updates to statistics

This commit is contained in:
Mikkel Elle Lepperød 2019-10-09 14:33:43 +02:00
parent b6a4cc0b49
commit ffdf5a4853
5 changed files with 1643 additions and 2700 deletions

View File

@ -1,6 +1,5 @@
registered: '2019-10-04T08:11:18'
data:
units: units.csv
results: results.csv
notebook: 10_calculate_spatial_statistics.ipynb
html: 10_calculate_spatial_statistics.html

View File

@ -13173,7 +13173,7 @@ div#notebook {
<div class="output_subarea output_stream output_stderr output_text">
<pre>17:02:20 [I] klustakwik KlustaKwik2 version 0.2.6
<pre>14:03:52 [I] klustakwik KlustaKwik2 version 0.2.6
</pre>
</div>
</div>
@ -13225,7 +13225,8 @@ div#notebook {
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">identify_neurons</span> <span class="o">=</span> <span class="n">actions</span><span class="p">[</span><span class="s1">&#39;identify-neurons&#39;</span><span class="p">]</span>
<span class="n">units</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">identify_neurons</span><span class="o">.</span><span class="n">data_path</span><span class="p">(</span><span class="s1">&#39;units&#39;</span><span class="p">))</span>
<span class="n">units</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">identify_neurons</span><span class="o">.</span><span class="n">data_path</span><span class="p">(</span><span class="s1">&#39;all_non_identified_units&#39;</span><span class="p">))</span>
<span class="c1"># units = pd.read_csv(identify_neurons.data_path(&#39;units&#39;))</span>
<span class="n">units</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
</pre></div>
@ -13264,57 +13265,39 @@ div#notebook {
<th></th>
<th>action</th>
<th>channel_group</th>
<th>max_depth_delta</th>
<th>max_dissimilarity</th>
<th>unit_id</th>
<th>unit_name</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>1834-010319-1</td>
<td>0</td>
<td>100</td>
<td>0.05</td>
<td>8d8cecbe-e2e5-4020-9c94-9573ca55cdfc</td>
<td>2</td>
<td>1849-060319-3</td>
<td>1</td>
<td>104</td>
</tr>
<tr>
<th>1</th>
<td>1834-010319-1</td>
<td>0</td>
<td>100</td>
<td>0.05</td>
<td>5b7fc3e8-b76d-4eed-a876-9ba184e508ac</td>
<td>39</td>
<td>1849-060319-3</td>
<td>1</td>
<td>108</td>
</tr>
<tr>
<th>2</th>
<td>1834-010319-3</td>
<td>0</td>
<td>100</td>
<td>0.05</td>
<td>1b42831d-5d71-4cb1-ba85-b5019b56ca2e</td>
<td>1849-060319-3</td>
<td>1</td>
<td>85</td>
</tr>
<tr>
<th>3</th>
<td>1834-010319-3</td>
<td>0</td>
<td>100</td>
<td>0.05</td>
<td>270fb3b3-3a7d-4060-bc1a-bc68d2ecab1a</td>
<td>12</td>
<td>1849-060319-3</td>
<td>1</td>
<td>94</td>
</tr>
<tr>
<th>4</th>
<td>1834-010319-3</td>
<td>0</td>
<td>100</td>
<td>0.05</td>
<td>6da7e1db-2d4f-4bd7-b45c-a1855aaa2fec</td>
<td>72</td>
<td>1849-060319-3</td>
<td>1</td>
<td>98</td>
</tr>
</tbody>
</table>
@ -13330,6 +13313,55 @@ div#notebook {
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="o">%</span><span class="k">matplotlib</span> inline
<span class="n">units</span><span class="o">.</span><span class="n">groupby</span><span class="p">(</span><span class="s1">&#39;action&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">count</span><span class="p">()</span><span class="o">.</span><span class="n">unit_name</span><span class="o">.</span><span class="n">hist</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[6]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>&lt;matplotlib.axes._subplots.AxesSubplot at 0x7f1dd5d9ea90&gt;</pre>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">data_loader</span> <span class="o">=</span> <span class="n">dp</span><span class="o">.</span><span class="n">Data</span><span class="p">(</span>
@ -13346,7 +13378,7 @@ div#notebook {
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[7]:</div>
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">first_row</span> <span class="o">=</span> <span class="n">units</span><span class="p">[</span><span class="n">units</span><span class="p">[</span><span class="s1">&#39;action&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;1849-060319-3&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
