septum-mec/actions/stimulus-spike-lfp-response/data/20_stimulus-spike-lfp-respo...

2744 lines
598 KiB
Plaintext
Raw Normal View History

2019-10-17 17:44:01 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"19:14:03 [I] klustakwik KlustaKwik2 version 0.2.6\n"
]
}
],
"source": [
"import os\n",
"import expipe\n",
"import pathlib\n",
"import numpy as np\n",
"import spatial_maps.stats as stats\n",
"import septum_mec\n",
"import septum_mec.analysis.data_processing as dp\n",
"import septum_mec.analysis.registration\n",
"import head_direction.head as head\n",
"import spatial_maps as sp\n",
"import speed_cells.speed as spd\n",
"import re\n",
"import joblib\n",
"import multiprocessing\n",
"import shutil\n",
"import psutil\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"import seaborn as sns\n",
"from distutils.dir_util import copy_tree\n",
"from neo import SpikeTrain\n",
"import scipy\n",
"\n",
"from tqdm import tqdm_notebook as tqdm\n",
"from tqdm._tqdm_notebook import tqdm_notebook\n",
"tqdm_notebook.pandas()\n",
"\n",
"from spike_statistics.core import permutation_resampling\n",
"\n",
"from spikewaveform.core import calculate_waveform_features_from_template, cluster_waveform_features\n",
"\n",
"from septum_mec.analysis.plotting import violinplot"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"plt.rc('axes', titlesize=12)\n",
"plt.rcParams.update({\n",
" 'font.size': 12, \n",
" 'figure.figsize': (6, 4), \n",
" 'figure.dpi': 150\n",
"})\n",
"\n",
"output_path = pathlib.Path(\"output\") / \"stimulus-spike-lfp-response\"\n",
"(output_path / \"statistics\").mkdir(exist_ok=True, parents=True)\n",
"(output_path / \"figures\").mkdir(exist_ok=True, parents=True)\n",
"output_path.mkdir(exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"data_loader = dp.Data()\n",
"actions = data_loader.actions\n",
"project = data_loader.project"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"identification_action = actions['identify-neurons']\n",
"sessions = pd.read_csv(identification_action.data_path('sessions'))\n",
"units = pd.read_csv(identification_action.data_path('units'))\n",
"session_units = pd.merge(sessions, units, on='action')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"lfp_action = actions['stimulus-spike-lfp-response']\n",
"lfp_results = pd.read_csv(lfp_action.data_path('results'))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# lfp_results has old unit id's but correct on (action, unit_name, channel_group)\n",
"lfp_results = lfp_results.drop('unit_id', axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"statistics_action = actions['calculate-statistics']\n",
"shuffling = actions['shuffling']\n",
"\n",
"statistics_results = pd.read_csv(statistics_action.data_path('results'))\n",
"statistics_results = session_units.merge(statistics_results, how='left')\n",
"quantiles_95 = pd.read_csv(shuffling.data_path('quantiles_95'))\n",
"action_columns = ['action', 'channel_group', 'unit_name']\n",
"data = pd.merge(statistics_results, quantiles_95, on=action_columns, suffixes=(\"\", \"_threshold\"))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"data['unit_day'] = data.apply(lambda x: str(x.unit_idnum) + '_' + x.action.split('-')[1], axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"data = data.merge(lfp_results, how='left')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"waveform_action = actions['waveform-analysis']\n",
"waveform_results = pd.read_csv(waveform_action.data_path('results')).drop('template', axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"data = data.merge(waveform_results, how='left')"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"colors = ['#1b9e77','#d95f02','#7570b3','#e7298a']\n",
"labels = ['Baseline I', '11 Hz', 'Baseline II', '30 Hz']\n",
"queries = ['baseline and Hz11', 'frequency==11', 'baseline and Hz30', 'frequency==30']"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"data.bs = data.bs.astype(bool)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of gridcells 225\n"
]
}
],
"source": [
"grid_query = 'gridness > gridness_threshold and information_rate > information_rate_threshold'\n",
"sessions_above_threshold = data.query(grid_query)\n",
"print(\"Number of gridcells\", len(sessions_above_threshold))\n",
"# print(\"Number of animals\", len(sessions_above_threshold.groupby(['entity'])))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"gridcell_sessions = data[data.unit_day.isin(sessions_above_threshold.unit_day.values)]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>action</th>\n",
" <th>baseline</th>\n",
" <th>entity</th>\n",
" <th>frequency</th>\n",
" <th>i</th>\n",
" <th>ii</th>\n",
" <th>session</th>\n",
" <th>stim_location</th>\n",
" <th>stimulated</th>\n",
" <th>tag</th>\n",
" <th>...</th>\n",
" <th>stim_half_f1</th>\n",
" <th>stim_half_f2</th>\n",
" <th>stim_half_width</th>\n",
" <th>stim_energy</th>\n",
" <th>half_width</th>\n",
" <th>peak_to_trough</th>\n",
" <th>average_firing_rate</th>\n",
" <th>bs</th>\n",
" <th>bs_stim</th>\n",
" <th>bs_ctrl</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>1839-120619-4</td>\n",
" <td>False</td>\n",
" <td>1839</td>\n",
" <td>30.0</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>4</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim ii</td>\n",
" <td>...</td>\n",
" <td>30.173035</td>\n",
" <td>30.443743</td>\n",
" <td>0.270708</td>\n",
" <td>0.129917</td>\n",
" <td>0.283497</td>\n",
" <td>0.606614</td>\n",
" <td>9.779867</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>1839-120619-4</td>\n",
" <td>False</td>\n",
" <td>1839</td>\n",
" <td>30.0</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>4</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim ii</td>\n",
" <td>...</td>\n",
" <td>30.128480</td>\n",
" <td>30.460705</td>\n",
" <td>0.332225</td>\n",
" <td>0.258594</td>\n",
" <td>0.261815</td>\n",
" <td>0.633750</td>\n",
" <td>7.437802</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>1839-120619-4</td>\n",
" <td>False</td>\n",
" <td>1839</td>\n",
" <td>30.0</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>4</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim ii</td>\n",
" <td>...</td>\n",
" <td>30.188571</td>\n",
" <td>30.437126</td>\n",
" <td>0.248556</td>\n",
" <td>0.080818</td>\n",
" <td>0.242524</td>\n",
" <td>0.534827</td>\n",
" <td>2.265039</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>1839-120619-4</td>\n",
" <td>False</td>\n",
" <td>1839</td>\n",
" <td>30.0</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>4</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim ii</td>\n",
" <td>...</td>\n",
" <td>30.155404</td>\n",
" <td>30.445467</td>\n",
" <td>0.290063</td>\n",
" <td>0.160690</td>\n",
" <td>0.279806</td>\n",
" <td>0.598967</td>\n",
" <td>10.924422</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>1839-120619-4</td>\n",
" <td>False</td>\n",
" <td>1839</td>\n",
" <td>30.0</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>4</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim ii</td>\n",
" <td>...</td>\n",
" <td>30.195374</td>\n",
" <td>30.437554</td>\n",
" <td>0.242181</td>\n",
" <td>0.091302</td>\n",
" <td>0.265158</td>\n",
" <td>0.581451</td>\n",
" <td>3.984881</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>1839-120619-4</td>\n",
" <td>False</td>\n",
" <td>1839</td>\n",
" <td>30.0</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>4</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim ii</td>\n",
" <td>...</td>\n",
" <td>30.195640</td>\n",
" <td>30.437892</td>\n",
" <td>0.242252</td>\n",
" <td>0.098635</td>\n",
" <td>0.246920</td>\n",
" <td>0.570844</td>\n",
" <td>3.497452</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.272875</td>\n",
" <td>0.602667</td>\n",
" <td>5.945508</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.226452</td>\n",
" <td>0.274814</td>\n",
" <td>2.860048</td>\n",
" <td>False</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.247266</td>\n",
" <td>0.570104</td>\n",
" <td>3.365674</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.284542</td>\n",
" <td>0.644111</td>\n",
" <td>17.471520</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.259920</td>\n",
" <td>0.581698</td>\n",
" <td>5.891739</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.263630</td>\n",
" <td>0.596746</td>\n",
" <td>13.436847</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.281399</td>\n",
" <td>0.607354</td>\n",
" <td>17.446704</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.285816</td>\n",
" <td>0.603160</td>\n",
" <td>7.914246</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.279177</td>\n",
" <td>0.585152</td>\n",
" <td>10.840470</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>49</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.282336</td>\n",
" <td>0.711705</td>\n",
" <td>5.890705</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54</th>\n",
" <td>1839-060619-3</td>\n",
" <td>False</td>\n",
" <td>1839</td>\n",
" <td>11.0</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>3</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim i</td>\n",
" <td>...</td>\n",
" <td>10.995334</td>\n",
" <td>11.259054</td>\n",
" <td>0.263719</td>\n",
" <td>0.143591</td>\n",
" <td>0.270286</td>\n",
" <td>0.573804</td>\n",
" <td>14.025342</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>57</th>\n",
" <td>1834-150319-3</td>\n",
" <td>True</td>\n",
" <td>1834</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.277867</td>\n",
" <td>0.588852</td>\n",
" <td>17.162446</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>1834-120319-4</td>\n",
" <td>False</td>\n",
" <td>1834</td>\n",
" <td>30.0</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>4</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim ii</td>\n",
" <td>...</td>\n",
" <td>30.136513</td>\n",
" <td>30.450445</td>\n",
" <td>0.313932</td>\n",
" <td>0.178995</td>\n",
" <td>0.285028</td>\n",
" <td>0.578245</td>\n",
" <td>34.841257</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>87</th>\n",
" <td>1849-280219-4</td>\n",
" <td>False</td>\n",
" <td>1849</td>\n",
" <td>30.0</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>4</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim ii</td>\n",
" <td>...</td>\n",
" <td>30.178205</td>\n",
" <td>30.439063</td>\n",
" <td>0.260858</td>\n",
" <td>0.102743</td>\n",
" <td>0.272793</td>\n",
" <td>0.570844</td>\n",
" <td>10.825754</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>106</th>\n",
" <td>1849-110319-2</td>\n",
" <td>False</td>\n",
" <td>1849</td>\n",
" <td>11.0</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>2</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim i</td>\n",
" <td>...</td>\n",
" <td>10.998382</td>\n",
" <td>11.225055</td>\n",
" <td>0.226673</td>\n",
" <td>0.070224</td>\n",
" <td>0.230947</td>\n",
" <td>0.561223</td>\n",
" <td>2.339767</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>124</th>\n",
" <td>1833-010719-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.271262</td>\n",
" <td>0.615002</td>\n",
" <td>2.868000</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>125</th>\n",
" <td>1833-010719-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.307694</td>\n",
" <td>0.659653</td>\n",
" <td>6.912052</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>126</th>\n",
" <td>1833-010719-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.267708</td>\n",
" <td>0.630543</td>\n",
" <td>4.229867</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>128</th>\n",
" <td>1833-010719-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.289100</td>\n",
" <td>0.673221</td>\n",
" <td>16.735961</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>129</th>\n",
" <td>1833-010719-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.290402</td>\n",
" <td>0.650772</td>\n",
" <td>25.974728</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>131</th>\n",
" <td>1833-010719-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.272160</td>\n",
" <td>0.620429</td>\n",
" <td>14.686236</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>132</th>\n",
" <td>1833-010719-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.241405</td>\n",
" <td>0.595513</td>\n",
" <td>18.657578</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>134</th>\n",
" <td>1833-010719-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.269911</td>\n",
" <td>0.609574</td>\n",
" <td>3.106903</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>135</th>\n",
" <td>1833-010719-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.273069</td>\n",
" <td>0.651265</td>\n",
" <td>6.213807</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1154</th>\n",
" <td>1839-120619-3</td>\n",
" <td>True</td>\n",
" <td>1839</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.273572</td>\n",
" <td>0.611548</td>\n",
" <td>5.407135</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1155</th>\n",
" <td>1834-110319-5</td>\n",
" <td>False</td>\n",
" <td>1834</td>\n",
" <td>11.0</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>5</td>\n",
" <td>mecl</td>\n",
" <td>True</td>\n",
" <td>stim i</td>\n",
" <td>...</td>\n",
" <td>10.981120</td>\n",
" <td>11.242957</td>\n",
" <td>0.261837</td>\n",
" <td>0.170881</td>\n",
" <td>0.276394</td>\n",
" <td>0.585645</td>\n",
" <td>27.008837</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1156</th>\n",
" <td>1834-110319-5</td>\n",
" <td>False</td>\n",
" <td>1834</td>\n",
" <td>11.0</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>5</td>\n",
" <td>mecl</td>\n",
" <td>True</td>\n",
" <td>stim i</td>\n",
" <td>...</td>\n",
" <td>11.010395</td>\n",
" <td>11.204906</td>\n",
" <td>0.194511</td>\n",
" <td>0.065052</td>\n",
" <td>0.249700</td>\n",
" <td>0.569364</td>\n",
" <td>18.304313</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1174</th>\n",
" <td>1839-200619-2</td>\n",
" <td>False</td>\n",
" <td>1839</td>\n",
" <td>11.0</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>2</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim i</td>\n",
