452 lines
15 KiB
Plaintext
452 lines
15 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%load_ext autoreload\n",
|
|
"%autoreload 2"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"17:02:20 [I] klustakwik KlustaKwik2 version 0.2.6\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import os\n",
|
|
"import expipe\n",
|
|
"import pathlib\n",
|
|
"import numpy as np\n",
|
|
"import spatial_maps.stats as stats\n",
|
|
"import septum_mec.analysis.data_processing as dp\n",
|
|
"import head_direction.head as head\n",
|
|
"import spatial_maps as sp\n",
|
|
"import septum_mec.analysis.registration\n",
|
|
"import speed_cells.speed as spd\n",
|
|
"import septum_mec.analysis.spikes as spikes\n",
|
|
"import re\n",
|
|
"import joblib\n",
|
|
"import multiprocessing\n",
|
|
"import shutil\n",
|
|
"import psutil\n",
|
|
"import pandas as pd\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import septum_mec\n",
|
|
"import scipy.ndimage.measurements\n",
|
|
"from distutils.dir_util import copy_tree\n",
|
|
"\n",
|
|
"from tqdm import tqdm_notebook as tqdm\n",
|
|
"from tqdm._tqdm_notebook import tqdm_notebook\n",
|
|
"tqdm_notebook.pandas()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"max_speed = 1, # m/s only used for speed score\n",
|
|
"min_speed = 0.02, # m/s only used for speed score\n",
|
|
"position_sampling_rate = 100 # for interpolation\n",
|
|
"position_low_pass_frequency = 6 # for low pass filtering of position\n",
|
|
"\n",
|
|
"box_size = [1.0, 1.0]\n",
|
|
"bin_size = 0.02\n",
|
|
"smoothing_low = 0.03\n",
|
|
"smoothing_high = 0.06"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"project_path = dp.project_path()\n",
|
|
"\n",
|
|
"project = expipe.get_project(project_path)\n",
|
|
"actions = project.actions"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>action</th>\n",
|
|
" <th>channel_group</th>\n",
|
|
" <th>max_depth_delta</th>\n",
|
|
" <th>max_dissimilarity</th>\n",
|
|
" <th>unit_id</th>\n",
|
|
" <th>unit_name</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1834-010319-1</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>0.05</td>\n",
|
|
" <td>8d8cecbe-e2e5-4020-9c94-9573ca55cdfc</td>\n",
|
|
" <td>2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>1834-010319-1</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>0.05</td>\n",
|
|
" <td>5b7fc3e8-b76d-4eed-a876-9ba184e508ac</td>\n",
|
|
" <td>39</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>1834-010319-3</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>0.05</td>\n",
|
|
" <td>1b42831d-5d71-4cb1-ba85-b5019b56ca2e</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>1834-010319-3</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>0.05</td>\n",
|
|
" <td>270fb3b3-3a7d-4060-bc1a-bc68d2ecab1a</td>\n",
|
|
" <td>12</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>1834-010319-3</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>0.05</td>\n",
|
|
" <td>6da7e1db-2d4f-4bd7-b45c-a1855aaa2fec</td>\n",
|
|
" <td>72</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" action channel_group max_depth_delta max_dissimilarity \\\n",
|
|
"0 1834-010319-1 0 100 0.05 \n",
|
|
"1 1834-010319-1 0 100 0.05 \n",
|
|
"2 1834-010319-3 0 100 0.05 \n",
|
|
"3 1834-010319-3 0 100 0.05 \n",
|
|
"4 1834-010319-3 0 100 0.05 \n",
|
|
"\n",
|
|
" unit_id unit_name \n",
|
|
"0 8d8cecbe-e2e5-4020-9c94-9573ca55cdfc 2 \n",
|
|
"1 5b7fc3e8-b76d-4eed-a876-9ba184e508ac 39 \n",
|
|
"2 1b42831d-5d71-4cb1-ba85-b5019b56ca2e 1 \n",
|
|
"3 270fb3b3-3a7d-4060-bc1a-bc68d2ecab1a 12 \n",
|
|
"4 6da7e1db-2d4f-4bd7-b45c-a1855aaa2fec 72 "
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"identify_neurons = actions['identify-neurons']\n",
|
|
"units = pd.read_csv(identify_neurons.data_path('units'))\n",