@ -13427,7 +13459,7 @@ div#notebook {
<span class="n">autocorrelogram</span> <span class="o">=</span> <span class="n">sp</span><span class="o">.</span><span class="n">autocorrelation</span><span class="p">(</span><span class="n">smooth_high_rate_map</span><span class="p">)</span>
<span class="n">peaks</span> <span class="o">=</span> <span class="n">sp</span><span class="o">.</span><span class="n">fields</span><span class="o">.</span><span class="n">find_peaks</span><span class="p">(</span><span class="n">autocorrelogram</span><span class="p">)</span>
<span class="n">real_peaks</span> <span class="o">=</span> <span class="n">peaks</span> <span class="o">*</span> <span class="n">bin_size</span>
<span class="n">autocorrelogram_box_size</span> <span class="o">=</span> <span class="n">box_size</span> <span class="o">*</span> <span class="n">autocorrelogram</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">/</span> <span class="n">smooth_high_rate_map</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">autocorrelogram_box_size</span> <span class="o">=</span> <span class="n">box_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">autocorrelogram</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">/</span> <span class="n">smooth_high_rate_map</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">spacing</span><span class="p">,</span> <span class="n">orientation</span> <span class="o">=</span> <span class="n">sp</span><span class="o">.</span><span class="n">spacing_and_orientation</span><span class="p">(</span><span class="n">real_peaks</span><span class="p">,</span> <span class="n">autocorrelogram_box_size</span><span class="p">)</span>
<span class="n">orientation</span> <span class="o">*=</span> <span class="mi">180</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">pi</span>
@ -13482,6 +13514,56 @@ div#notebook {
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stderr output_text">
<pre>/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/elephant/statistics.py:835: UserWarning: Instantaneous firing rate approximation contains negative values, possibly caused due to machine precision errors.
warnings.warn(&#34;Instantaneous firing rate approximation contains &#34;
</pre>
</div>
</div>
<div class="output_area">
<div class="prompt output_prompt">Out[&nbsp;]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>average_rate 3.095328
speed_score -0.063922
out_field_mean_rate 1.837642
in_field_mean_rate 5.122323
max_field_mean_rate 8.882211
max_rate 23.006163
sparsity 0.468122
selectivity 7.306812
interspike_interval_cv 3.970863
burst_event_ratio 0.397921
bursty_spike_ratio 0.676486
gridness -0.459487
border_score 0.078474
information_rate 0.965845
head_mean_ang 5.788704
head_mean_vec_len 0.043321
spacing 0.624971
orientation 22.067900
dtype: float64</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
@ -13497,6 +13579,77 @@ div#notebook {
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div id="2b4825d6-9766-4260-96f8-a8462ab148ed"></div>
<div class="output_subarea output_widget_view ">
<script type="text/javascript">
var element = $('#2b4825d6-9766-4260-96f8-a8462ab148ed');
</script>
<script type="application/vnd.jupyter.widget-view+json">
{"model_id": "efa60f02cd1b4f1a946f01a7f61c1640", "version_major": 2, "version_minor": 0}
</script>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stderr output_text">
<pre>/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:56: RuntimeWarning: Mean of empty slice.
/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/core/_methods.py:85: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)
/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:57: RuntimeWarning: Mean of empty slice.
