{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"09:19:10 [I] klustakwik KlustaKwik2 version 0.2.6\n"
]
}
],
"source": [
"import os\n",
"import expipe\n",
"import pathlib\n",
"import numpy as np\n",
"import spatial_maps.stats as stats\n",
"import septum_mec.analysis.data_processing as dp\n",
"import head_direction.head as head\n",
"import spatial_maps as sp\n",
"import pnnmec.registration\n",
"import speed_cells.speed as spd\n",
"import re\n",
"import joblib\n",
"from distutils.dir_util import copy_tree\n",
"import multiprocessing\n",
"import shutil\n",
"import psutil\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import pnnmec\n",
"import scipy.ndimage.measurements\n",
"import quantities as pq\n",
"import exdir\n",
"from tqdm import tqdm_notebook as tqdm"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"max_speed = 1 # m/s only used for speed score\n",
"min_speed = 0.02 # m/s only used for speed score\n",
"position_sampling_rate = 100 # for interpolation\n",
"position_low_pass_frequency = 6 # for low pass filtering of position\n",
"\n",
"box_size = [1.0, 1.0]\n",
"bin_size=0.02\n",
"smoothing = 0.05"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"project_path = dp.project_path()\n",
"\n",
"project = expipe.get_project(project_path)\n",
"actions = project.actions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"identify_neurons = actions['identify-neurons']\n",
"sessions = pd.read_csv(identify_neurons.data_path('sessions'))\n",
"# units = pd.read_csv(identify_neurons.data_path('units'))\n"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"data_loader = dp.Data()"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"units = []\n",
"for action in sessions.action.values:\n",
" for ch in range(8):\n",
" for unit_name in data_loader.unit_names(action, ch):\n",
" units.append({'unit_name': unit_name, 'action': action, 'channel_group': ch})"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"units = pd.DataFrame(units)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"session_units = pd.merge(sessions, units, on='action')"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"first_row = session_units.iloc[0]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"output = pathlib.Path('output/shuffling')\n",
"output.mkdir(parents=True, exist_ok=True)\n",
"output_exdir = exdir.File(output / \"shuffling.exdir\")\n",
"output_units = output_exdir.require_group(\"units\")"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"from elephant.spike_train_surrogates import dither_spike_train\n",
"\n",
"def process(row):\n",
" memory_in_gb = psutil.virtual_memory().available / 1024 / 1024 / 1024\n",
" if memory_in_gb < 2:\n",
" print(\"Running out of memory! Restart your kernel.\")\n",
" return\n",
" \n",
" action_id = row['action']\n",
" channel_id = int(row['channel_group'])\n",
" unit_id = int(row['unit_name'])\n",
" \n",
" action = actions[action_id]\n",
" \n",
" cell_name = \"{}_{}_{}\".format(action_id, channel_id, unit_id)\n",
" \n",
" if cell_name in output_units:\n",
" print(\"Skipping existing\", cell_name)\n",
" return\n",
" \n",
" print(\"Processing\", cell_name)\n",
" \n",
" output_group = output_units.require_group(cell_name)\n",
" \n",
" data_path = pathlib.Path(project_path) / \"actions\" / action_id / \"data\" / \"main.exdir\"\n",
"\n",
" # common values for all units == faster calculations\n",
" x, y, t, speed = dp.load_tracking(\n",
" data_path, position_sampling_rate, position_low_pass_frequency, box_size)\n",
" ang, ang_t = dp.load_head_direction(\n",
" data_path, position_sampling_rate, position_low_pass_frequency, box_size)\n",
" sptr = dp.load_spike_train(data_path, channel_id, unit_id, t[-1])\n",
"\n",
" box_size_, bin_size_ = sp.maps._adjust_bin_size(box_size=box_size, bin_size=bin_size)\n",
" xbins, ybins = sp.maps._make_bins(box_size_, bin_size_)\n",
" occupancy_map = sp.maps._occupancy_map(x, y, t, xbins, ybins)\n",
" \n",
" smooth_occupancy_map = sp.maps.smooth_map(occupancy_map, bin_size=bin_size_, smoothing=smoothing)\n",
" \n",
" def calculate(spike_times):\n",
" # common\n",
" spike_map = sp.maps._spike_map(x, y, t, spike_times, xbins, ybins)\n",
" smooth_spike_map = sp.maps.smooth_map(spike_map, bin_size=bin_size_, smoothing=smoothing)\n",
" rate_map = smooth_spike_map / smooth_occupancy_map\n",
" \n",
" # gridness\n",
" gridness = sp.gridness(rate_map)\n",
" \n",
" # border score\n",
" fields = sp.separate_fields_by_laplace(rate_map)\n",
" border_score = sp.border_score(rate_map, fields)\n",
" \n",
" # spatial information\n",
" px = stats.prob_dist(x, y, xbins)\n",
" information_rate = sp.information_rate(rate_map, px)\n",
" \n",
" # speed\n",
" speed_score = spd.speed_correlation(\n",
" speed, t, spike_times, min_speed=min_speed, max_speed=max_speed)\n",
" \n",
" # head direction\n",
" ang_bin, ang_rate = head.head_direction_rate(spike_times, ang, ang_t)\n",
" \n",
" head_mean_ang, head_mean_vec_len = head.head_direction_score(ang_bin, ang_rate)\n",
" \n",
" statistics = {\n",
" \"gridness\": gridness,\n",
" \"border_score\": border_score,\n",
" \"information_rate\": np.asscalar(information_rate),\n",
" \"speed_score\": speed_score,\n",
" \"head_mean_ang\": head_mean_ang,\n",
" \"head_mean_vec_len\": head_mean_vec_len\n",
" }\n",
" \n",
" return rate_map, statistics\n",
" \n",
" # Calculate for cell first\n",
" rate_map, statistics = calculate(sptr)\n",
" \n",
" # Copy attrs from row\n",
" attributes = row.to_dict()\n",
" attributes.update(statistics)\n",
" \n",
" for key, value in attributes.items():\n",
" if isinstance(value, (np.generic, np.ndarray)):\n",
" attributes[key] = np.asscalar(value)\n",
" \n",
" output_group.attrs = attributes\n",
" output_group['rate_map'] = rate_map\n",
" \n",
" # Calculate shuffled\n",
" sample_count = 1000\n",
" spike_trains = dither_spike_train(sptr, shift=30*pq.s, n=sample_count, edges=True)\n",
" \n",
" shuffling_data = []\n",
" \n",
" for i, spike_times in enumerate(spike_trains):\n",
" rate_map, statistics = calculate(spike_times)\n",
" shuffling_data.append(statistics)\n",
" \n",
" shuffling_data = pd.DataFrame(shuffling_data)\n",
" \n",
" quantiles = shuffling_data.quantile(0.95, axis=0)\n",
" \n",
" # TODO make it easier to create raw data in Exdir\n",
" raw_path = output_group.root_directory / output_group.relative_path / \"results\"\n",
" raw_path.mkdir(exist_ok=True)\n",
" \n",
" shuffling_data.to_csv(raw_path / \"shuffling_data.csv\", index=False)\n",
" quantiles.to_csv(raw_path / \"quantiles.csv\")\n",
" \n",
" output_group['shuffled_rate_map_example'] = rate_map\n"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"# process(first_row)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Shuffle a random sample"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"# args = []\n",
"# for index, row in session_units.sample(100, random_state=1).iterrows():\n",
"# args.append(row)\n",
"\n",
"# with multiprocessing.Pool(processes=4) as pool:\n",
"# result = pool.map(process, args)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Shuffle all"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Skipping existing 1834-150319-4_7_33\n",
"Skipping existing 1849-060319-3_1_104\n",
"Skipping existing 1834-120319-4_7_22\n",
"Skipping existing 1849-220319-2_2_91\n",
"Skipping existing 1834-220319-4_0_0\n",
"Skipping existing 1849-220319-2_2_95\n",
"Skipping existing 1834-220319-4_2_60\n",
"Skipping existing 1849-060319-3_1_108\n",
"Skipping existing 1849-220319-2_3_57\n",
"Skipping existing 1834-120319-4_7_52\n",
"Skipping existing 1834-220319-4_6_30\n",
"Skipping existing 1834-220319-4_3_10\n",
"Skipping existing 1849-280219-4_0_62\n",
"Skipping existing 1849-280219-4_0_64\n",
"Skipping existing 1834-220319-4_4_36\n",
"Skipping existing 1849-280219-4_1_101\n",
"Skipping existing 1834-220319-4_4_51\n",
"Skipping existing 1849-280219-4_1_105\n",
"Skipping existing 1834-220319-4_4_63\n",
"Skipping existing 1849-280219-4_1_32\n",
"Skipping existing 1834-220319-4_4_65\n",
"Skipping existing 1849-280219-4_1_81\n",
"Skipping existing 1834-220319-4_6_29\n",
"Skipping existing 1849-280219-4_1_84\n",
"Skipping existing 1849-280219-4_2_70\n",
"Skipping existing 1834-220319-4_6_39\n",
"Skipping existing 1849-280219-4_2_74\n",
"Skipping existing 1834-220319-4_7_31\n",
"Skipping existing 1834-220319-4_7_32\n",
"Skipping existing 1849-280219-4_3_121\n",
"Skipping existing 1849-220319-2_3_59\n",
"Skipping existing 1834-220319-4_7_33\n",
"Skipping existing 1849-280219-4_3_125\n",
"Skipping existing 1849-060319-3_1_85\n",
"Skipping existing 1849-220319-2_3_68\n",
"Skipping existing 1834-220319-4_7_45\n",
"Skipping existing 1849-060319-3_1_94\n",
"Skipping existing 1849-220319-2_3_86\n",
"Skipping existing 1849-060319-3_1_98\n",
"Skipping existing 1834-220319-4_7_46\n",
"Skipping existing 1849-060319-3_2_114\n",
"Processing 1834-150319-1_3_95\n",
"Skipping existing 1849-060319-3_2_130\n",
"Skipping existing 1849-280219-4_3_60\n",
"Skipping existing 1849-220319-2_4_101\n",
"Skipping existing 1849-220319-2_4_107\n",
"Skipping existing 1849-220319-2_4_109\n",
"Skipping existing 1849-220319-2_4_43\n",
"Skipping existing 1849-220319-2_5_32\n",
"Skipping existing 1849-220319-2_5_45\n",
"Skipping existing 1849-280219-4_3_72\n",
"Skipping existing 1833-020719-4_0_258\n",
"Skipping existing 1849-060319-3_3_100\n",
"Skipping existing 1849-220319-2_5_46\n",
"Skipping existing 1849-060319-3_3_110\n",
"Skipping existing 1849-280219-4_4_55\n",
"Skipping existing 1833-020719-4_0_302\n",
"Skipping existing 1849-060319-3_4_120\n",
"Skipping existing 1849-280219-4_5_44\n",
"Skipping existing 1833-020719-4_0_306\n",
"Skipping existing 1849-060319-3_5_112\n",
"Skipping existing 1849-280219-4_6_66\n",
"Skipping existing 1849-060319-3_7_118\n",
"Skipping existing 1833-020719-4_0_308\n",
"Skipping existing 1849-280219-4_6_68\n",
"Skipping existing 1833-020719-4_0_320\n",
"Skipping existing 1849-060319-3_7_92\n",
"Skipping existing 1849-280219-4_7_56\n",
"Skipping existing 1833-020719-4_1_256\n",
"Skipping existing 1849-280219-4_7_58\n",
"Skipping existing 1833-020719-4_1_278\n",
"Skipping existing 1839-120619-4_1_104\n",
"Skipping existing 1849-280219-4_7_86\n",
"Skipping existing 1839-120619-4_1_84\n",
"Skipping existing 1849-110319-2_0_56\n",
"Skipping existing 1849-110319-2_1_50\n",
"Skipping existing 1839-120619-4_1_86\n",
"Skipping existing 1833-020719-4_1_300\n",
"Skipping existing 1849-110319-2_1_58\n",
"Skipping existing 1839-120619-4_3_112\n",
"Skipping existing 1833-020719-4_2_260\n",
"Skipping existing 1849-110319-2_1_62\n",
"Skipping existing 1833-020719-4_3_289\n",
"Skipping existing 1849-110319-2_1_66\n",
"Skipping existing 1839-120619-4_4_102\n",
"Skipping existing 1849-110319-2_1_68\n",
"Skipping existing 1833-020719-4_3_290\n",
"Skipping existing 1833-020719-4_3_298\n",
"Skipping existing 1849-110319-2_2_52\n",
"Skipping existing 1849-110319-2_2_60\n",
"Skipping existing 1849-110319-2_2_64\n",
"Skipping existing 1839-120619-4_4_110\n",
"Skipping existing 1833-020719-4_3_318\n",
"Skipping existing 1839-120619-4_4_120\n",
"Skipping existing 1849-110319-2_3_40\n",
"Skipping existing 1839-120619-4_4_82\n",
"Skipping existing 1849-110319-2_4_23\n",
"Skipping existing 1833-020719-4_4_250\n",
"Skipping existing 1833-020719-4_5_266\n",
"Skipping existing 1849-110319-2_5_24\n",
"Skipping existing 1839-120619-4_6_106\n",
"Skipping existing 1849-110319-2_5_48\n",
"Skipping existing 1833-020719-4_5_294\n",
"Skipping existing 1839-120619-4_6_116\n",
"Skipping existing 1833-010719-1_0_127\n",
"Skipping existing 1833-020719-4_6_248\n",
"Skipping existing 1839-120619-4_6_122\n",
"Skipping existing 1833-020719-4_6_254\n",
"Skipping existing 1833-010719-1_0_161\n",
"Skipping existing 1839-120619-4_6_124\n",
"Skipping existing 1833-020719-4_6_310\n",
"Skipping existing 1833-010719-1_0_191\n",
"Skipping existing 1839-120619-4_6_132\n",
"Skipping existing 1834-120319-2_0_39\n",
"Skipping existing 1834-120319-2_1_41\n",
"Processing 1839-120619-4_6_140\n",
"Skipping existing 1834-120319-2_2_43\n",
"Skipping existing 1833-010719-1_0_223\n",
"Skipping existing 1833-010719-1_0_225\n",
"Skipping existing 1834-120319-2_2_51\n",
"Skipping existing 1833-010719-1_0_235\n",
"Skipping existing 1834-120319-2_3_15\n",
"Skipping existing 1834-120319-2_3_6\n",
"Skipping existing 1834-120319-2_5_21\n",
"Skipping existing 1833-010719-1_1_146\n",
"Skipping existing 1834-120319-2_6_23\n",
"Skipping existing 1834-120319-2_6_55\n",
"Skipping existing 1833-010719-1_1_219\n",
"Skipping existing 1833-010719-1_1_221\n",
"Skipping existing 1833-010719-1_1_229\n",
"Skipping existing 1834-120319-2_7_26\n",
"Skipping existing 1834-120319-2_7_61\n",
"Skipping existing 1833-010719-1_1_6\n",
"Skipping existing 1834-120319-2_7_78\n",
"Skipping existing 1833-050619-1_1_75\n",
"Skipping existing 1833-010719-1_1_8\n",
"Skipping existing 1833-050619-1_2_99\n",
"Skipping existing 1833-010719-1_2_202\n",
"Skipping existing 1833-050619-1_3_107\n",
"Skipping existing 1833-010719-1_2_231\n",
"Skipping existing 1833-050619-1_4_25\n",
"Skipping existing 1833-010719-1_3_171\n",
"Skipping existing 1833-010719-1_3_198\n",
"Skipping existing 1833-050619-1_5_73\n",
"Skipping existing 1833-050619-1_6_111\n",
"Skipping existing 1833-050619-1_6_60\n",
"Skipping existing 1833-010719-1_3_216\n",
"Skipping existing 1833-050619-1_6_64\n",
"Skipping existing 1833-050619-1_6_91\n",
"Skipping existing 1833-060619-1_1_137\n",
"Skipping existing 1833-060619-1_2_168\n",
"Skipping existing 1833-010719-1_3_240\n",
"Skipping existing 1833-060619-1_3_174\n",
"Skipping existing 1833-010719-1_5_134\n",
"Skipping existing 1833-060619-1_4_144\n",
"Skipping existing 1833-010719-1_5_144\n",
"Skipping existing 1833-010719-1_5_150\n",
"Skipping existing 1833-010719-1_5_166\n",
"Skipping existing 1833-060619-1_4_172\n",
"Skipping existing 1833-010719-1_6_152\n",
"Skipping existing 1833-060619-1_5_156\n",
"Skipping existing 1833-010719-1_6_183\n",
"Skipping existing 1833-010719-1_6_200\n",
"Skipping existing 1833-010719-1_6_227\n",
"Skipping existing 1833-060619-1_5_164\n",
"Skipping existing 1833-010719-1_7_114\n",
"Skipping existing 1833-010719-1_7_132\n",
"Skipping existing 1833-010719-1_7_54\n",
"Skipping existing 1833-060619-1_6_158\n",
"Skipping existing 1834-220319-2_0_1\n",
"Skipping existing 1834-220319-2_2_49\n",
"Skipping existing 1833-060619-1_6_160\n",
"Skipping existing 1834-220319-2_2_7\n",
"Skipping existing 1833-060619-1_6_162\n",
"Skipping existing 1834-220319-2_3_8\n",
"Skipping existing 1834-220319-2_4_34\n",
"Skipping existing 1834-220319-2_4_47\n",
"Skipping existing 1833-060619-1_6_170\n",
"Skipping existing 1834-220319-2_6_17\n",
"Skipping existing 1834-220319-2_6_18\n",
"Skipping existing 1833-060619-1_6_176\n",
"Skipping existing 1834-220319-2_6_19\n",
"Skipping existing 1833-060619-1_7_139\n",
"Skipping existing 1834-220319-2_6_43\n",
"Skipping existing 1834-220319-2_6_45\n",
"Skipping existing 1834-150319-4_0_0\n",
"Skipping existing 1834-220319-2_7_20\n",
"Skipping existing 1834-150319-4_3_5\n",
"Skipping existing 1834-220319-2_7_21\n",
"Skipping existing 1834-220319-2_7_39\n",
"Skipping existing 1834-220319-2_7_29\n",
"Skipping existing 1834-150319-4_3_6\n",
"Skipping existing 1834-150319-4_5_11\n",
"Skipping existing 1834-150319-4_5_12\n",
"Skipping existing 1834-220319-2_7_41\n",
"Skipping existing 1849-220319-2_0_93\n",
"Skipping existing 1834-150319-4_5_13\n",
"Skipping existing 1849-220319-2_1_99\n",
"Skipping existing 1834-150319-4_5_15\n",
"Skipping existing 1834-150319-4_5_16\n",
"Skipping existing 1834-150319-4_5_36\n",
"Skipping existing 1834-150319-4_6_20\n",
"Skipping existing 1834-150319-4_6_21\n",
"Skipping existing 1834-150319-4_6_22\n",
"Skipping existing 1834-150319-4_7_23\n",
"Skipping existing 1833-200619-4_0_92\n",
"Skipping existing 1834-150319-4_7_24\n",
"Skipping existing 1833-200619-4_0_96\n",
"Skipping existing 1833-200619-4_1_70\n",
"Skipping existing 1834-150319-4_7_25\n",
"Skipping existing 1833-200619-4_1_76\n",
"Skipping existing 1833-200619-4_2_115\n",
"Skipping existing 1834-150319-4_7_26\n",
"Skipping existing 1833-200619-4_2_117\n",
"Skipping existing 1833-200619-4_3_102\n",
"Skipping existing 1833-200619-4_3_74\n",
"Skipping existing 1834-150319-2_0_2\n",
"Skipping existing 1833-200619-4_4_124\n",
"Skipping existing 1833-200619-4_5_94\n",
"Skipping existing 1834-150319-2_3_13\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Skipping existing 1833-200619-4_6_101\n",
"Skipping existing 1834-150319-2_3_46\n",
"Skipping existing 1833-200619-4_6_109\n",
"Skipping existing 1834-150319-2_4_54\n",
"Skipping existing 1833-200619-4_6_121\n",
"Skipping existing 1834-150319-2_5_48\n",
"Skipping existing 1833-200619-4_6_80\n",
"Skipping existing 1834-150319-2_6_26\n",
"Skipping existing 1833-200619-4_6_89\n",
"Skipping existing 1834-150319-2_6_27\n",
"Skipping existing 1834-150319-2_6_28\n",
"Skipping existing 1833-200619-4_7_68\n",
"Skipping existing 1834-150319-2_7_29\n",
"Skipping existing 1834-150319-2_7_30\n",
"Skipping existing 1849-220319-3_0_0\n",
"Skipping existing 1849-220319-3_1_59\n",
"Skipping existing 1834-150319-2_7_31\n",
"Skipping existing 1849-220319-3_1_63\n",
"Skipping existing 1834-150319-2_7_32\n",
"Skipping existing 1849-220319-3_1_67\n",
"Skipping existing 1834-150319-2_7_37\n",
"Skipping existing 1834-150319-2_7_42\n",
"Skipping existing 1849-220319-3_2_61\n",
"Skipping existing 1849-110319-3_1_177\n",
"Skipping existing 1849-220319-3_2_65\n",
"Skipping existing 1849-110319-3_4_104\n",
"Skipping existing 1849-220319-3_3_53\n",
"Skipping existing 1849-220319-3_3_55\n",
"Skipping existing 1849-110319-3_4_163\n",
"Skipping existing 1849-220319-3_4_69\n",
"Skipping existing 1849-110319-3_5_165\n",
"Skipping existing 1849-220319-3_4_71\n",
"Skipping existing 1839-290519-2_0_107\n",
"Skipping existing 1849-220319-3_5_28\n",
"Skipping existing 1849-220319-3_5_73\n",
"Skipping existing 1839-290519-2_0_117\n",
"Skipping existing 1839-290519-2_4_119\n",
"Skipping existing 1849-220319-3_5_75\n",
"Skipping existing 1839-290519-2_4_39\n",
"Skipping existing 1839-290519-1_0_120\n",
"Skipping existing 1839-290519-2_5_125\n",
"Skipping existing 1839-290519-1_1_110\n",
"Skipping existing 1839-290519-2_5_146\n",
"Skipping existing 1839-290519-1_4_122\n",
"Skipping existing 1839-290519-2_5_148\n",
"Skipping existing 1839-290519-1_4_127\n",
"Skipping existing 1839-290519-2_5_95\n",
"Skipping existing 1839-290519-2_6_113\n",
"Skipping existing 1839-290519-1_5_133\n",
"Skipping existing 1839-290519-2_6_115\n",
"Skipping existing 1839-290519-1_5_137\n",
"Skipping existing 1839-290519-2_7_109\n",
"Skipping existing 1839-290519-1_6_116\n",
"Skipping existing 1839-290519-1_6_131\n",
"Skipping existing 1839-290519-2_7_111\n",
"Skipping existing 1839-290519-2_7_135\n",
"Skipping existing 1839-290519-2_7_142\n",
"Skipping existing 1839-290519-1_7_114\n",
"Skipping existing 1839-290519-1_7_129\n",
"Skipping existing 1839-290519-1_7_139\n",
"Skipping existing 1839-290519-1_7_87\n",
"Skipping existing 1839-290519-2_7_144\n",
"Skipping existing 1834-110319-3_0_101\n",
"Skipping existing 1834-110319-3_2_47\n",
"Skipping existing 1834-110319-3_3_41\n",
"Skipping existing 1834-110319-3_6_70\n",
"Skipping existing 1834-110319-3_6_83\n",
"Skipping existing 1834-110319-3_7_27\n",
"Skipping existing 1839-060619-4_4_230\n",
"Skipping existing 1834-110319-3_7_28\n",
"Skipping existing 1839-060619-4_5_228\n",
"Skipping existing 1834-110319-3_7_29\n",
"Skipping existing 1834-110319-3_7_30\n",
"Processing 1833-290519-3_0_101\n",
"Skipping existing 1839-060619-4_7_200\n",
"Skipping existing 1839-060619-4_7_227\n",
"Skipping existing 1834-010319-5_3_11\n",
"Skipping existing 1834-010319-5_3_28\n",
"Skipping existing 1834-010319-5_5_14\n",
"Skipping existing 1834-010319-5_5_15\n",
"Skipping existing 1834-010319-5_6_20\n",
"Skipping existing 1834-010319-5_6_33\n",
"Skipping existing 1834-010319-5_6_35\n",
"Skipping existing 1834-010319-5_7_19\n",
"Skipping existing 1834-010319-5_7_21\n",
"Skipping existing 1834-010319-5_7_23\n",
"Skipping existing 1834-010319-5_7_39\n",
"Skipping existing 1833-290519-1_0_112\n",
"Skipping existing 1833-290519-1_0_120\n",
"Skipping existing 1833-290519-1_0_146\n",
"Skipping existing 1833-290519-1_1_138\n",
"Skipping existing 1833-290519-1_1_92\n",
"Skipping existing 1833-290519-1_3_101\n",
"Skipping existing 1833-290519-1_3_102\n",
"Skipping existing 1833-290519-1_3_162\n",
"Skipping existing 1833-290519-1_3_176\n",
"Skipping existing 1833-290519-1_4_118\n",
"Skipping existing 1833-290519-1_4_80\n",
"Skipping existing 1833-290519-1_5_134\n",
"Skipping existing 1833-290519-1_5_158\n",
"Skipping existing 1833-290519-1_5_172\n",
"Skipping existing 1833-290519-1_5_94\n",
"Skipping existing 1833-290519-1_6_124\n",
"Skipping existing 1833-290519-1_6_132\n",
"Skipping existing 1833-290519-1_6_142\n",
"Skipping existing 1833-290519-1_6_150\n",
"Skipping existing 1833-290519-1_6_154\n",
"Skipping existing 1833-290519-1_6_166\n",
"Skipping existing 1833-290519-1_6_89\n",
"Skipping existing 1833-290519-1_7_106\n",
"Skipping existing 1833-290519-1_7_116\n",
"Skipping existing 1833-290519-1_7_129\n",
"Skipping existing 1833-290519-1_7_136\n",
"Skipping existing 1833-290519-1_7_74\n",
"Skipping existing 1833-290519-1_7_82\n",
"Skipping existing 1849-150319-3_0_6\n",
"Skipping existing 1849-150319-3_0_69\n",
"Skipping existing 1849-150319-3_1_11\n",
"Skipping existing 1849-150319-3_1_7\n",
"Skipping existing 1849-150319-3_1_8\n",
"Skipping existing 1849-150319-3_1_98\n",
"Skipping existing 1849-150319-3_2_21\n",
"Skipping existing 1849-150319-3_2_25\n",
"Skipping existing 1849-150319-3_2_76\n",
"Skipping existing 1849-150319-3_3_60\n",
"Skipping existing 1849-150319-3_4_74\n",
"Skipping existing 1849-150319-3_4_97\n",
"Skipping existing 1849-150319-3_5_38\n",
"Skipping existing 1849-150319-3_5_64\n",
"Skipping existing 1849-150319-3_5_78\n",
"Skipping existing 1839-200619-1_3_153\n",
"Skipping existing 1839-200619-1_4_141\n",
"Skipping existing 1839-200619-1_5_145\n",
"Skipping existing 1839-200619-1_6_139\n",
"Skipping existing 1839-200619-1_7_135\n",
"Skipping existing 1834-110319-1_0_0\n",
"Skipping existing 1834-110319-1_0_65\n",
"Skipping existing 1834-110319-1_4_11\n",
"Skipping existing 1834-110319-1_5_14\n",
"Skipping existing 1834-110319-1_5_16\n",
"Skipping existing 1834-110319-1_5_28\n",
"Skipping existing 1834-110319-1_6_20\n",
"Skipping existing 1834-110319-1_6_44\n",
"Skipping existing 1834-110319-1_7_23\n",
"Skipping existing 1834-110319-1_7_24\n",
"Skipping existing 1834-110319-1_7_25\n",
"Skipping existing 1834-110319-1_7_26\n",
"Skipping existing 1834-110319-1_7_30\n",
"Skipping existing 1849-150319-2_0_40\n",
"Skipping existing 1849-150319-2_0_60\n",
"Skipping existing 1849-150319-2_1_44\n",
"Skipping existing 1849-150319-2_1_48\n",
"Skipping existing 1849-150319-2_1_64\n",
"Skipping existing 1849-150319-2_2_34\n",
"Skipping existing 1849-150319-2_2_36\n",
"Skipping existing 1849-150319-2_2_62\n",
"Skipping existing 1849-150319-2_2_9\n",
"Skipping existing 1849-150319-2_3_32\n",
"Skipping existing 1849-150319-2_3_38\n",
"Skipping existing 1849-150319-2_4_17\n",
"Skipping existing 1849-150319-2_4_46\n",
"Skipping existing 1849-150319-2_5_18\n",
"Skipping existing 1849-150319-2_5_19\n",
"Skipping existing 1849-150319-2_5_22\n",
"Skipping existing 1849-150319-2_5_67\n",
"Skipping existing 1849-280219-2_0_88\n",
"Skipping existing 1849-280219-2_1_102\n",
"Skipping existing 1849-280219-2_1_110\n",
"Skipping existing 1849-280219-2_1_78\n",
"Processing 1849-280219-2_2_119\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/elephant/statistics.py:835: UserWarning: Instantaneous firing rate approximation contains negative values, possibly caused due to machine precision errors.\n",
" warnings.warn(\"Instantaneous firing rate approximation contains \"\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/lib/type_check.py:546: DeprecationWarning: np.asscalar(a) is deprecated since NumPy v1.16, use a.item() instead\n",
" 'a.item() instead', DeprecationWarning, stacklevel=1)\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/elephant/statistics.py:835: UserWarning: Instantaneous firing rate approximation contains negative values, possibly caused due to machine precision errors.\n",
" warnings.warn(\"Instantaneous firing rate approximation contains \"\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/lib/type_check.py:546: DeprecationWarning: np.asscalar(a) is deprecated since NumPy v1.16, use a.item() instead\n",
" 'a.item() instead', DeprecationWarning, stacklevel=1)\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/elephant/statistics.py:835: UserWarning: Instantaneous firing rate approximation contains negative values, possibly caused due to machine precision errors.\n",
" warnings.warn(\"Instantaneous firing rate approximation contains \"\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/lib/type_check.py:546: DeprecationWarning: np.asscalar(a) is deprecated since NumPy v1.16, use a.item() instead\n",
" 'a.item() instead', DeprecationWarning, stacklevel=1)\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/elephant/statistics.py:835: UserWarning: Instantaneous firing rate approximation contains negative values, possibly caused due to machine precision errors.\n",
" warnings.warn(\"Instantaneous firing rate approximation contains \"\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/numpy/lib/type_check.py:546: DeprecationWarning: np.asscalar(a) is deprecated since NumPy v1.16, use a.item() instead\n",
" 'a.item() instead', DeprecationWarning, stacklevel=1)\n",
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:110: FutureWarning: The signature of `Series.to_csv` was aligned to that of `DataFrame.to_csv`, and argument 'header' will change its default value from False to True: please pass an explicit value to suppress this warning.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Skipping existing 1839-120619-4_6_90\n",
"Skipping existing 1839-120619-4_6_92\n",
"Skipping existing 1839-120619-4_7_108\n",
"Skipping existing 1839-120619-4_7_128\n",
"Processing 1839-120619-4_7_138\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:110: FutureWarning: The signature of `Series.to_csv` was aligned to that of `DataFrame.to_csv`, and argument 'header' will change its default value from False to True: please pass an explicit value to suppress this warning.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 1833-290519-3_0_125\n",
"Skipping existing 1833-260619-1_0_118\n",
"Skipping existing 1833-260619-1_0_120\n",
"Skipping existing 1833-260619-1_0_130\n",
"Skipping existing 1833-260619-1_0_132\n",
"Skipping existing 1833-260619-1_0_2\n",
"Skipping existing 1833-260619-1_1_10\n",
"Skipping existing 1833-260619-1_1_104\n",
"Skipping existing 1833-260619-1_1_116\n",
"Skipping existing 1833-260619-1_1_126\n",
"Skipping existing 1833-260619-1_2_128\n",
"Skipping existing 1833-260619-1_3_114\n",
"Skipping existing 1833-260619-1_5_100\n",
"Skipping existing 1833-260619-1_5_110\n",
"Skipping existing 1833-260619-1_6_102\n",
"Skipping existing 1833-260619-1_6_106\n",
"Skipping existing 1833-260619-1_6_108\n",
"Skipping existing 1833-260619-1_6_112\n",
"Skipping existing 1833-260619-1_6_124\n",
"Skipping existing 1833-260619-1_7_98\n",
"Skipping existing 1839-060619-3_4_101\n",
"Skipping existing 1839-060619-3_5_87\n",
"Skipping existing 1839-060619-3_6_91\n",
"Skipping existing 1839-060619-3_7_93\n",
"Skipping existing 1834-150319-3_0_71\n",
"Skipping existing 1834-150319-3_0_75\n",
"Skipping existing 1834-150319-3_3_61\n",
"Skipping existing 1834-150319-3_3_8\n",
"Skipping existing 1834-150319-3_5_47\n",
"Skipping existing 1834-150319-3_5_67\n",
"Skipping existing 1834-150319-3_6_23\n",
"Skipping existing 1834-150319-3_6_59\n",
"Skipping existing 1834-150319-3_6_63\n",
"Skipping existing 1834-150319-3_6_65\n",
"Skipping existing 1834-150319-3_7_27\n",
"Skipping existing 1834-150319-3_7_28\n",
"Skipping existing 1834-150319-3_7_30\n",
"Skipping existing 1834-150319-3_7_44\n",
"Skipping existing 1834-150319-3_7_45\n",
"Skipping existing 1834-150319-3_7_49\n",
"Skipping existing 1834-150319-3_7_53\n",
"Skipping existing 1834-150319-3_7_55\n",
"Skipping existing 1834-150319-3_7_57\n",
"Skipping existing 1834-120319-4_0_85\n",
"Skipping existing 1834-120319-4_2_75\n",
"Skipping existing 1834-120319-4_3_59\n",
"Skipping existing 1834-120319-4_5_69\n",
"Skipping existing 1834-120319-4_5_73\n",
"Skipping existing 1834-120319-4_5_83\n",
"Skipping existing 1834-120319-4_6_55\n",
"Skipping existing 1834-120319-4_6_71\n",
"Skipping existing 1834-010319-1_3_7\n",
"Skipping existing 1834-010319-1_3_8\n",
"Skipping existing 1834-010319-1_4_13\n",
"Skipping existing 1834-010319-1_4_62\n",
"Skipping existing 1834-010319-1_5_16\n",
"Skipping existing 1834-010319-1_5_18\n",
"Skipping existing 1834-010319-1_6_21\n",
"Skipping existing 1834-010319-1_6_22\n",
"Skipping existing 1834-010319-1_7_24\n",
"Skipping existing 1834-010319-1_7_25\n",
"Skipping existing 1833-120619-1_0_139\n",
"Skipping existing 1833-120619-1_1_114\n",
"Skipping existing 1833-120619-1_2_120\n",
"Skipping existing 1833-120619-1_4_137\n",
"Skipping existing 1833-120619-1_5_133\n",
"Skipping existing 1833-120619-1_6_127\n",
"Skipping existing 1833-120619-1_6_129\n",
"Skipping existing 1834-060319-3_0_4\n",
"Skipping existing 1834-060319-3_3_13\n",
"Skipping existing 1834-060319-3_4_19\n",
"Skipping existing 1834-060319-3_5_24\n",
"Skipping existing 1834-060319-3_5_25\n",
"Skipping existing 1834-060319-3_5_26\n",
"Skipping existing 1834-060319-3_6_28\n",
"Skipping existing 1834-060319-3_6_30\n",
"Skipping existing 1834-060319-3_6_32\n",
"Skipping existing 1834-060319-3_6_43\n",
"Skipping existing 1834-060319-3_7_33\n",
"Skipping existing 1834-060319-3_7_35\n",
"Skipping existing 1834-060319-3_7_37\n",
"Skipping existing 1834-060319-3_7_40\n",
"Skipping existing 1834-060319-3_7_41\n",
"Skipping existing 1849-060319-4_1_76\n",
"Skipping existing 1849-060319-4_2_72\n",
"Skipping existing 1849-060319-4_2_82\n",
"Skipping existing 1849-060319-4_3_68\n",
"Skipping existing 1849-060319-4_3_74\n",
"Skipping existing 1849-060319-4_4_64\n",
"Skipping existing 1849-060319-4_4_80\n",
"Skipping existing 1849-060319-4_5_78\n",
"Skipping existing 1849-060319-4_6_62\n",
"Skipping existing 1849-060319-4_6_66\n",
"Skipping existing 1849-060319-4_7_60\n",
"Skipping existing 1834-010319-3_0_1\n",
"Skipping existing 1834-010319-3_0_12\n",
"Skipping existing 1834-010319-3_0_72\n",
"Skipping existing 1834-010319-3_1_18\n",
"Skipping existing 1834-010319-3_3_76\n",
"Skipping existing 1834-010319-3_3_87\n",
"Skipping existing 1834-010319-3_4_34\n",
"Skipping existing 1834-010319-3_4_36\n",
"Skipping existing 1834-010319-3_4_66\n",
"Skipping existing 1834-010319-3_4_90\n",
"Skipping existing 1834-010319-3_5_41\n",
"Skipping existing 1834-010319-3_5_42\n",
"Skipping existing 1834-010319-3_6_53\n",
"Skipping existing 1834-010319-3_6_55\n",
"Skipping existing 1834-010319-3_6_91\n",
"Skipping existing 1834-010319-3_7_57\n",
"Skipping existing 1834-010319-3_7_58\n",
"Skipping existing 1834-010319-3_7_60\n",
"Skipping existing 1834-010319-3_7_61\n",
"Skipping existing 1834-010319-3_7_63\n",
"Skipping existing 1833-050619-2_1_129\n",
"Skipping existing 1833-050619-2_2_111\n",
"Skipping existing 1833-050619-2_2_135\n",
"Skipping existing 1833-050619-2_2_89\n",
"Skipping existing 1833-050619-2_3_143\n",
"Skipping existing 1833-050619-2_4_137\n",
"Skipping existing 1833-050619-2_4_97\n",
"Skipping existing 1833-050619-2_5_123\n",
"Skipping existing 1833-050619-2_6_119\n",
"Skipping existing 1833-050619-2_6_125\n",
"Skipping existing 1833-050619-2_6_146\n",
"Skipping existing 1833-050619-2_6_152\n",
"Skipping existing 1833-050619-2_6_74\n",
"Skipping existing 1833-050619-2_6_81\n",
"Skipping existing 1833-050619-2_7_66\n",
"Skipping existing 1833-020719-3_0_104\n",
"Skipping existing 1833-020719-3_0_105\n",
"Skipping existing 1833-020719-3_0_116\n",
"Skipping existing 1833-020719-3_0_141\n",
"Skipping existing 1833-020719-3_0_143\n",
"Skipping existing 1833-020719-3_0_150\n",
"Skipping existing 1833-020719-3_0_156\n",
"Skipping existing 1833-020719-3_0_162\n",
"Skipping existing 1833-020719-3_1_123\n",
"Skipping existing 1833-020719-3_1_139\n",
"Skipping existing 1833-020719-3_1_154\n",
"Skipping existing 1833-020719-3_1_166\n",
"Skipping existing 1833-020719-3_2_147\n",
"Skipping existing 1833-020719-3_2_168\n",
"Skipping existing 1833-020719-3_3_152\n",
"Skipping existing 1833-020719-3_3_164\n",
"Skipping existing 1833-020719-3_3_17\n",
"Skipping existing 1833-020719-3_3_170\n",
"Skipping existing 1833-020719-3_3_23\n",
"Skipping existing 1833-020719-3_4_45\n",
"Skipping existing 1833-020719-3_4_94\n",
"Skipping existing 1833-020719-3_4_95\n",
"Skipping existing 1833-020719-3_5_117\n",
"Skipping existing 1833-020719-3_5_121\n",
"Skipping existing 1833-020719-3_5_135\n",
"Skipping existing 1833-020719-3_6_64\n",
"Skipping existing 1833-020719-3_6_96\n",
"Skipping existing 1833-120619-2_0_175\n",
"Skipping existing 1833-120619-2_0_89\n",
"Skipping existing 1833-120619-2_1_104\n",
"Skipping existing 1833-120619-2_2_118\n",
"Skipping existing 1833-120619-2_2_142\n",
"Skipping existing 1833-120619-2_3_143\n",
"Skipping existing 1833-120619-2_3_69\n",
"Skipping existing 1833-120619-2_4_170\n",
"Skipping existing 1833-120619-2_4_81\n",
"Skipping existing 1833-120619-2_5_100\n",
"Skipping existing 1833-120619-2_5_123\n",
"Skipping existing 1833-120619-2_5_133\n",
"Skipping existing 1833-120619-2_5_145\n",
"Skipping existing 1833-120619-2_6_151\n",
"Skipping existing 1833-120619-2_6_169\n",
"Skipping existing 1833-120619-2_7_85\n",
"Skipping existing 1839-290519-3_0_111\n",
"Skipping existing 1839-290519-3_4_117\n",
"Skipping existing 1839-290519-3_4_72\n",
"Skipping existing 1839-290519-3_5_115\n",
"Skipping existing 1839-290519-3_5_119\n",
"Skipping existing 1839-290519-3_7_113\n",
"Skipping existing 1849-010319-2_1_115\n",
"Skipping existing 1849-010319-2_2_103\n",
"Skipping existing 1849-010319-2_2_119\n",
"Skipping existing 1849-010319-2_2_83\n",
"Skipping existing 1849-010319-2_3_107\n",
"Skipping existing 1849-010319-2_3_111\n",
"Skipping existing 1849-010319-2_3_40\n",
"Skipping existing 1849-010319-2_5_91\n",
"Skipping existing 1849-010319-2_5_93\n",
"Skipping existing 1849-010319-2_6_85\n",
"Skipping existing 1849-010319-2_6_97\n",
"Skipping existing 1849-010319-2_6_99\n",
"Skipping existing 1849-010319-2_7_101\n",
"Skipping existing 1849-010319-2_7_70\n",
"Skipping existing 1849-010319-5_0_117\n",
"Skipping existing 1849-010319-5_1_127\n",
"Skipping existing 1849-010319-5_1_137\n",
"Skipping existing 1849-010319-5_1_159\n",
"Skipping existing 1849-010319-5_2_103\n",
"Skipping existing 1849-010319-5_2_121\n",
"Skipping existing 1849-010319-5_2_78\n",
"Skipping existing 1849-010319-5_2_93\n",
"Skipping existing 1849-010319-5_3_113\n",
"Skipping existing 1849-010319-5_3_148\n",
"Skipping existing 1849-010319-5_3_99\n",
"Skipping existing 1849-010319-5_5_87\n",
"Skipping existing 1849-010319-5_6_105\n",
"Skipping existing 1849-010319-5_6_107\n",
"Skipping existing 1849-010319-5_6_109\n",
"Skipping existing 1849-010319-5_7_54\n",
"Skipping existing 1849-010319-5_7_57\n",
"Skipping existing 1849-150319-4_0_70\n",
"Skipping existing 1849-150319-4_0_76\n",
"Skipping existing 1849-150319-4_0_85\n",
"Skipping existing 1849-150319-4_1_100\n",
"Skipping existing 1849-150319-4_1_78\n",
"Skipping existing 1849-150319-4_1_99\n",
"Skipping existing 1849-150319-4_2_62\n",
"Skipping existing 1849-150319-4_2_81\n",
"Skipping existing 1849-150319-4_2_87\n",
"Skipping existing 1849-150319-4_2_90\n",
"Skipping existing 1849-150319-4_3_58\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Skipping existing 1849-150319-4_4_34\n",
"Skipping existing 1849-150319-4_4_60\n",
"Skipping existing 1849-150319-4_5_37\n",
"Skipping existing 1849-150319-4_5_64\n",
"Skipping existing 1834-060319-4_0_3\n",
"Skipping existing 1834-060319-4_3_10\n",
"Skipping existing 1834-060319-4_3_8\n",
"Skipping existing 1834-060319-4_4_13\n",
"Skipping existing 1834-060319-4_5_15\n",
"Skipping existing 1834-060319-4_5_16\n",
"Skipping existing 1834-060319-4_5_17\n",
"Skipping existing 1834-060319-4_6_19\n",
"Skipping existing 1834-060319-4_6_21\n",
"Skipping existing 1834-060319-4_6_22\n",
"Skipping existing 1834-060319-4_7_23\n",
"Skipping existing 1834-060319-4_7_24\n",
"Skipping existing 1834-060319-4_7_26\n",
"Skipping existing 1834-060319-4_7_28\n",
"Skipping existing 1834-060319-4_7_29\n",
"Skipping existing 1834-060319-2_1_104\n",
"Skipping existing 1834-060319-2_2_113\n",
"Skipping existing 1834-060319-2_3_24\n",
"Skipping existing 1834-060319-2_3_25\n",
"Skipping existing 1834-060319-2_4_115\n",
"Skipping existing 1834-060319-2_5_34\n",
"Skipping existing 1834-060319-2_5_35\n",
"Skipping existing 1834-060319-2_6_122\n",
"Skipping existing 1834-060319-2_6_39\n",
"Skipping existing 1834-060319-2_6_40\n",
"Skipping existing 1834-060319-2_6_45\n",
"Skipping existing 1834-060319-2_7_41\n",
"Skipping existing 1834-060319-2_7_42\n",
"Skipping existing 1834-060319-2_7_43\n",
"Skipping existing 1834-060319-2_7_44\n",
"Skipping existing 1834-060319-2_7_46\n",
"Skipping existing 1849-060319-1_0_85\n",
"Skipping existing 1849-060319-1_1_106\n",
"Skipping existing 1849-060319-1_1_108\n",
"Skipping existing 1849-060319-1_1_71\n",
"Skipping existing 1849-060319-1_1_73\n",
"Skipping existing 1849-060319-1_3_102\n",
"Skipping existing 1849-060319-1_3_77\n",
"Skipping existing 1849-060319-1_3_83\n",
"Skipping existing 1849-060319-1_3_98\n",
"Skipping existing 1849-060319-1_4_104\n",
"Skipping existing 1849-060319-1_4_88\n",
"Skipping existing 1849-060319-1_5_100\n",
"Skipping existing 1849-060319-1_5_75\n",
"Skipping existing 1849-060319-1_5_92\n",
"Skipping existing 1849-060319-1_6_44\n",
"Skipping existing 1849-060319-1_6_81\n",
"Skipping existing 1849-060319-1_7_49\n",
"Skipping existing 1849-060319-1_7_90\n",
"Processing 1834-110319-6_0_98\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:110: FutureWarning: The signature of `Series.to_csv` was aligned to that of `DataFrame.to_csv`, and argument 'header' will change its default value from False to True: please pass an explicit value to suppress this warning.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 1834-150319-1_5_104\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:110: FutureWarning: The signature of `Series.to_csv` was aligned to that of `DataFrame.to_csv`, and argument 'header' will change its default value from False to True: please pass an explicit value to suppress this warning.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Skipping existing 1849-280219-2_2_72\n",
"Skipping existing 1849-280219-2_3_51\n",
"Skipping existing 1849-280219-2_3_76\n",
"Skipping existing 1849-280219-2_3_96\n",
"Skipping existing 1849-280219-2_3_98\n",
"Skipping existing 1849-280219-2_4_80\n",
"Skipping existing 1849-280219-2_4_86\n",
"Processing 1849-280219-2_5_115\n",
"Processing 1834-110319-6_2_104\n",
"Processing 1834-110319-6_5_90\n",
"Processing 1834-150319-1_5_121\n",
"Skipping existing 1834-150319-1_5_25\n",
"Skipping existing 1834-150319-1_5_51\n",
"Skipping existing 1834-150319-1_6_29\n",
"Processing 1834-150319-1_7_106\n",
"Processing 1833-290519-3_0_97\n",
"Skipping existing 1849-280219-2_6_38\n",
"Skipping existing 1849-280219-2_6_90\n",
"Skipping existing 1849-280219-2_6_94\n",
"Processing 1849-280219-2_7_113\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: invalid value encountered in log2\n",
" return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n",
"/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: divide by zero encountered in log2\n",
" return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n",
"/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: invalid value encountered in multiply\n",
" return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 1849-280219-2_7_117\n",
"Processing 1834-150319-1_7_114\n",
"Skipping existing 1849-280219-2_7_42\n",
"Skipping existing 1849-280219-2_7_43\n",
"Skipping existing 1849-280219-2_7_92\n",
"Skipping existing 1833-120619-3_0_153\n",
"Skipping existing 1833-120619-3_2_104\n",
"Skipping existing 1833-120619-3_4_100\n",
"Skipping existing 1833-120619-3_4_101\n",
"Skipping existing 1833-120619-3_4_147\n",
"Skipping existing 1833-120619-3_5_136\n",
"Skipping existing 1833-120619-3_6_118\n",
"Skipping existing 1833-120619-3_6_122\n",
"Skipping existing 1833-120619-3_6_141\n",
"Skipping existing 1833-120619-3_6_143\n",
"Skipping existing 1833-120619-3_6_145\n",
"Skipping existing 1833-120619-3_6_94\n",
"Skipping existing 1833-120619-3_7_120\n",
"Skipping existing 1834-010319-1_0_2\n",
"Skipping existing 1834-010319-1_0_39\n",
"Skipping existing 1834-010319-1_1_48\n",
"Skipping existing 1834-010319-1_3_52\n",
"Skipping existing 1849-060319-2_3_67\n",
"Skipping existing 1849-060319-2_3_94\n",
"Skipping existing 1849-060319-2_3_99\n",
"Skipping existing 1849-060319-2_4_122\n",
"Skipping existing 1849-060319-2_4_95\n",
"Skipping existing 1849-060319-2_5_114\n",
"Skipping existing 1849-060319-2_5_118\n",
"Skipping existing 1849-060319-2_7_50\n",
"Skipping existing 1849-060319-2_7_71\n",
"Skipping existing 1849-060319-2_7_92\n",
"Skipping existing 1834-120319-3_0_36\n",
"Skipping existing 1834-120319-3_1_38\n",
"Skipping existing 1834-120319-3_2_70\n",
"Skipping existing 1834-120319-3_3_62\n",
"Skipping existing 1834-120319-3_4_40\n",
"Skipping existing 1834-120319-3_4_95\n",
"Skipping existing 1834-120319-3_5_23\n",
"Skipping existing 1834-120319-3_5_68\n",
"Skipping existing 1834-120319-3_6_56\n",
"Skipping existing 1834-120319-3_6_66\n",
"Skipping existing 1834-120319-3_7_28\n",
"Skipping existing 1834-120319-3_7_52\n",
"Skipping existing 1834-220319-3_0_1\n",
"Skipping existing 1834-220319-3_2_29\n",
"Skipping existing 1834-220319-3_2_46\n",
"Skipping existing 1834-220319-3_3_10\n",
"Skipping existing 1834-220319-3_4_15\n",
"Skipping existing 1834-220319-3_6_22\n",
"Skipping existing 1834-220319-3_6_30\n",
"Skipping existing 1834-220319-3_6_37\n",
"Skipping existing 1834-220319-3_7_23\n",
"Skipping existing 1834-220319-3_7_25\n",
"Skipping existing 1834-220319-3_7_26\n",
"Skipping existing 1834-220319-3_7_28\n",
"Skipping existing 1834-220319-3_7_31\n",
"Skipping existing 1834-060319-1_0_7\n",
"Skipping existing 1834-060319-1_0_70\n",
"Skipping existing 1834-060319-1_0_71\n",
"Skipping existing 1834-060319-1_0_72\n",
"Skipping existing 1834-060319-1_0_73\n",
"Skipping existing 1834-060319-1_0_74\n",
"Skipping existing 1834-060319-1_0_79\n",
"Skipping existing 1834-060319-1_3_33\n",
"Skipping existing 1834-060319-1_3_85\n",
"Skipping existing 1834-060319-1_3_95\n",
"Skipping existing 1834-060319-1_5_87\n",
"Skipping existing 1834-060319-1_6_55\n",
"Skipping existing 1834-060319-1_6_58\n",
"Skipping existing 1834-060319-1_7_59\n",
"Skipping existing 1834-060319-1_7_91\n",
"Skipping existing 1834-110319-2_0_108\n",
"Skipping existing 1834-110319-2_0_11\n",
"Skipping existing 1834-110319-2_3_16\n",
"Skipping existing 1834-110319-2_4_19\n",
"Skipping existing 1834-110319-2_5_28\n",
"Skipping existing 1834-110319-2_5_29\n",
"Skipping existing 1834-110319-2_5_31\n",
"Skipping existing 1834-110319-2_6_34\n",
"Skipping existing 1834-110319-2_6_38\n",
"Skipping existing 1834-110319-2_6_39\n",
"Skipping existing 1834-110319-2_6_77\n",
"Skipping existing 1834-110319-2_6_87\n",
"Skipping existing 1834-110319-2_7_104\n",
"Skipping existing 1834-110319-2_7_40\n",
"Skipping existing 1834-110319-2_7_41\n",
"Skipping existing 1834-110319-2_7_45\n",
"Skipping existing 1834-110319-2_7_47\n",
"Skipping existing 1834-110319-2_7_86\n",
"Skipping existing 1834-110319-2_7_96\n",
"Skipping existing 1833-020719-2_0_105\n",
"Skipping existing 1833-020719-2_0_129\n",
"Skipping existing 1833-020719-2_0_142\n",
"Skipping existing 1833-020719-2_0_8\n",
"Skipping existing 1833-020719-2_0_95\n",
"Skipping existing 1833-020719-2_1_131\n",
"Skipping existing 1833-020719-2_1_14\n",
"Skipping existing 1833-020719-2_1_15\n",
"Skipping existing 1833-020719-2_1_152\n",
"Skipping existing 1833-020719-2_1_87\n",
"Skipping existing 1833-020719-2_2_119\n",
"Skipping existing 1833-020719-2_2_120\n",
"Skipping existing 1833-020719-2_2_93\n",
"Skipping existing 1833-020719-2_3_107\n",
"Skipping existing 1833-020719-2_3_136\n",
"Skipping existing 1833-020719-2_3_139\n",
"Skipping existing 1833-020719-2_3_140\n",
"Skipping existing 1833-020719-2_3_146\n",
"Skipping existing 1833-020719-2_5_103\n",
"Skipping existing 1833-020719-2_5_126\n",
"Skipping existing 1833-020719-2_6_99\n",
"Skipping existing 1834-120319-1_0_1\n",
"Skipping existing 1834-120319-1_1_3\n",
"Skipping existing 1834-120319-1_3_8\n",
"Skipping existing 1834-120319-1_5_11\n",
"Skipping existing 1834-120319-1_6_31\n",
"Skipping existing 1834-120319-1_6_33\n",
"Skipping existing 1834-120319-1_7_16\n",
"Skipping existing 1834-120319-1_7_17\n",
"Skipping existing 1833-050619-4_1_68\n",
"Skipping existing 1833-050619-4_1_84\n",
"Skipping existing 1833-050619-4_1_86\n",
"Skipping existing 1833-050619-4_3_148\n",
"Skipping existing 1833-050619-4_4_151\n",
"Skipping existing 1833-050619-4_4_80\n",
"Skipping existing 1833-050619-4_5_79\n",
"Skipping existing 1833-050619-4_5_82\n",
"Skipping existing 1833-050619-4_6_117\n",
"Skipping existing 1833-050619-4_6_133\n",
"Skipping existing 1833-050619-4_6_135\n",
"Skipping existing 1833-050619-4_6_157\n",
"Skipping existing 1833-050619-4_6_92\n",
"Skipping existing 1833-260619-4_0_115\n",
"Skipping existing 1833-260619-4_0_202\n",
"Skipping existing 1833-260619-4_0_208\n",
"Skipping existing 1833-260619-4_0_222\n",
"Skipping existing 1833-260619-4_0_233\n",
"Skipping existing 1833-260619-4_0_235\n",
"Skipping existing 1833-260619-4_1_178\n",
"Skipping existing 1833-260619-4_1_198\n",
"Skipping existing 1833-260619-4_1_204\n",
"Skipping existing 1833-260619-4_1_226\n",
"Skipping existing 1833-260619-4_2_216\n",
"Skipping existing 1833-260619-4_3_196\n",
"Skipping existing 1833-260619-4_3_206\n",
"Skipping existing 1833-260619-4_5_162\n",
"Skipping existing 1833-260619-4_5_188\n",
"Skipping existing 1833-260619-4_5_212\n",
"Skipping existing 1833-260619-4_6_182\n",
"Skipping existing 1833-260619-4_6_184\n",
"Skipping existing 1833-260619-4_6_200\n",
"Skipping existing 1833-260619-4_6_214\n",
"Skipping existing 1833-260619-4_6_218\n",
"Skipping existing 1833-260619-4_6_80\n",
"Skipping existing 1833-260619-4_7_177\n",
"Skipping existing 1833-200619-2_0_268\n",
"Skipping existing 1833-200619-2_0_283\n",
"Skipping existing 1833-200619-2_1_278\n",
"Skipping existing 1833-200619-2_2_325\n",
"Skipping existing 1833-200619-2_3_257\n",
"Skipping existing 1833-200619-2_3_264\n",
"Skipping existing 1833-200619-2_4_254\n",
"Skipping existing 1833-200619-2_5_270\n",
"Skipping existing 1833-200619-2_6_28\n",
"Skipping existing 1833-200619-2_6_281\n",
"Skipping existing 1833-200619-2_6_287\n",
"Skipping existing 1833-200619-2_6_308\n",
"Skipping existing 1833-200619-2_6_321\n",
"Skipping existing 1833-200619-2_6_327\n",
"Skipping existing 1833-200619-2_7_203\n",
"Skipping existing 1833-200619-2_7_204\n",
"Skipping existing 1833-200619-2_7_261\n",
"Skipping existing 1839-060619-1_4_240\n",
"Skipping existing 1839-060619-1_7_234\n",
"Skipping existing 1833-120619-4_4_119\n",
"Skipping existing 1833-120619-4_5_122\n",
"Skipping existing 1833-120619-4_6_120\n",
"Skipping existing 1833-120619-4_6_124\n",
"Skipping existing 1833-120619-4_6_127\n",
"Skipping existing 1833-120619-4_6_80\n",
"Skipping existing 1833-120619-4_6_85\n",
"Skipping existing 1833-120619-4_6_95\n",
"Skipping existing 1833-120619-4_7_65\n",
"Skipping existing 1833-290519-4_0_117\n",
"Skipping existing 1833-290519-4_0_88\n",
"Skipping existing 1833-290519-4_1_85\n",
"Skipping existing 1833-290519-4_1_96\n",
"Skipping existing 1833-290519-4_3_129\n",
"Skipping existing 1833-290519-4_3_130\n",
"Skipping existing 1833-290519-4_3_92\n",
"Skipping existing 1833-290519-4_4_71\n",
"Skipping existing 1833-290519-4_5_115\n",
"Skipping existing 1833-290519-4_5_121\n",
"Skipping existing 1833-290519-4_5_98\n",
"Skipping existing 1833-290519-4_6_108\n",
"Skipping existing 1833-290519-4_6_65\n",
"Skipping existing 1833-290519-4_6_79\n",
"Skipping existing 1833-290519-4_6_90\n",
"Skipping existing 1833-290519-4_7_67\n",
"Skipping existing 1833-290519-4_7_75\n",
"Skipping existing 1833-290519-4_7_77\n",
"Skipping existing 1833-290519-4_7_94\n",
"Skipping existing 1849-150319-1_0_39\n",
"Skipping existing 1849-150319-1_0_74\n",
"Skipping existing 1849-150319-1_1_105\n",
"Skipping existing 1849-150319-1_1_121\n",
"Skipping existing 1849-150319-1_1_93\n",
"Skipping existing 1849-150319-1_2_62\n",
"Skipping existing 1849-150319-1_2_72\n",
"Skipping existing 1849-150319-1_2_91\n",
"Skipping existing 1849-150319-1_3_58\n",
"Skipping existing 1849-150319-1_3_64\n",
"Skipping existing 1849-150319-1_4_79\n",
"Skipping existing 1849-150319-1_4_85\n",
"Skipping existing 1849-150319-1_4_89\n",
"Skipping existing 1849-150319-1_5_107\n",
"Skipping existing 1849-150319-1_5_60\n",
"Skipping existing 1849-150319-1_5_80\n",
"Skipping existing 1849-150319-1_5_95\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Skipping existing 1849-150319-1_7_56\n",
"Skipping existing 1839-060619-5_4_164\n",
"Skipping existing 1839-060619-5_5_138\n",
"Skipping existing 1839-060619-5_5_170\n",
"Skipping existing 1839-060619-5_6_142\n",
"Skipping existing 1839-060619-5_6_162\n",
"Skipping existing 1839-060619-5_6_166\n",
"Skipping existing 1839-060619-5_6_168\n",
"Skipping existing 1839-060619-5_7_136\n",
"Skipping existing 1839-060619-5_7_183\n",
"Skipping existing 1849-110319-1_0_52\n",
"Skipping existing 1849-110319-1_1_31\n",
"Skipping existing 1849-110319-1_1_41\n",
"Skipping existing 1849-110319-1_1_54\n",
"Skipping existing 1849-110319-1_1_59\n",
"Skipping existing 1849-110319-1_1_60\n",
"Skipping existing 1849-110319-1_1_64\n",
"Skipping existing 1849-110319-1_1_66\n",
"Skipping existing 1849-110319-1_2_46\n",
"Skipping existing 1849-110319-1_2_50\n",
"Skipping existing 1849-110319-1_2_62\n",
"Skipping existing 1849-110319-1_3_35\n",
"Skipping existing 1849-110319-1_5_16\n",
"Skipping existing 1849-110319-1_5_17\n",
"Skipping existing 1849-110319-1_5_29\n",
"Skipping existing 1833-020719-1_0_119\n",
"Skipping existing 1833-020719-1_0_121\n",
"Skipping existing 1833-020719-1_0_123\n",
"Skipping existing 1833-020719-1_0_145\n",
"Skipping existing 1833-020719-1_0_158\n",
"Skipping existing 1833-020719-1_1_115\n",
"Skipping existing 1833-020719-1_1_147\n",
"Skipping existing 1833-020719-1_1_155\n",
"Skipping existing 1833-020719-1_2_143\n",
"Skipping existing 1833-020719-1_2_149\n",
"Skipping existing 1833-020719-1_3_135\n",
"Skipping existing 1833-020719-1_3_140\n",
"Skipping existing 1833-020719-1_3_151\n",
"Skipping existing 1833-020719-1_3_153\n",
"Skipping existing 1833-020719-1_3_164\n",
"Skipping existing 1833-020719-1_5_109\n",
"Skipping existing 1833-020719-1_6_107\n",
"Skipping existing 1849-220319-4_0_100\n",
"Skipping existing 1849-220319-4_1_108\n",
"Skipping existing 1849-220319-4_1_117\n",
"Skipping existing 1849-220319-4_1_118\n",
"Skipping existing 1849-220319-4_1_90\n",
"Skipping existing 1849-220319-4_2_99\n",
"Skipping existing 1849-220319-4_3_122\n",
"Skipping existing 1849-220319-4_3_79\n",
"Skipping existing 1849-220319-4_3_87\n",
"Skipping existing 1849-220319-4_4_112\n",
"Skipping existing 1849-220319-4_5_102\n",
"Skipping existing 1849-220319-4_5_110\n",
"Skipping existing 1849-220319-4_5_84\n",
"Skipping existing 1833-290519-2_0_78\n",
"Skipping existing 1833-290519-2_0_82\n",
"Skipping existing 1833-290519-2_1_102\n",
"Skipping existing 1833-290519-2_1_104\n",
"Skipping existing 1833-290519-2_1_116\n",
"Skipping existing 1833-290519-2_1_120\n",
"Skipping existing 1833-290519-2_2_100\n",
"Skipping existing 1833-290519-2_2_112\n",
"Skipping existing 1833-290519-2_2_132\n",
"Skipping existing 1833-290519-2_3_108\n",
"Skipping existing 1833-290519-2_3_72\n",
"Skipping existing 1833-290519-2_3_74\n",
"Skipping existing 1833-290519-2_4_114\n",
"Skipping existing 1833-290519-2_4_122\n",
"Skipping existing 1833-290519-2_4_124\n",
"Skipping existing 1833-290519-2_5_80\n",
"Skipping existing 1833-290519-2_6_76\n",
"Skipping existing 1833-290519-2_7_126\n",
"Skipping existing 1833-290519-2_7_130\n",
"Skipping existing 1833-290519-2_7_97\n",
"Skipping existing 1833-290519-2_7_98\n",
"Skipping existing 1833-060619-2_0_76\n",
"Skipping existing 1833-060619-2_0_90\n",
"Skipping existing 1833-060619-2_1_64\n",
"Skipping existing 1833-060619-2_1_78\n",
"Skipping existing 1833-060619-2_2_106\n",
"Skipping existing 1833-060619-2_4_108\n",
"Skipping existing 1833-060619-2_5_68\n",
"Skipping existing 1833-060619-2_5_98\n",
"Skipping existing 1833-060619-2_6_105\n",