|
|
"units.head()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"data_loader = dp.Data(\n",
|
|
" position_sampling_rate=position_sampling_rate, \n",
|
|
" position_low_pass_frequency=position_low_pass_frequency,\n",
|
|
" box_size=box_size, bin_size=bin_size\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"first_row = units[units['action'] == '1849-060319-3'].iloc[0]\n",
|
|
"#first_row = sessions.iloc[50]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"def process(row):\n",
|
|
" action_id = row['action']\n",
|
|
" channel_id = row['channel_group']\n",
|
|
" unit_id = row['unit_name']\n",
|
|
" \n",
|
|
" # common values for all units == faster calculations\n",
|
|
" x, y, t, speed = map(data_loader.tracking(action_id).get, ['x', 'y', 't', 'v'])\n",
|
|
" ang, ang_t = map(data_loader.head_direction(action_id).get, ['a', 't'])\n",
|
|
" occupancy_map = data_loader.occupancy(action_id)\n",
|
|
" xbins, ybins = data_loader.spatial_bins\n",
|
|
" box_size_, bin_size_ = data_loader.box_size_, data_loader.bin_size_\n",
|
|
" prob_dist = data_loader.prob_dist(action_id)\n",
|
|
" \n",
|
|
" smooth_low_occupancy_map = sp.maps.smooth_map(occupancy_map, bin_size=bin_size_, smoothing=smoothing_low)\n",
|
|
" smooth_high_occupancy_map = sp.maps.smooth_map(occupancy_map, bin_size=bin_size_, smoothing=smoothing_high)\n",
|
|
" \n",
|
|
" spike_times = data_loader.spike_train(action_id, channel_id, unit_id)\n",
|
|
"\n",
|
|
" # common\n",
|
|
" spike_map = sp.maps._spike_map(x, y, t, spike_times, xbins, ybins)\n",
|
|
"\n",
|
|
" smooth_low_spike_map = sp.maps.smooth_map(spike_map, bin_size=bin_size_, smoothing=smoothing_low)\n",
|
|
" smooth_high_spike_map = sp.maps.smooth_map(spike_map, bin_size=bin_size_, smoothing=smoothing_high)\n",
|
|
"\n",
|
|
" smooth_low_rate_map = smooth_low_spike_map / smooth_low_occupancy_map\n",
|
|
" smooth_high_rate_map = smooth_high_spike_map / smooth_high_occupancy_map\n",
|
|
"\n",
|
|
" # find fields with laplace\n",
|
|
" fields_laplace = sp.separate_fields_by_laplace(smooth_high_rate_map)\n",
|
|
" fields = fields_laplace.copy() # to be cleaned by Ismakov\n",
|
|
" fields_areas = scipy.ndimage.measurements.sum(\n",
|
|
" np.ones_like(fields), fields, index=np.arange(fields.max() + 1))\n",
|
|
" fields_area = fields_areas[fields]\n",
|
|
" fields[fields_area < 9.0] = 0\n",
|
|
"\n",
|
|
" # find fields with Ismakov-method\n",
|
|
" fields_ismakov, radius = sp.separate_fields_by_distance(smooth_high_rate_map)\n",
|
|
" fields_ismakov_real = fields_ismakov * bin_size\n",
|
|
" approved_fields = []\n",
|
|
"\n",
|
|
" # remove fields not found by both methods\n",
|
|
" for point in fields_ismakov:\n",
|
|
" field_id = fields[tuple(point)]\n",
|
|
" approved_fields.append(field_id)\n",
|
|
"\n",
|
|
" for field_id in np.arange(1, fields.max() + 1):\n",
|
|
" if not field_id in approved_fields:\n",
|
|
" fields[fields == field_id] = 0\n",
|
|
"\n",
|
|
" # varying statistics\n",
|
|
" average_rate = len(spike_times) / (t.max() - t.min())\n",
|
|
"\n",
|
|
" max_rate = smooth_low_rate_map.max()\n",
|
|
"\n",
|
|
" out_field_mean_rate = smooth_low_rate_map[np.where(fields == 0)].mean()\n",
|
|
" in_field_mean_rate = smooth_low_rate_map[np.where(fields != 0)].mean()\n",
|
|
" max_field_mean_rate = smooth_low_rate_map[np.where(fields == 1)].mean()\n",
|
|
"\n",
|
|
" interspike_interval = np.diff(spike_times)\n",
|
|
" interspike_interval_cv = interspike_interval.std() / interspike_interval.mean()\n",
|
|
"\n",
|
|
" autocorrelogram = sp.autocorrelation(smooth_high_rate_map)\n",
|
|
" peaks = sp.fields.find_peaks(autocorrelogram)\n",
|
|
" real_peaks = peaks * bin_size\n",
|
|