/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: divide by zero encountered in log2
return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *
/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: invalid value encountered in log2
return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *
/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: invalid value encountered in multiply
return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *
/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/core/_methods.py:140: RuntimeWarning: Degrees of freedom &lt;= 0 for slice
keepdims=keepdims)
/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/core/_methods.py:110: RuntimeWarning: invalid value encountered in true_divide
arrmean, rcount, out=arrmean, casting=&#39;unsafe&#39;, subok=False)
/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/core/_methods.py:132: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)
/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/quantities/quantity.py:624: RuntimeWarning: Mean of empty slice.
ret = self.magnitude.mean(axis, dtype, None if out is None else out.magnitude)
/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:82: RuntimeWarning: invalid value encountered in long_scalars
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="o">%</span><span class="k">debug</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
@ -13517,8 +13670,7 @@ div#notebook {
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">units</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="n">output_path</span> <span class="o">/</span> <span class="s2">&quot;units.csv&quot;</span><span class="p">,</span> <span class="n">index</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">results</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="n">output_path</span> <span class="o">/</span> <span class="s2">&quot;results.csv&quot;</span><span class="p">,</span> <span class="n">index</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">results</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="n">output_path</span> <span class="o">/</span> <span class="s2">&quot;results.csv&quot;</span><span class="p">,</span> <span class="n">index</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
</pre></div>
</div>
@ -13535,7 +13687,7 @@ div#notebook {
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[14]:</div>
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">statistics_action</span> <span class="o">=</span> <span class="n">project</span><span class="o">.</span><span class="n">require_action</span><span class="p">(</span><span class="s2">&quot;calculate-statistics&quot;</span><span class="p">)</span>
@ -13548,11 +13700,10 @@ div#notebook {
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[15]:</div>
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">statistics_action</span><span class="o">.</span><span class="n">data</span><span class="p">[</span><span class="s2">&quot;units&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;units.csv&quot;</span>
<span class="n">statistics_action</span><span class="o">.</span><span class="n">data</span><span class="p">[</span><span class="s2">&quot;results&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;results.csv&quot;</span>