"Skipping existing 1833-060619-2_6_112\n",
"Skipping existing 1833-060619-2_6_116\n",
"Skipping existing 1833-060619-2_6_74\n",
"Skipping existing 1833-060619-2_6_82\n",
"Skipping existing 1833-060619-2_7_58\n",
"Skipping existing 1839-120619-2_0_76\n",
"Skipping existing 1839-120619-2_4_78\n",
"Skipping existing 1839-120619-2_5_104\n",
"Skipping existing 1839-120619-2_5_47\n",
"Skipping existing 1839-120619-2_6_106\n",
"Skipping existing 1839-120619-2_6_51\n",
"Skipping existing 1839-120619-2_6_86\n",
"Skipping existing 1839-120619-2_6_88\n",
"Skipping existing 1839-120619-2_7_71\n",
"Skipping existing 1839-120619-2_7_90\n",
"Skipping existing 1849-220319-5_0_79\n",
"Skipping existing 1849-220319-5_1_117\n",
"Skipping existing 1849-220319-5_2_104\n",
"Skipping existing 1849-220319-5_2_83\n",
"Skipping existing 1849-220319-5_3_27\n",
"Skipping existing 1849-220319-5_3_71\n",
"Skipping existing 1849-220319-5_3_98\n",
"Skipping existing 1849-220319-5_4_112\n",
"Skipping existing 1849-220319-5_5_34\n",
"Skipping existing 1849-220319-5_5_35\n",
"Skipping existing 1849-220319-5_5_38\n",
"Skipping existing 1849-220319-5_5_39\n",
"Skipping existing 1834-010319-4_0_7\n",
"Skipping existing 1834-010319-4_1_10\n",
"Skipping existing 1834-010319-4_3_21\n",
"Skipping existing 1834-010319-4_3_22\n",
"Skipping existing 1834-010319-4_4_29\n",
"Skipping existing 1834-010319-4_4_35\n",
"Skipping existing 1834-010319-4_4_53\n",
"Skipping existing 1834-010319-4_5_36\n",
"Skipping existing 1834-010319-4_5_37\n",
"Skipping existing 1834-010319-4_6_44\n",
"Skipping existing 1834-010319-4_6_46\n",
"Skipping existing 1834-010319-4_7_45\n",
"Skipping existing 1834-010319-4_7_48\n",
"Skipping existing 1834-010319-4_7_49\n",
"Skipping existing 1833-200619-1_0_147\n",
"Skipping existing 1833-200619-1_1_155\n",
"Skipping existing 1833-200619-1_1_159\n",
"Skipping existing 1833-200619-1_2_228\n",
"Skipping existing 1833-200619-1_2_239\n",
"Skipping existing 1833-200619-1_3_151\n",
"Skipping existing 1833-200619-1_3_184\n",
"Skipping existing 1833-200619-1_4_165\n",
"Skipping existing 1833-200619-1_6_163\n",
"Skipping existing 1833-200619-1_6_171\n",
"Skipping existing 1833-200619-1_6_206\n",
"Skipping existing 1833-200619-1_6_240\n",
"Skipping existing 1833-200619-1_7_143\n",
"Skipping existing 1839-120619-3_1_113\n",
"Skipping existing 1839-120619-3_2_129\n",
"Skipping existing 1839-120619-3_3_137\n",
"Skipping existing 1839-120619-3_4_115\n",
"Skipping existing 1839-120619-3_4_121\n",
"Skipping existing 1839-120619-3_5_131\n",
"Skipping existing 1839-120619-3_6_123\n",
"Skipping existing 1839-120619-3_6_125\n",
"Skipping existing 1839-120619-3_6_133\n",
"Skipping existing 1839-120619-3_6_71\n",
"Skipping existing 1839-120619-3_7_119\n",
"Skipping existing 1839-120619-3_7_127\n",
"Skipping existing 1834-110319-5_0_98\n",
"Skipping existing 1834-110319-5_2_18\n",
"Skipping existing 1834-110319-5_3_24\n",
"Skipping existing 1834-110319-5_4_76\n",
"Skipping existing 1834-110319-5_5_27\n",
"Skipping existing 1834-110319-5_6_30\n",
"Skipping existing 1834-110319-5_6_31\n",
"Skipping existing 1834-110319-5_7_78\n",
"Skipping existing 1834-110319-5_7_90\n",
"Skipping existing 1839-200619-2_0_104\n",
"Skipping existing 1839-200619-2_0_98\n",
"Skipping existing 1839-200619-2_1_7\n",
"Skipping existing 1839-200619-2_3_118\n",
"Skipping existing 1839-200619-2_4_100\n",
"Skipping existing 1839-200619-2_4_106\n",
"Skipping existing 1839-200619-2_4_108\n",
"Skipping existing 1839-200619-2_5_96\n",
"Skipping existing 1839-200619-2_6_112\n",
"Skipping existing 1839-200619-2_6_114\n",
"Skipping existing 1839-200619-2_6_48\n",
"Skipping existing 1839-200619-2_6_54\n",
"Skipping existing 1839-200619-2_6_78\n",
"Skipping existing 1839-200619-2_6_89\n",
"Skipping existing 1839-200619-2_6_92\n",
"Skipping existing 1839-200619-2_6_94\n",
"Skipping existing 1839-200619-2_7_116\n",
"Skipping existing 1839-200619-2_7_74\n",
"Skipping existing 1839-200619-2_7_90\n",
"Skipping existing 1833-260619-3_0_0\n",
"Skipping existing 1833-260619-3_0_1\n",
"Skipping existing 1833-260619-3_0_140\n",
"Skipping existing 1833-260619-3_0_141\n",
"Skipping existing 1833-260619-3_0_180\n",
"Skipping existing 1833-260619-3_0_182\n",
"Skipping existing 1833-260619-3_0_194\n",
"Skipping existing 1833-260619-3_0_196\n",
"Skipping existing 1833-260619-3_0_209\n",
"Skipping existing 1833-260619-3_1_119\n",
"Skipping existing 1833-260619-3_1_170\n",
"Skipping existing 1833-260619-3_1_207\n",
"Skipping existing 1833-260619-3_2_198\n",
"Skipping existing 1833-260619-3_3_160\n",
"Skipping existing 1833-260619-3_3_176\n",
"Skipping existing 1833-260619-3_5_109\n",
"Skipping existing 1833-260619-3_5_111\n",
"Skipping existing 1833-260619-3_5_113\n",
"Skipping existing 1833-260619-3_5_184\n",
"Skipping existing 1833-260619-3_6_142\n",
"Skipping existing 1833-260619-3_6_168\n",
"Skipping existing 1833-260619-3_6_192\n",
"Skipping existing 1833-260619-3_7_103\n",
"Skipping existing 1833-260619-3_7_105\n",
"Skipping existing 1833-200619-3_0_0\n",
"Skipping existing 1833-200619-3_0_91\n",
"Skipping existing 1833-200619-3_0_93\n",
"Skipping existing 1833-200619-3_1_89\n",
"Skipping existing 1833-200619-3_1_97\n",
"Skipping existing 1833-200619-3_2_142\n",
"Skipping existing 1833-200619-3_3_128\n",
"Skipping existing 1833-200619-3_3_82\n",
"Skipping existing 1833-200619-3_4_113\n",
"Skipping existing 1833-200619-3_5_122\n",
"Skipping existing 1833-200619-3_5_59\n",
"Skipping existing 1833-200619-3_6_120\n",
"Skipping existing 1833-200619-3_6_126\n",
"Skipping existing 1833-200619-3_6_132\n",
"Skipping existing 1833-200619-3_6_150\n",
"Skipping existing 1833-200619-3_6_75\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Skipping existing 1833-200619-3_7_53\n",
"Skipping existing 1833-200619-3_7_65\n",
"Skipping existing 1849-280219-1_0_90\n",
"Skipping existing 1849-280219-1_1_102\n",
"Skipping existing 1849-280219-1_1_104\n",
"Skipping existing 1849-280219-1_1_112\n",
"Skipping existing 1849-280219-1_1_114\n",
"Skipping existing 1849-280219-1_1_116\n",
"Skipping existing 1849-280219-1_2_100\n",
"Skipping existing 1849-280219-1_2_16\n",
"Skipping existing 1849-280219-1_2_18\n",
"Skipping existing 1849-280219-1_2_84\n",
"Skipping existing 1849-280219-1_2_86\n",
"Skipping existing 1849-280219-1_3_110\n",
"Skipping existing 1849-280219-1_3_27\n",
"Skipping existing 1849-280219-1_3_28\n",
"Skipping existing 1849-280219-1_3_64\n",
"Skipping existing 1849-280219-1_4_66\n",
"Skipping existing 1849-280219-1_5_40\n",
"Skipping existing 1849-280219-1_6_106\n",
"Skipping existing 1849-280219-1_6_108\n",
"Skipping existing 1849-280219-1_6_44\n",
"Skipping existing 1849-280219-1_6_45\n",
"Skipping existing 1849-280219-1_6_96\n",
"Skipping existing 1849-280219-1_6_98\n",
"Skipping existing 1849-280219-1_7_52\n",
"Skipping existing 1849-280219-1_7_53\n",
"Skipping existing 1849-280219-1_7_62\n",
"Skipping existing 1833-010719-2_0_239\n",
"Skipping existing 1833-010719-2_0_254\n",
"Skipping existing 1833-010719-2_0_261\n",
"Skipping existing 1833-010719-2_0_265\n",
"Skipping existing 1833-010719-2_0_267\n",
"Skipping existing 1833-010719-2_0_4\n",
"Skipping existing 1833-010719-2_1_135\n",
"Skipping existing 1833-010719-2_1_18\n",
"Skipping existing 1833-010719-2_1_227\n",
"Skipping existing 1833-010719-2_1_229\n",
"Skipping existing 1833-010719-2_1_233\n",
"Skipping existing 1833-010719-2_1_269\n",
"Skipping existing 1833-010719-2_1_273\n",
"Skipping existing 1833-010719-2_2_249\n",
"Skipping existing 1833-010719-2_2_271\n",
"Skipping existing 1833-010719-2_2_29\n",
"Skipping existing 1833-010719-2_3_133\n",
"Skipping existing 1833-010719-2_3_157\n",
"Skipping existing 1833-010719-2_3_173\n",
"Skipping existing 1833-010719-2_3_174\n",
"Skipping existing 1833-010719-2_3_187\n",
"Skipping existing 1833-010719-2_3_188\n",
"Skipping existing 1833-010719-2_3_241\n",
"Skipping existing 1833-010719-2_3_243\n",
"Skipping existing 1833-010719-2_3_259\n",
"Skipping existing 1833-010719-2_4_223\n",
"Skipping existing 1833-010719-2_4_231\n",
"Skipping existing 1833-010719-2_5_221\n",
"Skipping existing 1833-010719-2_5_235\n",
"Skipping existing 1833-010719-2_6_225\n",
"Skipping existing 1833-010719-2_7_211\n",
"Skipping existing 1833-010719-2_7_213\n",
"Skipping existing 1833-010719-2_7_217\n",
"Processing 1834-150319-1_7_116\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: invalid value encountered in log2\n",
" return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 1834-150319-1_7_117\n",
"Processing 1834-110319-6_6_114\n",
"Skipping existing 1834-150319-1_7_47\n",
"Skipping existing 1834-150319-1_7_76\n",
"Skipping existing 1839-120619-1_5_158\n",
"Skipping existing 1839-120619-1_6_143\n",
"Skipping existing 1839-120619-1_7_152\n",
"Skipping existing 1833-260619-2_0_152\n",
"Skipping existing 1833-260619-2_0_164\n",
"Skipping existing 1833-260619-2_0_174\n",
"Skipping existing 1833-260619-2_0_2\n",
"Skipping existing 1833-260619-2_1_123\n",
"Skipping existing 1833-260619-2_1_130\n",
"Skipping existing 1833-260619-2_1_166\n",
"Skipping existing 1833-260619-2_2_148\n",
"Skipping existing 1833-260619-2_2_168\n",
"Skipping existing 1833-260619-2_3_146\n",
"Skipping existing 1833-260619-2_5_115\n",
"Skipping existing 1833-260619-2_5_154\n",
"Skipping existing 1833-260619-2_6_140\n",
"Skipping existing 1833-260619-2_6_144\n",
"Skipping existing 1833-260619-2_6_156\n",
"Skipping existing 1833-260619-2_6_160\n",
"Skipping existing 1833-260619-2_6_170\n",
"Skipping existing 1849-010319-4_1_109\n",
"Skipping existing 1849-010319-4_1_87\n",
"Skipping existing 1849-010319-4_1_97\n",
"Skipping existing 1849-010319-4_1_99\n",
"Skipping existing 1849-010319-4_2_103\n",
"Skipping existing 1849-010319-4_2_61\n",
"Skipping existing 1849-010319-4_2_67\n",
"Skipping existing 1849-010319-4_3_115\n",
"Skipping existing 1849-010319-4_3_65\n",
"Skipping existing 1849-010319-4_3_73\n",
"Skipping existing 1849-010319-4_5_58\n",
"Skipping existing 1849-010319-4_6_79\n",
"Skipping existing 1849-010319-4_7_59\n",
"Skipping existing 1849-280219-3_0_153\n",
"Skipping existing 1849-280219-3_0_160\n",
"Skipping existing 1849-280219-3_1_180\n",
"Skipping existing 1849-280219-3_1_182\n",
"Skipping existing 1849-280219-3_2_141\n",
"Skipping existing 1849-280219-3_3_166\n",
"Skipping existing 1849-280219-3_3_170\n",
"Skipping existing 1849-280219-3_4_133\n",
"Skipping existing 1849-280219-3_4_151\n",
"Skipping existing 1849-280219-3_5_129\n",
"Skipping existing 1849-280219-3_5_137\n",
"Skipping existing 1849-280219-3_6_127\n",
"Skipping existing 1849-280219-3_6_131\n",
"Skipping existing 1849-280219-3_6_135\n",
"Skipping existing 1849-280219-3_6_139\n",
"Skipping existing 1849-280219-3_7_149\n",
"Skipping existing 1849-280219-3_7_158\n",
"Skipping existing 1849-280219-3_7_164\n",
"Skipping existing 1833-200619-4_0_1\n",
"Skipping existing 1833-200619-4_0_78\n",
"Skipping existing 1833-200619-4_0_90\n",
"Processing 1833-290519-3_1_111\n",
"Processing 1834-110319-6_6_116\n",
"Skipping existing 1834-220319-1_0_81\n",
"Skipping existing 1834-220319-1_0_87\n",
"Skipping existing 1834-220319-1_2_73\n",
"Skipping existing 1834-220319-1_2_79\n",
"Skipping existing 1834-220319-1_2_83\n",
"Skipping existing 1834-220319-1_3_11\n",
"Skipping existing 1834-220319-1_4_65\n",
"Skipping existing 1834-220319-1_5_77\n",
"Skipping existing 1834-220319-1_6_24\n",
"Skipping existing 1834-220319-1_6_26\n",
"Skipping existing 1834-220319-1_6_41\n",
"Skipping existing 1834-220319-1_6_69\n",
"Skipping existing 1834-220319-1_6_75\n",
"Skipping existing 1834-220319-1_7_29\n",
"Skipping existing 1834-220319-1_7_36\n",
"Skipping existing 1834-220319-1_7_37\n",
"Skipping existing 1834-220319-1_7_49\n",
"Skipping existing 1834-220319-1_7_67\n",
"Skipping existing 1849-060319-2_2_81\n",
"Processing 1833-290519-3_1_70\n",
"Processing 1833-290519-3_3_138\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: invalid value encountered in log2\n",
" return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n",
"/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: divide by zero encountered in log2\n",
" return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n",
"/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: invalid value encountered in multiply\n",
" return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing 1833-290519-3_3_96\n",
"Processing 1833-290519-3_4_80\n",
"Skipping existing 1833-290519-3_5_109\n",
"Processing 1833-290519-3_5_113\n",
"Processing 1833-290519-3_5_130\n",
"Processing 1833-290519-3_6_117\n",
"Processing 1833-290519-3_6_123\n",
"Processing 1833-290519-3_6_134\n",
"Processing 1833-290519-3_6_136\n",
"Processing 1833-290519-3_6_140\n",
"Processing 1833-290519-3_6_144\n",
"Processing 1833-290519-3_7_74\n",
"Processing 1833-290519-3_7_99\n",
"Skipping existing 1833-050619-3_1_125\n",
"Skipping existing 1833-050619-3_2_111\n",
"Skipping existing 1833-050619-3_2_133\n",
"Skipping existing 1833-050619-3_3_147\n",
"Skipping existing 1833-050619-3_4_123\n",
"Skipping existing 1833-050619-3_4_145\n",
"Skipping existing 1833-050619-3_5_127\n",
"Skipping existing 1833-050619-3_6_109\n",
"Skipping existing 1833-050619-3_6_117\n",
"Skipping existing 1833-050619-3_6_129\n",
"Skipping existing 1833-050619-3_6_143\n",
"Skipping existing 1833-050619-3_6_149\n",
"Skipping existing 1833-050619-3_7_105\n"
]
}
],
"source": [
"args = []\n",
"for index, row in session_units.iterrows():\n",
" args.append(row)\n",
"\n",
"with multiprocessing.Pool(processes=4) as pool:\n",
" result = pool.map(process, args)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Gather all results and statistics"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"cell_statistics_path = output / \"statistics\"\n",
"cell_statistics_path.mkdir(exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"all_statistics = []\n",
"for cell_id, cell in output_units.items():\n",
" all_statistics.append(cell.attrs.to_dict())"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" action | \n",
" action_id | \n",
" baseline | \n",
" border_score | \n",
" channel_group | \n",
" control | \n",
" entity | \n",
" frequency | \n",
" gridness | \n",
" head_mean_ang | \n",
" ... | \n",
" information_rate | \n",
" max_depth_delta | \n",
" max_dissimilarity | \n",
" session | \n",
" speed_score | \n",
" stim_location | \n",
" stimulated | \n",
" tag | \n",
" unit_id | \n",
" unit_name | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1833-010719-1 | \n",
" NaN | \n",
" True | \n",
" 0.180203 | \n",
" 0.0 | \n",
" NaN | \n",
" 1833 | \n",
" NaN | \n",
" 0.018309 | \n",
" 6.262674 | \n",
" ... | \n",
" 1.636751 | \n",
" NaN | \n",
" NaN | \n",
" 1 | \n",
" 0.195105 | \n",
" NaN | \n",
" False | \n",
" baseline i | \n",
" NaN | \n",
" 127.0 | \n",
"
\n",
" \n",
" 1 | \n",
" 1833-010719-1 | \n",
" NaN | \n",
" True | \n",
" 0.282701 | \n",
" 0.0 | \n",
" NaN | \n",
" 1833 | \n",
" NaN | \n",
" 0.229324 | \n",
" 5.993547 | \n",
" ... | \n",
" 0.439478 | \n",
" NaN | \n",
" NaN | \n",
" 1 | \n",
" 0.173469 | \n",
" NaN | \n",
" False | \n",
" baseline i | \n",
" NaN | \n",
" 161.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 1833-010719-1 | \n",
" NaN | \n",
" True | \n",
" 0.212317 | \n",
" 0.0 | \n",
" NaN | \n",
" 1833 | \n",
" NaN | \n",
" 0.458029 | \n",
" 3.510934 | \n",
" ... | \n",
" 0.407217 | \n",
" NaN | \n",
" NaN | \n",
" 1 | \n",
" 0.007090 | \n",
" NaN | \n",
" False | \n",
" baseline i | \n",
" NaN | \n",
" 191.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 1833-010719-1 | \n",
" NaN | \n",
" True | \n",
" 0.216728 | \n",
" 0.0 | \n",
" NaN | \n",
" 1833 | \n",
" NaN | \n",
" 0.500521 | \n",
" 2.186690 | \n",
" ... | \n",
" 1.351648 | \n",
" NaN | \n",
" NaN | \n",
" 1 | \n",
" 0.034591 | \n",
" NaN | \n",
" False | \n",
" baseline i | \n",
" NaN | \n",
" 223.0 | \n",
"
\n",
" \n",
" 4 | \n",
" 1833-010719-1 | \n",
" NaN | \n",
" True | \n",
" 0.237254 | \n",
" 0.0 | \n",
" NaN | \n",
" 1833 | \n",
" NaN | \n",
" -0.035198 | \n",
" 0.149628 | \n",
" ... | \n",
" 0.350674 | \n",
" NaN | \n",
" NaN | \n",
" 1 | \n",
" 0.166268 | \n",
" NaN | \n",
" False | \n",
" baseline i | \n",
" NaN | \n",
" 225.0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 23 columns
\n",
"
"
],
"text/plain": [
" action action_id baseline border_score channel_group control \\\n",
"0 1833-010719-1 NaN True 0.180203 0.0 NaN \n",
"1 1833-010719-1 NaN True 0.282701 0.0 NaN \n",
"2 1833-010719-1 NaN True 0.212317 0.0 NaN \n",
"3 1833-010719-1 NaN True 0.216728 0.0 NaN \n",
"4 1833-010719-1 NaN True 0.237254 0.0 NaN \n",
"\n",
" entity frequency gridness head_mean_ang ... information_rate \\\n",
"0 1833 NaN 0.018309 6.262674 ... 1.636751 \n",
"1 1833 NaN 0.229324 5.993547 ... 0.439478 \n",
"2 1833 NaN 0.458029 3.510934 ... 0.407217 \n",
"3 1833 NaN 0.500521 2.186690 ... 1.351648 \n",
"4 1833 NaN -0.035198 0.149628 ... 0.350674 \n",
"\n",
" max_depth_delta max_dissimilarity session speed_score stim_location \\\n",
"0 NaN NaN 1 0.195105 NaN \n",
"1 NaN NaN 1 0.173469 NaN \n",
"2 NaN NaN 1 0.007090 NaN \n",
"3 NaN NaN 1 0.034591 NaN \n",
"4 NaN NaN 1 0.166268 NaN \n",
"\n",
" stimulated tag unit_id unit_name \n",
"0 False baseline i NaN 127.0 \n",
"1 False baseline i NaN 161.0 \n",
"2 False baseline i NaN 191.0 \n",
"3 False baseline i NaN 223.0 \n",
"4 False baseline i NaN 225.0 \n",
"\n",
"[5 rows x 23 columns]"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_statistics = pd.DataFrame(all_statistics)\n",
"df_statistics.head()"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"df_statistics.to_csv(cell_statistics_path / \"cell_statistics.csv\", index=False)"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"quantiles_95 = []\n",
"quantiles_99 = []\n",
"\n",
"for cell_id, cell in output_units.items():\n",
" results = cell['results']\n",
" shuffling_data_path = results.root_directory / results.relative_path / \"shuffling_data.csv\"\n",
" shuffling_data = pd.read_csv(shuffling_data_path)\n",
" quantile_95 = shuffling_data.quantile(0.95, axis=0)\n",
" quantile_99 = shuffling_data.quantile(0.99, axis=0)\n",
" \n",
" def add_attrs(quantile):\n",
" quantile['action'] = cell.attrs['action']\n",
" quantile['channel_group'] = cell.attrs['channel_group']\n",
" quantile['unit_name'] = cell.attrs['unit_name']\n",
" \n",
" add_attrs(quantile_95)\n",
" add_attrs(quantile_99)\n",
" \n",
" quantiles_95.append(quantile_95)\n",
" quantiles_99.append(quantile_99)"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [],
"source": [
"pd_quantiles_95 = pd.DataFrame(quantiles_95)\n",
"pd_quantiles_99 = pd.DataFrame(quantiles_99)"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" border_score | \n",
" gridness | \n",
" head_mean_ang | \n",
" head_mean_vec_len | \n",
" information_rate | \n",
" speed_score | \n",
" action | \n",
" channel_group | \n",
" unit_name | \n",
"
\n",
" \n",
" \n",
" \n",
" 0.95 | \n",
" 0.348023 | \n",
" 0.275109 | \n",
" 3.012689 | \n",
" 0.086792 | \n",
" 0.707197 | \n",
" 0.149071 | \n",
" 1833-010719-1 | \n",
" 0.0 | \n",
" 127.0 | \n",
"
\n",
" \n",
" 0.95 | \n",
" 0.362380 | \n",
" 0.166475 | \n",
" 3.133138 | \n",
" 0.037271 | \n",
" 0.482486 | \n",
" 0.132212 | \n",
" 1833-010719-1 | \n",
" 0.0 | \n",
" 161.0 | \n",
"
\n",
" \n",
" 0.95 | \n",
" 0.367498 | \n",
" 0.266865 | \n",
" 5.586395 | \n",
" 0.182843 | \n",
" 0.271188 | \n",
" 0.062821 | \n",
" 1833-010719-1 | \n",
" 0.0 | \n",
" 191.0 | \n",
"
\n",
" \n",
" 0.95 | \n",
" 0.331942 | \n",
" 0.312155 | \n",
" 5.955767 | \n",
" 0.090786 | \n",
" 0.354018 | \n",
" 0.052009 | \n",
" 1833-010719-1 | \n",
" 0.0 | \n",
" 223.0 | \n",
"
\n",
" \n",
" 0.95 | \n",
" 0.325842 | \n",
" 0.180495 | \n",
" 5.262721 | \n",
" 0.103584 | \n",
" 0.210427 | \n",
" 0.094041 | \n",
" 1833-010719-1 | \n",
" 0.0 | \n",
" 225.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" border_score gridness head_mean_ang head_mean_vec_len \\\n",
"0.95 0.348023 0.275109 3.012689 0.086792 \n",
"0.95 0.362380 0.166475 3.133138 0.037271 \n",
"0.95 0.367498 0.266865 5.586395 0.182843 \n",
"0.95 0.331942 0.312155 5.955767 0.090786 \n",
"0.95 0.325842 0.180495 5.262721 0.103584 \n",
"\n",
" information_rate speed_score action channel_group unit_name \n",
"0.95 0.707197 0.149071 1833-010719-1 0.0 127.0 \n",
"0.95 0.482486 0.132212 1833-010719-1 0.0 161.0 \n",
"0.95 0.271188 0.062821 1833-010719-1 0.0 191.0 \n",
"0.95 0.354018 0.052009 1833-010719-1 0.0 223.0 \n",
"0.95 0.210427 0.094041 1833-010719-1 0.0 225.0 "
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd_quantiles_95.head()"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" border_score | \n",
" gridness | \n",
" head_mean_ang | \n",
" head_mean_vec_len | \n",
" information_rate | \n",
" speed_score | \n",
" action | \n",
" channel_group | \n",
" unit_name | \n",
"
\n",
" \n",
" \n",
" \n",
" 0.99 | \n",
" 0.380905 | \n",
" 0.973869 | \n",
" 6.203531 | \n",
" 0.098137 | \n",
" 1.258079 | \n",
" 0.189375 | \n",
" 1833-010719-1 | \n",
" 0.0 | \n",
" 127.0 | \n",
"
\n",
" \n",
" 0.99 | \n",
" 0.390729 | \n",
" 0.451171 | \n",
" 5.920679 | \n",
" 0.041201 | \n",
" 0.501343 | \n",
" 0.203524 | \n",
" 1833-010719-1 | \n",
" 0.0 | \n",
" 161.0 | \n",
"
\n",
" \n",
" 0.99 | \n",
" 0.408019 | \n",
" 0.495850 | \n",
" 6.046085 | \n",
" 0.204525 | \n",
" 0.384131 | \n",
" 0.074477 | \n",
" 1833-010719-1 | \n",
" 0.0 | \n",
" 191.0 | \n",
"
\n",
" \n",
" 0.99 | \n",
" 0.362179 | \n",
" 0.540011 | \n",
" 6.199585 | \n",
" 0.109680 | \n",
" 0.714685 | \n",
" 0.069614 | \n",
" 1833-010719-1 | \n",
" 0.0 | \n",
" 223.0 | \n",
"
\n",
" \n",
" 0.99 | \n",
" 0.360166 | \n",
" 0.532935 | \n",
" 6.191290 | \n",
" 0.118948 | \n",
" 0.342249 | \n",
" 0.159087 | \n",
" 1833-010719-1 | \n",
" 0.0 | \n",
" 225.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" border_score gridness head_mean_ang head_mean_vec_len \\\n",
"0.99 0.380905 0.973869 6.203531 0.098137 \n",
"0.99 0.390729 0.451171 5.920679 0.041201 \n",
"0.99 0.408019 0.495850 6.046085 0.204525 \n",
"0.99 0.362179 0.540011 6.199585 0.109680 \n",
"0.99 0.360166 0.532935 6.191290 0.118948 \n",
"\n",
" information_rate speed_score action channel_group unit_name \n",
"0.99 1.258079 0.189375 1833-010719-1 0.0 127.0 \n",
"0.99 0.501343 0.203524 1833-010719-1 0.0 161.0 \n",
"0.99 0.384131 0.074477 1833-010719-1 0.0 191.0 \n",
"0.99 0.714685 0.069614 1833-010719-1 0.0 223.0 \n",
"0.99 0.342249 0.159087 1833-010719-1 0.0 225.0 "
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd_quantiles_99.head()"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [],
"source": [
"pd_quantiles_95.to_csv(cell_statistics_path / \"cell_quantiles_95.csv\", index=False)\n",
"pd_quantiles_99.to_csv(cell_statistics_path / \"cell_quantiles_99.csv\", index=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Quick verification of results"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
"from scipy.interpolate import interp1d\n",
"def summarize(row, value):\n",
" action_id = row['action']\n",
" channel_id = int(row['channel_group'])\n",
" unit_id = int(row['unit_name'])\n",
" \n",
" cell_name = \"{}_{}_{}\".format(action_id, channel_id, unit_id)\n",
" cell_group = output_exdir[\"units\"][cell_name]\n",
" results_group = cell_group[\"results\"]\n",
" \n",
" # TODO simplify this in Exdir\n",
" shuffling_path = results_group.root_directory / results_group.relative_path / \"shuffling_data.csv\"\n",
" shuffling_data = pd.read_csv(shuffling_path)\n",
" quantiles = shuffling_data.quantile(0.95, axis=0)\n",
" \n",
" action = actions[action_id]\n",
" data_path = pathlib.Path(project_path) / \"actions\" / action_id / \"data\" / \"main.exdir\"\n",
"# unit_path = dp.unit_path(channel_id, unit_id)\n",
" \n",
"# x1, y1, t1, x2, y2, t2 = dp.load_leds(data_path)\n",
"# x, y, t, speed = dp.load_tracking(\n",
"# data_path, sampling_rate=position_sampling_rate, \n",
"# low_pass_frequency=position_low_pass_frequency)\n",
"# spike_times = dp.load_spike_train(data_path, unit_path, t)\n",
" \n",
" # common values for all units == faster calculations\n",
" x, y, t, speed = dp.load_tracking(\n",
" data_path, position_sampling_rate, position_low_pass_frequency, box_size)\n",
" spike_times = dp.load_spike_train(data_path, channel_id, unit_id, t[-1])\n",
"\n",
" \n",
" title = \"{}\\n{}: {:.2f}\\n(threshold: {:.2f})\".format(cell_name, value, row[value], quantiles.T[value])\n",
" \n",
" if value not in [\"head_mean_vec_len\", 'speed_score']:\n",
" spatial_map = sp.SpatialMap(x, y, t, spike_times, box_size=1.0, bin_size=0.02)\n",
" rate_map = spatial_map.rate_map(0.03)\n",
" plt.imshow(rate_map)\n",
" \n",
"# plt.plot(x, y, alpha=.5, color='grey')\n",
"# plt.xticks([])\n",
"# plt.yticks([])\n",
"# sx = interp1d(t, x)(spike_times)\n",
"# sy = interp1d(t, y)(spike_times)\n",
"# plt.scatter(sx, sy, color='r', s=1)\n",
"# plt.xlim(0,1)\n",
"# plt.ylim(0,1)\n",
"# plt.gca().set_aspect(1)\n",
" elif value == \"head_mean_vec_len\":\n",
" ang, ang_t = dp.load_head_direction(\n",
" data_path, position_sampling_rate, position_low_pass_frequency, box_size)\n",
" ang_bin, ang_rate = head.head_direction_rate(spike_times, ang, ang_t)\n",
" head_mean_ang, head_mean_vec_len = head.head_direction_score(ang_bin, ang_rate)\n",
" plt.plot(ang_bin, ang_rate)\n",
" title = title + '\\n'\n",
" else:\n",
" binsize = 0.02\n",
" speed_score, inst_speed, rate, times = spd.speed_correlation(\n",
" speed, t, spike_times, return_data=True)\n",
" speed_bins = np.arange(min_speed, max_speed + binsize, binsize)\n",
" ia = np.digitize(inst_speed, bins=speed_bins, right=True)\n",
" mean_rate = np.zeros_like(speed_bins)\n",
" for i in range(len(speed_bins)):\n",
" mean_rate[i] = np.mean(rate[ia==i])\n",
" \n",
" plt.plot(speed_bins, mean_rate)\n",
" aspect = (max_speed - min_speed) / (np.nanmax(mean_rate) - np.nanmin(mean_rate))\n",
" plt.gca().set_aspect(aspect)\n",
" \n",
" plt.title(title)\n",
"\n",
"def top(value):\n",
" projection = 'polar' if value == 'head_mean_vec_len' else None\n",
" plt.figure(figsize=(14,26))\n",
" top = df_statistics.sort_values(by=value, ascending=False).head(30)\n",
" counter = 1\n",
" for index, row in top.iterrows():\n",
" plt.subplot(6, 5, counter, projection=projection)\n",
" summarize(row, value)\n",
" counter += 1\n",
"# plt.tight_layout()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Top gridness"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzEAAAWFCAYAAAA5HVnZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXe8ZVddPvzsfc65vUwv6YSZrARCQkiQUBTwlfpThICACIiI0iJVxJ+iRgQFBRQb+FJV4KVEAoLSm0hoISEhbSWZtJnMTKbdMreett8/1lpnPfuetU65c+vk+3w+yey7zy6rfFfZ6/us55tkWQaBQCAQCAQCgUAgWC9IVzsBAoFAIBAIBAKBQNAN5CNGIBAIBAKBQCAQrCvIR4xAIBAIBAKBQCBYV5CPGIFAIBAIBAKBQLCuIB8xAoFAIBAIBAKBYF1BPmIEAoFAIBAIBALBuoJ8xAgEAoFAIBAIBIJ1heJqJ8BBKZUA+AiAG7XW71JKFQD8I4DH20v+G8CbtNaZUuqJAP4GQAnALIDXaK1/ZJ/xFwAus/f8GMArtdYzgfcNAPgggItgPuberLX+nP3tKQDeDlM+dQD/V2v9FfvbSwG8yf72dfvuilLqagAD/AoAH9Bav4be+VYAm7TWl9u/ewH8PYBfBDAF4AsArtBa1wPp3QXgfQC2AugB8CGt9bvblGkPgH8A8PP21JcA/IHWutbqPntvrj7suVEAHwJwri2zf9Vav9P+9kQA77blchTA67TW17d7z1rDKtjhVgD/AmAXTNn9F4wt1pVSuwF8GMBmGPt4sdb6VntfzA4LAP4EwDMADNr0vkFrndE7XwrgWVrrX6E8/wWA5wGYBnC1vWeuRTldCODLWuudHZbrswH8EYBeAPfYvBxtc0+0HdI1rwXwO1rr8+3fBQDvAfAUe9+7tNbv7ySNawlLbIcnVK+L7A9Xyg57APwPgCtdP9Xi2j8E8Hw6tRXAsNZ6pNV9dP/C/jvavyqlToGpvx0wfeU7tdYf6+Q9awUyJrcek+kZTwbw11rrh7cu0dZjaAf39gL4IoB/0Vpfac910s4eBOAnAJ6stb6mk3etVawxm/w9AH8M4KC9/LjW+uftb6vdL67E+PxcAH8GoApgH4BXaa3vod83wPTNL11Ou1sTnhil1HkAvgHguXT6RTCdzsMAXAhjpM+xA8enYCYuFwJ4G4B/t/c8C8CTATwcwENhOrDXRl57BYAprfV5AJ4E4J+VUqfZTuYTAH7TdkovAfAppdSwUup8AH8O4Bds2jYAeD0AaK0fo7V+uL3nTwHcBWOssM+9EsDvL0jDHwE40+bxYgA7Abwqkt6PAviUff6jAbxcKfWLkWsdLocZqM8HcAGAxyBfxkFE6gMwDWmfnTA+EsArlVKPtmX2WZjO4wIArwTwadvprhuskh3+LYCbbbk9AsCjYGwOAD4O4H1a64fAdBb/oZRKWtmhfc8TADwWps4fDdP5QSm1SSn1fpiJV0JpeAmAXwbwSGtfB2x+QmVUVEq9HsBXAQxH8rTwnktgBppnW9u5DWZC0uqeaDukax4L4M0Lbn05gN0wNv9IAK9TSv1cJ+lcK1hCO3wJTrBeF9sfYpntkPB3AB7c5hoAgNb6HdRHPwFmQvC8dve16L9b9a9/CeCHtk6eCuB9SqkdnaRzLUDG5PZjslKqXyn1NgCfRucLwsExtN1N9pofAHjcgp+i7cze1wfgYzALn+saa8km7W+PgfmYeLj9z33APBDG590wi6/Pt+X7TgBX0u9PB/AjmI/1ZcWa+IgB8GqYr+tP07kCzJdqr/2vB8Cc1roM4FSt9XX2C/VsmJV/aK0/C+Cx9pphANvcbwE8C8AH7H33wlT6c2G+2l+ltb7JXnczjEFtAfCrAP5Ta33Yrsz8C4AX8kOVUpsAvB/mS3bCnv5tAN+F8VQwLgbwSa31nH3e5wA8J5LeD8F05LDPvQOms41Ca/0eAM+zz94M05iOtbrHIlQfgGmArtPfCVMvEzCTxgmt9Tfse28FMAnTQNcTVsMOr4LpQGBXVm4EcKZS6lSYDuCT9rcv2XRchNZ2+GIAb9Naz2qt5wE8G6bjB4x9H0DzwH0xgM9prcft359F3A4fAdP5xn4P4YUwnsO77d9XAPjrNve0aodQSm0H8E8wq12MZwH4iNa6qrUegym/F2J9YUnsEEtTr4vtD5fbDqGUehGAURjvZbd4F4Av2XbVDsH+u03/WgAwautkAGa1MrqavwYhY3L7MfkptjxeGvk9hNgY2g6vAfAWAD9ccL5VOwNMH/lRAEe6SONaxVqyScB8xLxAKXWdUuorSqmH2fMPhPH5QgDXa61/BgBa6/8BcJZS6iz7+2sA/CaA/V2kY1FYEx8xWuvLtdb/vuD0RwGMAbgPpmLv0Fp/wV5fsZOYfTDuwr+mZ1WUUpcDuBemk7sq8trTAeylv/cBOE1rfURr/Sk6/1YAt2mt74rds+C5bwbw3+w+01r/udb6vQAW0rh+COB5Sqkhu3LwApiOrQla649o6+5USj0VpgF9OZI3vq+ilHoHgD0A7ofpuNvdE6oPaK0zrXVVKfUxmMn2twFomC/3IetWh1LqkTArHB25MtcKVsMOtdb/obU+CABKqYtgbOAqGFvbr/M0BmdvrezwHAAPUUp9Qyl1A4xX7Jh91/u11n8O41pn/BDAM5RSW5RSKUxHG7PDH2mtf2vB+9vhHABFpdTnlVLXwwysx1vd0KodWpf8J2A+YO5bcGsnbXRNYwnt8ITr9QT6w2W1QztheC2A3w393gpKqYcCeCbM6nxbtOi/W/Wv/xeGMnIfzKT7z7TWh7pN62pBxuSOxuTPaa1fj84WBt09sTG03X2/rrUOfaxH25lS6mUASlrrD3SavrWMtWSTSqlBALcC+Eut9UUwi8xfUkoNxe6xxyfF+AzgOgDnK6UeDgBKqV+BWcjZadPxVK3197tIw6KxJj5iIvgzAIcBbIcxgE1KqTe6H7XW92utT4VZ7f+IUuoc+u0fAWyEMcwrEUYo740Ozbrl/h7Ar8F8LXdyTx/MoPqXbXNn8E4ANwH4Pgxv8moA5VY3KKV+E8Y9/Byt9YFOXqK1/kOY8rgbZl/NCUFr/UKYhr8JwJ9qrSdhVh/+yDaCFwP4JtrkZZ1gue0QQIPz/VUAv6e1/inibbMW+c3ZYQnApQCeDuOyfhyA32v1bjswfAamzr4H0zkvZd2VAPwKDNXrIhgOcUcDa6Qd/hWA/9Fafy1wS8s2uo7RtR0uZb0uoj9cNju09KJ/h1lZn+46M+bj5x9pVf6EEOlfPw6zT+IUAA8B8Ob1RmsMQMbkJcLCMfQEHhVsZ0qpRwB4hf3vZMaq2KTWelpr/RSt9dX2WZ+G+Zh6ZOwe++9JMT5rrffAeCDfr5S6DsZbdP0Sp6sjrJmN/QFcBjOhKwMoK6X+FYbr+EEAv6i1vgoAtNbX2onzw5RS/QBSrfV12mzs+iCA1yqzyfK/6dlPh/kC3wm/KetUAD8FAKXURhijTgBcqv0GJ3cP6J599PfTAPxUa31nh3ncBODdWuvft+99HoA7LEfxg+4irfXDrUv0XTBuwl+yE92WUGbPwGGt9W125eGjMHzLRcFOtH+mtd6vtZ5SSv1/AJ5tVwemtNZPoGtvgaG8rXcsqx1qrfcrpd4A4A8B/LrW+uv2t3sB7FBKJdpv+nP21soO98PQIeYBzCulPgPDzf27WAYt3eITWuu/sn8/CsYOg+nttOAI+2HsxnmcPgLTIbdEi3b4IgCHlFLPAjAE4FSl1E+14Qu3a6PrFYuxwyNYgnpdZH+4nHb4Hhjq1ieUUgBwBoAnKaVGtNYtJ4TWi/dsmEH3hBDrX5VSW2AmJ/8PAGitb1dKfQ0m/z860feuImRMttAdbOIPITaGLuZZFrF2dhaAEQBX2zZyCoCPK6XepLX+zxN431rDqtikUupMAM/QWvN8KgFQwQNgfFZmv/MdWutL7d9FAK+D2Xe2oljLHzHXwnAEv6WUKsG45n8A80X7YaXUIa3195ShBpwL43J7IoA3KqUeow316sUAvmkrNtfpKKU+D7NC80plNmo9FcDbbOV8Fear8hVa6yrd9p8APq+UejvM1//vwnBmHR6PPB+1HZ4B4JeVUr8Kw+t8A4C/sW7vhZ3ke2FWEy7RWh/u8Pm/COBS+/w6gN9AB5PHFngugMuUUq+A4Z4+F8DXAGQA/lsp9ata62uUUr8G05hvOIF3rRUstx2+AYbreykPtFrrfUqpPTCb/j5pB786gJ/BlHfMDq8E8EKl1Bdh+MK/jPY2eQmAd9jOMYOhwnw8lN5F4koA71JKvd1OPi6DUYSJolU71HnlrCfArKq7dH4ewEuVUl+A+cB5Pk6O1cjF2OEJ1+sJ9IfLbYf/Rmn8KEhFsQ0eBmBMe/73iSDWvx6FmbQ8B6btboGZqHxoCd65mpAx+cQRG0MXi2A7s23hde4ipdTdAH5Dr3N1sgBWxSZhREHeppT6oTaKZ0+H2fv2I5j9wCf1+Ayz/+h7SqkLtNZ7YYQL/ldr3TG1cqmwlulkr4fZGHkrzGrMPhiZyikYPvPfKaV+CiNB+wKt9T7rdvs8gGuU4RueB7OBL4Q/g9nHcROM2/hN1kX2HBijeZR9zk/tfw/TWt8Aw8f9JoxLrwbjfnbYDUMp6BQfhjHyGwFcA+DT2konMpRSp8Mo4WwB8DVK02+1ef47YeTyrrf/VWEawGLxRpiNtD+z6f0JgPdaT8ELAHzAlufLATyTPAjrGctmh8pwrv8CQB+Az1K9/rG95PkAXqGUuhFGLeTXtNb1Nnb4FphVoxthaBF3osUqDwBorb8KIw97g71Hw6imLQm04Sj/HYDvKKVuhtnP1W4vQ7QdtrnvfTD7E66H6Yg/pLX+zgllYG1gMXa4FPW62P5wzdmhRbd9dCsE+1fb7z0DwKtsf/gtAH+ltW67H3GNQ8bkE0dwDD2B53Xdzk4yrIpNaq2PwHw8/Yv97U9gZJHL661fXMz4rM0Wgt+B2Qd0C8wC+0uWKk3dIMmyk2GeKRAIBAKBQCAQCB4oWMt0MkEbKBMzI7a61wi8FLjvUzD65SE8T2vdVi1FIHA4ATv8WxjXfgiv11p/aynSJ3jgQCn1XcTjI/y81rpJdUfsULBUUEopmPgkIWitdTAu0WLsViDoBCf7+CyeGIFAIBAIBAKBQLCuIJ4YC6XUW2HUFv5twfktMAo0SfjOlYcySmUfQZvNrKHrlIlSvIsuexCA72itn7GMSRZ0iAeKHdrzrwLwMgD9MNzw37aqLYJVhNig2OBawAPMDg8jH/Pqb7TWH1+u9Ao6g9jg2rdB+Yix0G2kOdcKlFLnwQQjuhRmc1hX12mtn0PXPBJGmeLVy5VeQXd4oNihUuoyGH38xwIYh9HBfz2AdyxfqgWdQGxQbHAt4AFkhwpGMW8plKYESwixwbWPk/4jRin1hzDKE8cB/A+MatZZVpZzE4AHA/giTLCkG7XW77KD29sBzICk5pRSLwHwLBg5zd0wgX1erLW+UZkAbO+FkfAswcjmvUmb6Lx/bu8rw8hvvkRrfaDF+bcC0Qb0apiv6HvbZL3ldVYZ618BvM5K5AmWEWKHTde9GCYeg4su7SRHBcsEsUGxwbUAscOm6x4DoKaU+hZM1PMrAbxda30yBOldkxAbPHlscC1LLJ8wlImt8RKYKKoXo3nj3IDW+qFa6zfTPdth5PierbW+GEZCk/F4mOBK58NET32TPf+3AH5i77kIRg75DcrII78OwCO11pfA6N0/KnYeMEYaWwHQWl9uJQJbooPrfhvAfm2DQQmWD2KHwevOAbBNKfVlK3N5BcxquGAZIDYoNrgWIHYYvK4IEyvmqTDxhJ6CNlHcBYuH2ODJZYMn9UcMTMTVz2itx7XR7v+nBb//b+Cex8FEL73Z/v0vC37/idbaRV+9FuarHTBBi16ujCb5TwD8HMzX930wMQSuVUq9CyZ68OdanF8pvB4maJNg+SF22IwSgCfBaO1fYtP/9hV47wMVYoPNEBtceYgdLoDW+gNa69doree11uMA3gOzEi9YHogNLsB6tsGT/SOmCoA3Xi10jU0F7skW3FNd8Pts5NoCTDDCh2vDK3wUgMu11nWYr/SXwLgG/1Yp9d7Y+Q7zdUJQSl0E8+V9MgQBXA8QO2zGfgBXaa0ntdZlAB+DCZglWB6IDTZDbHDlIXa4AEqpFymlLqBTCYDKcr/3AQyxwQVYzzZ4sn/E/BeAZ1teImAoVO00pb8L4KFKqQvt3y/p8F1fAfB6pVSilOoF8J8ALrfPuRHALVrrv4JxL14YO9/hu04UjwfwTbsKIVh+iB0240oAv6aU6ldGLeWZIJ6xYMkhNtgMscGVh9hhM84H8FalVEEp1Q/gcsRjzQhOHGKDzVi3NnhSf8Rorb8J4AMAvq+UugbAKMymrFb3HAbwAgAfV0pdCyNB3AleA2AQwM8A3GD//Wut9fUAPg3gGpuGl8IECgqeB4ysn9vE1SmUUpdYl2Un2A3g7m6eL1g8xA6D+GcAX4dxsd8KYAjAH3XzLkHnEBsMQmxwhSF2GMSfAzhG6bwawAe7eZegc4gNBrFubfCkDnaplLoEwGO01n9v/34DgEfpSNRcgWA5IHYoWG2IDQrWAsQOBasNscGTCye7xPJtAN6slPpdGHfhvQB+d3WTJHgAQuxQsNoQGxSsBYgdClYbYoMnEU5qT4xAIBAIBAKBQCA4+XBSeWKUUu8A8C2t9VeUUl8F8AKt9RGl1N0AnqO1vmYZ3nkFgC1a68u7uOcJAP7Raoov/O2LAK7UWn+0zTP+D4C/AtALw2H8ba31ZOTaBCbA0Y1a63cFfv8sTMyYy+3f7wbwBa31tzvNk8BD7LDZDpVSlwN4JczK1x4Av6O1PkS/nw7gBwAu1Fofsec+BuBtWutbO82TwEBsMGiDL4SJ35DBcOBf48rBpv15MEpFPwHwcq31nPSFJwaxw87HZKXUlQB20WUPAvAdrfUzpC88MYgdBvvD4HVKqU0A3gfg4QCmAXxEa/0P9p41Z4cnzcZ+pdSlAB6itf6KPfWk1UzPckIptRWmA3y21loBuBPAOyLXngcTJfa5kd//AMDPLzj9VgD/YFUqBF1A7LDZDpVSFwP4fRge8vkAbgfwF/T7i2HUX05ZcOufAvioHfAFHUJsMGiDCsDfAHiqlTp9G4DP2t+eAOD5AB4BE8NhBD7Qm/SFi4TYYXdjstb6OSTF+zswgVdfbX+WvnCREDsM9oetrvtbGJnphwC4FMDTlFK/bH9bc3Z4MnlirgDwjwCglPqIPfctpdTT7fHLlVLvB7ANwL9rrf/YDl7vhfnaHIQJRPRkAG8B0AOzWvf7WuvvK6XOBfAhAH0wGtof1Fr/s332uUqpbwHYCeB+AM/XWh9QSj3UpmkzzOrfu7XW/8aJVkqdAuBfYSZw99j0ud/eCphIrQvy+mQAP9Za327/fh+A65VSrw7IJr8axljvXVhgSqknwkRofT+Aje681npCKfU9GJ7oisSuOYlwBcQOc3aotf6JUmq31rqilOoDcCqAu+i9z4QJQHYTP1xrfadSahzAMwB8PljaghCugNjgwr5wHsDLtNYH7N/XANihlOqBieXQB6AfxhPTB2DOvk/6wsXjCogddjUm23f02Pe/Tmu9175P+sLF4wqIHS60w+h1AC6GiWVTA1BTSv0XgOcA+OJatMOTwhOjlNoA4034KgBorX/L/vRE1wkAmNNaXwJjjG9Uhr4CGH3sX9daXwjgDAB/CeDpWuuLYAauzyqlBmFoCF/QWl8MM+H6BaWUK7+zATxXa30ugDEAL1NKFWE0wf9Ba30BgKcB+Eul1MJgav8E4Ada64fCyPGd637QWv9pwEgB4HQAe+nvfTCrh8MLL9RaX661/vdAmZ0C00h/A83BngDgCwAuC5wXRCB22NIOK0qpZ9prfgFmEIfWer/W+jLtIyEvhNhhFxAbDNug1vpurfV/2TJKYCJS/6fWuqy1/gaAr8FMKg8C2IB8RG6xwS4hdtj9mEz4bRh691ULzosddgmxw6gdtrruhwBepJQqKaWGADwb5iPMYU3Z4UnxEQPDIz2gTdTlGD4BAFrrgzBfxO6rdq/W+h57/CSYyvqGMtraHwdQt8+/CsAfKLN/5DIYPnXd3vc1bXTEAeB6++xzAPRprT9r37sfwH/AeD4YvwTgo/aaOwB8s4P8xuot9DHSBKVUCcAnYVZ6DkQu2wNAdfI8QQNihwZBO9Raf05rvQVmZewr1NG3gthhdxAbNAjaoJ10fNrm42X23Eth9h/stP/dBeDddJvYYPcQOzToaExegNfD0B0XQuywe4gdGiy0w1bXvRHGO3QdTN6+BoDLb03Z4cnyEVOHoQS0QoWOMxi3H2C4fw4FAN/QlpeqDTf1UpjNd1+ECRL5aQAXAfiZUurBLZ4dKtsUQGnBOU4LAFTb5AMwK4b8ZXwqgDGt9XQH9wLAJTCD9ntsg3wFgOcppTi4UQGL64AfyBA7DNihUmqXUupxdOrDAM4EURhbQOywO4gNRvpCpdQZMEHcajArseP2p8sAfFxrfVxrPQ/g/wXwRLpVbLB7iB12NyYDAJRSF8HQ/L8T+FnssHuIHYbtsNV1IwD+QGt9vtb6STBleAddu6bs8GT5iLkTwDbLt3eoodko2uGbAJ5sOY6wnMkbAPQppT4B4Hla608CeBWASRiXXAwaQFkpdZl91ikwbrmvLbjuy7Aa5XaQfSLa46sALlVK7bZ/vwJd8BO11t/XWp9OjfH9AD6ltX4ZXXY2TBRrQecQOwzb4U4An1RKbbF//wZM53+0g3eIHXYHscGADSqjuPMdAJ/VWj9faz1LP18L4DKlVNFSzS6DUcpzEBvsHmKHi9sz8HgA39TN+2gAscPFQOwwbIetrnsFjKAJlFLbYUQmPkH3rik7PCk+YuyK2neRr+TPAvhfpVSTVF2L59wEYzSfVEpdD6Og9Az7dfoXAH7Dnv8hjJsttFrinlWB2bD8WqXUDQC+DuCtWutvLbj01QAeopS6BWZz2E/dD0qpt7oNXAuefQjAbwG40t73MBgXIJRSl1jvyoniqQA+swTPecBA7DBsh1rr7wJ4O4Bv23PPt2nqBGKHXUBsMNoXvhKG1/4spdRP6b/NMFz3vQBuhpmYbHLPsBAb7BJih4sek3cDuDvym9hhlxA7jI7J0etgZJdPU0rdCPPxdoXW+sf0mjVlhydNsEul1GMA/LHW+v+sdlrWO5RSowC+B+ASrfXcaqdnPUHscOlgXfIfB/DoyMqkIACxwaWD9IWLh9jh0kH6wsVD7HDpsBbt8KTwxACA1vpqAFoptXBzlKB7/BnMpn8ZtLuE2OGS4m0wsrhrorNcLxAbXFJIX7hIiB0uKaQvXCTEDpcUa84OTxpPjEAgEAgEAoFAIHhg4KTxxAgEAoFAIBAIBIIHBoqLuUmZ+A7/DOBC+EjId7S+SyBYWogdClYbYoOCtQCxQ8FagNihYKWxWE/MM2GC9TwawB8iHxhMIFgpiB0KVhtig4K1ALFDwVqA2KFgRbEoTwyAx8FoWENr/QOl1CWtLn7wrt1Ztbr4vTdJ5K80MceFxH+LJYn/3e334Tfzs9y1CZ0N/Q4Aqf2lAH5Xc1qrWZ2OfTygat2cr8P/3m47Ukov4DyWUlNtfYmP4TSQ+d/77YOLqX9Xue6vHaPzU3UTiLVS93GUwvukApk1V9P/u0dfb+GI1nrrIm/vyg5371aZqxJXhoXId3zN1lO17uuwRnVbz5VR6/Jy1ZiynebKM2t6Zrvnx8o7ZMlsp+69Sch4F76j0X7obYHGlERtw70//HvIzrJ2lpRLShY6vSicgB12ZYMAsGvXOVnN9Ye2aHLtO/Hdcr+10yFq3wMUZ6xYJJux5lmt+bZeprKft4dz1AfNZ77dl62t16jfyiLlvd4RG1OSgE2H7D9fEp23z1YoFhPsueP29g0zjK7scNeu3VnF2qB7YW68I3tM27RvRqith9p5MfU22kPjWMn2x/lemcfhZtSptMt8bG27Qn0496sZAv1bLuHNSUgQLqOiPS5RXnrpuMfe51tevB26MSc3HuTutMmLGtmJ2eNKjslq97lZUjdl5/rAmL3VQ+MkmuuTr8kiZehPx2aHzWjX/yWBuak5dvlLgteG3xVOVRYog9A4GEtL47pYGUbnIM1pacyfA3NuTlf+XOfo1A4X+xEzAmCC/q4ppYpa62BE0Wo1w777Zrp6QRKpcO78Bkq9AIChUk/jnJucAv4jgieiuc7TTWSps+HJRA89azA17xq2/wJAH002arZ6jtV8Pu8v+yKanD8OAJit+iKq1alRUfW6/PYWfTymDb39jeOtvZsAAOeWNjXOXVD3v19QngcAbOn38dzunh1uHH+2r9w4vnrmbgDAkZmxxrn5KgeZNQg1BM5DFmkI7bDr7OF7Or64GV3ZYVYDpo+Zuj6l3wSL31gYaPzOw8SErcdjZR+0d6Lsg97OVnwZsn05FFKalBaMnfQXm20P8B9Hs1X/TK4D/ngKflgQnO2wnRcLNEmw54tp7IPKw33Ylmu+OLljc3nkNpMG2m0hDT+/Svbv7IjzGgK/v5qbnFg7XKRQyQnYYVc2CAC1aob77zf168pwqOTb+s6+DY3j83u3AwB+oert9BHpZON444Bv4/NzxqbunxpsnNtX8P3VHfYVt8H3UbeXfbzR/XPHAAATZW+HlVrz5ApoX87tPpJXW1AmNwENtBWeSPEg7+y0HlnQCLXPTvN62qkD7S+Koys7rFQz3Lff2I4ri54CjXclHxuwr9A6LmCaW2Az5cdlwgtkzi5Gevx4dHppY+N4R2LeO8BjcubropfqxV0xnfi6uLfu28M91XEAwKF5XyxTFf97uWY/FjqYxLl+LV9GJToeMunvGW2c21UY8Xmsm2unEv9Mnfnx5K7Kscbx0fLxprTO1ZrbXmz+EJrAd2OPKzkmJ/UUpSlTTqNFY/9DNMfidM/WTZ85VfNCgXN1P07O03HZ2twcjak89wp9KIbGLn5/rP9zNs1zz36akzo7GSr6NtWTNE+9awj3KZwuNz7O12iuUKs03VeiPq2X2q+aLY8NAAAgAElEQVTLF7fJWX4WlZEb97kMuK33F00eeXznMd3dn58/NM9lgPB48eAHDXVkh4v9iJkEMEx/p60G7RBiHyndwFVouR5+tfudJ0aFrPkjZbjgPwDYuEr8QWPPF+lcjSq37D6YIpOw0FdrEvG0uEF1uMenazN1+juL5ngHfGPfQZ4u9/EyMOiNszzn33U8a27sWaTR+HNhj0ViDTg3kafbl3my0pUdJkgaDXooNR3KlkJ44uBWBzn97FnLrVLYN7KdsU0XkubJfghpxDZ4QlVrU56h1UUe7EKrXLF0+Qlb2Dbcs0Kd/8LzjfRF0l8PfJSFVoJWe/IbwAn3hUDedqZr843jvTUzofl+0dfRsYwmgIf98aCtrwqVOx87Dy1PEPljut1KaK6ftoftBqKTDc6ms4zt3P/eqMXOF3iXyqaXxA4dcpPitt5Rb7uV1msQDRsrMouAxtwhe340878P1X0BDlBS3Kvu85fmxuTGImas37bI2XtuTObTgYlqgSaqhT6bfn+On+s+Xo4lvkom676dz1Cbd5PxSmTSHFo4DOUrhtjK+RKhKzusZjVMzJtFGZfvKVp4YTtxE+Aye62yMFPCzUe4DHkcDJVXfpyLX7cQofkr3xecpwaG3Ni7ajzVCCzMt1v4W0pkgXylWesOLj8PoIwHbms3Rwo+v+s7DL4H4OkAoJS6FMDPFvkcgeBEIHYoWG2IDQrWAsQOBWsBYoeCFcViPTFXAXiSUupqmO+p3+r0RrcKwCv7/PUV4vwxQu49dqeFqDftvlSZx9qfetdbIceLNqgwjaDNqk+I8sOrMym5/Hh1xLnpNpQ8LeSUondTn54a78HpVV9up2bexbphs6UJFMilf8w/v5x1TgtppJXSx/SLRvprtPpL7sPQ1/ZiPW8BdGWHhSRFr3XpbrTet62JX/VhqsKgXXFLS+G05lfZTNnHPIKu7GJ2GFwdzK2WNXto2tUbPzNB8+pJjjtHSxkxvnEIoZX3mDepXRpbnQM6oC8F3P8rhEX3hYyYx2/G7lk7mHgKWC311x7u8Su/W62XeZhWrnupOPqsHfUQlTC/xy/gLUa4PtegR2zZkKOWub0RbNtUFI73nhFtqK1NL0132JUdJvB1285j6sbZ6N62CPUu/F77zsg9ibXRPurzNtNS9Iaa77jm7HL5kULrAozRXR2VM+Y9DrWDgaIfLzYU/fjs2BFubAaAbXXe62Pun4rsiwx5znm8CFHH2nkJYja6zH1kV3ZYy+qYqlQaxwBQLvpxtJfnY12s0odYOKG5IYPLK0TJi13b6hzg288siBkTmSs4FCJ24rxRMQ+Ts996aMwnVHL7tclT2YVtpIG5PKORh8j8Indt2poF0AqL+ojRWtcBvGIx9woESwWxQ8FqQ2xQsBYgdihYCxA7FKw0JNilQCAQCAQCgUAgWFdYLJ2sazhXW7GhjhSmUjnkN2GFN0w711Rsw1aITsb3O1WGudTT0WJuvHbSdm5Df2yjWeP5afi7kcujz24YdGodALAj9Zv8z6yZaju14t812u/pZL0jxlVZm/fvqke8dCEKSe53pzBF5cJqF04FY57K0GuuhBU9VmsDcCFJsdm6/bdbFZxT674JDBCFYZOlGPYVWNyB6ij1NJ7xosnxZMVTflhpzNlJjhIQoJt0sonQ0x3CdhSkhoTUlfj9bZRr2GZD1Ixu6IGh9hl7bzvKUl61pdm2TlRBa7mQoXM6VoNiQf3KNG1sZdnONDHtkumxg3X/nlJgA2YNrSkW3WC9bvIPKjfFBFhcf0j9QltqZ0Rkw41rrk2sdIm1qqPcmGntJols4GVtxlD/E6IBMZ1lsu77ynFL4x1lxTMqXpYXzyxdK0cHYyVT2w5YvKJM6mKprYsYhSwntmOfNVL04/D2ot+/fnZiqGW7qr7tbamyoIrJRNrj338o9WpVB4k21a4PD1GdFtveOqUnLxeyDKha5bVq2rxpncUT3DFTYHm+NQU/B5qBEUrIjbmRuRudDJwKj1ExgabQtS4/fI71X119hmSZgfz4mzXmChGanAuhEFBM5ftZMYypadVa6/lrMTAXYCW0eoCeHFJvXYgT2WIgnhiBQCAQCAQCgUCwriAfMQKBQCAQCAQCgWBdYUXoZHkllOaYGSGKFbuF22nPx+hiWYCmw6oQM9X5prSUc1SN7ikD/PwglYrjh1C+Q0E4OZjmMB2P2uwOIOymK0+ZZ1Xn2c3nUQoow3F5hxSJOH1OPQ3wLl6mmHF5z1S8/r2jrsQCZy43epMCziyawFq7MqMys6vsS2Y087SGORtKbQfldQcFHz1IMXwO2WfuK/oYXwfmffDQ6Ypxc+fctvVme6oHKAML4dpPqRCmeIUQ0naP/c5oxHSgug+11dj9QYrYMinjdEOLCCkkrhZCfVQ7tbqI6n4DHJqwFCiOWsQeQso0sXhFDcU8FkBqQw9cT+B8M12iMX5ROwgp6sQoZDwmuLHC/b6Eqo0dIGmig0bVxwIqatF4Tw02XkTVzpYLx0U5yNSYkjnm/m0jUYr6Mj8OztnnVnKBoj1KAToZq11Vk0CQ4ohqaiOmHNHJthHF+6yaeZei8W7rkKcXJ5a+23fcB8A80O+Vzu4teGrZkS7689C5tspZgapLIzT35UaaJI2g3n12rB0peRr9JhtEFMgHwXSYISoiUxRd3bWlkEWwHONUTJ2U+wcH7l/qWXPdxJTWaoHxJB8UunmLRYxC1ikdO0+7bKZjhtRsFz6/HqDJdYrVH8UFAoFAIBAIBAKBoAus+MZ+t/oT2yzcuD4NrwqFvma72dTGX728+dqBY86kbTYxhzwKvNpeaRMpmBFezaN0B1YGKvQNOjHnV3LK+4s2Lf73GdLS541xbsMi10dSb85jrL56rIeIN7rOFn25cnlmAe/DSqIfKc7PzOrZxfNmxexB28cbvw9u9el2DrXpY371Z3yMvC8Vf3x3yWzw/HHJN6dKQOChVvEbD8uB1ZFONOndqnAveYV4pTG06hHSyg/FHViYhjSwcS+0cb6Sy0uzyEZIWADoTpP+RJEENk3GVohWAq1W+kK/cZst5dqfP3axNULeFwCo2CIoI7wp1CG/wZSFVKJJXhdYCrEB1xb6yDvA7c+B65Dbh4tKDgCFmqk7t8l2JcUQkqTZ/mNeiKDHkpIa6ktYBIDHzLKNWM+MheOYbRxPWw9NpZfssrjB/x6I4zadMOOB8mPbDEd9z21CrgXmEjFGghN0oHbYR+Wy1T7r1M2TjXOble/v00Hz3qFbvKdm38GdjWNNXp0DltUQi5nR1kvQRTt14zozKVYShSTFaI+ZuzgPzPaS91ZtKXivTJ9lR8yxuANldippHqdiMa8Wg9iz0gVzWyA8X4qKzgSbVzit7eaRrj+vRzrrrM2YHLKtWFoa8YxSfz+3NXfM5xg8V5iz88RKTgSgs/FZPDECgUAgEAgEAoFgXUE+YgQCgUAgEAgEAsG6wgrRyZKON3P7zUKRuCVZs0suidIfmjcxsevMufHZtVdOaWM/U6zQ7DJs5/7PbewPuOk4LRU0Uw6mat4dPVHw6Zq0LvUBco0f5+/RuqE6zFP6Dhb8++fIle/QTmghpHsO+PJiN2dOJCBQH6uF/nqGC+dNetWDjgAARi7xbvz0jNP9xZYaNjw51Ti19X6/Wf+MPf548882AQCOFgYb5+6nGAJuEytT61inPaSjHquPHhvngPXzh0s+D27jKruAWUs/RFnjOmKahzuO0RcarmsWJKgFqGuR9tcObek1WfSPpvu5PByNprSKdDKHIOWON13auuMyzsXCCMTI4NY9RbTco9btP04CFixk4hAS9lh4/kSxlNSpxYgIxN4fGjNSGnPceR4HmE4W2lBcTJo3HPOxo/KkCUePWF4kSBrvdf0L56OUOzbthMsk10+AY0409xmhcTAmNuL6SO6z5np8uRwrjTaON1gJizLTUsienZBM7F2O8st9Eve1HG/J1fcsbSQ/nnuXScvgBv97zzmbG8fJ1o0mzUP3Nc7tvspTyzb0edqyo9+0Gztjm/nbUYJC1No+ErDJE9mXF8WkgOEeM1ZuLppN/KcW/Gb+7fDpKtk8jCVke9S2jgaEmDqhaAeRuX+a6dVAnooZongzPc+1q5gAj6NQ1SMiK7n4MvXmWDo5O6kH4sgExtzYmN5uflAP9AFpjX6n57r8xmIvMtxzeV4kdDKBQCAQCAQCgUBwUkI+YgQCgUAgEAgEAsG6woqpky0Eu0dJOCtI28p9apFnLLPa6zl3VcBNmNPpJ9pWSB0pptrg0tNOoaedmzLvFqZjypdzqR+vedWWo3VPLTtk9dLTYjhWgXvUTOKff4ioCtMZKYbZNLCrNKfgEqBXzNaatdm5DioBehRjMVrgS4FSWseOPqPd33+KpYVs39T4PTn1FH+8wVABsrJ3+RcPeCoAqrc1DgfvMOW5cd7XwWbS/T9WNAorx6u+PkPKeDlN+yRsaGnSrCYzXPB0shF6r0NIgaqX4g5xPKIy0TiO1KZNuskOywEqYs72AtQN1qFvp6wTpz0E2nXI9R1xV+fiegSUa1YWWaOcElsesVgiDWpp3dvhANVXD3eONjszpBRYITvan5k+5GDVUyQ5Xod7b0ytLlR3ncYSMMnrnIobQiwtoRhBwVgZHdDhQjSUXN1Y+gpTQ5mGFVKUYlpST9FfO4R8W51Jx7BSKCQphnvMOOKoqYPUd4xQn+L6B1ZcnKA+Ybw63Tg+XjHnmRYSo5Y55GjVAboM9znTRLHebFUhe6h8OW6I628nqd91seEAX4dc19xPVHkcdKprVL/7Cr4d3WoVts7b52nEg4eP++f2mv46m/F2w+qi80zxdPGD2oyTsTbUDe3T9YXLFb+rHYpJiq22HrenZpw8DZ5ad3rNl9GQnXyNp55iViwyXdbXs0OonwDC40k4PleYQtZH1DFH52Za9wipqg0XTH54nK1S3c5kbr7nbZtVDPnYzb1yfTRNSl2+OA5drD/vFFF1UZtuPtdD7dZR32Oqh53ExesE4okRCAQCgUAgEAgE6wryESMQCAQCgUAgEAjWFVaETpbAu+UKgQB6pQIpoQSUOXJqPaRG4c7H3FWN6xIKxkPvda7jmGpEnqLVWumsnSKIe283ahnsRnfUHgC40ypQTRe823Uw8/kagHMRh/PC7nenZtUXCXZVDyhMhZS1llK5aLmQZQnmKybvs/tt3Y8cbPxe5ACrO6xrt+TLJZuZaRzXjnlawuSMUSWrUWvqJ2WNPlvG7Wgn3YBttp/c66OJsQkOiMh24OhHo+TaHibbmSf60T32mr10Pwemc67tUDBNIKweyPYfciEXIi5/l9+c+gmr6NnXxmh4SYDylqdrrJxSWYZmSiVTMJlqmDRorKQuWPT0gkO54H9WGYsDLRIFyFHHWPWQqaHVhkpOuAzrATpXO0pLqL+NPTOGBsUrCdMa2qVlMajnqGnNFEkuV667YqE5wFsPtbUBqi9H6XR9wT3wgRKXG6W0gE29JojkBksd25Z6Csz2xPcpg5kNykl2ta/g+789lNcQBYrPObvIKTFxm7XlzmNMre77XabxOZoYj108ZjrqGN/DdeVsKA2oO8XA/dfBxAdKvtbSxfoTH5jzsf/ty3DriKnbw5MbG+e+2+fLbW9loind7ZQcF0vPDCm4LkYVailQTFJssYE+t1ib20YUslMrPl0bLCV+Cw20lcTX/V6iQLp+Jz8vaR57YoF9EQhuXsrRyXzdbiiZ8f+MHk9NP5sU1nbWTXoHSOWQqf73WeXZ+1Jv52O0fWCiSvMOR9FmxT96VkgRrB0lmNHOjkLUtEqttdJZLFB66F2hMaIdxBMjEAgEAoFAIBAI1hVWxBOTJikGS2aF2H0h88bkoaLfUOg8A/z1OBfY2AR4LXle1U4DXpViQLsa8BsaeaWsHTiuAqfFrfZUIrFh3Bc9a4nzah2nK7TpjDdX32WfO06bx3bQKtoZdmPctjptioN/b1oY8e/tMe86SF6C8Yr3+kxVzIpAaIUdACqBlbeYZ2u1MYsUNydmheToXcbmtt/nVzm2/Gx/43jozHsBAMUdvlx5U+aRm70X7I7ErAAdSH3dT1HshFC8lJCoBKObjW4Fsv9RuzK1ieq7j34fsquqI7S/tpdeNU2mlxVNvmYpRlHI/mMbUN1KS94awiodrn30kFeW20rS8C6GNyk2yjiyehnS3e8mZs1Sw6WhbsuAV7PqAc/WHHlnxlK/oTj0TEY7oZNQu45tuExzHrVmcQRu964euQ5zmzrdu7hNRGy+FoghwKv3bcUFuvB6Nuwr5xwIbPiNrNA6ryh7RwdptXgw5XZp7nPtd/8K9ps9SREPKhmvwHbrvT2t7tO2o+LzPGC9E9O8Slry/d9RWgE/XjDjVMhrB4Q9MblxtGo3C7M3kb0nlXrTteztC21CrnVgYyHwtSFBAhZquTs5at7V4++5t8+vxm+aN2U91efTcnvNe3KOVXybDr2L4cqw3UZ1Rj3qAV98fI6lQBEJNlkPzKhlBAxQt8wtomzHrvnI2jtvnHdzO+cZBYBatVmoqRtvFv/OYh2jVrhnd8GLOjx2zqdxd5/xsvX0kDDGlJ/z3pWZ+3WPn5fdEWHGuDhF8yTUxEwj58lI6p3H+upGTKdd+8mPXfZ+HmZZhyZrfld/Ll5RZ211bc42BQKBQCAQCAQCgSCCjlwQSqlHAXin1voJSqldAD4K85l0I4BXa61Xb0lT8ICB2KFgLUDsULDaEBsUrAWIHQpWG20/YpRSfwDgRQAcx+g9AN6itf62Uur9AH4VwFWtnpEmCYZKxn3mNjczhWxH0bvRttpNXhXyQR2pe7ftGG1ymrGxE2LuYuda5t95c7WjrrHrn6llvDnabZplOs1k6jdfjSemeCbKtAmL9bMLzflmXf5SYHNkTh+c9O9na2aT4Dxt8C2VfFpPs3FktpH7dBNteNxJlIbRHrMR8RbawH57wNU/T3SXdu75eIyTzmLthLAUdjidZPhRyeRntGjKe2PmXcBbDno7PHWfKVsXVwYAEqqjW+f9tdf0mrK9u+5peGNE/ztcMfU1XfH2wrFTQshtOCR3r3MXMxWRbWfY2u/ZVX+O7WDAaruzC3aW/qoXSSDCuu+ZAsPtox6gZYWoZTkXNZ1PefOzbR+DJd8mBki4Ig1scM9RRwKUPT7mzb0Nykog5k07LIUdMhqb1iO6/y6/laT7tAInHpuFwVTd1Mai4Y2YTAUYKRmKhNv0CuTt2PVtTBWO1h1d45DbrBoowxAWm/8QZY7p0H00frixZCT1tjtCdLIBMIXY0S1DtMs4lsIG+5BCwcblqJg3n1H15by56DfuJ0VTrkcqvm0e5Hg3lD+X/6wYrgs3jrIwAsP1JbkN9pGYPa7AQrQUwNcbt4FQGcfsIidCEnh/mSjD47Yqqhxni+LIDNq+jPuvdvG3YujUjuuBNtJ0TeCoUyzJ3BBJg+Lcb5NYo+yNER2sbtvOFAnwjKXhdDs7ZKoni0KFxED4Wne+HVUaAIZsW99d9W3i4VsPNY43X2jqNu3zv++Y8lTCM+4z8aF23zXaOPcD+HnJD4jdN2E3/0/Az0uYfuiol1EBqQAtm/PSjfBViH7Mfbx7VqhNclr4Gn4/0BxLL4RO+s09AC6jvy8G8B17/CUAv9TRmwSCE4PYoWAtQOxQsNoQGxSsBYgdClYdbT9itNb/AYCXwhKttfv0Og5gtPkugWBpIXYoWAsQOxSsNsQGBWsBYoeCtYDFqJOxf20YwHjsQodCkmLAKh05CtemoqcZXJh6bfUnzjW7mW/q8dfe0uPd3HstfWesRhSzmv/dUbByMU7IbesoOUzNGSRqwEjiKQE9iXODNysmAZ7yMJP697NSQ4OGkLJSjX8+U9fK1iXN1DVWaJkLqEKNkELMnFXJSDP/zD5ypY6SatkWq2G+geMX0LFzD8bie4RigcRctM5VOF9tpocsAl3b4WxWxQ2VIwB8PQ9RPIRRUlLabKkxWzNPG2O2yp4e7+q8tWLcwYdI63+q6qljMxVjExz/I6b21g4hHXi2HUcB20IUslNST1soWKrfVNXn9ShRLI+SN/eopTBNMxWrzjEXzO/szmaaXEOdrI2CFQCM9Bhqy8aSV/TpS8MKLQ5Mo/PpozgRdd8WJyq+j2iok0WoAl2iazvsBt5lv+gnBA8dQgo0SYC+CCyIx5U206o29vi6O6t3i/mX4iWU6LljltY4mXl7mibKLB9PUv/uEKKexdpRgzoSUSmLKbCF0FDXjFAsndJYidYHe/k4QM1YAivs2gb768DDbPM4y9Ketp/h49T0biB1Rau0VNpLVKmyn5/u7fE0swmr1FSgWB+5eGk2//NZs3ojAMzZvibXPxI9OSF7dGNLifovtldH/arUq03nGDE6DKPRZ3BR06GzMe4Lp4hu7uYYMWpONUKva4WYrTp77iQ+SIOKmbW2+w7RtR0m8P2Cq6UZSsp8wf9RSdzvPi/TSa4SGnA2wbZRTpspe0xf4vHI1VNsjOBtCRvtPO7sOd+Xbdzlx57i6aYvTAb8HK1AtO3SQ03dD+zxMevKX/G/7yGarrMjrttQ3L6Y8maoL8yNz9R+XB5D5QKEaY1cLg2FuEgcqVwbt+nia8tLSCdbiOuUUk+wx08D8N1FPEMgOFGIHQrWAsQOBasNsUHBWoDYoWDFsRhPzBsBfEAp1QPgFgBXtrshTdLGJl234Wpb6r9KL/YfrXj0S+zG49N2NM5d9OUbG8dXX3Nq4/i7fWY16Fb6qjxAKxrT1isT2zQX2gxcoO+6Ptq8WAp87/FXqVuZGyh67wp/5bsvTF7pqSG8iuA2PXK6eTXJfXlzuseqflP5vXb1c0PvEP3uy3uSFrDvs6sTx2jlk9/VLp6JQxrxvnBkW5f3Utq8gr4IdG2H8/Uq7pk9DIBEHQo+fbyRfNiurvTTplWOXXCEdP0Pl80K5mQ5HFm63epINwjGAuGV88A9FfK8zVpPDUd6v6/k79+X+nQfsIIah2o+r2MUQ8h5lnJxHLJmm86vdlHsopK3ye1WYGIjeRRDnpZBWvUepu7L2d9xWuE9SlGPud25Vc98bIRFo2s7DCG24bGh+9/FBv3YCmzI/mq5yPTmuYUOPGeuToepDreWvNfSxUy4uOzv2VDz7z9u6/lg0cdhOljwdrS/4Otur00D94fVQOR1jrUTWnnOAnldCB/JO3xfPSAiwB7zom1f0+Rh6mGvKY0jzmvj+thF6J04dG2DfWkN5/SZfuuUh5p/e8/10eTTEc9+qI+b9l8a8gvrlZ/5tjlW85uQp1NzX5HyGcpXMfP3z6V+7HE2xiyGmCfXeQFzYy6v5Fp7maM4NGxDob6UvXIhb3nMg+7Oc1p5DHDtl1e6c/FtAm02lu/QanrQ3ruwqG6ubYGu7TADUGlssjfnapHubd5eN09pnY34MZ0Xn8VGQjGpcnHJyKvsPAqxuCgj1G+5ODcbCySGQWNqVrY2VyJ7KNHU2x5nZd+nTVLMphma07o5YyzuT6h/YoTssERl0Edl4M6z15nnbq6M+Peh1Htlt9g4hhsSjv3iMQsSJLB1w1V/PcaC9y1ERx8xWuu7AVxqj28D8PiOni4QLCHEDgVrAWKHgtWG2KBgLUDsULDakGCXAoFAIBAIBAKBYF1hMXSyrpEiabj3hi2dbCPRdE6jjcfpJRebhD3qlxvnBjZ8pnF84f4fNI7vPLITAHA3UUxCG/Oim6BS487KbUzOmrXEAWCjdY3xJmp+15CN+cKbkZmK5dzNrI/PsV8YLj3lCK3LuZk5X+NE87kjMZvXZ0v+/hFyq85RGiarxgU6VW8WRGDkYn0wFcNp8Udc30wJcnEm8lSOzjZvLQVqWQ1jcyafzpXP7mSmlo1ZtypvVGO37SxRFKYqxn5DFDIgTOOJlmcAITsKbYoD0HDQThMf5mDd0y0mi6YODhb8PfcThez+zNvBURvHgG1rpup/d/ZZbyNSwOeYQjFS9FSkDZZeNEpiF0VqXy6+xhmZr6PTAmywY1SH9xYibmxr33k62crGZFtIZ+IYLNx+ioXmDcFt7YXKm+2w3YZfRzVIIhs9S4G2MkSxrjbQ8XYrGLKLYnyddpoXvqjZ2CQHDnkq0s0FT9HISt4Opu35aYpdwm2tXGi2Q853I78RilgIvNGZaTuOasvCHbmN6ZYaNUdtqs4xU2jZcGAB+XNJCD0dolCsY8OIqZvSZtPXJcO+/DHiqchpv6nXXurHTi97atnMTX7Mm3Sb/CmfU0S3m7c91BxlNjR2sK31UvnzRm0Xc22UqD0szOMoKpMUj2WuHhZXceAxl/v4OSfKQmWQo1o36GZNj8whrZMR0uwr1+YDdOta0vzeHJ0tN8Z0bkmhNr+SqCPDjM1b1VIxUx7PaBO/o53Nc3uj4wodu3nHMI0xobGcz/XlaFNFm5ZwPzBM1PO+zNFdfb3N3099bNW0lbSPNsVTzJjauLGtfdf6vvDGXp+WQ5nvN12/FtuM7/vAsH/C3ZeLc0VzQ6bfOZoYU8iYOtZr5/Dc5jYSnewMu2XkjBoJ+IR1MRookk1fH8xBM8QTIxAIBAKBQCAQCNYV5CNGIBAIBAKBQCAQrCusCJ2smKTYkhqX77Clfm3K+NXebZvdcxcAoLbjBn/uwIHG8dEjXjXlfksHO84u4ja0kJyqjFP5iriIWenEuSdHyV02Qm6002HSNUz3cEqOZCaN+0npaZzc3EyFcK5dVorgdDvXM9NhmF5xaN64H6cpZs4guT8ZzqUeUyFz7tZaIawW48ouFieGsUQKKItGlmWNMnNu2RyVkI4drSDk2gfyZV8JqI/Vg6pPpKxTbFb84HvaKerx73NE1xizanP76fnMoxmz8YKOUYwyVvQaJ1rhlFX3YnWfdjEXQohSDcmV72iaBaZoEk30wXXT1h5D8V5OO81TWhw96chhT4O5se6Ppyku1VjRPNWAH5oAACAASURBVCNfxs2xSJYLCZKGXS38FwirgKVdqJOxHXO/4OqLKbOx2CkOIQVGwCv5MZ1shFRoNlqJoW2bfX83eiGtmdk4RvXr/O/3H/bPGqY4Ck7dZoroZrNFb5OO9tMu/lQ38Zi4WLg85wLv4L7AUTumKV4Yj0ncjzoahiuV6gpSGmvVFMcOmzZR+6kZhwYP3Nf4vfdUUpUc7cNC9Oz09XPGMa8idM6B7QCAiV5//zxRoaZtnKk5ijfF9ujsjam9TPkZJvVCF2tuR+rtYiuaKaTjBf+uCVKNc9bA9TNJ/d/hynH/jMRQaplOG1JlbBdPzdFDFyKkjMUIxbrLUSp5LrCIOGztKKrLhRqyxvjTE1hTLzN1zNYTj3dMjS8HYg+xvfCxi1fEc7wenu8F0sJzJKbJz1n7vovmhqne3Dge6LFziSLHUPPPnZo149QtiR+j7iYls+PV5vltTjUybd5OEYtv48aToRL1taQwOUj9eSkQ24hjYvXZ40HaGjJKx8NWgXADcSw3URy5AVIn67FlmC5ijiieGIFAIBAIBAKBQLCusCKemD6keIj9yuy3GyZHaYPbNG38mfzcHgBA79V3NM7xhqevJz5SsM6Mvv0xipHCq6tudYFXOXlVrd1m3tCmV/a+7IL/gnXRj08nkYK5mn/vz2xE8mspAm1O0z4gKMDRxzl+zTTMy2qRjaxuhYZXDni1i1e5+mx+hukLnFckZu2K2bGqXzE9XvF5dOWdi7VDX+6huCG8gkVbSVcF9cjmyHnrqcjbS+S+wKpHmtu4b8pjiCJbc3Rzt0GVbZc3009X/CZit6KXu5Y8evfZlZDZJJxut+o1QyuSbHscKX3GevLmaMWvEtgwHdPSb4csZ59uhcmX2xby1l40b9LykKf5qOLF3T5mVP3+YwCAnmv8JsjDe2jTOcV8GrG2PkO6/nMr6Ikppik29pn6H7R1H1t5dsit8EZWq5wdztMqN3ttXN21ix2Ti/lUaN5IDfjN1OyZ3kSrcFutp2VkB0WuPtPXV2YFNgbuPNo4N3DI29YoxUnYZFepZyi22HHa5H+8Omt/9+eqNL4sxgOc89oEvDJz5MSrpM2ehApFB895/4v+vIuZ5uqo0tN91PbFYior4H8zE9dn4Kj5d/P9/v07b/J9yrZtpu8f2Or7hnzgeV9Xg9YGeSWbN1wft56O6Zrv07gvc+NszvtCm7N3FP1c4Cwbk2Z3zb//DIq1MWRjwE+Qh/AojXNTNonHU18/9xV8HnPjmIvPwXOCgCckJwwU6BfZo8p5ZHGCrSWTR25bjDHrIR+neQ/H75qyc5BZXsFv4zVfvY39fkxyKeB4bLPkXZm0+Z4hhgl7XxjOa9xLfdJAblO6KfsB+p1Fm1w9s+3yOMkCTUcty+aGkr//YObrs2SzUyINox4yjbK97RB5aZkdkWPh2HbFLIZcTBo3Jrdh1nBfzh6qIRLWcZ4Ytowie+atMAkzJgY4tptNwjjNeat8LQkhOA/MTNq9X0U8MQKBQCAQCAQCgWBdQT5iBAKBQCAQCAQCwbrCitDJhusZnjhnXK8V+900T06qGdLL/+ntOwAAx/f47yvd46+9KfFu04MV4+aejWi/O7oWu215Y2ViqQGxzat83GefsYVc04+Y9S67R5+/HwAwcInf0FWf8BSsjV+2rtC6p8MlFMtjjjY5OXfqeEJxEXhDYq2dTjyafucy2FoaaRzvKpj0nJt59+LWqr/vmHUF3tTn3f93lDxl55itg6kIPSAL0K7qkU1ny4+kUdfOfc7UmZwL1pYnb/qMudzdM1Nym/K1btPm5l5PhdjRs6FxPGJduLxhkTcOsk27TZtMGRqrTDVde4xoj7k4F9YNzrQHPuYNty4WRiVSn+1oOq4MYnGamBYwU3D9g3dnD1Csju1Dhu5VOGurf/6ot2McMLSkmQnfZo/nXNM+Df2WQsDtew4rh8FCL84fORMAcIqlSLHQCbeO8cSU17HM93HTVEcVutrV4wz9zn1bxVFearzBtDleUWzTaD/ZlKMdbCD6Aedhi01vaSO1mX7fxyS2boqDPv3DiU/3JqIYz9i2ME197xF6r0sjCyJwf2iZbYvud/JUvnrumQt/d/E8uM3GBDsKeU4WevtWjk42ndTxo9S0qV5bF6MlX37bSRTjlEOGtrXlANObfZ6OE0Xkzl7zrP3wdLTDdU/VdLTkWJwdVyZ9RPMZpLo+lTbxX1gx11yY+A34p57rxT56txvbq8/650/t8889bGMU7a34ZxZ6vI2NE53riO0rFtZZp3CCD2yjfUQh3UDCI+cVNwLw+QPyq833FE3d3FHw9+wr+DI4kBqhhYTmSrzZP7bpezVQzeo4SrGkgPwYNFMP0EZJXIHbFsc4qbs4aMRuKmYUi8f2KTzm545d3B+mgoLpZEQzs/3pPNFK99P47SjSHPesj3+35ys5EYNmiirgx6zBYmTjftIsHBGiIpcC1wH5Md1tK2BqKNO93fnc77l5vUnjFBtvGjxExcYDmsi6jxsonhiBQCAQCAQCgUCwriAfMQKBQCAQCAQCgWBdYUXoZP39FTzkrEMAgPlJ46I6er93V++b9+7cPT0mSXvJNbePXNNHSYkppEzBrjd3zOfY/eiUQphSwfQJppuMJMalvbPuf1ejxxrHg095sHnmY37Rv3/GKymdWb7K3PNf3g043ufdnzOkpe+0z+eSsNJJSCee8+Xyy3nZWPTlfVHRU96eMWve8bBL9zbO9Zzpr53fY9zUN1yzvXHuO32e0nOzde/fW/VufFbWytEnsuaYMkBYXWQ5kNC7nXuf1WLYnRxyubNCXI4WYN3YbC9c9i6mxmaiDGwkqkKf9XnP0POnCs10GQCYQ+uYGE6BajIS38Yhpq7G1DFnX7H4NyGEKHfsomabHS97O2nYLLm5j1IZHZ4ydrbjJz6WRWH0/sbx5C3mvbcd8bZ5Z69Pyzia6RSLpYacKLbXE/x+2djM6TsNDa5/E5X7pC+Du/duAgBcV/Jt8u6Cv3aCYyZYCsJ0RBnreMH0ndNEUw0xAnMxn9q0j1obSmF93ttONuXrGxWrSERV0Ffy6R6uEE3E0kAKaZjO6SgUHGsjZ6f2sdUuWDTtqJJRalrW/Du3n5x6pi1bV65bstZtdilRzurYZ2OWuTZ3lGhhx4i6d3+PKdc+St88lc8xivN2JDM0scM0BowFlC1jY1dvLr6VAcehOI1U686zNLWzLvFxanov3NE4Tk8/xRzw8/fc0zju+YEZs+Zup/aWeaUmlmVy4y/3lVkgDgyD25FTSGUbZYWobUQNO79qrnn86OHGuf4hX15332voZhtL/p5SkdXgTD8Qo3WHFCZXC5WsigNlU3/ODpjePEsxyuas2hpTkll5tsQqtGlzHLg5NNNsefwvZ839C1PIZonmxpQ3136niPoWGltyynS5+DSm3TEVK0djy5ppprltDwlve2huP3O5dNsypHGjQvTiUJzEnqQ59hKncQZMTW+mm/PvHNeH25Kj0nMZIizO1wTxxAgEAoFAIBAIBIJ1BfmIEQgEAoFAIBAIBOsKK0InQwqkfca11GeDfQ3NeHWS0rx34U5ZlYIj5PqbJPWxKpqVTGJKCy4gELutykS1cG5LdvOxS3KE6Cyn2OPzSOlk+895alv6sAsBAEX16Ma5+oxX8Sqe8yMAwLYveYrZCLmua+xKdK5I8vRycCXnTo0FsOqxgf1GSp6md1bJq2E9Yda/6xHPMnSx0q880z9go6eOFW65FgBwAX7kfydqWdEG7auRWkbOTVhvrTZRwXjL35cLjaBQAcoA4F3baYASAACDJQryZ6k+m4guNkKKOv3WXdxLawalwPpBhamQkfUFT70gihZRy5wbnWlAnIeQYhjTOdj97o5jFAp3XztKAlspP3+q0qwJxvke7PWu8at7jRLZzI9OaZwbITWrg1bV7KY+n9d7SHPscN0fT1qXNSu8rSQGthdw0TOMMlJy+nn2JAU/PXKocTzy3esBAL1f98p2hYyouKSINxmgMDC9IFT3eeWa5nNcRpNVrzLl+k7ujwcLRMuxVJmdt/k+aEt6sCl90wd9+uarfjiqULuct2PCTERRLxTUOKdUtgg1plhAUHc+pFiWuz9jaggrpcWDCmbZyq0p1lHHtG0HZTt+1ojSXKekzAXyN0G0jzGieE/WjI0wDYiPXV8VCyJcsC/mPompNxwke3TQtOniRrLxTV79E1u2mXNkC8mYH28KPYbGVKZyn6TAl6wC6Og3sX4zdK5A6ohuXsGKZCMUZHArjRdnz5v3bruUlFYf7APFDl5vqN/Z/2xpnBvr9fcfLZg2d7zo64XLm2luzrYXExB2KVCp1zAxO5FLQ7vxiFEIBKiMgfPt3lGO0NkdVSqnlBYJshmaK4To2rm5BNm0m79yXnJ1xEHNbb8Xo7Y7MDWtGBgXYuqJPBeetTS1Pnp+IWP6nUlLJdA/AL4+54jWOEcqu0xdd+XJfUWnHyfiiREIBAKBQCAQCATrCiviiZmZLuEn1+wEAGwszDf9Pk/fUm4FLhQ3BcivMLuv0Vpkg677qswQXv0KrcbzFzJvvn6I3Wz3iDP2N871PGa3v3HYbJZn70s2ecT/bjeypgmt1ETS5fTCK5FNUO4LN7/S46tyQ4/xCJxCsUjOg18RvWCn3xBdfOyjTLrOe6xPAH1514+Y/PY+yK/+nnG3z+OBMbOReh95JsZphYlXgt0Gtj7aQLpnBT0xGfyG2yywiY+RBFZ3WYd+tOjL02n8byn4c5toM1xfYK2A1y7cZrec9nwW3pQZOpcl4ZWrEJKAzbFt1QIbkkOxfmLpaofcChWtcM/aTZvHUr8JmG06KZl0H+n3ZTyc+dXHCbuKvJdiUhyp+eMp8sQ47wJvfG1tDUuMUhHJNtNukm2nmX/J+5lt8puTSzMmD2fcc0vj3KFbfVubJvucT5rrY55Xu6wHl1ddcyuw9pA3/s5UfH9doQ21UwVTnrxyViAhhWEbc6Rv0ouInP1jEnKwK95TFAuDN5OP0UblKVu35ciKn1vB5L67lvprnTAGr3Sy7fKqZ2gDNyPUvoLtM7IqHGp//p6VRSOvcOVLsSmo/3Flwb+Ps/eFPHTOHqqRzeNpQPijHvB6lXOrtyRkQZ6So1bsY/Q2n5bhHr9xvzBv0pL1eruq7TnQOD50lxnT9hR9P7KPvLcT1GdU2vSrIS8Ar2oXG54Yb+8DFHeJYyxt7zdsjeK5p/tnXXBR47h3sxH7OPveGxrnTt/rPTX3WC/oGI1Rub6OPArVpNnbvpKWmCHDvO1X3NhQj3gJnB0V0tbzPcC3Mx5DuLyLbu6Y20BPNmfHiFwsMy63Luyhke6A6BTg+x/uG3Ke4MCYy/MS9vS6a3OxEbk8A3XL7+I5p4u/WIrMr108srlInEaXr5AnCcjbZEisamPwrc0QT4xAIBAIBAKBQCBYV2jpiVFKlQB8GMBZAHoBvA3AzQA+CvO5fiOAV2ut104IWMFJB7FDwVqA2KFgtSE2KFgLEDsUrBW0o5O9EMBRrfWLlFKbAPzU/vcWrfW3lVLvB/CrAK5q9ZCjaYaP9Rk30Q4YqtFm2kxHni8cte7N6Yg7md1RfiMYxbmg3yt20xa729iF5VzE7J5kl+QW2mz30LJxWW94nKdVJduJArL/TvMu+y8AYMJTpaq3H7Dv904ydoPVEnZrmvRW29AnCgX/BN7Ev7PHvOOs1G8GPpP2MA9up832fZb6xe7/OU/7yOatS71EcVEGvZt99Ii5bwP9vjn1dDJ2X26wdJGNOTpZR1gSO8yQNdzAIVpHKF4Qb5obINrBAMVxcfS4XMwZpk0FaD5VKhe3cXaKNr3FNp27uud2EBJ4iG1yTAP5DtE5AO+6jlJjbHmlkbgi7ZAGaDzsTh6reGqZS/dU0dsux4+Yse36cPV449xExdNceBOhc29zvn1LaYklsUNMz6F27U0AgELF5nc3Uec2+Fg32KUAAEM/5zfFn7XX53Fv2fcn91gK1ZG6p9ccqXghERdnISYI4uqZqRLct5aZDhGIIcQUhttt3aS9vmQP1nzfOWhvo7AfmCfTmaI24+hk1Ui6Ha2YKRo5sRebrFi+GaEyYDQoL2huJ51gCeJyLFFf6MfFUHvgsnJtjzc5T9X8GMCUwlC5cb+aurGLKUEB4QTu/w5TnJlbejyVst5rxpl77/ViH6fd5Sk/OzYY2nTfgH/WkcPeBq/LjG3eUPK/7635sY/z6PrbHE0oQBlicL4bY3ZE3GWI6M0jG817E0sbA4Bkx4P9g0tm7Bm+4NbGqbMp33facWqcYs+Ui+EN7C7uGM+LgNZUKYslscMESYMa5amczcIDgKdNp9wPpc20LICEFIjO3k/jhaNI8dxylt7lKFJMIXOUZ6BFnCiXbqZVoZmanpv8udhSkfaXo2baazjeEPe7jlJbr4ft1NlxlEIeOA7FYwR8u5+rhelkzuajIgWUL0d1ZjvciOaYNyG0o5N9BsCf2OMEJmzYxQC+Y899CcAvdfQmgWDxEDsUrAWIHQpWG2KDgrUAsUPBmkBLT4zWegoAlFLDAK4E8BYA79Jau0+74wBGI7cLBEsCsUPBWoDYoWC1ITYoWAsQOxSsFbRVJ1NKnQ7jEvxnrfUnlFJ/TT8PA+3lpWbrFVw3dx8AYMQqOI0UvFu4l1z/M1ZHfoyUhVj9IKdW4XSoa2Ht6RDKAbWeAoniV3pIoYWoMf3OHVshffBbbvPHRwxtI5vxaanP+Wcd32PyOEEqJLNEmThO9KDxzOT3OKthZM0u3lzcEqI3uRglw1SuTPKZOUQKKXcZ+lt90zZ/AeuOH7dKZDmakf/ZldwQOfW2cYwUPl836dlY9an5gr+0JZbCDk3a8xSppA0ViikqIW13c2zVkSJUqnmnNpejkPn6dHGQWPFnrk0Mk5jruR0yp4QSUAkCFmjd23/zMWf8tY5qx7GV+LmNODP1sLs6lIZcjBJq18dgKCVMM2HlGXd+stKslLQwDT4v3WuSLYUdVqfqOPq/Jm0bp24EAJRKFOvi4Z5Olu66xGbA28spe77QOO7/oaeTHbA0srvmDjfOHZnzdLJyrXXfmAWpUuF4J1lm6nyeYvVw2e+3dcN2eoRopi6mDPcPHINgPtc3WuUaajP8XGdHTKvIxWSwaWXFspj6WIgWFFLUy10XiTW1XFgKG6xldYxXDHWqHlBPyrXphsonUZ4D9Ewg3KZJUKxBo+UyzdWli99Btnq04umTt9C1B+1c4vqin0uMUDvaOG/UOQfmfL5mKJ7ZoczY6/001zhC1DWmk7n8MgUm168F+peQqmOe7s6qUQHM+vEgmzrW9HPhVK/8d8YWr4S6a9yM5ceoXKZIFXaW5lOOCrSYWEpLYYdpkjRUP10aclSqpLnNs50yxXu46PuXYauQOhSI1wZ4iiTbXikJ2HxgvslpBcLx0vi57l1pjlbVWiU0ZmeufcWUzgoBJTF+lpsr8zgaUxx172JKHcONz9xW+X43P+V5ao7aRulyWzuqNZ7nLgGdTCm1HcBXAbxZa/1he/o6pdQT7PHTAHy3ozcJBIuE2KFgLUDsULDaEBsUrAWIHQrWCtp5Yv4IRq75T5RSjv/4WgB/r5TqAXALjCuxJapZHVNls+oznZqvuiO8yYngvsgqgQ34C+G+6kIRlYH2X8juPt4c5lanAGBPj18B+nZqNtkd/4z/Kh0qsofIrHqkiV/9SGg1caxiVgTu7vFFvj/x9+/n1SC7uXC86tMyU22tUZ7TOLfH7N05Qt6V/Qe9l3fkGuOJ6SnSKsSw34ybHTUrQPUJvyo1N01Rtu2Xfy+ttm0hsxohAYfNNjlDta5XfZbEDheDUFRmIO+VGbWCBafB1z1v1HSblA/C1+EkrYaN2RX06cDKHxCOERTb+OeQBjbTAn51hVdaefWGrw1t6OdVlSG70sciB5xWt4IzVeF4C5SvwOplrK27dsv3c1rded58GYtS7fKb5latOrLJJbHDSqWA/eMjJl3XG0/nps3eq5uc6eNPFU4/3xw87AmNcz3n/9in+of+uQftKvLYvF9Nnq2EN122Qmz1MbRBk5/JHnHXj/LvYynF87A2w+IMHJmdN6ZOW8GL4/VwzIZQROxeem7WsB2K/k19Y94r0BxngcujmtZyzwTax4xYYizNmFyv4eis8dKFVndZ0MS1+dAqL7AgPkfgWZ3G1sn9TuXLHtmjmR+TxxNjY9yXhbzlMa+zsxu2Bfbe8nuDnphAv8xge3PPmq76vnCs6Mf8Qz1+TL7/kBl/N17r+4QSl1ef6XczWrUe3OTTveOISetokSKtc30EYnXkvbThudkCLIkdJkgam9Qb9UHel5C3vI/ite3s9Z7orUUv2jDgos2TPfQE1uw5Bgp7xuZSU1+zqS9XHpOraLaDkCgO4OeX7WINhWK0NaU34N1gm3fCEbl5LuXL1T3XN4+psfmOA+fL5ScmcuDSkBP+WQT7oR3a7Yl5LYxhLsTjlzwlAkEEYoeCtQCxQ8FqQ2xQsBYgdihYK5BglwKBQCAQCAQCgWBdoe3G/qVAhqzhigu51NrprcfQzvXVuK6LTdAzFU9TuGl6X+P4YI+hfXyD3L47Ux+bZZvdhDRK9KleohTNWr7VPnJP3lnzrvFDFM9homrczEwhY9e2ywPn/3jFUzUOp+a5AxS7ZSvppR+ue/rPztvMNRuKdzTOpQP+2tq4Se/0vT5fh4+NNI6P2Fg1k4kv13kq7yJR6kp2V/hshJawntBHmwRPhSnPh5V9fW+oM5XPbiwueTf4saSZ5hOLQRByM9cjm/EayNHJAvr55JLPxbwh/XnnmmYXcH/q79tkN9YyJahMrutjliJ5OPW2PV72FMl5sCBHzWXG56vWXAbzCOerUYaBjYlAON7PaNG33zk0b5xdLtSQYCIz5dhr41YM3jzW+L1wzs3+2p270QQSF5mhdj1nqWNMFQht2lxsfxtCnl5A6bJ9F1MwJhJPnxmzdsb2xLQIhqPK5uKRECXGbcJlWlEPtU9XAmwvHK8jCVCBQsIBgKflMEUjJwgSYEusxGb/blHP6g3qpSsXpley3bi2wxQWppCFNhYzHY+PHUK0FL6/EKDAAvl6d8ccp6IesO2QGBCD6y+LzBV8TLqwXYTED7iPnqs2C7WwMMndRT+mXpuaOUb/N/09pxy40d+30/Rf2QxRyCd8P+DG1xmiZU0TfTlEmVsEnWxJkCRJo927MkzTMP3I2cQpfT5+zgUlL4KyE74vaUdaciUzQWVUoTnMlN32EBOtYXg7a97sb/4I3E/TUNf+YrbFbcFR73jM7qUxoHFfF3TNnHBJYK4REqjg8/ysNDC347wUIzT2RqygQvd95fqfTQoEAoFAIBAIBIIHFOQjRiAQCAQCgUAgEKwrrAydLMtQrnWn4MJuPHZRsZJYCOzmdq6vHL0iaaaTxVRXJsozTcf3FTztZHOvV/Habmlmo6lXqOqjPNSs6+1olWhfRCFjVbS5arN2e4g6x0opTD07mhg6GSv0bCv5dI0XvNv1iKWzzP/Eq6bMzvrfJ+aNm3uCNLv3lny+7rLxc/ZldD8ppfWQa7rflkfa1tm7OgipaKQRWhZrzm+xcSh2knrSSI8/7i0b1+8YuYAPE41m2mrZs8Icu/xjMRVCcOlOInQPR2EYohgCm0vejjcWPMVqyNrPAOV1mI5Hbb5L9K4Z8pMftpS1nOoU5WUs8ypalUBMmSq71+vN9RGinKQR1zXHE9jcY/J7Zskr29y0wnSyaZv2iYopo7F7fIyDnutubRwXS81a+bPX+jgwY+np/rmLiPXQDUKqZTFlrhBtN0SR4DoqRRQrQ0pooXgETFuqFZrfz7YXa9duXS8Ul4uRywuNSaF+OovQRBvn1iDdLJSmnMpnjkFH7dT2BUxxYcrgoI0PN1nwYyuPXa6OY7STHN0loApVb/N7qI10opjkxqwYzccNcxznIv8uc8y0ssmU4ipVJhrHN/aavqBU2dA4t/ta319vGTJziCzz5XrftFfmur3XpHF/3c81HEUdyCs4urlRTGFqJeDbnylPbiMlmj+MlMzYdE7Jx8d5dJXKpcrUMPPMMlMRqZrn7PmDRX9yPEBnjfU59cBxjrbIFCxb9wk1mkKhmYJZon4kp7RIFO8NpUEAwCZSYuPxtWz7LY4FVGWFNttHcv+Y69eZwu3+zcLtK0xj94euzXC/zHkJ0VCZUlyGp1i3gnhiBAKBQCAQCAQCwbrCinhi6lmGebsCEVox5dWNRiTV3EobbdClrzr31ZYGNtgB/guyJ6UNcLU2kdDpS7PMq8K1Zn3t/LXm/BitcBdzK9DmWv5CniLNeBYUCMU9CEVSj8VocGV3KPGrO3cXfLq20wo0KubLvjz1/7N35nGWHWXd/92tu6dnenr2JXvIUiEJSSBhF4GPgILiEhBQIUZUhJeIAirqi4IIorKpbEFWQRQF2RfhFQIiq4Q1W2VfZjJ7z0z39Hq394+quvU7fev0vT0z3X1v8/t+PvOZ0+eepU6d59Q5Vc+vnif27PfT5KqJIXeOKfJgjTVjWff6XDaHKNMxXyPfj9QET0qtsqykPBYp70Vm8hndT44/v96bxJoSeaAqcVRooOrqjnPpDGWO5eqFPWdZT+TCI4WdRhJTE9w5u/H2cvTEnFVc21p+QN1tu6Ma7/0Q5e+o+8PO0OmPJfLI1NieKulcH6F9qOVMwm1NIqRgGYUSBSxI3S8qC48MB2/TOYVo8zdi+agXgMN+JK7WcKOpxUNxYm/hq/G53XCfSwRDTjrc+P3treVdQzSqyht5ssEPTt6IfypfUbeBVrhc7GXPeyekJmgzwRPC7QsHFEg+yzkj/SlPSepcmYzciezbTHbUtn3ibGyLlo9CoZAJdgHk54lJec3Ym87rwz0YpkzpG0uxrQm5W47RuoOl+O6Y8EqFbryKqYnFmUnKjXYPXkcPohaQ9QAAIABJREFUYSelR863RqtMxfYJ3VxGHr2eJa/MoWoM8nNH2bfB5CHfS57kDXO+XaXz7h+KJ7sT7p18z1wcyWalRypIUKeAR0tJuGepe87BD4L3wSDazsXkzd+wkfKRVZ2dzc5F26zW4/KRmmt3p3lSPN36ajPkK8zJC5TwuuTl10o1KZWESmCIFDJDVK4N5fhOPrvsFD9nItoDP4t74N4HuymIylH2xPhvDW4rs0qkWIeNDt72FCklBHtfOJjOOvomHfHtxQZqN74jT4wQQgghhBBiNaJOjBBCCCGEEKKvWBY5GdBsuaSC6zYvDjyK7ZO7GN4v5LRgmU9qYv90jtwmuAzzJBHJ+NhULJ4gF66BY9anAgawDCEbmz3Skj/kuLZDXdYaaTf6nHc0H6WcHPcUD8YDRI8dbvcT/ufIVTrVJHezP+4cTXQ9Vo8uxyNeTsZ5atjtmpFoJa5npG3N0jJfetXNpM4A21aF+v/Dvo6GKvF+lsvtrnG+2yztqXrdAeeeyJPOtCaYZvKldCg3y8m8G3mUJvCfSfmOHj4bn6WHbtoPANj8QMppMx3LePgu59Y/eDi6uw/UonHNenfyOs7RQpN8My7tYBvkuU7VQadrzZt4y+da713WprZ8+RCYuQJwn7ePIS9F2t+M9Xb3kW2t5XXXezknXfjNLB2px4AEYYJ0p4AgJ4NW21hIrOuCRmv3tIwlJSfLo+YnzNaLJP/l3CPFMHE22kBGxUrNUqivPLlUIfH8NRMT2zPyXyo/l6vqc1TE61s+QVkRRayhXFHAPNkp1VWot7zcLxWWxvrnmyVkmyjYzbCfqL0+Z4JvsF2WWnOQhZRtd7KPPLlY6lsk77619snJU9VMTPxPtUWFjCw8neft3uIhAMBUJba7d5PMJtQ318VkvV2aNlaNUqvJaqxP/u7oJJ9caprNZpuMjO/HGpJYBZvaTjP0N2+OsqnRM+I1hkOQsh3VCZIX73JfHvfWox1Sij/KO5aWImakZV0G22Hbq9A7MUzW31aJkuJt9H4+h+RzD5tx571gS/ye48/M2/e7qQLfHIpBIe4oUoCHpquQcQpCxN/PqfxN2Wci//qAbFsZ2heWkO2opPMsnuZz/JxeixfznfZTJZEnRgghhBBCCNFXqBMjhBBCCCGE6CuWJ08MyOUW/iukozd0jETDEhEfaaGSinoFoBhcgnnuvnp7WTq5BtndlpKDzVEktFSkhkxs7GJ6ubV/Qhrnit1oOxYSsgyOrHGEpGUcySzIAjK5RMi9GFyF7NKfpLj+k97tn3FRUx3xdYUgV3xvR7B8kp4C2iPKZCKKkB2E+s6LTsKEtTPVaIdVkiqNN53Leopu1zTppmZ9VCmWIublqUi5plORZfh3dvGGiCA7S1ECdnE1utQfuX1va3nrs88EABQvuby1rrn3vtbywP98FwAweH2MplXfHd3Ye5rODc73Oy9/Tev4iYhkTCERWx5IR0LJy1WxvuCWDckil5NZNHCXjwJTakXpir83OEqOl50dI4nnIcr5sH8u1v0xLxlhe0hFzOmlvCR57W0q+k8ewaaq9fQ+pWaibc2RkQY7qpDtVJr0XBfcszqXIztKRUpjOGpa1beZqWiUS02hUMBQ2V1jqKtUPikgSno4mtA6kjet5Tww/p08Qp8WHImx4uWTA3SumUI81rg/x2wj2jvnXsmNAJUg3Iu8N0wq6hqTikaVF00vvAQa9A4pFtulZXn3mN+fB2dd/rhJktSlJI18/SxTDO/3TBSyDtHeFiOrPpkUCoVWpK5UFEFut4cSeVz4sipb47alnV62RPqngT2xrRwec+/aQgwKl/kySOUF6kRGSpiQo3JEMpbJbaq4qGvnlaPU6kG1+Ptl9djen/cQJyNb84jT4onXxyibW350FwBg5LNRqL9mIMrR7g7SUHoqOGfMdGmubZltMyP/LWSvDwDWUj7CLYNOHnf6QIyGy9FPzyEp33lz7hynr433qFvkiRFCCCGEEEL0FerECCGEEEIIIfqKZZGTsYwnlWQwI6vyrkROtsVJgIZLg23LQVYGAKVEhJcaucumKFzFVNHJojgSCrtdU3KxPLlL2JbduikX8EA5fV2phGsZCRlH/Aqu6XpabtZIyAO4XOPkngwMltMynHCMbGJNSrCXuO6MC5YjvyXlLMsbISqULSVRYRlOwcu9qiQP5GSCEyTvub3i7HCqHl2lnPNs3Jvs/kKsoxoS0jWSkOUlmAr3g6VvnPRx/nZA1nW91SdQO5cinlxE9rDpEdE+iw99DACg/MBHx7Lutq3l8riTPaw7eENr3fB+TrrqzlGnay3lyMlSieOYcN/KpfboJwAwUnHnyrQPJHnZTNFezvDh+c55wJ54gkMLnv6kUm02sKs+kVnHzxfbQUgcy4lBp+n54yS5IVpiXuSckykjS7XjnUjJf05GmVKR0jLyGb9Yp4S9HMmMCTIwlrEw4X4U69F2OYJRkGGto6THee3wjJdMBYlZqbB88sYCSDLj37+ZZL4kywzP1EZ6hnYUKVkuYl2NeulehW4GRzSqehtg65+g93eod5bj5cmiQntdzIs+lrDN1LdGN+1QOEcmkhPZcygjP5v8Pgn750Xda9Az30r8yxH28qK5Js4V9suT0WclbUW/LrnpklNEAYP+nodrZMkeJ30MET0PUfLkI0eiTW5tRKsqbN3kF0jidThK6ud8EswZGsYv071f622e351z5XRUt9Q3Bd+jICMbKqe/Yzf5Z+mcRlpCds6F8eU0dNlWd/wHXhDPtf2MeK6NTrp1zl3fbK3bdcupreUjA+65OlaI1zJYSEcdDN+v85PiBsL18rfj1qEYYe28AVfWBxbid9F5c7Fezm7EqGmnbnffEqPnUji5LjNQyxMjhBBCCCGE6CuWKU9Me0x2HlHlCU9hYm4YWQWADeXYk9tEy2sLblue8DVaiL3CId9H4zG3CRpNP1x2o5h7SrEHvweHW8thRCSPzEiKP0uzyXHk2ycB8oRJHq1j70c4Lk/uzozS++WZYixflSaMhtGq1MTE3PXsdCKrCKN1eR6q1ITBzLnAo00rP7E4nLvTpNBWHTbYAxXr+0A9jurc5D0hd5XSXqVwpipZ4jTZYctDxXWVqDeARgSL6RHBlsePRk/4WdriR1N30Ejy8ACNMM3Q8sH7AQD1+2+L68Yp35CfcMsxCGZr8bwz5XAtkWbOdcW4/AsH9OAR4vWVOAp3+qAbedtZipMcN1FbsLMRy/XIGffcb3imiSd42/3J8y4FtWYdB6v5nhh+7sMIL08I5+ePR2uTgRB4ZLmQv93JoOMk2NRpjzPPzPHQyPFKFRMTiTm3QZnG+kIQjslS9IDxvQvt+AbKk8KTaLkNCMea9ff2SPHAoq7nRGii2bKpVNCZTJvjbxK/Z0do9HYjRaLY4tUBa8j9UqV7POGH/GcS3uNQrvnn7/TuyQYkiGUMXhduK9mTErbld29mJJo9U74tGaB1nDttou5GlY9S0A32yqTIemJokn4ifx0PN4dyZdQb7JkPSg16nNj2M8GFCtl9lptiodCq/5RnjJfDs7OH1BG3VeP34M5b46Tw0TOOhhO01s3cET2d903uBAAcGYr1sobu7Rafw6ReSee8m6Rtw7dZnicmXF8m5w19x27xgS1OnYv7n376kViuS+KE/6I51x3/7Iviug07WsuNafdeGdgazz90U/uznNfSclCn4C3iAFNzJXr+vH2yImIb5YEJHpjLZ+LZzhqK772tp8Y8RmvPd+ctnxe9SrgxBhlaCHlihBBCCCGEEH1FR0+MMaYE4J0ADFwH7vkAZgC8z/99A4AXWmsXjuEnxHEiGxS9gOxQ9AKyQ7HSyAZFr9CNnOypAGCtfbQx5nEAXgMnAni5tfbLxphrAfwCgI/lH6LQksEEF29KQgZE6cvmSoxzvbMclzdTTPkQk35zMx7rLPLgnurduexu2kuTfW8b8IEBKnH/Y5Q7YrzYPgG+EzxxMHWNLCEbpYmSaxMTSXkieTWRJ4Zde1ON9om/7M5maVxKAsbrUjK6PGlaazIex8TPyW8TpC+1DjHrE5wEG5yXryhxLalJl5l6odwFLAcKE3RTeU+AWB9llmtQOcJk4TzJUCMRtCF1fKCzhCK4hidIa3DPbHRtD38z2sx2fMntf85NrXXN2fh79db9AIADN0c7vg/Rvg/5ydOTpFWcpMAaHCAiZZOZuPuJibHsng8ysoc3YlkumIvHP2NjnBy5/QnODouP/614srdd13b+BCfFDuvNBmZq05l1eXLPkKeolpOvqFP+hxMlL/dBp7wXSTvNmdR8oqSCDBQTtlNMlB/IPrdB+jFajHa8qUABWPwxpijP0xxP7PfHWksSsgodv07XPevb8aoPPHNTYSz3GudxwnbYaDZbbUywobx7EtqnSQpmwrLsA3R9c2W3vJWCzgzyxH6/epyCLBymd9eEf/9m3l0k4808B17O0iympVKFxGT8NYkgQSz94/s+TJK5YX8/2drZBg7693eeXVUTgVpYNsrPS0pSx7YdJG+ZNp6DCNXbAwMUEpJkLmMx8+7qqk05KW0hE96JXFZ+Twb53hjZ4c0DNJXgru2t5Qs/7WTPzUa81lv3RdnVTYOuDqfoWofpO3Kr/06s0++1zHPOssL2AFAcbCoEcBqmb7yNZGcb/Gf4Znr/D59GQR0uPLe1XLzkUW7d6Re31jVr8VlpTjuZe+0oBbOib9IZH1xoNidw0BCVsey/i2dLsb4nKcBMmMLAAarW0/f1di9ZP60Sv5W2nR6Xh8+P3/3li89y13fhJbEw7/92sozz6Sgns9Z+HMDz/J9nAjgC4HIAX/HrPgfgCV2dTYjjQDYoegHZoegFZIdipZENil6hqzkx1tqaMeafALwZwAcBFKy1oYs8AWA0d2chTgKyQdELyA5FLyA7FCuNbFD0Al1HJ7PW/rox5mUAvgVQkglgBK4XftywCza4fjlO/3py529CdEFt9lFRzqpGl+Ol66NLfssFTrLRpKgPW2+N0rT69AYAwP6B6ALj83abuwKI7tyRgVg1GwdjpKQQYW19KboR2fW2liIpBTiSTT3hYp0rUu4XijE+Bhf1oVN8/QzUnc2TjgXYdR0iU7AkkOuNo6ZN1xaO1tKJk2GDC8lYUtIydulXSeI1STkdgiwgz16iyz79e4h6NlWLrlq+d52kN2yHxWZ7zHqWLRzx0o07KArP5FC8d4cmtrSWz/qc23bT4Hg8FkU1O1Rz7vv7KE783QPRdu6Bq6M9tRiF5MBcPNaxKtVhPe3eDrQi9pEbnOV94ZnYXIvXffa2aBKbTLS90inb3DEP3LvgOfM4UTusNxsYn3NS1ZQEMSUtqSfyLeVte6Jk7CknUlAqmlE24leifImyHq+sLCVzKyciU3G5U+uAbESq0P5voHfODsR2emOz/X7NFLht9sfnDegS2cpjVELHHYuMs3Miduiik7nSlPw15d2L8E6eKMb2aYzeV7MkDTvkr2Ef5UMbIZnOlN/2vkaUau+n9mHcR/diqSlLsTrJFPkeB2ng2nI6d9Sol5HtLEU57al0r0fpXg/5dpVUcjhK1132Bl8tpaMFThfaczgVmwt/X/DzzDY67K9nMJNDJR432Hbe+58JzwzLo4DZ5LYpTrQtbDSbrXY8PA8s++RorgHONXY3PTLTQ/He/XDMvZtmqYrH1sT392zTXeMgtwN0v8M5SvRMcs4avjeDzWx0NSD7HRm+7dbS/qP0HRtzK8XyFcpU8HXxO7IwEt/PgcbeO2K5fvhDAMC+2+J37n46VpDPcdRYvvf8fRruwwzJ5fh+zHiZKUvnBqi+whJH7G3U0jZfGHYy8MKW05K/L0THVtMY8xxjzJ/4P6fg2unveB0kADwZwFcXfWYhukQ2KHoB2aHoBWSHYqWRDYpeoRtPzEcBvNcY898AKgB+H8DNAN5pjBnwyx9Z+BDN9Oi/h0ewp4t+UjpNAJ4r0egF7TfiJ22djjhJduuFcXngAtdrbRyKIz3Du+NxByddbzQvi3insvII0LDP2r59zYbWujMGNreWt/iJXGtojK7EI0g8KTV94hahNqZohJ3LHeruCB2/lhnNao99njfBfX5+HyAdiGGkHAdheCIlj5Yf9YESwij0IjgJNuiYP4Kcd90peDRrJjHK1WmkOu+84VgztfToY6fRah59TJ1/kjw8+4tuYl2jHI95mEadd5FX5Qd+Yl8JcbJ8lSbRTpVdGSeaFAyDntuDfoT10FyczMf3nj1znSaoh5EvDngwUY3P+v4Bd9x9FH9/4mgcVRraFe/XwISLPz+4tyuTYU6KHTaaDRybc/ek2Jog355Tym3bfu9THg3eNu/3QN5k/WRQCFpOlSsvIEH4vUDn50myrdU5j8liPDStcufkHktNXuY2jCd7h1HTYWrD1tHk4A3+sRxkTyfXSyg/la+R2xRk83kMtDvj8zhhO2w2o2e5XujgifF1OUPP9jhNxq8W2r2omdH0RGCDIxRAh4PphOAmqdxYQPa+zi8fkL6va2l0eYQ8MUEJsYXav7Nq8Vg7q/G6hr0PbY7eznvJ21Tz3pFjlMNkmiZEh1wieZP1M55Bn+OL13GG95DDiIMBcesZ6pOD/fD7ituEcI6siqArT8zJaQvRbE0WT70D+N5PeU/gMXpeD1Md3EfPbDgWT8bnY4W6G6VAURzIIQRS4mAWrGhIBVoYov3XkZ2NhDaFvv1GqKzhVTxOn+MTd1BbduMtrWUMOFtuDMf3XOPGH7aWD3/GvdtumN7ZWrdnIJY7fDPy88m5jzLfwn6Zn9/U+yTrxYscKrlt756N3w/Td8dr3DoWc+1tPfA9AMDQgRiAp1s6dmKstZMAnpH46bGLPpsQx4FsUPQCskPRC8gOxUojGxS9gpJdCiGEEEIIIfqKrif2nwicnyMlK2N5Q5jQxy7myTK59Ao88cj/X0i7wZtTzv1YO0hyl6PrW8uHS+4Ik820rIVlOsFl3ci4J9vlCesp98uOYpRYbYVzX7K7rsqyD7qGIT/Raz1NiBqm5VAbh8iNXqf9D3r3JssDGjnLYQIu3wOeRBhc27yO44IH1/bGcrzuAXKbzpB7Pbgw2S0LnNhk/8VQQCEjPQDyJx6H+uB1qVj/7hjOJoodpIjsimV5X5BI1TpMYM0cq4OMp5kjWwhyDHYnTxXjPdhL5wiu+FlyqXMum3AfqzmT7cPEUpaN8QT+TgEkmHridw6EcKDmJGu3DcWAONtn4+TGsbuiez9Q+QEdcxnj6DQB1H2dNVo5Tkji2UGKmHvccO9zJvinJsCH55uXK7QuT15b65C/JmW/vG1YzpUZd6iCbE6YYltZM3kzgiyCA5KwhIykH2u8JGSIxvcG6VxBRjbc4OcrIfmjZZaTkRoTFX+sit+6sggJ3YnSRLN1D4Lt5T2DRT8p/Vgxvkcz7+xEUJp6Tq6R0O5Um2m7CfC7t4l2aSAQbSxjz/ye8hOpOT/HGipryDO3kQIPnFqN7dt5G+K89HUbXVszN0UBC/bHRmPKy8UP0bkOkryoJYdNtJ9AOvca2+gGksnuKLuJ3lvpW4il6VM+uMAR+q7h/FxzXPdhojfdgzFE+e9S02w2W/UQ6obbBG7LJvy0gW5k2ylbZttY6/P1HSapIU/cbyTuFwdU4fdnOdgnP+d03vDNxyWt0rGO+G+3uynnTXnX1tby+R+Lwao23fR5dyyarH/01nhd1+91uXBuoORM++gbawbhmY8M5cjJwjXyu7dMVxYm9LNMb5qCANzn242pQZJ4UuCMygxJ7r7npl5s/g7dt/ipviDyxAghhBBCCCH6CnVihBBCCCGEEH3FssjJAHLvec8TuwwLFD1/zsuP2I03S+7PmWLc74CXg9lGlDKVvh3dUZvvcNEPWEJ281xcvtNHbdjbiFGOWMbGRCkCyRQSEqxKrmsu+/9CDPn9To/KHOzkaDD+KJyfY6YSl3cX2uOWd4LdoyH3CwBsGHBu7E3lGKt8XUp+QdddoaucIvdirezu3QxJjurLKCcrFgpYW3Hu45S8sZqI4JaRgNXT7v9gB8UcDUwrHwRLwOi8wZV/vDkzsrLBhj9n+t4HmyjnRBSZ4ghEPmcDRwHj3AOhvvJli422dXnX2G2OE643jlR2tOrKenclRiJcNxDlHlua7XKyepfnXEpSErBMBMSETXG70zESGUsJvUxs3UCUUAxTDo2Qd6KSkGIBWclJaJ9ZPpjJgeH3YwkG51mK0ZJIrsG20eHWLCb6XyrCYia3AbddQZpG8t1KRgLm96HjVzIyE7fc4PtG+w/Su26Nz/M1WK75cy8coe9kM/+dXMuRy4b6O1aL70a+VwOJXB6dJI0sQUlFy8q8u2gx1daw9CwVPZTfw3yv1wU5GSV/2VmhSKcXUaTT85zcpTkd38OVb0aZz757nYzntqF0uxvaSpbA5tX3oH+vcxu9oRSl6Tu9TP3MRnznb6xxm+GYIjn70RJHo4znPerfz+MkGR7DnmS5lppULrBMfrvEe3KhqLdAfg6hcB8myvEec30XU20G2Xnq/TlHeWb4m3XKt3FzLIOjx+Owv2NHScZ7mHK37T+yrbW87WvuWNz67aEoeXbQnXcXaDoGfYMF+BuNl/lZSeXt4ee27K+H2/hM1EIvVdxLdcXtxhy1hWHbZmnx72R5YoQQQgghhBB9xbJ5YuaT10MOPT2e9HaMene7CzHPxJgfSbmzEve/kZLG7jjsvAecJHTXYBxxuLPuRm13V+MEvola7JlzLz+UMW9SWVjmCY2ztDztu9403ypT+Zwtdrsv8AMKMY72ztNipvPqnM+ySxMLD5Xa499zdlWu41SeGP6dR2d3Vlzem/PL8Vyn0ghQmPQ6y3lPaJhhnCbLDfoeeXkgnuteHMVyUSoUMTLgri2M5rDHj0f2g8chd1SovvhR006j5t0Q7hfbXmqiNnvTQi4fANhWcfdxJ3nWeHTkYCHa/1Qifv9MjYJsJDwxKU5WJvn5cLlDQJADlP379kq0/4OUC2Kpy3WiZOozBN6g0bDF2BHbyVqfy2p9JXqu15WjVyZ4YgbJS5HxxKCDJyYxmZttZ7rY7nXNHVVNOFpSOXH4GJkJ4rRY8u1Ro5R+3bFHbs4fY448/rM0kjhdbB/dL9Ik/+hxJ+8CLQ/RKPj6Yfd8Da919VKeWxl7nO+RAeZ5CdoHcjP3rUa5WVp5x9B+f5i8XEUBHv1tZmyw/Vh5I8WBvJa64vcbog2GhuLFljfF92Bhh8s5VyBv/PCu21vLa+/xeUmofJzrLrRPVXrf5AWKKTV83p6M3UQb3Nh0dryNPEhnkYdnx6hrAwfpWmZnou3vOxqDBNzmn39Lqo6YdWRl4HtYa7TbUeadnBMEIHncBuUr8vvxPeBvu/A9xMEVMl6+ItlkoT0nDU9wr3kLbDQWbrfZO8wBIvZXOJBSexs2Rnl99vucbewRYfsPnshSgZ/ZSCnxrFXpCFW6xll/jbWcIB0T9XZvPH9vTdfbnw/+BtuytrsAN/LECCGEEEIIIfoKdWKEEEIIIYQQfcWyyclak5/DxGKSwGRi+vvt2O10YC5KqSaKUe6Smrg+SPKlUT8ZjidpTlSjm23MS0+OzEXZFk+8Y1dlKCPnAikmJtjypHWeUDXsAwJUqMpHqA+5gzRvxgcX2LEzXvfgevLp+9VrSnHdxnp0fY961zC7QrmuaqnJj/T7MEnTzii5XBsPrcZjmUaU9FW87OJQLe5zkGQb4yRpm/B1uIOOfy/uxnJRLBRadRLcnnkThOuJSemNZvvE/5NBsJ28sqQmqw6S+390IMqDQiCGIXJHj1As/NP8/TyF4rVXKXkFyzWOFBcOENFpUnonOslMFrN/kBgcqcVnmct9mOqjn0ZuUlKfTttmpLqJXFbcLgxTkI5hf785lwZPhGbZzpzPRTGbIyUIdsTt4UChPWgKP191knBxuYN9sfQjlW+oWadj0f4hUAHLUFjqc7QW27OGn1jK1c3SkRlfHyMkTVlPy2sa7TlfOAjAIEkzymU/sX+dn6x7ZGXljSkZIxDrl6UeeW1C6vlNTcbPazOCjIdtrZEnI+wgHwrl5ntdoXIfa7rnYIK+GcYmo/R2821Rmjo8cJ8rK9vC3nissZKzi8PN+P0wUY/fKtMtOVlaCsWEema5DT9nJV+EdSRp3jYS270dD3HPWfn8OCG8UIrP8c57DrSWN37JbTvWWMZEWfOYn7+K7zHL3IOEu5t3TOrd0qBnr+G/CdmmK8X2yfrcJnUKVsGwxCq0gbyOl4N9Z95XJC07mJPnKDBJQRmCrVebaZlc0x9rKJPDKMLSsWBznGOIA1+Fc/G3eioQQyMREAbI5o+brbXL97cgyh4Xop/e50IIIYQQQgihTowQQgghhBCiv1j26GSt+NvFdnc/EF1znI9ihtxOnaKa8LH2l9rjrbMbL7hrZ2vtuS+ArEuy1KG/F1xnIaITAIyX4vKIL8sI7bOhEct/JpVh84iTN0xPRjfi7j3R3Xs/nDzocCmW6VAivnYpR/qWgut1Dbkvd8Itn0NuxG1bo5u9Ouvq9tjR6OZkKcVa8piv8S7cjUjnKFl6Cgu6olMynLyobhRopGN0rnDcvHMXg4SCzl/MkWuE8mwYjK7WM9dsbS2f4uVigzn5ikZDXh+SWOblSwlu7kaH62MWE/FrMdKxTucKsgDOacPPcl7ukxbdea5XjOPNIdSpjtnmQlSy9fT8j5J8oUL1Vg1yMZZI8P3wsoSJQmy7y2TTwbbyngm+X622laS+xygPQr3mfmd5TqPQXl/8TslbP+nb7MkyteMUyW+Dl99tIAnSRpLMrvXvibUkMRuhNrBYi+UanXX7jVB0oV4hFQEvTxbCJKODJY6VuVed8sRwuRLbMploePV2ucscSbxLZbf/IL1HG4UovT18yymt5VNud+1KkeRF983taC1/34c4212baK3jvDqdIjl0hKx7AAAgAElEQVSmpLHHqnH/gwNRLnakFL4i4jMyvC4+Z6Wd7vfi6afGE4zE/HjlkdjYbbnFRVgr7dqQLNdSUywUMOS/jaohKlsi1xhA79GcyLYZ6XciJt1ipM6dYNsLuQHLOTYbojZyJEe2w/CequdI1EsJaWwmWmVCmpmX36YlDc3ksUnXS4iwxnIylmZOJyLupeRkDMvFUpFfj0emL0+MEEIIIYQQoq9QJ0YIIYQQQgjRVyyLnKyAhV15WbmKlwaQWylP4hX2K+ZE4wnJ1djlyOUIrqvcqBMdpGtMKCPLyQ7XY9SbEPlnLckkquQOnqb+5D0TzvV7NyXru2UouiL3NJxreY5cptwbnfRuS3Zf5kV1aSWKy3Hvt8pK8qPDYzEa1oGac7/vpiRMR0ktxlKlil9sj6+xXDSjO9W7QPMSZ6XIRAlje/CLbJuFhDSMbbNM0WKCu3e4EiNFcZS9FJsHojDRlDe1ls/wUcf4Hk4U2qNGjVHSvbFmdBEfqEfZQkj8yu7i45E1nUw3PsM2HeRkeckV89qIwKa2NauP0EblRZMJDFG7tKEZn+s1CTnZFNVllWxuJhyXqjoTBcdHN8skmONl2jFIL1L3GwBq3pZZKpyS58yQAorfKRwJq1x0Ep6JcpQlHinFZ2Ktj6w4Uo5RrEaLUYIU5GajlAByE8s5KCrQ0LRrR4fGwvUtzXOSR2ijuo0SmIkkR23lHNqjluXJl8N+GdkJHSskDuT9cyWR3kTykkbOol0+yO/n8BxMlmM7sbcU7+stQ7E93uKTaLOk8uCaeN131F3I0P3VmLyZZYopSW5e0tpQHyyjP0gRWu8pu++D8ypRYj45Ecu6YZ+TtBVG97TWFYZjQu/GvkOt5ekJL+VaocS/BRRa77pgO/Uc2WJ4TpsZe+C2vNG2vtP7Ks9OiwnpWiaKXqLd4nXJZLxIf9OG9ytfa57thHJlElxT+zLkI09mItMmfBUsZ+NvBbbDmZDQmKKfpRJbciS0WuJbneuwkfONdCLIEyOEEEIIIYToK5Z9Yn+Ae8jc82763m43k4nDMeZ4VI16d6G32ymIQGZklhZT3ovMiEmit82xrw8hTvIL+9XK8VprxTjB7sBQHLmb8pNS72rE0ZNds3H5aHWqrSwcvCCsPzoXPUEcvCDlceBRgHHKm3B/xY1c3VyJI1SDTcoJM+jOdYhG9ucKaY/GUNNV7sbmyvSdG80m5uZN9swbEew0QT0zitBMrCOCfQ1Q/py1A3H0dtugG1F7wMDm1rozyDbWsBfMj3qyh2s72nOgsPflIHlajvplnqzHHsOxuRi0YdzbD496ZyYRhuvl9BKJOugUVAJIe2v4XJ3ag1piciSPCqVyUWQ9MsvbFC52FKqr3AgJm21kPNp+ZK3RnlcAAOYoZ0yA/YHDTfbEBGIdzmYMwW/XjO3SDLVRA94jMVdITxDnUctmwuPOI5HhftYzgTfa969SHpkqDd6nAnpwezhDHr3xonsmxkrxOVlXjs/yiB/JX0+5mdZTve6jHFn3+9HSMye2AACOrdmH5aKAQqsOQ7vXqc3Lm3DN+XmiE+/4gsrE49Poc85+4f3O21YTAQcyeUfomQ+j3eydGaP7w16ZEb++TKU5Rs/OgarzlHBgkUy72WwPkpLfvrXnRRqnd/ndZedJ+cFgLOv66Tgxf/or7qndclPMB1MZooBGE/GpvuPgRgDA0aGTl/fseAltXDHH+5EKkMO20aT2KaTzqXd4b3C9l4u8v89nWEh7PAYzubTa3x1zidwtM+RdybRVIdhFjvqoSnYUrp2/JcoDlMvL11GFys3XEPbnuz3bTHvmw/pmzvOTeq5TSil0kdspHKtxHN4ZeWKEEEIIIYQQfUVXw4/GmG0ArgfwRAA1AO+DGy64AcALrbUr340Xqx7ZoegFZIdipZENil5AdihWmo6dGGNMBcA7AAQ/6RsBvNxa+2VjzLUAfgHAxxY+SiHj/p9PxgXl/89OxI3FZHdUNUiYSBqQlRQsHJs9uAfZnZ3JKUMuveAay5OotNxhdP5JihMf3NzHynHdXpIhsEsyTLo6UqVJ1gk3dcbNl4iXnpn8mrmW9naF5WZjs1EqcXvFydhK5XitQ1RHU76OZ8ATuuJxB8jZN+RlTw+o0gbRY78gJ8MOG2i2XLqhDvJis6fkSxnZCTsxEx7QlOyKXcCbBmLuiYsGtwMAfqYaAyb8xJb9reX1Z0fZwsw+d97v3bW9te5rQ/FcP2o6mzlAErHDtWhHQTqRycOUk5MpyjUoVn9mcqN37xfbnwP3uytrSq4zf9vUJONqIo58JgBFJiZ9ey4Llhfw89E6xnH4oU+GHRYQ5Qrd5hjiestOlGyXQ+bJVEJ7wJJXDiAxXXJ2ME3P8gwdazAhBWDT53xEYQI0P/8VWg6TQVnKkycZbCbkFik7K2bqhfZvtkuBs9eQeID5ndLg8/pJuDlt61zZ5yuqx/Z6L+dsoHb+Rp+PJwR9OYS0tG4+J8MGi4UChsoDmWtJTcpl8ibo0uPfqqsir0w853mSoJS983Lm/e/LW8uZ2J+ihvZJyHkS1Ky0ptpW7hmSk4UgKPxs8f6t6+L3dL1d8pgpK5WFj3tw1knXbibJYr2ysbV8K9x7ZPOh+I4ZpsNX6dbs9zKyexHttVtOhh020WzJW4NN5b2TAxyIo554zwLdB6DJC/gSctewVHS0HN/P60giGtq1SZKQcbsWbCMvt1InkpK6DtJ1zjNXznmWAhk5ZmLifub44OO2f9Nnv7+7l6cG8vLjLUQ3e7wewLUA7vd/Xw7gK375cwCesOizCrF4ZIeiF5AdipVGNih6AdmhWHEW7MQYY64GcMBa+3laXbDWhi7UBIDRth2FOInIDkUvIDsUK41sUPQCskPRK3SSkz0XQNMY8wQAlwF4P4Bt9PsIgCOpHZliodDKgRHcwak42mFbYF70mRwpRcW7rmcLaTlMS15R6CDZ6CbyT5Cr0Lqsx7zYdix2BweX4sRcdNuya5mvsRV/m/av1cnV7+swU27yqLfkFznSmxQZGVw1St7unTnozj8Yf+fIO8VE3VXoWtYU4rZn1d09ffiOGL8eUfW0ECfFDpvNZuuepCM5tdtknls6794FUrkL2FW6vhRd0xd49/8jN8ZoMtuefXrc74pHtZaHvf08+j3/0Vp3wzdPbS0faLgK3T071lrHUsQgI6vm5MdJ2QmXm6P7hWeUn1X+fdC75Icp4s+aYoykxu7oEI1qph6f30lyyQdpZkYGxxH30F7uVO4FgKRrje4kB8RJsUOg0LKZ0Dblud5bOQiK6TaQLztZB4l8KVkpYazvY3VXx2MkleCIPTMkPRvwEQbZ8nm51AyyoLQEKUhxpmrxHrMUIfVM5UkVTjTfQFbOnLB/sEyl/VzczofrmUJaJpfK0RVY310CrZP2Tl5THsj9vZMcJz+yVpDppm00Bd/rILkdLrMNpiXeoa5Z2sek7CJ7r9sl4tViXOYofsH2+Lr5OQrL/Huqrcw8A2RX0xRBstUGU7Vy+xWkZXspYinLgO7zeYuG6Xkt58h0Qk65oyR/xFBy0/mcFDtsNJuYpTYIyJeTtST7tK6UkycmPKd5bUN4pw1SPqfNQzH32rYB1//aWIx69yGSgg7w95q/UTNkh9wWB/uqdrDTvChglLartZ5tKyOvS0nA+P2d+k6lbTkfYOtbPUeGm8qPU8iUpXuZZ+pbolsW9MRYa3/SWvtYa+3jAHwfwFUAPmeMeZzf5MkAvrroswqxCGSHoheQHYqVRjYoegHZoegVjic5wksBvNMYMwDgZgAf6bRDqVDEyIAbWWllTKdeKcd2D726zOhugeNg08S4QvvoSGriPWdHH6Ked+iF87kyo4E0+tkawc8ZAUxNYs6M8CQmIeYdq9vJvsWcAchu4/4zfE6+N4dnjrVtO1WJOUyG/agtj/oMFOIo2jq6d5v9RMaBtdRD784Tk2LRdgjE+u80epsafcibBBjsJ5tDKOXRoOAIVF+jDbd+3ZY4els4/bR4rnOviOvXuNGiwd33tNZd+pVdreVvD7phtH0cGz5xrXnel1ROBR71CR5VAFjrJz1mJj+Sh2ln2U0sPZuiN2xrxGNVyUN6wD/L+yqxDvY1onHs83kY9s/GjNipEdjcZ6fQvs3iHTFJFm2HhQLlNgkToXPMMTWRMzuxdWFS3iiut2kaBS3X2if3HivF+7GeMtOv83kS1tHo5BqyuTDZtUb3YzKRO4Enu2YywhfaPWdss9yO1hL5Qrqd2Duf6HFPB4ho3Q/OmZMIAJPJP5WTiyo8d2Gftc32PD1dchxtYSH5fKdopq4pk2us3SuTCSRDz3lKacEeoY0+4MnWyvrWuiHKzzFN3pEQsCQvOETquvheBS9kJk8d7Z/xtPjMSJ2CAPB7gb1JQ6V2r9dkzncHB9lJEc7LgYN4/yNFVy95+Xkyz5nfj71OwyNtu3TLou2wgWbLs1TsctJ6IZGPCsg+k61j5OSDWuvfY9vXxPw6Fw/tbC1f1nTfOCONuM/hIr+vYrs15tu1zPdBwj+Q//y0l49JBbngbVP5ZWrN9jYJiM/SILl36jlKpVDGVE4bIF4v58+ZLZLtNrLHmQ8HOlpXce+WLYPxuZ/GoeR+8+m6E+N73IHHdrufECcT2aHoBWSHYqWRDYpeQHYoVhIluxRCCCGEEEL0FccjJ1s0xUKhlY8guC07SZ1YMlFMuNP4GNncFbRtyS2zBGZ9Jcpd1voJx3muuUzOCu+eY/lDZttELgMmSlhyYsN3UD9wGbsJRHAiNBLuSY5Tv4Zc40FOlql3Kt8sHevuijO3+h1xIjrW0yT/JaaJZssdGjzDuRP//DU0uqjqVLCK1ERtXsfu3vGSW390b5Rdjdxzb9zPROlYcdvZbmF9dIM/YMMNreVzZly+gPGBKLFgN/cYnDwwI4Gpp202wNKPtSQdC5Mfd5aj/sAUYm6Cx864c1x89t7WuqGtdN33xOfyjn2u3LfR83knBQS4peLKcIwkFOOkRezUnhyvvGgpKCTyZuVN7A+SmOPJgdC2bSGca2HpCstojhZjHR8hecxIydkqB/lYV4jtwqCXlk01SZpKuYs4N1GKTH0kJEqZdjjIZ0/iPeZjZXI+hXaBpCsZWVGhvSwsp8gGJ8huu7wW2mx7V+XJylrb0eYsEUPmVoX3IK2kodKK/w4I8hEAOGVoU2v5woGt7v9m/H1jPdb1OBXx3oqzoT2N2CbMUSEriTHaKZI0Hqi5tvDA3HhrHQe64OcgmaeKLjy8/4bK8ZOK28p1/jnhCd9c/+VivIZasV0eyYT9+J2ckdEnJoqnJGS8DV/LMLqLMHEy4GA7xZZMPp1LrFhobwvnHysQJLN5+YbWD7j3zGkD0fYe1YjvriePuCA76zbF9+i9d8ZcPN8qRUn9TNHVZ953aFLOvYh8KhlZYDhsJsJUXAzfFbWcSfVBRra1mJau8nd3NQSYAgcsaCevjlNwGzM6EN/1Z61xMSEeWI51fF2XcjJ5YoQQQgghhBB9hToxQgghhBBCiL5iWeRkjWYTc95NG6LhsIwhEwnKd6syUcISsi3ehtdxRLGKj5qwYSC6/rZVYv6lDd7FW+gQZxuIscCnyR09QxE9gkyOc1twFKATzWWQopjjuiv4UEcpudv85eT+CbnaYiKd1cjXeaAZ6+MQ3L3/eqVD4oAeINhRoYuIR9VE5DqW7IT6ZJf/OMXlv7PspATfG9/cWjfyySghG63HIC+Ns85057r9TipXvF/bms5du43c3XNNjsjj7HSmGKUIefHrW8fvEHVtmCJUnVmPNnnRmU5GtuGpMdJaYV0sV8WSTO4bznVcvD+692coyt09/hz5+Sn6h1KhiNEB1/aEXBd5OVIqPoILu/kzUqrqwrlhUutZEjNHUoHQDs9R5B12/3MUyWrZ55yhNnCcIu6Fa+Cyhjw0AEmBuV3MkXCF8tZychul2qbjld91IlWHmfMm2s48ifJK4t7J+c99cRHy5WJGjt1+XzNyVG/3O4aibOTBA9tby0+cdTb0yLPub61bd2FsXxrj0d72fN/JUW6YjNLaveX47FR9EapkH4eK8V7c4SWqc810pNRZeteHusq778WSl0JRXXFU1fA8dMoHBXB9p5+HZAS8ekIilvPu6pQjDcsoJyug0BaZMSPfTEiV8iRLqXdTJtomfRuGiFr87tpWjdtuudC1y5Wzo22dWYq51w7cEt9Ne4dcfY2RnPYwRewK+dA6PUd594ijaIbryY0oWAr/teeG4eV1zbj/OvZl0OKMfy74+WhQYYJkLc+mW88C1fsQRSLkNuCiinvvX1GNv1+XPGrqPEIIIYQQQgjRRyyLJ6bebODonJvUGUY08jLIp0aq8nrTqW151CdMHtxQjqO/22mEeouf3DRAfbl0/legGjKKU7lnSnFkcNL3Vsdo8mom9rsfAc/Ez0f3I3Tcix8su54/T4zimPShvniUdIYmAWZz9ITedLvnACCPRI63KvTSZyj/x1yBsx7Hc0013OgGT84uxbnsS04BhdboQLeeMR5lZHtIxXzPy7cSRtT43h+tRju5uzwBAPjmII2A3XVKa/GS98YJbptOdRP+pw/HEYvbj0YPzsRQIv48jw4W20eFsiNE7aNBbC/HqtGDtC/kfKCRnq2VWK6L7nUjLSO3xeAN5XN2xPPSEFypEiaY0iReist/2I/i82TbXhnVXizlYgmjg84jfLjoJhezbXAW6TXF9vwS45TPJTPZ3d8nvp+pOsrzrBVCFAtOFt1Mj3OFY7A3eqZDhvNk7qScnDepnDCpHAVATnZuvuxC2O4kemRyPIJ5+X5S+620/bLtAPMD3Cy8b6Zd5NgRfj2PlnM+iFEfuOOMShzhvqgR312Xb9sHANjwjHPjuR76mHiC6Zi37Mxv/A8AYP1nYuCQu+6NntyDcM/O4VIsy3SZPETe0NkG87KPJ/M1FdrfkwxP4q8mJlw3c+y5dY7jNI9Urp5epVAoYNDbR2gfUvn3gOjRSAV3mk/TB54o0fPYaQJ6nZuP8ACwsmd9PNdWyp91at19Ux6lb7Bx+rCZKLn2eqYUv8Ey5w1BI3LyyKTaiUxQCMr5EupoMJO3Lz5/IegSB19aR9GLdtB+0z4vWJXsmNvg4P3LawvDfWRPUCYnFOWUO6XpzrujtrAqJIU8MUIIIYQQQoi+Qp0YIYQQQgghRF+xTBP7G5iqOvdbyjWWcWN7N1qItw8AJV6mfleQjrHkgeVko2XnrtpCEjKOj73Nu7DW0cToEhWP3YthcmBGUkS/T/ky7iF3WY2lZz6gAbt4ObhByi3KE/c5180pa53L/OKhKDk6r0ATpv3/exGPf2c9xsLfWz3aWh73sqZj1SjxSk0yZnc55xiZafjrIjd5RkZHEpMwiTn8DwBbV6gfnYqPn/29XT6Ql/shyMjyJlKGY3C9TZKkbr+/H7fQRNDqYMy9snsuSiQ23+6WZ8n2dpOE7G644x5qRMnRZCPWd5jY302ghpQsYbIajxWup54jRRwcdDkf6p+L0pHzztndWmZ10f27nLzKkhztVky2lvdXnf1m5GTLnFnjZFFCERu83CCVX4olZGE5k1eArpufpTh5eOHAGXkTSMP6YkJOCsRAKUCULbAMppqTxyVQ7CDh5HLnXW+rXCz7CZoRUs+wlKe1eyaGwNLklEnV/ErLxjrRqt/jLCc/80FOx3bD8si1PpjO1kLMoXLqXKy19We790nxAee11pXOe3g82Vxs15pHDgIA1tkoV12/Lz4PB2fdszNOr5gxkjof9e1iZuJyTpCgAf+pVCR9En9rhGWW8fC3SnjOMu8FpI8VztvpOS4m5G5AlFJlJX9p6VqqLMtJqVBs5e4LbUZeu76YMqbkYpk69veGa/gYaUGn97jfy5ujfJG1ops2RDm4ORTueWy350ox58y0z2fEbdpUsT0AVEaOXky30alJ9KmABQPUVlcSdTFH39QN+n0TfdRWfZ62GpWFryEEwcgLIBXsLO++8bbh+3q6Q56ZFPLECCGEEEIIIfoKdWKEEEIIIYQQfcWyyMmaAOoLREJJRQFhFxlH3tpQibKpkbKTZLCLjWUEIfrBjmKMFLGlGS95vY/KMJzjRZ+m5eC6HaJt1zXY5efKu7YS3eQT5SgJOlJx0phpihKWjcATjxvcbOz+3DAYr/tBXkZ2ZTW6LB+65UBreWitc1/edXeUIf2/wRjB6rsUrWJ3iGFO94MlOzHCRCwLuwEnSc7SuhaSlvGxgnwum59gCMtFE82W6zPYTJ7Uo1P0skYikkiuvKml1oi/cx2ESGUsP5irxDrcW4x1NFz2kVzoXBONaFPjXiIxQXloOHdRkPfl5dlIR0Ihd3ahPRfO4RyJxMAab1tD0fb2UNS1Mu1354Db70eF6Ka/vRrj8o9VnVt/odwW/chgwUkRiiRVWFOIkpTw3FVJK5WRCiRkKDWKNtNJcpfKH5UXHSgTEawlg0vLHlJR8FJwnpp6jpysdf4c+UxQO2QiV1Lb3DpSImJZHp0kYJnf08H9aFXvRCQLFFBoRQ2b3yYCnctJJpap91QeFbahIS+3Wkvvk3X0vigO+gNX4jNQoOhmmVKF3C2T8ZxHZii31IA7720UFeruepQH7fMSVX6H5eVrGvDtLkvjhkvxXEH2OURysnLinTlTiO/DzKU0+VvAy3RzIlQVE99ImeihXiqUkvnNX78U+esWQ7lQxJbKegDAjM/LwxJ0lqWG74qM1LSDzea1ZWGZn02WHR496L4Z14xFSXNpDcmuzoty8JGtbnnHffF7rDwXc6DMlEd9+WO5uS2dgrO/Kj8HOQ1UKposk4p0NkNyyRCVLHN8uu5NFOlswG8zQt+Lh8imUzLfTGTbVAQ4KtfhWnzX3+dzOa4bWHy4WnlihBBCCCGEEH2FOjFCCCGEEEKIvmJZ5GSLIbjZhijK1/bBGN3ogoEtreXz4V1+FF1sL0UfqXrpyzZKxLg+EYmsmokyRu5FWg7ynU3NeKyNpJBb7918NXK93UPXEFzPIVElkHWVZuQT/rTlUjzX5oEoTbsMzm356NNiVJaNP7u9tVxY52R0F3799ta6Xd84rbV850B0gx/07m+WqHBZgtuRIxMxwfXLyTQ5SlEtsZySHCwHzSYlzkslAUxEFMs/VlpGs+A+OYn/Qt2NIUodOGLOIU5WFSJQ5Rwr2FQnSR/fo8YiriVz3f5ZmqUoeONz0UW8t+yirt1Ocri5wegunqVz7W64/XbNxch5B+ZiRL1QRymZUb/RRBNz/v6ERKED5KZPueH5vuS57JdCGsK2kdteJcqVipKTPbD7Ly+5INOKJMgKCDLT8Cw0cmSNx5M1MC8q4ULl8yde+PceoVAAKl6mVUzIYTslnc5EFqK2pJMNBslsid7DbEmNaV+WidgONA7tistjMbph42YLADh4S2xTbivHtuaOkmuXWEK2hyJzBhlviBwK5CfWDjKyEPEUADZREu1R38YN0XPMkp2QMHCS5GRHadtCQqpZTSSyZfKSrKakSKkE1vPPuxIMFEo4o+zkZEe8FPpoIUq1jjbj+6T1bsskDF/YZlnSl5LRzdJ7cqwYlw8dc/d562S0ncop0c4qO6NEes2oK/+6e8g2P3yktby76X4/UKKpBiT3bk2hQLvcLY/ZejoxZrDloyTVYpnahP+WOEzt8gGSL49QZMwgPTtCcvQDtVgf0/X25J0sb676YrF0jm3zWD3e57vrLuE3fap3jTwxQgghhBBCiL6i5zwxYTL7aCWOeJw7EHu9T6jG3vBjtuwHAGw4P45uHLsn9stuutflqZilsZ469QoPldy2h2lYb18xjniMNeNxgyfmGOdwIK/K8Jw77iCNBvCozFDC45E3aTaUlnu1G2jU54Fz7hwbHh579qWHXN5axjrnuRqsxms57euxBz1EfdfUKGaKzARiKneIFc4jRbyciSEeJtOvWH6PZudJ+GHLRYyedppQmIJHT8Lk5syoN9Vhp/waqXNlg0a0e8Maifsyf7kjIT1HzrnCyNkkPUf3U06nI5S/Zl/NeV3G5qKdHqvG0aqQ3yabn6f3Rri7oYk4ybPVLpC3bTE+hELOKFfXZeGgDYlgF2wn7NFrnZ+9LzQBO+TV4LainPA2ZbyI1PayHYW2l+89h4lZ+XYl0otelzSF1j0IQSU6jWozeZOrQ2CdzDoO2OB/n6E8FUfpnTi11y0P3U+j2iPfjeW6K6oLpr62FwBw25GdrXX3Us6svQ030jtWj6PSPPobVAS1HE9SMeFZHKL3/yh5mLcUnLqhnLN/qNsheo9m3/mxvsIId95ofKjb7Lu1/ViZa8mb4F5c2XHsARRxGlzdhWJNZr672vOSsEc47x3QCn7QTF9fqLtpCiKwvxiXd/v7ee4UfaNtj4GSig97dFw+60Gu/Pfe2Fp36i3/3Foe/YH7HuP2ia8h1a5yoJeO3xKcf8YHqcisK8X3bGiD2Qb42y4TjMLXLQcGqjb4u6TYdqwmqZfCZyb/zoEx2CaP+mf0nuNow+WJEUIIIYQQQvQV6sQIIYQQQggh+orCcri/jTEHANyz5CcS/ciZ1tqty3Ei2aFYANmhWGlkg6IXkB2KXqArO1yWTowQQgghhBBCnCwkJxNCCCGEEEL0FerECCGEEEIIIfoKdWKEEEIIIYQQfYU6MUIIIYQQQoi+Qp0YIYQQQgghRF+hTowQQgghhBCirygv9QmMMUUAbwNwKYBZAL9lrb19qc+7FBhjKgDeA+AsAIMAXg3gJgDvA9AEcAOAF1prGytUxBPCGLMNwPUAngighlVyXYDssJ+QHfYHq9kOZYP9wWq2QUB22C+sZjvsdRtcDk/MLwIYstY+EsAfA3jDMpxzqXg2gEPW2scA+BkAbwHwRgAv9+sKAH5hBct33PiH8B0Apv2qVXFdhOywD5Ad9hWr0g5lg33FqrRBQHbYZ6xKO+wHG5z/llgAACAASURBVFyOTsxPAPhPALDWfhPAFctwzqXiwwD+zC8X4HqllwP4il/3OQBPWIFynQxeD+BaAPf7v1fLdQVkh/2B7LB/WK12KBvsH1arDQKyw35itdphz9vgcnRi1gM4Sn/XjTFLLmNbCqy1x6y1E8aYEQAfAfByAAVrbdNvMgFgdMUKeJwYY64GcMBa+3la3ffXNQ/ZYY8jO+wvVqMdygb7i9Vog4DssN9YjXbYLza4HJ2YcQAjfE5rbW0ZzrskGGNOB3AdgA9Ya/8FAOsBRwAcWZGCnRjPBfBEY8yXAVwG4P0AttHv/XpdjOyw95Ed9hmr0A5lg33GKrRBQHbYd6xCO+wLG1yOTszXADwFAIwxjwDwo2U455JgjNkO4AsAXmatfY9f/T1jzOP88pMBfHUlynYiWGt/0lr7WGvt4wB8H8BVAD7X79c1D9lhjyM77C9Wox3KBvuL1WiDgOyw31iNdtgvNrgcrruPwfXmvg6nFfyNZTjnUvGnADYC+DNjTNA//h6AfzDGDAC4Gc6VuBp4KYB3rqLrkh32J7LD3uXHxQ5lg73Lj4sNArLDXubHxQ57zgYLzWaz81ZCCCGEEEII0SMo2aUQQgghhBCir1AnRgghhBBCCNFXqBMjhBBCCCGE6CvUiRFCCCGEEEL0FerECCGEEEIIIfoKdWKEEEIIIYQQfYU6MUIIIYQQQoi+Qp0YIYQQQgghRF+hTowQQgghhBCir1AnRgghhBBCCNFXqBMjhBBCCCGE6CvUiRFCCCGEEEL0FerECCGEEEIIIfoKdWKEEEIIIYQQfYU6MUIIIYQQQoi+Qp0YIYQQQgghRF+hTowQQgghhBCir1AnRgghhBBCCNFXqBMjhBBCCCGE6CvUiRFCCCGEEEL0FerECCGEEEIIIfoKdWKEEEIIIYQQfYU6MUIIIYQQQoi+Qp0YIYQQQgghRF+hTowQQgghhBCir1AnRgghhBBCCNFXqBMjhBBCCCGE6CvUiRFCCCGEEEL0FerECCGEEEIIIfoKdWKEEEIIIYQQfYU6MUIIIYQQQoi+Qp0YIYQQQgghRF+hTowQQgghhBCir1AnRgghhBBCCNFXqBMjhBBCCCGE6CvUiRFCCCGEEEL0FerECCGEEEIIIfoKdWKEEEIIIYQQfYU6MUIIIYQQQoi+Qp0YIYQQQgghRF+hTowQQgghhBCir1AnRgghhBBCCNFXqBMjhBBCCCGE6CvUiRFCCCGEEEL0FerECCGEEEIIIfoKdWKEEEIIIYQQfYU6MUIIIYQQQoi+Qp0YIYQQQgghRF+hTowQQgghhBCir1AnRgghhBBCCNFXqBMjhBBCCCGE6CvUiRFCCCGEEEL0FerECCGEEEIIIfoKdWKEEEIIIYQQfYU6MUIIIYQQQoi+Qp0YIYQQQgghRF9RXukCBIwxBQDvBXCDtfb1xpgSgLcAeKzf5LMA/tBa2zTGPB7A6wBUAEwDeJG19tv+GH8J4Eq/z/8CeIG1dipxvq0A3gHgXLh6+AyAl1lrG8aYTQDeDOBCAGsAvMZa+wG/388CeC2AQQA/BPCb1tpx/9v/AfBbfp/r/W+zdM4nAfhba+1ltO53AVzjr+NmAC+01o4lyrsGwFsBPBSu8/ktv+10h3p9kL+WUQB1AL9jrb1+oX3yymuMuQrAS2iTUQCn+X8HAbwRwE/D1efrrbXXdnOeXmIF7HAYwLsAPBjuvr7MWvvxedu8CsAma+01tO5PAVwFV9f/DOAv4O7Hl+ed4kG+vG9MXZ9ftwnA2wFcBmASwHuttW/OqZ+HAvg7AGsBlAD8jbX2n1Pb0j6jAN4N4AJ/jf9krf2bhfbx+70UwHMB1AAcgLPdO/xvBwDsps1fZ639oDHmUgBv83UxDuDl1tovdTpXL7PcNknnvRTAf1prd9K6nwbwGji7awD4E2vt5/1vzwXwh/63//Lnrvry/hmAn4ezm88CeIm1tknHfS6AX7LWPpWu+S8BPBPOJr/u95lJlPN0OPvaDmeTr7PW/lMX9fo0AH8K15bfA+Aqa+2hDvs8A8Ar4GxyF4D/Y629Z942bwJwnrX25zqVoZfpsXfyeQDeA2AzgGNw9+oWv9+K2B0dYwDAfwP4SGhTO9TrTwL4W7jvhKMArrbW3tlpv1R5/brcdtL/fjqAbwK41Fp7sJvz9BKyw95p/2jf1DfJ9XA2PedXfdBa+7puvnFOhJ7wxBhjHgjgiwCeQaufA8DAfYRdCmewT/cNxr8B+G1r7aUAXg3gA36fXwLwJLiPsYsADAP4vZzTvgnATdbaSwA8BMDDAVztf3sfgF3W2gcDeAKAfzDGnOaN+70AnmatNQDuBPDX/hquBPC7fvuL4G7mi/1va4wxrwbw76COo3/gXgbgp3xH4bMA/jGnvP/X73spgEv88f8kZ9tw/GEAX4DriDwY7qH44EL7LFRea+37rbWX+bI+FMBeANdYa/cB+B0A5wG42P/2+8aYh3U6Vy+xQnb4SgDHrLUPBPBEAG8zxpzmy3OaMeYjAP5gXjmfAuCXAVwOV9+PB/DL1toj4f74e/RuAP8D14nNuz7APQvH4DrtjwDwZGNM2weYb1j/A8Ar/PGfDOCNvmFfiL+Ee56CbbzAGPPIhXYwxjwBwG8CeKSv34/CPXswxhgAh/larbXBrj8B4F3+XFcCeLsxZkeH8vUsK2GTxpiyMebFcG3HCK0fBfAvAH7d3/+rAfybMWbEGHMxXEf6J33ZNsC3f/48jwPwaLi265FwL2cYYzYZY66Fs9ECFeNqAD8H4KH+XHv89aR4K4DP+mv+KQBvDs9QHsaYK+A+hJ7mbeVWuM7ZQvucB/dx8yx/rr8B8JF52zwDwLMXOk4/0IPv5A8CeLu19kK4TuR/GGMKK2x3gb8DcE6HbeDPexqAj8F1fi+Fa0/f1sV+yfIu1E76368C8FUAp3RTvl5Ddtg77Z/fL++bZC3cM3ApvZNf539+JXK+cU4GPdGJAfBCuAfv32ldCa7XOuj/DQCYsdbOATjVWvs9/1H1AACHAMBa+1EAj/bbjADYFn5L8DG4mwjfu70BwJl+VPqJcAYJa+0uOCMeg3sI/tdae5s/xtsB/Jovx1UA3mCtHbPWNgA8H/EB+ml/Lc+dV4bLAfyXPwfgGqCn+odxPv8N4NXW2oa1tg7gewDOzLm2wJMA3GGt/az/+5No/4BNkVde5mUA9ltr3+H//iW4EfyatfYwgA+h/17mK2GHvwTgnX6/e+E+HMM9+k24F9AbEvv8i7V20tvuezGvro0x5wJ4OYDnWGurC1wf4OzwA9baui/zZwA8PVHWQQB/Ya39L1/eXXAeuE4N0u8hNno7/XGOdthnL9xI2bj/+zuI9v4oAHVjzHXGmB8aY/7cGFMyxmwBcDqA9/vy7YXzlv5Mh3P1Mithkw+Be9nOt4EK3MfXjf7vm+BevFsA/AKAT1prD/j27x2INnkVXNs1bZ1n+mlwHyaAs/U9mPdShLPJj1trj/i/P5ooT+AX4TvqAM6AG5Fe0EPty/Zua+3d/u9Xwo2OL8SlAH5grf0RAFhr/xvAWcaYs4DWB9cfAXhVh+P0A730Tj4Vzov7If/b53w5HoyVtTsYY54D5/X9TN4283g6gM9Za7/r/34HgN/vYr+88ua2k8aYU+Cejad0WbZeRHbo6IX2D8j/JnkY3EDoZ4wxPzLGvMk49RCw8DfOCdMTcrLgkjLG/BStfh/caPNuuHJ+wVr7Kb991RizHcB34V6gz6RjVY0x18D1WnfDGWTqnP8Rlo0xDwbwq3C95XPhjOolxpgnwz0kr7fW3urddvfRYXYBWA/3UJwPYJsx5j/hRj2+CvdCg3edfdwY87h5xfg2gBcZY860TpLwG3AP5GZfBi7vF6i8Z8I1fM9LXRtxPoC9xph3w72Aj4QyLcQC5Q3n3wLgpXAfO4FU3VzS6Vy9xErYIdL1dpo/xl/48rwysc8XU/sQrwHwZt9oLHR9gJMmPscY8zU4e38agOq8bUKD/u7wtzHmeQDWwUkVcrHObV4zxvwzXEP8MQC2wz430HkG4TyeH/arygD+H5zrfg3cB8S4tfbvjDF3Afh1AO8xxjwAwGPg7k9fskJt47cBfDt8nNP6g3AjnYFXAbjVWnuXbxvvpt/YJs8HcKEx5k8AbIUbTHmFP+a1/vqunleMbwF4sTHmLXADSFfBdYBT5W34Y3wZwE8AeKPtLIs4H8APjTGfAHAWgB8hjpzm8T0AFxtjLrPWft8Y81S4tnqnMeYg3KDV1QCu6HCcnqfH3smnA7g/3GdPsK8VszvjpNq/B+cJeGtqmwTnA5g0xnwIbsT+XnS2u9zyLtROWmvvh5dPOed1/yE77Kn2b6FvkhEA18F1OufgPFavhftOzf3GORn0iicmxSvg9J3b4S54k3HaTwCAtXaftfZUONfce40x59NvbwGwEc5IM+7++Rin8f4CgN+11n4fbrTxbLiPokcDeBaANxljLkd+fdX9fk+E62FeAWATOrjn/EjeXwD4mDHmO3Aa8zFETWGqvJfDdZDeYq399ELH92V6CoB/tNZeAddb/6xv7E6E5wH4hLX2LlqXqpv6CZ6nF1hqOzyeeltwH/9B+dMA/r7DcQIvBdCE+0j7GFwHIdcG/Tn+GM52n2o7zMsKWGufDfdi2QTgz7vZxzgJ5xfgRnn+1B/nndbaF1lrZ/1I1RvhRnsApzt+ujHmR3Af2Z/pdC19yLK0jXkYJzf7B7gPiaf51QvZZAVOpvgUOEnFT8BJb3Oxbg7ihwF8CcDXANyCDvfRWvs4uBf9k4wxv9HhMioAngong30w3Ij2Ozsc/w447/S1xpjvwY2W/sCX691wgwY3LHCIfmel3skLvXdXxO6Mk1Z+AG4eweRCx5xHBW7U/s+sk3h/EW6U/YRItZOrGNlhep/HYQnbvw7n/qS19jnW2nE/2PlXiO/kJf027OVOzJUA3mOtnbPWHgXwTwAeb4wZNcaEyoF3y/4AwIOMMZf6nnMY/X0XgIcYY04xxnyf/p0CAMaYl8A1RL/ijQYA7vf/v88f53a4eQUPgxs14d7wqXDa/Em/38f8TZyDm2zdSfc/AuAr1tqH+E5GGAEYm1feK/z2z4L7wPxja+1fdVGH9wO4xVr7LX8tn4BzxT6gi30X4pkg3a0nVTe70P8stR0eT7112ufpcLY40eU1rgfwR9bai621T4TrTN9ujPl5KutnATfaZ4z5VwC/AqfD/kGngxtjfjo8c9baYwD+FVkvXt5+l8BNwPwu3KTHOb/+Of63QAHRc1QE8PPW2gf5TtMpAG7vphL6iCVvG/MwxmwE8Hm4uViPIE/fQjZ5P4AP+U7nBNzLuVPbuAlOMnmJtfaRcNK121PlNcY83belsNYeAPBxdLav+wF83lq7149kvreLMg0CuN1a+wj/AfpquAGvA3AevxcbY74P13l+THhmVhEr9U6+F8AO4yRCgWBfK2J3cB2RDQD+xf/983D3v5OU8H4AX7dRkv5uAJeaKL1ZNHnt5CpGdrgC7V+H8j7VuIAVAX4nL+m3YU/IyXL4LpxX4zpjTAWukfgmXA/uPcaY/dbarxljLoLTKX4LboLzS40xj7Iu6sRVAL7k3aqX8cG9kb4Q7kXcigxinTTiu3CSlDcb55p8FJxe8B4AbzDGnOcboefDTSQGXK/+GcaYdwKYgdMp/m+HazwFwBeNMRdap2n9MwD/6h+y+eV9OoB/APAka+13uqpB4HO+vJdba6/3RtYEcFeH/XLxHzHnwkXLYD4B4LnGmE/BSYyeBVc//c5S2+En4DxbLzBustvPoPNE0k8AeIUx5h/h9K9Xw3e6PY/F4kbZnw/XkbnG2/tvwzXe/wvn+mY+DNcRftQiRiCfAeBKY8zz4eSSz4DrjOdi3Jye6+Cizrxn3s8XA3iacdFVBuCi+4WJ/f8I55n5iDHmUX7b/+qynP3CktpkHv4j/gtwHwbPt9bW6OdPAviEMeY1cB/1z4N7mQLOFp9tjPk0nO38HLJyyBRXAPhrY8zD4dqsP4GLdpN6hl4AJ4/4K+NGyH8BneelfATA640xr7FOenElOrfXgwC+Zoy5xFp7H5z84n98R67V+TNOGvJ02+fRyRKs1Dt5lzHmDrjBsw8ZN0LegJPANLFCdgc/986X/X2giI8L8DEAzzfGnG2dkuFKADfaLr3Z8+nQTq5WZIfZ8i5X+7cQpwH4M2PMY+E8Ri9BlB4fzzdO1/RyJ+bFcJ2IW+CM84tw4VyrxphfBPB33oBnAfyqdZOMP+Af6u8YY2oAboSbiJTBuInzfwk3R+SjJupFP2ytfQ2cG+yt/qOrCOBV/oMOxrnpPuKPcQfcwwC4CCOb4EIrl+AetJaLM4W11hpj/hrAt4wxRTiPzzU5m78Wrnf7Lirv16y1L1zg+Ht9Xb3NuOgRswCutAuEi+yCcwHssXGyeODtcNEpfgD3YfkOa+1XTuA8vcKS2aHnFXARtG6Es5s/tBQeM4W19lPG6bG/DVfXnwC9UOGixN29iGt8rS/zDXA29spg74wx5tFwLuhb4T7mwk8vsz7Mbg4vBXAtYmP/cXSWur0MLoLMi4wxL/LrZq21D4eTsb3FH68C17F6l9/meXDPyCvgpBW/uIjOVr+w1DaZx9PhXq5D/jhh/XOstT/0o9Bfgrsn34KL3gW4ABN/AzdBNsxn+ruFTmSt/YJ/If4Qrg3+OFzUoBRXA3iHMeaH/u93Wmvz5qCF43/Kv1C/4tvee9ChPqy148aY3wbwOePCpt6MGLXox4GVfCc/C8A7jTEvhxsk/GU/grySdrdorJtL9QI4CXkFwGE4WebxslA7uVqRHWa5GsvQ/nXgHXAKn+/CXeN1iB2pRX/jLIZCs9nsvJUQQgghhBBC9Ai97IkRXWCM+Te4KCcpnmmtbYsCZYz5NbjITik+aGN8byE6Ytxw1b/l/Gyttc9M/WCM+SooD8k8HmO7n9MjRAbjNOJfzfl5wlr7mJz93gQnPUnxYmvtdSejfGL1cjztmjHmDwH8Ws4+r7MxD5YQHflxav/kiRFCCCGEEEL0FfLEeLye8XZr7fvnrd8C4IC1tpDec/kxLjrGe9FhImGn7YwxH4WLe543D0csMz9udmhcOOhvwmX6PbiU5RXdIRsUvYDsUPQCssPeRp0Yj7W2q7wVK41xWaHfChd3PDcnQaftjDF/BBcWNE8GJFaAHyc7NMZcBTf5b8GwvmJ5kQ2KXkB2KHoB2WFvs+o7McYl5ftNABMA/hsuWtFZxoVE3AQXUevTcImTbrDWvt4YcyVcosopUNg540Jn/hJcWL3z4ELJXWWtvcGHtvt7AA+Ci07xRbgoDDVjzF/4/eYAHAJwtbV2zwLrXwXkPjwvhOtB35v4ravtjDGPhwtzdy1c4iexxMgOs9sZF4//F+ESgN3Y4RjiJCAblA32ArJD2WEvIDtcHXbYy8kuTxjj4nhfDeChcNmV50+2G7bWXmStfRntsx3AewA8zVp7OVzoOeaxcBlcL4bLpBomyL8JwPV+nwfDZSZ/iXfN/T6Ah1qX0PILAB6etx5wBprX+7fWXmNj8qVc8rbzhvr3cJMIT1rWVJGP7LB9O2vt/dbaK621N3U6hjhxZIOywV5Adig77AVkh6vHDld1JwauR/lha+0R6xJIvnXe7/+T2OcnAPyIbuQ75v1+vXVxxwEXE3uTX/45AL9jXPbe6wE8DK7nvRsud8p3jTGvB/B9a+3HF1i/ZBgXO/1DAH7fWrtnKc8lMsgOxUojGxS9gOxQ9AKyw1XCau/E1OCS9wXmex6OJfZpztunNu/36ZxtS3CJjy6z1l4G13O+xrpESI+F6/UfAvAmY8zf563v8rqOlysAnA3gjf6Bej6AZxpj3rXwbuIEkR2KlUY2KHoB2aHoBWSHq4TV3on5DICneU0i4PSPnWJKfxXARcaYS/3fV3d5rs8DeLExpmCMGQTwSQDX+OPcAOBma+1r4VyLl+at7/Jcx4W19hvW2tPpYboWwL9Za39rKc8rZIdixZENil5Adih6AdnhKmFVd2KstV8C8E4A3zDGfAfAKNyErIX2OQDgVwF80BjzXTjPRTe8CMBaAD8C8EP//99aa38A4N8BfMeX4blwSYOS6wEX0i9M4OoWY8wV3rsiegzZoVhpZIOiF5Adil5Adrh6WNXJLo0xVwB4lLX2H/zfLwHwcJuTQVyIpUB2KFYa2aDoBWSHoheQHa4eVnuI5VsBvMwY8zw4V+G9AJ63skUSP4bIDsVKIxsUvYDsUPQCssNVwqr2xAghhBBCCCFWH6t6TowQQgghhBBi9bGq5GTGmL8GcJ219vPGmC8A+FVr7UFjzN0Anm6t/c4SnPOVALZYa69ZxD6PA/AWnxRp/m+fBvARa+37OhzjZwG8FsAg3GSx37TWjudsW4DL0HqDtfb1id8/CuD+cA3GmDcA+JS19svdXpOIyA67t0NjTAnAW+BCSgLAZ+GyGTeNMf8M4NXW2lu6vSbhkA2226Ax5hoAL4CTj9wB4Lettfv9bwfg8jMEXmet/aDawhNDdriotnATgLcDuAzAJID3Wmvf7H9TW3icyAYX1xbSNn3xXbhqPDHGmEcAuNBa+3m/6okrWZ6lxBizFa4BfJq11gC4E8Bf52z7QABfBPCMnN//CMBj5q1+FYA3G2PWnLRC/5ggO1y0HT4HgIFL/nUpXGfm6f63PwfwPv/CF10iG2y3QWPM5QD+AG4y78UAbgPwl/43A+BwCD3v/33Q76q28DiRHS66LXwTXH6SCwE8AsCTjTE/539TW3gcyAYX1xbSNn3zXbiaPDGvhBvRhTHmvX7ddcaYp/jl3zHGXAtgG4APWGv/r+/5/j3cqMdauEyqTwLwcgADcCH3/sBa+w1jzAUA3g1gCC6J0bustW/zx77AGHMdgJ0A9gF4lrV2jzHmIl+mzXA93jdYa9/PhTbGnALgnwCcAuAeX77w26sAwFr75/Ou9UkA/tdae5v/++0AfmCMeaF12WeZF8IZ9r3zK8wY83gAPwOXL2ZjWG+tPWqM+RrcRDclWVocr4TscDF2WPLXPAg3qDIAYMaf705jzBEAPw/gExDd8krIBjM2aK293hhznrW2aowZAnAqgLv8z48CUPfl3gzgIwBeY62tqy08IV4J2eFi2sLL4ZIg1uHs8TNwAzqfVlt43LwSssHFtIV99124KjwxxpgNcL3GLwCAtfY3/E+Pt9be55dnrLVXwBnkS40xp/v1FwP4FWvtpQDOAPBXAJ5irX0w3M36qDFmLYA/hHOlXQ7gKQB+0hgT6u8BAJ5hrb0AwGEAv2WMKcMlNXqztfYSAE8G8FfGmEfOK/5bAXzTWnsRXDzxC8IP1to/TxgqAJwO4D76exeA9QBG5m9orb3GWvuBRJ2dAmeIv4b2bLUA8CkAVybWixxkh4u3QwDv82XdDWAP8P/Ze9MYS5bsPOxk5t1q7+quXl4vb5t+784+Q3IoDdchhSFN2pYoUbZlQCYEATJAmLIogwB/yBRk0xIEGTYN2IYggAZNwyZBgRSHMAlQJjnizhlSMxzOcGbe5Nv79VrVtd6qe+tumekfESfPF5URdevWq66qHp7vT2XlzSUy4kREZpzvfIdeT9P0V+F3tcMpoDZ4qA2O2u32X7fHfCeZF0kis5j3m2Qm7u8kov+AiP5rOFVtcEqoHR5rLPxjIvqhdrtdb7fb80T0N8m8ADPUDqeA2uD0Y+HT+F74dfERQ0S3iehhmqbDQ475eSKiNE0fkfkq5i/bu2ma3rHb30Nm0Ph02yQH+jkiyu31P0VEP942PMEfJKJ/kKZpbs/7zdQkQiIi+qK99stE1ErT9JftfR8Q0b8hM1EiPknmRY7SNH2diP7dEZ431G4+o6ug3W7XiegXiOgfpmn6MHDYG2RoPoqjQ+3Q4Eh2aPFPiOgxEV0loptEdLHdbv8Y/K52OB3UBg28Npim6a+kabpCZoX2/2u323Gapj+dpuk/SNN0kKbpNhH9FBH9DThNbXB6qB0aTDMW/hiZlfkvkHm23yQirD+1w+mgNmhw1LGwSU/he+HXy0dMToaWchhGsF2Qcf0RGQ4qIyGiT6fAjSbDTf1ymqa/RkQvkcmk+g1E9Oftdvs9h1zbV7cxEdUP7MOyEBGNJzwHkXFD4wrNDTKc7u4RziUi+hiZbLM/ZTvlDxPR32q32/8HHJPQdAOwQu1wWjskMgP/z6RpOkzTdIeMC/274Xe1w+mgNuixwXa7fbvdbn877PoZInqOiJbb7fYPtdvtD8Nv0YHnUBucHmqH04+Fi0T042mafjBN0+8hU4evw+9qh9NBbXC6sfCpfC/8evmIeZOIrlh+HyOjqmFMwr8jou+1PEeyvMkvEVGr3W7/PBH9rTRNf4GI/isi6pBx34WQEtGw3W7/oL3WdTLu4d88cNy/JZtkqd1uP0vuC1wIv0FEH2+32y/Z/3+YpuDJpmn6mTRNb0GH/FdE9K/TNP17cNiLRKRKKNNB7XB6vvafkg1wtR7Cv0ZEn4Xf1Q6ng9qg3wafIaJfaLfbK/b/v03mJWSDDHXkJ9vtdtI2Qat/n4j+NZyrNjg91A6nHwt/mEzwNLXb7atE9F+S9RRYqB1OB7XB6cbCP3wa3wu/Lj5iLAXg98lt6F8moj9ot9sVubpDrvMVMobzC+12+4tkFBv+mv2S/R+I6G/b/X9Mxo34u4dca0REf52IfrTdbn+JiH6LiH4yTdPfPnDojxDR+9vt9itkAsT+jH9ot9s/yUFcB669RkR/l4h+yZ73ITKuaGq32x+zX9HvFt9HRL94Atf5CwO1w2PZ4X9DREvtdvtr9p73iOhfwO9qh1NAbdBvg2ma/j4R/TMi+h277z+3ZSIi+u+JaJOI/pzMy8kfERGuPqoNTgm1w2ONhf+ciG622+0vk3lx/u/SNP338Lva4RRQGzzWWDgJ584Go6I4HQyTmQAAIABJREFUKJzxdKLdbn8rEf23aZr+R2ddlqcd7XZ7iYj+kIg+lqZp/6zL8zRB7fDkYN3yP0dE35JWFX4UAagNnhx0LDw+1A5PDjoWHg9qgyeH8zoWfl14YoiI0jT9IyJK2+32wQApxfT4J2SCu86NoT4tUDs8UfxTIvp7OmlPB7XBE4WOhceE2uGJQsfCY0Bt8ERxLsfCrxtPjEKhUCgUCoVCofiLga8bT4xCoVAoFAqFQqH4i4HacU5qm2Q+/5KIPkJEAzJuztcPP0uhOFmoHSrOGmqDivMAtUPFeYDaoeK0cayPGDJKBq00Tb+l3W5/nIj+ZyL6gdDB73/5/UWjMKp2M9b5UwcWWwLbNTL/5LKLurHIZXcLkcseF+aoguQCEUhr53ytIq/sM8fa+0fikGpEUiWzsL2Ym/NaTbl/VJNrZUNzjd5YztmL5Pd+YaS1h4VIbGewnQOtr3weZPqBYjiXF8uN27GtYxQZx0tlULuZrZssxzqC2ucT4WIuA7E4rKiV/w6WptlM1tM0vew56CiYyg4/+PL7i5miQURENVsuaEKnpJn9ZwBlHYIdYR3mE9qLbTKGnXivOLJlAcdoC47AMvLmEC4wghtnVKWHYv8Y2WcYB2yPy4LldewMylizx9ZhH/brsb1UH+pq6Om/B8twOPzHFWUTePoRHbRZA3hUajTi49rhVDZIRHT79svFeGyenW0jgsLUYkltUIvMdt3p33KsrzYyqNcx1P0oN22eB+v9JKnFvn5/9KN8XQnrKJpgp80YxnGbKmIWhrV6JP9EME5nubnGAK7fhd97hUn9MMjHcI5cq3gXdVirRfTG668dreKqmMoOX36pXRR2kCvKefLofSeEqLIROg5t2DNmBe6Jl0UbOAzO9f2bR0bo/jxuxsGxMnaOI3KfcQSpN8a2n2I/LgJt48O77cWtU5yTb99+qRiNTYl9renW8eHvNb7QiJAdv5t+ehJw7MgzB8QB2/aVGvuS2FmIZHV4X89gP88ToWOfBPCpj/pueNyPmG8no2NNaZp+tt1uf+ywgxtFnV4ePE9ERB+K5omI6JmxFPdCJp31gn3J6cMA8NmWbP9xtlFub4xNPiL8MMEJvp+bCac/ljikfib5h9hQFuuz5b7rrZVy+5vii+X2X+mbcr3v8uNyX/OSDDw77xgp8s/vyPl/2JTfvzreJiKi+8Otcl9nKPmUeqNBuZ15jCeJpQ7m6+aD8EJjrty3UJNnmIub5hyoC3y57WT75fbWaM+WpVfu62fwoWUnaOxUOGnzgIvGjR3I1xnx/BdfmLtTOeDomMoOZ4oGfdvovUREdKkwLzbLuZQPX8A79hHejiXZ79uZtNdODjZl7QxfDmPPh3ErFnl6fClt2d+vRCJn/1LRLLevQZqrfftBfzeRez2EpM5dmxMLbWcIL7Jrts+sDXek/Jmc30ykjLO1GSIiWkrEthZjKdey3b5JUu7LuTzXdmzum5LY1lsjsf+N4W65PbB1iBNR5Ez4vLhRVPYRiR2OPLZJ5NocA/vUjVuN49rhVDZIRDQe5/Tgoenv/MEyU2uUv19oSn2uNC4QEdGV2ny5DxdXcs8EtFtIez4eSx2vDUybdwbSHgMYD311NAmhF8nQJFye55m4ET47aCTy3K6dNu3fmXLf881L5fbHoiUiIvpIX57vek3GwBr0pZ2BaYc3atIGn6tLfX5u8IiIiNZ7a+W+zkDGbrS5o4Kf9eaN2QlHHoqp7LDIIhpum2cd2g8ytIURPMc4q47xCHyJisqXeX+7lr97FhuJpC5Ctoj2Urd9J/Tyx2Mgfgw4i3XF9PbujOtgj9x/2RaJiOZhTr5k++9CLP28DwtJa9BP14cdIjowJ4+lbco5N/Clx+103Hjn2y8unNqcPBoXdP+B6Yu+MQHreLZu6hYXeXzvIrjtLOh4fj/NmHDfBxmRfw5oJIn3PH5e7Is4Fs43FoiIaBbmacS4XEyXlwqee4mIevCuvDs07dIfy/iHdXiSdcfPiGPJUd8NjxsTs0hEO/B/1m63j/tBpFAcF2qHirOG2qDiPEDtUHEeoHaoOFUc17g6RLQA/8dpmo5DB4+LnB7nZlXhLftlvVOXr8ekhtQA8wU6Ahf+vUJWJPZyWfXCr0kGfsllnpWWOnzF8xfsAqzgzUfyNdx0PBlmu9+VcsewdJ9b13wzl32NAmg2lhYyaYUSgcciVcK3eokrWw17r2YkzzqCuujDSi5f10fPMP9Uv3NxBZvr+Chf5bwydoIuyenskArasKvUu/b7/WEiz4Lei551729lYm97uaxIoG1xfcVQ39hedQ8lCKljbLM9oBTcj+UxtupybM/SYNZhtb2D5bJ1i/fC5+KytBJ/0uIG0HCa1nM0B6uHl2JZob5JZrXnubHcawHsP6mZ/RfAA7UI5w9q4BW1/SdEKxPvJNCjoL58K8AODS6prqDWExz+gmYzCVPZoC1tWU7uS86KYyKraOyBeSkST8wS2A5SCbvW87VZwHPBJq+4DzMpHq6459H0K7ghz5kP06zY+9bIQ6uq7EnE9t7IZM64Z8f3+YbU604mXmycRlabpjxvRNLvXx3LO9nGyKyYYx0iIqo+zyQPhqxCvitMZYdRFJUrwLwqjCvcWL9DOxY5ns0AJZHbMzSfsJ3jvRB8D6xfvNckG3OoL0XVnn22fXQqK1HkeD6BJmvLiza4D178rh2j0d6RWo6r4dxPHZrihDIWAQ/1GWA6O6SI6nbO8Xlc5+syX1xpGo/qEni4+lBvO2Pp813rUdgbiWfhOJ7m00RofEOb93l6HZvzjIW1yN/XfPcNURifBBx6MLnz4TQ4rifmD4noPyQisrzHPz/mdRSKdwO1Q8VZQ21QcR6gdqg4D1A7VJwqjuuJ+RQRfU+73f4jMgtIf/ewgzPKyziM1cisyu5G8nE+hBXVflHl9GeB1Q/GKLBCxKsbuKqDnhhedcZYBVw16sF64KpdHZh7LIsMyz35yh+Pq0FnMx7vCH4VT1pVCgfuV1etkVfMsTBzkTxXjsGr8FzdzKyy7yeyaoRf4L5VKlwN4JWlogisqE5YGXuXmMoOEfvW5nZxBQzqhe1w4PH2EbkCEIWt27ETEzM5SO8gUDhgHeJcnHLbVbpd8L74yoh2Vne8QmZ7IRHvYxPsH4NRObZqETwxz5Bs37Y2//xYVq1nE6nP+aFZRes15ZxdiK/BlUi26VHh78sllxc8PbHH5pwgR+zrsLrXSkx5ZhIpV+YwIKbCsWyQy8njEXrA5hNZfbwem3b68FDaZQVi1jaBO/2gZq4BYUnUB89Xr2a8D3s1iOcCvnMZyHmE8r/bPuxbsXd+h+3cM274xiBczd7L5BkfxGaFFmNd70O97cMTP7ae/kdjiX97POrIde3Krm8ewudxPFQeDxRCxod35YuZyg5jiqhh7Z/HCpz7sB/y6i7GzoXiZ/i5g3ENHL8E3kac27gN94Cbj/Gi3uDtwDzoi69Bj8UkD4zvXjh3wmuLjF9QF05ckUfYB8UhUGjFG9h/xoHoU2AqO0zimBabZk7gsbAF4/K15oVy+4M1E+eG8aIdiGdL6+KJeX1oYqfRjtFmx7kranGWKO0Ux5S8+nvlGAscXwZ2/m3kwLYB7wbPMxHMnWPPPEx0dOGMs8axPmLSNM2J6IdPuCwKxVRQO1ScNdQGFecBaoeK8wC1Q8VpQ5NdKhQKhUKhUCgUiqcKp6IaURRFGay2a931vQhk3YAaM7LHoQQd0r18OSv2Ich5H13eVpYw5JZld+8Q3LrdWMq1DmV8vW5cnN1MaDiXu+LWnLP36ENOG5Q45lwaSPOJA/QBduMhHQbl9zgQztWcr7pFW/CN2oDtBMo4qts8MeC/xDqe5NqOmbsS+Bw+TY3xSUgookVLA9u3LtSekyOiSl9CV23dE4hGJM8Vyn1QSn0G6rg8Ds7ZB4oY0imZ5jb25amBe2FZ0A6ZBocUj2HgXkw9wzwwSyBWcXVszru2JNSb2QXpf4u7pq+POsvlvg2QD+5A4Cu7/eMCg879wb0+lLl4AvlWHOlTS9dC2sL28elkUyOKxMXPdlAHOtkM0Pcu2iD99+QiCXzpgtAmaFvoFkwnw2B/tA0ee5BGh3Yg9JfJhLJJR7AdYnscl54gdAsYP6D7lLmuPFRiIgnyzzyUWyKibgHBwfbY3bHUdw/okky5w7HbzclwOCUv9owhJxTYPxXiKC4ppUv2b0gIpmPl5LFOOrCNNDOeL7BOHPnwuqE0LtdEWKEB99237fY4EgofjstICfLRcLz05XdJIXOugblGoirNJ5SniucTDERHqtPIIwcfKuskKqeX0nhOqUGtuE435q8SkdgByvi/GIudfFvf2NQHL0qai15XbOu3iqVye8tSZtdjsSNfnilnzn5Cgey+e01KPYHvCr4cQXitcVSlzCFFHKmbnM6hBXR47D/1WMa6UvSJDn/vOWuoJ0ahUCgUCoVCoVA8VdCPGIVCoVAoFAqFQvFU4dSTEJXZzcEVha5/dlE1I79iWCgXB8NxyXloBqhqw/ftQe6ZDqo6oFqLzcGwVZNyLYPCzVJRrUpUYJtGi55VOjhDLdEBCoilntQCdcF3GkMdz8HvF0Fhyiaud75mN8HVuJ+zMs2IfPDlmUH3J54n9L7ps1qfBBKKynZiqlQCKh2Zo+BmttHlH1IZyzxti/Ydl/sO/x1VxPCaI6BYlXrqSD5BHXi726WQye+sWOdQRwipI0INYZoZZpYewG19Fl1ryrWaI3N+c0f21QIudd72KY6Ze1UVqnJPCZyM2kjRgv7D7nWkbW177/pkEFFU9humvDmqidA2s7Y+5prSj1qzsl3fxvxPpj52wV66MLYypcWtd1A9nKA0iGBG6jTjmkPX8PSlSaqIiNxzLI79SCtOIkMRGwfGnX2w+Z7NCxVS3yrpmpiPCNR/ioxpdP5yOzTPgzkRTpHxk1BEi5ZWedkq4M0SjAmR1OUMU1BhXog8fZdIqNk4HyGdhamcmI8N7T2yFYfn9BKZn538NR4l03wC7dRH53PoZnBsSGHuMISoN/wOMgjQycYeVcY8QJObpIB38Lij7D+r3DIXojr9QPIMEREltggXoJu+MBCVupdfWiciorn3i22MVoUudutPRDm2VTe2GlJ45W13TDq8rO+2jnx5UYj8uVF877FYBryWo4LnCZFA2yrfH3CehH6Nc2ZJefbkBcRrnaTtTDOfMNQTo1AoFAqFQqFQKJ4qnJonhlc7ePUkFCjOwfr4degGwwvqHo9E3ZMJOLQ6w1+tuGqH963DdXObn6IL3pUdOHbWHovfkZuwwrdpA3P7gazv+LXbtNnUcTVqDrb5eUNf0/yNjnlPMAfJDDzXJV4Rg2pzamtcLSuBJ2emYbYxiy6ukK8PZaVka2ACwPdH/hwoTxoREbEfbd4GqMdQbz5PCS7OZIGgTd6PwXhOsKln9QNRs1aNK6EDWAkdYYZ2e128VuTJmI35XjCIb95uL4KnEz0xQwgS3LMeyvUc9PfB+9hsmhXcfQjcX9mBLNV2eHmlKfdfJQiY9qxKZgHBAp9X1bcChP0IA/sx0JGFQmaiU3dEE5FZweKAel75csoH5Wqy7UA+BPR2zcUyHjULc43c41F8UsCV7WlW0crAf88+oulW99gmUAiiGFevNUzkd+w/jrfY2uTYk/sE4XplwRMTH56bBOETPzhN8EoqC8AsON7Z6lg1jsHrB8HX40TqyhcMjPMot1U/ICYy9HjLUPQC+zS30XiCraC3Ed8P+Fo+sR8iojHkY/K1oS8nFV4fbYzHNRy/cLXcWTm3ZZjUn4I5ljz7Q54kfi4fm+A0sJyM6G9efOTsqzXgXeUq5Pi7ZYL8o6aMlQUITCTwCDynhjwxXHeOlyH3vyfKSf7dvvHBm40e7l9LDn9nzXD+93haQvfnnIi9SLyXjneF369h36CoeuvxusfxjhwFPi/Ycbw66olRKBQKhUKhUCgUTxX0I0ahUCgUCoVCoVA8VTidPDFUeOkgZSGiKu3DCTYK5FaZta77EdAEYk/Ak6PXnvsC6DCIGgP/IaDaBhxmHhoREdE+2bwj4Jpbz7rl9vbIbHfHEqiGZUFXI+evwGDkFgQh16KqqxTriH9Hrf89oMFh0Pes/Y6dI39gsa/dWom4c281LxIR0c14vtyH9KQW0JbYrboTSb2cJgoi4tZh62pB3pPMoVNUuwZSHYZUDfZ1KWTVwH2HCgWUn0l0El/uAfdeAqYF4P3rHhpbHYO30c2O+vP2Hp1MXPbdTNzUj22uh9eaouV/A6iGfKXHEdIqIY9TUc0Dg+5kX/4HXzA/UTXvCtEB4QvMk2RLVgvQ+540oiiipqWTcV+fBXrOAvSZeWtmcQyUW6CTXVwUqt+NXUPve9SQNtgHeuDQjgFYF8elMvmCoo9zrRBVYVJeC7QTpv0gHSSJqxQMpI05wfhFdX6YlJcohGnycRzMf3OajJ6ChDrioxziHFH2F7CbJtBRGiCGE4UUDSyYTr4P4y6Oq5knw04SoIMNOP8G1jlSiixlB+crzBc1VzMiAw61BiiuezBXd0dmm+k6B1HSeEP0JVuHSNdBChmL3hCJDYaoNfy8PpEC/D0En4DGWeX8iBsFzd+wcwI3PQzLUR3EEdbNPDTakDHvwWuSJ+thHcWNzPPgHIBURLajEZob3Nc7LgWqyFffjvCHtQPMyYWiTWyT2IZohygysj82dRWiOrJ95p53BiLJ6YQUSwy3wJxYfK88QOE+yYD+d3Mt9cQoFAqFQqFQKBSKpwr6EaNQKBQKhUKhUCieKpwKnSwvChpYN9YkpYbI45atw7dW3XHR8gVEGauVC5XCR2/AnAA7I+OWROqAox4CdBd2daJqBG4z9iDnDFPIiIi2h2Z7EMi3gq7G0v2IKkWOwoRH6xvoYFzHrpse6EVOfZpj8Ukcl7etAyw3ut8XI+MKXSFx2Q+AKtVJZsrtvfps5fpEfTot5FRQz7ZZ3ZMLA925M7Y+8TCkMqKaC9tZBAf7VgfGYFtI9dtnxT5UyYEWGRRV6lqovfgeaPtFLtetMY0GnmsAZel6lEqwT+zl0l5M/YhrcrFWIk/OOXmClCGqutxD9CQfXQOP9Y0bWG50z3fPiEbGiKOopJGx6uACqA9eADrZos07Um8A9bQlz71wScabF3YM3eJxJuNhF2iovcjUwaTcCahu5uSi8OSCCqke+XIf+ODkG5lAiXHyfXnoFEgnyz3HDkHJLUS58SnyOLQdpvKE1J4m0CIOp6mdHqUnIqHaHDUHCj6zSy2DnG6WJpY7Y12Vwo1UKqT8+GhNvvoP/Z5gviU7py42pD880xQlxRdrhop0BXLWDOD+b2a7sj14TERE631R20R6oo9SPIkG7OS8gfo4qhrUcSlkTrnOSJWMMe4ntPq1BVsWsy/0KIOhadvVobTnaw15F0kTUMa0bePaRlzZdtUucb4xf335eQ5el9shlDuK35cWGvIutNJYLLcvWVo2tmcnk3l2ewzvkbHZ3h0KxXuUVWnZ2dg/VvbiQaWsDoU7r9pniGp4XvINqSdGoVAoFAqFQqFQPFXQjxiFQqFQKBQKhULxVOHUs735Ek+iK5UpDZggC5O/zcB31wy76UARCZM2tuw/+KW2UQj9gl1fO2NRu0DaCWLgoWKgG5yBySz7kERzkuqNz92LChNetya67FGVze5HmhFSnRKPgkwPqHNDL33JnxCMVbr6QK0be5S5iEQVKZT08UkjJ6KufU6mJaIKD5aqZusT1cuQZtPH+rTXQMpf7mnPcYCquGt3+1TEDl6L6y4OqI+w4tcwR9tAeqDZXkdqXCBJJwP7okM/omodzhdy7LXc9mWgm3QxmSYk5MrKvurw90r4KBa+soaoodgXWGFtB9qLRGDtiSOmiGYsfWw+MQpJTMskIlqCOpyz7RiB7eVDSDA5lu2GTYg5gwpNXvoNqj1VEwmGlO8QPipB3UPliSf0dR/twpS7qpCIyo49GMd9ilG+xHW+RHFHgY9Ggs913ISfxQFlqNMkYtSimC7GxvY4UXNSIEVGwONSI5BAN0PlPDv+9GEejT19ckz+tsg9tKsQBYvrD8ekZk3GGlYfu9oQBasP11fK7e8YmGNvFaBCVshzfQGoZ2OrCIjqTSNPWXAf0s1EDatKrSNyx72SWhv55/+jqgCGKGS+uemsaGV7eUKf6S8Hf8dSdW0zr7Wk3laBjr4BVP6ufQ8LvW/5KGCT4EuWSSRjWN1RPxM7WqgbGtkNq+RKRPS+mjzzs4V5f0Ua/oNY3h3v2jmCSNoex7euJ9kltueowESqR1dC9SH20I9DtsXv+k/attQTo1AoFAqFQqFQKJ4qnIonJoliatXM1yh7OkKrpPusYw0rExjgfgHyKVy2q5fzsFpeh/Oa9gNwAB+f+CG6BivEDAxg9wXh4xc4rhbyV3hoJY6/1mMoANYBrtDwfTkIy1xXji2DmKn6VUzkX80KBUQP7co45j3BQEz+8sfVeGyvtfGeKRMEd+P1tyFAbc9u74OHaoFODzkV1Oe1ZVtEfK4G2BH79mqOh8ufe2VkvQgJrmKAnflWg9Ar41uVdDxEnuBnDAJELxnbBK6+oHew48mNhLaBuYnmbF9LwEuAz8L2vwDB4wtgk5dsUHqGdhpjuQW5b1UVxCKipJobAVc6eVzBVXmf15dI+g/W4QXvkU8GcRTTLHtibB0vwBjXompf2tuV1bheV+p7fV+CRVObe+BrNamX+7kEgG7ZfD8hbzN7YnC1Oy+qq81EUoe4+tiqSbmWbDD1PKwiYgA4j+lzYDtzUXU8JiLasM9wb7BR7nPyfeXVXFa+wNVQQHPkCdKdBCfXhuf38DU9Xi4OaD7SnU8GERG1bL9kQRFcCfahHvLEeLzC6P1Fa/PnixtVfkd2xgi2sX9zHaMoDq96ExEt103usmfrS+W+92Ziby/afGUXl4WJsd8TG9wayHk3G+ZaD+oSVI7zWJmfw5nTpaw+jwfaCHqQ+F3B8Zg49lZtJ1/ul1D+HCRilMHsp2l8gG5U0B/XXHGfkGjGwPYYZI0MYO7swbg28ojS+DxTk7xVIa8XepB5DETvy3xdxr3LNoj/veB9+cRQ7PB5MuNbF/ItvQHnL9TgNd2ehu+LvrHQYeF46jPkgfId6whIQV/DbQb2T952vKdPQFRCPTEKhUKhUCgUCoXiqcKRPDHtdvsvE9G/SNP0u9rt9m0i+lky3/ZfJqIfSdP0eOmNFYopoHaoOA9QO1ScNdQGFecBaoeKs8bEj5h2u/3jRPRDRMRi1T9FRD+RpunvtNvtf0VEP0BEnzrsGkkU08WaccfuWkoD5mtB1zG7/0ZO7gt0jQmWLP3nWgZ0GPBQMY3sUQI62JhbwuM6w7L4AkGdwP4YA/uNnw+DUxOg5pT3h4CsLPMHLzKdbDcSKsh+JPXlc3H6ngVdd0h9GyXyjE0Ppc7Jj1Pe009H2xwZOhm3K9HB4EYp997I0snGSCcTqtJhOBE7pKik7azYAM4VsJ1FGG7ZMb0BeU/Qbzny0EJCQYQsujCaEGR4FLcoB+FHAboZ0+MGSIMDnXimEuH5aLNI3Vy2OX6Q5jP2PAPmNZlBuqS1ky4E/roCEtDXbB8P0XnY5kK/c19FCocvuJvIn1PmqHyKk7DDmKKSRtXy5OroQf+60zC/P84kr8AOXOvtGaFQvJNvExHR2nCv3If9kul3Tl4hhzpmqYZHcPnHHirPEubjaBjqxLM1KfctEorE7bGp+2eG0F5w/dch/8PnbR6xzUSeC8depnageImT+4CqAaYhuldJ+8UAVqCOlHTOCQHBvjwSRO7YyfbJ9X3UIOOTsMGciHZt/9uxuaGcPD2ec3DuRPEXXx6YceB33o/zrEMdsxQUX9A8kVtHTONBCizSFzn/xkXIAzMDQ8J+Zmys05FzhpnYFYqnLNtxcQHynm3FYo9ZKcDhp/n63iWQyjxT97wrBKhQPkqe248Pp+k4+WloXLnWUXESdrhfjOkrI0MTjSfQ5H358ZB2jfXJ2yERobLvTUFpCuW0KvP6wViINnkxMePiewrZ9/6G5Bu69qLZHnSAFvlQxs3mSFRnsrrZP2z634+5HaPMPxaWea4m5F5CIGV4tibva0zdxHfLXiYhEJ2hoWni+55D9ya/fU+Lo7w3vUFEPwj/fxMR/a7d/nUi+uSx765QHB1qh4rzALVDxVlDbVBxHqB2qDhzTPyISdP035AbmxelacqfTbtEtFQ9S6E4WagdKs4D1A4VZw21QcV5gNqh4jzgOOpk6HdcIKLtSSdEFJVqTqzg4CjJgFwGu7lmQLVmFrbnochzlj4wE/BE7dlPtB1QSumDK7Vmy4TuMEdfG44taQSeHCsIdL3hdeOSUuRXakD4civkjppbVVljEgUE6RdY9424mv8mpJrGwGPZlbk7BNoKuA/7Y1AM8Si40BHpZB5MbYdLOdF/vG/KfqO1S0REF691y99roD/f3zEUqXtrMg5/uSa0gzeBZrZhqX6YKwepY7mla4TaW/ICCWKHulGlHYboZAykhSFdLPYoc7FSFhHRItAxliwNYxlVo+BWnA8Ic8Mg5eSRve3DSGygE6CRsh2he9+hpORVGgqqbA0n0FASj769q65yvBwidKzxUOp/YJ9xi8QNvwvvBXeYygRDwjbkQ9gcirLS9tjYMqomocKijzLio6mEXPuOMqMdT5qJ2AZSeVYsheIFoJB9rC/X/ejNh0REtPCC1HvnDbGjrdVrcuO4WtbIQ+fAXDrOM+SefQCki/meC5WjuK+04PcQXay8/QSb5vGwBpThKTG1DQ6LjO6PO06ZcA5xqGW23X0UPSK/0qiTS8zTzx0V0HG1H4fGyjpSdux7AbYVKkQlnjXaLaCWv2PpPbNjOR/VS5FKPLbP2/TkVSJybYjhUMc9x7XgWkugeta04y2O6yPHbsaVfQifuhfm7XHyLdk2YjJWAAAgAElEQVS8N75cS8fA1HY4ysd0v890smq+FZy7ZmM3txaRq4yJ1LKRrUNfLj8isdncmacn5UjxU7BKitYERd0b8Lm38qxQEVu3zLH1PWmDa7nQzfoP5Bn2bG6n3UR0Xffq0p7cr/YnjCWO4umEXF4zoDp5oS7Utss1UwZsg24hD/koMcTnjeFuuQ/zLOG7IVMcj0MrO4462Rfa7fZ32e3vJ6LfP8Y1FIp3C7VDxXmA2qHirKE2qDgPUDtUnDqO44n5MSL66Xa73SCiV4jolyadkFNOHZsjpAzghS/BWcj9wl6XpVi+tq/FEkx3DXJHLHmyj27DZ9ma9cBswtch5kPhr/RGaHXF44UI6YbzFz2uQDkrfPZeuOqNgWi1wOoDw+cdwfwiMS48eoqYBfTrjxNQ7fPa4KoTrur4NMKnyZJ7CKa2w4VrCX3ib5iVhOjKC2bnDKRq74s3afHePSIiuvCFO+W+5c/Jscv7klnk9Yax1ceRPPcWrKb3impeDlxp5BU1DJpHOwtlr2bgahOvFC5C/1lOZJXPl2OgCedjEP+szX+DuZcwq/fIrnxnsAK+Bl7PPftcj8FzgAHBThCsXYFxvAiwesgrTGhPPq18tEO8fgNWVXllHfuixKZOjantMKOcdiDgnvcxfKtR2G64su2rr1FWFUoh8uc+mJQXxZeZmkjGABwLcEWPPe8tsJdF6BOtizaYfF5W8cZj8G4mch57nnA1OZQDyFfuUsjBs1pO5I69vOo4B3kaLtp8I0REz9icI9dj6VOY44dL1QXRil2SbfRE7tnnGthjd+P1wx7pMExtg+Mio7WhWSk9alB3HhiHjpq3BK/hyydBBCuyAQGeGkx0PoEOXA3nPrULbfEAbKBbN9vNwt8HdmEs2yxMu/Wg/UKB977fy/KBXaI372Iic8slKx6AeXkGKI7gEXeZAxtcsmM4esXv5+KxvTvcKre3YjPuoQDPu/BKTz8WFjntWG+yz0OOXjZ+W8X3o3Eh2xEyaiZ4RHl7kvhL6Hxfe7uiE+CJse1xBey8voB1XB2X4ppcf64m5y3b3GsXAh5wDrz35cki8tukj6VAJOPiUg0EWyDn0nOJGRcvQhv0Yrn+fNN6OmGeZSEoItcjyMH/OLcdFUf6iEnT9G0i+rjdfpWIPjH1nRSKdwm1Q8V5gNqh4qyhNqg4D1A7VJw1NNmlQqFQKBQKhUKheKpwHDrZ1Bjl4rpmVyC6mBbAHXbZuumvA4XsVi7FvD4CN5t1PXfBRdyHOK4d68bvFEC5ALcsn4VlQfflJO11dM2xG8zREo+qFCx0IeM2UurmbHnwnphTg2kjuM9XvlAQtBMQ6ImjclyKHsodBt71sypVKlQHXOMh7fYnjejSNWr8nX9EREQFiwxsPih/L+69IgdvG5d7siJ2eOUFcYV++I5U3OKu0W5/pSnt2YuQRlcFUjC8tIMAxYHPc9tItpmG+Xws9ITbGbjf7d81cPsibQLLVbN0BSzdCMQLBkyhRKoTHN23drYPdorBlyjYwS7vfZK+OvbQxZBC5qu3kO05Qgicl+dkaI1TY1zktDEywY6+nA9ee4Dyh/JPMDUidK3yGhOe26FSwLjiCxh2ygLjCtMGR3DKANbMhjtsk9Leq49XZBvyIOxlVapB7hE1mRQUGnmC1Ylc+krL0skwgPVGXaijH4oNneJDQzn/ZiF0ycTa/ybkhLgL1LR3Enmu+7E5b6dgYRCh+TxpZEVOe6P9yQeSUHOcQPUJVKoQuK3GWbVv472ca4IN+ea5ULuyuArO/5jfa5NY2Af7lqAPtKr1zFCetkdCO0VxgpEnMNlHs/NRzImIloH+ezMy261CjkWKOO+9lMvvzw+l5NciQ9MZ5HL9LzTEhv+4Kfb+jh2DMZ/UkE7PDvOiKIUduG4cKiG0Dfd/pJWieAOO50z7Q7qtLycWwqGg2U08KgqITfiA5RJaoJzf35R3hWzfitZ0pV12tuS9owPCE/s184xZoCwlJQ/e15z5IKvmxwHmrkOtZZralbrkrHkpge2xucfFTK61DWNp3VIkm3W5JgoHbYPNdW24SRcC/4mONj6pJ0ahUCgUCoVCoVA8VdCPGIVCoVAoFAqFQvFU4VToZHlRUHdk3EVR3bjJGjW59SJQqa5at+pzQIF5z1DcgDfqorLRmjXuxa0uuKhyccPF7HoL6PSzG9rJQwO5QJC+IDlOkF4BmMBMYfdiLZBHZgHqgOujBncYE9J4rPsRngXdi+xu5bwRRC6dzKfI4VMeIpL6QMqdL5dOSNffVZap6sCfKob7lN39MhERFQ/fNH/ffK38OUvfLrf3U0Md6zwQe+h0RJmjM5T62LHP0wGqVQ+oCCNPHgasQ6+SCmxje7SsCk09QEV4b2S02//qQJQ/Xv6YUOZ27xpb/9yjK+W+1xvgxsZcN1Z1DPVC+uCa3rfPGHJtc8sjhSxHJRSw7ySpdqCQTTF8lDunf3rymiCwfx87W9ExkOU5dawiD5cXn3VSvgKEj74SUoYqOEcQ1FviUYgrAnXogy9HCJFQCXtgT3tgszsbZpzO1uT6rwOFeJXEfrvZwJYPKEyevjSp3kIUMqQQ8zi3mEhZLkH/upUZm31fXfI43PyApMNI5szv/VW57/W3hYIxN5L8DqOG6Yv7ExQinwSKonDoNUSHKW/acSBA5TyOvWYT2nLS+URhZamDZdwFRbEu0Bd9Z2O5+qAq2Rmb/toZyfsH5rfxqXT6xi+c+5x5FtTFLloaGKqvNuFSy5YS9J6G2OD1D4kNNp8x9jzekvLNfP5Sud0FqnFcN/fYgPn97VOkkxEVUuf2TwZjxtiTb6iXCeUopJi3b9t8FyiTPjrqpNxtjior5viB3Cnzli66UJMxYzaWMYUpjA8xlOD+crlds8+7D/S/HVAJXa/Jfe/VzLHrQJHcB/vm53JyV3nUyXwUTiJXVa2VmGe8AfbSHsvvL43MfediqdftkdRLxjYN4+dc7H9v6SbGVrt1sdn7JMqwh0E9MQqFQqFQKBQKheKpwql4YiiSHAIz9uvOlxmciGjJZv9egGWSi5B99NpNWX2YuW4OurQhAdfjr8kKM3/5rk74VkOPRxO+oJ3gKLvCEsNiFX6Z87F4Pm5zdmEnkzqsTLZgP2/XnJU5CI6y9YUr+/uwCro+QbffBwza5TYiIlqwK5LLsDKJXqFhmeNAyhcHVi/K3BKBfA1PGuO7a7T1o/8LERF1N80zdjpih7tD0UPfIeN12YH8IjvgLdhoSX2u2oz0mA+lA8G+nAcilFvB1zaJk3MD8ljYFZoLsIrxfCTl/u6+sYMP/qeykp185yfL7eZXjXjByz8r/WhrJEGfA1j14bw1Qwj8Rw8TewRRWKCFAY12P9oLekXrcB6vdl+BfAmPYIzYiE0gfBdW4XDlf1L+nJAWvqDv2fdkkFNO/SwL/u7NEzMhR4FzftCDZZ47FJTNNhnyZk0qK4ou7NtV7B3w463VQEBlz3gkcNz4SkPK9QDyWvRsvwplKPeVJSwuYoA2gOM8j30zOI5j8LD9Ozsrc1LzPZJHJr5s+lLt+k657+pIMlbfeVuOHdj63s6N7R01X8tJwbfafNhxecBbOI09+rx9E8sZyHPB+c6QZdDKpd1inqzhVo4Yjx2XcRwZeVb+iSSPCgbz++pjkuBBHngWRNO2x2Iuxy5lcuzNhmFYoAew9dHL5Xa0aGwsursm56cyvi3uyxjbsHMxvn+cNkrvHFVz7UVZVZwF6xUz06NXhgWH+mMI7D9kzD0Ivhd68BebMs9eb10st5+rG6/KSiTjmytnZP67h1U8lmMb9nF6NXi/AOIA5l5bJTMWrmbCstnLpG3ZZrEu0I45J1NItKoJwiP83nERcjNeH8nvV2bMGD0zK32i0YF3hZGxszEE9rfgBXoXbG7XjsE7kHPmPh0N6olRKBQKhUKhUCgUTxX0I0ahUCgUCoVCoVA8VTgVH2JMUZkThQMn5yCYfhaoUnXO4RC4VtIUN1ltxdBNYnBnPfNIXPdXuybvwFsQxLnnoZKE3LroZueAPHQvIu2KnwvpYi2kplnXHLptkcaWeFz6oYBpppnV4fx9pPnkVfrSNPQKpOFwOy1Ae6H7cVSbt/es5oshcoMfCw9d5TSxOazT/3PnplMWp9ohupsdsL1IyroTiVt2AwLrNq07dz+Qi4fd5G4wbJVa5svDQeQGwLP9XIDAv2uFtNeVlqFWMq2FiCi6eVuu1TIu8Ruf/3/Lfc/8iVBcUOd9Jzbl6sGzODkX7DPMEFIkqzaN5Y/ATmegLzxHhq54CXIjPAT60ZtW7GIDtOUx8HbsoRqhHU/KcbJNu5XfnxiKw4OSJ4o+HLv/uAG0REQ+goVLMRNEUbVcTi4roC10bDs9BMGSVk3aYz0x21tAlXgjF1rw2kjojpw7AOvMyRPjqQ/fM+C4F8pFwTZTC8xAe3b37p4817U+5DNomnEymgFqSSzUOKSnruaGErIxNs89PmU62WHw1W8RoJBNEuDw5nZxchHhD9XrI3B/384te7HQabDP+8ZVH53ModvAti9PFQLnzMwjE+DYmIcKhXPmNoyrW5aW1ALadRPEOEaZecYcFVeAelYMzLWyNbHLBztCN3tnRk58bPvpHgSHnyYKgnqyf3x1TSR1h7/HHmESPGYUCGCfmFPKXncGAvivNEXY58MNCVv4y5mZu66MxQYeAS37bUvR2ozhuWAsnLVti+8aqxAs/zAX+17PTXttjmWs3B1LOzPdEevIoUhaOlmIeuvLMTbE3HDw/jsc2bCHoX/cmrXnXwJKYB3m9zrQ8zP77NuF/z3yMKgnRqFQKBQKhUKhUDxV0I8YhUKhUCgUCoVC8VThVOhkURSVNCxWPHB0rOHYkf2vByoGm2Nx6W3cE+pLYRUa8rEc2+3JsfxwDYfOIscyBWUUUBRBVyXrZyOF7GJdyrJscxzUvcpHct8muLtRfQy3+Vgn9wsQP/asGxzrbSsXl2IPVLIYqMCDYJchuhRRDYu3W0j5QyqAfVxgmzk5ZbZHoqLBmu1IMTtN9CinL0WG2sG0xYZD1YJntC7eEbh4dwvQQ4c63rPbQ8e//+4wif43gtbfgzI+7hs7fOHuupy/L67n6NZ7iYio9YlXyn0vvSo6II/2Vsrth0ydARfvNiihMGVuCLRJXBZZsJS3lqMSJs+yAMMP08g+OJB7vQjnXWmYXBt36qKS14H26Hty8Tg0EqB7cH8fwT7R+XnyKEhydPja9iTplr7rH1sZykOBw/EU6TE7Np+G83tNxjCmRSIFcx0oEh2kSORVisQ0z8DIA88SylnCGHv62upI7PDGa2I9sw2TIKbYE3rO9poce7cGfTWzuUfss8bezCVPHvzMWYCix/VzFLvkY9DukHbF4xr+7muLnPxzMrYP527jHHQHMayZ30NzH8//R6GQTXr22PNchSePFdoa5jC5l4iaXVI39bUDOevWEhkLO2OrLvYVue6z/c1yuz5v7nH/q0J/+nwTqLm53GvdvkP56LinhbJ9PVTCUYY2WVUvQ6VTX36s0DhRzq/wM9oWtyPmk8LcUdeBe/7iaGR/lz6/U4gCHOfK2nAog9Ke8/bdGOf0VaCQPQYlMqaR7Y3l994YlFDtu5VDC5uQu8itb3jHsXkG79XETl+vS56rgbXDWleedQDv7SNPt8O34xiK0rf9fQPeY48K9cQoFAqFQqFQKBSKpwr6EaNQKBQKhUKhUCieKpx6hiOmoPSBCrIHqk+sblQHt1QEyXL6PXGRtl4zFJMhuHC3QP3lfs24qJCKNQS36b5V5PApMhAdVOyyahVAJ0OFtUW7jSpjY4/rbgZoWfMRKlRUvyd7EZYLlJRsIsUOUJp2MkgOl1XpZKjagp+u7ErH3zFJ57ylBC2AklQTVdtsHdUmJhMEtYvs5GhX0yCnolTXYvWhWXgupB/VbTvNACVg36ElCoQC4acysesa1eQy+D332AkClc66ZNzFMZRrFhRDVq0K4PAhKPZsPJKyXDLqbPHtdrlv5b2vl9uLfyI2x6pkO+DaRjtj2+mDveQwosxaV/xCIJEaUvnq9raXamK7ty/KvW5tGlW1tyEh6YO69L+O9U0PoS4HsL0LKlg7lh63dwwllJNAQUKN8FFOJiFENfQlLfQdGzmUl6NTMHzUsjHqm42rx+J42gcFJB5vkMayn8nvmFSQaT1O0sQJfSZU7rL8qFKVVdWpnAStcK+e3X+/Jja9/OqlcvvallG5y0Ex8M7uYrn9cEaeixXcOGlj4xRVGwsqHFpO5fdJ6mSBxJeljSFVGqhQTO1ClU9fkkKkHIeoZXwLbL8Ekh9yWfKASifbANLGQu8CPiqlL9nlJNoZXmcPaHCrkVASWTVtvSY0nUVQ+btrVRsfkoyFL70u2/P2ed5uiI2+EgtNZ30s42o/OxtVMh98/dRRFMuZquhXGYs81FkE2iTTmouoOqbhsdiePRi/HpPY59u2PRZg8nu9Ltd6OzMUsA2YO3Hc5gTW+KzboMKJlHx+t8P+gXRIpoOFktFyHeE7Gh7bh3F3e2ju+1a8IeVuSLnv2PkX33NxrOR3YZz/8X2qA3PyXUuZezQEYreY/6FQT4xCoVAoFAqFQqF4qnAqnpi8yMvgI/4CdPI2YCn4swp+HsBKzho4FPi7tgNfxZgvZWhXcDrwBb0Hgcm4Xd4evpAxIJBXDjEPDK7U8Kpu0wmAl2/EJfu1fb2QVeubI7lXC3Ted60X6l5Nft8hDGI223uwQo7eF17FjALPguB2qMPKGHqYliOzfRFWFrHtOPAdcxyEhBK47TFYjqZYUX23KAopG6+ioedsDtpuxu6fh5WDCHKz7EAd+TT2caWDbaYeWP1g7+AQvJPOCjZ4DEZRdfV0N0KPhNnuP4bVj3fuyH257u+9U+7rPYBV4zp4MnPTwzDgmgO2iWQVfT+qrrATEY0Sszo4i+IJqBMPdW9jUWl2Rq61/JLY9AVr3yt3pCwPHskK9wMyQbAboM+/A5GDKNDAYa1nmZeD+wWvvkVTeFTQtjCwlVe3Q94ZPJaBq4/e3AoTvDJOLiroK7w6jr+PclwxN2XB1ezQijjvdwJUp/BacN2FRAqwXOwN6mPukBi8k9Y7/gDsbJDLKvjSugn+hfh9uteUenkEQdV8L/a01k97LLRt5LM37zmB8sWOt4+ZFODZr8m4OWeD1ZHRgG3dtQHLuyQr0ftjGRN8ZfCJVxBN9op4V/4D57CdTrI7R7DAswKO5UcP0s5QxlW2BwzexvpaS0wdriZid281JOh8xo7BnUKu+TAD0QxY5ec556g2cJY4OGYSuZ4UNI3S4xD7GSK835mHPQwRHBs2hpJL7Eswz63XzDyEebDWwOvycGS8C9ieroBUdVxGkRT0upRjoWd8JJJxLdRXfe0cGhfZU3i/ENEIfEeZS0R4wnctru8ZeFdqQL05ni2bF2xzIHYqme4Ox6EfMe12u05EP0NEz5NJBfhPieirRPSzZEzmy0T0I2manp8sXYqvO6gdKs4D1A4VZw21QcV5gNqh4rxgEp3svyCijTRNv4OIvo+I/nci+iki+gm7LyKiH3iyRVQo1A4V5wJqh4qzhtqg4jxA7VBxLjCJTvaLRPRLdjsiE7r5TUT0u3bfrxPR9xLRpw67SF4UTqAm7yu30T1o/fAY594Hms8Agvw2LJ0KA4/RzcZuLHStYSApu+ywLHM1CaBDd9msJ3Aflxi61jWWQADe9UhcvB+2otkfJnGXrVyW7cG+NMUb28aRtgruycwTPOULviSCOjgmO8GlQln6H1BFevDkm5bqtAn63qwvTiTiCYhmAnlF6EiBhSdjh1RU3Odoe0j34hwmy2CIy9D2F4BaxhSuOhzbBNrhnD0Wr98HO2SBBgzgRzt1XMcsEoC0LWiPnr3F9rrY3vzn3iy3o68aGtneV8Ut/Hv3r5fbX6hL290dbhER0dZQ7BSDr9n+6kAPdClx5vc5WCu5NZbtC5mUe8UKLszOQ2DuLFAYW+Yesz3p660NpAGZenmUSHuuRTLmbAElb8fW96Co0gcm4ETscBKQOlbm1wJ6Ti1A1WHKCQpzYF9mGqgjFAEUB6YPuMHNhw8iOO44tAZLu4pzoNcALWtSfpzMQ0nFfaHAVcakIF8n3wiUmwOduyCa0iukL7WsLQ+hz90D2mIcc2C7YBeowI9G0peYAsy0riMy5E7EBjFXEY+Fk3JThShHDtUxrlKGFyC305WGEeZZhLkV6ccbsRVGCExePjECpAw5/aFm+kOISs3Igcrt2A0UoaRQI1XTI5CRIf3YyYVXfZ5Q3qNScKBWfVchErvZS6TvrkNuNp57sJ8j3bwP1+J7uRTUI+FUxkIfQqIStbhKF3NojfDeMWvf83B8xHwrvI3X7wDlD9vjYbxVuRa+7zId0sk7NOHlLPRuN02/PPT6gfs797Xzc9cpi/TVlu1fISEn3h/63amjrFpHRw3ZP7R3p2m6R0TUbrcXyBjsTxDR/5SmKT/VLhEtBU5XKE4EaoeK8wC1Q8VZQ21QcR6gdqg4L5j4qdNut28R0W8T0f+dpunPk+uAWKDTTXat+AsKtUPFeYDaoeKsoTaoOA9QO1ScB0wK7L9KRL9BRH8/TdNP291faLfb35Wm6e8Q0feTMeKJYJcXuy9Rn7yDbmx2bYMyVxeoM12gJ21a2lIXXKWOAoVVWpoHitdCIq5tdreizvYsHLuSiFA1U4Iwf0AP6CjsnlsEpaj2WKr3GxOjvnD9JVGnSebLTSreArqWfYbNCClH8txMNUJ3NrpNR3lV+WcSfGpZRES79hlzUAHZBmrOQ6vvvTES5Q6kkOF12QZQaeUodLKTssOCipK6wO2F7TkGZY7MUkQyoD0sgUJbC2ySc+mMYd8c0M1Y9QxbAylgXAbMo+Fz+RMJNQIV4nCbc6O80RXlrq3fEZvv2Wd4vS7l+9O60BLeGIkSCevTI4XMcYkXrNsvfQ5pcIzlXH7/cCF0mms3divHomBY/65cK2kZO9x9JO3xAHLGvGl3v0ri8l+DfAj7npwwSMk7Ck5yPDwIpAQ4VByrOjQLNFekiy3UpG15vLocV+lPREQjaxsbhYyXd0db5TaPgzgeTgLSD3xqb5FDvwVahIcC4dCKPdyqSRSySWUMUShQkafMfYSKlkAtSyxdDOm9OCfx2JlR9ZpERJtAJ+ta+h7nZpinyfZ4kjZYUchD+lNRpYgF8xN55iGmmhARrTRkLHqxvkxERBdhntz10DqRluqoYSIFy1PuGbjvvFVCQ0VR35zo0Ceh3XzKfg4909l232+I3LGSyz3OcHz0UzF9duqoCCZZ5Zye5x0Iyx/KfyOA9ybPrwfxJMfCSXDzvQD1HcZN3sZ3jcW6zBeX68YmMf8O5t27PzDzIFKpndwsw6rNhlS+uD1Danl8Xqh/1TxUYnxupOlGllY9PiQH1GHwlRFV23xqblg+37jgzAGOWmVWOQ+vddR4iEkxMf+IiJaJ6B+32+1/bPf9KBH9r+12u0FEr5DwIhWKJwW1Q8V5gNqh4qyhNqg4D1A7VJwLTIqJ+VEyhnkQn5jmJnEUUcPmevEFXOJKVc9+DfMXJZG7EoMrDpznBb86MXiLVxxwVfxSTVZy521Adg9WaWfh2KuwosnZxbuQhwZX4/hrcwXvleEKj/l9866sBowhyPnt7kK5/ae2iG/ksgqA2V75uXCFqYDgUm7VUCCssxJjqzYUfNW1K2JdWBnb9mRwR++L7wubCLI1wwr4UcL6T8oOiWBVpFwdgdUy2OYV1V3IgXIBVm1mC/TEmOfCzLVNzEZv6xYDWAdgRzvWY7ADnoOxU4ew2uSpwxr0jy0bUP1HIOG+B+dv2wD6rVy8IBuQEXgLVooPBv4SuXYSUXWFG9uevU1zYG7P3OiU2wtt2T+4b8579Kas2g5W4RkTc5HtobQBZqR+QGZcQH3+Dchvgyu77MloQZ6Fo+Ak7ZBRrlZBP8ExbLlh3LUXIHv3LHhiroC3+CUy49V7h3KtFRhbB7Yd32yIcXwW6pA9brjyhiuKuWcFd6oA+6y6P5Tjw3eN2N156Dm+FcXQSmjkWRHvQpDvVow5PHL7F1bBYQWXA36xH6B3EnOesAdGAvsnr4E/CRtkTMp+jgH06PnHMYFFPi7WhWZwu36x3P5Ybux1GUzpbg2EQWw/369JPeH4g+8KPo8Feil5G+dJbDffnBdaAfetFOO96nG17Zz3GmtPParmcyNyBTSkzx3uEUV7TuC52MNc85SJyN/nQvN/CE/SDkOiHGwHISGHBciVs2S9LjhuXk/kHet2ZPZfAZbAViJG+Wcz5t3wFXpY7tuAOdNpO09uluPkKELEAQ8Tzw0oVoHeRS4XjjO+/Fqhsk4ql0+MwskVNklQJXB9fkZXhKPKnvBhOstVKBQKhUKhUCgUijOGfsQoFAqFQqFQKBSKpwqTYmJOBBFF1HKCuV13lt9d7M/9Egoy9h3LrmPMz3GdhEpx1Wqr7wDVBKk5C04uDlNeDEJEelDDEyS8A27Pr+XGvT7qyvU78An5zoxcN81M8P+DsYgA4HOx+ADSSuZiqd9ebrYHRVVbnoioAF38xJYbA4TnI7etiFzKHQb+J/Y7GF3rIZTu4Cld1yeFiKKShsX251DuwCY5sH4ALn187stAReKcMlhrCQa7cn4O+L0PdsTCFKhTj0B6Edcd2hs6aO+SydeDtKrNsSc3RSCQFN29ZYBo4g8Q5f6H56B+Pgc870Nz52MI8utJHeytG5u+3xf3/1YClBV7aA8EP+7H8gzrNlgdg7CRQobPyzZwHH39k0BELl2AyKV4+LZrcPwMUFYxX9ELI3PMR+ZEnOHye6TtmVXTfkv6er1zudzeaa4QkduGaBt9CGz1UcsQ5XlgnBg0zeMG0sIcUZYYaYtV6pmPtuAEP0N7Iz1uEvgaob64F/cr+3w5nXx5bg7CJ25wHuEbt5yAA0sAACAASURBVOtA+2jB+MQ5YZ5vXir3faSQsfIbhqZeFxtSvyt9+X3UMufvJkCHgbocxkAnK1xqcAi5Q52pBrhjOzgUMtjPz4vPinMeU9ZwTMH5l+suCwQ2Y98o56Yc+1j1ubE/tKJqG6BIUc2ZLwLUcosdqgqunAZ8geC+33HsxLnxSlMUnV9qmLHsZRLb+iBw11+0FNFGXer13r5QIIctQz3bakj+uz3IqYVUQV+5mzB3MVUKxywcn3BcZaBAxWxd2pGFCmbgfQ+vy+/HDRinkFrG93XzLR09LxjCb6dHh2+Mn0RH80E9MQqFQqFQKBQKheKpgn7EKBQKhUKhUCgUiqcKp0Ini6PIccMShXXLeRvVYUa5nxbC7ix0ATt0F+vmR9rXLLir5nNLpQL3JDr2kAawZ6V1MF/LFlB22J38EDXpPQwrpKPtgot4G+he65b+g9Q5VG1o2u2lWKhxSJnrRuYptnJxhSJFBNUomrbuZsE9OQducnapx5A3AKlMdZtHBd2bXaD0II2N2wbLcpqISOqptBPMcQJ2xr+H3JsJoSvfXKOO9AOoL87VUXfOkfb0qcVEHlU3IqEI4Pl9oLNs2DZ/NJQ8Y7tjsQOm1iClAPsP3stVCrHn51XlKofuAb93rIrdo7r8vroqCjEF5IxZfWxc+WugVLQBDE0W39uHfEWb0H+6lrqBFDKH0uOhzGUTaChPDlFZ575cF1huHgeRDoK0nn4hYwCf1QRqavOW/B5fNnV/5aooxH3rp4Wyep8uEBHRblP6rC8vEBHmTAgpfh2ugFSzdItJKldEYoeY8wEVp7ivOLY3krF5d2jsH2llDp3Z0/9wzumO5dieRyEJ8w1xu2J7Yf/GOuRnT6xK5VGU2s4CXD+hnBxzoPh5rW4oPc/HQgtdGQFdy6onzs/J3HZ7RuaDUcfkkdlqAbUHZO0wJw/3E+zzaAO8PSY/bYvbAsc/J+cM2NtswuNuldpL5M4HjFoBc4ulvu4DTW4/RpoPnF8yMf15R3zUm5WmqDo+b9XgroO66kLhp5Pt2fbowRzyB7RaeZYniYN0rOCcy/MstBfSrlZqYjMfLYz9fR9Q457/hGwnK6Zuhncgb9Pn4B2ImJIn+5A+2Ie2KynegT6xaKn6SMHE9yLORYNj7Xxd2m65Ln2J8xzOQ7lQUZcVQdczURzFHH47dlzsjeT+/fHhGrHB/FAT6LA+BcooQB9m+HMYHQ71xCgUCoVCoVAoFIqnCqcW2M8rZ7ln5RFXp3gFDPXcR5nfE8NfeOgxcbKX2xX/fVip6cNKLn+3YzA/rs72PFnq1zLI3TKUL1wuC64KbSTyNc2rH31cKXJEAqp5BZyVHs+qD3pf6uQ/tnyuwKo0r1Z1YWVgG1Y5+bq4GuYLKKzB/VFkYB3qlrNV74KXTdblnzwKgozatj4wyzi2B9dRA7oIeqBmIa8xr3K1MLAPPDHLZdWBa6EmTz5qmjLch3rHsswlsqpzwdpUC3PteGwnPkLAtO93J/+M3Q55TXnlyBHYgBjqbZt/5s26rIp/KZLVsuceSsDijr0Xil2g14XTRu3BSip6Mge2vkK5kRA8Bg09mcJPAxHBipSniLjq2rfeWCdTONjZYxDhWLN2srsj9nJpD8aoSzYgeEnGpSvPilfmg6+b1dw7DQmQ7UBg69DjqcTcL0VUfRgc52tJ1ePX8HhciMgRglmqmeDcy7DSehlWmdnTifZwpy4epnvxBhERbQ9kdRJtdpJIgC9w1cndUJeVUF69R08R9im8F9chr8pmscwtZ4EosGI6Cdhu89ZT3AAvRA/69IPc/J5twfg4I0HI12Njby9lsvq8C16dxzDPsNjMKKsKKxD551G0R2aHOAHZsNq+AOMuZ3ZvwBiOggE8XyDrI/N4u0P9OHbs4mgeYqx39EK8bHOgvDSSsl4ag73DNfq2XAOw1z+AHGNnDWces3MXzmFuvjTZv2A9W1eelfGv/tHn5MJN00+j+2m5aw+oM12q5n5BDxAKCnBfYW8dEdEF8J4sWxEgfH/oJdVKRoGQlTp61i6U2zesMNWNXK51dQTCFba67tTk/K/UZDx/LTFj4T3aKPc5ecHocE+Ik5vIk+MM24Zt3Xm/QM97XO0LGtivUCgUCoVCoVAovu6hHzEKhUKhUCgUCoXiqcKp0MmIIMjHeqNQpdpHV3Hc+UERAL6W3wXGbqytmtBZVoGGkFnXMZ6N2xiEv2WDlJkiQ0S0OxKqBbsdkXKxW5Pfa548MiHwM6IrE+kPPRu4vx0JLQvpZBzkvO8JgiTyBxHvjKWO0K1Z9wR3NyOkgLAwAASfw+9oYVweDLo9TYyLjLbGXWcfUhGRHlC6QsHlicH0c9Cei9aH2wIK2TwY0rWxsYk5oLss5kKXmW+YYNZXW+JiXsuljrDtmEKYO+UWsJ1hjoAIcquwfYYC6GIP3QXtAe2Qt51rwSYLCrw5lLwln2lIHa6D+51FD/aAktSDiw3s/n0oSw/658DzXNh/sL74eTC48jwB7ZCfBwPN+5iLB3JRbMTm2M2+1Ou1h0Krmpk11IqoBi7/ltTXFds/rwJF7Q5QYrcT6TuDzNzXoVoBC6YMBof+44iT1MzY6wueJiJaqQvd8oXEUCPeV0hZXu6LHczZ2eRxLDkhPt+Ua32Wi4dCLSOhMDniBfYhnHHBQ+9x8omgCIcdI5CWhIH/OHaW+y219F5UzUFzGphE4eC6wHoK5cEpKXKQw+lxLNffq5vtRyBIcW0gNrBs77EMxnQVc6BF0g+YJo7jE4rGcHlxDluqi43M2TFyBvOtOTmY5L4LnjwwQ09+jV4EbzbQNbpTzP9HBdJ0nLnJvgssZ1KAi5HUSwPaJrHj6kzrbMR2JsEXPI77cIwfwHywmZj9nXWgBG4JdZYSS0F9W+rtfk3afossxRNzAQbortwOczB+oSAA08hwHGiAccxbahm+I36gLnmWvm0sz/Dh2DzD9RdlXG/dAtGGoZ0DXpH7f359pdz+zcYVIiLqgfhSdyjjzsiTUyuU54rpw9gebi4p+9wByjCOkS27jePqHj323vcg1BOjUCgUCoVCoVAoniroR4xCoVAoFAqFQqF4qnBqdDJ2SbG7PkT78GpLB/SoffkeUGkhtq6t3UxoXQ+BErFr3cWo9NSE77o9cE92MuNy87mr8Rl6Yz9FhakSSJ9I4F6OS5zz23iU2BBIo4s9FDEsn6PiASpBJX0P2mMvE/dikle/c9ENyK7SBZLnmgEFl0Vwq7LGeSdBOtnpUXqyIi/pgGxTITvjdsJ6baKdYN4cu40UMlSDWUlMfTbrQMfoy/k7Y2MbnZq4o7NYbHoHXL9MbcmAdoU5CmYsrSAG9RPM4cOKXEg1RNtDcH3MRH6tfHb9os68Q/e0VCNWpSMieg219kFBZcEORSPoy30gnfatLfehT/aASjWw2/gs2H9wP9PIdkjs8DRV8hA+Ko9PlTAOKBUihjbnww5QYnYfQ56YmrHDqCZ13F0Vm+vbfhuBbYfy0/j6DxIUeX9IGY+pFTgeIoXsfbXlcvs7BuZ5vvniWrnv0sfF5pguufsa0BruXSu3VxtG3WcHVPK8SmtElFmlqzygclcqYgaoij44+VWgPhdsv5yztr8aaNezRuGZs5F2gmPJjqVdP0alxUjOY0WjGChm60AxuTW2FO8Aw20MVsb5yPbGMl/h/Mvlxb6DY+EtO/48E0kfuJhXacJERHXbxJDyhgawzeMW0mFbYO/7dnzaCNDKJtnQJKAq2tCWoY/UYHyWRMbC5WXzbnThvUAn++K7KsqJAvuZbx++43TgveXtxNjBlzsyjsz+luS/iez8+rUHl8t9d1swLtq5B8c0VBzMksPz9owc2rOp2wTzGRVI6TN2cgPmQ6SQffLGg3L7wifMMfGzH5CC4Ri8bqjbF+lhue/2Z2T+/YrV5G1BPwjBV/cIttk40Fe53znqhZA/50JNFNwuWQW3ZeiLn1E6mUKhUCgUCoVCofh6hH7EKBQKhUKhUCgUiqcKp0Iny6lwXM5ErvvUp26A7ubco35CFKbBMNj1j25AvNYemTIVVIdzZBvVR4aeZHoIfoZQgkpWoLgILjSkAW1mQnXgunLvJddiGhkqFvloH5gk0aF9QB0wDWc/k/ZBqsXI0ueQXjGM5Xe+F9bxGOoQ3f81e6yreHZ6dLKCilJVqaQtBpQ1uL4GTkJSoFMA3YsTMdahXlENZvmCcdmPhtJGo77ca2jPxxWFOcKkUNKObDNoO0inlESooFiCCVxtezoKddBGeN6Sve8tSDa3DEPGQ9t/Xh2J+tjaUFRTmHqJ/XRzLK5th75naWZo81j3rMiFCSp91DF3H6iXZdIeTDnFeyEd8okjEvuaZIdM2WtBcjWkxMxE1SF8K5HzVzclCV53z7jqx5n8/hhoC69a5bgNEvptSOGQbQrHElSxiWKmwfm5BpFnbF4BdbEPjOUZv+26oUZc+k9uyvnveY9czCb0XJr/UrnrmbtS7gt2PJqH8XA3kWdE2yhpz4HnYurGNBQyTMLnKhSZ/fN231mtKPLzIR2m8KgfukmppZ8hnWs9kuSC5e+glMjqikhZ7AFddVQz23XoD49J2nId5klONo0qoUht5edpAn0K6/+6TRz4jQOp+VuFPMtMDcYaS6vuZmKvfRijB0xdh/eWZl2ee9fSZVaRTu5JPEw0mUIliTXlubrQTzcSU+6NGiSMhbnn2ozYO9PImt/xfrnZF4WKdBoobY2rDh7fUY719E2sA6TBv5MZ2/iDltDJVlefKbe55h+COuN9eBfZLapqbUhLxPctnnMw1ADfofb4nRZsGvsaj0u3QDn3G+PtcvvCJy9KGT78QbshZSnu3S238wdmLu69A/1nKNd9PMPJzUGRzBMWQRRWJTt4bOg4tm+kDF+CJN/PAn3uNpky3oZq/8wRk66qJ0ahUCgUCoVCoVA8VTgdT0yRU8+u1pT5NwIei8R+4bp5MKqrEAj8EmyC1vdK03zpvdAQzW3MYdK3X9CJE9ztB68a4xd4A/Svy5VF8DIs1OQL+Kr9An0pkS9RDA5/HbwXvLoQ0t9mkYBWVA2wx21cdcJVVMwt4VuVxhVsLgsG0EUZ1ldUKet+4v+ExvwWZ4GC4DnLxR/wSEAAKrcn5hLZjmX1YsHJGWPa5jq056V5WTFcvGrO66xKvYww34DdRO/KRfAOzsNaw4In4nUzlnKv2bKgF3EMfaZmV0fQNvCKS7Bq+pJdHfkrfVnlu/3Co3J7Z938/hv5jXLfb8+K1+aOzQ+DdegISORSn+xhGQVyPvDKFq5wTRoLELHHu4GrwaeJiKKyP/uETHzeCyc4PPbkGiEJLn6UwEplJGMQ5WZ7B37fqEl7rFoPzL1MVtO3Ia/SPgo4WNGGYA4Bz6qpDziezkGfuj6Wci19xK5kfuxbyn3xCx8pt/P1d8y+N+/AlSEw39ZLeM6pig9kmd/jPul89jLPgbcMc4+g56x+TtYQJ+WJKcUMMNcSzAfo/eD1Y/SI4jzYtHWBdjuEvCWjuFrvDzOxwUdDWaHeGZr9PrskkrbEsg5w/LACF0vw+5VludfMAlx3ZK412If3hz6IlIzM/k4m7T6AduccJD5hFKKDTAlbPvRsepgUg7GMj9hP1xIzBl+DeyUwVl68JXNT4+Mvm+v/pe8mwafpLFDxyNCBnDBFdeXfyZ8H88yjkWEEoIfqK3E1twu6ehyBD877V1Tzphw8luck9Og6efmiKjsC88xcrBlv+QqISly4LN7F6MKVagFWZR4ef+mtcnv98+a5Xl27Wu77TEvGma+MjDjKxkDGeEegagqBCd/8i3bMtn4Jc37Vlsrtb8xlXPiYzR34Ynuj3PeT8oiHYuJHTLvdTojop4moTebV74eJqE9EP2v//zIR/UiapoeP+grFMaE2qDgPUDtUnAeoHSrOGmqDivOCoywF/VUiojRNv42IfoKI/hkR/RQR/USapt9B5rv5B55YCRUKtUHF+YDaoeI8QO1QcdZQG1ScC0z0xKRp+ivtdvvX7L/PkfEYf5KIftfu+3Ui+l4i+lToGnlRUG9kXH1160JtQqBqklQDpjCwPw4EHJbB9BDkdLEhgazvbRqX2ouRBIziskAnsm5AqroRiVx3GQegYpCSj/aBvy8m4i67YYNWPwoBdldBa/9KQ1xu9YZ5nscQxOjLLxCiI+SlKxSoOwXQosD1vDM298DAfswBwG5RpIUgfaJvz+uCazz3uFKJ/IHeftV8Fydhg0REVHjcpdCEOfzELlakNO3lSC0Dd7B1m9YLqZdLt4CW8JKhkY33pY4T8ZqWdbAI9KYFyM/z3Eja45m6cTMPM6m514Ey1KibcvUxj4XcinqWrtENuMmvQoD7x/vm2I98txS28Z0fLLcvdIxL+gd/UQILh48lP8e4bs5/SBLsj252zJPENusLYMXzQoGHTBdzcpHA8NYCQ/Pr3/c8+1ycmB1SlcLj0q5A3MBSFPZjsR2kpHSBsrJu63MEtMh3ErkP5z7AoNU9oGDsWvvujKUudkayjTRTbq9gMDjnM0IxAA9VAanCOPZiPo6I54IFCdKNl4RiUext2QsAxamAnA6cLyQo4lGlhuHvRTTBzmDsm7XjwjKIcSwR0n6rY3YoD1oIJ2GHERElcXj0nZSnLRTkn9t5vgj8PmdzYaENI4WU80AhjefxsFNubw+r9EakwziCQXY8xd8xZ9wDOyfeqUO+io6MpRGIt8RJ1XYLGK9zDzUV92Se8Q3rFW0wosPHutz+jjS6zlieq9tg8Rq5/0odBAs+IO9I8fvMeF574aOV8h+GkxwLDwM+N/dDh8qV+ecxpnhtEQjJQIUwJRff11BkhNvDETQCm8T3Jc5NFKKT8bjTAqEFpJPVPWPC1rq8sy7+mdDF4tfvm3um0p5vvSrhEq/Y98xXWmLzf55vldt3+ib3Cr+PE4Vpi9NQyxhIkVyqm7LchAD+jwCF7FtzaZvbnzR9vPHd3ywX+x9/9Uj3PBIpN03Tcbvd/r+I6H8jop8joihNU37CXSJaCp6sUJwA1AYV5wFqh4rzALVDxVlDbVBxHnDkyMI0Tf8OEb1MhgcJ0aK0QBLPp1A8MagNKs4D1A4V5wFqh4qzhtqg4qxxlMD+HyKim2ma/nMynIuciD7Xbre/K03T3yGi7yei3z7sGnlRlEoahXXLxh5FFwRSTVDBBmlo7LpitS4iohsNoRxcty79JaDmgLAWZfa6mP+jj6o2qHpmy4j3cigH1vXry9dCRNS025eB8vDiJdAC3xb3YaMw7u1VoKPNg7t61ipUdYDmsAYKL5uFcXXuFuLyfDwSNYrNkbjx2K2ILncEuxd9uStwG+sKVciQlsAuXryX1GYYJ2GD5mHE7vyUosMRpL7YbcwT07gM1JVbl4mIaHbzXrnv4jvizl221LBZqKvLY6mjm02h9MwvWKWzjtBVFodis1et/Q1iP0WF8xn0AupkN8fy33uvGtdz41vacux7RRUq6hj1sQvfLDIiH/qUlPvNlrHjfci3gLbRhH7P9rOPtEWq0nwQSDllegrSVJAegMowZa4KePJ36O3K9Q/ipOywoKKSbyrkuh95+iX2tXENckUkpr9vQh0gWKkH8ykgXZLpEH2gRSCFDJWfSmoW5ivw0Mlwn6P+U1RzXXVgvLpfk/Gw95rpK4t3X5Pzm0IBKu58lYiIxm9JvqK9SHJCMD3PGcPQHmA8G9ttLCvWNx/rjIE4P1mbQwrZZdhGRUpWDeS6rB2RVnYSdhhHMS00zPzCzzqJ+ocI5dHhnFNIrUGKSpxV8+yMI7Bha5uYnwjzwCB9yJc3BFF4KI2Y0+ZhZubBrwHNZ24odvfcBqpJmTL2gca7De3asZT4Xl2e9X4i931sqWtIQzrOHEQkz+UoxCEd3NLz0NZmWtAec/CtYW2APOPrYTixORkwSSUv9zx3yA6HkZ9mxmBlWbQNpJbxWDEK1DG2I9P6Rh7bJJKxouHJs4XHboEy31eHQsF6/Glpr207vrzakLq604D3vMJQt9eBEoyKfp2h2Y9juVPvaJJ296SxAM+frckb3dW6eYaXSfrUR4by3vPCx4Xm1vjENxERUfLtEEZ1RDrZUSSWf5mI/s92u/17RFQnon9IRK8Q0U+32+2G3f6lI91NoTge1AYV5wFqh4rzALVDxVlDbVBxLnCUwP4uEf1nnp8+Mc2NygzPE7SlfYGVCCeXBwdMofY6rN7yCvkg8n9J8mo6Bvb3Icgw8wTh4epuAYF/vKKJeSy6EDS7mZjf18G78uwAco205Gv65a5ZEXgBoluv1GQFKbZf7G8NJUAva8oKEa9H9vJA4N+omq0Vv7bdvAc2YzisVuFqNx8bynPhWyULtW0IJ2WDEUXOqiuRa48Y+MveQcyOjnl50M54RXWtJtfe+Iqcd2XRaLNHoNe+ckkCVPtr5rwdwutLuTYHsrqxPjAemB5mi0aPBNe3J58MERFbzBVolia00S3I1r78YZuv6DZ4YlYka3phV57iJVlpuZiIzS/ZjNiYJyOBsragLw3taiwG+eJqGtsMtt8c5CNatF7XRchzg3lH5mG7RZxBWXAUT8yJjYWFu2p3ENhnfDk6cBXNEZ5ITL/29U8iWT3EfAo+EQ+8PiLy9PEIV0JxvIw8npi8GpC7n0COEfAQvVmX50q/ZjyZ3/DpP5Dnuis5YfI3TbDr6hek7R/VQHyEquIkCF+emAZMjb7cI3HAa8J1gL+24L9F6JeJXSnnu9eOuDB/EnbYiGt0c9aELHDAMs5d6EkpczR5bIXoQPA1ez+gztDGuN6wLQaeFXjn/oH7ltcMrOD7VvZRVIZFbe6CCMMc5LTYh/1NW9xtGdZpFdgPe3aswveHDRDTecB5S8ATNCk/x6Qga8fzAHW0b4U7duBdaW1XPJfXvrZWbree+woREWVLlyvXPwwnNRYSHe6BcbxVdjPDuoBBfASmUY5PgWtzfaFHNXHEFSJ7TalXDuAnckUV+Fq5xzbNfr4WzG15tb1WSa7/Zw0ZyzIo153cvDe8MxbvyvZI3iX4ulhuLCuXwRnLMVfeFMH8XEc4J8/XpM88Exube34s5b+2IGWtX4V8grPmHaIYyvvHUXE+sm0pFAqFQqFQKBQKxRGhHzEKhUKhUCgUCoXiqcJRYmJOFOy6Qp39BgT4zluKyBzQeNBJh0GpPZvXwAncAwrVamSOzSJxzaFzsWPd6Ltwzoj8LsGEgy/BtTcuqu7HAs5HXXEOWr1fEzrZpT1xXbdIXI1je61LQM25el208lmzvv+21Nv9XCg9dVu3Yyc41R+oWpYf8wLAdj2p6qkjxcrnrg0F0DJGCVDuwIX6pBGRlI1pZAlYBJaV8xmE9NzH0M6PrR1+tib7Hu2Je/79v2bu9UJdBBXmZsXm5i11ZnskNKDXG9K2W5iDx5Z7DoI254Ci0rBNOwx46Oczc8BVsPmVGXHhXnlOBCDqH71NRETRDaCTYX6OzQe2UGhbkH+D/wZc1z6Egl05MB8pZFdqQqe8Gpn9lzCgGgQ9lqFbz9ry5lCWXz2KwsQJoaAiKKRB5AoO+Nz72H8dClBs7KhZkzpAQQM+1keFQMSBsQDYs4FR8nDkTjArB/b7c3i8kwjt4PdbhvZU/xW56+WL75TbOztmTP1qIZSZ1xqQZ8Redy8HKg/QfrBcTC/BNkii6tPiORjk27HzUyeWcb4PNrkI12WKUtlPKnd5cmjGNXq+afJLDGxdDGC+QioyB9tjgD0+M9oQ23Uolwfb7jCWfT5Kj492HkIoz46PZoYULBYPWMvE1hpACd6FIGVum03IsbQJ9rTvyW+DtM0tS/lBShLWi2/cmxRQjefgOMB5db6cSH9otSRQvPEZySvyvuSLRETUHMlznSYiArGdIz4vtreTF8iXGy0k+mDpriw4dRA8TyGtMTRu8lgWKj9TKx3KH1yLhZYwVKETy3270NceWVri+kDeB538NOXcdrjYhZt7cbo8VQfhvDti7iP7F3N+7XQhf9aXJLB/rvOH5pzf/pOp76+eGIVCoVAoFAqFQvFUQT9iFAqFQqFQKBQKxVOFU6OTRQdoZEghu1ATt+dz9QtERHQ9ErcTfmmtgZrNPavzvj0WdzBSBljpaCeWfQjOD4OKSEi/mIn9tIzymUBpiZ8H3ejoHpyx2/vg5ntQg98LyDWQm2MuBNx8Rc51CXlswHtYZ9UIKDPm5WGNdCJx/+cBdTLexvZC9SOmYOG9kAq4CNtz1tywPX+P1qsP+IRQUOG0tSkL1LGnutFF3AMlqCFch237MbhVH4Ii16tNY8u3SOhPz3Whju0t3m6J7aSF0Lo2gGbD9LfLidAHrwPtYSW37YF0GKQB2d0zoKxz8Ypoys++T2gw0Y0b5i9QyCLIz0FDS9d8LDS5jXyl3N4iVuzBPDGyPQKaDtN7sH2wbWat6skVoEg8A5SdW7mp7+eAHfBcIc91cVHqsFY39xiPqn36tHCQeuAoEXlUEbF/5lBHSEvjfBu4D6k6vD+k9iQUgyolkOiA4N0EtSS/KmG1gyHNFdUc71vaBBFRbmW7Hrek/6x0xc727e+o7vMwk7ZfG5u+tDOSfZjzAeugzIsFdGfkzpU0OKhDuarMRWsw7s0kMA7D/nl7L6Z+hiigTwIJRbRsadaZpdYglXoEfWvf9rmtRJ6UKUtERB2oAbYxxy6BKs22h3NQVIN51M6JON/gOFCMPXlBQvRHz4CO1BsG2irawgYoHXKfxDmgD5Q7n8IbUu44HxveH+sI1dyOkz8G7XG9b9omhboYNTPYviDl/n1De37/1lemvufJICrHHR9F1avK5lEsIxKK2MH9vvOYQoUKmGhbjFGgjRAlhSrQf/m+2N6oEMtAiitS9pGiyGMY0tFCeXN8KOs6oCp5HGCfQQrlfauk9iWgaG7BuHLprrzDNN8xZdjH/HZzokB5GNQTo1AoFAqFQqFQKJ4qNfRx8wAAIABJREFUnIonJoqIanY1ivNvYOZ7DNB9H5lVnzbEe9fgq/FBXb7eeIXrTfgE7uTVwP9OhmtlVWBmcCzXDARktqynoeXxyOA1MPi7Bde9YFfmm7Cc2YNPyAF4XTjcfx+yA3d3qpHHmD0YP0d5xdMpSyLPghriIkhQXf0NAVfJOD/HMqxaXQUhhRu5HHvFrnTM5HKv3wOp8CcNzM/BKxG44oqreLiixkgC3/ySK0d+H8AKT5nFGjJTP0qqXQ/zCuBK9NZIPB1c7jUQiNhuLJfbLySmLz1TYM4ZwVpibWMsFT/zSPpf667ozydvvmXuOf+7coGm3Df/4z8iIqK7vyft/e8hF87d3KwI7sLqTGgVzZf/YQmytl+OzfYzkLsBbes9Q3OxDyxKsOCVD0i/r98AD5KtkfEajAtfrNz+VOATxsD+x78XR1g5yz2Z19GryueFVhTpkHwNB8swacVvUl6LMsA793uFMP9Nh/N5wNg8C+MNry7itXjsJyLq2mDqfiAYHevTF9iPv3MZQ6v35XUif/6JPqxE8vjcsyut+8eSSzgeIopKb63P74Zzx4Kdu+bBu4z1g/MJB0qj98WXHRwDjzHPxIId13AlGnMJYX9JItnv+53tzV1Nl7KyDaB3BPO4tDwZ3H22QOTPpePLdYOex0nel0kZ7BF4Lfb6rJHMIU5ZwSuzM2PmjndekfxftPDoyPd9t8DAfg7M9/Wno8DNr3W0c0J5rHxwbA/fBTz3yjyiSnlQ7MKwBNBe0FOJZRx5hDMmAc8fe84LjeVH9jBlYk+docypb0eGZdOpS596HYR5ZuCdtG7rMzvGGKieGIVCoVAoFAqFQvFUQT9iFAqFQqFQKBQKxVOFU6GTJVFM83XjOpq1Qcjz4FZajMRtu2TpVovg9m1gwOEY8kA0zPY6UAtQ675vc7P4qEFcLiLXTYhubswhMmdd6Q347qvB7y17rTkI0J9FzWz7CKiZvQaBzfg1uWt9oWOgZfV38LrGfdeB5ht5XH5urgMod1ylxE1yT+K15qG+b1iaz02SfbegMM9CANqVGeNqnJmF4MpwuowTR0EFDbPwDbMY7MwjeBAH9NCZDlEjqVcUdWDXM54/AJvu24C+LgSKOrQDDJzzUGPQZueaxk4Xgc4yBtvo2oD+R2ADW5nkENj5nPTFG2+vmmv+21+Va/XFjtJ3THD1pyEHwRdyoXNtWRpnERCN8GnZt0A0YgmoY5etzV0upF6fH8n5H7qwSUREz3wSBBO+8S/JhZclNwLtmUDv2NLliIjoiw8rZXlSiIgo8fTB48BH28owB4onx4lblqNTVqahkDHVwDkHisIBtUehRXC/wbLiGFb31CXa1iRBAwRTSpwAcdjm30Pn++oIj92CeY/vwdS5fv10c3VwqUa2rgaOwA3SySwFHMaUfRAW2aoJ3ZVzyURZQJRmgg3x+DAH1EGkLyOG9hhsf6xrLotL+6oGQaNddCOhIeJ1md6DlGFEaWPwroE0Gy5D6Pl9FNJJCFFMuSxMKzsIpNd1mobq83Zt0Xvsk0YURWXdlu0EU7RDL/JUnUsvrFLDfbmCQuf7+jyOLEmg7X3B8m7uJLK/+/P2jbJq4H8f3pumGaN9QPv32V+oDnz39883cn0n/w39/+ydd7xtR1n+n91Ov/fckpseephIC5AgHUGliEgXFAEDNgSkiqiAAgKigEiR8qNFEESMBEXFoHRBSgIEQhkIIfUmN7eec+7pe+/1+2Nm9jzr7Fm7nHvaPnm+n8/93HXWXmXWrHfNWjPvM+/r3rMs0azRs8zPdaoNx2j7qhTyxAghhBBCCCEGCnVihBBCCCGEEAPFhsjJqqUK9g67mFshxwhHH+H49AdC/oohzqESjzVH3q4pL0mYJxfuLEWlWfBu+qJoPWE5t476dSMkCQrRxXaQXIx7gCFlywhFGePKPeplHTciuttmsrR8YNyf98ZalNZwTpldPioTh0U/Sjlj5r0sgKV17ObOuby9C5PdhDkXbdaeJ2YPyXyCjOzWpFk6pR6Pv7sW78f4DnftI+N03VF9tKGk3Kb5KB6+XjhqW5Z2XZez4HqmdXT8kCNojJzTdSSkNwXlqyYi4rG7+ji5a4/WnITiEEX+WKAjH/ORwobomFMk3dhPEXl2zrj8MOWYEgLTZGfXj7hjXduMGxymnE3huooiNZU4Mox/PrgOWc4ZpJsTFN3vNIrmtu8urg4q5987Hv+ce8blaryu7Mar3P/jGxeFhymVShiuuvsTbC4Xt79L5Kt+KHque92n29mL5DHdZFVZkFCsUirBUQVTsuBUGfMRg9LlDoKOcoFMpZmQyaUiHPG5WCYyXY7Re8JxwzGHxzYuOlkTGZb83Q1yVn4P1zhSmb9HQxlF2yRJMUf0bEV3K5CotO4FRYLiqEwzddd+cZ0PU1S03ZRTbti3q9yWzdE7NdwDPn7ORnxZchHHmgWSH38Pc/mDiHBd/eR+KZJHps6RzxPlo10lzs/nKpL5MOE9d7QSJYGlHmU8a0G5VMKob5v5ndYiIS0r52Rf1A4k2oQiOVkrOmmBzD4cK/ee7yL54/pmOVio+262kY/emCx2UlpWJKlrlTs3XQJt5yqqTyS27RY9jK8rXDff11w0WJ5ukajPPbvaViWRJ0YIIYQQQggxUKgTI4QQQgghhBgoNkxOtq+205/Qy5PIBbxMbrhrS04WcqDM7ux0RKPDXjp2qB5doceWo5wlRHJiVywnfQzurFI57dbixJZBRrY3YxlRvMZ5r+3ioCxzVNYDXkZ2QyOWlRNzsssuSO2Oksv+CC3v9NE8hqleZimyTEiayNI6dqmHhGRAdHHmorKRSzHIyDja1g4ym51e3jNC/s8yHWuOosk1Drttq8fIJRmD3Kw7JcRIKN3kLiwdC6QSB+aORbuw6zks513B7KL1UXKydpnfynOl3MmcbC48C7xdg/YPNsGyreOUTO4mkm4EOVdGusVlchcv+PJyVDUmlKEoSWidbDZEaKqX4zqu7/AsnkSyxkbiHuF4fL6y634cl48daS03f+TkZHPfjus2knKpjDEvD20lDKP7nUvE2GyXGuaUKTl1TJfIM12kCJ3W9UJKMlMkN2t0iVKVIidLovam6e2zWyQiJiex6FKWVBQ9JtkWkAxmjmSPS+V4b1dGXav1XyWrJkOMRrackIiwlDPIyWq0jhM5szQ8SHLKiUhPAJIJVdneQ7I8fh72Du1oLZ9Wm4zrvayZvw84YfARX64ZkgmV+dlqJZItaJdZWlYKMsLe5TT9SMg4uWFYXyRzC+1eUXLGbhHguG5DBDO+Bz2qeNaEEkqtb4zw/i2TZDglq+ZIVlyH5QIJYyAfJbN9//FqlMlP+GX+7mFJfUo6PkfvQf4OPVZyy+F7FABKaI9c1+wSRczv6P9LP18pGRwTo65SZFzalus21GFO0szyvsSzkGoLm/Se58h4yYTItP+eHsOTyRMjhBBCCCGEGCg2xBNTK5VxWmUCQMyzwqM63J+b9129Y9lS8ndm2o8qH29Ej8bx5bi8kJjMlovVHSZU8YgH91Bzo1H+/3TaA4TBg2U6Fi/Xu5yLR6Vbk0M5Pw4tz/nRch4tW6Qu8mGfn2OuQSOAzXSOhDgKQBdGXdtQR7kJ2fFnLPoRqqlKXLtUYrOKy/N+5Oz4iYU9Xz0lih/vVzUTk3JzlHkxPdKTmlhcz9o9Fpx7gb2PcyFPRDN6yNgrw2WsJUY6eaQ4jADNUx6ZXJ4Lf16ebL9AI0i8PjWalfKqdJvsx7bN1zLLzy0FJwjMVOZby/M1X8boKMLuoTjJd9fXnaf39KnvttaVh+Ly7H4KknGTG829GmfFg+080PEa1pIy4mTWMBoV8qYUkZrYC6yw2S7PVep+pnIfdRvRBHiyfHrEsNso26ooaHvDXzyiXkqMThY9v908WCmvDXsn+bzBqZ/K2wHk79fKXBbZxryO26i0PKYUjISCkFQSHs+iJz7UcS5YToU8+wlPeOqduExtBt+LcfIUh/w1bIN8DSGI0DCpL/he8KhwqyxNLkt78AZe181jySPc4R5XC7wI7IlpBXzgc9H7PagEcucvyq2SoJmo7yw3k3zjxrabyLDgVSLBG1Q0Wl+tuPoKQVEAYJQC0TCt75oCb1aAvSuTtSgLObPm/FGnUpSDPfR8jlEdhW+7A5X4/v4JR8MJ10JlmacAT+He5dqhLh52hu0s2FGtILdS1ddtPWH7QIFnix0xnHesS3Pe7R2QCo6ymndET62mMeZkAJcBeCiAOoAL4S7hCgDPsdZuXFgVcYtFdii2ArJDsdnIBsVWQHYoNpuuXW5jTA3AuwGEYdG/AfBya+0D4fqLj1m/4gnhkB2KrYDsUGw2skGxFZAdiq1AL56YNwJ4F4A/8X+fB+ALfvlTAB4G4OLOJylhb8m5/cb8xPiRAu3DsZJzcx2h3xdYagWWeznyLqr22O5MbqKY/325RC5mnmxMy3NePlArp91dCwk3GEvmJrzreydN0OcJ1zwpLLhCWQI2Ta63RT85lCd3sfwoxNpfaKTz0PDkrUCRe3FlmQBglnzXN/uJ2EfZtU2HXybZxZQv46GsXTrUAydsh91I5YaokbxqhFzX7MYOsgWWq7CdHvfSyOWCiZhL3s54f54sy8spuQVLx8IEec4LkJIHsRud5V65uPn+2lPruLzNguevJdck250nO59aijkzeNJjYKYU5WRBbsb7zw/tbS3vL7nJv2f8YGcsKx3rOA3XHBpy13sI7efsgRO2w1Kp1JYjhN34qXwmuUmUvMjJohJNU5EsqvU72VyQXeXyJRRMEG2VtRwLw5ODQ7m6SSH6ISc1SEjLKnR93MYF+QnLinLPakJeW0RoJ3NBQHK5R9rLmpdNdJCTZT3LyU7cBgFU/b0dTkzcH+LcOL74c/SePEpBY1i2HOx5hPIyTdTihOnQbvK7eaHR/u7jtnZnJUp6RhI5s/JCKAo+4NvlCZqwzfYe2koOdFM4Wd6fJRUcA6BnqyDnRrBHlkKxPaZygeW+ZSjQUSgj/85v1JCDqUiCGn4Hojwo3zakJVoJTtgOm1kTc77+6432Z4sJOetyAV/ITvgagn3xu20JJKkPdcj52qi+dpfcd9p96/F77R7Vqfj7SfHdtTjvntsfH97dWve5kT3xvP59w99zfK5w74okqCk430qurfM2VVQvqW/LonOFOsoSsq8i2ObK6Udlzen4hjLGXADgoLX2ElpdstaGks4AmGzbUYg1RHYotgKyQ7HZyAbFVkB2KLYK3YZ+ngkgM8b8IoC7A/gggJPp9x0Ajq1T2YQIyA7FVkB2KDYb2aDYCsgOxZagYyfGWvugsGyM+TyAZwF4gzHmwdbazwP4JQCf63aSMkotGdkO7/yZaKZ9TdVye+SNGXIDLpGWYtG7tzmWN7tw2eUWSMUYz8X/pv3rdK5YBjoXHbfh5ROcX2SYXM8hmsWuUnTzcX6aYbqGIC1jiRlHkFrMnPuVI0WxfClIy9g9ydfI8dCDe5Fd+iwLaZ2TImcdpvw2cz6qEkvjltiFSzK3EIVruhFdsb2EAl8rO2SCfVULYqQHdyxLEVjWMEYSr5CnYIGu9TjLLfy9Y9ki2+yIvze7+fil9KM5588xTcc/vDzTWj6y7CWSVJaMozJ5+2TXOsN2kpKTJeVFLFtgl7i3A5Y1zlIUslmKJBgkHWyz/Cy3Itc02mWTAHBNzUUqm6zECDMjXIfkBQ9SA7bTXlgrO8yyrM2Fn+UiEbXLGpmcpDYXpa59XSpCElNKSLBYCsRyytSxWD7AksBwb3NtSU4Nlohc04/0jFOP+D9C9CIAGB+Kz+3Jw25AeE91InkoliiGdo7bLZZezCx7myObzhKRtlKRd/h3/4e/gN51F2tlg01kLbn0cHjOCyTcs76tOEb1dGM9tjkcHTTIuSaG4nN46lDMPDLqJV787M3Q/qHNmKjE+7e7HJerORmgq8A6+NmJhHPtqsYohuN03JBf62g55vTISQuXO+ftSEX2YxvMvU/8MzVWifKkcVpORZPi/F9sj6E95Xcyy/PCWi5zURTBdIS17nKytWwLW21/IkJVLt+ZlzcVyZ/4nRo+jRqNLnl9WJJH9Rnes2eSLPv2TyU56s/+QjzIrHsWTv6fr8dyX7KvtXxkxNn/8aF2OwdIMsyRC1kznGrrErYFxG87/m4JcncgfjPyO4Tfo/x+XkD7O7lKcwVKzSCD7WxbKZk+kI4c101Gl2I1MR1fDOA9xpghAD8AcNEqjiHEiSI7FFsB2aHYbGSDYisgOxQbTs+dGGvtg+nPn+vnJBUAk94TM+FHgod5ZJTnhPv1uezAPAJI+4URJO5pjtBkudRkPI7HHiYZ8iTtnTTqw16TMKGQz899/JAThifaLtN5Q1kquetqn8wHAHU/Yr9A23JekVYmdB4hJ69MNVEvPMK+g0b8Q7mm6tE7wj3z0MuepcmbN5fiKFwoQ9GoUSMRaIFHkOJ4XW+ciB2WEMvbmrhfbrcHII4E7q7GEk6W4sgZ37vZkLk+owmiicmJfL8438HJZXc/bot4/H2NeO+nyOhu8EEdrifbmK3Ee1OthzwynSdkF03W4zIGm+ERrpRnoJywcyCOYPP95oADPKE2lQmbjxXKyF6d5YVohyHTdy3xfK9cDtfTrY46cSJ22ESWC8bQiZY3uZlYh/wk3Wo52HQ6F0XH4wMYqzr721GN7QMHlUhlrOYRvSPLx2O5Ep6WVL6U3Khrl9wthdfg7+MojUieOhxH/+88fAoA4HZIj+gfrlKOLR+Eg73NNy3HCb0hwESRd6WVR6bI+5Igem36C4JwIja4nDVb3pRhf1+riSzkQPSasMeE3xFsy+Fe7KR2cw95R4OHmb3Wwwmv8y4KgDNJyaHYbxBqi59ibpcz356OVAq82r5d4iApx5fjdXFbl8wlRKUJHhj+/hingAbhmWIP0wRd41hutNwdlwMLzZDn/ajPAF9fTudTaSY8GoWsQdyNE7FDoHOOkFQOIfbuclCJ1Lbs8ejWpuQDKTmbXiKpSNncvrVce9CTqZC+DdwRpwDd45pPtZZ/eJXLR3ZDdUdrHedFC9dTmJ+Lih3acw4KsaMWy7h3yJ1jNz1z/Czt8J/8/M4+UI1l2U9tXfgmzAVHoDoKeRhTyh2ActbQ8zdUkL9mMXgXC4JRdWLjshoJIYQQQgghxBqgTowQQgghhBBioFjNnJi+mWhmeOCSc/tVSyFOdew/HSDJwlzNubkaJXbHp0nJqjg+dnC9FU1MDrIrlkzsIjnZKTTBbYcv7yKVa7ZEQQbCBHmSV+QmOftldqOzRIwnxof1vH8lNwHd3TaeXM5SgOCy44lqvO2ORK4alj/VEzlIcq5Wkp4F1zXvw8dit2Wp1Hki2HpTQqnlhg11xJI7nnQZZIUTJCnkyfZ8v4KMbLoRpQhcH+EcE3QPTi9Hd+85TXfeeyxF1/iu4bh8zWKcmLo04sowRXI0vp8L1fZICSz1CzaVsicgLx1LTuxPjHsU5RJZKqXdzIGUy5zXsdQpuKZ5HU+eDjIzlpvVq+2TJwG0Wr1hqsONpJk1Mbfscz2FyY8sTUnIwfi6Q74EAMhIatgKVkH7s3x2pZQSyMsSwgTok2gC/G6WvNCkziB5maOcUWwbQebBErJc3opEHpl+2oWUlIdlFbelHEL3brpn7U5L6bxAR8gOrvET0n9EdXic5JopW292KXepQG7ZWrcJ7eFys44bF48CiG1hKn8YwMFf4rPFElGekBzkVNyODIHbD//OZulaLj+NK8Meand3ZJRDqcTvVAfX6Th90oRtOUgB2+tyyJGSeEf1QpZ4PwdJJgDsqcXnaI9/tjhPHEuKRxJ1tETfF8Mkkwvyt+nl+B7md+5mvV9PlPCcFMngwnWx5Gh6kXKNlek59e1lUV6fFFyHIRjP/mq0p+zGm1rLzeNHW8vlcScjK43G9/RQTBODHVe6/8craXl/kJEV5vRKvBNT0yIAYJefKhAk6gBwGsnUT206O+JaGadgFFkt1n3Is5TLnUjPfZA1zpaiHI3rOzwLkzWSk5L9M3NeLnlseZbW9pZPUJ4YIYQQQgghxEChTowQQgghhBBioNgQOdnYnibu/qi8a6hxILqNDnwrupgWZ5wM4GYKVc7u4EWSa817aRa7AdlNN9Tl8oIbuReXY0hrwxKyIxSN6rgvy1IuXwvF2vfuyVmKMsIRmbpF5qmSOzlIw9g1nZMsNNsjpQ3R/tVc1BVXBq43lliFuuU6ZndukJmxbISjPuXkLH24dtebUF8sJUhF2eJcQbMcq5+Wp33UHs7lw4x5d+4k3a+zSKp41yW339m3PdRaVxsnqaGN5bqp4aKPHKvSPapE2UKQcXA+BM7LEyQhuUhpJKMbIclbiFpU9HyEI3BcsUpC1sgyvUYtLXvgqGUBjmqSklWxjCUci+2Uo6ZUy9FmKw13jG4yoPUiy9rj4fcTKa2bXCQVLQsAhnzdseSWI5EFycupJEU4laQIuygHVniWD1HuoymyuYP+nrPEo9xFXtgP3F4GO9tN8p3blaK04+xFd+/3jsR30HKdJEr1WPe7vW3sIRkJR5EKbSNL9nIyuWB/nL+H71eHXDkbaY2NrNmK6NeSapINpt5HLCkukgkGSRpHqJznnDu+tZind+cstZsht1OzFG1pjMdaqZIaiRqrJdqqKbqWBW4ffLkWCqRxPUX3Wnl+eo9yJLJJL0+eJAnZKL+TU20snZ7f3yF3UyrPRi/lLq1SPrdetJWh4BlpvZMTUQ6B/LshvDuKIjW2pGupZxfxO80OxXPd9NHDreVTy2+LxzrJfbM2f3RVa93+y2NbdLMPucv2yvm3wnOXkzUWvHNLifxcudxGfnmYnplJkh/vbYSIvZEpqpcJss/lsjsWy8m4jQgRaxd4igYfy+eq2ZOTJ8dngq93OltsWzcrOZkQQgghhBBiO7IhnpjSzp2oPsxlOM385MrK9de2ft+39L3W8mlfdqMiP8hi0Xiy/BR5Mo75idQ82SgZs79gZDL0KnnUiHN9HKWRw0Xfcz6UxVEjziUQvC58Lp64P+VHwzk+OE/+Zk9LGD3Ir2v3aNSztNcnxJTPjTJQrP1UcIEib1br+M10bPbgleGMwUUTRMNIyWZNPGxmWSuT+KIfmV+iUWnOeRFGH5YKRiF4dCJ4YFK5YYA4SW+UJkafWo8jDqdNOK/k2Jk0SXsonmvHDbG+J6fcqMYpdI/GqFyn+Os5SoEDbqK8QIcaPHHOwbmRxskTE47KI0j1RDAKtmMeSQkT5ytVDiLQPgLFFAWFSGWbT8HPd1H8+jB6x17CfvMVnSgrJ7HyM8HPUsqmijxIrfvFo5PkOU4FdeDlUN9FOa6HyBMT5n+OVNK5j8JkU25L5ku95cbpl2AbI+RBHibbCSONCwtxRPA4lft4rT0n0zx5sdnygv2yHedsNmsfKS3xiDnXbhb+2/j2MEOGxUbei16UUyiUj+1qOed5jzUU3gecR4ZHnYPds9eac5AFu9lD3sCTyK4myAabidFqblEW/c/znJ2c3u8tDzrluVlNxnCgc64TAKiFXEasqMjYExMJrVaTLq9M1x3ePVzW1Hm7jeZvFVZ+D3Sb2F+0bVCg9EJs98izzxP7vU1+vxnzpvzL1L7W8gPeEnOU7Z08AAA4NhNt9jul3a3lAzWvfqAbyuqEMAGe1Qj8fKWCn/C95++xkPtooULtfmcnXw5Wy9QS72f2oIa6bybKB8T3yQgF+WBPZI2DWXibXKjQt3hBGVciT4wQQgghhBBioFAnRgghhBBCCDFQbIicDCNjKN/hfABA8/B1AIDs5hhzO1uOLqg5L7mZIxnEMXKXHSc5WXDNsyQiN7E3TDrP0q654D5ndzgfn/MHLPiqOk7uNJ6wGM7Lx2LpQCgD5+zISUWoOxlcx3xd9USQgOksStPmuF78cTn/DU9enM9J3txxi4IMhImsXBaWlrXK10hPtmuU43JqcvZG0kQTC76cFe+O5XvAddCoNtvWFU2+Dscokvm0bIPWDbGs0bt+m/QccBVVaDL8Tl/uU2li8t5cudzycZLxTJJsKrh4l8k297CcLJELhOVki/RchoAbs4i2xQyX2psXtknOJRHsa65OdtzkexO0N+0TPRl+/tjlvlinybv+fnCACs6Bst6USvEZCNeYk0XkJpv6fbrkGnH43AgkhcrJfrx8aJGCHNQa8bqnS+05BCplkvTRvQuynmUqC09ODvc5J4Nl6VprgmrBpXQhS8gGj9WjAOHKKuWPGHb2zTK5JbJZlv2G65mh9nKKZMMhMEYzIZsAonSDn0g+L2/b2MR8HlmWteot3JflLlKqZpZ4HpF/5oIk5lgp3gt+X4RteR0/hwteTnagEgWeu6vR7pr0Tg6WxTbIb6ZZH3TiIL/TKcjJjJejc/6bRsE1BvjdmJJr8XXlAgb4Y7FEZ4KsZJhOFZTG/JzXE1Inlst2zVW0xSRkgQx5uzqhY/Fk92b4HksfOwQ94t9T5bi2dKS1/AUKNnXTyM7W8qnzTkZWp9fdkTJJ9v19ZClVVqHcb1W37Vy1XaYP5NuJcF2cg423nfUSydlqXDdTitK1aZ8TpkLmslwgIK60vhUiqe/rXB46+n3ef6fydA1+VisF0zz6RZ4YIYQQQgghxEChTowQQgghhBBioNgYOVmlhvKe0wEAzZt/6v6/bn/r5xu/t6O1/MNh16+6rhmjP4QoZEA+0kmIqrRIrrVp2jaDc2flYtqzC6sZYmZHV+tcOUaIOE6yi+AG5205dntjRbQhXrdyv1RZmLAtu9g4qlk3mVwtkd+Do2ml4oqz1IMjCoUIaRwpbZQieoU8EPOgyBrk5uZyBZd2ZbP6zhnJd1ru5FhH7KKtNoO0pj0fBZCXhQS4DtkOgjt1hsQORyiHwKFpJ50YuSba2+huymtCkUZ2+QhPpQZHEaN7713DcySPOj4cl69lxyyJAAAgAElEQVQO0hGyAZYBjZPEazTIGlkug8iclwoeoSg7nEunVf6cFCoyytGk/PJUheQeFOEouMyLogelbIvlnDmbr7dLP4FRbBhZe+TEoggvUQZSEJEskc8jJ6ugOgh1WC7IYRLsdL4Sn+VGlc5Lj+2kfxbYHlgREKSC3aLRrZbc8+XbmyNLx1vrrizHnA6HKu33tlEgZQjt5CLJhqeWo03O+naYZUOpqElF9zMlm9iMaI0s4+n1/MVRo9rbwhAFEsjLXYLtFUVfCu3zwep0ax1HTJwj6WtK7srLC/4eTZOc7HgjlmveRyXrRc4UnkN+dlgWHX5niRefK8h7MlD+G6q3CSrCnD/sEapWlrGHaG6rjaSWYrMihq4XqZwyuShf5fbrLZqWsPKYADBfi/f5JB9Jb4zenbWs/Z26g97JO+hboulfgzP07Xqcnp/UfWapNT9fQcI1Q9H/jlHErzFvs6M5ORlLtCPhDPztOE/HDectigJa8pJSzjvItcpRy0LUM66DXpEnRgghhBBCCDFQqBMjhBBCCCGEGCg2Rk5GZDdfDwBYuCxGJ/vmwlmt5ctrznV/zdLR1jqWTd1uaG9reVfJuZmPUALKRZKzzMC5plLyKSBKitiNyIkzOapCGS7Cww6KMDFMEquQQHIxY+laJJyDo4RwAqtU9CEuC0dtChFg2D06QhFcQhQw3p9lDKnkhIWJznwd5cpNyyFhILvWi5JwhfLmZSVr5xLvRj4SiitDUVSMsD4VjQNIJwksckeH+jhMrtJrq1FWsKvp5S7xkcBpjSinHB6N59014dzMQ/MUNY0iwFW8m7yxEKP7HKUILDf7CE58LTVKRjlGdjDmE6TuJDsdyyWbc/vtpHt/c4miPvl7z3K1OkcnYZtK1CEvz5Rc3RVFL2sdqyAITy7ai9+vvkZRcfolQ9ayiW5J8lKrSwVysFAHXC9Mo9QuH2IpwJy/9/PV2J7ythVKCrnkZT1c3QtZ+7Pcj4SslJDGFZGTIPn7OLccbeNQOcqRFvz1lHKRweg9wNEa/X3htnOBktCFtpfruFuyyiJp2WYkuWS62l6vkBEEu869bxJymG7RiKZJwre/fKy1PEtRy1LJ+FLv0bkmR6JLy4tSpGSXfPzUOzEnOaIkmkEuw08mS3o4OlkQRc7Q98d0LkJee3Llfp6Xfp6zQSVl2yytTSXG5N8rWfv3Acv/c98FXlp2EkUcO6UU3+87/bH2NFluTt9b3qYPVOP+N5diks1U+9HMRaCMxw02N0XfGofKMTrZkH9Xc2S8mRIlzqTvglYUXLI9TqwZ3h25aLTJ6H7x+eVpESzPb0UMbXLE0N6QJ0YIIYQQQggxUGyMJ6bZQHPGTbTMfmQBAFddvqf18zeHYk/wKu+BObQUR9ImaNT6rHLsn+3L/AR2Glk4kshN0UxMHATSXoZ6gSdlxPf39pAnJheT3vesp8CenHaPR65cucmlPFHLLXP8ep4oGXrA7D0ZTng82JOUjynfnruFyY1mhQlwNHDRLX4+08+260/WKk9If8GjbalyFY3Y8vow2lzkRQgjPEcpR8HVNFl1pOoCW1QyGr2ZiSMeO0+P9373sDvG6BR5Fhqx3IsLzj5vqEY7/X4zxrq/cfFoW/nZ5hF3Q+afteFSLOse2nS3t9OxCk1wpfPO+pF/fk4WCp6JMEmXc8eMVeIIUihjLvdLxhHs22Hbzj9rflS0wGOx3vQ1qTr1qNAuuVHVxIh67vnLwjrKi0L1GbypXMfcFnBwj7rPozQEDm7S7u1dbfz/1Xhlcl4l8tilKBrFDvXBdcBey5SnoWv5CifEb49R8GRgA/CIbO/HCu/nefJ+HSunc86EkdxcUJpE7qlGQR6MckId0e3d1M1rxXXB7epiIrfaMBWrSvvN+SJMUfvGI+DLCRvsVtbcO32b2F0vFOXfSgWjyLU5zfaAKwy/u1q5z8gTM0pt5Z6Gs7PT6+zp4aO5d+aPycvIypak95b2T03y5wnyR+g9GtRDC9Rus8ePc2KFgFocYGdmOS6HZ7Eo195ywxVyejF+9/BznfLS87WO9dg9kSdGCCGEEEIIMVCoEyOEEEIIIYQYKEob4Vo0xhwEcM26n0gMIre21u7biBPJDkUHZIdis5ENiq2A7FBsBXqyww3pxAghhBBCCCHEWiE5mRBCCCGEEGKgUCdGCCGEEEIIMVCoEyOEEEIIIYQYKNSJEUIIIYQQQgwU6sQIIYQQQgghBoreUmKeAMaYMoB3ADgXwCKA37bWXrne510PjDE1AO8HcBsAwwBeA+D7AC6Ey6F6BYDnWGs3JxX4CWKMORnAZQAeCpdo/UJsg+sCZIeDhOxwMNjOdigbHAy2sw0CssNBYTvb4Va3wY3wxDwWwIi19r4A/hjAmzbgnOvFUwEcttY+EMAjALwdwN8AeLlfVwLwmE0s36rxD+G7Acz7VdviugjZ4QAgOxwotqUdygYHim1pg4DscMDYlnY4CDa4EZ2YBwD4LwCw1n4VwPkbcM714p8BvMIvl+B6pecB+IJf9ykAv7gJ5VoL3gjgXQD2+7+3y3UFZIeDgexwcNiudigbHBy2qw0CssNBYrva4Za3wY3oxOwEMEV/N4wx6y5jWw+stcettTPGmB0ALgLwcgAla23IGDoDYHLTCrhKjDEXADhorb2EVg/8da1AdrjFkR0OFtvRDmWDg8V2tEFAdjhobEc7HBQb3IhOzDSAHXxOa219A867LhhjzgLwOQAfstZ+BADrAXcAOLYpBTsxngngocaYzwO4O4APAjiZfh/U62Jkh1sf2eGAsQ3tUDY4YGxDGwRkhwPHNrTDgbDBjejEfBnAIwHAGHMfAN/dgHOuC8aYUwB8GsBLrbXv96u/ZYx5sF/+JQBf2oyynQjW2gdZa3/OWvtgAN8G8HQAnxr061qB7HCLIzscLLajHcoGB4vtaIOA7HDQ2I52OCg2uBGuu4vhenNfgdMKPmMDzrle/CmA3QBeYYwJ+sfnA3irMWYIwA/gXInbgRcDeM82ui7Z4WAiO9y63FLsUDa4dbml2CAgO9zK3FLscMvZYCnLsu5bCSGEEEIIIcQWQckuhRBCCCGEEAOFOjFCCCGEEEKIgUKdGCGEEEIIIcRAoU6MEEIIIYQQYqBQJ0YIIYQQQggxUKgTI4QQQgghhBgo1IkRQgghhBBCDBTqxAghhBBCCCEGCnVihBBCCCGEEAOFOjFCCCGEEEKIgUKdGCGEEEIIIcRAoU6MEEIIIYQQYqBQJ0YIIYQQQggxUKgTI4QQQgghhBgo1IkRQgghhBBCDBTqxAghhBBCCCEGCnVihBBCCCGEEAOFOjFCCCGEEEKIgUKdGCGEEEIIIcRAoU6MEEIIIYQQYqBQJ0YIIYQQQggxUKgTI4QQQgghhBgo1IkRQgghhBBCDBTqxAghhBBCCCEGCnVihBBCCCGEEAOFOjFCCCGEEEKIgUKdGCGEEEIIIcRAoU6MEEIIIYQQYqBQJ0YIIYQQQggxUKgTI4QQQgghhBgo1IkRQgghhBBCDBTqxAghhBBCCCEGCnVihBBCCCGEEAOFOjFCCCGEEEKIgUKdGCGEEEIIIcRAoU6MEEIIIYQQYqBQJ0YIIYQQQggxUKgTI4QQQgghhBgo1IkRQgghhBBCDBTqxAghhBBCCCEGCnVihBBCCCGEEAOFOjFCCCGEEEKIgUKdGCGEEEIIIcRAoU6MEEIIIYQQYqBQJ0YIIYQQQggxUKgTI4QQQgghhBgo1IkRQgghhBBCDBTqxAghhBBCCCEGCnVihBBCCCGEEAOFOjFCCCGEEEKIgUKdGCGEEEIIIcRAoU6MEEIIIYQQYqBQJ0YIIYQQQggxUKgTI4QQQgghhBgo1IkRQgghhBBCDBTqxAghhBBCCCEGCnVihBBCCCGEEANFdbMLUIQxpgTgAwCusNa+0RhTAfB2AD/nN/lPAC+x1mbGmIcAeAOAGoB5AM+z1n59xfGeD+B3rLV36XLeswB8FcC51tpDK357JoDHWWt/ZcW6l8DV5f/4cy/747wPwCkAKgDeYK39+xXHezWAPdba5/q/hwG8FcDPAzgO4JMAXmmtbSbKeVcA/wfgSlr9ZGut7XJ9fwrg6b68/wDgVdbarMs+fwDguXB1+wMAz7HWHul0TzodbyuzFnbnj/EXAB7v9/kGgN+31s4lzjcG4L0A7gE3qPBSa+0n/G8PB/BauHvVBPAn1tpL/G9FdvcVAGN8CgDvsdY+j865arujYzwMwF9ba+/euUYBY8wk3LNwjr/Gv7fW/lW3/ahs/w7g3dbai/y6wmfL2+rLANzkDzFjrX1gL+faSqyxHT4ZwCyArwB4kbV2ocN5zwXwX9ba02jdauywAuAVAB4NYNyX90XcNqxsT1dZ3iEAXwRwkbX2jR0r1W3/IAB/DWAUwBSAC6y1V3XbL1XeFb/l3i/++v8GwMPh6uaN1tp39XKercIWawsLn+vNssFe3vEF9foEAH8KYBjANQCebq093G0/v2+u7V7x25sBnG2tfdSJlG+rsQl2uA/AuwHcAc6m/gPOFpvGmD0A3gbgTnBtyGuttR/y+/0ygL+Eu6/fAfBb1tpp/9uzAfy23+cy/9sinbPtfVr03dWhngq/XQu2Tz433fbz+678hhjy9RLetZ8C8EfW2oavzw8CuDXc++N3rbVf6eU8vbAlPTHGmJ8B8BkAT6LVT4P7ILsrgHPhDPiJvvL+Ce4Fci6A1wD40Irj3R/AS3s479MBfAnA6SvW7zHGvAvuJpVo/V0AvArAg3zZdgF4of/57wD8py/TLwB4mzHmTL/fmcaYiwD84Yoi/Cncjb4rgPMAnAbg2QXFvR+Aj1hr707/unVgHgngV/2x7wLgIf7vTvs8BK7ufsE/YP8J4P/5n5P3pNPxtjJraHePA/AwAHcHcGe4TsXzC077SgDHrbU/A+ChAN7h7WMSwEcA/Kav9wsA/JMxZkcnu7PW3i/YA4A/A/BTuBf5mtidMWbUGPMaAB9D74MgfwHgev+Bdy8Av2+MuW+3nfw2XwXwgBU/FT5bcM/Fi+iZGMQOzFrZ4QUAHgXgXt4ebvS/p85ZNca8EMCnAeyg9auyQzh7fzCA+wO4G4D7wn0YFran/ZSX+FsAt++yTbiWMwFcDODZvq7+BcA7etivqLzh99T75fcAnA3Xzt4LwAuMMT/bSzm3AlupLfS/JZ/rTbbBTu1QEmPM+XAf4E/w7eGP4AYIOtKh7Q6/PwnAU0+0fFuNTbLDNwP4vrX2bgDuCeDecHYBABfCvcvuAeAXAbzV35t9cB2tJ1hrDYCrALzeX8PjAfyB3/7OcB2ZF/rfku/TLt9dqXpKfrt22L7Tc9NpvyI7fC6AfXDt3d3gntdwz/4OwJestXeCs9F/9gMWa8KW7MQAeA6cQXyM1lXgRlOG/b8hAAvW2iUAZ1hrv+V727cD0BrVMMacAleJL+l0QmPM6QAeC+CRiZ+fBNeYrbxxjwHwb9bag37U+t2IDclj4RpIALgVgDpcjxoAfgvO4N604njnAfiotXbBH+8TKO4U3A/Azxhjvu7/Pb5gO+ZxcB2fWT+y9AG0N3wrOQ/A/1hrr/d/fxzAr/gGI3lPeijHVmVN7M5a+3EA9/fb7ABwMsgmV/A4AO/x+10L9xH5JLiRpGdba7/nt/s+3Mv2JHS2OwDuJQ3gXXCjfFN+9VrY3cN9fTyz4PcUz0d8dk6Dq8ep4s1bPA/AywF8bcX6Ts/W/QA8xRjzLWPMJcZ5LAeNtWr/zgPwCWvtMf/3x1F8X+8J9/JZ+ftq7fDpAF5jrZ33I45PgPsYAYrb037KC2PM0wBMwo2U9sITAXzKWvtN//e7Abygh/2Kytvp/fI4AB+w1tattUcBfBTd29qtxFZqC4Hi53ozbbBTO1TEUwG8z1p7tf/7lXCewW4Utd3hQ/+PALx6Dcq31dgMO7wYrqMJ/510BYBb+3fqQ+E+/uG/ie4N4AhcB+kb1tof+2O8E8Bv+HI8HcCbrLVHvI0+C7FzVfQ+7fTdlaPLt2sRXb8hCkjaobX2b+CUQE0Ae+E6RUeMMVW4QYHwXH8bwI8BPKKPsnZkS3ZirLXPDS464kIARwHcANf4XGmt/aTfftm/TK6HcyX+NdBy6X8E7gVzQ5dz7rfWPt5a+/3Eb++y1r4K7Q3AWQCuo7+vB3Cm36fpXWmfh5N9vTe4jK21r7LWvgVAY8XxvgbgycaYCW+sT4H76EsxC9ch+VkAvwngncaY8zpdY6fyduDrAH7eGHNr//cz4BqNvehwTwaRtbI7+u25AK6F++C7uOC0yXtirT1krf0nWv9qAD+y1v60aJ8Vx30p3CjcpVSmE7Y7a+0nrLUvhGu4e8Jam1lr68aYf4B7IXweQEevod/v1621bR+oRc+WMWYcwA8BvM6PlL0PwKeMMRO9lnUrsIZ2+DUAjzbGnGSMKcO9TIvu69ettc9A3q5wAnZ4RwB3MsZ8xhjzHQC/D28zHdrTnsvrP2KfD+B3U78XcEcAs8aYjxpjvgU3arvUbaei8nZ5v6ymrd0ybKW2sMtzvWk22Okd34E7AqgaY/7VGHM5XAd4pss+hW23r4MPwXkKZlbss5rybSk2ww6ttf9irb0JAIwx94B7H14MJy+7EcCLjDFfNsZcCuCe1knSUna4E67DdEcAJxtj/svb4SsBHPPnKnqfdvruWlnewm/XDqyqferwDRHq9/UAfgLgAFxn5yQAZWvtwX7P1StbshNTwJ8DOAin7zwTwB5jzIvDj9baA9baM+Bcxh8wxtwRTp/4RWvtf69TmVL1l7u51toHwzWCDzPGPKPL8f4KwPfgGpz/gdPjJl+y1tpnW2vf6Zd/ADdS8egTLW/iPF+EG3m42D+0TbgHbgld7sk2YTV2F357O4DdcA3gRQXH73hPvMznrXCyvyf0uM8I3Mfd67penaNnuzsRrLVPhWvU9sBJ3U70eA8GPVvWeRgfbr3e1lr7MbiX3b1O9FxbgL7t0L/8/xnAZwF8Ge5DcFX3dRV2WANwH7jRwfvDSQL/oNM5ei2vl7h9CM7LONvHZdTgRiBf4T+GPwM3wrlaOr1f+m5rB4BNaQu7PNebYoMr9nkwen/H1wD8Cpzc8B5wc3ze02WfTrwPwNustVesUfkGgfW2QwCtuYCfBvAH3oNQA3BbANPW2vsD+DUAb/aDx0Xf0g2/30PhvH/nw73/OkoIu3x3rQXr0j5Za/8Yrn6vhvNGdaqXNWGQOjGPB/B+a+2SdfKYvwfwEGPMpDHmcWEj66QCl8PpJZ8G4PHGmG/DTRi8vV+GMebb9O/8VZbpWuRHac6A62XCGPNEY8wOX6aDcBKde3Y53h44t+NdrbUPAnAIwJXGmPNXlLdijHlZOL6nBKDbpKzC8hbhz/EFa+09rbXnw+nIAfdAJe9JlzIMGn3bnTHmXD+CA+smkb4XwD2NMaevuI+no7MN7QZwCZzO9D7WSSzQaR/PLwH4tu1xwjJ6tLsej9WGMebh/lphrT0O4B/R/VnodLzks2WMubVxkyGZXp6LQWA1drgHzlt7N2vtfeGkYFcW2GEhq7TD/XASxUVr7Qzch2HHeVC9lheuI7ILwEf8348G8ELjJpt2Yj+Ar9go+XgfgHONMaNd9iui8P2CVbS1A8CmtIVdnutNsUH/92re8fsBXGKtvck66c0HupWpQ1nPhJtI/UJvd68G8EBjzH/631dTvkFgve0QxpgXwQ2U/Dp5gvb7/y/0x7kSwP8C+Fmk7fCoH2TZD+Bia+20dXK2f0B3Oyz87lrvb9fVYIy5f+gsWhcc4EI4W7vZ/757rc61ki0bnSzBN+F6sp8zxtTgXlxfhevRvd8Yc7O19svGmDvDRUH6ms1H2HkwgLdbH/3B9hBVqQf+DcC/GmNeCzcy8LtwDQXgXNd3BPA6P3L4GLRrVlfyaACPMsY8Bk4n+SK4iCKXwk1Ia2GMeTTc/JM3GedyfAJcdKlO/CuAPzfG/D84fewF8A9kB04H8BljzJ2si7TxCgD/aF0kkKJ7sp3o2+7gOnIvNsbcz7uanw7gs9ba/Wi/j/8KZze/719KjwDwGuOicn0arhF+lrW2Trt1sjvATXT8DHqnZ7tbJU+C+9h7FpxL/EkATsQ7WvRszcLV3desi0jzSLgJnF8vPtTAsBo7PB/A640x9waQAfgTAB9O2WERJ2CHFwF4qjHm3+E07I9Cd5vsp7wfpDJeCB+5qMvxLwbwLGPMba2Twz0ewPestauaJ9Dp/QLX1j7TGPNJABNwo7bPWs15thCb0hai83M9jU2yQWPMat7xFwF4ozHmtdZJux4PFymrb6ybL9EagDDGXADgidZHJ8PqvkEGgfW2wxfBzcW5Dw8EWmt/6r95fhMuSMIpcHO1/houytybjDFn+0GSZ8G1AYC7508yxrwH7pvtseh+zwu/u1aWd5V0+4bol58HcB//DdEE8Btw9Vs3xvwHnOfx9caYu8FFdvv8iRSeGSRPzAsBTBpjfgjg23A9ub/yI7uPBfC3fjTi/QCeYuOEqHXDWvsduEbhs3Bu5wacNAdwHYQHGKeB/BLcyEGRFjjwfjiDugLApQA+Zn1Y2QS/AeCXjDHfhQtn9wLrZGWdyvtJOPnE1/05LgN9DBTsY+GibHzNGGPhImuESazJe9LlGgeNvu3Oj9z8K4BL/f3/GbgJcSn+HMCEMeZ7cFKul1hrfwI3mfR8uImDl9LIy1272B3goiJd3cc19mN3q+HFcBOwv+uPfxmAt5zA8S5A4tmyLqzkkwC829fnK+DCp665NG4TWI0dfhqubfgOnFzQwkXe6YfV2uHL4aQyV/hzXwUXSayQNSpvp+N/G+7D7mJvH7+HLtEZT4B3wmnDL4f7YHmftfYL63SujWJT2sJOz/Um2+AF6PMd79/BfwvgC8aY78N9BPczr6sf+i7fgLBudmjcnNC/ADAC4OPU3r3Mb/I4OFne9+A+xF9trf2GtfZmuHkrFxljfgCnBAoSt3fA2fNlcDY6ARcRtJAu310nTA/fEP3yV3Aducv9vzrcAADgIp3e3xhzBYAPA3iajcGGTphSlg1sSg8hhBBCCCHELZBBkpOJLngd5ZcKfi5M+meM+Se4WOEpuibQFLdsjDEGLtJTCmutfXLBfl8C5SRZwQO9jl2InlmNTRljXgLn2U7xBmvth9eqfGJ7cwLv4DejeD7pC621n1uL8olbDqtsCwfODuWJ8Rg3KfRKa+0HV6w/CcBBa21bkrPNwqzIYFuwTTJ7rHETF98Jp6uchctl8LbUMcTGIzsUm80tyAYvggubGrgt3GTablEexQZwS7FD/1vHjO5ic5ANbn0bHKQ5MeuKtfbPVhrqVsSkM9iu3KYweyycvvc43OSq+8DNq3lU8kBiw5Edis3mlmKD1tonWp8BHsDvwOVueM66F1z0xC3FDk2HjO5ic5ENbn22vZzMGPPHcBO4ZgB8EcBjrbW38RFt9gC4PYB/h4s5foW19o3+hr4WwBwoioSP/vE4uOgLZ8PF7H66tfYKH/3jLXATumpwBvUSH53hVX6/JbgssRdYa2/ssP7VgHuAEpcUMthem/gtkMoee7kx5jlwmWCfa61tAGj4yBFP9HUg1gnZIQDZ4aYiGwRANugj/YTJvH8PFxzluoLjiDVCdggg3xa2Mrr7awpRHMU6IRsEsE1scFt7YoxLVnQBXFKs89CuDxyz1t7ZWvtS2ucUuKgWT7DWngcXcYH5ObjkR3eBS4YVIka8GcBlfp97wCX1e5Ex5iwALwBwL+vifX8awL2L1gOt3n8yGaBNZ7BdSafssV8D8DRjTM24bL9PQEFGYrE2yA5byA43CdlgC7bBwG8B2G+3R+SmLY3ssEVPGd3F2iMbbLEtbHBbd2LgMvX+s7X2mB91+7sVv/9vYp8HAPiutfb7/u93r/j9MhvDN38TrtcOuBj0v2dcaL/L4BIg3RXADXAh575pjHkjXBLCT3RYvxZ0ypL6Yrj499+Cy5vw31iH7Owih+wwj+xw45EN5uGM0S+Ey0ci1h/ZYZ5VZXQXJ4RsMM9A2+B278TU4TL7Bhorfj+e2CdbsU99xe/zBdtWAPyqjRrre8PJZZpwvfQL4FyDbzbGvKVofY/X1Y1O2WN3Avgja+1drLUPhXOBXrlG5xVpZIcO2eHmIRt0sA3CuCzeVQCDnsNlUJAdOk4oo7s4IWSDjm1hg9u9E/MfAJ7gdYmAkw10C8f2JQB3Nsac6/++oMdzXQLghcaYknFZrv8NwHP9ca4A8ANr7V/CuRfPLVrf47m68Wm47Kln+785e+yz4LP2ehfp7wD4yBqdV6SRHTpkh5uHbNDBNgi4D4bP+hFZsf7IDh0rM7r/qjFm1LgIU71kdBerRzbo2BY2uK07MdbazwJ4D4D/M8ZcCpc1fK7LPgcBPAXAh40x34QLu9kLzwMwDpeV/Dv+/7+21l4O4GNwmWIvBfBMuHjbyfWAC+sXJnH1ijHmfO+yhO2cPfYvAZxpXPbUzwJ4pbV2IIx1UJEdyg43G9lg0gYBNxH36n6OL1aP7HBtMrqL1SMb3F42uK3zxBhjzgdwP2vtW/3fLwJwb1uQfE+I9UB2KDYb2aDYCsgOxWYjG9xebPcQyz8C8FJjzO/CuQuvBfC7m1skcQtEdig2G9mg2ArIDsVmIxvcRmxrT4wQQgghhBBi+7Gt58QIIYQQQgghth/bSk5mjHk9gM9Zay8xxnwawFOstYeMMVcDeKK19tJ1OOcrAZxkrX1uH/s8GMDbfWKklb/9O4CLrLUXdjnGL8NNjh6GmzD2W9ba6X62M8YchItLHniDtfbDxpg3AfiktfbzvV6TiMgOk3b4XAC/D+e+/wmA37HW3myMGYWL038vuEGVrwF4jrV2Xna4emSDSRt8KlwSugxuIu/zuB6MMbvgsnc/M6yXDZ4YssO+2sIKgLfDRcwDgP+Ey+6eGSfOkUsAACAASURBVGP+AcBrrLU/7PWahEM22Htb6COovRXAz8OFmv4kXNCd5lZtC7eNJ8YYcx8Ad7LWXuJXPXQzy7OeGGP2AfgAXPZYA+AqAK/vZztjjIGLEX53+vdhv+urAbzNf2CKPpAdJu3wPAB/CDeZ8i4AfgzgL/zPL4MbTDkXwN0AjAL4E/+b7HAVyAaTNmgAvAHAI3y+htcA+Dj9/kgAXwdwzopdZYOrRHbYd1v4NAAGLmrUuXCdmSf63/4MwIXGhb8VPSIb7Lst/FMAt4azwfPg8so82/+2JdvC7eSJeSXcKAaMMR/w6z7nX06Ay5r6LgAnA/iQtfZlvuf7FgCzcGHwfhbAwwC8HMAQXA/1D621/2eMOQfA+wCMwCUyeq+19h3+2OcYYz4Hd8MPAPg1a+2Nxpg7+zLthevxvsla+0EutDHmdAB/D+B0ANf48oXfXg0A1to/W3GtDwPwDWvtj/3f7wRwuTHmOSvyHRRuB+B+ABq+3Hvh4oS/1lrbsNZOGWO+DDfZba0SLd1SeCVkhzk7tNZeZow521q7bIwZgUuy9VP/8xcBXG1dki8YY74F4M5+P9nh6nglZIMr28JFAL9trb3R/30pgFONMUPWJXd7HoDfBPCPfHDZ4AnxSsgO+2kLK/6ah+EGmIcALPj9rjLGHAPwaOTzHInOvBKywZ7bQriOy0ettQv+XJ+A89i8fau2hdvCE+NlAA+ES+YDa+0z/E8PsdZe55cXrLXnwxnki40xZ/n1dwHw69bacwHcCsDrADzSWnsPuJv1cWPMONyN/KS19jwAjwTwIGNMqL/bAXiStfYcAEcB/LYxpgqX2Oht1tq7AfglAK8zxqzMgvp3AL5qrb0z3Iu0NRJorf2zhKECwFkArqO/r4fLgL6jj+2qAP4bwCMAPAjAwwH8AW37SQCPT5xbFCA7LLRD+Jf2Y/02D4IbMYK19tPW2h/5+rs1gBcA+GfaVXbYB7LBtA1aa6+21v6Hr6MSgL8B8G++AwNr7SOstf+XqlPIBvtGdth/WwjgQl/WGwDcCOBKa+0naVfZYR/IBlfVFn4NwJONMRO+U/MUuE5YYMvZ4LboxAC4A4AbwwupgI8AgLX2JrhecejZXmetvcYvPxTuhn3GuARBHwbQ9Me/GMAfGWM+DncTnxdGjwH8t3XJkADgcn/sOwIYsdZ+3J93P4B/ges0ML8I13jBWnslXOK/bhTdt0av21lr32OtfZ61dtFaewzOkB9H2/wEzrUtekd26Fhph/DH/YS19iS40bFLqLEPMosvwY34/DvtJjvsD9mgI2mD/sPjY/46fruH4wOywdUgO3T00xb+OYCDAE4BcCaAPcYYTswqO+wP2aCjn7bwrwB8D8D/wSW//AoArr8tZ4PbpRPThHPFdmKZljM41x/gJi8FKgA+Y2meCID7ALjCf1idDXfT7wHgu8aY23c4dqpuywBqK9ZxWQCg3uU6ABfXnHvHZ8DNb5ntdTtjzNOMMXej30rIX0cFBcYvCpEdJuzQGHMHY8wDaNX74XS3u/3vvwbnFfxja+3rVpxDdtgfssF0WwhjzK3gXsoNuNHYYz0cH5ANrgbZYf9t4eMBvN9au2StnYKTEz2EtpUd9odssP+2cA+cvO2u1toHATgE4EradcvZ4HbpxFwF4GSvMQ000G4Y3fgsgId5nWOY7PkdACPGmI8AeLK19qNwE52m4dx3RVgAS8aYx/tjnQ7gCXAfa8x/wSda8ob1EHTn0wDuY4w52//9LKR1sp22uwuAVxtjKsZN1HougH+ifW8HQJFQ+kN2mLbD0wB81Bhzkv/7N+BeAIeNMU+Ei4byMGvtRxL7yg77QzaYsEFjzB4AXwDwcWvtr1lr53s4dkA22D+ywz7bQgDfBPAkf94a3PyXr9K+ssP+kA323xY+GsC7jTElY8wEgBfBeZ4CW84Gt0Unxvciv4T8jf44gP81xrSFq+twnO/BGc5HjTGXw0UNebTvyf4FgN/w678G50b8QodjLQN4LIDnG2O+A+eae7W19nMrNn0OgDsZY34AN0Hs2+EHY8yrjZ/EteLYNwN4BoCL/H53BfBiv8/53uXZcTsArwJwBMB34R7IrwB4L53mEcjPTRBdkB0W2uGXALwWwOf9ul/zZQJcOMgSgPcaY77t//0dnUZ22AeywbQNwoW0vRWAx5GdfdsYs7eH6pAN9onscFVt4QsBTBpjfujPeT2cvCcgO+wD2eCq2sL3w0kar4Cb8P8xa+1FdJotZ4OlLMu6bzUAGGPuB+Bl1tpf3uyyDDrGmEkAXwZwvvVRKkRvyA7XDtnh6pANrh2ywdUjO1w7vETpwwDua/ORpkQHZINrx1ZtC7eFJwYArLVfAWCNMSsnSIn++XMAL9hKhjooyA7XFNnhKpANrimywVUiO1xTXgMXFlcdmD6QDa4pW7It3DaeGCGEEEIIIcQtg23jiRFCCCGEEELcMqiuZifjYpq/A8C5iNk/r+y8lxBri+xQbDayQbEVkB2KrYDsUGw0q+rEwEVXGLHW3tcYcx8AbwLwmKKNzz7bZFlbZOkYArtcomW/vlwqJ7Z0wbPjcuZ/j1uMlGJY8InMHWOEJHOVcrO1XC679eVq/L1coTPwicvuj1KNwo6PDMdNh8Jy3D9bXIzbzjkZYX0u/r6wFKt/gepgqeS24SrL0C77a/C5uNilUPx4zKI6bPod+filxL0Z4jrO4vKw379WiaWtUH2WqD5bl1iO+/9wfvmQtXbfymvrkb7s0Jx9TlbO8mHjWU7JdRDrJbc17cdrT0ySGWy9UuL7VUpu2/TnambRjpurkITy8YvKn3q++Lnk5zYeN1IrOfseK0U7H6dTDWXtz2KpxBUbj7bYdPdtphx/n81i6Pxl38AUyWO53KGey+SIXq4srdYO+7JBADjn7HOychbqpN3O+N42svb7XWSzcV2adGtAv6dX03nbzzIIYuQul9XTFp05sVoIe9eqJVx55Y9XW5i+7PAOdzg7q9dXlpss5ESrJHdUPm5pxZlWvNNb9p4lt1hNTZcK/grtV7Uc3wlV+n6o5NpIR50+ZJZpOdXucPsYjjteHmqt2x0faYxPxmOVdrkE66VKjASczUy1lg8edsc91IxTE5aasS3Mku+u3hkZrmzgO9lkaLp2ONhJKfE9CAA1X4cj1G5PNONVjtRiHYTbSM0mmg1q7/3yPJ1rrhQ3nvfvlmWq10ZhG+zPSdeVek/m1tHWFb++jO7v/9DeN+nuNnLvi2aXsvZvG0VNwXq3/b3a4Wo7MQ+Ai2MNa+1XjTHnd9o4awCzR/Ifj9xwDJfjwzpacZ2BsUrsIFTo5vPNCY1IjRqes2t7WssPrI8BAM5pxId953DsWIyNu0SkE3viuqFd8filGj1MI64M1TMm47pz7hC3Pet2bqFJDdvVcQCi/k0XWvvoN+JD8aMjJ7WWfzAU6+Daittmij7SuMNS98v8EbdAy1VfX8OU56lGdbhEdRj2WwZ9UJLZTpRcuc4sj7bWmXo0m7OXXd2dPhlzQ+3cFeu7tiPWR2i/y6OxLPe5/MZrsHr6ssNyVsH47J7cOn4pLTZjbqqlhlsuasTqdJ8biRdvt7lmbP9jNVfHbPO1cqxj/lCdbzibnatHm11sxHI3mtRqeyplHhAIDWr8nd4DuesKDWWNyjpei3YantvcIATZ2b6hXQCA8yvRzs9bir/fKovh6ceH3TUMD8f6rtNL56rZnQCAL47Gwn5j+VBr+YbFIwDy94vLMlqJHw8TFZc2YGclpg+4bvya1dphXzYIAOWsisk5VyehjtkO5xrx3s4uuzo6vkwfLA2qo2b7h1RRpzTc+5Q98Hr+iGA7ZtsK5+Vz8balLl/B6z0Xs9RlQCD3odTD4MFKUgMe/bLyfp1x+minzbvRlx3W6xlu2O9sKtQFv2fZRvohdd+5/QjLfHy2q4W6a98KbTzVae9id/kBjLg8VnPt7e7hWO+TQztby9w+LPu2/+bl2Jk4ujDdWg5tMNvScCW24aeMuLbw7sOnt9Y9cSH+fr+fO9xarv2yiwhc2ntqa13js5e0lt9xodvvffO2te7Q3JFYlrorCw989MPtbzuxYe9kNMsoz0wAiB09/h4cL8d34smVcQDAnUrj8WQL0TbOPi3W4fCEs5+l2Wh7x6fj/Txw3H0bXjEUj39pea61/P2lgwCA/QuxXqcX4+9sn6Gec++banzfjA+58/L7fawayxLeR6OleN38TcsWHb4D55pLrXVH6zGX5fyyKyO/L+br8ftg2Ze7yDZSz0+3DtV6teV3uN2OnuxwtXNidgKYor8bxpjVdoiEWC2yQ7HZyAbFVkB2KLYCskOxoazWuKYB7KC/y9baetHGzSxrjVTwSEirEKVK2zru/Q2RHCU3guz/H6Xfd9By6NdWyU3II73Do265OkbelyqdgJUtS77XOR97wJiLPXOE0fCx6KnB+AQV1u0/Pxt76PMFfciKl9GwO7vRh/MujAw2SJrDN3ooNzLlammZ3Y+Jc83RSPE0eQkWvLenTDKf4b1x29opccShNOlGvMp74mgXLr+x88V0pi87zLKsNVKfGgFfII9GGKlgj8hYud1OgejKZ5f+cqPdg1M0Yht+5/25XEUeoEDumfKLqRF2Xp+7x11GUvj4Q1QfwbtRLhipCedaoudvjupwjjx6ww13XaWl+Pv0Qhy5OlB166eyOMLUQPtoUjN3XVRvVJ9heald47oa+rJBwI2s1Va0ecPUblW6jC0tlmlkrdluJ/VG2naSZWEvREtm13u7UzQKt5WiXqZlkb17agoOSsfqvSyr9dr0QN92uJK18C6lLJc9LRXfFtRYJVBpT6DOzzGXi4+1Gq9Mah0/I0ukaJgnz3xQfaTeEXxeftq4DoOXfzqL+x+g0fjZH8bz7tx3qVuo0Xv2sptay5PNWwEA9tTi98WhcvQKLZfqvkzdJcPrQN/fhkutb0NXx42cVDouBzXJoWp8Lxyl99Hc8fhtFWTJszO07Wys75u9LOQwTS9gZUs98W6oFEqpy4l17VQKPILhXcDvhFop7S2vInzb0buTPFfhe4Xf+UnZd4G3PbfNCctsN4bVemK+DOCRAOB1j99dsxIJ0TuyQ7HZyAbFVkB2KLYCskOxoazWE3MxgIcaY74CN7D4jG47hFGJUuhJFoyShtFV7j0OUQ91hHqgQ74PxhOHJzPqoXrvxxBNOh8eIU/MTrdcGacRuqHYr2sutY9iZjSBIDdx30+8Ky3HkZbs4M2t5YVr3Ajyoek4T2m2QHc87HvAtdxcIBol8/+zp6ZK27Y8MTT6wp6WSmLiXC2xPxDvA/fVudS7Ss4ztee20Ss1fKc4B6K0b3dc3uEHaPbE34Gv4wToyw6byDDvtaThGos8HoExGiXcUYnaaR7JCKNsx+vRS0A+OsB7ZUpUiynNOZeF7ayZGEUrFcxDiRNn06POrWOuwcBcpRWQIJ4/NapT55FUWl+m9bWq+2VoiO7HfCz3YR8g4kgWPaELNFKamtCYO1czlnGhFPTraxJhvu+2EKD5Ka1JnZFKhZ7FxL1n72AzMUeQvYDz9VhfwYvHzzfbZJZoN3jbRhdv7UbS1VPC2yYmDBcdq9to6np4UtbIa7UqO+ylTKF+eilnyu/HwTqCDZVyc0diGxueSbZr9iwWlXE1ZAlvfJhzuPL4wUPD8yaXE/MH88EAsrZtp7P4zfDTapzb8cOfxHfiGYdnAOSDKxyd3hvL6D+HOEjAEM2/ma/7Oiy1P9srWQePaV92mCFr1Wn4FuF5jXX6dgs2c5Dm595Ec09uMxeXKxVnP3Pzcd1NiF6Z6/x85wOI9/t41n7vWXmwTHXM7XKwz5RXm0kFegCiF34kF1QiHdgqHKNC7t86PXWhLhfIjhdL0WbDd0du7myJFztfw1bysAdW1Ymx1jYBPGuNyyJEX8gOxWYjGxRbAdmh2ArIDsVGo2SXQgghhBBCiIFiQ6JGlEqllrszhnjtMgmK+lcsF9tZiu7BMIl/LIvb7qTJbDXv+qpWaGL/RHRVDu31rrmT06EtS8fJvZjS38zGELE45ELy5fI9XHVDa/nYdS6k35Esln+xkq6DWpB4kWtviZabCcldJcv5BH1ZWMZD7sOsXa5SLpBUBBdvldZN0jS90052ru+Ru0eZXNlQ6Ok9FOZ73E3oL+0+BZsBT+zndanlEAKZJ81NUMhNlt/NezvMCqQ3KVIBLnj/5cQEfiC6g3OTDMm1nJJrlHO2k4WTdSzfyv1a+yeusWhif/h9gepisWDYJMjIasOUb4jkEPN++XiT5WRxOchPUiGmAWAZ8b6nZHCbRSgBl6VEdTzi7Y8lL0U5fsK9WSgtta0DuG66T5pO/V70rGw2vU5Azck5KMBEt9DCKZvn60+FVi+aJN8tx89G0grkkJCgJuuBlruHNe4cpjsXyp2CwrTK0kWa0w9F77YAl4XDm+dC7vv3xtxy/D2Vi6Nbzq1pSvfw43L8flgaie+W3fNOOsb52DimzA1lLxutU0CiPiSRW+nZzdAerIbtkOs4rD9SifV2UyVK8o4uUQjj5SCrihV3sBpt+oayu58Hm/F+LjTb3xH8/m9U0++W8G2Wkv4WMULhlMM37W76ts3njItUg+QuF7QpXteiT88xXyE5WaVdAslSw27Sc6aoDdhMNv8tLoQQQgghhBB9oE6MEEIIIYQQYqDYGDkZSq0IJOWE643lKCFqA0fe2EVutr2Iy7t9xKExcruOk79rzEswRkaiO21od3RdVk930bLKp1AW90p0P2bTMQt9NhvdwK11c3FddpOPRLZILuhr4v7TM+4cSyWW9kS4N1lKrMvHzW+nsmLrlcfn5VyUrIQUI3c//PIoHX9fPdbh7js592X5TufE49/GxOUdFIlsyOeJmYgRyzaSDNE9HdzF7IbnOgx2WC2IjMeRRKpeetGspiOKDTWruXMCebdtcPEuJqJtASuixQU5JkvE6BamcozkpAb+UEUZUlKyhFxM+YQUqehZDhF9ODfCYcrAfJyan7qPqFMhl32dZI8L/hzs8ue8Ot3ke0wrT0yzrzQaa0qsO0epi8wolVdgJUEiwHWRkgXlZY+dZUFbSf7EdIuik8oDwxGceLlGyzFaXFrSEp7VeiI/D6/PS/PSdbi5coxSq45CRDC2lW5y12bBdXSTfoX9FinfSgqu38I8FomoaamojRyFMCUj5PvH0fz4XoXy5DO1p57TZFFb55iqx7iVP6T2/qckWxr13z47qa3cQfKjWd+ezjSirIrtbR1zEa05WZahvkLGWslFZaX3iW+vWZJ3UyXKwW6sxmkBO+Zc3c1StNqjJFs87CORTZOcjCX34b0/Qvcll2usnHj+C6TMqesapeOeUnZSwls1SWJGL+ha4nbO0eN5Ddn0vJeTzZDkbo7qaCghUy9+fvy3es6e2M7ay9UPyTxOq8hNI0+MEEIIIYQQYqDYIE9MfkQbAJrUqy3neqh+khONQpxK8b1Pp3wPkw3XFRyjHvAYjarsrbge+9jOOLpSnYzlKO10k8JKe8kTsyMmmy0tkKfl4CH3P3tn5uNx4T01jWNxn/kDFGPcl7tGvdparofLo90OHifmPn7I49AoGBnrRn5E1Qc34EmdtDzqMyuP06j43lLs2Vdv5yYhlm51dmtd+bS4XBqKoyPZkhsdyBZney7rWlJCHGFteWK43mmyW2pElutlgkbGwjJ7akbp91RmeB71Cblrsnr7yB+Qf1ZiPoJILk9LK1BDenwiBIXgybTMEF1DKoM711czMZmVc4wEz9LhZhwV2l+JntRTa/G5nph1gS9G5+O1XkfbHoR7ro434/PFnpRUgIpuk4PZ8zXc9uv6kQGor/AcNahel+l+L/pRV77WIo9IKz9UYsJxT+VKbLt1PAfFo/wrPQpA3qsw4lUAY5Tpe4Rsq1Zuz89QlNE6eBc5czvb0WLdLc9Tzokt5MBqUUKsr3D9Rd6p4Pnjdwx7UvJtlW8TCmwlHGM5sQ+Tm9DN3vKEZ7Fo9DZsy9fFOWlSnhj2tKSeo5wNJsrNdcTekVBfuee4oI5CbhK213EKKhM4uhzfo8uJ427289or4f53z9Hkc7+Q92R/M3q2rqiRt6rk3icL7LGg75aD/p20mMV64/dcuAc570yTvh0Tnt6i4Aqtbw7yGQzT9/BJ3lv0M4uxLGeNxHvLSqJGwx3j8PGxeGG1aBv7/ffzKCmZODhByLtT5FVNUuQJDfW1yjwzqfpaTe42eWKEEEIIIYQQA4U6MUIIIYQQQoiBYkPkZECUJQTXM7uTKxS/O0ykOokm859Vj7+fsUyTykvOzTZWje62UXK9je9w7sOxU8lluCvGFS9NeJfcrjjRvLTv9Fhonqg15re96aa47uCRuKmXljWm4rkW56Obr1JyxxoHS0XY3UZykiAXK5DpLHu36lLh9Ox2SgWSoODGS0nIAGDUuz13koxv50h0y4b6Ku0+Na4bjZK8bG6qtdy86Sdu4TDV4QYTXJjdcoWkfh9iFzDZ557Mr6fbOUPx64/A2eQUTXCfyjg+/bLfPe2KZQlFOeG6riQmrvKERJ7MGiQSRZPac8EHQkx6ntBIy+GZXk6sA4Bms13exPl1qtV4DUfJ/R34KeU7+eGye9YOL8201vEk3FaZC/LjMK3J11SujZWTZS1ZUsOPI6UkSwAw33DXWHS/+HqDLCOX36LRLkNLSXJ4/5zLP68VaL+WTZKspOQcLAsbqVJgmCH3LO6qxWdymGWTXfIksNwp2PpCOdrecZpoHOqD79fKPBhbgVKphJGqayNqXjozQbKUHTRJOuTH4no4Wo+y6qnlKOkJcjqW5vJ+qUAyTOt9RPeHh1rZdkO7lmqzgPa2fuVy6nnhe1UpUyCIcntwFr7HoS3i/bvZQJGMJ9gxSxZ5cna4Lm7/UnnFiiSRRes3m5QsMPXszdZpMj+OtZaXarEOrvTTEVjKfZSCKgQJN8unxyvxLTDsja6Zy1UW6zv1binKQxWWU20WEKXhk6VoL3tOJjnZHrKjWVeu+avj+x1olxrmAsEkytIox3dfkfy4W06sQFHgjNC+cFmWCwKipL5rekWeGCGEEEIIIcRAoU6MEEIIIYQQYqDYEDlZE1nL9RmidBS52Oe8m2+ZXK0cJ3uCYnbtGHLb7piM7vyxyejyG9rrdqydFiM5VE4h6ZiPSlbac3Jcd/Jt4skokgnGd7rfRydaq7LRG6jkbrl0gGK3L7f3EctFkYUSy4VyMr/FYiLqlTuHd83RumpONtUecWuY+rMjtO1OH5WM0utg1754jaWdO32hKX744etby9k134vrv/dddy3XHkiWezPIuXVZOublAyzL4lj9ZzXio3P2krPJHWSbU4jbXjXk3L0/qsTjHyepQCra1BBJGVIuXHYRcySSyaqz9T2VaPPj5DIPUsQ6x3tvO7ojuOKnKSLYTD3e+yCDa2RpF3G4rlw+FzrbDEkkvu+vd5G2ZcnKkUW3XJRfItZHrOMSSQE4wkpwj2+WzKeZZZhruGtP5qpoxDZsodEuU2FS0pBCl30rb0Znlz1HVcrJAxN1yI3MeklTukkMUlGodtSiHGpvzclb99IzkYroBxTk2KDTh7aX21OWU875CEhFUsatQrlUxriP5hSkY/tqO1u/n1GNkuBTS05mw+/kH5H05lo67hScZKcoz0u4l9zu1hK5W2rU/o3Qe3iE2rogBeK8SXlpmYPbN5ZqBhlgnSTqLI1JyYNGKardOMl4qmXXLs4sxfYxSOt6oZuNs42GuktFJGPyz3k5ue1q5DtrSYasLcdXloiA6Zbddtw+cR1M07sp2FQu8lyzPRLZzlpsE/g9GopQLbCHFKnvB17m3xfIDo/5nDM3Uw7EyYOxXGNzJF2dcTb3k0aUxl43FO13NmuXHXNk4PCsLJc4Cl/ctploC4uiYabkmuMUcfSU0V0AgB2V2BZzbiOWoYb2Im+PveVxkydGCCGEEEIIMVCoEyOEEEIIIYQYKDZGTpY1Meddq8HF2ixIZnXMJ3C6qRrdTjeTO3lvIy7v9NKSajW602o7KBLSPud6q5wWk1mWzozRx0qnnuH+P+mM1rryZJSWgVxj2Yhz32Wj0eUeJGYAUK44N1315um4D3nh5ny5j1OVL9B1L5MXLZXMkqVj8z7K1UJBxKIQAYojbzAcISbIyFhytDuL7sfdTbftafV4rrGT293k2Q02Lh++ubXc/O4PYrm/4yJMHb9xI2NB5Qmu9OBmzkXxILfruI9uspOSrk5SHU2SBzzIyCZqsV5q9bjBQt3Z4YEyu3VJ9pSIrlSjCHHVhFyC1+0sR1nDWRUnd+QEscMc+c5LrFgaws78ZZJgzXjXNJeV3fNBRpOSkAHpBHHs0r+5ESPXBdkUR9zJydC8hKAoAkzLtZ2I5LayDGmlz8ZJyxpZAzO+nQtlLEq4F+ogJ/HqQ7aVS/qYiBZTTsiq+FwsC8onKGyXdhTJDtaKoihi4Xo4keFENT4Tu7ycYSfJRdg2WEIRAkamZBUAUPNPS6PUHlln5X6psja3SDCooXIFe4adtHpf1bUZt6lEqbRpUFJa35YdJDnsFEnzjlaiLCTY6zzic8z2mrpXnIwvyHfHSK42QW3wOEl6Q7tUYyk0LY/5NpLfd1Mkt7m+7CSquYiLiehMTM4W6NkKMrOlSjpZ5nKjszQml3TZn4PPxc9ZStaUi7JZbi9reQNkn6shy4B6w79H/DPVrQ2v0Dsql2iZ6nvRf7cU3c9Q39VylDTz+z/IGVmuxtHiUpLdcqn9fcTn4vNPkazqKv9dMTIcJZyzS5Ot5bEFigron8GrSEJ2HSjBetYe6bSWKFezoF6ylGS4gHLincsJWm815BKhn12J13WEIrT+pHK0tTzrpZ3cfi4h/t6xHD1tJYQQQgghhBBbhA3LExMIvbeMcqTwKMNs3fXIDjXi6M4NNElzN8X/n1x2ozKTixTr5kRPbwAAIABJREFUG+QlGPLxuXdFj0lpX8xngt2nuP9H4u8Z555IjJ6UJnbT7zQ5+9D+tm0XqVxTvqqnaDRruhLrYJ5GFxb98iL1kGepBzvte60c355HVMNoVr43Xk4uBw/Mqc3YWz+5EfebbLgy7KK8CDxA1fypm9ZZuj5ef+O6Q63luR/HkY7pA270bn6eAia0hzhfNzLEUYdS1j7BlEcEw+jfTsoHM5LFepunka0DfoR3apljt0ea3ubH6Vw8ojiWyJHCI1A84XDUl3GYvUYlDj7gJ7vSIErcMh53hI4/xAMutHzM28kyjTrPUFkWy+0euXLGo84+L0lBnobFrH1kq2hCcBjt4f15NDdM/q0mJgmvXA7lWirx8z2PjaLRbOLYgvfEJEbG2Ev9/9l70xhJtuw87MSWmZW1V+/9+u1vmDOPs1EjyuIiztgcSqYkewQZMGDAtA3/MGzwhwwIsGCD+mf/sCHrhw0ZNAjRtA0bAkSKFgSbEElTpEYEOSY1wxkO+Sbf1t2v9669KvfIzPCPe0+c71bcW1lVXV3L6HxAo6IjM2O5ce6NiPt95zs8Nh6F5eBY9tXSICKat3VAcJYbE1DLpE+Yme6MZZZvbyRjci+Xfn0SzExknjEL6BhyxNVkcOzL3D8W4HaHe/ftCWcEJzg2WyZmEEkb4bn46h346l+cN7IooduZme29EZm4eGWKioeqsU43hpoZaOYRtAapgtsF4w6T5ev2Ws3DOLOCTAxcQzagWQDlwBUYo2/a4WVtIse6D9v6o5o9Xxh+n8K8bndSjXFfXSYiucZoQuAby0IGHU68R9WZe9xvZM8ba/n42G5kfyaeMYVI4vz82JmibJNy3MJwgrGMGbU40Ld8/XDiUQYQSXv0oOaMy7JVjQHQVMZ3bfG7+PnQ1jNExq8D7AkbTOxn8oz1JBP2YgHu9b3CfGcT6szhsyEfg49VIpL7oMNgHYPl97GA2O4N6MuvxUa99O5Y+sSjRI4rz4Rt2rdsOT73vK9MjEKhUCgUCoVCofh+xJGYmFar9a8R0X/bbre/0mq13iGiXyIzgfVdIvrZdrt99KkYheKE0DhUXARoHCrOGxqDiosAjUPFeWPmS0yr1foviOhniKhrV/1dIvq5drv9261W6+eJ6GtE9KuHbSOOYmqmtg6EpbMweRUpKqbDmGIjIlqHehJPoRbAqk0+XOtAEuC+fDfdM8vFjiTb0/5OuRjZxPwilkT0Ygfo3hykZbxfoDdpd11+d9/IqlA+td0Xmdpmami0TdD29DCJGuQJO5Ye3AbKcBsSwbhtkL5E+jD2yEpqQLljezct/X4FJGTXIYm/zrU+gKZf/0gSQK+MTM2XpAEJWbuyr/6+XJupTbbLsuMnUZ9GHBJ40idFVZ7U8EhQMFEUZSVbiSz3WM4CTCwuc8TWYd0imASwnAwlLEirNoAObtrfoYSsBsfICfv7IAHLQOIldYEi7+cNVDXYbNB9aJdt2G/XHpdz3B452VHAsVpPZfu+RG7negF1zYncTZCL4PVEyplr5XSn0r/2jygnO404nFJBo0C9G6IjSKlmSLEciSTIW9Yy02+vQz2QK+Dhz1IdlGA8nOyXyx