" <td>...</td>\n",
" <td>11.023967</td>\n",
" <td>11.199671</td>\n",
" <td>0.175703</td>\n",
" <td>0.041580</td>\n",
" <td>0.249357</td>\n",
" <td>0.517805</td>\n",
" <td>8.992236</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1184</th>\n",
" <td>1833-260619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.275930</td>\n",
" <td>0.594526</td>\n",
" <td>5.288548</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1185</th>\n",
" <td>1833-260619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.225575</td>\n",
" <td>0.277528</td>\n",
" <td>2.693978</td>\n",
" <td>False</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1186</th>\n",
" <td>1833-260619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.244049</td>\n",
" <td>0.571337</td>\n",
" <td>3.425185</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1189</th>\n",
" <td>1833-260619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.222604</td>\n",
" <td>0.576271</td>\n",
" <td>6.484767</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1191</th>\n",
" <td>1833-260619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.189559</td>\n",
" <td>0.248665</td>\n",
" <td>3.564358</td>\n",
" <td>False</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1193</th>\n",
" <td>1833-260619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.257469</td>\n",
" <td>0.636957</td>\n",
" <td>26.839270</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1194</th>\n",
" <td>1833-260619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.252255</td>\n",
" <td>0.587372</td>\n",
" <td>4.589373</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1197</th>\n",
" <td>1833-260619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.261129</td>\n",
" <td>0.592306</td>\n",
" <td>7.407060</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1199</th>\n",
" <td>1833-260619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.277189</td>\n",
" <td>0.615988</td>\n",
" <td>9.221822</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1202</th>\n",
" <td>1833-260619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.287132</td>\n",
" <td>0.616235</td>\n",
" <td>7.835622</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1204</th>\n",
" <td>1833-260619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.300175</td>\n",
" <td>0.610068</td>\n",
" <td>9.358786</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1208</th>\n",
" <td>1833-200619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.293775</td>\n",
" <td>0.657679</td>\n",
" <td>7.071948</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1214</th>\n",
" <td>1833-200619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.252895</td>\n",
" <td>0.600200</td>\n",
" <td>15.695836</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1215</th>\n",
" <td>1833-200619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.271023</td>\n",
" <td>0.699617</td>\n",
" <td>11.768979</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1217</th>\n",
" <td>1833-200619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.343906</td>\n",
" <td>0.698383</td>\n",
" <td>4.442023</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1218</th>\n",
" <td>1833-200619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.304748</td>\n",
" <td>0.641151</td>\n",
" <td>3.102590</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1219</th>\n",
" <td>1833-200619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.277708</td>\n",
" <td>0.585645</td>\n",
" <td>6.900656</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1220</th>\n",
" <td>1833-200619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.294291</td>\n",
" <td>0.639177</td>\n",
" <td>22.458685</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1221</th>\n",
" <td>1833-200619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.258204</td>\n",
" <td>0.608094</td>\n",
" <td>3.767155</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1223</th>\n",
" <td>1833-200619-3</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline ii</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.276894</td>\n",
" <td>0.623636</td>\n",
" <td>12.778706</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1255</th>\n",
" <td>1833-010719-2</td>\n",
" <td>False</td>\n",
" <td>1833</td>\n",
" <td>11.0</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>2</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim i</td>\n",
" <td>...</td>\n",
" <td>11.016969</td>\n",
" <td>11.215476</td>\n",
" <td>0.198507</td>\n",
" <td>0.058616</td>\n",
" <td>0.277537</td>\n",
" <td>0.570597</td>\n",
" <td>5.734302</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1257</th>\n",
" <td>1833-010719-2</td>\n",
" <td>False</td>\n",
" <td>1833</td>\n",
" <td>11.0</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>2</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim i</td>\n",
" <td>...</td>\n",
" <td>11.023725</td>\n",
" <td>11.224735</td>\n",
" <td>0.201010</td>\n",
" <td>0.038708</td>\n",
" <td>0.248774</td>\n",
" <td>0.604394</td>\n",
" <td>2.814742</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1263</th>\n",
" <td>1833-010719-2</td>\n",
" <td>False</td>\n",
" <td>1833</td>\n",
" <td>11.0</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>2</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim i</td>\n",
" <td>...</td>\n",
" <td>10.994052</td>\n",
" <td>11.225703</td>\n",
" <td>0.231651</td>\n",
" <td>0.045162</td>\n",
" <td>0.280033</td>\n",
" <td>0.560729</td>\n",
" <td>4.760330</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1264</th>\n",
" <td>1833-010719-2</td>\n",
" <td>False</td>\n",
" <td>1833</td>\n",
" <td>11.0</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>2</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim i</td>\n",
" <td>...</td>\n",
" <td>11.000518</td>\n",
" <td>11.216176</td>\n",
" <td>0.215657</td>\n",
" <td>0.037637</td>\n",
" <td>0.281934</td>\n",
" <td>0.627089</td>\n",
" <td>15.890929</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1268</th>\n",
" <td>1833-010719-2</td>\n",
" <td>False</td>\n",
" <td>1833</td>\n",
" <td>11.0</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>2</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim i</td>\n",
" <td>...</td>\n",
" <td>11.034662</td>\n",
" <td>11.197408</td>\n",
" <td>0.162746</td>\n",
" <td>0.021146</td>\n",
" <td>0.266512</td>\n",
" <td>0.594033</td>\n",
" <td>2.704037</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1275</th>\n",
" <td>1833-010719-2</td>\n",
" <td>False</td>\n",
" <td>1833</td>\n",
" <td>11.0</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>2</td>\n",
" <td>ms</td>\n",
" <td>True</td>\n",
" <td>stim i</td>\n",
" <td>...</td>\n",
" <td>11.016058</td>\n",
" <td>11.203307</td>\n",
" <td>0.187249</td>\n",
" <td>0.050767</td>\n",
" <td>0.257098</td>\n",
" <td>0.545188</td>\n",
" <td>5.292658</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>271 rows × 67 columns</p>\n",
"</div>"
],
"text/plain": [
" action baseline entity frequency i ii session \\\n",
"17 1839-120619-4 False 1839 30.0 False True 4 \n",
"19 1839-120619-4 False 1839 30.0 False True 4 \n",
"21 1839-120619-4 False 1839 30.0 False True 4 \n",
"29 1839-120619-4 False 1839 30.0 False True 4 \n",
"30 1839-120619-4 False 1839 30.0 False True 4 \n",
"31 1839-120619-4 False 1839 30.0 False True 4 \n",
"33 1833-260619-1 True 1833 NaN True False 1 \n",
"34 1833-260619-1 True 1833 NaN True False 1 \n",
"35 1833-260619-1 True 1833 NaN True False 1 \n",
"39 1833-260619-1 True 1833 NaN True False 1 \n",
"40 1833-260619-1 True 1833 NaN True False 1 \n",
"42 1833-260619-1 True 1833 NaN True False 1 \n",
"44 1833-260619-1 True 1833 NaN True False 1 \n",
"46 1833-260619-1 True 1833 NaN True False 1 \n",
"47 1833-260619-1 True 1833 NaN True False 1 \n",
"49 1833-260619-1 True 1833 NaN True False 1 \n",
"54 1839-060619-3 False 1839 11.0 True False 3 \n",
"57 1834-150319-3 True 1834 NaN False True 3 \n",
"76 1834-120319-4 False 1834 30.0 False True 4 \n",
"87 1849-280219-4 False 1849 30.0 False True 4 \n",
"106 1849-110319-2 False 1849 11.0 True False 2 \n",
"124 1833-010719-1 True 1833 NaN True False 1 \n",
"125 1833-010719-1 True 1833 NaN True False 1 \n",
"126 1833-010719-1 True 1833 NaN True False 1 \n",
"128 1833-010719-1 True 1833 NaN True False 1 \n",
"129 1833-010719-1 True 1833 NaN True False 1 \n",
"131 1833-010719-1 True 1833 NaN True False 1 \n",
"132 1833-010719-1 True 1833 NaN True False 1 \n",
"134 1833-010719-1 True 1833 NaN True False 1 \n",
"135 1833-010719-1 True 1833 NaN True False 1 \n",
"... ... ... ... ... ... ... ... \n",
"1154 1839-120619-3 True 1839 NaN False True 3 \n",
"1155 1834-110319-5 False 1834 11.0 True False 5 \n",
"1156 1834-110319-5 False 1834 11.0 True False 5 \n",
"1174 1839-200619-2 False 1839 11.0 True False 2 \n",
"1184 1833-260619-3 True 1833 NaN False True 3 \n",
"1185 1833-260619-3 True 1833 NaN False True 3 \n",
"1186 1833-260619-3 True 1833 NaN False True 3 \n",
"1189 1833-260619-3 True 1833 NaN False True 3 \n",
"1191 1833-260619-3 True 1833 NaN False True 3 \n",
"1193 1833-260619-3 True 1833 NaN False True 3 \n",
"1194 1833-260619-3 True 1833 NaN False True 3 \n",
"1197 1833-260619-3 True 1833 NaN False True 3 \n",
"1199 1833-260619-3 True 1833 NaN False True 3 \n",
"1202 1833-260619-3 True 1833 NaN False True 3 \n",
"1204 1833-260619-3 True 1833 NaN False True 3 \n",
"1208 1833-200619-3 True 1833 NaN False True 3 \n",
"1214 1833-200619-3 True 1833 NaN False True 3 \n",
"1215 1833-200619-3 True 1833 NaN False True 3 \n",
"1217 1833-200619-3 True 1833 NaN False True 3 \n",
"1218 1833-200619-3 True 1833 NaN False True 3 \n",
"1219 1833-200619-3 True 1833 NaN False True 3 \n",
"1220 1833-200619-3 True 1833 NaN False True 3 \n",
"1221 1833-200619-3 True 1833 NaN False True 3 \n",
"1223 1833-200619-3 True 1833 NaN False True 3 \n",
"1255 1833-010719-2 False 1833 11.0 True False 2 \n",
"1257 1833-010719-2 False 1833 11.0 True False 2 \n",
"1263 1833-010719-2 False 1833 11.0 True False 2 \n",
"1264 1833-010719-2 False 1833 11.0 True False 2 \n",
"1268 1833-010719-2 False 1833 11.0 True False 2 \n",
"1275 1833-010719-2 False 1833 11.0 True False 2 \n",
"\n",
" stim_location stimulated tag ... stim_half_f1 stim_half_f2 \\\n",
"17 ms True stim ii ... 30.173035 30.443743 \n",
"19 ms True stim ii ... 30.128480 30.460705 \n",
"21 ms True stim ii ... 30.188571 30.437126 \n",
"29 ms True stim ii ... 30.155404 30.445467 \n",
"30 ms True stim ii ... 30.195374 30.437554 \n",
"31 ms True stim ii ... 30.195640 30.437892 \n",
"33 NaN False baseline i ... NaN NaN \n",
"34 NaN False baseline i ... NaN NaN \n",
"35 NaN False baseline i ... NaN NaN \n",
"39 NaN False baseline i ... NaN NaN \n",
"40 NaN False baseline i ... NaN NaN \n",
"42 NaN False baseline i ... NaN NaN \n",
"44 NaN False baseline i ... NaN NaN \n",
"46 NaN False baseline i ... NaN NaN \n",
"47 NaN False baseline i ... NaN NaN \n",
"49 NaN False baseline i ... NaN NaN \n",
"54 ms True stim i ... 10.995334 11.259054 \n",
"57 NaN False baseline ii ... NaN NaN \n",
"76 ms True stim ii ... 30.136513 30.450445 \n",
"87 ms True stim ii ... 30.178205 30.439063 \n",
"106 ms True stim i ... 10.998382 11.225055 \n",
"124 NaN False baseline i ... NaN NaN \n",
"125 NaN False baseline i ... NaN NaN \n",
"126 NaN False baseline i ... NaN NaN \n",
"128 NaN False baseline i ... NaN NaN \n",
"129 NaN False baseline i ... NaN NaN \n",
"131 NaN False baseline i ... NaN NaN \n",
"132 NaN False baseline i ... NaN NaN \n",
"134 NaN False baseline i ... NaN NaN \n",
"135 NaN False baseline i ... NaN NaN \n",
"... ... ... ... ... ... ... \n",
"1154 NaN False baseline ii ... NaN NaN \n",
"1155 mecl True stim i ... 10.981120 11.242957 \n",
"1156 mecl True stim i ... 11.010395 11.204906 \n",
"1174 ms True stim i ... 11.023967 11.199671 \n",
"1184 NaN False baseline ii ... NaN NaN \n",
"1185 NaN False baseline ii ... NaN NaN \n",
"1186 NaN False baseline ii ... NaN NaN \n",
"1189 NaN False baseline ii ... NaN NaN \n",
"1191 NaN False baseline ii ... NaN NaN \n",
"1193 NaN False baseline ii ... NaN NaN \n",
"1194 NaN False baseline ii ... NaN NaN \n",
"1197 NaN False baseline ii ... NaN NaN \n",
"1199 NaN False baseline ii ... NaN NaN \n",
"1202 NaN False baseline ii ... NaN NaN \n",
"1204 NaN False baseline ii ... NaN NaN \n",
"1208 NaN False baseline ii ... NaN NaN \n",
"1214 NaN False baseline ii ... NaN NaN \n",
"1215 NaN False baseline ii ... NaN NaN \n",
"1217 NaN False baseline ii ... NaN NaN \n",
"1218 NaN False baseline ii ... NaN NaN \n",
"1219 NaN False baseline ii ... NaN NaN \n",
"1220 NaN False baseline ii ... NaN NaN \n",
"1221 NaN False baseline ii ... NaN NaN \n",
"1223 NaN False baseline ii ... NaN NaN \n",
"1255 ms True stim i ... 11.016969 11.215476 \n",
"1257 ms True stim i ... 11.023725 11.224735 \n",
"1263 ms True stim i ... 10.994052 11.225703 \n",
"1264 ms True stim i ... 11.000518 11.216176 \n",
"1268 ms True stim i ... 11.034662 11.197408 \n",
"1275 ms True stim i ... 11.016058 11.203307 \n",
"\n",
" stim_half_width stim_energy half_width peak_to_trough \\\n",
"17 0.270708 0.129917 0.283497 0.606614 \n",
"19 0.332225 0.258594 0.261815 0.633750 \n",
"21 0.248556 0.080818 0.242524 0.534827 \n",
"29 0.290063 0.160690 0.279806 0.598967 \n",
"30 0.242181 0.091302 0.265158 0.581451 \n",
"31 0.242252 0.098635 0.246920 0.570844 \n",
"33 NaN NaN 0.272875 0.602667 \n",
"34 NaN NaN 0.226452 0.274814 \n",
"35 NaN NaN 0.247266 0.570104 \n",
"39 NaN NaN 0.284542 0.644111 \n",
"40 NaN NaN 0.259920 0.581698 \n",
"42 NaN NaN 0.263630 0.596746 \n",
"44 NaN NaN 0.281399 0.607354 \n",
"46 NaN NaN 0.285816 0.603160 \n",
"47 NaN NaN 0.279177 0.585152 \n",
"49 NaN NaN 0.282336 0.711705 \n",
"54 0.263719 0.143591 0.270286 0.573804 \n",
"57 NaN NaN 0.277867 0.588852 \n",
"76 0.313932 0.178995 0.285028 0.578245 \n",
"87 0.260858 0.102743 0.272793 0.570844 \n",
"106 0.226673 0.070224 0.230947 0.561223 \n",
"124 NaN NaN 0.271262 0.615002 \n",