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">statistics_action</span><span class="o">.</span><span class="n">data</span><span class="p">[</span><span class="s2">&quot;results&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="s2">&quot;results.csv&quot;</span>
<span class="n">copy_tree</span><span class="p">(</span><span class="n">output_path</span><span class="p">,</span> <span class="nb">str</span><span class="p">(</span><span class="n">statistics_action</span><span class="o">.</span><span class="n">data_path</span><span class="p">()))</span>
</pre></div>
@ -13560,32 +13711,10 @@ div#notebook {
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[15]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>[&#39;/media/storage/expipe/septum-mec/actions/calculate-statistics/data/results.csv&#39;,
&#39;/media/storage/expipe/septum-mec/actions/calculate-statistics/data/sessions.csv&#39;,
&#39;/media/storage/expipe/septum-mec/actions/calculate-statistics/data/units.csv&#39;]</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[16]:</div>
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">septum_mec</span><span class="o">.</span><span class="n">analysis</span><span class="o">.</span><span class="n">registration</span><span class="o">.</span><span class="n">store_notebook</span><span class="p">(</span><span class="n">statistics_action</span><span class="p">,</span> <span class="s2">&quot;10_calculate_spatial_statistics.ipynb&quot;</span><span class="p">)</span>

View File

@ -19,7 +19,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
"17:02:20 [I] klustakwik KlustaKwik2 version 0.2.6\n"
"14:03:52 [I] klustakwik KlustaKwik2 version 0.2.6\n"
]
}
],
@ -108,76 +108,51 @@
" <th></th>\n",
" <th>action</th>\n",
" <th>channel_group</th>\n",
" <th>max_depth_delta</th>\n",
" <th>max_dissimilarity</th>\n",
" <th>unit_id</th>\n",
" <th>unit_name</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1834-010319-1</td>\n",
" <td>0</td>\n",
" <td>100</td>\n",
" <td>0.05</td>\n",
" <td>8d8cecbe-e2e5-4020-9c94-9573ca55cdfc</td>\n",
" <td>2</td>\n",
" <td>1849-060319-3</td>\n",
" <td>1</td>\n",
" <td>104</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1834-010319-1</td>\n",
" <td>0</td>\n",
" <td>100</td>\n",
" <td>0.05</td>\n",
" <td>5b7fc3e8-b76d-4eed-a876-9ba184e508ac</td>\n",
" <td>39</td>\n",
" <td>1849-060319-3</td>\n",
" <td>1</td>\n",
" <td>108</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1834-010319-3</td>\n",
" <td>0</td>\n",
" <td>100</td>\n",
" <td>0.05</td>\n",
" <td>1b42831d-5d71-4cb1-ba85-b5019b56ca2e</td>\n",
" <td>1849-060319-3</td>\n",
" <td>1</td>\n",
" <td>85</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1834-010319-3</td>\n",
" <td>0</td>\n",
" <td>100</td>\n",
" <td>0.05</td>\n",
" <td>270fb3b3-3a7d-4060-bc1a-bc68d2ecab1a</td>\n",
" <td>12</td>\n",
" <td>1849-060319-3</td>\n",
" <td>1</td>\n",
" <td>94</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1834-010319-3</td>\n",
" <td>0</td>\n",
" <td>100</td>\n",
" <td>0.05</td>\n",
" <td>6da7e1db-2d4f-4bd7-b45c-a1855aaa2fec</td>\n",
" <td>72</td>\n",
" <td>1849-060319-3</td>\n",
" <td>1</td>\n",
" <td>98</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" action channel_group max_depth_delta max_dissimilarity \\\n",