+RjJMsl3Bkbigz9SRFnxS+mjSIyCMzSQilhFbChLED49ksOQKaXXStJKQLUsTUI91Akw6ULToJ3Cc0QjiNGIwoKhPiWSK3EYOJQybHz1fyQxI54Se53EfZjIdI5DmjgJTJSUDn7WMysR1X67H/0aQJbb1m72m3J7LNt+Ge/c4tYySz8mkwpBjKsbz9DSMNr2di/POtmmx/EyTtLAVyDR/AjMMaBoymEHdw/42mVfmyY4Likfc4v4ffXW8YGc47dTEhwlZ9autrbebSd7G+F9av4X48PYHi8XTuyUevVeOTMsUeCRluE9sN44zP25HZwbKvtotTByapxidew7En8X+WycBeJvG2WZMaaQuJaO45/lDyi2Odr9+ctGbVrPGplC9Du6DE8aqtlecYB8E2myB0r1lzIlz3/hGP8yhyso+I6K/D/79ERL9jl3+NiL56xH0pFC8CjUPFRYDGoeK8oTGouAjQOFScO2a+xLTb7V8hwmx5itrtNr9O7RPRcvVXCsXpQuNQcRGgcag4b2gMKi4CNA4VFwEncSdDdmiRiHZCX2TEFJWuHUz/BV0+PM4cffB23wLKe9NuszMSycRKR04pfmT6VzEQ56x0XQ43vnXf7HN1RQ4W3BMIXE2IHRzQRegZuHB94ykREd19/2q57j64AD1Oze92QDbWAUpwH85xx8pcUELWBXkd03woIfPVzHDoTbhsOSzzUohwHNtPOuDSNdgHqcRHpr3n5kbkwwSo/ti626QphNDJTVGOHYdFITQv08UOBe0sV3fSh/+NocFiT+MlIKtqsic9OoKhtMVKxPpwP0C6eATLNaZbYZ+p5+qhJMg5voI/F4wDdSxsyDrSsxrEXN0eN9bMcI+h6qyF/vpIufN1QPlTzeOqguvWUpE13kmNROpmJH1usfDP0XTt8T4vJGa/AVKpY+LYcUh0fDegkOTC586TwhiGvv03a+aZ4gcSebZ4dYq1j8zvh7CrDBwUt2sid+C6Pm5dFHB74+HyhB18pnuZR7qBdYUc57vSsUe2uYQSDJRQUnXsRKEhS0qxf7tOQGY5dmrxvHR3smPH4LQoqGfbaGRHgz3oDyhRGdh705OxyLI3RrLczeXelPtkOtPq+IDXqge1OrrWfXQE98MmSFhvgrTmpr23fG4scfmpL8o9ufmVN4mIKP7s52XHmdzHfvCLv0dERLW/D9KdSJ4FPs6kFs6+je0uHNceyFF3xkZR1SVZ56u5EXKFQpT9GOJqpT5fLv+Zhqlr95dHIt2pw77+pa038ofQVveH0i47hcj/yhonp2NOdoKxMCrH9lm1vvg5MQrUcIpA9snn41wDz30IP3dk9nbcxHpTONaiM2wvshJKiGlHOmavM34+hmdLPi50P+tPpC/iPZFjwpVVQ82louqQisdaygcD5+1EpCcmsA1Lp0GQ1s2DnHtov/s0ka124FkhgjF0zo43DYj5o+Ik7mTfarVaX7HLP01EXz/BNhSKF4XGoeIiQONQcd7QGFRcBGgcKs4cJ2Fi/iYR/UKr1aoR0XtE9MvH+XE5yxD737gyz5smziqPYIZnYL8yhhnXcQ4zSDvm9DobkKT4p/IGnKaGPWle+aRcV7sGM5u16jteMYL9P5H1Dz4yyYEfRjI78hhalxkYrBjchfnw/am8eXfsMs5G4cxkzV42XyV3In9dAnzzxpn9QWzOZx+uRz2pXpsB7B8rJOd22nZxKDNcGbxtJzDFk9p9ZSnwAPLiflwcOw4LKkqmgWeQscYB+rgP7bXBc8XZlT5cO05WGxbIbwi4pguaBOSwLWZdBjB7jLMnA4iNqU18RUYEWZ15y9QgC1HHZHu7iEc6hBkspG34vHB2BmsMcfyFEgd9Xv04Qzv1zeoEan1wkv4iJKL/QCqzpj8yNjNmn4Zk3Pk6+OdD5ur+yMTqJ7Ctb5y8XtELjYc++FiIUK0RpzaC1/xA2nDZslSvAPvyRi7XYHHKSevy+yd1+D1Uad9NTTv7qpobmLErVBfjJAi1AR9DaCZzZMebxDGwAPMDDH/7N4d9OTW87L4GhT9xnVEEZotPykzNwLFjcELT8j6D68plp/q5NZqBBH5kX7CSua/aPCbA83qMixyMD/gaImM7D4zCG4mwr6u2ls2t65LA3mhJfY3ojdfN37e+UK5Lrr8p53j9NSIienvvF8t1f/EfyrbeH8m+HtmZ+UeJHOt9GM/7to5aiHXj83ZqcuD4h3WPbP9brkl/a83dKpf/7aFpj5/8iUfymzVpo0/9Ot8bpKZdD2qQOH3DGjCMA/euY+LYcRhHkWPmchA+xjqUQI/ruQ3dOPTXjGHgNeDaRUsw5iHj2oe+Uya4Q7ti//Gxk2OqtjeeC9bhwvX83OzUW4NnBZ9xBv6e2SDHBAWfHaNqGzkGPc6jQvVZHp9Zn1pWcglMjCbIAMEx8tFMTjA+Huklpt1u3yOiP2+X3yeiLx97TwrFC0LjUHERoHGoOG9oDCouAjQOFecNLXapUCgUCoVCoVAoLhVOIid7IZQ1TBwKC6RKsUcqFZIRsIwH3sWGA6Eme11DCe4NRLO0A4lPA3sM2TOhsK5FQuMtz8tyo2kouwSSlAY92daerVmTp+hbDp7YLO8Bag3lDfg66aPU8hPQvSjXwW2i7Ilr0jyCBN49j9QPzQAyuB4de72WJpDcCoefAH3ITHw9B/nFyeVkx0YURZTapMHUk0A2AFp2nz+H65KDhzleoa5tww4keo6BOk5tnNXh2iOd27f7HQAdPQhQxJwwjLIulP/dKEwc3hmDdztk64/sbjcTvIby+QDoZD4DrCMzD0MG16oZRJA4CLFVKriOwBD7EvebYIyxaCUlt0BO8rmpSCh+bMEkrl7/nMhc4gXZ1rQnNDfLQFc+EenJeQPHQF+yfgix53eh2gYcM02Q1jVBajBnJQ4juN41rFcE8csytcFE1o3BdAUTVxnHNTNgHLWOBEp1fBIvrPM0wPEQNj8pP5ff74IZy/OpiS9f3S4ikeqghOM0a+acFqZFQfv2HEppbaBmBktQ8qlfQudLYg7Bl+BeFNUYdqQ1E0igB8nthjUBePJc+nHjm1vl8kLyR2ahBsnZkCBPViIWr8jvV6+IRvz2E5A5jc13+3DfeBaQczNCbeQDJrOvNMwxfnr+drnua4XUsvk3fvQBERHVv/YXZANNGRdfr/8LIiL6c/9A9tmuy+fP4t1ymU0VwrLQl4s4imjOXkd/7ZaqvGkSaEsnpqLqd5yx0jOm4DXg54P5WGTyOP5lTrqDreuD6zz9xzlWlJN7JLeh+wH/Du+zPsnuLAkrbhMT8/F3fA7OWFbZknsu2FefJ1ZyHItsew6eobDH8PPpSZ5zlYlRKBQKhUKhUCgUlwr6EqNQKBQKhUKhUCguFc5cTlZ6gZNf8lDzyMkQY6DGupYyfA50WNwR2pQdZp6n8vk6bHa/dNESam1tKm4Ur3aFhr7RNTTZYt1fD6Vut3VlLHRYHRyihvYch3CuA6An94C23LUymp1YqPPNQmi6fY97mZ8Ojryfj8AZg2vSDEEykXmocSQkkRLct20/D1Qsys3iAuV1/Pf4XuCngZiEumb3EYwzlN+hnIuRw/XC7+5ZOckeOGMhRZyUEjB/XR+mY/F6Il2MdDA7keyjnAyOK49NzDaA4l3Fmgz2GPZAToaRg+fF9WcacD0XYV99G7N9kHj43N6Qbk487mZE0u/RiWgF3MNWLSX9Csnnb43kvK5+0bR99q64+BDWG9gQCUWybepCDHIY/k7uTnbq8DmOOZ8H5LUsh3CcZ7AeCrGcTH7TgOuV2PEUlRhYgwjHBd7uLFfElwVvfRzoUw1wtuNj7EKfyuEkUWo7sN/poXMkyDy3bB/fyqW2SHcscrLe2IyngzE64108OdmEpqUMbuqReKGEhO8dPtlLCMdxZ8N45xhGxyp0KcRr9aHVJ++AXOXavTvl8qsfmM/f/We/Va67+pe/KftdMs8Knd96UK774PGNcvkxOPux/HYb7pNdGPdYRoPOX7mnDUOOZM1MpLNvNs0x/JXoernur70jx9j48mfMQkdisLh3v1yebhuZ4BrUzFqDOm987yMSV9LTdBE8HqROzNQjAcNp9tLhLSRlnOBYZscnuAdgHHI9J4w9HD/4Xo0SskV4Rss8NchqeB9GB1j7vIayUleiVT3vLPY/K/DYHpL/8VgT6n++Oo1uTSvYGNf6cq4L1Hnx1XQE17Ztrt8Et9kliEl0VeU95CeQNSoTo1AoFAqFQqFQKC4VzoyJKd/2+E0r8Absm3l0ZsqQRbCzIvcyOY0NmD3h+hcbsczYbsNs98BTC6QDv4+heeLcvEGOB8ggYRKUOe55OL4mzAzwEpoQ5HCuEzjtoZ0F2ASG6QNI3n7fzsb7EsaIZFYbZwbQHAHbmBP2c6jWjDOHY05ag99jstuATHs1gV2peZKJiZCJOR8kUUyN1MzacdI4shhOAh1V2REn4RBmJHqWzeqOhS3DJFhfBWZfIij+BmdykMHxzZri508tE3MtldlJ7OZc72cHkvl7WB8CYpqNJ3BuJHeYlqMl8WJb4XFjHPLM+ZVUEm+vwgwrzyRem0q7LRCwojyFlEOfAFY0fyQ1Lp68byrW/2EMSb7njFksRqgCvMPaUFT5bgZGCSvWiOHmWNroWkMS1LlGwKQv21yeyszZAtbtYSYTktpfFjiO8FydOGJDA5h1xe9yTZeNQDV1NDrp2+/ijCIu749Ne3WgTgrWpxlaBuYoidJ8jCc1PHgRTIuChpY1KOtBOMn21QRfvC9MZyRXh+qhzIKvXtQisLMNVAHYa/WU5FrkMRjQNEw83Nm5Wq77C39f4uLNOWMGcrcvCfTfaUgMPYf6NT0bIztwn3w6FiaEmbnuCI5l4q/gzvAZGhEJA/0pYJobrwMb9fFDIiLqfFP2//jucrm8kZvzfQBs1hjayDGKsX0ndD3PEiWTDOqNDO7PpWJhUq0rRHTA2IOfWwp8XoNlNviBZ09kqBZszK1CBfrVCJ4t4Z5as89m+LyFJj98X59p0uKpFYTHit8JGWNx93CeVWb0xVBtI96vw+pMq78PmRTwuBnBw63TP6MqSzbSxH6FQqFQKBQKhULx/Q59iVEoFAqFQqFQKBSXCmciJ4uiqExU4hIhocQjlkgNIal9ALVd+oXQf9uWWkNPf3wt61tp1y7IAbqwzBIOTNiqwwZ2gWpcSMz6yQQSRuEcuSZMhjIfPEe7r9yRRAgaQNMt2PPJ4Fy3gG5m+g+lTnNwDiz3agSkUgi+DiipGEN7Du31QMkSfpe3O4Lf1DzJxEQi26t5pFRngSiKyiTRpm2juQivp7QRmx/0pxiH/noovDwNeMMznTvLpz5E+44hDn0Jopi8/che8wwS9zcziY3yXCLZ1wCOewjLLB0bFSidkzbYtTUzfHUyiPz1JRzDA6DJmcqvQa9ahOGJ6yxhHHdQWnLfXsfperlu3JHvPrsrtSC+NTbSi++kQvmfN0IJv5FHKuWTIoa2hcvchtcTMaC4ckNkduX2N+U3t7vSP+7URdbTSU17DiEeeiCn7OWn37ahe4avngHG4W5sJGC9CJKui6rsgUjOB/uvIxebcE0nWYeyIV9ire964neOWgfnNFFQ4ZxX5fOi2tZubRf/tZj1XUbIvILlMqE289U+24SaPVsTiWeOh4cgre00rpTLXxivmN83ZJsfgexqE8Y1liSiTGgz3y+X90amT408sYDAc8HzxtjdtOfwXl1qw7z5dZE1DYZm3PuT6SvluvtQ0mY7tc89hRz/k6n0eZ/5wHlIGhli9lQd63wGTwn040koWZ7PBy5BBPdENixB2eICyBbXEmPwdAsK2S2DlLnjMQYZoemDJ2ZnSUyd2IbvxhBHsX0WQBkcngMuM3xj2VHqsfBzhZPY7zFaQDjPLXYfXehHuOwdw+G4UvHoOhTKxCgUCoVCoVAoFIpLBX2JUSgUCoVCoVAoFJcKZyMnI3HMmVgZywioP6QBx1ZChTRiHSQ/Paeuh0GH8so6Ij8FjPU/2BGpUYC/N8hs+lgLJGanpqrbFiIDiiwFtq1vf9+BH+HvF+DAm5Y+zGeoDNDNAp0xWEZWp8Nd34iIJny8Ea5DeZ6t2+ORhSF66JkP512H67Vgr2PtArw7lzKdQB0MH1WKVKcjF7PtFZKF8OejQL2IWXILPJbyuOFYR+C+t2vrWNyDbW2Bw0rDXo8EHGBQLoa1D/asXIxrIBAdcG2ysoT+WNb56kuEfP2d+hD2fLZTkYbMO7U+zHfrcL2w/tP9J0YasrojdPUI6sA8mEj9p7t1czxPC9nXeYHbICT3nCU1cmQ9LGsASQteu30rd+hP0PFHtpXadqk3JAaudmT5VXAq61i5RS8FeSHI1BIr4RpP/Y5iJ4F7riDdnFTdf5JIjoX3i/cU7Msoq+J+jXGce+5VTpzPcP950fN+GSiKgiZWwhy6NzD4c48xUbmtg8shedKseGfg9UG56m5clcbyOEVEtJvLdWdpIN7zH8QiGVq17p99kMvswPi2CXW/uNZHF/tTLuMHxyCOdceRCWI8bYz2iIjo91KpbTWw0jcionFijvdZAvWLwDWtY88XpfO7cC5Y14j366tVchaIqOqqmDjuilU52QSe10LS2jIOo2psmn3Z+wm40S6nco+4GZk4uQ6S/gyaqOeRk6HM3udq6tRDBOdZHh/ywJiSwDMpP3/itthplYhoyTrbzWFtJYhJrmmHfQolwa40tHrcuSPZqz73+JzK+hCbzlgL9ylfHN4m0EgegvN/mlQoFAqFQqFQKBSKY0BfYhQKhUKhUCgUCsWlwpnIyaZFQQPrXMN0vePiAXTXXFqrrHNkPLDso+mRDhuXhRyrFBgiREnmWGTT0odpLNQZmjZIPR90pRB0bHHBLqxFSr0J212YcpEhwV5Udd5AeUQNlln6lWJBJArAfpBCUSjcFjtUoIQMXc+Y/usAfYoOVlgYc85SqI3ifN6di6IoqdO+PUcwQqERFiK1cYJSBKRdUU7mux7NVChedhLhQnhEB+Qotg0xdrGFXFemwx1O+Lh2CnHp6cdC57KEEmV0WEx2D5x+uLAfuk6hdKyU3kwO75MhYPx3bfHA9WSvXIdyyZGVL00ikYPUUomtrDDt3e2DNBR+/zQD10FbxG44ne3QclYIuTUxkKYfFx4XHvhOAYVMOyAduTc1MfGtmkhTik/ErenqvJGcxPD7ZiIxeysXen/HxtFmIs5PT1O5NruJ2RfGeTGjUNpx4JOWYf9C8L0EHX2c9vRIx3wyPSKReTjtPsOJCxGSXpw1oiiiJD663ImIXO3hEbbvXc/uY+jU6Lk74fPB7likUL7irju5jHUoleJtYDtvgazqkZWW4WntgfR8z5FgmfWDiV8aw/EwS5rnc3IjcmU6LFN7f/hc1mUwhtv7bx8l3OgSaM8BXcjwuHE8P0pR1rOC997mW1UcLt9EYGxh/2/Ye8ciONddTUROtmalTHXY/BAuLbp7dqactuAvkMvAYproIsbPn851CRSW5e/WQS6Grmo3E2Pp9RoUis5AOr5hx/PH4FaHfQKfcTg28PkZP+f4wvFz5CnYjZ/jGO17B3DHRJWTKRQKhUKhUCgUiu9DnAkTMy4mtDkwnuq+hGlf8hZiQn5WhoFvYvji7kss9iWw4ax0EuAseAtjXAlf5SR8H3tDRNSxb+5dnEWF72LtlKZtD0xK24FZF57twTdwrHVTJm8Ha8NUMYXv1j3e7MjOYGL+wJ4PMmQDmIXA+jI8c7ZwTu/OUyrK2QOewcEEPKcewQwmBmcXeHYQE+xWkvnK/rFdcIacZ2BwZiI0S8v9B2PaSQhk4wyIVJwV8vnuY5/C2TtmXWYm4wVm83yzrgicCOZzYPbHfC5fKGeDYMRqwLgxb1m+icMSCvaBXeCaRhcx4fogivJ6zz7WwsPo4fV6OjZj8B9lEqcjqP3yds/MfN2J5RpkicTGMmxrdWLGm3lIUMVaVZwwOxjjuHV0RvEkcJJKJ+PK57OSgIlmJziXsXzC0DlP9gURU0Tzljnjcc1hzWbUfkE4NYziauIxIp/BfnL747EguzLxzMKH6hP5WIb1kTC9fIxYZ2tr3CmXd0bAZo+rs86+WPHVASIK1NTwJFETyWw17h/PhU18cP94b+LxGmfFfeP2RUBBhXOcB+FjLp2Z/0lVEUEkcZgmoI6AcW85M6zLVShGshIBs2//IreLBhB9uLv0SwMpf7200kQA2BNUGXDM4PXE8QsZJGZzkEG6lUgNtM9E5rnji3IoVIfYuZs17O9l3H4M4/YePCvws9EAnpHw/szXbeCps4XwMdmnCWViFAqFQqFQKBQKxaXCoUxMq9XKiOgXiegNIqoT0X9NRH9KRL9EZi7qu0T0s+12++IIKxXfd9A4VFwEaBwqzhsag4qLAI1DxUXBLDnZv09Em+12+2dardYaEf2R/fdz7Xb7t1ut1s8T0deI6FcP28i0KKhvaV72AkeKDJdZhoASsyRAGPFapK4jJ7HfIEiDs+d2QE6GjeM7ggnKYew+UELWg+SvnpXDdAgTn+RzpBf37N7QOGAAkp95W29lCWjAFailU7eJXDlsYAD05xD2y0ndCdK2UF8ms8fVABkSioN4D841CCZ12u96Pz0UpxKHiNJgIkBl+2RbKLvy0fsoJ7uTSfL0or02eA2fpSJbeDraISKi3ZEk2DnSDkwcZhmcp04Nkb/tQ9IO3+99VP3YUyeDSCQQodov5THP+Nw5FqCbkZLnc5hzYl6WN618YAzniu22DX1x39LjI480dQZOPQ7LY3UkTc4nRBROGI48sgT8LspU9myC9MN4v1yXJLDdmonf+lDieA2kAhOUyngOB+OMx3Qcx52EXLuBlyXpQ2lJGVNOja4ZtVGwXbHtY94+Jt6e/DhPgFOJwSSKqc7mI3Yowb7njHVsZgDXCttnDgw2rjWWiYjoNphHYNL5k+E2ERF1oMYKSsw4dlGihvvFBHX+3WB8eLK9K+WScTe3Y2gMcYtyGNwuj4WO+YrHjGMSSNwvZkjyfHIz97zhuKzIKUe5mEc6FqrPdUo4vWfDcTUJ3ofCd0/2xI5ZNtcUE+jdeipGTrYENdTQvIhbuwMy5CFcjzFKdskcwzAgPU889W/wmdaXrI8yfKxls5Iaudgr6VK57lORSNd/eGDa5jPXt8p1kxyezbZNv0TZdQImAFvQXl07MKDEDE2C+Ho4dbQ8Jj/4fI/1cdx7Q/W55qiYJSf7h0T0t+1yRGa4+xIR/Y5d92tE9NVj71WhOB40DhUXARqHivOGxqDiIkDjUHEhcCgT0263O0RErVZrkYh+mYh+joj+Trvd5tfQfSJafqkn8C1iAAAgAElEQVRHqPhXHhqHiosAjUPFeUNjUHERoHGouCiY6U7WarVeJUMJ/k/tdvv/bLVa/x18vEhEO7O2ERFRYqkjpp7RKWIpE3/ulcxQY/NA86HECylDroeCdUtQJdC19UhCNDjXMEGpVAaUH/prs6wKqSv0YWB3MqQcc0cGVN3/GIQjSEMP7HfwvPG4bkaG/ntjKjTjTTiYzG5qD6QiTxPZ/kYklB1LnGI4M3RKW7BtiG2BhB/L0ZCWdaVWVfFY7wQSktOIw5giqllqtvRAD8i2fI48eF4ovYiszRbG7A2oZ3LDep2MITbnUmmXcVGtPeGTTZjvmO863utAXfscczDmZrkH+SQQIQkFS4KC8kHP+jhQH4KPBz/H9maauQt1HLZwjLC/2wWKegS/3y6kPTemRsqykYus6qg4jThE+GQmPonYxOO8c3CZ2xuvN7YhO+JtxCKpcSVg5ne1mrTrzbG0Zw/Gk+ex2e4+uCbmHnnerHogp4lZtXZCEjH8Lp9tSB7L/d7p/zCO++RCsySUx8Xp3JOjUgY7ik3fwljKQdPoc/lKQRby+vz1cvmv1V4jIqIfHshdol2T+9TX540MBmugYB0YhtP+eM+EGONxceoZt4n8blboXsZjCu5rllOd0/fgdxxD6AqJdZF87oK+8Q/34ds+nk8/IKPj2AxJ16JAPzguTiMOp0VRurHNOhZuA7zGoTGF2xDlSygtY7mWE1vQXpwKkMNzzwgkyX2PtDwkcxtTtV5K7Lm2eL2xpgzK4NhN7ZVYnpl/AORiby2aJl95Q+zJ8j05h2v75rlkfyy/n6aY2lEuEvfQfZI489WEQQmZz7UV5WTLNdnvYiYyNgZKyImq44IPh8rJWq3WDSL6dSL6W+12+xft6m+1Wq2v2OWfJqKvH2lPCsUJoXGouAjQOFScNzQGFRcBGoeKi4JZTMx/RUSrRPS3W60W6x//BhH9D61Wq0ZE75GhEg9FLcno1UXjZc3+1stQHfU61NS4ZmdXG1iLBGa6sDI8z6zNO9XqI/iueZvdgwTgHLbFDMwcpJo3oZp8A5mYgvcpcOvT2CQnSKbHN/vUvpVitXpMruoW1Uqp+LbegGO8VZiZrbdGsv3bJG/e9dS8De/mct7GQMRgkOAsgPmLrM9iUWVicFanC+fYtG14BbZfB292rDmzzOYDxydiTiUOfXCToHG9+TuGGVecpcP24G0gWzYH5702sWYWsN80FqZmlBnWHeshYRXqgVN52cSJwwp5ZoCcmeKoOuNXTyGJEGZKnFnp2MNkFjiDfXyHdoeJgWU+htBsHM/6OHVksK/HZoYVZ9awojX+bs8uY30JSUM+FC8tDhG+ODsK2+Vj13DWkmdrMbYwdgaprXeQSt2BW3Xp18jAPi9M261D5efepFqjI9RnXjShfxbD48xy88x2YBbdt60sYDxTzj4GzC7K2khHYH0OJnMfcU78VGKwoKJkzspq86EaaZ5q9Ct1uWf/ZO1OufyfffEhERFlt2SW9c5vwPgyWiUiolpD2v/hWBhRPibcFyb77k+qdSrwuF0m11ObBZOz7QzyJKoyTURuvHAM4Mw+JlzzMfQi6QO+hPXQuDyrH/sQUgb4mLPQuMvnOMvowoNTGwvLa1KEj4/Iz9b7mDf8nVNnBlUyNs6wBkofVSP2q/g8iYZIHbi38DZm3ZND4NhqAPuCMdCAhP85NhGCZ7QmXPv6nDmWKAPFUlPOe2nRPCfe2oGnkTE8H2fSBltWsdOHNupMoBaOp3YStrHP0ADPcTGZq3wXzQ06R2RiZuXE/A0ygXkQXz7S1hWKU4DGoeIiQONQcd7QGFRcBGgcKi4KtNilQqFQKBQKhUKhuFSYmdh/GmjGNfr0/OtERLRmpV1XC9n1rYm8S10fWSkV/P55Kt99DHQuE3oLU/CsB7lL1yZyofd1r8DkKvPdJlXlU0REdaASpwf+HlwuPOsmjpSiCiRwUc7Fi2hYcBXqwLxqXQReiYRav35VknUb86ZlFndECtLbhgRd2O6epV3rcICL0yq13IULklc+JZqHbaKUag7adrGw8r2zratQYkpFmTjmq6mBKBP/i8OT1vC7WHdkAlec23ZlAuuAJh9aieV+AomakKyPcgqmycdTvzzAh6mnXkA08UswfAm1KK1B8HdD+/f5+odMAnzb8NHzuM7nxY/AdvMlwXI9BSKiFZBDXnSEJBSzpGccvyijc6Q6Vma3mYq8534qsiGsbdC3tQNQ3sPGAUREuadWxctCaWgQiKfYI/EKgbfh1DaIq7fJXtBEoCp5CUnLIjpo6vByjQ8Qk2JKQ3u9ck/NLJQnMbBNrmQiOfxRuew091e/ZBYyMJ159Hvl8uf+PzPWDUGOtgLf7bLMh2Qs3Z7KDjCxvxPBjj2YNS4elDERufIlHPca1pBoIRUZ8EIiy4yQxJZlwBH5pTc+QxMnEdx5Fjm8dhSv90kqidzryOeYOmP8setnnRgRSZvxMYaknNwP8bqGZJ2MwjHLAXmxfXZyjGrgd0P7PIPtPoJ26ULtFJbRYv/BY2EDipBpRGavN55XbSpjjnMfsyYcu2DOtA2J/509s7y4L30DQ7I+Z9pgeSCfD/rSxo/h+bcXmePeGsuz5R7UsuMx3pEJe+okHUVGzPeWWnT8VxJlYhQKhUKhUCgUCsWlgr7EKBQKhUKhUCgUikuFM5GTLRUx/eTY+FuvTQx1dh28p68vC101t2DormFfDu3R5lK5nBVCnfUt+zYPDFUDLKYGZf0O2VYH6Ek22UIJGsqqUDY1sF925GLA5vJ6lBGhqxq7ouHnKAtJ4X1yyVJq10icHFq5HPdnCuMudOd1sWGff0OOJV4zNPf8nshGkm9vyfLztXJ5wzqJpUipw3HvWop3A861F1XPK6QQQ0cjplBrxfm8OxdFUdK8TFOjI5mvJoxPVsHbOvhddO7YTCW+9238rQDbvQzbXbXt0YyqbjchOLIHcK7z1XbxSY5QYubUoYmqEgeUJaCrGXvZo6MIgmlwlH1hPYPC4x6E7e1cD0/tA/HY8svJQu49fL6zXGMuEkIuX3iduYxLyL2Hl1FGh8s9MuPF/kgkYuvxnmwfYs4nFfRJKLDdvfUdIMx98YBwXb6qdRYwTn39cwqdPVQzhqUsIYcojunQscaltM1f4wPBLTPrvF8GpkVBndxcZ1/NLKz9wEBnriWQUi2D3IUaRi4WLUqdw/SK3MdWGibG3hjKuiyT5Q1bfwhrmY0ikJZFnrHuFJ3unHOEmhZrmX1+AXkl15kjEnmRIz/21E1CAVyob5T1b2DdOJZtpR4J2FyGTqT2vMh/Xvi7UhLs3G/6dFaIoqisHeh1gIN7S8O6weGx4r3FJ5PFMalbVGWJKNUapLKtpr22OA7gtR3Afllai9vy3X9DsmpGAmPxIJLnB6eGkF1GJ9RlaK9XBiY+F55KW9Qast1h37ThYCS/2YZ4eARx9snYjP3Ph7vlus4I2tAjk0PwM4Zzj4FrNAf9ZxLz8/Hx5cfKxCgUCoVCoVAoFIpLhTNhYuajCf251LzNza+YN7Glm/JGVn8FDsOWDM2fyWzAFCiPKdSAHdgZ6AYkXCU4U2uTo+rwptmPYTaPf4OzIDArswuveEO7Og/M+vB6nBXCmjTdYlz5TQ3eIVehls1ty8C0wGb+MzV5G779abPc+LQwVPGrN8rlaM0yLSNgu9Y+LJfrvy/Vkjeemhmm3gjND2R5YNkBPO8BVk2260dwrkOPeQIR0b4Nt25yJmHnBc+6+RPBq1V4jwL+bh+S/dYnkgB3z7IXEcyWNSExf88yWwNMrC38jATDOf4ZUxE4EzJr1teXkOzM+IHPOyf3rqYyY4mM4tjGxDZU5N7MJWm8k8usDs/a+NgwImBPPDPERLOTu4sAM3XZgecSeRgJGO7Kmd/prETMU2gfYfyO3u6h6+Wr/OxjOlzW6fA6DaFkex+T6dQssX0J+1Rouz742kPWnV1cTospdfPcOY4Qw1fOkIOiYSmGumAwe0sDc98uGlIDohjBuGrHvRS234ShthZX2y8PmHkwqxtiy33wXVdkGOczYZhu10Wx8E5m6ttch/v0NtzT9yyL6auTQSRtmOA9Bu6ZGO88xo3huQaZGGYulmvACkFyN+83BdbKSYb3mNXgmDA6QyYmjRO60jD3D99x42w9nyPeYzrTam0qIr95C57jcGwVP8C+YGzxfS7EyOK+2CwoVC/FOy7jtmz8jkC3EgfqWBWe58y5DJiYmnmeaz4XJhT3tWmf556msvaDVPb73bEodu4P1omIaG8IyfzToz9L8Ofc1kRiqHAQWHOJcdSnRGViFAqFQqFQKBQKxaWCvsQoFAqFQqFQKBSKS4Uz0fVk9QndvGOShNIFQzGlq5DEfGW+8pt0ILTV4hWhDF/xbL9WB4oWpGd7e4YaTkZCbXcKoSr5qxOg+TBZ3ycMwMR8FBQUEVPy/u8y/Yj05AJ4Yt8kaQ+WkX2uKdq5W18Q84PauzeJiCh+9bbs7PpNOe55KzMbCA2YjOVol6d3y+X6B2YfnSdCR29tiTxoZ2yOsYGe80Bvsq//XgGJ7CCrQlqVaeDNuJqEeFY4KPeYJXfx1YAIARNjd6F+xn1Lj+/HIlVIEtnudmHi+9lYpFbdicS8Vw6DyagQR/5ETQGfL0ooUCbiJH3a7+DnK5n01TuZoaxfi2XdlQLrDRg8rYvs8UOQnt2N1svlnZFJ00f630katxKLiafmjXs+IDOCY/AlUn6/wq05Ua1N4CYUV5NNQyYCPhyl9spRf+/WzahKcdBUouaRpGLsoISBY8YnUSNyk/zzqfsbIr9MLRRPiSeJPzTG+I7rrFBQUdZ5mAWOpwZISVcjuV8szoFEhOWefbHdmPZBFjox13Ic+e+5LE/eB6nWxkS2tZXLfZDrfkyPIf112jqq1sFazmR8YgkZEdGPTMx6NMD5XZAi7VtTF0zu9iFk8hCS8slKqnzuk/YSES3a++sVuEZYu60LcjK+b3cLOZd7tH3oOZwmalFK16xsr7w3Qd/HWnnzVgrVgHPZh2eJHtwz98g8+zimNZ44CRmT9GPTLhgbIbmrz0QAwdtAA57cU9/GlU9DHMGiT+a+Cc8V92wdo15d2mUPzHqeWUOtzULa6tlInjueDOXabw9MX8Ox9CRjFbZ7L5f9YhtwG2Eb36Dqs4QPysQoFAqFQqFQKBSKSwV9iVEoFAqFQqFQKBSXCmciJ4sSomyF/2PoomIEdP2m0MWF9fKfDuTzbFEorNV5kUhly+YdLF6Q05j2hPqq37U03yPw+p4I9daxtOQQHFGGwPbiG15mD2GAdQ0ilGpUETsSLCvNga3OA1V6ZSLrb1rHjbVb0i7Zmyvlcvz6HSIiiq6JhIzADYYszV7kYG82J5/Hd67Lz+y5R7FQisOBHFdt19Dodajtgh7lLJnreXzTiVxvdW6Dkcc//yxQUFE6kPhkMr56A0hvJgE6ma8zbtNxKhsbWnY3FjcupIW5vgzS4ex4QuSnqVH2lYHcq+51cqrWDcF1+F1cZo/+hRQce1JxPXk3MhKGz8th023w4i9suzwEWUOzJhKNab0qoWAZAJFLY5fuY9CnsM+xLCnkTuZIy8p1LyaFOktEARkKoowpaBhHvsTuZIH6ORy/x5EMhORmPkce3+cIn5sTEVEzM/GzmMkYhlKask7TWGIP42Bg4ygk93DlO9xG/s99Tl6OJM7eE0Lnjb87uK2zFJUVVL3eoTo8fC1wHLgO8ueFJbAMHdrBIAEZTgZ1eBJzDeKAAox7/D7Im3bGch/EGkYshzuOVBTPka8ROiNdz2B8KyTePmtjC8cydOTktvTV9Di4XP7G4wx4cH25Dp41eF8hB0uWbd+AOnOfHUFdEXjW6Fgp0vNU2uXvkcjNXzbqUUJvJabNxXlL4DyDEbuX+ftWExzaMis3jcdyH/X1aRwTcCwcxSa23Pu/f87fd72c+6iNL1yH9dJYYuVz46zsyxNne1MZ9+5Pzf3zIYw/21C/jmXuWNOuC+MmOoaGHBhfBHjvGUEb+KWt1TQTH5SJUSgUCoVCoVAoFJcK+hKjUCgUCoVCoVAoLhXOruqgZbeK3BZH3AfXCJCWFbYYFqgFKFkAOvqaUIbxnStm08vizEEdkaMs0EMiIprfEtoq7gglntvNooQMSS18w6vbExgCTTdGFjHyUIrw3WbELl+y1Tr55S5ju34CFHCERcDqtg3AYaroihyMeDmX83bo/WtXZb+WCs32RBOUfgLFLC2disUu0XXNJ8EK0a6Zle9lgc9fNqZFQQNLL0+sngFdumLnenhchgKCD6aBHXcTGlU+z6ZyDZziYjMcbcaOw0pVrhInVcobC4Zl4OTkKwyHlLlTaMx2wrV0oVz3ViLLX7LM8+eubJTrFq+DJG7bFkp9IhKy64X03+uJOAHt1aAPWwxikCXaNkAaHul3vl4hGR2C2/A4BU0vKlBG4iuS5/tuSH7zsl2yXLkSy//AJQ/ilCVkROKId9VxYJLP+aj3MpFCbKYyHrLzXR+kJU4RvBd1aPNIlBBB2dAJ5HunicP2i32HiyviOHALxrIkg/ZbN8Xy4muyreSqyLKWV8w1Wn4u1683lZt9PalKcwfQ533yn5C0z1cAF+Nt3sbY9bpIyD6VyPLnB7KvK4vmueJJV451DtyTVu1Yhk6RKCmWcRsk3gBfvOG5YNzwWIjy4wHIuQsrEZuHp4rPJNIf3vzRvXI5vW361rQjx/X3ftd7iC8FdYrobbgnEBFBHWgaoUTbLg9AcIa9bR6cythlDu93vTE4ftqxMlRceTKp3htCEuzyngvrcCxjV78GyBbR8bMslg3jkyPz9UiC8RmrC9KwdRt/GDsdkJvtj42cDOXqw0D/KiXBgfHtRcet44yxh0GZGIVCoVAoFAqFQnGpcDaJ/VlM6XUzGzO1M/7FGHyyu/IuNR7aZUj+rl2DmebXJSk9ev1V83flSrmu6ImPfLpjZh+y78gbOL5fM8sQmgdP4OWQ36HxbbyI4M2dE66QfYGZGv4cWYiogLdlYHI2bEL17qbMYC0+k5mU+M623T+8gw7Aq39g37wzefOneZlFo0xmLCLL1kTN5/I5VZmYARzfyDNzWYuqMxNEbnukdn0SSHo9C8hMhvkbwzXAGSAfE4MzB86MoG0Pp7aEU/PCk3QO2+dZGfSRx5m3IclMCSbDHdw+kcwG+WZviPyJgRlcO5wtWkxM/CFjcmcqn7+amL628obM9KTLsq1x3/rfw1wJzrjU0eTCzqyPM2lXTN5mtmoAM0g4Q8ttgDNc8azEWmf2p1f5/LzgS3r3zTATHWRVDp/Zn2UOwJ+/LGbANyM+i30hIrqWmTpDNxJZtxbB7L3dVi+WOH0OMfswMYnnm1APARPEfTORkxlt4DChHjMJx0wDf3iByxXhOSF7O28T+q/EYKwAZN/+tqgb5v/kGRER1d6RfhrPy3VdvmOYmttDYIr35Lp2rPHOAoxDWKsDMWv2lq8BnstCJsd6o2HMcj5fF4OcH88lrt5YlJoZU3tzmEIbvUZwXqmpdYL1bZ5OJca4T2ES9axzcdbBIrMIyCwMMzBBscc4Dze0xUX5bvbujXI5/qEfIiKidGlNdvC7/733GF8GagXRm/bQEzYsgDbeS2Tcfp5UmRhUhcxFEjM8ZiCwT/YjE58uI3t4TZkY7pM4lnL9KrxfoVkEGw6wUQ4RUQOcLcrnB7hPI4vnKDHscxgeNyo5mJHD+yDCZ2gQMjzh9gopa6Z0enWujmJcE4IyMQqFQqFQKBQKheJSYSYT02q1EiL6BSJqkZkP+E+JaEBEv2T//10i+tl2u335BeaKCwmNQcVFgMah4iJA41Bx3tAYVFwUHEVO9m8REbXb7R9rtVpfIaL/hkw+1c+12+3fbrVaP09EXyOiXw1uoVGn9AffIiKiYstQ+/EzoWrjJyLlyHeszKcmFFVyXRI6o9tC/UarNkEd5FEEcjLKDc2W50IDDoAa44R+UBQ5ErIUltkEABPc+45PvP09UKGNqEqDx4HlHI5h1yY3bnWFvr/6QM4rvvbE/A0l7nOyeg1kY42m97sF03hjkEKBj/zEfuzW5BDUPeeYYo0BlJMRU/LHxovHIB/7IbQl0qZxeayQlAtG8+jjztRuEkNSnCOjSyrbx+VQTQkGygqY5h6M/XRzGpBeHNxvHaSG81D/YSUVaccVK8lB6U4TmOeIJYZwQbG+U2/PbHcbjmkPZIlD+CH3mzlIzsTlWeYHfN6LqfSZJiR/N4HK99Hj945WG+GlxWFILsaUfuhzRzZYHJ7ofN5A6Rv7lOC1QLkF1nxYstcR4xDrlCxOzTYmcDubRzkFqGq98Odal0CZx6xkcZY+OSYgIXkfX5vjX6JTi0PneAI1MVhiinWytuFG2e5IDbP+H5jv3nyyW66bf0P2wXLTay2p/bK8LbKr5EMja7qXyJj0PejTOL5x+znSH5QE23NophJLtxpiMvJFKyP7qZHs688sbcq+arLdZ+tGjp3Bdf2hgSyvRmZ86hQSd3/YkHbpWrnX+kiS6kPwynPQfIhNTqCOFtZj4+cOOHyn9tvk4Va5HF+5Z/Z5FZ6bjoZTicEGTagFJhxERINcjvXZGOr68XMNtEUeMGep2wR3lkQTEeVp1SAHJeAhWRUDx1KUXa/UzD1zKZVnrGaMclcrF48wvQDufTZOQ8cyBJMBX50qn1GLsy8wmwhJwxg4BrAkbRpDKgHI2PiRcRp4ouP2CtYS8wx8J5GVzZSTtdvt/4uI/hP739eJaIeIvkREv2PX/RoRffXYe1YojgiNQcVFgMah4iJA41Bx3tAYVFwUHCknpt1uj1ut1v9KRP8jEf0fRBS1221+vdonouXgjxWKU4DGoOIiQONQcRGgcag4b2gMKi4CjuxO1m63/8NWq/W3iOgbRDQHHy2SeQsPImo0KPrUZ8x/No17SbL4TD6fE2esZNtIy7AuSnxNKGBEcf9j83dTpGkTkKn13zPb6vTFeaMH2+3ZVzgkw1zHcgGTewNwJOsDhctymATrc4BOLT3wPbMsQBkb76FXyDc6G3JktfuGqk9B3hSviPtYMW8uTzSR4ysG4L4ElGCxYejz8Ya4puS5bIuPqwHHvYBOZHb9iKpSLCKiFOjB7AV9JF4kBhlMp7LUICTx4mWnrgPQqrlH3jSG9h54NCpjjBePnAxlEejjPgDZgK/Oy9RTh8LnmIT7RfeSZaDBV4F+X7EyHqxtNAG2d8vKMJbuy29qdWmX9S1Dsz/O5PcbJC45nQJcoWzUZ57YMifkHj+RKy1ZsPKTG+BK80oMDlck9D7HMvq8HVFORkQvHocRyTXnOkU+SRKRnCPWM0KMPbJGpPxnOceEpGknwSwpgFsvperoh7IDHEP4mqOzI0vIiIiu2SbI4PDr4EiVW1lknvrlGj6nQUei4Wn6kDvZLPhcy3hbxxVSnMZ4iAhdf26LAYxfT0E6O61JvG5MjPT7+l0ZU259InKxGzeMdGjpbdlX8x25Vnf65t5259mtct0yOM2hm12P2xIO23ddUPqzBnLZHyjMmIFypuaSjLvoupYXJgiuwrj+2g2RzK1+1vS58S7E0h/eLpe/UzeXZ5acJwTn2ngCBcfNFevStQLPB4OhtMH2N2UMbnz0njmuxsn6/ovGYGO5oHd+yDx7jLfMcXXuQ999KO11z16vHsThbiHnsg91c1iuhffc2CPTnQVHFg4y/HlwubteM+9qd1K596yAhpXdE/HOjQ6v6/Z64TMF1ozJPTI3PC6nvg1Vxy+MOb7vh9zLcAznmEJpLMrY+Rh9cluET/J8EMcZQyu/nfWFVqv1M61W67+0/+2RuRZ/aHWQREQ/TURfP/ERKBQzoDGouAjQOFRcBGgcKs4bGoOKi4KjMDH/iIj+l1ar9c/JpEj+50T0HhH9QqvVqtnlXz50C7U5il77rFmes0n6MKOCb1JRapgBrCNTQAL79E8/KJcH3zWsS+eJsBTjsWxtf9+8IT+dyFvzel3e+DYisw98N1yEt9Y5YFL6NiF5CG+leSBhiYHnxbPZc1h7BraPrAzPKKJfer8rb/aDp+YNuDaUiY5kEerIrJjzjddkXTQvkyTFECrDfmKqrQ/XcUZWjqVp37KXoEJzjrPC0YG/B4C1QBp2Nqt+/EzWF49BMm/7tcRNfA8ls5aV6+FQcaY4w4q71vMdZ8Cx9gTPpOAsIs628zHgjEaoiq4vSc5bRfcYMxuhmjHMhKAX/y6wUfetP/5wU5hSTHx9YD+/l2DtBGH8ticyQ9uzvvihY2H/e5zJwe9yIvhVqGXxTiH9/p1cjmvRtvMI2u1X5KuH4VTikAgTxM05NFIwWoBZPj4vjBecZUPDA67g3cuhfgSyeLbtHDYAtuVLND8OkxMyH/Bty5dYi+cyhArkA1t7A2cEcRy9OjafL0LFr8WJtOe0bli4AdSR6aYyBnag4jXPLrptVDkVt9I3sqMzpgVjh4E124g85g0zcGpxiMBzwjGH42pvKnG1DjU5cjBk2LTndzeVc5kjYT+u2gT5zz2Rvv/6q6Ke6Oya2B9BU4Sql/ti05fwjEnvOJaxmU53BEnYW5AIDoZAc3YMW2hK3Cy9KcvJmjnHwSMxLNiCe02vqNb3ClZCn/Fcwd/F+8mVVNQT70zM+bxDYJ6wLO096Mn1evjUPCOtowZlWVQyh+BUYjBaXqLsr5rUmfTBPSIiin/vvfLz7JFc+017n300lfN6PJJnoA7U4GGmdxqIab6/hmKrPD5kJmAMRvXCm6mtN1TIurdGst1lO34NYHB4CmYTH6XmOg6gRtruWJQzPqYYmXlUcPC4ifHkU5g0AjVtkKFpWHMCjMf9ROIojc2yw/x7YhfbOPRdn4LkqJj5EtNut7tE9O96PvrysfemUJwAGoOKiwCNQ8VFgMah4ryhMai4KNBilwqFQqFQKBQKheJS4ciJ/cEf9QwAACAASURBVC+2lxol114jIqIJU7s9SYqjdUnsn1oZ2XRTKMPpfflu9xN573r08AoREe1NoB4KUFQ9K9J6AImHD2JIPLZJYZhEugI0+TKIvFg61gtQ05ndRqgODC83QUK2ACqEOmgWMkutoTTHScx7amjLZD3gkT5nKMXmtaeyzVU5mmIMlLpl8vOehEIKCbDLNv15AeRke3GV8psgzQ/r5+Crc7aNFqbnVbsiqtRRSUGyhMu+BMwkkHw9tstIlSKFysl2jhQCnBxKOVnAJx7pYt5GKInatz72SBVQuoNymgZ6ynuucw51XvZSc96fpEBtw3fXbRL/w4n05Q1Y7kEiJsqHynOB4+YETTxurCtSs8e9DP332lh+fwsSQNcWhBI/LxyULvikcUREa5mRiWDNHAQmrnat3Gc3ESnCXi7LLC1DiYWTdGlj1qmXEJCW+SRQvvo2CN9ohf0kn/hjcs8u90EOBmFIK5E5r+srEls3YIyZ2zUJt8O6tOsmGFg8BwnFLDmDryZD7JE+hfqns31uQ153TsOi71gxBvZHpr88T+U+jKYbPajHxGNNDlcb5VyplcF8sy6SyU8/kwR4llJ/O5Y+uj6U2ioDkNnOkl35amqt57Kte4mRUn0ANWne6Mh5zYMMNrVSphjktP0ncg/YtDUdv7F3p1z3G5mcwycDU5sFZcIIn7QsJOXk76Ls9LVEaum9OzD7ePVtkVrVr4GkZxMk9XumT93Pzmk+O0mIFm09nWVzPeKmjOH7hSx/QmYceAISsu2R1LfBZPiyZhZKWD3xEmzj0qgJ5PAp1KkCA5nPFWYs+SmS2Hr9J2Q5fdWc13RdjvXpN+S80o6pd/gE6iE9hmW85/lq2eBzQ3ds7gE5GG/MgXSM75NYJy6BJ9V5uM+sxia+sO7fZgr9MjHpCtu5jLt4H5exXY4/gnHZJ+WbnMBcRpkYhUKhUCgUCoVCcamgLzEKhUKhUCgUCoXiUuFs5GREREx5jQwlWPSEgiq2hB4cW+lY7yHQ1XtCV2/vCM3GrmOdxC9nYdnTA6DWHk2FDtu0y/gmNwR3ownQ5Cwj6BM4XCBNbineseN+As4Y9vcJyMlWwYGt6RVbCHbGQvPt7RsqcAJHPgZ6P9sx27q2Lee6elVkJRFQ4pPcbGMyAWcucMlYrBmKdgH2H8M58DkO4PiRtq05x8jrz0c3EZFIxljWgRIydOZgGhmp2pB7kE/WcNR1zuce96aD62f9zudO5pOLoMRik8TFznG7sjUV9mKko6W9Yk97jKB/sAwIZWOjQrbvuFFZmUU+o34HynGSWnUOBtttCB/nIC3jWjaL10SyRKK8PBeEXHCY3l+AsShUb4nroaxCXY2NVCQMO5b2d2rLeGoThJy3fHEUkpCVkphjxDxe+95YYmbPyuN2wIFpAON0zY7vy7fAOUfUHtS4b2Jr49mNct33alUpIpHU5ZlV8waBMVdKy7CsxwvUQHhZiMh1SjsIPCeOi+cDkZNh3CyC9IWvO9a8wD7P2/0Yxto/AWlf3a7fGMiYtA77Rclhuc+Ay1e5f/jNzkieO+5nRvJzC2RCWSHLVyfSD+u2BlhnV+Lm/q4E2Xs2nn4/k/723kBcvjasJA4lTz6Z8FHA/cyp9QUxvJqYcS2dhxopdajjBgWVEr5/R8eX8ZwGil6Xpt/+A7O8biR3vQ+k7z8A18ZnUxMHe2Pp5yEXT1+9p1lSUV/NLHQBW0hBdgjyvR8dmvZ++9+TbaV/6d+R7V41EsPpB98q113d/Z1yefX3zXE3QJaNUmlc5nuuTxpH5K+/hZI4rpO0AveTBqRNXAU59msTE1MZPJo+gr76sa19dC+W5/fnI+mrPSsnz+H3IXfBWfeJw6BMjEKhUCgUCoVCobhUOBsmZtCl8fvfICKi4sk98/fux+XH47uS2N+5b96rtp6Lt3wXktp7BVTstW/Jm4m8QXdgRqETmVfAZ1Bld2eKCaPVBF+cmW8U1VlnZF9GWA3Wfp7iTBAsciLkANblODMAL6LMquzCjOwAskenB/4eRM2+4Raws2Rbvp0B08IMDCYsZnVgiNgkYBf3Jsc15ORJwkR02Ra2R2LPdxSfz6xPHEVl9Wa+zjibVYdZCE5mG0CiGs4+Tj0e5zib4JsRxJnPZiYzITz7i/U9cAZ8GlVn7EIVnH0zGr4ZKJydxGVkaLqp6SvoKZ8dMEYgCtctwaRzH3C2iGfhcf8+T/nYSbQEFsHWmdks5Pf34do2wZd/rWNrynxW2vusmRie9eOZPjScQGagbpcXITbnof/VnbojdhYcWIrriYyjTywrg8nN+7mMgTyTGap74pvVPEZtk5nw1XEgkvoPmFS6AaxMz9aEQWIhXZX2auyYbdWe+sclrPnE1wFnL8fOOc5KJuc4hV84s48ehpQ/L6p96+UhcmaZicKz1nz8nZHcO7FvopEEb9NJ2g0YSTCeRdXC7hgLg7E/Gd7HJDk1Meyx4DqMq/XcsD0fQx/JMmExexAXmX3uGMJ1fZrIOb5XmG19ONyQ7Y+kn/HYPp7AvTfQRowQg1eqQiYy1m1BHZoNq1BZeSDnEj+GCvFb0ne+Y1nbjyJgpc8Q460hbfzv5lmw3zX3mbu7t8rPvzeHLJrp/8jy4T3Ee092EvsFs1gZjh2sxbMEtWFeh7o677Qemt/8+F+S33/hq+VyZJm+Yv0T775YSdSjKpN08Fg55qPAOMTPNfNgDnMDaOl3E7P8qbGc181c9vtqTZjKtSumX3f3ZVv3O8JALdVNe8CtyWFd+f6fR7IOx5zJCZnIg1AmRqFQKBQKhUKhUFwq6EuMQqFQKBQKhUKhuFQ4EzlZsb9L0//3/yEioumOkTRgHZjBA6GburuGouqNhKPKC6hx4pEvoITsGdSB2bfU1h5ITIYeugsTlB2Ky3Mu+F2kLwd2u3h0SF+yigBrb0Tgzb4zleWBXdwE2dUQtsbfzFASAQe7YHe2CLVdhiO51OMx1Dgp5WSy/QZ4eU/t8gT2NYT2zmfIKwZOvYDRId98+YijmOZtTYCmJ2F6AXjRzNK2HaDp8XpjsnpZuyVQM4PlDAs1SQy8Xl8ul7kuyFYiSaFbkSS2dkFmxjKLWfRrKNmVZQsY5yhrcKRlVnqBEjKUZhysuUN0wJDA7suReER+OrmUMhV+iUV5jDDtMgSZyc64W9n+AOo85JnQ4K/0jdzqzXOqFxNBvSKWM6KXP9aJWbbxuQaxuQKyowUYN5q2ieoQGgMwZfiulUZgG2PdDZZVTWKU+eFxH13ywvEZMqjg34VMBPJIJA6cDL0P8t8nqYwlH9rE8qt3RSZzBRK4Nx+Z9Y9gvN2Ffu2TPc6Sm4Qwq95B5JEQx2VbnC0OSgGTGeeMiego+8R+eFQTg1k1UFB2guPPBOR4HC/4XRyTfNJXBBtdfJRslevGUCPteVo10+jC88NTMAl6PDYJzZsjGbexjXLP+IaYJcv0SfJQfvzxWCR5X29cJyKiD7tXy3U9uGc/qss5PLDJ8k9AYkpym3rp2Mkz+kcdIx/r2Oedp3MST3cnck/ctwn9joQslCg+4/7or/dUlW2lgXsfPvdMrTkSQRwWAzCuGpp0ieKTu3Iu92U8f5qa/W5P/XXTUKLNwHhBSTzfR66lcr/7dCJysr/QN7/7/A0xnVj9PBhUvSPmJzQy21r8Y0n3KP5EPu71zDPMJtR82kghDcQa+wRjHtqbDTscKfMRoUyMQqFQKBQKhUKhuFTQlxiFQqFQKBQKhUJxqXAmcrLJbk7b/7ex/4nTKo036gm1Nh6zowjImxLwNZ/KctNKKTKPWxYRUcdSv+go5vPXDtU6wO+ydCsDShH3y5RZH+jmCUol7DJuc5QAVQkys549d0fyAL9jp7MGvIMuAqVIVkaGxNwEJGIj8L/v2+/i2+wgl21xLZr1VH7TBbeJnOt3eFzIDoKvw2hGTZyXhZTisobGSmwo0CuRyG3WCLzZS4c4iZ0cpAYsRSASOUMEbey43Fmv+8VMXKOugLzpinWTWkqElm2AN/xuJu4/XD8D6w0gBcvxG5JS+Gj0EJjiRUcdlG6wc4tPVkYE0hry0/8oT/FRzkiZ836dOjAgheL6D1hrpJOK4860Jr/7TLZGREQ/vH0+8sYoisq2q9vYQDnZPEjAFu0QjRKy61DT6dpE2m3Nyg5WM5El9KEv96yc8QFIKJ3aSOzmBNd4GpB7+YASDr6eoVoA4rIXqGcECq/cSoSxPsTDVGQ7387MORTD1XLdrfelfz2yn387kXh4jA5tnroTx5E1+KQroboH3u+WbXC2gjI+Rp+UyVczA+HKeA6vJeTs07MtZ0yJ3X5x8PjQmWpq5Uc41tUTkATbbU0D8kkeSx8PRE7WzSRGFqEmRuJxq2S5DJE46PkkZAePoTyvwHOH/AbayhMaeA/4ZCCuaLl1F83gHtSbyndRCs0OZ9iu89J1Xjr2aEK/Sab9R1yLB2RVKCHl4w65WvmkzBg73jaGZfyu7/65nYu07dsw/vyLu0YO9xd/5dfLdbVP7smx9E1sDL8hcrIPntwslx9YB7a9/OhyMhy38VhXrZwL69h8Fu4Bn1k1cXLlx8GR8c9+sVyOrslxFY8fmM8fi1SxAVK/+a5pvQV4Dq6hc6Z9hpmAi19Ijt6PTByOPHWgZkGZGIVCoVAoFAqFQnGpoC8xCoVCoVAoFAqF4lLhTORk+Sim50+MQ0xqqaU6OGQgy5dayU6z4S9wNZmgPZH5c2MsMpytTE6pax1uuugw5XOwwAKUQFWOCqTBrGsKfLkBdC2TtShdG4C0jGVoObw3duC76Haxb6lEdMbKsbCmPRak7gYgEalHZnmERb6mIBEDCUfPbgPdxxKQrnBB0Q2Q9OFx81okarGNHOc365ByEgeK00ASxbRqZWTXbHvdLER+cHVSdXvLQPKH7mUNkC0wRYqyiMQpymjkQSgZwjaq2e/eiKSY1lJdruegJnG0bR1xNnOhs7HomU8aglIBlssgDZ8kfvlQKQeb+uVgh+2TSCh9LFyH8PVFlFhgoTE+LjwWXGZpBa5DSh6lFX/aMFT73T9YkYOZP7tql1EUlbIXlAUwcAzqW11VAVLHObgE1+Ecb62YmJhbAJndpkhiFsdmuRmjC1/VfcdxkAPBBV7FUg7mKTAX+vw4wN+xLAcLcz6OReLAUt0tKIC5nMk5bkxtUcORyIaeDeX33bxaxDFUiHCWJOUkRdt4++dTAtgvvfE6yZ2wIN2s32HRSpaRzadyT8f2T6bVedcF+C46+/G9ByVgCJaT4fVHOdhmvF/5jU+yRISudP7xqTx+TzHO8D5QbuuTIco6PIfHxZb9NUjXQaaD47Gvf86f4dz2qBjTJ7Zf+pwzUf7H9y48fl96AJHEFPZXR75nYwPqpDvXw3dPw/vsXShq+k8aJmb3/tntct2rv7ENx2i2tRPfKdd9CA5wj6ZGptYFGR1KEX2SuXGgMCYXR74K94vrY7n2C2tmH/F1kY1FV8GRbOWaLHeMc128IM8taSZtEJfjhiD2uLKitH4KLnljcKD0PUMdFcrEKBQKhUKhUCgUikuFs6kTQxHlNpl8ODa7HEGyUS2TN8VabeL8JSKKoF5KAcnTiWV17nTlXWwPZmK2beLQOs5IOIn35vdTMAvgBCMiov0Ik7vM22gNZ1KQvSjfB6ssBZG8+dcjfNsX9IDdYHOALiTj5Z5aBnVMyoVaOj0709qBxKke1IbBN1eeJRjDG/QQlvfsm3E/wplJAX8T2yLFeilOG/Hsx/m8OycU0aJlU5YL03bLEE8L0+qsDnaQFJPSIDY4QS2ZVmcWDi4zRg5jZ5aXgem5GctUzQJc29wm7G2na+W6PsQcz+LvQ02ejbEkJG6MTEJzFFXr3BC5M408wxNK1uVr65hheLblMDmhmTM2znDqPFSTznOYUcTEVjYfCCWSb0LdnT9OzSzZP06kjsJZIiJJ7Oc2xJm33YkYOXCfyYAtW4PYSGBmK63Z8QwYxQHUh2I/j8QzW0bksqY+HCdx/zTB13ZAMEtOcj2ZccM6S5g0yknX2yP5vOepvUQkMRtKQPWxEj4GKpR8jOBtcf+ZVSvkZQOvX4iV8WHW7KmPqfIZhBARNW1tlnmo0YJtiePuvL3Xr2XCwM3BGMr3+j1IwJ94zERCdSx8JiR5gFXmaxgyTuH2DNW0cdvY9uMZ3cmpsYQKEsu847EgG++b5XfH+LO7P0+KKQ1t//S1IdZw4nMMtbFPCeGMb577mK+eW+hzh/kCc4S7tkbPIJFjbYAREt/zUNnTA3Zw25oXoOHCNGCWUT5lIlsPDFHfbncMp4Iqm7xvP+gKq10M5H4TjaSvELdHXfpUWpPP6zZO66DsQXUQPxNju4dituyLWidGoVAoFAqFQqFQfL/jSExMq9W6TkT/koh+iojGRPRLZCbkv0tEP9tut88nyUHxrxQ0DhUXARqHivOGxqDiIkDjUHHemPkS02q1MiL6n4mI+ae/S0Q/1263f7vVav08EX2NiH71sG1ERBRZGokTzLuQaF6fyPJSYSi1OfCjjiGpPIZaHUlmlpdHQqc1p0JDswoHpTtIT/qo4R4JpefQ+5Ylm4eEKZRQsTTNJ7UiIqpZ0gtru/jqyBARjaw8aIB1YuC4+biywi8R48+HsLKHdUuAxuPkLCcBH7bFm5gHynApAo9xSxUiVerIBzAplin1E8gmTisOWc7HifvYbnjtRva8+iDXQSlUDdqAk7R9shQioUrR770PUsG+rQsyD9tsgoTsDtT1uZObfTSwRhF04z0rUfhEwpS+XasmyTrygwmabEArzLj9lHVFHOlc9XtO8ndAjsHbYhMEIjdJl40UsM/uRFKrh5N0kY7G7yLlzjUVfrMGCb+QaHkYTisOfXIHBhoS7EWGvt+E2jHPYfkZgVnEupHVTKF/PSWQ19qgx9iMHblFXFkXwqzE/VnSKN/vHIkWrOcSWhin2BdZetGLUY5RldL0c5AfzojDFAw9fLV0HLkVHAtvNyQ7QrB0kmWTSXy0573TiEGiF5OvOQnTKB/2yO1i3E0poZMYa2YSo1dqRi67BDVacKwaw/I1WxPjlVgMUfDesllU60DhfZT7XubIxgVoCMB9kscZIjcej3K9cZ+H4Ti1vBiO4cmMOMJ7PaupZ0lJfTiNOCyooIEdm7ltUD41DiS4M0KybTaIwL6LccpjxtTzfILH4DO4IHLjn+/lz0jkqoihlTUO4B6EaQ0cOz7pXAgYI/hcwVLk9VT29RTq023Ye8TC+2I80Fj5QDa8LeYnxbaRyY3v75brdjbmZV/2uQNNqVCqnHr6FR6rz2zCV09pFo4iJ/s7RPTzRPTY/v9LRPQ7dvnXiOirx96rQnF8aBwqLgI0DhXnDY1BxUWAxqHi3HHoS0yr1fqPiGi93W7/U1gdtdttfvXaJ6Lll3RsCgURaRwqLgY0DhXnDY1BxUWAxqHiomCWnOw/JqKi1Wp9lYi+SET/GxFdh88XiWjH90NEQcahjIiob2UwA6D+ekgTWraWnceIiObBqSytV2nbBNzL+sBG9ahK0/mWfc4eRC7lx8vDBJyBkJ60f3FbDaAymbYcglCiD8fSLVBqZKhrx1EEvlu37mM1dGoBVxZ2i5BfE+2Cu1EHpGETdgSB7/rebNHFC/fbsfKKHfD83i5wz4KsdGjz0/eH4FTiMCK5ZhwxfWDRx6CF6tiYeh6JpGAQcB/j6zFKoB7LGGr8WNoUpYo+lx3UNC3AVXg1l/22VgwNvPoaOFg15bhHm2b57ofiXjauidxiw9bS2M3l90jZ++oR+LzfiURGV8e6I+C4U3raF35ZF+6XaX+sD7GcynEv2H439rj0mX1ZyR6hNM7vLMMuMI8Gm+U6WzpmFk4lDhHcng1oQ3QtYocXHFe2ICa/Vxc52YOpaa8cJIF7sLxh3b3G0NtRSsPXYAAOjU7doBnuYz5ZURDFjG16VY2wEsKA/XKSgPSkrP2CjmFO7ZdqTKPEqe6pCRWSYnF8BuVqWD/K1o3iOO/Em97fHMDpjIWRSONmyZems1yhZrg+4WXj9Y0U6ljU5Vn33Zo5lWuRxPUAIgBrKN22Usq3RyiPkuWPrUPUFOTo+PtFK1mbB3kmAt1B962DFF6/nanIWfl6h+oLcbw47owoOXZqcVXb29dPfJJl3FaobhnWBePrgWOO++QQxKnE4bQoyvovfAwhqabPORDvTdhPlzLTpxbgeQ1rXvE9AJ/3vDXQAvc+n1SqB/Hiu+c5cjLPfkMufz5XSF+8EBHtj02cPskkNj+G+nTN3Nz/J38g53Xr8aNyub5yX457w7Tn+4+ljsyf1KSNH86Zc3heiNPZDtS64TYISchwva//HBWHMjHtdvsn2u32l9vt9leI6I+I6D8gol9rtVpfsV/5aSL6+rH3qlAcAxqHiosAjUPFeUNjUHERoHGouCg4SZ2Yv0lEv9BqtWpE9B4R/fKsH0yKiHYm5m1w175t5zBRkwEzUJ+azxehrgmyL3NX4Q3WLk6h2PY+sDI9Zk+wNozHmxrfCIuAtzpXjt2LYQbck6SHCd/zMAuQ2vfFDrzB9+C48C2eK7ci+4JJZzx7ipW3m5DozYwHtvEmTBx0YH3HTmnimTThf0uWgWnAJAVWDOfMwP3YP3uSwbbm7HHPzcoYPxqOHYdEwsRwy+9C/ZsBJETu2muzCTMLe1hRF69NVK1/gzNEeZm0hglw8t2BnYnFWiCrwHytwsz7wqo5hvorMrsSrwpjka6a+Ly1J3U07mxIYt9qZmIyi2ezYWX9Cs9MNRHRsp3tWoQk3DmY1ZS2hpkiqNnQhWUG9pll2O5SXK9sa5BWE29D9W8QZfI19L8j5vX7cOw4jKKowsA0YLasAaxq5qk8vQczpW2gJAaWDe2BIYiPWQuxWb46DaF6KLPgq33i1gg4fFu+aui4LZxV5SYoYv+x8racJF2sawV9gY0lFiEZFmdzeQY2lKA9mZEwjIzbqo3vOzYx/RvRnnebR8CJxsKyTo3ns6m3rfxxgfFUzqYHmDiOiybUgbmRLZXLP0CmTV6Bmxfex3D5ldy09aea/gn/hZ5heHoNuX59YMt5fFqKAkyMpx/i80MvkbGGa1aFGD6uhROqqVWggcwRu1kRYHI4sT+FZwKsxYOxy6YSczD+jEiSvo+JY8dhQUXFFGGW4QQyFr77ERHRzcxce75vEBF1YVx8Zq8jKgN8yfTYd311Zoj8rCuaQjDrMxj79xWV6pBAnSaPcYjLwsl++XzWc7n/f1iTazuxqowHU0nQX3oqdZayJ7KtXTueftyQ434wlcT/3XxQOVccC/i52se4EB1kkw43ijkMR36JsW/cjC8fe08KxSlA41BxEaBxqDhvaAwqLgI0DhXnCS12qVAoFAqFQqFQKC4VTiInOzZGUUT3MkP7DT2MXBNYvLkpJxvKutoCJAC/LpRh0TM0VvGebLQHkoIRJwt5JGS4HJZMAN1lKTNMznLrLVRpcpQp9IrU/sVEcVkeeSRvmHSbgUkAS3ZSeAfFZuWaMz2gqDtwLusk57Dn8dJHk4Brlma+OpVjaYL8j/fRgcT+MbTLPFDXy7b2CdLcZ4mIolK6yLTlPsjJtuDabE4NVbo3FckTXq8ByP+YDg/FUZmMFzCQyD3yHkyt3C7keqw/NhnocSrSk9oV8XGfWKv6vV2RaPTjaqc7So0IlkOg9GwBEu+vWRnIrUTo6FWIndTuowfntxWDZz1IM1lCiTHvyI/sMpppzEMdGa4p48hBCz91zZS2KwM4k6GQiExf5SR67tcoIUPjDG4PjKedQmQsHZA47o5Ne2KcIsp9wvZR9sSS2RDlX8xINJ6ZzD8DIfmf7ODw7xYBHc6shN3Ys+yT3BARLVp5CiaD1z3jGe6xBttaA+nSG1Nzzb/QN2PJ+2c5LBZybUu53gmvnysTNNt0am54DB+wffHzsd1WCg24ANcVcvTphrV0WLsJEu86yE3fN+37MUhnHkM/49hvQn8ItcDA/g5jwddeKCGb95hD4DMBnjdK11maxgnvROE+6QPHMI7bKFfF2iksb8Tzqj4RvFxw/PF5hZLpWUaG0rclkJDdrq2Uy6/F5p6Uwe8fQ7PxPrFdsb0jjxw2K6ryJyKi0YxaX7zdPGA8Uso64bkKA9GRCk6rclUEmwjxvYCI6DFIWAdWTtmIUF7o3+/Q6nTXczEJ2BnLMkvXQjI4vnaF5zn54PKLQJkYhUKhUCgUCoVCcamgLzEKhUKhUCgUCoXiUuFMNBT9qKD30rGzw0YBMiN0P7LrBznUWBkD7YQuWCNDre3nQi/2UqDePJSbQ0/yMrzK+Wg+hCujmFa+i/7hPi/xkMMPfpcdzpwaDrBct5+jtCaH4+pZiVQf1m2CbGx9Kr7eLEfB40IHnYGV/+SxyIgWCzmWgd1XN+B45EMyQzXy8lDQxMrfRrZttkFChu2yZWnTDjho+Zw3iIQuRjoaqePxxCyjqwpKy1iatlHIvj5KpI03GrJ8b2okXK9+KBKutQ/Af95KWx5BHYYPUzkW9nGfBKhxR6bjYXux/zStxOJ2JLKJVybVIWUTndCQJvcEwgCuR88ji6oDDY59gmttoFQCKX10oemNTRuEanm8bMRRXMrfuK97xyWS5sKxDCVkG+BCwzUC0IsfKXuWsmAbIVgqi7Edqq3ikyC5sVN13PHBkTUG1AW83ZDcbEosi/LXqSl8zjdYh8ZTUwbjJfWMvasgIbsKDkgNezNBx02s+fQ6aHW+kBkZ6Bs/ba5b8ztHqs9xKiioqMR/SAJWfg5tGnKXK6/RDKnINBDPz2LTZ5dAln0NmmUZpDU1e6+PYByJ0upxofhqALLtQcHjMrijwrUaoPOf/R3KiLH9uG3mUnkWWQCHu0bCtd2k76UBh0jux7sjkQTxmGX3bM4r8KySlDJgGCsDy/w7nzPXeSEkOWJJ3kom8sA7tdVy+TOJSKjv2PtQyF2mMAAAIABJREFUB9ILtjz1r/A+7ZN7Ybvi9R7FUI/M01ewdkvuSWtA8HOck54Anzu1cnxOi06/rLqubeWdcrlv4xfHtNgj9ySS553OWJ5L2GmNSNoDf+OrOxaDg1wotaOsKXeCMFQmRqFQKBQKhUKhUFwqnAkTMyym9NHEzBhyQtE8zEj0YOa/sFV267nM/DfuyRv2tYG8VXZ3zXceQaJXTlUfeGQWMIFuat/ScYY9xJSUb8Pw0p0Am8SzKrivBN4RebuTQI2UzMvEgM88+VkZRh9mjUacSA5v8FhJdQ/YhaGd+XaSzmG2yjeTOoDkyMTOOGaY0AXnjW/JA579OJ18rmMjp4Ke2qRonlnDdtkaS2zxbFiowvzYM4PDjAtRYNYFVuFs+X5u9vUgEn/+/VT2Owd9ZcXO+t5ryEzlaiHLvIvtSLb/HBLBuR5RaIbcOW7PV7A9OnZbUNLJqSfE176LyfhwLsgecm0DTM7GxPyRXcYZpDmIw0Zqq81D7GKcO8nDPDMWn8/sY0oxrSVmNpHr3mA/cWoTcM0nCB6se4VsE8eUb4YY4RhQwDVgJjGUzO9DiLnzJekieH2odov75aMdS+i4fLHuVgKHtmU2FRgTX19uQmL/NZL+t2DvCQvAxFydyPKnCpldf/3HzHhT++t/hYiI4ge/Gjib00dBct7c7siuhKqH++BL3PetI5J4xjZFtvtpYpYXgKWoQ42TZSCPGnVzrZIajBn78rvnY/N88CST/rKZC9u+OzHX4rnHSIPIHX/4frAzksTmXi7jaln3CZiYBsxA1+1zQR2eD9DMw9dPZ9fXkDbE35eJ4gFGA/uG7/5/piigYr09RCeZHq79YmqYrZu15XIdsi9/dijX7qa9rz+AZ8OPsyr74DOlIJI2mgbMQnzXKzTW+cYtH1OMz4YF1sTyjMch84OyL8NvusCkMNseNE+Iqs+seYCZZ+D9CtnFkonBcR3eOBxWhg0LThCHysQoFAqFQqFQKBSKSwV9iVEoFAqFQqFQKBSXCmciJxvTlDYmhoZluVUXqNQeSF8GVi4zrMnnnbFQhqsPJKF5aCmxp5nQVUhGsXQNPbFHQOcyfefWF/AnPDNCCVVM4zk0IVCVLNFCqZZDucNyER0um2CZGG5/jElS9i/S4SizcWhLzzlOnaRzQzfvQ1JcAyj3NXsdMdkfpWUoUWCjgUF0PgnVg2JM7dE6EQlV7yR8Q9LacJw73yMKy2x89YZmJTT75GQo7enCsaAv/n5iKPU9NFoAaQu3fA7H2oFkeZQiMVA6Mp5WkwTxWDsk1PRmYiSijxNJtLwZQ80Yu60V2CZK465AHM1bI4PnKDOF42aZB8rRFmD44j10IbawTzlJ/pbmzmOMw7OTU2RRTK/a2jrPrJlEH64LjhGYCMxAuSbK6/g6Yv/1SRwwznyyyJNQ+gdRxv+s0i/HkGAE91Umkx/xewf2i23AY76vzhNiDvrcGvTFJsuKYDxMsW5WHQwD3rpGRETx575iN/qbh5/AS4JvrMKxzif9Q/hq7oTq8JT7REkT9M09KwPaBrOQG9AHmtBPr7xininmflDGnOKPRRK8bceUXTBMwXsij/1Y+23iScgmAvOWsRwrtlstq0pnfDUzQmY9iPJZgvxtyP28mBxurhA6lxyl5/b+hpIhGc1fPlDWOLXjGt6P8N63kJh+dgVqjb0GRjJvRXLt164aqeB0Q6RnS/BMybKnkIS1rKHkyE4PH5Niz/MgwpVVCsrbozPm+PfBcVQDmR1K7mLPfkP16XzH6pORYl916/aYNsTaSM79yK5PnLQIv7EF7zeeHp9XUSZGoVAoFAqFQqFQXCroS4xCoVAoFAqFQqG4VDgTOVlBRUnjstvDkFBCBm47luocRkLR98HxYyUB6svSYJ2A/Cqx9J3j3uCTVwSkAyEXH/gC7Cuu/N7xwba/RzoPqb8C/MxZ3jaJgAYEmQw7goXoZq/HPywjpc3StZBrGh93yL1k3sombgIN2ISv9uG4niXmg94sjclLQj6d0LPBDhHJ+fgcMojkOuG6WTIbXx0NxBTaGP3Q+3lVwjJKoE+kImFgJ70hfN4ppH/4JAoDdLmxv/dJHYgO1LKZVGVyWAtnNzeU/eNUapXchtoINy3V/3Yuco2lBKUbsq+nhXUazORc+hDGmT2EDNoNXe52bf95HoE0Bb3wPQ4sLnV+dnKyOsX0Fpnz7Vgp7T645KHkJbdjADoV1qHOA8otWJbjjFueOAy57IlDzNH7Z0gOxgjJKoNOZC+Ak7qXIbiP5pPD+zLW2kBpGd9Rp1A7pglyj85Avlt0jcwpXrC1LgJ1Q14WDm2v6PDvHefeg+D7yTQQozw+oRtfBrt/ZVHGmqV/81Wzz3d/sFw31/utcnnxT802FmvS/vNwrbpWWo735NxxKq3ey/F+4TvvkJy88MkU4bkFv5t7JF6+5xLcF26XpWM4VoeeS/LJ2PkNEdE8nW0cMvh5yJEZecbtyPmNIIFnqFrDnM8S3DuXCpCTBaR8DL4ejoR8xnNLqE5VGSfw80lA2lr5zYHPWUY2n8nzMTre8THi9ZyCXJOfLZ2aNBizHjc27NM1uGdmnnpjIbe38liOMUYfFcrEKBQKhUKhUCgUiksFfYlRKBQKhUKhUCgUlwpnIidDMF08BocMLBLIdFQKtFUDlmM4ZCbRhugg4XGTCEq8Znx+HHmCV57kcQFz3C48vyciGlHVycwHdClC2pUd4JrgAFfA5zHQntxejkMP8p4xn4u/LXgPyyC/uALXswPXrhub/W7PkKC8LBRUlDRr6aITcObILKXuxoD/nd+eliMRm/quvSNP9MQZXO5ZsedIMBJp7zpccwbG4axiVT45CMYDMPalXGErF1eY56m4wdSnpg1br22U65a/AI5ii0KJ/2B30+yrJ9R3FEOcDsw5du/JNfjkk5Vy+XtJk4iIBilIEWZIW7DPnCWygugaF0C0h9AFORk65pWubAnKB1JYrhbUc922qtKxPCAnm85w2fO5e82SDwUllqUjz+zfnSV8TmfYRtxH90ZStPIpSFO4rw0TccwiG5tERGsTkVu+9c2HRESUPXzPrMjFReu8MWv8mVXEFOFIV+xfp00BLIddBEey13MZs17516WfxD/xU2af8zLmxKu/Xy6vWUfNNSgGjE6Oe1aKOes+SyTj5niGs6bPtZJIZGpRUZX2HDyGPS60PJZxIPc46IXAbYvFOH3FFfEYUTZFZywn4zHE54zlSKxtG+1NpV0egTPgw4H0s3TDykJB5t6A557Ecy/3yXBnScQPnAhsDM7Bs9JXfDQOpD2gdLWZmlheSOW88Vx4/HH73Is9b4XG4lJyN0OSj9I95zl3UnV+Pc4zN0OZGIVCoVAoFAqFQnGpcCZMTETyNjj2MRaQwJ7YN+cxJEbiuxkyAnH5Oc4swAy1fSvFGinoSc9vir4EPqJAQqPj9e3xv5+R2BSaucR9MVvl1HOAGVXerptwVb2Uc0l1Vp7IrRXCtVGwXRC8X3yb7sHsBx9CE2aVliC5OpnCLIJNrJs1Q/6yEJHM9vhm4WclooXMDRjuTM7Rv1uUbBgcK8RZ6pk5H0FtJWdWJ6rO6syKSee4jjEDzueAsbMPs2TTyMyMLbwp+0x/4kvlcnTnbdmYnU2Nr79ZrioTnolo8uQDIiKq//N/Uq6r/eM/LpdH37lBRESbiYwboToM542CxJSAa/js29lXIpeJ4X7nGovIbD7OwmVc+yBQA4XHO2S+fePdsWYfAb5Z+NDvj1rb5bjHcFoIsVHcRweQNL2XCyvjq4mC410zkyoct79nYvZH/ukvm/3sbr/gUZ8PZrJxRfX+jIwG3tvmLJP8+lTuXe8ub5bL2Z9/t1zmsWK6+UD21QcW0z5DzMMMPNaMY5YT721Z7B8fx7amVIjR8M5Ke+pzYCwNCWpXQZ/v2LphTmK+J8HcqTPnSfJHFjbUh3w1zs4SEcmxl8oYONc8qj6rbETdct2HcD2ThvStzbG5nzTRMAHCNLX3R+feGKgDd1R4mWazkwowynjMQCaqAc9udVhmJsZXP4wIrucsEwJHsQTHcuivDjw/eMbCfEYdGoSvRtms5xMflIlRKBQKhUKhUCgUlwr6EqNQKBQKhUKhUCguFaKzoBFbrdY6Ed1/6TtSXEa83v7/2TvvMEuO6uy/fcPkmc1BWq0QIKlQAEmWSLJJ/gBjTJYMNgYswDbR2IABmw9jgcFgk4MJD0HYGD6CkAgGDBhkDAgEQkLSKhyxKOyuNmjD7E6eG78/qurW23Or586dnXRH5/c80vZ03+6urj5d3VXnrXNENi3FidQOlVlQO1SWG7VBZSWgdqisBOZkh0vSiVEURVEURVEURVkoVE6mKIqiKIqiKEpHoZ0YRVEURVEURVE6Cu3EKIqiKIqiKIrSUWgnRlEURVEURVGUjkI7MYqiKIqiKIqidBTaiVEURVEURVEUpaMoLPYJjDE5AB8BcA6AaQB/JiI7F/u8i4Expgjg0wBOAdAN4G0AbgHwGQB1ADsAvEJEastUxOPCGLMZwC8BPAFABavkugC1w05C7bAzWM12qDbYGaxmGwTUDjuF1WyHK90Gl8IT8wwAPSLySAB/C+A9S3DOxeJ5AA6LyKMAPAnAhwG8F8Cb3LoEwNOXsXzzxj2EHwcw6Vatiusi1A47ALXDjmJV2qHaYEexKm0QUDvsMFalHXaCDS5FJ+Z3APwXAIjIzwBcsATnXCy+DODv3XIC2ys9H8AP3bpvA3j8MpRrIXg3gI8B2Ov+Xi3X5VE77AzUDjuH1WqHaoOdw2q1QUDtsJNYrXa44m1wKToxQwCO0d9VY8yiy9gWAxEZE5FRY8wggMsBvAlAIiJ195NRAGuWrYDzxBhzCYCDIvIdWt3x1zUDtcMVjtphZ7Ea7VBtsLNYjTYIqB12GqvRDjvFBpeiEzMCYJDPKSKVJTjvomCM2Q7gKgCfFZHPA2A94CCAo8tSsOPjRQCeYIz5HwDnAvh3AJtpe6deF6N2uPJRO+wwVqEdqg12GKvQBgG1w45jFdphR9jgUnRifgLgyQBgjHkEgJuW4JyLgjFmC4DvAniDiHzarb7eGPNYt/z7AH60HGU7HkTk0SLyGBF5LIBfAXgBgG93+nXNQO1whaN22FmsRjtUG+wsVqMNAmqHncZqtMNOscGlcN1dCdubuxpWK/jCJTjnYvFGAOsA/L0xxusf/wrAB40xXQBuhXUlrgZeC+ATq+i61A47E7XDlct9xQ7VBlcu9xUbBNQOVzL3FTtccTaY1Ov11r9SFEVRFEVRFEVZIWiyS0VRFEVRFEVROgrtxCiKoiiKoiiK0lFoJ0ZRFEVRFEVRlI5COzGKoiiKoiiKonQU2olRFEVRFEVRFKWj0E6MoiiKoiiKoigdhXZiFEVRFEVRFEXpKLQToyiKoiiKoihKR6GdGEVRFEVRFEVROgrtxCiKoiiKoiiK0lFoJ0ZRFEVRFEVRlI5COzGKoiiKoiiKonQU2olRFEVRFEVRFKWj0E6MoiiKoiiKoigdhXZiFEVRFEVRFEXpKLQToyiKoiiKoihKR6GdGEVRFEVRFEVROgrtxCiKoiiKoiiK0lFoJ0ZRFEVRFEVRlI5COzGKoiiKoiiKonQU2olRFEVRFEVRFKWj0E6MoiiKoiiKoigdhXZiFEVRFEVRFEXpKLQToyiKoiiKoihKR6GdGEVRFEVRFEVROgrtxCiKoiiKoiiK0lFoJ0ZRFEVRFEVRlI5COzGKoiiKoiiKonQU2olRFEVRFEVRFKWj0E6MoiiKoiiKoigdhXZiFEVRFEVRFEXpKLQToyiKoiiKoihKR6GdGEVRFEVRFEVROgrtxCiKoiiKoiiK0lFoJ0ZRFEVRFEVRlI5COzGKoiiKoiiKonQU2olRFEVRFEVRFKWj0E6MoiiKoiiKoigdhXZiFEVRFEVRFEXpKLQToyiKoiiKoihKR6GdGEVRFEVRFEVROgrtxCiKoiiKoiiK0lFoJ0ZRFEVRFEVRlI5COzGKoiiKoiiKonQU2olRFEVRFEVRFKWj0E6MoiiKoiiKoigdhXZiFEVRFEVRFEXpKLQToyiKoiiKoihKR6GdGEVRFEVRFEVROgrtxCiKoiiKoiiK0lFoJ0ZRFEVRFEVRlI5COzGKoiiKoiiKonQU2olRFEVRFEVRFKWj0E6MoiiKoiiKoigdhXZiFEVRFEVRFEXpKLQToyiKoiiKoihKR1FY7gJ4jDEJgMsA7BCRdxtj8gA+DOAx7iffAvA6EakbYx4H4F0AigAmAbxKRH7ujvGPAJ4DYBzA1QBeIyJTkfNtAvBxAKfC1sM3AbxBRGru+O9x6w8D+GsRucHt9yIAr3Pb/tudu2yMWQPgAIDb6DSvFpGr6JwvAvBMEXkqXfOcykvHOAfAf4nICa1rFTDG/BJAL4CSW/U5EXnXHPd9K4D1IvJK93cXgA8BeJT7ybcBvB7AIID/mbH7g2Hv13vncq6VwgLb4bPcPr8A8DIRmYicrw/AJwGcBzuo8AYR+arb9nsA3g5razUAfyci33HbsuzwagB9fAoAnxCRV9E5Z97XbgAfBPC7AMYAfAPApSJSi5T3VAAfBbAJQBeAT4nIe+ZQtTDGrAXwvwBeJCLXznGf1P2g9QcB3EM/fZeIfO54yreSWGo7pPM2tS/ztMM8gL8H8DQA/a68rxGROh13IdrDLlibupztY5bfPxrAv8C2iccAXCIid7TaL1Zet+61AF4EoALgIICXiMhvjDGXw75bPPcH8EMRedpczrUSWIa2cLZ38mkAPg1gA2wb9QIRuc3tt9w22NY7mfZ7H4DTROQpbeyTarvduosAvBFAN4C7Yevm8Fy+SToBbQtbfstuB/ApAFsA5GHfhf82h3qN2k2r/dy+M78hcgDeCeAPXL38GrYtPDjbcz2Xc7ViRXhijDFnAPg+gGfT6ufDfoA9GMA5sAZ7sXtpfRHAn4vIOQDeBuCzbp9LADwFwENF5FwA+9z2GO8DcIuIPATAbwF4OIBL3IN/BexD8RAALwPwJWNMtzHmbABvAfBoV7a1AF7tjvcIAP8rIufSf1e561tvjPkYbAcgoTLMubzGmIIx5tUAvgvbaWiJMaYfwAMBnENlatmBMcac5F7CfzNj0ythPw7PBvAQABcCeLaIHOXrhn2gfuyut2NYQDt8JoAnAjgXwFmwnYq/yjjtpQDGROQMAE8A8BFX/2sAfB7An7o6vQTAF40xg7PZoYhcSPfhzQDuhG1AZ7uvbwRwP3eN5wM4AcDLM8r7GQBfdMd/JICXGGN+N+O3DYwxTwbwcwAPavVb2id2P2CMMQCGZzxrnzue8q0klsMOs9qX+dqhO89jAfw2bFvxSNgX8oK0h8T7Ydu4lhhjTgJwJYCXu7r6CoCPzGG/aHmNMY8H8GIAj3THuwL2YwsicjE9h38O4CiAV8ylnCuBZWoLo+9kt+1zAD4qImcC+AcAXzHGJMtpg/N5J9O+zwbwvDZ+H227jTEXwH7QXyQiZwO4HfYjG5jlm6RT0LZwTm3hvwL4lrvm/wPgQ66ty6SF3cy2X9Y3xItgvx1+S0QeDGAnrCMAmP25Pm5WRCcGtnG/DMCXaF0ettfa7f7rAjAlIiUA20TketdbfQCstwSwlfhVETnq/r4CwMUZ57wS9ibC9W53wH7InQbgmIh83227DcAIrOE9HcDXReSg60V+HKEhuhDAemPMj40x1xtjXkbnejasEc688e2U97dgH4Cs7TEeBjtq9U1jzE3GmPcZY3rnsN+LAfwIwQgBAM6r8hx37RtgH9Qj/Bs3Ev4mAM8XkXIbZV0JLIgdisgVAH7b/WYQwGYEG53JMwF8wu23C7bhfDbsSNLLReRm97tbYBu5jZjdDgHYxhHAx2BHV4651dH7CmuHXxCRKXe8ryLbzj4F25DDHXcn7HPTilcB+FMAe+fwW0/sfgD2WasaY64yxtxojHmzG+06nvKtJJbDDrPal/na4QsAvE1EJkVkGsBFsB8jwMK0hzDGPB/AGtiRvblwMYBvi8h17u+PA/jrOeyXVd79sKO5I+7vazHD1tyH1b/BevN3z7GcK4HlsMHoO9kYsw128OMLbtu3XTnOw/La4Hzeyf7D/PUA3trGbllt9/Ngvc13ub8vhfU0ArN/k3QK2hZaZrPDZyAMGJ8M6xWezPitZza7mY0sO7wZduB/2v3NbWHWt/aCsCLkZOSS+j+0+jMA/hBWMlIA8F0R+Yb7fdkYswXAdbAG9By3zzUAXm2M+TDsx/ULYEeVY+f8il82xpwH4LmwveU7AAwYY54oIt81xjwUtud+AoDtAO6iw+wB4Hu8FVgZztsAbAVwlTFmn4h8VUQ+5s5zyYxitFPenwP4uTHmlNj2DAYBXAXbEJRgR7PegRYvbhF5iyvvpZFtZWPMO2G9MtfCGjTzdgAfch/kHcUC2qHf9kpYe7gH9kGOsR0Af9zsAXCSiByCHVXyvBXA7SJyp3Mf3zVznxnHfQPs6ExDtjXLfb0GwHPcCEsJ9lnIssPL/LIx5kmwL8oXZ1wb7/ckt0+rn/I+sfsB2PvwPVjXfS/sR+wIgPfPt3wrieWww6z25Tjs8HQAZxpj/g7We/t12BF0LER7aIx5MOwI52NgRyLnwukAxo0xX4AdLd2FMFqaSVZ5RWQHlacbVk7x5Rm7vxjAXhHJev5XJMtkg1nv5O2wdcjyE29ry2aD83knG2MGYL0DlwC4YK77zdJ2nw7gRmPM1wCcAuAmBJvO/CaZ63mXG20L52SHNXeM/wHwOwDeK61lYbPZTSZZdigiP/XLxph1sCqQj7ltWc/1grBSPDEx/gFWY7wF1hjWG6s/BgCIyAER2QbrIbnMGHO6iHwW9iXyAwA/gdWClpqOTBircfwugL8UkV+5UbWnA3ijMeYGWOP5gTtOrL6qrjz/KCJvEZGqiNwD2xN/5mznnk9520FEvi4izxeREdcD/qdWZZrjcf8WwDrYh/ajfr17kH8PwAeO9xwriLbtkLZ9GLaergRwecbxM20KaLi2PwjbaF80x316APwF7P2eC/8MO5LyU1gt79Vo/dz8KYD/AHCxiOyb43kWBBH5hIi8SkSm3UjVezHDrpezfIvEYtvhrMzDDouwcpYnw8oofgfAX852jrm2h07W8VlYL+N4G5dRhG3b/15EzoMdDb2ijf2jGKv5/i6s1/uNMza/Gq0lcZ3CktjgzHcysr9TqhnbFt0Gj4NPwQ7y7Wj5y7lRBPBUAC+B9UztR/Dst/1N0iFoWxjf57GwHZ0nGmNe2OIyMu3meDDGPBB2juKPMWNwKfJcLwgrwhOTwbNgL7YEoGSM+TdY3eMnAfyuH9kSketcZ+PBxphDAD4vIu8AAGPMwwHsNMacCDuZyvNkEdlrjHkNgL8F8Mci8t9unxzsHIXH+h8bY26FlaWcgXRveBtsjxvGmL8E8DXyQCQAZpVTOcnPnMs7hzqbefynwkrj/neuZWpxvN8GcFBEbnejGp9Bet7LxQCuFJHR+Z5jBTIfO+wFkBOR68VONvwkgL+K3VfY0eATYBsRwNrUr4DGiMblsPftETS64vcB7bOH/v59AL+SOU5YBrAewHtE5G/ceZ8Da4cXwAYdgLvGc52b/t2w9/rxC9kYzRUnI7pBRG50qxp2vRLKt0gsqh3O1r7M0w73wkoUpwFMG2O+DKsXf/8s55lre/heWCnr551n72QATzDGDInIm7OO78p0tYj82v39KQAfMMb0ikgr+UVWmR8CO7J6JYC/EREeTDgP9h37w/kcewWy6DYYeyfD2tlWY0wiYTK0t7XlssG238nGzlN4lF00r4Ztd9cYY74lIk9u51jEXgA3ich+d47LYD985/VN0iFoW0jlhVUbfEdERsVOpP8qrCTuspnHJTLtZr4YG1ThiwD+RWYEWcl4rheEldyJuQ5WL3iVMaYIG9nhZ7C9208bY+4VkZ8YY86C1cteA+uefae74XUAfwcbjWsv7ISuBq5SXwFriPyxVwfwLWPM00XkWmPMH8I++De6bV8zxrwddiTgL2DnDwC2d306gL90Bvhi2HkAszHn8s6TkwD8vTHmMbC9+Ncg7Q5tl98F8AhjzNNhI1D8CdKG/xjMc3RjBTMfO3wcgNcaYy4UG/3kBQB+kGGHX4O1o5e5l9yTALzNWHnKdwHcAOClIlKh3b6ObDsE7H34PubO0wA8xd3Xflg7eZdYKdpMO/wA7AjXBSJysI1zLCRnA7jI2OgqXbDSRj+xfyWUbzFYVDvM4jjs8HIAzzPG/Ceshv0paG2T7bSH/05l/AxmRK/L4EoALzXG3F9E7oT9GLr5ODowp8LKdV8nIp+O/OQxsPVdj2zrRBa7LYy+k0VkjzHmN7DSoC+4Ed0arARmtnfyYttgW4jIHgAn0vVeAuspnnN0sgiXA3i3Mebt7oP6WbCRt4D5fZN0AtoWpsv1Mtj7/E/GeqmfjtbzrWazm7YxxlwI277+kYj814xtWd/aC8JK7sS8GjbKwm2wxvl9AP/sPADPAPB+Z8DTAJ7rGog97oP9Rlj33ldhIyOkMHay5T/CRoy5wgSd/pdF5O3GmOcC+IT73T4Az3AvohuNDS33A1h33DWwUhzAfkh93Bhzs9v2YRH53mwXKHbOTcvyHgcfh53cdh3svb4K7U0mnMk/w44e3AD7Evkx7MPlOQ1pXehqYD52+Fn3gXOtMaYCK9XKmpfxDwA+6uwmD/tB9BtjzJ/ANmQ97jj+988XkdnsELD3YU4hjB2fho0YssOV4RMi0tQZNVYu+ErYcIzfozJ9QGguyhLwFtiJgjfBXv+XAXxyBZVvMVhsO8ziYszPDt/klncgzGHKHHkEFr89FJFfuRf+la6uhmElIfPlDbBRjl5ljPEfh9Mi8nC3vNraw0WzwVbvZAB/BPtOfhOAKQB/KHYuQEfZ4EIjIt9wg18/NFZFcjdTL/BsAAAgAElEQVRC/bb9TdIhaFuY5hLY++yVCZ+QFnPwWtjNfHgLrHfqncbOmQZsZNTnYPbn+rhJ6vXVMkikKIqiKIqiKMp9gZXsiVFaYIwZRHN0MM+oiDwqtsHYJFuPy9iv45JhKcvLcdjhF2GjRMV4jojIQpRPue9gjPkRsnN2PEoi8/WMMa+DlcbGeJeEHESKMiv6TlZWAvclO1RPjKIoiqIoiqIoHYV6YhxOz7hTRP59xvqNsBG5kvieS4+xEZguwyyTWY0xfwCbE6YbVlf5YnFJ2YwxLwfwZ7A5Nn7ptk3HjqMsLWqHaofLjdqg2uBKQO1Q7XC5uY/Z4EHY/DmejvBCr+Q8MUuKiLx5pqGuRIzN9vt92OgcWb/ZBGvMF4mIgU3g+U637VmwMcofD5vEsxdzSHKkLA1qh8pyozaorATUDpXl5j5kgwbAsIicS/+t+A4McB/wxBhj/hY26sIobBKeZ4jIKcaG5VwP4IEA/hM2cdIOEXm3a1TeDmACFHbO2JCIz4SNzHUabNjiF4jIDhfa7gMAHgwbneL7sJGmKsaYt7j9SgAOA7hERPbNsv6tgH2AIpf0ClhD3BXZ5nkigF9IyIfwUQA3GGNeARta8D0icsRd00thw9Qqi4jaIQC1w2VFbRCA2uCyo3YIQO1wWVEbBJC2wQsBVI0xVwHYABuC+e1Cea9WKqvaE2NsPPlLADwUwPlonvDZJyJnicgbaJ8tsCFnLxKR82FDzzGPgU20dDZsJtXXufXvA/BLt895ADYCeI2xYV//GsBDReQC2DjjD89aDzR6/9GkbSLySrHZXGdjO4Dd9PceAEPu+k8HsNkY818uJN+lsOHvlEVC7bCB2uEyoTbYQG1wGVE7bKB2uEyoDTZgG/Shn58Em4jz92C9gyueVd2Jgc1m+mUROSo2z8u/ztj+48g+vwObyfQW9/fHZ2z/pdi444DNv7LeLT8FwEuMMb+C1bQ+DLb3fQ9sXpXrjDHvhs2k/tVZ1i8EWfe1Cjsa8ARYt+MFrvwLEq9byUTtMI3a4dKjNphGbXB5UDtMo3a49KgNpqmKyCdE5FUiMi0iRwG8F9YbtOJZ7Z2YCmwCHs9M19hYZJ/6jH0qM7ZPZvw2D5uA61wRORe29/xKsQm5HgPb8z8M4H3GmA9krZ/jdbViF4AT6O9tsHrHcQB7AVwpIiMiUgLwH7AZzpXFQ+3Qona4fKgNWtQGlxe1Q4va4fKhNmhp2KAx5vnGmIfQtgRAeYHOu6is9k7MNwFc5HSJgNVAtoop/SMAZxljznF/XzLHc30HwKuNMYkxphvA1wG80h1nB4BbReQdsO7Fc7LWz/FcrfgugEcYY05zf78UwNfc8uUA/tAY02tsNItngPSdyqKgdmhRO1w+1AYtaoPLi9qhRe1w+VAbtLANng3grcaYvDGmF8ArAXxxgc67qKzqToyI/ADAJwD81BhzLYA1sJOyZtvnIIDnAvicMeY6APef4+leBaAfwE2woetuAvAvInIDgC8BuNaV4UWwSYOi6wEb1s9P4porxpgLnMsSInIvgBcCuNwYcyus+/K17qcfAfDfsK7N2wAMAHhjO+dS2kPtUO1wuVEbVBtcCagdqh0uN2qDURt8C4AjVM6rAXyynXMtF6s62aUx5gIAF4rIB93frwHwcBF5zvKWTLkvoXaoLDdqg8pKQO1QWW7UBlcXqz3E8u0A3mCM+QtYd+EuAH+xvEVS7oOoHSrLjdqgshJQO1SWG7XBVcSq9sQoiqIoiqIoirL6WFWeGGPMOwFcJSLfMcZ8F8BzReSQMeYuABeLyLWLcM5LAWwUkVe2sc9jAXzYxRSfue0/AVwuIp9pcYw/APAOAN2wGsYXi8hI5HfvAfCHsHpHABDvNjXG/BI2O3DJbfuciLzLGPNXsFErVnym2pWI2mGzHdLvnwHg30VkKLLtfQBOE5GnuL/VDueJ2mC0LXwebP6GOqwG/lW+HowxF8HOQ+iGzQHxAhE5rDZ4fKgdxttCN4H/MrhEim7detgEhOcCGAdwmYh8yG37DwBvE5Hb5npNikVtcO5toQs+8EEAvwsbpe0bAC4VkZr7lvyGiPzPXK9pKVg1E/uNMY8AcKaIfMetesJylmcxMcZsgm0ALxIRA+AOAO/M+PmFAP7Ih/ijDkw/bFbac2jbu9w+Hwbw18aYrYt7JasPtcNMO4SxUVHejUi7Y4x5NoDnzVitdjgP1AabbdAYYwC8C8CTXKjTtwG4wm27ANbWLnIfELcj5OlQG5wnaofxttAYcwZs5vZnz9j0PtgPxzMBPALA7xtjnuK2vRnAZ1znR5kjaoPttYWwAzn3g530fz5sSOaXu21vBfAhY6OXrRhWkyfmUtgXDowxl7l1VxljnuyWX2KM+RiAzQA+KyL/1/V8PwA76tEPm4joiQDeBKALtof6NyLyU2PMgwB8CkAPbAztT4rIR9yxH2SMuQr2hh+A7TTsM8ac5cq0AbbH+56ZI3rGmBMB/BuAE2FHADfTtrcCNlPrjGt9IoBfiMiv3d8fBXCDMeYVYpM3+f27YbPE/o0x5oEAdsJGwNjlrnUMwDeNMSfARkd5o4hMikjVGPMlAG+Ai4yhzJlLoXaYskN3jD7Y/AevAfD5GdvOAPB62Eby9/x6tcN5cynUBmfa4DSAPxORfe7vawFsNcZ0wXaePyUid1H9bXDnUxucP5dC7bCpLQTwCtiPzV0z1p8Pm0OkCqBqjPkmgIsB/KeI3GGMOQrgaQhhcZXWXAq1wXbawvMBfEFEpty5vgrrsfmwiBwzxvwEdv7QQuWuOW5WhSfGGLMWwKNg42BDRF7oNj1ORHa75SkRuQDWIF9rjNnu1p8N4I9F5BwAJwP4JwBPFpHzYG/WFc5r8TpYV9r5sBlfH22M8fX3AADPFpEHARgG8GfGmAJsTPAPichDAPw+gH8yxsxMYvWvAH4mImfBhuN7kN8gIm+OGCoAbAewm/7eA2AIwOCM350I4AcA/g7WRf0zAF9zozmDAK6CbSQf6q79HbTvNwA8K3JuJQO1w0w7BGyG44/Duri5zgYAfBY27v5oZD+1wzZQG4zboIjcJSLfdHWUwGak/rrY5IKnAygYY75mjLnBlYNtUW2wTdQOs9tCEXmliHw2coxrADzfGFN07eJFSCcnVDtsA7XBebWF1wB4jjFmwHVqnosVboOrohMD4FQA+9xNyOLzACAi+2F7xb5nu1tE7nbLT4C9Yd83Nrb25wDU3PGvBPB6Y8wVsDfxVWKzqwLA98TGEQeAG9yxTwfQIyJXuPPuBfAVAE+aUa7HA/iM+81O2E5HK7LuWyrzrIjcKSJPFksdVsrzQACniMjXReT5YrMET8E+pM+k3X8D4GRjTM8cyqNY1A4tKTs0xrwcQEVEPh357adgG/QdGcdSO2wPtUHLzCzcABoy2i+56/gzt7oI4KkAXgLrud4Pm0fCozbYPmqHlqgdZvBa2JH562Gv7XsI81UBa4emjePd11EbtLTTFv4zgJsB/BRWnXM1VrgNrpZOTA1AvsVvyrRch3X9AVZS5ckD+L6EOSLnwmpTd4jIfwI4DfamnwfgJifRyjp2rG5zsC9MhssCAJUW1wFYNzT3jrfBTj4d5x8ZYx5ijHn+jH0TAGVjzFONMY+euZ7+zruy1aDMFbXDiB3Celke6l4A3wLQa4z5lTHmZNiRsle7bW8F8ChjzLdoX7XD9lAbjNsgnL1dDftSf5yIHHWb9gL4jojsdx8glwHgkVG1wfZRO8yww1kYAvB6ETlbRJ4AW4c7aXse7XWK7uuoDbbfFq6Hlbc9WEQeDeAQVrgNrpZOzB0ANs8YKaui2TBa8QMAT3Q6Rzjd5I0AeowxnwfwHBH5AuxEpxFY910WAqBkjHmWO9aJsO7h78343X/BxSh3hvW4OZTzuwAeYexEaQB4KeI62RqADxpjfHbZlwG4UUT2ADgJwLuNMb3GmDzsXIUv0r4PAHBni1EMJY3aYcQOReRh7sV8LqzLfdK9DHaJyIn0YngzgB+JyJNpd7XD9lAbjNigsZGffgjgChH5IxGZpM2XA/gDY8wG9/ezAPyCtqsNto/aYftzV14KO5ADY8wWAH+O9PzBBwDQ6GRzR22w/bbwaQA+boxJnKTxNbCeJ8+Ks8FV0YlxvcgfIX2jrwDwY2NMU7i6WY5zM6zhfMFpo/8RwNNcT/YfAfyJW38NrBvxh7McqwzgGQD+yhhzI6xr7q0ictWMn74CwJnGmFthpTW/8huMMW81bhLXjGPfC+CFAC53+z0Y1hUNY8wFblQbTqLzlwC+4X73TAB/7A7zcVf+62CNcgyuAXU8CcCXZ6kuZQZqh3E7PE7UDttAbTDTBl8Gq21/pvMC+v82iMg3ALwfwA+NMbfARnTk5Hdqg22idjivtvAdAE4yxuyA/XC+VES4M6122AZqg+23hQA+DeAggB2wE/6/JCKX02lWnA2ummSXxpgLAfxfEfmD5S5Lp+M8M9cBeKKIHFju8nQSaocLh9rh/FAbXDjUBueP2uHC4SRKnwPwSGmOdqZkoDa4cBhj1gD4CYALxEUvWwmsCk8MAIjI1QDEGDNzgpTSPq8C8H59abeP2uGConY4D9QGFxS1wXmidrigvA02LK52YNpAbXBB+QcAf72SOjDAKvLEKIqiKIqiKIpy32DVeGIURVEURVEURblvUJjPTsYm8/kIgHMQsn/unH0vRVlY1A6V5UZtUFkJqB0qKwG1Q2Wpma8n5hmwCXseCeBvAbxn4YqkKHNG7VBZbtQGlZWA2qGyElA7VJaUeXliAPwObBxriMjPjDEXzPbjB512Rj1fT+cc4pk4tXrIIVap2zw6lVqNfjv3eTtJG2ujWxNeDH8kSRI5UtK0xGWt0Xwjv56nIPGx/PH5vElGWfKJ7Xvm6Ac56o/m3fouWtdF+xcjZUjdD1r262tUljL9etr9ulQP+Y8qtbBci9w7vu58EYdEZFPTj+ZGW3b48Ic9tH7iVpeQt2RDo9fHRhrbywenG8uHa/bRGK+HHFNlusZqvdk+s6aXhdvEV95sJ2w7fL/5PheSfOrfmdTc/eDype0wskTljj1rqXW8OfJYJS2etdRxY89Hxm+bn7T085Fzz0SR6qUrCc1bL693J+HGb29+Yr522JYNAsCZp59Z767bVAVr67bcPUmwrXo9XNi0e4Yn6FonyCanadk/d/Xo/W7+yxK3ydiaWNuXtLjdrewhF2n37HGb9+M1xci97ad668uFeil022ehTo1YaSrYw0QS2smpxF5xiVrBErVnvg2o1vl+ZdV3exQKCX6z89dzf4DStGWHDzz1tHql0l5pswrW6ijzeSdn/TJH9yqfc+/BjGP5d0+qrW4xBzirrWt1jd6O81S+Yi7YaE/DRsP2XipLIR/syV0W6BMI5Wqw10l3rsmE3sNkjyXXJqTew6n31ez0dOeX7J186qmnN+zQP/Lpd1+or0Lju4dsAPH2w8P3s0rPtLeJrPbNr8+yF77Pvjzp/cN+lXrzOzl23My2MvIdmP72a/5W4O/Bbnr3Dbo2ktvHfIG+RaiNLJftfuO5sG6c6nCyZnN5lmvhWO3YWSvmaofz7cQMAThGf1eNMQURiWYVzdfz2Di5NbWOPwhHqyHXzkhpFAAwPBkSppaqnPi0mVgHgNfnWrxpYw0jABRz4eYX3PoCrUsZsjsvX9d0JZR7umqrpkotE5e7Kx9uhT8vn6sn39VY7i50AwD68yGHU3+uu7G8LmfXn5jrbaw7pRbyO22ml5fv0JSpiqapXH79BPns9tEDsLNmk8HuLg831h129xAAJishP5x/sLnehrZU78b8acsOT9y6GV/61AftD3fvAADUfvTtxvbdH7mrsfzZ0noAwC9qRxrr9paONpanKsFmp5198kuDKbp7y9fNDdqUq6NSlRoW+m1/V7jPm7qGAADriwPht2TzozXbERupTDTW8fMTBgkyOp3U8lQjjS/br3+ukowGNYm82Llxn6Lno+yuPWvAwj+jfKxCPjwffQVbx5t6Bhvr7te1sbF8Zm6osXyK+yBYVw3n+oeha+drh23ZIAB014s4o/QAAMAzSvYZfVA3daYr4bp+U+0HAFzfFcp6fS3Y4c7JEDTr6LR97rheaxmdWQ+3jY3OdKRzCaTbVt82cXsZ63hkfWD6/bqp3evOhzaKO+m+DF30Ubi1a11j+eyCfVYfPh32OW8wPLcbT7JtVHkslPXOX69vLF9X7GssS97W3a5aSHK9uxTattFpe6uPlUK7Nh2p7/kEzDlpW1/rH2XTlh1WKnXsuWcitqmJMIAXv5etBhnn805m+P3cXwzvuSHXLvYVepv2AYCxig2iNFYObXX6g6vZ3nnQjdu6eouBpu6Ctd011FZv7Ak2dkbR5lE9vxrKenY5BHnasibYW3eXLeP0VLD3PWOhXdvRZb8Fbs6F/XdWw63fNXUIAHBkKryHJ8phgI7bhJnXBwCnPmBwyd7JlUod+/fbsvk2hduBvmJY7nHP6VA+PCeD+WAPBTR/j5UoufwwvROPNZbDdeci72d+d3L71l0I93kwb+8pD5pN1kL7cLhs78Mo2WG1FmuLm1Y1nde3gX2FcN3dOfo2zNn6GqJvwwfm1zSWH1uyv+X2cXAo2NHUeKjvPcP2nXltdzjWNQg2tWNqHwDgwEQ41ngpHCtmZ+0wVzucbydmBMAg/Z2b7aWdQ4Iu91Kq+tER6tHx6Km/Cb3FcGNSvdrIh2LKS8Ev1Uijm/rgcsvcWeDOBL80Gy/tZPbjsxujnGRWSer8zcu5pvP30IPtOy9DuWBcPUnzqE831ws9M6whLDQar/Bbru965BrZNP2xYp4iIN0RDOvY7CabtrdBW3aIShm1w3sAAPVD9wAAagcONTYfGw316cwQA0mwwwFqGCrUWfXXXsvxBz69eF2D00cdTbb/Udch8i9dIP1MbOoOjdD9ivbjbVPCxwr363DOvhC6yR7G6GXnR+mmqHGeqoYGt0Qv+Wq1+YOMl6t1P4IW7j0/nf5ZzPpIaNXIxbxRsQ9lPtYkXctwLdjWbmrop939GMovSFyT9mwQdmTusCvbL91Hz+HK2uhvD7nOywGEjxD2vnC74Z87bgNTDyvaf6lkta2+A8nPd6w9zPpYjd3HrJFKbzPcCRuuhg+SO929rXb3N9btn9zQWN5+vX1mirT/vYVQ7t25YLUH69Pu+MF2xquh7v3zkdVJWcZon23bYbu0o4jIIjfHDhHf64TOW44MvnCblTVg4ol15FPl4/cgt2tzvK9swxNkN4cLdvkAfXSfWKF3y0TzQG2lEm+f/MBjH70jYu+psXxo97MHrdzB5uv/a6YtO0ySMMjXW7DX0E8dhHXF8ExvKNiBuw350BHsp0/YAl2EbzPG+Y0U+dqdrsUHyKfqZVe++HcN26+/52U6F38f+DrOaktbEfu24rKkyuXKy8qYg/VgBzd22UqojYUO9uZj4fZM0tfhHV3Wvm5Lwv77K8G54N+1yx3heL5v8Z8AeDIAGGMeAeCmBSuRoswdtUNluVEbVFYCaofKSkDtUFlS5uuJuRLAE4wxV8P24V84249zSYJBN1o25XqI3Huq0gi2H7WO9WSBtOvej7RkycGiZaFerfe6sPuSZVv97KqMeBRio4U8EszSMi8VqpGONauX78vFIxIsH9qSt8v9Sfz2FV3tJqQRz5KLxVyY+chyjjrbeTqu97D15EId9lIdxkYR+LdTx+eJacsOUZ5Cbe+vAQB1sXKy8Z8ebGzeVdvWWPZjEz002tVLo/mTuXCfY7AcZl3Bjiaty8dlD8POQ3MsF0aXu6mOvPcFAExij7WxRq5vuof7E7tfF400H6VyTzg39xiNrvDoIY90evuOze3i9VmSIT/wX49IlmYue7LmRcRGblnuMQU3ckYue95nikbc9jfc//F5RW3Sng3CChh8nR9y5c7nWZIXOObmyoxFZDBA2s78iGY1w8NVrzZLYlrB9yDlsXbeVF4Xk6ZleWJqEdvKkmP631Ro3tCxcnhW8q7Gpgqhjg6Sl3pnj7X/DfXQXibklRqj4447D+VYNTwfPKJeisiCl3sk0tG2Hc6VqH6/DTlYO7+NwfbMNuLftVnv0ZjMt517lWp//HLG7g35ET2nIyQ53p+3Mpx1JIfbWAzvg75SsNfqmJfcheOzIsIrS/tofs0gtfFrClZuNdkV3lH8HE5XWf7YPG/oOGnz2zCHXveuGnT1sZa8LxsL4bvnhJxdvwXhWvuotWRFwqRbLpI9cMNaKLi5hvVQF+xx9XKwrHrh++zhdpW3ewljav5fZCpClpQxptLhdp+X/bEqVO7D5FW+3b1nJrqC7a2ndpHnOx+AbQP31kJby+/RmJKJv7/rtWa55mIwr06MiNQAvHSBy6IobaF2qCw3aoPKSkDtUFkJqB0qS40mu1QURVEURVEUpaOYr5ysLfJIsNZNPJtwrvvJenySVCwsIi+3I1mIwa4vL3saJLcuR77gCA99EekWOxq9dGw0H1ySqWhUzj1Yq4TtLMMpUkCBNS4Kx9ZimNDNESa2O3cqu/4OURCBiquXMknXxqi0BXL5eWkZh13mK/V7cQ1zwAA/sW4NyTf4AKVc86RLlpPtRYhssdjUJydQv/k6AMDkf98MALjtlhDBb38Xu6bt/eymfj4HT2BpWeP45DZlOVif++1AEtbxva95rR7VWy/tv5Xqdrub7Lm5QlGnqAx9zjWfI+laD9n8sHM9s9QxFnzBHtdLfuLRyRrreBJuSgJWbyofk3qWW2yPSVK4vitVL7uKT2Ydp6AJB50UKhVt5rgCQ7VHgiAB8KF8R0nSxNHmvPyWpRLcrrB007eTHBRigtobXwO+rnifLHJZcrJIxL00rr3LmgCPZqkBB+yJSRjT0dGCrMFHt2Q5xiRtH3fPT4miNa5HeL4YX88sm2D5jbeprHrzNrVCJGaLRj3zmW8OwBGbeBx7j9sDNy2kzsURHD1Z0pvGhOsMOVk70fT8cbMm+PsypOTu9eZndhcFdxkshAY/10XtfdmHY6Yw3/y+cIvcTvSSCHzQnWOqEGRZKWltrjmQS5aUc7HJIWm0YX1Ovs+RVvvpnTno3r/rSErdR9L2Kb51fplSe3SRHa51UwhGKUjKHtrdRxSbzoiMy9813mayZI/evtPfns2RGHkKRQnh+LG2hNt4/p7ydsbvd46Uttdd71g+rOM6Znwofw4kw8+yv1+TBYrUGGkrFxv1xCiKoiiKoiiK0lFoJ0ZRFEVRFEVRlI5iyeRkQz5qUiNDNUe6aY5ww641zmlRoZj+3oWbFZHMu+FiyYKAEImMk0ZyBKlNJD9Y41yZHBGkh/uA7hTDlHl3F0nT7nDn3TcZEqdx4i2WH20q2iRDZxRCVKrzymH7Gpe/Y3cxnP8IRTeadK7IMsuASAo1RaHGelzBe8kt20PLMQNhOZl38ZZJ8sQZYssUec5HCmFZ1t7I8ReL+ugkpn5gZWS3XGNlZDuKodyHqV58qYspOVk8G3zZSYHqSVzy4+UwfD84aoq3eY6W1Usu3gGyuT6nuRnkXCEcMqdSdGUKx6qR9K2UNEuO0hHDmqMutZIEMbHoYixXY8kPa8iS2LHakIk2MjDX4tfCCSBj8tNtaJYHLha5JGk8A74k6WeVogpG6oXtZIjaKy9x5GhauYjca4qWkxrLepwELFXWeD6CWL4CllOE6GNx2VUj0WAk2h0Qj/zI52JZkZd2JJRLh98fnv5cszTFliHg8zfx/jFpSKYUsjntViadLDlLIhGTgCCZ4XxrMRtJXztLx5vrpJ4hLfPSLb4/mVnPW1xD4/gtoum1KleJEujGJIf76fuD3wFTuRCF63C3lelsrtJv6fQ+Zyu3DVyWYiRiaCk/e/uWLuvS2WWSJI3osI2Ih9S+5SPj7CyjG6Bi99H6vkjY1WLksvaSnR5OmqXInKw7S7boyWq//PdpKs9W0hzpMUffXWzT/G6IReQdIPmdr5sxhHJP1EO7OOGSYXP0xe6IHM0ey0dCo8i51G76/bL298/iQuSXmg31xCiKoiiKoiiK0lEsiSeG8Vlme2giGk+e9n1Rnpg5movnfogRGwmOZbXmZR6V7qMR8DXU6zyhZpe30bzCbZQTZqhgy1uqhuP/JjfUWP5pjx0x/RmVb//00Wi5/EjrIE1K66MRZv/LKRr5H6eR+ZF682S0MdrOnhLvTeqiUYIBOu+g295NowR56lj7OO0lqivOnMuLPY17vzx958mxAm756UYAwM9dpvT9NKG6mvDor4VWRUeFgDDSkJrIRj8d9xPraF2evCvlyORthqeylp0tT9HBunkUzo0A9fEIFY1K+ZEajiPPo86x0fRW8DPHz5r3wGTlEuH8UH7ybavR6VZl4lGf9MTCVqO1S+iJQYJB1874ti9ronMtYhPsyeyPBIsYpZG5WsrTYeub7wfXUSMHCtlAaoI2tRF+fatcPlk5htrB2wTbKdeXzxeSyjkT8cT0kUeS27sSeQJGnRcrlkuDSdt8WF+LbM+ihphXYuWSlY+N86z1uTwofQWyQbo+rz7gPBqpUWfv1a6y3YYy1CP2xN7XWHlzGTYaq/dKVsCGFvczXCOVj8rl1STDpZDxnJ+H8WL4ljiatwnvtxWCl3UdvZOnnN0cozcDv9+n3DI/+1kBC2Lty1KSQ4IeN0Hce5K5fWNvVbGhGgn7r6uG+8XqhMG8re81A8Hj0NMXnumJMXuuX04EtcsNlFvNv5PL5PGNBbVph1RuqTbqvRYJcpXKd5jyXDXnM+JJ/uMu0EstFSyL1Cb0LHsPCwcxKi5MbrUFRT0xiqIoiqIoiqJ0FNqJURRFURRFURSlo1gSOVkFdRyuW3fpJpcvhicr80TxitPvHCG3VZZcxS9nbW/IySISM/5tMTWhOiyvr4fq8TIyg/HGulPODpP0e8+wMdmTweACPnP3vsay+YGVlnX1bBVi3e8AACAASURBVG+su5rzOdTC5KtJl6Ngby