"125 NaN NaN 0.307694 0.659653 \n",
"126 NaN NaN 0.267708 0.630543 \n",
"128 NaN NaN 0.289100 0.673221 \n",
"129 NaN NaN 0.290402 0.650772 \n",
"131 NaN NaN 0.272160 0.620429 \n",
"132 NaN NaN 0.241405 0.595513 \n",
"134 NaN NaN 0.269911 0.609574 \n",
"135 NaN NaN 0.273069 0.651265 \n",
"... ... ... ... ... \n",
"1154 NaN NaN 0.273572 0.611548 \n",
"1155 0.261837 0.170881 0.276394 0.585645 \n",
"1156 0.194511 0.065052 0.249700 0.569364 \n",
"1174 0.175703 0.041580 0.249357 0.517805 \n",
"1184 NaN NaN 0.275930 0.594526 \n",
"1185 NaN NaN 0.225575 0.277528 \n",
"1186 NaN NaN 0.244049 0.571337 \n",
"1189 NaN NaN 0.222604 0.576271 \n",
"1191 NaN NaN 0.189559 0.248665 \n",
"1193 NaN NaN 0.257469 0.636957 \n",
"1194 NaN NaN 0.252255 0.587372 \n",
"1197 NaN NaN 0.261129 0.592306 \n",
"1199 NaN NaN 0.277189 0.615988 \n",
"1202 NaN NaN 0.287132 0.616235 \n",
"1204 NaN NaN 0.300175 0.610068 \n",
"1208 NaN NaN 0.293775 0.657679 \n",
"1214 NaN NaN 0.252895 0.600200 \n",
"1215 NaN NaN 0.271023 0.699617 \n",
"1217 NaN NaN 0.343906 0.698383 \n",
"1218 NaN NaN 0.304748 0.641151 \n",
"1219 NaN NaN 0.277708 0.585645 \n",
"1220 NaN NaN 0.294291 0.639177 \n",
"1221 NaN NaN 0.258204 0.608094 \n",
"1223 NaN NaN 0.276894 0.623636 \n",
"1255 0.198507 0.058616 0.277537 0.570597 \n",
"1257 0.201010 0.038708 0.248774 0.604394 \n",
"1263 0.231651 0.045162 0.280033 0.560729 \n",
"1264 0.215657 0.037637 0.281934 0.627089 \n",
"1268 0.162746 0.021146 0.266512 0.594033 \n",
"1275 0.187249 0.050767 0.257098 0.545188 \n",
"\n",
" average_firing_rate bs bs_stim bs_ctrl \n",
"17 9.779867 True 1.0 NaN \n",
"19 7.437802 True 1.0 NaN \n",
"21 2.265039 True 1.0 NaN \n",
"29 10.924422 True 1.0 NaN \n",
"30 3.984881 True 1.0 NaN \n",
"31 3.497452 True 1.0 NaN \n",
"33 5.945508 True NaN 1.0 \n",
"34 2.860048 False NaN 0.0 \n",
"35 3.365674 True NaN 1.0 \n",
"39 17.471520 True NaN 1.0 \n",
"40 5.891739 True NaN 1.0 \n",
"42 13.436847 True NaN 1.0 \n",
"44 17.446704 True NaN 1.0 \n",
"46 7.914246 True NaN 1.0 \n",
"47 10.840470 True NaN 1.0 \n",
"49 5.890705 True NaN 1.0 \n",
"54 14.025342 True 1.0 NaN \n",
"57 17.162446 True NaN 1.0 \n",
"76 34.841257 True 1.0 NaN \n",
"87 10.825754 True 1.0 NaN \n",
"106 2.339767 True 1.0 NaN \n",
"124 2.868000 True NaN 1.0 \n",
"125 6.912052 True NaN 1.0 \n",
"126 4.229867 True NaN 1.0 \n",
"128 16.735961 True NaN 1.0 \n",
"129 25.974728 True NaN 1.0 \n",
"131 14.686236 True NaN 1.0 \n",
"132 18.657578 True NaN 1.0 \n",
"134 3.106903 True NaN 1.0 \n",
"135 6.213807 True NaN 1.0 \n",
"... ... ... ... ... \n",
"1154 5.407135 True NaN 1.0 \n",
"1155 27.008837 True 1.0 NaN \n",
"1156 18.304313 True 1.0 NaN \n",
"1174 8.992236 True 1.0 NaN \n",
"1184 5.288548 True NaN 1.0 \n",
"1185 2.693978 False NaN 0.0 \n",
"1186 3.425185 True NaN 1.0 \n",
"1189 6.484767 True NaN 1.0 \n",
"1191 3.564358 False NaN 0.0 \n",
"1193 26.839270 True NaN 1.0 \n",
"1194 4.589373 True NaN 1.0 \n",
"1197 7.407060 True NaN 1.0 \n",
"1199 9.221822 True NaN 1.0 \n",
"1202 7.835622 True NaN 1.0 \n",
"1204 9.358786 True NaN 1.0 \n",
"1208 7.071948 True NaN 1.0 \n",
"1214 15.695836 True NaN 1.0 \n",
"1215 11.768979 True NaN 1.0 \n",
"1217 4.442023 True NaN 1.0 \n",
"1218 3.102590 True NaN 1.0 \n",
"1219 6.900656 True NaN 1.0 \n",
"1220 22.458685 True NaN 1.0 \n",
"1221 3.767155 True NaN 1.0 \n",
"1223 12.778706 True NaN 1.0 \n",
"1255 5.734302 True 1.0 NaN \n",
"1257 2.814742 True 1.0 NaN \n",
"1263 4.760330 True 1.0 NaN \n",
"1264 15.890929 True 1.0 NaN \n",
"1268 2.704037 True 1.0 NaN \n",
"1275 5.292658 True 1.0 NaN \n",
"\n",
"[271 rows x 67 columns]"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gridcell_sessions"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"data.loc[:,'gridcell'] = False\n",
"data['gridcell'] = data.isin(gridcell_sessions)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>action</th>\n",
" <th>baseline</th>\n",
" <th>entity</th>\n",
" <th>frequency</th>\n",
" <th>i</th>\n",
" <th>ii</th>\n",
" <th>session</th>\n",
" <th>stim_location</th>\n",
" <th>stimulated</th>\n",
" <th>tag</th>\n",
" <th>...</th>\n",
" <th>stim_half_f2</th>\n",
" <th>stim_half_width</th>\n",
" <th>stim_energy</th>\n",
" <th>half_width</th>\n",
" <th>peak_to_trough</th>\n",
" <th>average_firing_rate</th>\n",
" <th>bs</th>\n",
" <th>bs_stim</th>\n",
" <th>bs_ctrl</th>\n",
" <th>gridcell</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.272875</td>\n",
" <td>0.602667</td>\n",
" <td>5.945508</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.226452</td>\n",
" <td>0.274814</td>\n",
" <td>2.860048</td>\n",
" <td>False</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.247266</td>\n",
" <td>0.570104</td>\n",
" <td>3.365674</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.284542</td>\n",
" <td>0.644111</td>\n",
" <td>17.471520</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>1833-260619-1</td>\n",
" <td>True</td>\n",
" <td>1833</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>baseline i</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.259920</td>\n",
" <td>0.581698</td>\n",
" <td>5.891739</td>\n",
" <td>True</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 68 columns</p>\n",
"</div>"
],
"text/plain": [
" action baseline entity frequency i ii session \\\n",
"33 1833-260619-1 True 1833 NaN True False 1 \n",
"34 1833-260619-1 True 1833 NaN True False 1 \n",
"35 1833-260619-1 True 1833 NaN True False 1 \n",
"39 1833-260619-1 True 1833 NaN True False 1 \n",
"40 1833-260619-1 True 1833 NaN True False 1 \n",
"\n",
" stim_location stimulated tag ... stim_half_f2 stim_half_width \\\n",
"33 NaN False baseline i ... NaN NaN \n",
"34 NaN False baseline i ... NaN NaN \n",
"35 NaN False baseline i ... NaN NaN \n",
"39 NaN False baseline i ... NaN NaN \n",
"40 NaN False baseline i ... NaN NaN \n",
"\n",
" stim_energy half_width peak_to_trough average_firing_rate bs \\\n",
"33 NaN 0.272875 0.602667 5.945508 True \n",
"34 NaN 0.226452 0.274814 2.860048 False \n",
"35 NaN 0.247266 0.570104 3.365674 True \n",
"39 NaN 0.284542 0.644111 17.471520 True \n",
"40 NaN 0.259920 0.581698 5.891739 True \n",
"\n",
" bs_stim bs_ctrl gridcell \n",
"33 NaN 1.0 True \n",
"34 NaN 0.0 True \n",
"35 NaN 1.0 True \n",
"39 NaN 1.0 True \n",
"40 NaN 1.0 True \n",
"\n",
"[5 rows x 68 columns]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.query('baseline and Hz11 and gridcell').head()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecXFX9//HXbkJ6IIUSJECAwAdQBPkCgoJEpYqANH8KAQJSBBGliCggoNKb0kRRCdK7FCmCkCgoivTmhx6aCCQB0svu/v74nGFvZqft7uzOzu77+Xjs4+7ccu65s7PzuefcUxpaWloQERGRnq2x1hkQERGR8hSwRURE6oACtoiISB1QwBYREakDCtgiIiJ1QAFbRESkDihgi4iI1AEFbBERkTqggC0iIlIHFLBFRETqgAK2iIhIHVDAFhERqQMK2CIiInVAAVtERKQO9K91BqR6zOzT7v5UgfWTgX3TyxXd/Z1uzVieYvkUqTUzy803fI+7b9eB4ycBl6WXX3T3KVXKWqcVuzYzmwA8kF7+yN1P7+68SWUUsHsBM1sG+CnwHXrw39TMxgBnA58HVqtxdkRE6kqP/XKXdjkX2L/WmajAVcCXgGm1zoiISL1RwO4d+tU6AxWql3xKH+XuDbXOg0gxanQmIiJSBxSwRURE6oCqxOuYmZ0EnJi3LtcSdKq7Tyhy3DjgB8B2wErAR8BzwGTgcndvKXRcOnYpYBKwB/BpYBTwAfAkcCNwmbsvzDtmMq2t1AFWzeTzcneflLf/CsCBwJcBS+dYDEwHHgGuBW4qlc9qMLN1gMNSPsYCDcAbRIvaC9z9uSLHTSau90l338DM1gS+D2xLvN9zgaeAPxDX31wiD+1+v9Nx44BX08tdgP8SbR02BOYRf+9Ds631zezTwBFEO4MV03n+CZzv7vea2d3pGj7+bJnZhURjR4AvuXuutXGha/k6cF16uaO731Fs3yLHjwOOTnlYBZgDPAFc4u7Xm9klwMHANHcf15H3olwrcTNrAHYADgHWA5YjPhM3AmdUeB39Uhr7EX/TlVI+ngWuB37j7vNLHL9tOnYzYIV07EvAncTn8v1K8iH1RyXsvmc34HngUGB1YCDxpbMl0R3lT2ZW8EbOzMYTgeI3wNbEl8VS6fitgEuAJ83MOpo5M9uX+HL9GTCBCBwDgaHEl/RuwA3AremLr0uY2QnA08T7ZOn8Q9Lv3waeNrOT0hd4qXR2I4LKocAawCAi6E4Afg/cY2YDixxbrff7M8RNxufS+UcC6wOvZM61H/AYcXOwSuY8XwX+bGZnFUl7cub3vcrkY++0/B9wd5l9l2Bm2xEB7TvAeGAAcR1fBK4zs2uorABS9r0okYfBwM3A7cBXgJVTGmsCPyI+L6uXSWMMcD9wK/A1Wv8HRxC9J34JPGZmqxQ4dqiZ3Uy8d/+P+Dvljt0I+AnwspntWO5apD4pYNe3S4gvoNsz6z6Tfg4ocsyFREnxIqKE/UXgOKK0ArA9cGT+QemL5m/AOsDCdPwOwCbAzsDlQBOwNvCAma2YOfwnKU+Pptf/zeTzJ5lzfIkIAIOBGURXte2BTYlAfVE6N8COJa6xU1LNxU+JRnJPEQH6c8DmwPeAl4n/nRPJq+HIswrRMh7gTKKkvjlwLFGrARF4v18gD515v/MdT/zNf0QEhX2Ak9x9djrXbsTNQ7+UrxOBLYiS9jnp/EcTn5UluPu/gWfSy91L3HwsR3zeAK5y98Ul8pt/7KbAbcQN08KUpy+mPJ4IzAK+QesNQSkl34syriCCLMTnYl9aP5v3EgH8uBLXMYi4WfhCWvVXYGJKY1fgnrR+HeC2VLuSO7aReA92SavuIIL2Z4nP0KnAh8DSwC1m9uUKrkfqjKrE61gaAOUdM5uRWfdEmcMWEFWXf8+sm2Jm9wP/SK/3JQJM1iXAGOILfSt3fyRv+21mdiPxpbIicB7xJYq7vw68bma5L8WFRfL507RcDGybgkHWzalaNneDsgfw65JX205mtiFwQnp5BbB/XnB5yMx+R3xhTgB+YmbXF6keH0ncCG2ed70PmdlU4O9E8JhE2+rUDr/fBTQCh7v7pen1x397MxsK/CK9nJHy+nzm2AfM7I9EQBpUJP3JRP/6ZYgS+U0F9vkGrd83lxdJp40UqC4kSvwLga3d/a+ZXR40s+uJ4LdcBUkWfS/K5GNrIjAD/AXYwd0XZHa52cx+CRxeIpnjiRssiKrr/H1vyTxOWZ94z65I2w4nbqAAvu3u+Z/7v6TP5UPE5+YyM1vD3RdVcn1SH1TC7nsuzAvWALj7w0SVKMDa2WpxM1sL2Cm9PKVA8MilcQetX8Z7mNknKs2UmQ0hqvdmALcXCNbZc3yQXq5UafrtcBTxfzGd+GJsUxJ09zlEv/cWIuB+t0R6Fxe6OUnvd+758drZkmkXvN/zKB4kdyOez0OMcvV8/g7u/iBwSpHjAa4kbrKgeLV4rvT7RDtHudsc+L/0+zl5wTqXv/9QoFaoiFLvRSkHp2UTcRO3oMA+RxPPkttINx65GqGXic9ZIUcDuSC7bebY3PXdVSBYA+DurxC1NxCl/V2LnEPqlAJ233NniW0vpmUjUVrK+QoRmCBKWpWk30iUQCvi7nPdfWN3Hw3sXmb33NCqBatfOyo9j94+vXzI3ecW29fdXyXaAkBUdRfz5xLbXs78Pizze7Xf78cKNUxLcs87F9FafV/Ib4ptcPf/AXell18xsxHZ7ekZ+8bp5eQS5yiVP2gd8rOQ62i9kSul1HtRULp53Tq9fCjVGLWRSrNXFklmY6INAsA1xUq+qcHYhsCy7j4xrf40EYCh/OfhrszvqhbvZVQl3ve8WWJbtmVq9rPxmczvj7WjTVnJBjjF5FpNp+ra1YjGWmsT1YSb0/rlVe0bznFENTbATpkWw+WUGmb1tRLbss9Nu/L9fqPEMRuk5fOp5qAgd3/XzF6l+LVeRgTXgcSjiksz23Kl60XA1SXyUip/H7r7i8V2cvdFZvY4BZ6z5yn1XhTzCeLZMEQDwlL+VWT9WpnfHyuyDwDu/kzequzn4VwzO7dMHnI69P8nPZcCdt8zq8L9sq2fl+3guUaW32VJZjaWqC7cieJfOM10Te1QR6+zv5kNd/dC722pxkzZG4KufL8/KrIeWkt9lXQFepfiAfuOlMayRLX4pfBxrUWupHiXu79XwXkK5W96hfkrp9R7US4PleTjf1VII1+3/f9Jz6aA3fd0pO9y9nOyCa3P2Mpp15dz6rpzI9GFKmcWUfX8LNEH+z7gFuCT7Um7Qtnr/D1wQTuOLVp93sl8VOP9LvU3H5CWldwAFU0nlXCvIlrRf8HMVnb3N4iW3Kum3Try7Lgq+WvnPqWOKTd0abG/VWe+a7PHHkpr49By5nXinNIDKWBLJWZkfn/L3d+u9glSN6ZriWC9CDgNuAbw/AFSzGxY2xSqInudTRW0uO8qXf5+Z7xPNN6rpIV1uZLeZCJgNxDV4ucSXY8gSpXtGiglkz8DljWzhjKD5XS0JFrOfzO/l3ufRhVZn/2bjm7n+bPHfljDz6XUmAK2VCL7TG1TYvCIgszss0Tjp9eIBjqlnplnTaS1odvP3f2nhXZKralXKLStCl4hSspDiOssycx+SDR0etnd76tiPrrj/c55ggjYa5nZ0GLPsVNDspLPRN39CTN7gnjuvDMRsHOt3a9pb2OvTP4+TzTKWxN4oUj+Gml93l1t7xBBcxStjeeKKZaHbLe/9YlaooLM7Gqi4dl/iH7X+Z+Hou0AUn/3Q4nPwxPu/mSZ/EodUSvx3qHo0JZVck/m90PK7HsWcDpRWs7/gi+Vz/GZ3x8tuld0Q8r1B67qDWdquZsbWnM9M9u82L5pkJfTif7SP65mPqje+12JXJ/2pYCvl9hvbyr7vpiclp9PQ2jmuox1pDoclhwUqNRIajvQRSVsd28C/phebmJm6xXaL+95fb5HaH1+/v/SDUahNAYRvQQMGJ1qFB6htZS9p5ktU+jY5LvAScTfYecS+0kdUsDuHT7uE9oV1cWpT3Su/+tWZlYwQJnZUcQ
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XecXFX9//FXsgkJSSCEUE2QAIEPHVFBUJSoiEj9IuJPpAUEpCuiiIKIBRDUqBRFQAiC9CJVBRVQQBBp0vzQu0hIQkgvu/v743OGvZmdvrM7Ozvv5+ORx925954zZ0rmc8+5pwzq7OxERERE+rfBjS6AiIiIlKeALSIi0gQUsEVERJqAAraIiEgTUMAWERFpAgrYIiIiTUABW0REpAkoYIuIiDQBBWwREZEmoIAtIiLSBBSwRUREmoACtoiISBNQwBYREWkCCtgiIiJNYEijCyCNZWabuvu/C+yfCuyfHq7u7m/0acHyFCun1I+ZTQBeSA9/7e6HNrA4PWJmdwLbAgvdfXgN6SfQ9V58z91PrlvheqjUazOz3HrJf3L3Hfq6bNK7FLBblJmNBr4PHEE//h6Y2WrAT4CPAGs1uDgiIg3Tb3+opddNAQ5sdCEq8DvgE8BLjS6IiEgjKWC3rrZGF6BCzVJO6UfcfVKjyyBSb+p0JiIi0gQUsEVERJqAmsRbjJmdDHw3b1+uZ+ldxZoSU6/ZbwA7AOOAd4AnganAxe7eWShdSjsUmAzsCWwKrAi8DTwKXANc5O6L8tJMpauXOsCamXJe7O6T885fFTgY+CRg6TmWANOBB4ArgGtLlbNWZjYZuCg9XB3oBE4EdgbeQ7xX9wO/cvdbKsjv08ABwNbAqsB84FngVuAsd3+rTPq1iPdiErA28V4sAKYB9wFT3f32al5jyncw8Ftg77TrFmAPd19YZT7LAUcBnyM+q07gGeBy4BfA7ulvgLXc/cVM2heBNdN5pwFnEd/JQcCLwGnuflklvcTNbDPgGOJ9fi/xXbkd+BFQ0Wsysy2I9/ojqVwAzwF/BH7u7v8tkXYD4EjiOzs+vYZXgDuIz/nJSsogrUM1bKnEHsBTwOFEABgGrEz8IF4E3GJmBS/+zGwiEZjPAz5FBKChKf12wLnAo2ZmtRbOzPYnhuD8gAhSq6cyjiR+iPcArgZuMLPeviduwMPED/EEYBlgJWAn4GYzOycFvu4JzUaa2XXEj/3/S2UfBqwAfBA4CXjOzHYp+uRm3wKeBr5FV8AfCixHfHZfBG4zs1/W8NrOpefBei3i/TkF2BwYQXxO7wNOB/6VylzO8sDfiIvA5YBRwMbAaxWW4/hUjv2B9YDhxIXoZOARYNcy6Yea2VnAP4mAvWF6HSOJi9LjgKfMbLsi6b8DPEb8n7KUbkT6+1DgMTM72cwGVfJ6pDUoYLeec4kfypsy+zZP/w4qkuZs4ur/HKI283HgBGBuOv4Z4Gv5idKQrL8DGwCLUvqdgC2B3YCLgXZgfeAOM1s9k/ykVKYH0+P/Zsp5UuY5PkHU8pcFZhBD1T4DbEUE6nPScwPsUuI11ssVxAXDHen5tyZ+lHOB5HCiZriUFMRvJGqXADcTQftDxIXNqcAsIlBdb2afLJDHAem8IcCrwDeB7VMZ/h9wKdCRTj8s1eQrYmY/JwIT1B6sRxNBdp2061riM9ka+DJRM90YOKOC7HKB9jfEheOuRK30rgrKcSTxGQwC3gK+DnyYeK9+TVxk/axMNucTF2UQF4tHE7XsHYjv3BJgNPFZrZ33/CcT39M24N9EgP4wsA3wFeJ9GEy0hC3VGiatTU3iLSZNgPKGmc3I7HukTLKFwCfc/d7MvjvN7K/AP9Lj/en+Q3susBrRJLyduz+Qd/xGM7uGCFSrEz+SX0hlehl42czmpHMXFSnn99N2CfBpd/9X3vHrzOyPdF2g7En8KPeW1Ygf8y9nmt/vSzXnu4GJwDFm9ht3fzqT7mhi+BrAoe6eX8a/mNlvgHvSc1xkZuu4+2KAVBPLvRdvAx9z9xcy6e8DrjKz+4lmZIj34k/lXpCZnUIEEqgxWCcnE02/AMe7++nZ8pnZ5ak8W1eQ12DgMnfPXoDdVOzkHDNbGfhhevg68GF3zw4ZvN3MbidaZIrlsR1dt2v+QXzvZmdO+ZOZPUBcSI4iLm6/lNK+H/hOOu8S4EB3X5JJe0/6nG8mWotOMrOr1DwuoBq2VObsvGANgLvfBzyUHq6fbRY3s/XoalY8pUCwzuVxM1HTBtjTzN5TaaHMbATRZDwDuKlAsM4+x9vp4bhK86/RM8CR+ffK3f1/RE0Koon6S7ljqXada6H4Q4FgncvjeeD49HAN4LOZw2sS78Msok/ACxR2aebvsu+FmX0b+HZ6WHOwNrPhwCHp4b15wRqAFPS+SFx8VeJX1ZaDaGkYnf4+Li9Y58pxLRFMi8m9jg5gv7xgncvjYqLJHeBTmabtY4nf3enEhVm31+ruc4k5EjqJVoCjyr0oaQ0K2FKJW0sceyZtB9P1QwiwI/FjA9GRp5L8BxO1ioq4+zx338LdxxIdmErJTa06rNL8a3RBfge6HHf/C/Byepi9D70pEYCh/Hv1h8zf7zaLu/uL7r6Zu69ANPEWM4voxAZl3gsz+wpxrxniM6q1Zp0r64j099RiJ6UOZrdVkN8S4n53tXZM24VEk3wxFxbamS5Kc1N+3uvuz5bIYw/ic13T3TtT0P5MOnaPu88rljBdcD2VHna7/SGtSU3iUolXSxxbkPk7+33aPPP3Q1X0KVu7/CnduXsHRMctYgrTdYh745sR9wZzAbG3L1LvKXP8IaIz2XpmNjiVO/teTTGzKRU+V8H3KvNeLJ/OWYfoR7A58V4sm04t9V7sQFdNEmBOD4I1RKeynHKB9n66Amsxb7n7gjLnFLJ+2nqZ9P+iq4abtTrRyQ26WpcKKtDKMQEYk/7eNTPqoRxNySuAArZUpluTXxHZH7eVanyuMeVPWZqZjSeaGneleMDvoG9alF4vc3xa2rYR79Gb1PG9SkOFvkbU5Ao1eVcaJHJDlBYSNfHPm9ll7n5DLQVl6Z7fJYelEe9JOe/0sBzTS53k7nNT/4nl8g5lX0fJPAqo9XMeYmbLFWp6l9aigC2VqGXscva7tSWwuMJ008qf0sXMdiDGco/M7J5NNCc+QYzB/jNwPbBRNXnXqNz91+ywslzTefa9OpyujnzlzM8+SL3Ez8vLbwbxXjxO1FxvB/7D0u9XMbcRY+//SQTtX5nZXe7+dulkBS2T+bvchVMl37dax9Pn0lUyXKrQd7Ynv5nZtBfS1fmvEkWbz6V1KGBLb5mR+fs1dy9X86xaGjZ2BRF8FhNDdS4nmjs7884dVe/nL2JFYvKLYlZO2wWZwJd9r2ZV0Gu/GzPbhK5gPZvokX1ddtKRdN5guprES7kP2M3dF6Re4t8nmoN/SqbDXBWyteqVKb2YS6010Ur8l+ipv3Kpk9J4/eULHMp+VmOrfO5s2vZaPmdpbQrY0lsez/y9FXBdsRPN7ENEZ7MXic44pe6ZZ+1DV0e3H7r79wudZGbDqGwyjnp4HzFRTKFyDAI+kB5mz8l/ry4rlnkalnQ48V494u65fL5M1//nI939t0WyGE9ltwYezdzjPR3Yi7gPfqCZXe7uf64gj6xscHo/pe9jf6DEsZ56ggjYVqaZeWMK/z6+QLRsLEv0jyjKzI4gWiheIPoDPE/UlEcQn3NJZvZNYnTDczW83zIAqZd46+oof0qPZMf3Hlbm3B8T00FeQfd70KXKOTHz94NFz4reurnpKXv7InXfEsd2IKYqhaUvYB6gq/b1xTTBSDFHEbXnqcTkMzmVvhf7ZP6u6L1Ivd4Poas5+bzUua8af6arCX/vYieZ2Sp09aTuDbme4UNYeurbfPsV2pnGvf8tPdzGzNYodF6yC9EXYCvg9ZT2jnRsEzPbpljCNCHQj4i5DL5d7DxpLQrYrevdHr+90VycxkTnfti2S+N5uzGzY4GPpoePEDOjFSpnoTJmm1kL/sib2ZYsfa+wt4d1fdLMDs3faWbjgNx0oDPJDG1
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHFW5x/HvTPYEsrOZhDXwsiiICoLCJSqCgoAK4QqCBCQqigsCioAIKpsoyKZcUQkCsgqyKqCyCIoiBhQiL4sQIICQFbJnMn3/OKedmk53T0939VIzv8/zzFNdVadOne5M5u1z6ixtuVwOERERaW3tzS6AiIiI9EwBW0REJAMUsEVERDJAAVtERCQDFLBFREQyQAFbREQkAxSwRUREMkABW0REJAMUsEVERDJAAVtERCQDFLBFREQyQAFbREQkAxSwRUREMkABW0REJAMGNrsA0rrMbFt3/0eR4zOAw+LuBu7+akMLVqBUOVuJmW0OnApMAcYDC4BZ7v7+JhYr08xsCnBP3P2Gu59VRR4ziL/L7t6WWuFqVO69mdmpwLfi7s7u/lBjSyfNooAtazCzUcC3gS/Qwr8jZrY+8H3gvcAmTS5OSWY2AXgIGJs4vB7wr+aUSESyqGX/GEtTnQsc0exCVOAq4P3A7GYXpAdfpCtY3wD8GFgOLG1aiUQkcxSwpZgBzS5AhbJSzm3idhVwmLsrUKfA3e8FWqYZW6Te1OlMpP5GxO1rCtYiUi0FbJH6y/8/62hqKUQk09QkLv9V0Ps0fywXX97n7lNKXLcxcDzwIWAC8AYwC5gBXO7uuWLXxWsHAdOAqcC2hGe9C4HHCM97L3P3lQXXzKCrlzrARolyXu7u0wrSrwdMBz4AWLxHBzAPeBi4BvhVuXL2VvxMnis4nCznbHffOKbNHzsGuB24CNiF0IT+DHCCu/8ukXevP7Mi5fsAoVPhO4F1gTnAzcCZhM9mQUx6uLvPqPiNd7/HroTn97sQesbPA+4DfuDuD5vZk4R/j27/ZmY2Dbgs7o4B9gO+QehYOB/4W3zvO9FDL3EzG0b4rA4FNgeGAk8CPwN+UuH7WBs4GDgo5rFOfC9/A37m7r8uc23N/1YieaphS632J/R2/jywKTCE8AdtN8If3dvNrOgXQzObTPjD9RPgg4Se04Pi9bsDlwCPmZlVWzgzO4wQOL9DGFK1QSzjCGDDWP7rgZvNrNnPxCcBDwJ7AMOBUcA7CEEbqP0zM7OBZvYT4HfAxwifwVBgM+CrwKOEIFoTMzsFuJ8QqDaIZVwf+F/gz2b2pQqz+hzhi58Bg2Mea7n78grKsBHwd+BHwM6ELw1rAe8idPy7i/Dey+XxbuAJwue6G/CWxHv5CHCTmf3KzIYUubbuv9/SvyhgS9IlwPbArYlj28efI0tccxGh48/FhBr2+4CTgCXx/IcJgaCbOCTrj8BWwMp4/d7AjoQa1eXAamBL4B4z2yBx+SmxTI/E/VcS5TwlcY/3E/7YDyPUzL4dy7MTIVBfHO8NsE+Z91iNlxNlKlbOvYpc8xVCUPkesCsh2J3h7s/H91PLZ5b3fUJrA4Te9Z8jBLOPEwLYBMIXmKqZ2bHAaXH3P4SWg/cAexJqtm3A+VQ2FO904EVCi8ouwHHADyoowwhCbX7LeOhmYF/Cv/2RwFOEFpepZfLYEriX8EWqE/hFzGNnwigKj0k/ThhZkbw2jX8rkW7UJC7/FSdAedXM5ieOPdrDZSuA97v7nxLH7jWzPwB/jvuHEYJQ0iWEWsobwO7u/nDB+VvM7AbgFkIN7TzgE7FMLwAvmNnimHZliXJ+O247gD3d/W8F5280s9/S9QVlKvB/Zd9thWIz56MAFZQzr50QoE9KHLsh8brqzyyWY1vg6Lg7C9jV3ecnrr/JzH4IfLmCt1hUHHOeD9b/BnZx91cSSe6Kn/l1hBpzT3KEf7v8mPUHKyzKicBG8fXp7n5y4txfzOwa4G5C8C3lp4QaeA74X3dP/ls8FD/rPwFvBT5rZufkv1xR47+VSDGqYUutLioI1gDE2Zf+Hne3TDaLm9kWhJoKhD+mhX/M8nncRqiJAEw1s7dUWigzG05o+p4P3FokWCfvsTDuTqg0/zr6cbGDKX1mh9M1FO6ogmCddxyhCbhan6arV/xRBcE6X8YbgJ9XmN+9iWBdETNrp6sVwSnolxHLsAT4FKHmXCyPrQkT8gBcURCs83m8SWhNgvC39IPx2rr/fkv/pIAttbqjzLmn47ad8Dw2by+6xs/eXWH+7YRn0BVx96XuvoO7jwMO6CF5fmrVNZ5DNtgcd3+pxLk0PrOPxO2L7n5/sQvdvQO4tOeilrRP3M6hfDkrbcmoZtrNdxGeEwNc6+6riyVy92cIz9mL2Sfx+hdl7nUH4RHHWu6e/9zq/vst/ZOaxKVWpQIMhNm88pK/a9snXv+9F31uNq00YZK7d8J/n2tuQuhgtSWwHeG56KSYtNlfYF8sc66mzyx2qMt/fj095lijxaQSZtZG6AkN8EgPve5nEnrBD+oh23KfSSlbJl739F7/SvFAuUXi9d+LnAf++wWn8B4N/f2W/kMBW2r1ZoXpkjNSja/yXmN6e4GZTQSOJTRRlvqD2EnzgzWE552l1PqZjafrPc7t4ZqXa7hX/rl02Xu4e0fsK7FeD3mW+0xKSeY5r4e0/+khj053X1AiTSkN+/2W/kUBW2pVzdjl5O/djoSaViVe781NzOxDhE5bIxKH3yQMQ3uCMAb7d8BNdE0f2kzlPstaP7Pks9qepvOsdlxwshNZJV+AKvndqeb3K3lNT++11OdYy9/Ghvx+S/+jgC3NkOzsNMfdq63RlRSH1VxDCNarCBOCXA14YVOtma2V9v3roNbPbAFhGNEAwkQp5VRb05tPCJZtdD1DLio20derRpns6Fa2HHRfQS0p/3m3m9mYXtay6/77Lf2TArY0w+OJ1zsBN5ZKGCeumAI8DzxYplNWoUPo6uj2XXf/drFEccKLnpplW0FNn1lsgv4H4fnqO82sPf9sv4i3V1NAd19pZrMIrRXb95B8G+rXyS/Zy30Hug+NK1Tqvc5KvN6OMB57DbFH+tOEpvub3f1UGvP7Lf1QKzy3k9ZT6g95Wu5MvD6qh7TnAGcRasuFz6DLlXNy4vUjJVOFCVTys1218hfYND6z2+J2Pbp6jBfzqV6Xrkt+TPtbzOx9ZdIdVuZcTeJY93/H3YPNrOhsZma2DmGyn2J+l3h9cJnb7Uj4jN9O15C5tH6/RbpRwJZiVuRf1KO5OI6Jzg+n2d3MTiyWLs6YtWvcfZQwc1SxchYrY7LT04dL5L8jcGHiULOHdZWU0mf2Y7rW4L44Tt1ZeP0RhBm5qnUJXaMDfmRma3TAijPQfbGGe1TivLidGMvR7Vl2nOP7MkpMTRrnEciP3T/CzPYoTBNbZ34UdzsIs+ql+fst0k0r1yikeZLPAM8ws18Aq919Zor3OJLwB3EkcLqZ7UaYtnI2Yb7mTxKmfITQCeozRYYJ5cs5zsy+QRjzutTdZxGaQU8kPE/9fJxI5VeEQD6BMD3kQXQfVjTSzNrSXAQkZTV9Zu7+ipl9gRCoJgKPmNnZhNnDRhBm2jq8lgK6++y4iMxZhOFVj5rZ9wgd/IYReusfRffPvR6f948I7+e9hPe0uZldQPisNidMl/sOwhS6I0rkcSRhHPhQ4DYzu5QwxekSQpP+cTEvgLPc/dmCa2v9/RbpRjVsKeYWQgclCDWhh4GSKxJVw92fJiym8Hw8tAdwLeEP5I2Epuo2Qmep/UrMFpV8NnhGLOePY/6PAvnpKNsIf7Rvi/n/itDsO4gwcUV+wovBdG9KbylpfGZx5a3PEzrijSNMGfsgYR7xIwjPYs8tvK6X5TybrhruBMK84X8Cfk+Y9rQN+HrikhWkLD6f3yveE8J4++uAvwBXEoL13wlzq5fK4zHC/OdzCb8rnyc0dz9AmPglH6wvIDGHfbw2jd9vkW4UsGUNMdjtS5gLfDGwDFgVa6lp32crwjKPdxPGxK4iDL16hDAX+Jbu/tsS199GeBb6KKG
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xe8XFW5//FPGgkJEEKoEnrgIVRRaYKX6KVpBK4i/kQpoQRRATtwBWmKiHgRKVeuigRBQEqQrqA0AUG6NB+KkEAAIQk1vZzfH88azj5zZubMnDNtn3zfr9d57Zm919qzZs7MPLPWXmVAR0cHIiIi0t4GtroAIiIi0jMFbBERkRxQwBYREckBBWwREZEcUMAWERHJAQVsERGRHFDAFhERyQEFbBERkRxQwBYREckBBWwREZEcUMAWERHJAQVsERGRHFDAFhERyQEFbBERkRwY3OoCLI3MbAt3/0eJ/ZOBA9PdNdz9taYWrEi5crYDM5sIXJju7uvul7eoHIX1af/k7ruXOL4ccCLwGWBNYC7wKjDB3V9sVjlrYWYnEWUG2N7d7+vFOV4E1gHudPfxZdKU+xzcAewEzHf3YbU+drvp6/Mxs3WBF9Ldk939pLoVro8qPbeePhtSOwXsJjKzkcApwNdo49fezFYHfgrsAKzX4uLklpkNBG4Bts/sHgaMAKa3pFBtQO8vkd5p26DRT50JHNzqQlThd8AngKmtLkjO7UpnsP4HcALwGjDc3Re2rFStp/eXSC8oYDfXoFYXoEp5KWe72zRz+zvufmvLSlKD1OR6UgMfYql6f5W7JCBSK3U6E2mcEZnbL5RNJSJSBQVskcbJfr4WtawUItIvqEm8CYp63Rb2FXpQVupFuy7wXWB3oofxO8BTwGTgInfvKJUv5R0CTAT2AbYAVgLeAh4DrgIudPcFRXkm09lLHWCdTDkvcveJRelXAyYB/wlYeoxFwEzgAeBy4OpK5ayX1Bv7G8DewFhgCVGrvQo4293fqZB3BeAQ4prz5sTzGADMAh4BpgAXV3vdOdNDOusFMyvcXq+vPcTNbCqwNvC4u29RJs1dwMfS3a3d/cESaSYBv0x3N3H3p6vpJZ46jh0FTADWB+YT//OfufstZcozmRreX5l8mwPfJq57r0bn/+WX7v6HUnmqZWbLA0cCnyPewx3As8BlwM+J3v2XpeRd/m+Z//PPgdOAc4jP6gDgReA0d7+0ml7iZrYl8E2iz8PaxGfoVuDHxGtbzXPZmvg87kDn++954I/AWe7+aoW844AjiM/ymPQcXgJuB85x96eqKYM0lmrY7Wtv4Gngq8QX4lBgFeKDfyFwo5mV/MFlZmOJwPxLYBfiS25Iyr8zcD7wmGUiSK3M7EAiIP4AGA+skco4gvjC2Ru4ErjWzBp9zXJj4MlUlg8CywErAFumfQ+b2dqlMprZbsSX65l0/jBalujN/QEiIF0A/DV9ubeLG9N2s/TDqQszGwFsl9k1vsx5PpW2z7n709U8sJntAjwD/DfxY3A5YDTx+v3JzE6t5jxVPtZRRHA+EFgLWAZYHfgkcI2Z/bJC9p7OvV4696nAVsBw4v37QeB04EHis9OTFYC7iB/HyxOvx2ZUORLAzI6l8zluRLz31iR+cD8K7NlD/iFmdg7wdyJgb5Kexwji/3M08LSZ7Vwm//eBx4nvGkv5hqfbhwOPm9lJZjagmucjjaOA3RznE18I12f2bZX+Di2T51ziV+55xBfhx4HjgNnp+CeBbxVnSjWfvwLjgAUp/wRgG2Av4CJgMRHkbjezNTLZT0hleijdfzVTzhMyj/EJopa/LFHbOSWVZzsiUJ+XHhtgjwrPsV5OJH4kXJ8ef4f0mIXrxhsQ/4Mu0g+W64BRxPjos4BPE89jL6LW9F5Kvi3wvSrL8yniNfu/zL4JdL6Wr1R5nkpuSNsBxI+wYjsRP9IKxhcnMLNliBoVxOvQIzPbivixsDywkHjNPgHsCBwPvE28TmuVyF7V+ytjKFF7nQ38iHieuxLBtNDaMcnMPl9N2Yuex0giyG6Qdl1NvFe3B75M1Ew3A35SxekKgfYC4nXfk6iV3llFOY4g3mcDgBnAd4CPEs/z/4gfKD/r4TS/ImrHEO/5o4jPwO7EZ3ERMJL4gbN+0eOfRHx+BxEjGQ5Pj78j8HXidRhIfMa6tBJK86lJvAnSBCivmdmszL5He8g2H/iEu9+b2XeHmd0G/C3dP5DuXyjnEzWQd4Cd3f2BouPXmdlVxBf0GsSXwRdSmaYB08ysEKQWlCnnKWm7CNitRFPrFDP7I50/UPaha/BqhG+7+5mZ+/ea2RTiEsLqwO5mtqq7v55J833iCxHgiyWaV68zsyuIpt7BxPP4754KUmg+NLPsxDdP1XmilNuAOURNaBdiqFRWIYgvJAL3jmY2yN0XZ9J8jAi8UGXAJn5IDiEuOezh7n/KHLsnvbfuBlYuzljD+ytrBvAxd/9nZt+tZvYonU3VBwJXVFn+gpOIpl+AY9399Myx+8zsMuBPdB1DX85A4FJ3z/4wvb5c4gIzWwX4Ybr7CvBRd88OdbvVzG4lWqrKnWNnOi8z/I34PL6bSfInM3uA+IG9HPGj/5CU90PEZwDgYuBgd8/2tbjHzC4gfhyOB04wsyvUPN46qmG3r3OLgjUA6Xriw+nuxtlmcTPbiM7ms1NLBOvCOW4gatoA+5jZB6otlJkNJ2o+s4DrS10XzTzGW+numtWev5ceLArWhTK8CVya7g6g6zAriEsErwMPl7sWmgLKk+luo59H1dx9HvCXdLdUDbuw77dpO5KoyWYVmsNnEUG2IjPbjKh9AfymKFgXyuVEE2y9nFwUrAt+TwRziJpw1cxsGHBYuntvUbAGIAW9L1J9Z8Ff1FKG5P8R/xeAo4uCdaEcVxPBtJzC81gCHFAUrAvnuIhocgfYJdO0/W0iBswEDi8K1oW8s4m5IzqIz9CRPT0paRwF7PZ1U4Vjz6btQDo/8BBfwIUPY09jfgvnH0j565vduPscd9/a3UcTHXUqKdQwh1Z7/l66ucKxZzO3V8oecPfd3H01YOsezt+s51GrQrP4mma2SWGnma1KZxA7i87LKB8vyv/JtL2pqOZdzqcyty8tmyo6G86t4nzVKPk5SB0Zn093VyqVpoL/JFomIGqeJaUWkZId6IosIq5316rwes4nmuTL+U2pnenHemHKz3vd/bkK59ibuEyxjrt3pKBd+P/f4+5zymV09xeI/jTQeQlFWkBN4u3r5QrH5mVuZ/+H2RrUwzX0KVu/5yTdufsSeL+D03rE9cCNic5eO9J5HbPRPwx781q9L/M8hgHrEq+HER12dgA2TEnbrdPNjZnbuxDN/xC16wHAa+7+hJndT1xnHg+cAe+PQBiX0lfbHL5x5nbZpmx3n2tmjxP9Jvqqmv9trd9jH8zc7inQ3k/XHyqlzEgtHrUqvJ7eQ/4H6azhZq1B5yWNh6kgBd2sdYm+GwB7Znrr90RTybaQAnb76ta0VUb2Q9ztumGVRvWcpCszG0M0qe1J+YC/hOa04vTmtQLAzFYihoMVhvWUKm+znkdN3H26mT1C/FDbheigBZ3N4bdntp+g63XsQhBaQAz7qUahx/SSdLmhkn9Xec5KFhQPPSyj1h9S2Z7fM8qmCq/3cByiv0hvFMoxs1Iid5+drvsXj1LIPo+K5yiht98Vg81s+VJN79J4Ctjtqzdjl7P/z23o7EnbkzdqeRAz250Y35ydyetdotnsSaKT1p+Ba+h+3bgRejXO28w+TDS5rprZPRf4J1FbfZAIdqcSvbzb0Q1EwN7JzIakseKFZsvbi7YrAB8i/j+FgH1HDV++77/OZjagh/H19ZgrvVHj95fJ3O7ph1g1ZehtOQv5qvnBUer17Mv3dzbvb4gx5NUq23wujaWA3b/Mytye7u71GD7URRo2djkRrBcSQ1IuI5r1OorSLlfvx6+X1Px9NZ3B+hzii+vx4uu57fw8iID9faIH8HZm9ioxxA06A/XfieFpywHjU3N14Xp2tc3hEMOwIILcaCrXTmu9rtxM2XKvQuV
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XFX9//FX0nRLW+jGJmUvfFgFFRAUvlRlEREQAX8qBQoCXxFEAVEEFETZBf2yKApKEVDWIouAsisoishe/LC27Ftbljbdsvz++JwhN5OZySSZZDLp+/l45HEzdzn33MlkPvece5a6trY2REREZGCrr3YGREREpGsK2CIiIjVAAVtERKQGKGCLiIjUAAVsERGRGqCALSIiUgMUsEVERGqAAraIiEgNUMAWERGpAQrYIiIiNUABW0REpAYoYIuIiNQABWwREZEaoIAtIiJSAxSwlwFm9uEi66ebWVv6Wbm/81UgPwXzKTLQmVmdmW3Sw2MH1P+hDFwN1c6A9B0zWx44GTiMAfy3Tl9SPwU+CaxV5eyIdIuZfQz4BfAUMK26uZHBbMB+iUtFnAMcWO1MlOEK4NPA7GpnRKQH/kXUVj5V7YzI4KYq8cFtSLUzUKZayadIIfoelX6hD5qIiEgNUMAWERGpAXVtbW3VzoNUmJmdBJxYZPO97j4l7Tcd2D+tXwUYARwDfBZYFXgPmAlMBy5196IfFjMbSjS42Rv4MDAeeAd4FLgWuMTdl+Qdkz1/vkvdfVre/isBBwOfASydoxmYAzwIXAlcVyqflWBmGwCHp3xMAuqAl4C7gfPcfWaR46YT1/uou29mZusC3wZ2It7vJuAx4HfE9beWyEO33+903JrAC+nlHsBrRFuHjwILib/3N9z9scwxHwaOJNoZrJLO80/gXHe/3cxuS9eQ/WydTzR2BPi0u99d4lq+BFyVXu7q7jcX2zfvuFnAGsD/ufu3zezTwDeArYGJwFzgPuAXpc6f0loz5XcHYG1gKPAGcD/wW3e/s8T5CznA3aeXeR3T6fh/uCLwfeBTwFjgVeCOdJ1Plkhn1XQNOwHrAcOI/43HgJvSdSwsJ08yMKmELTl7Eo1mvkF8YQ0HVgC2Ay4B/mRmBRspmtlkIlD8mvjCW4n4wlsB2B64EHjUzKynmTOz/YlA82NgCvHFNhwYBaye8n8NcIOZ9dkzcTP7AfA48T5ZOn9j+v3rwONmdpKZ1XWRzp7AIymddYibpfHEtf0W+LOZDS9ybKXe748QNxmfSOcfB2wKPJ851wHAf4ibg9Uz5/k88BczO6tI2tMzv+/TRT72Tcs3gNu62LcgMzsDuJP4HHyICFYrA3sBd5nZj0sc+y3gv8B3iOsfQ7wfawBfBe4ws2vMbFRP8tZNXwL+DXyZ+LsOJ3pOHAw8kvLaSbpZmUkE+o8Co4n3YBUigJ8PPGVm6/X1BUjfUcAenC4kvoxvyqz7SPo5qMgx5xMlxQuIEvangOOBBWn7zsBR+QelLll/AzYAlqTjdwG2BHYHLgVagPWBu81slczhP0x5eii9fi2Tzx9mzvFpIgCMJEpNJ6f8bEV8QV+Qzg2wa4lr7JVUc3Ey0UjuMSJAfwLYBvgW8BzxP3UixWs4IALfFen3M4mS+jbAsUStBkTg/XaBPPTm/c53AvE3/z7RpW4/4CR3n5/OtSdx8zAk5etEYFuipH12Ov93iM9KB+7+b+CJ9HKvEjcfKxCfN4Ar3L25RH6L+X/Ad4lajiOJv8n2RFerXG3LCWa2VYHzfwv4OREY5wOnE3+PTwCHAp67BuDGvJvBzxGf1ZybaP/83tiD6yDlpZ74u36GeL9/TNS+NAA/T3+X7DWMJW5WlwPeIv4m2wEfJ2pgbk27rgH8vqubSRm41K1rEHL314HXzWxuZt0jXRy2mKi6/Htm3T1mdhfwj/R6fyLAZF1IlGTeA7Z39wfztt9oZtcSX2CrAD8jSg+4+4vAi2Y2P+27pEg+T07LZmCnFAyyZqRq2dwNyt7Ar0pebTeZ2UeBH6SXlwEH5gWX+83sN8DNRCn5h2Z2dZHq8XHEjdA2edd7v5ndC/ydCKTTgDPyju3x+11APXCEu1+UXn/wt0+lyZ+nl3NTXrPdlu42sz8CtxOl0UKmE/3rlydK5NcV2OfLtH8PXVokna6sDDwJbOvu8zLr7zSz2bS/h/sDD+Q2pmrw3Of5DeBTedf4j1RdfR0RnD9N3JidA5D722YqMuaW8X/WlTbgC3mPBe4zs5uAe4mb1nPN7EZ3X5q2707UzgDs4e73Z479F3CtmV1N/F98jCiBP4TUHJWwJef8vGANgLs/QFSJAqyfrRZP1Wu7pZenFAgeuTRupv3LeG8z+1C5mTKzRqL0Mxe4qUCwzp7jnfRy1XLT74ajif+XOcDXC5UE3X0B0e+9jQi43yyR3i8Kfbmn9zv3/Hj9bMm0D97vhRQPknsSz+cBvp8XyHLnuQ84pcjxAJcTN1lQvFo8Vx3+SPa5eQ98Ny9Y51xEeyl707xt3yaqjQEOL3KNi4CpQC7tY8ysL783f1noGX76W+duPD5EBOmc7OhozxRJ91Tgl0QblULvk9QABWzJuaXEttyXQD1RWsr5HBGYIEpa5aRfT5RAy+LuTe6+hbtPIKolS3k9LQtWv/ZUqkLcOb28392biu3r7i/QPoDGZ0ok+5cS257L/D4683ul3+//FGqYluyalktpr74v5NfFNrj7G7RXx34uVd1+ID1j3yK9nF7iHF1pBu4qkod5tAeoMXmbd0rLt4DriyWe0vhDerkysFmPc9q1ou8nHW+udsz8/t/M7zPMbAvyuPsj7v4Nd/+puz+fv11qg6rEJeflEtsWZX7Pfmayz+/+0402ZWuXu2NWrtV0qq5di2istT5RctoGWC3tWukb0TWJamyA3cys3FbopYZZnVVi2/zM7335fr9U4phcUHoq1RwU5O5vmtkLFL/WS4jgP5yokr0osy1Xul4K/L5EXrryRioJFzOfqDLO1g41EA0FAR5095YuzvEA0UAQYBPaa50qqYn25/6duPssM3uHaDmeHbf8T0StzIeJtgj/MrNXiZu6O4Db082T1DgFbMl5v8z9sg1WJvbwXOO63qUjM5tEVEvvRvEA1Erf1Br19DobzGyMuxd6b+cXWJeTvSHoy/f7vSLrIVooA7xdRvpvUjxg35zSmEhUi18EH9RaTE373Orub5VxnmJKvZfQ/n5m38vxmddvlnGObMAbX3Sv3nm7VFe+3D5EwP4gD+7ebGY7AxfTXhP0IeKZ/f5Am5n9i+gueHGJWhUZ4BSwJacnfZezn58tiZJSObr15WxmnyX6Fme71bxPVD0/SfTBvoOo1tyoO2mXKXudvwXO68axRavPe5mPSrzfpf7muWe75dwAFU3H3Zea2RVEY63/MbPV3P0lovVzrg9zTxub9UZ3W0pnW4d3FVT7Ui7fi7Mr3f1V4rHDxsSjo12IxmX16ZiPp5//NbPPuHs5N2IywChgS2/Mzfz+SvrSqKjUjelKIlgvBU4jnid6/gApZja6cwoVkb3Olgq0BK5EPvrk/c54m2i8t0IZ+3ZV8p9OBOw6olr8HKIrFkQjvrIGSqmwbMOrFcvYf6XM73OL7tU75dQ85f4ecwptdPcniGr1k8xsHNHlbmfifV+eqDY/A/har3Mr/U4BW3oj+7xtK2BGsR3N7ONE46dZRMOtUs/Ms6bS3tDtJ+5+cqGdUmvqlQptq4DniZJyI3GdJZnZ94gW68+5+x0VzEd/vN85jxABez0zG1XsOXZqSFayTYK7P2JmjxDPxXcnAnautfsfqlFF6+5LzOy/RBuIzc2svovq6Ozf/b9F9+qdMWa2euru2ImZrU/0tYbMM3QzGwasC4xw9w+6a6XGcjOIhmg/If6mY4kudlKD1Ep8cOvrqrs/Z34/tIt9zyIGpbiSzl/wpfI5OfN7qb6je9LeH7iiN6Kpv2tuaMtNzGybYvumQV5OJ/pLH1fJfFC597scuT7tQ4nRt4rZl/K+R6an5SfNbCfau4xVozo8J9dSf0VimNaCUkk1WyO
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XeYXGXZx/HvppOEkoQqIC1w0xEVBIWXqIBIVRFfaRIQEAQLYuEVREQBAY1KEwEhCEoHqSqIiIKCSJXiTQ9NJI3AZtN33z/uZ9iT2am7Mzszu7/Pde11duac88wzs2fnPk9v6+rqQkRERJrbkEZnQERERMpTwBYREWkBCtgiIiItQAFbRESkBShgi4iItAAFbBERkRaggC0iItICFLBFRERagAK2iIhIC1DAFhERaQEK2CIiIi1AAVtERKQFKGCLiIi0AAVsERGRFqCALUWZ2eZFnp9qZl3pZ9X+zleB/BTMp9SOma2d+Zuf3+j81Ftvrykzm5z5nD5b63zJ4Das0RmQ5mNmywMnA0fRxNdIuln4EfAhYJ0GZ0cGAF1T0sya9stYGmoKcEijM1GBXwMfAaY1OiMyYOiakqalKnEpZGijM1ChVsmntA5dU9K0FLBFRERagAK2iIhIC1AbtrzDzE4Cvpv3XFf69W53n1TkvLWBbwC7AKsDbwFPAlOBS929q9B56dzhwGRgH2BzYDzwJvAocC1wibsvzDtnKnBQ5qm1Mvm81N0n5x2/CnAY8FHA0mssBmYCDwBXAteVymdvmdlk4JL0cDWgCzgB2B14F/FZ3Q/83N1vrSC9jwEHA9sCqwDzgGeB24Cz3X1GmfPXIT6LScC6xGcxH5gO3AdMdfc7qnmPKd0hwK+A/dNTtwJ7u/uCCs+fSvxNH3X395jZ+sBXgY8R11QH8Fh6jUvdvbNEWssBhwJ7AZsCyxJ/64eBa4DL3H1xkdfPKXlNVcrMVgSOT3lZHZgF/B24yN1vK3HeMsTf6ZPE/8WywBzgeeB24Dx3/09v8iStSyVs6au9gaeALxIBYCSwErADEahuNbOCN4ZmNpEIzBcAOxEBaHg6f0fgfOBRM7PeZs7MDgJeAL5PBKnVUh7HAO9O+b8GuNHM6t1+aUTQOBpYGxgBrAjsBtxiZuemwNfzRLMxZnY98Hvgf1PeRwIrAO8HTgSeM7M9ir642f8BTwP/R3fAH04Eg3WB/YDbzey8Xry38+llsC6Qz72BR4hraj1gFHFjMQm4GPiDmY0scu6HgX8DPwb+J503HFgV+Hg6/2EzW683eavShsC/iBuPdYi/96pEEL7VzH5T6H/DzNYEHgJ+Rrzn3HtYEdiauOF7zsw+0Q/vQZqIArZknQ9sCdyceW7L9HNokXPOAdqAc4kS9oeJEsXctP/jwNfyT0rDZ/4KbAQsTOfvRnwh7QVcCiwhvvTuMrPVMqefmPL0YHr8n0w+T8y8xkeIUv4yRMnm5JSfbYhAfW56bYA9SrzHWrmSuGG4K73+tkRQejXt/yJwWv5JKYjfRHzRA9xCBO0PEDc2pxKlr+WAG8zsowXSODgdNwx4BfgWsHPKw/8ClwO5UuuRqSRfETP7KVEahD4Ga+JG5Nfp9zOIWpHtgOOI2giI9/zVAvnYNr1+ribjcmBP4nP6LFEyhSh1/7U311SVTiQC9O+ATxCf9ZHAy2n/vsBPCpw3lbjulxA3Hh8DtiL+P84laoeWAS7Pew8ywKlKXN7h7q8Dr5vZrMxzj5Q5bQHwEXf/W+a5P5vZn4iqP4iqxjPyzjuf+DJ7C9jR3R/I23+TmV1LBKrViC+2z6Y8vQS8ZGbt6diFRfJ5ctouBj7m7v/M23+9mf2e7huUfYBflHy3fbMqcCHwhUz1+32p5HwPMBE4xsx+6e5PZ877MjHUCOAId8/P451m9kvg3vQal5jZeu6+CMDM2uj+LN4E/sfdX8icfx9wtZndD5ydntsH+EO5N2RmpwBfSQ/7GqwBxhE3e9vl/U3vNbO7gb8RN4iTgdMz+RhKlJ6XIW48/tfdr82c/w/gKjM7EfgecU39ggjo1VxT1WgDznD3b2Weuy9d138lgvJRZnaBu/8rvY+16P5bf9fdT8lL8zYze5II3GOIWpEf9zGf0iJUwpa+OicvWAPg7vcR1XoAG2ar/sxsA9IXJXBKgWCdS+MWoqQNsI+ZvavSTJnZaKLKeBZwc4FgnX2NN9PD1StNv5eeAY7Obyt39/8CR6SHw4HP5/al0nWuhuJ3BYJ1Lo3niVIowJrApzK71yI+hzlEn4AXKOzyzO9lPwsz+zbw7fSwFsE657xCwTJdU4+lhxvmVYvvQQRAiP4A11KAu58M/Dl3jpltXIP8FvMY3Z9PNg8z6P57twFfyOzOzhz4TJF0LwYuAr5D9H+QQUIlbOmroh1niC+c9xI3hssTHX8AdiW+qADKdXC6jShNDSHa835TSabcvYOoRswFvVJeJ9qCC7aL1tBF+R3octz9TjN7iagS3oOosobocLRm+r3cZ/W7zO8fBa5Kab8IbAFlP4s5RCe2ZSjzWZjZV4Bc6e82ahesobvqupDnSO8FGEvU8EBUG+eUqyU5j7iWIJpxnqwyf5X6pbsvKbTD3e82s2nEzdTOmV3PEjVCw4ApZrYQuDVXW5LOnU93E4QMIgrY0levlNg3P/N79lrbMvP7Q1X0KVu30gOzcj2KzWwM0flnPaI0tgXRPpoLiPWucbq3zP6HiIC9gZkNSfnOflZTzGxKha9V8LPKfBbLpWPWI/oRbEl8FsukQ0t9FrsAh2cet9cwWAO8WGJfe+b37DW1aWb/42XSvy/z+2aVZ6tq5Uq/DxMBe30zG+Xu8919ppldSLR1rw7cALxtZncBfwRud3evY56liSlgS1+9XeFxbZnfV+zla42r9gQzWwM4lqiCLxbwO+mf5qHXyuyfnrZDic/oDWr4WZnZRkT1+scpXOVd6bC2tdJ2AVES/4yZ/cbdb+xNRgtoL7Evm8fsNTUhbWdUMDzvv5nfx1eTsSq9UWZ/dgjeOKKjG0SfgAXEaIJhRC/+PdMPZvYcUXvyU3efjgwaCtjSV70Zu5y97rYGFhU7ME9VX05mtgsxlntM5um3iWFoTxBjsP9IlGI2qSbtXlpcZn92WFmu6jz7WX2R7o585czLPki9xC/IS28W8Vk8TpQG7yCGRGU/r2JuJ8be/4MI2j83s7vd/c3Sp9VNW/lD3pH9nIuO5+4H2Ty/U0ORqr+PMbPTgU8TTSTb0137sR7RNv5FM/uYu/+jn/IrDaaALY0wK/P7q+5eruRZtTRs7Eoi+CwihktdAXh+CczMxtb69YsYT/eQnkJWStv5mcCX/azm9KbnspltRnewfhs4Cbg+tW1njxtCd1Ao5T5gL3efn3qJn0z0uv4xmQ5z/Sz3Oa1oZm1lStmrFDivHsYTcwAUs3LaLib6Dywljdo4BzgndbD7INHe/VliHP8KxNCuDUtNJCMDhwK2NEK2jXEb4PpiB5rZB4gOQi8C97p7qTbzrAOIjm4AP0i9gwulP5Klv8Dr6T3ERDGF8tEGvC89zB6T/1kV7XRnZisRpfAXgUfcPZfOF+j+Xz/a3X9VJIk1qKxp4NHU8QliaNW+RDv4IWZ2hbv/sYI0au0xIqCNJWpLSrVjb5P5/d91zNMmdI/rXkr6e78/PXws1zkt3TStBazj7n/KHZ/6CNxFzElwEtHTfRtgfWJCnqfq8xakmWhYlxRS77v17PjeI8sceybwQ6K0nN8GXSqfEzO/F/zSTPYmZtKC+t/AHlhi3y7EVKWw9A3MA3SXAvdLa5UX8yWi9DyVmHwmp9LP4oDM7xV9FqnX++F0N41ckDr39bdsz/IvFD0qHJH5Pb/nfS2v/f8tsW83olYCYva6nAuI6UfvNLNiHQcXAHdmnhpV6DgZeBSwpZB32tPqUV2cxkT/JT3cMY3n7cHMjiXa7iCmqvxrkXwWymO2Q8/Hi6S/Nd0ThUD9h3V91MyOyH/SzFYnhhoBzCYCLvBOQDwnPZwAXFZoWk4z+xDRpgzRfn1hZncln8WuLD2jV8Wfhbv
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecXFX9//HXbioJIZUmoQc+NEFUEBQEFZGOlPAVBQklKIIFBeQniFjoCipEUFCCgERAlKo0AQVBEAMI6IciJBCIkEp6stn5/XHOsHcnM7Ozs3fK3X0/H4993Jl7zzlzZrLZz5xzT2nJ5XKIiIhIc2ttdAVERESkawrYIiIiGaCALSIikgEK2CIiIhmggC0iIpIBCtgiIiIZoIAtIiKSAQrYIiIiGaCALSIikgEK2CIiIhmggC0iIpIBCtgiIiIZoIAtIiKSAQrYIiIiGdC/0RWQbDKzbd39mSLnJwNHxafruvvMulasQKl6NhMz2ww4G9gdGAPMBZ539483sFq9npmtDqzl7v+tIu+rwIaAu/sWKVdNpCgFbOkWMxsOfA84kSb+/TGzdYAfAh8BNm5wdUoys/WAx4BRidNrA/9uTI36BjP7P+BHwJlAtwO2SCM07R9caVoXA8c0uhIVuB74ODCt0RXpwpfpCNY3A5cDS4HFDatRL2dmuwJTGl0Pke5SwJbu6tfoClQoK/XcOh5XAEe5uwJ17WXld0OkEw06E2msofH4loK1iJSjgC3SWPn/g20NrYWINL2WXC7X6DpIBpjZ2cB3Slx+yN13j+kmkxglDgwGTgX2AtYD3gGeByYD17h7yV9AMxsATADGA9sS7vXOA54m3O+92t2XF+RJvn6ha9x9QkH6tYGJwCcAi6/RBswGniDc6/xduXp2l5ltBLxSJsk0d98ops2/7snAncBlwC6ELvSXgNPd/b5E2d3+zIrU7xOEQYUfANYCZgC3AucRPpu5MenR7j6563f8brkb0fG+DwJui3X9POHWwLD4WncDP3L3l7sob2fgeGBXwu9WGzAduB+4zN1fKPP6xWzs7q9W+F5eJTFK3MwOBL4CvB8YQBjIdivwY3efXaacDwJfAHYD1gfagbeBRwm/e7el+bsn2aYWttTSIYTRzl8CNgEGAWsS/jhdDdxpZkXHUZjZOEKQ+QXwScLI6QEx/x7AFcDTZmbVVs7MjiL8Af8+YUrVurGOQ4ENYv1vAm41s0bf91wfeATYExgCDCcEh5fyCXr6mZlZfzP7BXAfIaBuQPjCtSnwdeApwpeaNAyJr/NLwu/DGMJnvwlwAvCcme1Top6D4hezvxEC/qaxnqsDWxEG8j1nZt9Kqa5lmdklwB8IgxxHEH5/3ksYgf5iHORWLN9pwOPAccBmhPcwhPBF4DOxzHvMbGix/NL3KGBLpa4AtgduT5zbPv4cVyLPZUALMInQwv4YcAawKF7fmxAIOolTsv4KbAksj/n3BXYEDgSuAVYCWwAPmNm6iexnxTo9GZ+/majnWYnX+Dihlb8aMIcwVW1vYCdCoJ4UXxtg/zLvsRpvJOpUrJ7FAtXXCEHtQkKLcjxwbr5F2MPPLO+HhN4GCKPrvwjsDBwM3ENoxd5U3VtexY8Ivw+PAUcCHwI+Ddwbrw8CJse50u8ys1bgN3T0okwDvkroddid0As0jzCg9pzYM5SX/9wnJs59h47P/Y0q3sfmhH+bucDphGmEewHXxusjgbti6z75Pj4KnE/4//E0cDTw4fg+jiP0QkH4ovW9KuolvZBGiUtF4gIoM81sTuLcU11kWwZ83N3/ljj3oJn9mdDlB+EP74UF+a4A1iF0n+/h7k8UXL/NzG4mdKmuC1xCaJHg7tOB6Wa2MKZdXqKe+T+CbcCn3P0fBddvMbM/0fEFZTzw87LvtkKxS/opgArqmddKCNBnJM7dnHhc9WcW67EtcFJ8+jywq7vPSeT/vZn9mBAc07AOIahNcPf2RD1uA+4gfGlZk/Cl47eJfIcTvkBA6HHY290XJK4/ZGbXAA8CGwFnmdkd7v6P/OduZiMS6adX8HtcTgswE9iloAv/bjP7O+FL6+rARYTfobyjY97ZwG7uPj9x7REzuwn4J6H34FgzO83dV/agntILqIUttXRZQbAGwN0fI/wxAtgi2S1uZpsDB8Sn5xQJPPky7iC0GgHGm9l7Kq2UmQ0htODmALcXCdbJ15gXn65Xafk1dHmxkyl9ZkfTMd3phIJgnXcK8Fy3a13cUuBryWAd65gDrkyc2q4g36nxuAz4TEGwzpcxjdBVDiEonlqYJmVfLna/3d0nEb44AHw69oLk5R+/VRCs83nfIXSpX0zolRqcao0lkxSwpZbuKnPtxXhsJdyPzduH8EcWOrpHuyq/ldAdWhF3X+zuO7j7aODQLpLnl1YdVGn5NTLD3V8vcS2Nz2y/eHzN3f9SLKO7t9E5mPbEkyW+FAAkg9+w/IMY8PIB/M4ynwfu/hAd3cp7xq70WpgF/L7M9fwXpP6Ee9x5/4nHLc3sSjPbsDCju09x92+4+yR3X1R4XfoedYlLLZX8g0poYeUlfw+3Tzz+ZzfGlG1SacKkfAsvDuzZmNAFuQUhMOxCGOwFjf9y+1qZaz36zOKAuvzn11X38Co9JlV6tcy1hYnHyd+NrROPH6vgNR4jDEIbQfh3rMWqd//ooqt6auLxexOPJwHHEr6QHAccZ2bPEb5w3Qc8qCAthRSwpZZW6a4soSXxeEyVrzWyuxnMbCzwDUJ3cqmA307jgzWEe9Ol9PQzG0PHe5zVRZ5qBmYVs7DMteQ0puTvxujE47cqeI3/JR6PojYBu6t6JD/Pd9eLd/eXzOxTwK8IXxAhfCHZmjCIbZmZ3Qtc4e53plhfyTAFbKmlauaPJn8ndyTMN67E2915ETPbizBoKzllZgFhGtpzhDnY9xG6O7depYD6K/dZ9vQzS95HbimWMKHsHO4a66puhZJT8dpLpqqtZJ2XJS+4+6NmtjXh1sTBhNHlm8bLgwi3KfYzs+sIy9Y26j1Ik1DAlmaTvK85w93TatG9K94LnUII1isIC4LcQFgEI1eQdvVVS2g6Pf3M5hKmfPUjLJRSTrd7MlKUfJ9d1RPCPPRiedM0qovryXqusoBKDMJ/jj/5xV0+QZhKuC/hb/QRhGl11xbml75FAVuazbOJxzsBt5RKaGYfIrROXgUeKTcIqcARdAx0+4G7F53namaD6PxHv1n16DNz9zYze4ZwL/wDZtZapjX3vnSqXJXkvuYfqiD9TvG4kLCCWi101fuyY+JxfmYEZjaM0BU+O7kfd5xX/0vgl2Z2AGG1NAitbQXsPq4Z7s1JttS6W+7uxOMTukh7EWHxiSmseg+6XD3HJR4/WTJVWEAlP52mmb/cpvGZ3RGPa9MxYryYz3e7dilx9//REbT3KzeVz8w+RseqbPcXfAFJ83d4YzPboUQdWujYinYx8Jd4fn3CmITHgbPLlH03HXXVtC5RwJZue/c+XC26i+Oc6Py0oj1KLS9pZt8grPgFYWTzX0vUs1gdkwOB9i5R/o7ApYlTjZ7WVVJKn9nldOzBPanYNCMzO4bQTdtIF8fjIOCGYr+DZrYBYTAXhHv/FxckSd5LTuN3+GozK3ar4CwgH8x/lZ9v7e6vEVY3AzgsrolezGfo+BtddG699C3N3GqQ5vRm4vG5ZvZrYKW7Ty2VoQrHAf8A1iAsL7kboZtwGvAe4HN0rHa1HDi+yAYJ+XqONrP/R5gus9jdnycMNvsWYUDQl+JCKr8jBPL1CEt5Hk5YhztvDTNraeKNGHr0mbn7m2Z2ImGN97HAk2Z2AWE1saGE4HF0nd5LOb8mvI8DgI8Cz8S1vJ8k/D3bjTDKOn9v+fwi88qTv8NfNLN/EcYyPFXFFqeLCd3i+c/racKo++MIv0cQ5pUXfon6NmHVuUHA/WZ2BWGRlf8Rejn2pqN1/jbws27WS3ohtbClu24jDFCCsMnCE4RNClLj7i8S/vC+Gk/tSVie8jHC/dlDCMF2LnBgiZW9kvdxz431vDyW/xRhFSliOUcTuoQfIwTuzxO
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFGCAYAAACorazoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcW1X9//HXdKErS2nZpOyFD6uIioLij+qXTSqgFvyKspSluIC4IwoCLoDI9wsqoAgIRRYREGVVQQQU+ILIDpUPe4EClrasXWmb3x+fE+dOJskkM8kkd/p+Ph7zuMm95958kknyyTn3nHM7CoUCIiIi0t4GtToAERER6ZkStoiISA4oYYuIiOSAEraIiEgOKGGLiIjkgBK2iIhIDihhi4iI5IAStoiISA4oYYuIiOSAEraIiEgOKGGLiIjkgBK2iIhIDihhi4iI5IAStoiISA4MaXUA0pWZvdPdHyqzfhpwYLq7lru/3K+BlagUZzswsynABenuvu5+WYviKF679s/uvluZ7aOB44FPAGsDC4CXgEnu/mx/xVkPMzuBiBlge3e/qxfHeBZYD7jN3SdWKFPpc3ArsCOwyN2H1/vYedTbz1q7fA6kcZSw24SZrQx8HzicNv6/mNmawP8AHwQ2aHE4uWVmg4Abge0zq4cDo4CZLQmqDej91UmvhZRq28SwHDoNOLjVQdTgEuAjwIxWB5Jzu9CZrB8CjgNeBka6+9sti6r19P7qpNdCulDCbh+DWx1AjfISZ7vbInP7G+5+U8siqYO7nwCc0MSH0Purk14L6UKdzkRaY1Tm9jMti0JEckMJW6Q1sp+9JS2LQkRyQ03iLVbS67a4rti7uFov2vWBbwK7ET2M3wCmA9OAC929UG6/tO9QYAqwD/BOYFXgNeBB4ErgAndfXLLPNDp7qQOsl4nzQnefUlJ+DWAq8F+ApcdYAswB7gEuA35XLc5GSb2xvwJMBiYAy4ha7ZXAz9z9jSr7rgQcQpxz3op4Hh3AXOB+4CrgolrPO2d6SGc9Y2bF2xv0tYe4mc0A1gUedvd3VijzN+BD6e627v7PMmWmAueku5u7+79q6SWeOksdCUwCNgQWEf/z0939xgrxTKOO91dmv62ArxPneteg8/9yjrv/odw+PcnE8qC7v8vMNibeP7sSn7X5RL+DX6fYllU51krAocBewJbAisRn4H7gCuK9s6Rkn+LjF9X0WtTwvMYBx6RY1iZeq/8DznP3G6rsN4L4LH+C+L5YEXgdeJroOPlzd3+pNzFJfVTDzqfJwL+ALxJfiMOA1YjhLhcA15tZ2R9jZjaBSMznADsTX3JD0/47AWcDD1omg9TLzA4kEuIPgInAWinGUUQimUx8WV1tZs0+T7cp8GiK5V3AaGAlYOu07j4zW7fcjma2K/As0SGw+MNoBNGb+x1EQvoV8HczW7Gpz6I+16fllumHUxdmNgrYLrNqYoXj7J6WT7r7v2p5YDPbGXgc+Dbx5T4aGEu8fn82sxNrOU6Nj3UkkfgOBNYBVgDWBD4K/N7Mzqmye62PMRl4gPisbUT871clXrPziec0rMK+HwYeA/4X+H9pv6GZGM8H7jezjfoaZw02BR4mfnhsQOdr9Qni++LSct8ZZrYOcB/wU+I5F5/DOOB9wLHAU2b28X54Dss9JezWOxvYBrg2s26b9HdohX3OJGp5ZxFfhB8mfjnPS9s/CnytdKdU8/k7sBmwOO0/ifjg7QVcCCwlPty3mNlamd2PSzHdm+6/lInzuMxjfISo5Y8gfsF/P8WzHZGoz0qPDbBHlefYKMcTPxKuTY//wfSYxfPGGxH/gy7SD5ZrgDHE+OifAB8jnsdewMnAW6n4+4Hv1BjP7sRr9svMukl0vpYv1nicaq5Lyw7iR1ipHYkv3aKJpQXMbAWidQTideiRmW1D/FhYEXibeM0+AuxAfLG/TrxO65TZvab3V8YwIonMA04inucuwCnpsQGmmtmnaom9gnWJntoAPyZejx2Ao4kWLdLjfqV0RzPbnngt1gIKwMXAnsR75dNEzRSi1v333nzW6nQckaD/CHycGKHwBeD5tH1f4PQy+00jvg+WEj88dgW2Jd6zZxGtZiOAi0uegzSBmsRbLE2A8rKZzc2se6CH3RYBH3H3OzPrbjWzvxJNXBC1jh+X7Hc28aF9A9jJ3e8p2X6NmV1JfEGvRXyAP51ieg54zsyKSWpxhTi/n5ZLgF3LNLVeZWZ/ovMHyj50TV7N8HV3Py1z/04zu4o4hbAmsJuZre7uszJlvkvUQgA+U6Z59Rozu5xo6h1CPI9v9xSIu08HMLPsxDfTGzxRyl+JZtuRRCvKJSXbi0n8bSJx72Bmg919aabMh4jECzUmbOKH5FDilMMe7v7nzLY70nvrdqJ21kUd76+s2cCH3P2xzLqbzOwB4Dfp/oHA5TXGX2oM8YNgh5JY7jCz24A7iR9FU4gfCgCkVqPziUS2DPhvd78ys/8/gN+a2XHA94jP2i+JhN7b16InHcCP3f1bmXV3pf/J34mkfLiZnePuD6fnsR7xgwvgeHcvbR25wcymE4l7FPAZIqlLk6iGnU9nliRrANL5xPvS3U2zTVxmtgnpCwE4sUyyLh7jOqKmDbCPmb2j1qDMbCRR85kLXFvuvGjmMV5Ld9eu9fi99M+SZF2M4VXg0nS3g67DrCBOEcwC7qt0LjR9iT6a7jb7edTM3RcCN6e75WrYxXW/TsuVidpbVrE5fC6RZKsysy2BD6S755ck62JcDhzV07Hq8L2SZF30WyKZQ9Rg++Ln5ZJl+qwVZx/btKRZfA8iAQL8oiRZZ4/xfeDW4j5mtnkfY63mIcq0Arn7bODz6W4H8LnM5jUzt5+ocNzzgfOIH7h39z1MqUYJO58qdhCh84M1iPgiLtqd+EAC9DTmt3j8QVQ+v9mNu893923dfSywdw/FizXMsuf/GuiPVbZlv4RWzW5w913dfQ2i+a+a/noe9So2i6+dTQRmtjqdSewndJ5G+XDJ/h9NyxtKat6V7J65fWnFUtHZcEENx6tF2c9B6sj4VLq7arkydSjbSS55KnN7dOb2rpnbPbUe/Txzu9v0tQ30q0r/R3e/jc7JWXbJbHqSzhEMp5nZx1OH1ey+C919qrv/0N17/GEnfaMm8Xx6ocq2hZnb2f9vtgZ1Xx19yjastWBWseds6uC0AXGueFOis9cOdJ7HbPaPxt68Vv+ReR7DgfWJ18OIDlUfBDZORTvK7d9C12du70w0/0PUrjuAl939ETO7m2j2nAicCv8ZgbBZKl9rc/immdsVm2/dfYGZPUz0m+irWv63ff2Oe7bKtrcyt7OPs2Vm+yM9HD/by36r2sOqW0+13/uJ0Qsbm9nwlIjnmNm5xLnutYHfA2+a2S3AX4AbU6uJ9BMl7Hx6s8Zy2STS7bxhjcbUu4OZjSeG2uxJ5YS/jP5p4enNawWAma1KdCjam0jS5eLtr+dRF3efaWb3Ez/UdiY6aEFnc/gtmeVH6Hoeu1hbXgz8qcaHLPZGX5ZON1Tz7xqPWc3i0qGHFfT1h9RbVbZlhyRmH2dsWs6uYdhi9rXoa2tANbN62D47c3sM0dEN4MtEn5kjiHyxIvG53hPAzJ4iTkH8xN1faWTA0p0Sdj71Zuxy9n/9Pjp70vakrg+hme1GjG/OzuT1JjEM7VGik9ZfiF/rpeeNm6FX47zN7D1Ek+vqmdULiGE604F/EsnuRKLHbDu6jkjYO5rZ0DRWvNjz+5aS5UrAu4n/TzFh3+rutf7g+c/rbGYdPSSqRsyV3vTx+31Qz4+E7LDGiuO5+0E25kXFG+k981UzO4X44boH0SFxRCqyEXFu/Itmtqu7/6Of4l0uKWEvP+Zmbs9090YMH+oiDRu7jEjWbxNDn35D9DcqlJQd3f0I7SE1f/+OzmR9BtG55uHS84Dt/DyIhP1d4vzqdmb2EjFUCToT9T+IWuRoYGJqri6ez661ORw6a2SDiBrm7Cplm1mTbAfFz9q4Gn68ZMfJz61Yqu9WpfoUuMX3+hJi+F0XaTTLmcCZqYPdB4jz3Z8
"text/plain": [
"<Figure size 525x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"\n",
"density = True\n",
"cumulative = True\n",
"histtype = 'step'\n",
"lw = 2\n",
"bins = {\n",
" 'theta_energy': None,#np.arange(0, .7, .03),\n",
" 'theta_peak': np.arange(0, .7, .03),\n",
" 'theta_freq': np.arange(4, 10, .5),\n",
" 'theta_half_width': np.arange(0, 15, .5)\n",
"}\n",
"xlabel = {\n",
" 'theta_energy': 'Theta coherence energy',\n",
" 'theta_peak': 'Theta peak coherence',\n",
" 'theta_freq': '(Hz)',\n",
" 'theta_half_width': '(Hz)',\n",
"}\n",
"\n",
"for cell_type in ['gridcell', 'not bs']:\n",
" for key in bins:\n",
" fig = plt.figure(figsize=(3.5,2.2))\n",
" plt.suptitle(key + ' ' + cell_type)\n",
" legend_lines = []\n",
" for color, query, label in zip(colors, queries, labels):\n",
" data.query(query + ' and ' + cell_type)[key].hist(\n",
" bins=bins[key], density=density, cumulative=cumulative, lw=lw, \n",
" histtype=histtype, color=color)\n",
" legend_lines.append(matplotlib.lines.Line2D([0], [0], color=color, lw=lw, label=label))\n",
" plt.xlabel(xlabel[key])\n",
" plt.legend(\n",
" handles=legend_lines,\n",
" bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)\n",
" plt.tight_layout()\n",
" plt.grid(False)\n",
"# plt.xlim(-0.05, bins[key].max() - bins[key].max()*0.02)\n",
" sns.despine()\n",
" figname = f'spike-lfp-coherence-histogram-{key}-{cell_type}'.replace(' ', '-')\n",
" fig.savefig(\n",
" output_path / 'figures' / f'{figname}.png', \n",
" bbox_inches='tight', transparent=True)\n",
" fig.savefig(\n",
" output_path / 'figures' / f'{figname}.svg', \n",
" bbox_inches='tight', transparent=True)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"data['stim_strength'] = data.stim_p_max / data.theta_energy"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecXGXZ//HPZhMgpJAGBEhIgMBFkSZdQLAhihQVlU7kAURFkOcBLKiAUgQeFVAUf4hGgdCUhxZEigiEagGleQGGUI2EQIBAQpLd/f1x3YednT0zO7M7u7O7832/Xvs6U+5zn3vKnmvuepra2toQERFpREPqXQAREZF6URAUEZGGpSAoIiINS0FQREQaloKgiIg0LAVBERFpWAqCIiLSsBQERUSkYSkIiohIw1IQFBGRhqUgKCIiDUtBUEREGpaCoIiINCwFQRERaVhD610A6Tkz28zd/5Hz+Azg0HR3DXef16cFE+kBM5sLTAHc3Tfsxv67Aneku5939xm1KltPlXptZjYVeCbd/bm7H9XnhWswCoIDmJmtAnwX+DL6LEVEqqYT58D2Q+CwehdCRGSgUhAc2JrLPenu04HpfVISkRpz96n1LoMMfhoYIyIiDUtBUEREGpaaQ/sBMzPgS8CHgHWIHyevAH8FrgFmuvvygvSnACcX5dGWbt7p7rumx2ZQYnRowei0H7j78Wa2B3A0sBUwEngO+B1wtru/nvbZAvgf4APAqqmMfwS+5+5P9viNKMPMJgNfAT4KTAVWAP4N3A1c6O73ldjvFOK9et3dx5jZROC/gT2BtYFlwBPAlcDP3P2dMmVoAj4LHABsDUwA3kz7X5fKsajEvtnncxwwC/gJsFM6/tPA1939toL0U4Hj0+tdG3gLeDgd4yozuxD4AvBs1mxoZscD56QsDnP3X5V5LdsCD6S7X3H3n5RKW2L/VYn3cS9gXWAp8DgwA7gIOBE4E8Ddm7rzXlQyOtTMdgaOIb63awLzgBuyY1f4Wj4I/BfxmWbfCSc+0x9n3/8S+24PHAnsko6/DJgL3AKc7+7PVVoOqQ8FwTozswOAXxEn9UKT0t/ewHFmtru7/6eXypCdUDs8DHwT2NPMdgD2B34KDCtIsyZwELC3me3s7n/vpfL9F3GiXKnoqXXS3yFm9v+Ao919WZl8diJObOOKnto+/X3ezD7g7q/m7Lsa8YNkx6KnxhMn8J2Iz2nfUgE5mQzcQ/yIyLyXOPlnx9qd+AGyckGaFYgfHx8ws08SQbHYpcTJfyhwIPG9KuXgtF0KzCyTrhMz2wr4fdFrWIn293E/YHYFWXX5XpQpwxDgfGJkdKEpxI+5A4Hvd5HHKOI9+nTRUysRAXFr4Itm9vHi77aZDU3H/2LOvpumv6PN7Bh3/39dvR6pHzWH1pGZTQN+SZzgniH+oXYCdiCCS3Yy3YIIQJkLgS2JX7yZLdPf4VUW41AiADpwBHGSP5j4NQvxz/xb4OfAf4hf3TsAHwf+kNKMAs6r8rgVMbPpwC+Ik8szRE10Z+B9qbwPp6RHAuVONsOB64HRwM+A3VMeRwMvpTSbAafnlGEEMd9sR6CNCDafBLYFPgb8GFhC/Ci4xcw2KVOOrxI1yLPT6/gMcIa7z03H2j6Vc2UiQP2ACH47EzXaN4kgc3Bxxqmmf3O6+wEzWzOvAGY2LOUBcGNe0C8l1VDvIAJXK3AxUVt9H1Ez/A+wK1ET7ErZ96ILZ9MeAOcCRxHfy08AVwFjKVMbTLX662kPgP8g/nd2IFoJsh8GawKzzGxsURa/oD0Azib+j7YnXvs3iRrpisDPzexQpN9STbC+DiT+UVqAD7j7swXP3W9mVwF/Ik4wnzSzCe7+SjrZzTOzd09e7v4w3TOBOAHs7O5vpMfuNbOHgEfT/d2JE8127v5ytqOZ/QG4H9gGeL+ZjXH3hd0sRyfpJH5Buns7sLe7F9aA7ktNvr8haqrTzexKd7+ZzlYgRtN+ouj5+8zsJuK1rgwckH69F9YoTwc2BpYDn3T3G4vyvtnMfgPcSTQlX0ycEPMMIU70JxU89tv0eocQNd5hRAD8iLvfVZBudvpO3EXH2lOhGUQgGEK8Jz/ISbM78bkD/LpEPqX8iPjRA3Cgu19R8Nx9ZnZ5Kt/6FeRV8r0ox8w2Ao5Ndx8F3u/urxUkmWVmD5D/2jP/RQQsgP8DPlf0md9oZk8CpwBrET+WvpeOvw/t3Qxnuvs3i/K+08x+QfzvbgxcYGY3uvuCrl6b9D3VBOtrYtouor028q70T3ky0exyHL33eX2rIABmx36M6OvKnFoYAFOaVtpro03AejUu15eJwLQcOKQoAGZlWE78Is/6bY4tTlPgmrwA6e7PALemu6OJJlYAzGwMUeMEuCgnAGZ5/IWonQBsZ2bblSnHz0o8vhPRtwXRV3tXcQJ3/ydR4yrlBiA72R5YIk1Wi5xPNGtWxMzWBvZJdy8vCoBZ+eZR3dzVUu9FOf9F+w/4o4oCYFaOHxLBuJQj0/YNYjWZvGb004HsO79bweMnpO1jwEnkcPf5RD8/wAiqb6GRPqIgWF//TNtVgKvTL9wO3P02dz/W3c8rDkI10kr70lLFXiy4fXuJNIVlGlmTErXbI20fd/dOPxIyaeDCPenu+1NzX55byhzrXwW3RxXc3pX2vrlbKe+mgtsfKpHmRXd/ocRzexbcLtefdyWQW+N298I+vi2Lv1NplaHsOJeV60PtbvncfTYxSKYr5d6Lcj6ets+6+z1l0v0y78E0OGrrdPf6UgNf0g+s9wMT3X3ntO9YoskU4HZ3b8vbN5lNNF9D6e+D1JmaQ+vrN8SvyrWIATB7m9kc4mR7G3BbLZsXS3il1IhGoHCk5L8rSNNUIk3V0sCDTdPdzQpGFHZlZWB1IO/kOrfMfoXvQeH/xZYFt6+JgbwVWbfE48+X2WeLtH3d3Z8qlcjdl6Xm6g+USPIrYiQtRN9yYW3lM7QPMKq2KXSLgtt/6SLtA0RTYDnl3otcqcl4g3S3q4FYD5Z4fH3av6t/K5eBu3vRQ1sU7HuMmR3TRRkypb4PUmeqCdZRasb5MNGvllmXGKhyNfCKmd1uZgemjvze8GbXSd79VdyXxtL972fxIIZMqWAPMeAlU/heTyhO2MMyvFHicYjgDe3NmeWUbBVw94eIfl6IPs7C15M1hf6jG/3IWfla8pogKy1fgXLvRSnjaV8pqav3qdRo6tULblfbT1fr74PUmWqCdZb6eHZIfUifJpp6stGFzcAH09/nzWxPd19c4yL0dXCrVOF382bgG1Xs2+UQ+26WYx/g2VIJi5SaW1auRptNk6kk+HdVM/4VMYhlKjGqdbaZTSFGYUL1tcAO5TOzpi6aAiupuVdauy+1T1c/DEs19fbkvFe472nEVJZKtPTgmNKLFAT7CXd/gGhCOjH1WXyQGOW3DzG8/0PE5Onv1a2Qfatw2H5zD0a/1rIc83u5HK8Q8zMnVBBkuqqRXEYM1BlGTPCfnbZNxA+fy7pZPlIe4wvud6d83bWACG7DKD1CNlM8HzRT+JmOr/L4hfsuruP3UmpEQbCOzGw4cdJblkZjAu+OsJsJzDSzLYn+lyFEUGyIIOju75jZ08A0YCszG1quSdbMjiJqznOBP9Sw+fbRgtvbA/eWKcMGRJ/bXODBcv16JTxM1NpGEv1WuavwpH6xLfKey7j7fDObRfyI2ouY37l3evrmbi688DDtI07fS/mBRluVea7b3L3NzB4HNie+F+V+LJR6jwoH7Wxe7nhmdhbRQjOH+BFR/H0ot+8KRAvGC8TgrnKLKEidqE+wTtI/yALgIcoME0/9O9mglOIVU1p7p3T9RjYZfxztk7s7SYsOXEDMsftxjfsvb6e9yfjwMiNPAb5FNJFdSvsIwmoULn5QanoDxKjZSmpaM9J2ipntVlCm7jSFAhRODylZPjPblI4Dimota4KcSPsI4jyH5D2YRqRmA172SoshdJL6Uvcipv5s6O4L3f1FYmoEwO5mtk7evslBxDzDX9A+zUb6GQXBOklD2bNf0juZWfHSTQCY2S7E6FGAPxc
"text/plain": [
"<Figure size 480x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmUXFW5/vFvyEAgzAmTCSSQwAtBJmUwghK9IKhMMihKkKAgKCDXK5MX1g9wAISrAoLEi0MQRDHKEi4zhDDPGGQIvgEkAcIQwqRAIFP//nh30UWnpu4+3VWd/XzW6nWq+uxzand3dT3n7LP3Pv3a2toQERHJ0XLNroCIiEizKARFRCRbCkEREcmWQlBERLKlEBQRkWwpBEVEJFsKQRERyZZCUEREsqUQFBGRbCkERUQkWwpBERHJlkJQRESypRAUEZFsKQRFRCRbA5pdgZyY2Rbu/kiF708GDk5P13X3l3q1Yt1kZuOBaenp99z9zCbVYxYwEnB336TC+oHA8cCBwPrAYuBF4BB3v6f3ato4M5sI/DY9/bK7/7EL+7gV2AmY7e6jqpRZJt+bHRXx85hZ6f5zF7v7xIKq1m21frZ6/xs5Uwj2AjNbFfg+cCT6nTfTpcAXO3xvFeCFJtSlJei9KbnTm753/BT4WrMrkTMz24T2AJwNnAg8A6zu7rObVrHm03tTsqYQ7B39a61MTSoTe6Um+dqs7PGPutKs2AzuPhmY3IMvUfO9uazR/5p0pI4xkoshZY+faVotRKSlKAQlF+Xv9UVNq4WItBQ1h3aCmRnwLeA/gA2ID9Z5wEPAFcBl7r6orPypwCkd9lHqWXabu49P35tM/V5dP3H3Y83s88BRwEeBlYBngb8AZ7n7m2mbrYDvAp8C1kx1vAX4gbvP7PYvoo7UC/ObwJeBTYn32bPAVcA5tXrkmdlg4CDgc8DWwDBgIPA68BhwNXCRu7/dYF1uJXpGlpsWf0oAPuXutzayrxqvcTvwCeANYKi7L6lQ5nfEzwWwv7v/uUKZXYAb09PPuft1jfQONbPVgMOB/YHRQD/g78Av3P3yKnU+lQbemxW2GwUcB+wGDAf+Bcwgmmwvdve2Sts1wswGAYcBXwE2J/7us4j/rbOI91KpF+8H/m5lf+crgQnEtc59gRWA54BJ7v6zRnqHmtlo4D+BTwOjgH8DdwBnu/v9Df4sm6SfZRfi/3cg8T9wM3Cuuz9ZY9v1gKOBXdPrDyJ6Md+Rfo6W7MncV+lMsEFm9hXgEeDbxPWlFYHBwAhgL+Bi4AEzW7sH6zCJCIHdiHBbATDgv4E7zGyImR0K3E98EAwn/oE+lJ4/aGZb9lT9knWBB4FzgY8BqxJNkZsCJwB/N7OtK21oZh8BngT+F9ib+PAYkn6GtYmDj58B081seM/+GJ1ydVquBmxTpcx/lD0eX6XM59LyLeKgpa50wDMDOJM4MFqN+J1/EvijmV1Ccf/n+wJPEAeCGwLLE+/DnYigvsbMunRgbWZDiQ/584GPAysT/1+bEO/vx4j3ej0DgWuJAFqD+B/ZGHitwXocRPyMRwFjif/ztYH9gLvN7Ig62/czs5OAx4H/IsJ8Fdr/V48EHk2vU2n7rwMziQONLdK2g4mD7q+mOvwyHWhKARSCDTCzMcBviA/jZ4iznB2BcUS4lI7MtgJ+UbbpJOJs5v/Kvrd1+jq0k9U4mDjad+IffAfizGJWWr858Gfgl8DLRFiPIz5Yb0hlVibCqSd9m/jnvYMYj/dx4nf097R+LeBSM+tXvlH6ELyJOKhYDPyKCMJxwOeBk4gzWoCNgP9psD6HEr/v8rOew2j/OzzY+I9W1dVlj3fpuNLMxhIHIiXjq+ynFII3uvt79V40HQjcRhx4tBFnY7sRv/NjiLOHCcR7paOuvDfPJ84yL0iv8yni71I6K/8s8cHfKSk4bwK2S9+6hQidjxEf/H8j3hf/28DudiPOyq8CdibOpi4EpjRQjz2Ig9mBxM90WtrXp4gz0UXEz17LKcAPic/WuUSA70QcBJ0OzCcOHn5rZuM6vP5E4n0/mPic+W56/Y8T79mHU9Fv0NjvQhqg5tDGHEi8cRcTzTDlXervNbM/AbcSb9YvmNkwd5+XmlpeMrP3j0Ld/WG6ZhhxJvoJd/9X+t7dZjadOEqG+ACYBWzv7nNLG5rZDcC9wLbAJ81sNXd/o4v1aMR5wH+WNY3dY2ZTgAeIgBxLnDE9ULbNd4gjd4Bj3f2cDvu81swuJo6wVwX2NrMB5c3Plbj7U/D+GVPJU934O1R6jRlm9k/i7GgX4EcdiuyclguJD9ixZramu79SKpCa4DZOT69q8KXPIs4UAL7h7r8qW3ePmV1OHIxsVKHOXXlvvgd82t3vLvverWZ2C+0HggenenXGkUT4Alzo7t8qW3efmf0RuBz4QgP7Wg64E/hCWbP0jTXKA2BmywPnECH/FvF/Vv77uNXMrgSmEiFVaR+bEqEH0aKxk7u/WFbkFjObBlxP9Mr9IamFwMw+RHvATgX26tDkf09qyv0dcZlhopld7u7X1/vZpDadCTZmnbR8iwoDq919IXEEeB7xYd5Tv9eTywKw9NqPE803JaeVB2Aqs4T2I/5+xHWjnvICcFzHa0PuvoA4yi35cIfthqdtX6LK0ba7zyEONiA+iIYWUN+iXJOW48xsSId1pRC8hDhj68fS1ylLZ4GLy/ZVVboOWBr3eHOHAATA3V8mWg+Kcn6HACy9zr3E2RrAJl1oEj0mLWcR1+I67n8hcAjwaoP7+2Wl67J17EIcxACcWemAIP3stQL+EOIgB+DwDgFY2sfNtB/kfMzMSgcxRxJNr4uAr1a65p0O+L4JvJm+dUzHMtJ5CsHG/CMtVwWmpCO+D3D3m939GHc/t2MIFWQJ7VOTdTSn7PHUKmXK67RSITWqbGoKvErKOwOsUb7C3Q9x9+HA8PShV015R4blu1jHnlBqEh1EWcClQCg9/zNxvQeiia3cZ9PyHnefR32fob0l57Jqhdx9GsUNCbm2xrrS33Y54v+kIWa2GXG9C6JjWcX3Tur0VbGTTwX3Nvr6ZT5X9rjq75O4LFLNHmn5fPq9V3M0Ebgrlx3Ufj4tZ7h71RmM0u/hrvT0k7o22H1qDm3M74gL1cOJTjB7peavm4jeXjf3cPMiwDx3f6vKuvLrR0sdfVYo069KmSI8X2Pdu2WPK773Skfw6Z97JPFhsTFxzXNcWpa00kHcrURLwUrEWUUpMLYjmiwXEU2TdxEdJMaXNjSzFcqeN9oUWj7/Y71mzAdoD5ru6NbftoryZup612fvIzrl1PNcJ16/pPT7fNPdqx40uPtsM5tLXNt+X7rGPSY9/dtSG35wH+UHraUDpdL7eouyXrr1lDrt1Pq7SB2t9CHSstz9daJJq/wIc0OiqWkKMM/MpprZgR07fBTo340UqneNrBc0VE8qBLGZrWhmx5rZ34B3iLOLG4CfE50BNifOiFtOOoO5KT0t7xxTagp9IB3ElM4QxprZmunxp4jeg9B4CJb3Qq7XTPhyg/usp8t/2xrKf456Z8CNtLAsaKRTUY16NNKLtNLvcyjt4d9os23J6nT9s3j1Lm4nic4EG+Tu/yCu92xPdBX/HO1TcfUnxhR9GjjEzPZw9/kFV6HZ4daoLo0TM7MNiA4MY8q+vYBoPnyCGIt5G9EjtpGzgWa4mui8sZmZrZuuCZVCcFqHJcTZ3xTam+Jmurs3+Frlv+d6oVOrebkzujwGsIZBZY/rBUEjr9/VOpa2ayTAK/0+u/NZWr7t9cD3OrHtU914XUEh2Gnufh/RLHO8ma1DBN/uRHf+FYjeXscCP2haJfumP9AegH8gzv4e7Hh9sN44rSa7hvaOLzub2V+Ibv6Qws/d55jZTKKJdzwRgqXrgY2eBcIHm73XJCYFr2aNGuuarfzsb82qpcKwHqzHi8RB7TAz61dn0H+l3+frZY8722Gr/Oyzf5E9l6U+hWAD0jUbAxam3pjA+93MLwMuSwPAHySOZndHIdgwM9sG2D49nebuX6lRfP1eqFKXuPvLZvYgMRRlF6K
"text/plain": [
"<Figure size 480x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecnFXZ//HP7iZAGpAGAQIBErgApUkzCA/YEJSmgAVCCd2fgA9KU1BABRTUhyrw0EJHUESKSn/oRRGEELhCC1WEkAQIJCS7O78/zrmzk8n0ndmZnfv7fr32de/Mfe4zZ2Z255rT2zKZDCIiImnU3ugCiIiINIqCoIiIpJaCoIiIpJaCoIiIpJaCoIiIpJaCoIiIpJaCoIiIpJaCoIiIpJaCoIiIpJaCoIiIpJaCoIiIpJaCoIiIpJaCoIiIpJaCoIiIpNaARhdAasPMNnD3p/PcPwXYN95cyd3f7tOCiVTBzGYA4wB393WquH5b4N54c7K7T6lV2Xqr0HMzs9WBV+LNC9390D4vXAopCPZzZrYc8DPge+j9FBGpiD40+7/fAvs3uhAiIv2RgmD/11HspLvvB+zXJyURqRF3X73RZZB00MAYERFJLQVBERFJLTWHNgkzM+D/AV8E1iB8QZkJPAHcCFzj7p1Z6U8CTszJIxN/vc/dt433TaHA6NCsUWq/cfejzOxrwGHAJsBQ4DXgj8Dp7v5+vGYj4IfA54HRsYz3AD939+m9fiFy5Izymwg8CxwH7A6sBswHngQuIbxGmTzZ1KIcM+ij18rM1gAOArYF1gRGEJ7nu8CjwBR3vzPnmk8D/wCWBj4BNnL35/Pk/QXgLqANmA58xt0/qvC1GA38ANg5lm8BMA2YAlwEHAOcBuDubTnXJu/PkcBtwLnAVsBC4EXgOHe/q5zRoWa2NXAE4T1YGXgbuCV57DKfyxeAA4BNCX9PCwEH/gyck7yXBa79LHAwsE18/IXADOAO4Gx3f63cckjjqCbYBMxsT+Bpwj/0p4DBwDLAWGAX4HLg72a2Yh3LcAFwK7A94QN7EGDAj4EHzGyImR0IPA5MAlYBliL8808C/mFmG9arfNEK8fF/DKxNeI2WJwSZq4AbzWyZOpehrq+Vmf2IEJx+RAj6KwIDgWGEgLMncIeZ/S77OnefCvwk3lwauMjMcgPQ8oS/pTbCB/aeVQTATej5IrIe4T1YFvgscAFwNzCkjKxWBR4CtiP8vS8HfIYQCEuVod3MzgXuJ3wZWoPwnMcRvphMBTYvkccwM/tDLO+e9Pw9DSMExJ8D0/K9T2Y2IL7+jwCTCe9Lcu36hC8+083s4FLPRRpPQbDBzGwCcCnhQ/IV4LuEb8YTCR+Yj8SkGwHZH3wXABsTvvkmNo4/B1ZYjH2BQwjfgA8CPgfsTfhWC+Ef+w/AhcB/CMF6IvBV4PaYZhhwVoWPW6kLgXUINb+9CB+8+wHPxfO7Ej7k66lur5WZTQZOJbTQvAEcSwgSE4FvEQJ9d0z+XTP7Sk4WvwEejL9vBeTOM/sd4YsVwAnu/kR5T3lR+VYn1MpHx3JcAnwF2JJQM/wPofZ6TBnZ/TcwCjgd2BrYAzjV3WeUce3phClBEF73Qwmv0Y7A9cBwitQG45eDm4Hd4l1PE/5nJgI7AdfE+1cGbjOz4TlZXEz4P4Xweu9L+FvclvBF6G1CUL7QzPZFmpqaQxtvL8I/TBfweXd/Nevco2Z2PfB/hA+ar5vZKHefGZs13zazWUlid3+qyjKMInwQbO3uH8T7HjazJwnfqiHUemYAW7j7O8mFZnY7oYluM+C/zGx5d59TZTlKGQP8Bfi6uy+I9z0Wv9HfRfgg+qaZXeDu9xbKpJfq8lrFD+afxaRzgP9y92TiNPG6683sMeCceN8e9ARW3L07fuj+i9BE+0szu9nd3zSzbwPfiUnvBX5dxXP/H0IAB9jL3a/LOveImV1LqJ2tVUZe7YSgd3zWfX8odZGZrQt8P96cSnidZmcluS2+Rr8pks0BhIAF8CfgW+6+MOv8rWY2HTiJUIs/jFAzxMx2pad74TR3/3FO3veZ2cWE/9n1gPPM7FZ3f6/Uc5PGUE2w8cbE41zgrdyT8Z/zROBsQj9Kvd6zE7I+1JPHfpaeWhbAydkf6jFNNz210TZgfJ3KBzAb2DsrACZl+AjYh55aUr1X2qjHazUOmAW8D1yWEwCzXZX1+yq5J939ZeCoeHNZ4EwzGwOcF++bBewTy1I2M1uNUNMGuDYnACaP/TaVzVk9v5IyRAfQ8+X90JwAmJTjt4RgXEjSTPkBYTWZhXnSnAIk7992WfcfHY/PAseTh7u/S+jfh9A0XGnLjPQhBcHGSwYvLAfcEL/pLsbd73L377v7WbkfrDXSTc/gk1xvZv1+d4E02WUaWpMS5Xedu8/Kd8LdX6CnKXB7M6tXK0ddXit3n+HuG7r78vQEsXzeB+bF35fOl8DdLwT+Fm/uHn8fEW8f5O5vFMm/kJ2yfr+sUCJ3f5AwSKaUN6ssx1fj8VV3f6hIukvz3Rm/EGwab95caOBLHIT2X8AYd986Xjuc0GQKcHeJQVgPAh/G379YJJ00mJpDG+8KwrfLVQiDYHYxs5eBOwlNfHfVsXkxMdPd5xY490nW7/8uI01bgTS1UOxDD+CfhA+uZQn9OfUYnVf31yqppZnZsoRBF+OBdQn9vVsRBuJA8S+xBxCaC4cDyeCOS9z9xiLXFLNR1u//KJH2MUJTYDGvV1oAM2snDGCB0ORbzOMF7l+Lntf9n8UycHfPuWujrGuPMLMjSpQhsWaZ6aQBFAQbzN1nm9mXCN+uPxvvXpMw+OIQoMvM7iN8s63XFIAPSydZ9O24kZZoLs7xbtbvY6hPEKzraxVbAn4A7ECe5k6grPff3d8ysxPoaQZdSHkDVgpJRiZ35WuCzFFOa8UHpZMsYSQ9KySV6mP7T4H7s0dYV9pPN6rC9IncgTXSRBQEm0CczzXRzLYgjFj7KmGqBIR/+i/En8lmtpO7z8ufU9UaHdzKVaqc2UvILSiYqr5lqFocHfq/LP5/OYvQ1ziVUMO6k9CEXnQaQqw1fSfrroGEIHhclcVbKh7bzaytxJexcgJ1NV/msq8p1eKQr58PeveZl33tLwjzQsvR1YvHlDpTEGwi7v4Y4YPumNh38QXCsO9dCU1gXyT0F/28YYVsrBElzo/O+r1Qc2RTMrP16QmAHxJGJt6YO2UgBrdBudfncRSh6RRCP+JywNFxtOjDVRRxZjy2EWpkM4ukrbbGVMp7hOA2kMXf63wK/a1k9ymPrPDxs6+d14vR2NJEFAQbzMySidYL4whDYNFIu2uAa8xsY0I/TDshKKY1CG5EWMmjkM3i8d+U1yTXTA6h5//xMHe/okC6sZQY0BZXj0mmW0wFvk1YeWhp4HIz29DdP66wfE8RpvNAmNR+R5G0m1SYd1ncPWNm0wh9nJuUqJFuVOD+7EE7RRd3MLNfEVpmXga+Sc8UGOjpuih07VKEBQ/eAKa5+yPF0kvjaHRoA8V/lPcIk78LDhd39yfpqdnkrohS0VD3fu47ZpZ31wwzWw/YIt68qV7Lp9XRhKzfi01in5T1+xJfYs1sIGGw1dKEv40D4per5IvTBOCMKsp3a9bvexVKFGu0G1eRf7mSJsgxwNeKpNsn351xRGoy4GVnM8vbrBznbe5MGJS0jrvPcfc3CVMjIIxAXqPI408i1OYvJiyqIE1KQbCB4ny35Bv1Vma2W750ZrYNPYMk/p5z+pOsdPWcntAMjDB/a/E7wyjKK+hZDuzcPi5XLWQ3L+6QL4GZfRX4adZd+aZI/JSeIHSWuyejJE8nTPKHsNrMlyopXOy3TqZd7G1mO+cp33KE9UPr6VJ6BtWcF+cv5pZjT+AbRfJIFhsYHvPI9zl4NGF1IgiBLJFMwh8IXBeXost9/LUJrzeEfsxzctNI81BzaOOdTPhGO4DwT3UFYWHhNwl9FtvQM/H2Y5b8Fp/d93VqvL4r1h5b0bFm9ilC/9k7wAaEwR7JMPRfuns589SazfX01LBONbOVCF+QPgBWJ8z
"text/plain": [
"<Figure size 480x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecXFX9//HXZgOEJJRAwNBb4ANRqgjyBQQr4BcQaSpFQgQFQfz6M4gKfgmoIMWvIqIginSpEUJVQKRJN3T4hBZQFEMaEEJIdnd+f5xzs5fJ9L2zM7v3/Xw89nFn5p575sxkMp85vaNQKCAiIpJHQ1pdABERkVZREBQRkdxSEBQRkdxSEBQRkdxSEBQRkdxSEBQRkdxSEBQRkdxSEBQRkdxSEBQRkdxSEBQRkdxSEBQRkdxSEBQRkdxSEBQRkdxSEBQRkdwa2uoCSHVmtpm7P1Hi8QuBQ+Ld1dz99X4tWJso9/7klZktDazv7s8VPb4u8HK8e567H9HfZctSFq/HzCYBJ8a767n79EwK10eVXpuZjQd+H+9+yd2v6N/SDS6qCbYxM1vBzM4C/t7qsrQjMxtrZrcAv2h1WdqFmX0KeAL4YqvLIjIQqCbY3v4PmNDqQrSxPwHrA3e1uiDtwMzWAm5rdTlEBhIFwfbWWemku48HxvdLSdpTxfcnh3L1fsSmy45Wl0MGNjWHiohIbikIiohIbqk5tB+YmQFfBz4JrEf48TETeBSYDFzu7l2p9JPoHbGWPFaIN+9y953jYxdSZnSomU0H1gF+6u4Tzey/gaOBDwMjgVeBa4HT3f3NeM0WwLeBjwOrxDL+Bfihu0/r8xtRhpl9ktD3+V/A6sBC4HXgXuAid/9rUfq/AjulHtop9f6c5O6TYrrphPfgLOBU4GxgV0IT2nTgVHe/PJVvB7A/cACwNTAaeBt4FrgeONfd55V5Dcnzf8vdf25mewOHAVsBo4D/AHcCP3f3qVXejz2ArwHbACvEa28DTnP3aWa2AFim6LUWirI50cySz9DHi9/D1Os9mNCkvjkwHHgNuDWW84VK5azGzDYDvgV8AlgNmAs8CPzC3W8zs1uBXUh9puN1OxPeK4AtCZ+JHwObEP49nojlXpoqo0PNbCjh3/QwYGNgReBF4DLgZzW+jmWAfeNzbgKMAd4CHgcuBS52954y1zb8mZL+oZpgk5nZAYT/tMcAHyR80QwD1gQ+B1wEPGxmH2hiGc4FbiQEgFWAZQEDvg/cY2YjzOww4CHgIGANwhfM6vH+I2a2eZPK9kvgdsKXxLrxeUcCYwlfznea2SXxy6xRywN3A/sBy8X8P0T4wk/KsSpwD3AFsCfhtS8NrAzsAJwBuJltV+W5Os3sMsIPjN2AD8R81gK+THgvDy91oZkNMbPfAFOA/yb8WyXXTgAeN7N96n3xZSxHCKwXEX70rET4XG4AHAVMNbNdGs3czA4ljGoeD6wNLEV4PbsDfzazM2rM6rPADcAWhMA/mvA5+XcNZViJMGjqMsJrXI3w2f8Q4UfRQ4R/30p5bAQ8Qgh2u8TXsnQsxycJUxXuNrMVS1yb1WdKmkhBsInMbCxwAb2/WI8kfPi3IwSX+2PSLYBfpS49l/AL+IbUY1vGv8PqLMYhhFqFA4cD2xN+0U6P5zcFrgHOI9Q4jonl+yxh9CWEL8yz6nzeqszsYMIXLoQvqy8B2xJqeccQaqsQ3qsjU5ceRngvki/CR+l9f84t8VSHABsBv4t57wmc7e53xXKMINQ8tgcKhC+8zxNqYrsRapALCF9ifzazD1Z4WRMJAf1Z4KvAR2MeV8bzQ4CzzWztEteeRfg3glBbSa7fkxBUhwF/IHyeim1JCJyJ8+h9Tx4pkf4Awpf4E4T3c3tCjSWpgY0ELjaz5Sq81pJioL6AMFDnLUKrxo6EGuFPCTX9iYTAVM0PgTcJrRjbA0cQWiaKa77FZRgC3EJoXYDwI2h/wvt5EPAwsBmhhaZcHqsQWiM+FB+aQqgRfpTwWX0oPr49IdCmr83yMyVNpObQ5jqQ8Ou1m9Ak9Urq3ANmdhXwV8J/1M+b2Wh3nxmbNV83s9lJYnd/rMEyjCZ80e3o7m/Fx/5mZlOBp+L9XQlBcVt3n5FcaGZ/Ah4APgJ8zMxWdPe5DZajlGT6xzPAZ9x9Yerc3Wb2x1j2UYSAcDZA0kxnZkn6eVXenyGEJuf0D4j0D4wfA+OALuDz7n5j0fW3mtnFhEA9khBMP1rmucYAdwC7u/uCojzmEL7ElyF8iZ6WnDSzLen9Qn4I+JS7v50ur5l9Gziz1JO6+2Nmlv63eb2Gz8xkwmTrxe+7mV0D3ET4ol6V8Nm4uko+i8Uv/5/Hu7OBHdz92VSSO83sOkItdFgNWQ4BvuDuydSPv9VYlK8QAg7AJcAhqcD5oJldCVxFCEzl/IxQewWY6O4/TZ17ML5XtwCfAj5rZju6+z3xfJafKWki1QSba0w8zgP+VXzS3RcRfiX/gtB30qx/jxNSATB57qcJtZXESekAGNP00BssOghNZVlK3p9XigJg8vz/BP4XOJ1Qe+rLcPhfl3owNmMlta/zS3xZJWV5JJYDYFsz27bCcx1TFAAT56VuFzcvf4Pw718gfGG/XXSe+CV8R4Xnrcd7wFeL3/cYKNLv1Yeozz6Epn6A7xUFwOQ57iUEiVq8mAqA9fhaPM4Bvl5cc4x98BMItcwlmNkKhJojwN1FATCdx7dTD+0Sr23GZ0qaREGwuZJlq1YArjazTYoTuPvt7v5Ndz+rOAhlpIfeJq5ir6Vul/tyTZdpZCYl6pW8P7ua2Y9jH8r7uPsv3f04d/9NtSawCroo3SQIsDOhnxaqTzS/OXX7k2XSvObuz5Q592Lq9uJmxth0lzRl3l+83FmR8yqcq8dD7j6rzLnnU7dXqjPfPeJxEUVNhEV+U2N+D9T5/MT+9a3i3RvKDTyJrRp/LJPNroR+TICLyz1XXK5vS2AFdz8hPrwz2X6mpInUHNpcFwPHEgaafA74nJm9RPiPcTtwe8bNi6XMrDD67L3U7XIDDdJpsp6YfCZhoMRQwiCd75rZ3wnvzW3AvaVqiA2YWaZmBuELLDE5DOStyfplHp9e4Zr0v0P6/95qhKZHKB+sEw9WOV+rf1Y4l36v6v2O2CIen3X3d8olcvcZZvYyYbR0Jf+o8/khDPpKPqvVmoQfovSCExulbldctrBEs3PWnylpItUEm8jd5xD6C9K/ZtcnNNVcDcw0szvM7MA+NvVVskSzWinpKRr9xd3vI/TJJF/IQwjDyL9LqJnOMrMrzGyHPj7VWxXOjW4wz1FlHi873L2oJpv+906PDJ5Z5Xmzai2o6XNB/T98ktdS7XVAba+l0r9dtTIAlKvtJv6TQR7Fsv5MSROpJthksWlru9jevw9h1GUyEqyTMGLuE8ChZraHu7+bcRH6PbjVw91vjANwdgX2IvSrrBFPjwS+AHzBzE519+83+DSVmlHT/wf2Al4pl7BIyb6kBqVHe1b7Ydpok3Cz8imWvJZafmDXUoZGylnux0Ypi8o83pfvxnb4TEmNFAT7ibs/SGjK+o6ZjSEEvt0J/0mWJfQHTCQMCc+VOEDohviHmW1MqEHvRXifOoDvmdnNcVBFlmanbr/Rh1G4fZGuNa1SNlXQaC2jv8wk/Iip9jqgea8l3bRfrRzl+jzTn4uV6Z2uU4t2+ExJjRQEm8jMkknpi+JoTADiFIjLgcvj0PhHCL+cdydHQTBOZt4YeNndF39xxdrzc8AvzewYeuco7kGYt5Wlp1K3P0qFIfhx4vR+hH6/h9z9+XJp6/QSodlveXoHdJTz4Yyes1keIwTBjcxsRLl+wTiCsll9YM8RpiV1Eqb3VLJFmcfTg5s2B8qu8mNm9xCaMu+Nq9a0w2dKaqQ+wSaxsLHpLMJ/npLD8wHiElpJACieN1VyKabBIPbzzQLu4/0T4YulR8814/25g94m48PMbKkKaU8AfkSY+JzZKh9xKkryOj9qZpWmohxS4Vw7fF6SKTVL0TvFoJSDadL3Txz1mmyvtXupUceweDm0cmW8k97
"text/plain": [
"<Figure size 480x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecXGXZ//HP7iaQTkJCKElIqJeANEGKgGBDkGqnE3kAERD1EURFJChSfxYQFB8sIL2IdJAi0oslKPUChABSJIQkkJCQZHd+f1z3YWdnz8zO7s7W+b5fr32dmTP3uc89Zeeau56GQqGAiIhIPWrs6wKIiIj0FQVBERGpWwqCIiJStxQERUSkbikIiohI3VIQFBGRuqUgKCIidUtBUERE6paCoIiI1C0FQRERqVsKgiIiUrcUBEVEpG4pCIqISN1SEBQRkbqlIDjImdlGZfafb2aF9LdKb5dLpKeV++xXcdyMov+NrWpdLulfhvR1AaRnmNkKwA+AI9D7LHXEzNYGfg4MB3bo29JIf6ea4OD1E+AooKmvCyLSy/4E7NTXhZCBQTWEwati8HP36cD0XimJSO/SDz+pmmqCIiJStxQERUSkbqk5tJ8zMwMOBz4GrEH8cHkD+DtwNXCJuy8rSj8DOKEkj0K6eZe775D2nQ8cmPav6u6vFaWfBUwFfuzuR5vZLsCRwGbAKOBF4A/A6e4+Px2zCfBN4CPASqmMfwZ+6O5Pd/uFqMDMpgBfBT4JTAOWA14F7gHOdfcHyhw3g3it5rv72DRK9n+B3YDVgaXAk8DlwC/d/d0KZWgAvgDsA2wOTADeTsdfm8qxoMyx2fvzDeBG4Gxg23T+Z4Fvu/vtRemnAUen57s6sBB4JJ3jCjM7F/gy8IK7T0vHHA2ckbI4yN1/V+G5bAE8lO5+1d3PLpe25Li/ANsD17r7nma2GdEvvQOwMvAW8Ffg1+7+xw7ymgh8BfgUsC4wApgNPAxcDFzt7oWSY7LzZ7Yvem1PdPcZ1TyPnLJMBY4n+hknpHLcBfzC3e+vcNy49Bx2BdZPz2Eu8BRwE/Ard5/XlTJJ7agm2I+Z2T7Av4gvkg2If6JhwGRgD+AC4K9mtnIPluFc4AbiC2AlYsSdAd8F7jGzkWZ2MPHltB8wiQhCq6X7fzOzjXuwfP8DPA0cA2wEjCFeozWAA4D7zexXZja0g3y2BR5P+byPeK1XALYCfgo8bGYrljl2IhFwLwN2J577csB4IpidAbiZbd3B05kC3AfsWHT+DxCBMDvXTqmcRwBrp/OMI358XG5ml5L/4/YiIPuxtG8H5dg/bZcAl3SQNpeZfRV4kHgPVgeWJz4/nwKuNrPfpx8Oecd+gXhPZwBbAGOJ5zkJ+DRwFfAXM1upK2XrpO2AR4H/Sedfnvj/2xe4z8zOyDsoTc94HPgRsDXxXg4FJgIfBk4F/l3FZ0J6mIJgP5WGef+W+Od/nvhFuS3xD7UfkNVuNgF+UXToucCmwPVF+zZNfwd3shgHEjUKBw4BtiG+IGelxzckvpB+BfyXCNZbE190f0ppRgNndvK8VTGz6cCviaD3PFET3Q74UCrvIynpocD/VchqOHAdEUB/SQT8DxG131dSmo2IL7TSMowE7iRemwIRbD5NfHnvTAzVX0wExlvNbIMK5fg6UdM4PT2PzwMnu/usdK6tUjlHEAHqx0Tw246o0b4N7EVrEHtPqunfku5+xMxWyytA+rGwV7p7g7u/WaG85WxFvOdvETWoDxM1tJNTuUll/ELO+T8DXEoEjaXEZ3unlOd04scWKc87zWxU0eEHE5/zV9P9v9P62T+3C88D4DTiM3wx8X5+iPihlL0uR5vZN0ueQxPxf7EqUUufQbTkbEH8eL04JV0RuNLMhnexbFIDag7tv/YlfnU2Ax9x9xeKHnvQzK4A/kL8U37azCa4+xvpy+41M3vvy8vdH6FrJhA10e3c/a20734zmwk8lu7vRATFLd399exAM/sTURP4IPBhMxtby6af9CV+Trp7B7CHuy8sSvJAavL9PbA3MN3MLnf3W2hvOWJE4a4ljz9gZjcRz3UEsI+ZHeXuS4vS/Iho6loGfNrdbyjJ+xYz+z3RfDYK+A3xhZ6nkQh6xxXtuyo930aimXQoEUg+4e53F6W7N30m7iZqXHnOJ5rmGonX5Mc5abImP4iWhq5YmQhEW7n7i0X77zazfxLNyxBBLbuNmY0hfqw0Au8An3T3e4uOf8jMLkxp/odoHTmZ+PGFuz+b8skC7YJufPYzDcAR7l78Q/MBM/sjUWtfGfihmV3g7m+kx7cF1km3v+zuF9PWdWb2ChFMJxE/Gv/QzXJKF6km2H9lq7gsoLU28p70RXwCcBbRl9RT7+X3igJgdu7Hib6uzInFATClaaG1NtoArFXjch1BBKZlwAElATArwzKiBj0/7fpahfyuzguQ7v48cFu6O4ZoZgXAzMYSNU6A83ICYJbH34jaHcCWZrZlhXL8ssz+bYk+WYi+2rtLE7j7U0SfZjnXA3PS7XJNolktcjZwc4W8OnJSSQDMXEn0iwGUNpMfRDQhA5xQEgCB9z5XhxPNpQCHlGumrpEbSwJgVo5/A8emu8NpO92oeAWmZ8rkeyZwHvAdipq7pfcpCPZfT6XtCkSTyXqlCdz9dnf/mrufWRqEaqSFaOrL83LR7TvKpCku06gyabpql7R9wt3b/UjIpIE796W7H67QN3hrhXP9u+j26KLbOxCBGFoDZTk3Fd3+WJk0L7v7f8o8tlvR7bKDWoiaVW6N292L+/g2Lf1MpVWGsvNcXFLj7azc1zMNZnk+3R1d8vAn07aZaObOlZ5H9vgwenZVmErN6JcD2WCpHYv2P1V0+3dm9tFUk3+Pu7/s7oe6+6nu/s8alVW6QM2h/dfvaW0u2QPYw8yeI75sbwdu74WRZW+UG9FI6z8/tPbBVEqTOwiiK8xsCNEfCbBR0QjAjowgmq/yAs2sCscVvwbF/zObFt2+OgbyVmXNMvtfqnDMJmk7393L1S5w96WpufojZZL8jhhJC9G3XNz0+nkiqEDXm0Izsyo8lr2epd8/709br+Kz/WDR7Q2JkdI94aFyD7j7YjN7knhvNiza/08zu5noQ1yf+JE4x8zuIP53by3p3pA+pJpgP+Xuc4GP0/affU1ioMqVwBtmdoeZ7VtulF0NvF1NouIpGr1kHF3/7I4rs79csIcY8JIpfq0nlCbsZhneKrMfInhDa3NmJWVbBdx9JtHPC9HHWfx8sqbQf3WzL+3dDj4T2etZ+rnNmkKradX4b9HtnmwOnd3B41k/YGkZ9iIGSWXPdTwxEOj/gFlm9i8z+3bJwB7pA6oJ9mOpj2fr1If0WaIDPRtd2AR8NP19ycx2c/dFNS5Cbwe3ahV/bm8h+lWqVcv+l+Jy7AlU++t+fpn9lWq0y6VtNcG/o5rx74hpH9OIUa33prlw26XHu1sL7KrO/JgrXhqtpdYFKdLRa5mVuc0c0tSPvr+ZfZ+oYe9KDIjKmuM3BE4BDjezj6Q+RukDCoIDgLs/RDTLfCtN6P4o8U+1J9Ep/zFi8vQP+6yQvat42H5TDUYA1qIcs3u4HG8Q8zMnmFlD6UTxEh3VUC8mBuoMJWon96ZtA/HDp3Q0Y295k5hKMrGKtMVzY7syjaNaK1K59p2VNTdNGlh1OnB6qvVtR4zA/SLxHKYQtcNy/cTSw9Qc2k+Z2XAz26R0Xpm7v+bul7j7PsSv+OxX8K69Xsg+klZuyWp0m6U+wrLM7DAzO8LMdukobSc9VnS74nXnzGxdMzsuNV+vUyltGVmAHUXr8Pu88zTS2n+Yy91nEyvTQEzuh+h3BrjF3f/b/qhekTXTWhp5W0nx6/1U2VTdV3Zep5mNBrLBRf8o2j8kvd/bFKd39wXufrO7fy0d91x66KOaK9h3FAT7ITNbjvhlOZPyQ+az/p1sUMqwkod7somoP8gm469I6+TudtKiA+cQc+x+XuP+yztobTI+uINVab4HnET0E3VllZDixQ8qrfiyC9X1VZ6ftlPNbMeiMvVVUyi0jihtIuY
"text/plain": [
"<Figure size 480x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcXFWZ//FPZyMkLAlhSUwggQQe9sVhmQhKGGVR2WQbZJEgRFEZHEY2hd8AOrLIjIKK4oAYBEFAeSnDIkvYZEcMa/AJWwCDGMIihADZ+vfHOZe+VGrrrltd1X2+79crr1vV99xTT6qr67nn3HPO7ejs7ERERCRFA1odgIiISKsoCYqISLKUBEVEJFlKgiIikiwlQRERSZaSoIiIJEtJUEREkqUkKCIiyVISFBGRZCkJiohIspQERUQkWUqCIiKSLCVBERFJlpKgiIgka1CrA5DAzDZ398fK/Hw6cFh8OsbdX+nVwBpkZlOA2+PTb7r7WS2KYw4wHnB337DM/sHACcDBwDrAUuBvwOHufl/vRVo/M5sK/CI+/by7/7oHddwB7Ai84O4TKpTpl5/Nnqj0XtRx3BTa4O9Alqck2GJmtirwbeBr6PfRSpcBB5T8bBXg5RbE0hb02eyi96L/0i+z9b4PfLHVQaTMzDakKwG+AJwEPA+MdPcXWhZY6+mz2UXvRT+lJNh6A6vtdPepwNReiSRdm+Qef7cn3Yqt4O7TgelNfImqn83E6L3opzQwRgSG5x4/37IoRKTXKQmKfPjvYEnLohCRXqfu0IKYmQFfBT4JrEv4Yp0PPAxcA1zu7kty5U8DTi2pozM+vNPdp8SfTafCCLzciMf/cffjzOyzwNHAPwErAS8CvwW+5+7/iMdsCXwD2AlYI8Z4G/Add5/d8BtRQxyF+RXg88BGhM/gi8C1wLnVRhia2VDgUOAzwFbA6sBg4A3gCeA64EJ3f6fOWO4gjIzMuz38KgHYyd3vqKeuKq9xF/Bx4E1glLsvK1Pml4T/F8D+7v6bMmV2Bm6OTz/j7jfWMzrUzEYAXwb2ByYCHcCjwE/c/coKMZ9GHZ/NMsdNAI4HdgPGAm8Bswhdtpe4e2e546rJxfIPdx9hZqOB/wD2IIziXQw8BVwJ/NTd369S1wrAF4D9gC2BkYTfy5PA74D/dfd3K7x+/mc134s6/l/DCaORDwAmAAuAPwOXAFdUeq/MbBBwCPCvwEeB1YC3CdeybyO8B8/0JKZUqSVYADM7CHgMOIZwfWkYMBQYB+xF+GA/ZGZrNTGGCwhJYDdCclsRMOBbwB/NbLiZHQk8SPgjGgsMAT4Sn//JzLZoVnzRGOBPwHnAPwOrEroiNwJOBB41s63KHWhmHwWeBv4X2JuQ/IfH/8NahJOPHwAzzWxsc/8b3XJd3I4Atq5Q5pO5x1MqlPlM3C4gfNnVFE94ZgFnEU6MRhDe808AvzazSynuO2BfQjL6KrAesALhc7gjIVFfH7/Ae8zMdiAkrOOBDQl/Z6sSPks/AB40s9UqHLs5Ifn/L7ALsCbhBGoNwnt+LuBmVul3VKTRhL+D/yT8P4YSTuh2AX4FzDCzlUsPiiNU7yC8n7sR/g+DCMl8S8LJwV/M7GvN/y/0H0qCDTKzScDFhC/j5wmtnB2AyYTkks0x2xL4Se7QCwitmf/L/Wyr+O/IboZxGOFs34FpwPaElsWcuH8z4DfAz4C/E5L1ZMIX602xzMqE5NRMxwCbA38kzMf7GOE9ejTuXxO4zMw68geZ2SjgFsJJxVLgIkIinAx8FjiZ0KIFWB/47zrjOZLwfufP9KfR9Xv4U/3/tYquyz3euXSnmW1MOBHJTKlQT5YEb67W2snVOxa4k3Di0Uloje1GeM+/TpgDeQjhs1KqJ5/NHxNamefH19mJ8HvJWuWfJnxJ99SKhN6CVYCf0vV/OZquaSybA98tPdDM1gduJZwUQvid7A9sB3wOuCr+fG3gDjPbNHd4kX+nmWMIye8+4EBCEj+MkOAhvHeXlznu+3T9vn4O7A5sA+wKnEl4rwcCP+yFE9p+Q92hjTuYcNa7lNB9lh9Sf7+ZXUU4e/sY8DkzW93d58duv1fM7PWssLs/0sMYVie0RD/u7m/Fn91rZjMJ3YQQvjTmANu5+7zsQDO7Cbif8Mf0CTMb4e5v9jCOevwQ+Pdcd899ZnY18BDhS2xjQovpodwxxxK6fQCOc/dzS+q8wcwuIXyJrArsbWaD8t3P5WTdRrHFlHmmgd9DudeYZWbPEVpHO7P8l/Sn4nYxoWWysZmt4e6vZgXMbCKwQXx6bZ0v/T1CwgD4krtflNt3n5ldSTgZWb9MzD35bL4P/Iu735v72R1mdhtdJ4KHxbh6YgjhC353d/9D7uf3mdkNhM/5MOAgMzvG3RfnyvyE0OID+Ia7f7+k7t/FOqYTehd+ZWZbuntnwX+nmQ7g18DBue7xB+LfwU2E7vPdzeyz7n49gJkNIXzXAFzk7tNK6rzZzO4Gric0bo4E/q3BOJOglmDjRsftAspMrI5/jKcSvvyPpXnv+Sm5BJi99pOELqrM6fkEGMsso+sst4Nw3ahZXgaOL73e4e6LCK27zKZ82Nh47CuElsZy3H0u4WQDQvfSqALiLcr1cTs5XgvKy5LgpYQWWwfLX6fMWoFLc3VVFK8DZvMeby1JgAC4+98JvQdF+XFJAsxe537CtS6ADRvsEr2mJAFmr/E8oacAQuJfN9sXT3Cy9/j6Mgkwq+MSuqabbE44aWyWvwPTSq8Px+uRU4Hs51/J7R5JONmGcFlgOe5+A+F75nTgxgLj7deUBBv3l7hdFbjazDYqLeDut7r71939vNIkVJBldC3JVGpu7vGMCmXyMa1USETlzYgJr5z8H/aHruu4++HuPhYYW3KGXyo/qGaFiqV6X9YlOoRcgosJIXv+GyAbmLRTyfGfjtv73H0+te1CVy9PuW41ANz9doqbEnJDlX3Z73YA4e+kp26usu/Z3OP89bRdc49/VqP+/OWKT1cs1bjL3X1BuR3u/hyhhQ6wU+6kYR6QtUa/ZWaHmdmKZY7/urufFhOi1EHdoY37JeFC/VjCIJi9YvfXLYTrELc2uXsRYH6lPypCN1Xmb3WU6ahQpgh/rbLvvdzjsp/L7Mw5jjAdT+hi3IBwzXNy3Gba6QTvDkJPwUqELtHsC2pbQstlCeGL7x7Cdasp2YHxiy57Xm9XaH5t1Fpddw+Razk1oKHfbZ3mVNmX//znXyPfq3B/jfpnAosIJyub1SjbiAfqiGNHQvfuRMJ6t51mdjZwNuFEYjpwgZn9kfA9czPwaE9G4Kaunb4o+iR3f4PQ3ZL/A1uP0NV0NTDfzGaY2cGlAz4K9HY9hWpdI+sFdcVJmURsZsPM7Dgz+zOwkNC6uAn4EfAlwpfWctMP2kFs/WbddfnBMVk33UPxJCZrzW9sZtk1rJ0Ig0Kg/iSYH4X8Wo2yf6+zzlp6/LvthkonehC6ksu9RtYtvoyuwVNlxb+P7P0qO8q0ILV6g/JxfhCHu3+PMNo7m8YxlPB5OpuQOP9qZufFqSpSJyXBArj7X9x9MmGU1zl0jfKCcDH/XwgLNN9SrgujAK1ObvXq0Vmqma1LGEF6DmFU3iDCGfsThBONkwgtwQuKCbMpsi7RTcxsTHycJcHbS7bQ1frLrgfOdnev87UqJYRyqnUvd0e7tkC6m3Sz5dFaeUKVj/lDI4Hd/UxCr9MRwO/58MnHRwgjT58ysz2aHWR/oSRYIHd/wN1PcPdNCUPTDwauoOvM7ZPAca2Krw+7ApiUe/wxYCV338zdD3D3s+MAjNJBJ+3keroSxafMbBjhpAli8ouDe7LrglPiNrs2VW8rED7c7b1GxVJBM1s87SC7jjaAMIq6otjNPrLkuGao9Z6vmXu8XEve3d9w94vdfe9Y18cIg++yk++hwCVmtkrpsbI8JcEGmdmKZralmeUXYcbdX3H3y939IMLcnuzMcvdeD7IPi5OXt4tPb3f3g9z9vgoDZNbpxdC6JY7GzOYd7kxouQ4mtGjvyRXNJsL/S7y7xXrxeXeSYL4
"text/plain": [
"<Figure size 480x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xec3FW9//HXloSQAmk0kxAggQ/FUFRAEIWrVwWlKVhoQhAELsXLpaiIUlRA+MEVFQTpvQkXQRSkSRVQBKR+qEmQIoQU0gjJ7vz+OOebncxO3f3Ozux+38/HYx/fnfme75kzM7vzmdNbcrkcIiIiWdTa6AKIiIg0ioKgiIhkloKgiIhkloKgiIhkloKgiIhkloKgiIhkloKgiIhkloKgiIhkloKgiIhkloKgiIhkloKgiIhkloKgiIhkloKgiIhkloKgiIhkloJgBpjZxiXuv9TMcvFn9b4ul0i9lPqbr+K6E/P+Jz6Zdrmk+bQ3ugBSP2a2MnAycCh6ryUDzGwy8CtgRWC7xpZG+gPVBAe2s4AjgLZGF0Skj9wBbN/oQkj/odrBwFY2+Ln7fsB+fVISkb6hL3xSE9UERUQksxQERUQks9Qc2g+YmQH/BXwOWJvw5WUm8DhwE3C1uy/NS38icEJBHrn4633uvl2871Jg33j/Gu7+dl76acBE4Ex3P9rMvgwcBnwcGA7MAG4ETnf3ufGaTYGjgP8AVollvAf4ibu/2OsXooCZbQfcG29uBTwLfB/YHVgT+AB4AriI8BrlimSTRjmm0UevlZmtDRxIGPSxDjCa8DzfBR4BLnX3Owuu+Sjwd2AFYDGwqbu/UCTvzwJ3AS3Ai8DH3H1Bla/BX4Btgd+7+65m9nFCf/R2wGrA+8DfgAvd/f8q5LUqcAjwJWA9YGh8fo8BVwE3Fb6XeY+f2Dbvb/4kdz+xmudRpCwTgR8R+hnHxnLcB5zr7g+XuW5UfA47AhvG5zAbeAH4I3C+u8/pSZkkXaoJNjkz2xP4J+EDZSPCP9MQYDywC3AZ8DczW62OZTgP+APhg2AVwsg7A44DHjCzYWZ2AOFDam9gHDAY+Ei8/Xcz26Re5YtWjY9/HOGDcwgwkhBkrgRuMrMhdS5DXV8rM/sBITj9gBD0VwMGASMIAXFP4M9mdm7+de7+DOGDHEIgvMDMWgryHkn4W2oBlgB7VhsAi5TzcEJA/hbhy8gK8bX4EuF9uLzw8fOu/Xp8jicCWxDew8GE1+krwO+Av5jZKj0pW40+DTwNfDs+/gqE/7u9gIfM7IxiF8XpGc8CPyO8TysT3qdVgc8ApwGvmNlW9X4CUpmCYBOLw70vJnwIvEb4ZrkN4R9rb+CvMemmQP4H33nAZsCtefdtFn8OqLEY+wIHAU6ogXwK2AeYFs9PIXwwnQ/8mxCstyJ84N0R04wAzq7xcWt1PrA+oea3F/BJwqCf5+P5XQkf8vVUt9fKzKYCpxBab/4FfA/4Qrz+G4RA3xmTH2JmXyzI4kzgwfj7NsDBBefPJXzAAxzv7o9X95S7+WQs//uEwPsZQg3tFODDmGYf4OuFF5rZV4FrCEFjSSzT9nS9l4/FpJ8B7jWz4XmXH0D4+34r3n6crr/583r4XH5OeD+uAnYAtgaOAWbF80eb2VEFz6GN8B6vASwgBPPPEQL6LjEvCDX4G8xsxR6WTVLSksvVpYVIUmBmJxD+iTqASe4+veD8IOAvhH/OHLCqu8/MO38psbnT3bt9866yORRCTfTT7v5+3vmNgGfyspsGbOnu7+SlaSXUCDaP5RudZhNQQXMohGamr7j7h3lphhGa+JKJz5919/xr0ijHNOr4WsVa0wxCkJpDaKZ8rUg5DiPMkQO4yN0PKDi/DvAUoYn2fWBDd3/DzL5JCD4QXs//dPdOalDQHPkW8El3n1GQ5uvAdfHm7e6+Q965lYBXgTHAQuCL7v5gwfWtwG8JNTOAX7n7EQVpphHei2XN/jU+jxNZvivhUHc/tyDNJOAhQk18EbBm8n9nZtsS/icB9nb3qyhgZqcTginA7u5+Y63llPSoJtjcklVc5gNvFp509yWEf9hfAkdSv/fz+PwP9fjYz9JVy4LQ7/JOQZpOumqjLcCkOpUPQn/LPvkBMJZhAaFZLvlQL6wBpa0er9VEQu1jLnBJsQAYXZn3+7jCk+7+KnB0vLkS8Iu4UtA58b5ZwLdqDYBF/LQwAEY3EN4ngMIm3/0JARDghMIACMteo/8iNJcCHGhmo3tZ1nJuKwyAsRyvEGriEJq798s7nb/y0ksl8j0buIDQrP1y74spvaEg2NySwQsrE5pONihM4O53uft33f3swg/WlHSyfG0r3xt5v99dIk1+mYaXSJOGa919VrET7v4SXU2B25tZvQaE1eW1cvdp7r6Ju4+kK4gVM5dQM4HQf9WNu58P3B5v7h5/TwLJge7+rzL5V+vPJR47R2jWh9DMmC9pvu0ALiyVcfySk5wfQn1XhfltmXPXEQYZQWiWTuQPOLrEzD4ba7DLuPsb7v4ddz/N3Z9KqazSQxod2twuJzSbjCP0J+xiZq8CdxKa+O7qgxFmM919folzi/N+f6uKNEUHQ6TkoQrn/0HoS1qJMAilWE2lt+r+WiW1tNh8uA6hxrgBoe9rG0LNBMp/wf02oXl2FF01sovc/aYy19RiWplzyetT+Nnz0Xj0Kv6mH8n7fQphhHQ9PFrqhLt/YGbPE/rjp+Td/5SZ/YnQh7gh4QvPe2Z2N+F/9s+F3RrSWAqCTczdZ5vZfwKX0NWntQ5h8MVBQIeZ3UcYPFOvKQDzqizr0sqp6qpbc3GBd/N+X536BMG6vlaxJeB/CB+w3Zo7CX2J1Tz+m2Z2PF3NoEuAY3tSpiIWV3h+SRkLg3zSFFpNa8a/836vZ3PouxXOJ/3vhWX4JuG13YvwPMcQBgJ9HcDMngauBn5d5kuT9BE1hzY5d3/B3bciBMEzCEOvE23AZwl9QXfWaaRZo4NbtSqVM385rQ9LpqpvGXosjg79J2EUZBIAZxFqwOcT+tTWJIxIrJRXK7BH3l2DSC8I9lQtrQT572Vv+y/LqfSlIilzfg0ed3/f3fch1NK/BzxA+KKRmAKcCjwXB9lIA6km2E+4+6OE5plj42CGzxIm4u5KaAL7HKG/6CcNK2RjVaoR5M8rK9Uc2ZTMbAqhf6qdUNs8kTBhfFpBula6mkPLOZrQdAqhH3Fl4Bgzu6XcBPA6m0Vopl61irT5c2KL9gOnZDTwXpnzSVmLpokDmE4HTo/TOT5NmPLxDcJzmEB4Xz+XVoGldqoJNjEzW9HMNo1D7Jdx97fd/Wp335MwFy35NrxjnxeyeWxa4fzm8fgW1TW5NZOD6PrCepi7n1UYAKPxVPifjqvHnBxvPkP4+1kcr7vMzIamUuLa/TMeLU7cLyd/n79uK9+kaKNSJ8xsBKEvFkJ/c3J/u5mtZ2afyk/v7vPd/U/u/t143avx1Gc1V7CxFASblJkNJnzDfAL4Tal07v4EXTWbwhVR6tlU1Gz2iBOVuzGzDYEt482b67V8Wh1Nzvu93CT2vfN+79bKE+eVXk4YOdoJfDtO30haDyYTmtwbIRlR2kbXPMBu4v/F/vHmUrrm5CXS/Jv/Rplz+9L1Gt+ed//thMUS7opzVLtx99l0LXQB3f9vpQ8pCDapOBQ8+WDYxsx2K5YuTs5N+oj+VnB6cV66ek5PaAZGWKZq+TvDKMrL6VoO7Nd9XK40zMz7fYdiCczsS8CP8+4qNkXix4RRpABnu3uyAsvpdNXEDomDsfraxYSFAABOKrakWGzuPQdYN951mbsXDl5J/ubT+Hs/yMy67U0Yl0X7abz5DsvPz/xDPA4h9Pt1E5c4TJpAX4lBURpEfYLN7STgy4T36Vozuxy4jTDnbAxhhY7/imkX0v1bfH7f1ynx+o5YexyIvhebjn9L+HDamLCg9jrx/Gnu/lyjCtcL1xNGGkJ4H9cgfEF6H1iLMN/vKyw/uGTl/AzMbAvC5GwIc/WOT865+xIz+zZh6kEbcLGZTUkW++4L7j43rqn6O2AYYX3Q3xI
"text/plain": [
"<Figure size 480x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFGCAYAAAASDiSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xe4XFW5x/HvOQmQBqTRpJPAC1GkSBEBwYbgRUSKBYKEXEBQRL2AwoUrAZXuFQSu4aJI7+QqXUMvUgRDhze0gAYDpFBCCEnOOfePtSZnM0yfPWdmzv59nuc8e2b22mvW7DMz76y1V+no6elBREQkizqbXQAREZFmURAUEZHMUhAUEZHMUhAUEZHMUhAUEZHMUhAUEZHMUhAUEZHMUhAUEZHMUhAUEZHMUhAUEZHMUhAUEZHMUhAUEZHMUhAUEZHMUhAUEZHMUhBsY2b2ySKPX2hmPfFv1b4uV6sodn6yysyWNbMNCzy+TuL9MrkZZetrxc5FhcfeFc/VwrTLJX1PQbANmdmKZnYW8Pdml6UVmdlYM7sF+E2zy9IqzOyLwBPAt5pdlmbTuZCkgc0ugNTkv4GJzS5EC/szsB5wd7ML0grMbE1garPL0Qp0LiSfgmB7GlBqp7tPACb0SUlaU8nzk0E6H710LuRD1BwqIiKZpSAoIiKZ1dHT09PsMmSWmRnwPeALwLqEHyWzgUeBKcDl7r4kkX4ScHyR7O529x1juguB/ePjq7n7rEQeM4C1gV+5+5Fm9m/AYcCngGHAq8B1wGnu/nY8ZlPgCOBzwEqxjHcAP3f36XWcgpLM7AuEa5+fAT4GLAJmAfcBF7n7XXnp7wJ2KJLdCe4+KaabQTgHZwEnA2cDOwMdwAzgZHe/PJFvB/ANYB9gC2A08C7wLPAnYLK7zy/yGnIfsB+7+5lmtgdwILA5MAJ4HbgTONPdp5U5H18FvgtsBawYj50KnOru02NvxeXyXmupD/jn3P0uM1sHeDk+dh5wKLAfoUl9E2AIMBO4NZbzhVLlLFH+NM/Fx4HvE96TaxL+d68RrgP/1t0fLfH8hXwu//1U4rnvIrzPPnD3QWb2WeAoYBtgKOEzdDPwa3d/tUQ+VX3+pTFUE2wSM9uH0EPtcODjhC+aQcAawNeAi4C/mdkqDSzDZOBGQgBYCRgMGPCfwL1mNtTMDgQeBsYDqwPLEgLSeOARM9ukQWU7B7iNEHjWic87DBhL+HK+08wuMbN6rmuvANwD7A0sH/P/BOELP1eOlYF7gSuB3QivfVlgFLAdcDrgZrZNmecaYGaXEX5g7AKsEvNZE/gO4VweVOhAM+s0s/8Frgf+jfC/yh07EXjczPas9sUXsTwhsF5ECDAjCe/LMYSgM83Mvlznc9RzLjrM7BTCZ+dQYENC4BlCeG/8O+Fzc3ad742KmNmPgbuAXQnviUHABsCPgOfMbO8ixzX98y+BgmATmNlY4ALCB/9lwod5O8IvyfHAAzHppsD/JA6dDGwG3JB4bLP4d2CVxdifUKtw4CBgW8Kv/xlx/8bAtYSaweuED+s2wFcIvS8hfGGeVeXzlmVm+xG+cCH8sv82sDXh1/fhhF/aEM7VoYlDDySci3/F+4/Se34KjX/bn/CF9fuY927A2e5+dyzHUELNZFugB7gU+DqhJrYLoQa5kBAY/xJrJ8UcSQjozwIHA5+OeVwV93cCZ5vZWgWOPYvwPwJ4MXH8boRAMgi4gvB+yrcZIXDmnEfvOXmkQPp9CDWTJwjnc1tCLfjOuH8YcLGZLV/itZZTz7n4NfBTemtNxxL+d9sRWiteI9QKDwN+l3dsteeinOUIPbUXAicBnwU+T3hfLCH8qLzCzLZOHlTH518aQL1Dm2Nfwgeoi9AM80pi34NmdjXh1+VngK+b2Wh3nx2bNWeZ2dxcYnd/rMYyjCZ80W3v7u/Ex/5qZtOAp+L9nQlBcWt3fyN3oJn9GXgQ2BL4rJkNd/e3aixHIbnhH88AO7n7osS+e8zs/2LZRxC+RM8GyDXTmVku/fwy56eT0OSU/AGR/IHxS2Ac4Qvt6+5+Y97xt5rZxYRAPYwQTD9d5LlWBW4HdnX35CDrW81sHnAI4T3xbeDU3E4z24zQZAahRv5Fd383WV4zOwI4o9CTuvtjZpb838yq4D0zBfh28ryb2bXATYRgtTLhvXFNmXyKqfVcbAv8MN51wmfnX4nj74+XAv5CaN7f38yud/cpUPO5KOe9WI6/JR6708ymEprKBwDnED4rOTV9/usspxShmmBz5GZxmU/45foh7r6YcO3vN8CPadz/6bhEAMw999OEX+g5JyQDYEzTTW+w6CA0laUpd35eyQuAuef/J/Az4DRCjaGjjuf6baEHzWw4vbWv8wsEwFxZHonlANg6/1d/nsPzvvRzzkvczm9e/gHh/98D7J8XAHNl+BUhqKThA+Dg/PPu7j18+Fx9os7nqeVcHJW4vV9eAATA3ecC3yQEGAi1xkaalBcAc+W4gdCkCbCFmW2R2N0qn39BNcFmeS5uVwSuMbNj3D0ZeHD32wjXxBqlm94mrnwzgY3i7WJfrsnAOCytQkXPEa717GxmvwTOKhCIz0nheZZQvBlsR8J1Gig/uPpmYFK8/QXgoQJpZrr7M0WOfzFxe2kzo5l10tt894C7P0dx58XnrtfD7j6nyL7nE7dH1vEctZyLgYSmRoC/Fwo8Oe7+Ymyt+AqwpZmNKvGa6tFNqP0XcxG943V3ove91gqff4kUBJvjYsKv2tUJF8G/ZmYvEb5sbwNuS7l5sZDZxXo0EmoDOR/5tV0gTT01sULOIHQ0GEjopHO0mf2dcG6mAvcVqiHWYHaR2giE60Q5U0JHvoqsV+TxGSWOSf4fkp/J1QhNj1D+mlWhwFuLf5bYlzxX9Xx3zCixr9i5WJveoPhgBc/xICEIdhBqrY2YPWi6u88rsT/Zw3XjxO1W+PxLpGp2E8QPzhf58Id5PUJHlWuA2WZ2u5ntW2dTXykfaVYrpBldtN39fkIHlNwXcidhaMLRhJrpHDO70sy2q/Op3imxb3SNeY4o8nixHxy5psac5P872TOw3DWhN8rsr1RF7wvq++FTy7kYlbhdyWt9PXG7nlprKSXLEYcY5T4/IxOPt8LnXyIFwSZx9+fcfRtCR4rTgacTuwcQmn4uBaaa2eAGFKGlxx/Fa3DrEXpAXkBi2AKh+fWbhGEcJ9XxNKXGjSVrIbvT24uw3N+RdZQnX7K3Z7nPaloDflt14HC1wSA5PVp3mgWpUbLlpBU+/xKpObTJ3P0hQlPWTywse/R5QlPg7oQu1l8gfLH+vGmFbJLYQeCG+Edc+uaLhHPzecIX4zFmdrO735fy089N3H4zhV6EtUjW/lYqk7bWmmu7SP4/Vi6aqleyFj23aKr6lKxhmtlIer9jC16T1Oe/+RQEmyD+sjNgceyNCUAcAnE5cHnsGv8IoQawKxn6EMQvjw2Bl5M9AGPHkOeAc8zscHrHKH6VMItMmp5K3P408NcS5d2AMOB+BqFjyfPF0lbpJUKT7QqEWVVK+VRKz9mqXiI0ow4jjBktJzlUxRtSIhhrZsu5+wdF9m+VuL102TN9/luLmkP7mJktS/hVOI0i3fMB4rRRuQAwKG93KzTvNES8zjcHuJ8PD4TPd3PidiPOz+30NhkfaGbLlEh7HPALQvNVuZljKhaHouRe56fNrNRQlP1L7Gv794u7dxGm6gP4lJkVDfpxMPoX493H83oWp3kuBhGa64vJjT/tIU4wkdLnX1KkINjHYq/Gv8S72xWb7srMdiD0HgPI7w7+QSJd2sMTmu1hejscHBa/0ArZN3G72Pmp+dwkfpVDGC5ScDxinBYrV5ZZ1D6AvJizCF+iHcAfzGxIfoI4w84eJfJI1lTa+f3y34nblxSaUszMRhCmuMtdE8yfRCDtc/GbQjPbmNn+QO6zfVNujt2UPv+SIjWHNscJhPFfA4Er46wjNxE6f4wiTAOVmyVkAeHCeVJy2MJJ8fiucpMOtwN3X2RmPyfMAjMCeNjMziZcN5lLmKJsL3pXBX+O3um2cv5FaE7
"text/plain": [
"<Figure size 480x330 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"\n",
"density = True\n",
"cumulative = True\n",
"histtype = 'step'\n",
"lw = 2\n",
"bins = {\n",
" 'stim_energy': np.arange(0, .4, .01),\n",
" 'stim_half_width': np.arange(0, 10, .5),\n",
" 'stim_p_max': np.arange(0, 1, .01),\n",
" 'stim_strength': np.arange(0, 50, 1)\n",
"}\n",
"xlabel = {\n",
" 'stim_energy': 'Coherence energy',\n",
" 'stim_half_width': '(Hz)',\n",
" 'stim_p_max': 'Peak coherence',\n",
" 'stim_strength': 'Ratio',\n",
"}\n",
"# key = 'theta_energy'\n",
"# key = 'theta_peak'\n",
"for cell_type in ['gridcell', 'not bs']:\n",
" for key in bins:\n",
" fig = plt.figure(figsize=(3.2,2.2))\n",
" plt.suptitle(key + ' ' + cell_type)\n",
" legend_lines = []\n",
" for color, query, label in zip(colors[1::2], queries[1::2], labels[1::2]):\n",
" data.query(query + ' and ' + cell_type)[key].hist(\n",
" bins=bins[key], density=density, cumulative=cumulative, lw=lw, \n",
" histtype=histtype, color=color)\n",
" legend_lines.append(matplotlib.lines.Line2D([0], [0], color=color, lw=lw, label=label))\n",
" plt.xlabel(xlabel[key])\n",
" plt.legend(\n",
" handles=legend_lines,\n",
" bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)\n",
" plt.tight_layout()\n",
" plt.grid(False)\n",
" plt.xlim(-0.05, bins[key].max() - bins[key].max()*0.02)\n",
" sns.despine()\n",
" figname = f'spike-lfp-coherence-histogram-{key}-{cell_type}'.replace(' ', '-')\n",
" fig.savefig(\n",
" output_path / 'figures' / f'{figname}.png', \n",
" bbox_inches='tight', transparent=True)\n",
" fig.savefig(\n",
" output_path / 'figures' / f'{figname}.svg', \n",
" bbox_inches='tight', transparent=True)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"from septum_mec.analysis.plotting import plot_bootstrap_timeseries"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"coher = pd.read_feather(output_path / 'data' / 'coherence.feather')\n",
"freqs = pd.read_feather(output_path / 'data' / 'freqs.feather')"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"freq = freqs.T.iloc[0].values\n",
"\n",
"mask = (freq < 100)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAFICAYAAABXz+i9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXmcHFW5v5/qZbYkZCNACCFAgMIQwfWibIqIXFBRUbyK4lUELosL/OKSy0UvFxVBERFUEK4om8oWluCNiGwmLIkISQiBIiGZSTLZJrP39FLLOb8/qrqnl9mnq2qm5jyfD/Sku7rOqeruU996z/e8ryalRKFQKBQKhUKhmKjEwu6AQqFQKBQKhUIRJkoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQKxQKhUKhUCgmNEoQj1F0XX9U1/VHw+6HQqFQBIEa8xQKRZgkwu6Aol/mH3rooQsAGXZHFArFmEULuwNVRI15CoViMHwb81SEWKFQKBQKhUIxoVGCWKFQKBQKhUIxoVGCWKFQKBQKhUIxoVGCWKFQKBQKhUIxoVGCWKFQKBQKhUIxoVGCWKFQKBQKhUIxoVGCWKFQKBQKhUIxoVGCWKFQKBQKhUIxoVGCWKFQKBQKxYREdGTIPbcZkTbD7ooiZJQgVigUCoVCMSHJPd9IbtVWMvetCbsripBRpZsVCoVCoVBMSJwtHcgeE5GMh90VRcioCLFCoVAoFIoJiQSk7YTdDcUYQAlihUKhUCgUEw5p2qR/9w9yj7+JtEXY3VGEjBLECoVCoVAoJhxiTxrZnUN2ZhG7usPuzphFZi2s13chzWhH0pUgVigUCoUigkghsd5sQXTnwu7K2ETK3r+F7H+7CU7mz6+TfXIDueWbwu6KryhBrFAEjJPpovPvt5Pbti7srigUighjv7aT7F/fJH3nS2F3ZUwiiwRx8d+KUpwd3eBI7I2tYXfFV5QgVoxpRDaFucOI1GCVfvVxrNYtdP/jwbC7UlVyza+RbXw57G4oFAoPp7kLhCRCw2d1UVHhISOFhIQWdjd8RaVdU4xpOv72K4SVZfI7P07dQe8KuztVQVoZd6pOi9bg0r3qAUCS3Gc+8YapYXdHoVDENRACYiqlWJ/Ifv5WVOIItES0v0cqQqwY0wgrC1Jg7nwz7K5UEQ0pg1nRbLdvp2ftMoSZ8bWdQgRfSqTPbSkUiiES09zInqJvikPnKozeL6K1B9GehkS0JWO0j04RDaQkSrfv3f98iK4VdyBty/e2Op65jcxbK+l59S/+NuRdTFyhH53PSqEYz1gb9mC+tC1SlrOqok7LoIiODJl715B96DW0iAtiZZlQjFmkY5Ne91fi0w+gZs7bwu5O1eh5+REAclsDKhUqJU7nLr8bKbSlIi0Kxdig58YVAMRnTgq5J2OU4ui5Grb6xNna0fsPZZlQKEpxMl10r7ofq3WLr+10PX832bdepOelB6IpsoQdTDsBRNhzW9fR9dwdWK1NSJ/bErkeOp66mczGF31tR6GICqJT2Zj6osROEsVrTBWQud7rlIzWspcKlCBWDJuelx8h1/wanX//na/t2O3Nvu4/bEYyjblt2zZ0Xe/zvyOOOIJjjjmGT37yk1x//fW0tbUhhUAI/5Opb//FJ7D3NJF64Q+jvrAsWbIEXdc58cQTS54/55xz0HWd6678LnbnLnpefXxU7fjB4sWL0XWdc845J+yuKBS9jHEf8XDHteoRXIR4sHHt5z//ub8dGCEya/Nj8SwfcP6X82/9fsXrURrzlGVCMWycdEdAWRKK9q/u3is4/PDDmTx5cuHfjuPQ2dnJhg0beP3117nvvnv5wfwNHDp3X2pO+YavfbE7d/T+w+/PSorAsnQ4mS7M7a9Te+A7iCVrfW9PofCFMS6Iixl8XLuPO+64A13XR9/YODovYSGzRTOZET9dShArRoaUJXpVMRJGN7pcccUVHHPMMRXPt7e3s3jxYp555hl+vG4qv0686b9I1Yonm/xp69prryWTyVDT/A9ky2tomv8TXF0r7sBJtWG3NzPlPWf63p5C4QdSSKSQaLGxP2gPZVz7xje+wbJly4jFRjkGjAHLRH5cmz59eijtD0axZSLqKMuEYkQEsmo5Ynl6K/DpFE6fPp1rrrmGmkSc5mwNr3Q0+O7rLRGnPn039t9/f+bPn099y3p61vwZ6fg/UDupNpACa+cG39tSKHxDSHCCSfXoF4VxraaGxsZGVqxYMfqdjoGIZ35cmzFjRthd6ZOSCHHEUYJYMWxErgenx/8SjlqRILZaNvveXvD4NxpPnz6d+QfsA0BTpsa3dgoEIIjztC39EeaWNWQ3/8PXdgpELO2fYgISEWvA9OnTOeywwwDYsKEKN6kyOA/xuMUsWlRn+b8eJUyUZUIxbFof+C8Apn3kUp9b6hXEMoCFYVHD9iJC9XFRIVJt2+axxx7jL3/5C6+99hodHR0kEgn22WcfjjnmGL7yla9w8MEHV+xz+fLl3HPPPaxZs4auri4mT57M4YcfzrvbJ3HKjDTJGJRfWVKpFHfccQdPPPEETU1NSCmZO3cup5xyCl/+8pfZa6+9hnQ855xzDqtWreKzc2ZwzoFtiEwX27Zt4+STT2bvvfdmxYoVPPDAA9x3331s3LgRcP2In/3sZznzzDNLbrCG2jdwcyurPK6KcY0Y39HhYmzbFWiTJlWmkhv2uOb9rFfJbTzyz+dY//5rSsa1f/3Xf+Wss86ipqYyqFDtce3CCy/ksssuA/B9XBtq3wCkUzT2ReTGqj+UIFaMGLtje9X3KaUk4xWsSAOZWBKAjJSkLbPq7flJfSLZ52BVwEeRtWXLFt7atpsYkndPS1MsUrPZLBdccAErV64EYM6cORx++OG0trbS2NhIY2MjS5cu5Z577mHBggWF991555386Ec/AmCfffbhiCOOoL29nVWrVrGKqazYK8kPFmx3qwt6vPXWW5x//vk0NzcTj8eZO3cudXV1bNy4kV/96lc8/PDD3HbbbcyfP3/4B1l0/qSUfPe73+WRRx5hr7324uCDD2br1q2sXr2a1atXs3nzZr71rW+VvH0offvpv72DA2fUq0WdilEhpcQyg7+pt+Lu+OMIiZmz0aogaJI18YHHNR/ZsmULGzZsIBaLccIJJ5S8NpJxTQrJA2IdN8kXoaWPcW3VKv7yl7/w+9//nni8Nwevr+NaEX6Na9XoWxRRglgxcqqsEaSUfOr/buGl3U29T57gRaE7s3B3ZcqXscx795nHktMvDOzi4TgOXV1dvPLKK1x77bUIKfnsnHb2qbVdL6zHbbfdxsqVK5k+fTq33norRx11VOG1tWvXcvHFF9PS0sItt9zCjTfeCEBXVxfXXXcdANdffz0f/ehHC+9ZsWIFF59/Lq92NfBc62QO6nHbSqfTXHTRRTQ3N3PyySfz3//93+y7774AtLS0cMUVV/DMM89w8cUX88gjj1BXVzfMI+79Ara2tvLYY4/xX//1X3zhC18gHo+Ty+W44oorePTRR/nd737HueeeW/DpDbVv3/l9O7+74Hgm1TYMs28KhYuUkl/f+DxNje3BN/7hI3r//t4TVdnlQQdP56KvHxveuCYEF154IXPmzCnZbkTjWqqb30jXevWDt3+ezz5wZeE9K1as4JJLLimI4vyY5/+41otf49qw+hbxpTzFKA+xYhRUP2o2gX57jPb8felLXyrJ17lgwQLe9773cdFFF9HY2Mi/f+xEvji3Mmfn888/TywW42tf+1rJRQPgqKOO4vOf/zwAb775ZuH5zZs3k8vlmDp1KqeffnrJe44//njOmpfmuBkpEpos2Fvuv/9+mpqaOPLII7npppsKAzPArFmz+MUvfsG
"text/plain": [
"<Figure size 750x300 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAFICAYAAABXz+i9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXmcHGWd/99V3T1XzgmEACGEQKAwRFCEBQFZI7JIXFERVkRxFYHlUFc268qPRZdlBUERUUQQVpRDRUBuOVYBkUMT0JwcRa7JfU7m6rOqnuf5/VF990ymZ6aretLzvF+Ememurufp6u6nP/Wtz/f7NZRSaDQajUaj0Wg0YxWz3hPQaDQajUaj0WjqiRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEGo1Go9FoNJoxjRbEoxTLsh63LOvxes9Do9FowkCveRqNpp5E6z0BzYAcMnv27DmAqvdENBrNqMWo9wRqiF7zNBrNYAS25ukIsUaj0Wg0Go1mTKMFsUaj0Wg0Go1mTKMFsUaj0Wg0Go1mTKMFsUaj0Wg0Go1mTKMFsUaj0Wg0Go1mTKMFsUaj0Wg0Go1mTKMFsUaj0Wg0Go1mTKMFsUaj0Wg0Go1mTKMFsUaj0Wg0mjGJ8iSZv6xDbOmt91Q0dUYLYo1Go9FoNGOSzB9XkfnzOlJPvVXvqWjqjG7drNFoNBqNZkzidXShEg4qFqn3VDR1RkeINRqNRqPRjF2kqvcMNKMALYg1Go1Go9GMYbQg1mhBrNFoNBqNZqyi0HpYA2hBrNFoNBqNZiyjtCLWaEGs0Wg0Gk3DInclUZ6s9zRGLcoVyLhT72loRgFaEGs0Go1G04B4HV0kfrWY1CPL6z2VUUvq14vJPPU2sitZ76lo6owWxBqNRqPRNCDuW9tAKsS2eL2nMipRSiE7fSEs1nfXeTaaeqMFsWZUo5RCOql6T0Oj0Wj2OIyoCVLbJQZC7kzkfzcmtdRxJprRgBbEmlFN/PWH2fW77+J2bqj3VDQajWbPImKidI3dgXFE4XfDqN88Rjneph6Sv12G2NHYVxq0INYMGZHopvfV+3C2rwl8rMzGFaAkqZWvBD6WRqPRNBQRA4QWxANRcrKgK00MSOqRFYjNvaSfses9lUDRglgzZOJ/ewRn2yp6X7k3lPGUkuhCkRqNRjM0DFNbJnaLjp5XjfIkKu3VexqBogWxZsjIVF+4i6yS+uw9y8aNG7Esq99/hx9+OMcddxyf+MQnuOmmm9i1axfKc3A7N6D2oOP38MMPY1kWJ598csnt5513HpZl8YMf/KBOMxucK664AsuyOO+88+o9FY0GIgZyDyi5NtR1rWYUC+KAxfGevK5d/fufceztF3LRA9dV3NdIa1603hPQ7IEYBkopQnNc6QhHvxx22GGMHz8+/7cQgp6eHlauXMlbb73FAw88wK1f/SQzW9OMP2o+LQcfW8fZajSasEnc9zecVztoO/e99Z5K1VSzrt19991YljXywUTRd8ueEzOoHw3us9aCWDM8lI4Q15urrrqK4447ruL2rq4urrjiCv74xz/yjVsf5FeXzye97m97vCC+4YYbSKVStLe313sqGs0egfPH1QC4b2xDCYkRGf0XhatZ17761a/y9NNPY5ojez6lV87q8x2zR61rDS6IR/+nQzM6CUkQKyW1h3iItLe3c/3119PU1MSGnX0sXLm5IU4o9t9/fw455BCmTJlS76loNHsWntzj/bLF61pHRwcvv/zyyHdanHBYp8OzR61rja2HtSDWDAcjFEHs9e6g++nvk1z+f4GP1Wi0t7dz6KGHArBmazf6hEKjGbsoKRtiCShe11auXDnyHcr6C+I9i8ZWxNoyoRkWSsnAPxo9L/wU5aZwNq0IJcIZX/I7DDPCuCM/Eug4MpMgvvhxWg56H037HhbYOJ7nZwS3NVV+zD3P48knn+SZZ57hjTfeoLu7m2g0yj777MNxxx3HF7/4RWbNmlXxuJdeeolf/vKXLF26lN7eXsaPH89hhx3GRz7yEc786KnETIPoxKklj4nH49x99938/ve/Z926dSilmDFjBqeeeipf+MIXmDhxYlXP57zzzmPRokVcfPHFXH755YCfjHPKKaew99578/LLL/PQQw/xwAMPsGrVKsD3I/7TP/0TZ555JkY/l/tqNTeNZlQjGicPI7eujRs3rt/7hrSuZQXxIrWRx/76Cm++//qKde3ss8+mqampYqyxtK4V2lo39lmDFsSaIZN652WcbSsZ956P1XzfSilSngtAEkiZMf93KYm6Ts3HyyEzcbrWLAIM1KEnYkabR7zP1mis38UqseL/cLbYOFveYe9P/teIx+mP9evXs3LlSkzD4PjZ+5SsY+l0mosuuoiFCxcCMH36dA477DA6Ozvp6Oigo6ODJ554gl/+8pfMmTMn/7h77rmHa6+9FoB99tmHww8/nK6uLhYtWsSiRYt44r7b+eEFH2Lqx67AbGoFYPXq1Vx44YVs2rSJSCTCjBkzaGlpYdWqVdx66608+uij3HnnnRxyyCFDen5e9xbMcYVLjEopvvGNb/DYY48xceJEZs2axYYNG1iyZAlLlixh7dq1/Pu//3vJPoKam0ZTjlIKt7gJREi4EX/9kULiOC5GDQILsaZIv+taGOTXNdPkAx/4QMl9w1nXlFQ8JFdwi/oL7Oh/XXvmmWf4xS9+QSQSyY8V1toxGtY1b1MPcntjN+TIoQWxZsjEX3sQgOYZR9Z0v0opPvnU7by+fV3hxg98zf+56i1Y9a2ajjcg919bk90cu89MHp5/ccWXh0pny9aZkQEeOTyEEPT29rJ48WJuuOEGpJR89n17s5fsLImw33nnnSxcuJD29nbuuOMOjjyy8DouW7aMSy+9lB07dnD77bfzox/9CIDe3l5uvPFGAG666SY++tGP5h/z8ssvc9lll7F4zXZeWLaOs07pwWxqJZlMcskll7Bp0yZOOeUU/uu//otp06YBsGPHDq666ir++Mc/cumll/LYY4/R0lJd61SR6KL7hTuItE2GIz4FQGdnJ08++ST/+Z//yWc/+1kikQiZTIarrrqKxx9/nJ///Oecf/75eZ9eUHPTaMpRSvGTH73Kuo6u8Af/8OGF37/5h5rs8qBZ7VzylRNCE8X9rWsXX3wx06dPL9luWOtaXy8/Va8BcM27P8OnH7o6/5jcupYTxbk1L8y1YzSsa8XtrRsd7SHWDBvlpmu+z8Z2KBWoRV3gz3/+8yX1OufMmcPxxx/PJZdcQkdHB188az6fjv2F+ML7Sx736quvYpomX/7yl0u+NACOPPJIPvOZzwDwzjvv5G9fu3YtmUyGSZMmMX/+/JLHnHTSSVx04YXMe/cMoqZBLhz94IMPsm7dOo444ghuueWW/MIMMHXqVH74wx8yffp0Ojo6ePjhh6t+3jK+E5REJLtLbj/33HP5/Oc/n4/kNDc3c+WVV2IYBp7nsWzZsvy2Qc1Ns+eyds0uVq/aGUjN7gZPzq8pg61rF154IV/72tcqHjecda1j43ocBBNo5sPTSh9z0kkncdFFF3HaaacRi8Xyt4e9dtR7XVOZomYcje2Y0BFizQio8YfDMAwenn9x3jKx65mb6HzkagD2+eefMOmEz9V2wCJkuo+uZ28Gw6D9I/+G2dQ24n0OZJmoVVJieb1OKSWJRIJ169bhOA73PvIMO6buzQUH7UQVvVi//vWvcV13wAhPa6tvd0inCyc8BxxwANFolJ6eHq644gq++MUvcvjhhejTpZdeQuf0TpRw89HoP/zBj0jNnz+/5HJjjpaWFk477TTuuusuXnjhBc4999zqn7xSFWdP8+bNq9isvb2dKVOm0NnZSW9vb/72QOe
"text/plain": [
"<Figure size 750x300 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"for cell_type in ['gridcell', 'not bs']:\n",
" fig, axs = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(5,2))\n",
" axs = axs.repeat(2)\n",
" for i, (ax, query) in enumerate(zip(axs.ravel(), queries)):\n",
" selection = [\n",
" f'{r.action}_{r.channel_group}_{r.unit_name}' \n",
" for i, r in data.query(query + ' and ' + cell_type).iterrows()]\n",
" values = coher.loc[mask, selection].dropna(axis=1).to_numpy()\n",
" values = 10 * np.log10(values)\n",
" plot_bootstrap_timeseries(freq[mask], values, ax=ax, lw=1, label=labels[i], color=colors[i])\n",
" # ax.set_title(titles[i])\n",
" ax.set_xlabel('Frequency Hz')\n",
" ax.legend(frameon=False)\n",
" axs[0].set_ylabel('Coherence')\n",
" sns.despine()\n",
" figname = f'spike-lfp-coherence-{cell_type}'.replace(' ', '-')\n",
" fig.savefig(\n",
" output_path / 'figures' / f'{figname}.png', \n",
" bbox_inches='tight', transparent=True)\n",
" fig.savefig(\n",
" output_path / 'figures' / f'{figname}.svg', \n",
" bbox_inches='tight', transparent=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Store results in Expipe action"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"action = project.require_action(\"stimulus-spike-lfp-response\")"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/data/freqs.feather',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/data/coherence.feather',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-not-bs.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-not-bs.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-not-bs.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-not-bs.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-not-bs.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-not-bs.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-not-bs.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-not-bs.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-not-bs.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-not-bs.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-not-bs.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-not-bs.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-not-bs.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-not-bs.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-not-bs.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-not-bs.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-not-bs.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-gridcell.svg',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-gridcell.png',\n",
" '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-not-bs.svg']"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"copy_tree(output_path, str(action.data_path()))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"septum_mec.analysis.registration.store_notebook(action, \"20_stimulus-spike-lfp-response.ipynb\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}