"0 1834-010319-1 0 100 0.05 \n",
"1 1834-010319-1 0 100 0.05 \n",
"2 1834-010319-3 0 100 0.05 \n",
"3 1834-010319-3 0 100 0.05 \n",
"4 1834-010319-3 0 100 0.05 \n",
"\n",
" unit_id unit_name \n",
"0 8d8cecbe-e2e5-4020-9c94-9573ca55cdfc 2 \n",
"1 5b7fc3e8-b76d-4eed-a876-9ba184e508ac 39 \n",
"2 1b42831d-5d71-4cb1-ba85-b5019b56ca2e 1 \n",
"3 270fb3b3-3a7d-4060-bc1a-bc68d2ecab1a 12 \n",
"4 6da7e1db-2d4f-4bd7-b45c-a1855aaa2fec 72 "
" action channel_group unit_name\n",
"0 1849-060319-3 1 104\n",
"1 1849-060319-3 1 108\n",
"2 1849-060319-3 1 85\n",
"3 1849-060319-3 1 94\n",
"4 1849-060319-3 1 98"
]
},
"execution_count": 5,
@ -187,7 +162,8 @@
],
"source": [
"identify_neurons = actions['identify-neurons']\n",
"units = pd.read_csv(identify_neurons.data_path('units'))\n",
"units = pd.read_csv(identify_neurons.data_path('all_non_identified_units'))\n",
"# units = pd.read_csv(identify_neurons.data_path('units'))\n",
"units.head()"
]
},
@ -195,6 +171,39 @@
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f1dd5d9ea90>"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD7CAYAAAB37B+tAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAC/9JREFUeJzt3X+IpHd9wPH35u4mq+UMCiJ6WBexfpi/QjjxItZ6YIpNj5KSP4tBDCJK/oiojdf0glAsXEpyghEV8sOTVkHMj/7hcZo/bJPYImISwcThcxo96x8KbSAYDePuXbZ/7BzdXnZ2Zp6dmWc/s+8XBGZmZ/f5fO/Zeee5Z+fZW1pfX0eSVNcVbQ8gSdoZQy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqbj989jIkSNH1g8dOjSPTU3N6uoqnU6n7TF2xDXsDq5hd6i4hmefffZ/MvP1o543l5AfOnSIhx9+eB6bmpper0e32217jB1xDbuDa9gdKq4hIn45zvM8tSJJxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXL9P/21i3tqu9IimMsl+qpj+cA+Vo6fmft2z588NvdtSovCI3JJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVt3+7D0bEAeABYAW4Evgs8BPgNLAOPAPckpkvz3RKSdJQo47IPwA8n5nvAf4C+AJwCjgxeGwJuGG2I0qStjMq5N8E7hjcXgIuAIeBxwaPnQWum81okqRxbHtqJTN/BxARB4EHgRPAXZm5PnjKi8BVozayurpKr9fb4ajz1e/3y818uSZr6Ha7M5pmtK1m3av7YbdxDbvbtiEHiIg3A48AX8zMr0fEP2368EHghVFfo9PptBqIJnq9XrmZL1dtDVvNWm0NW3ENu8MirGGYbU+tRMQbgEeBT2fmA4OHn46Io4Pb1wNPzG48SdIoo47IbwdeC9wREZfOld8KfD4iOkCPjVMukqSWjDpHfisb4b7ce2czjiRpUl4QJEnFGXJJKs6QS1JxhlySijPk2hX6axe3fHwe7/sdtm2pipEXBEnzsHxgHyvHz7Sy7fMnj7WyXWlaPCKXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMufa8/trFmX79brfbyna1d+xvewCpbcsH9rFy/Mzct3v+5LG5b1OLySNySSrOkEtScYZckooz5JJU3Fg/7IyII8CdmXk0Iq4BvgX8dPDhL2XmN2Y1oCRpeyNDHhG3ATcBvx88dBg4lZl3z3IwSdJ4xjm18hxw46b7h4FjEfF4RNwfEQdnM5okaRwjj8gz86GIWNn00A+A+zLzyYj4e+AzwKe2+xqrq6v0er0dDTpv/X6/3MyXa7KGYRevaDaqfI/t1ddDFU0uCHokM1+4dBu4Z9QndDqdcoHo9XrlZr7cIqxh0VXZP4vwvbQIaximybtWvhMR7xzcfh/w5BTnkSRNqMkR+ceAeyJiDfgN8JHpjiRJmsRYIc/M88C1g9tPAe+e4UySpAl4QZAkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1Jx+8d5UkQcAe7MzKMR8TbgNLAOPAPckpkvz25ESdJ2Rh6RR8RtwH3A8uChU8CJzHwPsATcMLvxJEmjjHNq5Tngxk33DwOPDW6fBa6b9lCSpPGNPLWSmQ9FxMqmh5Yyc31w+0XgqlFfY3V1lV6v12zClvT7/dZm/uOVt/JHr7pyx1+n2+1OYRrNUpXXRZuvh2lZhDUMM9Y58stsPh9+EHhh1Cd0Op1yUen1eq3OvHL8TCvbPX/yWCvb3auqvC7afj1MwyKsYZgm71p5OiKODm5fDzwxvXEkSZNqckT+SeDeiOgAPeDB6Y4kSZrEWCHPzPPAtYPb54D3znAmSdIEvCBIkooz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLkkFWfIJak4Qy5JxZUIeX/t4ty32e12W9muJE1qf9sDjGP5wD5Wjp+Z+3bPnzw2921K0qRKHJFLkoYz5JJUnCGXpOIMuSQVZ8glqThDLknFGXJJKs6QS1JxhlySijPkklScIZek4gy5JBVnyCWpuMa//TAingJ+O7j7i8z80HRGkiRNolHII2IZWMrMo9MdR5I0qaZH5FcDr46IRwdf4/bM/P70xpIkjatpyF8C7gLuA/4EOBsRkZkXtnry6uoqvV6v4aY2/rWetuxk7qbaXK/mq43vryb6/X6ZWYdZhDUM0zTk54CfZeY6cC4ingfeCPxqqyd3Op2ycao6t2qo8v3V6/XKzDrMIqxhmKbvWrkZuBsgIt4EvAb49bSGkiSNr+kR+f3A6Yj4HrAO3DzstIokabYahTwzV4G/mfIskqQGvCBIkooz5JJUnCGXpOIMuSQVZ8illvTXLu7JbWv6Gv/SLEk7s3xgHyvHz7Sy7fMnj7WyXc2GR+SSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZ8G140IU1XW6+pRX8te0HQNtq6YMOLNbSofE3NhkfkklScIZek4gy5JBVnyCWpOEMuScUZckkqzpBLUnGGXNqDJr1AptvtzmgSTYMXBEl7kBfmLBaPyCWpOEMuScUZckkqzpBLUnGGXJKKM+SSVJwhl6TiDLmkhddfu9jaRU3z+NeJvCBI0sJr6wIomM9FUB6RS1JxhlySijPkklScIZek4hr9sDMirgC+CFwN/AH4cGb+bJqDSZLG0/SI/K+B5cx8F3AcuHt6I0mSJtE05H8KfBsgM78PvGNqE0mSJrK0vr4+8SdFxH3AQ5l5dnD/v4C3ZuaFIc//b+CXOxlUkvagt2Tm60c9qekFQb8FDm66f8WwiAOMM4gkqZmmp1b+A/hLgIi4Fvjx1CaSJE2k6RH5I8CfR8R/AkvAh6Y3kiRpEo3OkUuSdg8vCJKk4gy5JBXnr7HdQkQ8xcY7cwB+kZllfgYQEUeAOzPzaES8DTgNrAPPALdk5sttzjeOy9ZwDfAt4KeDD38pM7/R3nTbi4gDwAPACnAl8FngJxTaD0PW8Ctq7Yd9wL1AsPHn/lGgT6H9MAlDfpmIWAaWMvNo27NMKiJuA24Cfj946BRwIjP/PSK+DNzAxg+qd60t1nAYOJWZVa4e/gDwfGbeFBGvA340+K/SfthqDf9Arf3wVwCZ+e6IOAr8IxtvzKi0H8bmqZVXuhp4dUQ8GhHfHby9sorngBs33T8MPDa4fRa4bu4TTW6rNRyLiMcj4v6IODjk83aLbwJ3DG4vAReotx+GraHMfsjMfwU+Mrj7FuAF6u2HsRnyV3oJuAt4Pxt/HftaRJT4m0tmPgSsbXpoKTMvvS3pReCq+U81mS3W8APgbzPzz4CfA59pZbAxZebvMvPFQegeBE5QbD8MWUOp/QCQmRci4qvAPcDXKLYfJmHIX+kc8C+ZuZ6Z54DngTe2PFNTm8//HWTjqKSaRzLzyUu3gWvaHGYcEfFm4N+Af87Mr1NwP2yxhnL7ASAzPwi8nY3z5a/a9KES+2FchvyVbmbw2xwj4k3Aa4BftzpRc08Pzg8CXA880eIsTX0nIt45uP0+4Mntnty2iHgD8Cjw6cx8YPBwqf0wZA3V9sNNEfF3g7svsfE/0x9W2g+TKHHKYM7uB05HxPfY+On2zdv9Hpld7pPAvRHRAXps/DW5mo8B90TEGvAb/u+85251O/Ba4I6IuHSe+Vbg84X2w1Zr+ATwuUL74WHgKxHxOHAA+Dgbf/bVXw9b8spOSSrOUyuSVJwhl6TiDLkkFWfIJak4Qy5JxRlySSrOkEtScYZckor7Xy3zQIQBBWTTAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"units.groupby('action').count().unit_name.hist()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_loader = dp.Data(\n",
@ -206,7 +215,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -220,7 +229,44 @@
"metadata": {
"scrolled": false
},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/elephant/statistics.py:835: UserWarning: Instantaneous firing rate approximation contains negative values, possibly caused due to machine precision errors.\n",
" warnings.warn(\"Instantaneous firing rate approximation contains \"\n"
]
},
{
"data": {
"text/plain": [
"average_rate 3.095328\n",
"speed_score -0.063922\n",
"out_field_mean_rate 1.837642\n",
"in_field_mean_rate 5.122323\n",
"max_field_mean_rate 8.882211\n",
"max_rate 23.006163\n",
"sparsity 0.468122\n",
"selectivity 7.306812\n",
"interspike_interval_cv 3.970863\n",
"burst_event_ratio 0.397921\n",
"bursty_spike_ratio 0.676486\n",
"gridness -0.459487\n",
"border_score 0.078474\n",
"information_rate 0.965845\n",
"head_mean_ang 5.788704\n",
"head_mean_vec_len 0.043321\n",
"spacing 0.624971\n",
"orientation 22.067900\n",
"dtype: float64"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def process(row):\n",
" action_id = row['action']\n",
@ -286,7 +332,7 @@
" autocorrelogram = sp.autocorrelation(smooth_high_rate_map)\n",
" peaks = sp.fields.find_peaks(autocorrelogram)\n",
" real_peaks = peaks * bin_size\n",
" autocorrelogram_box_size = box_size * autocorrelogram.shape[0] / smooth_high_rate_map.shape[0]\n",