6s6+sKE9B7Xd3tI8ndQZqoNeKOxS7L1EQyWvYT13ldP7lzJ5xcZR0iLkuEyYXT5J7kCYdF+q3fj6VpS8l4LoerXT3+JnGyEZKSdNebZY0sNZkid3WJlqfd/WKJBM/2nXDnGmXJXa7ZvtlOCzS+cJhiut/tZBpjNEGUpWN+rwkanijR/fB5R9jeWDoTy6mQNYm5UW6WkNFEye6Cc0fTpNIsKZOXW3Cwi5j7nuJXpGRPXrpRJ9vKmhC82BMNW2EDndh68s8fN8TTpGHMuWvkZ47loP2R55KfrmMc1KFgbb87Qz7o7aCVPfByVl16KSHLjmLynaygEnxefwr+LU/s9+srFFQlFQSg1pxbZIzyefH2I2Ur95kkqXBskm46vw3lHvE5bSLvmZm/9ameapmZlFYGXm6SynNRDHaVyrPmcpwNULActjGfs4Lrl6V/3vYmKEgDU4nYY1bul8b6FgFCsoJLMJF54vFj0f6p/FlOzjqZ0ERxqhfO5zRatPL50a61jXUcZMhLwFhCPkbtuZcvc34QtvGYlC/d1i7d+7mQ5LHO5bMZcjLYoSTY1gZa3lyz9reGpIZrSDp/4pog1dt6gf0e6rrwzHCydUE6VttxKwDg8GWcty8QC2qT9T4J0xYygqDkmmWNbMf+t61yT/F5+ZlhuVjV3Ttel3q+3LcKy+RykSBEQPy7pET5CP0zPEXPcup9sUTvWfXEKIqiKIqiKIrSUWgnRlEURVEURVGUjmJJ5GQ11DHi5GTePdhHso8aucsmnFSC41HnI3HoeX1sXer8LAeg7T76wgC7LGn5xHIo1zYXtWbD5omw/3aKj/2g+wMAkpPv31iX+60g8Tpjyy8AAH/8/4L7sti1rbH863pwhXpXILuL70zIve6KdW81RG07UBltLLMb2cP5cVha1u3qmeVkU1T3JRdBqgyOBR7q5ahz5x6uhWudpnLHcp/0LFOEiwnUcFNi6+yoc79z9BOOiuKvkO/BcC3U97FKsAOfl6OUIYXKRSI5sYQxF8m5wfeQ6/Ogy8czRDKhQbq3A+64CT1fRxFc7ofdNYxWwrVkxcKfWT4AKHCkM7eec0JwVCIvMxmkXCacu2CCrnHYyXjGKsGOWkVz4e2NaFkUhayyDK7tuZBDgj4XbWjAjSPxEzFFZfUR8ziKEEf/6+J8Q249SxG5HfWyvqxoWJM5ez/YTmvl0O7UUlKZ5khnA/lw733bmsqXxFGqXBvn5Q1AWsbGucE8LCHje+vtoJSSSPA7xV4DS3ay8tv4Y6Qj2wViUdn4jdPIL8XvJJLUsc028vIsg2kmaM4hFJOSAKH8Xh4KAENdIQfa+mLIcbLeSYM4zxVHXfQy3KlCXN7k272juSDbPjodlucb4Wk2siLNHfdxIzK2lLSO2t1pymPlZTr8DhimOvbvDq43fo6m3HJWrqOUtCwSkTDdGi0uhSSHjTlrS/7bcDN9a2yrBBvdWrbX0E9tfFcSyl0ohvWF07cCAPKPf3ZjXW7DSY3lcv6zAICh7l821vXQ57D/XuJ2opYRtdG3gT2F8E7uLXAkxELTPrHvVP4uS0g3XeTcQu5cfKwxshP/THCuMG5LvYyM28qsnE4xmRvLQP27eqwc3tksU1uqqIvqiVEURVEURVEUpaPQToyiKIqiKIqiKB3FksjJEiTodbKGIRcBak2Nkt6R13XUua5ZcsTRjdi15d1dfSRjYLmK/y27ZTnSwpq8dWNuywXX+GmVUCUnk4t3wCVPylHkoPoUyVWmpty1BpK1G0NZz7FRMs44FtyXF38r/Pbq/JrG8u68dcmNkoxoglyow04KdS9JyI6Wg8vdR3hilyPLybq5jrxcjOq7TC7aihNIjJMkieUBR52kbaQa5FV8j1LSNXfeVMKkEMRm0ZmuV7GzfARAkBD0UV1MceJLd90jFPXtaCXUMcuevAwmJnEBghSoVZQ8ljWMkARlOBekhj6xHNs8y7XWueVBkptNkh0dc/eJpTtZbl8vI8mSc3qXOUcnWlcIsofNbnlTQs8n3XsfsRAA7oqMp7DsoREthpNZ0v3ydVjKiKxTIbVELSMKzFJRRx1T7hnz7eEQtYcDLG9xz22RI9ukov+RVMlHxqJzsVzSP4upaExoltrGIusAaTvxdrixKyT03VYMbdjmxD7YbPPHqA0ZdvLTYZJljiZB4sj4+8XPV6XGkYLmdj9ZvpNrEbEqJqcCwvWkpEKRQ7GcjH97vAnzFo4k9SwD2XKyQt7+jiUyg5SIcVNxsLG8wUXR6iK7ZBvzNlpmiUqO2idnFyyFmqL7lpKrNCISLpxsZabEbjbS5509Kp1fnxXVrpJKCGqvne2dZTz+PZqV2NdLNbPeR6moju68yyYnQ4JNLirZyTV7XaeWwnXdvxC+cYY2WNuo0Qfj+ESwyalJ+q65414AQH73rY119anw/q7fdRcAYHSaJGDd4bg+yp6PFAcA1VKzRBwA+ou2rdvYE9rCLV2hLfSS/RLZdEzyz99K/B0bS/45Tccapm+vcfe9wvbC0cNaJTTmb0P/jcERQzn6mH8uU8/kcUo8YxLMVqgnRlEURVEURVGUjmJJPDE9yOFU2J7tdjdRa5BG0krU+RpzPU2OFe49JsCM3qqbPLgl399Yt57286M+R2jEt0Ix+Te60cIHV8NI8Vk04bmvq3lyablEeS6OhclThRE7Wl6fCKPmSU8od7J2g/3dOac21p1+9Jaw/89CuW6ftiPYdxfDue6i+PL76nZEgSdn80QuPwLDo2nVPE8obY59XqceOI+clavNE1w5R4o/L08sTBGZ9VpLlmc0slQr464JO0LT47x7/TQRnSdB+9EsrtdUboPIKBePdmXl1/DERuz4vvBIz3RCkz7d5OvJQijLJOWRmS7a347lgouLR0diOTOyRg9j8Ki0r0P2vpxQCKOyJ7lR2ZNqwbYGyJz254N9TxfshphtAWFkNlWv5BWtuWWepMikYvwvwghuO5RQw66afYZrzgtcpInQG2ik0eeEWkP1PkbXPU3XNeGeK/Z+xCbWt8ofwbbNbQjXrZ/MbbqCt/mCWmiHT3ajlhM0U/oOyi1yu1tfotwufO+5vfLPYtbEfZ+PIyuPQ+xaeDJ9EvGQFqi++br9JNtWk2H5mOxVqEdG3BPXMC5l9qxckjRyvdQi+VYY/8yzN5/zwGwmJcNW2PaU84PxfSk72x0jZcG99E6uRLxq7B3hZV9v86242Kgvt2/FSMCgdJ4f8n645aw6DB6PeN6R1Du55nOUkPeE3i3eg5aVf8iPsmflHWmVr2kpKSLBCXXb9p3mPDBnDYX8e5tM8J7k++11T95Dec92hXZz/3hof0a/Z+3wfju/2FjXvSnUx+7rrafkGvIkT1IOQG/rPKmePZf8/K/rtm3hyd0bGutOyYf34Br3XcFt9THKb+M965zz6wSEtvKEKnnT3SVIMbSFv6BvrwOVowCAcZpszxP7K5HvuSybjXmdY6qM6DOJ1l6Z9HdHswpgrqgnRlEURVEURVGUjmJOnhhjzMMB/LOIPNYYcyqAz8CKQHcAeIWIrBShr7KKUTtUVgJqh8pyozaorATUDpXlpmUnxhjzegDPBxq+tvcCeJOI/I8x5mMAng7gytmO0VMHznA5VwadOyvHMghy4fY15BOhaEO5IPlh19GAW7+FpDPbauTmd+6wUZKY8RO13bnpzqccLSeccqyxXJoIx5oYt8fIkcwh4drz10DXAnaNFZ3bsz+4PAv3C5O/TjwQzpvc5aQxpSDTmegObtM7I/G7U/HzI5P12plwVSW5V0weUYsEV+DgC0mGnKUxcXgeDsCFsMNKrYbhKSvB867QkXyoV3YRe1dnVl6CekQWUGtRxyxViLlNkyR+/Bgp6VoSXMs+4ECJJsumJEWujLH7AgAVknkEiUGzbfF+3fSs9tFDMehyoawjD/baKj+B4bwH3CTCYxSkgOvbS/nKaHaHM7H4/UD8WZnPJMSFsMNSvYo9Zev2rxVsGYokPxikNmyLi0iwgfY/mg/1di/NwR139jOVmkAapARjbtLnOAWlYDlZLSLL4me5h57xDU5C+ECE+3VOKcj/tm8YARDaTQAolIJ0Y7Tb3u9xstNyPkN2lXNSwjzJzeh+tpJDtSIml+C2wE/cBYA1bsIvB9PopSAa/p3DwU9GKJ9XOu/EzHLPTRe1EDaYSxJ0z5BexmTGtlReYheMrZ+u+SSE9/NpFfubbr5/dM1H3eJdZLdTPFnYSR1ZNsqyKW5DK7XmyfIxaWBWkAa/ne8J3/dufjfkmj+VUnlaIsFdyhHJcdbE/tj7hNv4SZLEN97JbciAszieZ2ch7LCrDmyv2LKfUrDfYevvF2RdhU3BtupTLsfJWDCevVPhe+qW7nCPjrn30OCekItvYFc47273HSf1kca6feUQRMC/R1PfOmQ7HORibdGWYR19h66nXDcba/6ZCOcvJyzftwzRq3FbOdjW5nyYuF+q+e8Wzr0Wrtvfx1huGCDY1MygHo39I0FfeApHPwUUakxFINsJdy6cNzNgSESe11cMx0eLd71nLl+TvwHwLPr7fAA/dMvfBvD4OZ1JUY4PtUNlJaB2qCw3aoPKSkDtUFl2WnZiROQrAHjWdiIivms1CmBN816KsrCoHSorAbVDZblRG1RWAmqHykpgPtHJWA8yCOBoqx1ydWCg6iPneOkNRZfh5aT5JFk9LR93e5zzYJBruM/t2UXHH6B8DNudy27TicGN2HtiOHPXeJBHdI/a3xb6g4uruD24MnMb1wMAkt6wLsW0O9ZUkHKgEo6V7wnnHei3ruONw8GFvK4WXJU+bjhHT+Hlkg+9k+Gu5ig/MXrI05iLSAk4ilefd8nTXcqKmuJh9/2xpq1zpm07rKPecPd7tyrXRcy9mZXvISVBcddeYzkYLSfODc3H4nN5F2sqGg3HcY+4YLPK1YgwRZIi3t/fmyypYUziwBUdi4JTS8k5At3ur66M7fxcd3sZD9kWL5ecZI5tJyMeXpT5xJ+fI23bYbVea+R18q56zuuzkaK2rXXtVU8tLvfgSGUH6raNuacSJBKHymHZSyQq84icB6RtzudXGqhTJLVcOG5Pfzn1LwA88B6KRle2crQuima3u0CRhkhu4cvDNh2Tk6VyAaVuiztORp6mmJyIZQ0+EhsAbHX5H7ZQRK7BpPk1yjm+DtP2XEQylmvImpo2zZW2bTBBkpJLATOkTtQm+DJzDgmWeJ9cDff1IbCSoIGB8O6coPwde0r2/Xikh+SskfsSy7EyE/+ben32+1rIx9+TfnuRJWR0jQOF8M71OTP4PVeJ5P3giIoTlbDs5WalSJ4bIB21zNtppny53pyTJpbbKSvSU0r2vLBRydq2w656HSe7euodtHU0fZSihI5StMoR20buPhxkqSwhuz0J9e1zUnXx9yDZgY9Yu6cSvkCGy2FagW8ruZ1h22FpLed08UxTu1x2dTxEdrqpErb3uW+RIufsouVhip57zJVhmCT/5UhOulReoIgkPktKHXu/c14/vm4fuY2fmZ4CRcwt2/vBsksuC0s3B7usPG5DV3gfTOJwtIwzmU90suuNMY91y78P4EfzOIaiHC9qh8pKQO1QWW7UBpWVgNqhsuTMxxPzWgCfMMZ0AbgVwOVz2anic2G4UYYyDa6M0BDUMdfDTGWrp+WpjOXGulzo6fW6uNvd1BtfT5Og1rue+aGDYaSt0B1GLns2hZGW/lPd6Ma29Y11ue0nNpaTk+7nfkgeVB51KdmefZ08MfXJMEpZnaIJn37CYsZEzy5/XZxtPheO1WqCeWwSYC7iWeBz8OTVWAbZLrBnIVCNlIVHI++ZtaSzMi879KNYfiQilc+BxpH8aFYRce8J40cX8lmemEbuCfL0kB1Gszln3EM/KpLLmJjvR09Sox+RDM08IpiV06YxWsMDd2geqZmimPclzvngfluh8o3TsMmxXDjWmBvVrCLugYpmk+frTnxW97g3axEzpbdth7V6rRGowHtk7qWR7SGecO1yeXTXw7XyKNzdCCNfu8p2VPFAKQyAjpbDdvbAeLgOYxOh2Wa5vfGj59P0sB+thTZivRs17RsK3uQNG8IE1QcP23u/fip4NDZ1heXbaNTU21xWvpW5Tk6OXSuQnrDrRwd5FH5tIXjXvQfmFNAkXsrj4N9rhxJuN6iSIm/cRrlyE80b58ZxtYWNHA1UD7GcVTzi3E+esnXV8NuNW+xodt+G0Cb00cj69F67vLkW7vUGmhA95nJesa1ynqyYJzYzj4WzIW5reUK290RxUJq+1HMYyuU9T/zu4zbaB9MYqQVvwJFKGNn3zznn75isNGdtB6juM9rd2Lsr6oGiZzczp0zSHHDgOJiXHfpvwv2j9jnbOxq+x1ilM+2+S+4thOvaTYFBDtSobt07ib9LxumZHHfbuU1h/Hu2kqGe4PxyM48JAEfq1G4m9rdDdP4+eh+dVLTPfbEQynJgMrQ5txfDs7bLBT+5ox7aiqOVMJ0+prKJeV3YBvj9z55Eb0d9NJl/kJ6JPtcGFItrw7GoPkfds3CIAiZwbkO2ucGC9cRspJxzu+foiZlTJ0ZE7gLwCLd8O4DHzOnoirKAqB0qKwG1Q2W5URtUVgJqh8pyo8kuFUVRFEVRFEXpKOYjJ2ubWgKUGlIFyxS52FlWcthN4B2pBVcr5zpIyWSc9IRdWCwx867fHnLjjZEbvOomb05Ww2SiU+4M7rJTx4cby5tOcBMOWUJ2/1PDRa7bav9lKcgURc12shCwlIsm9tWrJGuq2L7lJLlCeaJYPmmeaNlDkzRb5b/giVrepT5AbsI1heDqH3A5dmISMgDocv3gHuoP8/aYLKpALuIbZy3p8jEf93pWPgPv9s9y/zfkdSlJHx+3WUKVlRfAKztScgyOGT8jsAGQDigQD8QQlyKU3bPILujhfHDpH3D2WSAJB7OPZCL3ulwa4/Tcs6u/MQk3lfulQMtOToasyd/zy5m0GNTqdUxX7LX7e38gF2SsLIkZzVk3Oz9THMjk3mpoY4adfGWMJCv+PEB4FjODVbiyFDMkZN2RCawjJP87SBKw9aO23Ll8qOtiV7g3g27i95YRuq5KaHcOd4VzjeattKKUMbHfL9czJBKN8/Okbno+WSbS52QiXt4AAGupbVzv2sPNJCHbQJN0vZyMJ5PnSaKUp/deoehkP649PkoTkxebOuqNd6m/fpYRp9oq+Mn2vD1Ary6US06GMxnqvzTFsiZbV2tIgraJpMojTlo2TTmBxql9yUXsldV6SSQQBUvIBovhvg6599xQrlk2BgAbk7C8weX94MnZHJDAy6aHKY/c7nyQBN2VsxLPA0mQetYikkj3F/3fEnsfZQXd8JJIDtxQJEldrA7TbeK8ZY1tM55LcK3Lgeevl2IvoYuK1ePqnoOZHCUJF0v5Sq6NnELzu5O3s52zbLTk7K9IObW43jjojG9/Jqgs3SQnm2q0m2HdGgT73uICS3WvC+tKOyjnDd07Lx/eVw0SLX4+/H3ksvJzW4u0lfyO4P38b7jeNlMgllNdbrOTahTwg+7XiLvc2wvrGuvurIb33HA12JlvA3uT5ndMK9QToyiKoiiKoihKR6GdGEVRFEVRFEVROoqlkZPBug2B0Gsao+4TR9vx7sFRkpWkoh+RlMLLTabBcpmw3btQWT51lNyAIy6i1wGKTnIPRWKYvndDY/mRd9s4WoWzKDsFRahIegbdv8ElWecIFuMuHjlFmkCB3PMku/DRyUrk6uRobo24/Rk5NcpJ1f8wHJ+OxdKzwbx1r59QDLHXtybB5T6YsLDJwvEv/Fl7KHpSD7ncC+Re9O734jKqeWZGYGL5QSxPTCrCC9VhTCbHblvOPdCQgGXs3yqaHOrNkbVIjZGSAngZGUcpmSJ3sd8+F7lcI2paJCIZECQ7PtIWAByiiDxVJ604nAv2xDKUY+T+H65Y13IpEnEQoIg7ZI/FHJeleTyGr3ERo5O1jZXyuPtQab4PXN+jeVtH3SQpmK6x1CbIHXxeCpYSsm018v5k3PtYfgmO7MT266MxHSFJ4F5q7wZL9p7nj4Vz9faQHTrJ7Hg1HH+yEH8+vGR1Dcl+pgskvfC5kei6Y7lu+LpYatNfaJbSridpyQaSFa1zMpEBMqe+iG0VuT3Mh+Veer8UXX0n7rrHk7lF41kIavV6Q2bqn+mstq7u1vO7dZKkfYcpuuihYVtvkxOhfkvlcI9Hq3Z9tcAtwdyJ5UNhe2aZYJCghvP3kzRwo5N7baH2aSvC/bl/JUfLLndbd3jeisVQB96eh6fC8Xd0BRsqFN07ndo3bjdZJl9vNO7x59S/u/h+9ZBkbqBoy8AScZZHsjS8EHm/34k7ouddDEbrFXy/dghAuF/dJLviKHhDkXxMw/XwDhmjtnC61pxFrBaJ8MbXz5HpPCzTy2o3/XSGpMbfa81tQjetGiyGe9+3ze6fXxfOP3BnuK7iVIjY5WHpJ7fRXg7L7z5uCytVJyfPyEnH3wqNnHRUR1vpWbmgZM97ft+Rxrr124K8eXrEbr9t78bGup/3bGos354PkcpG3Td+T8QeW6GeGEVRFEVRFEVROool8cSUEmB3wWcldaNONG1tH0Kv9LCL9T1CMb+neMSi3jwCxz3kqUhMeR694YlLR1yv7wBNLDxMcarzPSHny0m32FjYp522K2zfvDlc5Frbw0w4T0xXGAmB79Fzb54m9ie55l5+hSdU03q/Nitnhu+Zp3KcUA+XR2hOLFgPzBlJuO6zSuG8a9zo5giNSPDIm5/U2U3F76Pr6qXlHjdi0cNXE+byLjoJKCdCJDcCj876jN2cQ4C9WamRs1zzBDiOre7vB48U82Q8P2rE26sR70sWKY+DzxNDnphWGdpbHZdLwh4Nf1we9eI48H6k8WASJiEysWeZ4REmP6k8F5lwzNQyvC9Z2a+Xg3o9jIi1KkvJeRy4LvgapyNBT2J5gdqBPYpcb3yukcS2zzy5uUgzrPNd1v6rpfCArx+jvFg+5wN5LPeS2/Ywedd9IIMy4s9ELC9GLGABZ4jmPDCbi6HN3uxG59fSCPB6hOU1brS1m9tuKkvB1dcgPXPspeZ8PyjY4067UdvdSzimWEe90Ub456SSaw6kAQR7GqfAAxxQ4g6aLL+2apfXT4Z2s0Y1NOq8UrvpXt9NOS/2VWxbcawS1nGAD7ZNf7/rGZ6YXCQICo8q+1H+TQhlfRBJHs7vDYF9TnqMbcsKp29DjPoxW+7Sbfc21vVeE3LKDbv8QgfIw3c4F9rFCapbH5wkNZoeyd3k31EAsJa8PuuL9l2+Ph+evbXkZRgAKzi8SiBwZ+T6FovJWhm3jluVi/eYpfL6RHL48D2cJMUO50vx757YuxEIbSirUiby002/ZW9ZLvK+4TJyHqVUTqpGYJ9AQsEJaiWX5+pgOP/IGCt6wm/73b1blw/PHBNTLPRQu+29rxNlCoIQyS0DhPvAgZ5OrYd28+FD1nN84sVBxZN7wFmh3Eesh+aCH/66sa7751tCWbvDNexx5yq38d3TOGfbeyiKoiiKoiiKoiwj2olRFEVRFEVRFKWjWBI52SSquKk+6k5o+00lkgZwfO9jLnY0556YojwX7FoOcpfgbsty+cXwrrdRkiGwxKWfchVsr1mX2Yaf7Gus2zB0Szivk47VpoOcBtPBJV6/eycAoLozyNFKu8Nvp44Ft6mfCFkiN3g1NSmtGXaze/dmetJaOP7GXHAPnpZYt+XDpsJRz9x4qLHcv866U8eHw/5HhsP+0zVb1jzdz+5CuEf9A8Ed29Nn72NXH+VwWLq5rACSJhkZS0w4n8Caor3GwTxPSg/3Y5qCTXjXM+fRWEeu/EGXW4LjyB+oBCnB0bJ1g7PsKyUt45wu7u7XM3MM+HVxt2ySkV8mRkyK1Eq6FvstP59ZEi9PIZUHptn9zxMtuS3wkytTeaTm4ZpeGuoht0mtebJ9LVLHXC9MLB9QrN6AeG6h6D2m+5LOt9Is653KBZueotweE06WNdod5AdbqkHS4p+6eymgyS6ENn9vLbSdo+79MMHBXmrNk6JTQTqS5knqvI4DofSQfMVPLOUJpt0cqMT9y7ksOOdZvp4OYAMAOapjltcOuoMMuJwySzmiWK8H2/H51nhiMsuyis6e2Jb2U76Tm6muql1Wdr2tRlJQqr+jLhiHUC6SO8phYvBw2QYGyQrSwG20b7tTgSwi0jJel5Kwuuvmel9TDc/O5lNDG1189CPtbx9yYWNdvRxssH73rbZMtV811q2XIG9aM2qfB86D0ZWRuyXWLnId+OvmnDcbiiF/xyYnWVuT0PuMztuXkje6oBdtfDctJNVaFUemnDQ115wLjCXePV62Rev43o5RThcvl8p6j/r6nMjRBHqWo7r64LY0l5L315v2S022jzzNHMzqAMlsfbK8iXK4rtvpu+MoBQnwOfb6qf2q0/SAxvlpO78nWX7n4XrJRQIdDZAdbaA2Yu12+wznTj+vsS7Zdv9w4OLd9p/texurNt4cnvt1pfA+OOTufTUjmMVsqCdGURRFURRFUZSOQjsxiqIoiqIoiqJ0FEsiJ6vUa41oJt79x25dlgb4aBAsC8mK2uSlEFkSmVheBHaX+f0K9WY3IgDsy4ecFztcJJCNe0NEsof+b5CWDVavtftv2NlYVzsQtFKTN9pIJ4fuDFHAjo6F+NklKsOYiyp2tBjKMpaEOphwdVOux6PJ9DjX8QBJyDg6ySbKe7DNxbffkg+uby8hA4CuDU7Gsya4ateeHJaTLueO7qVoHH3kJu+jvDhOopVQfhx8PbgaF5sE4Z7HIhr1UCQULyNjWRhbWakefuvd//1U35xrZ617zI4mZNOFYMc+6hNH4WObLafkEs3SjlwkElMuFZEP0d/GzpWSi0WiQcVyxlQi5ePjZuUtYbzkp0q5LItdXQAAIABJREFUX+r55nJNkzub24gpl8fBR/2aeS3LHZGMqSPUU93JOWpJvHy+3CzvYVgK4O9HtmSv+RixtjNLhsd16xknCdh4PrQLIwUXZbIQItdsIdmDj4p0jCWWJCE7TJGGfC4cvt+tZIOpKHaRa+S2c4TyS3gmSELByzX3jFeoLntJLpVvYWac72vK3fOKl4jOvusCU2/KncT1xM+x/x0/m0FMlq7/8S77HN5DUT77SWbr80HsLR9rrPMSMiDc13xEHg0AvTmOemZrjCNIcRvq7zHnt2HJ0XDOyrnvpfxGe4vBRofvDm1/711WBp6sD3ku6iSjrd9hc6uUbg/v/EPDIc/csS733cORIjlXWKR9ysph1u2i2qUjd5FMzX0/FBCXP1WprSnX/fbloY46ylWf56n5HZCVm8XDdpI6rtsv1j66E6d+N5NGhNeMPDH8TmtMd8j4mvY5lfaQIni0J/yRr1sp4CglkjmWBDue5txs7k6x7CqVA9CVm9/z3NZ5O0hFT8v4fvb1NUXf6iNU3RMHrf31794TVo6FZ7m2237bTf06tOXDE+H7ebSLogq765pE8zumFeqJURRFURRFURSlo9BOjKIoiqIoiqIoHcWSyMliZLlS/XJWkqKZLnAg3ROLRfZJn5dc/25PPmaZJD+ccOuunHUz/7InRAEp/HprY/nUQ9bBXuwKEU0OHgoJi3bVTgIAHCYp1TQprVLX4P49RG7VQ/XgXhxz0XpYUsHuQS8j25IjSRNFJ1lT58g9lpEqRR/bF8rdc8y6Srt7w7kGHkCROc69HwAgud/J4QJ6KPJGhSJXTblobKUgQcHXb8Vywq7YVMJQF92jl6J8FFMJ4JqT3a0j2clWSpA35KLBlCmhaRclIuXkXZ4sKVQr97qPXMNR13IZyV49/Jywm9zL2LLO79fHElXy9tgzC6Td2HW/TD9NRYOJXDfLRBqJ+9qIyracErPGuX2xqCgxeV5Sjbv8o8eepzCpcb8Ql2DE7IDPNVEJz7WX7YwWQgTGQ8UgMfJRmkokdRijBMcs+/H2xVF2siJSNeCkh25zmWQRMVkkEKJiFily1BGSwY24yI6jtG59ndoId1i+XdN8Lq4vF3Vo2Ems5hOZ53iY+Uyk7m9qi/2rTCtrdK/T0hr7njpcCO9BjsLl7yHbCte/LxPvw4mDhyhqU+xbgROyVl2ksUrq4Qp25ZNN9pIUa6BASaFHghzs4V+wMrEN138jnJ8iet67034X3D4ekmHe3B3q9zYXje1QJchtJjLq0F9XKkknyZp83fC7q5qysebrrlAdTVK0q8mkeftSUgc9i17a1qLNYfidzdFB68VmGW4syifLTr1MDwD6XTJcrvdpipLLEkZvc6PV0NZxxMNpJ5Han1HFPsFjOhJkIPZ9UEvdW5pu4dbzM8XvZ1/WVlErgfBOPUbXtacQ6mDnPpvMtfe/Q8TdpHB3Y/nYPfZZ3X8kSMhuo3bzHopsech9006rnExRFEVRFEVRlNXOknhiEiSN3qQfaSmSNyAf6UtljZTVk9l75rxfbKSVR5gS3xtPeDuNWFDAgf1uBKVAnpRyT/BY3O0m6RfolIfpj2E3+jGVhN4nl4XjtPtrGKWRw8M0SunzJnBwhF7yAvQ478EgeREGKTZ8kco47U67n0buK2PB2zQwbs8x2BXqondLmNbZtdlOdMw96GGNdcnAunAtk2FErn7sXrswGUajlpQkjDp4O8wahfCw96WPvCc8itntfrOWRmQ31JptepruOE+W8xPvUh5HtvnICC2Xm2PpD3XbkeKBQhjx4BGqWB6l1KhNvXnyNI9A8bIfqeERpJQHCbMH1uDLqkWW+Li5pDmgQSwHQOr4GZ6cVgFBlpImjwxm1GG9uYxc7tgETR6hrbcYcYsFcqjXMoYMiVgQAW47faAF/y8AjNMoeJ+bTJ1PeTfjXjQ/GpqL1AUQ7CDLNmIBXniEdpra5Amf84HKNZKjnDUuYMFEIbSRG3LhWetz7zmuQZ6syqPjU+75Oura83LG9S8GuSSHAZfbzN/DckaeqlBv1CZV4+9Z32aMlcO9zpp83dhO98K3ZbwP5/dJex/SeW5mltsvp9blmoPh3JuMNNZx+zhdDO/3fRPWK7P+2rB9ii5rr1NN7OkO131vLYxgH3R5wQ6XwvswyxPTKAvVAdeRf875eZmm0fayayt5An+WV8bnyhmlABv/n703D7MsKev8v+duuVfWXt3VK9AQKs2OgCs4gorKoMAwzvwAEUcHxWWUUX76wM8NxmVQ5ycuMMiiqKMjY4OOgowLiCAgSyvdNAG9d1V1bVm53sybd50/IuLE9+R9I29mVS73lu/nefrpUyfvOScizhtxzon3G++7l2TI+nJgZcIzCpDzyBSCPtB2eP6lnqnSWMP5Zzg/XGAxi+OAFFRmDvHeNsgjKHlSmDz3W2KxvtR/Cvlr6LdSPjH2TgYPEj8LOPeSmGeJvcfk9XnYe0hn7GE6Pp73fNf9/VQ1lum+Smy3ByiQy0Uf+Kug6ui/BSLqiVEURVEURVEUZaTY1BNjjKkCeDuAmwGMAXg9gM8BeCfcZNMdAF5lrR3W1NjKVYDaoTIMqB0q+43aoDIMqB0qw8IgOdlLAMxZa19qjDkM4Hb/32uttR80xrwZwPMB3LbZSTIANe9SCwuaOS8Cu8u6wsIk3mZ3VyblVihIVPoX/rGbLrjUUgth2b2+1HGur4dYblaOrq9T3rU2Rs6tFv02j+9dCDwgXze4xxuFRa/R9RwWNBcXYvbLeFiiVmWXI10r5C1YLFO7kGwqpIYoN+l+rJK7t+pckdnBGOSgRHKybo18gkGy1uzPyzCAHbFD9PoliKlAEOEecBseoOAIkyTPC3kiZiiHyQQN3XM+ecQCuezr3f6FganFypIciyVkh8bjgukTYwcBAAfJHT6RsZzMnzMWr9i/yI7Comu2vQXK33Fp3ckCOyQdaSf6qoQk/ZTkU8Bg6Vcqj4pUlvxa219IvTN2uINkwuLfQsAE4R6kJJRBVjQofwWfV8phxLSEQBFAzK3AEo6KsHgZAGpkv/nxJAELcrCi1LFfVlRYQN7l8Y6kG96O+Jm0TuUKdeCgEouV/r7GbVwcV3gRujvHqu9fvEB3E3bEBiulMo76ACxBYlKQ/rX6pU4sHSzYmCA/ZHFSNqB9mZAjhG2lTnl8QuAFILYXB4FYozoEe+Byl2ncXoE7riCDJOnNXCWOdXf7PGtjZJd8L9fa/Yu7Vzr9gSq4jRttkpZvY2F9sKdC3qRef3CVKr2LFAJwkLxxyT+Hlrr780wul0q5BFoafzjARpCIHalGKecBWiheeLfz2zWSctUK7eFgWTfbQcXb5yrZw2pGAYmIMJY1aPwpyCkFm+exLuxPBbPqCs9JhsfKEJBgvNQ/ZgKxjfgYfpfg84f9nCvvGKL07IAPnNGkNl4kSf1ZLyM7V451OdWL7fJQaz7fvtR07xI8BlJ4qE0ZJCf7YwCv89sZgDaApwD4kN/3PgDP3uK1FOVyUTtUhgG1Q2W/URtUhgG1Q2Uo2NQTY61dAQBjzAyAdwN4LYA3WmvD59oygNldLaHyLx61Q2UYUDtU9hu1QWUYUDtUhoWB0cmMMTfAuQR/01r7B8aYX6I/zwBYkI+MZMjyCGS1AZEa2j7HSbtM0WXIncau/xDVSYpSxNuD8kEUIp5QbhZ2ba11hPjb5IpcKgU3XmxSjromyuQSsb6l37aEvzP827qXLXEkiVmSiBVFH+5c6yQPaHH0I///sQq1cZPkKJdc/Pze8sV4fo6sVSfzCK708vaD4u2EHfZAuTB6IdqVfL9De7NL/ihF1DtIcpSyYF5LZObnfUScJYot3+gKsodEfHym6tuOJWQ3jR/Lt6/zUZMOUNceK8g1HRwJiaPYcP8KEW2WKfoSR1oJ7nOW8chRdgZHAYu5Efr3AUA5RJNjaUo5lkWKypJ0zwv5JbbKTtjhIKS8PjxGsZSH8wEF939VaIsUhXwDQjSnrRyX7xMkexw5qtDXhGtxngaub6gj3+NokbIMqyCJC+MpPRtSkYCCzIzliWVB5sl1qZPEKZf0JSIs8XWDZCqUv7rF6GQ7YYPlrIRJL4OT5CySTLAj3N+N+yXYXjMvFy0nhoRwj1YR25QlZHwPJRuSyl2wS5K+hf2FPDck91ooRzlZiPBYFWRAfN1Gp39cB+Q8VpL8kim0sVBvzmnH55LGW5aQzZHk7ZKPCsWSvK2yE3ZYyco4OuaeZaEf8D1kuem1NSdTv74cn338fG5QHYMM/DBFbT3epdxs/u/z9L53AfHeXfJ5+dbpHY+lhlL0w8I9IjlrsH8eU1jOFfan+p/0XlCISlnrXyLBEf14rI5LKGh5Af22RA/gGT8+XFuOUfoe24p/f9TUIgCg2YrHn2rHnE5n/YvRKerL5zqxT3GkvqWmW67B9Z6ELInbyKZyMmPMCQAfAPAaa+3b/e7PGGOe5befC+DDW7qSolwmaofKMKB2qOw3aoPKMKB2qAwLg6bEfxLAIQCvM8YE/eMPA/g1Y0wNwF1wrsQtI+WpqBQypbuvuolSre93wMZZs/6FexKphaoc6z4vXyIzdih3KshAxy9eWutu3qSpmPbSzGYpMfsqzSDzQtMFP9NylhbEVmkW4BDnOwnXL5ySFqj72Y0yZZtfvhDnQcc//HkAwNj4++PRJ072lc/92C+APXBE/nuaHbPDYAvSwmQps22L7hc1QcGbteabdpkyIc9n8bzn/KLJJVogzzmIwnUL+VZ4kSHN/k1XXdtfOxaDJ9xSOZhv3wg3EzJNC+T53q74MtbZ85ZY4B5qwx5D9qRKM37F+Pb9gTOk2XpAznHCXoawzTNYvOgz7OcyJWezhIAfgLxocwM7Ph5K9S4sAPXeJmnxOVBclBkWdXKOIB5HwzUKHmaywzDjzTPIKZsMM8s9KbjKht8GpMAVhYAN/WuTC+eq0aLRQo4MX95QJj5/iuLfe32bBdsgx1YYZ3nmO8tiG26Hjd6a8tYCTeyYDYbrB3vjcYb7keRVSnmy8n1Z/+zwxm2JcN6UukLyuqQ8GpINFPf5hcn0HsD2XiV7WvfZxXlMknIccfkK9ijkzNoOBQWIPy9fn1UhYbH6At0XfvbMteIM+GLbzYBzQIT4NNmUHbHDDORt9s8s9nbVKNfdIa8IOEreFX52sUdw3M/Ps/flehpfav63k2Xy5FTitc74HCZL5LUqeAQL/d97P0gZwONHnseq068SAuSgNKl32o157gD5nToVDEAKCtGh9xYpJ9M03wPyMI1PuD4xV4+BTb5ALvK74Lwu5zsxHwy3pzRusAcLW/TEDFoT88NwhrmRZ27p7IqyA6gdKsOA2qGy36gNKsOA2qEyLGiyS0VRFEVRFEVRRortr7DeIdiRxLk4cvchfV6x25S3g/QrtVguuNzYxStJGlodWcfArt+KkIOBZRnB1bhGi8N66HfjpfLfsEswXIulMxXSNOTSNsjnarS8FIpchq1qLOvJUozAPePbu0MNvkCLux4qO9ftg+3owl1biX+f/Yir41fc89l835FveDCW9YZrEf/gZGTZNhYe7xbS4m62jZA7YYHc8OfKsQ3mKd/AstfBhMWAALBCiwBDDP7lNrmm2/G8QQ5TdKVGpAWBUyQTOkGx22/xl52mc62Qy/y83+5Q/+qSO5nd801vU6scwIJyH4Q2klzrBXrJf+QEN/lENdbl0FhcwHmo6rY5/j1LDapC3omCdK2w0NvB/fccTonl2g2chKJY3sJCctoO0oqCdI4kLZPluJAy5E+4rnIg33cNBWUY8+PGMtU7yCYA4HzHxernvBwsO1ijRcs9YVG0hCQZBOL9Tsnk+LhcLkZl4b+H/VLeIb5G4fyksZSkGyyTk/7eglxvSerLzyy+d0F+kkshtyZp3BF6vV5fQIRMeAYBJHnkvk3VFO+rEJwCkKVrBdmobws+pySlAoBMkBFy+5e3KF1L2Q3LzLrCbwv57YTcU4V2CTJF2iek13G/Fcot5TPjetfpeXKx5PoxBxZapefYcis+h0KfXm9zZp+9ey3s9LpY8+XJg+3wexPlGJn3z9FZkslz7hfO0XfYS5FO0vKAEySTDdLNEtX1IgeK8fc29b7GfSUEH2CbLrxLeKleWwg6AcRlDdK4DxT7R1UIisR2xmNkgPPX5NJ1sp3CnafrhuBDnN/uvmpc5N+9eBgAcNdYLNOnezGWw+nWYl9ZZinnzNHJ+Hw/V11y/29wLIgt5c1ST4yiKIqiKIqiKKOFfsQoiqIoiqIoijJS7InfMMuAcR/1IMg+WELGsb6DC5TlIRXKz8Eu0uDS6wrSASC60VIRUfKoESwpSkh68vjaCflR00uKUrkpcjlZIlcBu6ZDxKFCJDZOoOF/2xUkFUCUX3A0DY5x3qzFyFbHvXtvnORqD9OnbcPnOKmTpKhJMoSpqivrxYtRNvaCD5/Otw88k6NoOHqC9Gev2BgRIyVVCG13rh0juRSi6FF7LXsZ2WIikkloe9632qK/t/vzxKQIv2nQ/WA7OuQjoBwtR0nQSie63zteetZO3INliqq25t25l7qxXgvtGOc95FQo2HRCPiTBfw9u8qPjUQr1ZRMxyt0tJefGrpGMr5mQwQX4tzzQhZZbpnBYeyknA7K+vDaZILkBooxsshJlYxx97HCF8gV5GdmtvRgt5lGN2C5Vf29OV+O5KhWS7eQSi7hvBdGOOGpZzLO09WhL3PeC3Ihzw3AdKwPyiTGhLQsRd7r9EuPWAOlbCilfRy8hVQx15EhFXMcJkqSGaHJh32opEZ5tlwh1CGVmCYsk9ypI5fhxJOQtKifkZOG+T1RiO8xWosQkyCNZKsrtWydZ1ELLjUUhxwQgRwRLEe5lNxFxtKCZ86ZTlKvRu0jIBVKQvlNE0SBPpCG+W4js1y9VSo2fodxNGr9Ynhzgdm8nonDm70Bbi4y343R6XSz6+yc9/9qUn26u7J7FUyQnO1iKY8ZB2n/c66UfRdLYa48u5dvhNh1eiGPpemsm33646sbQ+UqUT7Gclgn3nOX/ksy2mVi2EGRkLBnm/Dg8LkpRezmHYOgrg5YtsCytOFZGOwj1PU3vQJ+qRPv+oh/XHuxG2di96zFfYJCrXlOL8e4eW4nvnjd2Yx3Pjbvf/FMl3oMHcT+2gnpiFEVRFEVRFEUZKfbEE1NChgk/sxJm/KtIzDL42YkWFY1nXBs0QzOeL4iU49DnMxkDJrgKnpzU7IewMH/Q3yWvTOGrlxew8UyMOKvTP7PFM1TSTEsqvj7XMWSk5ZlPzh2x7L0LPHvDZZkpuxmLT9fifbnhnmvy7aeVHs63p251M2fla+exX+Rt5v+XyjYdPCUXszh7wzN2Y7TAPOSUWREWvQNxBoZnsnkhZbg3qdwLUiZfvkdL5D1p+/41XqP71aZF0j67bptnOil99irZxpqfSVkgDxNndg5lSc1KS4ucmYId1ZwdPXL8eL7vqzCbb9+65upTpc58iWauFoVY++OJ6y/6+p4tbe4p2i1KWZbPzkttJM2CT9Fs3CGaHbyeZq4e13Mz2k9bp9nHQyv5drvtF1UvR2/XeZrxm/OzfPWuHJyEx4Bg093EeBfIpPEYcdaf89yEDNEAMF2mXFS+r3GOIvbIh5lILneDtkNfYdtlT2hhgbaQQ0jKbZTqq8EDw7OnM1WqF3nRwhgy7meQG4ln4n4gPXtSeTDYXsP9rAqBAYA4Wx0CdQDAjdU4U3tNybXVTE/2xC1S/3+w4p4np8vxeXKpFe09jLcp9UN4b2gW8sUl8mv45zMHhOAp4PD8FN8/EhS8H8JrRfJdpNv/LsHPlpLw/sDXYnsOtivlGtkLur1uoS8CGzx3VK66VzIsdmM/LjxD6Jl20DfNDdfEheKHntyvbJm5L3oRGnfG4x/23uwFGl/XSf1QavW3F3tiOiXKveL7QurdMdSB3yk4YMsMjYWTfqyoJjzVYSxcpcX4y/RekpeV2orHypA3CIjvJRda8R2IvT5BmTJP6gwOXhTqME15fY5Srq/rW9EOT/r6HKwezfe9Sz0xiqIoiqIoiqJcjehHjKIoiqIoiqIoI8WeycmCjGw8uM54MX+v3zXHcfrZCdci19Sqd21NVGmBkLBgedAizF5iUZu0aLXgis1427tw+buQqlXqhfj4srtaWtibckfnC/8gu66lHA5cx4VmdP8FiQi7ZaUgAeyOLuSv8W7A0914zo+Ox3vUvTsuzjZnnWv36E1x4f/e0qP75xcxcz4Ccs83M9cG9VZ0xbI7uOA69vsLcjHaDrIrjs0uSRxS9iDJAjlIAMdxr5eCTCkeP0bSsum2257uxvs9T3lkeIF8CFjAeUMKMjgfBGMrAQkkWJ4yW3VSqOtKUSp1QzOW5URt1R9Dkr5GdLNPt/uHsjLVZZXc70teStDILq/cV0qGLJfbSGNMIZeILzfLPVlWNUND+DVeNnhiNvbFAyeie7+z7u7z8bXYP6/pRFnPw14KdJHGAl4M3xTsN7WwX1qcXJAdeTkdyyZ4gfe15SjjuM5LjE524/FTXcqN4DfnqvF+nqN8XWd9YIoz5SgduYgokZDy37BNcxsEm5ckZECUkR2sRTs+SLkVpmghcmjl/ZD09NDLA46E8acQGEHo01w+av4NgSj68xrxGBuCGByifBE3UN6yx7WcXTySFqpPlWO5FjrRdj9Xc3kqPj0ex4EvlOfy7YtNd4/5/kp54rKEfEkaHVLPXOmZXZbeRbJ+iZrbP0B6JvSzniBzBKiO/CqSOH+4N4Okb7tJT7gPEnlQGwpS1KBgGOu8gN2fc/II5Ya5Mb6LBGqrZ/Pt2fujzV2z5secWrStpXLsx+tUhrCAnSVaJZI3TwnKL+k9dJIW7U/TOMGBDKb8NQ7TvkOFwFeOi+Vo52fLsV4Vf62j9B69SDI5W76Ub59uuO1Cfjt67wjlbiWWGgTbWqP3kwc5F1Yt1vFk2/32cQ0KiBCbflPUE6MoiqIoiqIoykihHzGKoiiKoiiKoowUeyQnA6a9BCLkbpggt2yNtse8DGasWzw+wIHGVr1rbYZc11wjKWJYQSaA/ljeg6IrpaRnwQ2dlfqjuvB2IbZ8KqpakBdwVJesX2LC7ug2RY1YC3lkOCIJudE5pnyQSpSp3JJrOuUmD9ddJjfjvVmMcFEai1KBxTXn/r/lzhitB7PRnbsfFCPTxf1BLtNAf24MAGhw5BdBvleQoFxGFK/C34UodHwP5yhayxkvXblhnVzTNZK2+f61QhKyOZJVnaNzXfJRRziqE0tOpL4wKCJZyo7CdpNs+iLlMDnSdDYzTpHYGuRGb+eSHIrkRiPHYpnlc+437EbfU7LYDrmkaEBUI+7fqyRlWCapzZKXIKyuUcSvdRpv/ObkRJTXHF+J7X3Uy8lOk1SBKUReFO59QZYT6kf3eFzICZOSkD06i9KNp3jze+yBKHWYFWRyc+fiMXevx3P985jrC+VqLAvLQaTnQyZInBkprxcAzNZcfY5U4/WPUy6fqUL+E0fLX/PCHubP6vR6WPdjthg5c8C9ZvjveXS3wjHU59H/HOR8Tjd4uerjn3ou3zd+a4xY1LkQbeARH3X9f3o5/h2C6c41Y56LVZKzSLk8GCm/DT8nOZdHVciPw9thXJQkZoD8vNhODqZBNswyd65XT3jX2EsyZHnbSVHVNubTAorvNWxnHdpe8w/z5nI8fmI5vpeE6GSdOrVbh6In+lNNkm1OUN/l97G8vTn6YkH+W6wfHwPE970DJCGbIWlZhfrPpD/vtd14fbMebeeAf0N+iPJR3UXREUNtbmnFetWpLss0Bl8oOTlmvUmSehojQn34HnFUxhBtjZ9XD5CMt0HyvEm//bRKjC64VdQToyiKoiiKoijKSKEfMYqiKIqiKIqijBR7IierIsMJ7/4a866xMfKUTpN0bLbj/jFDUo8qSUyaiK6ri15GVqlSosYshjRY8VEZVrvRhbyekYxAjE7E0Um27s7NE4KRa60gOfCuNU5oVJSI9cvMUi7e4GZuUNQHKSoEU4iGxUm8/P5yQgYnISXxXKeyzHWj1KNMiRS7PpldGyQn22M2yp3YBVx03/vkZp3+tgKKbRyOS8nFNtvHZcgS0Ym4XC1BTnahHeUS94+5RIbXUT84tB7t7Jx33dtKdEHbXnThnmrF5GBBhsHJyIqSk/56M6LkKFHHho/mdrYTI2t9keRH7ZrbPtCN+1gMElRTLdrXokhAK9TX53zkuUuU5GtP6fW3mdQnAaDt5XMcYYmlIXPl6Oo/5ZOi3bce5UutB+N4NF71SVdbNEbRdQ946QRLGcZpvOIEhs0QjYmj7AhysmLkqmiHIbHlyWpMaPqlJCF7aiOe9ymPcJLT2X91JJ7/JpNvo+naZvbeU/muYx+PSXbH7jkBALgwEcedB2nszQQpL7dxRjrTML5zvaYogWVI4nhdJSYUvakUr3uYIqyFEoToaqf2cE6x2+sWIi/2/33rSWsL41OnP9EyR9tr+mhSnDhwlSSioXXGv/y6uO/Z3xK3V2Jiy5PXfAgA8PQ/iGPWhW60p7q/ByzF5O0G+vs/j0/8TKwIyVlZOhOirhX7C0Wr8udlGWOdJNgcAarRduViiVkh+aqwj9s7vNcUxtpC0NThSaqaZVkuM5WkY4PKmiXe1xZ9FNjTp6I9VD4ZpYiBhYejnPX0Whw3L1X9/YIsq+RrBZvqdPrHbQBoldx2KkHlhB9vWa7GUSel99BJenW9rhplcrOzzo66F2O9763G8XzF12edmpU/AiapDGG8T92DMG6mEhYf8InQC+MDyeiatB3ke4eOxbpgi8oy9cQoiqIoiqIoijJS7IknZqIL3Lre9Rd0n1w1+sI9UI4zIkf8l9jM8ThLUarRgq2LschnTruvzfVOnME7T16ZCb9AtZL4As5nklMz5MLCe54t4FwhwcPCX9uFHAl+P883N7C5AAAgAElEQVTUTNAC2nH+As5nOSkXAs0gLfVc2/CsDi+4HhRTvsOzOll/jPaKMPPI8fPLwqJ2LssS4qwS0/WzI11azLvfpGYZg3XyYv/CbJhwWCmxqDO0Ubcne31KAzwxUnk5Z8elZpyyuLfivCeztYP5vgO9aFsPlNx9su04e3m6GWc3F1txJiTMCPK1upeZE0aCFzcG+5nvxOufooWOYYp2hvofL+Rc9DNfKzTD20ZqBsgHo9gvTwwh56Lqz+9UyCFEdsLt9UDJeQSqY3E27OFuHBunfdNw8IN6NZ6r7mdwy7yQlPK48MxzuHetAYujeTabZ+Rn/Cwd5wh52lq8R09/4pl8e+pbbwUAZI9/Wr4vm4ozjb3FC+5ak/Fc0+t35tsnH3JtNI7490H5PAZ1xYInhtroqF+genNGuU+a8bcnKX/UpPcIdv3F/q6yd3mLer0eGn4RvZQrZFDOmkEL1EuZPIMdzrtYinY7Rwt8695Ln43HNi3feGu8QJXGhIZ7zlx355/nu275RPSAPeBzfMyXY39YLsVnkzTepuwi2C7b8AQtnj7sPXBHqS7HMs714Y6r0/h0lhQLD7fjgufgAa9TQJW2kK+p3ev3igPb65OhDYpekK0rUK6ULIs5s0K5is9Zrperd4PGbfbordG4edZ7P26nvGNzn4/3o+XrfaES632J5EFL3n7r7FERcru5/e43/A7EdQhty++hbDvBEzNOfx8n2+PcbTXvdzhILyAHj0Q7mjzo2qY6RznS6F37rA9s0SCVA/fkCx0KmOLtiz3wxW1n04coD9axSgwMMONz0XAAKn5mc5CTkD5x/iK9G2qeGEVRFEVRFEVRrkYGemKMMWUAbwVg4D7RXwmgAeCd/t93AHiVtXZ/0l8rVz1qg8owoHaoDANqh8p+ozaoDAtbkZM9DwCstV9ljHkWgDfAOdtfa639oDHmzQCeD+C21AnGK2182dE5ADFXQYUWFk8ej264sUc511T5hpvjCThfyoMxfnyn5dyuZ85Gd/FkhVzAWf8iTCa4BFMLttnbXPbnYjcgL2Ka8tIXdhkWFoIJceJZQsaLaafQL39boCXLcz3nil+lhYHrJFMIkh+WBBQXsNO4IniOWSYXJCRc7o7gxm50ZGkbu37rPtBCvczLr7fEFdsg4Ko6KOdB4ccoSu+k/B1AdBezq5Xd86G9WBLAbvLgRk/aqSA54rKw7OCBputnHZJgsjzo3LrrMxfWF/N9y63oQmbpWOgXg9os1S6Dmpr7XbDfeifWZZ4WrQdXe4OGLF50Oe+DdyzQ8Rz4QspxMihPhMAO2WEvt6tBwRHEHB7UsGWK93+/d6yvVuI9PEjjymTZj4dkDwVJnm+veQqEwtfiBZzc3/PfSnaakKGGQCYzlOvnkTNR4jj5TV+Sb5f+1Qvc8ccfEa+1EPNL9S75Rfyrq/T3aAcLTSf1WRyX8wLxeBfae1CODiloCwAc9pK+k7SA/1pqq0PV2LZlr6Fod9y5SoPVpIErtsMeern9l4UcKN3CmnBBbpYIiBLsuJNov5B3a4X7OeWmuuBz6nQfvhjPT4v5y8dujCc7cg0AoHpdlKAcJUnPjB8zKpBlvhJcL0l2lSIEgjicxf72Jb2oh7nJy+lXSSJ7Dy24/mItbt/v3wvOZ/IYHcaCNuSF/9K4VpDJoV8mxzYM1LEFdmQsRC++j3Q7/X2vkNfPv1ek6sI5gsK41aCgG3eXY59sBLlYT5YUh+cNy5AL8kKWQvny8LOT38fCvWEpYo+ez50BMtIa1fE6HyDrsZUoPzzyOLqWr073C/H4DgW4CfWZo3o3SJJ3kQLrhPe4VHCWIKM9QnmwTpI8+ICQb4yfN+OUg2fVl/FT7dm+YwYxUE5mrX0PgO/1/7wJwAKApwD4kN/3PgDP3vaVFWWLqA0qw4DaoTIMqB0q+43aoDIsbGlNjLW2bYz5HQBvAvD7ADJrbfikWgaw/c8nRdkGaoPKMKB2qAwDaofKfqM2qAwDW45OZq39TmPMawB8HCgk+piB+wpPUh7r4uANzmVcqnnXNEXFKR+OLqjScR9ViaKToEUygDa5F5vO5bdKfniOOd/0btXOgIhKqXwskhSC5WJj5C6b9m5ijvXNcq4m+l28U3T8EXJDz3qJBUelaGQJyZtAiJLF7kumxWoywe1flH24srDkohBr37tNWyQha/Vkmc5KydnAQonc1dsIVHYlNhjYLOcBu6mD5CglI5BkB4UcQSRFCKqnHrl1M9oOMrRUjqGCFCqXa1C0LXJjn1tzzbDQlCUBIb9MiEwEFOUHPUE+l7K3QXYo5TNIbYcycD4Ulpws+H7Von7QZDmZj6oy34715nOxzYbrslRqO/HydsIOgyQklCEVkSfA9tRrJ9rQ15EleRxdbLzU795fF6SfDZLkcLutCxKyciG/1YByU1nDNRazeP1mk3K3VGjsCm21PBd3PXRX3L7jM+74j34x33fvx+L708fG3Nj6cDfKkrgskpxMkswCcVwoJaJYlYXxYpGeGWutaGktf47w/GpsM87OldhhD/2RBnsU8agQrUro56k8MmJuNZJCZv45yLa0TLLoh33CiOV/jP344JPeH691c8wP1Dt9LwCgczFKrdbpvTlYFktYJFkpk5LGSlECCzlfvARzlZ7zVTr9MS/f6XTi+dcpelmdoq4tl52NLJWjPLIgJxsgeewNkKjWhHxNIboaAFzYmpwMwJWPhV10sdYuyjxTtiXdG37HYttreMn6CkW+rZFMP0ioOOrrhCAL5f7M9sLvBWG7l7AzaR8/c8P7UoPKskpjwSy9U97kX95ufEaUGlaf+Kh43s896K5F5WPZFssdA4u0XYiuO0BCGcYIXgpxkN5pj3pJ7SRFZZ0gkxwTzLN+GSmMBo6axpiXGmN+wv9zFe7d5JNeBwkAzwXw4e1fWlG2htqgMgyoHSrDgNqhst+oDSrDwlY8MX8C4B3GmL+DWzr1nwDcBeCtxpia3373ZifIsuiBKU35LKA1mukh70r3jM+qeopm3VZo1uae+Kl279wxAMDdFE/6VC/OQi76BYM8Y9KVvqaT65J5QVT/TDHPaIRZTvaucBzsKd/U/NXIX61hwRYAHPAf5EvUROv0tbta9osfaapnPou5QkIZ+Wu/MItBEx8twVvFi3aDV4dnZLvC7C97X1q8OJxzgfhFnfUs3qPD2BJXbINbQZr1Sc2+SDlheHZWyjHEs9IcuiEslmPPGc/ucqCE0LbdxELOkNtlmXL1SDNbXK/kbFcv3ynWS6KQE8Ifl/KDSrH219qxf3EuieARbJZiXXmGNXhtONhF8DoBxTaSZjInhWAaAjtih71ery+Xw6Cs6IXgIwUPb39+KJ7lXqK8GMGmpMWyQLSzQV4hppRY7C3Wga677D1n93XiuPXxXhwNjv1+9LQcuP+0O//hmAOkeykubF273U342juP5fv+oRZntm/3qZ8XOnL+qnIxnbk7f6HeA+4N1SvkATldju1aJ69GiWYlG94bu+Z7yOrWZyF3zA4BNxvuSxfrRPYWdqf6fipzfKA47vXbID9bzmbOdm+/50S+70m//fF8e+L6T+TbrXl33EOfizmx7q3GMXSh5+73GgWX4bFUKmvK9sNvub8xy5m71nnynjxIi8qPe6VGlc7Z5MBBZBehn/IY0RLK3RM8hMAWghBwcCH/3jIhLMIewI7ZICsJwj6J8GxqdSmHCnuKu/2eYrYzfl8LnmA+hoMbNMvuvFVqq0YiYBHbVGCcgqCUhMAZ7OkM926dvHh16otV7pfCc6q3Ej1n66dduS5SXVjRU/W2wd6ZKgcJojxHKxWvnGnR+am9wnvmMnm7FsjTE3LdHCPv46PomXx8ip7vPrjB4soWk8MQAz9irLV1AC8W/vTMbV9NUS4DtUFlGFA7VIYBtUNlv1EbVIYFTXapKIqiKIqiKMpIseWF/VdCe72E+budO3Vy1rmeymMkT2J506qXjTRi0dbqcTHkedq2NecyexBRnnS+E11UYZEvy6OkhX2SW5n/DkQ5SpvkLAXpTHDTkTub5WSTXg7DeRFu6MTtG5vxvBV/3mnKNTBJUqOj5RkAwGGKM38PuQ/Pt9xSrTq57rje0gK5dockSaAF0SGXQGKBrkQ3KUcJi9L511uS8ew5oY4sG0vlECjlC+Dl35b8vS+xC5fcyUFOxjmIUqz7Bfl8P9l+8wXjA4JZpBi0kHIQkpSB81+k5EnB/tYzko62++U/DVqoztS9jIzlniyrGpz/htek7i499Pehgbl4UlKegiSvXfi/Oy62Ry7vS0gRJZldyh6C/bNEQ5KT8fEsj1nxuY1OZ3Gx/V+NxTHszMPX5tuP+EN3retIasgBVC71TgIAPj8W+9cdWbSdC/6Z0OzJUiCuV9brD2bB41Vomy7JWFiudLEbnz95+aisfK0QmKKFbuHfe02/rGwDfnch8ElCyiT2bzpt1+fGKeQto+Mv+AXyHxuPspbT912fb4/fy8Fu3DnOVeK+hxCfeae9VHGBgn2sJp6JEoMCqkjPwQulKHO8m3LC1GrumX2AZGNrFKRkmQIS1f0YxtKdltBPt5zzbAOFoDC+T6wn+sZuwwEmpDFOyk1USoyFUgCODhmfJGFk+fEK5Vtb9TntUs9k7vNhvGWJGB8XtsuJfEUh5wznpFnokSyagp/cWXO/NZ+MASyuvRhzJ56+10lyH6jG818gaXnDX4NzEY7TNi/8X6s6+S7LPS81o/w3yMz470tVWs5RcWWcrMzk+760E+t4/BHxXGM3uLH/2BwFlaBcN5uhnhhFURRFURRFUUYK/YhRFEVRFEVRFGWk2BM52Wq7gk8tHgUAzJx37qRpcpGVyeXX8pKbBrm4Vih29aVK/O46W3LHLfcoYoIQNYLlFSyfCNssx2HXthSppFwqRhUKBFnFWiXK3ZqI7uQZ39SHSFJ0A0nIrilHl1/Pu0snO/H2XEue79WWa4+pWozk0ChTdLFuyN0iR+4QZR9Ub0mGk5IWBVlJWYjWtXFbutYwIdWx6M6W5WBjPhIJS2vYtRzc5NzunG8ouJs571Aq5nyI7JaSc1wpYhtwTPzLkJhx8VLSsrCf++d6uz/aDNsxlyv0cT6mJfR1ICUn21uu5NqFXBzC2DUouk8qAtMgyYx07zsZS3I2nxNjCVboC5yT5nQ7SnEWSlGW8Gnfrw5S7jCO7Nj1UX3menEMvUiy4lX/TGCJZTfRv8J9GRSVje8fSxjnMyeH6NB4XCdZEeedCDKyIMdoX6YE9EoJ93WgZLEn7ENafpjvyzb/O8tRLnbdPbyzFH93H+UM4hIG+V2dbChEJAWAi61lAMCl9ShbWW2RnMz3nWRuGI5OJrRBQdLrt/l5d668nG9PeZn5LMm+1+n4+W4s16KPosfPYX5HGSTnluBjOJpWkJyX92k+O0OWPyvD85WfrSkJY4AjoTaEnC6FZxc9fNpCtNl2t//djvNsTZZkaVlDyJ81S++BBytOGpnKORPeBVj6Vqf3WLazcsWd42+zGKnxkV+MOX7O+Pfje7JoTw9RBMgVb2cTVJfj5VjWWUT7PFFy+9cq1L9acVxdWnfb9SZLyOLfG+OuDjPj8ZyPodxIj6hHmwt7KcXZllFPjKIoiqIoiqIoI8XeeGIy4Hb/4TfhPSwzlBdliiagwjfbOk2OcPz8JZqhWfWzgLzQizOO5rNqPOsmLIJOLZIWZ0uprIVz+XNw3HKeWRvzMwpHKGb2kSx+bR88ED9BS34Wj50YlQotvF91rdRdiPHx58ejV2a54r7M18lDxTPYIV9LCjFHQmE2nbwTYSEszXIU8gIImedTgRT2g8KiXsHjwB6V8UqcUZisjPVt86wNz3SEhXuFwAB0rfB3jkm/SvdrhWalS4JnS2Irs4vSb7kNQt0rZQ5C0B+IYdBMLPc/DiAh5d8o5GbgfCZ+xi1lO3ngDcHjsvG8+0+vrzypHCvS7Lg4QwzZw1T0dvXPuEu/TXr5CgvcvReB2ptn3CWvD48L+b6EPfNM5FzXzSQ+JMxeMjyjPyhjdmp7qxQCFtCi6LA4uPD3ciyXlP8pLK7m8u82GYDyhr6cynMljiUp72r4cyrfim9rDrTBATzC36UcURvPG9qLvXm8ULveavj/y/miAsU8QXK9pdwsTPg739/FdqzDOf88WKHnwjrd70XKYRQCEXAbDfK+DLpfqXeg8F6wROv6B4eX2TmyDKj6oEX5c5SerdyeDe814eAMjUTwlrWSD45AXoQxyt0SvFwNChbC1wrqiOO0KP1IKb5jzZHHL7Qhe7iqJQ7w5K7Lz3cet8OC/nrCjvmd8oLvC7eTd/Lecc6N5M5xhrwvZ5sL8by+7bh8jRoFCaD6hvKmPLQt4ZnL9yCMJ3dXYtCcz9Ri/qfp++L2kQdduR7qUoCd2RiwYDPUE6MoiqIoiqIoykihHzGKoiiKoiiKoowUeyIna6GLsz5+e9V/N02QROUAyQzGvTyJVFdYIQ3XIqK7atW72dhdza7nsM1ys5LkLiZPbcEVK+wvSKVoOyzqHqecANO0fdDnhznejq63g1PRJTlzLG6PHfNBBA5Gx242Hrc7573r+bPRTbiydCTfXh1zC8maFXlhf2HhvneB9josO8k3c1eiFK8diJIjdsWyBIv3hxwMwyQnYwp5MHy5+R6zC5Zd3mHh3mw5ukIPket5xruTKwm3bGCd7LxL0hyWSEqBFHhBoGTTzKDgBQWXus9DNFWNdeH498E2WAbDruXgBud9a5S3hG0u9OFsQGANJOL+t4QgHQUpE8uW8ibax4X9ob5C7paUtCxQzMMkS2Hz6xTkYu7/KXmAdEz6XL3+a5YKP+6j26Vx2o8RBVlXIk9JCNbCeRzYpkJZSgk7liRrku3wOVJjmBT8gKU6oY7cVqn8NGHsDePx+OTejYulrITJqhvDpLGOyfPIJGSGbAOhLQtBFIS8RCwJ4t+ultYLZQLSi7slOYskbRmU22VAdyiQzInjN1nexDK5i/7ZsUTvBGwXLB8KbZPqh4PG+Fw2ys/shIQ0yHS5XfZSTlZCCeNld69nqu75ebgaF6rz+9x820mk+P2FpYRtDl7Qaff9tlbe/HW3IB33ARgOUVCOY5RDpUPLGs76e7rWi8+2BgUMWPHSthoFq2KbbHg7WKFV7WwPTPjNA4k6LHlZIi/Ar9O4GQLfsG1w4Ks65XkZ822wTFJHDowR+m030b+Wm+64U+W5fN9Hx2O/fnA8SteCvH6uG99pt4p6YhRFURRFURRFGSn0I0ZRFEVRFEVRlJFiT+RkXQDL3mUWnFhr5Fprkot13LuRWVozT1G2Fiieeohg0ynkmRGij5BrulSQGXjXfyGqjuyjDe5YdrlztIupspPcHKWY2ycpT8yNvgockWxqOm4HCRkA1L7kmLvmyRi9ARNRqlQ+66I2HOs8mO97zCdjTPrlloshvuxlTgBQr8RrcWx0jiYRkHKgSFHGGHZPsvxJiqZVlC0MT9SogtTAVyclReScMEFGdk05tje7ng95KWGVTs/R9xrefhezaLtLCZsNbVuQNVLuoV43ROSTkSJU8bmCxAQADtZcfY5WY0z6QySZC2XhPrdGEokgA+IoPfNZjJqyTHk9gh2m8uMEKWKPyi1JxwqSIrLjirBdtENZ8rMb9BDrmcvKWNOSiJAUSEl1JKRIZNuR0aXyxOT7E3l/pLJKVEpr4n6+j0FeE6JNAcVxS5KTSXIw/nsqImWoYzVhO9LxhYhZ/nhpXHVlFSSQfl+113+d3aJaquDkpJPtBOmMFPENiLInjr7E2yxHCc+WNYr6xBEJQ10L+ZwKEY3671WKQdH4AoMieyWj+Q24vpjzhurKka/m4cY9tqVuQRrX37bdRN8Lz6TOgHqJ0vkNhGtIUdv2gizLMOZlXrkkn3Lp1MgmGz6yG793cT/kPpdHnuUIlSQBm6jU8usHqoL9F6I/ChHF3LZrO5auSfeO+xdLsIN0jCWWLHGtCjbD+RClfIDcFrwtyT25DbkMkuSX+31XeHZJktSlZnz+f6FzJt++l+oV+hKf/1B8ld4U9cQoiqIoiqIoijJS6EeMoiiKoiiKoigjxZ7IyTq9LpZ95IbgCl0HS1DidnBMrZCEbK5Tz7c54kdwnaUkFcFNzO6wQqJGIeJYlogSFFxm7A4eI7fnIS8juwFRbvOYVjz+Ru9mnx5LJJrkKtT8eQ9EGQ+mYiSHbN25/ConLuT7jhyNbXT9GVeWM5UoabpAMqCFcow2FZJBVbqxXhx564BPVMT1lmQF7JJPRT8KiTGLcrS9k/FIJOUygu10EjKe4PI+QLLIWZKG5BH32B1N2yFp62qPI3uRzUoJKOl+FJKueiGZFGEOiLbOkVr4fh+pRTu7tuaSqZ4sRb/uEYpdM+bPy9fieq1UXFnOVqIM6J7SxVhWQdLD+8TEdInkiNuJJjddcfY/Q31iDtHNvRdsjE7GDEpwmSIlGdnsvJJsR5JXbfdagXQiVNfvQwQboCgx4vuYRxqiv0uSVq6LmORzCwlg8zai00vPl5ScrLtBJrjxeEkK2Mv/H8fl3WamVMPTJ28GAEz4ucwayVK5Hy/5e3WJoi8t07aUqJGTVdabFB3JS26K0eW4ZG7/wGSbGNwnchsaIKVKnbMr7N/OuwZHKgukkhVL8p6t9PmtUnzOsVRZ6ht7J/EuZxmm/Hgc5GTdhIQrjOcHqvF5xM9BlnOFbZZaFeT//pqp50kowzLJtjih9wIluwwSSr6WJEFlWNK/3HL9pxD5i+otJchNRe8L+1mCJkm0u53+RNJA8V1DOj+ft1PqH4M5IXhob+4zLDOVxnO200OI8vzNUE+MoiiKoiiKoigjxd54YtDLZ2uyfPZWjmG+7hcR1ilmdvhSBYqzG2E2JxlPXbhWJmyX6VuuXFhf2/+Fywu6p8q0CNrnBbmGZuBP0tf2wbH+uN9Li3HmrXR//Ko9UH0YAFBdj8dnh2bz7d6qa49eI35Bl2nV+HTm9h/oxrJOULmrwjbPHISZagCYrbhZjzHyMnTK8VohTntbCKgAFIMuyJ6z/fXEMNICTynHAVCcSVn1XsMGL5Cjeq96M+IcRzyrWfftsk6L4puce0Vo29RMZdhOeZiCBybE5AeAY2PRtm6qHorb3gNznLx0M914rjF/iRpdq9qLf2/7PnO6EuP+d2vkqaE+HmZo2i1eBNw/Q56V+/skb4/RTNAk989qnNU56stzrLR/nphAqBd7HiplYYEp52Oh7lOSJ5k3vRafn2fWwt8HeRkAecauUF7BU8L9qy3k9WmVUovh+70bkue3eEX+V8itJD9zyKTz/cUAEVKemHiM5KFNlVXyTMWAC3vHiVIHPzS2BADodPxielr4vLoW+9GZphsH7iYv7elS7KfnqB+d8YuvC4FghDwyICVGaqza6t95XyGgg79vhXst5LdJLXKWbkjqvkp/LyzyD2USvCCuDP12keyHkgdpQA6ncrkk/jZ4ZYpe2r2zxEpWxpGae/6kvCKB8A5SqkRPDOct4zxSCz3nEUzl38pVOIn7EWyGA9W0qT3nO9HTGO5TQd1Az54D3uPP1+K8feH4QmACuvd8XBg32c4nSHET9ldpjGeVTR4MI9Gnxulc09WihwwoqnBWSrG9A/xeEe4NvyvxO1TRZi/f+6ieGEVRFEVRFEVRRooteWKMMccBfArAc+Cmzt8J97l+B4BXWWuHMwW7clWhdqgMA2qHyn6jNqgMA2qHyn4z8CPGGFMF8BYAQdP1KwBea639oDHmzQCeD+C2zc7R7XWxvEFOxrDrLLie2N3WEuJc83EDF/iRO050N6cWC/MiYb94e5zcl1O0QH7c/71U8EaTtMa77JsdWjxJCynXz9ECtTXnppt5eC7fN3Y0LogOp20vxl2NenRftrykp80Lrtk1DcnFKsdLD4vWJymIQWFRe7k/lngqH0PDy0VqJE2rQ84TsZGdsMPtEOpQqAu5kzme+tnmAgAgq8XfLpHEIkjqOMfRIrmjQ5z4lOtbkrTxPewJUoRU7PYgH2S371GSe11P5b654357rB3PP073s+q3x6gs45TrptMNuV1inzlGeWimqf8El/V6Fvu91K+5L/NCzXG/PSVIIQHgKOXwucbX8RiV6xN9V5LZKTvMNiyo5XGpKiwKZUlMKsDEIIIdcJADtoNxYSFmKmBHsE/+LY/ZITdAagH3RikVEHMcpRgUhKNYvmgnYbFpRchLsLEOoV4sq+AALqHtuf8X7bQbCrhpXfi6QUqRCoiykZ2wweqJCdzwnbe68i/6B0k9jsXdiwv59vV3OHnzsbsO5/tsJ/atA2RDlXJ/EBOWk4TcKSlZiUQmyIDcfkFCSuNLGFP4/hTeNdr9OW26PVnmtp3cStK1el5/2GEJrJBTg6+b6odS35GOL+Rw4oXiA367VXbEDrMyTpSnC0VosxSbJdbol1VzjjJJnsR2xgv/w1jAUqmycG8aNKY1E3161gca4DGa5WQzpbG+vy/TmBKuK5UfkO03S7wfhHMVcj6RmQXpGY+FLIMryK6rTj46mcWyrlLArbMlN0awxIyXWIRr8N93g63Iyd4I4M1ALhp/CoAP+e33AXj2LpRLUTaidqgMA2qHyn6jNqgMA2qHyr6z6UeMMeblAC5Ya/+SdmfW2vDptwxgtu9ARdlB1A6VYUDtUNlv1AaVYUDtUBkWBsnJXgGgZ4x5NoAnAvhdAMfp7zMAFqQDmS56uUtZioDD0ZdChIa2IBvbuN0TonBIcEQjMaLIVnKcCNHJWHa17utwlqK2zJKbu+21XZXCtchF3CHJwqJ3ZTYouthcf8z5dfr7/Gp06Z/ykrfTFO1nKREhoiNIGdj1HFo2JVuJ0XxIDlOIGhXPOw3namyWouTnHpBMLs2O2OEgJDlKKh57i1ykc+vLAIqyifMkawrnZbkNy1HyXDvUxgXZI0f6EdzkHUEqWJCT0fHBdfn9xq4AACAASURBVMx/5/7HuWq6cDY5Sf3rIGIdJsqu3GPVeEy5HH+7vBZdyxKSTKQgo6PfhohaLBeZpXwBB7x0LORrAoAjZGdHsygPOugjCB7obcURXWBH7DBDtC8p748UpSejMGQZRYCTJHfdhMwkyMVma7GNrvG5gADgkI+ikxoDqzTnFeSzZfrtHOVO+EJ2DsCGiDs8Tmf95R8kC07mrBFyeE3X4r0/WHMSCZZ4sM1zvw1tP1OJ4+k02dGazxtxAUv5Pin3SzES0ua5QYJEWsrZI7AzNjg5jdKTvgYA0Jt39wrL8bDsUsxBNjl5LwDgpjaN1V+Mm+VWtKeuj2i0Wo7tu1SlXEBC7hSWiA+SSrFthrGM7fnoWMytNuZlMHyveQxeKTt75XavU64OlrEPQuozRUmQl19miefoNnI8pWRom1GQJFE/DOUpXn9L59+xsbCWbYgiR03E40uwiVXK3cJ5A6UotlKuMQAoZ+4cPYq0ylFba35dAEdXrdDr8pFKlF1N+2fLGL0DtYXojCyTY0n9oJxbW3k/3YgUuRMAKlW/LILkbAepLteQ7Po6uL48TfZwCrF/1Mtu+0InjoX1DkXh9U3fSLx7pnOIbY9NrdVa+7XW2mdaa58F4HYALwPwPmPMs/xPngvgw5d9dUXZAmqHyjCgdqjsN2qDyjCgdqgMC5eTJ+bVAN5qjKkBuAvAuwcd0Ov1+r6IefaYZ2Ly/AGJhU3SjMKgWZvUIs5BHpzCAnh/Lp7VqdNC7Yv+a7dDsfZbNFPc8U19bTvO7kzSlzl7ZTp+1qbRpPjcrbjd6Liv6blenF0+VY2zAPdV3DUe6sbF42vd/hkwhmeNeCFWmHnkz10pJn1x9phmNGhR2LSfqahmcUb0nk1LtSnbtkOJQi6gwgL4/hnyVMCCMNvMs86ciTycl+1N8qQUFugJZeHfSNnuk/USZmXYjjnmPS8IHPfejynyKB6kLLuzM24mc2KaMiWvxXs/V3ez2QsU8GCZcuWwnYltwIuzvReBFx6yFyHMIB0hj8ss5WyaLuS3cduTO5MO4TLsMIt5p/xsMi+uzITZR/Zocl4r6bepWa2wWJ29DCcrMffHTXD7uSe3aOaYPUCT/rpjtO8iBVpYqrmxkWdKpT5TWLC8jRlHyb45W3TwvgDATWNHARRnGdfZ/smDFPr4EQpwMUVLoS/0XL3WaDaY+1KoI3vpq4nFw+G3wTtQyjYfozdh+zbYaUcPzKrzJPfY8zAWx+jsiOtnEzfFifWjl+r5dv18rN+KX8R8kYJHzFPgkGatP+O4lEei4C1I5CcKC/o5g/vJSlQwzficNRzUZpnyc/G4l18rEVxFKpdEcrG94CEvBKqg8b6UexZTqpD+HCdS8Bdut1RwA7m4NWnnVti2HbZ7XZz390F6NjV6/e8inA9mqRXv4Uor7g/Z4HuF+9mvquDgMAXvqw86M0HvLwdK0aZP0vhwY9crFugV9xwpEk7DlXu+R8FAhIZPjXmSqoLvPb8fBKUQByNhr8uU7xPXleJY+EhET/NjmrFcN2f9/eND1JfvCsF4EkG4gk3yc774950JXLfljxj/xR145o5cXVG2idqhMgyoHSr7jdqgMgyoHSr7iSa7VBRFURRFURRlpLgcOdm26WGDCxPpxaeBonRHloMNYmMuho1IeWYKrmuSoHRK/a4vrlNwqa2UokuzUYmus+mKc8kfpjwxM+QqrWa0gMxfq1xiF3E87pKXkT1Qi27EB8vxXKd6rgwr5DrnBWqFhV5e9tAgeQS7B0N+H5ZPSO3F8gleQFsml/iUX8w2zTHM95lUbok8jnw50UXIHDreXdpKLCIMpPIOSBKFNtlem3KvBFselMOglMit0BNcvKk+FRZyT1fiYtmjnSg1uNaftjIWy7+yGO/tRS/tepiCXVzsRnkRywKawiJa7rfB7c8u/6Pk0j/k3f7TtFifrWydhoB2kEh1N5cs7RZZFgMVBPuqCLlhAMr7w/czEbQhsHGsDQSJwUQp3sPDJL97ZNuVYYzMYYVOz2Knmv8N/7ZKj5NrvezgUi3K1dhmV/0Car7vA/OFUL0lGShLQzgH0REfsOARJJtged58hXM6uTIcIilijXP0eNt5mMY4Hi9D2xdkmSTn4PucS8+6bl832918CkxvdQXdT33MF8T3zzaNXyznWnLSse4qj2+yvYaj2CrHaRFzyN1UkIqSnKyZj6X9UlOgOFaFnBecD+oaGhNOeFkUd/NFkgSdJalQgG2sTuNTyCXD9toWAhJsh5RkOMgPpX0AMOWlemxjhYAFvtwNyn9TCLAhSJEvJw/OTrDea+PexnkActAnLldo74Lcneq4TlJnKfcSt2eQIJ4cO5Tvu6YcpVKH/LhYoXHiAI0Jj2zF7Vu9bH+yFq9/VzM+M1fH3L2bIzlZs7f5847fRfj5HZ4XPNbx9oQP6jRD4x/L4K7NJnyZ474nkyTvUV8acxNOPt6N3b16bOPFP4vHfWTMSdLupzbm+5HLGgvv7/IykStBPTGKoiiKoiiKoowU+hGjKIqiKIqiKMpIsUdysl7uAgzuvZTcJUQcYVcTy2mYXL5DXilJZpCKmR1cla1EpKe2IJsqdRLSNB+NoiDToYLd7/MW3EB5LGbbsSwTlNNl3EdwGR8n1zX99tKyc+lxq7SEiGEpmZAU2YfLyjlMQlz/QbHM2bXNrtJyheroZQWT+ygnyyWGQm4Jlo7lUaPIjc9tVJA4ILS3LHuQ3KY9IXJMJsi+NlIaFLVJzFcQzxXss1AXkjKyfc/56CSnyB19giIBnVhw2y1yrZ9aoegl4+5cd/diJKNzLYopT3KN4HruJaIDhbZh2WJBJuf/v0p1WSrcr/72DNHX9poMWS5tCP2vmugTUl6JQu4i9I+jHEWMya9Jc1dVOv5I27Xd0R7lMyLZ0BpLHEL56Pwt+vtBL3E4TNFsOOpQbuvNaAMpOWZJkAVzP8iln9RXeTwKv+VWmaY26lB7BPvheq2SHTXQL9WTJH1MatyQIvLtFb3ldTQ+fLcrx6qPvLkW69Fej9utpmvLtXqMaHSWtu+rREnigz4/zDmSztRJihzqytGTKoX8Gv2SId7mcTNIZ6ZIHjlL0rXjXrrNksc1jl7o7WWcIntO0Vi30I7j1mLbjYWci2SFbTdE2xvwzOUxi589LAka9/Waplxj3I+O+neIcWq3BYqUerbsxtiFUix/IXJXh2VXm0c03G1a3TYurBbTyaT6g5RDqBDFTpDRpqKPhmiXh+l97EaSIh73Es8yjRNVKtZxkl4eOeRsY/ow2fy98X5+sdcf9bHwnPMjE5eP6yLJaPm33H/C2F6jfdMkmzzsc78db8fzH5mNcrKxa2mMv+ZIuGi+z1z/UL59y9wxAMAX6J2A7SzKyXZeQsaoJ0ZRFEVRFEVRlJFibzwxvR6afvFgHueaviR5Bi3MSEizM0DxSy/zMwo8uyXN0PG1pLwKhdwxvAC+JHtwJPL8HXT8KmUvPdVZAQDcTfHzZ7o0+0KzkNMVN3PFX/aVCZpleMCffyXmyahTG674L+865R1YFxaSAXLMefbEpBYJbzy+UshlImemDTNm4739mgHvz5TO3hdpsRzbIbeF5B1MLWALDJqFKOQNSHhl8oWz7KUY4H2RshZzXQreSSFPyynOZFwmO6m5GaaJZpyJOT0R7eyL3UUAwEPN+XzfXHM535YW8xfKKOTV4T5VL0X7Lgs5FZpUx4Zg/7X99Ahu4lErzB4KvyvYEf25I8yqlgSvTWosC61xaDyOsYfo7w3KVVXvuO15muVbLQQBcGXgNuaAAmslN8Y1aIxlm5S8LqncR6EvlxL1Cp72OgVn4SAFC7SgfrnX76lkT30ITMF2mMp5Jv2dCc+ffIH/Hs6GN9fKOPXPLqfKQsM9ky6Rl2KZ+tOa314lW5sfj3U6R1m8z/Zc+1wgL0a9E+1JCgRTEgLN8PQqj3U8rgVvDgcOkGbOJ7vxmAPUxEf8eTl/0GlaEP1QYb8btx7O4ljWFvLbbWd9fGHBNo2xwQNzrBoXh99YjgEyQoCKAxSxYI68CA941cepchxrL5SjB3yhGe/NaubuXaN92TmKrohur1cIQLAZVzqLz30z5CZaIQ/WShbv/UwWvNbxmkvsFaegSjPz7t5cV/hz7B+Hvbphit4vOFBD2GYb4GeflOOH862EewjI73MThTHaHT9H7z0PLUQ7yz4d7eTI8n2ufCdiu5TKsSxHvbeKA2ssVKNtSffrSoNhSKgnRlEURVEURVGUkUI/YhRFURRFURRFGSn2bGF/vnBXWKialfvdqrzwj+VkUgxxdlFlgpyM44OzJEFy86cW3oVypSQNGxfqbjzXYsctnrK0cLBKORRaLcphUHf1mqWcGrUT8bwnJp00rf3ZuK/enM23L9WC1COWPzqWi4T2YldmI4vu3bX21hYslkuym5AlWiveVT++TzKeLMvywBG5nVVIQlZid68royQ/3C5X6jYtXDekOKG/C0qqgqyB3eh5gAqSIrBNt+k+tny/a9BC0MVKXARofa4M7ke82HW57XMMtXlhryytCZISlmPyeUNekflydFezS77RG/fniXVp9vrrAkR50n7KyTZKibh8ZWFuSZIUpOD7WRPGKz57mwxlxRtSq03jXlWW/K34R8dD1Xi2e0rxPp/14x3LNbiOl9MnUsFgSsKiaZaDNX0IlEsUsIBbcIkWntf9b1K2E2RknJeDF56HZ1HqHkkBUkJbVPYwV8d6t4y7193z56Gau4ecz2kBHNzBjwPcDpyXhNov5BVb6SQWkgeZIUvIedwd0CdLBamlKzeP0S16vwjyxjGSmE2QTOeg3z7eicccY1lXLcpkuhX3m1A/AFgsxbEwD5CTyTKgsF2UHMvy4SC7PFSK7wTHEKV+13h5Ei/OvgGR436h9UF6tt1DkiIeX8L9kHKV7RW7GVRACqADRDnZJZI9PkSyxOVS/7jH9j9O74bz4669H794ON83S2PNlD/tFAVJGctYTta/7IEpvPN2+iXD/HwPfa2VeCeu+UBLHQoacZakZcfqR/Pt45/0/YP7OtXh4oS7Bi8Z4Dxuuc0LQadcvTbPq7dV1BOjKIqiKIqiKMpIoR8xiqIoiqIoiqKMFHsUnSy6K1k6JpFH+Urk3JCQciXwdkoCFmQlJdLjTFL0sMly3A7nKuSBESI5SfkJgCgzONNajAWPHl40ajESSqfl3JOTD0c33tiReFxpzJ13YjL+vRpVG/E87MZLuFXz6GJU7iq5F8vBPdmR6x3q2COXfBQSFCOdBff7fsl4ylkJ01XX6EHmxrIGKWqTlNdBOu/G41Oyqa2SjFQW7iN1iVTsowDbYbcjxNKnvzcpUlPJy8DqWbyjl0rLfccVoraxdM3XYTtR/hhuwyBJm19fyfexVGC96voP23HqHoTftLP9k1BslG8U82JtHpEsNTZKkQKrwniUugfzfmy+vxVlNGXy+K/QOHnaD41fJNt4oB0j21xsu/sUZBtAcewMEq1BOSEAICgfM+4TgvSqkJuJbcNf6xJiWVgixpEbg4yM97Wo3I1uv1yDbT7UUYoI6MotP6sA95zcK9ZLwL1eRna3j250qkt5UbrxvuZ1Ssi6C23p24clZFJeknWKLLhGMsQwHqdyIfH+ECFyjaQ7C7Q95tu3W+Y+QLlCvBxrgkbQWY4S2mXJj5diJuTiW0WSmG0kyj5J+k4yuTXhspzbaabp8+NU4wtGh/LMrFTiM3nJS375flxNpKJAhravU5TBc1l8ts1nrl04512DZJMsoVqpuRiO62Mxytct7fjuuC4UoS1ENExF7iqO/ZsPEsF2uK9yHZZ6rg5Nev6cpT5R41w6PgLbeCG3Ih3nlztw/5ciDXMU0ha9X3S3kBdvK6gnRlEURVEURVGUkUI/YhRFURRFURRFGSn2RE6WIUpicglXwpUUXNcsB2gJ7no+jn/L7rZSr9R3fv5tKNMUJbg6WI2yrgMUHSS4rC+1opxlnVy4eRnps1CKbMUyknPt6L4sV+Jvx73r91AjuoAn7onXmjzgXIJLS7F8c3R8iMJTJ/dngyJMtISoEOymr5X6I2e0EokJpagm3MacnDTIXFjuspeUsxIO+MgtkmyhYIfeBZuSkHEdOAJbfq52f7LJy3WZisdl8t8l9/kgF3ShT2yShHErSOfqcXLTxK2X6lhM8unuQ4hStvHvoY3HyzGKjxQ9cBjo9Xr5eBHsS0ruyKTkoJKcjOlQgsdwDU4OWKUBa8VLVj4/RvLCQrK3OG5c6HkJEo1h50kqu9J2/T4lqxoUYa0oWfXHJIST4Vyp6IFBIlaQQxWeGSSHDOdKyPfa0rlYcurHw1S0p2J0zOLfens4p7iOHu7zMq572u6+naX7VycZcFt4Xkg2CkQ75We2KL2jU3KbVIVnROrZFODoZjUeYPxhbUriCZaW+XGp24nXXyU5zUqJIp355wFLCwfZ8CBSfTo8n+v0fnFBHENjW3RbsQ2m/fHTlORzHJtLeot958qeAaNEIQImScuWek76znJ4lkWyfebvU1FBhmY1vrtN+vdQjvjHCWDDNVh2JUXhBeIztRBxjOT/ExVn66mIf+FcLMFcTIxlgUJiYbKjILnl9+C2EIFyJ98vJNQToyiKoiiKoijKSLEnnhhk8iL7AH/9ZWHBJy1Alma6gDhbl1ocKs0CcmCBCf+1eqwWF2Q9onIw3+a43vd13YzjefrS5EWrgXJXnvHIBA8Uf5XOl+Js0Tk/m3yqGj0thxfoy37Fffne345eo/vH41f8eR/LfoFi2vMsA7enlN+GF0fniwwLi9bpaxv9cct7NAPEM+cSY5v+dWcpZyVMVybz7Y2whyrYWWqBKc8Ihm2e7S/M5HY3nym+HAYu/E/8duB5dzJXRdZ/ztQM9aDZ9FAHji3P+WcCrUr8e5iV2kgINCCNRXsB583Kx8VtzFCl28gHWsjksTPMnk+QJ+ZAL9p3mJCeI4/LpV5s4xXy5s77hd8XWnEx/2Ir5s1Yb7c2Las4HvL9EPpP4e/UffP+lVgMG2YHuwnvS1coY2phbJiN5VnTtuBpKDzT2MtGlwr7dzNPRopmr4v7O05VcKa5AABYaMWF/eH+AbEupUSAnEoiD1tAGgtTXoyw8LeU8KK2KdJEuG+pMTr8vU2N3qPnLCquH6zT826F7Ophype26GfO10jdwGPZlY6bbIPB28M5lvjvq76N6pRzbnEs1utI173XLFC9z/XiuZbJCxCuVRyXr/657WB/bIes8gnvS3XKe8Z9XsrpUgjsU41tf8Db3PlOHB8X23G74Z9jxaA4m3v5KuRRHKfn3JTP/zJFQak4CEHIEcTvOqzSWRcUO+zJGaf+Ezzj/B4sbbMn9kq9lxJXv7UqiqIoiqIoinJVoR8xiqIoiqIoiqKMFNleuLKNMRcAPLDrF1JGkZustcf24kJqh8omqB0q+43aoDIMqB0qw8CW7HBPPmIURVEURVEURVF2CpWTKYqiKIqiKIoyUuhHjKIoiqIoiqIoI4V+xCiKoiiKoiiKMlLoR4yiKIqiKIqiKCOFfsQoiqIoiqIoijJS6EeMoiiKoiiKoigjRWW3L2CMKQH4TQBPALAO4D9Ya+/e7evuBsaYKoC3A7gZwBiA1wP4HIB3AugBuAPAq6y13X0q4hVhjDkO4FMAngOgjaukXoDa4SihdjgaXM12qDY4GlzNNgioHY4KV7MdDrsN7oUn5tsAjFtrvwLA/wvgl/fgmrvFSwDMWWu/BsA3Afh1AL8C4LV+Xwbg+ftYvsvGd8K3AFjzu66KehFqhyOA2uFIcVXaodrgSHFV2iCgdjhiXJV2OAo2uBcfMV8N4P0AYK39GICn7sE1d4s/BvA6v53BfZU+BcCH/L73AXj2PpRrJ3gjgDcDOOP/fbXUK6B2OBqoHY4OV6sdqg2ODlerDQJqh6PE1WqHQ2+De/ERcwDAIv27Y4zZdRnbbmCtXbHWLhtjZgC8G8BrAWTW2p7/yTKA2X0r4GVijHk5gAvW2r+k3SNfrw2oHQ45aoejxdVoh2qDo8XVaIOA2uGocTXa4ajY4F58xCwBmOFrWmvbe3DdXcEYcwOAvwXwLmvtHwBgPeAMgIV9KdiV8QoAzzHGfBDAEwH8LoDj9PdRrRejdjj8qB2OGFehHaoNjhhXoQ0Caocjx1VohyNhg3vxEfMRAN8MAMaYZwD47B5cc1cwxpwA8AEAr7HWvt3v/owx5ll++7kAPrwfZbsSrLVfa619prX2WQBuB/AyAO8b9XptQO1wyFE7HC2uRjtUGxwtrkYbBNQOR42r0Q5HxQb3wnV3G9zX3EfhtILftQfX3C1+EsAhAK8zxgT94w8D+DVjTA3AXXCuxKuBVwN461VUL7XD0UTtcHj5l2KHaoPDy78UGwTUDoeZfyl2OHQ2mPV6vcG/UhRFURRFURRFGRI02aWiKIqiKIqiKCOFfsQoiqIoiqIoijJS6EeMoiiKoiiKoigjhX7EKIqiKIqiKIoyUuhHjKIoiqIoiqIoI4V+xCiKoiiKoiiKMlLoR4yiKIqiKIqiKCOFfsQoiqIoiqIoijJS6EeMoiiKoiiKoigjhX7EKIqiKIqiKIoyUuhHjKIoiqIoiqIoI4V+xCiKoiiKoiiKMlLoR4yiKIqiKIqiKCOFfsQoiqIoiqIoijJS6EeMoiiKoiiKoigjhX7EKIqiKIqiKIoyUuhHjKIoiqIoiqIoI4V+xCiKoiiKoiiKMlLoR4yiKIqiKIqiKCOFfsQoiqIoiqIoijJS6EeMoiiKoiiKoigjhX7EKIqiKIqiKIoyUuhHjKIoiqIoiqIoI4V+xCiKoiiKoiiKMlLoR4yiKIqiKIqiKCOFfsQoiqIoiqIoijJS6EeMoiiKoiiKoigjhX7EKIqiKIqiKIoyUuhHjKIoiqIoiqIoI4V+xCiKoiiKoiiKMlLoR4yiKIqiKIqiKCOFfsQoiqIoiqIoijJS6EeMoiiKoiiKoigjhX7EKIqiKIqiKIoyUuhHjKIoiqIoiqIoI4V+xCiKoiiKoiiKMlLoR4yiKIqiKIqiKCOFfsQoiqIoiqIoijJS6EeMoiiKoiiKoigjhX7EKIqiKIqiKIoyUuhHjKIoiqIoiqIoI4V+xCiKoiiKoiiKMlLoR4yiKIqiKIqiKCOFfsQoiqIoiqIoijJS6EeMoiiKoiiKoigjhX7EKIqiKIqiKIoyUuhHjKIoiqIoiqIoI4V+xCiKoiiKoiiKMlLoR4yiKIqiKIqiKCOFfsQoiqIoiqIoijJS6EeMoiiKoiiKoigjhX7EKIqiKIqiKIoyUuhHjKIoiqIoiqIoI4V+xCiKoiiKoiiKMlLoR4yiKIqiKIqiKCOFfsQoiqIoiqIoijJSVPa7AAFjTAbgHQDusNa+0RhTBvDrAJ7pf/IXAH7MWtszxnwdgP8KoApgDcAPWWs/4c/xcwBe4I/5RwDfZ61dFa53DMBbANwC1w5/DuA11tquMeYwgDcB+DIAEwDeYK19lz/uWwD8PIAxAP8M4LuttUv+b98P4D/4Yz7l/7ZO1/wGAL9krX0i7ftBAD/g63EXgFdZay8J5Z0F8DYAXwL38fk71tpf3GLbjgH43wDeYq199xZ+/40A3uDbpQvgJ6y1f+n/9goAP+b/9ldwbd8yxnwUwCSfBsBbrbU/tJUyDgv7YIeTAH4bwJPg7utrrLXv2fCbnwVw2Fr7A7TvJwG8DO4+/B6AnwEwC+CDGy7xOF/eX5Hq5/cdBvBbAJ4IoA7gHdbaNw1op1cA+HZr7fM2+92GY54A4P3W2mu38NsSgF8A8C1wNvhFAP/RWnths/MZY14M4KcAtAGcAvD91toHtlrGYWGY7NAYcyOA3wRwHZy9/ectjAdlAK8D8K8BTPny/qi1tkfXLNgQlfffwtnhR/0xDaG8yfF7QLt+LYBfghujFwG83Fp772bHpMo7oP6zAM4B+Dyd4kestX+7lWsNA3ttg3RdqV9fzjNpt23wBrhn8gkAZQD/1Vr7O1to1xcC+Em4d4gHALzMWjs36Dh/bN+zgP72qwAeba391isp3zCjNrnz4+LltIc/TnwubKe8O8FQeGKMMV8K4K8BvJh2vxTuRfhxAJ4AZ6QvMsbUAPwRgO+x1j4BwOsBvMsf8+0AvgHuZeyxcC/VP5y47K8C+Jy19vEAngzg6QBe7v/2TgCnrLVPAvBsAL9mjLneG8g7ALzQWmsA3Av3ogVjzAsA/KD//WPhHpI/4v82YYx5PYD/Cfpw9J3sNQC+3n/Y/AWA/54o78/5Mt0K4MsBfJ8x5isSv83xv/kYgK8e9Fv/+1kAfwDgO32ZXg7gj4wxM8aYW+Felr8W7t4cDHW01n6ltfaJ/pj/D8B9cJ11ZNgnO/xpACvW2i8F8BwAv2mMud6X53pjzLsB/OcN5fxmAP8GwFMA3Arg6wD8G2vtQrgH/j68DcDfw32Qp+oHuL6wAvfR/gwAzzXGfGuijQ4bY97sz5kl6rTxmIox5kcAfADAzFaOAfAKX78nW2sfB+BuAL+82fmMMY+GG8C/w9+TXwQw8KN92Bg2OwTwZwD+3I+HLwPwh8aYsc3GA3+dZwH4KgCPB/AVcA+1zWzo5QC+FcCXe/t92NdHYrPxW8TX5za4D9snAPhfcA/hTUmVd0D9nwHg77g/jtgHzJ7b4Cb9+rKeSdh9G/wNAH/h6/z1AN5EfUbEGPNUuJfuF/pn+RfgXoQ3JfUsoL+/GMBLrrR8w4za5O6Mi9tpjw2Iz4VtlveKGYqPGACvgvs4+J+0rwz3pTrm/6sBaFhrmwCus9Z+xn/xPRLAHABYa/8EwFf538wAOB7+JnAb3GAC/4V4B4Cb/Kz0c+CMENbaU3CGcAnuRv+jtfaL/hy/BeD/8eV4GYBfttZe8l+9r0TsNN/o6/KKDWV4CoC/8tcAgD8B8DzfATfyw4gD2LW+TRYTdWN+CMBrAXx8p6tfSAAAIABJREFUC78F3KzF91tr7/T//hxchzoK4PkA/tRae8HX8S3YMHD69nsz3OzSVso3TOyHHX47gLf64x6EGyzDIP3dAD4M//K+4Zg/sNbWve2+A/334Ra4+/5Sa21rk/oBzg7fZa3t+DL/OYAXJcr7YrhBSXyYJngy3ICdOqfEnXAzasGT+UkANw043xMA/JO19rMAYK39OwA3G2Nu3sZ1h4GhsUNjzBPhZn5/y//tM3ATIl1sPh68DMDrrbVr/h6+EO4FBEjb0FMAvMdau+D//SdI24w4fid+G3gRgPdZaz/t//0WAP9pwDGblXez+n8lgMPGmL83xnzGGPN9W7jOMLEfNpjq15f7TNptG/w2+AkiADfCeX/XEr8NvATA26y19/t//zScZ3AQqWdBeLn/cQA/uwPlG2bUJh07Oi5usz0AAAOeC9sp7xUzFHKy4Bo1xnw97X4n3GzzabhyfsBa+2f+9y1jzAkAn4Yzmn9L52oZY34A7svvNNxNla75v8K2MeZJAP493BfyLXCG9KPGmOfCdYw3Wmu/4N2zD9FpTgE4AHfjHwPguDHm/QBOwg04P+6v9R4A7zHGPGtDMT4B4IeMMTdZJ3n5LrhOeMSXgcvbA9A2xvwenEHcBsBKddtw3L/zdfyxQb/1v78IN4MR+FkAX7DW3ufrfz/97RSAjTM7r4Gb/fnkVq43TOyHHQKQbOp6f46f8eX5aeGYv5aOId4A4E3+hXSz+gHuA/elxpiPwNn7CwG0IGCtfbM/x8sT9ZGO+QSAT2znY8Ja+w9h2xhzCM679+YB5/sMgFuNMU+01t5ujHkeXF+6FkW7HWqGzA4fA+B+Y8yvwM0etgH8lLX2zgHjwWMAfJkx5icAHAPwp3Ayv81s6OMAfsQY8+twk0Yvg7t3Uhulxu/NeAyAujHmD+FmSB9EnCFNskl5N6t/G26m8vUArgHwt8aYh+0Gqeiwsk/PZLFfX8EzabdtsOvP8UG4F7hfsYNlYY8B8M/GmPcCuBnAZ7E1GxSfBcaYabjJ0pcDeOoOlG9oUZvctXFxO8+JwGbPhS2XdycYFk+MxE8BuACn57weblbr1eGP1tpz1trr4Nxx7zDGPIb+9usADsHdiE3lJMbpGj8A4AettbfDfWE/AsCStfarAHwHgF81xjwF6fbq+OOeA/c1/VQAhzHATexnin8GwG3GmE/CfcVeAtDc5JiXwHXIw3AvdruCd6P+GtwA8UK/W6p/h44ZB/C9AP7LbpVrH9htO9y0TS/nGD+IfiOA/3/AeQKvBtCD+wi4DcD/wSY2uJcYYx4F4O/gZHG/sdlvrbX3wHk732yM+QzcjNA/YUjqcoXslx1W4R5SH7LWPh3uheuPjDEnNzkG/rhnAPhmf/xXw8ltk1i37vCPAfwNgI/ArSfZ9N4J4/dmVOFmSV9nnQTir+FmCS+XZP2ttT9nrf0Z7908DTcb++1XcK1hYE+eySku45m0JzZorX0W3EvaNxhjvmtANaoAngfgP8KtPzsL7wG9TN4GN1l1xw6Vb9RQm5TLtZ1xMVxnO+2RfC5cTnmvhGH+iHkBgLdba5vWyZJ+B8DXGWNmjTH5w8BLA/4JwOOMMU/wX5/Bc/HbAJ5sjDlpjLmd/jsJAMaYH4Wbxfh3vuEB4Iz//zv9ee6Ge4F6GtzMHX9RXgdg3lpb98fdZq1d8m6534PrOEmMMTNwRvBka+1T4TTaAHBpQ3mfaoz5xlBua+0KgP8B5+rccfzM91/Crbd4Bs3mS/U/Rf9+LoDb7RYXyo4Iu22Hg9pUYtAxL4KzxeUt1vEAgB+31t5qrX0O3Mf03caYf01l/YstnmvHMG7N2D/ABbF4paXFj4nfjwG421r7DP+S+nq4CYn7dr+0u85+2eEZAAvW2vf683wCbi3gEzY5Bv64P7TWrns7/GMMHg8Pw8kkH2+t/Qo4icbd2xy/N+MMgI/aKAd+G4AnGGMmtnCsRLL+xpgfNG7hayBDwrs5Quz6MznFZT6TdtUGjTEv8s9wWBdw5D0Y/Ew+A+AvrbVnvafkHYPKtElZrwfwNXCz3rfDeQO+JozVl1m+UUNt8grHxVR7DDgs+VxIlXdQOS6XoZCTJfg0nFfjb40xVbhoDh+D+6J9uzHmvLX2I8aYx8JF7Po43ALnVxtjvtK6yAovA/A31tozcIuWcvyNfhWc8eUv3d4d+GkA3wm3EO4EnL75l+AiifyyMebR/kH4SgDv9Ye+G05D/lYADTg96j8OqONJAH9tjPky6yKcvQ7A//CGtLG8bwPwAmPMK+EkZy+GmzHfUfyL4AfgOvwrrbVt+vOfAnivMeYNcLMf3ws3MAaeiaLM6Wpgt+3wvXDt+H3+ofRNGLwI7r0AfsoY89/h3Lgvh//o9jwT25tZeiXch8wPeHv/HrgB8B/h7vmeY4z5SrgZoe+w1r5/i4eNAfiIMebx1tqH4GaH/t4K0f5GkP2yw1MAGsaY51lr/8wY8yUAHgUXmfE00uPBuwG8xBjzv+F069+KwWPDUwH8gjHm6XCewZ8A8PvbGb8HcBuAVxpjHmGtvQ/uBehOa+3lrhPYbDz8ajjJxQ/6h/p3w61PHGV21QZTXMEzabdt8Pvg7vF/MW6h9/PRvy5lI+8G8EZjzBusk3a9AIPfE0SsW0ubv2gbJ0N6kfXRyQBcTvlGDbXJYrkuZ1x8PIT2GHDMR5F+Lojl3WJZts0wf8T8CNxHxOfhDPKvAfyiddq9bwPw37zRrgP4975Dv8u4Bc2fNMa04RYHf/fGExu3cP7nACwA+BNjTPjTH1tr3wDn9v8N/8FQAvCz/oUOxrlj3+3PcQ/cDQdclJvDcKGVy3CdK3drSlhrrTHmFwB83LiQsn8PF25Z4tVwawI+C2cY78HW5ULb4UVwRjgO145h/0uttf9sXIjHv4FzJ34cLgJU4NFwC7CvJnbNDj0/BeC3jDF3wtnNj1kni0riB43Hwa2pqsF91Pwu/eTR2N4akJ/3Zb4Dbsb4p4O97yM/48vyC76PAMB91tqkJMdau2SM+R4A7zMulOVdGByZZVTYNzs0TprwJmPMz/vfvsI6idTpTcaD1/rtO+CeM/8HwH/brILW2g8YY54J9yAswY1xv7rxd1sYv1Pnv92/eN7m22oeTgZyWQwYD38AwFt8e1YB/F/23jTMkuSqEjz+9tgjMiP3yqpSqaq8NkoUEloYtPVAIaCnm22AaZj+gGYa9UgfME2zzEDTIGgauoUYlgZm2ESzjBBC0rAOooUkBBJqJFWpVlmtmVmVS2TGvrz9PZ8fZub3eDzzeBGZkZGRWfd8X37p4c8Xc7NrZu52zz33l4wxu77otMe42jaYh8udk66aDTp8G2wbP+L+/jVjzJaxBG7svgnAx9ycfxo7r4/tYsfluw6hNulwBePijuvDGNMaMi9stw9dMaIk2ZKhoVAoFAqFQqFQKBT7CvvZE6PYBuI4/jjyc2+83gTiImKbFOvNOedcVwnZFNcesY1dyVtp+YgxZkB9J7Zc7Y/nnLNmjHn9bpVP8dLBZY6H3w/gW3LO+U/GmKtGhVDcWLjccU3nZMXVxI38nqieGIVCoVAoFAqFQnFdQT0xDo7D+Iwx5r9s2j8L4JIxZlvZyfcCsU3e9FsAHjPGvDPnmK+GjXWownIT/4UTD0Acx5dgg3I9dLVxn+ClZId0zPsBnDMuD4Di2uKlYoMu2Pk3YAN+C7AqeD8TuoZi7/ESssMRWPn4L4a1w08BeNsVCE4odglqg/vfBvezxPKewhjzo5sNdT8ittl5PwzJ6h465hCsMX+9MSaGlb77afdbDCsL/YX0Tz9g9gleKnZIx/wArEyoYp/gJWSDPwHgRWPMfbCT97+K4/iy5G4Vu4+XkB3+MOyC8itglaJGYBWdFNcYaoP7Hze8JyaO4x+CVVpYg02a9zXGmFvjOH43rJrYywH8KWyypMeMMe+M4/jrYBNV1kHyh7GVMPxa2Dwad8Am8PnnxpjH3KrezwP4AlhFig/DKvx04zj+cXdeG8ACgG8zxpzfYv87ANuBAo/0NlhDPBP4zeNBAP9gJB/CrwD4XBzHb4OVi+7FcfwR2Gzm7wPw740xwxIsKq4AaocAyA6NMYmLpXkLrOrezHbqUXH5UBsEkB0LvwdWiQ2weR2qAFa2rkXFlULtEEDWDv8GwClj88Ygtol67x1ek4rLhdoggBvEBm9oT4yTgPs22FW2V2IwsGnUGHOvMeYH6ZwjAH4T9mv1lbASiIw3wmZBvQ82G+n3u/0/B+Az7pwHAMwC+NexzZ7+vQC+2NiElh8C8Jq8/UD69R8yVBhj3m6GJzA6CeAF+vtF2DwgExBZv7cAeANsZvctM8YqrgxqhylSO4xtYq6fhw2o1g/oqwy1wRSpDRpjEvcy8buwkqcfBWCGXE9xBVA7TMF2+CFjzFPuWW9xZfjDIddTXCbUBlPcEDZ4Q3/EAPgqWI3sZWMTSP7nTb//beCcLwXwqDHmCff3/7Xp988YqzUO2FwwB9z2PwbwXbHNnPsZAK+G/fo+C5sQ6bNxHL8TNqP9B7fYvxvIa9eeMebXjDHfbWzG2GUA74L96ldcPagdZhEBeA+A7zXGnN+leym2htpgFumHszHmW2FfLg4ACL4kKHYNaodZpHYYx/ErYZXNfskY86e7dF/FINQGs7iubfBG/4jpwr4weWxe8V0PnJNsOqe76fdGzrFFAP+jcXEmsF/Pb3fuuTfCfvkvAPi5OI5/Pm//Np9rGM7A0iM8TsDGwWzEcfw/x3F8P/0WAejs0n0VYagdWpyATTB4D4CXAXiXG9zfCuCb4jj+9V26r2IQaoMWPBZ+hfMIwhizDuD/AfBFu3RfRRhqhxapHQJAHMffDMuQ+CFjzE/t0j0VYagNWtwQNnijf8T8GYCvd7xEwHIgh2lKfxzAvXEcv8L9/W3bvNdfAvjf4jiO4jiuAvhjAG9313kMwJPGmP8A6158Rd7+bd5rGD4E4LVxHN/h/n4rbFZ3ALgPwDviOC7GVpHi7QD+YJfuqwhD7dDirQD+X2PMJ40xJ2lg/1UAf2CM+c5duq9iEGqDFjwWfiOAf0fl/EbYLNuKqwe1Q4vUDuM4/gYAvwDgQWPM7+/S/RT5UBu0uCFs8Ib+iDHG/DWAXwPwyTiOPw1gCjYoa6tzLgH4ZwB+L47jz8KuGG8H3w1gDMCjsNJ1jwL4j8aYzwF4L4BPuzJ8B2yioOB+wMr6+SCu7SKO41e5VW0YYy4C+HYA74vj+ElY9+X3uUN/HMAilfMTAHQF/CpC7TBoh4o9hNpg0Aa/D7YeHgXwaVi6x26teioCUDsM2uF/gF25//U4jh92/zZTnBS7BLXBG8sGb+hkl3EcvwrAlxhjfsH9/a8BvMYY803XtmSKlxLUDhXXGmqDiv0AtUPFtYba4I2FG11i+SkAPxjH8b+EdReeAfAvr22RFC9BqB0qrjXUBhX7AWqHimsNtcEbCDe0J0ahUCgUCoVCoVDceLihY2IUCoVCoVAoFArFjYcbik4Wx/FPA/iIMeYv4zj+EIB/ZoyZj+P4FIBvMMZ8+irc88cAzBpj3r6Dc94Eq8N9X+C3PwXwPmPMu4dc46thg7GqsAFj/8IYsxo47u0A/hWs2/RZAP+LC/DiY94P4Jx/hjiOfxbAnxhjPrrdZ1II1A63b4dxHBdhcxV9Bex49E5jzK+6c34XwE8aYz6/3WdSWKgNBm3wW2GT0CWwgbzfbYz5dBzHFQC/COD17tC/APADxpiejoVXBrXDHdlhAcBPA/hq2OzvTwP4LmPMpTiOvwdWDve/bPeZFBZqgze2Dd4wnpg4jl8L4B5jzF+6XV9+LctzNRHH8SEAvwWbPTYG8Bys4W0+7pUA/g1sENt9sAb5E5uO+QHI5O3xDgC/GFsJZsUOoHa4Yzv8LgB3wEp/fzGA743j+NXutx8F8O44jiMotg21waANxgD+E4C3OFnvnwTwfvfz2wEcgrXB+wF8CazcMqBj4WVD7XDHdvgdsBnkv8gY8wUAngHws+63X4IdG49e1Qe5waA2eOPb4I3kifkx2EpGHMe/5fZ9JI7jr3Lb3xXH8a8COAzgd4wxP+y+fH8ewAasDN6rATwI4EcAVGC/UP+NMeaTcRzfBeA3ANTgpOiMMb/srn1XHMcfgU0kNAfgm40x5+M4vteV6SDsF+/Pbv6KjW2ytd8GcBzAaVc+/9s7AMAYszmL9IMA/sEY87T7+1cAfC6O47cZm4EW7rzPxHF8hzGmE8dxDTa50fN0/TcDeAtsno4ZOm8ljuO/gw12U8nRneHHoHa4Ezv8WgD/tzGmC2ApjuP3APhWAP/NGPNcHMfLAP4JJLeHYjh+DGqDGRsE0ALwncaY8+7vTwM4GsdxxRjzrjiOf9EY03cvAtOwMvQ6Fl4Zfgxqh9u2QwCPA/h+Y0yLfnubu18vjuP3AvhBOMldxbbwY1AbvKFt8IbwxMRxPA3rTfgQABhjvt399GZjzAtuu2mMeRWsQX5fHMcn3f77APxPxphXALgZwE8B+CpjzAOwE9f74zgeg3W9/Ykx5pUAvgrAG5zrDQBuA/CNxpi7YDOSf2ccxyXYxEa/aIy5H8BXAvipOI5ft6n4/xnA3xtj7oXVFL/L/2CM+dGAoQLASQAv0N8vApgEMLH5QPfi+DXumDfAfqn7TvLzAL4FgxlrAeBPAHxdYL8iB2qHO7fDnGvcRH+rHe4AaoNhGzTGnDLG/JmrowiWwvjHxpi2+70TW9rJs7AvHB+n09UGdwi1w53bobFJgD/rfpuB9UT/IZ2udrgDqA2+NGzwhviIAXA7gPN+QsrB7wOAMeYC7CTlv2xfMMacdttfDvvV/OHYJgj6PVhe4O0APgDgB2IbP/J1sBzCvjvvr4xNhgQAn3PXvhNAzRjzfnffcwD+CNbzwfgyAO92xzyD7WWMzmu30McIjDEfNMbMwq5K/GVsM8e+B8D30tf4ZjwLIN5GWRQCtUOL7dphIecafL7a4c6gNmgRtEH34vFe9xzfyb8ZY34I1iN9CnYV00NtcOdQO7TYsR3GcfxyAH8D4G9hX2Y9ngVws/NmK4ZDbdDihrbBG+Ujpg+gOOSYDm0nsK4/AFin/UUAHzbGfKH/B+C1AB4zxvwpLHf/vQAeAPCoa+i8a4fqtgCgvGkflwUAukOeA7C65sfo7xOwAVcbfFAcx7fHcfyltOs3AdwC4FWwGWff5TrlWwF8UxzHv07HFpFj/IpcqB3uzA5ncq7xIv2tdrgzqA0GbBAA4ji+GcAnYO3pzcaYZbf/v4vj+E7AemRgXx6+iE5VG9w51A53aIfutzcD+CSA3zbGvNVkaUBFV7Y+FNuB2uBLwAZvlI+Y5wAc3vR12MOgYQzDXwN40PEc4XiTjwCoxXH8+wC+yRjzHgD/K4BVWPddHgyAdhzHX+eudRzA1wP4q03H/X9wiZacYb15G+X8EIDXxnF8h/v7rQjHDBwD8J44jmfd398C2/H+zhhzkjrkrwL4A2MMf43fBkBVoXYGtcOd2eGCO/474jguOff/NwP4IJ2rdrgzqA0GbDCO4wMAPgbg/caYbzbGNOjnfwTg55wNFmDtk1c+1QZ3DrXDHdphHMdfAruy/8+NMe8M3OM2AM8P8SwoBGqDLwEbvCE+YtxX5MeRbej3A/jbOI4H5Oq2uM7jsIbznjiOPweroPRP3JfsTwD4Frf/U7AN/bEtrtUB8DUAvieO40cA/FcA7zDGfGTToW8DcE8cx0/CBog97H+I4/gdsQvi2nTtiwC+HcD73HlfAOD73Dmvct4VGGM+DuDfA/io2/fNrkzbwVuQ5UIqhkDt8LLs8FdgXdSfA/APAH7DGMPPo3a4A6gNhm0QVt77ZgBfG8fxw/TvIICfgQ2e/Zz71wXwv9Nt1AZ3CLXDy7LDH4ddff9p2v8Buo3a4Q6gNvjSsMEoSZLhR10HcF+QP2yM+eprXZbrHXEcTwH4OwCvMsY0r3V5rieoHe4enFv+9wC8bpNLW7EF1AZ3DzoWXj7UDncPsc2n9VkADxpj5q51ea4XqA3uHvarDd4QnhgAMMZ8AoCJ43hzgJRi5/h3sEH/OmnvEGqHu4qfhJWC1A+YHUBtcFehY+FlQu1wV/HdAP7P/fTyeD1AbXBXsS9t8IbxxCgUCoVCoVAoFIqXBi4r2aULfvxlAK+AJM55ZjcLplAMg9qh4lpDbVCxH6B2qNgPUDtU7DUul072NbBa168D8EMAfnb3iqRQbBtqh4prDbVBxX6A2qFiP0DtULGnuCxPDIAvhZWAgzHm7+M4ftVWB7/89juSbjdLW4tyjg0hiuToYlQY2C5GIgXO1+0lVsq6m4ikNdPnEgxS6SK6At+35O5VonsV6feCO68A3jcIvmOP/urTds+VsU9S3D0qdz8ZlOhOtvhrM/gZi4HnKlMd19xTTNE9q+OSMiHp2Xu1G2JKdXryFjVIxz0PP3ez0Jo3xhzassD52JEdfsGd9yRjSRWAiMeXqKrKVMelyG5zTTboueqR/NJKbH2wnfWo7Xx75bWKtIFcvxJJfY7QfavuIhUqa7Eg94p8uRKp+GZf2nbdXaqRiOx8J5H2zPSVQIlD9NPMcfxz5P8b3tv9NbKXD90rjCi0RbctUB1GgXIVysnl2uGObBCwdjjq7DCc6VOesuO2uV26Aduy295mw7Xkn5fH0EJmDCu4/8PtlR2j/NjaC/7u71XK3IvaIL1neGznekk2/c/nA0AxHXu5rIKuO7M/ZOzncmf20S5/CW6DTB24egmNsUC2vuUc126FPszTn9/J1MjYkR3edcddSSGx40Jav8lg+9rfB+vvcpEMsVHfsoFqChzpjw3Xtbc97vs8Z5fc/hq1VZUMp0hl7Lrz6lSuVsYG7HZ2zh7czqtDfobQFlt/EviV7c3/3s997wncn7Yr1cKezcn33Hl3Uk6s4vGom5XH+zQPF3h8s6XsJNKeXSp4j7fd/x1uQwyOlWwvZaoFv13MMdM+3cvPpDxu87a3jWHzbN5YyOgF3iV4TCm797ixSFSkp6g+axVb2j49QKsr7weNAu13d8k8V8B+M/enZ6j4OYBO4fos0HWL7r2lWJB9z0bbeze83I+YSQAr9HcvjuOSMSaYkKfbTfDi2ToA6ax5Hwu+s/G+akkaZLws29OVMft/aTzdx5PmUtfm+FlvS96iVk/yD/UDBkptiGpRqmemYu8xW56QfQWRHx9xL501yq00yh887nmbZMhrlL9og14q1/st+7v7HwDWupLWoN1ru/KHB0z/MsEDF9dnpSDPVSuNDDzXsaLU590YBQB8ZVfyJd3+Kmn67op9nlOPHEj3PQw5/+mSPO952OdZTaQNnhx56jQuHzuyw7GkigfbdwMAJtxAeJBS2B3rymmHy7a+2z1pw8cKo+n2Q2WRSX+2twoAuNRZS/etdOvpdsO1V7cvN2P7Hy9bO5qpTKb7XlaeSbfvxli6fae77XGyjamqlKVWs3Xb7Uk/eHZDrvu3zmQf6S+l+862ZXujI+Vu92x98AtHjzqNf55e4EUaAIoFv8gQHpBDL029ftimh738pC/oBZqUqP/WioP7y9Q/a4dal2uHO7JBABhNqvjvnR2OBF6aVyKxk7nEtu2FnvS/Rdpe70q8uR8XeLJkVAt27KyVaNwqVNLt8aLdPxKFp4U69Vtv34sdGVvrXbFJP8b4MRoAJooj8rsfL2ksmoyqUi5qGz+JtskeavT7pLsWf+zX6YVl0dXhWl/6SZvqiCfhortGkdqFf/cvH0s9GY8vtqX56z1bB2xbE2V57tGCPKOUxZpKc2x54LcdYEd2WEiKGN84CEDmi1Zf2rdFdtV0duXHA2Crj5BBcJ/uuDGDx0IeB0oFW2+l4rAchfLSx+8Hk1TX42U7D00Wxd4nqf4PRXb/yxPpA3e0pSxTZO8XXT95pCK/P51IP5zv2/6w0aM5m2xkzY2rza7YYOZDl148fB3wS21mAcHVJ491PKf7cbPekbI0uvzeM7gIygsMJ2+u7tmcXE7KeHnrFgDAA5Gdp17XlLIeqkkdNjv2GS/0pD0vlsROVslkViP7jOcg9X0xEZv2C48TkbT9UXqfO9a395qil32exdboZXvB3WuF3uf43W6+b5/hXFv6N7+T+j4xUpKyVEuc2kbQcmMsL5z4cR0ADlbte8NrSofTfV/dlLK8/OYFe5262Muzy/Ku8UhVrnWqYOtuifoBj6F+XOYPpuNUhydcHc7S1+VUT2xvkp5hsmivOzEqNvu1xWe3ZYeXSydbBTBBfxe2mrQViqsEtUPFtYbaoGI/QO1QsR+gdqjYU1yuJ+bvAPwPAN4bx/FrATx6JYUYppCW5+ZuOq/KaiSrx0X6LvMr4J0+u/u3dof5VRAAKNPqhl9ZK2ZWRwTew9KmvWv0Bes9RLyiwquBvHrqV2iqtCKa0GqSL0ubvDft/uA2U5p4VYdXbfzqK3uVjtOK6N1NW96XffGinP+GV0hZVqwX4lY8n+5rPiR1WC/Iyti6WwFfp3q5QuzIDvsAGq7+y859uU4rYIu0+tfuWK/LEq30PF8aXN0FgIZbweT2CHoReMWxyLTEQRoP22knYpu1x4wU5V5T07JaNTJjy5XQ6kf7tNzrlr5d7TpL7bJUkP7TLEjb+PJy/+EV2H5gNbYQoHbkusa5BwW9ooN9bTvUtBAyVCJP14y2v5q8BS5rLEw2kULYzc4ueb/Vy1n55r7s64vbi+vQr9ix96VGq3h+bMtSIeRaTVqp99ts5xkqj19RjwbtfHO5PNgeuoH1Naa5Vphi6b0nCdseUxwG6ZpMLWGb8vco5azveY8219tYcdC7EvLubEao/1wBdmiHUaZtAGSWNBPigPhn4fbLzqmDK/t5FK8Q+Hx/XmEIU4P3DxsTMqyPQN/iN+wW3auVSP00C55OJs+9Qf1hrWdX+Td6strPnknvecp6X8KeFN93uN69L1EjAAAgAElEQVQy41dhkArFq/G+vTJ9j+7VYq8MBq91hdiRHY6giHsi+83jV+ybZIiXmjJPrbn3oYWS/L5OxWbqmH/CEK0LIM9/JPvY0+vp4oWcallnOrk/ltq2RrZz0M21vXL4fazhvBuZUAmqg06ArsqezEy/dMeyna7Qa/7Gih2rWi2i/5OdZOh3zuZWiPWx0hf79jbZK8pzTSRy3XbAo8+UvwbRAtGzc1J/gw4QAsmWuNyPmA8A+PI4jj8BOxZ8+2VeR6G4EqgdKq411AYV+wFqh4r9ALVDxZ7isj5ijDF9AG/dyTnbXTUZBubXNgOxIbxq479W+znByn7Fg1dBqkVZ0Rgpyoql98pkA+g4kMtig7wM7Gnxx2aCiQPPx8eM0OoKe2XabiV1g76QAflCToO/Alxje115Ls8XPkor83d05V73T88DAGqvv13Kd/vdctsLLwAAykfOprtqRfIwUXOvOk/FAnGFrwQ7tcMeEqy6dbeeW33o8goVrWgkbrXnEq1onKM6nqO4BB97tUErb+wZEzvcOp6DV2ZbkPuuURmWnX02OtJGfVqBTk25QqsjE1Kuo4t2/+GarB4vlCTWh3nxaUAvr85kOMKu3DldOl3BpTrO9H92xPiVrZxOEQVW7tm+hwUdZzxIfgUpsIK8U1zOWJggSVfvyqlXSJ6PPW9+dTDj8aBK4r7swStjDH9sjcaSUiBuj2uyQ/dl20i9vTljr79uNlh/cEWcz6/TmniLY1bcsRUqK8fMlJ39j3IAN/UJLyhSzzGujJfaxTTWAvUCiKe9Q31yNOCJ6QfmGWCTt2qTGEx7O9HsOdipHRYQobppTqvS6wB7mmrObuoFGUfqvUEvAyA2wM/J/dTHo7E3gONUo8CYkUFoHMjxHPoVbp7fi7T6W3VtvEjtM16SY5t92V5yp3HsapO2fd9o9gb7CBBmm+TFBYfEdrg+/O/8XDwOjLltXvlfpjl3leI1fRmz72WXPz/v1A5rCXC3e0kY79m2Y//gBv215rxhzW04jWTu2hr8ewfsifEiRPQ+Sce2yYPjvRcc9M7e9JLrV1FR4gO5bVed9y5PJIXfeUMIMZXYq7RC77SLq/Y9j8UR1otS1l5mevZxqAIer73Xp9GXay1HwlBZcfFGMxnRKLoXsWDabrzma20Xu+ZDVCgUCoVCoVAoFIq9gH7EKBQKhUKhUCgUiusKlxsTsyNEiDIu9c0YFmyfCezLUFsGJV7z6F4eGVqVo4uNlkjaszBIIQOAmpORY+nMUPAn33OdgvwaJE2XXp+uxYF53h1coeYpkOut4FxvHEhejAYpOyF6x+Z7eVnTQxSQdXNHrjt7t3UtRyeOS8E5CHDdSgV25uT5znaFmnamLO71C452tdAVKeK9RBd9zDmZRS+FzZLY7Or0LuJlCuBf7Ikbfp7klL38NUuQhuSvs1TCrelRTKdZo3ZecHSMS12x06kVEWWo1OyxBYoUb1MQn3/aGQo8PEzS0UxB2Fx+AOgVtv59WGB/ZpsDW5PBoSh0XihXCQB0XN13cqRbeYwJ0Uz3En0Adde+hQCDaIXa20taNpPBYFwgS/vx4wk/ayaw39HIRiO2BwoedtflHEIcbM/jjac+MNUhRAHKtEEm14UTjaDf60RX6wWIIKM0NldJGKMAWwdTGV4jzQNuHF+NSMaecxdwQK6rwwmqI6aGNJ3NtIhOVslQfZ0sOUuNUx1ze1U2tVdjD9cUI1CelMhLjrMtCDoF+6wrgeBxIEuhKgcEHXis8zZUj5gKLQhRb0MiEHwM09k4mN63QUacokh0L0d7bhXofBLQmaB3BU//XGZKZUDIZSdjCr8rhMYqnvPZbjx9cYz6wxSJ8RxxIj1TNMbXSZRmriJ1tOwo6S16lhdwJQrLO0MNfcSRo2a7btSm9AArJH9d8+k3SEG+Q7bBIj11T0sM5M+x21vTj5spBZXFAobkS6HtMv1Vcf3qAFhQhSTYHe2qmUNVXM0R1PDgd1r/zsdlvVSSOhhtO/umLtXM5CiiuSUapNbyO2sqIkDvtsv0+5yjsU2RtD6PBVWqwlZKqd851BOjUCgUCoVCoVAorivoR4xCoVAoFAqFQqG4rrA3dLIomz0b2JmyUIh6AxCdhE4P6bCz4hhTxyZctvoMhYzcYXwt7/rn7KRMOfBuMM4/wPQJr+bCru8QtS1zHn1iMrWsE1AsyujID3GVMs3MUwiqpOYzQspYaRXMz8v114RK1XviWQDA3FOS3+qZqjzXub5QsHymcc4yPqjrc/XQTnp4sWOz5noKSClAwwPEVdokVynTA/kZvNJOntqVp0PkUSSDOTNYFYpsasVtX6L8NVMtcddGFwfbnrX2RWNfjpsmm+4UhVrm7Yx16rnfdlz/ylNP8dQS7n+sqMM0nDSbfIBuA0jbcP9iN7an9K12xN7WO9JG3O+6zr6zimdl7BUSSP6CBgbVZC4lQvfwFEZWg+LxkMerSkoLCufF8BSHSp7ylqfEMIWC2r4XoEgOA1+LxyhPF+PcDdzXmgGVvC6pHnLm9Siy9j1GRWLy8nrB534J10umX6bn0zzCSkPuWKaLMA3L06iYDsc2P8rzh5t3fHvO716ujqGIEKW248tRy1nT9DknmGaYsavCIFU5k7eE689RnPJyGQXn9Bw6WUjxi6/r+zyrhDWKYmMbRTs+rJC63DzlS2O6lreBNsL9IVTW4Db3ARo326R95Y/tE8WWqe3jzvYPUFmPEp3sHqdcGdN8NVqS/jTfkfPOlKxi1gXKC/S7e0gnq4x0cesdNgddt26fe31enqWyLPPReM8+F083berp81RHzbJT3CuE+2nk3qcmqD+O0Xzkj6xTP25Q23cyIQwW1cx8ReqEbnuE+tcozTczrtwtfl+kcXcp8H7K7yLcvyacbXB+nIvEvyuU7fnjVIdd6l5kBuk8kpkvMrmLBt9DV0nZ7qIfX4o8z8uzMDPds9974a6+JdQTo1AoFAqFQqFQKK4r7Flgv1+NCnkJgtm0c7wJw0QAeNt7XY5Up9N9t5Rke8p9hWeyumZyv3Bwps9FIF+lo/SF6j8q2/Tlzl+tflWo0ZOVoGJ/8HdAVpNaFITIq9Z+lS+UtwGQL2O+Jn+t83k+r80S6Z6fJa/Qoc+NAwCOtJ6Qa1XlWhsv2Do4s3443Tdfo6B0Wl319+Wy7qUnppf0sdSxQgS+bfLyFvk67FBZOYCVcxuEVuR4dTLNXp6TLyJUhiSzGi7X33BBqBdI271AqzorLesR61I/mK/I9gW3/LFO7c12XskEJNry8mo/rwgWnNa8zyC9+VlqzgMzRsGyB0uilc+CAsedJcyQfj2vgDddYO0CrSotkOjChYL18nG9cZAvr3qGcjbtpScmgjybz4q8RiuxLCCx7MQweNzI5L0IiB9wIHlmlRuDmaXZo+DzJAzz5PI1QvkrNt/XYyce4uz5Tqgkz5Pi/ucVxZCfiJ+VbYvnlCYGA2fLgbU+Poef2/eVTO4ZGrsznnw3/fqyFHPGoqsFfz/voeLnzMyD7lk5kD003wDyrKGcQHnoB1gZOwmQzxMBSN8lAnk0AHkGHidWCtL3mB3hg+mrgSzkQFjEZBhCIkUA5e0hb1ZWKML+PkLvIof7sn27e574vkvpvpH7hClxZ0+YFA8YOx9eek5+/91tP8GVozA1gtGvug8A0D83BwAoPyblLp6mebA9KA7VaEgd9Zsynyz3vWdf2oP7XtHZyZFI2pjr0LfBGs198yQMsgKZ/1PGAga9M4DkseJ+MMG5vgKJ1hoRe94GxaRWAvnBAHlGfn9epLL6287wmMXvhhzw756nycIYAWEL9n6y537RXZfrfYaea5LqYLxvy1sawsoKQT0xCoVCoVAoFAqF4rqCfsQoFAqFQqFQKBSK6wp7QidjhNytRaYBBLTfM9Qydh17NxgHqlMQ0cGKdZG+qnIk3fePmhRk6dyAi5RzYLUQdq21HZ2F93GOg0aAKsH69J1AXgX+hGQ3XN8F8TLtK6O7756XXePdQEAj78vk8qDg57M+VwFFdK2VxS17tmPpd7d9ZirddygZzHkzT3XYiQYpGfsB/aSfoeUA+aIR3ua4vTo5FArv6s/Nh+K2h1EsOBg4oxPP9e0OqVMdc5D/aKnAhwEANsi26vC5lZgCJmDXcdttc//LUjeLA8/CVKcJpw9/iChkNxdk+4GOuJm/sLAKADhwUGyzvi4u8xfWbF82FaJYUC6cZeemjnJoQiEqU17A8F7A12PL2REHTW/0hd7iqS5M38mMjQGqDNMWedwoFTyFUsBUAh/4WsxQ+gaD1gGhFRbo2FCA9zB6TZXspUrTUY8C933wfzWTt2uQyruecytfW1UqCwfhss2vO3rtRsJjL9VBYN2P9/mcK1zJI0SnqAVEFfLyoFxt+H7dTmmEAs5TteqEJlhcguemUJ6oLLVQtr0d542labBwgP6Zh0yfp/0h6jnTstI8c3RWnpBFivx0dwPnJAGaPD8LP2OIPs91nNn2NB4qdzdgQsVRoqDddpP8cNPN6eb4F1wEAIw+c0p+/+PBa10tRBNTKLz+H9s/PvsRAEBpbjX9fWRV5r5qZ7DvldeJut6iPFKJy+tHgkW1TD+1DTlLFLITYpI44PKOVYleukbj0zNVudfTLufRIs3TbaJrV919q2Snk0Qh80H2/HQdHkBKJOrkxsVCEh4zPB2c3zWYLr7u3huyOW0o1w6Ve8WNgas8H9EY4On1GVpkoP+wWM/xsogM3UZzx2EXdjBVHny3HAb1xCgUCoVCoVAoFIrrCvoRo1AoFAqFQqFQKK4r7DmdLL1xjlKTB9Mn2r2w6zl0LZ/7BQBuKlsq1Gva4s56/b0vyn2t8BbWTpO605KcX6fzVp3axamy7DtVpNwOsG6wCy4XCgCsEG3L5xJh5FEtUjc3K0jRNtM6tgLXVadHbj5yY3v33wbpjs8VpQ5OOSrQE9VBJSkAOJgM0pc65F4sB+go5Uz5yYd7lZEgS8XZ1jnbyGfkaUms1MRUJTmPaqk/+NwZ5ZwCqaIVxHbWnWs2jwbnqRV5tuVdv5k8GHQsK6Gt961NMJUhlN+BVXR4e8Ip+hykHAYn+zLkvCISlZw7vta5uW++Jd3XfeJMut3/qFXReaE1I/vIjDz9jseNUB6J/QJvE54SwvSdkI1mFZyYaivufU/RyeSUKIkyXKVo+/IEDfvjTFN1FIUmURXb1J5Mu/H2xzQYphKGxig+1tsp503hbT42RGtkeOpGhygWTJEYcacdoOdeIZUcVlDshnTN6La+31QzOSXkXtWAOhfnWWBqh1f/8bvynu9qIEGS1qunMjbod7bHDVc/rE7G4HHL03XZXplm6McPpm0xhimZBc+JwmOZvy/fvxAYF5kOkx3vB/MidXNyZvlxh/suv7cE+3QOtcxfN6K+XQrk6uBnHaFnfNqpsh56QhTHTp44Jdcalbkc7n0mOnRgoHx7gqgAlC01K1m2Odx6y9IfE6JdFau2jpgmF5EyZmWex0WLTsRUp8H+xfPgDLXXHbM2d83Be6UshVHp8/f+g9T9n69aZdZPFzgXmdzL55853JNzjndIxdb9zxbSIZvuUvKUdnEwFxij4hVD6bk7gXElWy8IHuvHKu4foTEqL6yh5VTRlmheWC5JWEKHxvuyK0+tuvP3QfXEKBQKhUKhUCgUiusK+hGjUCgUCoVCoVAorivsWbJLL/pV9QnwiObAlAfvNm2SitQ6UZ04MZV3WfukegAwXRb1o1udEtI9kVC8Rl8nSmXRuHWrlmaEYjZyWpQx1ueFBtO7ZF2zLXKBnSV37zOdJQDAXHs53bfckvt6N1uF1NPyKD+9gMuO3cn+eTM0oIC7OpOQkdzVrWSQ2sZuwEZR6n6tZ0kG85Sw8AzRzaadWgYnNGLlK1ZQ8c9QK3Kiphb2Ep6usJ2EfpuRTaRGSmPRYDKrJKCM1e2TWgxRz7yLth9IxAYAjUjaw1MjmK7RDVAzohy6mD8/o1rFSk+cWLM3qIzFrmOvXJVRJ+L7ut85geYE0QMOHxM6WfF1X2rLffsrpKzVD6fbk58ztqwX5BmbAcoLqx7tJT1nJ0ggbvuQy57hbasQpCduUiVMleekPQ6Ux9PtQwXbb49QYk9OtOYpCv2I7XSQKgUADdfvudys0uX314mKmKHiuHuwStgEXZ9pHhuO3sa0L277uqOTzZJ01Ax1CU8nGy1K+c4T/YYpZN7mMxSlDCV2kD47bCWwTUSRBiny+Dv4GgzRXa4W+khSlaukH6CbkA35BHf9jKIhJxsl6kt/0AbLnETQ1StTD8sVopuVXaLnbjixcIjSG0osDADVklOoyijZDfadwOMPwNsuq1uy7YvqWpgW6veH5gVbhsFC5NGXfVmY3tcpk0U6yk6bqLcPfFCo7bc8/FC6XTvkyljYOY1vN5AszaP3vt8EANQ/Yd/DVs/VgseOHbB9k5NtF0dYGU+OrbtuxsqcPGb4BK9NHuuoPaZvte+c1TfJfITZQ+nmkZlPp9v3/L61ifM1UlSkct/WtfYXd+Rd50BVtruOZrbalXG5lZASJI0ZBTfaZJNVChzjLqNWt0aUu1X3vDx+8UdAme7bc4lA20ST65WoX/t3dRrj6/Q+F6JQchucpXCMQmLb/MAGvRsK82xLqCdGoVAoFAqFQqFQXFfYG09MFKHqPBAzFbsyeLwynf5+gnJH+FXb5bJ83S31xROz1KU8Ek6/mlfKZotyrZtcMP6Jl82l+woPPCjlqtgv5+K6XLO0IEu9yUV5hlWnOz5fkK/HhUy5bODxekf2ZVatfY4GXlEdslLMq1WTJFgw5rwinL+Av4Y92GuV0ccPiCNk9OsDgVp8rQUKyParYBzQXc4RHvDBnOwZ2MuMMhGizKodMLwNMnl9CEVa1d1usCivpodWMvuZlTla0ePVJB84G1hRZGQ8MeT18W3Dwd/cHiE7YNsJCQrk6sS79R72LHJNlWpSt9Fhm8egdOsXyrXOPptu16Yft2U9Pxh4yPfN8wplvGTe+3GNAv8TJAPe1jzPWSjQOS/XRAqq5JGCrGyNubYfI+9LLZNvwI9RdA7ZSTOR/Ruu57KnlVeOfZ6VOmgVPZSrhwPgwX2K6iMZtKMG5S7wOYJuojXJgz0p11TqeZbyU5dAvT/o9ec24LGt4DzOvAqeyeHj7DDPk8PX9fXhz+lU92407CNJ8xG1nF1wf+HAey/swX07FPQOhMeiYkmeecrNYwdK4iGcoJxAvoXXqX0X3dwKABs0D/nycLlLQ3IVcVu1os7APgbbq/cGtTA4zwJSX3m52bpDPDEM3ye4jtkbFbp+5l7Om7VSksD+54ntcvPZE+n20dP2vAkeR6bJ3X2VsXYR+PAve2+0LVeNxpTZsrxPVWpOuGRa6pin3h6NZd7D0gkJdQBouf0rJGKyQraTXndGvFnR9KxsT8l75uER+z50X1tcB+M0/tw+blk6h2Kx46KYPzqOvLM6J+94jYaMOZz/ptyx23UawNiDVHVuxS6NPyV6V/HOarZ4zl9Dqdcw6ca6MXqfmylJX90o2auwh3yxJ+/SDbd/kpg7PNuch5y3ULZlHCnv3K+yrY+YOI5fA+BnjDFviuP4dgDvhh1vHgPwNmNM2FIUil2E2qFiP0DtUHGtoTao2A9QO1Rcawz97Inj+AcA/DoA/yn/LgA/Yox5PeyH1T+9esVTKCzUDhX7AWqHimsNtUHFfoDaoWI/YDuemGcBfB2A33F/vxLAx9z2XwB4EMAHtrpAIYow6txQR8vW5XZ3Uehkt/SkGF6/eoGCPKfInT9VFnfWYt8GnXMQIgeYT7rdo7eRxvr9bxwoX//pz9Nf4kptt6QMdedfbDFNaOBK2SDD7HZpYB8j5NKeKome+4mKuDVnC45ORs65NaI3vOjKWu+J673RpVwI7PJ2buQ2ORiZFhKi3PQDLvE8+lJoP9PNwiF8QVyxHUYYFFMo5eite2Ry9TA9MEA3YfofUwXSoM5AngxAqDN5tIxQYD3TiEK5k7KB4IPuZPayJzk2KdcK02FC6GUCgm256xQYuM40nmVxk09dtEGd/WWiczbE/d5ruTpi/fyAfn2GxsMud6qDUPDxDnDFdpgAaLsG8OUuZuwhTKvyyGt7f2wpkxdDzm84yssqja1lomB4ahmXZZJ+71K/bfrAfeofTdr29tWgfEccQB6mydHpAXGQJo1xDaIwXHLXmiuJPd1CfXHC5VloUF3UicjKIjKeOhXKywEAHZ+HgXOEULn8+RmaHOfPIfEBPx74/r0DeuMV22Av6ad5zEJzUkg4JEPFInoTj1X+PBawYTreofIkAOD2olBvbqK8Y6PO3tYogPjFkrwrnOsLXWXFic7k5a/xNL4MnYzssdAbFGTJywMToiUlAYGN0Nyah7ycONGQOSm9Bz32ciIiQn6+We1J5p/zRXmXeJ62DzlK/czlRRZcsR2uFhL8lQvOn3JB5cd6lC+qI3UxtmL7aWVcbIDzyPRprPJjWC0j6iDwFtGgvafLUgenHrLvW3cc+5ScMyv0vNajFGsAa9N3F4Vmf+w2EYgau9/SqYrHTiKEyrI9r3ZWzmkvyDOOX6C3JCcw1Umkz3BOmUbBCxcJugFzYgrZFDFAx2mMLjn7PknzaCOSsjTd7iUSDjhLoSGLiW0vDnsYofGP6cGrrg9LDW4fQz0xxpg/AjJE0MgY4+++hm1rCCgUlw+1Q8V+gNqh4lpDbVCxH6B2qNgPuBx1Mv6gnQCwnHegQnEVoXao2A9QO1Rca6gNKvYD1A4Ve47L8SE+FMfxm4wxHwXwlQA+MuyECBGKzq036lzLVXL9dUireyOgY10jd9QUKdB0nVIYqyME7z9OqjTTR9PtpOf8seSO66zK9npdzvMuO9bkZldlqgJEB7AbfdwpilWiHMoRubG92spxUhf5ooTy37RdjgVy/V0oiwLEQ2Wn780KOj3Z3mAFNefyZvpAhmYT8IizG93TYUK5AoBNrvGA+E4NW1OZtsCO7XCgPMhXhQr9HsrVAwDTJds2h0lxp0LP5ZWaNjJ5LiiHj6tvznGyQXrrbBs9p3rCbRRqD85jw0sVBdferK7GbR/KR8L1UgmommVUcshg/DOu0nOfLYob3Fw8kG4f+MDf2OufOp3u63zuTLr9/DP22AsVKWszkB+Hy9elNuJn9Nv9wPmXgR3bYQJRCPT1zRTLUVIU23DPw7mC8miHPgcX1wFj3Y0HixmaK9NvXVmIi1BmygvtH3P7p1ghkcbxciDvxEqgf2UUsch2mCrYcOXO5MWgtms4OztPapHPUX6culNbu1AavOZmhCg+XN+dAO03lKcpo67G/Scw/vucOd0cetE2sGMb7Cd9bHRtfaW5iHLu758/lPcEyI4/nsLJlMYRygs25ajQx0gp7nZayz/iqH09KstzNLc9VpLrvuj6zBLRplrUrr5cebRRP55XiA7DtFM+zyuFZVQhh4wfTGdNTZuqeBhtLA+pql2OEpqf6337AsBaSepopSRUpUtOOYrHnCvAju2whySlwvv8VEWiIo4ksj2+aufZIlENSyWeB+W6Vbc9QXlPKhlV1CTzPwCcKYgh/hXs+PH8H8t71xSr8+FYul1zLza3HJNvtvEvkvOKd93mCjMpBezIeF4Ys20QjcjcWDwibVQcFZLV2ortP52O0LoWSqx4m/0fAOo0Lnt23iQdMEm0xyM0V09V7XatJvVSoL7SbNq2WWxI/3yB+voFF0KSF4LRoL8yVOQd4nI+Yr4PwK/FcVwB8CSA91323RWKy4faoWI/QO1Qca2hNqjYD1A7VOw5tvURY4w5BeC1bvspAIPR8Vugn/TRdKsC5zs2eKlLX9CjFIzvP854jaKMwS9oAKinK3QUBE3foHV3kd68rEJ0Tz0sF67bL9ze46fSXc+Zg+n24xQAd8EtT7KuOGf69YH7vLrC+th+BWqUVuLy1mHGXbPc35Mv8y8bm0+3j7zBfiEXyMPUPi1f7rd+1q4S9GridWLMNWXFYK1t6yZvtSoUbMrPWHarG6FA9c3wK+BZEYPte2Ku1A6jKMp4UzaXNeSV4d95FZVFF04WrcfsDkh782r2+aJ93nORrIytJuJp8QHwzcxKEXk0elt7Ghl5q6nbRUi0gT2GoRXmvBxDXlhiPqdMhRHxNK5//DgAYPZjYsdnSpLPwLgcGmcgvy/1pD49uH15NXiYIMFOcMV2CMlUXw4EoHKX6ISCqimbeUKrbD6Ymj0x3J4tt2K4TqvVoywi4OqrONjlAQAj5N2b6Pt9vMonv487D0+NVqMvUf9ZD3hCmmTzLRrT64GM8dyePoCbx/4LEWV8L9n7sghBiVbcfd4tQMY2HvdCK+a8Is95YLzNZby25O2qRYOezI5bBW9HEtg7DFdqgwmoPhPvEdraE5OXQZ49Dv752QaZkeBzAVVoTJjpSVufnLZ1UB0R+yifF1GbC+RdveCuxW3RCYig9DE4pmXKnyOkUQ7MTRnBAxIs8V6RKnt/A7m8ONh/2DyZ520PXR8BJgV7anibRRnWinb+z8yLMrUNxZXaISBEgV7i37Eo2J7eUDsuqHx9geZh8lCvUB4rPyxWczzJ3iPRpjpeI6WEpnvPW6lKe47R6zLn2jrZsXV3K43FhYMUDjR7yP5PHias0fjXDeR5q8mzFEcG56518nQvkHekE7DvXmasGhRv4RxBR6ZEIOLALXa7elLeQwtT8o6TrNn598iz4ik6/IJ4oJbXndcoCc+9dapPn6OHdBzwZ9XNZ4SxezO7QqFQKBQKhUKhUOwB9CNGoVAoFAqFQqFQXFe4LHHwnaKX9LHcsq6ppnNlXiytSCHIlend0OyOZhpPyHXcD7jQAOCcC7Q++2kKiv+T98oBDUt3OfVfxXX30Yq4yx6PxLW23LfHMnWNA7U9dSZD5yEPbTl1o1N+EXDAp2wfdsFs91EA/rE3kn73l70JABDNHvHITssAACAASURBVJd9Ls8GALz20McBAK2/PJzuK9QkEO0Rqs8XowUAQisDhufPyLjcA/lvmMbDFC3vyuecNUHlgKuEAiJUiuXc30O5HcYLQjWZIXrgyYL43O/r2mu+nIL1OtS24xX7e5/sgePYUjoG7WtCrhWiO/TI5IcFiGaoN4XB3Al5lLrQ74xQ/ohQvqMG0eHWi0SpKwml7lzFUsu4fywlQntcdnRUzg/CgbWedpVHwcjQ4AqDuT72ElUU8DKXIakSqO+1SMajybK1HQ7852fkvuSpLDyeMn3G51lhKgHr9vvdxJTIrHIdJgOedgZ4KKEAVTqv3rXHHqVx/EUK0D7r8nUs0Pl1ophxThhPh+A6qNIYNuLoyEzVZXiKBefEmaE6bpMgx0rfXiMjpsEB3oG5hsd8P1fVeP6iOmY6macQ+vZYjuaC5b8aiBClY3Zo/BhGpytQXfLvftxkChnT6Tz9mBgwKFKdjk5aexg9Ku1/YFHGiTIJAnjbzggvULv58SGPBpc3rnkE30sydHAWfSkMnMP9zL8rLHflncLnFMpDZlwlYZ7ukLxjfn+eWA/TybxAA1MCheR79REhSt+NfGlXSfRmgZ5xrmjr9iIFjx/ryjzMvd/nMGF6VYvoXp56yvmi1ui+LQzSyVucJ4vqa9yJ5HBeQYwQRXXS0SF5bpqXPDPJgp3nenNCJ03aJFxyVso937LXvVSVfYsR5fhz/7MgC497o27/OL1rMCVv4oDMz7WX27ot3X+HHHzoiGxvWBrZ2PFT6a7qM/JcRzasrRcnqE9MS70kTRrvn3fU89Pyrr5dqCdGoVAoFAqFQqFQXFfQjxiFQqFQKBQKhUJxXWFP6GT9pJ/SHrxbtN4VF3GG7uK2Q4onecjkKCF38lNOdeajHVE3ef1vC40tcu7FT3an032PFcXd+2xnMd1e6w6qeGXyNbj7hp4FAEolp6RSEMmFfsSUA3JPOj7HdE3qqHBY1C6iIzfbfSfidF9y6OZ0u9y0ZX316b9P9y0/fVO6vV6W+vA0OHYxs/pRKA8Mw1MSRkvyXOOk9lML6M+zZn0bS8HrXi0UNynaZJS3mGbjyn24KO7N2yJxXd/flva6r2xtampWnqtZFwpFsmLbrkFKJ7x8UHbqHaxIxhQN3i6kqmmcw2BQtSmv/wyje4T2M1WB6Vx1R7HknBFMgUhpD1S+tUjqaL0kruuFknVNs9JTJs+Rp47mKFT5duT7d3LyFfkcP/2cfCpXG+P9BK9v2rJFab4CKV+daAsXnAreVJnyY9G4M18QCkKqqMe5Vzi3gZNT7JHtVIpyrzR/DpW1RNeaJVrUAUe94NwItSkaNzq2LOuLMi4cXxLa1ufLdoww1AQXWM2JSjHmk2/REFSmth9x4+gETWfjlB9i3NkUKwZWWRGTGcCOE9fIyUnTS8dDAVOMxt11J+j6Vc4Tw3RiR/PwCkqf38M1xQiswDhIMQ2p+fHcGqKNAjJ+jFE+qBGqC08d6lGdr5G9L12y9t7vUu6XrvzOXdaPFXnllvk5rE7W6Q9Smfl8pkhPOaXSgwWhRB4gSuIhZ6PHekTLIvnSF125P1MSJafzXdnmsd+Pl5mxtiDvAn6uzqPRewW0kBIbsIk2HVA0BMJtezVQQoRpZNUD16jvLVLup0vu/zq1Qbck7xqH+pT7zP3Pz8p13PG52Wgfhwp0HM2M6WRdpueRza6G6GTMrT1oaf8RqZMli5fS7f6KVdxsPC/j5waNm+cvCcHvsYq1uedJ6ZTra9SN0dPU58ZpXJlx75ZTPXnuWpmUAMdIPe+AHa+jm25J90XHXy7P0LD2W6iRKuu05MIpOzuMjkkoQ3Tznek2q7WVHv4kAKD/B4/I7xewLagnRqFQKBQKhUKhUFxXuDZLkciuzmbyTLgv4x59KXJQ27AgZF6dOF2wnpS/rcpjLkO+FEfcV+nTRVnlOEurI8sd8cp4j0XGE9Pn1XD31RnIeM7lahVpdZmCxqu0ch5hMPg8WZWyYMkGTyUzlAeGNcjH7Jd79ZCU5cDnZZVhqkKr7S5IjlfrW6A8FF6znoMIk8F6HyGPy4GSeC9maNWk6OpmgY49s4eemASyqhoK+uSVN7/KN0GrrMcosPlmWiE6cNi2TXk0nMF5etWuqB3sUZ4MWsnpuG64SivdvJoeCszvJ2wvJPrgnqFGAgZlWmXz2bNHaaV0kuzwIIkXHHQrjbwaP0f5bZ7v2LbjwH3uE77f5glFsPcvzR4eCFBlZHL5UJ/xdsr5EBhs39XSYAA8sIG9wki1i3uP2D7cbbmgVqqiPq3m1jecR3BDPLH1quSyeoxzq7hAYR6D2Jvlq5M9MVwHPmN2iextjGxynPr9iWk7Th58o9hO8bbb5VYN257jz52Xaz2yIMeeOuC2aHwoyvXXOLO9293ilVTaLqcr8mQbVFbvgeHy13gMI++jv8Qq1csGBfz6FdxMngUazw65PnOIM4332KYFXZ/HLODdudpIIP3Se2IqgXECEBsJ5YACsh4a74nh8WWU6tfX2zq133MVEvPoWFbE+AWxd84dwaIT3vO2xuwGFvNw92pSAH07kEcmlPtq8zMcdR7528leYyrYvc7DcvIB8UyWj8mxKw/ZMoxcEDGeT1Cm9TUSuGCPQLDcBfeukTNWdjEochISX+BnZPbECuXiutooAZh1XtMVL3CRw6zxfW+dxoZ6JG3E/qMRP9Zl3hEHRUzq7KnmOnT7C2RwBfKulGj88OIBTfLEJKvrcq+mm1umRGgJZRKoqFvbWDwr702n1+Q91VTkuo8X7Lh6qifvqey1nnWCQwdJAOMAjT8HnSDLOD03O41YcSM64PrgAXrPpNxuftKKpmU+ysA9Y3RCvDfFW+6X65ekjJ3zpwAAKxeeDl9rC6gnRqFQKBQKhUKhUFxX0I8YhUKhUCgUCoVCcV1hj+hkUeqy9RQQpneUA4H7GW1+pmVlcj8M3qlD1LOltnXpPU0u4tWSuG0rzk2+REGElzoSKMsuc0+N6ecE9nsaTZRxTYdzfYT2NSFu0aajdSw0xcU7+9/m0+1JfMyef+GsXGxK3O/JU88AABaNuOvOl4jKlIi72NNwQpQlQIKBM/S/gO5+xl0dyIUACJWA6QV7iX7SR9PRlnzbsQu5mki5OiUfeE0uZLpWj9zJa0u2ncobFPhKruW6o5YwLSJEeioEAvg3l8G3Uy+T50Wu4WlkNaKDcOD+mKMNTBNtbJboZCfIDo/1bNuNENXpENlRr2TrjvsJC3Z4JDn9NxMo7PpXXu4Gb18ZO6VAzlBuBL5WCYPiBpMlEWpY20M6WaGUoHrQPnvJBfiz/kWJdPWnHRWm8piMa8+tH0q3zxblGRYT+wzdnBwnnqqbUL6E9Uy/d4IiRNE4RLSE29pShsOvsf2o+IYH5bnufFW6naxYulw0+al033jziXT7mMsx0LjIOcDETheKUq7FyD4PB7Cu9MXOPP2tTedn2GKu547Szmmy6TGyowlHr5mnMWyO5w9wjiuLkYzggT3vaFfuNUkUyzqNrReKth2WHL0vTIS8WkhEtMX1E87Dw/Rgn9umk0MLbVIAur9GOSdfiqfOrRD5Z40GsFOFwXNqRJ3lMdhTfQ/S+MXwYwILMySBIP+I1nJ5rJyi6x53fSJuS7keGBUq9E0POirmm6U/REdFbOfAbX8NAHjFz8k48/ka5Sqi1vd0Mg5ED1FyCxnquuz3Y2Vo3gCy4i2eRjaZoZPtHQqJUL+artyj1J+qmdxPPs+VPEuHxrImbfu+XgtQ3wEgcdeo073KdF1f9xmqYSYfFM2/7rb1rtRr+zGJSq+OfxQAEI3KnNt7XvL6rTxu/3+OKGSPVaVcz1IQ/5m+fadd7Ikd8fw66gRgkgK/10B+73s6bFj0oTRO4Rqzs+4CUu6kTtax6ujBTXl/DqIpZe0v0jtrg4QtPvZ3AIA/r89SYZ/f+roO6olRKBQKhUKhUCgU1xX0I0ahUCgUCoVCoVBcV9gTOlkEocd4Glk1o55ECjmphI64m/sBtY48sNu16dSPFtuiFMFKSt5VyPt4m6lpnUDOC6YieSUUfhamzPl78flZqofsX3Vu0ScqQuuYOy2qJseet2U8efjJdN/EYaFXLL1o3X+fWhPaycMVea65ntDJWqTcEiq3Rz9AIeNn4Oss98S9yHXk3bFdhGkJVxu9pI/1jnXNCpWAKFykFtNyikQNcvMvkIvWlKVtztYtLWBijVSf6LnnXS6Oi0XZtxLJdesBpbRhYMpfhirg+hWrC42Seo+nDczQvlnKdzBLCmxHu/Z5JogOM0G/r1Qslek80bJY0c/bfCbPDT0DW0GqgpdTB+nzhtkBQ5GX3+laoN+N0Fqw9eiLUp2hnDY1Gjcqdnv8gPTvo8tSRxOk8LLoKHH8fCEqTZuoPCVqT8/a4RwDt3ekxW4eEypB6YTLITAr41LxqKjQ9CctLaC/KLSK4pEX0u2au1aN+sEI0TnZCuadctP5nozjaz2hWHj7HyObbtJ2L7I2P0p2fpT4N4f7nCPLXut8ifK8UA6sF539damEU0R5mXFKQNOkrlkmm75EQ+vZgm2HOad02NrjcXEzLThDhcYgnTWP6snjls+v0SI1rXok2/66bRqzuqxo6CmPTPMlys8MtWHNXWucXmMa1BaeKpnJ59YfVKOq5uTJGqN+MOUUtGbpnWDmmMyjxdus7Rdedm+6LyI1quTgw/aaRepDdP1MHTjaJCuSZWhwaT6nHIVX97yZ9uVcSJy3yFFrs0qNe4duJPPqesD+WflvwlFbOR8Uv8CuE53MszmrSZgOVnbbrLxZy9Dg7TaPhdNge5A69OpfTDFfepry5i09C8CO+x5rl4S+d2bJqns9SSq6j0Yyjz7fEcW7hY6lYDXpPXWiTHQv93+H7GGdJt0xH85B41+hIPVenOBcN+7EZclpg4aMwcmyo5OtSghG0h6k22JOFCoTPJRudx9+Kt3+8z+x88V7I6HZbRfqiVEoFAqFQqFQKBTXFfQjRqFQKBQKhUKhUFxX2Bs6WRSh5tzzNUd/YLoLuze9C5WT5hWjsNvUI0+RyB/Laj1MF0vpFeS2ZQoZu6FDLlxOSOgT6I2VxE3Iz+jVWpiqxc/dpXstRpbesEzJ3/pEZRp317ppWdzV04vpJs452tLjZXF3n+uKG3ClK/s3nLJUSHGMyxjluK69e36tIxQyrs8lSqzlXfXVa6ROBgwmQ2RaVod+84pbC315rufp2POknlQuucSYibTtJLmbG85+54lWsUpKS3W33eCkelSHeWpTHqWAqhAnL8sks3TbR4iWcaQvbXSiI217EpbmMjYifWa0QddKrMt8hFzuxYCqGvcTcLLaKGxzoWtVU9W1sO142tQwO2aEqJR7gSQBOg2XtNQltswUryD17fdvLEm9t3JoPd5OOMFlJ5T8k+7F45lXa5ylRI2Hu3KtygRRcVbs/uT8Kdl35GVyYU9zI0osqmJzfUfBWKd7LVO5lohmtuLUr3jcapAilrezbjGsQlVy/fYQ2ek4zS/HZ0Qlp++S2xVXJKlbg/pKy43prIp0lCh5Jzr2urOUvHCDptk6PeOy6+9L/axi4l4ggcybIfpRJ5MMz9YJU8S47/B2KAF1Zr4oOFU+GrP4uUPKXExtaxSkDNNEGUzLQuX2SS55zue5yY8JhW0oa5YDw0pCSQTRdePPqiR0TUh9Kblw0d0/rIbFY+R2acWslNoPvBcx+PqsHOe3q9eITtZEH8Yl1+wG7H+c2sMrJc7SPMs2u0F9MqVTsUohVVHLJx9nOyM7OOD6/HGiuB6i9p7sEZ3U2VS1ILa3sSZjRmPDXqPVlmdZ68jvc25OO0+2fbojtMMzDaFzLbcGVTQ5NKMSaMcloovBvauMkspetdrdfAoAILkwZzfqpGa7TnSyBUtz6y+R+tiq0J6Trqsjun3rktTbQ58/lm5/sGavccqpWgLAJOXV3ArqiVEoFAqFQqFQKBTXFfbEE1MuFHFkxAaCjjodfl7x4JWYdRewyV/YbfpC5pX00ArSsLWsUIAcgz0lEQVq+RUmLmtopXicPDETlIsjLTOVkFdcWhRAfimxX7NtetYOnedXTS5S0FuJtPYvOO/BubYEhK13JRCWV/Z9fbZ6spqWl6PHIxTgyefzdiZ/jPPKsLfqWiObg4jyObh8J/NFWXnoFeV3tl+/+jFG+0ZpRcSftUYrluvkdfEemFUSRFinwOVQ2+R59LyXi70voTwwN3Xl/Fs6shJz65isHs6elGf36DzL+R9qA/cPrcRGOZ6DcuA89oyxJ9MHL7JIAV+3GxD/yIg2gD1Agx4icmRedUQFoDLu+t2aLUN9RVbTGmuUr6hl6/uFFckhcKYmdrhMduJXnptkL2zT6XPTuMbjoQ98HcnJrbC6JnZUedjaxoFRyQPDYizR4Zvs9ZdpZXpNVvR8bqU5yjvEK4ZNGu+6gZxOvKIeehZu+3HvSaHHGiNxg4lZqcNe29rf9IbY2XRP2uOgs0/Oy3GSHHovK9t6mZiQFcn5pbF0u0Sep75bOfaiLtuX9dgdpEwFNwc0aXzi8cWzItjjwrmh2NPhkckBRW3VcH2aPTEhz37IEwQA6wVpqxU3FvC12EO34foGlzs0f2dyT9E2B337s5rsFaJ+OnHOrpZHTz2a7kNH7tt+1AYstxJhT4ySt56Dyr13pBAYSxn9nHcZf14/4wCnnFnUtj4Py0i0J6+CA2gnPZzt2jnH1z3XxQR5T086L9Y9bbG9Fok+XCrK9mrRiwgJOI9Mz/c9qjf2jHkhh+MUjH+iK+05RqyKmsspVy6RJ5jG0KbLGdfokQAFldt71utk8zz/r7XlvaDRsc/OeeQyNh2wmbWIPJ3OHXWQmCS9HrFRFmgwe+IMACAq0bGrJHy1YK/VWJTnatZl3Oy6dwx+hVyqyzvxEyRksOr6baXAdrg9Qa8tLTeO4zKA3wRwK4AqgJ8E8ASAd8OOuY8BeJsx5trK/ShuaKgdKvYD1A4V1xpqg4r9ALVDxX7BMDrZtwJYMMa8HsBbAPwSgHcB+BG3LwLwT69uERUKtUPFvoDaoeJaQ21QsR+gdqjYFxjmQ/xDAO9z2xGsd+6VAD7m9v0FgAcBfGCri4wUKrhr5AQAoOK+m9h1vkbUmovOlZqhBvTCbtV+b+cO+BCFjAPdIqJlZXK6OKoDB8oy9cW7wThofZS2/XIEuwk3EnGLhtznmRwPVBbvdl2icrcomNfn6ljrihuSBQsYnk7FLn8WVUjvWeDvXaYBJZkyA5tyclC+hHY0qH8/EyzVAHbFDhMkAwGQHOyXCTB1ZeQ6ZIwQlc+7v3vktm2Qu7fjrrtOwb5rGRqQ3b/RFXuo0zZTKENUPqZA1JzNjZMb/jAFJnsa2e1EdXjZjAQRHrpfylU6MWWf67xQzIrPDwo8MO2By5LmRsqhRZQCOZW4/zA1c8rlojlYlJw0k4GcEVmKmqCXyWVht5vkrl7EeWwDu2KHUTFBedLaRHvdlmVjXdzwqy3ZvuiCWZ+uytM8A6FlrRAF0dNmWBSiF6CTMdi2fFD1CtG6XijLFDGfjKfbo3O2HW79oJTltuf/Jt2u3XcAAJB0iSr8GaEnPrd2FABwrirtwrSHViDINy/4uRvIs5ShK6d2KijTvQocte32MzWk0pLfPQWINSlmia40e9iOvbUDROmj+WtmXex31Nm8p4BsMwXS7tggonTOKgbyqfAY3XX9ZIMoZD7fFpClu3p0KEi5VRikofE4Ecq9xmUJUUGBcI4Tfm/wNLdOJucc3csN/tsJpPfUrBa9H3DwdutpmyujvP5Euq+3JOP9xcdtuy+TXfLLVyUwbuaWJUA8DPVtphZFOdv+mBANaQh2zQ798/oy8Bhepe0Z975327El+X2cxHIo98qKo76uExV0jubsrsu/1YrCQjEHHHXtKAmbHK3JWMfB8J6O1aN+3mWKVt/3L6bxDqKYIzBRKRLV0G2XaV9IKImpaSxe4CmSUzS33rwmY1L5eTmv9IKbo1ryLM2mRNs3O4M0uQ6NsiEX3ArN+S2qBS/Scag6le5bgwT5b4UtP2KMMesAEMfxBKzB/giAdxpj/N3XAEzlnK5Q7ArUDhX7AWqHimsNtUHFfoDaoWK/YKg6WRzHJwF8BMDvGGN+H9kPrAkAy8ETFYpdhNqhYj9A7VBxraE2qNgPUDtU7AcMC+w/AuBDAN5ujPmw2/1QHMdvMsZ8FMBXwhrxlhhFAfcnVqHFu2U75EpaITefz7kRygcDbKJ4OZfz5twfHt5tmqGQBdyurPTA6gjZPC5ONSXnXt6lx9S0TG4KV1ZWJ2OFl9XLyBGQUTdj5ZiOVzcLU8gYvm6YQhbKV5CpQ5Ii965gVuvpB9oIAPruoHaP6WSDWv+bsVt2iGSQKpeQPfTpIbzt1CNpo4yKDWv8Fzz9j+qQ2tkr5nB7s4KUb7sMtSeH/ldw9sVlKZOL1iulTZGbfJZyExxx9J6ZopRlbJqecVL6Itxz9TYoz1JH+kfbiz5R25cDFDGe2kJ0EACoOdUippDNlETV6XjRUpnugri+7yGaz4yjpHLrtqmN1okOueSUWS4V5fxPYzh2yw6TToTGRfvsK0tWreViU57rhZK03emSfaLnILQxr+YDAPW+tJ3vd0w3yfRlt5vpOaxIteLylTxLVIaLlIMgSyi11zhI7XH356S9Xv6QLS8J2+BM/3i6/XjNnj8X0bjFOT6I6tcLzAUhRau8/DeenlKm5+7Rwd0G9eWSPY9zGJWYypvWId9L0Glbm6+0KR9JSY6YInrttGtnTzseRiMCds8GK4UiDtQs5c+PVTzGRwFFUFYcY8oij1UphTRnDvDH5s3v21XDBIBmmuclTMXy983Lv+Pngox6GqmbrRMlru7soc7jCOXMKj7l7OZpKf/iuigKPu8UIk/TdDdPtt/I5OBxtGuiiLcDFNE8Gq9HRr2MtjNt59q0GVB33Aq7ZYelqIBDhdF0GwBG6AWDc1YdcXPm1J1S/vI9kmtkYkPGyKOXLHW1MyftufCcjFUTy9MAgFMVUoUkMzvucpwcrQiF7NAJocMWymJTG4u2URcW5PorPWnojleLk8ujwzbr/p+hZz1eFidWa4TGaJf7jylkh8piZ94m1kiXjdvWK7AtEZ32POdbEjFJtF07rNI7LSsF+60CcfILgW7NFMxV2uZcWxPuU+RwSehqu0InA/B/wIYt/Ns4jv+t2/c9AH4hjuMKgCchvEiF4mpB7VCxH6B2qLjWUBtU7AeoHSr2BYbFxHwPrGFuxht3cpNKAtziPgz9N2E3Cq+Sjriv8n4pZyWHVhF8wD8HnWdWywuDOvAhFHJWhzl4269W5Xk3/JfxGOduofU6fz4H1fFzsdZ+aOUoE9Tqgx/Jq8DBlelqV87KGj+vX/kalj8nYY11uq8vF18/E6gZyMOy3YzEHrtlhwmVId3HuYDoGdpuJaNAwXqljMdD7CSUKZ3b07cNe/G4HL1AveS13TBEoeBIShhQTHNDyO9ri7Ki2P8cZdzt25WnxUvT6b7TEJ33FWfT3ZzcR1uVD8jW55jLH3WIVmLuLMlq1Gvbtn+94ciFdN/BL6OUviV7re5pyfjSeIG8vXNS7rkV6zEY6dMK1DZSF+2WHTbaJTx2xuaL8IGOFytSLy9Q5ucXnAdmridZkdd6YbGJWnEwwJPtyK+oZ7KWk51e6tjg5A3y7rDHke3Qe5zHaRXvxbLU8SPOwzpC7b0SkZCC85zVMwHkHNgvx9bd6jj3r1C+sApNZ+NF8uhFtiyjnLuBsn7XV0kgYsyWq0heugqNjV6HgFdtL1KQLS5aqZKxS7wSKvdaIddU2T2vF+EYlhcE2D0bHInKeKByBABQd7Nynep3g8R2Vp0ICXspQgIegNhIlFmxHXyuPG99CHn6PT7PTiHaevwJzWe2XM4LQX1guSv9LJN/y40v1ZLYeJ8Gjbm6taEmPfeL5NR+0YkbzFPfWqX6XCWhF18GFndhb5efq4e91+R5ZFlcyI/B7R16YnbLDqso4GXRqNu2dTdO/TSTg+mwZadVHrgl3Ve4/wvlgB4J4Fyy80TpnMwXR2nuGHnU5vWZOivSQl5EBQBGXX1NEEuhdpTee0aJjgJ7zLlL4hF5rjzo4RkhMxwl1kfZ2edJEgNAUea2yZpcy+eXy+TSoXHP19wGebI5x2A5YDNN8o4s9+Veq46xwN4TPnvSPcMIdVDu6d5ryecvkauGc4H5I8ZyhBa2wtCYGIVCoVAoFAqFQqHYT9CPGIVCoVAoFAqFQnFdYVhMzK6gkiS42blRO85VyIGVDdoed27bPgX1NkoUYEfuWE/TYWoOB/l5d+swOg67uzN5KoiS4DXMe8Wwa3rEuffy3GH+rIz+N1HXOgF6RCY4klzDaQAvPTcfm7r3ozB1J0QnY3pGyP2fS0fzORg4sD8naDNU1r1FMkA3KESZn2XT588hN35EQf4hNLpCD+gE8u4Mq5dMSZlORu1R8P0nh2K54SgKK0QHuUR2Vi7bPrHeE1rEmTXZbkvsIpaL9l6r1LiLVaI69S2taYEoGCxe4OuOy1qMwhQH31cPFqUscU/c+6+emAcAzH6DBIcX3vgVUti2pUhED39K9uGZdKu1RrwElxZnozCcvnM1sFaI8DcusL3lKFYbROe4lAjdY75nAzmZAsJ2VON8RW7sahfFHhY70qCrHXst7ut1ylWV5kaKhK6WpQ1RPiJHXasX5PxGUep4ydHMKhQUyrl6PH2Fc2G1M9s05jubyqPc+jKOkSjEEaIlHnfUtilizDCBqdUkgQlHJxsdk3sdaMgzrjka5lJZ6uI8zQmPuf3FHMESnysLAFbcM3pBkL0cFSeSCG9yyhwLJWuLFyk/0EUKOj8fecpRONCc4cfXQma+oJww/impAYL05kDumM37PUW7Fxi3twVXBh6388ZVL4CxVhZq7RzRJ0fdO0yDHuwS/Yxm4wAAIABJREFUvatc6tq+txrI6wSEhV7amfw2g5S5DMU7YmqOz88Vrgvu8/5a9eLWc9vVwkgC3NexdTfpRC8ORNIeNx2WHGazb7L2Wrj73nRfdPyOdDtpS91GoXegkoxF0yWbF6xUlUj20TNCB2t0B1+NM4w7ooMljnLOtNGLNCasO5uYSYieSJS5ya698AwZ8mxXjr2zQPOzp97x+x4Va8nN2ReoL7OARHr/HOpqn8MCAtcfp+c+7Oxzskj9h6jrc4kdjzt0zRbZbGgEKe6AOu+hnhiFQqFQKBQKhUJxXUE/YhQKhUKhUCgUCsV1hT2hk5VLPRw7aJVv2i17y3Zbbt3qUm6JrnXDrxIF5lxBaAIXiT5RdLSHPJ34VDkL7CIbpOkwrWuM1HZm6L5jjgbGGuYVVi8JaIEzRcTftVEQ116lT3SyAh87SPHqZ7lO2IyMQpv7Ni2z0lpJ6o3rwytrsbrZ5lwqWyFEfWNkNf6drn/x2n87h3IPsG2kFDByf/a7RIcJ5HFhKkKoDodRHfJoj1xb/rqt7qCLGBBqDecrahelLHOOcjRalN/ZtlaJMrLs6BBNetYW/b7iKBIZylJLdPVDOSGY1sg266kqDbo+09jW1m1f7C+upvsKayRq37H1kVwSdbL6Kfn5xQuidPZE2V7riVK4Dq82mujhycTWmbeJZjJICQSERsa2xZTXaaLfTbnxKo/yOiwfkae0ct/I5CMiFS6fDyjKOTbNF0Jtz3SxhqM7tjg/BlEgM+p+rtw8RvF9fX1MEwX5SCRj92FHAZuhHC1jROuqVKRclXG7XR6VfbUVqqOOo2uQ0tpzidApfa4dRolzhwVoHL5ehql07SbGSx287sgcAODiRZuD6VRX8lw8VZH5oumoSqtEr26WpH14XPP0wLyxzrNRsuMvK5kNUqXAOcyGqGhm7zWMWubGeKLIhHLaAGKPa12hLM2Vx9NtViX1WGMlMjdW5lEiQ23P42OB6Edp/huqlyR0PvXHUN4fAFh3lGBWQhPC3NVHJUlws6OLHj9o81/NvEzquHqXqIcV77jVbpDyV7JCuUTa0vcSPz+W6b1nRp6seLutj4kJmS8qU0vpts8p0yd10sZ56ccRzU3z5y119QKNjw2y02JAde1AV9rA0+cq9A5YpOuXaP4ecTljKjUaNxuU12vF2iSHQpTp3a/ubJ6VGos5/aTidhepf8yQAtyhqm2nqWlpry7R4DoLdnulL2VpMbWUKJBt/96S7Pzd8Nq/TSoUCoVCoVAoFArFDrAnnpiokKBSs19wfaeFndCqHAcDVdxqWZU+DsfI+zHKeVj8qi57EWhFwq8Kcah9aOVwgrTfDxcpSzh5Yo44r8lx+jI/3KV8C+7Le56+xk9TIJlf0d+gwP86B1zTSmz6DPSJyUGGoXwrmRwm7rrTFXmWgxToysG26261yK+qA9mAw9BqVj8Q/MirVhkPEi24eY1yXmHaW0QD2vp5wY9+fybAlFZyeQ3fe7bycuWE7tUPCDGwhyyvjvoBL11CHiLvgVmMxDvCAbleWCKU2RqQnByABFRnM3VTVnW3qrjekRUw9hCF6iDjBaRrbbiVwEtFWdV+pixe0U9FdoWp8kfL6b6Tpz8g93JBkRceFZt/bEOyOT9Zlfs+C2vrL1Dm+5w47KuCXpJgtZ+tW/Zwcf/zv/NqPo+Bk+Q5nnJjS4fsjFfkRor2PPZohMBtFPJ4AOL1OEbZog9GUhbvue6QbS1AbCv1xOR4X3i7G8hhkcnn5Z6LV8NHqL7GXBGmqI6nx8RmJ2Zl28dtty5RlumWPNcFl8/nLOScc13xDvpxlPs6jzks7FLYNBZ1sXeemNJ4AQdf6+rtabsaXf08CT50xXN5vmzrkucNfo4q5ydyl+hQnorgOJDjdfZZ2/PGZa6ikFAK59opOeGOjBhAIEAeAbEAIDtG+nmu0wv3U2+D3E8zwgDOnvMEEdhG/FweEtgBpD80E+kjbVoh93VbpNMz16JNP293adyfxqBX6WqhE0VpxvgjTiCmOEIepCp5Xequbz31pFyAnhvk3fB5w6IaJQAbkfe86ORN9l7ufwAYOfxCun2w8DwAYOEZ8U4uz8v5zZaU62zX7j9Pcwh7DA8678LJtpTvRFnet2pV2wYReR+L7H0ZFzsbO+7yWI2JnbXmSCCiacs13pI2HCfmi7ezGnliCjl9zYsHlMnjN02iC94DM3lLWBSi4BgBlXk5/3BXyrVAbJALJVvu6DLEdtQTo1AoFAqFQqFQKK4r6EeMQqFQKBQKhUKhuK6wJ3SyXreApXnrluu4IH6KFUK3T8FA7ruqRL+Pkot2nOgTnt6wTq59pjX57Uox7PqeKtky3VQS1/ltkbgPj/Xkvrd0rEvszjGhsxy5S+gopSl7bOMM5Qx4+ki6Xa9ZN9olyjVSpG9IdkOXncZ3wgGH/a2DAJlONll2z1U5kO6Li0L7mE2kPlZK1sX5XEloPBd7su3d3+y65xwoocBj3ub8MVGANrWXiCKhaQmVQH7Po3ulv+cEwPlr5tHBQvdir6mnldRKYpvcngxvB1zHfF/fTkxb4P7hkUcR47YNBemGAl+7vTB1xNdnXntzHXtqxmpP3OxniL7Ud67pi4nY8eG/l0BNF2+NOQqOPFuR557ry3V9XptVolBGwkLbE3jrSOmBTK8NtO0IUaWmiOY6TvTUsrsqU3nKRFPx12hRPpcmESN9exUz+WDkvgcrQkm9pWwDbm+hHAYH+jSGObrCOgVvdogusQxPKw7bVohOFKLMApIfp5DJccACLhZVKsvImDx3eYrGU3eNjSV57jmi11x0Af3LFLTNuZFC4gkMplH5tvXlLu5hYD9qFRTvuBkAMDJyAQBwrC9BzpcekXZ9vDRIbwo9R2Y/Nd8wwYJMHiw/R3BQOo+r0SAdjO2iHBg3eXxjKqUfv0I5WLgsdtuWp1cIz3N+O09EKER9y7Nnv83vBHwtn1OmWwiP4cOQGaPd9k7EfHYTjQh4wkWQj6/Y97DqU0T7LMyn28V5+76VNIm6TqIbSZvabsS2Q/kmEV8o3nVbuh3deqf9/4DkHUsmRUSgesGKxlRekL69TPnUFnryHnrO0S2Xo3AdTjhO/SF695uakmD4ciUbarEZLDJSnLK2EVXYzol6667BNH7WeRnx8wm/i7CGBl11xNk0U8hmp2XO9DSyyu0yD0cVseNZJ+Y1vSQCPD3KQ9dalWdYumTfWV9sSHv9xTYp3uqJUSgUCoVCoVAoFNcV9CNGoVAoFAqFQqFQXFfYEzpZMyniybalgZSc+7LCylrkKm1Fg99Vo6QdPUm0itGi9TctsRJTb1DFi1377Lb1dLKTBaGQ3Uo5a0505LyXj1vX2IkvFnda+dVxuh3Nztp9F+bSffe8//l0+/GzJwBkaUR5CiybFbT4WQBxHfNxvO3V1k4UhCPzio7QTl4RkSqTw0OJUOo+XRK6yoJTQOE8FuukiuLVXFhNKNMG9IzebdnLOC3DtKmrBU938LXVG5JLYFguAkAoBJlcPYE2zNBl6Lqe4jhREXf1CNF4mOLgaUdMF2NFHp8biKkQIeoY08b4Whllucuom63oMsCm3AcBNTe2owWInXqFtXNReMjqODpEo0sKV/3BXCOAUEqaRC3Zy9wIxShKabGexdEGKR1GgzTTmaKMUYeJwjVB9dHx/YqapYRBaliV6iVEcwmNkQBwU1lqydNuTxLltkbd2l81IYmkaqB/RNEglQjYRDEK5PvKy4Hh0eWcT+5npjAzw6nfJKU+N7yvr8kYuErqPvXI2kxviJIY12ten9o8/k9sY6zZNZRKgJuzCq5damtCvzz8NNFG3NwQynGzGSF6Ukbh0W1n2jqwzWNaIUMRo5xybj+PlSOBfC08Dqx05Ll8uVq94VQqX17OvcZqff6+TBELtXvenM3X8v2Pf+e5w9PN+V5cn/5e2fF7axrcXuYoYnSQ4KyjQ512+bsOzQulqHxqJd2uzlgKVndD6mV9kXKQNEnttWzrfmZN5pCxY6IiGI3Ye2ToZC2h0RcOW2pZZfTFdB+r6K7TWLZekGfxGCH7nXQDT61MKqE1sY3/n70zD7MkKcv9e/Zau3qfnp4dGAKdGQYYVFxBL4vggiDiBsimgiCKqCgXFRHcWLwCKogCinBdkEVBhQsCoiIywzqAwcwwS/f09F77cvb7R0SceLNOZFV1dddyat7f8/TTWXlyiYz8IjIzvje+r1wL0wdIRkyvD6UhXu+lnfQiybeOyxjgSL/hrJU1dDVVbzO7RkgGd3GUwQUZWelKqsNmfKaWfGS50qUk7a3F9jlK0Xv3Ntx+V02R3uyfVi8jIE+MEEIIIYQQYsDQR4wQQgghhBBioNgUOdl8oYv/rjlH1kTXyyMoItlYwpNJHsNM4iB2aYeoNBxxLBMVyruJ2V3NLtjgruVK2Eeu5SuGomsrRCKrXHdFb13xPlfHHUd91KR6dL0VKcTarNdSTVEkG3Zzp5Jw5UX8Cm7wPDlazUtM9lKazytb8bxXPGSyt1y9zElTLr45ulp3fy0mCfyCdwmeLkZX6HG6d7NFJ0FIyae4rEC8j9loVZsrJ9sIYnIxSmpHEfGS0hmqg1Ev3ztQjZG3OAIVE5IiNkgi1iLbCMkDWT7FsqkgI2MJGcv/UnaWJ/kJba1KLShlx8VV2h+fgyUYHFVtqdOfoJGvIVwXR+nh9pGKgpWNyLMpXaE/UxEHfGLIVE5TTk465NsyS8iupMycIyQfmPHRcSiPGZYoellIkrmUkNwwQaYLAAcqMSLZYSrDIS8j476ba3PRl6FOZWmvIKW6EOQmB/T/L1FfMzMT21ejHu99o+GWT9TjtS5QdYXknSzVyYvUFcjIQXPsEwC63dXlWheMYhEY8bIdL7nhiEdDQ9EGx+ZduWoULSsvCle7Vz/98memmxPprNdOc/oMlo6Nl9w92kOSx7FC/D08bybbUQLD5U5FeuT7w9uGMnC/zmUJbaZCddQs9CegTCVuBbKRyHg5UExIKUs5Edy6oX+jFsn13UnI+9Yim94owlWECJOL7VjH9UVKDuvfpxoLsX4W5uM9mK9zdE937UOnKSHpyfjeU5w+BQDojsUIrpiP0rWgPS1WuJ3Hn9tsR97O+AnCySSH/LHK1Xg/SpW4XB7ufwFuN+h+8fKCn0owQu+8Q7GM1bJPFl8naRs9Y0Je7DL3X3RefhyFaR5BmufOS/sN+7qvULLbenynDQ+3whglGd2/Ly7vPRC39YkvC5MxGh3+yWItyBMjhBBCCCGEGCg2ZfhxsdvGl9ouv8qEH4HcT6N9u2myXFhapNGds5TLYL7bP6F5jCai1ytx20Uf35pjx/MoR92P3p7txn3maLSRv0DLe3zJRuLv3SZ9dZ50E8DaX761t+q2W+NX5201N6p8phknmoUcK3nwSHNq9KRQ6B8BY3hy2e5q9MRULo51X7riIABgfCjmCLjuTFxenHXXUKjEe7RAo13BG5bniclMZE2O9lQS6zaObnLSYz7JUcJl6wOZiZrkHQyBFsZK0U55AuoeP6LII917KZdPNiK8zytC6xZoxO8un+PnWCuOKrEnJkw4zptgnLIj9n7yxFYelQyk8jBkjkV1VORlfw4+f5PyzxQTI9yp/Da8brXcB1l73ExPTAH7kc1tUiaXTItGUIMn5lLyvlxN3c4E9RGn/WhWhUbG2tRHhEnpdbLDjGfMj2mNUt+8hzyCo924bXAATVGzb9C55vzyNNnmLPXdzcSE4jwvWm8UPGdSddXXEXsK2F7CQOZZ2n+pEYOeNJtx2zk/iX+KvC+ce2jGt7w6XUsqx89qOW+2nFYLOH0SANA55vLENI9G5cHiYvQKh1rlIBF8Tdl22O5bt5p3l/ui0Kfwvc56BmO5Li47T9LhQrRRDgK05D2T91DwCy53LwcalY/7Su4fKqvYYHgOVskGa9SHj/r+nlUlzRyvTKqvY297wY/yN0gdkQookAmoQMfKCzCzFQyhgKu77v4ebrlyDZf6nxsA0PbttNWkgAfkie5kvINueWkh3qPGrTHHX2H8PwEAxUPxfa07E9/Nml+6GwAwc5ICfHTiseplvkc+aEMmGMnyX7OUahSoYZ/br0Pek/qxeIT6Aj+b3Hvc8C72jpDXZ8jZ71A9Hr/W4Weu+7+/9A62k5bfanExdoZLp+LDp3LcvWMURodpJ7JpP1kfY9FTiomYiwf7DsXlRd/3TJM3bI2s+uQ2xpQAvBmAgbve5wBYAvA2//fNAJ5nrd2a8BZixyMbFNsB2aHYDsgOxVYjGxTbhbXIyb4PAKy13wrgpQBeCeC1AF5qrf12uI+6x29YCYWQDYrtgexQbAdkh2KrkQ2KbcGqnhhr7XuNMe/3f14BYArAIwF83K/7ZwCPBvCevGO00cGUn1zX8K75eZJwnaLJpyXvZuaJy0u0zJNew2S2UZJHNCv9k+kyMefJjb3kJ9Yf68TY8V8mKcb+2Zg7Zewrzo03Uf5aPNZdx+M1nnCuyKP/FV1n/1aNk2LvbDvXPUvI6gmZDxBdvJlJoOT2LSakTKmJfyM0uWxkOJ6rMES3PSRPoCQKw2Nx2/1TrgynSTp0gqQvYSJjIaeOmW5CyrQWLoQNLieUMTNM1OXf0VfWvAnuYZmDSrDE8XDVxVO/ohSlEAdJRrfHSyAOkqxlL7llKyyB8PU8R7krTpailGDJT2icLkY7WyhGKWGQvuTl5EjJAofL0Z28q0KTaP01sm3OtOIk2vmCK0MrMbF3OUkZTqLuC5kJqolgGJ3Oir8vP+65cKHssAhg1I8fNXvtJ9Yx5xsY8b8fbMf7cnk39le7x+N9Hp9zbv12iyall6OdzRWjLCfQQv+6ak6wjSmS9QY7435rieq74VtWne79YkKClZefgidN7/PBBfZRrpwalTGUYCgjJ4vM+KAqrQrLPeK2iySDm/aZFGZIsDlJebFOd5x9z9BkcZYghevKs7Fs35jtJ9c6rf9C2GF3bgHNT3zelf+Iu9YzR6LE7thSXF6q9V9LVgbYn2cqE0gjJ2dMj4S5sRx3PwWXuLwc+9D7wdn5fUheOULPsVn/zBoqR2tolGJZFiqNvmvhPp7LXUnI3KoFXvY5awosMaNACf4iO5m+nNoLveOEtWzDmaAZ3f4gJ5xfK7xXZNrWBej/mAvVF450uvhGPxk8yMiGq/3XBwBdLx3jR1SZ7ucQB2XwbXpuPvZvc5+Ny7UvOfnS0HCc7M+BNSan3LvfkU7sc05W+nPDALH/CPJFAGhSaz5acfd+72Lslw+0o3SztNc9RwtzlL+rRXJYDjwy566xcoaCQlFqlbrftpPTm3RCgAlax8FX6rRf08vnluokbTsabfpw10m/diG+B5f2xX6jF7WG3osK1f7nDQB0p9yE/vatdyV/X4k1Tey31raMMX8B4PUA3gGgYK0NLWEWwETuzkJcAGSDYjsgOxTbAdmh2Gpkg2I7sOboZNbanwBwfzgdJM3kwTjcV7gQG4psUGwHZIdiOyA7FFuNbFBsNWuZ2P9UAJdaa38HwAKcZ/NGY8wjrLUfA/BYAB9d+SiFntwpRORYoF8XyD3ak4WQA5WlUhz9YzhEBKGoORzsKsiX6pk8GdHlOO8jPRzHdN8+ANAcjgMJJ4+73ClXHo1uvPFSPO7Z9kUAgJtrsUo/ixjt4rSPSpbNbUEu5IT0JS+qTXB5c9Q1dr+HWPlj5B4tVzhqRFzsnHX5YVrH4x1pN+Oxhr28YogirdQ4H4q/H1yWvHwN641Jf2Fs0JUrRHGJZaB65439z8UcjUcqhwDfg93l6FYNMrLrOlFidmkznm3cy2x2FaM9jY9GCRgrUKa9e3yOnhcshwl3pkZSh+FV8oLkRWAL1zVBEjKODrTLy5M4cg5H7AnStAXKjZQnLQvSh1amTfRLKFnudr4SsXONGnWh7BAAwlWGSEOlnBxCNb9M6QpQJQlFuUy5B7wdlKguOELhhJe6UAAn1DOy3VbmfwCYI5nKMZbd+OPmyhJDuTO5RSIhSiTbJi8frsS+99qCkxNd2UqPud3j80ecLFDfSvf2tF/PdcwPPpZWhAhqZ7rRZjnPyKxfZvlOMqJfIgcSkI48FbdLR2VazoWww8XpEr74ISdzne06u5imPvx0NZbzpI+CtdheOSIbENsUXzPLbFvtlaWloc/hiGQheiMAXESRMa/w8luDqKfZuy8+x+pL7rr2zMU+C0OxX277XB18r6Y4gh3d41AuttEhjpDn5WIsadxLZQ3RJocy+UUiderDe3WYE+1q1kvyb6W13McutXy5M2oyilRGJtiT6eZIwPO4UH1hpdjB/lF3zxpNL7mjaFqtRlwu+X6vXI41NzIa71GtFe0zyKpOLMb7fSdJa6f9psWYHi8TJ7Xjb+MC5fpbILkYt9SGXz/dTfc/S16KOFyJNn3JqfguMObljqV98Tk7cjAWjPMNln1Us8aZeL/OHIvXeLeXgU6SxLxJ9za8YXAexiWyPVKxwatwUaPe8iTl8Jm/yy3fv3Cmt2782vneck9axnLSBr3XTJ6M67/mpmnUv0o3ZI2sJa7ouwG81Rjzb3D3+ecBfAXAm40xVb/8rnM+sxBrRzYotgOyQ7EdkB2KrUY2KLYFa5nYPw/gyYmfHn4uJ1o+Ot/MGckJyzwyMF7kvAVxVGa0ECYx0URYGh0JxzrV5pwZjb5lHsXgEbaZSpw0e2fZjQYeKMeyjBficvjyPtaJX5J3NuOksZmmG21grxBPHDyX2O1h5IhzdnAOkt2+vkZouKBDE4NbZ+LIIs66a186Hn+fnYnXtehHmDKTv3hSZ2oUkkbeeLmb8LKthQtmg4VCLw9Bryxse3Q/mokJqgxfVzgmT+bfX4qjI1f5ydP3a8Qbcqgcbataces5S3aVlpuNOKoyP+dyIxyjOPUnyIOz4NsVjy4OreKJycvxE2xqH02sPUTXNe67jxaN5JTZUxLi59O6eofyyHAepHYif00iz0FhnTk32GMQj3Vuo48Xyg47AOr+OpqF4HWl3xOjptz+TjWjnc1PcsANd5/voV59kvK0hLbKnrOZTuz7pr2XYZY8D9wfspesNzKdyFoOABN+Ev5umug8Tt7BXt1TsIs99PsDyeavKbqR9l0Tsc3MzsZz3dx09jlDE29Pkbu56e94KePhoj4qkX2bvXQpjx1P8Gb7TgWoWI1w/GJhZS9F4ELY4UyxiA/VspNsm9Qvz1BZzvjABpOddDADttdQF2VyYXM7DoFJuH64/kK9jtAzf4xsaJTciBNtd4x9B6L3Zd/1lEfO58/Y/YU48bhwe8xNURxydjNEOdDupnNNteKocnhm8TO3QuXuPZPJrkZo+aD3LhwmD/wEvQNVyS8Tqq5cSNvQsa5v/0OxXz5djmWd88+WQk7OG677YsKjuhYuWF/YLaDecHW62Cr7MnFQCLYjt1yjZ2Ol2k4uN71XZ4Y8YydL8bgnvTeLbZ7v3XC3P5AM5/jh/FuhL6/TsZYSOYDOkO1wwIFuy/XBxf3R+zx0NZXrbGx3rUm3/uzt0Wtzy0Lc7+6quwa2nOGEGVEMIUyTnc1lghMETyV78+M1NP377/CR3b11Vw1Hr8xQw7+LtMjeKGBRZyk+e+o3ubw8d90cj4WRE/0FT7DmOTFCCCGEEEIIsR3QR4wQQgghhBBioFjLnJjzpoA4wTPIyBqJnAFMjdy6Y+RaPlyMUoq93f7inySX3YKfeH+KJu4vtvonZPJky3o5umBZ+hJcy0dIMsGT/MIxOH/AZCNOOJxrrpwzo52Y2J+ZNMsTJdGfl4Td3OF3dhlOzcR6q97eP4F0Zir+zpPhjpbdcY+W4j73kKwg1AvL5Bie8N9jbaqJC04Bhd7k++BeZyki35tC2+crosms3YRsAkhPRt1HdrrPH2uCJu4OD8X6qvigC0WasN0m+d/8XDzuSS9dmyW3L3uLQz6CUWo/ITcTANR9EI283DAZGZqXCu2m9rePJquO+4Aa8yQ9macuJchA26W0dISXQ91yzgmWKpZSE8k5IAH65YEc958pF7d27KaL7MRPIDvpvZSQdswV4/Z3VLjfo0mXXi5xohBta5b62SBxmOpEWdbxZuwbQ3+10IpufpZYcn2HdsT3cJwmYAebuYzkvxd3Yln3eJPZ147Hv6oa+8vDXxfLVdnnJUizZPNfo2AvXsHLd5WlH40gUabf2TSqCWkZt58O1T0HzAiwTQb747wfedLp0PcEm68j1vtGs9Bt48aOCx7FwXICDeoLZ7y9nG3G+8MSbA5KU+xJnSmgQyanls+PRO081RdxQIhKzlhrOCtLb8uXRDlK4dB+AMCuobt768xklHhPze4DACxWYl+9RM85fkcJ7wJ5gRlCCTNZgMjIdvnC3o9s/NLrYvCu2gP2xGPt9RJLmpzdPRO3PfxhJ7O56/TFvXVfpufNlH8OcVn5OZeSUGclk+efR2atdLtAveWus9ENUiiaiN4kqeacb5v0bKzWyI5Y4uUlanwlNTruiD/XEk9kp20r4R0rJxBDkw4cJMFlDvZT6O9TKvw7PRO7XnYFkloVhuNztlClHEDefO+cjBIyW6NJ/v5ZPEZXw3YQAsRw/8gBC6YpyFZ4XvD+LdovSInvbtG75W2x/Y2fcH1EpRrfF0uVI73lWXrn/OLCZQCAL1fP3fbkiRFCCCGEEEIMFPqIEUIIIYQQQgwUmyInK6GIMS+9mu70y6o4Ak5wzVfJbc/u5HHKCbPfy3T4S6xTivvdlYhexvKgTk9mkHa7snwoyKUWitGNXkxEdWIJ2kIzbsvnTVHMuNwLvnzkWuPlYn/52D0/46PJ3Enyplp3rLd8+p7oxgtnPUuu62Pknryj6I51Rzu6we9uRtd2kKAs5URCYYJb8lxj0l8oCoj5KYrF/jrO5rToj6LDOQ5SdsL3/gxJdu7ybtfRTrwf9TmKYuNlZlwtDYqVf5okXMd9/gY+P7diflKHAAAgAElEQVSJmj8IR12JwhzKx8JyF5Y4kkmH6yrRyjGKDhTc89MZqUL/ved67RbTttEshqhqFPWI5AGVRC4eljI1i/0axQZYakAudX+sckbquHkSCqDbi27Ti0yV0weFu7jEeU+o2At0nyf99c5005K8BoKUN9ZVyg5YQsZlKSWkNHwPWF57oOD6mCspr8CVjXiui0qufVx8SYzmuPsGksRedWVvuVv3z4eb7+mtY7lliGbE0aCGaJkjCQXyeqCw1yg4H1mUxAVJCOcDGSbZUKijJZJozFIdL5AoZcHfp3kv4bi7EPvYjabebeK2JZenIeQ7KSUiCwLx+TzbouhkJMvO9KH+EAV6fpdZruYXuznP2SjHizY8T8uzFH100j/r56djv7p7Pva74a4UhuPv1VrM3Vbyi/wU576O+626z7CRaZtU7tC/ZCRFdNyK33bfRfEeDz/yAb3l4rc9Jpbh4qsBAN3FWNb2jR/sLQ/d+HF3zNPx+CwJDBHeujllZbql1PqFxLqNoYsoH2v7um9SHTa4Hfv3vfYCtf3F2OcsUl8ToqryM/Vgi6PY+hxmJC1miVUl5O+istbpYJxbJezWYgkkPSd3eUs4QI+oyjD1u1521V06FTcgjfjSPfGPo3ftBQDYamwHR4qxLQb58AK1vw5NNaj565qj8i9kcoWR9HWVZ1OIynaqTP1GO05FGJoc8fvTeyr1MXdQNMlPVpytf3kpRhJEfE1dEXlihBBCCCGEEAPFpnhiKoUiDhfdV1n4JlvsxK/HbmIkl7/4eFSZ41iHr+gafRRnJl9h5Zj9qTwRPArJI7m9ESLyqJQSE4TZw7Sa16dM3o8hGmEOozq8Px83lJEn00+34ujJXUXnKWlSNu/jlMNkvNJ/22e7cQTrbDfem5Pe0zLZiiNI0814rmbCw5Q36rOdCPehlPCAAUDV21+q3oG0l+4sBXJg78Z01dXtnZTt/nCVRg+7bqS3RiO6PPGbJ/EvFPon5vN+4W5kYtpz8IIQWKPTb9sAUKRj9XIj8OTtLo9wu/8bidF+IA4mZYIg8NgWNZ8wesjekcwIrx91ZU8Mj/CWE8FBUsEXAGBXxecwqcRRoynQCNAG0wYw78sbJkq2M94XmkgeKolG1up0jxYKPLKfqgMKhJAIdMB1FDxULaortv/VcknwsUb9veHRz8trMZfF/kOurYw/gPrDa66KB7v08ljus27IuXhHHKnkoA3BuTdC6yaK/Z78TA4iKncH/f0V2/wEeToP+lTeB9txn73koR0vuL6zQe3kJHmoTlJ+p9PFjv/ftcXTiQn2G0Wz08bUkvPRhqAweZPxgw3w84j7t25ObqdAhdQRvfxcOTnSQl/KzzNWZWQ8g2XXfg9Mx8nEY/8dc0uMz7ks4M1T8Xl29OTB3vKd/racAI9kUx45zmnlR7g7HepXKeBJ8MBxkAieyF3z+9V2k3f4EOWs2XM4rq+56+qcPdZb173jzt7y6bucqmIm4Q0ASPHAE7o5d1tm0nn/O8zSJnpiOihg0QdoWvRlaXCfRduWgjKA7sEU4vPgaKW//eyldjpBQUQmvPkuUT6jeqZ/68/fNc+5j6jaWn6/sW66/R706/fSxP1Wi/LyHXF2VDmVjng0fSaqaI523LvCyQp7eqNNzXmvLntU2Ctc6Sk14pUtId3HhyBBI/TMHinw89n9P0nqCva0jPjTjtL9orQ/qJP9hnIfnY95Zi7avbb+UJ4YIYQQQgghxEChjxghhBBCCCHEQLEpcrIqCrgUzmVW9y70eZqM1ChSLg7v5spMBibXF0/yO+tdXxVygc0W+iet8sQkloCxSzuQivkPRDcyHysjw/H75UmOUucfKUd39HglTh4Nx+J8DSHPDBDd+uzen2lEF3Bw/8+U47rbi+mJlsXEBHaeVBkmdXJ+HQ4i0LsuciNm67C/DlaTpWwUXcSyd710gsvN7vdQL6mAC0BWmtKTVnAOIrKDMOF/shzlNLeXorxv1MtNhgvpSespOx0micUIyy18ueYzk7v781TkBV/ISIK8XOJwIdrpFZQO6GTJ11ExfT/DkViykKnPjNyh/36wBCwvP0NvW2/TIXY9AIyRhHJ3OUrHLq24GPuXeYkrAPzLpsrJuj3JZpDsZSdUxvtd9a58ztXDk875NoZJxeXMRMxIE/12lJG3JgIe5E0ODvJYlhWx/CbIFWq0z+69sT8au5+XhtznoliYi6K8prAnyn66C67ddCkwwPxibCszpTAhmKRGJC0b9/XFgQkaLNEES5v884e23UPakfv4Mlw1HCdd7zsU23Vl3P1en4ptctexKCOtNaPNlfyE2BCMpryKjV9IOt0O5hru+RLuN8vJUlLpVD/Ut423Cw70kpKe5Um8QzCcVA4oICtDb5TdcbvD4711c0dj7pRL73THmibJ0ReG4nVZuEAF91DQmsl2tFHOhROup0rP0QbllAn9Wi0jp4nXMOrbd2mE7vGZKJ3hifttb++dW2/vrZv68Nne8pcWXDs5WSPpequ//+CgHSzJq1FwBM7HF1jqW7NxtAsFTHq7C9MD2DLGyOaG/PUMlVhCG/vF0xSkINwFblMjdOBRL6EapnvUTPSbdbqfLbLJucy7gi8fl5v6jENeUruLpic0W7Gtzc64a6gu5cjJ5uM1zvb6uvS2vXKDn/n9wVnKmfeeyBA9Wya8zezusmw7br3o2+VcInAKAAwHiSXLwkladojeQy/3z2c7FNvyWgNMyBMjhBBCCCGEGCj0ESOEEEIIIYQYKDYnT0wX2OPdduPedT5GEVsapf6A0LtYbkMuzyrHsg/xuWk/lkcEeQ7LtjiiV4g+lopOk0dm20x8+/5t2SUf3OPD5XjdE9UoLRgvRzlZKmpaKpoUu/eXWv3ue5ajZcqVkX4V+8qaitufF6UrXFcpRwnB1xK2TV3fZtDtdnv3P9xHlgcUElLBjKQwL9a+X5/Jt8K/t/ojnc0Uoqs01AuXhV3+mWgyfpllAKPUloIMkyWBbDudRPS/vFwfl5adDOaGenT7XlOLWWduX3Su35NDsdyzVK6Q56VcYLnOypKUQo58L+zHOaUy0jN/3aPU1g9QNLjLStFNfV+4tnZZMx7/X+JuG06n2+3lBgn3aSlH/lfzLn2uiwrJ+zgaUshdkpFNUX0HARTL1bqJvi9P7tlNSCg5N9ISSX2m/PVNUjS5VpP6nTGfx2Es9oGZc02ejMs+MtPkzdHObkGUBx4pu3JNk5S4mYnw5mXHJIXILNP1hmhuIyQHGSfJyUGfJ+zAZZTv4woeC3RlbM2v/ZmyFSOJXZAk0D+8OiyPpjxV4dmQjWqVlnulSD078vbp2WYjiprY7hrl2E6C7S1V4rqTFHFwwufS4L7wBEXhPN12sq2pVpQDztMzs5l45nIdsdxs0UvLmpTTi+/rsJf3dClaX+tzt8RrOfLF3vLZO1ybODMd28bRQpRaWp8r7GSX5OYdKovvI7nfZwl5Xi6craAF4GQ5SKQcLHAbo8dF1U9FKJF8KS/7XtiNungs0jtOtRNkoyzdjccth2kNbHvUD1RIQh164xr1GfvphfAi/84xVo59ZYkieoVIi/V67N8ycrMu9aG9ssbzj5FUMCW7zuRRDOfP5DOiqKwsJ/cyMpbGcbtdKIR3CT4XRTfzdTfGzzPaukht4T5eBn71cLTz2/G1vmtJIU+MEEIIIYQQYqDQR4wQQgghhBBioNgUOVkB8WspJB4bIdlJuxSlVMHNxdF4LiL5BCfbS0VzKdPvB4pOknaCIhOxnKyQiCjGchd2Ywf5TV5Up+XHBLLSsdGKK8tEOS0hG8ok9PL/cxKwUix3KG8L/VGnuIyNRCLK5WXsJcZaJQpXngyolLgH2eNHun7bbiLp3mbQQQdLPjFduK4uRTRJJXjLS+qWPa6DrzUjufPXnUme2umX9LCcrUoJ4lhmFuR/HElolqRnQQ7G18JyimR0MrodoyTjvNLLrlhCdsl1M73loVvccc/M7u+tq1diWy17l/siuZPnEe2YJRBB+pBpc7Qc7kcqIiAQJaNDxSgbu6gU2/3lFDvmcMvtt6e9srRto2ijg/lONjoZS8jy7k1cRS57koOEpKd8VQ36q5FIdJongUyWu9tv02zHfA1T/t7eQvK+Q6f39pZHv+KiwY2Nn+6tK1Lkmu5ktLnJD08CAD5xOkaeuqkar+GUj/TWzImeFSQSY/S4yyQBpW1DctEhas1jVK6RqrPfCulcCmXquxdcuVokwWySNGtrLK6fAtYu660kotaxtIzpyVXJVjhS2fLt+ul/drH0laVp4ZnIUfHOUgTIILllCQzLH+e9HGyJJKpc1tYqbWOuHaVpJ30y6BIlMx2ltjnpyzJ5e3zmN238/ctzl/aWb/VysTnK4s3yyNM+OecpiqTGkrgQyZTvAd+vBep3W4kEuZtJvdDF17wUL0g8x6jtFUpkZ23Xh7dJ1nU3ac/qVEchMlZOPlCKREbR5Oj5POzLNMwS83ZcXuzENj/s+5JdJCHbT33srpK7X5Vyuq6DdKzRpnvUjcefy0STdeyjPqVCz/+2F+OxSJCvO0QUa+bIOcu0esRfO0d1a/Mzt9AfFZITbw/7/pglZCwtZ/ndXl+396nE53eMzbcy8sQIIYQQQgghBopN8cR0CkB92aDPME80I09L8NTsJU/N3kyc6niMRf+Z3eCRGjpHGKXcy56YTr8nJjPZn0aAeAJsbx4WeykSX7NDNJH1ouHdveWrqm60+lAxjsRUaHSkzhNw/aRYvjs82tRJjVZ1+71JeV6EzGi3vxyaZ5bO7ZKTHyfUUZG+wAureFoKW5Unpgs029kR/9wJpp3+4Am5E1gTtrHSMYFlk10TXi7+nfMopfI3sKdmwdsfr8t4NLr9Hg2+Xxw/Plhyh0Z9QBMax/e7Eb/LJ+NI5mmy/yVfBs5ZM0+Tv2fbi73l0Aa5XFwHKU9MITHxnyeqjtB4VC0x6lzfsnxF3Uy+i+XwJNwwsb9G1zJE94gnXYZrXCQ7XSRvbQgmwH1gyoNbyEx07w8qwduwx5B/D4EKjiKO+t40RH3fV11+mGu7J3rrhi+PXr55mtP5qSPOA/OftVhnX21FT82Mt6O8UeWQI2OMvIzjFMBiF03G3u2fOzQInvHE1Go+GAw9aNozsT67TZ9PjEaQg/cGAMaWKCCHv3dhku7mWmOh51npBWfhic/Uf4xX3X1jFUEtM/rbP9l9thnbNj+HWon8FplnE/o9OZk+oU15ibwnhnOYzZbjeUNfkMk5w8EpvL006Tma5wFKTZieRTxX75nLNkhegomaCzKyNBm91mcpGs6Xh+I13NNxx2XPYqptnWnF4BLTzeiVWWql+hbKM0fGG47L9RLfljaeOjq4o+O8SCH3GXtMJ8ux3zvq62uRRvPZy1/m4Cfd/txLJbCd9cP5ZybG+7PldGYop0yL3gP9eXkC+1CBn++ujpcoygB7Zxd9WRfIp8BBCMgBhGHfF3GfdICuMRQrowqh5Vl/3AXaoF5I18uwfy8YpZXsLe8EhQmVj4MyhLw6dXpGtehdo54JLuC4uNuft2g11vQRY4w5COAmAI+C+054G9z13gzgedba7eIlFzsY2aHYDsgOxVYjGxTbAdmh2GpWlZMZYyoA3gT0hh1eC+Cl1tpvhxs8evzGFU8Ih+xQbAdkh2KrkQ2K7YDsUGwH1uKJeTWANwL4Vf/3DQA+7pf/GcCjAbxnpQN0AMwVsvKdYZJH8HKYhDnRTccvP12MzrFJ71Zt5EyXLHnX1QhNmueJy8H1mzeZOHPYhK+f5UVhkuSe2lhv3UOGLuktP6bpXPKXN6O8YpbcbMcoCMBdfvlWkiS0KuSq9K58dl2zi3i25fqUDp2LXf4piQhP2kxN7OdrTcX953or5QQJCJWYl1NmFc7bDoEuTTxdJbdLuO5VAjkw2Trgs/rgCDkBJNKTXOn3To5NehqF/pwwmfw3PMnfyyWaidwxQJTmAMDtZedS/3Q75lupf5ploG6/0yQtmSLXdMgVcrYTj5mZgNrqlzikJGSuvP1tNSUn4yAGC+RInyT3fqnkrqFeXJchnrcddrtR+hQkKxkJGd27kANoguS1Y9Q3jpF7PgTZWMiRW8z7Cb0sTWUJVigLS2e4X0jJzFhWxNfQ9sfqSWMB3EX9zlDN9cPVW6K85uLTUR5zYir2o/9Tc+c90om2c7wx1Vue8VIa7gPZTsI1jJZj37+b8onUy/Fc1ZAThYQRE90ozxkedcsd0lA0J3uLCI+XoQOxLAfK8boKxygH16I774y/36W1dzXnbYPFQgHDFWdbqWcA19XB6gSAmDcKAPaQBK9OndLRtstGdITqPyPXDn1VZsJ1WuocaJONtsF9gjtWvRCPz9KyEJAgk68tIYvOy4HG5QoBVVhilpK+ZnNyUR/uq+v2apTOz1DbONEkaVhroe9c3J+Hc001Y3tgCVnMaZMuayrQQlZOVu37PYfztsNWt4Mz/pkT+rol6qvn6N0w9G/tjPwwMtzl/sfBj8tOQnY1QvUyNhzrcOKQKxNVO0rH6R1qku+97zOoAS+1KahDt9pXljoHWvAvC0uF/vK564rL494+Wbp2LhPbwwT6WWrrM/SyskDnXS2DUKiaNtUrX+Ocf7626f2b8+5U+Lp8kJ378FSE/vSRSVa8fmPM0wGcstZ+kFYXrLXh9LMAJtZ2KiHWh+xQbAdkh2KrkQ2K7YDsUGwXVvPEPBNA1xjzSAAPAvCXAA7S7+MAplI7CnEBkR2K7YDsUGw1skGxHZAdim3Bih8x1trvCMvGmI8BeA6AVxljHmGt/RiAxwL46GonaaKLk97lu+Tdd+wC4lwHIdpOhVxUs+SkOkGu/ZCLoMlSKdqv5o9bZ9dbQhJRJNce/54nsUoR3L2X1/b11j22EaPxPPKBR9x2l0R3cvOeKPc6bmN87NFFF9VssRr9aR0Ky7bo8+q0yBU6l4h2xFFXShzFqBylEiMlVx7OO8L0ZDqdfskSEN3v7LJnuVoqqksxk2Ngse/35VwoOywUCr1rT+U5SEVty0RSy5FArEZPckf7dHKixfX2yZFNpbbtFhPrciSSKQkFw1FubimeBQA0KtHObkW06RAN6wzJOY53okTstM9jME35DDi3AttRKi8PL3cSEgm2rSCTC1JKADhWnI2/U+SZKS+FGS+uKa5Jjwtlh0yxJ7GkyFDUH+7yMrK9JG86SLKJXXQbg8LpLDXlRkJ+k5cLK8D9XiXnERH6Q47GmGpTLHmdphxBd/j+okJ93KmpKGOZJCntCW9f3MfNkxQx5MXgyFIZOZmXD+bluuKIduPeNuoUMTOT68rLHZam43W3mnGL0b2ujMOX0XMkdu3Y24ptYfqucO1rt8MLZYPFQgFDvi8MksDhUqz//ZSv4TIvI7uK2v5Biq7EkUdr/r41qyS3YTmYvwcLTZbTrlbaNOEed8DSnv7f+dmX6kvzZL5ZfH4tygXSLvB5+6MnMkHCybIwjhK40OrPmZWRJ9PzNZUHLitlDtumJcudTL+akk2vLie7YM9kFHp9SXg+tqjcTZIXFX07Tb1TANlIZMVl/wPZKF/hdapK/eOuvfHZMXK1a/+FEZLLTkTJX+1IrPulebfNwnyst9l23G/a96eLJF+mQGU9CRdHCeP32CKZ1Ihf3eZ6ofeKiq+7Gk27qNKzr+DPUW9RBLhmLPfpEuefc+eYokrkSGShvHw3WLIXuggu6yFq95dWYl+4b7+TRtbGY72+/CTWxHpCLL8IwJuNMVUAXwHwrnUcQ4jzRXYotgOyQ7HVyAbFdkB2KDadNX/EWGsfQX8+/FxO0uh2cEd7LrNuhCaq7qb1IVMyZwGdpYles5xxt9ufW4I9JiFDdZ0n+7YTWcKRGsWIGceB/K//QJgIeVUpTn588MjZ3vLwNxwCABTGYqz94tip3vLe6fhVuvs2Nwo2QuMIQzzNKnyN82R7+lwPoz2VUvr2TlRiGXb7HDpVmnzFo6d1X8eLlNW4mhjB5km9qcAAQKxnruPmGjwxzPnYYalQwm4/oTjcz4yHiXMEBY9hzuTvTmIyal7+m05iYn8qNwLDE1DPJbhA2LaZk4cmlCGTL4HaF48Iniy4XBzsPbm9FEeoS94+eaSVRxfDJHuuY57km8rP0MyZ2J+qAx7zDNfI+SnY9qZLsX0N+RHnIeqDEC9rTZyPHaIQvZGhLYxQ3pIJ8gJc5At2SSe2rwOteF1DdI1hImWJJmqyHS0/JwB0eeI++r0r3K6ZVF6eVB/JfVSdRj1PeS96g/qte2qUe4SCVZz13ncO2pBqf3ntJDXizoEt2L4n/X04QRPbj5CHonTcPa0KmRwicXl33R+rG+2tRElnFmaiN+OkH/G+w2cHbxTW3s6B8+0Lixgvu7KM+jbNeWAuLsVgB1d4D8yVrWg3+9qcKyxSq7hjVStRkcCexdu9jXDbXKAANJ1E5JLCKs/ecyGjEuhNPGa76Pf+MnlBCIKHLtOX0nXxsyWQlyss5c1JBTTha6kkAnBk+vicfjV6kNbpDsP52mEBe4qurYX7zPnzRukVdczbUSsTXIH6QrKzIS+lGCY33wjne/J1vHso3qPRSyn4y2XufQ3DsR+okJdipB3zVOGY+29xIfZfC+ifOD9HHo1FauuNxPOffWGcz2zGe+SatK5G1zXaC2YVn7OjIxTsouYDypBbqjpD9tCMfcCUv957iuxNj3Yc3vPGOQgX22QoC5XvsmoMRnHlN8Q6rN1wudv98svjsV6xtm/gcwlsIIQQQgghhBBbjj5ihBBCCCGEEAPFeubEnDONbgtHGy6Yfpg0uqsU3ertIgWE9l6uJXINLpBchaVOQcbC69gzFyQHSySFmic5WSuRJ4YntbK7NuXSZtlUcM1fQbqUfVfFmUnFA1f4g5LbtxaDdxQr/S5kdtNz8IJ5L9nhSbvzNOm1J5PLua5hkq7s8okNhkhOtkSyjWKn/7r5uBUvLavlyNFYAhLc5Fk52eZRLZZxcMjlpQh5czjW/mwhSpGC1CmVG2M54bpyJ4imJuOfQ2CAFIWcABShjHmTt5OBATKyA8o35KVZLDFj0vlt+uFr5TpimVmo77w8DYG8IBzhGliuxnXAMtJSQlZF6Z02lSDHGqO8GweKsQ+5xOcbOEwTIkf53tKxZhEmvkZGqV3uKY1kzglk22qoD5bZsbQjIw1bRYqbgu2l7mU3p+haZklCVqLJoPPdfilOJtdVyO3STZ8/BnChibV03WwbZwuuP7iD6mCoEiXCkx3XX45R8x4jm52ddftNzcVnGqtMj3fj+i/423yLz62yVN685OYFFHqyyjH/DJig5/ABsserfOCCKykXya5SfyAZADjst72iEW14z1CUloXcD9kcLLGCllqu/bKUazU5WV5fmpJdVUliHWTRLE1kiWtKgpUXkCUlJeZy9YJqkK101vkMCLLNYcotN0SSx5Tcm2W+nEsn9O2d7mY+iSNlFHGg4Iwi1EeV7tdEN17Lrk6Q7MX951h+SNUZ9mK57V4KCjVRc8v7LorP//I+0hRXfftvxnrpLlIungXqyxbc2eaWaGI/BSaZ8YvTJFus8zPRS8sq1OexNc3xZHovTVugbUfI9oKacYICbxRIulap9gf0GarT+14zbrvk95siCdkk1WHFP2nY9Ee6LCfzZSHp6Z798R2ret89sYz3N+78V11DJZOcTAghhBBCCLED0UeMEEIIIYQQYqDYFDlZq9vBXMO5zGs+8k1GbkOlaPucF1WKeNAmlyFHGguSgJRkCYhyFY6sxXKZ3ulJjsOu2FTErXQ89ijVONyKvrXKHoraUPOuSpKTYZgiPQ31x/ouIS3lWPSu39lOlEHMU4SdkEMhFW0LiDHrAaDp11dZFkLnDVHLOEoX18tooT/vyiK5plnmFu4Xy1myMes2luFCGddVnJxswUvxjpK07gRdw0KxX0LFtsESh2BnLLvqUkSOkFogK3+iZYR462uPwsPH4sg0wZYz957c2EH2wPsXcqLJBelDi2SL2QhP6VwzqTKmjt9KRALKizBVTEiVuL7CNWTkGjnnSu1fu4ARkFaj2+32pKxt38+xtISjfAWLY1XnLNXFNOWPOOGTH8zR/d4Nzgnloh7WS6O9dUvd/nopZ2S0kQb3IV76xZLWVN9Yo7ZeToyZcb/WYGlbYluOoMg5TRplL/1Ef5vi9WznbCd1ErXO+GiJFWrrHF1r3kuvxqnNTZCEYlfX1fdIJ9Y7y1+Ol2K5boWLYHai5Z6NrdrK7WmjaPZsMdbJEF3TJS1Xv/e9aLK3bnhPWk7W22eG6u/Ygd7ywrCTkLSH0s/R6YarkyWSPOXJrnr3kH5ORnrkvg7cb/oonnQvmxSJqZnIjcZ2k+xT8iJUhgh53XT/lMpfx8fi5+9I2b037KlGDeyecmzTLO0O8DP5bLP/qXsuETAvJBUUcMD3UaEvqNKzcRfZYZBwLlAVL1A3sUD93ry/z5xCjSORBRnZCEUkKwxFOWV3yrXJzplYVwu3xP2nj8coXrNeOjrdjX3SAt27hUJ/v7yU6eu87JEimvHdWCI5WJChtZG2jVnfb1Za8d2yOkd5FL1ktZyYvrD8uCH/E0eD43KFd8cGvZ9zfx7y9lRYVtmI19i6O0Ynq9z+NQBAJxHFbzXkiRFCCCGEEEIMFJviiel0O3ECWSJXCLNUdCMGlZz8BOyJCZPVMrkpEqMnmUzO/KXoR2B4dIa9DKnM8zxJikfmg0eiwpOkJ+PXduXUGbdAeWKY0kgsw2jRlXe0m55gG757OWDBHGWwDhP3uC54gv5UMU5mC9e4RIEWKgkPVCaLOE08HvPXzaPHnG2WvQBhdHW4GK8rZsrZeEa6BTyw7co+74dodpdjWYZpMu/JMDpKIyZ8jZk8FX45Lz9OoJDj/Vhtfudqo8qpZc7wnJnwXOy/lrzgBeEYeZNRg/ckb4J/yhPDrBZw4FyO2YhRd1AAACAASURBVMveXcis7C22E4fP5jXZlK4QgLufwTvcSoyCMwtF11+M1yhwBo18zVJ/GEbERsiLfYgCjRzykz0rVBdzmZFMX4c5BskjgtPeEzNLkz4XM3lcHFUaJ6sl+vRmIi8IkO5PRjkgCeU0CfbHtpsKbJHKWQVkPYolf1082f90IeZ8CUFPOBDKOPUbE/6ZMELtjzNxn+jG4x7zudOmW/74udniLzwddHvXGOqKA75wSXYXnK1O3Dc+b8oXxecFWlTX3gNdm4vP5PvVowfn9JTzhC9WY3Y4fhM45m2En1HslVnN+8t0E96PVEABvu4RyrHEfX84byYYSac/CEBeHpm235ZtsJOxUeqLfIXwu0iNcjftqzqP6iXVODF6PwVlGPEj+tyKp8nbmFF49PrwzbM9ptIFLmn7dxBfBdyHc18VPANTlFvqNF3XNCtM/DvKTIkzrtBxR939Ko6Q94PUE13vgWncHd+r2PsyPRvru97pf3ak3l7ZY8HLIRdOJUcNwL6J1Fsz/z7pN5irkneRcr/Ax5LaNR6vq005Y1r8DpM4ZynxjsOWk1qepb7w9smJWJSPxb5w4iaXbKc2fBfOFXlihBBCCCGEEAOFPmKEEEIIIYQQA8WmaCi66PbcrWX/P0+2z+QP8HKy1XJyANGFy25fnmwXXL+8jqVjqXN0EzIhIE5iyrijye8ZZAb3UI0e+XJ0mV9RdW6yymVxAl6hTOcnT+L4sHOz7a9HN+DuSnQnn0lM3GslYtpn8pbQtvONJSwnTI4FspNma176NUoSMnZHD3vHaTUjd6PJuiS1KPkg5uOFtIt3o6l0gUub3v68i3OE5GS1UswHMezr+HSbpSTRXc1SvpRsMS9Py2aRkYWtkr+Df8/knPF1lDdhOtpXWoqQkr6tty7CebOTYePvYf25jMq0V9PxbRDtbhdLrWwb5BxFU60opbmr2B84I48gi7m4PN5bd1khttv7NJx9XlqLNt1qx+NOtdz+DarFFt37acp9cI/PUXGM7OUMbRtkYtVEX8E0aR+eQFpMSCs61Je0Sf4abIrlvSkpUEZ2nCMxDn0Xt99FCk4S+gAuXybvlu8nRzjvFsmOuD853XSS1RCIZWgT+4lOt4u678NC2+FnQJskcO1EqyqQvJEUi71aKY7FOtkzO9tbvv+Uu/7JdnwOLpaivS5VXBn4XnHuFg7ik5KLZemGC+jRoon7YT/u88ZIlsXS1ZAXqU7PgEzuFV+XnKeqkQgi1M3Iyfh+03tHp98OuA8dKbkK30V2t4faRsjVwf02P5/bFFyiWemXwW1muJ1KFzjsn8kny+4+zFA3MUMz8xd8Gc+QhOwUyTM5eEHZ18EZepeZWoqGunvK2W95jPLjtPrvQYuiCLRaPPGe5a5ejkmGNkZ5Woa74TkI2if+EYJojGT6z25yORy1WWAJWPx93peFW0SrEss90nD2XV2KtsnPALaClKw4I/MthIn7XBeREHRhmh7UCxlJcXy/LSy55TY/FoeO9J0/hTwxQgghhBBCiIFCHzFCCCGEEEKIgWJzQvJ0o/Sk3nLuO3arsos3yCby5BN5kXNS9OQseXKYRGQOjn7SJPdgKooQyxdOt50ExFaii2xvO8qTOp9x13PoxExv3dABcjeT/69adefaPx/Pf1E5nuuslyywqzQVn76bG40nbsORXwJ8je2SW2Y34kKBo7K5ZZaKjNHvi4X+3A+jCTncZlBEFyO+okPQtAlypR4kV+eClxUskXxhkeqKJSZhPUv6WMq3VvJkV6n8MXw/UlG+MhHHKDpIsLNUlJ7l24YodRyHnver+CgxzZxLDcfisuZFCgru+zy5WS/CVMZRzn1EyDOTjvCSl79hK+h0O5hrOr95qI/VosXl5fXhPmi84iRWYyT9XCLpSM3X98FLo7ynto/6uxl33NYiRbZZistnz8a+rdZ0cqAOSRVA8pZF319yNBuWloWlJc5LkGMbQXoxltNvlL0st53o2wFgzufT4vwYmT6O2mq4D1zfKWkaly8jN/Ny6FqR5WRRssJSwelmNidKNcd2N4Zurw7C9bH8iaPe3ePlv1cejfd6fDTK4oq7or0Vht22BeozSuPxvo+PuHtxYJ6ek7UohQq2y3bNZPJYrZJbqrcd0s/3sH8hIw0keTE9D1perrXQjeWaTfRrqdwxTF70MqYn0s2J3hjz48VzLdE1hnZGKj+MUYTKgywNr7hoURz5765NlJN1EaVRQUZ2mt4ZOLfKgr/emZw8dFwfdX+MWdr/FMnYR086CWOrFe14ZHc8VqnqnzdNyplVSN+v0FWU6R7USBJY9XVf4ecVNfVwb4ap/TdYIkb1EaY1zBXSErCFRN6vEt3vQ146eZCkcXnXFfrCjPSNriG8x+2laJijdA0zvu6PItbrJMn/uL9u+etaj8RbnhghhBBCCCHEQKGPGCGEEEIIIcRAsXnRydoh2ZNzG3F0mHKpP8FkJtEkufaLiWR8nJyxwEn+/LYN2j8TlSZEZemko0qxdC2Un39fSkSAuqcUo67cVY7uy30+0ljhWDzm7sUYkag6xOVy/++iNEYXtaJL8FTFHfcedgsX2O3ZHxUqz0sXpBTsBq8Xmn3bsdyF6zssc4SKEfqdpWMhwdNoTiLTzSS4sOsZmVGspOA25aR2mahrZDOh7vKkjsHOUkkr88iTP6WSPaYkFhxBjm2jGxIarsFrG8rASdcyST5L/dK11crKarAWVpZepMhE96GDpWRkLI1bTZ63mXS63Z6EKLS/QqaP6+/vMjI/iqbE1xJskqP0TFMfMumlMq06SQL20HEv8knyGvG+dBbisYq3RZlJ/R63ba0e+6CDJHk95iMNzVN/map3joI1l5MMLsgwWMowQdGY9nqZSI3snCP6HOu4fraRSJQMZCNOBTJtisqyXILlztUvOy534j3ic802Y58fbCA8k7qbmnC1X/o0R6GBjndiOb9adff40iMx2uZVQ2d7y8OXxf1KXkbWoQ6mPUvPzLq7xtYqTbCTE8UrJZ3Nk2j12hT1dSwdbCWim2aSYWf6UHesRk7y4xQpey/kyEZT0rK85MnBnqY6UZqTkQz73XaRPXHkq0OURHu/36ZB0f7uwh39F7NB1IvArVVXtuM+yTfLxZao/6j7uuekuvVMgt1++TzHh5ui6IrHW04u3jgV1+1ejHY8MtYvs+9wNNo2SW4TvgCOHhakYVnbIgmjX03KXyxQQs9j1BanO/2RZVPTJUaofxyl9+umX1+r0vt3mRJvNuLyiJdOjtHzpkJyyoO+Dibomb5IJn/GT0VgCdmZdrwW7lc7iba8VuSJEUIIIYQQQgwUm+SJiR6YTrt/5JFHhHqTgRMeFyA7ChmKX6Iv7FJipCNvlLM3sb+dnuTMox+hjM1EWQFgoeW+NnkUtJ7JP+BH/mlC1ex0jElfXWRPjNu2ShO6JmgEabefSDVMXgIeLU+OgBN5E7kD7G3qTfqkEQ+eqDpfcCMWI6VYliGa5D/O+RL8sYa36Nu5iwIW/blnvc3MUVF4FCHUANvTWnJ1pM+78uhCsM8820vBo07cfnrnygzM9beJLnsc6VSpEcFCjheuWArlphxB3ZVHV7jcq13jaqQCV3Bb51HXbB9wXqc9b9gzTSvjItuZX8zzrKW8MuwlnKGxyONlN6I+eTpOqh6dnO4tlw/4/BJDsc2yxVfHop0d3Oe8MpePTvXWcRCAr5zYBwC4uRbXzZHXJXhKeDL/dDeOfs7ShN2qt7m9lMOD82Jc0nHLe9qU04bzS/h+9GQmZ9XKechWa7MZ7wB7BH1jalC9c+4QXm4uy+e1memkut0u6i2fR60YJkFTHqBSDEATPDGHStFuxo7E+3OoGgNFVPxE6U49XszUXfG+nWi4Y5ys0b2iZ8uCv+9sw3n3IqxfLRgIO0S4fwr9Jp+LPS3txITnvL6s9y6RU9bV1BGpd5S895bwTOaAErMZdYSfKE7rapS3ZB95FPb4d58Regi8O96uDaeBLo74YBghmMQ82UOLgzL4OuZgOy26n0zoC7mVN6nqz3rvRLMTL7Y5G7fe0/LBEWrUjhuxX5xG7EtC/iw+1ww9ZKYKodyxrEOsnPFlpe4Lp+k98vb66d7y8SXX37Idc56jIR/saW91rLeO+82K98KNT0SPTmU4HmvvXNx2X9vn0iHvyzhV94GWD95Chny6zMoVR5ODqCS8LwDb97k/nOWJEUIIIYQQQgwU+ogRQgghhBBCDBSF1WKsXwiMMacA3LnhJxKDyBXW2gObcSLZoVgB2aHYamSDYjsgOxTbgTXZ4aZ8xAghhBBCCCHEhUJyMiGEEEIIIcRAoY8YIYQQQgghxEChjxghhBBCCCHEQKGPGCGEEEIIIcRAoY8YIYQQQgghxEBRXn2T88MYUwTwxwCuB1AH8Gxr7a0bfd6NwBhTAfAWAFcCqAF4BYAvA3gbXP7dmwE8z1qbTiO7zTHGHARwE4BHAWhhh1wXIDscJGSHg8FOtkPZ4GCwk20QkB0OCjvZDre7DW6GJ+YHAAxZa78ZwK8AeM0mnHOjeAqAM9babwfw3QDeAOC1AF7q1xUAPH4Ly7dufCN8E4BFv2pHXBchOxwAZIcDxY60Q9ngQLEjbRCQHQ4YO9IOB8EGN+Mj5tsA/AsAWGv/C8BDN+GcG8XfAfg1v1yA+yq9AcDH/bp/BvDILSjXheDVAN4I4Jj/e6dcV0B2OBjIDgeHnWqHssHBYafaICA7HCR2qh1uexvcjI+YXQCm6e+2MWbDZWwbgbV2zlo7a4wZB/AuAC8FULDWhoyhswAmtqyA68QY83QAp6y1H6TVA39dy5AdbnNkh4PFTrRD2eBgsRNtEJAdDho70Q4HxQY34yNmBsA4n9Na29qE824IxpjLAHwUwNutte8EwHrAcQBTW1Kw8+OZAB5ljPkYgAcB+EsAB+n3Qb0uRna4/ZEdDhg70A5lgwPGDrRBQHY4cOxAOxwIG9yMj5j/APA4ADDGPAzAFzfhnBuCMeYiAB8C8GJr7Vv86s8aYx7hlx8L4BNbUbbzwVr7Hdbah1trHwHgcwCeBuCfB/26liE73ObIDgeLnWiHssHBYifaICA7HDR2oh0Oig1uhuvuPXBfc/8JpxV8xiacc6N4CYA9AH7NGBP0jz8H4HXGmCqAr8C5EncCLwLw5h10XbLDwUR2uH25t9ihbHD7cm+xQUB2uJ25t9jhtrPBQrfbXX0rIYQQQgghhNgmKNmlEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKg0EeMEEIIIYQQYqDQR4wQQgghhBBioNBHjBBCCCGEEGKgKG91AQLGmAKAtwK42Vr7amNMCcAbADzcb/JPAH7JWts1xnwngFcBqABYBPACa+1/+2P8FoAn+n0+DeC51tqFxPlGAPwZgAfDfcy92Fr7Xv/bYwC8Eq5+OgB+1Vr7Qf/bMwH8kv/tw/7cTWPMfwIY4VMAeLO19gV0zpcD2Gutfb7/uwbgdQC+C8AcgH8E8DJrbWeFeno0gN+31j5o5RoFjDETAP4cwAP8Nf6Ftfb3VtuPyvZ+AG+y1r5r2W9VAP8G4F3W2lf7dVcDeAuAff5anmat/Z+1nGs7sQV2eADAmwDcD86mPgBnix1jzF4Arwfw9QCGAbzSWvt2v9/3APgdADUAXwDwLGvtjP/tZwA82+9zk/+tTufssyFjzM8CeL6/jq8AeJ619myivOuyqbx2s8o+62mHVwJ4I4Ar4OzwVdbav12tfNuN7dQf0jaZ/suvewmAp8Hdh78C8JsAJgB8bNkprvPlfW3q+vy6vQD+BMCDAMwDeKu19vWr1NMzATzBWvt9K23nt50AcAIA90svtNZ+dA37nlN/SL9dBdcGH22tvXG182wnZIMbYoOXwfWfFwEowfVPf7HKPkUAvwvge+D6wVsA/LS19hRts2Ofycx2ssnt+J5ojHkgnP2OAugCeIm19p9XqdP1PtNfBOCZAFoATsHZ5G3n8965HraFJ8YY83UAPgLgybT6qXA3+DoA18MZ6ZN8Y/0bAD9prb0ewCsAvN3v8wQAj4brgK6BM5afyzntywDMWWu/DsCjAPyxMeZSfwPeCeAn/Eve0wH8jTFm3BhzLVwH+R2+bLsBvBAArLXfYq19kN/n1wHcDuDX/PVdaox5F4BfXFaGl8C9bF0H4AYAFwP4mZw6GjbGvALA32LtH5+/BeCotfZaAN8A4LnGmG9ebSe/zX8B+LacTf4PgPsuW/cOAH9irf16AL8B4O99ZzEwbJEd/gGAL1trHwjgIQC+Cc7mAOBtcPfvwQAeCeB13pYOwHXkP2itNQC+BveQgzHmiQB+1m9/DdyHzAv9b0kb8p39iwH8L2+//wTgT3PKe842tVK7WWGfdbVDAH8B4L98u/4uAL9sjLl+pXNtN7ZTf+jLk+y/jDGPA/BDcH3XtQC+E8APWWunQl/o792fA/h3uA/yvOsDXFuYg/tofxiAxxpjvjenjvYaY97oj7nWfuZhAP6Ny7bGD5j19IcwxgzBvVRX11i+bYNscMNs8I8A/JOvp/8F4PXhGlfgmf76HmKtvQ7ArQBes2ybHflMZraTTW7X90S4/uZV/vhPBfC3vi5WYj3P9EcCeBaAb/b1+264d5J1He982BYfMQCeB1cBPGJagvuarPl/VQBL1toGgEustZ/1DfI+AM4AgLX23QC+1W8zDuBg+C3BEwC82e93F4APwTWOCoCfsdZ+yW/3ZbgOaj+AxwP4B2vtKf8V/CYAT+GD+pGcN8KNekz71c8C8An0dzw3APhra+2SP957ATwpp7yP8fXxzJzfU/wcYoO4GK4ep/M37/ECAC8F8KnlPxhjngo3yvUBWncJ3Ff3XwOA//IfhRu9GCS2wg7fAzeSBGvtEoCbAVzh7ehRcJ0hrLVH4T5wzsJ1wJ+21t7ij/EnAH7cl+NpAF5jrT3rbeo5iJ13ng3dAODD/hyA65C+L6fzW49NrdpuEqy3Hd4A9/EHa+0sgI/CtfVBYjv1h0B+//UEAO+01s57230r+vvD+8H1JU+10fOWuj7A3bu3W2vbvswfQH5/+GQA96D/gb8S3wJgrzHm340xnzXGPHeN+51Tf0j8EZwtnj6HMm4XZIMbY4M/AP8hBeByuFHsxVX2+RKcdyF402+Ee6kFsOOfycx2ssnt+p74EADv88v3BTAFoJ2zbWA9z/TjcN6rGf832+R63zvXxbb4iLHWPt96mQzxNgCTAO6G6yhutdb+o9++aYy5CMBROHfh79OxmsaY5wO4C86g3pNz2ssAHKG/jwK41Fp72lr7N7T+5QC+aq29PW+fZcd9MdxIS086YK39TWvtH6LfmD4F4IeNMWP+hfHH4G56H9ba91prXwj3ErsmrLVda23LGPNXcC/HHwNg17Dfj1pr+x7Kxpjr4Az0p5b9dBmAYzbr3kzVzbZmK+zQWvv31trjAGCMeTCcDbwHTl52D4BfMMb8hzHmRriRuAWk7XAXXId8fwAHjTH/Yoz5AtxI0pQ/V54N/TeA7zLGhE7oGXAPg32J8q7HptbSbpafZ73t8FMAnmGMKXiP1eOQ06a2K9upP/THyOu/1nJfXwng9f4FYKXrA9y9e6oxpmKMGQPwg8jvD99orf1NrP4CyLTgpBgPB/C9AF5ojPmB1XZaR38IY8yzAVSstW8+h/JtG2SDG2OD1tqOtbZtjPkYgE8C+DNrbd4LdNjnk9bazwCAMWYP3Aj+3/m/d/QzmdlONrmN3xNbAGCMuQ1uMPL3rLUrfsSs55lurb3ZWvtxf64anBLk79Z7vPNhW3zE5PAbcDq7i+AMYK/X4AEArLUnrLWXAPhmAG81xtyffnsDgD1whpnRLxOpa+/dbGNM2RjzOjhX9Q+ucZ8huM7kt1e9OsfvwY2yfBJON/mfABpr3HfNWGufAtdQ98J1gOeMd5++HW7kYH7Zz3l2tNoIwCCw0XYIoKev/RCAn7XWfg5upOcqADPW2m8F8CMA/sAYcwNWru8KnAfnyQAeCnfPX7nSua21/wbn8XmP/1jqwH3o5NriOdrUiu1mJdbRDn8CwNfBzRP6c7h5DBe8TW0BW9ofrmcf4/T/jwHwh6scJ/AiOB33Z+HK+v9wAe+dtfa3/ItC21p7N9wI6bq8dCv1h8aYh8B5QJ9zvmXeZsgGLxDW2kfAvYg+2hjzjLXsY4y5L9y8l38H8Ef34mcyo/fEZfiPiPvCDYT+ijHmu9ZykvW8J/qBwg/BSTBfcr7HWw/b+SPmiQDeYq1teHfbXwD4TmPMhDGm9+DxIxSfB3CdMeZ6P5oNa20XbkLWQ4wxh40xn6N/h+G+wPlr9hK4L+Yw2vFBOI3tw2gEJ3cfz2MBfM5a+7U1XuNeOOnPddba74CTHdxqjHkol3eNx+rDGPMYf62w1s4B+L9w7sb18Bg4bec7fZm+H24k8+Vw9XJomd52ed0MKhtthzDG/ALcw+hHaaTpmP//bf44t8I9vL4RaTuc9A+yYwDeY62dsc5d/ldwHXguxphxAB+31j7EWvtQAH/vfzq7rLwPXadNrdZu8sq1nnY4DOAZvk19P5yH6tbVzjUAbFl/uAKr7fMkOFucXeM17gLwy9baa621j4L7mL7VGPP9VNZ/WuOx+jDG/Kwx5nJaVQCwYnCJFVipP3yav5b/9L8dBvAOY8z3r7fs2wTZ4Pnb4JN8fwvrJua/F2t4Jhs3b/GTcJOkn+Pr8t76TGb0nhj/VY0xP2JcIAh4r9CHsYqEcL3vicYFEfg0gM/ABbZonM/x1su2iU6W4DNwo8kfNcZU4Brof8F90b7FGHPSWvsfxphr4LSfn4Kb1PciY8y3WCe7eRqAf7XWHoObxNXDGPM+uK/h5xo3se67AbzCONfYh+AM/jnBPef5BwDvM8a8Eu7r/6fgOqHAw+Emnq2V7wfwvcaYx8PpOn8BblLWjcvLu06eDOCJxpjnwMmDngw3snTOWBfhqadFNca8DdmoLrcB+GEAf22cV6ED4IvnVfrtwUbb4S/AaX0fxp2atfZ2Y8xn4DwLrzfOLf4tcC7xOwG8xhhztXXzYp6DqIN9F4AnG2PeDGAJToP96VWu8TCAjxhjvt46jeuvAfi/voNfXt4/x7nb1Grtpo/zaIe/CXfPXm3cqNvjsfYRr+3MlvSHq5TpfQB+wxjzp3BSrafDf3R7Ho5VPJDLeA7cS+Tzvb3/JNyH/afh7vn58m1wcsufNU6T/iy4+S7nzGr9IYCfp9/uAPDjdsCikyWQDZ4/z4Wzwd82zpPyeDgpUi7GmG+B8xb8iLX2X8L6e/EzmdF7Yra8r4BzTrzTf0h8J/yc2xU45/dE4+aZfRRurtZbzvd458N2/oh5IdzL2//AGeRH4PR9TeN0zP/HG20dwI9ZNyn57b5ybzTGtOBccM/KOf5vAPgTY8yX4CaH/ZJ14eF+HE6GM+SPE7Z/qrX2C36U41/hZDufgnP1Ba6Gm+C0Vt4CN1n7Zl+GN9tl4TvPkxfBTR77IpyL/L1Yu1v9XPkRAG82xrwU7uX5h+wKoaIHiA2zQ+P0rb8FN2fl3WRrf2etfSWc1OWPfGdQBPBy/zCFcRKEd/lj3AbXEQPAH8ON3NwEZ1OfgbODXKy11hjzuwA+5Udx/h0u3HKKc7apNbSbFE/C+trhL8HV/0/AvdQ8w1p7BIPPlvSHKxXIWvuPxmny/xvuYfU+AH9Jm1wN4I5zuMbf8WW+Gc5L8rJg7xeI5wN4k7/GCoA3WGs37OG6A5ENnj9Ph7PBL/i/32ytzZuPEfhNX5bf9f00ANxurV1NCrlTn8mM3hOzhHeGX4b7aP2lNQyerOc98cVwUd1eYIwJA0F1a+03rfN466bQ7XY36thCCCGEEEIIccHZzp4YsQrGff7/Tc7P1lr7wzn7fQIuklWKbz8H/bAQANZnU8aYP4Bzd6dYUxJCIQLGzRv4g5yfP2pdZL7UfuoPxQVhPTZo3ByZT+TsM2ut/fYLVT5x72OnvyfKE+Px7r9brbV/uWz9fgCnrLXbJkmUSWQaTmyTzOhujBmGy1/wDXASpU/BZWc/l1ClYoOQHcoOt5p7iw3S75fB6eivt9YOYk6XHYnsUGwH7i12aIwpAXgtXMCIMoBXW2vfuDklXz/bOTrZpmKt/fXlRrodMfmZhnmb3IzuAP43nIFeD+CBcNGcfnUjyyzWjuxQbDX3IhuEMeZpcKPgL7bsRwAAIABJREFUhze2tOJckR2K7cC9yA5/Gm6+zrVwg4s/b4z5xg0t9AVgx8vJjDG/AjdpaxYuxvoPWGuv9JE89sJlNX0/XJzxm621rzbGPBEut8YCKLKTMebpcBOnOnA3uwEXo/1m4yKN/CGA6+Amc30EblJVyxjzm36/Blxm2Kdba+9ZYf3LAdd4EpcUstbelfgtkMro/nljzPN8HdwRJvgZYz4L4JrVa1KcD7JDALLDLUU2CCBrgxfDRe97HNzkXrEJyA4ByA63HNkhgKwdPgHAn1oXaW3SGPPXAJ4CFzRj27KjPTHGhRV8OtxX5Q3o1/eNWGuvsda+mPa5CC4axA9aa2+AC2fLPBwuIeG1AP4DLhoS4HSwN/l9HgyX5OcXvIv45wF8g3U5OD4E4Jvy1gO9L/9kciCbn2mYyc3obq39kLX2q/5ar/Bl+LtVjifOA9lhD9nhFiEb7ME2eMxa+0Rr7ZdXOYa4QMgOe8gOtxDZYY+eHeb8dukqx9tydvRHDNzIxt9Za6esy3nxR8t+//fEPt8G4IvUobxp2e83WRemD3Dha/f65e8F8NPGJZ26CS4p4XUA7oaLJf4ZY8yr4ZIcvXeF9ReCVbP1Gpf5/RNwYUbff4HOK9LIDrPIDjcf2WCWnZa5fFCQHWaRHW4NssMs7Zzftr197vSPmBZcfPXA8hsyl9inu2yf1rLfF3O2LcHFYX+QtfZBcF/Oz/dymYfDffWfAfAHxpg/zFu/xutajZUyusMY8yNwyYd+xVq7ExIBbndkhw7Z4dYhG3RkbFBsOrJDh+xwa5EdOtgOU78dxTZnp3/EfADAD3pNIuD0j6uFY/sEgGuMMdf7v5++xnN9EMALjTEF47K5/gNc1t/r4ZIUfcVa+ztwrsXr89av8Vyr8SEADzPGXO3/7mV0N8Y8CcDrADzaWvvOC3Q+sTKyQ4fscOuQDTp6Nii2BNmhQ3a4tcgOHWyH7wPwTGNM2RizGy5Z6oXyAG0YO/ojxlr7rwDeDOCTxpgbAUzATchaaZ9TAH4MwDuMMZ8BcNUaT/cCAKNwWUq/4P//fWvt5wH8LVxW1xsBPBMuB0ZyPeBC+oUJXGvFGPNQ766EtfYkgJDR/StwrsuQtf134EYI/swY8zn/b7krVVxAZIeyw61GNpi0QbHJyA5lh9sB2WHSDv8EwG1wUrZPA/hza+3Hz+VcW8GOzhNjjHkogG+x1r7O//0LAL7J5iT3EWIjkB2KrUY2KLYDskOxHZAd7hx2eojlrwJ4sTHmp+BchXcB+KmtLZK4FyI7FFuNbFBsB2SHYjsgO9wh7GhPjBBCCCGEEGLnsaPnxAghhBBCCCF2HjtKTmaM+V0AH7XWftAY8yEAP2atPW2MuQPAk6y1N27AOV8GYL+19vnnsM8j4PJiXJv47f0A3mWtfdsqx/geuMnRNbjJYs+y1s4ktnsKXNKlLtzEtReEejDG/CCAl/hj3AmXYfaMMebn4MLu/eVar0lEZIfnbIc3ARiGy04MAO+w1r5Kdrh+ZIPqC7cDssOkHT4fwHPh7PA2AD/pJ1zDGPMzAJ4N1x/e5I9RN8a8BsA/Wms/ttZrEg7Z4M62wR3jiTHGPAzA11trP+hXPWory7ORGGMOAHgrXOZYA+BrAH43sZ0B8CoA3+3jk78CwLv9bw8F8AZ/jGvhNKKv9Lu+AcDPG2MObfS17DRkh+dsh6MA7gvg+hBH31r7Kr+r7HAdyAbVF24HZIdJO7wBwC/CTSq/FsAtAH7L//ZEAD8L4JEAroF7iXyh3/XlAF5vjBne4EvZUcgGd74N7iRPzMvgHjgwxrzVr/uoMeZxfvmnjTFvBHAQwNuttf/bf/n+IYB5uBB43wjg0QBeCqAKN1r3i9baTxpjHgDgzwEMwYeGtdb+sT/2A4wxH4VLFHQCwI9Ya+8xxlzjy7QP7ov3NctH9IwxhwH8BYDDcCOAB+m3lwOAtfbXl13rowF82lp7i//7TwB83hjzPOuyzwbqAJ5trb3H/30jgEPGmCqAp8CF0LuD6m+fP1/bGPO3AF6MaMBibbwMssNzscNvhEss9gFjzMUAPgzgJdbaRdnhunkZZIPqC7eel0F2mLFDa+1NxpirrbVNY8wQXELB2/3PT/PlOevP9Rx/zbDWThtj/gNu8vmFSnx4b+BlkA3uaBvcEZ4Y4xLzfDtcIh9Ya5/hf/pOa+0Rv7xkrX0onEG+yBhzmV9/LYAftdZeD+ByAL8N4HHW2gfD3ax3+9HiX4Jzpd0A4HEAvsMYE+rvPgCebK19AIBJAM82xpThkhq93lr7QACPBfDbxphvXlb8PwLwX9baa+DiiT8g/GCt/fWEoQLAZQCO0N9HAewCMM4bWWvvsNZ+wNdRAcBrAfyDtbYB4P4AysaY9xljPu/LMUu7/yOAJybOLXKQHa7LDscBfBTAkwB8g7/236HdZYfngGxQfeF2QHaYtkN/jKYx5gf8Nt8BN3oOODs8aIz5F2PMF+BewKdoV9nhOSAbvHfY4I74iAFwPwD3+AdSHu8EAGvtcbiv4vBle8Rae6dffhTcV/NHjEsO9A4AHX/89wD4ZWPMu+Fu4gustR2/3/+zLhES4BIFHYQzhiFr7bv9eY8B+HsA372sXI8E8Da/za0A/nUN15t339qplb6x/a2/jmf71RUA3wfgpwE8GMBxuORPgdsAXO6/1MXakB061myH1tp/sNY+1Vo7Y61dgntYPIF2kx2eG7JBh/rCrUV26EjaobX2vdba/XAviR/0L74Vf71PBvBQAHsRZY2As0OzhrIIh2zQsaNtcKd8xHQAlFbZpknLXTjXH+CkLIESgI/YqM1/EICHAbjZWvt+AFfDPQAfDOCLxvx/9t40xpIsOw87EW/NPbP26urqZXp5s3A4JjkmRzRlLqJo0wJNm4YtATRh6I9BmIApWIAF2xQMSPYPG7Ih2ABBg4BEw7ZMQyTHhkDRpAl5hkOOKc5oZjhLN9/0Wt1dS2blnvlevi0i/OPeE+e7Gefmy8zKzsrknA8oVGTEi4gb955748Y93/lO56Ujrq3VLRsJAstCRDSZ8hxETtP8Nvx9h1zwae/wDzudznNE9EVyhvyj3W6Xv6ofENHvdrvdR77T/UMiwtWAmi9bTobjwuzwhHbY6XR+qtPp/Kvw0+TQc5gdngxmgzYWXgSYHSp22Ol0Xu50Oj8Eu/4BET1PRCvk7PCzfkFnRET/K1XtUJ2QGlSYDX4H2OCfl4+Yt8m5wHClLKOqYUzDPyOin/A8R/K8ya8TUbvT6fwjIvqr3W7314noPyKiXXLuuxi6RDTquEAp5jj+O0T0/xz63f9NPsmSf8n+6DHK+XtE9JlOp/OK//vniej/OvyjTqdzhYg+T0S/1e12/1q32z2Aw79BRH+l0+lc9X//DBF9CY5/hIjembKKYQhhdnhyO3yWiP5ep9OZ6XQ6NSL6T4jo/4DjZocng9mgjYUXAWaHih2Sm2T+eqfTueb//llyk+ENcnb47/qxMCGif4uqdvhnxyiLwcFs8DvABv9cfMT4FbUvUNjQv0VEf9jpdCpydUdc51vkDOfXPTf67xLRv+m/ZP8uEf2s3//PybkRP3/EtcbkDOAXPbfw94no73S73f/30E9/gYg+3ul0XicXIPY1PtDpdP5OxwdxHbr2GhH9dSL6DX/eJ4nob/pzPu1dnkROQu85Ivq3O53O1+Df1W63+0+I6O8T0ec7nc5rRPSDFGas/deJ6B9PqzODwOzw5HZIRP+TL/9XyA2O++RUUBhmhyeA2aCNhRcBZoe6HXa73S+Qo+d8zu/7a75MRES/7Mv0L8iNhfPkZL8ZZocngNngd4YNJkVRTP/VJUCn0/lBIvovut3uX3naZbns8CviXyGin+h2u6tPuzyXCWaHZwezw9PBbPDsYDZ4epgdnh06nc4SEf0REX3axw4ajgGzwbPDRbXBPxeeGCKibrf7RSLqdjqdwwFShpPjPyaiv28v7ZPD7PBMYXZ4CpgNninMBk8Js8MzxX9JRH/jIk0eLwPMBs8UF9IG/9x4YgwGg8FgMBgMBsN3Bv7ceGIMBoPBYDAYDAbDdwbqpzmp4/Skf5mIPkWSCfnNsyyYwTANZoeGpw2zQcNFgNmh4SLA7NBw3jjVRww5JYN2t9v9C51O5zNE9N8R0U/HfvyxVz9W1HN3q5yK4H8iohwobYXfXwT7BCicnST4F1XOm4byXpHjCdwt9fdKlX1uv3Nq1WBfExxdrcLtxwrH0qPw9sgfmGAdwXZCynPD8cxvjwq5alZIigOsb75SmkhZm4lIq88mrsTNSCXlSbX8E6Us+AzYRMPacL3b7V7Xrz4VJ7LDl19+tcgyf/PyP93ONGCtY32xHdRgXw3qkOuzDlfAa/F980gJMDnFxLfjBNp2ErSt2y6UPoU4DxKp9rTYZzQ7jlyg/G0jlXqdSaQ3tX1fS+HBMjgfbXLst7FPjGqj09rhiWyQiOill18pJpOzaYFE+StR6o1I6h73haVQxsMCN09e5tg4Pg2J8geWO1HsKGZNWgmwLFpfmfYa0fpv7K7HRb2e0JtvvjGlU0Rx4rFwMjmc9ka/daq9Z7EuT9nGR+G0lfCkd4uOT34zeFbNbk511+m/mNofgr5R3Rd7rkQZM7La5Nzeya++0ikoDwlBWD6ci8z58X4+l1quJ2LDBZw38O+Dg6Q67hPJuzaDNpwo86X43BC2k+r4o41VwdxRaQNsoxrhtoDPw3LhvIHnW9izg7mhf96MqnOGw9eV8uH9pa0avm1moY1m4MZ83hCatw/3xfmpNvfJj2mHp/2I+SFyOtbU7Xb/uNPpfPrIm+R1ujN8loiI+rmT2u/lw/L4QSby+2xI41xy++BkAyeK9QSbt/pbbjw0KGywsb9Xlus5zHDC1Ko1/P+tct9M2iy35/z+pVQkyZ9PZ8vtFzJ3/rVMGqsFHWgnlef6oO7Kswq5kkbQ+Pw8OCkew/GNwtXt/fFOuW9rLLmbRlC33Cnm6lLuO62r5fan0mUiInouq8E5gr7/YwcGk41Err9VyDP0/DZOut+cfesenR4nssMsK2h9LWzzSQ4dCW3Htw1OlvDDZaYubT/bcG2/2JD2Xm4slNvP1heJiOh6KrbTgFoceDvENsZJ9wA6+2bu0lusjnfLffsjadv+xLX9YCL1js/IzxWbkJ5ljBzXVx36UbNWV7c1YN1z/1tqLZX7PtG8UW5/tJghIqLZQs7Zhy+aVbDJ1dzFJe4UMga9O/vOae3wRDZIRDSZFPTB/f4pb6dP4Imknus1qO9U6rhVd9sNGDfx5cF2kin9wO3XF5408HljxfaOg7Df+fFOGY+JxI7w3RCW2z1P8LKHMR/fNaNsUjmOfUUmffAhqExmY/VzVB3ceaYdPXYMnMgOJ5OcHjwcBvtiE92yfuEdhe06hLFGW0Q5CRLlQ/u458QQK0uiLD7Fxif+7QTsAsfYsbeb2MedVtbYM5aT3si7h9sB5ye4eMr9BPtIK5XtBowJPBbgXGpncfXc3smUp5TvzAS7cMx6pnWl3P5M6rY/M5A2uNmUcXQ4kfO6fu71zYb07Qcw3vNcZBfmoevjvXL7YOyui2Mhtl1gM768QRvBNtf9PMwNZ6A9+INlNpF9i7C9got1hbsuLg7vw9xrr3DPO4BlZfxY4OfdyqTe+pnUgbbYjc8yA/PfOw03N/yeVN7J3w1DClvUG02ptz9N5L4fTKS+9/OqVsD+4uNj2eFpY2IWiWgH/s46nc5pP4gMhtPC7NDwtGE2aLgIMDs0XASYHRrOFac1rl0iWoC/0263O4n9OE0Savkv/Yn/fwxfl1kqX39pUV0dQTThPFxRYISus+qq0EEOSZf5AxVuhb/VVk1C2paUe+hX8waw4tuHL+CeLyuuFA+DVWMpQ89/WeP5uDLPX+5ZxBMz9s+NLsuZmngOglUZ3x5tPA6rMpl3xyI1pwmOq7bfzlJ4LnCABuUWP/dZ4UR2SIWssKqrZAp9QFvpJgpX6bju2imufMEKuK/PxULOXypg1Ubphuj63oKVlkbNnTeGFRN0g2sYQePxanseoUVgFTypV0YoFtU+SRSu5mpUp7ridcX+j/Y98HY6hvKvQ1+8n8sK0FrWIyKi7UlPfixOtJPiZDZ4BsA6wtVxdYU2ra4Ooh0jeEUxtkKMdsbeXPTyofeCx0ZcTc4Uj0WMIpYqK8uxVXKt3AFdgu0wx1VG3fs+bVW/LP+UvoHlzyPvlDPGCe0wqfQ5LBvWL3uacYX8YCLvUawL9sqchHqoebuPQzuddo9p3sJpZdGQHcOGtGtp9qJ5+ILzI/2c+3c98MRU+7nmLSAimoXV9FnPJmnBuIpfIKfAieywkdRopbUc7NOoVkREj/14/m5D5irZaBbOExz4qsEb4ztzWFTfg1hHCw3nHcoibYyeKz6vBiVAr2+qtC3Sxdq+7ttwzRa2J8wTeW9O1X14XQxlwNtr79Ei1d/PGR1t3wPv9dlJ5B2wBd6/hbw6xjcCOhp4q8DzxNiv7NFxWk/MHxHRv0FE5HmP3zjldQyGJ4HZoeFpw2zQcBFgdmi4CDA7NJwrTuuJ+SwR/eVOp/NFct95f33aCfyFqH0J4qeUxl9Og9VZ+VplLwKuOOBXGX8BIn9wB7iA5Vd4Hpwk90qrX9tYbvzy5lUVXK0cwIX7/vg+eCwwCHkX/thXYiTC1bz0cFGDNanyaxxWFmJB41x3sxDfg6sEvJKBVTQLZVnyX9uLOawsACe/Dc/bY2+cWpJT4UR2WNDJvQsBDxZXw2roEaxVfpspqz54/A5UwnOZ44MuNCE2LJN73c9ltelbLb8N3SdT7CTW3lyGgPOvxA+4a5yc366tZKLtxuLP2A7x/Dp49LiO0duFfX3on3cIXqtHwLO9P5EYovWR294bH5T7VtRSHQsnHgtPg8ArrHgpiGT1HD3UbeTF+20tlpBIVr9xjMN7oddlkLsV92EucQHDDGL4OEYAAmtz2NZsSvO+YLkxDg29yU3FIx/0P1/GwM7BTrSugn39RCv62rUiq/tVT8ITeWlObIf8fuRnxTpn7wsR0ZXmPBGFdrED3HaMKWIbKfJpbS31q8UaxMZdBF835lXmV09sPbn0REU8JuF13VViAjnlswSiGVUPXIzpEdgCb4I54BxI87TUlPrU4jKIiBYhNmPZby9A275TeaoT4UR22Exq9FzdxVTwvAN7AT43e3Lv18CbD+VuQRVu1NwfHCNCJHEwREQHfkzAdyd6AziuMMZy0OahWNaJ4sHRBDIOn8dAr/U4qdpGzKYbLBIQzE3xuNuPfTmHuWeK8efKXDx4H/hSYNzzY5wX+bLMQAEWYKxehBhhjem0UX08Faf6iOl2uzkR/fxpzjUYzgpmh4anDbNBw0WA2aHhIsDs0HDesGSXBoPBYDAYDAaD4VLh3FQjyjwPnM8B5YmpWfl9pgSqHwZ/gdWDgCjUFW/4ewuaCpUCJeYCaUkMzvbuWJQnrU35BhwGgf1uG8OX0L24B8FRg9J1rQTFk9RhLXgyCP5OFJdholMiOHgar6UFGaKhLGVS1qvpyN8TpCfHUkcbhbTto4a7yk56AnrGGeMwhSMWeKxqt0fc9wx0Pe9nQmXa8u0wqIuU5O1M6usTn14jIqLWqxLgWAzFJp/71la5vfBnN4mIaNSWa+3XxrDt7os0n0ladYlj+QMZSaAF5kWVeobQAmunSaMG8r1AOWH7ROrISa4/9Ofvgmt7Ixe6GEqMM40Mg5NXqBpYeBEgcqu67WnbGNivUWJjdLKaMm4EQgtAE52Wo4upNrHA2MNUJqIwmHyuIZSXJS9d3oZ3RjAOK30RZeT5eB6hTeK7husuRlHSaJpIB9GOx+iYh+lIH1rIv4IkqdLIkK43D5L7CzU31mCdD2B8QRtLS6qzkjAiuH9kXE0VqhTYiNb/g7bE7XLcOtoGAxEGRXIc92ty9THEqGXa+Wp/iuSJ02hsAf1eKRa23SxQy5b9HGn5KY1/TUrpeXK2xrm+kBaGLdf3Y3wf5hrv1vS23fE0svVC3sM9EHUa+eNhyg7Y5rIk+hQ5sE8tcB+Oc3vF8nPx+DOG4yjAj+3dmBJKoOUzHAcUyyrVsAYiQ+ogFBnDua8dwLwHU21c9Ta3BGlF7gaCXjKHYXGDQXHyYAPzxBgMBoPBYDAYDIZLBfuIMRgMBoPBYDAYDJcK50InSygp3WDl//D9NEtIDXD+LMyRsluIG7AP7iZ2t6LrrAnXWiDW35Z7tVH1puG2ezXIHQMIXYZVN16gnKG4iyfgDGXFsTAVifyBLjnO+YL3Qpclb8e+QEvqHlKGplBI6gFNrqpB3gaP4pVE6uv2Taf0NHdT9qVtcGVuy3mr77rM9W8PQUY+TNb7IaMoXbPsVj1NLgGikLbA1JVgH+QoYYpFv7ZY7ltpSH21P+4yEafP35GSDsQNPld/VG6/uOkqtLsl2eqbSOdglY/Ic0muEF2RB3M2cR6XeqpTGfi8WL4GTXEEEdZ9HvxHdCgHiaIONIQf9/y4sA1jBSoRHmRAJVCysj9txPJTaJSXmFJZoqgtafSbQMko6OvHJzTxbwNlyGC7eq1gn99GKhLnZiAiutUWvbjn645muQDqQZgXi1UckXZ8kEr/284cfTBUljq67QM7xzxHp7CZgEIJ1+U+KIpcJ770qZFQUlGzQ/o0vg80xdBpOVoCey6q+wMaD9AUmc6HCntIM1RpvHk1fxGR5KzJIM9GrlBrENg+Y8VeprV/TOms7GeRNtZydeG9EqpSgmN5ZjTVtX4K2eqBlrnD9Mnz5DICmgXRndyVYd4/7nyGzy3Y8jnS3oNZ63skz6XNEzFbPbb3TKKEMEB7i1Ij0HFRLVOxQ7QXHJ+0fCvYlzjsAOeQI8yBhrlV/HYdjrfgeJPzLE0Zy2P9V82fFxmY+BlGYJtI9Rv6ursF7dlA6lpDxvMHnjLaI32eehTME2MwGAwGg8FgMBguFc7FE1OjpPSK8BfsQiR7ed1/CG5jPpYg8E7AX9n4nYjbdX/eLFx/Dr70rviVvawOK81wfrDaV3DwlR5sx1/R4yBgVI7v+YBjzP0S+1bmr+hWxDsi5YMgRKUsQabUyOorr2zhvTDAjbea8IU+15KgzoW7bvWj+aqsnKbXZbsNIgAzbzx0ZfnDozPMf5gocwsc8/e4cocrfrzKRyTei5gIAK9q9gmzm4MXb8Nlji9G96ScB3D9TVltKnK3ggSLi4GdjnlVJ7LSzPltYnk2tPwamkeESOpyWvA2Ho9meC9/U/UEEUkOkn3I/bKdy2rawI8X27nUFXpfThKQe54ovScorKFkrtdWWonCZ9HaQ8trEQso5vEsA2937FosYoFthMIW/NvYvcr8VJCPZMXnIyEi6jSultt/ceIC+6/Bih6vyhIRPfI5ITZBwGIdBB74uQYY2JseHUAajO2KfcdsSMsHgmuF6HXgHD7sgZqke0eW6SyRJAl4Paqrn0HfUbKbB8IheXU817xuRLqgAwoKLHoRh0UQQUFBB3w35eU7F1aCQaRnd+w8sf2J7GMvLCLwMMUEHaasUGv9FDd55TsmGKFNBoqIDRY+UHqaV2gcGbd7UEePaix+BAUQTYdzxax/nivQdxsgSFSfuLKuQd8fw8o/5oHh50VPCrJ/uL1wvjaADHb8y3nw2FxLZKxagOvyFXoY4E6Qk8aPp0NlfCSiclYwCeaGuoe85l/8bZgf49yOn7FQ5oNEEjg/BI/lSGE3xaB59vOI93Lg224IrI86/Bbn5fwNUI8IKRwF88QYDAaDwWAwGAyGSwX7iDEYDAaDwWAwGAyXCudCJ6tTQle8Dnnbu8MWwZU0D15RjiFOahDYBHSXA1KCfYOAQ4LjVdfYPPBwlnJXhqugYz0DLtoDoNw8qrvz1lN0lwG9gvdB+fbAPdlTXIoYKDaDOu5KcBNShvge6LpDVyS7BAMxgIibTgsAw+vu+3ttQ3DlYCzbqqw3UMhoIttJ3VPXZuAkXVPhQ0FBUjfHpRQVEToZulC13AYYjMp0DMxh8lYhQf5zn3f7E8y1MxTX9XAyV24/Kpyv/15LyrI1kXwoTKdAKkEQPO1pGreakpNmuSb8AbTPXZ/rpg8ULZVaM8UFjcG2+xOhg/XHct2Bz9kSuKaB+rE/dufVkl21LDOecnIAlCGklmiUl6cJjUam/o6qQboxaHQxRKHQb1IMRvX7sb2QIqbRCvOAcqNTARnYP5hCtAC0oWt1oZO9AJyW7yGX4+fOy6ISsrcux9/ZWiIiojeakOsChtA9TxuO5ceJ0Ym0fSUdNRIgzsexvVB4Y7YO9LmGe94bdSd08kEi/fjDRkJJhUaGdlGADfQn/Mw6tVBr65jIA9cLUliRRviJmdtERNRJZN9CgfQhucfAv/MOgHK0DWPsBw1Hz7s/kjxbO2MR+2BKcFS4AZd4eTfcH8d43sbnxuty3xlH6LR5hHKrHeeC5cXRY1rs3dVLZAzW6I+3ls8tfSAdJAV904sOvNBwY0I2hhyCUEdbdWevW5BT7wAmIME7WaHJNxUBqZoimOD2u+NXgE72EuS8uwvzlra/7zrYw7frsn3f1/ckmK8pFCwYemJ5aBL/PBhi0UI6mZ/fYj/BueOBp4EitTbIMRTQlo8nEhDQ1eBe275fPqhXwxOIiHZBMIh7bVJMf88dhnliDAaDwWAwGAwGw6WCfcQYDAaDwWAwGAyGS4VzopMRXfUuYXZ3NSMMlJH3JqErtgYuJnQ2sRsrC3IGiHuQXVtjcDc34Fq3Ju74i439ct+1G71yO63JeZtrTjXlnQPJcbIGLsMD/zm4Cy76x4qW+Ahcik04PqtokCOtC3NisAsV3XhIS6n7b9OZVG9edMH2vXtxFKHb9FLv6EN570LoTdlX3X2v35N6a81IfY5H8lzbW4468sF4Vi62LIpc54EnUaZCl3xCSAXwiiDQ9kjVYDf3LtCyvtIEt+tRKiQXAAAgAElEQVTQqbkhYaAP9b0Pv33s88+8Mdkp9z0EusTe2OfEADc80h6WG67tXqovlfueB+rOEPrKI+/m3wGKBrqWmQI5A7aL/ZP731ouNBmkdjzKhR5UUjsCygq4qT3dDGksg0zKxUpP6BpHJaJApWsK/e1pQFM6Oi0CKoKWVwNzUqECnB8LhlCvuoLc8RW7AloVUjv82DRXE3rVHKhQNZHW4Cm8jSW55wJQYha23XjSKIBOBuBxMnxuyCcCzzttfDicZ4pIz8uDx1s1Kdc8UDdXal51LXX7Hp1jopiExDaYRjZNOTBofziuKdDh+Kep0qEi2TMtUbP8i4Ubl36UhDY6vyBtPTiQutzqu/fJJrT7A8g1NOfpR2ip+J7c8/S9gCYc5MSq1gFSc1lJjYhoyW83gbaNqk97nvKLSmlod5pqWowCq1EW1d8pdDYioolCoQrV186PTjYoMupm7j2wkbo6vN+SPrIEKrZ7iauv93OhBG5kOgWT1btCJVZQa6W0sq+m5Fu5RmJbd6W56NWazHGuXnNzn96ejGWtA6FrD5rO1geQO26ICpDeQgMqFzwLjptznhq7BOWaRfVDvmegSAZjvL8vvgM1JVUiooZCv9VU+pCG2oPn2ijz4+k0Xi234mm8KuaJMRgMBoPBYDAYDJcK9hFjMBgMBoPBYDAYLhXOxW+YFkSzh1QHUD2hD9tMZ0F3GKp8HShuuBhYlWEcoY80vGtsfk6UGhZeAlWnu0K5WRo6X+Kt7v1y3/o7oqCyue/c2A8gIdJcXVx+c94N3YOEbFW9EQdWrsDEmOgS5L2ottEG11/bXw2TIA2DpE6o7uGeC5Wc0A2+4687qkNypJpQ6h55esTynrjWE8jZlmE7e3rebu24qSYvLtBVnyuKRdpvd8H1/UYq7uhtT6lB9+o+tMEuKImsT9x5j4dCJ9sZiXudaQmYTK6ZV5NZYuKvG9BISLdc9G3bB5vGxLQvDN21rgLdbAIu8Xe98tSXQJ1kDRL6IV2jVI2L9FWmr+R4L1DBY5d1LaKKpLXN00p6mdB0VbLDCBLv4bWA/sdt3gAaaVOhlIbKUtCvve3EKGQa3SjWXlpSQy15X5CoEBIoPobx5s2JG2ebr8tvR2MZ7z5InJ0+BvrvToHvDFbkkesPIlQezSbwGTS1uICyoigVYmLZdg2Ulzx9bt5TX6apAJ01ymfwj4zPrlEHY2paCH5urLOAruLfg3N1oQzdrAk9+ZWBa4tnvluopq3bUn95X8bCKw/cuLd4X97D/ZGoPs74cQcTAzan9A2ERpObh3I/27xSbt/2z4Dj6h6MVaupoxxtp0K7xqST+P5lxc5YYkyNRjaNghp9NxVHj7sfNnIqyn65Re79iGpaq1Cf+/53G5nU4QCSsuK4x/WBc6QMrtXw1dWCfajyNedthhVsicKE3zWgHTZn3bjUXpJ3+ivflnfmo9y9B3ugdIZJOsuxEsMLwGZnYHveT9kXYeregne2lnQdMevHnHYCya4jFDJWRcN5Cc4N+R54vA82z6XaJ3wH6KhzgvdT+FXME2MwGAwGg8FgMBguFc7FE1OQrB6yBwa13dHrMmQvBHyp9oLApGpQGn5t15XvMvTE9OG+ezX32/2efCFfHcpqeTInqy7J7WtERDR7TVa979xdL7eXXnPn1e5JkCJN5PyGXxXahRUTLEsfc4T4L9xBxNPEqwSoYb4AAXD8jQ3pb2gHtNX3ClyRqAZd4Soc54xYr/zKX9cH/rdSPXgLcdEDqtXjp1wdxTrkAM49yAPxAK67w54YOKcHIgCYW2XX5znYG8m1tJXkHNr4IJHVqq2xWy26V4fARAg8vpPJeUu5K+MzYIYvQ1Dls3ecN6i1CEIRG2KTvVXXZ/I62Dl6/DDwPj/aO6fl9wm2+TjYIQbhhrk8znfFu4okKBtRfCVU2x88N3TyzAfAxwL7+VqjiKelPAdW0XEIKmC80rzg4WpvUTl/BB51Ltce5DjCsehtWH1stJzn9/FIxlYc5de9SsyjRFYBt8Hrsudtbgj7YjlPVO8cPAPXDdprUF+8D3NGwQrxXCortMt+/L5WuOP1c/TEJEkiXhP/fxZ4MbF+quenimAEX/eofWz3mB/oKrzHWtyPJ+DpasLqcFvqsu3zWNUeSVk3Ib/cWuHGvd1cxk+0AfYsBoItiggBkXjTViCX0XPASHiBXLs2oK7WFU8PsiPQK9fOqqIUwXtYCfw/CabljnpaSCkpc3w1S4+kYBKwUVwdoPcFvas4JvFYUo94BNlj1iT0foidzRecI0XA80UiovWhzO1mNlx5Fm+Ina0syLh2x7N0dhvS92spzAM9MwY9sZgbpgHb7SQUyDp8nGsA7ewKgfe3ptgkPGVNERdAUaleUWVFjSP5irjtUMwq9lvO55NF8hkeBfPEGAwGg8FgMBgMhkuFY332dDqdHyCi/6bb7f5Ip9N5mYh+jdxS2zeJ6Be63e7lD3IwXHiYHRouAswODU8bZoOGiwCzQ8PTxtSPmE6n858S0c8REUdT/fdE9EvdbvdznU7nV4jop4nos0ddI0uItnwgFFO7kD6F7irODYEuKAxqR+dnjUJ3OFHokuOAIwxq34d7PfI68vNDCSxceEPoLtcXHpfb9Y+4/5MZcSPWbkoQYWvV/XZhTc5fAJrawAdPT8DdHQS9w3NxYD865hcgEOumdw8+NxH35xXF579RhyuAz60HLrt9f90BBJ8GwVve1Y40IKSW9T2drB6jF6Bb1P+mdQqX4VnYIZHQBbQA3dNCC6pEusmBkuNkBAHVO552gK59zCGAuQX4Wkgv0IJskdqDv931IgDvJGLbWQvy0ABF4llPkfgY2NbyvLjMmUaWAF0sA6Pue1f+NgT79YAaF9DgzojWcJb5VjSchR3W0pQWW04IgwPrx5EcHdy2sSBfBNsM0i00cQM8jnZYlg/6cpLqdcjU0JAGiOX2x9E2kVrm2z5JIKAZEOQDarjfPqyJeEgbKMQcCHwAdbgNFKK+p2YGwgQRCpkeAA3PlbvjQf4dpJv5/TjuYWD/1VRoVC/6/EzfNXTX/MNjDotnNhb6Mpa5IYDhqAmXxHgb+M7l/hezV75XG+oE80E98tTWu/elrRvL8nasXxVKDqM3kPfsw4Y0Buen2pnI+cFY6vtBmP8L8hoB9YbbEMu9BO+xK5Nq/rsJ0JMOPI2wBfuWUplLbAHNkOuOc2cdLmMsSP8wpgnNED2ZuMmZjIVJQov+2RuKIBFS0Hl/QMUFOhmOoUyhDqi1Bc4THer4vsBcfd4OcHTcBfvfBKrglb4X6BiLbTVaUpYbO+4q+2A7DciPteWp/jjPxWD5mkIXwzbE/jfvaWaLBQ4mss3hHEPs3+ovZf45gt9ugv1u+V+MYB8OEdyXMiVPzeH7ZuWc9+Tv7OPQyd4iop+Bv7+PiD7vt3+HiH78xHc1GE4Os0PDRYDZoeFpw2zQcBFgdmh46pj6EdPtdn+TiCBXKSXdbpc/zfaIaKl6lsFwtjA7NFwEmB0anjbMBg0XAWaHhouA06iToRdogYi2Yz9kjKmgVa8cw9rSA1Qs0GgI4MIaBNrU4poqVVWQGgAKOol3raWBIph8t22wNjWon8xtSL9rd0F9rL3lrvXsVXmwGrjRmkxPIhW8Gysc0hoELkNWoEDN7GVwD35k4vZ3MlDDmBU1jMwrTD0aiEuemuLK3AE3Obtoc40+QOK2HANtpE+gMOXpKDHqTg212b0LFhV6ngAntsOERFWnpH1Eyj1NP19ze2IdoE0yBQUpAUgXaygqNrHf8v5pNICYihfnx9gcSr4WpBRtNYV6sdlwalCNhlDMlvZke/CmV5OBqtgcStu+7zfXQdHsAKhMU1WhFMTa63C7EsVd02dBIQSc2A4bSY2ut109cn1olEEioV3lEVUXtE/+LeYNQtthaIpkRECxhAZF5S20b96Pdop0Ds7hE83748sQy9GC1z3weZI2QdGKFY2IZIzBe/UhtxJTYdHOp+XNmDYuTKA9UqAI83kxRTJU4nrRN80r7V0iImqlehsfAye2waIoKnYQqCNFFO7K30by5PB+Lc8MkdAn9+Hd9R7kTmk1vSrUvuRg+fRr0lZXXgDb3nJ1/CgTWtZ6Q+x9198DqdA4/jBdC8sXo6Pyb4oIDYfFovCdvpyDKpunbY+BFo4KraugVJZ5Shwq9w2VvEZhXh9FxTCmePjh5cc6sR2mlJQ5URLYx8BeyMqzdcxrAtQy7N+8jcqceN0irdKXcL4156llqPzVgmqbhfkQ5xlsLADlD2jVizV3fCUDeiHm8PNj6ThQBEQlSKSO+fkY5geDWn/WV8E1yKHWgPMP/DPugNLaPoz32NPZlvdg5wS2DxKei8g+bC/eHeaZgXcEjj/+uu1zUif7aqfT+RG//ZNE9IVTXMNgeFKYHRouAswODU8bZoOGiwCzQ8O54zSemL9JRL/a6XSaRPQ6Ef3GtBMmVNCm12xnbWnMzjxRPDGI2IoCr8BhJtZQa9uvzsK+A/gtB3VtwZfoNnwJDnqyarIwcOVNR7Cyiavd/hEwsHkM9x1ywCOUH7/yl6BcrFGOX/5X4bof8au2d2/LQsfCXVlx4LIsvi+rXdmqeJAet2VF4IHyHavVdyz7+dAHbcdWNoN8CZHV5FPixHaYJAm16o1KuRhaxurjBlEeRnBeuXoLXkJYpeP8HknMk6OUIZYxXFtJxvbkFfKDSHZuzOBerjbLIiHttUUE40rhhC0wN8J+W/54k5z9bY4lJw0Gqz7pimCQFbzMVg+rdIomPpGs8sc8EifEie2wlqR0xeeb6KWuL+Pq4jRPEXopsKuyCEAQEAwrcnzdYBVdyYsReE8TvT75Grj6iR6kAVXFLBB8X7SBccSrw6vQ6K3CHBsNJUcVlovPw9XsWP/icgUeqCCw9mib5fqagfLNQEAv5qJo+/s2m+5Zk9OLW5zYBgsqSoGHafaWlnaj26g2luYgBqJ5lbdGMiZgWxx4T8qgsSzn7F8rt1/9U8iP5d+T7wCTYo8gJ4x/NwUr9FlVtKZQ2p+IaAy51Ti/DHr4DuB91vd10wJbWYE6uO298UHeEZh3tCCHyEbNeRzRm6e10TQxlJOMr2fknT6xHRJVM8OPFaEnRJhVXve8l55eRbiESLwA/O4lCnO3zPm6v5HL9e+M5VovL+2U21dfcd7BpAHzzHWwo5zzMOE7mWC7Oj/AHIGBuEHBwiJyrRnIGfPxxPWrW8/vyvkotrPnxqXdfbG3/riao4iIaOjr9v26HFdSYkXHxLI9oZ/gtnbeabwqx/qI6Xa77xLRZ/z2t4noh09xL4PhiWB2aLgIMDs0PG2YDRouAswODU8bluzSYDAYDAaDwWAwXCqchk52YhRUlDSybR9s18uFGoBBkkXpLgM3YYQ6w25FdC/WUew+kfuX94psl9cMXMtAFxv5wL5dCSzM+0JPGD525d0diJsOg6c4OGoCXluk4cwDvYj3z0BZVsANfm3GudSRQtZ8WdzvyZwLdGw+L8Hbn/zSWrm9+8Htcnu16cq7DgGHfaQNpFUKipbvRMtVchh83uRsaWXHRj2p0ZXWTLAvpFJB0JlCOdLoZjEgHYXPQ9c41tcoOzqYOHgGT50J6GJYrlwJQIXj7DHH/B4j0l3u2z7g9l3oi/t1sbk5bzNNoPOM4bkeZ+787bEE7mIdP2lumGAs8GVoKLkdiEL7HSXuecMcJ+eHhBJq+j6W+wD1AiKCp9E5B9BcSNVhO8gjNss2g3kWcBVLuy/+dqkhQiEt3/YZ0B72akL12U3dOIkUrmlU4Vh7iLiB3v+4jPisGoUolmsDz+N+G+Qew/cPC35gvSp5UvD8QHAAxj7OD9XzeSby9vmtKeZFUdaLJsoSBrj7OkH6Ziw3m5azShGfQAR0Mha6aMo4s9+QIP93QdyB6dhridjYthLErwXFE4k9xEQKgneDP68HggSbMBYuexo6Uhvn4VFXPLWtAXOKRiZj1WodqJr+/5iNajSx01LHzjJf2mmQkASD87tjREg/gvdUUR0HAro60O+0sSwYK5OqcE8TQgl6RcMfl33LYGeL18QOGAcPpCyP10QA50Hi5liPIW/fbgrB9r4sSE/sQW41rIOGIvp0A2iLH/kBJ0DVfHml3Jetyjywfd+Ny3O70k9SePc05uRe2/ddX9vakVCE8H3hr0/6uMz7g5w30F4YTsHvw9op/CrmiTEYDAaDwWAwGAyXCvYRYzAYDAaDwWAwGC4VzodOVhzShKbQBR2ov/jNQLkg4ipl2kSe6q59zUWF9yqvA9tDUKjo90RhZu6Bcx2nj4UaM9gGd/Cqyy/zQSKa9Y/Afdj3LsMZeJQ5oJAt5HKg5Z+3AXW2kIhvetbrktdXgC5zWxRckhvX3b6GHL/y8mq5/WO//e1ye/T6s658jUXSMPBuTay3cUAHc27VGO0qVVRsUInpPNFOG/TCrKPS7Xs64wGozQxBMY/pKHFlG9lmGgzSLbQcJSNowzFci+su6BOYpwGuy3QFTREIy4i0LVLU/zC3C9J4sC/xs++M+5V9ROK+x/bEtt/LHL0IVaWOQzs8LjTK3HFyXTBFclLDOjpfiiO72Lm8WIdIi+DtCeQQaaR6X+O6DaglCW5WFcG0xFZou7M1ocde84pqRESLniKB4/QO5EPh+sZcFwGdi6kGYHsJtIFGSyoitAU271yhVeJv8widM1FsJta/0vL9pIPrFseSXaAgPQLa7jte9eeGz+c1ap3fmmJCSTAGEB1B2/ZjDlILsX40mt+0/EADoHhpSnSDrJrnh4hoFd5TM74ukX60PhHVM7Y9VM077fjD5d6fSFuu1WUu0K67uhmDKt0E6EnJ2O2fh2fdh/rcgxwhu/55x8fIa3RcaPRAIrB3TXbqnMBjIKuSoXLtUMkRiGMOjpvavCLMf1dV/ArpT1XbCPOeyF/7mzLWba+5ulvbE+XO98AOHvkuvwttPMBt/1wDVLuD58bcKjN+yj4DtvMKQZ6l773ryn1V6GRE75dbjb5TtK3NyzWbd6Xc6UvPyr3e+oCIiJ7/TRnD3yShc3JtBLRLpQ6b+G6LzP0aVM1XeFyYJ8ZgMBgMBoPBYDBcKpyLJyZNEpr1qyapX/5pw2ojBi5pKzkTJbiLCFYqYMWiUTt6lR+/9Ab+ujugB38fAuxaBxKctf+m+7LGnDSbhayqPfYrMet1uT5+efNV2wXkgwHvy+yUIONc+0CFpbRkRjxAybIPxFqUgMjkzkfkvssiAvCv/S9/QkREe2/cLfdN4Bk28gN/f1ihD7Kuum1cTcMVjSCQKznai/BhYyap0afqboVizect2gKBif0CVv+8hwZXBHcTWZHoQ9AmryDjalZdyV2B8fNhELPPE4MrwnCtYGXeB67jPlxZG6Q+MHYszzXK0DNWLRZCy5rOOT+IQlGGaavW7IEZTAnuPi20FWC0w3okA/qTCgqcJbjNA6+RlrsJvQhQ/rN8ljLbPIgjLNUlmP92CjmCOAM53L8Fq2w8RmD50ItX5nEA7yR6bdFro3pllPqI5hPzdVugUEuh9zXejuXF0oD35dVizAwfEySo+bwSs233njk4x2ExSUQEQ2MnaHlgcKU7EC5I8F3NOW/0gaasiyAjOYqcOHvAMQMD89Gzx8IdWP9Y772xZwlE3q2S/6bq6SbSg93Rq7M2llwhfK1d8EauJ7Iav+YFdK4WIIICl78PY+y292CH3nSBlmNpGpLAyy/bdT9f0nItnRe4/3LfQe/LALwybCc4Psa87fwbrW/idmDncN0m2zyUc7+Qv7ItmRtu+bHwUUPOX4NgeZ5fDsHOseV4DM0i4zoOCzyPfiaX9rpxQ7yPxPmV0LPWgLnCoju/Pitz19pHXyy3k+/6Ptl+wYlBvfLWPy33vfGnMk98v+HKsAXlw3Jzfca8L9q4npknxmAwGAwGg8FgMPx5h33EGAwGg8FgMBgMhkuF86GTEdGCD3Jre9dSFqGLae6kCbjhehCIvU3sdoUgKNge+nsFQelIdfL7BxAYOKxBgF1bXG7zxaw/H+lioP/vaRHoTkMd7BnvRp4BDxrmpMGnZnGBHN2mcN5k7PMiDMTVWuxLcBc9fuT+35DcMEEA70jqsH3Xtcszr4OIANBJ9nzenXGC9VYNrEN3dApUDaQgPC0teka7SOiViXu2Je9GX69JG68DnWw7cVSoLWiDwB0NdsZtHnNtF2Uwve7S57UErEOko7XqUsYZHzA4XxP6YAOoZQPfP4K6HkkwKlMUtPwhRKGLd6LQGTSKQ4x6w3UUo3No+TVi0KhCAfUt8y570PJHYN2WVKYgZ8X52WZCRC0O+vW3rRW6nWlUvUCI4RT0vCCAW6ENYX6dmzUJ5n+JxOYWMnfeDgpBwNi64Gk1YxBPOEh0EQ0NAdXA3yIMzMc6Ol7/wiW7INBZCewP7DG4bzVPDFo395l+IXROtEmkO3EdTFo+oPkcxSXSJKX5umtPzYa03CnB+ATjulZ/gdDLpJrjJJazhxHQCcHecfzRKFBa3q/QLqrvo0ZEsEC7Lo77m0Oh8fC95kAIA0UxVv14PQfCDgm8J3eB1sxCBgE1R8k7hsiRqjQlH5OGp0XxzqignqePMQV1ogTgEwk9aRqFjEjaXAtVIAJRKAxVSDGY3gs5wBzvYR2ny7K942+7BYIr+xi479smi4zV5fwB+lEbRSHAfq96iuIVSDg4PIDQjG++5651U+huNJE+ky65wPz0BgT+3xGKWDIP+8durGo+L5Tia18BQYCm7+tIGYZxue73hyMxzBWCeaRv21O8h80TYzAYDAaDwWAwGC4V7CPGYDAYDAaDwWAwXCqcC52sRgnNefcYu/fQBZUHrukqkMJVB7cqO+x2SRRLUL0sy7ybHmgMLXDTsUsc1RMOQC1nG2gADe/uQjraAdyLi4ju4iuwzRjCA27D0xbKb0DggupANxkMvDLQllDI0nuSB4bedzSybF3qJeuBK1WqgzbvOcWhtbpc/wBoDazBP1KUPVy5q1SqIMeAouOuqeGcB+oF0Y2Jz8ni6zMBF/EYXMdsBzGKikZ/ilEkuI5iajNMZ2jXRc1mBraR3sN0BVSNQptGZZfy/lAWVteJ5fVBcHmnqjNFlLOYBoIu+4DmMyVHiZYHplDqlUieZzgZV/YR6W7skObWovNCLUlp0dMC+AmQrolgeuAeKOMhtLaL5fvQckJgv2UKI1JibqVCIXtFGC80423jg4b0731UNfN0Mhw3gpwM/nnHEQpVTN1Kg9iBnguDFfmQboJtH/bxo9f1uL4DlTG4Lo8Bkyg1TCqx53OO7Ps8MrXG0RS7s0RKCbVSZ4NabgbsL0xXnU1lTJoHFa4G1BnTvZswJj2m3XJbG1O03C3Y/nmE4sptEaOils8whT6J1N0YNZa3ka6u5bfZA3pyG7Y3/HZAw4vQeJFyWHkWgv6LjMvIuKhBy800Duz+/JTKsqKgndzZ/6CoUvLRjngu0Yj00YDWySqBuZ5vCNux3AfvTraNFOQ8d4HWjSUYlGOZXu8cVlBLdCoV+blIG+dKGEoQzKfc/k2YHP7prqjQ3v5997zXF2VueOV52Z7peHpwG953Y1BSfL8rxfqz14mIaPtLMi69D0pn24XLH4chHljfbOsToLvXAwU4yB/jbW4hOfkniXliDAaDwWAwGAwGw6WCfcQYDAaDwWAwGAyGS4VzUidLaNa7zIacqAncaQH9qKi6hkcJ0kIERVp13+1mQrtg9ZchiTtsDO6qNrvH4aJhcqQq5QD3DRTqTo45hhT1pT5mG4TfVq9EtAQ/mAE62f7IuTX7a+LeLCAJ2Ljnfrv9WJLTbfWEFrJZCC3goaeDvF6XEuyAS5BdhZh0KlfUQ2Ju8rpGJ3tKKmUJFdTwZW95O0MTQqpgr3DPiy5odPMjrYFVrqZRtJCegHXAyQVn6+LiXWoIXQyVyGY8RRHVS0KFFnfdK3VRlUJsJ861jAnkUKVLe4aMdKpTeU6uPzf3pZgKGdKamC4RVUrz6mNZRIWHbRL3acm0EGEbnR+dLKEqJQKYjDSjjFFq8tTKdY9OWsjbtUhyv9IOgU52DRK8fSQRWsLsnLOfRk9UcPpAG9jzz9ADKiTSDhg43sYoMfxcOHRqyfuQCoYJO1XFLOXdQSR1FFPp4/EO+3KCjccUyshzhdRMV4dM8by2cH40niRJSpvS+gnSeBb9+HOzJu+Ta5DIEduCKdi4DykmPa+UGKOwlvuhrTVal3uGqqoTIintokohc/uriU1D1TooFydUVZIBExEN/X6ks/Yh8Tb3sxhNUqOxZRGVrpJae4Kkt0F9QxHKZwgmIOdnhzkV5bjAddMMxj/Y9vuxDpHajiq2TA1D2hgnX8b9MRpfqUbXlONb6Uy5jYl9ufu3wGLm4Bl4roG9LIMxI+VtaCKk9E/gwDbPSyBB+70WJFD3CdhvDK6W+z71dRmjP9577H43eU/u/3iz3M7X98rtzT9x9/jj1VvlvtdaYt8bngZ7EKGTMUaQFB4pqRhqwO/DmUhizKNgnhiDwWAwGAwGg8FwqXAunphGQXQrd19YB6zpD8fb4H1p+Y/ODFYLtmDFVg3iQ48GfpmXuuOyD89v+a98DDBqRAKPauUqQXUfkR4AvwMeIM4BgCtJKG6AgXv8NTqG1a4ZWFlcmbj97TX5wp7ZlXsNhu6362NZwX8PgtLu1WVN4IEXRXicSS4RDrQjEk8EemIC/XoOjgw8MRAsHHhifDD9UwrszymhgS/DgV/W7YOXbw+Wo7a9R28XPFy4ksOrp0TiydDyqiCCFUFYYeL6mgNPzM3GYrl9IxWvzKxfJcPVGcxzNOBVa1i2rjWq7bE9llX1JIGcFkpgfCynzDTwc8Xy3+BqubYqHJSFvT2RBcdCWZ2csjj51JBTQYMitJUgbxah5zkJ/j+Mae2hCVPEAtnZNtrgPVkED/CNG5IXY+GuD+B+QzdNIu0AACAASURBVJ5ja1dW/x423bVqimedSNo5CPaPeDI1j562eo6ePc6nRETU9H3tODl1+LqDTLE90gOCTwt+xrEfP4ri/FbAqYA+owTIo8dizq+e3k5gfMql7/ZhVZlZE03FA3/4HmVRTiAcMu23Wn6bmL1rjICYJ5dtIJa/pig9dLoHb6j0vdOJV+giJyeB1rfG+dMZLJ1XOhRYQqEaFEpi7wcyJkJPrly3pqzPa97VaXnR0HYJdJqWQdiCPURVGScHvgN6XwJhK7Yd0o8j42fo3xvYWngez18fQPl22jIP3H77NhERvfievP/bLZnj7PTE2/qm9zx9C7xRD2FueOC9QoHXGZlMSh0jcIyYeG/N5BQvbfPEGAwGg8FgMBgMhkuFIz0xnU6nQUT/gIheIEca/6+I6DUi+jVyH4PfJKJf6Ha7R5PPDYYngNmh4SLA7NDwtGE2aLgIMDs0XBRMo5P9+0S00e12f67T6Vwhoq/5f7/U7XY/1+l0foWIfpqIPnvUReaKnH5g7DSlx56eMFMTF9n8rFBzajVn89t7EkT1ZiZ0GoK8BIV3zw3BvdgMcs44dy26BOfAzbbot9Fl2QyCs+S8xaIamNdPgYrkXX5I7RmBG63n6VgjOB7kGgA396BgfW1w08F23nLl3Z+I62+2h65Ihw2gEb1bk/u+6fW9iYjWMudWxIAsDJ7mwLlhruffYKrGcXx6kzLA7cQuwzOxw0lCtOrz4Qx8eVHbPcOgTeW5MRgeXc+TMvcB6u9X6S4x+gDTYOYggP/ZVALzP1rI/kV/i12o7zUI8tv1+W2GQJObA0d3/ZhudiKi/JgUA6TxINg2WkBlxKDx+bo8F9s/Blduk7i8ue5PQi35EHAmdoi5Ecp9YIdDoCxxv8Q+E8tdNA0anQrPZ9ofjqFtmIK0FqRczeedfV6ZCMXsyleWy22mkaEQCuZhYFoW0rNQYALtUAQJplDnoH/hmL9Qm/HPhRRO+K3SJ3ZSoVgEFGUlDwzaP/dxjf5DpFOUTmjHZ2KDCE3wIcgf5OunDdTCGShyH5pl6J/vQGlroul5jcp9xxADYXttQT4WTQAjjVxLy/kzVsZ13I8UMi2/DUITp4gNqU9KsY7l1zouTjGWnokdNpIaPVN3tHhupzb0R8ydwk+4h7aFQf5w3VSxabSNWM42RplTK8GyyPgRiK94inc9CC8Am/K7s4DGV0VG+vEg/43/awB9KlPox0hBG6TyrOs+P8xSAXNqYMiO23LnA1+ju3AtFjwiknEt6F+KHWL/x3G3r+RsPM0bfdrU8x8T0d8uy+ce9/uI6PN+3+8Q0Y+f4r4Gw0lgdmi4CDA7NDxtmA0aLgLMDg0XAkd6Yrrd7j4RUafTWSCi3yCiXyKiv9ftdvmDaY+Ilj7UEhq+42F2aLgIMDs0PG2YDRouAswODRcFU9XJOp3OXXIuwV/udrv/qNPp/LdweIGItqddY2Y5p+/6S54a4uk86TVRX0pWbsiPx871dOub98pdrc+JO2w/k/N26l7TH5xQqA7GbuJAkQz177361yLuA4WYa7ls35q4e7TBHzwA9+S2p85s1uT4WiputI3C0UL2gLY1iOSkYffgCFye/USutefLvdYQBZ55xam2D5SH+yT0lYeZaIHvTBy1DF2CtaR6LaREoJtdc8nHXOPsXsTfHjc7x1nY4SSR9mn4x8FcPqhRjtQTBlIJYrlRyn2RPEhHAW3zDknbfs9QbOZK07Xj9lBq7gNQYlr1Cmf7QCfbge3c0xL3U1EkC9SDppRVo2aElCR5Bs57s1gXaujVhijqraRAJ/PX3aqJnWIdDrwaHFKOAtf1OVHLzsIOM8pL9TutTwS5Dbw64BifO6K2NM0Oy74KtospIdgOZoBeW4dLjvblx9m2a6dsgPQB+G3CtCJQTcSxz9MGB4rKH1E43jCFKMylAY/AdE20Q7DpeU8bvloTO1yAV98squT4p/gAFNqQasttk4J8JtJUyjwzMdoRbDIduogouMVwFjaYJkmZf4qpiqjohPk5OIfDEFp4H5SW9oDOupU7e92eCBW0N5E+rdF4NOpYTFEMFQ0XGq49FyGnFtJVG0rOCbSrobfN/UlVjZNIf8+dhqqF5yNiyoJaHQTHqarGh8/FY8U0utuT4izscI5S+t7C0eIP/OMG1FnoGwOeF2E+t5hqo9/fgn68VIfca57KnETmPTwWXq0LZX8FQhGWYIzkd1ceoYNlpe1g+QTcv5COlsBz59DXmN6PtjGCsYbp8RNU+QQ6GIcPoB3jb+tQBzxuYk6ziaIMFxt3M/8OQBrxOJjTSl/jaw1hznxcHEkn63Q6N4no94job3W73X/gd3+10+n8iN/+SSL6wonvajCcAGaHhosAs0PD04bZoOEiwOzQcFEwzRPznxPRChH97U6nw/zHXySi/6HT6TSJ6HVyrsSjsThP9R/7C8GuZAE8jXOwvbdFRES1vgRWLnx1o9xubIonhleGehB83cdVM/8F2ITHzIIVcn9N+JbD3C8t+HReyNxX5U1YKa7BF/L22K2Gf1DIqvikDoFkpATAw0IJBkxxUBau5u2RfLX2vG7/NmQ/bSqrTpiLYjOTYH5cJeMV4DDoFevDr9LBPgyg45WBLNOzC2srkrhq1Dqel+JM7HBCBW34VUP2XKE9NIKVSLfSEstxcJJsyeo5RbWOcEUEcyfdnpf2uv6CC6S+sSfluroqq0WPBm61aRVWLO+BGMamfx7N23ZS8GqQ5n0hIrrSdMHft+rSZ1+uiSfmhQxXsxzeBa8N1hfn6MHVeswjw2b0IXtkzsQOsyKnXe8B1bJzjzHY3W/jChZ6w1LwAnC/CzwtSnXEcrOwTWAw7RC65/sPJXD/oOfK3+vLGHS/LnawXjib3YJxZ28sY/qB4lkLRCWmCDg0lADuWBAv5zm5lYjn7w7kOVmGxb9tf9oueL6bYN98jyzSf7htimCseLKg7UM4ExvEgGpeKcYAYc0juwkjfw+8AJuFvHPvT3aJiGhtuFPu2xuBSIJv4yQiTpEq9Ypt3a6LvS033Lj3bHOl3PdCTQRRrhac4V3QA6/0mi/3g5qIUzwaS7mDPC9eWGSSP1kAPQLrWMufhfu0OsJ9WNZ9zj+UH92HnhBnYoeLlNFPkGOGrA7c2L8F/W0P8p09rrnn3od6aYErGVk4PB9q1sT70qrLu2fee1Jm4XycC+z7OVgLBUKCYH7IN+T/z3FchmdktkczmFuC98JvD9G7CX0RPTScawa9Kwgez8dwPHi38HxtyjuAiGjo+9ciMCamQfPKZEnVe0MUiiaxfY4iz3UUpsXE/CI5wzyMHz7xnQyGU8Ls0HARYHZoeNowGzRcBJgdGi4KLNmlwWAwGAwGg8FguFSYGth/Fkjac5R+/DNERFRsPXI7R5AnYXu93MzfedMd/vqDct/a+tVye0sYKLTjKVhIxZoogf1jCHDHIM3d1OeegLIeYKQrBIUtelfmTfjt7Ixca9zzuuKFnIO0jzJ4C9yItUhQLrv8kFaC4GfEoFkMyiyDpIpqgDBRGDjMZYhSpaYFJPrj+ZRz8Lx6EuHUfcgYU0GPCmd36EZm7EB9DiN1z9BybuBza/kI8EnxfKbZYeDzFrhgewdiU9d9YP7MbbHpGy0Raqjdd+f1+ygMA+5o304BXSdCjVPbEZ5LCzBF6s28d0PfTYXu9pmhHP9ES+I+a15w4VtQ7p2m0NAeN9wzMq2MKKRNMZ3iSSke54G8yKnnqVXcDnnEvc/PiP0rls9De/ZpNJJArKLgQEyxrYeQY+ArDaH6zfbc9j505TfqYr/3PC1nfbhb7kM62WDC9Jxq8HTlGZIqTS5VqDhaYC6R0ETxZRcIFsBwxjmXHmVC4dwZCyWOhQgCel9SHdOx/8dEQKpUwvOz3Ral9CJxG7r79+B9sQ/bnPNlr8BcYlLWTaAnPxhsun0DoWihKEUZDBwE8wM1R8nvEcszxSIhH6vJOPFjYmL08dtrRERUb0r9rz8Sutk3Ju78Lzfl+vhcPRhrOAg5UcY/ouPTtZAu10CRgiaITvh+hjQ69X2j0G2JiAY1pW9d0HGxdTWll3/cvSee/epDIiJa60ob3duTtp14Olcf+vYA3uM5zNdYKAnpYMsQjH/dUw3nYD62C3SurbSatwQpZLWiSh1DutgyHL/lzf96Ju0xA3PSvn+G9ZqUdRVDESBH4J7idxjDeM0ULZzjaXNiREzMh88rIu8eFh9Ip9BlcXwcB+EFQB/2dd84xXzQPDEGg8FgMBgMBoPhUsE+YgwGg8FgMBgMBsOlwrnQyajRotrtV4iIKPNKJfnqe+Xh/LXXy+3Bl+4TEdEH3xAlnHdJXK3roEnP7u9BrtPJckXxYD8DGpvHDrghZ8HlOElF2eKa19Qfj8Ed3JR7tYZezWIirrcZcCnO+u/FEbg/9wOdryoCSgLmkfDPMwH3pPbbQAErkseFt4PfgksvV9zQ6D5k5Z2AYhbxLrIrMlTG6us//hAwKjK6N3YUpja0OQPtiPPnoIKG5oqNIaAXJPyfTj/g6/aA8vduIfXyR6Dotf91V+6b83K8Xhc72O07usVWTep4B5SWDrybGfvEaZVr2E0ccyfz8RUYZj7WEOrb8z8CfdEr6Yw/J/3jayS0ggWvWtaqSbsxbYIIckI9hdwxJ0VeFKU6V3ECOmYJqO66otIV1AFV6Uux67Otb2TCyfl2Ta71HqoledUgVEB8OJa2/WDgFCW3h0I1YoUnokMKagpwPOFyJ/gsJ6ivkadurANddA9ocnskfeG9yU5Q/sPPMFJycAS5JtLqGDdNrfFp2GmNiBYKV8axp3LswfEh0F04txlSsXFc3BpL/bAS2TjI+aNQWCL05bJ8EYrqHNDJOM9UZyzHP/OD75fb7b/6o/5ioET35a+U2wv/9DEREQ02JU/dQ1CzWoX8W6wYhjTCcVYd46dRqfG55pui+nSjLTRazmeC4ypShnjsxjYYJrI9jd5zkZAsX6H6z/wsERHNvvxFIiJ69otfK4+3/r/Ncru+5lTo6kDZr4Fa3So8N6oLMjJom5G3OaQ6IZWQFcGwb09b8Z+B396C23+UXP+4+Yz0sBT4rDsbfn7bk/f8bk2fmjNNbgDvb7SDg4zprpCbBWyHbQPfG0hbxL7GirVIzUV6XsLKcdC9cY408WNIjLqu7S9AUe+4VmyeGIPBYDAYDAaDwXCpcD6eGEDRcytdxbvvlvvY+0JE9N7XnQfm3lhWYR818AtbvioH/mtT874Qydcd7sMAd/6Cxa/PRViJWYIMrXyFdk3uNbsoK1OpD0y+uSYrA4OJnN/0QVst0D0fQvD2AJ6Lv3DxudBLwCsx+IUdBI8qwZO4MthQcp/g6k2YefbowH4WFEiV4MzD9+VtzEkzOEdPzDif0KOh88Tw6gPWEa4icEZxzEWCq2yx7OFHAc8vkurqLNrm22NZCe7XpQyvtZ19PjcRT+UVSObBqVfWUghmxRVov5qKqzfjSP/RgklrU5ZH0F5KgQp41mYDRCWevSInjn1Op6Z4ZxrgqGSbDXInXKIVR0RRFEF+lOMAV3CDvgz1wftHkfwR7MlA28P24lW8NciVsQN5XrQxAgNI9ybiwdkdek/mCbwv01DEPBppNdcO2ve2977vJTJeo1dhcyxB6Nsjt2raG4sdYltN85qU7xys48hKJD9DuQp55JXPFhMqaNN7o7bKwH3IAwP108vduITjE9sKEVFvUq2rWCA5vztiK7KMWM6f8D3mxXYmYuPtH/uEHP9LP+euv/1ILrwtK/tLz32ZiIieXZP2vd6Qd/Z8TTwle/VQiOMwxtOeW1kBn6vL9VcwM3zNrcxj3rADzJ/hd09IZ2JcKjRnqHb3u9x2OcZLG1+vg1fmy85ztviBeK1aY5mv9RuQX8Z7V7He0Lu47z01KPCDOQJ5G/PYJUowP5HkgVmCHELPQV+586IbT2efi/UJZ1sbPWEcJYU8yxhsaqDM/TRhHhwLQ1ZIVTgDxTKWYP677O1/LsF8buAd9PPXRsQXwoyeFG23wE1ko1Tn6jKTPhrmiTEYDAaDwWAwGAyXCvYRYzAYDAaDwWAwGC4VzodONtinyWtfICKi4s1vEhHR5DUJ7A90wT2N7H5Dvq82gBozCAKHqjkUkObDNDF0rWFg3sRTDvD4HLiQURf8qg/iW7kq9Iq5F+QRZ32gbrMN7upVea71obvuexCINoTtHLTAWbAAXaH4jOyyD4L9gdbBbjoMyELXOG6zSx7deBOI1OoDrYAxyOAPX93TKGREQj0LA/vPD1mR0+7ItR+79dOIG35a3pEg4I/rkHQXbrkNt8qVwH7OQUFEtEZC6dkHusZ6w9EOHtSEfrAE7mB29w7B3bwL+R22PD0IqSEYhBt1Q3O5p9BAEOzy3gSayv09CV68857khyJPodzpSV6AQfPooHRNdOIyoCAJdmY7QjqI1peQhhLkzahL2zPibeTumcUC+z11cjMXelWsf2j5bZB2heMsAylx0/Is6bYnSKjaf3AMRPvm42jbSIHC/DUHY9dXYjk2uFyxfCHyXDp1blqfOS8MKac3c0edY4rKAQYIK0H8SCELaNlIuVWozNNYn1runDxiC0ij6fly9SEPFTWrJJRiZ022N+T9nA+YMiTXXAQaD74nmXIzjU6o5cQhEttHYZIZEA6YTWV7xtOtx1Sd6xARDXyF5kofOLz/wiMbU77pcgIWBz6nFORLSReEYtW+6ux1YVNsb2Ffjs/DfK3taWIDaNtBkAfJ2TLm15sH2tSKJzNBJAPhSNsAo17yAhkvj+T6r7wo77bFT7sypteFAo52NN9cJSKi65syt1zoV9/piDSgvlXzY2UwZ8ahiN8naHvX6jJPfRZEhG76OpiN+Dr6/sIojNVOqp8UOJZmEEJxVmOheWIMBoPBYDAYDAbDpYJ9xBgMBoPBYDAYDIZLhXOhkxWbmzT+33+diIjyfefG231d3GFIMXm/6b6rHoKO/xbo+KOCCmtmo2utpeT/CBV6QFvdu6PR9d0Cd9giuBdvejfx0nNCQ6h/9I5ct+3cfyuviBb4wj1xXS+/5lyFo4fXyn0boAWegTt5x39bytlEPfje5OctYu5kv420k6WauF1fqYu6x02vuY7ZJnrgf1ytufa6X5NcAOsToZtwHaJrMEpBKakGT8fdXVBBQ9+ObBNIcUmm8B5iKjn8XKiYFNBRFLepVkejILeC3rbc5qhct5VUbX4U0ZFnato+UmiAxqap3CE0paUYfWlS0snk+t9sih3e/APZnpl1ZbxfCIVjB/rqwPf7QJVlCv3o4qIo66mm5I9oBBr+boxoAw0FVY0w31GZPyKr0nuIxI5iVB1NcWwacOxFihXn1UDbRdsqldKC3C8CrT213Eu4H6+P1CeujwHUC9YR0qHKHFtT8tDgvsuoDDXMJ/TW0Kk9aSqegcqgH8uCvCRQZ0gd1Cgi08ZVRK5QA7Etsa5XU/eufa0p77Of/KNvyG9v/iYRERX33payfu1eub3z0PWjPrz9sKzNpJo/YwL9UKNz5YVOl+F3RxPe+fgOwfrmPtVAKnZR/S2+A6a9by4sBn3K33QqccWqo5Xl3bfKw/0vi0rnwzddOz8eyHujD3KZLXjshfRoSt6+t6kBzCczmCPN+3ngAtgGhhcsghLZC2N33U8+J7TFpR+7Wm6nr75ERETJsuwrxmLTDa+qduV9CbG4/WcyJ74GFMc1P0/sFRF1UWVcRZvmdwuGTVwDRbKXSfZ/dFj4+1dDCoiIdv3nwypQmt+uwydFrVo+zEGI9s9lxH0jkjnKUTBPjMFgMBgMBoPBYLhUsI8Yg8FgMBgMBoPBcKlwLnSyva06fe6zK0REtJI4N9gOuMjebsr2WzV3fLUQBYo9UEpBxS5MAMloKuoIseRummoUogHJjVjBpL4Eyhl3bpfbyS1HLStGUu7GYrfcnnn4rtv3UO4/C/yJBXBdD315a5hcKVAvSn2x9YKnigLFLVCz+sRE9n/KJ6hbmROa3GQi37b3B+68f9EWV+jXISHY/YlTFOllcn4sEROX96klKSyq6kGYwKoGdczu/1iSQUyQqqngoaJYb+S2xxGXv6ZolEMGzTSTch0kVdduP6kqMQV0DKCLsQLa6ASKZEjhQMoOK40ENLq0SnE4ANf3+zW571fGotbS3nL3fQMkYNYKUJDydhpQf5TkiZeDSpGU/TlRko81wLZYfWypIS7/RaA9IHYm/eCaMRQRqqJWnzHVNI0eg0ppfI8YhYttA+8JeYAj2l7wDAENrQiuSaTTerBPTKNNxtS1VGpZmMHtWOV/2hgXGW0NdoJ92L7Y7vzMWL9Yl6ehMsVUH6Vd9ASjmo1+GdSV/tnv3Sy3v//bv0NERDmMn7ub0o82fXLBLVDDGiX6u0uDlnQ2Q4o4lJX7C9brJFBakzF6JmGKt56Amvssvk+yCI3toqMYHFD+ulOszd93Kl0H3xRK/ruvr8h24dpupy713oNleKyjln+vYzLLg4A074BtgH1+zs8jr+VyzgpQyFYyqe/nG45ev9CR66bPPyvXvevpZEvX5Qc7j8vNovamOw7PMpOI/V/NhMK47EMENmG+qM2nAqoWDKxMP15MhTZ2M5Fx+9Wh1OGnrjgq35WXhNaVzsh1x1uuDh6/LdS32QN5p+833T12azI/mUSoZTxvx/n7I9qqPJcG88QYDAaDwWAwGAyGS4Vz8cRspwX9k7ZbhVsm9yWYgXfkcSH62Gs+j8XWRPZhQGGmrHFhPpQ6fG3zalygeZ9VA6JwNR7zojwm2X7PB0K9/CZ8jX9Sgs5o+Yr7H1a9iz0Jhh/uuqoewlczLBDREFYRBr5cQ9IDJlMlCAq3eUVtHr62ryfifXlxLF/5H3nJyQfMf1y+9pM5+e1zDx8REdEzfyz5O9ok23/iLei+PErUK8PlwgD580SSJOWKGa+IYRA1avjzqvIs5GBZggA4DIZb9nU7Att8z3uoiIju11wd74zEHnCFepL5VelIsPAIViV5fyywmFdF0dOCq6acx2DaSnQAXGhOtBVBuX4tFztkT+kAjq+n0j++VZdyj/1138+l398by0rM9rhXeRZ1BV1ZQb7I0AQe0PvHAf0rdfGkXkvF9jD3Qd/XbV0JSEbgWIIeP1zNLctCuKIHnki/4rzclHItQxl5nOZ2iyHWXpr4QCxYlW0Z+0mqrGIHNh+xDW6PWC6d4+I4gf/l/qMJAR8K8iKnng8u1sqn1R8+0zTvS+yZp/VJfmcXuW4L2rj17eRRue/XZsVGv/rQMSVuZrJvBm4/9l3jcU12roPXeA9y4bC4QDB/UAQNglXxtLpGjOXHd8B+Ku/Mhu+/KDI0iqxgazjs5SUimjbEPy0U+wMafMF5Igarrr5W74tQw3u5jHUs+rQLuUaQi5OhGEXCNivH0VPDtjOXyvv9eioe7tu5q/s7oHGylEkbzMLcrF7zjIQdeDdtghdh10s0gZeuePxAyv2e80D1N2TeNQEhhwY8Q0MZJdAeskP5x4iImjDH4YD+FZgbPpvLvOfVhsxbbny/Zx99/OVyXzIvY3xz343trW+KWEbv92W8f6dwv10FT09W022XPTBteHc9Un9ZhXliDAaDwWAwGAwGw6XCVE9Mp9OpEdGvElGH3Pf8zxPRgIh+zf/9TSL6hW63e9FpwIZLCrNBw0WA2aHhIsDs0PC0YTZouCg4Dp3sp4iIut3uv9LpdH6EiP5rcp7vX+p2u5/rdDq/QkQ/TUSfjV3goJjQt8aOesWBRUEQdC6uVA6I7oMrN+aaZ9dtqlCp8B6xIMTD1yEKqVD3M8mH8o2Gc/Vdu3ej3Pc9vy1utNlXH/AN5FpvyvYH912A2hroaK+ncnwDHKMbXtQABQ0w70eu+Ia1IMM2UEnmwT25Aq7r2Rf8+Z94odyXXAWN8w3Xbs+NRaTgu78obtf1tnP3jurVeiUiGuRVjf8ZyImzXzlDxRPbIJGzjblmO9iHdJuFujzX9YajzD1Xk6C1F0FD/ZkJaK/7/x8BLaEBVCl298aCL7XAWbT5Mb4GvBlkYDto80xxwGshhWFa0Ce6oacFiPN1xxAMm0DgPdMi9jIJDHwI7uItECTYzd3247G4s7dGYh0sThCMBVpZ8fHOnp9zJnboiuYKx+0Ry3nD/Xoe6KDPABVgH2gm+z6nE9JvAwqWQkXUxkNEjGrI5QrpltJ/MoWCFOQAyMN8TURh/8D9bNMxAQquw0B0QnuWiO1rAilRKo5iUyfpM2eEJ7bDoji67fGZ1DwykZwy03LCaP00V2iMYf4ifR488GPNFrxF/rR4v9z+oOnG7pt1oT+vgL02PBGlB+/Wh5kEla+Otsvt3ZHP85bp72Eub3R89aaPdY79FOc73E/wPRmr+8Pn4Da+F/Kzp9meyVjY32/QV//YiTGMfCVtgNDCQ6kCeuzfM3tAG81iPDm/exjJE8N2ugh0sqswxs76IP5GQOMHWiPY+e7AXWPmLRn/rtA75Xbz4bq757IIUORrIqqx9zXX9pubYqeYuwjDDibTcgT54zERIp5/r8Cz3h3Jc918Wd6/tRccHTO5AYIEs0InS1bcnLY+lDnerW89lGs9cs97pS73KiLcr6Yvb+MU5LCpZ3S73f+TiP5D/+fzRLRNRN9HRJ/3+36HiH78xHc2GI4Js0HDRYDZoeEiwOzQ8LRhNmi4KDjWZ0+32510Op3/mYj+RyL634go6Xa7/Pm2R0RL0ZMNhjOA2aDhIsDs0HARYHZoeNowGzRcBBxbnazb7f4HnU7nbxHRPyciTFSwQO4rPIpJkdG6p4mwmwupAaj4odEM0EUfKFvxtXJdiUnLRYCoKeoh/Ym4dR+n4lp+y7t2F9vi8pu8IXlibr498PeSsj4uxFX5oOHKfR/UGR6C+tk65MTY9pS2Xi5lQQUopicFimVQR6z0wHrzRETzoMC2MAOu69vueZLbz5T7wygc2QAAIABJREFUkiXRZi9/tyIuwcVU2utq4UxhBRQoBjVdQYrb/LQ69k9ig0SOdsj0F7ZDdLUyhYyI6KN1p3f+vWN57g5QDVupPONa5ug920hNg+0Vr3qyUxca0CCTti/tFNzdQR4M6CujzFNnFAqG+21ROQdR2klMMUmhxgQUTaUvTTKdlsKKPlugUDWIUJ2YRtobSx3jvbivooLcBGhsTPPIFMpADKelVTypHSZUrdsYDYmVxlaA9vAi5A3og4JRz+eCGkYU3EoFJcwhoOSBifVPjdarqSISETU8HQIVy3Cbc2AgHQTHO84LRETU87ZxAH1Gy3MUUzc7XObDZVUV0sDMAzWoonpOLVKflWuSTonjNjqpNT6pHTL09j6avhSjkGljhkZNiykxqveKUNd4jAvyDw0g94ofS9bqQt3B3Gncbjhn2IfxB+cCrOp4kndXoDzom30CREdUchxF5jCMgF5cVMfbJGLPHzae1AZ30oR+t+3GCq6NIYzrSPVjGhnmCozNger+amgvqOTY8G2/AJQ9nA0OvLrZRk2uuQfvdKzhGZ/zsLcBoQJbMtbRl91/I5jTDuD7buDvfADz0T2go68BTX3PP8M48n5nxOyUx90ZoHUv4lw7hf615povsK2rMDecd3SxZFFocnPPSF+8dt+VcQFCKAaJXu6Wr4PaKWx3qiem0+n8XKfT+c/8n31y3fHLngdJRPSTRPSFE9/ZYDgmzAYNFwFmh4aLALNDw9OG2aDhouA4npjfIqJ/2Ol0/oBcDPPfIKLXiehXO51O02//xlEXyIuChlk10zhjoumtK4HqROFKLK+i41dnDe7T9wHyuJKGwXiJEhA6gAB7zHHwAetYN6XKhm1ZeFjxmthjuP4OfHVukQ/Wh6C0XQh630FxA7/ij6vWWn6MUAscMmd7b8MyBG9dgUD05VuQgfX2i+5aC+D5hTqmsStDvi9lOYAstiN/2TyyModgcQLM23NMPLENcrm4njjoHAOTUTv9Ba+d/slCbODmLfHM7W6DV2XgbLUPOVQmUB+86tNKpV7RjksvQiR7Oq4mlSuZEe+ihqkrpbiCDn0NV5gZmBtB83Ti9tAH3uIqIq5uBkGufjUV+7KWDT6oN+gTvOp6MIY8TYoX4glxJnZIidS/FoSL3mb2qq6AV/XVEQYXC/peZGOvJnWAwhoHyfH6XWwVXRNVCY7jeOT711XoU88QBNH6CE8s/xqIg7xflzHqvYlbEVwfSdDpLuQWKy8yZRFPy8lzGGy/OfTlIPdH2X/09xN7DPOI9wUVB/i9dAqP4NnYocc0DxwD+xM+f115fi3PDJH+rMFYlsR/d7gMuqADeq1dP+mNZczRbCA4PyIeUXrLjpH/R87HwHolGB88Mdq9AnELDOT22xjcHRMG+RBxJjbYLyb01cyJB/FYiHaIwfg8H8K6QHvA/FhtP14GojdwHrJUpCxyfM03zUakjTHPYcu38xJ4HFqFXP+xF+F5RGKHQ2DhsBcCvSPYgvvgQdrKq3PawFPiy6IxYNx5ReX4Adx37Z4IGc08dvXdnpOMLXPPSkbAxkccWyVZkFw+aQtynPn71mEsqEUG6WTK8aMw9SOm2+32iOjfUw798InvZjCcAmaDhosAs0PDRYDZoeFpw2zQcFFgyS4NBoPBYDAYDAbDpcKxA/ufDEXpGi3pLOhiCjTOq/uQQoK5PObSVuW3faBP7E4c5WB7JJQgDALUgAHRnJuCiGgzcVr074LrbVAXN9+cd08GgaoF6MB7Vyi6R9G9iRQr3h5gwKLiOkY3/hwE1i96CsdtEjrZ85C/Y/YOBHK1Pd1jDAHXPaFNFR+4/Dd7b8m9PoDgyNXE1cEOlH8fAnRR/56fC2lAUurzQCFUPG+HTQiMXgIX821fHTeuSQ6C9hJQDTfFhbpfYzoZUBmUwLsgABjsf1pwt4YoBUyhsyD4XgFlCaiIjWC7VrkWCkxwoPUQbGus5PfQ8hoRHaLMsU1DjoDZBlD9mi54cAFykQyhf635/zHgG7enBSefN5JDba7leSASikQD7GUWOEmzNamD25mro7eBIvlIyZsVy0c0DWmEWqYdX/R96eOFtNcPjYQy+9wdRxHLIQnC+mMJEH29kO0/8bmdvgpjryYMU49QIfkZA1pFJCeNRvvBvqoJTGh0KrTtsRKo7X4Ulu/8wrHJ369KPTkKSCFDqudcQyiD7VqVpjNWclpg35xMoajGyle2aySPzGHhhLPANBGC8MfVskAaORqB7Y+BSlnaJpw/VKjlWVGlzuH+M6LQfqgYFxN6f7hJRDp9OaD3UbUfY99E2yt8gDrm2qkpa/ZDsM1dqO9dT+GaKFQsorDtWUSgjeMTjCNrmZuHbmYwD4X25DEey9oG6nktoGZWoYmrjKH/4NyR624Az/WoDvU2EHEjnsbVNuVeN96Xed4zbzp678KtLXmubRCaSXheBPNcRZSCiChjIYZTmKx5YgwGg8FgMBgMBsOlgn3EGAwGg8FgMBgMhkuFc6GTFQSqY7wzorPPLmukyMzXxF29UhMazzW/3YRvsYNU3FUbnm6GqhWoOMaua3S75or7kkjcf9sTOR/d2Kx2ha5zzAXC+2O0EXT5sbs4yA0D5eLyxuhHrAw0B/XSTsR9mfXhee85tYmkL2pAdCC0j+HX3PF3Prhe7nurLee/nztX6aMJKHdNRDkIKXHj8rnkWc+TTlbAvZlG1oA2WEY6mS/37FVpw6R+Ovc8t9xEUZgh0vNcxMDu8za4gJeaokm/1JitnIOua7YddFejQhvS69g1jban0TV3SNo7B/UxpoTE8sig/TI9Za4pff1qU5RSnmk6JRRUkNtDCqPPJbKbgGrVBcZRVBe0A6bMrQN17vWGULTqkIvq23X3m8fQ/wI6p6fHIn0HaTsa/SQNUl1U6RR5QO0QMDXzBRBE63zqcbk991OfdBsrknfg+sOH5fbLX3673H7xc1dcWdoyBqFNMk0VbRdti8edgLILY3P43FVbDSiOXiVvHihUqDrI5cI+B4KUoWqZp5+eZ14PxHFpVolCQV1syThzvSkUFBxLGPhO1NoCFQs5T8tgUs2jFS1/oezD301RFIsq8CkqfYHq0zEob4eRR2iMSMk9SN2z4/xAy6WH90eKNu9/CoplJ0ZW5NQbu/FqGkVVlBxRGRDCDqAfrtSdfS4BzR7bc8QKb4H6Gebiq1LXEMGc1ZdxH8ZopNRvThwlvQd2ruVx2wcqN+YzwvkvjnEMTQ12mj32YZzD3IWbkBeHlXbx6iu5lOX+uqvbxTWgi0G9vN5yZz4E5d0t2EbwnLUFc/XjwjwxBoPBYDAYDAaD4VLhfDwxRVGuwPBXI67q4KcUf2VreU+IxPtCRPS8TxA7CxfYA08M6243It4PXr0NPCZT0m/gCnovq35V4ooIrjDxKiauFuAzIo4bkBdkgsYVBR+Utgl18R5k/G5940q5vfK+88DMzL+r3uPRfbdS+hqsPN4j8dqseg8M5nDA546tZDwtHA7sD7TlC91zxchH+oppK/fejSBPhlyLV8Zw9RdX1srcFMdodw4cxmDau+2r5fZH6su+LHL/XVgK5ky/qEmPggYteIahr6sdWGHaUFZS0ObH2opgJIcQBgevtFwg942W5Cu6U5cV3rupX1krpNyr0JdWveDHVl2EGGJ5dy4ScmXFD72X7Dl+PVkv963VxPM2grbdHrp+ieMSj3FEEDQd8TaX+9AzHdnP14j1b7ajFq6C43B3+w4REdW+9ydk3wjyV33sy+X2dy//LhERbXxWvDbrbdlmm2yAzWMQ7kHqA/8zfZVPy1eEtrnUlHfOLX/fa9AGDehLvAL7eCye6ZiIQFrmnOE+cZ4emeLY7xl+Z86B0Mat1rJsN6TPNpRcH4EHz/+P3pkdyAm0mjjBB4154Lar9lYoHkJEonhUcH8aeF/0/D+J4pVO6Ghv+rTV8CCnFvT52oSzl0tZNCGE2PhWluUpCpccF3lRUN/n8eE6juUF5DkjzpswGP4K9MnnUvc+uQ7iRjj89H3uloeFzFXWcvFgs6cGbQMD7AOPnN8egU3vwxjM43msPTQPVOy3XB7MQYTQRB0Spdy7hcxF3gURglBEoKjsW4W2ea/lttETcgDvo0d+XH4ILJ29TPo62i/bOo6lJISDI2GeGIPBYDAYDAaDwXCpYB8xBoPBYDAYDAaD4VLh3OhkAx+4xnQYdJehy66l5O9YScWv9CL4mD429vrc4DrbqiENzWv6Q/BXvSHbq4lzc+3C/ZHyg9A0zDFAnZ8noAmh61lxXQfu6ilUghq61xVXI1JQ1n0g2dtQhzkEf79TyHZz320396BccPlezf3xbir1cn8ilB0WOuCATKJ4Lh6uw4BKeI4u74TEFa22J5Rlu3Bu7J2HYm9JKsf7Iwwidv834VHqGFjsSTla8CXRdMqdRoFAGtwM0KqueWrY7Ry7NgQ3+jIuQazsSpbDcXmIjbq7xrt10L+HOthJXZujex/bNvU5hCY5aOpDX1xoSt3eaTuKI9PhiIhegb7+svf6X4E6XIXgx73mNSIKA9m3UxDhmEonezp0Mw4KRfc/Uo72xs79juPSg0SE+1Nl3AjyR0TEQRhhviL3/0lqAseiIAjX0x3GULzeA7HTmXvvuI1PSBulV58tt4vnPlFu1z/WJSKiu7/9oNy3nAidcuDzEKQKFYJISFo52O6ogHxHMLbxmIx0zc7s7XL7B1Jnp3cnEHQNQ8kbXlzh63D/HRBawPdeXoojFOXR88RRwd5IcWFhAxQQQQrZSloN5sc8GVlRbQsCCmtA8fY0HLZ7IqJJEgnsP0UeGHwuvm8t1enm2v5aEVn3zfg/6D1KsQLqG+l9/jC9ikjPqRWD0BRlLI5RBz+MXDonQV4U5XyhHIvg1RXQyTj4G953mDfsFtDJXvSCJ89kOK8BwRQ/N5qtA+06AeEPplBDewe0xIDK77YHIOaBdMkyNxtV80kR6VQqzNeGc2GmdmGPQIplmQtMEQ7Ccm0BrWsDhHk0IQWkk9WnBN7jffc8tRbFtHpAb8Z3U5krC+p4RYaYI2GeGIPBYDAYDAaDwXCpYB8xBoPBYDAYDAaD4VLhHPPEeJeW/w+pVHUlJ8z1huSIeKkm298zFHfTR1s7RETUbotbam9fXNu3B05V5l3IPdGuVd1hMfUkdMOlioKE5rJDGgM+FyusLTfE5bkIOS/w+gfeLYk5OTDvQKkTH1EZ4vwd70L5tmriPmyDq1KjmKDLkGkhfdCx3xwLnYzVj2Ja/oG6h3ehovIPkU7f+zCQUFK6Zmv++x3bcJWEivRay7mp8y1RQVoE5Y1d6Dr7Xlt9CBSKAdTrsKjm/Qlsjt3/UNaYKhRvoz2gEtI9r4s/l4idvQScntte5eZKQ9y6jTbkNkKa3MQrfkGfaaPL22+jvdQVRZ8YhXKhLlSAZ70S2ScLUYL6l4fSHq++5NS55r9LKGTZthxf+INniIgon3mm3PdOfUueC+hYTPkIFJBI1PXOA1w3Wh2hbbAqEaoTpQolJoZgjFAoJUhrKM+JUO8COkVps3peDcYA9m2si00uf93RydKXvyQ/7khZiv5OuZ1vue3HI7GX3Tbk1fD9qxGpC37qWL3hNueBud2Sfv99qag5/uWhs6NbV6TPbW1LuXJyqkhvAl0KgRRkyVPGalLnh4KqFCJ89wXvLl8nVxrz5b5FUIVqA02GrzlB2pTClEb1OLQ3Ho+xLGijCVyM6y2Wr6XsYxEbnZafR1Uyg+NoNwVTFaHrILWspMvEFK6m5GtCCF1sCvUtyL+nz2vYHscwvpwnCirKe5ftBRSwrH70/GQe7PAZoE1/xA8Pt0FNE3NeDT1NrF5IP70P+bd2PRUKaWGhIhnQxf1v8J2Mv2W6dWCHSl9D2li4ffLcKQikbTFdM0a91cbFWsTXkU0hHnN9DCKqrPhOYzvEd9QKyfz4KJgnxmAwGAwGg8FgMFwq2EeMwWAwGAwGg8FguFQ4FzoZJtZqeMUwVF+Yr4vb6Kqnkb2QCoXsu8fy239pSZK+3fx+r3h2W2QMip64D+++7tRsbr4udAAioTTsedWzfVCnKWrizkJXIru5UQVsrCj/oDuuDepJ15uOLvNcXcp6IxH35//f3rn82HJVZ/yrqvPo9+u+fG1fG4xREUICEolEpAAe4CgwIX9AFBGUQSQGGTDIQzDLLIRBFEUgJISIkkmQGAIZBEOEQQhCDA5Qxjb42rfdt9+Pc/qc7nPqVAa1d61v99nV1X1v9+k+7fWb3LrVp6p2Va29q2qvb63lFGKK8n1xkcFdkpa1TKGiPSqoxFmZbCajrVRkXzsBZaAI2CU/7Lp2pH4eV6bjNjXbuxIxIXKKh+W/maTrko5YTnZUfrNP5/ImJIuGranYmhDbvJUOZ+EBgC1jM6uB2MP6QO6HvU9sT0yRoSrgdULqFHszmVD6ct02ApG22Ps13ZD78Shl95sz13tmWtrX68k97qSyXdf438ucxjZrSZk0xy73SwpcspzsUZNt6j1duYbvfs9qsTz90acBAOHvf7BYV2/K9h955KsAgNbXJLvZd+tyrLUa9Q/Tr7rUf1dGLCez2P5TJh+0rn5e52Qtoi3tet/2vJ6392U3C6JgaBvgiDzFc+8DR6KQs0cajpVDkQpe/1ne16698wU5MMkWs/uSiWznmysAgOcnJEvYr/trxXLHjI3NgDMZSbv6Zmzu0hjapvGSpbB2jJqLpN/PkYSpGeY202iK7UxPyhgyY4bkOp+LRw56dPkiOGoPLEnifjpjMrXN0DXhwqI1x4ashMt/blZG1qZn22Yq4+5p5Mm+gn++wpZlxS7DYPjvZcfyFaYOPXKtHmdScxaHi2EyThFPz0/cNobmmLKGn9kTtfz5Ol+X/sbyJM7MZ7PAcYHqi4avEduBlUWxVGuK+vztgVyDJ03GrcV5ynJHGQXbXXONqADu43V5L1kxMrXNVN6bDrLhbFqAvBvy853tzMquncx4GH5OcnaysmeqpYHhUAVAbJLfTX3vsW7RVr/M1rYnDfySZGvT/A7JfcYX9lBWBLfY/wOIatUToyiKoiiKoijKWDEiT4zMgNsZg4ZTz0W+JBdNsPujkK/iJ2jWeent8mVc+913AgDCp+NiXUZffdO3Xsy3P3ijWLf8sszevjKRt4ED3TuD4cBkAMXUYkiz7fwlab8wazQ9Mk3ndS3KZ0XuULDSHZoFmKCJGBuHvU9Baxs0m37fzKav0CzEOgcZmna1OCc3BzZ7gvkjZ+ZS2uWrq+IEcpsaIqVBsxj2xEzRed2HBPCeNxmyYlbC3juelTqg2UE767Ifyd83yGPIM9jWY7ZFs7tbA5kBahtPjDOb7gkahcfjchR7nfnv7B20NSlWa3L8NZpB3evlNlNriw20emJH99nmjNe0Ffh9Mb4AUsY381+nfj9N9SUWjc1di2RWtnGDZvlnc89sMH9Tjv+Y9Ht8PLejZ1/4t2JV7SWpO/JyQ461ambTN8kDu+I9g/Mhy4B+agKYPYH9lYG9tMzeO2s/WYUdRRXBzSFvUhX87Hh1hENjM5sRz9iTF+5eHjg//cO7xbpmR/rPwc/uF8vP3c3v4/9E28W6Nw8kaYP1PNdLEkwUtRNoVrdXMtNvt+MxskUXZCXNx+HGBgWjp+yhyok8Hq7Lih2L+JpxfQ5bl8PxDsM/o2rPu15y/rZm1i55qnd68ky3Hma+/hz0zvbmm7X1JQQoC4Av1gV+D9QsBXrbdxT+LQdMWxvkIOYO1R2xQcxsg2fpiePztm19pCFe6Tkaa9vkkVw395ZragFdjIoQAZrGc1TUU/EkhwHEW1XmpVugx9T1xfx8ZpbEzrq7YtOHRn1QT+UeLNC73w3zvtXhelJ03XrkAbf276uxAsj7UpkHvCo5C/920iYmCuQ5zVaUGhXPPrW7xaqQvqk7lh3/Plh2/NRTk4bxJQFwzrvkGmTF+tP7VU70ERPH8U0APwbwLIA+gK8gv3YvAvhUkiQXUylOeUuhdqhcBtQOlYtGbVC5DKgdKhdN5WdPHMd1AF8EYKd2Pw/gM0mSfBC5APbj59c8RclRO1QuA2qHykWjNqhcBtQOlcvASTwxnwPwBQB/a/7/fgDfMcvfAPBHAL5+3A6CAKiZQEfrOnNqkbDkyMrOyEdWY9e1L535rLhNg0nJZY+9XGIy+cS9YtWNl8W1tpDlLtZJkmW1S2qoWDd05pGQAZInngMAWSY3Y44xn8m5LpIrcyaVY9WLXPvibrtJsozJer7flGQOhxS81TNymV7od1077fa45NnNZ93UfF5WXgBIMG1pUBoHdZvfTFCQoYhGKnloO0yzAbrGnWrtLywJ+jwIc4kWB/PthOJm5+ml7sD+lmpXsKzALFfJhJgyqcFRWebRZWuzu5Qf/81I2vUrE7w4N5B72KnJee/RtMausa89kpP1KlzPPnezUyfG6fey3taV2KLkCVs/FztZRB4AXt8UGdHgXb8lBz7Iz3fyHeJm/53XRX403Z4rlu828nN/naQlPzr2rBwe2g6BrJBE+ORkVXBAs08OVmY7p/mthaVCLDOzcqxDJ4BU7v2+GY9W6ZAtGsP6RlZb++G1Yt3SLyW5wi+3pd7P90zg/PKBSE9tQDIA7PfyMb0qYYFzLiV1SOx96VK/3yQJ8X0jfWkeiNSoTqNB3/NErapH8gCcgQ0OB/RHJbIr+4zgJCjtUJZrdH5TJuC4rGZPaq7rHklcnBpOg+FgYX5GVUolqd1WusrPLqfmjJW+0fg5R8Hw16lW3byRufN5demZayU7W32RZW0FklhnL+uYNnOQ81DzT4Svz/L4YRPn3AjlXG6wnIwSCtmAfw783zm5nOyh7TAKQ8w383Za+ytPtHD8nHuTLujkTG6f9Xm63n3px7XdfH2D+u4iPdpuG1l1m2T8G3SsgPqCrJRFXxKUoERiKZsPvysBwALLrs371mSJ/6Fjzmeb3kX4mdwxEuoahQyU1Xux/a438EvI7N+d+lIBL5vQEX6njkrqIZnVQXD6TnGsVcRx/AkAa0mSfItWB0mS2CPtAZgf2lBRzhC1Q+UyoHaoXDRqg8plQO1QuSxUeWI+CSCL4/gjAN4H4KsAbtLfZwFs+zZUlDNE7VC5DKgdKheN2qByGVA7VC4Fx37EJEnyIbscx/FzAP4SwD/EcfxMkiTPAfgogG9XHYTrc4TFv37Xmq2JcUBupQ2Se23dFRfpxEt51rHg1iNyrDvvkJ3N5hMBtcdkQuD6nGRCudHJXYWzJI9q07H6nqxMgcddBoiLl2vDzEfiipw1l3qGpCDzqbg350my0DAysIiuwVxf2tUz7uDdmhxrj1yOHSMf4vzg7JJ3MryYdvvqueTnkx93ivbP9QJstowmXQs3Rzrt1zj+Tpu556zsMM0G2D3M7789R5YX+CQoLZKQbdF18bmG+Rqz29VKVMpyoNu+QOrCUpd64Mngwsv2PnImlbtUh+HQuHMnarLNwGk3SRSNj7dFkqGdjDKwmUxonAXvoE9ubOOG5mvMx2IJ5Jqx/xebYtNvbtwqluefy/d16zmpiXPz2n8Vy82pfPudDelz99oiLd2k890yuqi1U9YoOis7zEC2YP7hkaZKWubYUYX33fdbR5Jziq7INm3rEHB9qhZlvNk0coXQU8sDAO4bqc89GkumunLvlqn2ykv9/F2Is1gd0thp7aysf/n6aln/svK4FtXgWo/kHJdrRj4LGY/rdD3XTc0ozmrE2ZROIyn1cVY2yPjqqXBGMCuHjajWGNfhiaiuUNOsn+KMRk6fz/fLtcaqsiMxjszMK6viOm3m2VWTZ5cv69okZWS8XpMx4zbJsZbM/W7See2H0u5l85zg8Y37xn5olv2JtU6FvU++2jAAMGveO5Yog9XtTM47I9tdMtdjk2RT3z+ByPus7DAMQkybrJ++LF1sG77sZZxpkceyQZr/h7ohMvpBZPrpdCg/WOrLfm+bY2yRbbQDsdk+1QNKPYImDpGoec7LJx2bovfQayT5exyyfMvUuuFhdZfeE9fNoZyMZSVyTEuZpF44PvzAqY1I5+B713f6L9VklHeg0+eBeJAUy58G8KU4jhsAfgHgaw+wD0V5WNQOlcuA2qFy0agNKpcBtUNl5Jz4IyZJkmfovx8+7YGOBiSX5ca2QUb79MW3TrOo97Yl2G7qJ3mo1eLiL4p1If0WZrYvmJPZldklCQ6dv5sfY4q+7DmgylvNmjwSTQqGs+fDSQKuhTLLeNPMfjzaky/Nx5syszUzKzN/dla51pTfHrZp5v3NPJFBJ5DZkz1KImCDLrsUfNkvqRZf7JPOmwOx7CwVe1845/ysDeznQNlST8zJAtyO42HscJBl6PTyWcVDMwNTlaPdqXFSUkeBZ4YsTmXbbLhaszvbbmYhaD6+asKubEbSHotnAZepFo9NTsDnXRZEaz157NXh/doZWhtYDQCd/nD++YCmjXhWei+V4OzXwpZpH/WvGtmOWZ6l2cWlvRvF8tRufox9mpXaoeJLmxSsuprlyyt98epQ+aYT8bDj4VHKZsN8M1/ubH6ZTZXjVFg+RRt5OxvY3+rJdV2LJDC/a7zBPDPtm31/kWbuuH4Ue5Ft7aM2efx8AaZllaO9HhpaxfuyHh5bTwEA7lPtoqlaPja2aOY7I5tbNp7K5UNR0hxQHaezrA1yVjZor4/Pewy4fdpSFoQ8Y70fPI6wJ8aMbGdxHXzeNJ93YqE+XaxbqMnyjLG3eRpzbtD4cmtAiUXMLD4nHNokD5St01ZWR+NhPXDsYZq059WUc7nVlORGT9Rz5cltqrX3SJ8C/7kfm3eYXXrmf/+UbXsYOwwQFO8bvhpojP072x7/dpdq9G2t5160bCDvWAOq51Sr5XY41ZC+Od/lpEv58jxdl7JkFb7AfV+iI96aEynMGTt8NJCH0FOp/P2pQ/EWzZraQ5vkWXu1Iceyfa3NSYZe/7cxAAAUUUlEQVTo+W2TEHFCltIaf4FNZsXvdsOJMbgeIvcvOy7s0/FrJQmg7LPBrQF0Mrfl6SvLKIqiKIqiKIqiXCD6EaMoiqIoiqIoyljxIDExpyYIAkShGzzIbkCW0dhaA/tU42SHAoPvk+Rg+l7uNm3+SDJ4Tw1+Ksc1MrL03nqxrr0trq9906Z+VXQswa5zXrZB67PUvmvkmr7Ty//+dEMkF3feK5KD+mMSRBguLubtn5F1WY9cij9dBgBE35caCzsUmLdpjrsTDMucjuLL5c11YKycjCVkHHQ2bwP7STLE0rKJAbuxrdv1opD6HCcNIGNXaxpRYL9HyuBItDz1hMrkLsft8yi23ex2PeQ2FoGzso5dx60gl+SUJSHwSUp4ez6ulRT1UwpydCQUtuYD1d8hac1Wrz203TolxmCXvF2eIrnmgiPtzK99l8aSHapFwXUprDzJ/gsATVGpnjsBxBVvkx6USSzt+rKgdVdKaPL2l9ZZcPd5EsqkHTbwu0tSo7WujG070b5pk1+iZJe5z7BEk9dbaRkH81cFqFZRVu/Ltmu/L/ayGooc07blNRovuySTsza1dSg1QrosJ/MkWCkC60/c+rPFnj/3Y8Y3VrIspB2JDbSNTLfGNbeoTx54ZM0PWkfH3m+WWrG01z7HpkkKvUDL8+Y5OUvSngWqnzHvPLvyf7k6CAdUb5nxZZvqxLAMz9rVaWRlThIhrmVj6qo8OrFUrHt7fbFYftJoYx9JZftFqkPXpPt5YK5du0JWPQrstSl7Hvnm3PtkWytUg+Tlg3xAf3KVpI7T0qdtPZJajerzUSKnmuc2OeOEt08M1zsEqDYitZ+fYzfM+9Q7qMjUb5NE+/aCyJ5rjfy4tXUJkVjO5D3Rvj9zPzuk7AbF+wMnfaL6Ok7CoGA49MOpEWiWFyM5/mORtGvKbL9HyRM26Jm9Fcrz1yZSOXQKQZLc+xgu3nIVRVEURVEURVFOgX7EKIqiKIqiKIoyVoxETsZYd1aP3Eac8chmT9omWdYMua6nKPvY9GHuNp18RbQg1zvi+g/rW/k+V0Rq9fMdccG+2sxdahtU+6JFmRRY5mblLJyRrI5h9yG70acyznaR72vhhrjQGk+K6y1619uLZdx+DAAQLFLtKJLUTTz1KwBAjOeLdfeef6xYfrmZt9GpyVEiCbKnEFFbWfJgXYnTdN5O1hOTxYMSQaFJbtc5cmNPm2wTNZbGiCfy3MkgEifbBF/NHGZQkjUqpRoBDzIVcBpZQebJRMb30JGowEosSE5GNYisfInrQPC+fPIfbuvAk3EnK8luVuyTjtXtsyBDpBddk+mMZY1cr8iu5yx5h5G020o7ufbMDmU/40xoVirEkiFxco+CoHDbV0lpMo8Usex6+2Rivqxnzjpa9mVjpARMzniSeaQffD2tzMy3DZ8Pt6VHdlhVM8Jpt82ic4aZv7hP8HnZNnBbWCJpl1lCxjItvkfR0L2/GEHZwCetpUdEFg7XEmM5Cmed2xnkz2+npgb9tm2er04NM7YLDI8pZTJce98bJPNlOUyRdQ3DYxYApEZS1Kd1XbLXvZBqvph70yLJ0RsQu7hvMh1yLSO2GxlLKaveKeyVs65NGsntHI2F06CsbLYeW8nuu3Qf75usj7+u9f0/PmcyZEckROXSWQuPUyybWiGbazbya9TrSbasx3fpPbJuaumlsm47k/eatXp+jG1I2zrZ8dleyzKd2j7P8ugJzuhn3r3mSNbVpHCKiCVvjXz93JTY1rV9sYNZ0xcm6H2t4cmiyzjyPXpfGxj7n6Y6S1OUiWzOZN+9SXKyJ+lJesO8G+6TdG6Z5OIr9I6/FZlxg96/11ROpiiKoiiKoijKVWQknpgsy3BoZqPsjESPvgidGTbz1cpB882IAqKo9oqtOl7viEej8xv56ktNYN4yFYH4v6Z8xb+GfNZktS9BmG2q1MzYIKYgOm4mzZ0l8H0hHnblkqfbcqywJbPSgQ1gbUi7g7nrshOzvvkBqaz7xA82i2VbTZpnyEo9McW5+O+HXTtLpnKH8q2/rZcfY4Km7iYjOdb8gpzj5Ez+26hOM39bQ00ZKVWzYb4aLIDfe1FVc6ZqhqmsLVWz9b66ISmtCmn20JYpYu9I2Xn5PC3edldUBOYJZqf+RI88helw3R4nSNdUSmc75hlWm4DC8QwMhmva8DLPloOqWJ83YRAUs8e+e+vcD0+wdZUdMc7Mv/HClV1jX5IBJwGEx3vH3hM4yVpOj9PX4PEOEE5fs1WqK+y0qv5EGT6vC9she2Ls9eBrxRzXly8u4UlO6fW3Y0boHye4DsV6f/ga86y1vW58zThhg71uZYlXnPo0pg9xQgj2WNh9dKnvt0KqeWMOcUjj4wEtd9krbD0xdC4bA3m22bGmR+fiJDwZDNcKq6IqAYdTtwnsNcqPtefUL5P+sk9d5655Vv+a6qmMkkGWFe8ptk/7apUAcm+5Dx1Q0Po6KWoGxst20JDZ/p1UFDkzaf4O1aN9rZE7/q6psbecynXh5DAcLG/byN5FXz0VxyNISSHsnlpU52a7J+1u7pKnxZxjoynHf7wtdriV5l6Rbk28I2k0/KzvV3hCARn72Q65lte0WZ4iL+DiQM77nYf5NeS3ops16asvUxuXzb3dJK/NGk6GemIURVEURVEURRkr9CNGURRFURRFUZSxYiRyskGW4cAJ6BXpgv17sd645rYicePNUG7pWXLxThk3cpNyu3cH4jK0dWBep7PkYLwNE+zrBP1SkgF2o1k3G+fHj8j9Z3OEszsuZRevOd9tcg3OvCrHmg5fl33ZmjA9cn0//rQsN/NzDObnilUTjdVi+cBcD0dOxjUWPDVCnOBJdtmboLAlkts8RjVrHpnI79PEhBxrel7aPXlb3Ja1a7n7MajRDfkOxgZ2u7KMxl7bMqmIT/5TFdjP/SP0SIKcAFaP5K3n1OQ4Ptg+LQk2PY1s6Thcd7X/WFaewteQpQRWhtIjqSK7xG3AIQdPsuTHWTb3y5VqjU5OFgRBIY+z95HvMbe1g7wvpf3qukZBUTfDH7jvWxd6rnfNkaEI/WA4mUTPkR8Ot5HHUN9x+R6Xteto+4bWm8DYMjuW/R+fZIB/w/vi+2HPx1cvCTidbOjob84uLUE1XKvIhzMOVFwTJ6GDCa4uq0NV1J5K/X3T2lDm3BN6zkYU4F7LnycTFCzM2H21+ZlO+9o30jJO1sPvGilJ120tGX6mV9UCyzzSnNNQdg2tFK9F8iZOhGRl7vx+wrIprm+zboLVd2lfo8beazvuTNL95EQvVqLFY2WXZF0DkvcdmrGqR8kZdkjKZPd6wIkcaF/bRiK5Q/vk9yl+9th7kwXDfQYA0nDYdkKqnbZhxrVJCppvZlS375DWH+THnZqWd6x5qn9zu5X/do2SXeyQTXciI4fNhse0o+dVnEuJHRbPAMfOhcUob9fcjLRvYlcSLfQozKNn+nI/OH0/UU+MoiiKoiiKoihjhX7EKIqiKIqiKIoyVowmOxmyoi6MdV35apEAkuHBkVRQfm7ODtIy0pEdyl52QG7TPbN6JZR9bZDbdNe4Ch03IUkDQk/GLnbDNeny9ezfKbtJh1xj2yar2cahuNCmVuS4GWUHmdp/AwBQ71D2sp78Nli4lm+zul6sW+1IpoeNRp7pzM2+5GfgcXNzfY4F44pcpDoyU5D91uvGvTkn7s2px+Ua1p+cl3NYMFnkaixX+U1lGy8LbLNsJ9a9X1Wzo3S/HukJZ9lx6qUYNzG71NnF2zH1OXxSLaC6tstZ1trwUVrjxPRbV+bjyaqS+mU8B7X8HnCmIsaXTe6s5HKnJURQSCamTA5+n3QOoMw2JP/rpce3u8r2yjLuBUbiwDWjyuRevn35JZI0znPGHpspLaw+VlV9G1/tJJ+sJ+A+UZKdx9rXSeqUFOs4m5v5e5n47zzkmg+Kr89ZfFnpAso5x7WnGHsPy2pLeeWuqf++Wfias7xoumbqxJH8iO9rq58/P1kizvXprHyJ93lAGZMmSWY2Z5brnC2LpKt2me3ZkVJ63ntOA9v2Xi+Xv6+GUhPPkbFH+XOWs7pOlshlI08Nk1ESBkExBi7W83bPcQZaugdWjsXvg116d2uR9Mtm0uP7xdfI9tlD6qksTbPH4OxnbFs95z3RjNGc1ZX6h32/rHky5wGATe7FY1qDarNc68s1uJ6a8YXkaGlKy2YfLPFKPTbHYRFs/yxz63kyUO5TJkIrvSTVIgZOJlIzxlOdG85cO0V9fcLcj+YD+FXUE6MoiqIoiqIoylihHzGKoiiKoiiKoowVI5GTAeSyNu4mx93scV07rjvOigJettkRCPos2zYuxW1yP+6RO8y6+ZwMO47L8XjYJTgoMrjI9l14pG/kUpzfF5dhuE4yA+MWnQ5FLlYnCVYwk5cB6jx/t1j3QvOJYnmjn/994Lg3WQYxnJGI5UuzlM1iGsNu5i0qSDRtzmFmXlz2tSU6r1tLctQFIy2rKC53WSmTglQVD2WJwXE4WXjofkw4xdyGu+xgMCwbZPmRI62xcrIRSshOQmWhQtgseiRN6dFYYLIdTXAGGnbfczY2W1CvpCDheRMFIWbreYbB2Sj/l+UcbS6qZuQv3b6MW2xvWYXUyYczbg2GZVPuPsV22WaKoo68r4rsZJknOxj/3Sm86ZGWhSUyOVtEjgvI+TORkXSO5WieLFNlejDbRh4vo2hYduz0Px4rPMVLpX9ebD8skzrZ9U52Ms52ydlFPWOdLxMir6sai3wFLgFg2mYkpDGRr6/tJx3qO762sgSV7a5fmy2Wax7b843qZdn4HoQySfB+Lx8fBiV/Dyfy496JJBPUTZIcRSQZahrZEt+2Vx6q1aejHkS41lgAADxqrvetQN4fGiRt3TNlIVczkY2t0nsihwV0zTtfL6NsczwmmH/7PH5VtDX1yCLz5eHf+sYUlm3xm7cdt2t0E7bpty3KyNfr58udttjsZkcy8r7eyPexwll4SWbXNu+/jpzWN/6B+ipnF6TtrBXNsuzSozLt7EtbOymFYETDY/CDPJHVE6MoiqIoiqIoylgxMk/McfhmuJ1ZHwqu6mH4y5l9BZxm2npq2rR92+OJcTwWHi8FL4eeYL0ynDoxpmEt+trep4CtiQNZrrfyL9fGhnxBR8tbxXLW3wAAvPLCtWLdS3X58t735Hwvq/1gz6tBX9Mc9GWvzDrXiGjIOXT7eSDk7I4cc1Hi8hAsLsh/5qSuzbjjm73w1ZsAJKA49AQjA2LrZfbkeCo9Qem+GaKy2U27/jJ4X06Dr71pxgHBxoNLM5Js83ztBxcc2B8FIZZqeRCr9XpyS3h20PbP08zqVtVbYZxZcgxfw6gkMNbOePPYWRUgztNsRcKC0D/3xvfO1y98STT4XNkj7uuflZ7KknoF9hhhiac1LPbL9SuGvS983Ivqi8cd1/c3rvHEZYsc70Y2bK+O1yUbfr5XJTvwJQDhZbZBTmZjE65wjbrUo07g9nHNmf06JfwJrQdbOOBaITjfMcXnlWHvLPfTTiNfv0C1Rt7dl3eJ+QlZ3urkD+vXqEbJd+n5fd40gwhP1/J3hKdM3ZBHejR+0W83jEcipEjyLt0DDvIvvAinuB98rCIRQ0ltOE4Q4Rubq57JEwPxThyYJABdSgawT32tQ+9m+/18u1ZPtn+VkgC8YurAvJG2i3VbqSSN6qa5bfQ8dW4AN6mM9bo4iUvoelj1wCzVaVxKZV/NWr59P5Ur2yKbbNNls/V6eg/gi1FPjKIoiqIoiqIoY4V+xCiKoiiKoiiKMlYEo3Blx3G8BuC1cz+QMo48mSTJjVEcSO1QOQa1Q+WiURtULgNqh8pl4ER2OJKPGEVRFEVRFEVRlLNC5WSKoiiKoiiKoowV+hGjKIqiKIqiKMpYoR8xiqIoiqIoiqKMFfoRoyiKoiiKoijKWKEfMYqiKIqiKIqijBX6EaMoiqIoiqIoylhRO+8DxHEcAvgXAO8FcADgL5Ikefm8j3sexHFcB/BlAG8D0ATw9wB+DuArADIALwL4VJIkgwtq4kMRx/FNAD8G8CyAPq7IeQFqh+OE2uF4cJXtUG1wPLjKNgioHY4LV9kOL7sNjsIT8ycAJpIk+QMAfwPgH0dwzPPiTwFsJEnyQQB/DOCfAXwewGfMugDAxy+wfQ+M6YRfBNAxq67EeRFqh2OA2uFYcSXtUG1wrLiSNgioHY4ZV9IOx8EGR/ER84cAvgkASZL8AMDvjeCY58V/APisWQ6Qf5W+H8B3zLpvAPjIBbTrLPgcgC8AWDb/vyrnZVE7HA/UDseHq2qHaoPjw1W1QUDtcJy4qnZ46W1wFB8xcwB26P9pHMfnLmM7D5IkaSVJshfH8SyArwH4DIAgSZLM/GQPwPyFNfABieP4EwDWkiT5Fq0e+/M6gtrhJUftcLy4inaoNjheXEUbBNQOx42raIfjYoOj+IjZBTDLx0ySpD+C454LcRzfAfBtAP+aJMm/A2A94CyA7Qtp2MPxSQDPxnH8HID3AfgqgJv093E9L0bt8PKjdjhmXEE7VBscM66gDQJqh2PHFbTDsbDBUXzEfA/AxwAgjuMPAPjZCI55LsRxfAvAfwL46yRJvmxW/ySO42fM8kcB/PdFtO1hSJLkQ0mSfDhJkmcA/C+APwPwjXE/ryOoHV5y1A7Hi6toh2qD48VVtEFA7XDcuIp2OC42OArX3deRf809j1wr+OcjOOZ58XcAFgF8No5jq3/8KwD/FMdxA8AvkLsSrwKfBvClK3Reaofjidrh5eWtYodqg5eXt4oNAmqHl5m3ih1eOhsMsiyr/pWiKIqiKIqiKMolQYtdKoqiKIqiKIoyVuhHjKIoiqIoiqIoY4V+xCiKoiiKoiiKMlboR4yiKIqiKIqiKGOFfsQoiqIoiqIoijJW6EeMoiiKoiiKoihjhX7EKIqiKIqiKIoyVvw/6G+RAv1CspEAAAAASUVORK5CYII=\n",
"text/plain": [
"