" autocorrelogram_box_size = box_size * autocorrelogram.shape[0] / smooth_high_rate_map.shape[0]\n",
|
|
" spacing, orientation = sp.spacing_and_orientation(real_peaks, autocorrelogram_box_size)\n",
|
|
" orientation *= 180 / np.pi\n",
|
|
"\n",
|
|
" selectivity = stats.selectivity(smooth_low_rate_map, prob_dist)\n",
|
|
"\n",
|
|
" sparsity = stats.sparsity(smooth_low_rate_map, prob_dist)\n",
|
|
"\n",
|
|
" gridness = sp.gridness(smooth_high_rate_map)\n",
|
|
"\n",
|
|
" border_score = sp.border_score(smooth_high_rate_map, fields_laplace)\n",
|
|
"\n",
|
|
" information_rate = stats.information_rate(smooth_high_rate_map, prob_dist)\n",
|
|
"\n",
|
|
" single_spikes, bursts, bursty_spikes = spikes.find_bursts(spike_times, threshold=0.01)\n",
|
|
" burst_event_ratio = np.sum(bursts) / (np.sum(single_spikes) + np.sum(bursts))\n",
|
|
" bursty_spike_ratio = np.sum(bursty_spikes) / (np.sum(bursty_spikes) + np.sum(single_spikes))\n",
|
|
" mean_spikes_per_burst = np.sum(bursty_spikes) / np.sum(bursts)\n",
|
|
"\n",
|
|
" speed_score = spd.speed_correlation(\n",
|
|
" speed, t, spike_times, min_speed=min_speed, max_speed=max_speed)\n",
|
|
"\n",
|
|
" ang_bin, ang_rate = head.head_direction_rate(spike_times, ang, ang_t)\n",
|
|
"\n",
|
|
" head_mean_ang, head_mean_vec_len = head.head_direction_score(ang_bin, ang_rate)\n",
|
|
"\n",
|
|
" result = pd.Series({\n",
|
|
" 'average_rate': average_rate,\n",
|
|
" 'speed_score': speed_score,\n",
|
|
" 'out_field_mean_rate': out_field_mean_rate,\n",
|
|
" 'in_field_mean_rate': in_field_mean_rate,\n",
|
|
" 'max_field_mean_rate': max_field_mean_rate,\n",
|
|
" 'max_rate': max_rate,\n",
|
|
" 'sparsity': sparsity,\n",
|
|
" 'selectivity': selectivity,\n",
|
|
" 'interspike_interval_cv': float(interspike_interval_cv),\n",
|
|
" 'burst_event_ratio': burst_event_ratio,\n",
|
|
" 'bursty_spike_ratio': bursty_spike_ratio,\n",
|
|
" 'gridness': gridness,\n",
|
|
" 'border_score': border_score,\n",
|
|
" 'information_rate': information_rate,\n",
|
|
" 'head_mean_ang': head_mean_ang,\n",
|
|
" 'head_mean_vec_len': head_mean_vec_len,\n",
|
|
" 'spacing': spacing,\n",
|
|
" 'orientation': orientation\n",
|
|
" })\n",
|
|
" return result\n",
|
|
" \n",
|
|
"process(first_row)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"results = units.merge(\n",
|
|
" units.progress_apply(process, axis=1), \n",
|
|
" left_index=True, right_index=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"output_path = pathlib.Path(\"output\") / \"calculate-statistics\"\n",
|
|
"output_path.mkdir(exist_ok=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"units.to_csv(output_path / \"units.csv\", index=False)\n",
|
|
"results.to_csv(output_path / \"results.csv\", index=False)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Store results in Expipe action"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"statistics_action = project.require_action(\"calculate-statistics\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"['/media/storage/expipe/septum-mec/actions/calculate-statistics/data/results.csv',\n",
|
|
" '/media/storage/expipe/septum-mec/actions/calculate-statistics/data/sessions.csv',\n",
|
|
" '/media/storage/expipe/septum-mec/actions/calculate-statistics/data/units.csv']"
|
|
]
|
|
},
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"statistics_action.data[\"units\"] = \"units.csv\"\n",
|
|
"statistics_action.data[\"results\"] = \"results.csv\"\n",
|
|
"copy_tree(output_path, str(statistics_action.data_path()))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"septum_mec.analysis.registration.store_notebook(statistics_action, \"10_calculate_spatial_statistics.ipynb\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.8"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|