3wnq0UDQO5b6LkVwnf69hYrS79w7ltjet/Xdqf7k23qSkQqDX/+b/5DYjw50nPr7LaIyrfcAtiU7PQmD/vIbkylOfmMyxclvTKY4+Y3JlBqFEgg14CSjfReJzTEjuOFmp0obGZ4q7q1XMJ0FYtTgkM7b6iSD/ftwjR34vR2D62/Q4oq8CvUmIHGHRKCjRoW4iIiDxMkyJORSc1RaM3JKVmRNBOh9ausZQeuzDa/jw0116e3+qb5P9Xf/XGLVN78rseWLxxLbfPvHEtt5mf79vaRJU+C8HCWK1/7yG5MpTn5jMsXJb0ymOPmNyZSaHGsFiSeJriqMQalmRItYReOXoQR3B0Ygk0uPhEESxMgp1+bmI9ZpmgrMd9mE6xmB6+8MVNcJTT6CS6R1HYGASMJeRMTxbCAxEnJJEKVzUzl4BQJyKlQiftFwGeyk2pbYGrhDt3d1//LGrh4QynyXJ88ltjo/1Ngsrex70SKQU3NbijVQIk554C+/MZni5DcmU5z8xmSKk9+YTKnJZde0lHrKdtRzLXFCTgS7+ciRt9vRaTP3qi2JbYHoNqeR0TAp6BLGIs8Sx4VHRPQqcByCeLm7gnuG3+AR9dEDoYuEPHp+E+iXeDbXstOIiCmUtxJdeH4k2BYwkmjZpInFrD1r8KRQh15ExLNa352nHR3xfXK4IbG1d1W06578k8TKu+rci6mu99HP9N0+gedMrr2IiGVi2TKKgNTrMeloxpjPHU5+YzLFyW9Mpjj5jcmUmvqhkZuPyjJJeKHjtZVq0gjsDRD89ip1871RqmizswL3HIhfR1hOCkMyYCjF64iAVL5L/eNIJKN96dxnCxXtyAE3bdJiEfyssa8jinsg7ia+JxRLFaSHwQ6/ZzMdGPJfMChjs9Hx2Y9+AiLgT/QZ9EottSUH4+PYl9jTjl5325AbglyoWFZvwc8Y8xlOfmMyxclvTKY4+Y3JlDrVNYRiDJYDpwlaESz4bcJAjZuFioAPlrrvrYVezxiEqj0QIIeFlgMfl+qUOlyquBPBItQYBDoaskB+rjm59MjhB33dxguYfgwiUBtUgktuPnp+RJuw+H9JW5/Is5kKor+odBhHoe364kMQn2so0y5Cd6Y3/qTQdXi2UGdim+BH4h4LoiTia8hffmMyxclvTKY4+Y3JFCe/MZnCQzsAEvyoVDe1L18EC0br0IfvXmjs7akKWA9qdUs1S72ey7medwhCzouOnve9mu/lyVKFpYMVTLYtVN6jnoKnICyOIEZiGol72FsPRLwILqvuVypqVfDtSO17mOpMI0GLSJ3wGxFxsdBhJR9DOfhpqeIzrSP13CPRbQRl4ycg+I2h/DoiXbSltcBS+6SjGWM+dzj5jckUJ78xmeLkNyZTapqqSpQgSgUICyQ2tAp+ILLcKFVsenOhLr3f29f+arvvqCBGFbjTV3o9Z4daIlwPdODD8yr99/IEpuAeJgqsJO7RpFwSbEmUopJcGoYSwWXVPHhD1yJVQKYhEqmO0dcB1wLOPYW+eedLmEwML9Sw0e1ItKOpxpNEwTaiTWCH8vTEvPSX35hMcfIbkylOfmMyxclvTKbU80ZFCCzLhTJYcniRCERiUwSLSDegPPIRDJHY/32Ndb76QGKrud5f5+WZxIpKxbnjofZ6K0PFsAh2dF0minYLEJFIOEstjU0VXduEWBaH0oQ32o6cnL1SnzMJwD3Yl97PNqGRSq1pWzpmqrhHw08u5yAWJjoYsa9mRHQgj6jUuoQ+kYS//MZkipPfmExx8huTKU5+YzLFyW9MptRkJUy1VC5LsGO+hr2XlGHSOaew3eyVKrbVPqj4a2BhhZr8stYzT1e63aRlfPkcFGRaWxqfTGo/0baOV2lTi1O3IzWcJr4UoCqnWnSpb8MWWLvXobMmvZ3YtDIiJmDbHUOMmqNSI018fvCcSdmnf9ZSn1VEyz8DcN+dRIu1v/zGZIqT35hMcfIbkylOfmMypcYGiTRlObExI4l4bUIViRXPl2qz/WFf6+pP33sosS+/p/vu76n1sremwsvJ4ZbEntQqSp0X3FyRbKSplloS/GgdC7BYk+iGI5pJkGwRGvF6oBFqatNMqp/vQqyH25GtHOy9ie9nRMSCpivB/qnNSFNF7gVKlWlTeCLSbeCLIrVHhzEmS5z8xmSKk9+YTHHyG5MpaTOWWyBRg2r0qXa7jcNGJ5icLnUSz88rbbj5qNqU2FdONyT28BDqtKEx5ycdFVMG4A5rg4SuVJceCTnUPyG1zp6OR261CHbkkZuT7iW1YWaqi3SW6FZr4zpj5FNjHbg/WgcUSHGaNgt+JATis7LDzxjz23DyG5MpTn5jMsXJb0ymJAt+NBmEmgfSFJg1KN+MYPGEGiQeLS4k9jK0fPe4uyOxSWdPYiMYvUycg1Nq2jJNhUozUx1wqY48Wi86B5bkLjXW5iTjppJQ0pvaKBS+MYtKj3e50hJauheSs8j113Y9qWIqNRRtSt13ROLeNScNpZI6wpzwl9+YTHHyG5MpTn5jMsXJb0ym/A9tzFtSR0BklgAAAABJRU5ErkJggg==" y="-10515.709708"/>
</g>
<g id="matplotlib.axis_585">
<g id="xtick_877"/>
<g id="xtick_878"/>
<g id="xtick_879"/>
</g>
<g id="matplotlib.axis_586">
<g id="ytick_1461"/>
<g id="ytick_1462"/>
<g id="ytick_1463"/>
<g id="ytick_1464"/>
<g id="ytick_1465"/>
<g id="text_74">
<!-- 252 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 10624.004708)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-50"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_294">
<g id="patch_295">
<path d="M 164.424375 10640.611471
L 286.714375 10640.611471
L 286.714375 10513.317944
L 164.424375 10513.317944
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_587">
<g id="xtick_880"/>
<g id="xtick_881"/>
<g id="xtick_882"/>
</g>
<g id="matplotlib.axis_588">
<g id="ytick_1466"/>
<g id="ytick_1467"/>
<g id="ytick_1468"/>
<g id="ytick_1469"/>
<g id="ytick_1470"/>
</g>
</g>
<g id="axes_295">
<g id="patch_296">
<path d="M 299.674375 10640.611471
L 421.964375 10640.611471
L 421.964375 10513.317944
L 299.674375 10513.317944
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_589">
<g id="xtick_883"/>
<g id="xtick_884"/>
<g id="xtick_885"/>
</g>
<g id="matplotlib.axis_590">
<g id="ytick_1471"/>
<g id="ytick_1472"/>
<g id="ytick_1473"/>
<g id="ytick_1474"/>
<g id="ytick_1475"/>
</g>
</g>
<g id="axes_296">
<g id="patch_297">
<path d="M 434.924375 10640.611471
L 557.214375 10640.611471
L 557.214375 10513.317944
L 434.924375 10513.317944
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_591">
<g id="xtick_886"/>
<g id="xtick_887"/>
<g id="xtick_888"/>
</g>
<g id="matplotlib.axis_592">
<g id="ytick_1476"/>
<g id="ytick_1477"/>
<g id="ytick_1478"/>
<g id="ytick_1479"/>
<g id="ytick_1480"/>
</g>
</g>
<g id="axes_297">
<g id="patch_298">
<path d="M 29.174375 10782.029132
L 151.464375 10782.029132
L 151.464375 10659.739132
L 29.174375 10659.739132
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p2d5bc0d7af)">
<image height="122.4" id="image5d7d2ac692" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHLBJREFUeJztnUmPXOd1hk/VvVXV3eyB3c1JpERqcmTFEwLbcGzHiwBZJIuss/Eyvyv5A84mWWQXIEASOI4dw5EsKzJFiRKHZo9kjzVXFgG04Pvc4LSrSTv+3md5cKu+7w6nLvDWe85p3Vh7dxbP0as6z4diuV6Q2Ga9IrE79arEvjpblFhExDcGY4ndWDiV2GBUSeyD1rLEftIZSuy/RrsSu3+2I7GD/rHEhhPdXxNVqy2xVquV+ux0NpXYeDqR2Gwmt+qFQPtuBcTgONrjLCAGx9H31W2995c6+iyudPkZW6y6ug6cywTuQX+iz1N/MpIY3SuKTeE6EG3YXxO0b1p7MtXj9Ik1xhSBk9+YQnHyG1MoTn5jCqW+ubghweW2CirrlQoq11t63NuznsS+ORjg4u+8oWLc4k0VJs4e6W/U3ie69loN4lBbBZ9eWwVNEpZIOGmCxKqqrftGQWyWE9hIOJuHrCDZRFbcu2iyAmIEC2LEcKriLsVInKX90LVtJy9N032hc5wmY7RHv/mNKRQnvzGF4uQ3plCc/MYUSr1eLUnwCsSutlTIuzWtJfb2UAWRN64/xcVXv6UiYvu6CpDV6pbErj9UJ+D6TB2Hyy0V/Mj11a30XNCl1SAstUngAdFuOofGNq9AJ9/X4CTLOveyZD+bFbTIrUbiXET+mqErDsS9rIA4z16aIIfgPPfFb35jCsXJb0yhOPmNKRQnvzGFUmflix6IQ0vgTFubaRnkpasai4ho335NYq1bNyVWt3WdK+890tiWlhOv1ermW6pUvCQRMFsaGcFizDwCTbasNgsJkuf5vlkrJ7wRWQExe9wI7st5yq9pHTqX7Pk1icC/LbLPmN/8xhSKk9+YQnHyG1MoTn5jCqV+NlGnXLdFpbHqgNuA4/qhsQbzVURHv7N1eVOPu9GX0PKdzyR264H2V9usVchbaavgdwB9C8k1NghdIyIiSDACNxiJQyRAdeF6zwOWHEPfwSboXFqRc8VlxT2CjqOy2gH01mvaT/a8qQwWy2XJmYgltLmy78b9UOk3CblJ4dRvfmMKxclvTKE4+Y0pFCe/MYVS7w91WAWKAx0VERYq/e24AQLbyb4KbBERK4ew9hD6/XWg594NLTumgR9XZ+r6W2zp95HAdp6+fpPIucHIaUfrUIkxCVVZdxmtex7Bj1x1o7YKouiUSwqfRLZPYNN9oXXOI7JlyDrqqJy7RbnWIIZedEm33/zGFIqT35hCcfIbUyhOfmMKxclvTKHUz4YnEhzPcpNqyAZ8A+rnnx7w+OSrTw50Q48fSmx2qir+7FTtnC3YDw2QmSRtm+cB7bPw20rK/iL8Q7JU6z8kNZ1fEvyXoeH7yIZKiv1wpmo/jbAeTDU2gvp7WoP+ZRhPcrbiiIgpPMtkD872Nsgq7k2K/fOwNTh/7Dz4zW9MoTj5jSkUJ78xheLkN6ZQ6rORNtck8YtEoAUYf73VVXFve8SC3+2PVfCL8UcSmuyr5Xf3AxXEPhyolffjrp7f7khtxWcTPY6aQp5HGCSL7qUOjRZXqzI1Ge2AQEei3UJL112E2EKD4NdJvhOOZirk7UxUQN4dHUnspKU9GkgsJEj4mkyaBD+yFutxJPhlRVyyC5/HOv08TeIlWadxZLgbeBpj/i+c/MYUipPfmEJx8htTKDXWQUPDzWMQaJ7WKu5s1yq6fdrR0dkREZvv6TjuS3dV9Dk8vSSxuy0VEX/a041/OFJRcWd4KLHj0ZnEyF3WJMaQwLMAzr2NzrLELtd6fiTadWCNNRhBfitULLwyU3FvtaGx6lLSdXa3o+t8UKlI1geHH7lIue4f3Hhz1rWjIEZfSboZHEf3npyc1IcAn7GmqVA0MhyOpXXcwNMY8wVOfmMKxclvTKE4+Y0pFBwLg+WbML3mcKSltg/qZxL7D5jMExGxV6nQtT6AclL4+OO2CiWfTkGAHOl+Doe6b5r4kh3RHBHRBqGr19by5g0Q965U6vAjR2UNsVdDHYNfG+pxr0zVJblYseK30IFS3ZHehNOJnssnlQpdJIiRo46Oa1NsjlHlTcwzVQi/b55pP43lyblmpln85jemUJz8xhSKk9+YQnHyG1MoNZUjZvuZnY21DPbxQB11o4aegE9qdf5tVipgLcLY72OwIR5M1KV3PFZnIol75HTE0uZzTFOhKUCrMB58A1x62dLhZRjbfBnOZbWrgl+3w/elrqGX3ljvQftiW8pd+ESaF7F22qWXnFLEJcd8Yefp4Ufn5ze/MYXi5DemUJz8xhSKk9+YQqk7yVHQJHSR+HEyUoGtqQz2dKIi1D70s1sApxx9585IS3VPR7oGiXvk5kORpKE3W6/SPVIfPuylB7/Bk5Ze2wGc8zEctwsuu95Q99Id5R2MhzM9v0OYvM5VsPONB3+e6Ryutoj8fUVn4gWLkiyu8/nh2nNcCr/5jSkUJ78xheLkN6ZQnPzGFEpNE2JJ6CCBjUQydDuBCBjBTrujsbr0yClH+yGxkVyI2VJdug7LXXUgRkRs9sCtCOW7vTl+b0eg7myFCpqTjt7TAxAfew1iERX6nsK2t1t6r0fQ7a9OCshEth/dedxvWQGShq5QDMuO4fzIuUfiM/bVDM4tvBZJFdBvfmMKxclvTKE4+Y0pFCe/MYVSk5iWZQbusjGMQB02CBg0BZcEOurZRi6v8SQ/ZON5yD3Vq9XVtt7VoRsRETe6l/XYtoqDNAGXdjiG8+uHnt/hVK/XfktjOzBRuWlK7wREpDNYm/Z4NoPJxkkBisSrrBtznl52ERE1uCIvgbi7Afd/FXowkiuVBpUcQhn6M+iNGRFxAuXplENZcd5vfmMKxclvTKE4+Y0pFCe/MYVSZwUx7j+WE1majmtyMl0kWecXObI6MGl1uWaHH/XmW4Deg0QfhKA+yIAk7h1MVTBC9yPtD8qLI9ilNwAhD/vUkQgI++6Du5NiWUGrCZxOC30rSfi+1luT2Fd61yX25VDBb22qz9NhpXu5V6uI92l9JLEIHkBD4mAfRPMh+Db95jemUJz8xhSKk9+YQnHyG1MoNTrqkuWWKAImSzCbmGcwwUVD50fTiiMi+iCIncJv6wjKP0fUm2+m4tdTcIOdTFQwonswhP31WupCi4iYgODXn+hzQsNYyGlH1+x0rKXIJFSRKHyu8l3s16expY4Kom92NyX25yMV9767viOx5St6fs+2FiX280Nd48c9vi8fgiOzgmdsP44lhgNocBVjzO89Tn5jCsXJb0yhOPmNKRQnvzGFUg/GqipnFVIia/mN4KaJ1CMgu052j1lIpX46OsFjO6DEHkPTTFJnSYkfTMH+CjHaIynuZ6DWk305oqHRJCj7ONac1H6w6FLzVmpQeZ7nKQs13OxB/f3ttjZg/ZMr2xK79sPXJNZ67VWJrdz/TGN/f183+MlNjUXECJrEDmHMOj1PdA/85jemUJz8xhSKk9+YQnHyG1MoWM9PDTNns99cTGsaa1xBXfU80L6zZJtM0lSgCK4xzzZHncfSjM0aqc7+JQikTetMYT/zTt3JwiOwcyzCM7/6Btjhv/U9iVVvf0ti03dU3Fub/EhiX//bPdzPw+GGxLagSewe9Gmge+03vzGF4uQ3plCc/MYUipPfmEKpSWShiS1Z1x+5p5qcZNlxx1lIQEQXIZ5zTjhrEqXIKdkPFYeyjjXaN0FuPprOkhU0I1g4pftPe8yOpr5omoQ93HdSaD6Appf9J/rZpaH2WWgtqhuvfe0NiU1fvyOxjVvqBIyI2Lyrgt9SrTmUfXb85jemUJz8xhSKk9+YQnHyG1ModXa0MQtdIO5VUC4Jo64jIhYrHRvdq/TYrIBRU4PD5GdJ3KNy2aYGnlSCSyJgJBucUgktiXYo7p1jog1B4hmJZFR+XTeIu78pWddfk4uUnr3LPS3V3eyqQDeB6/3zT3Riz/f/5u903YdQqruqY9xnd+9J7OxA8yIiYgCnSHvMirt+8xtTKE5+YwrFyW9MoTj5jSmUXM3pOSCBram0daWjE0xWKo0ttlUAqUCUoj56HdgPCVokfNIUHpqaExFxMNIpKQSJgCSckZBHsXkm2jSJZG0SlmDtVpW7jnS9s867rMuySWhc6+qEnTuLVyX2Tq3uueuhz92/Luja7//4lsS+8c8PJPbm5fclRqXyd5/pFJ+IiIcLei2OYPw5XTN06OIqxpjfe5z8xhSKk9+YQnHyG1ModVb8IrI94JrEGBqUsFppT7K1lg6/WIPx0ivQu2xpBmW+sBeVzSIO2ir4PWwaaw0iCw2hGLdzwy8umiZx78LXSboD28mekNmegFQeHhFxuatuvpuVuvluhz5j9GZ8b6ZDW3ampxL7SU+f47f66xK7NtOn8QiEvYiIT0P7Rx5OdRR4kwv1efzmN6ZQnPzGFIqT35hCcfIbUyg1iXEk+L2IPmzZgQrk0tsIFd7eHOu5XBnnyltPwNb2CMpBz1oszu2DC/EQrm32nNNlmSTkQWye4RUR+f6IJLzhM5bsE0nHTeGdtVhzGewC3JceOEHpeh+19NnZmai493CwL7EnsMZhV8W5a5UKkk3sTdVdegSOUyoHJ4em3/zGFIqT35hCcfIbUyhOfmMKpa4rFSawfJN6zyX70ZH7LaJBmKASTvjsAghY10Dcu9lWQWQ01d+8rak6vOIcIllWULvoybg05ITWIHGuuaRX4yTaUQ9GKtOm3op070/GKohlryutGxGxAo5RKgcncW93puWyB2N1+B2NYGhHcsjNEK5D0zmfgJvvZKKxwUTLxslF6je/MYXi5DemUJz8xhSKk9+YQqlpgi5NacUpttRnLjntNiLfa64Lv1HLUKq7NFOho4L+eGfw2cNaYwfg5juCvn4RESMQbggSgkjgoXswo89CjO5pB/ooNpXBUs/FZRDOrna0NPZKpT3z6Fyegni13T6SGJ0LiZfXOmsSi4h4Fcp316D0m4ZfPAPB7zQpsBH7oX0e+/DZpqnWdGx2WIwFP2PMFzj5jSkUJ78xheLkN6ZQsKQXAc1uCmIaQcJgEz0QY0igWQV9jX7JjsdalrsNvQO3Kj2X/VDh5BRExYiGqbogaGZFTiIr7i1AeetyrYLdSs2uuDUQ7V6B0tO3Qz9/Y6J34ait5/wxiIrTWo8jsZAcg6/UyxKLiLgJvfkWoH/gPoi7JzAQg8Q96tVIzzwd12/rGk0OP3LUZtehvod+8xtTKE5+YwrFyW9MoTj5jSkUJ78xhYITe8g+ST8T1PSQ1OymCUCkXi+Asr8CU0168JVnsMk9UJUfdnTdJ21VccnKS/XXEfneBPQPAB6XbOBJ92qpUoV7E6y412uNRUTcaava/9WR/kPyFWhmudTVa3Z/oP8UnCzo9x209F+KU1DDiaYGsyP4p4GsvPtUuw/nRxZbUtxJXZ9OQJmf6PU6T7PVbLNdyku/+Y0pFCe/MYXi5DemUJz8xhQKF3QD81hVm46jUcIkqA3ARnwCmsi0VmFwD9zLD0DcezLTOm2qOSfLZ0REH+qqR3B+VFed7ZVADSCpgedCpWLaOlh2X2/ztJjvDPSifff6lsQ2/lgfn1lfz3npx3rN9o6uSOwBTEjSVSNO4R7strSJZgSLe8TORBtz7g+h/n6sa6O4N9eEq/xnswK7BT9jzBc4+Y0pFCe/MYXi5DemUGoSpdCxNIfjjESpCBb8dkF4uQ+uvxnUoi9BY869lq7xGEYd78Go4+NpX2LUwDEi4nisx2Ynp9D15tHUCok7FTU8bcFI8wnrvd/e2JbY1R/ekVj72z/Q/ew+ktj1+CeJvf6Peh1/0aHJPnrWh2N13jXdl6fQuwHHcY/1/h8OdR2qlSfQJZukyRE7n4io+M1vTKE4+Y0pFCe/MYXi5DemUOohlBRmhYWqrb8d1BC0aQIJCRtHILx9Dp89q3Tfl0DcOQHRbXuizq2nIxUa+xN1c1FJZwS7+bITjbIurWypJ5VKL4FoemPEjVU339Xzbn/9mxKr3/2+xCaPfq3HvfWBxDZ6hxKrQl2IA2iYSiOxm6ZCkfBGzzfdP84Ncl7qGvTMU27QfaZ1I5rcob+5COg3vzGF4uQ3plCc/MYUipPfmEKpSfyg0lGCxBQSAUmAaoJcf0ehAs8Q+ut1QdSiEcYHIO6djtUhRiJQk8MLHXnJMugmsep52nAZSURabGsvvBW4NgtTFosmZyBKbqnsOnn433rc4a7GBiogjmGyD/Xbo+eBnJN9GEt9HuYRXUncW+poH8VLMDWJ7v0xCJoREScjfUZpala21N5vfmMKxclvTKE4+Y0pFCe/MYVSk0BHY5FJtMsKg00CRFboOgOnHcWyzq0z6MNGwlK21DaiuQzzebIiIF3vbqWiHY3e3oB+fWsw+GTScPsOPtFy6e6//KfE6kN16cVEBdHRR1oivDe+LrHTWj9Lw1BIdCX3W8TFj0SvIEaiK4l717prqXWfNORVdvT2DEaQkznUb35jCsXJb0yhOPmNKRQnvzGFUnPPvWTpKKgIJLA0ueKolxqJjTjUIjnogoSgrHBCzNtHLe2+gnuATjKYyHsJ+vV14Lr2G27z7oEO8+j97JnElnfflxgNMd75lQqQn8OAjqOZ9kGke4VuvDmF2IYPCy2wWZLgR0LsKzAVmUqt64b+f/TMH8B5DyI3SdhvfmMKxclvTKE4+Y0pFCe/MYVSk7BEQl5WBCSaxLTpJDfdNOsEpOPG4DjL9tGbl/OUMstnky5LOpchjPc4hdhxQ2/FnbGKiJOHlyW2tK3C0mCsAtbnoeLXp10YxgHTd6kk+zyiK4rSSREw62olIXYNXJbvtpYldmes799fdbQkO6LhmYAYDRsh4dtvfmMKxclvTKE4+Y0pFCe/MYVSZ8W9rHiV7WUXkXfuZUteCTzu4rW9ucS9LCTa0HTa/YkKPju1ikjkQouIGICA9XimZb5TiPVh8O9eW+/p/VA33+5Yh6lQv76sG/NFQI7YXqVuxVvg5vtBX+/f1956LLGv3FvHtXu9qxLrLuq92qrVjUkl637zG1MoTn5jCsXJb0yhOPmNKRTs4XfRNDmqso48dFrB92UdWTgtdQ5RsenzdN7zSFVUlnk8UuFsp6299botPedxxfdlGXoFovMyeX4noWLTYxD39oZHEqN+i9gHcU4Vdx7hm8qq74Cr8WtvbUls7S9vS+yrH6sIGBEx+gcYiLOwKbG7bV37BKYd+81vTKE4+Y0pFCe/MYXi5DemUJz8xhQKmDHzte1Z1ZVU6qY4fZ73Q5OGFLJjdiuN0T8A9NkmhpPcKGmy6Gbr0+nfEZpI9HSoI8hpjaOOWoMjIpZgxDep4VWyVv4E6vR3hvqPBNahw78/L6L3QhZ6Jmgk+rWpPk/ddfgna1mbpVZv6DSjiIg/+JKOSX/88S2JDXtqu340y+WLMaYAnPzGFIqT35hCcfIbUyh102jj58mOlsbPzmm9ZEEMJpCAhRXHWndUEFmtNdZp62ebbKRUV0/CG9lxcZpK0lpKn6WJLQcztdPSniMiunDeJHRRjO5VH8ap03UgK2+2eWsT89q2nwft4vDcjVq67rPP1Hbb/eU9WgTXno5hbZzYo7GnU73XfvMbUyhOfmMKxclvTKE4+Y0plJoEo6xA99t0WpHjjMS91a5OTrne1ekzlysQ/EDQGjcIUKeVimxZhyAJXfNcWxprTbHBWPccEZHt8UD3INuUdZ5JSvPW7mdJT00C8Xm7red3b1sbc9b/viuxqsPn9+jBmn5nV/fzcKpOySdjdVT6zW9MoTj5jSkUJ78xheLkN6ZQ6qyD6jxjkecBS0dBZCFx71JHHVTrHR2LvA7i3lpbmzBSySrtJSJiFPp5appZwe/tfjs3qYbELxLygpptgrA7brqn9JVJke1lPSdZLnqSEt0DcjA+mWnsbkfF59YjbcDZxIddLR1+r6Xi3oOhTuzZH+oz5je/MYXi5DemUJz8xhSKk9+YQsEeflnRZl6HH4kx2ak7vVrHItPklIW2HtcBIa4GcW+5pZfnygwvWSzN9PN7MDnlUg/2AyW0B6OcCEjMJnpfSNxrEvHmKd8mXsb48hcBXR8SWE+gNHobXHb34Pnst1TEO2zztf4otET87mhfYtQf8Xh0JjG/+Y0pFCe/MYXi5DemUJz8xhQKq1fAyyrfzfauy45UzrIUKgK+NVUx5o8G3Pfu+rIKPDvH6uj6t96qxFodGkGusf1QEZDKr8m12ZrCgI0XINhSGTMdly3VnfwWHYM4lhyu7clY+xE+Gano9mFHn7H7ICofTPT7IiK24Tv3QRjuQ4l4H8Riv/mNKRQnvzGF4uQ3plCc/MYUSn3Rbq6XBYlDWWfiJRBZbs9U3PveSEW8P/wLFV0iIqrXr0rsxs8eSuz0JzcltruowuBxraLNYKqiDU3pHSTF0Bm4Ev/3WI21QMirKxWwFip1MJLgR8NiaNIx0TT1+WWAQ1JATNseaFntMQiD9Bw3OTkpTtcM+yjSYBhcxRjze4+T35hCcfIbUyhOfmMKJT2ll5jHURcRQRWl5OiiIRJZhxiV766AsfFV0JpeffWpxOov3dIDI6K1ps69au2JxFZbKtqszLTU81IrV/rbBiGO7gs676r8/aPPL9Yqkq5Cn7rFSo8j8fIIyk5Px+qoJJGrSezNPidZsXgKYlofhp/QHg9DBeTzCO7zDCuhdfzmN6ZQnPzGFIqT35hCcfIbUyg1CRgET2RVEeF8/dqSAgZsMTsNlsgKlZOR/jZOn2jPtIiIeLwnocNf6TpbMNzjWUv3fUrOvaTDD0t64ZxpCnETdRuE044OP3mttyGxVyodnEKlyNtdKIseH0nsGTgvaXBGRN5JSDH6LD3zNKWXeFnThbP4zW9MoTj5jSkUJ78xheLkN6ZQ6mz5LokV2d5s54GExVkrN3WWhK4BCGJHM43tgwttd0eFqu5PtVQzIuL0mTryPtrVMt9fLuj5fQ4DHkjoOgSh6wz6taGbK+n6i+D72oNSXRqSQuLed6bq+tsc6x6f1Jck9uuFNYl92tG+dTtjjUVEPB3roAtyEmYF5KxA/v+hLN5vfmMKxclvTKE4+Y0pFCe/MYXi5DemUNITe4gXMfFlHkidPZ1qPfjeVBspfgZq//tTVa53Ptax2xERR9Bz4F5Pz+9+6Nq7E1XxycJ6BhZWsqDSdSV7LsUi+F+AHow6X2qr2r8BfQi+PNR9v3FNeyUcPdNre32wIrHlrv4DcLfDjzKdC43ZPmvnri01Pf1ds+1m8ZvfmEJx8htTKE5+YwrFyW9Mocwl+GVpEvbIykvNOuk4qgeniSYknNH4a+IE7KaX66ZLpvt5GrqfHRAbjyGGdfpgaaZr2610j0u1inMk4kVEdKFR6GJbBdHNSm27r0xhGtK69jrYeEcFtoUHer32P9F9X4GGp7st3V9ExAHsuwNCJ46GTz6fOEEIHrHfNcuv3/zGFIqT35hCcfIbUyhOfmMK5cIFPxKgaKpMBDvMSHjJTjUZwOQUOm48A4fXVAWog1rFwtWKHX6L4Gwjx+EhOA6pMWe2GSk52Ejc2+yqU24dBLuIiFVw7q2CoHYbmpF+t6/nd/3P9HpXN69JrHu0hfuZB3ryUMiD65gV915EX4uXgd/8xhSKk9+YQnHyG1MoTn5jCmUuwS8r7jWVjpLTir4TmytSA8/k9JrsxJYhfN9ppYJWBLvlSEQicY/WIQcjiaF0vddqFfLudNYl9lZLS5YjIt4Z6315Z6IuxLfefCyxy3/1ju7xT/9aYrOdzyTW2/qRxDq/oAk5ubHb84INTiE0m9LI7wvfzoXjN78xheLkN6ZQnPzGFIqT35hC+R8kTD/qCCMhqQAAAABJRU5ErkJggg==" y="-10659.629132"/>
</g>
<g id="matplotlib.axis_593">
<g id="xtick_889"/>
<g id="xtick_890"/>
<g id="xtick_891"/>
</g>
<g id="matplotlib.axis_594">
<g id="ytick_1481"/>
<g id="ytick_1482"/>
<g id="ytick_1483"/>
<g id="ytick_1484"/>
<g id="ytick_1485"/>
<g id="text_75">
<!-- 253 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 10767.924132)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-51"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_298">
<g id="patch_299">
<path d="M 164.424375 10782.029132
L 286.714375 10782.029132
L 286.714375 10659.739132
L 164.424375 10659.739132
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p810a4c5e35)">
<image height="122.4" id="imagec67f687a54" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGvVJREFUeJztncuOJHdWh09GRGZlXbv66rYHhMceIWSQJbNgwwbNSDwCb8BjsOVNkECwZjcswCAB4iLPaLgYyzb0uC/u6rpkVlZmRkQmC0uzqPP9rZPOcrvd5/ct/xWZcT0V0pfnMvj8d3+8tmv85ZdvXl+yv7Nzt/bp4rlbO+9mbq1fr9yamVk9qNzaTjXEba8z75du7QrWln3n91H7fby5e9utvTO669ZuD3bweNbmLqNN137fp6u5W/vl8tSvXZ64tVm7wH1fp678da3gWpdYr/25dKvera0K9/U6g8HAr5lfG9aNWzsYjd3afuPXhlWN+27huLs1rMF29Ows+ja0HV0buq50X+j+lbal76R4o+OJPxFCiNcKBb8QSVHwC5EUBb8QSWnu/fHvuMWf/Omnbu1kcOjWrkZefpDcIRFnxsJvOPDipjcvK5ar2P+tCo6H5Nxy5aVND9vtFMRZDQKLpNay8ueyW4/89xWkz8uAhBFds22g54QgmTYwLz7HIHG/WvfX9na979aGlZeNJJVftFO3drHwkvuq859dwXNM16EkZ+lZ7kH4kQTE7wttJYR47VDwC5EUBb8QSVHwC5GUpv7JH7nFtz/8E7f2/k+98PtydODW2sZLjenAZ7WVIAnYQkZWW/m1BWR5kfygtcXKy8vJykubeSHD73DghdEQhB/9t+WMrJsVbHgdChIvKoyikPgkeYVyNpht2Bcy/A4gG/Dt4R23dh/u63Lo78snjc90/cye+eOBe0rychPomYiKWMwu3OpohBDfWxT8QiRFwS9EUhT8QiSlqY4f+sV37ru1d/7m0q19bD5T6hKyp04KGUsoumC7GkpjuxpKMClLbxUrb6QsxJN24tbGIPbMzGaVzySj7Kvnvc8GO136rLFF5wXkNpAYKknFbbL5opl7WMoKa/R9dHyl/R7Vu27tN6o9t/Zu5+9rD19ZN35xuuOFNj1PdL2jpb8ltpGAevMLkRQFvxBJUfALkRQFvxBJabqP/9Etrl940dVAf7V7YETuNl58rSoWEHPI3CMJOIIy3zr4f4vkx6zzJaEtZF+dLP11WIJ8NDPbReHnz+Ws9eL0xcILP8piI6KCjSiJJcrI20SyfdPtomXMKLk2OJfh2q/twMfpKw8hDkgqUpn2ovIStwXDXToXugfbZGPqzS9EUhT8QiRFwS9EUhT8QiSl6f78z9zi87/1YuLLpS/p7b3TsB0QLHvG5ZZUwrkaxATG/sD3bBtChhgNaKDBC9GBHyQLzTg7jYTfHDL3SO6hYAuWxtJ2xEay8GarfJFoGTNdV+qZZ2b2ovMy9RH18Gu8tKM34wSEL11vGgwzAlkYzXI1Y7mHGZDq4SeE+DoU/EIkRcEvRFIU/EIkRcEvRFKaD//CW/zntbfzJyNvFZ/B9JlzsKEz41RVsrtk7HfofxSk/FaVP8ZJ7e38pLpya1fmbTGZ2Lbjc4mOSo6aWDLI0dHb0TTZwYptPzb7hF9htmkyGm3MSVCPBlozM3u28A03R9CT4aLxcUC9G2ZrGNEd/AUAR5XTLy4bpCpv8zOM3vxCJEXBL0RSFPxCJEXBL0RSmr8ae1kxBEFHWmFq/rNnKy/YFoUaeEqJPTCfM0wScAz/t3ZBAu5XfhILjWMeBqf9lJIvcTXoYkj60LVpQMTuQv8ESi0lKM3ZjMVbSynIJDlJxgVHftNnw41HC9d6svRy9wt74damQ9+Ec6/2zw5OlKLGsUHZu0k9/k2PSdebX4ikKPiFSIqCX4ikKPiFSErzs6UfL0zNKEl0UK38DMZa03ZmZg0IOoOBOHuQaUV17LtrEGLw2REIv2im3ACaP5ptIHggU472TbXfB0M/bvrBzi239ubQrw3hWp/2XoaZmZ10vnHptIOpNFBDTxKR+iLQpBq6hsQmkowas54v/dQkOu4xydQqJlNnPTSJBWkaneJT2lYNPIUQG6PgFyIpCn4hkqLgFyIpzePFqVskqUEZcARJjZLIoe8ksXg08JlWhyDySMWR6KI1knsdlrzGBQuXa/olkpck/Eju/d7OW27tD5ZeVD0EEfu4OvIHY2b/PvYj2n+xuvCf7/zaaesbZl6AYCNZGC3ptQ0aj5Iko/HnXe/3PQcJSLKYiGZJktwrjk4PjuNWA08hxNei4BciKQp+IZKi4BciKQ2VPC5qLzqaoJwjSgKCMv/qgZdDZ5XPbKPy3QqU3xX0XGtpNHiwFLUkL7cp1yQxSGW5DyFz7/dbL/d+/N4jt7b7vv/s6vwMj+eDD73U+unsrlv755G/L59CCfUTyi4ceDFYmrpzHbrPq4KIpQw/utf0LJJMIzFI3HT5bek7leEnhNgYBb8QSVHwC5EUBb8QSWmo3BLlVQ1iAbLQKAOqJD9InlHp6OOBF1MddM2rQQQ9hxHNF62XinOQTdG+dZtAco8yHXdrL/IeVH6M9LutF7a7v33g1ur3fuTXCvLqTfuFW/vgr/01m8DxtA0MOgGZtoS+d9HBJzS8oiRie5DS0THwtB/qo0jHvV357UuYh2568wuRFgW/EElR8AuRFAW/EElpopKFBAYOlqC+fIUKzNUq1u/ty96Xjp6DtMMMv96LPMoko0ywbabQmnGpLmVK0hARGhhBZcwjmEK8XoLIa2FAR2Ga72Ds93O05/fzYLHn1u4Nvah8GiwRj5ZAbzL9OCrZ6FnehXOhvn4EPU8kkKn0d70qnQtcHxzyq5JeIcTXoOAXIikKfiGSouAXIilNdArqJpLlOiS+StDEU5KAF4vggIctpsFuAmWDUa85kpIkv6iPIv2n/qLzWXYP/9UL0sPlf/rDA7FnZrb45NKtLdtjf4wkgSn7Dq4t9nqksmpYI6IDP8wKIhYy9/ZhSMrxcN+tUVbrAmQ2Za/OOi9S6XkvrePwk+DzrTe/EElR8AuRFAW/EElR8AuRlIbkAJU8RuUeiZyS8COBQWs0ZOGm+5ltDZwiTmAlwUq94qAM9vHKC6N/GnsBdfboTbf21uf+Gg6hLNrMbG5+mMcUMjfPGn/SkzXIWZgGTEIMM0uDIhazAwvrJGdJ2lGW5Z3Gl0vfrr10Jc6H/v6ddl6ukhg0M5tDtiqVRkfjSm9+IZKi4BciKQp+IZKi4BciKZjhxz3JIJOo9WvUCw+z3yyefUf7ftXAawZCjUo9Z63P8jqpJqH9ntZeDv1XA0NOhrEpy2ZmDdyXEZ0LbPe/vT/uSeeFH12Hb0PY0vRlgkqtx5BleQRDSd6CXob7a/99y8aXQJ/Wh27tYgTl12Y2Xfnn5BKmL1/RGshCvfmFSIqCX4ikKPiFSIqCX4ikKPiFSAo28IxCNrvQezDMd5WiW0oPvc4mx0fbUsNGsv30WWo8etJ4u05NVCnFutSglJpZUvor9SZYQnovmeYo24w5L0HnF/1VgD57CGb/11fw6wGsrc3/orAoHMqs8tfiAiZpTQc+Lq8gXVxvfiGSouAXIikKfiGSouAXIinNJqIkwiZCDGutg/XX20D7IJFDFMeNb9EUlNKXSQJSTfZl69N7t5WX0eszghHtlCZLYjB6jNFR16XvI9FZVbF902hxWhvCPm71/hgfwv07qr0M3a05vZcm9syWXhierfxUoUmwIawQIgEKfiGSouAXIikKfiGS0lRB0UWgMNrAzZHIo0wrOsZoRhaBE3JqL0RIIlEdupnZvPeShraNikFao2lG3eqby9CSkIzeF2q4SZmA+FmazoOj4WPj4ktulURlDxlwlHlJTUavIINxgdNw/DUcD/w+jg99r4OD2172mplRqF6eeblXnfnjaXrYDvcihHjtUfALkRQFvxBJUfALkZSGMqBI+OAob/jCTbLxKBuMssaimWQECZ8DaHB5BM0VSdpMe56mctb6ySuUfUdZeiSboqOpiWhmYTEbE24hHc/A/HETFUhJknvR60DnV3ruenhKad90X2YDL97OYMLOCTThPIUpPnd6/xwfzb1oHs1i19XMbHbpRd4V7GcB10dvfiGSouAXIikKfiGSouAXIineDFhcGIV3UpBzJPL2hn4iym7tpQZlkuG+oZ8djVl+o/ajrnfgsycwIccsXhI8MC+RuIzZS594iXBs4lKJaOYmCbptjnGb/o3F/cIyyb3o8ZzWXvg9GfosvScw2eeggT6Icy+aFy3HC1UiTzsvDM8hrK8ocxb3IoR47VHwC5EUBb8QSVHwC5GUpjS44TrbDE+gLEKzgvCrvSg5any21BCEHx0jCb+DygvEWwMvTsbw2R4GJ5iZnYHgmVZeDnZ1TJLRuWzTJzCatVliGwm4TQ/GaE/H0vOJ5whLdNzEHAaQnPReAj6Csd1DyCy9gufubs/Cbwf6ArZwfaa1f6dfwi3Qm1+IpCj4hUiKgl+IpCj4hUgKTundJsOPZExpoAJl6VG57XHjs+9GIOM6GKgQzWubQUZdD9dmAfsw42uG5dJBgXXjw1RuOGvTLD48I1qCG5XFKPwG2w1TiUpJEoMX3cytPar89OQVTNQ9b7x8PqlZ+B2tYu/qGVyLKazpzS9EUhT8QiRFwS9EUhT8QiSl2brf2/XtggMMzHhQxq3alzjepWwpKKGdwUCFq7UfvNDDMZ6teFDCdaYrn+FlZjbr/efbYE866ikXFbHbZP2VBrZsIxtvOhM0KgaLwg5OMdofkc6F7umk9SW9T0FIL0EWn0Bm6C1YMzM7hngZwwkuQHNfQGzozS9EUhT8QiRFwS9EUhT8QiQFM/xumpJA2qm8wDgC2XEEZY9EB6JjCf/flsFJq3OY0loa2jHpvPS56rwc5Em7MTEYLb8mSO5RSbWZ2S5kndE9pF54tPYynrFS2Ti931aFbMDrkDile0X32WzqVkgKU3/KMZScm5kd1j77dQ9ig87uEkS13vxCJEXBL0RSFPxCJEXBL0RSYpMvNgCz0AoDI3jyL3weswY9mCEG9oOOZgEijgQNiT2z+EReuhbRrD+CRBwNEBmC3Dve8aXSZma3hj7LkmQjXZ/odaD7TGKQ9hstlTaLPydRmUr3amFeDKMYrLx0m1T+eSoNpDmFDD8ShtS3cgnPt978QiRFwS9EUhT8QiRFwS9EUhT8QiTlxm0/0YLtNTN7sfApkJTyu2j85w8gDbiGmu4hmE/yusuB30cL9ddkTc3YaFPtN43KjppmstSUtjuEkeiHI98T4cHOLdwP9VSg5qjncG2prn4OlhtTmuHa0DXEXgcbpBDTMdL4ayKa8ttBQ1h6RvDXGhinbcb3dQa/AETH1+vNL0RSFPxCJEXBL0RSFPxCJOWlCL9Sw8SLhZ90QvXuZyM/Avnu6NCt3W/82jGIwRH8z2sHXtBQmuwmYim6bbRxJYkgHHPe+HOOXi8zs6OBTxldQlI0pZHS6PQ51JLPe58SS+nCg85vR9K1dK2jMnXbEeax/YKoXJFAZPvYwTNKQpSEH8pi3IsQ4rVHwS9EUhT8QiRFwS9EUprS1JZvCkmSkjihzKjp0teD4+QbyAYjAbU38PJjDGuUCUiThkp14zhFhrYNOiT6bAMZXjT1aD845vwBTEIyM7sDwo/u4WzgxeJl7fczAeF30nvZe9L6sdbEuotN0vlq49jzuF1z1Nj0oeg+KAvUbLspThJ+QohfoeAXIikKfiGSouAXIinN3tBLm2hzRRJ2JDVK2VcoAmGp6/1+Zq3PBrtovEQ6hAy/vvI7oVHeVNK7SYYfSZZ+i6w/yjikbC5q6ni79nLvbfNi0MzsndbvZ4+ajEKC6BRqY/+v8fv+D5CuC7gHlM3XV7HSX7N4U9CtpgpFMzTpeaB2soVDico9+k4cic67EUK87ij4hUiKgl+IpCj4hUhK83DvtltcwGjqBZVggnTDKTU4I8fC2W7RvmlUJnoBI7WXIPJo9DaVmNJ+zTYQS8GTjvZ2w6w/6IN4F7Lx3venZ2ZmH9x/5tYOHxQ2vsbFE7+fn53cc2snY7/dU5Czs9rvl8q+S2DG6Tb3BUQe0dT+vkRLxEvTmqKj3KPnrDe/EElR8AuRFAW/EElR8AuRlOaH4/tu8bz3Y4PPOt9Hj8AR1H1s3HQJEme0n3nvS0fPO5/1NwXxcgWfnXUxoWm23YAOLreMZo1BNl7lM/zeML/23sGZWzMze/CHPiOvuv+WW1uf+xLc6qMv3dqt517E7poXYlSSTefH2WrBqRtbQvum8ec0JIVELJ0fDUgxM7vqYs/oAvoeSvgJIX6Fgl+IpCj4hUiKgl+IpDQPKz+RlabdUnnrVe0FxFVwIqtZvLwVPwuZTZRxWNq3P5ZYmSiVF5c+H80kq0B0ESQGuW+hF0s/6P3/+Qfv+SnJZmbVr/2WX2whc/OXXhg+/9j38HsEJcbTtX9OUBYHr+u2RDP3aEjK8Q70R4QJyHegv+E+yFmKNTOz572X7k8X/h6cLfx2JKr15hciKQp+IZKi4BciKQp+IZLSkNyjARa0Fs7IKsgUypZCSUb9A0GKkByiUuQoW/cj3GI/1EeRwAw/EH53YdBFvc//+9en526t/+y5W3v0974H4L9cHbu1j0b+Xj1e+SzS6QrKr6F8F7Mpt7j+ZvEhKftDf84k994d3nVrPxx4uX4I79/5gM/l84p7Ll6HnlHKYNWbX4ikKPiFSIqCX4ikKPiFSEpzaSBUChlG1yHZRJKEes+Zma1XVKr7zfurcR89vx0JSCwTpUmrhX3Td26TiYbDGIIZcCS/luBcz//HZ6uZme08eerWvvjMS61/Wx+6tZ+P/PP02cpnnD3pfDnweevLr0lUUQ8/ul5m8cm4dK8pm+/WyEu7h82RW/vNgc/m+1Hn42AMD+hJzfEyabzIPQIJOIEpzRSXevMLkRQFvxBJUfALkRQFvxBJaSYrL1RoqAVBkmQIYoHEySZEpQ1Bx0hyjoYsbNIXLjrZeJsJsVSWOel8ptwX3YVb+weYxvzi5CHupznxa89qL9Qemd/3U+j/SKWop60vJ77sfIYfZWjOoUddqXSb+ihGy3dJaFMfvlswbOTByn/2XhcbNnJeiBdSmvR8j+EYKUNXb34hkqLgFyIpCn4hkqLgFyIpCn4hkoJakQwimc/RwH+c0giHVdz2R2v8cYQ1HCP9+kDHSN9HlH4BiH6ezoXq0ymFlba7WPiU2M9gu/OR3+6jxqegmrEZpl8aruCXIhrvTlNlaI1GrFPDVDL7pRRw/CUFblV0KhT1kegKI7WvQ2/aFg5mVniUZrBv+mWOnsUxNArVm1+IpCj4hUiKgl+IpCj4hUhKQ6mJJDAaqMlf1SBJIAmxlE7ZrrxYonROkjEk7fYafy77sEYpmiR3qHkkSUUzs10QKiMQnXQucxBnp61PiT1f+rWrFtKzSc7BeOeT2tfUm3H/BaqXJ/GGkowmH9FnYR8k8rad2INp1/DcYjp1C+nLI7/2uPZ1/wdNTHyfViwQL9Y+NhbwjBI1vOf15hciKQp+IZKi4BciKQp+IZLS3IbpLmvwc3trLyui9e402ceMs8FI5JFEIpl2PPQZa29Ac8V9OOcZyBRaGxXO5W616/djftsWBNYJTKqh/gBU705CDJt/tjGhZVZoXIq9CWA/QWlHfBujt6PgVCiQktPW34PHy1O39vMdeMaGB25tvPbv3xfGU6YmMNZ8uYZmpiSvoVGv3vxCJEXBL0RSFPxCJEXBL0RSmksoCdwJZgOR/NqD7DkSSF99HkqC4TupjJIy6u7UXvj9oPKZVncMZAxkVU1ApowL/y/pOymf63wAZbmQNUgyNdp4MpoV1/ZbZsp9C9l3rxJ0LiRJXyx8M9JP4F5dDH0Z8xFk2PYFQTpdQRk0ZIfSlCOSl3rzC5EUBb8QSVHwC5EUBb8QSWn+u33hFvdBplEpK4k4KkYksWfGpaPRXnh7cIzHMK74Fuz7HpQSV2soLwZlt0vpj2aQy2d2EpSIZyByLnu/VppKE4HkVTTzLit0fSircQ7l0qcDLwGpRPwcxmmX4oUyYmms+WTpS4xJVOrNL0RSFPxCJEXBL0RSFPxCJKX5dPbULe7UPluNSmhpjYYDHNZeapgVRiCDZKPt9qAsd0hSEvZLGVQk8u6u/Nphz/3VZpXf9hn8az2HMuELGGs9hywtKtWkrD9ak9zbHJKkVLJM5bIECVuSeBRXpc+fLXxfxzn0daT7rze/EElR8AuRFAW/EElR8AuRlOZs7oUBZd6hnGu8dDsa+hLaUq+/6FALEljdwIuXGWTPvYDP9lB2fBsy/Oh/4+2OxdkBeMBxsASXMiVJ7uH0ZLhXKPfg+ChbTXw92DOReuZBRl10O7qnZjylmeRe9L7qzS9EUhT8QiRFwS9EUhT8QiSlaaHMEOY7oHRDqbHB0Iao8BvCIA+atEulkBeQcXhOawO/toIS4aOa/1/ur2JZgzvQo5D6FtLwkmEh8+s6XBbt79Uajtnsu+vDFy3nJl61gR80rZquN25X6K1IsbWNtNWbX4ikKPiFSIqCX4ikKPiFSEoTFSUk7VoQGJctDDoAqWjGWYPR7UZ1rMR4r/FDES4bn4W4qv0E1Tu1l4AXsN8SNJG3BnFKonIX9k3StYV+hKXrfR2Sq2ZmPWQc3jQV3FMSfpTVSOKrlEz5Kg0R4esdH3xy0xmZevMLkRQFvxBJUfALkRQFvxBJidsrgCe/etlUGjYRnTobFUGUFTcf+h5ptN8jyOZrIfvqqnDIXe3/MIWyY/o4DUnpQUruVP5cSO5ddnN/fHAPOpgYbGa2guPeRpxFM/fCAhhKXlEC2s33LsTrQKcX3O13OelYb34hkqLgFyIpCn4hkqLgFyIpCn4hkrKV7Y9SspdhEwubkacm40umeQwTiRZDb83nkE45ARP+1Y780oRsOpzLYXQkeuW/73LlGzhSQ9BZ50d+l3gZE3+ivwDQdq9Syq7Z93f8ud78QiRFwS9EUhT8QiRFwS9EUl6K8HtZUL0zpRuT/DrvZm7tAmr8x4VpKjSVaAnH08B2+zBufBdq/Gm0OIFTiuBYSlLqu5JVuN9X35t9b9GbX4ikKPiFSIqCX4ikKPiFSMprJfwIqmO/6nxWHAm/0+GVWxsVas7H5nsJ0JYjWB3T6G2SdmC/JoNYhh+Ndy418HwZUFZcqSI/8tnvQ0bdq4be/EIkRcEvRFIU/EIkRcEvRFJee+FHcohGi1PW30XvG2HegkafZmY7NFUIRm/vwv/b0dqv7dB0HpBaX8A+SHJuMt75ZZTMbpPN9102vXyd0JtfiKQo+IVIioJfiKQo+IVIyv8DA106WVsv7aIAAAAASUVORK5CYII=" y="-10659.629132"/>
</g>
<g id="matplotlib.axis_595">
<g id="xtick_892"/>
<g id="xtick_893"/>
<g id="xtick_894"/>
</g>
<g id="matplotlib.axis_596">
<g id="ytick_1486"/>
<g id="ytick_1487"/>
<g id="ytick_1488"/>
<g id="ytick_1489"/>
<g id="ytick_1490"/>
</g>
</g>
<g id="axes_299">
<g id="patch_300">
<path d="M 299.674375 10782.029132
L 421.964375 10782.029132
L 421.964375 10659.739132
L 299.674375 10659.739132
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p74264846a1)">
<image height="122.4" id="image42f0938ac2" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHKtJREFUeJztnUlvZOd1hs+disWpm81uUa1ua7AsWYkteMocGxECe5GdF1lkkz8V5E9kk3UQxIERIIERIwYcJbKswbZaUg/s5kxWkaxbtyoLORu+zwU+qrpbsr73WR7e8bv38AJvveecompuzeMCTVlfDMWVpRWJvbZ2S2I/rJ6T2F9vPpBYRMTa7YnEtn+5LrGfnF2T2H/WZxJ7q92V2N0zjR1OxhI7n7YS6+Yzic3nslyfxEPjfdt+FhRF8diP+bjvj66xLEqIpW0XETGo9F1erge6HbzzZ52+E+PpucTo3UldG7rnvn1n8D4uAq+YMeYLj5PfmExx8huTKU5+YzKlLkIFBxIhmrKS2KDQWHUZDQj0i0U0pFQhqKJYCf8H4fo6CkYE6H0BS/tUREB6fvScFz+RhhYRugg6Hj2BAh8Ai7aTbvqpt5t2XdI1kgD8RJ7BAvjLb0ymOPmNyRQnvzGZ4uQ3JlNqEl7IFTWs1BV1pVyS2IbqIVEPekQy+NeTakQrQTyp4IAoVML9kUDTFXrd7QxuMCKmEP88iXtPwuGXKnI+DUiw++QPafuXM71wetbo+uwRG5O2w9DTcYb6y29Mpjj5jckUJ78xmeLkNyZTahK/1pqhxG4ubUjs5XJVYl8+11Lb5WfVKRURUTSJLq+krdi5R6WaS1Wj1wKCGIl4RZeuaLVdmvPrs4IckREsGNJ1s9MuvUQ15Ry43SWEVHRkggh4mdJa2TdxvYjP8n3wl9+YTHHyG5MpTn5jMsXJb0ym1CuNuvS2lq5K7PX6usS+e6b/O7766o7EmudVGIyI6HZOJXY+UUfeCP5FnYOQU4HwsgIuxFANMCYzFSUp1leWiaWn5AabPd5ef6luPhJD+1x/fULgRWZUykqxgtbmKbndYHcSAWsoT68rKlnXdexmerzU/o+fZe9Hf/mNyRQnvzGZ4uQ3JlOc/MZkSl1DyevVWgd0vDpX4ez1zUcSW/2ablcsqaMuIqLd1eEZ2xM998OhiifjuYpxJGqtVepWxAENMxjQ0OmAhj4xhtyAVBJagviFok9iDzjqPUh9C6m0GfsW9pwHHX6Jgh+JX7ReHey7iHuuDxI0aX2Wan1v6R2je6H+f+cwBIT2fVr4y29Mpjj5jckUJ78xmeLkNyZTnPzGZEpN1kRSvo8qUNxH2tSz3T6S2HyqNt6IiHvvaY+A9waqxG+H9gg4h6Jssveul3qN07meg5p/kj33tNCx4hGsIJOavoj9lZRmUqSpXwGNpSZLawSr6fhrxlxjqco32ntpaFKiDbiP1LHf9KvXMjStpUa2BP1SdHSuv25R/rmBpzHmieLkNyZTnPzGZIqT35hMqUmgOZyqMPFOo7EfzbXu//mfrkusb2z3/Ub/97xTqaC2O1PxZAyiZEMjw7HeXbcjwY5sqSQCfhJPs7piDT2sTw1iITVbXR8sS4z6Mdyo1/QcPf/7z8E6fdSp6HoCMRK6CFqbFpaWRm8n9weI9HHsqT0MaLtBkTYBalzq2qAoDD0fIh5/nb+//MZkipPfmExx8huTKU5+YzIFBb/RVIWc9ye7Etuvdbtho+JHn7BEosgIap5HMxUByV1Ggl9bqNsNxRg4xynEzuD6ItjZ1idCXQQbbiYKflcb6L0wuCGxb821ieo6jKWOiNgDhfaDSsWqD7tjiT1oDyWGzVELjZGYhvIqmQN79LpFmpmS4Isj2uH1pn3pmTbwTPtIdQOmCoP+8huTKU5+YzLFyW9Mpjj5jcmUmoSJk1aFPBLYdkot30VHFcQiuKQ01WmHggqVavaUrV7ktFNx77jVUuSzKZf0khCUKrygEJRYYrpRq5D31VAR8K9CxbmtFzQWEXG0o01P//fomsT+fagxEmf34wTPcxF2Pz7+Zp3JE4motBnyoOugQSlsR81I6Tn3URZpjVBTG8L6y29Mpjj5jckUJ78xmeLkNyZT0OFHTiKaNpLqnuoV/C4xReYii5Q3kvMOe8+BM23a8YSV1L5rOHWHevNBH74r4Oa7VWkJ9eugSb70hop7zbdexGu8sq9C7sqPtiW2vf2cxN6Cnol9o8A/LU+ixx1OGoI8mIS+E6nHIygHLgNeN/giaTt/+Y3JFCe/MZni5DcmU5z8xmQKCn7EFMo/FymXjEgfG506ppkEGu7DRz3g0rbrI7VfX5VYvrtS66jzZ5orEnulUIffy6X2W6xuaK+/WOoZQFHBMyjTBCN6/jQSncqTabgH9eubzxcTEHkgStq+9I4tQqoAHBExo7WA50I9AGnN/OU3JlOc/MZkipPfmExx8huTKXWqE4kENhTiSEzpce3RkAYS6Eg4o/OkCnmpos3CTjIaMLvARN4rpYqAWzMQ2BromXdHy2qLu+/oBUbE8Qcqxv3y3jMSuz+EdYQQlSLTcya32/lUnaXU/6/vPU4VpencJFRSmS/dSyp83ZwvVNK7CP7yG5MpTn5jMsXJb0ymOPmNyZT0iQEAihXglOoV2OBfT6p7K1WMS3XpPZEy0UQXIjnbxlMdknEE04r3Kz3ex6c6kXf0Xyq6ncy0bDgi4m6t8Y+Gei93Q6+HxC+aYksiYJ+z7SLzadq6RrDgR+Leaq19C2kgCr3zZzAxmsrBU6c+9wmItC2tGZX00jr4y29Mpjj5jckUJ78xmeLkNyZTFhL8FoXEuL5pqyn7psLDISiU5mrsOyYNh+jb/yIk+N0935PYz5dVOJsMta/famhJ74hn4MY+CHmj0NLv47kKXR0Nh0js60hrUyauVx/0DMhxugaC35eaDYldK9RlOZ6ruHc010aKNAl6BCLuuNNYHzi8Zq73R2W+/vIbkylOfmMyxclvTKY4+Y3JlM9U8CNShbzUSavJ54UYCVB9QxaWaxXeqE8d3V8LbjDabn+iZblvx33dbqDThVdgmEafqxGdaLilMgHxi5xpNNWY1oGGxdC+fdDTwj6D4EK8WahI+mdTFfy+BJObJyCw3qv1HO8M9F5+MTuUWETEh4UKvgSXtlvwM8b8Fie/MZni5DcmU5z8xmSKk9+YTHnsan9qjf8nG8OmiQ0XiVSLLSmfBVwM2UCvLGmNd0TE1tJV3bZSxZcsnrsTHZ99NNGpO9TMcnem+55MzyS2VGqNPk1MiuiZsANqONl2CfoF4KwD+ytYmk9BSafa/b6pUPTukGWY7nkT0uPbtSrxX/lbXdvyta9IbH7/gcQe/MOuxP7xUJulRkT8GwxYol9sqMko4S+/MZni5DcmU5z8xmSKk9+YTPnc2XuxBj6xJpuEnNRpP8QQLLu3hpu47TcGW7ptqBX0Uaho92YBk2qoKeQkzf5KzSPPShXOlipu4DmkCTvQKLSG6yZr8CmIexgjmyw0NyWqS3zH8H2C/Vcgdu2GCrHlH39fYs1f/I3EZif7ErtZ/r3Evvd3KuJGRDwY6oj2U5jORM+AcsNffmMyxclvTKY4+Y3JFCe/MZnyVAS/y4xPphp6EvfInYZNIReo+19rtKnji8013PZPOnXzvdyqGPdBrSLgTq1Czv1SxSEi1e12mbVJba45nWstOomNqc49EveoFwA2Qe15zKl9H2i7KTjlzk8hZUYg0JHotqou0OLGdYldv7qN13jzVN+xG6XGJiACLkM/B3/5jckUJ78xmeLkNyZTnPzGZMrnzuFHIhSJew2VnULDzFTXH7Feg8ACE1siIramKvBcqVTUWp/pNQ7rNPGShNPUqUK0NisV38sqxGnNyIVIjkNswpko7l2qRByg8m1ywFGp9Xal1/3ergq+Wz/6qZ54HcS95VW9vnd/LbGDY33vIiKmkK0rUGp9o9LzBMT85TcmU5z8xmSKk9+YTHHyG5MpT0Xw6xPYUkt1Sdwj990ylKJS7zk6HpZ0Qt+7Pq3pQa37H85VZHm/UbHpYQf9+kAkIzcfCVpLlQqIqzCCeqMBYSh4uk+b6OYjMQ0nAC0wYp2gc0Swa/AM3IUH7UhivyqPJPZjKOku/ll77n37zj9JbADV4Pf+e01ibxbsIt0r9V6aub6RzxaQG1B+7S+/MZni5DcmU5z8xmSKk9+YTFlI8Et1ymEJZvSMSgYxbr1Rx9MzAy2D3ax0oMZGqW61jQIGWMD/wRYGU5NjMCLig0oFsXGh+3/Q6Zjt++2BxKjktW+k9kXIzXcF3IrXYL0iIgYgDo3nKkCeJJYJ05rRqPMZiFckcuKgih7BD4yXuLYHhQp+xARGau8NNyT2y18/L7H19/V4Dyu9l+1G1zoiooX7XgVB+8pcn8tmRz0vjTFZ4uQ3JlOc/MZkipPfmEypF+lxR0LeZabskjC1PlBh6vaSWqN+r1YX1Ffm6ky7DdrJFg6CUDHlPgy1+LhHIt0rVQjancNEXnDz0VTd6UyPl+qK47JomrzLU3obiFcwaZeEPNqXhp8MQKBr4Z7Jocdrw4IfxWl/6jNIwiK5Gk8G+vzu1usSW4X3qaPp0DPOyasgVK+HrvfmTPPtFiif/vIbkylOfmMyxclvTKY4+Y3JlLrsEeNSwIm65OaCEtOIiJVG3Xc3wLn3+yDuvTFREelrAy3BvPGCOuqadRV8zvZUTBnehdLKKfe9C+jDt09llIlTg2eJbj7aFwWtTgWtcaWlnxERA3A2TqCkl4RFmvBLsVQxjdx4o1YFtr5pviT44aCT0Ps7DXBZ0nrD2pCIS+5VEkj7eivOoQ/fOhxzDiIgGAn95TcmV5z8xmSKk9+YTHHyG5MpNZVWEn2Tdi+SOlE3ImIFJtZer1XUeAGcey/FqcRuvqyC3/B5suTpNXanKtrUUJI76FmGFShHXYP7XgaXVqromvoMzqZqa9yfqPDZxxoIgeTSpO02a+1J18C+5FY8hbLhvTbtumdzfR8iItoubdAJ9gDUVyJUxuN7IQGSxF5aV8qLiIhJDYNO9HWKwFJteO/wLMaYLzxOfmMyxclvTKY4+Y3JlHoZyi1TBy+QU+oyYEkwxM4LFVRGMO32/AgcVCfs/LrIZKT7ns6gl13N5ZZjuEbquZbah49YpPyaXH/kTIuIqMF1drtW5+XzJUwxhjUj9kt9d7ZDXYg0dIWum4acRPB9o6MycUIwioWQB+h+TexvSK7GiIhxretz3KnQuQ2i+XsgAvrLb0ymOPmNyRQnvzGZ4uQ3JlOc/MZkSk1NNEkhhRLv6CBIymcHNtmIiPOZKrRHnRoo75Wqfv4KRnSv31dF+uZMLb9lrYrt4b4q14dgxd3tEbO3YXzy9kzv5QDUWVoHUppJQSZrMP2CswZTj240ul4REV9vrkvsu1Nd7++UOmlo4xm9v/0dVZp/MdFz/3ygttajUtdmGUaI03scweO4Z/CDC1qn4ccVyo0C8gCV/cT+F9TINIJ/0TiB3gYPi0OJke3eX35jMsXJb0ymOPmNyRQnvzGZghN7KIZWR4iRDfgyAsbBVEclfwR14+u1CjxLrdoaz+6pQrcKddFHUxX3dmr93/iw4Hu5D+Leo07v5aDV2DnU31ONOPVeIKGLGqNea3RtXmp0tHQEi3s/uH1PYhs/0ElKxcaWxK78/DcSe/SvKkB2IF6OOhXsJjA9qK/XQd94+BRS+yfgKWjXRHt233m7xGat9O6ggJx0NcaYLxxOfmMyxclvTKY4+Y3JlJoceSQikJBHtc2pE2QiuG75oFRBjJxRoSav6MCxdlKqeHUNmjqeQp3+x3VazXlExM5MnW17U20+SZNzaH3onknwW4Kxz8swIWe9gtHnwRN7vlGqK3LjDV3b8huv4/6y3ft3JXYAdfp3ZvrsH7TqVjtsdcx5n6hMoAj46XVBnlIFz4pcdqniekR6/4zUPgT+8huTKU5+YzLFyW9Mpjj5jcmUeqGGktSA8xJNJqedijTHExXOSOgggWeyBMer1iW2ASJZB+uwM1dBchtcexEs7tGYZnLz4bQYgKa70NhnKnldg9jtnmabt15Wka184eu6IQhYsf1AQuN3dB3eHeh78uFUS4R3zlV8JKE4dQ37SHUCkmiXKsSSG5PceH0C+aRQZyPlxgyayVKa+8tvTKY4+Y3JFCe/MZni5DcmU2oSJkhYIkFkCuWtJMT1OZZIbGxhtPEoURShSS4njYpNNFqaOJ2psHQCPQYjIo6nKlSOp+rmm8z0/rgvnK53B1NuZrCGJLquQD/CZ1t+LsPnQQgkJ9rHH0ls+qaW7/7mXe0JeGcA7k4qd4ay7z5BLJXU/nrUH5HGzQ+hZ+I69Ewk5yUJleQCjeC1oFg7gxH0NFUIz2KM+cLj5DcmU5z8xmSKk9+YTKmvD9QBdwp9086rNLGBxJgJiHh9cRJAcDsaDgL70jWu1NrjjkROcl+RYNd3HnLzkaCZWqpZdDC+HM5Lz6+FwRKzHlPbfALb7uxp7J7Gdn6m6/h2qUM7Hs3VRUhriw621N56PdCzJuceOfJIIF+tVUCmvNqAsmoU/GCIS0TECMRmEqUxf+E98ZffmExx8huTKU5+YzLFyW9MptQrZZr4NZiB+FGq+EGizbhgxxK507op9Aokhx+4+UgQOy1U/CCHF5XGkstu1lM6mtr3EAcqJJZV0zmovHVQqjC0A6XId2qe0rv3tjrRNuO+xMYf6vq8+/BZib091OvemVIfPn136B15EtA738A7MQSX3hoIftcqFTm3ShX8luD7e1bxOzaqVbQ7BsHvECZBH0PMX35jMsXJb0ymOPmNyRQnvzGZoopGRNRF2sCBlUrFQhLiSEyLYKGL+vq1MJWVxLjUqaqp04Vpuz6HH5UykzstefJrInQOEgF322OJvVVfxWP+bOeGxF75ifYofDRRAesnQ31P/me2L7EHE+3XR9edSv9kWyhlvUSfyZR9SfjeACH9udDY1Tk4S3su77jQ/Q8qfR934Nx7kKv+8huTKU5+YzLFyW9Mpjj5jcmUmgQ6gkS7IUxaJSGu6vkfcwalh+OSptimCTSpA0NIBOq6tBLhy5Qnk6BJ15g6MIJInYpMk23fq3bxmP8y2JLYW7EmsUfLes9vtQ8ldufskcSOJmmTdun+SHSb9jgvaX/aks5dJ7o26f1eBy39JgxJuQ4To/s4qnT/FSpFhtgSiPj+8huTKU5+YzLFyW9Mpjj5jcmUegLuOaKYq8hCgl/qJNkIHoqQKtqlD15IO17qtNS+gRGpzj1aHzxeYikrDj6Baxy3KqR+HCz4jWe67RCm/FJPud1zdRLSucmZmPpMF+3hhyIgCHnYj5L6DIKEWNIEa7gWivXdXQV/WIbYGpUJhwU/Y8xvcfIbkylOfmMyxclvTKY4+Y3JlPocpoOQhZFswLTdAH4BOJ/zBBJSWBepd2e1GKazYEyPR0p6n9JM52ZVGRp4LnDPfD26rmdQK99nVR5NeAz5RehXBVLI6f7wWWGPBogt+FxSx3ETdH80nn271jVcBXvuIYz87oOmLrWwFscFXCP8qucvvzGZ4uQ3JlOc/MZkipPfmEypT6YqTGDTQxBjGqi9JytvX8+A8TTN9ol18QvUwJPgV4PwQhNbliq+F1ozGsd9BqOSUxt9poqFXaKASLbUCL5ugp5LqrhHHtbU674MqSJwA8+f3gliBDl0r9UR5PNG72+t0Oaf1SXebVqxMViQD2d6jf7yG5MpTn5jMsXJb0ymOPmNyZT6eKLupFTRBp1y0Dywz8FGE1r66uUfJyTkrFU6ZpnGMTfQCDGCBb+DqY7FPpho7KRVMWYGDUU/S1LFPdyXtvv0ei2yiAAcke4EJHH2LFTEPYQR5EOY7NOWerymx21IQiC9JSMY233gEd3GmP/HyW9Mpjj5jckUJ78xmVJTqWcqOJ0HBL++ckss6U1sXEliI7m0lmsV7a7WKxLbaq5I7Ha5KrHNUNEmImJS6L18XKvI8ptSm2bene9JbETjwROdd0RqY9SIxz9G/Kmco+f2Uke5k2BLahrti6PmwdXaJsb6oMJ42v8I3HxUduwvvzGZ4uQ3JlOc/MZkipPfmEypF3HUkZiCwkkPqaIPlWAOKi23XamXJLbRqGj3XHNVYq9WKvi9NtVz3Gp5vc5BbHy/WZdYOdA1o6lJJIamThUinsTkm98FUNwjJQ+WsQMRl45XwzQcmuxD/TJJuD7t6XlJuXUKbr5xp6Xyx60FP2PMb3HyG5MpTn5jMsXJb0ym1Is4rRbtrbdI6TAJfuvNssSeqVV0e7Fak9irIO692qqYsrWspZoREZMWhpVMVWy806jjcJXKicGZSA6/VMcZujF7XH/zIrF/IJX5Jjo0iUXKchc5b0SPUJ14yGKm103O2f1Cy7lHIM713QuKiNATkt4T2tdffmMyxclvTKY4+Y3JFCe/MZmiKtWCPIly0FQxp4b+euulCmebc73tzU7PsVqqSLK8wu6reqKCUT1SwW+6QMky9R4koYr6zBF9Zb4kvJU0d+MxT1SmkmzaDqdId+nDVB43tA4kuo0KLbU9g+fc57xsQbSj89Dz50E8xpgscfIbkylOfmMyxclvTKY8dsFvUVKn05LQQaWMIyiPHMOghANwDB60KhYOjtJLoM9BJesWGH5BZbmX6c13Eeq3GMFiYyp0jSRUUvn1Wq1ORxIf6TkfTdh5SYNhUidBE4uUQdO90Nr0vQ9U5k2QuEf7+stvTKY4+Y3JFCe/MZni5DcmUz53gh9BYgUJfiT6PKgOJba2BNN3K3XjdYUuz7jV7SIiVuAaocoXJ63itGOILSLupZZKR7DTjvookmC4BJNorzY6JOVZGJLyHAxJoSu8O9PS2A+KHdgyYi+OJUYiIJYsQ4ycjrS2qT0mSeQse0qbqV9fAWXCdC8tOFj95TcmU5z8xmSKk9+YTHHyG5MpvxOCHwkvNKyChJzdiQo+K5UKL0uNilxRqhgzpe0i4nqXJsatg4i4DGXHKPgt0OOOnHe9gh+IVYMSrrvS674Og0q+VKu499VQEfClqV5PC7f8Zq3P4KjRctmIiNFU4yQWzy4xLfcitLa0hiR8btbaT3II70gED3chgTXiQCJH5yqG+8tvTKY4+Y3JFCe/MZni5DcmU5z8xmTK74TaT1D9Ndb4T7X2e689kdgVmJqzCjbXIfk7I6KZ6/9R+s+6PAcrKDQeJcjmnNoLgCyoVEsewco+2VCvwzSkL9c6/vybM52k9M2JPpeb62pVPRzpefdLPd778PwiIhq4F7Ilt/DrUWqNP06UgvOulPor0zX4RelqQQp+RAvXQxX+J/ALB/0S5i+/MZni5DcmU5z8xmSKk9+YTEHBb5G6ceKJTPGhRp8gf5xNtYEnWT4PulOJkRhz3GO9bCqYcgO3fVSosDSGOm0avUyiFEGCFvYM6GngSZbRjVpr7V8A2+53QNz785kKrF/+032JNc+C+PWmbnf9I7XJLlcskpHwRjbp1MaxxGyB8eBUu9/0fJMrOA9Zgeme6fn7y29Mpjj5jckUJ78xmeLkNyZTahL3FqkbR3oO97iFwEXq/kedioCjSkW3YxBTIiK6Qs99BgLkR5262B61R3qNHTiyEhtFpj6/vkaRQxD8rlcqsr0SKu79Yat146/8QO9v8MYf6IlX9ByrR/8hsaUPda37RDJuRpq2PqnvJ00AIsF2PINJQ3ONVT3XRwLkKUykSh1L7i+/MZni5DcmU5z8xmSKk9+YTKlJHOpzfqWQOvnkaUHnnsy09HcEpb+jRsWUwzkLfgcgvOzO1DX4YKLNFffO1QFHQiWV4KKDDQQjEoH6nJx0nmuFlqO+orccL7+2q9f4l38ksep7P5TYfKLrVf74pxI7xdHnaSJXH1S+m1rSS8+KBL+DVsVeEl3PKn0/+zgGZ+r5TM+N04eSz2KM+ULh5DcmU5z8xmSKk9+YTPk/eYTjkXKAmVYAAAAASUVORK5CYII=" y="-10659.629132"/>
</g>
<g id="matplotlib.axis_597">
<g id="xtick_895"/>
<g id="xtick_896"/>
<g id="xtick_897"/>
</g>
<g id="matplotlib.axis_598">
<g id="ytick_1491"/>
<g id="ytick_1492"/>
<g id="ytick_1493"/>
<g id="ytick_1494"/>
<g id="ytick_1495"/>
</g>
</g>
<g id="axes_300">
<g id="patch_301">
<path d="M 434.924375 10782.029132
L 557.214375 10782.029132
L 557.214375 10659.739132
L 434.924375 10659.739132
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p42ae485541)">
<image height="122.4" id="image31143b34d7" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGZ9JREFUeJztnUmPHOlxhqNyqaU3NjkkR9LQGlvWxYAAyfDNN1/9p30xfDVgwDJ0sTDGbOJMs9lVXWtmVfkgiDA6ng+OYjY5GsX7HAO5fplRCbz1RsTo1dNfHe0Bzah+GLJp3brYZT1zsfN64mIjG7mYmdn+eHCxelT5Y478uYn5Yeti33VzF3vbLV1s0+/89R389R3MLZeZmVWFe4zs3+17F+sPexc7Hvnc78toxNdMz4u2peuh7cZ142KXY//uvJw88bH2ysWuKv+OlXhzWLvY19tbv9124WJreCcIemfryscOsF70nOm9M+N8oWdwgO0If4VCiBQo+YVIipJfiKQo+YVISrMDsalu/G8CiYCzauxiT6qpi40LvzEkX5EgVoMAtTUvlHRHH+shVhJUIpSEvZJ49pBj8Nwkuh0LYuNjQ/dSQSy6iiR0YSx4f/Q+lCiJzW47uL+m8u88iXuTJiZIk7hH67ozn5NmhgtO73dUnNWXX4ikKPmFSIqSX4ikKPmFSErTHby40B680EFiE4kVJMa0IJL88ZgeEn2ighFdI20XJSp8lQgLXcFrjIqKUarCc6F7JOGsgsuJ3gu50Ei8ioqcpecS/brR/U3A1TprvMg9q32sA3FvO+pC11JaQ4pHxT1CX34hkqLkFyIpSn4hkqLkFyIp7PADIWiz92LFpvaxNZTfnuJM2wdFux04/LDkcYAr7hRxjyDhZUhZbtSthvueIF4OcRfSMemeSRBb730J7fLgY+fgLK2PfC87cngGS16pFPmi8Q7WKVzPZuSvmwRNyrWiePnYgu+jHk0I8aNByS9EUpT8QiRFyS9EUhoqMyQRcANizGLv+6ORWDStuOSRfnmigh9B7kB2pgX77Q3smRcVIKMiYFS0i/bgKxG9Hlqf6NrS2qx634PxTXUfOl4LJedmZre979e42vvzkOPwsXsmEqe8Y+hqHSAq68svRFKU/EIkRckvRFKU/EIkpSERAd1XMMCAepzR8UqCX7jXGA1FgNgQNx9dd9QJZsbXTb0CB/UPHNBn7pTST3r+jy1+0Tpse+8YnY9WLkZOuZJwRiIiDWiJlpLTeu9rfy87KJWnGAnutP5/vJ73f3cIffmFSIqSX4ikKPmFSIqSX4ikKPmFSIovWDZWdkmpJCWVFPJtxY0LUZUGa+q48pdJsSG21KhNsqQqo9o/QJ2lEc/0rwep+LQv1uiPCo0iyYK8p39hcHe/L/0LAyFSuVedf8e20Fui9C8KHTOqmuO/NbDvuvb/HtA9R5X9fl9S+9/fBq6JPUKIdyj5hUiKkl+IpCj5hUhKgw0XQawg8YPq/lH4AvujGddgtyTkBW27KFQFY3i8R27AWYIEmmgfgtLI8NB5C/uSEGtQLk/vBAqn0WcQFAHxvSs80yHPcA8zsUksJFtyVHQ7ZcpUdP8o+vILkRQlvxBJUfILkRQlvxBJaYZMgSG3U32M/54MaUhJ56ZYVPAhsfBDgI486ldALr0BE1twXQvHq+GbQOJeD1OTsBZ9wNKSwPaxhNioSy/KkFz7EOjLL0RSlPxCJEXJL0RSlPxCJAVLegkSjEioogaHVH5rZjaBxp7RxpzUxBHLI09o9jiEISOsm5qcjj5Ga0uQsIQlwicIUPuRF96GTOcJPwMyAj7yKPZTGCIs0jUOEXGHoi+/EElR8guRFCW/EElR8guRlCbqsiOxadaMXey8mfrtar+dWUHco5JgKK3EUk/oMzhkTPYpJZTRcdXRdTxrJn47WEdaw+j0IRJDzU5wscGng94nOl7UpUfP+ZTpQ3/u/JDXrS+/EElR8guRFCW/EElR8guRFOzhN669I48EqOvxuYtd1jMXw55wxiJURyIUjTs2GHcM+0bFJhSgTuivFoUEv0ntnY5PmrNQbFYYf/6Q+X7jYm+6e9yW1pZKnrEUORjDkmwoG+bR2dQTkt+xIX3vfqwiYhR9+YVIipJfiKQo+YVIipJfiKSgw49EKRT8Gi/4XVR+u5KTbBMUlg4FwfAh6GKjMt/g5NbS5NcwwXJNKq2N9vqbjrw4O4PYGKZu7I5+/c3iwml02EgT7IVHQiP2hARBulSeTO8TTcHFsmNwlhJ0z1HnLIvP8fduiCipL78QSVHyC5EUJb8QSVHyC5GUJioYYF84+O0g4aUkXwwZvkD7djC9lSa6RqcLD+0LFy2tpVLk9X7nYmMQ8moS2KBf32Xly4FfNJcuZmbWwPTk7cFPoo0OP6H7o31J0KRehpORdzVSWbQZv7erfhuK0ftEVCTENv4aSUiPvp9mLJIOmUKtL78QSVHyC5EUJb8QSVHyC5GUBqevBvvjrQ9elCKxYXuCkwx7+AUn8uLQjqCb72NNeSURaT3y61gqg34I9TckgfWTypdav4CYmdmzyvdh3MKzWsNznR986fBdv/LHAwGRBFJyyk2hBPq69W5TM7MZCJ33jb/G77dzv5357UjQPmtj5e5ntd+OhN1559fLjEVJEgcpp+ld1JdfiKQo+YVIipJfiKQo+YVISoOOMxARlj2IHyDG0OTdDwGW4H6IstwBYGkmhLa9F7+iE3CjA0hoUPKnNYtkn4zALQeX8+boxaoNiID0XLZ7f88UQ+EThhWXBFIS/MgpWSo7j5zn+eTKxT5rr12MhNQNnPcPLfdW/K7zouSiW7vYuvfPhYRvffmFSIqSX4ikKPmFSIqSX4ikKPmFSArW85MySAoiKek07YfqmM3i013I9onjuH9AZT8K/QPQw2Vv4B8AWhta283I77s4eGvoDOrizcymcEz6V2EO9u67vbemkl31vvP/HlFjzRp6E9A938O/UWbcc2IMf32c116JH41hmhXs+zNQ9n9R+14Jnx79vnv4F+UF2IXNzL6A5rjfVHcudlstXYyswfryC5EUJb8QSVHyC5EUJb8QScGJPQSJaTgmG8RCEm3MWLihhovYIwAEMWwKCefGMduxZSjW/UdtttF9w/Zl6k0Ax6PtyIprZnZzhLpxsqH23m76eusFqLsd1PMHnx/dC4pXhfeY9r+CUefnIKZdwbj5MTQ3fQl9EV6CuPeTHqb4uIjZDPoVmJkdKm/H7tvYO0Hoyy9EUpT8QiRFyS9EUpT8QiSliTaKJEgEpKrokgBBDTeJqHBG4h6OSg6OVD7lWqgHQnTCSpTohCMcNw2x9dGLbmZmO3DaLcEheLNbuNhi5+vLSdyj6yGxl+6ZnIDbiu9lWvt6/hZEu2tw+E2ocQBAU5OiXtMW7u/syO/iJfQhuIDeC9QotAPBVl9+IZKi5BciKUp+IZKi5BciKWGHHxF1ZB0GDsOhEcg0upnKiWlfEgZJ+CRhsCReUslztJEigdcdneJDbj6akHOC+Egls0soy4069z4WtGZTaDJL4l4L+1LDzSU4Xd+AqHgGzr2rg3/HWLo0O47AwQriIN3fFmL68guRFCW/EElR8guRFCW/EElpopNh0F2G4l68tJXERhJoSNyjscjk5oqKZLQO0fLiU85DU2kIEi9P6Y/4EJpIQ045M3ZebmCU9AbuJVpiTGuLbkx6LsFnVYLcbjRufA2PmlyRdO6qBiEO3pE9iM/bwq2swDe4h7Ulx+EUJhfpyy9EUpT8QiRFyS9EUpT8QiQFBjefJtpFtiu5CEnMIffdpPHupPPGl2BeNb6XWgNOqz0IJ+S8IwdcaZQzCW903XTPtN4k7pGgSUMkCBLdSiXVHQxEiTsT6Vk/ruhK25WEWBIqbzpfiryu/XYEDYuhEmFiWpPg59+RrnAvdyA2klBJIiCtmb78QiRFyS9EUpT8QiRFyS9EUpqouBd180VdWmZmLYpaUPbY+iELL8dPXOwahizQmbcgkixHUJILU2hLJb0kTJHr7xh05JGQRzFyPxIkVJXAMtjGi40kcu6qmFhI6xgtL8dS68KEZpoGTC7LqFOSmMA7S/cyhR5828pfd1d4x+ZH/z7eQ29FetYkXuvLL0RSlPxCJEXJL0RSlPxCJKWh4Qk4xRaIuvmoH50ZC1hXYy/ufTZ55mI/b65c7Bz6sJFbinqukROQRJKScDZkGEeU6PRdip0i+JGTcBYsl6bzUP8/ct5hOTC8Y+RMLDkQ93t/zG2xS97/D73fMxBDaW1q+NYuYVhISVSmwSkbEKVpfeTwE0K8Q8kvRFKU/EIkRckvRFLQ4UdES3qjZbpmXPL6tL1wsb9tvJvvc/NCCXm0ViT4gbg3hmskgY2EKjOzNbivomIcrS09F3ZpwdAHKDumc5RcbSTEPm/8c3lee3F2D+d53Sxd7Kb3ZbXL3gtaVF5MlESy6MTiKNFegaV3/iErEPFKObmGd4/WJ/qe6MsvRFKU/EIkRckvRFKU/EIkBRvADZmqGhUQzdgFRWW5r8wP6PhZD73wQItZgQB5VkG5JfwO7it/L7fVyp/EzI7m41Rmir0CYc2qUWxfvhYY5ABrXer/Rz3pnlReYP0r889qAut9BcLuFM59U3lhcNGv8RofstvHHYyDpgbDO0YCIk1opvOuKi/4laDnX+rD+BA5/IQQ71DyC5EUJb8QSVHyC5EUJb8QSYmNezkBUjRLo6DJekl19RdHUOzREuvPgXZjnALjfwfvoOFiaRQ3W3RjvRLYBoyncZBtk2rOG/iHo9RnoQUlfkr/AMC34xr+cqlhPLRV3i48bvw5otNwSqPPKX6giT8DbO70r87IaAx4rP9F6VpO+Sctgr78QiRFyS9EUpT8QiRFyS9EUgYJftGmlaXtyK5II7B38BNFEiIJOeACtg5twP4a59Doc7VnOybV0IfFvcK0mYfg5CMSNINWXmrKaWY2HXk7bhv8TsAy2tXR7/sSznEEOzWNm97BxKXScyGbLa33kAas0caqR1KkgccW9sxk7xVC/B+U/EIkRckvRFKU/EIk5dEdfkRJwCDBb773013eNn67CxjvTWeZU03+yB/v26M/73/v3rjYzc43njQz66Ce/LGn+JAbjN183hVHY6SLgh+Ig9QUckNiHAlLsAxTECVn4OZrg5NvyBlqZjaG94Teu6gYFwWdgB9AyItC59aXX4ikKPmFSIqSX4ikKPmFSEpDzh/ym0VLHqMTTczYabXY+4aNXx/BvQX6Do3jvj36ks7XcI5vuzu/3dbHNuAYKzHEqcWOLB9rQdyjGAliJZGMniHdCbnvqIlqHVyGHbjiNuDmI4dfCRI/qZS5AmsivfMk4p7yzkeO97HQl1+IpCj5hUiKkl+IpCj5hUhKQ4IIjocO9qMjSn3vyJ22gZ5rX/ZzF1vCZJ8OrvEtiHu3/b2L3XV+4s6q80JjaRQ0iXHEkGkxNPaZnh/14CMRsHTNKCxCjHohkrhHT5/E2RUUai8PXmDd0VjqwnOh9cbS6CClvofvew7KoVPekXBZvRx+Qog/oeQXIilKfiGSouQXIikNlXryEAnoSRYcQkBikxmXmZI4eNd7MW558GIclWquQTC67335Lol7NPa5JMbQfRNhMSd4vGi/PnLzlZxpFEVxD7YbUiNOgi31RiTBj7Yz4/f2sXvk0TMgcbYkfD+kJCpHR76jC1E9/IQQf0LJL0RSlPxCJEXJL0RSmot26oIknkQHHZCIdIrgR2LVHoqMSYwjIYimtG57HyPh5CRX42NXZoLmc4BmeCjkBMuBi8NU4OQbegaw/xbUwhZOQ5IWlQjTEBeKUQ9FM35PUCQLioA49RnEPeyZ2PieieTGLLkV13svXtNQEloLem/15RciKUp+IZKi5BciKUp+IZLSXLVnLkjCGYksWI54Qo8zcp1hT0E4TweiDTq/YLuo6+uxp7mWwJ550FOOrpvEK9oOHXCF4cALuJ4GvhNtRVODvag1hmd6N/LPag6Tdmn6LolcVApuFhf3hvTmI+ceiXuUazQ4pSQ+klt1UfmS9VXv10yCnxDiHUp+IZKi5BciKUp+IZLSPG3OXTBaLkvDE0hgK4lkWLoIIdqfBEgsOx4g0GGZ7keasRAVIMnBtq68MERrUyox3RzAFQnDT7a1P/dd5R2jVA58C9OYaXAK9VYk12a/L5T0PrJoSz38aBLwFIS8i9qvzazy25X6/00O4Igd+XOfNRPc350ntJUQ4i8OJb8QSVHyC5EUJb8QSWnG4LLbQmw/AsEIfjtouw5EFzOzI6h7JOSR4+kAog2VrdJQC3JukfiFZb4FsYiuMSo2RXvKUakniV90jh2UjlIpqhmv46L3TrK7yotxUyhlpfWm8tRF589BU5FJ5Cz1vXtswZfEuBYEP3LuTSu/NlN4LkVHLDwvOibtPwNhUF9+IZKi5BciKUp+IZKi5BciKUp+IZLS0AhkqqGO2mmx5rwwTSVaix5tCkrNEKkhKO1L58BGkXDNZmZbsMSSUk1159GGi/TvQdgGXPlzlKYMkdpP/3LgpBqIkUJOzxlVfLiX6PSoEvSsaS3oXujfowko7mTbnYDiTv+YFYHrmcKMpCs49zPos6AvvxBJUfILkRQlvxBJUfILkZTmplu4IFkvh4gsJOyZsXhG25IYQ5OGzkHcu259v4IrqDknmzPdHfUwMDNbQA+E2+7exd7ulrj/Q0gE3JPNOfhcSvZXItpENbpvtBEmWXGH1uPTuUm0i47Uxkk8YOU9r31NPb1jNKVoVxDI6UtN9uAWtqSeCvryC5EUJb8QSVHyC5EUJb8QSWnudr4mu4PJN+guCwovtK8Zi1W0LYkx5Fgzr8XYdOSDl+CAuoDtyOlGAo2Z2Tkck4Q3miqELjZab5jiE50+Q9uVhDgSFqMi2yGoxQ0RAU8BnXvBkdq0HTXrbEHIowlH9D5tQUCmBqolcNoTjHJfQANWffmFSIqSX4ikKPmFSIqSX4ikNDTOFxtmkggUFIZK7rDo/iR+4QQhENPIkVcS7R4yPanc0gt+C5jQQk0vacIOlR0TPU04ioqAA8W0U8poH/vcDymVJw86ZlCUpPHnJOSR+7Gj0uaCixQbuIKQ9wYMgvSs9OUXIilKfiGSouQXIilKfiGS0lDpKBEt6RxKVGShElXqo0f9CBfgxpuBc+sSeq7NSr+XsDw0JSXaU7APCn7YH+8D9L0jgY5EtiEi4MeC3mUSkMO9B0FovocR5OSIpeORw9bMbA39NmliEx2TJ1wJIVKi5BciKUp+IZKi5BciKU2p3PZ9OcVpNcSVFRVtSCTBkknQ166OPvgcYmZmc+j3tqh8H7fvQGxcBHvKkegWH5MO48YLff1obbF0lMS94CP9IYXB6Mj3qKuVhrssQWiOCnH3vRcLzcyWED9lXPlD9OUXIilKfiGSouQXIilKfiGS4u1mBcIlmCfoOFHBj5xWRLTMl7iEpXi190Lcq44HKsxr/zu6gsEir+uZi1GZ73YEzi2LCTk0lILWujRMZYibc0iZd0mAHAJeD/RCxOEg0AuPiE6bxunXJFLDdGczFvdozcIDVkJbCSH+4lDyC5EUJb8QSVHyC5GU5rF7qQ2doBoV93ASbdCteFb5AQ0/Ne+8+5vOCyyftms85qr3x7w7eMHvq/rMxW5qP803Kg6dMn33ISQMmvF0WnIcRp9fVNwjQSvqTDzFqYrbwmcQe0eOQFSGnnvRZxUtvzaLuyKjOagvvxBJUfILkRQlvxBJUfILkZTmY5RWlpx8XFoZowqWjpIoRRN1nx/87+DTypdQzqY8QXW/8ueZwM2MQThrYMorngP7vbFL7yE0IXba+HUwM5vCxFoSB6kf4Rj6FrawHU6shVLru967H+cwWXrdsSuOhLfoYJit+euh9UbxOdgz8bEF91PQl1+IpCj5hUiKkl+IpCj5hUhKuKR3CEVREUQ72hYHeYCISMIiudUa+M2rg7pL17E49/3eu/m+mHrR57uDdwiuDt7NF3W79Xsfw3WgoSStLy82M7tuz12sBVFyBsLpJcSewATjM2iauDR/L7/v37rYV/A+FCdB98Hy3aAIeIBy4McuRY4OrjkFuj99+YVIipJfiKQo+YVIipJfiKQo+YVIykdR+0ugsh+s5ydFFOvQIbaDCSu3IPffdF6lnm+89dXM7D8nfin/6zh3sa86r16/3S1dbANNHEnZx9HZsDYzsPI+ay9czMzs8/api72A6UPXR3/PL8Am/RIU98nBx75s/TnqBsZkg2+apuaY8TtGtt2PNYL+Iaco+9HciP5jpi+/EElR8guRFCW/EElR8guRlB9U8COiIiDFqHkkCWL3Ry+mfQ0Tcq7HXiQrzf/5j5GvMf/99sbFXm/vXGy5e//RyyRojsHKO639vVzU3pJsZvaLkW8y+o/Qt/SXF/5ePnnlm5GOP/H79gv/XP7nt89crD2CKNn6A3YFwQ/HYu9gzDaIqQS9T8dj7L2LintDRteX9qe80pdfiKQo+YVIipJfiKQo+YVIyp+d4EfwiOdYM0sa0b2EaTjfVz72BTStXBQkv9/tvnexbza3LnbfeXGvw9HLINCAkNPU/hon0ICTmnJS7b2Z2WcHf8xfvXztYp/+sxfjqt/8g4uNrr1Ad/zyCxf75b/8u4uN/82vzaS7drFu/NzFzMw2By/u0nqvgw4/qvFHgS5oGBwq7g1pwKsvvxBJUfILkRQlvxBJUfILkZQfh+AHogZNYtn23qW3qr2Qd1970W3eeGHozciLZN8evJPPzOybrRf3FjtviyPnHt0fjcSmqTlUqkvi3gTGkl/A/ZmZ/aTzotb1X/s1q/7u733s1//kYvWLn7vY/qe/c7ExuOw+n/7Wb/ev3jn5ZuPdgWZmX7dXLkYl1FFH5Y8VNfAUQrxDyS9EUpT8QiRFyS9EUv4XUwGHhwFuPFUAAAAASUVORK5CYII=" y="-10659.629132"/>
</g>
<g id="matplotlib.axis_599">
<g id="xtick_898"/>
<g id="xtick_899"/>
<g id="xtick_900"/>
</g>
<g id="matplotlib.axis_600">
<g id="ytick_1496"/>
<g id="ytick_1497"/>
<g id="ytick_1498"/>
<g id="ytick_1499"/>
<g id="ytick_1500"/>
</g>
</g>
<g id="axes_301">
<g id="patch_302">
<path d="M 29.174375 10928.450319
L 151.464375 10928.450319
L 151.464375 10801.156792
L 29.174375 10801.156792
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_601">
<g id="xtick_901"/>
<g id="xtick_902"/>
<g id="xtick_903"/>
</g>
<g id="matplotlib.axis_602">
<g id="ytick_1501"/>
<g id="ytick_1502"/>
<g id="ytick_1503"/>
<g id="ytick_1504"/>
<g id="ytick_1505"/>
<g id="text_76">
<!-- 254 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 10911.843556)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_302">
<g id="patch_303">
<path d="M 164.424375 10925.948556
L 286.714375 10925.948556
L 286.714375 10803.658556
L 164.424375 10803.658556
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p3fde85328a)">
<image height="122.4" id="imagefb5bb849e7" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnctzJOd15W9lZj1QqCq8Go3mS03SJuWxhqOwrZiwZuGVI/yn2hvvvJyYmAl7IY/HsizLFiWR0yT7jQZQKKDelZnlhRRe9PllRNLa6Tu/5UVWZeaX30VGnDr33s73L364j7eY7ZZvh2KQdyU2KYYS63cKiZX7WmIREVVwXD9fSey+XElsWW4k1s30es57E4mdwL3s4Lqvd/d4jddbjc+2uo5Vrd951Ndzn/RGEtuHPCq851W1ldim3ElsW5USi4jY1Rrf7/XcnU5HYoOiJ7GTgd7Lu4NTiT0ujiX2fnYgsdN9LrE1rE1ExDexlthlrXsnC72X46wvsUcdjX1S6h77fqnP/vGHU4lNfqD3l//Zn0osIiL73v/Q4Er3XfW//0Zi13/5lX4fnsUY8zuPk9+YRHHyG5MoTn5jEqX4b/1HEvzXzqXESEQiYSjP9P9Jt6MCTQSLg8Sy1nMTNYg+NYh2m1rFrwqOG8D1HYEwGMHiJQlim0rPXWS8PvJ9IEr1QYil89I5ChABIyK2tR5LQmUG5zkAwW+Yq0g2BjFtBOtNb6clPOd1h8Vj0Ckjh3UkwY9oJ1FHLPd6L9NL2Dv/T4XBSfb3/KUvX+j1vNBcvfmfM4n97Nm5xPzmNyZRnPzGJIqT35hEcfIbkyjFn+/UYbTunknsWedOYuQ4G2QqQPUaBD8SXioS7Toa64Fzr0lY1HOobEPnHcD3DXIW/Ei8HOe6ttu9iqQ9+CzF6Lq3ILqSI5LOu8pZSEVxt8EN+DYkQNKeOOho7BDuebjX99OOnI5wzxER64b425BYTM7UDHTBAkTFCvb21UL3zvUT3SPv3M7xGk8e/5vEVle6jl88U/fk1912YqoxJgGc/MYkipPfmERx8huTKMX3uyrkfRljiYFhKdYgInU7+v8kb/gfQyILCW/08UmD8CbfB6INC2wq7o1AlDqBWERENztsdT35ntxlyhwca7d7deTdQ4yeywpcjfNMy10jIgpYi3VHRUB6fijEojirdz0AcW8E67UA0Y0LetuXjRMlfHYNsTk8wCncM13jXa4383Km7seIiO/8s+75CnbP81xdltNMz+43vzGJ4uQ3JlGc/MYkipPfmEQpDg5UCHoECsasUCfSqqV7atcgumx+C6fdEES7ST6QGLndSPA7gRLTd0Jjv79jF+FHpQpiD/oqqBWFXs90qWv7JdzLk0LP/QaEJRIGZ+imbOitmLcr3yUxNSfBt6UI3IVrHILg1yMRMOfnMo92ZePUr3EDe+eq1p6JvVzvZQEl1JQtc4iO4PsiItYl9MysNV+mICKSgOw3vzGJ4uQ3JlGc/MYkipPfmEQprm5VRKhBIzmBQQkj+N9Bgh2JDRERNTjRcvj8Qei5eyDQkeOMXFVUSjwCd9n7lZ73e5X2XIuI+O5/v5JY/79q37T9Utfi7Mf62fjVAwltOioCLkHoug3oUdjogVPI4UevCRrkQb0CB+CKJIdfW7pwK2PYnxERywZHpqJ7kcqBZ3sV/Da1HnfZ+rxKk4v0AMqlx9QnEhyQVAbtN78xieLkNyZRnPzGJIqT35hEcfIbkyjF51AXfwn2zi2ohTRBhto8bhtGdJPtl5T4HBRNsoLS1BWqn6dzDCE2Aevkg2NW+/t/8p5ez2ef6YGvX+pnn/5Ur+eJKvbDGuq8QeSmev4NxMieG8Hr2IcmnNS09ACOOwT1mn7BoV8kbqEOnRpmkpodETiHB/cYvgdVxV9Dw9S7PfdFeBtqMEuTiw4bJjht4WboCdKvIUPIIb/5jUkUJ78xieLkNyZRnPzGJErxj12tQ78HcYjkFBJTSjhyAfXlEVxDTbX7aBluOVK5C//fhmRfBXvoBiyoHRCgIiI6k5HGxsd6mmff6Hkuof56pyLZrtDj9jDNaAfjtHctey9EcBPOw0ybQp5l2ofgvKPHkfWW3jok2s1I0oJHv22wkFPPiS18J1nDCeqBsKzU8kvrTetKomnTuHASOqlbAR23r3XF/eY3JlGc/MYkipPfmERx8huTKMXPy1sJ0uhtcvOhaAMi3rpB8KN68AMQlgYglBDkWCNB5RhcVXlHY+tM73C15Frr/cs3Eqs7P5HY5m9/IbGf/+qhxL4s9Hqmua7XpqVQRSJSF9x4ERETWJ/3MnWC/kGlz+q7W33Wx/lKYnfw2S+6ej0vwW26ojHuEvk1JEDTHv02/Q70s/p91Dg2h54RlGtNlFSn3073xs/6zW9Mojj5jUkUJ78xieLkNyZRildbFfyo9JAaM5IIWJPgB+OhI1igW2YwEQVEO6IDZYujTJtejkFUbMtiw5+d/99rie0rXdtfgLj3o75+5/NMnZdUGk1uTCrppak5I3DjRUR8COPG/3Sjz+CHF68kdvoDcJKdqFhYPr+U2OMfq9D4ZHokMRp/fQnTjCIivoHpNXpmbtZJRjvKDSoHptwgtnDem70++4iIPNPvnEFeUrbswAnqN78xieLkNyZRnPzGJIqT35hEKagckfq19cCJRCISiXjkdoqI2EI/tA2IgzRBhkZG03XnMO54CP3jJuC+ol5o05pFsuoXOmHndq/X8/O+yjFfdNQB97rSGIlDHNN1JaGqCw7GiIh3YGTTH41vJPbgLyYSy773Xf3Cw7GEerOpxN799Jley9VMYvVcBbHZv7BT7h+fX0jsZ30tRX6V6b67g3XcdXS9NzBOnXKDyoaXtd7L8/2dxCIibkGoJvH6AARy6mXpN78xieLkNyZRnPzGJIqT35hEKUigo1jb0kMqHW3rdmo6N1GAaEeiFpWnHsMQiWHdbtTx84Ldhs/BV3ULprNnICzdguhzX6sQu4AYrRc+A3CH8aCKiCGIQ4MhuDShzDd2dBw44M4f6fU8UHEuoMyXOPuDf8L4D/5aeybm3+h5+n09z1NYswp6ONJ6r0B8Juflip49iL0REUt4/isQG4/A1TqEPe83vzGJ4uQ3JlGc/MYkipPfmEQpyD1H7iTu4QeKGDjvaFhBEyQs0jXSd45zdW4dQ9nqCNx81OPsGgZBwEcjgnvIreHzc3DkUf84coNRz0OK0TMgMfSwoVT6uGwn7pZP1aVXQHly1oPpwu99pLHxiYQ60Mtwv1nocQ/P8RpHH30lsfdf6eevKnUrvoE8GMD7MgdReRy6DjS8Zgo5hM+0AXTUwm6kPoN+8xuTKE5+YxLFyW9Mojj5jUmU4qyn5ZZNU0LfhnrmEVmDSkaiHYl7QyhbzOEa6bMknNHQhyWIc0sSThrEmLzlWpCg2QO34gE4smpwl+FwCOrXB2t4DqJURMR51W6ibzlVx1qxAHfaUHsCdh68r7ED3Yv71b1+370KjfuZlv5GROx3bafvKjT5t4av68E7tAv7cwDPJYcegwcNw1RI3CMhnvYTuTn95jcmUZz8xiSKk9+YRHHyG5MoxcfdUwmS44x6xVGJIrmL6kaRTP/3UP8xKkfcwXlW4KC6rtcS22bgdoIy1hIEli5cc0TEYK8iSx+OJXHogIRKnCSsn6XnQmIo9Xo7aRBi+wEDQ9b6XKollO8e6HV3Lr4jsez8sX621nvZL1TI299eaeyVxiIi1q/1Hm+3eo3Xfd2jM9jfC4gN4PkNaDp06D4mlyUNZ4ngPU9TiNv6A/3mNyZRnPzGJIqT35hEcfIbkyjF+5mWwe5AMqAppkvwRa1AENk0DO0gYaIP4glBQtc9DCChARY3VCIMwgs5rSYNrjgSfdpSgEBH60DuQBL3yKFJQiO0LYyIiNcgDtZTLXn9AB7gYanPpTMAh1+h56BS3f1SJx3HjYp71Ut2+N1e6v5+meu5LzO97jvor0d5QC7SQ3DZDeEZUL/EJjYwaXdNuQrOxDX2ejTGJImT35hEcfIbkyhOfmMSxclvTKIU1MySzIWkVI5BIV/C5JoFjDWOiFi2tAevwbY7h+klNNGExoCjrRgU7gH2G+D/l6TYk62ZrNP06wpZi+m5kLJP90fXt2wwgn7d1WNfwK8ctzO1hp/8g47ZHn3G03TeZr/VXgD7rz+XWP3VU4ktn/Aee3WvvzS86Ov93cIeo/25gRixg8axVOM/AbWfRsP/+jthMhD8WHBPE5vgs37zG5MoTn5jEsXJb0yiOPmNSZRiDIIf2UhrEBFI+hjD/5NFg/V1CYLhHASVu1Axpu1EmwyEDhLEqJko1WSTcBYRGCXdhsQ9qtPegHV6WUP9PED9D8gGTNcSEXENNlJqZrns6/qc/lTHX3//r/6PxPp/+K96YuiOSVOB5l/ovTx9quJjRMT/h4k/rzPdY3MQhtuOr69gbUjY5clMIMQ1CH4DiEP/z8hoJDp8n9/8xiSKk9+YRHHyG5MoTn5jEqV4F8Yx8/QSlQw2oCKQC2nS4IojwYlEwNcgGG6h/rrKVXjZQf01jaumCTl9qMluEvzoXtjNR9eosQXUklOM7mUIjSKp8WjRICytqG4crnEKzs1fdaHx6I90fPbRP+m9bEq9l+tKBcTrXI+bFfxcXkGz1mlLZymtLQnIvHfavVfbzUb6NT0QtKHvaPTBNTiE5+83vzGJ4uQ3JlGc/MYkipPfmEQpPgltmriqVHS7h1LdKQgv84xKW/nkQ2xcCWWL4L6bQAkuNeukRp841hjEHSrf5VkqERWN8wbBj2QpEuOooWgN/6rJhXjWUdHteK/H8SBoHmFOjsoN3PObnESpgcQGO73Ge9g7L8DWdtXR50yiaQQLsQv0piq0x6gRKol7NI6bDJUlbIimlp5DSCQSAdviN78xieLkNyZRnPzGJIqT35hEKR4+nEtwOVehI5sPJTYDB9wc/p3QpJGIiB6Et6B2VPB5Gqld0KhrOC/9x6NeeN+uDBJ6sUGMRjJjH0WYpERQb8UJjOKhtZ411I7SepO4V4HYdAtCVz+nsevQUxAW9wbEvef1Uj/bsrdeBJesk0vvEERu6lvZ9hxLKP2lPbJvkPxI3JuAeFnAeTK4Hr/5jUkUJ78xieLkNyZRnPzGJEqxB3GoLPV/whwcYm+ggdhz6I+2ahjRnYOji6QO+jyN/cbR1CACdkkkAzfXMYhAoz33I6T/oj24nkewtg9LFWhGVIqMZafgxgMd7w0MkbiB4RUREQsQz+gZ0KfJPZmDuDfMdR3WcH83MEzjqlLBb1ZqLIKdiVSqe1aMJHYIQiW5+dr2byzpWuDTm4z3GH1nD8qq+0W7QmG/+Y1JFCe/MYni5DcmUZz8xiRK8erNWIKXtZZbPumpCPEkVzHmRb2W2BJEm4j2E2bJLUUlnCS8jEHoOoPYBRS4kjh3XLErrgvuqwFc41mm63My0em0g6GuWd7V7yPBdnlPE3X1/u4ahnbcg+C3bumgo2/cgyhJpbEL6Gj3qtKS82mpsXmp6xoRUcMz6EKJOMVILAYzZhyC05WGpFD/P3K/3jU4Yu9AJB1W+lxrqBO2w88Y8x84+Y1JFCe/MYni5DcmUYqf5Fqq+7KnIsnLUEHlTb2R2AwEv3XL6bIR7BAjoYRcWiMQ8k4h9sleBc1PNio2PR7MJHZ8zk6yDCZgkBhX9HVtiwMowYTedR0YTFFpRXas5ioCrWBy66LDz4WmAZMERb0HyVG3BCGPRMW7PeynSsVQmpRLU5YjWCymPbaBe553dLAI9XUsaJAHiIA1iMJrKL+dwvdFRBSFnrsiF2ql5/aUXmPMf+DkNyZRnPzGJIqT35hEKX6cq0B3s1ehg4Q8EoZocEbZUNJLwg1B4t4ASnAnBQyrgD5sH2/1vH/44FpiZ98DwefRYeN1vs1+qetTr2lyQ7v/wXuYqFxC/e5mo/e8hvLppkEXbUujxyA2DVq+T+6hN18B9rkDGpxBDj24vggW90iApj1Kg1hozUpw5FH5LgIiIA17iYjYQanvCu57AuIurY7f/MYkipPfmERx8huTKE5+YxKl+GV5K8FVrUIXCXl7ECs64E6i4yLYfdVWBCwaRMS3GcP/t/cyLQk9/VTdZd3feyCxzkR7vUVERKnXs1+pSNpZ6druF3rueq7H1Rtdm82dim6LjYpkO/g3T2WnETz5dwDC0hEcd0rTgOHx38NnhyBozUBUJEGMhqFERIwgTu7Ca3KmwnE4rZj6G8LSNq3321RNx8E6gukzAtaRnoHf/MYkipPfmERx8huTKE5+YxLFyW9MohRvdncSbKu4U519/i3+n+xqVUnRZokjh9vZVXGSTgHNP7sgm5KCf6+/FPz65PBryBaaXjb88qGf1eO2U5ikNFNL86qGWnLwd1I9fgRPNCJRmdTrEYxOPydbMtmFoUHlJVh5Se0/bZikNKn1O2f0awZYYt9AfwH6BaBEGzD86gXr3fYXgIiGZwDnoZWg30L85jcmUZz8xiSKk9+YRHHyG5MoxapSG2lbSPCj+ukmAXFXq3iyhRh+J0yvWYAt+aqrot03K63JP/pcG0VOVjd6LeinjKiWMCp7C+sDjT6hZD3qNTSZpMaca41tUPJRBjR+JiKK1jZUvZcc9MzTSp/BEdTzPyj1Xl52VapaweUdN2jUFN7BaPkBWGJ7sD5bWBtqzFlBjT9NzaGVprHdERF9EAyHcI0jaBxLT9pvfmMSxclvTKI4+Y1JFCe/MYlSUE19U/3920DvSKx3LsHJFxGxrVT02VTtpvvk4MiiPgSvwaX1zwOdUrS7PJfY+1cqAnZzvpfFTlW7NbjOejC95qiv193r6dqQuHezG0jsFsSrDWhI/QZhaQiCIYl7JEz1YU+cZXp/7z7SaUgfgFvtw1u9v7u1uhpv97o2ERFfg2A4Bcco1fhv4FlRU88OvEPJgdoWErgj2q83uflI+PSb35hEcfIbkyhOfmMSxclvTKIU/UyFEiqrJRcTiYVUskqfjWDnX1W3KycmEZHEmBUIOc9h9HLdV8HuslInIFQDR0TEtKf3eAcurwHIMReliloDcAzOYerOFBSfOZyX1qaJMVwjvSWOoFz2YannefTwXmLHn+n3ZRN9BidzmBT1pc4l/+kvL+AKI6ZgObwJFZXvYEoVTaSi8t222l5bEbDpjdwBQZSeKjkgl+g4NMYkiZPfmERx8huTKE5+YxKleK9/KsG2E3uo/HYDIkmT0FHTuOOspdgIMRIBqa/foqPHve7odS9zdbrtQDiJiLjZw+dhzWjyzQtwoVVwfzMQqkjQ3IFoSuc976jQGBFxHioCn0Dp6CPozfdRV8W440/1uovvfiCxzpnuxRzu5XD4hcQGv2Tn5RLcigtw7tGz2oLwvaNJUfAK3cIeo61TQJlu04huKhNew7FLiM3gevzmNyZRnPzGJIqT35hEcfIbkyjFHxcqstyDqHEfKojcgzB4V2sJ7W3Jgy6o/JfEPRLyaBQ4iTELEOIycErtwCtFYtESRM6IiDmchyCH2BTWbAYjo+eVxkiIJcb5gcSKgv/3n9L4bLCSPYCS7NOHS4nlD/XcnZNj/cKLd/S4XK8ln+t+Oupf6fdFRBbqGizJWQox2k84qh5q23sgsNJ+pwEpNXw2gh1+GxIMIYeWcC9+8xuTKE5+YxLFyW9Mojj5jUmU4odrzf819ICbZ9o3bZppL7yXXRVEvsrZSVbAeW4zFXOorx8JflSKfFOq42wOgtYBTM4YwIRYcn1FsFB5AOXSG/g8iXvXOy2DnZd6HAlVXRCMaHryKmexcJXpvez+8y3pYr8GkWypwmBnrbE4nOhxB7qfDkcqmkZEDOdjidGwGXLV0X6iQTN7WK8VOF1rLLVu1y+xKb5oWSZM+9NvfmMSxclvTKI4+Y1JFCe/MYlSfFiowJaDgEEDOjY7FcQuaxUGf94/wpN/3tNjn+cq0N2BILasVOChcmISyUjwWWb6fT0QBpsmDndBHKTzFPD/lkqjaXryutQYXc8+V6GReviRqzEiYgEutjmIiEuKzVU4HV/rHsteqiMvK1Vg2/f0XuqvX+p5FzDqOCJgYC064Mi5R/sJS3phGTcwhbiA9aKrbhrasYVS5BJKnqmEnhyHfvMbkyhOfmMSxclvTKI4+Y1JlILEPZoQ2+trLIeBCKcbdWmdzXT4RUTEIygz/WWhIuDXuU7LfdZRB9x1qTESzlDwAdGNHFk4qCQCRZ8d9COknm0DcAIe5CoFrVoKfuTmouM2DeXAVL496+g1TqHH4Wyh7ruj1/r8sr5O6c2munfqOxXd3vxMz/EP5QOJRUR8Uei5LysVIGelnpsEv7Z0Yb3pTUv7oemNvPkWz/Bt8m9xHmPM7zhOfmMSxclvTKI4+Y1JlGK2gVLWUoWcgxKEqgG4mHowpfVMhbiIiNG9CipHm5HEun0VBqkcdQ5OQBLydjThF4STqqP3Qi6tiIgOTNAlh+BJpmJVF8QYKgcm59d0q45IKncmNg39CO9hivEbKL8eFnovB1t9Vvk3uo4XG90TBYjK00sVi3+0OZHY/wKnakTE55tL/c6dHkvluwQJZyQM98Dx2X5OMkMlvTSUhpyl1CvQb35jEsXJb0yiOPmNSRQnvzGJ4uQ3JlGKF9CYswfF+8OVHne0VlX46FDr4sfHqsJHRDw4VKW61lLteFVpE8evwf5KTTg3GdRko9rfTottUvtJBaYa6jHYZE9oQg6o69teu+smC3Iffj1oYgnTh15TzXqmwVlf98mLWn/BefeVqvhDqE1/1dV1+HGhe+zL3Y1eYERcb9tZvmnkO/1qQs+ZGnjSr0xtf1Fogur06Zci+pXprKO54Te/MYni5DcmUZz8xiSKk9+YRCmegg5Ug7Aw2IOIUKkY8+ECBAiwbUZEDA5hfDY4U/sgNh2CmHYE1tldriIL1btT7TbZabsgxEXwRBwCLZo0qhzPoddDdf8kSvVBaKRa8ggWEZeh60PNI+9CxbSv4VkNezB6G+6PmoleVVp7Tw1dI9qLdtTglERAHCsPMRJdaTQ4xfIGUZkEZBL8jkDc+3hvwc8Y8xuc/MYkipPfmERx8huTKMVX5IBrWSN8Dq6xqlTRrb7mk/emep5prcLEEsaaHMD/rWNwKzaNO36bLoiXRJNTjtyFxD2459YwiWUBAuQaxC+6ngGIeyQMNUFrRuInCadraP4536sI+LKlA46EOHLPUSyCr5tGw3f2ehwJfujkhNp9ctkRJdwfTXWKiOjBOO8DEAG/E5qDn2w9otsY8xuc/MYkipPfmERx8huTKMVVDaOuQYAicWcJAlsNTR3vwHkXEdEFLW4NOskdlEwSAxBEDkH8KuG6qVySxKJhg+DXB4GHHHQkppUg5NH47AO4lwmsLd0ztfTcNrSU3ILwRp/vgthEzrZFDSW0cByJeyWUX5O4922m65BA1zQW+23I4TnMdT+Ro5LWi9a6iRxE93FHz/2o0n03AqHZb35jEsXJb0yiOPmNSRQnvzGJUpC4R04y7HEHoRxqcpc5i2TkgSIJqm0ZLIlIVCZK7qsa/g3Sf8YJiIUREYOWji4q/ySoLHMIguYYVvEA7nkF572G8tsIHtFNctgABT+FphmRwFaG7pNNp90I6iaHH0Fl0ANwaOLodBDyxvBZKr/FUvKW+RfBudGHXUqfflrodfvNb0yiOPmNSRQnvzGJ4uQ3JlGKJTij2pbBbkGsuIPyzabv6/1Wfe9U/qDjKEYiIAl2dBy55yJYjON+b8oAnIAn1DMRVMmzSs8xAGHpTa7Xty5YpFzCcyUHJIlNRAVrm7V87exwTPpv9846KoYaA6fkBIS8UxBiT/fgLIUSYWIDh00zdv0tW7oBX8PnL0F09ZvfmERx8huTKE5+YxLFyW9MohQrLPWDvmcNgwTehvr/LWDgQ0TEuuX/HhIWadgBXTf1XKMYyXjUS63bUPpJ5ZYFDf2A7zzag5DXUtw7rXRthuDxymBowzc5rz850Ui8rGAdsWceDRtpKbCSbtZ2InIE79szEPceoJCn1/iw1As6q3QvHoHjcNzRPBh09bi8oYT9V5uxxH4ChtNZR/cE9uXEsxhjfudx8huTKE5+YxLFyW9MohRUCkkDKEhQ6UOMhLhb6BMYEbFtWTpMYhOJeyMotz0EIYdKUUlsInGuqddbhQMewBUHCtYIBL8JWAHHICyNoOT1IIeegCW5CNmt+AwEtTW4yzbgV6R1JMgRSc+lrdu012AZHIMj8/3QPfH+Tj9/Cus9gT07gsE3hwfqdJ0cr/X6Hutnuxfc83L4dzr95sn8XGL3IPhRv0a/+Y1JFCe/MYni5DcmUZz8xiRKQQMMDkHwo/JGEsRu9ipqXO5mePKb7VxiVQ0iEog5IxgO0u2pYHQCE0sPoe8dOfdIaiobBCgSvwYg5NF5RiDuHYHYdAIOsXFPhaWiUMHnEByDjyqeLPy0qyLZKxD8ViB+4aATcPMNQdwbwnptOlTODesK4mpExEPwbn6602M/Cd2Lk4kK1R24ngqGZOS5Pr/uQNcwPwRR+ZD7RB4e30tsdKfHleAQ5DJtY0ySOPmNSRQnvzGJ4uQ3JlEK6l12CjFyZJHItYQS4dluiSefrkDwA4dfL4cecCAsbaA8kuhjSa9+Hw0GodLIJrpwnkmt5zkv9TsfdVQ4PTvSdez2QIhbqshVgbNwULN4eQalrC9hLci5SW+TLDuQWAeclz1yB9IkZyrTBodlRMQD6K/38V7X8TufTiXWv9DrqTcgpr3Qc6zu9f52a3DEzmhwigp7EREVCJUnUOZdFHrcHUxK9pvfmERx8huTKE5+YxLFyW9Mojj5jUmU4gKU2EOwY25B5Z7uVe292amCv6m4gWeHml6S7bOrdsdhwRZIOTfYGkmxz1uOVG7S+unXgiNQmh/BDxIfZCuJvfueWqKH8OFqqeddPFGl+Q5q95c5W2LJ9Ev3fVPqs+bmmrqf1tBQtA9rWJGdFp5L0WDvPYP1fudCPbGHnx1KLHvnTGL7uf5S0MmuJLb9Qldss9J1KN7ocf2Sf7XKYOrS49C986rSiUSvwZ7vN78xieLkNyZRnPzGJIqT35hEKU6hweEK5J0rEPdelWpDvCtVgKBa2uVbAAACK0lEQVQa/YiIbtZO3DvpjSR2XKhAM8z0Xki0W8PY5xzsr2QYbfpvSfXpJ1BDfwHi58MLqCX/LzB96OJUYtsv1Za6XOs6XIFYNGu4Gbpvaq65rHRP0Hr3YY/RqPMtPJcSvo96KhzjzKWIk1IF38lHMKXq448k1jk+1i+8uZFQfqTiLNmuyy3U7kPtfT5k8XIA3/ke9Mr4k+d6nm0PBE08izHmdx4nvzGJ4uQ3JlGc/MYkStEBoWsKI7XfVAuJ3ZXqdtrBBKCswX1F4t6D/kRi7/ZUeDkDZyJNi9mBeEkTgNrNheGmpRHcrHOi+gyOaT44gVrrsyOJdc50HTpPbiU2q3Rdb3rgBGwYBU1P66Kj30nNX6kp622pe4fow/cR1CS0l+v46oiIMTzZ7oewtucP9cOV7uX9rYrc5bU+v81K9+cecq04APH5iMVL4jD03B9Uuid2L08k5je/MYni5DcmUZz8xiSKk9+YRCluQNx7BeLeFESbNbjVSEwrwMkXETHpaukhiXu/l6sIeAElqvSfbArjihcwfYbGaRNNRw1AzOnT2G4Q2fbQ1DN2UNa5UXGnvFfBaAZuvDWUxjaJnF34wzlMOXrUVeHs9UrFpuleRcBFqQ1KqcSbxL1Brs/+eMAl3iNwNmYfXOiBMKVo/+yZxLb/9lpiN1+quHdzq3s7h2dwtFNHbKdoeCfDRKoCmrCOSt0njyt1AvrNb0yiOPmNSRQnvzGJ4uQ3JlH+HddnMZxNeD7vAAAAAElFTkSuQmCC" y="-10803.548556"/>
</g>
<g id="matplotlib.axis_603">
<g id="xtick_904"/>
<g id="xtick_905"/>
<g id="xtick_906"/>
</g>
<g id="matplotlib.axis_604">
<g id="ytick_1506"/>
<g id="ytick_1507"/>
<g id="ytick_1508"/>
<g id="ytick_1509"/>
<g id="ytick_1510"/>
</g>
</g>
<g id="axes_303">
<g id="patch_304">
<path d="M 299.674375 10928.450319
L 421.964375 10928.450319
L 421.964375 10801.156792
L 299.674375 10801.156792
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_605">
<g id="xtick_907"/>
<g id="xtick_908"/>
<g id="xtick_909"/>
</g>
<g id="matplotlib.axis_606">
<g id="ytick_1511"/>
<g id="ytick_1512"/>
<g id="ytick_1513"/>
<g id="ytick_1514"/>
<g id="ytick_1515"/>
</g>
</g>
<g id="axes_304">
<g id="patch_305">
<path d="M 434.924375 10928.450319
L 557.214375 10928.450319
L 557.214375 10801.156792
L 434.924375 10801.156792
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_607">
<g id="xtick_910"/>
<g id="xtick_911"/>
<g id="xtick_912"/>
</g>
<g id="matplotlib.axis_608">
<g id="ytick_1516"/>
<g id="ytick_1517"/>
<g id="ytick_1518"/>
<g id="ytick_1519"/>
<g id="ytick_1520"/>
</g>
</g>
<g id="axes_305">
<g id="patch_306">
<path d="M 29.174375 11072.369743
L 151.464375 11072.369743
L 151.464375 10945.076216
L 29.174375 10945.076216
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_609">
<g id="xtick_913"/>
<g id="xtick_914"/>
<g id="xtick_915"/>
</g>
<g id="matplotlib.axis_610">
<g id="ytick_1521"/>
<g id="ytick_1522"/>
<g id="ytick_1523"/>
<g id="ytick_1524"/>
<g id="ytick_1525"/>
<g id="text_77">
<!-- 257 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 11055.762979)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-55"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_306">
<g id="patch_307">
<path d="M 164.424375 11069.867979
L 286.714375 11069.867979
L 286.714375 10947.577979
L 164.424375 10947.577979
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p7d1e553ccb)">
<image height="122.4" id="imagef014805077" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH29JREFUeJztnUmPI9l1hS9jIJnMOWvK7lKrJbVk2d7JCw/wwvAf8L/wTzPsnZcGBMMGJAuyBMmwjRYkdam7utVTDTmQySFJBoP0wl7l+QJ4pWpJcL/zLS+CjIgX7zKAw3Pv7VX1413coS6ru6E4Howk9sbwVGP1scQOi77EIiLm20ZiHzfXEvvs9kpis/VSYpttK7HdTm4P6fV6Eisgtu34PjrPLiAGx9G5ewExOC71/lKvJQdof5/tHUrs2/tvSuw71T2JfWuj31fB0j6H4BKeyzc3hX44Ir6yWUvs15Xm1j9Xc4n9dPGxxPgsxpgvPU5+YzLFyW9Mpjj5jcmUioSg16EAoaru+I3ZL2qJHZV7EptUQ4mRuLdu9dztdovnvktVlhIre3rdXSJZA9ez3em5STAkYXFQ6tqUhV4P3V/qtXStzZddHKRnQGtBx412+gzeajYSu1eoOPfOUvdYC7nx1rGK3hER9UCf6/PLBxJb7PR6ViCu+81vTKY4+Y3JFCe/MZni5DcmU9SaFCzukMB2u1VRY75TYaG/U6EjgsXBfk+PPSDBb6fXU/b0ekj8IvbAKTWqBhIj511ExLLVc9+CI6sF4a0PjrPT/oEeV+hxt3DeRbvS64NrWbcqDEXws2ZBLE1MfR1S3Y9dpAraqfub7vgwdB3PH0wl1oIgvZjrvuv1+JrH1yqGP1VdOC426vCjveg3vzGZ4uQ3JlOc/MZkipPfmEypCnCxkchCQtV6q0LHfKti07CHuiKKe+SqG5UqvKFwBoIYXSOd47jSkuUHtZZ5DjruZQFC5zUJLyDQ7ZUq+jyuTyRGpdE3IEq92KjYdN3MJDZtbiUWweJQgKi1236xTkDai1R+SwLpqzgv+dy659fglBv3NDYF3bxZ697ebvUcF7cq4l0tQcWLiOeVrs97sZDYZKOxBvLAb35jMsXJb0ymOPmNyRQnvzGZUlFvPoKEl4oEO/g96fJj0S8PfX4EQlddQ3kkla0mCoP3y32JvVXo2hx3uBUXPT3PZ/CdF62KMX0QEb9Rqtj4cKfHXZbqfixhxckRSWJoRLrDrwAn2hY8cKl9CwcVlHjD/jypdV3pOUdE3DS63liqC25O2t9XOxVDfz5QN2Z7rf0tb6Ek+wM9bUxhL0VENCA2ruG+a7juGva83/zGZIqT35hMcfIbkylOfmMypfrGwbkESRyiMsr9QtWK+6UKNPsdrrgWyi0bEDBIwBrAuUdwHnIR7oMj636o2PRwq58ddlSxTgu9xgausSj1uL3Q87y1hcESUBIalX72U1gHKp+mWAQ7IKl/IA4qIacdXXah101l1Q/6RxI77+tgGNo3ERE1nIc4gn17Av0kSSz8VU9drZ/u6XnnOz1uCs7JQ660jwc7XZ+v9FTwXfbPJEZuRb/5jckUJ78xmeLkNyZTnPzGZIqT35hMqf68r2r/BVgYSU09AFX5pKeqedcvzAs4zzr0nwb8BwAUaVL2z3qqkJ6ATfZkB5OGQLhed3iVFx1NF+9yCuvzcKexc3De9ujfEYjxGsIUn1eY1oTTi4rfvHafJiTRlKIh9Drg/hBsVR6CNXwIk6LeBDv1KeydDazZJGDUfKu9HG62Olae7Oz9Sv/hiIgYwd8mD1pdiy3YyukfAL/5jckUJ78xmeLkNyZTnPzGZEr1CGykS6gnXvRgQg4IEGSyXGI0YgKC302rogjValPDxSWIWksQv1qw027gXpYg4s06hL0JrA8JascgNt4H224NNtIbsAbTc2mg9v51x26j5bcEsaoPFmuqJSfBFo6ja7yBJrGrrt4EsCeKIBFR98QhxEhgnYN1dgbXOIaGrtTLYQ5W44iICeRlS2Pb4RoHcC9+8xuTKU5+YzLFyW9Mpjj5jcmU6pNC3UmfQZPJWxq9nVg/vwbRJSLiYqNTZGYg+FFDQmqueNvTa1zAcSsQ7fAKQQ8jwSciYgH3uKJmlliSD6IP9Aeg676Fc5AQS8+Kmjp2QQ03Dyutdz/v66Shx6U2uBzCe2cMe+xiq3txudXjqF49gsVi+vw1CHQVPAPqa3EL56bJVTStqQHB9nmreRER0Zb6/GtYxylMcboCsdFvfmMyxclvTKY4+Y3JFCe/MZlSPdlMJHgF5YgrEEmoHJEaM9IEmIiIeauiCE5egbJOnEADMWzsCKIble/SLyOJbhERlyDwXLY6ApucdjSR6ASafw7BmUj3Rw4vEkj3YUpNREQZKuTRCPOvVdpI8y9aPe4ve2OJPXxbx4g/e6rf993iocR+Uaoo3CXEkutzDKW1k8TYBtZ7DiI17e1UyAkYETHd6H4iIZZyiKYz+c1vTKY4+Y3JFCe/MZni5DcmU6pLcNmRWEGCX+ro5a7xyesWRAj4PJWTtqV+J01TIfGLYisQAUlEegllyBERn29UwHqxVjF11eo6kkhKAttJpb3ZyFG5AscZCaTk+us6zx+UKsb96UYFw7++91xij/72WxIr/upvJHb87AOJff0f/lFi1/+hz2XT8Hvs80vth/f9vjoOfxw3Ent/9VLPvdZ8ITENn2mtz3QPxN4utyLlJfayBOcmllXjWYwxX3qc/MZkipPfmExx8huTKRWVN6J7DkQNcu6RCNgl+JFAR5CISAIGudjmMGb7OZVBgvi1AOHlWUe55cu1CkbjlTq12Gml97fpp/UEPCh1RDOtN8VoXSNYRKQR5ucbvZf9ByCI3r8vofINFQHj/B2NHWiJ8KOllvkGrHVExPn3viexw79TcXbW06Edn5f6TJ+11xJbgog76nBP3oV6GXbNUkkVw0lEpNzwm9+YTHHyG5MpTn5jMsXJb0ymVCTukRBHQh4Jfi0MjOiaBps6NGLRqLOJRDIStZoSBioUaeWWt9ALjcoqIyKmjcbJzUfr04cefqkTdHGYBolIQNc5qAcgcQvnGX+q5cB7P/kv/XD19xLqnagwGEf3JFS88ycS291c4DX2Hv5MYidn6iS8d6VOQCq1JudeAU5Vyg0SBqknIOVkBOdlCUM7SAzfh3vxm9+YTHHyG5MpTn5jMsXJb0ymYE0nCUaDUh1eWL5Lgl+Hww8FOhIR4bjbjYpxydcI37eAHnwk4i02LBaSmEMCTVWqYDSsoIdfrWW1VOZ7VKjDjxx6TUHTilnwG/V0HenYK7iXj6619Lf3T9rD7/QX35VY/2295+qPvi6x7VtPJbZ7/pnEIiKW//ILiT35/A2JPRum7bsh9ZNM3LO0dyg3SFSMYJceDbShUu0hxPzmNyZTnPzGZIqT35hMcfIbkynVoFBxh9xzJJzRcUTT4ViiqaUL6h+4gQnB4IrDwRL1mcQOQdD6FEp1WcTTAQ1d1CDcDCo993E/rV8fubRqEGeHIALRPXcJfhU81waGlYxBl/oISn9nV+rSO7vUZ//oiZblnv1SHXrVscYmv9K1iYj40cu3JPbjPd2PT1ot36Vy9yGIyiTa0d6m4yivqEw7gvf3IQx3OYbYHgx88ZvfmExx8huTKU5+YzLFyW9MplQ0NZbG2JK7CEse4Tg+R8SiVFGkaPTcVPpLZYuHpZaTnoMD7nynos2g1N/BSQ1luiACRUT0t3o95DjcA4fYPgg85Nyaghg6DY2NQMQddAzoIAbkJIP3RA1iVQPrOIOy04ut3vPzqa7N4bvqGFzD/nxvwK64/+yriPjBWvvwzWDSLkHu1xr2YmrPRBLx3uhr38KIiPMCjg1ds7Md5CqYbP3mNyZTnPzGZIqT35hMcfIbkylOfmMypZpDjTEqmjC9huyKQ/wHgH9jUht4kkqKdfoBNkuwFs/A6tjAZ/EfjpInsfTrtH8fyKJLzKC/wGWjk2ao/wEr0novXY0+R2APXYDdeF3o/Z3BPw2jHTQZLdKs4S0o+5Oe3vNHrY5Dj4j4aHUpscuVriP1XtiDPgv0LxP9m0U1+QcV/PPU138zHhe61hERj0nZ3+raHiQq+37zG5MpTn5jMsXJb0ymOPmNyZSqqyHlXUgwWsM0nKZUMYZGBkfwxBiaYJI6lYYslZMdjCCH2vTJTq3GNDllCIJWRMRhpeLXo/JAj4O6ehoFft3qGOrJWmNLaGRK0GSXrkaR+yBM0bMqKhBdC7BiwzuGBNZbWIcpTE2atGq7JjE0IuJ6BX0aoD8E0cA49dQmsSQMn1W6Hx6BZfcRCHsREaOdnmcJe/nzStf2k1D7st/8xmSKk9+YTHHyG5MpTn5jMqUiIYgaZqZOJSFXHDndIrhmnUQkEhvpPF3C4l3WIDY1cC8kKnaJZHQv1FyzBkGTfI7UN4BGflOM3GoENRONYBcbiV+3IKbSxCZaWxp/TjX1s43GSKTuEq5pL2MjTXgudBw5KtEJCI7PA2q2CQLwwTbN/RgR8QImMX241R4GH66vJOY3vzGZ4uQ3JlOc/MZkipPfmEypHvSPJHjVI1cUTSAB1xe4nQYgIEVEHPSgmSWIduudOs5IjMPvw9HEMH0IxBhiDO6yiIgVCGKXocfegDBI5bs08YXWtoB12IIzkcqnSZyLYCF3De67m461uAuJl3R/JF7SKHaKNa1eXwSX29JaYJNZKo3tpYmFtD9TZTzoYfu/cbjGC3CmvmhV8Jts1B3qN78xmeLkNyZTnPzGZIqT35hMqd4Z3JcgTSC57GnJJJW8EiQgRXCZ6T65/kLFuBLkEyodpV83uhoaYbwF8ZFcbRERV42KpDdQllsm/t6Sy+64r73d6kLFQhJnSUzrYg3i2bRRcY9EOxK/SEyjPUGx1xLsOo4lqCyX9ucQXJEHtQrSAyj9ppHoUxBSu9obLiDfLrbqgCRxb9a4pNcY8384+Y3JFCe/MZni5DcmU6o/7B1KsFenOZZuQFggFlC+GRGxB6IIjYLuw7kHib9bK5D3luSAg89Sn7mmQ+QkBxw5IIdQ/nkCJc8knM1hHW8q6PXXaGwOgk9XLzsSB6mkm8qbU3sFpvZlxBicY9NRBtslBN6F1puue1RBWS6M2d4HxygJ5C+3KqSOQfSOiFjCHnu5USF+3KjDj0Rgv/mNyRQnvzGZ4uQ3JlOc/MZkSvXNjeb/olYBYw3DOIhFq44zKumMiLgGwbApVWQ7AvFkiE5AFW1WILLQcAgaSkF0OfSOQPQhIe9rhQqsR6FuvjlMon0Jpb80RITcZWNwDF6HuhIjIm4bFYdoAjL2cNyliXtUnhwQI9GNYm3BLtINhFNFwNQejrTefdifa9iLN60+gy7n7BLyaLpRwXC61hiJuH7zG5MpTn5jMsXJb0ymOPmNyZSqAhdaDdNA96AX3ghKXkmsIBEwImK8USfSAkStGQ07ADHtMHFoB4kx5Cw8hHuuwV0WEVGBWPX2VoWgby9hOAgIUB/Xei/vV1BiSkNSYB3IcUautoiIq1DXGA2rIIGVBqyQcEZl4/TZ4U7vhVx2VF4cETFfq7PxVcqbf1NI0CSBlAaVkIgXwS69JdwL9TMkh6bf/MZkipPfmExx8huTKU5+YzKl+nmtIsRnoSLEDQwH6OrNl3ocTVadwbmXpYoaJCINQaDbJ/cV/Obdh4EfX231+8437A4bwQCMNysVNB999UZiOyhHPfn0BM6iIuew1HuZgeB3BPe36XguqWJVaglun55LqX3vaGDLCJ4fMe0oG39WjyV2sdJnsGhYlL4L9QRMdYcSKJB3XAsNKyEhj6YL03X7zW9Mpjj5jckUJ78xmeLkNyZTqn9vLyQ4TyzLpTJPcoJRLCJ9cMOqp+cm1+ASXGx9KDEdkStup7+Db0I96DulingREcdn6sraP1OBZu9t+L0FsfB8qS67l5d6f0vqbwhTH9qeCmen4JKM6Ci3peMSp9OSo/K4p/fyAJ7f/Z2KhQNwoF5DKXhExHtDFRHpGi96KgLS8BIidR9TjHKjSyAnIS9V3CP85jcmU5z8xmSKk9+YTHHyG5MpTn5jMqV6Mv9cgmRXRFsjxGiaSt0xgYTqsuk7qeEi/SPxEsaI34I1eFNCs02wkTZw3VWHqrx/qsr+4L5edw+U+M0UGjveqP31GdTzvyjAHtrTa6TxzhWo3hERe/DPwOtAtutDOMfDncYeb6C3BOyRvZL32LjQdZzXRxKjPUaTj0iJn0NNPqnw1ICT/kUjy25ERAv/CqUq+4Tf/MZkipPfmExx8huTKU5+YzKlGq/YrpoCWjlLFXf6tcYiIvZKsF7C7xGNv6bGhZdrGFfc0/ub1SrQ9PsqGD2udLrONxu+F+qFuYPa/8VTFXM+fv9UYt+vDiT200Lv5UWb9vyqDtGVIPGrAQGLnguxARv4HuyTWajgNwEhbwX9D2YFC18kz1J/gRFYixuYUjXf6N4Zr/UZTHogFoJgR005uwQ/ei69RCs24Te/MZni5DcmU5z8xmSKk9+YTKmoZpnquWm6S6/UWJHY1DGC3XzbSK9vvgsJJcuOxo53uQaBbVZqrNl23Euja7F8qWLV0w/PJPavA3Wh/WB7KbEPbl9IjCbV9GEazkm9L7EDcL9FRDTUVBImKdG56VkNSxXy6DgaA/8SGo8eVnp/XW+xW7gXEirJ1Zo6onvVqPhMeUXn2LTUgJPFS8xByFW6bjrOb35jMsXJb0ymOPmNyRQnvzGZUuHUFSjLTXXzkbjTJfjRtBJqaEjlkQSJMQRdD5Wx3gMn2UGfxzuvF7oWLy5UMPxhX5tm/nB7JbFfLrTU+no1kxgJZyT4IR2Vu+utilU0NpomLpGLjfYJPedlpWt7BJN9HpUqXh4G3zM5EymWusdw3DjcH0HPipqgdjYOBTPfoNKHuFepSEp7wm9+YzLFyW9Mpjj5jckUJ78xmVIdDbSfXQ3CWarbiYSFLsGPhCUSAV9nPHQBPfNGpZZvnhcqxH1jqdc3gl59ESzu/VulwtQPYiKx95fq3Js1KrDhFBgQ2FY7Fc6mid/XFaex0fT8UllBb0V23ikDeGcNOvZYCSpZ6kQiKqFFsRhK02mP0fetoDSdRnF3cdTX/L3X11L0QxBO/eY3JlOc/MZkipPfmExx8huTKdWDoQ4wGBYqYNDgDSoxJDGFSkQjIrY7FaHI8bRJHORBMYLO0QchZwTlxbO5rk1ExI/Adfa9GEvsveVziZF7jkowSYglSAREwa7DSYYDWhLFL7pGcsANYEgK9dE7hbLje6HP4AhGrEdELEEyHEMPP+px2CVU34XuhWLkIpz1YOBH4j6OiNiHwTdHMHr9EHLab35jMsXJb0ymOPmNyRQnvzGZUh2COHAKU2z3oeS1BkGExIppRx89Et5wMEELx4EohX3hEl1oH/a1XPa/+9pvb9VTgSWCnXtPwLlHZbAkptYwrGLdAwccrQOIXNTfsGs4BAm5VJZLpaNDcLuR6/Owon2nsUcg+L3Z6tocdFTk3kLJ6zX0BVwUukfJcUhDZcjNR890kdhP8lWg/T1pdWAITQj2m9+YTHHyG5MpTn5jMsXJb0ymVOS+I9GOHHDHJAKCWHQMbqeIiCE4rYZw7E0L/eNaFc4mjQodq01ayeS78Yl+3566r7rKYKdwjSRe0vAMcpLRc5nBhFi6Hhb3wBHZMRyCejiS4zC1pJueKcVGsJ8Od3qOEVz2oONeRrAfR7Dv+iDQ0TTfHpSI74F7Dp9LYrk6CeERnJc0OCVV5Pab35hMcfIbkylOfmMyxclvTKZUl+upBKn0cFOBWAFOwGOYBEFiYUTEGZRmliCoVPAblTq5N1UQu1zqOswaFdhoSEJExEEFpae19lI7gzUbgNhErshLOI5EJBI5qdS67RDJyDWY6qhEUSv0ursm0cpxEJvBdrrueI09B1fkGNZ2mTi5tw/3QqdewjrQ2hCpw2ci+BmQoN2ACOg3vzGZ4uQ3JlOc/MZkipPfmEypJuu5BFdQ/jcHR9201hiVAx9BCWUEC10EiVUkQFEMe+FBeWrqZNumo+9dW6rwQqWx5GI7gtgeXGNLDi8QrzqnvN49Ljp6+MF5aKou9QXEZwDrcFimCX7znp73w56u9fOtirMREZ81KuSON7rnlzA8g/Ydufmo9JcENnLeYfl0x15MFWJTn5/f/MZkipPfmExx8huTKU5+YzLFyW9MplSpynCqvXNVQf08/AMQEXEEE1qwKWiiFZRskQe12m4HZdqEFfrXgxpwdsXHharKA1BytzAenGq66Zeaas6PYWzzCCa7zKE/QETEbK1xskSTDZz2CT0X2jsNmHkvtrqu16Dsf7q+llhExOVK1f5l4ghs6mtAe4fuj54f9kR4pUlBaZb21H/C/OY3JlOc/MZkipPfmExx8huTKdWoViGI7IUkapCNkESy2x4LLCT4UVNPaprYQq18DddN17gP5yWR5arRKT4rsIF2xceNCn4o5kCLgD2w/JK9l4RKmpqT2v8ggu3BrzLx5y5kAx6XujYETR+6WutzuV5pLILFPRphTpBAR3uZhEHKF5pwVFbp71+yAlPPgVSB3G9+YzLFyW9Mpjj5jckUJ78xmVI9Gp5IMLW2nQQfmjRDok0EO7poVskJ9AM4IVGrVBGQBBGSQ+Y76GFQqFDV7b5Kgz5P4t4BxGht2iJNvGpCn0vd0SiS6thToT2Bdf/wFCaFTlyi46hBJTUtjUh3ISJw2BZ6CWy2IEjDc6F1JWHwVfYYOQlxkhL0h/Cb35hMcfIbkylOfmMyxclvTKZUj+ojCZKTiISXaU+FnPVGRRsaLd11ngCt8c1CS1TPQ116pzv9LaPrvgbR5hO4FBJeyPUVwe7Cw0pLde9XBxI7h5LeQ3A6XsG46ltoHjmHMlhqKElNHSPSHWKpwhmdu12nCWIEOfToOUe8grgH0LOmPUvH0fWQc7IX+qy6RnTTHqNS7fPhqcTulzoa3m9+YzLFyW9Mpjj5jckUJ78xmVJRDzhyxeHoZXBP0eSTZcslvVT+S46sYV+v8QG4/kZgdqtAPFmV+pvXh99BWhsqoY1gV+RJrSLLKYh7+3CeGq57CNe4B5+d7VRgpck+JMRFvJ5Ilvp9LTpBv3i6BFo5DtY7tVQ31ZFH+UJTfLr6RJ4NdM//8fANiX2np07Xr4IB0m9+YzLFyW9Mpjj5jckUJ78xmVLReGHqFUdiBYlzJAxSCWYE970jcYhEtsNaY0UJPQHh922WOPzgAMYxH9c8gITWh3oF4lAS6sMGAhQJg+R+rGsVpV4kjkOPYOcfxehZ0Z74XVB0iG4k2qW69KgMloZ2UGk0PVMa706uv65+i8eVPus/CxX3vrPU7zyrVQT2m9+YTHHyG5MpTn5jMsXJb0ymVOP29jf+cOogiK7jVps0T9eLYpJ03A2Uy5IDjkomSaChASLHHROHZ60KKjjFGATRdahgNILYGfxWP97pNX4dyp1f9NVt+LTSWETEByAOkpA3JRG4/e0LfiTu1SDORUTsw1AacukRKALSQBtYLyrpreG4rusmyEk47ul5XsB3lo2K137zG5MpTn5jMsXJb0ymOPmNyZSKJslSLzUSG6jXG7m+ukpESRCjAQ90HiqFnFTaP3AErr8ROPcOEt14Xb3iqGSWSpbpO/fJSQai5KONxt7Y6DoM4BovQag67mv/xoiIpg/i3kaF4Tk8K+xn9wX30SPXHgl7ERGnAxWBD8ph0rnJ/Zra35CgvUh51bVeJCr/uLiQ2HPoy/m4tuBnjPk/nPzGZIqT35hMcfIbkynVZE2Cn/4mpA5UoDJdmtwawa6xLWgd87UKHVQKuahUgDqoVdw57asIRC6tLbjsVh19726hTyEJmjR4gfr6FbDcZ+Ce+8pARc5+X6+xnqqb77Jlkew+CGJUVv0603xfB9qfVGobEXECLsYH4AQl990a3JgzGIiyALGXhLxDEJX3QXwmF2hExCfrK4k9WTyT2KfVtcRoHfzmNyZTnPzGZIqT35hMcfIbkykVubRShRxyO5G419XXLdX5xRNP0wZ+kBtMZ5hy+W4fRKDZK4hcdN3k+pvvNNZAqeYerNf+gT6/dqP3fAPjj69LXv819Dike8FpuV/wwA/iVc5Bwtuop+LgCcRKeNZTEO2uQQQswaF5r1AhdR/22Ev4vgjOt8laBd+r1Uxiz4uxxPzmNyZTnPzGZIqT35hMcfIbkylOfmMypaIpIqmQAvy7UHu7zpPaX4BGbz8Ei+0IlNimw3o5hVptOpZspEuoG5/0wFoK1uDFXO2hl0tVld8d6O/8u6HW7oiIjxpVhmebtAalXzTYH4L+/emyXYP1lta7gJHvB/CsSMVvemnrMIB37Qbu72rLTXVvGlX2Vxv4pwjWYgnX7Te/MZni5DcmU5z8xmSKk9+YTKl+XyOVfxuQOESiFFk+75Plc6eCzxjsnRERk0oFQ6znTxyVfbVToeoDGEverrVZ41O4xJ/EjcSeLF/iuS/XU4lN1ypC/b72DtmKSfiKYKHyplT7LE12uoV+DnMQC0mgI7H3GvYY9Qz49VKbckZEjFcq0JKdPlUk9ZvfmExx8huTKU5+YzLFyW9MpqTPB/5/AIkaDQgi5Poi9nbqiqo66vn3QMwpoAtnCb+3LdTPj6Gm+2fQm+DjgT7CX7cqDP1q9UJiF0sVASN4Ek+qsPS7IPU5R0QsobHqpFWnXOp5Jhv9LE29IsGPhGZaVxJXI1jUfB3R1W9+YzLFyW9Mpjj5jckUJ78xmfLlEvyooWgLggqMm76AJppDEGiouWUEizkDcPP1oLRyCddNU2A+ShQqn68nEiNxj8ahR3SIex2jyX8f4HPuEPxoghQ9f5q4hM1WG3UM3m5gWhO4EInUxqgRX7yj0m9+YzLFyW9Mpjj5jckUJ78xmfI/BObpRddTXpUAAAAASUVORK5CYII=" y="-10947.467979"/>
</g>
<g id="matplotlib.axis_611">
<g id="xtick_916"/>
<g id="xtick_917"/>
<g id="xtick_918"/>
</g>
<g id="matplotlib.axis_612">
<g id="ytick_1526"/>
<g id="ytick_1527"/>
<g id="ytick_1528"/>
<g id="ytick_1529"/>
<g id="ytick_1530"/>
</g>
</g>
<g id="axes_307">
<g id="patch_308">
<path d="M 299.674375 11072.369743
L 421.964375 11072.369743
L 421.964375 10945.076216
L 299.674375 10945.076216
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_613">
<g id="xtick_919"/>
<g id="xtick_920"/>
<g id="xtick_921"/>
</g>
<g id="matplotlib.axis_614">
<g id="ytick_1531"/>
<g id="ytick_1532"/>
<g id="ytick_1533"/>
<g id="ytick_1534"/>
<g id="ytick_1535"/>
</g>
</g>
<g id="axes_308">
<g id="patch_309">
<path d="M 434.924375 11072.369743
L 557.214375 11072.369743
L 557.214375 10945.076216
L 434.924375 10945.076216
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_615">
<g id="xtick_922"/>
<g id="xtick_923"/>
<g id="xtick_924"/>
</g>
<g id="matplotlib.axis_616">
<g id="ytick_1536"/>
<g id="ytick_1537"/>
<g id="ytick_1538"/>
<g id="ytick_1539"/>
<g id="ytick_1540"/>
</g>
</g>
<g id="axes_309">
<g id="patch_310">
<path d="M 29.174375 11216.289167
L 151.464375 11216.289167
L 151.464375 11088.99564
L 29.174375 11088.99564
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_617">
<g id="xtick_925"/>
<g id="xtick_926"/>
<g id="xtick_927"/>
</g>
<g id="matplotlib.axis_618">
<g id="ytick_1541"/>
<g id="ytick_1542"/>
<g id="ytick_1543"/>
<g id="ytick_1544"/>
<g id="ytick_1545"/>
<g id="text_78">
<!-- 260 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 11199.682403)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-48"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_310">
<g id="patch_311">
<path d="M 164.424375 11216.289167
L 286.714375 11216.289167
L 286.714375 11088.99564
L 164.424375 11088.99564
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_619">
<g id="xtick_928"/>
<g id="xtick_929"/>
<g id="xtick_930"/>
</g>
<g id="matplotlib.axis_620">
<g id="ytick_1546"/>
<g id="ytick_1547"/>
<g id="ytick_1548"/>
<g id="ytick_1549"/>
<g id="ytick_1550"/>
</g>
</g>
<g id="axes_311">
<g id="patch_312">
<path d="M 299.674375 11216.289167
L 421.964375 11216.289167
L 421.964375 11088.99564
L 299.674375 11088.99564
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_621">
<g id="xtick_931"/>
<g id="xtick_932"/>
<g id="xtick_933"/>
</g>
<g id="matplotlib.axis_622">
<g id="ytick_1551"/>
<g id="ytick_1552"/>
<g id="ytick_1553"/>
<g id="ytick_1554"/>
<g id="ytick_1555"/>
</g>
</g>
<g id="axes_312">
<g id="patch_313">
<path d="M 434.924375 11213.787403
L 557.214375 11213.787403
L 557.214375 11091.497403
L 434.924375 11091.497403
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p35f2ef98a2)">
<image height="122.4" id="image34d2b8a204" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAG2tJREFUeJztncuOJFlShi38EpeMzKzM7qlST9cwM3SPYDVCSMACiQVLNjwdL8ELsGfJDml2s0BCoKG665K38Lh5uAeLnppF2ncki4qGkcr+b3nkEcf9nGPh0h+/mU2+/fIvj/aMajJ5PmT1pHJjE/PXEcNxDI8fjoMb248Hf93orzuHYfT3Qvd3PLrlMjOzCazZtG7c2EUz89dV/jqam9aBrmsndWjel+21GzMz+/Pm1o39xTh3Y3PY1jeNX5//sr0be3vcurGn0V+3p/Nw9OuwG3t/M2a2oe8MriNB+78d/Nzbg5+X5qAzctUucO6bdunHGj82h/PUw9w+ooUQKVDwC5EUBb8QSVHwC5GU5rphccFdCCJSVAQcjMWU7eBFkdXghSCiJLx9Kkf7cb/PjO+RhEpaMxJdaQ9ojATERTWFsdaNmZnVcD870HYv4LM3o79wDfP0ExBYK79ex9GPDSe8s8bgHoyw/1VQ0I5CojDtPd2LmVkP4mc37tzY9ugFSBLS9eYXIikKfiGSouAXIikKfiGS0nwBDiGS51oQ9xr47SCRZG/sxnuEa0nUIEcW+blI3CHhjGDRDeYofD46D4k5I7rL/NqSwEpjJPjNQHQrOTS38JR3INDNYe4LeJRX8CwDCJCHCawNjA0kzsG9mLGQS3uAAjLsaXT/onPQ/ZXchhQH0TNBY3rzC5EUBb8QSVHwC5EUBb8QSWluK+/wi7qdSAQktpCCaWbWV17Y2FTe9UcuNhJ4RhALoyIgjYG5DEVAMxbPyNFFog+JWrSy0VTrsPOyICw9gUPsrvJ7cAki4mzw81zCND+BPe1BBDzCQtQwSPtsZraeeAccge47OicwDc1NKeJE6b6J6P5PJ17wncNe6c0vRFIU/EIkRcEvRFIU/EIkpZmD8BIV/Cj1k9xXdeE3hj5P4l4LYlNd+e+M1vUjIYeog4Ld/xckDh1BLKR7pLTqXUGI7UBQuz/6PXiBwpJfsxksWQtjVzDvMPFCVUvnDsRjM7N7OE8ErRmeExiKujvDgh04NM3MLmpfh/Gy9rUVF7Bmc9grvfmFSIqCX4ikKPiFSIqCX4ikND0IQdHaZSTukVhYquFH6Yw0hum2wbp3UQdVtAFJ6TJM1yQ3XzTVk4Q8+GxPIif8pE+gth7NYcZrsQURqav83CsQ/IZjTBgmSBSm+yuljVODj/C+kHgNAl0LjTemsC90Pi9aL+K9aKg6otmL2o9fgiuSxD0S9vXmFyIpCn4hkqLgFyIpCn4hkqLgFyIpTQetjTFHPKi4k2q6hTz7H8ZjrZL/L7rpfCrFfwVgOFqwMfoPQOlfE/dZKkRAFH765+aVfbrvA+017RWtDcxLp2RHxUSPPkf/3WEFnzZbH/y10XbcBNnPLxtvsaXYILvwFXTMWoJl18xsCcr+BfwLM6V/JLDYrhAiJQp+IZKi4BciKQp+IZLSdFCskcSBqMWWxKtS3vgWxEZqJXyOQHMO0TztH4i3Wn5OVNyLWpCjNQdIvCrNQ92ZCNopuhu6jiy/HZyH74fOjd33fsyMO0AR0RoPVFvinPb1lKNPxTbNuGAu1ZyIxqXe/EIkRcEvRFIU/EIkRcEvRFKacxx1WFCScs4Logu2Nv4jFciMFlcsCUPhGgjBds7ngDUVThBN6bmJH3unSBbuQCy+P3hxbzdQ0/a4+BndPxRDKVe+1NrpGdRdp9QJi+bGbkHU6lyCnxDiIwp+IZKi4BciKQp+IZKCrUGiohQJeaekokZFqGj7a2ypDN8X7ZLSBN1cpe8k8XM/egGLxohomiiKuLQvhfUn52VHRSGhi88c1qGiPtvAeuLP0/2w9fdyZppu1M1H5y5cdJYEZDiNLZyncDHZAgdYiwMW6hVCpETBL0RSFPxCJEXBL0RSUPCLins9CFXRFEqzuHgSJSoMkri3hDpsi9rXTCNHlhkLNyS8dCBgbSZ7N3aWGApjtFfrwQtnZoV6fSTuwlKQs60vrNlz3o7+ft5DbT6qy0duUTMWbbHdPKbL+jFy1JFgGxWVMU23IPjRmzoaLbQ6evMLkRQFvxBJUfALkRQFvxBJaaiFMYlNdN05brVTIAEq2qKbBL8WhBeqm3ZZeRGQWiKbcfMEEk4fYJ77YePGduCyi4qh1Labvq/rvfhoxumxfROshQfa3r7ydepIDH0zeHHv7f7RjZHgV0pDrmC8AVGSriOi55vEvQWcHRKQqcW2GYuD0VRkbrojhEiJgl+IpCj4hUiKgl+IpDSb0bvLKP2TnHskIpEgUqqjxim4MdEu+n3RenTRWobk5DMzuwbBr4VnaevY/TzBfUfvkRx+tA7bgituHPx31uBC3NR+bEXnCeYgAfld/+TGSJTsBzhj4OQz4yYbdB5H8MChqzFYEzC6LwsQ95YlwQ/e1Q3uNbk+PXrzC5EUBb8QSVHwC5EUBb8QSWlQoAs2fTiAk2xPYkzBmYadf89onkFiIYqX8Mwbmnfw8y4KHVRt4l1slyAOkl60AecXdawl0ZVSTCfgYCPHGfe15f0ityKdHRKQqYYjfZZSjOk8DWO8gzGdW3JA9kZrG2sqE3WWkoBIkLBnZjaDOCBRmdx89VEOPyHE71HwC5EUBb8QSVHwC5GUJipCkHASdZyRQFOCxBP6iYo2NmA3F6husAwkNG7A1Whm1lf+GVsQWRYgAl6bF/xG6LS6h6YWtAcVzIv142DMjIVcguYmwS+aDk7z0h60NT1LvJkKQeIennkSG0nwg7ToJ0jdfqh92nhd6PA7QMnNGQQHfZokd735hUiKgl+IpCj4hUiKgl+IpDTkWEKHFznJgqm2JXgefx0JL9TxlEBHFl0HAht9tgSmVsLYBYhx2NQCbvLp6EWkjfmxqMBaV7yGNI4NTAqCobufYAOSOczRzGNdbEv3UhICn4OOQ6gVSNfRepPQ/NR7we8NpVo3XCdwCU7QJhgHexD29eYXIikKfiGSouAXIikKfiGSouAXIinNOS2xKX+eWiKXIEU0WoQT2ydjZx9PtH3ysvY5+l/UF/CNZl+CRfcSlP0d/EFC+dv0TwHtVQd22hW1AR/8dSWoSOkFrAV1oInaaUmxn8EekJo9hfubFQqr0rXEBizId2DH/QAtw0nFp38FqI7A/d5XVdiCNdjMbF77WhL0r1e0foLe/EIkRcEvRFIU/EIkRcEvRFJi/swCKM7B78kRrLM/fAHcEAiGJMadIyxRO+4l5FX/tLlyY7+aLHGe12NMWFpPvBizBetlBwLU4+jtpg+HtRt7OngBanOgTjq8L23tn4XWmwTRGViVSYxbQoejaziOF/BZqpNAAqkZv92oOOpD5fcgap0lVgcvuqI1GKzPVMjUjDtkEVi0FAqh6s0vRFIU/EIkRcEvRFIU/EIkBfP5iXOcgCXXHwl5MxDj6DpyF1YgSl2AC+1F5cW928qLVz81P1YS9q4hZf0RflpXIPh9AJfe/egFo0dwnJE4ROIeFcfEYqnGTkkSkUhMvZr49X4Fa/vV0e/zizHWVYZkr74gKu/hEb1EWqr7EHObTknkhHNM63VKG/BoMVraa3IX6s0vRFIU/EIkRcEvRFIU/EIkpSHR55TClc8hQaQppFVSUUhKHY2mLZJAQymd0TRPcuO9K3RTWcE6PsDn3xy9QPd49ALdBop1RrvcELTPJJCa8Tpii3YQq6gj0evRi1+/gBqVMyiEuar9Pd7BbW8KtWRXcE7W0PloDc9CZ4xEu2gaOhUTrY9wtgsFT7EbFnXNAvGT5tabX4ikKPiFSIqCX4ikKPiFSEpDTqRohxUSIE7ppkLiHqWEEpi2CKLNGtIg6R43E69AvTfvsqP6diWonfeW0jpBWMJW1/BZbDcOkMuy5LwkIZD2+hA8JzNY7zb4WXLzrSp/L+9g/8zMniA1egg65Uhojr4tSWBtDNYbhMqSmxbPPAm+1NKeBF+cRQjx2aPgFyIpCn4hkqLgFyIpzVWzcIPoGgoKSySSlBx+UfGMhDyqZ0aOs9684LMHEQhdbcHmB6W5ySmJLi9YM3rmcxx+LPgU6t7BtVGH3x7W7BGcjm/BuUdvogcQ9+7AoXcPjkgzszXsdUtpudQ4hdyvMAftAbaVh3lJfD6FAda2ghqHBnPrzS9EUhT8QiRFwS9EUhT8QiSluYWus1GHH0GiRklYIkGNHHA7EHOodh25nbDmGghVJHKRwLYrdFAtCYFubqpbCN1X2c0Va/owQGosUvjpHwb/eXIDknBK3W7voSHGAFov3XUH4t4DzEGNT8xYqCYhdoA02D18JzkvtyA+Y81DSAcn8bHk2qT7xrFg6q/e/EIkRcEvRFIU/EIkRcEvRFKaa2iyQAYhEhG4qUG8JiCJQxtI4twMUOMOxrCpQTA9lZxWJJKUhL09dEElogINERX36PlILByhfpwZuwGxOQQ5KuEeV+TQJLGX6u3BfZOLsAR176XVpq7ID9A45Qkap2zhLNIatpDSi87LE0poRuv60TnRm1+IpCj4hUiKgl+IpCj4hUhKM4O0WhJ3SIMgMYW8fIdCB1X6UqoLhynG5NKC6+hZxhHqtZEweEbzErNC3TtwIUYFSLou6mA7pTlL9I1An6dU5I35MS+lma3IyQnuOXrmUu3HCs43CYZP4Ny7O3RurDuAsxSemcQ9AtN8T+ieTKIrnmWIQb35hUiKgl+IpCj4hUiKgl+IpDT9CW6pT4VcX2ZmA7mTgveDogjoVygMBjv80hylRhckfkXFPbqOBD8S7eg6clkS9H1m8Xp/JLB2IJxFuyKT45PSZYmhYIvDM0YuxMFLkOQixbRqcs9B+i6m+cK6XlTedWvGQt456M0vRFIU/EIkRcEvRFIU/EIkRcEvRFKaDtTUsKoc7DZCiqtZvEYA3U9UnSein13UXnUtdR/a1WBNBSso1QOI2oipdXYLnW+i1ufSvNEuMmQt7UA1j9qX6fvonxm6b/qsmdkOWnfTtevR7xV1haIisdGuSfhZuJfS+pf+BXhO2PId+jYhxGeHgl+IpCj4hUiKgl+IpDSro7cw1lDBk4QuEvyaEyyIXAA01saYCx/GhCr67KzyXXNum0s/VvuW5mYsaj6C+PU4rN0Y2UijLZ5pX0hEok5DJECVwFxy+HxnIHKCbTdqVS3VHPDfx89CZ4zuZwvrszn4faF1JAGSi6hCbQEqUFpxMdj5xJ9RqmNwgLM81CrgKYT4PQp+IZKi4BciKQp+IZLSdNDqmtpItyBgYJ426DMlEZAEwzkIGC2JjcEihQTl5F81Xsj7WXPtxn5eseA3he43Xe1FqO+Ofr2/G3yhyCcQCwlaB3SwVX5eEhrNWMiLtn0ewRUXLTIZBfc+2PXILO60G88oJktlKWheFPxAkDQzmx59bFAMTqq5G6vhPa83vxBJUfALkRQFvxBJUfALkZSG0hYJLEgYdOiVXFp07dS8qDGH1FoSRaKpqMt65sZeNVdu7GsQ914P3BnmEgSeXeWfbwliY1WDUxJ+lw/B4qa03iT4lNZrNwHRDsSqcCelYFpuNCUb25wXxF5MB6fCrCCckTBcR8XCYHelU4TKFuLluvJnmUTAQSm9QoiPKPiFSIqCX4ikKPiFSEpD7YVrcKv1MIapttCO2UodW7CDiYdSGQ8g2h0grZNExStIy70F4eQSnnla0GdmJGCN/mkuQWy6AldjB2mZ0XbVtIjk2lxYrCacWUFkC4pV59RbJLDrUaGG3wTSvFsS8ihdOnhd1FlKImdUnDUzu4Qz+mri3Xy3IJpTFye9+YVIioJfiKQo+IVIioJfiKQ02ESCiv5TSufEC3Y9iHuUkmtWbhHtvjPY2IDEmBaEriU0P5jB7yD56baFn8sG7qeHx6MxWgVy+NHz7cDpSOsVbQ9tFnfFRVuiG3w2Wqsx6oCL1vo79drnYEObM8RLShsuCal09GawjlSDkz6rN78QSVHwC5EUBb8QSVHwC5GUhpxRh8GPUVMDckqRk6zU2TZax43SSSmll4ScBYgn1BRhB/JeB47B0h1vIC23h7mfQCTdUq24YM28XbAGHAlLJAyaFerKwRjdD0GpqNQkhc5O9IyU7oXOd7SWHtYoPEMspM/SvI8H39jFzOx7WDMSSa/AEUvozS9EUhT8QiRFwS9EUhT8QiSlIUcWCUF43eh/O0hMIyHHrCwEPodEm6hAQ5+dQgrtAkSSGuoWkjBoxs6vHu6ng/vpjl5M7UbfUIPGqAYjCX60NqUuvfidQ8wJSns9r/3avmx9Q5Sb2qenTs2fEXLA7QviJa3tA3RKfjps3Fi0vmUUWi9a14cjC360h5vWn4klpP6SMKg3vxBJUfALkRQFvxBJUfALkZQGmwtQ44Uf2e1kxo0WUDgLOrJ6EE/2Ez+GzUJAqKJ72YAAZcZrsQXhbQNjWxCWdiBUoRAH60D3EhVDzcy2By8i0eepxh01WPlqeuPG/qz2Y1+ZFwZbEKr2cGYfKxZi3x/9s1B36KggOtA8MIRp8RgvEH8jx9VT70VJ2n86yxL8hBB/QMEvRFIU/EIkRcEvRFLQ4ReFRA1MrSxlfsJPDzVZwLRMEPco7Zig+ya3ITVPmBfciuTm24Ajj8aiKbT9GWm1BM3xwzwsBD6HhKWbdunGflb7Dsh/evTC4J/A7cxA/NqB8/Ku5n1ZUHfpGr4ThFg6d3R2dnDuKA2dAgHF2ZH3lMZpnjWJe2raIYT4iIJfiKQo+IVIioJfiKQo+IVICkqk1IGk1DY4QqkDCSuiHlKlSdmnwqPExrzi/lj5HGpSs/ujz5U2MxtAyd0On67209qQCh/taBO1bJfGoy2sL6Ab0pz+NYF/dS5h/14Y/AUA23w5sNo/Tv09PkJ9gXvIgd/Vfm6yydI/RbT39K/ACP8olOIF93CATkzBDkJ68wuRFAW/EElR8AuRFAW/EElpuFUytVmOfeEpdmESljDvHIQuuu+6if2WRWsGUFFHKlBaImrRjRYjJXtnVPAjSjZS2sOolZtqE6xBodtCLYcR9mUKn20gp/4w8AG9GL0YN6v9OVlAUdcrEAGp3Tx1H3oKdhqK1l44F9pTvfmFSIqCX4ikKPiFSIqCX4ikNOTSIhcTQcIZCRglUSp6bVRErEBkoXuMCo3kyKKxElHx8pQ1+1RojpKTjAtNxtbnafAi6ftx68YeKt+dZ0ciWXAZhsKZXcNXbuFZaL2pixN1eyIRMCqQRsfMuL4AufnQCQjirt78QiRFwS9EUhT8QiRFwS9EUhpyJ5FIRiIguewquK6UYkhpwmEBo1gV9Nn3wf2QcLIedn7s4MdKgl/UkRftkIRp1UFBM0pJSOX031h76Q2mMYNwCkU0ibqirk7+um3hPfYe3IAfoIvPFs4EdfZpYQ/2kJ5MZ5tSxHcguNM+m5kNk6DrM+ga1JtfiKQo+IVIioJfiKQo+IVISkPuJBaW/Bh9lhxQS6jrZma2BAdVDQIWiTGr0Ytx1DWHnFYHug5Ekt2Eaq6xUIXtnINiDEGCX0VKV1CcDVvl7Ly6gDQ3iWQtiGRVcF7qYP0IabpmZm9hD+8G7zjcUqvrYBenPZzPPXQAYtEt1l3HrJBqHRT3lNIrhPgDCn4hkqLgFyIpCn4hksKdDoKQ4HdT+1TN19UFfv4nRz89+fbegWjzBn62OmiIMQRFJKxleIJ7LirGRMW0aFo1XUeC0TFahNFY1ETXJ4y14FibgQhM+7yq/B48Hlgsfs7/cC8VezP6FON7SDtGhya4X+ujv8c1nDtyjJL7MdqcxSye+o2CoVp0CyE+ouAXIikKfiGSouAXIiko+J3TNOB64gWab0cWbV73XqxYgYutb/xtvoffLRLtjuC+Is6tr3YOmC4N4hfVW6SxPybY/ATcmG8qP9Y2XixegehGDT/+feK7LJuZ/ff+wX8nOPxYJI05GDv4vtUBXIQHL/hFnaFmcUclgY7R0CeFEJ8dCn4hkqLgFyIpCn4hkoKCH9WZG0E462GsBQHiaxD2zMx+Yd5p9Wbwos9/NJ9ep44EEXo+ehZyX5UEPxJpSGQhgY5qu01rPxYV90gY2kMebMnBGK0LSDX8HvadGxthzbqZF/zeN9dujNK+78C197v9Pd5jB8Ib7T/tAe01Cpq9v5+u9/PSekXrZZ4CinsS/IQQH1HwC5EUBb8QSVHwC5GUhptkxJxtVKesBzGlLdStW0xBANn5a8nRRfX6qB6ageuP0jLPJZreetH63NMlONsWdSyVlRqQUOroHmrUleoJkuBEbjcS8lZ7L3Rten8/JJK9ax/dWEuNLqAJCLnnzPjc0vPtKv+deB00baG5SSzG9GsSgEHsNTuhK3a0q3XoKiHEZ4eCX4ikKPiFSIqCX4ikNCQYYZohCCfU1KI7+rFVzTX8Nr0XNtaQyrqGrqp0P9GuqtTtlBxelCJc6qBKDTXmjRftrtqFG7tu/Posq0JRumd0kC5La9MdvRBXSh2NQmITiYA0Nuxj7jnaF6JUG5EFMRCvQRCl9enBpUfPF3V3LkEAvmh470n8JHp4Fno+vfmFSIqCX4ikKPiFSIqCX4ikKPiFSEqzBbsi/QMQLVz5BN1L7go/Md0BOrlAyjop9nPoAkNQZvQIduEFtBGfg8W21E2FrJek7N80Szd2DV2OFpDHTnNQG2lSe9+f0D2I2rFzjjm1gv70XPRou2nsrlTIgaeu5kPQEksWXVL2eV5/j2TtfjH15+Gm9WNm/A8QrQXZ7jcQl3rzC5EUBb8QSVHwC5EUBb8QSWmolTDZGlHoAM1tA/bermZhaVl5YeLXU9955XZz6cZ+O71yY99VXqD5YJDHDvdCgt8l5NmXilteNV7c+6L2ws0VCYsgXk6pIxGIWnsQJWkPqANQSSSja7kbEgh0FZ2dT2/5jYUng58tgUVdocAp5s8H56Gc/MvWn6cv4Ry/qv15NzO7AcFvDueE2tKvQATUm1+IpCj4hUiKgl+IpCj4hUhK00HBRepoQoKPly/YmXY7sEjyy28/uLHrf/zGjf3qhe/k8ne/+a0b+89/8fP86/7Wjf0GXIR7EAuP4MZ72XiBxszs5zUIN+bXgkS7aFY9eRo3sFffg6h4bhcY2n+qYUDiHsEFQWOfJXGvlPdP1x4msNdwP9iFKbhbtF6z2p+H68pH0UsYMzN7aSBKw/ubdpqK4OrNL0RSFPxCJEXBL0RSFPxCJKWhDiQkDk1bL6iQq+0VFOv8asciycU3Xnmr/upv/U3++u/92D88ubFv/uaf3djNP/2bn+N3X7uxAVyIDTjdvplwuuVf7/2aXYJgtAKR7AHm2cHPsvdomX0AR1204865kJhWBx1w5A6kNvAkAqL4XOhwRF2TqJglzbOf0Ip/OrQvLaRkLwvp6l+O/rlJTJ/R2pJgi7MIIT57FPxCJEXBL0RSFPxCJOV/AQZDjczQRFgiAAAAAElFTkSuQmCC" y="-11091.387403"/>
</g>
<g id="matplotlib.axis_623">
<g id="xtick_934"/>
<g id="xtick_935"/>
<g id="xtick_936"/>
</g>
<g id="matplotlib.axis_624">
<g id="ytick_1556"/>
<g id="ytick_1557"/>
<g id="ytick_1558"/>
<g id="ytick_1559"/>
<g id="ytick_1560"/>
</g>
</g>
<g id="axes_313">
<g id="patch_314">
<path d="M 29.174375 11360.208591
L 151.464375 11360.208591
L 151.464375 11232.915064
L 29.174375 11232.915064
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_625">
<g id="xtick_937"/>
<g id="xtick_938"/>
<g id="xtick_939"/>
</g>
<g id="matplotlib.axis_626">
<g id="ytick_1561"/>
<g id="ytick_1562"/>
<g id="ytick_1563"/>
<g id="ytick_1564"/>
<g id="ytick_1565"/>
<g id="text_79">
<!-- 261 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 11343.601827)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-49"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_314">
<g id="patch_315">
<path d="M 164.424375 11360.208591
L 286.714375 11360.208591
L 286.714375 11232.915064
L 164.424375 11232.915064
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_627">
<g id="xtick_940"/>
<g id="xtick_941"/>
<g id="xtick_942"/>
</g>
<g id="matplotlib.axis_628">
<g id="ytick_1566"/>
<g id="ytick_1567"/>
<g id="ytick_1568"/>
<g id="ytick_1569"/>
<g id="ytick_1570"/>
</g>
</g>
<g id="axes_315">
<g id="patch_316">
<path d="M 299.674375 11360.208591
L 421.964375 11360.208591
L 421.964375 11232.915064
L 299.674375 11232.915064
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_629">
<g id="xtick_943"/>
<g id="xtick_944"/>
<g id="xtick_945"/>
</g>
<g id="matplotlib.axis_630">
<g id="ytick_1571"/>
<g id="ytick_1572"/>
<g id="ytick_1573"/>
<g id="ytick_1574"/>
<g id="ytick_1575"/>
</g>
</g>
<g id="axes_316">
<g id="patch_317">
<path d="M 434.924375 11357.706827
L 557.214375 11357.706827
L 557.214375 11235.416827
L 434.924375 11235.416827
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pd029e78ed7)">
<image height="122.4" id="imagec5387a64f7" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUuPLNlVhXc88p1VWVX30ff6urvdLT8ACQFCDJCAX8CIH4mYIiExRAwZeWIj2Y1x0/Y1fV/1zEdEZkYkAzce3PUdKa561md9w12RESdOxM6UVq29d/GXz/7mFO9x6I/vh6IoConNyrHEqqKUWNMfJBYR8XDcSaw79XqdSq8zryYSK0PXeDh1sJ69xjpdI62lhH1Ired74wuJvSgXEqtg3dvQdW9O+lzo/ohpUUtsVYzw2M9jKrG/bVqJ/dGfvNHrfKrnrD46l1j56Qu98HONFWPd11Oj7000W41FRJT6PsbdnYS2//xTif3Tzz6R2D92LyX2iweNbQ+6XxWsZVLpfl1M9B2JiHg6Xkns41pjz0t9fotTJTHYGWNMDjj5jckUJ78xmeLkNyZT6ue1ijF7EJsq+J5YgGA0LVRYaBOi1HWlws1tp7EjfJ5itMZTiJ4ZBQhsJOR1+tEkJHSOQ/fiDIS3Ea3nBMIihA5wzzWsZQZrWcFaIiJmPQmQeuz6rYpx9bKRWDFVMa64f9DYlX42Klhjr0LsBzHS97Z+pNf5eK/v2CdTFdjeTfVebsuNxOhdJMGPxOOIiMtqLrGPQNx70eu9zOF98i+/MZni5DcmU5z8xmSKk9+YTKk/r5YSbMHZVpHDD747RiAs7EpWziYgDpJw9tCpW4oEP4JEwBFctyv0notymDAYETEG8WwGsfEJ1gNKXgXrAb0Ixb0x3PMEjkt98+8KvdB1pXt2ezPTa0/VhTgPEPzG6g4sJ+rkjJUKbHEAx2iXeB+mKogFPMP6uQrfP1ndSuzPmyuJvZs8khiJe7tOnaXjUt+RScnOy3Nw1D496eefdnp/yw7cqngVY8x3Hie/MZni5DcmU5z8xmRK/eOjigsNfCV0p2FOORI6RqRURcQeBLGmUHdTD4Lh7jSsBJfWSOXJFKPzkSAZEbEAVxYJmsQB9odE1z3EenIwgibZDnQMRkSAwS9mtT6rq1YFv9EbcGO2KthOb9UBN3v9hcSqx3qNqOAZUOluRBQrLY8t5nDOWp/V1ccqVP7xz7RM+z+neo3X5b3EDj24UkmwTTgvF+CyvISH9fiooutZaMy//MZkipPfmExx8huTKU5+YzKl/uygQsAWRIg1iCw7EIYaUJuqhLBEzrYxCiDgyAOh6wilyCT4TaEUmYTKHkTOpOAH56T7O4B7bh8q5FG/vi2InCSl0r2Q3tckXJJbdEXqCVYgAsZOHaPLRl1247d67dlv9P5mc42NxuqUK2BfIyLGCxXeRityc+pnDxt976bwrKhcmt4TcofScdOEw28JebCCuvOrQvdntVDR1b/8xmSKk9+YTHHyG5MpTn5jMqU+L1RQGUOD/6JTcacHEbABYYnEuYiII8Tp2KGiFrndSCykARY0OKOEkl46LnUdEht3ILLhgA4YdNKCCEjXoDUWcA0achIR0YF4dgcOsd/U+vk1lKjOoOx0Ag912mpwtgOXJTkiE0LsgUrRoQcgOeDoOm+hp2AfKqbV8D5Q+S4NviHxOIIHbyx7XeNyCoLfI+2N6V9+YzLFyW9Mpjj5jckUJ78xmeLkNyZT6hMoviOyMEIt+ZY8o3A+1VF/D9Wn70ENpzHULYwR72Dd1MCTRG6yWY7gs9TINHUsNnGENW5BxW9wHLd+dpRQud+HlH2yUkfwvdB/Yd4WusY7+A8QNXUl6/MEYnNQuIkbangaERtYI/03ZHlShX0J624H/jeL+jtQzwiymp/BfwAiIua0Z5AbZImefeR6fmPMNzj5jckUJ78xmeLkNyZT6i0IKmRrpNgMrIVjsMSS8BUR0YL4RaLWEY4jcY8abtIkHvrsCb4HsTlmYmx3D3+AuTIoDpHIOfSeSdCkunEanb6AOvQIFhHpuTQQ24GNmCDRjWITaMxJ0t4t9DqIiNiCMExQs9UFWXRhbwoQBh+XOk57Sz0f4BrUHyAiggZfHVNdWN+jWug5/ctvTKY4+Y3JFCe/MZni5DcmU+qWmjWCKFVDbA6CzzlMEJnShJWIqHE0NbjqQFAZ6tz7NpArjkZipyDBkGKDzwcNRUkEJFBMS9wL9QjQCvGIAwqnw6BeDgSJirSHm5TgB05JEqAbGJ1+AIHuPIY1aj2Hz5JYSAJw6g1rqM8C5Nb9vTZMvXxwPb8x5huc/MZkipPfmExx8huTKTgLmMS9MTi3ZmR3A4PXDTQ9jIi4hjiNq6bpy9QgkZxy9O1WQ3QMrioSaCaJ78tUY8/3ofsjd+AeNvJQaIzEK3Lj7cHpuE1M7CERipqM0th2cgcO3RuCdpuEWBIpI3h/yAlKIiK57wi653LgcyHZk96RiIg1PMPXMDVp1aq7cPWlBT9jzDc4+Y3JFCe/MZni5DcmU+oJuLRI3BuXelwJQtW40+PmCRPaFUwwwT5n8B1FU3eo7x1dmnrUzUDcWcI1zhI95VbgEKOedC31wit1v0dwPnI1Un9DEthaOO7hRL49dssd4fM0pWhZau+6Bewj9kekHn5wDdrXlM+RRGDqo0jCIIvFw0qRSUAkoZLeppRASve4hhx8VetZz9+uYD3GmCxx8huTKU5+YzLFyW9MptQ9iAsHGtoApbotyBXXlcYePuArZg5CVwmCUUllviAWkluNRJszuMZjGC396ZFv5gdHHdO8GqmgtjvqOf+n1BLMX45mEvsaBFLqg0iC0QZGp7zpNhKLiLg+riVGrjgaL92DmZMcmiWUvJJ7kt4HEvyo315ExD2473YD645TrsEh0DtG4iWVA9M9p+JTGiwCH39Z6bPyL78xmeLkNyZTnPzGZIqT35hMqd+AQDcGF1sH2sctDOh4XakwtIFS1Ij09N73IfcVSTEknlBsjMKS3vNFr8c9P/KqP316J7HVJ43EejDVnX9xLrGqVUfWcqTuuS0OC9HY7yDWgiMyImLX6SKpfyD1W9zjdGEV91pwkSYGIAtUar1JlCeTs5FE4KFlx+TcG3q+MxDsluRexenXESMQKkm7pHfiVh+Bf/mNyRUnvzGZ4uQ3JlOc/MZkSv0VCAETEBxIdLsBIe8aZLxdQowhqOyRGDr8gkpHaYot9sLD3nq8PipvHj1RV1UxVmHxyU4ddd//LxX34qBOwDWIrneVxt5+yLAREPcIKjGmGD2rPTgTdzBR9wauSz3zSHSL4JJecu6NqewYrkNltXRtEprJmcgiXqKHHzzCLRx7V8A+Qpm2f/mNyRQnvzGZ4uQ3JlOc/MZkSv1bmL86L4cNK2hA/liDw6tJCH7HgRNmSaChby3q60cDSGjYBIl79xB7Df3RIiKur2FQwv2trudq2HThMfT1W3a0j+TG1BMuYd1zKMmNiBjB8x/q8KMYibhUIkyDSujZT2HWTKqkd1mpok1yGjnySLSj9w4/C6I5ScU7FJWHD+24BSHvulNn6XW3lZh/+Y3JFCe/MZni5DcmU5z8xmRKfQ2DGxoQVEj8GErKfUVDNkgIIiYg7pHgR5DjrIXr0gCRVzXvw28bEPx+oZNRF5e633evtV/fulOh6jBwGuwMtvBpr4LY82qpB0bEQ62C0bbTHoUlrIdccWcgLFJZNT0X6q34HEqEH1HNefCv2w4OfSiHOVipXHoKpbpzdD8qDZzvPlEC/w5y9abXZ3VzVHFvDSKgf/mNyRQnvzGZ4uQ3JlOc/MZkipPfmEypqa46QIWf4qhkmqYCTR0T3zEbsIzSfwDIHkqjoGegp9LkFFKVScU9gS35OvFPj1+PVZUev72S2MU1TPEBJf4aJtq0ULtP0FErmLj0aaX9ASIitqMLXU+pCvKs1DW+KBcS+37os6JmllTb/qTT4Ge9/hfl0UrXF8FNQXc7XffLRtf9S3im1zCqnv4TlmrC+T57sPemuinguPFe7b3URHXoCHJjTAY4+Y3JFCe/MZni5DcmU2qy057AojlwqjHaNmeJWusNxHdQn0w14heFWkafh8ZIyFuDffII4iMJg9TDIIKFoN/WKhg9wBSgDoQ8Evdovg49F5KawL0aj2FKUUTE5yDa0X6T9fZzsCX/4KB7Mx/YUHJVqa342YsHiS0/5elD5VTPerwB8fLXup7iRoXPl/BMW9hwchsfIDa0j0BERE2W4YE9FSYgzvqX35hMcfIbkylOfmMyxclvTKZgATwJXRxTRmCpovHXERFLcLEdQIybg1hxAZ+9JDFt4DSVlhx+4L76EDbYq5Nq8hWq6D4OFJHoudA1SASMiHgMjsNLEGevYEE/PKhw9myqAltd6yoPB73GaKQ7MZprrLrgZqTlmboLi7HWtp9v1TX4Ca1nrWLoG3g/72FqEuYLxKaJ3+QlCKw7EGJ7eLAdXN2//MZkipPfmExx8huTKU5+YzKlpnHVVEJL2hCJaTTZZZIYD30FjrxRRY0PYdwxlEySoEITX2D4NTZXLKHsNNWMlDxZJMZRrIZTDhX3GhAlyesGFb0fxBz2+6LXa5+XKvhNp+Ceg/XQZPCCRNcP0GGLqb5jJVxo+lxFxKtuI7HmSxXd7o4aK6mkl569hmKacPgtQPBroDkqifM0Hcu//MZkipPfmExx8huTKU5+YzKlJjFtqDZE4hdpMakSxQX4m5bgJCMBqwJBhcp3h0KfJNdfA2OSU9feUq/AkvoewghrmioE20hr/Db7kOIACt0ExNnXe5VTuzv9LI0gpxaF45E+/WMLJecNl/RGD5OYztWlV0/0XZzFncSm/6vXOUD97g5+VhNDhXQtiXyhPKISeppcZcHPGPMHnPzGZIqT35hMcfIbkyk19QUj19+3YQxOuYiIS4pDbAsuLxbEhglddBTJeFsQ9+6h91xERAtnmIJv8FCqGDPUrUhi44F6MOIKFXKCpa5NT/C20vu7mer9PTvqCPLLTq+ygHu56HXIyXyrsdmdlulGRJQX2gOwWuo49ZipUFlCr7/jUXfiDsp31wPfRXL4pYbUU5yeIQ3oIPzLb0ymOPmNyRQnvzGZ4uQ3JlNq6gs2VFggJ9IYyneXiXrSS2pUB9Rg/bqBPmV3IIgN7eFHjkEsWU6skZyStD8HOAOV6tIQkR1MaaUpy1RWTaSOwjXCtUfgxryDnnL3tcYegTvwUafvIgycjcVGzze/YSG2mmlvvoKshCO99v6lioivm0uNTXUn72EP5+TcGzjNN4KFvKHiLpW2+5ffmExx8huTKU5+YzLFyW9MptTPoKMdOclSveve5wwGdFwmBL9zKLfsQJhYg0BD7rs3J3VzNSBUTUGoOgOvFfUyTJUnk/iVGr7wPuQOJNGNxD26P5q8/CGuTXIN7kF5ayEGFctYqtuA03GN05z1uPNG39n5nbr+IiKKUuPVjfbmO8CElZdfXUnsF2Mt/f260GuQYHuC+yuxe+S3g8U9XY9/+Y3JFCe/MZni5DcmU5z8xmRK/XEHJbSg2lBfOPrmWIG49+zAVr4FzKLdoACisS2IX2sot932GtuAC3EPzjTqj0ZOvoiI0cDpuwU4uoaKcSzE6R7S2cawh6l7qWF/6FgSJUkYbtCFCL3w4LgRuAOvOhD87tnh10EJbtuqiPh2p2XHv6r1Ol9Wuu57uBcsl6ahJOgMZVLuUr3MsBJ4//IbkylOfmMyxclvTKY4+Y3JlPrJUWWELViyehCl5uDQewo9166grDIiooSy3Lcb7a9WD3RBkShFYhoJIhsSC0GgIddfREQH9xKFusFGsB4Sh0jcocELHcRmcF1yNZJImVoP3jcJXeBsa0HYpXs5kNAI+/UrcNmd9ktdX0SsbvXa5CR8OdZrk7j3O3CRPsA7T+8dl3NrjITmiIg9CL7k8Gyp9Bti/uU3JlOc/MZkipPfmExx8huTKU5+YzIFnYQjEK5HoOyvQEEkZf/iEav9IF7Gw04tlTT8hOrqaTQxqeak9pPNkhTS+17V3oiIPSjaNJBoAf+5ICWdFHe2gupFcGwzXDc1CppUaVLdSdlHFR8eNP2n4Qgx6iJB+7qesCl2eYLGnHDbrwr9b8/LXif2vO00Rs1Nx/Auzkr9LwXtF73HERFHVPv1PxI7iDVgc/cvvzGZ4uQ3JlOc/MZkipPfmEyp72FyCtGD8nLsQATq9XzdYfh3zMBhMyz4Uf09WF1J5iIBqgOl8RabTHLTTLoOiXskps2gESoNd+lAHCLBL9V49NtAj4rEPQSWQ3tDVtVbOF0DgmsET5Ci3hS3YNElce/uqLGCxFCwe5fwAFM9FYZCdfr0Lh5t7zXG/D9OfmMyxclvTKY4+Y3JlPptpYIBiRBzaMw5BXFvvVeBrV6zGNPDObfgyKJvqDHYvBYgfpEgQoLYJQhsE1C01oU6ECMiWhAHJ7CPFCMxlUSpAxgySV6j/aLj9lBLHhGo5B0hSD0CqL8AOQF5pDkIlSDYkURG6/vm6vD5YcJbDfc3AZceuTGrgb+r5PAjYTAFNmslUbrURqj+5TcmU5z8xmSKk9+YTHHyG5Mp9esSyhFBTOthis85NPrcwwSgplWRJCLiAILhlkpPQctZoigyrNHnOXz2KbgVZ6DEtTSDOiJoXgwOnKYyWGr2iDE9H5U70wpb+OxD4l5oGtIEhDcCS6hRDIWR5jjCeli5c0ruIyGPhGG6P2rCSWIalX5T2ThBnyXRNCKigjWSSLoAce8MzudffmMyxclvTKY4+Y3JFCe/MZlSX8OkmhmIGrNQ0Q5FKfg+2XXck6wBV90GRKgjiFXklCONhUpZL8FwuOpUZCFxbpRwX9FeVDT5BnUgcPPB+WgfsN8irJvON6v4Xm7gGZAERWXQ5J4k4WwBbkV6VuR03A/sExjB5dL0Nk7gXezhne9BvNwF9MyDPnok7u3huBQjyMs5iHtT7G9JYqoxJkuc/MZkipPfmExx8huTKfUWep9VIGpRyeQBhAUaf9zQlIWI2IGwtAHXYAO61BaEFxKHSGA70YAOEIbA9BddoucaVCdHT8fiOel8MG4chLwS7pkEP4KecwQLi1so/6WR0XRlEgan6FajwSnDxDQq3Y5gh18Lkt8cjqNyYrqXHb5j0FsPhEq6v1Pi+VFfwDEIlUfIwQM8a//yG5MpTn5jMsXJb0ymOPmNyZS6IxcbCHHkbKNppzcwBCT1DUOeLCo93YDQ8a5QmawBB9W0HCaItKDY0T2zQy8l+Cl0f1SqS0xgPedwYRK/WhBSbxIV0G9hb69POtSCpsESFQlsIFSR8+4Az2oBzruU4EciIpUE04CWoaXDeD4SyOH9PPbDS3opvKehLTRAhgRkvoox5ruOk9+YTHHyG5MpTn5jMqUmcYFKK0noIsGPxCsu6OX+c/T5DayRBKg1lCfX4C5sCi2DbGAYw/xbuqLoXnYDxSFypi3puYCQtwNxZwsLfw3CXkTEO9jbe5hiS0LXFASoOYh2T6B/4wLEy0sQn9dwjTYh+JGQR5DbsYZ9JG0WRUAQ0ml6LoqFifLkPZQOb+G50FCSrhw2DMcYkwFOfmMyxclvTKY4+Y3JlJpccVQaiyW0oH7QtwkMAv79xeHz5IC7A2HqXdfocb3GaOjDrpxKbA+xBYgkJMSloLLOoVN1aXAK9eHb0YVhiWsoyd0kBL9tP6xklnaCesVdweTlHxz0fI9BvFqDXHwLLtJ7iEXwe7sb+AhJ5J7DsJEN3DOJrvQuYulvQvA7kBsQjj1CTm969/AzxnyDk9+YTHHyG5MpTn5jMqUeKmA1IBipvMakrkHfPNQr7m3fSuymU6nrvttKjASRTaXnayoVuc5gIEKV+L6kfm903zTUgvrZjUhgBdfYAxxHhbb4/EAYihg+YZaGSExBEFuBeHnZqxvz0VTfqMVBBb+6m0isSkxorsABORoo+M3gufSFOkFb2tsC3HgFuCRpwAoIexEs5DWdnvOBZWDBv/zGZIqT35hMcfIbkylOfmMyxclvTKbUz8qZBFfQXJGUa1KQqa66g+MieKzyBhTN617Vyw3Ye/dgSyU1dQ9K7AaU2COYcVP/uahB+Z7QqHOoRS/B/kpjrVuw49IeNrBuUvZTDTi3oMSnGmS+zwn++zDU5lxVGp3C/y7OwKp6pPFKEdHTyHD4DwB+Fmr8e+gvQL0g1oXu4T2shfaGVP2IiOao7yj9ZwCbgva6t/7lNyZTnPzGZIqT35hMcfIbkyn181AL6xnYMelbYgfi1x1IOfdoOI3YwHDqO7Dykqg1olp7sGOWEJuCQEONJwlaSyqOQidsZEXjwUGopDHpGxDtNtDIdAciHo2Hjoho4VhqNDkD+/MYRM77Qu24LWwEbEPMZrqWAkTFuuXnMun0Wd+AwEq9KUjixP4QcM83YAOewDtLzTZJsIuIaDrdi0Onz5A+T2O//ctvTKY4+Y3JFCe/MZni5DcmU2qazjMCpYNiJFQdwD31kLj4EUQyElRmJNBhc039LiMBakRiE6yPHHBdqMsqgscvtyCyDO3geYD6dHLZrWG6zkMH/QqgOWZK8CNhifoi7Eo9J9X4X4/URdrQ8wOH3/xcr0GxxY6fy+xOG7NOWhUgD/AQRvCwdp3eXw9NRq9rfWdfwd6gwy8h+JG4RzHCI7qNMX/AyW9Mpjj5jckUJ78xmVJTCe4EKx5B3IPj9nA+KjGNYAcVOe0WIFZQaS1NU6Hx0OSq2uMYcHBzgRgWEbEFwY9EsgOU5ZKQdxjoOGygjJmEPBIkP6RRJIlQPdzfGkqtH2poZgnuwK6DJqgTcHcuNVZvE81I4dUjh+BopJ9frlQ4bXf6XLp3lxL7EiYIYXk5Pb+EiEdluSTk0fs9qjyi2xjzDU5+YzLFyW9Mpjj5jcmU+gEEqBKEszGIezTK+x7Ol5oMQ7riEgU/jU2h7HgJ32Uz1hqFeyj9XUMpcqqXHZXBonAGAiSVy55gPnQN90dlzN8mlopTeTKKTShAKSSbbnbqijvb6n7Vc13LqU/08CMREZyEJO6dfabPb9Hqyp/cziU2D40RJArT+xCREO1IDIfnV5ce0W2M+QYnvzGZ4uQ3JlOc/MZkSr0GUWoEIsIRBDYS/BrqZUelrRExA/HrEfQUfNJDHz5w300GliKTM7GFCc8k7jUg7EWw4IdiDrjLUGCDz9ZwHJUsl6WWrFKpLQ0vSa2HhpKMQERallpCS87LFn52vt5r6W/5tR632ukQl33Ljsibja6nhOd6tlJnYjmHvYXYYqrlxMvjQmJzKE2fQGw50jVHsEOQSoLJ4VfBsBH/8huTKU5+YzLFyW9Mpjj5jcmUmkpZSQScgFBFQyRoeAX1+ouIOAPn3jOYwPrkCCLZwKmxYJSLDvoM7gYOxNhBL7wILs0k0a4YOCGWRBtyc1HPwzHsKwl2HQyWiOBhHB1OLNbfjstKRTvidQn98Sa6xtfdUtd3q2LaNvGOtXCLj+B9Wt7ocz3friVW1CCGH0EtBiYgfK5qdQLSc45IDO0Y+N7hQBu8ijHmO4+T35hMcfIbkylOfmMypabywS1Mz6UedSS5kSuOHF4REU9PqsY8IzGmo4ER+r21J+ceCGxr+Mq7BbfbGoZfUJluBIssQyHhjEQfcnh1UHZMK6Geh+QOjGA3IL0ndE76NXmANZLQTMJwD8Y9+mybeC4TuJdnY3VA9vuVxKY/03WPxnqdXx5UlPxqouLcGgQ7KoEmcTYiokw4Mt8H3xMckGOMyRInvzGZ4uQ3JlOc/MZkSj2B/CfBb09DKWjgB4h7HxVcovhDqI593qnTqoFz3oG49wDiHomA78Bd9oATeaGPXkKMmVXqiiPhZQzTaYmhvd1oGAe58ebg2jsvVPiKiGhoL3D6BZQiwxpp2rEW5SZKqOGz+C4mBFdySr6BMtpXMEn45faRxK4e9HxfgAj4m34rsftey4aHloJ/CEMn//qX35hMcfIbkylOfmMyxclvTKbUNBBjDWWC24Ei0AwGCzyHMt2IiB+FlkxOZ3qdlzt1ULXgjEKHH5Qi02RiEtPIAbeqeBhDB4MgaH+GijnUK5DWSJNyRyAqfq/SPfyzE9/LF6U6G1+CgEXCIomc5GIbyhjEXtoHWksETyzeHVVUvin0/l7Ds35RazkxC5UwFZlcsrBfqZLeoWIx7Y8FP2PMH3DyG5MpTn5jMsXJb0ymOPmNyRSs52+pnh8aVx5BaT4DG+kyIXB/9NGDxEYwU3v933rO6xOowDDFh+ydc1BTqefACuyv5xVbYok97qOq+C0o0hTrQbElHlWqSP91r7G/6jb4+atCj/0PEJpvT2BNBdWdngHV2c/gGVC/U+oPcNvrfygiItYQp/8AtFBrT9bbE4yAWhb6fhIT+M9aVdF0JP5Npn2k/yBs4Z7XR5hIhFcxxnzncfIbkylOfmMyxclvTKbU704q5L3r1Op4d9QYcQaCWMrQuvy+CiqTP30qsZ88eq3H/fRSYq8OWpN9D2Okyxp6GECNN9ksxwkxhqLU9LSBun+ygm5ATNsU+qxojR+XKth93MAodqhDj4h4tldB7EfwXL8Gu+nQRq80nv0SRFwyht+ScDZwElIEi2Rt6H7voLfEm1CReg9Td8gafgaj06dwL3OIRURMB/5WUz+O25GKgP7lNyZTnPzGZIqT35hMcfIbkyn1V4c7Cb47gKgBNf7UtBKnzyQuPv5Ua8yrv/8Hic3/7p3Efvwv/yqx1b9pW8iv353peo4qvGxHusoTiIXTE98NCVNzuHOaubLHhqIq+jwkRmq/z0XoZ2ly0as91/M/wH0vev38C7jOFoQuGuW+7HVvnoD+WEG9+zn0jEiOPofHRVOXyM23AzGchG/q0XABdf9PwXn5FERAmmQVEbGCZzADNZXesbsSRoHjVYwx33mc/MZkipPfmExx8huTKfWr/a0EScCYg8Pr8UjFtKeluuwuD4lpKo91LHL12V/ocbUKi6ebNxK7+t2/S6z7OQh5MO5n3elUoXXCzUeUVDoMsQoEmgN8B4/AuTeC44aOzn4HpaP3MOY8ImILYXqCUwhOaMw2rIfKvB8fVaoiIXUGYmGMuEnsCd7bplREghZLAAAAQklEQVTB777QkldqRkrCIB1HTVR7aAh6Dq7GF0cWL1/A/lyUKkpOaj3ucASnK17FGPOdx8lvTKY4+Y3JFCe/MZnyf5OKZYoJJhGzAAAAAElFTkSuQmCC" y="-11235.306827"/>
</g>
<g id="matplotlib.axis_631">
<g id="xtick_946"/>
<g id="xtick_947"/>
<g id="xtick_948"/>
</g>
<g id="matplotlib.axis_632">
<g id="ytick_1576"/>
<g id="ytick_1577"/>
<g id="ytick_1578"/>
<g id="ytick_1579"/>
<g id="ytick_1580"/>
</g>
</g>
<g id="axes_317">
<g id="patch_318">
<path d="M 29.174375 11501.626251
L 151.464375 11501.626251
L 151.464375 11379.336251
L 29.174375 11379.336251
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p48f3c0824d)">
<image height="122.4" id="image8cffcdef42" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmPJFlSxs23CI8lI5fKyqruqZ6p7mE2NBwGIYRAcOIAfyp3rkiIOYDEABoYIaRZuntqqqsqt8rIWD184zCLRNrvIU81XPp9v6Mpwp/7c7dw6YvPzJIfPPvT3h5QpPnDkGWWulhrnYtVXT0oZmbW9W5pm2QjFzvP5y52kc1c7Mj8ec+SzMXKnq7Fn8u1+fO+6SsXMzM79C0c0+8PfW4P+1PD54jUEhfLEn99s9TvK8XMzBI45q7357gL3NeHnGVTF/tBsnCxP98fXOx8svPrHgoX+7T3a5iZ/efI39dfmr+HNdyrs8Tvz9c7v/a3K3+vXhRbF5vP/LpN45/P283ExczMPk3HLvbzwl/fK7i+u97vrX9KhBBRoOQXIlKU/EJEipJfiEjJh4pNJCK1vRdJGvjuoWtwcRL8aB2/ilkJv1tnIPiddV5QmcMBaY0s88LXPmEhjvaihuvjz/lj1rBnHYiSJPiNUy9KPYYe1hkKiYUZxIjK/L3qumHvpzRwzrT2FETgDkTgo37YszOCtZPEx/ren0vT+HVr+JyZ2S718Q08j1sSlSGmN78QkaLkFyJSlPxCRIqSX4hIyUncIdGOYiReDY2FoPOhGAk5M/gtOwF97qijNTwbEFjegVhkZrZO/Gd7EPyaoSJpD4LfQIG0AOGTIHHOjN8I5PCktXP4XAl7Rrt4gPPZHvy11OTQhHsVWmcK51jA2qewzgKenYmBQJ4OE01JBCTh08xsDTdmBc/ODp4dep705hciUpT8QkSKkl+ISFHyCxEpOTrqBjrT6HMUCwpLIJKFPuvWgRh57w5wuBpiLHL5D5IwFILOcaiYSq5IugcjKL8mgfQxzrsCngmCvl8m4LKE0thJ57+7zsDt1pUutgXn5Q3EzLhUG517ILydkljc+nswTkHwy4aJ3C3swzaw/2twDe7gqa/hOaFScr35hYgUJb8QkaLkFyJSlPxCREpeQh+3bmDZKQlVKQgnJAKaBdxpAQfdQ/YgdLyH8sYORKRtCuvCKW6pLHPQ2f32syCcUl8/EPeq1pdaU0kvMdRRGRL2ZuAQPE58mTDotVguewYC2xguhUS7a7gxN4nfm0Pgmo9AgPyg87GnjV/nGMS9hfl7NcogD8Dh14G410DJ8jbgVqzweYJ1Bsb05hciUpT8QkSKkl+ISFHyCxEp+SkMVCARgUoCSaiizz2mpJcGhvAQCb/ODX0OyiNnKQlQIMbA+TWPkPzounHPIFZ3IF4O3Ee+L+TwYmGJRLJTEO0msBUFiFrUUZD29h045T41P7Tjfbt3sZAz9Hnqn++v9yBogrh3ROIeiMpfpnx33/p9rXK+lh7E4jG8v8cguh7gnurNL0SkKPmFiBQlvxCRouQXIlKU/EJESn6S+nppsgKSVRWG4aCqTOOdzcwqUKVztPzSVBOvfG5Bne3Aokt242pgDTutGzrm0GadzUBln/49SOC7u9aPY97n/h7Q+ZmZTUA5v2h9bA7NLKlXwg5iq8x/9435875s/ajrNaj9ecAWfgS9BA7wTBAtvBtpCtMBpu4kcD5N6z+3h3+jYKvNjHtJTGCdY/PXnIFlWG9+ISJFyS9EpCj5hYgUJb8QkZKTYJCDsDAaOImFfk1WYMU1M7tNvcBDgiEJfjxBZliTyqEjo9tAHwKCmpES2PSUxNSBa7fdQFGRYthilBuPUv09CX4reAAOIDYtwSZ71/nnYdNV/ng0zShgu96C2HyT+iv8oiDLN8W8TXbeegPzFOzCtK9LsJpXjxD8FnCOlC9TEBb15hciUpT8QkSKkl+ISFHyCxEpOYl7JOTRlJMLsPgtYMrJfcYjo38BjTTvQcwh/aMYOGaZxI8xfI7EmBqcYOmXHDc+FBIQHyNADiF0JS1cN01DSmlkOOwt7eMWVt/Dvacx54+hgmN+YV5EXOdU7+6vhZ4dyo1jyA1qEksTpXYBByLdrxE989A3gMaS680vRKQo+YWIFCW/EJGi5BciUlCJY4GNSjr9587A2UTinJnZNQiLe5A1SJScUSkjCC9TaChJZ0PTUFYJNOB8xO8lNZUswNFFY7bJuYdrgDBI5a0UC92XDAQjKpgt4V5lrd/He7i+EsReGu89gYlSCZxfCBIR37YbF7uEfSSXJU2ZWkDZ8CmcN7lpidATRveFEhhLfyGmN78QkaLkFyJSlPxCRIqSX4hIQcGP/EU0xYdKDw8gnHAHP3Ys0a9RDseksc8fw0IftN7NlcG1LGGuzLscBBo2K9oaRljvs7GL0YhugoQlEqDICTjJvNhUwvmRk9OM3WBzECBPMl+Cm5E7rfZ9ItcgAi4Tv1899PrbwFhrKgU349Hy973vAUglz9Qzke7LDvpgHjL/3Sk8PI8pOafpPCWcz6iHZweOpze/EJGi5BciUpT8QkSKkl+ISMmxlBWEjh0IC2sQd8YZlXTy4vTLMyIHFYh7Lxp/0D8Y3bnYs49XLkbzOZZvvGgzuTlxsV1KA6fNdiDuge6Crj/qRziGdehz6NyD2BwcZ2Xgt5/69Y2hX9947EWysvSq6xNo7LfowPWXw/XBJpLoloSGqZBQ3flzpLHmJALS2nRfShA0abfJ1UgOvV+v7eOh0eQPIcFeb34hIkXJL0SkKPmFiBQlvxCRgn41EgcO1HMNxI8KRInQLww5ycheSG6+F413lz3/rhf3Jt+buVh75x1eo1sv+BRwzZOAQW8BJap72N4Gyj9TEkl7/7kRCHljiJEIRP3oQoCWaju4vqqB0uGGBob4725hjQ1OePb3hQTpkHOSXHok7lFsaA9GGiJC50jl1zMolj4Bt6mZ2Rz2kcRZcghSDurNL0SkKPmFiBQlvxCRouQXIlLAU8VQOSnN3iXZBaoyzYzFio6GbMDnSIwDzcba652L7V77A15dejffJbjs1oENw8m2cC3HIObQYBGCSjppejJtdwVnGBIB93CENQ1Yabwo2YKSd9v7a76DSblbEM6oB98eHHrkxjMzqwc69yiGA0PgVg09Ht3nM3gePoCBH2ZmT6A/4pj6DFLpNxxPb34hIkXJL0SkKPmFiBQlvxCRkg8VjKickASRPU14he+a8YRSchfu4XNX4JSb/ezUxfJPvbB0Xfny3TeZF16uc78wCVVmLPjNwJlIji66ZjoeTiGGz5H0tYUBJLSumRlU72K/xi08Ox2Ie8uM3I/DehnS24mcd0GHH8TrDgQ6iFE5MC3TBp6Jh9CQlGNw7X3Y8PGedd7VOsm8oJlDof6o8NenN78QkaLkFyJSlPxCRIqSX4hIyadQElqjoOJjJCI9ZjgAOQRbEAw7OMKvCugp2M1drAb1686328OJvOyKY0iMm8JU1fHACbi0Ds3DoM9Rz8Q1iK4VHdDMJnCOC1ABZyAt5vCckNw7hugRDBZpQEyjkuUKxFUzFqU35ge5UOkvTukF8ZLOh3orTuFOL2CvT8mqamYnpT/v2dzHxlP//cm5j+nNL0SkKPmFiBQlvxCRouQXIlKU/EJESn4KKuky8SruGtTQFai9voXm48hA/azpH4nUK7GXKY0HJ7swNCMN1IM/hP4dMTM7gn2kRpjUm2AKf5HMaUIOqM/078oe9mEMsSZQz38GdePfyf2dff7Sx1r4qyF/5W3XdTNxsRKmHr2HfwBWYGndoqnZ7Cb1x6Sx3ViTD5ZfVPHhvBew7gIautK9HwWuBW27JUxNOvP7M/rG1MX05hciUpT8QkSKkl+ISFHyCxEp+WnnBRqazlKDGXcFzRUPIFaQTTIETaWZglCyAbGKxC+qyW7hfMi+TJNPgkNc4KN7CO5hbxP4DT4B0W0OohRdc97CGGmc9sIX883y3sVe/qWvJc//8Psu1lfebnr0zz91sYt/9YLY9Z0XpZYwuWgDIuAORpCbmb3KvbA4Hvtn7BfQXHPX+muegbj3JPdToZ4m/nPHNIod7kEfEGKbBvontDC2m0bDT2BSFK4ihPjKo+QXIlKU/EJEipJfiEjJS1CMQJOyGqSlTe8np2ygySCNMA5RwpScAzTrJGGQoGaPGU2+oUlB8LnQlJsKHJB+EHigB0LqBc0Z1I1nw0yI6A+bdH7di9SLc2ZmH37PC375X/yZP58//qtB55O8+KFf42s/crGnn9+6WLOE/YLOr7D9Zma2uvLNWl/cnbvY34/9M/a289OeiDkIkPQ8gUHPwKgabG3agJBb7fyzM16Dw2/j77Xe/EJEipJfiEhR8gsRKUp+ISIlp2aPVPK6g/JGEvfWnZe5KhipbMbOvwoEPzD42QIcVOTII3FvlvgDnoNoQ2W6IZmRxlrTPpL0SWXH73IfuwcRkKCR6DTe+WlAWUpG8FCU3imXzH2pbjL2brfua5+4WPrxOxcrJv6eFrXfsaSEDqwzf35mZkeVf0b/+h8+d7Hy31+42A/H/jl5B883uUPJ/XoPz10F6noHrlszsxbiVeWPuV+CAPnOn7fe/EJEipJfiEhR8gsRKUp+ISIlf5t51ecWnHv3vXcI7UDwI3HvEJhAQtRQekrCYA6/W1MQVEr43DPzbq6Xtf/cRTNsIo2Z2RYcXfeZP597+LndwuQcGnV+m/rzoVHXJHzepl6q7GsWyY5/4icfff0fvSMvGXn3nJ1e+HW++IWPXd3471b+2Unmvsw3ufAOPTs987EAk51/lj/5ydbF/q33+/MWjrej0nYovy5A3DuBEuHjFhRuMxuDSzMFLX27gf6PV5rYI4T4DUp+ISJFyS9EpCj5hYiU/K15xeC290LeHkQ7GnRAjKBk1Yzdd2Nw+FH57hhiRyD4nfU+9hGURn7SeBHoYuZFoKLgayan1XrvhcXrxgs8rwt/La/ApncHQuwd3CtynF3B3tyTYGdmu8o7937wN2sX++S//tbFaDhEv/Xn3bwHca/wQmXxkb++FNx8SQHOUDOzFu4XuP4SEFhp9HYLAiuVrJN58hoG0pQgApYF9yNMD/4aT0BLTypwzq79/debX4hIUfILESlKfiEiRckvRKTkTXAKxf8kTWD6KohuKTjdRiA2mZlNQdyjY5K4Ry62EfyWzUFkOaaBGJkXoGZzLwyNpuxWLMGdli79OtsNCS/++g5QDrwG0fWu80LlHlyWdP/uAj38bjMvqL3OvJD3nR/78t3f+7EXSecTf30JlGSPJ/76jpZ+EvDoxq+Rzlkk6w9e8Ks+9/d1WXtnYguiK4mpNTQQJGFwAyrgDeTGa3BjmpkVIAzXMAq6BrdqdufPW29+ISJFyS9EpCj5hYgUJb8QkZKTK+4AYkWdeOEky4aJgCcp9Fwzs2Pzgl8GwtR+oJOQBnSQ04okztBk1IfQBNRQHC4F16E+ituBQ1KorHrbeiGPBKh1QmNFzJapH1ZxSSJg4QW/t72PfWvtnYTniT/HsvKC32YFQt7PfagHYdfMrKr92vetdzB+mvt1tonf766jqbrDRHMSC6kc+BbWNTMrIN/2VEre+WtZHeTwE0L8BiW/EJGi5BciUpT8QkRKfgw98w4gAnYg2tW9F+yOYfjFC2PB73nrBQyaWkoDLN4lUGKMgzN8bA1llJvGX/Nu668lhZ6HZmZN44XOpoF+hPBdkndI5CRxiAQ/cvgNLb82M1vDfOFV5kXAbe7XttyLafPCi26nsDfEcu+/+wamNt8EBppswVy6K/wzsYTZxlRCTdOqqfSXB8gME5W3OGfZ7AqelG3mn7sbeL6nIBbqzS9EpCj5hYgUJb8QkaLkFyJS8hxEiAJiJZSdzkEYfAauvW+DLmRm9o3el2bmqRdUXle+nNRgguoViIAVuargJ29PZbXkioKBCGZmLfQFbCBG0FBWEn1I3KOBKC2VmEKsh2EoZmYdla0OHLxyA6W/y4DD8yGzqb++bu33sOr98d4EhNgbeCZ2IH7iVF0cVMPuu4dQ38lQaftDQo5WEhtX8P6mnB6DE1BvfiEiRckvRKQo+YWIFCW/EJGi5BciUvIl1OlvQW0kpXEM6uUcpOuzgFJ8fgoTcUagdF770PvGj5He5jCGGpRr6MtoI7JtgjW4I2nezFqwKhNDf21pLDkp9tSYMwNll/YhZPnFfwZAQaZzJFiH90wXXu2fzL26vn8NltaOx42/gX+PrjpvX37fefvyuvWfo72hKVM59D8gGjge5ZoZ92SgVgJkN6YmuHrzCxEpSn4hIkXJL0SkKPmFiJT8DVgYDyBCkJw1ht8Okioe8wvTQSPGFBYfg9g0hbNM4XjPG3+Wz2cbF1uccoNLooUpKdQPYFT7WNn52DwDMTXjkdoPqaDuew83poWpQGa8ZyQiTjNvsz2BWnsSgUepFxvz0p9PMfexF+3Sxe7f8Iju16WPf9b7KUB3jb//GxjbTrRgLUbRFZpV4BhwyD+z0ChwmsQDln0JfkKI36LkFyJSlPxCRIqSX4hIya/B2TTUIVSbF6UqEOfW8F0zs/WGxyo/5KrxQtdd4RciF9spiE0fpV7cOf9o7WKjM38uAS3G2i2IOVc+VsD0mgm4tM6gEeoWauVLcFneg4MtAQdiaNIM3f8y8+dznnuX5Qfm7+l549cZFwMbisLrqSj9d88zFmef9/4cSfyivggV1O6TkDf0uwSJc3Wonh/Woc+i6xM2Um9+ISJFyS9EpCj5hYgUJb8QkZIfQDCgySIF/E60UPK6B4/fDUwVMTMrDl7AqkFQeT2CGDjEajifMxAlyTHYgzDYwzjmgHZpKWiXVBJM5OBWPO79Ql3ixcJjKCe9BbHwGk6cxCszdpgtoET1ZerFtBetX2cBQhXtTbMHVxwIlfuNv74WJk+ZmR2DdvYk9/v4CvaxglHZycASaoIaplKFeEiIpZJeEhuHTmfSm1+ISFHyCxEpSn4hIkXJL0Sk5FMQh3IQMHL4naAy3y2Uib7N+TdmlXoxbgNlj+9AeLntYQwQ6CQFjCZ+cpi5WPqZP+/jO+8aG5XcjxB0IKt2fm9rEKY6+HIJ13IBImAKk4aewj09AYfeTcolwi1s5AWIjd+EyTln7TCRc1/DvV/642W5vy9UKt0EBL8JiGzPYWT8eXEExxwmnNEknhwEVo758yYHYoi68+dI7sIGPqc3vxCRouQXIlKU/EJEipJfiEjJP0y9y47KDDMsExw2qIJGZ5uZvYHpGTQqeQmjqTcQIw4wtKEee7faslm42PNLLwweG1/LGByHNNNiCSPMqQw6h++egB3svIW+d+DQW0K/vctAT8AK3Hen4LR7Ar0QRwMHeezBCViAQJqBAFzV/rtVQPCjAS0LeOedpf6Z2Ob+GSMRkEqgSbQbg8BNg29CUFnuIR1WTtzAyHe9+YWIFCW/EJGi5BciUpT8QkRK/jG4tAocfuG/TO3s1uDwu4VJwGZmN+DSu+v8oIQ1xKiUkQYYbEH82GTgGISS1ecgkp3CfpmZwWwJFO0q+Lm9B4GNfpVP4b6cm9/DF8/8UIvx3O/XbsWDLpZ3XgisOy9gtTRwYmB5Kw3toFLrpvXH27b+vDfgdDQzW8FBtyB+EVOo06aeeVQCTSIguWSpB2NQSIetncA5NplKeoUQ/wtKfiEiRckvRKQo+YWIlPwFGNbIpVVArAbX300GLiSyWZnZFcQqcPjtybE0UHjhibVeJFtnXlS8gpLXBTXrM7MS+hSScDqUEss6fey88YLRJ1O/h0d/5J2cizELfqc/f+9i68/9OtRLr2mGvU9yKNUl7u79PbiBkuXXBa9LvR5/Zb5Ue9P754QEOirBPYCASH34qNffCNagATlm7Lw9DBT3qOxYb34hIkXJL0SkKPmFiBQlvxCRklP/uBSEMxL8aNjEEYgaJYiAZuxk6uCYJJ6QuEcxEgZZBPSxdeqFoWsY7mDGYg6VdY6ojxv8BlNvxX3ixcbpyDsOX3zh+9HN77culr30ZcxmZvm5n9xcLnkK7kM6KP1NQfDNCrh/NUySXXnBbwnP02cZl1q/ginUK+r/CByBuEv3qgLBr4LnjoQ8ipWBdzL1iVyk0PcQ8qoBt6re/EJEipJfiEhR8gsRKUp+ISIlvwQxpkxBgKKSVTjgDkSJGot/ccYGins03fTLQIMOahBtqGw4TVj4IsGPhjRQCeYIertV0Pewg7rqz8BZ+LTygt/0n7zIdXb12sXMzKg94v4Oeg/uhvWfIzcfiYAUm5ReiF1s4Hisw2KZ9xTcbicgpp6B6Fr0/gGnMvYlOAbpKSZxbxQoi05hbZqUnUEZMw1i0ZtfiEhR8gsRKUp+ISJFyS9EpCj5hYiU/AaUSprOQ+XSOdkIQVVcBhp47gc24UzQgkyK5jBSON5Qa3AC6/76oD5Eaj9dH1maqUZ8DbbUtzC2+z9GvhnpZnXuYs9/xJbYKaxdgKqcwLUUMCFpnPvjTSb+WkZj/7nR2J/jhxv/j8u3Gt+vwMysyPzUJVLYn4MteQHjxhu4/Ze5vwdvQbHfQh7gdKxAH4gc7oH1/p+LAtaW2i+E+B1KfiEiRckvRKQo+YWIlHwLgh8x9FeCjrYF4Sz0WRpDTDEaOfxloAkrJAySiGdmVoK/dAwx+hxZg4kaRMkbqFffgzX4Ve7XnYFQZWZ2BmPELzp/jidwA8sOLLqV/+Cs8nX6p4Vvokr23nnpxcLv7ngPX8I476PEr0PHJP/6/d7Xxee1v5btyJ8PWdcxB0KiMomD8IxSU1AJfkKI36HkFyJSlPxCRIqSX4hIyclxRnXHJEyQO4l+TcgJaMbCRAm17S2sjrEORiWDeELiHgknOGEFzs/MrMx8PfgMmisOHclMPRAOIJyuWi9eve99s066zyQ+mpk9ybxb7g5i57AXI7zXMJUGnIlPW7+Hz1ZevJyajxUB4frJ1Auipxd+f0bHfm+bLYjPX/h9vNr4+0zPGPkpcbJPIF/GEC96aHoK3yXnrd78QkSKkl+ISFHyCxEpSn4hIiUPiXEPoXHTJYgNJEpsAw08GyhRbOiz/8c/UVQOTAydwmNmNgYhbwKxGTSFJCfhHsQ9KjGm2Kr1Ihc1IyUHYgiaVFND00sSgXc0wpqmzxR+v85zHzvtvKPuCZTfmpm9BNFutoVyYhD8EmiY2kLp7xoaZi7hOb6Dpp7YYBRGsZuZFeC8fNL5tb9W+7WPemhGi6sIIb7yKPmFiBQlvxCRouQXIlLyGTit6BdhCgrNKYgNcyjpXKcsYHQQ7kEEpLHW5JRbQWxtvt8biWQkvKCDMVB+iyXBEMvh+8M8ceyypPMeOr6cYqH4HgSjJbrY/Hc3JHRB38J7ECDvQCA9znzsacB5WTdeHEwu/doXh42L0aCo253vj3g59vtwZV5UvOmGjTk/BIRY6s03hlLr75/duNjFn8CUo0FnI4T4yqHkFyJSlPxCRIqSX4hIyZ+CYEAC1By0oYvGC2fH5sWdTctizB4EuhrEnBIcTxU0WBuDsEgiyQZmUNcgApLwRSKeGZcY0+CNLQhnxA5EMhIqiaHjwkMlvSO4L0QF11fBOdJwFiplJeclCano5QuYNnPoXVj0XgTcvadSa39PL2HEOg2+WcH9I+ETCbTVnMLzvaHekRO/3/nvv3QxvfmFiBQlvxCRouQXIlKU/EJESn4BpZCkNxSgsuTUfwwcerOAyPWk9QLGPYga1NNsBKIW/ZLRsIJ24KASGhbymM/SkI229z338Bzhu+Tmwz6DINglUHaaB5yXOMUYz5EEP3+vSUwlpyOVDVOfRypDb8mOZzwh+hUMKyF34RgOCRXCOH23GeiopL2m+2zGffj2kG+rOy9ont2v/dq4ihDiK4+SX4hIUfILESlKfiEiJZ+3XoRYZ/43YQ+CUQ2usQocg+OAZYnkJhIWYWkaoGoludhgFXIWIrRuoIdfaNDCQ6jktQMhiMqYCeopSC7EqhvoLjOzChx5HQhL5GrcD1ynTH1p7DEMOVnAnab7PPCOmpnZZeoFult4DVKPSuIQsuQ9gMQ9em5CLlKK1/DRJQwRaX52CccTQkSJkl+ISFHyCxEpSn4hIiV/W3jx5D0MK9gOdMVRr795z3IM+f7WVB4JDioSSmiwyDENyQAFkYZkEFQibMauMxJoyClHkMuLHINUVkt7Q+6yQ8B5WUFZNn126BARchzS8JInMATkAp6dOQzOCHEPz/J14q/lHq6P+zJ6NlTGDMejvoUJiIAkDIbWpqy87f0+rn467FqEEBGg5BciUpT8QkSKkl+ISMn/Ll25IIlIHQzjoHLSKYo7w11xG1h73/nYDNY5AxHpCIaSUDnwYaCgSaKiGbvByoGiJGhSVoGj7hacaTc99COEayFnYkjwa2C/CSrVpd58VDp8BL3wzkHc+6Dx+7XooDQ2oKNe5f6+rHKaqgvlsiRygsS2gp6Q9zCgowbnZAHDRkJu0Rn0tyQx/DVMOz55depievMLESlKfiEiRckvRKQo+YWIFCW/EJGS/8v2l8M+OHDiS5l5FXcKyq5ZwIY61P4K9eD0r0IB9fxTUOYX8DtImmtI7T+BceVPGn8tU1CqiffQZJJc0jQmG63PVAMf+BemgX9cQuO8hxxzlvn68hnclwk2ifWElH08H/hsAhZ0eu7oXy/6B4AmQG1ar/YfQO0fwU0N1fPjPQSrepJR3b/PF735hYgUJb8QkaLkFyJSlPxCREr+bnvngmTbHcOo4wmJeyCI7BMviJhxLTMJSyR0jKAPwa6Hc6RrAcGnhNgYhJcyoHudweSjMxB4ShCRiA5q1ksQcvJA7fdD6J6GRnTv4RqHTpuZgLg7Bds19UXws4zM7uD1tBk4rcmMJ+yQlfsAQiyNG6eeCtTDoAaLNAl+tK/URyAUp74PO7D83sK91ptfiEhR8gsRKUp+ISJFyS9EpORV45s1Zqn/TSBhARscghjTPcKSRQJIA/XgexBPaliHKtaHedUe5yTbgdPqGnoOFNBfIIN1amrsCOvyPRjWMyA0ghwbjw4U/EZQn06CLY3UXsOdqWFfecoNU2GdPqwDa9M1Dx2dTn0N6Ls97EOV8NQjEm0LZAXQAAAAn0lEQVSJHXz//SNEUiHEVxwlvxCRouQXIlKU/EJESk7joXto1knCUp3SFBcoUQT3XAiaakLfp+aRQ8uBCRp1bFTmGbiU9xCvB57PAkqM56BKptQcE+4L3SuKkShlxo41GvFNAtRQkYxcaORWrOH9lMHzEHqLtdAIlVx6ob34/2bofpmxQxDHsQ90ferNL0SkKPmFiBQlvxCRouQXIlL+G0fzyvbrakKpAAAAAElFTkSuQmCC" y="-11379.226251"/>
</g>
<g id="matplotlib.axis_633">
<g id="xtick_949"/>
<g id="xtick_950"/>
<g id="xtick_951"/>
</g>
<g id="matplotlib.axis_634">
<g id="ytick_1581"/>
<g id="ytick_1582"/>
<g id="ytick_1583"/>
<g id="ytick_1584"/>
<g id="ytick_1585"/>
<g id="text_80">
<!-- 263 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 11487.521251)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-51"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-54"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_318">
<g id="patch_319">
<path d="M 164.424375 11504.128015
L 286.714375 11504.128015
L 286.714375 11376.834488
L 164.424375 11376.834488
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_635">
<g id="xtick_952"/>
<g id="xtick_953"/>
<g id="xtick_954"/>
</g>
<g id="matplotlib.axis_636">
<g id="ytick_1586"/>
<g id="ytick_1587"/>
<g id="ytick_1588"/>
<g id="ytick_1589"/>
<g id="ytick_1590"/>
</g>
</g>
<g id="axes_319">
<g id="patch_320">
<path d="M 299.674375 11504.128015
L 421.964375 11504.128015
L 421.964375 11376.834488
L 299.674375 11376.834488
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_637">
<g id="xtick_955"/>
<g id="xtick_956"/>
<g id="xtick_957"/>
</g>
<g id="matplotlib.axis_638">
<g id="ytick_1591"/>
<g id="ytick_1592"/>
<g id="ytick_1593"/>
<g id="ytick_1594"/>
<g id="ytick_1595"/>
</g>
</g>
<g id="axes_320">
<g id="patch_321">
<path d="M 434.924375 11501.626251
L 557.214375 11501.626251
L 557.214375 11379.336251
L 434.924375 11379.336251
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p7569bd03e0)">
<image height="122.4" id="imagec6e3b4258b" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmvJFeSnS18iDnenC9fZnJoFslSgV2aIHVvtJV+nX6R0CstWotuqKsaKolV2cUhBzKnN8U8uocWRG3e+RwIone851saPMKvX3cLB04cM2sV5bN9PGDU6T0MxVlnJLHL9rHEHhUDiR212hKLiOhGJrF2S2MlHEfsQy4lthAj6v1hn91EjZ/fQny752Mf0m3lEhtGITHam5rWCOddw/qW+wrXM9mvJUbXMsr0vl62uhL7bN+R2BdbXfdxrevZRktis0z364dSj4uI+CbbSGwB1/3rva77v+7mEvvkyzuJlUfwjGW6HrjNUa/1s9NXul8REf/33bnE/ldXn4k/7qcSe7ub6RLxLMaYXzxOfmMSxclvTKI4+Y1JlKLVAmECRJYSRJZ+Vkps2NLYIEDpiIgczk1UIGrRrxatu0/XstcYSXOrlkZnDfohCX47iK1BbNqQ8AYX2N/rPmZwfbRftGwSC38OJJLCcg5+w9BxJayxV+u+nlf8jE1aKpzewnNH939cqfB2/6Yvse54K7Gyq/c0K0FUXuj6fnh/BKuJ+Lqjx76KhcQmtQq2JIb7zW9Mojj5jUkUJ78xieLkNyZRigKEvDzT34Qc3GUFWJY68HvSJOyR3EROMhK1urCeHgh5A1jPoAbBB5Y4gfOSQBoRUYH4tQoVfSq4vh0cl+/hdxlOnUMQ9xUkLRIGm6Dz0DNBxx36hjnMD8ki4HHFn/4Mzn4Kz3cPtoK+cb1W0S3LQGClZwyez/s7ddM+zzUWEfEduBXvKxX3Dr2vfvMbkyhOfmMSxclvTKI4+Y1JlGJQqoupk6tLLz/wd4LKYFsNpa1UHkvCFJX0tiHWh9jjnYosoxqcViCmlbl+H+lwP31exc8NlOVuWiruLffqEJuBS6sCx2EbzksCKbn5SHyMYKcklRP3wT3Xh/W0SU2l9ZDAiutThg3lyf2dxi9JvIT1nOQqsB2fLvUc53r/6p2uZXatuXa31dj7Dgt2071+KeULQffUb35jEsXJb0yiOPmNSRQnvzGJUlBvPnTzgRNwByLLAkQJLTr8CSplJXcSiVok+LVAYDuG8s+LWgWaFZQdr0HQakNvtoiIHqyHvnMF10KC3wLWuAXBr5vBGuG8GTgTKRYR0YHPU+wUyrcvaz3urNJ72gXR9bAC74iMROUGVxu5AalDXt6CNZb6LPcfqQjY/w9neO6HFH+41c/e6Dny4J6X6LJEkfSwe+03vzGJ4uQ3JlGc/MYkipPfmEQpzsqhBMkNVtLEAWAFgl8TJPhRrzFi3tLzTEMFqC2Il11w2VG5Jf0yso+Myz8LEF4KKnnGPnz6jRuwjW1hDwcwTGMAg1NINI2IKGHPRiCmXu11v5/C7X9SaZDvgX52C2skJyDFmiDBMD/UKUeV1k8vNXasA206uz9J7NELHQzy+J5Lel+29R5MIC/XB+ag3/zGJIqT35hEcfIbkyhOfmMSxclvTKIUPVCGD1Xcuakn2W5ZiT207hyn0kDDzDH8A3CTq5nzScN0l4esYdmLBlWYxj7TWGzaWa611hg1N6Xmn2SRpn8UaDR4RESfrLxondbvPKl0PWflSmKdtt6r9UbPsdjpPwoLmFz0c9T+4sDnu4Lr205hz9Zq+Y2OPnfZmU7iGT16JbGLG/5PaQTXTX026Amlf4X85jcmUZz8xiSKk9+YRHHyG5MoxaHiHolSJDb0qKljw4hu0mh2B46XLg8UsKgX4lGhtfJtqN2+X+m1vMl/xvQhnJKjMRJO27CPNUyGIWGQp+aQ1ZivBScswQWSLFXRyHeole90db/ptOsdiXu6N2vy3UZECSIp18Xr59c7Pc/dOx3R3fun7yXW3ur17ZcqfBZ96CPQYCInazg9TyvqV1GpKOk3vzGJ4uQ3JlGc/MYkipPfmEQpanDKkQhI47ipsSbVfR+DeBURkUMNPR4HAs0QPvsZGK3+Xf9OYldfTfVAaMzZ/lqFl8n8HNc4K6kxp36eRBuafJPDesqmcUEP6ML3UY1+k/OSxMsFNA/9AGtsldA/YaMiWXsFjjMQNEkE3MK9XzQ0Vs3JDQjOvQ3s7Rru1bdLrbV/8z8HEvv8j+8kNnyiU5iW1+pgnEEORUTM4B4soMfDGhrCkgjoN78xieLkNyZRnPzGJIqT35hEKWiSRwt+E0hEGsHEljNoonlc82/Mob88IxBofgUOqq+efpDY6X+C6TWX2nAx4Pse1Tph5ct/VHEnIuI9lA7XUC5NU3dIYFuBWHjoiGZyOvZoCk+DK46kMxq9fg8l1FuY7JRB48lyrvt4WqogtoFnZwvP7KJh+tASzKU17AWNaL+GJqNTuOYBiIpP7x5L7OqD7iFNL/9Tl123r2udfbUEIW9XQ5k3OB395jcmUZz8xiSKk9+YRHHyG5MoBY+/BuceiFdXMOz4YxjR3G8YhrIk9xbEaMTzJ0N16R19Ca6xy1OJtXpdie0ztQcWpypenvaXusCIuFrrd3b3KnSxd0uZQRns20yv73ZPpZq6iSTuUVl0RFMPuAOFShA07zI993Wme1ts9RuXKM7pupcNr7G3ma7nXeie3e1VbCT3XHlgGfsHGJ3+Lx1wG4LDlu5pRMQE1kglvQWIriWIkn7zG5MoTn5jEsXJb0yiOPmNSZSiBy49coidwnFXIO5d7FTA6NWs+M1y/e2ZYCkrlXpqrJrqeVrf32isDbYvOO9urIJPVfHv5ajSc4+gFVsPhDOS3eYg0HVKFZH2ue4DDRChczSV9FLHxazBDfiQPpTGHoGNrQP7QCW0qwPPC9sQEexMJHHv7W520HlG4OSk/n8BbswNiHM0pIZcmxF8v8h5m4PASj0h/eY3JlGc/MYkipPfmERx8huTKAX1j6PyzyNwCNFAjILEuYaTd+tDB4Yo4zm49J6DWFiq+JWXKqh0eirQ1BVMjd2o8BnBomQHhBuKEWBqjCGUt47AzUVlokST27ANol3nwD6KlyD4flypwHbS0dj9WsW0Faylj88Yv8emIH79iD0OdR+xlyWcpw2xDnwfOSpJxKN+ixEsxJNDkKBHwm9+YxLFyW9Mojj5jUkUJ78xiVKQuNcHYYHqNyfgsqthaAMJg03xITjlhuBYo69crlSMW2+gZBlEwLo6TCXbNQzOoPVUILOQi20Lx41zGAICp+5S+S6UEhNNrrgjEPKebfW+fFKoK+7ymZZa9y6g198MJs5+dyyx9Rb6ScIUW+rzGBGx2Wkp+nVbhcV5rmtcwvCLPjhdqZflEHKI3I8k+G2gLDoiQlcYsYccbHJuPsRvfmMSxclvTKI4+Y1JFCe/MYlSkLhHvwg0pfUOJIgKBAiashsRcQoes09gPScwUOOorw6xbk8FmhxULXL4ZXDcdqVraaG0x33ldgcKLysoJ6bSZqgQxnLZIehF5EBsgkqwn2U6MOLZ5/f62c9VYGt1VWBrvZpLrMjhvugtjT264vj6RuAivYRS9LuWrlGLwSPa4L4bgWOQznF8oPVy2+Dwo/6WFTyPOzxO8ZvfmERx8huTKE5+YxLFyW9MohRUqrkGEYEmxFIvtGnNAweI00zLcrdFX2LDGvoHwvcdXel68iEcCCJQtQDBbqO/jSQ2RbDgx2WUhwlvJRxGsQFcSx8EuxrWNwVRMYJ7K77d9fTcr1WNewzDVMpzWA88JntwFi7h/TQDUZh6AkYE3gQS3i5yfcbmMJGXID8l5dUR3KsexHYNE4c3EJ7DPVwfOAzHb35jEsXJb0yiOPmNSRQnvzGJ4uQ3JlGKkhRWsPLOSe2vdFz1BGL7BmvpKle1eF/ose1yJLGrucr4j2qtL89H0Jhxpde3m+l510vVcacNtfLrHOrqQcllFZ+af5JNWuk2qdwPGINldAJrjohYgFX2HhqFLhYnElv+XlXzJx+PJbavdR8rUOHp35EN/UPVYInNYW9PoWfEFfyDcAtjthdglKWpQGS7pRUO4P5lDfmygDXSHSzIam613xjzF5z8xiSKk9+YRHHyG5MoBU0RKQ6sQ6fxwhUIGBSLiFiBx/MGBMNvCxU6Ltsq+D19qbHHXbWbEuuJClXjqdqP76CxZkTEPfyMDmEf2zCKh6ypWl0ekaMICCO6QRqcgQ30PmNhaUpTheCRmLX1ohc7vQeb7/W444Fascne24W10LIP7Z0QwULsKVzyRabPxB2cZwDTrAYgXpLtugcCYlPPCApnMDK+B4IftRLwm9+YRHHyG5MoTn5jEsXJb0yioOBHI5ppPHAXGheuQCSpGwS/DFxZFQg897WKQ9/lKon9ca4TX+K5hjpddRYu5tp48q7Sc0zKhhp4UKEqEF4y+L09gu6K5NwjqXEL3zeHsdR38OH7FrV1jFjAPaCrRhcbCKLDWoXT0P6dQWXsBZwDeno2dkmg2ng6lpyA1IRzAHt7Bfa5T3e6yqNcBW4S93Ywij0iooT7cnSgzlmBmOo3vzGJ4uQ3JlGc/MYkipPfmEQpSIqjotUu/E4MMxXESATawojtJnI4zw4+/w6ah/6hM9D1LFQEvJypGFNAGTONgr7cscOvAvFyBqWxNImHREAasVKDKEWiIrn5xnB9s4b7sgFhqQ1rpFHQ9OzUcNwCSqOplLU68P1ETseICBrkQ3tGjTTP4fuo+eeTnZa7X3Z1wlEJo+E3G9iHhnTpdvS5HQxVRCw6+gW79WGTuYwxCeDkNyZRnPzGJIqT35hEKVYg7tCcEhqz3QeHX9VSp9wKv5HFQYJEySX0FHzTUvGjX6oo2Vnruj/vTyR2fK7lxZ+AcBIRcXOjYuOLSqcP3ULfPNodcqZRrz/ShmiyC+110+6X8E6gUe6PwIn2DC7mtNYgTT6qIEYOuBFM0hl1eFIUiWy7na57uVFn6i04PLGXIYi987V+XxfEQixjBmEvIuLkQp/H4RdQ5v1Ye14SfvMbkyhOfmMSxclvTKI4+Y1JlGLSUNb5kArEJur1R2W+TWxArqJ+f+Qk4+/Tz9IACuoLd/GxDvzofgziHri5IiIGN7cSO/lRXV5vbo4kdrtXcYgEPxqz3TTO+SHk0DxDPx6Lu+fQK+7jLQy/CHVetnNwtkG5LA3oGHZVyDu/0nrg4a/5PZad6mjx+k6Fs8W3ev/LF3qvFlvtUXgLI823tZ73dANCZQtKf49WEouIGP4KhsD8zZcSy37z1/rhkfoV/eY3JlGc/MYkipPfmERx8huTKMXywHLb3YEOsZycaQ2/MSQikrZHZb7Fgb9bNFhkAA6xNtRvZl0VxPYb3q+8r+LX4FTFqkdbFauqsYpI1wEDI0BYot58VL5LLskR9GqM4LLVMxg2ghNmQWDNob/hSVdFreGRioWjT1UQ6/z1Iz3vrz+XWERElLqP2ctXEuvtXkrs6E7X2LlW1+YS+votoax6v9PnqQ/51x2wwy9/pgJk9tkXGvvybzV2fKkxPIsx5hePk9+YRHHyG5MoTn5jEqUg9xyVfx4aw5M0/MZ0QdyrYTQFOc46UGJKx2UY03XXaxiecKsCVL3ka96MdT3LqYpNq5XGlnDNJO69LfTc70G8vN+zYPSQMxiw8hMgdIKQO6/1uCmU+T7ZqfB5cqouu+Mv9FrK3z6VWPb5ryTWOjmTWETE/l6dl/u5nns3VuFtNtXS2CmU9G7hOS7hMaE+g21o2Fd0eMhNqw33pYJy6cl7iVVLnVbtN78xieLkNyZRnPzGJIqT35hEKYYgnK0bpuo+pIKSXBLYaMJvRARNCD4UEvfoPD24lM1ej5u+0n5tWa4f3kD/vwie8kt93MZ7Pe4DTLb9kKs4dA3i3s1exTSaakyDU6aZriUiYtbSvTjN9LqPQfzaQ3+8M4hVW43VW1DJduConGq/xfrNGz0uIqrnr/Xjf1BB9OWLC4n9KVM33+s2TQ3W5+QpCJ+XtZ53NNJ71ZQW9Z26Q1vf/FmPu1bBLzb6nPjNb0yiOPmNSRQnvzGJ4uQ3JlGKEYhf1O+thDJRqNREIe4EylMjIk6hpJREwDWUiVJhbQni3mkFvfDgs5Nxl5YoLGC4Q0TEpAZxDwSxCTj3wBwYC9jvLTkT0Xmpn12C629TcXkyLDu6MJjiAp6dEUy77UKfyO1WP3v/rQqNw8k7ieX9txKb/cDi5eu3OqX5dUvv9atSn5N3mQqsC9hbypct7BdNgi7bcA8ajLO7d+pMrGffw4H6Bet3kL98GmPMLx0nvzGJ4uQ3JlGc/MYkipPfmEQpjmBEcAt+E9YQm0OM+gNcgtUxIuLpThXITg1Tdw5skEhnuYQJOxc9VU37A7U/7kCRXm3Z3kv7M4F1k7JPKj7969GHc6ygF8AcYkv4vn2DrEz3cAjK/ik0+jyGcdy9kqccPWQ5h14HENvAfXm7UStuRMSrUu/Xe7BO34B1egpj4MnKW1E/BvjL5EPovxm9iZ6jBf9uRURUMPGngmYC07FOC3o71xHyfvMbkyhOfmMSxclvTKI4+Y1JlOIT6PU4BNGGKvLnYGFcgBA3ABEvIuIULKfY5BAaRXbBGtyBPgQf9XT08rN/q/XgxbnaQ+uZioCj1zw+OV6eSGheqwi1hkaYHYqB5pOBiLSD2u91Bn0IDhyH/tN69DwdaqIKayzRPK3QsKai0M8WJfSMIF+53qqI4OaaJLCSkEcxGgNP06zeQ278ua3i5RpGfl9ds1W5c6t7QU1UP0Bj1rftwwRyY0wCOPmNSRQnvzGJ4uQ3JlGK3/buJXh2tZBY5xE4mxYqdIx/UHfRfKbOpoiIXQXOvQocdCR+gWLUBVHrGCbDdH6j012yT3QyTEBjzfbNnR4XEd1/0BHP5e91Pe/AiXaocEq9EnbgIty0YFIQ1NTPgyf7bEEIpJ4K9OkVvE+WMJq6gOaoNKJ78FiVvGql+zB+zv0Yyr2emyRJ8tTRRKrNgSPt72lSFLxqFzCF533N+UJTgGbQXmIKfQOWcNV+8xuTKE5+YxLFyW9Mojj5jUmU4tl/1ikg5W8eSyx7dC6x/VyFwe6ff5TY8psxnnzyTkWa+l4FwxmIgDW44mooTyb20GQySlVOWk8/1thX/xG/s/fpv0jsiyf/JLFHv1PH4fs3Ogr6zVb3YdPSfViDWLgBP+YCRMAllKxGRKwgPoVR0nNwHNJ6duDGpLLVzghGdJ/DKPalileDDlv8sq0KrCsQxGZwzRsQPg8dS7+mCUk0igdCK1IGI4LuFl0L0Yd74De/MYni5DcmUZz8xiSKk9+YRCnyMxXdWj1wS1FZLkx8aQ20HLHzmJ1kwx2Mkt6owLOZQUHxXgWsgko14ft2L0CA3H0joRz6/7V+q+7AiIjsq7/V9bTVqXUyUBGw9fdTiS1e0nhvEPJA5BzBb/oCRmzPQQSM4PJfcv2R9EVvkza4C7td3duiD89YrddMztJNQ2/FGSzoFkrJxzDqnIRPIoerLkD4JKhfYtNZt+SyhPtCo+qPLfgZY/6Ck9+YRHHyG5MoTn5jEqUY/28VOrrffSexvA/DPfLDHHX1tmE4BPz09PoqxpzAcIjuWkUkKhPNYUDD7IWeeP8dDPJ4/n/0vD/oeOiIiOyv1A0YK+33t1/r9bWgJ10bHHUdcCb2yOkI5cBnUNoaGZfBLsCddgzuwi7c1mMQ044GKux2B3rcHhoSbj7oPZ2+13V/2PG13HT187cg7t1U6lbdQC9LopepyN2GcnAqye6BYEsjvyMiVtRzEcQ9+k4azuM3vzGJ4uQ3JlGc/MYkipPfmEQpfvdSy3eHL1XoOCpUoBmSkAOCXQaiW0REXYG7aQduKRjm0GvBwA8Q/JYLdbHdvj+S2M1eRZvua/2+q/+nwlBExOmFioN03UtoujYeH+saK3UHbrGvnzIEXYhEoNMGh18VGqcjH8GU5eMSBp0cq/BZdGAgxhSmIs9VaLy504mzH0Bgi4iYgbtwBULeotJneVnrtRQgsFGM3qrkvBuA824AAndERAcU8jb4LOlen+/0OL/5jUkUJ78xieLkNyZRnPzGJEpxW6gIMa/1N2EGgxeOxioD9Wcg+DUYASsQJioQOyr4jVpBeesaHFRjEIJewRDUGZRLXtR6fYu19tuLiDh7rQJdDt+5BKfdBISgObgn57CR9OvdAydgG0TAkkblRkQBcRKWTjIVxE5gSErv4jA333Kqezgeay/DGxBD5yU/ZLQ/5b/inVfCverDVNwuOCJ50jE4/BraBHbh2CE4PEnw/Wivoqvf/MYkipPfmERx8huTKE5+YxKl6ENvvhqEiRWITRX00RvDgI0tiBIRPIl2XmhsCiWvdzCs4A66n92HCh00afWqpcLSp7Uqg2dQDhoRcdJVhxiJl5uN/t5uQRxawt7AcFqESnoDRECa+hoRMYAeficFiHsn6nY8/kj3u3ys+1jPoIffvZ53U6nAtjywP15ExBAcdEdQgjvJ9f6X0PdwlKnYeJbpZ0ehny0PHCrTdHUdmjUD9/Wi0r39+IlO4/ab35hEcfIbkyhOfmMSxclvTKIUIxD8tgcKfuMcnIDwc3IPgl1ExD2UW45hUAL1XLveqdh0u9MJuOta3WWn5VBin7S1TPQZDO14djGRWETE4EzXWG91z9rv9ZrXcyhlBbFpAXrRHPaWVkgVryfg5IyI2MMAjCO4B72R7m37mfbSyz7SCc/5UgXSwfJaY3d63v5SBbujhjLYLYiDs1xFu6o4bCDGCMqgqb9hG4TGEvJqD87JHY3ujYgeOC/7IPidF7q3o0/BeYtnMcb84nHyG5MoTn5jEsXJb0yiOPmNSZRi2IJmhlArv4JWkaTsv89UIb2Bc0RETEDZn8LEl+tqLrG3a7Ur3q1V7a9AsW2Dkk6qaz/0s/1jHjfe1T6oQUOsW5n+S7F6AX0Dqr7E7jMYvQ3nmMK/KBUc96Fh4tId7M9uo/+GHN2qqjyE5pitI/13pXWho8678M/T5exOYvV3ug+9tSr4ERF96MmQQ0+FUa77DX/WRA+U+JImi8NaoF/twcdFBP4H0Aerer+n/5BAGwK/+Y1JFSe/MYni5DcmUZz8xiRKkYPkkMNvAtX4r0GBWIKw1MQARMQ22DG3MK76PfQIWO7AYguC32ynNefXNLYZavy3S/697MEasz40cTyHiTY3up7Ovdpk99TIFPoa0IjtDdznLcpNEdeha5y0YT1TFe3Kf/wgscv+DxLLPrrUE/dUtOs81vt8fKdNQltjfu56WxUgR1sVAa+gQS31m6jguSM5ewWPCU2qJ1dyw4Cr6IC9dwBietnW+79V3dRvfmNSxclvTKI4+Y1JFCe/MYlSkJC3x5hCchHVLF+AoyqC68lpWsl7qL9edlToeLdQ199yp+LHrtbYG3AR/q6jgt/Rjxe6wIj4TaFC1/BTcLtBg9ICxunQr/IWJgCt4S6Qm49iKxAGIyK2EN+CsJi11RWXX+v+/Pu/u5XY2V99C9+na1m8hQlHYxUf11se0V2A4/SkpYJmt9JrXkIz2gXcmSU4LwvIAxIGKa/4SrjhKk2FqsEiuLrXa/Gb35hEcfIbkyhOfmMSxclvTKIUO2g02NRA8CE0QeQUfk+udmxZ+rzW8tbLcy3L3axhClCosPRN563EWuDIokksy1pFoOeZioB5V0tbIyLql48k9lWoCNi7PMyR1UbnJQunDyHn3ppcfw2C3wZKrekOvgPh7Dk4AbOxOgEf/7OW+ZLbdApToWZUn9pAr6J9BJEMnnlqZFvD85TB93VBDafjKhIGG9KPSownVLI8BUEUcshvfmMSxclvTKI4+Y1JFCe/MYlSrCH/Nyh06IdJ8BuC0PFZrSWrERH/5m90Qkv3v/wKVqkCz3/772OJ/V33VGIk+B0VMI4ZRKQ59BN8DSJXRMTXIHSd/nAksY+76kIse4eNxD6qwAIHP98TEC9nULJMTr6fvlL3rAWxBQiD11Da/KKtYtNdpftFzxiJXOQsbSqDpQ2iHnm0E6S7kcuuBzGapENrpGumsuGIiBnEtxBbVXrNgyWUnONZjDG/eJz8xiSKk9+YRHHyG5MoxatCHUKHiix7OO7QssOIiPxYhaDW0yd47EMuhurme7JVgW1Pfc+gRLgHo5c7IAJSaWxExBRGZd9sQAS80XNnoARROelMlxg3IOT9sFVRcbLTvndlxk65Ua6CaBtmfO/gqZiASPoGXjHk0qNnpwOyG7nn6FmMiJjAs0ei5LxB/HzIANZ9BkNuzkFVHNBwDxDsqDdmBJcEr1EE1PVsYT1+8xuTKE5+YxLFyW9Mojj5jUmU4o8l9JkD9YSmk3ZJZYFBBx92PEH18p9V1LrI/kFi9ULFmB9nOhb3rAuSSHksoUELhmnA72AO10yfjYjog1ULy2BvtZT1Xej+fN3R7/s6tMT4+VrLhl8t1DlJA00GpQqSERHtrl5jBSIp9QC8h4EfKxAGj6A8+VlLHYyPYNLFANxzK3juIiJmcLum4Ex8W6sgSqXRAxCGFy3dm02ux53CQJo2PCRN4iVO9IUYvdG7WIpsjEkSJ78xieLkNyZRnPzGJErxAoSOEoQJmqh7DL3wanA7tUp2km0+aB++s/+hDrEt/EZ9X6qgMqCJpyDanYR+lgRN0l0GVIMZEZfQp5D68N1DT7rvO3p9P0Lp8F21lhj1HtxUKmitd7qvTcxLPU8n03WvYULsoRzlKjaWuTo0n4DA9giERqiKjoiIGTyj7YLK2PULJpWWoi9buo+7HCYgg7NwC3s4gh6aNPjmXwsJon7zG5MoTn5jEsXJb0yiOPmNSZTiDgS/AkoCV+BsowmxCzjuFgSWiIjvc3ISqihCTsIKBBUSSjqwnnOYDjyEc1Al8qChV9wpiGwdmGy7h/McgVh1BuueZiqS3RU6ROS20MEn5PAjYTAiYrLVYSpEDsJwtScfmrIoVFQs4V00LFQELMAdeArTmCMijiu9YVfgvnsL7sL70NyYVhqjISdbEAGrTEul1yACdkEEbAJLzEEvvLHgZ4z5C05+YxLFyW9Mojj5jUmUYgXnnTOwAAADKElEQVRiRQ6iTQXi1bqlIssYRKCfQwechBeZlkyOwEnYATGtD79vx+DSG0KZKPWUK6EnYEREB4SXFk1vhT17vKM90+vLCpi+WmjJ8rijgt18q261FYiAERGLrYpxBAl+BA1Ooc9Ocj3v+0wddcf5YfsVwferD8/JCJyEOTw7OBAFnIDrWtddlZpDKxBxuw3XUsPzRGXVGxDiSYj1m9+YRHHyG5MoTn5jEsXJb0yiOPmNSZQCVUBQZ8lGuIDpLNta1cemUdCHTtMpQBnuQ4z+ATgBZf8ULJ9DWDf9MjZVWufYXvGw44Ywi6WCCSstWFEN9t5ZR/sk3G3U8tuk9pPtlxR7mvhDo7zbOTc9fcgenjFqorkE3/WsoYEnNaNdwOfp+ab1rCp95leV7uMSYpRrq0L3ugs9CBo/D//WUY8H+vfBb35jEsXJb0yiOPmNSRQnvzGJUpDNkur5qRHmhgQIEBZWIEBEsICxA3GwT00cc62/puaa59BY87QGkQUaOO7hmptkPfoVpc9vQYCqqQ8B7M056KYFnLkCy+91D0TAlYqAERFbEPx21WHviaax3w8hUZmexQz2hgzWywYllvo+jMFivYBngur06fmkXgl0fXQtZNltNwh+xIbWDTFat9/8xiSKk9+YRHHyG5MoTn5jEqXo0rhqiJHIsgERYQtiA7miIg5v9jittc57kfUllkPzzxE4946gRrzMdC0bELm2P6O5IrQIiApEH4qRfjWE/R5C48pRpaLbovtEYi86Ot47IuJ6MdY1wr3KD9yLQ+v5SVSmGLGmbqsRsYAnd0yuOBL34NmhGO0NmEgxD4pMn20S5yLYPUmQ2FhQf4iDvs0Y84vDyW9Mojj5jUkUJ78xiVL0wD1HI7rXJO4dGGsSMAgqCaYGibc5lC22tBliH5x7gw44sjJQaNa6N9DHtJGKJg1BjChAqOrBSOxhW0WkZ2097ng6lNjvh8/w3H+/nEiMyq/rhmamDyFnG4lX7PBT6BZsUJKOmJObj5pe0tQdOI6umfaGqEEYJDdek7BH7knaMyr9pq/0m9+YRHHyG5MoTn5jEsXJb0yi/H+Jj+j+UQJWaAAAAABJRU5ErkJggg==" y="-11379.226251"/>
</g>
<g id="matplotlib.axis_639">
<g id="xtick_958"/>
<g id="xtick_959"/>
<g id="xtick_960"/>
</g>
<g id="matplotlib.axis_640">
<g id="ytick_1596"/>
<g id="ytick_1597"/>
<g id="ytick_1598"/>
<g id="ytick_1599"/>
<g id="ytick_1600"/>
</g>
</g>
<g id="axes_321">
<g id="patch_322">
<path d="M 29.174375 11645.545675
L 151.464375 11645.545675
L 151.464375 11523.255675
L 29.174375 11523.255675
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pabbafcc5c0)">
<image height="122.4" id="imageee663aa181" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUtvHGd2hk93VV9JipREkbJHlmyP4/HEsTO5DJDACDKZAFlkmV3+QX5cgKySXYAgyCRAMJPx2JrYji3JkqgLRVIU2fdLdWdhZ8P3KeCTjWz0vc/ysLq/qq/qdAEv33NO4wc776/jAv2yczEUl8q+xPbKLYm9VWxK7MNlW2IREX9avpDYm39dSaz8yz+TWGPvhsTWTx9IbPXrjyU2/MWRxD7/fE9i/97R8/6sMZFYRMTJaiqxyXohsfFqLrHBUr+TYvNqKbF2UUpsu6X3aqPoSqxaryQWETGq9FqmlV7LYqXnswp5nKJoNCVWNgqJzVa6xvlsrMct9bg6Go1G0vkUTY3R3naKVlKsV+izQznUaegaZ0u95oiIo/m5xAZzfU6WleYQXZ9GjDFZ4OQ3JlOc/MZkipPfmEwp5yDaBISIZqiY0gUhZxuEk4iINyYqDt54+kRirZaKJ42rb+gXrlTAaly5J7Gy/0yPA6Hq+/4yrtb6nSSyrWHtVOgetEFE2miqiFt3fS24h+PGTGJTEOjo+pqJohvRK1ksvgjtdUSd0AXnA8e1mrqPqeedCgmfW2UPj52vNTEreOZnjTRB1G9+YzLFyW9Mpjj5jckUJ78xmVKSYDAHxa+o9Hdi3FQRaAAOtrOSFcTzpjqj1mpOiuiqM6q5fU1iq6k6oBpddbal/uTRYSoVfbs2iHZV6N6uQBCrE6vkfEA4K5sqGHVgX3dA8OuCMBgRMWvqno2KNLcixeiaiQbsLn2WXHt1pAp09J0oDCZ+3/cRe2ndurVbcP+XK0oixW9+YzLFyW9Mpjj5jckUJ78xmVKSiITCCwgTKGqQ8FUjaDVJ7GiB2AEOwfVShaX1dKSxocaqsa5RwTXTPpQ1YgwJNwtQLylWV1p7ERJ82uBC2wRxb6+hIt5+qDAYEVHCM3He0HM8aeo9eL7W2HClwvAc9qEJ14eCGBxHz3EEO+joWLoHFCMxDY+D66OSZRL3KNciIhawNh1btxe6tjEmS5z8xmSKk9+YTHHyG5MpZQvENBKWyDVGYlOLXEg1rqjOSsWKRqlixfr8ucRWD27rcfc+k1j19VOJDY9VEJsFCEMSiShqBD8SfUjgoRh9lu4BudDYzafi3ttrLY39YMZOsO0GuDTh81+2tfT0S3ieDmEnh9DfkMSrKTgGX4Yu7A/tGbkxx5UKlShyQ1k8lcqTgPwyJd70nSQYkiBK+M1vTKY4+Y3JFCe/MZni5DcmU0oaLtAvVBDbhKEP5CTbbsBn1/wb0wJhY3kGQzt+8xuJNQoV/KqHOoxj8IkKRscnOxI7g9LIxUv01iNnIwk05NIiyJmWKsRuQanum3M9vw/fOsS1N95REWn+RM+7d1sHnYxh0EkFzwnoazEKvVe0XySa1kH7SM93CYJv1dSTpPOhsyEn4BrEQhp8UleyTJ8nqB8h4Te/MZni5DcmU5z8xmSKk9+YTHHyG5MpJan411o6enu/2JDYTgOsk/B70q1R+4dNVS8f/fe2rvNUJ+wQ07Gez/Pzy7rGWq/5KfQROGuQssuKK1k3qa4am3CCIk3W6brGjhchC/JlUJ8339N1IyJaf/SuxMoneg9uPD2T2Oun2lh12NJrGcPeksUWLdIworvOEkv/IdkAtb/b1P9S4CjvxBg2dKXmrTTSvOadnNpQlKdPUYNSY0yWOPmNyRQnvzGZ4uQ3JlNKGkNMtt19sO3urWBaCGhS0xox5msQ2YZLFfw2n6oAib0AYI0RWB0ft/XIpyBAncPkommwPZd6FpCIRMIgjcSm+4LjrxNFwDacd/OyTkKKiIj963rshgq+V370nxK7+Qu16B6V+uwc0HNC4l6lsdSJNBG8Z9REtcRRUQr1ByDRjRp4pjYJrYOeHSL1je43vzGZ4uQ3JlOc/MZkipPfmEwpqZ54RGO2QfDrgFtt0VAh7mzNI7qfgxj3AmrRL611na0V1LaDrjiGn7djEPeOoJZ8BOe9oEL0Gto0AhvOB+v04bMLEO1ILGzD9/UKvb7GljbgjIho7Oxq8KqKgJ2fquvv1lePJXb3ZF9iVZnWrHNe6T0gVxyNqo74fk5Jcl72ShVx6R6Qy5KmFNFI87p+BakiYip+8xuTKU5+YzLFyW9Mpjj5jcmU8mw5liAJKiRWPAMnIH22ru3gDnyexKoW/EYVTZjsQ4IfCJBDGDc9AJFlCOOm6wSWReLkFS6tTBOgSFgiYbAH+wXbFTGraYS50Ek1salNTxs335DY9g+/ltilZ+CyKzU2qdL2m8S9PrgIIyKoQW0Jn8fx57S32DBV1+jRaHC4zyQqn69h/yPivJpKjMRBcjDys2iMyRInvzGZ4uQ3JlOc/MZkSjlaqIhAk2ZIjHkOYgo5qjZoYktEbEIPwAoEOiq2pF56YAREwW8KgsgEhJcBjGgml1UdNHmFYql94aiksw3CEvkpny21b+HN/1I3XkTExuavdO3X1eG3Pj3VtYcwlQaumfabynep5yGVO1MsIr0MlgU/KLWG9yWtQL0sN0BAvAI5MIZx6BERL2D0+jk4BCcw/pzKpf3mNyZTnPzGZIqT35hMcfIbkykljRwmUWrZhB5wIHV0QMAgV1QEiznklBvTcYlCzpjcfCA2TSkGYgq5pyJqRDv4baUyURzGADH6bAnr0vX9tqNiUeOT1yUWEfH2g2OJXdo7kNhqoed48OCqxqBX4xgEKHru0I0HpeB1QztSy2DpXpGjkp7ZJZR5j0Gm7sMY8M21xi7DcRERV0LzaAQDSIYkaBeUv8aYLHHyG5MpTn5jMsXJb0ymlO1CXUedAsoWS+33dr2tAzYugwuprmQVh2yAUDICASO1dHgGgia5y+YQIwGqrj45tZcaTmCFZVKdaSuoYx6Eimn3QCQbd1mI/XqkPfx2vqJpsho7h3WoZyIJpH0Qr1JZUz13RJCgPWuAA66psQKmS8/r6tNlDei3CHvTh+ehT1bVmmMvwznOwElIg3P85jcmU5z8xmSKk9+YTHHyG5MpJfU+64Ajb7vUia67TRUBd8DhN60Rw0ZQfDqEckRyg81AoFtSvzcqy6SJuiCSkJNsAUJORESVOMyDBD8S98ixRjESPiuIDWlwSo2mOCygR14Bbk4UpugclT7s92apYjFO2YWSc9qHiIiKjk2cljtqark73j8QhimHiA48Yy3IoYiIbdhvGlTTguOoh6Pf/MZkipPfmExx8huTKU5+YzKlxBJTEDBIEKFeeANQkei4iIgRiXsQGyQOKyAnIQmVG00assA94C5CjroIFtmo1JNKllOHLBDfZwhI3bXQpOUpHAoVvfg2oe8j9xyVg9OADnoWSdiL4H6US3D9DRYTiVE5McVIVO5Cf0u6LyQ0lzhhJSJCj21DrtJdHcOz6De/MZni5DcmU5z8xmSKk9+YTEGVi8oghyC6HYJTrgeiTZ14RZN/yblHji76zha4qjZhYMg2TFXdBOGlRb31qMy3himILGcgaNKkVtobgtyKqZOO6bMR7NyjvSCRcwriHl0fOSKpHyFNyp03WNwj5hUMB1nqPcC+fnQ+UAJPMXIcknj5HJ7ZOsF2Cv0o6b5Qti0s+Blj/g8nvzGZ4uQ3JlOc/MZkipPfmEwpUyeaUIwU9wmol3XNKFMtrGSp7DdUxb9SqJX3ehP6EMDkk26iwt2uOWWqWR/i6O206TwT+F0mBblL1lKY+NKBc+nU3BdqFNmC6x7Dx4ewE/Rfjxk8d/Sc0L1vr+E/ADX2XmrsSc8y1fgT/FnovQAxOsez5VjXKPhcziG3ysT3N/0nxW9+YzLFyW9Mpjj5jckUJ78xmVImi3sgYIxAYyGxok7wo74B1PjwUqGNQq+BkHcTGoq+Wak4tLfUc+yv0uyPdaPBzwo9+qiksd1KC/aBJheRRbMNZ0niHomKbaipj4joJTaFrGArSJSkfg7U64CgfhNk+aXjIth6y/0A4LlNHBlOMfosrTt5iTHwo2badWN/Adgzv/mNyRQnvzGZ4uQ3JlOc/MZkSlk32vi7QqJGneBXwdIk+NHY73caGxL7cKbr/G7nhcSuv3eu674GfQhAGJw84P16eHdHYu2FnmMLRMAWNGykHo4T2Ees0wdxjho31Dn8SBwkOa2ArSARl4TKKbjdaEw6PZ8kplGtfEQETaQiga6umelF6Pqo7p9q8mkNcv1VULcfwbnVBhFwDT0VWjCFyW9+YzLFyW9Mpjj5jckUJ78xmVKieAK/CU1qZghiA4kfdVBJL41AJnfS3kqPe7dUIe/Wz7TxaOvnH0ms8c4HeoJz/Wz701/qcRHR+qfbElv+Ws9xXqkLkUpjVxCrSJQCcYjuVQvcfHV3iuQmitHnKUb3mcQ9ipHIRWXodaJyp1Ahl0RAYlppo09qJpvqkqXcIPGxLocojt8JDj8Scf3mNyZTnPzGZIqT35hMcfIbkyk4opvcUigipDqbEnv1RbB7iyDH2kZfyyOLm1d1jbff1+9756cSW09HEqsGp3g+7Vt3JXbpi5muPVXBb4hTblTUmkCZL23tHH7TKyp5XbMrjrQzKjKlEd0kDJIYh6IWXEtqD766fpC0DrlIaZ1FQ696CmvTVCA6H9qHTqnnQkJ6RM21wISsPlwfTdLym9+YTHHyG5MpTn5jMsXJb0ymlCQukOBHzjsS516mRJgEDOo/RhIgjWiYzaC88flAY49VnFs24XdwMtTPfn0HVo5YHk4kdj5WsfGkpVfzvKFOsgG43aY0vhwEKCo77YFEusUT2mMLHJU0yCOVDfi+Cvot0r0/W+tQi9VKn7G6ktwifaK6kOrcW8JI+1SHXwFOVfpsHaklxizOG2OyxMlvTKY4+Y3JFCe/MZlSppbgkkuvCRrLy7j5yA1IwiIxBlfc4UR75m3/4lhjL/5F193/lS6yVCFn/rUKiBERTz7dlNgdELUOChXtjlfqBByuVQTkMlge8HCREYhp0yaXtlZwD1fkJIMy4S1wDfZDezBOi7bEjtZpAyxGle5XnUjWpGEj32MKNQna9MyzAJk2LIQExAguZab9IRG4AI+m3/zGZIqT35hMcfIbkylOfmMyBaf0rkGIo3LENKmJXUh1VCCKjEDoOmxq7LdtFaXOnuxLbPeximmX2ioilVDxOpqpay8i4iGIWndV04rHa13neKXuQJreikIV7BfdqyW47OrE3iG8E8ildwnEtD0Y3Xup0nNcgQB5t6WTl2eFPmWDpu4XDb+ISO8BSKArLtE9R4MzyBH7UrkB10I9BbUQPWIJ5cl+8xuTKU5+YzLFyW9Mpjj5jcmUkoSS1DLBukEJCv/GLEAyJKHrFD5PQwhmTRVEDjtQyrpWJa6/VrdbDzSkZU3bu2MYWXsQKu6dgLj3YqkSzXSloiTeF9qbRAGKnGAREUsaBALHkbj3h4UOTtl/S2NFR8/nvTtbushqW0LnLd1Xem4iWAhcgIMutQyWBn7Qfalz6V2kVejzWdfHklyD5PBrgvOSUtVvfmMyxclvTKY4+Y3JFCe/MZlSrlD0IXEPSnoT9b6X6UlGAs0wdFourgOi2xhKUXvgLivhYqjkuE4kG4F4+Xyl531eaYzEPXKhlZF43onibN2gC7rGJRy7CeWoe7e05Hnroyt6PvvqlHzr4aHE/urv9fuelpcldlapkBoRcbLQz6eW75Lgl9rzktYgwS5VaKxbh/oedmFoR7+pIrff/MZkipPfmExx8huTKU5+YzLFyW9MppSdQpXB72PlfRllP/VYskpOYcrNaKXKJw3imYN9labAzKFWnqbmRERMQLGfQhPOGRxHkKrchpr6FhxHlt8ysVFrRMQCr1tjM7ChVjC3ez1V6y09Tc1dtfK+9uZDif343iWJ3SnBGhwRQ/jvyqRK65WQqs7TveqBuo55BXtYl2upyj6N427DZ/3mNyZTnPzGZIqT35hMcfIbkynlrc6uBGliC02LIVsqCVp1DRNTJ6eQUELHzeAcC6htnsH5LEHkIhFvBNN1ItiWnGojJQqw8pK41wVxp5Uo2NY1jyRbM4mfJzD/+skjFeMa/6H1/L2v/0cXBtH1+WMV8kgm3gKBLSKiB5OB6BmdJ9bfkx0eR6LDupcKneCUKs5FRLThXU33msBR7kmfNMa8cjj5jckUJ78xmeLkNyZTyr9oquB3Bg64o1BX1CE0ozyFuupBTa11qiCWOnWFBEgcLY51+mnNRMkdVnc+qQ5GEuMaIKZ1aOwzaHYkkJYv8TtP+0Mi8DE0TP280jHpz+7rNKOt+yqQ0qSohyCc3W3pXp/VCLGp94CumZ4dcuTRfndAyNtt6kSi15u6N7trFXYjIlpw+ydwjgPI30FAo15cxRjzyuPkNyZTnPzGZIqT35hMKf9255kEj45VtPkyNHa7pWLMF+BOqnP4pbriaAw1OglhDDE5E1Mdg3R+ddcyq/R8aDIMCZok+HFj1TRSm0LS1KOXOXYMwtKdln72QUufiQ6IWgvYm0dN3dc7lTblfDQ/lVhExGCpYjPdaxL8SiqhhRL4jUJFu6uFintvNjT2k7nu1y1o/PrNOer+PIbR8PfburcnNG4cVzHGvPI4+Y3JFCe/MZni5DcmU8r9v3tPgtfuP5LYm788kNje7esSW3U3JfaiYPfV2XIsMRLU6kS2i6CzDUQb6rlGkDhHfd0i2A1Goh2JTST4zcFJ1gR3YV1Z7kXWhY6Wrisd7cE7gcpJSZJ8AaIrCXnkGBzD1KODJYh7s+cSO50N4Wwi5hUIvtDYsVvC2HZ4Tvqwj1dLFcN/AG6+H8N895/0VKjcf1evOSJiMQQh9o5OL5osde1WYcHPGPMtTn5jMsXJb0ymOPmNyZSy+bO/kWDj0RcS29j/lcR+b/alxO7fuyGxr8ABFRHxBMQqcsqllmWWMMI4VdyrG4ucehwNVKjAAUfQSG26FoJciOgYBIGNxjZHRHQL3bMyccQ3DfcgIY/6KJ6vVdA8Wmj/PxL3hnN2xdGzQ3tLe9aBgRgkIG83VAR8LXRvby71+q69reJe570diUVEtE5VIL98pA7GvVNduwWOSr/5jckUJ78xmeLkNyZTnPzGZEpZXLspwWquIkJjXx1+vZtfSewHX6oAdQXcUxEsnuBEXhABqQRzXaT160sV98g916oR4ujYVNEudSpy6sAPdESC9kgiZd3aJBjOaHAKlV/D+dAQkDkcR2XRFKsThdc1jswUaL/p+2gCcg+W3Sr0OW5dBufdFR188s0f9L5s7KggeukMelmuwDHKqxhjXnWc/MZkipPfmExx8huTKWV18JkE14/Vubc+PJRYNVDhpQVCzk6oUyoiYhOcfzQUAUWbxFJWgspy1w2NFSCIkUj5zbHU9y6tlx6JaVMo36V+hHQttEYP3HybTXWmRUT0G+oGIzltAdEpuPlI3KMhKSSwkZCaGouIaMBetMHBSDHs9QjXMob7MoTn6bzSe7A40eNaQ3XyRUSsR1oaPx1pbg1XGnsB4rPf/MZkipPfmExx8huTKU5+YzKlrP75HyS4enQksflXLyR2+Jn263sOJbQ0bCAiYgNEqH6pIlSqS4scdSTaoBsPhLw+CGIkUkZEbJGgBpNayXF4AkMajuGaV6u0Kb3UZ26n6Elst6mxiIjNIMEPREkS/MjNhzEVycYwFZlKlknkJFdiRERZwMAQGLzRhWnAVA5Oz+IIzvsA+lZ+3NH9Lm7vSeztEx5AMpvo+dw+0ynbX3R0L06hvNxvfmMyxclvTKY4+Y3JFCe/MZlSDv9Ry3IHz1QwOjm9KrGHKxUw7rf192TQUEEkgkW2rZJFqIuQ8ELuQBL8qDcbrXu93JLYDRjGEBFxC1xVu0s9n3P4uf0tDJGYFyp0EXTNGyBUUp85EvYiIgr4zgmIdhMQ7aYQoxJjOm5UqfA5XGiMyr7roPtPZdkUw1Jr3BstoX1YQZ/Bpl7zk54+dzdPdBhORKBsfr+r3/lsrWLjCM7Rb35jMsXJb0ymOPmNyRQnvzGZ4uQ3JlPKp3e1WeCLqSrDh2BffdTS345DUDTPQGmMYBUY6+IT66oJsn12Qe3fK9Sq/H5D9+anPBgm3t1Q+/PGFVVdnxzqd05bqvgOCv6vwkVoF3pQj09NJidQex8RMQU1fQj3MFXZJ6jhJjXmJGW/WulnU5ub1kGWYYphg9nQvZkH/DcDbMBnYAM+gP/MRER04L9jY7A/039hKF/85jcmU5z8xmSKk9+YTHHyG5MpJYl7Z9BwcwgW1FFTBZExCAsjECAiWDBKHcdNx1GtPIXIVrwDlth3l3rNH1x9huez+/sq+jS60BTyUxUG3z7QHgFPOxpbNKl+XveQxD1qMkl19hEsTE0gliru0QhyulfUZ6GA545idaROZ6LniXoJ0Nh1EtOoeeuyAeIlNTeF+xyRLuS2qGlpuIGnMeZbnPzGZIqT35hMcfIbkynlcUOde4NCfxOoDn1KTR0TGzhG1AgqiYJfKigioSCisT44yTp9Fi+bm7qPJPj1dgcS23+gYtruWgXIc2gISpAIiLX3K3ZezsDNR/eKYrTfbRKqoH4em6hCQ1eirslrCybxpI5Op2eRRM5Up2rdtKeLzGuOa0O8C89tF44rSGBNOhtjzCuHk9+YTHHyG5MpTn5jMqX8sg0NCcHFROLeGZQtDlBsSi/pTS3NxOaKIGpgA0cavQ2fXYB4RSORIyK2zlW0K0DwK7d17asbE4m9PlOH31mpouISRkGT4EcTcuoceqmjxUncQ8EWXJYkAtIkndQSbxIfI9hJmPrsoLgHJb1UvkvQczeHEniajlRH0UwbVY+OyuRVjDGvFE5+YzLFyW9Mpjj5jcmU8pPGWIJLEG1IgphDD7gBlH6OKu1TFsEiVOr45VTRBoUlLI3Uz84gNhiw4+zymYp2hU5fjmJX+/Vd3tN7cP2eTgs6BbfaAnorjhq6r0P4nacR1BEs+JVrFavIVUclrzT++gr0KOyDg5EmzRzD/RtUuv8R3BeQhEoEHnos/a10v0m4nsHzSW7DOpcrrp0oGC7IjYmrGGNeeZz8xmSKk9+YTHHyG5Mp5b3F6Xf+cKqwUFc6Sg6q1JLeVBGQBBVyWhFn8NN4OOdhGtsHOs3j6rYKeY0uCDyLtN/gDghQvbXuAw13oHLQdc1vP7rq1mmDU+j+0UCU3ylU0LwCouIYHIwHbXU/PqlGEouIOF/pfZnB80gOwQUI2iRI0zWn9pgk8ZFyKILPO7X34LRSId5vfmMyxclvTKY4+Y3JFCe/MZlSjsF91wARgsQKEvxSe71F1IgisDaJe8kuLYDOewLi4xEMT2i12RU3f3ZVYq+dqOusLPQ7H4OI+BWscwznMwZHHYlSXH77EqWjNO0YHHldcCH+CMS9n4Mh70bvTGKTua5xb6379UVbnZMREfcLFfyernTx4+VQYiRIf5/njvIqNRbB95VcsiQYTpYW/Iwx3+LkNyZTnPzGZIqT35hMKRfUxy1dBxJepi9f6kCN1EmrKIiQ+AFOqQGUwbZh3UVNGezjLok0KkxNQaB70dXzGa5VlCJ9jkRTKoOlybt1tEOvkSa/bsLAl9ebes0fTfWzf/LRI4l1/uANia2H6pL84e2HEnvv0x2JRUR8slSx8eO2iohfwGfpWabnifr6NcF5iYNKIFb3vKe6Xymn8RyTvs0Y88rh5DcmU5z8xmSKk9+YTCkHS+59lgKXKKYLdj3o7dZpJk6iBQFrCm5FEmhwSi9NNi1gaAeUsX4TV0HluFKx6vlSS0+pxyGJpNRzj/rtkYORxKK60uatUt1yGw2NXWtqae37K419eO2ZxLp//mOJNT74Yz2ZuT6f/RufSezNbY1FRMS/aehFdUlix3AtZ+AOnMBzl1rSmypmk6M1ggVyErlT8ZvfmExx8huTKU5+YzLFyW9MppQnk4EEU5135E7qt3SoxWapYkpExG5L3VeXQXgZQ9nik/kLiWGPsxUNIFGRJHUKbRcGRkTwsJInc+2PeDLT/aZySxqIgf0IIYaia1Nj/YIHkOyUGxK7Cvfl3TWIe3MVL3fehqEtm9rXL+AcgwZiLNOm4n7zlSB0wsc78B7sQclyD4akVFCmTYJfnZB3kZcpG27As0xCLpfpG2OyxMlvTKY4+Y3JFCe/MZni5DcmU8oZKM2kDJLSnEqdZZeU/etNtZEOQe0/aqpqTsr+rNL/AKSq/aTO9kHtjYgYrVTRHi5hWsxSz2cBijZeS+hnScWne9WGxpp1av8mXOOt0GM/nKml+a19/S9MeVnv//rZkcaO/lVi1d0nEjv/WPfh8cG2xCIiHqy0v8BpW+8/mbbJ8t2FvUltZPv/wRomGqVai/3mNyZTnPzGZIqT35hMcfIbkynsVQWobpiEDqrxr6vnL+G3p0sxaBS5XaiQc9hUsWkKguYcBLZxQwU7Ou9lAQ1Pg0WWEgSjDRgv3VmpIEbnSDGyAafWeNfdlw2wtd5Y6rE3N3TCzuZr0JtgqY/Z4jcPJDa4o8/Olw90EtIXYCF/2uI+C2N4RsfQrHUKTS9L2J8uiNc0qpyge0XUTeyhz9Pa2K8CBF+/+Y3JFCe/MZni5DcmU5z8xmRKiSOCU+uOE4+rg+SPAiad9GGdXXACHpQqBI2XKkAtYHoJOQFTJwVF1Ih7cD6bwb0NLjKpVKgcLLSZJQmaBF1L3SQlvC8Qa7d1H2nL5ocqsJ0/1n34/PiKxH7d1ZXvhe7DizXvQwVXU66/+wQo+iQ1UU3db+q9UJtXEKapQnSzcG1exRjzquPkNyZTnPzGZIqT35hMKUlwIFKbCnKjQP4sRclyuAkCzRVw/dGkmbOmTs0hwY9i1Fizzn1FTUr7ULJMDSCJSROaeoJoswJnIV0LiVd1I5/nMH1oBpe9WKiyNDnWOzgZ6DU/OdUGnnfb+tkHoWXRj1d6T4dQUh3B17gB96ANjVnJwZrm5WPRnJ4darZZN0mJvpMcfq21Xgtdn9/8xmSKk9+YTHHyG5MpTn6Y39zmAAAACUlEQVRjMuV/AfwpEqm5aPjJAAAAAElFTkSuQmCC" y="-11523.145675"/>