" autocorrelogram_box_size = box_size[0] * autocorrelogram.shape[0] / smooth_high_rate_map.shape[0]\n",
" spacing, orientation = sp.spacing_and_orientation(real_peaks, autocorrelogram_box_size)\n",
" orientation *= 180 / np.pi\n",
"\n",
@ -343,13 +389,62 @@
"metadata": {
"scrolled": false
},
"outputs": [],
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "efa60f02cd1b4f1a946f01a7f61c1640",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(IntProgress(value=0, max=1298), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:56: RuntimeWarning: Mean of empty slice.\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/core/_methods.py:85: RuntimeWarning: invalid value encountered in double_scalars\n",
" ret = ret.dtype.type(ret / rcount)\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:57: RuntimeWarning: Mean of empty slice.\n",
"/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: divide by zero encountered in log2\n",
" return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n",
"/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: invalid value encountered in log2\n",
" return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n",
"/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: invalid value encountered in multiply\n",
" return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/core/_methods.py:140: RuntimeWarning: Degrees of freedom <= 0 for slice\n",
" keepdims=keepdims)\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/core/_methods.py:110: RuntimeWarning: invalid value encountered in true_divide\n",
" arrmean, rcount, out=arrmean, casting='unsafe', subok=False)\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/core/_methods.py:132: RuntimeWarning: invalid value encountered in double_scalars\n",
" ret = ret.dtype.type(ret / rcount)\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/quantities/quantity.py:624: RuntimeWarning: Mean of empty slice.\n",
" ret = self.magnitude.mean(axis, dtype, None if out is None else out.magnitude)\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:82: RuntimeWarning: invalid value encountered in long_scalars\n"
]
}
],
"source": [
"results = units.merge(\n",
" units.progress_apply(process, axis=1), \n",
" left_index=True, right_index=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%debug"
]
},
{
"cell_type": "code",
"execution_count": null,
@ -366,7 +461,6 @@
"metadata": {},
"outputs": [],
"source": [
"units.to_csv(output_path / \"units.csv\", index=False)\n",
"results.to_csv(output_path / \"results.csv\", index=False)"
]
},
@ -379,7 +473,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -388,31 +482,17 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['/media/storage/expipe/septum-mec/actions/calculate-statistics/data/results.csv',\n",
" '/media/storage/expipe/septum-mec/actions/calculate-statistics/data/sessions.csv',\n",
" '/media/storage/expipe/septum-mec/actions/calculate-statistics/data/units.csv']"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"statistics_action.data[\"units\"] = \"units.csv\"\n",
"statistics_action.data[\"results\"] = \"results.csv\"\n",
"copy_tree(output_path, str(statistics_action.data_path()))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff