2019-10-17 17:44:01 +00:00
|
|
|
|
{
|
|
|
|
|
"cells": [
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 1,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"%load_ext autoreload\n",
|
|
|
|
|
"%autoreload 2"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 2,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stderr",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"16:00:32 [I] klustakwik KlustaKwik2 version 0.2.6\n"
|
2019-10-17 17:44:01 +00:00
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"import os\n",
|
|
|
|
|
"import expipe\n",
|
|
|
|
|
"import pathlib\n",
|
|
|
|
|
"import numpy as np\n",
|
|
|
|
|
"import spatial_maps.stats as stats\n",
|
|
|
|
|
"import septum_mec\n",
|
|
|
|
|
"import septum_mec.analysis.data_processing as dp\n",
|
|
|
|
|
"import septum_mec.analysis.registration\n",
|
|
|
|
|
"import head_direction.head as head\n",
|
|
|
|
|
"import spatial_maps as sp\n",
|
|
|
|
|
"import speed_cells.speed as spd\n",
|
|
|
|
|
"import re\n",
|
|
|
|
|
"import joblib\n",
|
|
|
|
|
"import multiprocessing\n",
|
|
|
|
|
"import shutil\n",
|
|
|
|
|
"import psutil\n",
|
|
|
|
|
"import pandas as pd\n",
|
|
|
|
|
"import matplotlib.pyplot as plt\n",
|
|
|
|
|
"import matplotlib\n",
|
|
|
|
|
"import seaborn as sns\n",
|
|
|
|
|
"from distutils.dir_util import copy_tree\n",
|
|
|
|
|
"from neo import SpikeTrain\n",
|
|
|
|
|
"import scipy\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"from tqdm import tqdm_notebook as tqdm\n",
|
|
|
|
|
"from tqdm._tqdm_notebook import tqdm_notebook\n",
|
|
|
|
|
"tqdm_notebook.pandas()\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"from spike_statistics.core import permutation_resampling\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"from spikewaveform.core import calculate_waveform_features_from_template, cluster_waveform_features\n",
|
|
|
|
|
"\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"from septum_mec.analysis.plotting import violinplot, despine"
|
2019-10-17 17:44:01 +00:00
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 3,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"%matplotlib inline\n",
|
|
|
|
|
"plt.rc('axes', titlesize=12)\n",
|
|
|
|
|
"plt.rcParams.update({\n",
|
|
|
|
|
" 'font.size': 12, \n",
|
|
|
|
|
" 'figure.figsize': (6, 4), \n",
|
|
|
|
|
" 'figure.dpi': 150\n",
|
|
|
|
|
"})\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"output_path = pathlib.Path(\"output\") / \"stimulus-spike-lfp-response\"\n",
|
|
|
|
|
"(output_path / \"statistics\").mkdir(exist_ok=True, parents=True)\n",
|
|
|
|
|
"(output_path / \"figures\").mkdir(exist_ok=True, parents=True)\n",
|
|
|
|
|
"output_path.mkdir(exist_ok=True)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 4,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"data_loader = dp.Data()\n",
|
|
|
|
|
"actions = data_loader.actions\n",
|
|
|
|
|
"project = data_loader.project"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 5,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"identification_action = actions['identify-neurons']\n",
|
|
|
|
|
"sessions = pd.read_csv(identification_action.data_path('sessions'))\n",
|
|
|
|
|
"units = pd.read_csv(identification_action.data_path('units'))\n",
|
|
|
|
|
"session_units = pd.merge(sessions, units, on='action')"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 6,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"lfp_action = actions['stimulus-spike-lfp-response']\n",
|
|
|
|
|
"lfp_results = pd.read_csv(lfp_action.data_path('results'))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 7,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"# lfp_results has old unit id's but correct on (action, unit_name, channel_group)\n",
|
|
|
|
|
"lfp_results = lfp_results.drop('unit_id', axis=1)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 8,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"source": [
|
|
|
|
|
"stim_action = actions['stimulus-response']\n",
|
|
|
|
|
"stim_results = pd.read_csv(stim_action.data_path('results'))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 9,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"# lfp_results has old unit id's but correct on (action, unit_name, channel_group)\n",
|
|
|
|
|
"stim_results = stim_results.drop('unit_id', axis=1)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 10,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"source": [
|
|
|
|
|
"statistics_action = actions['calculate-statistics']\n",
|
|
|
|
|
"shuffling = actions['shuffling']\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"statistics_results = pd.read_csv(statistics_action.data_path('results'))\n",
|
|
|
|
|
"statistics_results = session_units.merge(statistics_results, how='left')\n",
|
|
|
|
|
"quantiles_95 = pd.read_csv(shuffling.data_path('quantiles_95'))\n",
|
|
|
|
|
"action_columns = ['action', 'channel_group', 'unit_name']\n",
|
|
|
|
|
"data = pd.merge(statistics_results, quantiles_95, on=action_columns, suffixes=(\"\", \"_threshold\"))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 11,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"data['unit_day'] = data.apply(lambda x: str(x.unit_idnum) + '_' + x.action.split('-')[1], axis=1)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 12,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"data = data.merge(lfp_results, how='left')"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 13,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"data = data.merge(stim_results, how='left')"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 14,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"waveform_action = actions['waveform-analysis']\n",
|
|
|
|
|
"waveform_results = pd.read_csv(waveform_action.data_path('results')).drop('template', axis=1)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 15,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"data = data.merge(waveform_results, how='left')"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 16,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"colors = ['#1b9e77','#d95f02','#7570b3','#e7298a']\n",
|
|
|
|
|
"labels = ['Baseline I', '11 Hz', 'Baseline II', '30 Hz']\n",
|
|
|
|
|
"queries = ['baseline and Hz11', 'frequency==11', 'baseline and Hz30', 'frequency==30']"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 17,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"data.bs = data.bs.astype(bool)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 18,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"data.loc[data.eval('not t_i_peak.isnull() and not bs'), 'ns_inhibited'] = True\n",
|
|
|
|
|
"data.ns_inhibited.fillna(False, inplace=True)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"data.loc[data.eval('t_i_peak.isnull() and not bs'), 'ns_not_inhibited'] = True\n",
|
|
|
|
|
"data.ns_not_inhibited.fillna(False, inplace=True)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 19,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"# make baseline for inhibited vs not inhibited\n",
|
|
|
|
|
"data.loc[data.unit_id.isin(data.query('ns_inhibited').unit_id.values), 'ns_inhibited'] = True\n",
|
|
|
|
|
"data.loc[data.unit_id.isin(data.query('ns_not_inhibited').unit_id.values), 'ns_not_inhibited'] = True"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 20,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"Number of gridcells 225\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"query = (\n",
|
|
|
|
|
" 'gridness > gridness_threshold and '\n",
|
|
|
|
|
" 'information_rate > information_rate_threshold and '\n",
|
|
|
|
|
" 'gridness > .2 and '\n",
|
|
|
|
|
" 'average_rate < 25'\n",
|
|
|
|
|
")\n",
|
|
|
|
|
"sessions_above_threshold = data.query(query)\n",
|
|
|
|
|
"print(\"Number of sessions above threshold\", len(sessions_above_threshold))\n",
|
|
|
|
|
"print(\"Number of animals\", len(sessions_above_threshold.groupby(['entity'])))"
|
2019-10-17 17:44:01 +00:00
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 21,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"gridcell_sessions = data[data.unit_day.isin(sessions_above_threshold.unit_day.values)]"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 22,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/html": [
|
|
|
|
|
"<div>\n",
|
|
|
|
|
"<style scoped>\n",
|
|
|
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
|
" vertical-align: middle;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe tbody tr th {\n",
|
|
|
|
|
" vertical-align: top;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe thead th {\n",
|
|
|
|
|
" text-align: right;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"</style>\n",
|
|
|
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
|
" <thead>\n",
|
|
|
|
|
" <tr style=\"text-align: right;\">\n",
|
|
|
|
|
" <th></th>\n",
|
|
|
|
|
" <th>action</th>\n",
|
|
|
|
|
" <th>baseline</th>\n",
|
|
|
|
|
" <th>entity</th>\n",
|
|
|
|
|
" <th>frequency</th>\n",
|
|
|
|
|
" <th>i</th>\n",
|
|
|
|
|
" <th>ii</th>\n",
|
|
|
|
|
" <th>session</th>\n",
|
|
|
|
|
" <th>stim_location</th>\n",
|
|
|
|
|
" <th>stimulated</th>\n",
|
|
|
|
|
" <th>tag</th>\n",
|
|
|
|
|
" <th>...</th>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <th>t_i_peak</th>\n",
|
|
|
|
|
" <th>p_i_peak</th>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <th>half_width</th>\n",
|
|
|
|
|
" <th>peak_to_trough</th>\n",
|
|
|
|
|
" <th>average_firing_rate</th>\n",
|
|
|
|
|
" <th>bs</th>\n",
|
|
|
|
|
" <th>bs_stim</th>\n",
|
|
|
|
|
" <th>bs_ctrl</th>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <th>ns_inhibited</th>\n",
|
|
|
|
|
" <th>ns_not_inhibited</th>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </thead>\n",
|
|
|
|
|
" <tbody>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>17</th>\n",
|
|
|
|
|
" <td>1839-120619-4</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1839</td>\n",
|
|
|
|
|
" <td>30.0</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>4</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.283497</td>\n",
|
|
|
|
|
" <td>0.606614</td>\n",
|
|
|
|
|
" <td>9.779867</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>19</th>\n",
|
|
|
|
|
" <td>1839-120619-4</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1839</td>\n",
|
|
|
|
|
" <td>30.0</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>4</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.261815</td>\n",
|
|
|
|
|
" <td>0.633750</td>\n",
|
|
|
|
|
" <td>7.437802</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>21</th>\n",
|
|
|
|
|
" <td>1839-120619-4</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1839</td>\n",
|
|
|
|
|
" <td>30.0</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>4</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>0.0008</td>\n",
|
|
|
|
|
" <td>0.000880</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.242524</td>\n",
|
|
|
|
|
" <td>0.534827</td>\n",
|
|
|
|
|
" <td>2.265039</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>29</th>\n",
|
|
|
|
|
" <td>1839-120619-4</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1839</td>\n",
|
|
|
|
|
" <td>30.0</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>4</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.279806</td>\n",
|
|
|
|
|
" <td>0.598967</td>\n",
|
|
|
|
|
" <td>10.924422</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>30</th>\n",
|
|
|
|
|
" <td>1839-120619-4</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1839</td>\n",
|
|
|
|
|
" <td>30.0</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>4</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>0.0005</td>\n",
|
|
|
|
|
" <td>0.002365</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.265158</td>\n",
|
|
|
|
|
" <td>0.581451</td>\n",
|
|
|
|
|
" <td>3.984881</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>31</th>\n",
|
|
|
|
|
" <td>1839-120619-4</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1839</td>\n",
|
|
|
|
|
" <td>30.0</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>4</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.246920</td>\n",
|
|
|
|
|
" <td>0.570844</td>\n",
|
|
|
|
|
" <td>3.497452</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>33</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.272875</td>\n",
|
|
|
|
|
" <td>0.602667</td>\n",
|
|
|
|
|
" <td>5.945508</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>34</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.226452</td>\n",
|
|
|
|
|
" <td>0.274814</td>\n",
|
|
|
|
|
" <td>2.860048</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>35</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.247266</td>\n",
|
|
|
|
|
" <td>0.570104</td>\n",
|
|
|
|
|
" <td>3.365674</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>39</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.284542</td>\n",
|
|
|
|
|
" <td>0.644111</td>\n",
|
|
|
|
|
" <td>17.471520</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>40</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.259920</td>\n",
|
|
|
|
|
" <td>0.581698</td>\n",
|
|
|
|
|
" <td>5.891739</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>42</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.263630</td>\n",
|
|
|
|
|
" <td>0.596746</td>\n",
|
|
|
|
|
" <td>13.436847</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>44</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.281399</td>\n",
|
|
|
|
|
" <td>0.607354</td>\n",
|
|
|
|
|
" <td>17.446704</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>46</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.285816</td>\n",
|
|
|
|
|
" <td>0.603160</td>\n",
|
|
|
|
|
" <td>7.914246</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>47</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.279177</td>\n",
|
|
|
|
|
" <td>0.585152</td>\n",
|
|
|
|
|
" <td>10.840470</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>49</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.282336</td>\n",
|
|
|
|
|
" <td>0.711705</td>\n",
|
|
|
|
|
" <td>5.890705</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>54</th>\n",
|
|
|
|
|
" <td>1839-060619-3</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1839</td>\n",
|
|
|
|
|
" <td>11.0</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.270286</td>\n",
|
|
|
|
|
" <td>0.573804</td>\n",
|
|
|
|
|
" <td>14.025342</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>57</th>\n",
|
|
|
|
|
" <td>1834-150319-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1834</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.277867</td>\n",
|
|
|
|
|
" <td>0.588852</td>\n",
|
|
|
|
|
" <td>17.162446</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>76</th>\n",
|
|
|
|
|
" <td>1834-120319-4</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1834</td>\n",
|
|
|
|
|
" <td>30.0</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>4</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>0.0044</td>\n",
|
|
|
|
|
" <td>0.018315</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.285028</td>\n",
|
|
|
|
|
" <td>0.578245</td>\n",
|
|
|
|
|
" <td>34.841257</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>87</th>\n",
|
|
|
|
|
" <td>1849-280219-4</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1849</td>\n",
|
|
|
|
|
" <td>30.0</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>4</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.272793</td>\n",
|
|
|
|
|
" <td>0.570844</td>\n",
|
|
|
|
|
" <td>10.825754</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>106</th>\n",
|
|
|
|
|
" <td>1849-110319-2</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1849</td>\n",
|
|
|
|
|
" <td>11.0</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>2</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>0.0026</td>\n",
|
|
|
|
|
" <td>0.002400</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.230947</td>\n",
|
|
|
|
|
" <td>0.561223</td>\n",
|
|
|
|
|
" <td>2.339767</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>124</th>\n",
|
|
|
|
|
" <td>1833-010719-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.271262</td>\n",
|
|
|
|
|
" <td>0.615002</td>\n",
|
|
|
|
|
" <td>2.868000</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>125</th>\n",
|
|
|
|
|
" <td>1833-010719-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.307694</td>\n",
|
|
|
|
|
" <td>0.659653</td>\n",
|
|
|
|
|
" <td>6.912052</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>126</th>\n",
|
|
|
|
|
" <td>1833-010719-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.267708</td>\n",
|
|
|
|
|
" <td>0.630543</td>\n",
|
|
|
|
|
" <td>4.229867</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>128</th>\n",
|
|
|
|
|
" <td>1833-010719-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.289100</td>\n",
|
|
|
|
|
" <td>0.673221</td>\n",
|
|
|
|
|
" <td>16.735961</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>129</th>\n",
|
|
|
|
|
" <td>1833-010719-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.290402</td>\n",
|
|
|
|
|
" <td>0.650772</td>\n",
|
|
|
|
|
" <td>25.974728</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>131</th>\n",
|
|
|
|
|
" <td>1833-010719-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.272160</td>\n",
|
|
|
|
|
" <td>0.620429</td>\n",
|
|
|
|
|
" <td>14.686236</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>132</th>\n",
|
|
|
|
|
" <td>1833-010719-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.241405</td>\n",
|
|
|
|
|
" <td>0.595513</td>\n",
|
|
|
|
|
" <td>18.657578</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>134</th>\n",
|
|
|
|
|
" <td>1833-010719-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.269911</td>\n",
|
|
|
|
|
" <td>0.609574</td>\n",
|
|
|
|
|
" <td>3.106903</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>135</th>\n",
|
|
|
|
|
" <td>1833-010719-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.273069</td>\n",
|
|
|
|
|
" <td>0.651265</td>\n",
|
|
|
|
|
" <td>6.213807</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>...</th>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1154</th>\n",
|
|
|
|
|
" <td>1839-120619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1839</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.273572</td>\n",
|
|
|
|
|
" <td>0.611548</td>\n",
|
|
|
|
|
" <td>5.407135</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1155</th>\n",
|
|
|
|
|
" <td>1834-110319-5</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1834</td>\n",
|
|
|
|
|
" <td>11.0</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>5</td>\n",
|
|
|
|
|
" <td>mecl</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.276394</td>\n",
|
|
|
|
|
" <td>0.585645</td>\n",
|
|
|
|
|
" <td>27.008837</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1156</th>\n",
|
|
|
|
|
" <td>1834-110319-5</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1834</td>\n",
|
|
|
|
|
" <td>11.0</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>5</td>\n",
|
|
|
|
|
" <td>mecl</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.249700</td>\n",
|
|
|
|
|
" <td>0.569364</td>\n",
|
|
|
|
|
" <td>18.304313</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1174</th>\n",
|
|
|
|
|
" <td>1839-200619-2</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1839</td>\n",
|
|
|
|
|
" <td>11.0</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>2</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.249357</td>\n",
|
|
|
|
|
" <td>0.517805</td>\n",
|
|
|
|
|
" <td>8.992236</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1184</th>\n",
|
|
|
|
|
" <td>1833-260619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.275930</td>\n",
|
|
|
|
|
" <td>0.594526</td>\n",
|
|
|
|
|
" <td>5.288548</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1185</th>\n",
|
|
|
|
|
" <td>1833-260619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.225575</td>\n",
|
|
|
|
|
" <td>0.277528</td>\n",
|
|
|
|
|
" <td>2.693978</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1186</th>\n",
|
|
|
|
|
" <td>1833-260619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.244049</td>\n",
|
|
|
|
|
" <td>0.571337</td>\n",
|
|
|
|
|
" <td>3.425185</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1189</th>\n",
|
|
|
|
|
" <td>1833-260619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.222604</td>\n",
|
|
|
|
|
" <td>0.576271</td>\n",
|
|
|
|
|
" <td>6.484767</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1191</th>\n",
|
|
|
|
|
" <td>1833-260619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.189559</td>\n",
|
|
|
|
|
" <td>0.248665</td>\n",
|
|
|
|
|
" <td>3.564358</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1193</th>\n",
|
|
|
|
|
" <td>1833-260619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.257469</td>\n",
|
|
|
|
|
" <td>0.636957</td>\n",
|
|
|
|
|
" <td>26.839270</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1194</th>\n",
|
|
|
|
|
" <td>1833-260619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.252255</td>\n",
|
|
|
|
|
" <td>0.587372</td>\n",
|
|
|
|
|
" <td>4.589373</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1197</th>\n",
|
|
|
|
|
" <td>1833-260619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.261129</td>\n",
|
|
|
|
|
" <td>0.592306</td>\n",
|
|
|
|
|
" <td>7.407060</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1199</th>\n",
|
|
|
|
|
" <td>1833-260619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.277189</td>\n",
|
|
|
|
|
" <td>0.615988</td>\n",
|
|
|
|
|
" <td>9.221822</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1202</th>\n",
|
|
|
|
|
" <td>1833-260619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.287132</td>\n",
|
|
|
|
|
" <td>0.616235</td>\n",
|
|
|
|
|
" <td>7.835622</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1204</th>\n",
|
|
|
|
|
" <td>1833-260619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.300175</td>\n",
|
|
|
|
|
" <td>0.610068</td>\n",
|
|
|
|
|
" <td>9.358786</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1208</th>\n",
|
|
|
|
|
" <td>1833-200619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.293775</td>\n",
|
|
|
|
|
" <td>0.657679</td>\n",
|
|
|
|
|
" <td>7.071948</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1214</th>\n",
|
|
|
|
|
" <td>1833-200619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.252895</td>\n",
|
|
|
|
|
" <td>0.600200</td>\n",
|
|
|
|
|
" <td>15.695836</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1215</th>\n",
|
|
|
|
|
" <td>1833-200619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.271023</td>\n",
|
|
|
|
|
" <td>0.699617</td>\n",
|
|
|
|
|
" <td>11.768979</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1217</th>\n",
|
|
|
|
|
" <td>1833-200619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.343906</td>\n",
|
|
|
|
|
" <td>0.698383</td>\n",
|
|
|
|
|
" <td>4.442023</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1218</th>\n",
|
|
|
|
|
" <td>1833-200619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.304748</td>\n",
|
|
|
|
|
" <td>0.641151</td>\n",
|
|
|
|
|
" <td>3.102590</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1219</th>\n",
|
|
|
|
|
" <td>1833-200619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.277708</td>\n",
|
|
|
|
|
" <td>0.585645</td>\n",
|
|
|
|
|
" <td>6.900656</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1220</th>\n",
|
|
|
|
|
" <td>1833-200619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.294291</td>\n",
|
|
|
|
|
" <td>0.639177</td>\n",
|
|
|
|
|
" <td>22.458685</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1221</th>\n",
|
|
|
|
|
" <td>1833-200619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.258204</td>\n",
|
|
|
|
|
" <td>0.608094</td>\n",
|
|
|
|
|
" <td>3.767155</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1223</th>\n",
|
|
|
|
|
" <td>1833-200619-3</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>3</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline ii</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.276894</td>\n",
|
|
|
|
|
" <td>0.623636</td>\n",
|
|
|
|
|
" <td>12.778706</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1255</th>\n",
|
|
|
|
|
" <td>1833-010719-2</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>11.0</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>2</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.277537</td>\n",
|
|
|
|
|
" <td>0.570597</td>\n",
|
|
|
|
|
" <td>5.734302</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1257</th>\n",
|
|
|
|
|
" <td>1833-010719-2</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>11.0</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>2</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.248774</td>\n",
|
|
|
|
|
" <td>0.604394</td>\n",
|
|
|
|
|
" <td>2.814742</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1263</th>\n",
|
|
|
|
|
" <td>1833-010719-2</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>11.0</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>2</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.280033</td>\n",
|
|
|
|
|
" <td>0.560729</td>\n",
|
|
|
|
|
" <td>4.760330</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1264</th>\n",
|
|
|
|
|
" <td>1833-010719-2</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>11.0</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>2</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.281934</td>\n",
|
|
|
|
|
" <td>0.627089</td>\n",
|
|
|
|
|
" <td>15.890929</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1268</th>\n",
|
|
|
|
|
" <td>1833-010719-2</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>11.0</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>2</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.266512</td>\n",
|
|
|
|
|
" <td>0.594033</td>\n",
|
|
|
|
|
" <td>2.704037</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1275</th>\n",
|
|
|
|
|
" <td>1833-010719-2</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>11.0</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>2</td>\n",
|
|
|
|
|
" <td>ms</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>stim i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>0.257098</td>\n",
|
|
|
|
|
" <td>0.545188</td>\n",
|
|
|
|
|
" <td>5.292658</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </tbody>\n",
|
|
|
|
|
"</table>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"<p>271 rows × 73 columns</p>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"</div>"
|
|
|
|
|
],
|
|
|
|
|
"text/plain": [
|
|
|
|
|
" action baseline entity frequency i ii session \\\n",
|
|
|
|
|
"17 1839-120619-4 False 1839 30.0 False True 4 \n",
|
|
|
|
|
"19 1839-120619-4 False 1839 30.0 False True 4 \n",
|
|
|
|
|
"21 1839-120619-4 False 1839 30.0 False True 4 \n",
|
|
|
|
|
"29 1839-120619-4 False 1839 30.0 False True 4 \n",
|
|
|
|
|
"30 1839-120619-4 False 1839 30.0 False True 4 \n",
|
|
|
|
|
"31 1839-120619-4 False 1839 30.0 False True 4 \n",
|
|
|
|
|
"33 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"34 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"35 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"39 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"40 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"42 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"44 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"46 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"47 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"49 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"54 1839-060619-3 False 1839 11.0 True False 3 \n",
|
|
|
|
|
"57 1834-150319-3 True 1834 NaN False True 3 \n",
|
|
|
|
|
"76 1834-120319-4 False 1834 30.0 False True 4 \n",
|
|
|
|
|
"87 1849-280219-4 False 1849 30.0 False True 4 \n",
|
|
|
|
|
"106 1849-110319-2 False 1849 11.0 True False 2 \n",
|
|
|
|
|
"124 1833-010719-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"125 1833-010719-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"126 1833-010719-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"128 1833-010719-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"129 1833-010719-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"131 1833-010719-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"132 1833-010719-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"134 1833-010719-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"135 1833-010719-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"... ... ... ... ... ... ... ... \n",
|
|
|
|
|
"1154 1839-120619-3 True 1839 NaN False True 3 \n",
|
|
|
|
|
"1155 1834-110319-5 False 1834 11.0 True False 5 \n",
|
|
|
|
|
"1156 1834-110319-5 False 1834 11.0 True False 5 \n",
|
|
|
|
|
"1174 1839-200619-2 False 1839 11.0 True False 2 \n",
|
|
|
|
|
"1184 1833-260619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1185 1833-260619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1186 1833-260619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1189 1833-260619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1191 1833-260619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1193 1833-260619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1194 1833-260619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1197 1833-260619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1199 1833-260619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1202 1833-260619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1204 1833-260619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1208 1833-200619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1214 1833-200619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1215 1833-200619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1217 1833-200619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1218 1833-200619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1219 1833-200619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1220 1833-200619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1221 1833-200619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1223 1833-200619-3 True 1833 NaN False True 3 \n",
|
|
|
|
|
"1255 1833-010719-2 False 1833 11.0 True False 2 \n",
|
|
|
|
|
"1257 1833-010719-2 False 1833 11.0 True False 2 \n",
|
|
|
|
|
"1263 1833-010719-2 False 1833 11.0 True False 2 \n",
|
|
|
|
|
"1264 1833-010719-2 False 1833 11.0 True False 2 \n",
|
|
|
|
|
"1268 1833-010719-2 False 1833 11.0 True False 2 \n",
|
|
|
|
|
"1275 1833-010719-2 False 1833 11.0 True False 2 \n",
|
|
|
|
|
"\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" stim_location stimulated tag ... t_i_peak p_i_peak \\\n",
|
|
|
|
|
"17 ms True stim ii ... NaN NaN \n",
|
|
|
|
|
"19 ms True stim ii ... NaN NaN \n",
|
|
|
|
|
"21 ms True stim ii ... 0.0008 0.000880 \n",
|
|
|
|
|
"29 ms True stim ii ... NaN NaN \n",
|
|
|
|
|
"30 ms True stim ii ... 0.0005 0.002365 \n",
|
|
|
|
|
"31 ms True stim ii ... NaN NaN \n",
|
|
|
|
|
"33 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"34 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"35 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"39 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"40 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"42 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"44 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"46 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"47 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"49 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"54 ms True stim i ... NaN NaN \n",
|
|
|
|
|
"57 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"76 ms True stim ii ... 0.0044 0.018315 \n",
|
|
|
|
|
"87 ms True stim ii ... NaN NaN \n",
|
|
|
|
|
"106 ms True stim i ... 0.0026 0.002400 \n",
|
|
|
|
|
"124 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"125 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"126 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"128 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"129 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"131 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"132 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"134 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"135 NaN False baseline i ... NaN NaN \n",
|
|
|
|
|
"... ... ... ... ... ... ... \n",
|
|
|
|
|
"1154 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1155 mecl True stim i ... NaN NaN \n",
|
|
|
|
|
"1156 mecl True stim i ... NaN NaN \n",
|
|
|
|
|
"1174 ms True stim i ... NaN NaN \n",
|
|
|
|
|
"1184 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1185 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1186 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1189 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1191 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1193 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1194 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1197 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1199 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1202 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1204 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1208 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1214 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1215 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1217 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1218 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1219 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1220 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1221 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1223 NaN False baseline ii ... NaN NaN \n",
|
|
|
|
|
"1255 ms True stim i ... NaN NaN \n",
|
|
|
|
|
"1257 ms True stim i ... NaN NaN \n",
|
|
|
|
|
"1263 ms True stim i ... NaN NaN \n",
|
|
|
|
|
"1264 ms True stim i ... NaN NaN \n",
|
|
|
|
|
"1268 ms True stim i ... NaN NaN \n",
|
|
|
|
|
"1275 ms True stim i ... NaN NaN \n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" half_width peak_to_trough average_firing_rate bs bs_stim bs_ctrl \\\n",
|
|
|
|
|
"17 0.283497 0.606614 9.779867 True 1.0 NaN \n",
|
|
|
|
|
"19 0.261815 0.633750 7.437802 True 1.0 NaN \n",
|
|
|
|
|
"21 0.242524 0.534827 2.265039 True 1.0 NaN \n",
|
|
|
|
|
"29 0.279806 0.598967 10.924422 True 1.0 NaN \n",
|
|
|
|
|
"30 0.265158 0.581451 3.984881 True 1.0 NaN \n",
|
|
|
|
|
"31 0.246920 0.570844 3.497452 True 1.0 NaN \n",
|
|
|
|
|
"33 0.272875 0.602667 5.945508 True NaN 1.0 \n",
|
|
|
|
|
"34 0.226452 0.274814 2.860048 False NaN 0.0 \n",
|
|
|
|
|
"35 0.247266 0.570104 3.365674 True NaN 1.0 \n",
|
|
|
|
|
"39 0.284542 0.644111 17.471520 True NaN 1.0 \n",
|
|
|
|
|
"40 0.259920 0.581698 5.891739 True NaN 1.0 \n",
|
|
|
|
|
"42 0.263630 0.596746 13.436847 True NaN 1.0 \n",
|
|
|
|
|
"44 0.281399 0.607354 17.446704 True NaN 1.0 \n",
|
|
|
|
|
"46 0.285816 0.603160 7.914246 True NaN 1.0 \n",
|
|
|
|
|
"47 0.279177 0.585152 10.840470 True NaN 1.0 \n",
|
|
|
|
|
"49 0.282336 0.711705 5.890705 True NaN 1.0 \n",
|
|
|
|
|
"54 0.270286 0.573804 14.025342 True 1.0 NaN \n",
|
|
|
|
|
"57 0.277867 0.588852 17.162446 True NaN 1.0 \n",
|
|
|
|
|
"76 0.285028 0.578245 34.841257 True 1.0 NaN \n",
|
|
|
|
|
"87 0.272793 0.570844 10.825754 True 1.0 NaN \n",
|
|
|
|
|
"106 0.230947 0.561223 2.339767 True 1.0 NaN \n",
|
|
|
|
|
"124 0.271262 0.615002 2.868000 True NaN 1.0 \n",
|
|
|
|
|
"125 0.307694 0.659653 6.912052 True NaN 1.0 \n",
|
|
|
|
|
"126 0.267708 0.630543 4.229867 True NaN 1.0 \n",
|
|
|
|
|
"128 0.289100 0.673221 16.735961 True NaN 1.0 \n",
|
|
|
|
|
"129 0.290402 0.650772 25.974728 True NaN 1.0 \n",
|
|
|
|
|
"131 0.272160 0.620429 14.686236 True NaN 1.0 \n",
|
|
|
|
|
"132 0.241405 0.595513 18.657578 True NaN 1.0 \n",
|
|
|
|
|
"134 0.269911 0.609574 3.106903 True NaN 1.0 \n",
|
|
|
|
|
"135 0.273069 0.651265 6.213807 True NaN 1.0 \n",
|
|
|
|
|
"... ... ... ... ... ... ... \n",
|
|
|
|
|
"1154 0.273572 0.611548 5.407135 True NaN 1.0 \n",
|
|
|
|
|
"1155 0.276394 0.585645 27.008837 True 1.0 NaN \n",
|
|
|
|
|
"1156 0.249700 0.569364 18.304313 True 1.0 NaN \n",
|
|
|
|
|
"1174 0.249357 0.517805 8.992236 True 1.0 NaN \n",
|
|
|
|
|
"1184 0.275930 0.594526 5.288548 True NaN 1.0 \n",
|
|
|
|
|
"1185 0.225575 0.277528 2.693978 False NaN 0.0 \n",
|
|
|
|
|
"1186 0.244049 0.571337 3.425185 True NaN 1.0 \n",
|
|
|
|
|
"1189 0.222604 0.576271 6.484767 True NaN 1.0 \n",
|
|
|
|
|
"1191 0.189559 0.248665 3.564358 False NaN 0.0 \n",
|
|
|
|
|
"1193 0.257469 0.636957 26.839270 True NaN 1.0 \n",
|
|
|
|
|
"1194 0.252255 0.587372 4.589373 True NaN 1.0 \n",
|
|
|
|
|
"1197 0.261129 0.592306 7.407060 True NaN 1.0 \n",
|
|
|
|
|
"1199 0.277189 0.615988 9.221822 True NaN 1.0 \n",
|
|
|
|
|
"1202 0.287132 0.616235 7.835622 True NaN 1.0 \n",
|
|
|
|
|
"1204 0.300175 0.610068 9.358786 True NaN 1.0 \n",
|
|
|
|
|
"1208 0.293775 0.657679 7.071948 True NaN 1.0 \n",
|
|
|
|
|
"1214 0.252895 0.600200 15.695836 True NaN 1.0 \n",
|
|
|
|
|
"1215 0.271023 0.699617 11.768979 True NaN 1.0 \n",
|
|
|
|
|
"1217 0.343906 0.698383 4.442023 True NaN 1.0 \n",
|
|
|
|
|
"1218 0.304748 0.641151 3.102590 True NaN 1.0 \n",
|
|
|
|
|
"1219 0.277708 0.585645 6.900656 True NaN 1.0 \n",
|
|
|
|
|
"1220 0.294291 0.639177 22.458685 True NaN 1.0 \n",
|
|
|
|
|
"1221 0.258204 0.608094 3.767155 True NaN 1.0 \n",
|
|
|
|
|
"1223 0.276894 0.623636 12.778706 True NaN 1.0 \n",
|
|
|
|
|
"1255 0.277537 0.570597 5.734302 True 1.0 NaN \n",
|
|
|
|
|
"1257 0.248774 0.604394 2.814742 True 1.0 NaN \n",
|
|
|
|
|
"1263 0.280033 0.560729 4.760330 True 1.0 NaN \n",
|
|
|
|
|
"1264 0.281934 0.627089 15.890929 True 1.0 NaN \n",
|
|
|
|
|
"1268 0.266512 0.594033 2.704037 True 1.0 NaN \n",
|
|
|
|
|
"1275 0.257098 0.545188 5.292658 True 1.0 NaN \n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" ns_inhibited ns_not_inhibited \n",
|
|
|
|
|
"17 False False \n",
|
|
|
|
|
"19 False False \n",
|
|
|
|
|
"21 False False \n",
|
|
|
|
|
"29 False False \n",
|
|
|
|
|
"30 False False \n",
|
|
|
|
|
"31 False False \n",
|
|
|
|
|
"33 False False \n",
|
|
|
|
|
"34 False True \n",
|
|
|
|
|
"35 False False \n",
|
|
|
|
|
"39 False False \n",
|
|
|
|
|
"40 False False \n",
|
|
|
|
|
"42 False False \n",
|
|
|
|
|
"44 False False \n",
|
|
|
|
|
"46 False False \n",
|
|
|
|
|
"47 False False \n",
|
|
|
|
|
"49 False False \n",
|
|
|
|
|
"54 False False \n",
|
|
|
|
|
"57 False False \n",
|
|
|
|
|
"76 False False \n",
|
|
|
|
|
"87 False False \n",
|
|
|
|
|
"106 False False \n",
|
|
|
|
|
"124 False False \n",
|
|
|
|
|
"125 False False \n",
|
|
|
|
|
"126 False False \n",
|
|
|
|
|
"128 False False \n",
|
|
|
|
|
"129 False False \n",
|
|
|
|
|
"131 False False \n",
|
|
|
|
|
"132 False False \n",
|
|
|
|
|
"134 False False \n",
|
|
|
|
|
"135 False False \n",
|
|
|
|
|
"... ... ... \n",
|
|
|
|
|
"1154 False False \n",
|
|
|
|
|
"1155 False False \n",
|
|
|
|
|
"1156 False False \n",
|
|
|
|
|
"1174 False False \n",
|
|
|
|
|
"1184 False False \n",
|
|
|
|
|
"1185 False True \n",
|
|
|
|
|
"1186 False False \n",
|
|
|
|
|
"1189 False True \n",
|
|
|
|
|
"1191 False True \n",
|
|
|
|
|
"1193 False False \n",
|
|
|
|
|
"1194 False False \n",
|
|
|
|
|
"1197 False False \n",
|
|
|
|
|
"1199 False False \n",
|
|
|
|
|
"1202 False False \n",
|
|
|
|
|
"1204 False False \n",
|
|
|
|
|
"1208 False False \n",
|
|
|
|
|
"1214 False False \n",
|
|
|
|
|
"1215 False False \n",
|
|
|
|
|
"1217 False False \n",
|
|
|
|
|
"1218 False False \n",
|
|
|
|
|
"1219 False False \n",
|
|
|
|
|
"1220 False False \n",
|
|
|
|
|
"1221 False False \n",
|
|
|
|
|
"1223 False False \n",
|
|
|
|
|
"1255 False False \n",
|
|
|
|
|
"1257 False False \n",
|
|
|
|
|
"1263 False False \n",
|
|
|
|
|
"1264 False False \n",
|
|
|
|
|
"1268 False False \n",
|
|
|
|
|
"1275 False False \n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"[271 rows x 73 columns]"
|
2019-10-17 17:44:01 +00:00
|
|
|
|
]
|
|
|
|
|
},
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 22,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"gridcell_sessions"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 23,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"data.loc[:,'gridcell'] = np.nan\n",
|
|
|
|
|
"data['gridcell'] = data.isin(gridcell_sessions)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"data.loc[data.eval('not gridcell and bs'), 'bs_not_gridcell'] = True\n",
|
|
|
|
|
"data.bs_not_gridcell.fillna(False, inplace=True)"
|
2019-10-17 17:44:01 +00:00
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 24,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/html": [
|
|
|
|
|
"<div>\n",
|
|
|
|
|
"<style scoped>\n",
|
|
|
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
|
" vertical-align: middle;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe tbody tr th {\n",
|
|
|
|
|
" vertical-align: top;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe thead th {\n",
|
|
|
|
|
" text-align: right;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"</style>\n",
|
|
|
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
|
" <thead>\n",
|
|
|
|
|
" <tr style=\"text-align: right;\">\n",
|
|
|
|
|
" <th></th>\n",
|
|
|
|
|
" <th>action</th>\n",
|
|
|
|
|
" <th>baseline</th>\n",
|
|
|
|
|
" <th>entity</th>\n",
|
|
|
|
|
" <th>frequency</th>\n",
|
|
|
|
|
" <th>i</th>\n",
|
|
|
|
|
" <th>ii</th>\n",
|
|
|
|
|
" <th>session</th>\n",
|
|
|
|
|
" <th>stim_location</th>\n",
|
|
|
|
|
" <th>stimulated</th>\n",
|
|
|
|
|
" <th>tag</th>\n",
|
|
|
|
|
" <th>...</th>\n",
|
|
|
|
|
" <th>half_width</th>\n",
|
|
|
|
|
" <th>peak_to_trough</th>\n",
|
|
|
|
|
" <th>average_firing_rate</th>\n",
|
|
|
|
|
" <th>bs</th>\n",
|
|
|
|
|
" <th>bs_stim</th>\n",
|
|
|
|
|
" <th>bs_ctrl</th>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <th>ns_inhibited</th>\n",
|
|
|
|
|
" <th>ns_not_inhibited</th>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <th>gridcell</th>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <th>bs_not_gridcell</th>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </thead>\n",
|
|
|
|
|
" <tbody>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>33</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>0.272875</td>\n",
|
|
|
|
|
" <td>0.602667</td>\n",
|
|
|
|
|
" <td>5.945508</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>True</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>34</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>0.226452</td>\n",
|
|
|
|
|
" <td>0.274814</td>\n",
|
|
|
|
|
" <td>2.860048</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>0.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>True</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>35</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>0.247266</td>\n",
|
|
|
|
|
" <td>0.570104</td>\n",
|
|
|
|
|
" <td>3.365674</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>True</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>39</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>0.284542</td>\n",
|
|
|
|
|
" <td>0.644111</td>\n",
|
|
|
|
|
" <td>17.471520</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>True</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>40</th>\n",
|
|
|
|
|
" <td>1833-260619-1</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>1833</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>baseline i</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>0.259920</td>\n",
|
|
|
|
|
" <td>0.581698</td>\n",
|
|
|
|
|
" <td>5.891739</td>\n",
|
|
|
|
|
" <td>True</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" <td>True</td>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" <td>False</td>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </tbody>\n",
|
|
|
|
|
"</table>\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"<p>5 rows × 75 columns</p>\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"</div>"
|
|
|
|
|
],
|
|
|
|
|
"text/plain": [
|
|
|
|
|
" action baseline entity frequency i ii session \\\n",
|
|
|
|
|
"33 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"34 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"35 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"39 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"40 1833-260619-1 True 1833 NaN True False 1 \n",
|
|
|
|
|
"\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" stim_location stimulated tag ... half_width peak_to_trough \\\n",
|
|
|
|
|
"33 NaN False baseline i ... 0.272875 0.602667 \n",
|
|
|
|
|
"34 NaN False baseline i ... 0.226452 0.274814 \n",
|
|
|
|
|
"35 NaN False baseline i ... 0.247266 0.570104 \n",
|
|
|
|
|
"39 NaN False baseline i ... 0.284542 0.644111 \n",
|
|
|
|
|
"40 NaN False baseline i ... 0.259920 0.581698 \n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" average_firing_rate bs bs_stim bs_ctrl ns_inhibited \\\n",
|
|
|
|
|
"33 5.945508 True NaN 1.0 False \n",
|
|
|
|
|
"34 2.860048 False NaN 0.0 False \n",
|
|
|
|
|
"35 3.365674 True NaN 1.0 False \n",
|
|
|
|
|
"39 17.471520 True NaN 1.0 False \n",
|
|
|
|
|
"40 5.891739 True NaN 1.0 False \n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" ns_not_inhibited gridcell bs_not_gridcell \n",
|
|
|
|
|
"33 False True False \n",
|
|
|
|
|
"34 True True False \n",
|
|
|
|
|
"35 False True False \n",
|
|
|
|
|
"39 False True False \n",
|
|
|
|
|
"40 False True False \n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"[5 rows x 75 columns]"
|
2019-10-17 17:44:01 +00:00
|
|
|
|
]
|
|
|
|
|
},
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 24,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"data.query('baseline and Hz11 and gridcell').head()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 41,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {
|
|
|
|
|
"scrolled": false
|
|
|
|
|
},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecXFX9//FXshvSIY0moQc+VCkCwheQoHQERMpPeqhKEQUEUVBApSsqRVFUgvQaepGOgCjSmx96B4EkIKRns78/PmfYm9lpuzuzs7P7fj4e+7h7+7l3Z+dzz7mn9GttbUVERER6tv71ToCIiIiUp4AtIiLSABSwRUREGoACtoiISANQwBYREWkACtgiIiINQAFbRESkAShgi4iINAAFbBERkQaggC0iItIAFLBFREQagAK2iIhIA1DAFhERaQAK2CIiIg2gud4JkOoxsy+6+9MFlk8E9kmzi7v7+92asDzF0ilSb2aWG2/4DnffqhP7TwAuTLObuvt9VUpalxW7NjMbD9ybZn/k7qd1d9qkMgrYvYCZLQT8DDiUHvw3NbPFgF8CGwLL1jk5IiINpcd+uUuHnAXsV+9EVOBS4KvAG/VOiIhIo1HA7h2a6p2ACjVKOqWPcvd+9U6DSDGqdCYiItIAFLBFREQagIrEG5iZnQickLcsVxP0fncfX2S/ZYCjga2AJYD/Ac8DE4GL3L210H5p3wHABGAX4IvAKOBj4CngGuBCd5+dt89E2mqpAyydSedF7j4hb/tFgQOBrwGWzjEXmAw8ClwBXFsqndVgZisDh6V0jAX6AW8RNWrPcffni+w3kbjep9x9TTNbAfg+sCVxv6cDTwN/Ja5/Xok0dPh+p/2WAV5LszsC7xF1HdYGZhB/70OytfXN7IvAEUQ9g8XTef4JnO3ud5rZ7ekaPv9smdm5RGVHgK+6e662caFr2RW4Ms1u5+43F9u2yP7LAD9IaVgKmAY8CZzv7leZ2fnAt4E33H2ZztyLcrXEzawfsC1wMLA6sDDxmbgGOL3C62hKx9iX+JsukdLxHHAV8Ed3n1li/y3TvhsAi6Z9XwZuJT6XH1WSDmk8ymH3PTsBLwCHAMsBA4kvnU2I5ii3mFnBBzkzG0cEij8CmxNfFgPS/psB5wNPmZl1NnFmtg/x5fpzYDwROAYCQ4kv6Z2Aq4Eb0hdfTZjZT4BniPtk6fxD0u/fAZ4xsxPTF3ip4+xEBJVDgOWBQUTQHQ/8BbjDzAYW2bda93st4iHj/9L5RwJrAK9mzrUv8DjxcLBU5jxfB/5mZmcWOfbEzO97lEnHXmn6X+D2MtvOx8y2IgLaocA4YAHiOjYFrjSzy6ksA1L2XpRIw2DgOuAmYBtgyXSMFYAfEZ+X5cocYzHgHuAG4Bu0/Q+OIFpP/BZ43MyWKrDvUDO7jrh3/4/4O+X2XQf4KfCKmW1X7lqkMSlgN7bziS+gmzLL1ko/BxTZ51wip3gekcPeFDiOyK0AbA0cmb9T+qL5O7AyMDvtvy2wHrADcBHQAqwE3Gtmi2d2/2lK02Np/r1MOn+aOcdXiQAwGJhCNFXbGlifCNTnpXMDbFfiGrsklVz8jKgk9zQRoP8P2Aj4HvAK8b9zAnklHHmWImrGA5xB5NQ3Ao4lSjUgAu/3C6ShK/c73/HE3/xHRFDYGzjR3T9L59qJeHhoSuk6AdiYyGn/Kp3/B8RnZT7u/m/g2TS7c4mHj4WJzxvApe4+t0R68/ddH7iReGCandK0aUrjCcCnwLdoeyAopeS9KONiIshCfC72oe2zeScRwI8rcR2DiIeFr6RFDwB7pmN8E7gjLV8ZuDGVruT27U/cgx3TopuJoP1l4jN0CvAJsCAwycy+VsH1SINRkXgDSx2gvG9mUzLLniyz2yyi6PLhzLL7zOwe4B9pfh8iwGSdDyxGfKFv5u6P5q2/0cyuIb5UFgd+TXyJ4u5vAm+aWe5LcXaRdP4sTecCW6ZgkHVdKpbNPaDsAvyh5NV2kJmtDfwkzV4M7JcXXB4ysz8TX5jjgZ+a2VVFisdHEg9CG+Vd70Nmdj/wMBE8JtC+OLXT97uA/sDh7n5Bmv/8b29mQ4HfpNkpKa0vZPa918yuJwLSoCLHn0i0r1+IyJFfW2Cbb9H2fXNRkeO0kwLVuUSOfzawubs/kNnkQTO7igh+C1dwyKL3okw6NicCM8DdwLbuPiuzyXVm9lvg8BKHOZ54wIIous7fdlLmdcoaxD27OK07nHiAAviOu+d/7u9On8uHiM/NhWa2vLvPqeT6pDEoh933nJsXrAFw90eIIlGAlbLF4ma2IrB9mj25QPDIHeNm2r6MdzGzL1SaKDMbQhTvTQFuKhCss+f4OM0uUenxO+Ao4v9iMvHF2C4n6O7TiHbvrUTA/W6J4/2u0MNJut+598crZXOmNbjfMygeJHci3s9D9HL1Qv4G7v4gcHKR/QEuIR6yoHixeC73+2QHe7nbCPhS+v1XecE6l77/UKBUqIhS96KUb6dpC/EQN6vANj8g3iW3kx48ciVCrxCfs0J+AOSC7JaZfXPXd1uBYA2Au79KlN5A5Pa/WeQc0qAUsPueW0useylN+xO5pZxtiMAEkdOq5Pj9iRxoRdx9uruv6+6jgZ3LbJ7rWrVg8WtnpffRW6fZh9x9erFt3f01oi4ARFF3MX8rse6VzO/DMr9X+34/XqhiWpJ73zmHtuL7Qv5YbIW7/xe4Lc1uY2YjsuvTO/Z10+zEEucolT5o6/KzkCtpe5ArpdS9KCg9vG6eZh9KJUbtpNzsJUUOsy5RBwHg8mI531RhbG1gjLvvmRZ/kQjAUP7zcFvmdxWL9zIqEu973i6xLlszNfvZWCvz++MdqFNWsgJOMbla06m4dlmistZKRDHhRrR9eVX7gXMZohgbYPtMjeFySnWz+nqJddn3prW832+V2GfNNH0hlRwU5O4fmNlrFL/WC4ngOpB4VXFBZl0udz0HuKxEWkql7xN3f6nYRu4+x8yeoMB79jyl7kUxXyDeDUNUICzlX0WWr5j5/fEi2wDg7s/mLcp+Hs4ys7PKpCGnU/9/0nMpYPc9n1a4Xbb285hOnmtk+U3mZ2ZjieLC7Sn+hTOP2pQOdfY6m81suLsXurelKjNlHwhqeb//V2Q5tOX6KmkK9AHFA/bN6RhjiGLxC+DzUotcTvE2d/+wgvMUSt/kCtNXTql7US4NlaTjv1U4Rr5u+/+Tnk0Bu+/pTNvl7OdkPdresZXToS/n1HTnGqIJVc6nRNHzc0Qb7LuAScCqHTl2hbLX+RfgnA7sW7T4vIvpqMb9LvU3XyBNK3kAKnqclMO9lKhF/xUzW9Ld3yJqci+dNuvMu+OqpK+D25Tap1zXpcX+Vl35rs3uewhtlUPLmdGFc0oPpIAtlZiS+f0dd3+32idIzZiuIIL1HOBU4HLA8ztIMbNh7Y9QFdnrbKmgxn2t1Px+Z3xEVN6rpIZ1uZzeRCJg9yOKxc8imh5B5Co71FFKJn0GjDGzfmU6y+lsTrSc9zK/l7tPo4osz/5NR3fw/Nl9P6nj51LqTAFbKpF9p7Y+0XlEQWb2ZaLy0+tEBZ1S78yz9qStotsv3P1nhTZKtakXLbSuCl4lcspDiOssycx+SFR0esXd76piOrrjfuc8SQTsFc1saLH32KkiWcl3ou7+pJk9Sbx33oEI2Lna7pd3tLJXJn0bEpXyVgBeLJK+/rS9766294mgOYq2ynPFFEtDttnfGkQpUUFmdhlR8ew/RLvr/M9D0XoAqb37IcTn4Ul3f6pMeqWBqJZ471C0a8squSPz+8Fltj0TOI3ILed/wZdK57jM748V3SqaIeXaA1f1gTPV3M11rbm6mW1UbNvUyctpRHvpH1czHVTvflci16Z9ALBrie32orLvi4lpumHqQjPXZKwzxeEwf6dApXpS25Ya5bDdvQW4Ps2uZ2arF9ou7319vkdpe3/+/9IDRqFjDCJaCRgwOpUoPEpbLnt3M1uo0L7Jd4ETib/DDiW2kwakgN07fN4mtBbFxalNdK7962ZmVjBAmdlRxDtLiJzR34uks1A
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 525x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecXFX9//HXZjc9kIRQJUiAwIeOqCAoSlREpIqAP+mhSvdLEaMgIlIEFZUiSA2CdIJ0BRVQQBBp0vzQuwgkIZKEtN39/fE5497MzszO7M7u7Oy8n49HHnfnlnPPnZnM555zT2lqb29HRERE+rdBtc6AiIiIdE0BW0REpA4oYIuIiNQBBWwREZE6oIAtIiJSBxSwRURE6oACtoiISB1QwBYREakDCtgiIiJ1QAFbRESkDihgi4iI1AEFbBERkTqggC0iIlIHFLBFRETqQEutMyC1ZWbru/s/C6yfCuydXq7g7m/3acbyFMunVI+ZTQBeTi9/7e4H1TA7PWJm9wCbA/PdfVg3jp9Ax3vxQ3c/sWqZ66FS12ZmufmS/+DuW/V13qR3KWA3KDMbDZwEHEo//h6Y2fLAT4HPAKvUODsiIjXTb3+opdedCexb60yU4bfAF4BXa50REZFaUsBuXM21zkCZ6iWf0o+4+6Ra50Gk2tToTEREpA4oYIuIiNQBVYk3GDM7EfhB3rpcy9J7i1Ulplaz3wa2AlYE/gs8A0wFLnP39kLHpWMHA5OBXYD1gaWA94EngOuBS919Qd4xU+lopQ6wciafl7n75Lz9lwMOAL4IWDrHImA68DBwNXBDqXx2l5lNBi5NL1cA2oHjgW2BjxDv1UPAee5+WxnpfRnYB9gUWA74EHgBuB04293f6+L4VYj3YhKwKvFezAPeBR4Eprr7XZVcY0p3EPAbYPe06jZgJ3efX2E6SwCHAzsTn1U78DxwFfBLYMf0N8Aq7v5K5thXgJXTfqcBZxPfySbgFeA0d7+ynFbiZrYBcCTxPn+U+K7cBfwYKOuazGwj4r3+TMoXwIvA74FfuPu/Sxy7FnAY8Z0dn67hdeBu4nN+ppw8SONQCVvKsRPwLHAIEQCGAssQP4iXAreZWcGbPzObSATmC4AvEQFocDp+C+B84Akzs+5mzsz2Jrrg/IgIUiukPI4kfoh3Aq4DbjKz3n4mbsBjxA/xBGAIsDSwDXCrmZ2bAl/nA81Gmtk04sf+/6W8DwXGAJ8ETgBeNLPtip7c7LvAc8B36Qj4g4EliM9uN+BOM/tVN67tfHoerFch3p9TgA2BEcTn9DHgdOAfKc9dWRL4C3ETuAQwClgXeLPMfExJ+dgbWAMYRtyITgYeB7bv4vjBZnY28HciYK+drmMkcVN6LPCsmW1R5PjvA08S/6csHTci/X0Q8KSZnWhmTeVcjzQGBezGcz7xQ3lLZt2G6d/+RY45h7j7P5cozXweOA6Yk7Z/BTgq/6DUJeuvwFrAgnT8NsDGwA7AZUArsCZwt5mtkDn8hJSnR9Lrf2fyeULmHF8gSvnDgRlEV7WvAJsQgfrcdG6A7UpcY7VcTdww3J3Ovynxo5wLJIcQJcPFpCB+M1G6BLiVCNqfIm5sTgVmEYHqRjP7YoE09kn7tQBvAN8Btkx5+H/AFUBb2v3gVJIvi5n9gghM0P1gPZoIsqulVTcQn8mmwDeJkum6wBllJJcLtBcTN47bE6XSe8vIx2HEZ9AEvAccA3yaeK9+Tdxk/byLZC4kbsogbhaPIErZWxHfuUXAaOKzWjXv/CcS39Nm4J9EgP40sBnwLeJ9GETUhC1WGyaNTVXiDSYNgPK2mc3IrHu8i8PmA19w9wcy6+4xsz8Df0uv96bzD+35wPJElfAW7v5w3vabzex6IlCtQPxIfiPl6TXgNTObnfZdUCSfJ6XlIuDL7v6PvO3TzOz3dNyg7EL8KPeW5Ykf829mqt8fTCXn+4CJwJFmdrG7P5c57gii+xrAQe6en8c/mdnFwP3pHJea2WruvhAglcRy78X7wOfc/eXM8Q8C15rZQ0Q1MsR78YeuLsjMTiECCXQzWCcnElW/AFPc/fRs/szsqpSfTctIaxBwpbtnb8BuKbZzjpktA5ycXr4FfNrds10G7zKzu4gamWJpbEHH45q/Ed+7DzK7/MHMHiZuJEcRN7f7pWM/Dnw/7Xc5sK+7L8oce3/6nG8laotOMLNrVT0uoBK2lOecvGANgLs/CDyaXq6ZrRY3szXoqFY8pUCwzqVxK1HSBtjFzD5SbqbMbARRZTwDuKVAsM6e4/30csVy0++m54HD8p+Vu/t/iJIURBX1frltqXSdq6G4o0CwzqXxEjAlvVwJ+Fpm88rE+zCLaBPwMoVdkfm7y/fCzL4HfC+97HawNrNhwIHp5QN5wRqAFPR2I26+ynFepfkgahpGp7+PzQvWuXzcQATTYnLX0QbslResc2lcRlS5A3wpU7V9NPG7O524Met0re4+hxgjoZ2oBTi8q4uSxqCALeW4vcS259NyEB0/hABbEz82EA15ykl/EFGqKIu7z3X3jdx9HNGAqZTc0KpDy02/my7Kb0CX4+5/Al5LL7PPodcnAjB0/V7dkfn7f9Xi7v6Ku2/g7mOIKt5iZhGN2KCL98LMvkU8a4b4jLpbss7ldUT6e2qxnVIDszvLSG8R8by7Ulun5XyiSr6YSwqtTDeluSE/H3D3F0qksRPxua7s7u0paH8lbbvf3ecWOzDdcD2bXnZ6/CGNSVXiUo43Smybl/k7+33aMPP3oxW0KVu16106c/c2iIZbxBCmqxHPxjcgng3mAmJv36Te38X2R4nGZGuY2aCU7+x7daaZnVnmuQq+V5n3Ysm0z2pEO4INifdieNq11HuxFR0lSYDZPQjWEI3KcroKtA/REViLec/d53WxTyFrpqV3cfw/6CjhZq1ANHKDjtqlggrUckwAxqa/t8/0euiKhuQVQAFbytOpyq+I7I/b0t0819iud1mcmY0nqhq3p3jAb6NvapTe6mL7u2nZTLxH71DF9yp1FTqKKMkVqvIuN0jkuijNJ0riXzezK939pu5klMVbfpfslka8J135bw/zMb3UTu4+J7WfWCJvU/Y6SqZRQHc/5xYzW6JQ1bs0FgVsKUd3+i5nv1sbAwvLPO7drnfpYGZbEX25R2ZWf0BUJz5N9MH+I3AjsE4laXdTV89fs93KclXn2ffqEDoa8nXlw+yL1Er8grz0ZhDvxVNEyfUu4F8s/n4VcyfR9/7vRNA+z8zudff3Sx9W0JDM313dOJXzfetuf/rcceV0lyr0ne3Jb2b22EvoaPxXjqLV59I4FLClt8zI/P2mu3dV8qxY6jZ2NRF8FhJdda4iqjvb8/YdVe3zF7EUMfhFMcuk5bxM4Mu+V7PKaLXfiZmtR0ew/oBokT0tO+hI2m8QHVXipTwI7ODu81Ir8ZOI6uCfkWkwV4FsqXoZSk/m0t2SaDn+TbTUX6bUTqm//pIFNmU/q3EVnjt7bGt3PmdpbArY0lueyvy9CTCt2I5m9imisdkrRGOcUs/Ms/ago6Hbye5+UqGdzGwo5Q3GUQ0fIwaKKZSPJuAT6WV2n/z36spiiaduSYcQ79Xj7p5L55t0/H8+zN1/UySJ8ZT3aOCJzDPe04Fdiefg+5rZVe7+xzLSyMoGp49T+jn2J0ps66mniYBtXVQzr0vh38eXiZqN4UT7iKLM7FCihuJloj3AS0RJeQTxOZdkZt8heje82I33WwYgtRJvXG1d79Ij2f69B3ex70+I4SCvpvMz6FL5nJj5+5Gie0Vr3dzwlL19k7pniW1bEUOVwuI3MA/TUfraLQ0wUszhROl5KjH4TE6578Uemb/Lei9Sq/cD6ahOviA17qvEH+mowt+92E5mtiwdLal7Q65leAuLD32bb69CK1O/97+kl5uZ2UqF9ku2I9oCbAK8lY69O21bz8w2K3ZgGhDox8RYBt8rtp80FgXsxvW/Fr+9UV2c+kTnfti2SP15OzGzo4HPppePEyOjFcpnoTxmq1kL/sib2cYs/qywt7t1fdHMDspfaWYrArnhQGe
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 525x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xec3FW9//HXZjfZJJtKQk0glMCHKiKCcAGJiJXmFeF3kZZQVBABLyhcQcRCE0WlyVWUKChIlRJUioAXEESaQPQTauiGNCC7KVvm98c5w353M3VnZmdm5/18PPbxnZnv+X7nM5PJfOac7ylNqVQKERERqW3Dqh2AiIiI5KeELSIiUgeUsEVEROqAEraIiEgdUMIWERGpA0rYIiIidUAJW0REpA4oYYuIiNQBJWwREZE6oIQtIiJSB5SwRURE6oAStoiISB1QwhYREakDStgiIiJ1oKXaAUjtMrP3ufs/Mjw+Gzg83l3X3d8c1MD6yRZnLTGzTYEzgRnAZGAJMNfd96hiWHXNzGYA98S7/+Pu5w7gHLOJn2V3bypbcCXK9drM7EzgW/Huzu7+0OBGJ9WihC2rMbPxwHeAL1PDnxEzWwf4AbALsFGVw8nKzKYADwFrJB5eG/hndSISkXpUs1/GUlUXAEdUO4gC/AbYA5hf7UDy+Aq9yfp64KfACqCjahGJSN1RwpZMmqsdQIHqJc6t4rYTONzdlajLwN3vBWqmGVuk0tTpTKTy2uJ2gZK1iAyUErZI5aX/n3VVNQoRqWtqEpf39Ot9mn4sFW/e5+4zshy3IfA14JPAFOAdYC4wG/iVu6cyHRePHQ7MBA4A3ke41rsUeJJwvfcKd1/V75jZ9PZSB5iWiPNX7j6zX/m1gaOBjwIWn6MLWAQ8AlwD3JArzmLF9+TFfg8n45zv7hvGsunHvgrMAS4GdiU0oT8HnOrudyXOXfR7liG+jxI6FW4PrAW8BtwMnEN4b5bEorPcfXbBL7zvc+xGuH6/K6Fn/CLgPuCH7v6Imf2L8O/R59/MzGYCV8S7E4H9gP8hdCxcDPw9vvadyNNL3MxGEd6rQ4FNgZHAv4BfAD8r8HWMBT4PHBTPsWZ8LX8HfuHuv89xbMn/ViJpqmFLqfYn9HY+FtgYaCV8oe1O+NKdY2YZfxia2XTCF9fPgI8Rek4Pj8fvCVwGPGlmNtDgzOxwQuL8LmFI1boxxjZggxj/dcDNZlbta+LrAw8AHwdGA+OBDxCSNlD6e2ZmLWb2M+Au4D8J78FIYBPgv4EnCEm0JGZ2BvAXQqJaN8a4DvD/gL+a2fEFnupLhB9+BoyI5xjj7isKiGEa8BhwKbAz4UfDGOCDhI5/dxBee65zfAh4hvC+7g6sl3gtewM3mdkNZtaa4diKf76lsShhS9JlwHbArYnHtot/R2U55mJCx59LCDXsjwCnAe1x/6cIiaCPOCTr/4AtgFXx+L2AHQk1ql8B3cDmwD1mtm7i8DNiTI/G+28k4jwj8Rx7EL7sRxFqZt+J8exESNSXxOcG2CfHaxyI1xMxZYrz0xmOOZGQVL4P7EZIdme7+0vx9ZTynqX9gNDaAKF3/ZcIyeyzhAQ2hfADZsDM7CTg2/HuvwktB/8BfIJQs20CfkJhQ/HOAl4htKjsCpwM/LCAGNoItfnN40M3A/sS/u2PAuYRWlwOyHGOzYF7CT+keoBfx3PsTBhF4bHoZwkjK5LHluPfSqQPNYnLe+IEKG+a2eLEY0/kOWwlsIe7P5h47F4z+zPw13j/cEISSrqMUEt5B9jT3R/pt/8WM7seuIVQQ/sR8F8xppeBl81sWSy7Kkuc34nbLuAT7v73fvtvNLM/0vsD5QDgf3O+2gLFZs4nAAqIM20YIUGflnjs+sTtAb9nMY73AcfFu3OB3dx9ceL4m8zsx8AJBbzEjOKY83SyfgHY1d3fSBS5I77n1xJqzPmkCP926THrDxQYyjeAafH2We5+emLfw2Z2DXAnIflmczmhBp4C/p+7J/8tHorv9YPA1sAXzez89I8rSvy3EslENWwp1cX9kjUAcfalx+LdzZPN4ma2GaGmAuHLtP+XWfoctxFqIgAHmNl6hQZlZqMJTd+LgVszJOvkcyyNd6cUev4K+mmmB8v0ns2idyjcMf2SddrJhCbggTqS3l7xx/RL1ukYrwd+WeD57k0k64KY2TB6WxGcfv0yYgztwGGEmnOmc2xJmJAH4Mp+yTp9jncJrUkQvks/Fo+t+OdbGpMStpTq9hz7no3bYYTrsWmfpnf87J0Fnn8Y4Rp0Qdy9w913cPdJwOfyFE9PrbradchB9pq7v5plXznes73j9hV3/0umA929C/h5/lCz2iduXyN3nIW2ZAxk2s0PEq4TA/zO3bszFXL35wjX2TPZJ3H71zme63bCJY4x7p5+3yr++ZbGpCZxKVW2BANhNq+05Gdtu8Ttx4roc7NxoQWT3L0H3ruuuRGhg9XmwLaE66Lrx6LV/gH7So59Jb1nsUNd+v3Ld5ljtRaTQphZE6EnNMCjeXrdP07oBT88z2lzvSfZbJ64ne+1/o3MiXKzxO3HMuwH3vuB0/85BvXzLY1DCVtK9W6B5ZIzUk0e4HNNLPYAM5sKnERoosz2hdhD9ZM1hOud2ZT6nk2m9zUuzHPM6yU8V/q6dM7ncPeu2Fdi7TznzPWeZJM856I8Zf+d5xw97r4kS5lsBu3zLY1FCVtKNZCxy8nP3Y6EmlYh3irmSczsk4ROW22Jh98lDEN7hjAG+y7gJnqnD62mXO9lqe9Z8lptvuk8BzouONmJrJAfQIV8dgby+Uoek++1ZnsfS/luHJTPtzQeJWyphmRnp9fcfaA1uqzisJprCMm6kzAhyNWA92+qNbMx5X7+Cij1PVtCGEbUTJgoJZeB1vQWE5JlE73XkDOKTfSVqlEmO7rljIO+K6glpd/vYWY2schadsU/39KYlLClGp5O3N4JuDFbwThxxQzgJeCBHJ2y+juE3o5u33P372QqFCe8yNcsWwtKes9iE/Q/CNdXtzezYelr+xm8fyABuvsqM5tLaK3YLk/xrahcJ79kL/cd6Ds0rr9sr3Vu4va2hPHYq4k90p8lNN3f7O5nMjifb2lAtXDdTmpPti/ycvlT4vYxecqeD5xLqC33vwadK87piduPZi0VJlBJz3ZVyz9gy/Ge3Ra3a9PbYzyTw4qOrld6TPt6ZvaRHOUOz7GvJHGs+wvx7ufNLONsZma2JmGyn0zuStz+fI6n25HwHr+f3iFz5fp8i/ShhC2ZrEzfqERzcRwTnR5Os6eZfSNTuThj1m7x7hOEmaMyxZkpxmSnp09lOf+OwEWJh6o9rCurMr1nP6V3De5L4tSd/Y8/gjAj10BdRu/ogEvNbLUOWHEGuq+U8ByF+FHcTo1x9LmWHef4voIsU5PGeQTSY/ePMLOP9y8TW2cujXe7CLPqlfPzLdJHLdcopHqS1wDPNrNfA93u/ngZn+MowhfiOOAsM9udMG3lfMJ8zQcTpnyE0AnqCxmGCaXjnGRm/0MY89rh7nMJzaDfIFxPPTZOpHIDIZFPIUwPeRB9hxWNM7Omci4CUmYlvWfu/oaZfZmQqKYCj5rZeYTZw9oIM23NKiVAd58fF5E5lzC86gkz+z6hg98oQm/9Y+j7vlfi/b6U8Hp2IbymTc3sQsJ7tSlhutwPEKbQbctyjqMI48BHAreZ2c8JU5y2E5r0T47nAjjX3Z/vd2ypn2+RPlTDlkxuIXRQglATegTIuiLRQLj7s4TFFF6KD30c+B3hC/JGQlN1E6Gz1H5ZZotKXhs8O8b503j+J4D0dJRNhC/t2+L5byA0+w4nTFyRnvBiBH2b0mtKOd6zuPLWsYSOeJMIU8Y+QJhH/AjCtdgL+h9XZJzn0VvDnUKYN/xB4G7CtKdNwCmJQ1ZSZvH6/Kfjc0IYb38t8DBwFSFZP0aYWz3bOZ4kzH++kPBZOZbQ3H0/YeKXdLK+kMQc9vHYcny+RfpQwpbVxGS3L2Eu8GXAcqAz1lLL/TxbEJZ5vJMwJraTMPTqUcJc4Ju7+x+zHH8b4Vr
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 525x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecXFX9//HXZjds2ARCEqoJNYEPBBBRaYIS/YKANDXiTzRAKEFURBEFFERAiogiUhRFJAgCUqJAAAWVIiCI9KIfekKLkBBCerLl98c5d/dmMnV36u77+Xjs486de+6ZM7Mz85lz7ilNXV1diIiISH0bVOsCiIiISGEK2CIiIg1AAVtERKQBKGCLiIg0AAVsERGRBqCALSIi0gAUsEVERBqAAraIiEgDUMAWERFpAArYIiIiDUABW0REpAEoYIuIiDQABWwREZEGoIAtIiLSAFpqXYCByMze7+5PZrl/KnBI3F3P3WdVtWAZcpWzHpjZZODyuHugu19bo3Ik69P+xd33zHJ8GPAD4DPAaGAx8Cawt7u/Uq1ylsLMTiWUGWAnd3+wF3m8AmwI3OPuE3KkyfU5uBvYFVjq7kNKfex609fnY2YbAS/H3dPc/dSyFa6P8j23Qp8NKZ0CdhWZ2XDgdOBr1PFrb2brAj8BdgY2rnFxGpaZDQLuAHZK3T0EGAq8XpNC1QG9v0R6p26DRj91HnBYrQtRhN8DnwBm1LogDe6T9ATrJ4FTgFlAm7svr1mpak/vL5FeUMCuruZaF6BIjVLOerdl6va33f3OmpWkBLHJ9dQKPsSAen/luiQgUip1OhOpnKGp2y/nTCUiUgQFbJHKSX++2mtWChHpF9QkXgUZvW6T+5IelPl60W4EfAfYk9DD+D3gWWAqcIW7d2U7L547GJgMHAC8HxgJvAs8AdwAXO7uyzLOmUpPL3WADVPlvMLdJ2ekXweYAvwfYPEx2oE5wMPAtcCN+cpZLrE39jeBicA4oJNQq70BuMDd38tz7urA4YRrzlsTnkcT8A7wGDANuLLY686pHtJpL5tZcnvjvvYQN7MZwAbAU+7+/hxp7gU+Gne3c/d/Z0kzBfh13B3v7v8pppd47Dh2DLA3sAmwlPA//5m735GjPFMp4f2VOm9r4DjCde916Pm//Nrd/5TtnGKZ2WrA14HPEd7DXcDzwDXAzwm9+6+JyVf4v6X+zz8HzgYuJHxWm4BXgLPd/epieomb2TbAsYQ+DxsQPkN3Aj8ivLbFPJftCJ/Hnel5/70I/Bk4393fzHPuFsDRhM/ymPgcXgXuAi5092eLKYNUlmrY9Wsi8B/gq4QvxFZgLcIH/3LgVjPL+oPLzMYRAvOvgd0JX3KD4/m7AZcAT1gqgpTKzA4hBMQfAhOA9WIZhxK+cCYC1wM3mVmlr1luDjwTy/IBYBiwOrBNvO9RM9sg24lmtgfhy/U8en4YrUrozf0+QkC6DPhH/HKvF7fG7Vbxh9MKzGwosGPqrgk58vlU3L7g7v8p5oHNbHfgOeC7hB+Dw4BRhNfvL2Z2ZjH5FPlYxxCC8yHA+sAqwLrAXsAfzezXeU4vlPfGMe8zgW2BNsL79wPAOcC/CZ+dQlYH7iX8OF6N8HpsRZEjAczsRHqe42aE995owg/ux4H9Cpw/2MwuBP5FCNjj4/MYSvj/HA/8x8x2y3H+94GnCN81Fs9ri7ePAp4ys1PNrKmY5yOVo4BdHZcQvhBuSd23bfw7Isc5FxF+5V5M+CL8OHASsDAe3wv4VuZJsebzD2ALYFk8f29ge2B/4AqggxDk7jKz9VKnnxLL9EjcfzNVzlNSj/EJQi1/VUJt5/RYnh0Jgfri+NgA++Z5juXyA8KPhFvi4+8cHzO5bjyW8D9YQfzBcjMwgjA++nxgH8Lz2J9Qa1oQk+8AfK/I8nyK8Jr9KnXf3vS8lm8UmU8+0+O2ifAjLNOuhB9piQmZCcxsFUKNCsLrUJCZbUv4sbAasJzwmn0C2AU4GZhHeJ3Wz3J6Ue+vlFZC7XUhcBbheX6SEEyT1o4pZvb5Ysqe8TyGE4Ls2HjXjYT36k7Alwk1062AHxeRXRJoLyO87vsRaqX3FFGOownvsyZgNvBt4COE5/krwg+UnxXI5lJC7RjCe/4YwmdgT8JnsR0YTviBs0nG459K+Pw2E0YyHBUffxfgG4TXYRDhM7ZCK6FUn5rEqyBOgDLLzN5J3fd4gdOWAp9w9wdS991tZn8H/hn3D2HlL5RLCDWQ94Dd3P3hjOM3m9kNhC/o9QhfBl+IZZoJzDSzJEgty1HO0+O2HdgjS1PrNDP7Mz0/UA5gxeBVCce5+3mp/QfMbBrhEsK6wJ5mtra7v5VK833CFyLAF7M0r95sZtcRmnpbCM/ju4UKkjQfmll64ptnyzxRyt+BRYSa0O6EoVJpSRBfTgjcu5hZs7t3pNJ8lBB4ociATfghOZhwyWFfd/9L6tj98b11H7Bm5oklvL/SZgMfdff/pu6708wep6ep+hDguiLLnziV0PQLcKK7n5M69qCZXQP8hRXH0OcyCLja3dM/TG/JlThhZmsBZ8TdN4CPuHt6qNudZnYnoaUqVx670XOZ4Z+Ez+P8VJK/mNnDhB/Ywwg/+g+P536Q8BkAuBI4zN3TfS3uN7PLCD8OJwCnmNl1ah6vHdWw69dFGcEagHg98dG4u3m6WdzMNqOn+ezMLME6yWM6oaYNcICZva/YQplZG6Hm8w5wS7broqnHeDfuji42/176d0awTsowF7g67jax4jArCJcI3gIezXUtNAaUZ+JupZ9H0dx9CfC3uJuthp3c97u4HU6oyaYlzeHvEIJsXma2FaH2BfDbjGCdlMsJTbDlclpGsE78gRDMIdSEi2ZmQ4Aj4+4DGcEagBj0vkjxnQV/WUoZov9H+L8AHJ8RrJNy3EgIprkkz6MTODgjWCd5XEFocgfYPdW0fRwhBswBjsoI1sm5CwlzR3QRPkNfL/SkpHIUsOvXbXmOPR+3g+j5wEP4Ak4+jIXG/Cb5DyL39c2VuPsid9/O3UcROurkk9QwW4vNv5duz3Ps+dTtkekD7r6Hu68DbFcg/2o9j1IlzeKjzWx8cqeZrU1PEDufnssoH884f6+4vS2j5p3Lp1K3r86ZKnQ2XFxEfsXI+jmIHRlfjLsjs6XJ4/8ILRMQap5ZxRaRrB3oMrQTrneXKnk9lxKa5HP5bbY744/1ZMrPB9z9hTx5TCRcptjQ3bti0E7+//e7+6JcJ7r7y4T+NNBzCUVqQE3i9eu1PMeWpG6n/4fpGtSjJfQp26RwkpW5eyd0d3DamHA9cHNCZ69d6LmOWekfhr15rbqlnscQYCPC62GEDjs7A5vGpPXW6ebW1O3dCc3/EGrXTcAsd3/azB4iXGeeAJwL3SMQtojpi20O3zx1O2dTtrsvNrOnCP0m+qqY/22p32MfSN0uFGgfYsUfKtnMji0epUpeTy9w/r/pqeGmrUfPJY1HySMG3bSNCH03APZL9dYvRFPJ1pACdv1aqWkrh/SHeKXrhkUaUTjJisxsDKFJbT9yB/xOqtOK05vXCgAzG0kYDpYM68lW3mo9j5K4++tm9hjhh9ruhA5a0NMcfldq+wlWvI6dBKFlhGE/xUh6THfGyw35/K/IPPNZljn0MIdSf0ile37PzpkqeKvAcQj9RXojKcecfIncfWG87p85SiH9PPLmkUVvvytazGy1bE3vUnkK2PWrN2OX0//P7enpSVvI26U8iJntSRjfnJ7Jaz6h2ewZQietvwJ/ZOXrxpXQq3HeZvYhQpPr2qm7FwP/JdRW/00IdmcSennXo+mEgL2rmQ2OY8WTZsu7MrarAx8k/H+SgH13CV++3a+zmTUVGF9fjrnSKzV+f5XU7UI/xIopQ2/LmZxXzA+ObK9nX76/0+f+ljCGvFg5m8+lshSw+5d3Urdfd/dyDB9aQRw2di0hWC8nDEm5htCs15WRdli5H79cYvP3jfQE6wsJX1xPZV7PrefnQQjY3yf0AN7RzN4kDHGDnkD9L8LwtGHAhNhcnVzPLrY5HMIwLAhBbhT5a6e
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 525x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYnGX1//F3ekgCpBCKRGrg0MECgoJERQQREBF/Ii1UpYgCgnwFFJAOolIURSUIKNJ7kRYUEER681BDj4QklGz67v7+OPewTybTdnfKzu7ndV17TXnaPbMzc567nadfe3s7IiIi0rP1b3QBREREpDwFbBERkSaggC0iItIEFLBFRESagAK2iIhIE1DAFhERaQIK2CIiIk1AAVtERKQJKGCLiIg0AQVsERGRJqCALSIi0gQUsEVERJqAAraIiEgTUMAWERFpAgrYVWJmGxR5fpKZtae/5etdrgLlKVhOkd7IzI7PfP82rcH+c/u+rYvbT8js4+i8Zd0uu5lNTtvPLbFOw38TMq9zUqPL0pMNbHQBmp2ZLQ2cCBxMD34/08nCWcDngFUbXBwRabBm+e2SDvondd/ZwD6NLkQFLgO+CLza6IKISI/QLL9dkihgd9+ARhegQs1STpGqcffjgeMbXIyi3H0y0K+G+59QYrF+E5qM+rBFRESagAK2iIhIE1CTeBeZ2fHAz/Kea0937y3WFGVmqwBHAtsAKwIfAM8Ck4CL3b290HZp20HARGAXYANgNPAe8ARwFXCRu8/P22YSsFfmqZUz5bzY3Sfmrb8csD/wJcDSMRYC04GHgcuBq0uVsxrMbG3gkFSOcUSz4evAPcC57v5ske0mEa/3CXffyMzWAH4IfIV4v2cDTwJ/Jl5/W4kydPr9TtutArySHu4EvE30F34SmEP8vw9y9ycz22wAHEaMM1ghHech4Bx3vyONQv4Kmc+WmZ1HDBgC+KK731PitXwL+Ft6uL2731Rs3bztpgArA7929x+a2ReBg4DNgGWAGcB9wG/KHP/TwHeBLYGPA23ANOBfxGfqhlp8pvK+p5u5+4OZZZNTea5396+b2aeAQ4EJwHLEd/Nh4A/ufm2Fx9uBeJ0bA0sBU4HJxPv3WIH1JxCfaYD/c/fTSux7ZeA44rdjGeL9u5d47x8osk3uNc5z96HpuePp5G+XmX0F2Jv4vy9HfI5fBG4hvo/vFit32n514nv4RWAV4EPgn8CZ7v7vUttKB9Ww62tn4DniB281YAgwlvhCXQTcbGYFT6LMbDwRKH4PfJn40gxK228FXAA8YWbW1cKZ2V5EoPk58aO1QirjcGClVP4rgevNrGb9X2Z2HPAU8T5ZOv6wdP97wFNpykvJvj8z2xl4PO1ndWAoEXQnAH8CbjezIUW2rdb7/QniB/mz6fijgA2BlzPH2ht4lDg5WClznK8BfzezM4vse1Lm/m5lyrFHuv0f0NUpSKcDdxGfg48Bg4HlgW8Cd5vZz4tsdxTwb2A/YA3ifRhGnAh8G7iOeJ3Du1KuajCz7wMPAnsS/4Pcd/OrwDVm9ucyn7dBZnYZcH3aZmzax8rECeRD6fvVVVsQ34l9iRPPIcSJ7G7A/SU+I91iZsPN7BriM/P/6HhvRgKfBn4KvGRm25fYxx7E794hwDrE/3454nPzgJl9rxZl740UsLvuAuLH+MbMc59If/sV2eY8oqZ4PnGW/AXgGKAlLd8WODx/ozQl65/A2sD8tP12wCbAjsDFQCuwFnCPma2Q2fynqUyPpMdvZ8r508wxvkgEgCWIWtOJqTybEj/Q56djA2xf4jV2Szr7P5EYEPMkEaA/C2wO/AB4ifjc/oy8WkKelYiR8QBnEDX1zYGjiZoTROD9YYEydOf9zncs8T//P2JK3Z7A8e4+Kx1rZ+LkYUAq18+IH+cvAr9Ix/8R8VlZhLv/B3g6PfxmiZOPscTnDeAyd19YorzF/D/gKKKV4zDif7IV8BsgVzs7Nn++sJl9HjiNeA+eIGppuf/nfkRrA2lfJ3ahXNWwKfBr4v0/Dvg8cRJ9Ch2f+T2Ab5XYxxeB7xAnYocS/8OdiJYYiJOw36bWl644HViS+ExvS7yHRxLfVYAfmdkRFe6rot8uM+sP3EC8DoCbiM/BZ4j/1ynA+0RLwrVm9qX8A6VAfjHx+luAE4j35gvE93Ih8f2SCqhJvIvcfSow1cxmZJ57vMxm84imy2zz1WQzu5toGoQ4Gz8jb7sLiJrMB8BW7v5w3vIbzOwq4su1AvBLouaCu78GvGZms9K684uUM/djuRD4SgoGWdekZtncl3wX4HclX20nmdkniR9MgEuAffKCy/1m9kfih2MC8FMzu6JI8/go4gdi87zXe7+Z3Qs8QASRicSPYVaX3+8C+gOHuvuF6fFH//tUo/xVejgjlfW5zLb3mNl1wB1ErbSQScT8+qWJGvnVBdb5Nh3f9YuL7Kec5YFngC3cfWbm+bvM7FU63sO9iJpqzt7E+zwd2NLd388su9/MriRaF1YH9jWzo9y9tYtl7KrliBPZTdP3JecfZvYEHV0JEzP3C3kA2NbdP8g8d52ZXUA0ky9BfG+6UhvuBxzs7r/JPPcvM7sWuD+9hp+b2cXlmqc78dt1KHEiAvA9d8//vt+Vvo/3E5+Pi8xsdXdfAJBOIH+Vyj6L+OxkjzPZzK4nWm2Kfb4lQzXs+jqvUF9T6ld7ND1cK9ssbmZrAjukhycXCB65fdxEx4/xLmb2sUoLZWbDiGauGcCNBYJ19hjvpYcrVrr/TjiC+ExOJ34gFqsJunsLMXe0nfgh+H6J/f2m0A9Rer9z/cdrZWumNXi/51A8SO5MNGtC9F8+l7+Cu98HnFxke4BLiZMsKN4snmsOfzzbb94FR+UF65wL6ahlb5i3LJfd7528YA1ACm7HEn38x9C4H+6T8oJ1zpVA7jXnv7Z8380L1jnZGuR6XSkccHNesAbA3V8CfpweLkGcVHRbql3nWvtuLRCsc8d/mWi1ghib8I3M4i8TXX8ApxX5Lj7A4hUUKUIBu75uKbHshXTbn6gt5XyVjnmad1S4//5EDbQi7j7b3Td29zFEv1IpU9NtwebXrkr9g9umh/e7++xi67r7K0SfGERTdzF/L7Hspcz9EZn71X6/Hy00MC3J9fstoKP5vpDfF1vg7v8Dbk0Pv2pmI7PLUx/7xunhpBLHKGchcHeRMsykI6gtmbf4v+l2bTO7MA2cyt/+cnc/wt3PTydkjVDws5IGwuUGEOa/tqzX3f3pIsteyNwf3YWyQYnPAFHrn5fub93F/efbgAjAUP57cGvmfvb7+NXM/b+U2P5PnShXn6Ym8fp6o8SybK7f7P/lE5n7j3ZiTNlq5VdZXG7UdGquXZVoqlyLqF1sTseXuNone6sQzdgAO2RGrZZTKs3qlBLLZmXu1/L9fr3ENhul2+dKBSp3f8fMXqH4a72ICP5DiCbXCzPLcrXrBZT+0Sznf+5eNB818X6OZvHflPOJgVJLEv2j+5nZM0QQuBOY3MAgnTWlxLLcZ6XU72XR77a7z818jrr6m/tQmf0/R3ye1u/i/vNlvwdnm9nZFW6X/R6slW7fTyfZBbn7q2b2DrBsJ8vY56iGXV8fVrhedjTqMl081qjyqyzKzMaZ2S/N7CXiR+opYgTvacCudEzHqYWuvs6BZlas5jOryPPQ0YQLtX2/CzWR5iyXbkv2OSbvlFh2U2YfHzWLp1aL3dPDW919WgXHKabUewkd7+ciI6nd/UViOtp/M0+vSwz2uwmYbmY3mtl23Shbd80rMxCv4GvL05XvdmeU+9/l/v9drcHnq8b3IPf5nlFoxTz/6+Lx+hTVsOurK/NMs/+jTYiaUiU69eNsZtsQI1qzU2s+JJqenyHmo94JXEv84FZb9nX+CTi3E9sWbT7vZjmq8X6X+p8PTreVnDgX3Y+7L0hTin4AfN7MPu7urxOjcXNN0F0dbNZt7v4vM1uX6Db4BjFiffW0eAgxWO5rZnYpsFepufE9WE3zElSw/9yJwLySa1Uu+z04iI5BseXMydyv5EQnp9LvWZ+mgN3
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 525x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYXGX5//F3smlkQ0hICCARAgnc9KLSFCQqIkgTEX8iUQJfmooo1UgTkSJFVIoiIATpXaoFFFBQEGlK8aZ3EEhCSZa03f39cT/HPZmdmZ3dnd3Z2f28rmuvM3PKc54pO/d56hnU2tqKiIiI9G2Da50BERER6ZgCtoiISB1QwBYREakDCtgiIiJ1QAFbRESkDihgi4iI1AEFbBERkTqggC0iIlIHFLBFRETqgAK2iIhIHVDAFhERqQMK2CIiInVAAVtERKQOKGCLiIjUgSG1zsBAZ2bru/u/iqyfCeyZnq7o7m/0asYKlMqnVI+ZTQKeT09/5e4H1DA7fY6ZTQXuTE+/7+4/rnL6dwFbAQvcfUQX08juV/wHd982t34q3cy7mR0H/CA93dzd7yuyz3LAEHd/vbPpV0vufXzR3SfVKh/9kQJ2jZjZMsDxwLfow5+Dma0AnA58Ali1xtkRkSLMbDBwAHAC8EWgZgFbek6fDRQDwBnA3rXORAUuAz4NvFjrjIhISXsA59Q6E9KzFLBrp6HWGahQveRT+jl3vwsYVOt8lOPuPZY/dz8OOK7EZv2fDgDqdCYiIlIHFLBFRETqgKrEe1lBT89sXdaz9G53n1riuEnA4cC2wErAe8ATwEzgYndvLXZcOnYoMB3YDVgfWBZ4B3gUuBa4yN0XFhwzk7Ze6gCr5PJ5sbtPL9h/eWBf4DOApXMsBmYBDwBXAteVy2dXmdl04KL0dEWgFTga2AH4EPFe3Q/80t1vrSC9zwF7AZsDywMfAM8AtwFnufvbHRy/KvFeTAVWI96L+cBbwH3ATHe/vTOvMaU7GPgN0V4JcCuwq7svqPD4mcRn+qi7b2hmqwPfBT5HfKeagH+lc1zs7i0l0lmJ6Cz5OWANYBjxOf8LuBm40N0/6OzrqyD/UynR0zr3f/Wuu49JnSUPAXYEVgYWAU8CVxHfgw7fMzNbDziU6MOxPDAbeBg4z91/W+KYor3Ei+zXCBwBfBmYBMwFHgIuBq4o9n9SrJd4wXuSudPMgOJV9Ga2FnAg8b86kWhmeDmlc5a7P1Eq3+n4McD+xO/J5HT8o8Av3P2qcsdK96iEXR92JX5svkkEgOHAcsTQiYuAW82s6MWXmU0h/pnOAz5L/PAMTcdvDZwLPGrZf3gXmNmexHCkHxFBasWUx0bix3JX4BrgRjPr6bY2I35UDyR+CIcB44HtgVvM7JwU+NofaNZoZtcDvwf+X8r7cGAM8DHgWOBZM9ux5MnNvg88BXyftoA/FFia+Oy+CvzRzH7Rhdd2Ll0M1kXyuSvwCPGdmgyMIC4spgIXAn8ws+FFjvs0caH4feAjwCjiPV6RCOBnA0+a2RpdyVc1mNkWwOPEBe6awEhgGWAz4KfAP8xs2Q7SOIj4Hu0JfJh4jSsA2wE3mNl53cjiCsA/ie/TmsR7Px7Yhujk+SczW7ob6ZdkZscA/yY+dyP+R0emxwcA/zaz48ysaFu8mW1IfP4/Bj5K/G8sA3wSuNLMLkFxpcfoje195wIbESWRzEbpb58Sx5xNXMWeQ5SwPwUcBcxL27cjShNLSKWMvwJrAQvT8dsDmwA7E1fzzcSPxp1mtmLu8GNTnh5Mz1/P5fPY3Dk+TZTylyJKIMen/GxGBOpz0rkhSjulXmO1XEkEjzvT+TcnfpxeTdu/CZxceFAK4jcBu6RVtxBBe1PiwuYk4F1gNPGD/ZkiaeyV9hsCvAJ8j/gR3jyldSmQlVq/kUryFTGznxGlduhmsCYuRC5Lj08lSlpbADOI2giI1/zdgjyMIS68RhO1BYcRF42bEqWt36VdVwEuL/Wj38OWIj7H0cAvif+XjxMXcK+lfdYHTiyTxnDg58T/10nEe7ENcApRUgfY18y+3MU8HkT8z/0d+Arxv7IncZEB8f99eYVp/ZP4n8zX2u1L2//q/6QS+vFEB7V/EQH648Rn/x3gWSIm/KAgvez4lYC7aavFmknb+/sd4jdiGjEEVHqAqsR7WZoA5Q0zm51b90gHhy0APu3uf8utu8vM/kz800P8w59acNy5xNX8e8DW7v5AwfabzOxa4gduRaL08ZWUp5eAl8xsbtp3YYl8Hp+Wi4HPufs/C7Zfb2a/p+0CZTfgV2VfbfesAJwP7J+rVrwvlZzvAaYAB5vZr939qdxxBxFVnwAHuHthHv9kZr8G7k3nuMjMJrv7IoAUnLL34h3gk+7+fO74+4Crzex+4Ky0bjfgDx29IDM7kfhBhO4Ha4CxRDDaouAzvdfM7gb+RlwgTieCVGZnohQOsIu735vb9g/gWjO7mnhdHyVK4A/Su4YRAWkHd/99bv3fzew24DGiRPlVMzso+/yKeBvY0t3/k1t3u5k9AlyRnu8JXN2FPA4iLiz3yDU73G9m1xDfhy2BHcxs+46acNx9LvBIKvlmnin8XzWzjwDHpKeXAHu7++LcLvem7/ctRC3LsWZ2dUH1+KnEhRDAfu5+QW7b383sKqKAsHq5PEvXqYRdH84uCNYApJmOHkpP18xXi6cqyZ3S0xOLBOssjVuIkjbAbmb2oUozZWYjidLIbODmIsE6f4530tOVKk2/i54GDixsA3T3/xIlCogq6v/LtqXSdVZD8bsiwTpL4zmiFApRTfrF3OZViPfhXaJPwPMUd2nucYfvhZkdCRyZnlYjWGd+UewCLH2nshnt1iyoFl8h9/jpEumeRJRsDwfmVCGfXXF9QbAGIH0mWd+B0ZSfCOiHBcE6cxURzAHW7WL+/gvsW9hHILX7TydXC9PF9Is5lPi9n0VckC4u3MHd5xFzQ7QSFxXfzral2pWsRuGOgmCdHf9fom1beogCdn24rcy27IdzMNGWlPk8bWNWO+rglKU/mLi6roi7N7n7xu4+DvhSB7tnU6u2axetsgsKO9Bl3P1PwEvpab4den0iAEPH79Xvco//Vy3u7i+4+wbuPoaoKi7lXaITG3TwXpjZd2irur2N6gVrgD+W2fZs7vGo3ON8ALvezDYuPNDdH3H3b7r76ekCpxYqfW3l2omL/s+lC8EsjbLt4GVcnkrGxdJ/jiilAnyqVN+Uzki1P9ulp/e6e1OpfdNFzZPpab7ZZxvaamRLVte7+520Ta8rVaYq8frwSplt83OP859nvv3qoU70KVut0h3zstJC6v26KtGRaU1gA6KNLAuIPX2ReG8H2x8i2nDXMLPBKd/59+oMMzujwnMVfa9y78XotM9koh/BRsR7sVTatdx7sS2wX+753CoGa4AXymzLB5P8d+pWovS9PtFO+Q8ze424yLkDuD2VsmrthTLbSr22QpX8z3X19/P+DrY/TPQNGEl8d7yL58lMIppBAHbK9WTvSL4GYs3c446a8B5A0xj3CAXs+vB+hfvlO/mM7+K5xna8y5LMbCJR5bYTpQN+C71To/NaB9vfSssG4j16kyq+V2nIzCFEiaZYlXelP5arpOUCoiT+ZTO73N1v7EpGiyhawkvyefzfd8rdF5vZdsAFtJXYPkS05e4JtJrZP4hhYSVrOnpBp19bgYUV5r2rnere7GB7fthgV0vxeV39fg8xs6Xd/X1itENmVgfH9YWLtn5JAbs+dGXscv6z3YS23q0deavjXdqY2bbEWO7G3Or3iWq1x4mr7TuAG4B1OpN2F7VrmyuQH1aW/Sjn36tv0taRryNLjDVOvcTPK0hvNvFePEaUrG4nqpbz71cpfyTagv9BBO1fmtnd7v5O+cN6jru/BnzezNYlmkG2JzqXDSYC2Kbpb38z+0xHY9b7qKrPFdBJ+QuBatSq5L+PF9LW6bESWfV5JRc6mUp/a6STFLD7r9m5x6+mH9qqSsPGriSCzyJiuNQVgBd2+jKzUe1T6BHLEpNAlLJcWs7PBb78e/VuBb3
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 525x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHGW59/HvzCSZZJIQsrAdAoEkcLPjAggCEhVFZDsa8BUIkCBBEURQRBSOgrKIeBBZFJUjQUAQMEhYXNgVFEQ2WeQOa4BADFnJnsxMv3881Uyl09t010x1T/8+19VXTXctfXdPzdz1PPUsTZlMBhEREaltzWkHICIiIqUpYYuIiNQBJWwREZE6oIQtIiJSB5SwRURE6oAStoiISB1QwhYREakDStgiIiJ1QAlbRESkDihhi4iI1AElbBERkTqghC0iIlIHlLBFRETqgBK2iIhIHeiXdgCSn5nt5O7/yvP6NOCY6Okm7j6nVwPLUSjOWmJmWwFnAxOAUcBC4Hl3/1iKYUkeZvYAsA+wyt0HJnzsCcD90dNvufsPKjjG2cB3o6d7uPsjsXUPUGXsZpad7/hP7v6pAtuk+jeX8z1OcfdpacXSaJSwa4yZDQO+B5xIDf9+zGxj4EfAnsCWKYdTkJltCjwCjIi9vBHw73QiEqmMmY0HLgMGES4+pcHUbEJoYBcDx6YdRBmuBz4GzEo7kBK+QleyvgX4GbASWJ5aRCKV+RMwFngw7UAkHUrYtacl7QDKVC9xbh8t1wDHuLsSdQ1z9wlpx1CMu59NuL3SU8dvKrK6Xv7mpIeo0Zn0dYOj5VwlaxGpZ0rY0tdlz/H2VKMQEamSqsRrRE7r0+xr2RajDxaqKjSzLYBvAJ8CNgXeBZ4HpgHXuHsm337Rvv2BycBhwE6Ee72LgKcJ93uvdvfVOftMo6uVOsCYWJzXuPvknO03AqYCHwcseo92YD7wGHAj8LticXZX9J28mvNyPM5Z7r5FtG32tVOBO4HLgb0IVegvAWe4+z2xY3f7O8sT38cJjQo/CGwIzAZuAy4gfDcLo0271QI353N/BpgRxXo04dbA0Oi9/gT8r7u/XORYnwUmAbtFMS4H3gIeAH7p7k+WG1d3FGtpHf9dufslUYzHAR8AhgP/IbRevqSc+KLf5QnA4cC2hP+HrxO+t0vy9cAo1ko8z7YfIfxt7kGo6XkduAv4sbu/XmCfdVqJx76TrH1i250TVdPnfq7JVHeO7g2cTDhH/wuYA9xOOEclJSph17eJhNbOXyY0RmkFNiD8cV8N3GlmeS/KohanTwO/AD5BaDndP9p/X+BK4Gkzs0qDM7NjCAnk+4RWrZtEMQ4GNo/ivxm4zczSvj+3GfAw8EmgDRhGSAQvZTeo9jszs35m9gvgHkJC3RwYCIwDvgY8RbioSUJb9D7/RzgfRhG++7GEJPWcmX06T4z9zexW4HdRjJtGn3EYIamdADxhZmn+424xs+sJMe5P+D0MIPwOjwb+aWZTSxxjE+CfwE+A3QmfbzDhM36T8Ht8f6UBmtmphIubA4GRhN/z1sApwAtmdlilxy7xvtWeo81mdjnwF+BQQg+QVmAMcBLwLOEiTlKghF07rgTeT7iKzXp/9DiuwD6XA03AFYQS9keBM4Fl0fr9CYlgLVGXrL8S/jmtjvY/gPCHeAhwDdABbAPcb2abxHb/ThTT49Hzt2Nxfif2Hh8jlPIHAQsIXdX2J/xznBi9Z/Yq/6Ain7ESb8ViyhfnOomK8I90FPBDYG9C6eR8d38t+jzVfGdZPyLUNkBoXf8lQunrs8CfCcnx5so+8jr+l3A+PAIcBXwI+G/g7mh9KzDNzIbk7HdGtB3A76PYdiXUkHybUDMCcIaZHZRQrN11GnAE4WL1eMI5tT/w22h9M3CZmW1e5BgnE0qffwWOBD5MqFF4Olq/IXCdmRVrBFZIK6G3x0rgfOAjhB4VlxFqUAYBN5jZh8o83nGE8/bt6PnjdJ3LV2Y3Sugc/SGh9gfgNbrO0QOBmwg1GSplp0RV4jUiqn6bY2YLYq89VWK3VcDH3P1vsdceMLP7gL9Hz48h/BHGXQlsTKg+39fdH8tZP8PMbiFUDW4C/Bj4fBTT68DrZrY02nZ1gTi/Fy3bgf3c/Z8566eb2R/pukA5DPh50U9bpqi67ymAMuLMaiYk6DNjr90S+7ni7yyKYydCCQXCLYu93X1BbP9bzewS4KtlfMRybAxcC0x2985YHDOAOwgXLRsQ/qH/NrZftkvhPe7+mZxj3mdmdxISRj9Csryd3rcxcC9woLuvjL3+RzNbSEgyrYSq7guLHOdS4JTY7Zi/m9nNhFs1OwHbAbtEz7trGfDRnPPkfjO7m3D7o4Vwwb1rqQO5+0sAZpa9wF1a4Fyu9hzdlq7z71ngI+6+MLb/nWb2KOFiUFKgEnZ9uzwnWQMQ3Vd7Inq6Tbxa3My2Bg6Onp6X5486e4w7CFfkAIeZ2X+VG5SZtRH+YS4Abs+TrOPvsSh6umm5x+9BP8v3YkLf2RS6uuWckJOss04Dnut21PmtJCSjzviLUXL6ZeylnXP22zhavpjvoNEIW+cSSo7XJxNqRU7OSdZZ8Yu+3M8W9xbwjdy2E9HF3lWxl3aoML6z850n7n47XefILma2S4XHX0tC5+gX6CrEfSknWWf3v5hQXS4pUMKub3cVWZf9h9tMuD+X9WlCNTp0VY+WOn4z3RhZyd2Xu/uu7j6ScB+smGzDntZyj99DZrv7mwXWJfGdHRgt33D3vP/w3L2dtZNpNR4vcFEAEG9sNjRn3QvR8gtmdmo08t5a3P0cdz/T3W9MItAKzHb35wusK/bZ4u4t0vAqfrEyosA2xXQS2g4Uck3s509WcPx8kjhHs7eKZrn7w0X2/1W3o5NEqEq8vhVKMBBKWFnx33O8Ic0T3WhTNrbcDeOyJTwzG0xowDKOcA9tZ0Jr7M2iTdO+eHyjyLqqvrOoQV32+yt1m2OdGpMKvVZk3dLYz7n/Ay4gVJEPINyH/aGZ/Z3QgO1u4B/u3pFQjJV6rci6Yp8trpK/nXLNzFc6jYm3YN+xguPnU+052kxoFAdd9/EL+Uf3QpOkKGHXtyVlbhdvODOqwvca3t0dzGw08HVCVV2hhN9J+skawn2/Qqr9zkbR9RnnldjnrQrfK9fSIuvi1cBrNapy95uihmg/IsTfj9AIb2/gHGCBmf2e0O3pmYRi7a6Cn83dM7FkVazBWCV/O+WaW2yluy82s3bCd1tJCT6fas/RkXTdsplfYNus/1T4XlIlJez6Vknf5fjvfDdCf+NyvNOdNzGzTxEabQ2OvbyE0LL3OUJDnnuAW+kaPjRNxb7Lar+z+H3kUgmgaP/Y3uDuvzKzGwkXWocQugeNjFaPIDRMO8bMvuLuee/714HE+v1XaVVCx6n2HC14EZdHuceWhClhN574fc3Z7p5Uie49UfeSGwnJeg2hmvUGwHMb+eTpVlSLqv3OFhK607QQugsV0+2ajJ4QDeN6I3Bj1LVpZ0LinkjoItYCXGpmf3T33EFqGl3RUrOZjaDrf2+p0my5qj1H5xP+VrN9totJqlZAukkJu/E8G/t5d2B6oQ2jfqITCPcMHy7SKCvXJLoaup3r7t/Lt5GZtRIGdqh1VX1n7t5uZv8i3Gf8oJk157bejnlfMiFXJhqZbhvgKXdfDO+1LH8qelxkZhcTRobrR+j/X6+l7J4y3sxa3b1Q6Tk+8MgTBbbprmrP0YyZPU+4MPugmTUVGX0w1XO0kdXCvUNZW6F/5En5U+znE0psexHwA0JJK/cedLE4x8d+frzgVqG0lh1+spYvHpP4zu6IlhvR1WI8n6O7HV1CzGwSodX+A4TfTSHx3gkDC27VuAbS1cUqn+wgQRnWPrdKKfY3l8Q5+rtouTGhf34hqZ2jjU4Ju/a8d1XeE9XFUZ/obLeifc3s2/m2M7OvExoaQShZ/bVAnPlijDes2r/A8XcjjPyUlXa3roIS+s5+Rtcc3FeY2Zg8+x9L8X+UPe1uuu6hn2VmIwtsd0Ts50oGFWkEl+YbaS0arjd
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 525x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecXGXZ//HPJhsSkkAICc1EauCiY6MpPkQfEJSmIv5EWkBiF0UUUVAQBQR8sIHyKEoQVJog1YIK+IAKiHTwoneQkiLJpu/8/rjuyZ6dTN2d2Sn7fb9e+zozc865556dcp27d+VyOURERKS1jWh2BkRERKQyBWwREZE2oIAtIiLSBhSwRURE2oACtoiISBtQwBYREWkDCtgiIiJtQAFbRESkDShgi4iItAEFbBERkTaggC0iItIGFLBFRETagAK2iIhIG1DAFhERaQPdzc7AUDOzbd393iKPzwIOS3fXc/cXhzRjBUrlsxWY2Qzg/HT3QHe/uEn5yK8N+3t337PI/vHAicD7gCnAQuAFYC93f3Ko8lkLMzuJyDPAzu7+9wGk8SSwAXCzu08vcUyp78FNwK7AYncfU+tzDwdmNh24Md39srt/q87p38Qg34NS34165L2az6iZrQV0u/sLtaZfL5n/41PuvmGz8lFPwyZgm9kE4GTgU7Tw6zazdYFvA28DNmpydtqWmY0A/gDsnHl4DDAOeK4pmWoB+nxJI6Xv3ceBbwLvJy6QpU5aNnA1wFnAEc3ORBV+AbwTeKrZGWlz76IvWN8LfA14ERjr7kublqvm0+dLGukg4JxmZ6JTDaeAPbLZGahSu+Sz1W2Vuf0Fd7+haTmpgbufBJzUwKfQ52uQ3P0moKvZ+SjH3RuWvwqfUX2+GkidzqRTjcvcfqJpuRARqRMFbOlU2c/2sqblQkSkTjq+SrygR2P+sXwPynK9aDcEvgjsSfQw/g/wIDALuMDdc8XOS+eOAmYABwDbAmsCc4F7gMuB8919ScE5s+jrpQ6wQSafF7j7jILj1wFmAv8NWHqOZcCrwB3AxcCvy+WzXlJv7M8B+wPTgF6iVHs58H13/0+Zc1cHPkK0OW9DvI4uYDZwF3AFcGG17c6ZHtJZT5hZ/vZGg+0hbmZPAesD97n7tiWO+Qvw9nR3e3f/R5FjZgI/Tne3dPeHquyBuy5wFLAXsDGwmHjPv+PufyiRn1nU8PnKnLcNcAzR7r0Ofe/Lj939N8XOqSSTl3vc/Q1mtinx+dmD+K71EP0Ofp7y1lsinSlEJ9I9gM2AVYjP/73ANcDP3H3hQPJYIf/TKdHTOvP+zXP3NdJ79XlgH+IzsxR4CLgE+JG7L67i+Wp+DyqNoMgcNw44FvggsCEwH/gncAHwq2K/H8U+owX/k7wb89+7YlX0ZrYF8GniN2wq8b1/JqXzA3d/sFS+0/lrAB8jfmc3SeffA/zQ3S8pd267Ugm7uP2JL9UniR/E0cBaxBCB84HrzKzoxY6ZTSM+ND8Gdie+YKPS+bsB5wL3WCaC1MrMDiMC4jeA6cB6KY/jiB+F/YHLgKvMrNFtSpsDD6S8vAEYD6wObJce+6eZrV/sRDPbA3iS6BCYvzBalejN/ToiIP0U+D8zW62hr6I216Xt1unCqZ/0I7hT5qHpJdJ5T9o+6u4PVfPEZrY78DDwZeJicDwwifj//d7MTqkmnSqf6ygiMBwGvJ4IiOsC7wauNLMflzm92ufYH7ib+K5tQrz3axL/s58Rr2l0kfPeSVxAfxl4E/F/WIX4LuwBnA08ZGabDTaPA2VmuxDfjS8S35OxwATis/Ed4HYzW7NCGo18D9YF/kF0yNyc+N9PJi6efwH8qVHfOzP7KnAf8b4b8ds1Nt3+OHCfmZ1kZkXb4s3sDcT7/y3gzcAaxP/2v4CLzexCOjC+ddwLKuJc4I3EFXfeG9PfkSXOOZu4WjuH+CF8B3A8sCDtfzdx1dxPupr+P2ALYEk6fy9gB2A/4qp1OfHluNHM1suc/rWUpzvT/Rcy+fxa5jneSZTyVyWutE9O+dmJCNTnpOeGuKov9Rrr5UTiIuGa9PxvS8+ZbzfehHgP+kkXLFcDE4nx0d8F9iZex37AacTVPsCOwFeqzM97iP/Z/2Ye24u+/+XzVaZTzrVp20VchBXalbhIy5teeICZrUKULCD+DxWZ2RuJi4XViJLad4lS1y7ACcA84v/0+iKnV/X5yhgNfI/4zJ9KvM53Aaen5waYaWYfrCbvJaxPBAaAM4j/xy7AcUSNFul5P5c9KZWsLiMuDF8GvkD8z3ckSlu/TYduAPyy1I9+g61KvK+rAz8ifkfeSpQo85/BbYFyF1iNfg+OIn6L/gZ8iPjuHUZcZED87v2yyrT+QXyWsrWZM+n7jK2QSugnEx3U7iUC9FuJ9/6zwGNEbDqxIL38+VOAm4mLsxzxe5j//36W+GwfTPwWdZSOrxJPE6C8aGazM4/dXeG0xcA73f2vmcduMrM/Ex9uiA/2GQXnnUtctf4H2M3d7yjYf7WZXU58kdcjrrI/lPL0NPC0meWD1JIS+Tw5bZcBexSpar3CzH5H3wXKAfQPXo1wjLuflbn/VzO7grgCXhfY08zWdveXMsd8lSgtAHy4SNXe1WZ2KVHV2028ji9Xyki+Gs3MshPfPFjniVL+TFTbjiVqUX5RsD8fxJcSgXsXMxvp7sszx7ydCLxQZcAmLiRHEU0O+7j77zP7bk2frVuIUlI/NXy+sl4B3u7u/8o8doOZ3Q38Kt0/DLi0yvwXmkgEo10K8nKrmd0M/JW4KJpBBKm8/YhSOMD73P3WzL7bgcvTZ+cAovT1JvouVIbKKkRA2tvdf5d5/G9mdj1wP/H5+bCZHVWmyaeR70EX0XR2UKbZ4TYzuwz4PfEZ3dvM9nL360olAuDu84G7U8k379HCz5iZvYn47gNcCBzh7tk+Jrea2U+Ji+LpwNfM7NKC6vEziAshgI+6+3mZfX8zs0uIgtOm5fLcjoZDCXsgzi4I1gCk9sR/prubZ6vFU9XbvunuKUWCdT6Na4mSNsABZva6ajNlZmOJq+7ZwDXF2kUzzzE33Z1SbfoD9I+CYJ3Pwxz6rs676D/MCqKJ4CXgn6Xa4dKXPX+13+jXUTV3XwT8Kd0tVsLOP/bztJ1AQSmDvurw2USQLcvMtiZKEBBts78vPMbdnWiPrJevFwSKvEuIQAKw9SCf44fFLhzSdy0/E9vmBdXi62ZuP1Ii3VOJku0XgTmDzONAXVEQrAFw9yeA/DDD1Sk/gU0j34N/AzML+wikdv8ZxIUhwCcGmH4xxxBx51Xg4wXBOv/8C4g5M3LEb8dn8vtS7Uq+RuGPBcE6f/6/ibbtjqOAXdz1ZfblfyBGED/Eee+hb2xmpTG/+fRHULp9cyXu3uPu27v7JOADFQ7PlzBXav+rs9+W2Zf9Me3XVufue7j7OsD2FdIfqtdRq3y1+BQz2zL/oJmtTd8P6Hfpa0Z5R8H5707b6wtK3qW8J3O7XDXlxUQTQz0U/R6kjkiPpbtl22CrULSTXPJY5vb4zO1sALvCzFb6DLn73e7+SXf/trs/Psg8DlS1r61cO3Ej34NfppJxsfQfJ0qpAO8o1WenFqlpIv+5v9Xde0odmy5q8v06/juz61301QyX/B64+4104HDOjq8SH6Bny+xblLmd/f9lS1D/rKFP2cbVHpiVvypOHZw2ItqKNyc6e+1CXztmoy/KBvK/WiHzOsYQvVQ3JjqebEu0QeWrtVptoopsFeHuRPU/ROm6C3jR3e83s9uIdubpwJmwYgTCFun4aqvDN8/cLlmV7e4Lzew+ot/EYFXz3g72N+TJMvuywST7PNcRpe/8Z+R2M3ueuFD+I3BDKmU125Nl9pV6bYUa+R7cVmH/XUTfgLHE74sP8HnyNiSaQQD2zfRkryRbA1HV9yC5gw6bflcBu7jXqjwuG0RWajes0sTKh/RnZlOJqqV9KR3wexmaGpSB/K8ASD1kP0fUFhjF8ztUr6Mm7v6cmd1FXKjtTnQOgr7q8Bsz23fSvx07X1peAqxUZVpCvjd6b2p
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 525x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYXVX18PHvZJJMMpNAKkWDtMCigygKAiYoAlJ/EOGlBEho0kQRBRQUVECaIE0QEIJUKQFC6AJBAUFEemBRQ49ACiSZZJLMzPvH2oc5uXP7nFtnfZ5nnltOufveufess/dZe++Gzs5OnHPOOVfd+lS6AM4555zLzQO2c845VwM8YDvnnHM1wAO2c845VwM8YDvnnHM1wAO2c845VwM8YDvnnHM1wAO2c845VwM8YDvnnHM1wAO2c845VwM8YDvnnHM1wAO2c845VwM8YDvnnHM1wAO2c845VwPqMmCLyEYZnp8kIp3hb6VylytNedKW0zlXeqX8/cWOM/eVYN+nxva/eZH7mBa2X5RmWY/KLiJjY/s4McM6/UVknWL2n5SUz3G1SpYlX3UVsEVkeRG5APhvpcuSjYisJCLXAXdWuizO9Ta1cpyoVyKyLfACsHely1Jr+la6AAk7Dzio0oXIw/XAd4B3Kl0Q53qhWjlO1B0RWQV4sNLlqFX1FrAbK12APNVKOZ2rRyX//alqQ6lfoydUdWwJ9z0NyPT+/djXA3XVJO6cc87VKw/YzjnnXA2oiyZxETkVOCXluc5w99FMzT8hM/DnwA7Al4HPgenAJOAaVe1Mt13Yth8wAdgT2AgYBswFngduBa5W1cUp20wCDow9tWqsnNeo6oSU9VcEDgW+C0h4jaXALOBp4CbgtmzlTIKIrAscHcoxCmvueg94BLhIVadn2G4S9n6fV9VNRGQt4CfA9tjn3Yoln/wVe/8dWcpQ8OcdtlsNeDs83B34CLuGuSmwEPt/H6mqL8S22Qg4FsszWDm8zlPAhar6YMie3Z7Yd0tELgaOCrv4jqo+kuW97AX8LTzcRVWnZlo3ZbsZwKrABar6ExH5DnAksAUwApgNPAb8Kcfrfx34ITAGWAXoAD4B/oV9p6aU4jsV+51+pqpDQk+NnwK7AF8BlgCvYJ/NparalmVfTcABwA+ATYCh2P/pZeAO4HJVXZjh9ePP5TxOFCO23/tVdYfY82Ox3w3AV7Hv31HA/8N+403ADGAq8AdV/V8erzUS+Bn2Oa4GLAJeA27EPsd0v4tp2P+/TVUHZNl3A/a7OwzYAPuuvIb95i5W1QVptom/x1+o6pnh+dTv1CkiEv0/tglN6fH9DAN+BOwEjAaagY+BJ7Hf+72Zyh227wvsBRwCrAMMAd7EcojOz7ZtterNNexx2MHhSGAN7IcyEvsSXw3cHf7h3YjIaCxQXA58D1gR6Be23xa4DHheRKTYwonIgVig+R0wFgscTUALdnAbB9wC3CkiJbsuJCK/Al7EPicJr98c7h8OvBi6R2S9Zici44Dnwn7WBAZgQXcscBVwfzgIp9s2qc/7q9iB5Fvh9YcCGwNvxV5rIpY9PAH7nKPX2Rl4QETOybDvSbH7++Uox/7h9n9AsV1nzgIewr4HXwL6AythAexhEfldhu2OB/6NHcTWwj6HZuxEYG8s2D0gIi3FlKuA8m+FBdefYwfTZmB5YHPsYPrvcMBOt+1GdH0ftgNWoOv/NBb4I6DhxKSarQD8BzuB/CYWUAYC62Kfy6si8rUc+9gKUOD4sN1A7Hv9TexzeFxEliuyfH2Bm7Hf5+bAIGA54OvAmcAr4WQ+cSKyIxZcTwU2w95TE3aCuSdwj4jcKSKDM2w/DHgUC87bYMfPgdhJx++x38DwUpS9lOolYF+GHYzvij331fB3SIZtLsZqipdgNextgJOA6Izx+9jZ/zJCreCf2I9jcdh+J+AbwG7ANUA7dhB6RERWjm3+61CmZ8Ljj2Ll/HXsNb6DBYCBWK3pt6E8m2MH6EvCa4OdVWd6jz0SaiS/xRJFXsAC9Lewg8SPsR9UH6zWckr6vQAW+K4P98/GaupbASdirRpggfcnacrQk8871cnY//wXwJZYDe1UVZ0fXmscdnBqDOU6Bdgaq2n/Ibz+z7DvyjJU9T/AS+HhD7KcfIzEvm8A16vq0izlzeT/YQfo97CWgG9hn9+fgKgWc3JqH10R+TZ2oG3AAt5Euv6fh2C1PcK+fltEufI1EJiCHfwvxT6Pb2GtOB+GdTYCTk/dMLTS/B07YQSrie6JBajdsQADdmCfJiIbxDYv5jhRStcAG2InbdF72BtrPQML4H/NcTJ8TljvWuxY8G3st/lpWB4F12J8BzsBfB9rBdgC+81FLUKrAA+KyPJ57u+r2G838me6Pv//RE+KyHex78cQrEb9a+w3tzl2sjstrLorcHtqhUVE+gD3Yt8pgH9gNe3NgfHY57sRVnmoKXXRJK6qM4GZIjI79txzOTZrw5oun4g9N01EHsaaBsGac89O2e4yrCbzObCtqj6dsnyKiNyKfeFWxmoLe4cyvQu8KyLzw7qLM5QzOlguBbYPwSBucmiWjQ48e2Jf/sSIyKbAr8LDa4GDUoLL4yLyF+zHOxb4tYjcnKF5fCh2IrRVyvt9XEQeBZ7AgsgE4KyUbYv+vNPoAxyjqleEx1/870ON8o/h4exQ1ldi2z4iIndgXVIyNSFOAs7Faoo7A7elWWdvun5312TYTy4rYbXTrVV1Tuz5h0TkHbo+wwOx5sPIROxzngWMUdXPYsseF5FbsNaFNYGDReR4VW0vsozZ9MdOinZW1XgLw79E5B7sxKcZ2FdEjlHVJbF1/oTVpAGOU9XzUvZ9R9jHJKw16HoR2URVO4s8TpTSSsDpqnpy7Ll/i8jtWA1wY2A97OT0qSz72UtVb409/qeI3IV9RwYC40Xk6GyXnDJowE7ixqjqp7Hnp4SWpp9hl7ZOxloEslLV50Rkbuypmamfv4gMBK7Dvh8vAt9V1U9iqzwFXBdamI7HTv4PxY4TkYOxzwzs2HVg7BLPUyLyN+zEbvdcZa429VLDLsbFKcEaAFV9kq4BFdaJN4uLyNrYWR3YDy01eET7mErXwXhPEflSvoUSkWas6Wc2cFeaYB1/jejL/+V891+A47Dvxyzg8HQ1wXD96iCsVteAXW/K5E/pDo7h846uH68Tr5mW4PNeSOYgOQ67Pg923e2V1BVU9THS1PpirsNOsiBzs3jUHP5c/Lp5EY5PCdaRK+iqZW+csiwa3e/jlGANgKp+jh18z8NamzJe20zA5JRgHZXhbbr66S4HrB4tE5FNsNo/wN1pgnW0j2voukSxEV0tGtXmI6zJdxnhmvOk2FOp/8e421KCdbSPt7FaJsBg7JJHMSakBOvIL4DXw/2DRKR/kftPNZ6u7+khKcE67iTgjXD/xynLfhhu52D5KctcOw/HsoOAbr+BatebA/Y9WZZFX8Q+WG0psiNd/Qtzdf6P9t8Hq4HmRVVbVXUzVR2ONUdlMzPcpm1+LVZogvt+ePi4qrZmWjccGKLg9t0su30gy7I3Y/cHxe4n/Xn/N10CTrBLuF1CV/N9OpdnWhAShKKD5I4iMiS+PFxj3yw8nJTlNXJZCjycoQxzsAMV2IE67tVwu66IXCEi3Q7iqnqTqh6nqpekSyhKUL7fh/h72D52P1eL0p9i97+fca3KejjLJZFMn0GqfI5jYPkihXo2y0nyUuCG2L6TyheImsw/U9V/Z1opvH70HVonOkkPibqbhufvii53pdl+LnB7MkUun7poEi/S+1mWxcfXjX9GX43d/28BOWVr5LtiXNSEFZprV8eaKtfBzri3wq4hQfInXqthzdgAu6bJ7sxk9SzLZmRZFv9RlfLzfi/LNpuE21eyBSpV/VhE3ibze70aC/5N2KWKK2LLotr1EroOdsX4n6p2GwM6Zj52EE39fV+CNRcOxq7ZHiIiL2MnQ38HppU4SMfNyLIs0/chfj063tSfzrNYzkF/7DpxNZqRZVmmzyBVMcexfGVrhgf7jCMbErvE1APRb375Ao47YL/
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 525x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecXFX9//FXsukJkEaTDoEPvShVUaIiIgiICL8vPVQBEaWKgooFEFBUiqC0IL1LF5CmoCjSFJAPvYNAGqQnu/v743PGnUzbmd2ZnZmd9/Px2MedueXMmbL3c8+5pwzo7OxEREREGtvAemdAREREuqeALSIi0gQUsEVERJqAAraIiEgTUMAWERFpAgrYIiIiTUABW0REpAkoYIuIiDQBBWwREZEmoIAtIiLSBBSwRUREmoACtoiISBNQwBYREWkCCtgiIiJNYFC9M9AozGx9d/9XgfWTgX3T02Xd/d0+zViOYvmU6jGzlYFX0tPfuvshdcyOdMPMlgQGufs7NUj7AWArYJ67D6ty2hOB+9PT77r7z3qQxknAD9PTLdz9kaxtD9DLvJtZZv7lu9x92yL71PWclPM57ufuk+uVl1pr+YBtZksAPwa+QQN/Hma2DPBz4FPAKnXOjkjdmdlA4BDgp8BXgaoHbCnOzCYAZwPDgYn1zU1raNgA1YfOBPavdybKcAXwOeC1emdEpEHsCZxb70y0sLuAVYEH652RVqGADW31zkCZmiWfIn2l5v8T7j6x1q/RG+5+EnBSDdMfUGKzzkl9TI3OREREmoACtoiISBNo2SrxnNaVmXWZFpEPFqsKSy2IjwW2BZYDPgSeBSYDl7p7Z6Hj0rGDgUnArsD6wFhgOvAUcD1wibvPzzlmMl2t1AFWysrnpe4+KWf/pYGDgM8Dll5jITAFeBS4GrihVD57yswmAZekp8sCncCJwJeBjxGf1d+B89z99jLS+yKwH7AFsDQwB3gRuAM4290/6Ob4VYjPYiJxr20sMBd4H3gEmOzu91TyHlO6A4HfE/dQAW4HdnH3eWUeP5n4Tp9y9w3NbHXg28AXid/UbOBf6TUudfeOIuksRzSW/CKwBjCE+J7/BdwKXOzucyp9f2XkfyJdrXI3In7/3wD+H/GbGwq8CtwG/MLd/9tNetsS3/PmxPc8l2il/0fie367xOtn3G9mQLfVuBUp1dI66//wSHf/lZl9FTgQ+DgwBvhvyuev3P2JMl5rMHAosDuwFnF+fh24JaWR10OlVCvxAvt+hjh3bQGMTGnfAfzS3V8vckxeK/GszyRjq6z9fpSq6XPf1yQqOO8VyMengSOATxDnkneJ3/ippY7rb1TCrswuwH+Aw4gAMBRYkvjxXgLcbmYFL4JSi8qngN8BXyBOTIPT8VsD5wNPWeas0wNmti9xovsJEaSWTXkcCayY8n8dcLOZ1fr+kwFPAIcDKxPBZDywPXCbmZ2bAl/+gWYjzexG4oT9/1LehwKjgY2BHwAvmdkORV/c7LvA88B36Qr4g4HFiO9uD+BuM/tND97b+fQwWBfI5y7Ak8RvajVgGHFCmwhcDNxlZkMLHPc5IlB+lwgQo4jPeFkigJ8D/MfM1uhJviqwFPBPovHmZsR3NJwIOMcCz5nZJwodaGZjzex24E5gN7q+5yWADYHjgRfT77qRtZnZFcANwJeI39oQYAVgH+CfZnZQN2ksS3yOvyYuXJYg/m/XAr5DnBs26mkGzexI4AHi4nkc8Ttbg7hQfM7Mdu1p2t28bq/Oe2Y20MzOAf4MfI3oITMUWIk4tzwNbFqLvDeiVg7Y5xOlg1uz1m2U/g4scsw5wACiZeq2wGeBE4BZafuXgKNyD0pdsv5C/PPNT8dvT/zQdgIuBdqBNYmSwrJZh/8g5emx9PydrHz+IOs1PkeU8ocDU4mual8i/vl3Sa+ZuYrdocR7rJariZPQ/en1tyCC0ltp+2EUuDpOQfwWYOe06jYiaG9G/IOfAswAFgduMrPPF0hjv7TfIOBN4oS3TcrD/wMuBzKl1kNTSb4sZvYrotQOvQzWRIC6Ij0+nagV2ZIIVB+m9VsTJ9XsPIwmLrwWJ2oLjiEuGjcjSjF3pl1XAq40s6qVOAu4FFiPuLjaNeXh/4jaHIgA/vvcPJjZcOK73S6t+jdwMPEdfQH4BVGjMhyYnL7TjH8Sv//sGrKD6Pq/6GvHEBeA/yHew+bE/941aftA4GwzW7FEGkcQpc+/EBeDnwT2IoIdxIXR5T38LocSF1Rzif+LzxA9Ts4mat+GA1eZ2WZlpncg8TlnutE9Rtdnf35mp16e9zJOJ2pvIGptDiF+I18GriVqMlqmlN2yVeKpeuldM5uate7Jbg6bB3zO3f+ate4BM7sP+Ft6vi/xI8t2PrAMcRLe2t0fzdl+i5ldTwSqZYFfEic9UlXV62Y2M+07v0g+f5yWC4Evuvs/c7bfaGZ/pOsCZVfgtyXfbe8sA1wAfD2r+v2RVHJ+CJgAHGlmF7n781nHHUGcTAAOcffcPN5rZhcBD6fXuMTMVnP3BQDphJb5LKYDn3H3V7KOfwS41sz+TpywID6Lu7p7Q2Z2MvCt9LS3wRriZDML2DLnO33YzB4E/kpcIE4CTsvavhNRCgfY2d0fztr2D+B6M7uWeF+fIErgj1EbywAnu/uJ2Xkws5tSXjYA1iZO0n/P2uco4sQLUTLdPfMdJn8ys8uB+4jP6Tdmdre7v+XuM4EnzWzDrP1fLOP/t1aWAe4Fvuzuc7PW/9HMphFBZihR1X1ageMzzgK+nfX/8jczu464+Fmf+Bw3putiqBKzgM/mnHvuN7N7gJuJFt/nAJt0l5C7vwhgZpkCwMwin32Pz3sp/bXo+n97mvhfnpZ1/O3p//gX3eW5v2jlEnZPnJMTrAFI940eT0/XzK4WT1WSO6anJxf40WbSuI244gTY1cw+Vm6mzGwEcUKYCtxaIFhnv8b09HS5ctPvoReAw3Pvlaf7mZmRwwYDB2S2pdJ1pobizgLBOpPGy0QpFKLa8atZm1ciPocZxL2xVyjs8qzH3X4WZvY94HvpaTWCdcZvCp3s0m8qM3rUmjnV4stkPX6hSLqnAOcR1dLTiuxTDe9QoFtRuic5OWvVBpkH6XZM5nv+LzApJ1hn0ngSODI9HUZczDWqI3KCdUb2b3iDAtsz3gaOLfD/Mh+4MGvVuj3M30mFzj3ufitd552NzWzjHqa/iCqd9w6gq1B5SE6wzhx/JlFd3hIUsCtzR4ltmRPnQOL+U8Z2RCkJoLsGTpn0B1LByEHuPtvdN3H3ccR9nlIyDVfy7otW2YXFGpK4+71EgxeI6vmM9YkADN1/VndmPf5ftbi7v+ruG7j7aKKqspgZRJUrdPNZmNm3gJPT0zuoXrAGuLvEtpeyHo/Kevxc1uMbzSyvVOTuT7r7Ye7+83SBUyv3ufvCItuy879Y1uON6aohuCKVmIu5kviuIKqZG9Fb7v5skW3FPoNc95ZoeJV9UTa2yD6ldAAXldh+adbjbXqQfiHVOO9lbpe8llOLlOviinPXpFq2SryH3iyxLfvqOvtzzb6n9ngFbcpWLXfHbJkWxWY2kmigsRpxj2gD4v5oJiDW+mKt1D8YRI3EisAaZjYw5Tv7szrTzM4s87UKflZZn8XiaZ/ViPtpGxGfxfC0a6nPYlvivmTGzCoGa4j7csVkB7Ls39TtROl7fWKo2n+Y2dvEifFPwD3dtcyuoldLbCuW/+xSYtFWzQDuvsDMHiNuk6yT9VtpJK+W2FbsM8jVk3NLuZ4vVDrNkt2Cfb0epF9Ir857qbYt02DyqeK7A3HrpSUoYFfmozL3y24YMr6HrzWm0gPMbHngaKIqqljA76Bvalbe7mb7+2nZRnxG71HFzyrd/zqKKJUVqvIut1vbSmk5jyiJ72ZmV7r7zT3JaAGlSpfZefzfb8rdF5rZl4iq0kyp82NE+4l9gU4z+wfRLaxoTUeVVJx/opVyxntlvEbm4iNTe1XLKv6eKPoZuHtnVrAq1WCsJ+eWcpX8jN19hpktJOJBT0rwhfT2f3kcXSOpTenmmL6
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 525x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYXFW19/Fvd2fszpwwSZgDi0FAr4pwRRMVERlVwFckSECCIIgiKlxABmUUB1SiXEEJAhoGg4wOoIAXBERMmKKLOcwCSQgk6SQ91PvH3oc+qdTYXd1V1fX7PE8/p6vOULuqT9c6e5+9127KZDKIiIhIbWuudgFERESkOAVsERGROqCALSIiUgcUsEVEROqAAraIiEgdUMAWERGpAwrYIiIidUABW0REpA4oYIuIiNQBBWwREZE6oIAtIiJSBxSwRURE6oACtoiISB1QwBYREakDQ6pdgHpgZju4+8M5np8NHBofbuDurwxowbLkK2ctMbMtgTOAacAkYAmwwN0/UsViSR3or/PbzKYBd8SH/+Pu51X4+HcCU4FV7j6il8dI5kH+o7vvkXp+Gn0su5mdAZweH+7i7vfl2GYdYIi7v1zu8Ssl9TkudPdNq1WOalLALsDMxgLfBo6hhj8rM1sf+B7wAWCzKhcnLzPbELgPmJB6ej3gX9UpkdQDM5sC/AQYSbjQkwFiZs3AUcBZwKeBqgVsqeEgVCN+ABxe7UKU4CrgI8DCahekiC/TE6yvA34GrARWVK1EUg/+CGwO3FXtgjSgg4FZ1S6EBArYhbVUuwAlqpdybheXHcCh7q5ALaXo1/Pb3e8EmvrzNfrK3futfO5+BuE2VS718t3SENTpTAZSW1y+qmAtIlIeBWwZSMn51lnVUoiI1CE1ieeQ1WsyeS7ppXmXu0/Ls9+mwDeAPYANgTeBBcBs4HJ3z+TaL+47FJgBHAjsQLjX+wbwEOF+72Xuvjprn9n09FIH2CRVzsvdfUbW9usBM4GPAhZfoxNYBDwAzAF+W6ic5YqfyTNZT6fL+XaPz9RzxwO3ABcBuxKa0J8ETnL321PHLvszy1G+jxI6Fb4HWBd4EbgBOJfw2SyJmx7m7rN7+b4/BdwYy/p5wq2B0fG1/gh8392fKnCsTwPTgZ1iGVcALwF3Ape4+7xSy1WOVK/cG9z9k2b2HuA4Qsev9Qjn9wPApe5+fZFjrQscDewJbAW0Aq8Bfyf0wZibfd6lXj8xNXWOnBmbcvusUE/r1HfBUncfFzt4fg3YB9iYcG7+C7ga+Jm7ryrh9bYHTiD0O1kPWAzMA37u7r/Ls0/OXuI5tmsDvgl8BtgUWAb8E7gc+E2u/+1cvcSzPpPEHWYG5G6iN7NtgGMJ3y+TCbcZno/H+Ym7L8hX7rj/OOCLhP/nLeL+DwE/dferC+3bKFTDrpz9Cf+4XyJ0kBkOrEP4wrkMuMXMcl4gxV6wDwE/Bz5G+CceGvffDbgYeMiS/5ZeMLNDCQHkO4Qv3A1iGdsIXzz7A9cCN5hZte9bbQTcA+xO+GIfC/wXIWgDff/MzGyImf0cuJ0QUDcGRhC+KL4GzCdc1FRCa3ydXxDOh0mEz35zQhB7zMz2zFHGoWZ2PfDbWMYN43scC2wT9/2nmZ1boXLmZWZfJvTw/zzhs0rO7z2BuWb2KzPLeZ/VzD4DPE64T7oTMA4YRng/nyJcXN0Zhw7VLDPbFXiMcFG+NT3n5s7AD4G/m9mE/EcAMzuOEJwPJZznw4D1gU8A18dzsrfWB/4BnBbLN4Jwru1OuCj6s5mN7sPx8zKzbwGPEL7/jPC90hp/Pwp4xMzOKHCOvItQuTmPcPE8jvDZfgiYY2ZXoHilDyCPi4F3Azelnnt3/Dkizz4XEa4IZxFq2B8GTgGWx/WfIASCNcQr9v8jfAGvjvvvRfhi249wZdxF+Ae8w8w2SO1+WizTg/Hxy6lynpZ6jY8QavkjCVfz347l2ZkQqGfF14ZQc8j3HnvjpVSZcpVzrUAFfJXwRfNd4IOEK+5z3P3Z+H768pklvkdobYDQu/4oYBfC0JU/EYLJtb17y2v5PuF8uA84BHg/8Engtrh+ODDbzEZl7XdS3A7gd7Fs7yPUYE4mtIwAnGRm+1SorLnsDPyIUKP+FuFLdCpwDj3nzSGEWt0aYuvAbwhfvh3ATwn/HzsTWhz+Hjf9EOFvlf4MjiCcI8lQogfpOW8ursg7K91IQivJGMLohj2A/ybUKF+K2+wAnF3gGMMJn+Nywme3GyGYnk/4bABmxguc3jiOcM7fC3yW8BkfSrjIgHAO/rrEY/2D8DmnWxpn0vP5vy3W0L9N6KD2MOF/6b8JrWNfAZ4ixJrTs46X7L8hYQTABkCG8F2VfL5fIfz9pxOGrTY0NYnnEBOgvGJmi1PPzS+y2yrgI+7+t9Rzd5rZXwj/QBD+eb6btd/FhCvjN4Hd3P2BrPU3mtl1hC+LDQhX8p+NZXoOeM7MlsVtV+cp57fjshP4uLv/I2v9XDP7Az0XKAcC/1vw3ZYoNknPByihnIlmQoA+JfXcdanfe/2ZxXLsQPiihXBV/0F3X5za/3ozu5DwZVEJ6wNXADPcvTtVjhuBmwkXLesQLjrSTX/JkMLb3f1TWcf8i5ndQghiQ4AjWfMCs5LWI3xp7hzPucRfzeyhVJlnpH7HzMYQWkCaCc34H3f3u1P73x9rTj8HvkC4VXAOIfDg7k/G4yQXBctK+D/sL8MIAWlvd/9D6vl7zexW4FFCjfJzZnacu3fkOgjwOuF8+3fqudvMbD7hwgbC98Q1vShjE+G21sGp8+x+M7uWcOvlg8DeZraXu99S6EDuvgyYH2u+iSezP38z+y/CRRyEc/xwd0/3UbnHzH5BOM+nAaeZ2TVZzePfJVwIARzp7pem1t1rZlcTLtC3LFTmRqAaduVclBWsAYhZg/4ZH26dbhY3s62AfePDs3MEnuQYNxNqjQAHmtk7Si2UmbUSruwXAzflCNbp13gjPtyw1OP3o5/lerJCn9lh9AxXOTorWCe+Tk/NpK9WAl9NB+tYxgxwSeqpHbP2Wz8un8h10Jj16yxCkLuqMkXN66ysYJ24lp77/NnlPxyYGH8/PStYAxA/ky8Rmswh1DALNitX0dysYA2Auz9DT2vJGAonLzozK1gnriYEc4B39rJ8/wFm5jjP2gkXU8nzR/fy+LmcQIgji4CjsoJ18vrLCedChnBR8eVkXbxvnbQo3J4VrJP9/0O4t93wFLAr59YC65Iv3GZC02BiT3rGf95GYcnxmykj25O7r3D397n7ROCAIpsnqVWHl3r8fvKiu7+QZ10lPrO94/J5d/9rrh3jF88ludb1woN5LgogNBcmsu8vJl/sXzCz42PmvTW4+5nufoq7z6lEQQv4U64n40VH0rkuu/wfj8suYK0v4tQxVqfWj6B2s5nl/AyiQn/HtJzfE/FzTI7R2wuWX8eaca7jP02opQJ8OF9/mnLE+9GfiA/vKTRUM17UJBkNP5patTs9Lb15m+vd/Q7W7rzacNQkXjn5AgyEGlYi/Zmn7wX9s4w+ZZuXumFacuUde5JuRuhgtTWhZrQroRMMVP9C7vkC6/r0mcUOdcnnV6x5da0Wk156tsC69Bds9v/juYSa1zBC1r3vmtm9hA5stwF/d/euCpWxmGcLrEveQ3b5k5qiu/sbFJbOX709MLf0og2YZwusK/R3TCvle6K338v3F1k/j9D3oJXwv++9fJ3EpsD4+Pu+qZ7sxaRbILZO/V7s//EBajj18kBQwK6ct0rcLt1LclIvX2t88U3WZGaTCc1X+5I/4HdT/WAN4d50Pn39zCbR8x5fz7Nt4qUi60uVs9YTpb/k1uhB6+7XxE5Y3yOUfwjhPuQHgTOBxWb2O+BCd3+kQmXNZVWups6U5D1k9wBOmsNfLeE1/pP6vVabxHv1d0xZXWyYYZH9iyn2OafP90p8xr39XxxiZqPd/S1C/4jEonw7RP8psn7QU8CunN6MXU5//jvR01O0mNfKeREz24PQaast9fRbhCaqxwhXrrcD19OTPrSaCn2Wff3M0vf
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 525x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xe8HFX9//HXzU1PSKdJh8CHJtgQEPwSlF7ViL8v0kJVEVG+IKIgYgFEFJWiKChBijRBqgrSFBRFpEc/FEnoAkko6bn37u+PcyY72Wzve+/7+Xjcx+zszJw5u3d3P3POnNKVyWQQERGR9jao1RkQERGR0hSwRUREOoACtoiISAdQwBYREekACtgiIiIdQAFbRESkAyhgi4iIdAAFbBERkQ6ggC0iItIBFLBFREQ6gAK2iIhIB1DAFhER6QAK2CIiIh1AAVtERKQDDG7lyc1sC3d/LM/z04FD4urq7v5qUzOWo1A+24GZTQMuiav7u/tVLcpHMk/rH9x9tzzbRwPfAD4OrAEsBF4B9nT3mc3KZyXM7DRCngG2dfcHqkhjJrAOcK+7TymwT6HvwT3ADsBidx9e6bml+cxsZWCwu7/SgLTvoUGfBzObAtwdV7/q7t+tIo3TKPB9qUfeS/3GxH1a+lud8z4e6u7T65l+SwK2mY0FvgV8vlV5KIeZrQZ8H9gOWK/F2elYZjYIuB3YNvX0cGAU8FJLMtUG9PnqP+Jn/LPAd4BPEC5GpUnMbDJwHjACmNLa3DROq4LlOcBhLTp3Ja4APgLManVGOtwuZIP1Y8CpwKvASHdf2rJctZ4+X/3HAcAFrc7EAPYHYH3g3lZnpJFaFbC7W3TeSnVKPtvdZqnHJ7j7HS3LSQXc/TTgtAaeQp+v/qPh/8tCt1TaRaO/L+7eVWTzgPguqdGZNMOo1OPnWpYLEZEOpoAtzZD+nPW0LBciIh2sqVXiOa0Ik+eSln/FWtGuC3wZ2I3QwvhtYAYwHbjU3TP5jovHDgGmAfsBWwATgDeBR4HrgEvcfUnOMdPJtlIHWCeVz0vdfVrO/qsCRwIfBSyeoweYDTwIXAX8plg+6yW2xv4SMBWYDPQRSrXXAee6+9tFjh0DHE645/xuwuvoAuYADwPXA5eVe9851UI67TkzSx6vV2sLcTObBawNPO7uWxTY50/Ah+PqVu7+jzz7HAn8PK5u6u7/KqeVeGw4diywJ+Ee2mLC//yH7n57gfxMp4LPV+q4dwPHE+57r0r2//Jzd/9tvmNKSeXlUXd/j5ltSPj87Er4ri0gtDv4VcxbX4F01iA0It0V2AgYSvj8PwbcDPzS3RdWk8cS+Z9CtlXuewm/C58H/h/huzgMmAncAvzA3f9bIr3dgEOBbQjv8SLC9+f3wHnu/nKR8yfuTj7jJapxK1KspXXq83Ocu//IzD4BHAG8DxgP/Dfm80fu/nAZ5xoCfA7YH9iEECueB26KaazQc6eSXhVm9j+E3/RtCTVwzwO3Eb43zxc4ZoVW4qn3JLFDar9vxmr63Nc1jQriQZ58fJjwnX8/8C5Ce5ybgTOLHVcPnVDCngr8Czia8IM4DFiZ8E+6BLjVzPJeeMSWg48Sfoh3JnwBh8TjdwIuBB61VASplJkdQvhCf5vQOnH1mMdRhEAyFbgWuNHMGn2fZWPgyZiX9wCjgTHAlvG5f5rZ2vkONLNdCT9s55C9MBpBaM39LkJA+gXwZzNbqaGvojK3xuXm8cJpOWY2ivDjm5hSIJ094vIZd/9XOSc2s52Bp4CvEr78o4GJhPfvD2Z2ejnplHmuYwnB+RBgLUJAXA3YHbjBzH5e5PByzzEVeITwXduA8L+fQHjPfkl4TcPyHPcRQqD8KiFAjI75W50QwM8H/mVmG9WaxxJWAf5B+AxvDYwjfIY3IQSHf5vZ+/MdaGYTzOxW4HfApwjf3WHAWMJ36STgmfh9b2fdZnYF8BvCZ2NVwv9iLeBg4B/x4rSY1Qnv448J352xhN+zTYCvEH4z31ttBs3sOOAeYC/C92U44SLvS4T/0X7Vpl3ivDXFAzMbZGbnA38CPkno2TGMUCg5BngC+GAj8p5odsC+kHAVfHPquffGvyMKHHM+oZR3AeGHcEfgZGB+3L478H+5B8WSz58JH7Il8fg9CW/ovsClQC8hyN1tZqunDj815umhuP5KKp+nps7xEUIpfwShtPOtmJ9tCIH6gnhugL2LvMZ6+Qbhh+bmeP7t4jmT+8YbEP4Hy4kf0JsIV+ILgR8RvkzbEN6rM4F5cfetga+VmZ89CO/Zz1LP7Un2vXw530EVuiUuuwhfulw7EL6UiSm5O5jZUELtCIT3oaT4g3UrsBKwlPCefQTYHjgFeIvwPq2V5/CyPl8pwwg/nvOBMwivcxfgrHhugCPN7FPl5L2AtQmt1gG+R3g/ticEqqRWZifCj+oyZjaOcEE6BngdOIHwnm9NKMX8Lu66DnClmdWtxJnHpYSaod/Hc28N/C+hxgNCAP9Vbh7MbAThc5RctD0OHEUo/e0M/IDwvRgBTDezQ1OH/4Pwf0vXHB5J9v/ZbCcAnyYUco4ifId3B66O2wcB5xW6cI+OJVyA/pnQ+v1DwIGEYAfhwujyKv+XwwgXVIsIn+X/IXxvziPUSo4Afm1mW5eZ3hGE9znpRvcQ2fd+2W9djfEg8T1C7Q2Ews1nCZ+RvYBrCL+fDS1lN7VKPFajvGpmc1LPPVLisMXAR9z9L6nn7jGzu4C/xvVDCG9m2oWEEsjbwE7u/mDO9pvM7DrCD/TqwA8JX25ilczzZpYEqSUF8vmtuOwBds1T1Xq9mf2e7AXKfiwfvBrheHc/J7X+FzO7nlACWg3YzcxWcffXUvt8nXAVDvDpPNWrN5nZNYQfvsGE1/HVUhlx9xkAZpauPptR54FS7iJU244k/LhekbM9CeJLCYF7ezPrdvfe1D4fJgReKDNgEy4khxBuOezt7n9Ibbs/frbuAyblHljB5yvtDeDD7v7v1HN3mNkjwK/j+iGEH45qjCdcEGyfk5f7zexe4C+Ei6JphAuFxL6EUjjAx939/tS2vwPXxc/OfoQqxPeRvVCpt9WA0939lHQezOyGmJctgU0JP9J/S+3zf2S7Hf6GMABR+rbPH83scsJnbTzwEzO73d1fcvd5wCNm9p7U/s+U8f9slNWAO4G93H1R6vnfm9lcQpAZRqjqPivP8YlzgS+lbuP91cyuJfwGbEF4Hz9A9mKoEvOBHXN+k+82szuAGwktvs8HtiqVkLs/A2BmScFoXoH3vup4ENPfBPhiXH0C+B93n5s6/lYz+xvh4q5hOqFK/PycYA1AvD/yz7i6cbpaPFa97RNXT8/zz0nSuIVwZQWwn5m9q9xMmdlIwgd/DnBzvvuiqXO8GVfXKDf9Kv0jJ1gneZgLXBlXu1i+mxWEKqHXgH8WuhcavwRPxtVGv46yxR+lO+NqvhJ28tyv4nIsK5Z8kpLVHEKQLcrMNieUOiDcm/1D7j7u7sCJpdKqwDdzgnXiakIwB9i8xnP8JN+PXfyuJaNHbZxTLb5a6vHTBdI9A/gpoVp6boF96uEV8nQrivckp6ee2jJ5EG9TJTV0/wWm5WujEd+X4+LqcEIptF0dmxOsE+nCwpZ5tideBr6c2+Ymvo8Xp56q9vN2Wr7fZHe/mezv8QfM7ANVpr+cOsWDw8kWcD+bE6yT488hVJc3TCcE7NuKbEt+IAYRfogTexACE0CpPr9J+oOoYIQcd1/g7lu5+0TC/YxikhLmCvf/6ux3Rbalf0wnpDe4+67uviqlr2ib9ToqlVSLr2FmmyZPmtkqZH9UfkT2NsqOOcfvHpe35ZS8C9kj9fjKgnuFxob1amiV93sQf1SfjasT8u1TgbyN5KJnU49Hpx6nLyKuN7MVPkPu/oi7H+3u33f3/9SYx2LucvdCvRDS+U+3wfgA2fftilhiLuRKwq0OyH5m2s1LSc1WHoXeg1x3Fml4VfB3pEx9hLYwhVyaerxLFennU494kHznZ+XUIuX6ZcW5q0DbDgua8mKRbemryPRrSZeg/llBm7L1y90xLWk
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 525x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"\n",
|
|
|
|
|
"density = True\n",
|
|
|
|
|
"cumulative = True\n",
|
|
|
|
|
"histtype = 'step'\n",
|
|
|
|
|
"lw = 2\n",
|
|
|
|
|
"bins = {\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" 'theta_energy': np.arange(0, 2.1, .03),\n",
|
|
|
|
|
" 'theta_peak': np.arange(0, 1, .03),\n",
|
|
|
|
|
" 'theta_freq': np.arange(4, 12, .1),\n",
|
|
|
|
|
" 'theta_half_width': np.arange(0, 5, .1)\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"}\n",
|
|
|
|
|
"xlabel = {\n",
|
|
|
|
|
" 'theta_energy': 'Theta coherence energy',\n",
|
|
|
|
|
" 'theta_peak': 'Theta peak coherence',\n",
|
|
|
|
|
" 'theta_freq': '(Hz)',\n",
|
|
|
|
|
" 'theta_half_width': '(Hz)',\n",
|
|
|
|
|
"}\n",
|
|
|
|
|
"\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"for cell_type in ['gridcell', 'ns_inhibited', 'ns_not_inhibited']:\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" for key in bins:\n",
|
|
|
|
|
" fig = plt.figure(figsize=(3.5,2.2))\n",
|
|
|
|
|
" plt.suptitle(key + ' ' + cell_type)\n",
|
|
|
|
|
" legend_lines = []\n",
|
|
|
|
|
" for color, query, label in zip(colors, queries, labels):\n",
|
|
|
|
|
" data.query(query + ' and ' + cell_type)[key].hist(\n",
|
|
|
|
|
" bins=bins[key], density=density, cumulative=cumulative, lw=lw, \n",
|
|
|
|
|
" histtype=histtype, color=color)\n",
|
|
|
|
|
" legend_lines.append(matplotlib.lines.Line2D([0], [0], color=color, lw=lw, label=label))\n",
|
|
|
|
|
" plt.xlabel(xlabel[key])\n",
|
|
|
|
|
" plt.legend(\n",
|
|
|
|
|
" handles=legend_lines,\n",
|
|
|
|
|
" bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)\n",
|
|
|
|
|
" plt.tight_layout()\n",
|
|
|
|
|
" plt.grid(False)\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" plt.xlim(-0.05, bins[key].max() - bins[key].max()*0.02)\n",
|
|
|
|
|
" despine()\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" figname = f'spike-lfp-coherence-histogram-{key}-{cell_type}'.replace(' ', '-')\n",
|
|
|
|
|
" fig.savefig(\n",
|
|
|
|
|
" output_path / 'figures' / f'{figname}.png', \n",
|
|
|
|
|
" bbox_inches='tight', transparent=True)\n",
|
|
|
|
|
" fig.savefig(\n",
|
|
|
|
|
" output_path / 'figures' / f'{figname}.svg', \n",
|
|
|
|
|
" bbox_inches='tight', transparent=True)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 43,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"data['stim_strength'] = data.stim_p_max / data.theta_peak"
|
2019-10-17 17:44:01 +00:00
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 47,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {
|
|
|
|
|
"scrolled": false
|
|
|
|
|
},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYXFW19/FvpxMgJIFMzAkJJLAYZJJZQHBCFBlUUGYCFxAVUe8FHFABZRC4KqAovoiiQJiUyxRABhEIowMIBFyAIYwiEAgQSEjS3e8fax+qunKquqq7uqu76/d5njynq84+++waclbt8bR0dHQgIiLSjIY0ugAiIiKNoiAoIiJNS0FQRESaloKgiIg0LQVBERFpWgqCIiLStBQERUSkaSkIiohI01IQFBGRpqUgKCIiTUtBUEREmpaCoIiINC0FQRERaVoKgiIi0rSGNroA0nNmtrG7P5zz/IXAwenhau7+Up8WTKQHzGwOMAlwd1+vG8fvBNyeHh7i7hfWq2w9Ve61mdlk4On08JfufmSfF67JKAgOYGa2IvB94MvosxQRqZkunAPbj4FDG10IEZGBSkFwYGuttNPdpwHT+qQkInXm7pMbXQYZ/DQwRkREmpaCoIiINC01h/YDZmbAl4CPAGsRP05eBf4GXAVMd/clRelPBE4oyaMj/XmHu++UnruQMqNDi0an/cjdjzGzXYGjgM2BkcCzwB+AM9z9jXTMpsD/AB8CVkpl/BPwA3d/osdvRAVmNhH4CvBxYDKwDPBv4C7gPHe/t8xxJxLv1RvuPtrMVgX+G9gNWBNYDDwOXA78wt3frVCGFuBzwH7AFsB44K10/DWpHPPLHJt9Pl8HZgA/A7ZP538K+Ka731qUfjJwTHq9awJvAw+lc1xhZucBXwCeyZoNzewY4MyUxaHu/psKr2Ur4P708Cvu/rNyacscvxLxPu4OrA0sAh4DLgTOB44DTgNw95buvBfVjA41sx2Ao4nv7erAS8B12bmrfC0fBv6L+Eyz74QTn+lPs+9/mWO3AY4AdkznXwzMAW4GznH3Z6sthzSGgmCDmdl+wG+Ii3qxCenfHsDXzWwXd/9PL5Uhu6B2ehr4NrCbmW0L7Av8HBhWlGZ14ABgDzPbwd3/0Uvl+y/iQrlcya610r+DzOz/AUe5++IK+WxPXNjGluzaJv07xMw+5O6v5Ry7MvGDZLuSXeOIC/j2xOe0V7mAnEwE7iZ+RGTeT1z8s3PtQvwAWb4ozTLEj48PmdmniaBY6mLi4j8U2J/4XpVzYNouAqZXSLcUM9scuLHkNSxH4X3cB5hZRVZdvhcVyjAEOIcYGV1sEvFjbn/gh13kMYp4jz5bsms5IiBuAXzRzD5Z+t02s6Hp/F/MOXaj9O8oMzva3f9fV69HGkfNoQ1kZlOBXxMXuKeJ/1DbA9sSwSW7mG5KBKDMecBmxC/ezGbp32E1FuNgIgA6cDhxkT+Q+DUL8Z/598Avgf8Qv7q3BT4J/DGlGQWcXeN5q2Jm04BfEReXp4ma6A7AB1J5H0pJjwAqXWyGA9cCKwC/AHZJeRwFvJjSbAycklOGEcR8s+2ADiLYfBrYCvgE8FNgIfGj4GYz27BCOb5G1CDPSK9jb+BUd5+TzrVNKufyRID6ERH8diBqtG8RQebA0oxTTf+m9PBDZrZ6XgHMbFjKA+D6vKBfTqqh3k4ErnbgAqK2+gGiZvgfYCeiJtiViu9FF86gEADnAEcS38tPAVcAY6hQG0y1+mspBMCHif872xKtBNkPg9WBGWY2piSLX1EIgDOJ/0fbEK/920SNdFngl2Z2MNJvqSbYWPsT/1HagA+5+zNF++4zsyuAPxMXmE+b2Xh3fzVd7F4ys/cuXu7+EN0znrgA7ODub6bn7jGzB4FH0+NdiAvN1u7+cnagmf0RuA/YEvigmY1293ndLMdS0kX83PTwNmAPdy+uAd2bmnx/R9RUp5nZ5e5+E0tbhhhN+6mS/fea2Q3Ea10e2C/9ei+uUZ4CbAAsAT7t7teX5H2Tmf0OuINoSr6AuCDmGUJc6I8veu736fUOIWq8w4gA+DF3v7Mo3cz0nbiTzrWnYhcSgWAI8Z78KCfNLsTnDvDbMvmU8xPiRw/A/u5+WdG+e83s0lS+darIq+x7UYmZrQ98NT18FPigu79elGSGmd1P/mvP/BcRsAD+D/h8yWd+vZk9AZwIrEH8WPpBOv+eFLoZTnP3b5fkfYeZ/Yr4v7sBcK6ZXe/uc7t6bdL3VBNsrFXTdj6F2sh70n/KE4hml6/Te5/Xd4oCYHbuWURfV+ak4gCY0rRTqI22AFPqXK4vE4FpCXBQSQDMyrCE+EWe9dt8tTRNkavyAqS7Pw3ckh6uQDSxAmBmo4kaJ8D5OQEwy+OvRO0EYGsz27pCOX5R5vntib4tiL7aO0sTuPs/iRpXOdcB2cV2/zJpslrkK0SzZlXMbE1gz/Tw0pIAmJXvJWqbu1ruvajkvyj8gD+yJABm5fgxEYzLOSJt3yRWk8lrRj8FyL7zOxc9f2zazgKOJ4e7v0L08wOMoPYWGukjCoKN9c+0XRG4Mv3C7cTdb3X3r7r72aVBqE7aKSwtVeqFor9vK5OmuEwj61Kigl3T9jF3X+pHQiYNXLg7Pfxgau7Lc3OFc/2r6O9RRX/vRKFv7hYqu6Ho74+USfOCuz9fZt9uRX9X6s+7HMitcbt7cR/fZqXfqbTKUHaeSyr1oXa3fO4+kxgk05VK70Uln0zbZ9z97grpfp33ZBoctUV6eG25gS/pB9YHgVXdfYd07BiiyRTgNnfvyDs2mUk0X0P574M0mJpDG+t3xK/KNYgBMHuY2WziYnsrcGs9mxfLeLXciEageKTkv6tI01ImTc3SwION0sONi0YUdmV5YBUg7+I6p8Jxxe9B8f+LzYr+vioG8lZl7TLPP1fhmE3T9g13f7JcIndfnJqrP1QmyW+IkbQQfcvFtZW9KQwwqrUpdNOiv//aRdr7iabASiq9F7lSk/G66WFXA7EeKPP8OhS+q3+vlIG7e8lTmxYde7SZHd1FGTLlvg/SYKoJNlBqxvko0a+WWZsYqHIl8KqZ3WZm+6eO/N7wVtdJ3vtV3JfG0P3vZ+kghky5YA8x4CVT/F6PL03YwzK8WeZ5iOANhebMSsq2Crj7g0Q/L0QfZ/HryZpCH+5GP3JWvra8Jshqy1ek0ntRzjgKKyV19T6VG029StHftfbT1fv7IA2mmmCDpT6ebVMf0meJpp5sdGEr8OH07xAz283dF9S5CH0d3KpV/N28CfhWDcd2OcS+m+XYE3imXMIS5eaWVarRZtNkqgn+XdWMf0MMYplMjGqdaWaTiFGYUHstsFP5zKyli6bAamru1dbuyx3T1Q/Dck29PbnuFR97MjGVpRptPTin9CIFwX7C3e8nmpCOS30WHyZG+e1JDO//CDF5+gcNK2TfKh6239qD0a/1LMcrvVyOV4n5meOrCDJd1UguIQbqDCMm+M9M2xbih88l3SwfKY9xRY+7U77umksEt2GUHyGbKZ0Pmin+TMfVeP7iYxc08HspdaIg2EBmNpy46C1OozGB90bYTQemm9lmRP/LECIoNkUQdPd3zewpYCqwuZkNrdQka2ZHEjXnOcAf69h8+2jR39sA91Qow7pEn9sc4IFK/XplPETU2kYS/Va5q/CkfrFN8/Zl3P0VM5tB/IjanZjfuUfafVM3F154iMKI0/dTeaDR5hX2dZu7d5jZY8AmxPei0o+Fcu9R8aCdTSqdz8xOJ1poZhM/Ikq/D5WOXYZowXieGNxVaREFaRD1CTZI+g8yF3iQCsPEU/9ONiildMWU9t4pXb+RTcYfS2Fy91LSogPnEnPsflrn/svbKDQZH1Zh5CnAd4gmsospjCCsRfHiB+WmN0CMmq2mpnVh2k4ys52LytSdplCA4ukhZctnZhvReUBRvWVNkKtSGEGc56C8J9OI1GzAy+5pMYSlpL7U3YmpP+u5+zx3f4GYGgGwi5mtlXdscgAxz/BXFKbZSD+jINggaSh79kt6ezMrXboJADPbkRg9CvC
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 480x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYXGWZ9/FvdyeQdBIIWSCYQIAEbggTFAUxghIdwAUIyOKIgCQK4oIwzrBpmBdQAwijA2o0DihBGBQZuSDDokISkB0X0LB4h4AJEMSQhAANgaS76/3jeYouOrV196k61X1+n+vq61TVWeru6upzn2c9TblcDhERkSxqTjsAERGRtCgJiohIZikJiohIZikJiohIZikJiohIZikJiohIZikJiohIZikJiohIZikJiohIZikJiohIZikJiohIZikJiohIZikJiohIZikJiohIZg1KO4AsMbM93P0vRV6fD5wQn27r7i/UNbA+MrPpwOL49GvuflFKcSwHJgLu7rsWWT8YOBM4Ftge6AD+Dsxy9/vrF2n1zGwmcGV8eoy7/6IXx7gT2B9Y4e47lNhmQH43u0vi9zGz/P3nrnL3mQmF1mflfrdK/xtZpiRYB2a2JfAN4MvoM0/TNcAnu722BfB8CrE0BH03Jev0pa+P7wKfTTuILDOzXelKgCuAs4G/AVu5+4rUAkufvpuSaUqC9dFSbmWsUplZl0iya/eCx3N6U62YBnefD8yv4VuU/W4ONPpfk+7UMUayYljB47+lFoWINBQlQcmKwu96e2pRiEhDUXVoD5iZAV8C/hnYkXBiXQ38EbgBuNbd2wu2Pw84t9sx8j3L7nL36fG1+VTu1fUddz/dzA4GTgHeAwwHngF+BVzs7i/Hfd4F/DvwIWBsjHER8E13X9rnD6KC2Avzi8AxwG6E79kzwALg0nI98sxsCHA88HFgT2AMMBh4CXgUuBm43N1fqzKWOwk9IwstDn9KAD7k7ndWc6wy7/E74APAOmC0u3cW2eZnhN8L4Gh3/98i2xwI/DY+/bi731ZN71AzGwmcDBwNTAKagD8DP3T360rEfB5VfDeL7LcDcAbwUWA88ArwOKHK9ip3zxXbrxpmthlwEvBpYCrh776c8L91MeG7lO/F+7a/W8Hf+SbgOEJb55HAUOBZYJ67/1c1vUPNbBLwr8CHgR2AV4G7gUvc/aEqf5dd4+9yIOH/dzDhf+AO4DJ3f7LMvtsBXwE+Et9/M0Iv5rvj79GQPZn7K5UEq2Rmnwb+ApxKaF9qBYYAE4DDgKuA35vZNjWMYR4hCXyUkNyGAgZ8HbjbzIaZ2YnAQ4QTwXjCP9A74vM/mNk7axVftC3wB+Ay4H3AloSqyN2As4A/m9mexXY0s3cDTwL/DRxOOHkMi7/DNoSLj/8CHjaz8bX9NXrk5rgcCexVYpt/Lng8vcQ2H4/LNsJFS0Xxgudx4CLChdFIwmf+QeAXZnY1yf2fHwk8QbgQ3AnYnPA93J+QqG8xs15dWJvZaMJJ/gfA+4ERhP+vXQnf70cJ3/VKBgO3EhLQKML/yC7A2irjOJ7wO54CTCH8n28DHAXcZ2ZfqLB/k5nNBh4D/o2QzLeg63/1y8CS+D7F9v8csJRwobFH3HcI4aL7MzGGH8cLTUmAkmAVzGwy8FPCyfhvhFLOfsA0QnLJX5m9C/hhwa7zCKWZ/yt4bc/4c2IPwziBcLXvhH/wfQkli+Vx/VTgf4EfA/8gJOtphBPrb+I2IwjJqZZOJfzz3k0Yj/d+wmf057h+a+AaM2sq3CmeBG8nXFR0AFcQEuE04GBgNqFEC7Az8J9VxnMi4fMuLPWcRNff4Q/V/2ol3Vzw+MDuK81sCuFCJG96iePkk+Bv3f3NSm8aLwTuIlx45AilsY8SPvPTCKWH4wjfle568938AaGUOTe+z4cIf5d8qfxjhBN/j8TEeTvw3vjSIkLSeR/hxP8nwvfiv6s43EcJpfIFwAGE0tSPgOuriONQwsXsYMLvdH481ocIJdF2wu9ezrnAtwjn1lWEBL4/4SLoAmA94eLhSjOb1u39ZxK+90MI55l/j+//fsJ39pG46eep7rOQKqg6tDrHEr64HYRqmMIu9Q+Y2S+BOwlf1k+Y2Rh3Xx2rWl4ws7euQt39EXpnDKEk+gF3fyW+dp+ZPUy4SoZwAlgO7OPuq/I7mtlvgAeAvYEPmtlId1/Xyziq8T3gXwuqxu43s+uB3xMS5BRCien3Bft8lXDlDnC6u1/a7Zi3mtlVhCvsLYHDzWxQYfVzMe6+DN4qMeUt68Pfodh7PG5mTxNKRwcCc7ptckBcbiScYKeY2Vh3fzG/QayC2yU+XVDlW19MKCkAfN7dryhYd7+ZXUe4GNm5SMy9+W6+CXzY3e8reO1OM1tE14XgCTGunvgyIfkC/Mjdv1Sw7kEz+wVwHfCJKo7VDNwDfKKgWvq3ZbYHwMw2By4lJPk2wv9Z4edxp5ndBCwkJKlix9iNkPQg1Gjs7+5/L9hkkZktBn5N6JX7LWINgZm9g64EuxA4rFuV//2xKvdnhGaGmWZ2nbv/utLvJuWpJFidcXHZRpGB1e6+kXAF+D3CybxWn+s5BQkw/96PEapv8s4vTIBxm066rvibCO1GtfI8cEb3tiF330C4ys37p277jY/7vkCJq213X0m42IBwIhqdQLxJuSUup5nZsG7r8knwakKJrYlN2ynzpcCOgmOVFNsB8+Me7+iWAAFw938Qag+S8oNuCTD/Pg8QSmsAu/aiSvS0uFxOaIvrfvyNwCxgTZXH+3GxdtkKDiRcxABcVOyCIP7u5RL8LMJFDsDJ3RJg/hh30HWR8z4zy1/EfJlQ9doOfKZYm3e84Psi8HJ86bTu20jPKQlW569xuSVwfbziext3v8PdT3P3y7onoYR00jU1WXcrCx4vLLFNYUzDE4mouIUx4RVT2BlgVOEKd5/l7uOB8fGkV0phR4bNexljLeSrRDejIMHFhJB//r+E9h4IVWyFPhaX97v7aio7iK6anGtLbeTui0luSMitZdbl/7bNhP+TqpjZ7oT2Lggdy4p+d2Knr6KdfIp4oNr3L/DxgsclP09Cs0gph8blc/FzL+UrhIQ7ouCi9uC4fNzdS85gFD+He+PTD6ptsO9UHVqdnxEaqscTOsEcFqu/bif09rqjxtWLAKvdva3EusL2o02uPots01RimyQ8V2bdGwWPi3738lfw8Z97IuFksQuhzXNaXOY10kXcnYSaguGEUkU+YbyXUGXZTqiavJfQQWJ6fkczG1rwvNqq0ML5HytVY/6erkTTF33625ZQWE1dqX32QUKnnEqe7cH75+U/z5fdveRFg7uvMLNVhLbtt8Q27snx6Z822fHtxyi8aM1fKOW/13sU9NKtJN9pp9zfRSpopJNIw3L3lwhVWoVXmDsRqpquB1ab2UIzO7Z7h48EvVrNRpXayOqgqjgpkojNrNXMTjezPwGvE0oXvwG+T+gMMJVQIm44sQRze3xa2DkmXxX6+3gRky8hTDGzsfHxhwi9B6H6JFjYC7lSNeE/qjxmJb3+25ZR+HtUKgFXU8OyoZpORWXiqKYXabHPczRdyb/aatu8rej9uXirXu4nkUqCVXL3vxLae/YhdBX/OF1TcbUQxhR9GJhlZoe6+/qEQ0g7uVWrV+PEzGxHQgeGyQUvbyBUHz5BGIt5F6FHbDWlgTTcTOi8sbuZbRvbhPJJcHG3JYTS3/V0VcUtdXev8r0KP+dKSadc9XJP9HoMYBmbFTyulAiqef/expjfr5oEXuzz7Mu5tHDfXwNf68G+y/rwvoKSYI+5+4OEapkzzWwcIfEdQujOP5TQ2+t04JupBdk//ZyuBPhzQunvD93bByuN00rZLXR1fDnAzH5F6OYPMfm5+0ozW0qo4p1OSIL59sBqS4Hw9mrvsYRJwUsZVWZd2gpLf2NLbhWMqWEcfydc1I4xs6YKg/6LfZ4vFTzuaYetwtJnS5I9l6UyJcEqxDYbAzbG3pjAW93MrwWujQPA/0C4mj0EJcGqmdlewD7x6WJ3/3SZzbevQ0i
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 480x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecXFX9//HX7iZAGpAGAQIBEvhQpEkzCF+wIShNAQuEXv0J+EVpAgqogIL6pQp8aaEjKCJFpX/pRRGEEPiEFqoIIQkQSEh2d35/nHOzk8n0ndmZnft+Ph77uDv3nnvmzMzu/cypty2TySAiIpJG7Y0ugIiISKMoCIqISGopCIqISGopCIqISGopCIqISGopCIqISGopCIqISGopCIqISGopCIqISGopCIqISGopCIqISGopCIqISGopCIqISGopCIqISGoNaHQBpDbMbH13fybP/snAPvHhCu7+Tp8WTKQKZjYdGAe4u69VxfnbAPfFh/u5++Rala23Cr02M1sVeDU+vMjdD+3zwqWQgmA/Z2bLAD8Dvo8+TxGRiuii2f/9Fti/0YUQEemPFAT7v45iB919X2DfPimJSI24+6qNLoOkgwbGiIhIaikIiohIaqk5tEmYmQH/D/gSsBrhC8oM4EngJuBad+/MSn8ycFJOHpn46/3uvk3cN5kCo0OzRqn9xt2PMrOvA4cBGwNDgdeBPwJnuPsH8ZwNgR8BXwBGxzLeC/zc3af1+o3IkTPKbyLwHHAcsBuwCjAPeAq4lPAeZfJkU4tyTKeP3iszWw04CNgGWB0YQXid7wGPAZPd/a6ccz4D/ANYEvgU2NDdX8iT9xeBu4E2YBrwWXf/uML3YjTwQ2CnWL75wFRgMnAxcAxwOoC7t+Wcm3w+RwK3A+cBWwILgJeA49z97nJGh5rZVsARhM9gReAd4Nbkuct8LV8EDgA2Ifw9LQAc+DNwbvJZFjj3c8DBwNbx+RcA04E7gXPc/fVyyyGNo5pgEzCzPYBnCP/Q6wKDgaWAscDOwBXA381s+TqW4ULgNmA7wgV7EGDA8cCDZjbEzA4EngAmASsBSxD++ScB/zCzDepVvmi5+PzHA2sS3qNlCUHmauAmM1uqzmWo63tlZj8mBKcfE4L+8sBAYBgh4OwB3Glmv8s+z92nAD+JD5cELjaz3AC0LOFvqY1wwd6jigC4MT1fRNYhfAZLA58DLgTuAYaUkdXKwMPAtoS/92WAzxICYakytJvZecADhC9DqxFe8zjCF5MpwGYl8hhmZn+I5d2Dnr+nYYSA+HNgar7PycwGxPf/UWA/wueSnLse4YvPNDM7uNRrkcZTEGwwM5sAXEa4SL4KfI/wzXgi4YL5aEy6IZB94bsQ2IjwzTexUfw5sMJi7AMcQvgGfBDweWAvwrdaCP/YfwAuAv5DCNYTga8Bd8Q0w4CzK3zeSl0ErEWo+e1JuPDuCzwfj+9CuMjXU93eKzPbDziN0ELzJnAsIUhMBL5NCPTdMfn3zOyrOVn8Bngo/r4lkDvP7HeEL1YAJ7r7k+W95IXlW5VQKx8dy3Ep8FVgC0LN8D+E2usxZWT338Ao4AxgK2B34DR3n17GuWcQpgRBeN8PJbxHOwA3AMMpUhuMXw5uAXaNu54h/M9MBHYEro37VwRuN7PhOVlcQvg/hfB+70P4W9yG8EXoHUJQvsjM9kGamppDG29Pwj9MF/AFd38t69hjZnYD8H+EC803zGyUu8+IzZrvmNnMJLG7P11lGUYRLgRbufuHcd8jZvYU4Vs1hFrPdGBzd383OdHM7iA00W0K/JeZLevus6ssRyljgL8A33D3+XHf4/Eb/d2EC9G3zOxCd7+vUCa9VJf3Kl6YfxaTzgb+y92TidPE824ws8eBc+O+3ekJrLh7d7zo/ovQRPtLM7vF3d8ys+8A341J7wN+XcVr/x9CAAfY092vzzr2qJldR6idrVFGXu2EoHdC1r4/lDrJzNYGfhAfTiG8T7Oyktwe36PfFMnmAELAAvgT8G13X5B1/DYzmwacTKjFH0aoGWJmu9DTvXC6ux+fk/f9ZnYJ4X92HeB8M7vN3d8v9dqkMVQTbLwxcTsHeDv3YPznPAk4h9CPUq/P7MSsi3ry3M/RU8sCOCX7oh7TdNNTG20DxtepfACzgL2yAmBSho+BvempJdV7pY16vFfjgJnAB8DlOQEw29VZv6+Ue9DdXwGOig+XBs4yszHA+XHfTGDvWJaymdkqhJo2wHU5ATB57neobM7qBZWUITqAni/vh+YEwKQcvyUE40KSZsoPCavJLMiT5lQg+fy2zdp/dNw+B5xAHu7+HqF/H0LTcKUtM9KHFAQbLxm8sAxwY/ymuwh3v9vdf+DuZ+deWGukm57BJ7neyvr9ngJpsss0tCYlyu96d5+Z74C7v0hPU+B2ZlavVo66vFfuPt3dN3D3ZekJYvl8AMyNvy+ZL4G7XwT8LT7cLf4+Ij4+yN3fLJJ/ITtm/X55oUTu/hBhkEwpb1VZjq/F7Wvu/nCRdJfl2xm/EGwSH95SaOBLHIT2X8AYd98qnjuc0GQKcE+JQVgPAR/F379UJJ00mJpDG+9KwrfLlQiDYHY2s1eAuwhNfHfXsXkxMcPd5xQ49mnW7/8uI01bgTS1UOyiB/BPwoVraUJ/Tj1G59X9vUpqaWa2NGHQxXhgbUJ/75aEgThQ/EvsAYTmwuFAMrjjUne/qcg5xWyY9fs/SqR9nNAUWMwblRbAzNoJA1ggNPkW80SB/WvQ877/s1gG7u45uzbMOvcIMzuiRBkSq5eZThpAQbDB3H2WmX2Z8O36c3H36oTBF4cAXWZ2P+Gbbb2mAHxUOsnCb8eNtFhzcY73sn4fQ32CYF3fq9gS8ENge/I0dwJlff7u/raZnUhPM+gCyhuwUkgyMrkrXxNkjnJaKz4snWQxI+lZIalUH9t/CuzPHmFdaT/dqArTJ3IH1kgTURBsAnE+10Qz25wwYu1rhKkSEP7pvxh/9jOzHd19bv6cqtbo4FauUuXMXkJufsFU9S1D1eLo0P9l0f/LmYS+ximEGtZdhCb0otMQYq3pu1m7BhKC4HFVFm+JuG03s7YSX8bKCdTVfJnLPqdUi0O+fj7o3TUv+9xfEOaFlqOrF88pdaYg2ETc/XHChe6Y2HfxRcKw710ITWBfIvQX/bxhhWysESWOj876vVBzZFMys/XoCYAfEUYm3pQ7ZSAGt0G55+dxFKHpFEI/4jLA0XG06CNVFHFG3LYRamQziqSttsZUyvuE4DaQRT/rfAr9rWT3KY+s8Pmzz53bi9HY0kQUBBvMzJKJ1gviCENg4Ui7a4FrzWwjQj9MOyEopjUIbkhYyaOQTeP235TXJNdMDqHn//Ewd7+yQLqxlBjQFlePSaZbTAG+Q1h5aEngCjPbwN0/qbB8TxOm80CY1H5nkbQbV5h3Wdw9Y2ZTCX2cG5eokW5YYH/2oJ2iizuY2a8ILTOvAN+iZwoM9HRdFDp3CcKCB28CU9390WLppXE0OrSB4j/K+4TJ3wWHi7v7U/TUbHJXRKloqHs/910zy3vXDDNbB9g8Pry5Xsun1dGErN+LTWKflPX7Yl9izWwgYbDVkoS/jQPil6vki9ME4Mwqyndb1u97FkoUa7QbVZF/uZImyDHA14uk2zvfzjgiNRnwspOZ5W1WjvM2dyIMSlrL3We7+1uEqREQRiCvVuT5JxFq85cQFlWQJqUg2EBxvlvyjXpLM9s1Xzoz25qeQRJ/zzn8aVa6ek5PaAZGmL+16M4wivJKepYDO6+Py1UL2c2L2+dLYGZfA36atSvfFImf0hOEznb3ZJTkGYRJ/hBWm/lyJYWL/dbJtIu9zGynPOVbhrB+aD1dRs+gmvPj/MXccuwBfLNIHsliA8NjHvmug0cTVieCEMgSyST8gcD1cSm63Odfk/B+Q+jHPDc3jTQPNYc23imEb7QDCP9UVxIWFn6L0GexNT0Tbz9h8W/x2X1fp8Xzu2LtsRUda2brEvrP3gXWJwz2SIah/9Ldy5mn1mxuoKeGdZqZrUD4gvQhsCphvt83WHR
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 480x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xe8XFW5//HPnBMgFRJIkBJqAg8EqSLIBQQr4KVJUykSIigo4vVnsAGXgApSvIqIgijSOxFCVUCkSTd0eEILaBRJo4QQklN+f6y1c4bJtDNnz8yZs7/v1+u89szstdesmUzmmdVz3d3diIiIZFFbswsgIiLSLAqCIiKSWQqCIiKSWQqCIiKSWQqCIiKSWQqCIiKSWQqCIiKSWQqCIiKSWQqCIiKSWQqCIiKSWQqCIiKSWQqCIiKSWQqCIiKSWQqCIiKSWYOaXQCpzMw2c/cnizx+IXBovLu6u7/e0IL1E6Xen6wys+WB9d39+YLH1wVeiXfPc/cjG122NKXxesxsCnBivLueu89MpXB9VO61mdlE4A/x7pfc/crGlm5gUU2wHzOzlczsLODvzS5Lf2Rm483sVuCXzS5Lf2FmnwaeBL7Y7LKItALVBPu3/wMmNbsQ/difgPWBu5tdkP7AzNYCbm92OURaiYJg/9Ze7qS7TwQmNqQk/VPZ9yeDMvV+xKbLXLPLIa1NzaEiIpJZCoIiIpJZag5tADMz4OvAp4D1CD8+5gCPAVOBy929Iy/9FHpGrCWPdcebd7v7zvGxCykxOtTMZgLrAD9z98lm9t/A0cBHgOHAa8B1wOnu/la8ZgvgO8AngDGxjH8BfuTuM/r8RpRgZp8i9H3+F7AGsBh4HbgPuMjd/1qQ/q/ATnkP7ZT3/pzk7lNiupmE9+As4FTgbGBXQhPaTOBUd788L98ccABwILA1MBp4B3gOuAE4190XlHgNyfN/291/YWb7AIcDWwGjgP8AdwG/cPfpFd6PPYCvAdsAK8VrbwdOc/cZZrYIWKHgtXYXZHOimSWfoU8Uvod5r/cQQpP65sBQYBZwWyzni+XKWYmZbQZ8G/gksDrwJvAQ8Et3v93MbgN2Ie8zHa/bmfBeAWxJ+Ez8BNiY8O/xZCz38lQYHWpmgwj/pocDGwEjgZeAy4CfV/k6VgD2i8+5MbAa8DbwBHApcLG7d5W4tubPlDSGaoJ1ZmYHEv7THgNsQviiGQyMBfYCLgIeMbMP1bEM5wI3EQLAGGAIYMAPgXvNbJiZHQ48DBwMrEn4glkj3n/UzDavU9l+BdxB+JJYNz7vcGA84cv5LjO7JH6Z1WpF4B5gf2BEzP/DhC/8pByrAvcCVwJ7El778sAqwA7AGYCb2XYVnqvdzC4j/MDYDfhQzGct4MuE9/KIYheaWZuZ/RaYBvw34d8quXYS8ISZ7dvbF1/CCEJgvYjwo2dlwudyHPANYLqZ7VJr5mZ2GGFU80RgbWA5wuvZHfizmZ1RZVafA24EtiAE/tGEz8m/qyjDyoRBU5cRXuPqhM/+hwk/ih4m/PuWy2ND4FFCsNslvpblYzk+RZiqcI+ZjSxybVqfKakjBcE6MrPxwAX0/GI9ivDh344QXB6ISbcAfp136bmEX8A35j22Zfw7vJfFOJRQq3DgCGB7wi/amfH8psC1wHmEGscxsXyfI4y+hPCFeVYvn7ciMzuE8IUL4cvqS8C2hFreMYTaKoT36qi8Sw8nvBfJF+Fj9Lw/5xZ5qkOBDYHfx7z3BM5297tjOYYRah7bA92EL7zPE2piuxFqkIsIX2J/NrNNyrysyYSA/hzwVeBjMY+r4vk24GwzW7vItWcR/o0g1FaS6/ckBNXBwBWEz1OhLQmBM3EePe/Jo0XSH0j4En+S8H5uT6ixJDWw4cDFZjaizGstKgbqCwgDdd4mtGrsSKgR/oxQ059MCEyV/Ah4i9CKsT1wJKFlorDmW1iGNuBWQusChB9BBxDez4OBR4DNCC00pfIYQ2iN+HB8aBqhRvgxwmf14fj49oRAm39tmp8pqSM1h9bXQYRfr52EJqlX8849aGZXA38l/Ef9vJmNdvc5sVnzdTOblyR298drLMNowhfdju7+dnzsb2Y2HXg63t+VEBS3dfc3kgvN7E/Ag8BHgY+b2Uh3f7PGchSTTP94Fvisuy/OO3ePmf0xln0UISCcDZA005lZkn5BhfenjdDknP8DIv8Hxk+ACUAH8Hl3v6ng+tvM7GJCoB5OCKYfK/FcqwF3Aru7+6KCPOYTvsRXIHyJnpacNLMt6flCfhj4tLu/k19eM/sOcGaxJ3X3x80s/9/m9So+M1MJk62Xvu9mdi1wM+GLelXCZ+OaCvksFb/8fxHvzgN2cPfn8pLcZWbXE2qhg6vIsg34grsnUz/+VmVRvkIIOACXAIfmBc6HzOwq4GpCYCrl54TaK8Bkd/9Z3rmH4nt1K/Bp4HNmtqO73xvPp/mZkjpSTbC+VovHBcC/Ck+6+xLCr+RfEvpO6vXvcXxeAEye+xlCbSVxUn4AjGm66AkWOUJTWZqS9+fVggCYPP8/gf8FTifUnvoyHP43xR6MzVhJ7ev8Il9WSVkejeUA2NbMti3zXMcUBMDEeXm3C5uXv0n49+8mfGG/U3Ce+CV8Z5nn7Y33ga8Wvu8xUOS/Vx+md/YlNPUD/KAgACbPcR8hSFTjpbwA2Btfi8f5wNcLa46xD34SoZa5DDNbiVBzBLinIADm5/GdvId2idfW4zMldaIgWF/JslUrAdeY2caFCdz9Dnf/lrufVRiEUtJFTxNXoVl5t0t9ueaXaXgqJeqRvD+7mtlPYh/KB7j7r9z9e+7+20pNYGV0ULxJEGBnQj8tVJ5ofkve7U+VSDPL3Z8tce6lvNtLmxlj013SlPlA4XJnBc4rc643Hnb3uSXOvZB3e+Ve5rtHPC6hoImwwG+rzO/BXj4/sX99q3j3xlIDT2Krxh9LZLMroR8T4OJSzxWX69sSWMndj48P70y6nympIzWH1tfFwLGEgSZ7AXuZ2cuE/xh3AHek3LxYzJwyo8/ez7tdaqBBfpq0JyafSRgoMYgwSOf7ZvZ3wntzO3BfsRpiDeaUqJlB+AJLTA0DeauyfonHZ5a5Jv/fIf//3uqEpkcoHawTD1U4X61/ljmX/1719jtii3h8zt3fLZXI3d8ws1cIo6XL+Ucvnx/CoK/ks1qpSfhhii84sWHe7bLLFhZpdk77MyV1pJpgHbn7fEJ/Qf6v2fUJTTXXAHPM7E4zO6iPTX3lLNOsVkz+FI1Gcff7CX0yyRdyG2EY+fcJNdO5Znalme3Qx6d6u8y50TXmOarE4yWHuxfUZPP/vfNHBs+p8LxptRZU9bmg9z98ktdS6XVAda+l3L9dpTIAlKrtJv6TQh6F0v5MSR2pJlhnsWlru9jevy9h1GUyEqydMGLuk8BhZraHu7+XchEaHtx6w91vigNwdgX2JvSrrBlPDwe+AHzBzE519x/W+DTlmlHz/w/sDbxaKmGBon1JNcof7Vnph2mtTcL1yqdQ8lqq+YFdTRlqKWepHxvFLCnxeF++G/vDZ0qqpCDYIO7+EKEp67tmthoh8O1O+E8yhNAfMJkwJDxT4gChG+MfZrYRoQa9N+F9ygE/MLNb4qCKNM3Luz27D6Nw+yK/1jSmZKqg1lpGo8wh/Iip9Dqgfq8lv2m/UjlK9Xnmfy5WoWe6TjX6w2dKqqQgWEdmlkxKXxJHYwIQp0BcDlweh8Y/SvjlvDsZCoJxMvNGwCvuvvSLK9aenwd+ZWbH0DNHcQ/CvK00PZ13+2OUGYIfJ07vT+j3e9jdXyiVtpdeJjT7rUjPgI5SPpLSc9bL44QguKGZDSvVLxhHUNarD+x5wrSkdsL0nnK2KPF4/uCmzYGSq/yY2b2Epsz74qo1/eEzJVVSn2CdWNjYdC7hP0/R4fkAcQmtJAAUzpsquhTTQBD7+eYC9/PBifCF8kfP1eP9uZOeJuPDzWy5MmmPB35MmPic2iofcSpK8jo/ZmblpqIcWuZcf/i8JFNqlqNnikExh1Cn75846jXZXmv3YqOOYelyaKX
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 480x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8XGXZ//FPklJautCNvaWFAheLbLILPOCGIKsCyk7hAUVU3EBUQMAFBH4KIlUURRAoqzzsIosKlFUUBApegKWAVKR0g5aWtsn8/rju00ymM5NJMskkme/79crrZOacc597Zs7Mde71NORyOUREROpRY60zICIiUisKgiIiUrcUBEVEpG4pCIqISN1SEBQRkbqlICgiInVLQVBEROqWgqCIiNQtBUEREalbCoIiIlK3FARFRKRuKQiKiEjdUhAUEZG6pSAoIiJ1a0CtM9AfmNkW7v5MkeevAI5OD9dy9zd7NGMivYyZTQJ+mx4e6u7XVTn9GcB4wN19407sPwF4JT38pbufkLduEl3MeyW/CSkPs9393Y6mXy157+MD7r57rfLRExQEu8DMVgW+B3wRvZci0gVmtjJwKvAtYFOgZkGwnuiHu2t+Ahxb60yISL/wTeDsWmei3igIdk1TuZXuPgmY1CM5EekD3P0K4IoaZ6Mkd58BNHRj+pMo/ZtQ9vdEuoc6xoiISN1SEBQRkbql6lDAzAw4EfgosB5xcfA28DfgZmCKuy/L2/4s4MyCNHLp3+W9qcr1BMvrffVjdz/ZzPYGvgRsAwwFXgN+D5zv7vPTPlsB3wA+DKyW8vgn4Pvu/mKX34gyzGwc8GXgE8AEYCDwH+Ah4FJ3f7TEfmcR79V8dx9hZmsCXwf2BdYFlgIvANcDv3D398vkoQH4DHAYsC0whug88AJwa8rHghL7Zp/P14A7gUuAXdLxXwa+5e735W0/ATg5vd51gYXA0+kYN5jZpcDngVfdfULa52TggpTEse6e9SQslp/tgcfTwy+7+yWlti3Y7y/AbsCt7n6AmW0DnATsDqwBvAP8Ffi1u/9fmXQ6dM5XS7kelnnfl3+4+1ZmtiHwVeIzWAd4D3gG+B1wpbu3VHC8XYnzdldgFPAW8b5f4u5/KbL9BEr0Di2y7RjgNGD/lL85wKPEe39XiX2y1wjpN6HgPcm8Eh9R6/lVkM6OwOeIc2Ft4jyeAdwDXOzur5XKd9p/TeK82RtYH3ifOG8udPd7yu3b39R9SdDMDiO+WCcBmwGrAIOAscTJfSXwVzNboxvzcClwB7AnEdwGAwZ8B3jIzIaY2XHAE8ARxBduIHHyHwE8aWZbdmP+/hd4ETgF2AIYTrxH6wFHAY+Y2S/NbKV20tkFmJbS2Zh4r1cFdgQuBJ4ws1El9l2dCLjXAfsRr30gMJoIZhcAbmY7tfNyxgEPA3vkHf+DRCDMjrVnyucXgQ3ScUYSFx/Xm9m1FL+AvBrIAsfh7eTjyLRcAkxpZ9uizOzLwGPEZ7AusDJx/nwSuNnMfpcuHAr3q/k53x4zO5C46DgRmJjyN4oI9pcDf0y9KculcT7wIHAwsCbxOY4FDgT+ZGandSGLGwPPEkF6vZT2msCngDvNbIqZVb2QYWYDzOznRLA9hghgg4BhwObERfKLZva5Mml8nPg+f5v4Pg8lvkd7Eu/rD6ud796sroOgmW1AfKEGEld/XyB+UHcigktWutkK+HnerpcCWwO35z23dfo7roPZOJooUThwPLAz8QM5I63fHLgJ+CXwX+KHayfih+6PaZthwE87eNyKpKvUXxNftFeIL9muwIdSfp9Om34O+FWZpAYDtxEB9BfEF+5DROl3ZtpmC2CFL6CZDQH+TLw3OSLYfArYHtgL+BmwmAiM95jZZmXy8VWiBHl+eh0HA+ekDhHZFfZtRGBYAvyYCH67EiXad4FDaA1iy6WS/t3p4YfNbO1iGUgXC4ekh3e4+5wy+S1lR+Izfwc4A/gfolRwTso3KY+fKTh2Z8/5nrQucE36/3yitLoLMXTgnfT8x4jPshQjLrb+S/zY70aUen5FnEMNwPfT590Z3yWC3h+AA4j37wvA62n9ocSFXSVuI347fpn33N7puU8WbPvrdByAqcTvx47ExcF3gDeJi6FfmtnRBftiZlsTNSHDiNLjRcBHiPf3dGB+SmdchXnv8+q9OvRw4oRpBj7s7q/mrXvMzG4A/kL8WH/KzMa4+9vpx+5NM1v+4+XuT9M5Y4ir8l3dPfuCP2JmTwHPpcd7EkFxB3d/K9vRzP5IlAS2A/7HzEa4+7xO5mMF6Ud8cnp4P7C/uy/M2+TRVL3zO+JLP8nMrnf3u1nRQKL32z4F6x81s7uI17oKcJiZneTuS/O2+SExbmoZ8Cl3v6Mg7bvN7HfAA8RV7W+IH4ZiGomgl18KuCm93kaimnQlIpB83N0fzNtuajonHiRKXMVcAeyTjnMoEUQL7Ul87hClrs5Yg6iO3rGg6utBM/sHUb0M0RPx+rz1nTrnO5nHzhpJVD/vUvC9etjMHgAeIYLYJOC8Mum8COzu7v/Je+4uM3sFODelcSTxHeqoBqKp4tS85x4zs5uIGouNgS+a2a/c/dlyCaWLoDlmlj9w/vnswixjZgfQWpV6rrt/pyCpB8zs18Tntykw2czucPfZedtk53cLsK+7/zFv3cMp/1NpPT/7vbouCRJXcgALaC2NLJd+iM8ELibakrrr/To9LwBmx55GtHVlzs4PgGmbFlpLow1EtVE1fZEITMuAowoCYJaHZcSV6fz01FfKpHdzsQDp7q8A96aHw4nqJQDMbARR4gS4rEgAzNJ4kig1AOxgZjuUyccvSjy/C9EmC9FW+2DhBu7+T6JNs5TbgexHp1SVaFaKnEWUJDrrByXafm4E5qb/C6vJe8s5356fF7uwdPfHiItGgI3bqRL9RkEAzPyCKA0CfKCT+XuGKDEV5u9tIGtHbCBqearllLScRrRFrsDdZxFVyABDyKuZMrMPEBc3AJcXBMBsfyfGK9aNeg+C/0zLVYEbzWyTwg3c/T53/4q7/7QwCFVJC1HVV8wbef/fX2Kb/DwNrUqOWu2dls+7+wo/mJnUcefh9PB/yrQNlmtw/1fe/8Py/t+dCMTQGihLye+M8NES27zh7v8usW7fvP9LdmohSlZFS9zunt/Gt3XhOZVmGcqOc01Bibejir6f7p6jtXPHsILVveGcr0Sl50qpc34pcF+xFel8zV5X0TboCvzG3ZtLpP8AkJWw9+hk+m2Y2UiiyhXg/vQZlzKV1tlm8r8H+VWr5dqhrwMWdTiTfVS9V4f+jri6WofoELC/mU0nfmzvA+6rZvViCW+X6tFI9NjKFLuiLdymaoN8U6P+5unhFnm9K9uzClFVVyzQzCizX/57kH9ebp33/82px1wl1i/x/OslnodoB4PoyfpSqY3cfWmqrv5wiU1+S/RIhGhny79qP5hoX4XOV4VmZpRZl72fhd/x3nDOV2JGmXWlzpV8b7v74jJpZOs6+xv4eDvrnyJ6f29oZoPayUsltqL1+32SmZ1U4X7534P8uVRLNt+4+yIze5Zoc+/36rok6O5ziQb2/DaB9YkqjBuBt83sfjM7vFgvuyqpaH7A7uiu3o6RdP78GFni+VLBHlqrp6BtMO9s20SpPLxT4nmI4A2t1ZnllCwhuftTtFbZHVZw7mRVoc90oR0Z4P12zons/Wxz3vaSc74SnTlX8lU672ZnX2N7JeT8dtRS52JHVON7kJ3fLek8KOe/nTxen1PvJcGsjWen1IZ0IFFlkPUubCJ6Tn0EOMbM9nX3alcT9HRwq1T+uXE30cOuUi+3v0mn8nEArdVM7Zlf4vlyJdqBaVlJ8G+vZPxbonfgBKJX61QzG0/0MoWulwI7rRec8z2h0pqL7pIfXEuOfe2A/O/BD4gxxJXIr7Jd/p6YWUM7VapdqabvU+o+CGbc/XGiiuObaSDpR4hefgcQ3fs/Sgye/n7NMtmz8rvtN3Wx1FKtfMzq5ny8TXStH1PBj0R7V+bXEB11ViKGKUxNywbiwuea0rv2DJ3zXTK
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 480x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYXGWZ9/FvdQKELJCNEAwQIIEbwgTFQTACElxQZB0RR1kkURBwwdGXRQUH0GERZhQXFEeUIMg6ciEKKBIQDTsa1sAdAiQIiJBAggFCku56/3iek65UauvuU32q+vw+19XXqeqz1N1dp+o+z3oKxWIRERGRPOrIOgAREZGsKAmKiEhuKQmKiEhuKQmKiEhuKQmKiEhuKQmKiEhuKQmKiEhuKQmKiEhuKQmKiEhuKQmKiEhuKQmKiEhuKQmKiEhuKQmKiEhuKQmKiEhuDc46gP5kZju5+8MVfj8LOCo+3czdX+zXwPrIzKYDt8enX3P3czOKYyEwEXB3377C+vWAk4HDgS2BTuDvwEx3v7v/Im2cmc0ALolPP+nuV/XiGH8E9gIWuftWVbYZkOdmfzCzrYBn4tOfuPtxKR9/Fn18D6p9NtKIvZFz1MyGA+Pc/emeHj8tpf9Hdy9kFUe5XCRBM9sY+CbweXLyN7eoy4GPl/1uI+CFDGJpCTo3pdnM7N+B/wFOAzJLgq0qLx+67wCfzjqIPDOz7elOgIuArxKugEe5+6LMAsuezk1pGjPbE+hx7UWe5CUJDqq10t1nADP6JZL82rHk8Vm9qVbMgrvPAmY18SVqnptSn7svBFqmeq2SatXgKR17FtXPUZ1fdahjjPSXYSWPn6m6lYhIP1ISlP5Seq6tziwKEZESbVUdamYGfA54P7A14Yt1MfAX4DrgCndfXbL9GcDpZccoxod3uPv0+LtZVOn9VdKr63/c/UQz2w/4AvCvwHDgWeBXwHnuvizu8w7g/wF7A5vEGG8DvuXu8/v8j6gj9sI8HvgksAPhfX4WuAG4oFbvNjMbAhwJfATYGRgLrAe8CjwK/Bb4qbu/3mAsfyT0jCx1e3grAdjb3f/YyLFqvMafgD2BpcAYd++qsM0vCH8XwKHu/n8VtvkgcEt8+hF3v7nBnncjgWOBQ4FJhKq5h4AfufvVVWI+gwbOzQr7bQWcBHwYmAC8BswjVIdd6u7FSvvVUhLLMncfaWbjga8ABxB68a4CHgeuBn7s7m9VOc4ownm3PzAFGEo4b54AbiL0flza0/gaiH8rqvSwLHv/RgFdwH8AHwW2IbxXCwjfH99z99cafL0evQf1ek6XbDcY+CLh+2g7YAXhc3clcLG7r6qwT+nf+El3v6rsf5K4xMyS7baO1cilx9kivvaHgK2A9Qm9t/8MXFSvB7eZbUhoVjoS2BYYQnjvfwb8b619s9Q2JUEzOwx4GDiB0L40lPBP3hw4CLgUuN/MNm1iDBcRksCHCcltQ8CArwN/NrNhZnY0cB9wBOEDsj7wtvj8ATN7e7PiizYDHgC+B7wb2JhQFbkDcArwkJntXGlHM3sn8CThhD2Y8KEdFv+GTQkXH98F5prZhOb+GT3y27gcCexSZZv3lzyeXmWbj8TlcsJFS13xgmcecC7hwmgk4X/+XuAqM7uM9D5nhxCS0ecIX+AbEM7DvQhfgjfGL9FeM7M9gMcIX/LbEz5nGxPOpe8C95nZ6Ar77RT3OwuYFvdZDxhH+F+cCzxlZtP6El8fGfAIcCbwdmAE4UL2HYQeuo/G5FFLM9+D4cAfCZ2l3k74fhlFuMD7EfAXM9usl8euycw+A8wnvO87EXptDyEUNj4F3GVmP4kX2JX2nwj8NcY5jXDxPJzwefwx4eJySDNi76u2SIJmNhn4OeHL+BnC1eYehH/2EUByhfIOwpuQuIhQmvlNye92jj9H9zCMowhX+w4cA+xOuOJZGNdPBf4P+AnwD0Kynkb4Yv193GYEITk10wmEk/jPhPF47yH8jx6K68cBl5vZWh0JzGwM8AfCRUUncDEhEU4D9gNOJZRoIVzl/XeD8RxN+H+XlnqOoft9eKDxP62q35Y8/mD5SjObQrgQSUyvcpwkCd5SrbRTdtwJwB2EC48ioSTwYcL//EuEq+gjCOdKud6cmz8klFwujK+zN+F9SUrl+xJKcL21IaG2YCPCF1fyt3yB7mEsOxES3RpmNohw7m8WYzmDcNGxK+EC9Zdx09HAtbHEkIXrCSXbK4EDCYl9JuHLH2ALwt9dSzPfg8MI58q8GNe7CT2q74zrp9J4kn2BcC4dU/K70+k+x9YMS4olyYsJSeoZQi3WnoT3/hjgwbjpZ6lQojOzYYTPQVLC/TXd/9+jCf/f9xNqSlpOu1SHHk644uokVJ+Vdqm/x8yuIVxBvQf4NzMb6+6LY7Xfi2b2SrKxuz9I74wllET3LKkyucvM5hKqKyB8KBYCu7n7S8mOZvZ74B7gXcB7zWxkM6qFSnwf+I+Sapm7zexa4H7Cl9gUwhXa/SX7fJnwJQVwortfUHbMm8zsUsLV/sbAwWY2uLT6uRJ3XwBrSkyJBX14Hyq9xjwze5pwZf5Byr6kgQ/E5SpC6WSKmW3i7i8nG5jZJEL1E4RE0IjzCAkD4LPufnHJurvN7GrCxci2FWLuzbn5FvA+d7+r5Hd/NLPb6L4QPCrG1RvrE3oT7u/uvyv5/d1mdhPhPB8KHGZmJ5RUze1B9994rLv/krXdYGYvEEoZEwgXG7/qZYx9MR44pux9utfMrickns2AD5nZ+BpNBs18DwqEZLKvu79ZEt+vCIn744QEdiwhCVfl7iuBB2NVfeLZ8nPMzN5WcqzZwEFlTR13x+aiXxCaV2aY2dVl58fXCbVGEHp+n1ay7l4zu4pwgZ1lLUBVbVESJJy8EKqp1hlYHT+MpxO+/L9M8/6u08rbDNz9MUL1SOLM0gQYt+mi+4q/QGg3apYXgJPK2yXih6L0w/8vZftNiPu+SJUPmLs/T7jYgHDVOCaFeNNyY1xOi1empZIkeBmhxFZg3XbKpBTYWXKsquKXSzLu8dayL1YA3P0fhC+stPyw7Ms3eZ17CFVRANv3sUr0urIvuOQ1niF8kUFI/FuXrB5f8vjJKsf9HvBT4GuENrgs3F/lfVoKXBOfFggXitU08z14Czi8JAEmx+4ilMiWxV8d34tjV/N5woXNauBTldr644Xu8SWv/6VknZl10F3adMraueP+rxOqVNdpq28F7ZIEn4jLjQnVKTuUb+Dut7r7l9z9e+VJKCVddE9NVu75ksezq2xTGtPwVCKqbHZMeJWUfkGt1a7j7jPdfQIwoVLje4nSK+QNehljMyRVoutTkuDil1Hy/P/orvrau2z/fePybndfTH370F2TckW1jdz9dtIbEnJTjXXJe9tB+Jz01i011j1V8nhEyeMnSh5fYmbvi1+Oa7j78+7+WXc/190fIhu9+dvKNfM9uCleaK4jXnxfH5/uGEtwadgvLue5e9WZm2Knv6Ra9r0lbYO7ENpEAa52984q+y8A/pRCvKlrl+rQX9BdlXIQcFCs/voDcCvhSryZ1YsAi919eZV1pe1Hf29gm2YO7H2uxroVJY8rvvdJz8p4kk8kVDFuR2iPmBaXiVa6iPojoaZgOKFKNPmy2pVQcllNqJq8k9BBYnqyY2yjSp43WhVa2sOvXjXm/axdcuqtPr23DVpYY13p+b/mNdz9ITO7mXAhMYVwIbjEzGYTPp+3tMisQAtrrKv4t1XQzPfg3jrr59Ldi30qfZxuMF4gJp/nnUp6J9czlNBR7jl69jm4j+rt8ZlppS+xqtz9VUKV1j0lv96GUNV0LbDYzGab2eHlHT5S9M9GNqrXRtYPGoqTConYzIaa2Ylm9lfgDcKV7e+BHxAaxafSolUasfSbVNeVdo5JqkLvjxcxSWl+ipklV7B7EzqFQONJsLQX8pI62/6jwWPW0+v3tgeqXehBqEqu9hqfIMwNm2wzhlBd/L/AQjN72My+amEi56z09m8r1cz3oF4NVmkNxTo9dHthFL3PAaPiMovPQaraIgkCuPsT7j6
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 480x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecXGXZ//HP7iYhpEAazQABErgo0pQiGB7iY0NBQMEOkiAI/ijPg4KAdAsoPKgoKEiRDoIigqBIE6QjhhbgCi2AIEJICKmQ7M7vj/s+2cns1J0zO7N7vu/Xa19nZs4599xT9lxz97ZcLoeIiEgWtTc7AyIiIs2iICgiIpmlICgiIpmlICgiIpmlICgiIpmlICgiIpmlICgiIpmlICgiIpmlICgiIpmlICgiIpmlICgiIpmlICgiIpmlICgiIpmlICgiIpk1qNkZGCjMbAt3f7zI4xcD+8W7a7n7632aMZEWYWZTgd/Eu19296tTTn8WMAFwd9+4F+evB7wY757n7gfn7ZtKnXmv5loQ8/CWu8+vNf205L2Pd7n7lGblo68oCNbJzFYFvgccgt5PEekFM1sJOBo4BtgUaFoQzBpdtOv3E2D/ZmdCRPq17wCnNDsTWaQgWL+OcjvdfSowtU9yItLC3P1i4OImZ6Mkd58FtDUw/amUvhaUvY5I46hjjIiIZJaCoIiIZJaqQyMzM+D/AR8F1if8QJgNPAJcB1zp7svyjj8ZOKkgjVy8ubxXVbkeYXm9sM509yPNbFfgUOCDwAjgZeD3wOnuPi+esxXwbeAjwGoxj3cA33f3mXW/EQXMbApwZ7y7AzCD0Hi/N7AusASYDlxIeI9yRZJJIx+z6KP3yszWBw4EpgAbAGMIr/NN4AHgYne/teCc9wP/AFYC3gW2cvdniqT938BthGq3mcAH3H1hle/B34CdgT+6+55m9kHg8JjPNYB3gIeBC9z9D2XSqem7npZyPSzz/k8ec/etzGxD4H+BTwLjgUXA48ClwCXu3lXF8+0EHAbsRPgM3wAeBM52978VOX49SvQOLXLsOOA4YI+YvznA/YT3/uYS5ySvEeK1oOA9SbwYPiJecvf1iqTzIeAbhO/C+4ClwCzgr8DP3f3lUvmO569J+N7sSvh+v0v43vzU3f9a7tyBSCVBwMy+QvgHOxzYDBgGDAXWJnzJLwEeNrM1GpiHc4E/AbsQLtgrAwZ8F/i7mQ03swOAh4B9CP94Qwj/BPsA/zCzLRuVv2j1+PzfBTYivEejCEHmcuA6Mxva4Dw09L0ys2MJwelYQtBfAxgMjCRcML4C/NXMfpl/nrs/CZwQ764EnG9mK7QvmdkownepjXDh+kq1AbBIPg8jBOSvEX6MrBTfi08TPodLC58/ntf073olZrYX8CghUE+M+RtDCPYXAbfE3pTl0jgduBv4PLAm4fNfG9gLuMPMjqsjixsDTxCC9Pox7TWBzwI3mdmVZpZ6AcPMBsXv3f3ANML3cSjhu7k54QffTDP7Rpk0Pk7393sLwg/IsYT/pVvM7Idp57vVZT4Imtkkwj/WEMKvwG8CkwkXwH0IXziArYD8C9+5wNbAjXmPbR3/DqgxG/sBBwFOKIF8GNiX8OsOwhf8d8B5wH8IF7AdCBe8W+IxI4GzanzeWp1HuABMB74KfIjQ0P903L8n4SLaSA17r8xsGnAqoYbkX4Qu65+I53+REOiTEsg3zeyTBUmcCdwTb08GCksSvyRciAGOd/dHqnvJPXwo5v8dQuD9L0Kp4FTgvXjMvsAX8k+q47vel9YFroi3TyeUVicTah/eiY9/jBCASjHgKMLnfyzhvdkV+DWQI/wI+X4sUfXGiYSg92fCd34Hwnv5Stz/ZeCnVaZ1A+GacV7eY7vGxz5dcOwF8XkgfM/2I3wXphB+AL5O+DF0npntV3AuZrY1cBPh+78U+Bnw34T393hgXkxnnSrzPiCoOjRczFcCOoGPuPtLefseMLNrgL8BOwKfNbNx7j47Vmu+bmZzkoPd/dFe5mEc4df5Tu6e/KPfZ2bTgSfj/V0IF/rt3f2N5EQzu4VQItgW+C8zG+Xub/cyH5WsCdwMfNbdk4vtg2b2O0IV34eAL5jZue5+Z6lE6tSQ9yqWmr4XD30b+C93T6rGiOddY2YPAr+Ij32e7sCKu3fFi89jhF/YPzKzG9z9VTP7EuHiCKF6+f/qeA/WAP4NfKig6utuM3sM+G28PzXvNvTyu15HPntjNLAQmFzw/3Svmd0F3EcIYlOBH5dJZyYwxd3/nffYzWb2InBaTGNfwudaqzZCtfvReY89EP8P/k74oXiImf3a3Z8ol5C7zwHmmFn+wPmnYk/V5cxsT7qrUk9z9+8WJHWXmV1A+Pw2Bc4xsz+5+1t5x5xNqNXoAj7j7rfk7bs35v8ewv9YZmS+JEi4sAMsAF4r3OnuSwltfz8HjqBx79nxeRf15Lln0F3KAjgl/6Iej+miuzTaRqg+apS5wL55ATDJw0JCtVxSSirZlpKSRrxXEwjtOvOA3xQEwHyX590eX7jT3V8Ajox3VwF+FttgzomPzQG+Vk2bVgU/KNH2cy3hcwIorPJtle96Jb8s9oPS3R8g/AAC2LhClei3CwJg4leE0iDA+3uZv8cJJabC/M2m+7vfRqixSMtRcTuD0BbZg7u/SahCBhhOXo1UbLPeMd69qCAAJuc7YbxipigIQtJ5YVXgWjPbpPAAd7/N3f/H3c8qvLCmpIvuzieFXs27fXuJY/LzNCKVHBV3dfzl2oO7P0t3VeAujWgTiRryXrn7LHff0t1H0R3EipkHLI63i16E3f084C/x7t7x9ph4/0B3/1eZ9KtVtAND7JiUBPCRBbtb4btejXKdM57Pu13qu76UUDPRQ+w0lbyuMcWOqcKF7t5ZIv27gKSE/Ylepr8CMxtNqHIFuL1C57N76J5t5qN5j+dXrV5Z5vyr6f5+Z4KqQ0Nvs6MIv+r3APYwsxeAWwn/SLc1sHoxMdvdF5TY927e7WK/bAuPadhgX+DeCvv/SWifWoXQCaVsL7Veavh7lZTSzGwVQueDicAmhHaayYSOOFD+R+TXCdWzo+kukV3o7teVOacWs8rsS96fwv/vVviuV2NWmX35n32p69dsd19SJo1kX2+vfw9W2D+dULOwoZkNrZCXamxF93f1cDM7vMrzNsi7nT+XaslmG3dfbGZPANvVlsX+K/MlQXefS2hoz28b2IBQlXEtMNvMbjezrxbrbZeSquYJbES39Rr1qEIr8Gbe7TVLHlWfhr5XZraJmZ1vZv8ilPqmEzrafB/4HKEHZjXP/xqhs0FiKelVNb1b4fUlJYUVvq8t8l2vRqkfOdD92qD0D75q593s7WusVELOb0cd3cvnyNfbNrr85056+3bF70E5/+nl8/VLmQ+CAO7+jLvvQOjYcQah3j3RQehBdTlwq5mtXCSJejU7uFWrUj7zp356r+RRjc1Dr8XeoY8T2lKS9r45hBLweYQ5YtcldNyolFY73R1hIHRIaHp7Swt81/tCQ8aq1iA/uL5b8qjq5ZdYf0B3L/RKf1Pyzlv+nlTxA2dp3TnuR1QdmsfdHyRUdXwndmb4b2A3QjfolQl17EcSSgVZVKkNJb+UVKo6siWZ2eaELvSDCCWJk4HrivTSa6e7OrScIwlVpxBKlKsCR8XeovellO1e03e9LmPobnctZvW4XUb47OuV3w6/uJe90JP/x3bCuMByvX5721baL2U+CMZfuwYsjT0MAYhDIK4Erozja/5B+ALtRnYvDFsBfyyzf9u4/TeVq4xazUF0/z8c6u6XljhubSrUoMSeeMlwiyeBLxFmY1kJuMTMtnT3RfVnuTb6rqdmM8Ln2UMsZW0T7z5eqgNNjZ7Mu112bKOZDSGMjfwXYahFMvYzv8S/LWGMY7Hz2wljbTMj09Wh8QvzFqHd51eljnP36XT/kiqcEaXeru79yZfNrOhs92a2KbB9vHt9hR5srWhS3u1yg9j3ybvd40ekmQ0mdEBZifDd+HoMOEkwmUSohuxTKX3XJfhimX27AmvF238pc1y
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 480x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xe4XGW59/Hv3gkYEkpCDdIJcENQEQuIgHIsCOcoIkUEggQOKCji8TU0QQmoSNODAhpEMVSpOYo0DUUQpBs63KEFNICEJJQQQpK99/vH86zsyWT6rKnr97mufa2ZWWWevWatuefpPQMDA4iIiGRRb6sTICIi0ioKgiIiklkKgiIiklkKgiIiklkKgiIiklkKgiIiklkKgiIiklkKgiIiklkKgiIiklkKgiIiklkKgiIiklkKgiIiklkKgiIiklkKgiIikllDW52AdmdmH3D3Rwq8Phk4MD5d291faWrC2kSx85NVZrY8sLG7P5X3+obA8/Hpee5+WLPT1gkaeV+l8RmY2Xjgd/Hpvu5+ec66ydSZdjObAWwAuLtvXmSblt5zeefxJHef2Kq0pEFBsAgzWwU4GfgmOk/LMLNNgLOBFYCdWpua9mBmnwHOAS4HJrY2NdJtzGw0cCawPbBRi5PTNfTlXtzPgINbnYg29mdgY+D2ViekHZjZesDUVqdDutqlwKeAF1qdkG6iIFjckFIr3X08ML4pKWlPJc9PBul8pKDd7yt3nwxMbuDxNyyxWtdYA6hhjIiIZJaCoIiIZFbXF4eamQHfAD5NqEzuBV4DHgSmAJe5++Kc7ScCJ+YdYyA+vN3dd4qvTaZIS7CcFl4/dfcJZvZfwBHAh4EVgReBa4DT3f2NuM8Hge8C/wGsEdN4K/BDd59e94kowsw+Taj7/DjwXmAh8ApwJ3Chu/81b/u/Ap/MeemTOednSUuxnHPwc+AnhEY0uwA9wAzgJ+5+Wc5xe4AvA/sBHwFWB94CngT+CExy93lF/ofk/b/j7meZ2R7AIcCHgFHAv4HbgLPcfVqZ8/EF4OvANsAqcd+pwGnuPt3MFgDvyftfB/IOc6KZJdfQf+Sfw5z/9wBC0d9WwHBgJnBTTOczpdJZIv2pnItqr4u0VHhf/dzd/8fMPkW4t7cjXC9zYvp+6e63VfBeVX8GpVqHFtj2A8BxhHt6JPAScHNM/+NF9kn+xyWtQ/POCcAGOZ/zhbEIOf//quleyjnGVsB3COd2fWA24T44FXi31L6dpqtzgma2H/AIcCSwJeEiHwasC3wRuBC438zWamAaJgHXEQLAGoTWlAZ8D/ibmY0ws0OA+4BxwDrA8oQvnnHAA/GCbETaziHclPsBG8b3XRHYhPDFcJuZXWxm9fxYWhm4A9gbWCke/32EL5skHWsCfyO0qtyN8L8vD6wG7ACcAbiZbVfmvYaY2aWEHxi7AmvF46wHfJVwLg8ttKOZ9ZrZr4Frgf8ifFbJvgcDD5vZntX+80WsRPhCuZDwBbkq4bocQ2iNPM3MPlfne9RzLppxXdTFzE4DbgH2ZPB6GQ3sBdxqZj8sc4hGfwZfBh4AvkI49+8h/Ag/FHjIzL5dx7GLSuNeMrNjgWmEwLsZ4bysQ/jsH4rH7RpdGwRjE/4LCBfA88DhhItgO0JwuTtu+kHglzm7TgK2Bv6U89rW8e+QKpNxICFX4YSLf3vCL88Zcf37gauB8wi/0I+M6ftPQutLCDfrz6t837LM7ADCzQ6hhee+wLaEXN6RhNwqhHN1eM6uhxDOxcvx+YMMnp9JBd4quZF+G4+9G3C2u98e0zGCkDPZHhgALgG+RMiJ7UrIQS4g3Mx/MbMtS/xbEwhf3E8CXwM+Fo9xRVzfC5xtZusX2PfnhM8I4Nmc/XcjBJJhwO8J11O+rQmBM3Eeg+fkgQLb70comXiEcD63J3xpJrmXFYGLzGylEv9rOTWdizqui2baBzga+Ccht/Jx4DOE+zjJIZ1gZh8rcYxGfwZnEc7xufF9dgR+CMwnlMCdVcWPqh8QrqUH4/OXGby+fpBslMa9ZGZHEEpuegilURMI53dnwnW9PPC/Faa7I3Rzcej+hF9ffYQiqdxmxfeY2ZXAXwkf8JfMbHV3fy0Wv7xiZnOSjd39oRrTsDrhJtvR3d+Mr/3dzKYBj8XnuxCC4rbu/mqyo5n9GbgH+CjwCTMb6e6v15iOQpLuH08AO7v7wpx1d5jZ/8W0jyJ8iZ4NkBQRmVmy/bwy56eXUOSc+wMi9wfGj4GxwGLgS+5+Xd7+N5nZRYQv5BUJwbTYl9toQu7g8+6+IO8Yc4HDCNfEvsBpyUoz25pQrAYhR/4Zd38rN71m9l1CH61luPtDZpb72bxSwTUzhVCctuS8m9nVwPWEL6w1CdfGVWWOU0xN54Iar4smGw08Triv5ua8fouZvcDg/3Mg4R4qppGfwQCwe971fKeZ/YlwLa8A/MLMrnX3RaUO5O4vAi+aWVKEubDI9VXXvWRmawA/ik9fAj6e97051cymUvs12Za6NidIuFEA5hE+0KXEC+9E4BeEX5ONOhcn5ATA5L0fJ/xCT5yUGwDjNv0MBoseQjFNmpLz80LeF13y/v8i/Mo8nZBj6KnjvX5V6EUzG8lg7uv8AjdtkpYHYjoAtjWzbUu815F5X/qJ83Ie5xcvf4vw+Q8AB+YFwCQNPyUElTS8C3wt/7y7+wBLn6v31fk+tZyLZl4X9Tg6LwAmzmcwN1iqGqHRn8GvCl3P7n4/g0H6vYRqmbqldC/tQ6gHh3B+l+mP6O7XABenkeZ20c05wWTYqlWAq8zsOHfPDTy4+82Euo9G6WeweCXfTGCL+LjYl2tuYFwxrURFTwGbA7uY2Y8JlfX5gficFN5nMYWLBCGMNDM8Pi7X0fwGBkdh+TRwb4FtZrr7E0X2fzbn8ZIiLjPrZbAo8+784c7ynBffu173ufvsIuueznm8ah3vUfW5iJp1XdRjMaHR2DLcfW7M6a7Ksv9brkZ/Br8use5CBq/lnQlVIvXaifrvpf+My3cJVQDFXECoV+4K3RwELwKOIlTofhH4opk9R7hAbgZuTrl4sZDXSrTCym1h9XIF26T9i/tM4POEa+B7wLFm9g/CuZkK3FkoJ1CD14rkRiDUaSSmhIa8Fdm4yOszSuyT+znkXvdrE4q9oHiwThQKvLX4V4l1ueeqnvtzRol1xc4FNO+6qMe/S1xTEP6/VSl9/hr5GcxnsLpjGe4+IxafjyS0C0hDGvdSMlaplzm/DxBy260qBUhV1xaHxqKSz7B0ncDGhIYqVwGvmdktZrZ/A4t0lilWKyS3i0azuPtdhErz5Mugl9Cc+lhCznS2mV1uZjvU+VZvlli3eo3HHFXk9aLNvmMxVyL3885tGfxamfd9tcz6SlV0XVDfl0wt56KZ10U9SjbvZ7A4tNT5a+Rn8Fqszii5TVzWk9vPlca9lNwLxXLIALj725T/DDpG1wZBAHd/yt23I1T+nkGoTE8MIYzDdwmhwneFBiSh6cGtGrHeYGNCC8gLyOm2QCh+3YfQjeOUOt4mvw9drtxf2bsz2OKt3N+EOtKTL7e1Z7n7odT/Uo20jtMQTbouWq3Vn0ESXNPqc5fGvVTJj4dEycY8naSbi0OXcPd7CUVZR1sYif1ThCKf3QmttD5NuBjK9S3qOrGB0J/iH2a2OSEHvTvhPPUAx5nZDe5+Z8pvPyfn8aw6WuHWIzf3t0aZbWv9td1xWnxddLpiJRW5kmutZK6rCmncSy8T+oKWvA/MbAih/29X6NogGHN2BizKHZ0hdoG4DLgsNo1/gJAD+DwZCoJmtiqhDuB5d19SJxkbhjwFnGNmRzLYR/ELhNE40pRbb/Ix4O8l0rsZocP9DEKjhqeLbVul5whFtisTRlUp5cMpvWfbapProtOtZGbrx64Ny4g/KJIg8o+U3jONe+lxQhA0M1upUCvp6H10UezoyuJQCxObziaMelCweT5AHDYqudGH5a0uV6bfsWJ9zmzgLkp3eL4h53Ejzs8tDBYZH2Jmy5XY9gRCH6ZLCAMKpCLW3ST/58fMrFRXlAN
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 480x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecXGXZ//HPpkFIISEh1JAAgYsiTbqAYAFBpCigIAiRBxRRsYENFFABgccCAuIPC0ov8tClivQiCkrzooYWIiENEhKS7O7vj+s+2dnZM7Ozu7M7szvf9+u1r7Mz55z73NPOde56mlpbWxEREWlEg2qdARERkVpREBQRkYalICgiIg1LQVBERBqWgqCIiDQsBUEREWlYCoIiItKwFARFRKRhKQiKiEjDUhAUEZGGpSAoIiINS0FQREQaloKgiIg0LAVBERFpWENqnYFqMrNN3f3fOc9fCByWHq7m7jP6NGMiUpaZTQZmufs7vZD2NGAS4O6+QZXTngr8IT08yN0v70YaF1Li/NTTvKf39aX08DfuflTONk3A+9z9ia6mXy1F7+OH3P1vfXXsAVESNLMVzews4J+1zouIVM7MljOzHwJPA+NqnZ9GY2ZbAg8B36p1XmploJQEfw4cXutMiEiXfRs4udaZaGCPEIWhZ2qdkVoZKEFwcLmV7j4VmNonORGRrij7260Gd5/c28foid48P7n7NKCpzCYDojawJxr+DRARkcalICgiIg2rrqpDzcyAo4GPAGsTQfot4B/ANcCl7r60YPuTgBOL0mhN/97t7ruk5y6k895XP3P3Y81sT+ArwJbASOAV4M/AGe4+L+2zOdGQ/CFg5ZTHvwI/dvdne/xGlGFmE4GvAh8DJgPDgDeAe4Hz3f3BEvudRLxX89x9jJmtCnwT2AtYC1hCtAtcAfza3d8rk4cm4NPAZ4GtgPHAO2n/61I+5pfYN/t8vgHcBJwD7JiO/zzwXXe/o2D7ycCx6fWuBSwAHk/HuNLMzge+CLycVXuZ2bHAmSmJw90963WWl59tgIfTw6+6+zmlti3a72/AzsB17r5v6mBwDLALsArwNvB34Lfu/n9l0unSd75ainrjjQVagK8DnwLWIarQnk95OMvd3y6T1mBgP+BgYGuig8t84FniMz7X3eeUOX7mpXg72j7LaijVw7Ko5+QngeuJaslDgY2BUcDrwK3E+eGFCo41kngf9wOmEO/rS8DVwNl572NXeq+b2T7E9+z9wFDgReI390t3n5WzfeFrXNY7tOA9yRxmZlkePu/uFxalswLwJWBfYANgNDALeBS4FLjS3VvK5LsJ2DOlsQlx3nyVeF9OL7VfX6ibkqCZfRb4N/EBbwysACwPrAnsA/wR+LuZrdKLeTgfuBHYnfiQhgMGfB+418xGmNkRRGPyIcAaRBBaPT1+1Mw268X8/Q9xYjkO2JT4Ii5PnDwPBR4ws9+Y2dBO0tkReCqlswHxXq8IbAf8AnjEzFYqse8EIuBeDuxNvPZhxIlvRyL4uJlt38nLmQjcD+xWcPz3Eyfe7Fi7p3x+mTihDCNO2B8CrjCzy8i/kLsYyALHwZ3k43NpuZj4MXeZmX2V6GF3KBGolyO+Px8HrjGzP6WTQPF+Nf/OZ1kBniA6qGxGnPxHApsDPwKeTCfTjjuaTSI+xyuI78NqxOe0EvF9+jHwQvos69kKwB3A74iLm/HE57gOceJ+ysw+3kkaGxDf1x8T791I4je6WXrun2a2VnczaGa/AK4FPgyMAUYQAeUE4Dkz26m7aXdy3K2J887/Er/x8cRnvBpxEX0ZcX5crcT+w4mLqRuI38RE4nu+HvA94ru3Tm/kvRJ1EQTNbArwe+KNfYn40u0IbE8El6x0szlwXsGu5wNbEG9uZov0d0QXs3EYUaJw4EhgB+IEOS2t34S4avkN8F/ixLU98aHemrYZBZzVxeNWJF05/5b48rxElER3Aj6Q8vt42vQLwP8rk9Rw4op3NPBrIuB/gCj9Tk/bbAqckpOHEcBdxHvTSgSbTwLbAHsAvwIWEYHxNjPbuEw+vk78mM5Ir+MA4NTUkI+ZbZfyuQIRoH5GBL+diBLtO8CBtAWxZdKV9C3p4YfMbPW8DKSLhQPTwxvdfXaZ/JayHfGZvw38APggcRI9NeWblMdPFx27u9/53nAtEbwvIwLZdsDniRMfxEnr18U7mdnKwO3Atump+4jXuh3xu7gAaCYuXG40s48W7H498Tv9TcFze6bnOgs2vSH7fj1EvIZtiVLP7Wn9csCFqaRXyonE+3gDURLcgTgPZSWxdYlzVnesT/xm5gDfTWnvDlyU1o8Fbi51sZLj48R7nbmBtnPn9dmT6Td8F3HB/w5RatuNeH8+TXx3IM4ht6VzRLGLiPcS4qLvMOI7sh/x/k4Ejq8w31VXL9WhBxNfsmZioOTLBeseMrMrgb8Rb/QnzWy8u7+VTnYzzGzZycvdH6d7xhMf0E4FVRYPmNljwJPp8e5EUNzW3d/MdjSzW4kfz9bAB81sjLvP7WY+Okgn8XPTwzuBfdx9QcEmD6YqlT8BBwFTzewKd7+FjoYRPfI+UbT+QTO7mXitKwCfNbNj3H1JwTanABsRpaxPuvuNRWnfYmZ/Au4mroJ/R3zZ8wwigl7hl//q9HoHEdWkQ4lAsqu731Ow3X3pO3EPUeLKcyHwiXScg4iTXLHdic8dotTVHasQ1dHbufsrBc/fY2b/IkpIENVsVxSs79Z3vpt57MyqwJHu/tuC5x42s2uJ8XurAR8zs1WLqupOJa7mAc4Gvu7urQXr/2JmVxG1K8OAi81sHXd/N11wzDazwvSezi6CamBV4mQ9tbBaz8yuJ/L/ceK7tiftP8di33L3nxc8fsDMriHex1WB3c1sQuH5o0JNwAxgx6Jq2VvN7GHi9zKSqIk5oLPE3P1pgFT9DDC7xLnzYqLE+RqwS9GxHwGuMrOjifPT+4gLwe9mG5jZrkSwgzh37VnU1HJNGuN9TGd57i11URIkvhwQ7QjTi1emE/GJxA/tG/Revk8orrN396doP4bm5OIvcPrRZKXRJuKKr5q+TASmpcChRQEwy8NSojQxLz31tTLpXZMXIN39JdqufEcT1awAmNkYosQJcEFOAMzSeJQo3QFsa2bb5m2XdChdJDsSbbIQbTH3FG/g7v8h2jRLuYFos4DSVaJZKXIm8JcyaXXmJ0UBMHMVceUOUSVWqF6+8wB/LwqAWR7mAlemh01EDQGwrBQ4NT38N/DNogCYpXE7ESwhLhgOK96mTiwigni7dq30mi4oeKpcc8ejRQEwS2MObVXtTUTVd3d8Na9d0t3PJS6YAPZN7f09lgLY5unht0q1ibr7eQXH/1JRc8wX07KZaJ/P62twLAXNIH2tXoLgf9JyReLKYsPiDdz9Dnf/mruf1Y2rqEq0EMX+PK8X/H9niW0K81SuyqQ79kzLp929wwkzkzru3J8efrBM2+BtZY5V+EUfVfD/LkQghrZAWcrNBf9/pMQ2r7v7ayXW7VXwf8lOLcQVeW6J290L2/i2KP5OmdmKBce5pKjE21W572c6gWZVYaOKVtfDdz7Tne/Dh2mrSfqtuzeXSaPwYmePLuatr/yjTHV4qfegWLkLqecK/s9tb+/EW0DJDla01WQMIT6batiz4P9Kf/OjiRoxzGwIsGt6/v4SF4rZBd/FPchnj9RLdeifiE4aaxAdAvYxsxeJN/4O4I5qVi+W8FapHo1A4dXLGxVsU25wapekL9Im6eGmBb0rO7MCceWdF2imldmv8D0o/H4Uth9cU1CN0plSDd6vltknu/qc5+7PldrI3Zek6uoPldjkD0RPWoh2tsKq1wOI9lXoflVoZlqZddn7Wfxbq4fvfGZamXWlvg/vK/j/oXKJu/ub6bWtQ9t3ud5MK7Ou1HtQrNRFHURJs5I0Snm0kwuNxwr+r9Z7XPibn93F3/wDRN+A0em5zpqpHula1qqnLkqCqbrgo7T/Ma1DFKWvAt4yszvN7OC8XnZVUtHEvb3RXb0TY+n+5zS2xPOlgj1Eh5dM4Xs9vnjDHua
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 480x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAFGCAYAAADaYs5eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcHFW5//FPT1jCJAGyEIKJBEjgwXDBXYzAJSrigiCKuAGScEFREZcfi1dQQEUQrooLyr2gBEFcUF4aWRQIiwKCoEEi4BMWkyiIkGGRCQlhZvr3xznFVDq91nRNd89836/XvGq6a+nT3dX11Dl1zlOFYrGIiIiINKar1QUQERHpRAqgIiIiGSiAioiIZKAAKiIikoECqIiISAYKoCIiIhkogIqIiGSgACoiIpKBAqiIiEgGCqAiIiIZKICKiIhkoAAqIiKSgQKoiIhIBgqgIiIiGWzU6gIkzGw3d7+7zPMLgcPjw23c/dFhLdgQmdk84Ib48L/d/cwWlWM5MBNwd9+5zPyNgROAQ4BtgX7gn8ACd//98JW0fmY2H7gwPny/u/84wzZuBPYGVrj7dhWWGZH75mhkZuOBqe7+UA7bXkhO+4OZbQf8LT78X3c/OsM25lPh99KMstc6xsRlyv6WhkvJ53iau586lO21PICa2RbAF4CP0QblGcUuAd5T8tzmwCMtKEtb0L45spjZe4GvAicDTQ+gUpmZTQP+B9gD2L7FxWmadjgofA04otWFGM3MbGcGg+cK4DOEs7SJ7r6iZQVrPe2bI4SZ7QU03EIhTfND4A2E48uI0Q4BdEy1me4+H5g/LCUZvXZJ/X96lqbQVnD3hcDCHF+i6r4pHSX377Ldj1V5/14qXQKJRuRvSZ2IBGBc6v+/VVxKREReoAAqsP5+0NeyUoiIdJCmNeGamQEfBd5IuEjcBawC/ghcDlzq7n2p5U8FTinZRjH+e5O7z4vPLaRC77BUr6+vuvtxZrYfcAzwSmA8sBL4OXCWuz8d13kZ8P+A1wNbxTJeD3zR3ZcN+YOoIfZ2/QjwfuAlhO9gJbAIOKda7zczGwscBrwNeDkwBdgYeBL4C3AFcL67r66zLDcSeqCm3RC+SgBe7+431rOtKq/xW2Av4ClgsrsPlFnmB4T3BXCwu/+szDJvAq6JD9/m7lfX0wvXzLYEPgwcDMwCCsCfge+4+08qlPlU6tg3y6y3HXA88BZgOvBv4F5Cs9lF7l4st141qbI87e5bxs4Ynwb2J/SWfh64D/gJ8F13f67CdiYS9ru3A3OAbsJ+81fgKkLPzqcaLV8d5d+OwVaNdxL28/nABwmXDiYADwO/IfyOH6yxvbnAhwj71HTCCd9KYDHw7dLfcMnrJy40s2S/2d7dlzf+zsqWbSG1j1XfcPdPmtkbCMfLuYTf8RPAzYT98gZqMLMC4TczH3gp4ft8GPg14TjyQJl15lNnr3Uz2w34b8JxcktCZ8LrYvnvqbBO8h5f6IVb8pkAzEz9li6Kzd6l7+s9wAeAVxE+m2cI+/gvgfPcvbdSueM2Xgp8ivDZbgv0ANcCZwJlfx9ZNaUGamYfAO4GjiX8KLqBscAM4B3ARcAdZrZ1M16vQhnOIwSQtxAC42aAAZ8Ffmdm48zsSOAPwKGEH98mwIvi4zvjB5+nbYA7gW8ArwW2IDSfvgQ4Efizmb283Ipm9grgfuD/gAMJO+q4+B62Jpy4fB1YYmbT830bDbkiTrck/CDKeWPq/3kVlnlbnPYSTnhqiidL9xJ+OK+MZdgC+E/gx2Z2Mc1rhTmI8CP/KLADsClhP9ybcNC60syGdMJqZnsC9xCC9M6E39kWhH3p68AfzGxSmfV2i+udTjiobEE48ZpK+CzOBB6MwSlP3YSD8PcIn8sUwue0AyG432Nmbyu3opltGg/GtxKCxizCMWY84YTg43H9z+b7FobOzL5CCPgHEY4/mwDTgHcD15vZF2tsYgIhIFxECHCTCJ/FLEKP8SVm9uYhFPE9hOPU+wjHlk0JlaKjgLvM7BND2HZFZjYV+B2hs9cBDH42k4E9gbMBr7afmtlngCWEoL0T4XOZTthn7orbbZohHzzMbDbwfcIb/Rvhh7An4Yd6KJCMIXwZ8J3UqucRalG/Sj338vh3ZIPFOJxQy3DCl7wH4exseZy/K/Az4H+BfxEC/VzCQfk3cZkJhMCWp2OB3Qg7ySHA6wif0Z/j/KnAJfEs7AVmNpnwg5lBGJ95ASGIzgX2A04i1KQBdiR0F6/HkYTPO13bOorB7+HO+t9aRVek/n9T6Uwzm0P4oSTmVdhOcmC9plItq2S704GbCCctRUIt8C2Ez/wThDGuhxL2lVJZ9s1vE2q358bXeT3he0laA95KqDlmtRmh9rY58F0G38sxDA412o0QJF9gZmMI+/42sSynEk5YXkM4uf1hXHQScJmZbTaEMtbyVcLnchvh97k7YT++Ns7fFFgYx2qm30MXcCmDNZkVhO9wT8L+cgqhhWMj4PRYa088Qvjejko9dwqD3+dwD9N6L2G89d8JtaTXAfsQjo1JzexkM3ttlW18gPAd3k3YH/cgBL2k5joe+IGZTchYxnMIseHc+Dp7AV8EniV8xueY2UF1buvzhM/5j/HxPxn87D+fLGRm42L59yB8DpcQWixeQ/jtfAtYSzhWXGNm6Y6PyTaOAc4g/A5XAccRPt99Ccf+TQgnmk3TjCbcQwg7fj+hyS/dTfk2M/spcCPhjbzTzKa4+6rYvPGomT2RLOzud2UswxTCzrSXu/87PnermS0hNG1COOAsB3Z398eSFc3sN4Qf9KuB/zSzLfNoykr5JvDJVHPe783sMuAOwgFwDqGmdkdqnU8RDnAAx7n7OSXbvMrMLiLUMrYADjSzjdJN5uUkzTyxppZ4YAjfQ7nXuNfMHiLUMt5EyQGecPCA0BS5MTDHzLZy98eTBcxsFuFsEkIQqcdZhGAD8CF3vyA17/dm9hPCicyOZcqcZd98DniDu9+aeu5GM7uewZPIw2O5stiE0JPx7e7+69Tzvzezqwj7eTfwATM71t2fj/P3ZPA9ftjdf8j6FpnZI4Ra7XTCicrPM5axlmnAxcD8dFO+mS0inGi9jVBr34/QJJ14P/Cu+P8twFvd/ZnU/Jvi/n8jsB3weTO7wt3vdPd1hFrTlqnlVzZzH2/QNMLvdC93fzL1/GIzWwF8JT4+nHBcquRyQjPsuuQJM/sZcCUh4EwlHPMuy1DGInCgu6dPfm82s18RTko3A75pZotS+1lZ7r4SWGlmSbPrugqf/emEY18f8M6S1wb4dbzUcxPhBOF7hJYXAMxsK+BL8eEjwOtKYtG1ZnYt2T6PiprRfDUtTnspczYXP+BTCIHjU016zXJOTgXP5LXvITSrJU5LB8+4zACDNY0CoRkkL48Ax5deC4s/gvQB/j9K1pse132UcFa4AXd/mHAAgdBsMbkJ5W2WK+N0bjzTTEsC6MWEH26BDa/LJrXP/tS2KooHy2Rc63UlwRMAd/8XodWiWb5dEjyT17kN+FN8uPMQm3EvLwmeyWv8jcFa3OasP1B9Wur/+yts9xvA+YRrXhtcO2uitYSTx/Wug8ffw/mpp0ovpRwfp88B7ysJnsk2VjA4hKSQWqcdnVASPBPnM1gLrXY56TnCSeG69JPxc/xu6qnS40i9vlsmgOHudzAY4F9EaMEYsvh7TVoIzi/32vH172TwBHR3M9s9Nfu9hMoDhM93g/Gm7v5zwnGmaZoRzP4ap1sQmoBeUrqAu1/n7p9w92+UBrAmGWCw+aLUw6n/F1dYJl2m8RWWaYbFpTt9Svrgtt51LHdf4O7Tgek1zvjSHZA2zVjGPCQ/iE1IBccYTJLHPwOSDiCvL1n/rXH6e3dfRW37Mti6cmmlhWJnjWYN27mqyrzku+1i8EeexTVV5qU736Sb7v6a+v9CM3tDbBJ9gbs/7O4fcvcz3f3P5OeP7v5EhXllyx87TSXB5Ep3/0eljbv7TYRr3gD7lr7PNtFHhWv4MagmgbVa8+sf3L2nwryKx5EG/F+VeRel/t834/ZLzSO
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 480x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHGW59/HvzIQtJEBC2GQJS+BmkU0ERPDI0aOiyKLgCghBEDgCvsqiICKoBIWDR1AUZBHZRFBEcOMAIggIKIISlps1AVmEkAAJIZDMzPvH/VSm09PrdPd0z9Tvc11z1XRX1dNPV3fXXc9aXf39/YiIiORRd7szICIi0i4KgiIiklsKgiIiklsKgiIiklsKgiIiklsKgiIiklsKgiIiklsKgiIiklsKgiIiklsKgiIiklsKgiIiklsKgiIiklsKgiIiklsKgiIikltj2p2BZjOzLdz9nyWevwjYPz1cw92fH9aMiUhJZrYu8JK7z21B2jOAyYC7+8ZNTvsA4Cfp4afc/YohpHERZc5LjeY9Hdcn08Nz3f3QEtt0AW919/vrTb9Zio7jf7r7n4bz9UdNSdDMVjSzM4G/tzsvIlKdmS1jZicCDwIrtzs/eWNm2wB3Ake1Oy/tNJpKgt8FDmx3JkSkZscCJ7c7Ezl2N1EQeqjdGWmn0RQEeyqtdPcDgAOGJSciUouKv9lmcPd1W/0ajWjlecndZwBdFTYZNTWBjdBBEBGR3FIQFBGR3Oq46lAzM+C/gfcC6xGBehZwD3A1cLm7LyrY/iTg60Vp9Kd/b3H3ndNzF1G9F9YZ7n60me0KHA5sA4wDngJ+CZzm7q+kfbYiGpT/E1gl5fGPwDfd/ZGGD0QRM9sZuDk93AF4APgKsDewDrAAuBe4gDhG/SWSaUY+ZjBMx8rM1gMOBnYG1gcmEu/zRaJB/yJ3v6Fon7cCfwOWAd4AtnL3h0uk/R7gRqK66BHgbe7+Wo3H4E/Au4Ffu/ueqYPBkSmfqwGvAn8Fznf3X1VIp67verMU9cabAPQB/w/4KHGcu4DHUh7OdPdXK6TVA+wF7ANsS3RwmUcc098CZ7v7nAqvn3kyDgczm1mFWa6HZVHPyY8A1xLVkp8BNgPGA88A1xPf9cdreK1xxHHcC5hCHNcngV8AZ5U6jvX0WjezPYjv2duApYAngF8D33P3l0psX/geF/cOLTgmmf3NLMvDVHe/qCidscBhwJ7AxsAKwEvE7+xy4Ep376uQ7y5g15TG5sQ54GniuHyn3H7DpaNKgmb2aeCfxAe9GTAWWBZYC9gD+CnwVzNbrYV5OAf4DbAL8WEtBxhwPPBnM1vezA4iGpX3BdYElgbekh7/zcy2bFX+klXT6x8PbEQco5WIIHMpcLWZLdviPLT0WJnZccSJ9Dgi6K9G/PDHEyfqTwP/Z2Y/LNzP3acDX0sPlwHOSz/CwrRXIr5LXcBC4NO1BsAS+TyCCMifIS5GlknH4kPE53Bx8eun/dr+Xc+yAtxPdFDZkji+44CtgG8A09PJdPCOZpOB24GfA7sDaxCf70TgHcA3gcfNbJfWvoWGjSUuiC4gLm4mEZ/j+sSJ+wEz+1CVNDYmLky/SRy7cUSw2DI993czW2eoGTSz/wWuAd5D/NaXJwLKCcCjZvauoaZd5XW3JX6H/wPsRBybpYnPejfgZ8RvfY0y+y9HXExdR/wm1ia+5xsSv+37iePcNh0TBM1sCnAhcYCfJL58OxEnwH2Bv6RNtwIKT3znAFsTBzmzdfo7qM5s7A8cAjhRAtkR2A+YkdZvTly9nAv8mziB7UB8uNenbcYDZ9b5uvU6l/jR3Utcgb+DuIrNenntSZxEW6llx8rMpgLTiJqKfwFfBt6f9v8EEeizK8/DzOwDRUmcAdyW/t8JKB4f9UMi2ACc4O731PaWB3lHyv+rROD9D+IkOg14M22zH/Dxwp0a+K63wjVE8P4ZEcjeAUwlTnwQJ60fFe9kZqsANwDbp6duI97rO4jP+Dyglyhp/sbM/qtg92uJ3+e5Bc/tmp6rFmxa4QziAvJO4j1sT/yGslqGZYCLUkmvnK8Tx/E6oiS4I3H+yUpiGxDnqqHYiChhziFqf3YkLjwvSesnAL8rd7FSwoeIY525joFz5rXZk2a2GVH7tCYwlyi1vZ84Ph8nvjsA7yQuSJcv8VqXEMcS4qJvf+I7shdxfNcGvlpjvluik6pD9yG+bL3EgMmZBevuNLMrgT8RB/wjZjbJ3Wel6oPnzWx2trG73zfEPEwiPqh3FVRd3GFm9wLT0+NdiBP99u7+QrajmV1P/Ii2Bf7DzFZy95eHmI9qVgd+B3zE3bOT7V1m9gviivYdwMfN7Bx3v7lcIg1qybFKpaZvpE1fBv7D3bMTCWm/K83sLuD76bmPMRBYcfe+VL3zD+KK/Ntmdq27P2NmnwQ+lTa9mbjCHarVgOeAd7j7UwXP32pm/yBKSBAXKD8vWD+k73oD+axkdeBgdz+/4Lm7zOwaYvzeGsAHzGz1oqq6acTVPMBZwP8rqoL/vZldRdQULA1cambru/t8d58NzDazwvQeTL0Z22F14mR9QGG1npldS+T/Q0TpfleW/ByLHeXu3y14fIeZXU0cx9WBXcxs1cLfQo26gOeBnYqqZa9Pv4MfEN/z04nfQkXu/iBAqn4GmF3mnHkpUeL8F7Bz0WvfDVxlZv8NnA28lbgQ/Eq2gZm9jwh2ADcBu7r7GwVpXJ3Gdh9ZLc+t1DElQeJLAtGe8GzxSndfSFxtnQV8kdbl/YTiunt3f4Alx9KcXPxFTj+erDTaRVz5tcocYL+CAJjl4TWiWi77IQ+aIaLJWnGsJgOzgVeAnxQFwEKXFvy/ZvFKd38CODo9XAH4npmtTvxgSa/xmUptGTX6VlEAzFxFfE4QVWKFOuW7DvDXogCY5eFl4Mr0sAvYIluXSoEHpIf/BL5Uqg06tddOSw9XY6Dtq9MsIIL4Et+F9J7OK3iqUjPH34oCYJbGHKLdDOI4bjbEPB5Rql3S3c8mLpgA9kzf8YalALZVenhUuTZRd/9hwesfZmZLFaw+JC17gQOLAmDmaKL9uW06KQhmnRdWJK4wNinewN1vdPcvuPuZQ7iaqkUfA51Pij1T8P9NZbYpzFOlqpNGXZGupgdx90cZqArcxcxaVdpvybFy9xnuvqW7r8RAECvlFeD19P8ypTZw93OBP6SHe6f/J6bHB7v7vyqkX6v/K/Pa/QxUhY0vWt0J3/VMyfwnhSe+wvfwHgZqkc53994KaRRWpX6wzrwNl3vK/Z4ofwyK/b7CukcL/p9YdqvyZgFlO1gx0PQxhvhsmmHXgv9vKLtV+F1arkDU7pDOO+9Lz99e5kIxu+C7tNS64dJJ1aEXA8cQV/V7AHuY2RPEB3AjcGMLqxczs9x9Xpl1hVcxz9WwTaVBqo26vcr6vxPtUysQnVBKfgEb1PJjlV2Zm9kKROP5BsAmRNvFTkRHHKh8MfdZonp2AgNX8he4+9UV9qnHjArrsuNT/DvrhO96ZkaFdYWfb+F7eGvB/3dWStzdX0jvbX2inbgTzaiwrtwxKFbpgmpBjWmU87cqFxr3FvzfrGNc2GY4u6DqtJr1gTuI884K6blqzVN315e15uqYkmCqNvgvlvxRrU8Uqa8CZpnZTWa2T6nedk1S0wS+rei2XqdBVWhFXiz4vynVIyW09FiZ2SZmdp6Z/Yso9d1LdLT5JtGVf5UaX/9ZogddZiExXVczvFHl/WVVhEt8Xzvku54pdyEDA/mHJd9D4TyftZRS/52WQykFDYehHINitU7+PZTPs9oxLmwvbtYxnjTE/SakZWGv5kHDN4r8u8r6luqkkiBpPNcOZrY90aD6IQbq0HuIov57gKlmtpu7v146pSFrd3CrVbV8Fk5H9WbZrVqbhyFLvUN/zJLfz9lEW+N04C6i1PQw0XBfKa1uBjrCQAyzOJaCBvx26IDveiPqPZFn38dG2187WUvG5dao8PMo1e42FNlvbxYD1Zq1yJpCar14gLgwbZuOCoIZd7+LONEdmxp63wN8mOhquxwxuPh
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 480x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xn85XPd//HHbMKMZQwiu8GLkSwVuVDaxHVZylLZh4uipF9XlOLKUknUdSWmSMme/ZKyFBJZhhLZ8hrbUCLLGGGMMfP9/v54vY/vx5mzn89Zvt/P8367fW+f7zmf5bzP53zOeX3e+6jBwUFERESKaHSvEyAiItIrCoIiIlJYCoIiIlJYCoIiIlJYCoIiIlJYCoIiIlJYCoIiIlJYCoIiIlJYCoIiIlJYCoIiIlJYCoIiIlJYCoIiIlJYCoIiIlJYCoIiIlJYY3udgGaY2bvc/d4Kz58F7Jserujuz3Q1YX2i2vkpKjNbBFjT3R8qe3514PH08HR3P6jbaZPmder67vT1kMfvk5nNBFYD3N3XzTy/Om2m3cymAj9PD3d39wsrbDMBWN7dH2v2+HnJnkd3H5XXcYdFTtDMljKzk4E/9zot/cjM1jKza4Af9jot/cLMPgLcC3y612mR9pjZCmZ2HvDLXqeliMzsU8BDwPt7nZZOGC45wf8B9u91IvrYb4A1gZt6nZB+YGarANf1Oh2Sm/OBDwFP9DohRWNmWwEL5QxHkuESBMfUWunuU4GpXUlJf6p5fgpI52Nk6ejn6e4zgdyK1zrB3Vfv4LHPAs6qsnrEf5eGRXGoiIhIJygIiohIYY0aHBzs2ouZmQGfAz4MrEEE4eeBu4DLgQvcfX5m+2OAo6sc7iZ33zptdxZVWl9lWlV9390PM7P/AA4B3g1MAJ4ELgNOdPeX0j4bAV8GPggsl9L4O+Cb7j6jjVNQk5l9mKj7/DfgHcA84BngFuBsd/992fa/Bz5Q5XDHuvsxabuZxDk4GfgOcAqwLVEENBP4jrtfkDnuKOCTwB7Ae4BlgZeBvxKNE05z91eqvIfSBfUld/+Bme0MHABsAkwE/gncCPzA3e+ucz52AD4LbAoslfa9Dviuu88ws7nA28rea60L+oPu/vvyFnXAwcDeRJH6hsDiwFPAtSmdj9RKZ43053Iumr0u8pL5Xv3F3Tcys7WB/wd8DFgJmEM0PjonpWOgxrGWJN77TsA7gSWAF4C7gUuAc7Pf/bLXr+TsVA3StlotLMtaTk4EBohzsDNRDz8KeIT4/TrZ3f9V4fhnkfl9AhYFDie+gysB/wIeJIokz3b3ha7hRluHEr9tX0ivtw4wF7gf+AXwU3d/o8Kxs+9xd3e/sOy4layRipGzx1klvfbHgNWBRYCngT8Qvxm31zgeZrYY8R3cG1ibOE8PAT8DfgKcyXBuHWpmexBfmEOB9YkfmkWBlYkvxtnAH83s7R1Mw2nAr4mLbzlgMcCArwN/MLPxZnYAcCewF3GBLkL88OwF/MnMNuxQ2k4FricCz+rpdScAaxEXxo1mdq6ZtVOPuyRwM7Ab8SM0gfhBeiqTjuWJi/ZCYEfivS8CTAK2BE4C3Mw2r/NaY8zsfOIGYzvg7ek4qwD7EOfywEo7mtloM/sJcCXwH8RnVdp3f+AvZrZLs2++iiWIwHo2cdOzDHFdTgY+D9xtZh9r8zXaORfduC7qSuf7HuImdjJxjpYBtiZ+nH5jZm+rsu8HiR+z7xMtDJcBxgErEOfjTOI8T+7ke8iBAfcBxxI3S6Xv0EbAccD9KXjUsgtxM/k5Ioi+jbi+P0AEoqva+CwnAL8nGhJuSPy+TQS2An4E3GVmK7Z47JrM7D+BGURwfxfxW7MokdnZB7jNzE43s3FV9l+NaP3/I2Bz4sZ7AnET/mPgt+l4uetKEDSztYgLfRHi7uJg4gd1cyK4lO4QNiJOQslpwMbArzLPbZz+DmgyGfsSuQoHDgS2IO44Zqb1GwCXEndT/ySC9ebAvxOtLyEu+pObfN26zGxv4gcXooXn7sBmxBfjUCK3CnGuDs7segBxLp5Oj+9i6PycVuGlSneHP0vH3hE4xd1vSukYT+RMtgAGgfOATxA5se2IHORcIjD+1szWr/G2DiN+uP8KfAZ4XzrGRWn9aOAUM1u1wr4nE58RwKOZ/XckAsmixJ3tIhX23ZgInCWnM3RO/lRh+z2Ikol7ifO5BZELvjGtnwCcY2ZL1Hiv9bR0Ltq4LvK2KtFCE+BE4nxtCRxB5GIAPkLkkN4i3SxdReSAStfUjsT7+DTx4wZxM/aHsh/pbxCf213p8dMMfZbfyOF9NesK4lz8gngP7wP2I378IW5qflznGKcSucdpxM34B4EjgVfT+u2A/2oxfXsQ1++DKV3vI67lW9P6DWg8yP6DOM/Zm7OjGTr//yg9mXKSPyW+l48TpWhbESUXBxI3TxDX/k/KXyj97twElHK4v2To/B5AnN8PEzfvuetW69A9iTueBUSRVLap83Qzu5i4g/k34BNmtqy7P5+KNZ8xs1mljd39HlqzLPFDt1WmyOI2M7ubKC6AuChnApu5+7OlHc3sN8B04L3A+81saXef3WI6Kil1/3gQ2Mbd52XW3Wxm/5fSPpG4kE4BKBXTmVlp+1fqnJ/RRJFz9gYie4PxbWAKMB/4hLv/umz/a83sHOKCnUAE0/dVea0VgBuA7d19btkxXgQOIq6J3YHvllaa2cbEXTJEjvwj7v5yNr1m9mXge5Ve1N3vMbPsZ/NMA9fM5UQx0Jvn3cwuJX68twOWJ66NS+ocp5qWzgUtXhcdMJH4kd6y7FzeamY3AbcRP+xTeetnOYa4+V2MKEb8lLtfmtn/TuAiM/sGkbtakbhp2RHA3Z8EnjSzUtH7vDa+/3lYATjQ3X+aee4OM7uC+IxWBD5mZivU6BD/OvAhd78t89zvzex3DGUG9iVuNpo1ivhubufur2XSdxkRuD9JBLDPEkG4qnSt3WNmS2eefrL8/JvZOzLHugHYyd1fzWxyeyoOPoe4vqea2UXufm1mm68TRb0A33b3ozLr7jCzC4nSmnqlTy3pVnHoCmn5Cpk7iJJUTn000dn7Sx1M11HlZfbu/gBxh15ybDYApm0GGAoWo4jioDyVzs8TZT90pdf/O3HneyKRY2inPLzinWq62Et3fWdUCICltPyJoS/oZma2WY3XOrTsR7/k9Mz/5cXLXyA+/0Fg37IAWErD94kvXB5eBz5Tft5TvUz2XL2zzddp5Vx087qo50eVApC7TycCMcC6ZUWiOzB0d//jsgCYPcZxxE0wwA5mNiWfJOfuj2UBEIB0Q3xxejiKKA6s5tSyAFg6xnSGBgNZt8Ui0deBPTMBsHTsAeK7/VJ6Ks9Sg88TVVvzgX3KAmDp9een1yy9/hdL68xsNEO/O06FNiDpmPsQN1K561YQLA1btRRwiZmtV76Bu1/v7l9095PLg1BOBhgq4ir3VOb/aj+u2TRNyCVFQ0rnZ1sz+3aql3sLdz/V3b/q7j+pVHHeoPlULhKEqNtZPP1fr6P51Zn/P1xlm6fc/cEq6x7N/P9mMWP6QpSKMm/3suHOypxeY10z7nT3F6qsezjz/zJtvEbT5yLp1nXRiN/WWJd9D9nvRrYutd7nla0G2bbRRHVZo+egVtH51TXWla630cRvZbOudvenKq1IN/9XpIfrpxxcHkrf1wfdfaEMTub1X2KoWPb9mbrB9xB1ogAXufuCKvs/QrRnyF23ikPPISpMVyIawexkZo8RP7bXA9fnXLxYyfPVWjQSd1AlTzewTd533N8Dtic+j68DR5jZn4lzcx1wS6WcQAuer5IbgSgmKbk8GvI2ZM0qz8+ssU/2c8hegysSRY9QPViX3FFnfaP+XmNd9ly1812ZWWNdtXMB3bsuGjGzxrpq7+GdmfX3U9v0zP8bNJ6srppZY12tzzGrk9dbve/E3Qy1Ut2ACqVyzUi51dJn9a46LbOzFicah/2doZICGKo7rOZO4mY9V13JCbr7i0TFefZCX5Mom74EeN7MbjCzPTtYpLNQsVol5c20u8HdbyU
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 480x330 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"\n",
|
|
|
|
|
"density = True\n",
|
|
|
|
|
"cumulative = True\n",
|
|
|
|
|
"histtype = 'step'\n",
|
|
|
|
|
"lw = 2\n",
|
|
|
|
|
"bins = {\n",
|
|
|
|
|
" 'stim_energy': np.arange(0, .4, .01),\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" 'stim_half_width': np.arange(0, 1.5, .01),\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" 'stim_p_max': np.arange(0, 1, .01),\n",
|
|
|
|
|
" 'stim_strength': np.arange(0, 50, 1)\n",
|
|
|
|
|
"}\n",
|
|
|
|
|
"xlabel = {\n",
|
|
|
|
|
" 'stim_energy': 'Coherence energy',\n",
|
|
|
|
|
" 'stim_half_width': '(Hz)',\n",
|
|
|
|
|
" 'stim_p_max': 'Peak coherence',\n",
|
|
|
|
|
" 'stim_strength': 'Ratio',\n",
|
|
|
|
|
"}\n",
|
|
|
|
|
"# key = 'theta_energy'\n",
|
|
|
|
|
"# key = 'theta_peak'\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"for cell_type in ['gridcell', 'ns_inhibited', 'ns_not_inhibited']:\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" for key in bins:\n",
|
|
|
|
|
" fig = plt.figure(figsize=(3.2,2.2))\n",
|
|
|
|
|
" plt.suptitle(key + ' ' + cell_type)\n",
|
|
|
|
|
" legend_lines = []\n",
|
|
|
|
|
" for color, query, label in zip(colors[1::2], queries[1::2], labels[1::2]):\n",
|
|
|
|
|
" data.query(query + ' and ' + cell_type)[key].hist(\n",
|
|
|
|
|
" bins=bins[key], density=density, cumulative=cumulative, lw=lw, \n",
|
|
|
|
|
" histtype=histtype, color=color)\n",
|
|
|
|
|
" legend_lines.append(matplotlib.lines.Line2D([0], [0], color=color, lw=lw, label=label))\n",
|
|
|
|
|
" plt.xlabel(xlabel[key])\n",
|
|
|
|
|
" plt.legend(\n",
|
|
|
|
|
" handles=legend_lines,\n",
|
|
|
|
|
" bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)\n",
|
|
|
|
|
" plt.tight_layout()\n",
|
|
|
|
|
" plt.grid(False)\n",
|
|
|
|
|
" plt.xlim(-0.05, bins[key].max() - bins[key].max()*0.02)\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" despine()\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" figname = f'spike-lfp-coherence-histogram-{key}-{cell_type}'.replace(' ', '-')\n",
|
|
|
|
|
" fig.savefig(\n",
|
|
|
|
|
" output_path / 'figures' / f'{figname}.png', \n",
|
|
|
|
|
" bbox_inches='tight', transparent=True)\n",
|
|
|
|
|
" fig.savefig(\n",
|
|
|
|
|
" output_path / 'figures' / f'{figname}.svg', \n",
|
|
|
|
|
" bbox_inches='tight', transparent=True)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 28,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"from septum_mec.analysis.plotting import plot_bootstrap_timeseries"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 29,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"coher = pd.read_feather(output_path / 'data' / 'coherence.feather')\n",
|
|
|
|
|
"freqs = pd.read_feather(output_path / 'data' / 'freqs.feather')"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 30,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"freq = freqs.T.iloc[0].values\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"mask = (freq < 100)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 31,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAFOCAYAAACBlgugAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXmcHFW597/V3bNlXwgQQgghkIKA4IasIhG4CN4LXhQvgvgKArKoV95clctFL3IVQbmIooLwirKpLIZVAZXNhGACQkjCUklIJnvIzGTW3mo55/2junt6m7X7VM/UnO/nk/RMd3Wd0zXVp371nN95HkNKiUaj0Wg0Go1GM1aJ1LoDGo1Go9FoNBpNLdGCWKPRaDQajUYzptGCWKPRaDQajUYzptGCWKPRaDQajUYzptGCWKPRaDQajUYzptGCWKPRaDQajUYzptGCWKPRaDQajUYzptGCWKPRaDQajUYzptGCWKPRaDQajUYzptGCWKPRaDQajUYzptGCWKPRaDQajUYzptGCWKPRaDQajUYzptGCWKPRaDQajUYzptGCWKPRaDQajUYzponVugOjFdM0xwHfBM4B5gLdwD+AWyzLeqqWfdNoNBqNRqPRDB5DSlnrPow6TNMcDzwLHAU4wBpgOrBfZpNrLcv6bo26p9FoNBqNRqMZAtoyMTx+ji+GVwLzLMv6oGVZc4AvAC5wrWmaJ9eygxqNRqPRaDSawaEF8RAxTXMe8HlAAOdZlrUl+5plWfcCN2R+vTb43mk0Go1Go9FohooWxEPnfCAKvGxZ1ltlXr8983icaZr7lXldo9FoNBqNRjOC0IJ46ByTeVxa7kXLsrYBmzK/fiyQHmk0Go1Go9Foho0WxEPnwMzju/1s05x5nK+2KxqNRqPRaDSaStGCeOjsmXls6WebtszjHor7otFoNBqNRqOpEJ2HeOiMyzym+tkmWbRtn5im+WYfL80GXrAs64wh9E2j0WhGNHrM02g0IxEtiIeOx+Aj65Ukea4/8MAD/6XCfWg0mnBj1LoDVUSPeRqNZiCUjXlaEA+dHmAq0NjPNk2Zx8RAO7Ms69Byz2eiKAuG3DuNRqMZwegxT6PRjES0h3jotGYep/ezTdY7vEtxXzQajUaj0Wg0FaIF8dB5O/O4fz/bZF9bq7QnGo1Go9FoNJqK0YJ46CzPPB5T7kXTNPcFsgU5lgXSI41Go9FoNBrNsNGCeOg8lHk80TRNs8zrl2YeX7QsqzmYLmk0Go1Go9FohosWxEPEsqx1wG/xyzcvNk0zW6gD0zQ/D3wr8+v3atA9jUaj0Wg0Gs0Q0VkmhsfXgPdl/r1jmuZq/MwTczKv/5dlWX+tVec0Go1Go9FoNINHR4iHgWVZbfge4u/iL5w7BD/rxIvApy3Lur6G3dNoNBqNRqPRDAEdIR4mlmXFgWsz/zQajUaj0Wg0oxQdIdZoNBqNRqPRjGm0INZoNBqNRqPRjGm0INZoNBqNRqPRjGm0INZoNBqNRqPRjGm0INZoNBqNRjMmkUIiOlO17oZmBKAFsUaj0Wg0mjGJs3Ib8XtfxX59W627oqkxWhBrNBqNRqMZk9h/34zsTpN+qbnWXdHUGC2INRqNRqPRjE3qokhX1LoXmhGAFsQajUaj0WjGJO6WDsTuRK27oRkB6Ep1Go1Go9FoxhyiK0Xq4VUARL44qca90dQaHSHWaDQajUYz5pA9du/PbTpK3Bduczvx+17D29FV664oRQtijaYGiHQCKWWtu6HRaEKMlBJvWycy5dS6KyOS/DFYD8d9k3zyLUR7gtSf3ql1V5SiBbFGEzBOy0Z2/+lH9PzjkVp3RaPRhBh3fSuJR9aQePCNWndlZFKggrUi7hdPIL1wLz7UglgzorF3baDn9ccRTrrWXakaybVLQErSW1YP+b1bt27FNM2y/w4++GCOOuooPvWpT3HzzTeze/duBb3vG3vXBuztlUcQFi9ejGmanHDCCQXPn3/++ZimyY9//OOK21DFVVddhWmanH/++bXuikaD9+5uEBLRNbLHz5qNayJPBCvWw6N5XLv2L7/iw7ddzCUP/qDktTCNeXpRnWZE0/XSvYDEiDUw/n2n1ro71UMKMKIV7WL+/PlMmDAh97vneXR2drJu3TrefvttHnzwQe6++25M06y0t4PC/1vBtE/8XyJNEwNpU6PR9EMEEAIilY01QRLouKaDwkPDMGrdA6VoQawZ+UiJFw822qkWAykllQ4t11xzDUcddVTJ8+3t7Vx11VW88MILfO0rV/Dwj65k/IKPE6lvqrDFvsl58aRApONKBPGNN95IMplk6tSpVd+3RhNKIhGkqHysCZJBjWtf+xpPPfUUkUiFk9z5lokamYhHw7gmkxkP+mg6kYaBtkxoRj4hW+3QvfwBul68E+naA288DKZOncoNN9xAfX09zZu38OLTjxFf/bSStnLkBLG6v9U+++zDvHnzmDZtmrI2NJow4byzC3v5ZqQY/WNowbjW3MzSpUsr3+kIOC4jfVwTuxN4m9v9X0IeIdaCWDNkpJS4ne8hhae2Hc8lsebPpHdaStsJmviqp/C6W0hvXqmsjalTp3LQQQcBsGFnJ17ne8ra8vEvLFIKVM9DSteh5/UnsHeuU9qORjPaif9iGe7qnbhrW2rdlaqQP66tW1eF779eUzcg7tbO3l/CrYe1ZUIzdNIbX6XnjT9RP9Nk0tHnKGuna9l9pN79O7wLEz/0KWXt1AypdsWu67oAjKuPUjzau67Lk08+ydNPP82bb75JR0cHsViMPffck6OOOooLLriAuXPnluxzyZIl3H///bzxxht0dXUxYcIE5s+fz8lHH8ExG3/LxPnHlESJe3p6uPvuu/nLX/7Cpk2bkFIye/ZsTjnlFL74xS8yadLgEuKff/75rFixgovOPp0LPjSZVPNrpI78EieddBJ77LEHS5cu5eGHH+bBBx9k/fr1gO9H/OxnP8tZZ52FUSa6Ua2+aTQjGdmVqnUXqkZ2XBs/fnzZ14YyrmUj5yvkVh5bsYy3jrm+YFz7xCc+wdlnn019fX1JW9Ue1y699FKuvPJKwF9kOGLGNdsd/LajHC2INUMmuf5lkBJ7R/Ujt1JKkq7vV+pq20IyUgdAwvOIOWosBqpoitWVHayyqMxDvHnzZtatW0fEMDjqoL0KXkulUlxyySUsX74cgFmzZjF//nza2tpobm6mubmZJ554gvvvv58FCxbk3nfPPffw/e9/H4A999yTgw8+mPb2dlasWMGKFSt436QE/9NyL3uc/f3ce959910uvvhitm3bRjQaZfbs2TQ2NrJ+/Xp+/vOf8+ijj3LnnXcyb968QX826aZ90Z13bKWUfOtb3+Kxxx5j0qRJzJ07ly1btrBy5UpWrlzJxo0b+Y//+I+C/ajom0ZTDikljq12Rq0cTtT/jkghsdPVETZ19dF+xzWV5Ma1SISPfvSjBa8Nb1yTPCzWcKv8O+wqP649/fTT/OY3vyEa7V2YGNTYMRLGNZnSglij6RvDwI84VndQlFLyr3+6nVd3bep98qNf9x/XrvH/jSKO3HMOi0+/NLCLh+d5dHV18frrr3PjjTcihODf5jlM2rYMDpif2+7OO+9k+fLlTJ06lTvuuIPDDz8899qqVau4/PLLaWlp4fbbb+enP/0pAF1dXdx0000A3HzzzXzyk5/MvWfp0qVcdvEFrO4ax0ttEzgwI/QTiQSXXXYZ27Zt46STTuK///u/2WsvX5y3tLRwzTXX8MILL3D55Zfz2GOP0djYOOjPKqXAMHodX21tbTz55JP813/9F+eddx7RaJR0Os0111zD448/zq9//WsuvPDCnE9vKH179JHFNI0rjUZpNINBSskvfrqMTc3twTd+8sG9P19VnXUE+8+dymVfPbam49qll17KrFmzCrYb7rj2S/kKAP/z/vP47APfyb1n6dKlXHHFFTlRnB3zVI5rxagc1wbbN5l/IxVyW4n2EGuGhVQ03R9yi1IRlY0uX/jCFwrydS5YsICjjz6ayy67jObmZr7wyeM5b8Ym0s2vFtgYli1bRiQ
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 750x300 with 2 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAFOCAYAAACBlgugAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXmcHGWd/99V1d0zGZKQCYTDACEGKAgIeC1yiGJkWdBFRfBAcBUBOdSFXzxYFhRREZRFFBWEXeRc5TDIsSIiZwIYRAkkAkVCMjkJSSaZu7vreJ7fH3X0NUf3TFf1pOd58wpzdHU9T9d0Pf2pb32+368mpUShUCgUCoVCoZio6I2egEKhUCgUCoVC0UiUIFYoFAqFQqFQTGiUIFYoFAqFQqFQTGiUIFYoFAqFQqFQTGiUIFYoFAqFQqFQTGiUIFYoFAqFQqFQTGiUIFYoFAqFQqFQTGiUIFYoFAqFQqFQTGiUIFYoFAqFQqFQTGiUIFYoFAqFQqFQTGiUIFYoFAqFQqFQTGiUIFYoFAqFQqFQTGiUIFYoFAqFQqFQTGiUIFYoFAqFQqFQTGhSjZ7A9oppmm3AN4HPALOBXuBvwLWWZT3cyLkpFAqFQqFQKKpHk1I2eg7bHaZp7gA8BhwGOMAyYCdgr2CTyyzL+m6DpqdQKBQKhUKhqAFlmRgdv8AXw0uAOZZlvcuyrFnA5wEXuMw0zQ83coIKhUKhUCgUiupQgrhGTNOcA5wGCOBzlmWtDR+zLOt24Mrgx8uSn51CoVAoFAqFolaUIK6d0wEDeM6yrFcGefyG4OuRpmnuNcjjCoVCoVAoFIpxhBLEtXN48HXRYA9alrUeWB38+IFEZqRQKBQKhUKhGDVKENfOPsHXN4bZpiP4ul+8U1EoFAqFQqFQjBUliGtnl+Dr5mG26Qy+7hzzXBQKhUKhUCgUY0TVIa6dtuBrbphtsmXbDolpmv8Y4qE9gSctyzqxhrkpFArFuEateQqFYjyiBHHteFQfWR9LkefMPvvs869j3IdCoWhutEZPoI6oNU+hUIxEbGueEsS10we0A63DbDMp+Dow0s4syzpwsN8HUZS5Nc9OoVAoxjFqzVMoFOMR5SGunS3B152G2Sb0Dm+KeS4KhUKhUCgUijGiBHHtvBp83XuYbcLHXo91JgqFQqFQKBSKMaMEce0sDr4ePtiDpmnuAYQNOZ5NZEYKhUKhUCgUilGjBHHt3BN8/aBpmuYgj58TfH3KsqyOZKakUCgUCoVCoRgtShDXiGVZy4H/xW/fvMA0zbBRB6ZpngZ8K/jx+w2YnkKhUCgUCoWiRlSVidHxNeAdwb/XTNNcil95Ylbw+H9alvXnRk1OoVAoFAqFQlE9KkI8CizL6sT3EH8XP3HuAPyqE08Bn7Qs64oGTk+hUCgUCoVCUQMqQjxKLMvqBy4L/ikUCoVCoVAotlNUhFihUCgUCoVCMaFRglihUCgUCsWExNvUR+4RC9Gda/RUFA1GCWJFBVnXZlnnerKu0+ipKBQKhUIRG/lFq7CXbWTgNy82eiqKBqMEsaKC/+tYyu9XvsSf17468sYKhUKhUGyniM39yKyDdEWjp6JoMEoQK0pwhcfqnq2s7N5MR09no6ejGCPCyeNsWY2UstFTUSgUivGHroFaHxUoQawoozPXT95zGXBtPCmUkNrO6X32droX3kJu1V8bPRWFQqEYf0gJ6mNOgRLEijLW93Xx7MY3eLO/B1d45Dy30VNSjAFn63qQgnzH3xs9FYVi3OLYHi8v2cDGN3sbPRVFI1CBHwVKECvK+OumDpZsWccbPZvJuQ45r7GJdVJ4eH3KujEWpFDeOIViOF57bRNrVnfx8ksbGj2VuiKFxHltk6qgMBJKECtQglhRxhvdW6LvN2V7yTW40kTPolvZ9ujPsTcub+g86on0XLIr/pKc0JeCZronKF2HvhcfaKr3hKKx9PXa9ASi0W2i5Cpn2UZyf36d/tv/1uipjG+aZ3lUjAEliBUlrOopCOJuO9vwCLHTuRakINcR/4KeW/UCuQSsBdnXF9G/9I9se/TnsY8F+IK4iRb87IpnyXX8nZ7n/rfRU1E0CVJK8rZLLuuyZXN/o6dTN8SGHvCa6OSPAe+tXtwVW5BCHaeJjmrdrChh40BP9H2vnSc/DjzEMoEIp7Cz9C15CNBo2eMgtFQmtrHcrWv8W3SaFtsYJUgRHMN46Vvyf0i7n8nvPQUtxtcmsj0gBOhGbGMoJhb5nIvrChzHw7Ybv+bVjZSGFBJNnSpDkv3NEgD0mTs2eCaKRqMixIoSeuxs9H2/m8fxvIptpPCwN7yGKNo2VhLwd0nPCcaRSFH5muuLlqivVwoR+zGUUpJb9QL59a/g9W6OdSw0LbHqJ8LJY29cnsB7QtEohJA4rofwJEJIvGaKqBo6qMjnkIhtA4UfHHWOT3SUIFZESCnptQvJF3nPxRaV0ZKs9TQ9i++iZ9EtCU0sfkHnjyOTS65IIGLbkLGEgAQuKJJ6TX3P30XPc//LwCuPJzKeInkcx0MIiZASKSSe1zweYk3XoYleT72R2aLPt7QKo090lCBWRHTZWewiMWN7bsnPIfm1S0EK3O5NyUwsAfGjEdziT0IUa6MXdOvWrcM0zUH/7b///hx22GF8/OMf55prrmHr1q2IbA/SyRG7iTh4PbIOFy8LFizANE2OPvrokt+ffvrpmKbJL+96ODFBbG9aVVPZuosuugjTNDn99NNjnpmiXji2Hx0GEFI2VVIdKW27iBDXuq7Vi5I7TTEfppHWtZ/85CfxTmAMfOsb38Q0TU477bSKx5ppzVMeYkXE+r5tJT/nhTeoZcK/ZS3QtGSup5KwF0ikvzhqJCC26hPh3G+//Zg8eXL0s+d5dHd3s3z5cl599VXuvuu3XL7XUvaeKpnx6R+NebxhCT9YpEDGnsGXXIQYkvGwKxqH7XhRVFgIiddEgth+6U3yi9fQcsw+jZ5K1Yy4rt19N7feeiumaY59sOKLBVV6bUi89X5ukWzy8n1KECsiNvR3l/zsDGGZAJLx9UpJbuXz6G3TYK9D4h4M8DsWxZ6AFl5QjHE3l1xyCYcddljF77dt28ZFF13Ek08+yZW53fjloWvi/3sVCWJiuoC56qqryGazGP94gNxrf6R1n8NjGacCKZK5KJMSpEBTyYKJElomwBfEzRQh7v/5MwC4u09FShlrsmu9qGZd+9rXvsbDDz+Mro8xKDMOoufhutbe3t7oqQyJ7Lf9rwONrToVN8oyoYjYku0r+dkRHvZgEeKEInR9LyxgYOkf6Vv8W5K55R+I4rjFzxgsE9XQ3t7OlVdeSSZlsD6X4cWuNuI+flEUNbywiIG3ve1tzJkzB3vB18m+8mfsdctiGaeCQKjGTc/TN7P1oauQrh37WIoCji2iCLGUMhLHzYTszW/35deidS2ToaOjg0WLFo19pwlaJoYiXNemT5/emAnUwvi/nhoTShArIvqdPACpwArhSYE7VIJUAgLB3vBq7GNESIn0vETET9/fH6Dv+XuRMZa0a29vZ84euwCwOptJJkIswyhnMp8sbldCXcVEMpYJZ+s6pGfjbOmIfSxFAdfx2PRWHwP9NlLSVEl1EQlUmkmC9vZ29t13XwCWL69DYx5lmaiN7eAOw1hQlglFRH8QmUobBq4r8KQcvA6x5pcNi/3USPDk6118F10P/5gdDv3X+AXx83cDkF/7UqzjuMEH+yRDVJQpc12Xhx56iD/+8Y/84x//oKuri1QqxS677MJhhx3GF7/4RWbPnl2xz4ULF3LnnXfy0ksv0dPTw+TJk9lvv/047th5zGt1MQZJquvr6+PWW2/l0UcfZfXq1Ugp2XPPPTn22GP5whe+wNSpU6t6PaeffjrPP/88n5o5ndP32gpI1q1bx7x589h5551ZtGgR9957L3fffTcrVqwAfD/ipz71KU466aRBbxePNDeoT6Jg1Uho+jDMOKOrK8fKN/xErenT2/CaMULsyaaxwbuu/5m0ww47DPpYTeta8Ld+Xq7j/r8+yyuH/7BkXfuXf/kXTjnlFDKZyrr
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 750x300 with 2 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAFOCAYAAACBlgugAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXmcHGWd/99V3T0zmSQkEwgQQgh3QUBAhB83EgMiuKIiuIrCCgIbQF3ZrMoiuqwrCMIiigjCinKpQDiDInKTACYEkkAIVM7JfUwy9/RRVc/z/P6o7p4+ZibTM13VMz3P+/VKuqerup6nqque+tT3+R6GUgqNRqPRaDQajWakYla6AxqNRqPRaDQaTSXRglij0Wg0Go1GM6LRglij0Wg0Go1GM6LRglij0Wg0Go1GM6LRglij0Wg0Go1GM6LRglij0Wg0Go1GM6LRglij0Wg0Go1GM6LRglij0Wg0Go1GM6LRglij0Wg0Go1GM6LRglij0Wg0Go1GM6LRglij0Wg0Go1GM6LRglij0Wg0Go1GM6LRglij0Wg0Go1GM6LRglij0Wg0Go1GM6KJVroDwxXLsuqB7wNfAfYDOoB3gNtt236ukn3TaDQajUaj0fQfQylV6T4MOyzLGg28BBwHuMBSYFdgn/Qq19u2/d8V6p5Go9FoNBqNpgS0y8TAuBNfDC8GDrBt+2jbtqcCFwEecL1lWadXsoMajUaj0Wg0mv6hBXGJWJZ1APB1QAJfs217fWaZbdsPAjel/7w+/N5pNBqNRqPRaEpFC+LSuRCIAG/Ztr2sh+V3p19Psixrnx6WazQajUaj0WiGEFoQl84J6dd5PS20bXsjsDb95ydD6ZFGo9FoNBqNZsBoQVw6B6ZfV/WxTmP69eBgu6LRaDQajUajGSxaEJfO7unXpj7W2ZF+3S3gvmg0Go1Go9FoBonOQ1w69enXZB/rJArW7RXLsj7oZdEU4FXbts8poW8ajUYzpNFjnkajGYpoQVw6gv5b1geT5LnmwAMP/Nwgt6HRaKobo9IdKCN6zNNoNDsjsDFPC+LS6QQagLo+1hmVfo3vbGO2bR/W0+dpK8q0knun0Wg0Qxg95mk0mqGI9iEune3p1137WCfjO7wt4L5oNBqNRqPRaAaJFsSl82H6dd8+1sksWx5oTzQajUaj0Wg0g0YL4tKZn349oaeFlmXtDWQKcrwZSo80Go1Go9FoNANGC+LSeSz9epplWVYPy2emX1+zbbsxnC5pNBqNRqPRaAaKFsQlYtv2CuCP+OWbn7AsK1OoA8uyvg78IP3nTyvQPY1Go9FoNBpNiegsEwPjO8DH0v8+sizrffzME1PTy39o2/aLleqcRqPRaDSanaOERLUlMSfstGyApsrRFuIBYNv2Dnwf4v/GD5w7FD/rxGvAl2zbvrGC3dNoNBqNRtMP3EWb6Hr4XVLz11W6K5oKoy3EA8S27S7g+vQ/jUaj0Wg0wwznnQ3IjhTO2+upPW6fnX9BU7VoC7FGo9FoNJqRiWmAkJXuhWYIoAWxRqPRaDSakYlSuli4BtCCWKPRaDQazUhGaUWs0YJYo9FoNBrNSEbrYQ1aEGs0Go1GoxnJaAuxBi2INRqNRqPRaDQjHC2INRqNRqPRjEjEtk68ldtR2ko84tF5iDUajUaj0YxIEn9cBIC517gK90RTabSFWKPRaDQazYhDdjndf6S8ynVEMyTQglij0Wg0Gs2IQ7Ulu/+o0xPmvaGSLu5H21COqHRXAkULYo1Go9FoqhClFGJjGyrpVrorQ5I8v2HtQtwrib98RPLF5aTmrq50VwJFC2LNkEYk2kltWIqSurSmRqPRlIK3cjvxJ5cSf2RJpbsyNMkt2ayD6npFbG4HofBWbK90VwJFzxFoSkZ5Lql1i4nteTCR+mADEVpfuAMlPMYcmaBu/2MDbUuj0WiqCbGqGaREdqQq3ZWhibaz9BslFUakum2o1b13mkDo+uAFOpf8lbbX/i/wtpTwQEmcbasCb2s4sGHDBizL6vHfIYccwnHHHccXvvAFbrvtNpqbmyvd3QHxxBNPYFkWp556at7nF154IZZl8Ytf/KJCPds511xzDZZlceGFF1a6KxoNRA2QQ9/yWbFxLXfmMeDDNJzHtetf+B3H3n0Zlz9yY9GyahrztIVYUzLutlWgJDLZGUp7vrvE0B/Uw+bggw9mzJgx2b+FELS1tbFixQo+/PBDHn30Ue6//34sy6pgLzUaTcUwTZRQGMPoTh/quJb7sKBdJnaOYVS6B4EyjC4TzVBCSRne9ImSerDqgeuuu47jjjuu6POWlhauueYaXn31Vb7zne/w3HPPYZrDfzLo5ptvJpFI0NDQUOmuaDTDAiNi5ltBhwFhjmtDIahuWI1r1a2HtcuEZiAYvkgNizDbqgIaGhq46aabqKmpobGxkXnz5lW6S2Vhr7324oADDmDChAmV7opGMzyIGiCqw5gQyLgmKm8hHlbjWpVbiLUg1gyMsAWxthCXRENDAwcddBAAHy1ZqMuSajQjkYiJGgY+xP0ld1xbsWLF4DcoK28hHlZUtx7WLhOaAWCEayFWsrqTgQeF5/mVl8yN75JqfIe6/Y7JW/bss8/yt7/9jQ8++IDW1lai0Si77747xx13HBdffDH77bdf0Tbnzp3Lww8/zJIlS2hvb2fMmDEcfPDBfOYzn+H888+npqam6DudnZ3cf//9vPDCC6xduxalFFOmTOGMM87gG9/4Brvssku/9ufCCy9kwYIFzJw5k6uvvhrwg3FmzJjBbrvtxrx585g9ezaPPvooK1euBHx/xC9/+cuce+65GD1YN8rVN41mKOK7TPhKTynV4zUw3MiMa6NHj+5xWUnjWtpQsEBt4Ol33mDZCTfpcW0EowWxZkAoJQN5WFRKkfC6k8gnlEJKiZSCqOv08c2hx6horGI3oHXr1rFixQpMw+D4g/YkuWZhVhAnk0kuv/xy5s+fD8DkyZM5+OCD2bFjB42NjTQ2NjJnzhwefvhhpk2blt3mAw88wA033ADA7rvvziGHHEJLSwsLFixgwYIF/O1vf+MPf/gDkUgk+51Vq1Zx2WWXsXHjRiKRCFOmTKGuro6VK1dy55138tRTT3HvvfdywAEHDGp/lVL84Ac/4Omnn2aXXXZhv/32Y/369SxevJjFixezZs0a/uM//iPvO2H1TaNRSuFWoMqXIyWOEJhS4STcssR9xGoilR/XTJNTTjklb9lAxjUlFLPlUu5Q/4AmPa6NdLQg1pSMEZAPsVKKL/71bhZuW1uwpAZWLIMVPy57m0Fy7O5TeeLsmaHdPIQQtLe3s2jRIm6++WaklPzL9MPYc3x93nr33nsv8+fPp6GhgXvuuYcjjjgiu+y9997jyiuvpKmpibvvvptf/epXALS3t3PrrbcCcNttt/HZz342+5158+Zx1VVXZW8emWXxeJwrrriCjRs3MmPGDP7rv/6LPfbYA4Cmpiauu+46Xn31Va688kqefvpp6urqBrzvO3bs4Nlnn+WHP/whX/va14hEIqRSKa677jqeeeYZfv/733PJJZdk/fTC7JtmZKOU4je/epO1jS2V60RrK/zw72XZ1L77NXDFt0+s6Lg2c+ZMJk+enLfegMa1zg5+q94G4H8+9lW+PPv67Hf0uNbNSKl0qH2INSWjPCewlGvDf0IvPC666KK8fJ3Tpk3j+OOP54orrqCxsZHLLruMyz59BErlp6178803MU2Tb33rW3k3DYAjjjiCr371qwAsX748+/maNWtIpVKMGzeOs88+O+87J598MpdffjlnnnkmsVgs+/ljjz3G2rVrOeyww7jjjjuyAzPAxIkT+eUvf8nkyZNpbGzkiSeeGPTxuOCCC7jooouylpza2lquvfZaDMPA8zzee++9ivVNM7KpAk+F0OjPuPbd73636HsDGdcaN6zDQTCWWmbskf8dPa75yJY4Ym0FH+ZCRFuINSWz/fEfotwk4z8zq6zbNQyDJ86emXWZ2PGXm2l+xp+i3+Piu9nl+AvK2l7QBO0yUZivU0pJV1cXa9euxXEc/vCHP9B
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 750x300 with 2 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"for cell_type in ['gridcell', 'ns_inhibited', 'ns_not_inhibited']:\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" fig, axs = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(5,2))\n",
|
|
|
|
|
" axs = axs.repeat(2)\n",
|
|
|
|
|
" for i, (ax, query) in enumerate(zip(axs.ravel(), queries)):\n",
|
|
|
|
|
" selection = [\n",
|
|
|
|
|
" f'{r.action}_{r.channel_group}_{r.unit_name}' \n",
|
|
|
|
|
" for i, r in data.query(query + ' and ' + cell_type).iterrows()]\n",
|
|
|
|
|
" values = coher.loc[mask, selection].dropna(axis=1).to_numpy()\n",
|
|
|
|
|
" values = 10 * np.log10(values)\n",
|
|
|
|
|
" plot_bootstrap_timeseries(freq[mask], values, ax=ax, lw=1, label=labels[i], color=colors[i])\n",
|
|
|
|
|
" # ax.set_title(titles[i])\n",
|
|
|
|
|
" ax.set_xlabel('Frequency Hz')\n",
|
|
|
|
|
" ax.legend(frameon=False)\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" ax.set_ylim(-30, 0)\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" axs[0].set_ylabel('Coherence')\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" despine()\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" figname = f'spike-lfp-coherence-{cell_type}'.replace(' ', '-')\n",
|
|
|
|
|
" fig.savefig(\n",
|
|
|
|
|
" output_path / 'figures' / f'{figname}.png', \n",
|
|
|
|
|
" bbox_inches='tight', transparent=True)\n",
|
|
|
|
|
" fig.savefig(\n",
|
|
|
|
|
" output_path / 'figures' / f'{figname}.svg', \n",
|
|
|
|
|
" bbox_inches='tight', transparent=True)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"# Store results in Expipe action"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 48,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"action = project.require_action(\"stimulus-spike-lfp-response\")"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 49,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"['/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/data/freqs.feather',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/data/coherence.feather',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-ns_not_inhibited.svg',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-not-bs.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-not-bs.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-gridcell.png',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-ns_inhibited.svg',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-gridcell.svg',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-ns_not_inhibited.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-ns_not_inhibited.svg',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-not-bs.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-gridcell.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-not-bs.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-not-bs.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-not-bs.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-gridcell.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-gridcell.svg',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-ns_not_inhibited.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-ns_not_inhibited.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-ns_inhibited.svg',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-not-bs.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-not-bs.svg',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-ns_not_inhibited.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-ns_not_inhibited.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-ns_not_inhibited.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-ns_inhibited.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-ns_inhibited.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-ns_inhibited.png',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-not-bs.png',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-ns_not_inhibited.png',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-gridcell.png',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-ns_not_inhibited.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-ns_inhibited.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-ns_inhibited.svg',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-not-bs.png',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-ns_not_inhibited.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-ns_inhibited.svg',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-gridcell.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-gridcell.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-not-bs.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-not-bs.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-gridcell.svg',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-ns_inhibited.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-ns_not_inhibited.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-ns_inhibited.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-ns_not_inhibited.svg',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-not-bs.png',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-ns_inhibited.svg',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-not-bs.svg',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-ns_inhibited.png',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-not-bs.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-gridcell.png',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-ns_inhibited.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-ns_inhibited.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-ns_inhibited.png',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-gridcell.png',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-ns_not_inhibited.png',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-not-bs.svg',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-ns_inhibited.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-ns_inhibited.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-ns_inhibited.svg',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-gridcell.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-gridcell.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-gridcell.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-not-bs.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-gridcell.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-gridcell.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-gridcell.png',\n",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-ns_not_inhibited.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-ns_not_inhibited.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-ns_not_inhibited.svg',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-ns_not_inhibited.png',\n",
|
2019-10-17 17:44:01 +00:00
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-gridcell.png',\n",
|
|
|
|
|
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-not-bs.svg']"
|
|
|
|
|
]
|
|
|
|
|
},
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 49,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"copy_tree(output_path, str(action.data_path()))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2019-10-22 10:22:00 +00:00
|
|
|
|
"execution_count": 50,
|
2019-10-17 17:44:01 +00:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"septum_mec.analysis.registration.store_notebook(action, \"20_stimulus-spike-lfp-response.ipynb\")"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": []
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"metadata": {
|
|
|
|
|
"kernelspec": {
|
|
|
|
|
"display_name": "Python 3",
|
|
|
|
|
"language": "python",
|
|
|
|
|
"name": "python3"
|
|
|
|
|
},
|
|
|
|
|
"language_info": {
|
|
|
|
|
"codemirror_mode": {
|
|
|
|
|
"name": "ipython",
|
|
|
|
|
"version": 3
|
|
|
|
|
},
|
|
|
|
|
"file_extension": ".py",
|
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
|
"name": "python",
|
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
|
"version": "3.6.8"
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"nbformat": 4,
|
|
|
|
|
"nbformat_minor": 2
|
|
|
|
|
}
|