</g>
<g id="matplotlib.axis_641">
<g id="xtick_961"/>
<g id="xtick_962"/>
<g id="xtick_963"/>
</g>
<g id="matplotlib.axis_642">
<g id="ytick_1601"/>
<g id="ytick_1602"/>
<g id="ytick_1603"/>
<g id="ytick_1604"/>
<g id="ytick_1605"/>
<g id="text_81">
<!-- 265 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 11631.440675)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-54"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_322">
<g id="patch_323">
<path d="M 164.424375 11648.047439
L 286.714375 11648.047439
L 286.714375 11520.753911
L 164.424375 11520.753911
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_643">
<g id="xtick_964"/>
<g id="xtick_965"/>
<g id="xtick_966"/>
</g>
<g id="matplotlib.axis_644">
<g id="ytick_1606"/>
<g id="ytick_1607"/>
<g id="ytick_1608"/>
<g id="ytick_1609"/>
<g id="ytick_1610"/>
</g>
</g>
<g id="axes_323">
<g id="patch_324">
<path d="M 299.674375 11648.047439
L 421.964375 11648.047439
L 421.964375 11520.753911
L 299.674375 11520.753911
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_645">
<g id="xtick_967"/>
<g id="xtick_968"/>
<g id="xtick_969"/>
</g>
<g id="matplotlib.axis_646">
<g id="ytick_1611"/>
<g id="ytick_1612"/>
<g id="ytick_1613"/>
<g id="ytick_1614"/>
<g id="ytick_1615"/>
</g>
</g>
<g id="axes_324">
<g id="patch_325">
<path d="M 434.924375 11648.047439
L 557.214375 11648.047439
L 557.214375 11520.753911
L 434.924375 11520.753911
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_647">
<g id="xtick_970"/>
<g id="xtick_971"/>
<g id="xtick_972"/>
</g>
<g id="matplotlib.axis_648">
<g id="ytick_1616"/>
<g id="ytick_1617"/>
<g id="ytick_1618"/>
<g id="ytick_1619"/>
<g id="ytick_1620"/>
</g>
</g>
<g id="axes_325">
<g id="patch_326">
<path d="M 29.174375 11791.966862
L 151.464375 11791.966862
L 151.464375 11664.673335
L 29.174375 11664.673335
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_649">
<g id="xtick_973"/>
<g id="xtick_974"/>
<g id="xtick_975"/>
</g>
<g id="matplotlib.axis_650">
<g id="ytick_1621"/>
<g id="ytick_1622"/>
<g id="ytick_1623"/>
<g id="ytick_1624"/>
<g id="ytick_1625"/>
<g id="text_82">
<!-- 270 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 11775.360099)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-48"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-54"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_326">
<g id="patch_327">
<path d="M 164.424375 11791.966862
L 286.714375 11791.966862
L 286.714375 11664.673335
L 164.424375 11664.673335
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_651">
<g id="xtick_976"/>
<g id="xtick_977"/>
<g id="xtick_978"/>
</g>
<g id="matplotlib.axis_652">
<g id="ytick_1626"/>
<g id="ytick_1627"/>
<g id="ytick_1628"/>
<g id="ytick_1629"/>
<g id="ytick_1630"/>
</g>
</g>
<g id="axes_327">
<g id="patch_328">
<path d="M 299.674375 11789.465099
L 421.964375 11789.465099
L 421.964375 11667.175099
L 299.674375 11667.175099
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pe083aeb519)">
<image height="122.4" id="imageb20164b287" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHedJREFUeJztnUmTJFdWha+7P48px8oaVY3U3TKmDdaYNhh7/iZ7NhgLdqxYAMYC2IAaM0yihaiSSqWqHCIyRg/3YKGWFnm/h93sBMPQO9/ypUf4eNPNTpx7TzUZf3SwOxzMLdlw8GtNVbu1WTt2a8ftxK2ZmaW6cWv9YQitpcp/9ij5fZ80U7c2qVu3thp2bu3t9sat3eyWbs3MrBt6t1Zb5daqyq+1cB1mcC5tndwa3QM6v4v22K09b47cmpnZ88rv++nB7/u3/SWz328Xbu3x81u3BpfBuo2/DldX/v79e+fP5Z/9IZuZ2a9s49a+GVZu7bpf++MZ9n7t4O/zdujgs/A8wEnTczyC+2zGz9MAtUqfH1f+mfBPjhCiCFT8QhSKil+IQlHxC1EoKTVecDiAuEeQ2NTUfo1ELjOzCgQMEkBoPyhqgNDVwvcRdM60XxLdzFgQJUj0qWE/uWt2FxJniQau9cT42kwOcL1hNz0c4rrz12c1H7k1FPw6fzz7Hq6N/6i1uGrWwvstwdqEBLEans9D7PncVV4sJOh5yEFiI4nh+EzAa15vfiEKRcUvRKGo+IUoFBW/EIWSSDiLikgk2NFaVkAErYNdUP4YycV2VHub1xg+uzcvkhDkvBs1LPjRNaPzJiGPRNLoPnrYB7m+6L7k9kriIH2+g/t324PoessOz7vsQNxbHvz3LRs4lswzS9eMROAJ1EELwmcHAlsD25Ebj8Q5ule5+tuD4EdOQtwPPCd68wtRKCp+IQpFxS9Eoaj4hSiUNE5eUCGh6iEONhI1zFiYaECgI4Fm1nhxb1Z7JxkJL3vYLzGCY5k2fh9m7PKi86PjIYcffR+BQiMJg9Sm/cDvXMO9fg/C2XZPz4Rf24Cj7rbx1+Fd44/luvLCl5nZFu+BZwRuxwHvC1w1WqpBdA069HbQSpzbdog6/OAY9eYXolBU/EIUiopfiEJR8QtRKIkELBL3og42EvdI5DLLtbfSjDtw+JEwCP/LSOgiyHlHMwanxoIfOSVJoMF9w/WJCojk+qL7R5/tMpJfV/nPw7g+28BtvQL33QKuzRpeO3MQyRbmz+/avCB2BTMYzczWB78tPaOJxD16N8LjNAJBOuqSjbbPm2VcmkGxmNyqevMLUSgqfiEKRcUvRKGo+IUolHTc+HbLaJthVNDKudVIUMF5fSDuRR1wBLe3guhG899g5qEZCzc9CGrRNl86RnJzbWK3AOe/bWDNzGwFLrZRcAhcB/rVDoRBcuS9O/jwi/nBC3lL2G6ZEfzYReoPfAoz/EhUJmEQHahGwTD+uG9t69aydQXXm86FZlmy+1UIUSQqfiEKRcUvRKGo+IUoFBW/EIWSnrYnbpG0xh3YJKNKKqmmZqxoh+24wbjiKFGLLW336z+Eto3aPomgsM894nD/SDU3M7uBVBoKljnAdhvYkH49uIR9fzv4mOzF4NXwJazleuDJ/kz3hWzupxDv/qjyv449hkjzETw7a/iF41uojZtMyhTNoZiBsn8Kg2yPFNEthPgeFb8QhaLiF6JQVPxCFEr6eXPqFjcgLS1AoNmAiDQGsWKaEfwoGYYsp7Qfks1ILHyIwPa/QdQ6TTZgEu22YBndQ4oLiZfzzH0hqzOE0tge++L9Z9dwT8m2u4JnbAW2XRL3coIfrdP1JmGQ4uIvai8CHsF1fARi6NZgBgWkNeUEcnp2TkDIOyK7MRyP3vxCFIqKX4hCUfELUSgqfiEKJf1i8I6lt7UX/F6TYAT/O1rY7gSEDjMWhzaQnLKE71yC0EWCCLndSPDBpCHQCmm777aNiXYkLEWjl0nc2/ZwHe4xFJKg49k0XjhbgZNsBMrgDgRk6r/fBsW5+4DiHlxbgq5D9HjorToFIZXEuT3MAsh9J4mN40PGhRr4PiFEAaj4hSgUFb8QhaLiF6JQ0ifdyi1+Di6moYUBgKArUNvpJDNsk8QhEgwhyMUGSJXpMy2qETBVKKabZKEBniQikQuNBD8SL2n4J11DYt3z0Es6xjUIdMtgTDpBA0WjA09x2GrmnKl9l64ZQfvuqF0ajnsL79XomzY98MGjxKUtHKPe/EIUiopfiEJR8QtRKCp+IQolffTRtV/90i9t9zP4tBd3aF5b7j8M+f4SuZPAxUTtuyS8kLBEyTfkDryPU46cXzgXEK4GxXvz/EB/vTHhCL6PyDndovMaV72fpbcBERHPJSi6PRSKpj6AdZOOkZ6JHUSG38L1auH8qIWdhDhqlTbjZz76jErwE0L8gIpfiEJR8QtRKCp+IQolkV5wOvNCzs+WXkQaHXzr4ZvkBZZrcByZmXXUWgvbUYsitTLS7MFNBbPdMtHU7ljuJUrFXGcTCFkg0Yb2TVHQI1qDtmj6vm0uohvcfBtqJ4Y12i4a7kLiXDT4JHevElyLprlHGMsdNuDGnFdwznCMbfBdmwufISGQPJrc2h6rNSFEAaj4hSgUFb8QhaLiF6JQ0udfPnaLDQh0MxDOPgaH2MnOt3l+NuL/Ma9raGUF0W4M/6PILTWC7ShE5EA9wsBDU3YTHA8FMlCLKslPCUQyav+k7yMRaJ8RYmdwjIvKS0s38Flq/e2oZRk+uxtiIiCFaeRaekfweWzfDrKBtvGbwX/fDsI0WJyNtbWb8T2kFmN6RkmA1JtfiEJR8QtRKCp+IQpFxS9EoaS/mfg20Ue9FzB+q/Pi3otm49aegODzFoJBzMy+gHCQKxBUouIeCSJjcHiRCEgiC+33Psxg3xPYd6wB14xyaEncIeckObxyraM0c3HU+OPegUPwtvLPxA7EYnL9Gaz14O68j+AX3TYasELipZ+CadZDazsJflMQBnt4bsziQh6BLtLQJ4UQPzpU/EIUiopfiEJR8QtRKOmXIFecJy9CLKEVtdv5cA/ifcZRN4fZZ5eDF4xIHCKnHK2NQNw5BoltCmIMtRK3GRGQ1mfw+SmlmgDkgFuDI2+FazDLELbLxWtMIEzF+0DNuobSd307OIWSkMCWa2W9Cwl2OcGP2qDJuUkCHYlk9Cz2PV1vmOsHsxV3lRcVx/Acm8VbzKPtyXrzC1EoKn4hCkXFL0ShqPiFKJT0pl+6xQW5jmof2rEbxxJZv4IZZ2Zml70X9+awRumtWwryqH078ajya+Rge3TwwtAptGoeZwS7GYhDs8Fv3JJgBALNuvbHuIBY5OuGWno95PobZYShlz20RoMWd2j9MzFvvOBHs/6iDj8SrzClN/MeywmB/nhoDZ674LnQcVN78gieYxIGzTJCJ6UBgzAoh58Q4gdU/EIUiopfiEJR8QtRKCp+IQol3YK6voPBmsQebLs0UPISevzNzFbQu7+FNVSG4d/WCBT7DlKFKD75DJT953t/fmeZWOsj6LafNH7bHvazOnh1dwBr8A4U6SlFmgf/p59ngot+sodzgWjqNfyS8rY5cmu3YPnF3nS4z6SGj8FqnoslJzWc9h3t59/2/vmkGHj6RaKDAaVUaw1sZ8azCaKW3w6eW735hSgUFb8QhaLiF6JQVPxCFEpaUf819NmTPRAHZoIosYLvM+M4531GULsLiUM0UHIH1uAKRDKy7ZK4dw7JNWZms5E/xxoGlG520NMNdtoriJG+grmOW4yCjp3fycD9822wr34Km52BNfy04QGudyFL7BiEPBqEmbP3EvR8ryDsmkQyEvd6sHHTU0wzA9AanBHxoklDmM4kwU8I8T0qfiEKRcUvRKGo+IUolLTuvdARTTQhp9QE3Ffo0DMWT6JDHAfqtQYhZwNrHTgT6b9gA8fSZIaRVjAgs4ZtexiOOYc+7zeN/+y7GsQmOMYTcDqO4Z5uYD6Amdl7GHDawabfggBJkdE0WLVq/PBXEounNKiVUpgy7zE6wzm4MekJ3QTjxg+ZqPMIPNeAtyUhkOqSvlOCnxDiB1T8QhSKil+IQlHxC1EoiVoUEwhQ0RQQck+RKGGWcUtlxMEIAzjWVuDIu679Ob9vIMVngCGhEF9uZnYywHBGEOi2sN0m+e+8BTfYDVxbcjBSOk8NTrlVxkkGh4jJQFcwmJVSmCjq/LTyw19PwB14AoLfKYimZ7BmZga6qX0D12KADelZxucTDKz0bOfq4P8KvfmFKBQVvxCFouIXolBU/EIUCg8+A8jNF21vvA/RhBWCBBVqG34z+FhyCMixtyMvSp2Cu8zM7KL3l/IpRDeTqW4Ja5Sw01FyUdAlSZ9t6aSNXXoraFLdgGsMXZ8g2h3BdTw3L/g9hnl2T0B0fQzX2syspqSaEbSdN34e4Q7mEUZF6gEigOja0L2Ktu6amVVwDxsQPzn5SAhRJCp+IQpFxS9Eoaj4hSiURHHAFCVMQhwFBpCwkBPxKJBhWnuRjfazhdZKClkgQeVy72PJ55UPL6H5cTNwoZmZXcCcug9h7RzmB67BPbcDhx8ZxPYg5O1AgNrQVLmM4YzahKPOSxL3piDukXPvmJx7EHJCoSIfjL2Im6PZ+mjxbuzv6772bccbCGKJxnbT2n1cf7nZfn5Dv0SuXb35hSgUFb8QhaLiF6JQVPxCFEo6TV7UYHEPnES0Bv9PaK6fmdlp7V1VF9DqSdxAW+7N4EW7JcxhW8MahZeQRkYipZnZVb12a9eNF5Ye114EpPlz5LIjNx+Jc/TZHqfUMSjawhqJeyTkRcW9GYih5+CUI3Hv5e/cuDUzs3riP3/+2n9+9vUjt9aM/PO5BBHwGu49pe+iwy84G9MsLrqimw/EQr35hSgUFb8QhaLiF6JQVPxCFEo6T75tkVJQW1gjWhABaV6bmdkL84LKSxggtwUH3Gtw35FQQsm9WxBEosLL5uCFRjNu9dzCtvPaC4skfNJ1JHGPREB2OnpywhKKe3CMTyq/9hTacmfg0hsHk4TPoW348fNbf3y/58VVM7P64sStjX7ixcH6Hy/d2uLVM7f2xRTODwTtPbg7yW1K9yCXVB1NzyYhfgT1oje/EIWi4heiUFT8QhSKil+IQklPwIU2IcEv+H+CxKILEIHMzD7u/X4+7CAogRxn0IJ5A+22VyB+UGskOaD6YAJqbj26RmIhtROTc4sEI5wpF3SXmZklcnjCducwAvIZzNwbw27oKk4hdOW48s/D6BgSZ0+8887MrDry69XEt3RT8sYa5uPtzIu40dZ0clmiYJeZrUiz+Qhq0z8CwVZvfiEKRcUvRKGo+IUoFBW/EIWSzsF9N0PBL9YS2EJb5pMDuwNJ3PvZ0cKtjSd+u5P3p25tMfGuqqvKO+qW5teiKcQ5VxxBwhu576idmNyBUaLCYI4eZu6Rk7CrQWyE7+vg0kKwrdWQaLICUXg794LW5Fv/3JiZVQvfbrv61Lf0/uurF27tX6Ad+PLg28EJcmjiLYBZjSkTDJOgLkmcnYLj8AzcmHrzC1EoKn4hCkXFL0ShqPiFKBQVvxCFkmi4Iin2pPaTafcULIgfdmyJ/Wjq+7Jf/sKvjX73sVt7fjV3a9O/9LMJbsbHbm0JSjr1SpNan/tVgNR0sgyTnTO6b9pHdFgj9Xhnf+GAV8IWjvEaruMYFHuyfG/hXKjHf4CnbPzqwq29XLLa33X+ZD5d/cSt/f3UX+8vBv+dCxj+ytHbnugAzxyk7NPsjRH8WkC/PujNL0ShqPiFKBQVvxCFouIXolASiXsEiRUJ/necgr/zg4wl8tlPwcr7h16Mqf/oj91ac+6HK/7Bsz93a//5p178+Kr1Pd7zyttA95U/mUNGJINW9DDRnvyo4Mf/08FGGhzKasYpQGR17WDYKs0SoBjxBoTKd40X/N7A2vnyiVszM5uDBfnzkb/XX+290LwA2zVFauci6O8SnbNQ30NUJlAEhjrXm1+IQlHxC1EoKn4hCkXFL0ShpA30E5MIkWiIJogIJDaMIa7YzCwdg4ABAxftke+1Th9/4rf7Ez+Y8ZO/+DO39tfLc7f2CsQvH/idd8WBsS08IwCjzptY/Dk690A4I6GKtsvth8QmjD+vvOtvM/j7T65Gul7voDf9NQxqzYluy94f4xyi3Fe9F/do9kLUURkF49Az50L3BZOiYOjpGtyYevMLUSgqfiEKRcUvRKGo+IUolERtmST4UVsmJC/bDQhVN1s/PNDMbPUG2jW/+NqtVc/+ya3td96ldfj6C9zPXUZR4QwFO3ZZRcU9EofIaUeJL0ewNgXxix11EOWNjafx2GeKDF8P/nlagzC4AxGQ2MBnxyAC5q4/DUJdgwhIx/M/3VYdFfdygl/0O8khuKWUKtyLEOJHj4pfiEJR8QtRKCp+IQolXUPbYpQNtLzSv5N6xBHd+1dP3drP/+rGrT369O/cWjr+W7d2+8rv5x8uvTtwPvIOLxJJoq2a94G+k8S9s8Y7HV/UPk79DGYw7kGUWoCj7jaTCrQBcZDipaMR5PsBvi8TdX4Xui84WzHjsiNnI4l2tEYOv6hTMurGjIqKZmYVOGrpOw8kDKqlVwjxPSp+IQpFxS9Eoaj4hSiUdBuMHCbX123lP0si0mXNDr/XU7/+wcYHdJz9m18jSeSq8auvx17ougTXGLYxYyQyz70jYSoqBJ00/jqQuPeR+e1OBv99G5ijNwZhiNq0zcwWEKC9gvvaBUVAurYkapF4lWoIpai9yJmjh5b1sBuTxMZ7RJ3fhQM66Nrw8UWPm9/pNCtQCFEkKn4hCkXFL0ShqPiFKJS0AvGLiDqR5uZbba/AhWZm9g04235VT9zaLPnPR4MgVj20dILbjZhA62ibEfwoLZUEmhb+356DIPoSxL0PenAHgoZ0CwMFBxDOehAGzdghSOJe9DoS2N4K12YMLcvU2pyDRLYtzBmk44kKtjl3oT+WmKsxJ/ihm+8BgS968wtRKCp+IQpFxS9Eoaj4hSiU1AVnqZHAFhUWduAYMzPbwry3Ve3XxuDoon1TgEE0BZWEvCkIfjQzz8xsBqImzT2k+YHUlnsOAxJJ3Dvu/XXg5GVwq4EIaMZJuzsS/ILz5+h6U9spuflmcA+O4B7k3G8DpPTSXD96FpP542nq2DlTO3B0TiAc8nfbZmYu3oVETgl+QogfUPELUSgqfiEKRcUvRKEkEskIEgy4RZE/HaUG11g/gLgXTH4lKPSB3HwTEOJOcoIfiUPoEAOxEQQ6knZobQT34KT393Qy+OMbWv7fvwbhbUEz6YJz6kjIaw4xN98Y7gEJfm0uPRncjhRWEp0pOAM3JonFGxAVl72fHUkBIrm6ekgaMAqLv/G3CSH+X6PiF6JQVPxCFIqKX4hCSdG0VOIhiaW5z0dbFMm5FxUgKXghKvjkJJeYp46h1lqK0+jgC+mMWxC0ZiAqTmH+n5kZmNgQOr8RCHQkutFzQo7KMxDYTmAfk8x77Ai2HYEoeVzF2oRbcjXCvjcgPl+BMEifzYnwVEf0zGPYyCCHnxDi16j4hSgUFb8QhaLiF6JQVPxCFEqiPmZSw6Pg0MNM1DUlr9C+0R4a7CWPxkNvQZ0lxXaaGUZK6TctWFgr0ufhuLew3Qqu7VXy12YFKj4N9fyPxL9wfG0+tn0eTHZC6y0o9midNphrAGtncH6nOMPAjGaUruBXhdvaR6KvaDYFJABt4Hm6gmNZwzl3jf+Voc388kRzEehXL7K+068CevMLUSgqfiEKRcUvRKGo+IUolLTex4ScKDTgMJdyQwIdCYbU002fJSFvZf78yP5In92AcLJE463hv9GWYqhBtOlIYAX9qofJjtcg5JE59BJSar4afLqSmdm7fum/E67PaePTlR5B4tLTygt+zw7+nl70/lzOwZZ6AfMKLhovUpqZtY3fdrXzgt/7gxfe3oOY+q7xN/pN7fdxEzR3U23Q8252n2cePgvCvt78QhSKil+IQlHxC1EoKn4hCiVtIcKa+obDffpgTmpAJDHLDHsEAYTWSDijgZkDuLk2sdZ97Ktew2DG73bklyi2m1xaJA0tIeXoOvi/egvHfTN4Qez93gt7ZmbXHa/fpRr5I38CTjkS9z6Gy/gchlmeJ7929tgLlccXLPgdIPlo/s6LkvUcRNe9FyrXdE/htnSYKEVDNGMCtxmLg5SGtQ0nKQkhikTFL0ShqPiFKBQVvxCFkna9FwzQpQdttTUIEKPGixWUkGNmNmu8oDKrvdOKxD0eCgpttZCk00NbJjmlyAm4BMeZGbvvxtCOSufS09BSSCnC4aawtgVn4goEv8WeHX63nU+WIagle5mO3RpFftfQgkuDR9vk70GCVmQS9szMtrf+GFdr/zzuDpBoBM8YmBBtTfHl0A5OiVI8yDTTngxr0Uh0Qm9+IQpFxS9Eoaj4hSgUFb8QhZIGELooRYTm6M2SF+ymMJOM1szMjqH9k9xNUVccQTPOyCkVnYVGMw/NWMyZgnhJ++Z2Yr+faCsyHcsGnJy5c6G5h8Sq9yLi2/2tW/uy9ddhNPL3vuv887Ta+Odh2/lrOJlz8tQa2neve388W0rdAcFvBeLlMugEJccoCXbkBDQzfOjZSej3Q/dab34hCkXFL0ShqPiFKBQVvxCFkmoQHCaNF0lO25lbu2i9m+sY5rpRa6uZWQv/e3Jx3nchZxQ6AWGNnHIkkpAISGKamRk5JUmMo/ZkEl0fIvhF13LhLOTwJGGKPn8NbcKfwT3dpFP/WRABPxi84Pdsf+TWztYsknUk2jX0THjW4LS7BXfoEp4JclnSfaZnke69mdmOriNsS87N1d6Ls3rzC1EoKn4hCkXFL0ShqPiFKJQ0Td7tdDry4t7TkRdonjReeDkBV1tOwsNW1mBCMM3rIwFxQvP/ID2XQKdUJrRjBwIPiWwkVEbbiR+Snkzk0pMfkopM1+Gy864/dDWmE7e2qLwIeNV6QfoRBGyYmUGnNbYYE3t4PheVvy8U7hIVZ+l52GQSkUmAXsPcw+Xet2TjrE7cixDiR4+KX4hCUfELUSgqfiEKBQU/mq03gTl85Nwbwf+TNiP5kSero/l61JYL+5nB8dC+zypo84RWYjw+EHfMzDbQwrkH99VDHHkkDtFsxag4l1NiaT9RyLFGIiC1A1/BPehrfx1u4FkkYdfMwr3f9Jy0cM0W4Oaj9l0S5wgUezOfpetIgh+Jex20aevNL0ShqPiFKBQVvxCFouIXolASzoADYYFaB9cgnFFb7SyXOkqBBRCyQeLJCMSYR5AG+3gA8QuO5S0EUAyN3+9tz4EWdQWuKhBZaD5eNKCDRLuBBNao4JcB238f4MakNmbcL0ist+B2e9+t3No2k55MzzJB8xapPZ2e7xXUBrXv0nMcFXvNWLQLC8jwjOnNL0ShqPiFKBQVvxCFouIXolASuYE2tRdZFrWfC0ZOsK72osQOxBQzsyMQAicgx5EwOINU1Wcg7v10549nAsLSafLi5aL1Tsd3IAKZcQpudG7eAVpMq6Bohymt0O5Ma0NGsGNxLxMk8RseTzRdlmbhzXsv+C26eOIwia7Uxnzc+nt90k79Z4NBLNE23/vcFw60UUqvEOK/QcUvRKGo+IUoFBW/EIWi4heiUNJm79V+Uj5pjVRFSrShfmczs03t1fSTyv8ycAK/CpBh+FHv1dAXjVd7xwkiqL1Yb181fi/fNH64qRlHJZMKvKr9jqIW1If02ROkHpvFLaOkNPMS/foQe++Q5Rft5/CrlRn3tlO6UvSzdB2Okv9VIPrrSk7ZJ+gXkgpShYbkv5N+4dCbX4hCUfELUSgqfiEKRcUvRKEk6jsmcYDED4LEmG2d6bWuIeWmgcGVtRdULmCII+gcNm7B3jvxx3PaeXHvRe/3cZW8vdPMrEleeJnAjIBrsEnTMMt4T31MnKNecLr32X2TMBWMU0e7cVC8JEssnQs9s2bcx45R2XB+lJtDdTCGSPsm+F6la5MTdqM26enBi+ZjqBe9+YUoFBW/EIWi4heiUFT8QhRKIkGE1khkIfYQYUyijRkLSyRgUDLQAkSNOTjybncgdEAKzKjxx/iiA7diZhipQZ8/JYFHxbT14OUmuo5R1xiJXBRBbsb3n6iCUddR6HhIQKbUpNy8ARJJo1HntN1D0pWi4l5u2GpLiVQgKo/gGT1PR/54cC9CiB89Kn4hCkXFL0ShqPiFKJREgggli5CDij6LMdIZMSbaEryFtStIcvkMBL/m4B15H679dqfgQjyv/D5e7vn/5U3t178JOrIq2I6uLTrbgkMhoykuZnnnn9/QL9EwUoJadekYyf14nzbdqHgZhcTUqOB3CIp7JAzmtg0PTIX3vN78QhSKil+IQlHxC1EoKn4hCuW/APZzFyprHtI4AAAAAElFTkSuQmCC" y="-11667.065099"/>
</g>
<g id="matplotlib.axis_653">
<g id="xtick_979"/>
<g id="xtick_980"/>
<g id="xtick_981"/>
</g>
<g id="matplotlib.axis_654">
<g id="ytick_1631"/>
<g id="ytick_1632"/>
<g id="ytick_1633"/>
<g id="ytick_1634"/>
<g id="ytick_1635"/>
</g>
</g>
<g id="axes_328">
<g id="patch_329">
<path d="M 434.924375 11791.966862
L 557.214375 11791.966862
L 557.214375 11664.673335
L 434.924375 11664.673335
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_655">
<g id="xtick_982"/>
<g id="xtick_983"/>
<g id="xtick_984"/>
</g>
<g id="matplotlib.axis_656">
<g id="ytick_1636"/>
<g id="ytick_1637"/>
<g id="ytick_1638"/>
<g id="ytick_1639"/>
<g id="ytick_1640"/>
</g>
</g>
<g id="axes_329">
<g id="patch_330">
<path d="M 29.174375 11935.886286
L 151.464375 11935.886286
L 151.464375 11808.592759
L 29.174375 11808.592759
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_657">
<g id="xtick_985"/>
<g id="xtick_986"/>
<g id="xtick_987"/>
</g>
<g id="matplotlib.axis_658">
<g id="ytick_1641"/>
<g id="ytick_1642"/>
<g id="ytick_1643"/>
<g id="ytick_1644"/>
<g id="ytick_1645"/>
<g id="text_83">
<!-- 274 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 11919.279523)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-54"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_330">
<g id="patch_331">
<path d="M 164.424375 11935.886286
L 286.714375 11935.886286
L 286.714375 11808.592759
L 164.424375 11808.592759
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_659">
<g id="xtick_988"/>
<g id="xtick_989"/>
<g id="xtick_990"/>
</g>
<g id="matplotlib.axis_660">
<g id="ytick_1646"/>
<g id="ytick_1647"/>
<g id="ytick_1648"/>
<g id="ytick_1649"/>
<g id="ytick_1650"/>
</g>
</g>
<g id="axes_331">
<g id="patch_332">
<path d="M 299.674375 11935.886286
L 421.964375 11935.886286
L 421.964375 11808.592759
L 299.674375 11808.592759
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_661">
<g id="xtick_991"/>
<g id="xtick_992"/>
<g id="xtick_993"/>
</g>
<g id="matplotlib.axis_662">
<g id="ytick_1651"/>
<g id="ytick_1652"/>
<g id="ytick_1653"/>
<g id="ytick_1654"/>
<g id="ytick_1655"/>
</g>
</g>
<g id="axes_332">
<g id="patch_333">
<path d="M 434.924375 11933.384523
L 557.214375 11933.384523
L 557.214375 11811.094523
L 434.924375 11811.094523
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p4630a2c4c1)">
<image height="122.4" id="imageb722df735a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAG2dJREFUeJztncuOJGlShc3df4/IjMysrKzqqulu6MtiZsGK2bJmh9jwIrwBvANPwDsMuxEPgBAgNggJ1Jrpywxd1VWVl8i4h0ewGNGLtO8fWY7XDFLb+ZZ/eoRfLV06ccxOc3ry2dEeMOnKwyU7LRO3Nu16tzbrpqE1M7Oz1q+3TePWdsfBra0PO7/dYR/67AY+uxq2/rMDfN/Bf5+Z2XA8+LWDXzse3eUexdH89x1G7oPuQWOwBtsRB7g2dIz03H1y/oFb+8vTH7u1v375Cvf9wd/8hVsrf/ZXbm3/y393a4u//Tu39vf/8alb+9fm3q2t4bmjZ+T2sHZrr7a3bs3M7N1m7tbut/7zVAf03LW4FyHEDx4VvxBJUfELkRQVvxBJKSQEkDCxGbxIRqJN9PvMzI7FbzttvIhYGv8/atZ6AXLfeMFoewTxA0SyPQh5Q+OPu4U1M7Pj0YtfLA3+/iHBjiAR7/8Tep7u917Q+uLoBbZ/+fpD/M4//9nP3dpx47/T3r1xSzdfnbi1AZ6dE+tC263NP4vLgxea1yA+/2bd1yA9t1FRWW9+IZKi4hciKSp+IZKi4hciKV4hs4poB261BiStLYhNLQh2ZmZbcCKRy6uDz08aL7IQ64Pfjhxnu9afC7kDD0c+l0MDDiq4FsN7dvhFnXdREdAsLuSOcSvS8XStv7a0jzfD0q390/Sc9/MPz93aZz//Z7d2gFP5cufdhSe9P+5PG+9UfdP6524Jgl3UbWrGjlMSr6PozS9EUlT8QiRFxS9EUlT8QiSlkMgSbdWMtpPWRAly/pEjrwORbQpuvimIgHR+tI++9SJLd/Cf9fJMnbGttQ+JCnkkkNJ1qEFty9H2ZLrXJEqWzt8rahs/K95lV+A+/9o2bs3M7Gcn/rwH8y5SEmyfnfhz/snef9+fbP35fdP7c3kD7lWqAXLtmcWfp2j96s0vRFJU/EIkRcUvRFJU/EIkpZA4FBWWoi2hNScYOfxIMOL5Y+QQ806rHt2BMRchURNdSLiJtjePubbofgSXZA9rtftC+94cvdRJbkX6LImNJO5dTbxL78XkiVt7Avd5A25MM7M7g5ZZEHx3cF/uYD+X3YVb+9h/nT0d/HXoy7h3bfQZVUuvEOK3ouIXIikqfiGSouIXIinlfYt7RG2Gn4HgR9uSyEbHTa6/HtxgJALSPshpRSKlGbdbkiuOoK1auNxRMQ3DVAoHpxCb1ot7tJ/NHuY6gmDbQ3srOfee9V7wu2pP3doE3ll7vIosBG5hjdq3b6HP9+sOhMreH+Nt6z97B/P69rDfWq2hSxNO+whuRUJvfiGSouIXIikqfiGSouIXIikqfiGSgok9Bkp6dFAgxjFX/sc08J3R/0ZRCyMpw2TvJdWVUor2w7he6/cNKcN968/vvPPqei06nX5xmQ8rt3a784M013uvaBdQ+89B7T+DFCYa1EpXumbvjSr70bVfN/6cG/hpZgXDbd/C4NFa5DtBv3DRLwDRAax68wuRFBW/EElR8QuRFBW/EEnBxJ4x4hWJeNWdg5hzAtbUUxCCLsvMrb3o/NoVDE3c0IBKELmi9twa4UGKQTt1NHWH+r5J3PugO8PPn8B9uYNr+y0Ip29tHjlEHjIKayQ0b8HTuoEefTMe1koW7QG+k56JNxAPvgI7NImFJJqS0PwYxtSq3vxCJEXFL0RSVPxCJEXFL0RSwv3844QFFqom4ES76Hxv9LPihak/amHNvDC4oz59EHIwVQacabXZBM0RXJHBOQQo+NF2wX7+qDBI7kczszPQgSnRhlyDqwIDM8EpSddxBXHVtF/q3V9Cr7yZ2S44M4IEOhSByf3YeCGPxEsc3gr3tJpwFUxNiqI3vxBJUfELkRQVvxBJUfELkZRyOfHOLRrCSMMsaY2EQfo+Mx7sSCLSx60/xk/NO9ZmILr9qvWCT80N9hAS0yi228ysAWEqKtBFk1gIEiUJjEOvDL2kdlTalkRSapfeNf77VgMLdA+JCmc1p1xUtItGZeOAUhoSC2J2VIitEU2AImjfevMLkRQVvxBJUfELkRQVvxBJKT+aPnWL1N5IAs18751Ni93arVGajRnPL6OZbU+gLbcHneO28Yuvjxu3djf4YyTBKOrQM+PjnhZ/3NPWr0VbWUncQWciHAtBUdW1fdOMPHpOog5Gmo+4AYdfzR3qjqUifJFAF3XFRV2tLczwaymyHc6lJoZHGePG1ZtfiKSo+IVIiopfiKSo+IVISvm4v3SLFHRw13qRjGahLQy2qwh+axARSWyi/1Ak7n0D+/7l7satvdv5OWwkQEXdU2Ys7l323plI8whbjAyPtZ0S1CpNomLNFUf3YBd0xUVBxyE8T9Fo+FobbFS0peszxpFHxwOJ349qyY0GdBQQIMkJqje/EElR8QuRFBW/EElR8QuRlHIB7rkliCwrcI1FBZGaiynaWrkkAdK8OPTF7p1be7Xxgh+6EINBHtSGbMbOvegaiVpHaBGOzgmcwj3t4P/8UL0vsWtBAiSJiPTZqPNuTMuqGYt7JIhGW6PHCIhRaiInB5347SadP79Z8S3wevMLkRQVvxBJUfELkRQVvxBJKfOjd7bdH3wb7O1+6daozZccR9G2TDNuM3179Pt5c/DH83pz69butn47EvfGhB+YsaNrjIBF7bLkgCMKiG40Z67W+kn7jop7dIy0RvPxovcFBTYQ8czMTjvvqCTxK9xqHZxRifc+mARMTj4zfsZIHOxB8JtC+rXe/EIkRcUvRFJU/EIkRcUvRFLKN9Dyuhy84LfYe1fccue3e0ybJyaewlxACoKYwxw+mgH3vpNN6fvMWNRaQXIsiT4EiV+1Fly3D3JOwn7J9WfGAha1GEfdfNHAl2gIDDnYag49Eveuyrlbe9759uurllxxXmBbgkh9D0L69RATnzeN/6wZ30MO44gJ7HrzC5EUFb8QSVHxC5EUFb8QSSnfgSsOXVowhw+dW4MXMGpBFzQ3j5yERFQ4o32H58I9InF4s48FTtTEnIdE22AJFNNAnKu1nUZDH6LBIvR9KGjCGu73ES5SEosvOi/kfd55EfBPd94VRz7CL4s/ni8baBuHezBvvcBdq5co9JzQ9dabX4ikqPiFSIqKX4ikqPiFSIqKX4ikFFLsSbGN9qsTte3oF4T51qufdDyk7pL1luyPRxiESQopqa61c6FjXO29vXdMCkyUAdKM6PweM2Qyeq+j9l66V7RG9yCa9mPGFmtKH7o6envwT80nOzUwWHUzXLi118V/H8W4k8X6Mc/YMGIMhd78QiRFxS9EUlT8QiRFxS9EUnDqIdlfo5ZYohafTALPxmJR2ZScE05OoX95cCxRO63ZIwZzBr8yKgzyfYmJbpQKVGNMwg5bfkfEe9NzA/ZqM7N54wXkt+3cr5Wnbq10fj/nF962O7v21uAeHrICzyI9s9XBqiTEw7bR+6I3vxBJUfELkRQVvxBJUfELkZQSFREeM5hzDCR2oFgBLr0eerdp2COBgxRh3kBtiGY0oYWcidH+7TGiK11XcqvVCIt7wYGpKCrTMMrgtak9n3QPb3YLt/ZfvZ9r8W/HF27tp3d+H9DOb1N4PjGKnWYTVM6Znh1yKx7gGVU/vxDie1T8QiRFxS9EUlT8QiSlUFstER3M+IeCxBMS9y7KqVuj2GY6PxKGKPLbjNuTsTUzKGqRM3HMYMcxyS5mZkMwHhrPBSKnJ2AuHSMq164NPaMULf+r7bVb+8dTn+KzG564tWnQREoDPMk5WUsfOin+uS3BQagS/IQQ36PiFyIpKn4hkqLiFyIpJZqSQsIJthM+og0WW3BBHCLxi4SlAjPSSPD7qHjRhvga9lsTpRrzceV0baNtx+0j5uv5z44TENGRh4Ih7h2OB9pb29jzNCY9qLotfCfF0n+1966//+x92s+Ph5iLlERTOm4SpM3MZpA0RJ8nVyOJnHrzC5EUFb8QSVHxC5EUFb8QSSlhQWWEuFdrRaU5fNPiY5FJrKI1+r5Z68WT540XTrbQfksC4qRlcWffQQQ2iJcEtnqOCEmh/+nYvlv5vqjwRsJidLZidL9RavMWqcUYtwMhl0TAd8ULZ0t4TghyVNIzVntuenj2qA42nRf8TiT4CSH+DxW/EElR8QuRFBW/EEkpY8IToiJQ6VgQOZucuDVy5JGIRPs+ab1YeN54we8cRJY30G75mDZmErVQzAGBhoQucmlR23A0fbc9xINYSGykbUmYoutAARaYgBxMSqbzq92XfRO7r8T26K/37dELZ29BQN6AwBqe6VgR/CYwo5KCQLCFGj6rN78QSVHxC5EUFb8QSVHxC5GUWC+ixVt6aUYdJuUatyg+7y/cGgl5xAQEtpetFxAvj3677+D7SAx9TOsoiTko+AW/k+aw0T3YW8xt+JiZgHQu4WsBt78LvncKpt3GXXHbgxftdrBG0PV+vb/3G0IVNRDacTP4xGASFbsjn0vT+u8cqIU6+NzpzS9EUlT8QiRFxS9EUlT8QiSlRJNfQWsAv1Lts/GW3hmIe09aLwySYHRKgp+B6w/EmDLCoffb1t8ndB33QbcaCbbdI+5LdM4gHeOYBOMjOOWiMwrN+FxIqKTrQ2Lh662f6/fdFqJ7gVrC80NqbeN0zagOeN5idAajEOIHj4pfiKSo+IVIiopfiKSU6Jw5bpkMzkerzFFbQ9vq4uBbJknMOW28kHdi0PoL+6W1c2h5fNL5luMVHJ9ZfA4fQUIOJbXSWnQGIyUYTzt2Ts6KF1hJOCOoXZbCS2i7aPsufbbWpkvXJ/p5Ou7ouRB0LnRPa7MM8ZoFk5IJvfmFSIqKX4ikqPiFSIqKX4ikqPiFSEohtZFARZOWHqHELvZrt/a68fbJ+85vdw5K/LrzvfsTjPz2Qz0n8H/wsvX72Ba2aPZgBaZebboW2KcPEdZD97sPWz3v/blcTc5x26ty5tbI6ky/fFDKzarx29F1oH3Qrwxku13u/X5r+6FfAOi5pfsSVfajyUVRW3Ft31ErL6E3vxBJUfELkRQVvxBJUfELkZQSFSbIcrg1L0xsBxCqKvbe1R6EINh2BbHIqw4+2/vPznpva53BOdN/wRlYfs9htkCN9QFSd0AEjM5UGGMjJXHv88lz/DwNPSWr8qvGD6SkBCGyL9O5UKoMxVJHRVMzTj4iMJY8aM8+AZv0GQisJGjSuWzguTHjc4zONtAATyHE96j4hUiKil+IpKj4hUgKOvxI8CMhDlNgIAq6FgO+H2IJNNG+eBJeFkcS3UhsgnOBffSVQZGUFnQglx5cx2j/Nd0XEgtpAOSz4gW/Tzvv5DMz++Tgr+MSBmnu4fyWcL3XgxdnSUx7TILQQ2rPCPXfR2cg0H2hGQhXU39tr3q/NgVBcwkuyZvdAo9ncfRO16gITOjNL0RSVPxCJEXFL0RSVPxCJAWjQaKiW1Q4qW8H66Bf7Bov2hQQcmgg6I5aOulcYI2Omr7PzGwLaSzo8IN2zWiM9HbwayhowbBOcng9gahyM7Pngxe6ZhDZdA3i1ysQPlHIg4tL4hWm/TxC5KJnj64ZQUNPZ713eL6cXLq1H3Ve8COx+ObgW5FrAjk9EysQU6NtzHrzC5EUFb8QSVHxC5EUFb8QSUHBj8QBFAGDgl+NaHQzuQYxTQVEN1pbml/bwbGQGHM9LN2amdl88O2tJMaQuEfnEhX3SNwh5+UCzuWuMo9wRRHdcKt7cBdSZDRGb1PrL6XmwHZ0DWtt4+/7uZ1ChPwVtEC/aLwwSI7BAzgnlzCf0oxb20mojroa9eYXIikqfiGSouIXIikqfiGSUiiOmYSXWpDAQ9A9V3EsDUExJhqoQMd4B0IcudDoCG/2vrXy3e4etuTQCBToQJhCdyGJoRVRK7JfCtP4n4O/NmZmp51/J8yOfm0JYiqdS0vR1HAPCBJsx7R91yAXIrW7U9v4RetDYK5ASz/AIW4gan5RmRNJoTRE1PWnN78QSVHxC5EUFb8QSVHxC5GU8sHkiVvEdlIIm1iAyEXizqLiqIo6CaPbbfa+hfa68QIdiV8kiNzv/My0WhosziOkOXXgdhszuy4614/E0DcVt+IAxz0xSMsFpyS1NlOCMb126HodQSWLnnNt2x5adal9l5KNz8B9dwHi3gUIpMQA8xbXFcFv28UEVroWEvyEEN+j4hciKSp+IZKi4hciKeUDCG4YoH8TZ9R1XmC7K15EohZTM7P51jvMdtDKOibFdr7z+7jd+mPE5Fc4lmrraFB4waCT4PmNEQZJ8Lvds+BHQRI0A5Cg9l2Cvo9EXHICYgpt5Rk7Kd5BR849crpeFO+ou+pmbu0MjnEGbejUPz/AHMUVuP7MzLatFxv34E2NtkvrzS9EUlT8QiRFxS9EUlT8QiSlPAcRgUSbjoQcMG6t+qdu7Ztyhzv/qn3j1q7X3pGHc+qCAlR0Fh6tjZ1ROEagI+h4aB8k+JBr837wDkYzs+4QEyV7EM4mkERLrs+oMEhEk4nNWNw77XwLLop7xYvhL2Be3yWIdk9AF+7p/h1hPiW4Dc3M1o3/0gWIg+sGwmvAjak3vxBJUfELkRQVvxBJUfELkZRyBYIBzWu7ojVIc92DjvPfkGxqxsINCW/kBKRWRgvOvaO1seLe+yY6p462o/mGG0gwrqXdooOOHHnmnx1y2kVdengs8H6iz5KwZ8bXh8TBGbTRXoEY/rzxYiGlGl8O/tqewvWegbhaeycvYX7gnGYAguhKtaY3vxBJUfELkRQVvxBJUfELkRQVvxBJKWdgTXwKlsMPIbDnI1CQST9eQqyxmdkXMAyxByUWLazB9Joo79uKW/tOUl2jvzTQIFOC5hBgr3xFIadhlrRtgWeHzvkE7v8MUm7IQn4PswX2bSyK3Ywj3wmKzz4B1fwcfvWawS5moOxfgO2Wflk77rleFvBLyjtQ+2+hhugXLr35hUiKil+IpKj4hUiKil+IpBRKZzkEe633sN0SrJfX0IdsZraAKOGxUcsPIQEqOkTz9yECEmMipzHhCLYjwad2fvSd1H/PllHotQd77xOwyfZoIfbMG7B7V8TQqP15ffBi3OLo1+7BBnwPz9MazuUUxL2u8cdHff9mbHUmdiA2UkqV3vxCJEXFL0RSVPxCJEXFL0RSyq15N1gLzqZp50WbA2x3Df9OvjROhrmGiGhKliFq7rSHsHsOBk+Cq+2keFGKetPNWKCjc6EYcey1J0cW6HMk7uE50/zVSk89uvlgjVxxNGeBBKgNxnvDgEpw+K1gjQaU/mbd72dXcQOGAPPdAKlXa6iNl4MXC6cQQX5TWIh93fjjvjn6a0GDWe/2XiTVm1+IpKj4hUiKil+IpKj4hUhK+fboxYFd44WJBtSmFQg+b6Dd8tv9And+u/OCX7QdldxpLEB5SNy76CGJpfg45nNoQzZj8WwOwsvb7dyt3UFk+MberwhI14sSd8xY3IsO3KTW2vsDPGOwHbXf3kGMOD03JKSa1dKL/HaY4gTHSGubHobOtv7Z+baHgafQPn8HIryZ2Suo1dd7n3BF0euLvf+s3vxCJEXFL0RSVPxCJEXFL0RSCgkGBgnBPQhGWxCGbqgN8uDbCc3M1tDSuw673aBVF0QpEvdmxQuaFNH8DCKaryCi2czsBJx/82D8OYlIlKZDbat/qKQh2neDYlrsXJbmnwlyRN7vvFC13vvnppY+FG3LjqY4YTw4xZKDS++u8ce9PPpzvqtEpy9gndx8y72/tuQi1ZtfiKSo+IVIiopfiKSo+IVISrmDtloS06AL1s5AGbyDdkuaH2bGAg8JLwcUcyim2R/3FGKNybn3oly4tQ+hVZMims3MTsGpdQ0i4KLz1+dd60XXRcOiz0OiImB0lp2ZWQsuy6H19yAa5U0iGd1TEntJvNoP8ZbcqOB3hO2wHRieWWoxvhl8Cy25Deew3QLOubZvOkZyK9J2evMLkRQVvxBJUfELkRQVvxBJKTVx4SEkzk0gDZTED2oxNDPbgrBERFtMqUX1pPMCHQl+JO59Zt6h99Ge/19OwGj3C3B5/QKEJXT4hYXPGCQCVTpHURykoBO8B+CopOekJbEwuI+hEgIzhqhwii5EaJclxyHOdISwELxXle+k56TmdnyI3vxCJEXFL0RSVPxCJEXFL0RSCrXVkgC1av12BIka1IJpxoIKteCSkEeCETkTae209a6/Z41f+wTEvY92LMbsYD9fQ2v0mkQfamMG0QZTcYMz/IiaMERCbAGLZ9eB4AeuxvPihdOLzrdGU+DHvCcHnBfYamEvJJ5FhTM6Hhapoe0Y6or2iynLj2jTHpNqrTe/EElR8QuRFBW/EElR8QuRlLICMY5cVWuYP0bCBIopFWGJ5tmRuEeuMfosCTTR4+npWEBLqckrcxC/7hpowQwmxGJIRvBfdbjNt3I21AZLLj2ahfi0907JDyeXbu0lhFpM4ATnxYuh1xACcgutsWZmS5gfSY68Bc0KBCEWwz0qjrwIGD5DkcoV6JmPioh68wuRFBW/EElR8QuRFBW/EEkpKGCYXyNhYqw7qQ0690j8on2TS2sLotsS2ijnIMTdgsi16znZ9roFdxoEMpDIhrPwoL01at3rQC+KhoCYseg6Ld4BScnGL/snbu3z1s9H/Nh8qzUJrHNwXr6BuYzftTxb8R3MqKTzJpelBQU/eu6I6DxBnKE5Egl+QojvUfELkRQVvxBJUfELkRQVvxBJKVGlkoj2ElMfulnFmhi16MJxU6IJfR9FHb8r3r78LVlaK/8v70GKX8GvJnTOURWYiH62g+NuGr5/NDD1FAahUk/+i87bdv8YlP2P9mRr9Uw7fyzwUVs2bLG9g/kCUTU9+msWPWMYnQ5LdP8OlbKq1dHvit78QiRFxS9EUlT8QiRFxS9EUko03SMKCR01Uao7+v89ZJ+MxktHrZf3IPjdQI/4O7CRbhqYymlma7AHr8HeS6Jk1HpLYiG4ivF6s12Y7z1tS/38Z2CppQjzl6DQvdjD/aOYbLA+T8G/3FXEsLCAHLwH0fjzKI+pF2KMZVhvfiGSouIXIikqfiGSouIXIilllFgx1uEX7Mk/gBMtOkiRPruCNJV7GPR42/qkmZo8uoW/LI6+H3wdjGSOCksDOQbheh+Pfq0qxILIVsApdwq99hdHv93V4K/NBeSDb+CzPYjCNFGh9iRGxb3o9R6TkEPQPajVCwmxtG1YBAxtJYT4waHiFyIpKn4hkqLiFyIpJSpgRIXB6KDPsURFjQOIO5u9F92Wgxf8Fp3frtYOSg6/O3AS0n6iMdJRxxlB14sGdVa3BcHvBNyO5yAsnsP5nbbQggtqagERkCDh04wTksgdiiLgexb3iMcIdtFt6RnlZCAhREpU/EIkRcUvRFJU/EIk5X8BaN0eV8z7EhkAAAAASUVORK5CYII=" y="-11810.984523"/>
</g>
<g id="matplotlib.axis_663">
<g id="xtick_994"/>
<g id="xtick_995"/>
<g id="xtick_996"/>
</g>
<g id="matplotlib.axis_664">
<g id="ytick_1656"/>
<g id="ytick_1657"/>
<g id="ytick_1658"/>
<g id="ytick_1659"/>
<g id="ytick_1660"/>
</g>
</g>
<g id="axes_333">
<g id="patch_334">
<path d="M 29.174375 12079.80571
L 151.464375 12079.80571
L 151.464375 11952.512183
L 29.174375 11952.512183
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_665">
<g id="xtick_997"/>
<g id="xtick_998"/>
<g id="xtick_999"/>
</g>
<g id="matplotlib.axis_666">
<g id="ytick_1661"/>
<g id="ytick_1662"/>
<g id="ytick_1663"/>
<g id="ytick_1664"/>
<g id="ytick_1665"/>
<g id="text_84">
<!-- 275 1833-260619 -->
<g style="fill:#262626;" transform="translate(15.789375 12063.198947)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-54"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_334">
<g id="patch_335">
<path d="M 164.424375 12079.80571
L 286.714375 12079.80571
L 286.714375 11952.512183
L 164.424375 11952.512183
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_667">
<g id="xtick_1000"/>
<g id="xtick_1001"/>
<g id="xtick_1002"/>
</g>
<g id="matplotlib.axis_668">
<g id="ytick_1666"/>
<g id="ytick_1667"/>
<g id="ytick_1668"/>
<g id="ytick_1669"/>
<g id="ytick_1670"/>
</g>
</g>
<g id="axes_335">
<g id="patch_336">
<path d="M 299.674375 12079.80571
L 421.964375 12079.80571
L 421.964375 11952.512183
L 299.674375 11952.512183
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_669">
<g id="xtick_1003"/>
<g id="xtick_1004"/>
<g id="xtick_1005"/>
</g>
<g id="matplotlib.axis_670">
<g id="ytick_1671"/>
<g id="ytick_1672"/>
<g id="ytick_1673"/>
<g id="ytick_1674"/>
<g id="ytick_1675"/>
</g>
</g>
<g id="axes_336">
<g id="patch_337">
<path d="M 434.924375 12077.303947
L 557.214375 12077.303947
L 557.214375 11955.013947
L 434.924375 11955.013947
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p4061569d4e)">
<image height="122.4" id="image6670c90b39" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncuPHNd1xk93VT+m58UZkjOkSIkyZVuQIst2EjjeBHACZJF/Nbtk5W2ycIDENoIYsS1Qli2Lz+G8p6df1dWdhbLi97vAndBIAN3vtzyo7qq6t04X8PV3zun89Tt/u443mKwWb4ZivmoktlgtJdauVxJbrluJRUTMW/jOVr+z2+lIrFfVGutUeB79vq7EDga7EvtB70Bi31sN8DsHettxDpdz1NG1eBYziX2+OJHY05nGLucTic2Xuq4r2JcOrGtERL/qSWx3MJLYsOpLjPZ6ttTnaQZ7v2z1s1VX92oHruXx6FBiEREf1vsSexh63ZtrXYsRxB40uo4fDC8ldu+DK4n1D/VeOn14SLq8L3gssF7oOq7Gut56NcaYInDyG1MoTn5jCsXJb0yh1H0QyVZdFXxIMGo7oHLdgHVXtEYUodZrPa4C0Y6EPBILa7jnQUcFxGXoeS87Gvv6gjR02lXh5XStwstkrSIn0Q29l5Ro9//F21wjiXt1N0/kmoJIHRFxRevd0ed7QNed2Oo3aZZ6jfNLjXX7IGYPQYjtpdZL76W91s83l7qO7RxyI3EWY8w3HCe/MYXi5DemUJz8xhRK3QGho4LfBBLJepmCH4luqXh3pedeg/CG1w2CH8WGIGiS8ElMEipQA9d4BkLeFcQacMXRdZP4hfcMwtl6lbeGEen9+lOCgi0423pdFWIHsH+pe5nCep93VDirQQSsYR1PKo31mg2Jtc/0evaupxIb7ahQWZFdNCJWjZ57ejWU2Hyqa0b4zW9MoTj5jSkUJ78xheLkN6ZQ6jkIIisQrwhybvXI6pZgBeIZCUFUJozXA6JPD0QyEpFI0KRfxnlibRYgfs5AyGtCj6NvpHUgoasPpc3LFZdQv0lKJKN9XYHLklyfBN0L7QsJmgMoL96stay6Dw7NiIgZPN9Hay2hnsH+jWG9x/CcXMAenC03JfbuiX7fXSjJHgxVkIyIWDZ67uuJlicvWniWIdf85jemUJz8xhSKk9+YQnHyG1Mo9dnyWoIk0FBZLQmDNynphIpeFKEoRq4/cqaRW5F6/Q3QwQiiG/R1+/qCwEkI4icJfi3E6BrJmbgBffRor6g3YgpyCNLavpUwDCJZH4RYuj8SPlOuxAWIruR2XILgN4d+i4uOXs8EhMp5TcK3fjbGGtqec3nyEtyvV62uxQKeeVodv/mNKRQnvzGF4uQ3plCc/MYUSn3ZqMOInFYkuuX2xyMRMIJdY+TmI3EvFxKbSDi73VHX2LdWKtAcLvlarkEkG1V67ldwPa+pZBmExVwHHAqxJOIm1jW3XJogsZH2H+8FS63z3JjJ64F7bNCZmNlHEfZvCffcgJq96um9NPDcHYCTL8VFpcdeQml0CynoN78xheLkN6ZQnPzGFIqT35hCcfIbUyg1jUruwujt3OaYbRcmkCTUflJi6R8Ags7dB8V9q9IGh4+qHYn93UKP+8u913qOAavCr15tS+zJSmu6uz39B4FqyS9jjud5E5w+BKp5rmU7Re4kpRWqynn/CpG9l8aAD6HZZsreS/8ekZ2a//jQvaY/CmZgA74CuzdNCprVen9jWIeIiAqu8RSCJx29buot4Te/MYXi5DemUJz8xhSKk9+YQqmpCSOUO+M47lzLZ6qeP7dHQG4DyFu1Cmwf1vsS+/u5iiw/+YuvJLbx4/f0+k4vJRYRUf/rhcQmv1eB57Krds7TWgWeIxDEcnsTdMFW3GROQroJueIsQeIeCZWjLtTzg+U31eSVew6ArZwaq8L9UUNQnLgEe3UJ4vMMBPIrsGx//Z26r+cwgvxipTHqa+A3vzGF4uQ3plCc/MYUipPfmEKpc6fhkG7SgbphIuXwozCJGiQO7dVbEntc35LY91cqsjzuqWhX74GrakPFuc62jmOOiKg3VPCrQSStYR3pnql5aO7YbuoFQD/z2XsfiX4OsP/JvX4DEio3QQzdgdgAGqPSxKSIiFhpM8x5ptBM06yuW532c71UNyY5Dq9B8JvWKs6dwz2nWIQKebn76je/MYXi5DemUJz8xhSKk9+YQsHawVznFo2CbqCstp9w+JGQR7GdaiSx93sq7n0rVFC51UJzRRCMZl+BA2rnucTWMy7pHR+Dc2+t7rRL6M04B3cZCWfUzDJ3as5NxD0idxoSipIg7m2Ac+92pWIqNVbtwzmm4GCLiIDHMbogiM6gjH26VrGQxL3rpYqA5A6cVyruTUGQPAWnYwoqlyanJDWt9ZvfmEJx8htTKE5+YwrFyW9ModTkECOxggQjEvyWC4jVLGD0+ypgUVnuw1p77j0AcW8ThJwFCFWnSxWRtp/pedetTjNqpjxN5asjLR1+0dNjx528iTabIO4tQCSjcdNvK+7lQqXaJO5tVrred7oq4r7T1T29s9Z1qOD2xrBeESwOnsM1nkPPxKt2KjEqgc/Nlzn0yyTBdtrhEd10HtoDEvxoD/zmN6ZQnPzGFIqT35hCcfIbUyg1OeoIFDACHEuNihUpF9pmDaIdiFp3weW1BUMRyHs3hp+3UxhrvHGlgt9srmtztdDri4j4Q63XeAnnprUYwr3swoCHFsY+U/+4OQxtuAk4ohveE+Q4pCEpB+DQ/HZo7FGj5xjS+GsQuWgsdUREgPjVwB5cBYtsf0rIOUuiOQ4VuQHovAUHo9/8xhSKk9+YQnHyG1MoTn5jCqUegVCVO4xj2qpIQmJRynH2NlN65/DZJq99XIxBHDpbqTA0WagweAxiYUTECYRn4Oaju6PVplshJyAONMmcgJvSleg7qQR3B8S9+10VTj9e63F/Plex+P7WtcRIdD1qtPS3C4NPIiKuYK9rWEfal9xyaXLZkUDapb6MUHOcmp6cmxt0HAnDfvMbUyhOfmMKxclvTKE4+Y0plHqnVqcVTUbtg4hEE0svai2DnbRaLhnBpYc0KOHVSnukNR29xi24RhrwQP43EoZOwMH2kqZuRMQVDU8AwY/OPQMx5ooGRsBEVhJNySW5QY7Biu+F3ghbMEjiXkeFvO+s9bgfznX/P/nkSK/xk22JLV/oMJThL3Rtria7EotgATpXyCOBlUQ7ElNzy51JXF0m+hEuwKWXEgdz8JvfmEJx8htTKE5+YwrFyW9ModQHtYosWyAODUGsWIJwcgrC0CVMNo1gYYOcSMcr7aVGP1s9EKDoGmcg7lHsuKPX8iJR+jkDwY90pQbcjgu45ymIe/RZmuZLk223QFztJX77KUrn2Yf+enuwDPsDFfyGH6rQXP3oBxobjyV2b/pLib34N3UWRkRswOCUEfStpGeeypMXIMQ2K12HHpxjCEIsMYNBHhHsqKXy3Vz85jemUJz8xhSKk9+YQnHyG1Mo9X0YnjAiJxK4nciZRs67tsu1oyRqkYtpDIIhCVDbaxAq4fet7ej1zCD2fK1C1ctWy04jeNoqOcmovJkGQdBnqWdeBaIUlZNugNNxA/Y5gt8ItIPUC29CfQtB+Ozu6nPXuX2oB0Js8H2dnvzod+oEjIi4Or0tsSEMkdmvdG1HUCZMjsHrFQiaILDuwFASeo6vE4LfeVeFbxIHqaSXnKB+8xtTKE5+YwrFyW9MoTj5jSkUJ78xhVI/CFXnKxh1TcruGurVh6AqDxPjk5egIc9gChBNGyHL8AlYNOkaydY6gX8uTqGPwAWM7Y5g6yUp+7njs8keWkPzUFbmqY8A/POQqGunOnaC/iE5gYaUlzO1G68u1LbbvTyTWKevCnnnllrS73ys/QEiIj797Fhijy/1eq7n+uz8CnpdLGq95xctjMmGZ/6gq41H70L+0TkiIl5XamE+h38aqM8GPXd+8xtTKE5+YwrFyW9MoTj5jSmU+kGr+U9yA025IRoQ2JqEvXfWQkNCEKGohprK50/Brrro6oEbIMbQeanfwE0aJnahieOaGkrCd5KNNFeIo3shcS/VyHKFE21gXyF2Bj0QPoepUB/8+4nE9ja1Tr9zqPbcmKu4Wr/D9fz7oXbsW3MVcukRG/xqT2JPOiraXXRUdBuB+PxO6Dp8BGOmRive56Na7/EIxp+PSUgHcdZvfmMKxclvTKE4+Y0pFCe/MYVSP27UUTcHwecC3GW9Cn47YHpJykl23dFzE+ROWsDsG6r7x5p6mkgEzkSCJrZEJEZgA7muPxqznTs6neRV2oM2JV6COETQ569hX35X6/P086/uSezTn6obb/+jc4nVBypyrZeJa858vYGJNOpKv7O/1i8cwF5tg6h8Gz57r9UcONzgnhEfrMCZCiPMr6GvxZRGhuNZjDHfeJz8xhSKk9+YQnHyG1Mo9TtbWlo5ncF0l6W6k9pQsaEBUWoC5akRPPY7F3TAwbmpmSV9liAJiZptpqCRzBQj9xxd99uJgDC5CO+QS7qJXNffK5hy9J8DLdVdvb4jsQ+vtTHn7XdUEOskxo3PLvRZvjhTl97rmcZ+21dh+MuunnsOTlAa0d3NNIfWiZLe7T0tJz8c5D2Pa3AN+s1vTKE4+Y0pFCe/MYXi5DemUOqtHR6f/SbDMYwhhhHNNU1nSXwnlajSVBoalUzjjrcrGE0NE4RoSsoUajpn4L7K7cEXwSW9m3CNdaa4R9dNk5RILMTR4AnBj+Q+uheCXH8TEAGfwvdVA12b2eyWxO482cq6loiIU3BevgTH4dGQxrHrhJwT6OuYOw2HVjD/aYqoh3r04K6eu97XdezsqqDpN78xheLkN6ZQnPzGFIqT35hCqaseuMuglJGgVmPLPF0oIljA2q1AmIA+ZUMQxKg33whKdenurtbqQqMefqm+d+S0ozHNhzB44bCjAs0Qyj9xTDb0TLwG8fICxqFPIBYReIdwmqjhnpckLMI6tmR3g2dn0lPBdtTTfZ4l9uUUysavYH3IpZcSRN+EhtLQ8zmASxzAOVIOvwoEv2pH16f7UPsedt9/T2N4FmPMNx4nvzGF4uQ3plCc/MYUSt0FS14FgkOPmv5nuvlSJaKbIMbVMMmUIHdg7i9ZAyILiVI4tCMhLBFUsnwXxL3vNSoMbq30PDQ45RRKWZ/DQpDgl+qtSGtBazuHj5OTcAbnnoPotoZ7mcNzN6ApyzTFJSLGK5j6DNdITkkSpPe76jal53hvnSf4LeG8TcOl7u2Uembq5zs76oDsvP+hfhTPYoz5xuPkN6ZQnPzGFIqT35hCqan3GTmMapi02wNRqgviXmrAbx8EFfr8EnvF6fVQ/zgSBumzKfHrbSCfFglLm7COo5V+mnohTmFtycFGJcskukXkly2Tm49EUpqy3JKQB065jSpvGAqJeClIyNuEqbp3oRz8wUqvZ6/NnWCtsReVnrcZb+Pn18811r+tPThrKJfu3NIhKX7zG1MoTn5jCsXJb0yhOPmNKZR6fKKOs+lERYhJC5M/KxUWplD7OUlMfSVhisQ9FJZATqOz9OH3jaaq3urCUBIobb5ezeEsLCySsETC4jms4zWIey/Ajfk09HpernS4wwX0nmtAnIvge+EhKRqrwe1GAyxyh5IM4ftGVM6dmLJMJdibICwerPTz317oZx91dG03+uoifDHV0u3f9DWHjjQUxwmRczbZldjWl7r/w0sVAaPrKb3GmP/ByW9MoTj5jSkUJ78xhVL/4kwno87AknepZqc4g5reI+iZdgL98SIizkE8I9fZCgZBkNhEDrEhCHnk3DqE2A7EztYs+JEouQ2DRUbQm28Ozq8LXFtdmyMQ8s5aHTYxgbVew7pGRPRg0MUI7oXWuwdCJYluJCpugcuOxL1NKJftJSYv3wLH6H1oXfheq+tzf0+Fs619PW451z09faql6RMQw2lPT0AAjohYwXofvtyR2N7vXkms++wzjeFZjDHfeJz8xhSKk9+YQnHyG1MoTn5jCqX+p77aFUm5Rl04s4HjOGGJPWv13NNW/xlAZR+m4ezCZB+qn98FtfgO1GQfgup9Cv8ARERMQZ3fAKX5EGykO+RLhn9c6Jea/gmZU8NMaGSZgiy61Ix0B/5JIUtzLmTFJtagmtO/KBERD6BlweO1/hty//6lxDb28tZsfKrrcAz/XJyBzZ0aq6Y6S4BDNz6HhrcHv9B/Ke49+Bf9vsR5jDHfcJz8xhSKk9+YQnHyG1Mo9c/GX+QdCILPVq3TSzbABkoNHCMiLhoV/GYg+FE9+KhSkYWucQYTVloQjDZBnNtv9LjbYF+NYIsuTWi5vdQa+h5IPINKz3MBAuQrED6pVp6EwRT0ebLyjshO/RbvE7L8tiRowv5Bq4OIiNhqVWTb3VZL9GCbn9E3GR/rc/f0TBtu/n4Alt/Q845B8Eu1IiXT7+c9fb6Hp2rZ/7N/uJCY3/zGFIqT35hCcfIbUyhOfmMKpX4+PpUgNmYEoWu7r+6iTRABU2OtJ0t1/i1aFV7oeqgWnY47BQHyCMTCPXCr3YHL3gEBKYLFmBG4HbegfpuYrvR3mRyDVO8+BBFwfAPnHQmn1PSUxD1qjjmgKU5wXlqZBbjicJx2op6/D89eBY1ZW6jJvzzSZ+cP59pE89fQmPMPXRWur8BlSQ1dU+LsNazQHzuaQ5OBXs+XzZ7E/OY3plCc/MYUipPfmEJx8htTKHW7UscZzXEhEWLSqNhAx1VUixj5o6DpOxcrGEMN7sCLpboIX4Lrb1DpNU5BvLrb8r3sgRDYpdHiIH5NoIT2uKfnOQfxi8aSk2BHImAKmpxTw3tiO3PyzfaKJvso5JKcgFBJT81W4lGiPZhOVcgbX6vg+/ulTt35r6Fe5FNw7l2AuLdIevfymIFTlmLnHc2DP8L++c1vTKE4+Y0pFCe/MYXi5DemUOqNngodRAXCC7n+yGVHpZoREX0oUW1B1MotRyXXH42hvoSegl/B951CH7ZXPRbODmGs8u4qT2Sj6TyvuioYvYbJR1crnob0JkNwOqacl7TX1JtvD3ohvg9t7+7DVKEKynKna13DSxAfFzjym8W0Fp69F3Pt9fiq1nN/NtBn58vQ/n/XUJZLfTDJzUd7kBLCqT9m+xYiot/8xhSKk9+YQnHyG1MoTn5jCqV+sHlbgikh6E1IiMv97E2+cwVCB419RgESBJ8ZuK9egHBG56BedhER21ASvF2pyEb3R4LRuNHrmWaKe1iSC+JqSkilkllaxxG4Fe+BmEqjrque7ulsogLpDrjxrlu9lxm4JCMixuAuPQE35zMo830Wei8XcH9LEN1InKNeluRUTYl4qZHqOZCI6De/MYXi5DemUJz8xhSKk9+YQqnfG+QJfiRgzECoakjASDiWSNggEYo+TzFyphHXrTrOSAS8yWRbcitSjGigrJqEINoXEvd2e+pg64Ebj9yYKRrYK5o6+wKchIMLvZ7NgYqXaxAQO3DPtMvzxN5fguBHjsqrju7BDMvdobwcXKRz2L8JiIVUhr6E70tB+095wM5bY0yROPmNKRQnvzGF4uQ3plDqHXCmkbA0BxGit9bfjgbKYFPQechVR+IeleqS2EjHkaAyb0G8hONSLisS6HIFyLdxbnW6NNk2b72oL19ERAXiEIlaL6BXXAMDLJ6vVfA7WOjAFxqIQhOMG3AbTmAdIgL9puRg7CTKzt+Enh1abzouN0bPUgQ/J21Xzz2Afo1dEAb95jemUJz8xhSKk9+YQnHyG1MoNZUjcqmuQoJWH0petxIi4DbEBzSkAa7nCiaWHrU6oOO0vZYYCSrkxiPnXcr1R2IMiZcErWMHRDcSpXJdhFRO2iZ+++k8JPheBQymANffBYhNxz0Y+FGBWxHMob0bCKT05A3g47QSOEEXjqN9pv3LduMlxEe6HhIbc52gfvMbUyhOfmMKxclvTKE4+Y0plJoGWOQOySCxYgPcRYcwFTci4n0YavHOAqb8goDxslZn4m9r/b4v4BrJrUa/gpdQ+nvV6tCGCBYR32Yde9CPkEQbmqhLkPtxlXAgdsEtt6CSYBCmsJ8diIAkXpFbka5xC6b+VomlpvAEBoZck9Mus7SW9qCiJwpCJBSn3IbkBsSp2JlCvN/8xhSKk9+YQnHyG1MoTn5jCsXJb0yh1BdLtcR2QS0kBXHU0WaN9GtC9dMREUPwSt4BVfp2XxX2g4Wq/W1fY7Ou1pJfQOPR3MaMqak5NFqcmk/mKvtUkz3I7JUwh/vDfx6So6DhvmkMNSj7NfR4IDWc/gGgx4T6Q4yq/DHwDezBWUefsdcwRpzumaDnu85uogn/XCT+hSGLNu1rbjNZv/mNKRQnvzGF4uQ3plCc/MYUSk2TalgcyKsvp9gsYZM8hvrtfRi/fAATVh7euZDY5HhfYkdDFSUnOJ0lb/x1SoyhNaO1yLVeomgDx3FTSDgHfB9aUINr0cm+PI3MNYPzkFX5Eqb9bEKsd4N3FtXaT+leaPoUrC3dS0W18lTPT/sCe7qC5z0iogMTjZbQc4Isw7R/fvMbUyhOfmMKxclvTKE4+Y0plJqECRSlQDDqZU6kmURC8AOn1QY0dnw0V5fX/e+q4Pfweiyx0XpXYlNwSp1BnT6JaSTQRESMYPLRAEW2vMkw5L2jxoxLcOmRYLcBbszUvVBTyPEaHHCZ46Xp+3KbkQ5x+kz+OwuF6rdw2qFLj3II3qsd6CNAE4nWkdeUNSJiCblFQmW70j3wm9+YQnHyG1MoTn5jCsXJb0yh1NuVjkomkWUA4tAgs3lkyuFHPqYBNHE8XquY9sFSj2uWej1HNZRvNjrFhxpzkgg0qvRaIiJ2Km1SegtEwD783k5hfc5Wej1X4EKkxpw9Es5g/8hl9/X1QMPNzDHUJALiVBlwoc2htHkKY8BzR5+njqXne1iBIAp71Yc124CyY/osQROOUo1Da2iiitAegITsN78xheLkN6ZQnPzGFIqT35hCqfcq7XFHzr1cZ9oM3HMpAYPEGCpnfDLYlNjOrw8k9h/Qw+9JeyIxEvdu4uYjaH12YUD0Pri3Jl0Ykw5yKK3tEsqTcyEh7uvzwOhtEBYpRiWmFCNwNDw8D0tw1JGAGJEvDpJISpOLSDi9Be7JTRAGW7hGcr/OEu9kyksSIBcgNNPz7Te/MYXi5DemUJz8xhSKk9+YQqlzhTwaakEC1E3GWpPAc1ar43BWq1jxZKiixov1ucSOFpcSI6GL3G41OM5S45OJPgg0D1r9zjtLGCPe2ZbY01pjf6zVzXWy1hjt1RiOi4iYQ1/HXHGP1jZ3VDkVMjesSWZDAnIvIXS+CeXGIHT/SNzbATfeHEp6G1ibJRwXEUHLSMNBtkGArLCM2RhTJE5+YwrFyW9MoTj5jSmUGieRgrBAEglNrKWpv2cL7a0XETFd6uf7lTqojnsq2tEUW3IxkUBHJZ3k8KLpshRLQb+s7y30Gn/8yXOJbXyqvQdXFyqcPv1nFXd+NtuT2G96Kth9sdLS5oiIy46eB4U8LMpWqm7eO4ZcetS3kITYlJOPhNxhBSW4WLKeV8Ze/4n7Mqa+jUQ7EiVpqMkIhEq/+Y0pFCe/MYXi5DemUJz8xhRKTY48GmqAPdfACUY93EjYi4iYNPP/dYxEnx7EtnrqGNyqtd8eiYA0eIEGNERELEHOmYFI1iPX2CNwZH38bbge5d3+ryX2Vz9Vp+NooQLiqKeOwYiIBTgqx0t9Tqh/IO4LiGT0jJGoSIM8tqBfYqq3Iu1rbh++TZqeDM9EA6LdGHvzQR9EHNrBkFMy9Tzm4De/MYXi5DemUJz8xhSKk9+YQqmp3Da3bDV3kEMKEitI1KDSUez3RrEeOajypqoScxC5IiLmofFXICI96avw9tEv9Rpvb30mse5dde51BipK3X2ojsrvfAETgxfaGzEi4mywJbGj+kpiJPjSHpB7Mre33jaUeD/s3ZLYo672ooyIuLMG5yYoajADBoW8GYl70IfvinpZgihMU5apfD6C3YArOLSB87RQJuw3vzGF4uQ3plCc/MYUipPfmEKpJ0t1z5H7ikQyEiBIBEy5kMgNRtD10ATd3J579FmCJpsuQMiJiFjBfR+3WjL7q1qdaHtHhxL79B+1jPng3acS6+9BP0LQ8Q4OVARsX/Fv/+drFdm2wVV32dXybdp/EvfomaDjRl11Px529Fq+36i4GhHx0UqvcdRXoXLWqDB42upevar1uC9rve4vQQS8hvJ56q2Y6nmI+ZZZVs15YIwpEie/MYXi5DemUJz8xhSKk9+YQqlpEkuuuk60q/wRK6Tu0rnpOGoKScdRjT9BSmoDVmWqYY/gfwY6K72X56A+/7yv13jcqg34/c+1/v5RT1X8wwdqxR3d1Z4K+1O9loiInYlaZanenWrt6XnKtfKSIk2xDajHf7CERrQR8fhjHdE+fFeve3mh1331JYxYP9I9qBpdr7O+fvYZNEw9WWrsJs9Y7oQker795jemUJz8xhSKk9+YQnHyG1MoNYkDNBmEoIktZHPNH9HMtk+c0AKCHzWKJLGJrpvEvZtMqaF7pM9Pwc75GkZldypdhzncX7vQ2vvRqYpfB/fB5rrDjVV7MMinRwIrvDtyrby5zwR9drDW2L0hTx/a/NFt/c5HDyRWn5xJrNp8JrFOR23XV89V3BtBH4EFPGPnjV73pFXLfQT3tcAx6SC603PrN78xheLkN6ZQnPzGFIqT35hCqXPrqok1CAsNCBCLlh1LuVQw/YTEJnIHYkPQzCajdBw5pVKQK5JWNnfmSu5nO9SscVPFwv4WrwN5NLHpKTkvaV9oHTJvmj67Bec4eFddjRER3R/+RL/zve/qgc++kFDdqHC6efFCYy/1+V7DfKUZNDylJqizxIQryiMS90hopsaqfvMbUyhOfmMKxclvTKE4+Y0plBpFG4jhdJ5McW/Rcrll7mQgbCiaKVSSaEciSwuiYm6D0oiUqKXX04exzyMQh/bWVLaq532/VofYne+qm6/30SP98EobgkZExBMOvwnuC7jvSPikVaTjKojtQan05qfadDQiovrB3+h5bj+UWNuHz58eS6j+4jWe501oRDc+d4nn6f//aW0LAAAAGklEQVQCv/mNKRQnvzGF4uQ3plCc/MYUyn8DnFiUuLIi5XUAAAAASUVORK5CYII=" y="-11954.903947"/>
</g>
<g id="matplotlib.axis_671">
<g id="xtick_1006"/>
<g id="xtick_1007"/>
<g id="xtick_1008"/>
</g>
<g id="matplotlib.axis_672">
<g id="ytick_1676"/>
<g id="ytick_1677"/>
<g id="ytick_1678"/>
<g id="ytick_1679"/>
<g id="ytick_1680"/>
</g>
</g>
<g id="axes_337">
<g id="patch_338">
<path d="M 29.174375 12221.223371
L 151.464375 12221.223371
L 151.464375 12098.933371
L 29.174375 12098.933371
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pe007f157f1)">
<image height="122.4" id="imageee91fc7c86" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH1NJREFUeJztnUmPJddxheNl5htr6qoeSXVzlGSTsmQLMLzwwt55YxgG/D/9B7wwoIVtwDBFCrIsSiTVYjd7runVm4fM5wVFLfp8CdxWGzLAe75lVI43MyqB805EdP7p3j/s4iXGzfLlUFzUc4lNtguJLeq1xNb1VmIREbuQU0evqCS2Vw0kdtLdl9h73WOJ/U29J7F7G72enw5KiX28m0jsWT2VWETEvF5JbNlsJLaC2Lrh9Ulh29R6vJb1fplh1cP4oNR4t9D12cC56f7oGlPPe9QdSWxY6Hb1rsFjrne6FnSNdC8ErQMx3+r7QLHU80ZElJ1CYhVcD10j7asRY0wWOPmNyRQnvzGZ4uQ3JlOqq0ZFiFkDoh2IUs1OBTui6HRa/qLxLgh+QxCCjksVgt6OocTe3+i9jDp6L72d7lvA9VEsIqIAQYVElk7iMdsErBRSRaCDrt5zRMSo7EushO/EtlCxarPTZ0XCbtXR6zmuQJwtDyR21OlKbLxTES8i4jEItKdbjdF6p77f9JzpPe6W6eIe0YE8KovE9w729ZffmExx8huTKU5+YzLFyW9MplRX4ObbgLi33alYkSpKkdgQwcIEOfz2S3X43SpUrHpvq8d780DFnabR69lbg5OsVFGqB0JVRMQG4rtCBSNaR4qBRobQ2g5ewyUZEbFfqOCHomTo86d3gkTOA3DpvVWo4PfBVu/lqNbFedRVETAioij13HNw+JEztYbnUu5IYNPzogiY+I60CY0k7tExU8Vnf/mNyRQnvzGZ4uQ3JlOc/MZkSkVlucTrOM5IbGiLY0kviEM3wOX1na0KlftH6mBcL1UkubnQ+zuBktcrEMMiImpS6GDJ1uAuJLcb/VumZ0ACJDn0bnYPJXa7VIEtIuK4o/dNku0abpDekgHczK3Q5/e9tZ7luzstJS87epZio4JtRMTTnt7LUxCQr6BkPbXUmtyPJM6R07GBWFuupZb00vtEDk9/+Y3JFCe/MZni5DcmU5z8xmRKRc4mdANRSSDFdm3lu0qqCwoFFTwPCCo1lEGWut0JiDt3GhWlzkFojIhYd9QN1nT0PP1C9ychaNOkCUYk7pBz726lpbHvQgl0RMQtODd9JeZwfyt4LAfgqLy3UVHrXjGT2OEB9EZc6hp29TWOiIghSJWjjorKPYitC30nSDijZ0qkinttPQ/JuUfPn0RzO/yMMb/HyW9Mpjj5jckUJ78xmVLRAAMSMAoQFrAfXYubjyARgkSRBfRnexGq8DyAnnTXn6v4tTeEewbX2DEIVUcVizszcO7VRZorkkTODfTHI0iougHOvbdCXW0/AEddRMTb4Kqr4F6uanXPzULvZQC+v9t9dZYOh/pMt1s93mKj97xs7RMJg2HQAafHrJpE8TmxhJZILYFuOyaJe/Q+uYefMeb3OPmNyRQnvzGZ4uQ3JlOc/MZkSlU3YC8Eqyo3LkyzAbc1JCRVk9TPSa1NRh/C/61hBSruRtX+70xhRHOLwvoyI1iHiIg9UN3Rjgt13tvQfWkdqGdACdedGnsDJjNFRLz/4ZnEetd1//WZXs/VM/1VoYbGqlUXGplu9PnNFvrrymWjvzIsKn5+neQ1S3uXqWnpBhp90rvNzVbBqtzSJBYn9iT+qsCToowxWeLkNyZTnPzGZIqT35hMqUiU2oFARwJUqtjQNqKbzk1NE3l8ssbu0/SSrtaxPy3BEgmCyBLq1WuIRUQMdzCNhSa5wP/bdahgtAxaBxqJreswAzv0OdSmb1r+9w//RG3S1Q/ek1j37EK3+/ixxC5/ow1FFzMVupYrjZGFeAKi6aJFr6XB3bRm652uz7LWvbEJJ+QLjS/nxpr6LlLD06/3T8s3ssgT/vIbkylOfmMyxclvTKY4+Y3JlCq1pp7GSO8a3Y5r/NvcV2lNOAlyVV3A1JXfwL4vYAJQl+q06V5aLg8dXbAdre0SxKYF9FlYwXYEuTZPYQrP05JHdHcq+CbcfUtCxUin5JSfP5PYcq5C3tOZ9hyYQy+AZaGreAWC36zlwUzArXoBjlGaXLXEsd3giAVxry51vfdgktII3sWDlqlQ/dSeGhDruYGnMeYbnPzGZIqT35hMcfIbkykVlQkSNEVkC840nMIDLqav47ptqmCY6i6cNDrxZQqlrHSOCv43UvPHCC7DJHFoutNzU8kyCawEiTv0L51cf89bymC3T2Es9kqvMUBYDBCBV2tdm0sogb4owbkH90KTgsbQgDUi4hzW+2w7ldhsq/e3Aocf5QuJz1149tTcdh/EveuFlkVHRBzAmo3AWboPL8AhNKP1l9+YTHHyG5MpTn5jMsXJb0ymVCQYkQuNyhapvDFVQIxgcS+1L2DqlBS6lw045cgVR6QKjREs2s1rFSCpjDl1OguViRLkf7tqEcnGn+t5bv7q17oh9EwkRjAhqbuGyUywtKcwKWgK1z1pcT9egOA7g2ewAUGbBDoc0V2qg3EIDj9y8+3DyPcTcGNGROxD/8gR1I0fgbi3By+Av/zGZIqT35hMcfIbkylOfmMyBUt6A9xJOxTy0soJ28D+gShNpR2zbTjIy5AQl9o7kGJtxyRXJLnBaM1IRCJoRPcARKQuPOc2V9wvn9zQY/7rI43dU/GrWeoxh3vqsjsY63oXUNJL4t4LckmCgzEiYgqCH71jJOSlulVJiKVYqljMORCxgvgcBNEJDQehoSRJV2OM+dbh5DcmU5z8xmSKk9+YTOFa20RSp4a29fBjgS7NaYe91KDEmMDyZBqIkbhd2zHbxMGX6UBpM61jHya6DsE1tgcx6kd4BsJZRMR/DXRoR//TWxJ79+JSYl2oRl3BpN0avjsk2ZFz76zR8tsriEWwo5LeuypR8EuNEfQ+UKn1BZTpRkRU8AzniQJyz4KfMeYbnPzGZIqT35hMcfIbkykViRAkdGH5LpQTltCHjYdzMKkiWargR9vRRNbU87aKOxCm9SFIyKMYufmopyC5+ejuLsH9FhHxa7iXUV8HdCyfXdft4BnQMI7Hld7Lcxh+gT346pnEaOhGBDs3SbTloStp/SRTJ12Tu3MB7yKVIbdBA1/oGnvwDPzlNyZTnPzGZIqT35hMcfIbkyko+KW61dDtBG61thLFVCHwVUprU7Yjhxc76khMY/cVCqfkvgIxBgU/KMvtQ5koHY/urwbJb9FSBjuDYRVNqcc8HaidbxTqLtzC8591VKg6JbcbOPdI3KOhGxHp7wk5/Aha2w7cH603Cc2kxNYtpdYE5VYF4l7lKb3GmG9w8huTKU5+YzLFyW9MpqDglxojF1PZ6P+TGvqMRfDAidQ+fKkCJAl0AxDYBlAGe1DqBFVySrWxSSxPpnLb1GEqtFprcNmtQXyk4RUREatGhberWkW2Z6WW/lI5cR/dZXp/MzjvDNxuqf0WI9qGcYAzFQZipBpTSXQjwY9CO5g4vOlw2Ti933sw5fcaxA5hEIi//MZkipPfmExx8huTKU5+YzLFyW9MplTJNctQm04NPF+ldr/N9vuHQsr+ASjSxxC73lGFdJ9q5V/h/ggaJE2/CixovDeo+KSQL0H5njdaF0+qfgTbUJdbOA8ck381URtwH3oT0C8SG1D2Xxf6RYl+SSFQ2Sc7dWrz1sQx9RER+7COpOy/U+xJ7E7jen5jzO9w8huTKU5+YzLFyW9MplRUf0+DfPqlChNUA0216W0CBgt+KpSQKEIjkEkQuV2q+PF+R5tR3q31Xg6bdEGyBvGzIGEJtruC5TkFS/Qp1MBvoPb7CiyxJJyhBTX4eVHNOglnJCLS8ahmfQVC4+s0W41I73eQCvZKoJ4YIF6mXje92xERw1LFVGrgegBW5ZOaLOTGmCxx8huTKU5+YzLFyW9MplTkiht2VVggsYHEPRLnmhahg8Qcqr8mwYjEvZuJ4t6P13qN3+9eSWzvEMY7g3ASEbFc6lqQK7JuNDZe69o+qNS51cCUm3MS00DII7GpzY1J70SnINdnmvhFYuMWatapTn+2TRMv2xx65ELtJY7jJuj+SOTc1GnvNrppoVlqRMv6wLlPS91uB++Ov/zGZIqT35hMcfIbkylOfmMypSpA6CBxj0pjqREmOaCWLZNh6hqEKXB+kePpCK7n7ULFvQ/Xen8/OjiX2Bt/Dc60N69JbLdquZdnE42NwZ02V4Hn5AU0V3ym576A8s0H4NCk5pgkfHVb/vd3Yb1JBEwdf45jskH8WsKkIBLT6gaat6JTld+dVBcqlu/CO5sqfPJ2EGtpeLuoaVz5XGIkfj6B5+cvvzGZ4uQ3JlOc/MZkipPfmEypyGGU2leMHWIwVaalhDLViUb790HAONpp7EatwtLBiY5zrr53V2LFj/5CYm2Ujx9KrHn4WGOn6iQseiraXLtUZ9uoUcGvD/+/aRISxdoo4Zgk+NF2NJacyltJBCQnKImXZZkm4kVE7MHUpQEI2nQvKxCqUx2oJJqWIGa/SnkxORsvtlOJUW9FEnz95TcmU5z8xmSKk9+YTHHyG5MpOKKbBJolOK0aGC9M+y5AgIhgxxI5v0hYnMExx5Xu+wxKGZ88PJLY/hdPJdb7od5f596fSiwiIgZaToz/WcGdVjzX8dcdWFvyfVGsmziq/FV64bEInDZanPYlAbIHz4r2pXsZgbAXEbEPrkjqe0ey2yVMyiaBnMS9fqkCJDoiqbcivCNt29IUmHWhQRzOg2cxxnzrcfIbkylOfmMyxclvTKZUJLCtYThEJ6CXGg2RSHRzRbC4lyqKXNXq0vuygPLGrpb5zrb7Ehv+RAXNd979RGLF4YnEvv4D/B8F99Zupte9eqFizNlSexSeDvR4C5jcS66xV5meTOBoFxDODqG34hAm95JwVlL/RzgvDqro6Dm+joPTDs4zAeWMROVU92sX+gSmuvnWOMuZna5Uvpvar9FffmMyxclvTKY4+Y3JFCe/MZmCDr82ge5laPACiRo8jTeC+gdS6SExh0m0z2otb6xJEKlUBLwzU9ffGx9rme7gzf/hC9pCn7pPfiWx8UcqIv324Q2J/XcP+vWFioXnDQiINNmWph+3rHUFz2UPRLtDENkG8D3pkSAG263hGucgINMXi4S9iIhrUOZdgfh1CiLiVaHPivpW0tpSiTD1p2zLDYKERXRKguOQYv7yG5MpTn5jMsXJb0ymOPmNyZQKBbrEIQS0Lzq3Wiag9sAVR+dJjVHp8BgEkT0Qh550tSR3ch+Ek08/l1hExPbRWGIP/l2P+dlSHYIPu7oO90t1HD6ttfSXnI40OIPotYhkVAZ7vaOxm6GC3/FO7+UAJhvTmafwmoyp7x3sewjTjyMi7sBSDOC9PapUyJvCEJhFV58LlbsT5H4lWvMFntceOCrJZXlSaMxffmMyxclvTKY4+Y3JFCe/MZlSUekhTixNdu7pvmWLaS+1PJKERYqRCEgiyxJil4Ue7+xUBbvhTy8kFhHx/L6WCX+yVtfgl9Bq7gJKo1/sVLycwRAJGixBpdI01IJcexERN0Acug3i3gm450agxh02MHSFRDcQBm8lOj6PYThLRMQbXRVJhwNds9sTFfdWfV2HTak3OC1gkjDkxgQEacohen4R/AxJ3HsThMq7oS+ev/zGZIqT35hMcfIbkylOfmMyxclvTKZUNK6YYHtvWn1yW+NCqoOm/V+l5jkFUmKXEHu6VtV0+Qu2xN4vhhL7tKvHfBaq+NKvD6Ts0zQk+hWG6vSpDv1mqfcXEfFOqIJ8q4HeC/BY6GtCsRPoGXHSU6vyaKjr0O3rOoyu8VSowRsa6xS6PvufaX+I80e3JTaFXwDG8KsJ9SY4B3suPdMZNMuN4Np9akZKvRJoO3/5jckUJ78xmeLkNyZTnPzGZEp1BBNtSESiWnkasU37bmGqTASLiCTu4bSZxAE0NDKamEAz0l/2VSQrdiz4PS50/4eh1tJLaDxKog/VrG9pEguIexX8Tx+S4Ncy5eatje5/rYb+CSCc0dfkbq33/P7b5xI7+DMQtG4fSqyzr+9sZ1+t2BER0dX7bp6fSqz/7LHERl/pczlu9HhdWIc6yDYPk4KgSShN4Yng0eT0fq/g7aH3219+YzLFyW9Mpjj5jckUJ78xmVLdqVRQ2YJgcAnNI4llneZMi2gR/EAwpBp/ahRKxyORbAkNLp/A5Jsx1NnXZGuLiAk48i5gzSYQo+tua+KYAk52oUk60GwzgmvtR3CNB7Vud6Or6/j2j7UHwujvPpRY5/sf6MWMtCdClCC6wvVFROyef6WxLx5I7PKxOjQnILAR/V2aqLwPz+AA3IGUfxE8BYjGldNTpZau/vIbkylOfmMyxclvTKY4+Y3JlOq98kCCVGK61wFnE4gN485cYtOtikAREesaxlpD88JUcS91PDhNtKHJPq8iumGjUHBAklOS7iW1uSk1YKXR5yQizcH1FRFxBcfE5pqVPtd7H4C49/d/rtf4t/8osfLWuxLbrWYSa87Vjbd7pOPQIyKan/1MYs//RUXXn491TPpXMElpDYIvlcuWoAv34D3uwfd30DJJic5D06euQa7eaNKEQWNMBjj5jckUJ78xmeLkNyZTqltQorqBcsQBiEDkGiMRsA1y/pHgR8JgamwF45N7hd4z9kdLdBa2sYF7Se3DR9Q0SQkETbqXNZz3qmWU92kJk2Ggh98duOzqANbnSF16HThHc/lUY7/9ucY+/k+JLX7Co9M//eimxD7p3pLY4z5Me4JS9C6IboewDn3YjpyAQ3pWLYLfAPKSJim9tdXt7m5c0muM+R1OfmMyxclvTKY4+Y3JlIrkK4oNoPzzAJxEC+gLNy9hLnWwGEeC3+uIgCsoMe6D2NSDMlES/F6n1DaivT9bEjSCHKo/11CKPAdn4WWHh0M8h7UYVfpcj1c6wOLm57pd9W8fSWz34KHEmtNLiU3+40piv/hCBbuP+vckFhFxv6/3PQl1DRIVZMIIRLcaBLoGvqsNJBYJfuTki4i4CeL8+xvd9u1anZfHQ435y29Mpjj5jckUJ78xmeLkNyZTKirqpIm1Myj/nIFDbAG97KhkNSJdUKPBFORsqxs9T9u5U+hXKgx2XnNiMA1ZoPsj8F4gtoYJuHMYnDFucZI9h3i3gL6APd1u/kIddTf+Wd+JIrT0+3mhgzc+7+5L7IuB3stXzVhiERFXUE5OLtT9QkVp6o+3ANffBATWS1jDCp4zTdR9c6fvXUTE99f67r3TUfHy6Jrec1npe+IvvzGZ4uQ3JlOc/MZkipPfmEypNiBgzTswtAOEvDMYQEHDPWbgOIrgAR8EldFSn7qmZaCGbEeDQUDQ6sNkWyoHboNESRQ0QQTE3oMg5JEISDFyU463Krq1XQ8xg/X5rJ92f1t4BlOYanwFzsQxvE9XLUNlaM1G4Djtt4ifLzPbwWRqeFZnIBaO4By3OuqSvNbwtdzd6T3evKmCX28EvTFXUJ6OZzHGfOtx8huTKU5+YzLFyW9MplQk7pFzbwLCy7RRpxU5ydqEvQ2IMdT3jgQjHlaRJlRVsC8JefuVijFDmKoake5WJHcZlXBizz0QtRYwGCR1oMkSRMCIiMutikg0lOQU1ozOTftSaTP1MqSehzR0hYS9CL5vEvwIuu4VnJtidC8LeHf2wEXaRh/8uIMjfYbdfXDzTfR6/OU3JlOc/MZkipPfmExx8huTKdU5OPfmIGBsYMorQaIbOaAiWBxCVxy47yhGkPBC7sBRpSLQfqmC33E5wvMMQMijoSb9RMGPngEN46CpyOTmIyG1rdx5Cg46mi5MpIqNRKpgi+9NyznQCQr70xRjAkVA6kVJA2kgdg4i4FkxxHNPlyoObpeQGz0QTu3wM8Z8g5PfmExx8huTKU5+YzLFyW9MplRnDUzyANWVVOpDUMPJttlmvaRJPKm19mSTJWWXINvtQaUKKyn7Nwq954iIfajVbpu88jIbssTCNVJDyT5MTdpRXwNYmm1N7VtbLMPQHPX/mlS1P/XXgwiexET2YJpoVMKipVqLKbaBJrjjUvPvScG/rHwBdvN4cCKhXqHP6qLRXxX85TcmU5z8xmSKk9+YTHHyG5Mp1RgEP5pecgg2xH0Qm8jS2mYjJcspCYZYFw+15AMYvU2WWGrMeaPUaTF3ChD8guuvRzDCnO5lBv0T5rDdEqygtI6pzU3JYU2Ca0TEaps2Op2g6UOpQh6RKu61jU4nsZjEuDJA8INjkuCXOmq+huORlfpJyc1If9bV/b+E0enUpeEMov7yG5MpTn5jMsXJb0ymOPmNyZSKmjgOQRCjUcKjUDGtLlSgGcPxIlpq/0HgoRp/dCHCeQ5Lde7dACHvTXDunexUVDxsWLwagC61gWusE//dpk776QU00QRRcQVuQxIk287dtq3uDKPTYde2+vsUUNx7BU2RRMQa6vlJkE5186E4CzFqePt0O5FYRMS8SJtwRQ1Fqfmrv/zGZIqT35hMcfIbkylOfmMypaKmgiRWoOMMSkcvwDHYNgqaSkdXMN2HJux0YYwxlWCeQDPE73ZU8PtOreeAwScxaFio6oKINC9UhZqCCDgAF9o+OAmppJeeC5USU+PJtnHjK1jvVEhMQ7cblAiTOzC1eSuV7kbwPdK0J3p3mkjLDbw/2I4mT1EONDsW/C4606TzUA5RzF9+YzLFyW9Mpjj5jckUJ78xmVJhzz0Qhy5ByKPtzrcqSlxudORzRMRyq2LHuga3FIhDJOTQvYygt96NnQo+b631Xo47ID6Cey4CK2bjvNZyyyu47iVc4xBcbAtwoS1AlCpBaKSJNFSKGsEC1rrDfRhfhgQ/cmOSC5EEPxLy+lC63SZeUrwH641iI3wbk6cKJfY8pOlBSygv/nrbNDEVS+XJcZhygcaYbx9OfmMyxclvTKY4+Y3JlIpKCrEcEdxJVA5MxyN3UUR6fza6HiqjJAGLRl3XIM+RuPfmzSuJ9QYsfC1nKkI157pm4wbKoEHcm4OwdJVYyroEcY/cgW0iGfVHTC3ppXLbYajwSW43ct5RD0Y6R1sPP3pvk8uTAboecqCScJ3qBGzLi9RydxIbLfgZY36Pk9+YTHHyG5MpTn5jMqU6W2r5IJVMkkDzupBIQxNmSaAhUWO6VRfii0rdhU+7WtJb7/T+Du7o8XrXudy1+0S3nU11+MnRSoXBmnohlrDesDZbEIFo6m/b4BSCXGz0rOidGJYq7qVOQD7o6L7Ehvrtgds0gvvZzUEYpmEcJBaWZdr3kgQ/Er5Th6G0QeIgiYCEv/zGZIqT35hMcfIbkylOfmMypVpAWS1BIhA5m6gEs8191YHSU4JEERI1ltAP7XSjgubDcl9iTwqNfQjXUlxTES8iorvQoQjDoV7PYKXDQTog+C1A3Jt0dB0uGj3H1U5dliRytYmAJOTRMyS3G4l7b1XXJPZBR6civ7OFacwgaE3hvRnDsJiIiNNS1+wxrM95Ysk6MSvA1Qrr3eZ0TYXKjsn1h2W+IED6y29Mpjj5jckUJ78xmeLkNyZTqtRpqSQNpe5LQkVERAlxKj2k/VP7mVGJ8fNaXX9fdlXwmzxVca57rMJQRESzBBcijOStQUxDAQvEvfOdintjEK8uYSIriaE0mbYNnBAMpb+HMO34bRic8pcLXa8f3n4mseExDHa50vNenqtjMCLi0UKFxV/1NPYbcCaOd+AEhDU7g2c6KVUYXlWv5/CjPODyXV1b2tdffmMyxclvTKY4+Y3JFCe/MZnCTdwSoVJbEgGpNLJtf4LchSRqpIqAs0ZFsotKhZPxpYpXoyfsiJzDtmdTFaGegwOS3Gnk5puCa2wCguasVlFy+QrustTBFCQC7hUqnN2Gicrv719I7PpfgSh166bERpcq2O4/0n6LERGH96Es+9mxxDo9ve5HUNp+HrqOV4n9EWnYCAtxvP607RbeE3rnKeYvvzGZ4uQ3JlOc/MZkipPfmExx8huTKaj2t9lx/xjgueFHgVRFGn+RgNgG6udXW12e1YR/IJmMVe1/BpNqnlZ63Weg2M6hlnyJzShB7d9qbAMTjtqec+qUHFKlu/A9uQYO1qM7akEubp3oNR6oFbezUsW9HLLtmuzBNy5125tbVeIvwHZ9BfdMq0hrQ30S2pT9VLDPAvTZ4OdnjMkSJ78xmeLkNyZTnPzGZEr1/ynukQhBNea0Xep471Tov+B2p9HZhBt4jlcq7l1UYA8Fce8sVJS6hNr9GTTrxEaREKMGjm3Pfgd24xLq3Qt4Ll0an41ngfNOVQTcLaAPwYupxDYXXBffbPTs3a5u21/rPVeJ473pTaTtqFfF5hXq+WmSFkGCX79SQdNffmMyxclvTKY4+Y3JFCe/MZmS3MDzjyUMkqixa0CASryeVAcVtbI8BYfecsry1QWILJewKTbmBCHvAppwTqFOfwGNOUnco+k8Zcv/fhKrunB/B6W6GgdwzA08gstTberZ+4UKeTRUaHkJzssFN/Ck13sLk4HoLdmSE5QmRYHzkkTXNbgsyXnZxg6kUxL36FmRI9ZffmMyxclvTKY4+Y3JFCe/MZlSUXkrkrjZqzjvSIzbJY6HTiV1rPEERJvPeurm6+7UKRURsQXFaNxRtWoK5xnDeOjLrTapXIAwmDrxhcpJ2ycp6Xr3C73vw0LX56ADYhyc5tFMJyQtP9VzbBpwWUJD0E3Ld6wfuj5dKN/ewFrQdJ4ZPD9qCEtCLI3oJodfawNPiJPghyIgVO/7y29Mpjj5jckUJ78xmeLkNyZT/hcXFJBF7+G/fQAAAABJRU5ErkJggg==" y="-12098.823371"/>
</g>
<g id="matplotlib.axis_673">
<g id="xtick_1009"/>
<g id="xtick_1010"/>
<g id="xtick_1011"/>
</g>
<g id="matplotlib.axis_674">
<g id="ytick_1681"/>
<g id="ytick_1682"/>
<g id="ytick_1683"/>
<g id="ytick_1684"/>
<g id="ytick_1685"/>
<g id="text_85">
<!-- 278 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 12207.118371)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-56"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_338">
<g id="patch_339">
<path d="M 164.424375 12223.725134
L 286.714375 12223.725134
L 286.714375 12096.431607
L 164.424375 12096.431607
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_675">
<g id="xtick_1012"/>
<g id="xtick_1013"/>
<g id="xtick_1014"/>
</g>
<g id="matplotlib.axis_676">
<g id="ytick_1686"/>
<g id="ytick_1687"/>
<g id="ytick_1688"/>
<g id="ytick_1689"/>
<g id="ytick_1690"/>
</g>
</g>
<g id="axes_339">
<g id="patch_340">
<path d="M 299.674375 12223.725134
L 421.964375 12223.725134
L 421.964375 12096.431607
L 299.674375 12096.431607
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_677">
<g id="xtick_1015"/>
<g id="xtick_1016"/>
<g id="xtick_1017"/>
</g>
<g id="matplotlib.axis_678">
<g id="ytick_1691"/>
<g id="ytick_1692"/>
<g id="ytick_1693"/>
<g id="ytick_1694"/>
<g id="ytick_1695"/>
</g>
</g>
<g id="axes_340">
<g id="patch_341">
<path d="M 434.924375 12223.725134
L 557.214375 12223.725134
L 557.214375 12096.431607
L 434.924375 12096.431607
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_679">
<g id="xtick_1018"/>
<g id="xtick_1019"/>
<g id="xtick_1020"/>
</g>
<g id="matplotlib.axis_680">
<g id="ytick_1696"/>
<g id="ytick_1697"/>
<g id="ytick_1698"/>
<g id="ytick_1699"/>
<g id="ytick_1700"/>
</g>
</g>
<g id="axes_341">
<g id="patch_342">
<path d="M 29.174375 12365.142794
L 151.464375 12365.142794
L 151.464375 12242.852794
L 29.174375 12242.852794
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p43ad155828)">
<image height="122.4" id="imagebc6d43659b" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAG41JREFUeJztnUmPHGdyhiOXWrp6Y6spiqRESLIEj2Fo5jDGAGPYPhrwH/Df9t2AZc+MNJIoSmQvtWdmlQ+Efeh4PiNKxRFgxfscP2TlHp3A07FUzej53h5QWfVwyZq6dmu03d7c7my392uH0FT+2HQ+k2bk1majid+u9tt1u96trYatWxt2OzzHuvL3gqB7Mez9PvfB7Wh/u+B2dIwSVfD6CDoOPT96VhfjmVuj51e6//Tu0Hvb7we3Rveb1gi83xAbdH7jusV9njZTt3bRnLi1q9pv97jy99YfWQiRAgW/EElR8AuRFAW/EElhsxCEBAYRlWFmcdlIcu9s5EXH9fjcrU3rsVu7H1ah81tbh+thyRa8Z7vgdgTdwxoeQUxdHU/0+V2OT93ai+m1Wzurvbxa772wNTObD2u3ttn5Z0jPqtt5CRh9flGZSs+ZJKCZ2ahq3NpJ5UP4vPL39hx+qy+/EElR8AuRFAW/EElR8AuRlKOE37GQmKJMsrYG0dF6aUdy79OxF0anIEm+h+ypGs7vtlq6NTOzzeAlUg/CaAiKIDr2DqRdA/eLZBMJraogr6JSi4gK2yk8vyeTS7f2efvIrT0CoXWzZxH7DYiuH/q5W1vtfDYnZX0eIwHp3owb/y6WMmJJ+E3hXZ7BdqM9SGA8ihDiF4+CX4ikKPiFSIqCX4ikhIUfSYho5h6JDjOWeyOQeyRFTlsv6J6NvDD6VXXm1s5AfpzBMfZjkGSFa741LwI3lZdQFQmjoKCLlkvTdlV1XElvFLo/VKJ6PvKlqM/aC7f2qfnnfD74Y0wohdHMlrW/3/N649bu4LdbEH6bHrIDg8KvlLn3kKGJ5142hdh6COU/6ssvRFIU/EIkRcEvRFIU/EIk5agMv6gELEkyknuT1mdvkdx7NPLln89r3+/txQDlpOBnBsgam8P+hpZlDMmzBRy7BwEVhfrHURbhdvB6B3vPFVwRPkMsE44965PGZ/O9N/Ii9mkFvedI7sHzm0MWoZnZzEAgQ1Yc9vUL3ttoht8Awo/uIfUTfLsOPQXh2B1st4Xj6MsvRFIU/EIkRcEvRFIU/EIkBYUfCgxYig5yoJJOM5Z7lPl12Xrxdt144XcJIqcNJrFNIevvCoZDrGp/fmZm29ZLGro/JAZHkAFH2WAk7dZQinrf+X6ENICkBB2byqqp7Ji2O2/9Pft4dOXWPtl7Mfh+H8t2e9PwOzaGaxkFM+2i2ZOlQS5uf5Bl2e38uVB5uJnZBsqWV9C7cAElvVRKri+/EElR8AuRFAW/EElR8AuRFAW/EElB21+qv38I1oNjGiHvj+q8z6CR5nutN/uPYGpLA8Z+AX/eRnDa9FfwfO+t6QWkAZuZLeF8CLq3ZzBBiBozUirn3c7XplP66l3v/wNADSrN2NjTs2ppggxcy3Pos/AF9Fn4Yu3/Y/Js5M97gE6mzdb/R8jMbD7x5/Nd4Rn+VI6Z4tNBuvCq5//M3Ha+Z0QDb+628fs8gWvWl1+IpCj4hUiKgl+IpCj4hUhKWwdTHaNEp/C8PThMFgGxRAKLGhduIH3yvvZrMxCDxITkHEguM7NTECp97dM+SdCcgyQbw3ZrqPOmEc1D49Np6RnQqOrSOU4g1Znk3jUcm5qo/mbjn8vnl7du7fIDL/zamb+vT3+4d2tmZvXXT9zal1N/LSTtoo1ViWhzVEoNXnZe4pYgaTuH/hckbPXlFyIpCn4hkqLgFyIpCn4hktKSdCOiAoPEUmmyD9Wnk4SaQxYb1WTTUfYg4qbwN48EYkfNEQvZXHSNzd4fpwNpt4Br3lI9P0kpOBe6N6eQgUgZem9/D5mNNTRRhX2+gAk7f9v58/l45AXd+Xtrtzb9wJ9f+9QLxMln/Fw+v/GzeCa9l5L0LtLau55yRKKRGoeasQikbZe93477MQghUqLgFyIpCn4hkqLgFyIpLU3NIaLNKIlSVtQaShdvYDuaYLKBxoVryC67DU5niUJlw2Ys49ZwjvPBS6038NspZNRRpmP0rzc15Zwal7aeQubeU2hc+sK88Pvrzt+fv6nnbu39p35tdA7jy6F8dw9NPauW7wS9emuLyT0iGgfR5raHQHKwA+FHI8NrKB3Wl1+IpCj4hUiKgl+IpCj4hUgKZvhFRy9HSx5LMoVkhRX6l0UgMUhyj8ogB5BAVNo6hXHTZmYTkHFryNy76RdubQvnQyW0Z1CqOYEMRsrQI0gCmpldgPD7FDL3frWFstzWZ+49feHXxlexUeX9PbxPC9/LrqdmjWb2p8VTt7ae+DJh4i8h7dwx4P0sTbjC3ooN9FaE7ShW9eUXIikKfiGSouAXIikKfiGSgsKPhENp8MZDSO6VShRpWxKG9HuSZCRPKCuKxlXTMTArrtD3jjLytpDhR+WWdC3b2q/heOjG30OShfT8poXhFZeQ+fdh73//ceXF2+MnXmhS5h4xLP0x1jdeaC3ufWbhq3se2vEfY//7DuTuMVmfRLj094DDUqzOWn8vSFTS+60vvxBJUfALkRQFvxBJUfALkRQs6SXRFc12as3vr9QncAtlhiQmSAweI/yOEYil+xAtt8RecTC4gdgMXjaW+vA9hIRfSXL1jb+WFgTWqIFy0gGk3Wsv3fqNP+/V0ovG+dJnG/4w+GzDP45w4LR9VdOzjglIknbvvIffAYNBcFvq4hjMstWXX4ikKPiFSIqCX4ikKPiFSEpLwqCiHmDgFUh+kYCKSimz+LRUzlj66VmIKHJgd6XyZBKG0QxGLKE+QDY+hK6Fstp2MAzFzOz7nS95/QYyyR5vfFbd8juYVgzDS1Yghpcgmpe1v+Yfxn7tGxB7ZmYvzV8j9Vak9y7Ku5aAuwNK4KkPJkFSWV9+IZKi4BciKQp+IZKi4BciKS1m1IEcwim0lAkIgqY0GAR/D6KLevPthlhmFJ13VMQ1wd+WQLEYFEtRCRjtt0hZX1TabGb2Zxid8m9QGjufnrq1y70f7kHQkBOoGrY1bHdbeWH3es/XMt/7rEh6n/4/QCKQsmSj/Tb15RciKQp+IZKi4BciKQp+IZLSYuYPCIMdeKqhismvkuRi8RaTcUb7hNMpDUCIbIeCrZBFGM3ywkEZsEvsrQi/pcEitB1OOi70I1z0fpIwDSB5Nb50a+/BNN9L6BV4AlmfdG+XcN73cC4ryNp7u+63pQnP77qH389FVFTTO6EvvxBJUfALkRQFvxBJUfALkRQFvxBJaWnEL6X8klXcB+viqda9tG206SVB/6Ug0JoHm5aWbD9tGzXI0VTece2fFZ139BlQQ9DSOq1RevD9+NytPWsv3Np17ZtwjuCaV+bfhwUY/JLtp/9S0H856D9SP8uI7gPem2h6N6XTj+Dd0ZdfiKQo+IVIioJfiKQo+IVISvto7GuyaYw0yR2qJR5ALOFUkQLRCSZYpw+pyij3IJU3mk5bkjFRiTiCtFZMvQzujyChRSK1NDodpSvkTi8qnwZMsum09s0/T2GM+A6+RdRsk+Qeib236/69pfsTbQgbFXTRdO9DGrXSOr0T9C6T2NeXX4ikKPiFSIqCX4ikKPiFSEr7/shnX72pFm4Nx2ST8DtiBLVZvMHlfg+ipKE+BLH90VSh6Pjy0u8nILWmUNs+heyrFv4u05VgvXowg+2QUdAdPNcKxnGTGJ7vvBi82fn7MIJrpmy++eD3ty1k+FFmI62RlI6K4Q6ayUbbA0Qlnlm8WWu0D4W+/EIkRcEvRFIU/EIkRcEvRFLaWT12i8vaSxsSHdzo84BsvgMklD827C8q9+BaThp/H07g3pTGjVPm3hjWZiABT0kCwt/lHu7Xm52/EfeQeRctBy0RHZNOpb9zaAhKjUdJXq1BIFI2X6nsm96xUmbjQzBDE94dujfRMvRoBqpZPHOP1lTSK4T4XxT8QiRFwS9EUhT8QiSlpUku0Sw7gkdi8/64L2Csl1q0FJLkCWXeXbW+tPmq8dNnxsbCL1q23MB5n8A+LysvaEghrSv//Eg+kqgigWTGEopKeilzk7I+aQJQVPZ2kI3XHTBiu9RzMfTbYLksPfsKRCzFBu2vNNIehR+IvCnIa9qnvvxCJEXBL0RSFPxCJEXBL0RS2vud79eHJaEk4o4ca4wZgsHtogM1SF6RJLmEIRIf1TO/3d7/1sxsDePKb6HMdAtXOIFznO1JusV6GdJzocxEug9mZn0TG5xCwo+y56gnJPUJZFkcGwxT6nsXH3UOffiqnz52vWli2YFRiWcW7+sYzdzUl1+IpCj4hUiKgl+IpCj4hUhKe9+v3CIOfQhmVeGgC+itVyI87CCYzRedtErnfQVy75Oe/1528PuvQPq8Nn9vaTotHWUNAqoD6UbZc1yeymJpBMKPBB1l5HGWXuy3UVHFQpOfS1T4RuU1ZTASUblHa6V3FsuTIS77wa+hGMSjCCF+8Sj4hUiKgl+IpCj4hUhKS+WWJPdwiimICZwGWpAxJDDedT80AgeQkNAE73K2YyE5gfPeUGksyCbK3NvA2hKyA+m8w+XFB0iyaK85en7Y/w/OOzrAognKXjPuzThr/NRgyg5dDNBHEeIgKgFJckYzGM34uR4yEOch+vILkRQFvxBJUfALkRQFvxBJaancMjo4IzrFlHrKmbHgwdLRI8o6S8d+CElOKtPdloZ2wC07gbUz+Hu7hOsjhVTqhRiB7iFJt9K2JGdJkkHrOnxWmOFH5wKSk7LnSmWw563vw3jV+FLtMfRMvGu8DGf57Lc7JoOxJGyjJdTRHpz68guRFAW/EElR8AuRFAW/EElpV72fghrOtIK/HSSBSiWKVEYZzS6LEt1ftJ/ggsYDm9kWfr8KVjJT/7holl5UImFWIwzEMDPrIGPtkOnLEUgWYw/GoFSmTD4zlnvPmzO3dg7C76b2mYDE99WtW6NpxfRMDxkqEu0pGB2Goy+/EElR8AuRFAW/EElR8AuRFAW/EElpuU4fTCxY7mjtfbVnoxk1ncdMKok2cKTR22T739RsXOmv6AYubw17JefeUbNOuLe0Fk2RLvVJOMbso7FvaAw1PAPoBRF9fqeNn7hkZnYBxv6Z+bXHO3+Oy8qPcm9auD54+jf9wq2tdv4/a3SvS2nXBKXyRtPh9eUXIikKfiGSouAXIikKfiGS0lKKbXQkdrQh4W6ICyRsCgqCh0dTQyoojaaGVM4RiKUViJeXBeFHbOBekPDrYI2c2xpGfi9AItHEJZJIxzR/NIungZPIOx/5OvszkHb0/Oi4s5rTe09B2lFPhUfg2E5Acq9BIA7tuVuj+/Bjd+/W5oPvBUASvrRO05BoYg+hL78QSVHwC5EUBb8QSVHwC5GU9mTkRQmODQ5m41HG0a6QSYbZgMHjYL07/Clr9rG/b2sQYq+gMWMpW5Gum7Lv5nsv6JYg7bA5JhxjPfjfzmEKE9WXl8QSPZdo9uQI5B7V2l+0vs6eG2v6d5GUK21nZjYNft9WsBm9tbS/RyAVFyAG7+qVW+s7/wyox4YZP0OStmrgKYT4P1HwC5EUBb8QSVHwC5GU9mrimxlSVhUJn2hTyFKjSAs2iiQxFW1SSCwHP6UomulYgs5nSxl5kNG1BpFD0obOkWQq7a+DZ3BIhl91hNyjqTnnkM13Dll6J5CNSTJ0VBDFM3iXN/CsfoTMTXqbumATzjF8V0mQksQtiVh6xyjbkTJiuWGqECIlCn4hkqLgFyIpCn4hktJej3w54rSG3mUgK0j4UbYaCTYzs0Xl5RfJQRIgLAGhnDiY7UQjug+ZFESCjq5lBRl5JcETISpISe6V7g1OOQJhRGJp1vjMNirVnUFWHJXfzqC3YkOj2AvCbwoZniTtbmkceyEz1e2P+iMG3zuiNOFq2vr7M229JD1r/f2eQEzryy9EUhT8QiRFwS9EUhT8QiSlJRlDWVXTYKbVsvbZZbcgG8xYLN33vuyRewV6mdaR1Apm/ZG8PET4RYdiROVeSfo4gteH/fYKkoz7I/o1ygQlsXQCIo/ep+iocppUvSvcL1J2W5B7N3v/3t7DGolhegLUb5F6K1JW6qTheDkb+VglYX8F5dI0WERffiGSouAXIikKfiGSouAXIiktSZYJiJzToPAj7TIUBl0MzU+XZJjFRjKGhBhUGA+1P+4IehmWIDFFx44OuiCZRlmEvQUHNBR6DxJYJgrlu5ThN4qWg8O1LECSUTYfvrOFXo07OB/K3LuD3oqvYNLuGjJYUfaCalz0PtOVfkv32oxLox+3viT/DAQroS+/EElR8AuRFAW/EElR8AuRFDQLlA3UotyL9b0rySaalks94Kg0FqeTUpkviCUcSgHn2EF62CF9/QiSpFhCG8wu3EO62w4E6yHCDyftBuUesabnB1l2NCmZhq7Qdh2U/pqZ9VRqDTLuBnor3oDwo5JsKiWPZnxSBirJ3tI6yc82+O7oyy9EUhT8QiRFwS9EUhT8QiQFhV9UDXUgTraQZUdlkGacsUZSYwoljjSEgrP+Yn3YSLzUcCNKpbYk8giSacdMQI6eyw4OUTrnEci9koR6CJWtbiv/rOiaceovHJdEcQ9rZmY9ZdpBqe7tsHRrJPfo+rA/YvC9o4nYJdlL94LkJw0MoT3qyy9EUhT8QiRFwS9EUhT8QiSlpdJK0krRTKk1yD2SgGaFfmgg3jDjEEQJre13kAEX7HtHlGRMdLJxVO79HIT7BBagKcTRWRVR4YfZhiD3Bpjwa2a2gt8vdr60Npq5R+9nNMOPaCEzsVRKfgLXSOW7j2FtBBme+vILkRQFvxBJUfALkRQFvxBJUfALkZSWUkap+WAPfyfI4pMBRits5bTfvzRkbKkunmx9Kc2VUpCjTTh5IhGYZvot1fPDdoUeqgg2CqVnRZNzME06ZvbDU5Pok1WQ6/QfDUrRJei/R3RveVx87D5gs9RCqjJN0rok27/z530F+d368guRFAW/EElR8AuRFAW/EEnBiT3kTjqQMRuQQNHRxGbxFEgSg9HfEuGpOSB8SOyZceplDfukVNAOpu5EG4WSVIzKwtI9jArI6DOg9GzcLigBUT4WoMalJHwppZaah7LIo7TkmGGNvndmPEmLpxf5tTNIc9eXX4ikKPiFSIqCX4ikKPiFSEpL2UQsAWk8NNTzg9xbwVhjM57EQ5D0od+STKO68XHjxckERB5NDyplX1HTSxJdlEnY7mOZZNzAMdYAkkTVGhpZmpktYHoN1buTOIuOqyaiWXHUo2GACUBm8f4J0SxEmly0g1Hz2yOEbUmQUu8N6p+xAGHYKcNPCPE/KPiFSIqCX4ikKPiFSEpLZYI0BYTEwgrk3nLwzRGXvV8ziws/EkGUsYblkZil50Ueyj2QOyXhR5ImKuNIsI7htzMo3zyH86G1Du7Xy50Xe2Zm38K10DOIZgJSyWsPWY30/GiqUHS70rbR0fLRMekkeynrj95Zyiwk2WtmtoR4uwNRfQuDuK6pwSweRQjxi0fBL0RSFPxCJEXBL0RS0F5R+e4CsvTmwUywktiLloTylBTIlAN5Qpl7Z+3Urc2aif8tiLNSxhgKI9j2FEp/Lyu/9h6sPYZMwA/6WPnmTQPn1/K13NVe0N5XK9z2IZiNOfjnj8I2KOKI0vShYzL8aJ8kcaNjtqMj1ksl8HeVjzc6n3MQkPd1bGy3ECIBCn4hkqLgFyIpCn4hktK+GhZukTKMSO7d914CdVhqy6IjKmOioiS6HcmY09oLP8p+LGWS0T1r4TgXIPI+Mi8gP+38bz/q/b19MvLPYDTx2XPfrk7d2ndQ2mzG2YUElVBjNh+sEQ1IKXCXyL4gj9/1SPS+9tcy3vv3BMfFQxxszT/TrnC/SKbS+0jv7Qmcj778QiRFwS9EUhT8QiRFwS9EUtp/n3/jFqPZTtHMu5+LYQeDRQboKVj7LMQB+rCd1j47cFYo6S2VYT6EMvde9P5v8GdQBv38cu7WTi/9dnvo17b61l/Lxd5LQDPOGiNIQEWfP71P0Uw5onRcksD03kb3idIOJPcxQ05IAr49n9gwFpKc68bvU19+IZKi4BciKQp+IZKi4BciKe2btZdIODkUssFwsin89thyy2Og7LJFD9mKjc+Ue9J4IfYI+uiZmZ3AZFS6vqudvz8fdv4cn5wu3drs3IvKZuSFT7eCoStwfodAYokkJ8liEnm0Nm4gU456zwXLfM3i4o1EXum9jfyWsvRISGPWXuG40UnLtHY/+PdbX34hkqLgFyIpCn4hkqLgFyIpLU5apamqsapM/HNSmjpKvu9dZw1GB0ts97EBItfQR8/M7BNou0a99M5gMu712MuY6YnfboAy3/XCC8jl0mcRvtr5kuXbwmTbdTBjjcpJaVhFW8ck4AQyKkkqHyKKUVQGpwGTbCSob+XOfOYlyWeUhYVMwGjGIYnYVeXPUV9+IZKi4BciKQp+IZKi4BciKVyfCmB2EWQs4RTaA5LLohN5o0QzDknu0LRbEntmZn83e+PWrp76LD1i2Ppz3Kxg8MKdl3Z3a7/2494Lvz+O/fV9azyld77zsoqEH95beNgkBmmyLU1FjpYXH0IFApKmL9P5ROVzafCG218wrsxYxB8z0EZffiGSouAXIikKfiGSouAXIikKfiGS0pL5PqRe+iGH1EVH0zSjhjV63mSQZzCx57n5tV+397jPD/8Rau0/euLW9vf+PwDbP/h9bv7Tm2Yy+19VftrP12N/H/5Ue/v8zcD/jaDpTFGDTNBzJpNOa6UJSVGi/9mhiU1T+A9At/cpumsYX0/nHf2PGTXqfLv+09N7OT1bCJESBb8QSVHwC5EUBb8QSWlxOk9QskSbNZLIKUGyYwDfh1NXgpOGKLX0upm5tS+2/rcf/9OdP66Zjf7ht35x5ve5/+prt9a88mPSqXb/Nabt+sN+WXlh92eQey97vpbl4NN76VmPof6+2LvhAfRcotN5DoHOZ1b7m3aBws+/yyvo+3AH7xNdHwk7fN8L6b3R6UO0XU+9F/AoQohfPAp+IZKi4BciKQp+IZLSktyLTirB2v3ar5FgK0GTTmpoNBkbdszyctp4UfVXzZlb+/31S7c2+Zff8XF+/Xu/uIRswNev3dJu7a+GmnC+bL2A+kPl5dx/DV7kvez82hwmF5mxhJo2/nzOmxO3dgbibAABtYZ69w00Nz12ug69oxPI3Luu/HnPQPi9pt4EsB02xg2ONC/1r4jKvT00jqU40JdfiKQo+IVIioJfiKQo+IVICpb0EpgJGMzSKmVu0T5pQguXOMYaStL+LiCb7+83XgK9/6/P3Fr9u3+GczFrnn7m1obvvnRrpHI63/vTXm28TPt66q/5q53PDvyuu3Vr952fCkTlqWZcjkr39qLx5cQf1P7ekvD73nzG4br3pbHUCJPEWTErFaqOR/DNe2JeAp/u/XbboGrG0dnB8l3MXj2AqBjUl1+IpCj4hUiKgl+IpCj4hUjKfwM7bjYpYuObMQAAAABJRU5ErkJggg==" y="-12242.742794"/>
</g>
<g id="matplotlib.axis_681">
<g id="xtick_1021"/>
<g id="xtick_1022"/>
<g id="xtick_1023"/>
</g>
<g id="matplotlib.axis_682">
<g id="ytick_1701"/>
<g id="ytick_1702"/>
<g id="ytick_1703"/>
<g id="ytick_1704"/>
<g id="ytick_1705"/>
<g id="text_86">
<!-- 279 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 12351.037794)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-57"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_342">
<g id="patch_343">
<path d="M 164.424375 12367.644558
L 286.714375 12367.644558
L 286.714375 12240.351031
L 164.424375 12240.351031
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_683">
<g id="xtick_1024"/>
<g id="xtick_1025"/>
<g id="xtick_1026"/>
</g>
<g id="matplotlib.axis_684">
<g id="ytick_1706"/>
<g id="ytick_1707"/>
<g id="ytick_1708"/>
<g id="ytick_1709"/>
<g id="ytick_1710"/>
</g>
</g>
<g id="axes_343">
<g id="patch_344">
<path d="M 299.674375 12367.644558
L 421.964375 12367.644558
L 421.964375 12240.351031
L 299.674375 12240.351031
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_685">
<g id="xtick_1027"/>
<g id="xtick_1028"/>
<g id="xtick_1029"/>
</g>
<g id="matplotlib.axis_686">
<g id="ytick_1711"/>
<g id="ytick_1712"/>
<g id="ytick_1713"/>
<g id="ytick_1714"/>
<g id="ytick_1715"/>
</g>
</g>
<g id="axes_344">
<g id="patch_345">
<path d="M 434.924375 12367.644558
L 557.214375 12367.644558
L 557.214375 12240.351031
L 434.924375 12240.351031
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_687">
<g id="xtick_1030"/>
<g id="xtick_1031"/>
<g id="xtick_1032"/>
</g>
<g id="matplotlib.axis_688">
<g id="ytick_1716"/>
<g id="ytick_1717"/>
<g id="ytick_1718"/>
<g id="ytick_1719"/>
<g id="ytick_1720"/>
</g>
</g>
<g id="axes_345">
<g id="patch_346">
<path d="M 29.174375 12511.563982
L 151.464375 12511.563982
L 151.464375 12384.270455
L 29.174375 12384.270455
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_689">
<g id="xtick_1033"/>
<g id="xtick_1034"/>
<g id="xtick_1035"/>
</g>
<g id="matplotlib.axis_690">
<g id="ytick_1721"/>
<g id="ytick_1722"/>
<g id="ytick_1723"/>
<g id="ytick_1724"/>
<g id="ytick_1725"/>
<g id="text_87">
<!-- 284 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 12494.957218)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-56"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_346">
<g id="patch_347">
<path d="M 164.424375 12511.563982
L 286.714375 12511.563982
L 286.714375 12384.270455
L 164.424375 12384.270455
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_691">
<g id="xtick_1036"/>
<g id="xtick_1037"/>
<g id="xtick_1038"/>
</g>
<g id="matplotlib.axis_692">
<g id="ytick_1726"/>
<g id="ytick_1727"/>
<g id="ytick_1728"/>
<g id="ytick_1729"/>
<g id="ytick_1730"/>
</g>
</g>
<g id="axes_347">
<g id="patch_348">
<path d="M 299.674375 12509.062218
L 421.964375 12509.062218
L 421.964375 12386.772218
L 299.674375 12386.772218
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p3103a72695)">
<image height="122.4" id="image21b5ddf9b7" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUuvI9d1hTdZxccl7+V99UPdrZdbUmRIgpFBkMAGnIwD5Dd4kP+Vv+FZgGQSGEGehi1Zli2p1erb3bf7PsjLN1msDGRPen0FnIZG0VnfcKPIqjp1NgtYXHvv1sd3/rqOV6jq3auh2OwqidFx7VZLYr12R2IREYflQGL3ygOJfdTS2M+Xej0/+YvnEht+3JdYa9jTi9lsJbQ9m0ls+qitn42Iy/OhxF4s9yT2bdmV2G9LvZdPd2OJPd/eSGy12yTFptulxDaV3nNERNkuJNYv9LqHpa7joK2xYaGxXquEmJ6XmOxWEnu2vsZjXy4nElvDfXcLvZ5RV/fn2/1bEvukPJHYj7e65492kmoxbWu+fFnofoiI+F2tz/9Z4p4geCcbY37wOPmNyRQnvzGZ4uQ3JlPKLggvmwDBgX4mVO+LOlTUoFjjBcGJ+qGiSB+usV3CeUBkiZUKIrvpWmKbK/3sbAxiYURcLzV+2da1vQBNaxIqQM3rNCGPYiTOtmENOyByRUR0QHjrgAhYwLNqgeBbwLmHLRXEhrAXK9g725ZuvINCxdWIiE1X12JZ6bOm6y5hHXY17Ilan98lrO0GzjFt6/ddBgt2s51e97bW+6vhGknE9ZvfmExx8huTKU5+YzLFyW9MppQkapD4QeIe/XSQ668Fgk8EC0sDEH32dyAYlSqytLsqdOzmKp7Ul+oQW73Qz46fqYj0fKxOvoiIM3C2nXX0up+09bqf79R9N97OJUYuvR2sN1G09GH1QASKiOiCUEnCcAeOo2dKbr5DEPxGEFuAoLUGwW9UqJMzgvcyCX4bOA+tWQWJMAXB76qt37dp6/dN4F4uwMEYEXED8VQ3XxkW/Iwxf8LJb0ymOPmNyRQnvzGZwoIfCHQtKD1sgxBXgYBBYlFExB6U+h7AsSeVinF7eyp0VEu9nvUfQMh7qaWa45kKRlc7LWM9L/lezgo9z5O2CktPdwuNbbXs9Gqj5cTzrQo+VEJNbq49KMkdQKltBJfl9kDcI+ce7aeDtp77BMS9w1o/OwateAHi1a7Ngh+JjVtwAy5AOFtCjATtBQh+NxDbwNpc1rpHLirdIxERs0oF32Wl10hCJT0Xv/mNyRQnvzGZ4uQ3JlOc/MZkStkH0Y1KcFMdUFROSOeIiNhvgQhV63eSD22x1O88+/JQYi/WKu5QqS31UpuCtjeBEsyIiOctFV7OQNyjPnxXm6nEyIVGbr42CDnk0CNx77hkt+IxiGdUgkuCH8UOQXR7t4JrBLNiq9T7WzQIyEQH9ugG1rEA990usRSdyo6X4ARcwXkvyN1ZqbszImIBe2IL5ds1CL5U+us3vzGZ4uQ3JlOc/MZkipPfmEwpR+DmInFvDb8T1MONHH7kLvru81BuCZ8/A9FnVe1LbAP6zBRMbIsWCJog0CxByJm2eKDCSyi3vAThhkp1V+DSol5x5NzrFSrE0ZCUPXDZkeAaEXHa0kU7CXLk6fMf1fpM7210bd8pVOSs4LPtrYqSM9gPJLBFRCxhL2/hWNrz1PewC3uZxNAu5MYC+k6Ss3C942EqJO5hCT2sI/d1NMZkiZPfmExx8huTKU5+YzLFyW9MppRHoPhSg8QbmBayBoWU1Mc1TKSJiBjXqpBTP8pxSz8/6ICtFX7LUn/dyKJJdswZ3HNExATqsuewZjzWXK9yD0Z5cxNOVZrJyjsEtX/YYLumngoPKl3vD9b6XB4e6ajs04f6D0d5qudYPNK1uf69XvdXoPbTvzURETOYfMTTkKAhLPRK2ANl/wRyaA/+FUBbMTxTin13PWm7mSz2uO+Svs0Y84PDyW9Mpjj5jckUJ78xmVIOyHoLNlkSP6jun4QFikWwpfImVASkKTB9qFk/BFvqPohXZCtGwQ9EJBrHHME2TaqhJjGHmmumintDsGeTZfsIYqcN9t63oNb+k7U+l48/Otfr+atjibVu39eTLLSOvV6fSezgC13XTkBTzobae7LyNu3HVyH7OvUHKBJzg66Qvo+s2BERNYygJ9sui8pgncazGGN+8Dj5jckUJ78xmeLkNyZTkjshUn35lsQ9EFjIcdT0nXQsjVle1yqKtIo0IY/qtOm6yZG1bBD81hCneyHxEuv0wUl2AM69W21tUHoPhM+7O33Ud6kBQkT8CJpKfvjJC4kN//aBxFpvgri31bXZTXUiUTWj/QTCJ9Srjxqaem5gLUpo1kluVW5kq9c4BscgMYXjUl1/ETxJiV7flC+0F/3mNyZTnPzGZIqT35hMcfIbkyklNTik8kgSzkgkex2HHwkqJAJ2cGaPguOToZyYJrGQGw/vueFeUl1jtGbUcLENE4T6IGodgTB4D8S9ByDu3YOmoxER9+/oyPD+ezACe6RNVEncq8f6fbuzK4mNv9Fz3NR6LyNY6rcbXHE9EPcuYRQ4lWSTuEuxagf7GEvE4fvAGdo0KYgmMVGJMZVvk6vVb35jMsXJb0ymOPmNyRQnvzGZUpI7iYQucrCRSLYiAaPB4Udlhi0QJsgBR2O/SRAj6F5QyEkU8SLYVUXCzRKm87ShRyFBQs4arnEKE4nG4H7sgUsyIuLgWoW30SPtzdfvP5FYa18dh/VEe/gtH6mL8OLiRGITePYDENgKEE0jIlbgqJzC5JwydSIVCMgz6NVI5eosKoMADDkQwe7QAeQB9RT8Pv0tjTE/MJz8xmSKk9+YTHHyG5Mp5QKELhIr5iDkkbhH44WbBL8OiDnkYkIRMLG/GrEEcYiukQQ7Kgd+HUhEXCX2YaNR561Sr2fW1u97Wui6nsB474iIl9uRxOb/q8e++Xwssb1jHb292+o1Xj1Vd+CzSsXCG7g/Yt1wGI9YUcgBR/tpDVuZBGTKDcorcrmS0Pjd9cDzh+vuU89LC37GmD/j5DcmU5z8xmSKk9+YTClJ6FjjwIG08lsSqpp7+KX99rzOJFM5R9JRDIl7Te4ruppUcRBFQHACXof2vSPX2Li9kBgNgqDhHhER444KbzPoFfjimX7+4CmU9MI6vARh9zFczgQmRtNaNz3nmxaIbLAfSxT30nYPCXmzSsul6VkRJOxG8J5nZ6reX88lvcaYP+PkNyZTnPzGZIqT35hMKQ9ACNpByeQSyk7JcUQOvabSWBIwSOyg8xA0AIF7D4Jzj0pyQackYSiC3YBUikyuxg24Imn6aoSWjpIQu2qrWLho62fXBZcSo3gJJcGXcC9FqBNwA9c4hv10TUMtQMrrkLuzSVyFZ0gTfen50b6l4R5LKOmdk+AHz5RKwZv2O+0duh66v64FP2PMn3HyG5MpTn5jMsXJb0ymlCUIAT0qCYT+eLtCe731oKdY0xACgsQO7KVGImJitS394tE52tALr8nhR07JLqwZCaKLVpqQRyIg9g6k8mSc0sr3MoHrpvV5Aecmd9kaCmvn4GCkoRa03nuv0b8Re9fh1Ge9xgUIkDMYdLKoQEytqLQdyrRBxGvDoJEIfga07wgSRP3mNyZTnPzGZIqT35hMcfIbkynlAoQO8uPRNND9UmswSYBoEiXIaUc9BbFsEfvrkbOJHINUIqzrQCIQlW9GsKBGYhWJgORq3ML1kLhHYOkoPFQSviIiZjsSbRUUJeHc1NeR+t5hqS0IYgRNNY4IFIHpPNSj8gbEPXLu0f0RdC84ebfgYSqDQvOtm+h+XWK+GGOyxMlvTKY4+Y3JFCe/MZni5DcmU8rrnY5KJovtCOr+aRTwYQ3qeoPavwAF8gVYXc932pCS/gGgKT5DsIKSrXUO3/c6aj/ZjVP7FZDimwop7nQt1DOAPhvB1506rpz+aUgdV43Aaes2/bOSDvV9ICtvqrJP+6kP05DasK707Gn8fFOccpX+CbuC/gl+8xuTKU5+YzLFyW9Mpjj5jcmUcgKC36itdfp9sMnerVWAuFXROG1mDMLNEgSQaxA1yB5KzTUHZO+F37wd1O5Pv+c4bhKCCrB4HpQ6DYdGPJNItoS6eLKvUi8AbhLaADxEEi/p3CQskvW5SYBM+WxTY1WyltNTJXs2rTcdR7bd1ClT2LC2QQAmQZvuj/pn3EC++M1vTKY4+Y3JFCe/MZni5DcmU0oSltZQu08iQg/0mQMac9PAFGqwyX1FTjuCavf3SFCB3zw6L/Uw2MDI6IiIGgRDqrXuQT3/IQisc3CcjbdziaW6+ah5ZJNrr96mPUNq1poqdFFPBdpj6T0MGhyI8HHaTxVYCbkRKp2HhDwQe3EdqFkuO/yG4LI9ApftAL6T9rff/MZkipPfmExx8huTKU5+YzKlRDcYOckgNgeR6wamjYDpLyIizqFJ5XmtjkNyIVIjzCHEjmuN9WhKEbrxNEYjzZugaTH9xAkyNK6anG04RroN5cnUZLJB16NR0outllpXBYik0HySylZJLKR7IYGN3J2Lmt9jYCLFcnASSel6UmMk7vVhfPk+TL26UwwlFhHxVludoPd2sLagSU4hV/3mNyZTnPzGZIqT35hMcfIbkyklCRNUWjkFAeoJ9NublzCCGue9RDyF3nzfbsYSIxfi7c6BxA5B8Huw1fs7rtLGVa9aOiFl0+A4Iw/iDg6llZjDT/ATEE6XIOQtCn0Gix2MjIbPktgb0VDeCiIgTvyBATIk7h20dW1pbaaVir3kBGzqCUj7myAnYdNEo5TPdqDMlybu3C91H38SLPh9vNT7vhW6PisQP8+opyCexRjzg8fJb0ymOPmNyRQnvzGZUtIgARJUZiAiPYHjzuH3ZI1yWMR1pYLfDcRSe58NYWDIg42e+739icRO7s8k1rsF/egaKkfXlzAI5FrdbtOJij6PlyrwTPvQFw7Wllx/qaWjVUN5cgvcYASdh8S9o0KdaafgVqOyXHo70VAKKr+O4NJhKm+ltSWRlFyNtA7kQKWhG7dBVP4xCHsRER8dXkpsMNK8HF/o2o7nhxLzm9+YTHHyG5MpTn5jMsXJb0ymlFQySbEtlN/OdjrF9HUmvC5BRKRBEmVB4ldaWe4owB347lRig5/fl1j7ww8k1kT/2TOJHbxQgebW2bXE9n6l1/jF7JbEqH/gCpyX5NAjCnARNh5LA1HAsXZS7kvsbnugsdDP0vTdAxDyyIF6AAJbREQX3G7Ltq7ji7buZXL4TaA8mZySJJqvoGx4jbkBNsmIKEo9toT6XTImrsnBiGcxxvzgcfIbkylOfmMyxclvTKaUk6066ggSP1IHNDQJUNhXDiB3GsVQZKGJvHDaVl8FqNbdt/XAoTqlIiJap29IrL481+NuPZHYyfPPJXb4az1HXej9pfaUo7JTcqFF8DOk3nwk7j2AEtW3Q/vUvVWBOxC2yQbGA/dhP51W7CJtwZ54Ueh3/rEDe6zQazyHfTeBsmMqRZ5B7HmpsUdd3YsREXcvRhI7Xmj+XszU4XfRteBnjPkTTn5jMsXJb0ymOPmNyZTyZgMltOD8IoGthD5lVGLa1F+NhCkSlvowKIMGYqjXLeISHFmXT7SEdvC1OvRa72msPTqFs0TUx3f183Tgyxf62YYy4VchVyP1HqT+cQU43Zr626G4B4Mk7kHsXRD3HkIfxR9tVei6ta97cXSiseGbup+KYx6mUl2pi/TlZyqIDa5PJLbsqfB209JdNoE+ejhMBWLnW3Wb/q7Dgl+nAwM+FnrsvNQ9cQHuSb/5jckUJ78xmeLkNyZTnPzGZEpJwxiIAtxOTaW6r7KqSIpj5x+JTSUIU+Q4XEPJ6wsYIvL4Rl1oR79WN97hwy8lVh9pqW1ERHT0uuvn6ubb/voPEnv0GxWbHpdUEkqDM9L6x7Vg4nCTw+8Qeu69Vaib7/1aBagfwaN+p55L7P497aN49Ik+v+7f/FhirY/+Uk/S1WuJiKi/+kxib9z+L4nd/FJ7OP4PDM+gCb80NZjKjilfJpWuzR+h119ExAYcnne7uu86IAJv4Hr85jcmU5z8xmSKk9+YTHHyG5MpTn5jMqUkKy/GQFUmKy83BOV6flJEcTw0fOcSLMPjUNX1HO5lUMLklMf6D8Dw028kVnZYIQ+oJ9/8h/5b8Om/HEvsX7qqrn8eqgJPoeEprSE9K/pXgCbIREQcgJ36bmjsHeiL8G6oHffeG6rsjx7q3wKdDx5IrPVQm6i2H3wosbrhH6W4Vjt1+5Y+67LQBp5T+PdoCk1rU/tSpPa6uN7qPw8R/Kzn0Bz1Now/P6513/rNb0ymOPmNyRQnvzGZ4uQ3JlPKXqGiD42/phpxYgOO36bJMNUOJgOBkEeND69o5DRMYllRrFRBpNxqc8T4Zw3d/q3acyMi1ksVVD471xr/f+vrWnxRa033OYg+CxD8Ui3W1MiSGp5G8LjqIcRuVSp03TrV6x6B57f7gfZFaN29rRcDQurusVp264lOR4qIqB99JbHt1xcSu1qqbfumD1ZeEPdSnwH2WXiN9y9O/IH93YPvvAcNU/3mNyZTnPzGZIqT35hMcfIbkykliXtdaHpJMYJcTORMiojYhoo5JJ7Q9JMq9LgZjFkeg1vtJTignpVaD/4Z1HPfeQ7CYARcTcQ3eyp0fbNTt9sF1HQvd/pZEkNpvVJryZvEpqqAUdDwCAcwtn3/VJ9B512dctR+UyccxYE67+q5iqHx9FsJ7R6f6XERsf2DOvyuPtW9/Az2yRJclqnPgOhCblATXMrJCHZkDqEnw0mtn3+4UbHQb35jMsXJb0ymOPmNyRQnvzGZUqaO3saJPRAjQYRKfyMiVjD9hBxU1ACUGo8u2uqAmySOEX8M9/I5iECjghtFUjPM5VbvZQYloRu4Z3Lf1VD+SWJT04SkV6FpPxFcLj2HiS8rmALUBmWw1YfS4QJErQ2U5Y7HEto90saoq09f6mcj4uILLXn99kqFxSc9XQtahw3EViDONu35V6HdVNLaREQf9thhS9f2bU2D+ORtbVDrN78xmeLkNyZTnPzGZIqT35hMQdseCn7g8BuAIIYnqVTkaoJHG0MZJZU3knAGIlmT4/BVaB2oBDoiogfuKyrhJCGIzkMxcjWSCLgBMTS1119ExAxKh8/bKmp9DaXRt79UB+Sb++qy64zVPdfag6lHC72W9SMtGz7/XCcKRUQ8utHr+Rr6MH4D9zfZ6r4lcW+xTeutuIEcqkEgpb0UEdEHUfpurcf+pLyR2OkvdPKR3/zGZIqT35hMcfIbkylOfmMypUwVm/rgJNpvqUCTOtwjgp1o2CMNhifQcVjKCn0CSVRMLctcQ9+6iIh1qXESbvahdHgPhFNyVJK7jAS/dUuvZZu4DhHcK/BZrWXVv+noNS4rLd9999+1NPr2f6qYtr+n5+109P4WCz3H2VLPERHxJYh7X8Gz+nanw0YmO71n2nfkNqW9SOW7lBtN5fP7kINvbfXz7/xUy8aLf/hHifnNb0ymOPmNyRQnvzGZ4uQ3JlNK7NcHpYN9OG4IglYBAsYaer1FsGuQrgeFKah6JOEFf97StL3XgoQ3En3o/qhMuIQLXyf2jyPBbg0TjJsEP3KxXUKfQbq/SxAvP9/TfXJc62Ti47WKdgequUUX1vqmw6LyU+hHeF7r+lyBuDcHZyo959Sp1gel3vNRR+951Oay8WMQ/O5A2Xj5DvRM3Nfp0H7zG5MpTn5jMsXJb0ymOPmNyZSyDwINOc66oLCRuJdWLPsd5GLbK/Tc1GeQnFYbEBZJlErthdc0xZYggYd6HPYSnZJUvjmD0uZFndY/ju4ZBdKIWEJvxRJ6D9L63LSgHBjuZQCi8h6IofsQ67+Gi3QBIukE1oxEUuxHCXtxCK7Nw472Drxdau/AEQyQOYL9EBFxb6drcafQ8uZWW69x+9t/lZjf/MZkipPfmExx8huTKU5+YzKlHILgsAfOPRoYQHLYEkQpKkWN4KERJDbSNNnUXnh0HAmI1Ovv+0xkjWA3H01aPQARcAAiGa1306TdFJruhe6bXH8EOQlJJJvAdZeJ5eXkfuw2TLalPUYiKe1R2juDQvPlsFRx753OkcTeaKkw2Kv1HAcNz/TDte6At96/1gOH9yS0++9fScxvfmMyxclvTKY4+Y3JFCe/MZlSkrhH7itynH1fULT7PkMtQMCi45p6pL0K9mtrEC9xwAesLQlTPfgN7pMgljj5lQRNEt3I9RfRMDgF1iIVElNTIYcm7Rtyi0Zw2ThBz5X2yT6UX79Tagntx7WKgG9Avz1iVLEQ+/HRpcQOfqrCYvtUy3d3z3WKsd/8xmSKk9+YTHHyG5MpTn5jMsXJb0ymlKTsj6CeeAhqKqnPXbLiQn1xRMQEasRXNI4b1GdSZylGanGn1ntpJ6r1veDxyWQjpXp+up55gLUUBPJt4phtuu4KGlm+joJPY7+xB0KiTTq1pwJB/1w0qf00Up2eC32e1vG4rU047wf8AwBL+wAaghbwoAclW6lPP9SpQu0339UDO7BHV9qvwG9+YzLFyW9Mpjj5jckUJ78xmVJSs8DT0NhhDTZZEKUWICDuw2jiiIinIJK9hFHJWxgPTWIVxciiSYIPj8lOsxVHsOWUhK4NiFqXMC1mBTX+ZJIlu/AAejQ0WXmJVFtzvUsT7ahRKAmIdI3UJLQD+6lqsPGSOFgUae88etZkna5BtCMTeAmj5kd9FQH7/QYhFtZ7d3bOx77C9slYYn7zG5MpTn5jMsXJb0ymOPmNyZTyjVBx6BjEvT3QiwqI9cnM1yDGLEFsnMK0GBJtUmvE0aUFDRePYSzyAKYUdRp+L0mYuoRR0GMQ9xbgaqS7o54KPYhRk9AlTKRpctSR4Fft9NjURqgUQ2Gw4l4JKZQNonIqtMfoGmewjs9hStGjjjoBD5cwHYtGbG/5uVx/rXu0+0wbeG5Xuhbja50W5De/MZni5DcmU5z8xmSKk9+YTCmpxHQKTqQVCCIllZ2C4Ld6jVHXpBemTt3pgruQpqk8aA8l9iYJnztorNlwK0u48C8LFV62oWt7AyIST5BRqJSYoO9bVVw6uqnSpu60wAFHrkiCxLQK9h25/uiem5yX5OakGEFTii4TXZsBGvegp3uxu1Jh8GDbIJDf6HXfwJ6/AAfjOajzfvMbkylOfmMyxclvTKY4+Y3JlPLzeqpB+E3g8tY0salqEPzI2UaxXWJvNxJyRuDcI1fjBxu9F+q5NmrorzbZqKtu19Pz3LQ0tgWha009CkEsJEhMI2GXXIkR3M+wW6SVRhPs0EwT9wi6ln6h7rmIiP1Snz9dN4l7iwqEWHA/Ttpahl7BsxqU4Bjt6n4Y7Vjwm8Kr+qyt5zkLvZ5nu7nE/OY3JlOc/MZkipPfmExx8huTKeXvV9oDrIDfBO5nBjFwX5Hg0wSOh0YRMK232x71FKz1eg5hLPKtPRVOTu6ocBIRcbzQ89ycn0rsZV+FqWVbxT1y/TUJp6+S6n7caxDJKhCRcNBFYhltBUNS6Pt2pZ6X9g6VaR911LUZEXEA/QzJkUdCHsVIBFyCU5LW5lsQn+n1uwfO0IiINYiIVDZ+tr3R2Ooq5dTGmBxw8huTKU5+YzLFyW9MppQvlpOkA0lEIhEQhyQ0lFtSPHWyLUF93MiZ2E6sMK5BGGwyoXVh0MLtljoE7+60rPMKBKwdDoLQGK1NAaLrplDhi4TUCBawUp8VDUnpwQAS6jNI0M7Zg+87gKErEbwW1zAdetFW4Yz2UwFl3rTn0UUI6/0cBtJ0oIdmBLsGSRi+2s40tlInr9/8xmSKk9+YTHHyG5MpTn5jMqWcbVRwIFKFPBIGqQdfRINABzE6joSlpvO8ChXGko632uh5J5facy2ChcAKfluHcPIDuJcqUfAj5i11DFKJ8KJBdGsa5vEqHRC1Tgp12j0o9iV2GyZB05uIrmQPnnOn4dlP4RtIf54VUNILYhpB4t4ABFbKF+qtSFN/IyK2NOgE7i91UrLf/MZkipPfmExx8huTKU5+YzKlXMOABoKEvCpV8Gso6U3tNYdOQhrkQc42OMcUBJUr6q+21RLM8VSFnIiILZx7Bte9gp9bEqsGICLRPZMIuAX1kdaQSrcj0nvzkah1p1AH4/sBfRRhugt3rlM6ib3+IiLOoTx2XqjQOQaH4LJQcZdETipt70EJNe13yo26QXAlhx8Khqml30lHGWN+cDj5jckUJ78xmeLkNyZTygqcPyxCwOAFEM6ayneJGmpryeFHgkpq/7hZrc6tZ1BqW5cq+LyA4RB7DVoKSTQr0DlpAvIaYiTudajEONEJmCo2RaSLWlRa24+050K7hPooDkDQ6sFqrxreY1NwMVKZL8VoHerEUmQS4sihV4Ibs8mpSoIfuRA3iTntN78xmeLkNyZTnPzGZIqT35hMcfIbkynoqMRRySRAwmFNtcjJFwQq/rBUG+kAJrGQojkHNfQMzjtu6b8CB6BmDxv+ZSjJWgwLtALFt6LpQ/B9fVCfyb68xpgqwE11+7SOpHwTN/DvynN6pqCa39rqOpyW+s9Mt6OW9KsFTMOJiF3oeWjyzRLWhxqcptpp0br+GrZkgkaqb/FfBY1h743vdTXGmP+3OPmNyRQnvzGZ4uQ3JlNSS6i/F6/TwLMPY6OHhYo5VC9NYgwJfsudilITELRokg6N/I5osIKCQLMEEYnEIRqpfQQiJ07nAUGLrmWX2Kgzgq3cNIFmAiOj+zCiewti6mHoc7l7XydKFR29lvUjfi4bsljDdU9his+80ljquHgiVRhs+j76PImIJAxSrvnNb0ymOPmNyRQnvzGZ4uQ3JlNKrt1PEzCwRpgaRbb5N6YL9fJ9aK5IYlrq9BNyO5HIQs0/5yACkRAXkd70cpkoQFIj1GtojnkKsS5cyz6IhVRfHsH3vYJrJDcnnXsPavzf3OhnP3jvQmKjvzvRC9yB+Di90eMion2l04LIzUfC8LTSaVbrnQp+lC88zUpjJLo2OS9TezLQXqZc85vfmExx8huTKU5+YzLFyW9MppTovsNQ2ohuEhaamnqS6win0iQKdORsIjGGnFJUGkufXQdPOErLjAajAAAAg0lEQVQteaWGi/OtCmx0z7NCjyv7urYflMcSe9jS0dlnIAJGRHyxVuGNREB6BuS8fL/W8/zsjacSO/rFT/QcP/t7idXzscROL/5JYhERo1/C8wfNlgTNRaXParXV4wjKgx6I2QTt4wh2/mFmJYqAfvMbkylOfmMyxclvTKY4+Y3JlP8D47Bb+ibzh4EAAAAASUVORK5CYII=" y="-12386.662218"/>
</g>
<g id="matplotlib.axis_693">
<g id="xtick_1039"/>
<g id="xtick_1040"/>
<g id="xtick_1041"/>
</g>
<g id="matplotlib.axis_694">
<g id="ytick_1731"/>
<g id="ytick_1732"/>
<g id="ytick_1733"/>
<g id="ytick_1734"/>
<g id="ytick_1735"/>
</g>
</g>
<g id="axes_348">
<g id="patch_349">
<path d="M 434.924375 12511.563982
L 557.214375 12511.563982
L 557.214375 12384.270455
L 434.924375 12384.270455
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_695">
<g id="xtick_1042"/>
<g id="xtick_1043"/>
<g id="xtick_1044"/>
</g>
<g id="matplotlib.axis_696">
<g id="ytick_1736"/>
<g id="ytick_1737"/>
<g id="ytick_1738"/>
<g id="ytick_1739"/>
<g id="ytick_1740"/>
</g>
</g>
<g id="axes_349">
<g id="patch_350">
<path d="M 29.174375 12655.483406
L 151.464375 12655.483406
L 151.464375 12528.189879
L 29.174375 12528.189879
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_697">
<g id="xtick_1045"/>
<g id="xtick_1046"/>
<g id="xtick_1047"/>
</g>
<g id="matplotlib.axis_698">
<g id="ytick_1741"/>
<g id="ytick_1742"/>
<g id="ytick_1743"/>
<g id="ytick_1744"/>
<g id="ytick_1745"/>
<g id="text_88">
<!-- 285 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 12638.876642)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-56"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_350">
<g id="patch_351">
<path d="M 164.424375 12655.483406
L 286.714375 12655.483406
L 286.714375 12528.189879
L 164.424375 12528.189879
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_699">
<g id="xtick_1048"/>
<g id="xtick_1049"/>
<g id="xtick_1050"/>
</g>
<g id="matplotlib.axis_700">
<g id="ytick_1746"/>
<g id="ytick_1747"/>
<g id="ytick_1748"/>
<g id="ytick_1749"/>
<g id="ytick_1750"/>
</g>
</g>
<g id="axes_351">
<g id="patch_352">
<path d="M 299.674375 12652.981642
L 421.964375 12652.981642
L 421.964375 12530.691642
L 299.674375 12530.691642
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p448d4f903f)">
<image height="122.4" id="image78dd020e78" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHndJREFUeJztncmOZddShmN3p8+sbKps1+2Mr2SEdOFObDxjgMRz8A48GRMegQEDkBAjLtdIlrtqMrOyOf3ZzWFg40HGt6SVLibc+L9haLdr7zhb+s8fEcWfP//saI/Y9YfHIeuPg4vVZeVis2qcFTMzO62mLnZSjlxsWtQuNjF/7hfm9/2z3m/3cdu52FnRulhVuKWx7eCPZ2b2rmhc7KouXeym8sd8U/jr+W7YuNjbfu1im37vYvSsiqJwsRSl+W3rwt/3FJ7VCLYr4dy1+bWZwRpO4HjE+uifnxmv2bt25WLdsc86TwFrUxX+Xialv5dFNXGxKWxH5zDja2zhWR+O/n3aDj6n/VULIUKg5BciKEp+IYKi5BciKF5JMxaHKvidIBGIxA+KmeX/8gxHL5INIMYRdINj8/tOay+SNLUXWJoWl8zM725d7wWxPaztFWhaexB3doMXtUjcQVEqISIRuYJhC9eIzx+edAPvzgj2nYGwS9udgVj4Q9w/g6vSC833w87F9rC2ucIg5QY9l93gz0HP1IxFuwPsj8Lg4GP68gsRFCW/EEFR8gsRFCW/EEGpjyB+kTCBIiAIL+QOo1jqPLnQMRuITQd/f5PCix/jkRdOxhOI9SzGFGt/nrb167MavDA1KvN+g+lZvQ9HEFLNzAY4D4mAfeFjRINuPi+cLkCePQHhbH70x5se+V0q4Zi/Lr3j9Kqau9gbEAFJGNwlBLrH9AZuPBDslv0W99903s1J+9OzometL78QQVHyCxEUJb8QQVHyCxGUmtxzBJVlUuwppaO5YmMDwuIchKDTwe87IXcg3PKh9cera3K68XpVpY9XcH/kDyShkhxw5JSjWK44SwKUmZnlvhOZz+oUSn+fg/Pu7AjiHjzTEYh788St0PNvYP+PKn89MyjJ/hru+RZEwA7Wdg/iHLn2Vp0/npnZps0T/AgJfkKIn1DyCxEUJb8QQVHyCxEUrE9FIS/TjUfCAjmOUpAb7AQu8/nRx56BOERnvjfvsjscvNi0br0IVCVEsh2IVe9Kf40r+LntQRikElwqE+3ArZhbkp16pCwO5YmSp4V3z31ivoT2L/f+eM+g7HQDAuLuCZ8saJloNdwfOQRn4CQcwz1PwK1Irj8v13FudLAOqXg/5Ln5CH35hQiKkl+IoCj5hQiKkl+IoCQa0uWR21uPSkRTVCBWzUBkWQxUTuzZlNB7jkQkEHwaEPFSLCvozVf72D2Uwe4gVtH1wDoc4F7IOUnP4CklvbQSNKDjo9IPpvibrReqPvv8lYuVI3/PN3/wx3v97sTFbo/cw28N5dK3Vd4wlVsQU/fUCw/e2QmkVg8uUHqmNAzHzKyCeyHBkCRpdOjiWYQQf/Io+YUIipJfiKAo+YUIipJfiKDU2OzvPRpFPmVfsrUeYNrIxmB6Daik48xeAmRV7eGyS7i+Pfx7YGb2DtT+a1CLN6T20/hzHPsMCjJouzRJh5T9fNM1W4anMCXnN9Cg9Hcff+/3/bu/8Oeo/f198Oy/XKz8twe/75X/B8DMbGfebryCZ/i29Gt2dfSG3Iejr78nyJ5NX9oJ9BFYHP0/HMnzFP568B8A1fMLIf4XJb8QQVHyCxEUJb8QQan3MPY5G6pNf4IlloSpJTQ0rMHWOAELJNVaj8EmW2JTx7xYl5gMQ1BrxRZExA4bmXpIYCtAvMLpOnAOGvltZlZCLfocptycQ+wSbrqsQU0la/HZuQvVn770m91+7WL7LTvV75Z+zQayd4P8Se/iQ++ba+baqWl0NtXop3pnjEt/LyVYyKmppwQ/IcRPKPmFCIqSX4igKPmFCErdJkZOP4YcXuSUG6BmeUg08MTxwuCAI0GFxL3TwjujJuT6A5Gsg+3GT3DFkdxEsR6OeUCXHtT4w3qfwOQbumXyXR5gko4Zi0NnIO79yvx605o9XPvtFl9+62L1bOZixfmZi41+e+9iz94sXczMbLJcYPwxtN57ED43g3f90YSdFt7tXOdlauoVTV2iHEz1A/D7CiFCouQXIihKfiGCouQXIij1AQQ/FPcyp/iQiNckBAgSQAhyIZL4MQEn4Kb6+T1KaZTzKDm5yAs3VL67gXteH/395U7xoQaQI/hNp1/5AiYXmZnN4Hm9HPw6vuihcSVMkHlYebHw4o/v/Hk/eOti5Ucf+NiZF/FGz+5cLMUKmswuwY9J5eX0fq9B8Fu1MLa7z3vfqVGnmdkI3uUGyrwp31gsFEKERMkvRFCU/EIERckvRFCwhx+NcyZnGzn3yNm06rivHwmGdExyLJUk+DVe/FjS5BQaIw53SNc3AYHNzGwCM23oPDsQkfaZwmcB56bS0RbuhZxgk4R4eQFl2Z9A9e8FCLH0NdmDWHj/nR/bPfryjYvVNIJ6uXWxbsPfsTsYn/228Nf90Pvy3VxBmhyRJO4d+rzy+RKmUaWgd5QEQ3pr9eUXIihKfiGCouQXIihKfiGCUpOYRm4gFBFgOxIQ246FEyrVpRLHceWdaF0NAzFAgKKR4SSIUX81YgcCkpnZDPrrNbA+BLn0clnDPe+gFJU4hTJdM7PndC+g2c4LKMkGV2QLsds7L/jV/+Gfy/zVaxcDTdmuvuGhHW9q/wzuwFG5hRgJfuR0JUddqiz3faBjUl7S+0QCub78QgRFyS9EUJT8QgRFyS9EUOpF4/urkZBHwiC5i0jwSw0Gye0fSOcegfBGYgw54HjIQh5UamvGIiJojVaRYAQuRLruLQh5t4N3u61gsASxr3j9z2rf2++q9u/JrOWS4Me08J6sen/Pt2+8ANm8IbeiZ4UeNrP1GARfEqVB3Ev1nnwMiuYgxOWKgKkefCQsjqCkN1fE15dfiKAo+YUIipJfiKAo+YUISn05YmfUY7KHdoBQlRL8DiA41eBOWoDYtKh8rIbfMpLncieWkqBJ9/wUqL/eFMQqEhCXR192uoVJslsoTyWRk0QgM7M7OM/ryouAJQiVFQ3khXPQKvbw7EmSHMEBU9IjnYcGvhD0LtO7Q+S+J/SOPcUdiBOZIcbvshAiJEp+IYKi5BciKEp+IYJSn9VzF6R+dkS2+FX58k0zFpzG4NwjgSbXXUiOPHICkjREvQxHCbGogW2ppHcG4t4Cjrl5D7ERHYzUtzA1PRncbnclTJiFpWhoHUEjo69OB7dHhdZTKi8eeG24FNlfOJXBUnk5rVk3+KtMrW0OKWfhroOyYzg3DeKZgmtTX34hgqLkFyIoSn4hgqLkFyIo9bz0QgAJfiQYYa+/zEmyZmYzEPfmIIiR0LUC79eW/GDodqLyRhCq4P5I2DMzG5F4CduO6ZjQ4440SSy1hrVl516+AEXuwnsoJ97DdiRyjqmMGe45F+pH1yQOR2ESWEnIJYcfTekl0Y2giboECbZmXAJ/6GFgCIizJHLryy9EUJT8QgRFyS9EUJT8QgRFyS9EUGpS50kNJ9m0JvUZFW5W+6mOfZZZa92Bt7SHjplkAyZI7ac92RrMdKDa7si6CYc8ZNpDyYJM90yK9Mb2eMz70jcFpWc4hX9rRse8fz3oXwF6FzGG/zy5kJnx162CfxrmMKWI/jUh6y2p86MKlH14tXsYQb5PjPLObShK4Jj7n300IcT/a5T8QgRFyS9EUJT8QgSlJisniV8k0JC4xwJiPiRp0C8Ux/IEo/ch1cARraCw3aHwd7gFkYz6EOTWiOOYdLCl7qDRZwoSEU+hieqEREB4WhNQv7AnAj0/CO2f8JzpGSygBeg59Lqg5qg07QcbZoJYfABLeuo55zYPnTbesn/S+J4a+vILERQlvxBBUfILERQlvxBBqfdQp50r5OW63WgkspmhcFNis0do1gmCWK7kQ/umaqj9Ofgs2WO/Qdx7j9J2JHdUOTWeNDNbtt7hR2436vswL/2YbXIC0mrTOhzJrQjCV+7zM2OHH7kQX5QzF9s13n3XgeC3N78dPQNy3j2l+SftP6vhGUDfDn35hQiKkl+IoCj5hQiKkl+IoNTkGjpCaSxBAgbRJZpHbsl1htNUMgXITFGyIwdcbgltYqw1Xc8Etp3DWGsqY6aS3hacabPSO9M2EBtDjCbSpCBnW2ot3HYlCGxYuk0jukGohPcp9fwqeP65Y9LPCy+S7euFi9GY9NzR2fT5HScGjo8rH29A8JvAOHXKVX35hQiKkl+IoCj5hQiKkl+IoNQopmUKOeSq2oPbaQsuQjOzA8Rpus8U+qtRz7UJiYXw+4blspn9/+gcZizknYCz7Rx6D05BB1rB9ZBwRhR13vSh+3aD+1P5L0ECFomI9J7Q2pJoSkIViXtUmv7DyfMclbnC4KV599wSRECa7EMxooTnZ5Y/sYmEbwl+QoifUPILERQlvxBBUfILEZR6BKJUboUpiXuboy9lXPc8HIJKIWmMcV3C8ITM666xBxyMtaa+hfDbeArnNTO7PPr48x4EIxip3IBIdlXBPcMgCNJmaZjKU4aNLDtf0ps7or14wnnc8fAZgEOTHKgJs2KukEexMSiDJPiS+DyrvDBIz4CGrpAb08xsAnF6BtRTcAM5qC+/EEFR8gsRFCW/EEFR8gsRFPQSkXZCDioS7HZDXo+zFCSAkKhB4hCJeyzueEoQ8maw78XADr8XvT/3B52/7zPo7dbDdW+gFx6JX7n3TMM0qK+bmVlX+uumfn3kLiOHHznyUmXej6FyZxJiUw4/crBOYP8ZOAEJFCXhHCSkd0VeHqQctmM4Jjli6RoPhXcX6ssvRFCU/EIERckvRFCU/EIEpSZHHvb1o15qmX3KyoSAQaIITX49hV5qCxKwQPygYQzk3CLB59ngt3vRsZXsDMo1z0rf221c++02LTu6HrOHZ7DLLG9Fh17it596wGH5Lr4TUNINPe4m5OQEB9wFOCcbeATwqH44JuiAuZObd5m9LNml5697D7lG65rqjUml6FXmsBgSbPXlFyIoSn4hgqLkFyIoSn4hglJft0sXpB5gVKpJ2xEpwY9KFEncu0DBz4t7IxDtpnCNC1CHqNT2Re/Fuctq52JmZpMpOKhg5HDX+eveQV+/PSwtCT4kDpFcROWko0Q/QtqWykSxT535GF0jiWSn0AfxE6+R2YveX0uZFMn8vWypnyGUUH8H1ds7crVCL8pcgZVE09QwlVynLPXGpInM+vILERQlvxBBUfILERQlvxBBqVedF7Bo8icOBwBhiIYx5PnXfoCmt1JZJznyRnDuKbj5zsEC9YveK0sfzdcutjjlfoTEbuPv/G7jHYxXIHzeglhIg0UquD8u8/VrOCQcbAeDkt5MJxqVo5Kwew4lyx9DufTv6wcX++jTexerZ3wv7dJfz7tXcxf7cnXqY1DwfnX0z/+m98NPdpmTe0lITzn8yFFL4DRgQF9+IYKi5BciKEp+IYKi5BciKEp+IYJSD6Ti4lhjsJaiKJlXA23GzT530DxyX/hrpGaWBM3XGWBfsoeSPfeYKBzvoYHnw8or2t8UXu3/EvpoXkPDxQ3YO0nXJdv1CFT4Af4BMOOGmykF2p8HxpKXUxd7Wfi1+fXB39+Hn3q1f/75mYuVz33MzGyy9tOHJv/51sXu/xlGb8Mknjdgh7+BGFmf6Z+wEdT9T6Gfghk/V5wCBM96Dn0y9OUXIihKfiGCouQXIihKfiGCgvOmc227tB3VMafshlR3fDdwvfxjlmT5BQFrBlbljqzK5gWf3RLGMS/9NZuZHWF9XsFEHBL3vjZvGV3C2vQ4JjuvzwLX/bOIR3FszEp2arhnsvI+ByvvHKYZFZW/lqL2+xYLb9lNxZu9t96e/Tu8d50X/GjUNVnkW+gFgX0tIANTE3voU12AvXsO630CIqK+/EIERckvRFCU/EIERckvRFDqXOcWiRDc6DPf4UfuwgcQ/A7gbJtCjfgM3GVz6CawBmHwXeNjJzU4pY5eTDEza0B4uSv9/X1vXmy6gRpxahRJUD0/PSsS8cjJZ8brTe8J9Xg4IcEPnHIn4Igkl2W7gT4ENysXK2Z3LmZmZmN2y7nNoAHryQOMv6a1TTTcfAwJ5BRLCbHUwLMEx2lVejffJTgq9eUXIihKfiGCouQXIihKfiGCUpNYQS49gsQPLhJlyPFE17MD5xfVspZlXpnvBqbKXMF5ydVIDUbNUiWz/pgrGNO8QTefv0Fab7rjnqbrwDlSgh+Nc27gvic0Yh2mKz2DiUQjeMV28PbcXs38vv/tS2gnhzf+gGZWzLzYODx4gbXde5FsAWLqAkpjaaT5AGLvuPLXQiW9T4EagNIkpkuTw08I8SNKfiGCouQXIihKfiGCUpNggEIexMbgsst1AqYgkYz2bzLFLxK1WhC0ttBPkMZSpyBBjISX3PXBtc1cR3IH0nhvEvZ+OA9MQ8p0881BtKN+i3v47Lytvfg1bBcu1n3pd76889OVzMyaqRf39it/nm/vT1xsM/FrRuswASGPoHLnBgS/3FHcZmYLcPNdkMMP+nLqyy9EUJT8QgRFyS9EUJT8QgSlpgEBOEiAxB2ITaF8M9WTjEoXc92FuX0GSbSjktUtjFTeDOAEG1iMoXucVb6M8rL2PeUW4Iqj8mRaxRbWMHcdUvohCYskdFGMWIGwuAc3ZgU3eAfv4q71IuD6FZfu1jDw5Xbw2/5h5M/zvfmBHztwSuJYehIGSfCD7drEN5ne+VPo13cGOTiG0l99+YUIipJfiKAo+YUIipJfiKDU5CQjcY+HMfjpqxcgXlG5qxm7zkjwIwlwDyISlsYmXGzuvNQ/DsS9Xe+FwRRc8uxjJyDQzEAIomusyMEI5yVhiYaAPAXaf1PAmmU+AxIa15UX4o4w6aLtuLci8f3Yn+ePhRd3vx82LrbqfY9JcuShkzOzX1+qh18J705ywMcj1jBxWl9+IYKi5BciKEp+IYKi5BciKHVu+S73a/NC1S+gV9gpDGgwMwPTEYqAW9juFoQlEsQOIDbRoAsSxLBnHog270sNQheJX/RLnS8/5kPPoIN1pNJo0qroudA5GrhDuudZCYImDFj54Ro935VeGH4Lw2Juey/40ZTefQ/TheH5kYuUtqNhNmZmA4h21OuRytjX8Kz05RciKEp+IYKi5BciKEp+IYKCQzsIkrkmIIgtQMU7Txi8Gjh3C4LaHfxEbaAklHrh0a9brshJMZpMm4L2RychiDETuPI8nxxDzy/1y09Fy+S8bGlLEnEz+yj2cEUbWMN7EHtTN+OlPbN7cIKuYZhKO+QNU0GhGfZddV5UJMgJaMbvXq6TkEq/9eUXIihKfiGCouQXIihKfiGCUpNYQTHiAOLHpvD7LhICRgOnqbCkFwQMOA85m3BYBWxHAg1tlyJ3GAeVf25AOJvA8IsZOeAyS3VbcGimnjL1+0uJUP7ceeIe9VGk8usKh034a1mhTMnlsbTeBAls7zNVl94xInWOCZTfk8t2DlORaXCKvvxCBEXJL0RQlPxCBEXJL0RQlPxCBKUm5ZSaTBKkmr4tQNGEJoxmZh2cm7ak5oMbUItpNPWepvOAlZNqrfcwtjs1USjXyksTX5Zw7hNQfCewOic0XQeeH/UhSI1OP2Q2hSRovTe0trAO9N5xfweq0meoXp56JdB2pK7TPxK0L/3rcYR/qOh9oilaZmbnlW+Y+wE0zL0cqHGs1H4hxI8o+YUIipJfiKAo+YUISk1jpGcgdJA4RALbPbRMbBLW0AmNAgc9jSS23FkzZO8k+2qulTdlc821v9K5tyB+0ZQbsmheQv+EBdhSof2B1YlrJjtuB+u4huu+g0aY951vhEnrQE1U9yDOksCWmnJDIuIc3nkaN4718+8xNYdoSn+Oi9qPIDcze1l4we/l4HPoPLPdgb78QgRFyS9EUJT8QgRFyS9EUOrn1dwFuTbdk3KI5exrZjYGjWYGutsKTlOBgkWTeNjhlTfCmi78Kc0Vc5t9Uo0/OeVItLvs/CJis9XKX8tJxU/mAOLZqsgTAUnIO4AwSOPPezhHCfs+BXoGOHUJRtDTvdCzohg596hOf15NXOyDauavz8x+CdOwXsDzH0FetXTLeBYhxJ88Sn4hgqLkFyIoSn4hglKfld7tRA4vEjBqEAan0HjyBBoKmpmd91DOOPjYdQUNPMGRR2OkyflF4h45HQkSEM14LYgOrjt1zMdQw9MXUHZ8VvsS2petF5uuOy4dvYZx19/kDypy5N4fuSzhFUFSQiydG5uoQtkxTexZ9d7BSI05c0uET+C9e1Hwu3gOo+5HkJcHWIqrWiW9QogfUfILERQlvxBBUfILEZSaJ9r8/LHdVCY6To7o9rEO9l9D77M19A+kXnjUK46YgsOLyjwnMPnGjH9FqeSZevjRvg0IiA04GOelP97l5drFzmHf6Q07ye6PvqSUxmK/A/GLSnCxn112UbYnV0BM0YG7sIP3aQdi6rb379ihh36EJfUj9EJebr9MM7Mt3PYtiOH30PPyq2LvYvryCxEUJb8QQVHyCxEUJb8QQalvhq0L5g46MPOOpQO47Ghst5nZLZSUkja4BLFpDWLMavCiBpWT4uhliJ3AQIQzGIlsxgLdEnvc+Wuk4R603jjAYvDX3R6g91zjV3YP/d/MzF5DTeh3g+/Dd92tXGzZ+fcpd/w5PRfqcYfbJcqnsXwXINcfCpUghpOASO7A+8Kv4Rtw/aVYlr6H30ntn+E9iK5fdfcupi+/EEFR8gsRFCW/EEFR8gsRlPqm826wEbjYqByRevitQfi6ocm9ZjYkpvc+hibyUmksCWck0JB2SSLSCazDC+ijZma2gOEZK1xHvz40oGMB+1KPwj2UUG82/hoPnT/vV1DObWb2XekFo7vOC5U7LIP9vx2IQn3vZnDd5NA0436UuSW9BJYdVz627fzxlgcQQ8EdeN94YdDM7E3jHZmL0vcAJJH7292Ni+nLL0RQlPxCBEXJL0RQlPxCBKVeQ1lml+k64sEZTyhRhDJKcra1IORRz7wxiGQlXCOJl3Nw7pHgdz7w/Z3BZNRLELDOQaDZgQNyBgLiL1u/3bPCC0td76/xde/dYd8k2hY+gGBEQheVo5JAR+9Errg3ASHvFAZdnCbESyrBpoEoW9h/C065WemFz2XvhTzqebkB0ZRi5Bg0M9tTiTH0aySRk4RvffmFCIqSX4igKPmFCIqSX4ig1LveiwhU0otTaEHI6WHoxtrYPUVlmBM6D/xG0TWS4EelurTdDGINnCP1a0kS6az3ItlzMDvSMRcgul00XpydTvzzu197Qey69utwDf3/zMw2UI5KAl1D4l7m8BKCjjcDwW8B4twZlF+bsWhLDk8SlWkwzKbyYtw1lMUTAxyPHH6p/oa5vRBpAE0z9s9fX34hgqLkFyIoSn4hgqLkFyIoNfUaI9EGXUMgNjxloAKVBM9BrFiAmIMCFIh7dDVj2I7KgbdQartK9CNcwPUsYNNTcJctoIT22cKLe/MT6P8Hbr6rpS/9vAfdi3oMmpkd4BoJckrmQs+eRGVyXp5C7CLRW/EMJkRDi0KECpG38Pwn0GdwWYObD2JPgd5vKr+fgyA6qvw7oS+/EEFR8gsRFCW/EEFR8gsRFCW/EEGpSeWmBocUIzmU/gFINXCkfxBowsq08kpuQ79bdDxQlSlGVs6leTWcJvOYmc3Qmgr/ZvR5/4ZU0BSymfpYC87SI9zfHlRqahxqZtZCnNaMauXxmWb+A0TP9AyU65cw6vo3HU/sOQW7OT1B+n/jAO/iEp7pEhrRnlW+f8Jt7a87d5pRCsoX6olB/5royy9EUJT8QgRFyS9EUJT8QgQlb2SOsQiRK+RQM0MzsxrECqzfBrGCGniSaNeDeEWjrjEG110n7vkUrmcB03kasJu2gxeCjn6islU1jLWG0dt1AWIhCp8MWW+pLwIJdCSIUqNPOjdNKfoViHu/B5fsb5sHOKJZPfJr8bDzx7w5+vfuFnogdHDh9AWlvhRjsEOTYNdDHwgzs515GziNRCebNNnh9eUXIihKfiGCouQXIihKfiGCUpO4Q0IeObeovjjXtWdmdgouqA+ruYs9g/aY5Excw2lwpHLueG+4l33CFbeF/fdwPTeVD2JzzcHXX2+uvSD2cuFHrDcljPyGy55V7IqbgvBGzk1qrEq9Eka4nY99ePTP+Yud99598cX3/nif/dLFzMyG17cu9u5ffK+E7atLF3sN97IBp+Qe1ganGdFEKci11MQeiufGaJy6vvxCBEXJL0RQlPxCBEXJL0RQ6txmnRQjx1JuA04zs3Mo17yAbcmGSM01dyjkeUjce1+wTBQEPxrHTSISVQ5vwP3Yr6h805eJTmmyCwiNZmYzWHFyQJKMS+LeDISzC3A6/m7vz/HXn3txb/YPf+9i9V/9LVyNWfev/+Riz67/0cWqVzCdB25wBW/UAd2vHhpBjlOPwBlqxtN9BihZXrVe0GyhJF9ffiGCouQXIihKfiGCouQXIij/AytMkYee1dyvAAAAAElFTkSuQmCC" y="-12530.581642"/>
</g>
<g id="matplotlib.axis_701">
<g id="xtick_1051"/>
<g id="xtick_1052"/>
<g id="xtick_1053"/>
</g>
<g id="matplotlib.axis_702">
<g id="ytick_1751"/>
<g id="ytick_1752"/>
<g id="ytick_1753"/>
<g id="ytick_1754"/>
<g id="ytick_1755"/>
</g>
</g>
<g id="axes_352">
<g id="patch_353">
<path d="M 434.924375 12655.483406
L 557.214375 12655.483406
L 557.214375 12528.189879
L 434.924375 12528.189879
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_703">
<g id="xtick_1054"/>
<g id="xtick_1055"/>
<g id="xtick_1056"/>
</g>
<g id="matplotlib.axis_704">
<g id="ytick_1756"/>
<g id="ytick_1757"/>
<g id="ytick_1758"/>
<g id="ytick_1759"/>
<g id="ytick_1760"/>
</g>
</g>
<g id="axes_353">
<g id="patch_354">
<path d="M 29.174375 12799.40283
L 151.464375 12799.40283
L 151.464375 12672.109303
L 29.174375 12672.109303
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_705">
<g id="xtick_1057"/>
<g id="xtick_1058"/>
<g id="xtick_1059"/>
</g>
<g id="matplotlib.axis_706">
<g id="ytick_1761"/>
<g id="ytick_1762"/>
<g id="ytick_1763"/>
<g id="ytick_1764"/>
<g id="ytick_1765"/>
<g id="text_89">
<!-- 286 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 12782.796066)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-50"/>
<use x="55.615234" xlink:href="#ArialMT-56"/>
<use x="111.230469" xlink:href="#ArialMT-54"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_354">
<g id="patch_355">
<path d="M 164.424375 12799.40283
L 286.714375 12799.40283
L 286.714375 12672.109303
L 164.424375 12672.109303
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_707">
<g id="xtick_1060"/>
<g id="xtick_1061"/>
<g id="xtick_1062"/>
</g>
<g id="matplotlib.axis_708">
<g id="ytick_1766"/>
<g id="ytick_1767"/>
<g id="ytick_1768"/>
<g id="ytick_1769"/>
<g id="ytick_1770"/>
</g>
</g>
<g id="axes_355">
<g id="patch_356">
<path d="M 299.674375 12796.901066
L 421.964375 12796.901066
L 421.964375 12674.611066
L 299.674375 12674.611066
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p791cb8c553)">
<image height="122.4" id="image36b5d01868" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHrJJREFUeJztnVuPHNd1hXd1VV+mu+dGitSFpixSiC3IiuG8BAnit/yC/MAA+R95TZ4Sx0DgIA4sOKElUiTnPtPd05eq7jxI8cOs7wBnxOQhOut73Kiaqjp19hSweu29q+n42S7uMG6Gd0PxcLgvsafDBxJ71tPjnsRAYhERx9tKYqOtHic3GBHznsZOe3ryq1hpbLuQ2NvNtcQuNnOJrbYbuJuIbgs3Dmx3etyy07+56Vo4V1diBzGi6dUSmw5GeOzBYCyxca17Yq+n77Wu9MVQrBf67je7TmKzbimxi/VMj9vocRERvUqvM+nrcx/29ZkntR53VO9J7P2envu40rUZ7XQdbip95v/a6r6LiPj96lRitBYd7DF6/5BCxpgScPIbUyhOfmMKxclvTKE0KND0NLYD2W0NAs0yVGxISWE1aFUDELBaEG0Iuk6eDBfRyxSq0ufrPZJARzGiAkGsR8uQuTb0TqvEuXTtXCFvUDUSo7UhtrDHSBjs9/Qag1pjERHtVvcoxdZbFVhHICDT++vgvlcUA3HvbLeW2EnLgt9Neysxuu980dUYUyROfmMKxclvTKE4+Y0plKYPzp9+pTESDMhJtMmW2CKGoH2NQFBhT50KQetKrz0HQeQWXHotiJckcpIAFcGiD52PMXhmEuNIiMuF3h+5viIiaE+QkEexfqZIiuJs5jrQ/Q3rPl6H1pYEvxW4LFc9iul+WsLeWYTGKDfOtiriXSYEv9tWxUFyltY1iLskIONVjDE/eJz8xhSKk9+YQnHyG1MoDYk+5KBqQASkWA3CwnjHQtV7rYoiB6GCyiz0Omfg6DrfqUDzsoVS3VbLIKmslkRAcqFF5JfbkkBD55Ijj4SuXBGQ/t5ezaXW+1C2egixAbx/gsRQcoeSGErQvhv2WPDral3vVavv+rZTMY1cnySGD0H43PXA4QfPfAbiHjn5IiI2IF7nukjJZekvvzGF4uQ3plCc/MYUipPfmELBkl50UIGgMgKhYwqxR6pTRETEjwYqdkwnKrxcXmsvtf+ophL7Q3cjsZfLM4ml+r3dhUSSVBksQQ5IihH0DkaNCnQkQNE90vt72Nd+ixERHzYaP4KedPTloJLuGxBiSUzNXhsSGhOfMbrOptINia4/cIJST0ESBknQXO/0utet9pMkt2FEfp/IXOHUX35jCsXJb0yhOPmNKRQnvzGF0uQKWFTKSmf2yeGXECqm+yrujQ80dn2jgt8p9EN7tb6U2OVKRcU1DMSgdSBX3H36+uX2jyPBiJyX5MijGIl7D+qJxD6uWfB7Fjqg4wgGrJCOew59717C823g/WGfOXCHwq0kS61zITGNBqesqaR3q3uWoIEt6O5M7DHaj7k9IdH1l3WmMeYHh5PfmEJx8htTKE5+YwrFyW9MoTSkfJOieQuK5gysvKc9Pe5FX5XmiIgHFwcS279Wa+OLndaSfx1qs5y3GtuAuk42UlSL4UeK7h4NSnPV3QZG8Qygp8IURkY/6KvN+UFP1+spjJH+actTbp5v9B0cQDPLDpT41/BLwWCosQ38KrAC+yuN7d6A7ZYm10SwVRZ7N3R6HaJfQ77AtblhJoykTzQeJehXgNxr0170l9+YQnHyG1MoTn5jCsXJb0yhNIt2JUGqB8axxo2KDSiIsa4UVyMVpqY7FUDe9vTaL6EJJ4lDVJOfa9GlBpwpcmvR6X5ovDRNoCFx71mtoulnOxUGP7/VtflkcoH3ePihNpCs+9CQcqb3XZ+oZfi6VbHxvK+25Kuexq6hfp5ELtrHETzlhhp4kiBG75Rs4CTkbWDPUo8GHHMOYm8E751mq3+TchX/XtZRxpgfHE5+YwrFyW9MoTj5jSmUZrlRQYTcTiTukfCSG4uIOG1UCGrg/9ECBJrXULtPQgfVxVOMxD2azpMSAavEVKK7kLhHjTnJzfceuPR+Bu7HX8IUmOe/0Eamoz9RATEiIsAh2L7Wv7n5nQpitDz0haEYuR+p6SU11kztMdoT9A75/evzkSP2ttIcIsEvtz9ESvDDMeuZzUzp+fzlN6ZQnPzGFIqT35hCcfIbUygNOZtaMquBnoIjqOHv0WjhiIjzjbr0CDqfRipTE0ZsCglOqdyxxrkNEyNYWCTBj5pwjiB2UKnr78la7+fJ0yv9e18cS6z++EOJRUTsVjCu+vKFxFa3ej/nO73vE9CkrkDIm2dO9qGSVVrrVLwFMY6MqbnNbdHdSSE4bpe4b4LEvVwRcFdZ8DPGfIeT35hCcfIbUyhOfmMKpaFpMSR0UJkvuZ3IFUfHReQLark990jcIVcVUWeKO4OEQEPCC5XlkntrAL0Qa/i/3MHaLqH/3+xSe+aN/1MdkSmqRp+xu9F3OJtrb8bXjT7LN9AT8hx6QpK4N4Iy30Ffr0FOwIj88u3UHpW/l+vSA2EXp0LluvaCS4LpWMorwl9+YwrFyW9MoTj5jSkUJ78xhdKknFHfFyoH3uAwZ4ZceiSUDBsV03LFGBIVSdC8D+jmA3GPxmeTeEkC1tlW+9n9pq9/b7V4KLGn/3gosSe/0jLdiIgHj2/0fpYqIp6stfT37VDX8Ryce7fwfEMQPqeNXreG9ZrteEw2DW1ZwmCZ3JJueqfjPgisNQwvgXNpf6ZEShT3YC3IAUn7219+YwrFyW9MoTj5jSkUJ78xhdKQE4nI7WeHYlqiDDa3v1rvf/l/FDsL885NiTEksmA5MRxHDkYS/L5pryW2gdrRV9D/7wgE0h9tdeBHRMSzrzU+ASH2ZV8FqLfg5psnSrrvsg9uvoNKY9gTMNFD8QSEWHK1kljcwLsiofkIplB/0FeBdQLP14enyXWbRiQcsTR0B/aJv/zGFIqT35hCcfIbUyhOfmMKpaGBEbkTS3PFvS4hxnD5LoiAmWIjugOh5JUEP4qRszDV1y27PBmElyUMoaDBFMsqr8fdVU+n7JLYdArDOSIi3g5perJ+J67gfk52Oi13AQ4/cumNwOE3TpS33qWB+/v2Onk9HHOHu+w3ujYfDY4k9lmtgt+jnT5fA0JzSh5dYkk39MyE42i9/eU3plCc/MYUipPfmEJx8htTKM0I+szx4A0VlkgYJJGLRJcUq8yhGLlluVyqm9vjjEQSPpccfsQGBDoS925bLTulHm4kXtH7w1iijJnKbek6iw4ESBA0aW32sG8hlacq3T1KsrFHHpVfh97PpFGn5PsDFfI+rdUR+VmrefUIp+Eo1zXnyylqn9A/EI46BkHUX35jCsXJb0yhOPmNKRQnvzGFgkM7iG0PRBaog6VyxFRJLwkvHTiWsP/YPcoec8idyHofh1/uwAhaH3pmKqvGe6GyYRDiFjA4IyJiERpfwlRkEi/pmamfXR9ELSxFhbVZkUsS7iWChU7qhTcFce/JQCcbP6/3JfZ5pxLb042KpiN6B6H3kpIFV7D1lhUIrOCoxTLoxHWMMT9wnPzGFIqT35hCcfIbUyhOfmMKpaF6cFSfM2239wEV8syR2rn11xTDKSeZan1KwadpLFNopNkHpTnXjkvPQhOARrWqz2SxpncfETHrdDLQvNUY3WMf1oEYVXrfywoq2UHhnkN/gMtOexhEcK8EYr/WOv1PQdn/otW1/TEo++MAGze8gzns96tEC4Nr+B1gBu+wD3t0ZXuvMeZ/cPIbUyhOfmMKxclvTKE0K6jJJv4vBD+CRC0S2WjS0BB6E+BY43ewBicFP6hPH4EYNwahq21UyCExDuvioTHnGGLU/4CmAkUkmodm7hMSTulZliDazaHBJdl2Z1ttEnrdLfB+yJZMoPANx9HbX5HABkdegaX5ba1XOalYiL0MXTOyRNMUINt7jTF/xMlvTKE4+Y0pFCe/MYXSrLu88cm5IlluI8vUsUMQ8vZgqhDVX5PoRgJUrqOOaupTz0d9EejYBo7bh3r39W4sMWqYSqJiA//T1+A42yRGZ68hTtemZ041OL0LrfcSrkv7jlx71GD22/PzJvaQ+PlVN5dY3ei578OepUk811B7fwmuxpuEEEv9HMbQD4CmK00za/yNMQXg5DemUJz8xhSKk9+YQmlynXs0JYXENJiInRTJyKW339fSyod9La08gHJZKlvFCTkgqFCMRKkUJDbmMgHXXwclpmt4lkGmg5Hec8rhRyIwOQSpCSeV9JLLkqAmo7vEePe7UEl1RL5QTevzpr2R2C04E1/1dC+OYT9scDx73kj6CJ5yROW7YxD8RrCV/eU3plCc/MYUipPfmEJx8htTKA25hnJ73OVOqUlNBRo36mz7YHAksaeNjkB+UNEgYmUBItk8VNCisdSrRI+7XGjkNMVItJtAWW4N95jrqKT3TCJeCuqtSP0DyXlJx+WObaf7pj1G14iI6O8yeyaCGHcDfQEvW3D9wf1QqfUIYuT4pP0QEVGBmr4E5yZNAbrBXpbGmCJx8htTKE5+YwrFyW9MoTS54l6fBIPMcsmU+2q/URfbB/VUYj8JLW99soHrgIA1ByHoBsaNzyqIwbjwZWKA8gpEpDUcSyLiBs5tIUYCHY1Ep3dKAlvqvYygFyLtiQcDfVePGnVjjsjtButADkbqUUfiXKq3Iol75GzcdHrtW+j/t2i1fyA5IilfpuBenYDonRIvaX02PY21sL9XMMjFX35jCsXJb0yhOPmNKRQnvzGF0pBzi8STd5mAS8M0IiIOaxXyPu6pKPLzpQoYz4fXEhuNYNjEUq89X2nsaqeCyEmtz/emYZHsCvqz3cDwhQs49wKGUCygdJREskHo/ZBDjGI0RTiCJwmTO+2TvroxP6pUwKqgLPeGeteB83KNQiqVabMbk0q1t1twtWaW/nZbuB8Q/HLLoqmPYipfbnsgQNYaW9X6N2c9fS/+8htTKE5+YwrFyW9MoTj5jSmUhnqukfhBDi/s/3cPh98x9Kn7uNNjPx1dSuyjn6ng1+xD+eZcp7cuT6Dk8VzFr70rdbBtQdCKiAjoZ0futCWUW85BYGugDxs52wgSXfs0RRh6KEZEDBq9n49AiP28VWHqow2UmIKo/BqcbWfgbFuB83IOQmpq0MUchFMaakJ7mdxzJLqRaE5/j3rzpYaNELnDZmji8E1PRWV/+Y0pFCe/MYXi5DemUJz8xhQKOvwIcja1IGCQ6y8FDTaYgv4x2NNgbwClrFNwRsFU1cEaXFULjTXXMJk22fcORDaITUDcq0LFrwmIcXMaLALvoA//00fUJxDEx4iID0PdfF+Ay/KLw1OJTY9VWJpf6vN9faGlv2/ARbiC/XkNe+w0ISpfgIh4njlgZQXTgKlUl2Lk5qPcoPwjcT2CxT26RzpuUVnwM8Z8h5PfmEJx8htTKE5+YwoFp/SSWNGCEwkdRyAMLmsVJSLYfXUGGtQrcNr1v9T72b9WUaNqYDrtFbjsZio2nUOZ73nNYswCnGh05DEMkfgAYuTlu4ZrnAcIPiACjkHwe7Rj4esnaz3/5w/OJPb4z0GIPVYhb/JGp932f6PnTk71PS9beFdQxnwE5dcREa+gBHsLPe4uYH2ohJr2PA1O6WeWylP5dGrIzTbT4UcxynN/+Y0pFCe/MYXi5DemUJz8xhSKk9+YQkG5l+qO8Tj6VQAU0kWnKnxExNt2JrEvYapJM1B76NXJexJ7/2QpsckQ1PCtqrNna73uV31o4Ak13hERG1Di90HFf6/Taz9qVZ3tw9peQJ39i0Z/kbiCevchNNE8gHWIiHgfGooeP9Nx1c2zH+nJE11HYvSV9mPoX+h9Lzuw09KvGdCU89tj9fvWwtpeb3XvzFuN0a9eufCY+7ypVxERO/hVoYVGobm/zPnLb0yhOPmNKRQnvzGF4uQ3plCa1Gjju+xA0NqC8EIi4LLVpocRESdrFX1+C7XWMxj7/HKkIuDjrYpNx61OBaJ5KODuja9A3DsFO21ERB8EtSOolz/qdH3eA5vzAES7utWbPIO6/yvQi8guXCd03f2Bvq/BjycSq54+0ZPBTltdq7BbD64k1na6F29Ak6aGoLNEXwqapPRmp0Le+UbvkUZ0k/U9t+FtLmQXjkiMG6dpQTAFyPZeY8wfcfIbUyhOfmMKxclvTKE01FSQRiqj0AHCxCZTlIiIuN7oNB1yF87AffUGxnsfw1SZg0blPaptJ/FyTm7FxGQYakZKehpJORUcuaW1BXF2hVOBoMab3GWJBp7Hx+Dm+7M/1fN/8UuJ7W50CHl1pr0AeoNv8Np3IXHvCmKXib6xZzAK/KrT/UQuVBLJcCw9rC0J6bmxlMOWnHvo5oOeGtQo1F9+YwrFyW9MoTj5jSkUJ78xhYIOP3IYdb08EYFGDpMAERFxC84/OnbVqQNu1qhoc92oCDitYfQ2iHNDnKQD65AQYxoQ2RYQuwHBqIFGoS2ISN/A9KGXMDL6EhyDeyDubSryOkYMpyqSVU+fSax++oXEupM/6LnDX+F15FwYS76EdSBx7wKcfBERtyDaEjRGfgdjxKkEl3IIXX+wn+i4Jez3iPxmnfQ36fn85TemUJz8xhSKk9+YQnHyG1MoiZJe6vf1/QUMlmIYciwtWnVf5YofNMJ4VKvANobx0HsgiKUKNdWrGPG2AuEGuiYOQMijPnyvoRT1Atxq5LI86ql49RqeOSLi1YtDiR3++p8l1k70uJipw2/74qXEbl7q/ZxsITbUtTmHtVkkBD/SZw9gLbrBkcTm0MuQXH+55bu0P6nn5X1AwR7uB52J73RlY8z/W5z8xhSKk9+YQnHyG1MoTapf2PeFBIhBzf9j6FgqHUYhD1xQOFocBJUliIArGCO+AmGIRiqnmFfqvnsL7sINSKJXnZbVzkDco+cbwDW6Rq/xAvrtRUT8Q09HZY//9kRiH/3b3+nJMDzj7b/oOv7r5SOJ/Xake/EVrOEMyqobKEOP4KEdjyt1fU6h9HsGTsklXJsEVnovKzh3Bz0dU0M7SLQjAZlyegC9Hv3lN6ZQnPzGFIqT35hCcfIbUygNlh4mxJO7YOkgCAsjmCQbEdFQLz0QT8jhR30Bu62KQ+QYRHEPRMB1rddICX44wIR684EoSUMWljAwgsqlqax6DxyMJBadblnw+3cq/1w9kNjzv4d3AGLT7wd67S9HIIaCo+4G3imt60GlomJExMNK1+IQBNEJKGdTGhgC7sI5CIPU67GCqci7HgjcCU8sCXktDJbJdd76y29MoTj5jSkUJ78xheLkN6ZQUPEhQYXKBClGrr1hj3vFjWqN55bqYq9AGhgCYhoOOoBzc4c2pMASTrh27j2SWNjf6f2QKEnXmIOYFhFxUqmT8Hfg0jwd6XWotPbVbi6xt63G6H5oDakf3QiE5oiIDQ5EUYYgcvchPUbkYIVvKDpn4VObO8gjIuHcpNwAdyG9f3/5jSkUJ78xheLkN6ZQnPzGFEqTKzZRjMjtZxbBogiJHSSy9SFG5ZEkiIDRCsU9cu3dh9xyaRpUkhp0chcSAem+qcSUhKGIiBXEr6i8NfS4S3BKvu1U3LvqtOshvSsSi0n4qhNrTfcIpjqc3DyCISIDiNHAFhLNqQ/mCJ6lnyiBX8NaUHn6LTld4Z36y29MoTj5jSkUJ78xheLkN6ZQGuqFR+65XMGP2FQqKka863TTvGEFdC6JhUNwG6LYBO6yb+8HhpWAGEfH5boVc69L4iUJu1TGHBGx6kGJMfVCBDHtYqu9B0ncu4WSZVrbCfRRPO5pD74xCGcRPFWZphjP4VlosjF9LenvXUJ5Mr3TETxzk/gmk5BL+5veP+EvvzGF4uQ3plCc/MYUipPfmEJx8htTKNn23ly7Kdkal8GqMqmX9AsA1tpnWm+xvwAo++NGVeX7qP3YXBEUcnoWasLZAw9y7q8etK70nhedKtIRETfw3Kka87tc0qShVvsD0Pvbg2abe3AvE1D2h4nvGKn4C1DnV7A+1GCWuIVfTWZbfWaiC33mVJNYsvLSOyTbNj2Lv/zGFIqT35hCcfIbUyhOfmMKpckV90hEovpksrRuQEz59li9DglYJA7RPfJ4cBWHSNzb64HwAuJervAVwc+Xa9vNnrqSae8l8XGxY8GP7nFR87F3IdsuvX98z5nj2VvYDzyvJ6KBdWzg2gu0ROuz0HtZw3SeXHKbzkbwiHY6dlLrahw2Y4n5y29MoTj5jSkUJ78xheLkN6ZQGhLockEREP5cWuICYRHuhxxwuU09yc03rbUenNx86IpKNCjFRqGZY7sJeuZ3IXd6UETCDQhj0nObtZIwTIIfOdNmUBc/hndFk3QiIsZUkw/jvBtY7zU5NMmVCk09KUZ7m8TH+zSOpT1P4t4nzaHE/OU3plCc/MYUipPfmEJx8htTKFifikJVpjBI03BS01TILdcHRx6V0ZIYR8ft1erco6aQg8zyzZR4uQ4agUzuMhAlQcCic6nRZ26TUCIl2NF7uc8kppxzSfgkdyAxgvU6gPccEXFA6w3fPNqjaxg3TtOMUvtbgMP6NKIbxMKIiLbOa6J7CA1OPwQPpL/8xhSKk9+YQnHyG1MoTn5jCqXJFfIIdAeSANVjQYTEvcO+upPGUKJIwhn1PptAqe4UesWRaNOCvEeCTwT/F930aApMXt9CLh1WQYzceB05ycAJlupHmCuwkmiH054yexniaHg4lwQ/muITEbGfmORzlw28a4qRw4+g/URC7AAciKmy8a4Ha0Y9IWkSFvw9f/mNKRQnvzGF4uQ3plCc/MYUSp4akuBdnWTkbDtqJhI7gBJcGmOMgh8IPlN4bLrDNQg+M3DyJYF/rXSPy4qHmtyFeuHluvForacNi2QksI4qPb+D9bmFvnfk3KPx4ORqJGh4BY3EjoioM79vNMiDBF/q4UfkjponNy2ta+p8KgnOdRz6y29MoTj5jSkUJ78xheLkN6ZQGuyPB4IBubnI4UeOwZRjiUQRFu1gWi45/OB/2QQcVFM4t97pvSyhpDMl+JDwstzpdRqIESTu0RAR6oWXW9o8htLmCHZFjjKdcnvwrlZwndw+ddTXj9yBJDRGRJxmXoem9NKep/1Je5H3CQwGoVhiCAi5Oeldk8j9aespvcaY73DyG1MoTn5jCsXJb0yhNFTqmetiyp2em3ICUgnnAoSbJQhG5NzqZ/ZIG0OPtAE88whEwH7iWRo4toZjybu1qvLEPfU+5rv5xiDikUsygsW9PYgNUejSd0U980aZPRNvQPw62d5K7Lxb4PlXrcZJMEy56u4ygHUYkUAK7wBLoEHQTImXWL4N901Oyc86XTN/+Y0pFCe/MYXi5DemUJz8xhRKQ+Jebqku9Yrj41hMWXZaRnnTqjBBrqoNiIAHEDsCx9kUxLnjDnr4wTqc1bw2mwqGUCT6/d2FSjBJMCKxiZyF5Dijc0kMjeC+cvuwjg9CY49ATH0P1nZvq+u1gl6PXzd631sYBX0BglZExKxbSoyEM3Km4iRh6MtIomsP9hgJcSg+JvKF+hnuYB0vdlrefL2bwv0YY4rEyW9MoTj5jSkUJ78xhdJwqe73/4O5rr9vUeGFBD9i3eT1s4vYk8gERgk/6EB4AW1vlRDJTkEIXJJ7C3rFbUDgIXEod7gHDdggUTHl8KOS0Mcg7j2HMtFPWn2+40YFqKYP/RHXeg16f9/0qbSZhdjc4SBE7mRiugaJivSu6NzUIB0qoe/IAdnOJfZPo0OJ+ctvTKE4+Y0pFCe/MYXi5DemUJz8xhQKj+gGkTO3xp9INWvckuraci3zXUgl3YO66jWMNQbnJQIu0mQ7SJruMwdl/xrsplTTTcrwMLOJJv6Cg80o+X//o9B1/Hyjx/40ZhI7fgj27IE+X6/W+9mbqdo/v4Qx7mD5JQv4faD1puaYZLumX1eozp5+ZbjPxB78JQ3y4Bp6G/y6uZaYv/zGFIqT35hCcfIbUyhOfmMKJXtEN9knyQZ8H2GQxEayAlOshbpqanx4AxbiSxAGx7X+HyTZZU4qYETMwGY5g/tZdGp1JcGPxKYe1LvnWkap7v8QLLsREb8Ace8vHp5I7Og5j8WW+1nAZKcWngUsvw9neo1jqE1PiaHZlmhoZIuNUGF8OY5dhzHitzvdD/ep56c4WX5pJPof1ucS85ffmEJx8htTKE5+YwrFyW9MoaBKQqId1TbTRBpyIdXQ1PG7CwmDGlxVNTSzBEGMBJEbEN3OQbQZ1HmTi+YJ9xXW7sO1KUaiDUEORmzWCQ04aQrPj3f69yIi/urxG4k9+pvHEquODiS2fXMqsc2XGmuvdB1rEHb3RiqcTUFnTLkVc/cy7ScS9w7qkcRoehSxAhFwfQ/Bj/ZJbj8OamTqL78xheLkN6ZQnPzGFIqT35hCyXb4kRuPhBMSWPrgnorgiSh7jYpQezWMl6YmlfD3luC8u4RS2yE8Sx+eZVGxGEPCzRquvYGyznuJpHc4rFSUOq5gDWG9fnbLz/Lwr3UYeO8vf6kHDlT86v3uNxKrz7X0t5vzSO27VDAJqSF99B4V51guDW6+fZgANYW1peaoHZSSzyEPerBHundooHsf/OU3plCc/MYUipPfmEJx8htTKP8N/9btgUKiGgcAAAAASUVORK5CYII=" y="-12674.501066"/>
</g>
<g id="matplotlib.axis_709">
<g id="xtick_1063"/>
<g id="xtick_1064"/>
<g id="xtick_1065"/>
</g>
<g id="matplotlib.axis_710">
<g id="ytick_1771"/>
<g id="ytick_1772"/>
<g id="ytick_1773"/>
<g id="ytick_1774"/>
<g id="ytick_1775"/>
</g>
</g>
<g id="axes_356">
<g id="patch_357">
<path d="M 434.924375 12799.40283
L 557.214375 12799.40283
L 557.214375 12672.109303
L 434.924375 12672.109303
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_711">
<g id="xtick_1066"/>
<g id="xtick_1067"/>
<g id="xtick_1068"/>
</g>
<g id="matplotlib.axis_712">
<g id="ytick_1776"/>
<g id="ytick_1777"/>
<g id="ytick_1778"/>
<g id="ytick_1779"/>
<g id="ytick_1780"/>
</g>
</g>
<g id="axes_357">
<g id="patch_358">
<path d="M 29.174375 12943.322254
L 151.464375 12943.322254
L 151.464375 12816.028727
L 29.174375 12816.028727
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_713">
<g id="xtick_1069"/>
<g id="xtick_1070"/>
<g id="xtick_1071"/>
</g>
<g id="matplotlib.axis_714">
<g id="ytick_1781"/>
<g id="ytick_1782"/>
<g id="ytick_1783"/>
<g id="ytick_1784"/>
<g id="ytick_1785"/>
<g id="text_90">
<!-- 301 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 12926.71549)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-48"/>
<use x="111.230469" xlink:href="#ArialMT-49"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_358">
<g id="patch_359">
<path d="M 164.424375 12940.82049
L 286.714375 12940.82049
L 286.714375 12818.53049
L 164.424375 12818.53049
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p48023857ab)">
<image height="122.4" id="image69f5d53b88" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHcRJREFUeJztnUmPJddxhSOHN1ZVV1dP7OYgCTZleRAIWIC9Nbzyyv7JBrzz2vCCskUJYlNkDzW+ecp8XtDyouO7QBTLXphxvmVUvpd5b2ZUAuediKh+/uxXR/uAtmo+DFlT1S52NPdR2/edi+36g4uZma0O21Cs63sXm7RDF3s6PnOxl8PHLvZx6497Wvnvm5hfs7+S79nCX+ZHv+67487FNnBcA+c+qQYu9hhiz8zHxvB9d5W/V2Zmy6OPH+Beb8wfd9v7+3fTrV1sBccRp83YxV40Jy72sp7g5x8fWxfzO2F2aXsX+0O/crG3h7mLzWF9m85/X3/0z0hVVS42afyzaGZ20Z662OPGr3sAubqFe0r7IIRIgJJfiKQo+YVIipJfiKS0l5uZC45BTBvVXkSKi4As+FGcxL0oHQgqWxDTdkFBq/dajDVHCBqLLCP439pCjMS9xvx5hnCOKYizZ70/bgLXvap5LbQXaxD3VrC3tN/0TNSwPoKOqzAWp4ProRhBzzwL5Cym/tDvM+N9XPZeQKbj6L7ozS9EUpT8QiRFyS9EUpT8QiSlXew2LkiiW9fGXHYECXGl8xA1uKAo1h9jYuMGBL9t5a9lSP8bC8oS/RclEXAARx6CwuDYvBB0cvSxRyDuDUDPIlHRzGwHbsXl0TvWVr2PkZhKkKhFbrchHDeCGO2rmZn395mRt/AhIiCJklExnJ5jOs7MbIfiNYjmkG8HOfyEEH9EyS9EUpT8QiRFyS9EUloqM9xCOWJTgwsNnGQkfpQEvygkntQQI/YgdFAJLZWnDkA46wvnJcFpAHtBoh0JSyQWjiFGzr0RbDe5FfcFYYmce+Qko30kBiDQjcExSuLeKZRaUxnzBQifZmYTWOIB9oJKsklMo+epg8+WRDv3WciNUgk8CdpR2GUphEiJkl+IpCj5hUiKkl+IpJABquCU80JHCzF0Nt1DqEBhMRiLuqU24ExbViRygjJUWgoc2kKQREAS98h9R2Iqld8u4Lq3lT/uGvrWmZnd9d71OQ/23JvWUA5e+cdsCrFTEPJegOD3aec/+7zjG0NS83YAojSVogeFaizBhdcqCXmUV33BJdnDPaR8i8b05hciKUp+IZKi5BciKUp+IZJSEPygpJfKfCFWFfrCESjkwXGD2l8mucaotxuJl1soT6WS1eYYL+klIbCDg8lVd4D9JinuDmIdiEDzxl83DeL4DoZSmJnddD5+AGGK7gsJlWcg2tGQlFfmY597Y6F9bkt/jikLkouV/87NwQ+/+F3rn6cJuBBJnCVILFyCaLrsvLhacviRoC3BTwhxb5T8QiRFyS9EUpT8QiRFyS9EUlqy3lIjRfoFINqQsAFV+L9PHrnGcD1/1N5LaurM/Jhl+mwHKrWZWQfKMNlxqQae6udxOgv8+rCgaTHwP30Fv2ZcHhYuZma2OHgFmsDnBI6jSUMX8EPTZ1Bo/4vKX+Nnf3bjYu0jvsazb/1arr72Y78/gma0+xqmOMF9oV84yC68PPpx2pe1/+Xi9uBjZlz7T7lBv4SRBVlvfiGSouQXIilKfiGSouQXIimsxAFknSWxYdTERnmbsYDxkGaf3ODQfx8dRxNNaNrPtvFikZnZ5ugFI1o3jgeHGAlLJORQ80gS/NYg+K2hKWfxemDPBrW/Hp4qAxNkgi7wtvGfbU9BdDvjR3nyzF/Px++8oPaT7tzF9iAC0tM5Jhs4sKyh/wWJwtBvwsxs1cV6KuDkIxDd9eYXIilKfiGSouQXIilKfiGSgioJiXttA2ORG/9xEhbo+8xYRCLHIYmAR6hjN3QS0qhkEAF7aOBYxcZNm8WFN3QNRkVO+FdNo7wr2Jv7THvB+xK8bnJPLmsvYF1VXmx83Xox9dHW195P/sN/9unn3JugOfH78/wT7xr8xVf+3Ptq5GJbeJSncPvoSZxB/4oFPGPf3EMgp/syKEwv+hC9+YVIipJfiKQo+YVIipJfiKS0Dbi0WoiRm4scbCTuUaltCRSROi8iRb+zBsfhQyBhz4zdgAcqMQ4KmuTSqmAc9xAm31i0/LogxOLUpeDIaXImkrvwFkQpao5Zj7zLrrp74mK//A1fz8VPvBDYnvjjPjr1x80Xfm8X0Bx1BGIxsR/4z1ID1tKEq+gzHxVi9eYXIilKfiGSouQXIilKfiGS0k6gbJHEJhIBSTBiJxgLGHRs1F0W1FiwdxkJWiSSkMBSdCvCNR5hotEeymWj56a10N5wYbOP0j01M5vA5ByiVKr9IbTmDcQWlRelLuEcXw2hPBVEQDOzn37p13Iy9Q7B/d7vxYnBlKLCKPAPmcHe3kBPwDmIoZR/ZmYj6BMZ7cFJpdZ68wuRFCW/EElR8guRFCW/EElppwNftkiCQXRwBnGfclIa233Ewd3wWRpgAMILiXZRB1up/PYhJa+0P1QaTdBaKEb9//qK3Y9DKNUmSESMQp+lsdYLEN3ewBj43YifkcuDn+ZxPvPnGcBSGiqXpeuG/b5rfOwKBE0azz4u3Jca1k37SD0YUVTGswghfvQo+YVIipJfiKQo+YVISjtuvAMq6my7T6kuQQIdCV1RJ9kgKJKR+LHvf7jzziwuIpK4R+sbg5uLYlQGi9cC5x0V9isq0FJ5M7n56Ptobw+Vj61B8CNhcF54j70deCHwFIZsnEHseQfThTtYMzwTC7gccjXSvRqCOFuC9ptdn1TSLYRIiZJfiKQo+YVIipJfiKS0/9u9+VDcKfS9I+jc0TJfIirkPWQ6sFlJJAVXJLi0qFRzWnvn5Zj69QHo8HrIsJB7UOoL6M4N17PFacUxSs8D9T2kybjn4KpbtP4eLMGBSlyBeLmB1USf44dCrl29+YVIipJfiKQo+YVIipJfiKS0JLBRjPrHobhzD9Mf9r0DcY9cTCRqkTBIQlwDwll0H6JuQ7N4fzUavEHuOxJdye226X1fONyvgthE9zUqAlPpMIrFcF4SAY8oXpKzkKXB6Lrv4B4sal+Ce9t4EXBAJb3QM++q37gYDTTZwTWbxfs/Rkut9eYXIilKfiGSouQXIilKfiGSgpaxBv4nkChFJaYsDDIk0ZBYtQVRZAvHEePalyxPIUZllDgBtwAJN6veD4d4iKuOBLHofh3A6VgCRUl4VE5A/JqAU44cdSj2wrWg2AtPDu2DGQ+roHuwBkFzA5+dHf09pfWRaLfot6HrK03pfUjPREJvfiGSouQXIilKfiGSouQXIilKfiGS0pI6T40wJ6CQn0DsFNTeaUE1J/V6XnvV9g5skZugRfcU6uLpeqhWvgUV91BSXEHE3xio7tTUM1hrTzZZsrpGLZ8lqzI9E3T/L+qxiz2u/HG05iWo3Ev6lQLWR7+ilH79IXsvQXsWtZrTr2N0XrrGaANOs/J4+B+K3vxCJEXJL0RSlPxCJEXJL0RSWpqQQ7ZWsr+OIXYKn31SGDncQHPFaxoFTtNP4DvpGk9IGKQ6dPg/SIIfTZAxu1cbgxAkutF142hwaB6J05EKQmxU3Pu4nrjY+dFf913l94wEP7LEzjsQe0Hwo9HnZoWeA8GmtdER9A9pwvl/0Uw2Oi5eb34hkqLkFyIpSn4hkqLkFyIpbXQST3TCygbEpm1BEBljA0gYVw215OSqmpAzzXyMHGckkuwhVnL4kRMtKtxQ08sJiHEnIHLSeZfQZ4GupST4kUvzOTglX/X+89TMcgHPBNa7g7i3JMGv8065kuhGwin1Joj2q4hOlNqDMHwA4ZO+r/TcoAuRnlHo3UCTq/TmFyIpSn4hkqLkFyIpSn4hktJG3UA7g0aDJJyBVnEAwcfMbARizBaEiTW4wUiUHIO4h+Wy1AgTBJoOhBxq6mhmtgGHGZXbksBKYtM5CGzPoVx2eITGkzU0uASBrTROm4TTZ+DcO+9hghB8JZ17AY0wSfAjcY/KZUtrOVYxcZealmK5Owl0JPZCjByDJPYe68IkJXDEkpCHpdqxkBAiA0p+IZKi5BciKUp+IZKCFq9oDzhyNtG/E+pTVoIm39DnRyCSHUDomoJbbQ9iTHRUcmktNDEm6qojEYmcic+O/rOvDjT+2n92AW41EufMzEagz04hNoD7/671X7oCMTU6RjxaLluaZkP3gESybeWvh1ykRyiBj0LiXl3DOHQQcc342SNREgXN4Jh0IUQClPxCJEXJL0RSlPxCJAWHdkSJugNLYsyGxlp3fowxCUEknPWtP8+6ijkTSYBaQ6+40hAIEj/RaQUiG5eE+n2kcuIhbO3jzn/2qT/MenC1mZkNgv3eaKx1j4NFYoNKSJQqDRZx57hHGWyp31/ks1sQXelZpOsmwY8+WxI5SfCjEd9U0kv7rTe/EElR8guRFCW/EElR8guRlHYKAxpI6DiQCASCUVSgMTPrejpPrP9YBc4odNlBOTGJHzRBdd3Fh0PQXoyolx4IeeQknIEYegnusketv38V/E9/BCLgWaE8eUR7BhrU1vy5CSq3RfEL1kduN5yAC6W/ZiUBOvbcHWHR6J6DZ5HWR65UGjRTAvsegs65hnJpEtL15hciKUp+IZKi5BciKUp+IZKC9YnktGpByMPj7vH/JOp4ahvqpRabtEpEJ6Oy+MgiGZ2b3JPkvtpAOemi9993A3vzHY0wbv1xHQlLBaNbDY5Dcu5tQeSkQScECmIgkEaFOOrBZ8bPKB2Lx5HjEJ5vnoDs1zeF9dFwFprGbMa9ELc07Rie0eXe90fUm1+IpCj5hUiKkl+IpCj5hUhKuwVxgFxM5IqLih+l/zAk+pw049Bx1PeOBBqaYkuhPahf9ykxJREJS57h5CQibmDNcygxvqtJNIVrbMApB73+zMy2MIyDBL+rxseua7+WFawvWgId7eFXgtyFOLkX3IVRUfIEBqycQuyEJgHDPSjlC8zs4HyjKdvBMm0hRAKU/EIkRckvRFKU/EIkpd1C6WipH9qHkJhCAk1JJCPBkF1QMWcUQRN+qQQTXX8gzpXWEh2UEJ2AXIPDbw1rXkJZ7bSC4Q4uYrYHwc7MbA6uwT1Mu30H4t7v+7WLve0WLkb9EYkjCIPsQC2UxsISJ43fMxLyyG16AiXwj2svUj+CZ3YaLN/dFfKPRXeY+gziZQvCsN78QiRFyS9EUpT8QiRFyS9EUpT8QiSlpcaV2PQwaMckRZKUVDNDJZZ+AYhClt9CywLHsYmtbwcKtxk3AKW66j00LaUmo8ScRnmDqjymGn/Y61WpBh58pEv4BeFbUPa/2d/6z3a+lpyepzE8J6RSk5pNllYz/mVg2njr7RnYcWlvH4Ha/6yCXwCO/rpb2NcFNXQl/7nxntH66FeKUePXoje/EElR8guRFCW/EElR8guRlHYDk05I8IvaV+9j7yV7ME60AbGJhEFqHjoCSyWJQwOYDLMFwWcFdmgzsxvYMxpBjiO+oWQ9Ku7cgbhDwieN924LjSLp2BkImt/u71zsZu+tvCR8kh13AOLeAATb+4yVp2eMJueQbfdp5UXA52CnftH763kEt/lA2w19Fhal0enwfGOvCxBESXTXm1+IpCj5hUiKkl+IpCj5hUhKSwIUCn4kQIEwsYPmjyWBpgEn2hHqxrHuH0SbCxDoRvDZDgQtqlfvYM13xoIfNUJdmHe2RfeW9oGEymXvRy/Tfu/BRciOSLM9XOMMzrMA5x6NysY6dHKH0j7AZ2m/Sj0ojtTUFY4dQiPNJ/A8ver8cc87cLXCVKEFiHsDEHtHxf4XNAocmuiSMKh6fiHEH1HyC5EUJb8QSVHyC5GUNipAoaASHKZSEvzIdUTuqxf1xMX+1HzTxJd7GrPsWcC/vB0IbCQhkaPOzGzTeuF01q1cjKbz7OlMsN97GO9NpcTrCppjwprJMWZmtgMReNF7cY+cewS57MitGJ00Ex2nXmKMjVn9uc+gLPcpiHtnHZVp09QjD8VIkC7FSZwlkZRyUG9+IZKi5BciKUp+IZKi5BciKS2Je+TIIsiRFRVozFgIuoDpJ3919ILf32y94+zJxPeU2+29QPd+589Bo647UAufFsTL9eDEf+fgkYuRaNd3fi14X4J7G42Vxl+vYJoOCYtY5g1CF93nqMOPSrzvM7abzkNlsFNw+J1Cz70BXSOseQMxEprvwHl5B1OmzMxmcF8W4LzcFT7/IXrzC5EUJb8QSVHyC5EUJb8QSWlJ3GOxKS6yRKEhDR+Dm++v117o+MtfvnOx4XMYsvHeCyqnr6cudjnzsQ30ZluBMGRmtoC+ae+bUxdbtl6gIXcauedITCOnHB1HUBny93Eoyw0ObaGBGnSNpb6OHxLtHVkaDDOB3nwvGi/OfkSjzkGn3sB49wVczxyW96729/k788/D2947Q83MbjsvaK9ALKbnCR2VeBYhxI8eJb8QSVHyC5EUJb8QSWnJfQVt+ML/Jej7qH+YGZfvXkAZ5avTuYtN/sKLNvVHT1yseXvtz9EvXayHRc9XfmhDDSWdZmZPO79DzxovIn3XgLvw4AWeg8GgkqBbjXq4kXBWKoMlwZfKbVsQP+8zUCMCCVW05jEIe2ZmF40XkD+pvbj7Anrz0TN/Bcsjl94NDJp5f/Ti3Dso+77a++fdzGwZFPei/Tb15hciKUp+IZKi5BciKUp+IZLSohBAU2NjpjEUpUpuLhargsAABBtAfz2I1UNwqzVcdvwhXeH/JV33FCb/DmnNsD90X0hMa2kYA/aPe1gZLImIFbjdSKAjouXJ+HwGhU8zszGIyjT8Yg09HGdwq68r74q8gWnMNNX4GsS9m4MXn+cH7+QzY9dn1//wkme9+YVIipJfiKQo+YVIipJfiKTwBIog5OYjMYbEIjMeqLEHsWIGTrv96ysXa/fe7XR440WW1Ttf/rlceYfYvPPHzQrC0ipYbntW+fOcgusPHXUk+AUdfgSV35qZDeGxiPbhIzGNoMEg22DvOaIkci1BjHtz9ANIrmEtO+gfOO98efkarntN/fZgqjGJezTp2KzQmzEo+FFJtt78QiRFyS9EUpT8QiRFyS9EUtoDDJEgsH8cuq/i/dpaiJNsM+tBePutj01uvLi3W3hBbDHzAtsGhnts4H/jnJyFxgMZ6MgnIPh1g3MXu4VhDNHebIOgy7LkxqPpvfidcBxNu+1AbFqBEDc6+ntwANFtfw+xcNv5OA0lIeg8NBCDcog+uwaxkMS9Uk4+pI8mlmn/4G8TQvy/RskvRFKU/EIkRckvRFKU/EIkpSW1kVRgqhtvQPmO1qabsRWUYlv4H3V34xsz7jagFh/8Z7c7v5Y91N7vYS3bgnuV6sGpQ8AE7LgX5u3LbQ3nhqaeBP4CEFTwzczGcOwYrntAzV/h+1Zw3bSN9OvPFlRzsrmWmpFSDfzGYmo/jQenEet0PXs4L13LDn6NuM8I8mj/hAaeJ735hUiKkl+IpCj5hUiKkl+IpLSbgxf8aMIOCQYEWRDJWmjG4hA1mtyBYLjcenvv/hBr/9kdwYIKwglJSOuCvrIAwW8JU1u2JA7BTpBNegTTjEYgxE2hnejwHrX3I9gfipHgR/0YoM+ndXAc2YBpbwgS3czKQuAP/U4S/KgZKdl7ybZbum6CnonoCHP8vvCZhRA/KpT8QiRFyS9EUpT8QiQF6/lJWKBGgV0dm7pSEjVIFFmBcLZovIB1e/B18cNDTDw5giCygv+DN+BgfAdrNjN7C66xOUxt4fr02HXT9Bly431kXgx9AiPES//56WroWHTzgdZEDs1V0N1JAvAB9qskKkeJ1sqz6AaLDl4OTld64Fqi59GbX4ikKPmFSIqSX4ikKPmFSEpLQgCV4JKTiMRCGpVcGg9NTRdvDSasgPB2gKkyw6BQ0sP6qAHntyDuvTY/dcXM7H0Pk1dgfVFHF03iweao5oXPi94v5k92/l5NCyXCK3AIUuPSW7LuQSjqYaO7Rw49ipWeMXK7Udl5NA8IuqdbEHvXlReFH+r6e4jQqTe/EElR8guRFCW/EElR8guRlHY68P3jiGiZIAkvJQFjA4LY1dFPqqEpMHetF/zIIcbONJggU/lrvDx6gYaEPTOzGYxfpuku0RLMce1degbiHvXhO4Xtftn46754zGtZLf15fr85dbErcF5GS5s38EzsQIAk9yMJfqW+dzSGfAR7e1L7PCBHJT1jVHZMz8O89vtNU3xKZchR9yyJgBrRLYT4H5T8QiRFyS9EUpT8QiSlvRh5ISc6XCBKSfBbw6jkK/h/tK29AHJVedGGhMHoYJADCCJzuL41OLfMWNyjwQ0EDUSpg9dNffRGsJbp2F/3+Scs+I1v/bHffn3iYje1P897KG1eUuk27NeKXHFwD6gUvAQ5JR/VfkT7BcTO4RmjXoj07FzDKPZLEB9nIAKSO9CM8/IhIqDe/EIkRckvRFKU/EIkRckvRFLaT0dPXfD6sHCxReUdSzSsoC5MfiVIwFhAySyJaQtwX5HbbRh0adEQifUxJkCZsbhHU17JzYdTkUGoGkKsgWEaVLLc9+B+9JrU9985IJce9DOs/P686/39IycniVIk+NG9JwcclemacYk5OffOQNx7Ar0QT2GaM3ECIi5NOibhegZ7aMbPXlQEJPTmFyIpSn4hkqLkFyIpSn4hktJ+MfCC3+tm4mLvGi8Crnpffnuf/mMECRgHKvUE1x+VZTZQqkv+sA2cdwOCHwlQZuw6o70oCVMfEv2vvIP13YDYdL329/Tstb9/ZmbX11MX++3QC4bv4f6TK5L2jEpMScijPYwKpGYs+JEwPKbSaBD3nnT+3BOoJn4BouILuC9vGq+6XoHb0MzsGoTAFTyjW3iWqeRZb34hkqLkFyIpSn4hkqLkFyIp7T9BVeevh+cu9puhL+l8c/QCxC2IQKUyWHIslcoZPwRLXsnhBwMoyM1Hbjy6FhIkzQqDJIIDFeiz1LuOxLQeeuZtYdjIeuSFpdeXL/B6rhq/t19V/r4uaApxULTDWHC8B/XlO21YJDsFEXgCYtwE3oOn4Ip82vn9fgb7MK3I8enPcX30Dr9vB15wNTN7DWt8Y/6+3Nb+OdnAfdGbX4ikKPmFSIqSX4ikKPmFSEr7t/9w6YKf/asXh17NLlzs1yACfgOOpWsQIMxYHFxAjNxzo2BJL01f7YJDDajvWWk4RBQSurC0GUqoSSC9hPV9A//TvwbX5ouBj5nxG+EaBphQqS7dK4pFpz4TE6hFPi+44h6D4Ee9+U7AzXcB+uOnIHK/ejF3sbOX/rhmCr0jZ/4cN39gwe93d16I/8+hv4dfN359l+AE1JtfiKQo+YVIipJfiKQo+YVIipJfiKS0g3/8exd82f+zi63+xdfzz7tHLrYBFb403XtQU121//wSVG5Si0mx30L1frTnANmFW7ALm3GNOdlV6bqxmWUX65UQrXefNSsXW7R+WpOZ2QRGWJPdGBtKUsNNUPFpb/ZwHP1agyPN6bkzsyncr5MjTPEBtf+jg1/Lz3564z/7K//rQ/PZT/3FTOAXifnShcZfvfXHmdn43/wvc4PvnvhzD+B6wLKtN78QSVHyC5EUJb8QSVHyC5GUtvni71xw8OWXLvbk39+42OkbLxgNWi8sDAv/Y05IPANxcF95IWgNwtIRRKRDUNxrQdybNt4aWgJtu3CN0R4B6w5q5UEQ64N2Y6qzLzEFSyydh9aCvQlI8IP9os+SxRrHbhfq+WkSDzGCbXzaeIvu2Z9D89Avfu4//OoTF6pafy3HmRcQ25ZF5fPVaxf7eOGF+OXc24A3OAZeCJESJb8QSVHyC5EUJb8QSWnrJx+7YPXYO/cG4z/44+ALSV57aA08fTraADLa6JNcbRMQi2jMcuk81HDzXecFml3vYyTukTBIghjR9eA2LHy2a/2x6J4Mipd0bhrvTsIgXSM6AUs2UhhD3tT+2JdwX+Ewqx+DsPjsuQtVz3xeGdTeVydenLM9N7Ftr33x/8XbOxd7vvDXeNP5HgF68wuRFCW/EElR8guRFCW/EElp+/mVCx5vvbCwmnnl5K7x/zsWUEK7Kbjs9iDQ0WQRahRJ47MJGtE8BHGIxL3nlXe6PTN2jDXwnd+Bq2oGDUqpRJUcdSScxcuT/fetC0IsfSc6/A4xFyKKs8G1kDC4BfdjSVTG0elD/53nrS8Jvt36Z/648qXRRmPXx765bXXiy29tcuZjHU+Faua+Uej0vReLn73313h749eiN78QSVHyC5EUJb8QSVHyC5GU/wLUspo8SpfiiQAAAABJRU5ErkJggg==" y="-12818.42049"/>
</g>
<g id="matplotlib.axis_715">
<g id="xtick_1072"/>
<g id="xtick_1073"/>
<g id="xtick_1074"/>
</g>
<g id="matplotlib.axis_716">
<g id="ytick_1786"/>
<g id="ytick_1787"/>
<g id="ytick_1788"/>
<g id="ytick_1789"/>
<g id="ytick_1790"/>
</g>
</g>
<g id="axes_359">
<g id="patch_360">
<path d="M 299.674375 12943.322254
L 421.964375 12943.322254
L 421.964375 12816.028727
L 299.674375 12816.028727
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_717">
<g id="xtick_1075"/>
<g id="xtick_1076"/>
<g id="xtick_1077"/>
</g>
<g id="matplotlib.axis_718">
<g id="ytick_1791"/>
<g id="ytick_1792"/>
<g id="ytick_1793"/>
<g id="ytick_1794"/>
<g id="ytick_1795"/>
</g>
</g>
<g id="axes_360">
<g id="patch_361">
<path d="M 434.924375 12943.322254
L 557.214375 12943.322254
L 557.214375 12816.028727
L 434.924375 12816.028727
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_719">
<g id="xtick_1078"/>
<g id="xtick_1079"/>
<g id="xtick_1080"/>
</g>
<g id="matplotlib.axis_720">
<g id="ytick_1796"/>
<g id="ytick_1797"/>
<g id="ytick_1798"/>
<g id="ytick_1799"/>
<g id="ytick_1800"/>
</g>
</g>
<g id="axes_361">
<g id="patch_362">
<path d="M 29.174375 13087.241678
L 151.464375 13087.241678
L 151.464375 12959.94815
L 29.174375 12959.94815
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_721">
<g id="xtick_1081"/>
<g id="xtick_1082"/>
<g id="xtick_1083"/>
</g>
<g id="matplotlib.axis_722">
<g id="ytick_1801"/>
<g id="ytick_1802"/>
<g id="ytick_1803"/>
<g id="ytick_1804"/>
<g id="ytick_1805"/>
<g id="text_91">
<!-- 302 1833-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 13070.634914)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-48"/>
<use x="111.230469" xlink:href="#ArialMT-50"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_362">
<g id="patch_363">
<path d="M 164.424375 13087.241678
L 286.714375 13087.241678
L 286.714375 12959.94815
L 164.424375 12959.94815
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_723">
<g id="xtick_1084"/>
<g id="xtick_1085"/>
<g id="xtick_1086"/>
</g>
<g id="matplotlib.axis_724">
<g id="ytick_1806"/>
<g id="ytick_1807"/>
<g id="ytick_1808"/>
<g id="ytick_1809"/>
<g id="ytick_1810"/>
</g>
</g>
<g id="axes_363">
<g id="patch_364">
<path d="M 299.674375 13084.739914
L 421.964375 13084.739914
L 421.964375 12962.449914
L 299.674375 12962.449914
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p1638710560)">
<image height="122.4" id="image117534a2be" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHkxJREFUeJztncmOHdlxhiOnO9ZAssgie5DoVssybNleGNDT+L38OF4YWhkwDGiAIKnlbnU32SSLNd26cw7XC6G1qPgOECXaG53/WwYzb2aek8EE/vojovi3T/71YPd4V7mQ3RW9i+3MH9dDrD0MLpY6dmf+2OWhdbHVsA9dpylKFzstJy72spy52IuhcjF+ErNd4WP+bLNHgz/wo9b/6hSe5Xej2sX+q1y72Kt+6WL7Q+dipcFNm1mRiLvzi9hxw4HeE/98dD/TsnGx2vye7uD5zMy2EB8Vfh1PyrGLNXCdvfk8oGv0sH/07vgrpKF3/qZb+djexzadP/ch1xZC/BWh5BciU5T8QmSKkl+ITKlfVSCwFT62B7miByGHJKARiG4pqoP/Bbr2Gq5EIhJoiig0khjzEIGGxL0arl1AjH5zAsLS0eCFqknpz65gbUh0a+EaZmYHOHaANatgX0m0I/GLBEhiO3ixd1T6daDnMzM70AsAL2l78GtB67OB+46KqbReAxzXwb2k7pHA9QERX19+ITJFyS9Epij5hcgUJb8QmVK/NXLKxZx7JO7VEB0d+P+YChxiLLz5a5OQQ8JS1IVGv9fFTjUzs5acjXA+6HN2V/oDZ70/cAz7Qg5GgkSkHYhpZiws0frUhZc5Seii/dsPMVdcU/prjA/g+oN7MWORDQVIEPc6eBtJgKT1ahL3EyEl7A1w3/R8k2rkYjWso778QmSKkl+ITFHyC5EpSn4hMqV+d9iGDqQyT/qfg8otxwnxg9xuWxA7VlDSGy2jJEGEIKGRRLyUx2oLrkg6fwUC5L7x67MvvKhFAuIOnnkD67Xs/T6v+53/QTPrhpiTjESklPDmrkGiIgiaUaFxDKW/Ziy80W/SmqG4B0IlUYKISzlE9xJ18plxefK45rW4j778QmSKkl+ITFHyC5EpSn4hMqW+gB5g5Iqr4P8JPs7HoiKQmdkexI4N9C4jdxoJfsS29KLNHQiI46AD0cxsDfdNpch4LoiFd7Vfsx0opN/1voffZXvnf6/d+N/r2eEXXUcS/KicNCq6FrDeJOSd1r7f4uNyir9J16Z3bDF4QZTEPSrfRRch7D3lEJHqrWhwHXT4gVg8QjemECJLlPxCZIqSX4hMUfILkSn1Xe+FoKTgEIBEm5TgQ44nKlskx1Oqz5n7vcGLZNd9cNgEiEhT7NZn1lL5J8SovHULz3xjXoy7Apfet/srF4uKe6m+d1H6Afo6gngZFQanpS9FfdIcudhHlY89ApHLjMvOV1iCGyv9LWDoCjkTo0TFUDPuE0kOvzms4xSO05dfiExR8guRKUp+ITJFyS9Epij5hciUmuqJyf74IcpwStGMNjmke6T7iR5HKi42uKy8lZNGOZtxHwNqeoqNQrEm31/7ol24GI1jTtl2o0RHdFc0LQj2muzdpOyTbfcZjE4/L/wenCSaxJJReUo2WXpmL5DbDfzFZQu9AOgdi9qm6S9CZmwPpvWmZ6GYvvxCZIqSX4hMUfILkSlKfiEypY6KOzjqGMBGn4mpOTjiGWIFCZBQ245NIVFg88ctOy/kUM+AW7BJmpk1VMce7IFAQhA117xpvbi37vxxJHJGJxeZ8R6SuIcNPCH2EAvrfeitoz1NPV1D/wLi4CnaXycuVlf+3GvoBbAa/L6QDTgqApqZHeCdx+lDRUyw15dfiExR8guRKUp+ITJFyS9EpqDDj8SBqKMOxaKE+6qAqSbk+qP+Ah2IGsUhNhGFnwWEk8677JYWm3BklliLoPhFzSPXrReR9r0/jp6PBLtU3wY6NlqzTseRwLqBPgtDF7sGjXYvCi/OmZkdwbtHvtLTg49OgoLtoYT1hrUlxycJduQYNOO+FhRDsRGurS+/EJmi5BciU5T8QmSKkl+ITKlbGMccLUeMCn4pFxOJQ9EGoOSea2GAdrSkl57lIWWZ1Mwy6oqM/h6V6tI4bRwFTYLdA1x/BDrWQDjt+1gj07V5oYpcllQCXTb8LA249F6AuHcK/WB3sD5NBdNwQCDdgwBJTV5vQdy76L2T08zsFqYz0TSrPU0agpi+/EJkipJfiExR8guRKUp+ITIFHX4fUr6L4lzC1Ua93SYwkpn7DMKo5GBJbw+PFxY5E043cn6BiQ0nEkVFSeJDym9T+0LPgqXWQcEQeyYGhWYSqoiTih1+PyhB8AMn4XMQU7fwbZwefOnvGaw37d4WSnK/gnW9LthFSu88laJvOxABwQmqL78QmaLkFyJTlPxCZIqSX4hMqccgsEXFLxKGaGTwpPIDGszMjmEABo0XJkcX1WXStakX3nCgGDn0QNB6QD9CgpxtuN7g8KNrHKqYyxIFPxCqHsKHjHJHkROemSCn4wacgGZmO1gfqMC1BiU6zwm4FcvgN3QBJewlxFJiL4mfuw6ESoiRwKovvxCZouQXIlOU/EJkipJfiEypH9dzF4z2CiPBhxx6JOz9Ke7FvTmNRgVdaQ8Czar0Qsc13A+xiDrqEoIfuRV5KElM4PmQ6cLkQqR7iTr0Utem60QFzQ8pd6ZrUN86M7PLg3e7vW785N+qZVH6PtcwtGMJn1Dq17cCh98duPbIyWcWd0WieK2hHUKI71HyC5EpSn4hMkXJL0Sm1M+rIxfcQy+8NiiITcFld1qw6HZmXmQ5gyELNGl1DeLJOxD3yO22rcgh5oWhHbi5UlONSVAj8ZOcdthzLyichfu1BXsjmrHYSL/ZwXvS9xAD517UzUeQ8LXquQz2Yti42CtynDY8ffk+lwX04Sv82vTY3xBEQOjh95DJvVE0tEMI8WeU/EJkipJfiExR8guRKfV5wn33lzKG/09oAqqZ2cedF6E+gcm4ExCW3oOY1oBosy28uHMLzsKrBwwbIVDwA2FpDutNE107cDBuoWyVXJYk7pGoSBORzdhBR89H5dJE1M1H1zUaXmJ+HdYd38t17QddvIG+ftHq5nfgGLwFsZhE0xGsNwnpKeflQxyZEfTlFyJTlPxCZIqSX4hMUfILkSn1UxhCcAQuuyPQvhrQZ8gndQROOTOz5zCV9fzR0v/myJ8/v/SlyOvexxa1F91uyqmLvQdxbgUDEVCUMhbESNx7TGITiHF3ICy1hRc+qZQYJx3D//OjMuZqMzPbFP5+qJx4V3AvvQhUdkqCGAmxm9Lfn5nZTesn3n4Hgu8Avf5GsGYLcOStE/0D3TXItUlDcxKDYXAqcrAcXCW9Qog/o+QXIlOU/EJkipJfiExR8guRKTXVyp95EdfOwXZ7CnXM4xLsuRNuSHh84tX+ySkopyB+Hq29vffx0ivpz6B+/qbyKvxl7fsa7EDFbaGW3IytsmTnHJM6T79HfQ3Ijgv/fdNfD8bQZ4HuzwyXG39zBw1T6S8IUUWaLswKN/QbgBHUZmZ3na/nfw3HbRv/LI8r3+iT1mwCa0sqPsV20KyTekuYmW1hUlEH/ROogSehL78QmaLkFyJTlPxCZIqSX4hMqa/AMnoCos05nHw88sLE4zNvpxyfsBhTTcCGCFrF9sqLe4u1F+3WUJQNLQOwfn4OTUYfwTQjEgHN2GZLQtcOLLF0P1STPwbz9BTuewL3Qs83Sfzf34Iw1YB9mcQqEkRTluj74AQgaNRKa0MxM24USrZtgka+T0EEpEatZEumZp0r6IlAIqWZ2bbz+RadpEToyy9Epij5hcgUJb8QmaLkFyJT6q8GL9BZ5YWuae3Fj2cduNrmXvAZP080Hhxgms5bf9jFW++++33ha/K/hMFA1+BCvAHhhUQpEnJSU27IARed0IKCX1CUPIbYKQhVT6Bvw+zA+7IDke01OCWpBp5o4NxlERPdqsGvNzZLhb4NZizERqcXUeNR2quJxa5Be09uvlQzUnIxRt18hL78QmSKkl+ITFHyC5EpSn4hMqX+ur1xwbb2IkLZHLvYk60X3c4XvgHn+JxLFMHsZncX/jd/13vB7xdjf/LrgxdKtjBamlx2e7oZIDXlhoQgmpKDTS9BWCLn3hyEvOcw5vyj3t/jx53f0/NE6WgL34SvQFCrmtgEmfeJseb3wQaepV8v2oN57cu5zcym0JiVmpmSuHsKzVbJPUl7T9De0+jzh4wvp3csOtlHX34hMkXJL0SmKPmFyBQlvxCZUr/fL1yQylaHkRdj5uNHLnby9omLfdZfh2/oy+tTF/s1lP5+Ac7E28G7xtqgkEeQy44EFjOzCkQWcvjtqQwW7rGG8uQpOMnOoNcfiXufV369Pv781sXMzKqxv+/zL05cbOj8XrVQ8trCuHFah33lYyU4/KhP4Az6MpqZHVdetKN+hscwyv0RiK4jcAJuYP/W8Hw02YdKclPlyXUVm85EYBl06EwhxF8dSn4hMkXJL0SmKPmFyJSaygdRhKBBEGMvQBwm3gn4zQ11AGS+mvhr//bgxar3vY9ReSS5xkgkISGPnjlV0ruH6lZaRxK66B5nMEaaGEFZ7jH00Xv01PeFm/2I3YrFzAtdzzbeufmDP/jS79eVP/cKxLQlPN8eBr6QuDcGN15qvWjIRkPjyqlMOOHmvM8OBM0VvIvk8KNy51R5MtGXMTdgDdfRl1+ITFHyC5EpSn4hMkXJL0Sm1CnH2n1IqHrTeRFo8PqMfVlDcz1jB9zt4AVIcu6RuEcCG8WCMyQQ6utmxlNnSeCh+yERcQelnusKnGTQb28Pezr0UF58y8NU7No70e4uvXNvCS5E8lNizzz47pCQR2tD4l5q4jDty9b8c1c0FRnukb6WW9hn7P9Hz5JwJhIkQFNJMAnaVAatL78QmaLkFyJTlPxCZIqSX4hMqWe1FxzIVTUFkYWEnCUIdgtLDCEIlreiSy8oVOIUUxBjomJhB+45M75v6sWG03fBFbcFQXNx8LH3sC9vGr9/80tffnt94/slmplten/+1yBMfQFl3l+bF2evQbDdwgALdJFC+S2JeyTsmZl14L6jYw/w3vZFTJylvaf3cw57NTG/9zRoJPWbZc99GO9DTkJ9+YXIFCW/EJmi5BciU5T8QmRKPQfBj5xWJPjRYAmiT/TRi/bXIwGSWPaxoQjkvMOBEXBcC5NSzczahBB4HxKMyJG1hX5vCxClLqBcdlz537uFPTUQm8zMbhq/FlfmhaULGJJyNfjS4dtu7WL0fCSG9iDY7UAoThEty6b9JwdqBSXUJNBNgkIl3d8qmFdmLF5H30V9+YXIFCW/EJmi5BciU5T8QmRKTeLeCMUKH0tNrL0PCSdmZg0MoeAJqv7a5HYiEakFwW8Drihy44VLhI0FIxSWoASXrk2DU1Y9CGwkDsF/6W9BTFtjAa7ZHbgLNyCyUVk1xZYdDFOBfRmCZbAUS4nCJFQ3cCwJb3w/0FMQ8uAI9uXY4LpUfgvlxWbcF9CP3EkI2oN/Fn35hcgUJb8QmaLkFyJTlPxCZIqSX4hMqUldJ1D5pnpn+L0qUXvPf0Hw589BOa3hOpvSW5Uv4fdIXac6fVJ7SdU3S0wBCk4GIuh+SEmn5qZUw077RyOj/xT3f1UgBTnatJT+crEHmzRZVWm9Kmgcmqrnp/Ojf1UYg/2Z/qpwAhbrJ/DOzg/+rwIt3HfqrzD0lwF6brK0ky1dX34hMkXJL0SmKPmFyBQlvxCZUlMTzRJqlkncI8iKmxpr3YAYQzXPZJWcgjW4q/w93jV+jDRBdlOqix4S9l4SXkiYitpVSSwkIWfZ/+XTjMjmbMYCXXTUOdbFJ9bM/R41qIRroBU3cQ1aM7ofanA5qmKC9AzeRRL3xnDfqQlQUWh9onugL78QmaLkFyJTlPxCZIqSX4hMqddQI44HghBHzRXNJi5Ck0rMWNybgevvGGJHIKgUhb+2jZ640JPai4BbED5pbUhgMzPb9V4kizrJaG1JgCJBjASt6ESiVKNHnHJEDjoIkQhIAl1Jzxc8Nyo0mrGQ28H5RF+CE5SmOEGPhhYWh760LfV3SDwLOWXp3SEXIjlG9eUXIlOU/EJkipJfiExR8guRKTW5vMLNKEHUoDLdaWIyTEPNOiE2hdgRxGbmhcVTuJ9tPXOxNZSiXlV+bd72SxczM7tqfZzKW6MCTXSqDE0VouuSWEiiohk7PFOjye9DImf0uJJO/UAXId4PhGi9o9OCFjRuHDTFGex9BzeTWkMsO4YGvJOKBfb76MsvRKYo+YXIFCW/EJmi5BciU+qwmwsghxiVCJMAZcZlwiTbUKyCWzwGoeoxlFv2ENuAMDgDQYz645mx045Ka2nKEU2QoV6IWFYNIXTFgQKVdMXBfqEgRm43fCd8jM7FfnuoAnpSzxIttSboHskJenfg0uj77GCzaK/2wRJoM36fJjiO3aMvvxCZouQXIlOU/EJkipJfiEypo849LKOE40j4Whc8HILcbjSMYw7HDSScgU4yJzcXiEBbeL4WRMD3NBLbWGQJD4eA6yBkVoN1CA8LSVS2FiCcYl/H4AhzEt2iPQE/FBL3SCT7EEcluf6o/JYcg7QvNA7dzGxLfSYTYrq7H3g+ffmFyBQlvxCZouQXIlOU/EJkSk3lpNEhCw8ZBEHQwIEJDErAc0H8mkLscecFkRkIL2v4f3AFDr9JogyW+hG2JEqSyAkxElNJQCTBiAS76ATc1P2QYERuvrYAdyA56uAVw76FwZLeIaEVhh2V8Hy03jyFGAQ/cFT2wd6KGygRNmPHKA1YIect7b++/EJkipJfiExR8guRKUp+ITKlph5gJGqQc48En85i5Ztm3LvuUPn+ejUIUzTx9HHvr/NyvHKx00cbF7tbjF1ssT91sYaasyUgQQ2n9OL0Vg/JQCh+kcsu6DY0SwwRQUETphgHe/gdoCab1ouEKnrvisR1S3jG6EAUyoPDAPcN7wQ5Iisqnw+6ZFNxikWnS+vLL0SmKPmFyBQlvxCZouQXIlNqEnJIhCDCJZ2J30N3UtBdOIaffGZ+qu6nP71xsdEnfprv5Ld+6Mbs9ycuRi4tM+5TtwOnFglG0Z5rVBpLkMhF/8vTgBUzs0fV1MXmUMpM+7qEQScb2Gcqg40KzRvz10j1iSRRM+VsvA8JZ9RHESdYwxRpumx0T83iE54HmPwrh58Q4s8o+YXIFCW/EJmi5BciU2rqK/Z/3ZstNeGVyn9XULa4LMlJ5gWoo5EXluozL2oVM39uu/bXuK6gzBccjGZma7jvde8FSBKr2sq7C1Ni3H2ibrwpiIpnpRc+zcxemhf8zge/Fi0IWFewV9clTLY1H7sZ/Hpd92sXw0EzIKSacdk4xaJl7CS60V5hT0eaLgzr8JBr017TJ50ch/ryC5EpSn4hMkXJL0SmKPmFyBQlvxCZUq86r7BS7S8p9thkEhTN1P8wu96r81edt9leg910W3iFvOtBkb7waurulb/Gl98+c7FXE/8s68Q0FVqzLTwfri1YU48qr8RT7wVSlY+KkYu9KP0a/uTAav8/7/x9v5jcuRit99vWX+d17ffqTe3v8RtqJgt/jSJbeEqtJ2WfIMsv1f3THszhrzVTsENvoCNDP8Bf1hJj4AlqcIoj2qX2CyG+R8kvRKYo+YXIFCW/EJlSr0HwIyGPG0XG6ob7RM3ypvNW16rwds6bxt/jAhpAXnRewKp/88jFbndebPrlyJ/7tgArbsKqHB0vTcIUNmYES2xjXhCjkeYnpX++5+ZjL1sWlj6Ze0H0yQu/LwWMTTq99s1Rz67nLvZo54XBw9jf4zUIu4ty62LRUdVmCUEMauDpOLLyUgNWgvaexN5oE9TUb0avoy+/EJmi5BciU5T8QmSKkl+ITKnbxHSQCNF6/oeA4he46pbQSPHrxosx77tjF7sceYHm68pf4+oAI5ETDj96bnKXRYXBaGNHGg1+BMLgCTi8JuAuMzMbYN51D8X7NXRRHU28sDSFPgvzjRfyjgZ/30fg+iNXY8rhF3XARUU2qp+nK9OY7RX0K9iCW/EhRMU9yit9+YXIFCW/EJmi5BciU5T8QmRKrEvkB5ISU0h4ibIC4e0baLgJVZm2gNHSJO5t4BqpiULREdjUcDPaZLKC/6tnUDp6DNeYgYhXJ/aFSnW3K3+degduxZ2/9goclWtYmxZcdlRqSyJnASXQqWOjI9Hp7cTR6SCwXffe6XjbepckCe4pUZjWgkrEoy5SffmFyBQlvxCZouQXIlOU/EJkSt2Ag4ogYYG8TXRUquQRRS0QgkisuDiAWwpcf3RtEu22INrQcdHx5WYs0KDrLyh8jmGvnkC/vufglHva+fueJaYPlXA7fQcC3d6LaZutFwaXg4/d1f73NiD4tfBGRUVAM7NjWJ85TdiB72AD7yKNaH87+BLjd+3CxWiCE/XGpBwwi7sVo9OH9OUXIlOU/EJkipJfiExR8guRKfUUhidQeSq5mEooCSVBLCVoVaX/v4fEjjtwS30L16FSzw/puYZDSf4f3IrR8eckap3BqPIftP7cFzBCfFbFy0l3OxioAa7BXQciIHxj6Mo7WFsSYqlklZyTZmYjeJ+egCvyfPDnP+5je/pF5c+9bbwISMM4SMz+UKK9NfXlFyJTlPxCZIqSX4hMUfILkSn1Ue1LIUmAomEVfRlzEtG0UzMWAknMocEiNAF3BA44ilEfthKEITou6sZLQY4uWm9as6hzqwbBpwDBZ9Ozu3MBJb099r3zsT3Ermv/LJcwdOUKZMAFlFqvoe/dJPEZI3n2+OAP/vHeH/lZ7YeX1JXfg/Od7xN5MvZTn7+rYYAM9PpbgDhrZraknpIgGJKwiD0m8SpCiL96lPxCZIqSX4hMUfILkSn1i+bUBalskYQFEueo7JB6z5mx64jcfCso36XS2Cjk0qM7JHGPREAzswO4C2nYyA5cceTIInGPhK43lV+bL2Di8OXgYyn5cA2LQeW2VBDcwtouC78ONyB0vRl8j7urbuViOHE22ffOczb4B/zJ5MbFPv2XO38dUBafv/Llu//wxk8hvrydudiXpY/9tvHnmpl9a36vb0oaLOPXh4RPffmFyBQlvxCZouQXIlOU/EJkSv155QU/Ekn24Gxag+SzB7GBBEQzFrCodLioY8LbpPTlyTMQ4sZQ5hstyU2V9O4PMUfevgRHVtC5twOR7DWIZG0J5cAw0CS1L1vYVxpgQsISiXFRAXkLzjaaYpvqcUeM4fv2ovPr/fE/etFu/LPPXKw4mrtY0/p7PN75Z/nom3c+9nMvKjYX3h1oZlaM/GRjKllewVCaqMgthMgAJb8QmaLkFyJTlPxCZEr9AnrAPQMHVAPa0C0ISxcwOINKNc3MrmE6RAe+s2hvvjn0ZjsBEfA4OJx4C/eyBuErRbTEmMqlCSoHvgVH5HIARySWT7PQyM5Ev4cUI/EyOq04Cv1eykVK/RrpXS5GIPiO/btjLz52ofL8UzjXu/SKr37jYo8X/+FiL//d76mZ2WXvxcZt5d8nknE7CX5CiO9R8guRKUp+ITJFyS9Epij5hciU+gU0a/wx2BWfjb0COYCs+Gbn65OpvtzM7H9Aqazh/6MV2FqJh9g+74P14PB8qQHdZGGlOn2KRaHGjDT2mSzSOH0ocS9k0d1Bw1SKEROYCjWtfIz+AhDt25Aanb4Cq/IfG/+efPfLIxf74bM/ulj99KmLFU/gLwAQ63c+h6rn/+1ixzO/p2ZmR2ufW01FI99j6MsvRKYo+YXIFCW/EJmi5BciU+qXrbdy/uj82sXOfurFnfKJF/L+5s13/vd+5YUKM7Nf3D12sV+NvIXx28ILIDTpZAu21AXYTbdQ71weaPqMP46uYWa2Ifsr3COJadiQEu5nm7BJR36PJrZQs1UzthFvOl+fTuOlyUZcw/ShAazhB2gSSqIyCp+JKTfvet8A9NcwUvtk59/F+X++dbHzn/gYUYygCefEv9vFsc+N6ew9/uZ0GbPokvjcwprpyy9Epij5hcgUJb8QmaLkFyJT6h/OfQPBs3/ywlLzs791seKpbzRYX1262EcnX+DFh5/7KSn9ygsvDTgEX4Gb7x0IHQuobb8dti5GrrhoY00zbpBIghj9Jolx1AiV7pEgwY5Etyn0OjAz/CRUpQ8eepriA8/S+3UYQSPTlEvvPtHR7qnfJCfoo9r3gvj7Cz96+3zj3x2r/Ll8M37vC+gZMD5iUXnyFnolGDSOpT2Q4CeE+B4lvxCZouQXIlOU/EJkSv3s5dIFm7/7xMXKz37sz56fuNCh9gJE9dxPKjEzO33qnYSfLr3jaWj9pJIGykTBFGerwouXi84/87LzQg6Vk46hmagZi0jRMloSC1EYBLsbHUfXoPubVX5dzXgaEolsJORhDITPdeeFWBIlCXImNgOfS2tBz3IBztIN/SYIdAU49w57aMJ5/cYfd+cdiCmdmZ6Qvt50OgnI+vILkSlKfiEyRckvRKYo+YXIlP8Fru8XwgLe3+0AAAAASUVORK5CYII=" y="-12962.339914"/>
</g>
<g id="matplotlib.axis_725">
<g id="xtick_1087"/>
<g id="xtick_1088"/>
<g id="xtick_1089"/>
</g>
<g id="matplotlib.axis_726">
<g id="ytick_1811"/>
<g id="ytick_1812"/>
<g id="ytick_1813"/>
<g id="ytick_1814"/>
<g id="ytick_1815"/>
</g>
</g>
<g id="axes_364">
<g id="patch_365">
<path d="M 434.924375 13087.241678
L 557.214375 13087.241678
L 557.214375 12959.94815
L 434.924375 12959.94815
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_727">
<g id="xtick_1090"/>
<g id="xtick_1091"/>
<g id="xtick_1092"/>
</g>
<g id="matplotlib.axis_728">
<g id="ytick_1816"/>
<g id="ytick_1817"/>
<g id="ytick_1818"/>
<g id="ytick_1819"/>
<g id="ytick_1820"/>
</g>
</g>
<g id="axes_365">
<g id="patch_366">
<path d="M 29.174375 13228.659338
L 151.464375 13228.659338
L 151.464375 13106.369338
L 29.174375 13106.369338
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pd920b6f83d)">
<image height="122.4" id="imaged7df946ea2" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnduO5GaWnXcwGOeMPGfWUaVDuyUb456Zhg3YgN2A38DX8zJ+KF/53mMDA3sG3eNutwRJJZVUVVmVlZGHOEcwSPqiRzdaH4Fo2Ff+13e5QQbJn9wksGLtvVv/6cXf1PEzfl/Pfx6K77YTiT3slhJrRUtig3ZXYhERB+2+xLqtXGLtVqYxOA5tV4dcXszKjcSmpV7LqtxKrKwriUVE5K22xA7zgcQ+711I7G/Wut1v/t1bPcalbldcrSQ2e9WR2Hzak9h6o9tFRHzY6X15n+t9mepyRwm/N8/0Hly1Cj1upfdlVus9WFYaW1f6exERrZY+J6NM1+KyPZTYRUu3G9Z60bAMMYbtPt7pdi/gmnsZbBgRq1LvwU1Lc+uqo8e+zvS5pfM2xiSAk9+YRHHyG5MoTn5jEiX/KlTouq1URNrWKkLsKpV3KhDYmkQyEuN6mYpQJAJ2QGDLQ2MkDNK+dNw/B9r/Ih9L7LNQYemT/kxinY9039ZY9823eg96typ+rZd6fuVa1yYiooA1ozvY09sXbYgNazhOG86npTvTGfbaev92IOI10YP7393zO0jrsO8XtADxcVnDM1txvrRhfQaQWx0QGwl/+Y1JFCe/MYni5DcmUZz8xiRK/nanYhM5qAoQ90jIw+3AXRQREWBkqkAxov0LEm1AGOxlGstAeBlk6pTqtVSUot+LiDgEwelFNpLYrzZ67EefTyXWOnqsB8ngXV3petWlHmOz0fOelSxyztp6HDhtZFDr+XTw9usP7kAEHGR6n0koJmdp07YNT6NAYnFNoiQIbB3Ytwf3qgdn0++ww68NTskabsyg0jWDdPGX35hUcfIbkyhOfmMSxclvTKLkG3DukUhCIhmVS9K+5ASMiMhAFKHj0G+WLZBt6FUGm5FoNwLBrw8C4iGUUEZEPIL4L3e6/xe5inu9C7jmxVpi1Z26MZff6v27eXsgsXdrdQdet1m8fGjr+VDBbBfcfCS7dUAEPID7cgEl2cdwU4dw3AGIaRERFTxPc3hO7kFMW8NzR/Thqun6xpAHh10t6T081HsfEdEGMbw11dhorc9iTrmGRzHG/H+Pk9+YRHHyG5MoTn5jEgUVH3JLkXuOevPVIO40lfRS+W+TOCj7gtOKBMQ2uNXIuTUAN98piHhnwYLfR6VaqF4UKsYdnoOQtwEH48t7ic2+13vw9t2pxmrtwXcNfd1mIHJFRGxhbUnc60OpLmquoALSXYbDxhhiT3e6rpc5i2SdXI802+g9fAv9+j7As7OGC6Qy5hEIkH1Qn4cDlVKHR9yPMGOrpHC40mvu1/p8+8tvTKI4+Y1JFCe/MYni5DcmUVDwox53JJzlUG7ZBffcumQBY9/STHL97QuJgDRgo79nDPvRRcSQnIQga5U7EJE+6HHWCxVoXl0fSexlrkLVNShQc3BEbsklGREduMYcvhM5CF2kIS6hFPkOPjs03GMMamEbnpvzCx00ExFx8ETL03dL/c3DV9ozcbhSp+QNDC+hcud9n9gWqJztXkMPP7A29mFYydmd9uB8BG5Tf/mNSRQnvzGJ4uQ3JlGc/MYkipPfmETJ0RILddUDsPfSm6OAZpvbNjckLGqY+ANWYLIHl3u2YcR/D+ia94z1GtT+HtiaifVaVfwdqP03cx3H/XVHlf2XbV3De+iMuoJ/HrKmfy5woo1uu8VaeY3dQ/PI65aezwJic/hH6SnE2g3W197nhxLr99Xe2z3VEfTZ7+CeLvRfAfoHgJ6GAjJmt4MGpQ2PdtaF6VOHuvHZ+UJin17pNfvLb0yiOPmNSRQnvzGJ4uQ3JlFyEsTa8E7oktUVRED6vV2DOLcBwW8FdsVFpU0OS5oqBL9Ho8WJHlzzEYxPvoRpOBER56Uepw8C1rrQNVusNfYD2HZJ3HsdWsc+hbUpQYKie/qnbVWU7JDFGnYnoesB1uG2hjHiNO0JeirMYTpSu8OCa/bJU4m1nr+QWP+jK4k96/xBz+fv9Dkp12oDnoMdfgu5sdnqIlZF0zdZ8ygf6/4HL/RZ/CS/lZi//MYkipPfmERx8huTKE5+YxIlp1p5inXgPUGuvyGoQOSoi4gooJ78vqViFbEBYbAEwY+OfQDNOh+HikifF7rvL2udmhMRcX6mrqoCxJzrmY7tfg2NUF/mujZXocLnpFLBj0RTEvc64OSMiChAWJrD2u6gFr0Ep+MURNcHEHGJQ7hXORyje8SNX1vPnkus/avfSKz+Qmvge0OdcvSi+h8SK/9On5Mft3qfd5BXy0KvbzXj0endE73X7TH0WRhqXo4Heg/85TcmUZz8xiSKk9+YRHHyG5MoObn5qFkjCUZj6P95Du6wo5rfMdTA8zrT/ekcqaR3Bc62k1xFm+eZlst+Bq6qj0sVWJ49f5BYRMTBxyqoFHe63eSPej4TGIk9aaloNwUhj8Q9Wlcq06b73AT9Jm+nkJOTRsPTOeLIdxDOqm1Dy0z4zdbBicSyngqD9T9XV1z3jToBL394K7HJK33GrqG57YdKhebuhMXLdhsm/mz1mW8PYeT7liZcGWOSxMlvTKI4+Y1JFCe/MYmS90GEoHHVx1BaeQri3uNK3yePi6bJMCpCHHVgiFCu4gmxzFT8egTi3pNKj3FS6jkOoPdgZ8BiTH6px2kf6v7jb8HBCCO1ySlHb2py6dFqUz/CJhGvgmO3QWSjMugaXJs7aEq3BsGPegrOWrodTSR696321ouI+MU3X0us/ERjrZGOOo+JinvV/UxiiwfNjTvoM3gNwm5AbFaqO/BPp6PPydG7/RyxC4/oNsb8hJPfmERx8huTKE5+YxIlPwNBbARluSTuHYNAcwBq03FDH71RBoJaoeLJCkqHi7aKH0sQNS5Cf+8YNDsSH2sQyapdg5MMhlW0htALr6MHb4NmQwJbHxyVJYy1Jkcd9fCj7SIC50vvNyKFhUo6zhqcicQ009LfN3Dv//dGx5dHRFz+l+8lNo7/rBv21WlXfvWDxK7/q67E7x/OJfYSBmxMoJdhAWXRb+FZiog46Ghe9mrNXxoZfgvCqb/8xiSKk9+YRHHyG5MoTn5jEiV/2lKhYwgluGOIDUEF6lcqYPTA9RURMeqp0pVB6eHTnR57DSLgHU0XbugfuA8VCJrFumHQxY32gKsLvZb15lj33fMUu/SuBjcmsYBy5yZvGPn+1iBW9eF8qP8fQeW7OI0ZYjMQkH8gZ2hEfPnlpcQ+m7+WWAauwcl7ddp9vVEn4Zc9vYE3NIUYznuB5c4sxFI/Snp0trBm01KFU3/5jUkUJ78xieLkNyZRnPzGJEr+rFShpAuKTw9iA3BzDSsVG3pQGhsR0e9rvNeDXngP+o6alupsWuU0IRgcZ+CgKnF4ie67hYm6ERHz7/S6adsHcDDuVHNFqCw3xynL+ymIJKZFRJQg0BawLa0tiZJnmTry+iDY0vngYBiaLtzQYvCGhn68AdEVxN0PUMb+qqvXR+65FbkaQQydgRD7AINYIngKNUHrSENu/OU3JlGc/MYkipPfmERx8huTKPkRaD49EPLQuQfCwkGAE6zLgl8XBD9yWh0XKoCcLFUle2jru2yz57CJfdnC5N2IiOJWBcj1RsWqJZRLEyTk0ZuaXF80jIP6Mg4adEES48aw/xiEt6MapgHXKpzRtVRwPlRB3YMNDxuMhRWItveVXssaHIfvc41NQAxdkksPxD0sbQbXX1O5M4l2FTzf1JuxqGiCtTEmSZz8xiSKk9+YRHHyG5MoOXmGoC3c3uIeDbrI6AcjYgeTcaESMsB8F0cglFzsVMhZgZuP3IoduL42iEV0LhERoJFGDa4xetvS+ezr0qPf64MQN9zXKRcs2l1WGjsvYegKDD85gYnDhz0tMW3Bes/XKhbeg4C4AsEugsulb9t6LfcwPONdptcyCb2WeeizSD0TtyAC0nZU7hwR0YEBOyTukcOPhE9/+Y1JFCe/MYni5DcmUZz8xiSKk9+YRMnf5yA1g6dyBJbKLjV17Kjy2aSQr1eqzpelvo92EMtB5RyDBXk/M21ECer6utS9B6D2RvAkHmK0A9UdRoa34V8K+geAFHtqwDqE9/y4oXPoBaj4T6AB5FlfbdejE91udKI164MXcH2napHevbuV2O1XqvZffeAR3a9Dewm8h74PVzA96kOt5z2r9f439UWQ7UjZh3s6yvT6IiJae/4DtIN/FZbQN8BffmMSxclvTKI4+Y1JFCe/MYmSv6a5LbkKDkck+IH9cThqmgOjbKDBJYl7WxDeNvDeWoOyuITYFnSTeabHWJUqFu3m/L4cd/S6yd5bwHmT+ZnahJ5A9PlOz/t5oeLjEdznvGGSUgfu63isQt7hqQp+/TMYu34BTTR/+URirY8/klh7OpXY+fBLiW3+u05Mioh4tdR7eAfX/b7W67urNFaCmLavEEd0QbDtNNiuO/DsUD3/CqzvBYjz/vIbkyhOfmMSxclvTKI4+Y1JlHwCLqZepu+Eiza48UAEpAacTQYocv5RTTfVyi9BFLmFmuwH6CVQwHFJOJmAy25S8XidUa1xuuwlmLfu4BxJRPoYxNB/236Q2LO/0lh+AhNyHrix6uKt3mu6h/kARKQ+PBOHujatsxONPftUD3KhQl4+uZPY6H+9130jor3AsDAEL2gGk4bIkUfOvQU5AWE7arbaaajnJ7bQFHQFx156RLcx5iec/MYkipPfmERx8huTKPkWmnDOwCF03VbB6F2hgkhrAmWLDQ08STCsQVDZQkPJJYh7MzjODNxcGxAVacIKCTQZlINGBHq86KorUC8zUD5Pa13vzwoVcj7+D6podf/9r/XAowM9v9ev4Qwjsr9/JbHVWz3HChqwlkt9nvI1CIvlfiXQ0RtpbKyx7oh/76TSY38GjV4/hdLfAygR78D9e93Rdfiurffqdk8RkMTniIg1iHs04ntWqvOSpgD5y29Mojj5jUkUJ78xieLkNyZRcnIY7UBwuIOSwJddFaWmpYoxTe3tMuppBloHGNtiCu67JY1PhticXFEgfC5B+CwrtiuSaEduMCrhHIO4N4Ry4Mv+UmL5i1M9mYtHEmp1wZn4cK+xiMgOVRBrvVPBaDPX866g/2N7pO6y9nSmx1ho+W70h3iO8nsDvi/PRnONwXaDkV4fjZBfTtWiObw/lti2B2sDzzGJ6/TcRbCbbwcxogvTfvzlNyZRnPzGJIqT35hEcfIbkyg5jXOmXmHkRLqDXm+rpgkdQAXbdkHw64L4he45iG2gFnUBI5Wn4JRaQIxGIkewkNeDsdi0XRdKOI9goEYfRKl6A+/vm2vdDsq06zst/Y2IiN1+Qyi20IOx2Or69Ba63vVKRcB6rYImPk0L6NcHbtGIiONz3bZ3oueTj3V9igddh4eJDhYpaJgKPLMHMExlvWeJcEREsae4189UsM1ChUp/+Y1JFCe/MYni5DcmUZz8xiRK3ofeZQd7Tn4lBxuVyy4bBIwtuO86IAKOoaS3Q05AOM4WZEBySm1p0AFs1yT4tffsu5bBmvXgHXxIE4dzvZb6QQWt6s2VHhh+r55yg7saBL92D86no9tVDZN/96IAgRVi5dVEYsuJilwRETUNm4Ey36qAZ+dBBc17GAKyAjEV0gAnJe/bEzCCn70ccnVfZ6m//MYkipPfmERx8huTKE5+YxIl74NQNQKB7RgcS32IrUHvWZL6Eey+24Hg10FhUWNTKDtewzFIUKEhGT0og2yCSqNzWFuSw3qwjkMQ6Lp9ECChTrReaA+32Kg7sJo3TFQGg1/Wh352XT0fEvzA6BixAXHvGpyJ4EKc/1av7+q9DgGJ4InDJZzj8EjXZ7cFgQ6e5SGUedf0PMDdX8EwnFmLS3pLEMiplJyexZ4FP2PMTzj5jUkUJ78xieLkNyZR8oM9xb1TEEkOQehYgttp0TDoYgFixQ6GIpCQR9vdUVnunoMSyKHXhncjOfT+tO1+wgttR4LmAITKzlDXodWHsb8gFpK4t5uw4FcuYXDKTFW7+YP2BdztoCckDPcYTKicGMS9Oz3G9/eXEqOhMhERPViLyxsV2Z7stKfg+EzLjj/6SPseXiz02NuNxlZrPe7lRnteDnvct/AKxMFt0wjsn0HPrb/8xiSKk9+YRHHyG5MoTn5jEiU/glLdExD3LnYqNp22QEyDoQ2rFgyMiIh7EAKXODUYhEUowZ1XKtAUsC+5oqjkkQS7DmwXwUIexZoEw5+zd2HsFlx2IO6tXul63V/BBNyIuJtpn7q7SoXFSVvXgpyXAbNB1jCfYwO7FiDObrSqFreLiOjBSt6V+jzm0K/v5LmWSw/+ha7Z8UDXpgZHZXmtF33+lQ4VGb49l1hExNdduAcwmXoNFk0qtfeX35hEcfIbkyhOfmMSxclvTKI4+Y1JlPwEGhyel6oWXmaqpJ8e6oSVEuZp38y5ueK3pPaDik8W3RVstwJ7bwlqPzY9hJHfVI9PCn5ERAe2pclHZOXlJo7K+kHXsf2d3pf1vVpL311pvfuPVYONtKPn/QHq4h+wfwI0RwX1mRRp+meGphlR01mqlY+IoH4VHejTMKt1bXcr+Da2oUfDmY7obpVwB8FqPPigTVQvbmAiUUTMCr3uVq7nMwOL/RT+DfGX35hEcfIbkyhOfmMSxclvTKLkJ6UKAScgsB2OVFjqDcBiO1Xr5ArEtAi2ZFKtPRk3mybn/L+EBD8aaR4RcdRSwYgaoQ5AmCLRtQfXV2z19xYf1PJ5d6f23KtSY+9A2IuIuAZx7waaSt7WNNacxFmNkbhH9EGcOwS7+CGsf0REH+zrY1xvECqXut7Fj1r33wGBPOCZ371TgZzE2R2I5hERXehhMYI02EI/jo7tvcaYn3DyG5MoTn5jEsXJb0yi5B0QEYg1NCRcrFRkIdfYKy7nR8FvBONdhhBbgyNr1lIBisZxk6NumOnvHYCIdN6ChpkR8Wmp2z6FUdc03WUcet7nB+ry6o9g6g70XqhB8KFJSLBZIxU8J7S2U+ipQM7LHexLFLWudz/X56HX0DPislLRju7LUadhetHP2FHf0RpGncPabq5hytSdNidYwrMUEVFSr4T/C/zlNyZRnPzGJIqT35hEcfIbkyj5LZQoLkFkyaCB4xRcTNcdFYao9DOCy1ufhAo3B/COApNW3GbqQnuA0t8KhMYBlImOwM33pOLJMH+5VaHri09vJNa/gKk7DRONfk61hWaWEyhvbUMZcwFjyRu0Xmw8CmITVKii85LEvS3cFyIHlySJj/2G79gJPHrnILCOD8DBeqDnSKPKg9ZmA/cKStunS33e5/AsRkSs4TgreHRWcGPXLuk1xvyEk9+YRHHyG5MoTn5jEiV/mYMAhT3lQERoQR822I6EvYiIMYg5jyt9H72AqTRHoW63WagY96ajpawPMOWECkzbYIF7tGOV7OmRTl45+s2RxLLPP9Odoeda/UHFwvL7dxLbzdUJSCWhKzjGsuHVv9yzvx7tTqPOqWci9VYkIZYg8bHTYFfsgTjYA2G429dY5wiE0xN9xqiPXn0HZcxUkk1O1YwFv2lbr3EGz/KcBD/IVX/5jUkUJ78xieLkNyZRnPzGJEr+KtYSJOGlpNJfCA1A3DltKIM9BJHmWaHCxD8bax3l+acqsIHWFA+vtWTy3WQssQ/gLCRBbEz92iKiP1SBp/Xoqcb+4l9r7OBUYvWPf9TYVK+5WKpb7X2hIuebnq71TYPz8iFU/NqgJKr0oPy6AlGqBaIdiYBd6OHHo88ZODTpqwxdMgi+NYyvL2As+XSqz+IdiHsk7EVELNHNp7EtiHubPQVbY0wCOPmNSRQnvzGJ4uQ3JlHy61L7j5HOQWIMTaatMhU1ThoGKtDwhPPQ0sqjc3Wx9Z7ob7YOVFg8P1NBs//NncQGb1UEfCj097ogpkRE5N39BDES97Kz5xIr79TNV29UVJy8P5DYjx0VyUjcI2Evgifo7kDdJSdoHwS/Dihsg4CpuNRvEScl7//NIumMSpHXSz2f+g1MVL7WtSkLPZ/bW+1l+XWp9+oKyrl3DRXe5LIlRy3dVfJO+stvTKI4+Y1JFCe/MYni5DcmUfIFDFQgcY/EGCrVJIFmFyoCRkT0QIXIQVBbTlV4a32j590Zq3hZg3qy26q40wYr2CDTa+7lLJJlOVzMQoXKGoS8aqciZ/3tHyS2+kcVKl9v1EX4AfrMzWFdtw2TcklYItcnCb4j+J70YLsMpDg6Bgla1K/vBKbxRkQcVnoPwTQY07k6PLdTFe22cJw5lpJrbvzQ1XOhfnuDhvJkElipVHcNuVqAiOsvvzGJ4uQ3JlGc/MYkipPfmETJSUTgkt79eq7R5FYsB46IAnSNOxoOMgGBbgJCELjYOhkIIqWKMWsYlNCG62s3lPQWK32Plle3Emt9+VuJ1SUMtfjb30vsuz+cSYzcfLOgIRl0/xgqme3A+vRB8D2Cvowkxh2Bu5MEYPU0BngDI57saMuIi66KrjBrJuYgAt/C8Jp7GHLzHlx6b6BP4KRWkZoGpwwbhnYQa7iva7j/KxiS4i+/MYni5DcmUZz8xiSKk9+YRMlHmYoaHRBt1uDSqkHIIwGRXFoRPDwjQMAiYZB8diQYwdDgqHnQrjCE61vDQIyIiHivofY/TCV2MP2dxKqVijZvf6fln9+EOs5u2vsNaEBhCQS7iIghfBNowMpRqTfmotQDnZd6t07a6mqk6cI1uN06MGhmdKpiWkREh1x1MC13VehDQTr1AtTCB1jvGQhs5JwkcXUBgl1ExAbE9HmtQie5dheVrre//MYkipPfmERx8huTKE5+YxLFyW9MouSXbVWQaRwz2QO3oEpSc8Vtg5H0Gurlp9QUFPdWeqCc0j8A+77xpvB7d23+q+CmUnX+4ZXWiD+61p4DGfzrcbXQ35t36J8UUPZpHWBdzxv+9vgYnLIXYEE+aqmqPOrpzoNDjbU7+zXCrMgGDOO0h2es9regz0IG/5BsNroWw5X+K9CDfz3oP5M+jSqHfy6oMeqiobHqQ62K/X2p9uVlqdttK9t7jTH/hJPfmERx8huTKE5+YxIlfw7NNTcgQK3AWjijUc6wHcUiIm6gWrsH76McxjkPqFEkiDEdnNmibEh4AdsmOFojIgLKvOMuU8HoYX0osVOwaBZ7ipdDEJFo3y6s1xdbtl3/9ZH2ITj9dCmxrA8C1hx6PDyomEYW2+VSrebbHTQJBYt174BFsm5fn73uWGPjtYpki42ez6DSa6GGm4cgA27AY002YGrAGcG23U2lz05NNmJsomqMSRInvzGJ4uQ3JlGc/MYkSv64UmGCpojMybEEQhy54poEvyWIHQUcZwhC3gC2o9r9PtgDqT8AmMtiSRNkqDA+WGRZYr8CvZZWoeLXEFyWB9A8dAzrEDAS+wSccn91eKP7RsTT/6iuz+zjX0qsXqoImH/5o8SW/xP6FUx0JPrrtjoi76F+/nCl6/qLl7pvRMSTy5nEukN97nYgLG4rjW2gWScNwCahmfpaUI3/GvLiT+fD8Z9DLts2nLa//MYkipPfmERx8huTKE5+YxIlPwFBrAtCHmhIUYKLiQQM+LnGbTvwPqJR0C1wVZH7jpqErkG0m4Kbj1yNDb1IkTUVI8M6tkEEvIDR4rSMWLIM4t5nhTrBHv8bnnKT/fov9djHOi0oPui48fjmjYTeX48k9t96KtB92dLy1DtoPNnOdRE/yfQYERF/PXkksefv1Sm3hRvzNlc33xWUCK/goaCvKj2zBInHTeCoczgMNdv1l9+YRHHyG5MoTn5jEsXJb0yi5GNwjWXgqipAtetBjMY2/zkiGYl71JuPHFQkvGxhRPcShLgliHs0gjxvKBGmvnkkaN5DGXMJPeUeMl1HKt+FXeMYdMZHA+0d2H5+ohtGRGuo/QMDHIexmEuoeKOuvz+2ziX296HTjL7bTCT2sNPfq0C8+jbX0vSIiG+7KlR+MtDro7VdtvRe0ahz6tdHo8qH8IysW1Ai3KIh5BEzyK0dPLcUKyqN+ctvTKI4+Y1JFCe/MYni5DcmUfIT6B+XVSo4bEDcm4EwSG8TEvGatqWRxR0a0wz7kq5IoxxIMCLIPUXnF8GDRbBcEwadkNj4AO7Jk0zFoVMoyb6g0mYYdFFv2OFXX73W4FZXsvz6lcQ+fKVOu29yXZ2rQkttbwsVEBfFWmIkXk23KgxGRMx3uv9N71hipzC8pg9iXA9Etxyexi48J8c0gATyatni8uRFBj38qP8jDFihXn/+8huTKE5+YxLFyW9Mojj5jUmU/NmxCi+j2UBiZamxe5hUQYJY2dD3jlxxbXKx4QALjdHM2TbNUMV+ZnDeewqDETwtl3oUbhv6GcqxYeBHn8qd4aqPSj1uFwS/EkpbIyLq1VcSq25VOJt9q2v2zcOlxD70VWxawwAK6lFH4l4JLjuKRUQsQPC7zVRYxKEWmT7z5GAl12cXHp3DUoMk+N3l7PCbZDpEZFrp9RE7O/yMMT/h5DcmUZz8xiSKk9+YRMkvf6WCwfit9k2L7zU0LdXNtYT+apuG3mUk0PVhWyq3HOypxdH03A2881bQw49EPBq8EMHi3rxWUavAklBdCZqqe1mrEPTpVn/vk5GKuMMzFd0qrfKNiIjtlbrlpu/UdXY10YnDrzp6LUvwWbZA6CLRjWJ/DiQqZ3DsLtyDMQhsx1BuO6z1HEl+XIAjlrZrmiw9hHPsw/l0oByc8JffmERx8huTKE5+YxLFyW9MouT5RyrajA5U8Hm2e5DY7JWKDVWoSELlwBERh5WKZ2dQjngIvdRqEEVuQRB7CwMxHvZsM0hDN5omqC6gtHIFZZTUF3AAQs6jUIHtX2503784vJPY+S9UyctP9KKrNbvidiv9Jizmej7XcK9voKkgTWmmSbJdKFnetfdz+DUJg/22nuOorf3+zsDN91HodpdQQk0swdV6BwNkSNxjf1/ECNyqByBKrjK9V6v2kVI7AAADk0lEQVS2iq7+8huTKE5+YxLFyW9Mojj5jUmUvJqAzQucSP0zFbqe3mppZGemvdDg5yIi4tGx7n/2hU5qzc9U1Cjeqwvx7R9UvNytNTaHkcNTmgQskYh1Q0nuAkpUl6WeIznbDjMVlmjAwyU45Q6O9RjZACb8gvOS/WVMDS5LGuRCIukG+haS8EmiHYmAtC+VZDftPwJBjJx7lzB442IHU3rhAV+BLkhTpDugNI8aHLF0jgu4ljn0+suhFNlffmMSxclvTKI4+Y1JFCe/MYni5DcmUfK7fwR7YR/U2VJV03Zbld2TgfYHGI25UeT5r/U4nd/8K4m1Lh5LLP/uG4k972rjyfofoDHndiyxAmzAC1BIJ031/KDsz0tdC6ovJ/X5HmytVy391+N0orbUzkj/RQmwJdegXDfRamjC+nPI/Ew9DCqI0drkUJve1KyToNr9Gu4hTVei2BZ+j64ZnLxIDttVDXZ46n9BFPCPFDVH9ZffmERx8huTKE5+YxLFyW9MouTfX51oEJpZEltoXNgm2ybUeEdE1DsYEX1wIKHWiy8klo3UttvbqLD4fPdSYuVvVVCZl/p719CMsok11O7TeGiCbK3ft1XIO+7qOQ7nKl5236u4M4bJLq0G33VZgEgGltOsQfyU39vTRoyNJ2FXEgZJxIvgcewbED/JljwHkbO/ZxPOfb+qBRxj1WCHvwVp8bpUe/4Exp/TCHN/+Y1JFCe/MYni5DcmUZz8xiRK/gM0ONyBw2gDIgToQjEE9WM756aHpz+oWNGdTHRDcNq1Hn+msS/uJdabaOzwpYof1b2KaQsQhpZQtx8RsSo1vt7BxB4YlVyDKPUjjOge9TR21tWpSWd3GstAdM1z7k2w3ajQud3pd4Lq+bet/RpuUl+DLnjY2tB7YQv35c9x/dG21GSUxDh65veFzpDy6rbFTWLfVdrr4n0xldjdVh2ei0IFX3/5jUkUJ78xieLkNyZRnPzGJEr+DkxsC3D4zSBGAsYZuLQOG6acbOZ68Hq9nyuuNTrW2PlTjR1oQ9HNWt14V1Bb+bZSYfB2B+WyEbEAN9+qUMFvX2FqkqlL64e2lv4+7mjso0IbgnZu9bhZxudSlHq/7ksVhu+6qlbdweQiam5KZHuO485hcg05+ZqgcmICx3vDYXYg2lGM5FVyFs4apkLdQ4n4bKci4LLQ8vKidEmvMeafcPIbkyhOfmMSxclvTKL8Hyi/kr/30MDNAAAAAElFTkSuQmCC" y="-13106.259338"/>
</g>
<g id="matplotlib.axis_729">
<g id="xtick_1093"/>
<g id="xtick_1094"/>
<g id="xtick_1095"/>
</g>
<g id="matplotlib.axis_730">
<g id="ytick_1821"/>
<g id="ytick_1822"/>
<g id="ytick_1823"/>
<g id="ytick_1824"/>
<g id="ytick_1825"/>
<g id="text_92">
<!-- 304 1833-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 13214.554338)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-48"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_366">
<g id="patch_367">
<path d="M 164.424375 13228.659338
L 286.714375 13228.659338
L 286.714375 13106.369338
L 164.424375 13106.369338
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p6d980f5387)">
<image height="122.4" id="image71661b9da6" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUuTJOd1nk9e6l7V955bzwxAABJFgUGKprRwhMO/w0v/Cv8v72yHvHEoTEtiBCWFBBEEMJjBDGam711d96rMKi9AajHvUxHFrb73WZ7OqvzyyzyVEW+/55zsvz3/L5v4gEZkH4aiu9FYH2KFfFvEUg+LiIhxrgev4bi9tX7BgA4EhoXGLrJaYm9iLrFX1VBiN6sxnme5riSWZ7A/Wb7TZ2f1Ur8P7kuraEgsg+PqjW5Yv2xLLCLil+0zif3Xua77p//hXGLloW54fqDnKT57KrGs25VY9Q9fSuy7/6Xn+PXiUGIREf/U0L39Zq338KLS2LjWZ4Lu1Sb0Oe4WLYmdlH2JPSh6EusFPLQR0YBnpxkaK+GzGeSqftIYkwROfmMSxclvTKI4+Y1JlHKVgVix0d+EYxDdHq1UOOuCZLcAASoiYpSrsDHJ9VgSMIqNrnsOAlsNYgzRBpFlL1ehal6s8PMo7sFvayPXqzltNPWzIO6QkEdUG70vK4jtFSz4PQkVq6pQoeviKxWwWh09bu/JRGKdIxVTs/19ieVHeo52515ijTnfZ3qWDzO4vkKf20amz8R8zff/Q/qwtyTunYUedwhrjogod3uUd8ZvfmMSxclvTKI4+Y1JFCe/MYlSTkEI6sJvQgEOoQGIQH0QxKo1/8YUaxC64NwrFPIUchJucxd+SBsEtsNchSFUHyNivtG9IEfWcd6R2MehsVPYswk4Iu/ArXgLa5nBju1tuZhjEJyGmR67Gu1JrDFS4ezxVAW/s9Mr/ezBANfzIWVjR3tnsGMUHayZOiVr2O8SRMACvm+Q67N9AOeg+/yg5oe2ASL3rjtBWqHf/MYkipPfmERx8huTKE5+YxKlHIFo1wKhapxrbA6uuA4IiOsdnWnbIHFvBk5AqDqNJUgdNbgaG/A7eApOsJNChZwIFn1O1ro/P1nouf98/0Zi7a4Kp1eX6nb7tlLX2KumusZuM5WGuHCUy7JvC92fG9gzutPzsR7X/ke9vpP8pcQ2a13MYqb3YAaicETEEgTRFQhnBD0T5ORsgwi4l+ka9zd63D44Zw8reuIjmvAs5xhTSBj0m9+YRHHyG5MoTn5jEsXJb0yilHMQ6EgEvIHy2/elur6gxdnWX5gpCItUlktlvqAhxQhErXuILUH+INfXAQg0D2q+mh+t9MI/O7zWz/+nhcTKj48ltplpD7/uF7cSy75QwWe1UqfcuqHrXoDwGRExh/gS1EG41QH6VcyhjDkujiT0/P9oH70C1Me3YxU+R6zD8hp3LPOmsuomufnAuXcCsce1buJjKIs/yvTeR7C4R2I6HUd6qN/8xiSKk9+YRHHyG5MoTn5jEgVrOisQDEg4uyqo1Fa/cpuTbEHiEMSolHUCot0Q3FwjKG9dwWe7sMoBxA7AcRYR8bw3ktiDvwBx708fSSxrQ+lwrX3qoKoWqWAPV3BP51uELxLtCBpWQU6yOQi205bu7ffVgcRyaJm3AHFvtkW8bEEpOt1rOAwHYlCvx5NQce8MxL3PlvosPmpO9bwNdvjNF3qeWa0PRQ0iYAFDW/zmNyZRnPzGJIqT35hEcfIbkyhOfmMSpaSxz1THTMxIFQY7JlksI9hGuiBVGv7TQI1HJxAbrlVxpyk+NdRfj8CWOs5VcY1gJXZ5qevOmhcSo5r15TlYrF9p7f7bpY61vmrqjRnBf0KmsK8Ru9d+7zpBiO+pHncNHlSyXbch1iG5Pnj6TQ7/Nim29AP4kC5ZviH20VL3+6ytjUz39nUMeFVx/i2Wuu45nHu6Y/76zW9Mojj5jUkUJ78xieLkNyZRyl1rm7kpoH6WGilOt8wVQREKRLslWBMXcBxNzVnCcdSEka6FVr3aogvdrtSi2/haJ9q036hfdbVS0eZuqk0430JD0dctvTPvct2HEY7t3n3yDYnATah3p0amKBaCQEefJWs4iXvH7IgNailaFPqtJF6SfbkHV0PnPoaa/P6eis/Nrt6r6p6bEyzBMnwPzUNvoNnqBG6C3/zGJIqT35hEcfIbkyhOfmMSpSS3G9W7Uz04lFoHDQMmh15ExBgEuvFGv5WajK4gRgINCTltcHhRE8ZDcE/t1bsJpBERIyg8n4ATcLLR2PtC1/gKzIVvQVi62WiM9nAbVMfehT0rYW9btN/gstujOnsSAWG7++CIfFCzj5TebsVGryUvYTQ8PE+0xn6tz3cz322/q4Wedzphwe8WRtrfwLrPS133CHLab35jEsXJb0yiOPmNSRQnvzGJUtbg8qqg1BbLYHd0B+7uI9viqkPXn8ZowkoPhKpDcMo9CY09h9LKxzXLnJ1MBacNiF9LEL8WcNwUml7ewTmuoGT5Zj2D8+4u+HW2lC1/CJXbNtD1p/SgS+jDCoQzGKfdhaHtJy0tjY2IKEs9tj3tSKy/VDGN7gE6QcH1Oaz1ecp1EnvkuV7zzVLdnRERV+BMvAZFdAhZRFO4/OY3JlGc/MYkipPfmERx8huTKCWJZFS1SrFd+7pRqWZERAekoJomr8CJGiBgkdh0kql48hzEvc9Ax/sIhLNukwW/FZRb0jSVBVzMCtZNfjVynM3AJTlZq8NvsdZ1byvnJoGVVDsSfKcgxq3APdnbUVTsw070C72WTofHWrc6+vleX499CDPI53O9fxcz7Zn4plSxcJjrPb1a6/d1QeScwWcjIkYgQNKY9SWNpffEHmPMH3DyG5MoTn5jEsXJb0yilG3oAUYjjGlYQXfX3w5wtUVElKADkgh4AgM1yAlI5aSPQWT5bKGi1I86OmJ77wAGKqz4Wu7vVVicgOC3gjVSX8B6xzHbSxDYliACzkHw2wYNcpmAKLkCYYlEVxKgOiBqDUoYplGBMAh6ZHPGPtJ2V6+791gFv8YxjO1e6v1v/pOe/O34SGLnsOxb0FcHaz0vVORGRMSSnhN4JqodY37zG5MoTn5jEsXJb0yiOPmNSZTyCMS0fRD3jqifHWgs5EybgzMpIqLesY/bcaViRRtKPXOI7YeWvD7aH0vs6NlUYkVfQlHdaywiYl2DIAauvxqOm+/YFpCGbFCpbrXWGJVu0/CSCHb+0eeXcLdrEHdLEPduoW/hOxg2MQcBcX+tDs3FggqHI5ojcPg9URGwPNvXD7c0Nw6vz/X7/vVQYiSvjsCNN4Nrbm15HqodRWD6OAmDfvMbkyhOfmMSxclvTKI4+Y1JlPLpWoWXU7CXnVUqnBzm6pSqQPAZwZCEbZwU6qp68FAFukYbpvRO9FrWcC2DUz1H60zXmHX1+4qeCogREfuh5b95AQ64e7CnLbWn3CXsIznvcLItiGSNXAWxYstvfxP6HtJ30np2hQbDDGFq8yqnSdC0bn7GuiMtwd2/1nvVWurznYHgl4H9rgViaA17OwSBdASia7FFiKWrJufeAtdjwc8Y83uc/MYkipPfmERx8huTKOVnKxUCnm5UEHn2/E5ig09367e3vOSBEfUc3E0n+p3lqZbLrqfgWHsF02mHu/WKIzKYgJqDCBgR0TzWc+/lKg4WMGShutLzHEA58AFM7j3KVSzMoFZ6BtOPtwl2JZR5b+vDKN8JYhVNRW7s+N6hQl3qW3e/xUV6CQ7Wg3dq3Wx9PZRY0VOh+f6tPotDGKYxBfHyHkqtF+DG3MauAis6NC34GWP+gJPfmERx8huTKE5+YxKlfLJRUerBsQodvWcqTJSfnEosG/T0uDvtjxcRsb6daJCEG4htlioFraYqvIzutfxzMlYRaG+srr/2ke5DvsWsuIYGa/UCprxCyXKz1Gs5Wqg49EmtYmOj0P0+L/S4IQh+1Zb5yeT8a+7o8COxqQ19GfdBBOyCq5EmAVPxLvU8jIi4h5LZi7m6/hpfwvMN9+XN7UC/rwk9D6HUegqCHwmxVD4d8cdNu/6QjQU/Y8wfcPIbkyhOfmMSxclvTKI4+Y1JlLKZ72YvrEagFn53o7GuKvvrKU+LqW5V/YTp0hFrmHIz0d+t+1u1Xt7M1P46Bb24PYG673NdTLtFLUojMrCcrmHdi6Wq3NVar+Ww0P/CdCu9V4e1/ufidUP34T2MySYLakREC94J1NSVmq2SjZRU6g7sTRPc4qTiwz9RAsr+I4KnIQ3BvpyN1PK7gf80vAOL9V2uV7jrhBwaaU+xHz6/297SfwtqONJvfmMSxclvTKI4+Y1JFCe/MYlSTsEymt+p+DWf6XHN1yoYUdPKDUxniYhYLlSMq0HhoRp4YjrX88xA3BvDBJkpWEtrGMfdgUamESzGrOA757Ae+gU+bWlPhaOBjgvan8DEpZlafg9LEPygqWdERBdUpBMQG/dhLg2JZHQPdhxSFFOwFY/Bsst3JaIJU5xW0HPgCgRRGol9U2hwCWIa2ZJ7cA6yUtcw0jxid3GPRqdXYDf2m9+YRHHyG5MoTn5jEsXJb0yilO9zFYxaIAIWE3AsQYwkpMYfUYlMwlkTBIwCHHVLcMqRh43cYG0QTmjdJGhFRMxB3CMn4RhENhK/2ku9L4Ncew4cHMP0mTFMVxqp62+5YsGvU+rn945hylEHRnSDSEr9E0icpfHex3CfSRQmcTWCBdYh3AMUgeEr57AecuS1QKgE7TEaID4utuTLEp7RDawnB+clrdFvfmMSxclvTKI4+Y1JFCe/MYlSXoNjqYmCAXwYYt21ihL9LXpfgZNFoEwUxJwK1riEz5KbqwHKywA8Yj0QvlYgKkZEzMHFSOIe7TcJS7NaBbriUjfy4ak2Ge0fajnw4FhjW/pERtnRP5R9ms4E+62DnWIx362MeQ3373Cggubh2VRiOLU7Im7fqIv0xd2BxKYg+DXgkgfw3PErFKYewbM4p2eWlMHgstwFOPfIzeeJPcaYf8PJb0yiOPmNSRQnvzGJUlLZIgl5nbUKBl2IHcBUkkHBPfyIGYymHpNLC8ci7yZUHtfgGCTxEcSd2ZpdcdQX7hbEvRsoTx5CL70xKFjdtYpXvXvd296Rinuth+Dw6m4ZP7RtLNEHbJYgLE2hLyP061tCT0BybXZ62kex95eHEsuO9nGN5d+/lNjob1VMrSuNtXd0eL6Hvn4FjHenuVU1OgaZFSi0yx0FP5qk5De/MYni5DcmUZz8xiSKk9+YRClJXCBnUw/EvUMYL3zc1tLPLog2ERF1BS6vkYpaV+CeI6fcGMQTGizRBwHqfq3nWEHp6BD6x21dD9QOj0FE2tZ/7kPI97WB68th+kX5QPv6ZQPd64iIzRx68y1AtK12K9XOYR+aIHK2So31nuh5888+1pM8eITnblyp5XDvC31GGzM4d1+F0wrKoNfDPYnd5/o8zeEZoV5/NPo8gkU7EvcWILpTrz+/+Y1JFCe/MYni5DcmUZz8xiRK2QEVidx8LRAM2iTawBTb5pbJtkvwElZQvnsLItsFTEalssUGuAOnUIo6BVfbLZj5brcMVKC+a+STI4GnS73rQJTcX8PeNneTCzdzOA4mAUdEbGYqsq3HKtrWI3CXTdgB+SFdWHd/AELcqfb/i44KlRkMJYmIyFoa7wzUa9cZ6PU1unp986F+X2u4270nGa8AwbbY6vFTKhraAc+JBT9jzL/h5DcmUZz8xiSKk9+YRCkPobyV+vBReSNRgWtvueAS0SlMmD0Pjb0q9dznoQJNG8pqe/D7NgTBj9x4F5kKJxNwT0VE9DK9xocbjR2Ca3AAAutRrec5KUAQa4LD607PW8/IZbnFebnUPVvAlObFTIW3OdzrVa33pQTBllhDifDm7Ts9cMHiZaz0860D+M4KysHh1bgBITYDoZkGS4PxEvv6lVsEvxIWlFMZO8RoGrDf/MYkipPfmERx8huTKE5+YxKlfLBWNxf1UitA8CtAJKPJr1XFrq/LhQpGX7dUrHgVOrhhAuXEByAWjuD3jRx+dyDuXa1h0IVEfoAEvz0Qh56uVKA7zfQ8B+B263T1mjO4B5NhS2LDsfaom0C/xAiebEtTbCm2Aq2qAbF9KAd+fA19/X6rbryD9UuJlWdXepJgt2LZ1wWtl7qP6/luTrsmiJcHIKRv4FnMoMx3CcNeIiLGAaJrrve6Cc9ig8RCPIsx5t89Tn5jEsXJb0yiOPmNSZSyX4KIBIIf9YqjoRbzlYoNcxjQEBHxGsowX+fqOrupVfyqsIQWJq2C0EG90O5A+CRRcVu55Rwno+r19QIEv6OJxPYe6jUXbRBYhzDQ5FaF1OtahaGLkgW/O3glDEFYHIFIusKyat2zIxi6Mqq7Epuf63FnCxABr2kkRkSp7fXQuZc3yeEHpe19vea9CbgLdZBwHIHwPaz1GelvuS9dKG0/KlTkXkL5bgmuP7/5jUkUJ78xieLkNyZRnPzGJIqT35hEKctClUEoL0e1f7XW344J1LDfbBn5fEVFz8AgV0WT1HX6tjHMwyE1dArKfk2WZrC+/nCsnn0B/zWpaUIL7EPRhdHNOF8J1gK24ilI3Jdbem1eQGPWe9jHKdyDFewZTaChkebjUu/zItP/Uizu9LOPZ9DoM7gpaLOt66ZmnSXcg7wB/S9gIlWjod9XwGfrld6X52O95oiIi7n+F+cGxoOPwb5Otmu/+Y1JFCe/MYni5DcmUZz8xiRKWdVgfwXlbLFWYWEE4t4V2DYvtwhVMxDEHsA47sdgk13CZ+9hms4IGm7uKko1QdzrwejliIgB1FDTKHD6tZ1P9TuL73drcDm+V3HoeqnC0HlDz/wu52ak5xu1q1Lj0hVamncTcYew35Ncv29Z6vXNYK9vqgGep7jReA5rpKa1B5mKwIOWinsFiOattu7X4IHua+NY9+Fkpf0rIiIen99L7PZcLdE3E73/Q8hVv/mNSRQnvzGJ4uQ3JlGc/MYkSnlXqTNqA2LMGBxZ16X+dpBrj4S4CP7lOQbX4EkNNeLgOLwFt9P3UAMNBiicfNKEFT7I2En2HJphPl+qgNUDEWkM7rSrsYo2Exj8fA/NHq+gNv17ENMuNzyx5xYal87IAQlOSYLGSG9AdJuBqFhBc8yq0L25gGaiERFLePao5wD1aRhsVGx8Uuu5n8H487NaezQclCrklY9VkMza/IwV+yr4ZbmeJ2CgUTbRBq5+8xuTKE5+YxLFyW9Mojj5jUmU8iWUUWJpLPxM3IEYMwKBZZss1N9Aw004rguWwz64y1rQKLSGUtYFuPTI4TcAkfPTisuTf7xSkexhX7s4UnPU96OexL4BZ9sliKm03+MdnY7UoDQiYgnHzqHBKTn81iDukTBITVTp+6gBaxvu82xLqTWVHVM5OEEj3yeQLw1wz53A5Kr1Up+xzYJdlgSNK19O9Dw0Jp2a6PrNb0yiOPmNSRQnvzGJ4uQ3JlHKLxq7CQ4LkO2oFx6phV0QTiIi2iCyteEryw1MToH1tEhsWqm4N2uC+AGuv0NwG36yYpHs0yc3Eus90WOXt3ruVyMdK/O21Gt+F+rIm8AEoMUaSmNhv0hgi2CBlkS71XrHMl/4LDkqCxCA53COJQjNrS3vMRIWqTcjliJDaAz7PYYelQuYXDW9BnH9X9X1t4a+fhERt+cqDL8ba+wKBO0plNX7zW9Mojj5jUkUJ78xieLkNyZRyq9qHW1cgKuKSjCpDHIPSl67IORERBzW+vmDWsWYAQyMGDRU/Or31GX3CEp/j4Z9ib0AR10LhMan/bHEIiL2P9djy8dHEite3el5vgHRDn6XpyA2TcGNt9yxt942wY8EugwEOoqxbkae0d0GkNBn13BfmltKegu4/wWsm/aHnu8W5AYNxLgIzYP6/EBi2bme92ZL2fhbKKG/gbHtVLKcQcxvfmMSxclvTKI4+Y1JFCe/MYlSXtdadlqCqEEiYCdTJ9EBOeW2CH5PKhWWHoZOVd3vq5B3+FDX3f+pCiXFsxOJnd1oL7Q/+ZtriV2+V2Hw5DkLfiWcJztVwa+ka4bS3+PVocSuwSk5AxGQYKfbbgM2IiJaMCijAJGNSqNXcP/peWqBM60J10xlvntQshoR0aT1QOE47QU9tU0QEBfw2ZdN/fR30BOQBtdcQb/FiIg7GKZS0QASKG8eQP9Hv/mNSRQnvzGJ4uQ3JlGc/MYkSrmgYQwgGDQgRmIMuaK6IJJERByBgHF8oOLX/iMte+x+rtNJy19+LrHs0z+XWA4TWY+e/a3EGv/9dxLbxmaka8z21IWYH2n57qOfvpbYL/6fXt+iBc4v2NpbWN8a7jMJZxG731cSyRrwWXISkqjczfX6yDG6D0LzPpRfR0QcwqRkaIWI0ucCvnIMAt0Qeia+gxj1DqSS7FHNw1Tm4OYk4fQgV2GR7rXf/MYkipPfmERx8huTKE5+YxKlXMAwhpqm6u74M0Ei0GxL9eYUXEcbKsGEssWsw2WPenItWY5KhZPNzVBiN99rf7Sq4o14sNbzdGFKb/5Iyzpbn59K7Ofrc4k1/16P+3VDp8a+LFR0G21oHArT2LHclkqM78EJSCXGHTjuCMS9h1Aa+6DWe3AIk5wjIjog7hILaOK4hGdxlpPgp9d3BwIrDUmZQv7RROSIiCX0MySqAp67wj38jDG/x8lvTKI4+Y1JFCe/MYlSzsBN1IQhBOQkol5vNNzjCgSRiIg3pZ6nO1SRrX2uAkg5UIEuqt9KKPvdC4mtr7Us9/z/qiDy5fhYYg0aVBIR6291f46nep7es/f6nR/tS6z1Z1oO/JO4lFjnN1r6+2yuexggnO39EUM7rgq9V69gYPH38OzM4Dw9EPw+qVWU/LOlilxnHS3Jzhss+F1M1Cl5Dk7CSxDEbmA4yC08y2OaarxjjMRQmoj8Q1xzdQUDWlDEdw8/Y8wfcPIbkyhOfmMSxclvTKI4+Y1JFNBrd4dUYRrbPczYlvgGxga3oMlh8V7V8PlU6/6LL1TlXMxV5bydak39S6iBvm7o+vpb6sbrhSrsw+9UVR68V8X2+NuJnue57lkG6zn7VCcAPc011n4GDRyP6b8CEeuh9iYYf6Hr+fpb/W/I78q2xG6hgH4A05p+Wmnz1h//7EJinZ8MJFa91z2MiFj+Sq3OX8Ez9g6aZt7BpCj6zwXV6e/aHJUnEvF/lOa1Pt80Jn1XG7Df/MYkipPfmERx8huTKE5+YxKl7BQqSjXBetmCponY6HHH8ccREVOI3xT6e9Rbq0AzGeoap7CeW/i+a2gFMIIeBjTlZkpjqSNimuu538IUmXyjglj/XAWsp2+1uenZidpaDz9RkYyswfmnH0ksump9jYjIr64kNii/k9hnoVOO+m9UTB0tQPiEEevPPlehsvsfH+v6Hj2QWBSvNBYRZaH3dQqu5hHYdkncoyeZmpHCFPGoQCLPqDHqFsGP4ruOU6/h3H7zG5MoTn5jEsXJb0yiOPmNSZRyUGgDyDaMSu5Dc0WaDLIHYmF3y/jkLogdVJZNv1BziJK497YEURHEnTkIIjSlZr5F8BtBs0eSbeYgLJLo83atwuAvr/S4vScq+GUHKiDGvrokA2r0IyKyht7/bKDr6T5VUfJpR0W79UrXXfZ0H1of6bOYdfS8m7le82bGU26qWp9bGOKD97oFzxiNIN9V5G5STww4bgzi8Q/ngUyA/gl9cFmeNlSI9ZvfmERx8huTKE5+YxLFyW9MopSHhbq8euDm24PYSew2KnnbBBgS945g8sr+lgkmHzLekKCiTKksc0fBb7XlWnIQfajUk869BjvYCsTU41Jjn1yqoNVdqPiV4eSaLaWfcGzW0ntdPtJnpziAaUjr3cpbA6bmrN+rizBqaBz7rZZ4R0RMV1q2XMDwoi48Ow24py0QdpsQK+E5oQlVrVzPSxN3ItjNV4Kr9aOGNnX9LNN98JvfmERx8huTKE5+YxLFyW9MopQfF30JNuE3YQ8EkUMQ9wa7TUT+4TwgdO3DBJK9UgU/0pBaa1VysM8gRKcwTYVKNestv5cwuRlFxBmchwS/e3BFvgel6t25OrcO39zo+p7AqPK2OsF+OFivkZx2WLdaqOsvJipA1vcaW4NQuYYejKuR7s3Ne3A1RsT1RgVRkh/bINC1QcjrQWwAlsEeipy6rw/BYduDSVYREa9BBD4A5+3nG/3OJytP7DHG/B4nvzGJ4uQ3JlGc/MYkSvnzChraATB3AUWNBohAVEIZEdGCz+9lKu41GyqSVbX+bpHGMgd5ZwSi2xRchK2gHoVgD4uIAMGoAkcWiXvkDqT+gUMoB34ZIO78RseXH5++llj26ERiERGxApceiHGbkQ73qN6r025+rqdYjFTUWswgttDYBHoC3oPYGxExhDLvVaZ7S546KqwlN98BuFJPYHBGP9dnrAC34o+XLMR+0YKybHjmH1UgpNd6hX7zG5MoTn5jEsXJb0yiOPmNSZTyL0OdX7NKRZYllsvu9tuRkRMsIlogYPWbKoqUpR63XOkaqb/eGCYET9d6DuqlVsL1bStPXsHnaUgDQT38qFcc9f973dA1/svbU4n99K8vJbb/uQqDERFZW/d2PVbBb/FO13P9WktHL0da+juC8tYVOioVEuLyLYNhqGycSrVJYN0Vcqoelup0fPhEh670PwLBr8s9/E7/t7oY/yZXh+49lEYXNEAGz2KM+XePk9+YRHHyG5MoTn5jEqV8/vmtBKcX6pYa3qqTjJxWpO2VOQtfrYbKOe22inE52AvzBbjnwEpYwYKoVLcHMtIhlEtuMSvGeKOCGJUJEwX8BpMANQfH4CWIgP/c0mu5f/tIYn96AWW+EXF8MpFYVekzcXGlYtOLTJ+T11qJGvfostNYH/bmrNK78LjivW5AifikhgnPJTw7sB56W3bgvgz6OliExL3mz5/qF/Z5evLhb15K7PZej53AM3FQWPAzxvweJ78xieLkNyZRnPzGJErZ+dmRBLMvtAfcYqaCz2ypsfkaymC3uKfIudfdU+GsBYMg+jN1UN1/pcrSixL6+oHYRBNUabrwaMugC+rNN13rtdCkVXLzNeB3eQbThWlCLJWsjpsw1bjW/n+XNE6hAAAEKElEQVQRER+9VRGpgjW+aOr+fFXoNV+s9V6NYG9oH05yLW9tQN+7B1u01S54BPeg9+QYYktQd7ugXffgmaDnuDiBUt0WlNTfjzUWXPJM4t6LtQq27CI1xiSJk9+YRHHyG5MoTn5jEqXMnjyQYPHqbqcPr0Akqbd64JRuT0WRwZ9AX8CffSKxrK+lo7/4u99KrPqfxxL7TUuFlymIkguI0cCPiIgJ9AAkwa8BU1UzKsEkERDEwhW4y0ADjDHE3nHlaExzFZbuQVj6MlSYerfS2LDWvn5L6HFHezNvaBnrAIZanJTci/IRCIE0YGUPbis9y3swwbjf0HvfPtITZy0VUjd3WuZbvYDJxBFxN9bpu+0W5aBe4EWlbk6/+Y1JFCe/MYni5DcmUZz8xiSKk9+YRCmzBthfF1BLPleFdUNjjcGCug+1zRER+5+CGv5XP5ZY/lf/WWLZ0Zl+9vGvJPYX1/9DYstfP5HY1029vnfQh2C8pUZ/Dk1Bq43uxQaU2Az6EMCU7GiC3bgHCnkHftPb0ICV/qMQwZOBvgmdzvPV8kpiN0tV+1eg7FO/AlL7a/jvSjvTe9UtYZpNRGygUWgfRjt1cKS20objyqauMad/PkBvifq9NlEdfsnv5NFGc/UMJletCv0PSQH9CvzmNyZRnPzGJIqT35hEcfIbkyjl+q3OT568gWk4S421cqiz76qIt/9QxaKIiMbHKtJkzz+WWP7wRxo70IaUMVerZPsX/yCxp/+iotT3qwOJLaBx6AJEvAgWpvA4sOMuQsXCDQhLLRC6ikx7GOyDMNiF0dJkc42ImMArYQnrvl6qZfR+qVbeGiyxRJnrulew31Sb3oampRER3VLFr48qvcBdBb85WLGv52oX773QHgb7sF/Loa77/JzFywW8q08rsBuD7f4EBFG/+Y1JFCe/MYni5DcmUZz8xiRKOfmVjm6+PFfxC3QOnEoyOFaho/2QT54NtBFjgDi0GamTbF3CGBhwiOVP9OTHj/5ZYt3vVBChuugKhK9tUENKFPygF0AFjSfbuTq8cije74JjsA/L3nYlFYiDAxAbidlKBV+6Zlr3slYBeVHDOHV4RjpoqYt43IJmnzCJCQxwsaA1Quw+12fx9vpEYsdXei3EPbgSt52bZM79WvdnD3Rqv/mNSRQnvzGJ4uQ3JlGc/MYkSvnit9rgsgbB52RPnVv7j9S519Svi7yvQlVExGaiguHmm68lth5p2WN2Cg4/EHeipWJM5zFMCnqp4t7u0h6LewQ5AamZ5ZpGi4MDri5UnG2BWa0BsdWWJdMbgQS/fqnOtrcg7tUwJpt9kgAcSILfTYOn3IyaurdLEPwmoGiPYSMWMA2JnJI3hX7fy9BnsQ0PWWeL2bABzwTd1w4c19xx3LgxJgGc/MYkipPfmERx8huTKP8fkuZihMhLkAkAAAAASUVORK5CYII=" y="-13106.259338"/>
</g>
<g id="matplotlib.axis_731">
<g id="xtick_1096"/>
<g id="xtick_1097"/>
<g id="xtick_1098"/>
</g>
<g id="matplotlib.axis_732">
<g id="ytick_1826"/>
<g id="ytick_1827"/>
<g id="ytick_1828"/>
<g id="ytick_1829"/>
<g id="ytick_1830"/>
</g>
</g>
<g id="axes_367">
<g id="patch_368">
<path d="M 299.674375 13228.659338
L 421.964375 13228.659338
L 421.964375 13106.369338
L 299.674375 13106.369338
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p3a145127f5)">
<image height="122.4" id="imageb873b0a0de" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUuPLNl1nXdGnHxXVtbrVtete7vZD1IUYYqWAI4Ewx4Y1sCA54b/j3+Kf4Q0tQHJgi3AAkWqSYrdZPe9t25V1jvfmZHpAWkPen0BREMa9VnfcFdWxIkTsTOAlWvv3fqvH/6XfXyD9M1ARNy2dhL7fD+V2M/mbyR2s3iEI0akopTYQbsnsV7ZkVgb/rfa6xo3u0pinUKvcJwGEnudxhL7UWsosYiIf73S2A96TxIbjta6xpVey91TX2JvQ/fm152WxH7ZWkrszW4mseVuK7GIiGGh+31W6LnHrbbE1nAP3u91PddbfXYetrrGeaUbu6o2EquD7vUw6bUclBqj/93tJV2QXqF786o8kNh/XOt9/vc//gqPuZjoMf/q+qXE/nfSPbuCe1DgWYwx33mc/MZkipPfmExx8huTKWneUgGjHSoizUHwI8FoH3o8EvYiIrpJBQwS9/oQK1v6vbUFca9V6LUULY01hSWyiCWcZ7rUdeMxK72WzR6+lxsuuwUfpBjtYURECZ9tw3uCPpdgb9twLQnOTfdl31BgqxPidvA80jNKbPb6PG3gmadzbOF/H0Ag/aeOCn4//McjXM/DuiuxX/f0PDd7FfxmOxWa/eY3JlOc/MZkipPfmExx8huTKemxpYIBCTnPexU65iAiEP3EwtcgqYAxLDXWA8cZiUNrkuNUp0RIEKvgnzc1YtEcBKznvQo8LXACFiC6Ek1lyqqhoFUH7W3TtwSdmQUx3VtyaDalTsQtGgqdqQWOUbr/IOThumHDFnt1Jj5A/t2A6y8iYg5rXIEQX4H4SSKn3/zGZIqT35hMcfIbkylOfmMyJb3dLSTYBWHhGcQ9EvxITKESyoiIA4gPCxX8OrAeBL7KSLQh1xgJIisQd55b7PF7KHWN453GujtdT7fQ84BhENnC50jw+zZiGomf9N90ng2cZwli8Rpi5NJrgZBHjlES9iIiuqWKrgN4xqiMmVxxRFPHIO1rB9yP3eCS5R48j2d7vZablpYib0BY9JvfmExx8huTKU5+YzLFyW9MpqRfr24kOACXXdOyxS70LqNeaBERXShxJKcViYgkDpVYdgqlvwGlmnAtCxClnmqKeu9AZDkCYWoEImAHzk1UoGmR43BDIue3cHiRw5M+S+LeCs69bboeEvfgeaDniT4Xwb35TpL2YezB/aN1z3fN3pcdfB50LZdwvLPhnI/Z0efkjx9AqOzqedoFlFDjWYwx33mc/MZkipPfmExx8huTKent4k6CQxicQW48EjUSCH51veJI4CEn2j/nG4ocYmTI2sF5yYU2h1hExLTQ/38C198DCH6bnQqsG1j3fak7MQfxEsVQuAckhkaww5NAJyHE6Dwk9u4L/d8uxEjcOyy5DPa00Hgf/n8N4t4Snm9yB5J4eVzqEJiPWxr7bKXP0+hMB2xERHQO9F5/f67DTxabkcR6kNN+8xuTKU5+YzLFyW9Mpjj5jckUJ78xmZJIGW46JaWgqStgDa073gaUaizLhn8n9Zp+PSihXrpquO42qMI0uSaC7c/30FxxCiO1Kzj3ivoLQC+BGfz6QLudYN10fRFs76V6flK56dw9OM8RqPNr+KWIoNr7ixar/S9Cj0mW6AnU0G/g/pVls+fkEn5l+OFGP3daqlpfJM6XsgO/KpzqWPPP3umvFMVG1+M3vzGZ4uQ3JlOc/MZkipPfmExJhx21HA5hkg5NzSHRjcQ9EsMiIsC5iQ03UdyD47Wonh9EpAGIQGQZHbX0mk8gFsFC4D0IdA8wtWUKMWp6SQ0gqQ4dR2zD9dV982NjTrgvTScDDcHKSzG2Buu1HMH/frRjsfAFaMoPdOEQo3HjC7K0wxrHe91v6moxrXTd9zeakxER46022yVx8OhA7cGvnpvff2PMdxwnvzGZ4uQ3JlOc/MZkSrroHkmQHFQkNlGDw+VOxatdTYNKEgIbzubB9aAjD8TCPog2YxABD0Gi6ddMhlmA0HkHzT4nMCHpodLYZgeCHwhQB9AU8hBqzol1jWBHjTmbiq40XWkE+9ip6fHQ5BxHIKad1vRAPdnqH9rQF6HCZwdG1cO6l7BfjzAh53NQ/K5LzbWzDd+/i7cHEjsudKoQjXwnh6bf/MZkipPfmExx8huTKU5+YzIlfdo+liCVt1Ljyhk403YoNrCwRM066z77Tah8l8Q9cpJdtlRQeVWpGtODpSxrRmevYMz2tuGobIrRBCHammVL70EbyphJ8CFxto4uTMnpgnBKjkMS93qwRoI+1d3rTejWlI0fgujar0C83Ou62wmEQbClTkJFt/tqpf8Ld4H26yCxW/GorfHTvQq+A9ifMjWbwmSMyQAnvzGZ4uQ3JlOc/MZkSvooVDAgdxKVW1LZKTnB2jW+PZrk0lTI68Axybl3DuLejzf6uY+3KtBM4Ry/bfO4cSo9HcL/j8GRR8zAcUbCIO0h3asVOAaXOxWqIthJWICINKAR6zUOyCbQm6hNTk6IdXckaUYcJBU1O20QAZf6nGwrvVf/VOp5vt48S+xm8yQxun80bnxQssNvAM7bPtwDyhfq4eg3vzGZ4uQ3JlOc/MZkipPfmExJJJ7QII8tOdMauvHqhkN0Co2T46kLwhkNgjiD/np/ttbP/Zuz9xLrH6v4dfXFWGLPMP44ImJW6D4m7AGoAs086UAF6vVHjsoVOAHXEKNBJdSXMYLvF5UJH0GsC+8TKhEmXZBcf/R8DuBwnRqHXzvpXhweaY+7NNWD/maugt9Xu7nE3q3vJfa80TJtggS/NYizERFLKN9NkENNy9395jcmU5z8xmSKk9+YTHHyG5MpaQ6TSOcgGK1goi4JS2tw/ZGIFxExBvfdGYhIQ+jZRr30Xm71u+xPkjqtTn6qaylGKuRdxKPE5tSILSJaMAV1WjRzVRUgaM5AGHwP7rI3LRWBbvfqViSHHrkDI2p6HOLgDd6Lb7LGkmUob4X19EHHo1id9DxbgQvxGdYDE3TfQxnspFLBbw7u0FWl4iwJcd8GcggWOz0mCn4gDPrNb0ymOPmNyRQnvzGZ4uQ3JlPSAvqKrSFGTjLqAUeCXwnCV0REF1xHJ9BL7QDEKnJ+kRC0hX5t+yUMxLjUXoaDH+nnPt6omysiovs73Z+7jTrEqPC0xKm4uu4u7M0C+r3NYDrwHs5BZdERLOT14V51yR0Kx9tRiTDePyiLBkGrDW6+ec0z9hZ63D1M2dn4TaqunqcPU5+7pcZI8CPnbOP+jRFRVVy23IQ2OAn95jcmU5z8xmSKk9+YTHHyG5MpqQ/5PwAhaAGCT4Iy0QqOR5Nb685DIhKxAgFrCmW112sVfC6/VOfe4SuYdnqhIuDB9hbX8zLUSdh+q8LNbKVi03qne7Zu+L1MwmcP9pWGoVCvt7pjUm++EgS6DvXXgxh97gXsw2ml604gnE1h8m5ExB2IjfTOA20vDiD2/fJQYotus+En5ATE8vkdC377hoIhHdMOP2PM/8fJb0ymOPmNyRQnvzGZkl7DdNoxiAOH4Gw6hpJc6ut3BOWgEREvdzAZFYSgKZQdr2kwBYg7vaTneP12KLHhzVRiZV+vrzXioRudY+0L139QIWi51vUsQ/dnUuo9uCv1msm5N6gRWJtC7juCBpWQG7MPvflGYFa72Koz8QimEM/A6fhU8x57hqm6c5gkTddCjtHzvd6rj5P2eiSX3jWViGM5MPfw24AQWMGwkh2IgCu4Pr/5jckUJ78xmeLkNyZTnPzGZIqT35hMSRdblTQvQUEuQLFtharhA1AaD6C+PCJiCWrqL9uqpl6Dyv0UNB4cFE2od//d4kBiZ7+cSWwYYOXdcavIzZPuz2qpqvS80vXcQa31DTSPfIJfPWhnqeFpG/ZmRZN0gsekkxpOv+GQ2n+x1fO83Kud+oNj/cWl21e1/3aiv9Zcw69WEazs3zccQd+hcfNwfTSl6AAa0T7AfZ6Hqv2k4NfFyQpMaj9Zg/3mNyZTnPzGZIqT35hMcfIbkynpGWrgyXr5AUyBeXUG03D+CKbFDNluev/3Gn83OZfYJkH9NjQKxSnN4FT9sqM19adfaO3+5ULtmDUl8HE/0Yk/V8uBxEjcuwVxbwpCFYlSVCvfg9gGhKplzXc/nacF/0+ANhvHIEp9dKmNUMf/CkSpAUzc+ftnif32SxVx66CJVNS0lqzmHdizFbYtVUp4eFokrtY0I8WJPfD/NZq0/m+zjxljvms4+Y3JFCe/MZni5DcmU9IXSUWEIxB39ht1LI2ftbb9pKWCX3qpTQ8jIkb3d3ru97qebkOxicY+L2G0+E2hn/sydMT26m3zuvgJ9Cy46uh3Kwl5W4jRt/IIXJbkqBuA/rQBYYhq3SMiFhDbgAhI/72BW9WBe3DwkQq27T/9vsRaY62VHxU/l9iLL/W5+/259Rn9l37jUf+DNvRU6MAkpC70ydiTavrPhJyAfvMbkylOfmMyxclvTKY4+Y3JlHQFJYUzcKGtOxor1+qq6v+Dlmqepwc8eQucbS8KXc/ZXp1yjyCezKFUsw3fb9T88yrp52Y7FTlJ0IqIuAfx7K5QUYu8YGMowT2r9EQ0veYUxqSTwPYcul8TaG4aEQHVybGE66Zrock3HRBYy5Fec+tc3Z2tT34ksdTV+/Lx3/1PWE3ExZtLid214brBMUpCHpY7g+jaA8GvV6iztF/q/aOmrBE8iQfHfkPpb8sNPI0x/w8nvzGZ4uQ3JlOc/MZkSlqCbNOCkkcqPey0QdR40NLY+D9avhkRMThUcXDQUQHkYqOixiP0+runHn4gdEDbwrgFUeoGvhrX0EcvImIO+0g98rpQ1nkMI7WPoC7ze+C9e/kSRoP39P5N3qk4u1lpGXJExA7HttNEG13jGKbNjIbgvqO60xV8rqPOSxIBj/7dL/R/I+In/037Ak4r3Yuvwcy5gHtaYd24kmAPe+Dm65C4vuOel1jqy9O8Bcpfv/mNyRQnvzGZ4uQ3JlOc/MZkSqKeZAnEHXIdUXnqOxABBw9c0nsy17HW2wrEJhCHBuCqmoKYRv3oliDaPYM4Nwc1ZV0z6IIgdyENeNjCGivqH1dCaewrFU3bH4AzcaliYQkiYB1HlV73Zej9OxppbDhSIW97r9eSfvkbiRUg7EZPRcBIXH59fq59GD95p/+/6arwdg2O0RnE9vBM0HNHOUSCNPX6q4tTLMF499bOgp8x5g84+Y3JFCe/MZni5DcmU9KL0DJDKvSkoQ00uXUBpZ8TcDZFROzXMHAAPjcvYQgFnIcGL5DLjsSYOZR0LiC2qym37GLPNhBoYM9IYN2BI2tP96AP5zjVKbapo07ACs4RwfegB/t4ejSX2PhChcXdBsqlr/SZWN7qGns/+2uJtTrw3L1jwe/hTkXNAVzh5VbXWICIOIFzNBX3qPw2wXMzLFWwjeByYqIE0ZzKfP3mNyZTnPzGZIqT35hMcfIbkynpHPrHESRqkDBEQtwjCHa//6xKiyRCXcMQg3twWtH0VRraQcM91vC/G7hCcmRFRJQN3XwHMHhjBO6rETjqegMtd2714PsbhKrU1+sjES8iYgjrOYB97B/oetIAxNRrXePkRoW4exgMs/wtTMUlJ2eNFkbzL/pwX08qvb4ScqOEvQWtMB6xh58+7x34XF0Pv/VeB5AMQBycV+qoXFZ6r/zmNyZTnPzGZIqT35hMcfIbkymJxIWmDf63ILKs4HiPNV8xTwWV5aoYM2mp0+5hrwIGldtW1IcNxUuNkRuPnHwR7OZrQ6xHk3ZBdzsEAbLd1lj1qHvTKnRIyh4UsaNCy4EjImKnrs8BDZeAdS8mKmrd3ajj8M1GB7FQOfgNKHbPKMQyH+z0mJ+s9ZhHodfXBldcbNWZuG6DgxEGdJTwvGNJb42ojOXpJHInfSZYvDbGZImT35hMcfIbkylOfmMyJb0tVDDoQulo028JEivqJttSCe4EhJfbHTiWQOgg6NTkn6LPtbFMlwU/6tdXJ9w0YQX/+/CsveeqX8B5S93X2VxFtwWIYXXMKxW6rt5rb8ZFBb3woKT7BkSyCYh7dyD2PuJEXaZXqCuOyqV7kAf90PMkmJRcbPT62kkFv1tw+BF110JPU4JroQErh5AufvMbkylOfmMyxclvTKY4+Y3JFCe/MZmS3uy04SJZVak2nRTuXkNLawRPznncqdr/BGo/1eSTnZYmmrB9udkvHHTNERED+BVgANfdbzbhOZaw7qtKleuvpvoLwAJspCtQhUHAr6XYq1K9a2kt+QJ+QJgWYEuFX3roeaCOA224V3TvI7iev4RGmt0E/Q56+iwehj6LJ2u96Mul7s1VaOyp1HXX/ToG2xgjmGb1eq85/dErtXz7zW9Mpjj5jckUJ78xmeLkNyZT0j0IfjRFhIQusroOYd7PCBp1RrDNlmgq2pEdt04IknPA8fqw7rprOQFB7Gyn534B9tBxpTbSNo5E1+u7ApvsdaEy2eJb1HM3tSVTffkGxrbT5+gcJAwf0ahy2OsSLOkREcdga6UGngXsWbsLIuAQ6v6H+r8v1lOJHb2BvgYzbWT6WLDtegOibR96Dhx0dY39MzfwNMb8ASe/MZni5DcmU5z8xmRKIqccCTTqa2KRZUlTeAoeOTxuqcXsDD57vIdmiCB+kIhEjTm34PCi4w1hYssxiHgREacw5eZio4LRRbmU2NGRiq7Eu4eRxsA1toBrfoba9DrBtWkXAvp/GkPdA6HyCMS9SxgtPQaBtEv3r2b6UBfEvR5Me9rCubdruNeq2UUJU4qStjqIg2fNosFcHZrPNVO0aCrRCtyc87Xm4GKiueY3vzGZ4uQ3JlOc/MZkipPfmExJBZV6gniyhRhN+9lAWWbdlJuzlgp5r3YqVpyA0nEIziYqeZxCyeRTw688nKQDo7MjInrQUHQEIttooKLP8UdziaURCJqfQ8PT2zOJ3Xf1AqlEeAaNMCMiVg2nHFEZdI/KvBuKex9udD09GA1Oty/BcxcR0YHGnAkanO5BvJ7N9fkk9judfFQkGFU+1eMtQdxb1Iy0p1LtHaz7YQsTl2Bqkt/8xmSKk9+YTHHyG5MpTn5jMiWRI2sD4hWJgMQeSjqp/DaCHXSvQIP6dK+C2Mmhxgpo2DabqgNustJeeGv4HhyA2FQnLC2glHkGseGimYjUfq2lnmcdveY/+psnia3WY4m12rqWt3CvIriP4hqeCSq1LsG12cUJMuAEhP0m6A6UNdcy7Ou1JOjXt1zqumcrjS0fdR9pkhIJcU87Pd6k1OPR6PqIiCW8qhd02Qn6La50JLrf/MZkipPfmExx8huTKU5+YzIlLcCdVIGk0rRnHvX1o5LOiIg+HHMEDrrjsZa8ji80VvZARLpTwWf7Vr/zyBVFrGsGkDzCNZIjq9yqAHl+p0JQH4YxpA9VyLu4uZfY7Od6LautCj6Pie8LOffWIMa1QASme70Bd+Ci0H2cgruTSHC8fo1Y2Omqgkyx7VbXvV5q7AlE3CWIe1O4vie4vDkIlTS8JIL3sQUO3Sk8dw8wHtxvfmMyxclvTKY4+Y3JFCe/MZmS1lDWSYIPublI8KOBH3VDIChKYk4BtbqgXwTN09htoVRzqx+8KVR0g7Z80QZHZETEHAQeooKrXi3AkfWkpb8FlCcXHV1Pp1Txqw0CIgmuETyluQShk4Rh6gk5hbLaCVxLhD47JHwOoZy75rbEDsrBSdyrqEEeQIMzHuHeX0FJ7y30DlyAc5JKqiO4H2XCYTMwMRoGgfjNb0ymOPmNyRQnvzGZ4uQ3JlPSnpQSEDXISURg/7+a8RDkydqAgLHZgGtsBuLXCoZVPGr57vtCHXBft5td31GNMESDJECLi5LcbnMoHf1Kh3ukx2eJza70fx830CsuwT2tuS8jcLFRb8Y1Tv6FQS7wTNzC8Vql3udTnOYLgypgcm9ERDyqszHBRF6iAwLdAQifz/AOpcEpt3t10z7v1YFKJfV1kOhOk7IpB/3mNyZTnPzGZIqT35hMcfIbkynNaigjYgsiBImFO3DjPUPZcETEtFAxDodszLUMtrxrJtpMZir43LZBtCEBCo7Xr3HytcEOOIcDLMFJ+LzUka53P9e+cKO27uN8q8cjQXMBy+6DcBYR8QqGqZxDb74p7NkMnhNypm2glLVCm14zIXYG7sCIiEd4xLtQNn7UUuFt0NZYCb0HH3fgGIRrnoObdoYl9XXzk5UtiK40TIdutd/8xmSKk9+YTHHyG5MpTn5jMiVRqS659ChGAz/aIH602yzGPIQKKjelioC9DQiDj1CCC+egoQiPIEpifzQQmxY1+tMWvkbpPM/gGgPNLgZ7DR7tYfoqOBNp9i59y3/IQ3rjdaXlxMOkH77e6n35vKPi7DWU9HZAgRqBaHoM4twYXHFVzXvsCYTADTzzW3Du0eReGsZB5dzTlgp56x2I5iTO1Qh+lG8kxC8grx5CHaN+8xuTKU5+YzLFyW9Mpjj5jckUJ78xmYL2XqonXu9U7cVfBaCzZt14b4ouwfZ5B5bfe/jeolJ7stiuasY5N4F+FYiImMPX6HuwjN5BTTeNv6ZfGkZgsT0Bu/AZ/OLyqS4lfnpyo8GI+OAvVMUvjnRk+Cf/62uJDf72A4n9oq2/ABCnoOyfwH6NOhrbVPyLUlT6C8kW9paeReqLMIH9/i0164R1L8HeSw1P69R+yssVjFNfQoxy0G9+YzLFyW9Mpjj5jckUJ78xmZJowk7RqvF9yudUOOmA4DcqWPB5GSqoXIBq14WpLTMYQ7xqVvodfSwb1+9BqkOvG+wyB8loTtZLEH1ICCJICBrA/RvDqOufDO8k9vI/n+N5iv/wnyTW6g4l1n/xlxL7wc3PJLb4QkXAGez3GPbrAGrqux3oGbCs6bPQcNw8MQU9/Crped6DlfcBLNJcu0/Th1jwQysvHHNZQR8C2G+/+Y3JFCe/MZni5DcmU5z8xmRKOkkq5JSVfid0YP41CWKHpTaevCi0iWZExKdQBP/9aiGxAs7zvlIXWoLvMpLSaMwyTYyegi40rRmfPIU6fXJvbRv2SiBoZPgArvnTjV71q79QEaj483+L50mf/bTRevY/fCux0Z/+SmIfXuukIWqsmqAhaCqbjePe7Pg9tsFnopngR3X65EBd4X0GlywIu7uG9z6CHX5U40+i+zjpfvvNb0ymOPmNyRQnvzGZ4uQ3JlPSp+VIgu9pOguUKJLYMIJpMWcBHSoj4nSrAsbRUBsNViBADpZ6zBUoYuTISyD4wHRvLP19QAkxYgpiDrn5yLtFkg99K3cgek7lu0e3Eks//lhirZNLOAuz38LUJWiOWpzp9KGjs4nE1jB2nRpmEssVPJ87fsaewAFJz0QFz8QUXKQkch+QyxKmUdF9JmGQROGIiASfJXGvDzl4CXnuN78xmeLkNyZTnPzGZIqT35hMSX8MPc5GhQoYdzC2mfrZDUH8uKjprzYMEBFp1PWaxkM3E3IIklPWIO7NwXH2XFN+S2PI19HM9UcOvxKubwAuy5OtXvRwrGtplSCwrWYSi4jY3alzb/+sot3+zW809sTH/CagpcViq2ukEeTPe5rCxM8YiXYreOVBi8OArUVewHrGLe15OAWXHY00n8Nz8/vP0qQiEiB1zz4Ldd76zW9Mpjj5jckUJ78xmeLkNyZT0g/XKiIcJhUMbkEwWoHYMAbVjUpMIyJe9LR8d7lW8eTNXt1SN9BLjb7Juujc0xiN3l6DNFjnviJxbwmDTqgPH/VXwxi40Kh13d21CkuHv/hSYmn8d/rPEVGNv9Dg9ZV+7h9V8Fv8w1RiDxMVvyYrvaePIGg+Q631FK65bnQ6uTRJqCbnJe33AbgQz+HxPtvqc9KFs0xBnHtXM+TkbaHHnEEp+QDGjb8Cl6zf/MZkipPfmExx8huTKU5+YzIlvT5QgeZwroLDw1YdfuRDOoEBBh+c6zkiItowfOHN27HEnhqKPjSMow8DP6ikl74FSUOiQSURwYoRQEIe9R5sQ4wEyGsQgX611LLawX9Xh97Z09/iGlsdFXfX72AwxVfqGrt7OJEY9VucJD3HPZj0ptQzj4ap1NwAkmcrOGYJQt4YnoBTeOg/2WoZ+quzJ4n1hlD2PVXB7/xOy28jIg5h+M0NiPPEAeSB3/zGZIqT35hMcfIbkylOfmMyJQ1HOk00JVU1+gsaOKAHPBiqMDQ4gv5vEbHbNKuZbEOvwAMo/T2EBZ1U4LwD0W0GAxruQWgsagY+UD9DcvORjIgTVEFY3IB8dQ8Or9+1VQQaTFSIm/6POawvYgWltbeVik334PqkEto5CHmzAkqoYb+WUFZNDr06qOce3cMevAdfgFv1s0rFvY8/0gnIww+5LFfWcgUu2bmeIyLig4VuZAmThOnMNOnab35jMsXJb0ymOPmNyRQnvzGZkjZrFRG2IPhUNCIW2MLk3S3VnUbEHo7ZBsfaGMojB/C/Y+ivd9JR8WS+gZLlHfQ4A6GqrqR3C2Lccqfl0jRkoQP9+pqyhB5wt7DwL9t63veVOgEjIh5gOfdtvT4secYjKvuGpbYUq2hMbw301CYQU6lU9+VG9/ajy3uJHf6JblhxrC69/aOWsKdHFdx7Pd7Fw5U+T2XVbC+6IJz6zW9Mpjj5jckUJ78xmeLkNyZT0v2DCl2rnYpDK+gLVoAYs901/z7pdFXY6LRBtKvUIbgHKaef6Hjg8Nvo9ZHZcAGC1qpmoMIchnbMdyrm0FTWDvSuG4IoRWW+1GeOSl6vy2alsRERdzDCggZJNO17R7HUcCLv9luU7xLtGkdmk88dt3Qfhpcgul2cS6w11LzaUXn5oT4j3TsaIRIxWutnB5V+ttfTWP9AY37zG5MpTn5jMsXJb0ymOPmNyRQnvzGZkibQXHEF9eU0/pp01BWM466mrLgebFUh70BTz8MA1RwmkOzgl4bZUhuPPuw19gz15QtQ5pc1I7ppzDbV+NOmtWG/j2Ak+mmgVey8AAACjklEQVRo7KDh9/cSfrmY4GDqiLu93he6bqqLp2sh+3IH1k3Ho3p8+gWgznZN6ynglwacpAR7VnThBnaaNdFE4HCpy9dCuUHV+6MztbT3XzdrWmuMyQAnvzGZ4uQ3JlOc/MZkSppAE8Y1WEtJ8AONLOYgpqyh+WNExG4JlspSxYoSrKkL6EPwXKnwMg/93B1Mi5lCvfMKBB8S9iIi2iBqjZJaPA8LFVg/KnSE9Sd73bMPQWscV1BnD/fv1x39nn8PNfUREQsQ91jwUypoKEk7RkJeAnGOPkfr29TcF7rECh7cJxiVPd/rtWwf9Xjp+kHPC41Mq4nW869v9XiLZxYQFwuNt+AC+yu6M27gaYz5A05+YzLFyW9Mpjj5jcmUdKWaBoosJKfQN0cX3VP8HTOo9OQDaigKbr4bEBGvkx5vDqdegHg5p8kwO421aurDhwW472Ck8ofFQGKfgVD5yVqdW6+SCkbH5zp1h7SvHkzsue6zsPQ+9DwkdO5pqhC4ImnHqIEnufRIyJvt1Zm4rnFekmuQ+gHcFLoXXya9f8efH0ns/OlZzwsi9Wapz/Z8qqLwdK7PUkTEFJ4TlPauoX9CD9aIZzHGfOdx8huTKU5+YzLFyW9MpqSrouEoYYi1QNw7BJfWcc20nw6UI5bgvlpu9JiP4EycgMjy1HAyzJzcfPA5cvJFRPShCedloWLOD0C0+R6Ie+eFljGfns4kdvg9/Vw51DX+5Fc3Ent39VJiERFfl+B2g2aWBJXG0jQjEveoBHoFQh41S+Vx6BElNT2FZ3Sy1338eVv3cbXVSTyvf6ci7ghmF5WwRmpEu6l5Jy8gXoHouoMJ3+mtJ/YYY/6Ak9+YTHHyG5MpTn5jMuX/AkgsxLLka8PoAAAAAElFTkSuQmCC" y="-13106.259338"/>
</g>
<g id="matplotlib.axis_733">
<g id="xtick_1099"/>
<g id="xtick_1100"/>
<g id="xtick_1101"/>
</g>
<g id="matplotlib.axis_734">
<g id="ytick_1831"/>
<g id="ytick_1832"/>
<g id="ytick_1833"/>
<g id="ytick_1834"/>
<g id="ytick_1835"/>
</g>
</g>
<g id="axes_368">
<g id="patch_369">
<path d="M 434.924375 13228.659338
L 557.214375 13228.659338
L 557.214375 13106.369338
L 434.924375 13106.369338
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pd93e4f0b19)">
<image height="122.4" id="image9a70ba79ae" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmOJGl2na9NPkd4TBk5VGZWVlaxZ4GUBHZDALcipAfgu+kR9AykFhIFQlqSrSapVnVXV2XlGBkRHh4+D2auDblQns8Bp7gQ1P/5ljfM3cz+364bcOLce7P/9eM/3cUnZJmEYrmoJPZmNpDYN5Ue965oJBYRMc5qiY12G401K4lNd2uJTeqlxrYLid2tZxK7X80ltmm2EmsVen8RES+OLiX2p72XEvv3C13b81Lvb9PkErtrWhJ7V5YSuy70HItMQlFoKCIiTho9+LjW76TPD2rd605obJzrp7+t9Lzf57oHs53G9tHJ9DxV6Hlu4bl7XU8k9n59J7FFrc/isOxJ7Iv2hcS+yvsSe1HrnkZEPF9rvjwq9PlulbDeK3129AkzxiSBk9+YRHHyG5MoTn5jEqX81e25BPOdijubTEWSm0p/O65AbBqBsBcRMQaR5aZR0W5Uq6ixbFRkWTb6fSuIbRu9nl3ode9gHZodi5fb3WHfWYH41WnrNZZbFapWK411G421ct2rLVzLvl9+ktNm8J2lfmU0hX7rBgTEFTxPBIlzLbjyfM/3DXe6Pkc7/Xwng+sGoXpZ6l6tQRi+B6H5+3wksV0Fz1ihQnpERAfE3eOtCtA1PIuz0M/6zW9Mojj5jUkUJ78xieLkNyZRyl+1QYyBA0nmWmbkvlKxYbrHkTUFwW8Cbr77Wt13y1o/W4MYd6i4R2QgImUgQEVEFCAY0bE1/N5uSdyjGHwWtDSQdji2zye3BIfnGh2CGlzDBS1hHen7VnBeeu5o9+haIiL6sGaXtR47BCdgFF0JLUt9nu626hi9Wak7kByj9MyWLX4nXxZHEnsCz0lBQjV8n9/8xiSKk9+YRHHyG5MoTn5jEqV8E+qUu98rBX0CKC9bEDDWKDdELEEIXEFsA6LdoeIJxYgSSkxJsGuXXNLbzjVOv6xTKjFdtfU4KJidwjWSU+6wO2axMCKC/Jh0aEnCEjgB1bMZsYKHZwGxDdwNuRXLPSJuewflyY1+Z44fhz0oVQR8XXQkdtWM9bNQcl7lKsXOKhWzIyK28EBVcN9tKIM+aQ53eBpjfs9x8huTKE5+YxLFyW9MopQkxpEQRyLSPlfVp+xz1JGgVsDvUQVC1xp63JG414AoReclwa9VqBjTKbUXWgQLfjXc9w2UvK6gN98GlvYwX+L/21/0DVwlGOr4uAPvkO6vPPBZjIhoSMiFZ+cc+hY+g33+bakluO9LLd+l0t9+qWLvWa4CYkTEo61e91mlIuLxscZqUAv95jcmUZz8xiSKk9+YRHHyG5MoZQX5389U1GiwBxyVrMJx4LKKCLSN9XMVv0gwJNFuugWh40CHH4mKFQh+g5LFmHamx86hvPkKvnMJrrgBXDYNxGigDHYD5cXk5iPRLYLFM3LAkShJzj06D+1KDfdCz1gL7o96/UVwmfB1SUNJ9DtbcM+nsJCXUPp70T6WGPWEfNo6ldgfhH5fRMSLrbpxzx5quXtnqA7BBjbLb35jEsXJb0yiOPmNSRQnvzGJ4uQ3JlHKPtSXd/cOb/4/IRV+Ber6MmPFHe3B8HNE56H/PtDUHJrYQ9NdclKQYW1KavQY/N+HFWjaE1iLHG76GJTmPqwtCMgxzWH6DCz1eo/aT9EG1mwO9zeF6UxbbCj5T/iv0CeUcC37OlDcwfXQ9KERrBkp+zCQKi4y/Q/Vs0pV/BY8Oy8zHdH9A9qsiLho63+zOsf6fFfH8JzAAvnNb0yiOPmNSRQnvzGJ4uQ3JlFKGldM9k6SIEgYIhFovGdE9+ZA6y1Bdf8tsNhSnf2h0MSefaOgaWJPD4RTEjmhTBsbc9J6YwNHENhIqNpXAk+7Qk0zJ7CvdzCFifb5ULt4Bevah7Hb+7TC2YHPWAfEuA1YvoeQL5RDzwsV8npw3S9qjV3ANKqIiFYPVDu47wzsy7m2DfCb35hUcfIbkyhOfmMSxclvTKKUfVBKyK1GvxJU452BU2q6Z4YMCUErcOlhjwAQxDqFOq1ItJvXOgacmise2mA0IuII+hA8Do0NwTW2hppzEgG3cD09mK9Ddf+94rBpPxEsLJJLcwK2sUmjNedruEZqrEqiaT9UsD0FEXdfA0+SzrCXwIE9B9qwOOckmsM10mePYZJOtSdfGnh2tksQvuFZLk71WfSb35hEcfIbkyhOfmMSxclvTKKUJC2Q+wo5sEx0n5OPRJZDm3V2wM1HzT9rsDZNQIyZbBcHXUuvAKtURDzOtOniD1X7ii6MGx+VKsblIIjRGOoWuOx6IEB1wV023iOSYakuCLFLiJG4t4bjCHL49WGfH+9A8NvzyNJIdGoo2gHh+wk09Xy2gbHyVA5eHlZWXVFN9h5Wa2j+OtO1aE11vavP9LN+8xuTKE5+YxLFyW9Mojj5jUmU8jqHvncgiKxBtKMyTxLxliACRbCg1oVpQV0SSuB3qwDH2qFlwzuoeSXh8xLGMUdE/KhRIfBnXR3TXFW6FjfjnsTWINCV4LLbgLh3nau487bQz37MuPMdTRqiPdyAMEgOyC4IYlTa3AVx7wz64z0F5ezhlu/lUDntOINpOAMVgQMGNr2faPnueKfPA4mS3UbXsLWn52VG05nWML5+qrHOWvfPb35jEsXJb0yiOPmNSRQnvzGJUv6mmUlw2mjJ6wxKNWkgBpXQDnIea31SaJzGg9MQESrhxD5zWNSp0HX3QWz6LFdxLiLipws9z6OfTSSWg3o5eKvrPR2pYDSe6Hq9avR6ftlSwejvd1OJLaH0M+LwXnot2JdjcE9SL8M2fB9RgfOuAFfcT59+xM+f/Gtwtj05k1jWG0qseaWC35s/h5HfcM/3cHs0dn0I40ZOejqcIyKi1VLRLoO6+u0KXI3v9Bnzm9+YRHHyG5MoTn5jEsXJb0yilL9bXUtwAeLedKsixGqrIlerUIHlvH2EJ6eebW0YlFCC84smtdKE4BkMkbiv9V7mIHIWhV5fZ8/v5XGhny9PoVT3WIW87k6FpXqj13030bLhEVzj65hrbHMnsX0cgRBbZXDdUC5LE2tPwa1Ygfh1A862WxBs35VwLRcs7FZ/9mcSK37yJxJrxioY7v7jf9DrudfzfN/SPRjBvXQbPW5Q6vd1+3vuBQQ/MrCS6+/mGxWG/eY3JlGc/MYkipPfmERx8huTKOXNWl1oG+gztwE3WA3liDRMY7ln6uh9rkIXlXpC1Wp0wDU2hyES40bFvfFWBbEZCJpNpe6p24rvZVarKLlbQw3n9sASYxJyQDBawRBiKrVdgohb7yl37oBjjfooUlk1vU3IeUlDSWbQj3AGe3oHouJqpOsfETGAe8xaKpzGVgXb5vpeYte7E4mRuDeF2BoEbkihfxIN9BlcLnT/RnO9Z7/5jUkUJ78xieLkNyZRnPzGJEq52KoQVILLrl+p66sFveJKcH2Rky+CS4JvoPR0Vajoc1qAaAPQNFgSukjkpGm+o53GIiJG2bHE1jcwiXamwuLiWtdxMtb1vodhFXPo61YfOAiCJhPvi9c5iIgg0I3g1BMQC2lcCF33EKb0nkCZ7901Pw8nf/mfJbYb3+qBt+p0nf1SBenr8lxiU+iFSKIrDe1YgFC8gZLciIimhgnPK/38/VwdkLfw7PjNb0yiOPmNSRQnvzGJ4uQ3JlHKbqluqaNKxZPzSstyLwodVkDcQ7lsRMS4VqcdiYBzcKc9gHPTgIesBJEEXGMECZo0WCIiog0iIg1PWF3p529HWm45rlW0uSr1syMQ3UjQbINrbx903yTa0oCWeyihpuEnPVjHc9i/R42u4XMwWa4a3pfxf9JS3c7f/LnE1nd6f3/79aXE3nQOG1QzoDJmEEPnAYLdlCdB5wcKhteh63gNU4P95jcmUZz8xiSKk9+YRHHyG5MoTn5jEqV82XsoQbLOPoVJNZ83qiBTPf6bktX173M9zx3U3x/nqn7+IvS/Dy+gfv7bSj/765bGris9Lyn7v2h4RPdXwxuJVT1V4u9v9Z5J2R+BxXoKP9UbsPd2QUF+UsJEmj0DrIew3qcwSYkm+8xgAs0KrK596MdwCcr+y41e4+eZ2m4Hff6P0mKi1333UZ/l66nuy9eVquYLuJeLna73JVhxH0AvB9qBm5onXK1hvcfQwPW20OOmMNnHb35jEsXJb0yiOPmNSRQnvzGJUr4AIWgAQtdnIO69BIHtAdS7/wQEqIiIN6WKdvNcY5+vVDj74y/fSqz3XM8x+a2KH99/r00Yr3d63l7oeb98+EFPEhGnP1Oha7eGppcfYMzyHuFNjoPD+tDd9GmAYARj0ttYVR8xhO88Bs2WmnDewMSmGQp+cN1wjsc7tXafnaotfHDGgl8DF0k18GSzpfr7AfQSIHHvyVZvpg9i6AbW4W6PhfwGLLo3IOTNoXkoWZD95jcmUZz8xiSKk9+YRHHyG5Mo5RrEmCnUu0+gMecq19+OYakCzZePoGFiRPxhqSJEBgJG55F+tvoDbaSYddSZdvJQp64c3ei46mauQlwOo5eLC24UmR2rcFq/1fPQ/ZUgxnQajZ3BcW0Q5+gXfQCjYc72NPA8gT2sSmhwulYR+GqjezCH56RH15Npof5pT918HRhhXfZ59E29ZFHzU0hyLSBYwUQqWu8CvrEFTVB3jX7fFs4REXEPJxqDuEeCH+E3vzGJ4uQ3JlGc/MYkipPfmEQpP9QzCXahfLMHJab3UPpZg4DRfaxiUURE+0cq2kUXmhdu4fMbmCrzYaSxaxWM6hkIIqiRwAjyJYtku0bXcfVGhbPbO73nBZS3tuHcXRDJHoAw2IMJMmfHug4nj9UpFxHReXzYO2H5DkS79yqIbjZ6f2Wpny0r3edWR2NUKr1nKFTswH233R52f20Q/Gjq+gL0uTHkC+h9sQWX5Zw6dQaLe9eh4udyB+I1nMdvfmMSxclvTKI4+Y1JFCe/MYmCtYMtcPP1INYHsanTVbGpPNdeaBER+bPHGuyqYLT7qOOT61daWrv6rYpu49dayjqdaAxuJfo9Fex6xxqLiGhAlHzz7kJi32XgEISf4BMYGU5CXhfGlx8faT/C089V3Ov8UMuYIyLyJw80CAJrlFpWXa+0tHY5g16PBQh+LY21jnQdip5uFgx1ioiIzUKf222tC96B8u1TOI42awmHjaC33hKceyuIvQXna0TE69C1/diokLsFsbiA6/ab35hEcfIbkyhOfmMSxclvTKKUXxTHEjyHEb9fbVU4+apREeni+VRixRMdDBIREaenGoMecAGC3/a9nvvqNypg/W6qsWsYdV3sVGS5uFMR6OSelaUtlNZewTrOwL3VgnPTgIYVnKNsNNaAy5LI2nvGdrcgvtL7bma6PtMRDCUBgZVMbDR4Y9hSQYsFP77nzRrchSA2nrT03McwLn641T19V+h6jWBwxggebRqx/jpUsI2IeAdu3GnNx35KCYK93/zGJIqT35hEcfIbkyhOfmMSpfw3WxVoTmsVRJ7lKjZ89nwsse6XWpKbnbCTDJnreZq3HyX27m90Wu5/W6qA+GsoCZ1lKl4d7WBCbK4KTa0aUEREtKFnWw+cVm2Y1EpU8H01TcVt9Bp397qn2bfUE5B7K1bvtO9hPdF1vP6fep7f3ulAlCsQWGkVLsYwHXqhYtrZVMXeouJ1zWmKcU83MYeGfSX0LTyG64mRiubTXIXBMdT0vgPXHgl7ERE3m4nE1tBvs4D65hYMAvGb35hEcfIbkyhOfmMSxclvTKKU/zLUkVe1QegYqpOo+1DFhqzf07NQD76I2F1daey9uvlu/lJFkb9Y6ySPvypUEHmzUfFqB2LaRdGXWFHoII7jWoXBiIgB1JSeliostSoQaEBsoj5zNCRjCtOTb3cqNt3eaWzw1yzE9gq97h2Ije9rde5909L1eZ/r/q9AiDuGKbQftiqmffFOz/vkSJ/jiIj+kT47bRAHG+j110BJbw7uwCNYrwHsSwfKfKm3Hj2fERHNgdOciXoH/Sj/r7/NGPP/NU5+YxLFyW9Mojj5jUmU8uRE3VIkdBBUTbhbgFh0z2LMbqEi2eKX6hr87x+eSuy/Virk/WqhPeXu1uyW+pRJR4WlE5j6+zIHQTMiShBUqES1dwQTcLsqiNH01hmIdrtbFSpvoE/gDZSY7mnhGP2d3jeVPE8r/c6P4GL7EHrP9yCQZiB+XZV6LfcFDHaZqOMzIuIL6CnZhth8AiIpOCU3NBUZlvYSnHe03nml4uUGRMUIXp9Zo88YiXuNBT9jzD/i5DcmUZz8xiSKk9+YREHFh3rArVfq3GpNYLrsGtx8IBZFROxmKlbcvVGR5e9b+vnXGxUGR2sVFicr7QFH5DA84SP0j5vvEfzyWq8xAxcbOsm2MEEVBjeQUFWCwEbDISY5uAj3tPpb7vQPHXgmNvD5NUySJXHvCspWSagaQ2nsslBnYrsFw1Ai4hKEvO7RnrrsT5jvND028L48y6n3IAxOWev39Vb6PGVtfsY6hebbDZx7CiLgBGJ+8xuTKE5+YxLFyW9Mojj5jUkUJ78xiVKSlZfUfqo5P5QMbLIREfkpKOTQKHQOdcybRpXvHfxXIQPl+5/DvmUoSE2HKUf1FOyhc/1sUaryXUON/6JWBXkL/8Mhw+i+HcVjYRnhHxexgm+dgNo/2ep/UqgZ5TwD+yqcYwhNQiMi/mipz97jI7WGn7bV5k7/raE97UBD0FZH72UB/3lYwBif5xvOl6g03slpUpTGaM385jcmUZz8xiSKk9+YRHHyG5MoJTWK3IG6Q7HtCsTCKQhxG6ptjsiOtRZ9cKZTZLozPTeNHG7DqGSigjHgl21t1vl5rjXiz5bcjPTkRAWsFjRCXS313MulXndNFmtoHjoHh3YbhM9j2L/NHsXvUImUxL0ZiHYriG12ujYNXHcNduFZrSLgLTTRjIiYQDPToqd32H6mYlrrgVp0m4VeD5Xu10sYsT7Xz1Zwf/2GN+Yh5GoJz3xJDQYAv/mNSRQnvzGJ4uQ3JlGc/MYkSjmZQ7NGcDblUDdOtN6r8JUfj/DY4pGKbNWRnue00d+oYaH126vWYaPAT0oVGr8qdbT0L7a6Ni+6d/idp0/1vqtzFV5q6GEwe6uizWSsjR23S12Hdqhwdg6aZBfWcL5HGFqBKxK0XZy6swJ/IDWe7BYqxNFxFQi7XajxL/bIlBNwwG1gC8uHIKY90udkt1R1r7lXB+Ou0U0glyz1Y+jVe3IN9nUAwvBFrs/TQxC5/eY3JlGc/MYkipPfmERx8huTKCWNWW6Bc4uEpS2NMIbS1qzgJpqt0UeJza9UrBiC/vGy1Ak7DwptfNiB37cnoULeD6Ab5ctGr7t/puJORARcTpSfabBqqfBSPdTR4t3voBnplV53G4TBxUbP0WmgASuUA0dEzEEkI0GtDcJgBwS6AQh0VQbngFgJ+9eGc9A+R3Az08VIn7H2VPe1ONG1zWAEedbRWN7SfKk6Gut11Jm4nvMY+C5MC+rmKkAOOnovrbYe5ze/MYni5DcmUZz8xiSKk9+YRCm/AwGjCwLbEQhGGxD8dvcqsMznKvhERGx/o59/v1WRJQdd6o/BfdeC8k0Y9hO9BsZphwovnVIFmhxcbXsBB112qiJgCaXN+UBLm/OWCoMw5Ca2dyp8rsHh1yPLWES0YX3IIbgA4e0IeunNQPBr7/SzJO4RJQiDNHEpImIBezCb6LMzGOnaZjANhwS/HUypon0pWhpsQ6+/o5pFZeLkTHsPDn+o5yl/9EhifvMbkyhOfmMSxclvTKI4+Y1JlPJVoYJDDxxeVFa7bNQpNWpU8FlzC7/4UKoYM4ZhFecgnvxkrQLdeUkDHvQcy2AH1aeUhZ64qA4rbY6ICOrF1tI1yzpaipzDZ8srGCwBP98b2Ks13HO2Z2xHP9MNq8BddkQiIhxXHThE4lC2oKZRKXFExBgcp7czLQc/viIXqj5jWalrU8PQleWt7vP9SMXs2ZLFcGI40J6CvUu9xuKzU4nl5xA7+MzGmN8rnPzGJIqT35hEcfIbkyjl1U7dRG34TbiHHmA3IAzSr8kcBhNERIxg2gFOE83VkTUFd1kPSlRrGlYBVznIVTg5GqrA0n/CwyGKU73GrAPiXgFiI8WAHYiA2zU478CNuYB7rvaIbhXZ0wDy1NH+N3CeNbgLqYffDj5Lwz328THTPXid6V4NP6orMkIF1hz68C0meo53N+rk/LtSBb+3ICCfgJAaEfEvxnqekyWIwOVhz5Pf/MYkipPfmERx8huTKE5+YxKlnO5UwLqHA+/guBbYy9DNtUegWcGkVurtRtNgxyCS5bW6pWCmQXRB0Oq19P6GT1Xwa32uk3sjIqINE4KhzHS3gnJNiDW3ugvbsV43TfhdgZtvQ9eyRzfL4fPklKTvrMFpR6dh0Q6m9EIMJ/zuES9vM93XGxDe7pcqAnZn4PCDku7xWB2Dvy70HH9VqDj3utZejScgcEdEbGGS9PMPeu7+Qp2uu43ei9/8xiSKk9+YRHHyG5MoTn5jEqUk0W1BzjsQyVo0PCGDoRRUdxoRBfz25CAs0aep+xxNnYWKzqjA9VdCKXHeAZEMprRGRDS3UBIKRrmsN4bjQNT6qCLg3fcq7oyWKizhZFoQ59p7jHwFrA8JfrQH5NJrwQ524TnZwoLV8HySCLiG4yIi1vCdCxCB11CKXG9hiEgFw2vAkXdb6jW+q2cSe7/WkcFTEAsjIl611YV4daf9Hx+8vZFY1dWY3/zGJIqT35hEcfIbkyhOfmMSBce0bkE8WTYwTRSEvBoUtn6A+y14+AKJQxWISFROCtWWUR5Y/nk/V1dV8bcgQMGgkoiI6UKFF+qRN+ipkEdi4xKEvKuFCj6vS3U13sElVrAMZ3uWpgfxHO6lA2t7AmLhMtf9p1WcgtCc7Rks8s+BBEPq67gFwa/b1/3rgju0Ves60BTifcNGiDWI7nc7XdvZK7jujQU/Y8w/4OQ3JlGc/MYkipPfmERx8huTKOUKFNaD66VBfaSGi/to04hnsH12qCgfIGW/gtgaFNZvMrXOLmaqrk/2/FxuwM7ZAeX7FKa7DMDeSxr3TaUnfwtThWbQMLUP9tUuxCIiLuB6WnBFW1C0V7CnFNtAXTxN3amwt4B+tsD//3B8C4dOwRI9h14J/QGo/T1V+x+N9BqftPR5WlWaf23IgYiIPq4jNNu91f8UNbXW+PvNb0yiOPmNSRQnvzGJ4uQ3JlHKUa1NBdeNihBUZ98G2ybV+J/nXJ/8PNRSewn2WbLtgtYU0+Kw3zKq556ALfkOhLNJxnbTDYifbRCRjnKYNATCINpf4XpuYZz2EgTbLUyuWezps0C25AIEOhJTuxAbgmC7gnWo4RqxISwct0/wO4FjW9DHYAki8KjW5zNXlyyOch80ugdfBOQBDNfZNy+Jxp+v4LrnC7V8t7uU08aYJHHyG5MoTn5jEsXJb0yilCTuoeAHwkIF7QCogecTEPYiIn6y1u+8aNRBNQdV5AOMIb4B8QSbPVIDRzxOpReqqY6ImIau2R2IX9cgTBWwtoc2Mt3COchjSetAomkEjzDfgSg5B8GQVqcHwUs4Rw/EuRU8Tyg+7zGWDuEmj8HBSKLyFYylfwe9KYotNGAt9bwdOMd5puIcuR8juPEs7SHcXhQgSvrNb0yiOPmNSRQnvzGJ4uQ3JlHKF61zCY4bHU1Npb9UetgCca67x311CsLio75ONVmt9TzrrTbMvAOH3wzEE/LobWgUNMSo7DSCpxxNQLxcwKhzKqGuwCk5BKckjXPuwR50wB22TySj8BzeEzOYkETl0m0QJfsw+OgUHpMdPDvUOHTQ8L4cw4juKtdj7xsV3r4tVdx7Tc1WYcXaJOxCjJrTdkHYi4g4B6fkWa0L2evDPXf0GfOb35hEcfIbkyhOfmMSxclvTKKU/253KsHXpYoDV6EiwgKksz6ITVSyGhFxBGLM6aWWGO9A6Ji/UjHmQ6OC2LzQz6K4B8LgHIS4OQh7++LjWsd2TyBGjspWriJnAT38HuTae/ACXGgXOyi13rJIVsH6UPkvlZNiu8UD2zrSm6gDdrVzEE3PujAiPSL6Ryq6oklzpKEK1lHPzGXeK7ibAYiuA8iNB3usl19utQ/f09OJfueZHlcdWfAzxvwDTn5jEsXJb0yiOPmNSZTy3w6uJfhuNJDYW3CSfYCyxTUIZ4+g5DEi4nyo4l7vOZSoblShGV6pC/F4rddIQzaWcI1LcO5NoEx3CmJTRMQCRpivIDYH0YYcfhk4vw4dpnIEwtIzWMPPMl3DiIgCHHCLWoVFkqVIDh2D6Ep9FKnseNiASLYBt2Kbhdjuke5BA1M7ujM97mgJvfngXmhUPZXfHkPsEVz2D0NdrhERT7+4k1j7HJ4dyEvaLb/5jUkUJ78xieLkNyZRnPzGJEp5+a9UgBq+U7fU8xsteZxNIbbUWFXwoIvhIz1PPtDP1yN1aeUwZKMLbrA2TaIFPYQGXdxDSe49lDtHRCxB3KMYufka6sMHTeVqECVn5CyE3oN008M+3wut7XSsbrdbcHNew2dvaNgIeOXWcH/9Qs8xB/G5ujuSWETEU9jrdlfP3Wrp/g8XurbnUPpLkzeoLJeE75eZit5PPhvDOSI6D0Dcq/Q88CjHDs7tN78xieLkNyZRnPzGJIqT35hEKfMTLYPtlCp0tR+q+HECgtZuM5VYs2aHX3mkQkkz1e+cvtLy1tFcHWdUTqoyFfdSozJf6rc3rVkkIzcfxUjcq2BiLZX0EveNCrbfQS/DQUt7Hj6b8fTkXgvuGwa00JCU9zmUg+/0Gu/guqcQ20L97feF7v333WO9mIj46eRCYi9Gen/DQs/dgwnIl1tdhzasdw96Cj6Bdbh8oPnSGrBADvpzBOTWDhyM5Gr0m9+YRHHyG5MoTn5jEsXJb0yilPW1uuzIDURlgnlHFZ/sGFSgcs9vDDjyFl+roPa719pn8HelilXAdCklAAAEbUlEQVRUJkpeNxqUQCIgldXuQLCLiKj3TO/9lF6p7rTjUgWsk1IFum6u8iVNrJ2B0PhtrmLTbzI9b0TEYKVr+01b9/DbXM/zHhyQdxBbgw2NxD3qeTjaqkh2W6pTLiLiVanOv8+qnsReNFrG/nINpeQgAh+BmEZi4cUJlLCfq4pX0DjfiKiXep7tQvdlu4LpybXG/OY3JlGc/MYkipPfmERx8huTKOXsW81/0rRgPkMUUAZZQc+06rGKXBEReU8FLBIwXhX6+W9gWirR2TMw5FN6MBW3n+n1LeBaIriXHrn0+oWKaY9Ldac9gWEcQxi8QaIk9sKD0uYeCK4RETfgWHuTq4D1plEB67rWGJU249rkUM5NvRW3KgLuc16+gbWYF3ovs1xFwHale/AM7uX4SM9dQW50hpAbJxKKDNY/IqKBISs19DOcTfQZXcOka7/5jUkUJ78xieLkNyZRnPzGJIqT35hEKW+vVOVsYErKHmFY6EFzxActtl62TvXcVZ+nlXzKClRcbFt5mNgfHfgdPIFGkaTqR0S0MlVTd3DsKdSiv8zVyvuTjX7fVzDt57TDKvenFPDfkarLdeO/Gp9JbFnp50dg270F6y31MDjJ9J7zXDerDeu6LfS/AvRfj4iICv6LQ5Zo+nwFWz0c6n8aTr/QGNnh4VIi78D7F9YhIqKs9YLKme4LNWBdbWkdjDFJ4uQ3JlGc/MYkipPfmEQprxcqQK1gAskaBJEG1LSztdYnny9ZxMsfnkus9wu11P7JxyuJXX5QUWoKisoSxJM7iOUwernJVFgq9ogxJCzRSO0hfOejRj/7I6hj//HPP0qs/YeP9GJqqJX/7lZiq3dskb4c6x72d9QKFU4NNfkk+G1hbZYwzYhq/ElcpVgEW4ZPQci9hFavl2Cn7Z/o2rQeQyNUeE6aKXTgpGexw/eSQV+MDkw+2oEQW7ue3xjzjzj5jUkUJ78xieLkNyZRylfQUJIaYW4g1gW96AG4kNqfc6PI/Mc/1eDJAwk9/KNvJXb59dcSq79TYZAagr7+Wouo/26jDRy/rUD4xPHXEffgBjvQFBkt6DlwcayuSBL3ip//XM97d6PHzf+Hxsb3eD1tqN0fhj4nw1yFrnvod7CoVeiiaUZUu08NUyvoBdDZM+GIxL2HmcYe17rXZzt9doo27D81qAVLLDbGpddvC6yAEVGAIzYf6l7lfX12qr46L/3mNyZRnPzGJIqT35hEcfIbkyglNcJUCSGiDQ6/Y5iJ/fjBRGLFD57x2R+9kFB+8bnEduf6+d3FE4llL19JbPCjdxL76q+/kVj5X3QdpvVQYr8ruAz2qlYX4xocay0QEUlMrdp6nuxEp89ER0WgaNQJiF1Z9/RALaAk9AT2+gGIabNCS3Vv4Nzrna7NuqYnT8nAWVrueY8dwWjxC3BUPgAxblCpKEkC3W4OLjuY9lNT+W0bpkfBMxIRkZ2rUJ211cGYX6o7tHgw1uPwLMaY33uc/MYkipPfmERx8huTKP8bIC2Nf+J50xQAAAAASUVORK5CYII=" y="-13106.259338"/>
</g>
<g id="matplotlib.axis_735">
<g id="xtick_1102"/>
<g id="xtick_1103"/>
<g id="xtick_1104"/>
</g>
<g id="matplotlib.axis_736">
<g id="ytick_1836"/>
<g id="ytick_1837"/>
<g id="ytick_1838"/>
<g id="ytick_1839"/>
<g id="ytick_1840"/>
</g>
</g>
<g id="axes_369">
<g id="patch_370">
<path d="M 29.174375 13372.578762
L 151.464375 13372.578762
L 151.464375 13250.288762
L 29.174375 13250.288762
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p3db135bcc7)">
<image height="122.4" id="image09a43d170b" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHnZJREFUeJztncmvJNlVh09E3Iwc31hjT25a2LABIXmBN4gFa/5J/hRYIthYIEDG7m6q3F3TG3MeIpJFt1uiznfRfa5dnd+3vC8yIzJunEzpe2eoZpOvjvYes8Ho/SWbJr82blq/Vvu1pqrdmpnZ7nhwa/PD2q/t/dq227u1fd+5tbZObu2kHbu1YT1wa4ejf79d76/ZzOwA5+6P7tZaU/t7Qece1I1/LdzHyiq3djR/XrqWHHTuEezrBNZKr4eOW/c7t/Z6e+vWrjZzt7Y9+OchR1X5c+O9heOI/ti7ta73a/R+Ce71OPn7asZxeTLwz/KkHro1igOOSiHER4+CX4igKPiFCIqCX4igJJILJPdmJPxA+LSVFwtt5aWGmVlnIAfh+4jk0LLauDWScfTaDgTNpvOyaQ/Cj0SOGUstkjkk91CcwhrdW4JEKgnJHHTdI7juBPta+mtCryXptoDnbtH4vc8JzWOhdC0VfjWs0TOxr8rud9v4PR0mf6/NzEbwTJCIpXtL6JdfiKAo+IUIioJfiKAo+IUISqIMobPBxK1NIWtoCAJqALJhlBEQCb57TkgiQnYSra1B2lGWHkkgknsPkWQkFulekMg7S/5+z+B+j+B+9yAaV0ef7ba0bdFrzVgs0rlJLJVm8w1J+MFxk8bfB5LUJHHNeK9J5FFWI4lPoqshm6+DTEe4FjovSWEzlq70jBGb3j8T+uUXIigKfiGCouAXIigKfiGCks4HU7d42fi1KZXqouTy3ycTYylxAhKJ5NBp5c/9Bq7n6rB0a8vOZ4ORGMy4r6LrM+OsMSzXBOFHcu+8hoxKkDsHuHByX/u6rOTYzGwCYql0//dwchKLJHsTPDskuSjT7SGl1rSHNZw7V4r+PnQfKROQlGRpFuFDrqeDM+3h/uiXX4igKPiFCIqCX4igKPiFCEqagVi6gLWTCko6M/LrfaaZLKSnvV+fHf17PqJ+drU/btd4ubOBvnCllAoWM7Ma7gWJpdJMQBKndL9J2dGuUKl0C5LSzOwUBOQM9p8+8wZKWXeQPUmfjwQiyVCSpqvOZzCasfCjbMAanrs9Jw06qIcfSUDK8KO1h0AyleSeMvyEED+h4BciKAp+IYKi4BciKInEC5XgnkE23hAkCTE68nfMIyh7vOy8PJk0/vVXAy+g/qewXx9JFpJXfdnHy8LDM/z1UM+91dHvwZY+H5yD1kheTkHimZldVF6yXRof+z73Bp8Fh414SGhO4Ll7yGAYEm8kAUt7/RHUw4+eu9IhLrnyZJJ7dCw+8/Ba/fILERQFvxBBUfALERQFvxBBUfALEZREXhFtMZj9KXx31JCtOM78V+Ck9wfPIBV0A6+nb61S80mQLaak5FzTS4LsLjUKXUHqJe1B6Zhtqgen+vlxZgLQBaw/6f3r6c7WhVOFtvBq6k1A6dC4VxnbTxaf7yPYeXg+CbL99F8dgsbKP6QZKf3bhO4FNQXVL78QQVHwCxEUBb8QQVHwCxGURNFPTRg7MHlkCwdgIEYZb5JIxmAKq4fTWstSKkubNeYaKRKYull4Hkq9pPrrUtlItek0hYfuoZlZBa8fFKZyN3DPSOStIKV5B/u3hulDODq9ULCZ8b4WN8csTBcvlbP02txnoed7RA1zC9Of9csvRFAU/EIERcEvRFAU/EIEJVGzRhqfTAqiVLFsM67oHur0tyCW7htoroj1yWUih4QPjfymrChqhGnGo8AJek+qTyfpQ3X/dNy+cGeWINPMzJYw3WcBdee0B9fm3/Pm6JtrzqGxKjX6xF4H0KwzJ8moXp72kDIJsR9DYdYfPWOl2Yo5SCIOQeQ+bvzId+rRoF9+IYKi4BciKAp+IYKi4BciKIlEAGUNUVkufXNsKVuN6nzN7A6m7gzg0G0FUgsETwJRSUKF5BBJoCE0uKSR0WYsh4gJvCet7SCvcQmSjMqBST5SdmDumuneXsEknjnIuDf92q3d9X5MOmUwUgYbNdukz0ey18xsACKXZBw9E3RuorTRZ9uAVG783pMUNmMpfQLC/pN67NaeH1XSK4T4EQW/EEFR8AsRFAW/EEFJJPeGNM6ZspNoyg1IpHVGLO1AIlFJKOVubQv79WGmHIwwJgk0xKw9ljGzymfpnUDm3gXIvTHc7xV86mvI5ppXZZlyJD6fghgyM3tiMAIbruf26M9Ncm/Z+4w8kmmlUhJ71IE4yx1LJcFHyNzDSTyw9iHTfip47kaZz3KRpm7t09pn8z06+ueEM2KFECFR8AsRFAW/EEFR8AsRlLShUkhIlqLefAaZd6TIdnCcmRmdm6QPyYoFlKOuIQNuC5lkJPwI6ns3bXxGlZnZKci9r8wLtU8OIKvAh67ga/kGMr/mzcit0ac7hTHpP4NrMTM7Ban1X63PnvyuUPiiiC3ut1jWj5Cy58zMNhX0ADz4LEQankFrpVl/HYyaL+3rN278s2TG5bsTyGolOfsG5Kx++YUIioJfiKAo+IUIioJfiKAk6q/WwnzaOXxPDAq/O6hE1IyHOZAwooy1e8gaI+FHgganqoKUpGsh6WJm9hgy/D4Dofbp3l/PCATNHmTaHvu9wdAGuF8XzcqtzSb+fpmZzVdean7X++yyBFlsJLWwz2DhdNpB7Z/FRGsgvsxYLFL5Lw/eKMvmKy3n3ndlx60a/2ybma3g+b6rvd7dgHZ/0/n91y+/EEFR8AsRFAW/EEFR8AsRlPSmW7rFAfXCKxw4wAMRyiElQiWY1LuutPyTvvJIIlEvtSmU5JqZTY/wevgwTaEcIn01gazG0wRrJ76sdjSFqb8d78zVwpeJzqG5Ig392MIaZVSWZlnSxOGHQM8j7TVB8pKeMZKAVKqLQ0Co5Lzje3N38NLue3hGSZDTa/XLL0RQFPxCBEXBL0RQFPxCBCVd7xduEYUfiDOSGpRpRe9nxjKGzlOaQYUluMmXvFImGQ1EmECZLolPs0zZMYnFBiYgw30k5TPrYV8O/rzjvT+u3vjPvFpy6eg3MAjia/MS8dVh7tYWB39c6QTj0sm2D4GeJ9prKgnediCVSUAWXiJ9Fpzcm+n/R+J7DhOL6X7TM69ffiGCouAXIigKfiGCouAXIihpBcKApB3JGMzwg7VcuSVl0A0gtw2ztOA8IxB0NKWVMrLoGmlthyNEzK7Ny6EEX613IHO28J4dCMQT6MO3O3g51y38Xo1XXgLd9Cz8fucdqX3X+wyxe8gaI9mEQzYgy47EcGn5Lj0jZoYyri6c3Exlx9sDTBfOlKy/D96HBENcMj38JtA/kqZGH+A5oXPrl1+IoCj4hQiKgl+IoCj4hQiKgl+IoCRKYezqsqaHlN5L6YqUTmmWaYYI9pJNfNl/ABJ8v/UVjSsuy9GkWmkzsznY/hresoVrPFDzSBp1DvexTvSfFG+LR3COqwF/97+Gsd/UPJJgsw9GG/4zQ2ttYbp4Lu2a/kt1ADtPqdz03N3ufP8LTgOG/yjBfy5mA/+vlcfDU7dmZvZJ8usXkIpNjXE3RxhLj2cRQnz0KPiFCIqCX4igKPiFCEqiZoGUrlhaV02ChZoUPoS+pkaKZT0HSkUegQ0XM70FaJVSdHc4rprO46HU4ntqUJr8Z6b7cFOxvLyFJpz0uTHNtrB+nuTeDNZOYG0Ce99mfsf4eYR9qf049cvGNzJ9M/D9L24PXgKuOy9I6d6cJn/eZyD2zMx+1vipSc+PXqZSb4m72u+1fvmFCIqCX4igKPiFCIqCX4igJJJaNNaaJAlBgiV/LAg6yhqEpokkTwaFU4USjWimaT/0fhmB2HxA80kSNCTYVrAFJAtvIbWQxqRvMr0J5pDNR8KQRB49O3QfaJ+HIBCn5s9xBo1aJ1DDbmbWlD22yOeVz567a70E/Db5vgZvDl4M0rjwE8jQewry0czss97LvU9h6tKankVIBNUvvxBBUfALERQFvxBBUfALEZREDS4pI6+HUlYqWzSQDbkGh3yesnLbIUifMZUDw/cbvR+JM4LKhs1YBNKRJPdo1PWGGmEWC0TIIvzALEuSdpThd4Ry6dKJS3gOkq4ggEn2mvGYdDqWjpvBLdvDrrZpBmvQbJWEH4x8fwYl2WZmT0DunXVQfg/Cdwpr+uUXIigKfiGCouAXIigKfiGCkiYJeoCBbKqh9JeyuQjKsjPjnmY0gWTW+D5nZ7VfG4EEpMw7ogPRSOIs921JEpEU28ZgzDJk1C0py660PBX6tZF0y05SgvuIWXofUC5dmjFKmY4kFaHq28zMRiAHz2FjTkCcnUIc7OEzb0GaD2tffkuydwTv96jnp2yCvR7LaOE+6JdfiKAo+IUIioJfiKAo+IUISpolL85I+G0qn4W27WFQBWVPNV7imbHIuxz4bKlLKHE8r2Acd2HmHq3tQSJRYlquhx/26wMdQ0M/aI32gE5NZaK0LyTYaPiFmdkR7BnJwdy9cO9Hw1kK94WEFmX4TWDNzOxJ59/zKcjri+RH1RMvOl/S69/N7JTK0OG3lkqOc7/I95Clt6KhJDSWHN5Pv/xCBEXBL0RQFPxCBEXBL0RQ0qQpy/Aj4TM+eulG2Xx0DjOzCxiK8ATk3hOQezPo2UbiZVVB7zqctOuP2z+gPHmbmd7rrgey70ja0QRkEmeUZbnr/Tkwoy7z1d/AvaXrIbAvI014LuyjSAzhtVR+a5bJ3Gt89mQ78Pfseu2fxd8M/bm/rf370SfBHpMPyJJE0Un3AvZv/ACxKIT4yFHwCxEUBb8QQVHwCxGUNIWhASi14GtiAHJnClNVT0HYmZldQv+y86MXi+dd2XfUbf1hfepKyJ2Bymg3sLaGUt3S/nqUUYdrIPfoHNneivCeJO2o/Jp6JpZOTyYJiNmYsLbNeLNl7c993flnPq39M/pt8p/vG5B73/Vrt0b3FgfSPEACjkC6n0EMHWHQyQAkoH75hQiKgl+IoCj4hQiKgl+IoKQpCIMeylupP94liLxL8+93lpmgOuvLhifswX/cwzWuCstqSRgdCsXZPpPJt+h9Seh950UQZd/hxFqSaSB86DiSTXTe0ow6M5Z21OuP5O4EjiORR1mStH83kMuZaXtn963/w6z310MvfwUC+frohd8ahq6wYP3jh5eYcQxSaI0oyxaeMf3yCxEUBb8QQVHwCxEUBb8QQUknkJFHnEDW0DOQe5dgXk4zCWwJBMgS+pTdQE+5mwqGX0BG3Z6y3Qr7x5WumZlt4dwk2WithaEP1O/tBLIxScRR5t2i27g17BP4AHh6speSU1gj+UWieQfi7Nq8dJtXVNBtNoD7OIKsP5KuC9jTZWF/RKJ0wEou83IHzwmpwSkMw5lglqUQIiQKfiGCouAXIigKfiGCouAXIigpFTYQbMEW0tjfwQMaBR7AsN6B2X8HJvcGUiqpMSd5WBz7THXjYF0fYsjRxMP0oglY/Ivkm5ueVVCHTj0VIGW7hdTQJaQkm/F/GnD8eWH9/QFHS//xI7ppwtGi0Lib8XWT7ad04w/5Dwk1aqX+Drlz0H8GaK/uYP9H8B8A/fILERQFvxBBUfALERQFvxBB8RbHzEgC0rcE1cXvCie7/HCsX6M6fUrbXRQKv+Ix0pTKC8KPJGCOMaROU+rtY5hc9Ajk3iQzUvt9NrCtbeNfOweJl4PEIokzut9r8/tCqcG0VirnSAKa8R7SDnY91N9n27X+X0i60fNEcm/Veem6hylMZiyLd7WPjS3c7yXEkH75hQiKgl+IoCj4hQiKgl+IoKQhxD9n85HU8CwgQy+nAElrUIZY6SQXaqS4/cDGle9TKhDNzKYwmvxJ7eXelxWMKof73ULDU7qaNUjTO5B711Afbma2AdHFmXtlQqy0LwLJPZpSQ2IwV1O/QZHrn7xcY1Z3bhqdjs1IQcRBL4Bt59dyfEjfgAM8E/rlFyIoCn4hgqLgFyIoCn4hgpJows6ASnULS3+3JD8eIMk6EBMJrockIMm9JTSupMwtej8cI53JYKSSWRpXTSOVL0DuPe38eS4OXkoNcIS1f+2b5MXZi8Sf5QpKqDeU7Qj3giYfFWdF0lQgzJ4rGwNuZnbEBq5l47Mpc4/OQ8KvhmeWyD1PBJ2b1gawVpq1K4QIgIJfiKAo+IUIioJfiKCkEYgAkgOkJaikd1NBn7JMaSRNbaEkJioJpYws6nFGZZRUMknCh0Zi58RSDZOGcAw13IstZV/BfTiD0dQXIy80jyCb2q3PItxlSnqrxq9Tphzt9QL2ZU6962iv4DPT/aa9X8A+m/H+E7TXA9hTkmkIHEbX3TUPKBFvfIn4FMrGx7CvLVyQfvmFCIqCX4igKPiFCIqCX4igpNKyWtISu0K5R2OWc++5h1XqzUc923rKQgO5t4dMQMq0opHRNE7bjHvFbaCE8672Auoa+vo9h7UWPsv55cqt1QkE4lso013P3JqZ2fjoP+MKfiYWIL+uYI2ek/ujvw/3kI25hTJtGnNO5bJmnLlJfRSbxl83vZay/kgClg45IaGZG9E9heEus8oLv4l5eTnUiG4hxB9Q8AsRFAW/EEFR8AsRlIS92eBAkjZbEBM7EHblOUzck46ukSBpR0KFSoyPMLSBvhoHIFPMctNk/Z2cQ8bZHUibDkp/ZyP/2tnnXnTVYyiNPZ27tfYF9607u5+6tZuDv55rKBM+JH/ua7iRNIl2BVODaagF9b3LSTIseYWJtST3SORR9twU1qgcvIXz0vXlBpAMSyUiZuiqpFcI8SMKfiGCouAXIigKfiGCktrCSatUvruEUtstyAoqlzVjMVE64IH6plFZJk02JdlUKpFyYulDoBLq085/vvOna7c2eDZya9XUC8R65sXZZb3E66lfQIbnjc8GvIXegzsSn6B8qa8f9dsjSOyS0Mq+Ho6d0PTkeuzXQM5Oj/65o3gZUBYplUqjcmeJSHcMz019BvEsQoiPHgW/EEFR8AsRFAW/EEFJ572P/9vay5g7kDEk90ju5BL06JsHS4fhPCRtqOSRSjDptTjcAaRUTiwNQDaeNF7GkUR6bv66H3cwoGPs16Ay1iyBMOpB+HB1MvZRnJs/+DUM/biqvDidQ7ktClvIgBvCUBkSuzkRS9l8Z8n3M3zW+KzGPzW/V087GJwB9+sdLC4p2xCHkuSySMvgsnh/nH75hQiKgl+IoCj4hQiKgl+IoKQzsAhLGFZAYPntAzLgqHCRMp5oraUhC7A2hdJYyjikrD/q/0cZg2ZmJ42XQySRvgSJ9NXBfwdPzEuy+7deIO7X/rjBGAZ59P4zL2/9tZiZfX974ta+ab3w+33txeIN9NzbQGkzgUNSahC2sH+092Y81OJp7YXfz2Ff/gxk6jn0D7xu/Lm/B+G3KuxFWTzV2MwoVHeFmYD65RciKAp+IYKi4BciKAp+IYKi4BciKJjgSfXAtEZQQ0JK5TQzO1C9fGHt/gCaGU5gjabu0Dl2jbe4h9qb2Bmk7JqZPW68Qf4CDPKfdN4Mf3KACUJwjWTh+1t/LQ3eQ2+A73n77ZvWX+M3cH+uIbeYzD7tHzfMLGtwOYba+1OoszczewIp35/1/vV/vvPX+POhb3rawEjt+frMra2g4S2lOVND18MDWt4m6KlA/wlLmtgjhPgDCn4hgqLgFyIoCn4hgpJeQRria0othbRNqhumb5Mq8x1DabtbEEakP1pahVRHqpcegRA5g/RcEoOULmxmdg7C6QJkzJODv+6zqiz99Q4aRd5AaukCcj4XsAXXFU+GeWc+PXhO+1LacJOmxVBTV7hfJPce1V66fmosYj8Dwfrl3u/BX1xeubUnv4Smrnf+Prz6Z5/GPYC9Ikju0Wh3s0x/CZpSBc+8hJ8Q4icU/EIERcEvRFAU/EIEJf228pNc3vR+MswShB99c4xBiFHGUQ6SbCSW9pBBRXXQDZybxixXIMlIxqTM92XptyjdiQbO08E77kHa3DT+ul9AZuJ3IPHewT6bcY05jYc+h+y5KTTcxIaphX0bTkCkPqv8eb8EsWdm9sXOf5avxj5z79nf+Nemv/tbv/jurVv6xcv/dGu/efuJf2njP8ui8hl+K6OurDzy/QiNWUtH1euXX4igKPiFCIqCX4igKPiFCEp62S/c4n3n5RDJhrZQnJFsyK23oMQok5CEUQfHVfB+I1gbwLWs4DOTkDQz28C5F1BOPIf7M+m8JOtAkt0kf42vYLrSN8eVW3t5uPPX0rHwowyxRwNfTkzZk+cgfCdwv2ncdAcSl97vee/f7zPI2jMz+6L1Y8if/+LeraVf/bVba371927tOH/n1h79/pVb++U/+PO+g7LvW5pwZF7Cm2WmStEzf4SMSsqyxLMIIT56FPxCBEXBL0RQFPxCBCW93nv5sYWSQsrSapoP++5o4bunBsGzgdk+PNnHUzqpBI/DyT4slmhc+TXInJfJZ3ktoWx1CxWvryFz71vI3HvdeYlLcm8H02fMzFqY3c19+DzDwt58e+gfuIUdnIJUnnb+HCeQgWpmdnbu78/oS1/+Wz166tbq2YV/Q1jr/+ov3drnP/tHt/b0JZT+Qgzlel6S3KPs15ZGncMzpl9+IYKi4BciKAp+IYKi4BciKOnd1gs/KgkcQzkiSbecrCiFsstaavcG52koa6xwAAkeVzhU5Af8sffmhdrXkPX3EjL3aJzzVe/l1VXns/lWPWeIvQ+NxP7/1t9nDdd4A5+Z9mqFA9o9O7ivy9q/3xKLpc0OO39v+40vmT2+/s6/9rf/4taqKUjAvZeNNBL9Hn5qb2GvFpBha2a26WAcO8g9yrydQfm1fvmFCIqCX4igKPiFCIqCX4igpPXBy48EEoEk0AGED/V/W2eyr7rC0lqavptA7tEaSUAqb1wXCqjcoAqSn3uYYntXOKhkCdNbSQRRlh5lJtL+USZY7lgaGDGHz0e9HikzjWQq7T1NWR5AWXTb8jCVya2foDv8Nz+g49x+7dbSCy8Bq7EXZ/t/f+nW/vXb527t1yMvZ1/tfKn1/d4fZ2a2h9gaG0wnhm1VDz8hxE8o+IUIioJfiKAo+IUISsJpqQDJPSr9XYEsIhlmZranQRAwkGEKBuMEXttA7zJ/FJcn7+C6b+C7cQ4TjM3M1iDtSHTOIaNrCSKPsrloDwgqySWJ95DeirSHK5CSVPJMwo+g0l/qCVnDPlcwvMTM7AgicPX9E7f2/A2U/g58GfQGsvn+o/rMrf3TyL/2v/fXbu3+4I8jsWdm1vX+Pu5gwjNleDadhJ8Q4kcU/EIERcEvRFAU/EIEJdWU+VMoAfc9SEDoW0cZdWZmg4bKEf3aBNZGR3/dlOM1gHO34B+bI8lHf963may410cqzYQMOJB7i4NfO8C9Jaj8mvaFJN7gyJ+F9p/2kCQgSUkSflS6TY8JZRaSXL3KTLalbLflyC/+rvf99baQzfmm9Z/vRe+n/r4++D6Kq66s1DonYumW0SCP5cGfh+6jfvmFCIqCX4igKPiFCIqCX4igYIYfl/+VScCH9PAbQpYeTdCljDw6zxGP8wwgQ+wMktAeUdlwQzmDZosKJBtJMpq0SllxsEZyD9rZ2RHKYAl6PzPuAUfltlSWWwqdmyQg7TOdN5d5SVJyDXmf5NiWUOb9Foaf3EAfxQ3I3g1kxLKIy8QaXCQJP8q83VPpN59FCPGxo+AXIigKfiGCouAXIigKfiGCknLG933QNBcaW6ovNzMbUo15odk/wHH0STjl13PWQUNJMKm3mfReOjm5cPpPCtXalxp7ej+63zSieVxD80czm8I67YuBYfcunCn97xHdwx2k9+Z6BlBt/Bpq4OnVC6iLvwXbT2m7ZNwpZbv0Pz1m/J8iig2q+6fj9MsvRFAU/EIERcEvRFAU/EIEJZF4IblHKba09iGpwWZme5ruAt9RDQixhHX6/twT8ClnIJHovLuMiKOJPySmCBJ0pT0V6LXTZuTWzpuxWzuFsc1mZmNI78VPDfdxX0OTSbgP9Jxk69jfA8epQ/qqGd/HFTRWJTFIIm8NTUup2SpdD/VZIAmYS5EnkUfpyyj8QBbql1+IoCj4hQiKgl+IoCj4hQgKp94BpXX6lJ2Um0CypRHfVek4ZxJifo0aeM5AiIygHv8Wbs9buD4zszmIIPrcJD8HkDU4gL4GlD05aby0u2wmbu1R7SXgDMTeD+fx10iSra399YzgPUmw0fsR9DwdsJcDv98WhBoJSMrIW0NNPo6lJ7nXlQk/zPCD59OMpR29no5Thp8Q4icU/EIERcEvRFAU/EIEJVGGEDaFpEyiwnHMOeG3g/UNrLU0bQa+tyjHC0UHfL4lTOz5eujP8cp8s8YfXl82UpuyJ1sQizRJiRprXkDm3rPar11WvqS3halHZpmmmZDZOIFrPIfzLI9+bQ67RXu/geNIaPWZLFIsBy/M5ttC5h4KSBB5HyL3+kxJb2mpLt0fQr/8QgRFwS9EUBT8QgRFwS9EUP4Xay7OpeITWHEAAAAASUVORK5CYII=" y="-13250.178762"/>
</g>
<g id="matplotlib.axis_737">
<g id="xtick_1105"/>
<g id="xtick_1106"/>
<g id="xtick_1107"/>
</g>
<g id="matplotlib.axis_738">
<g id="ytick_1841"/>
<g id="ytick_1842"/>
<g id="ytick_1843"/>
<g id="ytick_1844"/>
<g id="ytick_1845"/>
<g id="text_93">
<!-- 317 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 13358.473762)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-55"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_370">
<g id="patch_371">
<path d="M 164.424375 13375.080525
L 286.714375 13375.080525
L 286.714375 13247.786998
L 164.424375 13247.786998
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_739">
<g id="xtick_1108"/>
<g id="xtick_1109"/>
<g id="xtick_1110"/>
</g>
<g id="matplotlib.axis_740">
<g id="ytick_1846"/>
<g id="ytick_1847"/>
<g id="ytick_1848"/>
<g id="ytick_1849"/>
<g id="ytick_1850"/>
</g>
</g>
<g id="axes_371">
<g id="patch_372">
<path d="M 299.674375 13372.578762
L 421.964375 13372.578762
L 421.964375 13250.288762
L 299.674375 13250.288762
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pde4ec7085d)">
<image height="122.4" id="imagea753d44b72" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmT5dZxhfMBePOrqbt6YpMaLMqWNS288MY/1Rv/AO+18MZLW/bCEZYVsmRZJJvdbLK6pjcPAJ4XpBau8yHidnDHe75lFvAAXCCBiFMnM3tPT39yjAccQ0JIVZQSO+9PJfaoP8P9x72+xBo49v5YS+xwbCRWQ2zXHnTfVrc7qcYS++ngicT+tp1ILCLiL/Z6joNoJbYKXbPbSmNXGoo/FXuJ/W+zkNhNvZLYWanX94PyRA8SES9ioPsfC4md6jLGSav376LVtXk23Ejs8bOlxAYzPUhPTyWafU+DEfGb3z+T2N8PtxL79eoTie3hvOk5Oav0mRgUlZ7jUZ8HerZreD4jIno9vcaqpw/KqNC8KkMXDZbRGJMDTn5jMsXJb0ymOPmNyZRqVKo4kMoQ9p2VI4mdFhqLiJiC4HcAkWwDYtMWxJjNMU2oTBU034c6VIzpwbt1XWhsDq/gZU/XoYHr68MxTuEenBQq4g1IOYuIGpZn04NgSdessUmrxwFdMEDPQnHvfbiodhL7oFDRjoS8Ra2iZB9EbhL3Bj0Q/ODZJkp4Rrr2p2d5CyJ3AffFX35jMsXJb0ymOPmNyRQnvzGZUk0rFYcKUF5IyCGhg5xkjzsEvxMQRQ7gglrBdvehQg65/loQycjhR07A+VFj1wWLhaelvkcHsOkcRLI5/OY6UZQ8BSHvPIa6Hazh5Ag2wmCX5QpiR1DjhoVe3wGeJ9gsiirtmg8rPe5mwcL1ptHrPq10/4tKnankyBvBepNTdQDOuxpE3OKoC7EDMTuCn+UWzhGFQdjXX35jMsXJb0ymOPmNyRQnvzGZUl32tayTygRLEPz6sB0JUI97GouIuADBid5GSxAwRuCCWoNAR2WZ20ZLYw+w3SsQNKcDjUVEtH0VOs/B2XYApxyJe7TdAFbnGYh7Z7CuZ43evy259iLiGoSpLcTIpTeCZ4IEv7rRa2kOul1b6+8t7/Sab+a6/hERn/d0W3KRnhSwXaXCMJXLTiBWwb2qEx1+Dax1REQN4mANzw4JleQE9JffmExx8huTKU5+YzLFyW9MplQfVacSnECfua7yz4dQiellh5PsCYhQY1CRVlBG2VQqsvwJjkHOvfVB3YHYXw1EQHI6RkSU0O/vQ3A2Djv2fwjJimMobabeei/BIHbWqHj1FfQOjIi4hYNvYX1auJQ13P8F2PluaxXYqi+112MPRMnbra7r65JF5U/hWm5DF6iC55vEPYJcqdRvj6DnqesZI6hUlzsA0r7GmCxx8huTKU5+YzLFyW9MplQfR5ozjaSPHegSO3ASTcCZFBExA3FvArFU+YN6l+0bFXcoRg6/plUh57rSIRkREff9M4k9A3fZGK4GPYMg5NG+F6C6XcL1nfR0bbatnl8Ei5ItDlPR9SE35hWUO9dQBnt90JUYQinqEsqiv2DjZXxZ6FrMcQiMnjeViG9adYcuQoeAUA8/csRS+XxXrz8SEUkc7INgT4K2v/zGZIqT35hMcfIbkylOfmMyxclvTKZUP6zB1giKOzhx4w5smxtwjO47mlGuyQIJr6M5HGeZOI6b6pgxBqoyKaTUMPHruO5fweWVsBQtqri64Qj+azKE36tg3xJssnSfIyIm8J+GAfRPILV/3dP7coRjL8FOew/3eQbnonc54haOGxGxAGV/DbEtbdeoDXzZqLJPz0kJ10d9MqgJLm0XwVZeGr3ddvRp0N8zxmSJk9+YTHHyG5MpTn5jMqW6qFUoqUGA2oLgs0qcNLPt8Oe2oGssQdS6K1RQWUBNdirvUy+dCgk8/W8xFrkiGzDoOAUIjTQufA+W7aJDiCU79hgbUpJIqrEdCVDQpJJ6AdB67amPQEfTy12ibXcPgh8JeQSJvXuwARP03Aw7+giQOEiWYbQB09SklBM0xnz3cPIbkylOfmMyxclvTKaQCQ3dfFS7T8ILjXfedziOGqobh99cgHtr1THG+CEkqBAoiCQ2YYxg1yBNORpib4O0aSpp7SQj9ig0Qo13h/DZp0k84LSje9WH6yNnIoqh5H6E8yPHKAl7EVynnzo5ZwRNQStoJrus1fW3q9WHeIA+C8SuIA8jC350jmOKwSQtf/mNyRQnvzGZ4uQ3JlOc/MZkSvUOprZQcSRJFQMQaPrYkJAFvzkIeRtwX92AW+qmWeu+sB25r1jcA3cZxFInsUSwcHYCWtMsUfik36MYlQjvqDS241roNy9g/8fgGpzAvjSFic7xDj5Ft+DupPJdKt2NiFjR2HZ4xogJiGTo5oMmoVQifmj1uFgODNtFRLRQD04CJIncZ6U26vWX35hMcfIbkylOfmMyxclvTKZUr6FOlGQgEveoNFaHJ0ccOib27MFpdX3Uvmlf1UuJ3Rw0tgKnFfXcK6E8mdx8g1IdVeSyikgvEx6DEES99OitTOW7qfIjSa4kKkbwBKEZCJU0Xems0Q2HcJ/XUIp6B/flHkp1b44q7M47SmjXIPjtwB1KI7oruguwZvRMkOhGz9gRcqPLWUpxOg65+U56dvgZY77ByW9Mpjj5jckUJ78xmVK9hdHNQ3gnjCA2oR8EZansEDAOIEMtQLi5q1cSmx/U4Uejt4ku0U62A8Gvq78ale8SQxDJHoMoNSk1BjMtYtPoOa6PKqZt3+M9TwWvtLI7uK9rHO4BQ1dgbDeVftNZ01p3ll+nza9IJlVgm1YkfSvk8CPXXgQ/eyeVOvemcD60Ov7yG5MpTn5jMsXJb0ymOPmNyZSKSiH38E5owJFVgLA0fI+SVyr1pbLcTaOxGsoeSfThUt00p9SwVIFlUg4lFhEx6anwNgYL3Qms96PxRmJnFxprGz3HmxuVXXeHtHd6Vw+/A4S38JMLuH9vQUtl750KXRdQIvwDEDQnICp+3iUq0zAPNO6liYh92HlW6DPR9GcSo956xACepYiIKTx7k54+o1OIkYPRX35jMsXJb0ymOPmNyRQnvzGZUtGkVRJjCnBpkXOvge1wSmvwRFeCxJjU3mUUoz58FQiaM3BpnRbs3DoBkYbKYE9hIMPpuZYiD09BiF2mOROPsF40ebnu0GZJ8FvDPbyHXnq3IGiuwB94BiNInoYKWk9reBYrKP0FN2ZExALuS5to+yNxbwDPyQAGogyhNyb1/+vD80mCXUTEFI4zIiEe9t1RTuNRjDHfeZz8xmSKk9+YTHHyG5MpFYkfPLQDhhCQcJI4uTeCSzPJLXXRn0psA+47Ko9MdW5RueQpDDo47xD8puR2BIGnAOGsBkceiXvLe12bda3nvYZ3+hbqgddUIxwRczjHr3oq2lEvvdtWezBuoGS5KdSZuIQ+c2c0gCTdRMqCGoiNBTwntC+VttMzRlObWdzT5+YEBqRERExp2jG4SEnI3SaWSxtjMsDJb0ymOPmNyRQnvzGZUm3AkYWOJXLPgdAxBFGi7igdJcfSk1KFoBG4tJYgNq2hHLiGiaw4bAQEPxIfxyDQRPBbdAGC2tUByj+vdTuqUF22eo7X0I/wutKdV4UKPnMqd42Iq1CB7g1MRb5v1Zm4bDSGQmxfz/FVpWtT9/Wat+BWO8AxIiJG8IxN0KUHPSrJ9QliHOUBieH05MygjJmcoRERQ9DN6bnTuxexgmfRX35jMsXJb0ymOPmNyRQnvzGZ4uQ3JlOqO1BnZzSBBBR3Uvan8D7pqp4+gppKJf4DaNh4EnqOi56q/SuwlpL1kuq0qVa6iy2NkoapNBUMwL5v9ThksV6AQv6u1Gv5EtbhDtZhDf/piYhYgkX3rtGGoutGt9u1pDUr1FPhc3jujmADnsAzdnLkev4LiPXpvz3wLD9uNPb8oHemhP8+LKDfxCZRcS87+lzQNCwas069G3DkOx7FGPOdx8lvTKY4+Y3JFCe/MZlS0fjrIygLZ2B1pTcHiYDvU89PRmAaGU6iTYBgRPOm9yCnlYnvwa5rITsnN0fV896AQHMPWuMtiIpkxX3bqjg3BxFv17LgR5ZoEvIoRpOUSNyjfekcL3vaP+F7R7X8ftAxnX0CI9HZbK7bXYCF/OX5QmKDoV4zTVL68qD9IeYgDO47+hWQRRenK9Eod9fzG2P+jJPfmExx8huTKU5+YzKlovprmnKzgmaWBxABj4lTeL4t1HCxSmzCSJNT6PfeBxIgqfZ7BgIUufla+L0djTSHvam2nWrqyenYBa0PN0dNm5pEE5Lo92gS0o93et4/GiwlFhExGkHzUBh1vt3pcRqwz5WVruNwpmrjbKfi5f2dCtLXsA53ZUdjVejJsE1srHuw4GeM+TNOfmMyxclvTKY4+Y3JlGoPLq8NNMJcQWwJI5pPEkcGR7AIQXph6khlEqWoVJfcfHQMEgsn2IYx4gQm9lAjRqjAjR05txJFm9Qx5yS6vQ+0/wCah5KImDoN6bLQ2MtWj/Fhoa7U80faYDQioj/SZ7SFUt3hWo+z2+p51wdw5K1BYAVRsaFJSuB+vAVhL4JHotPo7VQZ119+YzLFyW9Mpjj5jckUJ78xmVKRI+8AZZlrKMFclCoWXkCPOiy/7aAEAQR0LoQGndDElibxB6nkmKa4RHApM50PTfGZw08uoHx3BT33tlB+28CRyT33XiIgbEpuvgE48k5LLct9Dr35Pg7d7mdbvebzcy1ZLvsdY24AmoY0nMDkKhALaTBQXesNPIAweIB7QOW7XWXjBLla6V7Tb/rLb0ymOPmNyRQnvzGZ4uQ3JlMq6q9WQIycWyQiUCs16KwXERF9EMmCRCjYjBxwqMYA9MajPd9HqKRy2xsQ8qivH4l7NzBkY05jyUEEpJJlciuSMPTNHwS6/xWsJPV6fNrT2MeNCoM/32sZ7MvHc4lNz3UdemSdjEC7G7UuLKFvZf8EhNMBlFpfgTi70KeeVptGjXQ9dyQqd3UkfMiOWl4m7WmM+c7h5DcmU5z8xmSKk9+YTKkmpYoxU4rBQIxB4jANFioi+iAsHshxCPsWIJK1ib9H4l6qq2oNjroILrcldiBKknNvASXUu46pug8hlx2VNvc73v3ksqRtqb/eOUzLfQLlrR/tdR0vp1qWS+Je/wQGg/CQ3qAlO9Ygco9gcvMLdRwGODSbNTgOQYCs4Bnr0ikJ7JkI27HsbYefMeYbnPzGZIqT35hMcfIbkynV88G5BGcg7pFziwSfPggY4w7BjzQymjB6xN51MLSD3Ipw3C1IIjToIm3GbvfGtP8Bjr0HEXGfKO5hbz0Q9yZwr8Yd/QiH2LsQYjCUZAT3RTvhRRzgXq2hZ94QBl3MCnUCDh53TIKepjngihk48s60p2B7q6Lk5p2e93yt+bKBNYR2gh2CXdeQlUSHH/yqv/zGZIqT35hMcfIbkylOfmMypXpZnUiQhKARiEDjxHdHlyRB4iAJfiR9kSjSWaL6ABL3VlBCS0Jc12Tb1GOnTsZN7blHzjvqPUi93uieRkRMYADJEHvFKTsQZ7UoN6Ks4Ni19vWbX6sQd7nUydKXe57SO36mT085hQnB4Nxrr3U4yP1/6vX97s2lxF5VKgIuwYW4gAEd6w7Jj8vO06DhLv7yG5MpTn5jMsXJb0ymOPmNyZRqBPlPQhAJSz1wc9Gk3K43zLd582AFJ5wPiV81SCdLmkLcqrDUdPQJJDGuSpwQ3IftxjDZdgQuPbq+YWL5Lt2rCHZUbkGopJWgWAWHWcN63YLoNj6C27TR2ItPVSyMiHj2hTryZlO914ORCoPLubr0frNRR+xvoRz4q1AX4r7Tu/f/oXsawQNjhiDOEiQz+8tvTKY4+Y3JFCe/MZni5DcmU5z8xmQKi+bfYmfSHruaFMKQFGz2OUHxk8YQKwdQSOm/FFuw9y7rdLW/X4ASC4o9NddMnZBEKvAUfm8Cd4Fq9LssyRvsOaCx1KandN4LOjaFINYv9Vr+QHbhiDg5qn19toKeA+AOXsJPfjbU5+RNqw087+E/RWQrHxUw0hwmHEXwf2eoCS5BjWP95TcmU5z8xmSKk9+YTHHyG5MpVdfUloeQANWDfUmwG3boQgOapgP799pvMakEhLhFT+2h99Cg9FCq5bOrsSZPU4EacbLJ4jqA4AfizkVPRcVHMDWnD4uz7ZgydA/xDZw3jUlna2ravmR/3UFPhTpxFHsEjxGndSyonh/uwapRwW/RqpV3BTFGpwKdwsSsCB7vTrX/3K9Cn1t/+Y3JFCe/MZni5DcmU5z8xmRKdQIOOBJjUscDs2uPhSVq4FlTDPbtGAKUdIwZiICXpdaDD8E91zUmm5p9HiBGgl9qU0+q078Ece/7MNOc1mFV8Lv/ptTFvYNj72lMOvwePU806pyEvA2s9xLENFrriI7nFic7UYPSNOclPRO0L7k7z0sV/M5BxP16f71fW1oz8LpuLfgZY/6Mk9+YTHHyG5MpTn5jMqU6gQaAS5Btmg432ENIqhi3XYIfjN4GUWMDAs0GBD+aFrNC1xiUVkIZ7KBQMaarjJUcVCRMsfBCpZp6PlM4x0uY8fwMXGiTHoiPHVPADzUIS/CdWIBwegdi4TXUdL+De7oFoYpKqLetXt8OYhEdU46gjJbWm0adc8NUaKwKxz0BZ+lzeMYoJyPYAUniHrkiaTS8v/zGZIqT35hMcfIbkylOfmMypSJpgd4I+8SyTIJKdyMiJiBWgC4VGxBe7uHYd7DzAsSPJXgG6QwHNF2n432Jffhg/DKWJ8O+U3B5zXBii57LCNZ12tcpNaMhK37jCYtnD7m/G0vsi506JStwIR6g596KRFeIkZjW6+hlR3ES6M5AeDstVKAbJn4v6Tk5h66Xl61eX9cRriFGTkISpWvIA3/5jckUJ78xmeLkNyZTnPzGZErFgy4S+7XBdh2mMaQPriMatDw+6jsKdDPsZ3YfKl5tO8o/H1LjOO309+UQxKoe9IqjXxwlDhs5wDo0VE7aBxHwhPvMjc5BEIVa3f1Oz7HaqQhIkKuRrplEN3KrkUMvggWxGfzmExD8nof20psl3gPiDB7aU1jXXcfvLcE9WcH1kQsxtSTfGJMBTn5jMsXJb0ymOPmNyZSKesrRGyFR04g9iID3MFU1IiIadbEVcD4oSpLjEFQpjukvksOvAWGJRMAILv+knnvk/KJzpPtCPfNqEBVH4HQ8e6yTZEePOgaQwPjlwxxKrTcqnL2DctkrKOklcZagicNHEOdGdNLBPfdOobT2SWjsg1av+ayBHn7gIiQRcAql7QN48GiASETEBMTGKZRVr8FJWBcu6TXGfIOT35hMcfIbkylOfmMypUKnFTjq+omSH/XW+4K1mLgtoVwTBJAtvKJSJ8SS6EYlj9Qrjtx84w5h6QREFoodQRC9ARdi6vWdg4j0wfO5xE5/AY7BEU+DbW+2Ette6bFvdrr/24Fu965QYZGGdlDlNz2f1Mtw1OG8pDU7g3v4FEprH8MEmWlL/S31GCQC0vCaPjx3FeRfRMQBvtVbeL53cH2pwr4xJgOc/MZkipPfmExx8huTKaheDUEkaSGG01eprBZ62UVElOBYImGR3lAk2g1pUAL0jytBjKGhJFQuedExQfVFq8f5AAx0JJu+gk6K7woVxJ6DKPVxrPUc/wZKP3/xQzgy0/vkjcSOf9Tj3MNaXIGT7OZIgiYIrHCnRxCbgqA17BjbPIP9H9Uw6KTW8zkDUZLK0GkmTQOiXZnoaiTROyLiACXBI8ohyAPqPegvvzGZ4uQ3JlOc/MZkipPfmEyp2EmmkAaxhRLTJYgke2oAF+y+GtBUVXhHkVJJYmGZOGmV+vrRdtOOCarPYVruX8VKYmczdc99vNC+d6+PNL1VFcTv/fhWYtWPPpJY7+WHEouS3YrFTgd8VMNPJLaG0tO7nop7tzCtmKBSWxJxL+AeUH+8iIjHUIL7otHruxzqfRkM0jpS1jDVuG7SYjsQircdgt8G1vsecnAOAusaCuP95TcmU5z8xmSKk9+YTHHyG5MpTn5jMqVag1pItlua4rMC9ZlURbLiRvAIbNqUnJtH+k8B9iFQDmDvpYkmBDWE7GII85DOnmkjzUcfqXX2xbWeeQNq8eAxdoDUGI217lD7Y6z/aaDl2cA63hxVSb9t9JorangKzShL+A8ANbKkyTcREReN3oOnY13vJx8tJTZ6pr/Xq8D6vtOD729038WVruvNnc6oWh71miMiXlV6rz8N/S/FdasxakbrL78xmeLkNyZTnPzGZIqT35hMqRYg2hE7sOiSJbYGYaFLTCtAMKpQ8aOJNiDa4e8p1Mwwla7VuoPX6JudijnFK72WiycqQA1PYEw2WIhb8IK2X7zT4w5VRDrCekVENP/9mcSuX08l9hUUnt+BlXcFMRL8qDnqCsSvNew76biWHQidLUziGZxDf4Gfv5RY8fIFHuchw7dfSWz0X68ldvwPPe/P73jM+RZyawc5SOIeNaj1l9+YTHHyG5MpTn5jMsXJb0ymVOTIIhcbufRSR0tTXXznb8L7iPamJoUNTESh/gC0HUHTYqjRZwQ3Kf2fgQpYt/sziT37TIVBcqFNplBnv1bxq92rW63/+e8lVt9LKCIi3vxBz/Hfm1OJ/alSJ9mm0VryI6w3PWMbEJ9v4fkckIOxqzcBPE8TEGIvvwSHH4ikvb/8pcYutVfC8UaboA4u/lWPu/+NxH74b3ouERGLWu9Bv1Ih9l2hk5RInPeX35hMcfIbkylOfmMyxclvTKZUV402mUwl1SlHwlkEO//I9UcMwOU1g/LPEbQjJQGSzpHejNTwNCJi0VNBZQfC1JyaXhZ63ndbFbDONyqIDaEku/oSyrSp0WPDpaN/7Gv8t30V8l43KkpuWhAl4V4NCr0+Wu89uNXIlUpTmCIi2hIcfuD7nH32SGP/qU7H4S+1YWr513+nB36qE5LqPTQJff1WYh/eq0MzImL6ua7tj+5nEnvdU8HvutR76i+/MZni5DcmU5z8xmSKk9+YTKne7EDAAFdcqhBHdJX00nEIEuNGIGAcYDz0CMpEeVKQilIjiNE45oiIA/xmH9yAB+gzeChhEgsIg8PQa+7D+dCI5ynEYFhMRES8hR94B067OfSK27UqDPZB3KP7MgXhk6Y10XjvrtL0AzxjB3ADHnvaX2/wz+cS++mjf9KDnD2RUPkDdQLGQUubj2uNlarhRUTE5U+0F+L5XGNPXquD8S0Ig/7yG5MpTn5jMsXJb0ymOPmNyZTqZreQIAlx1B+PtkuNRUQUidv2YZhDBWOaayhbVEmKIREJB3R06J4NvEexchj2p3MkZxuWS8N9mYBQ+bzV2EnHWOvU8u0DrDfFShA5yfU37emgEhJnaR02MCwmgsu3a9h/W+r57HpaLtv8o57Pz5b/ILHq59+X2P7Xf5TYp/+iZbp1cyGxiIiLR1Dmfa5C7HAEDsi5XrO//MZkipPfmExx8huTKU5+YzKlaloYb0ot0iiYaPojsTAiXdwbFioETaFP2VmhLi1yJrYgAvEAEXA6dlw0iVA7HLKgsTW406ifHQlx5EK8CFgbKqvtuH/klSPtEsugYR1J2B3S0A4ov6avU+rwioiIllyWsP8S1nvRgynUQx2ocfUrXe/pr1RI/91Ae/29AVdq1eG8fHqnLr0XV7A/PN+fDtLW1hiTAU5+YzLFyW9Mpjj5jcmUagDljRWIbthz7Vs6/ChOx5mVKuQ9KdV99QR6l+Fwj8Teg6SHde25RnehxkjIW0MZ7J6GLICYRudIg0VIJCto+EVEbKHfH80qGUBZ7oSE2FJFsgu4V+RMJCH1AIJWlVge/vX+en3kqFyG3pcV9Gr8aqylyCQ/XrUqAtK977qWMeTGdAjlybBmr1vt1ekvvzGZ4uQ3JlOc/MZkipPfmEypSNwbluqooxLM1L5+WBrbESfX2BhKPc9hQMezACdgR9nqQ8jVtgOVawViWAS7+UhY2oLgt4MYCV0FOuDSSl6XcN67jvtC4iAJp6cg7p2DOHsJ/fGeQT/CCk5nDedNgm3XV4zuFrn+yOm6OaoYtwgtob0KLbWtyYXY6n2mHEI3bUSsIQfnEKPz/myrg0D85TcmU5z8xmSKk9+YTHHyG5MpKPilDu2g0tgGRK4uwY+OQ8IiCTxdv/mQ0REEFdj1ALogaYU9+L0u6BxJBKwT14yEIHLzbcAdSKvV7yhPpkEZExAbR4U690ZwT18cVYi9aPTYdA9KGF5C96Wr1JpKqAl6xshluWp1yAYNKqE8oGd7DINKpqUKqRE8WKaf6IpMnYpsjMkAJ78xmeLkNyZTnPzGZIqT35hMqUiB7Bqp/RBSpGlqDimfEazQ0rHnhY4hvgLL7wimrhTQ/HMM0vceLnlNk1067L17nGhDyj7U/bdqGcU6dqglx/8owHakFNOEnIiIM4hTrT1N0zmB6TxPQNm/aMD6DP9RovuygBitdUR6TwWyXa/hvixrna+0bvQ/AHWrx6Wx8v1+2rpGREzgvkyhp0ID2+0HOgXIX35jMsXJb0ymOPmNyRQnvzGZUtGEHBLdSFgie+8xMRbBNk2ySt4elhIj4YwmsewKbfR5AlZHuj6ersOTYXjqjl7LslHB6L7WevA91H6TOLsGEWkMMZpw1AeBNIIFpxEIeWQPnoL9edbq2k6gfr5NfBY3cJ/vYa0jIpYQX4GQt4EYCbH03O0bvVcHuH/EvtL70iVeNtidQBnBN/1pOZGYv/zGZIqT35hMcfIbkylOfmMypeqapvMQ0Gy4+eB7TOwhyA24aVR4oe1w5HelsT2IX+SooxrvLjGGXGMkLJG4d7fTaSq7RoUqGnU+rkDcq7Rh5rGv1/IIRKAIdvNRXwRyaPZpO+r7APuuoXb/FhyVV1BT/2WjaxjBQh6KxYnOVBK5idReFyTs0jlHRMzh+T7A+ozA9Uf4y29Mpjj5jckUJ78xmeLkNyZTqlQBgxxw5L5KnfbT9ZvrWsWcA4hfe5ixQ+5Actn1wa1GpI7y/npbECqpJPSgDr9Nrdvt4ZrJKbk5QEPJvu5LDRypUWepuyMJAAAAWElEQVRExCTRzZe6OjsQ8lbg5ntV6Rp+ElrO/Xk9l9htrS7QiHRhmJ7l1Nwg4ZtidP8OUPrbJfiRKL3uwfNN5dfUlBePYoz5zuPkNyZTnPzGZIqT35hM+T9QdB+wUszJmQAAAABJRU5ErkJggg==" y="-13250.178762"/>
</g>
<g id="matplotlib.axis_741">
<g id="xtick_1111"/>
<g id="xtick_1112"/>
<g id="xtick_1113"/>
</g>
<g id="matplotlib.axis_742">
<g id="ytick_1851"/>
<g id="ytick_1852"/>
<g id="ytick_1853"/>
<g id="ytick_1854"/>
<g id="ytick_1855"/>
</g>
</g>
<g id="axes_372">
<g id="patch_373">
<path d="M 434.924375 13375.080525
L 557.214375 13375.080525
L 557.214375 13247.786998
L 434.924375 13247.786998
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_743">
<g id="xtick_1114"/>
<g id="xtick_1115"/>
<g id="xtick_1116"/>
</g>
<g id="matplotlib.axis_744">
<g id="ytick_1856"/>
<g id="ytick_1857"/>
<g id="ytick_1858"/>
<g id="ytick_1859"/>
<g id="ytick_1860"/>
</g>
</g>
<g id="axes_373">
<g id="patch_374">
<path d="M 29.174375 13518.999949
L 151.464375 13518.999949
L 151.464375 13391.706422
L 29.174375 13391.706422
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_745">
<g id="xtick_1117"/>
<g id="xtick_1118"/>
<g id="xtick_1119"/>
</g>
<g id="matplotlib.axis_746">
<g id="ytick_1861"/>
<g id="ytick_1862"/>
<g id="ytick_1863"/>
<g id="ytick_1864"/>
<g id="ytick_1865"/>
<g id="text_94">
<!-- 322 1833-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 13502.393186)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-50"/>
<use x="111.230469" xlink:href="#ArialMT-50"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-51"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_374">
<g id="patch_375">
<path d="M 164.424375 13518.999949
L 286.714375 13518.999949
L 286.714375 13391.706422
L 164.424375 13391.706422
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_747">
<g id="xtick_1120"/>
<g id="xtick_1121"/>
<g id="xtick_1122"/>
</g>
<g id="matplotlib.axis_748">
<g id="ytick_1866"/>
<g id="ytick_1867"/>
<g id="ytick_1868"/>
<g id="ytick_1869"/>
<g id="ytick_1870"/>
</g>
</g>
<g id="axes_375">
<g id="patch_376">
<path d="M 299.674375 13516.498186
L 421.964375 13516.498186
L 421.964375 13394.208186
L 299.674375 13394.208186
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p4d6fbe5d31)">
<image height="122.4" id="image439b344d29" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH1NJREFUeJztncmvJFdWxk9GRA5vrFejh/Iku42624iWWgghxIIFIP5T9qybBTsWNDSNoeWhqymXy1X1qt6Yc0ZGJAs3Xrzvd6Vb9s73+y2PYrwRJ0P68jvnDB6efLKLDLpdL7Ft3+XsGpNmhPH7o2OJPRye6HbVRGKjqCQ2ja3EzvqVxM63c4nNOt2O7vmgHkssIuL+8Ehi71SHEvtFr/fy93tnEnv7b/Tc0eg9z/9rKbHffv6GxH410X3/p7/Sc0TERafH3Ox0bbc7ff60ZkQ90OsZDRqJNYNaYkOIHVaJd6zak9g+7L+Ae7nYrSV2Ce/JvNft2l7XqwtdG1qv1BpSvN9lpW/0sK8+AWNMETj5jSkUJ78xheLkN6ZQmqZS8YMY7AZZ25EoUQXvOxjkHZPkjzZU6OgoRoIKHlEZwtpMEsLS3mAoMRKWxqDP9L2uw26lglFUul3faqyD9d4N9MQpqYiEvFW/kdiGRC1Y7wFcz6TW9SLBr4J3ZK/SfUnYi4j4SajAen+rx7yqdDWeVHo9o9Bnegbi5SxUGFz3rcR6eAq0Xqk4vBLZIqK//MYUipPfmEJx8htTKE5+YwqlYRFBYyhCwE8HCYMVCCIpWhDjVqECVA3XswKharlTkSVXqKrRccb3Qo7DcUK4uclypQLW+qm6EInLl+oivKhVlFqD+7GF9YpgYWrVaQxdbLCOLCrrPZMATG6+McROQHCNiPhIzXfxs+G1xJatPuv/rvb13EO9xjpTuCahue9V8KP8i4ioILdyxT0SFv3lN6ZQnPzGFIqT35hCcfIbUyiqciSgEszc7VL7kjCxBLFpCL9RJIpMwYVGpbrLTrfLLUVdQ2lrRMQWxBxyIS5Ay3m2UXfa4HPdt+1U6HrS676PoOr4fKf3PIf1iohYQnzRqXJGJd0kDNPzx+3gOfN24PpLOFDvgSj5zieXEqsmcMxfw7NutQw9huoibKs8IW4ZutbksIyIaEH4JlIOwZv4y29MoTj5jSkUJ78xheLkN6ZQmpSbKAcqec0Vd1KQ62wFIhuVCVMvNRKqyJlGDiiq/F2BWBgRMa00fjXQ8t/TCn5vR6q7Pu9VWFqAUe7ZUNfraygnPe0WEptCr76IiNlW91+0uo7sigTBF+55lywo/n6k3rHJQNdn+JYqovV79yT2zuapxKa/1me6gB6Ty1pjdM/XsF4LEL0jIgbgVqV3dAhiI4mI/vIbUyhOfmMKxclvTKE4+Y0plIYEGhoEQMLgCHqc0ZCFlMOPerbtQ3+244oHZdxkGlC/+QOgQQerhBgzA7HxEvr9Ufnnutb1HkJzthmIVy/hvBcwqOQKxD0SQyMiVlsVLynW9XnluyQMt+AO3ME60JtDTsBU+fReDWLxoT6X6vYtiY3eVyfg/S+01PruTN/P25AbqwEIjSCGpvKl6fPEdBIW3cPPGPMdTn5jCsXJb0yhOPmNKRQnvzGF0oxBXU/VE9+EVNfckcoRERM49y2wSr4BMWJWqyJ9udVzbwZQp5056jhlSyVbMjUPncKa0TGpZn0O55jBOajnAI7YToxYJyWett3BmnWZTSbpnkm5pn+EjiB2r2O1/+hQ//kI2H/XQW+Csb6fzRBGucN515kTpejfnwNobhqR/88AWd/xHzw8izHmR4+T35hCcfIbUyhOfmMKpSGLbgUjo6nenaycr1PPT3GaxnKwAxER9j0G+ySJijSxJ7fxJK1XBIssJHRtBxpbZ44Mp74GuePG6fpSI9JRRIIYCpWv0cD1JjQN6Rgs0u+EPucPW26sevwABL/dgYZeXUisezaV2PX1kcTOa13H81Ah9hKaqG5AxE11v8DGpTSpCPR1ek/85TemUJz8xhSKk9+YQnHyG1MoDbn0cPR2pvuK3HypJqFD6iVAzqgBuJPAaDeC4x1CI0WCzktCFTkYIyLGsBbEOtM9STIejhuH49G9kLiXupdRrfdCDj+q5ycXGkGOM3rHTsDt9sFWz/He4RWeZ3xPz9PPoDfBk5nEzj7Td+fJRsXC84muwxSe1RX0WUj1hyA43/IEdtrXX35jCsXJb0yhOPmNKRQnvzGF0pDo04BFiIS8A3BfTWC7PA/at5ATbQGiFpVCVlBOeqfel9hhZkNQAif7BJdBkxjXgutvjcJn3jm2meWyRLKxKrgYNxU76HIgpyNNTaLrJkFrSGIhiMIREduZxtcvVWR78ZU28PzD5lBij0d6PVcDKqvWZ7WGe6YmqinXJonzQ3hWqRL6m/jLb0yhOPmNKRQnvzGF4uQ3plAaEgdIZCGR7D6U0FJ/tVTJ6uoHTBHZgugzgr3vwjXCMBy8whaiq4RD7zrUNTbvNUa9/ugZ5E5S+iGkBD+K09Qd7uGna0ZOQFoH6j04h9izRt+xz2YnEouIuPpUXXqzXl2DTxqNnY70/q5gahIJ0iTEkpBHMeqhGBHRQrdAFKDhsXKvP2NMkTj5jSkUJ78xheLkN6ZQmgk4hKgv2JsDFU4+3qmY9qBVAeI60ffutAZBDQSMFtxbJCJSj7PcGLF5DW/iGlyRJLKQ0EUiGZVlUo872o7OQdulSq2pN+O45kESN8m9F2IN5a0voQyWPlkvx+o2jYi4u9uT2BYu5wrEtDmIe+TQXMC+W3h3SCB9HVLPS86T6fD0l9+YQnHyG1MoTn5jCsXJb0yhNBNw5J0MVDx5GBr7eK1Cx3vjucSWLQt+TzoVEU8bFZsuoWHfFYhIKxiIkSrB/b40CfFqDIJfbukwiWQk7qR67snxSKiEZcD+jRFBk5vp3JNa34kfMpGXhqmcdtpbbw798V7S8IrgoR9DuG9yc7bgTKS3ifalcu7cASuv5bwkdyhNgvaUXmPM/+PkN6ZQnPzGFIqT35hCaXBSLvwmHMLk3tvQu+z2XRX87o9Z6Lh9roLfy2sdivA1lOU+Huo1noITcAEC1Os4926ScqvtZw7toJ/bZebgBvqlzr0T6o1ITr6IiGHk9YUjAYoEvw2U5ZKbj/alHnfUy3CZWH8SB/cynxWJe1iCC9c9h+smQZPKtFNOvtxJy3SNFvyMMd/h5DemUJz8xhSKk9+YQmlo8usC3FJzcNlNdyqczKcqzt0aL/Hkd95XcfD2dqGxxzo8oV1pz7ZrEAGp3JLKgUncIdkl5fCjMmEaYLIBMW0DpaO5rrgKtiNhCCcOgysxImIfHH7H4FYkJ9mGSmOhl+F0oILYqtPtyKGJE4PB3RnB5c2rzOnSucdbQw4t4V5IqCQGMHwmIqIHQbvt8o6JLtKsPY0xPzqc/MYUipPfmEJx8htTKA2LMSr4vILSyCdDFU4G02OJvbFmR9Vb719LbO8dFTseNFOJvf9b7c32olHH4LSCYQWZrj8Sm7qE4EciW26pJ4l7Dfwuj0CUYheaRuleUiIXiXs0/IRY0Pck8xND14MTfnFIRmLQBbjq2tBYqow259zk3MsV94gfOpyF3icSSf3lN6ZQnPzGFIqT35hCcfIbUyhOfmMKpSE1dQX119dgYfym1t+OLdlXN1qjHxGxf6rHHN1Ve2+tIn4cjfRfisNeN5yAirsAZZ7UcKrTTlXek8K6BsWX1OJ9+HflBBR3ajy5gGeFo6DhXlKQbZf+zSCwbwD1h4D7OwyNobpO9fzwfkZErKBvAP0DQNtRzwFS9qlWnnolkD27p1HeiWdFcfpngN5FGpPuL78xheLkN6ZQnPzGFIqT35hCwQaeJBisQES6ghrqptbjHezYRjpfqGX49rUKfv1Wf6NWMAWohaEtNN57g00mqU6brLhM7mQgss6+X+1L7GGv90cy0Cn0AngONtnL0Pr51DXX0BSSrMp0PbQdMYLvDjVBpWshKzYJnxERywrEPRK0O+05Qc1DF63GarCQk10Ym23SuwiiYgRbdFHwg5jr+Y0x3+HkN6ZQnPzGFIqT35hCaWg6CDqRyAFH00tw/DG7wzadClOrSxV9Ztfq3Hs80Hr+Z5UKImc7dQKe9yuJLUEEym2iGRExBIHnAJx774K49xdrXYefVDqauu31HN/sdG2+Guo5zirdjkaaRwRUu0esQPy8hi1pO1rHIYh7NClqD3sY6PH2E81IaZIPCYY0xYdq8tdd3nSlYUXipd4fOfxIsIuIaKlxKTj3CMpzf/mNKRQnvzGF4uQ3plCc/MYUSpNbqpkLTa4B411ERHQwmeTl6ZHEvuy1JPg3IxU6Hoe6tM7AuUVNS2mMNK3NHjQyjWBxj5pe/qRTIehP9y4k9vYvVPAbgHvygxd6LZ+8UDH0aqaC33XH93Ja6zV+OQRxFoSzKZWdYiNUaDIJbkza7nWgMmiaulSD83I71Ga0KTHuJieNvrMkCl/C+3k20Ia1EewQ3HTw3sJ2JDb6y29MoTj5jSkUJ78xheLkN6ZQGhJjsAcYCR2gFY5hs8Mu4STb6W/Po16Fl/8Ace+znQpi552WA1NvNnJu0TqMsMSUfy/JIXYHpM6Hrd7Lg5+qwDP+5XsSGxzrqPLRUt2KR9e6Ng9nKixtn6vQGBFx/jsVAscv70nsaqL3dzlQMbUFMZVGeS/JHUo97vCdZUjcIychOQTvVSqcTsb6nA9B7H0/dN8xXMtXtZYIP6KmlRHxstUJV6tMx6EdfsaY73DyG1MoTn5jCsXJb0yhoMOP+oK1UP65he3I4TdKDCFYw2/PaaOxZ6FCHol7s07FLxLycLAElI5OKhVyJiDsfbs/lGvilgrpO4MHKrDFvQe63UrXYdCCCERDGy4v8XruHz+W2J/8SsWmR/0tiT2GtaX+iDiAAhx+BAl+9N5FRBzAMyTBb0LPH0TA++DapH6LP1uryDmBN+LuCB4+VyfjiHZyq9L7bYefMeY7nPzGFIqT35hCcfIbUygNiQhDiNGvBPXwW4Nos6pYjGlhmMdlpfsvM6fd5g7OoNJIumcSAVPnmMOU2DMQWR4P1fl19oX23Hv7yTcSq8hluVaH2K7TtRnUoCKl+r+NQPyaqIBVL3Qdt/BOkMuSBFJ27mmMBGl6jyMiRvCO9fA6kmC4Dw7UYyhDf7fV67kPzj3idqeC5B0QKSMi5tCHkUrJaSoyCZr+8htTKE5+YwrFyW9MoTj5jSmUhqbGkmBAAs0WxJhXMDX2oGFXHMka5wMo/wRxjxxLVILbgQCFU0xhO+rrR860iIhlQOlwpdt+DsLb3eu7EvvrfzqV2MlPNTYAMXXXw7AR2m6bEC+/0rX9/YW6C5/s6fpMt3n9ETt4x7aJtc0hVWpNImJuX0Aqwb0NauE+DNPYgMBGPSthbg2eNyLiIPT9HsF9U3nyEezrL78xheLkN6ZQnPzGFIqT35hCaaj3HJUEkkgyByGHprQuE4MuGnDaXYBTbgXnqeF3awSTUTc99Y/T2BJKI9fgTEtBrkESEZ+CQPOvI3X4XV28IbGP/0Wv56TW667BZQkaYKyhFPXba1QR+NOJHuD33ZXErqDUmp4Bl5jCxGhYV3JekhMwgp2gGyhPp/eb+lFSbAPXeL5TObuF7ebofuV7GcOaNSAi0nZj2M5ffmMKxclvTKE4+Y0pFCe/MYXS0FAEYgPi1RLEOTre1YDLG8lJSG4+ipHAk9u7jBxwyw6GTYBQRQJUBIuNuf0R55We+zmUb/5uT2Nv7lQsPAQXGl31omFh6UWl9/2//Vxiz7ba12+21T6KBA2RIOj5NeCSTPXwI8hJSLrbEI65hO1mw7xvKGXaDMTZdULwo3eHIOftDEROf/mNKRQnvzGF4uQ3plCc/MYUipPfmEJp1jAqmSAVn2LUrDGl/1LTzCGouxTLhdRiasJJ102q6y7R9JLOg3XsMK58DpOGLiq1yb6CfwCe1toQ9DhzSk2bUJUvwep8utWx33TdNP4cgVPn9mgYQ4y2i+A+FLn/NCxBiZ9B/f0CdPzczgQtnGMK701ExApylZ4g/SvQQcxffmMKxclvTKE4+Y0pFCe/MYXSrEGgIVsqQZZKEvFSHEKd/wk0FB2iWJUnqdA1bmsVP85AOHvRqn110bFVeZBp5e1RtNHtNp2KPltoFEk9A6h/AlmpU2ZR6p9AdfEEiXa0Nrn7NhVYeV9DAKZnsIFnMIMYWbnJ5k49LHIFvw2I5lMQXL89jz4Xenew9wa8t/7yG1MoTn5jCsXJb0yhOPmNKZSGauXJUUcNM0ncIzFmnBABH1Zai/5Br+60CTQfXIOGROLHKLNx4VNwz30x0ms57bSuPYIbgNJ0n9wYudDQrQiC1gr6EBCpppfEBFyD2Csht+Y8c8Q6iYW0XtSUNbV/C28Ab5fX6DO3JwatzAJ6YsySgp9uS+tNazsDN6a//MYUipPfmEJx8htTKE5+Ywqlmffq/CEhb5JZRknb3RnwxJ6Peo3/bK3CzRGM7V7vyPUHDjESaEDcqUZ63VNw/aXGO1/DmlGZMDnlyFFJDUH3Biq60bOic3CzVXbtUcnsQaZrEEe5gyBGQtciUzTNdRtGsChJ5a0ECaIkfJNQSfuSLLjNHA0fwQ1lc9dn3el6+8tvTKE4+Y0pFCe/MYXi5DemUJrrrfaKIyFvAw6vg1rLb6mEdpQowTwG3eZerU6kk2PoFbeFnnkbve5tp9vNtuAihHHVoxrcisFuRRLjahy/rJCYdgtE0iN4LiRdvQIRt4MpRSQWRbDbjYSufbhnetYd9KmjU6/BpbeFUlu67lSZb26BOR2T+ls2cC8EiZwkFpMbMyVoUpzcfDQSnSZS+ctvTKE4+Y0pFCe/MYXi5DemUBocTT1QEYHEBizBrFUsmicGg1yDGrPZwCCPke4/3lPHUrOE/morFcmaTs/BIx+UlMOPeuk14L6jHoXvhjoJH/a67zGIZDP4+f4KhEpykqVKeqlMmJ7/ivoWgsTGZbB5vQyxZBXepxocnxEsVNZQLk3npjUjdyDtS2W+5NwjcW4NztDUtrn7r7d2+Blj/oiT35hCcfIbUyhOfmMKpSHBYAcuJuopRyWGm0pjUyjfjIg4BWHxZagg9gBEwMM7ep56qOIliYU76Ou3v9Hz0i/jMlFuOYWhCNT37gikxQ9BgPyg1fPsgdB1BcdbjfV45+AYXMH6R0QsQ58XiV9zeK4Uw557mYNBUi7EnONFsFuRBDrsFUhludmCH5TVghCH6wDDWSISfQ/JSZiYJH0Tf/mNKRQnvzGF4uQ3plCc/MYUSkPiQAWlqCR0UBkl9ZRL/cKsQVicVdCbr9VjDmDS7mgPXHZ7JJLo/R2eHkiMrjslLK2o/xyIZC1c9xiMdvtQ3jqq9HhDcALSkJMj6Am4gFLiiIgBlduiQPf9hbzXGRhyE3KW0gTjiIga3qdcyF2YK0DSs6d9Ka9SYNkyhHT8DOMvvzGF4uQ3plCc/MYUipPfmEJpSCghNx9RgQAxyhz4EcFltC2ce76E/oFT6Lm3D8IS6DPbjV73Au6lTZQi50IOyMudCoPPa5VobnUqxu2BOHtVUQmtcmsH9dMDdTVGROzDMacg5E3hXnbQK5AEOoIENnKb9q8xtGMA71PuYBESLylf6P5InKMYXV+uqJhiW0HvQXim/vIbUyhOfmMKxclvTKE4+Y0plCbXdcTb5QkTDZRLRkQMwYm2hE1PtyqI7U51w3EDJaG9bve03ZfY7ya63YsdDL94DWcardl5p0NSPm9U3OvGIALCYBF6AnDLcQQ97g5h/SMitiDFzkB4O4My4VcDXTMqgyYH3AaEPJrc24OoSJOOI9hxSlOIa7A10mRbEgEpX4YgsI2hxJsnHfOokdQ93oTWlsRGf/mNKRQnvzGF4uQ3plCc/MYUipPfmELJHVST3aSQRg5vK1bIqTJ+AT9HzxtQn6GOvdlAfwCYXvPlRNXQz3YziZ12czivjguPyK9Zn3W6/9eDqcR6qPt/C6b93AIVf4/6FcAjuN3xc7kHjSYn0Ozz1U6v59FIY0/BbnoJTUIvofnnGSjc1MgyZYklJZ76VTSwjjTthxuC5v1jRtZgst3SOSLYCpx9jdSUF89ijPnR4+Q3plCc/MYUipPfmEJpsO4Ymh6SiEDCyxLsmFe9Wj4jIo6hqeQ+9RIA0W5BTUbhGs+h6eWjWErsRaeC33Wn29GEowgWnHDKEVTbT2F9LgYw7afW9SLB7xC0r7e2et0fHl3rhhHx9l+qKDn85Ue6IfQX+Kt//kJiv/n3NyX2n2BffgTv3QbWaw7rlXoui8S7dxOq8SeBjaYwddArgWr8saFrl99Pg+zBZCNuQMennPaX35hCcfIbUyhOfmMKxclvTKE0e1BLjs3+QIQgFxONISZBKyLiHEStCZybfGhrFNOo5hwaT3YqSq7guknES02aofVJObVugsIpuN1WJCrC8e51ut3HJ5cSe/vv+Le/+dt/kFj95xobjHXK0eD9f5TYJ9NfSez8929L7GykQtXL0PeBXG20hhERS3jWNEaehLwhCNKTxJSjnOvhEd0w6SkxYpvepzHmEDS3fY1JWsaYHzlOfmMKxclvTKE4+Y0plOZouPe9d84XtFjAWJN7i0ZgJyb+3GQDDqorFM7YDXYTHjeed88R7PIiwZCERWpmuYL1quF67oUKrPd/rm7F+ud/JrGIiLj9QEK72YXE+ldf677nr3Rf6ChKVd65XyIsL0+M6CaRLdeNOQ4V0/ZBGKSGoFt4F6+hnJscsSm3Igp+cD0TuG6amuUvvzGF4uQ3plCc/MYUipPfmEJpjhudXvM6zrabkPuKhLMIFjDWVPYIol0L261AJJuBg2oOIgtBk1PI9RXBa0YjumniD42mJpG0pRgKiFB+DdW73Wd/0GBEDB4/1fNMobz5sfY4PPtS36dHl29I7JuRviczcGN2sDa5QmoKEvfwWUNsDxx1x5muP3LEXg10glMKcg2u4F1GoRo+8/7yG1MoTn5jCsXJb0yhOPmNKZTmpFaHH47jhp1JZCERj8oJI9idRi49ErrIpUejoKnf2wrKPKlf2whcUSnxkoROCtVwL3Tu1HluQqOzv6pVgGo/1T568Skf8xWImmcgDF9WdyQ2h+e33NNrXMH48yk8P3rO5LIkp1sEj6beA4FuHwai7JF7Dt6JfSg7zr0WiqXuhSARcdFBj0NcR2NMkTj5jSkUJ78xheLkN6ZQmuOBCh09iEhYigoxnIqaGEJAxySXHk3ApZJXckCRy47EDzKI0TTXUWKwMfWAo9JKumcSPslJNgYRcDVQge0PQ93uc4i9CHY6vtyp62wGwmm75VLtm5CoRdDa0PtEovJRw6XpJMQegOB3BLEDeAYHIO7tw3Mh8ZLeWRIvJ3VCvKSJvJBbJNhfturG9JffmEJx8htTKE5+YwrFyW9MoTQHmf3xqIwS3XgQo35mEfmCIUEOODoeCSJ4LSCSoNMxcX01nIf6vY1AMBqCIDYhoSqzD9s5lMa+gtLmF52KQBERF50KfuQao/XJdbERWA4ObsMDcOPdrljwu0XbgpB3d6fnOcqcgEx392Wd53Sl+xskBpDQOlIpMj2X2Vb7B/rLb0yhOPmNKRQnvzGF4uQ3plCaMbmGYEPsFUfDE2DflEiGAh1s14DQkTswZAPOrVxxD91TCfGS3FvDHfSAIwELRMAjEPfG1JsPrmUG0Utw6KWmJ+NkW3BK0nMld2iuYxQFLVgbmkJ7t5pILCLindD4u1s9z8NWn9+b9UxiJ8cqnNHrfev6rsTm4yO8xpuQmzKC15v79cEE68YlvcaYP+LkN6ZQnPzGFIqT35hCaciZRlIaiRpUjphb+vttPK8ktAKhawjXTaWx1IeP+rXRtdAwDYpFRKxI6oTbo7UdwkSFSWbp7wZKepc/oAQ6gsVPggQ6KkfNdaFxuTOJgBojgTQi4n6n274N4t57Y3U7PnhnKrH9D2Hi8ATE2X97IbHNqQ4vGY6OJfb1QAekRHCPSoLesQ56MPrLb0yhOPmNKRQnvzGF4uQ3plCc/MYUCkqkpOJDeXLUoMLn2m4j8icDUS+BPnNKCtXKV1BnT/9IrHObf0ZE36uC3IEST4o2/X/QVrrvATwuGmG9BhU/dzR4Cnquw0qfAU2boX9c6Nmn/n3IoUm8dyO4xSGsRQXrjWzBkr6v93zyU+2J8IsLnZM+397ScyRabLyAKUfU8JbesXFmLwhjTAE4+Y0pFCe/MYXi5DemUBqqESbL75AEH4qBwLYBYfDb8+i2NGFnm2kZpnOTUIUNJTMtrSlRiurdcxtXkqBJU4qWIKaR5ZdGmpMIlIImLO3gPLniLq0D7cvCLjSOpclMifvbwCUu4XquV2r5rp7rMbdrrec/XGvdfzXWc9y6rbbd2y/U3jtseF0pV2mEOa0PCaz+8htTKE5+YwrFyW9MoTj5jSmUhmQS+kUgYWmCddpY+M+AxtaCK27Va608CUE7cP1R7XeuEEc1/iTspeLkgKthCsymB4EHNUm9Z6qVx54K6KZkkSx3ahK6FWHf3P4Aude9BpFrlnBezkAkvah1cbteBb/Lue57a6GTgd6Yq+B3dF+FwdVCjzeFZpvnO2qDG/GqV8HwCqYrrSlf4Ln4y29MoTj5jSkUJ78xheLkN6ZQEl4ihcp3SQSsoHSQ9o3gSS7LhNhxE3YskZsv7w5JkiLxKuXwI5GFoJJXvB4SzmC96kyRjETT1DXj2sI60jWSM7ECkZMg0ZSuZTHQiUKzxHtzAROb6lpF0isQAYdw3Sed7tte6Nq80cI55ioqPh/rGr4AYS8i4qzVhqJXWxX8aB23UHLuL78xheLkN6ZQnPzGFIqT35hC+T8lpQDUlBZc4wAAAABJRU5ErkJggg==" y="-13394.098186"/>
</g>
<g id="matplotlib.axis_749">
<g id="xtick_1123"/>
<g id="xtick_1124"/>
<g id="xtick_1125"/>
</g>
<g id="matplotlib.axis_750">
<g id="ytick_1871"/>
<g id="ytick_1872"/>
<g id="ytick_1873"/>
<g id="ytick_1874"/>
<g id="ytick_1875"/>
</g>
</g>
<g id="axes_376">
<g id="patch_377">
<path d="M 434.924375 13518.999949
L 557.214375 13518.999949
L 557.214375 13391.706422
L 434.924375 13391.706422
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_751">
<g id="xtick_1126"/>
<g id="xtick_1127"/>
<g id="xtick_1128"/>
</g>
<g id="matplotlib.axis_752">
<g id="ytick_1876"/>
<g id="ytick_1877"/>
<g id="ytick_1878"/>
<g id="ytick_1879"/>
<g id="ytick_1880"/>
</g>
</g>
<g id="axes_377">
<g id="patch_378">
<path d="M 29.174375 13662.919373
L 151.464375 13662.919373
L 151.464375 13535.625846
L 29.174375 13535.625846
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_753">
<g id="xtick_1129"/>
<g id="xtick_1130"/>
<g id="xtick_1131"/>
</g>
<g id="matplotlib.axis_754">
<g id="ytick_1881"/>
<g id="ytick_1882"/>
<g id="ytick_1883"/>
<g id="ytick_1884"/>
<g id="ytick_1885"/>
<g id="text_95">
<!-- 329 1834-10319 -->
<g style="fill:#262626;" transform="translate(15.789375 13642.976047)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-50"/>
<use x="111.230469" xlink:href="#ArialMT-57"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-51"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_378">
<g id="patch_379">
<path d="M 164.424375 13660.41761
L 286.714375 13660.41761
L 286.714375 13538.12761
L 164.424375 13538.12761
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p577e77c77a)">
<image height="122.4" id="imagec97279c214" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnclyJOd1Rm9VZs0DUBi6G2TTFGXS08N45yf1Szi8c9iy5JBkUWySPaAxFGquHMoLSlrgO6lIiivr/87yj8zK8SIjDu7Q+ZfP/vkUz5CFiCiilrX9qZS1XnRlbdEdwC9GTDu5rHVwS4WOMzjp3j34xQx+b1Hr731xrGTtKdPtIiL+NV/L2n/uv5e1ZbGVtbLW4xAduJZeV69mmPVl7bw3kbWbfI7H+dtsJmtflfqsPin1nZjBO5HDG1W2fNIn2O4Aa2u4DxERBRyGn6By6OjO9Hu0doC1ZUfv19s4ytq7eofnsz7ptkQOVzju9mSt7X0wxvyV4eA3JlEc/MYkioPfmETJH+r9X7xzF4RIrwMiruFvDMk4kloVCCMSkCcSNCT8SAx29RjLBrlHLDoq2SbZUNZ2VTtpczrp+XTg+jK43/RcTi3vYUTEEe+tbjc9qai8HqqsGo0KWevA/a4reH6FirzVTgVyr1ahFRGx7uj+R7g/h247uUcij3RtAfeb7nZG7yc804iIDjwEeq70/Cmu/OU3JlEc/MYkioPfmERx8BuTKPldqZlpBMmmQUclSz9TwVJ0KGcwoiRZAdsVJ1UlJAFJpZFQISkJ/ine53otPb6UGMJvnmcjWdtmB1kjGVPDNdMzyEFo0Rodg2TRD8fWdbruaVdF3sWLjayNrjTrjx50uYbMvY8q9w5HzTYc1JzhV4Mk68LBa7g+ksU1SkCQqbAdCj94pkPMQY04QkZsDc9wCNvNIFb95TcmURz8xiSKg9+YRHHwG5Mo+X2hwo/kEGUdTTKVMUMoHeyfWGCQtCNBh9l88HtUJEqlv+CzokZpQ+KLS1EPIOgGIF5GUG5bkdCENXoGVNLbh+PScyExFBExBmE4BSM2H6u8HL2AMu+XUNJNhq1WZXtquN/P6XcayqLhMF18AfSaocoby4lJ5B0wo5IEt/7euEH41SDtiCE8P4oDf/mNSRQHvzGJ4uA3JlEc/MYkSr4rVbJQSWAOYokE1A6kDUm8iIhdR+UQbUvnQ1DvMtqXsqJKcED7gMy0Bkhe5nB/SMaRtOuC6KL7zb8HohFk0aLDvRVfgfy6qFSo5bmuVVt4fo/6TnRyeC4tb3cG6Zj9jMuToW1e5CBTeyRYK72PB5Bpj+BNSe5VIJDp6zuCY0RwbBxayvAdFB77y29Mojj4jUkUB78xieLgNyZRciodpb8J1FOOKKCv2+6kpZ8REQca8NAyO4nkHgk2grKqSAK2zSxs2p+g7Mm2axkKTV0bgtybw+CUm9Bsw4iIGxBvIxBGm63uf/oOSlQf9PmPFtTXD8rGR3oyVanXfDyyJOtW9C7rcfpQq9uDLMQ9bPcBfq8AKUlSGAexNAhy2n8P8baGeDtCrPnLb0yiOPiNSRQHvzGJ4uA3JlEc/MYkSk62OOtS3Xi7tFSCatMjIurWlrtdyi8264S1HNOF2032IeMawWmWBJ03/feBpg9Rei/V6ZPZv4ZU3quGPgvjut21HGBs9wnSe2sw5HlfjzG8ViM9PG+X89tZc617Vuo1tvzHVeSFnuMUmof2ghprKtSwlv5/VDWc4D2M6L6tdeT7U6VTk2gMvL/8xiSKg9+YRHHwG5MoDn5jEiUf5Zqi2Qe5h2sNDSCf05T6OqBUXqxZ1+2o+SQ1LqS1EfzNI7lH0qZp+lAFKZU0+YbWSORRmvMERN4CpgJddXQ0+EWoEGuaPgSTsrHfJtGhmnVIdaUR3d0ByFBoOdA7qrwqGtJ720IOmNZ6x3Y1+UQJz55SyFeQihsR8aHSaUj3MHGLxsCTdPeX35hEcfAbkygOfmMSxcFvTKLks1yF0QCyxtrWwFN/ANo3IqIPGYKUnTYiuQdTTWjSzPAE2YqUMQjnR8KvKcOv7bY0FhvlHkxDWnRV5F1C5t4M7hf1Y1jSXPKIyDISoiQMdf8x/Gbeg+wyso0tpWIN869rspTBtfskJX8KGV6KLlIW6ApE8cdKs/YiIh5LFX4k9wrohEp9NvzlNyZRHPzGJIqD35hEcfAbkyg5yT3K3COBUTVkIj2HMtgiIiZdzS581VUBeQalpyTtOEuPGikqJOcom2/fULq7h1+tYNseScmWZbnnHb1fJPeIB5g+9KHBsL3L9XndZ3qOxVHPcVDocab0+OHQ5ROs7XTn1b2KT2om2gRN/Ol29VkVUA5ctpTFVJp+hPdhWe9lbQUluRER+1rlIMVlB8vdPaLbGPMHHPzGJIqD35hEcfAbkyg5CQOUCNgLr93Y7nmmgiYi4lVH5d4XtYqbSzB0XG6ra1uYArMGkUcjlWmNJqREcN+1PmQhYn9EuGcTmLpD5cn013sLd+f2dJC1B5BNEVz++TXI2bvBXNYG+7GsjTcgquAB0iSe3U6PuzrqWlPJcQbPmtaIY63ns4VnxW+EUsJFN2WMEtQzM4MM1rb4y29Mojj4jUkUB78xieLgNyZRcsrmoyw0EnkkAan89iVk7UVEfAYjoj+HQQkLGDiAwg/OZw2S5C7T7R6gjJUkUr/h7+WoZf9ALjxtxwGEEWUwbkBBkdz7UCzxOJtS5SA9//VAy0kvBy9lbbCZyVp/o9eyh3u7BUFKT+CsQbvNu3qOJPwKknswjOMe3pNbyA58hFJdknsjELudfCJrETxmm6ASeopVf/mNSRQHvzGJ4uA3JlEc/MYkSj6F0lGSOzgBF4TWDATGJYi9iIhL6Ls2A7k3z1Ta9DLoSQY2raz0WhaFXvNb6FHXB7mTN5TQktwjKHuybSbhDqTWE0jADcimJfSFWxVcOrouOPPvOTRx+Nc5ZP0NVPhmINMwyxKe6RhKt3+ur0hERCxA7g0HMGBlr89/CbL4f3N9Br8LvY+PtUpTEnGUybmgSSXBLQ4pa7AEHU6C3F9+YxLFwW9Mojj4jUkUB78xiZKPoX8cyT3qAUalqGMoYx015LW1bO0WHVgdj1TajGeQzdVT1TF7UKHSe9QstAgQLyABIyL6LXsFktSqOyRtdLtVrde3PunaplLZtIW1Iwx3iOCSXhr6caj0GdxBJuH/UikqyEIqi6asuCH8Xren73FExBj6DC7gJftYadn5fw91w1+edCruR5ieS/eWejVOoDfiBfRqjOB4WcNbRoNADrCdv/zGJIqD35hEcfAbkygOfmMSJa9BsnDTf4U0Hq3xmAtep6EIxGCoQmV0paIjPwNROdGMLBr68KHUtT6lEUbEEZcpmw/2xSw9vT4a8LAsNXOPhjuUkDHYNExlABKKsvloux2c94eTnjf1nqMhJ/SO9GDfAspqIyI2Q32Gk1rP++u+3rNflB9l7R4m5bYttaVnMKKBLZBtGhExgOdFg0BI7m1AFvvLb0yiOPiNSRQHvzGJ4uA3JlHyPciKHui9E5RG4uwDEF80UTciYgT7z2Ga7OJcBd30RjPW+i9BlMDE2c5S9z1BmSiVkx4bBj4cQe4dKEuvozLmHmTMfa3XTHJvB/uixIVnMM65dJTod7UEdwiDPEhqUf9AOp+2UGbpsaGH34fQY29Au77baT/Dp5JLnp9DMpSurwIp+QDPNIN3NoL7Y1L57haE7xGei7/8xiSKg9+YRHHwG5MoDn5jEsXBb0yi5DyJpx1kOcnETmv+xRelmv2b85WsXXylxrZ3rfXX1ZOa7/1bsM9vp7L2sdDfW/f0vDdQex8RsQSLvwbD+gQm9g7M/lOla0XLFN2c0rNhO2rAGsEWH/s+wG/u4PpWlT4/amRKPSNoDHwFa0e4/xGc6nxfaE3+Csw+9TCg/3q07UxxghFQK2j+SVOYIrgfADUFpf2pR4O//MYkioPfmERx8BuTKA5+YxIlp4kh1MCT5N4Epq6cnVTGvCpZYHw61Nroyy813bH/M50CU680RffxV3ot37w/k7V7aJC4grHdW/jTuG+QMST3Hqm5Jo1uBhlDomuU6XlTGimJuAGkhtJaRMQEhB9NYiLuIJ2WpBulm1IfibYcGpqRtm1cSveM3vluQw+E59Q0Tp1fHdiO04q3HZgC9BPumb/8xiSKg9+YRHHwG5MoDn5jEiWfgPTJaRw3/J2Yg/C7gZHYX9Qq8SIiXv38SdYGX6rc64y17vz4K933uw/XsvZtpvtuQZIc4M8gj4xma0MjtbmGWo89BcE2gbHmTZlfzxmQLITn3G/4209Tl2bwrKlPwzzT7ejYTzDCmqbz0BnSdk23hiTiEBqP1ieWn20ggUjZmJQxSLK3bMhWpOdfwkj7thOX/OU3JlEc/MYkioPfmERx8BuTKPmg5ejtCWTuXcPklE9KlQ0vr7WEMiJi9JWW0XZfLGSt/qjNFTfvVYg9waSTHQifHck9SJQ6wBrKpj+z/hzKnpzQ6GYQbG2PS8cYUtZfw9/+ATQzncGznsJ2l5A9eQnC7y7XZ/8A2Y80lnwH2zVlulGmJF02CbG2pbFUnowiroayWmr+2XAt9JsFrVUqIGlff/mNSRQHvzGJ4uA3JlEc/MYkSt5vKYKmsHZRqZi4hpLOyYVmc0VEdGbnupjBtKCdSp/jnqaXwJQUcCck93aQuben8ccgfJpoGoEt29E0HRBVtN0TyK8CzrsLPrJJkg2opBu3hN+E4wzh9xYkNOl04MAV1MZSNuUPu9O1QN87ODbdb5J7VFZNApGk248BM/yqdmLRGX7GmD/h4DcmURz8xiSKg9+YRMmnkLmHggaMyHWpsmExhQEbc85+63TJxkEvNtiuP1TRNULRpdeHo7NhXxqnvW8QfiSRSBhRRl4Bv7mBUeUl7PsApbE0rnoIWXbT4L58NfTrI6lFGZAkpfRJ8X0g0UylxPuO3ptdS7ka0b40mmjbM5F6/VHmHom4Jmhb+s28C9Ic7q2//MYkioPfmERx8BuTKA5+YxIlf0HCD5zWZaWy4UVXZdPsXIVfNuFpsDS1NA6azdfJIePwRre7edLS4budZhH+PtfjPoJg21EfNln5wznCGklAEl27Ex1b12jgx7LS/ogkhgZQNrztan/DiIg9rO9AAo4gC5H6P5IkI6iImUqRR7DlpmHiMPVr7EIpMklAen4B50OTe6lPIEHDPahsOCKiA+fdFhxA8hf/mjHm/zUOfmMSxcFvTKI4+I1JlPwfDzzd9DkzyKo6o2y+MUiyhirY01KnkVL5LtH/bCRrN30Vfqt/V3n1P6H7ts36+jHKhbYlmUMibwOZe6tS79eu0vtFcocm/NJgiYiIA8jGNQjDKfTrOwMxOAQZh/empSDlHoXc83BI04WpTBieCwk/yqhrO+G3B2KwaDnwI6KhVLdliXEPsv785TcmURz8xiSKg9+YRHHwG5Mo+ZeLR1ncbmFCLA1GhYyj/VIFywmGCEREdHsqtagyMxvqwfNLlSe0b6+rkmQO5ckTmC7bBfGyg3LZCBZTRygT3lPmHsi9TaUy9VCrGCxpEjA8lyMI26zhb/8ehFEJQqyGhn29TH8za5mZhuXOuKbnQhIwImICE5AzGEBC4ox+k2QaPvuu3m9ao2e6h7WmbUlUkoAk4esvvzGJ4uA3JlEc/MYkioPfmETJx3OYgrqD8s8jTMU9avZcvtHpq9ntj+lTpmuDXKXWbKqSrCg0i+ldqecTeik4mfYIWVpVQ8+1DciY9Unv7aaCnnsgAUkskbShUl2SVzStlvaNiBiBJKPJzW2HkmBpLHAAkUdyj55BU9lwv+XwE4KumSDhV55UIFcgSEnYbmAycUTEuqUEpnvRhwxIf/mNSRQHvzGJ4uA3JlEc/MYkioPfmETJK5hXvS/UDN6f1ABvuvq3g0Yd09jmJmr6cwT9AHrLCWymB1/lukbjuCsa0Q0mdg219xERd9BIc1Vp/T2lY1IDSDLuZOxzmgzTcqrMqKEGfgw18BnVscNxptBcc0b1/PDfFWrWuYVnUMCzaurHQKt7SNHmlGH6Dwc0/4T/PtB/GegcT/AM6Dk37U//LShgFPgO/oPgL78xieLgNyZRHPzGJIqD35hEyQ+QyrurVEIsoU57mdHkE6XXIPxgcA4Kwx2s7WGthDVKvdzDWa5BnKwg7fYBJF5ExBMIv32lcpDkHqVeTjJNnR61bI5JzSyH8Hee9o2I6LVMf8VGmlArP4WHOsIafz2fHVzLAYTfsUH4kdx9hKHhW3jW1ISTrpkkIL13tETxMmh4LoMGQfuctnX//vIbkygOfmMSxcFvTKI4+I1JlHy/V4mwA/Gy7arUeKJMK/A4LHciBi0z/45wnGVHBcZTR6Ud1X6TjNlC1tcWsvmapqlQlhcJo7bZfDQNZwbbzSCjbg5rCxBxI3pYwRl07eY6RQxAiM3hli0qfX5DahIKv7eHd3EJE2kiIt6BVaZszpaJpZhlR+8TvQ+Y4deycWhExAj6L5AsphHth1LfZX/5jUkUB78xieLgNyZRHPzGJEq+3qtE2kNp5Rr+TJB0I0lSgPiKiJjC3x7M+oN9SUDtsARXtyRBQ+KFfGSvIfuKmmtSVtU004ai57B2RsIP5M4ZNIp8AXXRrws9l0mDvKTnT8KXGMAY6Rkc5zLXRqYzGPnezUDObvTefL/XEu+IiA0I1jWUogfc2wKeH2WHli3fnbbjtJsyL6lMeJdD41hq9AnZpv7yG5MoDn5jEsXBb0yiOPiNSZT8+1DZ9Ajlu1vIilpBRt0BJMmmYfLJHjIJx7At7d02I4vGZLcda0wTWyjL6odjQ+YXCb+uluqS3FtA+e6YymUhe/Ki0nN5FSrYLmZcntyWXl+fP64NdW14rWv5Au5trtdcvF3KWvVfLCTf1nNZewB5WYF4q0FUUz9KLE7GcmB933vwJpPYjeBs1RW8T7N8JGsl9PXzl9+YRHHwG5MoDn5jEsXBb0yi5N/3NP4PYDC2IM54qIVm1K0aSne31LsOspjGJ854ku1gX5KKBSgaGiNNEi9v+HtJmX/0m9SfbQr3YQbXTL31aC2D8x5mMOZ8oZlgERGjK32GvZcqJbObM1nrTMf6g2MVUJ25irgYw75b7Y2Y/eo3snbxdq37RsT0/VTWcrhnlDFaNoxjfw5JO9LCVKo7AKlM/RYjIg6QUUsDVs4yvY8naKTpL78xieLgNyZRHPzGJIqD35hEye+6KhFoDi0NP6jBh1C5LA4wiIgKeuTRtpRpdwVC7BJKWc9Bpq26Kr9IXh5AclJZZkTEAUQn9Z8jUATBGv1aAedzgOyyAu5NPqCcyIj+Zyrosn/4Gz2fz7/QtatPdG220LXxOR77OfX3v9Z9P9zKWn+sWX8RPDCGSnCpHJz6OvKzgnsLz4BEI5X0NsULCUjKJJxCr0do6+gvvzGp4uA3JlEc/MYkioPfmETJH6EsFyUSlKe2lXPdhkwpEliU3fSiVrn3d0f9zQmc4wr6td1mmhW1pF5vIDlvG8qTC+xnSOpUoft4aJA+AtxEEn4VlP52oD9eRER3of3wOldXunb5SteuP9ffm1/qdgM9xumwgZOB+13CcJaC5SopTepcSHL3ABKQ+uuR3BvBe9yBZ0ADUijWIlhAUp9BgkrW/eU3JlEc/MYkioPfmERx8BuTKPn7k/Z2O4LoIK1A2U4k/BqHEMDfnuvQ7KQvC5UiX+QqhwZ9KCfeaY+zYaFrc+hbSMMdRpnuGxFRQXO3ilIggbaDRQgqga7hvnZpGuywQcSOta9jDDXrLzJIG4PhEKe9PqtTcdS11Uddu3sna/XjStbKA79j9HWj7Ekqjc5RktG+uh31WyQluYdH0DTkhib/Uqyua7236xoGouBRjDF/9Tj4jUkUB78xieLgNyZR8m8KLYWkslXKEJpA6eA8VIhNGrLiFlBu+6KC8t0aJrqe6RoNjCAOG5VDVc3DOJ7TJGPmkDV431HxUoCg2UAHuT1kc3Xh2JAgFnvIVtxDCXR9bFdy3Eil533aq4yjtQAJGI9aqhtvv9PfW9E0X850uzjpM/i0VKFZ5vou30P2KzEHuXcFJdRUXryHR0BDRSJYAm86+gzoHTvUntJrjPkDDn5jEsXBb0yiOPiNSRQHvzGJkr8/Psoimf0BjaaG7M4RWG9KnYzgqTQTkLY/5S8UyfmMFDlAW7Wrnv7j/voLJfwCpWj2qW4c7gQZ4CX0Fnibqc1+/RZSdiNifAvvxOsn3XACTTNruEMlpPLef9DtbnWtfg8pv6UeY3TFvRNudjDJ50GXeif9L9WHXN9l6rNwVutL9rqAXgDw7Jddfc4ZjCWPiDjAf3E2MLFnByno9C76y29Mojj4jUkUB78xieLgNyZR8m2pabIk/Gpo9kgS8ETbNaT3TkGUDKFm+QB/o9YbFVjDEtJkDypJtiAat5meywrSLFdQtx/BE39oGksfRoYPIc2ZeiBQc9M+3Fsap/5drr939aAjtiMizn+pNfST6+91wx5I4MlO1/Y6Zvv0nf5e/Y0et3yn+1YbmKRUslQejFQEnm1VQN4cQHKfIE0aDPIMJOdNpvdh0IMJQHuVrg8nmLgTLM7pnTjrqPAbgbz0l9+YRHHwG5MoDn5jEsXBb0yiQI5eRE2ZaSC0iloFWwkTRJoy/KaQDDaCppcF7H93VFHSO+oPbkGwPWS0psd4BLlHMi2Cpear0LpxGNrSeuJLD3bGMemQwfgAWX/fgASKiPj0d1NZ++xzrbXPR3p9nbFmAp5WmmVX/vJbWVv+Qs/l9r1KyVWhQiyH64uIGOXwjtK4cnjnxyDyqEHtGYyan0+h38RAY+hxr3KuYfgQTtKiJrozyPoj/OU3JlEc/MYkioPfmERx8BuTKDll87WFxCDRhwaHERFTsFXjliOH15ABV8AaZWRR5t4WJBm1b+w3yMuzGrL0QND9lL+2dD4bkpINI9Gf09S/83DUa6keVdp132q5LZX0Ft9oA88PvxjL2m+WKvd+39NzuYdJQ3SvIyJew7Sn87pdY84KnjXtWbR8qq0bzDY9F3hHaYLQGM6HxKC//MYkioPfmERx8BuTKA5+YxIl70FfMJoMQ2KwR33mqP9fgyQbgvAbglI5QJYeacEajlPDtTS4IYEmrNDo5YiIiwp6u1V6LT2QpHQtWxgPvoS1suX1DeBaXkEvvIiIixdaRtsdwzN40O0ObzTb7d1vZ7L2u52u/b6vx/jQ1XNcwSSdrGGSUtUDMVxCuTRI0ray+I4E21Kv71WpU4q2kGRLmXxN0FXTG0qpvP7yG5MoDn5jEsXBb0yiOPiNSZR8kmtJIfWeI+E3zbSkcwrlhOMGwzaCMuEeZDEVIGPyllls4OEio/P5CRIwImJM2Yqg8vogNE8kKqG/4YN6qti3HEDyotLf+/uxDueIiFj8k5bBdqf6nhzfqPC7/VpF17c7LRG+g56ClP9G5eCUMUplzBERa1i/z6hfX7t+je+6em828B7/HobXfH5cyBpUJ8e6oTy5gPephDigQS40Wt5ffmMSxcFvTKI4+I1JFAe/MYmST0DaUZkgZfMtMu2jd9VRg3GpjiQiIs47Ojxh3NeNO0eY/AvSpwZpM6pgO8gY3ELmVgniBLxZRLBQKVB0tstW3MP5rOFP9RPsPYbnd1WqlLr6EibYRkT3Qstt6/u9rK3eqAS8Xeu+1DOR5N4YnF0PxCf1S1w3ZMWR/HqArEHa+66j7+J3tQ7jeKh0bQQDbd5lem8mMLCFBsD8sK7nTddHkA/1l9+YRHHwG5MoDn5jEsXBb0yi5POuCj+iD8LvEqaB3kAvu09LLfOMiLi+1BLH4QSmqh4gtQ3IeipEajB0j/cqXn571Cy0Nz3IJGs49gYEXQfkXpckIgg6+j0q9aRSzRGIxgGVEhf8t794o89l916PtHxU4UtDUkiGElR2TJmTPbg3Ta8Ilf9+BKG2gSd7ByLvY6mSdFepuB5lKr67uZ73BDJiKZMvImJ/UgF5wkEeVH6va/7yG5MoDn5jEsXBb0yiOPiNSZR8AcKPsoYoE+llqNT4FLL5Xg5UnEREzF9q1ljvXLfrgMjrTlWUdMcqIAPk0PlHHSIx/Q89l7i7kqXvQAJGRGxhmUVXy9phgMpOJyByaEDDQ1eN2Juv4WZHRO+Nyq99oc9/e6L+c+2u7wD36wjCjyYY7+AQTdOTP55Uxt3V+qyXIPeWpZYsbyudvnuCslrqg7mp9VwKEJIHEHt/bv05A4hVWvOX35hEcfAbkygOfmMSxcFvTKLkr7uapXUAeTI9qTD6tIY1ECLnMAQiguVetoDMqBn0GZxpll5notcSIF46cz2fi/17Wfvs33S7dyfNBIyI+Ji166VGOoxEHg06IaUFbeYwE/D7HIaA1BP4RT5QCamE9OWg89nBhtRb7wA7U8HqDlZvQ2VaRMRHKMGlLL1l0U7ulTDhNweZeqxVzq1BNFK/zAL2jYioqCckiLwMhrsM4MXzl9+YRHHwG5MoDn5jEsXBb0yiOPiNSZT8K9C4ezCDUzDAr0u1kp+cqUmdvGQTm80oRVfXOpC2i2Z/COm9QKfQ886meh/GQ+0tUHFrgvg21AyvAibfgN0dQa+EGVjcKTQtpYk2NdjwA9j196TmI2JHU5PANNO10H8paEISTdg5wHkfoWnlFmrvH2u9/xERT5UadrL4e6jJLyp9fjWk8pKxP8CLUsG10O9RjX5ERL+r70Q/0zVqtktr/vIbkygOfmMSxcFvTKI4+I1JlPznhYqJGgTGGUzXeXGlcu/8Z1Cj/5JFHKbtDmFm8QDWWjaFDBIqcM2no8qYw1Flyl3GdeNvam16STXiJIcGIHLOoM/CNTRMPQ8VpNTUkyTe04nt5T3Une9gWxJYOcpLfX4TOEv6ElGq+Q7q2qm5ZUREAc06Uby1nHxDMq6G36OmnlXB785zSOJFRAxgChCt0bSgoYWfMeaPOPiNSRQHvzGJ4uA3JlHyy1yznfo9lScXUJM/+RkIn1czWevMuW6806Mi8ZZ/j0DkBWTuRaXC57RSEXe81Wv5UGgW4buMJRnJPcokI/a1XnORwXlTzwAQeT34m74F8XULte4RXO++gUy5AmqK780PAAAA70lEQVTbM2goepZr74Wb3lzW5iAGCdJmTaOqScZRVl1bSNiiQIRJQ9QLoAPiepCrsIuImGQqfM8yfUdJsHpijzHmTzj4jUkUB78xieLgNyZR8hwy1ubnKnfGr6Fx4Q3IvQWsjaH8NiI6lLkHUEYeyr2DZlWddnot9YPKy6d3KlO+ASF5e9JMvgiWPiRz2u67gyy7R/pb3W56eazg9+5B7EVEPBx1fV3ofaTzJuF37OuzGnUh6w9EV04lwj9i6hGdI63R1J2fQtvy3QzeESq/jYiYgdy7hEzQccuXwl9+YxLFwW9Mojj4jUkUB78xifJ/vDKCDUofO8gAAAAASUVORK5CYII=" y="-13538.01761"/>
</g>
<g id="matplotlib.axis_755">
<g id="xtick_1132"/>
<g id="xtick_1133"/>
<g id="xtick_1134"/>
</g>
<g id="matplotlib.axis_756">
<g id="ytick_1886"/>
<g id="ytick_1887"/>
<g id="ytick_1888"/>
<g id="ytick_1889"/>
<g id="ytick_1890"/>
</g>
</g>
<g id="axes_379">
<g id="patch_380">
<path d="M 299.674375 13662.919373
L 421.964375 13662.919373
L 421.964375 13535.625846
L 299.674375 13535.625846
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_757">
<g id="xtick_1135"/>
<g id="xtick_1136"/>
<g id="xtick_1137"/>
</g>
<g id="matplotlib.axis_758">
<g id="ytick_1891"/>
<g id="ytick_1892"/>
<g id="ytick_1893"/>
<g id="ytick_1894"/>
<g id="ytick_1895"/>
</g>
</g>
<g id="axes_380">
<g id="patch_381">
<path d="M 434.924375 13662.919373
L 557.214375 13662.919373
L 557.214375 13535.625846
L 434.924375 13535.625846
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_759">
<g id="xtick_1138"/>
<g id="xtick_1139"/>
<g id="xtick_1140"/>
</g>
<g id="matplotlib.axis_760">
<g id="ytick_1896"/>
<g id="ytick_1897"/>
<g id="ytick_1898"/>
<g id="ytick_1899"/>
<g id="ytick_1900"/>
</g>
</g>
<g id="axes_381">
<g id="patch_382">
<path d="M 29.174375 13804.337033
L 151.464375 13804.337033
L 151.464375 13682.047033
L 29.174375 13682.047033
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p8d0f13987f)">
<image height="122.4" id="image294f34d0e5" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnVuPJNl1nXfc8l6Vdek7p4cUxaGGAnQBRMC2IMCA3vVg/0c/+18Yhg0bAmmZosjhDNkzPd3VdcusrLxHhB8o86HXF0AQepuzvsddERknT8TOAFatvXf2n1//QxsfUYeEoopcYhfZQGKvQmPzJpNYRESll4kxxOZ1I7HTtpbYLvQ6vxyWEvuf2Upi3x41tmn2eo3moAuMiC3E981RYk2r36XuGWta3ZxZNZLYZ+MXEvtpfi6xHx/4vpzBfs9Dv9/Lc92z53+r96X66ed6kXNdT/vr30jsm/9yLbF/ur+Q2C7resZ0zyawt1Vo7DEKif12oLFlrteAxzh2EKVcy+A5jogYQnzWauxcb0E8O+qzqBltjEkCJ78xieLkNyZRnPzGJEpJgsMBxLR9aOwAIkmT6ec1uYqAERGXjf72jGs9/7JVselsuNPrgMrS7KYSezcaS+w+188jwY/2JoLFvWPHsR+TgVhVZiosFZnu17ycSOxprt/vBez1Wc3rI3FvVmlsfKL7k42G+JlCqc9EdjrTtbx8I7GLO73uLQjNXdC3zkFMI9ntEp5PEtgOcE+Xuca2lC9w3YgOwQ8OJoH8aaHPt9/8xiSKk9+YRHHyG5MoTn5jEqXctipUteREAlcUiV8FiBrzXF12ERHPWhCwGv3M89FWYrNTFTCI5lav8bpRYemLTNf4AaSXLoffAQQ/gkS7HGJ03KioJHZRqqD5HJyXl0e9pyTsRUSMC/0uw4HGCrJoHkGBOsB1jiraEdWZxuZDPXe7U4E0IuLQ4Zb7mBqOqyAPntf6XYYZPCfwbN/DM7Yq9LiuJ2kAbsUTULmfh+bLk8tHifnNb0yiOPmNSRQnvzGJ4uQ3JlHKRb2RIIlNBLmitq0KL10CBokVl+BEInFvOAahkkqERyrQXG70wHGlYswRxEdy8kWwIDoAoXMIoh25+SqInZTq3HtWqOB30ei5k4bWx16ystA4VczWUBLcLFWMa++X+nmFrrG5udNrrKHkFVxxVJIbEVFDWW6Xg+5jhuAFPC31eZqM9Ts3UMY+Wav7cX3UZ4TExwj+jrNC13N+pjl9+kpFQL/5jUkUJ78xieLkNyZRnPzGJEr5Ya9izLhQhxiJVwNwLBEV9BmL4NLD+VyFicFIRbYM+qY1h36/ZQUIgwWILA04vFpSFYPLcivYszGUN9Nx01zFoctCBb9LcPMNYb+PsL664760dP5R93bzAM/JexWb8rNbiWVLdZwd3ywktvhaexQ+7PS6OxD2Iljco6eE3HwDcO4NKn0WB8N+7s6yhOe97v/+LUsVIEcTKLW+0PVUT/UZ85vfmERx8huTKE5+YxLFyW9MopTrul9pLLn5SnBpUU/AGhxZETycIKcBCOCWqiF22Ot6dhCjWRX0/cjpSMJeRAQsO3LqzZfrekjcOytU6DoDcY9+vZcgVN1C6ejkqG7DiIgcyn9pv0kYLK712sVoLbFsoMLg8kv9ft/enErsGvr11R2VuzS0g5xyGAMHJH3n/a6f8F2Ac3IyVXfgYMICYjWFvdXq9CjG8NzCsBG/+Y1JFCe/MYni5DcmUZz8xiSKk9+YRCm5oWQ/qytNpNlAg8sPOTdr/KbSaTMvlqpyz8BaSqorKfu3e/28VQUqNaj9ZF/u6nVAe0E1/mQPxv8qUK8EUKSPMM3oAP9doT4Cc5jiExExhn4ANRxbH3Q95aNeZ3Sna8xLXePDUv/rsWip6SX8l0giv6eCCTt0bEGTc+AZ2x50PWQ3PkIDz0Gmz8jFqf7XY3zO+TJ4Crk60/1uoYlqs4J7gFcxxnzncfIbkyhOfmMSxclvTKKg4EdiE4lXXdNrPuam4fHJ34CF9dVBa9YvViqy0DjuLdR0L8BOuwMr6BD2gWrvuwS/PbQppQagW9izx0Yt1rTfS5riA6JkDXbhCzhu12FV3sA+liBUZiBqhepXMVzq3oxnIECBR7rv24ns1V0cezaebSC2gxUtwDq9AFGSIIH7Jx01/i9OHySWjXSN7V6fu2ajz5Pf/MYkipPfmERx8huTKE5+YxKlJHGPRnSTgy2jem74PdnDGPCIiC2NNs71/B24y1pYN4kxNP2EfvFGEB3n/abrRLBz7wATX2jiz2OtTUu3oS4vEhtnIJpOM103lOPHoUPwW8N1qC4+h+ckGphS9KACZA5dVEnwoxWStreD0fAREQ05WOEDNnD+Gh6UJTgBF/Ac34MAfACH5ulI79XN7lwvHBF//b9UgH75UhvwDk9B3APN3W9+YxLFyW9Mojj5jUkUJ78xiVJS+S65y4i+o7y7jiPBkAU6kng0VsK5JAPRxB6aKjQBV9wIRMCIiDU4CWkfDyD4kcBKQmwF1yABsoZGkdRYlQStCN6LYc89IzGNymAHUPq7P/RzaL6Ffpm7jiaxJM/SkYtM78sChOodlVXT3sK5W4h9gPfvEkTciIibXEvg/+wbdcT+4L1OQ7q40CaqfvMbkyhOfmMSxclvTKI4+Y1JFBw1QmITiXYkQI1gvDeVnUbwLw850YgKBJ4aXGhUikoyIK2FnHJn5RTXQy7G9VFLdbEXIpT+4mQg0GGPuZ67AzfmAxx3B27Kf726RE719MipHyGJl/BVjkd9dtYH3e9r6Lf4Zab7ugY35e/X068f5SM5L6E/Ik12qiA3DiD27qnnJfVgxMHiEWu4h9cjFQe/rU8k9ul7FQv95jcmUZz8xiSKk9+YRHHyG5Mo5bxUIYBcYxSbgNttCrWDl5mWdEZEDKlXIB6plFBGWYDj7ABi4yPY0Kjo+ATO/V6pYkoEDzq5zrTn2qbWUl0c7oE+tH6QsHQPwlJHRW8ccv3e1K9vXuu6TzK9zrjS3c1h/DUNzjiFoRtTGA3/0FE2/gDfm5x2NGzmAPs4hL1pWDcX8E0LYiHdv4iIuwZKv2EQyD3k4NsRlFXjVYwx33mc/MYkipPfmERx8huTKOVfDl9IkPrZjUDwG1LpJ4h4IzguImKCPQD7DW6oQDBaNSpAfij1Gu/yfqWaUxjaMMci0YjTQkWfea7uqwWINo+1OtY2jQqD5C4bguhK4iO5/pZY8MznX4AwNQeZlKbOlhVMMIbJy8SfbEEQO+i+wq2PiIjfgbhHghqJe7QPBPa37OmS5aeJacBR+djqc7IHEZDcgX7zG5MoTn5jEsXJb0yiOPmNSZTyH3bq/Ok7oIFiVC5Jffm6mIDwdlKpqDEcqJBTHFX1OdCwCvwu0MMPYs86Jqh+CtLNp+C0uitmErst1F121ahwtgJxp0RxVsVHKjulcteuOPXwGxd6D0YTKIOFpokH/SrRgnB2nus+/PBR1/cAk4kjIpZwD8gVV8GkXdpbek6oBJdEQJos3bcP5u+h3KLSdsgNqJX3m9+YRHHyG5MoTn5jEsXJb0yilJ9PFxLMOgYg9KEF1x620etaUKniyXCkAkY5pL53+nmv1yoCrgcqiO1AODmFMtYzUm0i4rzW9fwAjqMJuO9Kdax9Weoav27VHUi94siNOQJBctIxcXgG33uMYhX164O+flW/ITBNDf32QKiagUD64ghjaCPi3UDjO3CHknBW9Xw30oAOHZvBpdt9B+RERBxBWKTzSUQkt6Lf/MYkipPfmERx8huTKE5+YxIFm48VMOW1HGisGqjI1VfciYhoQcwhcbCoQIw50WsPZiuJ/ejXKmodDtqH7x4GWJDINekQ/CbQfXBWqjBFzA7UXw1qVEEYfIDrliDuDOF3fgLCXkTEKYi2I/jeGTj38hLu1RSeHRCvMuiteNjT9GNwNXaoypdw7Bpcf3sUzvpNfaYS+CGIqdQ7cAtOQDougsuO+wqGRzjOb35jEsXJb0yiOPmNSRQnvzGJ4uQ3JlHKCpor5qD2D8eqQA7mMIkFXJb1muvG9ytVRI87jbUN/PdhCjXZZ3qN83OtB3/2fqznQrNOEJ+j6FCVd/A7WtT6z5QhNA+dQH35UxhhvYU6ffovBS2R7gA1YI3gxqpDUIupp0I1gf8+zPEyQr2HyUWwll0D/8HpeI0N4HyyL+9A2acJUDybR9dD0562MPJ9AROFbjr+o0RNXTEG52KDUryKMeY7j5PfmERx8huTKE5+YxKlPHmiNeLFWIWXwVMQxE51vHezUgGi2fLI4RpUmiNMcmlAeKngM3PoBUD2UAIcxGBAjXiARo8REVdYGw8jzEHMGUAt+QEEqAkJeY2uZws19cf+PVQREjqp9wJMsI4sBxs3iVoQOhx0X1cgsG17TteJYDtuhk1rFZpIhdeA70LnUsPbVUefBTp2DdOedjWIiD0nYRljEsDJb0yiOPmNSRQnvzGJUo5/AM60MxXy8qdgnxuooJVd3ennLe7x4vl9PxGJmnUWIz2u2augsl6r5XANv3nk8HoAoeoD1LBHRNyBS68G4Y1q6C9BtBvAZeiXuu+v957UtA7tilxsj+AkXK60D8Hwg7r+hhuqT9eLP97DvdpDs1VoUHnsEPzou9D0IWgt0Zsj7O2WxLlMn9ktOCepKWtExK5RIW99VMHvYa8ev30Nbly8ijHmO4+T35hEcfIbkyhOfmMSpaz+7JVGxyrkZBMVAQOm1GQbcAzOtbFmRMRorSIEaR3lKcTOVRyqF/0aZpI4ROLeW2hG+W3AbOmIWIZ+lwZcYycgQeVQB/0MREDQQtGFSOIVjSU/dExmOoAYV1TqOisO+kys36sIPLmGsd2wxj2MP1+0cJ//ja8sFk51QTTFhyY7bUHIW0ATzgUIdhs4btWoiBfBgt++0fNJ3NuD689vfmMSxclvTKI4+Y1JFCe/MYlSZq+/p9EDCGcQa3cgTECpZj7j8cmDlyqe0bH5i3OJZXOdulO8vZLY5ddLid3+TgXN29DYA7j2HjqmqdCYZvplbaC3WwViExgYsRx4A8rZFj7vAdayQbkw4oHcaTDWegOjzu9q3cdJo/cUBzuBCEjiHpU7bzocejuIU4zEPVoiHUf7+AAC8F2jYvgj9OBbdwh+h4ZL4z+mADdmDgKy3/zGJIqT35hEcfIbkyhOfmMShWcQbFWYaJcqGbWrtca2KgxmYxb8yidq3ctfPdfzP/m+njxSd1k7+ReJnb7/ucS+v11IbHd1IbG3pbrabjt+Lw8Qr6D0dAL92WBGShxAlCJxr58ExOLVBgY5RESs4VMfaHgGfOq6UIffDNZN/eyojyLtNkmu1LcwImIJcXLkERV8ZyrTpvHee9jbHYjCJO6Rk6+LIew3UcCz6De/MYni5DcmUZz8xiSKk9+YRCnbb95KsF0+auwRREBwnGVD6Os3n+LF8xfP9NjvfaoHnqsIGHtdD46nLUF0m6ur6vm9ipevjypIrksWL0nc68sdCFCrAgQxui4IZyR9UfnuoWPiMIlVGVxnC9/5EVyRNMWWjlJvYETRs9R23SH4LTIV2R7h+9F1SJwlSPjc9RT8qCS3r5MvIqKkNfZbtt/8xqSKk9+YRHHyG5MoTn5jEqU8/lIFP5qqm5UqiOSn0OtvOtLjzud89elMY9AXsP3wtR73zRsJHf/xVxJb/lw/7+6DXne51+9CE2dHHZMuCigzXYPoswLRhwQsYgC/1SdQIjxrVfGhHn409TWCxb0hCEskiNFQEnLz0ewTui6BfQs7jq1B1NzD0SUKi/3ejbSLFKvJCQiC37HDeflvwQ4/Y8wfcPIbkyhOfmMSxclvTKKUm9/S4AwVPwZnKkLkM3LUgb0IeopFRMQanIQP2nOvubqW2P5nKlS+/UcV8r561FLd61JFshuwl12BW+06uNzyHnqxbUHcO4LY1DWV9WNGIO7VuS6cBERy8/W9bgQLYlMQFk9A8GMXoq4H1w1rqUEX7PomJMQOYI0jeA/S92vJKdmznBsHg/QUAf8YWrjXNEDGb35jEsXJb0yiOPmNSRQnvzGJUu6WKiK10LuspYm8lZbVViMQ7I4djqVGxY7mVif6br/Qcts3v9BBHj9vdZDHlzD94j5TGYmmqi5bFfEeWxb8qAyWxBxy1ZHAU4OEtQHBD9cCJcL0eVR2GsHC1KhneSuJezDsuPcwDXYmKiQgRkRMQLSbQM3rDN6DM8gDEk4zcneCWDwgyyhw7CjpJSGPoPXY4WeM+QNOfmMSxclvTKI4+Y1JFCe/MYlSkrJ/POhvQv1AvxOqfDc7neyTD1TBj4io19CI8UrbVL57fymxX2TaFPSfSlVJ34b+R2IFE1HIirvtqcJHdNgnQXWl/wDQhJYtxOjz9rDuKVh+Se3tqp8naypOpYGx3XVPey81zMx79jUg6PMiIiYQn4F9fQa3lRqmHum7FPrfg32ujV7f9/xvTZeq3/cZo3tN/2nwm9+YRHHyG5MoTn5jEsXJb0yilNUIGmaCIHLYq6ixugVh6UGVk66y8d1WJZXbx7HEvs70Ol9W+qHfgLh3VWvPABL3+lpxu8QYslSSmHoASy3FSAQk2+e21uM2hdqSJ4Xu4aBLgMr1vuzBrrrr2Q9gDFtGsSHs4RZ0vD+m2p2ah07g2hO4r0OaSEXXgPu8rnRvcboOkHdMf8o6phLpcSCm2t5rjPn/OPmNSRQnvzGJ4uQ3JlFQ8SlATCPBb7NRYah+7Cd8RURsjnr521Y/80Ol519TTX69k9gjNNYkMY1EEuKPcl+BPESOPFoP1vhD/wMSKglyfRVF/99+ctAN4TPn0F3z2VHXmMN+raHR6yrXz9vAsg/9bl9E9BcMJ7C3Uzi7hu+8ApflMNccwvvS0fCW7n9fGvgufvMbkyhOfmMSxclvTKI4+Y1JlHJxrY66slRxYLtVce5hp2WLeyjp7PqFofLIDYgda3A2bak0tqeYRuWy3OBQ19c11prGKpMISMf1Ffe4SWU/pYubclLRasQZiFUvcn1O/rTW8//iuJHYxUxj640+O2+Peo0diGR72IYuwY8agAaIiAcQpUeh9+p8rC7SwQCclwtoEjrS/aJSW3pmIwITCUVgEgbhXL/5jUkUJ78xieLkNyZRnPzGJEp59aC98AZQvnkAIe8eupyRS6voEMlyCK9BjFnDBJpHcFqtQSjZ0OhsKIOlXmh9SzAj2GlHsa7JMh9TgdBFLsQhlN+eliqcPa10mtHLXO99RMSnoYLfa+jr+Hmt4teffnaja3yq3/n2l3r/3oL4TFN8aER3F+SJ28E9eKSpOzDZp2ng+S71eToFB+pFpiLnuNDYptZnNqK/mxPHn4MI6De/MYni5DcmUZz8xiSKk9+YRCmvweU1grHGDTjEVlASuiT3VEe5LP3ybODQBQiQjyDa7WB8Nol75KAihx8tsEsEpPNJtOsLfR6Je/NiIrGXhQp5z6EP4ouG1/cCal6fwz6eT9W5V52qsFScQf9A6B1JkHOPziw6dFTqC0iuvz1c57pU912x0/0+2UMZOoimtHJ6nqj8NoJ7OFKJOfXro2fRb35jEsXJb0yiOPmNSRQnvzGJUt6BaDeB8kZy45GQR0MWlnRysNNqC26+WxLyeg7eIOdeBSJLBaWVUxh0QcdFdPRig9/WvusZgxB7CpNfSch72uoaZ2CLo8m0ERHzWoWl01zvwXgKvRDpdQLDL6oxXANcmxMQJcn1N+wQ/NDhRyIgfOaKvguIgAtY410BudGqc+8A5dzro/aijGDxmkqCK8hpem795jcmUZz8xiSKk9+YRHHyG5Mo5T2YvPYwpXcAgsoRRJId9NtboewScRsqYDyA++4RBL8jfCa5pWg6bVHCsAlwyp0XWmI66Pi97NtdjwS/EZSOnsAE3XNwXs6hxHQC202C2KxjCMQZ3Jcn5zrt+OSFlvSW59AXEFyfBSzofKSf93Kr3/kRVMWuKl+6L1Q2/ggxEhbJgUrfj3Z2BM8nlWkfwMkXwWW59CyTCEgxv/mNSRQnvzGJ4uQ3JlGc/MYkSnkHjrotuJNG5PqDDySR5BFKciMibhp1Mi0aFX369i4bQckrxWYwlOIpDKU4A5dd1XNIRgTvT4XDIUi00+PGoF5VEKPy1gm47J51DId4dfkgsYvPYFjF97UvYDbWvW3uVCzMSl3PdKbPw+UB3Jg1DIvpeI/t0HmpwHKwVyDfUz35BD6PBNtzEJpPBvosRnBJ77QcSWwGsQEIyH7zG5MoTn5jEsXJb0yiOPmNSZSSXHbkRJrA78QQxC/qj7brEOw24Nx7rLmc8WNQ3ANRg1x/UxDyit4TeVnwm8BQk1MQ96hcmkS7jiroXlDR8RzEou9dLvH8p3+tpafVT15LLLs8l1i7XutxjyoWQnVyjKZa3jrd6jOyXun9e8BaYnbzbcBVR25VgsRUioFei8/YPFdx7tXoot9iImICGzmEPKBr+81vTKI4+Y1JFCe/MYni5DcmUZz8xiRKeQtNBWekF4NCnoPCTbp+1y9MCX/pOxZ7AMf1PXffqvK97qn212gOZdtvBftDTTNzsIc2oEj33dsJ1H0/H6gK/+ynMJonIqr/+DcSyz79ER4rfPUvGiveSygfQh36id6XaqmxI02PAlW/K07NOomuKUB9Pm8L928Hd7CC/1JcwsSlCH7mJ6Dsd/Wc+Bi/+Y1JFCe/MYni5DcmUZz8xiRKuQKLbQkixAjEih0ILzU08KxB0IrgSTVT8n0CNCGH6v6p0Wfdc5JODt+v7LD30qQhqiWnUeckIRawZ9SEcwTHvcjUTvvJ5/cSq/79X8GVI/K/+Xtdz6vPJFZ/+K3E2i9+obGDinbZAPZ7pHuYgc+5Jlt5xxh4qskn4ZQs0X3fjHTtDZxM1neiS4/EAUJw9ATyyvZeY8wfcPIbkyhOfmMSxclvTKKUNOr60Kqb7wAyyRqUCRL3uoQO+uUhFxOdvYd1k3PvSL0EYHoJHte/VydCzi9qcErC4hAabk7Bufei2Ejs9Q9V3Bv/pdbex5OnGouIqPqJru311xI7/kwdfptfqLuQaI76RLRQGF/BsziG/YpggbW3CEh9FuA4ak+7BeGbROE99FnYwLPdFYeBTfg8kQjoN78xieLkNyZRnPzGJIqT35hEKcn5QzoXCSIk7pHs0jXlhhppjqFEcQtCXk0rguPIrUjfmdyGFfw2dpVL0meS0ImlpzRSG64xh2arL17qdJ3Jj6H8+uJUP3Ctk3QiIto36tI73r7V4372PyT28L/VXfjtGxUbSZ8blODwA+FsWqjwdVHzfalgSs6q0GNpdlHfPNjBpZew7gW4aR8aLal/hElWER0OVnjm9zlM9qGSfLyKMeY7j5PfmERx8huTKE5+YxKlnODkGxVJhiCckZBHwlfRUsEkT/wZQQyG3MRVrqLPba7iSQ2iGwl5NCYb96FDvMxgkRuaXgTjyncgQE1BWZpVKhhNX2mseA7OvSG49lYrjUVE+06de5Gr4Ff/Ro+7u9KR079pNLbKYSz5AcqTQRA7H6mo+CTnqVDNQcddb+hedfQAlM+DGIl7t5k+nwsU9zS26xid3oLA3s87GbGF9fjNb0yiOPmNSRQnvzGJ4uQ3JlHKGTh/ZuCyoxHdIxhKQSOoz2lecUS8PqgI8XqkrrPRSAWQq8VMYl/AsIMbaJC3AyGOym/JwcjFlhF7KNdcU99DcGntYL+fQtnxcKBXL5+qFzCbn2hsCJ7BmopRI9q7Ow2utXT4+EZHfN+vLyX2ttLn5BYEugGV3x5UqJwdYaz8kEWy6tBvvx+gV+Aenok9PDt3IOK+b1SUvK81tgXBj1x7EREZ9uHrJ1SSO9BvfmMSxclvTKI4+Y1JFCe/MYlSzkHwO4EyyBP4nTgDIe8FCCw/GmjZaUTEp3+7kNjgr15JLAN32otfqePs+X9Tx9qv784k9q5UwYeEwQdwbpGwF8Hi3gp6rh1BMJrB2A7qSTedqTiUz8C5N9B7GtD/rwURLyKifVDRtX6n92r5ha77ttX1rGEfV7CP9Ca6KvRezfcjiXWV9G7hU1dw6A2sZwHy7hJiN7Xu4z3E1rWW6u6bLglZGYEblyZT951W7Te/MYni5DcmUZz8xiSKk9+YRCkvoNz2EiYBPKlVtHkNAsYPP7mV2PnfaVllRETx07+TWPbq+3rgQa9TnfyzrvH+/0js/r+rOLRo1AmYFypekhRD7sAIdu6RuEdTVekefFKruDc6VRdbfa2rbI9aapuVMBBjza64+h5KT3+n5799p2LqPZQn0xtmAu5Q6nm4BOfdN5Xu16pmkWsN9/UO3IXX0MXvXaMFs9e1iqH3B42RuEcuO2IIwl5El+AHpfYQY3egMSZJnPzGJIqT35hEcfIbkyjl329V6HgyVnfSk9cqakx/pL8d5Z+/llj++Z/jxbNPPtPgREWkWOvU2XapZafVqy8lNj/RMsrpvQqQk0YFIxKL9h0llBSnI4fwe3sKTkkaTFHv9dzNG3DufaXfuTlSuSx/l+1aRdKbhfbhext63CPs2Qg0Uur1SE5AEgHfFhr7ANf9/fm6Px+gn90NDMq4rVXwI3Hv4aj5sj1CP0lwWRbQyzAvO75LR6nvxwzAMUrTr/3mNyZRnPzGJIqT35hEcfIbkyjlf/iv/0mjj9qbrb2/1uP2KizFRHvrxeULvHg2u9DgWPvPkacum0KfujO99nSu675YqBizrbXHXQO/jVnBTrIDiFU0HKIvexAgV/e6xhpKWbc7dcDtjiBodgxToTLYNQhTFCMquIF0JvkNSQRcQPntocM9twfBbwFDMZYg+NHwDHLp0TCNBmJ9aTpcpC3EyblHk66pdN9vfmMSxclvTKI4+Y1JFCe/MYni5DcmUcrys38nwfpKbbJBKufNOz1uC0ODNx2joPdqi8xn53rgdK7nznUMdXam/wEYXeoaz2/0vxR76OqYt1RXzb+X92DJpPHgO1CfqWb9fWgjzN1Cr70nZR7quWkE9bpjLDX1MRigRVeh3anhMqTN07kU28Oz+NAxS2kLTVR3YJMlFT/LdOFVDmPbC31OSO1vaGoO1uPzf5RI2SdotPyTsNpvjPlXnPzGJIqT35hEcfIbkyhl/e46NJgBAAACIUlEQVQLCbY32gASxb1rtc62BzBpbngyTMA0lnaozTWz+TOJ5U+10Wf78qXEqqdfSWz2TgW/wwHqndXxGesGJuR0sAVhiSya72EcdzFUgWYM03BIVKTR0lQJTuJjRASZfufQcHMGp1OLgB3EoCQ/hmCHHoEgVoAQd4Ra+QjeH4KaXg7AJtuCOEtCHMVo9HYB1x0X/IxRA88c9oLGdp/A/fOb35hEcfIbkyhOfmMSxclvTKKU7Vc/l2B7B0Le1ZXGPmgTzXajKlk20+MiInIQB5tSxY581E8EzD79scSKl/9XYqM3NxKb7mDCCjTWLDoEvw0596hGHBxnVIu+yrV2fwjiEIk7BNWIdwl+FbwTdlAPXkM9f1/n3gjEvSFocyScrcBlt4C9iYg4onNPzydZ8AB9AxoS/EB0IyGPBD8apz3O+RmjODXmJJGTXJZ+8xuTKE5+YxLFyW9Mojj5jUmUsv3NryTY3msDz+aDTs05Xmn5bv0IZYtDLumtHtVpRxNMmqFO2Ck++Yle59mf6LnPLyVWnqrgN1qp+LjbqsPrQHa1iFiCkHcHE19odPO20GtvYWLPBBxeNJ2FHHDkNty0PKKbRLZtrtN5diBKjkHIOwd32VmjotS81jU+gLi3Gujn3WOBcQT1UCURkHTTA4hpNDWHXJs0ZnsA3klyEc5gXyMiTkDwK+D9TeLuEqRYv/mNSRQnvzGJ4uQ3JlGc/MYkyv8DCeMKBz1sAzEAAAAASUVORK5CYII=" y="-13681.937033"/>
</g>
<g id="matplotlib.axis_761">
<g id="xtick_1141"/>
<g id="xtick_1142"/>
<g id="xtick_1143"/>
</g>
<g id="matplotlib.axis_762">
<g id="ytick_1901"/>
<g id="ytick_1902"/>
<g id="ytick_1903"/>
<g id="ytick_1904"/>
<g id="ytick_1905"/>
<g id="text_96">
<!-- 332 1834-60319 -->
<g style="fill:#262626;" transform="translate(15.789375 13786.895471)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-50"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-51"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_382">
<g id="patch_383">
<path d="M 164.424375 13806.838797
L 286.714375 13806.838797
L 286.714375 13679.54527
L 164.424375 13679.54527
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_763">
<g id="xtick_1144"/>
<g id="xtick_1145"/>
<g id="xtick_1146"/>
</g>
<g id="matplotlib.axis_764">
<g id="ytick_1906"/>
<g id="ytick_1907"/>
<g id="ytick_1908"/>
<g id="ytick_1909"/>
<g id="ytick_1910"/>
</g>
</g>
<g id="axes_383">
<g id="patch_384">
<path d="M 299.674375 13806.838797
L 421.964375 13806.838797
L 421.964375 13679.54527
L 299.674375 13679.54527
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_765">
<g id="xtick_1147"/>
<g id="xtick_1148"/>
<g id="xtick_1149"/>
</g>
<g id="matplotlib.axis_766">
<g id="ytick_1911"/>
<g id="ytick_1912"/>
<g id="ytick_1913"/>
<g id="ytick_1914"/>
<g id="ytick_1915"/>
</g>
</g>
<g id="axes_384">
<g id="patch_385">
<path d="M 434.924375 13804.337033
L 557.214375 13804.337033
L 557.214375 13682.047033
L 434.924375 13682.047033
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p4f55441599)">
<image height="122.4" id="image08daa8ba6b" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPZGd2ns+dYs65MquLRTbZLdkCBFk2JMMbr7zRzoDX/qv+Aw1vbVjoQWRXk6wxp4jMGO/kBVsL830uEER7xe99lh/ujTueCOCJM2S/vvoPffyIrpelKLJc1qbFSNZmxVjWJlklaxERo6zQ/XPddhS6XQafV8E5XmZ6jq+6UtZa+MB/iZ2sfd08wpEjnlvd9qY6lbV/yC9k7YtWz5t4yPW53OatrD31jaydZXrNL+E+RETsMzhOpsd57GtZ60L3/Y/dTNb++9/9SdZm//Xf68l0nSwdfvPPsvb2NxPdNyLun6ey1vb6sFt4ozpYOyn0ms8W+uzLSu9X2+hzfnrW837f8LW8K/V5PRR6v7fwLrfwXI5764wxPzsc/MYkioPfmERx8BuTKCXJvR7kQNureNm2h6MOkhek5yKmIPfGIPdKEHk1nM8aRBeJjg7EWQlyZ9ertCHxGRExyVUs3uQqm37R6f5XrV5LnR0noDqQpgv4Tn8BUvG60fsQEdHA4zovVDZ9yvUz9Y5FfHXQ1dGXKgFjBmubjSxlpR63KPQeRrDc24ReywHubQPPgC5wvNNFUnYtPIMOHkEF72xExBnIzwlcH72hFXykf/mNSRQHvzGJ4uA3JlEc/MYkSkly71ho3wYkWQ1rQ/uToGtA5K0hu2zb6VoGIucJ5NwcshCbUMFCWYkREbNC938Zmu141er1nXV8f+QYnR77tINsNZCSZyAVz+AeDnHV6rGvcl2D04m/Ob+XteL1C90QBGIPwq8HgZhBBmNERAHZiuC4Y58fl/W36fWat7UeO89ZQMp2cL9mkE0ZETGB94Sub1LodtOpPmv/8huTKA5+YxLFwW9Mojj4jUmUsgf7kYMwosy2CoTPGLL2qgFJRuxA7h1AGK47zS7cwRpBojEH80JybwElwhERMxBOMxBGFdzveabXPKuOk3ENZI31kPVVliqgqpLFEm1L0HEmMz3vm/+i70T25RdHHSO2ez3uAZ7fQIZfBeKtAOkKSZ9Y5t1C1l/TQwZqA5mqcI6jSp/9dMLPvoIy4WoEaxNdG1/ocfzLb0yiOPiNSRQHvzGJ4uA3JlFKknvHirwpZMrxGvfwq+C7p4asOhJ+lElI/eNIVKK8hLUJCL/xwPclbZuDEKtBIlWZXvPllWa2jU9U2mRgqto9SEBIvSvGA5JsAZLsRD8zX+hzLb+81u3+4R/1INef69rdW1nqP36UtWyi5zICyRURMQapOYZsxz1IOypEn0ApeUlSEZ7LeAxyb66Senyq20VEFJPjsnEp2bE8g/fzqE8zxvzscPAbkygOfmMSxcFvTKKUo1ztAA7jyLU89QQGdFAGHMmwCC7f3UKGXw/yJIdMq0kPAgqOfXJkSe8c+gmOB3r4jUAY0ZZbOO8WUslI7k2/BCkF/ez6RgUUbZefao/BiIjsfKFrF2e6dgZrr1TkZV/+PRz7Sta6uQ40ydZPslZ+epC1ybs7WYuIGC31PpYH6B0JIm8Kfu20UEF3MtMsRMq8G0/1XOafaTZf9ZKHdlD9b/es59NtQeTCkn/5jUkUB78xieLgNyZRHPzGJIqD35hEKRelmsU5mP0FrJEhn4JdpzTeCLb9lGZ7Cv8gUOpljqtKBdvRPxITMPgVpOz+8JnHsYFbsWz0+ihFN5/oPzPZmRr7bATbzWC7U7X6ERFxqSY+u4SGm9MTXTsBYz+Z69oY1k71GNkN/Htw/UbWylO2/TkV6gMV6PApjD+ncdzUwyCH0dmUtltea1zln+v9jwgcVx7vdWR8u9ZzbJ70WvzLb0yiOPiNSRQHvzGJ4uA3JlHKMUg7alxJmovq50ni5QNTgeibZwIptQs4nznIuDHIOJogc4DzqaGxJk374bkwDFXLr0BAfV/qp758pzJu/suVrFXXKt2yM1ibw/jrExB2EZGdX+rixUvdDkQeSan+WSf2dIetbgdrsVvrWq3irIOmnhE8FpvGdhPU/LODF6qpob8ATM3JSnjHSOJW/Jb1a70/3UZlY60OMOoNTBXCoxhjfvY4+I1JFAe/MYni4DcmUcp1C9lA0BxzAk042yOzp6j2PiKigO8eqpcnuXfV6doMDBs1zFzCV94DjDquobHmEAVIJBKdBUjEW2h38N1eZdqLb1R+nc3U7hQdjZ8BAVVwn4X+DEadwwjyABHbr7XWPj79SbdroG/DDoTfh3ey1H6rTT33d3wt+4Ou0+ht4gCyMNvpfSAJSFQ7aDp7r/EXjV5fRER7r30Dtm/12OtHzdo97C38jDF/xsFvTKI4+I1JFAe/MYlSLhudDEMNPFvIV6PmmDSqekiHUGktrVHm3hRc3JjGjcPn0TdeC8JvfeRUoKHjlCA6aeLPDLIa17lu99332jBz+6zPb3Gh0m36Skteq6+WshYRUZAIPNWsv75UAdnf6tSdeNQMv9hCht8GMtg+6HnX3+px14+QwRgR+0bfxw6eFUnAlkZvQzZfC8KPHHexhHenp3HcKvYiInYrlY3rZ43V/UGvuQFB7l9+YxLFwW9Mojj4jUkUB78xiVLSuGoqZaVsPPrm4DLYgb53cGyafDMF4TcBuTeDzDYSeTUc9xHW6lAZs8NCXc7co2uhDEao9IwtTGd522rm1qdH7QE3e9RzvH6rMu2zFQu/2eRbWcsryPCbwsSfjQpIlHs1iC5co/Jd3WyIHJ4/sYO3uQFrR+8iVP5GDol7NJlpu9H72jT8m7yFSUO7VuVsDddCQtO//MYkioPfmERx8BuTKA5+YxKlvKi0VxyV704gc28K/f9I4pEMixjI5kNxpvtOQe7NYMwyJeRRJfISBNsnED4NHSMiOtiWro++bekTt3DLugJkIe0L2VyjvWaCnX3StYiI6veaVVceVLzll6eyli2gr99YpWRGAhGyGjPIYKwudG2+5Ky4ulYhdljr2hLu5AbeibrXfRvI8Ns0MLymOW60y/NAp0jK+oTLGxhoc9yaMSYBHPzGJIqD35hEcfAbkyjlX490ImgH2XME9eYbwffJkPDDz4S1MZwOyb1ZgJSCQ5cgbS5akJyVbrcJLfMdgq47gwwxSPyKNVjJHvZdgC2cweCMean3Jhvowbj7oGsV9OarXmppbfHVtazlr1/BSXIJrh4ESsRHID6nen0REeOJZg2Otio6y5buhd7vHbxQB5DcDZS7k9jdw7N/GngumyOzFUdw3piZeNSnGWN+djj4jUkUB78xieLgNyZRyn/sNcPvCYZVrGDtMFDe+mMo0y0iogIJQXJvAdl8p5mKnClJLZAkJfR1u4DSyBcwPZdKhCMiWpCkExBBdM0NpCFSxiDdxVM47imIz9MTrTEtR/z8Ds+QFQdrkx08g4mKQZwaTH0Cd3qO/eOznssHKLV+5Oy5PQ3ZgGdQwTOgnpAbeC5PIAGXIO1I2O0grp6hd2QEl5PjpGuQjSfQJ9K//MYkioPfmERx8BuTKA5+YxKl/KdM+7i93WlZ5juQXzQYlaTG0DfMBMTLy0b3f91rueaLUyj1HMOQDUifG+91u3YN/dVq7Zk3K7kMdg/XTT6Nsv72IJvo82i8A/WZK2Df8VT3zql5YETUO+gLB9Nuieqj9uvLL7REOHb6TPt7fRf3//Ikaw9vNDvwYQX9BCNi2+p7Sz3uSH1Soh1tt4EX/BmewQbk3g7k3lAW6bqHycbw7oxA7u2hTNi//MYkioPfmERx8BuTKA5+YxKl/PV/A8H2O520ev+NSpaPjyoG73uY8EsjSyNiBgLjeqTC6MUrLR2dXJL+Utot9D3b6nGp9HPxpGtfHVj47aBMmOQQDYd4D6XDd0d+LZMaakGkUjnwUEkv0UGfusMeZNqD3tvinYq87E4z95pbzfBb/kml67sHzUr9lA2I2OK4cvICbkUNu5Lc24HcawemOf//hoThHtZqkI3+5TcmURz8xiSKg9+YRHHwG5MoDn5jEqUs/vN/ksXplzqi+dWbd7L24ttbWdt/AtNMHSojYnSmVrK61vrrbAEmt9Pt+o3a+WYJTT1XulbN9FwWLzQF9dXA1yUN8mm2MBnmTtNQq2etd2+gcSU19TzArV1BKufzSqfmDHHY63nvoC4+h9nUo0foqVDqTG1odRD7Bz3v5aPa/nsw+3flwFhruD+0Jdl+em0pfZ36MVAad4XHoJHt3GchP7IR7gFsf3NkLwBjTAI4+I1JFAe/MYni4DcmUcrs9EJXz1aylN9o6mVVwhjiz0H4zFXaRERk15ewLYx4rlXk9Us9x+5W00iLg9aD9wcVIgVIm3wKtfKn3CgyG0F6LwjI4o+aqvz8tQqs2w6mBUGjyB18fT/CKO/btaZnH2i+c0TU0Mx0DXXxdM86GA9+2EPtPqQLb7d6bx8PKio3kLJLk28iOPUWdRrsT8KP5B4x8JbISk1TnQbE3rFzr6jG/wAS0b/8xiSKg9+YRHHwG5MoDn5jEqXsv/6dLHbfaTZfd3ucOMtmkAm24HHM2Wevde3yRo+zVrmXhWYhZiuVafj1BmtZCSOMZyq+6PoiIjKoyc9h0lAxBXFawH2EQn2qEad6/i2IwWeQeNlQbwJoAPkEU2CIDdT4j/cq7Toafw0P5jkH8Qn9Iaj2/ofjKLQt3Vse+q0c+Yr9xfvm1KwV+jQUlD5p4WeM+Vcc/MYkioPfmERx8BuTKGX7+zey2L5TuVc/gJSCr47qmsacDGRFVSCcZqd6nBYy/Fo9n36tMq3bHTdGPK9A+E1UXmUg0yIi+r3qoe5Zz5saiu5hZPgej3P8NCT5PHhYea/HjYjYwraUXUhjxLcgoNoMrg8uj0QcSTfKvKsHMu8gkfAvgsQgtZL9S4RfRYEVEaMeJg3BvaWJPf1PmKRljPmZ4+A3JlEc/MYkioPfmEQpoz4ujwm8Ago/Km0N6EcXEZEVsA6ZSP1Op/j0K5340j6C8Nur6MDznsAi9IXrd3y/mjstW6V+hsuP2sNvBf0Iqdr22G9qEmdLKPN9GvhEHgV+3PnUlF0IsonWcEz2kWvUM2942+P2p+02JPzgWoiKsvFgbTIg/DIIwimepVKAnPUvvzGJ4uA3JlEc/MYkioPfmEQpsxMVUAVIm3xx3Ejs/ErHJ2enOpQiIiImemy0cUQHeogyCY+0SJS5RyXLzZ0OoIiI2Lw9bkDH3VrXHnIYdX1kthtttwcB9QDXPJT72IHUmoKYGsMaHhvGQz9DzXLbQwk0iKoS5Bxlv0VETGHbCZx3BdtRL7wazmc3eCd/zHHSjSRgRMQYYmMMm9L+JBv9y29Mojj4jUkUB78xieLgNyZRyoz664211DY7hW5xMLQjOwO59/IVH/3iF7r/FPY/aOZeXJ7LUr6408+DMl8Sg91Or6+DMt39J/6+3Kz0nq13sAYTdHcgG6nklWQaZZwdQLDtIXPyMCCqKvhNuITssjPY7tjzbkDu1XQ+4HBpqEU1cC099B7M4Lxpb+qPuMeSXnif4PooCbGHxWERq1Du7LFr/uU3JlEc/MYkioPfmERx8BuTKGXkGv8ZleBOdPBCNgdZeK1DN7LXf4UHz29+pdtCmW/XqnjrX7zQz7t4r5/3SYVfvYJsrhUMxNjrvdmteWhHDTW4HWRVHZsLhseANZJ7T73eL1rb9Jy1OQZJNsr1WZ9BVt0UPFeNKZW6RGW1x4rKwfxTqrY9sq/fFo6z7VUD1iD36BCUwUj9+n5K20EShjzl1z38jDF/xsFvTKI4+I1JFAe/MYlS9k8w2XakUiurQHTNVALRlN384jM8eL64kLUe5B6W+UJJb7/VPnq7D7rvwweeGvxjyhIGgwyUW3ZHToeoQLxUIILyn6R9/l9I+LQorwb6EcK2OxBdOeSNncB9mEAZ7IIGfsBzfgKhuYTzxuzA4CEbJPIOIBY3kONXU49JOC6VIhNUhT44pZfKjukwcM/qI8uJjTEJ4OA3JlEc/MYkioPfmEQpu0cVfvlcs/mozBehibp7kIoR0T0/6LabR137/re69oevZW3zv3SQx5tvrmTtY6fXNwEJdF5ov75JxZKsPVL44RAKkj60dmRWHPWj46wvpgWphWWrsO8cDBaNlTgFIbaGtaqg6cD6eZTBGMHCj+QeXR+JPMrIo2dAco62o36EQ08qh/tD2zZ45s7wM8b8GQe/MYni4DcmURz8xiSKg9+YRClp5HQ/hvTeA1RMbza67+1HXYMR2xFcu9/ff5K17rd/kLX1b25l7Y+/vZS132c6Ied+BOmmnTrpGuZSn8F2EREFpsTqthv4vl2Dxt9C08tjjTu7XrLZPFq6gHr+Y38l6O4sWj3LBsw1TYqiCTlLmq40cC17uENk4smaT+CqJ9TrALajhpk4SecnpN1SKjD9m0H/e7TwPvmX35hEcfAbkygOfmMSxcFvTKKU+Qzk3oh0hdKvVfjFFibktN/h/t1K03GbN/eytvqtfke9e6dy75te6/TfQhuCJYyHXkIj0z1MqblsWfiNoCb/AGJqBemqS8jl3YCgIWlDwodq23naC3/3zzO9aXO4F2PIsx1Dn4UZnQ+lL4NMfYZ7eNzb+QNUf09Q2i5NLsJ0ahpfDtstYDtaq9hd4jPcgalcw/t0wJ4RxpgkcfAbkygOfmMSxcFvTKKU2RTq9Av9Tuhp5PAGMvf2UM9PY7Ijor3V/dd/1O1uP85l7a7VmvynUu3HMzQzfIAcKHIsDzCC/BTuTUTEiJorwnbUHHPA7+gxYEIONWs8wHf6DITdpGB5eZ3pvX3d6f4XYKDmINimmd7vnK4aluYgFU9Azm5znqREUKYkQVmDJBCpz0JOzwploW41JPxoZDiP/VYo68+//MYkioPfmERx8BuTKA5+YxKl7BuwNh2U7261mWXUIM6gRLjb8ADlZqkK47BR2dS0+h1F2U7U2HEP+uMJ9AdNr8kocwtKOiMiplDMOoGssTHJOJBDE2r2iOOvjysxPYW8uNOB7/4vaj32TaP3ZwYKalrodlWh23Ud3IdWt7tsqRGmXvMCysMjIpY5ZA1S+TWIU2qESTKNBGIG2ZgbaqKJ08u5hecePnMN10KSmycuGWOSxMFvTKI4+I1JFAe/MYlS1m+WsphBphwZth7qMsErRH/glKX6Sb976oMKmhaEWAtSZA+nvYHy3W2nUmrdq5SkyTVjyJSLiOhyyJTsdVsqHaVv4DHIxhk8AzqbnEpH4Vl90XPm5eublZ7PAkQu9DhsDsc90+3muIy8MYjYK3gfXhz48x5yvUNLyGx8JjGI0k4fAok4gsTgCt7ZoXHjGxxXru/tMwj7vYWfMeZfcfAbkygOfmMSxcFvTKKU3/zPc1mcTlQYjMaQuTVSiQA+KzrI0oqIOOxUxmw2Ks720NttA6lRD9C7bAuig3TKsSOsh9RORyXPWG55nByibL5TkHYXlBWXaTbmzZX2S3zx7zjzsvy1jjWnVLT+UT+TyrQPn+B9utf3icRgWenTaiHjc/Sgw1kiItpa13P4zVtAeugGBoaQGKQBK5RtSk+eMlCHBOIa5OczCL/Hbq/btSp3/ctvTKI4+I1JFAe/MYni4DcmUcr/kS9k8QQmAVyuVULMYUBDRWWLA5KLsvRqWNuCbPoEWYhL6BVHwyGonx0NY6BeeDlIoCEoU6s+8vt2Aud9BXLv9WQtazdfPMna/O8mslb827/GY2dnZ7oIz7q/1ONkJzp0JRs9ylo+UlHVHaDXH9yI5lmfwdNSry+C5W6BffN0cQLv7RlVwB8pizfQ7O8WKsQpBiL4HaXrO4AY3IAE9C+/MYni4DcmURz8xiSKg9+YRCn/TwaDN0BCjGFYxejIyablgMCgIRRT2HYMgob6lO1Bf1DPvAms1dCbbwvlwENTX0lpHuB8WhBLFVzzVav73pSapXV5o8Jv+hVMl/3iWtZQ7EVEjLSPYrTQ43Ck2Zh9pTI1m4BgnUOJ6RR64ZV6Lc0zTCumlLpgGVfCMxjBExxDj0IS2iW8i8Sq0bLjPHStGRgMs4PswhkUdU9hyvIGJLd/+Y1JFAe/MYni4DcmURz8xiRKuYKSwO2R/eyIAiRgOfAdMwEJcZ6pRDqDPmzHQlJyAqKxhzLKCnrh0XCHCM7mo4ysExCLv4AhGa96zcg6PVHhNz4FcXY60xOcQclrNdBHj8bO7mD68rPKRizzvddrabfHvU+xhZLXFUgyGAISETGG51LB2hyGjYxLuLc5TOmFUnIqO85r2A76INbYmTGihnghz1kWunieawakf/mNSRQHvzGJ4uA3JlEc/MYkSnmAHne0VlMvPMiUopLXYuA7pgF5QpKMMuDG1CwQoH1ndAyQgDTtdkj4EQv4zC9qXfs3jQqxm3MVZ/Nz3a6EJL38ROVeNgXhN+G+d1S+G1BO3D/ocI/mrUrA3Qc4RK3iswd7Ve90u6eVZiB2IGcjIk4yFZWTSuXeBHpUFsVx/QNruhY4H5pWfNFrv8UaJGBExB4y/HKQ4ZeQoktx6V9+YxLFwW9Mojj4jUkUB78xieLgNyZRynZgHPCPIWMPWYQDtp/tJaX9ljTCGj6TJ+xQ81BlSuOvYW0Kx90O9ibQtRuYVPSrRlN0X12o2T+51u1Gl1BL/kLTNrPTuZ7MTFN+swmkAUdws8540DVouNntYd/2OLNP4703a033PtQw+hz+OYqIKMHYV5VadzL7RAfnTb0EyPYXkAY8gn8ACuo6GzyCnib+QDuOWMD5+JffmERx8BuTKA5+YxLFwW9MopSUoksyjeriR1CbPoY12i4iYgJqYg7bLnpdIz0DZfGhSiqCsifJsdBkl/lAGilN2LloVOacTzRFl9J2Ue5dqfzKr3TiUnZ2CicIqbxD04dgQhLV/mdzlY10jlkFvQD01kT7rIuUTovT0AcuJaPx2ZRGDCm6VKdPxyGpSNDnHXZ6X9+XXM//u0zfk3tID55CDF3m8O7gUYwxP3sc/MYkioPfmERx8BuTKGV/ZFbcLFcxcZFpXfU5TAuhuvaIiAnV6Q9MXvkxNLFHK8kjtmCWHuEQNUiuMci98UCGXwXOh6a7HAu1K6DJN9mpCj/K5otaxVC/V4EUETidJxqY2APHLn4JmW17EH6UHbjU6VH5SDMdp0sY7z1QA09Zg/ut3semUUlGWX/lCHpQwHYoGkFerncq4j6SaY6Ir1vtn/C+XsraCGr8X5T6rPzLb0yiOPiNSRQHvzGJ4uA3JlHKYyfsnMEknc9Dhd+rRvc9HyhRHMN6B6JkAzKuhnpiGtH9RBOJILNwAdNQ5rDd2cD35QJSv/Zwb9d7FaKzld7b6kTlV0WTdCYwTpu4v5el/v4RN+2hWWdG033GkM13AR1FKYt0qyKPxnFncM3VS7CrA+9Y+6TPf/9JZWO9hQw/EG/FGIQf1XMDzRZi7R6ahA44b5qkdXd40uN0+vzuSt3Ov/zGJIqD35hEcfAbkygOfmMSpbyA0b00qeY1yL2vQO59Bplgcyys5UnQNWT4PfQqm6oCSj0ho27b67GbY/sWgsQbylakcuInusBO73eoi4tqpNJm/IUKn5zqW9ea69i91bE5zbfaly8iotvAaOqZCrHylZYOZ9eX+oEVlKhS2TAIxPwaysHp8wbIYWR4Vuj9KUEMEpR52cHr3YLcWz/q9S1rXYNXOyIippA9S6z2G1l73Ok1+5ffmERx8BuTKA5+YxLFwW9MopR/3+uAB8owogEUN9Cj7pRGIsNgggguezzAgId9Bxl5HWQSlipEdjDMoQMxOKVsPugdSMMPIiLgUmILwu8AErFrVQJO7tQindxp+WaxUqHVw3Np3qhV3H7LmWm7JUgoqFlebFQYjkq9Z9nZiR6EBrFMIVuRxCDQ77VkOSKi3+l9bLfwThyOKyWn0uENiLy7Oy2r/rbTta/Hen3f5XwtFbyP55XG76bWUu0nkID+5TcmURz8xiSKg9+YRHHwG5Mo5T+1mvnzfaMDHvYgr0gXbXvIvmLfh5NVczBnM8gQvIHswhbKchcgjGiy6Ql8D16A5BwPVG/SMjkkajW3g3u7g0m0jbZwi9ESOhfWkNW41IewW3I58GqpApKmzuaFysbiFKQkHCOjUmSQhTgxGK6vv4ebExH7N1oa/fBGxdvhcNzQDhru8XGnn/cHKIH+I0wH/g46T962es4REatWy6ArGNDxYqKZl6NC3yf/8huTKA5+YxLFwW9Mojj4jUmU8pd/q5lf2T9fyNo3jWYSfQRBU1B/PMjQi4g4g15x80xlDmUIfh4qRc4OMFik0LUVSED6FhySe8SWypNpoivsC14pCloEehiIEQ1IMpzDMVCeDAMsKBuz3kE25veaXVY938lavoABJDOYBAx9/Xq4vu5eZVhExPZWP/Pjo77Lj1A2TrQwtOV9pffhT/DOvg29N7edvsePA8Jv12rmXw1Daagv50mlEt+//MYkioPfmERx8BuTKA5+YxKlpJ5ki7mKidmjCoMPNJQCRBUN3YiIoNZ+FWR0zQqVWou5yo+TRs87f4KS5dASzDVk2ZHEG+r+R3KP1qjlHg0mziBnsIMPbG9VDnVQskria7thyVVDufQIBNZhDyL3g2buFTCYooBst2Ksz7mYwBRpfXwByW8REbHfwrOGLNSPpa5RYirdMXrOGYjBAtdIPh9XXhzBfStprYMXz7/8xiSKg9+YRHHwG5MoDn5jEqVsdyAhShU0F9BXbAn99lrqzTaQrNaB2Gjh+4jKSamn3HgK/QOftTyV+ugtQVSS3KsGZEwF10jfrCT39nA+20YF1MN7LR3t3+m+q41Kt1WnqmoD5aAREVWvV35GKYJQTVztQeTBtFsUn3BzaN/JTJ9zWXLd+GGv93EPT2YDD4vGeNy0ej5XlD0JmYk1mMoW37ufkFoKl30Ak17Dhv7lNyZRHPzGJIqD35hEcfAbkygOfmMSpeyhSSUZ1mmlBvFyD40iW0iTBJs9RA02fdOoqZ5uIRV0QdN5wOyD5L7LdF8y+9ek6yPiHP4aoPHZZPa5J+YyAAACl0lEQVTJU3/K1Ax/eobJMGCV7+Cvhw385cKuP+IX9Awhh7WGtRHU2hdw7Bb+wdnBRJoafp9mz/reLSoesd3C86rhGdDedH9etHrsMfwvNKr1nc2h7j9y/WeGUu5/OB+IVdh42+k/cy38g+NffmMSxcFvTKI4+I1JFAe/MYlS9gMCSzaE9MnZAUZ0tyAgjhyzHBGxJdsB9dflWtN2i0KlBkkkknsrSIm8hHabJwMF/Z83Kllm0Ix0A9dyn+vaBxB5tyBiH+AYq1711Qa0IgmkiIhDofe2hPu4h3dn0uk5ViA+cdoTPHuaZnQPKu4EBFtExBRkXA2fSWFwAib2eqT9E8Yj3XC0holEtd7XDiRgDhLwh3U9SZrYs4LJVYdO3xP/8huTKA5+YxLFwW9Mojj4jUmUEhJ/EErSK0CmVKByaireDs60IsFzANnUdZrtVjzp+Rzg+22dqaCp4UZMYN+bhuvGPz97krWTS+0q2ez1M9++P5O1N7nW7n/IQOTBxJY11N4/9SokqdFjREQBz2BUqqxaQ6PPObxPM3j+YxCDBL2elCW5p/HeETHuYZQ7bEcDkq5a6GtxpcKPeksQ9TPU+Dcq91rKBIyIgKzPAu5FBYJ9W+jz9y+/MYni4DcmURz8xiSKg9+YRMEMvw7KLcnZoQSEDYdKR6mMkmRODV9Re8iKyxuVUnvIGqshm48mrMzgPlxmKk4iIs5fbWRt+ivIOgOZVvzvR90OmnWS3DtQBhusHWDfXcdlsDRFZprrU1wXujYH2XQNYvAFvE9TmNZExg8cHr43ERHPlM0H22H5buiznl7w8/8x81anR9W1HmUHU492LWcrtoVeeJfptiXcixVkbfqX35hEcfAbkygOfmMSxcFvTKL8X0TAhP0IYq9HAAAAAElFTkSuQmCC" y="-13681.937033"/>
</g>
<g id="matplotlib.axis_767">
<g id="xtick_1150"/>
<g id="xtick_1151"/>
<g id="xtick_1152"/>
</g>
<g id="matplotlib.axis_768">
<g id="ytick_1916"/>
<g id="ytick_1917"/>
<g id="ytick_1918"/>
<g id="ytick_1919"/>
<g id="ytick_1920"/>
</g>
</g>
<g id="axes_385">
<g id="patch_386">
<path d="M 29.174375 13948.256457
L 151.464375 13948.256457
L 151.464375 13825.966457
L 29.174375 13825.966457
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p1ab47d1de7)">
<image height="122.4" id="image9b2599df77" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGipJREFUeJztnT9zJOdxxntnZhfAAjjcHXkURVISJVIuByqW/QH8FRzZmb+Ay7E/jDMnDh05cmA7sEoOnKhULlOyJUskjz7eHe6Aw2IX+2d2xgFpBujfq+rl4MAj+/mFXTP7zr4zvVP17NPdo6r5bm8vmWpUYbypahfba8YuNh3vudhBPXGxGtbZdFsXu9xcudhVu3axrvdb00OsxGg0crG64r24zrbrQscdNH4f3pm+5mJ/vP+Wi/1Rd4Cf+Qfr1sXev3fuYm/92R0XG//FX7nY6OQNF2t/+vc+9k8/9bHH/l4R1QHva3V338dOpv7A2j+Lm18+cbF/+NnbLva31VMX++/FIxebb5YuRve5s/gzVpl/xgj6zNiTKIT41qHkFyIpSn4hkqLkFyIpDYlSu4ha16HP2+VYEu0mVeNi09qLgHRcC4Jf2/vYcrtxsQ7OLTEC4aXaYS9u8tyteRFp1vvv97jyYqGZ2cHY7+Pdcy+SvXl64WLd049cbLSc+0XmM39cE3sX9a1/PrtlQSC9WPlYB0Lu2t/ri994EfBxA/cFliZBmvJq3XlxtST29iDaRUVpiunNL0RSlPxCJEXJL0RSlPxCJKUhlx0JDiQ2ECR8lVxtFJ/UXmwi8WSv8k7Aycif24Bz66DznzcbeSeZl8hYYDEzqwcIdEOg+0Li5fPOf7+PYW/MzNrau+Km4Ab80YfPXOzOf/3Cf+CDN33sxQsX6kmIA+1r641yVoEI+PkHeCGvX/oP2Jz58z97fN/Fzsb+gmp45o8bv18kSNO9WnX05BXEa4htYdM62Fu9+YVIipJfiKQo+YVIipJfiKQ0D6YnLrjYeFcUl7x6YYEEPxLdzLgcdR/EPRLyxiP/mQ2VDoMORMILOQuJkvuxH730yugwJBidbryjjoQhM7Nl7UWk8fjIxd791QMX++Bff+5izXte8OsvFy7WnXshrvUmQltf+vtX1bz/zQF9R3/s5al3jD7b+lg/9uceglOSHJob2O+r2ufVYguuRDO76vyxKxAMyTWIDlRcRQjxrUfJL0RSlPxCJEXJL0RSmj85ft8FH4LK8tna93B7sQbRBkSNMbj2zLgsl9x85EIkqE9ZtAxySAlt6TMpdtNOQFqDRKBz82W1JSfZovHCEgldRxPfw6/5Rx/7wQ8/dbF6zz8n60t/n2dnhy52tfTuzqZm8XJ66L/LCMTZ+aV/FlcgAvuVze6O/DN7PKIjPYvKi3OXIAKamc1ACFzUEIPj1rVfR29+IZKi5BciKUp+IZKi5BciKc2fr3zp4YcT36/tF9NjF/t140s6L1ovApK7yMzsEAS/MbjvopBjjWJDypN3gdyAVC5NYmOpdPg6VNJJ69JxJAyW4htwjS0mPvZ4zwt+P/nID7r4Thvrj7iAsu8N3JaDQknv3aW/xv0R9XX066wqv9A+LHMSfGYnsMYaStNf9CwWHoKIeNH52BwchyTu6s0vRFKU/EIkRckvRFKU/EIkRckvRFKaDx6cuuDeE9+48HLf/wMwAxsoUVLXjyrfKHIflFNS7Kk2Gq28EMOeA2Ahpgaj0X8KisdCqKWGi0G1n/4poIk9BuJ6abrSqvLK8KL1ltHzjbcMP5l4a/j/jO+62FvwPB1Cj4YKLnzU++ueFv6ZuQfNWu9v/d6CexnVfv//lNndnq7bn3uA9x4sxLDu55/pGdE1Qv8LuES9+YXIipJfiKQo+YVIipJfiKQ0R697Ief4qbdEHoDUsQ/CwhSshSWb7Bu1r9V+UPl1SNybmb/GOVgY5zCauoUGlVfQR4BqoEtEpxyh3ZhGKgeFRRjEgtA9KAl+1JMBRVewDFPzyEsYsfOo8YLfMUwKOgBL6wSEwUN4Fs3MTmp//gmIuycgvO0F9/YIziVxbwo67ApuAfURMDO7hHc19Q04gdg+iqlCiJQo+YVIipJfiKQo+YVICg65WYAd6CooQJG7iIRBM7O3wOH3fahP3sLaT0HUeEYuPRBjWhjbTJNTlhCjuvjPrzHm0iNxjwS2G4e0vcItpashQZOgyU60Z5etFwGpeWt0PPsBCM1mLBgew7F3oAkn1ekfQm6Qu/AAXIj0pm3gHjQFgZxEu6n52D24xvutJvYIIb5AyS9EUpT8QiRFyS9EUpr5Uy90PIEJO/ORd26ReEXuqzsFMeZB79d5ExoxosTWQGNHEIJWIF/NQYCksd3RMl8zs1EHIg1W9L46o7x3Ad2KIAKSyEmCHwmD85EXASfwLNIEKBrZbsYNYffB9XcI7sJ7tXch3gUH6l2Y47OEZ/EkOAZ+U3hG9kBEPIL39/dA3HsH9ltvfiGSouQXIilKfiGSouQXIinNp0/8hJXTsRcMWhAhaIIIxe4XxhXfA2HieOvFoQ2Unh52/ndrCoLKHvy+kThUw7lN8Diz4SO+X3V4rLk/jh2Msc8jaHpQFRTOzFigJXF3OvZC3mIM468bGBle+6lX65EXQ0kErEHE28II8SJw6Bj29rjWxB4hxBco+YVIipJfiKQo+YVISvO89+67CYgI34NS2w0IeTWce4fcb2b2ndaLIgfgyKtAFNmjYQe4imcDJb3Uo45EPHL9leJDxnFHy3xJYCv15rtpoqIdXSMRve5SWXX02JZGdMNx0ZHvNHTFoIqd7igJ0m1hv+hNDZq5TRu/+PHKOxj15hciKUp+IZKi5BciKUp+IZLS/OG9Mxd8b+PFK9IgOhDyeuo/VtJxYOTppvVrn7X+QPrV8h4ms8velyKvIEZCDg26IHeYmdm2/uriHglidD3rrb/uDmWkYUQFupsuT8bBIhAjZ2FUfDSL762tfYlx9F6h4xO04gaeZOpZWeIchtIsoR/has/H9OYXIilKfiGSouQXIilKfiGS0rzz1z/x0cXChforED8WVz42g3Nn/lwzs/bUx2e/9YLa8hG56sBxCEJJC4IYObKqoLhXKumlXnEkBBEknFGPu9HIl5iuWi/4hN2BOwhLUREwym25EKPQvaJy4i64Z2NwfJIoSVNzSmtwWbXfx3Nw3l5AP0K9+YVIipJfiKQo+YVIipJfiKQ04z/9SxfsXjzxsdOP/dlPH7pQ/8yf25+e4uKjg8cutn82c7HJY19u2ZB4AmvU8PtGIgsJdg1ZsnYA+9nR8AsQm0hYjJan0rpfp7gXXQMHg4Bg+zKuj9buoZTczDsBr0ZenH1ReeF7A/cv6gI126HsHHpPXjReXNebX4ikKPmFSIqSX4ikKPmFSEpjJCKcvOFiPZU3nntxz1behdY/O8fFNx97cW/2xJfvrjqayuo/bwq/ZfsgftAk4Q4GKkQdVSVIoKH+gQSJNjSxllxo0Ym6r9rEYHImUknvbUH7E51CvASHJh23S//GaNky9ZO82mpKrxDiC5T8QiRFyS9EUpT8QiRFyS9EUprNP/+dC47e/pE/cv7Chfpf/9LF2v/4jYvNfu7/ATAze/TJPRf7rPWTRWagXs6hi+MeqKFTUM0PK9/McATNSFsYs1yq0Y9OAWIbaexfBRwjHpwURKOq6Tgzw4art2H5Jb6udc2450D03x6y8lIMJwUV7gs9O/RvCN3rTedtyXrzC5EUJb8QSVHyC5EUJb8QSWlmf/MvLnjw439zsdHEC0ub/5272PNfeXvub0+9XdjM7HeNt9Se7XlRY4VDgKj227MPItkhDfOGn8GLzguVi87bJM3MlhCP2oOjk2pI8MMYCD67jLW+DW66gedQYZCuZ4i1GMd7g5DHlt9hU5haEq+pl8CgVYQQ31iU/EIkRckvRFKU/EIkpfn3//yuC9790NeIHzTeIdT33qH3DMZpfwzCnpnZw8YLG+fQkHIVbFw4BoGGpvhM4DdvAeeSuHe+8SKnmdkS6qWJvdrvxR70EiAqEPd26S9wG0SFPBQ5g+eiuFc4lY69abGx6JS8fhw8xyTuDRUv0UXagfg8aBUhxDcWJb8QSVHyC5EUJb8QSWk+GvumkJ/A7Bsw3tkYhIlN48WUs5oFjBmUzM56LywuwLu3BQGDZByazkNc9V7knLV+BPls42NmXDJJohZN7MFSXShFjop75CzcpYHnjY/jDpad0nHYRJMWKV0yukNj1xMFS7eDE4luq2QZy8ZvZWUhxCuHkl+IpCj5hUiKkl+IpDQvKi8ELEcxMY0cdaS8LApqzBKkGxL35p0X40ig2wRHXY8hdtb6kcoXGx+jSSxm3J+NRKRq6/dsNfLfpYP7Uuof+FW5LbEpWi4bPo6EM3hmi9czQPBD4XRAr8avE735hUiKkl+IpCj5hUiKkl+IpDSPK+9MWwaFJZL7yIVGQpyZ2RwGXZC4Nwdxbw799VZwLkEi4GXrR5DT+GsS9sxYzCFxaAMly2twB5ITkNaIjm0eyhDRDgeQgMBGA0jo3KHfeYhTkog6/F4GQ8qT9eYXIilKfiGSouQXIilKfiGS0vyu8z3pWuqZB+IOCSctDSbgIkwUAtdQ0kuC2BX016PjopNNUXQLDt34/ENjQzZ4z4ITfklUHOD6K4lFUSGPvh8eB+LePvUyhBiJgLuAIik8E3QPovflthgiuqqkVwjxJUp+IZKi5BciKUp+IZLSfLI+c0EUbeB3IiostODkMzPbQJwEOhJZSKAjgSYqktC6UcfZ5/HYtNzopNZtcKpu1ElG11JysNF3pL2ITgimc6eNH+5y1Oy7GA00id4/s/izcwVDV5bmY9XWn8suRLycEEOFWLwe+Dy9+YVIipJfiKQo+YVIipJfiKQ0ZzB1FkswSdwJDsQouaKoPJamltL5pdLa60TFK3IwTmo/vISOMzMbV3AsrE1lwgv4fu0AxQh7B/bx0lg6fwLfj/aH9pbOndZe8DuuD1zssJq42BgGmpBrz4yfnTm4Q9F5CYI07m1HA0jiQ1Jummgpst78QiRFyS9EUpT8QiRFyS9EUhoS2Fos/yMnUey3g9Ywi7v0SLSJlttGy04rEJFIqCqJnOS+wuNw7ZhTLvydYd1d+t6NQbSjctv92otxBxQD0Y5iJO4djEAshBgPkGFn2xz6VtI+hp9PHOQBE6xBxN2l1x8KhsHT6Vy9+YVIipJfiKQo+YVIipJfiKQo+YVISlOyRV6HjusKdfrXIYXUzGwNtdFRtZ97CUC9c+VjpM5OmpiyX1L1o30ICB4P7a+H/jWJTmzZRVUmiy6p/Xcab8e93xy62Enl6/Rr2EcanT6F/y6OQe3f7/k9RtEl9Agglo23Ykf/eaJ8oXO31NNi6D8AQfTmFyIpSn4hkqLkFyIpSn4hkuKVE4sLDtEx0iTsmd3ORBQSRDAG103iXqmB5zY4PpvWQcsw/SwP2Rq47JJVOVqTT/X379THLvbAvG2XHjz6elPYiKMOLM2FR5bCcxCBz0ZeBDyuvVC52PrR8OvaP9/Ut+FVQ29+IZKi5BciKUp+IZKi5BciKU1UYMNRxzSdJzjq2IwFQ6x3D9bK4xo7uKVuGhIWoyLpkDUIEvdK469J3KP6+3sg+L1nXiR7F7SvBi57E77NICoXhNglvN5ox6L7SIJvdHz9q4be/EIkRckvRFKU/EIkRckvRFKaTcF9dx0sR4TS2KGCVrRENQqtjdcNFjEWgQqNImkdnMRDU4q+uguRoIagJO5Rs00zsyNwtr3WHLnYu5Uv3/3gyn/n948ucJ3rXCz8FJ+LzjvvLqHZalvzfbmC8NnI34PnMMXnYnvlPw9GeVOjz2hTz5dBNIf05hciKUp+IZKi5BciKUp+IZLSLKH0MCqSRV1Rpb537ObzQAUnEhZUwNRIZce7jCUnIS/ao3BIHzba23Htr/FkPHWxB+M7+JkPKn/sW5V38/249U7At5tLF3v9+z5GxtL6EQikF/67XEJfPxL2zMyeg7j3sPNC3qPWi5LnML7+crN0MSrfjY6Q34WokEfPRDTXhBAJUPILkRQlvxBJUfILkRR0+EV7z0UpCRVUCkmDN26abgSlxCR8ghBXKoONCn7k+ovuLe0jlt+Cc4/EvR/WLPj9AMpy32j92g9acErC62Qz93tWT/y5VUV9FH1sCT34TgtN/B6a77n3tFu42KyNufk2wbHdNGBliLBbgsQ9GgKD/Shv/GqEEN8IlPxCJEXJL0RSlPxCJKUZ4twLU/g4GnRx0yW9BAmNUXGu5PCLljxHxT26B1SqW0EpK4qANJQCpt2amb22jYl7h/Cd150X985PvTuQxL2rpb/GWe9jT+E7PzTvvDMzewLiHpXqtsGJ00Mg0e1liIAk2INGqje/EFlR8guRFCW/EElR8guRlGZoWe5Ncxt9znhMCUQhtC2cPUTIG0K0d+Cy94LmpnAt9A3J19jA+VtwaFJvvnXvP/ECZvc+afxxn1ZenHvSs+B3sfVx6rkXHe4SLZctOUGv03dxNy3GIS3pOHLO6s0vRFKU/EIkRckvRFKU/EIkhS1eQbAv2A4OvZsuHSai10juOaIoxgSFvCFTg6m8lcpJqRT1EoSv8xrG55rZRQWDMsAiVm9je7bo/WM2h/0+g96DT6FU98K8YEeCppnZBpx76MYcUGo9BnEPB8NQKTnIq7uIwuF8kcNPCPH/KPmFSIqSX4ikKPmFSAoKfuGm/xDbxQlIZYZU5huFrhEHb0CPsyi7XF9U3IuKNuQupOEQy9YLfrPGl7Ged76/nZnZae0deUc1PSp+H9cwYaWF+zKDm38OprhLEMk2sA914T2GfSJBUKOeezft+sNzB+bQEPTmFyIpSn4hkqLkFyIpSn4hkqLkFyIpqPajvZCEz1totlniNpR9tB+XauAHKPtROyedC301sRkpWX4vOq6Bf1b5iT17oM6vYb+nvY+RiXgODTyXNJ1nRCo8fGCBqOrewdrh+0LnBq3ru9jZoxZ0+hcOm3qGVxZCfKtQ8guRFCW/EElR8guRlGZIPTDVLO8ycWdI7T6Je0Om/dxGb4FdGNIQlAS/ReutvM83l/iZ45H32S6haeZTmPgzifZFgBiJbmSnnkPt/rpQz0+TeIbca9pvygOyXVPPAKJk7432oYj21NCbX4ikKPmFSIqSX4ikKPmFSEq4gWfUmfYyapGjo43puJt23g1pwGnGouRtCIskAp5v5njsqvOevMfQ1JNGgR/V3h14WE38uTgDyLMl1x+Ie9Sg1Iy/S1R4I+j+ozvwhvtSlCBxLyqG680vRFKU/EIkRckvRFKU/EIkZdDEHmIXoSPavDAqgAwRWaLiXmmNIe7CKLhfNB669mIaCUMbEAF/X/w6e7UXAfuJ35+68e8Yml6D4h4Idqvex6hk2YwFP5pyNES0G1KmPfS5YQE61uBUb34hkqLkFyIpSn4hkqLkFyIpNy74ESVRg8oRGxh3TCOQCXJuhR15eNhLGJUcJCqGRvdrDG68UulndFw1XWO0Fx6Jezg6G8QrEuzWHYuUq23M4Tfo2QHoXtUvQRTGvo7wXVrze6Y3vxBJUfILkRQlvxBJUfILkZQbF/zQcVYQ7MghNh378dBUOkrCEpWtDhmIQZ9HvdnM4iOeUTgLlkHTABKMDRxeguOu4RJxHYhxb76YuEfXsgflxRvo1WdmtgTnHzr8btilN2RYTAksJx7w3OnNL0RSlPxCJEXJL0RSlPxCJGWQ4BcV9/Yb38PNzOx4cuBiR43vAdfAEAkSYzY1uJjoGuHzCCoHLZaOgpOMBEMSm4ZAQg6JaSNYtyQ0RvsjUqwKipck7tF1k4C4P/KCXwm6h3SvoveFxEsiWqpL+1Vag97UNLE4WmKsN78QSVHyC5EUJb8QSVHyC5EUFPyi5aTj2p9+CA69w7EX8cxY3CP3Frm8SBTZq3xsApNkjyp/jSQsrcE1Nu/8tFszs1l75Y9t/SCJJYhNJMZEHYcUu+q8KIl9/QriHDrWyLlH7rKgIBYdfmE0YCPoLDRjd2i0FJmm70ZLt3FIBq27Q5UvO/xi4p4cfkKIL1HyC5EUJb8QSVHyC5GUhkQ7ih2AS+94DA49mNJKIp5ZWaSJQB49EiWnsPYdEPymIAxSn7kXcFyJFgTDaHlr1HGG/fFAqIq658xYrJrAM0HQZ47BURkdkhHtt0eOwRJ0jSR+9rAP22jpL4To3F2Gdtx0n0i9+YVIipJfiKQo+YVIipJfiKQ07xy97oIHtRf3pjU490A4m4C4U3KSUd+1FoQbOi46UAGdiVQmii5Cz6JQDkxiTPQaUegKinZDBksUe9QFP5IGgdAzMYUS3C1M6aUNXxqU38LzUBraUYpfh0rRR31sKjLdq28CevMLkRQlvxBJUfILkRQlvxBJUfILkZTm/vjIB0HR3geb7CGouKT21wW1v4VjF71XZ7n22yu+ZPGkmnyKbdGC6qFzzbhRJKnSUbsq2XuH1JdTLXmpgWe0nn+fJi5V8E8RPCcbauA5iv3Ts4FnZBe1n/ab9qeGfzPwXxi4blpjKHivYRk18BRC/F6U/EIkRckvRFKU/EIkpaH6e/pFIBGQa7d9bFL4jemhKh/HQ0Ooh1ElJO6QPXTZe1FqRaINiCRzaI5pZjbf+saedD0k5FGMRoFHRSRuHjlwbDccS8/EHj4n/no2QQsxNr2k8ewFwS86nSc6brxp/PcjERAF26DQuAubkV8HG3hCvujNL0RSlPxCJEXJL0RSlPxCJKU5BkcWOerQARUc0dwUnGR0/hidaJ4epvMswWW3IRGwgljv3VzUW2C29ZN5zMyWMLp71frribr5KEYTcggcnU0i4A4OPyLqLqTGlbQP2IwUjiNxj+6zWdwpOapitfs0AaiH3gRrOJeuJTody6yQgyBKRntL6M0vRFKU/EIkRckvRFKU/EIkpaGy3A4EjCGNIksy1QSEjQm5BoO/USTknbdzF1tTSSiN4+69YHe59WO3zcyuWi/4RZ17OOqaBLGBE1+iYEkoiXbYbBXENHL4hcuvY+W7JYcf7TdRbGZ6DXS6gvsRhbzgvSpNUkLHITQeJST4CSG+RMkvRFKU/EIkRckvRFL+D3nZkBd/DlDdAAAAAElFTkSuQmCC" y="-13825.856457"/>
</g>
<g id="matplotlib.axis_769">
<g id="xtick_1153"/>
<g id="xtick_1154"/>
<g id="xtick_1155"/>
</g>
<g id="matplotlib.axis_770">
<g id="ytick_1921"/>
<g id="ytick_1922"/>
<g id="ytick_1923"/>
<g id="ytick_1924"/>
<g id="ytick_1925"/>
<g id="text_97">
<!-- 338 1834-60319 -->
<g style="fill:#262626;" transform="translate(15.789375 13930.814895)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-56"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-51"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_386">
<g id="patch_387">
<path d="M 164.424375 13950.758221
L 286.714375 13950.758221
L 286.714375 13823.464694
L 164.424375 13823.464694
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_771">
<g id="xtick_1156"/>
<g id="xtick_1157"/>
<g id="xtick_1158"/>
</g>
<g id="matplotlib.axis_772">
<g id="ytick_1926"/>
<g id="ytick_1927"/>
<g id="ytick_1928"/>
<g id="ytick_1929"/>
<g id="ytick_1930"/>
</g>
</g>
<g id="axes_387">
<g id="patch_388">
<path d="M 299.674375 13950.758221
L 421.964375 13950.758221
L 421.964375 13823.464694
L 299.674375 13823.464694
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_773">
<g id="xtick_1159"/>
<g id="xtick_1160"/>
<g id="xtick_1161"/>
</g>
<g id="matplotlib.axis_774">
<g id="ytick_1931"/>
<g id="ytick_1932"/>
<g id="ytick_1933"/>
<g id="ytick_1934"/>
<g id="ytick_1935"/>
</g>
</g>
<g id="axes_388">
<g id="patch_389">
<path d="M 434.924375 13950.758221
L 557.214375 13950.758221
L 557.214375 13823.464694
L 434.924375 13823.464694
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_775">
<g id="xtick_1162"/>
<g id="xtick_1163"/>
<g id="xtick_1164"/>
</g>
<g id="matplotlib.axis_776">
<g id="ytick_1936"/>
<g id="ytick_1937"/>
<g id="ytick_1938"/>
<g id="ytick_1939"/>
<g id="ytick_1940"/>
</g>
</g>
<g id="axes_389">
<g id="patch_390">
<path d="M 29.174375 14094.677645
L 151.464375 14094.677645
L 151.464375 13967.384118
L 29.174375 13967.384118
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_777">
<g id="xtick_1165"/>
<g id="xtick_1166"/>
<g id="xtick_1167"/>
</g>
<g id="matplotlib.axis_778">
<g id="ytick_1941"/>
<g id="ytick_1942"/>
<g id="ytick_1943"/>
<g id="ytick_1944"/>
<g id="ytick_1945"/>
<g id="text_98">
<!-- 356 1834-120319 -->
<g style="fill:#262626;" transform="translate(15.789375 14078.070881)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-54"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-51"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_390">
<g id="patch_391">
<path d="M 164.424375 14094.677645
L 286.714375 14094.677645
L 286.714375 13967.384118
L 164.424375 13967.384118
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_779">
<g id="xtick_1168"/>
<g id="xtick_1169"/>
<g id="xtick_1170"/>
</g>
<g id="matplotlib.axis_780">
<g id="ytick_1946"/>
<g id="ytick_1947"/>
<g id="ytick_1948"/>
<g id="ytick_1949"/>
<g id="ytick_1950"/>
</g>
</g>
<g id="axes_391">
<g id="patch_392">
<path d="M 299.674375 14092.175881
L 421.964375 14092.175881
L 421.964375 13969.885881
L 299.674375 13969.885881
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pc6ff054551)">
<image height="122.4" id="imagecc2e83d88b" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHehJREFUeJztncmOJEdyhi0jPPfMqq5e2GSTo9FwRiNQEKC7rnoMvZbeQzrponfQUdAcBIEYkTMkm9215BJ76sDlUPY54DV9o/3f0RGLh3tYBvDnb2azf/n0ny/2iPR4wMxqd5RZBcf1Mz/2voKTM8e+HP3gdvLn39b+uD9Xkxv73no3drAB5/OYJTzhalbjsRs49vXkV/J3nZ/j9cXP8dtq4cb+4IfsS2vc2HeTH7ufWjfWX0Z/QTNbVn7e69ncjdFaXM38JJ/DuUe49x+noxu7h2eZLv59GDLPcoLnbka/3rnzH7OAtdmntRt7lfZu7FfV1o392pZu7M0AgWFmLwY/x635sbn5d6yCS1L8CiECoOAXIigKfiGCouAXIiik7SEk2ZFEQlKalx9+OtZfdZx5ZWIBN38xwrnwWzaCQEO0MMuZsfBCzC5lxx5AeRknL4jRcT3MkdaQjmtAVMyKXLBhqSoTP0kkvbn4417C2Kr2534Dwuf91MGYFwbN+BknEKAr2D8SFuuZn2Ppe9LDXh1hse8qFpWr5McHEMiXF3/NUsFeCBEABb8QQVHwCxEUBb8QQUmkUw0kDhRqX6A/4JiZgffO7DQDAQvO34Dr7wbEwhYEmp4EFTYhOuYZcWcN43O4ZgtzbMCt+B4UmsPMCzkdiDvtxcuu/QRjGcFvBpu9BG2YhNwanm8OB15P/rj1BVyEIDR+DWNT6QaaWQKhcoSnGWFtiTlcr4L3gYRY2lN6ZjN+9+YQwNXkz6/hWfTlFyIoCn4hgqLgFyIoCn4hgpJIdAPNBn8lSA4hcS4nm1xApDnDzcntlkDfmYMjawOCyO4CT1MoaG7oXDO7hvFtmV5kR7jkPQifRxDyGhDtSMijsZygNcE4HUv7N8Ie0DtBXMN0avNiWl97118P6dw/nO9v3s38WuCzwFi5689D1yPBtslETA9rgaIrzHEJflx9+YUIioJfiKAo+IUIioJfiKCkWxBKluQagpNLBb82477C8+HYB7g5OagobZFYwfORsLSE69G5ZmY7eJgFCC8dCJo0bVobembalxpGS11oZuyAK01lJafdiZxt4LJcguGQUrcbmF8Dqb9mhgtEImmpm28CIZZIsF4kFpZez4xFRBS+YQ9qGNOXX4igKPiFCIqCX4igKPiFCEr6BhJrdyDGUOogSSQjCBhlLTJ+vCYIGEdQOijtdF1Yp4xcf5R2ui10EZrl1gLq9RW63ShFeAtC18l8GmxTlTnYcizgPqVNOzCVFd6JE8xnB+t1DYLfR6Pf1fsZ12pswNlGTrsLzJEEulIhj8RQOncOY3VGVKYdPEMczMFtOl78+ujLL0RQFPxCBEXBL0RQFPxCBEXBL0RQ0rcX3+mkMW+VXBX+TlA+d844mUARHUH9rEC9TKDO0j8S9A/ABsbW8DfD6gnPcgLVtQXR9kz1DmCMbMTXYEEeQYWnjjSkKg8ZSytZgSkvnsYI+reHLN9N4b8ju9HP+wqKoJqZvSV1nrocwVrQcdTZh+5cwbl0HI2Rxd3M7D1Y8anWxVtYi5XUfiHETyj4hQiKgl+IoCj4hQhKIqHjBBLNVGjlxKKHGQEDBSOy1IIQRDZggrrmkLhHufcV5l+XWy+ptgGNkfV2QYIf2T6hBTkJiARZX80y9tfCApfUlYaE3Q7meATx6gDda2j/cm2yaV8GmGMHxVHp+eg+9AUdQZxdwNi50H6cGyfJNsE7mmBt9eUXIigKfiGCouAXIigKfiGCktaQB01usNLikdhBJCPGzOEKK7g3dcmh4pqU0Y1zhOl0KEqVublyYG1GuACtDwmV9MwXOPcEItkRVqLL+BVJECNpkNycLbScpvz0CtaWcvzfg1uN3JTU6tqMBbUWOxrRMxe2XAKoJTa9jCSG5+KlVIglUZJiTV9+IYKi4BciKAp+IYKi4BciKOlmlul08ohSoYuuVmdccZuLdzy9mPzv0R4UutJfLUqr7UncgwuSoW6T0YCosOcCBDqoR4nQuSRo+hUsX5vcnqYP+CbQ47UgnFFqLBVqJZbwPh0zgt8A+0LdeUjco8Kc3JbcnzuDOdIzkxBH3ZFy96Y5kphKG6MvvxBBUfALERQFvxBBUfALEZT0DGQk6rBCdcXIFYU3yUhLV/Db8xKKtl1N/j5U7+0W3GCUQktOKaqtR8ftM2LMFYiS2MUHz/ZQyivVwqPno/ui6yvzLEs4lnaQW4uXpf4+wNOcQRBr4GkWMO/cu0h1Cku7F5FwRqnkKO7hGpY5HXMOPzSM4r09dE19+YUIioJfiKAo+IUIioJfiKAkEndI3DtBGuQRRBtK81yhD42df9dQk24NQlBLKaHUChrGqGHECRxiJCIdoH25mdkBRCgSOodCsWlJabBw3JmeD8agj4dtMvtCQiA5yeg9oTThBt6d08W3hqeVoXbhG/Q6MjQfkgZLBTrqDUKOSDqXnoXq+pGgaVYusBIS/IQQP6PgFyIoCn4hgqLgFyIoiUSbIwg0t5fOjd1PrRuj+m9LqBNoxt1kl1CfjRogDCC8HEDootpuZ3i+AzRt6EDwe8j8XjbQLZc6G2M9O7xemZAzwnHkqCMRb5F5FhIb6T5n2OsLCINUm6/F9fb7QsLZGUThOvMslKqLKbiFAh1RWkdvBXFA4t7yCd/kv7zKoL78QoRFwS9EUBT8QgRFwS9EUNJ7cOm9A3Hvbmrc2HHyx2F9tIplCRJA3s/8fGoUAcvEvSMISydIrD3DceTw6zK/l+gQg+dbo3vOn3sBgY1Sekls4pRO6HZLRQqNhUpy+KFrDJyXJCqfYW0a3AMQBkd4RzKuOJo3saq8YEvXpH0ubbzxIWO5ez+liYy/nhAiJAp+IYKi4BciKAp+IYKS/nQ5u0ES8misAzGGyKUd9uDoakC0IxGQrkhpxw+QOkriHj0LyZRTJg32BHIcOeiwZlth/UAaKxWM6FeeXGi5Y3MilDsXOipPIO71lW/vQm68h9G7SGmvSt9FMxY/R2ggc0ERsaxe34eMZbtaw3zmdH5GyPX3FkKERMEvRFAU/EIERcEvRFDSd8PRDZamQRI5EYlg0Q5cXpQ6Cue2IPiRuEdOsgHOJaEyJyx1M3/+AM7GrYGTrNA1hjXu4Pd7C6moOxC0/Ex+nE9hJ+FU2KwCBShqNkLpybCGIzRx6SfeF1pHanRB7zw2AoF5k4CInXIBEnFzy0/vyQYE1g2sN9Xq1JdfiKAo+IUIioJfiKAo+IUIioJfiKCkBmy7VWEec2k2ce6fArIM96Caz0G9Lv1PgSzENB9U9kFBPsOcc9e8q72F9apeu7FcgdPHkNq7B5vsM9Dxd/A7T6qwWbnaT7L0HMZ6Ur6hCCdZu9vK7x+p8FT/wIxVfILy/qGMBHbnofeT9opWm967XFcn+lKv4KrX0C5+D73F9eUXIigKfiGCouAXIigKfiGCksjqiBbNTIHEx2ABz4zgd4ZCoR11lgFBjHKbS+dIx1GnGaKdfH0AM7OH3tdFeIB23t3ci4jP086N7UDI20JXIBL3XoCV9+Xo93SdeeSaxC84bg7HkeB3AuWsgfduA+u1hnbcLRTbJGHXLCPkwfud4J1Y03pXSzeGBU9hLmTlJXJvMY0nuOQSxrYS/IQQP6HgFyIoCn4hgqLgFyIoiXKRS4UzggTEnJiGudaY31xqOfNQXjXNp7QOwVPqFVBnmSF5YYpaQb+uvBPwhXkR8AbyuW/A4fVs9M+8yuwLCX5Lar0OYyR09ReqYQDvHbW1hoKp1OnpnGmn3UIBV5pjgvOvQHR9PQMhFvaAZOETOBg7mE3uDZuBIxOFRbgAuSz15RciKAp+IYKi4BciKAp+IYKSSNwrFbU+RIgzK+9gQvN5ivD2GHZflaV+zsGFZma2Sd75Rc5GWm8a24Oo9WqC40DcI4cXHGagAf4wHxjj3jX+Aj2cTW4+attNic3UkWb+AQUzzfgdI9F1BzPag3tyB0Icuflo3g3Mpc+kJ9MekLh3ogxqcFnqyy9EUBT8QgRFwS9EUBT8QgQFBT9yX5G4R2mU5J7LtehGKCUYnFFDYWcYFPeohl9hSu8KXF9mnHZM60NiUwtdgB5g7EC1DEHI6eFRzrA2JAKZcVruGlxsy8nPZwDh7QHuM4KoRfu3wLbUZe5AM3bu0ftN1yRaeJczy+iPQ/ESjntCuFC9v5YaJEnwE0L8hIJfiKAo+IUIioJfiKAkdNlRC+NCIY+cck9J6aX5TFB/jJp7lLoDS1lAYwlq0JCjhaYflGJ6gkYgX89ObmwAJeg5CJBXIM6RU67M0/jj+YUiIAlYlN5KjUFW8N5N4Kg7m9/7XOOTEdaM3gl651tYoQd478ilR8xB0KR9WTzhnU3FblyPvvxCBEXBL0RQFPxCBEXBL0RQ0lDYsZZccaWNLnLQ+ZQKmWvI8JjSZiNzEPJIMKI0z5ywRE0fWjj2ALm11A34fmzcGLksSQTsoNkECUuUVmvG4m4NDrEtpbfC94RSjOmrswRBjBoJr2FfqKGJGQtdJEpTHDQg7pELcYkuWbLZ+aFSEdCM14fWlsZIYNWXX4igKPiFCIqCX4igKPiFCEoaSEwDcYCacdBYghpupfXxzDJpwoUCJKXlkksvgVBFz0JputQwwoy7BidKjS7M16R1OEOH4Dv6/YYhEqByXWNJ/CIxtYG97mjNSAQkcRYdmp4lXG+VcV5SU4wOHptWoieRG1KR0aUH7kd6c+jru8i8Ii8gVF8OfnADDsgK3bRCiJAo+IUIioJfiKAo+IUISiI3H6Wtltb6I6gGnxk722g+JEqSuIcuROoEDOIeP1+ZKGXGNeBIBKT5TCAi0fOREIf1/8BFSHPJCX5YzxCGOnDAnUBsWqDg58e2IBZuKG0YnG5rbDVi1sB8SLQrreFI6cA0xw08X2mi7opsjWb28eD3+vPrOze2f+7doYS+/EIERcEvRFAU/EIERcEvRFDSqoL0T2x0UCaSkSBCQpyZWV3B+SR20OlkbINzSZTEpg2F3XMpdfeHa5Y1RaDUU6oz14HI2UD9vwYEP4K65+a6LKOYSg4xSh0tdDou4R2jmnnVzNcoJIFtldmXFT03PTal22LDEH8gORivQXQtTau9ybRP/mx9cGOvvvC1HuefbtyYmnYIIX5GwS9EUBT8QgRFwS9EUBT8QgQlrUF9xqKXpJrDcfRrAsKnmZktQNGeUyvowvbXpVZlyslfgCpMttScvZfGSRmuqUApzOcE8+5A2ad/UnpQzUtblZtx/QX6B4D++aAG5rl/SP5SaF2pmKiZWQ9W3tIuN7SnVDdgAy84KfYb6Dy1hD34OLE9980X9/78f/jEjVUvbvzJ8M+avvxCBEXBL0RQFPxCBEXBL0RQEolfpbntaIlFmysLLBPcu7t4AZIELMzTL7TYksxFgiaJO7m88YTFTP3YAPOmYo/ULYjES2xzDnPBIqiZwqqlHZLItktFT6+rpRvbQznLLTzfHtZmjbZifsd6EAIX8N5iNxwS/EDcw8Kaox/cz7w9e7PwYx994m28ZmbLv/NCXvW3f+PGZq/e+JMLxXkhRAAU/EIERcEvRFAU/EIEJbFoV5bvToIWFrLMCH4kTFHeOIlk9KuFYiPcgzqxECT4rUCAMjNLIELRXVrs+EJioxfE2hk4/AqFz1zufinYjh22lYTKZ+AifXXxz7ebqFinvwfvAD/fjt5vOPQZCHk72MA5rMP16Pfled26sdXcH5dSeTcrA4fgbHvlxz79vRur9i/9WPmdhRC/JBT8QgRFwS9EUBT8QgQlkWBErYRJTKOuK+SeWmd+Y+pMZ5LHFNbvRGGRikzSXencJYhAJOyZmQ1wURL3KhAbR0rfhV1oSAQsLOCJT51pa02Qk5DGSFikd2cHwikJbERPj5IRlZcg0O3gvfto8DffTYXCMHQFSlXZuecGHK1/zrhI/xO687z+LzdWffxrNzb76Df+uJIJCiF+eSj4hQiKgl+IoCj4hQhKaiF9k1xaKJKBuLeBFMpd5jeGUjNJuOmxrbU/dwHXo3bHz6C+2nNIwVyB1NhlnuWu8s/9fYJJQi01MqeNWNePUqDL0m8pHTgHpep21OoaJk4dhE4wR3qWeSYt9zEjHJZzMJZ+3UZ4787U1hzuPVB3nh6Ez8GPncHp2JJ6bGYPf/AVEn/bf+nGri//7uc4+NRhffmFCIqCX4igKPiFCIqCX4igpDeVb+eLqayUdkouLRDYqF2xmdkeUhSpqcUZhKAT/GxRquZzEPd+dfFNET597RsirK69SHK6pbYUZt98t/ODw9oN9SACjiACnmEdaF86EM6I0gYrZuzII0GNUqNJgLy9dG5sBwKpVSACflgmMrosDzB2Py9LTydIuL4eqU4grCG0zu4zwucdiOn9//hU3d//6x/d2LOHf3Nj+vILERQFvxBBUfALERQFvxBBSf8IolRpowvSYshHlkuN3MN4gqseQOgiF1pF9dUmL0C9vD65savfeFEqvfDi3uJ7X5vNzKxv/Rzf3vlmFQsQbSg1llKtSYhbg+BH+0ISEtU3/GE+HqrrSHOkbr5ncP3dwRh1RaYafCQCUpqvmdntzO//A9x7BmtBad7kaiXh+wpEXGoMUtpoxowbhlBf5PrL527s8/94V3wfIcQvHAW/EEFR8AsRFAW/EEFJnw9ewBrhN6EFYeIEogalRpLzzsysQlHLy02UltuC+MECJIhp4L4aoTHqrPYiYH8LNzGztvXC20jdckGz8T5Csw7cc/R8JECREPcU6ItAwhSKVfB8JGhi52VqaEKNM+C+babjcAPrSIIfzZHWljoqN7BiJ+oEjOIldALO1CMcYXGpcc7byYuA6698cw99+YUIioJfiKAo+IUIioJfiKCkd9BBtQVh4QTi1bGsHB0KdmZmPRRE24Ejj6BuqZQKeQJ34LujdzVe/tffo4KOH4cTp/S+HVdu7KH28yFZyu8ANz8Z6JlJOIPrDYUCYo6KhFwUpqD5CewBNXwhp9wG3p0l1TwkpdHMFiBKU6ou1bIktyK9yrSntFcj1EEkUdEynaCpxiE5Gzs4rpv8HujLL0RQFPxCBEXBL0RQFPxCBCX99xLEAaqjRw0sZn6MXF83kMb609GPuUBS8IKEF7gajR2oRtrFi3bvj152I4ceXc/MrKUGHcAGjWj+NzjBfe7huCOkrB7AwUYuQhILzcxGEAcJSgmm/V/AnlI9QnK7Ufou1cybMnUirws7INeFDUNY5CyD1ou+vrkvMnachjFytdbUMTpzHyHELxwFvxBBUfALERQFvxBBUfALEZT0p5nXgcmaSPnSIxxHRRiXGYX0BF1bSPGFzsb4q0X23hZu3cA9qAMQKeRt5ueSVOmb0a8ZFS3tYX3eJWj5Xfux97S21Eaa2mlP/l+BH+ZDVuCyYp30n0sP/wq18I/CCe57pJbmoOxT62wzzv1fFVqnO5gPrc2ERTjhH5xCi3TuHwXqzcTFdqn+hey9QogfUfALERQFvxBBUfALEZR0eyFZy0PSDhU9JLFiJA+imfUkLKLNssxSieIe/LyRTXJDNkk6LuN8JXHv45lvBb7f+oKpTeutxfPB1weoyCad/AP2YKdtIJecikyacettEveoUChagydfCLUG+zI6p6HeRFdTtyY418waFO3K6iJQjv8Ax5GleQRbMQURWX5pfmZmR2y75IdI8Btn3tKuL78QQVHwCxEUBb8QQVHwCxGUdA9izIJyrUEcKnUnzTIFPAk6lIxklL7dwVgL4gml3tdwQRLxdiACmZm9SF7Iu3nuW4EvVt5VN7/31zzfeT/XaYJ8fpj3BgQxyp9fYUN1dvORC/ECdQPISUgiWQfr2IATkMbIBQq1Us3MrAexmdyFDcyHWovnaiA8hp6ZhG92OvI3mTr+nGAPW9h/cr/qyy9EUBT8QgRFwS9EUBT8QgQl3U9eqLqqlm6MBD/sulLYhtiM0y2XoKcsQfEbSGyE29CvG83nClJtP6vObuzZ3o+Zma133im5vPKCEZnqpsGfuz6AMDh4t1vprzcJsTnBj1xnLTgECZLD6N50D4IERHIWUkehp0CeOhL3SKgkV2MHhVVbGHvKvLfgdpzAuTeHHlArCX5CiJ9Q8AsRFAW/EEFR8AsRlNShi4maRntIyKH2x0/5haE7ryidlFx/KAL6sf3kT35z8cLnm8/u3Nj6Jde9my3A2Ujdl6Eg4fzsBaPF3N8HtspOoBc9gLDUgShFgquZ2RKqxSVYR0zpBZEsYT27sreC6kSSa+8pLlK6c+nZKO7RxsD72cBd6NycCNjXvrX8Guo6XsP+kWtTX34hgqLgFyIoCn4hgqLgFyIoierwkahRKrxQowMSpcy4mccGhCU6jtoQb8FetoX7Ppu8IHaz8/X2Vs+9GJOuM2mwICJOLbQWB21oBsUCaxijtMzbyj/0O6jLeAKHXk5YWqFoW9rCGhyehSniBNWzozRtg9RfMzOWZz3YPhtERBLOKF4GcAL2lDY8Qn3DzNokWMem8rUeWyho6O+iL78QYVHwCxEUBb8QQVHwCxGUdClsxtCBYES9OCgNMleTrAWRpq+9O6kFAWQHtesW8CzkDqxIROq8mHL/tRdT1g+5Jid+PtPg5031CC/wLHVNtetAQIT7UqMKqtWYg2o4kpuTBCyi9AtD4jO9Tw3WdPyw7xgJmliPkhpiYOqvlxpJ3KOxZcUOWxIRSWA/w3F32ElYCBESBb8QQVHwCxEUBb8QQfHqmrFjqcEGDWXpmySSmJmdLv7YM6Sj3oEIuK+8KHUFjqwtNLpowM116HdubPetT6FcfcsiF3aYBRKInNslNE5Z+Pu8mPnjXk5+jl/B2tzCXEoFO7NM92Vq0PGEaz6G3p0LCnng5st06SUhr6ztRsb1B2MkmjcjuCwHnzZOsZYT/GaUVk1NPyCGSEzVl1+IoCj4hQiKgl+IoCj4hQgKC36lzQqoEyk0giCxyMzsAhZBSh1u0TXo73Oo/OOsQSRZQHePNYiFy4sXXqghglm5iLSGA1+ffZOUN71vDrIHYfDzxs/n/cpfb4Q0zyPlF1t5uu0DuAbPkE7cX/xxI+zVaubH6H0wcCCSazM3jp2EMS2XUtvBlUodh8nNN/ixOYizNGbGqdGU/kviHrk+9eUXIigKfiGCouAXIigKfiGCklDcm0AIgp+JBF1DNyDaUIpojolqBaKLyZ9L4tBDYe05akqxqMobkJCIRBLUFsScI4k+nU8n/qQ+ubE3Cz82Nr5y4dXCOwGp/p8Zz/sEzsT/AxGRuj6fQRgkkWyE+SzgfaI6ekNmZ8iRR+/JCYTKB3iWu8Gv9/vu4I/r/HHD6J95vigT8cxYEKV4o+7LatohhPgZBb8QQVHwCxEUBb8QQVHwCxGUNED3mhkkp5PS+KreuLFn8A/AIvMbQ/ng1FmmgTE69wB2VSxGWphzXmpzNSu39+5hfebQdeUVtF5+Nfr5XF97G/DvWv98zw5e7b/LWJUb2P/voKbCKS3c2FtYs2Nh3n8DFmvaP/qnIKeQ018XdO/70Xds+r5/8MeBin/o/Lk9/GNWkRUX/nnI1b+gfz724NDfw79r9H7qyy9EUBT8QgRFwS9EUBT8QgQF8/lfJG8P/etq78bemBd8rsbCSpZmdoZ8/vcgilDxyQdovtySWAgiIAl+JLKAezVLqeBHP7dHKNh4BmFwBuu13nlb6uYKCoIu/TrcnFjw63r/Wux6L0q+rf35X1X+nTiCvZdyztHaDXtKY9ROO3cfsq/fDkc/1vqxU+8tvyTuUVHPQqd5FqqLcQUh/NFE9Q48+vILERQFvxBBUfALERQFvxBBSX+1eO4G/766cmO/HcBxNoDTihxZGffVXe3H5+Bso+KTJxDtKO+fxD0SlmrI+yYRj/KizbiwI0HzaeFcuss8+XMX+zK34qIFUQpag5uZpeTnc3P0e/Vy9A7PHYiAt+BMI5ce5d4TtNZdZv1J8GsnL5JSq2wSBmn/0ZEHQ6XPl3vH6PwdfL8/6/3520kFPIUQP6LgFyIoCn4hgqLgFyIo6Z/sxg1+0XhB5OXcpzIut14QmUBEajo0Etpu8J1l6os/tp1Ty+myTiUk7lGqLok2JLw8pQE1zYeErj7XX/oRS3Dp1b6zuF06KCYKDrhh4N9+2kNiDdOm4pHZdNsCqMAsrSsdZ2ZGKeuU0ksiIrn06D2podArvXeU0ksiHp1rxh2EfASZvYHCo6+vvVtRX34hgqLgFyIoCn4hgqLgFyIo/w/NvsNrsy4iMQAAAABJRU5ErkJggg==" y="-13969.775881"/>
</g>
<g id="matplotlib.axis_781">
<g id="xtick_1171"/>
<g id="xtick_1172"/>
<g id="xtick_1173"/>
</g>
<g id="matplotlib.axis_782">
<g id="ytick_1951"/>
<g id="ytick_1952"/>
<g id="ytick_1953"/>
<g id="ytick_1954"/>
<g id="ytick_1955"/>
</g>
</g>
<g id="axes_392">
<g id="patch_393">
<path d="M 434.924375 14094.677645
L 557.214375 14094.677645
L 557.214375 13967.384118
L 434.924375 13967.384118
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_783">
<g id="xtick_1174"/>
<g id="xtick_1175"/>
<g id="xtick_1176"/>
</g>
<g id="matplotlib.axis_784">
<g id="ytick_1956"/>
<g id="ytick_1957"/>
<g id="ytick_1958"/>
<g id="ytick_1959"/>
<g id="ytick_1960"/>
</g>
</g>
<g id="axes_393">
<g id="patch_394">
<path d="M 29.174375 14236.095305
L 151.464375 14236.095305
L 151.464375 14113.805305
L 29.174375 14113.805305
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pe117f41a53)">
<image height="122.4" id="image950dbec1ad" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPJFl2na9NPod7RGREDpVdlVXNErsIsEi2IFArAVrzb2slaCGgwabYXUMzs4aszIzICA+fBzPTonrDPJ8B3pC4qXe+5Q1zf2bP7IYBx8+9N/vnX/9TGx8wX/U/DMW/FCOJ/a9yJ7Fv6weJLRs9LiKiCVk6qqyQ2DjvSexJrufzZauxz/eNxLZZJrF/7em5fBtbiS3ag8QiIupW16HrW8Be/GnzVmLv1nOJXQwmEvti8lxiV7A3Pxz1vmybvcQiIs7LscR+Vejan8RAYs/qXGJPj7o3V62uXWS6X+9bvffvS31GlrpsRETc5vqdL+G+3rb8jH5IP3Ttq1zz5dOmktgXO92HT/oriQ0G/Iw9LHWdn+qhxN7A/jxoKDq2zBjzS8fJb0yiOPmNSRQnvzGJUh6Pmv9NqCDWb1U46WX62WOoqLGsVWCJiNg3R4kV8J37QoWlYaWCyk1WS6zt6fctQVh6Gyqy7Fr9PhL2ushhH0sQNHt5KbEG9vt+q+LQd+WtxNY9FdN2jV7fEa4vImIFouRtpudY5fDuKFSgy+Edkx/1uAHsbQ3ibA57k7V6XBcF3BeK1SDYaiTiAOe9IvEShLj+TgW7aqfCXkTEIvQe3J4oftJT6ze/MYni5DcmUZz8xiSKk9+YRCkPRxUM9q3+T0Dh5cRFukQyEvxyWIdEwA047W4yjS1BlNrC+WxCxa89yCTk2otgcQ+vBYSpfq7iZb/U2O6o13e3W0qM9nsIQhwJjRF8LXsQBx/gHpR0zYVeSwnP2AwekxrO5Qhr8JVEDOF2jeG613T/YR8LWJsgjx4JcTdF15kra1ibnHs7eEZpFb/5jUkUJ78xieLkNyZRnPzGJEr5cFQxZp5p7AH+TexAEMlAoKEy3YiIGoQXEsno8+SAo3LbDfx/I0dWDeIeCWfk+uqigLVJvCQxbtbTstxNDmWwIGi2cI607gSckxFcQj0Ahx9JXzvYx1UGMThv2i+Sig+wcJfvsgKBdQJi4wYksTU4RgkSSAmVt1nE23d83QLKk9fgJMSPwz74zW9Mojj5jUkUJ78xieLkNyZRyrcg7swLFQduchBtwBVF/00GIGhFRJS5CnkkGA7AAUcCFpUTH0G0I8GPnHsk7nWW9ML55HAsiUNDuAdX/anEjr3TBCgqGyZxb5az4DeDnnQ9KsuFz1JpLFHDYRuI0XF/ieBH95DOm8rT6TkhyNVYgS5MMZLC6ZojInYQJxGR2ILo6je/MYni5DcmUZz8xiSKk9+YRClfqZYWd+Bsoh53DzB4gQS7MxCQIk7vK0bi3qk918gJiELe/6PDr4V1qPyTtJwhOCoHpTrOaB9ov1FUBIfeDNaNiJhCnJxyexCRjjSIBT5L935LLlL4vh242rp8lySIHU4Udwna7z48teQinDa6xhBiXe9kKm8m8fMe9ufH0L6MfvMbkyhOfmMSxclvTKI4+Y1JFCe/MYlSfpupYv8AGukcprhQU0eqve911PMTVItOij3x/1vZJ3snnV9ERHHiNZIST/tD9fNjmpoD/79LskjDLwWzls/5rDmtR8ADrEM20opUavg+Uq5J7adfGei4CL7/dF8P8OyQ5Xt0orJ/AU7sRzXkC513h4u7gbW3uW7aLezP61obvfrNb0yiOPmNSRQnvzGJ4uQ3JlHKW7DorqAR5r5VEZCbder/E6oFj+BmnTUIL3uwG1OdPo9UPq0m/9Smnv8RkEhK4t5lpnX/UxCbBmCnHTYaG3XoqGQ53dOkGtALaRw3WbG3YEFdnyjk0SQdmrgUwVOXThVySYg9g/tCAul5rWuM4BwPsF/LgvPlptBz3MA+LiBftpC/fvMbkyhOfmMSxclvTKI4+Y1JlJLqy0m0y2CiSQnHlX/B/xMS90hkI3GPmnWeWn9Px7GACCOaO64P9DT0nJHIOQIR6QJq6j9qVIB6DN0ez0Bs6pMb8y+YPrQA8etAfRbAcUZuviU18IT9pnHqJOKtQdCK6BKvT2uEegaNVQNEVxoD3oNn+wjC5wPs608g7EVEfJOpy5aa6O4ajdFz6ze/MYni5DcmUZz8xiSKk9+YRClJbKIy0RqcRKeW0O463FckspHUcQCB5lTB79R1SdyjppwnDqSJCHa2XWTazPRXobFPD3oPPj6qePWkv5HYeAbNGkFEqmGNiIjNRsXG/ham+8B49zUIfguIbeB88N7DfdnB80AOtp+P1fiuAbcbCLHHFkRuuKcd+pxAbj7arzk4HSMiblu9r3fNVmKcl57YY4z5M05+YxLFyW9Mojj5jUmU8hKcZOTIWoPIsoHSQSr97RJjTh2BTOWWJAKS0EFCDsUCSmMrGCHe1Y+Qeu49zocS+7JR4ewfD2uJ/er5XNe4VMGvmoFza6Tn2EKZbr1gIXb7RoWl6kaP7a/0Wla17sN7EM7WuZ73e7gvpKWRqEwCcASLwNyHUdcmByuJuPQGralcHT5Lgh9NJIqIODTgbGy0JH9d6/07Qr74zW9Mojj5jUkUJ78xieLkNyZRyo9BoFnmKjjckRgDAtsORA3q9RfB4gmLe6e5C08Vcqi8cVzQkAwVQ2nUdUTEBEqe/7pV595/zx4k9tk/qUuv/KuPcB2BRjyDMNTuVBjK71f4lVmuAmQLTrKigD51WxjvvdV9eKhVLHwD4hcNzjh1FHsEuznpO2mwCD23JCuu4fG+hT58NJSE+vKtOkqO0e3YqAj8AALy4qDPmN/8xiSKk9+YRHHyG5MoTn5jEqV8XMOwAhj6EAU423COgwZpAEVExBGEF3IDUh82cqyRkENTcalHIU/FVfFqRJMqIuJJ6LGf71S4efqFOveKT1Tcyy7OcR0BJr+S4BcH3cO85GspjzBp914FP9Auoyz1s7O+io3XO92vVyVNB1aoBx+JgD9//rR62y5R+kM2sPZbmpQLMRpKcg/PNpXuRkQ81HoPyM23POhxDzsVAf3mNyZRnPzGJIqT35hEcfIbkyhlBc6oIQh+ZzCVIoOS1xkIYiwrMQsQRd5kKhjdwQCDNbiduoSgDyGH2AHOpen4f9kDwagHjqzVe3W7lf/zB4kVZ681NtWBEfnjqcSy60uNnZ1pbDaTWERENtJS5P7DSz3uDbjvYIhIValIdrnXezVroU8g6HBUzt1FD4TcAgRfcm5Sf0sSledQ2r4DZ+ECns85iHv3tbrxIiIWR41vas2NIwztIDeu3/zGJIqT35hEcfIbkyhOfmMSpTxQPzugAt1sCiLgEMxlM3KcRcQAXHpbcEZ9V6kA9SpXMeYdCIPzRgUVGuRAzsIK+vrVHT38tiAE/VBC77p3VxIbvYWpujDoZFbp9X306Y3Ezv6bnkv29+AifP5riUVEZHt1iFXgBjy/+0o//J2GWnpOCt3vCTwmAyiNJTcmuTYjeGo09eYbgix9RiIgPBMkpt2dWIq8ARFwBU6+iI7efCDuZZDTFZSs+81vTKI4+Y1JFCe/MYni5DcmUaAAk/8j9GhgLcTOa/3GJ6FCVUTExVgdS6Q/fgTDIS4KFQH/ACWhpAPdgtBIpZ80oIMmGEdELMDl9U2p3zmAcxy2us4ABl1MG3UHLr/S0tgvr9/p9/0WBlC8+DuJRURET/eWGN7eSyzLde3VT3qO2VKvZQj35bLUz9It6LovJQ1tAdvgAIS8i4ZiMNwD8oB6+OUgZlN58irnkt4NCNoluGwnlebLsAR3KK5ijPnF4+Q3JlGc/MYkipPfmERx8huTKOWERjfTRBRQ4WGwT8xAvZwOWL2cPVK1vz8FW+sCpo28gmlB2UhjparKVKdPI56pWWeXGXoB9uAFHDeAXxDGsM4EfqagEc+jXFXcT77R2ODtG4m1R/4VJiO1v697mz+9llj1TLt6VnPdmwIenvFRY48bsFPDK4uHwAfMUYrIoF/FkPYWjruAhrcjsK+fwS8FfVDcq+LEEfIRUcKzQ5Zf+jWDehj4zW9Mojj5jUkUJ78xieLkNyZRyhfVUoItCB01KX4QGvRUepldcEPC4WM9tjxTUSMf6HGX9/qdTx/U1riEuv821+NIsKMpLlsc0hyx74jLd8LeDsiDDGIqGF0DJjzHfqd72LzUJqHZ7/8HnWLESJt9tm+/1xiM/c560MAVJvZQU8/ZTu/BVa0i2QaEr2XH/pPgR81Wx3BfqL8AiXtTkBsrECoPNcSgZ8AhV3E1IqKBmz3vmIb1ISQW+s1vTKI4+Y1JFCe/MYni5DcmUcrnn+vIaAL7I4JLqxiBuwhEvIiIfALCBoyHjgU1KdS1ZzDu+MlRBaMDNNYEQ1bM4ftorHgEO/8G6NyDRpFQS34Fk2+ewt58nOvo5bNH6vpq9yB8fgsNOCNwHHu71aaS7ZqF3A/JoOC911eRbLpRYfDRUc+FBL8q5/dYBXfmHAb+XEAfinO4/+O8y0v47znAA0V1/xUIjaOOdzJNFaK9IIduAfvgN78xieLkNyZRnPzGJIqT35hEQXtQMVLBgJx3xZWWfmZXOvaZRj5HRMQBRmr/oBNomq2KFeRC7EGp7hhKlicgsNEkljX+b2Qn2SxT/93zRrf36khlovqdFzC6+dFARbfr5+rQHH8B01muziXW1h2jrpcrPXYDZdng8CPBFkyWUULr2B7Ezmt9RjINxUcdZbATcG4+6qlQObvUvR2MdaEGhNi7dypc329UaF5BA88liOa7DlGZSn2pVPfQ6DUfITf85jcmUZz8xiSKk9+YRHHyG5Mo5c2riQTHZyruDC9U/BgMYILItYoS2WSMi5NrjASjegclxjX1JFOhpN9CCSa4rw7kGgOBpatw9+Ojfuc/1Oq+u75Uga7qqfBGgmZ/okLO8FNwkn32RGLZ9SNdY8MOvXap592uwOEH96rdd4iIH54PNYAEKhCqnpd6fpeXGouImDzTZ7n3RMXZfKq9HiPX444/qRi6W2se1LC1czC6zmHS0x6e2QieSjQGoZle6TQZyG9+YxLFyW9Mojj5jUkUJ78xiVL+fq2OvMulCksXNyqcXN2reDVd/yix6nMeDhEl9Jp70GP3Kz3uCAJbQ8MKYNkZOOpmoFMdwDRGa0REvAgVnF58diexwVMQyWDtWrcWS2PzifYjjDE4KkG8bOc0ViSifq1l3s0aehz2aCQ6CL49uC+V7gOVafcKPe7xMz3v8/8K+xAR+Scf6zp9dd+1GxA0YQQ5QeXuXMQOnwVht2swTA/e1RkIfiUct4E+g37zG5MoTn5jEsXJb0yiOPmNSZTyf/dUZLlsVRC5huEJz35UkeXFSqe0Xi3e8uKPYGDBHTiedtCHD3q77aEsl3xkE1DYLkpwglUqkpDzLiJiMtXPl0MQ9w4wAZkqYzcwIRhccdVSP1wsoCR3pZaz+t/e6cIRsf4G+tTBRvYf6z6WV/pMVDDIY9SAwNaoaEoltNMvobz8H/9eTzAisscf6TorEDq/+VpC9TtVXQ+3pzkTz6Du+Bqe2V0JTtWOQRxrcDuu4XSOIJzS5F6/+Y1JFCe/MYni5DcmUZz8xiRK+SpUeLkDwWFeqpNoBe6ieq6Owf3/Yb/To6cqTOUVCCAwnTTPVfwg990RYj0ozB30VaA5m+nelH0ut8yr04Sg/b1e334JgylWKnI2MCm5OaqQN25e6/mN9F7tX7PzcjvX8lZy5A1KKBO90gm/GTgO88d63hX0IwzowVj+5y90jb/5L/rZiMjGlxp891Jj37+SULvV66Py8gJciNOBCsDPNjAsBnIoL/idTE/eAaJ7dLpa8DPG/BknvzGJ4uQ3JlGc/MYkSkkTPVehQkcBJaGDQsWKcauiRm8D03gjorxRseLyuYqAZ49VPCGRpXmn/8vqo4pXbWfR5L9ncK5Ot/4z/n+ZQXlyvYDhCW907dVCz/F+qU65AzgYN1u9B1c7Fc4mn8Aejnkfzp7rsflAjy2fq7ibP3usXzjWHo5ZCyLuR9D4DiYqZ3/9pX726oV+NiKyCoTTHTggLy70O89B+LxVF2J11HwZn8HEYeg7udvrvm46HH47FAL12ApqjGlasd/8xiSKk9+YRHHyG5MoTn5jEqWkQQBEDQLNFsTCJfRwW3QIGIeDimQ00bX3RM+xmMCEXxiSsXmnX7gD4ayqVLQhca/8HAStiMgKuJZ32gPuuFQxjpx7axBO93Cvamg0WN2po254paXWw9/owJaIiGwKAm1PhcVsAscNoJfekHoKwnM3gu8rVbALEPHaOZeNk++y3ehexFidicUzdQf27lUMpeEl1QGeJxjOMtjrZ4cdZtEZPCcTGDZTw/O9hOP85jcmUZz8xiSKk9+YRHHyG5MoTn5jEqUcQP5T3TDZew/wC8Aamgfu4LMREUewOx43oMQf9TuLoR43GOsvAMU7GPl94jwVqoHvGjce8CtHwESjAsRw+qWhgrtwwHsFk3igyWgOonl23qH2X6ptNxp4Kg7Q4PROf+HIDnpfooLR0kQOTVm3agNu8z/y5+vTRobHEZqWDvVmZSP65UqtvIe9PmPbnX52Dc9i1xj4c/jDBKZPUbYtwBrsN78xieLkNyZRnPzGJIqT35hEKUdg+yMykBFImID+hgElyxERsTmqALK6V2UqK6AWfQCTfdZaf71v9frI6vhurkLe9A+3EhvH9xKLiGih0eTxnZ73/k7/346mKhhdg1V5AddHjCcwPegC6uJhVHVEROz0fNoHFS/blTY4DbA5Z2P9bFax5VvWIMEO9prOOYKtt1kP1h7C3u5VqGxhVPnuQb/vHizWrw8aewN9IEDzjoiIi5qma+k5jgs9xxXkmt/8xiSKk9+YRHHyG5MoTn5jEqWcgSDW5TD6EPrPAcN14tjh8NtAzfrDg7qq6iO4k2Bc9WajrjFyUM3B7bRqdd3tH7V2//oVNJmMiLLUXTse9TsHAxVoptcqnD36WJtMjqGW/Ahjn8+e6vcV1+cS66J9P5dYfQtNL0H8ynq6t9lGxbgMRlOTONdudY0G1m12HUXwIA5mFUy0mYKbE87xuFABcrtSsfDuoLHX0Iz0x1LPj5rqRkTkkHHTGhrmghtzkMF0JVzFGPOLx8lvTKI4+Y1JFCe/MYlSXjaa/9ATEqGp1NR8cELloB2Q62+/gOaDUDp8gGuhEd1U5PlQwCQdqIN9feBS1P5ez6cPYtP1Dtx3Pd2f8aUe15tA6S+UdBaj025gu2bxsplrvL4H198BxDRoSJlDrIFYvQKX5Aqalu6htLnma27h0ctBZKtGUA4+gPNZwzMGgjSVX+/gVbsDcW+bcb7A4x3rPjhGW3USTmgfcBVjzC8eJ78xieLkNyZRnPzGJEp5DWWCJIhR4e8ABK1pC+OKM+jhFhEljNmmaSNHiGFLOfhfduhwF34IeapA24ltx/c1ECe340OtYsz+re7uxYO69MhFCG0UY7xUcW7aaG+98ppLhNFVtyHx68S9hedkt1Dh9OFeHZHU55Gem4I2OyJqEALpOxtQ0/Kc9hsmUh1UGJ7nek+hS2D0SZCGNSIi1iAEzkH4buBpnsD5+M1vTKI4+Y1JFCe/MYni5DcmUcrHtcoQ5IqjIRLjXD87HaszbQDuqS5WCxVPVjuIQTkwle/SsIIl/MtbQonwEYSTDiMZurIO8Pm3ILzcFSq8Pd7rNfe7ylY/YLRS0fU5jAa/+lhjERHlBNyTC920xY0KdOu1nvcCruUmNLaGwScz6OF3DgLyoODhHHsQ9963uvZPUG5L201vS9D7YgtCHD1P5JI9o/HlEbEGdXeXQb8+EN1pbb/5jUkUJ78xieLkNyZRnPzGJEpZgJBHAzr6IGj1QGShibP9IXmbIjIQ2ag0c7NXN1gN57gFwWhFw3PBubWA69vSpFyqEY2ILcS3ILxUIOasClWMlpkKUENwOhI9OG67mkqsecnq5exCS3o3Kz3H7+b6nS9LvVev+3qf59BTbgzn/QL2AXTm2ENZbUTEDkTgtyDuvQL35B2cI7nnSngWC8ohcO6N4f077HD4kRuwhesjcW8Hz7Lf/MYkipPfmERx8huTKE5+YxKlrCH/SdLa0nAPMO61C5jm23QIGANVbg57XYd68zUgfpwKecHWIM4toAhz3yH47eFbSRysYL9JMMpAvCTBqAYnWYHH6b5Wm4nEIiKWW3DptSrkfdXT2NcwIfZtq67PBtxql5muW4GAWIcKdiN4Pn8+VrmFQx9A8F20ei00UKOC+zek/cbCeIVcf13xnEqHSeQOTVa/+Y1JFCe/MYni5DcmUZz8xiRKOS2031sDghH10aNeYw9HFWi2Dyx0DGHaag3iIK1NJcYj0OKGOX1W18ihB18NolTdMcOYXJE9EH3I+UWOrPtWBRpyl5EAmZP7EVyEhz4PIJk0KqhRGfQPYLUjcW8NwhntAwms38M1z8GhN+oQgElMJbfbAWK03wS6+eC9OqEYPO/Djhk3dLfArBpTmkINzlK/+Y1JFCe/MYni5DcmUZz8xiRKeTHlSa0fcjioeLXdQd+zox5HLsKIiCM49zIQWXpQWglt06ICYXANa5BTrgLBbwCOrF5HfzUSeAjq67cHsemhVSF2BSLgtuFy6Q9Z5Non8A5iEREVCEZ0jtsGXI0dgugpUAn0GkTA29C9GYC4GhExhZJgcgOSSEpiITGCtc/gWTwDcY+m5+oZ/wzd6R2c4hruwXt4nvzmNyZRnPzGJIqT35hEcfIbkyhOfmMSpTy70lHQLaiShw3Uoa/VcFhuof66q56/d1oD0CM0Z6RfHxYw2Yfq/k/Vowfwv7HfofZT00xiBb9crEGxXzSqzj40eq+2Ndiz4ReFZa6fvQEl/C+hR01Gc73/1MOA5+so2DAT7gH9MhMRMTzRZgu9ZGMPx9GTTPeeflGiJwTV+s6pUGADh9ifQn/B+/32p5POxxiTAE5+YxLFyW9Mojj5jUmUsneh8lcNikMDXQELmHLS76t4lYEoERExmqpY1ZuoFFTvYDz0rVpTSfA7gHjSNWb7Qwqw/FLtdgT/FyVhkRpX0u4cqeYchME9NZmEGv89fLbtqFenc6ygUeS40BHd2BfhxHcMfXYAouIUGn0+gVhExDPoTUB9H+6g78MWYigWwzau4ZmnGNm9Dx35Qs1DqfHs23otsZ82dxLzm9+YRHHyG5MoTn5jEsXJb0yilMUZTOLZq4hA47SLgoQJ/exgzDXnwyfQ2HGmAk2zBhHwADXdSxWghrWe4wgcWeTm23UILwRNziFxiARDcqf1Qeiqco0dQPA5labz8uBeg6uOHH7lie8TEhszclTC3pxn6iI875jYQ/XyNPmGmrpSU1Zq4EquzXsQXalBKfUwoIlLEREj2O9Tm4xWBYw6P+mTxphfHE5+YxLFyW9Mojj5jUmUMj9XkazYqkOoOsJkmEobShY9cIc96pim8vRMYtlQnXvtSstRR/VKYhdw3qu3MH2m1mveQdPKBYg7p7XL/BmSoEYQJWdbAwLrEcQhcvP1oAUkiVddDj86dpSrg+4MGoBW0MySRElyq/XhsxTrclkS5PCk2BJGdJMYt4Vngpqbckm2TjMih+YAyqIjIo6w3ySw0v6cV2OJ+c1vTKI4+Y1JFCe/MYni5DcmUcr8bKhBcPjlo9OkrnyqokR+NcVjs+kEvgD6ph31fPrTB4ldVjcSO+xUGLyfq6ByDyWrNbjaqAQz4vS+gOQkm1D/PxClHjIVkdaZiq4E9b0j114Ei0hnIPiNwWlHQp7KtREHECppXZL2eA2+L/dwiXQPbzJ9vlcnCpU0gnxJE5dA8GtgH7ogIa8EQZTOcVRAXp68sjHmF4WT35hEcfIbkyhOfmMSpcym4PxpVITI9iD4leBWg+/LHl3w6qORxiroxdZXsSKDkt7e+KXELucaO/+dnuO4AWcaOO8gFBE8hIL+sw5oPDhoVTsQIIdQ0tmHMl/qwdcDYYjceF3rnIG4R2PJN7AT5BgksZHGZFOMIJErImIF8TmU4NIIa9pHcmOSU5J7NVLZ92mxCBZJ9yBK7kCAJGHRb35jEsXJb0yiOPmNSRQnvzGJUmYzdd+1OxU/qOFbBoIfiYBRcYliDNVdmI3BDTg511gNAuROHVSDF28k9ugbnWI626jQuAO3YVfHNJq2erLrD750AsLgDES3DQyr2IOgRe45GogRweLeGYmN1PcOruUIwR31rgMxjRyRFOsq891Cqe68VVckleCSIEoTeUnQJGHwPwIql17XmgcU85vfmERx8huTKE5+YxLFyW9MopTosqNpDjsVSVqIRQX94+qOwRIluPmGUOZLrr8jiJJd63y4LEwXJtGNZpLAsOKIiFif2O+vIVEL3G4kpl2FCnEN/PtewcrkOBt0OPxI3LuAoRgjECXHWDqsxy1OdPP14PsGILrRfkVE7OAcedQMOPJATMtPnfCMoqSeN/VlpGnMERE5LH7qROb10YKfMebPOPmNSRQnvzGJ4uQ3JlHK2Ktw1t4vJVa/V1ccqR8FCH5x6OgzV8Kx1NPs4VYPe/eTxJqX30ts9512kJsvH2kMhnbMYXDGHBxjERFLcNXVILLVILINQRCj0t8L+F9dgcNvCYIdOd26tCvqKTijGOirVAadFypUlnDcEUS3IV2zLouCbUREBev08Ds1RiIgxUhMpZJl6re3C82NDbgNI9jN14OS7mGhzwQ5Dv3mNyZRnPzGJIqT35hEcfIbkyhl8+oHCR5+1EEX9QpEjREIfpegAnWU9GalxtuVDuOIH77T8/kTiHv/ciexH/91JrFvW3U1fgeK0S2IeDS5NSICNB8U1Oi/LcVIwOpTmS+scoRvXIB4uab62+CS2RHonBNwgqJ7jspbQaiiCbjklKN9oFhEBI2LWcMU3EOua6+gFx714SMRkPrt0WdRGMT5znzstNCy+Ktcn29ySvrNb0yiOPmNSRQnvzGJ4uQ3JlGc/MYkSnn4GsZaq2geGVh5swpiMLEnZqq4/7w62HvBtlt/pVN31r9bSOz1N9ro848H7Q/wR2j2rBKyAAAC1klEQVQP8GPA+GtqMtlhih1gg0xVbcdgk6W6+Cko6fwLgAb7oDRvQO29A0tzRMQBLpGU/RLWPoKyT78UNLCP246R4R9C1mdaIyJign0D9L6UuU6Feg/3lCb7bKAh6AoaZtbwa0YO10zj0CMiRvArxUeFPt9ftPoLwDU0ovCb35hEcfIbkyhOfmMSxclvTKKUxzmIEKA3lDOogf7sUj/76xcSy64/4tVraAp6o7X7u6/V8nuquPeHngodr0LFmHsQcohxx5QbasI5AnFvTOJercLZBTQjrcgeCrFRprbUK7CvPqv5f/+iVWFpC+8Jqt2vT2xwiXZhFOeUPoiPYxgrHxFRwv5cwnVfFnpfvyv1uDVYvl9D/f2i1v4XbM9VK+60GEgsIuIcRMlPQ4/97U7P8flQe3T4zW9Mojj5jUkUJ78xieLkNyZRymKsIkt5pSJC8dlTiWWf/yeNfQwxmswTEe33X2ns3XuJzV/p+bzcqZPw675ey7+BuHfTalNPGhndB4de2eHwo4kx1MWgh+40FavOYOoOTYs5wPeRe248VHF1fKZ7ExGxXur9+nGhYup7ED9RBIQ1BuAOJJHzMlMxbdTTvakq7rNQFLq3TaPnuN/rtTzawTUPVHT7Fq5lU+t5U2PNPvQ1mEJT1oiIS4g/O+r7+/NHKppf/a0n9hhj/oyT35hEcfIbkyhOfmMSpex9cS3B/K8+lVj2m3+QWPHp3+lxfRXi6nevcPF2o66j42t1893caknwy56KcT/kKrLcNCruPTQsdH0ICX402SUiogLhjcRB8gdWIBj1wJFHTULXNLYbziWDZp2DGU9SymE2+Wipout9q1dDPjuSSKlE+BNwoT37jT4PvecqumXgxouIaI9UTwyNR/fqyJv9s8Ze3j2R2O/AEtvSzQL6IJpOOlykMxiT/qjW67t4oefd++1nEvOb35hEcfIbkyhOfmMSxclvTKL8X07bDrLn4xEHAAAAAElFTkSuQmCC" y="-14113.695305"/>
</g>
<g id="matplotlib.axis_785">
<g id="xtick_1177"/>
<g id="xtick_1178"/>
<g id="xtick_1179"/>
</g>
<g id="matplotlib.axis_786">
<g id="ytick_1961"/>
<g id="ytick_1962"/>
<g id="ytick_1963"/>
<g id="ytick_1964"/>
<g id="ytick_1965"/>
<g id="text_99">
<!-- 357 1834-220319 -->
<g style="fill:#262626;" transform="translate(15.789375 14221.990305)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-55"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-51"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_394">
<g id="patch_395">
<path d="M 164.424375 14236.095305
L 286.714375 14236.095305
L 286.714375 14113.805305
L 164.424375 14113.805305
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p19efd92c30)">
<image height="122.4" id="imagef5590a9eac" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH5VJREFUeJztnVmPJdlVRndMN+KOOVRmZ9luytgW8MQk/g0/hz+IhEAIENiy23RVdWVl3rxj3Jh4aLsfcq+DTqklHjjfejwVcWPcGdKqPWT/8O7vJ3vFNhteL9l26t3a89T5tfHs1l5gzcysG/1v5lnu1tZF49Y2ee3Waivc2sVGt3aC846lm/zvmZn1k79nLdyz83Bxa/vB359j30adz6ZauLU31dpvB/ewyUr8zcr8MxjNvSY2wdoAa8fR3296J+geXhX++n5RbNzaryb/PpiZrabMrX3M/TP8xvz9PsDzazL/jt1mlVt7N/q1P734417BMQbz52xmdobncsr92gV27zO/6PcUQiSBgl+IRFHwC5EoCn4hEqWsvZ+xBfxN6EEOtSDTjiBE8oDA6EDwGKzR/hmstXBskm6HwcsdElp0XNrOjOVXP/prOYP8ou3GCc4HpE3sucSumZl18FyJAu7PjL4nsNTDMVoQwBUIYKLN+FpGuGU7ENpneO/wPsBhjnCBe4iXc+5PZj6QXGU6eP4dXF8L27Vxj0UIkQIKfiESRcEvRKIo+IVIlJKkTQNSo4e/Ex1JDch22oGIMzMbIFuOsrxCYuo1BcihCwi/E2TZXUA2EbHnYha4PpB7HazRcTK4PpKAJCXpXEJij7RiCccu4J1YwDvRQOYlfXZa2HcJ71MN59IFHssRrpGyVU+UjQlrl8jv5SL31/xY+GvJJ79dSOuSMDzBxmdYO4EQ1ZdfiERR8AuRKAp+IRJFwS9EopSkfOgvwhw0xASy4gKCZg/lt2ZmT9nBrbWQAUcyjjL8SPhhqS0cox3ijjtB5p2ZWRaZffdjoOsj6BypFDkzyLAMHIeKf2sQuUtYoztGd2sAKbWCIy/hvQuJ2BejUnQvfHejX6NsTOKc0/vpmUH5bVv5a6kC8nKgbD4qoYb7eMz889eXX4hEUfALkSgKfiESRcEvRKKU50ApZAwz0BrX5oXfOff948zMnqCvHEo2KpcFkUdrlNkWvTb6tZBYKkF0lZDlFSpvjoGOES0Bv6CkNzqjEq6F+v/RGWaQzUf3ZjH5vRvYbgdCy8xsC/0aX0Zf0k19FEkMD5AxeICy3HMBAhn0+ufMy3DKDjTj+9jDszrDu0wly/ryC5EoCn4hEkXBL0SiKPiFSJTyCfqZ1TDooKKMOlibw0GuIevPzOyq8Fsfob8eZVrFSjvqhUfbEQVkZIUEWw3lmnXu12IFHZ0j7UvHmOVeps1ISAZKrem50hqVDlOZMEnAGtYKeO9I7pGOPFI/SDN7gcy9WLlHPSZJSNOzoj6RBzjuR5Dey3zm1szi3x0S3xcJPyHEH1HwC5EoCn4hEkXBL0SiKPiFSJTyO6htXkDDxQZMYwOpl7Gm+Pvf9FYaU2KhkWIHqbdk9mNTfgmyq2TSzczmhTe0i8Knbs7gmmMbblL66xzMMNlisv2h50LQsXn8OVhl6HVQwu/Rl+gC94aaUdK4eDOzPaTy0jtB0HnTGr2LNIqd/idrmx/dWvB/YX5EKjehL78QiaLgFyJRFPxCJIqCX4hEKT+OXjhsoMZ4DhKQ1goaDxwQbJQ+SY05aY3EyxDZmiC2Th/PJdCoE+UgyD0SdPQXmO4YCTqSezQ150tELNbfY5qtv2exx6kglbcDkbeDO7EDAUxpvGYsUyklmsAR8gA1f6XJTDg1KfPXkkeKvRAUG/Te6ssvRKIo+IVIFAW/EImi4BciUcoT1DFnMAp4gMkpZ5r4AtKNMsHMzI6QlRWbffVjJvaMJF5A0NDvxWYHmvE5VvCbc+h3QDXwSxB51CuB+jGQTKP6eTOzBYlF2JbuRAc/OcI7gZNm4H36HDtdBySgGY8RbyBLk55VC7+JTT0j3yciw2w8fscog5WQ8BNC/K8o+IVIFAW/EImi4BciUcrYzK0WxBk1axxwggjLGGpySA0SSdrFCr9YaXcZKNMqLrPQjLPGFnncea9B2j1kPnPv68GLql9eoAErPJcnkFyXQEVvA2KpgazIDu7FEWTxtvBr73PI5oP35BlKcknEhURs7DtBkGCj9/PUewFJGX5Yrg73MCT26BppHDvKPQk/IcQfUfALkSgKfiESRcEvRKKU1NuNpFQPEgmn4USO0zbjcksitqQ31PvsNRXIrxNkkrUgAUMyhsowqd8fTSnaQObeX3R+7W9t79Z+/jef3Vq59uey+7W/Nx/fr92amdnL4AXkAN8JKsstBxLIft8nEIMEvTstTc0JZMVVUHZO7xPJNOq5Rxl+0T3zArI49vewTBhELKEMPyHEDyj4hUgUBb8QiaLgFyJRShqcQdKuo6w4kDEkK0JirwJBR4MuCOqPR/3sSLI8ll66vc+f3Npze3BrIeFHZcIkq+h8biZ/Lb/qvWx691de7s3/7iu3ltX+Pmya927ttPcjo83Mnp79M3iBZxX75SANW8FtrKgUleQz3NeQVB4yeG/NC8MLZA3ue39/KMMPR6fDyHbK8CNC2Yok90gC0rso4SeE+AEFvxCJouAXIlEU/EIkSrmEUlQSeQSJQRJ+NJHVzCwyyQuFygpKXu9o2AiIqud86dbWRePWflc8ujXK8DLjKb031cqv5f44b0Z/fdczL/zKNdwwEJDTEPf8QrTwvLaFP0fSUjM4n5Ym20JPQepbuID38wS9H9uen8sZnhfJQRJ5scM4iFkRN4H6S+iKyInTIFOp9FdffiESRcEvRKIo+IVIFAW/EIlSPoAka0HlnCFTioZ2UAZcqJQxB7FE2YAkgmhYxQNkyq2gxPRMmYWlX6vn/vf20FPOjAdvkNz7aebXbsDZFCWUSx9g7dut3xlMav/khdY0cTYlfRFIc+1hw5GmJ8MzPUWWwc4hk3OV+/MmGWZm1vUnt0Yi7zT4km7q6xjbM4/WSpxqDaXSATFIJeJTAX0GYV8JPyHEDyj4hUgUBb8QiaLgFyJRyj+Dfm2UK9VCRhZNZKVkvlAiH8xt4N8EVqPf8A04nwZGxJ5BiOXm70NW+B53u9yXA5uxlFyDrLobQTZCqWYG93s4g0x74cy214ywb1WzJLsrfClrOyz8Wg69+eC8aSIvCWSSxQW8PVSGvoBybjOzLofyXVqDDD+ChDS9x1h+m8H9hs8vyUIzzhCkDD+6jxJ+QogfUPALkSgKfiESRcEvRKKUb7u46avg1wySi1BeraBnmpnZDKTPAIMgDuYFTw8iqIwdnoByzq99BVl7C+xIx8zhWhawVsM9K0u/VjQgbRo4HxCaVe5/76rhHn6LK58j1nzjn2HXbtzavvLH3qMEjJvwHPdEzcrAd4ymJ2/86xQ9zZeyA2OzWmNFXEj40W/SOVI5MYlBffmFSBQFvxCJouAXIlEU/EIkioJfiEQpb6kZ4gRphLDzAlbv5r5++ub+iAevFjB55eSPvX30KbX7k0/nvEDq7Bmuhf6XgibIrMDM0yhuM05hpdRU2pvcbg45o5DValnjF/OFN9z0PwBlwCrPDlARnvnx4J/+3T+X30OPAPqfogEsd/8F055eE+oZMYe0X1qjSVHUlJWm+HQ0Mjxyag7ZeppSZGZWQBNV2p+OLdsvhPgBBb8QiaLgFyJRFPxCJEp5W/uGlJfe/03oYapMU3nRQXJv9XMeOZyV/jdPv+dtXzOCjIPSfZwqQ4BLswZ2HkNjhiL7END5DCCCLhcvKvs9CKN5XD1/fuXlXLb0zUTNzLKZvxvVxouuBurTQTXiFyY2bZeg35sF0q5pIhU1BSX2he9h8Ay9Dg7Q1JUkIEHCLgTJTxJ5sROJ9OUXIlEU/EIkioJfiERR8AuRKOXVtc/I60H4jTD5ppx52VBfg1hYcXPF8QhjkXdexpzOXtq0kM3Xwt8yWqMGni1Nv4a1OmiqYAx1pNY6g/Dbnr2MK77xv9d89sJvvvZrzVs/2af6OjBumrLlIs0pZU9SpmNBx4i0gAU80zlMszEzu4eJVHeQ9UlNOLfQb+K5hGxT6FfRgYijyxtoOhYIu+/X/XFI7nWwpgw/IcQPKPiFSBQFvxCJouAXIlHKZhM58aWHMcTwp4MGp0wXFhjDzkuI9uTFTQfZhdTAs4O1I0yVeQHhR+OmiZDwW4AQo8w9Yg/n81sojf148De32vsTWn30Yujhg8+8vN/t8HzKtT+f0yf/XKhcGn8P1ipswErjvf3aDF68B+Nx43/e+XN86P37SI91CyW0L1D628GxqYyZyr6fQCo+ZjRk22wL5fcXkns/orxcCJEACn4hEkXBL0SiKPiFSJSyb6EvGDS0I7kHSUNYdjqBYDEzu2yhbLX3a9DuzSYSfnCSx0i5d4apMpStVgdqd2ewLRV1wqRs+w4ORMKI64b92hxk4VvoefjLf2ZJdrX0Zau7o9/2A9jdI9xbSg4kATXP/LNvoFR3CaLxTyDj08zsXe8l2UPts1qJU+dVZQul1nR9LZz3DuTzx9JvV+X8XCp4v09QVp3DvV3CvdWXX4hEUfALkSgKfiESRcEvRKKUH/7bj1meN16SlKUXC5TAltGwCZBpZmY9ZF+RUBngbxRl+LVwQiSgWjgfkjakXUgChoAqaDvBsWmE9ZnGl+NQCw+Vyx4rf19Pve9RZ2a2PEDZKojTx9KfzxHOm1hN/sHcgCSjjEoac/6m5wdTwx3KYVx5XXs9O5/7TLsJjk39FvdnSHUd/doAmbMj9LY0M6ugH+ER8icpe/IaDLK+/EIkioJfiERR8AuRKAp+IRKl/Ldp6RZv9l7uLSFfrQK5QxJwoGZ4ZtaD9OFSXcjcg2ynHWXzgUyjfEPKD6vgvCmTzyx6ZgdPrAWR14KoukBKJem1Bu4N3UOSeGacFXmMFJV0LUs49huwoSuYulJTeieVrAaey56e7MkLzcXFS+5ZGScLL5AJ2MG7ncN5r0f/NhbQQ9PMbA4ZggfYlEqoV/Ci6MsvRKIo+IVIFAW/EImi4BciUcpfw1jVFxiAcD1AuSXImBykzQlEhZnZuYjTZAUch6TUI2QXkpQiIVKD3KOJs6EzpiuEymibU4YYWNIzHIk6u1HfuzmczQqOOw9IMs529PtDcppRR8glWM43gz/KYiShGXe/dtBvz8zsE8jPfPJvQD1Bf0S4mAreRZLFBci9ioQfiPRrlJxmt1DuvoOJwx08F3oX9eUXIlEU/EIkioJfiERR8AuRKOUz9ACbCii1BclCIoc4Bf7EUNYYQSWKsQMQLrDWQPZVBdfX0cTZwCWTPKOMNcoaNJBV1P+PbGNG/drg+ho4Lk2mNQuIPCo7hmewg/fpDAeawTu2gWdAg0+oByPJ3tD5ZHAvSGiSyKP+eBuIg68Gfz4PgzeI103r1lYbv2Zm1l8gq3Xvpzkfei8BqeelvvxCJIqCX4hEUfALkSgKfiESpTxBPhd5PMrSq2hKb6ScMzPrAuvuOFjmS/3jYGIpZEvR9YGbsxayCJtAjh+WqIL0uYKpqiuYQrwACbiF8yE5R2XHLWz3Aj34zMx28E6QONtNXku+jDxh9jXPhS+rvS0o99JDfQK3cC5mZme43xV88xag92gaMMniOWYR+nNZ5v4cb+789OTFVzw5e4RLnH/22x53Pluxbf291ZdfiERR8AuRKAp+IRJFwS9Eoij4hUiU8gUsKflssvj0l4PSTadIqx/an45DjSJ7MPt05AwM8AGOS1aYmmOamRmY6hv4H4BrqHh/m/vzeYCmkJ8yb3E/w/8KPEI3y0ew9Y/YIcDsefLrh9Gf9xn083ny203wXJ5zPwZ8BSO/axgtTf8z08EzNeP3hJ5rB9Nwbs2fzwr2vYPnfAf3a7PyabvNNTTGvadOEmbZDP5H4t4fZ7E9uLXuhRqKCiGSRMEvRKIo+IVIFAW/EIlSfjee3CLJvYLWKK3xR54Qi7y4cdV03iQvSzhvEo0khuZY5W02g23Pud+2gmu5uvLPYAFjn6edP8ctDBJ/gdr7D+Zl0+PopZuZ2W7027YghknkjfBcSPhuB5/WSmszaFDZgJwrQQyGjn2htwK6lr4pvPAjufe29/fmqvD3cAZjwCkPOGs4zTn/6a1bKxr//KvBy89m7++tvvxCJIqCX4hEUfALkSgKfiESpXwZvPSpYWJPDeKFBBtNWAll+HUgv06QIXaEGvEB9qXzmcG1kESqQAIOIPcKmkFu3Cj0BBLqDFNXjgcvls6Q4fcRRNd7yuaDLMI93NdLICuOpB3KVBK+cH+wxwMIxBay4miNzo8kYOjYxADvBE0+2kB6YQND32n6eQcSt9v5tfrCzyVb+B4I2bt3fm19hfu/Rl9+IRJFwS9Eoij4hUgUBb8QiVKSjKNsPiqtnAWy3V7T4dBnswHWSe4dQEp2IzRmhIw6OkYONoaumbYLCaSestgge+u3hc/I+tR64beFUt3fwZzl31Lm3uTXzpShFxCxFTzrAr4TlOFJ4pT2ncMA9BNIt3Ok8AuV9NKx6foaWFtAs06ihTg4QfPW0SfZWfHk38/q97ChmeVXH/3+cz+xZ6r9Wnb71v8eHkUI8f8eBb8QiaLgFyJRFPxCJEpJmVFL6KU2BxlDkoxKbWnUtRln6f2YtZzGXwMkqhZwH2rK8AsIvxMIp29BGO4r+k3PNvOC7iOIvEcoyT6BJCPoPpgFypshc4/KaKkMmrL+aDr7DH6vp7HrIC/pfTBjqUkZrA283zQDaAsz2nN4gmeYwtQM/hjtFtb+g0t6N9958T3/p39xa9W1XyvWmtgjhPgDCn4hEkXBL0SiKPiFSJRyBYMglpmXX03k34kWMupCkowHdFAfvrj+gbgdnDeVJ9M1l/B7lMlnZtaC8DvDvdjC+ZAk3YG0exq83NtDHz6SX3S/arhmMxZi1A0xtlyWejBSOTGtUYbmFw2BgesmsUjv6AEGnXyEMGhJIMMc+AoyBmcTZM62PgvUzKx8v3Fr3Qc4bxLNcN768guRKAp+IRJFwS9Eoij4hUiUkjL3SHSRTIvdjjK8zMwuIFT2VBIKayR9MJMM1igLjYZu0F9GyuQz47LlAYZa9LDdBdb2MDiDJuD2UNqMgzPgXEJ/+ifoU0d9DzPoXTfCs+pJhkKWHpXv0r5EKFuR5C6VotPze4L7TRL3CKXkwWnOEXCuotkZsh2f4RxpyvIzvE/68guRKAp+IRJFwS9Eoij4hUiU8iqQ5fUa6s1GkqyCsloaaGFmNkCPuxcQE7HCj0pMKcOPB0t4OLOQ5WUBEonuD+WmkRjk/nhQ/AuTZEmSUdYfyUIzs4nqbeEGoWSD49BwFpJ7NKCDroWOG5rSS9tyRqWXZPSsKDtwZyQV476rJBrPAcm5h3OkoTs7yAQ99BJ+Qog/oOAXIlEU/EIkioJfiEQpH8wLI9JzJfVcAyE2B+HXBoYfQJsze4b+gZTZVsPQhwbk5Sb35ZEbKGOmoQ0jiLglyJ3v94eyTijXpCwtysg7U/knTheOG5zSjj6j7ghy1Yx75GXwXGcT9HWE8yHBSsKW5B4NZ/mSTxaJzgNkwFHpMO1L9/sAz4V6AhIXyJIM9WDcg9yjtdPgr+8y+GeqL78QiaLgFyJRFPxCJIqCX4hEKe/IugEwINZqkoBUxhrIistBnp3zhVujsmPKOFzD7y1oujAJSLgWykwsAv3jViD3ruA4Z5CkFzjvAwztOJGIg98j2VTmcaW2ofXQUIzXcNYfbBf53cHjwlKf87XETvmla6Yy6BqGu2TQM48gyUmlzceBRewB1tvBX1/ss9KXX4hEUfALkSgKfiESRcEvRKIo+IVIlHIJYpAq/Bto6liDDa3ANI6ByS412PCqbNzaFtJxK/hN+t8HMs00evkINexD5EQaM574QqnONWx3Aju/h7WD+bRNaghKNptSbENNL2NNPO9LDVzhf1xgKlA2+H1HeJ/ImlMvADPuTUD3B0e+wz2jffG4dAxYu0DaNaVXm8VbfEpBrksf1fryC5EoCn4hEkXBL0SiKPiFSBTQAGaL0YuFFawtoBa5hJTYPCBJNoMXE6vBi6CXApowgowhTdKBszvDGrgm60DYhRwg/RWlSvsFOJt7SL3toA/BGVJYqeEp1sWDLAoJJJJaJPJ4fLaH9o1trIrTh+BdvEA6tJnZSM1IIyFRSWPJY2UqyUuaKEUp22ZmFUwGojU6dgN9MvTlFyJRFPxCJIqCX4hEUfALkShlDZl7JPyWoNNWlc+qamq/XVEEJvYMUJPfeuG367ys2EIN/BHE2QlqrelsKDuwoz4EX+CP6Dibwf/AFZSiXxXQm6BYubX/Ahn6aTi6NcoaC9XzU3Ya1bZTg1OSgNn/wTcmJC9D8uw1oTHyryGZRlN8aAw4Tp6CqVWhDEu6twRJSWr+qi+/EImi4BciURT8QiSKgl+IRCmp4WYDYmFZgvBb+uyy+cpLwKIKyBj40zP2XlasX7zwK5+Xft/JZ8X1IOioxHjC0eJ+3y5g/GidtryFEs6H2o9UvvT+5tz1vrlpWfu1LocMOMr6y1j4lSCraAR2DWW5JLoIzIqDbxEdd0SpGF9+HZuRR5KsgQaeKyg5X8K+9D4cYerRKZCtSNKWnmsL2x0gE1RffiESRcEvRKIo+IVIFAW/EIlS1pAZ1YAIamoYkz33YmG28mvliiVZPoNyxgIm0Jx8xlr+GyhR/QTZfCOUMsKfvIHKd4EuUCJKSpN+cQky5/rWXx9lP06P/hd3vRef22rufw90Ux05RtrMbAGii0adz+B70sHdyWmUe+HvTex0nVA/wlgRSPsvCi+Qb3N/b9/mvu8kTXAa4N3Zwv16DpxzB9dNE4lobDf1ONSXX4hEUfALkSgKfiESRcEvRKKUNQiVGfSKm838WtVADz+Qe+Was77yjRdG2dJLlnLwx7mt9/CLL37p08YtfZj8cU+Q9bUFUbUPlME2kIlGanA3eXH28uyFUVlSFpv/xfXgt7svvcjrQFQNmT+umVkD8usKBNYCpB31TNyCQK7gu1OUfucl9J6jrLbYklwzLkUmVnDs+8y/n2/hma5Gujf+uNTD7wx9MM1Y2h4hc2/X+4zRc+8HvujLL0SiKPiFSBQFvxCJouAXIlFKzOab+Uyreu4zhKo1CD+Qe8Wdl01mZtndlV+7WuO2r5ldb93am/yDW2v/0cuPb05e2nwAyfnBvEwh6WLGgyn20J/tG5Bx57OXkisq1YRjPJUw0ATO8RpKRxeBTLJrmGBCvQdHkFWP4HZb+MbcULksiMZryCJsQcSGngsxRAq/NZzjHcywXoPco56QNFl6BddM25lxZuNp8CKP5N55UIafEOIPKPiFSBQFvxCJouAXIlHKZeXlwHoDvfnuvDCYPXghUjx4YZff3+DBs5/+xK/d3PkNoQZ3+vzJrVUtlB3/q88EPMKY3s8wlOSJ+p4FMskoY+2JJrWW3oid4PpWI4k8z4cSsr5AiDUkm0BUfb/u12YgsHaw+x6y2Ki/YQHZgRvo/7eANcqAu3zBxGF6hjN4VmvIatzAedMXFKc+03ZwfufAcI7j6GO1H/1bEZvBqC+/EImi4BciURT8QiSKgl+IRCnvvjq4xeXXXn5VP/O94ooHL/Ky+zf+KD/5GR48+8kv3Fp+/datTTA12Ob/6X/v22/dWjXzmYAt/MnbgfDbT16wZIFefwVMA2YRBAIKhl/QpFXSQKEhIjG/F6IlWQXX91T4Y+8gY5RGUNRwH2dwjiQqwXHaMXB5dM8oG3Mz+ad1C9KVMvdi5d4BMj4/QU/Hb3sqVzd76vw6ZfgR1KNQX34hEkXBL0SiKPiFSBQFvxCJUl79NfRS+9pLt5xE3u2tW8quYbu7r/Hg+f3P/dra7z9BieJw+OyPvfHZhdWcs6Ve00K55GHwGX7Uc82MJVIGkoxYwN/gdey0WzhuDhIQ+78FTo+mE5O0i83mo8EZ9NWhUlYSgySvxoD3pL55lF1IspHk3hzW/FsSksr+XXw/+pLzDxcvqc3Mnlsv51so1aV3lN8TIUSSKPiFSBQFvxCJouAXIlEU/EIkSln+pU+xzd54455toCZ/sfJrc7+WzbiBJxKoy3a/WfomnNNi4dbqe/97N7/xyraqqH4eziVglWmKTA/79zRymn6Pprtgyi8Y90gL3wVSful/LuipXAKTZWKgY5DZJ7tewXYTzV03s1NkbTv1SqA0ZzoKTSk6wTOg1OcdpOfSOG0zrt2nNSJXeq8Q4o8o+IVIFAW/EImi4BciUcrs63duMVv42n0jaUeSpfMCY9r7VNzv/wGaD0K6ooHcQyo/TaW88rXyD3CMa9h3BhNbhoCQnMGI7jnsT1Ng5iCw6Cgo92C7E4lGEF80IcfMbAmNK2tKD4Ua+B4k4BSZbkxAywDUlE2gzwL1KG3h2LT2GervKQWZnhU1UT3C+073gdKXzcxmRdz7OED/iwmev778QiSKgl+IRFHwC5EoCn4hEqXM1n5MtuVQS04i7gK5aR1nJxHTwdctTyAMszVM8aHziTw2jSVfZF74zXM/HjrETd64tfvMi8o7GJVNWWxED/KKhBFNr6EpMLPA3/5rkGck1KgfAGUNHinjENZIulVYm+4hqWjGkhSn5ICo5N4EnhrOiCQg+EMWxYH37lTGvY8dZP2RGNSXX4hEUfALkSgKfiESRcEvRKJ4+2Rm1vmWhNMF2hQeYbLI8ejXhkDZIZTgYp5W5UXHdPbNDG3rBWL36CXgbvJyj4QYlZ2SoDEzu8n8OZLcu4KUM3oIVOZL9cQ1CDEuyfX7riBDz8zsLRw8o1HXBck9WINjkNw7wloZWVZL5bdmZhfK5gPZSNl3se9ECdfcwL1dQnbnEkRzU7DYm49xwq+MHNutL78QiaLgFyJRFPxCJIqCX4hE+R8yyYsrng6e3gAAAABJRU5ErkJggg==" y="-14113.695305"/>
</g>
<g id="matplotlib.axis_787">
<g id="xtick_1180"/>
<g id="xtick_1181"/>
<g id="xtick_1182"/>
</g>
<g id="matplotlib.axis_788">
<g id="ytick_1966"/>
<g id="ytick_1967"/>
<g id="ytick_1968"/>
<g id="ytick_1969"/>
<g id="ytick_1970"/>
</g>
</g>
<g id="axes_395">
<g id="patch_396">
<path d="M 299.674375 14236.095305
L 421.964375 14236.095305
L 421.964375 14113.805305
L 299.674375 14113.805305
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pbf1a253984)">
<image height="122.4" id="image90c49c8f3f" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnVmPJNdxhSOXWrqquqqne2bEISlSlC0bkAA/+MHQL/Fv9d/wgyAZkiVCMsmZnuml9iU3P1A24DlfCkkbftE932Mgs27mzYxO4PSJiOxfXv9zFx/x+9Ho41D8pqwk9q47SyyPTGJXUUisj1M0GusoVkusCbmV6CBGXGCNbXPSddsLnp/BfU9y3cdRpntR0dr1cVDsVOv1FFkusVk50esr9Poi+LpX5UxiL4u5xEahaz+0et2P9U5iXafPalbodS9yjY1hXyMi6mgldmz1XSa+LFcS+2Wj+/APtb4nt3O956LQa2lbfW/qWvcwIuJ40eeyacYS+5CXEntf6jq8ijHmrx4nvzGJ4uQ3JlGc/MYkSjnPVDi7a1Q8eVWoiHAAcW5Pgh3E+rh0KoqQGEdCTgXnNhTDc3WNFs4te4QlEsmuQZii8+n+iDwDMbVQwYfEx1Gu65IwGMGiLUFiKp15nes1jkZLOFfPnmX63l1BbPIDvmPnnN4xjU3hNyu4wVMHIm6lsabRk9tW17j0CH4nyMsjXOM513XoDfOX35hEcfIbkyhOfmMSxclvTKKU41ylgEWj4seLRkWW51JjJxBOyKEX0Se8gRgDcgWJZCdwbl3ICQhrkLuMmILAFhFxB263GxL8QNQ6wr3QX2VyB9L9ESSmDXU/9kHPqgQRcQwOzwncyxRi1yDuLUFgm/d8xyad3vc50/t+hDzQu4s4wblPIKaOz/qeFHBuA9dX9dzLCeLbQmN7ECVriPnLb0yiOPmNSRQnvzGJ4uQ3JlHKEsoMxyD4XbcqVsw7/dsxAmFpi9IJi3ZDRcBzq0LXGQQ/EgFrWJcEselA115ExF0+ldhtpufTOvvQe2lz3W9y5NHekJDXgqBJe913bAHfiRbWobJqcgyS4LcAcW/VaewO3ru7HpPkNbzLYLSLb0G8vgcn4BFEu7elXs+h1fchh30lR2TfF7kCh+cGDt7Au3PB52KMSRInvzGJ4uQ3JlGc/MYkSgnVf5GDODACMxi5p0YgSvX9hSHBCUtwIUaiHbndLiAM0rkkphWZintzKE+NiFiCWDUDYYpoQPyah/4eCWdNBn3hYA0qWaay6O+P1TjdydDSXzpqaEx3gd/FKQjSERFLcpfCoSdQAXeQHAc4mYTBt7BhFeUViaE9+9rC89rD899RbsC5/vIbkyhOfmMSxclvTKI4+Y1JlLJuwDUGfxOoJJCgw8gdFhFRUhx+gGSpvv5zH0NuNyrfJbdaBo4qcuh9v44yrNg2ooDfpFJWihHUj+4EwtChpxy4hmMJ2gu6F+o9SKXNFKPfK35AJXI9UJQkSlqHevjBfq1hb7fk5IR3kcqiI/gdPYKgvYfBMuSm9ZffmERx8huTKE5+YxLFyW9Mojj5jUmU8qlWC+sTjPhdF2B1BJWT6rkLUHsjIibQ2HEEsZLmjcCfraHWYIqRIl23MJGoZ0T3GpR4Umcn1OASbMArMLYuqH8CWVWpySQ8qy0854iI88AeAfXABqBkAx7DAyQ79AIs5BNYtu9Ktrn+ZgPXs4H3u4J9pK9lBtdI/y/Zwrtz6LTfBFmxI9iqTj0sjrDOudHj/OU3JlGc/MYkipPfmERx8huTKOXvRtpkcg0NADdkYYTx3iQW9THuGXctx8HfKGoASVZQbDI5UASk/gBPzaH3OuU3iyuJ3YX2A7iF+/sU/NSvaxWCpiAt0WSXh1L3aw2TZiJ4og2Npj7C3pIIXME1XsE1rmBc9RK0rwlYYun6IiI2IPhR08stXPeZGqHCGiQM4uQpEPI2zVFix4ZFZYqT4HeuYXIViIX+8huTKE5+YxLFyW9Mojj5jUmU8jclCAZUD07CEk3cGTiVJILrlrEfANaDw98tCFGTyhM4oEhMIRHw0JzhChkaqX0DU4Bm4BAjce/zkYqNV1OYSFTrRnxy0XVPFxb8LuCyPMDmPoGI+Baccmt4fiTOUkNYukJy8+2pE21EPIF4/QHGce+xwSn0goAYjaVft/qeYJ39QNdeREQFx1YNNKgFZyr1sPCX35hEcfIbkyhOfmMSxclvTKKUHzoVIcidRMIZle9SQ0Ka4hMRAYeiuDd0Mgw1CiVhcAzlt1XWM+P5I0jwiegprYRyTdqzK/jJm9BzVyt1g81WUKo5Guay7Fre1+YMI6c36kx897yQWB06mvpY6jq0i+SUO8L70IG4t4FzI1jce4TnQs1MacoNufToOe9BGMZSW3hvSGiOGN5ktgTnJuWGv/zGJIqT35hEcfIbkyhOfmMSpVxAr7gjiF8XEN1IGGxAeOmXn6i0Vo/qm5LzMSTGUdnwTTmX2KzQXobUS61PjKG1ycU2hetZwU3fTFUwWrzU2OQVCKRLFefymTr8ougRYiu97/m9io35r3Uv7h907bcg+O1x3LReC5kQL7DX6x7BlsS9/UAh9gQi4BEEul1z0jVA8CNxj9x4JOxFRDTtMCGX+lHSBHN/+Y1JFCe/MYni5DcmUZz8xiRK+WWnAg0NeNiDoHKCYRoV9j3rETCwvx70QwNxiAQ2cvPd5uo4m0OhKDkLadQ1jVmOiNiDmLPMdW+/aFV4+0mrgtGrz3YSm/4YrvuVuuyylQqa2RKOG+v1RUR0F3Wi5atHiS3X7yW2+qD7U3Z6z2cotaWegINLaEHEi+DnQoIYQULz0J6Q6PisdV+x/HbgMJQIdtRS+S7hL78xieLkNyZRnPzGJIqT35hEKX8KOskH6M32AMMPdiCcUVlmn4BBfqUDiIh7ENlIGFxmKix9BkMy3jQwHAIsUKBJxaZQATGCe8VNoWT2Fxfd8C8/f5LY7Ce6RvlmKbHs5lpjKz0ulhAruIdfdlIBMo4aG61gHwsVta5bfQYPILqdQFQmFyn1k6RS2z5IyCM3JpWxU2ksldUWUMZOQiPlxgX68kUMF/foN+lcf/mNSRQnvzGJ4uQ3JlGc/MYkSvllaKnm1UXLWycgAj6DYERCHIkpfWyh5PUBxBPqr/YyVPD7MQyw+KxWQeVFrkLV1Qgmm+ZcVjmZ6LHTmYp75UTPH69UrMpKKMEF0TWuQICczTQ21mcaPcJSVHrd3Zknx37McqGlrJ+vdVpxBc/5A/Tmo6m/o79QJP4xZxCQh0JDZagf5QQGsXQFOFDhnveZCqkkzkVEnIY6BO3wM8b8JZz8xiSKk9+YRHHyG5Mo5euXWjo6eQbx6qKizXWr/f+ISU/fO+IB+soVIH7tQPRZdXruApx7MxCBxgXExroPN69VII2IuP5H3Z/8iy8l1v7HO4kdf72VWPUeSlGXKg7lIxAGF+r6iwKeFQh7ERHdQacBd3tw/QGLGxX8vrro/Y2PWmI8L/Ua3w+c+tunKZPYjKXk5LSD95ace/NcxdQpuE2pJ+Q413vuK4EncY/6+g0tCfaX35hEcfIbkyhOfmMSxclvTKKUNz9VgWb2oE6i+XuN3e3UXUbDAcqSBb8aSmsntf7mGabq5iQM0mARKDGmUuSotOy06/T3Xs5VII2IKH72hcSyr/5WDwSnZPGHf5NYvYPyT9rcOfTru/tEjwOhqot7PS4iMir1rcFJBsNGCnAwzq/13bm96Hu3bnXdHbr+NDbqUfwoPlQErOHb2GD/R3gX4RppDSrzpf5/EREVODJJ8Ksh3VoQL/3lNyZRnPzGJIqT35hEcfIbkyhOfmMSpZz84pUER897iU2+U8vn/BtVcU97VeYbqKmPiDif9djZEcZDd3rcHoRvsjUeQS1eg2J7AGtwC+XuIOx+z5Qbew6huKZGmlDjPxlm5c1e/EiPK6Gev2/c+Hu1INPY7nqj557Weo3HvcZODfSC4H6iAh3W1zOC4nR+SdN5oP6ejLMNWM2pSSip/VdgA74u1SoeEXGBF5KmBR0rqvvX3/OX35hEcfIbkyhOfmMSxclvTKKU+VdgS33QccxZrlbQyUGtrtVJRZK6YjGG7L0kQRUDm4LSuRSrwFJJsQPYTastq1Ld/QcNwqjr7oNO5wkQJbMR7FkDzShP2l+gA8EnA/EqKrXYRkR0O32uzb2us71XEfHpUZuHbmoVtZ5A6CLbLgw9QsvuBKzYERFNr0L70ToUJFEZlqnoXRzYRHMK1vVVAQ1YIwKGT6GwSLEDPGt/+Y1JFCe/MYni5DcmUZz8xiRKidNdQPAJqJ8nLaUFReRyYZGsAktXNfDv0QT0FBJtRnAcCYhEBTe4fQCnXETMfvWNxPLbB4l1B63Vbg9UK69rtM/QwPObb/XAK63xjxH0K/j2T3pcRDS/03vZ/1H34vlJnWgPte7PIzSp3EBjziOIaTQm/QoErbLnvSFx8AxKHvV9aKhvAAqLIFzD71G7W5oANO44X0gcHENs6Hhwf/mNSRQnvzGJ4uQ3JlGc/MYkShkwnSUO4Bo7glB1oSaT+nNty39jGrBvtSDQ0Nkk5JHgR+dSjJ2AGnvcsPvq6re6P7PXWhqdjWHPLiA2naAkFMTCbPydxApqtjmCyTDv1MkZEVF9o+/Ecafi3rHW36QR688g7h1ILIZroee8gAOLHoffGYSuNaiIW1idXJ8jeHsyEBCHTs0hNx4YPv98sIq2L2Ba0KrQZ/V+pFOT/OU3JlGc/MYkipPfmERx8huTKGX37VsJtg9riTWPWhJYH8HZBGW6P4QchJJimHYSoJGhsETiEAlLVCb6HhxsERHzBxVZRlcqvJVzFZZI3DtvQKCDve1qfS7Ti4qA2UxLaLsTNCmMiFYrgiMDxxo9KyrBbSg2UBCj2dv0rFYN9yMcgZtzCW7Ve5ikRO5AKjuucNoP7dewSUMz6Cf5fZycjcoxV1F6O1nB9RhjksTJb0yiOPmNSRQnvzGJUl5+pSWh9RrcTtC77rhVEamqYBgDqUA90F8jkoY2cOC7XAWsAzi3ZrDKCsooSWDJceRDxPKogt9qr07JAmqRm7Nez+mge1vXujaVUEeoCDi6oQkkcGqwS5PKt0H7QnF2Sq5PsLENdfhNQMRbdSxe3pSqXr4E4XR5ViH3AUTATa7nHkAMPWNJL4l7GruDcu6IiBfg3BxTeTKsc4Lr9pffmERx8huTKE5+YxLFyW9MopT3/6rTZUlYasCmRUM3KHaB4RcRERdwMp1BrNiBOHSfqfjxbadC1xma4d1AaeSYSjWpp1xPveUHGELxcq17W4xUBKRBJw25+UD8qi963PFJr6U56z7kI3bFtSDa0joNiFUTUAtfgIC1ABGYnIDUw++6hWcKwl5ExGql+01MNvqbs0qf3w5Klk/wotTY/w+uDybv3hY8TGUygUnJ8J4cG/X90QAaf/mNSRQnvzGJ4uQ3JlGc/MYkSvn187BSP56AC6INHEfDLyIiziCenSD2Hmxjz6H97A7g8hr61416rnVwf0dwbkVEPJS60oe9llaSiFiWIMaB0lWW+hTyAtyYMCSFYlSmGxHR1Hov+4OKpCT4TeFNuYbnMoLj2K2oTGG/+oS9xR2LZ7I2qI3HNRTMkgAJSuwUBOnFWN/Z+UKvbzzpKbUmcQ+coEFbAYnpL78xieLkNyZRnPzGJIqT35hEKb8pVTAY+hfhDPoMTVo99QhLNBSjAiFoDeJJBSLLHCaWTuBuZuDSIiGH+rDVPZoUuRDJ9Tc7amwx03VI9CnBkZeDGNpUw4QhKr+O6HFpwkTlAp7rNAdRa6ruu8lU769PgPwY2ofZna4bETF+BX0mL3r+ZAti8Rp6FMIaswxcjXOdqLy8VSVuvNB3u0cf556ZIJJ2VIoO9+wvvzGJ4uQ3JlGc/MYkipPfmEQp/1SqqEGlh1RuSf3xNiDOHaGsNoKHHbTktIProX5oNyCwLaE332igk6ynlRpyhus+gAh4blWUXObq8iJRazwbVpbbwcMiYagGJ18E91zMQYwrQOiajPQa5wsV/KZLFug+pob+htg7cMHn5zfamy+DacejKfTHA/cktImMFt7PAs4tJxrLIP9w8klEZOj61OsejYZ90/3lNyZRnPzGJIqT35hEcfIbkyhOfmMSpfx3KP69Avsr6Y8XUPt30JDw3KObU3NNqqsv4G/UTa4q7giOm0OMRm/Tfx5o6kofNGqZPMPVQNWdrK4ZWHnzManFGppc6XOhppwRbA8lyy9BKjf9p6GBtamR6X6nfQQuYEt+ceJ6/lUBcdiyDhpcjke6Z1Nojlmg6VdpyRt+Assu+d6D//NxOcMod2qOCv8B8pffmERx8huTKE5+YxLFyW9MopTv2oMEr8AmO6UaeKAG8aOimc8RUYPg16Dgp+cfwLZ7ChU/LvD3TSUkJgcRr++vJbk0iROM+N6f9IrIwjo+QyPMMdSDg1hIIl4BDUEjIibQS6A76TtxhslOx4NOudkeVZwla/Ch0TXuc43tYNz03bu5xCIifnZYS2yxUjv1BcRG2rNxDvuNQ+QV6rPQgMuZriUi4gzPgHoykN24bT2i2xjzZ5z8xiSKk9+YRHHyG5Mo5QVEN3LUFSB+TUAEHA8UBvt+kxp4kuuvARFxD70ENnA9Ldzf0ClFfXfXgkJ3gdgRujNuGhX8TjsYqbyn64GaeqjxnoKIN4La+wh2iJG4975RIW9d0H4rtN/HUtd9BFfjBsTCb2FiUkREvbuR2Kd7ba5JAmQNIlkDV35VQPNPqL0n3ZsmKR32LEkfLzB6HZ4V9juA+/OX35hEcfIbkyhOfmMSxclvTKKUJLo1INGQc49KaKcgieGEnIiowYlGZcINdfAcyAkETeirObipJ40lj+AGnmdQXmgE+QjKZWsSQwde41Wle7gAK9kVlKxGRFygxPhdo86970b6XDfwOSHXJkHvw57cnSBe7Xqey2/HIKjVVxK7IlscMIZ3cQIjyMcwkaiAzrhnmMKzP7Pgt2tV8CMxdQrv/Ai2x19+YxLFyW9Mojj5jUkUJ78xiVJOYKw1iXvUb4/EQhL3rmGNiIgMzifBj1x/JHTQFJ8CRDc6txrYr496/UVE5NQrkCb2gGjXM2xGoJWPUN56oR6F4ATbQ/+3iIg9iLZ/AuHsPh8mxpGsSK5Nei4kFvaViBPfgdOuGsEodyp5hvfpBZgiP4EHM1mA649GYW00dIZ+ghERD7leN7X7m+CUKj3OX35jEsXJb0yiOPmNSRQnvzGJUt7m6tx6brXH2VDRjUSSacd/Y+hYGn5RQRnsUNcYQWITDYwmYalv3QaETrqXGQiQFcRIfyRxb13AgA1YdwzPoK88mVx630HvumeQ8s6wZyTikoBMezv060TicQT3daQJ2FNYiZ7fCJ4BjUSnASvwGiP0/CIitiAgP8NDpDeUcs1ffmMSxclvTKI4+Y1JFCe/MYlSfhUq+H0DosYJJu1S+e7L0LLDFz2CH7GnQaagYIDGgk4yEpFOIEqdQZRCt2GPu+xEgiiVURYgQA38G/wEItJzpndNLkQUr3pKhI+gNj52F4ntoZT1BDHqE7lv9fdoiEsGYij1mBz1lI3Pcy2PbcD1R4LfGF2b+nuPF+1l+PpJjysnen80oTnvEZXpaZ3gWR0GivP+8huTKE5+YxLFyW9Mojj5jUmU8ucXlRFWIxUBSQSag6L1ApSFaU9/NOpn9wCOtY4mutIgDxT3VGQ5gHh5BKGKXGh9UN9DckVuQZb8I9wzCZCbTn2IpxZKR8ll+QMGrFStrk37c4TrOcP1nEDcO0KsaqnfIk3KhZJcmOYb0TPwBfa2JHEP9qeBPLgba74s7lcSW011WEgFw1BoMEgfJO5SWTUd5y+/MYni5DcmUZz8xiSKk9+YRCm/yg4SfAFDAxosv1URYQxiWtdTorhpoScZuAZ3ML0VhQ5ykoHAtm9VqCLxilxRo766TNA0yQ34FCr6kNuNBDGaTEzi3ggEsXmuLjQq84zgHo4n2LMzxC7k8AMRkO6lxeEsut90XF9JL8VpbRIBz3AvMLg3fg+uzSVMMP4UBnSQm2/XI8TuYG0S97Zw3Rb8jDH/jZPfmERx8huTKE5+YxKlXC1UgJrXKja1VJ8K1DBx9lTxcIgShgvQKuTc24G49wxlp/8XZxq5w+oeMabPLfcxVPK6rlV0JTGNxCtyu+VQQk2CXR8k2qG4N1DIG+rSo/ujc6dQVntT6OTdiIgFCJ1Uqkvv2NA+kY/wPv0BJhjXmV73BMTLHY2RjohHGJLyBM9qB7FhUqoxJgmc/MYkipPfmERx8huTKE5+YxKlvJqrQk50NPb5oormYa+KZttjvST7LKmSfNz/fmIPqcr0e2hVhVhExAHHg+vfVmpSiY0rB/4e2XvxvxQ4IYebkZKKTzFah65xCrX2dNzQZp3LQuvnf1TMJRYRcZPp2jP4LxNxoT4SsI9knf0uNK9Opf6HgxqHUrPciIgPMFfqqdPpWtTDgjLQX35jEsXJb0yiOPmNSRQnvzGJUk6WIOSAlZfGEBOji4oN44oFjEmjAsgM7I4rsKs2YJW8BssoTedZg3DyAJLIutFzd43aoSPY1joUEs766tM/piVxDxph1iAi9Ql+Qy26BViaqZHmBEQ3XBeuZ5JBrTxYdm/hfYiIuAVxbwHv04SmQlFvCXjH3mbwPoHVnGLjHzB+fgs9Hg5gLa4GNp71l9+YRHHyG5MoTn5jEsXJb0yilOVCxYWu1lgLk31IYskydRyVJQtL44PGx9A8dNZq7ABjxI8gQG3hz9s9iDbjAtx4IED1CX6nBibQgPBCjjx07kGMjqPYUH6ISDnKaeKP7uMV1NpP4Thqbkp7Q30S5iAgkogXETEHZyqJexSDSd4oxD7Au0NNYp/ao64Bv9cn9g7ts4DNUd3A0xjzXzj5jUkUJ78xieLkNyZRyuIKJqJU4DgroXxzqoLW5E5ji5zLYF+ctHHlyycVh95sVEQ6HlX02YJY+FCDAAXNFaNQ19gervsp3+u5EbEd6LTrwMGI4h4ImkNLeqk0ltYlEajv2BqcciWIcSOIXYFAV0K5LJUd07lUBjv6IRN74LgDnQ6xPaiAVEJLTWIPjYrhQ8W5vmMpRo5RmnLkL78xieLkNyZRnPzGJIqT35hEKfMZTM2phzm/8oWKafndQn9vxtNUotV1ps87iS3ebSV2ea9i4ewbWOdRr+cM45O3ILDdQJnoAvrHfX++urdI8KNeeC0IRiTadNmwnnlD2xv2OfzouunYGYikVIJ7Da4/ErVoutIYympptHjfG0v99aph1dJBVewHWIlKcGkfaNLQoVURsIZ3JGL4hKShzk1/+Y1JFCe/MYni5DcmUZz8xiRKmS9VtAkYEZzNVejKXt9p7PMvNHbzklevVezIvvsPja00Fvk7CU2f1VU1flbxqgA9hEQkco1ReWoE966rc12bnFYk7pVUQgulyP8fJb20Nrn5SPxcgkhKgzMa2IcCnIlDIWEvIqKC3xzBofRUqaR3Bvt9G3p/ea5DRKgUeQ1DNz7UKnpHRFTUmxFidBy9Y/7yG5MoTn5jEsXJb0yiOPmNSZQyfwOi3fJaj3z1Wo/77KcSyz/5Gz3uCn4vItrNgwZrdTFl9+/hZJiqe1JB5QiDQQ6FikAHcM8dcNAFC0skxjWFil8kppFoR79HPfNIiBtaatsnFlKUSmNvchX83kDsGsqBz1R2CjHabxogAq/D98dCbEJCLmifLO0q1ySGgmN0Cc/vEUTArGThk8Q96uHXgpBLIqC//MYkipPfmERx8huTKE5+YxKlzP7u7yWYfQIuvdtPJZZfg3NvDGW1Fy13jYiIs/bD6056bLfT8t3qQQWM7VqFxWdwXz2B4PeUqdC4AzGlbwIqiWfXpe4FHUflnyzagTAIJa9zcBvewD6QMy0iMEp3TV+O61aj0P4xNmCfq2AfLlBCS87LPnGOpDNy+F3hIA8NjiC2hFUm8I6NQATMQfC75FwCvyvVDbipNV/IRYqTl3EVY8xfPU5+YxLFyW9Mojj5jUmUMv/5LyWYr9TNF4UKE90JBLv7P2js6S0u3j1C/O23Emrv1xI73EN5JAztWMMEVRKb9iDknXvEPYLcd1MQ3hZQ8noF55KLbWgZ7C2s8RVMOv4chrNEsKh1gDLvI8QIKhw+k+gGwhkNNBnqQIzgsly6HorRuROwEhZ4tgqxVF58hNi455tMLk16T6h8t27s8DPG/BknvzGJ4uQ3JlGc/MYkSlm8+lKjILJ05MZb32vs/muNvVcRLyIi1irkte+1zLd5VmfT6aClo3vweZEoVfWOePiflOSo6+nhR9rXItf+iHeZxhYg5FBPul2oC5Gm9FIJ7Y9q/b037UViEREZrL2F0ug1iFoHEKAq+MTQV4em7xYDp8uOewS/H+IGHEIBezMD/+MIhMFzqwLwA9zMCf2UEXuY8ntu1IXawDAcwl9+YxLFyW9Mojj5jUkUJ78xieLkNyZRUPjsoP6+26sy3510dHa33+gPbvW4iIju6VljMKK72ap6eT7rpZ9BnT8PHAIzhnMXUNle9Fhax6DYUw39a4gtWrJ96hpk5aUGly+gpv4l2DuXY1WPIyK6DhR7kOx38F8FWBr/tzKDNeZwYAf3DL1WY9LTwHMM/y2gJ0g9B+jcEez3NNO9nYJiv251v0jX3/T8F2bXnPR8qNMvoG/AGFLdX35jEsXJb0yiOPmNSRQnvzGJUrZg0SVIBIxarYU0cSfOPcISNOZsHnWdy1qFkuNFhTOqOa8GCn40xeUaRJJFj713DoLfaxB4Pml0nUWjos0G+hAUJTW4VAHqJazxslCxaDFnYelygeahFTf7/BgS9xYQfA3vyQqaqNIknqbHysvXQ/ZusK/Dudj8c6A1nKDr3oFYuOv4udTQXyKjEeQw7Wk00GJtjEkAJ78xieLkNyZRnPzGJEpJNfkxmWsMXENRgggEjqPuqGJTRET7pD0C6geYnPM4k9im0YaUzyMSVGAyDF6NMgURbwLOtIiIlyDuUYPMN62Kn7NCr2hX696Wnd7zFp7LJySm3egzmM55J8DYhv0KCJp88xkIwz97o30bFm9U6Gov4H58hL5LrNMuAAAA/0lEQVQNe92biIjDUffxVIFwCm5FooD3qYFv6K7TNd7D+/kI4h7V7UfwJB4cvQ5iMfV98JffmERx8huTKE5+YxLFyW9MopTk3MtmNxoba8PM7qBlvlGpgNFttEw3IqJ5VBHq9KBCyeGgYs4GhI4tjFjZgoNqqEeLm0yy8rWEH71tVXi7vdL9noHTbgElyzlURq+hsearQgWj+UrXKMa8E+ej/iY19cwhdlvrb/7kTku3b/8JhKovtZlst9f9Gn+tYuHo6x5R+R4cfo2uXQ5ueqn3TGLhOtfY21zXeAIB+NKBSzZ4Es/QiUY02cdffmMSxclvTKI4+Y1JFCe/MYnyn31SmFC2Pg6HAAAAAElFTkSuQmCC" y="-14113.695305"/>
</g>
<g id="matplotlib.axis_789">
<g id="xtick_1183"/>
<g id="xtick_1184"/>
<g id="xtick_1185"/>
</g>
<g id="matplotlib.axis_790">
<g id="ytick_1971"/>
<g id="ytick_1972"/>
<g id="ytick_1973"/>
<g id="ytick_1974"/>
<g id="ytick_1975"/>
</g>
</g>
<g id="axes_396">
<g id="patch_397">
<path d="M 434.924375 14238.597069
L 557.214375 14238.597069
L 557.214375 14111.303542
L 434.924375 14111.303542
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_791">
<g id="xtick_1186"/>
<g id="xtick_1187"/>
<g id="xtick_1188"/>
</g>
<g id="matplotlib.axis_792">
<g id="ytick_1976"/>
<g id="ytick_1977"/>
<g id="ytick_1978"/>
<g id="ytick_1979"/>
<g id="ytick_1980"/>
</g>
</g>
<g id="axes_397">
<g id="patch_398">
<path d="M 29.174375 14380.014729
L 151.464375 14380.014729
L 151.464375 14257.724729
L 29.174375 14257.724729
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pdff17d43d0)">
<image height="122.4" id="image7396ae822a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAFIVJREFUeJztnclyJNd1QF9NmLobPbBJkxKtkBcOe6VQ6A/8tf4Ih3feeu+FwztZtkSy6W4ADaAmLeToRd/zHLf4EgXC95zli5wqMy8y4uAOs9XJt/v2GRer08+X2tuzy7B2vjgJa1eb27D2/v4mrLXW2s36LqxtdtuwttvvcH9hTharsEbPdD6b4f5buN9reC7bXdyOnlV2O2I+m4e11WIJ2/Fv2e3D643npu1G2MPx9g3WJj7vIcQ7KyIlMPhFimLwixTF4BcpypLkx+3mPqy9u7sKa+vVWVzbgxgaFHYzkDmPKUp+7tD9vt9twtoCZFqPeYNngM+Fxdvn0DMd2a4HvSdTyz0Cr5tOS5sd6d32yy9SFINfpCgGv0hRDH6RoixJLlBGFmXjUcbSDAwGZe319s+SlYBZYfRUBWL2Pmy28Rns52O/OSvOpha2+M52jpd9x0benaeKX36Rohj8IkUx+EWKYvCLFCXWRjaWJCTtPq5jJuBiHv+ekEBsbfpMqxFB8xTEIF0jCVYUbMln2jtmlmzZ6tTnOORdeqpyd2r88osUxeAXKYrBL1IUg1+kKCj8slDp6H43vXgZkUN4vIGMs4fI+spmoWXlXq+f3cj1ZIVatndd9rcQo6L4GJl72fvwmPjlFymKwS9SFINfpCgGv0hRhoRflp6gmbrUMyu/UCBiy7VBsUR975LHpHtGPfceREDCuedwGsrc/LlJrWPwVDMG/fKLFMXgFymKwS9SFINfpCgGv0hRliM14lmTTqa4tbE0zez10Ihn6jmQ5RCzm/1vBt0Humd4v49k+8nsV5ykNPTfqIH//jwEfvlFimLwixTF4BcpisEvUpTl1HIvPZq4sdQaGeZN10Nyj9Jk6feRiOsJmrR4GxjJPLXc6513R9nP9E6QwEqO6M6SfS5PgXTfhgOe80ivC7/8IkUx+EWKYvCLFMXgFylKup5/RAx2JR74j142YOZ6snIvK/xmNH1m1pFkAxIqe91Z0s02O79lRhmH8GDW9GDhsrPZgU+Bx8xqpGzV5XwB2+UkqV9+kaIY/CJFMfhFimLwixRlmZ2mgtlJsDSSodc7NzGSuTc60WYEukaSNitYI3YDJaHdDD8sO85Ju/vtJh4QPjFcxpx7Lg+R9Zc9N50nLS8xhPLjy+k9OVuuwhq9YzRdyy+/SFEMfpGiGPwiRTH4RYqCGX7YZw62w2y8B0h2wj6DsJaVgFlBQ38ZexPIF8nrOV1EQXOxOA1rJPxI2qx327CWHbHdKzHFHn4kjJJZiCQBMXvySP3sRoTviBjM0ns/s+83icEZlFr75RcpisEvUhSDX6QoBr9IUZYkd9JZfyARsmW+vWMOibzk8XiwCGwHRrNXakvrp/Mo914sz+Pa4iweD67xZreGtbuwttlHCUjCjtZ66ySMKLtwtY+yid4xEpX8juXEWbYUfJR0ufQBgjVLduALPmsoq/bLL1IUg1+kKAa/SFEMfpGipHv4oXhJZvj1ynwpK47EW7YPH4nBrNyjrKiTebw9tNYay73LRZR7r2HtcnYS1kj4fZhH4fduF897tb0Na3cgC9ctSrce3AMuKViTEpekVJZeGWxWso2IvOx5R/Ztje/P/SxmT85h6oolvSLyCYNfpCgGv0hRDH6RoqSF3wjdDL8BuZcdVpA9Bwm780UUcVR+21prl/OYpfca1t6A3HsBj4EezEuQjaezeB++h9/3YRszAe/2UQK2xnKQhNgmWd6aHUBCQ0S2g5lyxxB5I8c75ByYkZl0tnRMv/wiRTH4RYpi8IsUxeAXKcpRhF+PrKDDrL/s0A7M8Ivbkdx7vXwW1t4uLsJaa619OYty7xJu7zlczwmtgfN5sY/XfQa/5QzuzfezeC0/QiZgD+4fGLPLsNQa6m3nUCJMYO/BZGlrb9sRsgNtRqYQZwfX9M5NOKVXRD5h8IsUxeAXKYrBL1KUyYVftmdeb1ueqpsUeUm5R2W55/Mo/L5cROH313MWfm+hd91pUmqtwNnQGknAl5DhRz0Bz5JTf1trbQ09AKl0lLIsCer1h30C4dmTsLvfkuQ6zsCP7PudFY2HiMGRgSF0PX75RYpi8IsUxeAXKYrBL1IUg1+kKMuRNMRRyM5jim46DTjuS6OuyfafQT3/M0iJvYQU29ZaewZNE+MRW4OSdbT4z2EW+DNo4LgEy/31Jl7j81X8b8Z2zkb6dhHNPtX+30N67w5+II3jRuDW7hc0Lh5sNv4HgJvHjph4fBfJ9tODTjKa3pudFuSXX6QoBr9IUQx+kaIY/CJFWZIkm3wqyQM4xawszE7dWUKa7BZ+38eOvLoAwbOC9N5T2P0SRN4bkGmvlvdh7WQVt9tsoUHpfUxL/p+zKAFba+07aDL6HuQnyVRK26WR4fT89sn0bHrO206T0B2c+xgcIu1GwFTeZFz65RcpisEvUhSDX6QoBr9IUZaTTypJ1m731nGUMGTVYZYXrJEQycqYW5BF76GuvbXWzmcxn+85CD+Se29hQs4XZ7G55uXLuDZfxOPd3sRrubiPk4bOoQdBazwFaAVrC/h2kIzDdwJy7+h4tLQjqbh7HLF3CIdMGkofc6BBqV9+kaIY/CJFMfhFimLwixRl+agjh0F+bWdQtgqlp1nBQ3KPMvwwMw2k1MfOTOQNFPBegOckuffVs5uw9vwyjtRerOIB72/jb7m+iRl6H6BX613Hey7onpEEpPsI92wP5ck4YQeuhyQgNQ7tjQGnElwa+03gZCDeMnW8UbINPNPHm/RoIvJkMPhFimLwixTF4BcpSjrDb4Se8MOMPMoGAzGImV/Qx41KR7HEFGTKEk5y3jgr7hKy+b7axGzAN6dR5J0/ixJwBiXCt9dRKr5/H6fzfLeOa98v43WvO/qKtBKVPFPW3wbWqK8frdFzyUIj21trbbbNSbJ09t0R3N4hfTVxW7pG2Mwvv0hRDH6Rohj8IkUx+EWKMvmI7kPIjhLGkmBygJjNxVLrc0ju0dCOV51b9hqHdoDUgv56VIJLIz+uP8a177Yg/BZRun0PnvIGsilby2fAUVZddugKZqvBaUkAE70ybRKB+E4cJ0lvCIoXHmgTfzMOIJnmskTkqWHwixTF4BcpisEvUpRHFX4jsMjL9fojUEodMHjhBjb94yLe3luYoHt2Ffvr7eDcP0Ip659O4nbvoAT6HfQe/GEfh4C01toVTeSF7LusTCUZl13DstoDslKzk3azknPqqdajGbZ0z5YgfOld9ssvUhSDX6QoBr9IUQx+kaJMLvxIiPSyr6buSZadTkqiioTWBxBf884lbxeQkQeC7hJkzAKGZ1yDtPuvebzGH+Aab/ZR7n2Eqb/XsO9fto0icA33h4ZnECibks8+O5ylJx9HhWEGzLLDKcTZnoD581AGI91vM/xE5BMGv0hRDH6Rohj8IkV51Aw/zPLKln8mj0dyZw0DPz5s4wRc2vd6TuW3rX2YwaAMWLukQRfQz+6/97HX3x8212HtCq6bBmeg5AQJ2Br30qP9qXyXev2R6KJnQAIRhS30dOxlymXLYLMZflm5lxXfs6TQ7O2fhe6PX36Rohj8IkUx+EWKYvCLFGVI+KWlRkfYcdZR7phZCUjbkdC62UbBRttd73hoxxWIwA/zWKr7AiQgZRf+cXMV1n5Yx7WetMvQy9CjY5I4o+wy7OEHz48EYrb8ms7bk2R4zFw1+FFID93obDtSYuyXX6QoBr9IUQx+kaIY/CJFMfhFinKU9N6emZ+6np/MJ1lqMs13u1jbnk1pba21W6iBv5rF1Ns/wf4bSHWltF2y8Nkmmlnj3rse2nYNu4/8Z4aeH6YQQ5+EHli7T4+Qhvg8UlPPHlPHi19+kaIY/CJFMfhFimLwixTlSUzswcaH5GIGGjNi3fg8WiCqV2+NZcxHmIhDMo2aY45OconngBr4Th4ppt6mr4fq03OiakHfoqTjGr1f9PxIh9J5aC0rAQ+5bkyxNr1XRA7F4BcpisEvUhSDX6Qojyr8SGDMoJllg4aNeLxkPThKN6gRX0GzzTOYzNNaa3PK3AORd7eNmYR0PZQpR3XsWbKTi1qbfqJNtolmNhsTS/Q715wVdLQ/7pt8x0YEZO+34Mh4uj3ZXheHXJSI/P/B4BcpisEvUhSDX6QoQ8IPpQY5iY7AwGklJH2SkiUrbfBadlDyChl+PeFDZaY0WQZlI6yR3KFzp0dBTyzxWjtgzHZ6TDY8P0jlPOQ5073NiryR9+kh2ID8nIHxy2YX+uUXKYrBL1IUg1+kKAa/SFGOMrGnJ4ZGep9lZUy2xx15PMwE6wi/Xm+/zPXgyGnKgMM65p9O75pHesVN/lyS5+hvmytPPkY230OU+eI1Jnf3yy9SFINfpCgGv0hRDH6RojyJHn6PBUqpmDD2l+VZTmDls8tSh0uPRB8pB+4xIvdIcqYHkBwgJH9OpbqPmR1I+OUXKYrBL1IUg1+kKAa/SFHSwi+bnZTN+muNxQ3tnxUlx5A2WxzlwCW42Uy0kQyxOd3aZLZi77dsB7wUnicp97L34afnBo4z8n6OnOMQstfjl1+kKAa/SFEMfpGiGPwiRUkLv+wkUsyeokEcrSPEBjKyps7mwv54HZmSnehKpHvzYc/EnBwi6TZK+vknezVmn0t2s0PI9kKc/LwHCPK0bITdaTu//CJFMfhFimLwixTF4BcpyuQZfkQ/0y05fXdgeMJQ1h/85J6Mmfp6CHoGPAE37ntI37tj9KTLSsDRbLeRjLzes4YNJ6X3m3GyMWxnhp+I/J8Y/CJFMfhFimLwixQFhd+oZPmcnoDYHkGSTd5zrXNr0nLoCGSz+Xr3dXIhljzHyHt3iCSjrMiRKcbZbMzRkvMRuUf45RcpisEvUhSDX6QoBr9IUQx+kaIs0405f0Y2u7XjTD85pNY6fcyJDXl632Q67UHHHDHkA+8dTR+ad8aN07bZJqMjUA+L4X4TE7/yfvlFimLwixTF4BcpisEvUpRlVkBNnfJ7ECQ6jnA5PzfJOTWHPNOjCNbkuPGsBGyttdV8kTr3ehZnr4/0NWCBSJOLcs1bDzl3Nl788osUxeAXKYrBL1IUg1+kKEep5++BtdYAqROSIunjTTw6e5Shpp5JOdTLgCNGpsAQWWnHI8iTGX69KTfJ+7OA+9MbYZ6Brnu/z4tKInvP6LlsdlFo+uUXKYrBL1IUg1+kKAa/SFFQ+I2M4x6esELZW9nyz3SZaHLkN+zbk1zHaDKa/X0kkbKyqHc9JIxGEiCzcm80yzI7/jx9vInLmA8R1yQlMbtwH99cug9++UWKYvCLFMXgFymKwS9SlOXoFJG44QFnJwEymNH1OTu4ICq3xF5qD5Dh91ilsSgBO2KJ7k+6dJSuZ0DuPUS2KZ17Poulv3PIyKN7Q4Ite1583zvZmFSeTJmbJGfpvfPLL1IUg1+kKAa/SFEMfpGiLKfOLsNMoo7AyIqpk3lMRCR5QqW6JD8gV21oRHNrnTHNlF2WzJRMn3dAiB1yXrzfye1GRB6W9ML7tOz06jtdrsLaxeI0rJFMu99twtrH7X1Yu93EtXVSuhG9DD/6jbRG+1vSKyKfMPhFimLwixTF4BcpCpb0Etny3UNKFJeLKCtI7mWlBmVaZbOvHoKsBBwBMxNhQmw6a69zTPotS5CzJM6mlpz0PlysosRrrbU3q+eptdNZfO/u9lH4vdtch7Uf53Hten0b1u638XiUgdoDMyUHMl398osUxeAXKYrBL1IUg1+kKOmhHdksLcq+OmSCalbuEVmJlC3fnbr/2yjZYRqUrTiny+7crmwJ7skivj6rZDYmylmQkrTv6SJm7b1aPQtrrbX29cnLsPZ2fh7Wzlp8724hF/SESn/Tk67vwhpKwM57jKW6IHfvtuu479YMPxH5Xwx+kaIY/CJFMfhFirKkctusyKPtSOL1hF+vV9nnkAAhGZfN8BsasNHZNysCcbuJHSJnY0IZLGRYtsYCK/tO4PPPPudFvG7a9/nyLKx9ubrEY34zjyLw7SwKwxX067sBubeHn7Je/vTMUnofSNi11tpHKB3ODlixpFdEPmHwixTF4BcpisEvUpQlDsRIZulhNt8BGX60Lcm9XVLkUd80yhob4ZAMv/zU4GmNH/a9Sz6/3jpOMaZnBdudQdbfGWTpLUGwnUCp7evlRVj7dh7LdFtr7dt2Evff0hCYyDu4Z7fQufADCMTrRTzvx10UdnezKPd6mapryAbMDugg/PKLFMXgFymKwS9SFINfpCgGv0hRllQ/n03lzU5OoZTP3v5k8e+2cQ1TfpNr2ek8h1h4HIGdTJPNTqUhsiPIDyFr9rFHAEBNWd8so51/vYh19i9n0Zr/VYvNOn+x43fs60287lcwiYemOP1hGa/7Cta+G6jxz/7XqrX8aPksfvlFimLwixTF4BcpisEvUpRlVu5lU0YpbfMMUh1bYxF4C7XMh0iRDNlx09l9W8uPG8/2QKBGmHQ8kkDYwJFSnzs153uobSey94zeMZJ7fwspur/exvvwzTqe+Yt9bI7ZWmtvzj+GtZev4xr51S/+Mzb/fL+PqcW/B+HH4jo+l7tN7lm1Nv20J7/8IkUx+EWKYvCLFMXgFynKEkf30mAYMCI0OeXFKoqcFyB3WmttBaLkahZHG2/2UYDQpJMN5GllJUl2KlAv6w+nHCVHKtMxaRoO1bvvZrkGpSSgaIpLa51sTuoHQCPIIeOMhN8zqIH/Fci9366jnPvmyw9h7eJVrJVvrbXzX8Jo8b//OqzNXr4Ia5f/+u9h7d0/RXn9b2cg/ECHkswmcd3L2hvJ5iP88osUxeAXKYrBL1IUg1+kKEuc7gJyhwTUxSKWVl4uYgYUZXO1xsKP5ND1NmZvXYMYzJbqjtBrypkVhiPQvcHMyx004IR708vwIyk5p6y/gZ98Bt+dX0Dm3t/8+oew9uJ3cWLP/Ktv8DzzX30b1373D2Ft8cu/i9v95p/D2m//4x/D2r/8Pp6bJC41oqW1qTP5evjlFymKwS9SFINfpCgGv0hR/gyJC2k6M2zwKAAAAABJRU5ErkJggg==" y="-14257.614729"/>
</g>
<g id="matplotlib.axis_793">
<g id="xtick_1189"/>
<g id="xtick_1190"/>
<g id="xtick_1191"/>
</g>
<g id="matplotlib.axis_794">
<g id="ytick_1981"/>
<g id="ytick_1982"/>
<g id="ytick_1983"/>
<g id="ytick_1984"/>
<g id="ytick_1985"/>
<g id="text_100">
<!-- 358 1834-220319 -->
<g style="fill:#262626;" transform="translate(15.789375 14365.909729)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-56"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-51"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_398">
<g id="patch_399">
<path d="M 164.424375 14380.014729
L 286.714375 14380.014729
L 286.714375 14257.724729
L 164.424375 14257.724729
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pa1c4862797)">
<image height="122.4" id="imagec8f2f6a75a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAFrdJREFUeJztnVuvJMdShaMuvXtf7RlbxuJ2jEAInuD//w5eAQmQwJbH4xnP7Ft3VzcPBh4mvjyscvaMj0+s7zFVVZmVVdElrV4RMXxx+7en+IBxGD4c6mI5HbvOP57SEuMEY/vjAudqc4/DuH5h/888yzGPnSKve4i830PHM6C9IVpzTLAX06jtzwGeAY3RPc/jlMauNhdpbDPO0lpac9P7SO88rYf2hqA5dsshjdGzaj2XnrikGOp7440xv1kc/MYUxcFvTFEc/MYUZT63uEfCQu+xJIocQTjrYY3w0gMJXYT6XGgPe9dNoqQquq55/gokmk6DLiDTvah7q753dD16ziQWLqHfy7n31l9+Y4ri4DemKA5+Y4ri4DemKGiVUgUj1Um2BvWasotNFNh6QYEHXHHnFm0+FT3PWn0GKDTCGDk5W867rrnxnkmgy3OTCEjvw+n48UXTCH5+/vIbUxQHvzFFcfAbUxQHvzFFmUlcmD6Cs60HEn1IlMRfsjPfyxr3HIksapqvCglLmL65Yt09Iimup2NeFBphea09VFNwQXdriICwnIHm1lx/vNd8L+cW2P3lN6YoDn5jiuLgN6YoDn5jijKTqPExnHs9jCCK6CLgLxev6HotAUkV3g6DVlNOTaHltUiHNYW9npRgvuYvr+GorqX3XuipLvQMxHhRU3XXxN+509j95TemKA5+Y4ri4DemKA5+Y4oyk+OMfhJ6XF+tc0mYIplEFrrO3PyCxL2LiRtGUIMHWvfumBs3YGMJei6AKhau4dzNIdR3RxVsaX3nrkUZ0XAcqqm/olhI6cmtZ3/uOpP+8htTFAe/MUVx8BtTFAe/MUVx8BtTlBnbZ8PQGqvrHzqqMkwFF1v3TOOk7qr/CgzwV4hqIaZnuqZNuvqvCf8LA/8+qPOe+V+GiEDVHQ/rsM6q/wCo7cvX/FvTY1//bUavMaYbB78xRXHwG1MUB78xRUGvKuUNT6LVUbVERqxo+yyKMdg+GU7FnitqS+zO4ook0JAISKhWTlVYakHipSr4odgIdlXaR/XZD7jX+nPpyYtXBTay7dIz6K2d0SOm+stvTFEc/MYUxcFvTFEc/MYUhZPTfwOoQsmC4iW0zqZzQahq1iYAR57qiiTBj+ZRRUkqErofdbGJ1khjJJypgt8e6hrsljym1ptogR2S1PbuJHKKLssj7APNq4rmrfX0uCL95TemKA5+Y4ri4DemKA5+Y4qCBTzRSYY/E3mQinKuKeBJXVJUZMcgtFQm4eQEx61J/dyAkDdDAdCLEcaGPCY7/E5Z3KPCoWvSfNUinHRNEiDVYpZYCLPTFSc/QzhM7eLTW0SVoHe0q516z2KMMb9dHPzGFMXBb0xRHPzGFIVr+GEDEhA6IF8W3WFQC68FupgoLVfUJFGgwVRUTRhsMcMiybm3HTdp7HraprFLOI7AGn7gV7wYwFF3ymMR64TAD5lOIAKf8sOiOejdoXtZI6b1iIM9df0IFGxhijVdeNY4BD/EX35jiuLgN6YoDn5jiuLgN6YoM6UeqpyOoFbAz8mRjovehgPgdgJhcTtl4UxtakFiUUu8pHlIyLubr9LYzZiP25D4ResGUZIEMUo5bhWA24de7y+tBy6qinuqWHxYNMdgC9yfMzcMURusrBH31HnUvfCX35iiOPiNKYqD35iiOPiNKcqMHWLFBg1q3buWSEYuPRUSh67mizRGQhw5oCgNloQqSr+NiHixuUljL+c89vl4mcauIX33AHM/Q2rsE7j09vBkqG7hPHCzkFHsOCwLp6IAhR2MxeYeraYkHyO1VkFNL1/DGnFQwV9+Y4ri4DemKA5+Y4ri4DemKDOJO0SP2NASXdRfHpqb6uNdz9kpRy47EgsJchHS9SIiXo7ZufcViHsvhixAbiHl9RlShN+CuPcmdmnsPvZpjIS4tuCnudOeYZ6eenYkDB8hRVjtahzRaNrRkQaripdqgw6ipy7fmvP95TemKA5+Y4ri4DemKA5+Y4oyr6mv9ylQO9uSc4/q412N2fVHLj1ywN3AuS8h/TaChbyXpzzPZ2Br3JDgB6m6GxJdRW0I6y2CmBYRMcFFsYEJpGo/D1kE7IEE6YlqKzZeY9mtKjryWEz7BLX+Qk951gVtY0xJHPzGFMXBb0xRHPzGFGUmAaPHiYRNNxoChuoaVOu9bcCxph63hbTaWxDxvhiyCBgR8fkpX/OS9qfDfUXXu4N10/MjEe8w6PUb9+AQ3MP51F14N2Zn4nGBdGBxLSRyUWOQiIhN5OeCqcjgBFSPo/db7TZN70MrXuYp3wt2ghbH/OU3pigOfmOK4uA3pigOfmOK4uA3pihcjfLMtFT9no49pMRSy+ntSWt1TWuhrjmkmv98fob03j0VwhSb6cww9y21xIZ/KS5ghbtGyx5a40Pkvb0Em/QTWJovYGwPBTdHKv6JtQXSULNILP77BIr9AP81UKeprjbb4rpb9QpI2d/AM7iY8hjVbvCX35iiOPiNKYqD35iiOPiNKcrZBb81rY5Vey/ZVXfHLEA9HJ7TGAkdNHYF9QFIsGuLZFCHAMcy9AtM525hQWT53aBlNJ/70BJcoXsR34tmnab9Jtu1WgmA3rFVojK1/W50/FHmpjeC9oZqIlC9gpbgR3uGLbqxuxbYknEWY8wfPQ5+Y4ri4DemKA5+Y4rySRx+PU6+CC6uSALNE0hGmzF3tKGuO0eQ955B+HrfuJcJhJdrcN/dQt45CXkbGJtJyIF534O6dwSRi4qEtlCPVFuBk1ttf8znkpOT3gfa/wh+rmruvlrok1AL0apjrWvSeo7Ubh5qL/jLb0xRHPzGFMXBb0xRHPzGFGXuaalMrjE6d2gIS9BERkYtPakW8NzA7+ACe/P+xD40Ov8a0on/cp9XfgsCDUH3/AzzjlMee48CFItkB7jvPcxOYpq631Tocz/mfdjD3pxAnGs59KhAJh2rCovYxUcsWqt23FnjkiVUB6S//MYUxcFvTFEc/MYUxcFvTFFmVdxTIUGExiJYUCNIrKD6elS77AbcfNR6m65HAht1romI2IGDipx7X8dTGrve5vTk3SGv53HJ97dgV6BMq/YggYIfucYae5HXk+emtNUJHH7kDiWHXgtMeYX7W/PeKnP0tNNe1aKbBFao63c15XfeX35jiuLgN6YoDn5jiuLgN6YomNLb6zD6kDWiIs1Nog8JRiRq3E6XaewS3GXcqpzaSOvi5SNs49sTtPjOWcexwO/yAzyut7APb6c88TsQJN9Bk5OIiHtwMT7DsXTP6IoTBTaCXIRrXKkneK7nFrlJoMMxUXRtHdfzzt9NV2nMX35jiuLgN6YoDn5jiuLgN6YoM6b/ddTcU9MbW5BjiYSOLTTZoNp8WxD3iAOIe+TmW+Rk4ogHSGV+PeV7OS1ZtDnAM3gLqbqvQNz7fsxr/A5UxW+PD2ksIuLtMbsQqUkKiXHEEfbx6QiiIoxh+i04/FprOUHNRBW1qcy5acULNpsBtyqJey9ABPSX35iiOPiNKYqD35iiOPiNKcpMXUJ76O3SS2Mo+I1Z8KMxcoM9gVsNG4OAuDc3fi/prvdUA5DSOk/5/ha44A8g7n0Lde++B3HvexDxflwe8yQRcb+A4EcOP7XundhlebdoY+q8EREnMd323DXuMEUYBOAjLHuNA5FrJkK6O/SH9pffmKI4+I0pioPfmKI4+I0pCjr8eliVvkuDHcs5QJ05EvfIDKbWoyNHVeOS8YyCXz5uBBfaDvbhNTj3XkFn4h9Oz2mMXHtPR8glDhb3nhZw34l1/ciRR869nmYarfdYFfeoxiEJler9kdBI5lCq60fztsbJ2UhvMjlT/eU3pigOfmOK4uA3pigOfmOK0tW0A11MYprnz+dr6h6JNntwiFFKaE+tuDU8jDmd+AkEuvfwe3sE594TuMFeDfmefzxmce8NOPTu4ThKq42I2IPwRmm5svilCmcd4h41bInQBT9aN6Zvw2tC7xiJbtSteljT5Ia6E4PoioLtKe+Pv/zGFMXBb0xRHPzGFMXBb0xRHPzGFAUlUlXFx9xtGGsVQhzJAQnnk8pJ+eCPS7arLqC4c3eePrX/HqyyT0P+B2CBvGrS3B+xDkFWdh9A2X2EtdDe0B5G9Nl2e/axR9mngq4RrPYTu4C6AYteN+CcNGsTwDj9M0P/4lxAIVt/+Y0pioPfmKI4+I0pioPfmKKw4Nch7uH1WseJtQTofMr9foacc4JEILXwZEuMeZzy3E9g8iSJ7QjbQL/KqlBJtlTVGto6tsf+jAKy+j6JHaVawh4Vf6V56Hz1/SbUOhlqoc8I/RmS9f1xyIKvv/zGFMXBb0xRHPzGFMXBb0xRsIAndRH5GJB4NohFCsnZJHcAglbHvD4QvhpizHvIoX895rFLKNh4B+4r6vZzD26+nejG63UwqpCApebuo3hJefbg2qT3IaLViYfeee29W+NgVaA5KMc/YoXTFcQ9wl9+Y4ri4DemKA5+Y4ri4DemKF0FPD8VKCKRe64h+qRzQTBCEQjEmLHR2edhyQUyvxvepbHdlNd41+gC9CE/QRHOn6DNNhUyVTsSfQxQTBPHqGImte1uQSIiOQTJFUdiIwqIotCM6xPf7Qj9/cbUX2jl7i+/MUVx8BtTFAe/MUVx8BtTlBldbKII2ONsitDTHrG2GxzHnWY01xhB6xsbqaOUTvzmdJ/GqC32j6LgR0IeCY3k+upJT23R04mH1tOTBtsSw1RHHp2vntsj7q2B3m96l3fQ2Qnf5a7VGGN+szj4jSmKg9+Yojj4jSnK3ONi+jVBUVKsh3YILR2Y6rpdQDvtCHYDkkBHY+8iu/SIPdVrA7eb2vyiJV7SsVg/DgQoVZRSU4zJjdcjukV0NiARW3SrqO9xi4NaR5PcqvIsxpg/Khz8xhTFwW9MURz8xhQFm3YQqvBCtAQRVfTpEVSWDrfiNOXfRrXr689zayKZKjZhPTvRoTlB7cANNLSI0Jua4HpgTHWRqqIy3UvruajNQdSU5+kTCN9r4kVtpmPBzxjzfzj4jSmKg9+Yojj4jSnK/Ifm5jt3cwkSKgl2wOn7gCISiF9drrgOoQpTaFt7A58EFPzEVF01RRyFyo/wLqrroeevio0UV7w3kErciAFVGFYFcn/5jSmKg9+Yojj4jSmKg9+YosgOP0IVFloCRk/DEGyUILoQ1SYLtL5WrTjq3kvONlXII3rEHUptbomFw0kT2VSHJ3eC1hx+apfd1j701A+klOeLKYfMDE5JehfR3Yku0D5HrIq//MYUxcFvTFEc/MYUxcFvTFFmdB3BgeOvWMKPHFTktFLFIRXsdtoQ/MZBS1ulWn9qWqaKmvrZPF9sVkF7S8+F5h5E8epjuE2xBiDcC6U8b8Ys+JEISO8sNVMhEbB1zycQYrELsegu9JffmKI4+I0pioPfmKI4+I0pioPfmKJgPn8Pav58hJ6r3ZNDrcL/eoAK32jv3VPMVC242GOHJlrXG8AKPIpT83PR7pn2kBR3eseaVmX6R0L854JUfFrPPOQx2ocF/hFS/3loHctNhdR/a4wxJXHwG1MUB78xRXHwG1OUuUc4U62XreupFtZzi3sqq4pRdnSg6VlPT453szMMFeuURSTRBjyBcAZimvrsW3UWWuPpmrTujvdOrSOwBqyLQAeKIqC//MYUxcFvTFEc/MYUxcFvTFFmcjGRs41Qc+WbIgkZlkTn17lR73kN6rrV/Gs1V15lTWcYAu9PbAW+nTbSGLnnaN2HgYW93ZBz6Hs69mCNhxPMAWvcL1o+/7kLdbbwl9+Yojj4jSmKg9+Yojj4jSnKjIUwz5w6usrpJqY49qS89jitWvfSVTwUnsEods0hVMGuJSype4vOPfieUNHLy+kijd3MW+l6xH5kwW8LLbCpCCt2VxLHsFArHMfz6u+iWuhV7ezkL78xRXHwG1MUB78xRXHwG1OUmVMZ84E9TrLWuWqbbW7xTNfLYyR+YW2+ji41EY0OQqJQmT1sei1Euh7VikPxqiEM9jjMKAX3Epx7JO5djlkE3IDDb02dSLqXHTjyno/7NPa47PJxSz7uCKIivTu0N+R+3Df0Wpqnp227v/zGFMXBb0xRHPzGFMXBb0xR5k/RHKIFzaM28iARcA8ClurIImgtJOxF6CKUKmhS/TgWPqn9NTjJQCFdU1tRXSOliJOb73rMgt/NlMe2AzTOIBchrCWCHYI72J/7Yxb33oyP+bjxKV9PbL1NLsTpCOvOl4uIvoYvhL/8xhTFwW9MURz8xhTFwW9MUeZPIe6du3lFhJ7eSC427GK6wjVGqCIL7zeJe/monk6rqlgUwXtBc1/O5Ny7TGN381Ua+3zKYy/HfO6tKPjNjXeMjqVn9TDkuV/Den6csuD3fslj5Bh8ojFwEbZQU4xVg6a//MYUxcFvTFEc/MYUxcFvTFFmOZVVTL9tOeCIHpFtGKBxg9iRFevRiQ1EWmmwauMNuSEK1PCjMRQ+RddmS6Sk50Kpp9eQlvvlxV0a+3qGsTELfl9GdgLeqt+nxrZSuvQMxx4jC4tfD3k9r0HQfDU+p7GfTlnIe7tkx+Cb4T6N7SF1N+L8TWD85TemKA5+Y4ri4DemKA5+Y4oyq7XGZhB8SASi4+h6EX3NOA5Uz4wEOnBAnagAIIDpsiA0/s/k0nqIJUBEpCHxeh/DtUlC7ouLmzT2u82LNPZXYz7uT49ZYPsKdK4tPKt7UGefVnzGNrA9W6oJCWPvoM7ga6hR+GrMebn/BQIiCcDvD9kxGLEipdc1/Iwxvw8HvzFFcfAbUxQHvzFFmVXRbguixnbMY5cwRteL4PpqJH6Rc48aL1BDDbVZhdr8oNno4swi2wnUJmrGQfesugjXOCxJtH0xZyHv74bbNPaPz/ncPz9lUevuIrviqMTdm112Fr4d8nsXEVCtL/Cut/CeXMK7uCz57B+XLF7eQboz2Q1fQy3DpkB+5tR4f/mNKYqD35iiOPiNKYqD35iiOPiNKcqMKr6o7F9BJ5YbUC+p60pEo+sOqK6PQ1aBhyOcSx1RQDlV853XtD8+t6V2WUDZF2sqqPUYGp2gEerOcwNW179YsqT995uf0thXf/YujW3uwLJ9yOv+k/s8x9M9v2O75zx+hHeHIHH9eZfnHne5NsH7Y46XafrlXZ0i+J8detZom3c+vzHmf3HwG1MUB78xRXHwG1MUFPxIyLsEcYfEvVs47rIl+IEw8QT9icnqSh1R1FoAR9Hy24tqx1StwQdYN4k7ZKemu2t1UqJ1U+tttGfDJTebLORtv8xj8+cgpl3n9/P6Jr9jL25yYc2I4DoL99lafHyTx/Y/5Hfs3X/kd/7Nd3mM6gvcQw2KXaNYJyELue7YY4z5fTj4jSmKg9+Yojj4jSnK3CPufQZjd3DuFfZN0dta35+y8EJ5+s9LPo7GSNwjEZBoiXhqbrzqtFPXQ3tIezMP/AyIizGLe7fQqeYCrpl3O+KJXHbQmXqYoVX5y+s89jff5HO/+WuYOSJuX8KCHtLQ6dV/prH5n/81H3f49zQ2fQeCNLkD4UmrtRciVjg8xcK4/vIbUxQHvzFFcfAbUxQHvzFFmSlV9xpEO3LufQZjn0MhxYvGb8wCIgSJIgQV8Hw8ZBVpt+TjVDFtDar7qgfVCaimIg+NdupXMzzrOQtvL6ADzTUY1iZqfSOm1cY2zxFffJmGhm/+AU+fvvpdHiSH5/f/lsaOsA8X//JtGrv8p3zTdMvUBv7XxF9+Y4ri4DemKA5+Y4ri4DemKP8NK8hfCOWAzlcAAAAASUVORK5CYII=" y="-14257.614729"/>
</g>
<g id="matplotlib.axis_795">
<g id="xtick_1192"/>
<g id="xtick_1193"/>
<g id="xtick_1194"/>
</g>
<g id="matplotlib.axis_796">
<g id="ytick_1986"/>
<g id="ytick_1987"/>
<g id="ytick_1988"/>
<g id="ytick_1989"/>
<g id="ytick_1990"/>
</g>
</g>
<g id="axes_399">
<g id="patch_400">
<path d="M 299.674375 14380.014729
L 421.964375 14380.014729
L 421.964375 14257.724729
L 299.674375 14257.724729
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p405e850b91)">
<image height="122.4" id="imagedbaee6e48e" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAFlVJREFUeJztnduKXVd2hsdea9VJpZIsS+1Dty/idhwTcAi5SAikIc+Qd8xTJG8QGkICIZ2QpnFDY9k6llSq0z7lpnWj8U34l+austvj/y4na6/zqAVfjcNib/+zbeyQcTGktcVigdsOsN7a9l2223zaG1zbSPsb4Lz3x0laa3G9Xklr6jn2XN8i8n0dh3zNEXwv6Fmp57Pe5LVtaK+det60Xes4dN70PuH5wH3A97hxPu+7v+a2cBzajuKSn74x5iePg9+Yojj4jSmKg9+YokwtufAuJEnU384RGLtGFS90jnNEDm27N4zSsdcgyVShuQLfp8qrOdCxCbo/9Jx7BNscUBjS+Sze/56p19wjuCN0uUeQ+PSX35iiOPiNKYqD35iiOPiNKcpEsgLlwC3IuQiWGhsxGwyz0MTtVHHSug+Y2Ti+v/wiCbjcrKXfrrZ5uznQPm9Dzqqogi1Cf9aqYFXvDR1XzX69vVgzxpTEwW9MURz8xhTFwW9MUeT6VDXDawBX0frtHggQLNck8UKlmrBG2VwEiUYSNLQWETFBNh/JoQFuEMm9xVYroV0v4Lc/Ijk3BzUbk2iVJ6vPkN4nEqxUntxDTzlwhF4ajRm68lGMMT8pHPzGFMXBb0xRHPzGFEVvSHdLdJVgijKmp9yyJdNQ0uCSJnhI+Kllx2qGWEss9fRRJAHVU2KsPhcSthEs91DOir3+6HOpXh8JaZLZIUq8Fpit6JJeY8xbHPzGFMXBb0xRHPzGFKVL+LFYyCwaAoMkBImXngEIu+5n19rfBq4cr0/OlHz/jMMNyNDbKtPdda8/2q635FXNiqPjbCnzEk5Hfc5q/8YW6v3GbFP5KMaYnxQOfmOK4uA3pigOfmOK4uA3pijTrkcYzwEbV0KKLtVq95yj+l+KFdRzt1BNPI5PVlODOyw3WeU54P1Wx2yL5433kPo7YKNWPhd6hj018ASmFovnqMZAxO7HjfvLb0xRHPzGFMXBb0xRHPzGFGVShUFP2m1LsNCxF2KdviqR1Gk/gfdhhmCDP6OqBGw1BX0Xul+qVCTx1RJLeM/oWYm9F1Bygsija8EpTOKEo9b6eq3JT3UsvTyJB27rWkxxj+Dn1dM/wV9+Y4ri4DemKA5+Y4ri4DemKNOmM/PrNlDlnipZ1EwrqtPmhossffaG3C5hH9Z2LbqmRW5QebVZprXlepXWmseByUCqWKLnsgdNNAdRfKK8bLzHdC30zqtyDyUwnLYqw9UswpvAX35jiuLgN6YoDn5jiuLgN6YotzKxpyU/1GyprjHGsBk2TaQMRjju/si3jETe0bif1g6HvbRGgk7NTKTzpusj4Xc9svAjobbc5jU1a5CeH03NUTMd6ZoHsrMRsULhJ5bWUkYlZCbSNfdMPbotCegvvzFFcfAbUxQHvzFFcfAbUxRZ+KkTVuZMU5Ez96h0VCwJVcst1Yk2LSlFcu9kOsprw0FaI+EnS0m4N7TdEvZ3uc0SMILlIK1drK/zduu8XU//QDkbsyFI1X598vlgJiAc9wfM3FPxl9+Yojj4jSmKg9+Yojj4jSkKCj9V7vWi9gocwKiQeDsE6XZ3OkxrR0PejqTbHFlEmXsPhnzsDxb52HS/r2GMyBLWaGDEBGvUK+7NljP8zjZXae3V+jKtoWyEZ3opSkA1s21OBhyP+IZ9ynvsO598Lro0x3OkQ4uh6i+/MUVx8BtTFAe/MUVx8BtTlFsp6Z0zhID+HJEcOlhkwXYPMuo+2ruX1h6OebtjuBUHIBX3G38v723z+oMNZBfCrTiFRoMvFlBWC8rnCM7nDpwL8WLgKcTfwT5xijGU+V4PWSKq5cBqP0mUwg3LpU54piv8IfvrEdjXkTakmSt4z4wxJXHwG1MUB78xRXHwG1OUCUsPyZ3QZuJgiTY4USNBAyOoB9z96U5a+3Q8zmuRy2ofgiT7aJWv7wvIdIuI+OKXz9Lawc/yef/hP07S2q+XH6S1zQS94uBv9X0SjeDx6KnsTyzJzkGmni1ylh4NJaFhHHsbyJ4k86lmpsE1j/CORDSm9IJoXuLPf/wSkKC4xEzH2zgZY8yPDwe/MUVx8BtTFAe/MUXBDL8eCTiHnum7NCTjDpTqnizydpR59wuobv0yzvLar17iOR7806/S2uJnP09rv/zXf0lrb/75PK1drbO8XMPtur/OD+H+Oouqa7iHbyD7LSLicAShhsIIyomhNPpghEElIAZVSLpRtmEEZxJeR37Y2CsQ7i2VA6vwxGBP6TXG3DIOfmOK4uA3pigOfmOK0lXSqw6RoLLKiIiBhmzAtjQZl8RSq6wzb5c53ORrefDhRVrb+/pT3Ofii7/Ka8cP8rE//++09tln/5XW3vw+X/MSzvwEMu/2xyy5ztZZur3Y5EzHiIgDEn40/ISeNWxHz4rWcEIz9iOEASTQJ7AFSTbMBKSswQ4/p8rCm5CA2Ctw50cxxvxJ4OA3pigOfmOK4uA3pigOfmOKwhN7xHpgdUQ3/TaCzT7Vg1MqL5lhssAXkPZ5Bim/b0DFbiCftpmSfP46LW1fv8j7/P5pWpsO8nl/evdNWhvHvN2dkzwmewENQU+f5aalL87zfwAiIg6hl8BtfCXI7ONIdJDhrdHphDqJSW6YqR/4vc8lQh/7rfbZ8JffmKI4+I0pioPfmKI4+I0pyqTKPZJzPRIwQhc8at0/pWhegaJ5BWmbzyGF+PmrXFP/yW+/w2PvPfz3tLY9z+nBq988TmvLiyw5D+/kdNWjk7x28BDq2EFeLhb5XB5+k68vIuIocl8EgmQVSSmqtScBtQVROcL3iZ7z9YbHjV+v8zrV+Ksjw3ukG77HKC/5faemp9SMVD1Hf/mNKYqD35iiOPiNKYqD35iidNXzz5F7Pah1+muwJ0uSQyD8Xgx57ZvIWXGPfp0z7yIiHl3mmvwFiLer7yhHLP8NPjjKomo6zqJqsZePQb0syQG1stVWcB9pW2p6SVmWJNNIurWacCr7I7EXEXEFdf7qFB8SZ2oPC5VWrwsC6/xppD1di0d0G2Pe4uA3pigOfmOK4uA3pihdwo9Qs/Fa4FQTEkuUzQdZXheLvHa2zRl1dNr/t59LXo+efZg3jIi//M9cvnvv45xVR5WnB/fyOQ77IJbgaa1O89rF87zh0yd309q3I2fyvVlk8bYEQUdCDGWauMYT2yFjkGQhrDWP3SH3elBleCuG6Eu93WqZhHR9/vIbUxQHvzFFcfAbUxQHvzFF2bnwmwOORRYFz9UmZ269WV9Kx73cZsF2OmS5d704TGt39/NaRMTDl8dp7Qj66x09ysde7IOggYS15Wn+W/3qST6fxy9B7g15Os9jyA6MiLgQO9WpIhbLZUWZppantsDsUMiqW6217MKuXpY3kP2Kx8aMwx+mL6Mx5keIg9+Yojj4jSmKg9+Youxc+JGgaYkO2pYyyVTJQtmB12DO3kCq3PGYxdkEwyueDpwV9ySyUPvwRd7nMGpZfxevYaT289xz7/EqH+PbKV/fy5zUGK9pBHWDPXEkulq+u+sx1BMMe4ngnpA8wEK7FmLXIq8lOdV7RveCx58bY0ri4DemKA5+Y4ri4DemKJMq0wgSE1qHuj9uSwID1q62OZsPB0aM2sCICeQVZZwdg9w7nXJfv4iIp2MWdA9e56y/s/O8z4s1lOAu8nbPx3wnXxzk8z4DkXcl9uVrMap9FEXhR9vRu9hbBtsSge9CvfTwvKEcWAUzWimGZshQuj90zTT92l9+Y4ri4DemKA5+Y4ri4DemKDiltwfu68YCQ+2RRn3K1iC1riNn86GAgh51xKsxZ+2dgnyMiHgJwu/7TV5bb7PIewIlvd/DEJEz6Ee4BG2n6qLWk7+koRggTmlAhyqwSJyREKPMO3pnKYMtImIESUpCbAHvGGbaiUMybkLuEXTdtEbX7C+/MUVx8BtTFAe/MUVx8BtTFLmkl8XEbssyW4xUviv2j9tutEmydH2vxvO0djqd4Dm+hn5/z0A2ncOf28cgIJ9F7v93DtKNhNhEmXJUstp4fq9Bap5ucn/EaxiSQlAWmirEaMoysT/yqyz3uANJtqLzhvfptuSemu2o9g/0l9+Yojj4jSmKg9+Yojj4jSlKVw+/3oEKxE0MNngXVQyerbLkerJ6g/v8w14WfkvI+iNF9jyyYHsNvQevA8qT6e83lCyTnD2nySAR8WpzlbfdZAFJ5dI8wELLQiOBuBGFX+tdxIxTEL74TtDkXnFt1z0KW/tcLN7/2P7yG1MUB78xRXHwG1MUB78xRXHwG1OUCVMvRaPZizraeNeo13y1zhb+6fIV7vN/YJ+Ph/wfAJp8g2OtseGmmFoqpl0vwda3zkfdJzXhpOaYw0Z7zqq5bk3XuV7n/yCoz19tPHoTZl8F//sgphv7y29MURz8xhTFwW9MURz8xhQFJ/YM4GJIp9yEBFTBySnwp4yaf6opxCR8KOW3xemQ+wHgqGscnwx1+vDbgyFnaI90zbC/lsRT5R6JLkrHpftIo9jpt+o7RseI0Ov5d12T3yOuewUiNkyFe+svvzFFcfAbUxQHvzFFcfAbU5Suev5e5BHf5E7AiZAE3FIzQ3HcNP1tbIkltZmlOi0IM+VADF5uYPpM1zWz8LtY53r+S1g7X+VeAJeQKbmEzLuu8dcNSbZaaz0HCFU2qvtTt+v9ImMPA7i3/vIbUxQHvzFFcfAbUxQHvzFFmVqlkO+ilg52A7vkM9TGOasZfpSRNef6SKipkk2dhkTnQ0001QyvOddHQvNyRRLw5uXenCavanlrF7S7jgy/3ia2lK1IotpffmOK4uA3pigOfmOK4uA3piiTOhGF6BUnJDZUQUMyrSc7kH470iTnhsSj7Lu9AbLvcFS2NkEGeyvCxZCco36EquyNYEFHx6GMOvW8CSxFnvHerXecpaeOvybwPe6UezhuHCAJ6C+/MUVx8BtTFAe/MUVx8BtTlOk2+vDdxNhtFEaiyCMJyAJRvzckgqjnnipoSMapI6xl4deRZdf6vTrqmsDtbn6Gyx8Po5VQ0wAS2k59d+ZIQHp31GzVhYd2GGPe4uA3pigOfmOK4uA3pihdPfzUXnGzSjB3LCDVPoG4CkvLRq8+Emok/GhoB5XlXm3y/ugYNIVWHZLRQh04gWXeHVNj1WMQc94xVe4dTHtpDbM24dg44RcEKQ0rbklhOg6dNwo/Z/gZY97i4DemKA5+Y4ri4DemKH3Cj8QJZEDRFNoWOHCgI2tMPQZJwA2IuEttNkdERCzh9yT86PouoD+emqWnluq2xB71PSTmlAS/y66zPlul1moG3DTm57I/5vDYh6nI6oRf+tRS5l2Lnsm/9Ft/+Y0pioPfmKI4+I0pioPfmKLIwg+z+VCmaGWQLVCUgFeivnc9g0VUgbhqOK6LZf49ZdVRRhYdm35LWWM9GXCtybY8hQK22nFvPhVV4rWOg7/v6IWHAvkGSuX14S7as/aX35iiOPiNKYqD35iiOPiNKQoKP7VUV6UlpdQsL1XQqAMa+iRZY2awKL9W4n2UxdlN9Efc8URmWbqp74OYWdo6jopalkvsOis1Qu8LuKb2lhZ+xpi3OPiNKYqD35iiOPiNKYqD35iiTLu2xTx1pVU3fvPTgnqYM02FbDiZYXnCCjaZ1EaaEzgmu3H/expuUnp3zzUT6tScOZBJ34hNT3f9HrdSg+Wmp+I74S+/MUVx8BtTFAe/MUVx8BtTlEmVLD3pmD82VMl5E0JyjhBVoOfXk4o769hij4ceGac+q1bqK6WB94zPniNO35dWY9RdH8dffmOK4uA3pigOfmOK4uA3pihdGX5qnXZvFiH9haKpMngc0ZH0NvrsuUZsrthxy9Tmkc1zpp//abpdWe6pqL0Oehp4tnpGqOej4i+/MUVx8BtTFAe/MUVx8BtTFHliD5ZgUjbXjHJL2idmUJG0gV1uN9ro7Z4GnnMEC503ZuSJI8N7mFNCu13sNrNNvQ9qFumcjMEe4ae+31S6TcKW7iHJvdsqdfeX35iiOPiNKYqD35iiOPiNKQoKP1UOqTJmjqDBPnUkoEDuscDarTzpzVbskYDq+eAz6Ox7RyPDSVb1iDz1WuaUki9EUdlTsr5e5PtAZbk0AQhe41vDX35jiuLgN6YoDn5jiuLgN6YocoYfoUqSOYKmpxSyh95eeHMGfCjH6RmJTsfdH/OjnoaRz6fjWlTZqEL7m5N52TMqWx1VPw0wih3lHj1nyOVsVVq7h58xZhc4+I0pioPfmKI4+I0pyiRPiAVpQwMRiJbEU0WgWk7aM12WmCMBd90LUT1GTzZfS/jRcz0Y96Tf3xkP0tr+oHlllHNif7zVlifqXm9W0nEIlI00BAT2d73Ix1XfY5KFEbsfxuIvvzFFcfAbUxQHvzFFcfAbU5SJpI2aVXVbkBShvmm0tvPsuc7pFep9VEUsZlmK27VKeknQHQxZ+N0dD9Pag+lOWru3yBKQSreXJM5A5F1HXnu9vkprERHnm7xOEpCg+0D3jATi2eoyrfVO+F2Bp5wz4ONd/OU3pigOfmOK4uA3pigOfmOKMlGpp9qvTy2/bWXysazaLT3Zc8QcQSP3rhMFHTGnXPpdWsLvaNxPa8cg9z4Yj9LaR0MWfh8vYH9bEGdwKZcDyDSQgC+HfH4RES9B+F1slmmN7uPBIsfG8SKLzzVI5efjeVp7TKXIlMHYyOTDDFZoAqi+o/7yG1MUB78xRXHwG1MUB78xRZnUbD6WUrstoe1l15IMe67NEGw95dIq+KzEbL5Wqe2dIWfkncDaXRB5JyDJ7m9zFukjsHsTvDrXcN5LOMbrIZ9LRMRTKDE+HXKG3xJ66d2JfN4fRBZ+e/BMH0/5fJaUrQjZhq2SXspgVXsAUlz6y29MURz8xhTFwW9MURz8xhTFwW9MUVD39tasv0szDVhswtlKd3wX1a7jqey4OWIL1c73QPeB+jZQjX5ExBGY82NYO4FUV9Xs/2KZjfb9yGm3I/xHaYBntYR04YiIJ/Afid/t5/P+Dv4DQNyH43ywyde3B/8deTIep7Vnw+u0tuv4a+EvvzFFcfAbUxQHvzFFcfAbU5SuEd0ENTOktMQWJPd6GnPuuk5/VvqyOsJcPG/12GoqL4m9iIi7sH4PxNkjEH6frbLw+2qZa+o///hlPsbn12ltPMrXQjXsmwt+x159k8Xb3neP0trlYT7vM0idVZ/+8TY/vyNIS271VLgN/OU3pigOfmOK4uA3pigOfmOKgsJPzXZTp+a0RiKrDUBV0aU2zOw57pxMQDoOrU2DeN7icQeQSJTNdwy17hERJyD8HoLw+7N1fn3+ZpUbV/7518/S2p1/+CStDV99mU/mzt28dvoiLW2/fZy3i4jx+Pdp7ZOneZrO/25z9t0ZuOIlPP8LeFZX8Nu1+D7MoUcM+8tvTFEc/MYUxcFvTFEc/MYUZSLhQOOTVflFGXotqdHT7FOdKsQNSuEc11oWYeuce8QLbff+g5cj9qB895BGbIPEi+AmlT/f5H1+fZ0z9776+yz3Dv/xL9La8Nd/m9bGL/8urS2OTtLa+vvfpbXNb/4trUVEjN9nOXi0n0uH70FF7+WY351RfGWv4N1ZwVMlGd6SyrtujusvvzFFcfAbUxQHvzFFcfAbU5T/B2F8h8dWzOWnAAAAAElFTkSuQmCC" y="-14257.614729"/>
</g>
<g id="matplotlib.axis_797">
<g id="xtick_1195"/>
<g id="xtick_1196"/>
<g id="xtick_1197"/>
</g>
<g id="matplotlib.axis_798">
<g id="ytick_1991"/>
<g id="ytick_1992"/>
<g id="ytick_1993"/>
<g id="ytick_1994"/>
<g id="ytick_1995"/>
</g>
</g>
<g id="axes_400">
<g id="patch_401">
<path d="M 434.924375 14382.516493
L 557.214375 14382.516493
L 557.214375 14255.222965
L 434.924375 14255.222965
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_799">
<g id="xtick_1198"/>
<g id="xtick_1199"/>
<g id="xtick_1200"/>
</g>
<g id="matplotlib.axis_800">
<g id="ytick_1996"/>
<g id="ytick_1997"/>
<g id="ytick_1998"/>
<g id="ytick_1999"/>
<g id="ytick_2000"/>
</g>
</g>
<g id="axes_401">
<g id="patch_402">
<path d="M 29.174375 14523.934153
L 151.464375 14523.934153
L 151.464375 14401.644153
L 29.174375 14401.644153
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p71fd3a40c6)">
<image height="122.4" id="image1668d28d54" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHLlJREFUeJztnVuvHelRhqtP67RP9kzsGU9gQhAiCuIKgYSUa/4vvwKBQIJICIkhmSQO48zYY3vtdT51Ly4m8cWu55NqxcON630uS92rv/66a7f07reqqrp9drYAVVW5WF3VkVOthnPNzLqmdbGb0dTFPh0/crEfjz72sXrmYqOzX+PXtnexX/ULF3t19LHDcHIxM7Ph7LexPw8udjr3oeNq83t2HPy5J4hN25GLPR3fuVhX+/3/7jr+HnfD0cW2/cHFNie/t7uTP24wv1+Pxlcu9pPZMxf7vLlxsdWZn8tvTnMXe31Yutge7u/Q+988w7qnjd/v286/i49bf3/TunOxI7wPZmb3/cbF5se1j+19bHP0zyWWvUKIDw4lvxBJUfILkRQlvxBJYcUHqECAakDwY2GQBT8StUjAWvU7F/umX7nYAcS0o3nx5L7futj85EUSErRInDMzO4PgR6JWP/D5D6nrxsWaOva3uoVzad0V7FfpWBK6CFojxSrYLxQ5YS3zs38u67MX7Mz4XkYgdNI7yuuJCbYkDK8HL7rR71HMjN/Hfe/vm3KIRWUhREqU/EIkRckvRFKU/EIkBQU/Eu1ItGkbLyxFxZTidUBEJPHk9dG7tO4r74AiR92ORJKgkEPC3iXHkhMwKuR1Fex36/ebHGe0r6V7IaES1wPCIlG3/jnTNWbt2J8L70jJAUfMar8XtI8ksu1qL7CR6EYCG72zy5MXmglycn4X979JjkpyJg4S/IQQf0DJL0RSlPxCJEXJL0RSWPADZxOV75K4N+u8aENiU+k6BIk+UfcdiTEECXFEyelGzr2oK44gMXTc+PLPKQhaYygTpd8rCX4Eud0oNIVH3YPLkrhtfBnsdeXvb1r5925kLD5OoGz8RI48EPz2sLfr2gts9C6S4EduPHT4gWBnxkIgiXv0ztOz1pdfiKQo+YVIipJfiKQo+YVISktCHjnOyM1FveKu24mLjUCgKUHOr7BLL1jK+D5cIpKxcBpzNZJod9P6/obXtd/vDn6vh30tlY420PeQoPtr4dpRx+B17cXiK9iHCYh7pRWf6H2qfGwDPQDrs78/umd6v7dDzB049F5APBUcsVFI3KVHoC+/EElR8guRFCW/EElR8guRlJb6vVGp7rj1wguVYN40XpSagGhjxkIQllaCUHKs/HEknEWde2EKWgwJXSTukRhDTskJuPmuQBCjoQ8NLJIEv7b0tx/ukfa2g/PpmZJ7jtZDv0exMcTagkhGT7804OMhWH4N+zCp/DPA8msQBklI30IpsZnZvobBKRUIizAkRQ4/IcQ7lPxCJEXJL0RSlPxCJEXJL0RS2uuRt4fSfwBI2b9tff31Han9BXsvTdPZgxJLFt0OjjudYw0liagFtWTvDU8vCk4+ar7nv8v0H4Cu8FxGoFRPIEasYHLOBmL0Xx2yJdM7YmDvbQv/hiF7L/2nYQtrpBhByn5Lexh8pHSuGVu+sTEr3J/UfiHEO5T8QiRFyS9EUpT8QiSlvR150Q4bczZe8HsE4t4NND0kAcmsYPskcS8oqFCsqqFxZVAQQRGwYO8lIS/aNJNspNT0ksRQqr0n2y7tYamxKol7MxDZdrDGHaxxDTXr0aaedC8jGgNeeDA03WcNa1zCGndQk0/9LwboD8CThvz7Tr0qLhGVqakrNQ+l5p/68guRFCW/EElR8guRFCW/EElprxtoAEmCHwp5/rhijThAkg+5r0h4I4GNhEoSEDFGq7mg+WdU3Is2FMXpQzRVBsSdCmv84w4vqqGn/eamoLG9pfsjoWpb+Ri5CEv+zB3s2Zvej3JfQIzWQ+/YUP3xz5T25pIeFCQCkhuXflNffiGSouQXIilKfiGSouQXIiktuY7INUZjjencPZWnwuQTM3aDHbBUNzZmO+pii4ppR9IALxi7TUJldPT2FQixNxAj9ySVA5MDrlQ2jMfSpCF4rrQeGiOO713wW0RC47pQfjsfvHPv/uTFPZymExTeog4/FN2o7LvQjJSmBUWnPdFx+vILkRQlvxBJUfILkRQlvxBJad8eVi44aWj0NpQeBsUvEuLMuKSXhCAS6ML98eC6KH4ExzGXHHq0F1RiTA6xj7prF/uk8bE7mAxDazyAa4x64ZXKYKkfHh07gW/HbeXfnQ5KcEm0o9VQ/0fq9bctTOHZDV4IJFH5+x7lTmCvRhTiCoIfvPOlfn8PUQ8/IcQ7lPxCJEXJL0RSlPxCJKXdHKG/WlD8ICGPxnGXnFsULYkdD8FeeHAq/R7FSDhpQKiKDvcw4/2hEupPQdz7k9r3R3wMQ0noSS1hfPmS+scV7oXcfPSsSAS8BoFuBjH6PRIvSXwk8XJrLPhFS2bp2jhiPfh+Rt14UcHOjEVlylU6jkROffmFSIqSX4ikKPmFSIqSX4ik8JhWYAj2wiNKTrIahKADiFV7OJ/KgUkEjAo5JErStOKSeImlunB/j2HQCTn3ZlBWfQ2KJslFXNrsz91DKWoJcuRRjBjDnk1wMjGJezRRl5yh/C6G39Go+65QbvuQ6GCYMzyD0tCOqPuVeg9uYCiJvvxCJEXJL0RSlPxCJEXJL0RS2klLJZheMKJBHiSI0dCO8QUuph4cglSW2Z+9gLGH40g8oXXTFGJyX5GIZ8bC4hTuZYwSnWcHgyDWMHH4FkTAWyhPnoI7sCT4bSF+D+shMY7KiQkqByYBcQMiF03ZJQHYjIU3fL+DzwUnKqMYDufCvvZDXEinSbs4yKX3eUAxffmFSIqSX4ikKPmFSIqSX4iktDTRkwQREsRuwa12AwMarsDBVoKkji0IZ0twWp1AEHmf/n/klCuVYFJfORI6WziO7nlDUSpZhms86f2Bj6kEGq5rZraBUua68b+5Nb/fGxDeNiB0DSCIkeC3hGEc68EP2KCSVTN+XhUIp+RgpfLtE9zzKSgCkjh3SZ9IOp/e+UMPw3Agpi+/EElR8guRFCW/EElR8guRlPYKBD+a8nnXzFzsB9RnDoY2jEDkMjM7kMgC4tAaXHUo5FC5ZbxqNUTpryX2bIMYFYRybzZwu4HLroN7voO9eXry544Km7Me/F3S9OW3jb/OEnaIRMAdCGdUskrDOEriHkGOTHTaBadQo4Ac7OtH7sAzyK5FwY8cfkGRGycE41WEEB88Sn4hkqLkFyIpSn4hkqLkFyIp7S2o+Ddg5SVl/5PKH3cHdeOkXJuZrUCppkaMNKaZ/iNB/wHoQSEnNZR6BnQDTJoBa2gJajxK/Q7IGkzWUiq/p5r8dQ3/KaDpQ4XnsoF7JItudMw2fWGiDUGjY+BLk55wSg5ZaoN9CAZ4n+gGaeQ71/3H1X56XvgfhMJzfYi+/EIkRckvRFKU/EIkRckvRFLaz7s7F3xkXkx7CrEf9FDDDlrDtjTlBP70bIKCGE+lif0t49pmqOeniT3Ba5Sgen4SAWuIkV2YpKEViHO/7ehcfi4LOH9eQZ0+2F9pH6cg2LJY+MePv44KgyVoEg819RxATK1hulIDMarHp6acZD82M+trsu3GhEoSAfXlFyIpSn4hkqLkFyIpSn4hktL+1K5c8BrcSbdel7Br6sJIQPNHs/Lo7oeQOEQOOIKEDhJJaKwxxUYgfJmx84/EQXIwHkG2a1GA8tC59yAYfQuxHQhQZmY7+E1yknU0ejso2JLrk/o+jOD3thaf2HMK1suT4EfCIvUHoGuQ8EmxhpqlBseAm/HEH+xrAejLL0RSlPxCJEXJL0RSlPxCJKWlEc8kLJ1AQ1iAkHeE4+bgijIze1t5wWkOE1qWMKEFx3GTa4ym84CwRMeRyEVNHc3MOvNCEAmaJH41cG3asT0IS0c48ARnk7hHQlWJBr4TM1j3FQhiUxCQ6coT2JsduOxoD0u3sjr7d4fKd2mkdqlM+CHk2iTRbgKZFXU1mpltG38v83rtYwcf08QeIcQ7lPxCJEXJL0RSlPxCJKVdUIkiHHgEEYkmyKxAWFqCI8vMbA0OusWw97/Z71yMXFrkqBvVXoCiG6SegHRuqaSXSoyvaxhrDuPKqaccinYw5YacciRokbOwBO4jCFjkvruGUtYZCX6gc3VwHE0kIjV0B+KxmVkFv0nOTdoznMIULC+nvpNXwfH1tK9m7OZ82fjemtTLUiW9Qoh3KPmFSIqSX4ikKPmFSEpLLjuCHGLkxpuDYLcBh56Z2R7KMEmYIDEmKu7RcdER5CMQTkquOCr1vAEx5waOIzffEvaGxlWTkEflzpf0uBvRodgzEQQxOBckV+M34vsHx5/DMyTHKAl+2DsSynLpXbyG9+HuAsEPh5r45di28/dC96cvvxBJUfILkRQlvxBJUfILkZT2NZQ8UikqucsWIOStQPDbFgQ/cumRO2kEIhkNNqBBCSTaPAJX1LPm2l8X/jYuQOQ0KznE4DgUNH1sDwLrGvbxUCgx9muh0mYuJ6XyZlo3uRAPJLDBZfbkYATH6AHekQ28i6V9iE6xpeOiA5m5/x8cR9OB4bqUa2bslH3Vb1zs/uRj5GrUl1+IpCj5hUiKkl+IpCj5hUhKuwgKfuQkO6DjjMpO2RVHAsiESmtB8CNoCioJXVxq669BpbYlMYZKmbcQgwpTHrxx9sLpAkqb6Z6pRyE6HdF7VygJBjGOhDdyF9LTJ5GT3jE6jsQ92sPvzo+VMtP+YPkuOPfI9UeQS5b2tTRM5Q2Ie29OKxdbHrcuph5+Qoh3KPmFSIqSX4ikKPmFSEpLziYSbUhQIYGGe4WxVYrEExL3qB8aQT5CknuozHMH99LBukuFsbQXexDENqD4UZnwvPeiDTkl6V5GIOSRKEVuytKx9JUgYWpt3gFJzyD61SHBFgXEC3oUkiCKPQppAAn04aP3kwZ5HOB92IHzjp69mdn86IdxbHovDJ8GEJrhPdGXX4ikKPmFSIqSX4ikKPmFSEp7BY46dFqBkBeFBBazQj80EHjic0w95IDbQD+zdeNFmxlMiC2theLb4CRhckWSkBMdVEIlubTX1KPQzGwCcRLeUMAC1ycxgr2l9eBE3uA+mHGZNwl5JNDNgkM2aI0kpFMPRirTXkBJrllc3KNrE/ryC5EUJb8QSVHyC5EUJb8QSVHyC5GU9qPKK5qlmvWHHCqvXu5oiktBI2/gb0+pqeRDSM/kRph+jWRf3p6pj8D7/W0kZZ/WQ/+RIGhvyDpN+0pqeMl2Tc1Do3tL/7nA/+oE97a0xveB1kPjsz+uJy5GfR/oXVxBs02euBTvf0HQf3ZoZwdYpL78QiRFyS9EUpT8QiRFyS9EUtpnIHRt0HoJfycgRFJFSdAiWySJVVHI1kjiCcXWlbdZjupYY0Yzbir5PuIeCWLUKyFq76W92YEoZcZr3IFVmRq4ElQD38A4HBKG2Q7tn19pX+l8Hr3t95HEvaeQLzh9CERzHLENz4XGe5vxuuldpr3QxB4hxDuU/EIkRckvRFKU/EIkpf0zmDh930BdNQg0NH2mr8k9x2OtScAg0YdErWhtOwk+JH4sgo0iS38tqS571/sYj/KOudjI7cYOr9jvlUSyDdwL1pLD+Zc4CR9C704DLxlP++F7iToOCZrYNAan3AC3F+1LQeJeqbFq3QaFXHh+K5j2pC+/EElR8guRFCW/EElR8guRlPZZT2KcdzGtQFia1ND0EKbFkOhWXBCV+YJUAvqjdVTKCjFaD03DiY53NjPbkwMOhMVoc0WCxLQR3EsDz+VcxSYzmZkNQVdktPSU3IF0Lu0hNX+l96F0LwSdT2XMNMVpBftIAiSOn6dyYCgbLhFuFApNeQl9+YVIipJfiKQo+YVIipJfiKS0ZxAmqA/fpgKBJij4kIhXgkQNEk9I3COOjRdUSMgjcY4EqJJgFxX8CCrrjDr3yGUXFViLTjJ4Bh2VN8Pjp2uHS0zhnmmN5NCj/TLjPTug4Ouf3xso8x5A8CM3H420x+lDIJCXHJEkatLUJCovJ0FbX34hkqLkFyIpSn4hkqLkFyIp7ZeddwP9pvFixWvzgsgSesCRU6oElu+SMwp6CnZw3JSGQ4Dbja6xqHzJI5XkHgvlyTQqmWLkbKOSXhK/sDcfTGMgUXJofGza+N56ZuyKHINrjI6jEloSQ2lviAHKfOmTVer9SFepoUx4Zf75ExvoRxgtESZIuC4VQJOTcA3v4z2M+L4/+pi+/EIkRckvRFKU/EIkRckvRFLaLxsvifzOfL+2NQ2gCPajK03pJVELBT9wRs3OXmShslUSBpsmJrDNXaRc5ruHRm44RGTw5/NkYnDZBSfbkqOOevCVnIA0ZAPdgLAcuj/swQiOUYLWeMkUWzqfnktN7zeIkuva72N0CjEdN61ISOV82cEa73sv5M2PaxdbH9TDTwjxe5T8QiRFyS9EUpT8QiSlJUHsfaC/JqUSRezNF4zRHNPq7K9+TYNFQPA5gPCyq7zAsjPv+jNjoTMqVvWgu3UkpoEzjZxtVPpJZcMHuD8zFvfIXYilyPSsSBBrwB0IAlt8D1kEDPePxGEcseEgLFz7+2uhLHpXeYceiYVmXJZL4t7yuHWxPfTq1JdfiKQo+YVIipJfiKQo+YVISjsGgWYGJbQ9iB8HnKAad1+dqLwVBLoNiiz+uBEIfhWskZxyIyobhuNKYgwOugC3W9idBoeRM41KlonopGOzwvTeYL8+XGOwL2MFD5V6/dH6ioJfcD3jxgu+1LeQhDzsCQluvGMP5c4g+JX6RG6hxHwF4t7uBENSyFmKVxFCfPAo+YVIipJfiKQo+YVIChnlbAKOLHLFkXFvB8fRAIMSBxButtArcAdLJ6FyBOLOMSi6kVvtEi6ZTuzOpXJg2Me+j5UIk5hG1zBjpx2V4EYnDpNwNoKJtVTyStclwa/UExAFSHAXUo/Cm2aKv/mQPfTRI3GOehle4lY89CAiwn3T8+8aGg4ihEiJkl+IpCj5hUiKkl+IpCj5hUhK+7QHZRDU2XtQEN+SGg4hav5pxrXRpB+Tyr2jMcSgFpNtl6DfI7oa/0GC9lC6vwYUW4JU6qid9v+D91kPTcih94Tq3a/IGlwYx02Qck7PkJqW3jTj4EV8iGy7tBayL5MV14z3ewQq/rSFBqywt/ryC5EUJb8QSVHyC5EUJb8QSWn/rlq44Ou9tzV+DcLC70BY+Arqy2m0sFnB2gjHks2W6qVpognV5L+PbXcMtlQzs1lQHDrUfo1o5YW9IStndNR1dOR36Vic2AOQKEX181hTD01USXymvd423FiVLLVUkz8Bey+JxdQctf2e3zG6ZzMW7UYgXpJVmQRNffmFSIqSX4ikKPmFSIqSX4iktH/+s6UL/vCbexf7/IUXAX89v3OxbgSTb+pCfXIFDjg80uMHDpttYKIJTTkhMYZqyS8RC0kQIzGGjotOpaGpKwcQ56JNNC+5FxLEavhNuhcSNKPXuKIR1nDdLQhaZmZreP7EFK5Nz38fdIJSg9Lo2O6Si3Ta+HskcQ/3UYKfEOIPKPmFSIqSX4ikKPmFSErb/sUTF2w+2bhY99gLg+3/gCj18mMXezvxAoSZ2R6aMxJj+Bu1BbHwNYgsb3s/0YTcgVQ2fIQJQKWJRNRUkoXF2N/bI9SJ9gXh9CHkQou67C6BR6/DFKfgc466A0fwPtQgDJrxRCPanwk4N8kJSPW7NHmKroHjy4OuPbO4uEf30tKe4VWEEB88Sn4hkqLkFyIpSn4hktJWt9cQ9SJEe/RCx+167WI/WqxcbH68xYs33cTFOqj+fTyAiw1+73+h1PMXIAS97P26yQm4N3DUQc81swtGbwfHVeOpcBy57Foq38Vz+bp0Lzsoje1AyCuVCcOCHNTzkMq0rVBWTTRB0ZWOI3H3BLHoZCYsq4bvL7n+zOIOQZqG9FHtc01ffiGSouQXIilKfiGSouQXIiltdXvjozA0oL7yYtroEy+SPd14J+Bf/5pFoCe7mYvNYBz3o8nexc4wCOIF/N7N2Aua/9n6v3lfnfy6l+AOJCefGYtkUQcducEIFuhiQy1I8CuJlGcSumgsNpVkowDpRSk6jkqRDzjYJT6oBIeIwF7Q/pAIGC0HJ5ceXheeFTn5zMxmUJZ7XfnYZ7XPg7/pff7qyy9EUpT8QiRFyS9EUpT8QiSltTvfh686ejeX7b24Rz6kq4kXyX70ke8JaGb26SsvslUNlHVOQIBaw9TRF/641d67C9+OvNvpvvai4nrwsUvAybYV3B/9DY6W24IGSIIfDkgp6GY0CCQqSpLQVdUx1x8JeSQ00r2UREBcN4RItLutvUh2BW/9BAba0HCXUwOOSHiA04KD8QYEvyeVX+PfH/z5//DT37qYvvxCJEXJL0RSlPxCJEXJL0RS2urKC2Lnje/hV4Hrz26uXKh54gWa+jMvApqZjd74CcHnjRcbh5WPnU9+PW3rY+OtV3fG1EstOICi5IqjCbokvNXgTCSXV7TnXrQcmHoCUqy0njM9fyAqxvGE5pggRvtK4uolNPCbJLw9MnbfPWTd+ONo4Ae9dzfGgt9n5gW/vwRN+m8ff+tis5996mL68guRFCW/EElR8guRFCW/EElpzz30SGvAuzfzZYIVDEQgqrHv62dmNhxAyAPBr9/CQA1w+G13XmTZwBr3ICyRGEP9+kjYMzMbaHADaFAkYJEDLir48WAJWB8NqgBRysysP/u9PUL5bqm82Z0Le4ZCXtAJSPd8yQASEkmp7HgGbr67ghjn1+OvsQ2WCN8WrvFjMN7+6dnPq16vvOvv1T++cTF9+YVIipJfiKQo+YVIipJfiKS0tveCgUGJIsZILFx5cW/4+hVefP9f3om0eeFFlv3GCxgkanx79KW6r0deUFlAn8AtDKUgwY+EvRI0UKM0KCMCioXB8l2ChjuYsQBJ/fpokMf7OPxoaAcOJcF+e/wdi7oBcbgHDdSA42i3yW9IQvORnlXhFXne+Xd+MUxd7CWU+b68Vw8/IcTvUfILkRQlvxBJUfILkRQlvxBJaasZjOiG2u3zFiy687cu1P/iuYst/9WPxDYz++WXT1zsG6hZJmBqt73t/N+yF7W/lzdn34yURnSTIk3qs5lZV8emtpCNNAr9pyGqpJ9pcg2s2awwIhpuuyOdG0K0RrLj0n7RlBpqjnnJuHGyOvcQix63haas87P/T8jrwfe12MF/lN4W3pF57d9Ruu+XJ59vL4++ia6+/EIkRckvRFKU/EIkRckvRFLa6vO/csHz/Gt/5NILBsPzFy42/yff/PPfn/vmgWZmP5/4vz2vwUbaQdNLasK5h4aUr8yLJPPBW5oPZy+8kJjSFCyx0waEKRi1TLXkJErReig2UNMAgAS20pSbqGCIY62DdfUk7l3BhJy72lu2RyCIkRBnZrY1sG1T7waIreF96uD+lvBcXvU+D970XogjC3lpD99U/nyarnR/8tdeHHxMX34hkqLkFyIpSn4hkqLkFyIpbfPDn7jgaenr7M9ffeViy3+eu9jPQdz7twm7r74wL2AsehoF7s+fgPBGjqwVuPlWMHqbRC50oZUEP3CilY59CE3OQcEPxKHoutG1V2BPvQ1gPUR0wg6tkZx7NJZ6BN+sI1bVc48Aek/I4TmH9Rwrf50lvGMk7q1OXmiO9l4oHUvPanP07/fuBO7A8JWFEB8USn4hkqLkFyIpSn4hkoKK1Pn5Fy62/5dfudh/f/HUxf5j4oWlX5p3F5mZvQQX1KLncd4PiQpYJPjQpJlo2WkHzjQzFvd4pHYMOpcaT5LDq2mg6WWhfJegxpwkNhLRSUPR0mYUe4ONNc3MdvBcvFeVBT/8PRAg6VwS93YgZhMkSJrxs973/lntT9BYFcr09eUXIilKfiGSouQXIilKfiGS8n/rOuFYCVkK9QAAAABJRU5ErkJggg==" y="-14401.534153"/>
</g>
<g id="matplotlib.axis_801">
<g id="xtick_1201"/>
<g id="xtick_1202"/>
<g id="xtick_1203"/>
</g>
<g id="matplotlib.axis_802">
<g id="ytick_2001"/>
<g id="ytick_2002"/>
<g id="ytick_2003"/>
<g id="ytick_2004"/>
<g id="ytick_2005"/>
<g id="text_101">
<!-- 359 1834-220319 -->
<g style="fill:#262626;" transform="translate(15.789375 14509.829153)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-57"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-51"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_402">
<g id="patch_403">
<path d="M 164.424375 14526.435916
L 286.714375 14526.435916
L 286.714375 14399.142389
L 164.424375 14399.142389
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_803">
<g id="xtick_1204"/>
<g id="xtick_1205"/>
<g id="xtick_1206"/>
</g>
<g id="matplotlib.axis_804">
<g id="ytick_2006"/>
<g id="ytick_2007"/>
<g id="ytick_2008"/>
<g id="ytick_2009"/>
<g id="ytick_2010"/>
</g>
</g>
<g id="axes_403">
<g id="patch_404">
<path d="M 299.674375 14526.435916
L 421.964375 14526.435916
L 421.964375 14399.142389
L 299.674375 14399.142389
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_805">
<g id="xtick_1207"/>
<g id="xtick_1208"/>
<g id="xtick_1209"/>
</g>
<g id="matplotlib.axis_806">
<g id="ytick_2011"/>
<g id="ytick_2012"/>
<g id="ytick_2013"/>
<g id="ytick_2014"/>
<g id="ytick_2015"/>
</g>
</g>
<g id="axes_404">
<g id="patch_405">
<path d="M 434.924375 14526.435916
L 557.214375 14526.435916
L 557.214375 14399.142389
L 434.924375 14399.142389
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_807">
<g id="xtick_1210"/>
<g id="xtick_1211"/>
<g id="xtick_1212"/>
</g>
<g id="matplotlib.axis_808">
<g id="ytick_2016"/>
<g id="ytick_2017"/>
<g id="ytick_2018"/>
<g id="ytick_2019"/>
<g id="ytick_2020"/>
</g>
</g>
<g id="axes_405">
<g id="patch_406">
<path d="M 29.174375 14670.35534
L 151.464375 14670.35534
L 151.464375 14543.061813
L 29.174375 14543.061813
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_809">
<g id="xtick_1213"/>
<g id="xtick_1214"/>
<g id="xtick_1215"/>
</g>
<g id="matplotlib.axis_810">
<g id="ytick_2021"/>
<g id="ytick_2022"/>
<g id="ytick_2023"/>
<g id="ytick_2024"/>
<g id="ytick_2025"/>
<g id="text_102">
<!-- 360 1834-220319 -->
<g style="fill:#262626;" transform="translate(15.789375 14653.748577)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-48"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-51"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_406">
<g id="patch_407">
<path d="M 164.424375 14670.35534
L 286.714375 14670.35534
L 286.714375 14543.061813
L 164.424375 14543.061813
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_811">
<g id="xtick_1216"/>
<g id="xtick_1217"/>
<g id="xtick_1218"/>
</g>
<g id="matplotlib.axis_812">
<g id="ytick_2026"/>
<g id="ytick_2027"/>
<g id="ytick_2028"/>
<g id="ytick_2029"/>
<g id="ytick_2030"/>
</g>
</g>
<g id="axes_407">
<g id="patch_408">
<path d="M 299.674375 14670.35534
L 421.964375 14670.35534
L 421.964375 14543.061813
L 299.674375 14543.061813
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_813">
<g id="xtick_1219"/>
<g id="xtick_1220"/>
<g id="xtick_1221"/>
</g>
<g id="matplotlib.axis_814">
<g id="ytick_2031"/>
<g id="ytick_2032"/>
<g id="ytick_2033"/>
<g id="ytick_2034"/>
<g id="ytick_2035"/>
</g>
</g>
<g id="axes_408">
<g id="patch_409">
<path d="M 434.924375 14667.853577
L 557.214375 14667.853577
L 557.214375 14545.563577
L 434.924375 14545.563577
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p08e1861d3b)">
<image height="122.4" id="image308ac98474" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGXVJREFUeJztnUuPHWlShiMzv3Oq6lTZ5Uvb7XZ3A90MSIOY0fQCwSyYDTu2LPhh/A8kxIIFW4YFCFgipIFWN0O7r7brcu6XZAH2ouL5UJzJ02Uz8T7LUF6/zDgpveeNiGY0/qC3G/S9CyFN07hYC7HSdrh/17Shbcdd8bHWx2jfbb9zsdlm6WLzzcrFlpu1i+3geGbxNSNaWIeu9bERrAOx2W5djNZh6L3Q828s9vxpX6J2jZFzmPG7Q9vSPdOaEdH3mNjBeWv3TNv2FntWtK+/aiFECpT8QiRFyS9EUpT8QiQFFaSoGBOFxIb/OU9MZKHYugdRaxvbd7ODfXcxcafGkDWjfUkwImEJAa2p2flz7Hq+ZloLEpZI3IuuAwnDlS1D+9YENhQb4bqHCGdmfr0aWNvw86tA10jXQ+88CZr68guRFCW/EElR8guRFCW/EEmJWcYGUnOMUZxEjagYR0LOocU9OodZXDCi/UkIotgo6BprQWxq4by7ym9/28QEo/A9kxOQ3KG4NrHj1daG1rEmQEegdaC3CR2DsCUer3J9FKf3G52AEvyEEK9Q8guRFCW/EElR8guRlDKkfHMoJEyQ64+EJbzu4CVGS5EpVpUKgxoSlepGY1T6G6Vp4662qBMN3ZggpuLakrgH90zQ9Q1ZmxpRYTBaDkyuP6JWSsxl2bGSYJX0CiFeo+QXIilKfiGSouQXIim34/CrqWEQHtILD91zJJyB8IJOKxAfa5Jf1DMYdfhhSW9QEOOLIRGId++GiLtwiYd+pt+H+EyQULlFhx/cHwif9PxqjtEoUYegHH5CiNco+YVIipJfiKQo+YVISon2ZrstomJO1KXXBJ1fdLzdBoSTLYtXYKALnwcdfsEyXyy1hXP08ExrKxMdVhEl2veOQrQ2+7g7a6Lm20ytv2Hl1XNEy6/15RciKUp+IZKi5BciKUp+IZKi5BciKWjvRTsuCawDbZbxJo6/uhoeHZUcVdKnleafB7clR9V+muJC/+CQpTnahMC4Tp/Og0oz1rvHGlx2fdD6XPlXJzoZiOviY2vL1nB/jga228dKTblBUF7J3iuEeI2SX4ikKPmFSIqSX4ik3Eo9f80uTGJMtHElT7TxtxMVztDSCquz2m580MyWMB4cmyYG9R0ULxsvdJFI1tKI5qDl1yzeaHKfaTP+3ME69KA/t8feC3Eb+BBBM9ocE6dRhTtBMCi6B3VcffmFSIqSX4ikKPmFSIqSX4ikhAW/qOvPBrr+WCQ77Fhr3BecZHTPR2XkYmY1ITCmvND9kYttDILmpqcRzTHxqqv99gc/CbQ/CWdrGCM9xAlI70jNyRl1+BHRRpgEXjeIktyD4pYalN7KWYQQbx1KfiGSouQXIilKfiGSEhb8otNw9pmwEhVUNiAYoQMu6Brr4HKiomJNWCodxP1l89jvqGuMrhF+v8kROf4eRCRyRZLw2WzXLrbc+BgRFZrpHTGLjxsPn3sINNgHt6s1iY09Q9quB9emvvxCJEXJL0RSlPxCJEXJL0RSSrTH3W2NSiYRiRxi0XPv2tj0Ero/LtXk8x533vm3hbWNCnnrnRfOpmAijDodyR04ghLh2v7kEFzuvGg3b1Z+X3imm9Y/UyyrHjClxmx4yeyvSlSco+seKpAT3C9TCJESJb8QSVHyC5EUJb8QSYkLfsEBGwSJRWbxfmjk3sLyz9aLO9uOeut58YtccSQM1hxjRyD4HRoq3yXOyrGL3S+nLnbS8jXTM1j2Xm28hue/AqGS1pbeu6igRcJgTfgaMkwlyhDhe599o6O3o30U9eUXIilKfiGSouQXIilKfiGSUsZdrKqXhK7oNFBy6JlVBk7AdixggHMraOai40V7/dUEmlEDDrpgHz4axoHnBoHtGES7dzov7r3beBGwJjVdmhftnu8WLjbbeTcfES2XpncRS3XhOb8pJ59ZpQ/fLTlih6AvvxBJUfILkRQlvxBJUfILkZRCwgs5sqLDBWhoQ1eZoIrurWANJ4l2DZyHHFDoisKhFp6aw49Eu5Nu7GIPypmLvd/52BM7crEJiEgn0Jvt4dbHzmDa7XNqZmhmnxZ/L8vGC28vBvTHw2nMwenASEXvi07pxUMeuIR2KNGJvNFJ0PryC5EUJb8QSVHyC5EUJb8QSSlUihrt4YallcHtanESDAkSjKL97Mh9ReXJWIpa6XtHTrvzbuJiH3V3XeynG++++4ld++Odz12MRM4ygj6IK3/dn3137mJmZlO4l6/BwXgEsegzQIJCFYluBURKM3ZZ0nOlPoPkTK0NB3lTULbg+60efkKIVyj5hUiKkl+IpCj5hUhKmRTvJMM+etA/LirYVQU/2JYEQxJoSKg8Kd5RN4IS2qgohSW5IHKZmd3pTlzsg3LHxX5/58W9T5orF/vNH73w1/Ouvz+0c8Fyr555sfDbF77018xs3PvzTEDonLR+uyMQC1ctTO4FNx/2dARBk0p/a446ek9ItMX+iJtYyTJe96En/Fbogr01NbRDCPEaJb8QSVHyC5EUJb8QSVHyC5GUgsqngfIJ4uXQaSikQJI18WzsFfLHx96a+njkY3db/28G/eKt4R8JUmxrY60fNF75/tj8df/eyo+1fvSBt/KW+/48zQQm7ECdfr/w6vr6yh/v5Q7+PTCzBSjspCrfgXuedH69aZQ3TfahJpxk46Z/M2o1+tF/dsjeG+0FQP9ldfAeD/1XIKziBxum6ssvRFKU/EIkRckvRFKU/EIkpZD1luqYaxbdm0TFBjOzFqypZN38cPKOi/3h0VMX++nKC2IfbfykmR6Ek89BGPyyxMQdM7N7Xr+y39h4oevDO97KOz7zO8OAHOu/9hbd7dRf0fxbv4Zf/Nc9F/t8xFbly4Zs154RPNdTWMdp628m/D5RkT+8TjXxOXqeNdh76ZhcKx86xSBhcChk2deXX4ikKPmFSIqSX4ikKPmFSEoh9xU25hwwqYTq4mvb3h35ppe/PXroYn86979bP/uz5y5W/uSP/YkXMxf60V//3MX+/e98s82LNbviTlovGN2HhpvHE7/emzm4LH/pz7GYeoHu5Uu/Xt9AQ9Bnxe/7ZcfPdArTeZZBByQJWNQDYQ3nIDENXX9wXnIMmpmtthy/CTn8cGIPnJuumyCXJE+PioNTr3Caler5hRD/i5JfiKQo+YVIipJfiKQUEgzIVbUDTaOL/nZU9JACQuBZ8WLVncY79x51S3+8T37oYqOf/bmL9cupj33+n/5a/uUrF3vx0jvYzMyWO38v05kXB1cwOWe98bErEBa/g3W46PwzuAZN8rL1z/kCRDczs4vei2QziC2h9BsFsWiJKW3XQ0kuxGqQ4BcV94jo9KEhI7prU6t4GlasTLiHY+rLL0RSlPxCJEXJL0RSlPxCJKUcd+xYu0l09PY+I4xJ8CNB5bL3rrh/szMX+52/+Sd/kt1fuFB/5ctqn/+lF/z++fI9F/uM9T78FX2w9RufLf06LqAm9CU8Fuqtt4EYSVdziM5oSo2ZXfZ+Us3VzsdWsP8CnlX0naBnPw4KbGOYzGRmNm/8da+pf2Cw9JeIioW1PoM3aSo1wiRU0ovXkOsPfIP68guRFCW/EElR8guRFCW/EEkpd4ofLU3CCzkBaawx9UKriSk4UAF+j15CQ7u/H3lFbPoPH7rY0597lx654n4xeuJiz8beRTijgSZmdgTX/WDkHXnnvRc5yZG1DA5zIJmL5KItHG9RKR6dgmh3Cc+AysHpnaByW+oTeQzjtGnEdm1MOkFDVqZb/1yjI+ixrx+JrgNK4Kn014xzowTPQ/eiL78QSVHyC5EUJb8QSVHyC5GUQkMWjsEtRWIDCVXk+lpBOWgNOg+JVZ/uvEvvSxgOMTqi43nxYwkCVHRQhZlZD+W217AWVBpNR6QVQ5kLyltxCjGIUjSZ2IyfIbniUPCFdVxuY1N6CZr6S4JftNTWjJ//fBsT7ehdxOm7QSGO3qdRxa0YnTiMk4Q1tEMI8QolvxBJUfILkRQlvxBJKVSqW+A3YQKCFvmQNjDhdd37fc1YPCHINTgHd9llD6NtARqyULCc1LvDRg2XQJP4SW7AFYhseD04/ILqN2OlqEsQuehazNgNRvcXhY5HvfXI7UbCYA/9CG+L6DpEh3tgGXNF8DsF8fOo9blFrsaNHH5CiFco+YVIipJfiKQo+YVISnm+uXbBXQEXE/xMkCBGvyY1VxzN7sVegSBWoZMMRECcJEsly+CfK3B/NVccefL8jF6GhKAxia5wjevg7zeJjzMo3TVjgZWITqcl6DmvQQScQfktCVr0rMz4nViA45D6DNI6REt16R2LDvKo9foj598xCH4k2Dfw/PXlFyIpSn4hkqLkFyIpSn4hklK+WVy64GLkBZEZ9PqjcstjKLesiTEdCEYkp5DIRmJMtHQY+7DRoAQYVLGpTLaNQiIZCaJHsI60NivYl0ROGrpxAX35zMzmsC32s6Py1uCUXloHKjudb/210Ha1kt5oT8HaZNwIXUtl1XDPQcGPxGwzFi/xPBCj3NCXX4ikKPmFSIqSX4ikKPmFSIqSX4iklOnaK75kdSSl8QTGe9M/ABNoEmrG1kT6NSKlkhpKkm2T1GdShukcpJrWrJfUeJTOw80ZwaJJDTfJ5gwq/Jwm7mz9cybrrBnbqXE7qvsP2l9pPDuNoKZ3cR9lHv+RGDBNZ4ilOUptwhU9r2gjVPrXQ19+IZKi5BciKUp+IZKi5BciKYXEk1UDIgKUfpMwgbGOBQwSIcgKHB0FTqIkNYokSMiLTkgxq9Raw3jppvfn2cI90zquoSabpCtqbhrtdWDGohYJZyTu1cSqm7BwSn0W6LxxoZH2J7D+/hbEPXwGtUlKOxKBY3ZzWgd9+YVIipJfiKQo+YVIipJfiKQUcjHhaGISoIJiWk2MWbVQYwzXE23WOVvHHFBUA0012eRCo5iZWQsdTqOCKImX5BgkaOpRtAHnPmOtSXTlEd1QKx9cByLqxqsJeyRos3OP+hDEpu7giG7SCnFMNgjAlXuhdyIqaNI968svRFKU/EIkRckvRFKU/EIkBWcBh51bFIJ91+QYrBAtE0URCcQdEmNK50W7IxDyjsChVxufHBXPomLqCiYAkZCHDSqhPBmbllbKk2lbEk6puSaJwFFxj54zCcC0XU0YpHNHnXs9OOqiZd5t9H0g8bHW6JPuBYW84GSg0FZCiF87lPxCJEXJL0RSlPxCJKVQeSQCm/XggNo2MdHNrCLQBR1LUXBCDoh7d0Z+ItHj8bmLnbS+b6EZT7khFyILmj62DDoBo+cgQbI2SYn2J3FvuYmdOyr4ET2UQBPV8uSgg5WE0/BI7aBjlKD3s7YvuUtbuG1yF9J0LH35hUiKkl+IpCj5hUiKkl+IpGAPPxY6SLSh0cSe2pAFHPscdKLVhme441GpJogf90anLvbj0SMXewIDNszMvuq8+PXp7srFvttMXYxEO4qh6AaDSuj+xp13Jtbciug4DDr3oiW4hybqajNjQYyuG0t1yaEJ56AydHpn6d0eGQuxxD6Cobue8FmEEL9WKPmFSIqSX4ikKPmFSAr28IuWKEaFhep2QdcgER0sEWXcePHrqXk334+XfI4vip9EvIBhJZeNn5b7cutFwKv13B9v4wU/Et3ICbbPtFpyy9G0XBTEgs9gH4Euwj7lyYcmeo6YZF4XyElsJOcmPmvIK335hUiKkl+IpCj5hUiKkl+IpBRyfg3pC0bgAAPjXnokYFAJLokf5HaLlg1T37trkGiuK+LlCu5xBftT6e9040XA2cYPIBkyJAV7B7bxUlssRT50+XXUtblHDz+6xqhzL0q49Dfo8Kuua/C+JfgJIf5PlPxCJEXJL0RSlPxCJKWcFO5JdxMUkUBYQBdSRSwkIe90dOxiVG5LfLfyJbTTtRfTRlDKSoLWF+b3beH6zMyemxcbf7m5dLEXq2sXm4Nzb7P1jrqa8+smOxB3qE8glZ2axZ2bUWdbVBCLEhXxzIYJedGy8SgkZkd7DJrxfaMQC8NGtiA+68svRFKU/EIkRckvRFKU/EIkpYzA4UduPhQbQIAiYakm+Jx0Xmx8OL7jYr81euBiEyjB/azzgze+6i5cjISXs84LeXNw/X3W+FJbM7NvtzN/7pU/Nzn3wv3xgo46dsDBM62UTx+8jyI56mjXoDiHbsWgGFojKkoeWrzEKcSVbXu4xyH3rS+/EElR8guRFCW/EElR8guRFCW/EEkpNLUFbYjUMLOL2Q1pXzOzs+IV9nfKmYs9af12k95bg9fF/1OAI7rh/s7hHMcwwvq69zZeM7OXW/8vANXpk7JP/5DsU7MeAtV13pRqv2vP8CZhO+2Ae4nWsNegZrTRWvtDE+29UNs2OjWJ1kdffiGSouQXIilKfiGSouQXIimFLLYFhK6j1o+mJhvwpucacWLS+Sk3dxsfG8Fv1BpEqS3UMZO4R9N5qOfACsSUK2jAaWY224Jtd+fFPaqhj/ZKGAKKSBU9i66nod4NwfMc+l5ui0NP+4lammuWXZqaFBWLCX35hUiKkl+IpCj5hUiKkl+IpJS7ZeKCx40X905bLwySSLaAGvhNpUJ5DMJiB66qKzjm3Lz48WLnXXZXOy/EteZFu0sQBkmwu9j4un0zs8u1jy833g0Yde7dxmjpGng9ILCGR1Mf+F6GNtbk0eKHPV5432CfjNq2Q86tL78QSVHyC5EUJb8QSVHyC5GUctp6R90JOODugOCHgFZBImANapq5AHHvGoS8F9BEk5x35LKj0sg1CH40Btws3oSToNJRLKF+gyLgoUW7Q1MrOUaRjByHZIAMTtOJltVGr6+67aGF04MeTQjx/wYlvxBJUfILkRQlvxBJKbXx2TdZg6ixBbGCxL1lTfAD/WLdxEYJo5MQhDyakDPfwkhsEgFpIlFFoKFt36by1tvoR1cjOpqa+D6EsyjR5zdkO6K2NodeM335hUiKkl+IpCj5hUiKkl+IpBQS7UigW0FvPootYKhFra8f9QokcYiazY1gXxJESKAjcY9cf1j6uYfLikSffYY03ISGTbxtULlt1/rrLq1/fjiuOuioq5XBUo87gp5VdFAJHu8NOiKjzsS3/20SQnwvKPmFSIqSX4ikKPmFSEpZgbhHIguJdrQvbddVfmPGnS8dLrAt9fqjvoAkINJgERJySGhk11hNWIoKRkGXF10jCGdRUSoqPu4DCXQk5J2O/ATkkxIbFkPXTb0VFxsephIttSaRjN4dEpBbcKVGB2y8SfTlFyIpSn4hkqLkFyIpSn4hklKoxx32swMhj7aLikBmZscw+XcCMRIBqdcfCTR0bhIaSfwigYacgGZx1xmJnzQQgyCHH4mABF0LTd41i7vdSufX9nzsh8A8PX7gYvdhWAytDb13c3CRXm38wBYzs+vtwsVIMDy0I4/OMVvDJGcQJPe5liGlzPryC5EUJb8QSVHyC5EUJb8QSSlTEPxItIu64qjU9qQy8GMC04BpYAixCA5ZINfYpPhBJTgkA8QU6gloVh/mcRMsPQ3eC4l79AywrBa2qw0VQaESzn1nfOJiv3v61MX+oHvoYg97fzzq9Dhr/eJcg6PusvD6fwWTm5+tL/z+IBhGBe1x699ZWu9p8e/OxWrqYguY7mzGAnRUqCb05RciKUp+IZKi5BciKUp+IZKC6toYRLfo4AXa9wwmAZuZnYLgN4bfoxWU0UZ9TSTGjOG2j8BZSI5B7jEYd/j1NHghOIwhej1DXH9mZhuYikyuyMdH5y72w3LPxT5Z+ut5D6Yst7AM6z62Nlt+le1fx95d+Lcjf0xyEpJLj9b7pPOCNoncE8gDOt5l66dNm7EbkEqHozF9+YVIipJfiKQo+YVIipJfiKQo+YVISiE1/LTzDRfJtou1+/B7clqx946CE2hoPDg1D0U7JijkpOzfhXsma3Bt+tBVw/XkNxkyKhubTAat2ATtWz+Pf1akXp/1YKeGfxXun/g6+/P7fg1PHvjnPH4PpjWNuWfEx//o7+Xry3dc7KL467nYeNUdG5TCOkzgnd/AP2H0PtVq9Oetb1K6rFiBb0I2YH35hUiKkl+IpCj5hUiKkl+IpJQzELrud75O+wjEr/BJ9viNWWDDRmiGuPNCxxrsmHg9cC9HIMYUELloX7O4/dkGNIqkxo61mvwIQ/Y1Y2FqCc1IF2A3bqFO//SJf6bHP3nk9/3Q9wywilX5UfmFi/3RX/lt/+P4rj8kTecBMZXEvQm8T2vIg0nnxUKyGg9Fgp8Q4jVKfiGSouQXIilKfiGSUh50fnLKo9YLfiMQOrYgiGyCMbO4uHcNtd8ziJHrr1Z/fxO6lxWIinQOMxaHDg2eA4SuLfQ/2MdZSMIiinuwPlewPhetF5W3W2j++q4XztoffORizaMn/vquXrqYmVn72Pcc+MG5b+D58fK+i826mIv0GPtfxNab9l1VHLHRMet9Bzmoen4hxCuU/EIkRckvRFKU/EIkpZC4dw8aa1J7xDVNtKFGiDiLxWwB4tB058sWaczyfOu3o4aLIyjBXLZeqLreeYFmAYIWnbcGlcxug7pgdEwzCZVRZyG51arnAWFxDs/qRe+F2BfgYtvCenfvepdd8+R9fzHHpz42u/YxM7MCJbjn/hrff+a/g9+A+3XW+PebxHDyG5JgS45RGl1f238H4h5N7Fm1NNJeCJESJb8QSVHyC5EUJb8QSflvmVBNpvlAsDwAAAAASUVORK5CYII=" y="-14545.453577"/>
</g>
<g id="matplotlib.axis_815">
<g id="xtick_1222"/>
<g id="xtick_1223"/>
<g id="xtick_1224"/>
</g>
<g id="matplotlib.axis_816">
<g id="ytick_2036"/>
<g id="ytick_2037"/>
<g id="ytick_2038"/>
<g id="ytick_2039"/>
<g id="ytick_2040"/>
</g>
</g>
<g id="axes_409">
<g id="patch_410">
<path d="M 29.174375 14811.773001
L 151.464375 14811.773001
L 151.464375 14689.483001
L 29.174375 14689.483001
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p5952e1e2e6)">
<image height="122.4" id="image9e20d03533" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAFPBJREFUeJztnV2PHHdWh093VXePx56ZjO2NN5uEbDa7QkIRrMKbhMQtXwI+Ex8CccUNEjdIyw0I7QWCaIV2IQlstLGd2LHHY89rz3RXv3DBwkV+v4J/p8Y9L+d5Lo+7uqqr+0xJj89L78/f+dNlfIPn/fk3Q3HU09jxciaxw+VUYvvzscQiIl42JxI7nZ1LbLrQ81S9vsRG1UBiW/UtiX13sCOxH1RbEru9rCT2xdJ/ll+cP5HYl6f7EjtrJhJbLuUr6ESv19NYaKzq6z1chYW57sVyIbGL/nxwMXT79gHg2kLyAySF5AdICskPkJT6+40KmreMTGtMbNwfSmyvUsG2N7htT/7USLYXizOJHc015sRSKS9npxKbGHnphNbz5tC+57OzA33PWSOxdci9vvmu+oUSsO093XX3zeHLpTk2EH5XEZ78AEkh+QGSQvIDJIXkB0hK/b2+yrQ7t7RKb7Sh8mrWaAXc3pHKvS97I3vyx4M7Gqs3JPasrxLxyFQSOmk3XujrzucaOzZS8cy9bqqvi4gYm8q9LlLSUVq55+Sek4Bdz13q8UoFIqwXnvwASSH5AZJC8gMkheQHSEp9b1er3e7+psqr4Qe7EltOVbDd/4/nEtv9TCv5IiK2TjU+HGpb7qBSYfRsqX+3Xi30uieh1zgPFXHjmR7rYpO5is8IXw141aVW1+srrdy76vchKzz5AZJC8gMkheQHSArJD5CUeucdnZk3+v33Jdb/7R/r0Y3Kr97uzyT25uwre/LZZ1ohOJlq1d95T1837tUSO+2p3HPVbk7OzU01nnvdKlx0ZZs91hTe+esurzYs/dzuemjfXY3Sqs2uuO+FJz9AUkh+gKSQ/ABJIfkBklJvfKiVe/0ff6Sx3/pjiS2PXujr9r6W2OgtrfqLiNh5pu2xu8+0/XdnobHNWiXgwFT9OW6SlHLSbWHk3uuYrUflXjtdZivWff1tt72nY75w8lpjPPkBkkLyAySF5AdICskPkBSSHyApdfVHfyjB/g9/T2ObutZ6vvdQYsvjY33diZbdRkTMZjqsc2FKGxsjOSfGaE9D14g3S43ZUl5jvp0N71ryuw4ou10vlbHzztgPCl/XZvtLV6o3c823czOHgic/QFJIfoCkkPwASSH5AZJSVx/9iQR7lfbKzz79qcQWf/8TiR395EuJPf5cS4gjIp7OdRPPr4YqOz7t6yDNX81VLO41GjuaaQmx29gzW6gYvA5yD9aLK9Ed1Tp09s5AZfao0tet0rtfFZYHT3p+yKwcW3xmALhRkPwASSH5AZJC8gMkpXZyb/7oFxr727+R2KO/GkvsX8ZvS+zzgRdne0OtRPpqodLu8eSVHjs9ktj5TEVel8Gc9KvnxvXPu+q7W/VQYrtDHUS7WelcimZhqvEWZcIuwlcNDvua0+66efIDJIXkB0gKyQ+QFJIfICn17O/+UqMnJxIa/9OexD47Ubn3yUgF28PQrUAREV/PdD3406nKvRfnKvdOG636c0MKndxzlVJ15YSIG8LoK7Jc3A3NdAVdiMXVKB1kGeEr6Fx7c5fvwErASiXgVqVVf+OeSmrXhh7hr3vUN9WFfT1PU+l78uQHSArJD5AUkh8gKSQ/QFLqo7/4Zw1uqlh4+kud4fei0r8dh0ZgvJx74fdypmLxsNGqQSf33Jyy0jl1Ts45uWdnqbVsup6bfyhdv1x63Rctqq4DpZtvnMRtw89wLFth7r4D1w5uW8T7bk12uVR2tni70rb4B9VtiVXuPC1nAYAbDskPkBSSHyApJD9AUuqfffqWBPtGajw3rb9PTKvu2FQnzVoqllzcrRcuXULhXlcq3Ybm87UtTyjFnduJKfdZ3H1o7JzBsqpGu8rbHHuZlMo99720LbSwv52FuxclV+jvrZN7p3OV1APTarvKMhVXzXe3r8Lv/dDYlllfz5MfICkkP0BSSH6ApJD8AEmp/32kEuKopyLouKdS49xURZkiptgxLYYREdPavOdA55dNzIbR2VSPLZUnVgIWzmtz89EivMy5U5vFDUbauDluJ6Yq8qxw2YiLTU1FpIu1Hb8OOdhF7LZVOpbOayxdnuGq79w53Hc6MbP5XIVf1fJMdq267/Y3JfYH5/qeH2wcmnMDQEpIfoCkkPwASSH5AZJS7xu59zJUTJwb4bPZUyH2Tuhigvd7Xvg9H2gl0tC8p5UnM73GprBMy8krV1E3HKjEuzfYsu/57uANib1nZMyGqbTaN/f7yUJbm18tdOPwtFAsOYF40vhW6/GsrIXaVmNecNuxrX508rGjjyytxnSzHrtUh1rRbHIgImLXtO/+YK7n/t23n0rs3p99IDGe/ABJIfkBkkLyAySF5AdISr1pKozGRji4SqT7S5UNP2z0dVstIu7xQKvd9s38sUeVvm6VxQ1yrPkso1rPsTvQTavfH+za9/wo9LUfnmml3CA09qhWSfrZQL+DZ3193elS5Z6LHc312Dax5Npjx2aOoqsQdNWBVgKu0MpaQtvvobQir+6XtXlvmI28dituy739Jk6Gts3wc3P4KnMbR9v6vfQ//EhjBdcHADcQkh8gKSQ/QFJIfoCk1G8sjPAzwmfeKxM0MyMrxi1/Yo5M/+/hQsWSa+m18/qMEHEiyMm9e0Ot3HtQm1hLe/I9IzrvmgUmI9PG3JhjD4xsmpj7tXAVcCZ2ZgRU26ILF3fyq5TSisouS1faZvjZllnj09zxm0bEbpjtu6ULQ9zMSvubddudI+JsqSLveaX38ennumDnzs8/lhhPfoCkkPwASSH5AZJC8gMkheQHSEq9bwzyk1Djvm/6wR8by/nIlD+2/YXZW+h7PpzuS+y40T52Z4ZLh3BuDbUv+juDbYk9MNtQtpblW3ym5rUbPTW2m6bkd3Ohdt2teHYG+Mj8j0npQNAIX6LrcJbbWfPlvOy76lLx66x+2/U4w+5+J24oa/HGJTdzwHw+9379Ftt/Yr7Xr/v6P2GfNOZ/qf76P/U89iwAcOMh+QGSQvIDJIXkB0hK/Q/zPQnuNUcSO54Z6Wb7osvLSF3ZrhsqedZ4MVVyng1Tyrsz0MGa943cu9vTY7dNOXREhL4yojbDUbe2VNr0T/TYkem/nxqJ9MpIU/v9GWnqBnVG+FXgpX3xF01pya8rc46IcHq2dL6AK0t2A1Nt+bKJOcnpZgFYWRgREyN3T0JjX5uy5Mef64BZnvwASSH5AZJC8gMkheQHSEr9r4dfSNCJuNL+69Ke+jacPHFiyQkot03F9WS7ar77Zjimq+bbbKm+2pnrdb/5xqnE7v5IBd3GE73fd77UKq3G3O+juYq8g6me14nUthXddlaCud+lErB4zXah3HO/xZ6pkmw7j/ssXeRlaW44IT03/fht13Krr99XY/KlMbM3zsxmH578AEkh+QGSQvIDJIXkB0hKfThROeQoXbPcZZNO63taiWiGTJpqqW1Tzfe9SrfrvLMwG3tMNd92y/ahB6FCbfc9XbM9fE9F3vxES/xqc7/dYE63jvtsphWRbqV5W+tuqcjtQqdV3uZS2j6Lq5azbbmmXbqt0k6ONdddKqmddG0qL2Ld8S9rFb77lf7mjwPhBwC/huQHSArJD5AUkh8gKXWxZCmk6/uVCsPSeX07tcqPBz2t5ntPfVjcN5WOt80MvoiIB99RaTd84Bp9lfnUCE3zuk3ToLrR15mJ7j6sImK7VN+tg1Wur2+eb0tTAWcFXeH1uAq/UlnoJF7psRERj3svJTbcMKvFN2jpBYBfQ/IDJIXkB0gKyQ+QlG+/d/kCcBLKVZK5xQula5oHZjX1wLTlbprKvfsDrdrb2dGKqoiIrTfNPLy+Cr/lWCViz1SX3V9qld77SxWVewMVOacjve6mcPZcRMTS3IuLFsPrws/mc5/F3Ytv/2wsl5KmzdcIxIiIcyOgX01VNP/SnOdkaGZH2rMAwI2H5AdICskPkBSSHyAplyv8Crelutl8A/M6t6nVLTo4KFx0sNlsSKw69uJrMNSW0mpTpV21o7d8sK3v+fZ9XbzxOy/uSuxoQ1uED4zccRt528SSE2LzZdnm3uuAE51LI4EXphKwy9xChxWD5rwR/vtyrdqvlioB3ffPkx8gKSQ/QFJIfoCkkPwASblyFX5O7m1UWinnxODIvM4JlZemeu6zWt9vv9Lb82CmCz8iIn7jiW75ff/sUGL3fqRz/arbeu7t76q0e+tYj313rtfzRXVbYgcDnVvolrNE+C29XpJd/aq/LnMBnbObX3QLvDlJm4h1j+rGvNRtLLabl//fqwOAGwnJD5AUkh8gKSQ/QFIuVfg5XJXewIi3W5XOrrtTaUXeLTPjrjHtm18vtQ123/xtfDHQ94uImJj23c0DlWzbR9oSXO+av8F9FTSzuWtt1kO3zNe6VamQPKxVIEZEjBuVjY1ZLnGV5vqtC9c27ipV3Ry+YmnaMm7RiUBXhejec97TY3nyAySF5AdICskPkBSSHyApV074OZwEdMLvthF+231t1R2av3nnpmX1zLT+Vi025sTMCmxMm6hZEGs5f6kC8eFcF5A8HqnIOTbXPTeSs23zrpNaLnaTZv05bBVpXbaIxW7fnZe1/rbeQ/N12ZZgE3PVtDz5AZJC8gMkheQHSArJD5AUkh8gKZdq+52VdL3ILuZM9aYpsb3VMwMzjXKfmdJLN7KyzfYPTHyjp+/Qq02v9b721T/86k2Jfaz/cRH/ttRBn89nOsDxcKalvJOF7+d3uPvtYteh5Ld0vbsz+3ZmRKGxt+W9K/yPSZfZBO5YnvwASSH5AZJC8gMkheQHSMpahJ8TLG1xJyZmZvjgzJTjzt0wRCegWlZTf5NRqATaNGW8ERGmyjbcx54c6C1/+VwHbv7jUO3ex4t9iT2aaGw80378qVnR7XrO23Dlve54KwGvQclv30jgqrQWu5B1SdPS+82THyApJD9AUkh+gKSQ/ABJWY/wa6mKc+uOHU74ncx04Oar/qkebD7h0Ei72vwd3OiX356xGaT4MHRo5vNHKvI+Gem5f7p8JbHPz55L7KjRyj036NFJJLdaehX8uupOb3lp2KGXToiakL23HaRdmyC/aHHKkx8gKSQ/QFJIfoCkkPwASblw4edkhasOiyivqnJiyq2XPmhU+LlKwE0z1HPbDP+cLE01Xuh674iIg55ez8/Ncp+JuZ69hUq7JxMVfseNbvtxgyJLW6VXwX0HVixeg2o+h5N77t6637IbMFt6H0qrXF8HPPkBkkLyAySF5AdICskPkJRLneFXWuHncLLJta262IZZ2+1Eo2sHfrFQ6RYRcTDX+HiurbVubp6Tl2dzFYvuMzuc3Osq55wQuw7z+hxeiOrnm7lqPnOsk4BdqyfXAU9+gKSQ/ABJIfkBkkLyAyRlLcKvTVTZVl/z58i9rossdBVZlTmxk1zHRuJFRLxqdFGGaztuTNWYO4+7Z6XVYKULI9qklH3PVVZJX0NKJWDpvXG4+32Z95AnP0BSSH6ApJD8AEkh+QGScuHCzwqMFjfnZvM5eWKFX2EbpW1FNSLnbKlVdu7YY1PJF+Hl3rhROeg+c2nlXinuHpbO9Yu4WSKvC8Xis8PgQoQfAKwdkh8gKSQ/QFJIfoCkrKXCr01qWOFk3JdrmXSxUTWQ2K3KDNIznJrKvelSq/GOZ174nc+0BdfNgLOSs1D6dGmhReK9Pq7rveXJD5AUkh8gKSQ/QFJIfoCkXOoMP4eTWnVft+puDXQD7pvDHYm5ZRxuNt9R6Qw+M28vIqIxIs+30ZZV811XiQTXB578AEkh+QGSQvIDJIXkB0jKlRN+bnPvrVqr9O6PtiX27uANiW329CMem/ZdV+HnJJ6bt9cV5B5cBjz5AZJC8gMkheQHSArJD5AUkh8gKVfQ9utgTlfee7s/kthOT/v5h+bv23moxXe4Utw2M+8GikJ3SrcUXTXcddvXrfC7ueitSTz5AZJC8gMkheQHSArJD5CUTsKvVGqsgtuS42ITM1xzbEReYyTJ8VKHbY4XZoDnomyddkTEosNwTfhvXGm3FX5OfF2x7UNO5LnPssqqebvZyRxe+pl58gMkheQHSArJD5AUkh8gKcXCz8mKVaqTHKUVS24bzovpUdE5XOXd4WwssVfTE4m5Fduuxz/CVwPatdjXoDptHTi557YwudeV3uuIbluOSikV31Wh0GzFPKpXWb1e8HYAkAGSHyApJD9AUkh+gKRcboWf8RJOVpwZ4ff87FBix41fn/1NJjMd4Fm6TruNi263vElYWWyr3Zzwcy29N6d9epUKv9LPXdoGzZMfICkkP0BSSH6ApJD8AEm51Bl+pZJsvlTxdtZoZZMTee79brqcex2t1tf1/qxjBqB7v9JWZNeu3iYBS8UpLb0A8H9C8gMkheQHSArJD5CUTsKvVCy8jrbKUjF4kyhtq3atsau0X7s5hYv49u3JXaTrvPAcbZLzskRludzrdp7iCkgT4skPkBSSHyApJD9AUkh+gKQUCz8rTgplxXWtDrtqOGnnNhjXlcbc/Li278XNKWzm5Ysyvi3u/Vybr6NqeY6V/m7XUfVXKjn9NMLya3TC18rGoncDgBsHyQ+QFJIfICkkP0BS1lLhB68PV9nm5J4Vfj3//bkKP1tB1+HrL14sUdjG2ra0Yx0tvaW4z+zutVs0E+GFb6kQ7TmZWnQkANw4SH6ApJD8AEkh+QGScqkz/KA7vg22rP120SLdLmu7sKtC61qZ1qXldR2f2Vcgls/wK1764Y4tOxIAbhokP0BSSH6ApJD8AElB+F0jSivEonCUYVuVnZNsF96+W3iOhZWXZVV/ES2bf6uy9mY7y7BQpnZhlXmLXRa08OQHSArJD5AUkh8gKSQ/QFJIfoCkYPuvEb5E9+Lt81VfYW5nGJihlRERw77+xN3QU2fxz2ZTidk18GsYZBrh/xegy/fCkx8gKSQ/QFJIfoCkkPwASUH4XXNKy2SvA11WkA+MxIuIGNUDjfU1NjPr3afzmX3Pb4v7rrqU564CG3sA4H8h+QGSQvIDJIXkB0gKwg8uhVLRZYdWGgm4Sg/8Vapg9DMM2ir8ytd5y3kQfgDwP5D8AEkh+QGSQvIDJAXhBzeCtqrGxlTpuY1Es4VW+DUmdlmDTCMi5kbvVYXPb/eePPkBkkLyAySF5AdICskPkJT/AvB1o8YRlsaAAAAAAElFTkSuQmCC" y="-14689.373001"/>
</g>
<g id="matplotlib.axis_817">
<g id="xtick_1225"/>
<g id="xtick_1226"/>
<g id="xtick_1227"/>
</g>
<g id="matplotlib.axis_818">
<g id="ytick_2041"/>
<g id="ytick_2042"/>
<g id="ytick_2043"/>
<g id="ytick_2044"/>
<g id="ytick_2045"/>
<g id="text_103">
<!-- 361 1834-10319 -->
<g style="fill:#262626;" transform="translate(15.789375 14794.331438)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-49"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-51"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_410">
<g id="patch_411">
<path d="M 164.424375 14811.773001
L 286.714375 14811.773001
L 286.714375 14689.483001
L 164.424375 14689.483001
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p3e18c3a47e)">
<image height="122.4" id="imagec940fdb495" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAFMdJREFUeJztncuOJOdxhaMysy59m+4ecoZDUiIl0oZlgYBlgFp44UewN34DP4xfQ2/gJ7C9sBeWNwZMSyZgkRJFcTQkp4c9fa9bVnlBLow5XwJ/sXqquyfOtwxk5p+VmdE/cPpERO/91/5yGQXMl63ELmZjiZ1NryQ2a+clS9wJql6F8e3+sCg2rPsSq+GaFGt6tcRGlV5vCLGdaiCxt+pdiUVE/MVyW2IfTGYSe2Oo73ow0Hdd1wu9n/2pxKpGP8Vff/pQYr8Y6bn/evobiUVEfH15IrF2od9yRvhLNsa88jj5jUmKk9+YpDj5jUlK8ydbbxQdOAXB71lzJrEvls8kdrq4xGsulioE3XaWwfropFVBjJiC+NlUKuQN6kZiW7WKdovQ41p4rhcLFcn+EPr+IiIuKr3Hz7a2JPbmYk9ih+OexPrwyJpzWFdPjY9GE42N/yix55MLPTnu5jf2Muj19OF65zcmKU5+Y5Li5DcmKU5+Y5LSfFgdFh047qlw8nmlItAVCEtXc41FsPOPBLXlssiEuBG67mUOrrEFHIvOvVoFPxKqqlDRhlx/+CcdbpveVUTEWU+dm0eViraf1yOJ3QNRsg/3PQn9fccLFfc+H6uA/MWFxiZzFlxv07ezKciFOmzU9emd35ikOPmNSYqT35ikOPmNSUrzM9VYYgFOq8tKnWSjZkdiXw4OJPZ8wO6r86kKSyR0kXBW6tzalOBD67TgilyAcEqOvHXue15YNtwDIS4iYhoqxJ7NtXz3KVxzAN8JCZXjhQp0tMbpRIXGy5l+tFmdfCTujfoquu4NVJz3zm9MUpz8xiTFyW9MUpz8xiSleRvcXO1SBZqzuYpIpyDu3K+1/9teX8WGCBacqDSWymAXcI/tAkQf0LRu0vVFay/A7Ua/mSAxlARE6h2I7sCO88etugHpXdH9kGuT3hX95tkCXKAJXXsRXJbbh9Lv3b46L+8PtF+jd35jkuLkNyYpTn5jkuLkNyYpzc5QhZx5q38T2qmKDdsLFRsOGnUXvdbXXm8R7Do7n6sASaAI2Lvd5cBdrCMCFgtsIOJR78AILk+msmwqoy11K9720u3bCL2vHRgMczBQ5+09EOK98xuTFCe/MUlx8huTFCe/MUlx8huTlGY4hJHKc2goCTbLh3NVhX8CTR1ng9dw8d+BvZTUYlKVK5pAArEl2IBvm+WXKP0PwKwtU83pPwVkF+06n/4DQLHb9hw3Qddz/L50jYEni/Y+KPsP+vckdli7nt8Y8x1OfmOS4uQ3JilOfmOS0tx7AE005ypg3Ic5yz/a/UZiH56oiPffnz7Exf9x9LrEzlpo4tjjEd8vQlbXV4lSm+xsQYJduSjVNYa85H5edUjco74UpSIgidQk7EVEHAxV3HttoNb5HzQq+D3sqQ3YO78xSXHyG5MUJ78xSXHyG5OUZvfnKg70BjB15b139Lif/ExiOyMVJf76l/+Miw//QUct/7a/L7Gvxs8lto64VyrQ3NWa81Jh0FwP9O1Q7T2JewNowNnV8PYQmnAeQp3+QU8Fw7eh94Z3fmOS4uQ3JilOfmOS4uQ3JilN9c6jogN7P3hXYtU7H2hs91Bi8zGP6P7pB7+Q2A8/Udffr6DEkUYyl4pxJNCQGIOjwaGsdpW1zasHfTt1BaOzwbm3C+LeYV9F84iI/UbFvR0Q92oQtGmX985vTFKc/MYkxclvTFKc/MYkpVl8+oUE2+da5tt8rW685Re/13P7KkC0//lrXPy/fqVi49PBucSo/xyNeCYXG/VDo0lBRIW9/jpKNe9AX0CzOSr4IKhU916jgt8e9NuLiNjt6TSs7Z4690jwm1Bu4CrGmFceJ78xSXHyG5MUJ78xSWme/JMKZ89Ptcy36umAhtHwNxK7HKuo8VHvPi7+LyN1/n188URiNB56EyWqVPpLzq2I8lHZ69z3OgLidQ+W6GITIucqv2UT91NaXk5lvv1KBbutinv47UB8J/Sa20v9RoeFrj9jTAKc/MYkxclvTFKc/MYkpfmPU52ge1yrOHDZU1HjHCbEftVXce537de4+GcXRxI7Gp9KbJ1psCi6wW9ZRdwjSPSh+15HpyztM4jnrjFYootN9Aokh+ZKgl+h6FpcDk7fCdwj9eYbgLg3AhFvBK69iIid0Pg+xA7AhboPn6J3fmOS4uQ3JilOfmOS4uQ3JinNR311+E17GjtfqmJwvJxI7PFcBbsvx8e4+MlUp++Owc1H/fpKIXGHxLkGxD0ScrpEQCwxhnXajh6A3xcSoNZ1tVFPOoJ+yTr3gxNwCwdirCLOzlv9ltvCnpB9EPJ2+joB93CoAzYeDnQgzcNa+/UdQOluRMQeCIHk5tsGwW8Lfot3fmOS4uQ3JilOfmOS4uQ3JinN49B+fWCAixaEs7OFinOncxXxzme6RkTEZD6T2DpuPmIdFxqJSJ39/yBcgxizXLx8Rx4JpKtMNS49Fp/tBkpo6b1sNSyS0ftqG30+WDYOv2UbxL3Xh1oC//ZAh9e8V+txj4LLdwl6tEOKgRI7gu/OO78xSXHyG5MUJ78xSXHyG5OUhkS7LXASDXvQKwzKEUlg6RLYyFV1myDhC6qdv4vr7yYnGvb6o3VWERtfoAWHFwmp5EpchU30UVyX0mdW+t1uNyr4PeirkPc+iHt/tgCxEMriT2laTER8U5eKxcoQcs07vzFJcfIbkxQnvzFJcfIbkxQnvzFJacZLHX9Nav82TAbpQd3xTj2SGE0lieC68UL361pwjb+qofTfiD48hwiu86YY/eYZKPE04pn+e0DXW/e/KKXjz6/byltqxaZ6/EmoVTwiYl6V/ZeD3kFpj4AB/CdsWPhfhnNQ9o86VP0nof+Z68M9ziB/B0v4dkpu0Bjz6uHkNyYpTn5jkuLkNyYpzQXYe3cqFfLmILz04W/HXqUWxlHNNctnKIrAaJFrhoSlUtttV039Vq3PjCa0UOxseqVrw/MmwY8mw6BdGJ411bBHlD+LTYCCH1mVO0ROFpXLft8C+jFczrVp7XGrPSyeVCp8z0DIa2Hdr5bc/+K41e+ExMavYO2jgca88xuTFCe/MUlx8huTFCe/MUlpLhcqYJwvoE4fnEg1uNBIdiGh6ttrwvjl9vuPob5uSNwjwS4iYrtWoXMLhNMBuK9IbJou1HmJI55BaCSRq+sdECSITdub6b1Q6vqjhqcR7BgtHu8OJ1/ONF+eTk4kRg7Np/CNjBfqTDyBJrgRERM4lr6JY3DZflNvwT0aY1Li5DcmKU5+Y5Li5DcmKQ05o6jMt16qG4xElimd21HeSHEc03zNY6hpDRLJSEyhBo4REbsgsoygwSnFSIwjcYcYwvVKHYzTWt9VRETd6tq3SYglXoYDEYXYVp8ZjZovFYsn8KyvWnZekrORvp3zWh2Cx9W5xLzzG5MUJ78xSXHyG5MUJ78xSWnIiYTi0LKs1JYcS13llqVTbuZw+gK8hKUluLQGjV4+HO5K7NHgQG8mIvahjJLKLYkH9Y7EaCQ6lV9TjPrZ9akcuMOtSMdOqJT59uh9G4N6PZIISOXS00qPmxWeG1E+YemyUhciitxFVzPGvHI4+Y1JipPfmKQ4+Y1JStOCcDYncQ+0Bjp3DAIUladGsEOsdFACiYBU1Uni3sFIBba3Rvcl9l5fY2+CsBcR0S8sb6ZfN4BeccTTWp/tZ3EmMSpFpYVJgIpgIRaHg+DZJoKFQXovNCykS9gjhx/l0Kyw+to7vzFJcfIbkxQnvzFJcfIbk5RmDCWFRA1/J2YgDF626i4adziWSOzAtUEELO1T99a2inYfbv1AYn/VbkvsvUnZs4mIOIa1T2qYyAuiZB/0OTpuCgM6aMAKiUCDpZ7b1qwMUUloVVh+fVPDPW6S0hLqgBi5X7tKpa97UrJ3fmOS4uQ3JilOfmOS4uQ3JinN6Uz7j41bFYdI3CHHEfUko5LHCHYy0Tok+NF0WhL3/nb0vsT+fvdIYg9+fqo3CINKpo9V0IyIePqplv/+/uyexI5qFQYvYZ3Tngo5J9AfkUSgrZ729RvC9ajfYgSX+pLAar6ldJIwQTmAYuFLwDu/MUlx8huTFCe/MUlx8huTlOZ0ooIfublI8CFhgkoZuwSM0p57tPZOX0tr/3z4SGJ/M1W32qO/O9Q1fvSO3uBYz60fPNbjIuK16TOJPftYXYO/BTHt00aFtz8ude1n7RWu/SLk+htAyTFNDI7gISnFw1QKG/vR9Yjb5hik+yHRjvooEqU51LX2OnjnNyYpTn5jkuLkNyYpTn5jktLQ0IBSMYZYV5QgEYnY76uY9tOe9uZ7590nusbhn+oFt/VcZKjuuYgIGkR8uVQ33+e1Or/+pz2R2NczdRxS+ed2rcNGqAffEAaIUA/GiPVKR1mw/f4CMt7LNZe2rktpv75SNvVbvPMbkxQnvzFJcfIbkxQnvzFJcfIbkxT0d942SyWxXcFI7QU0mYQ/b8tjVdepueLyuSru80++xvs5eaJ242Ow8p6ENjM9bdXKew6x0jpvUvvnYOWlceoRXIteujb9twZHsUNfA/ru6F7ITltqK94UdyGHvPMbkxQnvzFJcfIbkxQnvzFJ4YLuOwCNET+pVGT58g97Eqv/7Uu4osZOnmxJ7Oi59gKIiDhaqgB5NIAGoGCpJZstWXkpRqJdfwGvlYTPFUSydRp4ltrFS63BC2hG2mULvwvC203hnd+YpDj5jUmKk9+YpDj5jUnKrRP8SscdkwPuk9AGl/++1Kk5jz7W6Tontf4dfNzouqdDroHvg+A07mmvhG8W6vAbtxojZxuNRMd7Wah7roL7K50qswokImJDSn6Mej0Ldi8N7/zGJMXJb0xSnPzGJMXJb0xSbp3gR5BgdDLVSUP/29epObO+njuCctLnSyq15XHcxBaUzJJUdTQ/l9jJXH/L5VzXJoffvFLRjkSycaVOQLpeBI9ZLy2jLS3LrcClVwo2zLQwuDLe+Y1JipPfmKQ4+Y1JipPfmKTcCcGPxCYSxB5fqeB3Ni8baz2B0lgSxIYVT+zZgck5xCncz8VM3YpXcxUgyelYgYtwClOYqCSXnmvX+STalYps6NostfgVXs+sjnd+Y5Li5DcmKU5+Y5Li5DcmKXdC8CNH12SuAt3z5YXEzkFMYwFKYzRsYqsZ4D1ST8EGxmLPFiqmzQoHU5SW4E5BBCS6hLNNjMC2aHfzeOc3JilOfmOS4uQ3JilOfmOScicEP6IF8WsMwmDXMAc5DhxwJPh1Da+gYxcwRISExXUGYmDPvA7nnjH/H+/8xiTFyW9MUpz8xiTFyW9MUu6s4Eegawy0tFIRkMQ0KneN6BD8Cqfg0rkN9BmkEmM75UwJOAH5Bu7DGHMLcPIbkxQnvzFJcfIbk5RbJ/iRMHGbRK2uslrquUcCHYmNmyihNXcfFO1WcKHKcWvfkTHmTuLkNyYpTn5jkuLkNyYpGxH8SKiIYPELBT8SxNYQybru50VoSEYX5PyjPnylgiaJhZ5Om4Ou77Op1PXZrzWFB5XGSAT0zm9MUpz8xiTFyW9MUpz8xiTFyW9MUm7U3ltXUMcOimbx9JrCPpikkJf+B2BTU25s+c1BqWU3gpX97UZHw9NUKZoe5Z3fmKQ4+Y1JipPfmKQ4+Y1JymbsvR1KXKm9l4RBEsRKR1gTpWIardt1ftexdxF6L+s0QrV4+S30DKmhawTbdkd1X2LbtYqAo0qP885vTFKc/MYkxclvTFKc/MYkZSOCX6dIBnFy8621duEUn+JzE1DqOusSpl4EexPEq92boFQgxePWGNkeUS40e+c3JilOfmOS4uQ3JilOfmOScqMlvSTuLXplYsU6zSxfJWHpZUDCFDaPhBgxA+flrL39jshS0Y4cqFR+SwIpfYtdo91JOL1qyyZFjauZxLzzG5MUJ78xSXHyG5MUJ78xSdmMw69LYAMjk0W7m4cdfoXTldZ4L6XOttIx5yutXShybvW1Px710dvrb0mMBL+L+URi57MrvEeaClU6KWpa6XHe+Y1JipPfmKQ4+Y1JipPfmKTcqMPPot3tBEeGF5Za01jz0t6Kpe65VQS/0vsmR97eQEW7+8NdiT0aHOhxlZ47XepzeNx7LrE5HBdRLoiSsIhju4uuZox55XDyG5MUJ78xSXHyG5OUtQS/dQY5RHiYw22ldCBKqZBH1yt11DU1TZfVc6mMdRUGIPjt9kcSI3Hvx/U9id3v6ZCMo6WW1R7DgI3dRteNYNGOpu/u4NAOdSZ65zcmKU5+Y5Li5DcmKU5+Y5JSLPitM4SgE9L21phXYLHwerjuicOlgynIzUduNSovXiyu/92j45C+eYotoSwa1hj1NAV3ahb89mq9Jol7+5Wef79nwc8Y8x1OfmOS4uQ3JilOfmOSgoLfOsMKVqEFYWkVhyCcXISFwZuHRLtSqGx4lXdaWnY8hoEY38wvJLYFbr620jVmMJl4AILfQa3lwBHs5rsHQh6Je6+H3qN3fmOS4uQ3JilOfmOS4uQ3Jiks+K3r3HsBElhWoXhtWOa2TX41q1Eq5K3yjaFDEM6/mqvgd1yp4EdC3KLR6+1BWe09iC2WKs5FRIxgnT0QDPeXUJ5c6Dg0xiTAyW9MUpz8xiTFyW9MUpz8xiQF1X5UyCFU2jKxS7EtbexYynWPjDabhRT3Xq/s/XVZzevC/Y2agtI1S0eVD0GZJ9vtzlKP60oB+iXbS41uwSOjPgTe+Y1JipPfmKQ4+Y1JipPfmKQUN/C8q9N1UECE0F34LXeV0pHfvapMsKWmnjTtpyteKtptQ3PMBwOdzvNuH6b4hNbkv9nqvWyDaj7pEPzGsFWXiu4zyF/v/MYkxclvTFKc/MYkxclvTFLY4XeT4heJHXA76/QXMDcPCcg4ZhtCda17Fo3YjogY1eqqK50CdK/ZltgPm32JfRA7EntXp3HHvVabhNbwHE5gLHlExJcgiJ719AFN4JoTcEp65zcmKU5+Y5Li5DcmKU5+Y5JS7PDbFCg2FoqA5u5A73kB6l7pZJ8uh9+o1maYOH0KRMA9GJX9Boy//rH2+Yw3YdrPAtadwf6rsuC3PANx74sYS+xiOddrwvP2zm9MUpz8xiTFyW9MUpz8xiTl/wC5Nqawdp/4/AAAAABJRU5ErkJggg==" y="-14689.373001"/>
</g>
<g id="matplotlib.axis_819">
<g id="xtick_1228"/>
<g id="xtick_1229"/>
<g id="xtick_1230"/>
</g>
<g id="matplotlib.axis_820">
<g id="ytick_2046"/>
<g id="ytick_2047"/>
<g id="ytick_2048"/>
<g id="ytick_2049"/>
<g id="ytick_2050"/>
</g>
</g>
<g id="axes_411">
<g id="patch_412">
<path d="M 299.674375 14814.274764
L 421.964375 14814.274764
L 421.964375 14686.981237
L 299.674375 14686.981237
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_821">
<g id="xtick_1231"/>
<g id="xtick_1232"/>
<g id="xtick_1233"/>
</g>
<g id="matplotlib.axis_822">
<g id="ytick_2051"/>
<g id="ytick_2052"/>
<g id="ytick_2053"/>
<g id="ytick_2054"/>
<g id="ytick_2055"/>
</g>
</g>
<g id="axes_412">
<g id="patch_413">
<path d="M 434.924375 14814.274764
L 557.214375 14814.274764
L 557.214375 14686.981237
L 434.924375 14686.981237
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_823">
<g id="xtick_1234"/>
<g id="xtick_1235"/>
<g id="xtick_1236"/>
</g>
<g id="matplotlib.axis_824">
<g id="ytick_2056"/>
<g id="ytick_2057"/>
<g id="ytick_2058"/>
<g id="ytick_2059"/>
<g id="ytick_2060"/>
</g>
</g>
<g id="axes_413">
<g id="patch_414">
<path d="M 29.174375 14955.692425
L 151.464375 14955.692425
L 151.464375 14833.402425
L 29.174375 14833.402425
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p6dbaa9b525)">
<image height="122.4" id="image771eaed410" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncuO3dh1hhdvh+deKlWVLt1WtxOnbcQB4jgZ5F3yPnklzzNIECADTwInCGKk25e2pZJKdW485OEtg3YG0fo2QKFn2v83XCLPJje5ROCvf62V/OOrfxjtA26G5MOQpe4os8fMx75OLy72H92jP9DMvqnvXawbehe7nq1d7KvZnYv9LPHH/WXjL/zLrHKxl692Lrb8wp/bHwYXMzP7r1/eutgvyrmL/Uv/1sUeuqNfZ/TrjOavZ5bkLvYkX7nY55nfm1fmr8/MbD365w+vBFyNWQPRQ+Kf6W7s/HFj62IniF1G/3u0N2Zmw+jjRZK6WAn7WCb+Be9hnRae1WnweXDf7l3sbeNjh+bsYmacG3TfifmHlSSQ07iKEOKTR8kvRKQo+YWIFCW/EJGSX4GSc9t5AaMEUWMzgCBSFC72Llvi4g/5wsV2rRfjSPwiIeh16kWkxcxfT9/662m/8f8PXr2t/fWdWCT7Ze5/8zfm76Ue/HXnICyRkEeizTKdudhN6vf1LvHHrUnFMxb3KhCWLol/LmfzsQOIe3t4fmeI0bPfwD0vYL/MWBwk6Py5+edCX8sa9mEICJBTyFL+JqNoB7EMBM08nXYvQogIUPILESlKfiEiRckvRKTkN70XJm5AeMlB1ABtxzLzwkkKjqPvftOLEAUIEyT6HIfGxV4nXtyj/96qmb/G+94LduXZxx4KFnLI2fi694JfA3tLJCDaFLBf5ExbQWw5wu8FnksLrrg+8bEKXoAd3N8e3G7H0cdaEOdI+FzBc76mZ29mHQhvFCthv5fw8mTgfmxhbwawxO7BedmQAAw5YGY2wnOhY8vU78U88zF9+YWIFCW/EJGi5BciUpT8QkRKfguCw6bwYswIQkfTly72HoRBcuOFIHcSlS2SU24PolsK130y7zj7XebXbUHQOoJbzczsfQduwN6XZl4Gfz4KovDfMgk+FxDELnDd5EIrA4IfFS2j4AcCHYl770D4rECwpX1IMyhPhetbjyySkahJZbkk5NG5tApo5jYkPjfafOtiZeqf36n3exNiDuLeOvVrr0EQ1ZdfiEhR8gsRKUp+ISJFyS9EpOSbzAtnGbiTjhcvTDyASPZgXqyoAyIZQYIfQSWTDfWFg/rUM6zRgHh1BlGxDoiX5NQicY9IqVccuBp7kOJOIJw9ggg4gzJRcqaZmWUgdJ1I3AOX3m7wwucBhM9z788ld2cBgtgF9iagXdoWhLwMvnnUo5J+kt7OFg4sQIBcJN4xepd7ca7OuE8krb2Ed+cK1r4Ch6e+/EJEipJfiEhR8gsRKUp+ISIlT0A4O7cg7o2+b9q7zJ97Mi8MkXhlxo4uKvOdei7RgUjWgBBXgWBHLjQS9szMWhioQMxAwOKBCuBMg32k69knXnSjQRXkBDRjMfUE65C4twdxrwLHGg2gIDoQGskxekz5925B/NrCoVQQnIKjkujg+Q3w/F6APzAHIW6A3wtRDv4aN7C3GwP36+RVhBCfFEp+ISJFyS9EpCj5hYgUJb8QkZIfe69zHqAJ5+8Kr1S+gQk5FSjpVD9txio3WS8pRnXMORxH44pJ4yZVmey5Icsuqdd0fwUovlMtzbSN9BcA6nVwSLza28DobDPeiwP85ePQTbPttrBn9BeFFJRv+mvGI/xF4T7QwPMKrM5batbZ+32cg5KeT5zEU8Bx28zvzXoBNueCn8sAVvUELNqzEhqhLqmPhBAiSpT8QkSKkl+ISFHyCxEp+a9mvp74PvXix2uo078HEeg9WD4raOpoxsISCXRTmxTSmGWqTT+aF5FOIM5R49CQVZkELFqboMacJBZOha6b9pqOM+PnReLeCZqW1r3f2wH2LAXRrQMBkn4vM7/uPdimzczWmY/TCPOXrd+L55lfZ1544QxFt5m/l+0t/N4L2Jv59/smJzOyyGtEtxDiTyj5hYgUJb8QkaLkFyJS8l/Ygwu2vRcrqDkmOcnIkUWjl83MUhC1liDkLVPfS+AmnbvYFgQ/qoufQ403NRmtEi9oTnbjGYuXBImFNrGWnK6HxlpTn4SQ4Pd93I7kdAyt446De6ZrQQdj78U0M7MHeE/2ME1nAb7P25uTi5ULf8/0qIqlv+755+BeferHdls6XexNFv5erPDPf9z7e9GXX4hIUfILESlKfiEiRckvRKTk/12/dsF15kUSdGSBGEPiXsgVR//3kLNtiWWZ4NwaYVINiG5LWLeGBpA1TDMKQXsxTG0AOdHpSOIliXvkiJzTKO+PmKREYONRamYJ20DvE/3eVNE0JCrS+whDfGyR+L0gcS+bhd7l/0+xhZLlLYhzMPVqbALPpaNJRbBnIPgR+vILESlKfiEiRckvRKQo+YWIFFQG5uCoIxGJBKMz9YoLTLkhMYf69VFvvgXENtADbgkaSQmjoGtwgl1yf3IRmChEo7Kpdx2N2WZhEAQjWJv7IFLfwmnio1lAbKR1yO0IJbQE7WOZQV9GOI6mHi3gnTVjoZNEYKI5Q4n4BUpwYXJVcTVNGBxbEMgf2K04nP1vZlf+Hcvnfi+SFYj4Uy5QCPHpoeQXIlKU/EJEipJfiEjJSVBZgXhCsRYcdVOHboQoQcwhsSkBm1YJmtYKYqDj2XPQPpPUl1uS29DM7GHwYtWRREBwnGF/PRAB6VmRcNaCo/KC6wb6EUIcxVkQ/KbGSLQrQVSmGJV4rxMW/J5CvIR35wTv8mHnRTIaqFHOvaA9v4DITVZHcO11O34ulx2IpCAq569AsP3yBz6GqwghPnmU/EJEipJfiEhR8gsRKaheTe25loOQswCBpgj0vSMhaAHTVucwcGCEQQk1xAoQC3O4vWe9P+6u99vzImOH35vMl2ueoEy4MohRf8SJ5bZU5nsep022JWEvBD0rEiCJAhyVdC6tgU5AEF1X8N6Zma2onyHcdgXrVBdYB94xmrEBVfGWzCHdQAQMtYnsGv8PJU2HvnniY3/99y6mL78QkaLkFyJSlPxCRIqSX4hIyancdh8YgOBOJtGGeubBIA4zsxWIeysQ9+awDslhv099dA7qycvB/96PL/7cZzlMob0ESnrBIdaAnrrLvOPsD6ADvclgcAoIsTU49+6htLmC53zBXQwMOvkenwkS7aYKiOwY9ddXBL5j0wqMDWRYs4HWAYffYgOThK/AMbr204Fp4ke2qvAa85Im+oL79elTf+5XEvyEEH9CyS9EpCj5hYgUJb8QkZIfWy9qkRhDveeusqWLbUHc2wbKLTfgvlqCWEWVkAcQq04g28zg/7cXICp+sTq42N2XR79wgHQ2zal1+qMXOb/+9trFfp17i9gb6BX3HhapE/+szuBAPA/8fz/1+6MS6qnQgA4SASk2p9LfiUJziA4O7cAJSkbXHOyBCTwX0lLHxguDyUdM5CX6yq89Pj762MU7PPXlFyJSlPxCRIqSX4hIUfILESl503sRoup87znquQa6Gbrx5oH/Y0ikaaFksgXl5QLlqCRUFbDGs94f9+zHXtyb/8QLmknO95KUUFKagovt+r2Lvaj82o+P0BMQSmP3IFTRPdPwigH22oz7/ZHgW9A7AZBLj3o1zuDdoRLvBdxLGXjHSKikknWo6LYRzm1bKP19BEF79MNr5sPOxdKlv5fuEOjhV3nRdoALL3/1jV/n337hY7iKEOKTR8kvRKQo+YWIFCW/EJGi5BciUvJF7pVKUnFpcgqps6Tg94GGoGdQlaeOkqYJMmuo3n5m/rq/HLylmZT97IvnfmFQ8EOMlbdUgmhufe9/k+ymLSjSZOVtceS3B0dsm1kGz4AU+wTWoelKZNulseuzib0clngc30sKW0FaOtXzN2A1P559vtSNf+/OJ//ebc/+vSu3/q9tzZ6bkTY19IyAWP6f/r1bL//JxfTlFyJSlPxCRIqSX4hIUfILESn5y7mvJadGimsYQULjqj9G8KtRevGQPXgN17gZfeyHnT/31Utf75y98iOMk7tbfzEDX/N4hNr/kxdeLvf+/IpEJKjzPoMd9wSi6Qkm9jRk2Q1M7KEvAo5ZB7FxcsNNrOeHun8SBvE4rountemuLyBUnkBYbEGcTcEuXrR+lQYmAC12/ll18M6ambXdtAlJ/R/8+e0/e7FRX34hIkXJL0SkKPmFiBQlvxCRkj/JVy5IIgnVg1MsNDmFmeZEozHLL2DqzmfQNPGniRfinvwc3GovX/iTl35vrAbXnpkltRdUBuo8CpazIvdi3Lzxx+VQX041+STuNTDyO9T0ckZCLoh7VPdPv0kjtZc0in1iLwiaKBQcaA7XXcFv7jLaCxgPDq5GGvk+J5el1/bs3Pm9qUG4NjPr4b4p25LWr/326KcF6csvRKQo+YWIFCW/EJGi5BciUnJyec2gfJfcVyTu0P8mJNCYsYBBv3kDAshPLl7U+GrpGyR+9jde8Ct+/lculjy98xcIrq+gRNl6NSe98+7J+Z95YfBmd3Kxx298s8a3g3dZbvJpQiwJfiTsmfHodGrgSQwgdNGEHZrWtIV1S2qiCU+hAvHRjN2lFbzLLYh7TQbOUrieLWzNpoPpUSia+jUeAo1RKygnbyC1qPSbBFF9+YWIFCW/EJGi5BciUpT8QkRKXkP554wcRhMnCXN/NBaLqF/fEsShZzBT+UdzL+59/rdeOJv93Q/9wp/58l1bP/ExEEOTQA+/sfBluUnhBay09tOQym9+7y/nW/9cbjq/xksQh9rUu7lIdAtBY833MIHmNPhYPfjrJifgHITKOxDTrkEQO8N7Q70MzbjkmXoc0oRuetLUe/AaVOCnCUzsKWCs/MU/KxL2zMzu4RHu4L4Pib9nEkT15RciUpT8QkSKkl+ISFHyCxEpeUMCDTitWhC/ahh10EAs5IrLQGWhEs6bzq99dedLa7Nb74BLll5QSTJwUJHIQg44v8R3h8L5Y+PdfAm5BkGryjMffNJ6wehV65/VWECpNfQEbAJCbAeCGJUJ77rKxareC5pV6mM03GORQe/IxDsdyfUXGtpRT1Sqe7hnGhfvZbzpVPCsjiDEngOXXMP1VCT4gZuTYvryCxEpSn4hIkXJL0SkKPmFiJT8MnghoE69CFiA0yo0jGMq28Q71p5Bb74X5oWzYuGFjrH29zLuYZjGwbsDk9ILS5ZDrIdGbGZY0msXL3SNINoRReEFtm3r5SYaIrEZoKQXhKUu8H//CUQkGrJBUIk4iconEAb38N4dQXy+hutewvtpZlbDdZN4TQIkQW98C+fuRv9uU9FxDb0DqSTXLOSe9VdEx5GbVl9+ISJFyS9EpCj5hYgUJb8QkYIOv6KfJu6UUDpIE34XgV5xNyD4fQkWqrsrX6qbr8BJCOcOjwcXyx7e+XPBAWdQphua0ms9CHkgAial/818A4MuFv73zjU4L/tpQtV6mNYv0cxsAQLWW3hWNLmZBOSpTO0TOAeHX+heqDdfDfeXwPkzEBHLiRo39QmcKhZyN0IW9zqI0XGjBD8hxP+h5BciUpT8QkSKkl+ISMkbcKyR+EGk4E5awMCPqxSccmZ2PXohcDN4uYPEr2wJok0O/5fB8ARy/WFvPujBh83ezMxoKiuJg1Bum619bAAh733r9/EhJ0GLL/FDQuJVBoLabe734l0GU4yBlnr4wXsyA7G4gHdxTSXQgbVTKBPew2/SVtDaBU1KhnNrEJBJyDvCa3eCSc5mXL57AbdiC1dEIqC+/EJEipJfiEhR8gsRKUp+ISIlp1K/Dgcd+FgGLiaaEEt9+cxYhHgAgea490LXugM7Hwl+1FuPym+P3kUYFPe+B+PR973rD17Q3O02LvZt5kWyP2Z+D4/Q6408mw2IV2YsdK3A7fYMhoPQO3GGwTAZvBPTpz571j27A1NyA8L03Qr2jMyTJMZRCS4JgzB7xo4g4tEgDjPuw3eC+btnOI56MOrLL0SkKPmFiBQlvxCRouQXIlKU/EJESk7q7FRSUGfJGkw1x2Zme+gH8C0o9i9Paxe7fudV8+K5XyOZTZvOM559k1Ab4Lr7QLU1HDuStXjnJw2dfue1+Dedr5W/L8HyS+OYQS2mv+qUgWdPzTDprwXXgT4NH3KAbwwp0jUo0u9TH9uAWv99v2MNqP3UyLShd3nieG/S8Gl09hli3x3r94zGn0/ti6AvvxCRouQXIlKU/EJEipJfiEiZLPhRA8AOaom5UWDIRurXpqupSDA6eKvrGgQ2K/1xCViIx8bbhceTFwFpKpCZ2QhjxMeLv57La3/+w5srF9ulNLoZRmdDjCbSYFPHgHuZ7L0lPAOy/HYgAl5AgDqC5fcIHVhfQ+NRekkOgYlCM7iXFvaCLLV7uMYa7oXygPabYmSbb0DY++7YaZOGSngGS4jpyy9EpCj5hYgUJb8QkaLkFyJSUPCjMcsUo7p/qsm+hTHLZmY/6rwI8QpGWL/IvfBWLkkUmThmGVx6Y+VHRvcP3o03VOy+IlPWUHuB5/zW78WpgUk88N8yrTxVWJrm+fqOEvbxioQ3anAJjStTmPbTQ138bvDPoIMr34EQR00rzcwKeL/pHSVXXQU7zs5EHyNxbmqfDMq1EIvU7+0GYp9D7wV9+YWIFCW/EJGi5BciUpT8QkQKCn4DTJ/BGAhLNHXlBz2Xfv6s82W5n3+2c7HFU5rYwzNWPmR89NN5yI03PHpRsdt5MWYIjMMhjWYA1a7r/P5M7RPKDrFp7jKCnHxmZmuw/l33/jcLWOYJ/OR1CpOZoCz3j3BcA0IeuQ1Dd0wTbeiuSTCkvaVGmFRW28CochL8KEZ5ZcZOWcrfpyCw/gXkoL78QkSKkl+ISFHyCxEpSn4hIoUFPygTpdLBUKmuP44pcxjHvfVCSe4rXnGkdn8EkWXnBT9y3o0wTmWAWN8Epg+BuEdjtum4DMpJqUCVPI1T3XwkklGvPjN2812BK3Ix0Tf4FPZhO/g7LHMvVD1ADz8qya0DrjgSz8jhR9D7PbVvZT6xVD75iKlQBYjpK3DPbuC4m04juoUQf0LJL0SkKPmFiBQlvxCRgtY7EvdyEBFIrKDBC78H0cbM7NeXlYsV3/hjn55hQMfKH0caCxitbOzhQNJdwGh1qdit2NQ+3nUgSsLaFxC/BrhE6o9I0Ej0a3jUz2FdM7Nn4IC8TnwZ7Qye6wDuwBncDImhR+hbWMNDfZfAWGoseGYWIKeSaEflwNR3EtMIeuZNLS+m8eWh87ew9maE/o9Uao2rCCE+eZT8QkSKkl+ISFHyCxEpOZXqkuuP3EXkdjoNfvDCbzOYgGtm6cxPoq0v3s73578pXezu6uRi62vfAy5fQEkn9I8jg1h39vdMwp6Z2fHkr/EC4l4P/98eR/+bRxBojuAEbOH5bUBset77e3nVsivu1vwzXBU+RjTQl7GFe24nOtsm6rDBSdBEqN/fFFCgg9yYwzMgoZEmJYd2hsRGcmmWsBUVfOb15RciUpT8QkSKkl+ISFHyCxEpWNJL4l6Z8uCNDznDQIU3vRfnzMzaFHqkzfxwgVPnYz999LLIF6V3eRUrEKpA8Btq6Ld38bG65n04dj5+BoGnBTnnAP3s3mT+Gt/BFNsKBkaQw68HAWq6RMaAJmkdCFAn2IcTnNziQF5w3lEJbUAmo3skNx99BUncy2myNIiX9AzmEx2DoS9yBu5Jlp89zbRhx0KIGFDyCxEpSn4hIkXJL0Sk5HMQ8qh8l4RB4mOmjtJQBHRf5b7090nvHXU3R98DbgbTfOlW2rMPVvB71YUllgpErQoWotLKd5mPvYUS2tPgYzQhdg/i3jvo9bYFodHMbAkuvRzKfAsQbAdQ2MjNN13w88xAVFzDPZuZ9eCAzCe6C1MqT4ZnSmIjHUfTj0nECwp+tM5EQRT0Y335hYgVJb8QkaLkFyJSlPxCREpOffho0MEAQt7UoR2hEkoSB4l7EKvu86WLPVa+RDh/gJJeGEpCzr3q4mOnkR1+ZxB4KhC19iDuPYBwdgIhj5xp1O+NRMBdCsJg5gVNM7NrKEWeQ7+/C/TmO4DnbA/C4gFclhd4nUiouoK9XoBwZsYDPkiUnPoVnOwOxDXo+XlmAevlDO5xBak1B5GzhJi+/EJEipJfiEhR8gsRKUp+ISJFyS9EpOTdAFNXJlZ6Y1PPiTZgM55AcwGlmmrWd6AW35u3/Pa7aX+RqEClpmkxDRWxGyv71DTxEa57D405E1B2lwEL64fQ2O7DRBuwmdkR1Pms93/loL/hvIdz34L0vcOx5P6eb8DKu8E/EvFzgTYNWNtO91JM/KsAnQsDiZA5nPyE/hxhZle9f4ZrmFRUwiQlsmLryy9EpCj5hYgUJb8QkaLkFyJS8hpqxEmII1vjCOJVDobFUC8A+k2iA0lll3hR47eFF7B2g7f8kkBDteQYwys0O8FeVLCPFQhdtN9rEFNzEAFpb07QRPUIV/4YaMr6mMJIbfhOkHD2HvbhLQhQNVz3FYyWnoP2ddODWAj2VTPuJXCZWM9fwG92cC5NV6K9IXn1Gu7ls9FPnjIzu72CUfXQtDYF+zqNTteXX4hIUfILESlKfiEiRckvRKTkl8G7hgiaSkLKWQZiUUjXI4cgNRQl3oKo1YKTbA7XQ04yEt1IGKxBsDMz2010JtKEltvE19XT6OVh4kSbC7g2L9A74T7g8FvCnl3I7UiCHwixj/CsiCcgidG46QIav5YBV+qSGnhiU09ywIFTcqD301/3DPZmCc695zAO/cXNAdYw277wQmCSgygJ1tLm4K9RX34hIkXJL0SkKPmFiBQlvxCRkjfg8CMRKU/BcQaCHTELCEur1Atd69SX5c5hnRpKGSsQL3MQqkjwI6jx6KGHkd9mdhx8vIfzt6l3HC5hbwsQWGnCUQ1CHo1Jp2apJHKamdFj3YEQO4BwVsE6dI00YWcJz4VEMnrrskCT2DkIkMsZjDWf+z0bSGE9+lALx/VwLyt4Z68WtT/umt+x/MrHRqodPsE1XqD8HlcRQnzyKPmFiBQlvxCRouQXIlLypvNCB7r0gFnqRRsq3w259rYg7q1hOg+54i4g8FTmhZxmoruMxDQSzioQ9szMOhC1SBClHoXkgGvg/s6wxn7wrq8ziY9wf6HR6eQGfAvPcGpJ9hzEvRXE7jr/e1cg4i7hORcB52WZ+3shcW++9LGu9e/d7Azuwg5cdnAtBTzTFEqgQ9CAq/ECazfThHh9+YWIFCW/EJGi5BciUpT8QkQKlvRmUE46UhkkONOS3Is2s4ATMIf/e/KpI5Bx3DH1uPM0oJw0IMRRf8MQKxAvSxC1SBA9jF6gO4AORELcCQQ/EuKmujHNzI69d53t+7OL0b0swLW5zPw+rOEdW4ObrwRX3AwGUNBQCjOzPOP4h5C413fTvo3kLqSeh98XEvcGmGs+kjMR0JdfiEhR8gsRKUp+ISJFyS9EpOQk5JFbjQU/cEVB/7iQk6yH4QLkbCOHH1GSqAXCGU0h7kAko1LkkHhJ5cnsTCTRzgt+FYiN9FzoXqg3IsVC05hJBCZnIpHBPdOekShZQRlzBQW8pO31MJTCzKwd/PXUrX+uReb3Npvovsuw/yOUIsP7XhR+3QR6UZqZURpRLIXzixkM98BVhBCfPEp+ISJFyS9EpCj5hYiUnPqwkbhH/eio9JfKSeuAWFROFJGocpTEtBmKTeAipL5+4DgjoZLKU7+Le2GqB9GHXHoUq8C5N7VsODQV2R0X+L+fSrVzmqALZb5PwOl4Zf44WvkIwYcM+jeCiBfyL/aknUFs0/u9vc78MyARkIS8HnKIhoCMNHn5zHczDv59TOB6ZhsqY/a5pi+/EJGi5BciUpT8QkSKkl+ISMnJkUeCX0JDJODcMwy1oBJRs4DgBCEaLtHCgSS6lXQcLQJCHg3tyGhasbGji/oCknOPynKPnd+zqYLfCA6vkYQhEPbM2A1YwrFbmC58B4Lfs9ELfldQdroAIa6D/T5m8C76U83MDCpeYaauWQLa8waERZrdfAGxmJyJNYim7c6fe6r8vpqZrVf+PVlf+1h5Bw6/r25dTF9+ISJFyS9EpCj5hYgUJb8QkZL3INqRuEfCEglGNOGXJgGbmR0TL2qRuFdNnLS7gIEfK3ChYa8/GmoB4g46xoxkIHY2Yvlu70UbipE4i88gIEp+CD1nMy5lJmfjBvb7evTH3cIk2eed37EZOUvhGhuIDSnfC1b6wjOkx0oCXd/7e34PvSz34H5tSXyE/dr0XjQ1M3vx6IXAz0HcXeX+HUtffeZjuIoQ4pNHyS9EpCj5hYgUJb8QkaLkFyJS0N9Jk3gWhVcaN7OFPy7zx4Xqy6lenqyuZDcmO20Jyv5m9Mop/VWAIHtvCLoXqtOnkeFkkyZoH0mxpx4NLVmDaeaz8b3QX2GoXwHFiCWssU2mTUi6UFPOgWvgj6i6w56BEv8e+hDU8FeFR4idwE7dTPsjjO0DzUj7zudW+X7lYlf3/q9oRe1j+vILESlKfiEiRckvRKQo+YWIlJwEowJGKq+KuYutcx8j0e1jILGJ7ME0VeaceFtjl0PDTKg5J/vytGruMGSzJessiaQFiK4k+E0dvY1NWQOTlKgJK609Q1urj52o0Sv83g2M4lnM/LPPwNLag4XYzOzU+L19A/bZfQZj6eEnyVpMtl3a2Q77UsBx0BDUzCyDa5y3Pge3X69drPz3r11MX34hIkXJL0SkKPmFiBQlvxCRkqco5MBoaoqBeDVVgPoYSJiiRqHUS4BIcn/cCkRA3JvA/dEEIRL8StgzaphJI6zXMAZ8CW7FClyED33lYof+7GJm0xuFXuB6anhWexCwDiBekWhHk2aWW//saXKNmdn80Z9/fA81+TjC3ENyNjUepTFTHbye7JJkjnCPb3K/j4vjxsVm//rexfTlFyJSlPxCRIqSX4hIUfILESk5Obdo9PbUsc9EaBT05EaTJJ5MnDSE5cnjtLLjFQhai8CI7hVUR9Nd78DTlUFJKDXMfJF6N9ctNIB7j7PFAAAAaElEQVR8SKeNAX/sTnCFXBLcZ9O8jTxdycfO8OhbmHxTzGDc9B2Mmy75XUpzX8q6ePRlsCzlwVGwN2A4xHd7hPcYbhn3KxSHgT/2P4V/J5qHG3+NuIoQ4pNHyS9EpCj5hYgUJb8QkfK/fT6LonQtMlYAAAAASUVORK5CYII=" y="-14833.292425"/>
</g>
<g id="matplotlib.axis_825">
<g id="xtick_1237"/>
<g id="xtick_1238"/>
<g id="xtick_1239"/>
</g>
<g id="matplotlib.axis_826">
<g id="ytick_2061"/>
<g id="ytick_2062"/>
<g id="ytick_2063"/>
<g id="ytick_2064"/>
<g id="ytick_2065"/>
<g id="text_104">
<!-- 362 1834-10319 -->
<g style="fill:#262626;" transform="translate(15.789375 14938.250862)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-50"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-51"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_414">
<g id="patch_415">
<path d="M 164.424375 14958.194188
L 286.714375 14958.194188
L 286.714375 14830.900661
L 164.424375 14830.900661
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_827">
<g id="xtick_1240"/>
<g id="xtick_1241"/>
<g id="xtick_1242"/>
</g>
<g id="matplotlib.axis_828">
<g id="ytick_2066"/>
<g id="ytick_2067"/>
<g id="ytick_2068"/>
<g id="ytick_2069"/>
<g id="ytick_2070"/>
</g>
</g>
<g id="axes_415">
<g id="patch_416">
<path d="M 299.674375 14958.194188
L 421.964375 14958.194188
L 421.964375 14830.900661
L 299.674375 14830.900661
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_829">
<g id="xtick_1243"/>
<g id="xtick_1244"/>
<g id="xtick_1245"/>
</g>
<g id="matplotlib.axis_830">
<g id="ytick_2071"/>
<g id="ytick_2072"/>
<g id="ytick_2073"/>
<g id="ytick_2074"/>
<g id="ytick_2075"/>
</g>
</g>
<g id="axes_416">
<g id="patch_417">
<path d="M 434.924375 14958.194188
L 557.214375 14958.194188
L 557.214375 14830.900661
L 434.924375 14830.900661
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_831">
<g id="xtick_1246"/>
<g id="xtick_1247"/>
<g id="xtick_1248"/>
</g>
<g id="matplotlib.axis_832">
<g id="ytick_2076"/>
<g id="ytick_2077"/>
<g id="ytick_2078"/>
<g id="ytick_2079"/>
<g id="ytick_2080"/>
</g>
</g>
<g id="axes_417">
<g id="patch_418">
<path d="M 29.174375 15102.113612
L 151.464375 15102.113612
L 151.464375 14974.820085
L 29.174375 14974.820085
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_833">
<g id="xtick_1249"/>
<g id="xtick_1250"/>
<g id="xtick_1251"/>
</g>
<g id="matplotlib.axis_834">
<g id="ytick_2081"/>
<g id="ytick_2082"/>
<g id="ytick_2083"/>
<g id="ytick_2084"/>
<g id="ytick_2085"/>
<g id="text_105">
<!-- 364 1834-10319 -->
<g style="fill:#262626;" transform="translate(15.789375 15082.170286)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-51"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_418">
<g id="patch_419">
<path d="M 164.424375 15099.611848
L 286.714375 15099.611848
L 286.714375 14977.321848
L 164.424375 14977.321848
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p26811adb43)">
<image height="122.4" id="image31620593c1" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPJFl2na/b4HOEx5SRxcyuLkpoVIEEKAnihguu+AO00o/VRoIAbbSWRLakZpe6xszIGNzD58nMtKjeKM9ngNVW73zLG+ZuZu/ZdQNOnHtv799/+e+a+IxjVJ+HYl7tJPbP248Se1jPJfZ2ei2xiIhvJu/02HwisUkUErvoaezLWmO/O+i9vC/0XmYzjU1vDxKrTz2JRUT89P1MYh+qkcSei1xir5l+3yaTbYlTaGwPsVVP73nbaCwPvpe30ZfY12e9yPfnk8SGcO48aondzrYSu/+bvcTKv36rF3jQ8x7+6UmPi4jnP4wl9mE+ldh3+UA/m+v6nGHJCt2COPQ0+JTp2vxzvZHYj6eFfmFEHGq971Gme3VX6P19mWlewWNnjEkBJ78xieLkNyZRnPzGJEpB4t65UYEm7+nvxFWpIsJ5rN9Hx0VEjHulxPodf4+OICI99zQ26KvAdjirCHT9rILPm7WKgMOhii4REdtK72Wd673sQDCqO4pI0dMD6WpwDeEcZYvgR+em637t6druGj13CaLkeHeWWLVREbBY6R40GxViK9UKIyIiL/WZmBR67kmlwhkJfiTk0R5UvLR6XhCur3N9PiMimlzPfZOpqPxVTz//V2fdK7/5jUkUJ78xieLkNyZRnPzGJEpxAOdXBYIfMcpVJLkdXEjsolBRIiJiAIIRcQJx7wTXSMftcxVUHjMQL2sV7N6f9PruwV0WEbENEBZBoCMhiFabnGTk8KsgRr/oY4gOQZz7JU5Clx63AEGz3+j1DCE2O+q+nFYgFj6rA67e6zOLqmlE9Icq7k0nKhhevqrgW8KaHWG9aa9oXw4QI5flVTbULwx2tf7L0GP/Zq9P1FeDpcT85jcmUZz8xiSKk9+YRHHyG5MoxREEv4aEJRDY+iBAgO4VZYuwR6LdJlSgoeshkYx+yV4bFehIaLwEYXAHDsT9WUXOiIgSXHFU/UvC2RZcY1u4wy04GGkNMxCRJo3e86DF4UesocR4DQtO7sApCIvTo67jYa17MNzC81DrSXpoiYzIYWPyAp5lcLqWje6/Xg2XUO8hr/YdRepRS778JlSUZHFPRdKy1Ovxm9+YRHHyG5MoTn5jEsXJb0yiFCTkkcBGUJlvAYpfDQ6viIh1c9TvBHcZ0QOxiq6HHFRUDoxOuYxqbUHkjIhrcJiRm49ceiQYPYFQuYIebnTdQ9qDUPEqg96IEYHlv68gdW1AJKtBvJxleu68VMHvd3u9nl6h5+jBvtQ7cP1FRA32u9NR16eCmwaNE3OD+iOuYP8OsF5EDkJzRFvPRb2el4MKg9uDS3qNMX/GyW9Mojj5jUkUJ78xiYKKD4lpBP1ykLvsDIJIRERVq/BGbkCKdSsG5uth0UYFLVqFAYmAEVHCUg5AMCIRcA3r81xrU7p5rf3sSLAdgsB2gl5ve3AMRrDrbF5rGewSrvEE93KRqQB1kd/q9ZDgBz0hiabm4w47/c71VsXGNezfAR5wWjF6nkjiJuG7hiNp/SMiXmHox7d9ve4Sy8v1+/zmNyZRnPzGJIqT35hEcfIbkyhOfmMSpSjBEkvQfwC4zh7Uyxa1P0D9ZGVfz110PC6DJpoE9TUg5i3/Z5iQ1bmlQebnkEV3D/99WMNYGhrbTH0Waqh3P4IKH8F7uAO76rHWa6T/7GzhHbPI9bPLvV5Pc9QpPr1Cv++84bVeL/U7XyuIQTNS6rNQQayEfR7C80nrSjnUlpP0nCzBg0y9Jejfen7zG5MoTn5jEsXJb0yiOPmNSZRiknFDys/hWmKl36i0kLf8xpAQSGIVxboKlURXmyWJbsuWe3mCKUBVBsJblwsM7k1AkOhW0ahymEjUb2kUSaIrHpurcEZ7Ss9YAULsChpmHj9APT+M2F4+8ljr+V4n2swzvZc12LZ3IO5RA88c7oWmIVGdPj13s5Z6/jvILeojMYWHbAhNT/3mNyZRnPzGJIqT35hEcfIbkyjFZa+b4NeH34kSREByQG1anGQbcI0Rg47V++eujTlBoKHGoVSTTSJgRMQzfJ4ahVJ/gQMcR+OhB1Cnvw6oqYfadnLetTVqJTF1BB6xBvaamICAdQ/iXkFNQh/1+TxCM8ofFpd47kdYs2Wue7CF12DX8eeUByRS03qPQRi8q/l5vwYT6hR6YlBsAmvrN78xieLkNyZRnPzGJIqT35hEKWiUMJUjDkEEGsPYZyodnNEo74g4dBQb6RfqAI0rtzAR5dxx+hBNmqEyXxqJHRGxAyGQBCMS08jlRQ6/IQhnwxxcceD663UsbY6IKGDFL+DcJHSRoHkBz9MdTNKhMdkHaOr5uJxI7A8wASgi4jmn/QchDw6j+7voWKZdwGepoes1dHSdgWAXETEAl16fREQQ96aliut+8xuTKE5+YxLFyW9Mojj5jUmUgqbAzDItgxzC78QYnHdU+ts2dpuKMMdwLMVoAskaSlmPIIiQR+8In13BkRSLiKjApUelnuSUpDXrg+BXZXB/0Avv0FNxZwCCHfVB/OVYjY8p1vHdUcL+0eSiFcjF+VKfkg8gFH+bcw/Gx9Ax8AO47isQpW/RfQfOy26acgyglPym0v0jwS4iIgdRmmKjUj8/merEJb/5jUkUJ78xieLkNyZRnPzGJEpBLjaKHUAQoxHPza8Q/IbogtLYVaWixpAGfqDwot+3ByHuJVdB6xPEXqAvX0TEFtZsAKLdBFyRA7jGEwiVI+g9R+XJSxinTUNXSNiLYHEXBV8QxEh0fQoVILe5HrccguhWaWwFdrzH0HuOiPhY69APLKuGEeazUOH7ttLrHoMjbws9HclseJPrdV9dqAgfEdEf6DOWl3ru/lQFv/JKv89vfmMSxclvTKI4+Y1JFCe/MYlSjGGgApWdkpZ2pPJW+GzZUk1K4l5XLkBkedtXcefmVmPE4kWdZD/uNfZdyQMVXnIQAmHRyK04hGU8wdKUOFhCRaB9TwUfGlRCpbsR3D+QhlDQ7r1AX8bvq5XE6MzkLL2DwSDkftxCGXNExA6mGJMbk4aSnHp6PSTaHeB6XkHwI4dfCc7Eu6/5mS3f6/PYG0B/zELvpQcxv/mNSRQnvzGJ4uQ3JlGc/MYkCg7toB5+Iyrf7dgXru0Xhj7dNTaAfm/X1+qMuv5X0K/tGtxcH5YSu/rfKrxcfACrVET8WKvwsoX1IdGHfHb02TksJA0GWVXqGqOBEcOW3orUz5D6Ee7huJ/Oa4l9OM4lRj0KN7mW3+5zFbluQBgsWqYaD8GRuQdxkERO+sZ5rlEqLycXIom95woE8rd6fxER+Te/lVivgOEgB3A77lzSa4z5M05+YxLFyW9Mojj5jUmUgoQSEvdoaAfB4wYYGopA/dBGMKxgAr3rxrcqGOXv7yTWm11IjKSv8VxFwLsVl1ue1ro+KxDUyLl3AHEPvi6ewLn3cN7ocSe9birpLVtKekckBJKoBYNKPp5e9biTrtkAho3QZNtjpsIuDTm5wB2M6Gc64GML6ziFc2/haf5QdHM60hAQyqB1petwetDJyxER2W/UKRkDFeybnX6+gefWb35jEsXJb0yiOPmNSRQnvzGJUmxBtKGSSTBzYZ+5E4gkJKZERMxAWKQ+fEMoHR7CYIJ8rB9ujlDqCUJe9aDC2e5JxZjDkUWyEu57QJOEoQ/fp0Iloz9lVBqr1/gI4t7iqMeR4Ecuuwgubz3CwJB5pSLS4qTnPtUwCTpXoYqGiNC10LCY2+BSa7rDV3D9vUIp8gMM/LiC4Sd3tV7PPUwluYL+fzXsy8PvpxKLiLjb/iyxnA4FgbwCDdFvfmMSxclvTKI4+Y1JFCe/MYni5DcmUYrXWmXAEzSFJCsoTfYh6+UZ6q8jWO0/tVhOu3B6hd+yf9Ja8vMWGmHOVX2ez7Xuf3mEhokRsYN72YGa/pzrub/NVFUmZf/hrPbOzVnrtM+grlfQ8HSVs1V5Dkr8Cf5zsQK1v6KmrkAJ//WYQLNOqt2/A2WfxmlHsN2cpgrtOj7LI3g+p43+9+CLs/6X6aYH9nPoCPq64XxZ/173JQcfcQN9A47QN8BvfmMSxclvTKI4+Y1JFCe/MYlSzKEefJuxVfJzSNwhyyg1R4yI2IKwtAdBpSJrKox43r7q921+1Nh6r7EKrrEC4eTQci9HuMYNTNh5Bpvsc6NCEI3ZPoMoRetdgJhGE3tIGIyI2FV6PWS97VGDUnh2ahDYRjAp6hrEvS9CRcC3YKedtOiMS9CPqekp2dJpp3EKPECyNYlzOfnmWzjXMKmoAqEZzr6B58RvfmMSxclvTKI4+Y1JFCe/MYlSHGiEcUchj8hA+KJpLxHcD4CYwHSeyVRFKWJzUGHpqVERqQLxKu8s70QcQNxbQWzfscUpjUknMW0CwiftXwH9AfpQ1/7LuamBq547A9GugYYMe3jGprmKe7c93Zf7Rq/lpuq+L3pmdivmJCpja06FJhctQHSNSu+P+kBQLCKiD2LxANy49PETiNd+8xuTKE5+YxLFyW9Mojj5jUmUgpxfeaa/CTRNhVxfQxClqAljGySxTDItjxzOVMqpYRxODu6yE4h7exDnMhBJ2iA33wYcXSTlTGDaTJVpOTGJrlR2egInIIl7I3BYRkTMYCz2FQh0CGiIZa3i7ACepzGVy4KeNYRnlvY0gtebRGkSWOk4ypc1CH6PMNlnU+s99+H7xtCAMyLiAhyZA7jDM4nusD5+8xuTKE5+YxLFyW9Mojj5jUmUgkQkEve6Cnn02Tan1B6EqVcQydY1lImCuJeBu2xQQj/CvR63gnU4w2XTiO2IiC38jB7gWBpLPoM1o+NI3FuFlv7SXpUg+I3BoRcRMe1pvA9lohWITQW8T0jcy0CAOsP9FaB9DUAQq0FwjeB1pIlUfegBSLIbxQ4QxecYLpE8lsOWfoRTKOml8fX03D5B70i/+Y1JFCe/MYni5DcmUZz8xiQK13QCNOKZYsS5pUSRxiJ/B18566vb7c3PFxp7p0MthkM9x2BP16OCFgl2x5ZbpvJkOnQA0QIEHtKvVnCNExDtusb6Lb/9BYmfUAZLpbFNxzJoKjvedxz4MabnqeWjAygJJkHtCGuLAiSVfoMTlC7nAE5AdCC29PVbwkNBgugWPv8BhGG/+Y1JFCe/MYni5DcmUZz8xiQK9vCjHm40oIHEHerXd+zeci02Pb2eHISOq/OlxP7Nz/p9o5GWk056WiI8hkEQJyhtbq3yhT/Q6BMWgjS2w+/T67nNVQy9AB2XXIS9lpvZQxn0K3TDO0BvxQpKVMmZSNCzQ261Ppy313KOKezrFPa1gmee9moKYuEtOO9oZefg+tvCWh869nmM4DVbhj7fj9VWYn7zG5MoTn5jEsXJb0yiOPmNSZRieVQh4FioYDCoVL4a5lTm263XXwSLiDn8Hn2E2P8ooXT4qK6/b1Y6hfjuUu95uFER6fmsQxZWLfeyA1HygL0C9bPsJATRBzStK5AV34e6+e5BOQP9KSIilrne4xO4/kgvPMAQCSrzvcx0bW9gMMgESlaHuZ5jCkNJIiL2Jz33AZ7RAQzZoFL0L856PV9Ueu4d3PP3fT3HFjZhA4JmRMSm0bzcgkt2DT0TV9VOYn7zG5MoTn5jEsXJb0yiOPmNSZTiWKmIcILhANuelgT2c+j1B4MgSBiMYHGQes3tQeh4AaHjU6Gf/R0IPtfvVfC7KVQYfPOk1/06V0ddRMR6r/e9aDRG1/gMP8Fb6G94BOfXEH6/h6DE3Z/1s1M4R0TE7qzfOSugNLbQtbghERhcce/AefcllFq/76lQNbvYSywv2BWXr0EwPOgAkj2s4wycoG8u9TkpB7qOC3hOjqeJxOYDPe9Di1tx2WgOLitdC3Lt0iAXv/mNSRQnvzGJ4uQ3JlGc/MYkSnEB/fEO4Fii6aTUh+0MwkIFfdQiAuseaYhIV4ag+cwmKogM3oOb681Uv2+nTqnLlzWee/9BY88/qcBz2mgp8s85lZjqeh9gbbfgIlzhZGK9vmGLk4ziJTjbbiu97gt4Tn57PZfY9VcquhYX3fa+PsGzuGWRbLLRPbw96R7mMPClvNB1oDaDOxCGe7B/NJGX+gnSxOAIzkGCRPMBOEH95jcmUZz8xiSKk9+YRHHyG5MoTn5jEqUgOy7V2ZOyn9H0Gah3/zX1/AQ1KaRa69tKj7u8ASvojf6HI7tRFT7A0prd6/dFRORXC4k10DTx+Y967kGo3ZSmIVHD1B38B+ApU1vqD6Xuc3bkEd0z+M4LaKz61VStt+/+Tten/w9/K7He23cSa45qX435sx73BLHHF/1sRNSveo3NEVR8iJ31nxSo7C9exhJ7POo+f4Lnif4zQ897RMQQ7PB96L1AE5cIv/mNSRQnvzGJ4uQ3JlGc/MYkStFVyGsgRlbcrKOIFxHRgF3xVKtYdQahgxjA9+UD8GPSNdZw3BFiZ7bENlAvT1ZQGr09AH1nCg0l9zCJh6ShA5z4EzTWzMsW2zX0wpxlKsbdfQW17f/2a4n1vv7XGrv+QmPQW6LZvupxi0963PODxCIieg8abz48Suz4R1X3Nh9V3Ht+Usv2w1EFv5+gb8MP0HPgp1D78aLRWBsTaHo6wOlD+qT4zW9Mojj5jUkUJ78xieLkNyZRin3VTVwgNx6NRe5a999GBU0qD9DAcw/HvUJd/OZFXWyjRxWqomOtdL1gh9/uO73G5486QWjVQK01LM8bqMmmZp0HqBunX/SydbY4HavfORmpCth/A6OpJyqIxRmesQPsQQnOyysVBpvLe/3sFcQiIqDJbMAUp16hDs3TUYWzxVEnDT2AuPex0DV8goag81qF1DlM14lgMZ1EdxrlTiK+3/zGJIqT35hEcfIbkyhOfmMSpTjDdJ6CxhWDsNDV4UelqBEtZcIt5b+fs4ey059zPc9PT1qqO/6TloSOziACgR3v+Mji5fOP2gD0p53G5lCCSXf8FkZqv4G1ocacKisFeAMj7qAp5y/nURHq8kZFqPwOpheNIAbuyQbcfD2YXtObXkssG6ioWEPJckRE/ekHPfcAypvHMPIdnqcVrOQnOO4FHJVUfk3lu+35ovEjfCeVuxN+8xuTKE5+YxLFyW9Mojj5jUmUYlio+NGniR8ZjF6G4wgq3Y3gMsMSRK0hlC2SpLEGt9tDpvd396AlmMVIp7j0oARz+8zC0tNaha5HEPc2ICJSSe9FrUEqWaYC4wPVDQMzEHsjIqYjdeQNrkCgu5tp7PpOY1dv9CRDFWJ7QxXyejBRimg2WvobEdG8aqlus9beis1e1+Kw196Kc+jD9wl6Jr6CK5WY9fR5mhY80p5cerTTJIZvYKS93/zGJIqT35hEcfIbkyhOfmMSpZgWKmqMcy1bnOUqkl1mehyxA7Ehors7ic5zDUIJySTbTH/f5hu958FHvcayr9f3OmcBagFnX+Z6L7QS9Auc0aASEk7BUUkeRJJcjy1OsNMZPIc1iE1D2P8LdeT1Jjd6HOxLs1eXZbV80uNeoYff93/Qc0RE/fv/JbHj/9Qefstvdf9+flWH5idQZ9fwHBNDELPHsPtXLSPtb6tue/2Qa/T/9LQU3W9+YxLFyW9Mojj5jUkUJ78xiVJcFirkXeUqav1Fpu6rt6GiGwl2q4wFkdcWIfBzpjC04wZ64Y2gT90aft5+qFXw2z+pyDIB59amZlcj9Q88gJ5GJZxnuO4K1vEI37cFNx8JjSQMnVvKp/sn3f/ZRy3pHf2swlnvw586nTtO6iJsFiruxUqde80rxFqm9JK49/iPen9/XFxJ7Nu+7vUzlOpSGTsJeQPY03EDgh+IqxERX570ebyAAu4vTypezgaa537zG5MoTn5jEsXJb0yiOPmNSZTiN4WWZd6Ae+4diHv3FYgaYCVbg5srImIOvQKP6GxTAaQE8YT62S2gzHdX6oGLWu9vUoNnsKXFILv5ug3UIAmRJB/SgQ4gNu06Co1VW+kvDKEontS5F/9Ry2Xvnv6Lfvarf+TzfEaz1d6BOEwFSqWbHQ+fOa+gv95Sxa/vShi8kalUeYLnicS9Pgh5tM8kkLcVA5MIPClABMx0LcYHFbn95jcmUZz8xiSKk9+YRHHyG5Moxb/IVPwg19ElxPqgxfRBoLlscSyV8J2bTD9PTjkS00AuQki0OYH4te7YC6/tekiAJEGUoMNI8KGlpaEPMAME1+GXuMZ20Edx/qL9+t79J92F+yst1R1fqiiV91VgKy80VtyqdNbrdxv2EsEaIlTLIkN4Zsm5N6LqaziOhNg2diCc7yu974tCXYh3A5f0GmP+jJPfmERx8huTKE5+YxKlIAGDHEbzHgywKFTAGIIbr03kKiE+hs/TcI+uIiA76rq5A+n72gQaWrMjrNkBrogMkDVcI93LFsU5jR1+xTRY+s4NOBipP+K60nLZ5VzFwvuVClBjGBYy2aiAOMm0FLyYdRfO+tDj7rqiz3d7N9JzPIKhKyS67miqdYv4SCXd+xoEP/jsZKrr6De/MYni5DcmUZz8xiSKk9+YRHHyG5MoxRoUaRrxS8o3qeYTqNGftUwguQZv6gi6PaL1FqypDdlVQTolMZV+BbHxZAv0XwCe5AJrCw1KD9AQlK57C+fdQJPJ86+wkdIoaPqvUAbrPYK9eoVnIj/rtJ/Tptu7qL+EJppgDY6IaEBiHw31vwW/hf8q3IN1ls5CV92jfYFmEI8w8pv+2xIRsYO13UNPjR7sy3DiEd3GmD/j5DcmUZz8xiSKk9+YRClKEMQ2IFbsQagiCekMxdJU7xwRUYMAQtIgjd4m4YUsrAM4dUY12R3rr9tkM6qrJ5GU1hGPg2k6aO8FUfHQdJMqSbCNiOjTtBmwoebUWxNiZGt9yVTk3Nd63moNdvGFmqmLsdqFIyJAS43ppR6bg+X3eNQ9OIPARtBxx0qbaFIfgW1LnwWyfJ96MOoccjqDjfGb35hEcfIbkyhOfmMSxclvTKIU76AeuAQn0aKnIguJTUSb/ESyBtXVkwDyEupYeqm1HvwCGk/ShBVysJHb8AzCV0TEDpRKqpffNbqOJALuQPqkM59A3KN1LUEYIidfBI+cpvWhxqwTqGM/wffNYb0yuOftWUWy8lnveXTB4977M13bEjb2eIDNBsGPoD6vBQiI/UpjKJq27Av1DShh/0m8hO33m9+YVHHyG5MoTn5jEsXJb0yiFPfQuJDGC49zFc4WoCLsSN5rscXtQMijxpzPUHa8AMFv3WiMTj0Dd9k9ioAgXrWJZBArIUquwT2JgBAjgS6HPRiCO3AI1zIh+1tETGH/ZxCbdqx5XsLivMD4axK6etA49Oak49RvFhqLiMhKdfNVoCrXYLUjp1wOE6UGA92rwVBj06MK0oPFVGKfKr6XEp7H+1zvb3qp5ckkfPrNb0yiOPmNSRQnvzGJ4uQ3JlEKEhEuQchBN1gODiiaFtNSovgCveZIQ9qAk5CuZ0puPhC1BiDkDOHEl+DIojHJETxpiPoZbkOv5wj3dwTXX4GinZ7jCoqgr+G8F1BCGxExgnsZd2wBuMIefjROXWPjjlOK9hCdL3RSUEREde7W444YjVRAHkBsdKPiXv8tWep0T6ffPkvs8icVASMiKnBUXl/v9Dvfq7BYvtWeiX7zG5MoTn5jEsXJb0yiOPmNSZTiAOWWVUvZ6ueAjoOC37GlqFdlie5cgoA1ADGOBoZ8CSLQX56hHDhXcWfZ4r5aVyqyLcF9t4Wy1QM57WBth3Dcm54KOe9rPY4GpFA5aQSXVdMI8hO8Omg8OI1Yp76OJJoWcI0kun6E0eAREfNXXZ8xCM3jQvf6AsZaFwNwJpIaCsJnc9TP1vAsUkluREQJNb3DmV53+Uaf0fyNDu72m9+YRHHyG5MoTn5jEsXJb0yiFHsQ92jIwhZ+JvbglCKpomwpg6USzhxEH5q+S8dRKeo9lGr+5VlFkr+YbvQcILycqD41IkaNimzklBuC62+Io0oU6kf4Fs77DtQ5mhr7gSt64xM40XC9abgHaF/kqKQhJ8QRjluDmLaCdf3lPBofgSA6O+nazuYqnF1tNTZdaVntcKKbcNjpZxdzFSp355ZS6z73Kfyc3lA/37ucSMxvfmMSxclvTKI4+Y1JFCe/MYmCykLXwRk7EJFI8KOegBEsGJFss4ey4wrOfaYhGSBovoIINN2qEyyH3oEbENgieDAFOdsImpY7BTffDGIjUM52sNyfwM7335o1Xs/TeSuxN9lYYl/3VES6hr0md+ArPE8rWO8TiHskINOk4wieglvC+iygPH0A7tDxWUW72yddm8tnFecqED5XkII0eTciooIGlxfQu3C0UGdidq176je/MYni5DcmUZz8xiSKk9+YRCnuoE/dzyA4kKBSgWjDwyvYzkVuMILOgwM/4Bqp7HTf1+t5rFW0GcH1nVpccWs4DwmntD40ZKMPR16DAEVluXQtn2DK8qezuhojIlYV9IUroZQZ7u8ShsDsQLR7AGmY91Q/S+XAbfNDKE77QudGPx0o0peFBu8q6h1JQ2o6Wh0j4lRDqe6jluo2/30lscvHJ4n5zW9Mojj5jUkUJ78xieLkNyZRim+mCwnuN9cSe4FpqV1/OVo0MoSm9J5QjFEpBweLgGusgeO2cH8oFrU4yehYWh+KTchJBtd4AW6+CZyYHH4kug5hWnFExK7W66H1noOI+Jxzj8PPIdcfuTbrFrH4c9qeRYpTKTmdewvPzg4GrCxoUAmIuBO4mgxEwLZ72ULvwkM11Ot50vLkiyea+myMSRInvzGJ4uQ3JlGc/MYkipPfmEQp3v+9Tqp5+Q/akPCh1kaDJ1AfsZ7/VzTwzEB17UEddPYrbJGf01XFJ7V33nATReolQBbdIdS7k723gXsm6Ciy/Jbwff2WxqE9WNt1rTXi38P97TNdM+pD0LXRK/0/go6DYTYRwc8Y2crpP0VDWIdP8LpcwjOxhxHrI9jnEqz0bf8do2f+ksYQAAACD0lEQVSHGvCu4b84E/gPjt/8xiSKk9+YRHHyG5MoTn5jEqUovnkvwfv/+iCxN0u1ETYdfzvUbPgL4NrF0cbUHJMsumQZ7frr1lUEXLcIfqtahdM+CDxjmLpDwuAKxLhdpp+9BcGI7nkP4iVZWiMizmBh3Vd6f7tMY8tMhcHrXMXim57agC9hbXo41UlCMWwRSMn+fA09LCaNxvawtuNSxbQ/wgW9NLo2NU0z6tjkNSJiB3tYgzzYgxwiQdNvfmMSxclvTKI4+Y1JFCe/MYlSNC+vEjydQKgCteK240navGoVCHlgEIsGBAz63aIGnm2NHfVaoGcAiEAUi4hocIIQTfxRwXAFNd3EMzjlXno6aYgcdVsQ8aqW1TnXeuymUiEPTGwoAu7hnqt8KjESqgq4lxOIoW1LSE0zZ7AWN6W6WsllWZ+00esnGA++6NiHIIccaHvGNhSniUQgAo46CsPGmARw8huTKE5+YxLFyW9MohTz/7yU4MNapTzoHYki4K8ptMWJP1iqqzESh3L4vj2IWuQEpBiWnbaMT273Mf6/kKvuCALUDhyDLyD4bMA99x7ENCptJfdcBI8WJ9dfQ6PT4RpJDCXHWd66tp8Bl52D6BYRMYMHt4SdHQ70CejB8zRdqcBatJRG63mprJrK4lm93IDCSuIg5dCAxHU8izHm/3uc/MYkipPfmERx8huTKP8XXng+XQz+xMAAAAAASUVORK5CYII=" y="-14977.211848"/>
</g>
<g id="matplotlib.axis_835">
<g id="xtick_1252"/>
<g id="xtick_1253"/>
<g id="xtick_1254"/>
</g>
<g id="matplotlib.axis_836">
<g id="ytick_2086"/>
<g id="ytick_2087"/>
<g id="ytick_2088"/>
<g id="ytick_2089"/>
<g id="ytick_2090"/>
</g>
</g>
<g id="axes_419">
<g id="patch_420">
<path d="M 299.674375 15102.113612
L 421.964375 15102.113612
L 421.964375 14974.820085
L 299.674375 14974.820085
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_837">
<g id="xtick_1255"/>
<g id="xtick_1256"/>
<g id="xtick_1257"/>
</g>
<g id="matplotlib.axis_838">
<g id="ytick_2091"/>
<g id="ytick_2092"/>
<g id="ytick_2093"/>
<g id="ytick_2094"/>
<g id="ytick_2095"/>
</g>
</g>
<g id="axes_420">
<g id="patch_421">
<path d="M 434.924375 15102.113612
L 557.214375 15102.113612
L 557.214375 14974.820085
L 434.924375 14974.820085
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_839">
<g id="xtick_1258"/>
<g id="xtick_1259"/>
<g id="xtick_1260"/>
</g>
<g id="matplotlib.axis_840">
<g id="ytick_2096"/>
<g id="ytick_2097"/>
<g id="ytick_2098"/>
<g id="ytick_2099"/>
<g id="ytick_2100"/>
</g>
</g>
<g id="axes_421">
<g id="patch_422">
<path d="M 29.174375 15243.531272
L 151.464375 15243.531272
L 151.464375 15121.241272
L 29.174375 15121.241272
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pec0a68b2ab)">
<image height="122.4" id="image40026ac703" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH0ZJREFUeJztncmOJNd1hk9MOVd19cBRg2lKluBBsFfeeOmNn8CvaMBvYMM77wRDkCHZhkBaJFuk2N2srqqcIiMyJi9Ibep8F7il9qrv/y0PIvNG3IiTAfz5n3Oyf333Hye7R2fZ/ZCtrXexx8vGxRYLf1yWuyXMzOzcli52aip/3JDj591xU+FitfnYVXZ2sR//5WsXW/7NlYtlyzkvXvp18h997GLF3/6DP+7Jhy42fP2Ji00vP/exF79zsdM//7uL/dMvf+hiP89rFwvxKPP3hWimwcU68/d/hFgOz93c/L0vMn/czeTvqZnZp2d/X2+7g4sN0+jXzv01b8qFi5WZv/d33dHFjr3Pl270+/UQctgLIoPj4rJKCPHWoeQXIlGU/EIkipJfiEQptyBW9CAOjF4PsaqZ+c+COJcHNIn67AW/7eS/kwTICgSjEmLEcfJCzvZrL+RUj7cuVlz58zMzyxb+WqbquYsN+b9ADH6Db299bPDi0HTwwtL5FkQy2JoViKFmZkPkPp5BJKvNnyMdR4JflcGzA+uWcN6zwHtsnXuBtim8OHgevVA9wTm2Y+c/C2J4D8InESvYPQQW9yT4CSG+Q8kvRKIo+YVIFCW/EIlS1qDGjSAYTCCy5KMXv1ZnFpGInXmR7Aaccl5OMduMXoyZT+Qk87QQu71butjyuRd3lq13aZmZ5UsQ2RpwO74iIc+f5XQGwaj0a0y1P8fDjRe5ShL8QOw1Y0de7FuCpMIB7gLdFwNhsIVnsZh8LCRSkog4y/xzN2R+bXLfUayANTIQ2EiIo+MeAgl5tA6do978QiSKkl+IRFHyC5EoSn4hEqUkNx96k0AY3IEI2E7+9wTFHTPbFv7YV2BFa0ETuRx9cAVCEFUTkzB4GLzrr955QbOY8dUUDYharZcW8zsoPY38CZ56f95QsWq73drFSFZawb0yM6tB/CKotDaLMwci5Kgjd2AHT9Q58JRRlEpwSRDrIBPoHAly7tEaxATPp1m8c6/M/fVRebLe/EIkipJfiERR8guRKEp+IRLFW50CkMuuARHwDFoFubTMzG5B3HuRe5GF+sLdFl7UWILgNwNB5Onof/M+gFJk0l26E7viJhAgSTrNH4FINoPfYHAwjicvXzVbL0rWPfTbg9OuAu6yCvaRhLMZCFjUc6+DGAl0tMYAe9iBCEguQjOzAq5xAeLXefJPeJ752EgPBWwjOvwi3Xwk7JmxYEji5aLw17eC0ma9+YVIFCW/EImi5BciUZT8QiQKFImyw28ADcIXk5oNIAKeAjrHa3CS3U3+W6lcswPh5QSCyhIEkQ2WYMY5t4aOfy9H2KAMBM3qsf9svvICDZX0Tr2PtSev2dYwvKSDe0B99EKQOEjuSdpvKhEm3YzOp48c+BES07AvIAhqLQh+p8G7MQcQn2P79ZE7kNx8DxH8YsW9dSHBTwjxHUp+IRJFyS9Eoij5hUgUJb8QiVKSKfIMYiPFevwHwKuX+0B9+A38X9DAfw00jQXV58gxxNTMMofzHsDye6rjfy8zKG6ftWAj7eMaeJ63XknfH/ykodvc/wNwgNNuAmp/B+dNyj5ZZ8neS5OBqBcAqfhkAyZln0Zsf7uOP58B7MtzaOpZQV08Teyhpp7YmwCmAhFV4J1MVl6q0ydlfwUj1vXmFyJRlPxCJIqSX4hEUfILkSglCUEHEHwaiLU0whiO24N10szsbvL2yR4Enlnma9bJtkki4AKaVEK1uw3wO1if/LokFpmZjVQDDzX+5cvaxea9b/TZbf35fPPVhYt9Maxc7OvKr3udeVFqi10aAtZbEJsqFE49VPdfRta293AyJBaeAtdCMiAJw7NIMa2DfhMk5IUEyPuQIDkHy66Z2ab04u5l4SdNXZK9V4KfEOIPKPmFSBQlvxCJouQXIlHKLVi3DiCTHEAwakDUOEFt836EKTVmdoTaffo1KqBHALmgNoGR0/ehPgQ7+Gzfe4Hl/ICRyoejF1ma3/nY4pU/o13tRZvPci/ufOE1SXuZ++/bguhKbkozdu6hGTByv9kJSNN+wLkHAjI10QxP7IlzCK5zmM5EYhwIZ8fBj20/DjQI3rMs/LoXIOJ9G/fPxAbE8BW4FReQL3rzC5EoSn4hEkXJL0SiKPmFSJRyASLLicZ2g8hyBFfVDsS9w8jiBzVNLCJ/j2DojjUwgOgA5aRN4Y9rqdHn5I8L+bYoPodGmssJnFaN39sbcOm9BHfZDdwDclQ2EKPGqGZmM9izDsqyo0utYQ2aCkSfJedkR27DgHhJ4iC5Qxc00ijzAttTEF3vCv9870YvAtK5rMBFuARR8du4fx7nsBd0Xwi9+YVIFCW/EImi5BciUZT8QiRK+WEPU0RKL7Lscxi9PJLDz7vL6oDDbwSHYE9iI6xTQy81KtUkAXEBPe5egJDzGMQY6lEXgo6MdbHV5JQEcY/Gl1NZNIlN5GALQYImT/yBexAp7pH4TGdII79rEuzMrIRnYgnHrqmkN1C+fZ8rKMG9BtGOXIjYYzLYw48mTXlIyCU5VG9+IRJFyS9Eoij5hUgUJb8QiVI+HrwU8BoccMQZxCYqZWyCgh8Mh6DxyVCES4MSqJcaDU+g3my7auNidel75l0E3FexwgtJZCScnkGiaWG/Y3vFVSBo0aCSEB2IVWcQxEhgo/LdGcRW9H1wLj0IXx2438z4HlBfxwuIbaAH4xy27ADDPRYgkN+AGE77+hDweYLvpH3Qm1+IRFHyC5EoSn4hEkXJL0SioErSgXpFjjNy852hdDQ0nZQEP6KHtdsB1h5gAi4IUBOM6W0L/310faFfS5JtSIwjVxw58khMbSMFTYIEP5pMa2bWQr/GCgSxAYRTOp2K7kHkwI8CjiMhLg/0E4RDbQnC4gZu4KMBSnBJnCWRs4LyW+hFuYW97gIiLkXp/lO2neE79eYXIlGU/EIkipJfiERR8guRKOV14YWSHfRrI9cQDT8oQXihmBmLgySSxcZI3KvArbiAQQl0jrTGEUd+sEgTK8bhEArYmxbKmDsQBmldKm0uwZlmxntB4iC6xkDUii7phXVJ8COXXaj8liYJz2G/l6OPXcDerkCgo8nNRefF0KKEfnuF/2wdeG4mKP1GcQ9ylb5Rb34hEkXJL0SiKPmFSBQlvxCJUr4GwYF8X+/CNNASPktDCO5yP8DAzOwAgw3IDUgOPyrLJaFrBv36VjDtlI4jl10XKE8m4Y3II6f80jXTGrRfJFSiCEiTT4wFvx5EUhJ8aSAGlvnCcSt4Fy3ps2B1IxHPzGwBQt4K9mcOJdQVCGwzGJyCwGHt4PewgdJfA8HdzGwCYZGO7GgCMjx2evMLkShKfiESRckvRKIo+YVIlPKjzksGK+oVByLCi9IPuvht6cW0L0ovdJiZvRq9yHaKdLGRA66Hvn4ZKB0hx+F9aIpwFyhPju2lR1CZ75s4HWMFv9A5jyB0EeQanNHUWHAS0uCMDs6RhpyQG28NpbZmZhvwwK0LH6sKcErC2hTLYL+WsO5y8M97DpOcz4H9pyePxPkCcnUD6+jNL0SiKPmFSBQlvxCJouQXIlGU/EIkSvl3P/vSBzcwRrr2CuTN5ysXu9w+cbFxvsDFh9x/5xZ+j0h1L6ChZD35aUHRvQBAIZ1wohD/XlI8VmGfaFT5G0znIR4yjjv2vOkcqRkp9YKgGF0d1e4/gn91rjK2XW8WPr5Y+Ocpg2fx3Hotve/hPmMvAX81M2gIOoPrC93lGnoJ0HNLE5KqyPHnQogEUPILkShKfiESRckvRKKU67//OOrA6XbnYs9m1y720S+8uPd68OOvzcwasAIX0AByD5NzSBVpMn8cWWdjIRswTb75Nh73O0qNPk+BHgH3IdGNauqpkSkRmphEgh+tEwtPlYm7L1Snf5F5we7R2ou9ZmabS98zYrb2wtnYwz4e/dpdC3bcM/Q/ACtvCde8hG1YBPb6ADGapHWmkejwfOrNL0SiKPmFSBQlvxCJouQXIlHKbO1delMPlcMwcjif+9+ODQgv72993b+Z2QGaZlI/Q6pPnsCRRWJaA2Ih1aHjtB+qTQ8IfsvMNxStYJ0BlMoampEuRh8j8TIkQN6Hxnu3JKQa90UgSBAlYZCExQFq1mkC0ATfV8Aezhd8LYsrcIcu/DrjmUQ2GNFO5z3AfYbvayNF0+D0IRDtTtAp9AT702pEtxDiDyj5hUgUJb8QiaLkFyJRyuGTL1xw6qHc8s47pZqX/gup5HEWcHNtwKV3ASJSCyILlYT2uY9R6W+sg42ERhILzfhXlASaBTSuJBFxBSOxYyfkEEdwP+5GdsWdzDsOSWwkwS/2bUJPBDWobEGIPUMzyhC0PVQZTbEc5ntXCy+wlS1NdoLSdDiZFrS9MaAL4jMG0RHLpaE8nZcRQrztKPmFSBQlvxCJouQXIlHK/X/ULjh04E6qvePsePAlubeNL+ndwsQWM7NTZJXoAkS7C5hV0sFoYxKWSPwgcY/6o4XKZWNLXmmdCkTAVaR7roxctwLrZKjcGUtwQRErQcCK3Qda+wz37wDPzgH2qzn559PMbL6Dfn1wilTdnBd/fDk40cHCJPidA/eFHJCxJev0Wb35hUgUJb8QiaLkFyJRlPxCJEr5xWePXbAHga0BV1UNvx3bwsdeFywC7agsl8pWaTABiE3kdqIYUdJnse9ZfC87EuNYWPSgu5DGjVMJLXwfldWuoQzZjIep0Oh0/CzcP3JjnqH3XA3lqTso+94W/lncn7z4bGZWbqHvIThGSQTMCxqwAqIdDPegUuQSeyb64ygHzLgst4G9bWBvGxh8oze/EImi5BciUZT8QiSKkl+IRCl/WfgefsQAgghJQCcQU/YwXdTMrINjizeYJopuPhBZSMibU78+6vUXWBuHZ8BxsYIhOQlj3Xzk+iIhjhx6ZmYLcE9Sz8QG+gLiNF9YY6DSbRKvqOchfPY0BHorNl7UJMGPhDw6boB62w7W7uD7SPeGquGgS5KEwDZS3DuDmKo3vxCJouQXIlGU/EIkipJfiEQpf1HAFFMQgkhsImGCykFDjiWSNZaw9gjiSeyUVwIdcJHfFxJjyIUY218vltj97kHkpHtAQ05CkAOSeg/S+cygHyF9X7SgCYe1UOZrZtb2Pl5Cr0cS/AaIUW8+csQO0c5Sz0OeGhJyiVhBWgiRAEp+IRJFyS9Eoij5hUiU8n+HnQte5DMXW4JoQ+Wy8QWvZvPIMloqPCVxiGKxohQ5AUdweJGwZxZwDVJZbmACq1s76igzaLeIYiiVedaBKb1UbssTdME1GCkMkqOSn6e4kuVz4L6cBv/czuH6CKrAJRGwh7UpRucNxsmAdPmAEnFwh+Zv4JwVQrxlKPmFSBQlvxCJouQXIlHKu/7oglNJEwx8aAxKE5GARrPCHn7gBgNXlUFPOhIVSXiJ7RNIAouZWQWCCgl+IcHwPnSOJLrFCnHURy8k+NWjn9LbQfkuuSLJzUfnU+R+Hxaw33gtsIU1DCUxM8tGfz5LcOnNqOQV1hng/nEsDsqgZUAUXsIAkxq+YSDxWkM7hBB/QMkvRKIo+YVIFCW/EImi5BciUcpdf/JBsF6SbTMjOfQBkIpPavoy0ia7gO+7AjWUFPc1FInPyN4ZuGRSoAma+kw13dT0soY1DthYFcZfg6W1C9hcW5jOcwa1v4fPn8z/U3CCfw/qwq8xlBsXW8PEngb+FdgFpkK1oJAvQO1fQWwe2e+A1H6CJvYsRx/bBPLqkiZpwfNNo+p7+LdHb34hEkXJL0SiKPmFSBQlvxCJUu47L/hxU0gv7pyLpYstQKCZBWzAVHdMQh5NNVlQfTIcR7bbSxBZHg9e0FqASTPUKPIIIlQbKYiSCEgC4gSiFklSZOWNbVBq9rAx5PfB56T3e0ui4gDnvaj8fm+oMWrA3kv3fwbP3Rm+k0TgCkS7Ei3p/78NZs24Vwb1kZiBMEj9DvTmFyJRlPxCJIqSX4hEUfILkShl03v3VT960YZiQ+Wliaty7RcJiDHEBE0zScibR8Y2oz/HZyA2PV34yUXLpT+u7/la6pNvenrsvfgZ6wYj51YNYmrszpKIV4GT08xsnlPLVM8ZJ9rAswPCKR23B7fpdT53sVUBrrbAOa9A/LqA2BobXFINfJyQ18F+U8+BOxBxb+mBN7MtOPdqEFipgSs2D8VVhBBvPUp+IRJFyS9Eoij5hUiUMno0NbiiKhCgyOFH01lCxE6qoR6jK3DuXYDg92Te+ti7vpHp4ol3pkF/SjMz67b+d3R/vXCxw9ELg03nv5TGkpOgiY5I+E1fPOAexL4SMli7gA/HCoPkLN2P/l69hJvQBUSySzh2hjOg4tyTLTjqqMy7g3y5A8fnq8Kv8k1GBd1mW2i4epz8sVS+fYLP6s0vRKIo+YVIFCW/EImi5BciUcoKepwtSy9KXVXeufdeeeFiT3MvctFoYTMev0wTaEh4mUNp5SWISO+U3rn37P2Di21+DKWa33viF156x5mZ2XzrBcPi13sXO3/m93t/9vt9foNJQ9TLcAThi/Y/CL0mYm1jcFxRxI3jnuA+n0Dk2k3eqfrtd3ouwT15gDygi6EZRy1ccwsL78Chdw3i3l1gktIWxM8W9qKBGPVR1JtfiERR8guRKEp+IRJFyS9EopQLEPcuKt+b7xkMVPgwX/njwD0VGmvdgADCrjEasuE/+17lS0Lf//7OxS7+Cs7xJ9/35/L+ey5mC783Zmb26qULVV//l4v1n3hh6QhjO7Y0jhl+qskVh+W78DsfmASNAx7IpUcCHQ18KaCUNdZZWkSO7W4DA0iOMP7kFs5xBu67A7j0+sghKSTZ1fC8n+C8SbAz4/uCY9th2AjF9OYXIlGU/EIkipJfiERR8guRKOWm9I68dQGx3AuDVCZ6AdNOlwFl6QSCCvEOaDk/yGsX+/BPty62+WsvShZ/8SMXy/7kY7/IYxD8YLiHmdlUe4ff1IM7Dcp3DyCIHUCAqqG/YQuxjgSfBwyRICGPhLc5lG+TOEsiIAlQJGiN4PBDJ2Dg+qi8dQeuOhogsw4MaHFr0z1AETDOvUpl0WY8/IZK7Qt4dkhg1ZtfiERR8guRKEp+IRJFyS9EopQzHAThBQNyUO3BibQCYSgP/MbMYZ1HIO79ZPDi3g9/euti65/5suPipx+5GIl72Yd/5mOrRy42HW/8CZrZRC62FgS6EZx7JQl+fo0jCEs0tOEA94UEv9A0XrpbJDYtYVDGGkqH5/CNLUhd1I+O3G4k7oXKk0noOgZKZu9DezajHn7osiNxL050C/VbpIm89J20NomuevMLkShKfiESRckvRKIo+YVIlJIcVGfqkTb4XnhEDe6pbebdgWZm70H578fk5vvBnYut/tyX1ubfe8d/+Oqxj20gNvdioRUwoSM0/AJKjKkys4Pf2xNoVUcYQrGHktAjCH4kaJH/bRa4FnLpLUHIu8j8/XsMx1Xg8DzAtYQEyPt0cM0h/yKJcWeY0tzB+dCrcTn5PSMBktx8BF1xqASe+jWi0AkhEgv15hciUZT8QiSKkl+IRFHyC5EoZU/iCUy7JQZwabW5V7mOGTuqisL3BcxBUJlf+nPMn126WPb4yi8S6rl3n7Pv/zf1fkjCtLvmz+/9gI6hgR5woMZ0JPjB3pKjksQ9GuRAwhCJQGbsyKRJyxsq6Yb7R5AgRoIWiV80noOeRTMu6W1HLsu+D7nnLkC8LqCslsqqCey3GLgvNPyGhkZjz0twaOrNL0SiKPmFSBQlvxCJouQXIlGU/EIkStnBWGv6SaB/BYrJH9iAdTKDhoJmbE09FN4ySuJsNgfL8Nr/e5CR2n/2VuXp1ec+dvTTfuz6lY+Z2fDpcxc73vhx3g0ouQ3V6UdaeWtQ9klppgacIUWamkKSW7UBBTlWxafJTLEjw0mFD10LKfst2Z/B5k5NPSk3CriW2Ek6FU0PCjQOnUX+C0P7eAG2a735hUgUJb8QiaLkFyJRlPxCJEoZmnTyx0JiTHCaClgybwsvVjRbLwJuBi9+ZXMvsBHTqy997NPfulj3yQsXa7/iUdD7V37tr669Bfk1NesEcY+svPvRG1tPVJsOwmDI/kqgoIa15J4SxN1HE9T4w6fJLtyBgTVWTDNj0Y6E6kitEe3CfJy/f9Q7g6YeBaFzhNSq4Jppapbe/EIkipJfiERR8guRKEp+IRKlJOcXOYRwLDIIGCRKkNBhxq6sO2hceXfjx2w/vQH33d7HaHT2+JtPXez23/wEoP9+7huCfl168dHMrIXrPoEJ8Sb31/zSvGh3M3lx7wCxBtxqJH7lNCb9AT/9VGN+okavUM+/AsfaI1h8BcIgudroXCqYmGRmNoPzOWfQH4KEQVibxFDqn4BNRslFCPcl1MATp/PAOdK1UAcDvfmFSBQlvxCJouQXIlGU/EIkSomje0EwIJceCUsliRqBkl6CGld+2XrB74Nffe1i67kX8qgZ6eHnWxf79fP3Xew/535vXkCDUjOzJnKKTG3+uB0IeXcwIekEDj9y7pGwNME9DQmxdLtI8CWnHY1y70DEnY/++1Zg0pvn9HzScfwea0BEjPU6ksBGrtQ9XAu9VkkEpAaeofLkaHchPGML2seobxNCvHUo+YVIFCW/EImi5BciUcoKhICQEOSOA0GEYqHebDjpBPrZfVV50ebJ/zx1sQ9vweEHYszzl89c7Dczv8ZXuXfPvQZxzoyFLhLEGnCDHUY/GYjEvZ76LQLUg69Epxz3iptDvzfqFRcrnJFYTG+dJTx2YIi0DsQ9KhE2MxvAXYhuVSpjpt6KcNUzOJ/15J2gJBbS8xAS9qg/JvXWJGGR3Ip68wuRKEp+IRJFyS9Eoij5hUiUMtT77D4DiIAknIzwfaEefiQsnqCf3e8LH+sy7/r77JUf0EFX92oOIiCIey9H77KjkdhmZj2sRHtbg2jTgLhH4g6W6kaWopKTk8q5zczWmRerLiBG95XKUVfQM6+IbB1JZziHNcBE+B1xvetwdDocRyXGFyAqkumvgWf7Dp6nOxCAzczIxNjFjkRHd6EQIkmU/EIkipJfiERR8guRKDill1xDKDaBSNIX/rMkNpmZrUBEmoOA0YCY9nualhpZOkzftwPRDYdkBAQ/2h8cfgFTY0ncO8NxdF+ofLcE1yaxznnISQlCIE15nUf2n9vAcTSqooPbRzFyTj6EWGci7eIVXMsMBE26vgP2HozvrVjBOrQXoR6AkcsIId52lPxCJIqSX4hEUfILkSjlovCi283ZO4z255OLDSOUNxZe6ujmXKJIpadUzkguNupzRo4zKmWl76N1SYijUlszFuMIEgZjRVcUAeGz2RDXr2+e8wCS47Tw5wji7ApkLXLfkfhFnRDJFYfDUN5QBCTBj96CCxD3LuAkrwa/dgX7vSv8Kh2I4S2Iq2bRg4StgquJLasWQiSAkl+IRFHyC5EoSn4hEqVcgcvrkPtSVhL32t6LXxQLlQ2TCNGUvlSXSk9jS5HJ7UaOQ3LKtQ8Q/NqBnX/3IZGT1qYSzLaHHm4k+MEaJHKeBr6WfQFDREDwIwVqBQ7NAdb2kiILg2dy/eG0Whb8Qv0j70NvQeoLuIYhMFdwDyqSFQd/hVuo010FHJqxoiZNMabP6s0vRKIo+YVIFCW/EImi5BciUcoFuLxWhRcBH829EFfTwA8qMQz0ijuBOEiESoJj1iHhpYcppnTeKPgFRLLzwNN770PCG0FCHjr8hjjBj4azhFyJ5GzcZf66ocLUTrC3S7h/GyiYXcG7iO78Anv48b6S47CKNAMuQbMjwW+T+fsyy2GYxgDiHmziKjSAJHJwCg4goenZuIoQ4q1HyS9Eoij5hUgUJb8QiaLkFyJRSlLSSe3PYcrNZeX/ASAFOTRamiy6ZJNtYXZKtG2XxoiD8knngjX1AVWf1om1lsaORH+TdekfgND50XXTpKIBlO8F1aeDcZfE+QKC1DBzDTX1l3AuZmaP4X6t4B+JAd6DHezPDPT1ZenXqEq/xmb0e/NooHp+fieX0OyTRoYfYLQ4WaL15hciUZT8QiSKkl+IRFHyC5EoJdX+0iSXVT5zsT5SJCObrJnZcfCNQmuIUR07ThAqvCAygGAUa519iBA3y72oRXZjEt5QbKQa8cgeBmTlXRb+/tE5hyDL7wRzsckmTVCTyTWYeWkazjuD34cPJrZdv3t18Os88seO0PS03vs9a1u/Z1Xl71UBY+UHECqfnWHaT8f3ZQkNQL+B2AkEP0JvfiESRckvRKIo+YVIFCW/EIlS0kSbNYh7sVDjydMDhCUSB0kQG0D0IddfBoIffh/EyAFHE4nMePpNqI/BfUgkpfHnuC5MXFqVXrC9KJf+s4GJPbQ29SGg/Yk97w6caQMIVUvQrp7BM0LCnpnZk49qF5u9x9d9n9U3Rxc7Xfv737fQtBQExBJEwEXm7/2aGiWYWQvPcuyEpBLvlRAiSZT8QiSKkl+IRFHyC5EoZQUlmPSLQOIOlZOSYzDUXHEAAeQw+GlBNNEGRTuYKjSBiBQ77aeAaSohVxyNOi9gJ9EBFzkzmtyBJNpdVWsXuwDXZggaf85OUC8Mr2GyD4tNccLgkibkzLwL9PId/9yYmc0+8OdYvHfpD4Ry2WxBIqIfVX+69kftv/Hl7l+eNi52Xfj828O5mJnV8ExsMxj5jmXeHr35hUgUJb8QiaLkFyJRlPxCJMr/AeI/qrVFvAmFAAAAAElFTkSuQmCC" y="-15121.131272"/>
</g>
<g id="matplotlib.axis_841">
<g id="xtick_1261"/>
<g id="xtick_1262"/>
<g id="xtick_1263"/>
</g>
<g id="matplotlib.axis_842">
<g id="ytick_2101"/>
<g id="ytick_2102"/>
<g id="ytick_2103"/>
<g id="ytick_2104"/>
<g id="ytick_2105"/>
<g id="text_106">
<!-- 379 1834-150319 -->
<g style="fill:#262626;" transform="translate(15.789375 15229.426272)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-57"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-53"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-51"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_422">
<g id="patch_423">
<path d="M 164.424375 15246.033036
L 286.714375 15246.033036
L 286.714375 15118.739509
L 164.424375 15118.739509
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_843">
<g id="xtick_1264"/>
<g id="xtick_1265"/>
<g id="xtick_1266"/>
</g>
<g id="matplotlib.axis_844">
<g id="ytick_2106"/>
<g id="ytick_2107"/>
<g id="ytick_2108"/>
<g id="ytick_2109"/>
<g id="ytick_2110"/>
</g>
</g>
<g id="axes_423">
<g id="patch_424">
<path d="M 299.674375 15246.033036
L 421.964375 15246.033036
L 421.964375 15118.739509
L 299.674375 15118.739509
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_845">
<g id="xtick_1267"/>
<g id="xtick_1268"/>
<g id="xtick_1269"/>
</g>
<g id="matplotlib.axis_846">
<g id="ytick_2111"/>
<g id="ytick_2112"/>
<g id="ytick_2113"/>
<g id="ytick_2114"/>
<g id="ytick_2115"/>
</g>
</g>
<g id="axes_424">
<g id="patch_425">
<path d="M 434.924375 15246.033036
L 557.214375 15246.033036
L 557.214375 15118.739509
L 434.924375 15118.739509
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_847">
<g id="xtick_1270"/>
<g id="xtick_1271"/>
<g id="xtick_1272"/>
</g>
<g id="matplotlib.axis_848">
<g id="ytick_2116"/>
<g id="ytick_2117"/>
<g id="ytick_2118"/>
<g id="ytick_2119"/>
<g id="ytick_2120"/>
</g>
</g>
<g id="axes_425">
<g id="patch_426">
<path d="M 29.174375 15389.95246
L 151.464375 15389.95246
L 151.464375 15262.658933
L 29.174375 15262.658933
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_849">
<g id="xtick_1273"/>
<g id="xtick_1274"/>
<g id="xtick_1275"/>
</g>
<g id="matplotlib.axis_850">
<g id="ytick_2121"/>
<g id="ytick_2122"/>
<g id="ytick_2123"/>
<g id="ytick_2124"/>
<g id="ytick_2125"/>
<g id="text_107">
<!-- 381 1834-150319 -->
<g style="fill:#262626;" transform="translate(15.789375 15373.345696)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-51"/>
<use x="55.615234" xlink:href="#ArialMT-56"/>
<use x="111.230469" xlink:href="#ArialMT-49"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-53"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-51"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_426">
<g id="patch_427">
<path d="M 164.424375 15387.450696
L 286.714375 15387.450696
L 286.714375 15265.160696
L 164.424375 15265.160696
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pcddd86cf4e)">
<image height="122.4" id="imagefcd502dde5" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHxhJREFUeJztnUuTHdlVhXc+7rPurafUUre63QgcOHAAwYABY4YEf4Efy9geAIawHeFuu21aapWqVHXfz8zLwB0MtL50HFkw8VnfcEfefJyTuzJi1dp7F4//8o+neI/11837oXj9zbnEXu3HEptVlcQ2RSGxiIhlqbF3ZavnLPR+jiG3HV+0PYn9UzmT2Mt/1muUTy8ldlpvJdbO1hLropwONTjo63U2O4k1bxYSW3+tz/zqmwuJ/fJ0JrGf9HUNf3q41fuLiN9t7iTWwnqPKn2WfllrrNBYD47rFfrutCe9bhO6f4f2KLGIiFWja7s66r4eWl2fEzzzie7nRPej52taPe4Ix7Vwvi6K0NwqIN9KiiVfxRjzJ4WT35hMcfIbkylOfmMypX73b5r/+50KZ4cGxBgQGwiVSP5w/I+FZJLTSe+xnasIdGofNLbc62+3KtB0cdqqCFXUut7t8iCx3Rt9mvmdCqzzo+7Vuk7bl1Ghv42IOKtVqDye9LlJ3BuUes6zcqDHkQhIgh+8JXu4l03Hu0hi3KnWc5JAR89M54tG97ktQCyEWFV83PcXhTw4Z1VqzF9+YzLFyW9Mpjj5jckUJ78xmVL/15sbCfZAZDmAoLItNUZyWJf8pPIOH0tC3h6ElyUIKo9bFZt2384lVl+oaAN6T7RblinbPd25CnntUY/bLVT8mj1MJPZ2O5LYq0oFtjcgaO1hFc9KdehFRFzW6hDctip+EjWIdhQbguDXh+PIZdeDbxboWRHBDjgS2baF7hUJfntwEpLrj5yJ9KklN17Rpgm2ESz40fPVpa6tv/zGZIqT35hMcfIbkylOfmMypf62By4t0CoqEDBI+iKpYkDiR0Q04L4r4Qzk8tqCgPUOBLavwK1282sV066fa6lu2dNrNDuSKSO2KxXetmuNrTYamzUqSt6Be+5tX9fmHkqgH6EEegcC6RAEtoiIq0qFxSUcuz3pehMk2jWJMfo69UDQakPXq/MEAAlvJO4RJPgRVL5bQg50uf7oOnTfFvyMMX8QJ78xmeLkNyZTnPzGZEpN7jmK0V8Jkot6IEqUHXrILrGvWAPnPMBdruC338ATPllpP8L2ld7L9Bx66zXsvlotVbS736rYeAclr297+tR3lT7zrFABag0utEPiepG4GsGlteS+o1562HOPetyhF1Sh65LDb9BhiqNXr6WXLPWlB1L76JEQR2uDZcPBPQBTob6A/vIbkylOfmMyxclvTKY4+Y3JlHrSqiQCFaFRkfsqsQlfV4UiaWc0jANFGxCWdiAi3ZUqkv2mr6Wsg42WsVL/vxol0ojtQR1mS3CdLaH2dA1/gpegQC1O+izkdCSnXGovvIiILVyH3XdpolZqnzp6TUjcG4EIePzY7xj8HN13cCAKpODQpBLh1N6BEew4PED/QB4iYsHPGPM9Tn5jMsXJb0ymOPmNyRQnvzGZUo9B7SfoqANYGHfQ1HPTofbTiO4tNg+FqStwPlK0V6Cc3kIN/GWl6uwQmn9OelzD3oIyTI1QR7DeA1gzGrpzwOfT+yFl/gAK8B5U/d/HYWx0otpPtfY4ohuOG4Bh/LrQ/8yMqbcA+nMjFolTpYgKfjuE9yQVbkQLlm0YKx4RsWx0tPg69NhdQ++o1X5jzPc4+Y3JFCe/MZni5DcmU2BgNE/d2YAoNYfYDDy/a5ik8/s41OSD2LSjunG0AadNqllAg8t7mHxz0WgM3MKd1HA/Q7Alj8D/XOE0JFhbEIx2EDukjpuOdHGvBOGNrLxUkz8GEfASRoZ/dtLYBHzhyw6v+R3cD0mAZNtt4L6pdn9A9l44HwmIJGbPKxaV7xrtWPGuWEpsVagwSNZgf/mNyRQnvzGZ4uQ3JlOc/MZkSr0EYYkaay7gzwRNi3mAJpMk4kXwmG1yopEoQtBfsiOcbw2S5iNMNLmvoUVph+BHbj66a1oJmNqNbr4diaHkEINx2l3iHoGNPWmUNNXzwy7QZKBz6HVA4t5L0L4mja7DumNG96TW64xQvKa6epiQA9eg5xuB43NIoiLs8wyavEZ0jCZP7KmwafSd8JffmExx8huTKU5+YzLFyW9MptTfQoXiDhx55Ip7B+WkC3ASUUPIiK4xzWkTTNBJBiWhNDmFxDQqJX4Ave/QMdaaxpqX1GQU7ucB3GkzUBY35OaD9ab1IvcjCXYRvGYo7sEeUKnuGYh7n4SKWj8Ace8TaFA5hHfxoqNL7HSv+3UJIiAJvlvIA5JNeyDu0fvQg1gL6zoGQTIioi11AhSJ4eTQpL3yl9+YTHHyG5MpTn5jMsXJb0ym1L+A8j8S4rYwWYSEvNRpLxEdk0Wo9DRxvPQQnFEXhYokvcS+blSKvGG9LxkSaO7AFXkPLj3u1/fHi3s0aaYrXkNsCGW5Z1CWewHHXTUgDMJUmT54IvvgxqvBbRoRMQEx7rLRZ1kc9b7XIJJR30rqKFmD2EurfYDT9U/8Td7AHqygx+EW6s5pwpW//MZkipPfmExx8huTKU5+YzKl/vr4KEESh0hESoUcRxEs7tF44iOIjanXOS918Aa50CoQhnbUMw/6DkZErOG+qX8g9SNctuSUBMGv1QENB3D4ETU42GiYRkTEEMZLk3tyRIIfHDeAtSXZjEa205j0CoTY4YDXodfTfZmAG3C602dZ71UE3LT6fOTSK7EPorIDcY/OFxFxDseOYF9JiCXx0l9+YzLFyW9Mpjj5jckUJ78xmVI/HHUQAJX/UYxcX9TDrYsTuI4o9n8NuZ32IOSR4PcILruIiPmJBDqN0QRcHLKRWKqbOmCDHGdlR+koCb4lONtqek8S3ZMk7jXw2wKer9+DMt8x70t/qMeSSW+w1ePqFZSSb1QE3IMImAoNye515ACVDteJ4jz1svSX35hMcfIbkylOfmMyxclvTKbUJA6QsEQiEpWTJuo9EcFiFfWPSxUWqRSVhoAsoIR2C8etQIh7aDcSi4iYN1oavQPnXmqPQizBhLUhIZY8iOSc3ML9RUQ0IH4eaQ9AMBzBcXQ/NFSXJhhPenqP03N1Og7P+Vl6U7160df77q9BGHyr93M46PMd97oH+xO8i/DObiC27hBiqacgOUuprJ72319+YzLFyW9Mpjj5jckUJ78xmVKTmIZTWgF2EqWV30aku/noHilGbKjvHfSKI4GNHHorEPYiIjZwLJ2TSO25VyY+M0Hl0weYdtsFiaktVAT3Kz3uGgZ0gA4Xn5Uqpj59tpTY8Fr3tJ7yO1s/GUmsONMy79NKRcQIvZ/dRh96sdc+ejMYVDKv9Fs7B3FvQWpoRNxC78IZiLYkcrMT1BiTJU5+YzLFyW9Mpjj5jcmUegCDLthxBq4v6K3X1a+PIGGRHH50TnLKHaE+chvs/JLfUqktiCnbhs+X2uMwtT8iOfdSof2j56PjuuKpAiv19YtSRbdPjno/N0+0vHxwrm61SuewRNnn9SqmenD57EYP3KlgOzi+kdjoHez/TEP3ta7X72qYxgxuU+rzGBGxwYE2ek7qUUkDbfzlNyZTnPzGZIqT35hMcfIbkylOfmMypT6DiTZU570j1RwE7lSragQr2iVOFoFeAomKNlmI6b8HWO8Oyn6XffljLNGp/yFJrftPnXr0IWp/AyOwt+DvpWakxBhGb9M/OFqYYX1Ux2+cOqY6lQuwYz+F5z7T/0iUFxobXqq0P3gNDVjhdVhTLwfY+1HHN5n6OWCvBHgX+zDZx19+YzLFyW9Mpjj5jckUJ78xmVLTCGv6i3Ci0SJwYEFTRTqsoWQ5pLHRJEBtoU6fLMgkqPx/kDo550Psz+/TJdC9D4l7OA49cfR5REQF46F5X1T8Whd6nTWM8t6uwYIKTSurHtiPd7w2Ra2CX3kBY+mvLzTW13exd6V7ejHVa9zMxhK7L3UNJ9SItuMV2cBaUK9Pyt8KxEJ/+Y3JFCe/MZni5DcmU5z8xmRKfV1o80HQJZCiBfcVOLf6JdR4R8QExMYhCH401roEYXEN1yhTnYCJNfUkKkakC3m0Fqkjsem4VBHwQ8ahk2vwAPtK/Q6W0OD0vtZa+Tf1RGJPVtBYk0ZY9/Re6n3XOug9Vmfq0qvppYdGr8VQjxtNYKrQo97j5KSCJnWH6BL8iBXNGwcamgCVfhljzJ8STn5jMsXJb0ymOPmNyZR6Sg0XCXLzgQBF4ly/w+E3hmvXfCEBBTb46a5NKzEl8YsEv6ajsSZFe1BGiROSEkUbgpx3BDZB7RALT4nNWjdHFfJozV5XWoP7da3lsteNNtts17o2YxjbPYCGoBER9IjVa53OU9TQhbMGwXcFpdEHFc0P6O5Mo1O6hNdkB/u6BnF2cdK98pffmExx8huTKU5+YzLFyW9MptRbHOerVFR6mDjFJfW4iPQS3Ir6lNF16M8biUAwPrkGwS7VURfB4ldqT0G6DpUI11DTyb0R00VFGmFOgh+5IjeNCkuPR53E81V1JrHr/lRi5V5df1d7cNk1LOzu9rCHR/39dKciYD3Sc+4Xer6HBxUvH2BUOY3exlzr2KolHD2D0vY5jIufg/PSX35jMsXJb0ymOPmNyRQnvzGZUr85wVADgHrA7aFfG8phHYMuUvvefQzkQqTegTTWmETOrrsjmZL62eFAFBBtUseX0z221OvtA8qB96XeN45jTywTpnfnrt1I7BeV7supr4Lfp0d11I1b/W1EBMwaieGjBp8uNQ+mE40djyrkvdurM/Ghr+s9B+ddA3vVxQzep4dWhcrHRtd2CyKgv/zGZIqT35hMcfIbkylOfmMypSZR6mOGTeCE166DO4RAuZ/EfnapE4KpT+B5qSLSEAZLkLMwIuIAUucShDwdF8GOugbOR849EvyIE7jL6padlxX0syO3I+0L9SgkhycJn7+NhcTmpR73FETAccc6VNDrcQL7+mcHdRz+4FGfpQ8K4gzepzms97agISfQG7GjqHcO79OsVVFyDSLgHkrb/eU3JlOc/MZkipPfmExx8huTKdjAjyStAYg2LH6psHDo6hUHAh0JiycQbQj6LU39PSvUDXYRGjujfnsd1z4kuhV3MLF2X6SJrliqmyjO0vTkrjJfEuhOVVqPwwG49EgsJOYgXt0ftf/fr+G6YxBsIyJG4Oa8KtWRt+xpWe4SjpvAtOq7WtfxbQHiHAh2GxD81nBcRMQSXHo0JIWGqRzAoekvvzGZ4uQ3JlOc/MZkipPfmEypaWJtCSJZqlMOS1FBBIzgfn0kAqZSw7VJ3LuE2DVon+PEgRgRPDzhCOWaC1izNQhsVC6bWu5MLssPWVcsHQaRjY6j+6Zy4AJ6D9K7uDyqoHUAt9q4VtdfRMQVTAOm9/ZtoWLaodb3hByDKxBx38GQjAUIdhtw2G7guK449UwkwY97QhpjssTJb0ymOPmNyRQnvzGZUq9ARNiDgEFOKRT8qMwTSigjuO8dSVokdFHPPRracQnOvWcQu2phEMQHaI87cstBeeucyj/hb/CBxDRyRILARuIOiW7dU3rTztmC2w2vTZObYW0IEveIAbyfERHnlbr0zgt1A/ZhD9bUtxLKbRdwjzQVdwmltiTiUfltV5zEPTqOysb95TcmU5z8xmSKk9+YTHHyG5MpTn5jMqWmemCycu7Ahkg11ANQs7uaXpI6T6rrEI6bwnUuThq7AYvu06Oq1BeNKrvDjkaKBFl0y55e+6HSe3yEZ6H1PmJz1DR1naYr7RquGyfLKP63ABRksvzuoLY9tSEonW9aa+39Va0NOCMirqEmn94deu9I2aeR9iuovydlf91AY03Yl67/wnzIePj3IXu3v/zGZIqT35hMcfIbkylOfmMypcZJHiCykOUTgT8nI6ifj4jowcFjEGNIoLk6qWB0DRbdZyDufX5S4eV6omONez0YS92yeDlbqrC0bsYSOwehawTPtwEBkaB9IRvwFsS99VHXISJic1TBj8Q9ggQ6ep94ggxYw0EgpbazXaIyxbuOfZ8G1nYHYipZ5FMba5I9uwsURKG/AAn2JxzbbozJEie/MZni5DcmU5z8xmRKnTr+GoWcRDGFau+74gMSAcGlN6HRy6BJXYOw9PmzmcTOX6poU/agyeSCha/iNyqojGfqRKNR0lMQRI8wCprGOZND7ADHkcOLprhEdIwMB3cZCUupYM8AuMd9k1bDTqPmfx/XZzxQfwl4Fhq7TtdZJbr5cGpOYv51Qb+nse0W/Iwx/4uT35hMcfIbkylOfmMypR5BWW5NpbbQcJEaeJKbr+74G0OyBsVIRByD4Pf0qILKF9OFxK5+rKJN/eUN3uP7lG/1fBER43cqGE4e9X4uWmgoCnswBifgHkS3JUxDIklyVYHjrOaSXoJKeolUEZBHsae5FckdSAJbRMQKSnrP4L0lox2NXadSa7o2TRoiIbUH+9y1hlQGTeIgTleCCUn+8huTKU5+YzLFyW9Mpjj5jcmU+hp6n5HgR+W35NAjd1EX5OgikYUYg6r1otay3Od/s5JY769e6I+n0ANuB66/PTvJhtePErt+raLPFwdd23EF02JKjW3BpXUP4tUe3IGbmsc+EyTuUklwqghIpI4RT3WWktMxImID/fUW0OsxQKgmsZHeWRL8VnvdezofCX6DikvgCRIBSfCrcR2NMVni5DcmU5z8xmSKk9+YTKk/rSYSTB2TTZAgQn3PIrhH2qFIE4IG8Nurm7XE+j+8kljxFNx84L46rVRADBjuEREBJr2YTlQIevKoYk511NgKBL95pXtAsQrEHXJytjWLqyT41iWMl04c7sH9H+G7A69YBetAIlcXWyj/XYFISuI1vfPUcy91/HlqH8Su5yPBkBx+tH8kAvrLb0ymOPmNyRQnvzGZ4uQ3JlPqZwUIQXAgOe8OIGrQZNPmA3q9kZOQoHsswQEXIBiRaHdaqVjYvpvrT2/1uIiIwxz6/R312g2UIu9BoCMh77bS53sdKrotYIgEiaZdbkxy+KGARS497M1H/f/Setellrx2Db8g598GRMABiGQD6vUH0P3QsJG2hD56H9DDjwRI7OEH99OjKdJ4FWPMnzxOfmMyxclvTKY4+Y3JlDq1hDa1/JZiXd5AEveGVCYMItkSepLd3qlbcfqfdxLrL8C5tweX1qMKZ4cZu7R2c3XpbbYam8OI2ftan/lVpdf5bxD3vm21ZHkOE2JJdEuevBwsIn3M0A7sPQfiLJX0osuuw0VK/f72BQ060fXpg0g2KnVPr/r63vVAND3AvZBrr8tNWyYKnV1rodcxxmSJk9+YTHHyG5MpTn5jMqV+3ZI4lNa7jBxeRJcwRMMTGpjIu4Nr34Pb7Wcn7cO3+KkKNE9+ps88Huv5RlMoJx1IKCIi2gbu+6iCEZXq3oPz602oC+22VaFy1mhsQw4/EIZITOs6lhyCJDallrKSuJd8XXKRgijcdT8kNpK4R+9nn95laLk3L/VF2UE/QRIkuwQ7mvJL60P9FgPeJ3/5jckUJ78xmeLkNyZTnPzGZEr9ttUS1QMIDl0lk++DJYYdf2P20FcO9D7kAALNrNZrf13DJOGYSuxLrd6NHy/UPXd1zSW9u41eZ3VSJegd3ONdqaLPPYh2MxBnSdzbQckqkm7wQ7GJHGv7RmMkuvWoXDZx77uESmJU6Tt2VY0k9rRQge4CBD8aDVKC25RKhNewLzvYe+o7GBGxKXSvqY/ijt6JowU/Y8z3OPmNyRQnvzGZ4uQ3JlOc/MZkSv1wVEU71QpKdcd0XJfaz00lqc5bYwdsFKmxFTRwpNr22/5Yb3CvduEvb2G8c0Q0cN/fQRPHN1Cn/91Jp+HcwX9hllCnj1Nz4L81qVbsrmMpdkhU9ul9ov8e4fQZGmENNfXntSr4ERGf1RcS+0Gl+/oJ/GdmBEu2gX80nGC8N/0/oqax6yeYjgT/KYjg95bGg5Oyvz7ocf7yG5MpTn5jMsXJb0ymOPmNyZR6cdR6cKq/JxGCpoCQaEPCXkTEEcSO1F4CBxA/tiB0PYIldgX2x22lv+31z/V8zVBiEfxX9G1JTThVeHnbqLg3T6zTp3pwst2m1oJHcP1917Hvg6OgQbCl44aVCmfTngp5l7UKdp9VatmOiHhZqJD7aaPv3SRRD13CRrc0UhsUv9Qx9xsQqSPYtr0+guAH9fwkxPrLb0ymOPmNyRQnvzGZ4uQ3JlNqEgcGILzgWOREh15X/TXX/tPI4jRIGNyBeLJuVSShUc49eOZVyU4yauy4BgHy3QlqshMbO5JoR24+bAoJvyVhLyJ9igy57/pV2khtGgNO4t5NrULe5xD7ywCHZkT8OZTGX8CI9hpFZajTr0AMh28oiZz0Iq/hveuq518eweF51PeJ3JO0V/7yG5MpTn5jMsXJb0ymOPmNyRSuTwVSRzSTMNRV0ktxEgHpnKkxchymlqzeg/Ouhek6ETzxBaepUIlxagltYsNMEvfouK6mrKmjsuk4EoupBJcaa06hseZlpY5Karb5xYFl4Zcw5Wg6VJGsglLrI0xcWu71WR4bKDEG4XMEzWSXUA7c6bwklx7sy6jWte1Debm//MZkipPfmExx8huTKU5+YzKlRiEHhDwSzlJ7+H0sdMYeRIcgug3BSUbPR045clrNOvyGXWPI32cHoh31YaMYjV5OLd8lcY/Eogje1x65+WBtU/vrkbg3gQlOF4XGPmn1Xj49chnss5ulXudG17YagpgGcvhxrWuznekzL+cqSr5eTfSEAz3urobjImJWqwBNe5C6L/7yG5MpTn5jMsXJb0ymOPmNyZQaS3VBHCLXETmOSBjsqsmlIQSpwhSV/pIIiOWWcByJZBHqBCOBrQsqjSVhkQZvUG+2VDdf6jj1LnGWyj9TY+Tcm4BLj8ZkT8Ht9ixUEPsStuDlxUyDEXHzIy2D7b3QHoDFSO87emkG2LON7t/1Qq/7/NvXErv492uJbXo6aCQiohjqfi2hPJ1ykN24xpgscfIbkylOfmMyxclvTKbUJNBwOSkISwX18Ev/e4KlrIkDOkjcOyYO/KB+fVsQ3bagAXaJZDSJNrVUN7UEF8/X0YfvfVKnLEewwEq/JyfZiFx6pQp+l+DcuwTB7wUM2HgJE4w/+WuNRUQM/uEvJFY8f4bHCjsV02KrQt6Jjjvo/g1vFhL7cnsvsb/9OfcjXA7U+fcdlFDT8BrKIX/5jckUJ78xmeLkNyZTnPzGZEr9on8lwUeYEEslpqmuvy5hiRxwByqthVgDYuOKSnBp2m2ioy7VKdcFrg8IdLQOqUJe6nXRedkBuizJPQkl1CT4TSFG4t5zKNV9ftR7eXIJpa0/eiKxiIjy7/5eYsWnP5TYaXarsV/9TGOvvpNYe6/uwvZRhcHda30/X391KbEZDAaJiKhD84CcruScpd6R/vIbkylOfmMyxclvTKY4+Y3JlPrL6lyCkxL6jxVzic2PKrygyAUCRASLg3sQ9+ZQtkjOvWWjIssM7jG1XBZLlj+yRyE6AUHc6xrc8D5Yfk1CJfyZb078LAXEaS3oHql0dAgXvzhp7KbR616BiNsf6l4VQ31nIyKKJy/0Hp+r66/ZrSR2Wqgjr/lWHXnbr/S9u/tGy4Z/t1BR8ttahc/bivf+ACI3vSbsatW88pffmExx8huTKU5+YzLFyW9MptRUGkuuIYLKfKlHHTnBumhBWCIH3D5x+MXmmNaHj66BDr8O11/XAIykcyYeR0IerRefUENdrj8S7VCcpanB4CSjOxyBqDhp9fkG8Ov9VkuJSYiLiChvf6v3c/mpxE4PbzQ2V8HvtIUhKStdr9lKy5hvYVLuEj6/XV/kIYikZ5Bb+1AR8Vi4pNcY8z1OfmMyxclvTKY4+Y3JFCe/MZlSf3dSa+LtUccaPxw0tjhorfwOxkh3KeEDaD5IMYKaXtK1U227qSo8WmcjooH4x1iBac1Sr0H3SFbcLgtxcpNRUPs3Lfx3JbF5ZC9xD5Yr7Q+w+A9V5iMiLp78q8RO8wc9cK323oD/PpTnaiMewBjwizvNqycLve/eSdX6ZdnxX5hK423Afz7oP1cl9WgwxmSJk9+YTHHyG5MpTn5jMqV+ddDmg6k18CQCpcYiOkZO12APhlHQqVOFcNJQ6mhxoEskS216WYJ1tirT/gbTb+lZaL1T+wh0XYeOJYGVLNbUgJUgEzjd4fqgovDbV1M8Z+8n2phz3P+5xMobbWQbIxX3yk9vJDY8UyvvZ1MVFc9+qWtz91an8NwedHx5RERN4h6IgIdCjzvAe+svvzGZ4uQ3JlOc/MZkipPfmEypFzDRZgdNE1PHTZPw1SUs0bE4CjrR+UVCF/YHIHEu0Yz3QZN0aCw2xKh+PtW518LfbxIvqYdBt3hJYqoeV0DDTZqGtIEaf9JXy9R9hrr2/ZG/Y+0eLnRMEyCLoQp5cXGhx33xucT6L1U0v37xG4kNfvqo1/iK72d71KagSxCLR/DuDOEd85ffmExx8huTKU5+YzLFyW9MptQf01CSSC0njYhoQTw7gIhEkHuOxLhUgS5VxkudpBPBwhuJe6kOPxIQC9oXsMrRfXc5L3HN4BbJoUkNU2k8NAl+VaILjfaqrngHe+cgKg+0tJbWNnpQXj4e60+vn+pxUJpeVTDS/EHHgF/cqQgfETG5UwFy2OoK9UC97sFK+stvTKY4+Y3JFCe/MZni5DcmU/4HVBUdN71BIBgAAAAASUVORK5CYII=" y="-15265.050696"/>
</g>
<g id="matplotlib.axis_851">
<g id="xtick_1276"/>
<g id="xtick_1277"/>
<g id="xtick_1278"/>
</g>
<g id="matplotlib.axis_852">
<g id="ytick_2126"/>
<g id="ytick_2127"/>
<g id="ytick_2128"/>
<g id="ytick_2129"/>
<g id="ytick_2130"/>
</g>
</g>
<g id="axes_427">
<g id="patch_428">
<path d="M 299.674375 15387.450696
L 421.964375 15387.450696
L 421.964375 15265.160696
L 299.674375 15265.160696
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pbfc4087124)">
<image height="122.4" id="imagebd7a912410" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmOJOd1hW9kRM5ZVV09kd0kLVOjKQiwn8KP6r33fgAvLMOABQGyLFIUmz3XlJmVmTF7IWnhPl8A0dCO//mWt2L8I24GcOrce7P/+eqf+/iA8lR8GIqr+6XEvikWEvu66CT2JmqJRUSUods+zKYS+1Wt1/NPk63EPvlsJ7Fiqedoywlez4fMn+i+859f4raTn/xIg588k1D2+Llu1zYS6n/za4nd/stvJfavf/pMYv8Ga/NNdSWxbXPUa4mIpm8llme6Zst8ptuFbnfq9PmXEGt7XW8673yi78h0kkssIqLr5fWOqtP1pnsmZhN9F4uMzz3mvGPvOYLvkc5N+08ig5gxJkmc/MYkipPfmERx8huTKMVircJLAaJd16lgcDqq2HAEwa7JNRYRcZepAKJnjrgBPeV1uZJY8Vr3Xq70/rJMRaBiqvsWBxWB+pLFy6ghXlcau7/TY96rUNm9fKO73qrARuu1ylSUOstVsB2iHil+kYjUha4tiVo9CHFERkJVpjHa7i9nkggJYmNj05ECG97zBO4ZHiDtGxHRd7p/HeOeFR3TX35jEsXJb0yiOPmNSRQnvzGJUuRTEl5URCDh7HFzklhZ6+9JF+yAmuYqTFUg0BxBoHtb6L75cS2xcxDophMVPxZz3S4HEXB2za647J066OiXtb+71diNxpqvwZG3Pdd9Qedaw3qfT+ZwNQwJfv1IIY+ceyTQTUAky+AcY11tJMRFDDjb4HrImVjAuWk7IoNzdCDYtRk4UAe00LEOwbaD59LCc+HTGGN+6Dj5jUkUJ78xieLkNyZRVDUbYJKrCjGfqQBxAU63UzvkvtLfnh25oIA9/Gy9BwGxbKEkFASRVQulmuB0XLy7x+vJZtcS6+942w9p4Zh3v9PrvqlVtOvU9BcLEL/OJrDhADXYzkjwqz+iHPVDikxFRRLiSNxbwr0MOfyqXt/RHK57bGnssJPwA+A1Hnu8bsDh13S6ZhWUg5MwWMN2/vIbkyhOfmMSxclvTKI4+Y1JlKKBfnZ1peJHU+l2TTOudxlohRERMYd4BZa1Ehx+VFh7JOfWBO4PztFBbH3UUuTzHd9z9qbU4CuN1aBUHqBU9/2VuhVvoVSXCjrncC9noO0OaXMk5BEtPJc1lHSfwF3YkiIG5CCIkZuvxeLmiC3Y5chFSo68sb3wqIwZhUG4ZRJS6XgRLPgNlf+OuR5/+Y1JFCe/MYni5DcmUZz8xiRKcbqHnnuN/iZUlQpG+0r3vQdhqQIxJSKCjH8NxGrcXUWRFZyHzkG/eCcaNgHDQqoDC36kuxx3sD57Fb92pQp+173Gbgq9RhJDSSRbgkgGu0ZERA1/IGGK6EDwIwFr7BAJkrMqiN52ILgGC2IknJEwjKW/5NKDfoRDAuSH0FCRsf0NI/gaexB88f5Gn8UY84PCyW9Mojj5jUkUJ78xieLkNyZRiu1Ox2zXnf4mHDtVi/eg7N/lYF+dsNp/gPAJlOYj1ZLDvgtQPqcQq6mhJCis81YV982trldExHyu9dK7vW5706javwUl/g6UfephQOtAv+hLUICHRkuX1Kzzb7HjQmzRQ8PMkdfyLnQS0tCUIarnp22ncHbsJQAWa2qimsP90X8eqEEp5V8ENz0lMsi3Apq6+stvTKI4+Y1JFCe/MYni5DcmUYqXjY5ubkEQO4GIcA+xA/yckIgXEVGCUHIAW+QBppqQsJSjsDi2jpnGPqtIsjryqOtlpcLSFgTDq4kKRju4bhL37qG5aT1SiCPRbWhXsvfWIIiStXQO5znrYYIQjHxfwPVQQ9drOG8z0k4bwRbdGQh5D6APwZNMRVx663ah78MNnGPsaPAIFvwamq400h7sL78xieLkNyZRnPzGJIqT35hEKf40G9eEkxpmkjBUgfpBDRMj2L11AnHvBM4oEllQ7wMHFU0lJ0GsBGFpPzBuvIHGAXtwiO3hIrdwyD2sLYmhJHORU66D+6PR5xERBxCRSFicg4uNhNgVWOAeQWPNNYywnoNj9PupLthswK04n2h/AeJBrkLuZ5OVxH7W6vHofXqV63av4F2k6Uo0kSgiYjvR8fCnTt2O5CTkZqTGmCRx8huTKE5+YxLFyW9MohQvJ+OcUWN/Jaj0U71Of4YEwxLEinKke4uaQqIABeIHTQ8aK5xFRFSwQiQYnmAhtyBy3sIIaxLiiBncH0l7eyh3jeAGmbSOC7hncvg9gMt+3GrwQabi1apR8etloU/mzYRLrQmaXvMI9v+s0/P8GJycRAtuvhrERxxLDs02I1jU3EPjUmoKuqBz41mMMT94nPzGJIqT35hEcfIbkyjFbTZOwCCZqxgQvz5kSK6jUdAn2JoEKARUrZz6+lHTNSr9BeGE+v9FRJwgfpdr7AZKVEnce9er+LUDNxcxpakycH9Dffnoi0Cjt8mddtnq3k8bvb9PZweJnZ2peLXa6/v5d/WZxG5nLPjNQDyju36UqbD4GMZHPcjU69qA0/G81bXZwnMpwfXXBbsS6bp7eJ+ISxA0/eU3JlGc/MYkipPfmERx8huTKAU56mgcMwlGYwW/ZkBYIiGvBBfbWMGvHvlbRqW/VBA6hXLS48AAkiOEr8E9eQUC602vItK7VgWxu1ZLOgkaNlGA2DQ0tOMMSkpnsLYXIHR92uiz/nyq9/Lk073Epit99hm4QJ+811Lbv2vJjxmxAMGPypMfwaCMR60+v9UUBD8QOc86Fe3OYb1KiHXgDoxgp+uBhoPA/ZFD019+YxLFyW9Mojj5jUkUJ78xiVJQ7zoaDkAyF8l4JCCegktRTyDunaDMdOxABiqrrVEk0XPswcG2y1V4YXdgREnTheH+qIz2Dsoyt91J9201RnC/NijJzblXHE2ipWnHD0Ake9ipILY51/ubbXRtcpjaUUz1+W1ANH1e83fscuQglw30D/w00/XerNVl2TR67sudvk8nKE/uYBpzMSAq9/CO3sNabPF90uv2l9+YRHHyG5MoTn5jEsXJb0yiFM9CRYgclDwU9yB6B+WpVLr752OOK0fM4Teqg31bEPf2nQoidDV3mYokNyCwkBgWETEBIZCusYK1IEGzhuuuIEaMnfxaDPQEpOuhJwUVr3GiXoalrllbgqhcwMRZmOZbQM9DEhojIpZwj8upruNiofsvVhqbLvR4LYiNda3uyeak9zKraTowC34bGARSQ7JWcM/34CL1l9+YRHHyG5MoTn5jEsXJb0yiFL8qx/WpO4EIcQsxmjfQDUyDpSgNJiB3GolpR3DP3YJT7gTiRw/9+o4w6GAzmUssgoVAKqOk6yZBtIJ7oemrBA2CoBiVaQ9xBJfmNYi7L2GC7tlRJ+Cu7tRxtoZ+dOSeI5YTFi8v1vr8lyOFvGI5zoXYN/pczms9bw+i8KrS96aC/n8REQ+gbHk6U8GeKrVfdVoO7i+/MYni5DcmUZz8xiSKk9+YRCl+sbqT4M1BBZqbBgYJFKos1OAkq7FDXgRVx7YgvNHgDdqOxDRytjUd9AkkRx2IbvWAK64GIXAKygvtv4XefMdWBTFy/dH9UUdCcknS9UWwEEh9FN+HCmcZDCpZ9ro2y+uNxJpa1+F00veu7PS6ZyA+RrDIRmQgNk7AzDlZjDveotS1qUq9bupROAMBMSKigJ6Ck0rXZzpVEfASytP95TcmUZz8xiSKk9+YRHHyG5MoTn5jEqU4u1AbYgW1yKdKY3No4LgEy+8CFWmenFKD+onjpWG7KSra4ybVVKFKegk14s2Q2g9xUuJJsd82qnIfGu0vQPbeAkY8T3vuOTDm+iLYTk014jsQvlGnLlR9LluduvPsTv8rMIcjtmSbHmgNMYdeAtMpWHnn/Fw/hP5BkhVgnaamGEAL/Qrakf+hiIi4gAae8xomEjVkmzfGJImT35hEcfIbkyhOfmMSpahByKP+gVMQXqZgsaWJNvMB7aOk3x5ozkgiEomFJFTNwOo6h9r7GoQTEtiGaupJHCRBjWy7J4iNrd0naF+yPg/BzVHH9U+g6UxbsAFfw7SgKxgN/hxq21cd3N/Ack3Blj496TXOl9AAFCy/GUzY6UFgq/b6jpFVuYb7q0FIH4KamV5M9Lmce0S3MeavOPmNSRQnvzGJ4uQ3JlGK01FFCHJLkbCwAmGpBMcSNQSN4Ikv0evv0QnOTfX8BE6qAZsWxaZw3o85D0GNNMmlh2O2ITYdue/Y64vgSUrNSAGSnIA0Aeg+gyaqcIkTEAYfwzeLXH8RgWpxUeoxl1B/vwShsm90bcr30Nz2Snti7OC8Ddz00Ern8FymE916VoATFKYh+ctvTKI4+Y1JFCe/MYni5DcmUYoOBDqChIVVqyIC9MYMaigZEZGDG3AGP0c3IOYc4HhjXWxU5ruA6Twkkg1NuSlgW7qejAQ/EBvp3DNwJtLxaPoQbUeOyIiIDvYfW2VKYmEJZcwtiKnXMBL9nCYh5bpe5YCofIQunC0ozfOdXuPmqGXVkxlMVyI3H0ziOfVUSk7vGIMuW3I7jjRz+stvTKI4+Y1JFCe/MYni5DcmUYoOygdHTzkhxxHENjBpJCIiB3cTlQRXUEa5Jwcc7Etjsgv4zaPR27QKQ1Nu6DzkbDuAqNVCvzc6HomAVL5LLjsS4obES9p2aFLRh9CTJlcjUUE58A56K07heHt+LLGEd6IFAXpVqSPv4V5l5dmlll/P1nrdq4W6A4/3UEoO7+KQXkfbViAigjExKM/95TcmUZz8xiSKk9+YRHHyG5MoxR2UGfYoXkGpLvx21DRQYUDwoR6Aa1CMzsGFeD+B0l8q9ST3HFzjArZbYf8//r1ssMedCkFLGJVcg2hH7jtyDJJIRoId9eAbgrcdtz+5AwkSG6lseEe9FeFaZgPP5ZyeIZRBH+hdhv6W2RRcqY/0es6POgynbaHUuoRnSrXNEdGNzMuyhzJ9cDX6y29Mojj5jUkUJ78xieLkNyZRit8XCw3ChjmVeY48yYD5CgU/6lO2AcHvIQh0VJ1MQhCV9F6CU2oD7rByQNDaUb8/7FGooWZkf72x600iYAvi45A4N7aHH203GlgbGgJCrQOP8OzXoSJXBD9r7B0JkODX3sOwGNXMY7oEsRcGg5Cb9ljzlOUKXHoHyNZrKHn+Dg7pL78xieLkNyZRnPzGJIqT35hEKf4AzfxnoMbMQZiYUrksaECLAV2I3Hwz2HYFTcnIAbcE51YDcuMGzvsIyo7rTM/7FsqLIyJO1JuPynIhRm43Ogs520jQolLpIBFwYDwEle/i5F+IUa/AfOQ3poLyXYL0utlAqTWtGb2jdMzDESYJf7OWWA5DMrpWj0hTessG+hF2fC8HeJevQNz7FrTP38VRYv7yG5MoTn5jEsXJb0yiOPmNSZTiBnuk6W/CnIQc6pkH2y0HesXRoIWHLZX5amzZqMhyAcdbgCj1pNByy+Va3Vfv9iuJ7Tvt9RcRMZ2ME0TJcUh6KK0YTSYuQbQbaWBDES8ioqFJuzCNhUqMpyBKZbA21I+Q+iPSu4jbDXzHsBcibEfP4G2j7tff71Twq2HB6RzkaCVaWK+IiD3E34B6+W3osJHX7b3E/OU3JlGc/MYkipPfmERx8huTKEVN/d5A8KHefGOHMeyGBD9w5M3BnXYGgt8ChK45CFhnUx2y8OSTvcSoBLN9odd9d+RyywPcSwax1d/we1vCsyIJ6ZTpvdAgj6GpxhVM1SURkCDnJRXbkuuPhqnMQDqbwXYk7P35ehQS6O5y3XKb64Zf57o2OyhFpp6QZ1A2vqK8GtAFD1A2/g4mdLzsdNjITasxf/mNSRQnvzGJ4uQ3JlGc/MYkipPfmERB6ZpNn6A0j+zfOKQq08QfKIPmsc8Qm4HKvVmr1XHxUBXSfKUnvixVIa1fca31olIr6A4U32bkf0hoxWhK0XtQqRew3Qs6Xqf/CYkYGPsN/wFA4MEUNEYaRpWPhdZm+B3T+B76NEShz+UG1PU3vb5Pt53G5tRkFO55Df/NmAzYew/wH5erTq3q16DsH1q9Rn/5jUkUJ78xieLkNyZRnPzGJEpBTSYJqtMnSyX9mgxZL6kpKIl7FZy7hH210pqbKxYbuJcz1T7XExW5Pt/cwlkiPrkHca8CQRPGNFOzR5oWQw0l35UqNJ5NVViqoe77ZqJi0RA03YcaeBIFiF8VjN6mGv8a3ogcYmT5jeAGnifYfwLnprtbgEC3yPTdoWlGdC8qzXHfhoiIe7ARb0FsLDsVtAl/+Y1JFCe/MYni5DcmUZz8xiRKQUIeiSdLENhosg8JiEOSIk3nIY7UHBPq/luq885h2s9ct5s8UOFs8ogaRX4ErTqy+oOKMe1WRZv6Sq/7cKWOvOy9brdrVfo8g8kuQ1NuSHgbC7kDqRdABeLVFJyAKCpjw0x+y4biH0LiHtXaP4Q3gK6HGqtybmishelKEby21FNjlWuT2QXMEfeX35hEcfIbkyhOfmMSxclvTKJAIWPEOYhpl53GViDYUfPBZkBzGVuqO5YMXFX5FESScxA/nj/R452f6UnAPTdEv9dGof3bK401d3o9OxX36F5yWHAwJuK6UrPNoTiJgGMbuBI9OQbh+ZF7bgOlsWewXUTECt5lmqRE0ieOi4d7PoFwOhk5zYqck9WQeAnPYIUCpL7fJO76y29Mojj5jUkUJ78xieLkNyZRoNAzYgVixQWocyuYpEPHowkpEdzPrgABhISXNbidVjN1z2G/vs8+kVj24x9r7PKpnjhnYSlKHYEcr7RzXn+lJcHdASbkHHRtqpOe+1hrbA99/Q6ZrkM9MIUng+cyhelDuO/IyU4k7pHQuJ6ooHVJgh/1CQwW9+bwPlF5OR2xHKlx0v1hWTTsS2XIEfylpl6BJJIuYG9/+Y1JFCe/MYni5DcmUZz8xiRKMdQv7ENQmBg5YGOIJQiGq06PsIYSx/McRm9/qo665S/PJZZ99Q8Sm/z0H3W79UOJ9Y2W30ZE9HdvNXh3ozG4v+ZOY7t3Sz3cncZe91qK/BrKmG96FfyagadFTrLZgINuDCR+kcMPrwUEO3LtLT6iTyQJfitYCvoygg4bHQwBoT6BJOQ1IFyXAyW9tC2Je1Q6TCPD/eU3JlGc/MYkipPfmERx8huTKMUBxAWaTho0DRbElCm68fjka+hx9zBTIe9srrEHD3XcwflX4NL65U8llv3oK4lNnv1ctyu0NLLbaUluxIDgV6vI1u+PEtu+VNHu66sHEvu+UGfbS1CvXoSu1x4EP3LjRbC4l0GjOhpMQUIeOeXIRUjCYE2CGJQxU3n5EPTFIzkzh3shxyA5E2lAxxH6FpbY35AFP6KgUmtySoID0l9+YxLFyW9Mojj5jUkUJ78xiVJcdTCpFX4SDlBauQGn1QXEzqGnXETERagIdbnW6zl/qCLZ+gsVRYqffSGx7JPnGpupUy5aEOc6GLqxfa/7RkS8f6nbfv+9xMo/7CT24q2WDv9mruv9x4le43Wv4h4JSyScDQ3tCBjwkMHkVxrGQRoiTemdT8iZpu9OBcLZHdwfDc6IiKjhmCWIjQ2W/tJADSpFHgc9gyOsKw00iWCBdgni7ArKr3/UWvAzxvwFJ78xieLkNyZRnPzGJEqxBcGPyig7cFV10EttBb8n5PqLiFgXKmxszvV6Vp/CRNcvLyWWPX2sJ4HptCTatdSDr1ShsQdhLyKi/+YPEmt++53E3v9eJ+h+C1NVSdz7rlNX4xGcezlNK4ZnOh347e+xRFUhR94UxL01CIgUo6uhouMt3DO5DSMiDnA95NLbTcaVCVdwnhKEPCqVb7HMV2NDvRVxcApNEu5VBPxFpWvmL78xieLkNyZRnPzGJIqT35hEKVoSK6hUk3amXmHgilqCUy4iYjoDl94cJtFeqIAxeawlr7HZaAyEl/76tW63V+dd3GoPvu4K+vJFRPdCS33v/1fv5d1WBb83M10zcu7dtCpAkji0AjfmEsTZIciJRq6zU6fX2MO5+xgn7pGDrQdB7ATXMjRLo6bJzbD1HmL0fpPIeQ9l8RXEaF0p/z4GGohCQ3c2ICD7y29Mojj5jUkUJ78xieLkNyZRnPzGJEqxAHV2CjZCGvFLY5GfgLD/AOr2IyKKAtTPWs/TV3DQKbRcnGkjTJqQE7s7PcfLV7rrC23K2bxVi21ERPVOVeDdFUzdAevlHhqmUsPN+06nBZGtdQrPZQaWXVKuI8Yr+yfogUBjqKkhKNX4k9147CjvobHWQ/EPoYabtCdNzaHJR7Qd/ZeB8m8G70gEK/vE9UTz5dvQd9FffmMSxclvTKI4+Y1JFCe/MYlSUNNEitGI34tOt3vcqFh0ARN3IiIyEKH2d1rbXrxQW+v0pyraZZ9A/T3ZJw8q2vU3W4k1r6F+/iWLLve3et23OxD8oL/ALlOB5r7VNas7sLWCCEQiII7JHhDDSLQj6y3Vl1OMIFsrCc3UH4CEQXo/IyJmsO3YvgEkAmZwjZQvg81RP4Dq/v9W3oA1/N/n4yzWxpgEcPIbkyhOfmMSxclvTKIU5E4iVxQJEywswTSUln9julKdTIdaHU/7g4oVX/5a3XfLme6bXZzpifcq5HU32sCzvoHabRD2IiKub1cSe92q4/DlnGr31SlHNesEud2GRm+P3Y6m6fSh95LlUEs+spfAAlx/MxDT5vB9WoKYtgJXYwSP3iZotWsQpPmdV8Z+VTt4BINuRchBEiVLiL3utQWrv/zGJIqT35hEcfIbkyhOfmMSpdi14yb2LMCZ9hZGAa+h1LZtVAyLiJg2KkwcYHJKCw0JD/+lItKXb1UEXD3VMdlkQqt3Gty9V4fem1toEhoRLzIVAr8DbfCPE3VfvYPGnBW4+Qhy+FFTzxxGpw/98pNj7SLXtTjLVIg9R3EPnHtwDhqJvaFS8la3W39EH8wSbvwIwltJwjccb2zZMa13M/IcEdyMlERJEvxO4Kj0l9+YRHHyG5MoTn5jEsXJb0yiFPcg+JFYQdQT6D0H46bf5jwtZgO9yshBVcHlvOxhrPXbZ3qOV1A6Ck6pDoSzw0Rj76a8Nq+gb9qr0J5772G9b1p1HFIfPRKWSBiswK9GPfjm4MaLGBipDULeIxD8HgeMbQcbG43JXoFo96jVe37UqSNyij67iBq+b1twCO5y3e4I70RJjjzYDibaw8qwI5bOERFxInEP3mVa24KukU9jjPmh4+Q3JlGc/MYkipPfmEQpahiffchUqGpBUDmA8HI3UUHr7YTLYDcgIpHzi5iDE/A19XsrSD0BVxyIaSforXcH5bcRETcwUOOmU+feodXtyJFHoiuJoUfo9UciIA3JOC/UtRfBQzYIHO4CLr1ziJG4d9Fq8Gno/Z0vdA3znAW/qtb7XtQqVM4bGKYCDlYSgWt4xXIQ/OYgzpFYuB1IgdPI8t+SemPiO2aMSRInvzGJ4uQ3JlGc/MYkSoGOOhCMaJBDman4dehUJNlmKgJGRMygVxwNaaAS0zNwoV1CWS25nSoSL6GQ8h6m0O5hIEJExBbKcknco7WldSD3XdeNE/zKRq97Xujxqp4dfiRAVhA7QayFrnlTEL82MD15A8eb5yBewnTnouBC2AlZ7YC81mPOOxCkoVdgDaIduUgpRiXsWxAVI7jEeAui9A7coTT12V9+YxLFyW9Mojj5jUkUJ78xiVLQ4AZy/dWDncX+PzSldQKCyBB0PQsQv6piLTHQGrEfIYlX9yCI7KH89gilsREsvNFUXYLcdz2IQyQWNvCsSMRtQWCjSbkRESWtBQid1yB+nYF4+RhEwDmIl3MQYnt6P8G1NwQ5/+YzEBYhtgbhdFPpu0g9JnMc+KFcdypcX0GpewS7UI/4LkNJtx1+xpi/4uQ3JlGc/MYkipPfmERBZaGEUt26HTk19iMEP3INErNcL5NcaCTGkQBJ/fHGlsY2cN4IFs9ItCugTJTWh66RBEQ6x1hI2I3g539H54G3Zw3lwJ/CPRMZuk3BUVfpM501/B1bzHTN5nONLTfQF3Cl65OBY7CHISJdo7HTPUyRfq9DYK5JuY6IKUxFJoGcysFnICr7y29Mojj5jUkUJ78xieLkNyZRChKR7it1tlUjBb8cShRJdIvgIRQkYJ1AzCmh3HaXa1ktiR90XnLKjRUkI1i0o/smNx+BLksQGz/mGnVfdvidYG1rKB0lcXc/WUjsPtMYlcGSU66GWAvPtGn5HZtAy8XlSoOLhxD7UnscTh7BlGa4l/5ec2j1/V636zT27v1Az8tC73EzUkytwT3pL78xieLkNyZRnPzGJIqT35hEcfIbkyjFvoaa9UatrqQMk7WQask7qG0egtR+mhZEdlr6jwSp8KSQj7XJ0n8zIljZz8COiTX0ECIbMdXk43rTCHI471A9fwbnpvujZqtkIy3gPSErL68s1cWPO15ExBQaey7WYOW9BFv60wuNffFcTzIHdX63g6v5k0SWL+419p6fy4r6J0Ash3eeegH4y29Mojj5jUkUJ78xieLkNyZRikMN47gH6rw/JANhgUTAjxHJSHgjOy7B+yokdDXtyAalPd8L1enT+uA9U8NN6g8wUtwbKyqSPTciYp5r3fkZjPN+WqjV9XOw8n4GM6yfhr53NHq7B3sv9P7EBpwREWcPwGb7XLctPtV7yc7BykviHvSbCBJna7Bsn/S9YbmPJx+tYH0m8E2naT/+8huTKE5+YxLFyW9Mojj5jUkUrOcfCwlaRa4CxrLQqSQRLCyRaEe17eg4HDkZiGr3yT2HrjjYboixNf70EzzWccjNUcf1VJgO1IKvchW1LvOVxJ5lKgL+favi108aFd2+eHYrseWlOu+oESYxe8DPZfoMavKfP9XY44e68wYEvxJEydffSax9dS2x6tuDxO53ZxKrQTSP4C81jaBHfRw285ffmERx8huTKE5+YxLFyW9MohTjhSVoRgmC0QJEvAczHacdEbHJ1Q1G7jQalU3TdAhq4FllNA0HRMV2nMunU+bqAAAAg0lEQVQuYqiMdlxsLOSepGeAjUNhOxL2huIPoDHn49Bn/UWl6/j5060e75dQNvxQ35MejpfNYPrMkwcSi4jIvvhMY88+1w0vnmjspAJd/9//oZv95/cS236jIvfxoALi9qBrXQ84L2FYEH69xwqD/vIbkyhOfmMSxclvTKI4+Y1JlP8DflLrV2p8BCEAAAAASUVORK5CYII=" y="-15265.050696"/>
</g>
<g id="matplotlib.axis_853">
<g id="xtick_1279"/>
<g id="xtick_1280"/>
<g id="xtick_1281"/>
</g>
<g id="matplotlib.axis_854">
<g id="ytick_2131"/>
<g id="ytick_2132"/>
<g id="ytick_2133"/>
<g id="ytick_2134"/>
<g id="ytick_2135"/>
</g>
</g>
<g id="axes_428">
<g id="patch_429">
<path d="M 434.924375 15387.450696
L 557.214375 15387.450696
L 557.214375 15265.160696
L 434.924375 15265.160696
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pa7802c9fb0)">
<image height="122.4" id="image67e68489e3" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHrBJREFUeJztnUuvJclVhXdmRp73fVVVV1W7RLc9sgVCYsIEiRlC/EPEjP/BBAkxY4KF7LbArXa3i66qrvs8rzz5OgwKenD3F1YcVzOwY33DuPmIjMh9Ulp37b2LL//8b472iDAdHg9ZVbvD7Di6Ids9TNzYN9fn/kAze135Y0s47mzwN7oqOjd2Pj24sU9ebfxxf33lxqq//Ts/9rO/cmPFZA4zNBvX137s6/9wY8M//5Mb+9e/98/3D9OdG/uieevG1v3ejR0Gvzbt0Pu50AaaWVX4XZgHv1fLMHNj58Gvz8v6wo39ZXnpxv7Cb5+ty8KN/UvtD/xVf+tPNrPN0LixovDXnBa1HyuDGxuPPg62o5/PQ+/37771Y03furHYvtC8JzDHSQVjcBzFmhAiAxT8QmSKgl+ITFHwC5Epoe99/BelFzXMvAhxHL0A0bWVGzuYHzMzO4CAQSzguML8HKvKz3Ho/Ln9N14cKn7+b/7GHShQVy95kvu1Gzr++hdurP33/3Zj6+KVv00xdWPP6jM3VsLabAs/76o4QVgyf80ZiLPLys/xIizc2LPSC4NXo3/vpkcvSq7h3Rlg7/vIs4xwLL3ex8IPxtYnBVrDqvTPTGMQah8NrsMPfxshxB8CCn4hMkXBL0SmKPiFyJRAAh0JeRW47EgP2TfeKXVXsuD3bQDhBoSJDhxn087fZ956wWi/9kJV9ZUXxBblf7mxuvHHFS+eu7EPk/SuuuGLL93Y9a+8+LUDF9tZ4R1ZzyovppGwNIFzt+Dw6o/eyRljjoKff5YnpXf4vTIvDD4d/D5PQOlq4VkOcNwQUcmO4MgzEElTxT0SzkY49wjHEbR/5OQ7BXIh0vPpyy9Epij4hcgUBb8QmaLgFyJTQttC2uLohaASnIDkDrztvLjzZsICxtfm0y135u99A+mkDaRg7rqlG7u89fOZ3fl7XL7xc/nk9Vf+3M9fuzEzsyL4tdj9pxcM39x84sb2wa/P4uivR66/ogI3Hoh7C3Dj7Ufv+jNjcSgUXrRdln5fLmBfzuBZpiBKHUH8auDztAcn4CluPBLtSPyksdRzO4gh4hSHX6qISALkCIK9vvxCZIqCX4hMUfALkSkKfiEyJRx6SJkEhx9B596A2PSuZPHju6MXxDZQD21TevdcB06yu6kXmy5HL0r5o8wWB3+9T3/hU2g//bWvw2ZmNpv5OT5sfK3Abws/nwMs9xTEL3L9kQhUkesPXJYzuJ6ZWZvo/KNaf6RV7SBd9rsKBFIQv74r/RUbENNiYliqW46EPBIRaawdvQBJIiC5DVNTf83MhjHNSTjAfcj1py+/EJmi4BciUxT8QmSKgl+ITEHF53j0IsQIekp79CLSDoScfeEFETMWMKg+2270Yto1CFgDCEt3lT+uBpGlhrTaN3DubwduQHK2BuEFtKYHcOSRvAY9UmxODjj4/Z6CG4/kMKr/Z2YWQKxKddBtwX33Fu7TBGgsAU7Ae3h3SJyrIt8xEvxKWEeih50hgQ3HKJUYIHGP4sKM96sjEVApvUKI34WCX4hMUfALkSkKfiEyRcEvRKaE+cQr6SFAPjBYfvsdKM3wbwHKTTczm4O9tEtsV0LHbUGdJatjDb95FSipe/jvwQYsrWZmK/gPCf1XgZRhemJyWNNxpCnTf0xI355EOinRWhxobeE+DXXdwYKZVMDTr20Hx5EteQ61BT7M0a8aFTidwH9ICLI+35fe8r0ufOt0sgGTMl/Cf54+nJ+Yz5+Y968vvxCZouAXIlMU/EJkioJfiEwJF1demCipk87BCyI95PMvDl5guYwIfk8gt51oQbShK1Kb5g7EpooEMdBIyC7cFJHOMGQZTrSREmSI3hRebNqAwEaiGxG1xCbOm8VL6LiE+wKiK5w7heMuDbowgW3azKyHd2cKQucZFB5dJYqAt9XKjX1bbd3Ydb9xY5vBF449DF6EN+P6CTXY3Eu05yufXwjxvyj4hcgUBb8QmaLgFyJTwvwJuI5A0xr7tBz/EQU2FmNmIKjMQIwhNxjnVadB+dwkLNG8KxBTYhxgRgcQEckp18ImrEHIu4eCp+RCI7Eoti+0jm2iiBgS70Ni6ALehzOoGfEJlKFoIuJxB+tNe7iC7+A5FGRYQWwcSi8WfgVdpn4Jz/caW36nvslcryAknq8vvxCZouAXIlMU/EJkioJfiEzBAp6HBz98/d63v/6m9WOvJ1SEkV1xlJabKnXwFWnUiyyUsopFPU8Q9+jO5AbcgBjXQLostaFeQ0vtAxxHLjtyfcWcfJQGS8zBFUfptuSeu4Ljnowg7oHodoaprfwsDaTHUockYg73oXtXPTgToUDpfVi4sU3l9zRW/LMBMfVjiq3qyy9Epij4hcgUBb8QmaLgFyJTwle/9G2kX49emPhN7X8n3s3AhVb4dERysJlxqmdq/TFOJ6VuOGkOKhK/SDYhx5iZ2QGObuD59iDukZC3Pfp13MNxXbKbL/13ntaW6t6RuHcB4t5zaIr+fPDi3ksQzl6Ag/Fy4seqMrIvnb/PQ+/dd9tIPcPHTGBt5tRzCQyRn4WpG7uvvGge66S0Hfxz0ztBtQLVsUcI8T0KfiEyRcEvRKYo+IXIlPCPEy9+bI6+rhgJZ5QaS22WKV3WzKyG8Sm1F6Y02MQ0X6rrR9drwY3XJ6bamvH6dKnzwft40SY1rRYdYqAhxYSlEr4Js9KLe0tIZT0jEXD013s2+Dl+CuLV8zNfC+/syr+f9YIanZuNnb/39s6/8+u1F+MOvX8WWloSGwt4vj/pZ25sA66/Gtrcm5ndgpj6MPq1WPe+LmcDbe715RciUxT8QmSKgl+ITFHwC5Ep4Yv+zg1Sx9IzqJF2ntjogERAM7Mj1VcDEaqAdFQSq8gxSDXlSGDbUWokCXYRB2JqKjLNB7sGwxi5EFMbZ9BxJOx9mCPsITjgaN6UGj2F/ZuPfq/mlRc0p3MYu/Rjk6fs0CsgxXy29iLZ6r13z+1AGGx2/p3ve9orv95Pev+OvYSmG13lxUcz7t5Le92UXtyT4CeE+B4FvxCZouAXIlMU/EJkSliCaEeCH4l7VIdtBuJe7Bemw6YffgwdgnBuABEw1XlHY6dAXjlyQFIDi47ENHhmuh49H4l7lNIZq+FHgh8JSzzmgX4v1pNgC07AEWr40etQnnPTjvIKUmavvJOwnHonoR2hvh4Wa/SxMcCLvBi84HcBdQsfQAQ0M9vBe/IAe4XviVJ6hRD/h4JfiExR8AuRKQp+ITIlfAY1xAJ1UAUhj8ZIQoqJaaSd0Bhdk5xkRxhrsbaeF15QnDuh4zCN0y8rPzMIkJj6C2nHo38Wuh7V9YvVS6QGH/R8tI7UqGQHTs77Ct6xzot2Z1s/djH6lNVi7kU3M7Ni5VNmrfZCdXHrr2lQm28c/DqmpvlOYW1W4HQ8B+HTzOy+8uJeoBiMpGo/Rl9+ITJFwS9Epij4hcgUBb8QmRL+FBoYpEJNbPcwBiYtMzMrQXDCtsHwG1VSHT5qAkI1ATFV159bwQOS+zEGyWnUmTi1QUdqMwauZQgpy5HuySR+1iA20ZptoM7ghNyKcL3y6McuGp/e+qKlgoSRtPHOr+1xvXNjw8bPuz+A0xGcezRGTEq/B2eDX0OqeWjGzr8luGwXJdQohBqM+vILkSkKfiEyRcEvRKYo+IXIFAW/EJkSftKByonWWc8OFNYHsG0aFB40M0zMLkCdr8j+CpdEiy1YHambM7X3xrbd5OX8cLCfI7XoBjV8D8UVSZ0nFT81d5/mPUbajdeUzw/n4/OBJfbOoG073LsIXpF+3nvbbruBOhJv127MzKy49nn6pOx3t/7ckQoRACPVIaB6E6VfrzPY+y5y3wPsywaKfe7hvwqH4J9ZX34hMkXBL0SmKPiFyBQFvxCZEs4LEpv8b0JHXWVA1SigyCDlh5uZBRACyR58gDESVNCWitZgEvc8U+ykw8+CXYAKaBsN8ybL8AKEnBKEpQ4svw3YhY9gxSVh0Cy9PTjtK9YmgHvT2AzWm0Tlzb1fm/prb9k1MzPYA2rbfUy06JagFlOxznbwe1qBnboGEXA1cCv2p+CTb+Dd6aq5Pxl88/ryC5EpCn4hMkXBL0SmKPiFyJRQYV68P7AjtxsJbOAEW8Sa4ZDIQm2I6TAsUgn594kdhGYgnKzg3ElE8GthPrfmhZsaBKzRfP411SZ4KH0b6dveC10duAMxnz8m+IGIuDN/bzq/A3dZC6Ib1RK4qLybbws57Lu9X6/6BsRVMysraE1OreFrqOdQw7ktCKfwgu6hE08JYji18h4i32SYjl3AFr6CHP9QehFQX34hMkXBL0SmKPiFyBQFvxCZEkj8IDffDtJv9yDODSC6sazEQh6R2jybuvhUIORN4bgzKB55DhOMTbmFdRxBeCF3Ic2buq7MYI5t5YUuKv5JUDqwmVkHXYCqwouABTn8wHqJhULhs7MGF+Ft5cW924N3+IUNv2V17Z+Fxgpw7qEIiAKivy/FUANj1Ko8VvC2S+zEs4CleE7O26SrCSH+6FDwC5EpCn4hMkXBL0SmYIMccvNtKkithJ8On0wah0qVHUA4OyRKfij4gSi1gN+8CxD3pqlKo3F78CmJOXBvciFSw+mOnFuJv99Ug+94Qj3C1PNHkHfJ/Ugq8F3hXYSvQfC7DH51Osr7NrPL1oufy2naW1pEahw+JlRQMxFe7nuIoS2K5nyf1Jb2NGuqR6kvvxCZouAXIlMU/EJkioJfiEwJIwhiHbj5qKoYjXUgknBFMm680WENOBKWPCTukQhIQh63Bk+HNBq6N4l75DhM/VVObdqRepwZi0OYvktpwrAz5AQ8wnvyAILfm9KLe3Xw6al7aEFtZvYK6vU9baDuXe/HZi244sAJ2Pbg5oMYuoOGNvdwPXrfzeJO2d/3OH35hcgUBb8QmaLgFyJTFPxCZEo4QK0xchjRrwQJZ9Q4g4Q9MzOjzq9wLHV0JaiKG3XkpTRKagJCLju6nhmLLAtqVkLuOTh3B6OU8trAGIlz2Lk3IixRYxISDKkuIF2yAvGLoMYgd6MXAStwxZXlDK9ZBf9+G3T+3YHgV/c+dZhq7u0gXfZd7Z/5PTTouIX6htT9+BRSjan68guRKQp+ITJFwS9Epij4hciU8ADeNhLEqBlHoEzNE2r47elY0Gc6EM5IBMSacnBfEkSgNJvNQQWkxglmXI9wR/MBl9ct1Li7AV/k9dj4ewxeECMhjtJvSZw1Y4GOXH+U5kuQSEa1DEmAPIAIuIEuxHeQ7mxmdgFNUqaQWnsP30ESn8mt2sAn9D0Iee8h4X2LDVY4YmjNYnv4GDpKX34hMkXBL0SmKPiFyBQFvxCZEr6tQWEDSBCbgOAzBZGsiniOShBjSCRrSOiAS6bWKSNn4pw6oA5eeJlF5EvqWDzFRickLPmb34M4tAa3WzP648jNR01AYs67AI1OUKAjETHxPgG675J4Rfc4gEi2gaYiZmY3eJ+0d35PHazhXd6AYEtuzC2MdckJuJyyTmuW2AtHX34hckXBL0SmKPiFyBQFvxCZEn4efFODKfwmrKD23AoEiDOwus0ptdXSG3xQLTwaI0jamcB8piAsTUDcmZ4g0LRUUzCxfiCl1ZJwVoM4N4F6digCRtYwVdyjNF9KjS4hBZfuTWOptQf3IKaZmd3SGwCfvBr2ihrI7EBspLE9jKWKe7EvMq0F1fvjfSGHpxAiSxT8QmSKgl+ITFHwC5EpCn4hMiX8eli7wRnkRi9h7BK6qVzBcecRtR87w5DCTkUh4VyqL0Bg4VEYo8udUlqRnpruvYTf4CeFb03dlgt/MlQZXQ8+778bwVpKBTgt1sknUUGmAqxUPBTGeizB6inguCbyLFuw/ZKyT1bsPlFdb+GtoM5FqcQKeNJ/C2ht+8Tj9OUXIlMU/EJkioJfiExR8AuRKWE3entvD8UHj6CIUS5xwMKMnD/t+6GwHZfswSvQRKjmABbrhDES506RbOhXdA5XWIH9+ZPBn12CRbcqfWvqCbWCLrwKuIF93kBBUDOz/eCPTW/7DSLZ6N+nAszdNeTFD9DlhsS0MiIq12BLr2HNEmuRoiCNz0wtzWHeVGw1JvhRRyMSbUlMleAnhPgeBb8QmaLgFyJTFPxCZEqg7iCUN44CBgg0BziuBhHQzMxAjJlTHvtHdNOhTjrk5guJ+c6xYqTzyosx5HabD15unHbezYetpUGqLEsvm86gaOUt5P3H6EGga7FXjYc6A5Fz7wj7R0JzARtYw/OxK5EpYGOwAxSc28J9dtBBiMao2CoJdtj63MxacGmmtmMncVZffiEyRcEvRKYo+IXIFAW/EJkSUFwA7YREklT3VKyNMKX0kuBHBS4nKAJC6mhMbHxEDSLJDISqZWDha7X03XRmCy/wHKnA6Y1P1T0MSzd2A+29KT11AeJeC7m/25JLqMY6+TyGxD1qs032uVSBjuZySjHS1HbjHbla4Xok0FEbcXLOpqZVk7AXOx/TpSOi9GP05RciUxT8QmSKgl+ITFHwC5EpgdIEKWVyADENO4OQUyryE0POv5FExERxb0k14FLr+oFbcRG8ILZceCHHjMW9yQIca2BXXB28WDg8rNzYLczxHpx3lGLKqagsuqW6xlLFJmy9nbgxJCpWVfo3Cx2H1HUncX1I3KPrkWiH6bvgpjzF4dcOac5LQl9+ITJFwS9Epij4hcgUBb8QmRJIRKAWzZSWScIE1VyLOcbmkKJKwhQlV9Zw3LKEBg0wnxLGJrV/lukM1obyi81sgDp87S7tuJsH7/D7be2f+a1BHT4QoGiGDRxHY2Ys+KK4S+2hE8XGItF5ScfF3HwEzZHS2GkMa+YluvQ+RjSNCbHUJIVQi24hxO9EwS9Epij4hcgUBb8QmYKCH0EiYDh6wa6C35O2ZMcS1QCkLqipHqYppNuSI28698eFCaSJQrG/dkcJxmaHxo9vW1+bb9P4sS8qEPwg3XYDe3UAIZbqLe6hplxs71OFpVRItCMROHWMavjF0sYJdLDCmjWQlptaR4/WkJppnEJVJqZaJwqx+vILkSkKfiEyRcEvRKYo+IXIlECOpRIdeTAGGkuqc8uMu+CSBNXArfdUKxBuvTj3os38GTzzDBo57MCt1vHv5bjz528PXtz7uvCddr8MkKobcd89htxuqYJWLK2WRLZATT9gKUhYondiAl2I6R40FxL3Yu8diWw0Ri69ZoAmGxAvqU5HIlUMjY0fIYU+dT768guRKQp+ITJFwS9Epij4hciUQOJASBRoZqVvBFGDaBOTAOne1C31AGJFA+oeNH61ycoLOeGpf5ZyBmNTL/gMDQtx1cavxX70a/Fu4uf9HlJ1G+psC/clN1equBcTlmgPrfLiJbndaD50nym8O5PC7wEJYpw2zO456jhMx1ItvdR1/KHFvdi+kLhbksoNKKVXCPE9Cn4hMkXBL0SmKPiFyJSQ2vE01fVF7quYHNLDXw4kxsB9KEl4HMEBRToQKIPHHg4MkMa84qeh2n4N1Ci8hzThHTxNSw0eKO0UnIB0bmpXXLPIviYKU3SfVMFvSoIfddSF9YqlIZNAR8fSHEnkLqErcurapsbVKQ4/SrVPrXGoL78QmaLgFyJTFPxCZIqCX4hMUfALkSkBrZIfUWiQ1FXqfGJmtoMCoKldfHpQPre9V2cf3vr8+X7v7bTVBHL8oTf42PPvJRXw3EDBxQPZQ+F6qUU4Ue2nIpPwX5SYKkz/saGx1Px7KupKFmKsGQCQhbg9oeYoFqNN/M8VWtITu+7QvInYvtCa0Xqn1tTQl1+ITFHwC5EpCn4hMkXBL0SmBLQwUg51Yotmsk52kVxrEqv2YPEkkewAmsZN4XPOu9tzN1bepuU2r4IX2CY1i5f3zcyN7SoSv6A9ONyd9mCAtSVxjwRWEnZjBTxJ6KrhPUkVoJLFwkRb6pG6+ETEwhG6QhFkN6Z6FTRHugPtAe0VtbmPkWqxTr7e732mEOIPGgW/EJmi4BciUxT8QmRKmEFhxlSXFjrBTujYQ2IHiYBraPF9DWJaB/MezT/fDoqEdjDti3Hqxn50YAGpg0KKD/DTGmDNFiBWTcD9SJBzj9Y11YVmxg4zco0tSr+2k1QXWqq4RwVBIaeexLkP80kTtAO83wu45hyuR4JtC/uyHb2AvAXX5ikiYOo60nuiL78QmaLgFyJTFPxCZIqCX4hMCXMQ/FIdWfNEwScmAmJxRhCh7kEUIXdaWfnrbUBAfIDrtdCxZVl4wefzqU8RNjO7AIEO0z9p3nA9OpfaSKPDD8aoI00sxTTVNfYxRV0JemZ6R6jQ5zTi8KM9ZJcedK6C487hek9h76Geq91Ufg/eHn16+fXY+JONxXB03mJ3HkrTFkJkiYJfiExR8AuRKQp+ITIlpNZhI5FlDg4oEljqE9IOSfDbgEB3ezy4Mapxtx68eNKMXmQht9ui8g6/rr5yY2ZmLwuf0jtFx6HnDuZ9D6LPBp5lP/hnOYCT7JS6jJTmTZCwdCT35EfUhKR3cQbv4svSr7+Z2csjvI8gxpHDk2Z9NfgDf9x6IW9lXpx7CwL5FxM/7wG6OpmZvRv8NXeJbdIJffmFyBQFvxCZouAXIlMU/EJkCio7lL5LwiC5qhYgxswivzHktOpAMHo37t3Y2/7Bja17fxw528hxmCpykahoZvZAqZ7HtFTPa3i+9/3Gjd13OzfWgODXwzNjW2poKmLGa4HNXeBZqD04Qc49mg3WEwQR8DySAv2y9+efQYv2AM9HvsQrcOR99uzejU0XXoh78nblxvruzI2tJ15oNjNbF/7eO/PvY6rgqy+/EJmi4BciUxT8QmSKgl+ITAkjdRMF0S2VWCMIogLhjURAqptGohaJSMvgxZMZOK2S69FFfi93kG7ZYW03P+8tOA5JtKGxFlxfKO7AWsfqv5Grjva1gfmM8O6ExGYTBawXzbCG4yaRZ1mAkPcM5n1e+T1Yzv1xF0+9OLt4BenSPTSa2XmH5rP3Czf2cmTx8g5cjJTme8CUdehCjXcRQvzRo+AXIlMU/EJkioJfiEwJ1E20gKYINTioDuDmwrp8kS69JNyQ4Ed1786Cr6V3Zn6MmjaQQ4yEPJKQaC5mLNqRyEbprSTGkGhHLjsCm1KUfv9mFTe6IDcnpYmSAEldcanD7xTMpSQMkot0aX5sBW5KM7PZ6OczK/x7e3HmxbjLH3lxb/oKahTOvKjcfuuvN/TU+Mav6wLiz8zsElLo1yACHhI7BOvLL0SmKPiFyBQFvxCZouAXIlMC1YAjSMjrQZTaJ9YENGNxj47ldMQ0xxo2xCDhDIQqum8sZZVEFhLoyCmXmoJJnXK5IUpayvI0IvjRHqSKktjcBZ65rqAzMZx7Xnjn5XODxhmRTOIpuh0hfReWsVpAGvSlF9iOkCIM+q/1PTV2gfc4ouvWIAROYK9oHWtspiKEyBIFvxCZouAXIlMU/EJkSth04EQioav0gg+JSCT40JgZu+9m4GKi+WA6KQhLJF6ldo2l+5I4Z2ZGTslUSIBEUfIHJnYPepYuUfAboeHEEpqfLCGF+kXpHZqfmxfYXkFdvqsh5iL182nBrbrZ+vmsbn1jmPqF3/9i4q9HGneRmCoPfUHMzOwA5zeQ2r6Dd3Q7+GfRl1+ITFHwC5EpCn4hMkXBL0SmKPiFyJRwGFi9fsxQpdlfSdknBd/MrCwhdx+U2A4stVjMMlFxj9mN3X1BSY2p/bQWdJ/Ue1P+/Mf8l2Lfe78pPd8p8yE79QIKpl6GpRv7cek71fxs9Od+1vlnOYd9riI1Iwb4vu2hHsDY+ntP3vj1CXPfSWnyIm1PK4gh0v+byH8FqJX7DXR7uoVuTw/Q7UlffiEyRcEvRKYo+IXIFAW/EJmS1pc6AtlDqdsPtXI2YzsuiXsk5O0hYTq1NgHWAoCEbuoKdIpIRi2wP0YETGWAopX/H/Ne1F4kOw++A81nlRf3/gzEvZ+2XtB6GrwtNYBw1kJxTDOz3eDF5g4Evw2EQrn1z1L+xr+zV60X0+i7eoR8/A7exYeI4Hc9eiv++27txqiVO9n49eUXIlMU/EJkioJfiExR8AuRKYGKOE6qtDx9brOc5kIzM6P24K15ca9JFPcacLGRKEmCFs2bXG0kpplFCmnSoR/xc0sCKT0fiXsdtPKm5zMzC+CyLOE9mVeQkx+8uPcTyMn/vPVzfDH1brXlygt+RH1g7fq4B5Ft8JvQw/5vQBicbPyzlG+hLXkNefZ7v4Y7eBfvC3aq3oPgt+n9GMUB7b++/EJkioJfiExR8AuRKQp+ITIlrGovYKQKeVgcE4SvmAhIAtYAhSJTxb0G0pOpa041goMNhJfTSBM6aT4xB+RjyHGYOkbiagwSNYsA6btQmPNl6V1xL6Ei5aX5vZrP/Z5O5yBUVdABaJLuYOy2fq/HoxcMB9hTKv55DyIg8TB4gfSm9vdYR1LTdyB8U2FVEnxJGNaXX4hMUfALkSkKfiEyRcEvRKb8D+sMnVDNhdMYAAAAAElFTkSuQmCC" y="-15265.050696"/>
</g>
<g id="matplotlib.axis_855">
<g id="xtick_1282"/>
<g id="xtick_1283"/>
<g id="xtick_1284"/>
</g>
<g id="matplotlib.axis_856">
<g id="ytick_2136"/>
<g id="ytick_2137"/>
<g id="ytick_2138"/>
<g id="ytick_2139"/>
<g id="ytick_2140"/>
</g>
</g>
<g id="axes_429">
<g id="patch_430">
<path d="M 29.174375 15533.871884
L 151.464375 15533.871884
L 151.464375 15406.578357
L 29.174375 15406.578357
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_857">
<g id="xtick_1285"/>
<g id="xtick_1286"/>
<g id="xtick_1287"/>
</g>
<g id="matplotlib.axis_858">
<g id="ytick_2141"/>
<g id="ytick_2142"/>
<g id="ytick_2143"/>
<g id="ytick_2144"/>
<g id="ytick_2145"/>
<g id="text_108">
<!-- 482 1834-220319 -->
<g style="fill:#262626;" transform="translate(15.789375 15517.26512)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-52"/>
<use x="55.615234" xlink:href="#ArialMT-56"/>
<use x="111.230469" xlink:href="#ArialMT-50"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-51"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_430">
<g id="patch_431">
<path d="M 164.424375 15531.37012
L 286.714375 15531.37012
L 286.714375 15409.08012
L 164.424375 15409.08012
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p34a5359bfb)">
<image height="122.4" id="image940bc288d7" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHkBJREFUeJztnUmTbEdShf0OOWdlDW/QGyS1sF60GQI1C7YYZrAC43fCjv4BLNkzGDT0AjAaSU/SG6oq5+EOyaLRpvwLLKrfrv18y7A7xI0bntfs5HH34q8+/cuzPaAqyodDdjp3buy+27uxNYydzd3CzMyu6pkbe1JN3VhhhRtb9Uc3tux2buzYN1nXm5RDNzYuB3CcHzMzmxR+vIL7bM9+Pm+blRu7a7ZurOlbN1YU/h4l3Jco4T2bmQ3L2o1d1BM/Vo39uUXlxrpz78Z28F7uW//M69bvJ9qfND8zs2k1cmO0jrTe2/aA13zIqPLvfl77tZnBek1h39HzpejPPrYo3noYy7+LEOJ3CgW/EEFR8AsRFAW/EEGpOxQC/BhJSCMQho5nP9b2XixMQQJGBaLWAESREYhu54LFxoeQcEbCS5X4vSRxj4Q3GhuBiDirvVC17/y5tLYk7hBF5nEp6JlpfWhtB4UXAQcgFtYw1oOAuO9OOEcSG1sQr2mMhGHiDHu2gffSln6sgfum3h/tHZoj7dsh7kUhREgU/EIERcEvRFAU/EIExatzZtaCSEISBIkNJNA85icGxQ6YDwmDBIlNJNDQGN4joQGRq4rEVDqd3IUkVNF8eCxfYM0lW2zKHGtBlBqAgExuwwOIe+TkNGM3H0HvPxfasyQgnmAuLM5hWJrRsRBvNDYDMVxffiGCouAXIigKfiGCouAXIigJZSEPEnJGhb9kyhVHji6SXRoDlxaMdTCWCwk0+55dY0QHwlQNz03C2RjWrAXXH4labQkCa+YypFJHB3BNEk6JMvM42hO0H2guxx5E3J4fmkRXdG7SWsAQCbEkFpLz8lj490frVZS8hrQ+JO4tCi8g38CYvvxCBEXBL0RQFPxCBEXBL0RQUPDL9TqRSDJFYYEFjDxpiEWWXOGFIEcWXe909o6slJNsXPnnnpU+LXcC4h6tA60tiW7ksiORjK6HbkxjVx2JTbmQ8Ek1D5vSvwNab5pfitznJocmpeUWIAyjGxOuRw6/bJds4lhy7pG499zk8BNC/B8KfiGCouAXIigKfiGCUlMNMXQdkbCEQo4XY6YwZsaiyAaaWpCbrzjn1S7LTf1FwQ8EmlQDEnIXkkhGbj5yStJ6Y01ArD1ITjBwICaEJRonRx7eG0Upf298FvgUnSr/DmjPPka8pLWg90diI+0JEgapzmBu6i+NmfF6j+G55zA2BVekvvxCBEXBL0RQFPxCBEXBL0RQFPxCBKVGWyMo5NQhh9T1OSipC7AgmpmdQGGlsSOon5THnAspsbmdXeg4s1RnmbwCnqiaw78ZVOCSFGR6L9TNKGXZpT3B+wQUbXjAifn7XOA/CtDSvPSK+wHGUlAbcbIWk9q/hXoOVOOB/hWgfwDonwLai3SuGf/LQfUKGhjbQecqffmFCIqCX4igKPiFCIqCX4ig1JelF0T2kMdOkL2XRJsUJIhhC2sQh+g4LMII+lxT5FmaP6aLS+qaRK4FGYujgie2RsEPLLaJ+ZGQdyBRi6zhcL1F5QW2CxABB7ktsUHQStl755Db/gz2PNmpV1Bw80Oxd2MbO7ixo/lzsQZFpriagvZOC+LeEa6pL78QQVHwCxEUBb8QQVHwCxGU+rNy6gbXIPiRk4gEmimKcwxdkxxrJMaQww9zzqH7CQkq5OZrSj+WEmPG0GGHHHT0zEdY7xPmeXvBiMS93LbNdK6ZWWHgTiv8HDfd0Y2RA46e+VTN/HEgXq06L6btoUX3BAqomrEzlRyni7M/7iLTUbnt/TqQGEp7B92YsJfMuBYEieEkxI+wPoQQIiQKfiGCouAXIigKfiGCUr/ovWBwCSIEJRmSp2oAqaiUYmhm1oFYccwsfEjutCn8lhUk7pReHJrC2BLGUim9EziWXHV0PqWOpjoDPQSdbfCTju7HRxgYU12XHkLzft+s3RgJYiTY7kBUpNTYVHoyuRXpizck8RpEQCqYSZAoSZBQOYc0ZDOzOXSAGlMRXYjBMYzpyy9EUBT8QgRFwS9EUBT8QgSlHlGtuEek5eaQ+oWhtE5qQ30qoGMPXO/67AW25z24nUDoWpbecfbt0AtLt9BRyMysgdxhEpuWZ+9Yo1bgNIb3BeGMzqWUXBQBjR2Vue40EiBJLMztFFVTu3F4p1SDz8xsD+9rC/emPX+AfUcuROzMBGnMlH5Lgt8MxOPfzBEcrDBvXgmPvvxCBEXBL0RQFPxCBEXBL0RQ6haUM/pFwLRMOJfcfCkjGd3n+gwpijA2BaHyVeuljp8UWzc2n+S5r77beBHwX4c+BdrM7D8rLyx9D+IerWPKNfiQXCGO3GU78045up6Z2QBENmprXWamo5IwOMYmIrAjwNV2rmAvJgRSSgl+A/deg8jW9tBABryuJNCVg4UbI5GT1pXGzFjkbilFXDX8hBD/Hwp+IYKi4BciKAp+IYJSb8jFBAeSkEfCAjrBEsJSrruQxL0FaGQlKIsfei8YHTZe0Loae0HsZujFoque3VdN6Se0Ovtrrjrf9IFSVEkkG0JNORILD+BqO2SmmJqZjcCdVlV54h653dj15yHZk+oWEqnOtuuzX29ykW7O/r3SvmXx0r+XGawh1qwE11/KeUlQV+sDCIt1prAvhAiAgl+IoCj4hQiKgl+IoNS30LF2R2miJMeAwEY1xVJ1z6Cfhh1RAIFbw8kr6FjbgHhSmhdoLltfN20Ec/mvAQtQ34Gw9L7duLFN60VEEklJOCPnVwPyLF0vJYgRAxAWSSSj+UxABKS0U3LkUfMLquFHDkZqumLGIil1XybhLbeBDK8NNGyBe3QguKfghi/+uXsQ4k+ZtQyFEAFQ8AsRFAW/EEFR8AsRlJrqzK3IIQYCDTmbxiCwpRx+BNVNO8DpFbj+OhA6yJlIos2HTFfV95Aaa2a2pu60me40cnSR6EYCG4lSRG4Nvt/cO09sJFGL6szRHKkLMYl7JJCSuJd6FmqAcVP7VG3qdkuxQTuZ7kzn5qZz577TJHA6XVFffiGCouAXIigKfiGCouAXIij1HISOHTTTSDVFyLpJYrwA0Y4Evy2IjVS7rMYUYehiSmmnND8Yo3PNzBZQa66t8oWph4wza+FV0EmWXG2Uposdfs1sWvlnoWsS1LyERC2qZ5crkNK8F/UEj30xuHRjL0tfh5HeCu1Fej5yB7bYxIUarOQ7L6mpSe69qWmLvvxCBEXBL0RQFPxCBEXBL0RQFPxCBKUm++sIfhPaRBeRh1DudvLmeL6H5riDfwCo48slXHEOCvnTzFbelK9uxtbiDop6ElSkkvL56fnOoMJPoINMD11uyMZrlui6A+tIdtUz5ZfDPbAQJtUCyKwj8Bw65JiZfVHN3dgzaOV+gmdZQa2LAxVMheMof55UeIJs02Zsp6f1OWEJXo++/EIERcEvRFAU/EIERcEvRFDqO8jdp9zf3Bxjst2moDz/MYhxVBSUCnNSgUQqZkhdga46f9xl5wWaOXSuMTPbDbxY9QEEmhXcm0QbWpsa1oGKR45J8MMWzSzO0jjVA6AxMkXTs2AbatC5puatxovS5+h/XvocfTOzz3v/XsZgA78DcbamdwX3oFUgqzLVkZiByHlVcFeoC1gzWluyIK/gmvryCxEUBb8QQVHwCxEUBb8QQamXZ194kkQEcnORgFGBANUmMvpJeBvBWG9eFCGvFDmtyB14gLOPWIzSn3vdsXvqaUVOO39NzOcHxYgEMXJ4YRcXcP0dQdhN5c/TOM2bBDE6jvZJia3cQZyDZ35R+tz9Ty0hkvX+3jt4BTvshgP7hPZOZk7+BYhuNzC2SMTLBIRKkmzP5GoFNVVffiGCouAXIigKfiGCouAXIig1deKh9M1chx/9mpwKToMtQYQg95VRKisIQWs4lxyHGyjM+A6ce/Pez+9p79fLzOxF66/5fOTFnCW476i7ywSej7rKkNiU2yEpJfi1kBJKhULP4J4kyAlI96bCnFdQGPUliHsLEPbMzLalv/fb0j/fEuKAxD1qVU+OSJr3DcTB5ZmEZn4W2suUisw71KMvvxBBUfALERQFvxBBUfALEZSa3Fck7nH6pockJOoqkpwQHDqGObb0uwU6yQ47p/ixOxABF7UXYy5OLMZMe3/+DQiGC3B07UCioXp9RO57IRH3MfUWcyEhL7c1NbkaFzB2AfUWj4lHeQPi3ruzbwVOeyIvYdlsBnP8BETJJzDvIYjUp4SQSs9I4vUORGBK89WXX4igKPiFCIqCX4igKPiFCEpNLaxZ8PvthUESfMw43bYBUYNERBKrBiCeUIoxzYfaMd+Xfm3uKm6oQKwzWzzj+lBaLTwzCbYknM2g7TY1yTBjpx0JkCQicuvtvJRXcjUuwAFHe+w+IZJ9gJT1+94LfvniHtXc82MvO3Arwkamvb0qE+olPCM1B1lD+vYGxvTlFyIoCn4hgqLgFyIoCn4hglKTkEMCFDmgCHLzHUH4MjNbwfie6gdSB1xMZQQhD+ZNaZl7EKUG1CEWXH9mLNwsqctrTx1d6d4ksEFNQGp8AoIdHVcmhCUS3nKF4T2kxpYgxFIDEmpWQfPewn64LziRdd17oYvmSI5DaqZCNQWnkO48hw1BLtCOmm7Afc24viUK2hCDewl+QogfUfALERQFvxBBUfALERRM6WW/k4dcdtiUIgGJbPcgnW2hbh455cj5RUIludAGIJK1UP/NoDabGXcXJvGTVoeEsxZr3P32abkkXpHoZpZyEuYxhHUkkWwG4uUVNO2gGW5BKF6DiGdmtu29w28PY7QnaC+P4Fm2kDa8A3corTcJxeRyTZF7aO5eFEIEQMEvRFAU/EIERcEvRFCwHSgKPiDk0C8HiTujR/zGHKBhxF2/d2NrSssEUSM37ZjSWIkFdMA1M7uAZ7yE5d1C+ucBxKYWpCBqsELk18zjZ85NyyYxjQSs19XcjX1qXjidgxNwD26+Jcxll1gbcrad4FjaOySmtvCubuEeQxD8JuCopPVKpcAfYS3IwUrvj8RLffmFCIqCX4igKPiFCIqCX4ig1FMQ6DD9E06m43I7xJpxai2lt9JYA66/3E7CBDkdsR5d4h4jEKsmcM0d1M3bFl4wWkPq7xGae6BglCkCpZ6FUl433cGN3bdbPx8QzgYTv3t+Vk7c2DWU+usrEN1A+CKB9DEU5ICk1GgQzkhs/BbmSPuT0m8pTdfMbEAu0sw9T+KuvvxCBEXBL0RQFPxCBEXBL0RQFPxCBKX+PRu7wVy93mvUZlsoWrlJdGyhHOwtWCVJdUd1NvO3jGybdD1Sw3dgPzYz24G6O4V/AAZwb5o31Reg90I5/lTDgCytqaKsmx6U/cYr+6vTzo2R2v89dAt6M1m4sVkJ7cszu9SkoO5FHXVSyuwqRM/XwvVIxSd7NtmFqWaAGXcLovdPyj79m6UvvxBBUfALERQFvxBBUfALEZT6K58Wb3vIO16CzfJd6YUO7JqTEskw19ofSxZGag9Noh2Ke5mSJtlkV5DDbmb2BvK3hyDG3Ge2TybR5kkBbbbhHlQY9RZaVd91vk6CmdkJrNMt2I2JCtaBxMbvoUbDAPYYtnEHMW0EBUHNzHoQyeiT10N9CBLjaH9WYLsl6Hq0F6kmhpkZWfFJQCahupe9VwjxIwp+IYKi4BciKAp+IYJSPwMh6Iezd1o12CoZuuuAqEEFKs3yC01SccVc0NmUyJd294X5rUAYMmNnIgldu86fT3njnw4u3dglCD7UKYjWlX7lU+tAOesDKFw6H/jjxpUX2J4MLtwYtQEnsRjrA8A7vSBhz8xGsLaUF091KKhGAAmxdC69A9qLU6jvQK3KzcwuEkLgQ6ibFTkO9eUXIigKfiGCouAXIigKfiGCUr8HceFN7X8Tvq28ePUWxEJyqx1Tgh+Ie+Tmy+66Ay4vErXIHYjzA+FknxD81i10FWr8GD3z9dB3tPmk9iIZphiD6LrLLDyacjpOILW2AnGPhMpF6VPEX1YzN/Y5pJLPeyh4Cim9e9oPcFyKlgS10s9xACnZdB9KWV9BsVVK6SU3HwmaZrznSSRtQdwjEVBffiGCouAXIigKfiGCouAXIij1P/ssUXtfeCGPUkIpvZVcbY+BHF0kdJDrj44jwW8ADjYSv45wj2NPlQvNllDPbn3ygh+lvM7qPHFoCWMkhpLoSvX6Ui26SxD8ZgZjcNzTwgt5r+Hclx20sAbNbgXp5XdlXucbM7MxiHaXICy+av36TEHIe195ge7XtV/Hb2Heq8xU8kOi+xC5Z8lZSh2E9rBv9eUXIigKfiGCouAXIigKfiGCUr+F1hskLFDbZhKlSPCjOnpm7BAjSNwjp1yZKeRRUwSaY6qFNUHC4hDEodx04j0IOXdn7y4kgZTcXJR2SjXhzMwsM3V0AU65G/MpqheQQjvKXFqSvqiuX+pdzeG5n3T+2BeFb1QyGvi9fDx5J2AP7scD7E9Kbce23Yln2YLAvoQ6jMvWi8/b1j+fvvxCBEXBL0RQFPxCBEXBL0RQ6mvLE6VIrCBHHTV8oGYaKeiauWm+fWb3VuqAO6amBuAOO1RTvGY39PceQT07nE/p770HcWeV2X2VHIxTEOdya8KlmGB9vDzhdAMOOEr8/gCNYW6LfBfpGL5vJ9iO+84/S9v4c2/BzfcGHLHfdBs3RoIdkeoYvO28aLdsQNxr/HG7xovF+vILERQFvxBBUfALERQFvxBBqT/pQUQCMWYDIgs2OiAXUyLdMrfu2sc07cB0YBgbwO/gFLrizgYs4i0qn8pK7isS8mjNqCvuDoSlKaXfQgOLJyT4gdhrxu9lD147eivrguoH+rXdgAh8hCveggN1BempJHKacRfjH2r/3D28a+I/ar8O/w3i3tfHWzdGDVsIcq+amR07SN8FIe/U+VjtYD/pyy9EUBT8QgRFwS9EUBT8QgSlvoH0xh2IMVNwcw3BIUZuPhIbzMxa8HTR+dQ1lpKBc1OEKRV5BFecPcIVN4bafCSIehmIRcDcNGaqw3cN4tVzSLWl+ZmZ3cF7WcGarSHtmL4mJECS8+4IouISakeuYb2o+YWZWUVOQqgBeAt7jHyE35p3z71t127svtm6se3Jn0uQe9XMrOuhyU2mq5XS3fXlFyIoCn4hgqLgFyIoCn4hglIPQFsYYb03LyzNQcjZQpfWreU5m8y4lh45DqnTbm59vBM1PwAn2YgExEeYDevMmoL0zNBXAo+rYR2oyyvVvbsDN56Z2de9TxP9AUQtEiqxc281cWMX4ExsQbxa9pCeCk65UcnOS+q0vAMhl1K66VXfwnwaSGPPFWzJyZnqnkxieA3p4CSQ07n68gsRFAW/EEFR8AsRFAW/EEFR8AsRlBpVZfoHAAozXoDavy+9tTSlwlOhQlT7SSHPVPaplgCprkcwc1Kr49RtSRkm9ZrItV6Skk7rRcr+e/g3413P/8J809y7sQ8nr/ZTHQJS3cmCeij9fFCZB2Wf2qQ/pjV8Dxu8hXnTvqNaEKS4U/HWY8Xt3d19E5uMCr3SvXP/AdCXX4igKPiFCIqCX4igKPiFCEp9D9bZLQkicDL9clBedarlcK6g8jHn5l6PBBEqCjlK/F7SM1JnoPwxfx+qnzBL2FofcgAxjdqAm7GgRuIeCae03tiBBqzBaH+Fc1P2V4KuSe+KhOEhvAOyU89A5D7VeQLkvvXrkBKzh6V//yQsojAse68Q4kcU/EIERcEvRFAU/EIEpf6m8oLKpvAiyRYcVCQiNTBGzi0zFodIoGGHn78eiTZ0Lol7VGTyBvK+L89cJLSBLjf01FXl50N1A2ZQUJRyzil3n9iCcDaBZzYzm0CuPbnTaG1nlRe/xnA9EqDo3Y/Nn0tQfQczsxGIZBMQTmmMRFcao7oNVFh1CmuzrfOKeprxOpLYOIZnptjQl1+IoCj4hQiKgl+IoCj4hQhK/WvoQHKEooItiXsg0JCbi85NHUtQZxkW8vLEL3IhUjHSm7M/bgGpzWZm3qfFYtwr6KZzBdccJ+7zkCMcdgDxkQTSHXTxMeN24yiSggB1CQVcSSSjvUPOOxKFSbxKdbkhMY7E3QkIrDUVVoX7UBenDsS9JazNEgS7VCL4NZz/lNrIg9hIa6svvxBBUfALERQFvxBBUfALEZT6Xee7s3yM8ELkptWacU06ckulWjI/hAQaSqFNpeo+5PSIGn5PwQ34WePlnGvo+NLAOqygNtsalLx7cBHuMzv7mJmNYG1HlR97VU7d2DNw5FFNwVVBzwwtqGF+J3CgkoBoxq5IEuimsD4FiK60S2gdaTZjeH8khqZ4VXjB74sORGm4OSVv68svRFAU/EIERcEvRFAU/EIEpd4kGjc8hBx1uS2oUzXX6JeHa+nlCX4knhwgFfkIzsJ7kkRg2lTXzcxsAk9z0fs5XoN78mYALssWUod7L6adwZl2AqfjAUTAYeK3n9abjryEd3Dd+yMpRfxAewdUUxJSScQtEu9lCutDadljavkO16syW9qTyNnBXI4G+zgRL69hP31x8vtpARU393BvffmFCIqCX4igKPiFCIqCX4ig1NSggbrGUsMIEueoqUGKVKrvQ6gGILrBwHG4hcYUa+j8ui5gDFJWU87CBaSJTku/Fu+hvlrV+Pv0KCLlpflOQJS6hnbMTaLhxyGzhuMO3sEdnLujMRBd6Z0SLQl+WWf+eL6HU179VUmMIxGwgwlRavoYYmiaqBP5vPU3ej3wDt3J2O/53R7qKOJdhBC/8yj4hQiKgl+IoCj4hQhKTXX0Rh/RmGAITqJUfbUzCHQnmM8BjutARCLRZt1591wDKbQDEOJaSBM9wnGp+YxA8BsMfc21+86P0a9yQ41K4LgRLPcctTT+7T+C0PkD3HuDjVzo/ZHgBym98O5p35GonEqN3cN8aD/uMjsyz/HefnGOcA9KRR7A9Z6d+Vl+2u/d2Gdf3rmx4RMfg+1y48b05RciKAp+IYKi4BciKAp+IYJSU309cu5RXTdyu5EYQyKeGYtVJLIR5PqjLq89df0FgYbcXMQRxEIzswJq6d2CU4u6026gPh6lidIMyXF2BW6+ae/f8yLRM+UpCLkHEDrfnX2rkiWM7cBFegTBj4Q4bLACjS6qRD3JFvKEOxAByXFIjrx1ptjYwXxaGCOH3xiaxZiZXc29eD39oxs3Vn71pRsbDrybU19+IYKi4BciKAp+IYKi4BciKPUI0jpnIKjkinvksjuBwGJmdgLRh4S8CuurUZdeECVr/3w0bxLiqBFEm9lZ2IyFzg00q6jh3lVmh+A5jC06/w5I8GsSXY3JITgE1xmJs+veC35bqBNJqeRED3txAunT9ojmFwS96z3sxQPsnRG4WkkspBmSCHhXsnj5YeObpHy69s696tVP3Fj91Z9nzUcIEQAFvxBBUfALERQFvxBBUfALEZT6svIK4gzUVLQwgrK/zyyYaWZ2hGOpu88IrKUT+pcC5v0a2kg/ByV9A8ru1+btlLe9HzNLFHuENaPjaGwCY5dg270GZX8BXYEG8K6WoFKb8b8AVNQzs0M7/kOy7/y/AmTPhoY2NoV3nyqsWlOnKTJKwxD9m0H1BZ4Uvv7BdaII50No31FhVDOzX1W+RffLv1+5sVdf/pM/WWq/EOJHFPxCBEXBL0RQFPxCBKX+GHGP2l+TuLdLtAEngYfsxlQolOb9RTlzY3+x9/P+8qdv3Nh3/7NwY7+o/PUaEL7MOBd9BPMm2ydZS0kImmPrbLDygp26hnmvEoLfKrNjD7Urf1JO3BjVjNjRPum8ANw1YPfO7ChlZjbBIrN5reXBOW3XsO9+1vp7v2r8OzhCzYc3tZ/fbcl77B20BvqXD0/d2MXf/tKPvfgbN6YvvxBBUfALERQFvxBBUfALEZT6Y8S9LeRuk7hHbi4zzqGfFj5/m8ScK3BV/UHjj/vjP/3GjY3+7OdubPCLf/Rz+fe5G0tBQh45ybCrEDSNPlGB0grEUHArXvbU5QZy00GAMjNbFiBWkTgL344LauVe+fusKt99Ztn4dtNHEAFJ8KMaFGZmC+g+NIc5DsCtSC3RF+Dce9L5tbkyaJPdQ40GeFenRJ0FKh37tvbn/+rfnrmxP/zrv3Nj+vILERQFvxBBUfALERQFvxBBqXPFvT0UXGSXlh9rIMXUzGwMAhYV6xyDS+uJeSHn58XajY3+5Pf9jWdeyFu98emS35XkYGTxcgoiUpdb4BRSXrdwjwOIdgWIaRcgLD3r/HEf4Fwzs1voukMuRHov1N79AkTJeenXm1KbT51/B7vS7zEqEmpmdjj7lO4G1jG3YxPeAwS6pfm9TQLrEbOLeS417B3yAr4HMfzrf/AOVn35hQiKgl+IoCj4hQiKgl+IoPwvxN5MGc6e3koAAAAASUVORK5CYII=" y="-15408.97012"/>
</g>
<g id="matplotlib.axis_859">
<g id="xtick_1288"/>
<g id="xtick_1289"/>
<g id="xtick_1290"/>
</g>
<g id="matplotlib.axis_860">
<g id="ytick_2146"/>
<g id="ytick_2147"/>
<g id="ytick_2148"/>
<g id="ytick_2149"/>
<g id="ytick_2150"/>
</g>
</g>
<g id="axes_431">
<g id="patch_432">
<path d="M 299.674375 15533.871884
L 421.964375 15533.871884
L 421.964375 15406.578357
L 299.674375 15406.578357
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_861">
<g id="xtick_1291"/>
<g id="xtick_1292"/>
<g id="xtick_1293"/>
</g>
<g id="matplotlib.axis_862">
<g id="ytick_2151"/>
<g id="ytick_2152"/>
<g id="ytick_2153"/>
<g id="ytick_2154"/>
<g id="ytick_2155"/>
</g>
</g>
<g id="axes_432">
<g id="patch_433">
<path d="M 434.924375 15533.871884
L 557.214375 15533.871884
L 557.214375 15406.578357
L 434.924375 15406.578357
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_863">
<g id="xtick_1294"/>
<g id="xtick_1295"/>
<g id="xtick_1296"/>
</g>
<g id="matplotlib.axis_864">
<g id="ytick_2156"/>
<g id="ytick_2157"/>
<g id="ytick_2158"/>
<g id="ytick_2159"/>
<g id="ytick_2160"/>
</g>
</g>
<g id="axes_433">
<g id="patch_434">
<path d="M 29.174375 15677.791308
L 151.464375 15677.791308
L 151.464375 15550.49778
L 29.174375 15550.49778
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_865">
<g id="xtick_1297"/>
<g id="xtick_1298"/>
<g id="xtick_1299"/>
</g>
<g id="matplotlib.axis_866">
<g id="ytick_2161"/>
<g id="ytick_2162"/>
<g id="ytick_2163"/>
<g id="ytick_2164"/>
<g id="ytick_2165"/>
<g id="text_109">
<!-- 518 1834-110319 -->
<g style="fill:#262626;" transform="translate(15.789375 15661.177982)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-53"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-56"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-52"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="505.896484" xlink:href="#ArialMT-49"/>
<use x="561.511719" xlink:href="#ArialMT-48"/>
<use x="617.126953" xlink:href="#ArialMT-51"/>
<use x="672.742188" xlink:href="#ArialMT-49"/>
<use x="728.357422" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_434">
<g id="patch_435">
<path d="M 164.424375 15675.289544
L 286.714375 15675.289544
L 286.714375 15552.999544
L 164.424375 15552.999544
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p2d7bfaa8e7)">
<image height="122.4" id="image4c887fa7d3" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnduOHFlWhlfGOc9VrnK1225PQ4+Q0CCN0AAjcctb8DC8EW/AJVfccAMSAy2axm632+2yq7IyMzIjMw5czEEar29LYfrO+/8ud0XE3rEjVob017/WmvzDz/5+sBGczR/23lo39nY4urG73o+ZmT10Bzc2DH6eZTp1Y8+ypRt7MindWALzbga/7s1wdmOt9W5sPsnhimZPzM/9tE/d2Npf0qY97G06cWP/aG/c2L+8+9qNNe0J1/ghRcr3sipnbuxJdeHGZqm/5x7ek3bo3FjT+/0+9f65FEnmxp4Vl27s82TuxsxCz9/PvYF3tIY1JhP/XKqJX+M8KdxYBqsZYL/oemZmF/DuPR78sTedn+eq8/PQ3gghIkDBL0SkKPiFiBQFvxCRks0GL2AQifnjZhMvaqxArHgPwpCZ2bukcmMkvPQgAm57L2oVif8tm0286JbCvaxBTAFtznI4N8R54tfdgGBkiR+7S0GH9bqZrUGc28Ba2t6fnMJ+hcY72I0zCHn0nkxgrID3hOYtE/9cpvCsqsB3LIX9pvXkqT//mPj76wa/DyQCFubfu3zi56B3cQbnmpktBz++Gvw15/DqZBBD+vILESkKfiEiRcEvRKQo+IWIlKwcKfiRBFGBsLCEIy9B6DAzW4N76wcQgn7s9m5sN3jBrwOn3AqcVkvzc5AwSOJeGtivcqQQ2MFhNYy9n3ixiRxiV6V3OhL1uRl1XIgzCYbg8MwSElhB6IJnT3tITrkVCH70TM3M6P0mIfds/prHxB95BJGT3K8k5GU0BmLhDIQ9M7NLEPdWIALPer9uuqK+/EJEioJfiEhR8AsRKQp+ISIlY2nBk4O4V+LYqAxhMzO7BNEnh1TWY+KFpdft1o3tBy9qHcBdeE58inACKbkFiEghYY/EQXKSgenP9okf3IOwRKmeF5lPZSVHZAqiK4l4oWMp9ZRcfymIUhNwMOYksMIYufly+GaFnJcrEPyqkSL3EfZhD2v0ib/jv6qgUdsscC/rHpypIO6R4NfDNfXlFyJSFPxCRIqCX4hIUfALESkZRT+JUiTurTovLFxAfbxlSpKI2eHsBSwS3u5Tn/p7O6nd2BZqAlKtuHPmha429ffSQE3AOQg+ZmYLcGVNQDBKQPx6gA1vR9Z2WyQgaML9kWBHNfPMzDIS48C5R8clmLY6bowEUqoJeITc5j04Is3MFlDjjrKlyR+YgzA4H+nkpLhq4NQjPHtyB5pxDFagGJZURxGupy+/EJGi4BciUhT8QkSKgl+ISME8SBIW1iDufWbeUff5jXfeLW84nbR58IJR++Lajb2C5hIvQejamBcBjyD49a2/QXLFHVMvkyygbqGZ2RKcaDUIdCWkcFJKKIlNS6p7B9ejJhkdCJozUr6M6+uRGEe166iGHzkG6XpEB3tzAFF5G/iOVTB3BrUCyfVHcTAdKboROxB7O3C0UspxaJxmpuNOcvgJIX6Pgl+ISFHwCxEpCn4hIkXBL0SkZJSnv4J84OeJV9Kff3XvxhZ/tXBjybMvcPLpqx/d2J/U/prf3t+4sReZz8l/yKDbDyj7RANtm7MefhsDP5ec7w4WXbhAAYr0AqyzE7CqVmBrpU4zZ+g0UwSsyjTOqvL42g3+euP+44LHwfXoPyZmZseJP3qHNmIPFWudwRrzkTUsqIAnlHIwSNs3M7MzjB/gPxcNzLOB4/TlFyJSFPxCRIqCX4hIUfALESnZFKyJT6EQ5pd/fufGFn/33I0lf/03fpZrFvwm//1vbuzx3T+7sb/4Jy823g5e8DtlazdGHYDI8ktWVcpXD9lSSdxrwGZLdtyKWkaD2ERFKhOoI0BW4zOIgFQfwIxbSZNg2IJMRqId7S1xpoKgtDdYH2B863TKbQ9ZasdAXZi6kaJiAYLf2KK6ZmZbsAzvYewNPH99+YWIFAW/EJGi4BciUhT8QkRKdgF5+l98vnFjs19duLHJL37hxpKvfuXHHj3FybvSd5vJ3/zgxn7+6j/cWPPv3vVXFv56X2de/Hrbe0HzCDniRMjVRkJXC+4yErVOIKZR224StcbWApiDCJgFWqfTPZK4R4Im5vOPFOhIDCWBdQpCLLVYNzMroIOQ3wkWU0kOpadfg3tubMHMFQjuWcAw2MI78TBS3HsFtTf05RciUhT8QkSKgl+ISFHwCxEp2eXEu93KBcgVVKTw1qfk9t95cW44+U46ZmbWQmHPy0s3VP2Zd/P9/OGdG0tfPnJjs8F3+/ka+hS9GU5ubA9pviRymbGQRyIgubyoAw2lk44tmEleN3LtkSvRzOwI91iDK/KEDkYq1ukZAmLjhxTwfSphbA1Ox9+Ow/mwt+i0g7EGnkEDt0LP+aLzF3zSQZHYhDtcnTo/0QvocDWBoqD0nujLL0SkKPiFiBQFvxCRouAXIlKyDdSF+/5bnxp7tdu7scVv/tWNFc+94Jc+u+LZ517IG957d2F/74VBaOJjlzMvLH6+9wfeQbvpDQhQ/o7DIhnVmqM22y24+UgYJEhMK8HZNoVU3RkkitL6zPgeqa4frYece+QkpHumecn1RzUPr3sW/J5ADccE5j6AUw5r5sHYaWSbbVohiXuPH+3gSLOBROD3cNzZi4AXmRe+9eUXIlIU/EJEioJfiEhR8AsRKdnL3ItDu8433vjxtRfn1j94V9zqP704t1h5J6CZWTHzDrEW7FLHvRcw6tq3yr5v/HHbFOrRgWhDjiwSoEjYC0HpqHT+2GuOPY5ccdjeO1D3roFU5Hbw+z22aQelHZ9gDrreHBJrnwxexP3yxFX4rsGlWYP0dgZBk9x8BD1ncgdSgw4iL9hFmpX+Hh+3XpbOtv64p43fR335hYgUBb8QkaLgFyJSFPxCREq2BRWC0v/InzT0XgQ678Epd/THmZlNqNFF74WJGtI1dyDQ3EGq7ntQXg7UPRdcY1Os4sYUsD9Ua+4E0uIB6geSE5CeC7n51lCv7zPY1xU4xsxY/Gzg0AacbfVIcY+gtNxnULjueetFvMsM0sMDnFuo6wdiHI0R9JbA1mD33S7UkhdIoLhflntxcF56Ib6E1GF9+YWIFAW/EJGi4BciUhT8QkRKRimKBYyVkPKYQ320FESbgdqYGgt+JxDOahDOqBNpPbKWGgldK3CNrUFM20NDBDMWq657v6AHEFi/h7TODTjTSH9agtx0DWnaN/AMrqBhi5lZCWJjA4LoO3BP3kLe6gG+MQt4d56f/R1+NfHprZdXPnV7CAhnh4N/rkXrn2EBzw+WY1SRMNRk40PGOvwoddfMrAfxs4e6fqHz3XrGLUcI8amh4BciUhT8QkSKgl+ISMlqkMRS6DrKrj8QG0AP6wICRD4yJTQHASoHgaakNEpYN2RG4t0tqK5b4PfyChoyfNFB7UG45xepT0X+JvdC1WbiN3cGwtkliF8LaLoyCzQgqaCJSAXPsOv8Gnf47nguYOrL3rvQysof2IFD73TiGn4tCGIp2O+m8I51sLf0npwh9ZekVGymkoCTk/KBzawH0baFvaB7bkF81pdfiEhR8AsRKQp+ISJFwS9EpGRbEJGoIW8HQk4HEgYJYm3AfbXoQVgCqWQGY6CTGKUdU70+koZI+jqTUBkwT1H65zz1Atb1la+59hSEnGfvVm7smwxqGcLP9xT2hiSkJvDb/1O+CLQPJLrOoHEGiaHHs3cr4ljHgh+9jwM21ABBtIf3DpyOoAtaCyIgXW+59KJwdQFdss0MNEnL99BR+eBT6A+davgJIX6Hgl+ISFHwCxEpCn4hIkXBL0SkZLe9VxupOOaW8uwTryBejWzbbGZWgkxKltMp5NBXcFzae7sp1QLA1svw3wwqbhoqRTkDK3AHKn4193n65RXcHxyXvnjkxsgafASlmeof9PCszMyOI/PBa/oPEP13Bf4DUNK/lGgtoOIf4V3cwnM2M6vxvscp8QsYm4Hk3oLVnP6/MoP/Kc0Wvthm6htmmZkZPa5q59+T7da/EwfYM335hYgUBb8QkaLgFyJSFPxCREr2tq/dYAmFK5cT6LoD4k4F3WKWgVbHJJ7RrxHlPGcp1CFooftQ59d9B+IQ2WQfqO1KAMr9P7V+HsrJTqBiarEA4RPswt2kcmMPoD9Ru/GQEJuPFPzGdvGZwvXI/kqFJ8meSyLuHRQTNTN7B2pjDR2EFjD3M3h+y0DR0w8hCTAnmzqsL6DDIqHc/w+ho/TlFyJSFPxCRIqCX4hIUfALESkZiT45/Cbk5NwjIY9aEwcmJxGCuvgUuRe6qsqPFVDMsNv5NT6AI4vy+WndQ6DoKHU+ugPx8+7tzM/T+g40x9qfe9t5ce+tN3PZe6jRcAYhbhIQ9kC7RDq4Ju1ZSe9YBgVYz36sAkcdOTShM7yZmd2CO3QL7tBd4udOMy9891gfYBxUR4AE4P4UuCJsbtuM+35TvQJ9+YWIFAW/EJGi4BciUhT8QkRKNk+8A+4aXGPUrpq6xZQgIoUMY+Tyol+jsvTi3vzCpyJTm+Yext7v/T0XcC9TEGj8rL+lBvHrf3N/zWOzdmPL730O5xkE1peFH3uT+L2hLkw9FMw8B6QqcgP2JBjBg6XnR6LyGZxpHbQbX0CnGdK47riiK+5FQ8oZbMUGnkEOTkK8Z7oeFNHcPXjFNocuRWb8fjfQgryHPUN3Ic4ihPjkUfALESkKfiEiRcEvRKRk353v3WCRX7mxSxD8KhBy/FFm3H+EnVpQNs3SzA8Way+KwBJtevA1zqq9v94cBJoTCCwt1PUzM6POR7eg+nyX+mvOqeULzuF3cjOEdvePoRnOAe/lHq5JIuBoJyi8J93gn0sNadpUmo+ewJna2ZjZGYROAltvw0w7cjXCySTZ1eAitL3vzPTFdxRFZhUI31QncgJrrOD91JdfiEhR8AsRKQp+ISJFwS9EpGTf7n50g+0M2naXj93Yl4lPT11Si+7A5CXkjtbggmoh1ZP0HeghYSmISOR2oiYSRaD2IEHC2z2IWh3MXYCqRWJaB+IVrbCCCnIkxIXEMEpbpjFy/Y2FxLQtNJA5oXQ2HhIbp6AMj3WwkhS3p3uBOoG3IMTtKn/F+sRdO57vj25sUUATmMK/i3kmwU8I8TsU/EJEioJfiEhR8AsRKVkHytm709aNzaAb7CwH+QOae5wCzSF6SI+cDtAw5MELi5MX0IQCnIAPDz49uQbZhlbIPiuG/GUkVtW9F2hITMtABKxAlFpBnUASr5YgXp0Dd0g1/DYgXo5lrGxKYig59+g4eo+DwCdvMvHv9xqse5Sqe+IGwf44WOMtuDYvM/9Mzcwew0TLie/ym+cg7sHC9eUXIlIU/EJEioJfiEhR8AsRKdl15VMKCXJzca03T8jhR80l6sz/Hr1Lp25svfNjBHXf7aHh8JwcgyDuLALpt49AeBuoUQaoaUdwB5IzbQZC3jUIrM96f9zTMzgYAw6/bwu/t78BtyOJgC2IWimIl3R/5HRkwc8TSuklMbWG/T5CI48eBFGS4mgXaTUZ7GEF71Poi0xNP9oOhFxwxIKuqC+/ELGi4BciUhT8QkSKgl+ISMmelBdu8NB719AMmnuQaPMxrrgaRJZb83N/D0JJno1Pt/2QAtJbbxIv5Txr/RxXgQzTDOqzlYl3jc0Tv0MkNiWwt3MQxG56GGu9BPUZPNNVxq69aQOuyMrfywt4BJSqW8I3poJnQALrgZQqOC6F65kFmsBQYUDgCILtidyPIFxTHUQUcWGsCpgVd7Du+uzdrzbSjKkvvxCRouAXIlIU/EJEioJfiEjJpuBMo58EEivI9UdaRUheIWdUi9f0V6U04bESINWuo46s1+Cou4Baf2ZmC0j/PINQmcJuDDCGKcbQFTeHI8nV1sFDDdyKLUFke976vegzLwKS4LegdcPYK3A/7qgpCWzONFBvsYD7vgRX5Gfg3aOUXny/YW5yvxJ0VBN4kb+BLs2vf0KXZn35hYgUBb8QkaLgFyJSFPxCRIqCX4hIyTAnH5RBakNMBQlryLambjGheUidJegoUmL5PxJ+bA8W2zdQYPQcuBf+z4WH1PlA12+Y24/dQWeYBqzPJ/ivzlXH/4cp4blSR6Mreing/kp4MA1sI3XIIWW+gScdemvmVAMBisQ+Byv3561/ghk86WLwe9tnft012IAPEAOvocuUmdkL8x17vj69d2O7zh9H6MsvRKQo+IWIFAW/EJGi4BciUrBjTzKyNTV1pNmCzJWClTME5bGTSMaQrdVDIiet+wzC0l3KFQuoECMdSfcy1h5ag7hHrcFJh7uF7ko3KQt+SygASl8JsqGSVFVDt5ixYuhjsN02H9EanAqu3nR+nicg7j2t9m6sLGHlG18E9z71634N9QFIBHwL4rOZ2cvOd9J63dy5se3p4MbI8q0vvxCRouAXIlIU/EJEioJfiEjJKigoibm/IErRcXuQckK/MBNyg2FxxXG/USSSNSCetCNbQW+oGGWg+OMcHHRLcJdVcC8kiFK3nwOsmxyVVBD0QO3CYX1mZmsQNamewwkESBLyaJYChDgqZlnC3tBxIWZw/mXn9/YCWl3PF40bS0G8nGzgvYPnRy5SEpo3vZ/XzKyGIqwFxO8U3IWnfnxcCiE+cRT8QkSKgl+ISFHwCxEp2QJSJklsCjQRGUX43P+/QEceL3LkkYORhMFuZNHDkLcso640MJaTexKGSAQsIZ14RuVR4XrknKRim2Zm9yPdjkfYW5LiliD5XWJqMxU8pTFP6Cs2hVss4blmCTx/aH9d7/29vAE3H7WfvwPBbgdtzg8wZsbPcJX5jj2L1HdcojR2ffmFiBQFvxCRouAXIlIU/EJESkaCytjeNxkIUFSDj+dgTiAs7UEAqSGVdWx6cgprpM5FVHswVI9wDjLUmhx+4GyjVNYchCqSgehcqltHUJqnGbdOH+skxDbUI1tiQ6YtClVEFjisgedPY3Xnn3+38c/qXe8F8u9Lfz1y87GzNNDzHSjofYLW8iiSUkv00TMLIT4pFPxCRIqCX4hIUfALESnZw+BdRzk608jB5oWcRyCcXfeB5hAgTGwgTfQFiTYglAxwXAFrnIJwsoAxEi/JZWdmthz8PCsopleBi20KFkjasQeYuoe21tT+mjjCXpsFmp+AK47ekwL2hwQoSnntSbDFFXomgbqT0IvD0pTamnshj674Lvej1DiFhEpKYc9JDA1pnHQvsN+Udk5xoC+/EJGi4BciUhT8QkSKgl+ISMnuutoNViDaUa2/AoQFEpsek3XLzC47L5S8y/zv0SH1YkwPrW1JJyEHHAl5JGjSLyM59MzMFnDfj+C+V72/5xmMdbDuuvD7fYK7HltHj44zY+cfuTkzWONY4fRITk4UyTzk2gw1djnD8+qg+3INwintww7EPWqmAk2N8R1rP+L7y2m548Rd3MfRMwshPikU/EJEioJfiEhR8AsRKdm+O7rBDuqZESeoU9aAEEcuKzPuJktMQa64gdqDExDdSOiiu6POr1jrD5xpZmZw2zYH1ecRNE+oYB8fBi+6UkoviU1Um48EsVANP4JEO0rVXYPTkRx+b0BufA9uUxK0yFlK9RLNzFp4XiTkHWEefE/gelTfkFbD9QjpuTAtuFppjQdwY9I8+vILESkKfiEiRcEvRKQo+IWIlIxSNQlKHaRaeOiKCv7EkNPKH0W64Oyn1MKDCzYja9T1gZTeFkQocu5d5tyB9UPuz17wGyuQ0jPtsZYhX7ACIY+OpTRmcjrSfpOYugPBj+oyzhMv9nbgSjUztH2SQ/AMQl4LJ1O00C6OFfdIsDtBfUozsyOMU/ddEgapVqC+/EJEioJfiEhR8AsRKQp+ISIle1JcuMElCCoLEFTWMDYHESjYHALSKA8gvFBbA/rVGpu2OLaFCDr8AgIpOQmX4GKbVtCV9QgNI0aKlyR8kjBIYlOo1h8Jp+SyXIxUIMmFSGIaiXt17/eLnksfcF5O4F2m15H2Z6z/MSMxlWoKkvgMQtwp0MiDxD0SB8eKgPryCxEpCn4hIkXBL0SkKPiFiBQFvxCRkv0sXbrBOdg7F2jl9L8dpABXAdmU6nqS+ZVEZVR84Vzq4jPWLpzAfzPoODOzG7iZdQ756ZD437R+b89UpJLUfvj9ptoElLsP/2wxM36uVIx0DushKzfNTWo/WciJI/wHIPQZS+A/GvRPjrGt5WmagXLy4T8XB1DcG1DrWzjXbHy78rFt6fXlFyJSFPxCRIqCX4hIUfALESnZCWSyFBQR6jYyo64kMMmK2pcYF720zM99BOvmAU4lEYl+3ZYgaF3APadwHBXlNDN72nlxb7oEa2oHNQwGbw5uoI10oPGRg+Si+iPsnWTvHUa2kqbik9QKnGoOUBtpyt0/DH6WBiytZmYPMEZW4HkCVnUwbZMISJZv6khE+fj0rKg7kpnZgG22SZSENY4sMiqEiAAFvxCRouAXIlIU/EJESrYH8YQ6kJAwSEUTU2jlfcnpybbs/R/azosaO3AshboAfUgB4scFrGcNxTbJUVcG3FfUdacHa2Jz8vuzhbbW92C/uweFdIfCkl/LHmoLhGoTkAUyhfXMYGwL69mA0EUOuAr2gWpLbHsvrj70XBiVagRQp6kpiK5l4r+N1BkIHYywt1O4PywmGnjHxub+U46/CngKIf6Agl+ISFHwCxEpCn4hIiWj9EFKHSQRkI7LQcC4AhHQzGwBljX6NSrBfTcDUYocgys4dwEuPequA542ywJplS24Ae/qqRvbgLD0svDnvk68QHMHol0N5U3J6UgiUov+MrO3cOx24ucmJxnNU4OoTHMvoO36FJ5CkVRuLJQOTIIYulVBjKNitDN0z3lKiIMK5j3Cfh1BkDQzO8GxJNgP8H5L8BNC/AEFvxCRouAXIlIU/EJESkbpg5RuSU6pAwhQWxBo6oDgt0vBLUW16+BcqhU4BS2OxL05iHvlyPpoLJGZ1XDfD5AG+7Lw6/6vydGNvR28Y41SWScgQD1OvND4p8nMjd0FWkHfDn49t13txkjco9RREpsGeMfOKaSdgouQWojTmBnX5ivh2BmMZdTeG/ab3u4SxUK/lgO8d3VAvNyDtEj7fYR7oa5Z+vILESkKfiEiRcEvRKQo+IWIlIxab1P6Ljv8PDRGDTbMWNwjKrhoCYLRqvMHzkEkySk9GYScBkS8c6DB9xGEqVuoR/ht4tNR/6f1lebet3s3NoH9ep5furFfDl7cewza3suMRbIOatydoQ7fCURJag/dQJMNEgEPkKp7yvz11uDwo3RgMxb3qA4fiZcbbCrj94aanFRUExLm5U7e/E0m52aB4qffixOkRuvLL0SkKPiFiBQFvxCRouAXIlKya0ijpDRRGiMhrwR30oTaohqLgyTkkUvvAtxpjwrvTKtKaJQA7sCHunRjO0i/3YIr0cysBuXmAYQzSuEkEtjHy9QLeb+2lRv7ZeMFthqEoTuoUWdmtk5JMPL7Q0+VHIfoQmv9GkksREjbAxHQjB151LTDvznc4XcFk2Ndv5E1JqnJSYgC3oklvKM5PFesH/gRcwshPiEU/EJEioJfiEhR8AsRKdkSUg+pDl8OvxPU9IHEj5DDjySjGYh7jwbv/Pps7R1w6898794U7IHnLTjbfvRD2713P74PpI7u4We0AWGJBNGbdO7GvkiXbuwve5+q+7fgBEwhF7Vp/bkhTaoCxxoJXdTIg1LEqTEFQYIf1ebDlPPAO0Z1JuGx4Nm0bhqj9GRqIXIClyQ1/AhRwhOrIOF9QIemP05ffiEiRcEvRKQo+IWIFAW/EJGSkYhgIPhQOiKRgyvqY35hqAvuuvSC3/rGi3vT55AymUEn4cr7qhZHL9GsDt7VtoUuwmZmDQhTJ9iLMwhnS0gd/rz3Y78++zp614+94HcAoTJrvQOOk2DNKnLFwdHYYRZrynkhbw6OwSmmnZKoCCJ14C2j95ZEybHnUhRwarsX3Q7YUZm6FfP6xjYRSWBB0B9HX34hYkXBL0SkKPiFiBQFvxCRkmFaLYgI1O2W0jfp12QWyGIlN19FNfdy6Fo6MmXSwIU2gdp6WeEXOc1BqGr4ZhpIE6ZFFiPdbl+c/TyrmRcli8qvsT35p5BTR+WAuSzHxhTglINzyX1HUO05EvJI8KN5Q116SZSk82nVJNqRq5VqHhJ4LswRuho3B4FnBRcgJ6G+/EJEioJfiEhR8AsRKQp+ISJFwS9EpGRYhBMUxPnIltgZKJpFQL5c9V7Fryag7ANd43+32o1XvpMSuvPUoLpCxcW2o9oE4yE1PYUxKlpKBUqLws8+8p8HNvmIvPETHLuDXPQtrPEAY/QfAFL2qdPMWFs5/VfgYyBln+BuVlC0FtYz9j8KIegO6es9+h9ho2cWQnxSKPiFiBQFvxCRouAXIlIwpZtEFhLtyJ477b0gUgREjSnIZ2kCYhwkIx/3kF8OvsYUBL/24MWm3YPPd79rIZ8/4Xz+AxV2hOPobBL8ZpADT1ZeokOhElqQB5ShDYiu76CI6hZaah8GXyuBDNFkIab3jsbGS2QMCm8jrbcNPOcCcvLzkTUDfrpQCcAlT8rnF0L8HgW/EJGi4BciUhT8QkQKZLZzPrAvCRkQqkCCKAK+uBxcYz24Cw8nP3vf+9+tAc4toEX3sfbXe7Pz7a9fQfHP+8DPJbVkpkOhgZBNSegC4XMCeeM9iKFt62duYDXHQB46Offue19LYA+CH7XjTmFuapPNue0/Td6bQDFarFkL59LcZxD3KJ+f4iWlTljwzoZcjbTGsR1/lM8vhPgDCn4hIkXBL0SkKPiFiJSM0ncr0BAqcPPNBi/kTcGZVqXjE2GP0BFn14PgB5e8aP2588qLUve1d/N9k3k332tQPg8BgYXEIRJuqpSKY4LIefYOxlMT6rHzxxxP/rgjFDI9BMxlRxDtSNw7wNhkZFvrDoSzEwjDY4tthnxyVFc1BxGQUmvJPcdpuR569uRqzEkE/AghpXw6AAAAIUlEQVTXHwnNdC/ed6kvvxDRouAXIlIU/EJEioJfiEj5P4Y52gmQUGvHAAAAAElFTkSuQmCC" y="-15552.889544"/>
</g>
<g id="matplotlib.axis_867">
<g id="xtick_1300"/>
<g id="xtick_1301"/>
<g id="xtick_1302"/>
</g>
<g id="matplotlib.axis_868">
<g id="ytick_2166"/>
<g id="ytick_2167"/>
<g id="ytick_2168"/>
<g id="ytick_2169"/>
<g id="ytick_2170"/>
</g>
</g>
<g id="axes_435">
<g id="patch_436">
<path d="M 299.674375 15677.791308
L 421.964375 15677.791308
L 421.964375 15550.49778
L 299.674375 15550.49778
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_869">
<g id="xtick_1303"/>
<g id="xtick_1304"/>
<g id="xtick_1305"/>
</g>
<g id="matplotlib.axis_870">
<g id="ytick_2171"/>
<g id="ytick_2172"/>
<g id="ytick_2173"/>
<g id="ytick_2174"/>
<g id="ytick_2175"/>
</g>
</g>
<g id="axes_436">
<g id="patch_437">
<path d="M 434.924375 15677.791308
L 557.214375 15677.791308
L 557.214375 15550.49778
L 434.924375 15550.49778
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_871">
<g id="xtick_1306"/>
<g id="xtick_1307"/>
<g id="xtick_1308"/>
</g>
<g id="matplotlib.axis_872">
<g id="ytick_2176"/>
<g id="ytick_2177"/>
<g id="ytick_2178"/>
<g id="ytick_2179"/>
<g id="ytick_2180"/>
</g>
</g>
<g id="axes_437">
<g id="patch_438">
<path d="M 29.174375 15821.710731
L 151.464375 15821.710731
L 151.464375 15694.417204
L 29.174375 15694.417204
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_873">
<g id="xtick_1309"/>
<g id="xtick_1310"/>
<g id="xtick_1311"/>
</g>
<g id="matplotlib.axis_874">
<g id="ytick_2181"/>
<g id="ytick_2182"/>
<g id="ytick_2183"/>
<g id="ytick_2184"/>
<g id="ytick_2185"/>
<g id="text_110">
<!-- 577 1839-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 15805.103968)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-53"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-55"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_438">
<g id="patch_439">
<path d="M 164.424375 15821.710731
L 286.714375 15821.710731
L 286.714375 15694.417204
L 164.424375 15694.417204
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_875">
<g id="xtick_1312"/>
<g id="xtick_1313"/>
<g id="xtick_1314"/>
</g>
<g id="matplotlib.axis_876">
<g id="ytick_2186"/>
<g id="ytick_2187"/>
<g id="ytick_2188"/>
<g id="ytick_2189"/>
<g id="ytick_2190"/>
</g>
</g>
<g id="axes_439">
<g id="patch_440">
<path d="M 299.674375 15821.710731
L 421.964375 15821.710731
L 421.964375 15694.417204
L 299.674375 15694.417204
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_877">
<g id="xtick_1315"/>
<g id="xtick_1316"/>
<g id="xtick_1317"/>
</g>
<g id="matplotlib.axis_878">
<g id="ytick_2191"/>
<g id="ytick_2192"/>
<g id="ytick_2193"/>
<g id="ytick_2194"/>
<g id="ytick_2195"/>
</g>
</g>
<g id="axes_440">
<g id="patch_441">
<path d="M 434.924375 15819.208968
L 557.214375 15819.208968
L 557.214375 15696.918968
L 434.924375 15696.918968
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p0eac0daf4f)">
<image height="122.4" id="imagebd17bec09a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGLxJREFUeJztnU2PJGdWhW9mRFRmVnVV9aftbrtxG4OMgAGBkBDDYgQS4jfAEv4KP4IN8DPYARskWIBlD0wzhvHY3e5p90dVV1VWVX5nsjBs+jwhveWsrurue57lVWRGxPvGzZBOnntvp1vfXoV5I+h0OhIbND2J/c7VjyT2F3FbYj/cfo7nGY0aib0Y9yVWd5Z6PfVcYk9mA4n9Te9UYv/44r7EjiZ63GrlR/Y86F72BRhjLgcnvzFJcfIbkxQnvzFJqS/7Akw5JHRRbLJS0W2uWmFs7kzxPFWjQt7T8abEnocKg/OFCoOPenry4xWf21wcfvMbkxQnvzFJcfIbkxQnvzFJOXfBj1xonQC1aU1WUSZ+ve0s4Z5PFmOJfdkHEe/xFfzOzcFMYoedSmJfbOi+vgDX35OYSGxvdiIxuhfz6vCb35ikOPmNSYqT35ikOPmNSUqx4EdCHtHt6O9Jt+WzdCxBQt58udDjQAR8m6A9oLUZLdQ993WMJPYfi208z7uH6hD8uqd7db+j5bbPlnqe46UKfsO5HkfPCYnFb/s+XxR+8xuTFCe/MUlx8huTFCe/MUlZy+FHgl0FsbpSd1hERNPl+MvMQNxbrNRJdpk6EIlxZxE/X4bcbiTu0Xnps0dLFQF/1mhvvYiIg0pLdb/s6ucfzY/1PAsV8pa0V0ANz0PV1TVcLe3uPA/85jcmKU5+Y5Li5DcmKU5+Y5JyIT38ui0lvSQOlgpYJJypLHj+tDkdm64u5aDZkFgPxDSCHIzjhZba0trSui5ADd3v8IoNKxXovlmqm+9grmW5s5V+J11PqZvvVZSDm+/wm9+YpDj5jUmKk9+YpDj5jUmKk9+YpBSr/TgthppodjSGVtxg2y4pw3Tui2j2SMo+qfoRETs9nWhzq78jse1KLbV0zyOw4+5NhxI7nWutPO3LaKX/FOy1TM2ZwX59O9dzHxXW5NfQ/HO6hKlChTZuW3nPB7/5jUmKk9+YpDj5jUmKk9+YpKxl7yVhabEsq92OOINtF76ztEZ8Hchautn08Njbg2sS+3DjusSudfTzPfgNPg4VxP4HhLMHi2cSIxHwyfRQYpNazxERMQeL7t5MBb/jmU4Gov0jQZPE3gnYly3uvTr85jcmKU5+Y5Li5DcmKU5+Y5KynuBHYgyUX5Nz67tDVbQrnUpzEUIQNZTc2VAnX0TE3UYFv4+6OgL75kq/s7eiUdda9/+LrvYHIAfcaK7OPdqD00aFwTZIRKTzlO4Lib0ZpzBdJn7zG5MUJ78xSXHyG5MUJ78xSTn3Bp5nEeJQzLkkfYeERpoWc6Xu4+fvdFUIvLvU5d0t7DK6X+tCDBfqqJvM1RU3W7Bz72VI0IzgJqN0LDUPnUCpLjk0S4W8jA6/tiax6zQzpfX2m9+YpDj5jUmKk9+YpDj5jUnKhUzseZtoE6qWEKei41P4uT3s6md/Htof72iuU3PovCQMUVntZs3lybu1ipc0iYeYjfW4OcxSKhXyznv0eRulI9Gxb+Ua94JTilruhfaQKC2195vfmKQ4+Y1JipPfmKQ4+Y1JigW//4NEmyk45Z6OtRdeRMTnlTr/9utdiZEwNYQBHYcLFfxIlOqDG28KItJGBSPEKy0RjigX/E4XWuY77Op1dxZQpk2OMxIloWciDUihwSAR3I+QegVSOTH1GZwvINZSsv4y6CKFe64rvpdSwY+uB/tlFn2bMeatw8lvTFKc/MYkxclvTFLeCMGvzfH0fSnvM6euqKOJuuwiIn66eCSxh81ziW3AlF8S3mia742NbYmRCHQ042t8mbbpyVSWS8IZ9twrdMXhBGQQJa/39Z7vDW5JbAA9DyMijpcqSh6BmHo813Lp8UKFWOpbSBOHaR1or0iIpXWI4BJqEiXb9lW/zxiTEie/MUlx8huTFCe/MUl57QQ/EoKwf1xhWSeVMrIDCvrMgWjT1h+PzjMGcYgca3VP72/QqAi4BUM7CBKqaOjGYYswiM42EPyGMxXOyBVJUCkriV/Xmi2JvVtpbDPYFXcMQuAmrONRV/dlCMJgr9J1JMcglVqT2Nvr6vU1Lb0VScijPSDoWfab35ikOPmNSYqT35ikOPmNScqlCn6l4h6WdcK0XBJUyLlFLj0afkEiYBt0bAem7xIk8JAbrNTnSMLQGEQpcqtFRJx0dM3oO0ncKxVO0eEH69DAnp6FzQ446Kh0GI4jgfWYBL+lrm2py44gsTCCy3LXwW9+Y5Li5DcmKU5+Y5Li5DcmKZcr+IGERYLf7oY6uj4evCOxa10tg30wP9DY6pnEsDx1WT6ggYdLlN0f9Z+jMtjRSgU2cvNRiSk5E8mV2MY6wyrWYQb3cgQ9D7vg0IuI2ALn3xa4/rYhFbagP+KQREAsG1bR9BSOIyGW3JQRvK8kVJfuq9/8xiTFyW9MUpz8xiTFyW9MUpz8xiTltavnJ1srTaUhZf96R5XYPVCB6RzUHyBgtPRZwPHLECMr6AlMw1nA0O+jeVlNPY6gbrGREuet7NO56brp/q7AdKSdll4HW2DbvbbSfwDIUvsc/q05Wam6fgr23mNQ+4dwL6XTgyLWmyCEE5LwLMaYtx4nvzFJcfIbkxQnvzFJuVTBj0QIEr9GYGF9vBhK7DnYZL+dqr2X6tjPUrtfCt0f2VVRCAIRiYQcWhtaQ7IVr1b8218qGK0DCYgkfp3QJJ1Gj2tr4Hl3qY/4e3M991FX1+I5ZMfzhfaCeDrVse3UWLNU3GsT/Ei0Le2fQPjNb0xSnPzGJMXJb0xSnPzGJOVyBT8QJsjldTA50eNAOCNoas5oprHScdNt0LE8xYcahYL7Ctxl6NKDGDXCJJdkW5NJukbqB3DeIimtF4mzJIYOQOyNiPhkrNf9S4NjiT0aXZHYjyE7Xsz1WTycaozq9EufkbZGneuIe4Tf/MYkxclvTFKc/MYkxclvTFJeu5JeEjVOZzAlBUQpgkSt8xZO2qDzkHBGYiMJfqVjrfu1lrfSKGhyG0aw4ISus3NestIy3zEIft2WeUZ3+yrGvf+DI4nNPoUy35WuY+l0HhJdyWVJgl+bmI1TpaDMm6Bnx29+Y5Li5DcmKU5+Y5Li5DcmKWsJfjSl5iyQyIYuKJhgsuyUCR0XMVVmXega6e4qWO8KSlFpVDnF2sp0SWxExyHE1llvXAcQ00h0G8I0o4iI0ykInUd63YczFfeGFUw5QnFP13a70R6Tu42OlafvO5ipSBnR4nQFQZT2CvtW4lmMMW89Tn5jkuLkNyYpTn5jklIs+JG4h0MpCsWiCHY3lY6CPm8hr/T+1v1OcuRxfz0SAcvumdx4dC9tTjIaDlFaTnwRUC+8b5faWy8i4l/qGxJ7+l86yOWLnu7B3lJLf0mgG4Cj8r3eVYndqbYlRiv4GIaSRLBoRz0cSdwdVHqNfvMbkxQnvzFJcfIbkxQnvzFJKRf8QDAidxlNu20T/Ii2gQXfFxLdyJHVq9UJRmWZbf3V6LpJyLva25LYbq3OLxL3Dmcqap3OodwZBDGKkTss4mL69ZVSWl78bK5DXCIi/n1DnXYPByp+PV/p2u6D047O3YP+iFdgOvQtiBFtwu5sQ89NbsdrtT5jN7v6jPnNb0xSnPzGJMXJb0xSnPzGJAUFP3S7FTrgSARsY10HnXxfobh3baADGm73r0nseqXCyWjFvQNpUivxQU8dZ79a7UqMyne/atRx9rPxU4ntT1T8ouEXbYLfRfQ4ZCcolCeDI5KOI+ErIuLxQtdsCMLb8VKF0+OFTgjmnpBl06YXcNwmDBvZ7qiAGBGx01Xn3wg+T+LeJx19lv3mNyYpTn5jkuLkNyYpTn5jklIXC3kgstSVig00PKFtGmxbD7nvC133ZqPizoeDWxL7o+aOxH4w1e/7pmGR8p8HKqg8navYdA1EmzuhjrMBLNkEhJy9Rs87nI8kRlNj25yXy3Ou1CWBjtyPg0bXgXrh7UAvPHK1RUTUIIhNoSfkGHoA0vr0oTSWcuNoqWLhPux9wN4vWvKC8oVyaxp6f42Hdhhj/h8nvzFJcfIbkxQnvzFJqUvFGHJaUckrQWLTq4DchdtQ0vnbjQp+f16pQ+/un6rr6+CzFjVs77aE/qlS4WUEwtKDjp6nB/dysFSXHgk+2MMN+sy1TbYlSkutSXTtk5AH+3J9Q52Xt5odjYHweb2j54iIaOD5PmxxacpnG32+tyrdgxNwAp4udE+fdGDoRgWCHQiSERFHcB4cYNKF6cKVPrd+8xuTFCe/MUlx8huTFCe/MUlx8huTlJpUfLLEbtYaI+vkDKbAtDa9XHz/Zp1Yuw/38s6G1sr/aKpq6L2/BEvz7/1IYjfufYrX84d/rQ0g7/dU0b4/25PYwULtuGQtHYHaT6oy7QvZZKnxZETEyQzU65meh/aVnqfdDVXn3+npvtxqdKLNza5e91Wod99ZtfzzBI/eCfwjQf8KROh5Ol397BzU+eO5ruEeNBk9Bhtwmx2evpOOJQvyuNbj/OY3JilOfmOS4uQ3JilOfmOSwoIfiHs0VYZswCRAtdl7S3sJUB0zHUcW1nuNNub84Y1vJVb98Z9JrPv+J3otUxVdIiI++pV/kNi7D9Xy+zmIQ1R/T5CwRPS6KlT1ITZr+T7syQDj1GmUN4mIW7XWsV+BMdT9jj6LVNt+APbcE6hhj4iYhV73C2jWeQJiKomuJLBRc1M6jkTT0s9GcMNV7jmge/Ck0XP7zW9MUpz8xiTFyW9MUpz8xiSlbnPfXRalTT1JLByAs+mjDjR7/AMQd+79lsa2dbrO8upNvJ6NG3rd2w9gAg2IWlR/j8JS4dqQuLddqVOurYEnNaScgnOTBCwSgek8E+hrcAD16i/gnmmE9Vl6E5yCuDeGWAXvRlqbNuH0ZUpFwLNMUqJ+HJ2OOgnvd3Wyk9/8xiTFyW9MUpz8xiTFyW9MUmoSF4ZTdZyRWFEqDI1hPHQEN4U871HQi45+3/yxlt82D3+i17Kj4t7qm5/jeUaPVehagAZ1o1IBchPdd7reVP5J600lvRuFsYiIJVzjsNZngsZ+055SKSq5Awl67khAJLE3IqJPzSyh6SVdIz2LNPKdHHV0PSj4hQp+bc1SSfDrgINxONG9+nLxRGJ+8xuTFCe/MUlx8huTFCe/MUlR9SJYyJlAWS657Kj08ywCRikkxhxD77nP5i8k9vf/+oHE/uSv/lZivbta2nz6BZcn/+fX7+rn9ePx612dQDPs6Po8g7LT0hHNCxCByFHXRmkJNe0BiWn0feMOi8AvQw5UchGS+BzB5c0EPaMkppK7kMS9AQiN025ZSW4btN60tjOYsT6f6v35zW9MUpz8xiTFyW9MUpz8xiSl3oIBHeT6oxiJTSTinbdrr+08NGzi/skjif3dll7Pv/33HYm991MVltokyqanws3dmZ7n45Ue9wBGWM+6eqYDKAemUlYS3UjQahPJpiAOUm9GcunRXs9A0KTXTmn/Rtp7EqQjuFyarpti9MzTNU6rMjF1vIAR6yCQr5svpcKg3/zGJMXJb0xSnPzGJMXJb0xS6mu9KxIczsqGSJDIAuaiC4NErb2R9jP7bPG1xL7aeC6xKzBs4nqt6xUR8bv1dYn98kp/W/tYlqnH0bAKipHjjJxpFDvLcIjTOU3ppXuBaccgLPZhwAodR3tKsRGIaRHcX48EMSo7LxU0qc8gMZlrvlAOlfZqXBe/+Y1JipPfmKQ4+Y1JipPfmKTUNC0Vy0TJzYfuKxKlWFg6b+cfustA6DoYn0jsGKbv0gTjg75+NiJisAm93XpXJXZlpa7BB10Vmx4t9Dz782OJUe85cuOR2EQiYETEfFEmshFUbttAjJx36MYDd+DJSu+Z7i8i4nRFQiWUvBaKe3Rcm7vwZdDNBzn0KhyxhN/8xiTFyW9MUpz8xiTFyW9MUmoa8EB9z6hskcSPBZSizhYsYFyEk2mtvmdwfyRyRkT8JH4hsf2eDgeh3m7Ue3B/puLeCYh7JDaRM+0sIl6pCEU9HHlty/rj4bXAeUk4a5tsi0LeOiIbHFYmhb5++M1vTFKc/MYkxclvTFKc/MYkBQW/BmJ0HLm5up3y4RCvOyQMtTnJnpweSOxoqoJf1YXyXRKwQBAj0Y6cl6Ui56voFUf3QmtG100OP7ru0n6SEesNhnnb8ZvfmKQ4+Y1JipPfmKQ4+Y1JipPfmKTUpSOCcTw0KLtUK31RDQlLIVtqt2V6TSlkIx1OyxqhlqrzpZ+9TErHiJMntvReXsWUm4z4zW9MUpz8xiTFyW9MUpz8xiSlpmaPJxAbwUQTtKAWNkK8TEjco2adNEGmzUZKItRlWm9fJ2gdab0pRuIs1u63uMrnsF22/H6H3/zGJMXJb0xSnPzGJMXJb0xS6qeTQwlSU8gxNYoE4eV1E1NIMCIBagAjo3uVNjJta+BJQicJUxSjdXzdXJGlkJjaq3Uddzc2JbZZ9yRGI79JaG4bK0+jxam/AD23b5PoSvjNb0xSnPzGJMXJb0xSnPzGJKU+mOgo6FK32psqkpAISM1It2odX05NJtsYLdQVeTTTpp40HnwKAuvrtralYupmo0LejY1tiV2ttyS2AY1j5ysVVw8aFvz2pkOJUWNVcrC+CYL2OvjNb0xSnPzGJMXJb0xSnPzGJKUmt9PbXmJaColX29UAj92EseanVdnakusPx5+D0FUKiXNtrLPXNJFoUKl78jqIe7erKxLbChX8iINKHYMREVtdFRufVupq3Z/oSPSjiQqDNMr9Tc0Nv/mNSYqT35ikOPmNSYqT35ik1JfpWDqLCFVCqfBC90xlzNTfkMSriIit0DiNOicRsRRaLyp5Jbdi6WjwiJY+jGuUGGMJdUcF0u2OuievrjRGHstey7ouq7KeiVQmPAbX33mvzWXiN78xSXHyG5MUJ78xSXHyG5OU8vrUNWgT9hooj62rMkcXiXvoiqPyZIiNZiru0MRhEoYiIk4bFQcJ6jVXOuiExL1+o0Lj9oa6EHvgQDyZaylxBJcYU3lraWl0XSh8LuCeTzu6V/TGmreIbn049za4/q5UWr59VKnDj4Th1Rvq+vOb35ikOPmNSYqT35ikOPmNSUpdgUBDlE6XJWiQQwT3drvZ35EYuerIfXcw1X6Ew4kKbDMQ7Sg2n6oQRyXQERHDqZ6nCwLdDMS90qEdJJDSoAvqjzfo6hq2uQ1JgCTINUhi452NqxK719WSXlKfD1e6Nqeh19dreY+Ra7Du6jVOGj3PaKkiMHEy02fxTej/5ze/MUlx8huTFCe/MUlx8huTlHq3p73PaEBHcZ85cM+1CUs0Gff93nWJ3QCB5ulCxT1yXx132MX2MqWCJvVw+y4ODjgQ/Er7I2L5LsQaEGxLS4nbypP7sC8ETTG+3bsmsd+sdU9/f6LXeNzV+/u80bUZgghITr6IiA+Xeo3NSu/vFvUZHOhz901zJLHHkxcS2x/rsJBTEAYvUwT0m9+YpDj5jUmKk9+YpDj5jUlK/f7mDQlOliqcUSnq8UzFNBIB20p6SYSiX6MliGTjlV4jlduuU1pZ2jPvoqB7oXs+nGspKpX0krAbwc7EUnfhLgw12VnB5F4QhpfwPDSF673R8h57Dyqwb4Mw/Gtwnt+AISI/blQg/xTWliYJk2g+XVjwM8ZcME5+Y5Li5DcmKU5+Y5Li5DcmKfXHGzcleAJK+rNK7Yp9anAI/xS0Ke6kpj+b6Xn2O2rl3ZvqcaX/PhDUcwCbUbY0GCWFnP6lmC9o9DYo3xCj48gyShZrupc2SteMjjte6vV8Vem+dPraMHMB6/Vkpd93As/YGBT3iIgp1PNvdfTz13f036w7E/3scr4rsYe1/gPwFVwP9T/oLMECfkHNP/3mNyYpTn5jkuLkNyYpTn5jklJ/ALXyx1Dv3GtUMNqtVOiYQq31GASaiIjhXEWWZ1Otl6ammVS7T/ZJqp8ni26vVoFmq1FRinoQRLBVmQSx0UKbQo5gFDTdM4mApX0W2pqoEqX9BWhtH3e0tp2eiW/g2aHvGy5ULET7ccP39xD29cZC9/XKVPeg39c96B+ViXF0LzQB6jLxm9+YpDj5jUmKk9+YpDj5jUlK3Yda63lHhYndUKFrUKkDagp1zC9ammiS4DcG8YtGRpP4VSpUkdOKpgfd6Onkm+uN1nhHRFTwO0o9B05AwNqfHkuM7oXWhtaBeox24vzrxtGFSOPP4bqfdA/KzgHC2Wale0VjwCMi+g3MAeqpyL0Y66Sod8d63Xu1Pk9HMNkHR3lb8DPGvA44+Y1JipPfmKQ4+Y1JSn0Q6r6iiSgTEPLIxTSG405bRh1T+S851krFvVKovJWm19xsVPD7oFZhKIIbSJ7COu53VeQk0NVY6PojSsepn4UVKIvkYqM9JSG2S+IsORPBZHkw17LviIgH8J2nFTQ97evI8HvgBHwAn30+UcGWRE4qyb5MEdBvfmOS4uQ3JilOfmOS4uQ3Jin/C3O9ISKAgYsKAAAAAElFTkSuQmCC" y="-15696.808968"/>
</g>
<g id="matplotlib.axis_879">
<g id="xtick_1318"/>
<g id="xtick_1319"/>
<g id="xtick_1320"/>
</g>
<g id="matplotlib.axis_880">
<g id="ytick_2196"/>
<g id="ytick_2197"/>
<g id="ytick_2198"/>
<g id="ytick_2199"/>
<g id="ytick_2200"/>
</g>
</g>
<g id="axes_441">
<g id="patch_442">
<path d="M 29.174375 15963.128392
L 151.464375 15963.128392
L 151.464375 15840.838392
L 29.174375 15840.838392
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p99b4a58302)">
<image height="122.4" id="image8949c0fccd" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHoFJREFUeJztndmOHFdyhiO3WnthkyJFDjGkRtJ4uzDgt/GD+BkNA74wDMMYAyPNjEbiIvZS3V1VWVmVmy800kXHdwan1bIveP7vMpBVJ/NkRiXw1x8R2b+8+ufR7rC27m7ILseDjw07F7vtfawbexcL0Y+Di+2H1sXawX9nlRcudlzOXWyZT11skvnPnuYzF3udL1zMzOyzvnSxp53bWsvgs6vCR78u/T34Bvb7emhcbDS/bpHlLlaaj5mZzTJ/LVPYH4Ku7zSrXOyLYeJi/7Tfu9jz462Lta0/l7fNEs/nz5W/ljeFf8bemX++vx382m8OKxe7PKxdrG79tXTwzMbGzMzG0d/Xh8B3Xwjx0aPkFyJRlPxCJIqSX4hEKc9Gn/8tCGcFSDkkLA0g2B0GL16FPx8XIwFrkntxZwLiFX3Wn7VZM/rzrgPiZQvrEBVcy3z0e3s8+nuwhDUaiLV4NQ+D7v8E3h0z2Nsnoz/H5yCGfnpUu9jjl15063Z+b/p3JDWatQcSAv3nh8ILkOvc3/9zeMZy2Js887EMYjkJsYFXMuUBiYC8DsR4GSHEx46SX4hEUfILkShKfiESpTwdvBCwARGiivydIIdeyOFHx5KoQZCbr4BzzNBzFncuB/PnvYWYmVmd+fPe537tYgDxEkVAv8YSrvmQe6FqD/vdk+svsDczcPMtQSQ7guNIqHzW+3VegTPx8a+8uDd/7QW2ofbX93TcuJiZ2UhCYOtdmju4lncg7tHzNMDeEiQMWu6f2RwEYDPOjWhhkURJXEUI8dGj5BciUZT8QiSKkl+IRCmXoFWcgOCwAEGEymDJPReCRLbYssUBnIkkvPTgdmsjS4w7EEm2oy8vNjNbgfB2CoLRAL+3gQJOF1mAmEbaUG9+3Q6+rwwKfv4cScg7AbH4MYh7LzvvlHvxya2LzV/7dYtPj10s3/ny20XrxUIzs0eNL4Penfv9+X7wpd997vesBbdqP/x84ZqEuAxEwODnQdyjHCQnod78QiSKkl+IRFHyC5EoSn4hEqUkd9kRqEgnUDp6kvleeNvCizEN9OAzM2tB6qIyXwIdeSDGkKDSgxAXK1TWUOZrZnYFQuAMhJsjEGiIBhyDI8SWIMRN4ZqpA18VEPwmUBE8oWcCjnsO4t6vl77H3dnn3uFXvnrmYtkxlOTeejdfPvXlwGZmZemfsRyesT3c/i3caxKL6ZmNLbWl564ICH6xzygdx64/IUSSKPmFSBQlvxCJouQXIlGw8VwFmtsCxKETGMawhUEXh4JFMoIGdKATEESWUK/Au5ATkPr/kVh4CLgDV6Mf0tCDQEdOyQLEGCzfhPM5BikPHZoQg9MzM7M2TpO0Es5xCQNfHn3iXXaTLx+5WP7qpV8E9mbcebEw1Law6/z+NCCSbmAzqIcjPYtEbB89EvfoWTSLF/Ko7Fg9/IQQP6HkFyJRlPxCJIqSX4hEUfILkSglCb6xau8U1Mc52ICXhbcBm3Fjz1gVn5t/Rlp+QfmsQAEmJTVEDf9SNJlfm8ZiV/APADVMXcKfM9RYkyCD9TWMqjYzu4Dz7kHZf5b7f3uWMHr7t/CU5Z8+drHs15/5k+n9M5Ld+F4AoddYpDiPfxbENuaMbRIbO3EnBNXkc+1+ZI1/9MpCiI8KJb8QiaLkFyJRlPxCJEpJchGJQ1yR76EpMCFBJLq+mUZqk1BCA1Ei16jAUjkDQYualpqxeNkMcYJmCd9JwukEzpssxN5obLbK/Ll8Y2CTNbP3HYzFhut7X/jJN9nUN9z88s2Ri51SvfuLz/3JVL6xZrb1gl/xh7f+s2Y2W/r+ErNLfy1kqI0dvf0QSLhu4bkxCz230FgXnmV6xvTmFyJRlPxCJIqSX4hEUfILkSjlAkZGV4UXNbjC+GGQEEhjtqcgvM1hQg5BIskMPntS+D4ES+hXgGOWzawGSbQdvdjUkTMRRED6Vd6BC3ENDj8SAddQm37ec9PLaxD8YuvY35d+H982vgnn5xfXLlaU3glaPP/Cxcb1hT/u9Td4PrNv/+hj7/xezKDfwX2mT92FhEESqSnWBQS/Fmr/qxGa0UbmkN78QiSKkl+IRFHyC5EoSn4hEqU8BiFoAWWZVU7iHAiDIJKEXHHHILINMBZ5Bo6lU5gWdIwCXRwVNUeE4w6xNaJmtoPS2AYm+3Qgug4g2tHKe3Du0T0goTHUjJSclxU4DucgItF4b2JYebFxXL33saev/fnNT3zs1MfMzIo5lbz64+Cx+8XfjLFTfO7zeQKdgHL4CSF+RMkvRKIo+YVIFCW/EImCxj2SgTpwofUQI/niUc49/Arzgt8RnNJz88LS3x38Si8GcNTBGV2AUHUJrsZV4a/vJjAaZp/5OP2yUmls7KShevDFuuQ4JBGJSjpJBDIzOyl8Ge0cxNQXuS/p/U3vj3uUe3Gvv/b3avzdf/jjOn+c1X7k97jyjkEzs/25v4fXe/88bqZQGg33isptqXcklpw/kNgpQDyOWxN7hBB/QckvRKIo+YVIFCW/EIlS/r7ybr53MMzhEtxqVCZKnIJgZ2b2FOK/7v3v0W9bL3R9/mLlYsevvXtuaLzwcv617yn3p7V3iE2hXLIs+PeyBhfiFFxxBAl+sSIgEdvr7RiEPTOzEyjLfQni3hejF85et/7ZmU/8tew/gGP03/7bx757509wALfi7879cWb25ms/Cvz3UDr8LvfPTt2BGxNEwIcM48DR2QHXX6icPGbtFs5bb34hEkXJL0SiKPmFSBQlvxCJUv57sXPBBlxssY6lCU2XDTjJnoG496r14tDLR97RReLe5DM/MMJ6fy1ntXec3Wy9yFXD+fWBktUaxL0VOBuv4Djqj7eHqb+xJaEk+OH045xFReopSCXPFfS9M/hsffDXfP6dF12Pb72wO/vqg19hANfmW7j3ZvY/g1/nj5Xf7wvot1iTYzRyEAsRW75L03jN4nsKkrhHxlS9+YVIFCW/EImi5BciUZT8QiRK+W2/cUFyGFFJ5xLEqwUMkTge+TfmrPdCydPST449eepj1QvvTsufnflFoD/e7FMv+J2+82vs1iBUduxWbEGMWRXgnoRyYhKMUFgCwY/EoZya1N0DcrGRm/MDCLlF5WNN5+/Vo53fm6PGi67zS78u3FK76P1nzczOJ34v1uBW3YGjMnZQCQ7jgHtKPS9xKjUM5zCLFwzp/tG16M0vRKIo+YVIFCW/EImi5BciUcodDJGYQB+9OWgNMxL34LMnQcHPiyxnz7wYt/gbL5IVX750sezFC79I44W8EibEnr33wucATrJiy2WwXefdfOdQRhtb5ttD2SpB2h6JSNTDL1Qi2oI4dA39A2nAyqbw92oF5c5PBx970sHz1Pnj6Gm6hb02M+tpQAccR5NtJ3CvaG9JIB/R/eiJ7bdnxlOt2Xkb+exEHSWE+OhQ8guRKEp+IRJFyS9EopToYooUSUo4sKJYoOJxCi6o5WMvLJVfvPLn87f/4L/w7FMfu/KTX/PHb11s8sSXDc9WXgytah5AQtBeLEBEmoLrrwQBi4ZDRA9tuMc0WJokTBrSAca7bDL/2dvMu/luwP24AVHySQ/7BSJXF+p7B8/eDARocqsuc3+OC+j/1/T+mjPYG7oHsWW6ZuwEpRg5ILFXYPTKQoiPCiW/EImi5BciUZT8QiSKkl+IRCmp7hgVRPgwje1uKRYQmvegho/kx5x61dUW0LCx8krsCBbice8bM/Y1jGhuvAp/M8K5mNkaRnxTI9Q5qMqPyqWLUU32rodx1ZHQvzqH0MQluNljBg1A4fM7UOy3mT/vLTQ3PeTeOt1CH4kjsF2H/suAQ20GR1OT2Ue57xGwLX1DUGzACv8AxPYHCEGfJ8tvQf8AaUS3EOJHlPxCJIqSX4hEUfILkShlbLM/mgLSZD52AOFkF/iNWYOF9eaDF32WX71xsWzxX/4LZ16gGd95e2/71YWL3b71n72C2v3rQN34Bi6xB/GTGpw+AxGpBNvnTed7HWx7b4fG+wcNQYNEvhJ6UAZJBGzgC6lnQAnHzaCZ5UB9EgIWcroUsl0fjf47DyA2DqUXmmdgz77p/b2q4V6RiEvNW80CY79B0JxA/wQ6R735hUgUJb8QiaLkFyJRlPxCJEpJ4kILQl4H4g6JNuRqawIjjK8L/9vz3Y0XVKb/unKx42//08Wy0qsfre/VabffeyHvw7V32V2Yd/NtA9NwOgiTsER14+SKHIu4sc/EDkZL38ddRm6w2GkxJEr1WZyAfMBnx8empHIF6uKpl8QEYsfUmNNgShWIaZ9k1LzVxz7kWxe7yeKEQTNu1jmHvgin5cLFTgovaOvNL0SiKPmFSBQlvxCJouQXIlFKcmmhGEMlpubdXORMoxJDM7Oi8OJJBSWz/fePXezswosipMW1gz+fLUyLWYMQt4YvDJUn06/oBISpKUxymcKnp+AEnINLqy3iGorSPQ019SSH2BTcbgSV/hJTWIP2sAeRq4U1Cpxcw9dYwqF0X8hx6GVhsx7u1RJciEewhx9AGFyBO9CMy7yX8PmnhT/Lx9BEVW9+IRJFyS9Eoij5hUgUJb8QiVJSqWcBQl4NfdgGEF5aEBD34Bg0M2tAAGlhIgr1cXvSe0GlAhMbrdxGCnl7EIuoxaAZ9zgkCaqnPQP3HZUDowAFU2UIEvxC02IW8J3zSMGP1qGekDSqfBY5vpwckQYuQjOzAabzkBuTVqZvpJ6XNFL7MZQIn5l3lj4Dh94H6GVoZraFcmlyjL4wn0NPYB/05hciUZT8QiSKkl+IRFHyC5Eo2MPvAG4nUs76PNIdmIcEPy9gdDRTGcoRWxCrFpFVqyTE0XAHEgF3AcGvBiFvA5LRBvanhs2lEmpyT1LZaQGl0iQqTqDfopnZEsQ9Gi1O4tcBxcu4tWfwLqLt3tOQDDjux9XvEjuuPHao+RzO+xQEv1N4yE5BajwN9Im8BVHzCNb+FSiaZz2Md8dVhBAfPUp+IRJFyS9Eoij5hUgU7OFHkJsPJ/yCYDcOXG5Jvd2ICgY3VOBC6+G3jKQTumJyfZGTbBMoWV2Di7GhQScgflHZagFyEzn8aG/oDDsQyaYhwQ92rQKxkUTEGvs/+s9OImN0LeQipX01M9uT4xD2GweGwP5Q+TUpg9S/kb5vDhc4I8HdzDK4B2dgOX0M4t4RlXTjKkKIjx4lvxCJouQXIlGU/EIkSkmOPNRO4GciB2GigNLBFiU2Zgefvx1bF6NpuTmU6pKkdQAZaQ+xBgTJmvbL2HVGYhVJOSQEZSS6wU1YwGdJLKRQqIC2gPtKJcY9lTyDmEZiYxnpsiP28ICuYVCJmdkOnh0aSkKl0QvYoQmIbiV8H/UZvCHHJ2wDPZ9mfN5HsI8N5ME4QL7gKkKIjx4lvxCJouQXIlGU/EIkStkPoO7RTwIcRgIE9YWjHmdmZgMcS9NkDyAYrqGfWWg4yF1ItMOy2kjxyozLbalElcQ9crbRLahAiCM32JKEWLgHJOKZmR1gG7d03ZGaHa1DE3lJOKNnDMXHwLXQ3argOaH7cgxlzNSbDwU/OJ8aBOQ1DsNhURndhSBUUrk7PTt68wuRKEp+IRJFyS9Eoij5hUiUkgYqUMkj9WHLQKygqbgFlJ3+sDisHTnUYgODRYgOro+GHzQQIwmJhCEzsxk48kgwot5uR5ECHYlXUzjJEzhwCmXVexprbGYbuF0j3EN0RcL7hEpwyQlIjkp0KwKh42gQCN3DJfXSg3v1BJ5v6h1JE543hT9wNXpn4gZciWaBsmrIly1MQJ5oaIcQ4keU/EIkipJfiERR8guRKEp+IRIFS7oHUGIzUBXpXwH69+A+sJ2TJrT4fxpIQSbbJ9V4H+CfCxyJHRhVfYRWUB/7BBouHoMSn1HPgUj78gIs20cQ62hMkfHEnw7uyx7+Aahhz8j6TI016R8Xeh7u84zRvwD0nQRZdMl4G3s29H07uObbocHPk02+halZDfYmUD2/EOIvKPmFSBQlvxCJouQXIlFKqr/PQFiqwBKZw2fp+yhmZlbCd5KFkQQaEiWp7p+spSTuUR+BCTQJpQaOZmbLyJHMJyDuLSBGIhI4NFEE7CMFrWlgys0RnHcNdlWaSoM9FeBiaAQ52bgJmhRF9++HpeOeEzquB5F7X3jB9wiETxL3rkFovh38cPG6Dw8cvwvtBd39Ip+6mN78QiSKkl+IRFHyC5EoSn4hEqWcFd4NlINoQ6IdC3YQg/piM7NZ7sWTCTjlYmu6sbEjCEEUI1FxAq4oqts3M5vjSO04wPSHdHBfsNkmiHMzUAsXgelDU9ifBYiAU3h1xE7iIcE2VsgjcS4kFpI7dACBtcm8026bw6QocHjSJCW6lhtw7q37nYvtAtOHKAcrcJGSWEznqDe/EImi5BciUZT8QiSKkl+IRCnPqqULksMvdjpPAb8nJAL+cOzPH9NMggoKRpHHxf4Kho6jdqI1OMQyEOPm0MCT2MFhDZxQD4rPFNaYBpTGCYhkp3BsDQ7IW7jXNYikLQi7BuWtJD6TiBea2NOCuNeB0HmAtUl4u44UNEmo3A9eQKQYiaFmXGpNZb7o8IOo3vxCJIqSX4hEUfILkShKfiESpXxSHrkgOvzgdyJWsCOBzSxejKMYlmCCyILizgC94uCaqafcOjApiPaiAUFsASLpNFK0IT8e7eGESrJB8DuC6TNmZku47k/AAVe23h06gK8xj3SRbmBvGhphjb3+4kt6STCkZyLWHRr73FHPSyqLnwQcsZSDBPathKdHb34hEkXJL0SiKPmFSBQlvxCJUj4rFi5I5X/Ur4362ZHjqA6Ujm5BPCMxhwY8kMhCvfm20CMt1lXVFbBuQLxsoEfaAsSvGext7BAJ+qWmcdM0Wpp7/TEVjMo+Wfh9XHT+XlX7uY+Nvgy2KH3sHM+RBl24ULCHXwvPBN3/pvcxEu2iRUAYkkKj6qdUpgtCsVm4F+Zd9pBD15AHevMLkShKfiESRckvRKIo+YVIlPKVzVyQRKkFOMQWIcXoDuuAY+kS+qFdZTDYwCjmBYwWSjB3vY/RUITYEsxu4IvuSnASggg4AYGOXGgdnM8UPntmfo1jKKGlO1AFSkcnJaw98yLSvPD7Yzc+tN9TObA/o3VkySo69EDkMosX9+g47B9IvQcD+3gXupbYsngzdqHSOTZ0LSDi6s0vRKIo+YVIFCW/EImi5BciUcp/PIC4B+6kJfjBpiAi9CAM3gTGV7ytvDA1LcDtBiGatLqGA8mltQfBh0QbEndCbrwSXFkk5pDjjFxsXIrqY0sQTYkpGOBmgTLYsgChC4Z2xM3U5TcMfZauj4RPGtAREvyoVDdWyKVngkqRyZFH4hwNuYl17ZkFnISwkznkoAQ/IcRPKPmFSBQlvxCJouQXIlHKv6/WLrg88g646RwGKhReENnvvLg3v/SDQczMbgdfTjxANWMLogYJQSTGkEBHYkzsryAJcWYsLNWZdxfSAJNYh1gJJaG0N23gHO9SBI6DORdW174P377z13Ld++M+lODmy2FSLgl5NKCDeuaFnJcPKMtl4p4nEvfo+SRIxDMzHL8b++xQmbbe/EIkipJfiERR8guRKEp+IRKlPH20c8HZqXdATR6BCAETZ4srf1x17cuGzcw24ES6Mi+SraD/WD3GlWDSAASKkWBE7quQwEKCH5VwttT3kPq4BSYb36WH82lyvw9bcKG1gd/+tvfHHkCJvRn9Pq4Kf9wKltmAqEWDJagvI7n5QiJZbFkuQcfhOhAaYUIzPU80tTnaOmlhAfoutA968wuRKEp+IRJFyS9Eoij5hUgUJb8QiVIOoLiPPcSgXDoHET8voSa759+YGzj2avRq/wZi2KQQFE1SWMl6SeosjhYP2EBJ7SclNvZ8CmhmGTtumiYkURPVNdiFzcymvT+2hqagV6Ds30I/hh3sbQuxDtR1UvapHr8N2Htjlf1Y6PvQQgx22uja/UDDW7IHYx8KGnNPvQnizkYI8bGh5BciUZT8QiSKkl+IRCkHEPe6PVhQay9glGgthFr5QBkzDHLBcdzU9BLFOAAnokBsT2IaNkxkcjh2wJ4Dfu0J1LaTvbeFZp3UzLLJ/FneQOy8YGFpMF+TX8NNvIFXB4l7NcT21IcgslknWnYDzwPV2lPsIbXyCAlxsA/YW2IMvZN9nPaCnjvKF735hUgUJb8QiaLkFyJRlPxCJEpJTTjJxNbtqL7ci0g02YUmwJgZeMYYHFmMZdDkyIPvA9GNnFtt791lIRGI3Fck7hUBV91dqOcAufmogecBbuAa7tU7cBGamW1B3EMhj84HjmvguA0492gKE0HTkabGk4tCE5buQvefBDoi3mUX9XVBYmv3KQ8O8CzrzS9Eoij5hUgUJb8QiaLkFyJRShL3DnsvNo07cEpt4gQImuxiZgaDXGwKMuCMxC9yMYG200Q2Q6SSUIqFSkRJZEF34QDuyTJutDiO96YpN+TwMxhLHRCQLkC8pPHZNBmIxS8PCZWxI7EnmX8eQkIqCacVNCMlYXCfxY3yJjff/wVcEkzj1KHsGM5bb34hEkXJL0SiKPmFSBQlvxCJUl6ueHz2XXpQ01ooPWxAsPsQKB1d4dhgv84c3FvkdiNRqgPxi8Q0KoO8z7QXEqvoHEmYyqGsmlxs8xzGZGfQXJEcmrDXLcTMzKrISUWxMlecx47XncDzNJDzLrAIueKoZyIJfnRf9iCc7nF61M+fChTr5AtB4rMEPyHETyj5hUgUJb8QiaLkFyJRym/GuQtClS9KEDsY0HAJsT8XIEqZ2Z+GrYttQTyhkl7Sd0hgo+EeNGAj1s0XKumNFm5AY2tARKLebihUUT86+EnHMuZ7CEt0ZGgs9l1ITIsW9+j7oOSYxFmze4ywhrHmDymhtchycDpvdBEGwDHig3r4CSH+Ckp+IRJFyS9Eoij5hUiU8m3p878iwQ90JRrG8D73QscfQNgzM/u2XbkYTWClEs4KSjVJ/Fj3OxfbdX7qb+w019Bx0eIQDfKAzaWea3W+dzES8iYVlLyC6DYBAdHMrMKeiVSCC9OcI/eBnJxlpDBI19IYi8oHcHMSuI/w3MU2nqTrQ1GZSqXvIfiR4Esu0lnhXbJ68wuRKEp+IRJFyS9Eoij5hUiU8gqcTeye82xABHo/Ni72fbfGxa8OGxcjwQ/FGBD8iH3vv68Fhx85oO4zpTX2WO7DFgc5t0LOtrvQ1N9J4LcfBT86H9ozOI7EL3rGaF06kxb2cBvY/x04RsnhSZCoXI5x5cAUK6D8mvoyhsBhJbkX8io4DvsjRq8shPioUPILkShKfiESRckvRKKUK+hxh1M+afIrTFr90Ncudt2xw6/uvGONxDgSTw7gJKQBD1QeScJZtMPvgf3V0JEFAhaJNnR9sdCvPDnqQvGRHGtwPtRej86bXHq0Lg332IIofBV4xja9F6BJJJ2BcHZc+nL3ZeH7KB6NM79u7tetB/+8k/gYEo9J5J7D+UwzEAFB8NWbX4hEUfILkShKfiESRckvRKKUNU2DJZEFxL2bwYsaV5137W06f5xZwGmHk1r9Z6k0FoaT4veR6EaiIk1fvU8PP1qHxC9yblEs1h1Igha58UKQDIiONXSxxR1Hbj4SmklUvui9uHfV+ufOzKzuvchG9IXfsyfVsYt9lvsY7dd1sXCxSygv3w6+vDzUG5F6WU5BBJxCKfIMYnrzC5EoSn4hEkXJL0SiKPmFSBQlvxCJAu07WRluQHVdg12RlH2qqTe7X738L/nZWNV8BK9qyGJLI5nR1gpr/+JqP6jFLU2GIS+umWVk746czkMqfkXjryFWQ9eIa/hHiezi28A/StQIle5LD/ZeUsi/GL2d9jGM8l4VUxd7U3ob8OXo1f4acs2MreX0L8w0sneD3vxCJIqSX4hEUfILkShKfiESpZyAiNSQOASCDzXbpBjVz5vF19CTWBVrpyWRjGIkAkXbgO9xLAl589KLSDSOmwSf2Bp/ss52AcvvCPeaRCgS7WjCDh1H57MHq/kGROVd70UyEvbM2OqcU2077OMMjnsOy/wGRMl158XCE5ik9L7wa6xzbuq5x4apcTlEvRL05hciUZT8QiSKkl+IRFHyC5Eo5TSyrppGHVPzQRJY7tP0kj5PTTi57h8aT4LA9v/1k0ci4KTwos8C3GAkSnZwD7jOPu4Cu8C0H5LOYkddk4BMZ0Mrk6hME23oebjPM0b3hSbfLKER5jE0jVhWUJN/8GvMB/8sLqBZxRC4f14Wjp+aROjNL0SiKPmFSBQlvxCJouQXIlFKEgdoOk/zQDdfLPR5FHioueYDJtqQCBTrQAxBn48dN04Ov3yIcyHiZ3EKD0OCLzV1JZGtIWHw598WHu99j/tMInDs5JtjKOkt4J7uwc23ArHwsvDnsoYx9+TkMzPrAyXYd5HgJ4T4qyj5hUgUJb8QiaLkFyJR/heayvXBFUj+/wAAAABJRU5ErkJggg==" y="-15840.728392"/>
</g>
<g id="matplotlib.axis_881">
<g id="xtick_1321"/>
<g id="xtick_1322"/>
<g id="xtick_1323"/>
</g>
<g id="matplotlib.axis_882">
<g id="ytick_2201"/>
<g id="ytick_2202"/>
<g id="ytick_2203"/>
<g id="ytick_2204"/>
<g id="ytick_2205"/>
<g id="text_111">
<!-- 609 1839-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 15949.023392)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-48"/>
<use x="111.230469" xlink:href="#ArialMT-57"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_442">
<g id="patch_443">
<path d="M 164.424375 15965.630155
L 286.714375 15965.630155
L 286.714375 15838.336628
L 164.424375 15838.336628
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_883">
<g id="xtick_1324"/>
<g id="xtick_1325"/>
<g id="xtick_1326"/>
</g>
<g id="matplotlib.axis_884">
<g id="ytick_2206"/>
<g id="ytick_2207"/>
<g id="ytick_2208"/>
<g id="ytick_2209"/>
<g id="ytick_2210"/>
</g>
</g>
<g id="axes_443">
<g id="patch_444">
<path d="M 299.674375 15965.630155
L 421.964375 15965.630155
L 421.964375 15838.336628
L 299.674375 15838.336628
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_885">
<g id="xtick_1327"/>
<g id="xtick_1328"/>
<g id="xtick_1329"/>
</g>
<g id="matplotlib.axis_886">
<g id="ytick_2211"/>
<g id="ytick_2212"/>
<g id="ytick_2213"/>
<g id="ytick_2214"/>
<g id="ytick_2215"/>
</g>
</g>
<g id="axes_444">
<g id="patch_445">
<path d="M 434.924375 15965.630155
L 557.214375 15965.630155
L 557.214375 15838.336628
L 434.924375 15838.336628
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_887">
<g id="xtick_1330"/>
<g id="xtick_1331"/>
<g id="xtick_1332"/>
</g>
<g id="matplotlib.axis_888">
<g id="ytick_2216"/>
<g id="ytick_2217"/>
<g id="ytick_2218"/>
<g id="ytick_2219"/>
<g id="ytick_2220"/>
</g>
</g>
<g id="axes_445">
<g id="patch_446">
<path d="M 29.174375 16109.549579
L 151.464375 16109.549579
L 151.464375 15982.256052
L 29.174375 15982.256052
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_889">
<g id="xtick_1333"/>
<g id="xtick_1334"/>
<g id="xtick_1335"/>
</g>
<g id="matplotlib.axis_890">
<g id="ytick_2221"/>
<g id="ytick_2222"/>
<g id="ytick_2223"/>
<g id="ytick_2224"/>
<g id="ytick_2225"/>
<g id="text_112">
<!-- 611 1839-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 16092.936253)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.121094" xlink:href="#ArialMT-49"/>
<use x="166.736328" xlink:href="#ArialMT-32"/>
<use x="194.519531" xlink:href="#ArialMT-49"/>
<use x="250.134766" xlink:href="#ArialMT-56"/>
<use x="305.75" xlink:href="#ArialMT-51"/>
<use x="361.365234" xlink:href="#ArialMT-57"/>
<use x="416.980469" xlink:href="#ArialMT-45"/>
<use x="450.28125" xlink:href="#ArialMT-49"/>
<use x="505.896484" xlink:href="#ArialMT-50"/>
<use x="561.511719" xlink:href="#ArialMT-48"/>
<use x="617.126953" xlink:href="#ArialMT-54"/>
<use x="672.742188" xlink:href="#ArialMT-49"/>
<use x="728.357422" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_446">
<g id="patch_447">
<path d="M 164.424375 16107.047816
L 286.714375 16107.047816
L 286.714375 15984.757816
L 164.424375 15984.757816
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p38d5f020f0)">
<image height="122.4" id="image1659b9980a" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUuv3Nh1hTeLrHfdp66kVr/cbtsdIIMEyCT/K/mJQTxwYMCIB3Zsxw231FJLV7qPuvVgFV8ZuDO56yPAjjPqs77hBqt4eMhdBFatvXc2Kl508Yj5ePo4FE/nZxqbnEpsPppIrOoaiUVElO1RYut6r7FqJ7FDXeF3PmY5mUnsfLyU2CrX4yajQmLjLMfzzLOxfifEZj2ff0wJe3aMVmJdyO2LLDKJ0T14aA947pt6I7FNXUqsbvU7zye6t/88+0xi/zrWe/rFv/xMF3P5RGNvv9O1/PbPelxEfPiV7s9v3j2V2C+netyvmw8S+++dnvtD+SCxstZnu+v0HPlIn4ez6UJiEREfzy8l9nfTZxL7h2wlsU9rfSZGeBZjzI8eJ78xieLkNyZRnPzGJEoxzlXUKkCEyDP9naAYMcpUbIiIyCBOx9J6skKPm8C1nBTzQbEZiHN96yZIUFPZLGLf1YPOk4NoR2LhZODv9xE+W4OAGBExA9G2yfXYLNc1fjRWYfgXnQrI589UTIsW1jPWtcSZnmP0TMXniIj5xbXETt7qPViEPjsT2DN6FofGWhD8FiCuX05PJBYR8enkQmKfj/RZPm3geYJz+81vTKI4+Y1JFCe/MYni5DcmUYpprkIXCWck7rXgLvshkBOtAJFlnqvoUxR6HAl557nGliBoDXXFHXvciiSeHVoVlug885Heg9NM13gWetwc9otcfxtYdwkiZ0TEAvZn6HGf5ypWfXnU9YxPdD1dpa5NlFwX6iLMnqr7LSJi9okKi1dfq1vxolXB8ATuwSJXgW4/VjffULH4dKJuvucTFTQjIp6DuHfSgTgPadmQuD5gfcaYHyFOfmMSxclvTKI4+Y1JlGJagOAHpawkYFCJYpOxa4wgEXEG4hcJfqcg5F2CIHI2sKy2gWt5yFSwu+8pg607vW6KDXXzrTK9B+fgQpt2IFSC4NeC/lTC90VEHEcqak1hPU/gHnzVaWn0Z6Fl2vkSFtSAmFqpmBZTPUd2yg6/4hMoRf/4XmI//1qFt29nGttNVFgkEbBsdN1lq4ImPe8r2P+InnJwEPcq2NoKjvOb35hEcfIbkyhOfmMSxclvTKIUVHo4BsGPnHdUkkuM2KeFItIMHIfkgHsyUtHnChxZQx1QJYlkECt7evCR86+FY0nwm8JxS9obEPfGPXurn9Xf+fMeh9+MSlThPD/pdL//8aD78MmnKrAVVyDajXk9g+j5bLZS0W7x+Z3EvrrTWHWn4t7pVMtq3+TaM+89CMPvWxU+99DHsg8SpUncPcIjMRrZ4WeM+R4nvzGJ4uQ3JlGc/MYkSkFiHIluUxDdaIAFxcjBFsEOv0lAqS6Ujl6CuHcO4t4KhK4CBL/NSIM7Ki/uccW18DM67in/lfUM/A2mAmqK0W4vIPqk7RH8QFg8BePmF7WKWj99rsLZyU91H0bPYBjHAoZVQA+/DJ6brq+f5ESvMT8Fx+hzFeO+3OswjuagJctTOMcYBDbidqBgGxGxDyrLpnyj8nvFb35jEsXJb0yiOPmNSRQnvzGJ4uQ3JlHQ3kvKPtUdT8CCSsp+31hrmoiygO88AYWd7KpU274AmZN+8Wr47AqObHossWM49gi9DUqY2EOjt+87rf1uM5j4Av9wTOEenMF+Pe35M+KihtHboev56FxnEq1e6D8A+ZWq+NkcatZzeE5GcLco1mfvXWjPgexErcXFSpt6zud6zSel7s0S/jVZwrN9As/OcaT3vq9JLI1t38A/ANQkFob4+M1vTKo4+Y1JFCe/MYni5DcmUQpqjrmABoIzEOKoxp8EP6pX7/vOUxD3ziBGYtwCRLs5+F8LHFdMioiue9bze7kDW/JDpmLMWxBt1q2KTZtQ4YwmDdFkH6rTJxHw0NOP4QDW1Ar8y3UNY6ihmLwrVeTstmqnzR7UThuF3vtupiIeioARESuttR9daVPP4lrFy9lSBb/Te4i1usYbGF8+o4a18Nz0CX403n0N39mA6XsCx/nNb0yiOPmNSRQnvzGJ4uQ3JlGKi0IFkdNcHVAkzrGbj2r0+TeGpuk872AyDNiTSMgbg5A3azVGgt8CRtosQPjqE8keQByky34Ln6UmjgeY7vIwUhHwAcTZLcTKTGM76NsQEbGBa6lqPXax1e9c3al4WayoSaXW/UcFI80P+tnsDKbzTHnKTdD9Atdf/lzr9Be3txK73OwkdnWnoustjLlfw76uyUWK1fcRJUyAauD5PlDzVxAW/eY3JlGc/MYkipPfmERx8huTKMXTYilBco2RaEfTYmiMMJWTRkR8VGv8MxB9LrNhU01aWE8OZbAjaNZJDray0Wspe34vJ1COegeCYV8z08ccqfS30VjVaqwcqVi4zTW2g5HmERF1poLvFK7vWQMlqgcVm+qNrrE96j0dlzrZJwdBa1TptcRUn9leoGQ5W+o1T15o7GyjzsQXez33faUC4u2EGmvq9e1B7I2I2IEwXIK4V4ETtIaSfL/5jUkUJ78xieLkNyZRnPzGJEoxB8FgCW6gFfUkg/5xV7UKWp9VXKL46WQtsScfbyU2WcL4azhPS43KBnIsdR+2DyqcbEoWlpoG3G7FsB6F1B9x16ibr4JSz2OomNY04AQD11jfpKAzcP5V8EwQ44muEYxpcbzX7+tqPXBSQJkviMLY/y8iotXvzCYwdQl6Co6eqPt1ulbR7fxeXX/P3uj3fdtprAFBegvjvSMi9o2eu8qgXBpERIr5zW9Mojj5jUkUJ78xieLkNyZRihbKW0mEmIBL7wmUwf4UxJgvz9S5FRFx9TMV98YvVBTJZj/AvfX4s+Cy644qStXvtRR18U4Fltl7dX1FRLR3MAK7UQfdFQyXuBvpd5bgyNs0ukYScsg11pDq1gPJpiSnZXSeRp+T/a3ev/0OhsA86LOzgjHg4wftt9c3oZsuJl9BefoL+IJcY1kxTFTOSWCDMnTqt9dBTkYMv4dUIk7PhN/8xiSKk9+YRHHyG5MoTn5jEqWgnnsUW4G49wwcWVe5ilKrc3YsFRcw9OOplkJm5xCDPmxxosfFGMTCnQqN+bv3+tG3NxKbfaduroiIxTcqsoy+of5qOrF2X+i1lDmU74LDj3r9DXV4sawU0YDgtAER+BqcicU7HYhBZdVQqRuzHTgYoUR4ca97XUxYDMshPoHS6NEpiKmwyPJb/b53cM1voI/iGhQ/EtxpGE5ExBh6ANLnSTCs4dnxm9+YRHHyG5MoTn5jEsXJb0yiFDTR9QkMzvgYymVfdCrknYFwMipYWmpLFU+6EoY0ULnm1ZUe9/lXGjt7pufYqJCXvX+tsXsd2pBv1V0WETF5ey2xxW++1eN+pdd8aLR09BZcf/eZ9o/bwT0gcYeg6cAREddQdkxOuc1En523rQpdTxq9/ysQ0xYNCH4b6KMIIuBsCmW+EbGAgSH5XGPNe93b4wddz+s/n0vsj6F9ML8GnfltpuJsDa69PsFvMvC+0OcnI/2s3/zGJIqT35hEcfIbkyhOfmMSpVhBH74LGGBxCYMOTqbDnFbUby8i4vgBgp32bKNZsvnVE4llJyoC5i9+oac4qMOvhc9m9bBhIRER3VodgrOP/1NiX8avJfb6l+rw+90Myk7BeUnOvarVe0WxH0I5UkGNJgTvcupTB2IT6HNjEJUPUEqeV/p9kzFfXwbuwgC36vFan9u7b9WN+fqosZcwIPhV6LNzDb35duDQHPVMgp7BMI6CpmKD4LeEz/rNb0yiOPmNSRQnvzGJ4uQ3JlGKisotQW8gj14DB9ZHEKVacCZFRGxB1LoFN9hOh3ssrt7oeb5S514H5ZtRQJ/A1SWvcSi5Xkt39o0edqHCywoGbxQ9os9jqKSzBdcY9X/b1H1FvXCeHPr10VMBr5M5XMspDYEBu1oB55iNdb+W4OSLiJid67EZOE5piMhmq/fqFtymt5nu7U2n61mD4FfDMJW85508hn6UNHhlAaXWS3Dy+s1vTKI4+Y1JFCe/MYni5DcmUZz8xiRKcdOpvXBK6iyMm55Uaks9rvW48egHTIshOyYwu9Za+9HNdxJrb6BOf6b119HoPgT8U9DtYWR0RHSv/ktjv/u9xHZ/0PPcghJbw33BZo0Dp/OQvZemuEREbGFKDinQZEPNQbFfQOPJC5iGcwH23knouldLVdLnF6z25wvYM/gDqKl0PVUDvQTgmjeZrnHf6klI2SeogW4E27tJ7acY/XfkN78xieLkNyZRnPzGJIqT35hEKa5bbVzYwGSRGiyxW2gK+LwG2yb0AoiImJJ1E8ST1QEmldzBhJUbbaIZN9pEM0Dw66h2/0FFxe7dKz0uItrf/UFi239/K7H//pP2DfhmrL/BG7D8NiAYkbhHMbL8tg0LUCOQh2jscw7juEkYvIF6/u/g2TkrNHZV6b2nCdbNgd9jNHWnraBvwF7PfWz13FtoLvEACmJJqiJAAik26uw5lsTBKVin6bN+8xuTKE5+YxLFyW9Mojj5jUmU4rrWCTSbkYo7N9AA8HqkDr+PJyoM/qRhAeOjSsW9MQhTNYiI7Q6mzdzfawwm8XQj6DkAYmH3UsXC+o/aRyAi4u63Gvv6tU4L+t1Y9+cljOPegkOMhDiaxLLP9P4NdQdGDG8AWo0gBtOCtuBWfAuThhbg+lu0+tzl9zrhqCypzWvEGBp7dh0Ifkd9xh5gctUNuFXXcH1HGolNjkgQ7PocfuTcm4G4N0WHnwU/Y8z3OPmNSRQnvzGJ4uQ3JlGK66M2xxxDCSYJS+9zHSN9V5xKrMlVoImIyGFa0BiaSpIY02xhvPcaxmdfa5lv96Bluc3vtdnm+jcq5Lx+pdcXEfGmUfHz1VjX/W1OzR71PCSczagxI9wDcvjVINhRrA96JuYgAtMaSajcggPuDQiVUxBIu0pjlyWLyosShDc47gDRd+A4vIcx28eB+0iiGzkiyY0Xwc69WWhsgSKgBT9jzPc4+Y1JFCe/MYni5DcmUYptrU45ch1RbJ+rQNOBk2w2UQEiImJW6LjjUajIMjuqwPMRTFiZkeAH1F9rqe37/1BB5Ot3Wn77Omcn2d1EP38LpdH3mQpdO3DzkfeOHF5LGJPdgqh4yFWo2oHLLmK4uHeWq8h5CushAYum/RyhZHkNsbfQT3IPgnRExBRceiN4Rg/gvruGKUUliKnkyKMx2UPdfHSfIyImNJ0HzvMMrvkK+iP6zW9Mojj5jUkUJ78xieLkNyZRCnJ5dTi2W2MZiCTU620NsYiIt+AGGxcqLFFZ52d3Glt+2Ooab3e6nt/qNf/l3ROJvYK13PX8XO5gf3YgVh2p5x6IX30DNR6DIhKIX1MQKskJ2HfsLNe9IHHvKoPx53COEkdT65H0LO5oUMkPeI3RVZcwZnsNsQr2bAIuO3qtksNvDAeSky8iYgbHXoJL9ueQbl9mmht+8xuTKE5+YxLFyW9Mojj5jUmUgkSIoVCpJsWoPDUi4gEGU1yDgDUfqwD1yc2JxFZ/eC+x5qjf95eXFxJ7BYLWB9Bd9j1ThEsQoQ5wbAPusqH7SLvY14fvMVSSDWbKv4apJBQGSZAwNYcYnQbFPTiOxLkDCX49jzGNzjiCkEfi7AbKjuuB+93n0htCn9hLPQDPQekkce/zn8FU6//D2owxPwKc/MYkipPfmERx8huTKAWJCOTcy2HQRQGlnxTrg/q4kdRRQ2nseKy968o/Ph903peFCojfUfkmObx6xBgS96hElQRWGrxAog/FanCcUV+4KbgpSdiL4CmxdCy53UhMG/qOITGU7kEL4t4YBnH0sR8o7u1BqKZ7QKIr7QJOT8bSZt4vGsZBd/BkoaXa0ysSmo0xSeLkNyZRnPzGJIqT35hEKWh6aw6CHznOsNcf/J5QyWpExB6GVVDsLlTAuINy0m/mGlt0up4DeOVIWPohkPOL9nYKe0almuOBrj+KZSMoHYXSTxJ7I/qmwaoIiKW6IJL1nEYg8YtERXqeup7JtiSw1nBfSJytIIbiHnwfrZGcrnRc3iNeznO9BxUcWte6F+3Rgp8x5nuc/MYkipPfmERx8huTKMURBkaMwTdE4h4LHTAhtqeklxxP9Hk6z6ZVEfADDJZYkFuNHHBwzSTETXqEJZI0STid03eCKHkK61lCWe49CHkkupGwRGJhBK+bes2RKEluxQWskcp8d3DeDVzLgfxzPZW2dC30+SOcZ6hAx8/xsONoaMcSnuOIiCXsGsnU61KF7ydQn+43vzGJ4uQ3JlGc/MYkipPfmERx8huTKAWN1CZ1fSj0fVRzHhFR9CjnQ6DvpH8AdqHjS6g2fZlpvfs5WIhHPdZLUpULUMNR2YfvnMJxl7DuDcRoelDV03h0KHSnqIae7NQrOA5aNMQd2JJrWPcD1N7jPwA950ErLzxPBzgP240hRn0WSNnPYBISPIsRERfwzxVd300H3/ndUj+LZzHG/Ohx8huTKE5+YxLFyW9MohQnk7kEaboLjW1e5CqIUaPIcU+jSKonxyNBYyNBhUTAI4g2WQZzXOBnMAfxqm/A0QyOpRr4OXwBCWKnDdR5w3krEJH2tF8Q69MASdMkOQ16nsYSYtOWBEg6s17LQ66xO7DOkqU5gp8xbDwKPR7I8ksiID2LVPc/6RuR9AgSiiMiMrgxZCO+KcBOvV9JzG9+YxLFyW9Mojj5jUkUJ78xiVJ8sXgmQZrYMgHRjht4Dp+cMtRzhg4qOA9OuQHHYQcCTdlq41C6FhhcFBERY3BqsStOYzNQ05Ygks17nJKPQXEOYlMc+s00cDUZ7Hcx8K6uQfzaDpz2dIR92EHj14h+R+ZjSLSjen7qTVG31LSUFNZBS+l1K1KT2T3clzU9eAW4A4ctxxjzY8PJb0yiOPmNSRQnvzGJUvzTRAW/vsaOj2Gn1PCx1jQRhcY0k+BHU3dwLDKN2cbGjMNKOmnyTUTEAc4DPkJcI+0O/SrP4JpnmcYmuZ5lMdfS5vmCRbIM6kSbRlc0UH+MQ6muz3yrztL3PXsraxnYgDOCHX40xYcuBUeig7hH6yE3Hk8kImchbyzl1gG+80CNUOGB8pvfmERx8huTKE5+YxLFyW9MohR/X6szjco/qS/cBmPgnusRY440Phm+k9xlNAocR1jDz1s5sCyTxBj6bETEsVNR6wh7sQFX5Bx61y1AMDqBG7Ocqmh3frnT4z7W44qzHoEN9Kb2oJ9HXQqcicdbFRvrlzA1qYKeiXAKuvd9ZeMECW94/2GaFTlByfVHoiKV+dK6F8E9/IaODCeo/NpvfmMSxclvTKI4+Y1JFCe/MYlSPK+hTBAEqDHE6KeDSm2bnuEc5OYjSMijIRk0HnrWaSkjlX9S7ACCT9+4cfr8AznWYBs7KGXNoQj3DFx206mu8eQLjU1+fqlLWS10MRHRHVSg69YqInbw7ATFopTI9J2uMdfT4mCQ+d8o7pEbcA2xfasLKhuNkVhI0LND4iWV1EdETOA5mUFsAg8ZjQL3m9+YRHHyG5MoTn5jEsXJb0yiFFckfjUqInApK5QtgqWuTw5pwM3XgnhCfidyRlEh8gKEswmJH+1AQbOv3BJFJBCMyDUIAs8YJgR/BHubwR6OlrA3pzq0ITs/lVhEROxVoItKBbpuq1ORERCLR1A2PAUBeAk34QT2q2/QBZWTk0uzRHFPc4MERAJ7+AE0VGYL06Yj+E1N5cQ76Cd5D0N3/OY3JlGc/MYkipPfmERx8huTKMXVUp1b5QEm8tYam7cwzRcmhI7z4Y6sgTpJjLGkVylAEMvA9UcfpoEPWxCGIljwOzYao55yu0z3dgZ7thmpkHM46LW0273Euo3e55jq90VEBKy7g1LdOEIfxRJKnuGzk5kedwkC6ZNmJrEt7A1Nq42I2AU4L0FQ2zYaI/EZB9WAEFuQ25QmWMNE7L4emiRUVo2u8SHTfXwH6/Gb35hEcfIbkyhOfmMSxclvTKIUUxBeSHQbHVVYmNYq+CxrFTBOGy5RHI9VhHgLP0cHEO3+Fkh0mw0sv82otDki7lt1xT00GqOea4dM78ESRMAPuQp0mxJEwGsogT6511jb470E0Taohx+W9ILAWuh6pid6zVcPKlR+tNXr+5DrQ/K+R/Bbg0B7X6v4eYTy7RGIexMQ6Ja5ujFXuQqVK3BtUhn6oadsnIRKcgiW4NqlcmK/+Y1JFCe/MYni5DcmUZz8xiRK0cIgCGqtl0MJ5nysYsMUBIhFxYJfW6soUo719+gDTWXFqbi6RpKBqHcglYRSOXDfAGMqy13D2ffQA66GSbvvwQ32qtD9ehMau3qvsQKcnON2LbGIiNFMr4XEvXYHZb4V3AMQAYuFxk4vQfDbqUj2bau9B//S8xpDVxyJXyACk0vvpNDpwleFlks/G+lxz0OvZQoP1Ftw6EVEfENTehu9vgMMFqHnzm9+YxLFyW9Mojj5jUkUJ78xieLkNyZRiqpSRbOuNUbl3PQPQAGxSY+NdAYq8KyD3yNQ2A9Qa30ENZT+ASCoPwD9AzDt+b2cUVNJUIupAShZL+/qrcRejVTF//NEm3Be3ar6PJ6QFZtV5XwF9lJ4AKi1Qb2D/YG+CPkUGnie6nmvLnQfPvugqvnrGfcmeE3NUeG+dPRvFvRPOM9Vxf94pP8+fAn/wnxaD2xWUfC1XIPlew3TkLrBk7CMMUni5DcmUZz8xiSKk9+YRCkaGPvc0PQaAHoHok2yavk3ZmiVPk322YFItoE65goEtgkIPgsQhjqaSNSzxhzHIkPTRNifYwtTfMCiedOq/fVrsPyeQ2z8Tlf+vNtILCJivtdzZ7neg7rU+1puVZTq4HlanKpaOL1Qq+rqUmvYP7nXffisUZEzIuIl1NXfQqyAZ4cEvzMQXZ+EHvccxL2rGmrvoWfAFPofRERM4F2dwXNH04Koeajf/MYkipPfmERx8huTKE5+YxKloBHPBIuAGmvAobeFyT4REXuYdFLBaWjMMol7HxoVgvZgQyPx4wSbK/K6Caob7xvn/ZgWHFn0WRIBr6Gp459oalKoC634wOt7mqmrrpiqKFkf9DzVcdh0pgZudHuE3hLw3I0LcCtCH4GIiAVM91mCkEcj6OfwnJAwPIY8gEuJW5zCBBOcght40lSioX0I6Di/+Y1JFCe/MYni5DcmUZz8xiRKMYFSzxpcfx38TpBzrwThZEuNMCNiB2IHTechN98WBL8HEPxo9PIGXFVlrt9HwiA5qiIiGmoyCiIgQWIMTfah71t3en1vQZRagevvqtRYRMRpqd9Jgt8o12suCo1RhSmVje8+6H3ZwcSeW1j3dsz3pYV9JOcljd6mqUkk7u2gmewbeOTf5yCQw3OzhoauEYGWWLqWBtZD1+c3vzGJ4uQ3JlGc/MYkipPfmERBh18HPddI3Nt3Kizt4PdkDSOVIyLWEL4DseMWXGwPIOSRK46EDoKcgCSwDf2+vvX8LZ/FSSwQ28HIbxKlduCwjIioaxB8wWlHz8lQcY96R5YHGEteq/PyXa7P3S304IvgEmwq6SaBdTzwXlPvyHvIKyr7JmiiVN96piDu9o2Rf4zf/MYkipPfmERx8huTKE5+YxKluH9Qt9SuUeFlDy69I7mdQEQiJ19ExAZEmlsQ2W5bHUxwAIffFEswVTCiEc1VC+OmQXghYeiHQIIhuQZpkEcFvf6IAs5BzrQ+SKA77FVYovLd3V4deUdwjLawni0IyCTuvYMed/c9rji6X9QLj6BBLnSvqCQbTJt4Vvq+nD4cETNwz1KJ8Qi+E8eS41mMMT96nPzGJIqT35hEcfIbkyjFvxU67GAFPwlzmNJKsgTJYX0+Nzq2gqMPIMaRULLMVdwr4PdtC26+KqAHH628R++jQQl4HAo8VEINjrMRCD7Qj+4kVASakWuzZ8l3B93HfaXfuW91PQ9w7pr6zIFIdgBhmHrcrcGtuOkR/Co4DwmiJAKSSEouPRLoeOrzMGhYTN+56fnO4blVedxvfmOSxclvTKI4+Y1JFCe/MYlS/DLWEnwKwtmLXIWlCyjznIIg1jvZFo6dQ7nlCayn6dTNRxNUiRpW9NDoYtBR1/NzWYADkpxWQe47EPJGINDNQNyjPnMnsIcF7PWuR6R8A+ehmS0b6Ju3Gfg6WcFDQc9DCec9Yn9DfspIQKb7QuLeBPveDfvsFO4fCXY0kIb6WP71WL0WGuQxNOY3vzGJ4uQ3JlGc/MYkipPfmEQpXlZ3EtwWS4kdRzrldYfuMnA29bjiSNggkeVqNJcYOaguQfwiQYXEj4eRlg2Ty47KhiN6JqPiFONhAlSLewMTYmG/chCbyFm47/np39LkWFjPA7jqqFcgnfsJ7NcZqIr18ErkwdRwDyrcR3IHguAH+z2Ba8bnAZ6xqke8pF6BRyr9hhg/d8aYJHHyG5MoTn5jEsXJb0yiFHf1dtCBOfRNq6AH34xKI3uGQxAkdszAPXcB4tczKDE9gmBUZeoErIoTie2hnyANfIhg9xY5CUsoT6bhICjQgNhE+9XAfaFBEOSei4jYQ5zEvQ0ISzRRmcRZcsXNBjoTZyDO0WcjIg6wPzWIlyS8Eejmw1Lb/3+lknoFDnX9EX7zG5MoTn5jEsXJb0yiOPmNSRQnvzGJUlDNOqnPG2h6eYDjCLJ3RrByvsD69GGtD0nZJxZw3qdgISbVtG/aC1mBd6F7u4VWivtOv5NsmzjZhxqeYo24hHpVYWqQ+QD3eg/XR/8+gPsVQWUfYhnYgFvoiRDBzTW3cC1kvaXnZAn3imr36Snpa5gqn+3ps0DNOqnvAz2LFPOb35hEcfIbkyhOfmMSxclvTKIU1DySJsiUMBL7vtHYoaXZIMwyV5vtE+glQKIN1axXPY0PH0OWT7JtktA4A8EnIqKj+ns4dgS18iTa5AMtv2T5LEEsvIc9JCtuRMQd3GuyOpO4R1IV9WggS+wCbt8KJkXRquc992WJE39oZDidm9ZIVl6FsoBsxX2q6kZOAAABY0lEQVTNbQmykJNoTvX8rQU/Y8z/4uQ3JlGc/MYkipPfmEQpqCElNaOsoA79vtpJrGzUCUgCYl+86tRpR263exAw7kGoGiYB8qSgBfQRIGEwgkU7OhT0OTyOxJ0DSF20h+TcIxHvptN7FRGxbg8SK0HIJdfYDJ6ns9CJSyScXTQqf63aYZJY3fB9OYNeEve5xsiruoR7NQUBkpqM7kBorOD74LBe6JnAPgbQWJcEZL/5jUkUJ78xieLkNyZRnPzGJEoxBsGAnGR7KOnd1SoM1VAivBir4BPBwiI5lqiUlaaX7EHUIrEQRyWPdI1T+G2kBqUR3LCRJrlQ88m2g2tGERCmysCBJJGtQdx733Dz1k2j04vqgSXG5CQD3ZQFPxCVVyO9p6OBTs6IiCM0dV1V6slr4VrmsJMZlm5TObHeqz05VSHWpwHSk0cl5vSdJAz6zW9Mojj5jUkUJ78xieLkNyZR/gchKJzIWdhuAwAAAABJRU5ErkJggg==" y="-15984.647816"/>
</g>
<g id="matplotlib.axis_891">
<g id="xtick_1336"/>
<g id="xtick_1337"/>
<g id="xtick_1338"/>
</g>
<g id="matplotlib.axis_892">
<g id="ytick_2226"/>
<g id="ytick_2227"/>
<g id="ytick_2228"/>
<g id="ytick_2229"/>
<g id="ytick_2230"/>
</g>
</g>
<g id="axes_447">
<g id="patch_448">
<path d="M 299.674375 16109.549579
L 421.964375 16109.549579
L 421.964375 15982.256052
L 299.674375 15982.256052
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_893">
<g id="xtick_1339"/>
<g id="xtick_1340"/>
<g id="xtick_1341"/>
</g>
<g id="matplotlib.axis_894">
<g id="ytick_2231"/>
<g id="ytick_2232"/>
<g id="ytick_2233"/>
<g id="ytick_2234"/>
<g id="ytick_2235"/>
</g>
</g>
<g id="axes_448">
<g id="patch_449">
<path d="M 434.924375 16109.549579
L 557.214375 16109.549579
L 557.214375 15982.256052
L 434.924375 15982.256052
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_895">
<g id="xtick_1342"/>
<g id="xtick_1343"/>
<g id="xtick_1344"/>
</g>
<g id="matplotlib.axis_896">
<g id="ytick_2236"/>
<g id="ytick_2237"/>
<g id="ytick_2238"/>
<g id="ytick_2239"/>
<g id="ytick_2240"/>
</g>
</g>
<g id="axes_449">
<g id="patch_450">
<path d="M 29.174375 16253.469003
L 151.464375 16253.469003
L 151.464375 16126.175476
L 29.174375 16126.175476
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_897">
<g id="xtick_1345"/>
<g id="xtick_1346"/>
<g id="xtick_1347"/>
</g>
<g id="matplotlib.axis_898">
<g id="ytick_2241"/>
<g id="ytick_2242"/>
<g id="ytick_2243"/>
<g id="ytick_2244"/>
<g id="ytick_2245"/>
<g id="text_113">
<!-- 612 1839-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 16236.86224)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-50"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_450">
<g id="patch_451">
<path d="M 164.424375 16253.469003
L 286.714375 16253.469003
L 286.714375 16126.175476
L 164.424375 16126.175476
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_899">
<g id="xtick_1348"/>
<g id="xtick_1349"/>
<g id="xtick_1350"/>
</g>
<g id="matplotlib.axis_900">
<g id="ytick_2246"/>
<g id="ytick_2247"/>
<g id="ytick_2248"/>
<g id="ytick_2249"/>
<g id="ytick_2250"/>
</g>
</g>
<g id="axes_451">
<g id="patch_452">
<path d="M 299.674375 16250.96724
L 421.964375 16250.96724
L 421.964375 16128.67724
L 299.674375 16128.67724
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pf353c3ca3f)">
<image height="122.4" id="imagea59ccefc11" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHkVJREFUeJztncmPJMd1h19mRmXt1d3kDDlDUhIF0Qsg//824IvPOngDZBu2RJkimzOcnuml1qzKpXwQqcO8L4xotg8G4/cdA1mVWZH5OoGv31I8W/7l2d5jOLslO5tfo+P68+DWur53a2Zm3eDXB/h8KmVRurVQVn6t8msVfPYMv6+Fazbj30KfL4oi6RqX9dStfTBeuLXLMHdrF5X/7KwIbi0G3QG/O2YBVgPs4wDPTmV+Hy6KkVt7fvbXXcJn3xQtXKHZm+Ho1t4Oe7/Wbtzafbtza8fen4ef47TYoGckRl35vZiE2q1NK79Wl7SPQogsUfALkSkKfiEyRcEvRKYEkk2pYqLy3sXKMyxGIIlItokkIImz1LURSUBYSxV2ZmYlrPdDmrykz6ZCMq07ewHVgCSLnZWEWlXAnpFghc+W8I6ZwBrJvRe9P47eWD3IMDOzXeH3YgPyc1x62Uhr6dKOjvN7M1AMRe7MCKTdrBq7tUWYuDX6LXrzC5EpCn4hMkXBL0SmKPiFyJQwC14YUBYTiSUSHeXZ/z0pomqJ6PwSeDMSb5SlR3JvXHn5QRlQ9JvDIzL8KBswVSKSBEzNGjuB8CP1OIL9MjOrDTIg4R7W8O4Yw1oN57k4+3N8AnLv09Y/DwNcSwtC0sxsDfd6V/gMuEPp46Ct/LlJUpOgOw3wHBMghUk+m5lN4Lesgs/mvAgzt1bD/ujNL0SmKPiFyBQFvxCZouAXIlPC5ciXhG6Kg1sjgUHyiiTZUzLYzMwK8wILhV8Jsgkyv0jukQQkUdmXnLVHWXXJEhD2jH4fyb0W7gtl89UlldX632xmNoJ9HIMwIrk3heMWIIFfDH7t89aL5pdTX1bbgRjsW1/ubGa2hus5gPBrK7+3JJBJxlG8kLfGTEB4/dJzbGY2gVLdReWz+VYgL8cgcfXmFyJTFPxCZIqCX4hMUfALkSnhqvLZQMS2a9waljdSVlwk+4qEStlT9lba3yjM8APhR9IG5Q5cN5Yhm9kA5ainwlufCtZoH0n4YR/FxDXKQhtF7gtlg1EJLmXujaFsdQVrn7b+N39++eDWLj/xMq07QJ/Ar/kZaVovtPvai7Oq9NdIfQ8pK5JEHglyWitgb+hZNONsVbpXlKE5UYafEOIHFPxCZIqCX4hMUfALkSnhovQZQlQS2pWQrQbHxYQYQQKDZEcDJcZ0HhR+IDpSS2OJmIz5v4bOQ5mJtDaHDK8p9HCbw5AMM7MZCCOSe1TmO4K1JTSqewFZcR9+4Ydp1L8AYffWf/b50Q/dMDM7vYL7dfJlsKOR34sRSMC28M/JuvQynGQxDoYp0p5jM35uW3hue+ofqAw/IcQPKPiFyBQFvxCZouAXIlMU/EJkSphDCuMWzPARaokrSFdMbfRpZtaDOSWjmfqdmC5MhhW+j+rsBzCxtBaDavzpPySUeku2mKazUHo21XOT2Serb2Y2gT2j3gb05qBvnA9+z66W3tiPf+lr8stPn/trCW/d2vSObf+zg/8PwnAPFr/z//Xaj/yvuYX7Qv9Roh4W3Kg1/f1Lz9MORpBTCnIP/Rz05hciUxT8QmSKgl+ITFHwC5EpgaQPyaEWGleeQHSQ0IqlzhZw7CjSIPN9SO7RGkq3xCaadN1PbUZKkAiitN0FpGKT3LuEBpUrEn7QWNPMjDK0W5KuID9pRPcMhN/yA58SW376c7dWvHzhjzv5dO/6uRd7ZmbLgz9P1/nfvd74/fk2+Oebbn9HKbaJ6eKPeZ6oH8Cu97+PRtrvS79nevMLkSkKfiEyRcEvRKYo+IXIlECN/VbmhRH9mWigaSUJvw4HRJs1A4gbyDisgj/5AkQXSbvbzk982ZqXJCQBMUsrMm6cjqUsPcpqpONI+JHQpOuhOntqrMnV/AbzkVjuUfPJCaw9O5/c2vxzf47is8/82nMv/Ozos9qq+60/zswmp7VbW538/V9ufabkyPw96OEZI6lMmaqpUEarGUvEQ+/3lp7lXeH3TG9+ITJFwS9Epij4hcgUBb8QmRJofPKZpBtIpBPIKxIiMYExQJkhlSM+L7zc+2jwkuwOruc/ILPt2u7d2s68ECFIxJmlT/x5jER8HyzpPHtpSvcKemja+InNSJeQHXoFtvDlpS+3DV9Aqe7Hn/oPLy792tWdWyo/9vfUzCy0PitusvNycHrtj4PH03oQn9ww88cLv2gJPJyHJOAJ5oPTd+rNL0SmKPiFyBQFvxCZouAXIlPCDDKySprYAn8nKOurBoE4iwitSzj3yxOMbg4+S+/iwveAu367cmuLiRdGo9pf45ven4OytEJEkpHwO0IJJgnDDjKyiP0A2VwgAQ+Fl4B3ib3nzFgYTmlcNZQYj+n+r/x1F2PIIt1Dlh7tTe/31ej7zKxY+uk85dTf6xJKyUmS9vBMkEzjnod+jQR5jH5IE4t0HJanJ59ZCPGTQsEvRKYo+IXIFAW/EJkCxbJmNYgJKtWcghF51nsB8RJGbJuZvZh78fL8Cy99Zr/2Y5rL58/c2kdf+2EOl39P2YEXbu3L4AdG7AvqR8iCpoHsqw30TVvDkIUDHEflztyP0MsvKlkmYqOgqax6VXm5t0gc+LK5g96D//XKrVHuZLHy9+UMQsv2XgCbmVkHwhBu4TD4vWgrGO4SKU9/H9rbITGjMtb/j+QeyWIq6SUJqDe/EJmi4BciUxT8QmSKgl+ITAlHyGKivC/KBPy48wLiZ2cvmz668mLPzOzyZ37QwvSvvOCp/vqXbq34Oaz9jc8k+9WLf/bX8w/fuLVXX/nswHcnnx12Fynp/RbU6XXps85eV/7z7wYavECThL3cO0DW3xEEK0mkmPCbwERmGiyyKf3+vANJdr1ZurXxP/nfcnHzR7c2eu4FYnnpBSJO0zCzYeMF6+nWH7fr/H05wq3GbD44N+3tuYQhIBBXMadI95CeE7pGlfQKIf6Mgl+ITFHwC5EpCn4hMiVsIIuNynJr8BKkWOrSf99kzhl+owsYQnHphZ999LE/7rO/8GsTL+2KiZdSy/Abf43/5jPOXn7rBz48vPHfZ2Z29eDPXdZeVp0qv9bAPdgVXuRRL0SSe/vOSy6SRbHegXSeCWTu7Sp/7nu4/69Ack5vvARsj16ILe+8DB1f+Z6ABT2gZtZDlfDDa38PN5BfSJOJiQreoVS6XYLce8x9eQokJfXmFyJTFPxCZIqCX4hMUfALkSnh4Qz90IAdZSeNvARaHX321cWWS0wX0IuNersVS1+CW1y+9GtTL5H69SdurfzIlwOHWy/3xq23RXOYEGtmdrH164vB78+oSpM51JvvCGW+J8j6w5LOSJkoUfX+nXCovIDcQnnyLZQn3wQvv5YnX2pt/hZY1/lrGa/Tnlkzs2Pjz32398LvofLPN4nPGvJfF1DuTBl+J4g1ui9nmhZiPLSD7jU/EzCUBM8ihPjJo+AXIlMU/EJkioJfiEwJt2cvck4gm4jb0kubI2TUFfcwadXM5tf+3PWv/ZpBVlxRe8lSBJCFcNx5DLIJhA85sqFjYddRDzgoCT2AtKFJuw2U6pLIQWGUWNIZ4wQilrIGH0pfkn0Dgzyu4f6NRpBR1/n7ctj54yb7tOfTzOwI2ao7kHZHyICDp8Q+KPwzVoHE3cF06AaEH8VabMJvauYfiUHqCak3vxCZouAXIlMU/EJkioJfiExR8AuRKeEGRlMfE9MQ76DGu6m8vSzHUKNvZh9+42vgV28e3FoFo5vPDTQFBat8pnHOnV87H7xd7yDddLuG5pFmdn/2FvgO0jTXsLe7xNHbqVDtNpni2H8A6F4fOn+NZPtfQR07ji+vIMUWnqcPekghH/w5xpHfQs1o6cgAn7+AiVQDXOMcRp1vYB/u4b869J8eSis2MxvDeQK8v2kU+IniEs8ihPjJo+AXIlMU/EJkioJfiEwJb1vfDDG19ntfcG37+1wGL0nMzK6HmVv71Ss/TiXc3ri18/1rv3YECXj3nT/u7Tu31r7yI57vrv31fbNlefll7QXPK6ht30CaJaVjkiQLJHygzwKNYybovGYsAmkUNKX83hXQMRM4Bf99G0gNfgYp21dn/5svIL3azGwFP3E8pKU6j+CwBaQLBxBsFay1hf9CugexuzeHkegLaDxKScA0Ql5vfiEyRcEvRKYo+IXIFAW/EJkSNp0XXQRlDZFs2va+Wec9THYxM3sLjQ/3r6F+++trtzYsf+vWijHU7n/1pVtrf+tHdN/8u5d7v3vwjUN/B2LPzOyPlc/cu4FeCVTTTZDcoykwHWQC9iU1Ikg67Z8+n3gwicVD739zVfhMQKKFLLQGJgDtoaZ+Hxmd3oA4nUMGZAuWrAFBRztDgm0Kq5QJ2IKwi3EBPQKWID/pjb4tJPyEEN+j4BciUxT8QmSKgl+ITAkNlGqmloTWNDIaMtg2IL7MzL4L/vPfXnvJNv2NF3Tjtc/mK0DGtb/32Xxv/sWLwf988E1Gf197mXINYs/M7BZKM/cg90jQESRYSfhhA8/K7+sJ7ik16oyBTUHh/lMmIElAPAd8Xw9rJxCa1DDTzGwNe7YC8Uak7g4pO4qXKbxrz3DdsTadF2f4LTD2m6Dr0ZtfiExR8AuRKQp+ITJFwS9EpoSm96KKyklLEEZEU/jve+g5i/Cr0peE/msxd2vDP/pzv/jalyKHsZdNdze+BPcPBz/K+w8g915DdtkmIuwaSxuLnZpoR/dgHJFaKVBfuCHS964EiRQ79n1IDKaKxdSJNDTqOib8NqXPBtzAsVPs9pdGBbExgt9CazN4/44iEm8B67QGiYlWlRJ+QojvUfALkSkKfiEyRcEvRKaErgdRBeV/VZn2d6LpvVi476C3npn9N4z4rkcw4KH35bafvvFZeiMaLAKjt1+P/TW+LUDuwdox0t8wVYhRb7cRZJxVNIyBxkhDXzeShXgtkeNI2lHWJx1Hw0ZSR4ZT9iNljBIt3CszHkDTwnO3BDE4gntAKo4E6Zjeq7DfNfQEJDEYWx9Tj0LY2ylco978QmSKgl+ITFHwC5EpCn4hMiVQGSUtUb82KjvtQLzQcAczszeFH4NLEqorfZbem7HP0hpBltYBfsym8BKoAdnUgjihElMzlnEkjHrKJIOvLCEjCyeywnlrEIhYkg3Tbs3S+zVSBiMJOsoipeeO7n3qdOEOMixjBOh7N4I18m60N0XkmXDHwWEkUmMZfrRntD8T2J8SBpXozS9Epij4hcgUBb8QmaLgFyJTAgkDkhCpJb1EbOrvrvci8E3rJWAf/OdvYaLrJLE3WwvX06dm6EX2AXvupYo3OI5k4TTxuIP5bDUaArIf0nrrxT5PAoruKf1meiZI+FH2I10LPbNmfF+wVyCWX1OWnl+i7E5ydlRWTY8duF4zMzuCLD7CsUfKBIVz680vRKYo+IXIFAW/EJmi4BciU0KAkleCxAmV+ZJ4IdFhxiWcNOWXZMy28mJpDmWZJIdSod88ifR6m0Jp7RzGOZDMGdEkWcg4W8DfarqaDXQKrOFe3cM1m6XLOCrfpQuiqb+nwWdZ0jno/tFaTEjTPSQoc7OD6y7A5JFAPNEekviEtD/KBIx9vqj8ntGAlolKeoUQP6DgFyJTFPxCZIqCX4hMCSMo1SRSByoQVIJpxhNdcegDyKEDZKcdKt+bbQoSEIeSkNCE40i6mJktQLIsQagtoGfbYvCfvYK1i54m5XpuQeKOYW8mkR5+eyjLpvO0JFMpmRMOO0JZdWqZb6rEi0EZeafEmbx0ZhKDlEVKYvdsvjQ9mkUK6yQq9yB3p5rSK4T4AQW/EJmi4BciUxT8QmSKgl+ITAnjytvG1OkssTr91ONSrSud+wDm9BT8Z0+VX8MacfivRw22PkQmF3VUQw/H0UjlD2HK0bPe79kSps8QswF+Hyj3qvLXbGb2ALa/TU1hhfzlydnvxAnOQWngmHYLacWxxqpYaw/HNrC3JzgPXSP9N4pSmlfV1K3NHzF2nf6DQP9+oJThFv7LpDe/EJmi4BciUxT8QmSKgl+ITEHhR6SOY05N2TVjEUhrsc+/zwCfpeuh31yDlOrLtLp2M7Pd2U+lOaDMoSacHho3PgKJVIHcKWmiTYfDpWHNbArykxpF0jQkajLawDSdFq6bpN0JfvOexm5TbwEz62DcPIm8FiYNHUgCgtxL7U0whudhgFsQS1+mdRKaLTUPhX3Qm1+ITFHwC5EpCn4hMkXBL0SmhNRmiCTiqJkhQdLNzOycmCFIYKZV78ULCREUjVXatcRkDGUD7gpfQ3+A42jCSkO9BEBKkhg8wzWO4biryFTrKfQSoKaQDWTzbeG4PfyWI2XZgZRqsJmoPwf2FjDOitsZjBGHNRJ5NIK8heebhN8RpDDJR8rQi0FH0vQpihe9+YXIFAW/EJmi4BciUxT8QmRKmFBJ7xPGGpNAbKFZo5nZCdZRxg1pmXtYEpqY9UeChiRQrJEpNRTdlf73bUq/3w8gzobgr2cLZZkVyJ0AFmgEx40HFkuTSHns+5AE3MNvWcNUmXWi1DpSViNNrom8x6hpJjXcJKh0GMt3Ubr630eycAfPTXTUPDx6sYayKejNL0SmKPiFyBQFvxCZouAXIlPCqpolHUgCg0DBFim3JEnW9JB91fvjiFgm4fukZv0VicLHjGXO+uzHiL+F0dsGU4W2IKpqkDs13BYax3wJW0MTgMzMZlCCS+XEZzjPvoeSZfjNQ/Cf3YC7ot6BLVxLLPOSJDD2joTy3QM8d0d4Pun7aBIWPdvb0o+kJ0lpZtaXIHfh/U17kV7QLYT4yaPgFyJTFPxCZIqCX4hMCS/D0i2myj2CMuCobNHMbHv2QuWu2/3ocxNPEZVUshwbQELCaN17mUM0MMBiCf3eFpD5NYO/3xewtoJsvDqyNzPIvKwTS56LDgas4MAIfz2kUqmHH/XWi2VeUl9Aeu62nb9Xh84f10aE7/vQc0fDcEgqUpasGf+WGo6t4P5TJqDe/EJkioJfiExR8AuRKQp+ITIlfFL6yaGp0F8OFH6REsrbs5daJNQoq44GdFCmFR2XCg0LiWUrUvZWciZZ6T97hImuvfmegBWIQUgEswmU7y4Lf14zs8XES6i6hgEtHUxK7tPeJ3Rm7OEHWZvHR0zpJdn80O39eUC8kdyjfn2pUGwc4d5XkT2k5/EIwo+mUFPWoN78QmSKgl+ITFHwC5EpCn4hMiW8HPwgCJjZgJBYor8mJCXMzCDhydall1rr8uDWTiVcN0gfKvNNnSTck6iM+MNUOYhTXqu0rLG68vt4AUNASCwFHH7BkqyqYMAD3GxaI3oq1YVz04ANKt8liRfry7eHsnEqJY9N+f2xkOylrD96Fo8REUufp2xAWiMJqDe/EJmi4BciUxT8QmSKgl+ITAnPycYAJAETfY8dI39iepB276Cf3T1IQJqqi5NRI/LkfWjCL00RRgloPNmYssGotxtRw97sYR+OZ79fR5BpBximsev9OczMqgMMYzlBH74BBp1Av76WhpLgmdPggRjpvRUpi5RKjOl5GhKHjdDzQCKWJHUsi5Cum65Rwk8I8b+i4BciUxT8QmSKgl+ITAnPeiiNhQNTu/qRPoRTfH92/7fnXeUF1hrKW4mm8JlbJF5InNAwhseUb6IwKv3vI1mFohJEFfWu28OAjR3cwQfIDhxBSbWZWQMlpSVsBd3WI0pXvzd05gvzArIp/PPQQs/DPRYJ872m7Du6B6MKsifht1B2Jx1HzwM9N7G+kz2WrMMaSMkO9kxvfiEyRcEvRKYo+IXIFAW/EJmi4BciU8LFOS39dcCJHzCamNIfI/8qKFtvct8kpvw2YL4p9ZbqtCn9kVIvyeLGoPTngmq6E8eD038asPkn/L4D5F1v4b5UFad2b+EepO5EWvKy2Qr+e0CpzxWkNLel36995DneQwoy/QeoJNsP31diqnLa7tB/FOi/Ak+Fnieaxq43vxCZouAXIlMU/EJkioJfiEwJc2geWYDAAM9hJYiXegTTVCITSPaNFzyTs5dNFQka+L5UQcfCB+qvHyFjKE0zFRJGJG0aSPltSmgICuKTmqhuI3/6Kb2UUnlp7PMKDlyBbarhXjUwEr2Be3BDTSsj7zG6LyR3ScZhyi+cg+5V6mh4uhZ6Fh9DavNQvfmFyBQFvxCZouAXIlMU/EJkSpjWXiKFAA0cYa0apbVhPOy4bvwIf3v2kInW0OQbHNOcJl5IiPx/A3sOgPDbQWbbFjIB55B71z5RLE1w1X8nyb0RrO1phDVc4hHuc2xEN8lUFmqJwg9kI06KgucztT9ETPjRc8v9CijDj5qWCiGyRMEvRKYo+IXIFAW/EJkSlqujWxxNYNLMPE1WNPc+Q+944gact8HLk7fmr2c9+DXKdqNxx6lC5KkSEMUSfCWKl4FGU0P5bu8blNL48rvCC1YqRZ1E/vZTRmWgDEaazkOTi6jpJZx3C9f4UMA+JN5ns/RJPFTdXMP4cyoHJ0j4BWii+RghTUKby3fTSsT15hciUxT8QmSKgl+ITFHwC5EpYfahl0hh5Q8sx9C7DEY5271fOnQ8CvoOEv/uYfLKAbLYqJ8d9vBLlEOpJZgxsDcffSd6KRgPnng9e+i391A2cFr/fTMQg2ZmNbwTxvSeAEk2AWk3AptWQfnuBgzpAbP5QJpGsuJSBR2Vb5PwI1lIVGcYnQ2CNDU70IwzPAn6TpX0CiH+jIJfiExR8AuRKQp+ITKFTRxw7kBo7aHn2t5LpE1kFPQWBE+bmH1Hgo3kXmppZWqG36MGeeBI5TQBSdd4rqAMtoSMSJCAKJagB6OZ2Zw61YH8GsF139MoaBjGMQZb6LUni8YFiMqe0imNe+SRLK4SS3rpbUlilzILSSCSiDvC9Znxc1LBftN1oyTFswghfvIo+IXIFAW/EJmi4BciU8Kr31+4xfnCS6QSZBPJvZvtzK29CuwV10Z9+H58ph3Jk9SSXhJ5T5V7+J1Ywum/j0TVAb6PMtNSs9CoH52Z2ZxKglHQpWXkPcA1LiiLEPbh2QCDXQrfPXAW+S3Tyj971BOSSJV7JKn7wq/RPSUoO9AsvXyXs/nSBt8IITJAwS9Epij4hcgUBb8QmRL+zpZu8Wrta3pnYKWoN9vd2J/kLWQhmZndmC8nbiC7iafGpsk9km5P6dcX+2yq3EsF5SX0+jt2vsyTxBKtLarY2A2QiImyqiEphffPi7greBetoPR3AWvjssbrmYAIbEA0E1QmTHJvD8/3iURzcqltZGgHZDGS3J0MkAGpoR1CiB9Q8AuRKQp+ITJFwS9EpoS/7b9zi3OQJ4vgJcIIZAMJkWMko2o3eOG3hz5l2K8vsfQ3dUorZco9sa0fkprlhdcD0O9rB79f1P+NBp+YcekwClYsR6XBFJ4GMuCs8M/dFPreLbASmfeLyolpOjTlB45ALNKTvIWsxl3pj6TMQpo4HH1G4FU9gmzAofTWnd7yevMLkSkKfiEyRcEvRKYo+IXIlPDlwQs/yhoal174TWAtgGCJlcaitEvM3KPefKkZdallsOcirQdfjJJ6wCXKxliWV8pnSRjRHsaGQOxgSAp9ZweyijI0ScSe4Nmh6cAzmi4MkovKgc3MFgNkA9JEXpB7K25x6HiAZ/4OrnsNz8OO+vVFbj3tdw/v7wL2m8q39eYXIlMU/EJkioJfiExR8AuRKQp+ITIlNJ1PsSUOhT+uhuaINUyLSU1pjZHamLOjKTfU9PIJ1xMbBU1iONXs038acK0Es0uNGRPPERsFve79iO8epvvQb6bvxP4AYOwPUBe/gzTghmrYI7Yf23pSjwD4MVc91MCTSa8gxZb2Gy7lRM1WI/eFUudPcCz9d4X+U6A3vxCZouAXIlMU/EJkioJfiEwJJKBSm1GSYMPJIIkTZGLnoetJnV6S2tQzNdU41sAzVe6NIBWUUqJpjfY2NTWYvi8mPluQSJS2S9D+BEqdpueJUpAhxfoAa9Hfkuh2aabUDPahwjiAFGRYg1uA+0Vi70/r0A8AejfgOG6QnHrzC5EpCn4hMkXBL0SmKPiFyJSA45xBkpBYomy+x2T4pdbpp4o8EpAkVFI/SxNy4j0D/D5Sg1PaC5JxWH+dOnobvg/vVcGj01NHfGPPAVxKs260s9QktAHhF6NPFH4tTikCeUlriROg6LecQM7Rmlmsnj8thgi9+YXIFAW/EJmi4BciUxT8QmRKINlEwoeEEY14nkRGJRNHaBS57aCclIQfyLinHJcq/GKTdIrEMeKpYOZeYrNOulczmOJCx5mZVTTRhpqRwmcTe14iOH0I7tWB9vURVdp0jQdouNlTtipl+NEob7geylY8JpbpmqVnq+JYehwFLoTIEgW/EJmi4BciUxT8QmTK/wCzhVraPRzVUAAAAABJRU5ErkJggg==" y="-16128.56724"/>
</g>
<g id="matplotlib.axis_901">
<g id="xtick_1351"/>
<g id="xtick_1352"/>
<g id="xtick_1353"/>
</g>
<g id="matplotlib.axis_902">
<g id="ytick_2251"/>
<g id="ytick_2252"/>
<g id="ytick_2253"/>
<g id="ytick_2254"/>
<g id="ytick_2255"/>
</g>
</g>
<g id="axes_452">
<g id="patch_453">
<path d="M 434.924375 16253.469003
L 557.214375 16253.469003
L 557.214375 16126.175476
L 434.924375 16126.175476
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_903">
<g id="xtick_1354"/>
<g id="xtick_1355"/>
<g id="xtick_1356"/>
</g>
<g id="matplotlib.axis_904">
<g id="ytick_2256"/>
<g id="ytick_2257"/>
<g id="ytick_2258"/>
<g id="ytick_2259"/>
<g id="ytick_2260"/>
</g>
</g>
<g id="axes_453">
<g id="patch_454">
<path d="M 29.174375 16394.886664
L 151.464375 16394.886664
L 151.464375 16272.596664
L 29.174375 16272.596664
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pdccf692d3f)">
<image height="122.4" id="imagead30095092" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHxZJREFUeJztnUuPJdlVhXfciPvKd1ZWZb3aVXSDDAaMEUJiwAAxYMw/ZMicMX/BSCABfmC7u92u7uquqqx83Hc8LoO2GNT6jnTKZTHos77hzrg3Is6JfUNaufbe1V89+tt9vMPhaPpuKJqqlthIIkwfcoqIiNgOncRWw1Zi636n564qidE17uHcy07Psew2Etv1en103oiI8aiR2NF4JrH7kxOJPW/OJPZxdSCxp4Pe30Wv93fa93otobEUi9DzvBjr/f1n00rsp921xF51dxLbwd53e71GOm7Z5u1Vimkzlthho3s1gT3F64FnZ9XqM9YPg8QqeJ4Ox5p/ERHn0yOJXU5ONVYfSuxBpfeXm7/GmO8YTn5jCsXJb0yhOPmNKZSmijzhbAKxGj5L0t5uny/G7Pf6DeORnns2mkBMhZwBvq+G3zwSm0igSUFCIK3tiGLwWVrbGhaXZLwFrNd2n/87vxrpuRfw8Xav60MCK5F73IdCglpd6c2QuEcxooXjuhqep0rXq4G9OgShOCLirFEh76JWYfi8UsHwLPQa/eY3plCc/MYUipPfmEJx8htTKKho0C/CGKIkVHUgAqUg0WeAGAlnYxAgZxXcDhjySIAkcWc7Ugfb+4iABN0LiXt5UlPEAHuwgnse4Bw9mxVjC/FFpfuScm7+PiEB+EMhERBFVxAGSXwmd+es0eume5nVKlxfTI4lFhHxeKzu0EfVXGIk7h1T/uJZjDHfeZz8xhSKk9+YQnHyG1MoDTnO0Jn2AQ62FCTuoQgIQsl2UDEuF3LzEbnr8KHkrhn9Uo9gbToSAeHDJOx9G9fvXIUKnW2umw+usQdhmGIECXYUi8jfr9zroWdiVquzlIRBEhCPaxXsSNiLiHgM4t690HMfkIAMW+U3vzGF4uQ3plCc/MYUipPfmEJpjmotHyRhgsU9ZU9izP49REAQh6hvGsXqSvumESTkdEN+jzuCrpvES4qRUy7XR0grS/tC37cBYS8iYg3Xs4Jy1A313INYS+XSsAe0hqPM8tsUuQ5BOjddI5YDg7O0HpE7UI87A8GPSnIjIo7BuTfNLKtfwV77zW9MoTj5jSkUJ78xheLkN6ZQmme1lg/uQB4iNx6JJEO2VJUQ3kAcIjcffZbEnZTzK+ezuW7Db8+Tdyxd95buGb6PHHlzuD/aASrfTTn0NpniHsVI3Mvt10diWm5ZbZWoTyYhl76TyL3uXMch9Y4kIT1VKr2DfVlQX0d4dpawL37zG1MoTn5jCsXJb0yhOPmNKRQnvzGF0nx/r/beq5EqgwtQC1cV2TahvjzxH4AWLLotqLOk2FKM7aH5td/vQs06Uwow/bdgIGUf/nOx3GvsutLYAUzS6UG5ptVegFJMlt2IiA18A8VI2Sf1muyvua8d+j7aA5oylToPqf25/Spy6/7p+/agwjdwLbepewEmcIM7uJ6rQceI+81vTKE4+Y0pFCe/MYXi5DemUJonYItsgkZ054kkZPlMWWJ7EJH+v0Y3y3kz7b2piT0DiDnUc2A97CR2068lRhOS+pGeYw5WV2oISiJQal9yDdpTEKYOYXQ67XPfa4zW60P6JKQgIS9XWKTryW0I24JATqTEyxoE3xaOXYKo/LpfSsxvfmMKxclvTKE4+Y0pFCe/MYXSzAYVMA5p9Db8TOyo1jpTGIxgkSUXrJfOHLOc6/CrMl2EESwY7noQ/EYq+F1XKsaQa2xdq5AzBfdc7gQg2quIiDl85xTeEyeVinvUuJLq05e9Os62vd4fiYBEak8/pHYfUgPFvdzeEvSqzZ1SFMH9AEgYxhzMbMBrjCkAJ78xheLkN6ZQnPzGFEozBmFiDhN2Woit9vrbQcIQiVIRPHkldxoLCSo03SW3ASSBDj0Q7CIiWhD3CCpFXnQqfmGjT3Bu0RQYHLsOglhqX45HOjHmYqSl38eZwuCm0rUhsZfWm0RAokns6QhccRQjSATMdQfSepNzb1araHoC6x8R8QDix3v9zi24LI/GOsrbb35jCsXJb0yhOPmNKRQnvzGFgopPA2JaA6LGGGP6ezJLCEtzKv+sVeii40joGoOggqPFMx1+1KNu07PgR6W6JFblOrqol2GEnoOuMfv+EvtCa3ZYqWB0AKXfMxBYT2D/piP9PiJVQv0uKSdf7hQgEuNy15GgNaR7phHd98A5GRFxf6/7dTnAeveavzPo1ek3vzGF4uQ3plCc/MYUipPfmEJpluB2otgKetTRIIcOXFGpXxjq90aiXQPfcAyfncBnqafgjsoyqc8ciHMzEL4iIsaDijHLSp17m0zHGrkQSZTCARSZjjNyRH4bzxsbTaPc6dzk+juvDyR2O15JjByRtC+5ZdoRvGbkLMVycCyNzVtvenYmIJqmSt0pSuLeHw3aE/KjpzcS85vfmEJx8htTKE5+YwrFyW9MoTQvweS1hOmtFLui6bJ7daGR6BbBQt4huKCOQCg5TQhvcj1B1wjiHnyWJ85y6egeBEjq95bqASjnySx3RhEQ1pVEPJyeG+zmowEdBE1prmEdqWz1pFERkFySJJq+jxsve9IuSWx4mt/dMbqAfKmhVD4iYgb9ER/Bc9eAEHtwCWuGZzHGfOdx8htTKE5+YwrFyW9MoTQvRto3bQPix2Kvx91CGSsJGCmRixx+JDadUzkpiCJbcCESA03fpSm2Wd+WhgSj3CES5HScwjrMQCCloQ1UVk3DOSK4VHeSKSIStC084VdFwDvocfc+gy5or0lEpBLq37fLkq7lDpTm25E69CIido0ePG1OJHa+PdTY5/qdfvMbUyhOfmMKxclvTKE4+Y0plOYVCHQtCCorcPNhDETA1NTYeYBYBcfOQNwj990WfHpbcFV1VL4LYgw5slLiZe70VhLJcPpqZo9CchySaEqOyLOES/II11tpYSlaKv0Fd+gEzjHLdDVuQYij0t8I3oMO9pBKcGlPP6T0l4aStBBLlSev+q3ENhMQ7KdnEru7eSAxv/mNKRQnvzGF4uQ3plCc/MYUSnMHAh2JXxtw+G1BrKDpuVWqV1zmxFP6NE1QJWciiYDo5ssstaVefxGJ8l24RhL3aJgD9nsDcY+HpOhx9+D7HkPfwYiII7jFESxPB7rUBmK3UIo6wHHXcI00sGVd6TPbYVE2D/3A6bswhbquf/d3Iz0PNGV500H+JQaVLFvtCbnqVAS8mWovxC+aU4n5zW9MoTj5jSkUJ78xheLkN6ZQnPzGFEqzBIsuqaFkdSXlm6yJU7BERrAqPaWRyqDEbjMnyHQ03YVGi+fWZCf+K9DD58k8S/XgpGijsp9ZS07/ATgEO+0pC+Rx1sOkIlhHaum5guv5ptFYW+unr6jnAKzNrNaVJZtsREQP1uIBtnBSw7mhl0DuaPE1jHInFZ/6CHR9YmMgvOv1vhfwX4Fvxp7YY4z5LU5+YwrFyW9MoTj5jSmUZjmoPTAXEsRoCsxBqm6cGnNSo0j4bAtdIakPAclzJJxRBTXZnCsYXx4RMQJREkdJk305sxEmjxGn79PPNnBelmEjxiBqHoDaNKug6eUeRpUP0LehBtEVdpqET3rGpiACRrAATSIpCXkHtTYUpSajxF2lDTPpeSBxfVclxEuaNAQi4qrVnKaY3/zGFIqT35hCcfIbUyhOfmMKpdmAE6nJnFRCwgtN4TlNiCTUVJKadVJTyDvoL7CEemkSyWg0eO4IahKlItghuMts6snTgvSecycAUTU4reF1QrwcGl2L9aDnmYPYtIba/SsQ9+5A1KJR7tRslaDGmhGJ5xaOJcHvZDSDmD7L9Oys6rnEjmr9vptOa+838BxHcD+ANfQDoBr/becR3caY3+LkN6ZQnPzGFIqT35hCaVgQg9JRmiqDo6D1s8cJL9nxns6j3EFZ5i2JH1CeTC49svNN4cw0wnqeMOORWLUMvZ5tqNCFIiAJXTRJJ88cGG/BjXdbs5gGei++JajpZQ/nWcHaXEHj2LeDlqLe9RrbgdibgkaYY8NUbKKq+39WqaB9CcXb5Cy8HqsI+Ko+ktjtnl23dzCxZ9no+pCIeLvTmN/8xhSKk9+YQnHyG1MoTn5jCqUhBxTH8sYQkzDYJFSpAypHBX2OprvsoMSUHHXUw68GZxvdHwmVdeJelnDfVK7Jk4bIzaeQwErushbEwjcwip2mMEXwWPMtHEsl1ASVLNO0pxWUl1MvvNzR2RERI3AckjOVXJ9UTnwOn/2DTo+76HRtFtAT8PNGxcKvQFSMiLgdqWB4U+uanTYHErtqFhLzm9+YQnHyG1MoTn5jCsXJb0yhNDQUgcpESdwj8Yqcaanh1xP4wwxEwGnm8AwaLEKQoHkOIst9GruRuBkStchdSLEB+hFSKSvtAUluaxDn0IEILruIiDXEKUbCG4rA8DyRq5FKVneJYRzvQnuaOjc7U6E8HWL3Bz3PH0N/vCfndxLbbPT7jjYnen0TFvxeg/XyEGIrKDs+hxJjv/mNKRQnvzGF4uQ3plCc/MYUSkOCCPWK48m9MDAAxKZFykkGPfyOQcE6gFJWEtio7x0N6DgBce8hiHuX0LdumyihJeGtByGPBL8OSpbJmYg9AcEVlztlOSWmUclsbu9BEvzoODo3CX4dTLGlHpP0HEdEzOAZoz6TNEDmPjwnz0Ejff7wWmJn3wfx8o3uy+1PVJx7Nag4F8ETkHsSOkmUhufWb35jCsXJb0yhOPmNKRQnvzGF0uS64ki0IUgsqnEGbsRRDWWYMG11Ta44LIPV8xyB2+kxDGN42unv4HkPZZlQIhoR0cNgih76AlK57QZEmwU46hbQ444EMRI+CVqv1OdJYKXy7WxxrwdBrNfjSLwkwY+E3YiIOfTmI3HvjAQ/cPPdh3uZneq9VDMQqSf62ckIBM3E9lEGdiTuZorzfvMbUyhOfmMKxclvTKE4+Y0plGYJQxEIEthIjCGnVUpUpLLVa+hTRm63BfSkI9HnHoh7zwYVd561KsYcVyrk3HVQ5hsRI+j3N9TgEIRec9cwbITWbNHpXpErjiDn3ZimcySOJaik90PEPRIvU869dyERMIKnKufG6MwLeMbefqU98/b9WmLtWp+dHYiKHbcjREgbRBcp5Jrf/MYUipPfmEJx8htTKE5+YwqluWtVmKAJowQJQ+QES5WOklj1eqTDBbB3HYiAx9Cn7ASEuCetCiJP53rew2MVFe+tWY05WqjoM96ru3A7VoHnVaaolVtWuwdxloSz3cBWMvo8nacFgY5EO9r/fshzjFZQFo0l53DNETyY5A4EVnKhjuFZ/hz2b3R3KrFHK937Gu7leq8iYJs5eTkFOTRptf3mN6ZQnPzGFIqT35hCcfIbUyhOfmMKpaERyDh1BerYsfknTNzpYJx2BNs+6T8NdJ4p1WnXauUlDZhGfte1Hnlwpmtz/Ijt0Cc3Gp+/0Gks2+5IYt+M9V6mYAOmMdSo9oOqnDtxKYKtxdsur7kmKc0pJf5dsGdA5n9CqI9ERMQt9EAg++seZsPTaPk5jHefw38A6lbV/imcdwG25FSTWJz2hLZ7hfbab35jCsXJb0yhOPmNKRQnvzGF0pBoky0O0U9HpkATwWIVCYYViCy5Y8QXoULQiwYm9iwOJXZwo4LfyT0ea314rvfypLnR6/mlint0PS+gD8Fdndd7IdcGnNuUNSItDr4LWW+rRNPTHFI9B95lA+JxREIQA3F3AnX660pzYw128TUIdFt4PmuySMNnSdiLSEyAyhRTCb/5jSkUJ78xheLkN6ZQnPzGFEpDddVYzw/aEDZ6hJ+T1GQYFIfg3CT6ULNO7CUAIstLmJLyGYhux6/VjTc7fSuxiIjZY401h3qeo0aFqfNB3WD3YIz0W5g+1EKtPIlzexRx8/cldyx2rkOTjst1AhK0Dil2I2geSuPPYR1JdNuREEdLm6mZpyZc1SCGT2BtqU0DuRX95jemUJz8xhSKk9+YQnHyG1MoDZVgpgSHd8l1faUagpIQ1ICQR7ExlLc28FtG93cH5Z9fNXqOs602BJ1/wU6yi3YpsW4LE1p6Ko3W75vBPZMLDdc2UzdLlctOYUw6HUsOQSzzznR9UlPWDykR/vbceQLkpNLnaUqTfUB0o9gUhPQDcJu2oAyeJcaNR63x8z1NH6Jr1K/zm9+YQnHyG1MoTn5jCsXJb0yhNCn3XQ7Y64/EFBDnUvHc7yRI3CE2YFd8XakY8+kExnFvtC9fRMSjz/ImtFzt1bm3IUMliFp0f7n7R6Jp7rpGRPSjzGlBINDlloj3IJxh2THccmqsOPZ/rHRf5yD4ncBxF4N+32Wv9/Kg2krs9FBjR1sVkOetlnNHRLSd3uMJjJG/d6RTuE7uaTm43/zGFIqT35hCcfIbUyhOfmMKpcktwcShHRAjYYkGbERwWS46ulAcyhOgukpjWyjfvMFBJRprJ+y+ejOAGxBqK7eNfuc1iGmrxKCTdyGnI0H7THsVwSIi7QuVwVJPyB4E1tz+gfQskhiaIneMPDkqz/caewyVw88GFfIeX95J7PChHtdv9P7OrlWwS3H6kQp5sz+/J7HRx3+oseyzGGO+Uzj5jSkUJ78xheLkN6ZQGizfzJzIS4LRDL5vlhD8qNQTRaTM2AZKdWsoeeTWgxq8IccZTHONiFjAWsyhVpeEs2sYDtGBqDUJKDuuVWhsQUDMdd5FcEk3fb4F0W4HTkmaoLsduDT6XdAdiMMrWECk6ybBkMp370O57ceDinHPv6d9HU9+CI7KJ4/0Altdm4Ovb/W4iBgW8Hxf6rCZ0cffk1j1Jz/S4/AsxpjvPE5+YwrFyW9MoTj5jSmU5mis5YPo8MsU/KhMl0ooIxJDNoa8sk6KbUBEquH3Daf+ZjrBSOSKYEceucbo13YD39nA9ZzB0A6CREW67tQ02FyH3w5FV73nJewpinbgBCRn4vtMF06Jmu8yhp151Ol5PvnkSmInfweOur/4M72Wy4/0xBvt/Tj64jO8xuHz30hsv9Fnfr9a6bkX13oePIsx5juPk9+YQnHyG1MoTn5jCqU5qvMEP3Lj0XFUpksDEVIMIATRd7bZrj8QAcn1B1Dpb6pn3hjWYh563wfg0qNJq+ehIukErnuaKWhtcbosC2cdlu9qbAXOxDu4Rpx2S+IerDdBe/A+vShzez1OQVg8eAbf96MfSqz+y7/X4y5U8NtvVfDrT/4dr2fUqcOv/+mnEmv/XWOjX7zQGJ7FGPOdx8lvTKE4+Y0pFCe/MYXSUH89clWRoJLrnko5snAIBcSwzyD8buWKPlRimusaS00mJrfjFgSxeqQC69le94Cmr55AifEBXHYD4twORMXFiHv43UHZ8oIEOvjsFpyOJIbS/nWZfQtzn4cUtNdX+53E/mdyLLEf/Jfu1aO/+VJi+++ro25/BiW9jbo2qyN1DEZE7Kd6bPtCBcPPfnwqsa93BxLzm9+YQnHyG1MoTn5jCsXJb0yhOPmNKZQmd0wzKaRU402h1DnGYHWl5oo4dYX++5Bp26RzDKA0kwV1n5gWU0Hjyj2o5sehI7rncC+X0DzystNrPAk97wT+y7CDOvuXI72WiIh+rOdeUdNTmgIE7xOyU+N/deC/GfTfFVT2E1tPzyg9y68HrYH/cQ329etLif3jP/9CYvfaf5HY/gd6XJxcaGyhDUEjIvZfvpTYm5/pf4/+bdAx8j+b63PiN78xheLkN6ZQnPzGFIqT35hCaXJr5Un8onHMJLCkBL8e6slJyMOpKxCjYTp03e9R+p1NbkPR9UiFF+hvGWe9ft/TsYpSJyc6ormC2v3lQq2hiw3bewP6EFA/AGoKSktL9l7s8ZD5KiLBD/c5Es8yXPddr+v46QDThxq456+eSOwf/kktv5d//ZnEmmdg5Z1ww9v2v7+S2Is3DyT2q5ne86cgaPrNb0yhOPmNKRQnvzGF4uQ3plCaU6gvp1HXNHWFBLs9iCnUWPPbY8HNlzmhhb6TnHu504dI+KRrSfUwIKGSzpPbA+EQ7vnivtZuH1yoqNhv9RxdCyOjVeP69vMgpq5gvbcgstE60GjxGQh+E9gDmqRD7kB6ZiMi7vqtxFo4loTB1V4/u4WGsNBrNZYrde798F/1HM+PdRz3yT3emOWN5uqva3VpfhN63a97C37GmN/i5DemUJz8xhSKk9+YQmkejeYSXGITRhVjyHm3QoGFBb8eylGHgabFQIkquK9yBURqtjmGZpY4bhwankZEzKA89hhGal9UGqNmnaeVij7zc5g+dKTXAlsQu53e3ybhvFyCm49GkG9oohGsN7kxSdybwLvoAIRBuuqbxHtsA6XWJKeRqEzPGD2Lv9y/lthqrHv1+Vw365OdOvyefMFl4+QE/flYj30Jbr6rbiExv/mNKRQnvzGF4uQ3plCc/MYUSnMf7ElUgtmBm28DIhdNw9n17L5qoSSYBBUqHabPkgDZgJBHzjtyBxLzRN+7h6C8PQH35NNBBaxPdrq2Z0dQqttAPzrVdmJ1o6Li27Vey5dj/u1/Ven0mregIu5ABKR+fTW4/uYg5J1XurYnUF5MpPo37kZ5omQD97cAaXALZdq33VpiVM591ehmvWh0KtC9CT9jxMtBz/3ZVgXI11t1EvrNb0yhOPmNKRQnvzGF4uQ3plCaCZWiQqzBMcu/+5CMCHZV5br0JnWeEJTr0ss97qLWUccREc/BKflxp9/5pNN7fjJS0WZ+AKW6G92D3UIFzbdXeo2/qVUE/HXNzssX4BB73Ws5MTk3qTffWa1rcwTHPQTx+d6g90xP03zEz+JRretD5cmvRir4aRc+dv2RCLjpVTQl9+tNp2s9S7hIKV/o89db3atVq+f2m9+YQnHyG1MoTn5jCsXJb0yhoGpGJZgdiXNwHAl2dFwEO61qKuHE4/R3i0p1ScgjUYq+j44jZ1pExDFMwb3X632fQw+4aQOuxk6vZ3Wtzq/FrQp533Tg5pvqGn4Jvd4iIl52dxJ722pJKHHcqLhXhcZOKhW1nsI9X4JASuM5LhKC3xrEs1uIjUd67rcgxNKzTA7WAfJl28MQl06FQXreI1jw23Z539mDI9ZvfmMKxclvTKE4+Y0pFCe/MYXSnEAJ5h2IXykRIofUlF4aYJHrtCMXFAp5mVN/aeIslRcvwc0VEXFVq+hzVcM17jU2UM89EL9I07rt9Pu+aXQdvqn0Xt4MPBziFlxjd62KX1QuTSXP1P/xFJ47EvfI/VjB/m2hVDoiYtPruV/DM/Z2orEZHEfPMuVGB70oiR5K4FOOWBLTqbSdIJes3/zGFIqT35hCcfIbUyhOfmMKpXkO/eP6iYokdyCm3UIsNdSCIBGCBKMjGH5xAv3eqEy0A3HoZq8OqDfQDG896HGpASQk+rSNlta+BhHwYoDhHh0IZyAi3Tb6+/0F9Pp7CW6+617FtIiINZSjUh9FnEJM5dfwjjmDUt370DPvlHoZwlCRrtNnNiJivdH13nZ6jQcwSfgQXIgHUBpNZb60DrSGFCNhL4Kdt0RKYH8Xv/mNKRQnvzGF4uQ3plCc/MYUSvMUpsFuOy3BfDNW8eMGBJGKetyxFoPOrxm5waC32yOIkYi0HKlI8isQY24rFcTuQIzZwWThCBZjttAj7wrEyzMQSc/BcUb9Fq8rdRx+Cc69r3styb3utNdbBItQIxCRxuCAO4D7o2Ec9ztdr+OJCo3NWK9l6KGvX0IL6/e6Zj31qITPz0BApvvbgbuTRLdt6F6RuDeAoPnbgzmeAQnSfvMbUyhOfmMKxclvTKE4+Y0pFCe/MYXSHE5VYT1dqzp72qgK/xhGUEdo7BCaW0ZEHFA9Pwiax4Me96RVFfgA1FSq3V5NVLH9Gv5zcQOK7Q4svxE8jYWU3PVIr/EtXONXoDRTnfcNKPs0xWUJ19eCLTWC/3MxA1vyCTTrfNAcSuxJ6PP0CJpezo5gShH0NdiQZbflZ2zZw/5Ds84WeiVQB4sp7NW81vsjdZ32j5pyUiwiYo//uYDjYP/o3H7zG1MoTn5jCsXJb0yhOPmNKZSmrlUIGINgcAqi2xyaUV7AlJqHIO5ERJzVYOccqdgxhok200P9zhZEn2F5JLFzuO5j6CPwCqzGKajZJ/UD2EHDxhtQbUgspM/m1t6nRCSCrKkzELVOoV/Bo0pFwOdQP385U1FyPNXr3qx0rzatim5rEPYiIlbgLd9CJ9QW5gCRmZaaztKkqA6kuNz+B6l6fLL9srCon6XnyW9+YwrFyW9MoTj5jSkUJ78xhdLklgjTuOljEJaezbVu/MH3eLzz/CnUGB/lNQDt3qhj7ern6tyrl3rdU7jnAxBtSMhJkevUIqcVOe2oUWg/0PflCXlUj1+D0y2CJ/HQhKRTcHg+hD4LH8HI6Iun2kugnui9kODXQt+GdaJpxBbuO1/6zGOEXkAlNao++zy54mDmK91vfmMKxclvTKE4+Y0pFCe/MYXS0KQT+kV4AKOpPzq90+N+oM6t6Z/ex5OPnjzU4KGWhFLjwuo/fqLH/VyvsYW7IcGHRnk3mZNPIvIFP5rusu30usmlh2OW38MhJp9NCFX0eWrWSa7ISxDjHh2quHf4LE92m76FMt+Fugg3iXtuM0fLU3NUmjREzwnRw1OGzwiKuPnCIIm2FZT+ekS3Meb/cPIbUyhOfmMKxclvTKH8L0XBjBG4YtAaAAAAAElFTkSuQmCC" y="-16272.486664"/>
</g>
<g id="matplotlib.axis_905">
<g id="xtick_1357"/>
<g id="xtick_1358"/>
<g id="xtick_1359"/>
</g>
<g id="matplotlib.axis_906">
<g id="ytick_2261"/>
<g id="ytick_2262"/>
<g id="ytick_2263"/>
<g id="ytick_2264"/>
<g id="ytick_2265"/>
<g id="text_114">
<!-- 613 1839-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 16380.781664)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-51"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_454">
<g id="patch_455">
<path d="M 164.424375 16397.388427
L 286.714375 16397.388427
L 286.714375 16270.0949
L 164.424375 16270.0949
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_907">
<g id="xtick_1360"/>
<g id="xtick_1361"/>
<g id="xtick_1362"/>
</g>
<g id="matplotlib.axis_908">
<g id="ytick_2266"/>
<g id="ytick_2267"/>
<g id="ytick_2268"/>
<g id="ytick_2269"/>
<g id="ytick_2270"/>
</g>
</g>
<g id="axes_455">
<g id="patch_456">
<path d="M 299.674375 16397.388427
L 421.964375 16397.388427
L 421.964375 16270.0949
L 299.674375 16270.0949
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_909">
<g id="xtick_1363"/>
<g id="xtick_1364"/>
<g id="xtick_1365"/>
</g>
<g id="matplotlib.axis_910">
<g id="ytick_2271"/>
<g id="ytick_2272"/>
<g id="ytick_2273"/>
<g id="ytick_2274"/>
<g id="ytick_2275"/>
</g>
</g>
<g id="axes_456">
<g id="patch_457">
<path d="M 434.924375 16397.388427
L 557.214375 16397.388427
L 557.214375 16270.0949
L 434.924375 16270.0949
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_911">
<g id="xtick_1366"/>
<g id="xtick_1367"/>
<g id="xtick_1368"/>
</g>
<g id="matplotlib.axis_912">
<g id="ytick_2276"/>
<g id="ytick_2277"/>
<g id="ytick_2278"/>
<g id="ytick_2279"/>
<g id="ytick_2280"/>
</g>
</g>
<g id="axes_457">
<g id="patch_458">
<path d="M 29.174375 16538.806087
L 151.464375 16538.806087
L 151.464375 16416.516087
L 29.174375 16416.516087
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p7f9b30acfe)">
<image height="122.4" id="image7eda5c122e" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmPJXmWla8Nz97oU3i4R0ZFRE5VlUUXdKs3SCUhdi3Bkr+VBQtWLFggUCOgUdM0dNMV0ZkxuYcPb37PBhbZLIjzmWSp2uXvfMvrNv/sPpOOn3tv9i9e/ssuPuM6n34eiidZJbFpl0mslkjEbRwgGvF9u5bYTb2S2KreSWzX6DG3EOs6ub0YFaXETkq952fVmcT+eHQpsYiI3x1GEpu1eu7vR7nEbvJWYhqJmIQ+b1qDQk8belaORUQcIXYP1/gpayR22+ka3Ld7id01G4k91Brbt3o1h1bfsqajJxZRZHqXi3IisfNyLrGLYiaxeabrPM0K3Re2e97qe/e00fXTrX7kDhbsI6zLIdNY1enOfetvjPmZ4+Q3JlGc/MYkipPfmEQpcxCRiC5URaphXxIbjiC6RURksP8YhJKm0GPWnYpNRau/ZS1c9wgEGhKGiEOPsFTCLb7KVcA6O6hw+kOh9/xYDFsXgq5Qn1bEsecU20xvZgfPsYHYBL4nJJKtsz5Z6/+nbvXKSdxrWl4X+rwdBx6TKDJ4Z+EkExDYJiDOTiE3SLCNiFhAvhRw7gLOXQ0UgY0xCeDkNyZRnPzGJIqT35hEKSsQv8qBImADwtAehJMjSlAMiXEViEPlQNEug2vMYTval8TCDUpnEetcn9liqm63y6mKgBd36i68OagL7SHXe37M9bpXJHLBcyA3ZkTEEe6bVrCA92QC60LHy0E4IxGX3HyHpu/Kh9GAK66BO6T1p3sewbuT94h2Q7YrewTyE1gEiuUozup1+8tvTKI4+Y1JFCe/MYni5DcmUcpzKNWtBv4mkJCzA+HkAEJOHySeHAeLe+SAAqEDtiNaEF76HH5LeGQdOLpOrrW8dXauwuDig2734WGh19iOJbYB8fEAt0zr92NcIXGXoCdLwtkehLx9o2fe1vpsyI3X51SltW4HuvmGul+PcLwNnPcBxNk5rNWThp/1ApyJeD2QGxtwjPrLb0yiOPmNSRQnvzGJ4uQ3JlHK33bqJLuDstwtiDYk5B1A8CNBpA8q8y1BwBhalkviEJ1jKCReRUTsQRDb7rSUlR5Fda7B09C+hcej3vNyre7H205jJBVRmW4E3wu5NGsQRGm7VadC3rLZSmxTq8i5r3VfKi8vwf0YwaItOjzhO0hvCb3LS3hea8iNPTybWaGC7dMeXW8M932Eq1yBiEj9//zlNyZRnPzGJIqT35hEcfIbkyjln3VLCf7P44nE/gqagG1BRiJBpE8kI8iRRWIMCTxU5jv4HANFRSpZjeDSzFWtgt/mFoaftDDUBI5XVfq8qzW53ZQ9HHAJQzcihpdl1+Tw7NS5dwsDOpa1Cn47cPgN7a1H7s6IiAoGtEygZ+Ik1xitP73JQwXtNVzjBsTC4fJ4xApcg7fg5ruFMmZ/+Y1JFCe/MYni5DcmUZz8xiSKk9+YRClf/OpBgrPvoaJ7+URDY1VDP4EcSpNdIn6CkouWX2j0mauym0NNPe4LTULnuSrzZzB9JiJi1up5tqHnuYNmnXU97Dd4s9HrOcDv9x6E7w1YtlegzEdE7AbatsnevYb/XHw66tj19VHty3Wjx6MR69i3oWfi0qTQZzYv1NI+JbUfni31myDofw+D+2T0/OdiD+8yqf1L+NcTrb+//MYkipPfmERx8huTKE5+YxKlzGC29OlTFWN+vV5L7IdWG0p+BDFt2ePuJSGQarWpJpssv1QbTcejfRcgAp3nUGsNtfIRETPQLg8g+zwe9JjtA0wLgmf20Oi+NwU8bxB8tiDOkbAXEbGG+vstiIPrVuvvN43GHo9q76XGnDSOG9ePrNg99fxk5Z2BkDsBwZfGcdM0K4qRWDghsRDWmZqtRnBjTpykBMek0en+8huTKE5+YxLFyW9Mojj5jUmU8rhUoaRtYPTyWEWgq50qC/MRuP7+gIaZESzwTMDNN8nmuu/Ac5fwO3gJ04wuGv69nJJCB+zp9xbq/mu47lu4Z6rdfshUnCPBj1x7P26r+z9ATf6qVmGYBL8VuPlozPbQSTokAPfV84/BuUduPlp/eneGinvlwOlR1OtiC669iIgJ3PcUYteQv194RLcx5v/h5DcmUZz8xiSKk9+YRCkfbrTElCbD3O3UAbceUWkliIXgnvopzKGM9ulA990IhI47aFy5AUFs1ulvI/Qx/fE8ILxUIOaMQWQb53ruEso3Z62uSwZlw1s4xxpEvBU49CKGO/d2jbr0aMw2leX+IQxtwBrBgh+9T9SYdUwlvSQMwvUMHu8NsVXPJ3kM7+MEhOYrKI1+kumZ/OU3JlGc/MYkipPfmERx8huTKOXvl6cS3IF4clNq7APUDjYg7ox7ptxQ/CRUtLsKFWheQd+7iwb61MG44iPcyx56nP2EQUMo+J2AyHIyVpFscapi2gim85zfqeh6vzvXi4HHjePUe0p6iSmUwWalPtsxlNBuC71nmrhEZb54LaVey8lIheuIiNMcSrXBuTmnkt6Boh19QcmrSDEqa9/CFJ8IfpdpUtQpHPN0rO+Yv/zGJIqT35hEcfIbkyhOfmMSpXw9UqHjiEMfVEQ4koMNxMJzEOwieIjBNbjYvoLZEtfgJCM2UB5Jwgs5srikk5nBUc9nWsp6ca2lsbOX0KfuWgWs+fc6/OL5f9A+irNOnyENm6h6hFgaajIq9HqoF2IDz2HX6gIuKx3RvWr0eVH5LvXlOy1mEouImFFJL9zfM3CHjsFlSe/8HnLjANvxiBSlT2emN34P7sItrPUeXLv+8huTKE5+YxLFyW9Mojj5jUmUcgviHv0iVCB+nIEgtoDt+pxSC1DermoNPgt1fs0rjdFADBJJqMz3AkSyMyihvITri4i4BAHr8hc66GT2K3CSfX0lsfziTGNnHyX25V/plOXr7VOJvafpwj0//dTP7gTLYId9OxqaGluqs/Sh0zXdtMOE3VGfeEmiJJVfg8p2hQZImpQLw1lABNxBjDJjAjn0Y1xjJKXv4HpuG3U6+stvTKI4+Y1JFCe/MYni5DcmUUoS3cYgiIxAbChRONHYosfbNIXedTMYDjKbqxCUgXiyvtVSTeKyVUHkFMSdKxgs8Wq+xGNe/1Lj09+o+y7/+rnEsmdf6AEn6qjLR9DL8Lv/KrFv/5Mu6s1YxdD7HpGMHHCXIIhO4DnS14TeHXKRfsj0Gj9COfAK+hFSaWwEi800rOQe3qczcM+dNrodldUGDFMhd2gG13faM7vkDM5NpeRHuO4HKKH2l9+YRHHyG5MoTn5jEsXJb0yilFe1Kl3zACEOJr/OKojNVKAZT9mlVYASVFSqdhRjEDXW8Lt1qyHySj2t9XjfZFpq++Irdc+d/JMeJ9l33+q5X7zQ2NNr3Xl6ojEQGzvocVd9dyGxX//Fo8Q+1Nrr77bg3/5TmPJ6iWITrNVAYXhP/ehKfba7AkrOQdw79kwcJmh/mmz8EUqHc3DfkcuORE5yltLbNOuZ+Hzaal5WcN8bEGfXUNruL78xieLkNyZRnPzGJIqT35hEKc+h6PUMBkvMF9r0f3aq243mKkBk5fDpFzTQlypHm/2wY9Kv27TVa1ws9F5mL2F67m+/4fP84z+RWHb1pW5YwXCJWp9td6/luwHXnZ1o77qrl28l9tX/UrfhKfRLjIi4ALHxIgexsdDnU7f6xLeNLuptpzIZGAZjD6LiHoaN9L0NNEG3ha0PcJ4liGnTQp8ZuWTJ00r3Rxfedy8k7s1zPdMY7qVsdQ385TcmUZz8xiSKk9+YRHHyG5MoTn5jEqUEl2WMRqqmTub6X4FyOsxS2ey4IWGH8idsB3bT5a3Wfi9h6grVjT+CrfXTWlX40zfalLP6eMfXuNNtyaIbe23qGY/qS+4+/L3G3r/X2FJtySX8x+WLSre7qHn+0MWZ3svpU52mk4GXdwXr8u6T2pfX8OI9wJj0DVjNqR6/7ytWgIGWavxpYlNDU6rAqlzDvtSDE0d0wzlq+A9FREQJ/wc4m+u6TGeaqw3kkL/8xiSKk9+YRHHyG5MoTn5jEqW8A5tltVWRZbTUWHOEmnMQ8dqeCSTNUX97djsVoR52Om3kfWizzneVHo8mp2xBUOlChar9a5188+t/C00DIuLi4d9JrPj2ryWWTfVeuj3Ze7UhaPeoYmH7qPuSRfrqCx3v3aMrxeRK13V0qe9JR3XnnV5P8WkusQOcfD+wJr9vAtTQbcfwzavAQz4aOH2KZNOc58ALLRxv2lPPvyhVyLt4DiPffwlToZ6p6OovvzGJ4uQ3JlGc/MYkipPfmEQp78Htljcqfh3u1SlVwcSdDFxI5CKMiNg1esz3ILy9Hek1fgRFZQ1NGEl3WcDobRKgHgsVFT+9ewZHjPj6X6vw8uzZ7yU2faLXmMPsZephkJXwICkE202f6nlJGIyIKC+gceWprkt30PUvxuo4K2Gt6NTU4HIKDj12z7FINlTcG8O5KxIL4TQ0SWcBzTZJ3KOrnvUIn9VY17CA2eL5hfZ4yH/1tcbwLMaYnz1OfmMSxclvTKI4+Y1JlJLKB1cwzrelcczQmJF+Tfp8W0s4zw8jPc+7TMWTJbRIpCaMNAL5CCOo93DldyAsfaxYvfzQaoPML96q8PLkB3VpLQqIweSj+Ym656o5iK5QapuB6lqA0BgR0azIuQnbQgyWIMpCgxOYmrQAJW9D7yJNAOp5y2j9h0JPh95vmqTzYqJuzDEIdvu95tDuyErsAeLrjypKVx/VzZmvIIZnMcb87HHyG5MoTn5jEsXJb0yilCMQT3KQOhqq/wRFRKWPiC2MB46I+FToMe+gjxuJe9TbrYYLwiEpcM9H+B0kwadPPlrDJJc7EKtOWnXKLSB2BSXUVysV/E5nIAJWUJINsXJMqxWRg2CYl9A3D+ZQ11t9jiT4LcAdeAJTZR7BjbcZ6JSLiNjBe9JgHz6NUYvJBU4AUqYwln5+rmuV3+var/c09DtiDT0qRw9aIn76oKPlR48W/Iwx/4CT35hEcfIbkyhOfmMSpbxsoCwTxA+KoTDIjcqQMQhiNDSaxizn4AbrqVAVSNw5kjA0UECM4GEOR+gfuALxcwzuO3JZbmsdLHK5VnFovlGxaVapaFpBLCKiAIGO9N4sJ4cfiHGwVhMaNw2qHUlfR1iXdaf3HMHjvIkRuD7n8EYVmQpsDyD2Ho/gTITBGbTdGvpqRkRsIbfOmmHfbxK5/eU3JlGc/MYkipPfmERx8huTKOVXCx0OQYBeEHWtYsWhhp5pUPr74wE0tAOh65hD6TAoUCTQkZtrC+LeDoShA2zXWyIKYeofV4AISNWySxDTxuCI7ECU2rR63jmUjp7ULJKNimEiWQ1iUwP9ERsQ/Bp4YDjFFmK0fvetuuciIratlkYTFTQ0POZaLjuD9/OuUBFwtYVS27W+8Nudinsk7EWwi3FCff3O9F6y0bDye2NMAjj5jUkUJ78xieLkNyZRyqtvhwl+7QHcSRsVP3bgOJvB5N2IiGqrEs++BvEE+vqRk3APYtoBSoRJvCRxb9OqIEZCY0RERb+jOFwCgOveQDO8ByyNhmm3JJqCu6yDWETEtFURqQYhbwV+zA1cY0tTkeHUG7i9DazfGtZl1eiwkAgW/AqaiAKhQwfuO3hPPsBQkjdHdWMeP8GwGHiufZyH3vf5lQ6LKa50Im/M9Hr85TcmUZz8xiSKk9+YRHHyG5MoZXWlokZWQj+7WkWNaqvix/hRY/tHKtSNiFsNjTYq+BWD3WBQVgvC2RH2rmG7jvq69TSLa0C0o3MPnSFxBJGM3IUjKAem1nx0vE2P2FRDSekGRLIbeE8eB35OoP1f7OAZ0jAOKtNtekfDKPnARaD36QGchP8b7vluog6/607f7acgur46cqn18wvtw7f4DqZsP38qsezsTLfDsxhjfvY4+Y1JFCe/MYni5DcmUcoWXHYZqDFZCX305irklTBRd//IJ78Hce+h0N8j6tnWkZsPBLYdCEEHEIx4QAfcc4/Dj8QhGjZSgLWNBKgRxKiX4Tn1MoSbqcDW2Cd7HeAvaxAWH6Ds+B7Whb4wE7gXWmda04aE1B7IzZdDjNaa3IGP3VZibzsdkkHnmOc6oONFqW6832VziUVE/NFI77t4eSGx7PpKdz7T7fzlNyZRnPzGJIqT35hEcfIbkyhOfmMSpXz73xYSHI2GjXgeTcBmedTa/ddvVWmMiPjLEmr3h5VaxwhUblKvyQqKzTo7tlR+DjUEjYhYdWr7XKNir3czgeaRM4jNyW4M10Jm6iko5KOewdY1/feBpunAGoyxhwH8twbOS+1Eyd5b/wQrbwmTeGg6Tw3vBPUIWNaq9h8afXfov0LjQm3Ty5Eerxp/IbGIiN9+OJfY1Yd7Pfc3+iQz+q8HnsUY87PHyW9Mojj5jUkUJ78xiVL+xUZFhDGIWhMQjGZgX+1ALHpTaG1zRMQGxCESlsYo5env1hYaV5KytANxbw112jTWmMSrCBaMaP9xrqLPAia+jKARJvUMqOHRcC8AZZr1jOiG85StXncNk5io98J+qJUXGmGuoZnoHmIk7EWwuEexDVh5t43G1kcVAY+trj1ZtmvYjmzFr0tuqvufx2rb/fLf63vyRfx3iRWv3sE1GmOSxMlvTKI4+Y1JFCe/MYlSvoM6/TE4t6bQ7HEGo6An0OFy2tP18jmESxLZSBiEuv8VuJhKiJE4twNxZ6jrL4JrzFu4FzpmBoLYFBx+e2isuQPhbAW19wt4DjDXJSIi5mN9FlWtz6yGqTQd+AsfYbQ4DQvaw72QOEuM4XlFRMxgzPYIvnktiJzkxqQ1bVpo/koj5OEdoXeRxOeIiL8r1bn35w+XEvvlv1lL7HRxJzF/+Y1JFCe/MYni5DcmUZz8xiRKeQThhX4RqCkkMYMRxs9yKtaMGBUwWgZYH1W0aRtthvgBhCVynJGrikS34if8NtIxa3gWJPqQ2LiFZo/LTp/jGJyAea7iF01hmhxVQIyIOA0VnBZzjR1gEtO6VbfiFgRICA1+2lQu2+fwo9LoCralBqwTKMEdgYuUnHtDISdgX4PSGxAC/0ul1/P7ThuAjrdauu8vvzGJ4uQ3JlGc/MYkipPfmEQpZ6AtTEHcW4CL6QmUVl5PNxI7v9Q+ZRERk/Nh7q3lBxW/dh+0L+AbcMCNyD0HZbVNqFD1UyCRZtOASAaONRovvWtV3FuBeFWC8xLLjkG8mnbsirvcq8A6meh1VyDYFrCkBVzOBFyk807FK+pvuIJv1h/6FSNhuIJzjwqNUUkvlXMPnR5Eo+EjIh6gT+TfwnYTEDRp0JS//MYkipPfmERx8huTKE5+YxKlfHlUsWIOzrSTQgWokxMVIOYQmzxhh9/4uYpQ+bkKb9WVioj7rfY5e7tREfB9BWWwuZ6DhCUSgciRFRGxAfcduf4CBkGQQEciIImFGxDJaJT3AwhLt1AWHRHxsVaBtVrpO7GtQfyCW6aekFM0xen1fISS3FVO5dfsslvDutAgF9qfXJ8VuCfrgU5V2pdiJBZGRDzCu7ODPowjWGsSL/3lNyZRnPzGJIqT35hEcfIbkyjlq0r7fc1n0MNtDIMJimHTUut1z0CFDRzzUrctv1Ih79n6RmL/6M9VHNofYQox9C1cwcAI+mXsu+N7EN5omiz1bCNxj8qJ0SHWcz2fQ0MylhnfzZuR3suh1jJRPA+IZAvo4XgC4uWsVVHqZqxr+inT2E2ronBExGOrIhlBoiuV6tIalFDmS8IwTenFPoE9Dr89uD4PIPiNMz1PWdA1GmOSxMlvTKI4+Y1JFCe/MYlSliDalZXGslxFiOMBeqHV+ntyPLCwlIFTazZTAbJ4fiax6isV8l7d30us+xsQoA4zid2Wei97cKttYLhDBA992IAw1cDzJncZ9aQjFyLFKhILaXpuj7B0AzW4O+gVuIBlPWt036eh6/xkoWXe5zsVqm5qXef3pToQ1z19IneNxqlnIomufb30PodceiTkDd2u77w1rFcJQ1JyaJA4BxHQX35jEsXJb0yiOPmNSRQnvzGJUm4PIASsVVjIQfBrYXwuxcqGBYxqC5NfH9SxlF+oQJPNtSx3+kpFpOebR4kV7/Rezg96vHtwbr0Hd2AEl8cO7Qv3h0DnGIOIRNsde8TLByjp3lF5Mjyf61qPeTZRl93FM3XkzTd6vJdvdV3elSqkbnKdGBzBjsoj9J4kYZCENxJiz0oVkBfFsJ6Q1Ktx2+r7HsETgmmACb1jNLzEX35jEsXJb0yiOPmNSRQnvzGJUi4bGGCxgYm1IPgVIBiRY7CvEJaMTN0BhMWl9gXMQUTsQGwqRrrddKIiy2KtgsgOBmJETw+/I9zjFspW1yDm7KDPHPVxwz5zMJl4Rq4vuOw+/xrdSwsi4h6ucei82mKs5xjDO3YOLtDrRgW2BxABIyI20K9xDcckka2DtT4pVVj8TfVUYi9hCMwOSqjfQCny97WK1BE8BIb6DNJbS2vqL78xieLkNyZRnPzGJIqT35hEcfIbkyjlDYyrnrWqFk9BXZ9C88Ap/AeArMF9NDtVL7OPqnJGaGz3Ua/74UbV2fUWpvhAA849SOQ0kSYi4gD/uqBpMfe19isgiyexATttDeedQAPOOfwHYApjsiMiRrDtCJTvGew/guuh9af/9LQ1KNfwPo1x5Dd/x+Zga53CFKBNpu/TEf53cV7o+/Sr0Nifwiu7gXr+yUj7FaxhOlYE9yGgJqNLuBf6z46//MYkipPfmERx8huTKE5+YxKlfAf16acg+J02IA6B8FKBANE0/BtT1yCygbPxsAKr607Fk9WjNnZc7lXcWXe67wbqtA9Uwq6hiOCxyB08IBL3aBIL2XtrECVpDPgjiVK5WmK/hmarERFDOw6cgQj8vIDGnE81NjqF+3uv97Jr4B1RvbbXqlxiTwUQNEGMo4MeQal8ANvuHs5x0WhuXJfUgJUnXB3B3k3vzhpswPeZCs3+8huTKE5+YxLFyW9Mojj5jUmU8n2uIsKBpojA70QGxdtVAwLGkeWYYg8jrA9wbhAMd3sQ7Y6qBG1B3GtBBCpAYJvhRBp2xT0BJ9kCJvbQ1JYDNJTsaRswCBIfSdz75wsdcx7BE5u2a2j0Cs69i+danz77BgQsmLoT76lxqO67Re2ZXaTUuJSm12xzvZ4VHJPq/v+mWUosH59I7BXkxh2Ihesex+eyVuF0V3Ozz8/B5p+D9jTG/Oxw8huTKE5+YxLFyW9MopTvYXzyHsp8D+BYoqaOJYhuBTTljIhoIUyNQmsQ/A7g/KKGi1R2XIHISY1H6bxnNQhVEXEEEektOO0eyjnu/zk0LYbEwrNCnXtf5nqOf5o9SOzFv9J9IyICpg/Vrz9JrF3rcywuVOQsrlT8apcqXnXgYGtgTemLRSXHEVzS25A4CM9xDqW/LexLx/u7Vh1172D9dtDk9eORG3iSuHdodH+8xtYNPI0x/4CT35hEcfIbkyhOfmMSpbzvoC8YCAZ7EE6OBbnnQBjsEckuwM03BjGOAMNSjHMVP85OdDz06ZXGiqkKIs1Or+/0PY+CXj1eSOy6UBHwBkRAgkQbEqBegLj3u4Ouy9d/ps67/E//GZ/8qA6z0fj3EmveqghIdFvoKfeosQ7Gu5+AYHsFpeAFiJQRETPow3gKQvXLTN/REUzDodzYQGwZet2PEFvipCAWyEvo4UjOPRKL6TPvL78xieLkNyZRnPzGJIqT35hEKamfGYkaj+BEImfTEUSuHQgsERGrRgUs6nM2gWZqI4jNSr3Gk0sVlqZfgmtspiOV25UKX+1RxcKIiKePKtxcdCoinUKZ7x5Ezhwca5cwbvq7TmN/XKmbr/j2WmIBgm1ERNQguo71urMKBCgQ8jC2hTWd6T0/O19JbL7WZ70+8ojuu47cqnqeM3AXLnJd/xqGg3wIPffrka7934IouYZzjMFhGxExL3WtKxC5SfAjAdlffmMSxclvTKI4+Y1JFCe/MYlS/kmnDjHqK/YpYDgATDE9gBC37hGW7sGxdAnbXjYqVpyBMDitVfwgs1NX6/HaDYh70GMwy3ucZKXu/6RRgeZ0pPe3BPckubwm8Ft9Bq646QJ6wJGI93CvsYgIeLZENlVRKzvovl0Nz7HQ6x5f6T2PFupMPFmq6Lq+Y8Fv/ghCbgvP8UxLjOfn4H7d677Td1qyvG40r97APdMQEBrYEhFRgHCeg8BO29FwF3/5jUkUJ78xieLkNyZRnPzGJEr5G+iv9/0IJtZCj7u3NCEUBL8VuAMjIlbQ9+6A7iYo4YSJtbNG9737oL3ZDhsVcjLoHdjA8fZbFi9rEJHmINycwnV/hN/gLTyzPQixG/j53sME4+5enXLdEx02ERER4IDDzU5V1MrH+syyObgi9zCZGJo6djt9DlmpjsHjlkXKCuIH0EOpnLitNdYcwaVX6/O+rXTfGyifX0NJL03j7YPEPXIIViAq+8tvTKI4+Y1JFCe/MYni5DcmUcpPUGa4yaCHHziR9uDwIwGjhLLhiIgce6SBYwkMTzk44FahosZ+re6rfM0OqiHQhN+IiAPEtyVMA4btxvB86NnuQAh6JBFwp8+wfVRxL/ukpb8REQF979AhSG7HUu8lB2GQtqPjdfd63VRqTYJtREQN/f5omvP+Qd+de3AH3jXqavwflR7vL3MVOd+36lakqb99kLhHMco3dAcOPrMx5meFk9+YRHHyG5MoTn5jEqX8j6UKE3tw6T12KrI8tuq02rfqyBr3iDERKp4s4PfoCZT0zmDq6BFEjXsQkdYgaDWgcYHu2Qvtv4ID7ECgKzoQAcHVuACX1in0lKtKGECyBJfl3/PQjQ7KcuGViGwC4t6linvZlQ40ya6v9IBjKBFe6DUWDzCA5LW+ixE8aXkJff3W8N49wrvzZqJr+n9Cy4HfwpTeZcPX+Dl9PfyIEYh75OZrYAH95TcmUZz8xiSKk9+YRHHyG5MoTn5jEqX867p9Y0zMAAAC2ElEQVSnieNnUI1xPbDueAy224iI0cCGlOfwH4Qp2F/vSLGFpol38N+HY89Y5M8B0TsiIvY0ujkji+6waSqk7D+DyTBfH/R4Z9eqPlPT0uNHtpbWK31mHfw7o7rU/wBVF3qe7OJcY89f6onH+p+CbqT3nP/wXmMjnqQELQJwgtQd2Nzflbrz61DF/kOrz3sLvS5KOO8Ea+/ZDj+Bd2IGMeIB/jPnL78xieLkNyZRnPzGJIqT35hEKVetCiU83QNq00HAILvhFBp1RkScQ/wZCFPnuQpTDVhiSYyDXo2xgS03YLulUeV1zzSVVagouWuHCaITeGYzsPeegZX3DGzXOTRbxR6qPT/9NFGd6uWLE7D3Pn+q+375jcauvtRrbOAiH240BuPCcxDnIrg1Qd6zhp9D7xONpSfBlkQ7yoPzXC3NT3ry5Umn4t4C8oDE69cw2cdffmMSxclvTKI4+Y1JFCe/MYlSFpD/1ACQ64Y1Ri4kEjUiIl60uu1zaGg4m6iotTmAKDKw/p60L3LebcBFuOmZPrQG4W0P247h+VBTzxyUqhGIO9TIlJpWtge9lmIhoR/Po4a8yKfwnnwN4t6vv9PYyz/SWDWVWHf7Rk+8gqlCa3XUkUgZETGFd+d8pWuwhYlLY3ifCmg6S07VMYyfv860IeiX0NPi+ZGbxF5BE9UJyJJ7uJ5JBSIpnsUY87PHyW9Mojj5jUkUJ78xiVKeFipCoOAHvxMs+GnsMlOxISLiF2C/u5io47CEhpQB1aglOLeoOJJ+8cjNRxNyVjBmOYKbM3ZwzIIsZxBCERAEqAbu5rjXu663MO1lxg7E4gzcYNCYM3/1C419peJe8cUvJdau7vTEj7cS6t6/k1hzq80xQa+NiIjFKZf6fs4aRMAjvMtbEIHJ9TeFMvanMI3qBYwBf16zqHyW6btXgZuT3K/dQfPcX35jEsXJb0yiOPmNSRQnvzGJ8n8BWv/3NcL1oLgAAAAASUVORK5CYII=" y="-16416.406087"/>
</g>
<g id="matplotlib.axis_913">
<g id="xtick_1369"/>
<g id="xtick_1370"/>
<g id="xtick_1371"/>
</g>
<g id="matplotlib.axis_914">
<g id="ytick_2281"/>
<g id="ytick_2282"/>
<g id="ytick_2283"/>
<g id="ytick_2284"/>
<g id="ytick_2285"/>
<g id="text_115">
<!-- 615 1839-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 16524.701087)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_458">
<g id="patch_459">
<path d="M 164.424375 16541.307851
L 286.714375 16541.307851
L 286.714375 16414.014324
L 164.424375 16414.014324
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_915">
<g id="xtick_1372"/>
<g id="xtick_1373"/>
<g id="xtick_1374"/>
</g>
<g id="matplotlib.axis_916">
<g id="ytick_2286"/>
<g id="ytick_2287"/>
<g id="ytick_2288"/>
<g id="ytick_2289"/>
<g id="ytick_2290"/>
</g>
</g>
<g id="axes_459">
<g id="patch_460">
<path d="M 299.674375 16541.307851
L 421.964375 16541.307851
L 421.964375 16414.014324
L 299.674375 16414.014324
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_917">
<g id="xtick_1375"/>
<g id="xtick_1376"/>
<g id="xtick_1377"/>
</g>
<g id="matplotlib.axis_918">
<g id="ytick_2291"/>
<g id="ytick_2292"/>
<g id="ytick_2293"/>
<g id="ytick_2294"/>
<g id="ytick_2295"/>
</g>
</g>
<g id="axes_460">
<g id="patch_461">
<path d="M 434.924375 16541.307851
L 557.214375 16541.307851
L 557.214375 16414.014324
L 434.924375 16414.014324
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_919">
<g id="xtick_1378"/>
<g id="xtick_1379"/>
<g id="xtick_1380"/>
</g>
<g id="matplotlib.axis_920">
<g id="ytick_2296"/>
<g id="ytick_2297"/>
<g id="ytick_2298"/>
<g id="ytick_2299"/>
<g id="ytick_2300"/>
</g>
</g>
<g id="axes_461">
<g id="patch_462">
<path d="M 29.174375 16682.725511
L 151.464375 16682.725511
L 151.464375 16560.435511
L 29.174375 16560.435511
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p1ec9e3fa65)">
<image height="122.4" id="image57e30055ff" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH/JJREFUeJztnUmPZVdWhfdtXh9dZmRjpyttF7gaVxWiEyUxgQESPwAx4RfyDxAjBiAKJKoQoqBEY5ftTNvZOCOjf/29jwFQg1jfKZ1wIiHVWd9wx23PvftdacXae1d/8OiPdnGDYdXcDMV+PZTYUaWxg2ogsRQnu7XELiA2qVqJfRBTiX24qSS21/US21a63Rpi17XGnrZ6vIiIn+4uJfayu8ZtbzKA9aZn0ESddTxiDMejdY2IGIduuwf7P+x1/x+sdH2+d+9EYkfvLyVWD3W9Tz8aSewnr+5J7J/0VYyIiOexktjlbgsxfe/Ou4VuB7FFp/tu+05i3U7XZt3rtaw7jSWP2esxK3iXa4rhWYwxv/I4+Y0pFCe/MYXi5DemUFDx6UI0wFjuVGyYVxob7vT3ZApiUUTEfRAMj0lEhGM+3mpsv9PrqeFe+lDxQyP8yzjALSNa2Lrf6bkJEmiGILqRCFgnrucmg0qvj4S9iIgxbEvPdQTnbmG94XAo7tUzvZ7poYpp+y9V5Jok7mUAz4WfNb0TXz+WC+3b0IJFxK6CtW1IyINrtOBnjPlfnPzGFIqT35hCcfIbUyjtBoS8LlRQoV+JBYhA5CRLCUt7JA7uVJg47DW236v4kSvugREwluDmu4Kbvoa1iYhYQ3wNTrIdXONgp+vTg7iTC8lPDURT4uUInvYEth3BJQ5hHdpW37FqAKLUEFyNI913r9J13Qe3YUTEpNFjLuB9XAWIxSCSEeTco1gPz57O0dRv9k3OvW5/+Y0pFCe/MYXi5DemUJz8xhRKSyWKVGLa1VA6CCLQsNZ9SUD677ju34NY0YF+sYbYHISSDs5xAa6o81rFmNNK7/lZqOMsIuKi19LRZa/bkuuPSnVTLq+btLAdi3v5v/MNiK5DOOYeaJ8Hjd7z9MFGz3FXS7JjCyIZVLc2ICrOWIeNA3gn1lDKvADhm5xyJORtYd8NlN8SJM4NaxYvyc1H7OAdo+v2l9+YQnHyG1MoTn5jCsXJb0yhtCdr7T03qrUP36zVXmq5jqWUTLEFF9scxMZLEG2uQOiagmOQxMJzEPJOwDV2tlOh6qTX3nMREefdXGLU2y23zJfWdgt9FKnMdwiCFomK3S1chCNyXkJ/xOP7ug6jX59JrH5wJLH+y9cS28z1/jbwnFOdI8dw3VSyTO/oChya9Eyp5x712yNGrV75qOG7ISGQ3ifqC1ihoGmMKRInvzGF4uQ3plCc/MYUSnu6uJLgZKDCErmYct1Oi1qFs4iI15liFZUJH0Cvv0MSROC8NLThAtx4lxC7SAh+804dfiS8kPuKynxxbRtd2wmIgPSTTj38NtzCEXvFjWAh92Ed9x/oOjSP39edxyogx+c63GO91GtcUkluQlUmwXcFb8UViLvXnT7rVa/b5Q7oIDGc3oc20fOShHg6D71PPYiz/vIbUyhOfmMKxclvTKE4+Y0pFCe/MYXSrjtVL1EtzKwRXsLxLmvtGRCRP61k0oCy32g9+EGtCjL9us3Jtgkq7hIU4CXYO/87/vVV4NwYPReC1rCFJqFrsDlH8H9IeHoRKMhDuEZqKLnRZ9Bf6RourvU5X4EaPk+o/Vdwjadk24Zx6pcbfW83YOXFZ4X5ApZtmHpF/zFLxSkvqZeA6/mNMb/AyW9MoTj5jSkUJ78xhYL+ThKqVlsVSciuuK1hOkuiop/2b6EBKIkVZIHM/SVbguBHVlyauEOxiHz7c9eDOAR2WhJycsdIk+BH9fxLsFJHRGzAOk13vQab7eKVHnP45IXuDM06Lz/We3kJgt/rVu/lAhqwRkScw5WfQbPVy62KeyTi5oppJPjl9nK42rCFnM5D0LtM752//MYUipPfmEJx8htTKE5+YwqFFR8g2/UHwkIKHE9MYhXExpXWNu+Bw28NQhwJfjSWnEQ8ElMiEnX6uc06YbsKREAap16BM7GGInYSBseJyTBzOM8cxMFXsP+XXxxKrNtok9jNWsXCn5/cl9i/D/U5P4fpUfOEW5Hu5Rr6NLxJnT66+TLzgATECoTGiHyHZ67Y6C+/MYXi5DemUJz8xhSKk9+YQmkrnLCjsRpENxTsYLpOCjoPOfymjQp5DxudAvOwHkvsOuHIuwmJaatQ4SXl0qIJO7S2b/JriwIUCEskSuU6BiMiJgMV2fZB3GsH0Eiz0+fy5fOJxOa1nvsjfXzxJNTtdgklual7QVEaxF3ajgS2XHEvV5yjzVJOPnr+lEO54ry//MYUipPfmEJx8htTKE5+YwqlxZJQEO1uI+Td5DYlvejmg0kld6Hs9J1eRalzON4SHGLk+tuAm29ZsfsqJTjdJFdYQiEo0zXWY782EnH5ml/AmpEXdFGpQvcSRMAplODOoXfd5zsV917S6HNw6A0SU26o9JvE3f8vWBTm58JCvMaoVyDhL78xheLkN6ZQnPzGFIqT35hCyXb45UIOKDrHL4vfBHvhgSLWwHVP4fdtAr3nxlCyOgBXGwmSKXhwQ2a/NxrbnSn40bpSP7rc9Y/g675qtBfeBEqthyC6rcGtdg7jz0+3OkwDR58nHHWpcdc5+79JHtC+tN4kpJPLNRUnwa/e6THJHegvvzGF4uQ3plCc/MYUipPfmEJpUy6vrws6lhLnICcTOeDI0fV6p7FLcP0N4Rwj7AmoYgq5xm4j+OUOaSByewKSUIXiDj2DRLVzrlA5h+EXJLDRmtHxqI8eD86ACb8JwY/esdzryXWgVg2U1WYK39izMuGmHYDgR8fM7R3pL78xheLkN6ZQnPzGFIqT35hCwakNuWWG5Dga3sIVlyuA0Lm31IcNzrHX67534RqvwJl2Bq6/2wiktO2ORE7YN9ddRqIiCX63gUREFOgS5c1fF3Q1wnlzexlGJBxwmf0o6f2kdz63Zx6BAmKqpDczX9CtCKKkv/zGFIqT35hCcfIbUyhOfmMKBQU/Ej+GjW46adRRN4ZYSvCj84ygX99hM5XYPegf97jT8zzeqBvsbqOiTTfQwSAXtQparxMloijckEADv7cVCDS5wuKuyxObbiMCkuC0CRDZYDJudo/CzPPmOhhTgh+LZHnrnVuCS+QOU8HBIIn1QhdiZunwBPLKX35jCsXJb0yhOPmNKRQnvzGF0pLbiVxMowYmtw50+uqsUSEuNVCB4ns0jKNWwe83OhXofnd3JbH7jy4l9uqrPYktun2JvQDx8kWtsYiIS1izdgfCIghBMLD2jXrKbTooeaU+gQkXWvaE2cx9+Z7hXiCEwlmmmPY/F6QhEPxwUA18GylfcteLSm03mROVU9Tw8lAO3h8e6L7ZZzHG/Erh5DemUJz8xhSKk9+YQnHyG1MoLamcZOUl2+4B2G7vNPofgCnUykdETEDtfwBq/7e2ej3f3y4k9vb753qOR6qmtqMLib3/iSqkXzT6H4WTVv9TEBGxhhHfaJOt8ptP3qSD0eJ1l/cfgG2X2dQzASvaefv/XzeJvc00I5xIBWp/BQo7lMDzOXJ7L2Red4cdHngdp62+o0eDmcS+2R7p8fAsxphfeZz8xhSKk9+YQnHyG1MoLU0BoSacMxC/DshGWKvgdwiNMCMi7u40/mijosa7W62rnw41tp7r8YbXOlVmfF/Frw+uTyW2enkssWZ8KLGIiNlQRc1njdqNz7dzidFEog3UrG93eTX5bzIpKLV/7hhxFL8wlFe7j7Hb9AzIXIr/63p+up4amsluSWhMnINs91PKy1rzcgZj6f3lN6ZQnPzGFIqT35hCcfIbUygtiQi5sSkIeSTuvd2z4PcOjIh+p1OBbq/Jmwwzv1Z34OhSTzL7QH/z7r+tYszvf/aFxL7xM3VKRUQ87rVe+l+gKeinIMY836oweNGBMAjNOnMnKZGglayBfwN4rHXe2O4NCJrUrPM2gmbu9CkSIOkaqQcFTgCC45FDk0TTVMNbEuJpvRc7zZdPeu1r4S+/MYXi5DemUJz8xhSKk9+YQkHBLyU45DDd6b4k7EVEfCeuJXb8QIWuGkowN2sQXhoo352pYNS8c1f3ffxI9/2+Ciff+tYTiUVEHP/tM4nd+/KBxH4y1kahbatr9jRzXDXFSOQiV1xK8HuTqTv0PtFkpxaEs0WnTsdtDc8PYokqWG7MCbHccfNU2k7b5boxc0uyI/i5rntNrtcbFZBfwvX4y29MoTj5jSkUJ78xheLkN6ZQWhwtTeWWWNKpjOH35B0QciIi3v+BltGOHmtp7G4Jzq9zdQJS5fDgsfYzI3Gv+uYHujP0R2seqIgXEXF88DOJ/d5fqwjY/udbEtuM9RoXjQo51CcQx3FnOuVSUI+7XEj82m+1zHsEfR1p31yhMdXDj8Q9mj5Fo+GpjD13ItV1r+/nmzoqKVfp+a/A4Udiqr/8xhSKk9+YQnHyG1MoTn5jCqWl0kOCSg+pBJMOd9BySe7kQxW6mu9+U2K75VJi7YW6mALEnfqeuvmqb7yn+95RIa4CN14c3ddYRNRDFYL2ux9L7INXZxL77OqexD4HsekCyoE7cDXOoSx6HSoWpgSo3DJYEqBQOKv1XvYgNoZ96bwkDKbuhftR6jregQE0R7DeYxD3VpAHr2BtVr3mAT2/VMky9dvE0uhMcddffmMKxclvTKE4+Y0pFCe/MYXSomgH2gk5hC4bFZZOGz3euuPfmGpfnV/Vuyr4kSS5m+cJftVERcWYweANmExcgfOuon0jol/p1ODq+COJDYbaS60FfWcEv8tjEK8W0B9xEfqsblPS28C5q8wyWHK7UfnuBOyYM3D9jQdwf62Kc/geR8QYznMPxL3Hoe/iWzsoG4clew4lxl2t631Vq3BNJbmpKb0k7tHa0ie96anPoDGmSJz8xhSKk9+YQnHyG1Mo7Qom4G4qFSFIUCEB4gmIKR/XOtAiIuJ7T7Xktf4dFUWqI3XAVWM9T+T2HuygqeBS+wnuoKQ3wMkXEREr7T3YvziR2FevVEQ8AcVvQ8McMn+rqQyWxD0SASMCFVZ61lgOTv0DaWItnGSGIqDG1qHPZZsQL/dg/0ew/7dhOvQjELl3cN2HrQqVm4G+n8sWSrJhbcihGcEDOt5kAIm//MYUipPfmEJx8htTKE5+YwqlXXV5E3DXIJJR37Sfgwvt78bqnoqI+M5fqRD44cN/kFjzm9+TWHV0rAccqPASKxVPdmsVFWOgwxji+lxj4GqLiNh9pm6+xT9rj8In/TckdlrpOm7A5UXiEJE73CPl8Kth8Epu+S45zqhEdR0qIM9C350pHG8fthuBGBYRcQQuvXfhlX8XxL2jkb47W3CrbrcwkReuca/VCc+fgoD8eQfu1Yg4h8nN1JuRBFYSAf3lN6ZQnPzGFIqT35hCcfIbUyhtatjBTXoY5NBvVRB5tlCR6+8TfQKH48cS+7M/12N+eP4TibW/CUM2ZlC+C/3/qCdgkGBEAmLCFdd9pNN7X32yJ7ETmMi7rKC3W2YJLpV/4nbwnFPPvoVy1FzBj/rw5U59pq32QbC7A4LkcWLa7YOtCmLHlYp7e6Nc4RvKakFge3urAvld2PcxOGI/ImdpRPw79D38cqOiND1XdgcaY4rEyW9MoTj5jSkUJ78xheLkN6ZQWpzOArHcKS4baEj4fKVTaiIifgTWzcHwHYn96V/ovt8+05HY7XvQXBPU3t0ClN0eVHxQ5nG7iFg/1QaeZzCJZwX/QCDNHdV+UJXJ3om1+7Bvyi5Mdf5kDx1CrfyEmnBmNus8gtjjTt+Rx+s8BT8i4mim/9mZ7fG2N7k4V+vtBv7TUME6TuGp7sOI9cOtHm+/h5ckIgZDmCAFm77YapNY23uNMb/AyW9MoTj5jSkUJ78xhdIOYVINCX5k0RzAvmT5TNk7571aef9zp7XMP2pUyGv/XgWVRy/U6tiMwda61OvZgT20akD4AutrRMTyXPsBrGniC+zbZI5J30ITVRLtcsdppybD5IrALRyTxL39WtfmuNLYOzB96F0Q995qVFw9OgDLdkTs39f46D48QwjVn+r6rF7oM911+s6TCDiAvg2TWkXAcWLE9majAuRyCGPuW31Wp/AM/OU3plCc/MYUipPfmEJx8htTKO0AGlLWIOSQMHgIU0nuD7Qp55DGCEfEoodpQSBqPW1UFPmPldbKV5+qyLI3UzdX36sgsgWnFW2XYr3R9bkKaGYJ++KEnTdo4Emjs0cNiFKJppc4iSdzMswA9p3BOhyCGHoAOhfVytPUnLph8ZLEveF37+uGQ12fg4FOlFotVEDszkFM3YFACvO9x0N9t/dadiA21/CebDQHx63mxovGgp8x5n9w8htTKE5+YwrFyW9MobQkDg1h6s6sVXfRWwN13n3Y3pEYNWGMiPiyVoffNZQ9XkLsswFc91qFjnuneWOWFyBKrWG7bUIkW0P8bKCxVyD60P0tQfikUl1y89Hzyx3bHJHv8MPS70y3Io0gv4DXZK/X4LSD+0t8xpojELoePdQND1SoHqz03dl/pmPXl0u9nuVaYw24Q8djEPzu8ojuw16djdNnKprfWWoefD7Q/PWX35hCcfIbUyhOfmMKxclvTKG0Y3D+jMENdnegIsKvQ6ntb29032mi790UxhN/UqnYMYdxzp9Cz7b5SM99p9dzECuYSLQB7So134j6611Vet2vdnrdJ726xq6g3JncjyTOtSBeVnW+4EdQvz5iDdd4FipKLaG8dQVlp1Nwlr4ND6FtuQy2GsPo9QmMjJ9pf7zqjr7fo3uv9HAnen/k+Nz2NN4bJgBN+C0bPoSpScdaxj75WK/n7pnmr7/8xhSKk9+YQnHyG1MoTn5jCqWdwTjgWaMi2cNGBYPHoWLKYUcuNGYCAxDIIHYK4tez3bXEPsnsKTcEQazJHEqS8q+RpDmHASYk5F2SuAf7UkkvDdig6yYLHDn0Itil10JZdg/nvtjpvZzs5lnnnsM7dq9RIW6+0WtZznnQRfdSXXHN8xcSq1Z63bu57ptpYIwlDBt5vdN8eX0J47g/42M+nGp/y3qkFzQ9UFF5eqUioL/8xhSKk9+YQnHyG1MoTn5jCqUlce+g1tgMhDMqy3w60N+TJbjnIiKe1SpCvOxUZHkJU0cvt7odlbxSj0IaLIIxuOfbuOLIkbcGIW8NJb0k5OWC/f/geNQ7MIIFPzrmcqfPbwV9Gecdl6jepB/o9dwdqEg2A2dof3bEB/2pToi+3z2RWPvwK4ntlvpctmqoixWU9J6AuPfZUN9F8iXOr/hetj/Vd28y1fW+uND1+XSrwz385TemUJz8xhSKk9+YQnHyG1Mo7axWhxG54ohXlQoirxsVi6gvX0TEV52Wsr4Ace9so24+EpG6Pk/wW4LQSGXMVMaaEvxo0AltS7EJTKwlNx8JmuQEpO1IaNwmpsFSmTBNCKZ7ofOsOl1v4rRSB9vHIMQuYUDH6ZhLt68ujiX27R/rO3Z8T9+xBgTI5bXmy+lcS4Q/hx6TT2D4DInm19CDMSLieq0lxgPQUk9gSu+n0CvQX35jCsXJb0yhOPmNKRQnvzGF0t4BN98YyjcH8DuxBdfYIlRYuAAnWETEBZSyLnotRyRRi8QqcsWtoX8glsZCbAM9+GggRkTEhHohVipW7UGfOhJY6XquYR3PwBG53IDzDkQ3EucieB0XmSXBJDZi2TEcb9Hps3+5UUvdElyElzCZNiJiPlJn2+VGB3R840uddrsHgvYGpu9+Ds/+k1b3/XynAjc5L6/gvYmIeD3ME+Jfw3tCzll/+Y0pFCe/MYXi5DemUJz8xhRK+6hWd9KIeteB0LGhQRcg+KRIlZTKuTOnwZLYFG9QGks/jQPo/xfBPe5I3HsI671PTkK4vzm47J6DOEQCaa4jMoLFVBJJc8FJwjCMg857vaX+hrrdKiEqr2GYx2WrIuCXrT6rgx6uEXr4fVHrej/ttW/hFQxsIcHvuuJ7OYV3jIbFXINoTsKwv/zGFIqT35hCcfIbUyhOfmMKxclvTKG07/eqFjcg7NK46ito6tiBcn2VqOcnhZzssxTroKab/nvwJo0wcyfXRERMQdk/gl4JR6DO78PkogGc+xD+0zCodd/NQBVussSm6vlpHXvYlv5bQOtN/60haDv6Dw41CaVYKn7dqhr+VaP/hZnAe0f/zboAW/ICzktNUIlVIl+0CwH/F4aeNf23x19+YwrFyW9MoTj5jSkUJ78xhdI+2NKIZ2UFYkwLYtOy1uONEiLZEOIkqNE0HbJFEusOGhfCvQzgvNTUcw8mHEVE3Ku1Hvx+pYLf4Q5EO7gVqtwmuegOiICP4FrWwzsSS43oPltDw1Sw2ZK410Gsx8ajcGLQuUgEpOteRULwgz4G1DfgDJ7rAAQ/EkNTwulNqOFprhiagp4BTYoi4dRffmMKxclvTKE4+Y0pFCe/MYXSotiEDRd1OxIBx+BMGyd+Y6gpKI3F7uo8N9+bMAJxbx9cX49abf4YEfGtSmvE39lC00vYdwVrS47KgHumzag/wINGRcCUk4wae1INPTn8ehrHTiESqjKFs9uAI9FBBF61KgyS4JfbtJQgMZtEwJQQS47T1LY3oclV/vIbUyhOfmMKxclvTKE4+Y0plJaFpUwRAYScCTT6HIITMIIdfhTbQGwHrr9cSCQh597bAxX3Pqx4MswPl7oYDxt1yl10Wvr7HJpZnsOocxJYYSBRdPCbPgYnYKo8GUeLwzOk2Js41kg423YwmekWYu+uy9u27WF9QCSj3CAhjlyNS2isSSW5qTHwVNqeKyKisIhnMcb8yuPkN6ZQnPzGFIqT35hCaUlEIkGFpA8qOx2D4LcHZawRETNwoi0htqnASQbX2MF2Yzh1A795h6064N6q1OH3/TULWt+790piszsq8Lx+pk7A7dW+xGpY8Q2KaRo7AzvmM/iZp3HoEeyKI0ceiUgtnJuEKtp3CeW3y9BrpDLdVIk3OVPJ7TZttfx6r4UyXxDY6F2kNaR+glQqTbGIiGWlazEAsThXGPSX35hCcfIbUyhOfmMKxclvTKGgw28HIhJJdlTISCLgfuI3Zg4DLNZQvruFM23A+cUuJr0X6gm4V6nzbh9EksNE2SmJe8NjFYLG5yr67F2rOAS3h89gErrh00bvZVnDqGoY2xzBglpunzpyxZGYhgIUPD86L5XkYt1wsPuOyrcPWhV3SQQmByrlAYmptN601qkS4cVW77uB/UnQtMPPGPMLnPzGFIqT35hCcfIbUyjtPDP9YRZHZuFvxAhcfxE8cGITKsZcJwYy6PXQYBE9xwQm6o7BWUhcYJlnxPWpHnNwuJTYaKKizf5QxaFmraLPqAWREx7Mk61eyzX06yMXWgQ71nJLdUlgJbGJXGhbGDaRXTacqNylbdmZCMNi4J2Y5g6QyXRU3qYEGvsegvhJMRJT/eU3plCc/MYUipPfmEJx8htTKO2zWsUB8hc1INqNyD1Fgk9CjGlQHIKhCFQyCQIW9U0bgmhD4t6A3GUSiTiB3noREa9P1Q129K4Kfnu/pvcyeXgmsW4O6wDlxJdfadnp4kq3W5OYdotecbRtbpkv9uaD6yHhjM5BpIZX5A7ZIPGzgxc3dzo0lcXn3sttyL2eHtbbX35jCsXJb0yhOPmNKRQnvzGF0n7U62AJ+kWgUsYZFPDShNhp4jdmA6LI2U7dfGdQCjnvtM8ZiU1TEHxI3BvCNZLnr0sYsla9bl0N4dy/9Z6e+8F9PeBAXXrx+kRC47/5N4kd/q2u62yQN4U4gsttSaAj4YwEKIpRvz46B0GuvzrhIuXBGwoJfkvouTdsqBceDe2AdcgcNpKc0gtxOjdNTyYB0l9+YwrFyW9MoTj5jSkUJ78xhdI+3ZxKkEpjx1DKeFiru2wDsXWiXHYFgtFJr664i26u+4IYM4HedTSgYwilxGOabLvT2CjpVtR7aSZQjvreuxKrv/tD3e7oLYntLnUwyGj8lxL7/Y9/KrFXr96W2D8O+bl8ASLwJQisKxBn6bmQuLcBgW2TK/hReSpN50hsS8IZCWK5ImedOSmXBn6QuJoSKRvow5g7hZjchf7yG1MoTn5jCsXJb0yhOPmNKRQnvzGF0p6sLyVISiUp6eR/HZF6mWj1SfbeFdTppyaY3IT+S0FWSboasvzSuPFpz+oqNdesprBAY637r/buSKyGGPUrqB4+ktjxHz+R2J/8zRcSe/yx/kchIuJHY33WP6/0Py4nvdquL0JjZJ0lZZ8aT5JNlt5PsvxGsHJOqju9OwS9T/TuUHJMG51clNuXIoIVe/3fWKKXALy3/vIbUyhOfmMKxclvTKE4+Y0plHax1SkiNOKXBJE1NP/cwIjtlJYygD9Q3wCyQNLPFglBJBhRQ1CqtW5B25skBL/Znq5jPVVLdMCY5d1CRdd+qLX2u2tt9EnUj9XKe/CHutY/rJ/h/v1HKiLWIxUqm0Qz05ssYVINkdsfAAW/RDNStAIntpXrAcs2XSM1nR3C+PkGLMhNC/bzhB2eRovPt2q7vtqoDDjf6Hb+8htTKE5+YwrFyW9MoTj5jSmUltxARK7Igk45EuyCJ/ZMQCgZQS8BGiuUEn2+LnR940TN+XgKY8QHKpLFUh1wu/OXcHIQfUCcjTE04Tw+lhCtzOwHWrcfEfGd5yosni/uSqxv9dw9jAy/bkCUqlWUWuEo9rz3M+UCrRKNPW9CDUCxNwGI3Huhzr09angLQt4EYjMYIR8RcdVor4zzWp2XuU1L/eU3plCc/MYUipPfmEJx8htTKC2KdjCimRp4YoxGYid+Y0YgspA4SCWYfQVOKzgPOrxAyKOy4wFoTWMcYB4xnEJJL7i3Yq3iVyyuYDso1iQR8EDFvQoEnx0Jtm9r89aIiHvvafnvB/+q4t42QPBrVeS8bmAKU61i43Wl90z9KUmkpik1qTiV/+a6C8l9t4amtYMqTwScQmy8Y8GOcgMdsRb8jDG/DCe/MYXi5DemUJz8xhTKfwHkzoBKL0GtMAAAAABJRU5ErkJggg==" y="-16560.325511"/>
</g>
<g id="matplotlib.axis_921">
<g id="xtick_1381"/>
<g id="xtick_1382"/>
<g id="xtick_1383"/>
</g>
<g id="matplotlib.axis_922">
<g id="ytick_2301"/>
<g id="ytick_2302"/>
<g id="ytick_2303"/>
<g id="ytick_2304"/>
<g id="ytick_2305"/>
<g id="text_116">
<!-- 616 1839-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 16668.620511)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-54"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_462">
<g id="patch_463">
<path d="M 164.424375 16685.227275
L 286.714375 16685.227275
L 286.714375 16557.933748
L 164.424375 16557.933748
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_923">
<g id="xtick_1384"/>
<g id="xtick_1385"/>
<g id="xtick_1386"/>
</g>
<g id="matplotlib.axis_924">
<g id="ytick_2306"/>
<g id="ytick_2307"/>
<g id="ytick_2308"/>
<g id="ytick_2309"/>
<g id="ytick_2310"/>
</g>
</g>
<g id="axes_463">
<g id="patch_464">
<path d="M 299.674375 16685.227275
L 421.964375 16685.227275
L 421.964375 16557.933748
L 299.674375 16557.933748
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_925">
<g id="xtick_1387"/>
<g id="xtick_1388"/>
<g id="xtick_1389"/>
</g>
<g id="matplotlib.axis_926">
<g id="ytick_2311"/>
<g id="ytick_2312"/>
<g id="ytick_2313"/>
<g id="ytick_2314"/>
<g id="ytick_2315"/>
</g>
</g>
<g id="axes_464">
<g id="patch_465">
<path d="M 434.924375 16685.227275
L 557.214375 16685.227275
L 557.214375 16557.933748
L 434.924375 16557.933748
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_927">
<g id="xtick_1390"/>
<g id="xtick_1391"/>
<g id="xtick_1392"/>
</g>
<g id="matplotlib.axis_928">
<g id="ytick_2316"/>
<g id="ytick_2317"/>
<g id="ytick_2318"/>
<g id="ytick_2319"/>
<g id="ytick_2320"/>
</g>
</g>
<g id="axes_465">
<g id="patch_466">
<path d="M 29.174375 16829.146699
L 151.464375 16829.146699
L 151.464375 16701.853172
L 29.174375 16701.853172
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_929">
<g id="xtick_1393"/>
<g id="xtick_1394"/>
<g id="xtick_1395"/>
</g>
<g id="matplotlib.axis_930">
<g id="ytick_2321"/>
<g id="ytick_2322"/>
<g id="ytick_2323"/>
<g id="ytick_2324"/>
<g id="ytick_2325"/>
<g id="text_117">
<!-- 617 1839-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 16812.539935)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-55"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_466">
<g id="patch_467">
<path d="M 164.424375 16826.644935
L 286.714375 16826.644935
L 286.714375 16704.354935
L 164.424375 16704.354935
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p3bbe7bdbec)">
<image height="122.4" id="image66fb3f2674" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncuPJOeV3W888lGZWe/q6m6yq/kQZyRKlqUZYAYYjxf+o+2VYcAYGDAEw7AALyhhhmSTzWZ3Vdc735EZkV6Iqz6/AELwjt/5LW9F5hfxRdwK4OS592Z//+yfd/EBWWQfhiKHWJZpbJCVEtvPBxKLiPgoH0nsd81QYr/fLCX2OtPj/mt/JbGvtw8Sm9b6fdVuK7FNU0tsu9NYRES9azrFaB/HpV7LZ4Mzif2n7ERi/3GzkFi/0HN8tR1L7KuBnktExOuoJHa709hit5FYBfvDMd3vvbwvsZfFvsSehB5XZ/IYR0TEOvQe0JE9uC/7u0Ji500usdNav3ENufGu0OMeMj2/dcu1rGAfp6H7eN+sdZ1Gc0OvxBiTBE5+YxLFyW9Mojj5jUmUksQ9gsS9XqaCCAl+46yH33kIx55uVeyY9FVYulD9KX7b7EksK/W8r0CAnIN4tWooBgsHC1jNTq+ln+s1H5cqxtGe3WYq+HyT6TWfbPS4h1L/z69ADIuIaEASo6ekzPQ7SaraYVT3oQ/PE72dSNzb4BoRW7gHeH1wLUQPlhk0GlwUumNNt1RrpYbz3pDQDMcVsJN+8xuTKE5+YxLFyW9Mojj5jUmUsgChg8QBEndI3BvlKlRN4LiIiENwUI0bFTB6PRWwjkqN/bu5rnMI7rmrQgW/m1zXvSm6Od0iImbgqiLhhUStPRD3hnCcSooRdyAsFbCvGxCbWO5jchB8i53G6BxLuBaKkcjZh2eRzptEvL+cj8ZJgORP0zrKXaHn+K4kN58+s3/NPehRDobu4wjE1CIn164xJkmc/MYkipPfmERx8huTKCWV25Lrj9x8JF6NqaS3RfCb1FAS3FECGQxVWrooHyV2vta11xs977ta9+F1qe651yWXJ18WKiw+gvy1bikJ7gL9p6bqzx642iawrXsgFv5lnW5WNBI0iR6c+RCeiQMQ/CbwjGUgNNYgSP41kBuTXINXhW7k+0zv84+Nlo3XIGYfQf6dZlqyHMElxn0QAccgApIr0m9+YxLFyW9Mojj5jUkUJ78xiVKeF1pOuqXecyCokPtqBGLDGISKiIhhR1sVaDHRH6jI0j9RMa0Y6IfrSq/l+EaFl/HtRGKDnQp7ERF5T0WaCsTLKTgESTgbgNBFwOXFIZQXH0OfuceW3orvoAy6gn6GJF6SWEjCMIla5wGCH9TBwu1rKRuO2MD5aKE2O/ym4Mh7DaXfr6p7id1v5xIjN+2T3oHERsUhnE3E+U73bEDiJ+RgD47zm9+YRHHyG5MoTn5jEsXJb0yilBehAtYs7+ZCI+fWHggLBxCL4H5oNQg0dQ0lxgMV0wbn0Ltsok6yZqHXt6tViDtYaJnu6ZL7EV6Vus4WXFXUK5AGgRSwD2soRab/3kMQqoYwyOO4ZifZAPr9kbi3BmGxq+vzOQze+AyUuH3ojzeF8tTosUC6JXEQrmUD4uw19HB8vVFx76rSwTDrWj9b5t1EXHL9RURckEi6ITenxo5BaPab35hEcfIbkyhOfmMSxclvTKI4+Y1JlPKiUQXyJtf/CVTbPABFegTK/qilRH8Avt0t2TG3MMkFGiSSsp9NVCHNS1Cpl6rs7880drBiJXaw07XpRw6aArSGXwCop8Jjrr/MrFt6JXwICMC4/xERox1Nd4H7Aqo5NnUFu+kz6OXwy1BL7MmJjiCfz/Qe9Csd5R0Rsevr2m9hLDYp+z/AeHdS9ucbHX9N/QEotsj1GbuDcdoREbcw2ekXYJ1/Gvr550+nEvOb35hEcfIbkyhOfmMSxclvTKKUVOc9A6EK9JkoQC+iRpGHsEZEu+D0IfOtikirR7XZDmZqYSxB8Mkg1juFWvKtijEnC23MGBFxvFAxbgjCKVE1KkDOQ9eegp12DfclB3G2hMaTk5pt3M8a3YvLXJuZ0pQcmrpzCBNkzrZ6Ph+/VDHt4Pf6fbuVCoOHf+T7Ul49kdj1UDftFhpu3m1mElvAM1FD/4uukAhIonAE3/8ljHwv4Xz2jm3vNcb8hJPfmERx8huTKE5+YxKlzEFzoxroJbU4xDJ9DU6g+WNExBBqqOfgBnsL9c35lTY57A1vJTbOQegAJ2BAjXgxArfihEd0n0z1Gs96KlaNc3UcTmsVm6jGn2rOiRLGjY9HsA9tQ25U04peTwXN1wX3A/iQj6Efw0WuYtrkC3BtfvZMYru1Xsvx9h2uffHfdW+L0Oepq2jXtSafHJr9Qp+7PdjDIYy5j+AR3fT2JnEXPuo3vzGp4uQ3JlGc/MYkipPfmEQpYSBKkDxHI34bmgJCpaMdRzlHRLwvVVB5B+W7060KUOO3OmHneV/HdvcOWbT7kC1YHTcVCz4TGNP8vNFzPC3UKfcIJZwF/F+mEdZjuFkk+AxH6hobHfA+jKYanzyMJHaxUbGqgHv9fE/vwUe/0Vj5ibrxAsZaR8UOOIKeUWIEQuwZTNOZwCj2ZdPteRqAkHcMZboXBZcnf9boOX4KjsOzF+qA7B3p9/nNb0yiOPmNSRQnvzGJ4uQ3JlHKGdi81h2dZD1wMQ07lulGREyh39st1AnfwgSaBUyVOaxU8Mu/13WHQ5ias9Xvm69g7Db0PIyIWEPfOyqXfgGCUVWqsFTC/+WXMF3puIZ71fFfem/Ezsu8UBGJ9qe/0s8fHauj7uwfoMT4F590OcXYzfX7do/a12/7wNeyhvs1hHv1aQ7j2Au9L+Tco1LbKfRlHMI0o4/BbfjrDd/Avxve6ef/EcS9Xz+VWHYAuYGrGGN+9jj5jUkUJ78xieLkNyZRyisQ2OYgsBED0PbAjBfLlv8xD4XGK3ASEhUMXngFY5ofaxVtNqoXxQNYE9dQWXlIlsiIOAVxj67kCIYsXOTqnuuDKHXeaGwIYlNrqe6Hx7XM+8igJHiwp+sQI3BPFqdqL8sm6mzbPWqZ724OAzEWKqbBNkRERAnPyecgXv4e+ha+2Onao74udL9W0e77QgU24iWMhv/ikxs89vCf9DkpfvcPEss+/1JjR1oa7Te/MYni5DcmUZz8xiSKk9+YRCmvoBS1gn5mBzB4gSbyksw1BWEvImIJHyfB8BD6+hE0wOJPPb2+y52KLI8Qy+D6nkA/wYiIlxCfgDi4AvfkFvsj6nEPMATkodC9eQJTjamHW5smVYz14GKk4ld1p+uUYz3v3VL3dgfDT3Y0RARKvPN93evBBaucF1f3Etu/1fM5v9AptqMvQBGFccf3/1ddds2PJxJbwHN80Fc35eCY1ctsXwW/GMDz2FcnaHZswc8Y8xNOfmMSxclvTKI4+Y1JlJImrZK49wycaeRqox5uG57ugf95JiCyjUAPo6JjcgfSAJIVDMRYQyyn8k0QSCMibqA8eUMCHbgnqSSU3IEbuL4MBoPsr6B3IEy2PQBxLiKivDiWWPEEJiBf6nfuwIXY1XKYjbS/YdYD0Y2OO1AnZ0TE6fG/SWzyJx3u0nsKItmhrrP9TicJX7/XATI/wDCOdQaDYSoV8U4uwYIaEYN3Kl5mJ5d64EiV3AaGjfjNb0yiOPmNSRQnvzGJ4uQ3JlHK850KRme1ChPPtuD6A5FsCyIZTReN4H5/NXx+A3oRiSckLO2BgEi91DYgctJZ91v+X1KU5LQNuCdJgNzCp2lKL23DcQ+GO8xhom7TMvwCHJnZCCYlH4H4Cc9JNoDaaHAmojAIomkGrrbsY+4JmMMG5d/9L4ltLsHB+GcVOV/9mzr3/lCqaPc9lP4W8CxWIBTvv1MBMSJi8Gct9Z0M30gsp0EnCy2X9pvfmERx8huTKE5+YxLFyW9MopSfgebzpFax4gQGOQzKbr3+tjX/j9mAG6yC2BTEOCplpYms+9AL76Cted0HkC9tHwSatnVIbJyh00qPq0EMJWFwDjOVF7Dd1UbPezttGdpxreWt2VA/n8HglOiTkKfH7WbgDpxqmW/9XoUqKqst/vSNHhcR9ZW65b7/g07BvQNX5FuY3PtVX9f+NnSNKYipJDTvSl13b6fOwoiI3tfqvLyo1fU3uv9WYuV7HfjhN78xieLkNyZRnPzGJIqT35hEcfIbkyjl3+xUYT2YqLI/HKl6SVNcij7YO2EqUEREA6OIl1O1gt7cqH0yr1UlLaDnQA6Ke5PpGm0W5A85AFU/IuIIfqXgPgR6jks4H+qzQIxBQab+j8OB3r9mxXX222u1uhYHeo75IdTAD1Uh3231V4Xm8lFisz/pcT98r9N+Xjeqht+1NImd56qQU9+HSi8l7qH3wtud5sZdo7EKejRs4JeiS/glpFfyfam3OuXo/mvd72dv9NeH4zPtQ+A3vzGJ4uQ3JlGc/MYkipPfmEQpv/j31xIkByvpYRkIE/ke1F8PoZ47Amu/+zcqNkEJfOzuoG9AreLHHghxGYhuJdiFqY/AEKcUsbi3BzbUY7DyzgrdnwJq26mXwEWjN+vzrQpQJ5+oCNQ75muh+0pW3qwPDwrV7lcqfq3faK38t6+eSOwPfRX3vs71sw877k0whHt9EiD4wn2hfgz0fWMQbIuWprUfsgBh8E3LR2fQrPUHmGh02mg/gNO32uDUb35jEsXJb0yiOPmNSRQnvzGJUg5/rQ4qHqmsgsqOmjVSjXcL9HnQP6Ls6XFDGL1dw0jsgAalExABFyCwrcBlRyPEI9omCIEgCscd0ZQiEKWOobHqJxvdhxfHMG76c/1s+ZwbRe5AoAvoL7ADQTOD89mt9dmpV7oT93CvrsFlN4OHhHoiRESMwAFJfRZ4dlG37xuAGr7aqRi6gN4LFfRoeIBx8RERMxA138P5jKBnxLjo1qDWGJMATn5jEsXJb0yiOPmNSZSS3Hck0JA4V89JsFMBg0S8iIgtdJpcT9Wlt1q0OAQ/oMhBgIIx4t2KZRnSFCMiyF8G+hwyhi99BmLaGTRWfdrTkuzJiTr8iiMYaz3RUumIiN2tltvW1+oQbFYg+IJw2mxgbPtCBSho/RmHUEK9zXRiDzn0IiKOQdylN95Vx9HpJAzS2uTGpM/W8DSuW9yKK/gGcgjOYe17ECX95jcmUZz8xiSKk9+YRHHyG5MoJY1KJtFmV4Foo8NCopqpOFetSMqJWK/02HUFk3hAtAE9DB1+NPJ7C9pQV4dXG/R5itF/2wlcy1ENI9EzFYJ6MDWpgQvcvlPBLrvX8umIiNVr/c7HSxUMl8tuQmxZ6rXQfSZoXPwEHGyjlhs4gXHVD9A373VPb8JtA05XEOiopHcE8iUJgzTFp255GsFkicdW4CSkCVB+8xuTKE5+YxLFyW9Mojj5jUkUnjcNAxCor1sDTe4W4NB7nKkjKyJiWevyFQglGZXWQoxkkhX8f1tDqW1XNx45siIiGvhOAnQl/A+cwzpbcLstKxhycqnDHeYPKhau13z7b5cq7l3lus4ChDOiBw6/ASi2GxKa6fs69ktsW4f6UW7g6VnS4A0owSWBfAiLkLjXg7vf1v+vCD2fFZ0jXAudt9/8xiSKk9+YRHHyG5MoTn5jEqXcTdX5hVYiGtoBJbQVOLceYZhGRMQUpoOsOgpnRcfCXBKloH1cZ4ceDfKIiNjC0eTo6kH/OBKlyP+2he+jvb2HWA0TeWctgt1NT+N3cK+nUAZL1dskK/bhWsg9t+zovXzSci2Hje7kDA5dwWQYEsnoPpMITD0FByjkQazlGaPJzTjNmdK3Yz9JY0wCOPmNSRQnvzGJ4uQ3JlHK6pUOeChg0m6zBqEDxL3NVmPksouIeAAn4RzEjgpiW3LpkSsuAzEGBBESpaj0d9EiQJHQNQHlZgIfP2v004eF9uHbwffNwSW5BrkQhc8WcbWr0PkIgt8jOM5WIJyRUEUDLMjBRhzlQ4yfFip+kvh11+h+k7hH7ruuE3kJujoqv22jh735up2P3/zGJIqT35hEcfIbkyhOfmMSpXz/lQ5uGB/C0Adwfa3mUJJbq9i0phrKiFiToAaHzjIVXmiC7obEPVh3CNEJOO+INvmphrWLjr35Tvs6eGN/X+9BA3XHvQUIWhWUUIOKR2JRRMQQBKc+lBPXpd7/OxhfclnPJPZY6zVXIHxSjJyAAyg5jogYFboXfXCWkghYwHMyyGnYCPRM7OhWJHFv3dbDD2IoQKKbzw4/Y8xPOPmNSRQnvzGJ4uQ3JlHK7x4OJHi20GEO45EOMKDy3QoGbLRpaeS06/rfqOvE0waEDnYCduzB1+KeKuFaBnDh1I9wW+tVb2Bvc9gwmkw8yMFRBxvWQBlrREQP4idwXyeNimybvjrt3mVziS1qFTQXW41tGiirhVgbBTgb98D1d9yfSOyk1BiLezQ4Q2NlR1G5LQd4QnC36btdjzPGJICT35hEcfIbkyhOfmMSxclvTKKUV4XaFXsbVUOzJSjpoADTxJ02JZ2iQ5A0aZJLBXbaTcemkFSbXoHNkpTdtqHUJfwfpV8A5nAtbxq1WA+mqpr34FoKms4C50J7Q98XETHO9TsPe/prz/5WrbybjV7LdU9/UVrC99XwKwPF8J62/QIAz1MJI74LnLADNmDYxw01/wRLOrVlLSE3MrBSR/CzR5/fg/u/v4Nfj3AVY8zPHie/MYni5DcmUZz8xiRKSeOqyRJLFtRFrRLEHYgpUxC5IrhBJkGWWhLjdih+gZ2WbMBwLmTPbbP3Uu0+cVvo528gRv+XSfChcdXUc4CaoLaJl882eg+fVirQEdQi4ARWelruS6yCZp0k+JG9t+442SeCxb2SxmfDcfTc0cokDFKd/YBsty15QT0VDuDBPYe+DxcgzvrNb0yiOPmNSRQnvzGJ4uQ3JlGgBSPzUGsjxGtoZvi+VLFhAW68iJa64441z8QaxKFFqDhEYgz2AgARKGs5PxIMl/CdK9iLBbrBFNobEqDWsO4jyIAkfEZEnA1UoLtowHEIH7+B/gJ0fQVcy16uztI+PGMLFKm7T7nZgZuThMWGGpnCMzEEYXAMbj4Si9EH2PKMHUH880rP8Veje4k9/3udzOU3vzGJ4uQ3JlGc/MYkipPfmEQpvylVclhnKrwQdyDu0HQdEtMiIvo0whpiA/h4D0QfWoXGQ9NxNQg5dGCb+2oDYswKSmMfduq02oKwVMI+jEBEGoDYtALx6nanDr0FnEtExGOmgt+UJt/Au2MJ+z3Fsd0aI4GN3HgZuTtbxlrX0LmUpgCtG92LCsTifciNAxjwTveFBOkVSH5tb+Qc1v4c9uL4fKHn83fPO69jjPmZ4+Q3JlGc/MYkipPfmEQpvw2dzvNYqrAwohHNoIitO47JjmDHGol7EzTA6WenBZQTw+oLEJtQBQRxj8S0iIgpiGfXWxVe5g2MPwdx6LjQXnjn+Z5+Fk6SNEkuGmb1kspj7+H66NMksJK4t6Z7ANA47T70nVy01IeTc6+qwe0I500juknc24cYOUvnFGsRXYkMRO53PXVeblbQr+/0WGOdVzbG/Kxw8huTKE5+YxLFyW9MopTk0kJXHAh56LQC5axNWMLefDjqGhxwMKNhAS69Ra5uNTobFC9hHx52KthFRPxYaRnlXTWTGLnLSPBbDQ4lNoZS22Nw4+1RI71QEXdOrsbg8tiu7skKYrS3dM1jKOkt4Tg6PxLxItjhl1MvPXhOznIV017APtLekOC3ASGV+/8xlFvdZNOIOLbgZ4z5CSe/MYni5DcmUZz8xiRKuQ8OKhJoaPhFA+4pElNIGIzgXnMrqJld0/AMEAH3oZHeE7i+EZVbwrnch7qvHrfqiIyIuF4/SuxhrQ4/GjiBQyRg+MmsryJgE+r6IzcmiatUdhoRsQDRjgQs7HsIsQEIi30oTx7CNZNIRn30SAyLYDcgDeg4KycS+wXs7a/W0B+xABdpqWss4ZopNUiEj4g4BbHxo63uz8Fn4MZ8+TcS85vfmERx8huTKE5+YxLFyW9MopQ0iZYGS1QgsKFjCXQXOi6C++bhkSCoTGhKBjAB8WsM17yEr2NHFgtLy632yKtqFV6o11yOU3rhfEBgpf54AxBdacJr68RhdG4qXd2cJO6dQj86muZLQvMISrcnufYYjIhY9XV/evDOe1mMJfYliHt/O1Rhd7bSa2lCS7KLUs+RBpoM4V5FRHyx1fjvDq4lNvjHTyWWP/uFxnAVY8zPHie/MYni5DcmUZz8xiRKSdlPohtNdCUxhlxfKoX9BRpiUGMPQHVprcEJWIN+RedNAzFIyCO3IvV1awPFPSplhT5sRz0VoMjZtgLn3R0ImiMUV1m8pEESJDbSkA3asz1Y+xzEvac1lDbDdo8yFc5eQCwiYgT3mpygH630+n450TLt04u5xM7WcE/fqNh7vlIX4T2IlyNSzSPib4d6Ps/+We9/9uKFxHYL/azf/MYkipPfmERx8huTKE5+YxIFZvSyaNc1hsJQi7C0bXGYfQhN5F1BbAlCFU3ApVV7HaeqjqDXW0TEBEQ7GhixBwNRzodaqvusBz38oF8fiW7LjHrrgYjX4rxc4pANaJoIjEHIOwE338uN7veTLYiXUBpLJdmTFpHsGfT2e7oHot1Lje29AEFzCCXwM13j+fhBYqcPusZypvuVUyPLiDh8qeXkxZMzPfBBxb3mj/9D18FVjDE/e5z8xiSKk9+YRHHyG5MoTn5jEqWkkdqk2JOyv+2o7NNnI7gefAWHTtGOC8fBuGMaD01TYPbAQjyG2EeFWjQjIrLxxxK7Haq6SyOnz6CW/Ajq06nOnhR7un8LOG4G48IjIqYQp18u6FoO4NeMz2s97rc73ZsN3JfZTn9FoV+JDmr+5eK0v5TY+SdTiY1+o/X3+fmRxHZTbcpaz1RdJ4an+iwOn8DMHb6UoH6r2+/u9LhL7TmwW+kvKX7zG5MoTn5jEsXJb0yiOPmNSZSSxiyvSUSCWFfLb9s0FTKMNrDOQ0chj4SqNRxHNfnHhU5nOSlUvPp4p7GIiE8LFaZmpY5Fpr2lppf0X5l6E6ygdp/8y/MGpg/VPH3ofqtiHI0W34P9eV7uS+zLStc+OVXh7NWNCmw30Nx0A9e319L0cgs9AvI+2HbPDjR2qvevmauAuFUnb0yv9Hkg+kPd12bbMuFqqVZgcHfHDp6JqtLz8ZvfmERx8huTKE5+YxLFyW9MopQ0erkCUaoCYRBHNIMC0VbPT9CRFYh280bbgs5AwCKhqp+r42wAsZrGgLcISxcbPfYQnFoLcMXdwkSiO6jpfgQ3Jk18KXEKEzR6hJ4IEezmo9HiG/hOeiZuYG9nt6cS+/NAz+dNrmIhrfHY0zUiIvJK3ZPHb1S027ufSazJ9b5svlU33/V3usb7qToGN/Cu3YE6O4OGpxERM2haW0LCDOG5LajZKq5ijPnZ4+Q3JlGc/MYkipPfmEQp5yCmbbERpsZInCMJiUpoI1gcJOceiXvTWkWb+VYdfg2eN5Uxq3hFjrpRS7nlF7m64i5+peWWxVC/c/5OnVuXl+qUe1urC/GqVKHrPUyBKUEs2mL7VnZA0p7RWOwhiFX/MlDRjrgHJyc5E+lZvAQhNSLi/QCclw9PJPYf/oveq/H+e4ldXakL8XWj4t4tzMJaQho85rqvbzPerzk8o4dw3S8afZ6egJ3Wb35jEsXJb0yiOPmNSRQnvzGJUs52KqaRw4ukIeopNwQBoh/sWGrAsbYE0WcJgh+Je2sQh2hMdg8cZ1RWOwCh8rRmt+LzT7Suc/xPKizln+j45BGIdmcP+n1fvvpRYrP/o0Lj1/+q7rmvoGR5AtNwIiLOYPpQ23SfD6HduYVnjPoMktBMx5HjcwbPSETE+1r35zsQKv9Ya2/GZ3cq7hWgK9JoeNqvNezOdegz+wbOOYJ7Lh7meq+KQsuTRw0988aYJHHyG5MoTn5jEsXJb0yilOSeI+cd0QM3F8XaR0Gr2HEL/ePuKi23XNZ63lR2WuZ6PjmUsu7B6O2jnYok5y3C0hAsVNmZ9oDLPv+Vns/Fl3rcSEd0Nw9XEjv83/9NYr/5z3/Q8/ufKl71tjyA5Dtwp91B+e4SHGdUIk6l0SiwgjBcwL2iEnFyhkZwmfftVp+ny1wHeZyVIALm6ubbB5GbxHAqlSeHLZXPR0SsQNCmfFvA53MYQOM3vzGJ4uQ3JlGc/MYkipPfmEQpqccdwdN3wZFVq9jQNrSDynLvKxX8ZhsVbUjc+/+BXIgH0AtvL+d1UW+CAQ9RQQxsY9melvTmcNzu019KrPfrVxJ7/oOKhbNvVeSMiNiEOuBqEAE30D+wa7tGKv0mITaDe0BiGgmIbfEMYvSM0sCXBcR6HadIr0AMpaE5bW/kUa5DUgYgNlJZ9UHjHn7GmJ9w8huTKE5+YxLFyW9MopQliAMkfmQdlZw1leSCGy8iYrpV8WsBpbpUYtwVHCJCZb5QvjsAsammqbgRsb7Tfey/vZFY9sN3ej4g5DVjdfhFpcLn7t33cDJ6D8o93cOjge51RMRJpULgPQwWeejovus6tIV683WdBE0iXkQEPd853GsS0/Yy3QcSJXHwDVwLuRAr+GzbtaALFcqTj3d6zYcgxPvNb0yiOPmNSRQnvzGJ4uQ3JlHKMQgdJPiR5EZC3BLEtDaHH/XXI7GjB2W5XaGSXvo+WncDPQanO3bFPVxrj7zBt1o6mg2+kVh+dS2xHTklH9T9uH3zKLHF93otD9c6SXZa6b2PiKhA1NrAPaShJl3p2q+PhqmQ4Nf2jBUg7tHT1AdhkJxy5C6k8yZxj0rb/xoxu4QzH0KsB1sxo9L2zisbY35WOPmNSRQnvzGJ4uQ3JlHKA3AIkXhCIguJGitw+LX1BCTnFzmoqACUXFpFrrE+DOgYgFOK+qZdFRr7vsfTYHtT7fdWfguuuu29xIqhxqp7vZbHKx3Q8PZeB4O8KVTIe4QpvQvW++IGSnVvYbgE9YojQWwEZadzeE5oqAU9i/TGIidfG/TckeBLsbbSYTkOnuOcypPhOe7aQzOC8/IO7t9XfboWY0ySOPmNSRQnvzGJ4uQ3JlGc/MYkSkl8iHZhAAACf0lEQVRKLDfr7FYXT7RZGOsGRoHTdBdQTknZ3wOVm2KkDJP6/ONO692Lok3tBZv0ndbkr1a632Wp+7BY6ve936ra/wbGe78rdQ/vM/1l5q5lys0U9oLsuDSO/QAmw9Co8z68dwqIYZPQvwKaCkW/7PCvTAodNaBfGiA1aPrQhnpGgK08gn9pIMvw+9D+GdQ81G9+YxLFyW9Mojj5jUkUJ78xiVKSHbOb9MHWRKJN8GuoYSPEcqqrpoabYNsdQr8CGmtcgfh122jDzAJssn/5g9qk19AA8matIuBkSTXrus4MmmjWcDp90ItoqkwbKO52/CyJeycw6vwQ6tCPwYpNkiQ2Vm0Rya52Kn7dNdAktmNvghL2kXKoD/tA4lwFgib1B4ho6bMBAvkUrNi3jTbL9ZvfmERx8huTKE5+YxLFyW9MopRdhQ6ChA5yabU1VyRxj5p6EuTSo9p9EvfaJqJ8CI1ovgexKCKiycFVB+fzaqDnc95o7BSUvAHszQC2a7/Rz1YgFo5aauCXIMZR74auk3iooeTBTs/nGJ4dEi9Pa6rx53N51dPGqv8K7tB7cALSFKc92LMJTMghyY7EvRU1LW1xNVITVboHW+qz0ej1+c1vTKI4+Y1JFCe/MYni5DcmUcquog2Je1TKOACRq6vA1kZGJb0gxpAI2NWFSJAgOQf3VERE1UAD0I7i5XkxkthvIfYx2N0GDawBLsQxiIBDEL4i2MVG97CG66MpR+RCxJJXOGwfru+8Udfe6VDdmBERZystg46BujG/oYabEHsOE5uOYG/pKZnDfq9gI6iRaQTvbQXSIpX+9qH82m9+YxLFyW9Mojj5jUkUJ78xifL/AO70Fm9cMY5WAAAAAElFTkSuQmCC" y="-16704.244935"/>
</g>
<g id="matplotlib.axis_931">
<g id="xtick_1396"/>
<g id="xtick_1397"/>
<g id="xtick_1398"/>
</g>
<g id="matplotlib.axis_932">
<g id="ytick_2326"/>
<g id="ytick_2327"/>
<g id="ytick_2328"/>
<g id="ytick_2329"/>
<g id="ytick_2330"/>
</g>
</g>
<g id="axes_467">
<g id="patch_468">
<path d="M 299.674375 16829.146699
L 421.964375 16829.146699
L 421.964375 16701.853172
L 299.674375 16701.853172
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_933">
<g id="xtick_1399"/>
<g id="xtick_1400"/>
<g id="xtick_1401"/>
</g>
<g id="matplotlib.axis_934">
<g id="ytick_2331"/>
<g id="ytick_2332"/>
<g id="ytick_2333"/>
<g id="ytick_2334"/>
<g id="ytick_2335"/>
</g>
</g>
<g id="axes_468">
<g id="patch_469">
<path d="M 434.924375 16829.146699
L 557.214375 16829.146699
L 557.214375 16701.853172
L 434.924375 16701.853172
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_935">
<g id="xtick_1402"/>
<g id="xtick_1403"/>
<g id="xtick_1404"/>
</g>
<g id="matplotlib.axis_936">
<g id="ytick_2336"/>
<g id="ytick_2337"/>
<g id="ytick_2338"/>
<g id="ytick_2339"/>
<g id="ytick_2340"/>
</g>
</g>
<g id="axes_469">
<g id="patch_470">
<path d="M 29.174375 16973.066123
L 151.464375 16973.066123
L 151.464375 16845.772596
L 29.174375 16845.772596
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_937">
<g id="xtick_1405"/>
<g id="xtick_1406"/>
<g id="xtick_1407"/>
</g>
<g id="matplotlib.axis_938">
<g id="ytick_2341"/>
<g id="ytick_2342"/>
<g id="ytick_2343"/>
<g id="ytick_2344"/>
<g id="ytick_2345"/>
<g id="text_118">
<!-- 629 1839-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 16956.459359)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-50"/>
<use x="111.230469" xlink:href="#ArialMT-57"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_470">
<g id="patch_471">
<path d="M 164.424375 16970.564359
L 286.714375 16970.564359
L 286.714375 16848.274359
L 164.424375 16848.274359
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p3e7796dfdf)">
<image height="122.4" id="image825e40766d" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAG8VJREFUeJztnUuPJOlVhk9GRGZlZXVVV1+mp3vGPXZ7PPZgG9mG2SBjISOWiBU/wL+Bf4KQEBI7xI4FElskJAsBC2QMZpCHkWfGnm73xX2pqs6qzKzMjEwWHoTU7xPopLPdc/neZ3kUGZcvvlMhvfWec3pVc2MdCXq9nsYCYnDcJqzXejvrgBgc90mjrmqJ7TYDie0NhnpcrcctV63ExoupxE7nM4m18NuPk37dSOzS8ILEhrAO56uFxCaLc7zObDmX2Ar2TgPv6gK8l4P+SGJ79Y7E6l4lscVa30G7Xkmsi/lqKbFJq899vtT1IfQOjTFF4OQ3plCc/MYUipPfmEJR1WUDSNyrksJgBAt5JH98GsQ9gu57AcIbCTTtSleCBL8Z/PbTsF60J0gkI+FzUOm2rTr2GJEVxLLiM913H+6RNve0VUFyBrGIiCmIl7QnKC/pHv3lN6ZQnPzGFIqT35hCcfIbUyhpwY8EGhL3KhIWNnD9kdBFrEA9+aQJXSQOkUBDQg6tGa0NOcTouh8nWdcnPQutw7DKOeq6rk3nnLfqniMnIEF7fqenqbXsgWAL4t54rq7NCBaL6Vlq+qbDK/CX35hCcfIbUyhOfmMKxclvTKGg4EcCBpU8DqAsk46rq/zfGBJeyJG12qAU8uOCBEgSKhetHkdC1Ysqd962LDsD3Te9+1mr737Q6L4bQVltBAuBFDtbaBk0kXUm0nEk9pKIR7GIjvdKjtqkyOkvvzGF4uQ3plCc/MYUipPfmEJpsPwPBLrdvpZWjhoVWSjW9FQEjGBHF/UkI6GDxJNPmrONyIp2L+JRSNiNYNE2K0Ci45CET4hle9SRwEZ99CIidivdt3U/JwLSHhvWfYmRmy8L5VqXQE7rmBX3CH/5jSkUJ78xheLkN6ZQnPzGFEpDTiQSfIYwbIIGGFxsNDboEERacLsdL88kdg4uL4qt2ufr+vt1DCB5EWQHrNB7jmBxl44lQYxcetkybVovcndiP7qOd7VXw0AUEAF3BirkUV9A2st0P/O1rgPRBzGcRMWIfElvdpiOv/zGFIqT35hCcfIbUyhOfmMKxclvTKGwvTdZA01KJamhuxWrl2QFncKxXc0ZnyVrQX1R48apaWL2PwBZq3L2vmkNdxp+L/SfHZqSQ2o/Kt/UHDM5+QYbmcK+2WTU9aVa/yN1vdqV2OWers8YxmzfXU0kNoMx4vTM9F8UGl8e0W3H1uNs7zXG/D84+Y0pFCe/MYXi5DemUFBZIGGCBJUFiB+ztQod1ZoFiGxN9yZijlw72YwU66qTAsu20Hov21y/AmwoCc+SFQG74tSToa5//UIsNo4F8ZFiERH7YO+9VV+Q2Hdn+vtbjVrNP1juSez7Qz3fDOy9s5VO56H77hxpX+dEYMor2jv+8htTKE5+YwrFyW9MoTj5jSmUBhtKQmwBLq1JBc02QViY9PS4rmPHCx1PTA4xgsS9rLONpg/hJJYO9xTVfnMNtcZIOJ0sdM3IUUdsct9EtslotkcACZp0jW3EvRGM7Y6IuFSp4PdGqw7Gb79xR2L7v3dNYp//oR5X/+BzElsNL0rsPXgvT1udFLSE/dAF9cQggZzO6S+/MYXi5DemUJz8xhSKk9+YQkFbFDVcZNFNxQpqrNnlJENhgibxJMUhcjb1k6PFd6BpIrna6Hxdx5IwRYLfFJxf9MzTpR6XdT/yeGc+lgS6bUAxFFyItF64rlA23uXwG8Dv90BP230VHJBvvSWx0Su3Jfbt2Y/0t2+/IrEfDC9J7H6l+TINFvzmIO6dQenwFFy25Dj0l9+YQnHyG1MoTn5jCsXJb0yh/OqzhYPFplULpYMbuMvIpTfqq3sL+7iBUInTh0jcS7rLdjr6EZLDbA8mw9BakMsrW9qME3KyImCHsJcdvU0Ov6w4S+vYJaZmIJdkBAti9xu9x+N39NrX7qq4Fzv6nne/eSixt6b3JXb5/csS+xk4EB/XnC+PK30HD2t9/49W6g49pVJ7vIox5jOPk9+YQnHyG1MoTn5jCqXB3nXJGPbCS5bVdsVJ8NtmcENWtMPSUXCSHUBPuIiIiyDc7HWMJn+WBv4Gnzcq0KAICCIniW6buPbIKUnOS+y5B466C01uTDbd4zkIdjT+uu0Yz/4IRMl34Nr/8PC6xL77F+9I7ODzUMaOFee6Dpf2VNidnepx1ZpF5VWj+2QCOXgK74Dcgf7yG1MoTn5jCsXJb0yhOPmNKZSGJoLi0AYQFnDCKIgNdFwEO8Q2cQNmzjeq1ZG1X+tE1n047gpMbr3W6+gVt4a1AI1t1tPgLqzPvIGBKCB+kRCHDj8SATsmBpPzj85Zw7eDyqXpHYxAdDsHQfM8ksJnh6uRjsWhNPCyfnryksRu/ps+81UQG0fgOFzA/jyq9d2fdDj8jsDhNw59vilc+wzKxv3lN6ZQnPzGFIqT35hCcfIbUyjN4Y5OHcV+b0B2EMRGU3bh0ukS0+T9kLh3q9qX2JsrPe4rcx4gcqXWia7EaavurQ8bvU7T16EPJNqcLdU1No1cT0Aa+BDBZcLZ4Sfo2gShKztJlmIkcs6gd2RExCTUkUd9Jmetrtmjvu6JG41O5L0O7+9islp+As931uM9NgYr4ZO13vfJSvfEyXIiMX/5jSkUJ78xheLkN6ZQnPzGFEpzc3hVgmfQU+6sVeFkkXRadTrJkq6z7IRYKjum6aTkTLsaKl59ca6//dKVI4lFRFx+XacL92+qmFodqhD0rXd18uvon3Tow52+nu8X1YleFxyDWdE0gtdsDc7EZqXXod929dd7FizfhT1GMRLxIvKDYQh0tYKDta10bZ5ASW9LE6xBxJt3uRWTzr2TVsW9k4UFP2PMRzj5jSkUJ78xheLkN6ZQmtf7Ojn059WpxMg9dwrusqASyg7Bh8QYEqbo2iRqdZUOPwtNMT0CV9UvGi07ffl4hOe8OFPBb/jGTYnVf/DHGpuNJfadP/kzif3j7Zcldqev90PrOqtUGOoSybKDQFY0RATe/wxEqQV8d6hkebLMOfR4inTerUqi5BRcf097uudpbag0fZHsO9nV85Ki5NKkd0Dr6C+/MYXi5DemUJz8xhSKk9+YQnHyG1MozZWeKtpjGDc9q1RhbetknX7HYVhPDiX5OHWHxmyD9ZLswk9bVebvwDPv9uFv40ItthERw3dVYX39rccS68G48fr66xLb/47art/8K+gF0Nfx0LQOZNkmy+cvgZHhyf8AkNJ8BkozQfbeyQLU/iXsxQ16RtRrsIGD5ZfuZwx7h9aW9jbtxSFMj6IGsxERfciDaq0JQxZr+g+Jv/zGFIqT35hCcfIbUyhOfmMKpaHRvQRN4qExy9Sssau1JU1OITtmtq6aICGIbMn34qnE6j70DIAGjhERh+fa7PHlf/65xA6+8LcSW712S2LrUxWWPrdQcei1XRUge43e9yNYr0VHXftsqbZWgn7fAzFuAdZpFAtBVCQhLluPH8F9H2isOQp+IJJl+wPQcbSP1w3s9469TSLiBPpskJWX1tZffmMKxclvTKE4+Y0pFCe/MYXS3F+psHQELqYZ1MDjCUHUGEJzzIj8NBYUbagXAJyPHGfZZpZUV103/PeyD5OP6v9+VWJf/9MfS+zClX+X2NE9rdOfQIPSC1CuPuqpE4wE200gkQzfX5sT43AMePIa2Rr9iEDHaFZszI6Qz7oLs8d1CbEETRoazzV/Ka/85TemUJz8xhSKk9+YQnHyG1Mozb2lNo88pRLFZJNCmobTNbGHINcfNQDNTgsioYPuZ1vR5qxRQfTejop2Pzy7IrFL49zf4KOBXvtJ6DqMoWHmGN4pucMieNx1toHnNmSbt2ZHsW9yHSxZBgGSrk15kL1HupcZjFiPyAuVFKN35S+/MYXi5DemUJz8xhSKk9+YQmmoJxlNKiGRDIUOcEWRSyuiY/xyUqzIinbbCHkUo75uERHHSy1cftBoL7YPahUBD6F/4IBGQcMzj9f6rh4tdeLSo7mWLJMTLCJiAe8g66rbyH33DCjuwX7Kim4RHSPfkzHqhUfQaPiqY+rOsywCyoFBaIzgPNjGFekvvzGF4uQ3plCc/MYUipPfmEJpSNxDVxyJdkltp0t0w95nIGBkxbhtxCYSd1Dwgx51ERFnlTroxrUKauO+xo7rocSyPQrna3D4LeG6IO51jbUmSNRCMY3EpuRGIXEvK6bRcREd5dvJHn7Z+8Zy2R45VZPic4fgt3V58zP4y29MoTj5jSkUJ78xheLkN6ZQGhpMgOIeQGIDiUBdQgcKeSB2ZId7bFI6nDkfCSxd1yCHWXYIxbRR0ZUmE2fdk9lhE11QH8ZsiSo6zpJrS9Az92mIC8S6WPZy4h6KgMk9tsIpvamfbiXibYK//MYUipPfmEJx8htTKE5+YwqloQEBWSfRtmW12wgbz1vcyzoGu4QqEnNY/NQYvYOdWgedkNBFQhy+0w3Wi4aVDGoQIGmARdKhmX0H2ffc5fAjwZDAicMg2mWFyhcl2m2Dv/zGFIqT35hCcfIbUyhOfmMKpclOS80KeejQe87DHX55zucrqGTFvU2EHHJ5LbdYCrofEuewVDo5dCWC3XIkQGZdddSrkfoEcolxbsG6hD0SAmkdu9bis4y//MYUipPfmEJx8htTKE5+YwpFbVvBgsg24l6XOLdNqeeL4EW5tLJuNxTyUFTMTSbucsVRnAS/3XqQug6RnYBL2wFLvDv2TUV9AUEkJfFyWYFTEqycnwY3H+EvvzGF4uQ3plCc/MYUipPfmEJx8htTKKj2bwOPJu5q4Pl8VdJs7Xa6eeSWlk9aCxxrnrwOj0nX4+h81AugS+0n5ZsmCFFsCSOns+9lm7XpmnJDnzd6PlqfOby/bWr8P2n4y29MoTj5jSkUJ78xheLkN6ZQmm0m3+D4ZBB3Vh1/Y3ogDpE1NX1tFBuVF2Urzo6SJrspxUgQy07XoWfuEtP6yfHgNNacavfpOHqWPkwponXYZPoQHTvo6XVoHeldLVcgStIkpU+B5ddffmMKxclvTKE4+Y0pFCe/MYXSZKepkJBHghGKUkmH1yY0tQo0NNY626A0O5Z8E7JCXlYEJFGKnpl+u23DU9on82VO3EPRDe6bBD9y3tF0nQUIjV3XpndNezn7/jYRU+W3G+y75y0i+stvTKE4+Y0pFCe/MYXi5DemUHBEd5YK9Ide0pkWwWJOVtSg35IglhVUcp62brJlqyTu0W9RTM02owSHXkW1vx2QOMhCnv6W7rGptPnnhWYosZf6BxI7qHYktoB7OWqnejMRcbQ8ldhkeS6xJTU4hbXdafRZdkJjWcjRypOLeALUNiKgv/zGFIqT35hCcfIbUyhOfmMKpVm2v7rgR6IUuadIOIlgsYL71MF1SJQC8YQEv+w1SIh7UaOccW16uck+2X57FItg0Y4EvwVNtIH1HlY62edasy+xW/UFid1Yq5i2hlfwYTXSYES8B2Lj/TiWWK9VEZBciFimnYzRu5rAdc/mM4lFRJy3C4nhnk+KgP7yG1MoTn5jCsXJb0yhOPmNKRQs6U1D45NptHSH+22boRg41hocUNnnq8gVt8UQiS6yTkACS0fhfNSDbxdEtyGIYRERNZyzTY5tJ6HrYqVuvpsg0L3e6v3cXOg1duG6N8AxGBEx6sOADrjHB4unEqN+hAT2W8Q1zA38WDYswmfLzqlkna7jL78xheLkN6ZQnPzGFIqT35hCwSm927jYspNkI1isGtR6SxSj35LYWJEdDMj2x+sS/NCRl3Q7kjhETjIqYyYhb1RrGSwdN+hw+JHgR1ITOQ6HMBDjpZ7ez8trPe76Us93s5ro+a6eSeyNJX/Hrj++JLHe7qHE5uBgfLLQcuCsaJcVSAnadxERbQX7G97VoqfPgrmRuhtjzGcOJ78xheLkN6ZQnPzGFEqDYlqyf1zWcUS/jYgYNipC7fd3JbZb63Ekssyg5JGGOdDzUU+5g1pdaE1HefLZSkszqVyToNJaEn3oOHLzUYxFPH5/66QLEXsKQmwE93PY6nFXV3OJvfzKWGKXfhsmE++rqBgRMfqXBxL78d1XJfZ28pmzw0+ypeREVwk89Q+sYB2pTyS5/vzlN6ZQnPzGFIqT35hCcfIbUygo+JHbLdvPLjtdNiLicl97tl3vX5QYOdHOQBw6rVVgowEPB7WKiq/XOjDiy2sVAXc7NJv3+yosvtNqmejTlfZnI+GMnpkEP3KNkbuMHGxdei32pMu+fzhuuNbzHcDEj8sDXZsLr+m61rdekVj0uTy56us7mIAzcZGc5ruNkJcdIEPuzoiIQTLfyG1KOegvvzGF4uQ3plCc/MYUipPfmEJpsgMH0HFGk3JBlCL3XETEzb6WW36p2tP7gbLch7UKfo+hJx2JMV+A4RC/P9P7fuvmXYmNrnNft3v/pUMo/m6lz/ejRstRz1bqTOxyeT3LNPS3UzjfDGJdAhS9w2FP15bKd0kE3CHX3wrKgUfgxgSteH2srr/2gcYiIt5996rEfjZUYXEKAjJPJgZh8LkLfh09L+FbvQN7nhyxJHL7y29MoTj5jSkUJ78xheLkN6ZQnPzGFEpDte2kNGePoykwexXXWh/2VJW8ulJ5d38FanGt/0GgSSzUZPLrS73H37pxT2KX//C6xHpf+bLEIiJu3bktsT/68/sSW7TaPPKDStXnWajSPEuqz6TsU28BUrMj+D871Dwy24yU2lYuYD9NprofTn+m9927rZbdn96+DFeJ+PuhnvPD9pFeG/oxLGD8dbYJZ1bZJ7qmOg3Bir8HeXCl0f+YXa2s9htjPsLJb0yhOPmNKRQnvzGF0mRHRtNxGKOx1huMpaZ68EOwgu6A5XcBDQ4XILxcX6iQs38LrKVf+qLEqt/8XYlFRMRXVLT7/L2/lNg3/1oFo/Gu3vcDsIySCEi1+zSdhcZNz1q1tEZEnPdUMGwbPecA7L2TSq/zBGLvDfSZlwsVqp7e0eNa+Gb9cIen3PzH6lhi9xcnEjtd6vvbanx9Eqq977J2Ux6NYBLTHlmxw/X8xpiPcPIbUyhOfmMKxclvTKE0NN2jawz1s+BoYmwoycIJCVjUXJF+PSChhK4B55tAH4L5Y/3t8OhIg1OuG4+ROvfqW5+T2BeGH0rsxyttHjqGQnZaL2r0STXe/UrFvbMlv5dzmnzU4QZ8FtoT01rP9wjGdh8P1IU2W+hx1KrzLoiKEREPzvV9PZnr6O0luPmyTWuz+UKQ4NcF5dYSYufwrsbQ98FffmMKxclvTKE4+Y0pFCe/MYXSUAlm10jtZ6HGheQkO23VPRURcQTupAfQfJBGE5NU9bCn156A+PHuQEWyy+9o+e43/uZtie0fqTssIqL36g29x/sPJTbaU+Htyomu9y/6eo8TkDTnoc62GTjvyI3XJVTRqPPpUu/7fKnHnTQTiY1qFe0OGhX3zgfa8HQFU53I3Xl3NZVYRMS41fgMnoX2cp+m3FBHUSCdQ3AYTQqK4BLs87W+g1Moi28rPae//MYUipPfmEJx8htTKE5+YwqF6yABcm6RALEAwa+rV1yWJ5X2KWOxUWXAPRC6jnp6P1QSOntHR0F/40T78kVEHL75c4m1U72f6UQn+5A0RFOKqNyZIEflfA3vBVxtERHLVuN07LwFgXWhvfDOahV8z3dUqKJJQWTnI+fdk1aFxoiIKZQtt7BPSPykiVTU35BGandN3ZF7IUdsRykxxen5aH3IoekvvzGF4uQ3plCc/MYUipPfmEJpcDBBLyeIkHBCwmCvZfGDBAxyCN4HIYj6nF1sRhLbr1Vgo794T6H09zY4AQ/vaeluRMRyoYMk2qVe6cFU+9QdwUyTp6HrMAY31xmMliZHJfWoI9deBIt71BeQjGgr2DsElQ3TmOwjcOgRTzuOo2ehMvY+CHkHfd1Pe+BWpNzYpFT3WbrKpyk3KIfOYWgLvRd/+Y0pFCe/MYXi5DemUJz8xhRKM56rUEKCSLZEkRjAdNEIFmMmoQ4xEjVwQizEzsAdOIC/eefwW+qFd69j4vD60UWJLeA6P4Xy5DuVCjR32jOJkfh1BuLe8UJ/S+95AQ69iO0mzJLQlT0fHUcTh8nBSCJXBJfH7tT6Dm4MtZz4N3auSewyTJam6ckT6LdIOUR7kXo1RkQ8grLlp/D+STDkicrGmCJx8htTKE5+YwrFyW9MoTRzcFqRIw+He5CAAeIeCXER7KqiUkhyNlE56XFPha4+uAMntf52BKW/c3BF9fss+I1bjU/hsT+Ea7/f6hCJO3MdGHKy1LJVWhsqq6V+e10lvdu407LQNehZaI+RAEx9ByPYhXqhryLwt3a0B+P3dBnj5UPt4XjvSPsMftCok5O8jwctiJcVi+s/AcfhexWIgOAEpTXzl9+YQnHyG1MoTn5jCsXJb0yhpHv4EVTKyOWSPOiAXXo5JyGVhFLZKfUUPGlU8NmFYSHHtQosk1qFnIiI/UaXklxeD6DX3N35scQenWuJMAl5OLmVyrSp/PoFCHtdYCkqvtNc78iu8mTaE/Suv7rWPfG137ktseZlHTYy/FcVZ9s7lyV2DkNXrvVVsOs3LMRehXLw0Y7uUXKMziz4GWP+Fye/MYXi5DemUJz8xhRKQw4qGlZAk3J5iik4ATtEPBJu1isVeMidhrEAoQNEpNOFlkGSM/G4UccgxSLYrUhlpuOlCjzjhcZO53qPJORlS2hflLjX9a4zUCnqCvYDuTtJLOyC9jwMsY3lKawjlNUeP9Y+kadJLb0HvSMPr3A/wt0pCKKPtRS5GWiuPq4s+BljPsLJb0yhOPmNKRQnvzGF4uQ3plAaUvYvDNTqeDBQGyGNVCYFn+q0I1ihJSWXrJuofNMYcTjuvAfjoWEd6LrjmpVYsirjRCJSqpO19h+nir8NpK4T2Rr/7L6JyPeHuFvper/39lWJ1dDj4fZKc+Oo0f1wABZrYnCBn2XvFX3uNxuwbT+4IrGfDKB3RupujDGfOZz8xhSKk9+YQnHyG1MoTVOD4NfXmuVrA51IM4CmlydQr04TZCIiJq3Wp5PIRpNlcGQ0gCPDQYCaQyNFFAtBnIvIj2kmEZCOyz7fpwF6B1inj6PBs8fxeq3X+l5o372/1j36/b7advuwd07BotuH+96Fe6Fenc2IRdz+Dc3Ly5c0N772nw8l1rv7kl4br2KM+czj5DemUJz8xhSKk9+YQmmoJp8aHB7U6voj4ex0pX9PulxoJNxknW3bkHXFrWDGyiaOuvRo6k+BS28bSLQj4ZNG2qBoCk45ikWwEDsDUfn2QpuohpbFxxBcrX34hl6F8e7XQSDfhN4A+mdcVBHwsNIJUF8NFQH95TemUJz8xhSKk9+YQnHyG1Mo2MAzW57agqBFTSs7xycn3W4flyCWbY5p/o/smi1bEHahi2ZWLOx8LxCm/fhwrhOSqDx9WKkYvl/rePZ+pWO7pyD4LVvNtdWcS6BXE73vCiyCJAxeeE0bwvrLb0yhOPmNKRQnvzGF4uQ3plD+B7nxQOGJ+OWUAAAAAElFTkSuQmCC" y="-16848.164359"/>
</g>
<g id="matplotlib.axis_939">
<g id="xtick_1408"/>
<g id="xtick_1409"/>
<g id="xtick_1410"/>
</g>
<g id="matplotlib.axis_940">
<g id="ytick_2346"/>
<g id="ytick_2347"/>
<g id="ytick_2348"/>
<g id="ytick_2349"/>
<g id="ytick_2350"/>
</g>
</g>
<g id="axes_471">
<g id="patch_472">
<path d="M 299.674375 16970.564359
L 421.964375 16970.564359
L 421.964375 16848.274359
L 299.674375 16848.274359
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pd3ec1f2fc2)">
<image height="122.4" id="imagee3408cd2a5" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHSpJREFUeJztnVuPHNd1hXddunt6ZnqupEiJEilGii3FCSIbjoEg8YOD/NO8BAHyHOQlQOBEMaw4tmFFQixRsi68j+Z+6Vt15cGIH7i+Ms6wSVrRWd/jRnVX1amzu4DVa+9d/PCVv2kjgaooJdYvKo2Fxro4Xkwk9mh2JLG98bHEzmb62bbVW6mrtOuZN43GFhprg5erhPUpi0JiRWisaRcSW0CM7u8PSQH3lwqtF+2xQd2T2Kg/lNhmbxXPs1atSGyl0O+k53rcXEjsq+mJxM5hL1al3suw6kts1NN7oWuOiFgrBxLrwZpdLGYS25vpdesnjTFZ4OQ3JlOc/MZkipPfmEypT5uxBFdKFSaGpYokayCckAg4blU4i4hoQkWtcaNixQyEN4JElhIENhKqmkKvBQWt56C5kTDYthB7HidPJFXcI0GToHsmcXZQ6R4bwF7sFzWep4L3GwuxINBBHqxWKrqRYEviLK3hAo6bd+TLGQjkdB7K6ePZucT85jcmU5z8xmSKk9+YTHHyG5Mp9cViKkESNdYLFT+uFmmOo8NQES8iYh/EIXK2kaBCkKCSKlSRCPSHBO8lUUxb1gn4rMU9EmLrUsW9FRD31nvqdiM3H7nfIiJqEKBpj66AYDgCwY+ExX6psfNGxTmCxL2LRnOyi+liLrExfP5irjG/+Y3JFCe/MZni5DcmU5z8xmRKTe65HogkOyD4vRwa64E2B3pPREQ86HBlPUtI/FqAU46cVstCghiJaVTKStezANcfHgfOya9bOTAJfqu1inZX+hsSu16PJEZu04iIOYjFNaz3Luzva63uz3Gt1/NxvS6xe3MtoSXn3bRVwa7L0Uri4AQcsRQj0dxvfmMyxclvTKY4+Y3JFCe/MZmCilsNvwkjEOeuzFWA6oOuNAEBMYJdVcv0hSNRq0kU91IFsa7rI9GOSlTJDUYOOLoeEoKoz+C0URGJRMAXBQmfPRD8tnprErtVb0nsrUKPG7X8HpsUac/1Npjq3hkeSqyqdB1/drojsZ/2Vbz8stKegEcLFQEPoXdgRMTxXMtyCdqj5GD1m9+YTHHyG5MpTn5jMsXJb0ymoOBH4kAF7jL65SA5jProdZ6Hhl/QoAv4vmft0qNr6YLEPXKsUdkqDbCgfn1YvgmlmtgXDvS+5+H6Sy2r7lW69bZqFfJI3PvBWG9mt1ThLCKCbpE02xuv6LCYnb/d1AN7et2r//RAD7t3TWIf9tWZ+DkM8qAy5Ah2+JEIjD0FQfj0m9+YTHHyG5MpTn5jMsXJb0ymOPmNyZSalMEZxMYw0eYEbKkVKPNHBdcnj0G9TlXsn3nDzcRpKl3nJbtqHxTtFVB36TvpuVCMrLOp/6KQAhyx3L8mdG5aG5q6swWjqV+b63W/uXkgse0bbH2tVvVeqqF+Z+8NteiWb/+xfuFY/1VYv/lQYi/f1X9hHjd6f/s1rE2H2o/NSGFt563GXM9vjPkdTn5jMsXJb0ymOPmNyZSapntQo8H9So/rlSCSwUketTy9hOqWycKITS/hd4vq4lNr96mpZ4U10On1/GhVTpzEk3rdqeIe/cx3CXsFrEXqeHBqzDmoYbw7WJ8HAZ+Fa1wd6V5cucUNPMtdtQeXO9qEs3jpqn54oNfY3r0nsYv7urh70Nx2v9J7OYEGnpOOEd1E6r5DYTj5LMaYbxROfmMyxclvTKY4+Y3JlJpG9+7PTiX2BTiyTquhxEhEOlhwQ8LD2ZnEqPlkanPMVKccNb0sEl1t5KiKiBhAnT4160x15PF5oPYbJ9+kCZq01hE88aXr2CchV+Narc62NXDz0TrsVxo7P9F12IRR8xERxUjHeRfb2hQ0RioCxlj3bXN3T2L3v9C6/9/0dM8+KEBcB5dr10h6mqRFI8ObEvZ8qXveb35jMsXJb0ymOPmNyRQnvzGZUk/mKu4cTVWII4fXPpSnkuA3Weg5IiIuwF1Ios+or8LiEM5NzQzJwUiwe05/G6kBZ0TEqKfXSKLWAAQaKtXsQ4zKpclxiOIeuMYOGi6D3ZseS+xkCm5MGu8OIietGa3DBbjdflNp7OMjFdg2Ptay2oiI9VUt/y1W9VkVqyoMxqkK382ersPhXBtzHq9AE9VEh+YqiOtdx6Kbr0kTvv3mNyZTnPzGZIqT35hMcfIbkynYw49cfyTknXZMSUmFXGxrIJzt9NYltl5queUZuLwO5ypepgqN1GduVOv1RURcqbR09FoJ91JA7zroubYLos0ATIgzqDA+hZ/0R+Dw+rRUQTKiu2z5Sc7nWqpNZdXEGETgr0ConMP+XF1Rh155RyfkRER862hfYrt7n0is94aO427numaThzA6Hd6hQ3hWI9jvNaz1PFjwm0AfzbNC8+AAxFQUtPEsxphvPE5+YzLFyW9Mpjj5jcmUmoSAZgElgTB4g1x/VLJKZacR7AZbh/LP7UrdV1dArGrguEMoO56Ak4xKI7dAVNwGwS4i4uVW42+CufCt3onErt1UR11/G57Bqa7t4T29v88P1QH3YV+v76TS+4uIOIA1O69V3COHHwrIILB2la0+yVGpLsSmr/tuPIRx2hFx9/AliX3rxypUv/KBPpf+QPfJ4b6W/s5gz2+DYNtrdY9NYHDKvENvnUG+nYEo3QfX3xj2vN/8xmSKk9+YTHHyG5MpTn5jMkUViGAhD4daPPvrQScSMYSz74Iz6u1SRcC1hSoqm6A/bcw0uNkxUOHqQAWjV7+nrrHhj3Tya/nmX0usnaoo1d65I7Hq3z6V2OOfqdswOlxjBPWKo7JjKiclIW8KfeooRs/+vAChEZ7BRY/Lxh/WWm77Kbg0bx3r0I7tRu9lAeJeA4mwCveyAltnBs7SSYfgdw5DcogBvNPpmfrNb0ymOPmNyRQnvzGZ4uQ3JlNqmoBLLr1l6JrwisINlOVSqe4EymW3Wr3uP5voOd7YViFudEUFtnpNBZ9qldemvqbXU3/3exIr/+JHEit2X5PY4v5HEms//0xi48eq2d6DMs89GORw3iFeNjhrWaEeh6kiIJWIL2jASqS5CKl/Y0THfuqpG3Af+i1uwwASkk1XYd+NQFSmkmwS945KzpcjKOk9AeftCYip57AOfvMbkylOfmMyxclvTKY4+Y3JlJp615EISJBoQyYkKhGOiJgGCBOhji4q6zyGstN5qGizW6mQd+VtHbzQf3NbYsWWusNiyH3vip0djb3+bY1taIlpe6p95toP/lNiZ/+sIuB7n78qsZ+DsnSX1rXlgSYX0F+P3HfUg5HE3Qaccl0icApUSnze6P1F8DU+ArfbrNLvfAxl3tTfcAjft17rZ/vwrh2D6HoY7FY8AdGOhrGcLnQtjueaQ37zG5MpTn5jMsXJb0ymOPmNyRQs6SWw1x84wVpwO3UKiKAD0hiQ07lGD2qIVTrc47xRT9ZiDGJTraJNsan92mJ3F64woti9rrENPbY91amxi1/8q8RO/u6nEvvxhyru/WRFF/GThQ4qOQYR6LxjevIYhKVZhxvwSWifkDDcJQI/LV3fN270Hk8KFXyn0OOOIBciOR2pJ2QNx9FQkknLz4XKoMklS8fhoBo8izHmG4+T35hMcfIbkylOfmMyxclvTKbUpFQuY/kluppy0r8FJfxbMAP18gzsnIeVqqR3YSrN9Tva4PJqf09iAxjR3PVr2fbB9gtr297XmvyLf/wPib0Lyv5/wYCde62uA9lAT0DtP2t4xDop5KQq03MlpZmeH/0DQNBeJEiF7zo3/Xt0Cv8z0XdSI1uCbMCUa5cBrdPUAwHszxTzm9+YTHHyG5MpTn5jMsXJb0ymJNfzk4BBpAoiERHUp5AaMaJdEUStfahP/6SnKtngWGv3X3tPBbvrn+vo7NHr70ssIqJ++ROJFdDc4PSXWlf97kcq7v072HYfJIp7cxBSU22gERFjsIJOQAQk0S51bHfqHmsShcEFjLqO4GucFGn3QgIbNShNFcOpMS7lH53jMudJxW9+YzLFyW9Mpjj5jckUJ78xmYITe1IhcS+1njsiYBYLCyAkNp3MtSb7YX0qsV9DI8XTgYqAXyzU9ffyAx3vvXuPRbIVmJwybrVHwCc9bfT584EKeZ82OvKbGmvSM6Dae3becY0+rffFXEXAZWrycd+V4DYFkQz3Xce10MSfZdyFNTQEJYGOPkvCJ0HniOBmpKlgs92n/jZjzP9rnPzGZIqT35hMcfIbkynJDTxTxT0Sgbqms6QKL/Sd5Ja6X2hzTBK/9isV9x7DyO97/b7EVqNLdNH4FO77EZSOftaok/DxTAW/cUfDzSeh9SZx73zOU26opHfaqGDYVar9JCTuVfDe4SaxT79HIngtUvddl9NOzgHuwgrES3QRJjoLu+KUB1SKTGKj3/zGZIqT35hMcfIbkylOfmMypb6MI+9JUKABYaFLGFpmTDM5zuj7yNl23lOh66Kn03kOS3UCklAVwYIoiVVnVIo81wk7RzBSme4lVWCl47pKemcg7nX1yEsCHjOJZMvsu8uIyqlCJfWYxBDcC+VB8rV0DEciETHVoUvP329+YzLFyW9Mpjj5jckUJ78xmVKnlmUu45TqgtxJqZAANZ6rM43uj8QYip1W2tevS2BJHWFOPe6OoTyZ3HfksksVWFPXIWI5cY+eKQlVVLZKa8uicvq+SxX3UsE1W+IUdH1de6xpaDw4OfxSB4sYY7LEyW9Mpjj5jckUJ78xmYIlvc9a3CPB53lAQtW0geue8nTaJ5lACW2XSLnMBFVy2k1IvCShMlHIu1TpaKIIlSru9SrdZv1SYyQC4noV0I8QxNAXRaqomFqSexmRksTPVOes3/zGZIqT35hMcfIbkylOfmMyhYd2gF4AA2d5EMAlhoCg2JEoVqQLkGn97MaJQym6xEs6NrWXGl0PluouUUK9VEluBzhpF/re0bCJPoiAOBAD1rudpzkYf3tBGlpm3y4jfNN+f9aTdyMi2XHoN78xmeLkNyZTnPzGZIqT35hMqUlQSRWbiBclAi5TqslOQOpbB/ey4HuhY9PFuOWGOTztcctCzzW1fBdjRdoE3LZKvz8SU5fbO2liamoeXEYEXEaUpHv2m9+YTHHyG5MpTn5jMsXJb0ym4NCOZ02XK4pcg6mfX0bUou+j0tFlexQ+67UlcYjWsG0hiMfx9aU69yi2UvUktlrr8JNhpROQ+4W6/mgYCpUDUyyCy6VT9xOtDwmIqXsHBVJYQxJDI9JL41Ov229+YzLFyW9Mpjj5jckUJ78xmeLkNyZTalIqidTJPkSXXXGZkcypx9G5yY5JCjmOaF4SVtLTbJ/PGlLrI9ItugNQ9td6OuVoq7cmsc1qVT9b6j8AFazDuFUF/3jBTVnPG5h8BP8AzNs0FZ8+i+PiE/ci9TqghqcRET2wP9N30nXjvsOzGGO+8Tj5jckUJ78xmeLkNyZTlhrRTVxmAknqSOZnXc9PvKga+FQhL7Wx4zLTdaiJZgQLeYNaY2TR3axVyNut1yV2vVIR8Gqh3zdqoZ5fIhGPKp1wFBFxv9bx54eNioMXCxXtzhcqFp7M9PsmhZ57BqIyiZf0rMjyG9Ft+32SttAVou/0m9+YTHHyG5MpTn5jMsXJb0ym1MsIeXjc85hAssR5nrVT7jLCYPKaLXGNqTX+5OZb7WmdfUTERk9Fu/VanXtDcORtg3PvpXIosZuh5359ptd4A0aVj0Bg22/1WiIi/mewJbGPahXy7rcq5D2an0rsolFhkMAmuIlCXFOyCE8NYVOPo5jf/MZkipPfmExx8huTKU5+YzIFLV6pU0QuM4knlYYca0uIjXSNz3rMckS60+55rJmcF66RynTJyRcRsQmC3xVw6W0UKtptFfqdL4eKca/P9Xq+1ajodvv2vsTW3sR58RqLiO+8r1v8vcdXJfbuQN1zZ6WKeyTQpe5P2ndUIhwQiugWAvU8FvyMMb8HJ78xmeLkNyZTnPzGZEqdKu6h0JHaj65D5MKxwTSSOVFMS6VYony30+H3gpyNT0t5CRdhBe+EIQh5JO5dCY29tNDvew2ce7duHkhs84ebEivf+VOJFWsbEouIeOn7H0nsr/7hY4k9untDYnfg/thR+fRCMzkBJy2XJ6M4uAR+8xuTKU5+YzLFyW9Mpjj5jcmUOlXcqysYLgA9xS4zcji1h19qKWPqaGL6PvosCTQvYpjGsmAPv8S1joiYLFRwokEZM+i5R+uzAo/v6kDdfJvfVYGt/MH3NfbWD/S8K9oTMCIiRlrSu/HZfYm98fd6f7srUMYMfQtpyEbqKG8S/MjlGsFi8zJuXL/5jckUJ78xmeLkNyZTnPzGZEpNQgCVf5K4h8MdIEYiSUTEoASBBwQMEuhmMFWVHFAkXk0ajU0b/WyqMBjx7HsXJguQqeIOxLqEVBpgcQyDLkYg+E3hmfZhAvLWzrnEqrduS6x88x097poe105VQIyIiIGWJ5fXdyV2a/RYYq/OVCz8FHoUnlR67tTp1/RMUz8bwf0a0YRqwc8Y8384+Y3JFCe/MZni5DcmU2oqoU116fVLdTbRcIetmt1X2zDMYVjodzagYJDjbAKxE5i0ejxXselweqbfB8Jg6lTjLpKn76Jqo+dOFQHJCdbVy5DcaVNy+MH1FCDurcB5VjZ1bYudHY2tb+sFUtk3CLYREQHThYsd/c6rb3wqsT96X6/ng0r37H6lvQxJfCYR9zLiHorAcFyVWE7sN78xmeLkNyZTnPzGZIqT35hM4aEdiWW+5OYbgSDyUsWC381S47utCoskkc1g4ukURLLjWgWVL2sV/O4U6vB6ND6SWJfgt4BzX6Zv3h+CrgEiqYNFetTrD+55HdastwFiI5TGknOvnasDsejrvouIKLeuS2zxymsSG9z6UGLXf6Gi3VatrkZyqpIYPi30+yivutafSn2xBB5kQNqLfvMbkylOfmMyxclvTKY4+Y3JlJoEg9QhGSR0bEPJ42ulxiIivj1XUeT6XMWKFSg9rRMHbxyDY/CDgQ6COO+p4+xopsLgBYhNER3uK9BtysR5ISQgkksr9flh/7cOYQlFKCq1JschfV/qkJSzUwm1+/c0BuIeCXsREUHxDS3pLYa6l+m6cQJyoku2D4Jm6kTd3x779M+fxEK/+Y3JFCe/MZni5DcmU5z8xmSKk9+YTEF7b6pVdViq1fFKqfX8txtVUiMiXp+p3fFqrY0iV4eqsA9XVZ0vK1VJz0601jpOtTHjRwO1Gn8CFs0uyPaLajo0R13GBkwqPlqQYWgSKdIRrGjPoWHqMfRK2Kv0+R/APrl4qGs7uPOZxMq57pHFVw80duMNiXXR3vlvvZ73TyR2t9Z9chZ6z0RdQMNb+HesgT1L/RQiOib+JP6zQ/8A+M1vTKY4+Y3JFCe/MZni5DcmU5IVLRIBqWb5CkxxeXXGdsWXelqrvbEBgt+GCn69EYgi5KcFNk9URFoHGzDdH00uiuie5PO8wcaMS7YRIMFoDJOPDht9fo9KFVh/09M9cfNzFdMW/6L9E3qrKs71t34lsfoqCLsR0U51n+z9XJ/ruwevSuynPRX3voJ7pmefWqd/GbGXhNhUcY/wm9+YTHHyG5MpTn5jMsXJb0ym1KkTZEiYqOC3Y73V2JVWxaKIiCtXtX57ZUvFuLIPogZoiM1Er3E6UXFnjL95+oWrMIllracOtoiIqlBRkuqyu6bkPAnV/afPdoHPguuva1rMJGBSUZk2qeigUsH2i1rr739Va4+H+3d1bWc0WvwSfRJOQf38NTR1vVMfS+zBTPfnGMaXp46Lpxi5+brq+bEnA+Ql5TR91m9+YzLFyW9Mpjj5jckUJ78xmVJXUGKa2pCwR00KQYDYGaorKiJi8zsgYMBI5dlDFVkmByrknR2pk2z/WIWlR7V+dtKqUEXNSIsBC6RnUIp8OtfYFEZJY6kmtsJMg8S9WaHnoBHkESw41TBJicTLY3DA3YUy77LWdRxVeo4xXPc5CGyzjiahJyA2P5irkLc305Lei4abtaZAAhsJfvTsuxx6JbkGqzQnoUd0G2N+h5PfmExx8huTKU5+YzKlJucela32oLy1qwfck6ysqNAREVHf3NEgCBOzhzo+m8S9x0fah+9BqEvvQZXW92wdylOpN1tExAr0Z6P1OQkVxFQWjGgXT18iTPdCwtKYH0v0wM03L/XzFEvlolYhbljoGpL4NQNBklx2ERGn0GfwKxD3Tmb6XGjNUsfXEySk0rOqO8rG6Tx0rAU/Y8zvxclvTKY4+Y3JFCe/MZmCJb3kJCKxgQSMM3CmnZxyf7WAoR0x1GOpwvHsHNx8LYiAPb3u0yJttHQPfhvbDsFvDj0AaUjDRamusRKcX8uMYyZwhHhH6Si1XKTS07JIc6zRwI8J9ARcgeEePVhv6idJ54hglyWJe+czFQZpf1MepIqAJMSRYNcl+A0rXR/aY7RmhN/8xmSKk9+YTHHyG5MpTn5jMqVOdR1RjJxWB6Ei0N2ZlsZGRNz++J7EejfUpTc/19+o85kKHUdQ3ngKP29U/pn6K9jVg69JHJ5An0eRLLG3Gz2XVKj/Wxd0L/PEHoV0HnKWNrV+Xx+EVIKGikREnMzTxD0qtcYJyCANU1l8WYFzttI9i30iIdZ1LLlQV2gADYiAfvMbkylOfmMyxclvTKY4+Y3JlJr6vaUKVVRGeQyC30cDFjBuvKeTWl95rJNajx9rD7jjVsUTGtAwKdIEsQoEKHKSjVuugz1rVESi2Bj6wqX29SNHXqrDL3U4y7KgMAj3Qv3s6oWKUgU8UxLiyDEYETGDte0aiiHnThyIQW6+lVrdeLv9kcSu9jYkNgKnY0TEEIS8EQzavhKaG9dgbf3mNyZTnPzGZIqT35hMcfIbkyk19kgDgWYGAs0EBiLsL7SE8lfggIqIOK3WJfbmJxobQD+7r6BU9wBGtY4T3Xw0gITW5gymtEZEHM3PJXY809jpTNeHRKnLDHNIIdW1GXE559/TQqIbiYAEXV/XxGESqrEsFxx5BDkT+5WKbuu1itTXQNy7WakIOOpwNdJ901TsG43G/gT2nd/8xmSKk9+YTHHyG5MpTn5jMgWVBRJPzufqVjsqVdAiUeoAjouI+AycTL8EoWS3UIcgCXQNlpMqFbi0eBCExs5hCEQEi3snUy0nJTffMs69ZSB3Z0Qs9UpIdRLSuafgDqV1IMGO3JgR3DePSnCLJdabel4OYW9vl0OJXYehMusLXsMxuFUncN8kfH8J5cB+8xuTKU5+YzLFyW9Mpjj5jckUJ78xmYITe8gSOW7UyluAwk111WSJjGBl+C6MAt+otQHoqNJ/BahJYQ2/bzTRhOymBwtV64/gniPYtjuZ61p0Tcl53uC/Bx3CPCnxPNnp6W3AZC2mtZmCtftF2I8jeM2wnh/+PaBJOjuF/gNAVtxRx3j2hzVZ2nWP7YXG7vahySiexRjzjcfJb0ymOPmNyRQnvzGZUpNYQYIPxS7mWttO1uDLCDR0PRMQG89rtdmugMiSajel6z6GaS9H0zP8/NdJ3Euly0JMYhw/Q7DJkpBH1lvYT4vEZquXERpTR5132YOfhGzlfRCpNyu18t6CEfJvw/SgtYr7GqxO9Tv3B3o9D1oVn78EW7rf/MZkipPfmExx8huTKU5+YzKlJvddC4JKqghI30ciXkSHGAPupjE4lkjIowaQJF6RuHcBk3RI0KRmmxFff3FvWUgkw6agINrhVCgS7RJL6i8zfSh1+hRB+7Yu1R06qlWIo8ac74x133379p7Eemu8l0af6fj604sdie3VKnw/alSo9pvfmExx8huTKU5+YzLFyW9MpvBoECC5lBHEBmq4GMFltCQOkUBHrr95ocfROUjII4ceTs3pUKVeRMPNrxu0FvT8yLlHLr3UkdiXeWORuEfiLJ27B+LeGjSYvd7blNh3F3rcn9++K7GNv1RhsOhzWr5y9UBi3/vJocQOmy2JfQWOQ7/5jckUJ78xmeLkNyZTnPzGZMr/Ary+C9TJA6b2AAAAAElFTkSuQmCC" y="-16848.164359"/>
</g>
<g id="matplotlib.axis_941">
<g id="xtick_1411"/>
<g id="xtick_1412"/>
<g id="xtick_1413"/>
</g>
<g id="matplotlib.axis_942">
<g id="ytick_2351"/>
<g id="ytick_2352"/>
<g id="ytick_2353"/>
<g id="ytick_2354"/>
<g id="ytick_2355"/>
</g>
</g>
<g id="axes_472">
<g id="patch_473">
<path d="M 434.924375 16970.564359
L 557.214375 16970.564359
L 557.214375 16848.274359
L 434.924375 16848.274359
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p5a491e12b1)">
<image height="122.4" id="image62a8c47484" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGxtJREFUeJztnVmPJNdxhaNyqaree3pWijPcxEWSDdqgbMA/xD/TD36xYcOwn2TYEiQblizTlDQih+TsW3dXL1Vdmx/kpzlfCtGs5pDDe77HQGblzbwZncDpExG9f77218t4gVE0L4bioK4ktl/3JPa8kp+Lg95cYhERT5ZnEnu4OJHY55OnErt3/Exix9OxxJZLXc/XQa+nzwKPi9xxy8it+2Xd3ypUPX136kpjC7iX7P11Pf8art2v9f3e6q9prNXYfLmQ2Gh6mjruUn9TYj9ce01if9HbllhExEdjzaN3dg4ktrEzkdjpqC8xfTLGmCJw8htTKE5+YwrFyW9MoTSv744kODoaSmx9NpBYDcLgAgStOYg7EREnUUts2NPfHFStxJpKzyUxLSucESQiZQW7rvOr5G+SYETi1yr3901C91zDs1n29P7w3I53jMS9YaPiF4l79N6dzlWkJmiNtPcoIPY0FhHx8UDv5fenlyV2NNZndr+a6XrwKsaY7zxOfmMKxclvTKE4+Y0plGZtcyrBulHBoXegIsJkqiLJUaWiRJdERlLVDASQ2VKdTS9DyMu69roggQeFSlrPQmOzhT4HFDlfAdcfQaIdPRty7a2BiBfBQt7ldktiG5Wef7LQ3MgKfrj3Pd17Ou6kQ/D7HOIHSxXyni7U6frk7FivjVcxxnzncfIbUyhOfmMKxclvTKE0v/lSHUJXBioYzBa5vxMqP0SMO8S5ERx9AGLF8UxLFM/mei6JgKuIe1k3Xue1s9ch0S65nsW3TNtbRSQlIW/QqMtuo1EH6rXBDv7m2+0ljYWKgFNwEn4yV/fr4VxLzmnd2X0mpiB6R0TM4R3bh7L45wstMd6fWfAzxvw/Tn5jCsXJb0yhOPmNKZTmb4YqIvx4pj3EdkCEOGn0b8cB9PDbRxkw4hmIewczFVROQPAjt1uWrGuMjutyz6V788H5YOb71nHRPQoJcj9S37u3h1cl9qOaBb8Pp+o4vT7T9/Fuo8c9AWHxPjgBm0rfYyrVnYJT9Xihgt2oVpEzImIA3+oWYn0oi6eYv/zGFIqT35hCcfIbUyhOfmMKpfn3yV0Jng10kMDboeJHC+LVAZQdngSLcxMoR5xAGeV0ocfRgAdiFQEKf69D+MqW0c4X7N76qtBAjEXkrtEpXr6Ekmc6d73VPpG3BnsS+7NqV2I/nvBa3uyps61u9L7H83WJXYUy4e1a3YGHVU6kPplr7MnsSGJd7+ylSnOwD/u/W+lzXLZ6z/7yG1MoTn5jCsXJb0yhOPmNKRQnvzGF0tw/fS7B27Uqn8NWrZd7MLGH6qLP02vzZajzVBefpfNciJMFOftfCroOKftNBVNg4D8K1G+gay3Z57PKXtEknZ1W37vv1WrvfW+m7yKp+hERu1ta275c6rpfV9E9PpxuSGy/Vev7YaPXoEafpzONkQ2YGtZGRMzg2nuV/veBpl7Rcf7yG1MoTn5jCsXJb0yhOPmNKZTmeKq1yI+nhxIbNSA2gOA3XOrfk2HH35gBCBMt1HQTZE29aLGQhC+q+4+IWCRVzawNuAfXGUIzS1oPiUhZobELWvcq16F1r4Mt9VpPLbbXZiqIbW2pdTYiYn1bRbZmqOvee1MFw+tPtIFnPLwhoaet2o0PoS/FZK7W9ZOprpueawQ/22mrz2IHbMADmhaEVzHGfOdx8htTKE5+YwrFyW9MoTTkQhvNYOLHQoWJmyDQtCC61R1CXFc8w3maa8q5tEYYD00NJbsEvwtvKJpcD8ZWEN26OIOeCpOZClhzOI7chdkR630QkNegP0Tb5+c/2Nb48G19b6ubOrlqbaSi3Ud/uy+xX8x15Pfva73GQejv0XOYwjSqiIhRD9yKcP641n0ZVioW+8tvTKE4+Y0pFCe/MYXi5DemUBoq/yTX38OZup0u98FJBH9PnsEY4Yj8OG5yNqFYBfphVkzrV+o2XIMGjiSwRXDDRnL99UCsojVSySsJleh0TI6HbuGeu6B7mYQKSyRA0Ts2BrFwNFdB66Cn4tcROEPnM/6OgTE16ltXJNa7cU1iy94jia1vPJbY5QN9J8itSHu66HDzEeT8o9JhOk49u/7yG1MsTn5jCsXJb0yhOPmNKZQGHUIgxtyfaK8/6jXWQOngCbgDIyJGUxV4SDij0lqa7pLte0dC3lajPc72Gu0ftwZOqYiIAxCrnk21MdwYBBqCRDsScrrKPzOcS2wC0Y5EQBJnsy62J2OVpT7uq6PuykAFu50D3auIiL1DddX1T1RoXt69L7HZ71XcO9jX61DLw3V4TwYQm9f5PcAx8iDkkhuTYv7yG1MoTn5jCsXJb0yhOPmNKRS0eFF56v5Ee5yRE5AEiC5RKutOI2fUoM4JKtsg5F1ttQTztUoHNLwRKiq+0eEkg9kZ8dm63vdnoc/sOQiihxDbn8EewNhnHGlOzruOfZnC/lP/udmchpLAwJCkCDg6U9H046MvJXa2ofc3Hl6XWETEyX/ruPm3PlW3alXpvuwfaW++T2H4xajVe17r6bu42agjFh2RHfuSLcGegJhK5df+8htTKE5+YwrFyW9MoTj5jSmUhkpUyRVHDi8SfLK92bquQ+IeCR1Ugkvi3mvtjsTeq7XO872Z/t77UxVJ3r2urq+IiJ3vq3Nv8lhVwI9/e1Vivxhcktinrf7e3VoFowdQak09GKn0c7LU+4tgwTcby/ZRzF53f6wi550K9kC3PiIi7g9VtLs+1/0fzHWvpgO9lxMoMR4twT1HrlQo8yWH32TB+0LuSXLZ2uFnjPmjOPmNKRQnvzGF4uQ3plAaKo3NuvSyItCqZCe/ksNvDyaW3lqouPfOVAWR17dUTCNhLyJi8NEtjTUqpv75zz6T2MZP9yR2qaeOw/UW/laDR5McfiQidYlz2T585xF3M2QnAZOz9H6lJecREacL3a878E60Sfcc5UYLZezkqGzgGtRbset9p30dg/OS3HwkzvvLb0yhOPmNKRQnvzGF4uQ3plAaKo2lstqsm2seeWEoK/DQ+SS89GGYwzbELsEQ1K2eiiT9gR7YqzsmC7cwZOOyCnmDj/Q5vtf7QtfzSy3V3TxWJ+BRX61tDyoVKrOCbQSX9OK+rODmy0LXOIOSVeoHGcHrPoLyXXKRkkuvhu8lCc2UQ9S/8RDcmNTHMoIFP9orEvfoOfjLb0yhOPmNKRQnvzGF4uQ3plCwhx+5jkhgI1GD6HIsUd877PeWFJZQtIF1T+G6p0t9FONTFXKmz1mMaZ/qcIkY6HCQ3i6Uk/7lWxK7dfOJxDb/9YHEnjzSHnW/g9LReyD4kFgUke/N9zIgsZeESnK1dTGrcpOSMQ9IBIT3jt55clmOZyoCnmdfskIsPUd/+Y0pFCe/MYXi5DemUJz8xhSKk9+YQmlILcRGgVnLJ6iKXWo96cd0bboOWR0P5jqO+QtQvqtmXWKHYNF8cqrNH9/5WBX8iIg3zrSefOMDXU9187LGrqgNuF5X2+7O0W2JffB3qiDvDfRcGp3eZe+96MacF032HYnI3wup+HRcdgQ59T/AEevJ47rWs0pPBX/5jSkUJ78xheLkN6ZQnPzGFEpDtkgSP1B0g7rqczV6hDDW+MNvUs3zoziQGE2qeQYjur+oVQS83Fex8HbocRERH/5Gm0J+8EhFwKs/uiex/vtgGa5hatJzvZcZNpTUc8mCmrVnf9ugOvsuSKDroUCXa0abfb9RGFxRsMuKrmhVRuu7MaZInPzGFIqT35hCcfIbUyjNBCZ+ECRgUI131j3VBQkg2YaSNL2E6qVJBHze6CjoB7U65R43mxKLiBgNNX4wUjffD3+m17n+pfYCqGp9Dg/v6rjx3/a1D8HxUq9x0dN1vg7oPaE+EquCjrxkg9OLnly0qnOSnllTqZuzrfU98ZffmEJx8htTKE5+YwrFyW9MoTTZkdqrCBOd54KWQ4LKovfVr42/B+uhEuHTWoXBkwU38DxtVWw8ACfh3aWO3v7eXY21cMuPG31g/wtrfA7Ta3hiC4tpWeFtlXcie42vw4WYdd9ly3eJtFC54u2Rc48EP25ua4wpEie/MYXi5DemUJz8xhQKTux5Wf3a8DrJKT5ZZtAO7RRcfySIkfvxeKbjnSMiRjBq+XGjo7J/16i4t9eok3AdRotPoevh07muZzTPCX5dUMnsgrYq2fduFXEvW75Lwm4XWLKePD+7bhLYiGw5cAQ/2/OUN8u5X/lMY8wrjZPfmEJx8htTKE5+YwoFBb9vkosWGxcgkpEISOXJZ0nRJiJidKYi2/P6SGIPGh36sV5rr8DNRnsCkohEDs3juboQz6Df4uIcpahZx1rWkXfRIlmX8y7rYO0S2V6krsApB+tuwWWX7Y1Jo7gjIubwLuMAk6R46S+/MYXi5DemUJz8xhSKk9+YQkHBL+vcelUhcY8cbBE5sagLGohyMlUxblSrWHhQ69Rg7sOme3UG5ckk+J3HFUdCF4GlvxfcPzBbkrsqWWciiXvZ57Vc5suYaa9xyi8Ig0t4wf3lN6ZQnPzGFIqT35hCcfIbUyjfOodflpcxYXZVEQnLNecg0IBoQxOQqTdbllVFMhK6SNTKisUva9rtKpNt8SfhMHRKJsXU85RaZ6F7nmEPR2NMkTj5jSkUJ78xheLkN6ZQ0oLfN+n6S5eJrjAB4ZucYovTjsGRReWpF90Lrwt0u0GM3G7EvAfCJzyHrIOtc/suuCckTpEGcTbLed7ZrOjqkl5jzB/FyW9MoTj5jSkUJ78xhZIW/F7Vkt5XtTw5u0YSoHii7jlKR5PiIIl7Q+hR2Pb0OHLFkaBJpchUstzZ947E1OykXRxektyXFZyFXb0Msy7E7HH+8htTKE5+YwrFyW9MoTj5jSkUJ78xhdK8Csr3KnzX749YffS5fhOaSn9gAE1Gt2Dc+AZMJKIpN7OlKvYnMH3oCMakj2HsegT/tyA7xSfbjDT9H4Dsf2Y6/huRtQLTf2vmNN479WvGmO8cTn5jCsXJb0yhOPmNKZRXooEnCVNo2/0Ga/K/7WSfYRd9mBa01aq4d7W/LbGdSseND3v6e2cg+B3WKvg9q3T0+WHvRGIRESe93LhysgGjkEc2WXiMJLARtC/d1fi5Ov2sAOkvvzGF4uQ3plCc/MYUipPfmEJ5JQQ/YhUBK9008Rw9L7/tTsLsuOkIFvc2WhXtrvV3JPZGo7FrPXX4rS+h8WRPn+F+peLcg1rX8qhWETAiYn92LLGsQ3A81xHrOGnoghuCdunWWRExex1/+Y0pFCe/MYXi5DemUJz8xhTKSoLfyxiTHZEX6LLroZLH7DW6XITZkdMvQxjMintdI7+pVHev3ZTYzUbdfO+Fuv5uTvUbcwlGlbfwaE4rbQj6oFEB8cu+ri8i4n6rDr97cxUH706eSWz/TMXCUxAGaew6sUpT1oiLb0brL78xheLkN6ZQnPzGFIqT35hCQcEvKxitIrB1kR1DjGOo4VyaDJPlPL9Xwchp6hW3gLLMi3YrZqfAkJMvImLQqOA3rFV4u9zT2C0Q996dqeh2ZUNLcDe39bh2qM9wNtFrPH+6IbGIiDsTjf9iqKLkT4cqft6GfaE97ZoWdNFctFjsL78xheLkN6ZQnPzGFIqT35hCWcnhR0IeDWPoEvxIhCJxr610mV1i1Ytkxz4TKDR2OAHpOuQGm85zAzWyQl7WrYgi7jmEWBqoMQMBag1i230V8vZuqOC3/g64EN+6KrHe7pbErkx4aMdbH9+V2I1/0bLj0/aSxA77WvpLQ0TGMy39Jb4OR6wdfsaYc+PkN6ZQnPzGFIqT35hCaV5GWW5X6SiJdmvgJCN3GR1HAuLpXIUgEm1oaEMfhMamx/dytlARkcQ4LRLNT42l+1vFZdklFk1BED2YqkD3uFVBbL/SctvZHNZd6bXrXXXeVW+/oee++6ca274isYiI6sNPJPaD/j9I7K/+Xq/9GfQofFQfSKxrYEiGdD/J7h8QsiKgv/zGFIqT35hCcfIbUyhOfmMKpVlFcKBpoDSxlISqCBbtLkEvtkuNlmVuQjkpCn6Nuq9GIPhR37QN6B/XdS/0m086hM4Xwb5w+GxzpboElSKTyNm1HnJu3p+NJPZpX/fqMpTVDr5QkXNw9VBi9Q9OJUbiXn3zhxKLiJgP9NrN+7+S2M1/UCFvCyYJU77QXr0KE6P95TemUJz8xhSKk9+YQnHyG1MoKzn8uKRXY13lt7utijE3WnVV3ajWJbYDYkwLYgwV705rGBgBfwfbpf7eSY/deI96ORFxSn39kr3iaK9aEBXpuPOUNtMAEppi+3Sqgt8nte5p3dfhHuOZ7nP8h4bevvxbiTWv39IDoeQ4ImJx52OJnf38M4l9Eq9L7MHiucTIHbroEE4vmosWEf3lN6ZQnPzGFIqT35hCcfIbUyhN1iFGUI87mvC60Qzx/F1w7l2u9Njdnv7mzlKvvQEC3cZCY7sLFU4GEDus9Rp3GhZID3sqng0rGn6hsXGyHyE9byo7zkLiY0ReqBxN1X13t97XH9RbjhOY+jsBEXD+j+r6e/tQS3Kb136iF4mI0//R8//tlyru/dNQ7+X2ySOJjc70OBJIiVUnQeOx7uFnjDkvTn5jCsXJb0yhOPmNKRQnvzGF0pCCTGStpeutNnDcadWeGxGxCfXyZLMl9ZN06hrU1D2YkPPmUhXbplLF9ou5rrvpUPvnsMYJNPWkGnocqQ37Qo1Qu5qjvgip9TSCPIJVaVKVT6ZqdX1cqbpOvQTGS2gSCtbge6H/FXj/JzqxZ2vOivvDZldiPx/qun89eSixJ2O9F2puStC+4HOFZ0N27z/EL9ZG7C+/MYXi5DemUJz8xhSKk9+YQsF6fhKCsqOz12sV/LZrnYYSEbEBtl2qySdI+oAhMLEO1suNYW6kcqW6UEw6rJejBUwGWugP0GSfrD0U9yVpz6b96xJ7a7BOkwiFll+wv5JYSJOUntZHErsD786vGo1ttyoeR0ScwZvy+UybdT6aaCzbWLUFe/aw0Xeb9ooE4K4+CxRfwP15Yo8x5o/i5DemUJz8xhSKk9+YQsF6fmrCSe6kbH35Ogh7ERGb0IRzCCOw+yBADWA9fdA5hiCINI3GJmd63TE8hxHU7UdEHIK4R80eJ3MVG8m5ha4/2KvsGPGsa68LEpuoKehkpvdH16HncFjBGHBwDD4AUXkLRMAu9qc6KP1kBg1YYd0DEPI2W+1BsdXqemhfJguYKAV9EiI6RFdwsGb7AfjLb0yhOPmNKRQnvzGF4uQ3plDSDTxJBMTjQFgagNARweIeCXkYA01jDWIDdEDpceOpCmdHtV73AEpRIyKOFmOJkYutayz2i9C+UJnoFjjgNmsVoI5rsCt2QEIewaWnGiOxkJ4D3TMJn+NKn+vxTJ9/12+OQWwkt2JT6/Nea9RJuAtjya+2OqVoDRq60mj3rkaf5AQlUXIKzWjpOH/5jSkUJ78xheLkN6ZQnPzGFEqTFfJIeCERYQyOpXHH+OQ5nE9iB/2FysZ6JEBNVcg5XqoYcwQ/OMbugSzukYuNxLSs0EVuvm0Q967U2nvwENyU5KiLYCEvKzYRy16uT92i4z15ERIQScSLYAGaegrSvdBoeZpItQa9KHdg8hRNo9ruqVuxy6E3g+dDwulylhv57i+/MYXi5DemUJz8xhSKk9+YQsH5zllxjwQIclo9nGlZZkTERgt9zioQIJcq0LWwRpJ8zgJKdcnNR+WWIFSRSPmHuAovJLKQk2wB10FnG4haJyCwHvc0dkQlx1DGGtHRZ3CFgRHZ0dQElTuTWJh1JXZB7kl0WcJ7UlGpNRy3B6XtFKvb/DAVWs/BmZYsH8OAFX/5jSkUJ78xheLkN6ZQnPzGFEqDQg5oWl2TQ1+Efu/heB+PJQFj2upU1b2eOqjmIJQMwZH1dAHiHgiIT2r9O3jQUxFpDGJYBIufJO7N5hAD1yAJWBiD6z6C0tEprLurVxytMUt2OAgJmtnhJSQ+Z/vWRazWz5BEwJZK0yF2ZaGx7811Ld/v6WTiiIj7MO36U8iXOwMdQHJ3/Exi/vIbUyhOfmMKxclvTKE4+Y0plGYMQxZWgUqEu8TCxz0VJki4OYIS1f1KSyEPoDzy4UAFv95S13jc05LcewsVxO7BhNcIdsuhuJd0omUFP9q/FtxqBJW2RrAYR6WxPRC/cJALCLEkup0FTKGdf3URsBMykcKzyIrcJPjtgiD9J2O9lw92VAyvYahMRMTxkb7fn0+0f+B/DjVffr6uvR795TemUJz8xhSKk9+YQnHyG1MozRT6oREkAhHZfnQR3PeOJqjSJNMnNM0X+tRRySMxWcK01JkKfl2uuKOpljJjf7Vk/zhiCcMYKigHJkgEJBEvIqKCYxfJ7wRdp4XegwSWRa9QDtwFPW9yF1JpMzkq6Z2/Dj0h391Uce/GR/re9Ib8zs6e6vkbt1Vonj+7LLGjgQ4R8ZffmEJx8htTKE5+YwrFyW9MoTTUI41YpQ9bb8HnkmONREASXrLwFNOvXkLb1csuW466CrQHJDZlS2izA1siAjohdhyXnPp8nhLcDF2iclpMhfWQQ5MGsUzg/VzU+ntNA4MzdtW119vQWEREfabnt32NbcEk6TcXWhbvL78xheLkN6ZQnPzGFIqT35hCcfIbUyg532Wwapqe7NNRwz4GEZ9U86y1GG2boM7TNbITaboUchwtjs8HYqA00z1TDBtm0n8Akip813qyte08ZjvXw4D2IHvPnf9todp9agCafHdwPPhC/0P1DJq/3t/fktjlLx5KrL3Oz2t2AP99ONX/DFSwf9dmei/+8htTKE5+YwrFyW9MoTj5jSmUtOBHZCendFmDp/OvPmo52yh0lekuuO5zWGKzZAVNuuesbfc8Il5WJCWywjBB6+ZY1mzM617FWkznnoGd9ulSRcBft9psc+u/Lkns2msjvPZ8qhbd45OcbXcLnoO//MYUipPfmEJx8htTKE5+YwplJcEvS1dNNQovSS1msYLrLw1cotvp9tXrxlcRyejcVcapR3AdOzYjTV4HXXrU6DXpVsxe4w+oGEeNULNk+1qMwPV3u1E3XjNT199bnw/xN7cr7SVAW1BDU9d1ECX95TemUJz8xhSKk9+YQnHyG1MoL0Xw+zpYSch7SdddyUmWFPIolhXnulx7dH620StCjwF0M5ogRIIfllV3LG+O59NzBAccXIfGjdOkqDnc9GNw/VEGHlU67Sci4tZUnY17IOQNoZy4X8G0J7yKMeY7j5PfmEJx8htTKE5+Ywrl/wDx5iUQLXxnZwAAAABJRU5ErkJggg==" y="-16848.164359"/>
</g>
<g id="matplotlib.axis_943">
<g id="xtick_1414"/>
<g id="xtick_1415"/>
<g id="xtick_1416"/>
</g>
<g id="matplotlib.axis_944">
<g id="ytick_2356"/>
<g id="ytick_2357"/>
<g id="ytick_2358"/>
<g id="ytick_2359"/>
<g id="ytick_2360"/>
</g>
</g>
<g id="axes_473">
<g id="patch_474">
<path d="M 29.174375 17116.985547
L 151.464375 17116.985547
L 151.464375 16989.692019
L 29.174375 16989.692019
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_945">
<g id="xtick_1417"/>
<g id="xtick_1418"/>
<g id="xtick_1419"/>
</g>
<g id="matplotlib.axis_946">
<g id="ytick_2361"/>
<g id="ytick_2362"/>
<g id="ytick_2363"/>
<g id="ytick_2364"/>
<g id="ytick_2365"/>
<g id="text_119">
<!-- 645 1839-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 17100.378783)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-52"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_474">
<g id="patch_475">
<path d="M 164.424375 17114.483783
L 286.714375 17114.483783
L 286.714375 16992.193783
L 164.424375 16992.193783
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p16e3498409)">
<image height="122.4" id="image72c485aeee" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHD9JREFUeJztncmOLFlShs2HGHO+mTVAC2gJBEIgMapZsWXBFngBHoodL8WmWVTTDV2tumPlzYw5wj2cRTUs0r7Tsqio3lz7v6VlhPvx427h0p+/mVUPV3882AvaunkZsqqqXIyozX9u2ozxs9ftzMWuGh9rqtrFlv3WxT4cFi626fd47peM69bF2srvA63FzKwbehfb9YdQrIZjvppcutj96MrFLmq/t63547VwjgbulZlZVYi/hO41fXMC+ziFNY5gjaPgWpaw/2Zm3xzXLvb68ORi7/bPLva88989HP15Zq2/Bw/Taxf70eSVi9HT9MvdtxA12x39szNvJi5221642HUzDZ1bCJEAJb8QSVHyC5EUJb8QSWn74eijECJRqiYRMCgMlujp5E6SZAFyVhAW3TngmknkwusrQN+PiqQDXOBxiMUIEuJIBCwJfnTdUXGPjjmBc09BBKQ3UQd708E+0B6amc0qL+SSqLxtY+LsYe8Fv03nReX3Wy8g7o+di02bkYuVruWy9aIdiXs3tf/cTe2FQb35hUiKkl+IpCj5hUiKkl+IpLTkWIr+JNQg2pDIVRLOjiBsoAAJXx/BuUnImdReUCHXH573t0BUBCRxaD/4WD/466vBrUhCHDnqzFjcI+hTo6Bzj858gOdhAde8htgpXIIrct/OXYyek13nRcB9D/cK7t+627kYOUZJ2DMzu4bn+w5i15W/vguLCaxCiAQo+YVIipJfiKQo+YVIStsfvdCFbq76+5d5lhjAqUXCG4kiY3BujerYb9mq9kLO5uhjJNpQ6a6ZWR8z36ETkBxddJ4trHELguZ48HszBoH0t0HUrbglcc/8fr/tVy72DOXcVJJtxm43Eoup5HUNJeer1p+bhOsRlMVTjFypd+DaMzO7g2u5JXEPcmM+xERXIUQClPxCJEXJL0RSlPxCJKU9gsDWD16UauB3AstOg4KPGZfvUgy/D7oila1S/7gWhEG6vpV5RxZVHJuZ9ZX/A/UArBu/8Ki7cAslphsQL6cg+JDgVxVEymgpM4m7dMiDgXgJgiaJe+8OvjR23fv7UhL8DKq872ov5I3BAUf98SZUggvPJ/XBnLf+eDNwG84rfw4zFvdu4bMk7k2oZB3PIoT45FHyC5EUJb8QSVHyC5GUgkri4Z5yJBbGYmY8AIGEtwYEug5EjR5ErQOcm0QpErnIWUjusO8O4EMk+BG0P6U+bi8hF+Kq8iIgOQt7EAZ/fXIH7U90uAddy0dw6b2FYRof914EpN56JMSZsRDYtNBTsCQYBo43NP76aD0k7k3BoVl6xsbwkF1CHsxBsKfhJ3rzC5EUJb8QSVHyC5EUJb8QSVHyC5EUlDhJ2ScLI32O+gN0FdfA16BK7iFWstRGiNax07XQfx5qUGfNzNrBn4eszlGi/0khDmCd3QxeIe9PWB/dfwL/qwDr/th5FX/Z+f8A4NQcajpbYHHYuBitkVR8+k8KPSek7JM1+AJ6BkxK/3EBqMEpPRETyKEp/QcnfGYhxCeFkl+IpCj5hUiKkl+IpLRcax+r8a8g1kJd9CmQOET14MdjsJcANbik5p/YJDR+LWRhZWtxbN1RmzT1P+C1+D0sCYgUp4aitG6yRJPARuuJioqnNIml81A/AJrOQ9dMa5yBkHcJsTk+i/FJOge411voI3GEezCBW603vxBJUfILkRQlvxBJUfILkRRs4Em/CeTcoyaFeJKCcBatdyfhBcUYmpwC5xjDui+gESKJgKVmpB2IMStw1W3RNQaiTVAYjIpkHYimJcjZFh1rToLfFBxw1B+AnHJ0zR31gSiMGy/2X3h5THrGgueJ9oIorfElJR/nHv6yhHV/oPM0mtgjhPg1Sn4hkqLkFyIpSn4hktKSYITNI8FURUJHdDRxKU4i0j5YwolluSB+vIJRx19WvgSzAQfjuua1PA9eJKOpNOTI28N3oyIgllrT/cMQi4U0GWh39DESxCp4Jug8NJqaymCp1DZa2mwWF9lI5KQpTASVGG9hvwhym55SCP4R8nILz9i3JFSecB4hxCeEkl+IpCj5hUiKkl+IpIQbiJGQQ6Wa5PorOfno+zwZyMeirqoZOPd+F8S9PznEtuINTHsxM+tApvkWPkclpuQuOwcS2LBUuiCkHkD8InEPHX7kDg2WJ+O4ahABiZIISMIpljeDuEelw+g4DJYN0+cmUOZbEhp7ED+xX2OwrFpvfiGSouQXIilKfiGSouQXIiktCnkQQ4ENRmefUsoY7cVG5yYRkQSj+2bmYn/YeeHkz/q1iy0GL8ZsSkM7muC1kEiKfdxi9wXFQtCLThEa6bMkupKIFHXU4Xj2yguNNYygZldcqdT6jP6IZwxOof0Kl6bXfC10jdQDcBe0COrNL0RSlPxCJEXJL0RSlPxCJKWtgwIdxaJuvlIfNRKwfLGt2RGMiCTufdFeudif2oWL/V317L/744WLffXzexc7gGPQzGyPAzo8UUGMRC3Cz7U125sXzkgsKvX/i/YFjAq+0cm91CeQhEEqBS/2VgRBjY5JJcuH3u8jgdOq69jgE9oH2i8zzpcoHZxHb34hkqLkFyIpSn4hkqLkFyIpLYl2JORMWi90UR+2KTjgqGzRjEWtBoYLTOFzn9feufcXRx/7x+l7F/vRP126WPcLv77tz/3ePBXKLdcwFOMcpxy5Grks14tS1I+ORC7s9WcsLDXUr5GcidHBFDgJGFxxsK/7Y/ydFS1vpqE0p/QKdOeFKdJ0LSSulkrgqZ9hFLoWvfmFSIqSX4ikKPmFSIqSX4ikoIJA5aTo8CM3H4gSJbfabeP9fA+Vj/3YfB+3v9l68eQnf/0/Ljb/139wsfqP/tLFhn//Nxdbw/UtC4LfFgQ1mtxbKj19CYmFJOTRcAhyq5GwVCqpbuAeRl2fJF5yKWtMiBuCZd8l91u07JhE7sH8/cd9hONFHZV0T9vCwI/REdZTgYAcFIv15hciKUp+IZKi5BciKUp+IZKCU3qjkKhBzi1yq5mZjUFQ+cK8a/CvQNz72z//xsXm//wTF2v//l9crGpg+MHEuxDrE/amx70ITtAl0AH3/Qd+sGuPf/tZyI2Vb9PztAWNFN1uQXGP9rAtvMfIFRcVrw/QU5CEs+j0ZCzpBWfhpvOlzWaF0ugGBqfA9eHgGzyLEOKTR8kvRFKU/EIkRckvRFKU/EIkBSf2ENik8AeecmLGfuMp2GRHd7DusbcBD0s/KHsA5bqa+e/emrdZXg7+vxFmZmP4HR2B6nqACTQE/icl+p8C4JTpOlE1nPo0UI3/6BhT3MmWTKPB6Zkt1brftHMXu4Cx32STfur8FCccvQ1rPNB/BYI5RBOXzMy20OCUnpOo7VpvfiGSouQXIilKfiGSouQXIikt2TaptpksulH7akmo6kHZ2MFnt/Ab1a9AFVn4STzH1z/zn5v4Rp/VhY89XPrmn5/vaaaQ2VuYILSHqS1Y7077AHXeZBktTaqJUJoMQ4IR9WS4qL1wNoPPXcLn1rBfy97PHyIhjkSuKxjFbmb2B6M7F3tV+XM/1l5Mo32gcy8Hv26s5w/agCkvzOLiJ62bejfozS9EUpT8QiRFyS9EUpT8QiSlHUNtO4kIFAtPQyk4/KgGfgcNCZcgSnZrWM/WCy/V4oM/8cYLUAbXd3Hl3Vz3b1hgezX2brctNPtsan+e5eDFpi24C6mpJ03sof2OjgY3Y5cejUS/gtgFjDAnWXEOwuAYzrs6cm37S1413slnZvZ7MNnpARphXsN6+oZ6E/j7QqPFf2hxtgT1A4g29dSbX4ikKPmFSIqSX4ikKPmFSEq4pBedSMEmkyRUfReHkdPgbtpCueZ+6WPDt08+9s3XeO6XHN/40t/dxp+jK2wXlyL739Y9iFobKPOlvcXR27C3dK9Q8Cnc+ykIeTRd6RqccnTNDUh+c9iHKYjPCxAQifuanZd3A4h7A7hVQRC9JScgOAmfa1/6u4K1RJvllu4LwaI7nAdCevMLkRQlvxBJUfILkRQlvxBJCU/soTLDCoSTA/UzA6HKjMUqEitoYPHzoxd4rv7zrYu1Cy/GWA9TUn7qJZrXHz9zsacxizE7HMftOaXk2R8vWBIKYmEL05FKo9Ovg+LeHI7Zglg1IREQnh0SAWfg7sSS3sK1gNkNnyeiBaGS+jJSf0MSWKP32R+tfEwi+kzozS9EUpT8QiRFyS9EUpT8QiSlJYGOyj+bqNhAjqPSFAKA3E3kqnu78iWc7X/480y/8mW+h72XVN4/3rvY1zDc4WPNog2V7+6wvDnW242IluWS4EM93OZwfWZmt9Bzj0peR/DuoBXOwcE4B8Gvx8En/nObE56nNYmksEjqHXnOkBSCym8JuldmhWEcJ7gB/XmEEClR8guRFCW/EElR8guRFHT4UQ8wgoSJ0iAI/D6IFVQS2sMh30DZ6eLp1q/HV/naAc771PjzPoLVal0Qmw4odJJbEcqYg1OMWYil/QKHHzjlLmAPzcyuoEB5FnTpYfkufO6SBD947HYwQGYTFFfNCoJYcFIyufnG4L+jnofRPDiiKMzfpR6AbVAErHGQhxAiJUp+IZKi5BciKUp+IZLSUqkfleoS5IAit1ppWAFP+fVsSPBraY1eeCGxkM5Bw0K2NDEYxCYzdu7R/kSHmkRdkThgJSjEls5AQiV9lrrrnfM2oTtKx6O93peuBh49enRG8MyPYEVTcjpCj8n4pGu/lhJ0TBq6E3WC6s0vRFKU/EIkRckvRFKU/EIkBRufYQ+wYDkiURIgNoPvprYYfL+/R+yb5o/3/VfIDj0SAcmh9925v3/55znTjtGhCcejYSo0cdbMbFn7ezAFFxsNuqjR1Qi9HuG7I9jC6D2l+2dm1hkMjIGP4vXB8cj1N6299BktvyUhtpQvk8afh8qyJfgJIX4jSn4hkqLkFyIpSn4hkoKCX9iZBsMvThEG1/3OxRaNF6Gm4GyKDoLgUQ4eEvfINYYTUAtQees5ffio3yI6NIPlpCUXYQdxKpllh2eMLezD/Ix3EbkSzQrPMsT2wX2knZ3BJOEJiICl3nwvofJrM7NZ40uwLwp9GF9C+6A3vxBJUfILkRQlvxBJUfILkRQlvxBJiYrhqCqHP8cTum0z2vsY2Hv3g1dOaRQ0quvBOvYh2FizpCrT9JoZ9Bfo4L8Ky+CIZ4I+R9OVaIx0U/jtJ5Ubx4OTbTfahwC2MXrN9B+XrvB8orJPfRqCzw4xhr29bP2Y88d66WL0H5yS2j+GvgHUmBMnQOEUJyFESpT8QiRFyS9EUpT8QiSljYosZDctNeZ8CU2QMTPbH724twXBbwci0hh+t7zEwk0YiTWKV/GxzQ3ExyDGzAYv5kTtoST40MQXtHLCfS6NBt9D7f8BR3R7SPgkaD0kFnbwjK2gRn9HdfvGQmDUgswNRWGEPKybbNwk5FFTzhIkph8gh6L2fL35hUiKkl+IpCj5hUiKkl+IpLTRGuMjfOzcX44O3E3Px62L0SjpFtaNzRVprHHwmqmevzhOmw4JyhI5zmjdc7jmQ+PFnagIRJ+jfgpmZk/gWCOBrql8LfkNCoMxl+UWohsQ8tYgCq8LzUhLjsyXRJ9lWjc1R6VnewSCH8VKQuy68/drD81WSYinY+rNL0RSlPxCJEXJL0RSlPxCJCXs8KtJg6AJJCgM8W8MOZFWvRf83oMAdajBhQaL7ME9RwIUTQpawUShkuBH7jRyIdI20jGprJbKckkwIsGPBKhN5UuqzcwqmGuO62n89V3AGi/A1UhC3A4exagbryTskRhHRMuYyTFI56DmqJQb5PorNWDd9iBqQqwkGL5Eb34hkqLkFyIpSn4hkqLkFyIpLZXq4ihhiJHrC4WhQk8ychdST7MliIDkYqLSyhUIftS7bg3iHvUTPOXX8gDuNBb8wCEWjEV7K5K4SnttZrar/F6sKu8um0KJ8WIAh19wShH15iPpK9qr0azYPtKfG54desboc9Hv0vNOuUE5acb3moRcOjeJ7nrzC5EUJb8QSVHyC5EUJb8QSWmx31twoEJU3CMXmhkPHCBIACGRhXrPRSmW6r6AXHZmLEwR0XWvj959t4WyVRzRHRxoUgKFJVgjrXsFIimVUNOzQy5JKqsmYTfqajNj8TNaBhuFxHB63usTBsNE+2jSuSkv9eYXIilKfiGSouQXIilKfiGSEp7SywIGCEswhKDk8CMhkJxIFJtArzgafkETVEnQwvMG+wSasYBFwk1wzgkO4yABis5L11IqEyWin6V9JBFwGTweCXk7ON4OREUa9mLGg2FQ5D5hf15CjlEShqNDV0quzeiQHLp/lGt68wuRFCW/EElR8guRFCW/EElpS+67l5CIEO3/VyIqvBEkqMxABJxDrK9ivdlQ0CwIQyTF0DHp6wfszefXTaW/0Z/vUwQ/FHdx8Ia/6j2UMUfFNHJZbqDUmpyOu8LQDtwzgNaIk3bhXlEeTEB8RqcqiaYgUpqx4Bst6daUXiHE/6PkFyIpSn4hkqLkFyIpLQlLRNRdRqIG9RkzMxtAeCPGINrx1FG/HhqcQfRn9jgj2aUFIWgERwVTZGFgBPTw62OCT7TfohnvI4la5DiLllXTuen6ouJeSdiLCmIDidfB0vaJeXGP9nuo/ef24EwsCelRhx+KiP15/SiFEJ8QSn4hkqLkFyIpSn4hktJOGy9CkGBAAx7YcRTrM2ZmdoRmgfXgf4/ISUZrpP54BE3ppdgpDj8i+su6g8rqFlRAcsCRmEoi0hFuQVMQlqL9Gun+k/AWHSJBgh8dLyrilc5D68ZntAIHKjyf9EhERdNToOexD5aI03OiN78QSVHyC5EUJb8QSVHyC5EUJb8QSWmpueYRpGFSGrtjUHUtiJylUcTu3MGJL1GoCSep/VNQdi8HPu8M4uOgEruGn+BLuC/U4BKVfZCAz5k+U/o+KfG0HrrP0WlN9B+Acxtw8lP7/feHrdj0HzO/N/hftEJeRJu1RtGbX4ikKPmFSIqSX4ikKPmFSAoW80fFE7IrRkW80vfRUhuc4kOTU0jIm4OQdwOxz3r/3S86rht/VfmR2uOarKn+PM8Hb7H+xcjHDu3cxXZNrH6eauBLNlm0TgdjaNElaymNkcZGpjDV6cx3VlT8JIHtHKGSxFD6XAkS52kvwqO8w2cWQnxSKPmFSIqSX4ikKPmFSEpLIkv0JyEqApU4Z0oKjd4ew3en8Lmbo//c/dGv5RU0x3yodi5mZvZwu3ax+bUXAUkPXT+PXWz08crFlvUEYl4EpNHgz7DX6yNfSwdONJoigzFoFEljqEk4m7f++kjwO0VoJjcgiV/R6VFRMZx6S0TdfKWR9uFzB/tx6M0vRFKU/EIkRckvRFKU/EIkpZ01XmxC5xa41UhEiLq+zFhQGcMEoSlMOqHR23PzQgm5+egXbwnBrvXBvp/Ct82qJx8bT734NbvzTrtm5IW3+62/5i8P/l59GPnYvo4JsdujFyTNWMjb9P6zBxD3oqLWpI1NuSEHW7Qp53d/oEavMc5xAkYh8bLUJDZavlsVys5foje/EElR8guRFCW/EElR8guRlHYOrjFyJ6FrqAKHF5Qt7sE9Z8YCBq3npvYi223lha4bEAFb0GyeYBLLBsaF9zBR6FcNu6+eOu+0q9/67//+5aOLNRNwlzU+Ntn5492BoLmu/d6sa39fnuuti5mdJ2BFS7qjTk5yu9HnSuIcTskBE2q0bJwE6VnlxcsJVMuTeLns/T04pcyX3IrR+6c3vxBJUfILkRQlvxBJUfILkZSW3HPRAQ1ED4M8Ss4kEk9umpmLfQaC32fmRa1LEL86uJYlCH4fB++828E1P1EJtJlZ69f4sPPX8jubZxcbN16M2+78fVnXMKIZrm8EDi90RIIwaGa2Dro+SdyLlnSjsy3alxHuAbkDzQoDPmAfSSSb0vNZeUH6DsTnFtazgn6LH45e8Hvfr1zMzGzRb1xs2/vnlkqo6b7ozS9EUpT8QiRFyS9EUpT8QiQFila55JGcRCQMRvujmbHIcgEi1D2Iew8DOL/A5EWluiSSkbi3JytYwcC2gpLnBQhG6wWU4G79tbztvID4ZuL36z0495Y0OAOupVQ6OgERuAfHYfT+0+eioh0Jg2MQL2nyspnZGMq8Z/D9S4hdg3OPnjsa7jKHSddbEAZfg1D8MxC4zcz+u/Zi8ZvB15LTgJZOPfyEEP+Hkl+IpCj5hUiKkl+IpLQHKtUNThglYYFi1BPOjEsziRkIUzMQ3qAqFyUtEromJEDB58aF30uaBtyBWPW48K6/3dGf+6uxF6B+BeLet4PvrbeB+7eAz23hnpYggY6EwWbk94dEQHLznVOKSmW1Zlz6/QCffQX34B6EvDsY5HIJYtoIRM41rLyDfX0Gh6WZ2aL2z86q8f0fcSIzCLZ68wuRFCW/EElR8guRFCW/EElpo0LeFmI0yAHFBijzNWNBjcoZ34ALqgKxqYXj7UB4IcHvGhxexKTwe3kFzi9ySv7S/LW8Hftj/heU+b4bvLizgvu3gfLkFQzooHtqxiWh5LSjcvAj9K6LQs8D9bMjkbr0FrsAQe1zEPe+BO3zpvfnnpLrEyBx77H1532CPpFbKDk34xJqKoufN77smMR1vfmFSIqSX4ikKPmFSIqSX4iktCTQbUAcQnEP+odR6SA5vMzM9iAivdv7ssWfghD0rvFDMqhUk8S9EfT6m4Lj7BJEvGnBhTaCS/zQ+ODXoIe9r/zePoJoR448cmOW9vscSIwzuH/Uu46ce1TmS6XfFCORuiTDzeD9dgfOvQeYOHxhMQfkAkTOdyDuvYaa8/eVv3/UT9LMbBvso3nZQEkwmGn15hciKUp+IZKi5BciKUp+IZKi5BciKe0PreyTOluq0yZVet17C+ubvW9SuGr95y5gvPcYbI3UAPICary3EJuXehDAJa5BnV2BgryBfge0N9SkktY9h9h08Ne8KliaV0e/t9Gx0TRhh6zBOMob9pCOR7biaeG+kO36885fy0PjJ+e0UAO/6/yeHeC/R0+wHFL2qR/DoqD20385CHy+oTGu3vxCJEXJL0RSlPxCJEXJL0RS2nXnxR1quBkV986FjrkFAZIEqGXlRRsSh6jx5BJiCxBJpsG6fzOuq9/C3pLVlYTKEYyHpkkzV8E1vgexyczsDcQWIAKSaEfiXtQaHBX3LqEp561xA88HsPJ+Xvtrubv146+P8N3Dwt+XHVzfErrJLkCwi/ZjMDPbwzOPo7dxb+m+CCFSouQXIilKfiGSouQXIikt1YMTJOSQQEPONBIgflP8JThBqPNCCa1xXXlxh5oezmBKyg7qoucgApagBpnUP+EIgt8MzkNNGC/BzUeutvsjuANrdsVtYdw4jTUnsYmuhaDnpAUHIwmfV7A3N4XGoa96f567Ky/uXdyCq3Xpj3l8hmesBsEP2rduKAaCH4nCZpwHFKP7QvuoN78QSVHyC5EUJb8QSVHyC5GUlkYlY2kllC1GGy6WiLrB6JinNAp9yR5GXdPxzoWciVRCTevumth6aLT4FgSxOdy/L0EENDN7A9/fVNA8FAQscivShJ0jzjPykKhMk5lKjVWnsLeTqb+W0RWIymu/txuY9vMI5sKP5oXdBdx7mqREz4gZl/RG842EWL35hUiKkl+IpCj5hUiKkl+IpPwvGSS+gcUbYkAAAAAASUVORK5CYII=" y="-16992.083783"/>
</g>
<g id="matplotlib.axis_947">
<g id="xtick_1420"/>
<g id="xtick_1421"/>
<g id="xtick_1422"/>
</g>
<g id="matplotlib.axis_948">
<g id="ytick_2366"/>
<g id="ytick_2367"/>
<g id="ytick_2368"/>
<g id="ytick_2369"/>
<g id="ytick_2370"/>
</g>
</g>
<g id="axes_475">
<g id="patch_476">
<path d="M 299.674375 17116.985547
L 421.964375 17116.985547
L 421.964375 16989.692019
L 299.674375 16989.692019
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_949">
<g id="xtick_1423"/>
<g id="xtick_1424"/>
<g id="xtick_1425"/>
</g>
<g id="matplotlib.axis_950">
<g id="ytick_2371"/>
<g id="ytick_2372"/>
<g id="ytick_2373"/>
<g id="ytick_2374"/>
<g id="ytick_2375"/>
</g>
</g>
<g id="axes_476">
<g id="patch_477">
<path d="M 434.924375 17116.985547
L 557.214375 17116.985547
L 557.214375 16989.692019
L 434.924375 16989.692019
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_951">
<g id="xtick_1426"/>
<g id="xtick_1427"/>
<g id="xtick_1428"/>
</g>
<g id="matplotlib.axis_952">
<g id="ytick_2376"/>
<g id="ytick_2377"/>
<g id="ytick_2378"/>
<g id="ytick_2379"/>
<g id="ytick_2380"/>
</g>
</g>
<g id="axes_477">
<g id="patch_478">
<path d="M 29.174375 17258.403207
L 151.464375 17258.403207
L 151.464375 17136.113207
L 29.174375 17136.113207
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pdb885ec1c0)">
<image height="122.4" id="image983a4de98e" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPJeeVnk8Md8x7c86sKrKKg6SmGrQkWJKBhheGl4a9MLzqn+D/6E0Dht1o2N50i6bUFFusIos153TzzkNEeCG1Adf7BHAF7/i9z/JkjF/EuQG8+Z5zsi8+/Q9NvEeWvR+JyDLZLIqi1lgJsUL3jYioKj3Rze1QYn9oDiT2tKPHu8orPV6zldh1vZLYrNlIbF3vJLZpNBYR0c/1gi4Lve7LrC+xTpZLbNHovZSh6/Xzuiexfzd+J7GH/17Pmz84k1hERP3da4m9/a9631++1f1fdAqJTXJ9/jN4n1aZvjvr0O1obe7g+UXwc60aPU9F56l133ml786q0nesgeOVma7NqNTnclGOJRYR8STX9+kvGn3+P97ouZ/kC4npW2eMSQInvzGJ4uQ3JlGc/MYkSnn2wVyjIPgRDQh2oKVEU7cccKUCSA6bFo0KGINGf7f6EOvAzZDAVjS0nV4fxSIiDvKuxA4zjY1gfz63xoZwfw+3uuBHj1SUyh89llh2ciKxiIhspu/E8PiNxEZvVQTsNLw+70MCG4l7KxD3aN9ey3NpQoXYbeiarUDILeDbmO2bHEAOz5SOl7eco4A4X4+uz67We/GX35hEcfIbkyhOfmMSxclvTKKUg49AcBiqSNLUKiI0GxVjmhW4p5a6XUREdq3H7Ex02/5KtxuDsLgDIW+b6b2gkyyja1QRqE3w6ZKQRwINiHs92I7EvXMQWJ/kKs71PlahMTs9lVgMBhqLiKyn+5dDXbMBOCq7IM7Co4olOPzmILqtYW/yi7bJcPRciC18B0mgIzGOtqMrIodfNyshxtdcwHkqWO8FqObTSvPAX35jEsXJb0yiOPmNSRQnvzGJUpKlLr/QksJspKW2RLPWMshyAi7CiMjKqcSG97r/yVpLJsudCh2H4GLqlCqeLAoVWaYgsmzAXUalmm3bzjMVsHogSvYavZ4jEAYvKhW/To6WEivOtPQzelr6GTsWYpu5HnM31+te17pmy45e9wIE1imIexMov6Z1LWANu/+f37G25/o+GYhuJOSRE3RY6DM4KzSvTsEZGhExgHvcgtZ4Tzkd+o75y29Mojj5jUkUJ78xieLkNyZRyuW3KsYcjFSgK06OJJadHGsMTtIMb/DknaUKPKObtcQuwdl2Ccfb7aBH2kzFy6u+ih+v6HjgLtuCABXBJaHU76+Gfnb9XH+DL0G8HNfgshtD77reocbAoRnTe41FxO47fV7vvh9J7HmhwtRL6Ov4KvQarxotO76v9dnTepMr7gCcnBEsDlIPP4LcfOjSAwH5AMS981zFvYe59vA7bSmL7oAIDK9TbCAJZygCGmOSxMlvTKI4+Y1JFCe/MYlSPvsnLfV8OFHn3eniW935pyrYxRDKRMH113pBUDp6eKniUPdYt8tK6Cn4D3qOv9+pULkmh16lAtSuRfAjEWmZ71dOegRiFTmyjjJdx+FDKDs+hqEPIPg0Exb8ls/0Xp4t9ZjfqFYVT0Of1dtaHYOTSmNLGJLRQMlqH4RG0EwjIqIL68gFuPuJewe5CnkDGNjyEMS9j0P3fbjTCx+0mA1pXAxo4dGB/Qcg+PrLb0yiOPmNSRQnvzGJ4uQ3JlGc/MYkSvkbqCd+9k4V+8/+Ziaxj97ofwB6T1QCpuafERG7a1V3d4v9fo8yqBvPh6rOVpUe7xbqyycwenkBdtM2alCltxXUosPv7RxGeUN/yzg/1jHLvb/U/9Zkl2B+Bjm8uddnGhExvdJneAV9Ea4yGH8O63i10/PQqOttvV/tfgn/Rdm2WHYLeNb7Tsnpg42YenWegkWXlP2fQPH9WUVNYpkt/IUyqwvRMTwrf/mNSRQnvzGJ4uQ3JlGc/MYkSvmsUJGlU6iwMNupvXPzGxVePrya6El6LMbs1iqobDcw+QZqxANq5Xegz/12o7XtX3fU1nqzVVGKmjpSLXlERAYKHe1f7xk7qzR28QsYvf2XP9OLOQB7782VhKo3bO+dzlQEJh12AyLbGp7LAmzSy2o/K2/kvN770iYEymkgRs+aRoEfhMbOoB/DZaWi23Gh61BD3X5ExA6mOJGW3s31noddC37GmD/h5DcmUZz8xiSKk9+YRClvoUqYpsp0oVb+ZK3Ops5rEBsGXM+fQ/dBEs4quJ7NSsWY64kKVb/pQkPJrQpdm1rXoQtiE01dieAJLTsQmw5yrUX/ONRR+esTFei6//ozPfEYmnVObiVUP38hsfW3/FxutycSW/T0udD4bJqwQz0QqP8BuezI4UcuyTbo3PRcSnISwjMl198QtjsEnfGsVOFzPFIRl1ypERErEMh3LdvKMWs38DTG/AknvzGJ4uQ3JlGc/MYkSrkB0aYA4WULLrT7Qn877nfQjHLNLqteV8WYsuQGme+zASfgu1rFuBsQNEkE6kCZ6AAaRZ5ACXRExDE0dqSx0R9Bqed/3Gmp7qO/hlLdDx/riVfaCLN5+05i1fc6hefuBTRbjYh30JDyGkpj7xsVDFe1Osmo3Bmn4cAzoOdCtE1SIpcliY0k+JGb7xAagp7DqPIHO33vLh9rY9zBua7Xdsr3PL/T93E+0/dpDZOr5ltoeopnMcb84HHyG5MoTn5jEsXJb0yilPsVPHKvMGhJFisob9xWLGD0QkUa6pFGrNYqSk1AgKRy2QG47Kiv22GhgtjDnEWyT0Pdjg93esxfZSr6fPbXIIj9/Od6jV0Vd5qFjlMP6B1Yz1RYup9q78CIiNfg5nwDY7avYeoO9T1ENx859yBGz6UCkbpt7DaVCWd7vmQlfBv76ObT450W4Ob7FATuD7T8unOj6xoRkT9XN2ANI3vWU31HFzD2219+YxLFyW9Mojj5jUkUJ78xibJ3gzSSU9agm8xgOES/4tOU4PyrQMDYgmPp7U4Ftre9/ZyJ1JutgOs+gWEMD0LFwoiIv4Dq2M9KLR3+9K80Vnz+K4llYx0jHjDUIvogQMKY9LwPQiz0mYuIuAUZ+LpWsWkGMSqNJpcdCXkECXk7WId9RbwIFvKofJecrvt+Ldv68L1PNtJnVRQskHfn2h+zf69Cbmeh72inohJqY0ySOPmNSRQnvzGJ4uQ3JlFKcsBV4Ipa0WTbHESNUn9P1hWLZLdU/qt6UUzhPC+hld7zXFW3u1pj7Djbb3JrmyOyhDU7OlZBrHzIJcHCAibodnS9oqeiZHaoff3yY91u0IHFDha66D0h9hXy9i21peNRv0QS7CJY3B1CyfIISrJHsG8HhDyaqLyEMt/5d5ob46H2WwzKq4hodnqioqOxgyEMAgFx119+YxLFyW9Mojj5jUkUJ78xiYI9/EjoIhFwASLgNZTVdloEjC0oJUvoxTaDPnwr2G4OU1AXIPjRJNkCJqBOM933TcuU3qdddWp9equxkxd3EssOv5NYvoaRw0fg+uuB8gmlv9nxSGLHp9e6b0Q8vFLB8LRQwXCa6zVuQLHdd2gH9vqDd6cDw1TOSi5PJpfmARhbaVDNEL6NY3hPBiD4VbDv3RW4Mf9Ry3eLXlsfSyh5hsE3/aHmARkg/eU3JlGc/MYkipPfmERx8huTKOUSxK9tq4/t/4X6o21ByFnBOSIibisdVjGvoE8ZnIeGOZDLi8RLooF9SSy8bXGSvQLX2Iu1uvnOn6lz77CjE3nLtYo2+QMVh7IzHe5BTsAMynzHH+s5IiJ++kqFvOcg+N0X+4mpJPhR6S/18OvButLglMe5CpoRER9CCfaIym1BtCOn4yFocWc7DQ4yWAcoTScRsNNhwa8LQmB3qOfpDDQHG3gu/vIbkyhOfmMSxclvTKI4+Y1JlHIBU1WJChSRDYgISxDJZjsV8SIi7jY6cGKxU7GJRLt+CUJOR0WpYQHTc8EhRlAZKwmaERErEEmnhYpV86lez3CiImA+1LXJunDdHY1lQygb7ul6dZ+wK+6Tb7XM9LO3DyT2BtZ7CmXVW3D9kThLw1ROwbn3Qa73R9OPIyI+gMEpfZwarHTgWY9rjV2U+n4PB1RWq9ey2eo6VBV/k/MChG84Jr2iW5hq7S+/MYni5DcmUZz8xiSKk9+YRHHyG5MoJdsxVS4kZX9RqTK/rFTlJAW/Lb7e7fffB5rQMixV8aVmj71MVXjarkuKdEs9fxd+R9dwjZvNfv9pyLpgI6ZJLqBc04hu2i4b87jx0SP978PjV/pcLzqqzt9A/XwBI7+pYephps/vIRzvUQ31/KB6R0SMa73vHqxFj5R9sOgeDVTZPz5T23XZ0+PN77iR7ft0u2zv7Q3AolvqvezW+i5u1rpm/vIbkyhOfmMSxclvTKI4+Y1JFBT8tlBrPQdxbw623eVOhSGq3Y6I2FYar/ec2kKCUR/stCOoQx/DdJYhiIBjEPcoFhFxCI0dyQi8A+smuFojP9P69OxMG3iilZcEv6U+q2bBQixxUOizuqx1HaeFiojnIOSVJPg1KmiewKSZMYh7AxD2IiI6IO4Nob/AOFOh+ehA1+cIxL3BIxgZDp/VrNDjHYBAXh6w4AevclCrjAaGAFGPAH/5jUkUJ78xieLkNyZRnPzGJEpJ4h7V5JO4N9tqjBx6NJ0lgsU9agqa5zQFCMQ4Epug2eNFpsrJRajgdwli02i/3qZ/2lY37oB7Kx/AJJaTI409fKgnKUCAvL2RULOG+vJbFa8iInYLmJJT6HVfVPqsGlhH8t7RlBsoV99zMHhETSNpWo7QD70XEveOL7TB7OADfablJTglQYDMOnqOrAtiNjRbbTtmPdN8q6GhaH8LDWH5LMaYHzpOfmMSxclvTKI4+Y1JlHILbqcVjLpeQ2wDDr1drccjYe/PgSa5kJvvpFRx7wk0e/xxpfv+aKP38rBUwafbYbfiZqvCG1WZjg6hQWlfnW3ZQEXJ7PBED9hR91yz0OafASJQs9n/uQwH+vwfTVREHFcw/hq8jiS6VSANTsB5OYEx8PxUIrYgBNIXr9vTI/RO9BrLS32f8iONNStdm3wFV1mC2Evl3BHRkIuxpDJf3azo6DPwl9+YRHHyG5MoTn5jEsXJb0yilCSmUSyn7cB5V0Npa0YjkVugUt0uuNj6hdbBUg+4D6Hf2083Kl59cjzR412qg7Hot7gVN3rdFfRS64yh/LMLtZrkWBuMNQZ99GhEd5QgKoLQGBHROdZ7PA4VP/NcBajFQq8ny8DtBjESTbc7XcMFvE8k7EVELHKN3+50fQ5gktJoquJsZ6HvTgO99WrYd/MG9oWJQsWQS62zjm5br2Gq1BQEUXgX/eU3JlGc/MYkipPfmERx8huTKOUJjEBmwQ+ECRD8VtDDr4LS1j+HXqkCDY3Z7sJ10whjcpx1eyrEkbhHfdT+GFfhpQRXHZVwBohSfBIa0Q2jqUFAzKBMtLjQPoEREfkZDLWAa+w/V5H0/msVte5v9XoWK32mM3BezmBwCg1DWbZ8xqgb3rqjx9xsdS223+h2H6z1ng8ea6xa6BrePddnsJirQFoUnC9lqfEdCKKrta7jqvKIbmPMn3DyG5MoTn5jEsXJb0yilE8KdY1dQxllF4ZVlCDGzCFGZcMR3K+PKHOYtJvrNeZQEjoDF9ormJLRfavrcLyAdYDSz4iIbh/KP2FSazkAEXEMzq+VuguzhQpLAWXVUeqzys5ONXYIjsGIiCPtHxh9LVvtnH4lseLZdxJ7PVdR+RWUZN+Dg20Bn6c1uQNbuv2RdNaB92QFYvG60nuunuu+j9ZTPPf73N6p4HddqRhK1xLB4iU5GK8LcDWCWOgvvzGJ4uQ3JlGc/MYkipPfmEQp/wpEjWeFusaeg0j2BkS3CcRoCEhExBb6/TUg3JCwOAarHfnkJpme41tweM1hHUZzFWiGU3ZfncCU18MeTGUdaewwh9LhV1cSy8ZP9cRHOrk3wHkZxyD4HWksIiK7+EiDINrWL7+X2OJe35Ovoez4GxgCssp0bSt4HyoQinctgh993Q5o0jKIyiQMjirNjd4NuENBaJ7Avu8KPe8NCHYREVM45jW8368bfZ/eVlCSjWcxxvzgcfIbkyhOfmMSxclvTKKU/+nxCwk+faZC0Belljx+Varo9gKGZFzXPA12Xqv4RVODSfAbgguRHH5bEILuwSFWQzu7Kbinhg33vVtU+js6W6mwdLzR626gJ105upNYlj/T2JkKftkxOPQuHuh2p490u4jIzx5LrL57LbFmriLSFHrhvYXxu69Dn/0Cnj0JwFsYAkPCYEREAe/Ew1yF3LMAwQ8OSdOAp1sVNHdw3isoQyc33tucHbFXoaLyO8ihV7t73XejMX/5jUkUJ78xieLkNyZRnPzGJEp58p//lQQPv/y9xD79WxUGv3p6LrHfdLVM9CkIgxERbxoVK6YtbsD3GYPjkBxZGfr+FJqoS16+vKUdIclNU3DabWoVxKobPXnnqYo+h3ErsXIOU39XEOvqejVLLkVtNirQNvfqOGyuVZRc71TUqrog2sHqLhsV/FYQ20CsrWz8INf17mcqXj/a6jO4hB6MQyis3cI3dAIi9R2Ie3fwQt22zBy+aTQ3riqdyEzi3u16JjF/+Y1JFCe/MYni5DcmUZz8xiSKk9+YRCnzX/5bCWYPPpDY8ePfSexX/+NriZ39nSqpZ5tDPPmzjirDt1CnTxZdgqycA7DO9mC7Ek5B9s5+S9PRIUwlIivomhou1vCfC2goGqHq/Gilam93A5OCoG48RtzAs4Z7aV5+I7Htt6r2z2q1ERP0rIgKrLwbsAG3cQxq/+cwovtzqHc/POBR2e8zXeo5JmADX8Mtr+DdXuH/mSLmjdp7Z5XW7s+2Glts4T9AeBZjzA8eJ78xieLkNyZRnPzGJEqJ45wffCKxHEZBd2EyzOPllxJb/E8VWCIiyo3WVd/DGGoSSjim4gnJc3sOxMZfxl6L4HcAts8ctl2BELSECS1vYJJL/Uav/Hyjgt8hTPvp77Qev2wbnf5Gt62/eymx6y9VqHwB49RnGdTpk8AK69AFm2yAtfsAYhERP8tU1PyXIO49+UjFy+5Yn2m1AQH5Wu9vfq3v8evga9wX6ldBgugOGuNSzF9+YxLFyW9Mojj5jUkUJ78xiVI2MPY5K1Xci6MLjX2gjR47j9QJdjhkp9TpDEZggyC2AafcEpxy9xCbwJQTbPYI54ABMgG9KCMiogcbDwoVgg6gFv2uUiFoAhNkXjYqAq6vQUCE0eJHd1qjP3iuPRoiIrJSJ/FMvtdzf3Gt/Rx+D2PJX0Pfhjtq3tpSk/8+JO59UqizNCLil6p9xic/uZHY8DNdswx6INQzranPYOLSIYzj7oGTsw/v7DE0p42I2EDt/xWsRUETmwB/+Y1JFCe/MYni5DcmUZz8xiRKGQto4nigvwkZOO8aKv1caNnhDkooIyJqcCztV7y7PyTuUUHomEp/4WLarq+GP3Q7eqZuF8ptZ7rzulLBaFroc7mqwVG3hOkzywOJ1S/Z67gAp93rUmN/6Ov9PauhoSQ46hbQqJWm8/RA/HoI06M+BTEtIuLzI208evALXdviyaXuDO93dqPNMTsTbaxKI7rBgMol5y1ToXqZiq7zjpbL33S0Wedso6Kkv/zGJIqT35hEcfIbkyhOfmMSpYzbtxJsoEwwQDBonn8rscU3KmjdrcAxGBFzEJYW4HjagfsOBqxEtefUHZIfD2HDEah4NNknImLeqCA62GisLPVE/a4KZ0dLFU4rELXWsDZXIM7ews/8dcv4IRoFfQ3TYq536hqcgLg32+m7Q334criXcaniXDfTEeQ/WvO9XPxar7H45McSy0501Hms1YWYLcGtSu9sDe826Hj0HvdBBIyIOAch8NNcxc95X52XVPrrL78xieLkNyZRnPzGJIqT35hEKet//K1GezDO+Z2WQc7/7p3E/vBPKja8hMEJERH3MLKYBJCWTnMCluoC5Ko6qfQsY3B4bVo6AFIfvttK73s30+1KEN46UCI8hnLgOlTcuwIB6gWUF7+CUtuIiOtaBbpJpcIZDYxY1yoWriuNUfku9agbFFAGGyp8XQaPdi8fqGCYDTUWNNSEGg1W0NdvodvdwLO/6ugzvYfnPGr5Jo/ovQUR8CeFCqKDocrc/vIbkyhOfmMSxclvTKI4+Y1JlHL2X55KcDNTEeH23VBi3y0fSew5TN6lPnoRPGSjBtGOhCAqesSJpyCoHIJIcgRDDc474EyruNxyXut9b+G3dQFOwD6cu5trbAzOu1Wl51iD+DgBsfAeymojuNyWhLwdiHbkJMvAuZeDeEXbZfDs6YtFJdURXGLeTLXkNTZQYnyv21VvtKT3/qWW2r6AgTZXmZ5jBs9lk+m+ESzuDmB9HsFwkNPcgp8x5k84+Y1JFCe/MYni5DcmUcq//+1DCdLAiAkMArgD494EBDYS3SK4lx71ceuAqEFHnIJ4sgIBqsj0wulX8PKR9jcs+3wvq4kKKvMZlOBCmW8Gwme3A2IaiHsFOMnI6biGFdvAZOEIFl1xO3DAUYwoQJTMIdaBKb07uL4reKYRXGI+LHXicAY9CqsbdUDOv9PtXlydSuwtNIBcgEC6geeyppL6iNjCfQ8hN46g7nwEMX/5jUkUJ78xieLkNyZRnPzGJEr5u64KVQsQoEi0W4IAsYHtSKhoo9hT3CPx5HrfabCFHvFtoUMtfnmuAmL/1yqQRkSMt7rt6SudgLx+BSWvdyoCrhcau79XJxkN2FhSf0N4Bm3iHMXRpQcxglx/RInn2O/7dAsDTSIi3j4fS+xkqX0GaQDNcq6lv5OZPoM76ApJHr0hiJeUGiRwR/CXusRBIBo7hpJ1f/mNSRQnvzGJ4uQ3JlGc/MYkSnkD/ePWe5bGkhNpu6fDK4KFjT4IPAWUf9JZFuDwoz5zHTjHS5j8SjpV/oufwZkjsgcf6bZvv5dY+fuvJNb9Qrfb/Rb6wm1UbHrVhfLdDMpEaaJyixBLQl7RwHNBlx6IVXu+EnS8Ya4uyQEWdDPTNUzv1cG9sQP35GyrQt5qz3OfwgSZNUwcvt1T0IyI6EAe7Ls3DZvxl9+YRHHyG5MoTn5jEsXJb0yiOPmNSRTsFLjvLwJZRqk+ua0+vIEzkb2X1PktSPH72kgJsiDT4bLLx7h/+fm/kVj90a3GhmojLmdqN62+0F4CbwpVi1/Df2uoWecWnwuDDVPhGZRgV6UYvVDUmJPGcZ8UGjumRpYt/2UqwKpO4EhtOM8U+lqs9hwhDyX+0YfFaZs8Rf8do3whaJS7v/zGJIqT35hEcfIbkyhOfmMSpeyDZbC/p7Cwo7p/UMk2rQ0JyVoMDTfh3Csa8QyixkGhjR2PoNnjIawDMlURLyKiXmjtPiqGfRX8aCT6bqvC2TWMNCcrL61Nm5WXIDGuS1Nk4NNBYiEJvgOw7Z5DT4UPc50UdV7r2oxgdHZExKCn69OD2Gqr93cDY7u/hWW4pR4WkBv0DGitey3vYgceIYmIBcS2FvyMMf+Mk9+YRHHyG5MoTn5jEqWkOt8BCA4k2fXgt4PEnRU4ziJY8MPRzbAvyVcFXM95ruLeg1zr4g834FacqLpTf/kFnDmi2WljTuTVCz3myxuJLZZ63SsUWGGyD6zO7s9wP3bBpUexgFHQGxgtTu7Aw0z3fQTP5RGMPn+w0/s7hvHlEREHI23g2unqNd7cq5PwdVffvN9nS4ld19ozgvKgB2tI63AOdf8RsXdfBGglECvX8xtj/hknvzGJ4uQ3JlGc/MYkSjkB0a0BgYaaetLUnCWIe8uGxZgN7E+QC4rKfI9AMLoAwe+oUeGFSh5ffn8osf5/+wavsfdGRbusC4Lh7Vxiqz+oYLTYakPRGnpRkoxH5c47Eldh34iIMbjvzsAVuW+pNbn+xiB+kXPvHNSr00rfsfORCnEREUePdG1J+yzfapAmV5G4d13BBCDIl34OQh48BJzsExFDKqumDUHcm8O9+MtvTKI4+Y1JFCe/MYni5DcmUcrXoQ6oVZvD6P3tQDkhAYoEuza2IAJyiamKIn2I0ZlnUIL5Dcw63lUquhX/wDarj3Za6ts50eup5np/63uUbQQs9YQQiXu0hocghkZwGe2H4LTrgT10noMLEcQv2Ax71PWgN99xpgLy6SMVUiMi+j9WEbjZ6fpcXOv+5zf6/DvQw6+C9d6RmA3JsYBS6UmLQE7DkGYgApLDk8R5f/mNSRQnvzGJ4uQ3JlGc/MYkSvmuVmdUkVNfP/2dIIFmDGIhaCR/PA+MfV7W+5XG9kEoISnufs8BFsQtDMnIqzFue/B0I7HTmkWofRh2dB3OKhWvxoWuwyr0uo+gdPQSYhERH1Z6zPOKVldjNahSkz173NH7RK/O8VBddsMfsSuu+PBMYs1W34njz95K7Gf/Xc/zv/ta+nsNZb5zFMOhbByEuFmL4EfuSYIEX+x5udfRjDE/OJz8xiSKk9+YRHHyG5MoJQlsW5j8OgaBjfxhnT0n7/4xDtuC2EiQw48EkSkIfptQ8aMGJ9kcnGSdkn8vL+9PJPYvnkNZ54Ees4ay1R70mbuYaewTEOcOQWElMW1Ezd4iYrxnu78ZPKurTK/xZahwtq2hlBxKsj+BotXRobpS8xMV4v74B3heMOAjK8EB2dPznDcq+A6gVHdZqwBMUOlvW7/FDMRUFAxrve4FXI+//MYkipPfmERx8huTKE5+YxKlpBJacgOtQCTrQjkhCWdtFCBg9EKFvBJ+o2gi7xzEy1mjQse65iEi77MB8eo1TauNiK+7Wv55dKvi0OkChkh0QIACB9xpofs+2cJAjAJ6MIK216brreCTMIH1vgbn3vdQIv6mUqfjvm6160LXcLVQga16w27K6lr7623f6fO/eaZlzF9t9NxXMOF3316U1MuQxHAa7hERMWh5996HBMN5paKrv/zGJIqT35hEcfIbkyhOfmMSpaReY/fgEKKfCXLzkeBHJYYR3GuMBJB9h0PQNOAVORj3FGjIfdU2cfgemtJNwZ022EJpJTiD/vWSAAADrUlEQVQqez3dbjRQ8fLRHASjnZbqTgoVke5a3JQzEBtvQdy7gsm4NzDUYg7uMnoGN/Ccn5Xq3PsduCkXfzuTWETErtJjXkFp9DcwYOWrnt7f00rPM4d8ob5+1EeRMoOcrxE8FbsCcbDcU4j3l9+YRHHyG5MoTn5jEsXJb0yioGWIBLo59BUrYIgE+fuod1lEi+Opxd30PiQWYox6qe3pLqtBOGmDrroD19MrVTAcDHVtqfSXKEsVzoopiDuVFmDXeNURKxACKxAByQlKbjcS90hoXoA4+xJ6TP6v3oHEvoZS24iIJcyfuenqM7hq1CF4Vem5b3fqGNy7fBfWcAk5cN/y3pGISMJ3W769j7/8xiSKk9+YRHHyG5MoTn5jEsXJb0yilNQUkGyIpMxTjCB7bkREF9Tmfcds78u+90cxsllS49CIiBFMHxpnqgIfHqr9dXQONf6HqtiSs5jGNm+30Nx0ode3a2nguYV7nOz5nw/6TxH9d4XU/g3c4KTRtfkaztumcG9q6leh51nCf7NIxV9WGsNx3HQtQb0ANLZumVp1l+s/5ygHaX+yqvvLb0yiOPmNSRQnvzGJ4uQ3JlHKfZsKkhBHDQWp5pj2jYgY0thvsAyvwRZJ173KVDxpoM5+3waefZjEctDSRHEEms9BR8Whg1ON9S5ATB3puZuNnqRcUH8A6JMAazhsEapGtV5PF9ab7NTUP4GEM7Jdk8A6rVTwm0KT0HXLWOsdCH4ECYYoSsK7Q+fY12ILfXGjaBFXS8ijTq4xWlu6bn/5jUkUJ78xieLkNyZRnPzGJAqqVx0QFg4yFaCOITZudN+zmn9jzkDsGFUqVixhzPLzUs/Tg+1uYGLPAkZvkzONHIjDlhr4EvSdotBgOdTz5Idaa5+PtAlns9N9y1ueVCP77j9IKWoSU0HAmoKQN4Ua+MVOBTpyXvZAYCUH3ArOO9upczIiooEbL0EkI5FtX+FsU4HQDOtF10LQ2kTwNbaJg+9D9+IvvzGJ4uQ3JlGc/MYkipPfmEQpSTCgslUSukjcOwaH3sWOhY6Pwb318FgnouQgnH1yow0bT0qdxPK8UBHpLleBZgbCEjnYaDR4RMQafkbXUFpLvUOzUnfODvReSAgqxiqwFYWepILf+W3Lb/8UGni+CxXZbiptZjnd7if49eC5kGsTpyZV4CLccRPNtuf1PhncM025IeGMHH503VW9X+PYNsGP7oVK0QmX9Bpj/i9OfmMSxclvTKI4+Y1JlP8DrtZyuqm0aK8AAAAASUVORK5CYII=" y="-17136.003207"/>
</g>
<g id="matplotlib.axis_953">
<g id="xtick_1429"/>
<g id="xtick_1430"/>
<g id="xtick_1431"/>
</g>
<g id="matplotlib.axis_954">
<g id="ytick_2381"/>
<g id="ytick_2382"/>
<g id="ytick_2383"/>
<g id="ytick_2384"/>
<g id="ytick_2385"/>
<g id="text_120">
<!-- 655 1839-60619 -->
<g style="fill:#262626;" transform="translate(15.789375 17240.961644)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_478">
<g id="patch_479">
<path d="M 164.424375 17258.403207
L 286.714375 17258.403207
L 286.714375 17136.113207
L 164.424375 17136.113207
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p4db1a6a38c)">
<image height="122.4" id="image6227e5b12b" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHfdJREFUeJztncuOJFlShi3cj8c9Misrq6qrNfTQg8SwBSEhNkg8AatZ8W48AjseAIkFEg/AAglpEDP0pS55jQj38EuwaLol0r4jnZzctf3f0tKvx93CpT9/M5v95qu/O9sT6tnsachq87GFVS62mtUudn1OLmZm9tXg9//ToXOxN5uDi90fFi72r/O1i/3z+cbF/qP9zsX2Q+tiM1qHmb9mM7ME972q5z5W+diyalxsDdu9rpYu9m7m1+H95K/l3ejvZTtNLmZmNsKzvq197KZyr47dzPwxb613sbuzj+0h5s9gNoe1zrGfTi72edy72G3vY8fR71vB2qTKX8+88u/8Lq1c7KvmysX+YnbhYmZmv/LLYx28o98lv2ofZ6OL8ZsshPjZo+QXIihKfiGCouQXIiiJBLoGfhOWIHStz37fi7Pf7g2ITWZmXwxehNg1ILKAsJQqLyy9H/x2X8+3LnY/96Lit3brYuPZn4OEHDMW9zaVF+NWIO4tZ/6YFzMQ/GZ+3yt4BsuzX2/6lSdhz8ysh3B5zD+D8exjJOQleMdmcI1zuBs6nhkLtMXiLMTm8KzoeHReEnt38ExXmZuhpzXxI3TQ89eXX4igKPmFCIqSX4igKPmFCEq6AsFhDqLdFmIXoDZcgWnsCoQ9M7Ormbcspdof4AwCFm13dfLn+eXk7+9D8iLgfvIiYAvusCWINmYvE/fWKPj52CsQ97awNg0IRuzlY8g/R8ek7Uq/JqRTkYs0ofjszzxkJL8a1mcBa1vV3n23hWe6gedP1000IAJeg7C7ywjkCYRTeq60ErQO+vILERQlvxBBUfILERQlvxBBSTsQkRoQMNYgGGxBbdiOPrjMyE0zkCb6wV8PCX4UW5sX/N6OXty5brzI8g2IOxM4/Kj81ozFvUWhezIVlktvSLwCdYfdfJ4ho1ORuEeusw0IvofKn53uuRRy/b0UcuSRuPcGSqgvQSAvFfzIG/oOyq+vIYdyTIXnlsNPCPETSn4hgqLkFyIoSn4hgpIuQEQaYMMziHNdBYIPHG8GooaZ2UTnhr5+89HLVdC6DGnAFUViGrmvKog1mf5xJO4twANH5yFBjBxZzQvcfB38zNP6m5mtplyB7JNzF8YmeHdOcJWns3/OdC+0Xn1GVB4gTgLdhsqlIUYuywU5UOFaqNT6F72/vmvoZWhm9gmuh8yApXKhvvxCBEXJL0RQlPxCBEXJL0RQEjn3SG6gXmEoLNGgi9xPzOT/MILW1EA5MbT1sx6EHLoegnquYf+3zO8liXtUqkvuyTmdp0xzs5rWAS7xEXrr5cxhR1gzuusWjnkAcW8P/kIapkGC36nwuVC/RTOzEa6n1JFHvMT9Ss69X1R+IA2Vq5uZ3Z38+0TOzQ7ueYRnpS+/EEFR8gsRFCW/EEFR8gsRFCW/EEHB8TNLEIYTCJBk5VyANZQstjk6UHLxvw8Q60GlPhb+l6KG30Eax5wb0c22XbDj4n8QytTn0uks9B8A2pfUerPMfwYAUpU/0zhuaI76CLEe1H56BjQ6PQc91wVMXTqApfaGpiHB8bbwn54t5MFb8/d8sfWx06l8BDlNSGphTHoHb72+/EIERckvRFCU/EIERckvRFASCWIXoPeQgLGeYIR1dliy5wDiVws9AkjIY8HPx9rCnzecIFNYe29W3iOARECym9JoamIFYipZS+kOv8/oSo8zL7wdQIw7gLn07uxtu3dT62JHsPcOcI5SSNgzM1tAY9UEdvEOulh8gutO8H5ezXyjz+0E4+eX/p5nINgNI9/LAHlAvTdI3DuimCqECImSX4igKPmFCIqSX4igpBtwA9GUlC3oTyTuNSA2HHCYs9kDFPrfws8ROdFy02aeQvIjNSMlJxk166QR22Zmc/gdpRj92paOT6ZmnVfQ3HQDMtAaRpWPmWakDxAuFfduxqM/3uBjJPhRTf5U6A6dg2vPzCxVZW450kipv8AdOAE7EPwW8I4lsMn2vb++Q89ToUgMJ+cmrZgcfkKIn1DyCxEUJb8QQVHyCxGURCWYZxBPJhCHDhnx6ym3Gc2FxEYqRyQxhhozopgGQt4A+87h/tZQtLzJ3POaJvbQ9CK4HrruJWx3Bd1N3yXvQlsu/DNtDn4V78YVnNlsDmO2SURqz15Y3EOp7n6E8t3J70uTfc6Fgl+u1Lp0fxxhDY46Eot7iKEDFcS9Y+/fp9szC37UWJWuh1ykJGjryy9EUJT8QgRFyS9EUJT8QgQlPYAbjCasfEN900D7otHLfWaaCqlI5IqjctnSqSu0HUlANF2HYpcZwW8HZaIovNBEIhT3/HZfQ4npxSsfm8D2NdJY60wvvBGeIYlxpZAolZuwUwL18CNxLkfpvZSWVZP4/AACcNV5gfUAz+UuM+LqAGHq17iGY3bgstWXX4igKPmFCIqSX4igKPmFCEo6gkvrAcotacjCCfYlR1WTKbfcVAsXu4BYPfOOJxIGa3RAeToQm0gYpAENGxjkYGa2BcGPeumt4IJ2MLr5S/NC3vWlH+c8AwXxsJ+72EfzsW9JLTKzB+jhR0a5OYhIC3pW8PxJ8Ct244Gbr1Sceyl0niOUnP+u8WvzgXoHPmOYCgmVlFlXcJ71zD9/ffmFCIqSX4igKPmFCIqSX4igpFsQ8u5GLyxRH7YTlGVSaeWq9mKDGZcZUo+8EWIk7pETkMote3CwkTORIDeXGQt5bwd/zLfQ9+5y4WOrlY8RDw9eIP32tHax/5r7tfl9xeegPnXEBgZijOZdbOQYJOGM3ieC3HxNplffcyb6PoVEYIq10Ovvd4WDdun9zLEEIY/EvTejv8YLGLCjL78QQVHyCxEUJb8QQVHyCxGU9Hl4dMED9Fw7jmVDFmjQxUR1rM+A9h7BDUYDDEigox5+5HQkR1UPIpdZprQS1mdZe3GIJrV2nRc525OPfRr9wIj/bvx2v6/8eW8zwh6VYC/huTZUJgqDJUjwIzffYebfO3rHEvVLzDyXJcTnICAvsKTb70vrQO/YZ1hbEvdo35RxK+7gGnfw/abJze8mfz368gsRFCW/EEFR8gsRFCW/EEFJj4MvHaWBCiTQkJuPyndJdMnFaXgGuarQGQVOK3T4gYhEMZpWnPu1pDhOfp1AED1BKTLc3h6GOXys/fFuQGClYSg0HdjMrAFhicqbiR6eVYJ9SbSrsUwbyqprL3JeQMyM+zDS9TRwHnKMUik5CdI01ZhEZSI3CZogLZ1ig4Z2CCF+RMkvRFCU/EIERckvRFBSB86fl0xGpdJKEnfMWHihXyNyQbUkqMC+Awh5e3BfUT/CFQgvs4xIRuJeB+vTQg9AEt56WAkaBPEIjroeHIMLEHxeQ183s/IvQkd3XWjmpEEeVH5LbrxXtS8bfl/xxOELcOmRnFY6aZfWhnpC0jKUjinJFSE36OajsmN/plGCnxDiR5T8QgRFyS9EUJT8QgRFyS9EUNJp/MObJtbQPHCC/xRQPbeZ2QnsuAdQ3alBIh2Tar/pPwVdYaNImh6UA3omYqzD/xZ4Ff9Q+bW9h1gLh6Mz7Oi/DLBdjpbUcDgRqdxD4bPChq5gAX8Fz+UtTCQyM7ue4D9S8Aw6+A/JAWJHsovDdpQHBE+K4idzBc/wzejPczX5fFnCFCZ9+YUIipJfiKAo+YUIipJfiKCkAcQBogaxqQchbkaNAkn5MrYRH2E8ODXSnEjcgxjtS1ADSKz7zzQjJQmxB5G0BcsvbUe23T38VKOVFwStBVz2KuM3JSHvjs4NYlXzglHZZANfwXPZgCC2zXzHdnAzm4nEy7JnQL0SaNpT6bSfDdiXv8iIl38C/Va/holbO5gARU1i9eUXIihKfiGCouQXIihKfiGCgoJfyow7fgoJdjRmOdcf4FSVjfgmtxTVg9N25EwkYYkmDZ2gZ8A+04TxDtaMnGQLuJ4ONDLo6YlC3BzOQePCL8AJtsuIvVT73SR4J2pwHEID1w3U1LeVF7XoWdG+c3hHQM/64ZgQa2DbBkZY0/ObYG3IjUnNP2ms/BvoqfDHA3+Tv4SpWesGBPYKhG9wOurLL0RQlPxCBEXJL0RQlPxCBAVHg5Cbbw5CDkGOOhIBzdghSGWd1NiRoH3P5LQiUbFwss9dZqz1HNbMai9WbanhIghQJLmuwZG3ArfaDmKXcN2bmp/LCMpiM3hhKkGJ6ZD8e3KYQWk03CAZDknwo0aWOeiYA7xOtN5k5uRnRU5HEPzgHVtDWTy5Mc1YiD0Ofr0pdoLz6MsvRFCU/EIERckvRFCU/EIEJc1rLw4sQKiikldy2ZG4lxP8cA41CGckqJC4R8wKt6PjPeeXcYB76WB9tlTWCaoUiXYX4MjbQDHxsoYebg24KetMb8Xey1+73q/GAKXaD+B0vAQRkCbkUL9FKt+lkuVMpTX3UQQBGXsPwnY9OS/51EXQPe8zryy5SFtw7tF1H2pN7BFC/B9KfiGCouQXIihKfiGCktbJu6+WtXdzkcMPe+bR0A4oMTQzG6GMkkAxDlx6VBJKgh/dyxJKTGloxyU4zszMdtR/DoSpJdzy69EHvzDfm+3VpnWx+Rz6KIL6NYHy1XXs2hzGsm9CBWIV7UkjyKnXHzrlaAw8HK/Mf/oDKALCuckJSIIfiXZ4Xtjuceaf/Wcolf4BH6dKa7rGe/XwE0L8iJJfiKAo+YUIipJfiKCg4LcC8YuHWpQN/CAnoJnZAD3yqHyXYqW9+Ujc29ZLF3ubNj4289u9zkhLGyiZ3EBpLPXXW4Fwup77EtzlysdqqDEdoAcciXt3rb8/M7Obs3/WY6Fr7FA4WKQHYZjKqkf4PpFMnJOO0VtaONmYhEF0JsL9seMThsBAqTUdz8zsUEOfSCrzhWs8aEqvEOJHlPxCBEXJL0RQlPxCBCWRuLeuQQQEZ9tQWMyYE/xOMy/HkEOQIOdeAyWPdC9X9drFrqHP3LX5e34F7jIzsyW52OBWEtzfAPfS9l6gqx5YoHvKCQS/w+jv5XsQcc3MPiS/P4lf9PQPIFah0AUxcsB1IIaewBXXYRc+MyrWJSchybil84ZpHeheTjT1GfZuM0L6AwjadI00NbiFcnB9+YUIipJfiKAo+YUIipJfiKAkcu5tQARczrwkMlBJL5ST5gQ/Gp5BZcKl+9K9LOC6sUwUfgfX2G+PZSAatFD6y0pTXr87e3Gv6vxJ6GpotbvKb3mTKR29AdfgCY7KYhM9fw+VaZNIRoIY9UZsMuIzORNJGqTeijQkhe4aewrCnnQvR3D4PWZygERuyi1aR8orffmFCIqSX4igKPmFCIqSX4igpCWIZCTuLUAmmYPjiH5OqPzWzOwA+58LSz2JBo6HE3npHJkyyqfkJqiuCp2JPazFHZbBQk85OB450xagF9ET6DIWNipbPYCrjigdYEEuO+xRV+izy4yFwXeHfI0TCnl+O3JtHuAdu4EYcQI3XzvxJOjSEnqChEF9+YUIipJfiKAo+YUIipJfiKAo+YUISlpDnf4K1P4lqP30y7ECxX1n3i5sZnaqvIW1A0WzO8PYb9iO7I8JrhL/AwDX9xxttcH/UkBzRRCvH2EhqS5+QOUaLMg0pQhU6pwyT9Zb2rZ0zDbV5JdOuaH/CvB/CpjnNPssAf+7AtezpGay0OSV3tkTvO9mZl3mvwAlx3zpCHohxM8IJb8QQVHyCxEUJb8QQUmXMIZ6B7LGEkSyJQgYJEDlfmE6ELUeKy+z3ULN8/10crEWhBIS96h2n66brKFku/1h2zIRimQuEqBI3CMBEq2qOGnGQ005c9AzpPUhcW8P5ttck8qnzECQvoTtVpn1p2ipZZjsz7wOHhojTn0k6Hi5nhbtCNN9YFtqZEt5oC+/EEFR8gsRFCW/EEFR8gsRlPR25t13m7MXDFYgYNCUGhpBDf0gzYyFkj00s9yCW+o72O7+7EVAcjtdoIgEo7xB0MzV81cvcKxRjTi5xkjII+ce0cO+JLiasXOvLhSw9iBLPoA4+wgxArQrew3vLL2LZizkltLSlCKItTSCHGLU8gEn+0zs8GtHv2a0LYl7CRZSX34hgqLkFyIoSn4hgqLkFyIo6fUZmnWSAAWCColNtO8809xyIrccKCoDiHs9NB5FMQ1i78AX927y57ga/XWvJ76XBpxWHQkvsBa0tuRNKy0xRhGJhKqMSEmCH30lSqfScEm2j5FbjcZStzNfCj5RM1kztFTS+pD43MEN0jNoC8dskwP1AMJnrnSXxL1uKCzzhVzTl1+IoCj5hQiKkl+IoCj5hQhKIkfevNC5xxNNQCzKuNCoZJLKTClGJZNX0HvwEtyKXw0gAg5eTNnNfGyWEclO8Ds6wjVin8Fn9Ndz5wUnGa3rEa67LZzCY8YOPxK6joX9FktHsdO+6CLMrBiVYJeWVVOMJt+QU/IE90ci4PCCKTxmLOThOO4XjJAXQvzMUPILERQlvxBBUfILEZRErjgS8lbgbFuCuEflqTlpp4Nzl4pVI4gsayjB/RLEvT8avKvq9bx1sVSDaHOisQ1m+9HHj+BMbEGgIfcdleBS6egRYuTcoxHbJEqZmdXkvITQHfRWpPJdcvjxecu+RSScUe9HM7PxBd+3GYicZyrfhfWmHozU87CmseQZt+Ki9s5UEpBJlORBHkKIkCj5hQiKkl+IoCj5hQhKIsGoyQymeMqCRECQ93IDLVoSVGA7ElRIqqI+blej3/JV8qLUcuFFqb73wsv9yBOHv6+94HdT++uh6bs4ARdLcP2WJOS1IOQdQCSj8lszw4cwgbj7CILf49T580ApKolaOGAFJyqDyJkRL6launTyb1X4rOh6CDrHvPLvzarmd6yCvJygQSZtp6EdQoifUPILERQlvxBBUfILEZREpZB9RRNr/e8EuZPm0PeuyQhLC+ib14BLL9G0VFBy1hjzQldVwT2DuHfb+gnG34DLyszsGzD+7Z9RMvuUE4hI6OYDoesRpuLuwWVHPeXMuCSU+t4daRjH6J2SdLwlfHaW0FtxDmXa5GB7APHRzOxIDjpytdK7jCJZmRhO51jCvZxggEwFQrGZWV95IZDWZwPblU4IFkIEQMkvRFCU/EIERckvRFASTRMlR90JmoC1ICL01EcPXHZmZgM5lmiOB+xLv1pUbEveq7b3W1Lp5weYBvstqY9mdgviHl1Pbpqsux7crKx0tAeBjXrh5Upte9iWBkbQ4A3aDnvKwbMfYDtaBhIfDzCh2cxsnPwxye1GYtyGJjdDbAnH28DxqKy2qaHsO9PXjxyClyAYXpt/b1cq6RVC/IiSX4igKPmFCIqSX4igJBrGsJ+VDUW4gx519yB0XIGokeMznPsOHGvUZ24Hwsun2jv3pkxZ7lNukz8eleSaseusgd9WmhpcWrJM58CJvLD3SKXWmenJ7PCDWOHgDbrufgJRsQKxkO4ZBDGadmvG4iUJfid4784gcpNT7gImXW/h2fdGE4f9viTCm/G782byx3wPavHVAE5XPIsQ4mePkl+IoCj5hQiKkl+IoCj5hQgKjp8heyFNZyE75gdQNFeZCSRU8/wAltE9nHsJx4RWAGbJ2x87UFgXoHy3z/hpJCWWrKn034JHbMzpnwE35vzDR2KTCm/GDSnPsD65/Uug66FGn2RBJpssvYu58xA0iYfACVcQ28J/0agHBY0Qz803omS9AmWfxs2/S77Pgr78QgRFyS9EUJT8QgRFyS9EUNKteTHtw+TFgTuItZPfdwYCRpMR/Ag6JglBi8oLeW0Ckaxaudhj8o05SaDpoEb/8AyR65H2BzFub1BrD/ZXsroOhVZe2jc3aYbEPdqW7MGlIiBafgttu4vCpp5m5e8jHXMDtfJrmjQEp6b1Npqkg9ODGHAbIyRxzkDQ1JdfiKAo+YUIipJfiKAo+YUISvrt+OCCN+PBxVoQXqgmu3Q8cI52LBP8KjhmB2LhsfGx22rpYisQfJ4DaTEk2h3RkZfzdP1/SJQi8SphLXl5PX/pyGncl8RCiOHIaHh3yKHXZT1wHlqzbeUF32t4J16R4Ac2UpqulOv74K6v0DH4Q9xzhOlad9DDYtn7vfXlFyIoSn4hgqLkFyIoSn4hgpI+j3sXLJ268lJKHWLk/KrgevZj52Lk8DpUXrwk4YxGkOfES7rujtYRhDca+7zCMcv+GncgSnVw3eQEPMHamJk14DFDga5wXDW9O00FLjtwbdJ5yYGYY1F5wY/Evfcgp9HId5ql83nmnzOVwBNLWOvLjPi8xufqmWDE9wjjz/XlFyIoSn4hgqLkFyIoSn4hgpIGcKERJLyAroD91Z4jko1QBjsH0YbOQ9sR5BjsQTohsZBEwBwk7uGYZhC6yHH4CkaG72C7E4hIJPj1sNZm3M+OSk8ncModwQlKgl+islp4fiQKn57h8FvD2r6FdXw7+edKz+oG1uwRHJr3tA7wvtNzzpUn97BtC+/oAwiVJxRshRAhUfILERQlvxBBUfILERRUyNi5BUMpCst3cyIZiXsNdiDzkLhX6hArHWBBgg/dc445LO8cS0y9APW6sMT0AkpMe1jvDkSunOBHJb2LQgfkCCIgnYUERKIFMe0AglauPHkO4ucS1mxObj64RBqnPhSOTifQGZrLARpoU3QWswPki778QgRFyS9EUJT8QgRFyS9EUFKpgEUiIPXRI0ErZRx+JCyhc4+EQRAw1iCckbBEYgw67+C6qT9eDrrvBQhQW3TzeXHv6uz35bJTEKVA8MvdCvX7W8DGNCmZphUTJJIdqXS78PmdsNiW459hUM0Z3ifyEdKQm55KlgvfHV7DXL54Wrg/mrLdYim5ECIkSn4hgqLkFyIoSn4hgpKotJJcR+TmIpfdigYdgPPOjEW2tqKhFl7AICGPzkMOLxJjlnB/m2cM8iDxksQqGsgwB8fZdvLb0SThBRjJBiy/pSEZIAKaWU8lvXDuhmJwPJLiaILxEbakdSWHJk13zsUfoIfjHPJggPeOxD0aNkJ5QOeg9zj3RSbnH4p74ASknNaXX4igKPmFCIqSX4igKPmFCEoiR17pYIkl7HsBJZ3Ue+6H/WHiKQgqh4x7yx0PxL01iCw0aXULv4MLsFSdMga2tlBQIQcciXZLENNWcD0ksNF56XhXmd/+0g55FVw36JRYBnuCd4x74flBLHfj0cUeIGbGA2hKKR0qQ6L5qvbv/Lr2ubEEYZAERDMeXkP3R65dcr/qyy9EUJT8QgRFyS9EUJT8QgQl0aAEmi5LIgSJhZcgYHxpLPhdgDpEZYv34Dg7UZkviFrUr40EttJS1NxABfoVpSM2sDv1j6Nr9LJSOaXioxlfY7G4RyIZPL8DiFf3Z++8oynSt72PPfQZwW8sE/zo/SYHain34KikfpLP6Qk5TmX9LZc1uGyTFxv15RciKEp+IYKi5BciKEp+IYKi5BciKIlqjGmSTmmDS6qBfzPyb8wXA/UN8LFPtd//E8wHJxNwqUKOk1gKrapm/F8Kqt0nm+2m0LZLkJbdwXK3oLjntOPSGnP8rwCOaKf/6sB/cOA/AMfR/wfgsW9d7NB7G7CZWekIenq/U+3fHp5m5Sm1FZ/hvyO56UO0LbGH/zQ81n7N9OUXIihKfiGCouQXIihKfiGCkl5iYSRhiCyjJGiZmb0GUYRGdPfQD+AOfrao8SSZbGn0cinzzHqtQMh7D4Lml6MXpmgi0cPZS34PJORArINLfIS1yUlSK4iVNg9lG7C/xgPUl7eVP3ObfANOEgH7jMBGllhqAFrBmqHA9oIJV3Reur6chbwUsjRTTF9+IYKi5BciKEp+IYKi5BciKOkwefGEYlSL3J69aENTRcgpZ8ZuPvo16kBkIXGPZJLSSTqlTS/fZgxjvx4PPvaXH11s9de/dLHz6A96+Jf/cbH//PdrF/vt5EWyj2BrpAk5ObdiBaPAd7Bmq8nvT64/EoHrs3eC7qqNi71u/Dt2US9d7Jt0609sZh9O9y72cPK1/yS8Ua19DQJrMSR8P+Nw2FAUXX8w5QicjvryCxEUJb8QQVHyCxEUJb8QQUmfh0cXJCcSTSWhsd2fwLn1ERoKmpm9G7zok0DAIDffAKIG6YoJxSbaznMBAs2vBl8aaWb2Z38F4t7f/60/z9/8xsVmCy901X/+jy7263/4Jxfb/9t7F/sdNEwlIXbMlIhWNNa80HRGTT0rOM8r2PBi8g/6GiZA7aDp7G6RmQoFk3O+nd24WK4B6FNSVVYkjkIcfWrLenKamRlUsWOunkGIJZ1aX34hgqLkFyIoSn4hgqLkFyIo/wszl4sJoFHWPwAAAABJRU5ErkJggg==" y="-17136.003207"/>
</g>
<g id="matplotlib.axis_955">
<g id="xtick_1432"/>
<g id="xtick_1433"/>
<g id="xtick_1434"/>
</g>
<g id="matplotlib.axis_956">
<g id="ytick_2386"/>
<g id="ytick_2387"/>
<g id="ytick_2388"/>
<g id="ytick_2389"/>
<g id="ytick_2390"/>
</g>
</g>
<g id="axes_479">
<g id="patch_480">
<path d="M 299.674375 17260.90497
L 421.964375 17260.90497
L 421.964375 17133.611443
L 299.674375 17133.611443
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_957">
<g id="xtick_1435"/>
<g id="xtick_1436"/>
<g id="xtick_1437"/>
</g>
<g id="matplotlib.axis_958">
<g id="ytick_2391"/>
<g id="ytick_2392"/>
<g id="ytick_2393"/>
<g id="ytick_2394"/>
<g id="ytick_2395"/>
</g>
</g>
<g id="axes_480">
<g id="patch_481">
<path d="M 434.924375 17258.403207
L 557.214375 17258.403207
L 557.214375 17136.113207
L 434.924375 17136.113207
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pe80b44c7f8)">
<image height="122.4" id="imagec76cd9a110" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGrxJREFUeJzt3cuKbNlWh/EZESvve9epKgvBCz6ACHYEEUFR9BkU7Phu5wl8BbFtw6ZNBS9wPKdq752REZFxsbEPNnL+JozcWR1r/r/mZEWs64gFX4zL6i9+568v7QXfre9eLrVvVtfd2ma16tbE6dLtorXW2nM7lz5/3dbd2u1q0619vBy7tf88b7u1D+ddt3a61I5ltN3+/NytHXA8Z1yLq3V/Lg+b227tq3W/dsQ1/HB66tY+HrH23K+11trT8dCtrXGvv7q+79a+vXrXrd2sr7ifl2xW/X3W9dpf+mu9Pe35nc/nU7eme/h87u+VrsMB211wjDqX683Sreka/t7td91aa6397uZ9t/bQ+mdH0fap9cfdH2EIYQoS/CFMSoI/hElJ8IcwKcvX65tu8f2qFzS3EBib1kugE3SD1lpr7Rnru0svaM7Ybn3RvnuRozVJpGfsd43zGyGptUjGYN8L5OV73JfbVS+MJE3v1r2cPax74XPY9GutWYjpuFfF66P7p++rSlcxkoq6FrrekrM/rHtZ/AmS9HCC2B088y+53/T3+RuI3dZau8W7Wnt5av2zrLjKmz+ESUnwhzApCf4QJiXBH8KkLO8g9+4hRK4vtd+JMxzQSH7sISE+XvqsKomgaxzjFdaqUupSFJWbwe+lJNItrq2OR+fyAFF1hX2vIXcOEIMSX8dN/9nWWjsiK06ZcrpmzGo8f7nck3RdIdtQ17+11t4jU/IdslUPuI7i/IZM0AWZnNfr/l6Nntk95K4ia4t7sMNa3vwhTEqCP4RJSfCHMCkJ/hAmZVkgF54lNeAg3prhd1BGHvatctJFJZPKgIII0md3kFISlZI2rVk2VqUkt8O5SAPpHuj7JJZuLs6KU+afroXE4OOxL63V/aui0ljJvWXj+3IH6foNsiefIJ8/QJJ+wnW8gjhdn2vCT5mOT5BzrdWltOJXIjZv/hAmJcEfwqQk+EOYlAR/CJOy/BIZdRILG5TQPkCmSLodB8JPsuoepZnKeFIPP0kytQ+sZv29BkktySqds663SnX1Sy3ho6w4i8ZeXrVmOajedcwEfIPwU+Yee+FJug0y/CS6JJqV4VeVzzrG9bq2nUrJP53dj/AwOMeXULrrXErfFkL4yZHgD2FSEvwhTEqCP4RJWX5xeuwW1eNOouMdMqW+Rf8xDRZorbUFwlByULpQ4uwtVHuuDT+Pa3ZZFUUeZOqbjgXnIskpwTbaVrLqCEmmktcjsic361rmnmBmYbMk0zluMWBFvR63EG8WZ7iORTEo2bvD8bXW2vOqVnYs2Afzi78thPD/mgR/CJOS4A9hUhL8IUxKgj+ESVmUtlmdkLOHnT3Cht6iLro1G3vZ8KMm7Gi7YpqsUio5kQbGVtu11tpppf30a0zvfUO9O/9lUO198Zxbq6ewjv4tqHwf+wtsaqndOj+ttdbap2M/jv1p1ae0C5l9/xOG9N5ik1E1hB3983TGPXwLefOHMCkJ/hAmJcEfwqQk+EOYlIXSBlJDEkLizPXl5g4SUc01nyjT+u9TnbaOUeg6KG1zJGMkh5T+2pTCiq+UMKrKPYlGiViltI72I6rTdCTt1Myymt77llHerVl+VtF90fldFc/v6hW9CaryszoSPW/+ECYlwR/CpCT4Q5iUBH8Ik7JIBDCDSll2ECeaNrIdCJarYoaY9JOy+U44RglEjb8WEkOvEX7VunhliCnza4PLpXvAhplva1dACahzPmFSjWr39Vllm1YZNQnVPaiKUwu6osh7g9wbCb+Fz0Tt/Z0GniGE/yPBH8KkJPhDmJQEfwiTsmiiieSeRNcZjRk/rfqmh/8zEBjK09LI8D223BWztO4wleZu069pUtAHNHDcnl0OyqwxSLblotLY/ng0ZlvlwJpctMexbDBBRnKutXpJ8OFUm+JTzcg7rWvbKbNwJL6qZdmUrli7wXNyB4GsaUiUvd3K+Fyu0Qj3ls9ObVJU3vwhTEqCP4RJSfCHMCkJ/hAmZdljOki1pFPZThJi3w+E3zNKdSU7mEmmMeKQGhojfgtxogyx3QrZit3KZyS6Dq2WsXYHifQAkXOP45Yi03V9hNjVNWyttcdV3/eO90A97vSdeJ4oBiEgdV8k59RDsbXBmPRiVlwVZeTdIpuv2q+PE4DaoI+itsPqDfadN38Ik5LgD2FSEvwhTEqCP4RJWbbHPoutmu20QbaaRjSPRg5L0ji7rJb5JfGioR3KitJ+D8hqG/V/U6bkM6SW9vNw6UedW172x81jGfTme8kTZGhrzk7Tta3KWSG5x2y88ih2v8dUBi2qWY0S5Htl/TUNIOm5esX7t7qlRK6yZPPmD2FSEvwhTEqCP4RJSfCHMCnL06nPyNNABQkfZV+dLv12kmGjdQlDTtVlhl//W/ZY7JumXm8SPspMa63eF07b+bM90n0rDD45FQeQjFyYetJxyAbWJPxG04Ar6L5IDKpPYGv16cI6xupwjx1i6HndS1xl/akv3wjdQ11ZDW2Rcs+bP4RJSfCHMCkJ/hAmJcEfwqQsElgc5LH+cmlTnZTb2kAYFcWZBKSkYnXIgjIdJblaa+2Wq32Wl3vA9WtXEl2Qe/r1VobXDhOD9wMRq+m9Emcq6da9UjaftqtO8+XgjMF9KQ+1wDm/RVQKyT31YByV9Arda2XE6kzy5g9hUhL8IUxKgj+ESUnwhzApy83GZZ0VJOf2pz6X6Hll4TearPqlYIZIW0l1YLeSe6NpqWKUYfYSDXi41+AF/C5LAkr4aCryB/RW3A5KravTciXZKNhwGav9//R91+qPNxB77nunzNSalNT36TpwGIeGruDi3Lyix6Cy+fbKvGWvwBDClCT4Q5iUBH8Ik5LgD2FSlvdXd92isueqQoQTfgd93SjoVK5ZlDbVAQ3MVitm/Y0oD7AAKkWW9LnC10nZKZtvh2y+/WXQW1HngvvKTMkNsu+wHaf+QjRSsL3iXlFKFt95yvrTc6eehzpGCW5J3AeUxbfmku4jhOFp1d+rm2J2aAhhAhL8IUxKgj+ESUnwhzApCf4QJmWRlbzAFq7VKJKjs2ujnFvzPwNs2Ii1K6TTepxzLYVYZl771T8cb0VHyBRUbPeMe3XG3yhvPW5dRx2j+hXoGeNQIbyK9FmlSN9iv6PPXxX/Par2kbjWiG78A1BN5b1CrLXW2o3+4dJ2536738DDkzd/CJOS4A9hUhL8IUxKgj+ESVneMlVGcPLJYMqNRCDrsvUTVRRGolzPDZmmz7ZmsaRrK9nEyUeq08dI812xOapqyUfnQrkHCaV7peaTSu+uCkjtQ3LvHhKwNZ83m7Xys0gNX9dq8pW2q2PRY3zAfW6ttfWlJgfvcGmv1PCWewkh/ORJ8IcwKQn+ECYlwR/CpCzPmtijqSvK5sOa5N5rhJ8yBCkbldr0hqyxat3/SJKJagNInd9B1wEi7rkoznTOqkNvrbUjGq6eIT9FdTrTKOuzgrIxRwLxUpS7V8rIU+ZeceqOUGPVj5e+sepoYs89Hvpv1UsAx3jepJ4/hPBrEvwhTEqCP4RJSfCHMCmLmzXW5N5b1j7vR2O2++2qjULlSVgODEFzUxQnI7EkzVWVg9ViW4kgZZLdUFT153cYlMFqrPmh9WvVpq7V68CyWtxnScXdYMoQMwRxr3WEknsPA0n6ko+4hr+47Lq1R0xSGl2vr9Y33ZoyDv3MJ8MvhPBrEvwhTEqCP4RJSfCHMCks6f2xGQuf2r6r03mqPfw0jns04vklKrVtzRJK+5bkVJvBBYvvUNKp32/1hVM56WXtc3mChNK5HFn63X/f5g1TmDTBiRKQynXUe7BHpdbK3FMJ7Q4luN8jc+9Xp6dubQ8xKPncWmuHS7/+CZ/X9Vb/v7z5Q5iUBH8Ik5LgD2FSEvwhTEotXalZvFDE6fdk9BODxD+OMcaY5aq0q2aXVUdsK/utNQs/XQtlly047ncY0/wt1jS2+4Dvu1cp8aBM9yP64UkC6r6W5WxR7ukavmpENz6vbSVE9diqr6P6KD5i/PkRzxivw+CZfUbAPGHfV7wxtb6FIYQJSPCHMCkJ/hAmJcEfwqRQ+Em8MBkMIuc1GYMciiGx+IYMMQlEHaNkjBiXJ9c+r60WHPc9fpe/QRLbA1LqnuGLbje98HneeNDF4/q2Wztt+iOX5Kze/+q9Up9BTcWVsGttVAYNiVgcqCHdq6zP6rAQTrXmnlvbQrqOsjQr5M0fwqQk+EOYlAR/CJOS4A9hUpaqeJFP4TTfgawQp8E00i/F5Zu1klAdSzUL7fO2tYxDF+XWssu0pumr18UZJ6dBgudxc9+tqbz1Ub3+IAGrYlDX627V9xnUsYymSGtV5bsUdOqPiJLeNY7xjJulY/lw7vv6bU97bGnZvF339/C8wZ5ekXgbQviJk+APYVIS/CFMSoI/hElZriEMqv3sqtN8D4OBCtUBHxzQAV4zQbeyj1VRDLXma6ZSXW2nUs2t1lDaLAF1i6w/rX3XrXxmBRH4bt0f9y9Wfdnq91h7PPdrOmddW5faKuPT90VPzjXeefeQiO/RM1HXu9ejrZ1xONtVHwcfWi/8drherbW2x/pyrk0IVhZi3vwhTEqCP4RJSfCHMCkJ/hAmZblDWaflVVEsQNjt1P9tgOQgS4yLZb4s/R3IoZe8ZuJsNbtQmWjqAfdh3a99w958ug48xDJfMfGy3/cJsngHkffY1M+uP78TrhelKaSbsvZaszC8kfCD3LvDfih8cU81JEPTk9nzcsDxjGumzNSTBqxgqEx5zyGEnxQJ/hAmJcEfwqQk+EOYlAR/CJOysEEiLK4nzfT2Uob88dzXO7dm8+0025rZV4PE6r8Ums7T8M/F6J+CC8ywxPARizvUxWsSyxPqxvfqs7DuF9XUc9RNofpG0OeVtnvA+GzV/YsNLLz+ARiNntLdqv4ZctSGGg+O7Z7RnFbPO3tnvAL9u/Z06v9d079oefOHMCkJ/hAmJcEfwqQk+EOYlEVCTBLwBmuSgEp/XFAL3lpru02f9ikxUW32yHOBvBRqMsnpPKPeAkojVqNQCLEjUjSVJqsa/x8G1/YlTxBQI+Wm1NQj7sHHFaQk7p/k3n4w6vwlEn6auKMa/9bck+EZ57JVM1ncagnfAz77kRK3X9Nz9xre0hMjb/4QJiXBH8KkJPhDmJQEfwiTstxAiKk2WrXImpzChouDLKb95q5be6Yw6tck927XfQbcHdZUZy8ppUaKoxHU+s5qA0+xx/H8Es0x1dTzAOGzhywcHYmEmjIgJbW2WKsKKO1jj+dBAnn0jOl5VBbiJ9zWLZSoGmHucH4f0cPi06WWeTeC2aU47tO5Px6NkM+bP4RJSfCHMCkJ/hAmJcEfwqQsGoF8zaw/TIvBb4ck4IirTU2IfX966rfDvt+tb/o1nJ+EprKvHrHd7hWChg1FOZWm3+4IKfVLCCOJM8lCfd+oGWlV+ClLT+XJklrKdNS5HBqEH7L+ri9+7jTJR+cnkfcB5/IR92ALuadrQ/FZzF5tzZJbDTx1bUXe/CFMSoI/hElJ8IcwKQn+ECZlkciTENEaRx0Xp6G01trX6Lz2gIy1/4K0U0ae5N7PsCbpJgkobXJGaWxr9ek+1Z5tz5BD7I/HMlF89q2lo9i3sjG1n+q1keiqvp2UTdlaa7etf540jltTkyQ5q5mgmpCj7/O4cZ+LytNZ0rtGht8pGX4hhF+T4A9hUhL8IUxKgj+ESVk4chhwqAW4htx7p4EWbSTEIPeQxfQDxj6r7HjU2+0lyvAale8KyUHlnGlwQ8P58doU5ZDOhaWfg0wwSSTJvSdktj1jjLQk5w1KrS38aqPPR+jtdsXnDtlzrT/GI2Sa5N72/OVDYEYxWRV+Kt/lKG/uJYTwkyfBH8KkJPhDmJQEfwiTskhqaaiBljSJ1JLsbZNIpaXcSw1ZbJxO23/206UXiI8SWhrk0Sy1fCVq10LSR0LzDK2ofSgzUSW0rXlAhzL39qfa0JXqgJUqzDYc3JcdRNc9zk8S8AFDabgXnIrOWaW/1anUrdWvmWLQ2YUhhClJ8IcwKQn+ECYlwR/CpCzq9yaZ9lwsg33SNN/h7iHeIGgeIZE+nffdmqYLuwwW02Uh/DQwYsQVrE91aIey2K6KfRTdExDCCD/zF2Whtdb2KFGVyNtB+EkCXm/wTAwE3UtG8uslo2xFPd87GbpiObHKgc/tul+DYNXaDpmqIzQp+wbXtjqtOm/+ECYlwR/CpCT4Q5iUBH8Ik7JoWIX6wlVLY28xQfUy6HsnRfM9xNv35123xuw7yMJnyA/2YcN+VS45ug4SdJJ76oWo7ED1R1Q/OmWmScQq62u/stBUNt/uhMEUkHu6ZkeU+ep4JGxvi0NXNPjk8356NLFYpdbVZ34pl1rXyoFH57JBbEkCSgzvUEKdN38Ik5LgD2FSEvwhTEqCP4RJWT6depmmDC9lWlWHEHyElGittUPrZcf3OJ4fTtv+s8g4u9v0mVZ3636NUkqZjtjuNaWoknu3uBYSWLf47B32Ldmkkmxlten8Wqtn+AmW72IQi7ZTFtodRBWHygwGXWhKrzJYqz0qdb1VAs2y2kEJ9UtGWY0cdELZ2F9H94QMIUxJgj+ESUnwhzApCf4QJiXBH8Kk0PbL7FZHS8tojibfaOLLp2N/PEotlanebnoz/H6569Y0LWbUzLKKbPMD9vOAseQ3Mt/4XdZ/JvL1e1yb6mjp1jx1R1zB4stUy+JX+xrYZveffc0Un6rZr04LUor1on968DzoBipV/PP6l7+rFb9584cwKQn+ECYlwR/CpCT4Q5iUZXvqG2FKplUli9JkRwJJIk9NIav14NUJMj+7uu/WqiOjKW1aa1+tb7q1b1d9avHDBWPEi67xxAaQaHiKtGlNMxo1vWR/AUg7IeGnlGhd26NGS+M+L0ynNSeORO+XJBYl8m6VvswU6/56HdCbYLPWuHDLy1Gd/0t0zdybIoQwJQn+ECYlwR/CpCT4Q5iU5enYSzeOm4ZskvCTYJMEbK21w6nf9hmfP53RcLGYpXU69BmD4tvrd92aJOAdpE1rrtOv5pxJu2n8+ROu4xZy7xHNSNWUcySQqvKT9eXK3MPzpH1owpHErsTgeXC1JUmXiyYp9VLyFmtfQdjq/qnnQDWrcVj3jwa1QnJPEjBv/hAmJcEfwqQk+EOYlAR/CJOynCEHLkVVdR6UhL5Ewq41Z+5V5V61BPeMU9F+mYWIykqJk9Za+wEjw/er/jtVlik5pCFHahSpEdTPvKf9ZyWgWnMjVE3T0ZpQJqFEV7U5qu7BcZCtqNulctsbCT9sd4+1Lfat0fCSrlU511rjuVQbc2qyT978IUxKgj+ESUnwhzApCf4QJmVRCaZk2o/d1681yw7JvZEwrBwP+8IVs9B4HTC+vLVBT8FVTYhKxtxjTaJK6FxWF43yHvWK69d/tr7t1r5GGbNk1Uf0atS0Jj0nWjvis6PpQ0IjrI8XZG4WUzT1RLCsFmuSs8NSaxyQzkX36rfXfS/LvPlDmJQEfwiTkuAPYVIS/CFMyiKZpmywqnR7DdXMvapYlLzcrGsjo18z9EGwpyCyBinjsG8JP2WhCWX98Wf+Fbf0DsfzgBRIqd0jSlEl8vZQZzsI1teUjeuZOKIsW6XaW3ynsv5U7r6RYMVnD5DPI3kpUf0tRN4ft/fd2l9dfujW8uYPYVIS/CFMSoI/hElJ8IcwKYvKW99SQsteb8MhBFjHkvZNuaeBCpB72q66NsqKE1WJqDJfTnnFmj6r7bbqKYeBEa1ZGOruH2AMq+esbDfJPQ2V0XThkSSTYD2t+211X9WXcY1rponKd5ChO3zfa3rrPaz7Uus/an3vyb//w3/rj+fv/rK8nxDCT5wEfwiTkuAPYVIS/CFMyqLBGaKaPce1Qa+4kQj8UrQfTZfVwAitqUfdqKy2WiasM1bmntausY87HM+52CdQJaKfjxGDJCToiimCEoN7yL0nlP5qTRl+o7JxCj+V0RZLa9Wb72tMY9ZToqEk1xCDkrittfabq75U90/2vRC9+9s/6/f9539TOsYQwgQk+EOYlAR/CJOS4A9hUpjhR7lXFEbVLLvRtkKyiUMfsB8NoHjY9OLkPdbUW0/irLVBNiC2lbTjRNc3lBjfoJx0rdJRTSVpnmyr7DutSQE+YWrwFiJvj8w9DVPhsJdX9PDT8y2JqOPZLf3a4+a+W1N2oFCG30j46dnZqIPgCTG91KRkCGECEvwhTEqCP4RJSfCHMCmLes9pidlOEC/smTcQS9WBIdXPKpvvDmWQkntfYQBFdUhGaxZ0t8jSU6nn5g2ZjsrPxPiJdgUJeDsQS0/YVll/moyrIRRPEGeSadXefJJ7nLLc3Fuxyh5DV3SMu6WXl7d47qrl4KPpx+qj+K+bvqT3D/7pn7u19e//S79WOpoQwk+OBH8Ik5LgD2FSEvwhTEqCP4RJWWTXZUjXqhuHdVV/gLdOw1Gtthopaj9X+AfgHtNZbmDhVQv+mrrxhenPSp3+cfsaKNH1Sv9GXPzb/w5W+Yhn4lisgVftvqx5NZVX2+lZbG0wBr74j5LuqY5H56L+EFfFSVHarrXWnvHPxz9e9dv+1j983a396Tc/79by5g9hUhL8IUxKgj+ESUnwhzAptaLjNhAqxRLqH7tR54hqTbcaKWpNfQRGjJph1j5bozwNB/X4Su+9H+x5jdNW48p9q6beVoVfTQLqWRyl976mzv8lF1yzM64tm39iKpBS38XoWXpca3pRn1r86ea7bu2/f96nAefNH8KkJPhDmJQEfwiTkuAPYVLKwk8oE/B01thmy5gqVZnmBpCqEa9NYnkNkoNv+UZl/emXWvX8WmPW38Bn3nAKUJ+xtl319/VX+L4DMvzeIveqE3da8/PISUrK5mSvC42v1/OJ5+5ce45HPQhWrZd722MvAX/1/Nit/ftNn/WXN38Ik5LgD2FSEvwhTEqCP4RJeZvwU2kknMYwywoeUOJFulAyZjn15Y07NYpEaaQy/JRRNyq/rZblspxUZb6auoPvOyLjTMLIZdo+5lvs+zuUPH9C2ep/YD/K5mOzTgi/qlSuNn4d8ZbP0+NJfBcb1o4yS7Xt/oSpQsdeDH44bLu1vPlDmJQEfwiTkuAPYVIS/CFMyv8CFo3FAqTI+nwAAAAASUVORK5CYII=" y="-17136.003207"/>
</g>
<g id="matplotlib.axis_959">
<g id="xtick_1438"/>
<g id="xtick_1439"/>
<g id="xtick_1440"/>
</g>
<g id="matplotlib.axis_960">
<g id="ytick_2396"/>
<g id="ytick_2397"/>
<g id="ytick_2398"/>
<g id="ytick_2399"/>
<g id="ytick_2400"/>
</g>
</g>
<g id="axes_481">
<g id="patch_482">
<path d="M 29.174375 17404.824394
L 151.464375 17404.824394
L 151.464375 17277.530867
L 29.174375 17277.530867
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_961">
<g id="xtick_1441"/>
<g id="xtick_1442"/>
<g id="xtick_1443"/>
</g>
<g id="matplotlib.axis_962">
<g id="ytick_2401"/>
<g id="ytick_2402"/>
<g id="ytick_2403"/>
<g id="ytick_2404"/>
<g id="ytick_2405"/>
<g id="text_121">
<!-- 656 1839-60619 -->
<g style="fill:#262626;" transform="translate(15.789375 17384.881068)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-54"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_482">
<g id="patch_483">
<path d="M 164.424375 17404.824394
L 286.714375 17404.824394
L 286.714375 17277.530867
L 164.424375 17277.530867
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_963">
<g id="xtick_1444"/>
<g id="xtick_1445"/>
<g id="xtick_1446"/>
</g>
<g id="matplotlib.axis_964">
<g id="ytick_2406"/>
<g id="ytick_2407"/>
<g id="ytick_2408"/>
<g id="ytick_2409"/>
<g id="ytick_2410"/>
</g>
</g>
<g id="axes_483">
<g id="patch_484">
<path d="M 299.674375 17402.322631
L 421.964375 17402.322631
L 421.964375 17280.032631
L 299.674375 17280.032631
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p68537d9c3f)">
<image height="122.4" id="image5c40e6fb4e" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAF4NJREFUeJztncuOHNlxhiMzT1X1vdlDDKEZ2BpbsrXQ1ktvDL+FH8Ev4Bcz/ABe2itvtPNKhiiI4Awvze66ZpUX9HjR8Z1BJE91U8P4v2Ugq/LkyYxK4K8/Irph9u3BPpHOuk/96MfPd/7zQ9e72Nls4WJX8zMX+2Zx42K/nvnYr+zEf9/Bn3fvIma3HUXNXtnWxd5CbHMYXWw0fwvWcNz7ceVib3YfXOzDzh+3HmEt487FzMx2e39uio173ouHHOD6os/O0Pv70sMzMuuH8Odbnlu6FmJ/iB3XB3Ogxnjw94DuK92/+FmEEF8USn4hkqLkFyIpSn4hklKi4geJc62Q2FEGL9zMh+Jip8Pcxc76mY+Z/77Tgz/vtddDbA6izWLg38t3EN+AyPJ+v/bHgbi3PnjR5n70n12BkEci0CEoQE2Bngk6T8szRsJZB6LbviLEFTg3iYAE71lsjX0wXWhvamIhiY3boBCLa4wsUAjx5aHkFyIpSn4hkqLkFyIphcSPFnfSFEjsIHfTvPeC3wmIe/POHzfAGmcg+J3v/TXPYB+WFSWHruUeRLsfdncuttp70W4HIuBm77+PYuTmontaEwGj9/9zQcJX7Vpa3IUoaML38Rv003Ojtv/RexjdH735hUiKkl+IpCj5hUiKkl+IpJST4p1yVBK4B9cYwW6nikgGcTo26i4coQh3C+tegyBCQt4OdJdlZSkbODe59O7ApXcHJbjk3IoKOeTwI9cXHVf7zimCYYQWxyitpVZevO9jghgJzVEHY1Tbwz0kZ+ITuTH15hciKUp+IZKi5BciKUp+IZJSLma+n919B6WjO+9Ci4qANaIOQexTBmLaEpxy7zofew2OwX0HpcSgu9xVevitYY1RJxldH/bMC+53iwhoFu9TFxbEPiPh8ma4VT0EO+opSGW5sIfRe1DLiwOtB0VzeqfDefAsQogvHiW/EElR8guRFCW/EEkpBYYdzEAQG3saDvDpvcvM4k4tGjjxofOuuAF+ywoIeSSo3JsvEV4Ee72ZmZFGdt7577wuftgIleWiODTGxKtaP7un4HOJgDWREp2N8Cz3MLSlwMNMzxO5A6PiLL1+D1BebmbWQSk6DviI6X168wuRFSW/EElR8guRFCW/EElR8guRlHK/81ZebAD5CApy1Ia6Bmtx9LNRm+Vy8DbnU/P/etAEIDO28l72vlfCajh1sXWJNfBEOy78u0LKN3628tPPllM+9iE4YefI056mNI7F5wSubwDbNj0npK5jn4WGfKnZwum6yfJLN7aHG6g3vxBJUfILkRQlvxBJUfILkZRyv/WCX7RZY9jCWAXOA9bGfRezsEYnzZAYszp40e2yX7jYFcTMzC7AyktSDAlG0RhZsaPi166DCUDQqNWM9zuqX7UIg/x9wek6FZEsKjZGreYb83uGFlvgUcak49QruGbsVyCESImSX4ikKPmFSIqSX4ikFBJ9PmcTxpHq00GAiq6x38UEH6qp3w5QZ18q45ODZdU0xWcLbj5iBoJftH6e9rAmhtHY9ugUn6gwSKJUuHFosJGlGV9LdPQ2jzqHngoN92UK0ak7dBztmd78QiRFyS9EUpT8QiRFyS9EUkrr1J2ngMSKaNkqObKIsKBVw1f/4rpvR994lMRGIjpGmkaVE9XJMNAoch91iB159HarSIbOVNgf6EWL0HSeaOnvsUuba9+J4p5GdAshfkTJL0RSlPxCJEXJL0RSCgkiLcLEFIHmMQSQh2yD/Qij4h657MzMujF2Lctx42IkGEVdbNg/joSzCT3l6DxDUHRt6fVIbyJyfEav+WP8uM8YCqx0/2gPQQQkIW5KD79oDkXdgUKIBCj5hUiKkl+IpCj5hUhKiTqEwjy+hlclKjaSE3Bn0OMOnHcrGBduFt8zHMbR4LKM9lbEoR0VSFgK99wL7kNUGAwPIHkEWCSjUt2YEEfOwikiHp2bSpaxp6BGdAshfkTJL0RSlPxCJEXJL0RSypR+aCEmGLyirjMst4XjogMj6LTkBCTX3tB5h97HrwSnZFT8Cgp+0YnD1HuuZWrsFMJCXrCEGst8Jzj8iOjzjU7JoLgXFj5h2VMGkOAzAdkhh58Q4v9R8guRFCW/EElR8guRFOg8x0SnpU7yXuHMh2OLgMHhEBAi4Wy5Y8GPju2DJZxRouLXpN6D0fPgfn+6+y5adsyi2+cbKhOl5R5UhWv4Strv2AgYvfmFSIuSX4ikKPmFSIqSX4ikoODXIqa1lIOaNZYTB+H1gLAE9qvatZDTjlxe6LRqKKuOCojRwSc1ouJeS/9A/L4ncib+HDj25F+9+YVIipJfiKQo+YVIipJfiKSUaClqVARsJSrwHHuN0c92lfWhWEViHJVwBktCqV8blYS2iq5RV12LuNfqQnwKWsrdo0Ic3VNyhtZoEQH15hciKUp+IZKi5BciKUp+IZKi5BciKWzvjVoqGwXbFutmy78Uf27gPw0kKsM/CqQW01hroqa4t4wwj9qSB1Kpu2BTT/gf5nPe55/rufXmFyIpSn4hkqLkFyIpSn4hklJIMAhbGB+h1rpJPDl2KwBayhONIG8RAaPUputE70G4NwHEcIw0QI1Ro7EpHH1yFRAeNz7hlRwena6JPUKIH1HyC5EUJb8QSVHyC5GUcAPPnwNHXzfoPdSo08xsgN/RqBTXMsWntp5jExXyqA9B6YdQjNyK0alJVbci7M+xxb2WmnoSAWviZbQJKx1Hrk+9+YVIipJfiKQo+YVIipJfiKSER3RnhJt6xgU2nNgDsfBocVpPsLFm1I1XO5YcedFJQyTkzQf/6M17H9t1Xvyi66uNBt8Fb9exR6dHmSJShx21wUvRm1+IpCj5hUiKkl+IpCj5hUgKCn7HLmWs8XN0EtbWzEIgiWT+KBQBow6xhuM6EOLMWNzDWOXzD0E3H3xf6eC4wR+3PXgRcBi3eO4Wh1908hFNcRrpeQiWiLfmhSb2CCF+EiW/EElR8guRFCW/EEkpTaWMQStRzZn0VMLiQx5DaIyOq2bDWUyUwvMGXV809rnWR4/cd3Rs9P5FBcQZCIPEop+52LpnwS+6HrpmgpyEVIK7hRiJjzja/RF6YxJ68wuRFCW/EElR8guRFCW/EEkpUWGJiPYum3KOKaWnD4mWtz6Gq4pA4QZCLAI2TF8N7mFNYKPSWnLpRXvKESggwvfRWobiP1s77xqcf/SdZ2URWs96779vOfqeguudP47Wwo5Bft6P/YzqzS9EUpT8QiRFyS9EUpT8QiSlyeGHQtyE7yNhowxeWIo6vzbjzsXIQUWDLkgwwtiUnmsNYmNUJI3ePzqu9lkS90gk4+EQsaZ56LKDc1wNpy62KP64y+KPMzO73S1dbAbnuRxOXIzEuLv92sVK589BoOMTzlHrO3jsZ1RvfiGSouQXIilKfiGSouQXIikl6p5rEaBqvd5IyFsMvlyTYiRqLHvvtKKJrgZDUKM912oi2bHLMMPfF3QMtrrDwn39DrH3SVTc+3a4cLFvOu/GWw6skv1x8GLcFkRJupbVwQvIG4hheTL0I9wG+yDW7tWhiw0rCZd5h44SQnxxKPmFSIqSX4ikKPmFSEq4pDdaaovusEp/tNNh7mLnxTutTqBnGw1uIEg8WcFx3T5WnlwTUz5XL7Zo2XC095wZu/TIiTYHAWsBDs155+//ae/v/YvhzMX+2rwI+N3Wn3dXeYxPofz35cG79O4OUIIbFPx28CxG95CoujaDAnQP73R6TvTmFyIpSn4hkqLkFyIpSn4hkqLkFyIp4Xp+siFGJ59Qc0Qzs2ezcxe7BsWXzrPce9tuVHUltp3/LKn90e8z+/P6B4DWTVNlzPhfgMPgv5PuC6n45xC7Aovu884fdwH/wlB3B3C+mpnZSdBuTFbeFTTrpAaem73/LO0t3QN8Rmr2XlLsaYw4f9h/Fs8ihPjiUfILkRQlvxBJUfILkZRSq7V/SHSkMtXeX4Bl14zFvWfQSJEsyLTq7RATWUjkLA0CzRRaP/+QqICI4mVlLVFrKvZugDtDMWIH53gPSh71c63Z1NfB/aHri4qkPKIbbMDBsd01ovZgNfAUQvwkSn4hkqLkFyIpSn4hklJIyGuhpyk80MzQzGwO8VOo/Z6RiNTDBBoUBmNjn6MuLXJ4mT2Nc48IjyUHasdFpxyRgLXq/P4c9v485Kjc9D52D8e9g/t3WnmPbeG+1NyAD9kHJ+TQcSggBsXemrAXvq9q4CmE+CmU/EIkRckvRFKU/EIkpUwpUXXAR6mxJolpZixMzOH36LrzrsFzKOw8geaRJyAg3h28i5DKN+9hHDONfDZjMSfqiosKOSwEwXnhqEmjxeG+kGPtbvT7E51oQyIwNfp8P/jS3zN4Hp71XDZ+As/JGBTyqEQcS3UnlOU+pEWwNdOIbiHEJ6DkFyIpSn4hkqLkFyIpZTfGJt9grz/46diOMOVkYMGPRiUXcORdH7xo04OQcwEi0jWUGK9AyLmHcuBX472L1cTLde8FQyzXJDUu1kaR+wdSKDrNaML0ofXor4/WEx3l3VP/R3DuUa9G6hO4rDxjl3DsDtZ9H+zXFy3Vpb1pEeeO8fmH6M0vRFKU/EIkRckvRFKU/EIkpbT0gCOxaeyp7xmLMSTmrHnkgOPs4FWys6AwaOZFwLdQ5zkM/hzL4tdsxkIglXqScBod7nGAa45Je0ytdLQ2zMOdOyj40dh2iuHzRKXE5CIFZ6GZ2RIEPyr9vhv94PblCM8nCJ9076OOT+KpysP15hciKUp+IZKi5BciKUp+IZLiLVWNkNCxApHEzOx29OWxr/c+dgnOrxlMdH0xeiHn651fzwyEl+8LlH7CsJG7culiZlzKTOLXCkSklcWcZNhTrkVEqnyUHGtROuitiINTQLyka9mBQEp7s+njzksS/MjNh+IeOFjJJRsV7UgArg0gwXsNh6qkVwjxkyj5hUiKkl+IpCj5hUhKIddRT+W7AE5+BXGHhBMzs3dbXzL7BxDJurlfz2K4crG/PHjn3i/M95mbDeC+Gk9d7Hrwa7mC/nFmZjcwcZgGhtDeRgdi0H63lHlWRSkyc9LEYhDtUMiDoR0kDEefO5wOvOf3GAmBdF+w9ySIe9FS3WheUWlzjej9Z3ch7Hf4zEKILwolvxBJUfILkRQlvxBJKSzaxUpRSRkicad16igNc3jee/fdsiLGRSBP2zbYW8/MbEZDKMCZON/7GJW3RsWvxyAqYEWnzvKz4yEhLkrtHNw/0B9L14e9+YLXHBX3ZnDva9eCYjGshyYg07XozS9EUpT8QiRFyS9EUpT8QiSlkPOnZZIs9Zmr/cSQQ4yECZqg++HgY68Hv8Y/7WDK6+iv+U3xi3zXeYfXslLuOgZ7D04p4YwQ7QtH55jSKw6FYbhmEnzp3NjLMLyaOCSSRQXIloEYdM1DD4NKhpgAbMbiJTkOyZlILlu9+YVIipJfiKQo+YVIipJfiKQo+YVICjbwjKqcqFxPULNJvaRjSdG8g2k/fype0byY+0afF1D7/Qr+KXgL/yisKpNhsH6b6vmDyj59X7RGPPa/g1UbePKhsb4B9G8PPRO0Dy3/etQgq/qxIdsuKfsnMC7+pPjnc9GzTT2q9hdoWkrozS9EUpT8QiRFyS9EUpT8QiTl6BN7iKidsgaNZH4L035e9t7KO8AEmUuovb+FGugPNHp5gkoWFbBQTItOfIFzFBCbUJyDseRm8Zr1lgkyYWHwifoaRO8VCXlkxyXb7lnxz+dl8Y1ja4IfiaQ0mnwYY/dfb34hkqLkFyIpSn4hkqLkFyIpYcEv6txrFWionn8JY607u/PnJndg8eLVMxAGyQm2iXvl0H01gGhHbjASY6J1+iRARfsx1IS9tn4O0eavMaL7MOW5i/YXoOaaJO6dgkvvcuaFvKvipzpdQSNaagZrxuIeOV2j6M0vRFKU/EIkRckvRFKU/EIkpcnh19oIkcoR9zTOeQtTSahJITT6pNiH2YWLncK0H7q62hUP1LCxoaS3pXkkES2/NuM1Rh155Ex8jFLdKOiAHLygRuLeDCYukbh3DULe89mli72AMe6XkILbirvz7cGLeyTZ7oPuUL35hUiKkl+IpCj5hUiKkl+IpKDgd+ypMrXyVHLzEdSRbE3ljSACYgycUiTQnPde3Jkbu69IZKHrpik3KHwGRRvuHejBUdWVyTB7+Ia+g+k8LRNtGlx/U85LDsiouEdluVRuezZ4x+jz3jv8vu28m+/64NeyqjhLoTrdDn1sL8g1qDe/EElR8guRFCW/EElR8guRlBJ26ZEABaF4EWylt1tD7zoSzrYgKlL5Jwk5884LPiScmbGQRwM+7se1i22gVyD3vYuVy9Iap4yCJmhvo73+iGgJbvSe1kTAqHgdHUpC/SS3ECPBdgEuyau9j51VSnqt8wL0ANd3DsNBtrCPevMLkRQlvxBJUfILkRQlvxBJKccut5wi4jWVrQaHQ2xHH7vfetHtfuZjp+DwG8HpZsauwVsYLHK79TFyIbb08FsUL/hczXw5KU2NrZ2bhC50JgYnCccFWyjdHr3nk/bQjIU3cpZGBT/ivvfPzvsBYgUcfiDOnoAwaGZ2A+/q8867C0lY/JuNBD8hxP+h5BciKUp+IZKi5BciKYUEIxJtwkMbJkyxbSEsFoJ2QuIQCXHklCsV9xX1CrzfgbAIMRKgSCQbwJFH4t7N3Pco/Hp+5WJUsmzG938Dgl9Lvz5yxa0PsIfgiMTvq5SHH8CFSJOWqXfkHqYYk2OQhsp82Pt1v4Xru4LniUqqzczOQMj75dav8e//4qWLPf+Xf3QxvfmFSIqSX4ikKPmFSIqSX4ikoMOPeoWRr+3YgyWeChLYbjde8CPHWbWkF44lYZGOIxFpDj3lSNy7LL5X3C/mz1zsl8ULfldQsvxxjdR70MdmVDoM75MtPD0kfr3e+3vwPTyfK3D4TZnSG+17iD0YQUAk9yMJwO9hou4buM8DDJAxM7sCwe+3i3cu9vyf/87FZv/wTy6mN78QSVHyC5EUJb8QSVHyC5EUHtoRFAFJGJpCy+CGFkjIiZbVNgtLJO5Bf72LmS//vJx5ce958cNGvgNx72/Nf/arHV8LVZSS4HsGwQtwym3Axfb7mRe1/hvcppvBi2nv+3sXqwmxBAnVdH0dOPxQBAQRdwni3rv9ysVOQHSdwT6YmX1z8PGbr/1e2MKX+e7fvXIxvfmFSIqSX4ikKPmFSIqSX4ikKPmFSEqJ1mRTjHoBtExxmcJT9A2IqsJmrOJj40qI0Xjoc2j2+Kycu9jzwav435hXe/8K5py/AJvsFM47/w/J5cKr3CNMpblc+54DW1Cp3/d+H36APgS3lelD4YlUwR4W9Hxv4Z+iD51X9imHoqPYzcy+Gvw1vvzDtYs9+8//8uc+9/8A6c0vRFKU/EIkRckvRFKU/EIkBev5SSQh8Yrsqx34gFvFOZxe0zLsJzjWmgTNKTbSKHQequcnK+gpxC7gN/1m9DbZG5gq83E91LjSx85OvWB4+ZUXuvoZjKt+6dezuvd9CN4u/KShNzMvFn4Y/XnNeLoPiXYo7qJ9Pda3oYWh8k4+L/5e/8fgReDzf33jYt8d/t3F9OYXIilKfiGSouQXIilKfiGSUlD8Cgpd7ICLT/uhc0ddVSMIL/TZqLhXwD2FImBF8IsKotFR0Mdujkqrnhf2K87nXsAaBn/syZkX0xY3XsgrN35vX5zduthvfucFre9H36/g9eAFv3cF6tqNp+nQdJ8dCKJ7qNM/ULMD2Fw6Rw/C4LKDun/oV2Bm9kcQgX8HuTrb3LhY929eBNSbX4ikKPmFSIqSX4ikKPmFSAqO6J5BeSQ5AUl0A3OY2ZRGnSScgbusx/JID4+6jl1zCe5DDXLFkXhJwiDtLV0fTdJZQ2xHTVl7Fvxmcy9WUWx+4WPDpd/b/pkvy53PvVj44gcvAv7q975k+X9O/Pe9Kl4ENGPn33r36a4/EmyjI+3pszTth0RKM7M3nRcCSwHxukDZ+MqLgHrzC5EUJb8QSVHyC5EUJb8QSflfuG6tXry9raUAAAAASUVORK5CYII=" y="-17279.922631"/>
</g>
<g id="matplotlib.axis_965">
<g id="xtick_1447"/>
<g id="xtick_1448"/>
<g id="xtick_1449"/>
</g>
<g id="matplotlib.axis_966">
<g id="ytick_2411"/>
<g id="ytick_2412"/>
<g id="ytick_2413"/>
<g id="ytick_2414"/>
<g id="ytick_2415"/>
</g>
</g>
<g id="axes_484">
<g id="patch_485">
<path d="M 434.924375 17402.322631
L 557.214375 17402.322631
L 557.214375 17280.032631
L 434.924375 17280.032631
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pf98823ff58)">
<image height="122.4" id="image3b460d0e8e" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGRJJREFUeJztndtuJVlShiMP+2i7ysbd1dOHKcG0ZkatkZAQEhdcAEKId5jn4HkQDwBvgMQLcAWaq2YQM0KannF3dbVP++DcmZsr+sLxLSm2s+yqrvi/y1Dmzsy1MpzS7z8iqrr9eG8BqqryMfOxtm58rPExM7Np3brYrJ242LKZudjzydKfW/lzd/ve30/l7+e88b83heNeDxsXMzO76C5d7LJbudhmd+did/0uFNsN/lmG/YD38y7RwDtxMl242EeLUxd7OTt3sU9qv1cNvItmZr8f1i72P3ffuNjvVt+62M2d32tab8oDypcaYkQ/8J7uzafqfh9KX6R+8JlCiB80Sn4hkqLkFyIpSn4hkuIVtwIkLJCocYgo0YN4QqLWxrxIRswbL/hNK/+Ix83cxZ7VUxdbmheqmppFm/3EPyMJize1F5FW/dbFqs7H9jtY2+HNikBjiQpdJAyTsHta+9i5+b2aFAS/vvZrcQH7PwHxuan8tzH6LBSbQIxyYLPrXMzMrAMRmB47uv/68guRFCW/EElR8guRFCW/EEkJC34EiXsDiA0lxxL+Jp1f+/NRLAQ33/PWu8HmIAI+B3fg0R4Ev4JLaw9/RpsWxCEQAUlEIuGTXH+V+XWgfXmb1CCckfg1r2EP4BVdgspVEvzmsN4z2P+m9vdIzlQSARetFyDnjY+Ro3U7kLjnnaFm7C6k9ySKvvxCJEXJL0RSlPxCJEXJL0RSxgl+IM4NIEAVzwd32lCB4AdCB8XIXUYsQPA5AXHvBP42toUl6+C+OxAq70CUXFXezRd1iGFJL4QOEQHHOASpvJUETXQCwrl035tgzMxsBevdQYyIlpwft94xSC5SEnvXA5R4D+DkMxZ8UUwPuv705RciKUp+IZKi5BciKUp+IZIySvAjDhEB93uvTJDgR64qEoxI/KDjluTwA4ve2eDPnYITzMxsDeLQd3sv5uyC4iWJX9PGX2MAoasyL2jRNYrCXkw35VNHiHu0Npd774DbViSk8jv2Cnr4fbe7dTF6d2i9F+DcW0A5OJYIw7d2Bq5GipmxCLyr/V5HXX/68guRFCW/EElR8guRFCW/EEl544IfcZCwBIfuQQQkyElGPfxOIHbe+3PPei8CTah218xekwAJD7MFAYtKkQkqjSUXGrHvyTnJ60ouvSgkzpIzkcQrcvNdDd79+BqOu+l5mArF170XYqmkdwKOPHLpESSwovMOnoXWsBQfs1f68guRFCW/EElR8guRFCW/EElR8guRlCdR+8eCNeLB8eDUFPJ07x/7g51XZ89AmW/2bL2cQrNOUnLJeknKMNl23zWiVl7aF/ovBe0z9T/YwL5QXbwZ7wEp9k3jv4PRiT092dehJp9addK5+J+CA6B1pHXQl1+IpCj5hUiKkl+IpCj5hUjKkwh+0caapWPHiEhTmtgCgsgShKUF1Ep3A/+9XICIOMZ6SZZoHH8eHIlOk5SK18YeAbFnwWadcC7dD1mfKUYNLksWaboO2Y3H7BUJdHd7f490L3Tf6x2Ll2Om83BPBSFESpT8QiRFyS9EUpT8QiRllOB3iJCH54PIEq0Hp8kpJPiRV+qy8sLJJVxjCeJeXxCG6K/oBKKlWu37oDgUHNtNx0UFxLFQI8wOBLrbna+zJyGPBERam9KzjHnH6Nzo9Ch6Zno+2r/SxB5aWxRnKS9hefTlFyIpSn4hkqLkFyIpSn4hkhIW/KLiHokkpXNJzKFGiiTu0eQUata5GbxD7DeDn9hyPD1xsdXOj1kuFVtewRSZMWPEafR2B0IeiXtRN1/J1YZusBHiLolaUecdNS2NjvwuQeXg5NyM/iY6/OCZtz24FXFt+C2jNaO1wL2Sw08I8f8o+YVIipJfiKQo+YVICgp+UaEjLMYcICxRqe6siY0xpnOptPKr3bWLdY0XWf7QLv01CmtzBdehaTNYjgqiHYp7fXSyD4g7sDYkrpqxIEZ7Ra5BdMCBMw1jsAfRaT8ls2L0HqNiGrkDo27MqGBbmnBFe3BIqfZ99OUXIilKfiGSouQXIilKfiGSEnb4jRH3SgIijkWO9uaDWAN/y2goAo1tXvVenHvVrPz9FUY0k7B43a99rPMx6tlGzq9ob71p49cmWgJdgkQyEqs24GKj+0ahKtiiLirOmbHIRmJjyVV3n+j7HRUai+PrRxB1Y+rLL0RSlPxCJEXJL0RSlPxCJKXFIRk0FXekuEdEJ+3iVFVyWoGwRCLLFsp8qdzycucFv1IPPrwO/CaJe9udP45+j/agbWAycevLnRcQo3UtXZumzu6iCh2AghiIs9UAYloVF8nQSYgOv4dPxh0z8AN/75AcGpGX+vILkRQlvxBJUfILkRQlvxBJCVu82FUFB4IWM3ZKL4GCGAgdNAWVXF/kTKPBC4cQLcuNOr8qEBtJgCyV6rp7KUy2jZajRu97TNkpCXH7PYiAhZpeujb/5sPvMTo4Y7RAHvxN2n8JfkKI71HyC5EUJb8QSVHyC5GUNjq9lYSFgcS9oABhZtaDcBN1ZJFYFZ2qyiWmsSEZJWEIJ8eOKOtEwSg4oIEEO1rXErQW0b53dI8kSkZderSn4RJhe5yS2XeJcL9Ncu2+6ZsRQvwwUPILkRQlvxBJUfILkZSwwy8qnJAYsydlsACVwVJPOnS2BQcqENSjkPoJloUzEiWDfeGCQh7F6Pmo/x8xVgyj+6Y1i64jCawI3Da6Tc2sf4cEP3QhHnB7hdm9/idBSB9AYNWXX4ikKPmFSIqSX4ikKPmFSIqSX4ikxEe2jKCkKpPiS0r1BppeRpt/RscnE/Tfg6okK1PPS7Swxv4DQP99GDMZ5pCaeqwbJ2Uf7pGah9I60j430D8hOnGnpJqj/XVkz4kIpf4CDz3OrNQrwR8XtUTryy9EUpT8QiRFyS9EUpT8QiTlSQS/EiRCkBhHU25IwIo2rozWtkdHHY8lOvGFp9xADJ7vMGEp1pOBBNZlM3MxGgW+rb2Ne7XzY9KxR0MV6zdgVpj4ExQ/oyIg/R69x2h9fwT7cXSv9eUXIilKfiGSouQXIilKfiGS8nYFP3IsgQMOR1iDqBWtiyd4ognURRfEFBTZRvRAoFC0BWfUCXgI5NIjwW/ReIffrJ6Efo/EvRaEQRLTSq7NropNGopC70S0SWzUWfpU6MsvRFKU/EIkRckvRFKU/EIk5a0KfgQKU6DZ0fjsMSOQo+OPSxwyRSZ2P3gRR7z5pxfnSpAYR01Uybk3geucNHMXW9ZeGFxAbD14d+d28CLguvfHmZlV0BCWhLfoXkWnK71raES3EOJ7lPxCJEXJL0RSlPxCJOWtCn44hjrYf4yg0dLxctm3J9qMEYyi/faiE47M4uIeOfcmcNxx5YW8ORzXNX7/bkHwu+zXLlYCx5WjV/Lh4iy5O6Mj2x+DaF7pyy9EUpT8QiRFyS9EUpT8QiTljQt+7DjjvzFY1oljqKFnW7BPXVhkCWpuh7j+xjDKrUjiDpw7a71gZ2Z23HpHHrnv5lC+e9osXOy89r93WvG173MFYiE9y2rw/f/MDinz9u8ivU8dDkSJxR6DaL6h6/NR7kgI8c6j5BciKUp+IZKi5BciKaMEv+gkWXKMmZnNGi/6kDBBE1235ks1cVJuUHiJlmqW3IZjhMCoSy/aj5B6yjXwd54cemZm55MTF3sOQt4JiHHPQMh7YT52Nvj7mYDL8jUMC7mp/PvwdcXvGInKPQpi/lza66ib711DDj8hxPco+YVIipJfiKQo+YVICqok0ZLA6ORWEvbMzBatF4yiwyHoHmm4xw70vseYlhotO6Z1JMGoIrEpeI/RfSEnn5nZi/bYxX5UecHvGbw+x/A9eQaTco9hX6jL4Bb2eRIUms0KpcywPjgBGYfKPLzX31PB05z9guvLL0RSlPxCJEXJL0RSlPxCJKUtldveJ1o6SMJSyeFH/d4mcH7USUgOuA2KgDC0ITwDdxzRibzcZ84TdQdSD75lM8PfPAaXHol7Z3u/L0tw6R3Bo8xBlCJx77LyJ18FB3mY8V7jdGiIYf+/EdOYH4PokBs6Tl9+IZKi5BciKUp+IZKi5BciKS0JdCRKkehGTqmoQ8+MRSh0ZDWx62BPQFA/tsHJrSTulIg6/KLnYokxKTnBAR20B9Trz4z71HU1ud08LSzDDJ5lAsfdwKfoW/Plu6/6lT93t4G74b2OluBGjwsPn3kiYTB6HX35hUiKkl+IpCj5hUiKkl+IpCj5hUhK2zag9gebWUZrpUuqMoF2VfgbRf8BoHPHKKyk2FJzzNKxdO0x/xWIXpege7nbeyXdzOxm7xXy6723/C5hX46D91NTvwKaxGP+vzA0nYdUfTNu/hp9l9938j2xEMLMlPxCpEXJL0RSlPxCJKVFMS5YIx4VSUoiGcUn0MZxUsVq/Fs4bswknTuYDFNBM0qzeNPEqDAY7VdAAivR7b1wdr1b47FTmH4zh7VdgmV4CaNvZlDjP0BsC0vbgzC4g2che7YZN9xsgiPM6dsYbf4ZrbMnnsoGrC+/EElR8guRFCW/EElR8guRlPDEHiI6wriHJoyl80m0m9d+ss8MegGQgEi/FwYMcDtwnJWuTQXv9MxV0CmJNfnBWvIOnG43xjXwBPYIoG9H7acA3YGLlBp9rqrYhBwaN156Z0nQjjY9bSgGTUvp/ab9i/YHKLlA3/SkKX35hUiKkl+IpCj5hUiKkl+IpLQkdERFBBphTL9XEjqogefzZuli540fDz0HFxo1nryu/XQXEq+iItBm53/PjEtH6U8rrQVdm6YclRqh3odE1w4ccBQzY3GQjt1MfRntTXviYqe1nwx0AvtH0Ds2q3158aLxorBZYcLOmxbOMIdiAmJUXDczG+D9puej4wh9+YVIipJfiKQo+YVIipJfiKSg6kKuqqggQu4rLpdk4YbEvc+rYxd7BtdZgdPqAsZNz8D1R/eNrraCY3ADwiKJgFR6Gi2XJuce/R5OHwqKRWZmG/PPsoEeeaud76V3PfVlwqeTIxc7A2GXRVz/LLQHy5bHjdP5WxjbXhI/71MqT78P7im4/nBqVaFMm/Z13fm96oZY/urLL0RSlPxCJEXJL0RSlPxCJKWN9h8jZxr2nmsOGNABAtYRCHSfDl7g+azzwssVlI7OWxIg4WZA+mxBdKPyYjOz7eBFJIyBcEaiFLv0vIBIoiKWVYNQFXWCmbHYRE5Aej5ch4mPLcEJSGIx9fAr9Wok4ZQcfqUegA+FRLt549/to4kvgV42LF7SOg77axfrITd6WDN9+YVIipJfiKQo+YVIipJfiKTE6iotPnE2KjaZsdDVUeM7YA6/uYOBGgswJk7JabX3YuECHIglh9++8cINPd968I6sVe+dcjc731+PBD908z1BGWvp2qvOPwtB78S68WszgTJmEp9JDDNjQZTcfFHBj4RFEvfovknc+3h25mIfNN4RaWZ2BdOJ7+CdIAfjAO5XffmFSIqSX4ikKPmFSIqSX4ikYA8/EjWivf4oVhJTSOh6PXih6w+1L/NdTLxWuQKT10XtBZHXey+IXO39vWxATCkxBSGQBovQxGFas03l7xH3hab+PoK4R6ATFATbUt/D++xa/55QySuVnJfeMbo2ORNL5c33wVJd+IbOwM13PvX9Df9k4gW/Dyt2kX4FJc8XrRcRr5qVi5HAqi+/EElR8guRFCW/EElR8guRlJZKHok9TFClwQRESUxZ916M+brzJYpfTr0ActN6EXADjrqvwRX1TX/rYiQ+kkgyAQHKzKwGh9/EqFcgDDUhgQ5iVN5K7jJyOpYmv75pooIvCXG83g8fVGLGDj8sTw+uD+XLovXv59nU9538EAaaHME7sivcy13Q/Rqe8Bz6NSHEe4eSX4ikKPmFSIqSX4iktDhhlMoWaYhEsF9faQgBiUOXO+9O+jUIQb8r9Dm7z03vHYMk7kWHadCgETPuR0jrQyW9VL5LAzGoFJXEq6hr8zFcf8Qhrs/7RJ13pWeJuh1LPQDvM4Hpyc+mfgDJp1Pv3HsBTlV6b74DB6qZ2SW4X+mdiJYd68svRFKU/EIkRckvRFKU/EIkRckvRFJaVItBLUR7IKjKpIZSDXvpN+l+vu1uXOxiexk6l6bSRMcs0/2VWp6Sik9c936E9XXnY2uyv1JjTnhm+s8M7VVJST9kks9Dif4HoAZb+ViivSmiU3fOJ962+7LxsY/N24A7+G/E2vg/IWPeW7SLh35NCPHeoeQXIilKfiGSouQXIikoX5E4RCICNSkk+2upJpsEjA2MeCYhCEddw3FRC2vUElsSXWhsNFmLo1beXR+zv5IoRYIf9QyoCsJSNzxNA9DINaghaNSKa8b7Gj2uhnWkd/4Z9HL4CMS9H/f+99Zwe13DDTxf1/46txNvLSZxj3pn6MsvRFKU/EIkRckvRFKU/EIkpSVxoAKhgwQ/mqZCsRIknpFwFh5DHXS7kUgWrYEuCV8k2tHzjRH32ia2B6X+CffZGteN0ztBe/C2RMAD9D6L9i3FSTw4etuv96LyIuASbvIYhFQv15ndFRyxt7U/um/9b05hsg+Jz/ryC5EUJb8QSVHyC5EUJb8QSWlJOCORjIQXErTuYKx1aRoKufRowgo59+jaJNqQUEkTVug4ugbdsxnfN4lkFKNS5CmURpO4N2vBUQmCETv8WDmjY6NTbp5qMlAUFLSDiiHlAe3BBI4jCbejhrAgAp71fH+fwHtLn+8FCH6XtT9XX34hkqLkFyIpSn4hkqLkFyIpLU78CJY30nF9FXPembE42EEsOt0FBRrqKUiuOBJtyIFYuJftLlaKHBWgouLlGJdlaTx7VLQbM00neo1oX8ZDoGujEzQYo7tZQfQK9u8Y9p5nQpmdw+j1AUroqYq5riGnC9cRQrznKPmFSIqSX4ikKPmFSEq8/nYExb53wVJdEn2oz2BUoCHBh4RGcu2VRC56xvB46OAQCeytCG4+6qNIo6BLgh+BI75HuOeia0N7EHVTlq6DAmuwpDsqDK9qH7uE3xvguouCFjqDV+8Z3M8l9cyE39SXX4ikKPmFSIqSX4ikKPmFSEpLAzXIFUfTSckpR6JUCXL4UTlpFBJ32EVIZbVeTaHjKGY2bjjIGGj/FlC+ScLgZO/XxqwgflFfR/jNBQycoONIgIwOPrm8W7nYbeePM2NxkIiKe9EYfVV38H729D4UXqU5icVQ/vu/cPEOHIf68guRFCW/EElR8guRFCW/EElpo0IHlfQeIu5FwfJPnN7qwV5/wbJTcmk9RjkpiWlUqhuNkbj3QXvsYkcwWGJTEPxeVV5Q2+59yfIxTI190Ry52Clcu4F1WEHnu4th7WK/by79cbWPmZld3/nzOxABaa8Jyo05CJrLvT/uGcVAP/6jnt+xD/Z+0u4tmHT/qwXBFtZbX34hkqLkFyIpSn4hkqLkFyIp2MOPIEGE3GVE6RrRklkS48ghRiogXXlMT7kS5NwjcY9EUnJUzsBRedx6ge3jyXMX+7P61MVeDP7v/Ouan/lLEBG/AeHtDAS/n8Hc2U97EIvh0q8aHzyBtSHxityBZizu0VTk6FAaLEMnYTj2eiKlN7GH5+4gRteh91tffiGSouQXIilKfiGSouQXIiktDpuovKhxV3vhJNoDrlSmS8JLdEAHiycxSSXq5iJxrtSjrqE+fCSyUGlscJLwGTj3SNz7Zevdbh/+5NrFLv77xMXMzP6tO3Ox/6CBE+Bs+3Hnn+8lvGMkXk3ArbYFd+B39czFvoaYGa8tibPk3CRB+rbfutgrEEOnjV+Ha+itOAeH7XHLebXc+3eig9fxlfny5ltwaOrLL0RSlPxCJEXJL0RSlPxCJEXJL0RSWlI5KbYDv+LYZpRjbLZc9//w+4nac0vPHG3gSdB/FWjqzo9A7f/rjf/vyB//w0f+Gl/8rYsd/eo/8X7+/p8uXKzbnLvYCvbqOdizjyqYugO17bOBmoz6+5sEx8WXwP4QEKP/PN3uvJL+1d1rf1zr/yswq2Kj4dvCN3kC/12pYH220KfhevD3oy+/EElR8guRFCW/EElR8guRlDYqVKEQB6GxwksUHGsdFAvHjJEeWfYfZgrTkD6tfa38Lz734lz95790seanf+Ev8uIlXvuz2392sb/8R9/U81dwP3MQ/PawVx18d3ZUA4918bEmr2ZxKzedT4LfDUwGouMuG79ePNknLipHJymRgIxj7vEqQoj3HiW/EElR8guRFCW/EEnxqtJIxoh4j3GdsDAIIeoOUB9gIiSRpYIL0T0uG1+f/nkPTT3/1B9XPf/Qxxa+dr/57AsXMzOzv/obF/riN//iYut/9Y6zrflYB87LDXx3NrAOG9iFO4iVGniSW5X2n2LUTHaAunjqS0F7iv0hDhDIo+JgtA+FvvxCJEXJL0RSlPxCJEXJL0RS3rjg965BwmBUZImOBj/kfDIXkkvrtFm42M/voInqTz7xP9hCM0sQvqqpv4aZWf3yFy42/bvfutjPvvx3F/v1b33p7xpEwBU0rryFT9GmAsEPHHVdQfCLjl6PlpeTcBYd2x51lo4tlSfBD48bdRUhxA8WJb8QSVHyC5EUJb8QSfk/2hqjEmx1qyQAAAAASUVORK5CYII=" y="-17279.922631"/>
</g>
<g id="matplotlib.axis_967">
<g id="xtick_1450"/>
<g id="xtick_1451"/>
<g id="xtick_1452"/>
</g>
<g id="matplotlib.axis_968">
<g id="ytick_2416"/>
<g id="ytick_2417"/>
<g id="ytick_2418"/>
<g id="ytick_2419"/>
<g id="ytick_2420"/>
</g>
</g>
<g id="axes_485">
<g id="patch_486">
<path d="M 29.174375 17548.743818
L 151.464375 17548.743818
L 151.464375 17421.450291
L 29.174375 17421.450291
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_969">
<g id="xtick_1453"/>
<g id="xtick_1454"/>
<g id="xtick_1455"/>
</g>
<g id="matplotlib.axis_970">
<g id="ytick_2421"/>
<g id="ytick_2422"/>
<g id="ytick_2423"/>
<g id="ytick_2424"/>
<g id="ytick_2425"/>
<g id="text_122">
<!-- 657 1839-60619 -->
<g style="fill:#262626;" transform="translate(15.789375 17528.800492)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-55"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-54"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_486">
<g id="patch_487">
<path d="M 164.424375 17548.743818
L 286.714375 17548.743818
L 286.714375 17421.450291
L 164.424375 17421.450291
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_971">
<g id="xtick_1456"/>
<g id="xtick_1457"/>
<g id="xtick_1458"/>
</g>
<g id="matplotlib.axis_972">
<g id="ytick_2426"/>
<g id="ytick_2427"/>
<g id="ytick_2428"/>
<g id="ytick_2429"/>
<g id="ytick_2430"/>
</g>
</g>
<g id="axes_487">
<g id="patch_488">
<path d="M 299.674375 17546.242055
L 421.964375 17546.242055
L 421.964375 17423.952055
L 299.674375 17423.952055
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p965d02465c)">
<image height="122.4" id="imagec1676ffbe5" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAF6pJREFUeJztnc2uLMlVRqOqsurUuc31bdrIwjIgwQAYIt7Br+ABI5j4bXgZxJAnwGLII/AjWbbb/XNu/acHbTM4sUL68ma3TfdeaxgnqyIyInel9J1v7735wff+dm6vmFs31O6PRzdG1z3mfmy32XZjrbX2Zv/Ujb2dnuPPv2a/2XVjE4ydH9du7JfXL7qxT89fdmOn6wXnfsz9/qRsNptubAv3PG37e9nD2CM8vy3M21prh93Ujb2Z+rM67g7dWHpWa6A5jts9Xkt7e3ncujF6Jui62+MezfEE66GzIq4wR2ut3eZ+nNZDn6frvvmTEpH/lxj8IkUx+EWKYvCLFGX60fMn3eD7Ry9qpeLHHYSvkQj08f6jbuyT/R91Y5vWCyonEGhIgCRQYIM5aN27Ld/L/OjnnkH8XCPuHadeRKK9oTO4t1yQJNGWRKTNpj8D2jNaI4mN6XUEiZyttdbgXmh/6J4JOj+6Z1o3XUdrGT3H9DzRfadx4JtfpCgGv0hRDH6Rohj8IkWZ/vLw/W7wl4/33djn91M39nI/d2MkDA4dfrveNfZue+zG6NOfwtiXj3496IqCMYLWTUJcaywYkfBCgiF959OuF/fIeUdc7nAGMC8JSCPQ9UliVShy7uBUSfCj0yfxktYyIhXE6F5wLPw+FGLDsdF4eoa0Rt/8IkUx+EWKYvCLFMXgFynK9GfbPoWWILHhCuLefZM7/FjgySABg9IyaYzuhUQpEuJGYgwKfjA27cC5B+LecerTZSk9mcRLdFnOcAaD7afUUzordJzBd25BkyLRbpUDbqD3kdOOzgpdf5Syjmns4H6EjaA9pFTwJYJf+twRvvlFimLwixTF4BcpisEvUpTp7QwCFAhLB6qPB8LQLnTPtcaiz2kGdxoKJV+vq4ogV9we9mvJdx62vUuPxL1nqI+HAilMO4PCRmdFacx/SFL33Lxg3eQkTN2YtB5KY6frqGbiWtL0ZhKvNzOlsYtISQx+kaIY/CJFMfhFijK9gCOPDFTkLnva9M40EpuWOJbegyPvCCIZptvCGuk6qkeXpkuOhEYSz0h4obRcavBAwiCBacNUezCsM9fa+tTT1yxJHU5YktpKjtPUrZg2v6BnYhvOS6Ly0BGLdQFDEZDqI0afFJHvHAa/SFEMfpGiGPwiRTH4RYoy/e/cF718AYstQS2xbzA2gnKZLzD3HnLRyfJ72PQK+UuYQ01FL9OORK2xEkt58WmbbbKlpjnwByoSCucyUsgvrd+LJa3XO8iVjP9JyXLq6Qxug3tJuzPhd9L5g22XuwWBNTxU9kdFYtP9pnPd7eC/PdG3ich3DoNfpCgGv0hRDH6Rokw/v790g7ewI8otbAV9XZDjvwVx7wKfJ/GDillSByEaw2KkC3KyMfc/tPJiW+swJxsto+Fv+qhtN9laaX8Iaje+hlSIG4mXad2HdO5hK/AA2huyce8H1u60GGla7sA3v0hRDH6Rohj8IkUx+EWKMn326Ftvp11SMAc67CAzgoSlXpJkTo9L9H2pcyvt7NNaa4dQzKExct+hCw3mRRGIRKkwX/2r8UwkJbEJ3YqwN7FzL8ypH4mzNE9auHSNuEf3THuDrdgHgh+Ju2ls0XPim1+kKAa/SFEMfpGiGPwiRZle7n1KL7ZA/gageSil93Tri3oS5PBDwSd11GHRQxaLKA0Tu/OAw48EP4LuhYQ4qsBKwhB/NhdtsVMNuBBp3Wk3nDVFNEfMYdHLlLQ4KqdfZy7Q1vKW9vSMsqgsIiUx+EWKYvCLFMXgFykKCn4Epo4u6AJDkIiEAg8IUFinLOzi02CIxEcSlkZ11Mip9Wb31I0dt33rbaqFSOt5PEDwg3p7JORxSjY7/LBVNoyN3I4fCoqSYW3FEfQ8ziBKElj/b0WbbIKEypGwRzUq6dlBdyHFarJAEfnuYfCLFMXgFymKwS9SlOmLa5/Sm7YNxtpzaQGxNqi5t0LgwfbXIMSl90I/jaN0y+ddL+SRU4scfiTGoEAHgs9p06cx074uaUCCItQKoYvTkzNHHjbyWJAiTuJeLOTREsm5B/GSxkGaPt9aaxM5BEHwozE6A9/8IkUx+EWKYvCLFMXgFynKRPXaHtA4477CzTdKtyThhhx+o4YMHwoJPmkX2lFDBbqWU177e05/gUnwoQYdaa230bmkKd2pqJWmS6cseh5oGvj4nc6fhLwwVTf9LMXQaG9SoTqtUeibX6QoBr9IUQx+kaIY/CJFmUhge2yo7l3uquq+byQswXha743EkzQlNIUcgyNoH19any5N7ru0c++aBg20X/Pg+77u9N00RZiekzVddofrgWdsTX08qglJqbZ0zjRGqbsj6HkadV9+jW9+kaIY/CJFMfhFimLwixRlut1BMABxLxeR1ok2qdiEv1qYlZmtJ3UrjtxvVDePxk6bvgHJftun5ZLogyIniDtcww0KFw5++kcdbxOw2zFcR+7OJd2cU9aIl1i3Epx7afddSvt+hpqOo2fxTB2nw0Y19Nz65hcpisEvUhSDX6QoBr9IUSaq7ZYKIksadBCpEEiuqrQ2G/2+YUpoKvgtSIMl4QXr65FLa5sJeQQJVZSKPFH3ksHcaQdd2oc0tZnAphuwD0vq+hGYqgviHnVjxjEQWGmMzoq6JLfWGjXYOT96ATk9F9/8IkUx+EWKYvCLFMXgFymKwS9SlIlU0jS3GTpGI6PvSwtFxso+iKTzNivMSXzdLahHrFHDaW9JIT+AjXS0D/Tfh/f33oJM+4OdgcCCTMp3WqDyfOsV7ttgu9LcfWzvDip+WqiV9hCL5YKV/jJzDQo6g/NdtV9EFmLwixTF4BcpisEvUhSsFLimQw7m+IfC3gj8PHVdocKFJATBTx51vlkC3fcE35l2aFlTX2AD81LeOI21xvZSWmMqnK15nqgmAu3NCUTA1tj2S+uedr24R3n6BImzJMSldSRIsGstz91P8c0vUhSDX6QoBr9IUQx+kaJMvy8XG5EKQamISEIOXYdFJsFpRdftdvx7SeIeCUbkbCPRh8QhEnwIdKvBvMdBu/HD3F9LYiq6EGFohg5QBN3zYbDG14xcpOQ4JCh3n+AaFJkb8wG598QSgRQ7CMFzR8Kgb36Rohj8IkUx+EWKYvCLFGVK03eJNaJba3nHn3g92PK7Zwu3TIIIucNG69vCl7LI1ndySduNz5BDTQIUC36QLjv47d/B/jxBB6ET3N9tAym9YcpyevYkAo7Sk9P01rhFd9i5iljTkr61PMU4nds3v0hRDH6Rohj8IkUx+EWKMq1xNsVi4UDHyWv4fXib5T8kqTiEwhvcHgmI6XWHcGwEXUsC1OaR1fUbdaV5TVrXbw+CZGvcKpueZRJ3UzGOW8hnZ097A1s4JI5BuMw3v0hRDH6Rohj8IkUx+EWKMm1Dh9AEDra0xfaofTKlzJIwscb1R9A9Y/ptONYau85QoAOw9mA4B4mFWK9v0wtfxwWC3wzfeQHR7rzt01ZPoO3R2WN7b0gHJjflYTdITw5TgskJSPUDH+FZpXFF4uVjIIZicxDqVBN+1je/SFEMfpGiGPwiRTH4RYoykdC1xj1HwsJ1oJE8qLYbaXsrzHzksqMxEl5ILHrecaMLEtlI9MGagiCI4nrAxUYpwpR+u8eUXt5Ycqc9Wv+cvIF7Pm2furH32767bIOmFigCwjNCz+dT6/ehtQUOOIDOKm2SsQnThpek9N7TFPowhdo3v0hRDH6Rohj8IkUx+EWKMh2nXrRJU22x+QU4oEYdZ7FZBVyXihokBKWdZEmco7GRay9185ErLr2XfZiWOxLyunkH4/RpEgyfQARc43Sk5+5KLlDgsu3deKO5aR5y82G6LXw27UyMDsZQnBtCmjmmLOvwE5HfYvCLFMXgFymKwS9SlOnd4U03SOmNVxBELq0fu99zsYLEOGqowR/OLsSaeVC3kJyOaUOE1riDLolDdF3qQqPrcA/RSZZDnyeoMzGlGKcuSxKlSPyiZ2yUQsvPGM3dfyfXW8wE5Lh5zYJsdUyBB9LO1L75RYpi8IsUxeAXKYrBL1KU6U/23+sGXx7nbuyL26kbI0ErTctsrcU/PSQEpXX9WNyDlFccy2vcXeZe/Ew7xGITijlzphHoQos+uQx0rKUpr6Fgi0IVfJYE6a/Gw2YjobiXCogENFmOXakjyIVIIqkOPxH5Pwx+kaIY/CJFMfhFimLwixRl+uH0thv89aMvhkiWT1IV5x2oigM1FFX88D8IaSFFyi+n7i5HaOWc5qG3xntBVt60WCeNneE/ChP8V4By/Le0voHpdwfnRcUjz9SxB9bISnNmk01byI8UctrvzfzhLbUJvL+0cCxZpAf3TBZkfO7oPwDae0Xkdxj8IkUx+EWKYvCLFGX6eAMdaOAn4brLxAYS2EYFCWmcbJpkkx21/X4NttkGQSzNi18CCUEoxmzCe8FinVA8cguiaZhn31pr5Jy+gjj4HsQ9EjkJEvforFK78EgkI9EOC1zSVoRCJZOJuOlYa631PY4YFMjt2CMiv8PgFymKwS9SFINfpCgTObcIco29nZ67sY/mYzc2Em0oB/7l3tcSOEE7ZxIwUtcfrYeEqiViTFq4kiARkIQl6iqDHWkgcZy6/dB1rbV2gxbfdGXaWYbqItznfg4iLfQ5EvywO9OKVtkkfKYi4JKCsCm0Fym++UWKYvCLFMXgFymKwS9SlOnzuRfTyLlFwiCJSEtMcRuwVZE7jYSStEhhmlZLYhq5/o7bPvW3NRb8SIy7b0EkC9vp0L2cH/353Tb9dRdKER6kLF/BcZiKVQcQC8nBuId9wG5GlBoL847Wh65IuJbmxmcH3HO3sCgrkToQW1sn7hG++UWKYvCLFMXgFymKwS9SlInquN1hjFxxaQ2+EXQtCSCHBm6wUFgkFyGJe5Q2TILPdc6dZJi2SiJb+BPMqc3ZfmP9uIEodQZRk4S8VIhFpxztdzhG7EbnAs4/Sjunz+O9kDuU1t2yexm1Fk+hc8Xag/CY+OYXKYrBL1IUg1+kKAa/SFGmVDAit9sMwuCNGgsMLGypOESQcIZj0NQibYFMezNKY10idCbroZRldPiF86ZNMlpr7bLNUofTFuYksJIzka5LBb/RmT5BExkS/Ajcb0wvz56TK4iAmHIcpoK3NnBAUhp06JQUkQIY/CJFMfhFimLwixQFa/itce7RdSMRDzvyhnXhyBk1hW4pElmwaQcapfherpDqucYVSfuQjhF0z6Oah/c7iI2UJvzI9jvtLptCezhq4oL1/tJ021AYpucbG4PQdZt8fZzeDA6/cMw3v0hRDH6Rohj8IkUx+EWKMn32OHWDqSiVNslYC6XlPqDhRNo8Ia3XRvswcl+lIhTtWbruNW5MTPMcsEZYXFKTrvtsKFTNC9aHTklwDdK6UwcqnemaenujuILylqti0De/SFEMfpGiGPwiRTH4RYoy/fzyWXRhWqMu7Yo6IhVPztBsJBWl0nRSgppztMZCUOxiC+uwUT06aiJB1y3pEIuC6Ir6gbSe1D2XMlrLFe6FBOTNTCnrH54uPYcC6xIhNp2bvjNtfiIiBTD4RYpi8IsUxeAXKcr0q8sX3SCJMVSv7WkHzR2gPho2qmgsVuAYiBXvoZYaiYAEdvhd0Wn1myCeGy5Lm4UsqRV3uWf19VDAAt2TREAiTiUfCH60xvf3SzdGzy3FwQRxgMLuh2csD0VArM1HKcuwt+R09M0vUhSDX6QoBr9IUQx+kaIY/CJFmV6u524Qiz3ushbNaXHMr/7QX0vqLrVz/rq7u5BCmhZHbI0VWvoPQpoPvgv/EzKHNlls5Tz4bFxfgGoTgOhORSrTHH9iUW0CsD/Ts4PPBDyfx90hui59PpfUjOB4gwvhPw13tN2LSEkMfpGiGPwiRTH4RYoykW0ThQXKJSebLOW1L2jRTbnkZMc837J8frqXQyheEiO7adq1BddIv8Eg5FCXot8XJEItqdPwmrgWQChyLWmdTsJbKl4/g+CHlnaoGfH+1j/HtJaR4Id5+mjF7z9Lz6JvfpGiGPwiRTH4RYpi8IsUZRq1Nn4NuexobLfpBURyF7XG4h4JkCcQSmhuEkp2uw8vMpoKmq3lLZmJCXqB5wJkWCgydLC1xueVFoVcA4qKdFZ03cz3kj7f6Xr2UBeBBD/6LD0jfb+ssajMbeTpDKCeA9Qh8M0vUhSDX6QoBr9IUQx+kaJM6EwjV9S9F9jOm6xg5sixRO6mExTmvIIIiIULScCC2qEkfpCYkrZoHq2H7pvmJtcYFdwkgTTtCkR7Q0VZW+PzJ1ELP/s1p+rSGvfhWlrjPaM1pqnotEYsjgoi7mOX7Q11GWpt3d6yQ1NESmLwixTF4BcpisEvUhRUTkjwIWGJ3HjESPBD1yB8J9VhQ0LDGQk0JCyRO4zq1rXW2p665MB3vtk9RWN0Bi/3vt7iGkbtxnl/MpGN9ofOj+4vr6PXd4oadYWiWnrUop3mpjViK3fYRnKMkmiKbr5BKcor/GGVCPjBnxSRbzUGv0hRDH6Rohj8IkVhwQ8bS1B6ay9qpPXRWmMhKE2DXUPewhrSSQeOutS5R+LecdsLWCcQpdawpB03pkZTg5W0XTUcfyrikoC4JD05Ta2lOpOPez923fTPN7kIU0ckPosD5yU244BBqnG42/TPmG9+kaIY/CJFMfhFimLwixQlz40ESJyjsQ10aV1CWisuvY4EGhJTlqTQ7qCG3LA78StI3Ds9+rqF5C7DZgwrm3ukteI2IPimnYTJxEZuN7q/9Pxa44YvtI9rhGZyh163/RpHKdQpdK4kDn68/6gb+/vDn/bft2o1IvKtxeAXKYrBL1IUg1+kKNMOBIM1aYJLiJ1kocsrdbGR4HMDCeoM9QRHe0NiI81DaySxiYQqFLqAKezmOhJIt3CLdC73DaXqZnPzPvTzYorwgmYqdIaUij5qlJFAqd/cgbqPtbR24OjaHxzedWP/sPtRN/ZPP7WGn4j8FoNfpCgGv0hRDH6RokzPU592SrX1SNRIhZxhx1nQNUiEovTPdJ5UBExTR9M6ga2x6EN7S2JT2l2WUpEpnZTGRnXvZnJk0nLgWLHGXToHTEKOQRL35oHFj1LMaWxUmzFZD6XV0tnTGD2zo3TgPwbn3o/3P+zG/vEnX/Tf+dN/7sZ884sUxeAXKYrBL1IUg1+kKNMRBL8diDYoVIHwQimGo1RGEvdIjCGRhdhts5RHElnSun4jUgEyFSXTdGDa2yeoCfi8hXMe/PaTAHne9M/E5pGtkYQudByGHXXJ6UjPTWv83KadjYl7KAw+wK5IwjU9n0eo/dhaa39x+KQb+/G5b+Sy/eu/6tfz8uv+OpxFRL7zGPwiRTH4RYpi8IsUxeAXKcp02GU1PEmdTe2Kow4kqRp+gy4pBM3zBO2cl1hdXzOyC6ddZA6bcG4YIhU+neMIYyOt/gZ2VVL2yaJLYw8Yo3sma/AJ6hqcbv0YqfqtDXL3w3oVaUFYYg47EtEc1IK8tda+v+m7PV2oa9bP/rP/8Lt/7YZ884sUxeAXKYrBL1IUg1+kKBMJRmQZJbFpC2IDCRgj4QSLF4afJ8vvPsxjp/sjq2s6b2vcTYXu7witkj8C6+0+7LqDNRXC60ZW1Tt2AcrOhUTX1KpM+3WGbkYk7p1v3NI8tfKikBvW9OR6DNkeLuHTuRc6//3pbTd2/Jc+7/9v/uff+vWsWo2IfGsx+EWKYvCLFMXgFynKlDrTSMih/OS0zXJrXPiQRKQ01z4tXJk6C1MRsDUWAtN5nsF99w6EwX34W32FfX2BjkQXENNa43z5a5hrT3uWuifJyYkdnGDekbCXFkKl9+AWjhqLh4aOwXQlJ+gy1Fpr/337rBv7GRh0f/HUC35/9x9/3o355hcpisEvUhSDX6QoBr9IUSYurtmPbR/gvmq9MJF2SGmNUz2pCCeJadzxpQedifB9lAa7B6Fq1H1o1CI6gdbzFtbzFlo8k4j0JQhnJxC+LiACttbalw9ImQ3bg9M+PoHomgqIqZg2ui7+PLYC//DPEiSu0/oojbm11n5x/bwbIwfkr6ZTN/Zf0O3HN79IUQx+kaIY/CJFMfhFivIb1m3U8e2SsWoAAAAASUVORK5CYII=" y="-17423.842055"/>
</g>
<g id="matplotlib.axis_973">
<g id="xtick_1459"/>
<g id="xtick_1460"/>
<g id="xtick_1461"/>
</g>
<g id="matplotlib.axis_974">
<g id="ytick_2431"/>
<g id="ytick_2432"/>
<g id="ytick_2433"/>
<g id="ytick_2434"/>
<g id="ytick_2435"/>
</g>
</g>
<g id="axes_488">
<g id="patch_489">
<path d="M 434.924375 17548.743818
L 557.214375 17548.743818
L 557.214375 17421.450291
L 434.924375 17421.450291
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_975">
<g id="xtick_1462"/>
<g id="xtick_1463"/>
<g id="xtick_1464"/>
</g>
<g id="matplotlib.axis_976">
<g id="ytick_2436"/>
<g id="ytick_2437"/>
<g id="ytick_2438"/>
<g id="ytick_2439"/>
<g id="ytick_2440"/>
</g>
</g>
<g id="axes_489">
<g id="patch_490">
<path d="M 29.174375 17690.161479
L 151.464375 17690.161479
L 151.464375 17567.871479
L 29.174375 17567.871479
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pbf9b554061)">
<image height="122.4" id="image4f56fa4a47" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUuTHNdxhbO6qh/T0zODAUCAFPiGHKRlhWR5o9Bf8K/0f/DaC0dIXsgOKyRboiTrRYJ4DTDT09Pvrq5qL0RygfNVxIWxMu/5ljlVXbeqbk5HnD6ZWfzw/k8O8QqzevVqKBb1WmKbppZY07YSK3s9iXVxOMhy8DOLopDYUTWQ2MngSGOVxiblSGKnEJsUeo2IiNsQ/yCGEvvuTs99cNjqtYcaGw73Euv19Hnt9/q8Fytd32Wj9xcRMeuVEtv09Hkv4LVew3rmoe9vFnovj9qlxJ7WM4k1B/28Ya+vi4mIEcTLQhfewr4jerDvqkjb303A3oZ72R302URE1IdGYgf4zCJ0jYOiklh6VhpjvlU4+Y3JFCe/MZni5DcmU6rTUsUvEiFIWKhAGEoVTv56rF6HREQS90h4oRiJO/1C103C0AhEkhGcGxExgOtUenvRg+c47KnAc3q20Wuf6rMhNjd6L7ud3suwUQEpImJ40Htp4LUWB33e9Il1oSfXifukgudN+2HQ0/vrOr8EQawHgiZB+3sPgiaJc5RXrwOJdhXsuwHc89CCnzHma5z8xmSKk9+YTHHyG5Mp1SfVuQRflGOJTSt1+C1aFaW2rYpS6wZsbR3xugUXEwhGLALq/zIS/EgEIpfWIEAYhFhExPgAIgsIYkNwKw5Hes/jO/pshg/g2q0+m/I5PNednrsCETAiYgX3EnDfNWhkKxC/liB+LcHht4PjCHKwdUHfbrQnSAQkR976oM923WpsD/uY9iythYS9iIghiJok5I1RqLbgZ4z5Cie/MZni5DcmU5z8xmRK9Y9bLfW8qLTU80l1orFQoeNJq+XAz/dzvHh70HgNbjdyRvXIpZUoqKQ6BomqQ2w6gvgEDF0jEMRGIxVJ+6rDRvX+bQ0O1M3XG1/qWtZaIjxfaMlxREQPjIRreD4zKt8tVOiaQ4nqEoThLRzXwPMiyFEXEVHC9xsKhrBP1rDG2V7396rRZ0uQ0EzOxK4SeFo3u1AhBs/B3/zGZIqT35hMcfIbkylOfmMypfrJJ48l2Gz1f8Lls2OJ/c/mVGK/GKqA+MuKRTJyA1KMBD8SP0jcI6hPYE291EC8qjsEKLrDIVxnCOf3SnAwwjMrjrX8urijImDRV8Hn6OaRxi64RLiu1eE5h0c7SxX3DnqdDRy3Tyx5pf3QVS67hzWSg47207JRB+sN9LekMnQSkEnco1L5rn1Mx6ayh3P9zW9Mpjj5jckUJ78xmeLkNyZTqvEn6uYrjtQ1NplqSe+tX2us/+U9ic2PJnhxKhMmtxQJdAT1FCT24AbbgNBI/xmrDvfVKfQAvClV4Fk0usb5XJ12k6f6HKq3ryRWTlSILU7VjVne5gEdxLTSNT7r6TO7AiGPxD0SU6lcFh2a1E8QRNNdy4Mu0B0K1yHBj/YilaFj+W5i2TG5TckJGBGxhXskURrLmO3wM8Z8jZPfmExx8huTKU5+YzLFyW9MplTtClTuCmqgR6pcH39H1foHz9X+eL9ltX/SU5X7qFR7ME4Qgl8AUu29qWORD9Ack1TqLg4wDWk91F8F5rWq89s/6PP+uNI6/ePhM4kVp/q8m5dqVX00vy+xiIhfHemz+AuMzyZlnybakC2VYjRJib6eaGR7l713A+p8m/gOdw2o6xCja9NefJOmnhERG2gUugbLMP0aQr8++JvfmExx8huTKU5+YzLFyW9MplT1CxUw2scgTMC/iXqpAs2+1QPbDtdtCRNtUpscpoosqZAARSIgCT4RbA/elHrsoqe18rOBipzbvR43/IN+3vsjsPweX0vs0X+oCPizEb+YXzf6mS/3CzxWrg3fJ/ROU6fPHBXQoBTEqy11HY2IDfT1pHdI75+ExVSreSp0jV3Be2wJdmOaUkXj5rHhbcoCjTHfPpz8xmSKk9+YTHHyG5MpFRmjpo9VbFqtVUTY1CrQfFlo3fg11BxHsFsudaR2cr30a4xzfhUSd0gEjIjYBgtOr0LCC/0LLisVAUtwAt78p7okyev2q4Ee9+viBtf4vNY4NVZNFWepYeYYhLw7Pd07RzAafA7O0C6xlxyHNN1nu09rHEvgyO/ESVFE13XpHZQNCOzYw8D1/MaYr3DyG5MpTn5jMsXJb0ymVP1zzf/t71WgebTTRpHP+irGPC5VbHh+0FLECG6kSQ4xKvVMHalNkPBC4h6VfpKAFJHuEFxDGezNQZ/3E7i964E+h5/D81rCda8OM4l1jU6nZpgknNJ7mYBodwdKm9/v6X76sNHnQGPOZ6UKfn8BgTSCXYP0rq5adTA2DZTGJpbg0pjtVBHwdZyq9K5SpwD5m9+YTHHyG5MpTn5jMsXJb0ymVL2JOq0OUGp7AVNcPqtUbHjSal+/2UFLESMidiD4pfZXS4UEOhLiUgXErjHJ2BcQxJhVAS4tEGOoPx6JhXMYI5065rwLehajngpqt0DIu1uqO/S7obEf6bLjk/FUYkfHcM8zFRV/u1X3Y0REOTyT2Lqvn5kqnFEfvjch1dHadSxBI8PpXvzNb0ymOPmNyRQnvzGZ4uQ3JlOqm/9SAePLrQo0n49UMHrU6oCOF40Od9h2lMGSCFWD8EIlmDjIg/qwwXEkAuJ46NdwWtF1SHijkl4SIKkscwHi3mqvYiqthZxkNCAlIuJWX9139yoV1N6BfoQfhrrvfrjR9fz9uxd63R/renr37uhapupMvP1THV4SEbF59o7ErqpTPQ7EVHqOy1rfQZfr81VS3Xz9jlHzdCytcQ/r2YII6G9+YzLFyW9Mpjj5jckUJ78xmVL9y5PvSPDPIO59ESp0zFqN0fAKmhoa0SHGJU50pVgN7isqG6by3QpEFpxs2uEEJNGnASGP1kifSU4ycm7RcTgBF3rrFSXfyxG4+e711M33EYh7n2712p+eq3Pv/CfQh+/HP9I1vvdQF7hRUfn2+b/pcRHxD/+kA0yetOr6W1YaI8GWnIA1DQFJFQFhj3U5/KiEui3SrkP7xN/8xmSKk9+YTHHyG5MpTn5jMqX6eV/7682oz1yrx1FJLtE1OONNpuriZ9LHkdYIp+KwCYjh0I2IKGBoBwlG5GBElxYINKluxdSecnR/ERHHIPidQS+8+7U+iweFlnTf/kidoL2Hn0qsePh3Eis/+IEukCYl77hs/N1f/bPEvv8zdStOR+pqXEBuLPYqcs9pmm9iaTq9q673MoTpuwQJgyheJ32aMeZbh5PfmExx8huTKU5+YzKlop57JORh2WnicIDBawh76JQD1Y7FLziupzFaI4kpNF22y61I01JpjU0BMRCM3qQUmdyKVL7bVdI7oqm6B72/k1bXczxUkaw8hmEVkwnEbmtsoM7Cw1YdfnGsZboREYOH5xJ7+EudQvx8o8ddV7rGaV/Fy9QydBLiSNwjh2VXnDKrhgnI5Br0N78xmeLkNyZTnPzGZIqT35hMqW5adUZRGWzqMI0RCGc0KTUiog//e7ikV0kt/U0VyQahgggJg12uRhwOUia6+Qpw86GwmCawjkp9B2OYbHvc01gEP4s+OsRgqAUIn/u53stgqqW2h5n29WtKmLJ79URjj/4osYiIA4iSZ3dU5P7wcxX3XsAzu+irsLiCHFo3KnyS6EbvpUvwIyG2xJLgtAEt/uY3JlOc/MZkipPfmExx8huTKU5+YzKlut6DVRLokaoMyv6kgFHOHaryGFTlKnFUdioNqPD06wFdtYEj5wVPHyI7J/5qUtIvEmn2XlKuyco7rvR5s6rM9eF9eNekH2/gXc13+v5vnuhI7eGfVLEvHvxeL3Kpk3gOTx7p+j5/DCuMaB6rlZfK5e8M9BeAj2qt+78Y6q8Cm4HuiRuYroS/zICCT7byCH4vCGxwj+g2xnyDk9+YTHHyG5MpTn5jMqWa7bU+mWyIJO6RPfQErIn3QQSMiLjX6nVOGhglDQJGj+y0IEBtQcmDvpMBl40VTEN51iG6ND3qQwDiXuIYcRyzDbIkNh6lenx4LyQ2RUQM0HatrHu6nlmj++RspoLf2SO195aPVQSMsU77IXGv/rN+XkTE7hKed6377nisdtyP55ob5Vb7C5wPdIz481Kbt65AAK6pV0WHlb6GPbGGPhtraBxL4939zW9Mpjj5jckUJ78xmeLkNyZTqi2MfabRzQWIaeQ4IrHo5MAjh98Bs9x7jdZGn49UrKgqFT+2O73OqlYBagfNKLfgNpzDlJtxn8XLCsSvEp4ZDhVKFfwKfVfkvKR3hWIh3HNExAhWSdIgCackuu72ICBu9LjDAtymDbgkZ+rGq2dcw14voR9Aq9cen6rgd/a2XucDuMann6sT8DdbHfn9RV/34iXU3s+CXaTX8P4XJALCdK0NiID+5jcmU5z8xmSKk9+YTHHyG5MpaPGi0kNy/ZGIRO6kLsdS/6Dnk7h37/25nnsKItkKHH43eou7jd5LC40nNxs993yto5wjIiYg5gxKELrACViXMJ0HnlkfHJHUOJRIHRkdwUJuCe+KAC2N10P63FZFKSpjbm9U0KrnLF5uQPAjxmd67aOHKu6Wb6uQN7jzQmL7f4cJTnsVBvcV7DsQmiMCS3VJGCYop/3Nb0ymOPmNyRQnvzGZ4uQ3JlMq6gHXpxiN+AU3F5UoLjomiCygHLUBxag/gYkv72iZKIlDgxsVcpqlxmDKchz2upaTS3UgRkT0n9+S2LbQkuc5lNaue3pxEui2UFadKviQMNg1hSl1OhNduQUR+ACxFp5te7nQc3fq8Ft9ode9fMZC7HKrz5s00ltbFZpH99Vx2BtrmW+7hj6RbyCQ1h3Pn6ZFUZkvQaXf/uY3JlOc/MZkipPfmExx8huTKRU590r4n0BuPoqRsLTpEPxmYMqag0BTL6B0GJxRvWMV2IqRusGKaxV32g2sEXSXIyiXjIg4udL4uNX1jErojwi99BrojzgOfTY0GKRrjLici5IdDzVJ/ZbYgYA1h75+8xcq2MZB38t2oc/m+YWKq1+22lsvIuIKXJagNcZbC13P/hd67q0vtMx3fg3DPWpdz3QAQ04CBM2O97eBOI1yp5LuYeg78De/MZni5DcmU5z8xmSKk9+YTKnISUYOLzqOY0pX2ekahmK8hAEf74A4dHStTrvySM8toLce6VztFp4DaHvbG55sO6/12ls4lApMRyC6prIroMcdLJyEwX2HO4wmG7ObT7mG/o9beKfL6bnEbk3VebmDPoPPSn2KT7m1YlzS84HjqF9juTmV2O0vdS8u4a0+qTR2CeXcC1gfCXsRPAmacosEe3To4lWMMd96nPzGZIqT35hMcfIbkynY4Cx1aiyWk4K+1lUguoO/TMGR9fJ6LLGTL9UNNh5oCSaV+e5nUBoJLsJ6pSLJ9ZWuJSJiWsBwEHgW1LdwTMMzaJIwPC9y85G4R0MbyN0ZEbEC19mCZDIQyTZw3Ap6FI7BoXn7oGLaEDYPTU+edrhI5yCoUbHtEqIXsMYFuDZXICqTuDeDtcxpyi7EIvj9VzS0Be6F+jL6m9+YTHHyG5MpTn5jMsXJb0ymVNjMH0oCqXSQBAjq4bftKB1d0YRSEPxe7FVkOXuqPduKUnvAQeuyqJcqdNUwyGMHQztWO3b4beGZkZxGE3CPQHij3mxbEPJWIOQtW3U/7ls9l959RMR1oef3QdSaw72Q4LeEBokkQE2htHkC/SRpgMgWRMAIFvf6sG7y1E1BtJvCI8N9DOLeDIS8m4O+P3qnER2Tm+EO6b3Scf7mNyZTnPzGZIqT35hMcfIbkynVuFQxLZUtCDnrQsWKQcf/GBKMxiBWvKhU9DlZqNPu8EivMRio8EIVxjRkYbfT6zYdwxj6IH4ewUSGhiYbo1MOes/RQBQQ91aNxqj0k3q9RUTcgPBGDECoxCnNIFTVcH8tiHYbOHdIPSY7bKQkXuNAFIhteuBWhHdALr0V5Qa6+TRfqHS3CyrfpWyje/Y3vzGZ4uQ3JlOc/MZkipPfmExx8huTKdVZqao5qY1k7yUFkerL18H1ydS4cgUxsvw+PmjHxhXYdkdLXfcIrJd9UHZLkJB7Hd0JJnDfJNqStZT+B69gss8FXHoHCvKmYXvoq3TZe5dg76V3Tf0A6BPpOhX8+kDXoL3zOlbVAZis6denCj6TfmmYQ3PUxUFj1D8Be2JQXnU0vO3Bcxwk/jKDNv6kM40x3zqc/MZkipPfmExx8huTKdUpjILegIhEQh4JNCjGdNhIe1htrZD1cgqTYW6geJ/kkDE09TxrVHg5CxVt+h2NIsckIoLAM96rADWEmvUtiGlPQNwhcYgaeBJdx9VgTV3CO8BR7jQeGtZN1mAYmoT7jsS0LkY97b9wBDHat3TtRaONY9eJE5JSobVEdAi0FMLeEhb8jDFf4eQ3JlOc/MZkipPfmEypRokOIRIRqEacRgEfwzSbiIgTuPb4kCZMbMB9t4MDaSpQH8TCuyC61Xs97rRDyCmwXlpjJwU0swQBctnoMzuGvgYksKUKqV2Q66yFNRIkSh3gXbXQHJP205YaXEK/ApweFREDEIGHIPiRIEaiHYl7OxBIU5ttojjX4bxM7U1AeGKPMeYbnPzGZIqT35hMcfIbkynVDmaV0NQdEmNIgCBhoauB5wjEvQGNF6aml9RwEWI0OYWm4axKFYbIZXfc8r1Ar04cL32+1/UMqFwWrlHSdBYqTwXxkuga0U1xchKSMJjsbGN9Tj8PJg3VEOu6Lu1bipHI9iaj6rsESLkuvb/XeC8UI9G9ssPPGPM1Tn5jMsXJb0ymOPmNyZTqBia+UA8/EkkqGgUMo5x3HWWwFK9hIo5262O9qAbhjKapLGnCCgiDixKcYOAOjIjYwYpIqHyrUinvFNTCGTjg5h29EF+FXG0kaJHTLYL7wpGAlep2o0k85PpD0S2xd2QXqWIcidcUK2B/dpXgvgqJpuTQpPcXwe9rBO5ZKpemXPU3vzGZ4uQ3JlOc/MZkipPfmEypllAeSW4pLFEEsYLEwk6BBv717EHA2MHgBRJZFiDazaHfGw1ZuIElXsICu6Qmum8ql76Cnol9EElX4Ly8bNYSa2k0eE8l0j6ISGM4LoIFI+pnR2IcCX6prj+6F9p3JD53DbogLS5VMKQ9RqIkxVpaN6yFziWHXlecHLXkGiR3qL/5jckUJ78xmeLkNyZTnPzGZEpFLq1UVxRO6QXBZ9sxZGFdanwGgtgJCFNUJryDNS6hB9wcRE6adouiTYdYRMLNpDeSGJVL07PdwnooRtclIW8Cz3XS0VtxCMLSBkQ7KhMlsanr/b8KPVsU9+i4jvcCRslkERH73lG5M1yE1pjqLCQhPaJDyEPBkKYQ2+FnjPkKJ78xmeLkNyZTnPzGZEq12OvU0TdhB2WnXYIPuQuniUMWaPpqaikqiXs0CILW3dWb7agEUZIGosDptB6K4XVB3LtdjiX2dqHi471gwW8MZat013O4zrTUdd/Anrhqdd9Nm5XEUt2BXQ4/ctWliogkvKHDD3pRpvYEpONSS4S7jiU3n4d2GGO+wclvTKY4+Y3JFCe/MZlSLUHwo6EPVE7Yo4msNGm1Q/DbBkxgTRRZaFjBcakuthEIcangwIgOAYrWmCra0XEkDpGAeAyCH4l732/12fzNjt/L3b7uidFQ11hAH771RkXEx7UKg78Yaew/4Z3S3tk0GutyxdHEYnLVpZ5L76AP+bKH90fiJa172DE5m/YYrZGcgH07/IwxX+PkNyZTnPzGZIqT35hMqXYNCDkkdMCwCRI6GnKHtey+IkGNjkX3FayxhnLiE/CmkWMQxRSIRYfgR/dCYhUNNaF7oTWeQFnuvZ4KZ+/CmJNPQNz73kcXEouImHyq77V897bEitOJnrxWsfDhZ08l9ta/nktsNTiR2LTUvoXkSqXy64huIfD/Cg4/AYHuCN4z9sF8A0GyCyyNhpi/+Y3JFCe/MZni5DcmU5z8xmSKk9+YTKkGpSqVFKN6dVKkycJI9dMREXuYSkOqbVcNfcq5RNFPtHfS2OaOWuvUaTMENdw8g+af93pHEns/9BeA72pP1njv7EZik++xjbT/w4cSKz74WA+8dVdjy5l+3ulnEnv44ncS+/5n70rsD9WxxF725hKjX3oi2G6e+q7Iyo3vFLYEqfhkSaf91LU799T8FWIbavTqiT3GmK9x8huTKU5+YzLFyW9MplTnA7Vokrg3KVWAohr/VeIEoIj0BplNmzY5h8QPgvoVDKBxaJdQSWBddeI0nbvQCPMB2HY/blRg/bDWe/5osNBrPFxKrPpABbaIiLj/tsZO1d4bA90TsVPrbdHXdffP9XndA6v53T70aACheRnciBan88DeOXRY0F+F9snuANb3REt6JNboR/B+bBLzgO7O3/zGZIqT35hMcfIbkylOfmMypXpvqEIONYU86mgq+CrzjrHPxGqvU3JItkFxD0TAAzjyaqizXzcqSpKYgm7FjlHQFVybHF1U+31a6PN+p9XjPt7peh4eq3PvrQ9U8Bt+ektixXsPJPbXg1XIO1w+0+NA3IuZOvzaR1rPv7skoYqeocZGsD+HJe87etc4bj5R3KXPIyGPxHASgAeh75nceBEs7qXu0ZrGg+NVjDHfepz8xmSKk9+YTHHyG5Mp1d9W2khxBCOH+yBCUGPNBUzNGXeIgNtB2jSWVHGPICGHPm9fpI2C7nJfEehW7BAMX2UI17kFE47O7miDy9EH+rx7D96SWHFbYxERhzmIdr/5rcSax9cS28/UpbdXTTJmT7U8eQuCmB4VcV7CuQeePkRCbrKzFGKp51I5OAnANGKdYl2fSdB61gcVKv3Nb0ymOPmNyRQnvzGZ4uQ3JlOqH9RpjjyVKpgtiBq3Sz67GaQJKlehjjXq2UbiDvbhS+zNR9NeSOSM6BBZwA1201OB7hom8dwUGqvhf3XZh9LRkbrGqKz2sAQlLiLaP/5JYvOfXkrs8rH219vu4NowynvfgKgMz/Buq3vnbSh3bqr08utZvZJYVw/AV8HJTCA24nQe2E+TSt2Ubce9HMM+IdfgFnr40V70N78xmeLkNyZTnPzGZIqT35hMqR5CWe0W5L0KhK4SeoWRKDU8sKh43Vfh5magjkMqmVw1uu4diDbk5iPhhWIkplAJZUS6G2zZaBnsrNTYc+iZ+BKcX9uFCmzHK71uO1XXXrGF6R4R0T65ktj8ha7nYqnvbwN7h3xpQxjYQn3v3m7g3Vf6HJpex2CYUq9Dop12OGQRkAZ51NB7kErJcX1wXFfPywOIu0Nwz9IepdzwN78xmeLkNyZTnPzGZIqT35hMqU4rciepODDqa2w41NhqrQLE1Z77/1GvMuofeAsmtVKPtCWIgJuAfn2JZbVE17lUOkxuQBYG9TkuQai6qPR5XV7qszl+PJXYaKyx3pk+r4iIw0bXcwDRlsTdFYikRH2AvnfwvCaNPq/znl7jZYeLdAA9E/sweKMEcZaKhHHqb2L/Pzp3B2LhzUEdiBEsDh6DQzDd1WqMyRInvzGZ4uQ3JlOc/MZkCipxw0qFhcmpikPjMxXT+jM9d/BCJwFHROJMXRb3hjCpldxX2HOtAdcXOM7oX2PqcIcIdg3iIA8QoKhn4gJKYx/vtZ/d5JG+q7sj9bANOibT0sTawZAceTABF+6vhuewJ8GP+u319LgluPnmIFJHRKyh3JaEWBLEUl2fNPW5B/dHrj/aT9THMiK9z+AIpmzTdGF/8xuTKU5+YzLFyW9Mpjj5jcmUagnuu+NQ8aQsVVjon2hsXKgIeHbBYsz4oNceQEnoAESkhkQy6PdGtCCS1KnqYwc4gRXWOIahJqfQm+0I7nkLQtWTvh53PDuRWP8LFZvOQvsJRkSUR9BfT41kMYJBJyU5AaGml6RGEgZvQPB7Cnvs8V77PEZEvKznEiMRmFx69E7LMk3woxJaghx+XVB5Ol2H1m2HnzHmG5z8xmSKk9+YTHHyG5Mp1VUBE0FBgzhZq3h1tFHhpBxAH7Zj6pAW8dFW+/Vd91X8asBJ1oALjRxZBLmiUssy+yDuRLDocwROq1OYMDuBPmwVOPx2IJNNwe32tNTPG71QEbCp+X//0YkKavst9Oajx51ogCzhwBbueQ7396zVnocvah5Acl3r3qPSWNo75CKld0qOQeo7SYJdCeXJAcd1HYtlwolio7/5jckUJ78xmeLkNyZTnPzGZIqT35hMqeZgn+w3quxPlqrCD6eqKg7GqqQeHXN98vtLjT+poAEo2DlTJ+RsoTaa6qppRDfXeHMzUrLyjqAZ6QjOp0ame1CQt1DPT6r5JVlQD+rPvZnyJKXRVJ8PKfEzuJcpXJso4VcBGM4T00Lf8xSmHtEEpwi2z5LaT++abLKk7NNx9KvQoOS98ypVx/Qhgn5VoF+uPLHHGPMNTn5jMsXJb0ymOPmNyZRqCYLf4KBixaJWcWh4AyLgDsYV79Lq7CMiNmDlvWh0gsmz3bXErndq5VzvVSykkco9qt0m62UH1JiTpsWkGZCZ1NVsQBi8hGk/19BPISKihb6u0I8ythSjqTtw8gQcrKRz1XAvO2jW2WXPJoEuFRKVcfQ2vBgS4kgUJrHwdSB7LzWyRZHzja5sjPl/i5PfmExx8huTKU5+YzKlItFmQ1NSWmiYuVLBr9qoMLhq2En2p77Gf3eYSezP6wuJXW20MSO5uUi0wak78G+Q6q/p87rgpokwxQdiR7Cg8QGahMK55Bgkj+W6419/TaPFYZ/QcQQJfmN4tjSi+5juGcdup/dZIDGOoHe1BzGNRk+lNnRNXUsXtB974OajPe9vfmMyxclvTKY4+Y3JFCe/MZlS0TQVEodWIGC0By1ZbUEZelmxGPPflbrv/rh+qedvtDnjutYSztTx2dSskRxi5OYid2BExB7GmtNnkgg4AnfgLXBZTloSCxUwxaFg19XmES6DJcZ0Pq1nDILY/VLLcm+d6AShq/kdif2uP9bjSp7YQ+9wD5OLcMyGAAAAM0lEQVSGCBL8aI9Rg1kc5Q3vGafrdIiAtG9J8EstRfY3vzGZ4uQ3JlOc/MZkipPfmEz5X0K9xhFyLVx3AAAAAElFTkSuQmCC" y="-17567.761479"/>
</g>
<g id="matplotlib.axis_977">
<g id="xtick_1465"/>
<g id="xtick_1466"/>
<g id="xtick_1467"/>
</g>
<g id="matplotlib.axis_978">
<g id="ytick_2441"/>
<g id="ytick_2442"/>
<g id="ytick_2443"/>
<g id="ytick_2444"/>
<g id="ytick_2445"/>
<g id="text_123">
<!-- 658 1839-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 17676.056479)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-56"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_490">
<g id="patch_491">
<path d="M 164.424375 17692.663242
L 286.714375 17692.663242
L 286.714375 17565.369715
L 164.424375 17565.369715
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_979">
<g id="xtick_1468"/>
<g id="xtick_1469"/>
<g id="xtick_1470"/>
</g>
<g id="matplotlib.axis_980">
<g id="ytick_2446"/>
<g id="ytick_2447"/>
<g id="ytick_2448"/>
<g id="ytick_2449"/>
<g id="ytick_2450"/>
</g>
</g>
<g id="axes_491">
<g id="patch_492">
<path d="M 299.674375 17692.663242
L 421.964375 17692.663242
L 421.964375 17565.369715
L 299.674375 17565.369715
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_981">
<g id="xtick_1471"/>
<g id="xtick_1472"/>
<g id="xtick_1473"/>
</g>
<g id="matplotlib.axis_982">
<g id="ytick_2451"/>
<g id="ytick_2452"/>
<g id="ytick_2453"/>
<g id="ytick_2454"/>
<g id="ytick_2455"/>
</g>
</g>
<g id="axes_492">
<g id="patch_493">
<path d="M 434.924375 17692.663242
L 557.214375 17692.663242
L 557.214375 17565.369715
L 434.924375 17565.369715
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_983">
<g id="xtick_1474"/>
<g id="xtick_1475"/>
<g id="xtick_1476"/>
</g>
<g id="matplotlib.axis_984">
<g id="ytick_2456"/>
<g id="ytick_2457"/>
<g id="ytick_2458"/>
<g id="ytick_2459"/>
<g id="ytick_2460"/>
</g>
</g>
<g id="axes_493">
<g id="patch_494">
<path d="M 29.174375 17836.582666
L 151.464375 17836.582666
L 151.464375 17709.289139
L 29.174375 17709.289139
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_985">
<g id="xtick_1477"/>
<g id="xtick_1478"/>
<g id="xtick_1479"/>
</g>
<g id="matplotlib.axis_986">
<g id="ytick_2461"/>
<g id="ytick_2462"/>
<g id="ytick_2463"/>
<g id="ytick_2464"/>
<g id="ytick_2465"/>
<g id="text_124">
<!-- 659 1839-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 17819.975902)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-57"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_494">
<g id="patch_495">
<path d="M 164.424375 17836.582666
L 286.714375 17836.582666
L 286.714375 17709.289139
L 164.424375 17709.289139
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_987">
<g id="xtick_1480"/>
<g id="xtick_1481"/>
<g id="xtick_1482"/>
</g>
<g id="matplotlib.axis_988">
<g id="ytick_2466"/>
<g id="ytick_2467"/>
<g id="ytick_2468"/>
<g id="ytick_2469"/>
<g id="ytick_2470"/>
</g>
</g>
<g id="axes_495">
<g id="patch_496">
<path d="M 299.674375 17834.080902
L 421.964375 17834.080902
L 421.964375 17711.790902
L 299.674375 17711.790902
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pac5df339c9)">
<image height="122.4" id="imagee308fb3cd9" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAG6pJREFUeJztnUuTHNdxhbO6qrvnDQxEkABfgiiKsmQ9bIe99MJ/2SsvvPArFPLClCzRFiWGIdqkARIYDObd04/q9oIUIzznu45sNqGweM+3zKjqe+uRUxFnTmY24/Ebq7jBciWhWEFsU5qmSa2zitzaTejv7QzHEjvc2pPYXreVWuO6n2N8utT4rF9IbL6kWJ9aezToJLY31H0fjvT6brU7EhvA/Y+IuIZrma90j20z0N+EZ0Dn4v2Ce0PPnp5ziX61lNiC9gPPlWL0TClf6N7S+073cB3o+vqlxpZw3GYrG2P+YHHyG1MpTn5jKsXJb0yldCSeDEhPAbGChI51+KpFRBJUukGrsUZjo0bFtAGIMW3h7yUJPCR+ZaF7S9cyBBGQrmUI16IS0GeQCEWxIdzHDu7PAlaie5MVC0kEJOGrdCxB7w7lBh2X/YJm34eSEEusViCao5D+5fdtjPma4eQ3plKc/MZUipPfmErpskIHiXMtCQtJgSWiLDjBj6YgQawdgFCVFM5I0KJYRF4kI+ie4f1OXgsJmrSXpiC40jW28E5sN0M4V9eZgmgXfBsVeElmq5zLLoKFwKzQnBVx+zXe+cwa6zgYs/lL746//MZUipPfmEpx8htTKU5+YypFVa4oOIzWcB3dpCTGNCR0kXiSXJvELyqDzZaikpuP1ojIizR9qwIUudioLBMddUlRkvfHz4XEPXINbkGMRGBam1x/c3hWVH5L2y45/DYR/FBM20AgfxFQrpKbbwmP319+YyrFyW9MpTj5jakUJ78xlYKCH5ct5sSPdSBRhAQaEgzJsTRq9XLI9UcCDYluRKmkl8iKQ+way0ECKfbbW+m+13Njwjog2i1BbCJxj6B7m33HqEddxGaCX5bs79E9JJcliabrgL0C8b0zxlSJk9+YSnHyG1MpTn5jKqUjsQLdbiCwcf+/zYTBBQywILcblreS4AduNxTJaJhGaKwEiTk4HAKGVZTcaZnjaNDFVTNN7aX0XEh4WzZwfU1OlqSSVxJx+6QwSOfS/Y/4/TntboIidTIPSj38skNuss5Zf/mNqRQnvzGV4uQ3plKc/MZUipPfmErhBp7JyTf5RoFrNCQkGzGYXWk/2dp9Vos3mwyDo5JpPHRyHHd2aguN957ETNcdgOW38Lef7tlsg2akuMYGVl6i9I5tMgJ7k4lU2eaf2IC11DMiqfZnLc3+8htTKU5+YyrFyW9MpTj5jamULj0FhqbhJKfUlJpbrlNPfhOq3c8KfrQuiTvZ44rnk/USa61z4hc2Hk1OTSJhkCy7EQWrbHJUNttac+O9h9QQFO4NPecSJH7RPeN9q3U6O12JwHHxawh+JBjSM2yopwI8f3/5jakUJ78xleLkN6ZSnPzGVEpH4gnVxWfFtGyNf0TBiUQiFPyJov2MBzoyOrtudg546VpWNLUFpwB9+X4H2XHOLEpuVteedRzScSj4wfPbopHfIEjvtmOJTaGvQURBlEz2XrjqtS8CnZt12WXvYQlsrEvTi+BcO/yMMV/g5DemUpz8xlSKk9+YSumyTjlqhJkVoEpg+W7SAUfiHsVokgu6tHDfWTEtXzrMa+fEuH6DElMSoErlrvj8I1dCTe/JFjyXbRD3DgYq5O3DcWN4H+Yw+jwiYg739hrEvfOVlkEf0zrglJuBExDLxpOxbEPXiILYCA1vUYBMr2KM+Vrh5DemUpz8xlSKk9+YSkGHH4k2m/RCKzubkmOj4XQsb0V3oV5LabqLHEeuqMKlZMW4bH+17B6JrOOsWGrdQnlrp/eb3pODdltit0HIu92MJHY3NHZ/qWvc6Wl6EF/LGby2RwO9F4+gnHjWqrh30V9LjMriqYSW3u3scRERC+ozmXzWs15FSX/5jakUJ78xleLkN6ZSnPzGVEqX7c2X7XuWLen8LK6xAfQfy7qg1hlDLXuhv4MNOaXyPfxoPziCPCkCZq8lKwKVoGc4XqnTbgQi2UsDFfzehNhrvZ77YK57/NboTGJ37l9KrMTJM137w8m+xH6xtaXnDtT193SD4SXkvCNKzyorDNM65HT1l9+YSnHyG1MpTn5jKsXJb0yldFQGmx100UAs67yLyJfvZquESSjZZBhHdvJuRMQcesiRq4qOI7AXYupM3iOVoq6zdt/pb9Lgjbvg5vv+XMW9P16paPfGWycS2/uR/l774A2JxYj7N955/FRi9959JLHt9+5J7On2jsQ+HqgLkeBJ0MmBHwVzZ3YwTPb99pffmEpx8htTKU5+YyrFyW9MpXTbrQoYWYcYOfRIxKPSz8/Oz01vxemk1JttOZcYDV4g511W8COnVETEDIQ8EvdIeKPrI+cl3Vt0fSWFoVI/QiodpesjDlcq7r3TTyT29l88k9jWn78useZ7f6SxN7+rsfEu7md1+kRie9/+V4n96dbPJPbfP39TYh90exJ7OlAX4rTRdzErSL8IPLTDGPMFTn5jKsXJb0ylOPmNqZSO3FwoiIHARuIcOQZpaEMED27YhjLRMaxzvVIB6nmj/dVIdKPryw7TKDn8sq46LOuEHnAE9tyjsugNSn8jeN9Yihx6LWPY0Mu31c03/rE66gY//hOJNQ9+oMfdVSGuGWnpbkTE8s6rGutU5N5+ru7C7757LrGXOi39JdH8cqDv4mAJgu2Gk3sjWWpPn3l/+Y2pFCe/MZXi5DemUpz8xlRKRw44nOgJwgIN/NiGksdvQA+3iIg7MLjhduhv0l+oY5iMOm1UlLosiI03IfGKhK/SoIvsFFxaJwsNh8iyqZMsW95MVzeACbrNtpbqxhhiwGqmYloRElg7eCfQPQlrwxLZadXk0FxnqjVB7lBy3i4hi/zlN6ZSnPzGVIqT35hKcfIbUylOfmMqpTtfaK01KYhDUPZ7GHU8BIWbVP2IiG+u4D8DYIGck6sVZmWfQ/PIBTSenCen15AN+GqpU1wiIi5hdDPV5F/Nv/x/VwhsttqAFRv2UrL3ZtehfZ/Cf1yeHmsN/N1faxPNbuffJNacaN1/c3hXN7h3qLECq49+I7HpP/9WYj/rtFHoJ702BL3utXafrOH0TFcwoWpT6L8KlJf+8htTKU5+YyrFyW9MpTj5jamUbgpiBYk7JCJkxz7vFxp4vq5Lx33YzxwEyK1OBciuUxvx7VatnCT4laYK3WRasOeerFQIfLK4kNizVmvELxcqFmbvbXaUNzZWBREwgoUpOpYE0U9WKmj+vNXmmtt/p/bsVx+/L7Hxaw8l1r5yILHmG7clVmL+iw8l9o8/0br/vx/rs3o81br/655F4JuQlZcs2yUrdvZZZ+3G/vIbUylOfmMqxclvTKU4+Y2plI4bSmooW89NwsLuiv/GvLVUoevBN59LrB3pOm8faSPFx8/VSfYIXH9nUPCcrbKfFnTBI1jnP4cqNo7BKUkTX87n6rzEqUBJYZAo9QcgcY96N9Dzf9pfSeyXUD+/XKho99YvdCT2y7/S+7C/p2vsHKgQFxGx7PWB/epjdQj+9ZYKzb++1mk/JzNtRpodf073FRvHFgS/rAicFez95TemUpz8xlSKk9+YSnHyG1MpHQkOm0BOuYOC4Pf6vVOJ3f4rdWo1917S37xWJ9m9/3gssW/9DFxoj/cldtqrYDeBv43nLV9LDyLLOTQPvRyoUHnVqkNsAq4xEvxKI8Nvso7Dj8Q9ihGXUPL8Ua8iWd/qe/cpuDFfWuqzOjxTYXfnhN/jGVz3z7f0nv37/FOJPZupw48cscSAxs8X7vdNSsJekyz/zTYF9ZffmEpx8htTKU5+YyrFyW9MpXToBsLyv1zpIFGSpAYg+jR3tRfb4J3v6cnbKgQ1D/5LYoc7/6L7+QcttZ19omLMBHoMlq6F4ljCiZNTciWYVOpJsXxJJz+/Dkqw6T2hGJX5Pl+CWzH0uONGRdc7MAHqNoiPO4Xv2BwE7YcrdQgez/WdmCxUvMz2WyTBj112ufLrCBb81unDqGsbY6rEyW9MpTj5jakUJ78xldKRy4uEHBIwiNlKXWiPW41FRDz8+I7Ebr//kcSa+/c1RoLfLvR2O9D+ce1QBagexBRyh10XxJgpDMq4pqEfK3WITZfQtzDp5iOH5hI0IJhxEsuCu5NEu36l78kSrpl+8xquj9yKk4EedwWl0jScZTvYPTcHKfYZCJDUhy9bxk7f0AWU+ZIwSLm2DiVxUNZ2Dz9jzO9w8htTKU5+YyrFyW9MpaDDjwW/nGvsGgS/j0BgiYj4py0tzdz/Gx288Z2RuvS6H2m5ZUA/wuWR9sebXqlDbAaC0RyueVbQV2YgdF2Bi+18qaXIFzDhlya/Znu4ESgWkjIY7BpDJxlV+cLnhN4nupIpvDsNTG1ewNld4TtGv3kMw1RIgMzehz7ZAXLW6xrUR7FUkrvJ5Gb38DPGfIGT35hKcfIbUylOfmMqpcPBG0lhgdxlc3CHncHk1oiIh40qRj8Nde7t/u0zid2/eE9izZb+3uQDFdPOzm7pceTSgttQaqNGpaOXIDad9Sp+XsCUXnKIZct3CRQLC9WgCxAqs2Jj0+l+dlp15A2hbJiELnqf5j3sryC6kXvydK4lvXi/N+hvmRYGaWZO4ZmukqXfDTgvB+T6xFWMMV97nPzGVIqT35hKcfIbUykdCR0EurRI1ABhaAaiTUTEyUrLKH8LE13fO9O+fsuf6FTWnT39vQsY8HAyUwHqGmpeqXx3UtDXLhq97rNehc4riOGkZCDrssxCz68E7XE+0OdKTjka+IHOUrgWEsmo5JiEvYiIywU8A4hlJ+1m+/AReXcgf5PbpLhL2OFnjPkCJ78xleLkN6ZSnPzGVAo7/MDGlu1nRqWj5NKKiJhC/Bh63L0/1sm20ysVAe+c6++RpHUBZZSnEDuBtnBHDV/LU3AxPu/VSZad8kqlnpsMaKDq3XUEJBIbaT/Ue5BEThLtaFgIrUF9ImmqcQTfbxK5aZ3sQA0SLyk3cA36PXj2pXWoByfdR5oQ7C+/MZXi5DemUpz8xlSKk9+YSnHyG1MpHVp0wcrZD3I2S6y/Lqj9ZPs9BbX/IYjST0dqGb0FU2X24D8XZKi8AnvuKSj7nxZ6EzxaaEPRs4Wq/aV7cROu0/7yfRY2sYaW9kPQ9S173Q+p8NnrIyW9ZFNHZR/uD9pfv2I7dfY/BaTgR3APhCFYp7datciPoHeGv/zGVIqT35hKcfIbUylOfmMqpUs3gAQRcAGC2KxR6yUJFRERk0ZFH5oicxYsst1kC0SN3YGKH1Q3PgcR6ZKaPy612WZExPFcp8BQ3XjWWpoVh4jCIB5dt9CgkkQtFL+S7062ZwSJz2QX35SSoHaTrJ06a+Ul2+4AnmkpX0jc225HGhtobK9Vi7y//MZUipPfmEpx8htTKU5+YyoFR3Rn3U400YTEj5KrbbLUGuxZqGBITQ65NlqvhZxNJKhkpw9RbXopTi627OSbFv4u0/3OCrYlcY/AGvPkKHeCnh+KZLBHEgHRoVdw3pHIln3nSeQmATLbCDV7LSVo32MQtA9A3Ls1sOBnjPkcJ78xleLkN6ZSnPzGVEpHItkmbi6c2ANNHUtQ08TS+OWbUOPRFcwmpt/LCmylvZCLjabA0P3BiS/pP8u5A9cR7LJNIel8FIapCSe8E9T8cw7jwrOOwU0hMS7r5kNxFrS9bPl8BN9bErR3weG365JeY8zvcPIbUylOfmMqxclvTKV0pekgGbLiR8nFxL3mvvx+6FwsyyR9jRxecGrJzZWdaITiEOynoZLQZPs4ms4yhr5uVA4aEbEFghH2gCMnIHxP6DlfQ7n01VJdkjRim8Zxl0TArBgXcFxWxM2W/tJzzr43EeuNVL/JDIRqf/mNqRQnvzGV4uQ3plKc/MZUSkflrdlSXezrlzy3uCHYT7ZslSCHWHYEOTnOSGwqnZ+FHH7sntMYDWjY6cYSO+z2JHa328X97Da5vocUGyaHWpxD6fYRjDQ/arQ34vliIrFJ8Ijuea/rZAd5oEMT3vlsD0b60g4G+Xcb3bMwrvwMhNOr0PfWX35jKsXJb0ylOPmNqRQnvzGVgiW9DYgfJGqguEeCSFMYDkFCHvw5IoGO6GHSLsaS4hyVnVJfvoj8MA4CB3SA85LEvd1Oe7O9NNyX2IPulsS+Hdu4n0OyogF0F9UHyMcdQdnqqKWyamWtKb0wWKZPllpnxb0s9JzXmcbMTkkVOtE5C4nlL78xleLkN6ZSnPzGVIqT35hK6UgcSJdBJimWwaJDMDnRNbmfbO86El4WMLSDXF8vAtojTWml6av3WnXz/WCl4t6fTVm8fHlbnXYrEF3PpuokvFqpQ3MK35idTo+bgDPxbKB7PINBFSRcl6D3+6sW9whycq7jXiVR8xqcewQ6Z9MrG2O+Vjj5jakUJ78xleLkN6ZSOhIRSEzLih/rCBjZMsq0KEl975JTWjfpHVgiO+gkOySF9rjbqkj26kDFvR9O9L7+8Puf4n62v6Mi4upa3Y4Xv9Fy26eP1F14OtWegLNer+9WB8Jgcsryi3h+m7BJGXop16g8nSyQKGhD6fD/rztmjPm94eQ3plKc/MZUipPfmErpNnGsZcsRS+IHCXQ4GZUmmSbLcvsehhXAfsg9t85AE7oX5OjKCnkUG5HDr1Ex7bWlHvfOy08ktvuX9yQWETF44zUNXqnrb3/nQ4mtlioCLh+r4/Bqpns8gH3vwzVvw1CRkuCH4tcGYlwWFJ+Ty5bebSptpx6A5ExtVy7pNcZ8jpPfmEpx8htTKU5+YyrFyW9MpaRHdJNy3cEoaFJXS/X8pEpSg8zSiG85LtmHgGrTAybILEEhXYestXjYqqJNyv4Y6tgPQPl+da7XfPi2TnEZvPVAYhERzSuvSmx1dSkxatZ5EB9KrH3vTH/vQ30Gpwv9r8CTkV7z04Famo8L48YvF9cS28h6m3wX6b8/WTY5twTt219+YyrFyW9MpTj5jakUJ78xldKRiESQAEW15PR7NEY4IuJ0rpZR6i/QQ9EyTTYmU+QA9BkSAZfJddexhmbHbNNx1HBxBLXtY/j7vQ+W5u4VmM6zr1N8PltIj21gj6vX39R1hjBVKD6Q2O1THbO990TX3YOGoNtwH+jeRPDzQlt50mqe5atughuRFyrp+sjG7y+/MZXi5DemUpz8xlSKk9+YSul2YUoKjfPd71SMeQUmw+yC8HK60jHCESyKzGEsNgkYS6x51hhWRicntlCng5LoQqJdaTS5/OaGk1xu0oGw1IxUOAu45oiI6Fmgld/c0nditX8gscG+NgRtW637n8M9nMA9nMOzL4lpOJ0Hzidxj967r7oxJ+2lJCov8RLhGVIOkfiMqxhjvvY4+Y2pFCe/MZXi5DemUrqDdkeCY3Dz3R3ocd9qNLYPf08+LbgIzzsVAi96LcEkUWSe698ZSygbRjdXciJReVkQbqB0mIRKuj6M/R+r/691Iba6glHOZyd4/irZHDXmIOQeP5NQ/0zLga+v9J04B9vmeaPPbwKCFpWHR+QbvRJZcS9bgpt13pV+j8vv4R0j8RPug7/8xlSKk9+YSnHyG1MpTn5jKqV7rVNH1gjcQK806gR8eamusS3QV2YtuMsiYrdR0YdKWck91zfg8iKdIznKmxxeJLyUhEGSlUhsGoAISMeV+h7epIU9kvQ1/Qh62X3jIf5mc1vHbJMbcHWhJdn941OJXbyvOzo60/fueAh9/aAcfLJS8bI45YYmSKGjEhya8AyyJd1ZAXkdspOd0qPhN96RMeYPEie/MZXi5DemUpz8xlRK9za49Ejour3U2EFyujeJUhERIxD3hhAjSBBD4QyHdnz1YgyWa4JIRmJTP8iVmKJQBbFjEFgfva/9+l6+PJZYRMTw1pEGScg91XUujlUYfnKiaz8caJnv44G+UM9XOmzkcqnOwpLDj+4POeWy70lWiM2Oqsf+jTAMpxQngTyLv/zGVIqT35hKcfIbUylOfmMqpXvQq2BAXqldsM+NQPy4hrLMkiQxBrGChn6Q+4rIDmMgXshk1A0GN9B+SByawtP6GOZXDGfqqHv+gYpuERE7LU1K1v1cw7tzGvr8Hg/1uIetCnQPV+oYPOo1RmXf1zDdOaLQIy8pnPYkuiaHgNBxJALi1OaC4EeDc+h8At2mqTONMV87nPzGVIqT35hKcfIbUykdjWcYgya1BaLGGERAEk4Olvw35rBVceiwU8fh1VJdXjTcg2IospDDKykMruMOzJaTogCVLMu8hJLXxwON9SMVi056deNFRGyvNE5y2uVIY6cwFvlR6PP7aKl9/Y4WOsiDxL2rXn9vsuDBMDT1Gcu36T2BbyMJtm3yWWFJLryLJRGP3hOKZUvE/eU3plKc/MZUipPfmEpx8htTKd27rQoqd8Cl9Qb063sNJmfsQxnreMYiWTsExQh6CvbD3FALEmOaRb7fW+a4TQU/KsvkYQzKHMpWL6Gf3bMV9TzUfU9asAIGfxEuoGfiGa6tYtzThYp7JxCbLvX3ZiDizmCKMIm9EVxWnXXakekz++5k3xOcVF0oTybrLQmxdD6XlxtjqsTJb0ylOPmNqRQnvzGV0v1y9kSCB62Wep612odtp1Un2KtLFRAPdlQEioi4P1FhcXe+J7G+07VnQxA1kmIMur7IAYVTdlnIofPRvQUxcv3xRFcYYDFQyaeFfoukZ5XKiyl6BC5LKrc9pRLchb4TJO7R86NnRYLfOtN4qafkJqW6WXcoCsh9vk/gvMldN03+teBnjPkCJ78xleLkN6ZSnPzGVIqT35hK6Z7NzyVINdTdWG2p74Daf7ClqvDdB1qnHRFxONG/PYuHGvuk3YaY1v2ftROJkT0Up+uAd7IBtR/6k35+cK7WOgvVnJNtcwrXN4KJPddwbqlnwBSOPV7qvSWL7iXU2tN/KbLKPsXWsV1nx1VnFftsk9jsBCBqEtr3+f9ckIrP9fxW+40xn+PkN6ZSnPzGVIqT35hK6aYw6YREjdNeBZ+LIVhaWxUWhocsugy2VMwhK/CtmYp7u1CLTuOKs6IbiTEkumWFod/9wk3QMkyiDwliIMTNoIHnfKW26Vkk56lHxAR+85ym5IBFl/ZI14JCFcTSVtWCsEfWaSL7rFG0SzbM3HQ0fHaPJO6hfX2j3Rhj/mBx8htTKU5+YyrFyW9MpXQkNpFgQMLSeaNizBXU6C/O1QkWEdFfw9jnqZ4/T/6J2mRcMQlL5C5bR/AjEQpjJH5Bw0xyK3YNiG4DbYzaNyqQXsMzjYi4XOr0m2xzTRT3ko4zdPPBvUHhrCD44dSkZE1+Vqh8MWKxsqlgeBN/+Y2pFCe/MZXi5DemUpz8xlRKl3VAkRhzCoLRx7NdiY0+YHfZbK6OvA97dfMddSRA5oQlEl6yTSFJlNpU8MtOi6E9EqOBCnkLujdQsly6lklS8CM3X/be0nEkutIzIF6EmEbiXvad2ESco3d2rfOTa/vLb0ylOPmNqRQnvzGV4uQ3plL+B/g4OGHXm29/AAAAAElFTkSuQmCC" y="-17711.680902"/>
</g>
<g id="matplotlib.axis_989">
<g id="xtick_1483"/>
<g id="xtick_1484"/>
<g id="xtick_1485"/>
</g>
<g id="matplotlib.axis_990">
<g id="ytick_2471"/>
<g id="ytick_2472"/>
<g id="ytick_2473"/>
<g id="ytick_2474"/>
<g id="ytick_2475"/>
</g>
</g>
<g id="axes_496">
<g id="patch_497">
<path d="M 434.924375 17834.080902
L 557.214375 17834.080902
L 557.214375 17711.790902
L 434.924375 17711.790902
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p97e7131512)">
<image height="122.4" id="imagecd712d248d" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAG3pJREFUeJztnUuTZOdRhvNcqqv6NtMzrR6N7BkwEmALEIYg8A4vCG/Y+FfwJ+B/4CUrIliyYGPYQGAchGUCHJKQZFtYd8+1p6e7uu5Vp1gIO4LJ5yOyVDOK8OT7LDPO/TtZJ+KtNzOrun1pbcmoqsrHzMeaunaxXtPiMV8+eNHF/qJ+2cW+/ZdX/Xm+/ef+gJOhCy3/7q9d7MffOXOx71aHLva6XbjYm+NP/HnN7N74sYvNlgsXo+fYVP6Z7cAzoxgdj1iv/Su7Wne47Xy1DMU62J/O87SJ3rNZ/B2l7eg8fk8hRAqU/EIkRckvRFKU/EIkhdWr5wgUOkCUIqGqbRoXGzQ9PE9nXhx6b8dvN/nHt1xsd/A3Lra+vHSx4Xc/cLE3utsu9pN24mL3Fl5AnK28iGdm1oHQxc8xJkChKLWB0PWrSFRUjj7Xz+KxZ1tL8BNC/H8o+YVIipJfiKQo+YVIShsVJp4FaxDJwvsGRSl0RQXFvZ3a66Ft7bczM1uuVy72lo1c7J9+eMvFfv+nb7vYYuHP8+bY7/vD/tzF3l+cu9gpCH7zzjvdzFhwolhUwCJo/UhoxH3hvSntGz7mFm6+bURldEmCiFfaH0XX4Hn05RciKUp+IZKi5BciKUp+IZJS9fu3Q0rHsxABo8INiTFRsZCEFxLtBq137vVA8OsVBD/a9vrOgYu90jt2sS/Vu/4a4RwP196R9+nKOwHvLHxJ7vli7GLTpRcLzbjkddF5QZPWBR1+QWdalOg7YsbXvYRYtKSXhDN6n6JuvKiIZ7ZdSS+KuHgWIcRzj5JfiKQo+YVIipJfiKS01JMuKnRESwdLUN817M/W+e2i+z5tqHTXzGzWeTHu/sw77Uh4e6fxtb/92guQJA4twKVHzj16XqW1KrkY/bm9cEZrhZ8Y2CwsFsJlR518Zix+sQjoj0n70vPaRuSkfc3iDlZ0Y0rwE0L8AiW/EElR8guRFCW/EElpd1svNpH4QURLB0uQQEciEh4TLnEFKhK6A4OiYgUnISfYZ/GYC3G49v31SKDpQ6/A/XbgYlR2jEIVibMF1yYN1KBrJPETBT8g6pSLimklSOik95tcjdvkwTYOxhJRcY+gd15ffiGSouQXIilKfiGSouQXIilKfiGS0l6DmvPRcupiZBmNNwpkRZLUYtqflNhVBapy0OFJCjD9y0DXt8m9LFdQA0/3DMck1TyqctP90fWVFOleFVPdo2uF5wgq+9FrKVpi6dnS+jf+uicr3+8g+g/AJj0HHIVlpufdbeFo15dfiKQo+YVIipJfiKQo+YVISnu7f90FH9R+usv50tehk3CCImBBJCPxi/aPWka3IdxHoLA/2X6jog8JOfRsSXSN7kv3skkzUloX6jlAwlm0lwCJqdQIkyzNOxVPmydxkNZgCv0Y6Bon0PSUeips1W9ig9c9KrrL3iuE+CVKfiGSouQXIilKfiGS0v5ue80FP6z7LvZR9cjFLpa+Np3YpP6aRl3Pai/GfBFs0hB0K0dXEBLtZuafTXT8dbQW3IzFwYF5wa+DZqQoQFKdPax9Cw4/EvdIfDQrCMigqPXAMUrnJlfkgsymW6xBqUlshe8TiKnr2Lrqyy9EUpT8QiRFyS9EUpT8QiSl/cbciydXe4cutuh5MWYBAk209LcECUHbQG6naMPFqFPKzNCVta4+v+gTbYQanWZElMpTybFGgh89RyrBJUde1AFHbsO92ouKpXdsBvdCwiK9y1EHary03bNJCXyU8Pj6rc4ihPiVRckvRFKU/EIkRckvRFLaP9h97IL1+MjFPtjx02I+ggOS4LcJpYk4T0ICVFQ4i/aP20SonK280w57D9JkoKDoQ0JO1FmIrrHCo57CvWD/uNofcwBOux448vbARXql8e/YjXrX72t+rUaFYuv7lS9Fn69j7yitP7n+aMx9tKwa134D5yWVy9N7QufWl1+IpCj5hUiKkl+IpCj5hUhKe+U6lOWC4He59iIQDTUYL2fhk5OwgSILDYxoY0IH7UvlnwMYiY3loAVBku57aP7Zzs2LTSTasUAXG8axLfQco0IurWnPvCBG4t5XmysuRg7UWyv/rM/NC4hmZv858ILhGz3vELxXX7rYGM4zr+E5QGjdwDOkDYFNBL/oABoaIKMvvxBJUfILkRQlvxBJUfILkZT29Y9vuuA/972Q9+H8zMWmIPhFHXpmZjX1SENXFQgg8LNFbqdd6Cm313hxqDT04UlK7jAS7cgpR64/cuSRQBMt8yXBCCfgFoZ20BpEy0zJAXcI4t4JOPdudV50/RoMkHnlmxcuVu3x+n31+/56ro1fcLF/b/3+92rvDhyCCEj3HHWbbjKQJjoYJlrmrS+/EElR8guRFCW/EElR8guRlPav2ocueH967mLDhXerRaevlkpj++CqI/dd1PFEwguJe/tQTtqDayQxpV3zvSwbL9BNm9hE10nnt0MnIZj5sH8c9CMkcY+e/2fbxqb0kivyWrvvYif1no9VXog9AS315KZ33vW+8ZsuVr30kt/ZzL588paLffNvvWA4Xvu+lXXt37sBCMNDECoJFIXXwbV/BujLL0RSlPxCJEXJL0RSlPxCJKV9d/SpC27iOnIHBGGJhjaYmR203vk1gIEMNAiCIIcf9ZTbBdGmJcEvOLShxBIGnUR7u1FPQBKMiGhZNMXMCj0OYQ1orQ5BTL0O4t6Nzh/vxaVX/A5fAafjr/+Gj730FRczM6uXfv/bX/+ei736uhcqLwb+XkADtAqCozpW2h59H0qgENv6d34Fz1tffiGSouQXIilKfiGSouQXIiktTWotTqJ9gjo4pZWEPTOzI3CDXa39tvuVFzCiAl20FJX2pdhOqWce/IxOQfyaNl7Im0GMhCBaq2iZL5Z+Fpxk1K+vg4nDJKbS0yH35OHKX/dJO3Wx9qZ/RwwcjDb3+352ABAvT/y63ACB7njtnYmPQQylfJl1sM4QozUtCX601uTS3G1jU4z15RciKUp+IZKi5BciKUp+IZKi5BciKS1OpYHZzWSd3YHRxHutV1IPG9+s0czshcYruS9WXu0/Nq9o7gVV/AXoz2OKVVCPD89hVJq6ghOwYXz2FhN2aA3wUqghKKjKpWarpCqTRZtswBOY7DSCpqdT+KdgPvfv4uITX89f//hdF7Nrd33MzNYPT11seepr6AmYQG7TtX+OZyvf62K49LGosl+awkTXQ70uqGntldb/c6EvvxBJUfILkRQlvxBJUfILkZSWxB2q3SbbLol7JCxcLQh+R1DnfR3GOR9D08w90Krol2wJItkIlJPHsN268kLVRcdizBiacNKIZ6rTjzZsjFp5sUZ8FWu2alawRENLBrIB03M4r/0934W1f7vx787OD/x13z5738X6L/F3rJv6/YcferHxEppwTsDS/Bgabp4v/WQfXGcQ92gNSNgzM2vA1kz7k5WbrMX68guRFCW/EElR8guRFCW/EElpyQ1GjR0H4Brah9HLNA1nrzD+ugFhiaSvMQgvM/jZ2l3749EslR5s1weNi66P3I9mZtNg/fYCXF4ECkGwXXRE8ybOQurT0HQ+Ro41mkg0Atffg8oLZz0QkBerAxe7/7Z/726+50U3M7P+jr/GydS/FRcgaF/CezeEsfQjEHaj64x19tQl1OLNcWmtyXGoL78QSVHyC5EUJb8QSVHyC5GUdr7yAg2JTSQiRGOLgoNtBA464hyEtx64nQ7X0DwUxD2SH+lXkAS/pvB7GXXfUQlmaXLOk2D5J5SY0hqQMFhs1Aq3SAIWOfxo3Di5/i5ABO7Bs5m3fru7jb/A4+6Ki5mZHU38PdJKnfZ89NS8kDeCeyGRk8qlo2tfeh9ofD2NSSeHJzkO9eUXIilKfiGSouQXIilKfiGS0kYnw5BgEB1XvajZ7TSF3m4jEIIGENs1L4o0IKj04PetBhGwAe2rB9JQTNYrQ8+MYtyvzz8vXj8S/OJjn7H01EDwq6E3H7wn4wZccSBekZg6hHvGUeWFhRn0/HvSh/OsQCQ9XXvBbwqCX7QkO+qcLY20pwlJJDSTOEvXqC+/EElR8guRFCW/EElR8guRFFQWyPlFbi6aX4HuIujhZmY2AQGDSoINxnYfggjYByGPy3x9jPq1zSt/LxN6DmY2hVJPHJQRHCNO/dqW3bZy4/+l6PCD05BrkNaatluCC3EC5c4reN4kxJFjkM5hxiIiCWd9eJ/mcMw5iNQEiXs0TpscelEh3Yzvm3KVREB9+YVIipJfiKQo+YVIipJfiKS0VGYYhcSraO+yEjsgvJAAsgs9165Cn7lDEMkWcMvUJ/AR9J47XXGvuAvokUZuNxLEyM0XFdjQ7RYkWoZsxtcYdSuSsDjqvHvuEraL9kYsuexoAM1+40VlctrRddPzRnGvgsnScF6ckl24F3oWJO6R+Exlx/ryC5EUJb8QSVHyC5EUJb8QSWlJyCEhiIdIQIz2LdRbkvuKpgFTWS6VZfbhPH3Qw0jwG1VeqLy7HLnYw8WF39nMxksa3BBzg0VBRx0IUCzixoS4TaDzkCC2IIff0otSVDZOoukm5cm9hstj3TGDQ01oDQ5a70A9avddbBdEwBk4Bi9WXjwunZvET3KWUpm2vvxCJEXJL0RSlPxCJEXJL0RSWnInUTkpCXFRh9gmE2JJHOzRJFPYl2QgOvMKLnsIwssZuPmGCxZjpiBgRcEhKcEhG7gGcNM0+LUkm+G5g25OEqBIoCNnGgl+NFSGRMWSUxX72YH4ReIsPVtyDB41Xty7ATHqRXkOTkcqWS4RdSES+vILkRQlvxBJUfILkRQlvxBJaXfAAUXOvai4h33roFzWzKwFV90KZKglCEYLOCaV5Vrjr/scesXRgIaLpRf8yJlmFi9l3sQB+XmPZxAjkYvlUIZEJBLjSIAiAZmOF3Wm4XRo6NVYgq4RBT9Yl72eL8ulPnrUe5BAl+wG7wPlJT1vemb68guRFCW/EElR8guRFCW/EElR8guRlJbsitHmkdH68tI/BaRUU5PCEUz8OV/7fymWoPa3cA5qzHkH6vTJyksKtxkr1QSO4w7+k7JNs9VoPwazgk0abaRkk/X7RkdYE1H7cukZRntT8L8hHrJxn9f+XyFq4DlrfN0//VNQmj5EYMNUyIMK/N368guRFCW/EElR8guRFCW/EElpSTAgqyMJWmjHBHFnk5HDbeVFNtqfxidTvTQ1ZjyDBokP5l7wIytvSdjbpKnkk6CdGmKroJhKwmC0qednwL08ZVtytIcBQfbV0jtG/SroWaCgDSIgbTdaTl3sFN/ZWEPX0nYkxNN91yDuseArhEiJkl+IpCj5hUiKkl+IpKDgNwNhgYQubI5IwkmhVSTVdJPoQ80eLxrvqooKixMYYUyiDd3zJlNu0BWHzwJEGyrTDwpsUTcftDowM7MuON0HR3SDGBceQQ4CW1XoBeG3K0yFCl5PtOklXePc/Ps5qvz7FBXsNhlzT/uTyLlTU98OIURKlPxCJEXJL0RSlPxCJKXlZoixKSDRqTKlZoZdFxMWaZLLRXQ8eNBJFp3s8kVBolTbwHQlcnhRU8cNSonp3NFjRs9D60zCLjaEDYqPJTaZIOXOHSx3p3eW2GRdaFsS8nbrHRfba3zjUX35hUiKkl+IpCj5hUiKkl+IpLTkdiPxKyqSbFKqiSWTsB1dT7SfXbQ/XpTi8YJ95XDsMzmyYJISxbBkNThxifo3mpkNGt9/rl/7WGn/J8ER3VC2Su8iCWebOOAIFLkhRuIeHo9E7uBYchLsBiDYmZntNj5O4h7FBnL4CSF+gZJfiKQo+YVIipJfiKS0NIQi6qoicBBEUXSL9U0jqJ8dsc1ADCwHLYyCjpb6kkuvB6JdDwQaFPxAdIs6wQ5giISZ2fV238WOa7/twPy5pyDZjkDcu+xgJHrty2AvIUbCYGnQBfee9O8Yvd+bjMqOHI/eERJsr7S7eExal10YDkLvMt+fECIlSn4hkqLkFyIpSn4hktKSqIVuPtDhaBooURILtxn6ECU6NZhiG5WJBs9D4h6JPhgDcY+EPIodNl5EutVecTEzs1crLyy95vU5OwIh72HtS0c/8pqUfdr6fX8O4t79euRijysfu1j6QSxmZqvq2ZdlR12ttB259kjYMzO70fj4AL7fS8jfCQix+vILkRQlvxBJUfILkRQlvxBJaXsgIpGQR7Goy65UfrsGt9w201u3cfORmytaNvy/J3chEgz7UC5L4l60Px4JiNSv7WZ74GKvVT5mZvatuRfPXv3TM3/uV7/sYqs7py52+q9e3Hvz3gsu9sbAX887LQy1ADffaAWKpMX7URLRkl4LugPxfYBS6f1CSe8+OCr3IH8XwevWl1+IpCj5hUiKkl+IpCj5hUhKWweHBmCsUN76JCXhrKJRtEBYeAkS7XFHbDLIg+6P7oWcjjh9FcQd6vd2BG6+L9d7LvY7U36uv/WHD11s58/+xMXqP/qWj13cd7EbX/kHF/vjv/+Zi7U/ueli44G/l/u1n9Bc6jFJvfRwQjBNl95maAs4Z6Nr2mzgfKUrpL13QSzUl1+IpCj5hUiKkl+IpCj5hUhKG52+Sg4/ErSixzNj8avp/LYkvISHiGzh3CMRqCQ+ogsR1Bi6P5y0C2IqD3jwDrHjGgS/zu97C4QzM7Od237/6kXv5mtOfs3F1ldP/AG/9rELHXxyz8VevnfuYj+bHLvYHtxzqTz8aU+cjrKNqLyA987MbFx5Z+Mi2JuPRER9+YVIipJfiKQo+YVIipJfiKQo+YVISku132Q5XNUxxT1ah27GI4sn5qexENvU+Icbc4LoukJDpdkqaBmlCUn4jwTEutqfg/oxUN338cof7+iQm15WhzDJZ+a37U4/cbE1jNTGcxz52v3D694afO0jf8/9Ntb/wOzpj2jf5hw0PWja+ff9rON1mULD1Og/VzjZJ7SnEOK5Q8kvRFKU/EIkRckvRFLal/u+kSIJC2Q5jNZKz+B4ZmYXS28vJRFwCdNGvgiifQ3MWLSLWka74LNFuzEcrwfi10Hnt9u7wuJqtX/VxdajoT/3uz/w200u/QEf+v4A60f+eIupF/JIXqX7o0amZvF1iTb1pPXHkdiQByT2ni98DkwLomlUqKbr2YW+D/ryC5EUJb8QSVHyC5EUJb8QSWm/XvkxzQuo3afYBOSYIYh79zquGx8XpqxEiAo09OsWbQhKwlDZURUbdU6CEd1LVPBDlyWIXPvQE2H3Bgux1RWY5HP+2IW6n77nYw/8ZJ/VI+9Ym37sRdz796+52FkDgp2/OnSlmsXFuOhIbRppT25Mghx+44XPgWlVEGK3GAVOU6H05RciKUp+IZKi5BciKUp+IZLS/h5qCySS+N+JOYgsP2996eAKSlHNzE7rkYuReIJOORBtWASkiURR511suo6ZWQ+EIGwUGRQbo/vS9fQhdq3yrrHeCY+CNnADdh/4JpzTHz1wseGnvkR8MvYlwsOx3+79tZ8qdAql5EsQPkuCHzZHDTbXJHEPjxcUcQkSATcpQ46Wts8rKAcOn0UI8Vyh5BciKUp+IZKi5BciKe3LMLWFBLEGRLtV54WJk5mf9kJjls3M7sAo6bPal4SiKw5EKQLHMQcnAJFos0mvONpytYUISOIelbfuryHW88puN2aH3+zf/tvF7rzhXX/vjm652FkDY6jhHPDq2ClseA5TaugZUi9DM7NB40XNRQsiG5TRRh2ePGKdnInk5Iy5O7cmONlHCJEAJb8QSVHyC5EUJb8QSWlPbvheaqRpVSD4dUvoFTb0wsno8ghP/lH/0MUetV7wm6y8WLXN2O6oCBgt/SwdMzoKmpxkBPWp61deJeuBAPV47h11//Uvfvy1mdk7IMT+CATDOzv+3ZmtvZh2XHuH34sGw2LgWhZQNo4iJ/SoMzObtf5elnCNtH7ovguOfCcBmN4xovSORV2DUfTlFyIpSn4hkqLkFyIpSn4hktLuXvcuLzIYdQsvYCw6L0C1rd/5SzbFk78GJZxnO9ddjASa88o7E2fg0iKRJdofjwSfEnX3dH9He8HDLUEQewDlm98feEHsLpT5mpm9t/JDNu5Ozl3sYul785Fw9sKO7xO53jlxsZsgAh6s/Tu2rvy9lMrGp41/Fpcr/z7O4FnQRGYS9+pgmS99aukdKwl7NNyFt/v8/S2FEAlQ8guRFCW/EElR8guRlHYxgt5zKy9WzKfefzUZ+X59o6kXY0Zrv52Z2THoab/detdft+MFjE8rP0Ti0cK7A0cLL+7MQQQk4WUTF2EF4lB0outq7WN0PeR0PF36PojvwvU18Dt/tuJhKg/mFy42XHhxjwRWKnnepbJaeF4HcI0H8Gz2YLsplP6amT2EUt9SH8YI2NcRSuCpD2aUTRx+0f6WWJ78Oa5NCPEcoOQXIilKfiGSouQXIinte+/7ss4GBIwl9IW7NC+mDKHs9HGPxY8huLKorPOo9s6vhzWLiE+Cbj4q392it16JqBuMzj3vvDONxEu6v8cLLwISCziHGQuLsyU44MhxBp+TqOOsD5sN4BQLOAf1zDMr9dejQS7BnntBxyidA8u+SZwrvHfbiHuEvvxCJEXJL0RSlPxCJEXJL0RS2u8NvJi2DxMVSE6ZgzB4CbGLgvtqCqW6CxAwLtZegJp0PkYiGbr0gk6pTaA+fL3Gy5ckBJFgRNczWfp7ngZddptA544OksBSVmAOaz+Gd6dX++NNYLtVQSSjJ0HPh2IkVC7AeRnty7hNX79ngb78QiRFyS9EUpT8QiRFyS9EUpT8QiSl/Y+1r93eB+tsA3o/Kayk4I87bhRJ+9dwnhEo+2RBxWaIG9gnI5Rqwcm2G1WVSSEnVXm5ik2aoadN103qc4noVJoW7N3EeO3/mTmrYw1TJzRdZ4M1pXcsSvSfkDWMkKd3hCi9Y2hB3uJfKn35hUiKkl+IpCj5hUiKkl+IpLQfLs58EJoekkiCU25A8CtZQ0nA6IPYSHXnUSvv067dL43TpnjU6roN8bHNMXHVjEU7Wiusiw+KaWTvHYIICO5etIAvS00vMfZ0R10T24zyLo6BBxFxDQ1Oo++yvvxCJEXJL0RSlPxCJEXJL0RS2tP50AVJcCCRJFqHXqov7zde3JvV3p9Gbrdp1OEH1xgddUwUHX7koAuKPqstewk8Sdj1tYnDLyjkYUNJFOjACQqCH0HO0NGaXaRzOGZUlA43wiQxFARgElJp37iIW5ggBGuliT1CiF+i5BciKUp+IZKi5BciKe1w7kcv47jqoEhG4t4ONLI0KzQ0hPOQm4/GQ89Xn7+BZ/T6Ntl2G4ff057O8izA8lZ43iTYLkB0m4A4R3c3N3AHQtm32XaNXqNOwGg5dy/onNxkTdnBGmy2Gj6LEOK5QskvRFKU/EIkRckvRFL+B0XgsKo0yVx6AAAAAElFTkSuQmCC" y="-17711.680902"/>
</g>
<g id="matplotlib.axis_991">
<g id="xtick_1486"/>
<g id="xtick_1487"/>
<g id="xtick_1488"/>
</g>
<g id="matplotlib.axis_992">
<g id="ytick_2476"/>
<g id="ytick_2477"/>
<g id="ytick_2478"/>
<g id="ytick_2479"/>
<g id="ytick_2480"/>
</g>
</g>
<g id="axes_497">
<g id="patch_498">
<path d="M 29.174375 17980.50209
L 151.464375 17980.50209
L 151.464375 17853.208563
L 29.174375 17853.208563
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_993">
<g id="xtick_1489"/>
<g id="xtick_1490"/>
<g id="xtick_1491"/>
</g>
<g id="matplotlib.axis_994">
<g id="ytick_2481"/>
<g id="ytick_2482"/>
<g id="ytick_2483"/>
<g id="ytick_2484"/>
<g id="ytick_2485"/>
<g id="text_125">
<!-- 660 1839-120619 -->
<g style="fill:#262626;" transform="translate(15.789375 17963.895326)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-48"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_498">
<g id="patch_499">
<path d="M 164.424375 17980.50209
L 286.714375 17980.50209
L 286.714375 17853.208563
L 164.424375 17853.208563
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_995">
<g id="xtick_1492"/>
<g id="xtick_1493"/>
<g id="xtick_1494"/>
</g>
<g id="matplotlib.axis_996">
<g id="ytick_2486"/>
<g id="ytick_2487"/>
<g id="ytick_2488"/>
<g id="ytick_2489"/>
<g id="ytick_2490"/>
</g>
</g>
<g id="axes_499">
<g id="patch_500">
<path d="M 299.674375 17980.50209
L 421.964375 17980.50209
L 421.964375 17853.208563
L 299.674375 17853.208563
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_997">
<g id="xtick_1495"/>
<g id="xtick_1496"/>
<g id="xtick_1497"/>
</g>
<g id="matplotlib.axis_998">
<g id="ytick_2491"/>
<g id="ytick_2492"/>
<g id="ytick_2493"/>
<g id="ytick_2494"/>
<g id="ytick_2495"/>
</g>
</g>
<g id="axes_500">
<g id="patch_501">
<path d="M 434.924375 17978.000326
L 557.214375 17978.000326
L 557.214375 17855.710326
L 434.924375 17855.710326
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p61caea726d)">
<image height="122.4" id="image2f98f3ae37" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGAtJREFUeJztnUuvJOlRhqPyUlWnzqX7dPe4cc/YA8gICSNWbC1vWSD4AfwhfgYrJFizY28hsIQZCUPLoGGmx/RM3073udQ9q1gMHqGO5xtFTZ4r8T7LOJmVX2V+cVJ6642IwUfHf7i191hvuvdDGFsFj+s2GxczM+u2Pr7duuXY1iAGx102dVW72P3xPh77J/f/wMX+8sMTF7v3Zx/7k4etjy2WLrQ9PXex6c9futjf/+sPXOxvm3cu9snFF/66Zna6nGL8fRq4P3VVuRg9q/PV3MVmq0Xo3NsG7ZNh3bjYpB252KPRkYs9Gd7H6wwH/jNn25WLXXT+Pnbmc80/KSFECpT8QiRFyS9EUpT8QiSlGVZeRCA2ILzUAxDiIFb8FwM6IJ2PguEAzu0hDg0G/gPrgV/4qAZxzsxa+JLTd/7Yo7kXY6q9sf/AAy8sDiZ7Ljb5Y3/qT9586WInL77vYouJF2fNzJ7acxe7WHuBroJ71ocBPFQSe28btO9ozy7WXpw7rby4SvvOzGyvGobWs4F7RmKh3vxCJEXJL0RSlPxCJEXJL0RSmsfgJnq7vnCx2cA7zlabNcRirj8zs67yogi5/gYW+8w+4hCJTU0Nzq2CQLoC9fLNycTFHp+c+ZOP7/nYPjgJ7x27UPXRD13s4dFTF/vTv/m1i83e/Ja/hpkt9vxz/XT2wh/XeQELxS94pncVEoYJ2ouUG7O1z6u28uKqmVnVwB4Fd2Ez8LEWYnrzC5EUJb8QSVHyC5EUJb8QSWl+2nrR55Pal3++6rwIOIXSwcXGi0AkdHwd98LSkmIDH9uuwV24iZX+opsPSlHboJhiZrYGgefLzjvyfvT5f7tY9eDUr/HYi3uDx17cqx758t3Noycu9ujs71zsp3/lS4TNzD4d+mu/arxQSYIflnQHS7fpuaDr7wbLfGk9UREwSsnhR3HajzW802ndevMLkRQlvxBJUfILkRQlvxBJaf6i9mLT0Lzr7ymUE57U0IcNBL85xMxYHJxtvOPpHMpJSUSKlv6i+EFiCvWoK4gxK1jPi8af//qpL9/9YORLaFso8x387o9drHr4kV/M0AuN29/5xMW+/+Ev/Llm9sOvfPnvpPb956jMm8Td8LMC+gpsffo/0p4gYZj2SbhEvPFl3yUXaQtxEveo1Jrug978QiRFyS9EUpT8QiRFyS9EUpqP/9yLFT/5a3DUjX156hcgdJyBG29Zs8NvvvXHnoFrkESfOZRCLkjo6OHwI4GmJPjRUIQXtb/209fePbf4R++ee7L4TxcbP3zgr3vvey62nfvP277zrs3lnIWldVBP24CQRw4/Egaj5df0rEjQomv874VC10Z3IcRI3KMBHQS77OLiJZZGw+ld0ACpN78QSVHyC5EUJb8QSVHyC5EUJb8QSWmqx15B/r0nz1zsc5r40njL7xjUULK+mpmtYDrP/sDbHZfwq8BJ5WvR0da4janFpLqSsk+NEEu8qbzy/XTkleFXC/8LwG//zP+68vsvf+5iB//yby62nfv79e6fvZX6Fy+5geezkf8l5aL77hZrUteL6vx7XPZUoF2ga/ep3af7RT0RzgYzPH+99fuJ6vmj90xvfiGSouQXIilKfiGSouQXIinN5uWJCw73vbDwcO1j92qwv+4wZplkwDGIbK+Co4mJaFPIsL2zIPjRZ07hGz6vvBj3Gr7zMxBT/+lzX7vffubXsgQh9WTg1/LrEU+G+Y+V3xNvl76B67IDG3gPcY+Inluq0Y/aiKNjtiu4j9H+APRdyA5N99XMbFp56zv2nACrOgnaevMLkRQlvxBJUfILkRQlvxBJaRa/9OLO9J1vHlmDcDIB9xxVNrfb+P8Y0CpQZOsztSXq0tql1pqEpSk4sjoUoPxxU4h9ufGi2xuYpERTj2h9c3CXmZldQMPU85WPRWv3Lxt69iVhr88+wTHbIMbRfrqK/YnOVBCL5fATQnwrSn4hkqLkFyIpSn4hktK8+NWBC74994LfOTiJ6D8HiYAHseEsX1+78udj48IeoGBEDi9qUAkinpnZFMqOaZrKHMQYKnl+s/Flnf81e+li78B5VxqJHoWcbSTuRZujRgUobPTZo/lnaT196DMBKHocuUXNzGACvZFYXDr/ffTmFyIpSn4hkqLkFyIpSn4hktI8Ozt0wVcwgeQZWPfOobzxAAS/XUSXd/CZ8613okVLdWlkC4k2JO7NYCrQSeUFNjN2Ws0qP9aaoO/3eumn7pwsfN9Cmlx0FS47ms6DwKXpzKgIGJ7sUxC5qLw1KohFy5PD9yZIH3egWfye6c0vRFKU/EIkRckvRFKU/EIkpXk69EMynsOwic/Nl3QuQeg4HHhl8LCJjTA2M/sCnG1TGNtNoLBIAhQIKtQ3Lep0MzObrv0ao6Ob6dok5NFxUVfcdYFiE4S6Hs496lvXFu71sPLx6IhvetbknlyD3nfZIuBVoDe/EElR8guRFCW/EElR8guRlOZnMO32K+gLd7L2MRKWJrV3te3vMHTjFKbBkuBH1+YeZ1AiDEIeQeW7pfJimrYa5bJFu11KXsOfeQ3r4XJgmJQM4t6kYTflHgw/IYcfCXTUC5Ge87Lzn0diIe27mxQG9eYXIilKfiGSouQXIilKfiGS0vzD+acuSEIHCRgknJCrbVR5F6EZi3HkoFpsvMhCIlmfibx9+7D1caxdBzfp+usDuflIxKOYmdle7eM0BIaE3BbyoAYBMloijHuWplpf07PSm1+IpCj5hUiKkl+IpCj5hUhK89XF29CB0WEM87X/f0KiTel8goQSEmjCQyRIoAmWeZaIlokS0cEUd1W0i0L7ZNx4sZhEPIqZme2Bu7SFMl8asLKEQSzz2q8H97evyMb9sOrgmRbSIjz0Q1N6hRDfhpJfiKQo+YVIipJfiKQ0K3AxRV1xBAlf1HvOjAcqEH0ceVzmywJk5LooFhaOJXDybxcrHd7A+Iu7KgL2KdUdk+BXKBunEvMDGKYygd6TlAczEAFfQVk8QS5ZKukt9YmM52BMdNebX4ikKPmFSIqSX4ikKPmFSIqSX4ikNKgW0+CbYC0y1bWXKDXDfB9S7KO/SNAvCi0on1SnTQopTYD5eo3+fLLo0tjvOXhBqVHkFsaf36aeASXouUTr9EntJyvvuKD2H1VjF3sIsfsDb9udbP0znVZ+z47h1yOyBtOzx191CjkU/WWH9jLZpPXmFyIpSn4hkqLkFyIpSn4hkoLqVbiZZU+xKd740MdIYKOa7Oh1R1CnTWIT2UXNzIZgDyXRh64dHQXdgb03avkkrsIaHJ26Q0IsiYAoxILANi40id0HIe8IntXx1n/mBATWCeyx+cDviZNm38XOWj9+nuz1JcEvOt2H7i3tO735hUiKkl+IpCj5hUiKkl+IpLBd7Zq47LHP2wGM7Qahg11/UEsO4t5RvYfrGYGItADBj8Z+zzvv/KKpSVsQpeg+hEd+79AoMiosorBEDk2IkfBJ92EPXHZ14csMqW8AvPPo7DUEO7jfLVxjAkLjQe2dhbMGXH+FEfKr4DRvNfAUQnwrSn4hkqLkFyIpSn4hknKjgt9lQ2ITiXtUEnrQeDGGBJpDaP5oxgLP0sC5R4Jf48t3qdRzOfDiV3RyEYlIpUaRQeNluKw6Ooaa1jMDMZTKqtfgfjRjwZc2Pd2JFYh784G/zgqeQUNCI6ybxtevam54G4WckmrgKYT4BiW/EElR8guRFCW/EEm5s4IfCUtDmPhy2HpH3qPRkY81By52TL3ejEtHD+FWrsBxuNfGJsOQK266XrgYOeDQKWcxsdAs3q8xOradwHHVsO4mWO5MQqqZ2QZEO5LTyLlHz28BwiLF6PtReTLFqATarCDawf2myUctlEHrzS9EUpT8QiRFyS9EUpT8QiSl6dMDjriKvnDRkcOHQy/uPRk/cLEftT72A/Pi3gcbf917hbLKA3DQdfC/9bPW93ZrWxJ9/HN5aacuVoMDbm7gGIT1lcQ56pmI/RohRLenCg6BqWgoCZUnw4VL4uUFlFWPze+dLji2fY3r8ZDQiG5MOK70XKJ9D8nBSn0P9eYXIilKfiGSouQXIilKfiGScuscftFJuzTR9aiduNhHzT0X+6OtP+7HCy8MPRmdu9j+Pe+yMzNrh+Cqm/vb+/jk0J888kLlvP7upb/kdrtsYXcXyO1GolZpWEUEGpBiZna+8c8LtpPNIRWoLyA5Aedwv2ewnvnGi7Pkxiw9KxoMQ2XC0SnGevMLkRQlvxBJUfILkRQlvxBJuX2CH5a3xqa84nAIuMYIdKVH9dzFHn/sHXV7H7IYMxiDa+zUT2Wtf+UFujcvH7nY87F3HL6tvVBJU14pdtsgcW8QdMUtOi98TisWYmk/kWg3BTEtKvhNQch7t5662AWUZNP3ozJfM3bptdSvD46bSPATQvwGJb8QSVHyC5EUJb8QSWmuogQ3Cg54CDrRqER1DkLQm40X3Z6DcPbl0rvsjl/7c9sDHzOLK6dN4x1dExB97sNEXuopeFF7sWkGAlRJROpDtMw3SgcFwfO1f6YEldCaFfr9gSBKwzMIchKer71YTJOXaS04MXqHdzIJhjQJmlyfevMLkRQlvxBJUfILkRQlvxBJuXUOvygkNpGQc9p5MeaL2jutfglltdMT77z78A07yR7seyFwOIL1nHrR7px6s4G77ABcaIe1nxp81nnxigc+8P/+AQhvKO4B0ePwXJzc64+bg4GRBGAzszUIrCSS7Tc+Ru5AmhpM4h4NUyFwonJh4nCpT2HkOCyrDn2aEOL/HUp+IZKi5BciKUp+IZKi5BciKXdW7Sew9nvj7aEvwfL77zBW5sXIq+bHW6+um5l9b+FV/OMpqK6gIL+ufWwFii/ZPsfwC8AQmjpS3XdpMgxZrHFyziVbw6PX3VDT0oIQ3mxik3ioBp6IjiCnXwqikA3YjL93tDkqNQrVm1+IpCj5hUiKkl+IpCj5hUjKnRD8oiILQfXXJ51vrkg10K8HXvA7hEaIZmbPG3/sg9rfXi8Lsrg361MYH+Qmp/gQKCDCElnk4s+kvUPiJ/U7iNpp6dxNFXt+ZEsmca60nqjoKnuvEOIblPxCJEXJL0RSlPxCJOVGBT+ezhMb3UwxckZNg1NSLipf9z+pvJvvoibJzmwKx56BYDiG/7dtsLnmCsdxxwSjXcSi63Dz9aHv+mjvUP099SboM0Y86lYsCY14PqyxgrySw08I8Q1KfiGSouQXIilKfiGScuscftHRzSUXVOQ4EgFbcOPNYBoOlQibmc1rHz+FKTBUgjuGclI6jsS92dZfdw5rpPvQR7y6bZQahy47L+RNu5gITEQFOm5G6p8Bra80fYiITmKi9ejNL0RSlPxCJEXJL0RSlPxCJOVGBb/oiGcqt8XRxCCokIuQSllrGO+9qr0YQxNgzFhko156FNuDMuEhCH50v85gIhHdr7sg7uHI9uDzK30/FNSWvofjovLPj8ZnR3vzkTBIayn16yN26cPorgPr0ZtfiKQo+YVIipJfiKQo+YVIys0KfsGebdFzN/hxUcEInFvQX60k0JAbcK/2Ql4Lgt+s8ueSMEiQuEeQeEUxM7P1Jia89SnzpfHgUYEtOtzDrOC+68B91/n72NSxXn8kutE+oWuQiFsSFcn5NwiWN9Ne1ptfiKQo+YVIipJfiKQo+YVIyq0r6SWxos9wCRJU4mIhTUXl0s9oWeeoBmciiHbUU44cXiQOkSg1qn15caksej0AYaqHOItrBHGvCQ7TIIp97+DBkviF51IpefBL9xmwUdzv8Li2weEgKukVQnyDkl+IpCj5hUiKkl+IpNw6we+yJ8f2caGhWEjKYE9QHAoKOdGyYbrGsuAiXNUxJ1pUOCNxjxx+fQQ/0GbNzKyDP0QdgtE+kVHCYnbh0dN3KX3vCHrzC5EUJb8QSVHyC5EUJb8QSbl1gl+UaC+1PiXCuxzH4pd36RFtcGAEiWQ8rCLm+iuV9JKTEMUqKvMNlqiyCPjdpzaXhGIqyx1AyTKJe9cxrXgn5yQcSiJgtK+f3vxCJEXJL0RSlPxCJEXJL0RSblTwi7r5ouJedOhDVGTZRdzBUl8IDaAus4KLd1WsnJh6xW0GVLLsYy1MB/762rFtsQqW/uKQFBAgwwNWKFZ4j9F6aN3ECnr9laYBXybFfUdpQCJg8BnozS9EUpT8QiRFyS9EUpT8QiRFyS9EUhqyjPbhOtTQvuwy8eU2QTX5FfUCCFpsqX7ezGwMMbKMkmJPvyqwbdefS7biaI1/aUQ3/UIyh3HsPPI9Xmt/HUR/pYr+wqU3vxBJUfILkRQlvxBJUfILkZSmrWNWTqxtDjZ17CsCRgWsuyDaEZc9kYhUIK7xLlwXXgm0RmoUGrXy0rmjyk8VGg5i1yiNKl9svLhH569gQtJq4GObOyAWR/NNb34hkqLkFyIpSn4hkqLkFyIpDbmqCHJAkauKaslL+kMfITB6brTJ5E3SRzDCGvho19IdaKD2v4XmmCTQjeuhi00qH9sbeMGvDTpQFwXB77Sbuxjt5Vm1dLGmAsGP9jw0brhtIiDtCb35hUiKkl+IpCj5hUiKkl+IpDRRdxk3SIxNC6GGgtdFVNy7CoEGR3yTKxLLSb2ARU65JnyNWFPPEkMQhsmRd1D7guCjimIgAhqIisH302LAU49GIFQut17IO6tmLoZTjoIC5G0TAWlP6M0vRFKU/EIkRckvRFKU/EIkpYmKEJsejrrSKOirKP/9rlxXXz8e5X25xEUp/n40ySf6XEgY3gfn3oMBCX4gsG1jzrQVOUsLvK1G/jo0QYgmQJFAjq31rsdZGp2QROjNL0RSlPxCJEXJL0RSlPxCJKWJCnkkLJBDrCTuESSKkNstKrzhGOKg+HEVpZrRvofbTezeklhII7qjgl/pOBoPHoVKejf1xB8H753hlhyMHuxGCMKgmdkIrkN7Iir49iq/viZROfqZevMLkRQlvxBJUfILkRQlvxBJQYffLqWeEUrCUl37OAlYURfTEAaQUIxYdr7Mk2IriJnxNNgo9P066Em3gbJVKv2NDs5ooAefWdyJRmIxDeOYQQntCsTUDl1xMUp3f93DmdpnmEqU67iGmab0CiH+D0p+IZKi5BciKUp+IZLSXHaJKX3aoFBuSSLUuPHlnw30j5s0vizzsNnzx9X+OJro+nZ14WMLHyu5p1bg0rts91bUMRidYFwSm+i5hEVAEi9hV6zhuGhZbrTM18ysgXvRwNE0vCZa5htVJaPDVPqKgLjv4CP15hciKUp+IZKi5BciKUp+IZLSUAlttAw2KiyVRMWq8ue3tRf87g/3XeyD4ZGLPar9cRMoMZ2C44x6zy03/rhFt3IxM7P15vZMA+7T182Mnz+JrjS0gwRW6uG3B30CJ1DSS2+neoeJsyu4ziFNCIYYfefLpk8Zulk/N67e/EIkRckvRFKU/EIkRckvRFK4pBcOjPY9I0oCBp1PTquDxk95fQh94R4OvNg0AcFnDP/zzmG67GsoTy2VJ+OAh6AgetugdVOpLj2XY3gu92FAxxGIewfg3GshRjJcsaQXekoegAC5D8+fysGjYlxY7IXDrn6sy9fozS9EUpT8QiRFyS9EUpT8QiRFyS9EUppoPXgFKjdN56l2GNHdgoI8rmPWyxFovmNY44imAsEvACOwAZN9tWT5JBV4S1NkqBz8hn4BKF03qlQ39EsK3EeazkOa+RDu1wiWQrGSQr6CPXEI++4QbMn0/KPTkKLgve65HXAqlBp4CiF+g5JfiKQo+YVIipJfiKQ0LO7FYiR+4GSYgki213ghjyyjJCLtUvMcoYF1tyBolQU/f/4GGlJGa+0vvfkniEDUy8GMpyZRb4MVxDq6DsY8HTWZhNvQwr1pCrdrC/v7Ieyn15Xfd7QXT6pzv0Z4ftDPNf5Me25tjegWQnwrSn4hkqLkFyIpSn4hkoLzq69rXDGJg0NyiEGMmjiSzBGtjabPI3Gv5Fbs1fT0Ghp9Rqf9mHHDVRpNPtssfWzrG5zO4SksgsLghp4LLHtcELnazseXsO9OQdx7Dr0JvoIa/+nqcnPjuhyfevMLkRQlvxBJUfILkRQlvxBJaaJCXlQwonHMNA3HLD5thCe0xNYdF/zArQix0nWvQhC9KXDqErgByfU3BRFwXnk/3wqse/5Mhu70qOBWpGM/AHvhFMp8n4Hg9xlMlLqrz15vfiGSouQXIilKfiGSouQXIin/Ay03rI1rkpYLAAAAAElFTkSuQmCC" y="-17855.600326"/>
</g>
<g id="matplotlib.axis_999">
<g id="xtick_1498"/>
<g id="xtick_1499"/>
<g id="xtick_1500"/>
</g>
<g id="matplotlib.axis_1000">
<g id="ytick_2496"/>
<g id="ytick_2497"/>
<g id="ytick_2498"/>
<g id="ytick_2499"/>
<g id="ytick_2500"/>
</g>
</g>
<g id="axes_501">
<g id="patch_502">
<path d="M 29.174375 18121.91975
L 151.464375 18121.91975
L 151.464375 17999.62975
L 29.174375 17999.62975
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p511950f3ab)">
<image height="122.4" id="image9b6d070fa1" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHptJREFUeJztnUmPJNd1hW8MOVTW1NUT2WwOEiUKkuUBhgEbsDde+qfbWwOGLFMTRYlNNqtryjEyMyK90LCo8z3jlWplvvMtLyIzIt6LmwGcPPfe6uOLvznEPfrDcD+ENFUtsaqqsj6bOk/X7yS23m8ltu97iR1CbgWp4bpHdSOxaTuW2Pl4ht951mr8uJ5I7KgeSWxWtRK7qPSzrwKu56D30lW6DjeVrtc6eJ9pFXewV1cH3Zc3+7nErvcLPXevn6W93w963cNBr7BOPHf0PFahMdr/43YqsWejU4m9bE8k9rTSvWrgvLSGX+5uJBYR8dXmSmI33VJi3V7XcYD90yfHGFMETn5jCsXJb0yhOPmNKZSWRA0S4nLFNCIlIFK8H+DcIPA0dd7vFgk+JFRiLPMcESyo9CCo7Q8qYPWVik1b+OwtiHY72JcdCH5LOO8qNBYR0dN3wv0tQKzaHvYSI4GOoD0Y4F4C1iYlND9GlKa9mvfrrM9uGs2rKQi7WzhH6vpGtX5+0qiATOtNwqnf/MYUipPfmEJx8htTKE5+YwqlfTpSdxIKcbmCFggLJAKljs2FRBFyaZGbi9xguSJQSrzcgXCzHfS+R41e4x6+cwNiHPm+5nB/PQg+G7i+TWJfdplC5WpQJ9kO7pkgIe4A4t5Qg5vvkO8izRV3c/e/g3smSCDf1ur6o7dvDXsaETEFcW8HLlTCgp8x5s84+Y0pFCe/MYXi5DemUNpXjZYoDiRWZApG61oFkVXf4cm3tX6exLhc9x0dR+W7uYIfCS8ptxoJYhQjYXAPDj9a2y2IgHQ97NAjIZYFVxJo6fMk7tFnSfwiIbYlwRbEvdyS84iIFtaWhGF6dnJBcQ/WYXTIOy+tTQTfCzn8iJ0FP2PMn3DyG1MoTn5jCsXJb0yhtN+rtPcclYSSQ2weKmrcDVrmmXIsbcAtRaIPCTy54h4Jg3Q9j+1HiMIbXHeu8EaiK5U2k7hH10KiFF1LRMQa9pCcbeRgpHsmASu7rJrKfKnEOyHYTaFnIpXG0jNBDtbs/paZ79XcvYrgayQRkFyRLGgbY4rEyW9MoTj5jSkUJ78xhdJ+NKhgsAOdawHCwhRida0fTpWO5opsJAI+BhQ/MsWm1HAIipNoh4NKQDjb0fdRb7aEaHcfupeUeEXfuYGBGiQCYr9FEuNIdIPnKdehNwFhLyLiuNHhJzQ8I9cVSTG6Z7pu4jGiYgQ/dxgDp6Tf/MYUipPfmEJx8htTKE5+YwrFyW9MobTPelUqO2yOCQopWGfn8HuSsiuSqkzKaS50HpoARP9IkAM5t7fAQ6DJPluwSdM6UBNGUouJMUyLSdmX6V8FnEhE05Wodh/Ok1vjT+tNyv4JTMiJiDiC+yabLPVKINDGXeWtAzVqzZ3qFMH/HvFe5f1z4Te/MYXi5DemUJz8xhSKk9+YQmkb0NdGICxMwB44TtTp34fGO0dwU0EUVEBYItB6CyGslc8cQf4Q6+VjxCE6D9XPkzBIVuW+0e8jEfAPn8+zP5PNltb2MbX7Y7ABU43+ccX2XhL8cKchSJOLcsG+BrCuD3me6DlhYVHzqturFdtvfmMKxclvTKE4+Y0pFCe/MYXSbkEQ24IwkTd4OV+UeOznufEhOMTIcZjpInxIc8WHCDc5n0U3X+Y5qP8BiWktjAuP4DWj8dAk+BHk3MutyT+utR7/vFY33zOIRUQcQ139FtbxFj5LNf4HaI5J7rlc52U8wDHaBtwLZGbu8+Q3vzGF4uQ3plCc/MYUipPfmEJp51DeSg08MfaIssxUnGI49plKGeEcVWaJaWosci65pb7k0uugOWauq5EmEhEPEV1JMCSxiYTB3JHT5CI8ApfeBQh5ryD2emC34mzQ8yxgItXX4CR8ByO1lxDraOx6ZmPOhzx3XWYedJU+Tzy5yhhTJE5+YwrFyW9MoTj5jSmU9gpqevfoslPWmW68NvEbQy6vh4zFvg+JSLlut9zJJ+PEZBhyp5GYc7dfSWzb5/kn6XpyBSN0fSV6xY1Dxa+jeiyxE3DfnVZ63DGU1c7Aeff0oMd91Otefdzper0cLSSW4u32SGIXIz331+CAnMM6rEDco5H2LJArKWn27qCj06kv4AYmKVGptd/8xhSKk9+YQnHyG1MoTn5jCqW9rFQ8IcGvByfRFoSOFQw/SLnL0PmV6RA8gEuLxD0SFXNdaNQ/7kl7LLGIiGfNTGIkxtBakOuPYrmQ64u+L+VKnMFY6ymIdiTuvQ/uu097FUP/aqui1I/e+1ZiT36sx7Uvda2DBrFExP6rpX7nz9cSm7w9l9hZr/d31+g6rODUSyj93dIYcIjdVSzErsDhx6I0ux3ls1lHGWO+czj5jSkUJ78xheLkN6ZQ2jfDRoJUjkhli9vM2Oagok1Ewg0IAt0YRBYCS3UzHYMkfk3BzUXCXkTEq0pdY1sY0LFtoPyzhTUDlxatFw0+2YG4Rw4/6lEYkRA/QfAj595TKHn9dKvX+Nfffyux8397X2L1Zz/QC6Qy5stLjUVENL+T0OntjcSez3WvQ3XBOIbS4RVNqwYB8q7R2DU8I5tEr8Y1CH65wjCJgH7zG1MoTn5jCsXJb0yhOPmNKZT2clBVg8SmDkQ7EhtIWMLpucHC0kmrDrGjRsUYErqoRJXcbrlDJE4bvZZzcLVFRDwNdbGRe2sDgiEJectByzdpOASJe8u+yzou5fBDlyXEqCz3AkpwX1Raxjx9D/rZnZ/qxcxONLbTtTns8x2RzUzv5fRM12y7A6EZTtMfdO8XsF4d7PM1OGzfDXotERHXva7jCo6l3KDn229+YwrFyW9MoTj5jSkUJ78xhdLe7LXkkYZkkLhHwgL20QNhKIKFPOoVh4M84HpI/KDjSPAjNx8NkZgkfi8pegbRXaXlsjAPI+Zw7jWIrisY0ED92oiU4Eefp4m15BCcwKkn4GDEU3cq5EWnDtQgB1zm5OWIiHqi+z850edkutC1XexB2AU9ewX3R26+d9CX7wqEvYiIW+j/uAJxl0T3ZvDQDmPMH3HyG1MoTn5jCsXJb0yhtIteBRUS8oZEmaECwkKivxoJTseZwyEOMGxkDq44uj8StMjNdwQlq+R+SzE96LEvoeS1hfu7hDLRm4PGaFdIsCURKNVbkdyACxBT7+C6FxBbb3Udd1pVG+OFClrVDsrBRzAgZczOy+pI4/VMr6c91mdnNKLpu7qnGxC5aRLwHOyB9MwuEw6/da/HrvcwyAPyl/Cb35hCcfIbUyhOfmMKxclvTKE4+Y0plHa1V2WRx/n+5eOvUzZSsv1OQGF/AZbYUzhuCZNOLmGCzAbU8AlcyzlYbI8TVuXZAL0JQIqndazB3wtuTLTYbqAefATXSHtA/wBEcN8A+tfkCv6Z+Qam/XwdGnvvG/h35e2txOoPYfT2KdT9t4kmry3v130Oe92XHnoT5NLDn0LU34Ga5ab2hf5xI2W/6/Ufkn6APht4FmPMdx4nvzGF4uQ3plCc/MYUSps7urkBcW9SqyA2hdgoMTJ4BoLROdhDPwg97pMdWV31PG9a/exlndfscQZ22lNS4iLiAgS/I3DP0uyiEfUXgHNP4beahEraPxIaaRR7BNfpk2V4DY1er2FtvxqpuPf+lTbmPP+1juievXwjseoZjNK5A2EwIvrfXUls9Uu9xttvtLHqfAW9F4Ap9jWgvhYwUSpzJH1ERI15CePm4VnE78s6yhjzncPJb0yhOPmNKRQnvzGF0tJEGxIRptBsE6frgIg3BTdeRMQZiHsvYCLORyDufQaOswmITR9t9BxvYeR3B2IM/TK2iUaRDY3Phu9cwpdS7TeN9x7g1CQYkWDXP8BJhnEI0ej1OcQu4Zn4stJn5+TnTyT2QXwtsdGFjvfeXfO9XP5ahcXfz59K7Jom2sB6j2GfobVEjEnwg74WI3jKaBx6RMS0geahINjva9fzG2P+D5z8xhSKk9+YQnHyG1MobUUTdkD8oBG/JEyQuEfCXkTECxB9PhxU1HgN45fPj1TwG49V6BhvVAh6std72UH55hZcdhsarxMRCxBJ70DgWYCKNIdS5Ftw1JGYRlN8NtAUkpo/krszRQ8CJE2Lua51X96AUDUa6zOx22mp7uV/6jMygzLmOYzJjoj4bavxr6a6BytQNE/h3fjBXmMzUGLprYrl3JB/VJIdwWJ63+Y11qUyX7/5jSkUJ78xheLkN6ZQnPzGFEqbKh+8T26Z5/iggh+50CIizqAE94O9nudZoyJSA7aqzUbFnQ7EvQHcV2NwRdUg5OxABIyI6OEeaXQz9XHrILYKvZ47GOd8DWObqd8eCX65k10ieA/JHUrQZKBlcyyxtzB15wKepymIeytwSUZEXIaKkjQWmxyQFzROvQVXKjTs62DvqQcjkRppT2PkSbAfQwk97b/f/MYUipPfmEJx8htTKE5+YwqlJTcfQW4wcieRWEGDCSIiJiAinfcqQs2O1Z1EWtNiq0JQyvml15InfnWJ30uY+YCQ5IPDOGBwxipzBHmuuPcQwY+gIRI08IVKhJetXuM7HJMO7kDYg12iPJlGiy9hHem6l82Rnhtcmz2Uu6OIC3tKQvoo1cMP+mNOQDTvYM1ILPSb35hCcfIbUyhOfmMKxclvTKG0JNCRI4tEGxIBx1BuuU9NHQWRDEshoQx2gA9TCe4KxBMS3Xbg+qvhyC2InBERPcTprjN1QRYBYUhGBzES8mhKK4lND0O/c7NXMY2cgPTszBsdxkFl4zS8gp7ZCF4LcqaSg5Ge+elIr2cH7kK6HnJo0sToXCdgBF93qiT4Pn7zG1MoTn5jCsXJb0yhOPmNKZSWXHp7EIf24E4iUWMLgzM6EDUiuHfdNQzUeL2DnoIjKMHFsyh7nJZKwNokBD+6Q5JtKJYvAuYN3ni8kKfQc0LQ9VD/uB0IcRtwJuLEYYzlriKvD32enu+3IKZ1DT2L+n3cb1Fj5DZMfWduST5/nzGmSJz8xhSKk9+YQnHyG1MoLTmttr3GqHyTRBsSIOaNllVGRHwzaDnqF61OVX25mUnsxUHdYBUIJbm/btCGLYbMvnwRLOSRg5FAIQdi5OZK9UfMOu8DRLLc85BIRs9JDUNAaOIsnTd3qExEviBGE5BJGLw6LCRGw0vovDsQzUlIT631lEp6IUYOP9prv/mNKRQnvzGF4uQ3plCc/MYUSkviHgkvVBJKAwNIWLiplnjyCZRr/k+rsaOx9lL7eAsCD+gkK+i5xi67vONSJb3bzCENVOZLji4SznIdXg1MDMYybdjTFPSdBH9n3rlpHfD+4J1Fz2IqTiXGuSXrqz2Ie7A2uUIjnZeGbkRwbk1CBT8q06e+gH7zG1MoTn5jCsXJb0yhOPmNKRQnvzGF0pJtl5RYUiVJDl9DA8eHQKo7iZ/fTnRUMs3moV+3I7juETTwfIhxdgtNHJcQW4GtdQkWT5rYk9tTgf4VwHV9gEKeUqDvs4PJRwfwzvZUU595jZNGd3rWwDjtSPScyPw3i/4JwzyAwUePqbM/wPj5iIgjmAxE+zoGtX9KjVD/gmszxnwHcPIbUyhOfmMKxclvTKGgikOCD9pfM22SDxEB0c5JPQKgUShZGKkufgaCyBHUg09ABBwlZEAytW5A3LuFZqY0yeUOeh2sYbQ0TaRJNYC8DzXCjODaeBLZsGYdG3NSI9S88eCzVoW8J6NjiU1BDPvD9dB6ay+ILmAMfObkKsoDeq0+RgSMyG/MSs/8lGr8H3U1xpj/tzj5jSkUJ78xheLkN6ZQWhL3coUJEkSwNj0hVJCDipoh3varrOshoYMcYi385s0qFbSOSBgMbhRJMuAWxKE5CX6D3vOiB8EPJtqQW42EoYfUnFNTSHKX0XH0TNCebmCKDwmNFyNt6Pq8UcGvTdzLHERSEu1IGKTn8zHkNh6l4yLYZUnNOik2hmfeb35jCsXJb0yhOPmNKRQnvzGF0uaW76ZEu/vwSGV2xZGwQZ+n66HRxnSegUaxAKtav+8IRUAubSWxcQ++vyWMaZ6D4Jcr7pHDj5x7JAKRay8i4qSZ5sVqLqO9z7rJG019VKuo+LLRaU1PoHg7tctjeMb2ra7ZFoTY3PWmyUz0HE9hvcmZSJN5IiJOW21k+wT25Qye21OX9Bpj/oST35hCcfIbUyhOfmMKBUd055Lbc22U6P921KrYQS4mEk9wFDT1I4QY9S0kwaerNLZJiDH0K0rXQ2W55ObrQBDLnbBDrjESlqg0NiLiGTjontUqLJGIRO7CJTS52zV6L+cg5L0HsRMotV4nGi42MLFpC9ezJJdlrfuCk4tgX+g4EriPoffgaaPCXgSLe88rjV3AvswOdvgZY/6Ik9+YQnHyG1MoTn5jCgUdfiTakeiWWw5MAlQEi3s0XpjA4QlAbh+2HQzE2AUIfiDYRXApMw3ZIIE1N8Ziap5rjMS91+2ZxCIiPq312O/1uldnvd5zB9f4DoZQrGGgycWgz877ez1uAqLidcPvsQFGvi8qXZ9rcCvSs0i9LHPLpen7csdpR0SMoZycekrmDqDxm9+YQnHyG1MoTn5jCsXJb0yhtNjjLrPUdtyAYEcDHxKuOIqjww9+o3KHe2B5MohNAwl+JNiBEzB1HhpggZN2qeceCUbo3NM1PAYnGLn2PgZhLyLi77Z6np82dxK7eA7DLza6f9/e6XmuDiBUwuCMi0addw0IiNMdu+JW8DzdwJq9hXJiWtsliHu0f7RXlGs9lH1v4RmJiJjDcBcS8nbwfE+o1B7PYoz5zuPkN6ZQnPzGFIqT35hCaUm0oxJcEj+oBxz1YUsJftSrjBxPPHWUBhjob9kGxJO7Sks1abAEuwPzegKmwDJoEIdI+KTBGbTeZyD4vaxVEPsEXHsRLO59+i9zibWfXEjssNZ1fPHFtxKbf6F7362hzxyIewNM/e1u2Rl63mv8HNb7FFx/9NySkJdbak0C8DryJi9HRKxqKAenASvQw4/yxW9+YwrFyW9MoTj5jSkUJ78xhdLOWi1lJMHvGI4jJ9kplEamhjtMM6eJtij4UbmlsgbBj47DEmEIkSMrIqKvNE7lnyQikrg3gzWjfm8nIFRdwGc/DI19tmW34if/eKPX+K9/L7Hqo+/ph3fq0mu++lK/7+e/llj3Pyo0bt7p2myWGhtDT8CIiBmUHc+g5JUmMo9BJEMXKTwTJNrh8BkYzkKl8hGJ8t9MsZg+6ze/MYXi5DemUJz8xhSKk9+YQmlPR+r8ImcTTWl9BhNUz0GAOgfHUUTECQwSoJ5kKOWA0Y6OQ9dfrUd2UKpLffnqRO/AioRFGBhBDr8ZCHnk0jur9LinsN406OKznZ73x8+vJBYRMf3n70us+tt/klj96kf64V4Fv+H5LyVGfe/Gy59JbLeAnolLDVVQxhoRMQJH5gjeeRTLLRsnEbfr4XnKdIemplo/pn8gnifrKGPMdw4nvzGF4uQ3plCc/MYUipPfmEJp3x8/keAEbI00ovk9UJ9fDlA/DfXXERHHA9Rqg9K5gJ8oGsm8A9X1AArpEUw+oRroHVh2N9BkMiLRmBOupwIllvoakLL/Amy7r6AR5qdwiT9ttR7/xT9w3Xj1w88kVj/7SGMnWs8f1DB1/k5jY/2XIuDfkQM8O/ud7t8epv1E4J9CAS0CYgTPXW5viq7SBadGr9hM9gH9IdD2C38+5X6n3/zGFIqT35hCcfIbUyhOfmMKpf1Ro4LfKdT+vjeoCPjBToWF52BrPKtZJBs3Kjh1ez33t3sVuq5bPW4BgtEAAtsJ3N8axJ1t6PVtwL4akT9mewTWYpoMRLbkpwfdAxL3ftKouPf6J1qj3/7gQ/1wRFQznbBzgH09rPU8h61O8Tlcf62xSxUB95faWHU9171frVV020CjzoiIPYhkJIfRep+BwLoeneg5YP+onv8AvQUG1sIRahQ6gIhINmISAf3mN6ZQnPzGFIqT35hCcfIbUyjtTwdoCgmuoZd7FXxeNirQPLnQ2NEp1GRHRDNSEWK31t+j4yvtG3C80T4El+C+GlpVVDbQ9LALFdNW4Pq7PqwkFsHiHjVn3IETjRpFbmCk9hTEq1dwjhevFxIbvdBzpJxgh3dvNXisDTcHEvc2IAL+9nOJ9b/4vcRWv9N9Wc5ViF3uNLaC/YuI2MKa7UFkm4ATlHolRHsqIXLuUayudK9IsMNmsgmGPk8EtOBnjPkzTn5jCsXJb0yhOPmNKZT2hzC1pQEP1JNGxYrzUxX3Tp9rbHTOAkY9VpFlvFFnVDtRAWtyBe65WxXJNoOWIt+BExCnB0GD0RTk8soVgtaDru0cYiuoRe2gPHmzhHHqb3RfDps3EouIaN6qG7B5qyJg9aGW+dLEnuFnKvitP9frubvS/Vtvwc130HteJZpWdrDXBO31WaLx7H3WrQrStKcEOQFplHcEO/f2IFTmTorym9+YQnHyG1MoTn5jCsXJb0yhtC9bFV62PYzJhlLUGgSoGlx79SQxgQTcd6TPTMd67tExO+3uc3WnLq23DQgiMPGlB5EkNaI7t29aavzyfbYgIN5UKnL+dqT3V7/TMu2Lm05ikxELS0dHKtqd/dcvJDZ9/Sv9MCzP4ld6z2/fnEtsvs1z7t2CQ3OeEPbAMIq9HnPfgnt6JsjNR9N1aLw39IlMTeyhOE3sIXGP9sVvfmMKxclvTKE4+Y0pFCe/MYXS1iDk9b2KLJ1qTdFt9Lg9KCztCQtLBI61nsF3nutx51BienGrPdciVFjakPMOBi+khD0S8kjgyT2OWMD1fNnAHsCI7ifQg3HS8b2MNxo/ulaBbvTfMOoc3idXtZ6b+i12UEFLw1kWIJKtEkJsnxjdLeeGz98cVPh8N6hAftPrc0cOP3LzkVhIx0Www4+ep5qeOxwXb4wpEie/MYXi5DemUJz8xhRK+9VWyxE7EAxGIDb0KxDirsCxNFJBJCJiBM0Ca23NF/VYHV0VxEYnKtA0IPhsSUQKGLoBAtuAIx8e4N4C5xdBTsIlXM9VrbEaRMANOMEmh/yJETsoHV7WuhZzuO4VOBM34GAk590Wvq+Dz6YYwfutgT3YgfB2DeLeda/O0vlen2/q6UjDWXYwDOUhPfzouatpeI1Leo0xf8LJb0yhOPmNKRQnvzGF0v77VPN/BkLQGfQ4W+7ht+NOQzUIQxERJ72WmY5rFUXqLUw8hdjmnQpdl+Dmu6n0s0uasvsAYQn7ppFISqIWnJscYotaYxPoZ0eaIvX6GyVKR+ka72DNyAFHouSW+tTRZFsQ93LFrxZ6MEZETGEgCk3kJcFvCXuwgVjuhOZchx85+SJY3GuhvJmgQR5+8xtTKE5+YwrFyW9MoTj5jSmU9j/6dxJ80ajr70WtwtkdiCnDXqf+Dtd88gsoCT5dqAg4vVNhab/R363ffPlUYp/DYJBvDirarEG82mdOO43gvmm55ZrkvkJxB0QtEodWsFc0lITcbxEs+C0HXR8aLLKB42igCd0zrSGtN5Wx0qTjCHZZjmEtSGwkhycN1NhlintbcPPR/VFfvoiIMTg3J42Wb5P4bMHPGPNnnPzGFIqT35hCcfIbUyjtF92lBG9bnZZ622ovvFUN5cAwROKu1km5ERFPOhUHz79RoeT0rQoli4OKH5+PNfYbcMWReIUTdUEEImdaRMLlBQLPQ6ay5tA1ei/XIGjlDpGIyJ/ySoIYrQN9ls5B4GfBgUrCXkTEDpyJG7hvEt5IyMt183V73ZfcfU4NdqH9mtQq+I3A9Ufn9pvfmEJx8htTKE5+YwrFyW9MoTj5jSmU9ma7lCCpl6R871uNbeAfgKtWFcmIiFmjvz0nUHc+A2Wfmj1+Dc0sb8G2S/ZVgv4BoLWJYGUfa7r7v1zZJ7pe7y93DHhK7ScbMR2Lo6ABUvZpojZZlWkPcs+bPnfmmHTYv02v/x6Rsk/70g96Lzxxh6+PFHtanxHkEDb6xLMYY77zOPmNKRQnvzGF4uQ3plBaEiuI3DHSuwZGHVcs+FFzxTGcZ5ZpV12B9ZYmw1CdPomAVIdOls+IRHNGEHhyG1KiDZimu9BUIBCMSExLCUvUFDJXBKTvpM+yvTdP8OOml7yu2DcA1oKOoz14jLiXS6qBJ52H1pueW9oDv/mNKRQnvzGF4uQ3plCc/MYUSosuNhCWVpU21iTRhkSSZaM1/hERIxKR4PdoWqsweAQiIt3LDhszgjAINf65Y5YjEo05MxuAkssrN5Yr7nGD0YRTjrQqeE3Qd9L+PcYdSNC6poTU7Mk5INChCAgOzVxxjxpz1pmiaQTf43qvjkO6vxE0//Sb35hCcfIbUyhOfmMKxclvTKG0JA7lThupQAREUQImu0QkXEeZ01hOGm0KSsISCXQU6zIFP1qbiPxRyyTa0XVTE0Zy3qGYllkam3KSEbnORBQ0QRiuoKaX9p5itIapeyExjp5lOo5EycfsKQl+ueXXKbDkuc/bf7/5jSkUJ78xheLkN6ZQnPzGFMr/AgMBq4cpo7jVAAAAAElFTkSuQmCC" y="-17999.51975"/>
</g>
<g id="matplotlib.axis_1001">
<g id="xtick_1501"/>
<g id="xtick_1502"/>
<g id="xtick_1503"/>
</g>
<g id="matplotlib.axis_1002">
<g id="ytick_2501"/>
<g id="ytick_2502"/>
<g id="ytick_2503"/>
<g id="ytick_2504"/>
<g id="ytick_2505"/>
<g id="text_126">
<!-- 661 1839-200619 -->
<g style="fill:#262626;" transform="translate(15.789375 18107.81475)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-49"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-54"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_502">
<g id="patch_503">
<path d="M 164.424375 18124.421514
L 286.714375 18124.421514
L 286.714375 17997.127987
L 164.424375 17997.127987
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1003">
<g id="xtick_1504"/>
<g id="xtick_1505"/>
<g id="xtick_1506"/>
</g>
<g id="matplotlib.axis_1004">
<g id="ytick_2506"/>
<g id="ytick_2507"/>
<g id="ytick_2508"/>
<g id="ytick_2509"/>
<g id="ytick_2510"/>
</g>
</g>
<g id="axes_503">
<g id="patch_504">
<path d="M 299.674375 18124.421514
L 421.964375 18124.421514
L 421.964375 17997.127987
L 299.674375 17997.127987
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1005">
<g id="xtick_1507"/>
<g id="xtick_1508"/>
<g id="xtick_1509"/>
</g>
<g id="matplotlib.axis_1006">
<g id="ytick_2511"/>
<g id="ytick_2512"/>
<g id="ytick_2513"/>
<g id="ytick_2514"/>
<g id="ytick_2515"/>
</g>
</g>
<g id="axes_504">
<g id="patch_505">
<path d="M 434.924375 18124.421514
L 557.214375 18124.421514
L 557.214375 17997.127987
L 434.924375 17997.127987
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1007">
<g id="xtick_1510"/>
<g id="xtick_1511"/>
<g id="xtick_1512"/>
</g>
<g id="matplotlib.axis_1008">
<g id="ytick_2516"/>
<g id="ytick_2517"/>
<g id="ytick_2518"/>
<g id="ytick_2519"/>
<g id="ytick_2520"/>
</g>
</g>
<g id="axes_505">
<g id="patch_506">
<path d="M 29.174375 18265.839174
L 151.464375 18265.839174
L 151.464375 18143.549174
L 29.174375 18143.549174
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p7d88e1633b)">
<image height="122.4" id="imagef50be15338" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHvhJREFUeJztnUmPJNd1hW9GRI6VWUNXj6LEQbIkwDZkGIIXhhfywhvDv9S/xIY2sg0JliVSJJtNsqfqGnPOiPSCshZ1vme8Uu36nW95EZkvIl7cDODkuff2/v7ZP+7jFk2vuh2KLuSwaPedxNbdVmLLbiOxiIhVq8fu9q3ENu1OYvPtSr9vp+vs93reFVzfsOlL7GQ0ldhfTJ5KLCLiJ/WxxJpeT2IbuGcEHbWB6NVer/mi1Xtz3S4ltoK9iojYw14TtP/LVs+H9mrb6T7XtC+17sukGUpsBMdFRAwrjR/WY4k9qg801oN1erXE9KwjWriHu8z7OtnrGhERj/a60qzTZ2ytoXhX6V7ReRtjCsDJb0yhOPmNKRQnvzGF0pDA1qLcpJDgQ7EORLeIiAoEsRp+j+i4HsUi77i60jVIbCKx8AqEs4iIN9VIYscxkNgArm8Iaw9A3Nn39HwOQsWhps68h4lroT2ke9H29LhcIa+Da6FzvC8VPBN0PiTkTSF2QPsC61IGkQg4gPM77fid/HSn3zqF+72E6+s38EzgKsaY9x4nvzGF4uQ3plCc/MYUSoPiHigYKPiAMLTZqxsv5RhDgS5TtEMhB4Q8oqlUyKHPkquRHIwREdfgYpyC62wM1zICEWkKv8ugkUUf7sMWDtyBwyvFFkRgEm1pr9s6z/WZEoFvQyIgxRoQ51LxYa+R2AiE0xk47aZ7XTtX3AvYqyNw6H2w1fsfEfG0VoF2MNTVrzcqNG9adSv6zW9MoTj5jSkUJ78xheLkN6ZQGhLY0PV3TzcfQcLNHs6HyHX4kZBHgh+KgORMS1wfiZokSvbh95ZEuz4sQ7/UKxK/4PsGIGhNelwGuwORjPa6AvFr26kISGW1+1ovkO5t7j73E4LfuFLxawKC3wxiExDjRqDutfDItrj3yiNw7X2vYefl8fFCYnvYg80FOEY7vQ9+8xtTKE5+YwrFyW9MoTj5jSmU5qBS589Npz3XSAREkQvLMlnEu4s4mENuqe6gVnFnUOXFUsISrUO/rPqNfNwObhndrQWU1S4zy7RJkIyIaOiM4FAS/Og+9EFM3YF7DkVFWJiesT7sVUTEFAS/457GDsFlSaIriXtbiJHrbwDBAeTAoK+iaUREDSLpZq3nveng3tL+4SrGmPceJ78xheLkN6ZQnPzGFEpDAg05qEicoxj2iku69vK+k8qJifuIezQcgpxpFIvg3oMk+mzhmilGrOG4SyirvdlrCe2KynQT65KQuwUxjkp/SbQjSMgjd2euw4/KdCMiZiD4PQBn4xTcfCTkLaBcmvaFWNf6hTPo13e50n6QEezmW231ut/t9ZpvqK8jrmKMee9x8htTKE5+YwrFyW9MoTj5jSmU5s32SoI4JhvqtHPVflLhU5/PHQ+NdtoK6q8bVT5Jsad/AEaZx6WYgxJPUP081f3TiO5raI45B7Wf1PrULz81n6Rx3ot2nXUcTfFJ/dOQw10aeM7AUH0E1uIa/kG4BOv0WQ/GxWf+kzKEO77o6/PZ7Vjtf7DS53ED9+JNH/5BqKjfhDGmSJz8xhSKk9+YQnHyG1MozfWOmwXehiy2JGpQjTeNY77LOmTxpIabVDc+rlVQoaaO2MDzDr+Nc5jYswFxaAE21DnYTWlk9BYEPxL3uC5eSdmuu8xJTCTurVq9D2QDJrB2P7Oha2qn6D6OyMoLzzKJe687FTmv97D3mdf8BvppXPcneOwzsKrDpcR16No3PY35zW9MoTj5jSkUJ78xheLkN6ZQ0K5GbqlRo6IUCUa5k33+v/htqIK+X5PgB3X64NIjcQ+vBQQ2crVFJMRP+E66tyRAjjKdhOSSpDXIwZaSYUms2oFLj1yfFKN9pvtdwb5Uuf0mJPLHz0OMXKQ3IEpfgJh61qlAftVqjCYX0TNyCfs8r1VAjIh4V6sQSK5BEi/XsH9+8xtTKE5+YwrFyW9MoTj5jSmUZtaMJTirNXYKYsMY3GpLcIJdwgSgiIibVuNLcMrlCoOp0uHbkHhFYgytS+XOEfnTh+gc15UKS5NanV8DuN+DzHJgWjd1X7EJK8R4OpOCDVjzPpq9Rmpf1uRWhK+8gfLdGyqXBocficBr+Cw9I+RKTTWsJSH2AMRiEnepTNtvfmMKxclvTKE4+Y0pFCe/MYXSfDw4leCjSnuInQaUxoKwcFOpcPIKRImIiNcgYF2CW4rKSXOdhOQ4I8j1dRe3Ym4pcq54SS7EXMEvV/hMQd85gdLTPYyMJpZQ5ps7hYlEMhL3FiAUR0RchApvR2Bspf6IOKUo09VIojLRQgk8id4RLEpTblDvSXRU5pygMeb9w8lvTKE4+Y0pFCe/MYXS/E11JMGjvf4mTEGnIulqAGOIV9CjLiJiDkIguZh6IIqQ6EOuKiplJNEtt0dhSqgicY+cVkSu2MjDKvJGL9NepYTBEZz3AEqoSVgioZJKjGmvcA9QdJNQrBIi2RkIyCO4FhIWc0eQUyy3xBvXzRQLI/ie0XnjkJvsVYwx7xVOfmMKxclvTKE4+Y0plObn0JKuzhw4sIKpuFsQFmoQAe8CCSXYxw3EDyzLvcfU2NQQidxzJOElNTzjz4WGjdAM29SqQyoTBrFxvFenXO5wkH6na9yn/1+KGyjBfYniF7hV4bPkqCPBNnfYCH02VZ7ctiA2gqOWztGCnzHmTzj5jSkUJ78xheLkN6ZQmr88eifBtoVBAFsVaK7X6tBbtVoO/HXFvzHkgENBDBx+uULJfcot0QGX6ClHwyXo87mxXDcYUcM5DuB3ngY+RETMoHR4CHswpv5z8H3kLswdaMITh/OmNqdAIQ+eE+oxuWrzpiLnOkYzdeaISD0TIIhm9j30m9+YQnHyG1MoTn5jCsXJb0yhNE/A4tetoERxCZNNv1XBb/mtikUvG544e9HTz+/AsUTs2rxyy20L01JBjKlBlCThhCYBfxfPK2Xlsty8zxI4CAIERBLxDve8xqzTz9NVk9Nu2dN9oZJucqbVUEpOoGh6h/fYCqbvUokxiYDUwy+3zJdLlsEdmBDs6Hm8jzvUb35jCsXJb0yhOPmNKRQnvzGF0vR/9pFGQYTYX88lVs/eSuyDm2uJXd4c4+K7AUyiBeHtHASjd5l94RaVCprk8COH2BB61I1q7kdIAzWwrx+IVSTuDeH7SMgjcYick1MQ904SAtsA3Hxb0JUqsKeRk5CmOW8zBT86QxRSE8IXlbeuwFXXgg8xtzcfCn7dny8Cpsh9nnLxm9+YQnHyG1MoTn5jCsXJb0yhOPmNKZSmdzjT6FBV+N5sqh9eq7p++uZCYj/8lC2xvY1+56Svlt+3YKk9AdV9NtTPjmqNnW30HwmClH36ByAi315K6iz9UzCGdaixJinpVKc/pN4JCYWc9OdVT6OLHinaeXbjCRiGcycc0ZSiFFvqBZE5JYdq5XEUO42/xvHsydP8s6G+FoRHdBtj/oST35hCcfIbUyhOfmMKpWk/ey7B6smpxHogpvWGKkr1T3SRw0NthBgR8fAtNQBVsbGB36gj6AXwEMSvByAgflbpGuftAs/xNiTORbCgQmIMTq8hQYxEQIhNQTg7hNgEhK9+Qisice8K7K8XVBeP7ToV2tMW1qV6d4wlhK8dnA9Zfql2/z4ThKihax9etXQtuSJe6vNEH2zzfvMbUyhOfmMKxclvTKE4+Y0plOb6364kOPmhOuCaH6iSt1+p4EONPtcrdsUtQJjaUtNM0DQoNibnFzjlFrU6C7cg5MxhsgsJPneBarJzv5Gce2Nw/R1BXfxpC/c1sU4Lo9c3UH+/gAlJ5PAbYb8CGNFNDVgjr1FrSiRb08QmOG+M5U52AjFtkGj0ehsSKjfQdDYiv3lobo8Av/mNKRQnvzGF4uQ3plCc/MYUSvPmaxW/Hlcq+E0qLdXdd1Dm+VplpFc3E1z8a5jks4Cfoxr0i9xfrT64ryahYhO57Kikcw3C0HfnA9NUcFS2XvN9yjL74Nw76DR20uq1DBLC0LbR+0ONVfuwCwOoyqVpQbQy3dslCWJw3DaxL+TmyxVtyaVHpbpUNn7QqIuUyr7p/BahQnMEP48kiBI86twYUyROfmMKxclvTKE4+Y0plGZP01mWKvhsz8DNt9EvPH97JLGvQRCJiHjZ5AldYzhHEgHBxBYbEIx2mQIbiUg0FSgi0ZsPxD2aDDSF8uRDiE2phx/cmwlc3gEIPsOEWLSAEd2PYeLPsDeCtWFaEAiQVxX00YOegHMoGyaBlBx6qTgJp9SbkVx6FJvUKu6NK90/EoVX8Dylxm6nypZvQ/0IyfXnN78xheLkN6ZQnPzGFIqT35hCwbrDdqu/Cdsrje1WGrteq9Bx1bCAMQfBCQc34HhoZU2950BEWlEpKogpJCyl3GEoIsHQj9Na3Y4fVBp7AgW3QxDOyME4BuflJNRJNq65dJR0wPGahmzoOg96qgLXIO59vtNrng/0mi9gPPuix6JrLuTSG4MoTeIeCXkjcDDSGHHiPiO2I1hEXLa6B1Qm7De/MYXi5DemUJz8xhSKk9+YQmkWGxUrqit1LO12UPIKlroWHF6pbmYkVpGcRi49EvdoauwcSiYpRm4+GoiQcl+ROHRYqwPucTWW2PdDRaRHcG/J1UgcQ/nuyVgHpxydLPHzj2myLYiNo0MV3gan4NzTavDY/I8KYl/swSkHwhkN/EgJZxW5QzM/T+LeGATIPpwjPSW0fXQto8QkaHL4kQCNsc4lvcaYP+LkN6ZQnPzGFIqT35hCad6CyLJYqnh1sFaRrA+DHIgpOM4iImbQF24BQt4KZMCbngp0cxDtFiDurTL7upETLCUsUUnoAQhGExCH6DaS9053KmIG4t4HfZ04/OynOpxl+KMD+EaevhwgGEXDvRlvU315KbGDP6gLbbJXgXRIpdJwD1P7Qn0USXkjMY1EYBL3codk5A5nSYnKtDYJzWsoG6dScr/5jSkUJ78xheLkN6ZQnPzGFEpzUWv+z2HK6+UeepftVMJoQDjpJwQRGjhBWsf95uIqVAZJghE5wToQJFOfJ/cWCUskcjbwszwG19/DvQpn3/tEBbbx3z2VWPXTH+siERFDkBbfnUmoe/kaYucSa+e6g1TmOwGVc1TTgBUQ/O7wHmvhiepAlCYhj2IkKuYOBkERD0qEI9j5dx/Xn9/8xhSKk9+YQnHyG1MoTn5jCqV5AdoCVG9iaeQYRMAR6GE3iZ+YV5UqPORsI2FwCL9b5MijsmFi09OVl+CKotLIFNQXcAPCC5UiD2GSMN3GoyE45T6Bz/7wI4n1fvRX8I0RAde9X/2HxLrXWqu7+r2WCS/fqVDVA5GTJgnPaGLwHd5ZJNBll8HSVNzEcBBZN3PABvX6m9Va9h0RcViBA7LWHByCYEiCtN/8xhSKk9+YQnHyG1MoTn5jCsXJb0yhNL+KGwluQeUk9ZLqqgdQo0+qd0REC5bKQ2iQ+ACm10zBgky6/hZU8z6c4wYsnwsYn7xLjLUmZZj6BsxBie3Db/CW/s2A29g0cD7kDYZrxhr9VPxSLcPbr+Z62LeqVG838O8DXMwJjOM+gX4TDSjXZNmNyG/MSrE9fOemS0w5yoD+jWrhnx6y/EZwf4hj+AdgBtOHppXeR7/5jSkUJ78xheLkN6ZQnPzGFErz2/UrCeY2s6S640mtwgKJDRERD0CsOILvPAJxbwyW3z42ZlSo2eaaRnnDCOtdwt65AXHvslWrK9o+4Sd4BKLWHJo1Xiz0Hj76XEXc+ulnuiyJgBERUEPffaPPyfpMj1uv9Bw78Is3jd7vaa2C37QDwa+GSU+JnhG5Nlt6vtcw1jrX3pvbM4L2np6liIg1NZ6FJ/wARHOafOQ3vzGF4uQ3plCc/MYUipPfmEJpLrbq0iJIwBiBk6gPotQk0ZDwUU8//6zTY09AYxmCwNOAtkOuvzEIRotaRZIrOL+bag3fGLHeqVh1DYIfiTltraINmbxG0Gx1uIfa7/9+KKEPr7Sx5tGLX+pnI6I61Uk+7bfXElvf6F5tttBcE9x8NVzzaKD3ZrrRzw7hPpDrL4Kn3/SpTwOI3DjFB0RAEhtrEFNpak4PhOtU808SG1cQ4xHkuo7f/MYUipPfmEJx8htTKE5+YwqlyZ0sEglB5TZUjjhKCH6zvR57CuLe6U6DAxBjhlBuW8Nxk07FvUsQaL5BV1ReQ9CIiG2n50MloTs4jnYFbldsG3X4XVUqAr75Wp1yH71WJ2BExONnGt+DMHV9pd+53lHzSChb7ec65SgGjsFEGSyNsKamnhtsHatgo08ogSZnIYmPe2hkmhrRTQIklY2TMEjn4ze/MYXi5DemUJz8xhSKk9+YQkElLrcckcQU+uw6UQa5Toy7vs0I5K/DSh11BzC9ZjyBMtErFcletzNdF3rhYVlmIk5lolsQh+atugZp7DOxq6D3IJRVX0IZ89nuEL/zoy9VMJzC/V53KrItqWci7N8OxjhtQNE8G+h9WCb6KBJUdk5lsLmlurmkSoxvU8Fzk+rhRyw7feZJlCRnqd/8xhSKk9+YQnHyG1MoTn5jCqW5j7hHx5FwctVxGewrGC98CuOJT3e6zpO+ChgnjxYSG0zzhJzDcy1jHYHwQuOPI7iUme4FDWkgJ+CyVSHnqqclwjXsHw1JWfZ0jcu+ioAREW9hXx63euwE1iGZqyOn5B5KqBu9li+gj+JZu5JYqu8dueIoRiIZOQHJfUeluhQbN1oiftCoOEs9JiNYTKdnbAsuUrpmv/mNKRQnvzGF4uQ3plCc/MYUSkNOMnId3Ufwo+EVESxM0UCG6UBFwGcgApIprtuCSAJTY4kJDAuhgQgREZvEYJLbUGklT4iF/nEg5Nz0VEzdgYPtpqcC4llCvHwF1/h9KB3+sAVBFBS/BbxiFuDuPAdR8uVer28B03xT03NpyAqJg2uYyEwiGfXmIxFwBD0haaDNBJ6bUULwo3UoNgDBlib8+s1vTKE4+Y0pFCe/MYXi5DemUNDhR2LFCAQDKpckgSU12fayVUfeczhu1ug6T7cTiTXf5vUjPNuogHjW19/BDkpHZwnBr6pgOASV+WaKNnTPSExdQDkwxVDYTfSKm9Yq7u1BGzyqdA9OYCLvCsU93asL6KO3A+cduSxbKG2OiFh04OaDsurcXpa0VyQCkmhOJd60L6mycbruw1DB8AAEwyc9Pc5vfmMKxclvTKE4+Y0pFCe/MYXSUOkhCXkUo8mo5ExLCX7kqjoPFQG/ALHxwfBIYjfQk458X+dgxntV6ZGXd+h7dpBwy92mg4m1WPrbQh82cLGtA5xpmY7BlLBEDjgainHSkPipMerVuIXYAO7uQxCqZlQODBOVIyLOoAyanJIruI8EiXZER330YN2mp+uOEqIyCcjH4BA8hXvxA5h+7Te/MYXi5DemUJz8xhSKk9+YQmlSE0FvQ4MO7jKxliBhikTAM3AC/g7Epnd9FTp2IHRdg6C1hD56dM2D1DTYzN9RKrclAYruw7rVWPaUZSAl+NEzcVWpcPYChNhNT92B1AuRVqYS6hH2KFRG4LL77lgob660B2ANpdH0fIOBESERt2vzBnmkJg6PE6W+t+nDRGXQmf3mN6ZUnPzGFIqT35hCcfIbUyhOfmMKpSHbJ9k7eyBz0vQZghohJo+FfwBoDPFZB1NbaBoOqL0ruD6yIJPqPUkori2Mpp5Do8lrmDZzA7HFTtXnTavnTftH0LUM0Z7LkF31As6b7MtUX34ENuAJvIsampAD5zdMvMfo35nUvxy3oeeWpvjk2ql38D8FfV/q/Kix5wRs5Rf0+byQMaYEnPzGFIqT35hCcfIbUygNiRWp6Se3IcGPLJFksYzIF6twbRCgOqgRz/11ozOssDcBX0sNdd4knK5AvCTbLol7O7Ag54pSOHadunImjqWGlLR/SxA5K7CbTkCIo6dui8KZsk48YxvqlQB7SIIvNfqka76PCEis4HmIiFhUKgKfw31cw+Sjs0yLtTGmAJz8xhSKk9+YQnHyG1Mo6PBrM0VAEthILEoJHSSK0Odr+I0i5xZN0+mDADkGV9QcxDkShlL1/CR00rXgmGUck55XOJ4rNvVgr2jdiMQe5F7LPWIECX4LEJqvYP8i2GVJvRJorzE3MkVAFPxoXzKnNUVErOC8e632WbgOdV7SOfrNb0yhOPmNKRQnvzGF4uQ3plDQ4oUiEjmbQES6T0PJiIg+CGpjaBRJk0qehB43g9+3DVzLFYx4XtK48YR42ZI4BK6zWa3jweme4ShvchGCE5C+L1fEuwvoGoT9o7LTKe0zOAFJ8FvD9ZGwFxExB0clCWd0z3JHeefmy30b3pIQSOPY6Ry34A71m9+YQnHyG1MoTn5jCsXJb0yhoOCX6zjLdX2loM8f1Drx5XF9ILFPQoWzn2x17SMYdb2u9LjLSm/Fea2i1AWInN/FVXjbwO09BsGP7i0JnzROfQGTZtCZCNc3TPQjRJdmZonqCMS9E3BePoJyYhL8rjL7RN4FLFmG55b2hYbu5PaozM0rutcRLNpRWT2WLFvwM8b8H05+YwrFyW9MoTj5jSmUJle064PYNABxB78vUTpKn3/cTCX21z2N/cNKXVo/enKua0xUiFtcqRPw/EKFuLdrFR+/6nPfu6g1voIhDVRO3IKDsavzRCS637mCH93/CN4vciuikxCenRMQ957s8oThZQPDRuCaT0IdnxERowaERRAgSXi72Mwlhk7AzFaUtAbe64RLtgNnYq5LE8XGrE8aY947nPzGFIqT35hCcfIbUyhNQ838M918FOuDsERutYiIKZTlflRNJPaLpZZl/u0/q7jX//lPcJ3bHL14KbHT359J7Mnn4FZ7eYTfWe/1vLeNCnlbcAjuQEzbQolxavhJznG0z3cp6SXX2ZYGXYDbbQgi4BGUy3Zw3A1Mhw54xj7u2K04AjHuda179SsQXT+N1xIjl919+vXRcamhOeSopD0kJyi7Go0xReLkN6ZQnPzGFIqT35hCaXKHQ+RCpZFU5hkRMeupyPJBp8f+9MdfS6z/L/8ksfpnv9BFwC3V++K/JDZ8orHmwZca+7UKjRER+y801vZUWGpBBKSSUBqIsq/yrGQ0lIJIlY7mQueN4iUJVbD0FATE/Q7EK/i+Z3stbY6IeHCgQy2uFio0D/uHElsO9D4uWxWfO3T9ZYqzmb0DU8eSkEcCJImAfvMbUyhOfmMKxclvTKE4+Y0plIbEAaKXKUrhIgmH3yGUVj4FrWr4GNxS05nGDh9qDAS2/eJCj3v5QmNH6vAaHOkE1IiIowMVnB7PtST4DPvwUZkv3O8O7jf8fNNwB3KN8SzY/InDxBZEqctKV7qude+nOz3uGQzdOB7qvX7y4RWez/hDvZan19cS2/zyscSej1UEfNXoOoudnk+XWedL+ZfbEzAiISxmtj30m9+YQnHyG1MoTn5jCsXJb0yhNCQOYekhTR2FIQs4xTQhYFAvtgEcun4Dfdz+81d6IDmjjh5p7PyVnuPbt/p1b24ktnrHbsX5UgUsmCGCv7Z9vA8aI6ck3dk1DBDZgbyXKhGmKEm25BBc7XXtN3sV7T5twLkHvf4+7lRMOzpW1x4JexERzcenug6UiH/wBxXyntzos0ODTlI9KnNghy2/kymPcgeB4NpZRxlj3juc/MYUipPfmEJx8htTKE5+YwoF7b170Ht7oOznWoMHUKMfEXFTqTJ8Vqsd9/lnJxJ7+q9fSWz2y88l1v++TvsJGL3dgrI//1Sv79U33MDzeae1+18O9Lf1rAfW28zab/pXoAUdflZrvTopwEuwzkbwOGds1gnnnWtNrWuYCtXXqUnjtT4PpwtV3I83iR4GW33G9qD2r1f6navMKUVoh64yJ+lkjgaPYGU/13bN522MKRInvzGF4uQ3plCc/MYUSkOWQbTo0sQW+MIt1I2nhEEalfw51d+3BxI7eqUC28NvVJR6MlhIbDaj+mtd9/Ja6/FJ2IuI+N1AxZgve7rOJdw1uj+5Fs0+/X7DfSUBqk789t+E9ixYtHot9JysoHkoPWMzmJBzDrFXMGL7+FpF3MmnLF5O5+8ktnit9+c3iwcSez5QG/EqIZLeJndqDvW6oHHqERF9+M5Ur4zbUFNXv/mNKRQnvzGF4uQ3plCc/MYUSkNCHsVwskimM43cYRE8uvtzGNu9qFV4m9T6u3W81+97utMmjKfvYPIJXPMcRLJvQNiLiHgO4t6Lbi6xJdS71+DymkDd+BDcfOT6IxFwALGUOYz2axF6fTS9htxuKQHrNkNwkRKX0NfgRWJ0+uC1XstXINr++0ifia+2WuO/alU4w1H11KMB7sMI9nkELteIiCFcd67DbwFCpd/8xhSKk9+YQnHyG1MoTn5jCgWVGCrLzB0ljI7BxMjhq0odVG8aFcla+M4JiB/XcDlzcIi9A7GQGmauYCLRayhDjog4A0HlGppPkgOOhCBqjjogNxj8fvdBdGtBGEq5CEmUpNJTeiZ25FaEz07BhfgQBNtjmFJEb6yLvX5fRMT1XsXi3wz1O3/bqrj3BgQ/crBW9xD3JlB+PQanYwTvP4nF5KetKygdxlWMMe89Tn5jCsXJb0yhOPmNKZT/BWbHzlSwGB0OAAAAAElFTkSuQmCC" y="-18143.439174"/>
</g>
<g id="matplotlib.axis_1009">
<g id="xtick_1513"/>
<g id="xtick_1514"/>
<g id="xtick_1515"/>
</g>
<g id="matplotlib.axis_1010">
<g id="ytick_2521"/>
<g id="ytick_2522"/>
<g id="ytick_2523"/>
<g id="ytick_2524"/>
<g id="ytick_2525"/>
<g id="text_127">
<!-- 666 1839-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 18251.734174)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-54"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_506">
<g id="patch_507">
<path d="M 164.424375 18268.340938
L 286.714375 18268.340938
L 286.714375 18141.047411
L 164.424375 18141.047411
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1011">
<g id="xtick_1516"/>
<g id="xtick_1517"/>
<g id="xtick_1518"/>
</g>
<g id="matplotlib.axis_1012">
<g id="ytick_2526"/>
<g id="ytick_2527"/>
<g id="ytick_2528"/>
<g id="ytick_2529"/>
<g id="ytick_2530"/>
</g>
</g>
<g id="axes_507">
<g id="patch_508">
<path d="M 299.674375 18268.340938
L 421.964375 18268.340938
L 421.964375 18141.047411
L 299.674375 18141.047411
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1013">
<g id="xtick_1519"/>
<g id="xtick_1520"/>
<g id="xtick_1521"/>
</g>
<g id="matplotlib.axis_1014">
<g id="ytick_2531"/>
<g id="ytick_2532"/>
<g id="ytick_2533"/>
<g id="ytick_2534"/>
<g id="ytick_2535"/>
</g>
</g>
<g id="axes_508">
<g id="patch_509">
<path d="M 434.924375 18268.340938
L 557.214375 18268.340938
L 557.214375 18141.047411
L 434.924375 18141.047411
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1015">
<g id="xtick_1522"/>
<g id="xtick_1523"/>
<g id="xtick_1524"/>
</g>
<g id="matplotlib.axis_1016">
<g id="ytick_2536"/>
<g id="ytick_2537"/>
<g id="ytick_2538"/>
<g id="ytick_2539"/>
<g id="ytick_2540"/>
</g>
</g>
<g id="axes_509">
<g id="patch_510">
<path d="M 29.174375 18409.758598
L 151.464375 18409.758598
L 151.464375 18287.468598
L 29.174375 18287.468598
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p3a8c22ec25)">
<image height="122.4" id="imaged6614f99b5" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAGSxJREFUeJztnUmPHHdyRyMz/9VVvXETSQ0piVosjQRpMIJ9sAzBRwO++QvMF/J38c2GrwMIA3gDZrzoMLCkmRE1EsWt2Wx2d3UtWVU+2IABxksgillc4/eOgarKrMyKTuB1LNXl/Z+u7DGGzeDxEMZK1bhYXVUutlgtXczMbL5cuNgSXrs0d4rWwnuni7mLzRYtHvtxSu2/y85g6GKXtvbw/eeaHX8+K38+D+enLjZupy5G503fuevaPs5y5a/hCmLrUMG9Jug49F1WcJ/7nuOzgK5DXdUu1kAseg3NOnIjeF/p2vqzEUKkQMkvRFKU/EIkRckvRFLKqGy54HYDsdrHSGCQnBsvvNAyM2tXXvqQCEKpAcchSOQR9F0IkpRmZovGy5gG/rYOay9O27rHdwbfF5WAXbDA8rE+wo++C9178f9URtf7yYWonvxCJEXJL0RSlPxCJEXJL0RSSlTukagi4TNd+qo2kldmLHiiFXkkoLCCKihE6POILplG8a2q+FjtYzOI0eeRJKNri2LoGVXK0T1YgJWkc6RYVOy+aKDkrGL3ap2qRq6oDf7mw0cRQrxSKPmFSIqSX4ikKPmFSEohQROt3FtSWy0IP4qZxdtWueKM2ompZfLJ20TXES90zUYgSbGyrYFKR6h+pOpCFj6dpxmCvjdJpKb23zkq6LB99xWSe+RcWXzHqzG7xPmToie/EElR8guRFCW/EElR8guRlDKBuXckFkgszZZe2NEcvbN2hgen95M8oVmBfYh+P6Kr9XdUebl3rvYzALfgu1A136z214Zi7TI+A+5xugRb9PosljBTLihYNy2vXjTwO4PcW6IrfPJ7ug568guRFCW/EElR8guRFCW/EEkph9MTFxwE596RqCIJ1DX3jqQIVfNFhRFV8/UhWrVnxnLvUuVbo6fQ5kvz/6IVfjT/rwYJ2PaUbnRfcYYffGR0ht/LsKCjD+Hvt4bv69MGrSe/EElR8guRFCW/EElR8guRFCW/EEkpp7OJC0Y3tkRtcZflxOOAvVysYNgjxGhDDg71rGPfj9aS75dtFzMzu4i237//DEo85/XIxWbQ4z9b+fLeOZVYG89PiBK10rQyetPHeNFYZ6X2xo+94bJfPfmFSIqSX4ikKPmFSIqSX4iklGiZJfUd9wXLPknugeig1du0DWcEG4mi5Y8k9y43u/haKuXdWdEGIf9d9qDk9xS2Jk0aLwbPGj8rYVzDSvSe269f9XLcqMjbtHSLyvUuULoHb4ue/EIkRckvRFKU/EIkRckvRFK8aVqDpyJ8sEXcH4dmDlzY8jLuUtlzMdo+NIf++YvNjou9XnnpZma2B3KvIVEJxx7BUM9dqA4cgwSMDjddR9i9rJtzNg2uEe9R4Ucij7ZMdc3ToGNHZ2rQvdaTX4ikKPmFSIqSX4ikKPmFSEov4RcdttkXqubbG/jquze2LrrY1dpLuzG0xp5B7AK06e52CLYavvaC1nHDe0khDagVGV4ZHfSJEqhD7PW5h8+z5ZWIDomNyj2SdtGqP1ppjpWqDaclvZa+32zhf2UkBvXkFyIpSn4hkqLkFyIpSn4hklI2vg6YKvTWEEjR9t1z1G5b+9gFqJQjEUexrTX+Nk6pahA2CE1ohh9VacHnTZZ+Nt+49e27cxA+T6MlNyrOnitwOlG5R/MfSdqF3wsxknvUmm7GMyWJWQPr3WHWo578QiRFyS9EUpT8QiRFyS9EUgoJjCg0PyxaUdXFpivEqH2XjkByj1py5x1VcZPKS7sxVN/NQPgRM3ovVCG20Wq+p1B52aflNTqnrvdimOA5klQeFS/Y6HUUI7lHC2mopbdL+G3DPEpq6aZlKmdLP+tRT34hkqLkFyIpSn4hkqLkFyIphWRFVOTBslujvyd9ZRO1I54ufGXbycpXwO1B1/LIQO6AOBmCjKFqPDOzY2jWpfOh95NYJFEZna2H0u1pLF1BmbrZNlj6jUUloFm8+m67eJl2YehnQu7B4pQBCDq6NvQ7ptygnDQz24UW8x2Y60i/J2pZ15NfiKQo+YVIipJfiKQo+YVISqGWQqoQI1lB4qUiUQWtrV3vJ9qFr2I7bScudrAYu9hrxUsSavMdwnZgqua7b17imZk9XHoBeQwxEnmD4OINugcv2sw8guQeVZZGRfM6AplkY2n89Sbhd3HgF768XvZdjBasUEs2STeq2uySoedA+F2uYnMm6besJ78QSVHyC5EUJb8QSVHyC5EUrPDDNkgQYtGKpS6xh3IwGBvPvUx7MD9xsUk572L7sFF3F77fIbTfTszLRzOzw8WZi50uvJQkqEKMmMIMP4IkF5/1s6GPlFynmg+PTbIRKvyibbk7IPfOQwzbwSsvFefwGxt2PJMvmT/OG0t/3ldbf822QeLryS9EUpT8QiRFyS9EUpT8QiQFl3aQMFrh62LtwCQGzeKz5ugzaRPpo7mv8Hsw9NJtXPu2TCqqelR5TfYQWonNzI5B+J1AFSIx6GjhfJzpwgs/uobPCqy+Cy4HobOm2XPRY3RVxUU37dJx5rDoYgxt2ruVF7a0ZXkHnrWjlZd4r4GQNjN7b+7P8f3yyMVef/vYxbavS/gJIf4PJb8QSVHyC5EUJb8QSVHyC5GUQqZ5AaWuVN7LfdVkbNnErsC6LuEj6TgLOM7xzBv376YHLlYP/XG3wdg+ArN/r/Um1czscOZLi89a2JKC9jn2N5i289Dq5b4lsX0gE0/nTRY+2qffZ1NQF3PYkERDYg9r/xsrcP+W5kt59+E3tgPf5e2OKu6f7x+62LXP/YvLpx+4WPXmDRfTk1+IpCj5hUiKkl+IpCj5hUhKuT665ILUN07yg4ZoUt3msmOAJ4qbHjKHSn5vjR+4GJUBDxtfZkmi6mzhJZ4Zyz0aPEpES1BJ5FFJLMWeJ7hpKOgko9emS5pGryPd6zH85rn0HT6v2YGT8WXl52Gj1KBDfO5d8OfT3LjiYtW16z627+da6MkvRFKU/EIkRckvRFKU/EIkpfzV1psu+AC20ny3PHWxb6f3Xezh3L+uE/BSqxpkRw9/NW39dyEx2EewmXXMJoiu1O4hOftutInSp4Iu+v1oYCZt9qHXdZ0f3VeChB9WlsL9pyrLafG/u7PiX7do/DF2hiALzWz/ppd7H/2Dz8HdX//SH2cMkhSPIoR45VHyC5EUJb8QSVHyC5GU8oty5IL3Trxw+LfhRRf7FbTG/g4OMq556CWJkglUys1hkGZ0cCUJuj5DL7tkWnRwJbay9qiAi0rFdaBz3HQbLW7NgdXZ1HJO712nwo/kHom8efB10VbrE9jg9Kj4FuFDWANuZvbH0a6LXX/wExdrfFGr3alAcuNRhBCvPEp+IZKi5BciKUp+IZJS3v7Fngu+8ft7LnbuC/+609q3CS6GXkDdb/18O7MOAQJiadyyMHTH7iHyohV+feklAV8CohV12KobbPEmude19ShaDbiEStAFzPVrYchkdPNUVCpOltw2/rDxcvD3tZ8VOIPzPoDZk3ryC5EUJb8QSVHyC5EUJb8QSSnN53/pgvVbf3Cxd2e/cbHPvvCVgMfb51zsW1jlbWZ2v/Zz88KVViBZYhPz4lKKXrd4jhIw+t7nSVSSViA06d7TsphmjWcWykF4XVvDrwf8MUplOB36LjW8d25QCdjyNaTPPIVFIBOYwUlzK/XkFyIpSn4hkqLkFyIpSn4hklKq636jp8ECi60/832CH3/1vYvduudbDOcDnkk2B4HxCKqYxo2v8JtDyySJQRJQJPKokozoEnHPS7z13U676eNEKyVJXq2geo7ei4K08PlRhd8y2H6NUplmOFIIZlFS1Sa1/uIxOs5xVsP8wIUXfhTTk1+IpCj5hUiKkl+IpCj5hUhKscZXCNmur9Krrl9zsQsf3XSx93/0cu6PhWqqzH7omLv2tGEJuPnjbFrGRaUksU6LMLfRPrkkpWvLC1EoFlum0Slig3KPFrnQ/EcUg2D8oktAostL/vd8/PsbbDv2MZLhevILkRQlvxBJUfILkRQlvxBJKauTQx+d+dl6NvDSrrnmlwtc3vWtg8P2Ah58vILqJGhHJFHCixtioioqm9ahj4x7FlV665xfdFtun7bj6AZkrPCjSjkQdmbd1XKP0y5ibeN9BGJUmtLyki5wKU1QVOrJL0RSlPxCJEXJL0RSlPxCJKWsbsFe3SkIvxO/eKMaeQl47uKpi+3cZTEUlTEFFjLQe/F1uMgjJm3WAZdQPKN228eJbtQliWfWIfyCgpWItvRSZRrFiK7712ehRp/Nyywv/fmtI2JpqQndw6i81pNfiKQo+YVIipJfiKQo+YVIipJfiKSU5a/9Jh4jQ05llhNfirt3w5c1fvK9f52Z2ZcjXx58UmLruMm60taVWQVlnyBDo/3uXXa2T797H8g007rqIcxU2KphloOZDSBOtp+uWdTiU385ES0D7rp/0dJiet2zGMoavYZmfM2i/2XC/9ZETlAI8eqh5BciKUp+IZKi5BciKWXy77ddkOYH1ttQ8nl528W2PnndxT49+REP/tVvb7jYw+KHh85hSCEOJKxgK8mGS2y7xBIOV9z0AM+g3NsZDF3sHGxNOl94k9IIVqcTtAr6bDlzMZrRcLbwryORR7KQymTXmceAcm+NAaeRz+vDklYAmdkS1pWzHIzNY9CTX4ikKPmFSIqSX4ikKPmFSEqZHXphVDVeYGyBhCjbWy5W//xnLrZ33UtAM7O/+O13Lva72kuok+LlEK3oJrE0Xfjvx9tUvExZRwKhRKqg9zvYax+t0qLKvd0ycrHXBr6a8lrxMTOz/cp/5gzu/4Oln/twtIg9T7ASECo0uVc+Xo0X7cl/GaDZBJXBbxnWg+NvbDOnJYR42VDyC5EUJb8QSVHyC5GUUnZjrZXNrhdn9RtXfeyTz/2bO7apvPf537rYh//kJdTtxlcSHje+9Zeqyya1j7VQFYcVYj1af7uIDtIkubcF69S3Gy9d90j4NV6kvln762pmdmXlj3NMVWfw6JhBNeYMNjPNQNj22Vy0Tkvvi07nOcPlIXkdHYyrJ78QSVHyC5EUJb8QSVHyC5GUMvpg10dn0C570Quj6q23Xay5+q6LraZ+i4+Z2eAjX/n3zhe+Su8/oYqN2k5L5UUebfGJbqRZkOTqcjHBGX4k92iWHlXuDeE77xbfvnse5N6V2kvAdxbcuvse3P8xScktLwzntb9mJPzOKi9iCdpSQ9WPVKFpZijJXkYJaBZvRY7OjtSTX4ikKPmFSIqSX4ikKPmFSEopn37ogqsHh/6VVH1FbZlf/6t/3f1bePDlLX+c2i662Aj+RtFfLapsWme2W4SuKjRswQ3KPZq5t9P4GFXukdz7SeMl7lvmP++DGVdefviavy+l+Gt76c4lF6tH/tizxgvEkwWsgQe43ZmGTPL7cUX7KyQBieh30ZNfiKQo+YVIipJfiKQo+YVISrGhF0Grh8cu1t70Emj1m2/hI3/pItM7LCBufu2F0TcDX3U2Xvn23TnIPWoTpVl/tPCDZOFaEogq/CBGbbkk965s+eUlV0HkXam8BPyJ+Wv4buv/zl+qWLrtnPPVd7vv+Nf9bOeuiz24ed3Fvt/y3+8HqMaMVvPRopJFV4UfQG2wGdGTX4ikKPmFSIqSX4ikKPmFSEoZ/90/u+B3/3XBxf4wv+Zi45oWXXiO4XVmZncHXrLdMS/37q68mDpdggQMyj3aBrvpdkkzFlPDxsu4CwMv8m6U8y72nvkW2rdgScbFhf9+O3BtZubPz8zs4LY/n3pw4mKrJbT5wjVbQqyFWX/0uuiSk3XuC752swuVe9G32jA6C1FPfiGSouQXIilKfiGSouQXIinl7//jhgv+d/Ey5t7QCzZaDUB/TdqOwXcnKz+v7xgWb5yA3Dtuz1yMKvxInuCW1+g2185RcVSJ5qv5qC33MlTuvWH+de9Dld6brb9eo8rfvwnIvUfmz8/M7ORsz8WOvvbnM4equm+GPnYA23zHCxC2sNwlWnmJrbtPgahYjEq3dX5j0fOJbn3Wk1+IpCj5hUiKkl+IpCj5hUhK+cfmkQvea/2SjSksXhhAW+ZWxRKJmCy98BuD3CM5dNJ6iUStmpue4ddFtH13HzYOn69hhh+InNHSf5fd2t+X7QHM5oMdGacrrvA7bHz8PtzXA3j7N5UXsffh9zRu/T2dgfCjCs1oNaYZi8A+m5ZxyzLMFIwKP6o27frN0vemOZE045CqTfXkFyIpSn4hkqLkFyIpSn4hkqLkFyIp5cuzH1xwuvAWngziCHrTaY10F1SOe7bwWnoCsT5muA9d5Z1UPkkrw7frLRfbCv4NnsGhF0v4r8DI378CJdvtKR/3bOXP8QjM/m0oI36w8veK/lvDw1bhHHve03DZNhAtkyXjTv8BoHkFWCPPQRwSSyvo6b9Mo+LvqZ78QiRFyS9EUpT8QiRFyS9EUsqd8cPYC0EsTEtM+JEkMWOZMwHZGN66A6WcfTbxREs0zVjwYIy20sDn0Rm2cD4rKgPe8ddwuO+vYbnDYunsyA8PvQ+9/5PKv/8MSrZJ7nEp9pMPVn3RwDJgksV089cYTUB5uVN8ufj+wJeV68kvRFKU/EIkRckvRFKU/EIkpZzBAEgSdCTOiFUDW1fWEH4Ui8q9TQsjquajaq6uOF5HOPacNtrAMWixNLT4Ww33YHDOX5vRsZdzZmbliM7RM4GtOxPaDAQxvn9Pfl+62LQcpHPEgbAQIzmH68ZrzjU6DlbzNb6ab7fxA1j15BciKUp+IZKi5BciKUp+IZJScKMNvJAEzayCDTkgWKjSzYwlYh+59yyGNZK0Meto4YRrewYbiY5rr9OOYNvPIxA5R62vqHx06OXObOLP+/bBvouZmd2Eys3btb8vByvYpLTwAzynUPUXFcjrVFkidPvhI6NVn7wBiipLYaArDEGlarwuSJzS745EM52jnvxCJEXJL0RSlPxCJEXJL0RScL0OVsVVsbXINdiUJbzXjKXPs5B79P2i89q6BBTNOKTzIeF3CJIM/ypDcDH0cu7h5IKLTaf+vG8OWbrdMn8+d5Y+dq89cbHDOWx7ar3w67NJqatFnKBvuOm5jkRUFlM13hbIXrP4LESawUnXW09+IZKi5BciKUp+IZKi5BciKaWrRfVxqI0SK4lActUdfiVcLbVhuRcl2qppFm9PbqENliTgffh+1EJ7AEtABgN/Tx/C6vO7cy/szMxOF379OS1TodgclqnQdejDOrKwz7xG+s2zGI6txI629JI074KuLYl0mo2pJ78QSVHyC5EUJb8QSVHyC5GUMoRNuyTtwlVxa8iKPpKFfB9JwD4tofSdu+QVHYckywCqtxr4G7yA2rTpysu0ExB59LpDkHtHs7GLmXGFWLQaM0qfFtq+hH9jALXQRuUevZda2Ccrnq1I94W2VeNCFBLxeBQhxCuPkl+IpCj5hUiKkl+IpJQhzGvrs+022hprZkbT8EgY0rF5ecKGqwPhdV2Sa9khaR6HrgUdZ2vlxSBtQKZWa6oYPGl91d7p3MfMWCJFl5/0kWkEvXcdCbjO79G9F75LaUDkQZUsyT06b5pv2CWVcflJcA4mHVtPfiGSouQXIilKfiGSouQXIimljxAjmUKio3OzLby2KjEZE62+oyo7ajuNXoeua0PnQ8cZm6/II2mDlZewfbduYoJ0nVbb6LZjIiwBw+2y1DYeB+cwBo9Nv9toNR99XlRcd0ll/I0G287p2HryC5EUJb8QSVHyC5EUJb8QSSnUJtinvZEkCckrM7NtWFiwDTPpdhu/dbbAscdQ2XYwO3axo5lfLHE29+8lIbbO1l/cbGxevEVbqAk6H6oEo6q9LrG06TZa/Dz6icHLonKvq2qP5B79Ruk3T3IPJTUcA6UbfEGcE9ljs7RZvAVeT34hkqLkFyIpSn4hkqLkFyIpSn4hklLIaIf7mMF8ktnfL9t48EuDPRe73uy72NvVjovtwd+tu5X/z8VXjX/vzfq+ix2Y/6/AWRv7D4BZR0ksKNbo9ppZsASVPi866LGvVe5Dn/8ArDMfAIfEBgfP8paq2PMyOv9ine1DWB7c4x7qyS9EUpT8QiRFyS9EUpT8QiSlkHAowYGE28WX4p4feMF2dXAeD/4nzTkX+/PWl/J+uvLbZkrj5cc3rReIg+FFF2uhaJRkCjGe+358s/i6cZJa0SGMUBmM8iq6xeVpbMPpQx8JaGtIQD5ObLAqxoIiL/ob67ov0TJwHNaJklMIkRIlvxBJUfILkRQlvxBJKSQCoj35u8XLuUvFS7d3oGrPzOwzkHt/ff2Wi134zL9ueeKr7/b+xceOji+72EHx53M68CIP++IhZtYhc2iNOMkhEJDtk2+/DlcbvgxEJWDnunB4vK1WMBQUNh+RYItW5PF9fvK5DV3Hjm5SIvTkFyIpSn4hkqLkFyIpSn4hklJo2wgNLhyR8GuGLnax8e27b5p/nZnZn1a+jfbS31x3serjj12sufOji10Zf+liP/3Cr6G+CaLyXtl1saN27GKnNa+1nlpsRTexaQn4olXubZpwJaCxCIwOuMQhnFUPExuk6/6RyFunJfhx9OQXIilKfiGSouQXIilKfiGS8j/MHzhoPCGyigAAAABJRU5ErkJggg==" y="-18287.358598"/>
</g>
<g id="matplotlib.axis_1017">
<g id="xtick_1525"/>
<g id="xtick_1526"/>
<g id="xtick_1527"/>
</g>
<g id="matplotlib.axis_1018">
<g id="ytick_2541"/>
<g id="ytick_2542"/>
<g id="ytick_2543"/>
<g id="ytick_2544"/>
<g id="ytick_2545"/>
<g id="text_128">
<!-- 667 1839-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 18395.653598)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-54"/>
<use x="111.230469" xlink:href="#ArialMT-55"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_510">
<g id="patch_511">
<path d="M 164.424375 18412.260362
L 286.714375 18412.260362
L 286.714375 18284.966834
L 164.424375 18284.966834
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1019">
<g id="xtick_1528"/>
<g id="xtick_1529"/>
<g id="xtick_1530"/>
</g>
<g id="matplotlib.axis_1020">
<g id="ytick_2546"/>
<g id="ytick_2547"/>
<g id="ytick_2548"/>
<g id="ytick_2549"/>
<g id="ytick_2550"/>
</g>
</g>
<g id="axes_511">
<g id="patch_512">
<path d="M 299.674375 18412.260362
L 421.964375 18412.260362
L 421.964375 18284.966834
L 299.674375 18284.966834
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1021">
<g id="xtick_1531"/>
<g id="xtick_1532"/>
<g id="xtick_1533"/>
</g>
<g id="matplotlib.axis_1022">
<g id="ytick_2551"/>
<g id="ytick_2552"/>
<g id="ytick_2553"/>
<g id="ytick_2554"/>
<g id="ytick_2555"/>
</g>
</g>
<g id="axes_512">
<g id="patch_513">
<path d="M 434.924375 18412.260362
L 557.214375 18412.260362
L 557.214375 18284.966834
L 434.924375 18284.966834
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1023">
<g id="xtick_1534"/>
<g id="xtick_1535"/>
<g id="xtick_1536"/>
</g>
<g id="matplotlib.axis_1024">
<g id="ytick_2556"/>
<g id="ytick_2557"/>
<g id="ytick_2558"/>
<g id="ytick_2559"/>
<g id="ytick_2560"/>
</g>
</g>
<g id="axes_513">
<g id="patch_514">
<path d="M 29.174375 18556.179785
L 151.464375 18556.179785
L 151.464375 18428.886258
L 29.174375 18428.886258
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1025">
<g id="xtick_1537"/>
<g id="xtick_1538"/>
<g id="xtick_1539"/>
</g>
<g id="matplotlib.axis_1026">
<g id="ytick_2561"/>
<g id="ytick_2562"/>
<g id="ytick_2563"/>
<g id="ytick_2564"/>
<g id="ytick_2565"/>
<g id="text_129">
<!-- 671 1839-290519 -->
<g style="fill:#262626;" transform="translate(15.789375 18539.573022)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-55"/>
<use x="111.230469" xlink:href="#ArialMT-49"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-51"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-57"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-53"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_514">
<g id="patch_515">
<path d="M 164.424375 18553.678022
L 286.714375 18553.678022
L 286.714375 18431.388022
L 164.424375 18431.388022
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pe34779964e)">
<image height="122.4" id="imagef41477bfee" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAFHRJREFUeJztnU2TG1lWhq8yU/Xtart7ut1uetHBMMAEK4gYWPNbWfAb2BDBDxhgMRsCBpj29Adtu2zXp6RUSux9nhxuoXKVVOd5licylam8eXQjXp1z3knTvViXR8JkMgmxadOF2JP9wxD74uCTEHsxfRpin7dHeO2D0oRYX+KjPVvNQuz1cBXPXS3xOh9yvrwJsYs+xlbrVYg1k3jPpZTSNjHejhz7IQNcZ77sY2yAGBy3hmc4KXGdae1vQwPn0/OhZzOs4nfuh7h+tAYPSd2Kisijw+QXSYrJL5IUk18kKVENSwAKRhAjEeg2stIKxKoGPuG0OQixgzYuzWmzF2KLvSgi/a5/G2Jn/WWILddDiJVS/yxW6zqtmESyyapOtFtXXqP2uDFIipvA+tF1MAbnbhvu/CJJMflFkmLyiyTF5BdJSjcFYWm5ikLQpoLKfUD3SBVn9P1I/FpgjKu0plANdlDaENsHcW8Kv8HHk3jul6sYOwbh7LdQwfgv7ZsQe91fhFgp40Lgh9CzJeVsOYmfR8JnLbVVf7f6THp34MusV/G4WuFz23DnF0mKyS+SFJNfJCkmv0hSumcHJyF4sYgtoYvKFsVtEwbpfkjwu17OQ+yije23J5NYZVdKKZ9B/HmZhtjpOv7ekoTYQfDFMn6Xr9dxrf64j9cdDj8NsX8dWauLIX5mXysCTuKNb9puW8PHqKijdwf0vupztw13fpGkmPwiSTH5RZJi8oskpfvF8YsQ/F3zKsTezeOcOZrDRvPMxsSYhxJFehD8ZjRTbhVjY/wMxL2/WMTj9uHab7pYudeDRnYIz/ZoL97jUYmxnw+nIfbfbaw2LKWU2TqevwKliyr8Nq20q2EXxLRdwJ1fJCkmv0hSTH6RpJj8Iknp/qSLxhSz/Tqh67KPFXALMJsgA4NStqt1mKoVSdCi1t1SSvliFePPwaBjAW2+ryB2DbrZ+zZe48liP8R6+E1/exCf6xyefync0rvJulD7Ls314zmB/+/Lyv+BO79IUkx+kaSY/CJJMflFkmLyiySlO57EAZ4nUPZ5PY1DIcnCmEpir/vYK19KKbNlrH/d5B+A2r7x2kGfVJbcjfxeHkH/fQO3cwnK/lkbr/MG+uLfwQeetVHtv2ji5/1mHR17fli8izdYSrka4nqxe1Hd8yZ7b4rR+zShIZo74IazC7jziyTF5BdJiskvkhSTXyQp3QEMlGwrLaynTRSviHXHAg2JbOR+ssIRlxG03q4UAWkOAfX4L0fuZQ6XeV3iUM8fu/i8v29i+fOP61gaPMCzaUEEPF9FIfXl4ize3/w8xErhYa174Oy038YZBgRZldO6kKgoHw93fpGkmPwiSTH5RZJi8oskpftmiKLdvzdRqCJx7maIwtJt+r5JMBwastSO59J1qiv8QICi70fViucrrlb8fQtDQeH7/QR21S9X1yH2wzLaZ89AyCMnnWuo0LvoowvPWOUliZ80rHXexlgH35nWioao3mb4q2yOO79IUkx+kaSY/CJJMflFktL9aR9Fm18fsA31h5AIRC25t2GTKq9aEZCqCElsosGjZ8voXFRKKf/WxNbaH8C2+wLccL5fxkq7V4sYIyGPnjdV6FFsbK1omOlyFZ8jfSa16vIawMBUWAOCPk8Xn9vjzi+SFJNfJCkmv0hSTH6RpHQnTRSgDmGu33QSK7dIMJot4+eNiXi1YhxRXflVe9gkHkiC1lkfZ+GVwhWC+01seaWqwffLWOF3sYgVeeSGRCJZrZh2G+t0PBZCK5g9SNTO/6O5fsTod4H4JtWhteyCAOnOL5IUk18kKSa/SFJMfpGkdJerKErRLwJWboFoQ0LHEgSoMXCGHxlq1AoqlToOCWKLEgW2d3Ou8Ltexuo7ej49iHYkkm5iXlIrhn4MUWoTgxW27a618ubr4nOsfD6bmMDQe7dtIqA7v0hSTH6RpJj8Ikkx+UWS0n3XRcHvah2ry8h4oXYW3pjQcR/C1CYiWb+C79ezeEmOw0Rtpd22iUN3DYlpNP+PYiQ+03s3BgnItRWHxEBOwjuwfu78Ikkx+UWSYvKLJMXkF0lK95tprDh7uYxtqxfLKAKS8QIJHSSw7AL0XQYwySillJVz5UapdeQlcY+cgKkScGz+HxuGxONqZ0diJeGOLrM7v0hSTH6RpJj8Ikkx+UWS0v16+SYEv5ufhRi1spKpRVZXVcW920Hi3mEXTU6eTA9DjGYjjr135E5MMZyFSJWXVKG5o2vvzi+SFJNfJCkmv0hSTH6RpHT/cf1jCJJhxPyO58xJHqhdlgQ/Evde7D0LsS/a4xA7AFOZUkr5aS8aovzX7FWIkQh4A23ay7KZC/U24c4vkhSTXyQpJr9IUkx+kaSY/CJJ6d7cXIQgqfgbueZ8BKhHfJMhjJvykC452w6688AQTirb/Vl7FGLfTGLsaGTt2ybG302jsl9LrX05zhd4uNcTcecXSYrJL5IUk18kKSa/SFK6xRDLdrdNlKoV92oHRZLtM9pDwzWox7sUFnhq7aE3cezZRPgcEynvev3Rth2ezRKGoy7BDedqEo87H7nnn1Y0eDbOoSAB8qCN8wUIWoMFzbqoFAs/BjR41J1fJCkmv0hSTH6RpJj8Iknptk3c24RacW+v7UKMhkfuNfG4McFvDsIpiT5kJb0cQOgCQYyoFTlv4zRz1yIUfR49G+qp/659H2JXbeyzX4w4KZ2B+9TVcl51jySckoMQzSag9aO1J6F4zG6cHaRg8CgcN4Hv584vkhSTXyQpJr9IUkx+kaRERWsLQVESitiwigmOI0GMhJyT7iDE2pHfy0UXBSyyMCeBZjZEAYuGqFaLgPBw6DkM9yT21lb4vV/EYZsksL4GIXZMJJvBEE56T6jCkwRftBGHVuSjdj9eA8Rnqmok8biUUm7gPaHBugWqImmt3flFkmLyiyTF5BdJiskvkpSdEPxqIWGJZg+S4EPnkrg31uZ5VKLAU9taez5EoYsErMvFLMRwtiKIZPidH9BOne571oNDDlQ/kjiHFYwj10EHoTYKeUMTz8VK0C6mEYnFh008l+77vInvQyn8TiwmUEU61FUNuvOLJMXkF0mKyS+SFJNfJCk7IfhR22r1uXfslDBW4bdP1WCVv61U5UUVhzcNVKuBuFMraG4bJM71q3jfPRfzVUPvRO0cxdrq0L1JfB9OmygCDlCNN19zhR/lQe1cQHq27vwiSTH5RZJi8oskxeQXScrWCX61JhRoskHGC10UY46nUXj5bO9JjHUn8fNAyCmllIGcWkHM6UdaTz+E2j+n0E6KbrCVLZ27IAJ+jHtEcQ+ERZyFR4IfzW9cQ+Vd5fswX7HgR62+2DYO7wSKl3gVEXn0mPwiSTH5RZJi8osk5UEFPzaciL9HNDetVsh7Oj0Osa/2nobYz9vTEHu+jte4BNGmlFK+L7Hd9jU4xFI1H82po/lxVElGohTPdZM/BLaDk0AHZiOXfVz7aRPNQmhu4QzEvXeLK7zH6z6ajdQ6QRPu/CJJMflFkmLyiyTF5BdJyr0IfmMtuVi5V1ml98leFPKoSu9FF4W8P29i7G9m8V6elyiwfNvEWX2llDLsxfjlJIo5qwmIezA/bjqJMXo2RK1D7AOO8NsJas1GyBjkbYmC3yW4EKOJy4hgS9fGGY6VVZHu/CJJMflFkmLyiyTF5BdJyp0LfrUtuaVwWy6ZJxyAUcJpdxhiz9qjGAOB7ot1vMaXJYoxn57E2OUFP7In6/hdTifxvg/beP4UfoP7Ngo5J/Bd6NmSMIRi0YgQu+2tvrWz7D4Gm4iAi0rBlkS8sWtvgju/SFJMfpGkmPwiSTH5RZJi8oskZSO1v1bZv015b1Nb8gtW2UdNLAM+gYGbR1GcLQ3UuvZ9/FdgcQsHoD2y+KYYlPLi57Xx3PUe9PNDj/gMhj/y8M+Hs+7e5H0au+daJ567Bp8tbLX0/cbsxu8ad36RpJj8Ikkx+UWSYvKLJKVa8NtEjCFb4zFomGWtQLNXonB2DKW8h/BxCzhumMffxnMQ3UopZTEy2PNDSNCkT2zhuCcgXn7axDLnd9PoNHQBveSjgz4fqLq31pkJLbZhTkIpI+41d/wF8f2EV56EvOYWDvJ3LV6684skxeQXSYrJL5IUk18kKSj41TrpELcR90jAIIGGrIlnQ+yXpm9zCMrLFESSGxAL+3U8933L328OghO7wER6eA50HEk7HVl5Vw7/HFsrKIB8MGpFwLGqOBqYioLhHVfV1ToAgTP4veHOL5IUk18kKSa/SFJMfpGkVFf4kYBBwuCm7YgrsLCmdtTLIdoiX6yjCNhP4lDPHsSva4jNoPzqcqSSbE52ziDRzeC4FgY2TmkwJ3ze1To+G2rpZbeX7RrUiRVsJIbCfd9GsHuoAaXbNhjVnV8kKSa/SFJMfpGkmPwiSUHBr7ZF8b4EjOUQxarLPgp+b/euQ+ysie2tl02sgNuHar5rEDQvJ9y6e75ehtibVbzHBRxHFWdUpUftzucgfL5fxudAoumYM8xDQe8TVXxS1d4Y2/Ydtwl3fpGkmPwiSTH5RZJi8oskZaMKv/ui1gL5XX8VYq+6KIi9BnOPBn4H5yBynk2iYFdKKT8u47XfDlF461fxfBLyqAV3APHqchm/3/kCrjvE625bxRlBgt2Y5TuxC9/xoXDnF0mKyS+SFJNfJCkmv0hSNnLpvS+orXMBAtYViF8/DVGI+7aLDr/XbRQBSdr7fhXNL0op5QyuQ2LcElqWqUWVjqNZhjcgfJK4R6LprqKIdze484skxeQXSYrJL5IUk18kKbsh+FGrJ1R+XS/nIfZqcR5i5JT7pjmoupe3I4LfDZiIbCLuUQUjiXvktGsbq9Tgzi+SFJNfJCkmv0hSTH6RpOyE4EeQqHXdR8HvdYmC3wLaas+6/RBr4bexB3GuFBbtuPW0znCCBE2q0qPqR5Ea3PlFkmLyiyTF5BdJiskvkpSdFfxIJCNB7ArMPUjwu4SW3g7MPciZuJRS9pr4KDsw3iBI3COzChlnbF1qydgm7M4vkhSTXyQpJr9IUkx+kaSY/CJJ2Vm1nyDFloZZkpJOx1F5btvw7+U+/Fuw38UY3SMNI6V/AB47pNjTGtBxzYjaT+dTSTRagT/yNXDnF0mKyS+SFJNfJCkmv0hSqgW/Tcont610koSc1VAn7kxW/BxItKOBmyRM0VBPemZ03C7QgN34tI2v3hTKqUlgvY0QS8dSGXit89FjEgHd+UWSYvKLJMXkF0mKyS+SFBT8Nu2NfsyMiZcDuvNEcYiHelZeu3L450NC4t7p/lGIfXbwJMRO2uiaRJ93G2gNLoc44+HN7CLE0NZ8ux73RrjziyTF5BdJiskvkhSTXyQp3X2Ie2PX2Dax6q6h7/eYHHZoXWno6eleFPx+cfA8xL5q4nFTEPxmIK5eF3ZSulpFC/M3zXU8H+zdafgrX2U3cecXSYrJL5IUk18kKSa/SFK62gqqWvGqduZaKaU0TZ3YWNvyugsVcI8JWuuuhbZceMeOJnG+4edlL8T21/EalwWclEoU9kopZTapszVfPSIhthZ3fpGkmPwiSTH5RZJi8oskpaudKVdrqEDiDplXlFLKHsxxo/PJwIJm5lGMWjrJoEGx8A9D609z88iq/AAMTfoS1+ACxLkFvGM3cO4NVP2VUsrVKs7mo5ZebN8F6Dns6nvizi+SFJNfJCkmv0hSTH6RpHQkftVCgg+Je59AS2cppRx3cWYbCUYkqNyAkDMfYpXXDGL9KgqDs2U8jkSgoVIYemyQuEvGGyfTuKbHNJsPrnGxjutyDdclsbAfMdMYSMiFGLUik/MyieEruJ9dEAHd+UWSYvKLJMXkF0mKyS+SlO6uZ8pRxeBY2/B0EkWWwya2ddJxR+v9EOu7OuOMGcx1e9dfhdj5PM56m48IOY/JvZWgyjaq3Hs6PQ6xZ20UfFvYd65B8KtlANFtjI7epza+T9BhjJDDL5m4bBvu/CJJMflFkmLyiyTF5BdJSldbiUSCD1U7UcXgbIiCSCncvkvsN9wSXPN5RyAgHkBsSUYQfTRyWExGRKntL+iqBtt36dl2UST7dHoSYk+beFxDlXvUfg1C3m2cjls4lt6npovHUbUp3jdUfZIAvEmubQpd251fJCkmv0hSTH6RpJj8IkmJisYItSYZJH5Qq+0YJLxRRRYJUFNoy1yCuEPfZQFtvrdpy3xMs90IbN+GCr9nTWzf/WoSY1SPdw7GG3M4kkQ3at0tpZShqXtvBxCBj+BdpHMvFjch1sM8STS5uYW4dxuhs+ba7vwiSTH5RZJi8oskxeQXSYrJL5KUarWfQKtjKGukfwDGoKGZNA+AlP0plGMOLZSMwj3W/iNB8wpKKWUNVtJ3PSvhvqDnTe5K1AP/ZXMYYn+5iGt1sorP5k0bz30fTy1zeK7XE37Wrybxvt/Sv0Lwr8KMSr6bWPJNwz9rHa6IseNq/xmgf5noXHd+kaSY/CJJMflFkmLyiyRlI8GvlrEyV3Q/AZGlBTGHyk1r5wOQ4EfQNbo1KFBjwGW2adDnmIBEoiaJqSfgxPPVOpb8/vWTNyH2/FdxxsOkidddvo1C7M3/xHt5+fJpiJVSyj/D8NDfdnEN38PwUCo3plLzbaO21NydXyQpJr9IUkx+kaSY/CJJuRfBb1NQgALhBQcuVlZakVhIlVtjsHgGPd1Q2bZtff9U4UfuPKfQu//5EJ/Ds69jv/ve3/4qxCa//KsQ2z88DbGj178Psaf/9I8hVkopR3/3PsTWwych9p+w1BdrsG2v7PHfZE1HK0MhvMmwT3d+kaSY/CJJMflFkmLyiyRls5ZerNCrFzpqWw8pRhVnJAKuKttqa11qqAptDHIvmkDZ37a1/tZW+J3S0MsehmPO4ZldR/vzyUG0926//mU894/+LMag5biUUr759u9D7Md/iFV/Px3Ed2cBa3U5zOJxlcM6N3Xswfdkg1fHnV8kKSa/SFJMfpGkmPwiSflfhQWwSlYADiQAAAAASUVORK5CYII=" y="-18431.278022"/>
</g>
<g id="matplotlib.axis_1027">
<g id="xtick_1540"/>
<g id="xtick_1541"/>
<g id="xtick_1542"/>
</g>
<g id="matplotlib.axis_1028">
<g id="ytick_2566"/>
<g id="ytick_2567"/>
<g id="ytick_2568"/>
<g id="ytick_2569"/>
<g id="ytick_2570"/>
</g>
</g>
<g id="axes_515">
<g id="patch_516">
<path d="M 299.674375 18556.179785
L 421.964375 18556.179785
L 421.964375 18428.886258
L 299.674375 18428.886258
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1029">
<g id="xtick_1543"/>
<g id="xtick_1544"/>
<g id="xtick_1545"/>
</g>
<g id="matplotlib.axis_1030">
<g id="ytick_2571"/>
<g id="ytick_2572"/>
<g id="ytick_2573"/>
<g id="ytick_2574"/>
<g id="ytick_2575"/>
</g>
</g>
<g id="axes_516">
<g id="patch_517">
<path d="M 434.924375 18556.179785
L 557.214375 18556.179785
L 557.214375 18428.886258
L 434.924375 18428.886258
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1031">
<g id="xtick_1546"/>
<g id="xtick_1547"/>
<g id="xtick_1548"/>
</g>
<g id="matplotlib.axis_1032">
<g id="ytick_2576"/>
<g id="ytick_2577"/>
<g id="ytick_2578"/>
<g id="ytick_2579"/>
<g id="ytick_2580"/>
</g>
</g>
<g id="axes_517">
<g id="patch_518">
<path d="M 29.174375 18700.099209
L 151.464375 18700.099209
L 151.464375 18572.805682
L 29.174375 18572.805682
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1033">
<g id="xtick_1549"/>
<g id="xtick_1550"/>
<g id="xtick_1551"/>
</g>
<g id="matplotlib.axis_1034">
<g id="ytick_2581"/>
<g id="ytick_2582"/>
<g id="ytick_2583"/>
<g id="ytick_2584"/>
<g id="ytick_2585"/>
<g id="text_130">
<!-- 684 1849-220319 -->
<g style="fill:#262626;" transform="translate(15.789375 18683.492446)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-54"/>
<use x="55.615234" xlink:href="#ArialMT-56"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-52"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-50"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-51"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_518">
<g id="patch_519">
<path d="M 164.424375 18697.597446
L 286.714375 18697.597446
L 286.714375 18575.307446
L 164.424375 18575.307446
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pdb9f9ae90b)">
<image height="122.4" id="image6fe238bef0" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPHNl1Rm/GkGNV1kCyZ7a6JQst2wsD3hg2YK/932VYgGFBstroeWCRLFZVzhlTekF5w++EEVQLXuh9Z/kQmTHeDODkHUYv/vWfT/EGp+7NlYjyKpe14tNrWRudzWWte7XSL4yI5usHWatu5XCiq0e61ujabjWWtZtXZ7L23/lM1r4udL/rUStrdeh2ERGbk277vNvL2kN3kLXzbCJrn+VLWft5W8haCYezynTtONINP651u4iIv5/ey9p7n61lbaSHE3dfTGXtty8fydofJvo8zeBcPqz1YZzAA3qX6/dFRHwNx/j1qJK1m5Pel5tGz/lFpc/yttHPdic9mWykz2wL51K1jaz1rXcUrEA20ocCHhNjTAo4+I1JFAe/MYni4DcmUQryBYdXaklWP+ja5Is7WZs+eiFrJIYiIuqVCpBq07PxnxFSJC2IPNIufcKPPk+CJ0fxotsd4CjvMt3HWaefBXcZk5Nud96xLCpLlZftYZh0PR5K3Q6uA7GHzW5zvV4FvLPue15jDyBt9wHnB4FA96rMVCyOsz/9maX9vg0nEIt5BtcMjttvfmMSxcFvTKI4+I1JFAe/MYlSZNNhImez0iy09YNmc53vNdtpds6pZOQ6ulb3fQKpNQL5RZ9tTvr7toGfvNVID2Z10uPuE34HyPA7wtoI5B6JwSNcnBVIwBHIHZKAS7jWF3B+ERHk5+qtCqP6oGt7EH4ZSKk5HE8F+z3AvSJFtoHnISLiAPe1gePpeu7rmxQjPedyoPAbmuE39Fgi+Hka53o8JCX95jcmURz8xiSKg9+YRHHwG5MoRXGlgib/USVECxLp2IBY2Otan/DLJyA7QNpVB/3OrtLfrQPIptuRrv2YQfnt6ShrWxJ+PRlZNci9BtXUMChjsAJ5VUHm3gkkUA6Sq4+mgWu71XtA2XyHVoVYDufyqNW1Q6bHTVl/4KN7FRkJsQLWShJ5A9faP7Pw68v6o4xDEpDTXO/LJAMRi3sxxvzF4+A3JlEc/MYkioPfmEQpsivtuZePuefem5BDyiDTqpixwCi0TV2cWt12fadChTLJ7mrNQvxqor9vX8ZG1p63O1k7dCr8Tm+RfUWQMKJ+by303Gtg35RxSP36ViDTZp1ew4iI2VYzN+c1yM8G5BcIyJKEX6cF0zVI5Vvozdfmut2k57ZcwPutDH1OzkHajendCG6vaFUWD83Sq+E6tBnHCz0nlLk3BblHYtBvfmMSxcFvTKI4+I1JFAe/MYlSRAuZaUf9Taghc6uDTCliRE3lIrB29LBSWfF8vZA1ytx7Xupx/36kJcbfNSo0140O2Hib0krKvqI1yjijbD5cA+FDfQZ3IPxqmGlRwfFFRHSNCr93oHw3h/1UMUwslZj9CHKO+hHCR/OePoFXICAndB1BiH1b6DP2JZTL3mUq/Kicu4K17Wi4LCTZjCKPnju4Pn7zG5MoDn5jEsXBb0yiOPiNSRQHvzGJUux/q6mutzcXsrZqdfx1Dsa2bfX3pKPOjBFx6iANFZqCPkBO5QNMcnme6/c9gzHZ981W1vatjm0myK5G8CQXsv0E2V1aIwdMacB72HAPn971HF4N/5rsWk2JncPEn6HTeQpqogkfpUeH7sAcnqWIiAv4N+tipP+RjOD6zDt9FrsxXAe495uT7oOavE5hnNWkZ8QV9YwY+o8UTfbxm9+YRHHwG5MoDn5jEsXBb0yiFL/7zyeyeJOp3Kuhhvocau+vIY+UJgBFRICzizzX7xyD1CgHCowapOSh1dr0I6xhei7Uxb8+RpU0ORzRBOqvc2q4CWu0Z6z8BglIVD2yaA+fv6Vx43BEdL2JGXz2DMeI69oC5B643tfHA/fwcILGnHDcBVyfGRzjGPYxoacRbuAUBPI72Uw3jIgKjnEHYnE/sPGs3/zGJIqD35hEcfAbkygOfmMSpfj3sWYxkfCZoG7S344jNHXs3bkmEsbySuvvL/eaVXWA7KscZAxBk1NI7lFdNDVMjOCJKDMQp2MQPHPoTTCHPLYSjodqvDUPjOkbN04SaQtrOxBLR9iOehgs4Nq8O9J7+jPYLoPv05zN19Rwr2cdjTWHRqg4QQgEMmTeHUDOUTbeGYjia+oSGhELiDcYcBVrmEi1hmP0m9+YRHHwG5MoDn5jEsXBb0yiFJ/nWspKmVvnlBUFKXqPKxU0Hxz4N2a+1PXFRyqRLh5UAj5fgwQE+ZGBBJzn+lkSeSTxFpl+NqK/DPNPZWjWHwk/EnmU4UVSKiJiddJn4r7Ve7DttPlkA2KJ2NJ1hEu4gHJZKuqte1wvNUI9p4w8cJ/UHHULwm+F5bu6VsC7liqgxz2Nca/A7i2xlBlKjOH59pvfmERx8BuTKA5+YxLFwW9MohRft9rDbwEZZ9VIRV4BQuwSJpo8eXaGO59/8CBr1CKPynypVxzpKyqZvC70eCjz7hzOmco3IyL2IHjuUYjpUdYgkQZP8aHefCDdOGtP5errbXW9gs93cC4trBH0fSTJtnAuk4F9AiNYks7AkV1AefoGhDZJQDpuyvqbwXGTrnubIfA0fWgKEvAMSqP95jcmURz8xiSKg9+YRHHwG5Moxff1vSxe5HNZa0C65VDyOC5VApbVOe68+bX+9lycaybZfq/ibQpi6b2OhnvouZyB0DyDDL0FZDWuUPlEbEIlGckvLMElcQZl1VQSypl7KptISNLI6D5KEKJdBmpqmO/jEuqhI99hO72jr6Gee8sWJBkc+JGyQ09Q5k3XBo6F5CPBTxgPMDnQ6G3YblhBvjEmCRz8xiSKg9+YRHHwG5Moxa7VLDSSMSQ1ZiDJSspiGnO567bRTLun91rqeQllx5eZrn0Cg3brsaqgZ5meH/X/o+y5Y4/ROoI8o6mqJPwoQ4z2U4JsomMkcUb3j3oC9n0nicUxCNEDyS/IQqPhJZSNmcPzVIBnXPT0b5zDeg7nt4F9b+A5mcBnryETdAfSlYQfZYySR42IoNk3W7B7lP2aeUqvMeZ/cfAbkygOfmMSxcFvTKIUl8VCFqdQqksZXkPLSe96SjDLXL9z2cEaTW+dqagsjyql7lo9vxcgSXZQVruHc6HhFRHcu64FaUfb7UHkUUYeCTqSSAvo4XYOcpYyBiN6egDC9alO+pyQvKT9FHAuUzhGenJobdwj/KbgZ0nZvoLy3VsY/Ut9D+fwDp3SvYJjLGGNB+Twm5rO5Ui9LOE7/eY3JlEc/MYkioPfmERx8BuTKMVn48eySBJpaP84EiJ5T+noDqQIlSiSl5pMYShCofuerLWktwJ5dQ9966g0tuqZgYvXZ2CPu6qDHnAwaXUBZb5zmvoLv+kklvpLR6m8lXoPQmksHA9lPxL03JGoKt5CXpHSpGfsHnpHPsdptyBiYe90D0jk0Rp4xohguUfDSvBqowQ0xiSJg9+YRHHwG5MoDn5jEqX4NKaDNrwbqUa4hWmuNAiCssMiIjIQLxeFlke+e9RMsouKprfCPkCeDC3fbaEMkspTI7ivHJVGU0nvaOAQijH8Vl+eNCuOMiLpV54ywSIidnTN4Bip7PhE1wyvA+xj4GRiEmJ9rQO3cOIkye4GSuAHWCPh10FXQXpGCOrBFxGxo6s2cH4J3X+/+Y1JFAe/MYni4DcmURz8xiSKg9+YRCkoxZPbbSqUtrmCsdR9bEdqTo8ZpMROtKnnZnMpazNIQd0UUGuNNdnQeBLSV4dfHZ5o1MC+C/gNvsr0nD8K/SfkaaOfnYFxP4KtX/X89FPfgD2Y5pJUM9nngXZ+Qimx8M8F3QEy+BERO7iHO9j7Gv7NOsDzRPePzu8A/x7ksI8azpn+eYqIqCjFGo5n6LQgv/mNSRQHvzGJ4uA3JlEc/MYkSvFDqKCbwm8CyQ9qMrkG4XdoYZRODz/CJJfvoMno5xOd9vMEhFgJ+qMCoUINF0eQOtvTJzIaGPtN4oaaWZJs/OVJhd/fHfU6Pp7oSPMKJOBdo9+3hNr7iIg9iMqaJCClyUIjzAc4P+oFQD0HqC6eJDUJtoiI1cDGrNSvoIE1TOP+CTJt6HSkiIg9jl4niThsTrrf/MYkioPfmERx8BuTKA5+YxKl+LHbyuIC5BUphD3UNh87Xdu0KqUiuHEl1YPfZmtZezlW4fdusZS1S8iUo7r4CUzNWYAQO4ft+qBGiqTYKEvvH6d3svbhP+1kbTTVb6x+VDH4zo3K0MNO73NERAW9EpoWJHCtQvRlrdf7ptDvW8GFIPlFcm8NEu8BsucieIIUCbGhDWqxLh6yJ6nGnxqPEvR9EREZCFFOqITrCBLRb35jEsXBb0yiOPiNSRQHvzGJUtzUK1mcgySjkcpHyPCjEdR90PSaY6PCcAdZiCQW96WKrutSxeAZnB+JQWqO+R6IrwgWomvoHkolqk/hnB9/vJG14udPZG10faHbfab3ZQbZgVHpfiMiTlsVtN2Dysb6BYjFr7Qh7NlLPcYfTyogb3O9NrdQ4n0HGpCabUb0Z8sNAct3AWrq2kAGY9NTqjvk+yI4k3ACUpqmHA2Vl8aYBHDwG5MoDn5jEsXBb0yiFPe1ZvjtMxU5Yyi1JUhW0OSa/2v9TapWBU/dDReLb9IVVNKr50dTaq5aljHUQ66mzK9hzif2d5p9N/nmlX7fRMXZ6OmHspa9+4HuZKEiLiIiDvpMnG5vZK344ivdrvlG1qa3Kl2pp+ABJBlpPMqAoylMfZ8n+TU0Kw4nDdG5QH4nyUeSc31QtFC26gLySKmfpN/8xiSKg9+YRHHwG5MoDn5jEqXY1prN1eQqKyoQfmWmYqGAjKM+sUfbkswhiUjfWIMYbAuQLANLMGcgY856RGMH254G/rbW8NlXt3NZK/6gWX9n8UzWysVM1kbvf6Rr1yABI2I01s93y+91w51m/WXTb2Vte1J5eQclvVS++whKqC/h+257+hHejFReryEbkLLv3kbGvckBMl37hnG8CWXyRURM4Ryp/yNuB9fRb35jEsXBb0yiOPiNSRQHvzGJUlCmXAaCjqXdMGGXY+e6iA5KXguQiCQWCfosZSZiSS/0LZxC1ljbI2PmNH0XsgF5Oq1uR/3xHm5VxOVfazZetvxB1kbn57rjGaxFRCwf6VoFfRhrFWenhrL0QOLCbs/ger8D35fR4BPoExgRccj1OpLwG5qZSmKYnogKzvAAJfBU1t4nyCkLcehU5BOW/hpjksTBb0yiOPiNSRQHvzGJUoxBiGDm3sBsvjGUxpJA7KPKtUS1r6fZm8wLFXkXhWbKXWfaZ24Bx30Ac/KiRyw9gfS0c8hZm8JwiRzE54imt9a67+0rmEz8pUrA0eQL3W/L2Yqnqytd3Gh2YfetisVmQ5N2dT/LTq/3BG7zcmDp9kPX01sRbhdNlyYZNw16lvX7aHJvDRl+1N8Sy4t7nnfNp+Qy4S0Je5CpfvMbkygOfmMSxcFvTKI4+I1JlGJRqPwi4UeZcpNMs+KwTLcnKy4De7KAElzKeKI1knsXIPeoZHILwqeGabD7gnsZHuG8n0IDuRkIvwIGUzQgsGhSbnXU49m/hGP8/b3u90anH0dEjArdT3cAgfWgx11t9Jk4K2AoSaPbVZAdStmB1BvxNmdJdnvSkt77di9rR8j6O0DW5xyeeYIEIk2lHsG5TEA+R3BWZAUylYQhCUi/+Y1JFAe/MYni4DcmURz8xiRKcT3WgQoEZTGVILlorevpXUbrJAxnML2VBOQUZAxNWr3vdOovSkXIilr3yJg61+xCKnluGxWQk1qPkeTOFFazo66Nd3qMzfd6LPvPWV4dQCJSZltZqkSitdlUZdo7WxVxz2Fy7yrX+/K80IP5cqT3NCLiRat5cST3SMa1IHwrEHkdZNltWph0DCKOnuNTrs9IRMQUXtUUQyT3aKq13/zGJIqD35hEcfAbkygOfmMSxcFvTKIUy1ybQpItpEaD9A8AQZ+NYAO5b9UCYx10z3e+yQH2Qf8o8D8XkE4LKZ8RnKpcQG+CHTUohWkq9J8CjQenfwqmRzXSJ/jn4tVW731ExPoEPR7AKp9BA8/lXK37eKLHs2x0u81B9/sSbPi3mX7fD2D1IyL2YPbpuaV/eyhNlv4p2DRq9ndwftTcNiC9vs352SazT3FQwz8XFFd+8xuTKA5+YxLFwW9Mojj4jUmUgmqHKQ2RZANNECFZSGsRLPx2rYqSCkZvH7NhKZrYmwDOuRyYLkyyMCJiB2mfL0Hw7KFZZwkyrgQp1cBv9UWrx72A9Fyihf1G8BAYaihKfSbbFkaVdyBDoW/D2UivYQbycQ3XegN1+xF9dexwPHBfG6iVb+AZI8FGKb/ZwPH1fc8YQcJv3+m1oLjym9+YRHHwG5MoDn5jEsXBb0yiFCTtKBOJJEk7UAyS/OiDsqoamNpCx03yhM6F6rQL+j74baQRzRERBez7CPX3HciqAgUUaDeQkgtoKJpX2sh0AvKq7jsXuBYTuGZEBaPFqfEoZRz2Ccg3qeG69kllEmJ9DWWHbEfZgdSEkyZc0USp80KzLBcwQj6CzwWlOWQXrittWuo3vzGJ4uA3JlEc/MYkioPfmEQpaMQvQfILvQlmNvFvDE38GZUwwSTX7SgLcQrbDZ0qRNl8i0xLcpewFhExh2addGVpJDMJLMqe24K025Yq2G5AAl7CSOwllAhHRFy2MDUJ7msL51w1w7LTGpqaBN+3hUen6WkI+1MgWUyQQKbnaVLo83RdarPcJ4WuTXoy/O46LR2mknUSfrvaGX7GmD/i4DcmURz8xiSKg9+YRMHaz2Kg3GthOyqDpBLa1+tUbjtUGA0TlZSRhdmBcC5n0K/voqeH3xw+X8N+NpCJVsG5bKFX3BZKNb+BY1lChth7MKr8ox55WcE92MHI8BKsJL1NMhoZDeJsA9N57mB8+RGuIQrpYJE7NMOPnrEGRqzT1B1aW8Iknmu4L30Trm4p+5WeJyiBbyFL1m9+YxLFwW9Mojj4jUkUB78xiVIsQGDhAAOQEA1lB4Lcm/YIP5JnM+qlBqJjHdBLbWC2YjtQFlKm1bjn93IMgzeo711Jcg+2O0Dp7x2Nm6bBJzCIZVyA0ISy04iILNf1NQwloT6DJbiqfGBC3gYu7ZZKieH7ZiD2Ilju5bBGmXs7uLY0tAPHu8MaPZ8kdvuG4VAMDi0xpjW/+Y1JFAe/MYni4DcmURz8xiRK8U4GU3pBSlEpKnmJCfyenPcIvylIsg52swK5R1leNLiBSn9JxlBvvnZEIo57xYEPQ61IpbpDM854IitMMIasOHJulIEYEbEGybYedogo0yawNh3Yr48GmlyPNDNx0fOMUX/EPmn7Jq9AiG46LY2lrD96xkg0k/DDDNue75zBJOh5qRmelPXnN78xieLgNyZRHPzGJIqD35hEKS5AlNAUVBJ+JE7OoUqYpE0ECyfK3KO1PRzjHjKyKAtxAuWWGWQbUpZdn5urYD+UfUXXkUo4qUSVSqObTGXT0Cmvx56MyAZEJ2VZkhgmKGvzMTwnV1A2/Bj6+i0wA5Wh2zWB57GAL3gGz8k212eM7gv2+qN7CudHn42ImMA1O4dszqYECdzR8BJjTJI4+I1JFAe/MYni4DcmUTgtaiA5iQkQJ7ueCa/3kN20hjUSbzSVlQQbTc+l7Ui6URZhX9nwAfZDgoeOh6BehrOenntvUsJnSc7dh17riIgW0izpHpC8pAy/K+gpeAGPHj2MZ5BQeUUlufDZCO4zOAX5dQb3+ilcx3xyKWs3mWaW0vUeWl7cRwVxNKcSeihvpmfHb35jEsXBb0yiOPiNSRQHvzGJ8pOEXwsy5QBSYkuZchFxDyW4NJiCxBL9apUg00jPkWSh/mgk/Ppo4VLOsG8anQv1x9NzoanBlA1GQpOu613P+e1h2wruIR33PFe5R/elgnOp4ZzncHwzEJJTqpWOiBIE7RSeimWu5/z+WM/53YMO2fh+pOd8l+u1OYDbqyGbsi9vsobP70d6PLtiIWvrfClrfvMbkygOfmMSxcFvTKI4+I1JFAe/MYlSzKGJZk0jminVFcw1WeFNj+2nlNEK9oMjtWlKysD0Sfo+qscnJj2NImnyEdWxU0NJuo50xciat1APTtdwBY0n180e9sLr1ABynOu1uCzVNNO/FGs6RmiYSVOBJtQElTq/RsDVYY6dnss80/Tnv/rlS1n7Zab7Xt1onf3tg/53sen0ual7Un5p/QidY3fUh4B6DuBejDF/8Tj4jUkUB78xieLgNyZRiilIhAOlh1KzTRJ2oSKnL02WxNTQ8dkkcoY2zGxgv1TPPwOJt4RpMRE8RWaOdfW6H0p/bknuQQornfOxgyaoIPFWtY78jojYNSoHSfjVIMnGJJsotXika+MMJC5836SDdGgamRQROYjAFt55uxM8UXB5rmFM+uKvNb139gt9xq6+V1m4e67P2H7Lz9hur9tua5CpjV6zDVxbv/mNSRQHvzGJ4uA3JlEc/MYkSrEGwUbZV7cnlUA/1iv9bKtiiaRUBMshmjZDE1FGUMdOmXsk944g2Kjp5RT2ewESMIIbUtJkmCMcYwv7poS1hkanQ2biDrL5dq2uHdu+Bp7DpCuNP6fjqUBArqDpZQHZptQkNstJ9/J7rB3YIHMLwvABjmf+jdbFf/LoTtbGn57L2vQzlXPlE42X+YstHuP0Bvo5vNLt2iNkkYIk9ZvfmERx8BuTKA5+YxLFwW9MohTfxUEW70AYPasfZO37vdqGdaUCo2/k8KLU5oOXYy0JvSiojaOKN9JUNNmHJCAJPyobpqaVr9eHQSWqC8oug90cIHuSsiT3rco0knsk5/oooNyWSnpJ2FL2JB33DkTsLWVtwkSatqfU+gJEF531BspyibZRkRe/0aWPK5WA01+pLCw+eSxr+SPOvMwXa1kbjVQOti9ANNfO8DPG/BEHvzGJ4uA3JlEc/MYkSvFdoxLhAcoWbyvdjuReBWIp6xlLPcmhpBckFAmjnwJlHObwO/g245Op5x4VZk5wOs+wUecP1P9voNB8G7lH2ZMlCL95oaWsC5jYM4cefjMQdHS9adQ1lUA/9EjlgOOmLXcDn7Fn4GbL5kzW8t/p931ypTFUvvdIj+/6Avc9vlAZfnmmZcLFHzTzNr7TJb/5jUkUB78xieLgNyZRHPzGJEpxC8JvCz3cDo1mjVHmXkk91woug6V1EkuUVUflu8XAsdbEMlNR9RhGLy97ppqfwb7PoKSXBk4QE5CkBziX21yzJFe5bkcZfqeesdYwXTpKyOabQKbdFPZ9Btf2AtbGA99FbyNiCUrmm8OzXMB2UyrThsN5ddTz++CFZskWa83QG2HJcsToTIVf/oludz69l7VyoWt+8xuTKA5+YxLFwW9Mojj4jUmUYl1Dlh70XCMmuQqfvNTfE+rVF8FyaGhJKGW2jUEWTqHn3hmsvQ9y78NWj/tRy5JsCvKshLUM1mqQTZtcr2MDWXHrTMudd4XK2cNblPRSbz4qbyaGZhKS3JvCGl1t0n0jEHERETl8wQy2LWE7WiNhS/f5AGNl7r/Xyb35b1/IWnGh5cAREUGDSWgNGkCO33VJrzHmjzj4jUkUB78xieLgNyZRCur3RplfVOY5gawv6oVHWX+v13VbytyrQUBS1h8N2RjD8VyC8PsI5N7fVirJ3l9sZC0iYjLVY+xamIB80H3vKl27ayBLD87vHrIkX0D23BTk7LHjoR1Nx1OVZTuQrqtGy8FJFk5J7MJ9oftMb6zDiEXjET5PZdX0cZKFuA+IjecFPPN3l7J0/2vN0JxP+b4UxTCZmkEKYwYC2W9+YxLFwW9Mojj4jUkUB78xiVIcG5ULeUb97Ib9TpAY7BvaQdlglIlGEnAG2YF9mYTyWTiXS3Ap16UONHnysx7h9yGUYUKmVXWjGZWrZyroTrfaF+6h1X1cQPnnOZT+TmFtO9LS7YjAVwJJOxKDNCGYpHI9VkFKw1kmIDknIAvrvh588OiRzpxDphw9TaTcmoH7eEb3qtP7fH4YnkVKUrKg7eD6+M1vTKI4+I1JFAe/MYni4DcmUQoswYSlEQiRvh5wQ6G+cjvoH0jHeMz1s2OQQ+/mKlQWJ/3Nm3e6jxxqOvM5n3PxoWZvjc5UYOXXOtk4Qvu4bTcwEOMAvfA6lUjXIEMvcy0nPUDpbwQLOirzpQy/qlWRt4f+jyQLV4XK0GWhx30GfQubjLPfWsh220G5bfkWovpNhnYU5J6XkKkKz2dExIyyWgf2iaTyZL/5jUkUB78xieLgNyZRHPzGJIqD35hEKbhZ47APU8onpdj2pd3iOG5qcDmwvryC0c0lHOMSbGoJx1I1MDXnBZ/LZK//UmRP35e1fKn/Pky7r2XtEUxy2X2r9e7rVm34Y7jeN5ka8vtM7XoEp1g3cG2p0SvdU/pXiP7pIegZw6lQJ74v607/adjBd1IKOS3RVKg5/MtEY9fp/whqTlv0/H9APRDm1CsBnm/qYeA3vzGJ4uA3JlEc/MYkioPfmEQphqYw0nYkY2hsM6VjRnA6LkmkUw0NRakJI6zNIZWT0h9JxmxaPZdXzzVlNyJi+vlK1mYfqVDLfvU3slZcXMjaMv5D1t7Zay+B++eayjsvaHLRsNHnESztKG2XUnSHNn8lSPYOFYgo7CKixWlPcC6QqkzPBDWEpevYQWzUdF1xL8yY0tIhhuZwjDQNyW9+YxLFwW9Mojj4jUkUB78xiYJpUZR1RGQDhd+yR/i10FSSRm+T4KFjnMK+S/h9I8VSgZRaU9bYXjPqIiKKz/Vbn/7imaxl//AvuvYxSMBaM+Auvvw3WZs91+uVgeR8m84LHYgpknst9ED4/4AEYt8I8RzFsHKiz5NsJIFITxRc8N0J+lfAWt+YcxTsKPx0jaZZ+c1vTKI4+I1JFAe/MYni4DcmUbCkl34RSEJQVhQxBgEVETGFUdItdBrEBp4wXppKPUkMHka6toFGig0IluNJpWJERKwXsvS8gGkFAAAAbUlEQVT4v25k7RzOJf/wM1k7Pf9K1oqL38gay0tdo+swNPMugkUXfWdf1qDse+B2mFkKTyiV2kZwSTfuBxphUpbe0POrYGYPyb0HGGl+6BmdTmAJPQk/kOF+8xuTKA5+YxLFwW9Mojj4jUmU/wHSa73r0aiwVwAAAABJRU5ErkJggg==" y="-18575.197446"/>
</g>
<g id="matplotlib.axis_1035">
<g id="xtick_1552"/>
<g id="xtick_1553"/>
<g id="xtick_1554"/>
</g>
<g id="matplotlib.axis_1036">
<g id="ytick_2586"/>
<g id="ytick_2587"/>
<g id="ytick_2588"/>
<g id="ytick_2589"/>
<g id="ytick_2590"/>
</g>
</g>
<g id="axes_519">
<g id="patch_520">
<path d="M 299.674375 18700.099209
L 421.964375 18700.099209
L 421.964375 18572.805682
L 299.674375 18572.805682
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1037">
<g id="xtick_1555"/>
<g id="xtick_1556"/>
<g id="xtick_1557"/>
</g>
<g id="matplotlib.axis_1038">
<g id="ytick_2591"/>
<g id="ytick_2592"/>
<g id="ytick_2593"/>
<g id="ytick_2594"/>
<g id="ytick_2595"/>
</g>
</g>
<g id="axes_520">
<g id="patch_521">
<path d="M 434.924375 18700.099209
L 557.214375 18700.099209
L 557.214375 18572.805682
L 434.924375 18572.805682
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1039">
<g id="xtick_1558"/>
<g id="xtick_1559"/>
<g id="xtick_1560"/>
</g>
<g id="matplotlib.axis_1040">
<g id="ytick_2596"/>
<g id="ytick_2597"/>
<g id="ytick_2598"/>
<g id="ytick_2599"/>
<g id="ytick_2600"/>
</g>
</g>
<g id="axes_521">
<g id="patch_522">
<path d="M 29.174375 18841.51687
L 151.464375 18841.51687
L 151.464375 18719.22687
L 29.174375 18719.22687
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p8c2ff07683)">
<image height="122.4" id="image788a9535a5" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUuPZNlVhXfcR0RkRGTkq+vVdnd1dfttZGEQSIwsDEKIEXNG/j38DOZMQUhMGCKQkCWQ3EK2u6qrKrPyGZEZkfG6EQzanuT6LjpNiYnP+oZb93nu3XGlFWvv3TkefXsXDzjp7z8MxVE9kth+0ZPYB+VAYi9iT2IREd/elBI7aLYSm5SFxF5XctnxtrPWfXcaIwah13IYtcROdnotEREnTUdiB1u9l23odu8qjV0Wum9vp9udbDU2bnRtdKuIo+0GohGfHE4kdvD0XmI7OPf1W33+v7wdS+xVXUlsDkvb12WIb64bjdVz3TAiRsOlxMpKD7pc6LN+ead58G99fU8+D12bJvQZfAp58JOF3sv3Pj6XWETE4Kk+r06tz6AD7xPF+E02xvzO4+Q3JlOc/MZkipPfmExR1SUitjsVK9YgDt3SvnRA1Ui+Ombdl9gHpW686ej1XHdUKJnvNLba6RWR+LXt6Hnpl7HEvfmYy45G7wqNnYK4d9PR9e529IoKWFwSBvdBSG375Z/NuxLbvdVjrlZ67ut7fabzQs/U00caw40G97caO+msdN+BxiIiBmONVz0QU5e63s/hvWtAvOz1VMibwr7PGl2Hbuj1LWYqPkZExKmGihIWEiBx1l9+YzLFyW9Mpjj5jckUJ78xmVINanXp9csWweEBJAJOQWBrIBYRsShVoLvoqNhUg5y2gGPegptvBSIgiXY1iGnrjuqhaxBDIyLmIOTN4TzXhe5/BqLPdKv3QoJfBS7L0U6v+0CXIfogmkZE7EAwnN/rOzFfa+wWNGRyNY7A/bhPMXBtDmqNkWsvgsW9+kBjXXCMDp7eSezgXN18J18cSez1ToXPGt7FuqPXMp9pDkRE3M91velZbUBYXDVpgrYxJgOc/MZkipPfmExx8huTKdWne08k2C9I6FJhYrbVckl0AjYqkkRErHa67V2hYkcPhDeS3eh4VFpZwW9eH0SyBYgxE3DtRUTMIU4S1C2IbDdbFfwm24XEKnAh1uCeOyx0u2dwLRXcX0REVWqcRKRNS3nzQ3ogkvbhfToA514XrmW71fMuF2hWjd49lMGCK64aQWxf13E41HN8Ul9JbP+1bjiHsuEdiKHTpYq4ERGLnV7PPbzLCxCfF/B++stvTKY4+Y3JFCe/MZni5DcmU6qfVI8leA8i2VWoq+q0o33TrkJj9yBo/W9xAX6iOiCUkLhH7sIOiB9rkOeoRJi2++oSSfCD0mgQv8iFOAeHX8Az6IEIOAGX5ArcgW2gawxEtjU8mAbXQVnDdisQtNabtPP2Ghb8FksV2UjQ7PfBSbiv72dvrAJiCYa8gxMVuYtryKs7LQe+CHb4XVZ637fwWJdQTkzPwF9+YzLFyW9Mpjj5jckUJ78xmVL94ULFgfNKhZdTEBvAXJYsukWwINYFNx/FyGdHohsJS/SLR9e4ADee+u6+gvoeViCypZYT075LcDAuILaCnoBbOF7LY4n5Stf7Yqeusyt4T2bwYNYQI3luDC7CGqyc0I4uWlvZbfW6YaZJ9KfQK3CiIuBhT12tw5HGqpYS44eQa+8Cci0i4hTKjuctAvRDhvDW+8tvTKY4+Y3JFCe/MZni5DcmU5z8xmRKtQarKwmne2D5PIC6/xuwlt4XPCZ7B2faK9SO2QcLa8sBBbLyEgVs14CCT/9QtB6T7g8m7NSwZmtQ7KfQPwGnK5GtGO5vDj0MIiIm8O/Ky65+J94VYEuGHgEbuJ4avjsH8PfREN67r8OK/n2g5wLnuWr0n4LHS12bk5W+s+O+PiuC3pE2aB1pyHoP/lEae2KPMea3OPmNyRQnvzGZ4uQ3JlOqz7vU7E9FGxJJyFrYJNoNI7gmn1hCvXuqjZhERTrvFn4HSSscgBj21TGVKtFaTHsPQfhcBY0g19g5CINfVHq8TUvd+AV4ZV8VWtt+DROS5tDAlZ5BD4TPexA++yACkvDVJpuRaEv7D6Dp6T0IzUvYbrkBC/E9jEnv6hoe1Br7xpoF7i28ezQBiiZcjSAt/eU3JlOc/MZkipPfmExx8huTKdWX4L5bgnC2AiFvBk0mb0BsSm7UGSwYkottA0IXue+oxp8m39DP4BimBz0CUSqCBcgJ1NrTGHFqCkpC3iJxGtJ1zCQ2g7HWz6qBxNquh0aGz+C50nXTM+2DeEV9CEDPwulRbc7LGp419VRY0WhxaIS5A1drQP19D1x/+zCK/fhYG96OluwO7N/sS+xL6B46g3eZeir4y29Mpjj5jckUJ78xmeLkNyZTqjsQpe5pggy5uSA2a1SsWOL0GYaEPHLu0ThuEgZLaFzZp7JhiA3AhXYEDRcjIibQ7HMG13i5VYFuAetD60DC6XQNE5Ia3e5ydSux0+5YYhERg1Ida7S29AxoRDuJcXMQ4hal7otNWWFt2hiCaDsqwJGHjtG0cukliGlLGJNNk5Cqnt5Lh1TOiOhO0tyzc/ikz0G89JffmExx8huTKU5+YzLFyW9MplSL9xD35iBAoWDXUuZLIlKqw49i1IePHF4H4Gz7pFT31Hd2fYkdtWhN9+Dyomk6d43O/JmDK3IFwtmy0WdA4t5yAwLiVi+cxNAIFhapDJqe9RrOQyW9XXLKAXXqdi19Hscg7j0rdCz2CfQzPNhBn0F4/oeNvrP7sDYrEJAvz0YSo4lJERGvOvo+nsKm5yA+30K3P3/5jckUJ78xmeLkNyZTnPzGZEo13am4cw+OswUIfqlltW2Qc28DQh6JTSQYjUoVRJ5UKuR9qxhK7AdrPd6nGxXiOi33dw3nprUgtyOJdiT4kWi3o9Hg0GeuW+r9YWlzC/SsKLZNLLfFfanXH5T+UmwfnHwREZ/Cs/7xSu/7h5U6IJ98PNVzP4Ly8juNXX2h5z2dqLh3utL35l3LiO43pa7ZRYfKxjVGblN/+Y3JFCe/MZni5DcmU5z8xmRKdb5RoYOEpdRhHKmDOCLY+UVCEB2THF3HpTr3SPD5XqK4d9QHNx70ZouIqEAHpDJRKt8lcQ/XgRyMIOTR2vSh19sexCK+RhktvRLwOSE3JomNXRDyqPx21NFncACxiIgPtnqeF1BW/eKnWhpd/9VPJdb58FOJ7X7xHxIr/v5fJXbx7/p+Xpe6YKcwNCUi4hzEvQkI8fcg7pGT119+YzLFyW9Mpjj5jckUJ78xmVJdLNXFRBRQ/kkloTW4y9pKR8mlR0JX6vVUEKOea1cgqPw6VFi6WKqINAWBJiLiFfSfu1+rGEMiJ60PiW4k+JFw1i+hHyEIZ6lltREs+NH+qWIxiXtD6B04BCGPJiXTII4I7q832anQuZ3r8+sM1R1afPgd3XdyLrHqSK9xr9JzVNt0RyzdYQ3f7x2sTxfeE3/5jckUJ78xmeLkNyZTnPzGZEpF7jIUoBIFP4qRuBPBYhXtT6WeJfxuzcE99ybUzXULItKva7iWWiWWBZRAR0S826obkHrhpU4IToXWK3VdaQ1bwSmvGiyLtGPSNQ7guQzh3anhvPPg5oovQ52bZV+FxYN/OZbY743/QWLVq19LbHd5JbHNJeQVDOMYbDR2sOU1LGGwTLHT2B4MBxmBju4vvzGZ4uQ3JlOc/MZkipPfmEzpfHbyY1EcyKW3Bz3S+hAjl11bXz8SjPZA1KCS3lXipNaaBEgYnkADPzbgNlxCuWQEi40LEPx4sm3aoAsiVfDrwbq2OS+pL+DX6c34EH7O+u6clDBMo6PiHHG5U2EvIuIGBqL0QUT8DIa2/BEMz/hBZyax8b6KvTRpd3an9/JmqWW+lyX3VqzhETwHQfvFdy4lNvrjI4n5y29Mpjj5jckUJ78xmeLkNyZTnPzGZEo1qnRiCCmxB6DE7nd0O6rdnoLiGsEjrKnZYx/UazoPNcwkaLt1orJPDTgj0htu0iW+TyNTmiBEa7MGG/e2Re1PnbBDsdR+BcQc/pGgOnR6R67BXh0RcbaaSIwmTb2DiT2v60OJ/WdHp+78cKpNYr8b2hB0r6vvTh9syT0YDR4RcQzP8Nt/cCGxwc/+XGL1n/6NxPzlNyZTnPzGZIqT35hMcfIbkykV1dr3QXghcW8f9l2S4Ac11REsnm07IDaBVZKgXzKqWadGiCRUkbDUNpEIa+jh3E1H12cVbBlOgWzJBIl4Vcu+ZH+m6543+lxp3DjZhRcFTJoBO/Q1NPUkZg0LfrONxrE/BIiSl4VaZ4cV5EatYvjBQoX0Rwtd7wn0MHjTMqJ7vtUcfPElCPZfvpLY5uf/LDF/+Y3JFCe/MZni5DcmU5z8xmRKxY0dU0Ukhdxzbc47cp0tA0ZYg9MOJ76AMzF1UgloUi2NTHltSAgkB9y6o46u1LHmdO7UfUnQbNt3VKqIRGuGfRbgmd6B6EbC4O1aBTbqLVFBrA3alu7vsFKX3iFsRyt2Bc/0856+n692Wrv/qtB9f7VTt2FEBOiw8fn0A4n9/t9qz4Fnu3+SmL/8xmSKk9+YTHHyG5MpTn5jMqUiN1+PRiCD2EROKSqNpfHObXEqtyT64LQawxjqY3AmklA5BaGRoHLZ/w9ITEudxJPqVmyDBF9qekkC1BJcmyQCLjYq+NGz38L7RO/dfqUuu4iIk1obcz6rNPYIGoXSO7+C65mAIH3bATEbXJJnWy39PVtPJRbB63NaaYnxL7t6f087aSKuMSYDnPzGZIqT35hMcfIbkynVHpQU0qjkPqg7JLxsQBD7OmITbUsTX8aFChgfFeqgerrV655D2TBZt9ZwL4uWe0ntcUcCFgl05OYjca8GEZCE1ALbCbbcS2IvRBIgyT1Hgh+eF9aG7pmmDx3XKnxFRHxW66Sa74aKgx9uYOw3fBr/u9R7Od2Bg5H6P5IwCGXRVAIdwSIwTZVawPNfQK9Af/mNyRQnvzGZ4uQ3JlOc/MZkSkUjrClGkCxBAkSbsESiVmoJ5whEyZOdbre/BWci3F6vgHWA4QnrljJY8iXiYBEUAdMEPyJ1dDadg64lgnsrlqQYAiTQkYs09f5I5Nor1bX5GJxuEREvQgXIHy30vj/uaRns1VJdf9d9PfcrWMdb6EdI600j7YcgmrZtSyPth+DGHCSWthtjMsDJb0ymOPmNyRQnvzGZUi0TS2gXILxQ+e4dCB3Ugy+CRSiKbbZ6jZOdOqNeggh4Xan4sQaRjFxRVNLZozrWYPGTpvySQMdTejX2Pk651EnAEewwS52+S2IhOQ7pOZPYy70aVYgbwrOPiDgA0fa4o70CD4+1tDauNNTbqeC3gvubtUymfgg5NKkXZUTEAMU9cDtCGfsRiOH+8huTKU5+YzLFyW9Mpjj5jcmUatKo+EFg+S4IHak93CIi1iDkUckrHZNEpJsKpqqCOLRHIhIIJz3smZfmTIuIWKCrChyHiQJbatkwxrYaI4EtImJTwnOB6yGxigQ/muaLbjcov+5UaetN4nNExAUM1PgCysGbt3qeKxDO3vX1eNO13t90owIiuRWp9yCVq0dEjOF6juG9fbTT9/splCz7y29Mpjj5jckUJ78xmeLkNyZTqvOVDgh4H7Gprf9YKiQsNQ2IgI0KS7cbFfyo/HNcaa+/JzDIgUqb2yYYV/A7Stt2QDCk8tYNCHSpz4Ackan9BNsgN98GxDQSdylGAuSuSBOVUezdah+9iIjP4ZhXtYrA+10Vyeah1/1Fc6fH22iMJhN3Cz3HPvQTbHMrjkGoPgTn3iGUsR9CDvnLb0ymOPmNyRQnvzGZ4uQ3JlOqyUp7lxGpgzdIvCpaegKW0DcvtZz0fQQxclqRW43uuA/bRfCgi9ThFwQJnyiGJop2JNi1PRcSJcmNuYbOhSTQ0TNNHUpCz4oEv2mL4Efxt4nfPCpFnzV6PBL3SHSlYSN9EPfaemiSO5SgN2JDeZl0NGPM7xxOfmMyxclvTKY4+Y3JFCe/MZlSLcAmmwqps/R70qGR2NFiQyXbZ6JqXsK56XiLRpuM3nT0Xw9Se6mhZBukSlNvglQ7Lt0LqeH0LwpZS3sl20hp9Db2boB3B/9dAaWZrodi9I6twS48b2lEm2pVT7UlrxuwKlNvgpZeCQ9Z7HQNr1r+udiCVTk6alWuYLpSr7Tab4z5DU5+YzLFyW9Mpjj5jcmUikSWVMsowVZcFmNIwMKJNmAPJRGJfspwO7oWuGdqPDkPnsSSai3G2vb36ItANlkS8qhR5HHLWOs+vBO3sBaXcas7g5hKNmJ676ihKD6Xr9EkltaR3jES8kgMp3eW6IMuTELz5UrX8LbgprrX8AxX1VjP3dHneuQR3caY3+LkNyZTnPzGZIqT35hMqQbQzHAF4sf7uNBIYIloEWOonv89moKS04pEQHLK0bW0iaHkOsOmmYluRbru1HUgh96g1Od8UqqAFBFxAq6xRaFNT3sg2l2sVcAidyCtN5Eqms5hak7b/rSOyY1QyWUJ79MC9Ed6n+43JJDy2sxrvcceOE6f1fpcezANyV9+YzLFyW9Mpjj5jckUJ78xmVJRU0FqFEhFhrstCSfvJ9ih2EECXWIDyNQYnTdVlPrqACq8FCQitZSePgSbWSa6FckpR+XOFIvgBpI1bHsEo6TnpQpY1PSSxK/UJrFEmxBL4jVNKuLrSRMLsclok3Y82rftOVP8DtZ2UcH9pRlijTE54OQ3JlOc/MZkipPfmEypSByistw6ccTzFvr1tQlL5HYjsZHcbt0yrQdcndgXjoQXnirDPfzomCRC3UNZJ7kDidQyWBRx4V5m0D8uImILQi49F9ofR2qDU47esVRxlhyMtA4RbYLf/13cI1KnTJFAntqDse08WJ4MM3voDfOX35hMcfIbkylOfmMyxclvTKZUNISiKlU8IZGFhDga5NDWw4+EFxKmBpWWmA4rdZf1QegisBQZRBISY/aKLh6T4nRMItX1R6LWsNR1oDJPGiBytpnieVKFLjomCZo0qIQEROo9SOLlXqlr3Saapjr86DtIoh3vm0ZqL8q2gR81idyJQ2RWdvgZY36Lk9+YTHHyG5MpTn5jMqWi3m6pwhkJPjToYgaxCB5iQOxDT7LDaigxEj8WIDbNt3o96GoDkYSEz4iIcaHrSO6rpkwr8yVXHDklSTij53Lb6CCIuw1Pg20TaFOg6yaRjESt1OEe5PojJ2cEO0HxuVDvSRL3IJQ6RZrur1dpro1qFXEjePAKvY/38PzfFRrzl9+YTHHyG5MpTn5jMsXJb0ymVORMOwTxatRRYYL6uq2gf9gNCGwREZfNXGJLKBOlazyA/nHEqpNWLkuQw68C0SYiog9iI/XCa0AcWu1gCAVMA04VWJOdd+DGjEgX/MidljqIhc6x7MD1wOMjF2iqSzKipYcjqLvNLq1nIt0fCZqjrr6zR12dqEvCXkRE3SI2P+Ryq+LutqAybWNMljj5jckUJ78xmeLkNyZTqiEIeSTuHXdUdBvv0n47JlCqGRGxD0LeHMSvLvxG9ROdTXeR5iIkEYjKSalcNiKimzjookel0YlCDpXGLkNjqf0I20pHUyHBj51yaROetxsoBwdnGtFWhoz9AxNLlun+yKVXlxojl96z/pHEPukeS2yv5R27AzH8GpybU4jdbGYS85ffmExx8huTKU5+YzLFyW9MplSPwCk3BMFhBOLeABxQ1OFs2fIbMw49zxjOvQ/b9UDUOgeH2LRQB9xil1ayvA9ORyrdjWBxj0pHN4nDIUgQI1ccCVB7ILCSO2zdIqZ9HbfcQ8g1SIXDOLE2cQoxrRcJexG8Zqm9I0kE7tf6/KnH5Ae9scQ+q08k9qIz0PO2TId+A9czh3f+bqcrPt2oCOgvvzGZ4uQ3JlOc/MZkipPfmExx8huTKdWHoUplD1T8HjgiSZWcw4juBmIRrJDTvwqPtzCSGY63BTvuBP7NILWXlF3qazCEfx4i+Ff0NlRp3sD/IanTgsiOSxbk41prxIc0Uahl+swCLNYEreOsUKV5Bv+4EDSRiNZhBdN5qK9BRMR8rXH6B4Ce/wCU/cOuNo59VKuy/2G1L7GPQuv0D+B9X7Tmi64F/YtD/wBRk1F/+Y3JFCe/MZni5DcmU5z8xmRKNQZxrw+xEjSINbkQIdZpaYTYh42PdypgPG5ARITj3UATRrIGb0EEpMacZD+mPgIREQuwxNI0HRKwaNIQjaEmxqWKSE9LFfwOoEfDsmWEON0LSVAkVN6CsLisVKCjHgbUW4KEuNlWezScb27hCiMuOxpfbHR/ElPHtVpvH9cHEntRQSz0HSM7/G1H1/Ad9GiIiLiBen5q/po6RtxffmMyxclvTKY4+Y3JFCe/MZlSrUCL65K6A9s1ECOpgWrvI1gA+WitJ//GTl1a11CTf1apaDNIbFJJbsUBiFKDlqale4lNM+nnlpp6LhMFRGq2+ogmLoGQumxxks1gTA5NGqJnPWxp1irbhV4PibO02jelXh+udbAbkNYxdTz4HjgqD0CwPYHkoPV6CT0VXjXabDOCm3UuQPycgduR+iz4y29Mpjj5jckUJ78xmeLkNyZTqpsOTFMBkYxkM3LZUdPKUYvD7zkYmb7fnUrsg2d3Ert+p+6rq6VORJmAmFaDOEQuRBIkT7b8ezkANWcJ556AYEQurykIQTSRiCBBi9hreS4FCFgLkKu4NBpESRAbR/DdqUF/vAdRks5BzskIFgJJ3COo5PkepibdwbO6AbFwDblxttUS6LMWt+J0oyPtSdCk2BKmIfnLb0ymOPmNyRQnvzGZ4uQ3JlOqaygJ3IB2UoM4RD3FBhD7gKyAEfF8pwLGk09U8Nt7ARNo9lUU+fjnKgLegdttnigYkYj30ZpFtyelCjerRoWus9CS19MaREkoTz4DwegO3HgbKP0McALugxAXwQIt92tMK/1dg2g3BTFtVUCJMLyfV+Bqu270XYqIWICzLXUiEY1En8B53kIZ8xruhUqlv9jcSOxyxYIfXQ/1I6Qx6TjtCc9ijPmdx8lvTKY4+Y3JFCe/MZlSnW5VwGgKGC4Arq8eObe24IpruKfYeKClh9WAy0wfAhpLjCsVRA4a3XAAgl8NbrXRVmPHHRWbIiLqElxecO7zWn9vrws9zz2W0FIvQ43RCpLY1Gspgy1aypb1mPpcr6H8ek6iMlzPCmILELmob13b0I5Fo8+LHHAk+NIocOopeBoTiV0WWpZL13iz1u2o/LbtelKh8ef+8huTKU5+YzLFyW9Mpjj5jcmUisoH+7WKeyT4UcnrCLS9um0a7BLKW1/D1OAJCDwTHYpwudF9p3VaeSs1KbyDn8b1Ts8REbFs9HrgVuJtASWhiY4zmrQ6gGJrEq/IoUclphERGygxJsHwZqdi2ulGy69vNiBqkZAHQhyJXCh8gqstgp1ttI4k5G3h27iG492FujubjV7PfKOC36pJm4gcEVEWej00bISgdfSX35hMcfIbkylOfmMyxclvTKZU5Dra1CpWUPlu2zCOh0xKFiXWjZbgnp/BBN0zFSsuoUfaL3TXeBN6f9QDjspb6f7a7ph63J2HCmJUjroGMa2mgSEgutKgi35ij7o2wY+u5xZKhyfQf46GSJDARpAolSoCkoMtIl0kG5SqzvZhAEkJ30uaVkzCYB8mL5PQ2HYvNESEph3TMQl/+Y3JFCe/MZni5DcmU5z8xmRKRcJSl1xj4OajctIF9J5btMhk70qN34PYMYcecGcg5L2B8uQllH/uUT87qBHuwm8jOeUiIlYg+txs9RpJJEsV/JpCFc09EK/I4UfPatnivLyHcSy3IOTNwaVHAzGGpV73oARxD6bvouCX6NCLiNiD53pYDSV2AmXsNRxzBv0RZ7A2BD0Dmqjb1mOQxD2K9UgYhHfZX35jMsXJb0ymOPmNyRQnvzGZUpEYQ0IHDV6grmkkh7U5vG7gmJehgsrZTkWyKxieQP3eyBWFghj066N7aZuAuwbBbw5C0LS5lxiJWqlurnVwifFDSGwikTKCe+7NQegiZxsKyOBM7MJ2RUWlyPou0r5tQiy5Ir8Ja/aNLbhQ4bV9DRN5L0pdG8ohcslOQOSkPogRERsQaGm9+xA7CBW5/eU3JlOc/MZkipPfmExx8huTKU5+YzIF7b2k9t7Q7wQIrCPYjjXliElHz3MBlth30BRy1ug/AGTx3IOR2ARNgVmDutr2zwUpsUtQyKlxZQP7ljA1hxTtEajZB7DvCht48pOZkhU4sa6+hn8phmCxHZPtFhTpJxAbw/0tW54LjZZ/vtb7/qSj71gD5xkU2oOihn8punDeJxuNzQq9v5fQRyAi4gbeJ/rniprtPoV/M/zlNyZTnPzGZIqT35hMcfIbkykVTVMh8esOBJqbQm2SQxAb2qyXMxCRLsC2ewuWWBLOqAkjiYAkctI9k7hHtfcRLNqhkAfXg0IlrDcJZ8c7Xe+PNno8ksNIqIqIuAUhliB7LwlQQ+if8LSjtvLvb/RefgTvw/4ejLqeQ/fWiNiAaPf0QMW9kxeQBxN9Ty5/pc/gTQViGiw4jXx/DJN9ejAxKyLidUnNQ/WYR1vd7tOVJ/YYY36Dk9+YTHHyG5MpTn5jMqU6X00lSLXkPXAi7cEEEtqutQYexDOaIHTfaF38FsQ0qncn0Y0GotC+BAlaERENjLWuYAoQUcAF9UE4pTptqhEfw7jqHohNy5bxzm+xl4B+J+ZwHhJJ9+C6nzd6jj+pbnS7v4CJS4/2JbZ5fS2xiIgGxrt3X+j+xTe/pdv910uJ9X+l97yCb+g99KoYgTD4FFx/JAxGRJzAM1jCeY4acBdC9w1/+Y3JFCe/MZni5DcmU5z8xmRKdbtS9xy64kAcqktw8yWOB47gklAS6DYw7pig0caLSp2AIyjz7aGYpvfSA4GlDRLJaHIKQc6tBtbrolBB612loutRo/u2+fjaBFq9Hipj1qNWcLxPoKz2+Z9pmXb3r/9ST/zkuYTKqzd8kWsog/34B7pdVyf2RPydRHr/qAL5PTwrGs++gnyZkrja8oqRuEdvE2jgf5iyAAAAHUlEQVSIQRqiv/zGZIqT35hMcfIbkylOfmMy5X8AqLO4nz1lhEQAAAAASUVORK5CYII=" y="-18719.11687"/>
</g>
<g id="matplotlib.axis_1041">
<g id="xtick_1561"/>
<g id="xtick_1562"/>
<g id="xtick_1563"/>
</g>
<g id="matplotlib.axis_1042">
<g id="ytick_2601"/>
<g id="ytick_2602"/>
<g id="ytick_2603"/>
<g id="ytick_2604"/>
<g id="ytick_2605"/>
<g id="text_131">
<!-- 715 1849-110319 -->
<g style="fill:#262626;" transform="translate(15.789375 18827.405307)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-55"/>
<use x="55.615234" xlink:href="#ArialMT-49"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-52"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="505.896484" xlink:href="#ArialMT-49"/>
<use x="561.511719" xlink:href="#ArialMT-48"/>
<use x="617.126953" xlink:href="#ArialMT-51"/>
<use x="672.742188" xlink:href="#ArialMT-49"/>
<use x="728.357422" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_522">
<g id="patch_523">
<path d="M 164.424375 18841.51687
L 286.714375 18841.51687
L 286.714375 18719.22687
L 164.424375 18719.22687
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p50627f193d)">
<image height="122.4" id="imagea1a9c73f52" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAH7VJREFUeJztnVtvHNl1hXdXVV/ZbJKiqJE8mfHA1zw4HvstQQID+ZX5K0GeYsAJgiBxMHbiscdGZjQaSRSHFNVssm/VVZ0HI37g+so4goM86KzvcaOKdepU7S5gce29ex+/91f7uMekGN4PxaToS2zYqyRGFNHD+KwYSOx7MZHYj9etxM6KjcSexUhi/zrUc5+2K1zPfca9UmL9KPDYbeh17vZ1UqwH+/O40H343l7v73Gj516W8kjjk95SYheNxiIiHpV67R/tD/TaO73OTaHruSv0uCc7ve73405ik5Hu15d3hxL72Yify3/tbyT29U6vU/R03Q9LvecHPX1nS3h+/Z6uZwTvzgbem2t4RyIi1nvdtAG8o7TGs73mKu+YMeadx8lvTKY4+Y3JFCe/MZlS7faNBLcgLFR7/Z0goaoPAkQXTagQdN3T9fx2qGLFy1ZFqSsQlhZwfwRJkkP4bRyAkBMRAZeODZ0fICLC3+zDipY9vcg5bPd1T0UkWB4KexEs7v0ERLLDCYiuCxXjvuirWEwrWjZ63O2dxp729X24Cl1LRMQGnj+JeyU8q2av+7iGvR3gc1aGe71uAc/+ruObXEOcxEZaz3GrMX/5jckUJ78xmeLkNyZTnPzGZErV7lV42YMY00KMjiNIYImIqEFQuYqtxFYgApaV/s0N/L0FuKW2oX9vCELcATgYH7UsaNZwi/1Cf1vnIJySa3AEwukGntW6oHvW+yMR6MNQJ2dExN/U6vz73l9fS6yYgHj5b3rtxetTidXwTpBAegv7QA7GebArbpso+JYgvNE7T+9sBfdCYvEBxOCRxgaE3a710LtzBO/Yo0bP9ZffmExx8huTKU5+YzLFyW9MplTkyCO3E5XlksOPpT2GShRv9yr4kShJIiKthxyMKtlEVIWWy5Jw8oMNnc0CVgvOxBquTi6tCVybjlsmirPHPXXK/XAtoYiI+PZfXEps8PGHeiA47R7MP5fYw39RMW4OJaYlCWywrys4rkvYI5cevcu0t3Qc7W2V+PxOoPwaTH+xKTpEZXh3hiBUzsDNd9iA0xGvYox553HyG5MpTn5jMsXJb0ymVP0ChBcQEUhMo5JcEl66xJgNCH53rZZm7lo9vwdCUFevwPtUIHKOwc3Xh2t8o+K+d9tG9+wX0FOwhj0jsYliQ4jtSTGCe3m/1dh3BtrfLiJi+AE4/0Dci0r3sTpRYfFkpMpiudFrDApwB8K66YtF72cEv8t0/gj2jPrjUfk1uSdHsJ7DNs0R+wb6IHZdm94TkqTX8Df95TcmU5z8xmSKk9+YTHHyG5Mp1QQGZxBUvku9/shRRbGIiE2rzq9Vqw6/GgS/P4UBiJxj2IcFlMve7KgfXcRrcNCdQ5npHexZAWITianknxwkuss+qPXvHZ3x8JL9Gp7rl6+Sjlv+TmPrWu9vWECfyBLcj1CKSmWsw47ekSTakUh2AENpRtRvkfYbrjFsScQlN6bS9bavQTgnkyZUkkfT1zX6y29Mpjj5jckUJ78xmeLkNyZTnPzGZEo1BpWT1Hm07baq2JKCX79FrTUp+zVch85NbUZK9dJ9iH0OI5p/OtJYRMRlT9f4tLmVGCrNoPaTCky/1KTsz+DkU3ouW1bIb34Dz3+tz+XmZiyx860261yCLfUBNFYdw3tC//PoQ7BrkhL9F6DC5pr6DFDFT/zvCq2GbLs0vvzLjulDz1udmkT9KobwPh3Af6P85TcmU5z8xmSKk9+YTHHyG5Mp1RiEAJpoQ5NKeKKJnkuiRES6QEfiHtX4p4qA20bFuT0c9ymIO+cVC37Uh4BqzN+rdIT1AQhLp9CE8QQso1OoET+CZo1jECRXK7YqL2611v661thrsElvSl3jGNaY+tWhynay2NKEnIj0xpzUCJOEPLo2MYdR3s8rjb3Yq0H3af0G/+brWgVkyi3qYTAEYd9ffmMyxclvTKY4+Y3JFCe/MZlScTNEpWvMdspxPWoyGRHs34L10N+k9cCfIyGPhMrVTvsIXOznErsqFrhGus7pUMU9ahT5ZK9izDdh4vRDcOmRkDco0/of1Dt2+DXwvBoSzmC/Z62KWg96uu4HU+0lUEI9f3Oj15216iwc4JscQT0ze/D8UydNbeDcNYh7C+jbcA2i8Nc7de29gVhExLLR81G8piaxiY1MjTEZ4OQ3JlOc/MZkipPfmEypqCkgufTIKUciAo33rjtbEirkiqPr0M8Wn8vNQ+9TQUkvNfqkMuYIdhzSnlGJ6QyceyTunQ5UJBsNdT0t/L3lWkXFux1M4emABD+SC4+haek3znQy0PFH6mzr9aFc9qkKsTdf6b08LVm8pK9b6mQnEvLW4CIlcW8O4t4CYmtoWNtF6robEF0bKBL3l9+YTHHyG5MpTn5jMsXJb0ymVG8aFZGqxBHdJO6hk6jDHbhLLOmlv0ljtumnjK49LnU6zzGU6h4VOmL7GvYrIuLVVssw6dpLEIcuYTLQJYiNg23adKUWyoFvGj33DiU7drtt4V4G8PwegnPv9GO95/6PvqvXnU71Gi/OJfbxP+j0oPNn70ssIuJZpeIgTr4BIY/exVsaKw/9CFdw3A6uQU5VFLgjog/vBLlViRau7S+/MZni5DcmU5z8xmSKk9+YTKnIYTQptV/biEYdgzBBTqI1uNXeBhIbyX2XOnr7YaXC0geFCn5juOfXIAJGRPTh2AWIg/NWnW2/K3Xdt0N9Bo9bjT1odD1DEOLqisp0/zQe7fQvzB7oPfd/+JHEir/8W4n1Th5rbH4hsZNH/ySxn/zdb3GNv7h7ILHPWnUcUt9K6v+3AbFwkziqngTgAQwL6cFwj9+vB3oKgjN11dOcJmeqv/zGZIqT35hMcfIbkylOfmMyBWs6qXQQHXXADnrUbUCIi2BRJLWkdwRDCEbg3JuBQHcKMRqcQXSVVc4KFeNI4KEJsWsQjNTDFvGG9qGv6z7Ya2yc3KUugoqW6Qn2wSFIZs7eozOJFe//ucamJxJrK93X5om6+Y7+7Jewwojhr3VB5GqlZzWlZwr7mPrO0rkkFI+Ch6m00DRxC+8O5Sr1//OX35hMcfIbkylOfmMyxclvTKZU1K8vddIuCR1Ed4miChMkIpGAQVNHD0CgmcBx5NxagzORJhPXcFxERB/u8ainwiI5JQeJv8G0xltwbs1hLX24RtNRDkplx7RnLZRB//iVxh7MdfjJ/uqZxHYvP9PjPv25xOqf/ofEfv3JI4lFRLyBHodYNg7v3WFPBWR6frRfVNJL7lfKIXpWEREFOP/oHaW/SfnrL78xmeLkNyZTnPzGZIqT35hMqRY7dTuROLAptCyXeorRtFpy8kVwiWJqTzNyRpHoRuLHGso3STghOayrZxpN361osi3ESHijPnNL6BW3heNI0CLo3IiI2wYGasBz2fT1/G82xxJ7/+9/JbHR1bXEmq9eS+zVP+tz/vRaxb1Ph/wdW4a+31TmTc/vFAS/KZVug1h4CWuhXn8kpA463Kb0fpfwLlMPTsJffmMyxclvTKY4+Y3JFCe/MZlSXa0XEqReeEMYfkAuOzq3a2gHTvnda4wErNRJwmRCJHEPp9BizzX+vZyA6EP3TRNdX0NfPxL3ltBvkcRZElhJiKVy0IiIVaPXofNpMvE/jqDU+pMPJPbBz/UaF4WW/n4Bk3uvR3p/qx6Ll/29nk/l1yS8kcA2gPdz0APHIFyX3mNadZdg28AzwAEk0DPTPfyMMX/AyW9Mpjj5jckUJ78xmeLkNyZTqlWtjf3WoUpsVUNNPfwHYNKHmnqYABQR+NNDNtKg6Seo2KsaSr9uVJM9ArV+BGrvsOP3klTlJdRvU+03jf2maT+o4iePaAa1HxTgrusQ9B+X61bfp08G+vy/2Kt19hb2a9HTNdK9dNXA09SlQ2iQSar5Hf03BF7PJfW/gHtJbVi76Zil1EBr1RuwYpM922q/MeYPOPmNyRQnvzGZ4uQ3JlNwlA6JSGTlpNEu1JSzARtwRMSop3Gq0ycRkOriad0kqBzDdR/udStmbfpv4xIsngsQbm73KqaSuEcTVrDZI+w3N1ZNEwa7ICv3YTWW2Axq5ckSmzo/iMQ9upOuZqRo+QZoRPcrsMlSrfwOhDwa2022crKA09+LYNsuvSfcrJNyyBiTJU5+YzLFyW9Mpjj5jcmUalSpQNO0aU4yEuJIYOmq5ycRaQrjs6nuP3m8N8RmMML6UaPXOGz1XlYwNSUi4rrUY1+DuEfjoW936sgi0WYMI8hpD2m/yOGV6uSLYGGRBFtySpLcOwRHZA3vyRru5Rb2ZtXRjHQLTjuapnMHvRIoxn0k0vaR8oWmUVHvhIiIDdXpw71wDtLIcGNMljj5jckUJ78xmeLkNyZTqpPRVIIkBJEISEIHCQvU1DMiYlaqQ+yEBD/4jaIGl+TyGtJkn0S30wYEmq9B2IuI+CrUafVydyuxN/WdxGoQ40i0o0kzR+VEYjTxZVOkXSOChSUUEak8ea/70Id9PIJ3ogci4I6mGYEb7wbEuQiekkPrJiGP9gFFN3h+JLrRHr5Nw1vMy8Qyb8xVvIox5p3HyW9Mpjj5jckUJ78xmVI9Gh5JsMthdB8UTqD0t6uHH01OOelpjH6hSBKhvmkk7lHnuisQ8pYgnLwAYS8i4mlzI7GLeq5/E0owCRp/TiW075UHEpvCuGmaFNQl+M13S4nRs6ZecSSIXYALcQSxMZZ4g9gL15iDc7JrjanORjqOxNlU9yQ6VcG1OSq5BD4VXDeW+RpjssTJb0ymOPmNyRQnvzGZUp1VhxLkccXqGiO2HaWVxAGVhHaIUPcZ0khsWDeV+S5gnPMViCRUknvRqEMvIuLrWgU/KtXdNiC8FVBumdi3kASxAxD8aB+WsP8REUsQG2ndJO7dNCoWkthEojIJYiR80t5sGl1LRMRqB+PGQcitoGSZIKdrqvOO3HxDEPeozDeC94dKv8lduANXpL/8xmSKk9+YTHHyG5MpTn5jMqU6hRJa6sM2BRFiQsMYQIy5A4EtIqIG4QUHMoCAQeW7dNy2p8ILTWR9A9NlL0HcW+zYSbZquKT0PiRWkfhFrjFyq12CU47uucGJwSySkViFIhR8Oujcda3XWYMQR+5QgvaQhLiIjmEzAIuu/7ffxgaeS6rwGcEl3am9LAl/+Y3JFCe/MZni5DcmU5z8xmRKdQYltDMQ8o5gYu0MtBTyJt2AmBIRcVGoWDHvqdC1AnfSHAQ6KumtYWQE9uvD8uT0QRddIs199jDNl4QuEvyo1Jbcc1cgApKrjRx6ESwYHVXaK/AIxGISbC/72svwYqvlzjdbvb/1Dnrmgduwa3BGann6Hga0FPCs6DlXJfSJBMcguQhTJ1BHRAzAuUmH0t8k/OU3JlOc/MZkipPfmExx8huTKdVDmFh70qhgcAyCyLQhd5EyLPk3Zg3CxAJiNIF13qb1Zqvg2sfQO3AAok1qiWkE9+YjQY1KMAlyrG2CBbqU61KZZ5d4eVDp/pC493FxLLEzEIYvBton8rO+nvvVUEXAq+1CYtcbFRBvNioWRrDQSZDISQLdQV/3ZtrX3oo0UblrGIdc9y1Keqn8nmhAXPeX35hMcfIbkylOfmMyxclvTKZUs1YFgxmIe4cg7k1h/AX9muwbFsmGILJRqS6Vnq5R1AIBC7STY+hdNwPh8wyGjbzoqZATEfEitIcfCW/kOCMhiMSdUeKABxKvSGgkV1vX+RPYs8cg7n1rq+/Eh3AvH1YziV30tZ/kxUD38DejNxL7xeJLiUV0C4H3IXFvAuLe6VDX+GRwIjGaNk3i4w04VesuFylNl6Z3B7KQenD6y29Mpjj5jckUJ78xmeLkNyZTnPzGZEpF2c8xUKnhuBJqoNsOC+IKjp2Dsk9qP6nXFLtttVHkrtDrnkAPA7I+t3BuRMR1oXZjooV9pPrrg0rV4lNQww+oqSNcg5p/LoKbkRJr6HdA/Rhmlf5n52Snz+U70NTzB3DcGp7Bz0YPJXY5VstvRMeUG+ifQGr/Idh2Hw/UlvztUv9z8WHwWPr7fF7qc3ne8lQongxETXDhHaP/FKQs0Bjz7uHkNyZTnPzGZIqT35hMqW5BdItSxYEWfLIt1P0XIEBcoawY8bJQ0ecKhKkliHbU5JBq1t/sVDx5BiLZDOr0z0AErDrES7Jepjb1pOOmIPg9gXHqx2A3poanF3DdrgaeJEqSDfW/CxUMG1j3d+HdOYbGnI+OVLTb7fTc063aaR9WU4lFRIQuB4VhEsSmpZ78oFAR8L3QZ/ARbO0Y7NSbIVjIgy3JJLqmjgene/aX35hMcfIbkylOfmMyxclvTKZU54UKAeO9ih9vYOrOFOrxiZdwjYiI560KGzcg+KFAA664EUyqoYk2r3Zae99WKsacgbiz6Rj5vE0UkQhynJFoQyLniERF0HBp2gu52rrWcweC30UDDSVBLD4qdR/fByFvD+/dzVIFsZcDeAYdfVFncG16LiS6jmHPjqCvQT/RPTeCZ9oHMZTepQh2aVJu0LtDU6H85TcmU5z8xmSKk9+YTHHyG5Mp1fleRQR0q+FEE43VoDa9huk6ERGXjbrv1o26+UjcG4K4hxN2YGw3CSKXO3WXXfdUkOwa+bwCFyJO8QFnG62HJtXQPTfQCHPQMfHlPl2TYZpemkPsDu55Aa7N25465dbw3Znf6nH/Weho8F/ttYHndcOuOLrHCTg8RyDuUdNSEgtv4R17Bq7Wq1Kv8SL0HblpuNR6BbmRKvixgGyMyRInvzGZ4uQ3JlOc/MZkSnXZIZTch/rCbVotMdxC2eEahKGIiC2cT4xBoBmCQDMGQYzKfMlBtaapQCCw3IGI13XscqfHbhu9Z1pj6qSZdV+ve1SpSEYiIE1xiYioYRITPVeKkaMShkJFCyLueaOC37+PdA+fba4lNt/xfpFIui91v8mZSHtG5dIvIHZO47gh9LxRofkOnHwRnC80pcqCnzHmj+LkNyZTnPzGZIqT35hMqd50uInuU4PYQGOyqS8clYh20YdeepNEMWYMjqw99Cik0dQ19OsjZyEJJxERm0bvm8Q92gtyjVEfvfVOxb05uBAbcJwdQD86KhGO4HtMFWc3IALe9fSeL2G0+DmUVX/WzCV2XasztKsfIe03DbWg/aYnveqlOTRJICcxdLHT/KPy24i3WTfEaDQ8XsUY887j5DcmU5z8xmSKk9+YTKm6hJL7kOCTKu6RABHBglMBIhsdlzoQo6Z+ZhAjMYWuMQKhKoL3goQbFF7gnunaqQLkGsRHOq6rxyCViXaJUPchAflpoX341jDc43yv577cqpuP3JRdQiyJnwQ9F3LPFfBc6N2h9VA5OImA/1/4y29Mpjj5jckUJ78xmeLkNyZTKnQNgTBBx5FgRIMguoQlEroG4PAj1lTeCG4+Kt+lUlQSJYfgGBxWLPhR2fG8VPfdba3lmuSepD2jGAt+KohtoK62y+FHkNBF7wmVo36xv5LYV+DQpHPnte4hOSfp/Yxg4ZQEUXr+JHymCs2pg0FQ4KZy4IjowVCTVFhIN8ZkiZPfmExx8huTKU5+YzKl4r5gaYIfDskAwa9rOAQJTuRioxiJduTmIgcViWTUz24C/d9m4FaLiCjhd/S6Usfaeaklqq+32setThS13qZc+j5d4hWJtqlfCXqfqJchPRe6F3SMdgxOYdIcfiQipk5KpveT3vkpuBpTBe6u9ZDOiUKuBT9jzP/i5DcmU5z8xmSKk9+YTKludzwg4D4kIgyhvJWEDnK/RXSUrSaW+ZLARpAISBIZObxoLWMYFhIRMQ2Nk562LKHXX6Vi06qnLj0qCaV1N22ayEXCXkT6BGQSILcg0JGjjlyNqUJe16RkoqFj4blguTTsI7076FStqBelisU0MXjR4byksmqaqEzvPJbP41WMMe88Tn5jMsXJb0ymOPmNyRQnvzGZUt1tVe0n5ZPUXlKa38auOADlnCbxpI6XJvvjLdRAN03aCGPqBXAHtuKIiAZ6CazgWFr3cXUgscNqjNe5T2pTSPxvDaj6EfwMaX+WMK6cFPuyoP8U8H8a5Dj4e7SW1AajERE9sq9DjPIgtQcFjUl/WOpzHsL7UHao/anjuFP/K+QvvzGZ4uQ3JlOc/MZkipPfmEypqI6ZYNEmrca/q56fhJJRTy2QM7BA9uF3aw2joGuwaG56es/UH2C9V1vqTcu/l1qRz2OaaX8eVlOJkY14RMIn7AOtEJutdk3sgXUvYC+uCxWLrwttuEnPmSYcpYpXqT0oIrgfANlfSxjRXhW6P5NK38/3BscS+7B/JLHTnr7Hu0T7cUTEstA9WxVqAyfrNPcmMMZkiZPfmExx8huTKU5+YzIlfWJPm3Yc1uN3CEvkdjsqtMnhCNxgQyqWB+1kBMLZlpxt2BuRJgClCaQRLLJQbwMS9x6C8PkAegYcglDVh/2u4V7qjgEwS9iMIQi+qaPFb2G/yR24BhEQxT1ylpbpzlKCBO1Rqc/q/eEDiX2/OpHYt/f6/EYwNemy0L2e93QfuqAcRAckCPv+8huTKU5+YzLFyW9Mpjj5jckUVEm6RgTfJ9V9tYKR0RERNzudaEOlkDUIUH0o1aVfMnLFNTB6m05Gx1nHKOgdHJs69plKhzfQmJHacqbKXCTurTum2VB5MkHuQhJYd+S8LNJGp3ft9326pg9Rk1l6v+m4k76W4D4s9f18EioMPm5ADIV8WcJa6L2JiNiAyxLHsUPDVHLy+stvTKY4+Y3JFCe/MZni5DcmU6o+OKOwBxjEUoXBrjHSJFbMd1oSOgGBroFR2dT7jGLUE5DKb7eR7uYjwYkcayTmbGEODJXQkquxAIGNXJZ3JLolimkRETX1jyPXIIiXdC4Jn9SHjwRkEmK7Bb+0kfEjEPwOS+2jOIV3kd6xDaRGC/myBGF3S6O4g/cCYyDu0d76y29Mpjj5jckUJ78xmeLkNyZTKupJRsMBkscnv4WIRGLFdX0nMRJomkqvcwg90spEUZLAfoRv8XtZQg84Eslob3cgBN0mCpAkKq47RCSCSoLpbHI1kltx1aqwS65Peh+oHLyEnoBdA0gOYCw2vU/UZ3AK5ddD6h0Ju/O81HXfwjN9tdfS5ptWYxEsdBL0/Cmn/eU3JlOc/MZkipPfmExx8huTKdW0rz3zsIcfiAgkQFCsy+FH0DCHRaOlvyTQ9KEPWwm/byRK4WRbEAupZDUiYgLxDZXqgpsvtRciOb8WMICErkv33O9wxdE9kouNpF16T8jNRzGegKuiG4pzpb7HEREziA+gJySJu4fg5qMScep5uIDy5K8bHXJy1aij9Q6Oi/jTBp2gQxevYox553HyG5MpTn5jMsXJb0ymVGMYTEBiE0FiA7m0ahClus5PnfJLQh6W5UJpLJWYklA1DhV8DjoEvwfgLgSDXyxB6FqD84v6FpLARveyBrFpA7EahK8Ifv4kftFerOG4Pgh0Zce0YzkO3gca9kKxCBYvqSx3AntB90dP/xae6Zu9OhgvG3Wvvq51vjOVuv8+ru/yZgciIEymJvzlNyZTnPzGZIqT35hMcfIbkykVlUKSmEZQ6SAJNF29/kjwI3GPJtuOSESi6bSJU0zJ7Ua9/kgYiog4gmm5U4iRZLSBIRlb2NsNxQrooxdaxrqDfViB27CLw0TXXwPrWYHouikgBg42EmKpRJgcmhFcdhyVDuOYwLMmcY+k6y2Is+SypDW+zZAbEveoN19qWb2//MZkipPfmExx8huTKU5+YzKlGoLbqeoo9bwPiSl7EHy6BAgqMySnFpVwUi89FBbh0qkuwgFco6sMdtjqtU9Bg5o1umeD5P6IygiixyVNc9X7+y1MRI6IeA79ETeJZd4kDC4LLautS+hR2NNS1mWj/exIJFuDqBjRJe7qXswqKB3umGJ8HzoK32PYm36hx6U6bLug88lt6i+/MZni5DcmU5z8xmSKk9+YTHHyG5Mp1QTsvaQW4qQZ0p8h1KVeknJegfpJdmOa5EKg3ZhsyaiQkl2YFWCy6AbVxYPF87hUO2e/1OOGA409eKI14uOP9J53V6qQT395IrGIiGE9ldjLisZ+67mHe1CvQe2nhqevW1XcL3t6fzcwxr1rmg39p2gM7zxNKerDe0eWX3pPKF/uwKa+oLVADkRE1NCglnLQDTyNMX8UJ78xmeLkNyZTnPzGZEo1BOEFG2FCrTXVVZP1soseCCWpvQRojakiYOrfW0HTy67eBEMQFmclxMBmO4JYD9Yz7et+jx7rWqpvnUmsPNOpR4+vb/TkiJh/rsLUugej3EGXGsMzeAQiYAPNUc+hmSzZZOk5b+FZRUTMyrHGoNnqmHo3QD+GSeLkIhoNv4AeBnR/JHr/sfh9qIEnTAz3l9+YXHHyG5MpTn5jMsXJb0ymQOV2xG2rNdSLnQpGXSKLXKRjmgpBjqUGKqapGSJJcVRzTuOqcfoQrLtFJ1/ECNxXV3D+qILf250KUMcNNATdqeBXTFWwLU7VubefQtPKP2PB7/Sl1tVfbHWNKygSH8L2nO7SehicVHovdV97DjTQC4CahEZETAsVKqcgcg/hO0ji5Qz6NvThnttSn/05iXuJsQh2KxLkqKU88JffmExx8huTKU5+YzLFyW9MplQXu4UEUdwD5x653Uis2HeIZKmQGLeDsdbs/FJx7w6aQpLQOIJyy3HHiO4azl/CGucgklUoAup1zmpwAg5AHDo81OMmug/lI3W/RURMDlRYHK/1Xobg3Ju0ug8PQYybVhqrdlr6+wpEwDmIeANYSwSXDo9oxPc+TbycQOXwEMTLW3jOVMJOJeddwh6JdnR+Xeiz3sFkH3/5jckUJ78xmeLkNyZTnPzGZMr/AAlFvY7LrxMDAAAAAElFTkSuQmCC" y="-18719.11687"/>
</g>
<g id="matplotlib.axis_1043">
<g id="xtick_1564"/>
<g id="xtick_1565"/>
<g id="xtick_1566"/>
</g>
<g id="matplotlib.axis_1044">
<g id="ytick_2606"/>
<g id="ytick_2607"/>
<g id="ytick_2608"/>
<g id="ytick_2609"/>
<g id="ytick_2610"/>
</g>
</g>
<g id="axes_523">
<g id="patch_524">
<path d="M 299.674375 18844.018633
L 421.964375 18844.018633
L 421.964375 18716.725106
L 299.674375 18716.725106
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1045">
<g id="xtick_1567"/>
<g id="xtick_1568"/>
<g id="xtick_1569"/>
</g>
<g id="matplotlib.axis_1046">
<g id="ytick_2611"/>
<g id="ytick_2612"/>
<g id="ytick_2613"/>
<g id="ytick_2614"/>
<g id="ytick_2615"/>
</g>
</g>
<g id="axes_524">
<g id="patch_525">
<path d="M 434.924375 18844.018633
L 557.214375 18844.018633
L 557.214375 18716.725106
L 434.924375 18716.725106
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1047">
<g id="xtick_1570"/>
<g id="xtick_1571"/>
<g id="xtick_1572"/>
</g>
<g id="matplotlib.axis_1048">
<g id="ytick_2616"/>
<g id="ytick_2617"/>
<g id="ytick_2618"/>
<g id="ytick_2619"/>
<g id="ytick_2620"/>
</g>
</g>
<g id="axes_525">
<g id="patch_526">
<path d="M 29.174375 18987.938057
L 151.464375 18987.938057
L 151.464375 18860.64453
L 29.174375 18860.64453
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1049">
<g id="xtick_1573"/>
<g id="xtick_1574"/>
<g id="xtick_1575"/>
</g>
<g id="matplotlib.axis_1050">
<g id="ytick_2621"/>
<g id="ytick_2622"/>
<g id="ytick_2623"/>
<g id="ytick_2624"/>
<g id="ytick_2625"/>
<g id="text_132">
<!-- 724 1849-280219 -->
<g style="fill:#262626;" transform="translate(15.789375 18971.331294)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-55"/>
<use x="55.615234" xlink:href="#ArialMT-50"/>
<use x="111.230469" xlink:href="#ArialMT-52"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-52"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-56"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-50"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_526">
<g id="patch_527">
<path d="M 164.424375 18985.436294
L 286.714375 18985.436294
L 286.714375 18863.146294
L 164.424375 18863.146294
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pf8e97acd7c)">
<image height="122.4" id="imagead041f9ee5" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmPJNl1pa8NPnvMUZmRUw1JUiAFgaQkqFsCugFBgABttNDv1FLoNXvZ2rQkcqGiWCKZxZwzInye3cy1KGmT5zPAS9zVO9/yhrnZ82d23YAT596b5eWjQ3zEF2c3H4fij/pPJPZZ3pdY95BLbJPJJSIiYn2oJDaLvcTu6rXE5vVGYq2skNgwa8NxusblQa87qpYSOxz4u5wVPYldQawfusaazpeVEvtB1ZLYs63u4RnsYTvT4+rI4MoR44Ne56u2rudlode5P+wkNoO9XUOM7suDrCuxh6HrO4XnLiKiCr1fd5nu+H3ourvwPH1a67W/2Or5zuH7LeHef93W2F3OzxjRg0MHtd7XDhzHO2aM+c7j5DcmUZz8xiSKk9+YRFEVJyJ2tYoVi3orsWXW0Q+DhrQD0SUiYgtSFwk0BZz0NFch6DRXce8cxKEi0/NNQaCpDrq+FQhaESw20roziOknmSUIp5NCf7+zSm9r/6DXLRvuC0EPSgbnpO88APHyNNP7cg336nmlu3OzU/GyBSJnRMQ0h91t6Z5Vua6xDSLiKaizXXhOaG9bEOvC+Tqsw6IwTPf1pNbr9CHmN78xieLkNyZRnPzGJIqT35hEKVuFCh0ZCGIbEMTIjQe6QiNNQuDHnICQdwnOvcfgTDsFt5PKRRGvQRha5iAikeoS7E7LGxx08lk4jmLEFu7VOgdxr6b10U6wMHVWaewKvnMJQt4OhMo+iGmf7jX2/b06OS97K4nlDa648VKF4e1eY3Wp978LYtrVXh+ALjwU9JjQbnfAMTqE6zZB9+Wi0iv14ep+8xuTKE5+YxLFyW9Mojj5jUmUst9Sl14BQs4Oym8XtbrdchKbGsQrinbB73YNItIPdypUPtmrQJeDeHULIucI1k0iHjn5IiLasO5jZZscRDsSxEiAaoNgdGxFaNMvfx/Kfx+BsNQCgfUWhDNyJlLZ6WO4f9cDLasenqoI2MR+r+sZbPWZvwBB9BS+8wnkwRZ2cp5Tabt+Z7pVJOJFRPRATT+D9Qxzzct+G3IVr2KM+c7j5DcmUZz8xiSKk9+YRClJ3COovHUHPqY9HNeGks4ILv/sUh+3WkWbZ3sVMK5KFYKmexWlxiDuvQ8tWZ5CGXPVYPEjcY+EzgNIPG34DSYB6gKEIBKBji0RbqIDzsY+qYhQ3byDPoN1QSKwUsDe1OTQrKAkd8fP8XKrVyJXZAFfj9YzA8H3NZQI3+b0nOj5ruE+P9vxM/ZJ6PM97EDvwS7E+hb8jDH/iZPfmERx8huTKE5+YxKlrMEhRuLeHpxEdBw5/JrKU2koQgeO3cLH76Hn2gZKQt+D4+zfSxW0XsGAjnGlpaMduG4Ef2/6fiTuPan1nJ+C6DOEe0CDN3YQ2+Nx/Nt/gGMr0KDI2bamEmNw+JHb7R04L2M1kNBgrQ699YFlzg+5CpB35XHeyx2IzxMQPr/OVRi+P2iM7n2R62CXzxsGw5x09Zz9gcZabehx2HVJrzHmP3HyG5MoTn5jEsXJb0yiOPmNSZSSFPtjY2RVJdoNFuJLUGgHULNOs1h+oyJu1HCdcaafflmrij+Fkd9k5SVLckTEAAyr1FD0U7DEPof1XA41tgWr6nijyvcW1rIDdT1vaBS5gIk/azANvy1hPSC6r+AytLfrFvwHoNQ9pD4C24Yx8PSfohzUdPqP1AaU/XfwPH2AZ2cJk52oEW0NOfRtJinVFfwXZ6s34QA2ab/5jUkUJ78xieLkNyZRnPzGJEpJzSMJEiZonDZNqTk7sCX2h6DGPDusJTYDgecXHRU1fpupyDIG4WUBMeprcAIjyB8UajeNiPjeQY/9o42KWs8HU4ldP5tLrBzq3s5fqWA0f6t7Q9ZZst0G1JJHRNQgBI5hFPgdiHvUrJOeE5rWNM1gJDpMmllBg9EmiWxwZENY0I9jBteh52kN06woD6g5bQ/2muzZERGjtU4aCohllJckfOJVjDHfeZz8xiSKk9+YRHHyG5MoZb9UoaoNNevk5iPXH0kVNw3C0o/7I4k9+Z9aV78fqfCy/qenEvst6CEk7pEANQAR6DzXvfki4CIR8f2dnvNJS7/L6YUKmq1zPV8OTSHLNvVZgJpzEOc2cAuapF4as74CxWhDdfqwt/TskGuTGsIuQfC7r3UPaYR8RMQp3MNje06M4NmZQp0+rZuepxNoZNsB590IelBERLyG/hC7I4W8FtxTv/mNSRQnvzGJ4uQ3JlGc/MYkSvmgcyZBGsdNjiVy/REkNkTwFJHiUhsaZm0VWS5AjCEHVQbr5klBKsZcgmjzAKbFREScwbhyEuhAI41KDX5RwcSX9QIcfvCdqayWHHUF2b4iogLXGZXlLnGiDTR6pWvDPaBnjIQ4Om5HGxsRIxAH6Vgax74EEZGExTYIcX14ns6ghL0NuTFteCW/yXVvl+CKbIMI3Md9NMYkiZPfmERx8huTKE5+YxKlfNA6leAEJtVsQNAih98axMK3BYsx//b+UmKHn91rDISSCfSp64B4cgKi3QZ+80ig6YNwQqOcm8653ELp6EwdZzWIiFhWO+7rNXJwAsIaodVbrBssfhS/AwHyDmZ0z0AQo8sM4f5Rr0cSBo8dKx8RsYQx6zMoGydIWCxJ3CuOc/PR2PUB3KtFw3rIUTmB/e7gO13X4ze/MYni5DcmUZz8xiSKk9+YRClPMnWNraAXXgVOImIOJY+/zlhg2XZV/Pr36QOJnVUqdKxhzPIAnGSfwPfbgXBCTjIS/KiEMiLiFsowd5WW/y5mIFTOdW93IPgtwc1HJr1Heyi/huM2Dd9lBA7BNdz/JYi71M+uhHfMHu5BAfdvQ8M94BrbhpJeEqopRqPqqbT9pFAHap/KwaFv5ZluVwxh9vkOSrIjIgp4Jshlu6eyathvv/mNSRQnvzGJ4uQ3JlGc/MYkSkmljL1cBQwa7kHlssQdlFVGRCxAWHwPPdeewnTTG1CwHu41NgTRhgZLNAl5HzOFya0RERP4Gf0diJI5jodQyEl4Bv3eHu5VMLoGQauDgh33iitBrNqAoLmB5+RY6K1Tgei2AlFxDlNxV+Dki4jYw+dJ3DuWEvKFnIkdyI3273HdiOPf1NQzkeR6v/mNSRQnvzGJ4uQ3JlGc/MYkStkD1xgNq9jBpFyC+rVtQXSJiJiBSJOBZY166VH57gW4pfrginpf0BRb/ewMYjSUIoLdbmNwO1JPORJoLnJ1B35a6oTgHEo1BzsoHc3UAUeOyIiIa7IDwnNSluBWhPs3I9ENJ/ce5+ajHpOHbyGmUUkwxcjhRyL3FkrbqbfetNA93IOQPm94JdMzuofvTTvBE7WNMUni5DcmUZz8xiSKk9+YRCmH0JOsBSJZBa44goZDLHEmawTMqog9iD5bEDp2sO4cxI8KBJo5uPRGMGxiAWLTGr1SERNwnb3bzyR2t9UYiU3L9onEMnIMltrXr4L+cZ9u9bOnDfeFSmsHMLr3EnoPbuG+rOD+jWBvaaIyxYgWiHMREQWIcTuY/Ev9+kjcI7FxetB7/xLu6a5QIb0LPRgX8CxGRLwBsXgC1+6BQN6F97zf/MYkipPfmERx8huTKE5+YxKlpMmhS3AdkZBH0lf7yImsTWxAjLkFp9xvoc/ZEsSmBYh7dyCo0LAR6oW2b5gGSy7GNTgYa5oQm+u6aSAKuQPJubUEd+CurWLTs4Y6Zir03cIzQUZAkoXX8F3eVzqa4n6vMRLYWiT2fotBHseW+ZIL8QDPUwXO0lmlQtxrECWxv2GDqDyFYTrbWoXTPgiLVTGUmN/8xiSKk9+YRHHyG5MoTn5jEsXJb0yilM/3mv+vod59QrXtR04B6YM6GxFRkvUWLKdks/0lmIOp+WcXVGBqFEn2zhZ9m4Z/XPShmWUbbLakSpPSTFNlJqA+U+PKRa6xojyTWIQ2Ro2I6INkT9N95jQyGv6TMoPvsqB1g0JOvQ5oelTT2G5S9leVXpv6AdBnj/1PAd0/UubRVgz/Wfk2LGEfdyVd2xiTJE5+YxLFyW9Mojj5jUmU8g+qJYS1RnxX6u8EWXHJEkvCXkTEOTSfPAFxcASG0ynUeW/BFkm9CQg6itZ9aPguZGEmeygJQSQ20XHHNp6cgPiIglihPQMiIoZg+SbD6bFju+m+0HqGpdqSaW9wLHVDk1gS2TYVjKAHC3JRQ7+CXM+3r/Xay52KbnTdEqzd/ZYK103HkmBI33m0U+u03/zGJIqT35hEcfIbkyhOfmMSpWwXKnR0oFkj/UqQkEN18b0Ghx+NMT6pYYIQfH4CTQqp0SdBvQnI9UfiJX02ImIJLkRyku0qPY7EJhKHjqVbqnOvSyJgg3g5gL2lEe05iKlN/Q4+ZghuTHJE0t5Qjf8SGqg2Qefcwn0haB+q+rjzkROQ3Hwk7EVEdOAe0nqOxW9+YxLFyW9Mojj5jUkUJ78xiVK+3aur6q6tIsIIRjyPwWW3aXBaEXtw+LVATxvWuh4SAZfgGhtj2SmMfQbxcgMxKi+OiJiD4ERiDIlxJA6R4EdOMqJfqphWwn41NoqEhqkFiHvUSJPKoLtwXBuOo6lQNKJ7DuXATSW9NHWHoL2lGJ0PRTsYx92G571TQil4w/QhavRK66HnDo/DqxhjvvM4+Y1JFCe/MYni5DcmUcpfdlRceANli68POi3mDiaIUM+1FkzXiWBHHk2G6YDYdFrpdU7hGhmUIs/gGksoT56CsEQCVEREAb+jN+1zPRDa5s0q3dvb7VSP2+p+kxvsQUf79T1r6VpOwMkXwc5NEnLJIdgBcY/GQ7dgNDWVA5MoWdEYdyhjjeBSX3LkUYwEP9rvTqH7SGW5v69Dj5yJLGget99+8xuTKE5+YxLFyW9Mojj5jUmU8leZOtPuQOi6q1VsopHBVDq6ayjzpKEfC4i1QRTpQayAkskOOAZbIJLQGlfgYGziquhJ7FGusYuDCqyzUoWlX5Y6UvlVOZIYOduegLj3Ra59GS+hfDqC78s4p7Hm1JsPXI1HvmNoYAsJrDSohMqnI9gpSeIgiWkk7p209Z5edrQX4mVL718vV7V3Ac7Q0U4H0kTwdyF3IT0T5PD0m9+YRHHyG5MoTn5jEsXJb0yilF/X2syfJqiSyEJuPhoiQMdFcL+/BQgYrRxi4PqjnoBUBEufHUD/uD30mSsbfi9vci2N/rxWgecKFjQH99UmV8Eoh1Jr4hNYy6Nav9/nWxZi6W79rqVC7qsCSpEb7vXHkJtvDgLrCoaXkDjXBB1Lg0BwiEhb9/GmdyGxT9uXEnsMAis9Y69BSKeBLRHcA5Cg0l+cGH3U2Ywx3zmc/MYkipPfmERx8huTKOWrrbrGCHISkYhAkLAXETEJFTZQygGdi9xXFQ2RgM+SMPggU3HuGmJUXhwRcQITXfvwZTbw8WkOwins9yk4xEhgPYVS3QuoeH0UWkrcxLRWAesVGAS3NBADzkcl1E3PycdQaWwFw2ciInbg5sNS3ZZ+mYdddUo+71xL7Hsgzn5eaW6cwhJ7pe7rLbg7I1iopAEmVF5O+es3vzGJ4uQ3JlGc/MYkipPfmEQpxzt1+LVgaECvgOZzIF7RlFYaaBERsYbhGSuIVeBYo9LRGn7L6NetDQu/AIHmAgQammAcEbEBF+IULn4L4t49fOcN7CMNuiDB7zgZNmJ34N/+Cs65hENnIDbd08APmmxLE2thLR0QlSnWBzH0m2tDeSuV6pZaqvsZOPd+cKS492gH06/hnt4V+tkrKAWPiFgUmkcV9H/cQhl0DT0v/eY3JlGc/MYkipPfmERx8huTKOVyryLCoHVcWW4NMTpu0zDoguL7TEUkcrt1QMhpgbOtD468i0pjn+10LY/bS10Lt72LDxsVaVZQBkslr+RN60PPtQiN0T0gRnC6lwctWY6I2MB+v851lbcHfXbuoUSVh3uo0FXCPe3DPaWpv03FzigYgkPwolCn3aNM7+k19D0cHllhPCNXKty/84ZhKndQYr4gwQ9cjWsol/ab35hEcfIbkyhOfmMSxclvTKI4+Y1JlHIHtc1UN0yjgMk6Scc1/cKQUk31yTi1Bf4rUIGxdQgW1qc7/ewXw5nELh+r9TkDe25ERPeNqqmbiY7KrmGNFewjTRqi/5nMYD1zmLgzgXHoS/ivzjfX0WPHYEFeQKNJmuJEz9OwUMv2BUw9IuX7MlgNJ+g5WWWkfFPzV/jPFWzZHB7wFdzTCdyrW5iE1PQPnB7+hwT+AwT7TaPK/eY3JlGc/MYkipPfmERx8huTKCWJdlTPT5ZIsk6S4Nc0sYcEvxYIGNSQkAQaGr1NTTTPQDrr9lUEap/rh/MO/15e5GoF/qLSY6+WatEcdLQGvgfrWS31HrxZDST2a7AVv4UGl0tul4r7SL0EWke+O+g+U98Henba9HyCZXsNgmYEj14nUZmmVN3D892G6UoV5Aut5hYa1o7Bdku9DiL4macmujSx5wB9KPzmNyZRnPzGJIqT35hEcfIbkyjlSRtcVS0Vkc7BfUXuIqz7P3K0cAQLfuRs6qAAdZy7cAPR1QJ6AYxVBOpc83cpTzVGDsHL0Fj/C/3O+bk64Kpb/ezZv6qjrvNaG0+WULs/Kvi7UP097S3Vl8/hOSGBbQANN2mEdQnXJXFv0tAzYgvXJrfbhurdccrNceshd+AI+h/MQGj8faG8pETwm9+YRHHyG5MoTn5jEsXJb0yilNdtVaoelCcSI9GNQDdfQ3dFcu5Rc8YuHDcgJyDYqshptYbzjZcqsLU/QBlkqQJbBAt+7Uvdi2Kg1y4+17HP2VBF16w3lthwdiuxR0stT96M4boNpbETeCXsoUyYhMEhjDWn+z8Ax+gZlO/SNagJ6rrBrUjuQoptqDwZzkcuxC2U5ZKDcQaTq9Zw3W8DTechvk2pvTHmO46T35hEcfIbkyhOfmMSpSTnHol7JMSR2wmnszT8xvTgnH3oudeDc4L+FD0o9SSZsgbn1hauO1+oeNWdskBTDjVeDGDP+iCy7aGP4hJ64S10OgvpPTk49wbQg688sIh7B73mXoeKVeRYI2cbPTt9mD50rEPz20ACNDn81pXeP+pv+W1K1uV8cN0KhErqeRgRUR1Znkzfj1y2fvMbkyhOfmMSxclvTKI4+Y1JlJJ8UVQG2QHR5gSEwXMQkc5BiIuIGMCo7BPoNdYC/WOT62fpu3TxfMfNVN5DD75q1/B7CevJhyruZV3o93arjrzqXsW01Wu9xuidujFHC3Ur3h9UvJzBmiMi5jDoYgZjn8nFRoJvCe8YEs6OhYRBum4E9/BbVVpGu4YY97cEoRJyg0qWaQw4uQ1XDa6/ea2C7646TtwjUdJvfmMSxclvTKI4+Y1JFCe/MYlSLqDMsF1AHz1wZD2tVdB6Co6z84oFtn6QsEjDHFSs2O71d2sNayTaIA22qGQVnG51g3iJbdMuVOAJGPqwf3svsXc/V+fli4nWDb8rVECcwvRdKvwEvTUiIs7A7Zjnup46NEZvE4rRE0HHFbDfdJep7DsiogWiHQl5FCMxjpyAfehleAH79QxiNIDkNmfB702tg2HuMu3ruANxlr6L3/zGJIqT35hEcfIbkyhOfmMSpXwCzeee59o/7nt7FZae7VRYOM9UrOiWKuxFRLQgXkAjPqjAjQwEukODGPffpYT1tbvcMy3vqwyVXZ7pgVC+W620D9+7id6DX7ZhSi/0j1vB3gxBxHtQ828/TRcm4e3YN8ccnIQjEFOXsG4SBsnh12roR7jMVXRdtY4b0EHiHh1HYuEl9DL8vNIcoinSVwXvbAfiVC69AYculd/7zW9Mojj5jUkUJ78xieLkNyZRyr/bq+D3BMobT0stJ8zbx5XGklMuIqLVUmGi1T4u1u7DcScQuwA/WAnCIJT+HvbHxSIislzFnMNK9yw20Ctuqr/BC+g+OIV9nEL5bQUlndQHkUqlIyJOwJE5BBGpBXLcDt4nBZR5b0A428Ft2YEzrQ/i43mDXbEPPSqpdSGVGN/HXGJbcM9Rb71jHXU9uFdnNX+Xayih32XqLtyBcHqs89IYkwBOfmMSxclvTKI4+Y1JlPJHUBJ4cg5CFbDbqZi2hViT8y4HAavdUUGlPQTB7xzKch9q77r88YXEsgt13mUlCHZ7Xcvhg5bfRkTsvlKXXvWLtxKr1/qdZx/UhbYHAaoNAh2VrAaURYOeGfOGn35ykkH1NQpvpCGikHekuEd+yg5c5BHcq2+O1efxfVvddx9gajC54kjwm+y11PYtTHN+BH39MnBe0t5E8P7QGuku7F3Sa4z5L5z8xiSKk9+YRHHyG5MoTn5jEqWc7lXlbK2Pq7MnZZ+m3DQMhokKjiXxugCZO4MmlVHC+VowNaenls840/8A5AO1Ph9OVcGPiMhfjiQ2/pUet4Kx34ulxjpgnb2sdL8XsGFjsHcu4T8A73V5ERGxgX3cwHVOwYYK08FjCQ8A9RygNZLCXcM7q3XkmOwmWDVXNjBNZ75TZf8rqvvv6ro/K/U/PU3TjBYwj30J/4ZZwXFjaNTrN78xieLkNyZRnPzGJIqT35hEKX9daj1wtdbfhF5GdcwqTFQ4PrlBjAEXcTnnZp8f09rAaOKN2izbobbbooRmm+dqA44Hz/S4yxtcT/lBr9N58RuJbVYqQA762j+h3MD467UKlTtoFLkE1W0c0EcA22NG5NBLoA2ThoLGccOtXoF+tYZnYkmTlOAaj/d63E1X731ExGY9lNgpWGpPwXo7BzFuuldxbwrP3YvZB4kt9yq6veteSuwMehBERHRoLBQwrjSxXm7uJOY3vzGJ4uQ3JlGc/MYkipPfmEQp34JC04MOh0Nw4+2xCSOJQCz4zWAK0Hysglg5UYGHxMZeoaLkzduZxM6WLyXW6oPI8uS5hPInP9TjIiL+l4aG6/8jse6XUOO/1e932EFjx9+p2LR7cy2xOxixTk7AosFJ1gdBrAv7TeIenRH6ZUYHjjyH5+7HWz3ur376Oz3fH6gbMyLi8ZevJNb750cSy7oq7hXQ6HXXUaGZhLzRWpt/vl9O9HzQGPWmcy6xiIirUsVLmiA0q/Q5GW+0b4ff/MYkipPfmERx8huTKE5+YxKlJKfVDsQhEvIotsD6XRaW2iAiTULFKvL80cSXPgiLy5cqID5eqAh4PftXiXVo4s6fN4zofvQDDf7lX+txN/8iscOdNgU9LFS0Kc70uO9vtZR4NrrS88F476Yi1od7/csFTPFpw37n8DyR6/MBPCfDWq/xp3/4RmL9v/2JxLLH6saMiBj8SAW/P87/SWKjf34qsXFHXX/TQkenr3rqDm0XKl7ua2hEC5OemjhQrsI92EJJL13bb35jEsXJb0yiOPmNSRQnvzGJUlLJZAtEhD6NIQaHVwG/JyQMNkFFplv4PE0xrmA9E/CX7UfqBhv/o077efhbdZJdfP33sMKI8n//mcSyofYFjI26wQ5TdV8dVtBzravf5fIHKkr+5EsVBrtjFaWWWKYb8ajWc553dT3U15H6MlJfR+LyEy2NHfzFJxLLfqiCX/4YBNeIqJ9oqXVvNJbYZ/8yldjPD+r6fJBrbNBRMXXWUpce9dbbg8OvqYdfAUJ8BZ+vIX/LXIV0v/mNSRQnvzGJ4uQ3JlGc/MYkStkCkQwmZ0cXfHbdTGNnUA66qfk3Zgu/PSua2oETo48bYU3SyRJchLNaSzpvX6sIePMP3Cvu09/8X4mVF3qd9SsYTLHU43As+RX0Rxzo5lw91zX+6IVuzmbN7rLLG/189yGIe0s95/pez7lZHudiGzxUUTE71TLWGMCAlSt16EVEZGcPJHb4vro5bx7+TGLP36ub70EOY+DhutS3cJbrHt5Bb8zRQfstRkTMau31uAYRkYTBXqluRb/5jUkUJ78xieLkNyZRnPzGJEpJvdQCSgfpV6LfVrGhLFWoWm/UARURMYcJwTvsFacxKh0lZ+KxJaY0SXaUqVB1V51ILCLi9f9XwbBDJZhw7UHoPj660B5w56UKca0L6M0HIuDpQ3Xt1VC6GxHR+0w/Xz5Sh2A903PmbV1jcQeTdhuu/TGHkTrv4v61nu/me/j5jATkEnpUPlWR7ScftPR7u4eSc3g+tyB8z8Ft+g6EuF/DUJmIiK/hq5Dg14MBJIe2ipd+8xuTKE5+YxLFyW9Mojj5jUmUsgs1tMcW4ObgWGq3VfCjMs+IiP1ehYkNCG8riNEZC1g4iYX1kSXGGzjsfcOg1F+1dEV0lQGs59lOTzqcqwA1mEFZbV/vQd4C0XSootthz8NUMij/JPITdbuVVypAHcCZth3pNbYTFcSKL3W6bLf/j3qNuYpz3yxIz3n41b9JLIM9u3mqYuNuDa7NpQrXi6U+222YLhyQA/umabyF7ncBD30/1/XsoSTfb35jEsXJb0yiOPmNSRQnvzGJUvaopBedadCbD9xO+VY/u2hw+L0rNP4eBIxVBj3J4HwnIOQdYN1dcAJ2oCFhCeebw1oiIr4OdbtVsI8P847ELmBwwwomGK8Xul+tOZTBnul1M5g4W8O9iojYj6ikVAW1rA/3FcRZMtntNxqcjVXQWkxUQD6f6iCO7osPepGIyKDvYT0Gt+MG7n8P+lZW4Obbah6MdnqfJ+AY3cF+nVMzyojoHPQ6F4X2FJxmuo+kPvvNb0yiOPmNSRQnvzGJ4uQ3JlFKKoOlCbh3IErN91omCNWp8b7k35ivChVzPoS6wWoQznrQh+8SJqPWcNxjcLZ1wQHVATceiXgREVPou0ZTVR+HijE0AbdX6kaS2LRf6d7mXZprrOyXfF8OMxC1xnrOosu95j5mN9N7MB3pPoyXIFQBexCaz2CqcUREa6DPE3GAKTD1TvdnMVEh791K8+BFqWIomBqjhMfpqkHwo+ekD+umITfYqxOvYoz5zuPkNyZRnPzGJIqT35hEcfIbkyjlHdhpJzCyZ9Ogcn8MKdzTjBXXl7U2exxVqtrSyOIlISKHAAAC20lEQVQe1CzPYZpKG+yPl6CaF6Ds70E13TTYew/wX5PTTGu1/2Srv7f/48lbiXXPVe2voMEAqdTV8jiL7QH2ISJiCxOEtjDdh2yt1LuBbOBTaN46A9N2m/7Ts9G96UOdfUREDnJ6Bs832Y1J2f8wVWUf/xMG+72EZwfcvdGFZzEi4gQs6Kc1/BcG9mwAk4H85jcmUZz8xiSKk9+YRHHyG5Mo5Ze51oOvQ22EBYhuQ2g0eAI1x1cHHtG8yFRQGYUKfitoAFnBGnNY4wfoGXAFU1I2ta77faHCyQQmpEREdMBG/OODTvH5659+LbH+3/yhxA4bsDl/rcLg9oVO9iHBj+auFx1oKBkRJUzTWYBF93ah328Coh01ZV2D0EyNVc/A0krkBR+XwT2sd3qdGdiN7+bw/ehZhu3ugC5MFlvSXJu+cQ6iMk17GoA1fDjQPPeb35hEcfIbkyhOfmMSxclvTKKU9wcVlrog5J1nKpw9BpHsBvSwJtHm81Lddx2o/X9Rg6gF9ffEGOrsX8FEmvcgSn0I/ewY9isi4hLcfH++0UaR/b/9icSyn/6FxhY6LSa70Ekz7dZXEtu9mMAKwfUHTT2/icPodWikuYF3xx2Ml57AK4acktTmtQsOxowaujaIl+TmWy/0XpG49z70OBL3qCfGAJZDfTK24MZrN5hpBwHNTLsq5A2GGuuf6bPsN78xieLkNyZRnPzGJIqT35hEKUuo9STx6vNKnU3PtypAPG0vJHZ2pcJXREQFDRJPx5cS+3/dM4mNwGm3BkGEGm6+CRVE6Lhxrcc1cZarYHRzOdIDL9TNl51c63FD3QeiWOveHjbQWJPGQ1M9aUQc9uqyLMrjBFYaaz6GUe5LbMqqH77KoUEpGRipE2ZwE875VJ2lJO5NCv1sD8pqaQIUiXY0HYsUxCFcIyLiuqP3+pMnKoa3TqDMd3DcmHtjTAI4+Y1JFCe/MYni5DcmUf4DmTMq+TpxW3cAAAAASUVORK5CYII=" y="-18863.036294"/>
</g>
<g id="matplotlib.axis_1051">
<g id="xtick_1576"/>
<g id="xtick_1577"/>
<g id="xtick_1578"/>
</g>
<g id="matplotlib.axis_1052">
<g id="ytick_2626"/>
<g id="ytick_2627"/>
<g id="ytick_2628"/>
<g id="ytick_2629"/>
<g id="ytick_2630"/>
</g>
</g>
<g id="axes_527">
<g id="patch_528">
<path d="M 299.674375 18987.938057
L 421.964375 18987.938057
L 421.964375 18860.64453
L 299.674375 18860.64453
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1053">
<g id="xtick_1579"/>
<g id="xtick_1580"/>
<g id="xtick_1581"/>
</g>
<g id="matplotlib.axis_1054">
<g id="ytick_2631"/>
<g id="ytick_2632"/>
<g id="ytick_2633"/>
<g id="ytick_2634"/>
<g id="ytick_2635"/>
</g>
</g>
<g id="axes_528">
<g id="patch_529">
<path d="M 434.924375 18985.436294
L 557.214375 18985.436294
L 557.214375 18863.146294
L 434.924375 18863.146294
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p7777ed8b58)">
<image height="122.4" id="imagec024b102e1" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztncmPI+d5h19WFZdmd5O9TWs0Y2kUS7HiBYmBBE6QBAiQQ47JP5FD/rhcAwTxMQtgGLYD2UhkOxlZy4yme3pjc2dVkTnI8mF+TyE10E3f7zl+qGKtLwk8fJfO8cF7u3iFQdF7dSn2cl3LO5msbXfycbELXYuIKDq5rD3ojWTtW8WxrH0zBrJ2WndkrQuHXuhpx1W2lbXrTqUbNvDOVu/PWyXdC+U+1/Ne6FLMMt37804pa7+pZ7J2WU1lrdzy9dFzHeZ9WTvO9mTtHNYG8HmX27WsPS2vZe1idSdri0r3pXOOiNjv6ntyBu/YG8WhrA06hawtd3rP5tuNrK12+lxWtW5X7mpZa7qWftaVtWEGsQrb0bXwUYwxX3sc/MYkioPfmERx8BuTKMWwUJHTz1UYoPCD7w4SGPVOZVpERNZRq0XCcBW6/xTW+pkKxD0wbHQ2g52eyyj08/hK+FsU/GP0t3pCY71l0c905zx0bZmpyDnNVHKVuR5kk8GBI6IHIvYQxNJpR9+dN0K3o3u7gxt2Ced9A9eXg+Qs4NlHNIjKfChrdM/68FTncG+2oHHLup3Iq+GNyuA5N+1Pz4rkXh/eZf/yG5MoDn5jEsXBb0yiOPiNSZRiv1DRMYAMoS6IF6IDcmfTkElGbCCD6g6ywQaZfm9lHZVNY/h+64JQoasbwr5VQ7ZiCev3IO2OYPceSM4MxOAWzmcE0vQInl+Za+bdBuRsREQBxzns6GeOQSyNtno+Q3gnSnifzkDETbq61gW512t4P08hc+8cjnMO704O590F6bbu6H1cgpRcw7OieOnAdl8cG4Q2PJcRXMu+hZ8x5ksc/MYkioPfmERx8BuTKMVhoSKIxEIHJFlTqe6r1B3Oi6tAOK23Kkpu6wWcj9IBwdYB+TGC06bsuT6IuCYZs+zothUkndWw/wi8G+Wr0Tc1ybTxTvcuQ8XQoqF0lKBnvYTstFu4vnXL45xBxmDdO5U1EpX0/CI42+0Q9O4h3LM+vCckixcg3SaUzQeZrrTWlOFHcTmCzMuHAVmNkFLpX35jEsXBb0yiOPiNSRQHvzGJUlA2X5NweJWqpaxo+3lffGY7CbjONBNwGbrvAmTjHmU7kdzD82bJSasrWL2Gr1vq19cDkUff1FieDOdNkqtuuJYJ9J/bUOkp7H4NUmoI97sHV0N3+xH0BCS5t2rIVlw3FmH//5DcG8I170PGIZbvQrzQ+06l7hGceXkGQvubYJrPK4pVY0ySOPiNSRQHvzGJ4uA3JlEKzDpquTP1LqO1Jkiokeyg4R60RpqEpNYa1kgiZbBd+6tj6P7M4cTvIWOQvqn5vJUhbFdC9ltExB0IPxpMQfeWSl6XLXvK9al3IIjKAWSr5Q2SbAsl4ixnQYjBtVBJNwntHuZoKuVWo62pPHkfsvkeb3XbJ6Ve81m+kjX/8huTKA5+YxLFwW9Mojj4jUkUB78xiVIsam2OSUa6be3+64ATSMB0jnJtMkpNCmnCSgn/ZszADJdgbJtqxNtCzrZtqvMC7HMJ/wD0IQ2Y0nspVXVMY3Mi4h7sPE2qqcGkYworXAv1RYAMa7xbXdiXri8iot9yjPya+jHAtexgO/rXgybp0IjtDaSpDzOtx4/gCUmHMBZqAP/XDXp6HP/yG5MoDn5jEsXBb0yiOPiNSZRiVmvaX9tGg22bDzZN+xlB89ADGJVMk1xOQPiR8tnAOVL6Ksm9AciibsP3ZRfEG51Rp2V6KEHSddty34ImBTXsewJiatZpP3XpVajxJN3FEsQgybkCzvsImmhGsAik9G5K723IGBZIKhPUO4Os8IPiAPc/gSasXXiuNU2aqt3A0xjzWxz8xiSKg9+YRHHwG5MoxaxU4bcFgUF1xyT8KGvvsKdiLyKigMaHI8huOgW5d7pTU7KkWnnIdppDZhq5nRJqsqn5Z0RETQ0bqYaexj7D59G3Mskr2o76MazhApsqzmls9ACkHWXuETmcJWeR6ueRsJ1iBiP/jvXwuYDwaynt6LypuekK3jESu+cwQvy9XNciIh7VNFVIz4eyVVelxot/+Y1JFAe/MYni4DcmURz8xiRKUW5VTGxqXatA+BFZrvqquSGhyr09KCfdg++oAUgpKsskuUOZZPQtuHmN6UOUiYZlwpA2RqXIQyi3pfJdzFaDKUU65Lx5ms0UZBVJ0raZbVi+S9mKcA9JsJFMmzSk4w1g9HZbQYfvDlwz7Tvfaqk8vTsPYSLRdyrOVqSpOzneM2W6o8lcxpgkcfAbkygOfmMSxcFvTKIUKFmomRpAE02GXZV440JLciMiDkH4DUH45VguC+cDa7Qnb/fVRouTZMEsNri1fTgM9eFre1wSVQsYBX0XWtocETGHkegbyBukDE86H8x2A0HX9hnQvk3yke7FHEq6ZyDoFjClCMfF0/0CkX7S1VLdQ3jfH5Ys1086epwF5GlOIHN2BffMv/zGJIqD35hEcfAbkygOfmMSpTjq78vislLRQZmAWL7b1Yylo0KPERExBuG3T8MOQPgNsTRW911A3zTSmSTnqK9f0yCPtt+ibRXiCs9H6cMn9iGrjc6byp0j+F7wKPd221F2INEH+UVSeB/69fUangBl81F5OvWyvK+WskZDbtaVijjKYKShHSRi73POiM1rXZ/k+qyfF/qsbzp6HP/yG5MoDn5jEsXBb0yiOPiNSZTij/bfksXbWkXHPaxRFtMhDOKgvnwRESOYWDCG3nw0TfZBrULlsFa5c1SoZPlVoZ83jXZSqguSM4KFGsmmdcshIgsq8wUZOga5dwAyFCcYZ9obMSJiDXKI5N4WZFXbLL0NSEDq9UcDP+i9oR6DESwbJzREpOG5vsoOUjRxMjFIxXmlUvGT7UzWftJrGHIDcbCAZ3UD79ME1vzLb0yiOPiNSRQHvzGJ4uA3JlGKv4ixLL6EQQIvC836u97CwA8QQ6OGCaoHIF4ocy/DSaTweSDtziAjqxtaYvwpSEAqEh1uOUePpuC+yNqV0S5AStEQig2ILhrkQXKPhOQBCKSIiDE8r7YDOgKeaZeOAx9Hpbo4vATkHGWBRkRsaFs4x8Ncp0OTqBxAj8pJph0SpxsV5CQGL8p7WWsqqd8HQUux0bbPoH/5jUkUB78xieLgNyZRHPzGJEpxXqvUoLLaEQiRQabfHSS0mnrhUU7dFEzQXa5W41NI6LrYaibh99Z6lPcgW/EMBiX0QV4+6Ou+ERE1CKefViRO9Z5NIFOOeuaRTCX5lVEfRJrcCsM9IiIynNJLnwliEaTdEmTTFHrmLaGslo5B51KCDI3gKb+UhTjO9P0+y1QM1/B+XhZzWfuscy1rlB1Ia+uGEugcxCmJYXpPCP/yG5MoDn5jEsXBb0yiOPiNSZTiOcg0omwpETYgr1YNveIos41KR2cwPGEF5cR70CPt2Z5mMP71UjOl3j+6lbWTdzRzq/cml8HW9yo6i5+oHLrdjWRtnYHkBCFG93baaVeKXICIqxsyyZbwvEjZ7lFpLGx5v9PnNwe5Ny1Vps4y3W4J78Nxw2AYEobEEZSdP+jos6aMygKOcQcSkErgCxiwUTSUJ5PcI+FLGX4UV/7lNyZRHPzGJIqD35hEcfAbkygOfmMSpfigo1ayaSrNq1BzRGr+SXY2gtMQaTIQ7U9TV3qZpngue2rhz/tvyNp3e2pIuw/087JjtsrZqd6zt4uJrP3Vv+lnzmDK0a+gUHsFtp/M7hKaOlJNPU2V+WJdoXeC+gasIP11Cc0j5xWMxIa1Ims3KaoJ2pbSe/HfDDDxffi8NaViwz8pdFz6N+J1fpHJ4tP9ntT6z5V/+Y1JFAe/MYni4DcmURz8xiRK8evNlSz2oF6aJqcQC5BzlMoZEbGsddt1rbJiU7dLYe3BaGOSgJ91T2St2oB4OYCGiWeaLhwREUOVdr2RjiZ/d/qZrP3hz74ha9cDPfYt9Er4KrXbTamv1G6VhBgdeU3p3Vs4bxCVNDWnDw0zDwqtvad+E03M4R19WenknFmm21E67T2835TKSw1KqT8ASbwIbsJZwX2k6Vp3pYp9//IbkygOfmMSxcFvTKI4+I1JlGIGY4P3cqhZh2khbSUgyY+IiGXVTvjRuOO2rEE2vYRa+Zt7zdx7tA917ecP+EBDyPw7OJCl/h+oWPr9/5rK2odQ908jv0kO9eA7/RAaXI4avvupxcOio4u30EuAWgRQZhuJvC7I2ZOu3sNHXZWuTVOhKCuS7hlJMsqKo4xBasJJ21VwLiS9myBBS+/3faXXQtmT/uU3JlEc/MYkioPfmERx8BuTKMV+ro0LByD3+iBjSORQA0caTRzBIo/kSdPI4jbHIYH4ea2C7cfFI1n7zvULWcv7er8iImKoYiq2UNY51qy/8fFLWTu+otHpKljXcM00+vytWteebFikUjbfFRz700Il2wamAJUFiE94n+g5H+eaOfmwo9l8wwb5PIW5UHOQg4uOijd6Fyn7tQOZe8QMMgExyxUkXgTHG0lEeuepVN6//MYkioPfmERx8BuTKA5+YxKlGILwo8w9kg3UAw5LFBuEH5U40gSTHEaB11sqCW0nG29KzbL714FKwD/9Fx2x/d23n8paRET2ztu6uFLBs5tq1thmpRIJpmRHBfebeuZRv709eATnmWZ9RURkkM2XVfqelCC/MnifTkCwzQoVedOG0dR6fnp9bSdKRfD73adryWBUOUyFahsb1ItyAdmm1J+yCYxBiA2Ml9ZHMcZ8rXDwG5MoDn5jEsXBb0yiFG0z8nDABmUXQXYSHSMiYlBoJmHbksm259i2tJKy/v65+6asnfyj9jyMiDj/wbWsdYYqh6rPVfjN5prNRzleczjvy62Wb5LwG0KG3vGa+94dgnAq4T52wbEdb/XYJzs9dgnS7QJk7yXciRmIwSbdRz0F6b0laUdikMZxE22HhRBNJez0zmNGLNwN2s6//MYkioPfmERx8BuTKA5+YxKlWIM8IbGApYMg93hYAX/HDKGPWwGSBaVky0xCKhPtglgirqBH3dPrI9x2+OGlrn1D999uQLyAB6KMtfudZohdVioq6bnMu7q2GhzrgSPi8Vaz3UgiUnYZbTeC7MI+9gnU9+QS7s09TKGlgRYR/N5uYI2GXxQtpwFTxiEZSNwOaJqe3Fr4wZqFnzHmdzj4jUkUB78xieLgNyZRihX0ENuAPCGRR73CKLuoD2WQEZwFRVN1SQI2TZh9lSZ58ioHmZai9kFecXFyRAbpbtlIr3sHZZ1VDZNfCxiSAT3gaPrqotYyURrOshmwJHuea8+9IZS80nAQ6h94AvuS8JtC/7859OC7gWEacyiNjWg/8IVKyXcw6AQz96D+uq18pv5/dIyIiC2UWqN0Ba9I5+NffmMSxcFvTKI4+I1JFAe/MYlSUF+xtnKP1rBsUb1JRERktW5L+xe5yhjqpTYAsURQntU+9JkjkbNoyNKqVlCKvIL7CClrT7c64fej0FLdq1Kz+eYg8nBoA2QrPosbWYuIWHRVntEgFyp5HYCw3YN724XfnRW8d9cg924r7cHYNO2WRBcJZJpMXWcwgASyAwkakkHZhiT3ujm/x02Zsm0gMehffmMSxcFvTKI4+I1JFAe/MYlSUNYRSZJNDVl/sEY0De2gMkMSfpT1R99aVE7aBUlCfdhoO5rw+r89FUMREcefnMra43sVdE/vtCT43/dUBD3d3MoaZelRhhhmq8G9bpoGO6lUsi0zFWokqyjzkrI+SX7RsAoSZyvKLG14x+j9pvtD50MSkK6ZzrttZim927QW0VCq2/I4PFHbGJMkDn5jEsXBb0yiOPiNSRQHvzGJUgygiSYZxE3WstEnmM+mmmr6t2CQ62e2nXRSYlNPvZYe9VsEaXoTarhLqKmOiFgOtB/Aw/mZrH060HP8ZQ1mH2r3qfFokxl+lbZNWSPYKjf9YyPbwTMgG47NX+F9IItP50IjqCP4nwZshInpr/qi9CFe2n4ePashjDSn9OMm2tp+boxrjEkSB78xieLgNyZRHPzGJEpxWhzKYl2owFjBxJc5SKlpqXXoy4prrfMM0kOpvrmlAFmCRCIh0oe6fzoGacYmvfI5pNmWIIdm0KSS+hCcFNpEk5s1thsFTU1Zp5U+qwiuWcdx1S0nH1Ud/TyaXkOCjVJ5Ufi1FJIRfB8x1ZxSp6mZbN4u5ZeEHzW3HUD/g4jmxp6yHdxHesf8y29Mojj4jUkUB78xieLgNyZRih8UD2TxfKdSYwETZD4OFX6/6WkN+4vNHR6csrwo45AEVgmCh5qRIvCVRxLodTKtcpBDw62uncP46/POSNZuQfgtQJwtQc4tQtfu4d5sc9aXWNsODTz3YY0y6kjE5jCliCCRRzX+JOeaINFM8pKeP4phODa9s7SG1wfPrwnqQ9HD89bt/MtvTKI4+I1JFAe/MYni4DcmUQoqCP32WoXKGCa+fNYZyNrPe1qi+MuBbhcRcQXTWNqKt7bZbjgGHLP5YFRyy4agERF9+B6lEd+ntZ73OzVkrIFEuoKGkh9BNuZnIGJJxDWVg9I9OwC5d5rpc63hM2/hPpCcbVu6jZlur/Ez1m3ZNJNKqNuKRcpgJLm3gvuwDm6sShmQdC1DeFYbZ/gZY77EwW9Mojj4jUkUB78xiVL8uL6WxXLvRNb+eK0ibwxli+9VIBYgWy0i4qJQMbGGHnAVSKQ1ZKHtQEC1niADxyVIAjaxgH5/dxn0hYNMwCMowY1a7+3LXPeFyeKxhs+jMt+I9uKNxmwXLXvKUa8/EmIk2GiENcnVpv1JIJPwI7FIpb/0PrXldcqTab23I5HXbsy9f/mNSRQHvzGJ4uA3JlEc/MYkSnFTzWXxvyEbqOpr2elbUJ7aBfdxQAYqIrKOCr+S5B6IsxX0wqOjFLC6BnEyhzJKkopNKoxE5S1svIR+bysoMY2N3luSgI9qvYfPurovjSVvEnsoumA7GpJCkFjcQFlu26xNknM0TjsiYgDZbm17QuKoepKkNPEF4PsKArHl573OcVzSa4z5HQ5+YxLFwW9Mojj4jUmUgqTGdLuWtWcdHfCwyTTrbwjfJ3mD8KOsLNq/CwKk27IEl45BUpGEyLzlMSIiKjjHOZRm0rftCgY3HEMW27cHKmef9Cd6jDudDrzq6nCWtuIrIuIABklQht+GMvdaTsptK7pIaO3nXDb+jWIsaycgmkld3u203JbK0Nv2jqRsQ8oY3ED5fARL0gG8O9RvcQ+en3/5jUkUB78xieLgNyZRHPzGJEpBU0Ip82sFmU03IPKm8H3Sa/iOOYZMwkMYGEJyr+1MVjryEM47Dz3uecD5QfltRMRtpmd0AcKPMgnnkEm4hHtz9EBl0+H3Vbp+7590cMrznQq/PmQbRkTUIKH2aEov7DuB94RkE8nGBZVaQ9l422EaERFHIPeehN6zDFzjBfTwIzG8gufXlg09+x338CMhOoBsx3EHyu8t/IwxX+LgNyZRHPzGJIqD35hEKR51NQOKMrdoCi0JiEWo8Fk3ZMVRue2g5fALEn5YDozZfJRZqGt/utJr+faTl3DkiIvnKtQ+3Grvwk/Bkq3h9hxt9bxpVsVuo8Ko19W1MzhIBRIogst3+3DD6byXUGo9ABlHGXmUKUcZcFTSSxODIyIO4NjgZqOEa6FsTsoOpDke9G7T+zkFQbqAvnwRLBuPQp/hGawd71zSa4z5LQ5+YxLFwW9Mojj4jUmU4s9Ce/ORTJvC6lVHM5FuoAyyaSAG9b0jQUe5W9T7rIRef1ROugMZc7SFDL+BZtQd/Y2Wy0ZEjOc6GfetDz6TtcuPVALOVyqRDvb0PhZ7cL8+1fLrxWpf9wUptd+QrUj3m3ozUlocSSmaikyCrir0vNeZvmMkC8+zIZxgxAnIMxLI9J70IRO0D3eHxCC98fNOu56QTZOgDyGn8hzk3uNa93+z1GP7l9+YRHHwG5MoDn5jEsXBb0yiOPiNSZTiT9ZqU0v4TngJI35/1VVjS5N0Fg2joIkdGPsdWFfqOUBGmnoBUCrvSa1rBydq0jsnD/UgEZF984ms7T++kbV3Xt7K2nai/yoEpPdGqOXePNPGqvRvBqXi0iSkiIgB3O8CNiXL3YV9B2DID8H2Zy1TyEfQOPYNSLuNiDil5woqvg+j06lRKKUB04huTDWHpqXUC6Dp37ES/jVpH1mKf/mNSRQHvzGJ4uA3JlEc/MYkSjHKNY20htrfGkZBn8JUmZfQ9LAECRjBMq4Hx+5R3T+6KhBVsBU14XyrgjRSEH6NjI/1bA61V0Ln8WNZy0po2LgEkTfXiT39vc/1VH6tqcbVQlNnZw3Cj57WHsg4Eqx92I56NNTQS2AATUtJKh7CdieQnh0RcVbpSR5AU9A+vLeUE30PIm8BEpDENzVqXUND1wrEYAT3yphDb4NbkpcF9DXAoxhjvvY4+I1JFAe/MYni4DcmUQrKBstABHVBdPRA+BQgfJpGdFNjxxHIOBJ0JPJo6gppoHGtQuW0ULlXDOEDK57O0gH5GQNokFlCJtoefOBIBWKACMoHmvV38osPZG3/w1M9FWzVydmAWxpXTsKPMippmk67adzRhyw7qtF/CJl8EREPYdz8Xq7iLK81a3C91eMsc+oFQJl77bL51rBGvSoiOPNvBvtfwz1bF27gaYz5LQ5+YxLFwW9Mojj4jUmUYgOZUXnLAdj0zZGRQGyY2DOAbL4xyL0Rlre2gyRgF8pEOyA5yylMD/r8Co/TOb2EA6nw27240O0gw69zpoIuzs51baxZhIPfU3n19i9UfL3IuQyWhZ9C0hWz/uj50yQd+LwzeD/f2+hBvjWYwN4RZ080K3KzgCzUF3r0CRy7C9lzHSpFBmlHYpDkHpWrf/GZyhIyBF/CZ17Dvv7lNyZRHPzGJIqD35hEcfAbkyjFFLKlKJtvAYKG+pm9DtSvjz6zxKxBmsSjUOLXPNPvvItS0+yqp5BddgP99iJi9J8/1vMBQzN5ocehHoUnTz6Wtb33ddpPZ18z/Ghs97uPtJ/g9jlIxYj4rIBpOrilQlNuBpBxRs9vDAL4L0u939/9W5V4xZ9/n08IMi/rH/1M1tY/1M+8u1NhewBZfyX2+tN91w2l7a/StBWVN6+gP+YdZP1tYDv/8huTKA5+YxLFwW9Mojj4jUmU4hqGcdA3Akk3knOUzdVr+I6ZgIT4BKo/T0A2DmmwBBwDuuPhKO+PoPi37OjY5/Wc6m8j4qku0b2gDLgRXMvjn2tJ7xs/1958vVz1UJZpv77hnt6Jh/squSIisrme5AUM2VhDtttprfseQ9YmZV5+L7+Xtff/QSVn/nd/r2uP39cPjIjt3QtdBBP74Nl/yNrqpyrthisVrOtK350J9AT8pKvvzrNMj7EAYRcRsQIVeL/THpwkAWe1vjv+5TcmURz8xiSKg9+YRHHwG5MoxRX0JKO+d9SvjeQVlWBuG75irkBWPN9p6ekUhjQcwRoJtjXk/U0gX+0GzuWm1sEZd7AWEVGBpDnIVQ6d5ioRxyDTxtD/rx+6HWWDUan044WuPaw4l4xaLs5A7q3huQ5B7h1Dz8TxTgXkm++q8Os8eg/P8VW2M51+HBGxW051cU+FaPcdLY1+40bLhPev9P3c1nojNhuNg9O5ysvzQp/zdQ69HyPisqPvWE7lxDTpGgLYv/zGJIqD35hEcfAbkygOfmMSpZhBqtUBSBuaXzECkUPDHfoF5d5F0GDVaxBvC+hTRtXENOCBsqVI7l3VWjp6XaksuttwVlwJk1+HhfbSm3U102qY6XYFXAtBveL2QSC+zFU2vQvHjYg4AOO3AIm0hIdwB6d9DyXUJzD1+eg3I1nb/9EvZK2oIQPuCIacRGB/xN2FZv3t5irydhAHVakv7Wyu93FZU6m8xsu7kHl3XnG8jCGOhoVK5UMoY6Y48C+/MYni4DcmURz8xiSKg9+YRCkGIHfOoCzzYa1ZceNcJQkkgsXxpkEsQXbTxzBNdAKZTTX1GQSpMYFMsslWJcsM1pa1isF1TUXCERu4PzSQgdYWmd5HgoY59DLoUQdlvjcdEGzQZy4iYgu/CWsQflPoSUfPhbJILyhjsFLhl/9QP+/Nj7UHX/e44XcMkhirqS7OL/T+PH9xImv/k2lZ7gvwc/NCz/scMgHfAyE5BMEdEfGgojJ2yCSEMuFt6Jp/+Y1JFAe/MYni4DcmURz8xiRK8f5a5cKjQstWR8cqxLo9FhOvcrBioTWaqjwZbzRj6VOYdvsCJOBLECUzEH7zLYi8rW5XQdbeFoZNRETU0BduXbEclONkVKqp38tdkHsEZf1RX7f7TsMoDiiXpr6HU/jMDRg2koCUoVl2VQznpZbavv2BvjfDhmuhjNMNlDzfgPz8uKfbPcuoHFyfM92HGxiGkoGIe9BQak0MYIJ1H3an++1ffmMSxcFvTKI4+I1JFAe/MYni4DcmUYpvje9kcX+sdh76BEYNI3sqmF7S7fO/Aseh/yrU9zAZqNJ/ABZdGLPd0nKT2d9sdTsy+JSe2wTtj2nA8A9CH5o4cjJuu+NOt/pMn6MDjphAeihddgnHIbNfNkygeZUMUn4HkO69gH4F/a2uRURARmysYO1lptdyEfoP1z28Owuy/XDNC/inoFtoM9FFw786Q7D41ES3D+8TbedffmMSxcFvTKI4+I1JFAe/MYlSDIYqK7ZgSdZLGCW8gLHNIPw6DZJsB8JpuaPUUphKgrXyCk3S2YAEpAacJM6aoHRc2p9ShokM03vh8+D6dpDyuahV+F0FTLMJ7hGwB5LtABqADkEWZvCcScROqfcCfF4OP1kFNZIIntg0gz4E1Dj2DiTpHM5xRQIZrm8J+9L4+i30DIiIGMM7cQCpyjQ1ad/CzxjzJQ5+YxLFwW9Mojj4jUmUYnKrcmFVqvC5hwkrk47KvSWIl9f5hlkWuv8ljBe+7JB4gfp7ED4o4kCcUe0+ib0uel2WAAABFklEQVSIiA4JJ/CFJBZJAmYgOdcw6xybhMJ5LyqVV5RtGBHRg4kvDwZaVz/qa+blPtTFl3AjSH7dg2C7g8+jsdRNnQ5I+M1Bxi1gjaTkEnpB0BpljNI7dgO9E7oN71iJ9xYauOK7+NXi0hjzNcLBb0yiOPiNSRQHvzGJUjxbaUnhfaYib9JVYXAPXx0raPTYBOVkUePDa2jOeElyCKbuUDkpluqCJCPploHkjGA52DZDsN5C6W/oNdPEHmr+SSJvvtF7s204v4OeSuAuXPceCKg9mCBDD5rKgWlqEsovWKJMuQgWomXLsmx6/l9FIJMAXkB24Czjxq+UKUlLGUjA7lcU8caYrxEOfmMSxcFvTKI4+I1JlP8Dm+QKktYjW1wAAAAASUVORK5CYII=" y="-18863.036294"/>
</g>
<g id="matplotlib.axis_1055">
<g id="xtick_1582"/>
<g id="xtick_1583"/>
<g id="xtick_1584"/>
</g>
<g id="matplotlib.axis_1056">
<g id="ytick_2636"/>
<g id="ytick_2637"/>
<g id="ytick_2638"/>
<g id="ytick_2639"/>
<g id="ytick_2640"/>
</g>
</g>
<g id="axes_529">
<g id="patch_530">
<path d="M 29.174375 19131.857481
L 151.464375 19131.857481
L 151.464375 19004.563954
L 29.174375 19004.563954
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1057">
<g id="xtick_1585"/>
<g id="xtick_1586"/>
<g id="xtick_1587"/>
</g>
<g id="matplotlib.axis_1058">
<g id="ytick_2641"/>
<g id="ytick_2642"/>
<g id="ytick_2643"/>
<g id="ytick_2644"/>
<g id="ytick_2645"/>
<g id="text_133">
<!-- 835 1849-150319 -->
<g style="fill:#262626;" transform="translate(15.789375 19115.250717)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-56"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-53"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-52"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-49"/>
<use x="506.005859" xlink:href="#ArialMT-53"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-51"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_530">
<g id="patch_531">
<path d="M 164.424375 19131.857481
L 286.714375 19131.857481
L 286.714375 19004.563954
L 164.424375 19004.563954
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1059">
<g id="xtick_1588"/>
<g id="xtick_1589"/>
<g id="xtick_1590"/>
</g>
<g id="matplotlib.axis_1060">
<g id="ytick_2646"/>
<g id="ytick_2647"/>
<g id="ytick_2648"/>
<g id="ytick_2649"/>
<g id="ytick_2650"/>
</g>
</g>
<g id="axes_531">
<g id="patch_532">
<path d="M 299.674375 19131.857481
L 421.964375 19131.857481
L 421.964375 19004.563954
L 299.674375 19004.563954
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1061">
<g id="xtick_1591"/>
<g id="xtick_1592"/>
<g id="xtick_1593"/>
</g>
<g id="matplotlib.axis_1062">
<g id="ytick_2651"/>
<g id="ytick_2652"/>
<g id="ytick_2653"/>
<g id="ytick_2654"/>
<g id="ytick_2655"/>
</g>
</g>
<g id="axes_532">
<g id="patch_533">
<path d="M 434.924375 19129.355717
L 557.214375 19129.355717
L 557.214375 19007.065717
L 434.924375 19007.065717
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p85fcc39b2e)">
<image height="122.4" id="image15a0e2c041" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="434.924375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAHYNJREFUeJztnTuPZelVhtc+e59rneru6p7p7mFmGBnGkoU0AmQJCckJQhASkPo3IJHwD0jJkUgQKSEZKSQYOUGWwRphGMZz6elL9amqc903ghk7qPV80ipaDvB6n/DTPvu+aktPrUv11+9+f7RbfFm7JXtWtW5tM/o1/0uzxipYNetg69fD0a1d9jt/7M6v7Xr/29PQ+eMOvVvbdye3dmj92ohXaFbBNU7rxq0tmqnfbuK3I+jY4+jXBlijaz71/t6UtiXqycSt0TVPJ7Vbo/vVj4NbO3b+HWvhmdJ9uAt03uezpVtbT/3asp75/VX+mone/DXTvTEzm0/8u3M2mfvzge3mcD7+6QkhUqDgFyIpCn4hkqLgFyIpzRw8ycXghcNAUgq8BEnA/cgC6TB6cbOH359gO5JDKN1IvMCfPJJSLQitfvDHNTOrKpY0/1dIpqHUgsPSvfllgMIP7mNdxb4xI1wM3dcJ7G8AcXYXaJ987Nhzxt/Sw3ozT4kSmJ7/AbbTl1+IpCj4hUiKgl+IpCj4hUgKppatwJ0M8HfiBHJnZ17u3ZiXeGZmW5B7u8Fn1YUzzkDakKCpRhAvcCdI7p2Ms+KIqByKEhVntN0w8cKnHnh/JPIoa5Curwlm85GooudCApEY6JneAbrm6P2m+0ByLyoVi8eBfQ5wHzuSnyAW9eUXIikKfiGSouAXIikKfiGS0pCKIwUxBWGwCP7tOBYy/Chzr4NtSWqgZIFsvlJ55G2oXJKEz671ZcNm8ay6qPyibL4KpFRDpZpBidRP+JxJsIavL3pskKl03iTi7iLJoueNZcdvIGxJ7i3gHYtKvBI1xCDJWSod1pdfiKQo+IVIioJfiKQo+IVISvMc+vVNqb8aSIjryouhLfRXOxWEX1TGkBRB0QXbkbSLyr3D4HXodb3Hczz0PjOxhesm0YXZbiCbZlBWTWtRqUhiyIzvLYlYInrsDjJB22BVbg0eriTnSJzSe4fZoVRiTO8YfENnlX8uZxPf6++s8u9iSVJTDNI7dgyWwOvLL0RSFPxCJEXBL0RSFPxCJKX5j8oLrGnwb8IWxMLV6DPgorLIjOUJLZHIiWZVkXhZgKDpIANuBb81M7vpD26NMhhpiEgLGXWU7UbDIfB+AZQ1NlYs/CZUHgsyDjPygmWwByjzJimFff1IukEmoFkhUxKuj86b1igTkIaurOC9u5gs3Nqjyj/T1chlzC08rysoi381evncD+rhJ4T4BgW/EElR8AuRFAW/EElR8AuRlObHp+dukQx5dORwKWWUIJtKJhfTHWGJzPcS0icppXIG10eGvIdGmCUo9bKdUFprrClo1KTTedeUdlt4VtF6cnoulNZKqbf0ntB9wLTU6DScrw8eOh+6t9SMlFKfo6m8D8y/d49GSNkuXMsJ7tkIxz7Cv2ZO8M7ryy9EUhT8QiRFwS9EUhT8QiSleXG6couURko18FH5Mafx3sZiA6aDF9I+QWpROmZQVPYkoECc3CVVGdNQ4RxHEEuYlgqiirYribzblMQe3VsCpyGFp9fEmmPStaDQLPo+kpKxMeLR/gmUyrsGwXYOY6EWd5g0RLFBzOGbTuejL78QSVHwC5EUBb8QSVHwC5GUhmQard1FdLmDjPw3ZgaiZAZ/j/rKn090ZDTBE4T8GjUeLTUjjTZNpPtIUgvFIElJahIabIxaEnvUXyAqAbFhZjRjMCoBqRlp4Rgk90hek8gjWbyEzD3KIl2D3FuB+KRmuW3hWuip0hplc65BxOvLL0RSFPxCJEXBL0RSFPxCJKWJNi7ESSwooLz42hYFhl+nDEH6C4XnTeOKqXEllrzG7kOxYSZcIsm9I0wBInlJAooy5Wh/1CSUKE2GiWZPEjQKGkdG4wQZygSMHbeUyUly76ye+98HhR81ej2DYyxJNEKKHl1d6YqjojMqAfXlFyIpCn4hkqLgFyIpCn4hktJES3VJxkRl2gDTQsxYGB4qL7BQvMB5r0AOUb++BzAl5QJEzgbk5Vejn8xjxgLrGJxKgyOjIStyhAy46P4Ies6ldcqeZJHn71lU+FGG33rqp9zQ+dEkHTMWfnN4J+gdw/Hu8J6sDDIBoVSXC9s9padH6x3c2xNsSWpXX34hkqLgFyIpCn4hkqLgFyIpmOFHRAc53AXcJ4kzWKPf3m+8HPreeM+t/emjL9xae/LS5p9fP3ZrP5jy/WrhHLeDH1dORHv9kZTqYYw4gf0WC70Vo30PqZx43/vx0JSFSND53G9Wbu1hcxban5nZDo5NWYgkn2eg6BoYBU4j7SmjjvIuTzB2e1eItevK3+8bEKx7WKN3TF9+IZKi4BciKQp+IZKi4BciKQ3Jnajco2y+qLwqrZfKTG+zgCytDydeBH3/2//j1s7/8s/8Dlsv5/7kr/7GrQ0/eB/P5xpk48tqi9vehrLTVlB2StdMpahUSkylyKUMPwKfNWSxkdzDoSvBMma6vnsTf29KXIN0vep2od/SM5jCO7upYbgHbNfCMzhAf8pXIwvSV73PLiW5hxmjcD768guRFAW/EElR8AuRFAW/EEnBkl4SRlwmGsxMK2SSUXkkSSjKlnq3Xru1P9z7Yyx/y2f42Xbjj/vRH/jf/rmXKX/8F3/n92dmHz974tZ+EixlJdFFcu8MBkZMofSXBotERapZfBAIrVH5LhEt86U1yqYsseu98Nu0XvhRyToNL6Hzofu9r/27M4fS3xsQpJc9C8n94LMnKVbpWZPY15dfiKQo+IVIioJfiKQo+IVISkMDDA4gIUgCkSQhebUuZGTdg156CxAT1CPtO4Pf54ePnvuD9JDB+C//5Nba//yx/+3Ry6K+ZXF2A5la1703kLvO75METVv7+40iLjyxNibYzDhLj96JuBiO0YFgO4Dk2gw+062UlUrC79jFSoyjPSrpPuzgvEm6kcSjsujScaIow08I8QsU/EIkRcEvRFIU/EIkpaEsu2oCGUJUJgoSgcot36mWePDHBoM3oEx0CkLsSQeiq/fbnT65cWvjf/m1w/NP3dpXX/gswn8d33FrZmafT67cGmWIodQCwXMFWV4nKN8kAUWgVCxM8yW5R+dIQgwn7cIaqSvaH00cvgKRWgLLiUl+DjA1GN4nvBY4Bg2foXghiUfviFm81J7OsYM7ri+/EElR8AuRFAW/EElR8AuRFAW/EElpyAxSk0L6KzGD/xS8VflGlr8x+jReM7N3QDaTz7yCPpPPGn/eP9o8dGvv/dD/p6Ef/G9fjP6/FM8af+DPGk5fXUAK8tsz30sA00PB7tJ/Csw47fM29FywWSqMxDZ7s7HfFUy0of800H2gpp50H06Vf3FohLgZX3cDDVPJ9vMz8NB2dD50v+ma35RoTwV9+YVIioJfiKQo+IVIioJfiKQ0S5BDHYwwprU51Cc/hJTdXy+UT19A6uYLmH7ycuIFxleQPvmz2v8tezj4Ec9LSCEGB2gtSClqJmpm9qSCngXTC39saMK5gVRekoCU3ovAKVKfhRqaf5qZ9XUsJbaUhur2RwIRBNsI46oHGEHO8pGvhRrCLmsW0LeJitgx+FxI+JVE5ZtA95ZTsYUQKVHwC5EUBb8QSVHwC5GU5iE00TyC3DtBg8oZ/O14BBLpKTQpNDOrQfDsYVLNC5B7X0ITR8pWvIT9rSHDawHnvYD9kSw0M3trhDRE6G2wn3g5tIUx0rvRr1FjR5yaU/v7SuKLJKCZGU1xIuHXVlCLHmwyiTX1bzDFpyTOaH0Bwm8SrLU/9f75UV8EzPqDxDtUl4VrCU85IuFH9wyPIoT4lUfBL0RSFPxCJEXBL0RSmvuQ4XekRoogDGoQEzUIsbb0Nwb2uYNNryGD6gBrDUibFkpt8XxAaBpIwGlBxlAR5RaE0SWIyuvON6S86fx2hw6aaIIEosw0kkhn5suvzbgMdgXycgCDRWKJBOKWptcEm4Si8CuIWConpntB8nNmfo2uhYTfofeSmiQn3WtaMyuMBwcBeTK/NvQSfkKIb1DwC5EUBb8QSVHwC5GUZkVlnSC/epAkJJs28NtPGi9JzMzOBv/7HWT90RhqyuY7g2y+d8yLKrrmHeRaHeBaaDszs83oBc+n/bVb+/x46da2IPeOIIxI7kQn0pBALIklknsLEF007WkGIo9k6OvGS86Xrb9fNC6cswP5udA1wmvHI6xRaMcEHWUMEosa7ivc6xI00YjeJxoNry+/EElR8AuRFAW/EElR8AuRFK7pBFoQKtTjbgNlnl/AgA0zHsd9BZKNsrxILD2FPnq/c4RSXRCVP535/X0MmVKfDb7fnpnZF50f0f38uHFrJF6iZZlYvktlnvBbzASruffcAvoMUkkwjWOnEnHqe7gGOUsZmpfd1q2RBCwNqohm+EXh38I7BiKP7uFFc+bXah5pT/02KS5vRp8pedn591ZffiGSouAXIikKfiGSouAXIinNLpjFdoC1FtaoT9llQbDsQMbQ+bQgsIgL6KP3m5UXRg1M2n3Z+4m6J9juRe/3Z2b27PjarV0dvWR5k4muRA1TcWltCn0LSUCZccYaTW4+AwFFQ1tI+E0mfo0Gw9C5XPU+O5Ay3cw4EzQ6LZdEM2UXsgT0a5S5dw7S9BENgDGzJTwvikvKiL2G3+rLL0RSFPxCJEXBL0RSFPxCJKX5HIZDkOg4QD86kh80IbYq9Febg8zZwXG2UC5Lcmgz8b+96n3G2Rn0/zuC+yKZsi8MIImW4BKkM7E/IvV7A7k3h+yy86nPGnsA2WVmZvdq39vvHmTuXUCW3jmUvJIE7qm3IoiuCsQgZe3tK34uBN3HFt47yiSkQR6UXYhlvnDelJdIQ3O+PjaUakNsvIKpz68hU1JffiGSouAXIikKfiGSouAXIinNz6AUlYQKyT3a7ghZTCco8zUza0AOnUB23IBkI/H2MWScPZ7fd2vvdDAJGCbb0mCQUq84gjLJsC9cUOQR9FsSfmcg8d4uCL+3Kr8tZe69PcBwD5C7R/C9K/ju9FSyCu9dN4FMQDLNBagcnATyFezzpvf98UbKsqMBG/A+XcEQF9quxDVMeL6C8t3r1mdF6ssvRFIU/EIkRcEvRFIU/EIkpXnV3bjFqPCjzKYpyJTSEAIaBEEC6wBZTCT8Pmt9z7wfzXxm2h6y3a5JSgaHO5jxPcNyWyqXhXJbkoXUmy8KPRfqo2dm9sT8PXsKcu9e8HSo4nWAzD2anryANeplV8P+zMxq+P0MngGVwdL7TVl/tEal2zSFmIap0PtQgo4TPR99+YVIioJfiKQo+IVIioJfiKQo+IVISsOTTvwaNUgkq0hpjbMJDwZa1b5+ew1pqAT99+EA/wF4AemTj2tvs6nnAKWBFpteBptmku1vgrafoMaTOAHoDmnJ9LToK0F7pDXa3xReuzlc8wLu9xlcM21nZjaF/8KQ7ada+RP0h7iB/1BRym8L8RKduFRK7aY4orV1AzEED0FffiGSouAXIikKfiGSouAXIikNpX1SA0+qQyfZ1EEaIW1nxvKsA8kyKaTU3oZSGKk2mmrEp+DXJiABS+m9JF56qDun+0i/xV4AIK/omgm6D9tC3fjLCchdkpeQUruEc6Qaf2ifwBKQrhmeAb9hZjP4vpGAbCsYAw9NRkvPPwI902ijVjNOkz8DaU4ineJcX34hkqLgFyIpCn4hkqLgFyIpTR9sPkhrJCai8sqM5RdmQYHOoe0o66+F7W5g6soCs76oUeQdhF8Nwo9GN0PDTewPQI0+YQ17AdB9gOaPZmZf0rGD02ZwbDeIqocwTp3oQcT1BYFMjPD7ChrHGmxH2XeU6Upr0YzK6DO9C5i1S0L7jY4ihPh/i4JfiKQo+IVIioJfiKQ0NMkjKt1IXuFo4js0vSQBWRrxfRuSbiQV9+aFH0kk0kpN4VooWxFlHFwzrVE5MGUcRsUgZ3IyJxpDTWXeNE4djtNCpuMA47incH0bykyE51d6Q1oQiyvYmMWwL1nfwDScfedLyQfYH4lYWitlxEanAFG8UPNXffmFSIqCX4ikKPiFSIqCX4ikNJuTFxhRSEpRtlpJ+EWnANEwFpJai4nvzUeZaTR6u4O/gycQS5T1Z8YyhsqbsVQXS15jspAkJ08Fgv5vhb53C8jSI6FGEjGaZbk1/wymOK3J/5b2VxJ+JHzJ5JIEftlv3dp15wU59esjKDuU5N4A2YZmBeEXPDZlOurLL0RSFPxCJEXBL0RSFPxCJKU5dj6LiaBBAiRTKBPsLnCpbjCTEDMG/flcw3AP4ghi8Lr3wsfMbNf78thj7+9ttDdfuHw3+lv4Oz8t/O2nstwHMM6bMvJOlX9+RywHp/5/dM3+uAfYjp5zieg7QXKPJC6BmZzBQSwlooIc+zrCo9aXX4ikKPiFSIqCX4ikKPiFSAqOzyW5F5VNJK/uAmaIQTkiZUEdzQu2qICkEsw9SKBdx33vDlDWSfKyNOXXnw+dd6yPIoGZbgVWcI4f9P5VedzDM4Dfft7ARGW4vnWwdHsPxzgUnvMBBCSVCe+hfJey5+idpynLRFTilmKIjk3xgv0DYUlffiGSouAXIikKfiGSouAXIinNrI4N2SAxQaIDM9gKsomllic6RITkB/U4o+N20I8OBzT0XEJJ101TVankmbaLijwcnAIZelR+WzoGPa0VPKrHcC/28D15UUOpLhxkDsJvAcddwb3eFcpgN7B2DWuU9Yf3FuKFynKjmZwUQ3cZ2vEmMaQvvxBJUfALkRQFvxBJUfALkZSw8MPSUSrzvUOGX7REkbaLShEqbyT5QX3YUJIU5OUMpN2i9j0Fl7BGgi6amUgibwm9DKlfX2mS7BVI0k/hPTHz17yH2/PpxGfPkWBbwD2cDiTOPNSr0YzfW6KBvZ7VfrAIvXcki+k9pp6X9OxLpb/RHn5RQa4vvxBJUfALkRQFvxBJUfALkZQm2leMpFt04EA0C6l0HJIslBVHAyxIdBwHL6BI2pBzK4lGGopBwogGi9Dk39JwkNvM4bg0/AJlEQyqMDM7gSQ9Vn7tc5CAB6gdfdUf3NqcpgZXS38u9JxB4rUFQUo9BWmK7YPJwq3VU38fr+BatrDWwvsUHaZCEteMs1U5MxVK4CX8hBA/R8EvRFIU/EIkRcEvRFIU/EIkpYk2BUSzH9yuK1jlKNT0ktJkzybertM50nSdu/xHgsB+B3DelB5MZp/MLtHAKO8WnilZYTLSZmYHsukTsPjw2xPskyYf0QShtvbH2IGFX0NKbCm9l9KIp7DtwwpSsakHQvDe9mDcfxnQe0tmn9KA9eUXIikKfiGSouAXIikKfiGS0uCYbXBf0TRgrBEvuDSSFXQ+lMpLMm1OIig4EYXkF10LyZQSJBsxzRaEGAsaf97HYF8Dkoqlen561tFGqD2k95IEPpnf38t+69YOcNx7IHZprLiZ2cr8e7Kgdwfu7YJGgU/8tdxM/LQmlIDB98knn38N3cfoxB4aLa4vvxBJUfALkRQFvxBJUfALkZSGxwb7DaPZfNGMIzMWE3Q+1FyT1kaQMTglBYRPdKLNXYQfNiiFNcqyLNV0u2PA/W6DGZUliUvHpvtI14INXLEhbGxq0qbf4TneZgbNZM3MahCBC8iKJOHnc/7MjjDVfg09Gg4w8nuAPhLRZptm8XcHG/DiBCEhREoU/EIkRcEvRFIU/EIkBdOicEQ3ihy/RAKqh4aJZmaQDIZQ9t0NNE2cgKBbgYyJZt6RsKORymY8bSY8Krsgq25D9yG6RvJyUflzNjNbQFNJErkViEXK8IvKQswEhAw/ei6rQobfOQk6+OZNIQu1h9d2Dc/vAWQcUmnzBq7vCGKwVGpN101ER77ryy9EUhT8QiRFwS9EUhT8QiSlIdFFGXC0tqhjkqvEfvClkPver+HUnd6LktejLwndTXy/PoKm+JDkutf4qTJmZg+aM7dGY7FJ+NF2xBbuF44bhzU67kXN13IOInAH4m0LsgrHVcMxMPsRpj2RfH6nXru1j0a+ljUcnLojtiD3TnCO51AiXJnvMzivQSrCM6Ay5rbbwxnyuHmCyuIpLvXlFyIpCn4hkqLgFyIpCn4hkoLCbwZZUfenK7f2dHrfrb098eKl1P3v5eCz9L7srtzapvVlndEyX1rDXmogd9aNFzkPp142mZk9hOumrEiSMdxTMJb+iGW1kM21hiy09yf+mZqZXYxeTF1OvGx6BdsdQPh1oPyop+Cs9vtbwzCN3xu8XP3dk3+XzMxa+L49hwy4V1DH3sOzugePhbL+7lX+3VnC9dE7QvLZjIfNUG8+QiW9QohfoOAXIikKfiGSouAXIikNlVEuYALuB7OHbu33zQu/bx+hp1yhV9xPZl6S/dvUy8b/ht+SBIyW5dKEWMqxW0I5MAkoM86Ko2mwpPFaWD0E651pMvESsrk+gKy43265pPftzkukrxq/7bPGH2db+fPeQ+YeXTOJz8ejP8avtfSc+R2jddqSvoJzqKCl0l8YLmwL6qMHGbF7mEL8rJAliwNfQGhjT0goRdeXX4ikKPiFSIqCX4ikKPiFSAqahRn0cPvWxAujP+pu3NoH3710a+2G/8ZcfPzErV0ufdbZq9qXOFIWFJU88lCS2OTecyjfLZXfUqbWLHicHUikBv4u03Ra6l33BKTkd1q/3UdQAm1mdnHh7/f7W7/P5wd/f17U/jivJ/6ar2HACpXVrge4X7C/lyPLS3rzqBMeyT3asKGhNCD3YDObQy9LekeofN6M31uKVeozuQSJry+/EElR8AuRFAW/EElR8AuRFBR+2NcPtnv6ni+/XX7vW25t8foaD/7+l379or2AY1NGnl+rQATRAAMasLEAcXYGGX6LgoyhbL4VlLzSfaxBGNH+5iB8ngwgZ32rP/tg9BmRD+5zr7jlud/BbAGd7176pf7khe0O7i3lL+5pci+IwQHuQ1f4ji3BvMEubTnQcfx2dN64Vqpjv30u8OwbuD4zlnYDXAxJQFrTl1+IpCj4hUiKgl+IpCj4hUhKQ4MpqEzwBQxoeP3cy537IPeGjZdNZma7vS9nvJ76LL0jDIwgaCgCyT0SeUsoyZ3RNNfC30sSgfdHyNIDE0SZbS0UGZ/D2Nj3Wn+/3m28yDtf+x53zYzLhk8HL4e6k7+WY+e324Gs2sIt20Dp703lrwX7G/rdmcGQDDOzCdwzkoA1yMYKMvJocm9UAtIZUmZoKcOPSsyphyP9nmJDX34hkqLgFyIpCn4hkqLgFyIpCn4hktJQg8sDjMn+pPepvP8wPnZr3/1bb+aP9gAP/sOFN5D/3vt+AJedrzunUdBLqGPnZp2xv3k93BtaK0G16B+e/P1ZmL+WA9j+KRz7Xu2f1frMT3aZzf0xKspzNbPdjb+Pr2/8f2aej76/wGXj7+0GjkNmfwvPFJ8UGHeu5jebT6BeHmv3odkqHKej2n3YXbQh6JyabRbSe6eQokup+PQfEpzshEcRQvzKo+AXIikKfiGSouAXIilNP8CElc5LpJ/unrm1v5/7NNJ/hFHepb8wVzBWedP5VGBq1kkpjA1IpBOkBk8h7ZaECKVeljgDQddA9f7Tmb++R295obm99jLtZgdNGOEU+z72N30sFJ0fjv68We75a97DoeneEtEvEUnXQ+EYVzAtaIBx3CTj6qDbpbtIk33Ir85ASJaENIk8GtBN93tEMSiESImCX4ikKPiFSIqCX4ikNJQhNEAzw83Ji6pd5zPJJjQhB6TGXaBJJTSGmPoQ7CvoZglQvTMdtyuMzqZ6/n3lJdkc+hUs3/JCc4SMs93eC79D749bwZj0pvHHLYnBVyefzbeBennqskDibA2ClTIY4ZKN+k2QiO1B7JmZ3YD8OsK2NE1nBWvLoBikyT7UrJOeQEmQYqzCGm6nDD8hxM9R8AuRFAW/EElR8AuRFGzgSRNkCBILtNYVMslIBNJ4YcpsIkj4UckynSMJvwruwwymz5jxVKHriR9h3UMHSKjUtAqkVA8C6gBTgdDEwTTum5YLYb+o/foVZMUtwH2uQRZTDtwRBCJl7pGcu8sX6wSNQrGdLLxiFzRxCd5lyuajN7am8d6w3QlKm824jJ0yWFkMSvgJIb5BwS9EUhT8QiRFwS9EUv4XDJ2pbnzqynoAAAAASUVORK5CYII=" y="-19006.955717"/>
</g>
<g id="matplotlib.axis_1063">
<g id="xtick_1594"/>
<g id="xtick_1595"/>
<g id="xtick_1596"/>
</g>
<g id="matplotlib.axis_1064">
<g id="ytick_2656"/>
<g id="ytick_2657"/>
<g id="ytick_2658"/>
<g id="ytick_2659"/>
<g id="ytick_2660"/>
</g>
</g>
<g id="axes_533">
<g id="patch_534">
<path d="M 29.174375 19273.275141
L 151.464375 19273.275141
L 151.464375 19150.985141
L 29.174375 19150.985141
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p0928211d7b)">
<image height="122.4" id="image26f3a71473" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztndmOJcd1RU9Od665uzlJEEXAsgEDhl/sJwP+D/+Pf84fYYmSSDXJru6quvPNyQ8U9dB7BZA03xR7PUZlZkRG5rkJ7NrnnOK/f/1fY3xE+fFARAwwdirkVDzu04GuGPHVpZOxT5qjjK1XF51nKGTseGpk7Lmdydg2aj231DXuSp3jXaX3HBHxx7LVeUa9v1VUMnYL61mEzl3DGC0Htib28GS+C93XiIi3gz6Dx34vY+dB77kqdB8reKOKQhdZwv0NoTfYj3ovdG5ExKLUd2JV6jtxXejYptDnsiz0+W1GHbsZ9Z4f4MHc9Hp/D4O+NxERv7l7lrFP/0P3ov7Pf5Ox8p//XcdwFmPM3z0OfmMyxcFvTKY4+I3JlJpECIKEvDOINi1cLqGR4TV7WA+Je2WpF60rveIaxJMKRJbVoKLNHIScFgStiIg1CEGn6GWMBKwzCaewZzWcW8Ez0JVEFCCILWDNERGbQkWyvlrK2BEEsQ7EuBHWTfvQjrBfcD2iTNwLQes5w7Ma4Rl0cC5pjQ0MruBZraaFX3I9w05F1/Gbb/S4+B8Z85ffmExx8BuTKQ5+YzLFwW9MptQrUpYmsoaxCzq3GBLPLiC8keBX1yoEzecg7oEIOO90jq7XtSx6FbT6Tp1gERG7EgQncI21IO4RdNwFxCYS8pqR3IHKKvFk7mDdNTyrPQh+B3D9dSDtnvC4aW4+cgeSgJgab+Gaw6jrORcqArawkzRzDWtcgGN0TU7VxHPZH/S5HP541nkuv5exov6DjPnLb0ymOPiNyRQHvzGZ4uA3JlPqZqLe14C9iMZKElgSrrgSzj+BP+3SgvtuoeLefKYCzRzmHUAQIyPZhubdcbrl4ryQsbtaxaH3YHd8AXFvV+iCzuieU0bY7xpSTFcwFsHutBlccwbfjhpSo/cgpg2YDg53A0sc8b1jq9wAx/YgQI4g0PVwLrkDiYr2EG5mXuk71qBHM6K8rGTs8L/qxqx+D+/ToMf5y29Mpjj4jckUB78xmeLgNyZTyPiFQt4SxKarAmrU1eDcStTw2/aQOgpCSdurADKCM6pZqOBX1uCKA9GtgBRh4qbX+nYREW92upWf/rCRsa9BtPlTA/tDQheIZOSKI7GJ3HwrED4jIvqJ1yTRrgUxja5H91eBAHmBOojk+ks5/KYKdDUsqJmYJkypyIfQdT+BqDjCe7dNCOTfojgILlS4ZxKV/eU3JlMc/MZkioPfmExx8BuTKZMFvxXUOLueazrh5lrHUmXY6metC7eFJhtU148gca9eQkooHAd9HKKcQ7OJWaI5RKcCz2ylTRaGP+i5bafJ0WUNKcaQEkpyFgl5d/r48DlHRLzAPDsQSelsctqRsy0gHbiB42Ygul1AYCNhMIIdfg0IarelOjTXsEYSFi8gclLa8PtRm6Q8jhovqaqFJLrSvRDkVvSX35hMcfAbkykOfmMyxcFvTKY4+I3JlHpOVl7QG5eVqqmLhVp5F2sdIxU+ImKAopndCyjsoLCWUJiTbLsE/feBxOKRrMGQrx4RUa5UlZ7dqbp796T24C/eQyvoi1qfqY14Dc9vDWr4Ev5bc0zkjZ9A5W7hGZxgHoIUabLTkl2YVOpDQJeahI2XcveX0JHoc1D7Pxl0H+jpP0Ltha/jIGPfQZvzLdjFyb4cwe3P59CCnNqS0377y29Mpjj4jckUB78xmeLgNyZT6g2INptSBZXlTMdmcz23moMQl/iJmZpDP4Ktse/0ou0BOvGc/v8diWq4l+bENtJyAbZf0G2WG93HT4adjF0fVbQZwbZbljoJdTNqoRhpnFTkiuDW5FTUE3P84Xp0LnUaIvqJHY6oK1BEhEquEdfg5f4Sakt8ddH3uwFh8etGhcFvK30/n3sVAZ9aFQFTgt+s1HlWFZWoVZZwz/7yG5MpDn5jMsXBb0ymOPiNyZT6YaYOowW0up4vweF3reJVcw2dWEh1CS7C2UKxzx6Erqet1gKgFsY1OAErKuAJwhK290507JmtVByaWih0vgRXJMxNIieJgD05J2EslTdOXZyuoLjmAQSoI1x1Tp1qEsVDP+Y8sfDkKZHPT7riFZSxeOh1nodCX1zqSPX9OK1t9xnakp97HUtRQ20Dcv3NwKG5hDF/+Y3JFAe/MZni4DcmUxz8xmRK/fBKHUbobFvD2B24vm7VNTbsWNSovqWW03rNAwg0+17HKhBtVgW07S6h2Ca44sg9RwJbBIuXVQOiXau/t8eDussORxUv953e8wXScjEFGsb6xG//AtJo73oQFmHuDkSpW9ibO3hWlJH9XOm5fwL3XJdwi1La8YKKgkI3nSMIeSSSQhY6CpBUTJQEu7rkVOtNTW3gtfjrfaliOBUj9ZffmExx8BuTKQ5+YzLFwW9MptSLWxUmqhV0vrkBd9Fn1zJW3l7JWPG0xclXf9aONrNHFWhGEPeOJJRQVxLQgWpImSxAGJzNQCxasXhJ7cEHEMkuZ93H7UHTMt/3OraFGn4tCFWrQW/6CgSoGdT1i4jYwJ4NcCjVhavgGXzWq1Pu9UKdpeSo/HBQ8Wo+qvBVgRgWEfFUQlouiLbPoLH9BQS/Dvb7HQjDZPEjwa6E61FdvoiI+1pbvr+ptOX7faFi8RWkafvLb0ymOPiNyRQHvzGZ4uA3JlNI+4qihlpx1ypAlfcq+BUP93oc1DiLiFh8qoLf1VttWXzcwvkTS/M14MmaVdDUAtJqN/e6lhn1ug7es+5FjzsfIMUY0lbnIMb18KwGcERuQsW9TaX3VyVccedumoA1h+M2sO7XG61dd3V7kjESSCk9+c1J34czONgiImpwCJ7hZl6g8cYZnik1FjnC9W5BdIvmDuYAByo4EFPXvIcGJCTuUdt2f/mNyRQHvzGZ4uA3JlMc/MZkSj1AiinauUpIZa1YmNBzE51tr1WsuHmlzq8BUkIPJz23hzpzJO5dbVTIu3qlAtTicxmK6lYdZxERI4lk0DJieVThbeh17uao674B8YuYz1Twaxq9XtdNfH4RARpiLEFsnIGjjuojno/QCfii6zlDsxFKql6CqzEiYgXvbQfruVAX4on1A6kpyeehAvmvCx1rwOGX6mVDzsQlvHYLGKNu3P7yG5MpDn5jMsXBb0ymOPiNyRS2RU3lrILW+OFJxoZ3OhYR0T/p+QWIg+uNHkfptiQMVlCbb30L13sAQWQDLi0SPhOQUau5AgGyVsFvvldhcKpAV4NrjDip8S4iIioQ2RYN1KSb2GDlea+prP0OhDgQbFv4Pl0mdviN4AYkJLKR4Ecdgku4vxW5LOFdvKcakyBUpu5uhDWi+Am23RU4L/3lNyZTHPzGZIqD35hMcfAbkyko+FHD0/EEgs+LNvyIDpxk3+xw8sOfVVg6vKjIBuYkhJxkDQiDFTQlgZKAKEimUokpNXrsqEuvHlfNoWYiOgZhDhCg8F7AyXk+s95LHX2p2zGtkJqp7OA1o9qDpKU2tLEACXsREauJadAlbBrJpvCoYg3i3hqOm1FtxOnaJTr/5rA/C1j5HJyX/vIbkykOfmMyxcFvTKY4+I3JlLo9avyzxqJpsBV134Vzzz+wGkPi3uEArjqAOuhOBbvnnsHh1aoaQ914I7izcQnzEP1Zn8FprynLJ+jm23XTfr9bcAe+dNwcglx1CxByqaPyFsS9HXTVJTZQpHCBsiKQOKyAe4GG0+iUoyYwCwgO8l2SC/EZ9oEasaRYkmAI90Kh0YIb019+YzLFwW9Mpjj4jckUB78xmeLgNyZT6v1WiwqOL6pU1h+mtauuwGfZXfg35gIFG8laSrbdAuyhxAkKfbaQr061AEghT7Fc6F4sE+28P+YIKj7lwD8N+p+Qn5PbLvP+HKUZ1OIKvM7UwppsqXQuKfvrUm3lZPduoRZAREQFxWgpt/261me1Wqq9e76E9YC6/vZRW9U/Flr89fAzPr+k4lMtgRbGzmBf9pffmExx8BuTKQ5+YzLFwW9MptSHI4hIILpRDnSzVQViDsUjSbCL4G4sHQlLqRYmEziDaHeBFsZHMGmeQCRJmU1vtioEXR9UMKKcdbLZflfqc3mcQdFLWMsGFrmGQpE/J5d8ACGvAeWN8stL+MaUcC61Uy+puw48v9Qb0sBfqF35zY12ito8qKW9gc0dLro3u60KtnWnY2QsrhM3Q/beFfh7l7CPZ7foNsb8hIPfmExx8BuTKQ5+YzKlJnHvBIIK5XhjhcNpzWL+ek0VIXoSFqHTyQxyv4kLrPsAQt4L5FqT+yo16xbcd3cgNpKz7Rlanb+tIR+80NmpPfScinrKSLoV9FQhkMQ0PG6cVjyyAXGvh8XQ+0nPNIJz7dfDNOdmCcpbAaJrQKFW6pq0aEkgJSGV13MD7/yrQkVJEt1J+PaX35hMcfAbkykOfmMyxcFvTKbU21HdZSS6kThHXVeOYGE7JdJv9xN/eqhLCrmdyHFGAh2t5wU0oB0IUENC5KKUyQHkpjmscQd7doZ52oktmrEjzURxLiKiABGKdFx6JyhdlrrFLKHlN4lkF3CBbi/6zh4SrdMvlGLcqTh7DWnVm1bFtHFiJ6WmAcFvD67Gie92RMTNqM7Ee3AmUqp9Bx2b/OU3JlMc/MZkioPfmExx8BuTKfX3lXZYoV8EEnxI3HuBk3fgTIuIOIEIRXPPJrrYluSWgutRGuwBxL0dyIV9Ij2ZRhuokUftnGl3aB8q2Aeat8dW1zq2AeddREQ3UfAlSNx7daet3Df3KqaVsMjTE7T3/k5FwPcjtxvfwkZS55z9WUXAe6g92VCLHHimZQVuPnjSS3ArXiXcq7cz3bPNrY4tHugNV/zlNyZTHPzGZIqD35hMcfAbkyn1YwU1xOBAkhB2kBO6BVHjlBD8CkrfBdGOZK0LCG9ncHOtMb2VauHRHLpuctlFcG2+DdW9gzG6ZfpVpjF6LrTb1Fr6rlaxKCICyv3FsQfhDVY0r3VF61utZbj8FTyXmYpf9Ubdaq86FRCP37PgNxQq5FEqcwdNP057vWYBJ/fgnqNGLMQdtD5/DWm6ERH3DwcZW7zW/a7Wup4R0o795TcmUxz8xmSKg9+YTHHwG5MpdTtNX0OB7QAHbgsVMHpqqxoRywIEHjxSYQ+TzrNGd6CeSQ62CsS5M7VkjeDcWoB+bUlgozp6JDZO83JxQ4y6mpaeGhHRw32PE4v9kUiGG1ZD2ulSxzavVBD7vN3i3PPnlYztBxDy4P1+edEmG/uddrU+tXq9bQ/doeGeb+AJPtyosBcRsXpQ8bOEmoLDUZ/V5YNTeo0xf8XBb0ymOPiNyRQHvzGZAhJLQpSCMXLAkSA2JlxxM5wJhDdU0/SadBw5BldwMyXVHgTXV0rjWsCxC5ibxMYziXswdoD9pucyQu1AcuMdQahKcYZGF5T620ETmPNO56k/qOuvOsO7A860ApZNKcIRESWImkvooLuDuoDvL3rcFian+oHUF2QDym4dIOJBOnBExADqbveiY+cXXePz41LnwVmMMX/3OPiNyRQHvzGZ4uA3JlNQ8SGxCcdAdOthLNXoogVxsIPfI03KjFjQcTDNAsZm4Dgktxql5KZ+L6nOYEK3EajmHjXtOEDNPRI5W3CrPZcgAg7qVkuBNQrJcThAaiykt5bvQPyaT3ccTmW20D1rTuBChRp+P5S67u+gezLFxgZuZQmC3wWE4u2Wn8sALwq9oqcTCH4nFS/95TcmUxz8xmSKg9+YTHHwG5MpNQl0FxARjijkKQ0IUNwagsVBaopRgihCzS9I3KNmFR2oJOTcI3cgZFAmoX2ken1HEm0muifn8Pu9hz18B17OFdnQgrsdU3fhGQhYJEB1HdXHUzGtOE5TSMkBRx1+IyIGcBz2IJydwBX5BPUtnyE9mXZxA3FA79gOmo200Cwkgh2H48QGKwfoIu0vvzGZ4uA3JlMc/MZkioPfmExx8BuTKTUp0tQ6m3L3iQZUxSpRwJOYavCcarydalWmeUmdxVqUiWvu4WCyIFM+P9l78b8jZAOGsSdYy5CoOrqBG1+Bsj+H/+NUVHMArte2qpFPfU3qmoqJ8rEj/HsFaw7A20PPhazq9F+hGu6lh/3ewn8UnhLf5AsVlKX4hdPpffKX35hMcfAbkykOfmMyxcFvTKbUe5C6jmAPbSdKcVhEE/PiuVX2HMQT+oUibWhqIUwSP0jcozmolXdEysJMrcCnXZNqHXCtBIXy+VtQ00iAiuD9ruH8qV+OAXL8B1g4dS6i1ucliJegMycvStesYW+p2CrZ12nqMwwOEwU7GouIOGHXLN3IHYiuVAvCX35jMsXBb0ymOPiNyRQHvzGZUn8X2jmlA3GnJiEPfjsWIGrMIB//x/P12CWMUecb0kRI/EKRDE4mwY7cXNpf5UfoDinPG12IODbN7kYCK1VlpeeXKk1QwvOfut8XqBHQt+D6nOgYrVKWyo9I5fOTELjs9J2/umgBzw3cyw7UwgMIcWcYo/eJVk3vbOqaexDydqPKynsY85ffmExx8BuTKQ5+YzLFwW9MptRvh6MMkoi0gNbEy0IFETqXOu5ERMwnintL0D9A+8DON+QipI49dByJMdCwJSK4Ow/dHwl5NEZtzaml+RwUrantwmlffzyW0ndVoKtw3bCPMM+YEIGVaSnCKZqlPsUCRMTrk7b4vjlpkdEPlb7zz/Aybgudl5yc5eSW9OyyPcPYBdyhrR1+xpifcPAbkykOfmMyxcFvTKbUT70Kfg0IeW1JKabY4VtIZPRi7bMlHNdRGuXE9F1yS9EvHnX2IbdhynhHgh952I5g+xtBMCJXpMpP7JIkZyHVlKOU1YiIBaTBrkDAWlaUoDwNSt8lsZDGug7ezwt3H5ptdN31Qp/MYqE+y81J749cf8/wMj7DWnoSUicKthHcAepCQiwEXDkxVd4YkwEOfmMyxcFvTKY4+I3JlHrfn2SwKVXII8fZCE6pqY0lIgLzREsQEecTDV1Um4/GSKa8gt/BaxBJQCtKXnMHP63k5qNLkhA0tSU61h4kgRSOi4hoUwrtx3NDGu18Pk0EpLbdJOT14OYryN6ZYATbJzn8CHIwLkkMpfcE3Zh63O2o90x1LCMiDuQYpXRicPhd3KLbGPMTDn5jMsXBb0ymOPiNyZT6ArW9Bmp0kKz49tG5VLssIdCU4IwqQRSh1FiSlY6QtnigTrJwvXOp/rka3FypBiSU/vtCNdegdh2lZU5N9awS4tDHUMOHJ+gQ+9PsH1N3uj/zVp/Caq318WYgApIj76zaMzoTZzMQGlcsNJYNOFOhowa6Bn/Bt5HOHCY+qxRUA/CX4C+/MZni4DcmUxz8xmSKg9+YTKl7cANxPTuopTbRzXdJ9LDdj+oxI8faACnGlB65AxmQmhUQ9Cu4AFdURbnECUhkI8ch1VwjwY/WM1WIpXkPicYZWyhUeC71GcwuCxlbn/WZ1jW8O73eCzxSPHd9q/X25nf8jtGDvYD18gj1+g6QHL2H509dranBBqaXwz0fEqLyaWL3XUrznZrabozJAAe/MZni4DcmUxz8xmRKPZDKMlHTonNJGKR04B+ngYYaIO4tQXihlNfTxEYQJHJuQSyckcBWUCU9FipJaqTj2onNPShVk+q10XaTAEViUeL0OEKad9NAI5fdSsauznocpepSvb6bjdr+qjkIpIuE8/Kgd3Pc6TN86rS1zLbS53+AV+yEIjc1zoAxTNRmTnA+CdoHENI7dJEaY7LEwW9Mpjj4jckUB78xmVJXIGpNBcU9EhATmYg9OJYa+D26hXTbDYiALYiFexABW3AckkiCElJCDN3A3NSUBMfgGfQgxpEISKLdGURAckRSunMEd5MlN+dbEMTm41zG7lsQBuHdWUBjkAuk/rYHatDB93J+0Xdnu1Nn4ha6UO/AzXeY6Nqk/UYRF/aB9j8i4gDi3hHe20tCyP0Yf/mNyRQHvzGZ4uA3JlMc/MZkioPfmEypN7Uqn2R/JRWf1P6UUknQPDWo5mS9XcBxZDcmlZqsjnjPMpKmhwbatEYqwklQnj7dCynIpDRTPnfq/miN/B8JKlAKFl0YW4A6v6pVuR7hvyPPj9rIvXgvQxERcYb/FpCVdwfFTA/wqEjtn5pnf8L/4EB3nYRa38I4PVeyzdMz9ZffmExx8BuTKQ5+YzLFwW9MptT31VoGd4MWSCSxAdt2k703AXXyoWuSULIHEZDEr6ni3lRS7cbJKtvCXpDwUsMYyYJUw4COoxWSXTjVAYbWOIPvBB4Hl7wDC+qb252M1TN9LqeDCqkvB7UQXwb+jl3ABv4CQixZeV+guuYzWJAfR+1S9AQxtB/0OOyYlXguDax7AbbkdamC5hrqUPjLb0ymOPiNyRQHvzGZ4uA3JlNqEgwuIGpgdx50xUFnkETNgAXk6S9BmEB32UT/XQ2/b5tSBSMStDawN0sQXSJYZJvq6CphbnIHrqA2AYlu6PqjWgCJHHgqNEkuyyU6yXTdG3Dube5UECsbcGj2ZLPT53eCeSMiDuQYhToEzyDuvSv0nr8djnpcf5Cx3aCFR8+D7kM76DOgNvUREXOIl6ZWwZ7e+evQd9lffmMyxcFvTKY4+I3JFAe/MZlSkxBEbr6OHH7gYCtArJiBcBbBTqQlHEtiHBX6JJlkVWrKMl3vGsS0KxhbJsyBlOr5SE4yEFPpXmg9Kyr+CXdNBSUD9jXlJKMUVYKOauEhHDuduz1By+9yWuFJok+kSh/AufcI2uBbmPubQYW8t506E7e9ioCXQcVCEshpLCX4UaruAVyDc3jWJJr7y29Mpjj4jckUB78xmeLgNyZTakozJAFj16ljiYSJZaUi3qxiwW96rbFpKa934GL6rFd153WnQtcVOK0W4GorEyLZFub+c6Nzvwd3Gd3LBlpYz2HqGpej565KcN6V/Nt/mNg2egXfjiPczB/AUXn6y4OM3VTq+qO23bsB0nzh/iIiHqE231sQXac69/a9xsFUcY/dr9NqOqauSa7BD6HrfoF1+8tvTKY4+I3JFAe/MZni4DcmU+pnEDUeL1sZO7QqxlB7765RMYUacURELMHh14G7jJxolPL6Zadj/zrsZezVKx1rZtPcZZhiGhH7rYpaq91Gxt4OKgz2IPpUE2shkuDXwLk3oOHdJgQ/Es/IwUiy4A5SY7cwzZ9q3YfrEVqx0ySgH78kPmPfl3qBx1CR+3nU9/sM9fUIFu10QST4/VJIbKQxcuj6y29Mpjj4jckUB78xmeLgNyZT6u9OTzK4vajbqQMHXA3CELn5fk6TDHL9LaE+2xcgnP0LiJdf/pO2b23uYF5I/aSfRjwuIjbPKpLOvlbh5eZJO8xewIXYQ/ruAZQukikbcpKB1rQYEgJUres5g1PuCOLsiZquwHEdCIjvYMOvQJRcwt5QKnFExIHWODW1lhqskJMQXu82UR9xCilhkNY41V1owc8Y8zcc/MZkioPfmExx8BuTKfXTSd1uLYgIJMSR+EGuP2o2EBFxBQ6/+0LHPg09/6uLihpffPGsc38GKbQLsIiB+FXM9P6KtTr5IiKqV7pnDwvd280P6iTrztCUpNUxchHujrpfLXSs7aAm4CHx209puVsQznYwRg1DqAkI1Y4EHQ9TvOm4lKQ8tbkLvd/4zoOzlETgCvYba/jByi8grkdwg48BrkmOWKq36S+/MZni4DcmUxz8xmSKg9+YTKkvvdYAQyaWGiMR8LpSV1tExJtCG2p8Hipg/brT36hflSqmrd7ovZTXK5044dL7mGKuQmNxxfdSVHrfDdTrK9fqQhxPINq0Ku4sX/T+5t+rCPj0pPf8ARpnfAAnX0TE20rX831Ah1kQkeqJ9RapiQSJez04AVvqSZJ4QampCTaBASGPxqgD7gBrRDcepAhf+mkpuRHssp0KiYD+8huTKQ5+YzLFwW9Mpjj4jcmUmrrqYvddarABos2shNps0LQhIuIzEPd+C+LeF52KTfcPKpzVN+C+WuocRQ2/eVTPbqnrLlYs+JGIWMA+ksQ2HkGovKi4U5R6XPNEri+dg9x8T4mf/idoarGHlNAW3GnUcXgFdz21VQU59DpM+2YacNq10MV2C2OXQoW3qcnpHaT0UoONqTX4IiL6YdrsVFNwsMPPGPMTDn5jMsXBb0ymOPiNyRQHvzGZUjegzpM1kZR9svJS7v4alNSIiDeQd07K/idLyIt/0Lz48hrU+bVaiIu5/gcgYAyVfeg0ExExHrXoKf4nhSy1Ndg2Qe2nOqhDT3nj09qAN4lU9xmcTzZZMoaf4b8C1NBmOVItCD2O9O0K7LSk6kdwq3P65D0X+t4eQe0/gUWXCm52U+29VIAzoerTPPSfuS5VmPUj/OU3JlMc/MZkioPfmExx8BuTKTV12OHcX7BU1iqSUdttsndGRFz3Os99c5Kxu9dq5V1+oespP73VsdcPOvEKcvxpbAFjZ11fRETRqvw1tGDTPOtx4wlEpJMKZ/0B8sahZXgDbamXICKtQXSLiFjBs95Dbjvl85/A1nqZaAOmWpskVFKOf8ouvIJrUjHTOQjaODcIeS2InKdB24Afex2jHP2f08qbbLtYKBQ7EhljssTBb0ymOPiNyRQHvzGZUpNLj/KBGxAGrxp1wF1X6qhLOfxW4ES6vlVBbfMbFSvq330iY+VXX8pY8cnnMPENjF3puXDP47tv9NyIGJ8+6CAIfsOLOhP7HRx3BCHnNO23ugTBrwHRrQKx6Mdj4flTPYeJWfkoSoFoR3dHQjP531KlLak1OQlqVJvgDI68Iwh55NwjcY/GqIBnigpqTlCsgo6OrkF/+Y3JFAe/MZni4DcmUxz8xmQKCn6LCtJyaxXyXjUqkt2XKgLeJNItr8AZRam6ze9eyVj5j/8gY8UXX+nYvQp+xc0bvR6IgCOIMX1KoFl8rWNQ1HMA514LWmF/1ufSt3A9SOmdSspHRuNUwJVmJgmQrkcuUhLtSNwryGWXuJvH5dZ2AAAAO0lEQVQzPIMXEBufR3VePvWapr3tdIzScqnNfQvvzi/pwhMxXQR0i25jzN9w8BuTKQ5+YzLFwW9MpvwfHIzD8OVKpQwAAAAASUVORK5CYII=" y="-19150.875141"/>
</g>
<g id="matplotlib.axis_1065">
<g id="xtick_1597"/>
<g id="xtick_1598"/>
<g id="xtick_1599"/>
</g>
<g id="matplotlib.axis_1066">
<g id="ytick_2661"/>
<g id="ytick_2662"/>
<g id="ytick_2663"/>
<g id="ytick_2664"/>
<g id="ytick_2665"/>
<g id="text_134">
<!-- 851 1849-60319 -->
<g style="fill:#262626;" transform="translate(15.789375 19255.833579)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-56"/>
<use x="55.615234" xlink:href="#ArialMT-53"/>
<use x="111.230469" xlink:href="#ArialMT-49"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-52"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-54"/>
<use x="506.005859" xlink:href="#ArialMT-48"/>
<use x="561.621094" xlink:href="#ArialMT-51"/>
<use x="617.236328" xlink:href="#ArialMT-49"/>
<use x="672.851562" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_534">
<g id="patch_535">
<path d="M 164.424375 19275.776905
L 286.714375 19275.776905
L 286.714375 19148.483378
L 164.424375 19148.483378
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1067">
<g id="xtick_1600"/>
<g id="xtick_1601"/>
<g id="xtick_1602"/>
</g>
<g id="matplotlib.axis_1068">
<g id="ytick_2666"/>
<g id="ytick_2667"/>
<g id="ytick_2668"/>
<g id="ytick_2669"/>
<g id="ytick_2670"/>
</g>
</g>
<g id="axes_535">
<g id="patch_536">
<path d="M 299.674375 19275.776905
L 421.964375 19275.776905
L 421.964375 19148.483378
L 299.674375 19148.483378
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1069">
<g id="xtick_1603"/>
<g id="xtick_1604"/>
<g id="xtick_1605"/>
</g>
<g id="matplotlib.axis_1070">
<g id="ytick_2671"/>
<g id="ytick_2672"/>
<g id="ytick_2673"/>
<g id="ytick_2674"/>
<g id="ytick_2675"/>
</g>
</g>
<g id="axes_536">
<g id="patch_537">
<path d="M 434.924375 19275.776905
L 557.214375 19275.776905
L 557.214375 19148.483378
L 434.924375 19148.483378
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1071">
<g id="xtick_1606"/>
<g id="xtick_1607"/>
<g id="xtick_1608"/>
</g>
<g id="matplotlib.axis_1072">
<g id="ytick_2676"/>
<g id="ytick_2677"/>
<g id="ytick_2678"/>
<g id="ytick_2679"/>
<g id="ytick_2680"/>
</g>
</g>
<g id="axes_537">
<g id="patch_538">
<path d="M 29.174375 19417.194565
L 151.464375 19417.194565
L 151.464375 19294.904565
L 29.174375 19294.904565
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pb8dd772c5c)">
<image height="122.4" id="image1255a0b780" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="29.174375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAA5ZJREFUeJzt20GOglAUAEEgXML7H85LGJ290WTMRximq5YkIJvOS56feVkvjwnIWY5+AeAY4oco8UOU+CFqPfoF4Ozut+v8fO0Mi3STH6LED1HihyjxQ9R8hsUEsD2TH6LED1HihyjxQ5T4IUr8ECV+iBI/RIkfosQPUeKHKPFDlPghSvwQJX6IEj9EiR+ixA9R4oco8UOU+CFK/BAlfogSP0SJH6LED1HihyjxQ5T4IUr8ECV+iBI/RIkfosQPUeKHKPFDlPghSvwQJX6IEj9ErUe/APxH99t1fr62rJfHEe/yjskPUeKHKPFDlPghav5rSwioe7UsnKbtF4YmP0SJH6LED1Hihygn/GDQb0/zvVvkHcXkhyjxQ5T4IUr8EOWEH7yxx2e5o78xcr/JD1HihyjxQ5T4IcoJPzjQ6HJv6Le3fBhwHuKHKPFDlPghysIPBu31Se/WzzT5IUr8ECV+iBI/RIkfonzPDx8Y+X7+G/8KjPRr8kOU+CFK/BAlfohyvBe+YGS5t9cS3uSHKPFDlPghSvwQ5YQfRJn8ECV+iBI/RIkfosQPUeKHKPFDlPghSvwQJX6IEj9EiR+ixA9R4oco8UOU+CFK/BAlfogSP0SJH6LED1HihyjxQ5T4IUr8ECV+iBI/RIkfosQPUeKHKPFDlPghSvwQJX6IEj9EiR+ixA9R4oco8UOU+CFK/BAlfogSP0SJH6LED1HihyjxQ5T4IUr8ECV+iBI/RIkfosQPUeKHKPFD1Hr0C0DZ/Xadn68t6+Wxx/0mP0SJH6LED1Hih6j5k+UC8H+Y/BAlfogSP0SJH6Kc8IMPjJyoe3XvK3st4U1+iBI/RIkfosQPUU74wTT+ae0ZmfwQJX6IEj9EiR+iLPzgC86wQDT5IUr8ECV+iBI/RFn4QZTJD1HihyjxQ5T4IUr8ECV+iBI/RIkfosQPUeKHKPFDlPghSvwQJX6IEj9EiR+ixA9R4oco8UOU+CFK/BAlfogSP0SJH6LED1HihyjxQ5T4IUr8ECV+iBI/RIkfosQPUeKHKPFDlPghSvwQJX6IEj9EiR+ixA9R4oco8UOU+CFK/BAlfogSP0SJH6LED1HihyjxQ5T4IUr8ECV+iBI/RIkfosQPUeKHKPFDlPghSvwQJX6IEj9EiR+ixA9R4oco8UOU+CFK/BAlfogSP0SJH6LED1HihyjxQ5T4IUr8ECV+iBI/RIkfosQPUT+FDWb1S4P/2gAAAABJRU5ErkJggg==" y="-19294.794565"/>
</g>
<g id="matplotlib.axis_1073">
<g id="xtick_1609"/>
<g id="xtick_1610"/>
<g id="xtick_1611"/>
</g>
<g id="matplotlib.axis_1074">
<g id="ytick_2681"/>
<g id="ytick_2682"/>
<g id="ytick_2683"/>
<g id="ytick_2684"/>
<g id="ytick_2685"/>
<g id="text_135">
<!-- 932 1849-280219 -->
<g style="fill:#262626;" transform="translate(15.789375 19403.089565)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-57"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-50"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-52"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-56"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-50"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_538">
<g id="patch_539">
<path d="M 164.424375 19419.696329
L 286.714375 19419.696329
L 286.714375 19292.402802
L 164.424375 19292.402802
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1075">
<g id="xtick_1612"/>
<g id="xtick_1613"/>
<g id="xtick_1614"/>
</g>
<g id="matplotlib.axis_1076">
<g id="ytick_2686"/>
<g id="ytick_2687"/>
<g id="ytick_2688"/>
<g id="ytick_2689"/>
<g id="ytick_2690"/>
</g>
</g>
<g id="axes_539">
<g id="patch_540">
<path d="M 299.674375 19419.696329
L 421.964375 19419.696329
L 421.964375 19292.402802
L 299.674375 19292.402802
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1077">
<g id="xtick_1615"/>
<g id="xtick_1616"/>
<g id="xtick_1617"/>
</g>
<g id="matplotlib.axis_1078">
<g id="ytick_2691"/>
<g id="ytick_2692"/>
<g id="ytick_2693"/>
<g id="ytick_2694"/>
<g id="ytick_2695"/>
</g>
</g>
<g id="axes_540">
<g id="patch_541">
<path d="M 434.924375 19419.696329
L 557.214375 19419.696329
L 557.214375 19292.402802
L 434.924375 19292.402802
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1079">
<g id="xtick_1618"/>
<g id="xtick_1619"/>
<g id="xtick_1620"/>
</g>
<g id="matplotlib.axis_1080">
<g id="ytick_2696"/>
<g id="ytick_2697"/>
<g id="ytick_2698"/>
<g id="ytick_2699"/>
<g id="ytick_2700"/>
</g>
</g>
<g id="axes_541">
<g id="patch_542">
<path d="M 29.174375 19563.615753
L 151.464375 19563.615753
L 151.464375 19436.322226
L 29.174375 19436.322226
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1081">
<g id="xtick_1621"/>
<g id="xtick_1622"/>
<g id="xtick_1623"/>
</g>
<g id="matplotlib.axis_1082">
<g id="ytick_2701"/>
<g id="ytick_2702"/>
<g id="ytick_2703"/>
<g id="ytick_2704"/>
<g id="ytick_2705"/>
<g id="text_136">
<!-- 937 1849-280219 -->
<g style="fill:#262626;" transform="translate(15.789375 19547.008989)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-57"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-55"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-52"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-56"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-50"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_542">
<g id="patch_543">
<path d="M 164.424375 19561.113989
L 286.714375 19561.113989
L 286.714375 19438.823989
L 164.424375 19438.823989
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#pf814eebad0)">
<image height="122.4" id="imagef53f8bc8a4" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="164.424375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztnUmvJdlVhXc0t319U9lUpV2uzlWuMhaWAZsZM8SQKT+Hf4SwhEC2QAgDBmNjAzZy9U1mvmxee/t7I+IyKCbk+kKKpGZ51jfcL/oT+4a03tp7Z3/+9T/bxjPcrbJnQ7HbyGax1s3iQamxh3mlwYh4ul1LbLrdSGzW6HbLrR5z3Wis2tYS20CM9l3Wet5620gsIqKX640Pi57EiizH/Z/lpNyT2Hu9Y4m9U/cl9u5ar/u9bz6W2P6fvoXnzt/9jsS2n3wgsflf/EJiH/1Sr/HzZiyxhz19Dh8VugYfNlOJnVUTiU2qhcQieF1pDVeNvndXy5luV+mzzTJNhP2B3vPpcF9iJz1d5918ILGIiGGm71gO5+5KtzfRGPPC4eQ3JlGc/MYkipPfmEQpH2YqdPRAqCpDhYViqyLgcKvb9bf8G1PAMQmS2Ei0qWHLJvQaCRJOSMjJWq6Z9idxj/bfwjXS8frwW31S6753d1Wo2nlbhcHsa69KLCIido/0GhcqqK0uC4lNa3131rneC0vASgn3PADha5PreSP42W5BvN7Cu9wVWtMGjkfvLIrPEIuIqOld/v9ftr/8xqSKk9+YRHHyG5MoTn5jEqX8vFZxKIod2FQFlYOGxCs4ScvJB/DbQwIP/UJ1FvJIoAMhjoShroJdREQfHH5lpoIYQWJTH/Ydg3B6UKs4tH+s4lz+8ksSyw5P+YJyeOLLlYQWE30n5qHXvQDBr+5oTOvBGoxA3KtanJcksq1BbiSBjkTXvKNDk9a0anStyFnYBr7LHSHx2l9+YxLFyW9Mojj5jUkUJ78xiVI+qK4lSE6iJlcR8BaVrD6HKDEEUesw1IlW5SraUEkvltvC5eSgFZLgQ+JeP2cRb6cY6rbgRKMSY7rGnUyf7S64J8ehxysH8BxIxFtzGSyxnagwXFd6zA0IYuRXI3mOvkQ9iFJp6wbekYiINbwnRaPHLOD5lLDWNZyHxGJ6F5e1int5tpTYuqUEnvgqzlJ/+Y1JFCe/MYni5DcmUZz8xiRKeb2ZS7CA34R+T8WPApxb+1vYrkUEPIJtj8Eh1gNRYwmiCJVHbqCHG4lAXfv/9VoEvyG4zkYg2lG5Jok2h5kKn7vgqKRf72oFDsanKuxuz+7D3hEx1v5z25WKVdQ+jsq8u5KBoNkj0RXeERIBIyLWsC4riNWFCnQknPULPc+q0mdDDlR6F2eVbjd/jrJxEiUHcH/03vrLb0yiOPmNSRQnvzGJ4uQ3JlFKcieRIEZiGjEmRxYIORERI9CGyJxWlip+PQFBbBJadrqkkk4QXkiMwT6BLU6yzu5CEG1IGNyH2AhOUcFJ5jf6bMaf6vCLwfHnesCIyO/cklhWqmC0e6zP++hKxa9rKEWm8tTuDj+9ljZfKVXg5iWsQa7PjPJgAYNcJrk6JZcw3INcpOu6u5uPBEiKYf9HGvjR+czGmBcKJ78xieLkNyZRnPzGJIqT35hEKckKSLExKdJgz6WmnoMWx2cP4vRrRP8t2AH1kiy2Xf9zscm6/TeDFNsIbsTYNs77WfqgpGPTUpC0l7Dl9UR7Cwy/gMlMty/xevKXTiSW3dbYzptqGb59of9VuL7UtboGmyzZuEeg7O+AvbdN7p9vVcW/gHf5Otf/XNBoeIL+e7QtutX4U6PPtneMrMU7pa71Qan27H3oN+EvvzGJ4uQ3JlGc/MYkipPfmEQpRwVYQcHqSMJL/ytMEIngJo5dGzvugeB3lIPQBdstQPyY1TCRBgQfbMDZsi0JPGTHpMk+F7kKdJdQk71bQD13PZDY+FqPt38D05oiouzDOO/jY4kVr6u4d3j/gcSOr1SAetjouhSw0PtgDT6GBpxkFY+IuKY6duhDsW50rRahz4wEOrTTwgSnriPfyXIfETEudF3v9A8l9kqxK7HbYIf3l9+YRHHyG5MoTn5jEsXJb0yilCQ20ZhsmuIzyVQkKUFM2SNrWkTsg64xakBQAVHkFri06KdsTTX5cC9LaOB41agIeFlrw9OIiOtK4xsYyczXqA6xy62e+4ycl+D6Gje6puuNxrbQPPLLP5D1EqbA9KBGvA+Tj2D5K4jRsOoBrP1xrec4rNlN2QP35GO4FxLZluDapBg58nog+A1hwhW5aamBbkTEQTGS2DulCn7frvSYb2xUkPaX35hEcfIbkyhOfmMSxclvTKLgmBMSP2YgSj0FMaYBJ1EPRMWIiBPQlQ5AJNsDLWdFY5ppmgrcC5bLQmwfRJsedYSM7uW75AYjQXMFTkJagw2VNsO1DAdQdrphwa85eyyxbKpuvvr+U4lN7qsL7WyrjsrHUPJ6lek17kDZ+AJce21NYlcQpndiDkIeuTapfJcgh98412ezA649augaEfFKrk7J72x0298vbiR27/euJOYvvzGJ4uQ3JlGc/MYkipPfmEQpByAYUZkh9b1bwG/HIqg/Hgt+2K8P9if2wcU2AXfhFAQfkoZIdBuEiiktulJUpYpsJPqQMEjTVGhSDYmNR6A/vTzUUt29o6XEVue8Ls0/6ehuqPKO2QN9Ph8/0tLfT/p63Q9hutIFCGxLeDYjEMluwLUXEXEBvRnPt3qeFYipJHx3nZqDI9uxVF63220R/E7hffwGjAd/5dsq7o3+4J7E/OU3JlGc/MYkipPfmERx8huTKOUeuI7IkddVgHoe8o5DO4pMN9yFEs49cH5Bu7fYdBQBC4gesikyNrmWWw7gOZJzj6DegzT+fB+ew3AXBohsdN8nZ+oYi4i4Wes7QWuwgv56D6Bs9QmMNb+CAt5rKGNegBBHL8kQ1v7LY+p5zhsdqU2CNpXbUgk8CX4o7sHxaNz4GNY+omX9CxVyB6/qu5i9/prE/OU3JlGc/MYkipPfmERx8huTKOUhCH4D+E0g8YtccX0SAVtaxbW09oNzq2A0hthJzd69Z7kGpZFKPzdw4TUIXxERPRC/dsCp1QeBh3rAkViYgb1wCpMunlzv6AXqQN34FIacREQ87ut5SE4bQRXzDJZ/CS67NZRuL6Fcdg37FvCsh3iFLBguqA8frPUA1q8HwiIJfrTOJOLSdpRrESxKlyCm5qd7uu/X3tDt8CzGmBceJ78xieLkNyZRnPzGJEo5BqFkh0pM22pZnwX0sLbudivoZ1dRaS2cehQq5FSgIC7hHJfwkzcBYYl6vW1aevVhKXPrnf9fSNzrUVk1iI1n0AtvE+rwWsE938/ZbXgJz7aA57hP4hdcNw1JocEU5BjtOrWZHKhfnhuG0sDzrmBdB1CSTSW4dN00+IbWucT3ne8FqsajhGEz2Z4KvtnhHYn5y29Mojj5jUkUJ78xieLkNyZRShJjWFDpJvjR8SgWEbEAEamG8/TAxQQ6V5Q1DO0gwQ/EvUtwgrVdN1HBtmsoE6X+iOSKJAGLBMQzWKzHEJvBtTyFEtoIdsXR6pOD8YBcjVSKCtsVBQyBAfcjneMQ+ttFRKzh3SE33yXurdC+BImA9ByGHWMRLSJwBY7Rs3OJ5WcfagzPYox54XHyG5MoTn5jEsXJb0yilEsQkebUZw4Un6Kj669trin10mvgRKOhlmAS51MtUT0rVaB5BAMjlnDPNFG3rdyShCASDBtwktEx6dFSNTHJT3QvExhUMW1Y8KNJtFS2uoA+dTWUS5+Glo0fgYv0dKuiHcxhiSMo6T3Gcu6IJfV1hOpfEmdn0P+Phq408A2ld4eEvDG5O9smDsNqf1JrH8b9v76Q2J3FD/Ua8SzGmBceJ78xieLkNyZRnPzGJIqT35hEKWmCzAyUSnBZoi0VG322OCJbBFphOFbVdTBSRXowVeVzCtezgHteQz0+Ncxs+7WkuvM5NIokVXmZ6b3Q1CR6XPQfBVSuQdlfwfVFRGxhsUntJ6vyAlR8iu1Bnf0uPN0D6NHwykaf9t3QKTwREfMKLN8D/S/FBJqZNo0+B3qVqQnnCO6PlH36j9ky4z4QFJ8P9Jjn01OJvf0Xuv7+8huTKE5+YxLFyW9Mojj5jUkUrOfHMdJkxQVhCJsZtjQk3MD+S9iWxkuXx3qNBz21sO6Fijt0jTQthuSdLYihEdwAcgH20EWj10gNJUnwI8huuoZ6/Aom5LTVptMkpqzlvrucewaxCQhiVO9+DILYARzv5HCO13NY6zFnkwOJXQ/VgkyfRuqpQNOC9kDkHIIteQ0i3jWNJY+ICbxPxGeFnvuDQu/PX35jEsXJb0yiOPmNSRQnvzGJUpIbbAuF4+TwYxEQNmvRim5AeHtcauylK51A0h+Cw6+vsZfWevI9EEQ2ILzUIO6Qqy0iooJtN+QkBGGxomk/OL0GegaA4LeF7UhUJGdaBN8jOfyoZp0mGlFdPE2v2YFYDefddmwmG8FO0DvzpcS+Xuk7VpUqkl2DG5ME0gEIlfrWRZBM2SbsPaqnEiMBmdbvoxx6JeBZjDEvPE5+YxLFyW9Mojj5jUmUcomTaqB88zmaWQotJb09cjdBx8ZH0AByfK7lu4O+CmenlZ7jdqHiRwMi5+Y5pg+R4EeQGEeiK446B9WVjteH0dIDEHwG4EJro+ukGhJJ6f7IRYolq7Au1yAMnl/r+xARMezB+w1lwodw3UcFOfI0Rn68rl9VcgxOodlqRMR1pfLgtFLxsqL3CfCX35hEcfIbkyhOfmMSxclvTKKU5BBDIY8m9tA47Y6xCHZB0bQSErU2NfRDq3S7MdzfaaNCVwPTZ6YgQE1ayi25vFmvcQjnoV56FNtAWS457wr4TadYG1SeTGtAoAMSQlxKDgIwrMEXPX2u83qE1zOEd4KexByEZtqOeu5VIEryW0JiL5SCt/RWRHcouUhr3W4D+/rLb0yiOPmNSRQnvzGJ4uQ3JlHQ4kWlmtRfbQ92H4LINYbeZRERJxC/AwLNKZQ4jvoa23YcGb4LZjxyNeZw2YsW8ZL6Ah7AIIijXIUpclle1urmmtc6eIGEOHLZTWoeakGQCEzvBJUJj0DQJGGYYiQCkuiagTg3pVneETGAd6zXTbvEkdg1iHs0En3d0RE7h31JcG2DyokJEqT95TcmUZz8xiSKk9+YRHHyG5MonWs6afAGiXtHW42dQAllRMRdnLaqJYqnRyp+DUYq+E1vVGDLQbQZQaNBHFQBv40LKJeNiNhkKnSR86uE81Dp8BDKbS9zFe2mtT4vEgZXNTgGW0o/aUovlQnvlPq8x7mWX9O9jGmoBYmucH006CJaROU1rEEfxDiaJL2EfUkEXILAWpPjE9aetMdByztGa0BOUBKBaU395TcmUZz8xiSKk9+YRHHyG5MoJU1VrZtuwypo+G4vVAR6teHhEF/LVch7+d6NxEZ3YbAIOAGrCtyFM+gf1+iF98EdmEOMpghHRGygRx45v9hcps97BILYMtNzLDLt90alv/NKRcAliIARLH42JYiShYqcBJUdk7hHAjJJX1T23fYVI6mZ1mADGy46luBSHz4aXtLQBGu4whGscwQLfm1DZLrgL78xieLkNyZRnPzGJIqT35hEKckhRAMaltRnroBOZaDtvZrrBNSIiP2RilB770L/uXunEtvO1Nm2X11JbLPSCxpM1YW2qEFaalTQohLRCBahZtSnDsShjhWmCDm3GhCbqEyXhN2IiC044OiY1D9uBeXXOBgGHJEk7g2pJBen4sLO0b10mIaDkJOQ+gySCEj3PIO1Ivdjm4T3PH0Yu+AvvzGJ4uQ3JlGc/MYkipPfmETBoR3UA46EpWWm4s4sV6HjBsSUiIi6BnHv7oHE8vfe0Z030Ndv7yOJ3Tl5LLHD++osvHqoU14n1zDco8XhR73dSBzq6voj1xhNAiZxliYql7kKn72cBT86JvWAozLhSaZlx9Trbw8Ev2Nwtu2CkHoAJeL7UKYdEVHAdZ8Xuv+igHuG45FYuA5dU5q0S6L5EJyhZcs3ueukZMpV7MvY6WjGmBcOJ78xieLkNyZRnPzGJIqT35hEKbuOeCbFlpRKqsmm5ogREas1eIErVU6zW/c0dnRbYye3NLb7H3qO/BMNPYIx4PBsqNlmW7xCZbib9ZYU5BWMWe7abHMLajatfUREBf0ASO2nvgH0H4B5rjbuTan3vAfNX1/f6HnvbfU/CicH+h+cCP6P0qeTfd2O+ifAizvrWD9PzVG7WulptHsEW6xxYhNZsWGt/OU3JlGc/MYkipPfmERx8huTKOVhqbX29IvQB0FkF+yYL2VaK79Xs0iypUaR1yrmFPOJ7nyiIuB2qfvWnzyU2OWvVFB5cLmn25X6JFYtVmVq2EixBdW7g5BHjVW7CkYkzmZgac1bBL8V2Lap9p/GdpO1mATIQ7D3vq2O2Pj+nUcSO/oeiMr3TnTniNhe6rtz8FM9ZvmxisXR1/d7VWjsGta0K9QTgUTcCBbyuJ8DiIC0fl0u0Bjz4uHkNyZRnPzGJIqT35hEKb9VHkqQxgsXIOSM4LfjEFxaey211jWNq36kjTnLzz+R2HZ6LbHqb38qsf/+4Uhiv85UHLqE4TMbEPfaHH5d67wnMD57BmO2qfab3FxdJ7bQvm2Qw6xXgIgI78S4UMH3uFBR+euh27070DU9+ZMjiRU/+IHE4tbXNBYRcQX9HE71PXnvr+5LrPlQRcDlQMXLCxDDuzbbxNp7GkEe3Xs3kBBL+MtvTKI4+Y1JFCe/MYni5DcmUcrvr9WxRA0OSfwiWYKmqVQt+sO00nPPvlDxpPer9yWWgfvusx/pvj8pdiX2SdHNkbUD4mUbONaaml6CG+y60nLUNbj+CBLnSAQiYYnKTiO41HcE47hHucbIMfoKrMHrlZ7jzjvqxsvf/JbEsm98W2LFnTckFhGxXc40CM1M9+c/ltg3pxcSu3iiIuD9gb7HD7/CurRBaz2AsvoBuBAXudon/eU3JlGc/MYkipPfmERx8huTKOUOuO+uQPBTXxoLeSRy3eSs+D0GwWj0QCf2bH+qzq8tTHJ5fw5izFCFs6cwTWUAv4N9iJGgGcEOyF7H/ogk+qyqbqJkDVN3yOFF60I94SIichCMcOpOqe7J00InH90NXedbla5L3gfxa61rtZ3D+7ChNzQiG2mpdnb3TT33Wx9L7PCb/yqxlx/peQ63en878G5TOTetS9lSat3V4Udi8aC04GeM+V+c/MYkipPfmERx8huTKOX7fRUMnsKYbSID0Y20vWVLiWHd09+eZa2C0ZMHWv5ZgvjxAI63iI73AkIejd1uG0BCDKnvYTGU2KTU+1vC8AsavEAx4nlKertCrkYa2jKGbwyNIL/6TJ9N/2e/kVjZU0GyLvRZR0Tkt17TYA3vRE8Funxfz7PXV+HspNHrvpNrbKeEYSp6JVG1CLE08OUG3rG6B0M7wM3pL78xieLkNyZRnPzGJIqT35hEKX8eUwnmIOTthQoL45Zpos+yanHFLUDuuC512wdFN6cdDdTowe/bOGDoA/UThOtbtvRXW4FIM4Rzn+Tqilv3VIAi59es0l5/NCmXnHvUl7ENnBoMrrF5o+LXAoaNLGBdLktdg8+eqruz+JcriZ0eaIl3+TL38NuCmLo9+1Bjn30msQ24+SJ0/W5VIAzDeRvoW7iB1LhpeceuMl3rCxicM+ooNPvLb0yiOPmNSRQnvzGJ4uQ3JlHKGyhvvZWpqHEY0CsMhMHnEcmWOBRDj7mA2ABiJALub0ks1HuhHoVLcEVNWhyDBZz7AMQYKhPewFALcmnRtNtFreu3AXGOHINtJb3kGiSxkUqHL0FYuoLS3ymUvK5AiCWyHT1H9PUcERHbJyrkNT//mcTmf/+pxB69r+XAk7Ve9wEMZzmAicM55Aa97xPoMRgR8ajU92mH+hGC23GZq3PWX35jEsXJb0yiOPmNSRQnvzGJUr5d7EvwdgMOIRD3qJj0BmpeaYJtRMQCx34oJORRbASnydDhBz3z4LwTcF+1OeX60HftGIZ+rOF6lpmKSGvohUdDG2hwxgom/M5ymA4MIl5ExArEwU2lq03DPSalHvMahqTMQQylMu3du3rd+ZuvSyx2dZpvRMT2F/8gsemPVAT87W+0/+Mj6D3YwOdyAH0wx/Bu9yFjQLqMXstU66igJBiG1/RAGKaOkP7yG5MoTn5jEsXJb0yiOPmNSZTyjRpKAkGHo6LcJfx0dJ9ry/3L2sTBLufpgSjZYDUxOAHhnk+gjLmBWAT/ioJpMOaw4QYmrTYgnNIQkBUJflBWS+Ic9XWLiFhTjztYFxoiQcecwrCKs1y3ewjOtHcuNLZDQy0WOuE3IqL5+HOJPflUpwZ/lmu57WMYXkMMYZ2PaijnhndslOmzHrasyxAE5D688+S8pZfRX35jEsXJb0yiOPmNSRQnvzGJ4uQ3JlHKASiVpJCTEZcsg1TPT7EIbnpJ0PjrESia0Puzo4E4YgzHe7nSvY9AuY6IqKguGxopTmGk0QBU7mGuv8sXYNucgLI/gWvcFFCjX/NY63Wpx6Qx4gP4LwX9V2EOduMvYiGxBmry+1/cldgf/+VPdLsfPJZYRET9UMd556Ds9+D+uLmmbkf/eWrgu7oPiXUMz7poGQu1Xen+00b/2zOHd+waMsFffmMSxclvTKI4+Y1JFCe/MYlSkqgBugKKdjSJZQLNOkmUioiYQ30z1cvTaOIGzk3WW+wFAHoKmXbHYLM8HLBIRiXYg42KMUe1Xs8dsIK+ArX7Z6Ue74tCt7tPY9JB5FqX2jMgghuF0ohvEvx24Dy07/VWn+MU+ghc9LXi/fIf70nsD//5kcQiInb39PlUFfR4aPQd623hrSDPNtCHzU4KveeXX1NBshiyTL1zXwXR1fmhxJ4Wui4XmT5bf/mNSRQnvzGJ4uQ3JlGc/MYkSkmOpSnE5iDkLbB2W8U9queOiFjCtjQemlxjm1yFoAFsdwA10ARJkkv4bZyuVUxpY1ToUY+O5xLbOVYhaAtusIsHOtnn3xcq+DQ9Fd3oZ37c494ENKmIoP4CJZyIBD86xxreh8tGn81/luCcbLQRbUTEnUudurML6uwcavepmp+coCewVu/Vus5vfPdcYsPffUlPAs1SIyLy8kJiR1c0qUjf0SvIQX/5jUkUJ78xieLkNyZRnPzGJEr5MFeRZUZlojD2eQ4iwhqFHBYwNhAncagPpbHk8KMx2fTrRiXL1Iz0vFSx8GZLM1a4GenbWxV9Tr8HTrLvfkuPB46z8S8+lNjixzOJXTbaoHIAAukcmn9G8CQluj963sQGRNx5pmtPAjKJiuQCvYDjRURsYKLNCMa20zsxh3eM3KF3N3ru195ScW74XZ0KlL98W2Lbqa5pRER5pG7AfqnPlsTrNbhp/eU3JlGc/MYkipPfmERx8huTKOWDRnupTbdriS2gDxsJdhmJbtCDry2ew+/RDghTBzDieQznph6FJIisQNI6B9dXt4LOL3l9rfdS3D3QDY9PNPbwoYSWn+uVP6lUyIO2brEHIheNXY+IqKArHQliJLHRc5zDOuOk8276IbJpKbVd0qShjvcyBeFzDPcygO0Gt/S82SmMEd9XZ2LWMgY+G7Ij81lINO8qhhtjEsDJb0yiOPmNSRQnvzGJUj6qpxJcNCr4rcHhR6W21NetByWGbfuTo2sXxL0dcP3tNuTm0vN27VG4AhGpbQDJLghqfRhD3TxR11/86r8kNP/5pW726zsS++VAxbnH4NosQNzbb/ntp7LVAtrKLeH5UIzGrlcQ6zqenbZrG85CcZyJAe/ECII78Gx6HUfDZNBvMfpQfj1kF2kGbkXqHUl9K3chL/3lNyZRnPzGJIqT35hEcfIbkyjlpFKH3xLcfNRbj4Y7lDBsos25Rb88fXCXDeGYNKWXyi0phoBzqwGnVdniVtwHzacElWz1+VI3hNjZh+r8egjTfKkH47xjDz4eVRLRg5UhhxjJXCSS0vXMwGfZVvr9LOQMbRPdBjS0Be5vF06dw74Htd7ffqn5QreyXeg6ZzSputfSJxKm79JE312wsN6FYSr+8huTKE5+YxLFyW9Mojj5jUmUkspySdyjMkHaroFY3SLGkPDCZb7daj07a3uwIY32KOG06A6LiBFYrRpwK84eab0tDeiYrXQ70hqpLHcD7kcqeW27F1ot2hQGDscS9r6BXo8TKBsnwY++ThsYIFO33EwPHtopDHI5qfWYB41ezxh6BQ4H0MvyXM9b/va+xmpQBlsEv2aqz4wGdNBQErpnf/mNSRQnvzGJ4uQ3JlGc/MYkStkD99wWxBMS94imozAYEVFTySxsuwaBZwqxca6/ZRmIaeRro19B6kfYPvNX72VWgQPyYiwxKstcNHomqOiMfRD8SGhcgluxbUVJyKNSZorR9N2brU7avay0tLmCfckxuqZS6Ra5tw/vxBwE0QJ238tUyOuDa3O+VNHt5oNj3fdj3ffk5ExiwwOeaj2/UhH4cqnlvxt4Sen99pffmERx8huTKE5+YxLFyW9MopSH5Y4EqYffCsp8SWTZgrBELsKIiAaUrg04qNAhCD9bBZV6gmBEPeoI+mVs6zO3gnNPSFpU7QuZg7RYwWWTW7GEGA2qICE1ImILz2cB9zeDtZpCr8cZvE/zRh8Elo2DOJfBtRTQQzEi4gqcbY+hFP24hN6TGy2DhQHWcdbTczyBWnLKgqNLnah88pTfsQHkywIGy9xAjCYO+8tvTKI4+Y1JFCe/MYni5DcmUZz8xiRKebdUtfEG1NmbRpsPTmuNkUVzU7PETbX7ZOckFbiE3609UHE31FCU1HC4vgUopOsWtT8DhfUAJgidwJlGPZiws4YJQnC8KTR1JGX3KtNzrFps1/RFoC3JyjuF2n36bw81R6VYDf+RoHdsBf9liIi4gX+vaFV9RJRqu34IE3Ym8B+OC7Av07OhaVT0zu5DLCLiCP6jQf+52sB/dnByEZ7FGPPC4+Q3JlGc/MYkipPfmEQpTzKtEaafhCX5GgEa5d1Wz08jujMQsLBHQMexzxTbgNC4gu0uQNyZtViVF2AQViiqAAABtElEQVRDfQ3EmG+8eSGx8esqLG2eqHB2/L6Ks/n0UGL3QeO8AiFu1XIv1DCVLNYkai3gPGT5Jtt1V+h9WsMEoIiIuoFmn7B/27N4ljk9R3jn6f52c821CgTNVYvtuoYx28dgXyZ7N+EvvzGJ4uQ3JlGc/MYkipPfmEQpRzQ1p+OEnK6QcysiIgORjc49ADFtAIIK198r5IC7BHHvETi3Zi3CZ5ZpI8Vjagr5R7cklr/9lsR6V5cSu/ebj3W7vzuX2AfTlyS2gifRVcSNYIF1BfuT+EX19wMQr0rqYQBTc7hnBN9LBecm1+Aa9idn4hLcr/R+jwoV90jgLiHWki7Ro9yA2BiOSaK5v/zGJIqT35hEcfIbkyhOfmMSBWsHsTFnR3GORI2v+hNDZb4DEIeoZHID6skSBJ8nMDL6HMqYW92K5Uhid/amEsvf/B2JZW99Rw+4nEmo3NuT2K35v0ns9t9QV08NtTUjpbWmSUo43h2cgAW8AL0cSrfJRRjkqAMXYVupdcdmrbQ/nWdRdxP8CGpGWkAO0Qjy1mPSlCq4565TqowxCeDkNyZRnPzGJIqT35hE+R+OiC7+YRh6QQAAAABJRU5ErkJggg==" y="-19438.713989"/>
</g>
<g id="matplotlib.axis_1083">
<g id="xtick_1624"/>
<g id="xtick_1625"/>
<g id="xtick_1626"/>
</g>
<g id="matplotlib.axis_1084">
<g id="ytick_2706"/>
<g id="ytick_2707"/>
<g id="ytick_2708"/>
<g id="ytick_2709"/>
<g id="ytick_2710"/>
</g>
</g>
<g id="axes_543">
<g id="patch_544">
<path d="M 299.674375 19563.615753
L 421.964375 19563.615753
L 421.964375 19436.322226
L 299.674375 19436.322226
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1085">
<g id="xtick_1627"/>
<g id="xtick_1628"/>
<g id="xtick_1629"/>
</g>
<g id="matplotlib.axis_1086">
<g id="ytick_2711"/>
<g id="ytick_2712"/>
<g id="ytick_2713"/>
<g id="ytick_2714"/>
<g id="ytick_2715"/>
</g>
</g>
<g id="axes_544">
<g id="patch_545">
<path d="M 434.924375 19563.615753
L 557.214375 19563.615753
L 557.214375 19436.322226
L 434.924375 19436.322226
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1087">
<g id="xtick_1630"/>
<g id="xtick_1631"/>
<g id="xtick_1632"/>
</g>
<g id="matplotlib.axis_1088">
<g id="ytick_2716"/>
<g id="ytick_2717"/>
<g id="ytick_2718"/>
<g id="ytick_2719"/>
<g id="ytick_2720"/>
</g>
</g>
<g id="axes_545">
<g id="patch_546">
<path d="M 29.174375 19707.535177
L 151.464375 19707.535177
L 151.464375 19580.241649
L 29.174375 19580.241649
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1089">
<g id="xtick_1633"/>
<g id="xtick_1634"/>
<g id="xtick_1635"/>
</g>
<g id="matplotlib.axis_1090">
<g id="ytick_2721"/>
<g id="ytick_2722"/>
<g id="ytick_2723"/>
<g id="ytick_2724"/>
<g id="ytick_2725"/>
<g id="text_137">
<!-- 939 1849-280219 -->
<g style="fill:#262626;" transform="translate(15.789375 19690.928413)rotate(-90)scale(0.12 -0.12)">
<use xlink:href="#ArialMT-57"/>
<use x="55.615234" xlink:href="#ArialMT-51"/>
<use x="111.230469" xlink:href="#ArialMT-57"/>
<use x="166.845703" xlink:href="#ArialMT-32"/>
<use x="194.628906" xlink:href="#ArialMT-49"/>
<use x="250.244141" xlink:href="#ArialMT-56"/>
<use x="305.859375" xlink:href="#ArialMT-52"/>
<use x="361.474609" xlink:href="#ArialMT-57"/>
<use x="417.089844" xlink:href="#ArialMT-45"/>
<use x="450.390625" xlink:href="#ArialMT-50"/>
<use x="506.005859" xlink:href="#ArialMT-56"/>
<use x="561.621094" xlink:href="#ArialMT-48"/>
<use x="617.236328" xlink:href="#ArialMT-50"/>
<use x="672.851562" xlink:href="#ArialMT-49"/>
<use x="728.466797" xlink:href="#ArialMT-57"/>
</g>
</g>
</g>
</g>
<g id="axes_546">
<g id="patch_547">
<path d="M 164.424375 19707.535177
L 286.714375 19707.535177
L 286.714375 19580.241649
L 164.424375 19580.241649
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1091">
<g id="xtick_1636"/>
<g id="xtick_1637"/>
<g id="xtick_1638"/>
</g>
<g id="matplotlib.axis_1092">
<g id="ytick_2726"/>
<g id="ytick_2727"/>
<g id="ytick_2728"/>
<g id="ytick_2729"/>
<g id="ytick_2730"/>
</g>
</g>
<g id="axes_547">
<g id="patch_548">
<path d="M 299.674375 19705.033413
L 421.964375 19705.033413
L 421.964375 19582.743413
L 299.674375 19582.743413
z
" style="fill:#ffffff;"/>
</g>
<g clip-path="url(#p8cac824830)">
<image height="122.4" id="image2e5d9e1131" transform="scale(1 -1)translate(0 -122.4)" width="122.4" x="299.674375" xlink:href="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAP8AAAD/CAYAAAA+CADKAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJztndtv5OZ5h98hOcM5SCNptau1vbZjx05cJ0WbAEURIFf9V/t/9CI9AEEPQdOgTXOROOtD7dXuShppzsNDL+LkQr+HKAWjN/5+z+UHcsgh+Q6BZ97D4Kdv/U0b98hicH8p8kEma0Xo2nCQy1oTcoiIiKjaWtZq2HYA5zPPSll7YzCWtbdjpNtV8HlNI2sNHPcu07WIiKVeitArEZHDpWjhI/VseG0/0A98PdAtX8VB1g74icwetr1utrK2avayNh4UsjaCtW1bydqiXsvaXbXR82t034iIttXrU+ZDWTsfHsva+8MzWfuLdiprH+31GE9iJ2vTod6DPIPnHe5pREQLD0rd8PPY5zjwyBpjUsDBb0yiOPiNSRQHvzGJUhyBOGtBuuXwO5H3FIN1y2KpBolUgwQkYXgLH5mDjBtmICpzlU0HOG866xWIk4iIHXiXEjY9BmkzgQMNQVTR+dzCd17mulbC9xuSaYyIbACiE2QcQfd6G7rvAbY7wL0n2TvN9ZktM5V4ESyvx7lK4Fmma3SOl5me43Soz1N90HN8vNd7MB+pGDyaqRiMiBjDej4EUV3rd95v9Rz95jcmURz8xiSKg9+YRHHwG5MoxXygoqMCtUSyiX45aLuuTLI9CJ5to1KDxOAWMta6xKKQTWRpA5mJBciiQ1e2Ii2CODuBzR5Veh1O6PvB+ZStii7KQhyRiO3IJKMsS5KuJMT2IAZryJ4s4HqTLKZMwDHIPRJ7ESwMR3BsykIkFvD9PoPrvRvpMQ4HjbUS7v3FfInHPvoQsvTmIOzX+uzsvtRsTL/5jUkUB78xieLgNyZRHPzGJEpxBsJvEyohqKQThR0IkTWUeUZErBrNbtqR8AOxRCKHSoQJykzMMi0HHrf9fxtJNZJCyiGr7tFAr8+Tk5WsVZVKpHp5pMcIFWKUtUnCLoKl5gbu6wbu66bWNTo2vXZI7k1B7tF2/Qpb/wCVnQ8pgxWELcXBFZVLQyZoO9TjPt7p9xvO+DnO3zyVtWw+0+MstQw6X1zrvngUY8y3Hge/MYni4DcmURz8xiRKcUyZVqBPliB8tiAGd7Adib0IlkMk7Roob6Wy0wxkGh17CeWba8iUG8IxBh1lsJQtdwDPBdWWMcxUIo2nKpH2O/3Aagnlt9DD77qFz+vIvCQReEPXsdasMeqlR/eKIBFHpbYldEfkXEXODqUMPxJ+faHreAvXG6rL44tCn7v3Xqh8jogoX9zpYgPZmAvtcbh7qQf3m9+YRHHwG5MoDn5jEsXBb0yiFJTFRtlztLTt2XMNPy9Y8CCwO0mkvmWiRN/xFW1HGSztv4FtF5D5dQX93sZXOhxivVc59DvoH/fb0OzA/6m1TJTKpyO4fHcLcpayMSmbbwDvmL6DYUYg90q4z1SG/PUJ9Tp2X+g4JEhVhXLm5G8K6DF4/RiP/YN/XMja6bne6/qg1/H1ay0m95vfmERx8BuTKA5+YxLFwW9Mojj4jUmUYgrpqpTWWoA1baAXAP2cTDqaI1I/AGweCum9BDeAhJTRgVpzatZJTTmxNj0itjSBBr5LC7Y/L/V8XlRqZ2/gMv5npl75s+pW1q4qsP012/6+jVBxbDtc71GmJ07bEXQNKf28C9qS/s2o4DvTnabzoUlD9Byv4J+13UD3XZec3vtZo/X8T7/U52QEJ36gf8zwKMaYbz0OfmMSxcFvTKI4+I1JFBR+5NcmIHdyEGclFC0fQtNXIzgtktInq85q7f8bSuWkXzwWObrWdS6U6kx13guo874e6Nqw0LNcgYJ8XUPtNvRUwBHrHanPXVLzPhMYdT2B+ns6Dq3RcVfQJLQGgUxiN4Lvfw0PON1/EtJ95R5JavrOKB9hwlFExBXE2wyagk7hWhyBbPSb35hEcfAbkygOfmMSxcFvTKIUJWXu4aYwHprSp9qeNfod9K2r7wvVUNOEletWG1SSxKOGkBGcFUfyknobXMF29Hkkm+jzSpp8M1QR15XJR8KwBYF1lGsm2jEJPzjHHXwXOi5JN6yp77gvNHqbzodkI93rvjKU5N4Q1khI0rXpWr+C7ajfwRyycf3mNyZRHPzGJIqD35hEcfAbkygFlfqRbqBmlJTtRrpv2FGCCdWt+GtEayRtSPnQ9BrKvLtutDR2VasE7BJ+BJWtUtPSvnKPoM+jbLd5plmWRcdvP2WskWyiY88hC42k1hZKWbOGmr+qBCQx2DWevYb7T1OAqFEojeimyUx9J0r1fWa77n1fIboGsVhDsPnNb0yiOPiNSRQHvzGJ4uA3JlGK1zAemjq77UGcEDQBSBXQ1weHNZIieU8xSJoEHBLKK5J7d1Au25UVR5l2x8VE1qaYAdev5JWO3bdclvooTlHPRuxAQ3VNXeoD3SsaiT2HazNp9byXUBZNpb8RnA1I50OisoTriGXoHVOc7kOCnEvBWfiR3MPybYjBA4pYY0ySOPiNSRQHvzGJ4uA3JlGKz0JFFyotcBol/HZgiWmHLKJt+8o9ourppKi0sq9g2zc0yoMHU4wzlSxHUFrZgDDCgSYgXSm7rK+c61K4fTsm0nWkZ2JEw1R6DmKBFpNYskrnEsHXh8p8j+AzT6A8nUrEd3D/SDTuqCck7fuAUmvatoRnkUS63/zGJIqD35hEcfAbkygOfmMSpbhqNTOKfhGo/JOGdhDUJzAi4gi8xoSEH0ibPZVMghwqQAQtcy1vfZ1rNt6y1jLfrkEX82Iqaxf5TNZINq2pRJV0XE8TR33m9g/ITCPZSApqDBJp3HNgBHHAsnGFJiqPOt5jB5CktD9JUjo2616lr3Sl6cB0/bsYUeYmZUrCdn7zG5MoDn5jEsXBb0yiOPiNSZSib881yhA6AYnwpNHfk2cdluRprbJxnutaC8deVXrsLZSoblDQ6b4vMx1AcQsSkHqzRUQ8zY9k7RSy+Wi4BAk6Kh3t29ePsr5WUKhN2W8R3A+P+hFOe0qkEdw/6utYw+nscJiG7ttVnty33JbOewV9Bpc0RIQm8sI5Uu/IHZTvdt2XMcQq9WY8g7UTl/QaY/6Ig9+YRHHwG5MoDn5jEqV4FioHSFaQoDmCBnkXlcqKZyD2IiKeHK1lbXYMgzJq/Y0a3+p53+1UsA2hB9wUMs7GIIymUJJL4iuC5Rdlkm1BYHGWFwxogHJiLEUGybXFgQ9sYrEMFl4TKCV7CrYZPDsj2LUFwcpZfwyViFO24ha+32vIDlyDoNvDPW16ThKme99VnkzDRt4YqJR+Al0z53C9/eY3JlEc/MYkioPfmERx8BuTKMUxyK8JNE4jGTODtWkD2U4dEmgA6xkYmixXyVKWqn22B9U+t7V+lx0k6VGWHck0yn6MYJmjOpNLa6l8l7L0SCINSDZRxllHZiJB1wKzEOG8SQISZ7DZu5XK3lmu97mB57OrJSB97T1kob6EbMwY6XZb6I+XQdYfTviFkxxmcIyOTE76TLqrpKSPLfyMMX/EwW9Mojj4jUkUB78xieLgNyZRCkrbJbNPjTVzsJcg12PbcErsfq/mtD5o3Xk+hJHRNOkEjOYi02O/grHklLb5EKjpItlwSrPdQtou1e43PU36Ab4L/XNBzUQjeKw5pXzjvrBGz9jTSr/zB29dydrsDehDAPm9hzt+xrYrTXVdQmr4dguNR+FfgSNKvYVLM4R/JGhy1QESkzcZ/3VxB8/ODfRpoLWXhf6b4Te/MYni4DcmURz8xiSKg9+YRCn6Ts0ZUsooSkBdoxTUiAjIBI6qgvp0sIjbrYqcRatS48VQ9301UCFyaPRCjCBRsquBJ0FpuzRmedNov4Ndo+dIKb90Pg3UodN2k46JSxPoWUCTj2hKDr1NSKXSE5EVulqcwD040vMe3nDPiPhcryMJPzpvSlU/hnRckqE0peqkZ4rtsuOV/CWs38Cz86rWxPLP4Vn0m9+YRHHwG5MoDn5jEsXBb0yiFOc1iAASebAzZfhNQCwc5ypdIiJGQ8hiA7l3gDp9atZ5A9l8V5DNt+xoXCnn19Gsk6B6d2rOWPds9khyjxp4EjV85wEIvyxjeYnZgPCeoKalU7hmVMf+fKj7nn52Kmvff/xK1spnc1krZlCPHxGju1vd9iU0zYTn9giE3zk8nxO4jiWI9DOINaTgd/JDejLch3o8+M1vTKI4+I1JFAe/MYni4DcmUYojyGyraHwyCSMQVSPI5xoPWVSNRv3KaKsKRm/DJJ7bQs9xCWOWqYkmiTiSeF3jk1HaYcNNKKEGcdaAtCMJSOO0cbsGSo7h2kTw96YpMqeQIfgGlG9T80jiU5g+8+wrPcb4R1CKfDzFzyyOl7I2BNE8gmtRtvpdJvBdDj1FXAXbHWDX245X8h2cI44H75j4cx+/+Y1JFAe/MYni4DcmURz8xiRKQXJvCxlLJDVyECI5JDGdhk5iiYgYjVUEtiBUBhuVGjs4bxIlKxBiNBFl00KZb0/BFsEij8poabsxjALHUl0QcRsYf077kgTqEkNUynwOE23eq1W8vXPQazaHjEp87uB8FtcqAU+/XMhadsQZftUdTBU66Pc7wOSqA5zjDmKDnrsd9Ji8Ble8B+H3asCCfIHPaD9pThLXb35jEsXBb0yiOPiNSRQHvzGJUixyjf9dz0wkooaSzkdQkhsRcQpSJIdaSBrQsYZealeQAXXdqhAjubeBnnlbWOsSfkQB14LkHpUOU9ZfCfu2XbOpe+w7y1iSnWXa4+6dRvd/f6/X4s18I2vjEQi/Wu/f+qDHWEHp9tUvVCAPx1tZi4hYLTTzb7HS73cHwzNuITau4XV5Cc8dDc6g4R7U/2/bMZxlA+KUhsXsYTuX9Bpj/oSD35hEcfAbkygOfmMSpbiFjCUYMIrTV4kNyMK7iodDPNqR1AJZAdNSlyD8riGTcAlybwWDDqg/Hg3OIAkYwRlUo4xF532KnISfrrUg6Kh8l87lIVN6H0E230Wl9/Uk9JqNCugJCU0hqf/jEMqYN5BF+Pnliax1DYapIHNvCRmMd9D/kWLjMlPB9rzVIRkvG12j7M7zTDMYu3r17XpmptIQGBLDfvMbkygOfmMSxcFvTKI4+I1JlIIy9+gXoe+vBGmXNY78iLi9HcvaeKcSaQFZXgtITltB/0ASIiT3KHOPyiW7Mvwog4oETwPyi/rjHYN06xJ091nVKj7pu5BAiog4gN7dUK85yIob7OD77aGsFkTcGj5vD9cQEj6xn2QXVDpMpboruFcvQmXaZ5WWGL/c67AQEsCUZHkEGZYR3BOy73AXem795jcmURz8xiSKg9+YRHHwG5MoKPyGKFQUEi80n+EOSiMjIi4Pmt00hB5wVyBKbiAbjETVN6FvL7wIzjAbQtbYDGQOZXlRzzwaNkI3ZgfCZwtZX1ftSneOiCF8aAEDUbZQJnxS63cmTUl5kjv4Ljk8Y3OYnjuFtT/s308E0pNDkpP66FEmKGVZkoi7a1TOlh1il+7LBIwhlfTuK13zm9+YRHHwG5MoDn5jEsXBb0yiFMuBqo4SsqqG1IAMlkh0rDtKFJcg8kjwLCBB8GYAAwxg4jAxgPMpIAsRt4NS24iIDC7GUa4ZjM+KY1n7MFT4HUMZ8yvoFbeA8xnC2gpkIWUCRnA22BYk0stc++PNC72nlMFIA0hIaJ3DYJgSas6PO/relaDyCtj/AKaaxTcNZ+k3EIWyQClDjzL5Ivi+zgL6Oub6PLmk1xjzJxz8xiSKg9+YRHHwG5MoDn5jEqWgKTdjSu+EncmvHijnt4MhWFeaYLKGfySuIM2SjDQZVrKmZGcpvbeLAq7Zaaa2/53Qte9W/X6DF5Bi+/8B1f7fNjoRh/7ZWUBqagHXFq8XpDSfwHZk3KfQyyEiYp5rWnMNvQQGjR77qNXvMoaUbXqeqJcDdbtoyPZ3/HPR0oQruLYlROsY0oD95jcmURz8xiSKg9+YRHHwG5MoxQokGY3ZJn1B9eU0XrgrXbGvvtpD2u4djd7umKZzH2qESTXUZUcqL0GCZ0JikZp6wueRviLxuW10y5pSWkFUHXdMFKIx4pOBrk1hu7KjWet9SKZSCjmtlVC7P4NJTxERR1OaXqOfWa9AIjZ6faZwHWmcOvVyaOG8sQFnR2PVHEQlpUSTEC2peSgexRjzrcfBb0yiOPiNSRQHvzGJUlQg4w49pd0atNS25+SbLkgNLqHJ4QrWCGqYSYJmBkJrTGOyO45D14euLU18qQseYX6fr1r9zrdwHSirka5D12SYI7gWR3jNQHSBbNqBgKzgHEvKsuzZk7WrTyfJPdq2pu3g8woQlRMQn5RRR5CcpRHbXVRwzTi7UPGb35hEcfAbkygOfmMSxcFvTKIUexAOJDpIaJEYpDLPLigTaQ8ScQ0CZFlpiSmNQKaJJtRQktaKntl4EXx9qMSYMhMvY9Pr80h8biGrkZqMktw76xB+j6i0FhppHtF4JuAWru0dlJITNFFqBeO0F1WHYIOhRGso1f19oft/UkDTU5DXlDF6DM1bCWqWShIwgifxtNR4Fp5biku/+Y1JFAe/MYni4DcmURz8xiRKQeWDNOqaSlFpLQMBMXpAaSxJQMrII7lH/cz69lcjwUaZaV3lySQ/d3Bt6XpvoB/hslahSSOe6fuNYGoO3SsqB/3DOpSE0hpkxe2gz9yBxlXD9aKMSJqaVOY0BpzLk28a3fbFUD/z15nK1K9aFbF0n0l70jM/BflM2a/0vEfw800ij8qE6Th+8xuTKA5+YxLFwW9Mojj4jUmUggQGjk8msQS/HZQp9xBo5sc5jIKm/nEE9Z4j+VVDnSdlG3Zm+HUMWpBjU9kq9ZTrOcwBxWfP33TK7oyIuINMMrJau0yPs4U+g9fweTeQ6Ugy9Bbk1x4yE3dwnyP47fZpqEz9pL6VtRVklmIc9JTKdO8pG3PSIfxo+AlJ5TVeW70HfvMbkygOfmMSxcFvTKI4+I1JlGIF2WUklmjIAg26GMJgARKIESwwqJfeWwMVfv1moHLWGGVFURbaoacYjGDR2fcc2wz6I4LQJGE0zye6hn0LVSyR7I2IuAPruoNtKUNwAwJqAaXIC5j6S73rSF7eFTP9PJiI3MVlvZa1m1qz+WiCbgP3iiCRRxIQS8k7pHnf3nwVZU/CcBe/+Y1JFAe/MYni4DcmURz8xiRKQaWjXYLuPqueAqLr82iQxAn0Uns7dI36x1E56bJniSmprxb2rfqOFo6IIQ2CgM+8hP54eaG/y9TbjQTpHHrwYVZjx32h+0Wl1quAzD2Qe1eVNtK7OixlbV3rviQ56ZldFCqFI1iSbUEsUgYc7TuAe0pSks6bPo8GrFBJfReUFdm3L6Df/MYkioPfmERx8BuTKA5+YxKl2MHQB+qbRsKHsueoz1wX1NOMpsE+Ast22uixN3DeYxjwQJprDItDWCs7MvymcD5TyLRagQj63Uiz9J7neh1oYAT9evedntsF9jOE77IGSbaB52lRaUbdYq8ScHUA4Qdlw/taj0vPcQSLt77b0Rplv1ZQ+k1l2hxDStUh/LgUHXoKUjYuZIz6zW9Mojj4jUkUB78xieLgNyZRCsr8GcEABCpRpEwwymAjARHBwm8G2W4zcGwk2HI4zAj2pREij2qVNk9HKqoeX8DY14g4/kD3z081g/HuPzS7bPzJU1mrShU0L0Bekojrm6GXg5SKCKxFpqzIHYguypQjCbytVdAdQOQdYJhvC9K1azo09TgsMn0CSIjR80TQ9abvjFN24buMc544PIZsTiq1Hwf0M6R98SjGmG89Dn5jEsXBb0yiOPiNSRQHvzGJUmBTQTCkZOYp3XCfgZ7tYNwxmeQ+lAKZgSWdwNoQbOgc0mTfOdGJLU9/pE0dR3/1XTzH7OMf6mKpabsnb/xM1t79W61tf16dytoV2P4lmOYt/ANA03no/nXtTxN2rqHpJdXkU335Q4z9feoGvh/8U/AQ+k4+6jsmew09A+4Oer2yB0y4yuDvhyH8d9V3WpDf/MYkioPfmERx8BuTKA5+YxKlIBFAY4hxOk9PIdI1vprWbwaa9vkq188sYTLQUc+a+ielipeLH2oqb/nTj2Vt8Jd/LWsREdm7f47r92lffyVrj9/6B1mbPVfhR0prAym2VGf/kF/5LQg6mmizgkaa1FyTZBw1riT6TqkhgRjBk2qIvO73LPftrUnpy+tKZSilGg9hrQtsFAqSm+Sl3/zGJIqD35hEcfAbkygOfmMSBYUfZjaBeKFa4gakG00ViegeEa0H0qWm0Fr5D6GH47NMBdSbHyxkrfzRM1kbfKRZe9mb38NTHEyOZa1dXumGIx0lXZ7r9Rn+Hq4j2CYasb7uaGbZlx0IQ5J7t5VKwG2tmW07kF8k6HBCDjxjtNY1FaoB4UcZgiQGSdr1lXFYz98zC5HEYETEDmQ4gcLPGX7GmD/i4DcmURz8xiSKg9+YRMGSXhJ5BAk7kkVU3hgR0cD+G9j2UOh2p9Bw8QIkywc/uZa18sdvydrgQyjVnZ/rGkyQiYhob1/JWvP6M93w1aVux5dHoMw7knskWB8ifLAhJd1XEFMk90imURksTorq+Sw+BPp+Nci4voKOBGJXVmuf7Q49sxIfgoWfMeZPOPiNSRQHvzGJ4uA3JlGwiR6VW1YDEBMgK7YgoLrGJ5PsGGUwiQek5Hu1Zlp99P0vZW38k/dkbfDmG3oy0yNd22hvveb157pdRASMl24vddv21Wv9zD30ZuuZAUfijCTZCMq0aYpPBN9XFlMqxEju0fNEvesG30ACdn2XvvvTOVIWIsk4ujZ1T2lX9czGi+DyX4KeCbovfvMbkygOfmMSxcFvTKI4+I1JlIKy7A6QIZbBOGfajkZ+d0FiY57roIsPcy2X/fFWe+7NPtYy38GZ9sKLUreLnZastleajRc3mskXEREHSNNbwzjvUoefjL+j2Yrf+Q30GQwtB76E0csHuAc0IKVraMd+oCKPpVa/e02CrWtsu+zbs8y3S5LlkJHZty8gMaKBKN8gO7As9P4dDfU+R0TMCl2nYSMESXe/+Y1JFAe/MYni4DcmURz8xiRKgeWNIIxI+JCMKSCTjKRLRMQEJv8+K1TufVCrFDk/0T58gzHID5JSO+iRVkNGVgXShraL4FLfkxPd7KMfyNrw8WNZ+/D657L28b+8LWtfDFVeLmCiLg1YeYj2IqE2yvV6UwYcCb++wyb6lpx3Cj8qZcW1fscmaApx32EhZa7P9kkxxW0fFTNZm2d6/0nuUpz7zW9Mojj4jUkUB78xieLgNyZRMD0IByqAEBmCOCHh1/ULQ7LiYqBrR+js9NTrS82oy861hDbmIPxoyusOsvY6stook3BwoYIue1cHgbRbPe/xtfYe/MG/asbhr0IzIvdQft1V8kqMQBiRnN3B4BTMDoVjDyEzDQfIfEM51/czaY2e5W8CDcMZQy9KiouIiHOIjYvQ/c9ggvUYMnT95jcmURz8xiSKg9+YRHHwG5MoxbLSUtZZDllDICYw+woyiTp7ksFvD225hMXPN9pzb/zvmpH3eP+FrA3f0SzCKEDuVCqvBlOWMdQXcHDyRNayU92uhfLP5u13Ze38/BNZO1lo1tfr0O/C94qpoEz4uFCxSJmglOGH2YEg/Eg0knQbUhZpxzNGqyj3YEs8DlxHWhvDvhO4L2M4l+OWReN5o9te1BpvZ5CFegxl2n7zG5MoDn5jEsXBb0yiOPiNSZTixeZGFh+VKtNKEH55rr8dNPygBgkYEbEJlRA3rfYa+yJTobItVYosFjpV94Ofa/bcW5/fytr4iZ5LPgMx9Kzj97Lo10ut3en5tJs73fBKewWulpplt++4tvcZUpZdhySjHMaTTPvHNTlM883gOsJxSKZhZiGslbAvCbuIiIJkI2Xa0RpJO8iUO4aMupNat5s3er2msDaHLMmIiHmufR3HQ73e5ZGuFUMP7TDGfI2D35hEcfAbkygOfmMSxcFvTKIU672m904KtcrUpJCgWmtq/hkRsQytl2/Afq4zPfYrsMAvR/qPxMtG/7n43nM11+++VuP+6E0187PHPG6cmn22i5eyVtMkly81bXf/s1/K2q82b8nai5Fewx34emrg2TWxh1JOT6DGnP7F2bX6/Si1mI5NY8SpGSX9S0H/MkVEVPDszeA4J9DagtJpH4HFP6/1GI9De0bMS107OVODP3sKfSQiIp/BiPYDjONewgjyyvX8xpivcfAbkygOfmMSxcFvTKIUJci9KTRmPMpVkp1ByifJnSVMkImIWDW6vgCxuAGJNIOa8w2IwW0OjSdLGGu9nMtafqkiZ7rk79IudIJQfKEiL3b/LUvVv/2XrP3y7zRV+RdjPZ9XLTQjBUqQZJTSGhFRwvoMatG3IOP6ggKSmnXC87SHZ2TbIaRpUg2l/B7DdxlAKm8JYvEYns/5uJ/cm7+vAnn0Z9oHIiJicK5NYtsbFdXFp9q09vDaI7qNMV/j4DcmURz8xiSKg9+YRCkupjpG+mKka09zzZR7lmlTxxIkyUuQcxER2loz4rpay9phADIHfrZyqKum2u1LED6TkQqts1ttjvnkWrP+IiLyS5UsLaxVz69k7bd/r7Lxn0qVrl+EXhuSoZS3R7Xp0MY0IiKGcA9p/xFIwB2IN8q9wzHbPacK0TFIHkdwk1GigJ4RJZzjPIPmmvB4DqF+fjiGmvoJjCoHsRcRMXj/A11bw/MIDTybtT6LfvMbkygOfmMSxcFvTKI4+I1JlOJpqXLhAuTeEyjpfNZoVtQZyI8zyA6MiKgyVUGrTMXNBmQOlRi3PZtZHga63Q2cy4vQ7MD3vuKstmwCcm+hsumLX+v1/mdQb88HmiF2B9dhD8KPMuUOUNradPg1eiP0fUtQmS/dlxykIvk+ytCjY2yh8WtExK7R9S2sVTnIuFxP6BFIbmJUQhPNCchHEohQ1h4RMTgGEXh2oR+50Ka82Zeageo3vzGJ4uA3JlEc/MYkioPfmESmOJPvAAAABklEQVT5X3Qnyo8tZc/QAAAAAElFTkSuQmCC" y="-19582.633413"/>
</g>
<g id="matplotlib.axis_1093">
<g id="xtick_1639"/>
<g id="xtick_1640"/>
<g id="xtick_1641"/>
</g>
<g id="matplotlib.axis_1094">
<g id="ytick_2731"/>
<g id="ytick_2732"/>
<g id="ytick_2733"/>
<g id="ytick_2734"/>
<g id="ytick_2735"/>
</g>
</g>
<g id="axes_548">
<g id="patch_549">
<path d="M 434.924375 19707.535177
L 557.214375 19707.535177
L 557.214375 19580.241649
L 434.924375 19580.241649
z
" style="fill:#ffffff;"/>
</g>
<g id="matplotlib.axis_1095">
<g id="xtick_1642"/>
<g id="xtick_1643"/>
<g id="xtick_1644"/>
</g>
<g id="matplotlib.axis_1096">
<g id="ytick_2736"/>
<g id="ytick_2737"/>
<g id="ytick_2738"/>
<g id="ytick_2739"/>
<g id="ytick_2740"/>
</g>
</g>
</g>
<defs>
<clipPath id="p3179e87fd9">
<rect height="122.29" width="122.29" x="29.174375" y="9.701764"/>
</clipPath>
<clipPath id="p4b26f301aa">
<rect height="122.29" width="122.29" x="164.424375" y="153.621187"/>
</clipPath>
<clipPath id="pdeb91ad32a">
<rect height="122.29" width="122.29" x="299.674375" y="153.621187"/>
</clipPath>
<clipPath id="p077f49720b">
<rect height="122.29" width="122.29" x="434.924375" y="153.621187"/>
</clipPath>
<clipPath id="pf21b50a7ec">
<rect height="122.29" width="122.29" x="164.424375" y="297.540611"/>
</clipPath>
<clipPath id="pf370b9cc54">
<rect height="122.29" width="122.29" x="299.674375" y="297.540611"/>
</clipPath>
<clipPath id="p4285978f63">
<rect height="122.29" width="122.29" x="29.174375" y="441.460035"/>
</clipPath>
<clipPath id="pafa107b441">
<rect height="122.29" width="122.29" x="299.674375" y="585.379459"/>
</clipPath>
<clipPath id="pf78c5df873">
<rect height="122.29" width="122.29" x="434.924375" y="585.379459"/>
</clipPath>
<clipPath id="p8b09dcf524">
<rect height="122.29" width="122.29" x="29.174375" y="729.298883"/>
</clipPath>
<clipPath id="pb24c3eec49">
<rect height="122.29" width="122.29" x="299.674375" y="729.298883"/>
</clipPath>
<clipPath id="p6c5d8adf04">
<rect height="122.29" width="122.29" x="29.174375" y="873.218307"/>
</clipPath>
<clipPath id="p5140b31592">
<rect height="122.29" width="122.29" x="299.674375" y="873.218307"/>
</clipPath>
<clipPath id="paecb3281bb">
<rect height="122.29" width="122.29" x="434.924375" y="873.218307"/>
</clipPath>
<clipPath id="p2d8182bcef">
<rect height="122.29" width="122.29" x="29.174375" y="1017.137731"/>
</clipPath>
<clipPath id="p8f18501526">
<rect height="122.29" width="122.29" x="164.424375" y="1017.137731"/>
</clipPath>
<clipPath id="p446b4b606c">
<rect height="122.29" width="122.29" x="299.674375" y="1017.137731"/>
</clipPath>
<clipPath id="pbf66d9edb1">
<rect height="122.29" width="122.29" x="434.924375" y="1017.137731"/>
</clipPath>
<clipPath id="p4b79cbee07">
<rect height="122.29" width="122.29" x="164.424375" y="1161.057155"/>
</clipPath>
<clipPath id="pf08213672a">
<rect height="122.29" width="122.29" x="299.674375" y="1161.057155"/>
</clipPath>
<clipPath id="pcde80de619">
<rect height="122.29" width="122.29" x="434.924375" y="1161.057155"/>
</clipPath>
<clipPath id="p72b5b299cf">
<rect height="122.29" width="122.29" x="299.674375" y="1304.976579"/>
</clipPath>
<clipPath id="pb6f98eafa5">
<rect height="122.29" width="122.29" x="29.174375" y="1448.896002"/>
</clipPath>
<clipPath id="pfe61a8de44">
<rect height="122.29" width="122.29" x="29.174375" y="1592.815426"/>
</clipPath>
<clipPath id="p617600d8f7">
<rect height="122.29" width="122.29" x="29.174375" y="1736.73485"/>
</clipPath>
<clipPath id="p1c9c07b893">
<rect height="122.29" width="122.29" x="164.424375" y="1736.73485"/>
</clipPath>
<clipPath id="pa8346476eb">
<rect height="122.29" width="122.29" x="29.174375" y="1880.654274"/>
</clipPath>
<clipPath id="p68286d1078">
<rect height="122.29" width="122.29" x="164.424375" y="2024.573698"/>
</clipPath>
<clipPath id="pa970098718">
<rect height="122.29" width="122.29" x="164.424375" y="2168.493122"/>
</clipPath>
<clipPath id="p530dc7bf64">
<rect height="122.29" width="122.29" x="29.174375" y="2312.412546"/>
</clipPath>
<clipPath id="p28c2579062">
<rect height="122.29" width="122.29" x="29.174375" y="2456.33197"/>
</clipPath>
<clipPath id="p1655941fc4">
<rect height="122.29" width="122.29" x="299.674375" y="2456.33197"/>
</clipPath>
<clipPath id="pa54df521ac">
<rect height="122.29" width="122.29" x="29.174375" y="2600.251394"/>
</clipPath>
<clipPath id="pf152049a53">
<rect height="122.29" width="122.29" x="164.424375" y="2600.251394"/>
</clipPath>
<clipPath id="p2ec1c61613">
<rect height="122.29" width="122.29" x="299.674375" y="2600.251394"/>
</clipPath>
<clipPath id="pdbf2946181">
<rect height="122.29" width="122.29" x="164.424375" y="2744.170818"/>
</clipPath>
<clipPath id="pce73451527">
<rect height="122.29" width="122.29" x="434.924375" y="2888.090241"/>
</clipPath>
<clipPath id="p6c227f0a2e">
<rect height="122.29" width="122.29" x="434.924375" y="3032.009665"/>
</clipPath>
<clipPath id="p7f320251c8">
<rect height="122.29" width="122.29" x="29.174375" y="3175.929089"/>
</clipPath>
<clipPath id="pc25b721745">
<rect height="122.29" width="122.29" x="29.174375" y="3319.848513"/>
</clipPath>
<clipPath id="pb746bc7bf4">
<rect height="122.29" width="122.29" x="164.424375" y="3319.848513"/>
</clipPath>
<clipPath id="pc768613630">
<rect height="122.29" width="122.29" x="299.674375" y="3463.767937"/>
</clipPath>
<clipPath id="p92420f4190">
<rect height="122.29" width="122.29" x="434.924375" y="3607.687361"/>
</clipPath>
<clipPath id="pad2073ccd6">
<rect height="122.29" width="122.29" x="164.424375" y="3751.606785"/>
</clipPath>
<clipPath id="p9b1d98ca56">
<rect height="122.29" width="122.29" x="164.424375" y="3895.526209"/>
</clipPath>
<clipPath id="p7c5b860486">
<rect height="122.29" width="122.29" x="29.174375" y="4039.445633"/>
</clipPath>
<clipPath id="p6a73490581">
<rect height="122.29" width="122.29" x="164.424375" y="4039.445633"/>
</clipPath>
<clipPath id="p367e4425e9">
<rect height="122.29" width="122.29" x="29.174375" y="4183.365056"/>
</clipPath>
<clipPath id="p7746a6fb0b">
<rect height="122.29" width="122.29" x="164.424375" y="4183.365056"/>
</clipPath>
<clipPath id="p365bff183c">
<rect height="122.29" width="122.29" x="164.424375" y="4327.28448"/>
</clipPath>
<clipPath id="p806f42d525">
<rect height="122.29" width="122.29" x="164.424375" y="4471.203904"/>
</clipPath>
<clipPath id="pb4c5cfb1d5">
<rect height="122.29" width="122.29" x="29.174375" y="4615.123328"/>
</clipPath>
<clipPath id="p7a1bbf1c30">
<rect height="122.29" width="122.29" x="29.174375" y="4759.042752"/>
</clipPath>
<clipPath id="p6f2c248f50">
<rect height="122.29" width="122.29" x="164.424375" y="4759.042752"/>
</clipPath>
<clipPath id="pbd3a491149">
<rect height="122.29" width="122.29" x="164.424375" y="4902.962176"/>
</clipPath>
<clipPath id="pe666768ad3">
<rect height="122.29" width="122.29" x="164.424375" y="5046.8816"/>
</clipPath>
<clipPath id="p012c928cbe">
<rect height="122.29" width="122.29" x="29.174375" y="5190.801024"/>
</clipPath>
<clipPath id="p8ec3173711">
<rect height="122.29" width="122.29" x="29.174375" y="5334.720448"/>
</clipPath>
<clipPath id="pef7f88a188">
<rect height="122.29" width="122.29" x="164.424375" y="5334.720448"/>
</clipPath>
<clipPath id="p2f16d6885a">
<rect height="122.29" width="122.29" x="299.674375" y="5334.720448"/>
</clipPath>
<clipPath id="p64fac3725c">
<rect height="122.29" width="122.29" x="29.174375" y="5478.639872"/>
</clipPath>
<clipPath id="p6c4de31fa3">
<rect height="122.29" width="122.29" x="299.674375" y="5478.639872"/>
</clipPath>
<clipPath id="pbbb272700b">
<rect height="122.29" width="122.29" x="164.424375" y="5622.559295"/>
</clipPath>
<clipPath id="p27947f559f">
<rect height="122.29" width="122.29" x="164.424375" y="5766.478719"/>
</clipPath>
<clipPath id="p5f945cb182">
<rect height="122.29" width="122.29" x="299.674375" y="5910.398143"/>
</clipPath>
<clipPath id="p2a231270d7">
<rect height="122.29" width="122.29" x="164.424375" y="6054.317567"/>
</clipPath>
<clipPath id="pf89b7b5ccb">
<rect height="122.29" width="122.29" x="299.674375" y="6198.236991"/>
</clipPath>
<clipPath id="p98a2466da5">
<rect height="122.29" width="122.29" x="434.924375" y="6198.236991"/>
</clipPath>
<clipPath id="pb721af257d">
<rect height="122.29" width="122.29" x="29.174375" y="6342.156415"/>
</clipPath>
<clipPath id="pc282257bb0">
<rect height="122.29" width="122.29" x="164.424375" y="6342.156415"/>
</clipPath>
<clipPath id="p1dc0ab2463">
<rect height="122.29" width="122.29" x="29.174375" y="6486.075839"/>
</clipPath>
<clipPath id="pac701a1843">
<rect height="122.29" width="122.29" x="164.424375" y="6486.075839"/>
</clipPath>
<clipPath id="pb88da7210d">
<rect height="122.29" width="122.29" x="299.674375" y="6486.075839"/>
</clipPath>
<clipPath id="p169460c289">
<rect height="122.29" width="122.29" x="434.924375" y="6486.075839"/>
</clipPath>
<clipPath id="p81bb93b853">
<rect height="122.29" width="122.29" x="164.424375" y="6629.995263"/>
</clipPath>
<clipPath id="paf84ff641b">
<rect height="122.29" width="122.29" x="29.174375" y="6773.914687"/>
</clipPath>
<clipPath id="pf7f340440d">
<rect height="122.29" width="122.29" x="299.674375" y="6917.83411"/>
</clipPath>
<clipPath id="p3313b30c94">
<rect height="122.29" width="122.29" x="29.174375" y="7061.753534"/>
</clipPath>
<clipPath id="pb47bde964c">
<rect height="122.29" width="122.29" x="29.174375" y="7205.672958"/>
</clipPath>
<clipPath id="p46d960d9e5">
<rect height="122.29" width="122.29" x="29.174375" y="7349.592382"/>
</clipPath>
<clipPath id="pbbb526383a">
<rect height="122.29" width="122.29" x="299.674375" y="7493.511806"/>
</clipPath>
<clipPath id="p451e540040">
<rect height="122.29" width="122.29" x="434.924375" y="7493.511806"/>
</clipPath>
<clipPath id="p6f64546474">
<rect height="122.29" width="122.29" x="164.424375" y="7637.43123"/>
</clipPath>
<clipPath id="p269f2df32a">
<rect height="122.29" width="122.29" x="299.674375" y="7781.350654"/>
</clipPath>
<clipPath id="p96744a351e">
<rect height="122.29" width="122.29" x="29.174375" y="7925.270078"/>
</clipPath>
<clipPath id="p58c9d22744">
<rect height="122.29" width="122.29" x="164.424375" y="8069.189502"/>
</clipPath>
<clipPath id="p212d85d928">
<rect height="122.29" width="122.29" x="299.674375" y="8069.189502"/>
</clipPath>
<clipPath id="pa6148b907d">
<rect height="122.29" width="122.29" x="434.924375" y="8213.108925"/>
</clipPath>
<clipPath id="p226fa2e566">
<rect height="122.29" width="122.29" x="29.174375" y="8357.028349"/>
</clipPath>
<clipPath id="p5578310cd7">
<rect height="122.29" width="122.29" x="434.924375" y="8500.947773"/>
</clipPath>
<clipPath id="p743867ffea">
<rect height="122.29" width="122.29" x="29.174375" y="8644.867197"/>
</clipPath>
<clipPath id="pb0bea55b5b">
<rect height="122.29" width="122.29" x="164.424375" y="8644.867197"/>
</clipPath>
<clipPath id="pbcf9c31a70">
<rect height="122.29" width="122.29" x="29.174375" y="8788.786621"/>
</clipPath>
<clipPath id="p8b5f2a5feb">
<rect height="122.29" width="122.29" x="164.424375" y="8788.786621"/>
</clipPath>
<clipPath id="p26f7dc0170">
<rect height="122.29" width="122.29" x="29.174375" y="8932.706045"/>
</clipPath>
<clipPath id="p362bcd0ac8">
<rect height="122.29" width="122.29" x="164.424375" y="8932.706045"/>
</clipPath>
<clipPath id="p048dc10d5a">
<rect height="122.29" width="122.29" x="299.674375" y="9076.625469"/>
</clipPath>
<clipPath id="p06c90ce220">
<rect height="122.29" width="122.29" x="434.924375" y="9076.625469"/>
</clipPath>
<clipPath id="p9ab1cb806c">
<rect height="122.29" width="122.29" x="299.674375" y="9220.544893"/>
</clipPath>
<clipPath id="p8826a84318">
<rect height="122.29" width="122.29" x="434.924375" y="9220.544893"/>
</clipPath>
<clipPath id="pba32665bcf">
<rect height="122.29" width="122.29" x="29.174375" y="9364.464317"/>
</clipPath>
<clipPath id="p902fee3535">
<rect height="122.29" width="122.29" x="164.424375" y="9364.464317"/>
</clipPath>
<clipPath id="p24337d17ce">
<rect height="122.29" width="122.29" x="299.674375" y="9364.464317"/>
</clipPath>
<clipPath id="pf005da43cb">
<rect height="122.29" width="122.29" x="164.424375" y="9508.383741"/>
</clipPath>
<clipPath id="p5d662bb005">
<rect height="122.29" width="122.29" x="299.674375" y="9508.383741"/>
</clipPath>
<clipPath id="p890bf9b635">
<rect height="122.29" width="122.29" x="299.674375" y="9652.303164"/>
</clipPath>
<clipPath id="p8608acce2f">
<rect height="122.29" width="122.29" x="299.674375" y="9796.222588"/>
</clipPath>
<clipPath id="p3d5c8ba492">
<rect height="122.29" width="122.29" x="434.924375" y="9940.142012"/>
</clipPath>
<clipPath id="pcc81493df7">
<rect height="122.29" width="122.29" x="434.924375" y="10084.061436"/>
</clipPath>
<clipPath id="p5b6b7ff97e">
<rect height="122.29" width="122.29" x="29.174375" y="10227.98086"/>
</clipPath>
<clipPath id="pc8dcc547d5">
<rect height="122.29" width="122.29" x="299.674375" y="10227.98086"/>
</clipPath>
<clipPath id="p10fb4361f8">
<rect height="122.29" width="122.29" x="29.174375" y="10371.900284"/>
</clipPath>
<clipPath id="p7546519536">
<rect height="122.29" width="122.29" x="29.174375" y="10515.819708"/>
</clipPath>
<clipPath id="p2d5bc0d7af">
<rect height="122.29" width="122.29" x="29.174375" y="10659.739132"/>
</clipPath>
<clipPath id="p810a4c5e35">
<rect height="122.29" width="122.29" x="164.424375" y="10659.739132"/>
</clipPath>
<clipPath id="p74264846a1">
<rect height="122.29" width="122.29" x="299.674375" y="10659.739132"/>
</clipPath>
<clipPath id="p42ae485541">
<rect height="122.29" width="122.29" x="434.924375" y="10659.739132"/>
</clipPath>
<clipPath id="p3fde85328a">
<rect height="122.29" width="122.29" x="164.424375" y="10803.658556"/>
</clipPath>
<clipPath id="p7d1e553ccb">
<rect height="122.29" width="122.29" x="164.424375" y="10947.577979"/>
</clipPath>
<clipPath id="p35f2ef98a2">
<rect height="122.29" width="122.29" x="434.924375" y="11091.497403"/>
</clipPath>
<clipPath id="pd029e78ed7">
<rect height="122.29" width="122.29" x="434.924375" y="11235.416827"/>
</clipPath>
<clipPath id="p48f3c0824d">
<rect height="122.29" width="122.29" x="29.174375" y="11379.336251"/>
</clipPath>
<clipPath id="p7569bd03e0">
<rect height="122.29" width="122.29" x="434.924375" y="11379.336251"/>
</clipPath>
<clipPath id="pabbafcc5c0">
<rect height="122.29" width="122.29" x="29.174375" y="11523.255675"/>
</clipPath>
<clipPath id="pe083aeb519">
<rect height="122.29" width="122.29" x="299.674375" y="11667.175099"/>
</clipPath>
<clipPath id="p4630a2c4c1">
<rect height="122.29" width="122.29" x="434.924375" y="11811.094523"/>
</clipPath>
<clipPath id="p4061569d4e">
<rect height="122.29" width="122.29" x="434.924375" y="11955.013947"/>
</clipPath>
<clipPath id="pe007f157f1">
<rect height="122.29" width="122.29" x="29.174375" y="12098.933371"/>
</clipPath>
<clipPath id="p43ad155828">
<rect height="122.29" width="122.29" x="29.174375" y="12242.852794"/>
</clipPath>
<clipPath id="p3103a72695">
<rect height="122.29" width="122.29" x="299.674375" y="12386.772218"/>
</clipPath>
<clipPath id="p448d4f903f">
<rect height="122.29" width="122.29" x="299.674375" y="12530.691642"/>
</clipPath>
<clipPath id="p791cb8c553">
<rect height="122.29" width="122.29" x="299.674375" y="12674.611066"/>
</clipPath>
<clipPath id="p48023857ab">
<rect height="122.29" width="122.29" x="164.424375" y="12818.53049"/>
</clipPath>
<clipPath id="p1638710560">
<rect height="122.29" width="122.29" x="299.674375" y="12962.449914"/>
</clipPath>
<clipPath id="pd920b6f83d">
<rect height="122.29" width="122.29" x="29.174375" y="13106.369338"/>
</clipPath>
<clipPath id="p6d980f5387">
<rect height="122.29" width="122.29" x="164.424375" y="13106.369338"/>
</clipPath>
<clipPath id="p3a145127f5">
<rect height="122.29" width="122.29" x="299.674375" y="13106.369338"/>
</clipPath>
<clipPath id="pd93e4f0b19">
<rect height="122.29" width="122.29" x="434.924375" y="13106.369338"/>
</clipPath>
<clipPath id="p3db135bcc7">
<rect height="122.29" width="122.29" x="29.174375" y="13250.288762"/>
</clipPath>
<clipPath id="pde4ec7085d">
<rect height="122.29" width="122.29" x="299.674375" y="13250.288762"/>
</clipPath>
<clipPath id="p4d6fbe5d31">
<rect height="122.29" width="122.29" x="299.674375" y="13394.208186"/>
</clipPath>
<clipPath id="p577e77c77a">
<rect height="122.29" width="122.29" x="164.424375" y="13538.12761"/>
</clipPath>
<clipPath id="p8d0f13987f">
<rect height="122.29" width="122.29" x="29.174375" y="13682.047033"/>
</clipPath>
<clipPath id="p4f55441599">
<rect height="122.29" width="122.29" x="434.924375" y="13682.047033"/>
</clipPath>
<clipPath id="p1ab47d1de7">
<rect height="122.29" width="122.29" x="29.174375" y="13825.966457"/>
</clipPath>
<clipPath id="pc6ff054551">
<rect height="122.29" width="122.29" x="299.674375" y="13969.885881"/>
</clipPath>
<clipPath id="pe117f41a53">
<rect height="122.29" width="122.29" x="29.174375" y="14113.805305"/>
</clipPath>
<clipPath id="p19efd92c30">
<rect height="122.29" width="122.29" x="164.424375" y="14113.805305"/>
</clipPath>
<clipPath id="pbf1a253984">
<rect height="122.29" width="122.29" x="299.674375" y="14113.805305"/>
</clipPath>
<clipPath id="pdff17d43d0">
<rect height="122.29" width="122.29" x="29.174375" y="14257.724729"/>
</clipPath>
<clipPath id="pa1c4862797">
<rect height="122.29" width="122.29" x="164.424375" y="14257.724729"/>
</clipPath>
<clipPath id="p405e850b91">
<rect height="122.29" width="122.29" x="299.674375" y="14257.724729"/>
</clipPath>
<clipPath id="p71fd3a40c6">
<rect height="122.29" width="122.29" x="29.174375" y="14401.644153"/>
</clipPath>
<clipPath id="p08e1861d3b">
<rect height="122.29" width="122.29" x="434.924375" y="14545.563577"/>
</clipPath>
<clipPath id="p5952e1e2e6">
<rect height="122.29" width="122.29" x="29.174375" y="14689.483001"/>
</clipPath>
<clipPath id="p3e18c3a47e">
<rect height="122.29" width="122.29" x="164.424375" y="14689.483001"/>
</clipPath>
<clipPath id="p6dbaa9b525">
<rect height="122.29" width="122.29" x="29.174375" y="14833.402425"/>
</clipPath>
<clipPath id="p26811adb43">
<rect height="122.29" width="122.29" x="164.424375" y="14977.321848"/>
</clipPath>
<clipPath id="pec0a68b2ab">
<rect height="122.29" width="122.29" x="29.174375" y="15121.241272"/>
</clipPath>
<clipPath id="pcddd86cf4e">
<rect height="122.29" width="122.29" x="164.424375" y="15265.160696"/>
</clipPath>
<clipPath id="pbfc4087124">
<rect height="122.29" width="122.29" x="299.674375" y="15265.160696"/>
</clipPath>
<clipPath id="pa7802c9fb0">
<rect height="122.29" width="122.29" x="434.924375" y="15265.160696"/>
</clipPath>
<clipPath id="p34a5359bfb">
<rect height="122.29" width="122.29" x="164.424375" y="15409.08012"/>
</clipPath>
<clipPath id="p2d7bfaa8e7">
<rect height="122.29" width="122.29" x="164.424375" y="15552.999544"/>
</clipPath>
<clipPath id="p0eac0daf4f">
<rect height="122.29" width="122.29" x="434.924375" y="15696.918968"/>
</clipPath>
<clipPath id="p99b4a58302">
<rect height="122.29" width="122.29" x="29.174375" y="15840.838392"/>
</clipPath>
<clipPath id="p38d5f020f0">
<rect height="122.29" width="122.29" x="164.424375" y="15984.757816"/>
</clipPath>
<clipPath id="pf353c3ca3f">
<rect height="122.29" width="122.29" x="299.674375" y="16128.67724"/>
</clipPath>
<clipPath id="pdccf692d3f">
<rect height="122.29" width="122.29" x="29.174375" y="16272.596664"/>
</clipPath>
<clipPath id="p7f9b30acfe">
<rect height="122.29" width="122.29" x="29.174375" y="16416.516087"/>
</clipPath>
<clipPath id="p1ec9e3fa65">
<rect height="122.29" width="122.29" x="29.174375" y="16560.435511"/>
</clipPath>
<clipPath id="p3bbe7bdbec">
<rect height="122.29" width="122.29" x="164.424375" y="16704.354935"/>
</clipPath>
<clipPath id="p3e7796dfdf">
<rect height="122.29" width="122.29" x="164.424375" y="16848.274359"/>
</clipPath>
<clipPath id="pd3ec1f2fc2">
<rect height="122.29" width="122.29" x="299.674375" y="16848.274359"/>
</clipPath>
<clipPath id="p5a491e12b1">
<rect height="122.29" width="122.29" x="434.924375" y="16848.274359"/>
</clipPath>
<clipPath id="p16e3498409">
<rect height="122.29" width="122.29" x="164.424375" y="16992.193783"/>
</clipPath>
<clipPath id="pdb885ec1c0">
<rect height="122.29" width="122.29" x="29.174375" y="17136.113207"/>
</clipPath>
<clipPath id="p4db1a6a38c">
<rect height="122.29" width="122.29" x="164.424375" y="17136.113207"/>
</clipPath>
<clipPath id="pe80b44c7f8">
<rect height="122.29" width="122.29" x="434.924375" y="17136.113207"/>
</clipPath>
<clipPath id="p68537d9c3f">
<rect height="122.29" width="122.29" x="299.674375" y="17280.032631"/>
</clipPath>
<clipPath id="pf98823ff58">
<rect height="122.29" width="122.29" x="434.924375" y="17280.032631"/>
</clipPath>
<clipPath id="p965d02465c">
<rect height="122.29" width="122.29" x="299.674375" y="17423.952055"/>
</clipPath>
<clipPath id="pbf9b554061">
<rect height="122.29" width="122.29" x="29.174375" y="17567.871479"/>
</clipPath>
<clipPath id="pac5df339c9">
<rect height="122.29" width="122.29" x="299.674375" y="17711.790902"/>
</clipPath>
<clipPath id="p97e7131512">
<rect height="122.29" width="122.29" x="434.924375" y="17711.790902"/>
</clipPath>
<clipPath id="p61caea726d">
<rect height="122.29" width="122.29" x="434.924375" y="17855.710326"/>
</clipPath>
<clipPath id="p511950f3ab">
<rect height="122.29" width="122.29" x="29.174375" y="17999.62975"/>
</clipPath>
<clipPath id="p7d88e1633b">
<rect height="122.29" width="122.29" x="29.174375" y="18143.549174"/>
</clipPath>
<clipPath id="p3a8c22ec25">
<rect height="122.29" width="122.29" x="29.174375" y="18287.468598"/>
</clipPath>
<clipPath id="pe34779964e">
<rect height="122.29" width="122.29" x="164.424375" y="18431.388022"/>
</clipPath>
<clipPath id="pdb9f9ae90b">
<rect height="122.29" width="122.29" x="164.424375" y="18575.307446"/>
</clipPath>
<clipPath id="p8c2ff07683">
<rect height="122.29" width="122.29" x="29.174375" y="18719.22687"/>
</clipPath>
<clipPath id="p50627f193d">
<rect height="122.29" width="122.29" x="164.424375" y="18719.22687"/>
</clipPath>
<clipPath id="pf8e97acd7c">
<rect height="122.29" width="122.29" x="164.424375" y="18863.146294"/>
</clipPath>
<clipPath id="p7777ed8b58">
<rect height="122.29" width="122.29" x="434.924375" y="18863.146294"/>
</clipPath>
<clipPath id="p85fcc39b2e">
<rect height="122.29" width="122.29" x="434.924375" y="19007.065717"/>
</clipPath>
<clipPath id="p0928211d7b">
<rect height="122.29" width="122.29" x="29.174375" y="19150.985141"/>
</clipPath>
<clipPath id="pb8dd772c5c">
<rect height="122.29" width="122.29" x="29.174375" y="19294.904565"/>
</clipPath>
<clipPath id="pf814eebad0">
<rect height="122.29" width="122.29" x="164.424375" y="19438.823989"/>
</clipPath>
<clipPath id="p8cac824830">
<rect height="122.29" width="122.29" x="299.674375" y="19582.743413"/>
</clipPath>
</defs>
</svg>