{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "20:57:48 [I] klustakwik KlustaKwik2 version 0.2.6\n", "/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:25: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0\n", "Please use `tqdm.notebook.*` instead of `tqdm._tqdm_notebook.*`\n" ] } ], "source": [ "import os\n", "import expipe\n", "import pathlib\n", "import numpy as np\n", "import spatial_maps.stats as stats\n", "import septum_mec.analysis.data_processing as dp\n", "import head_direction.head as head\n", "import spatial_maps as sp\n", "import septum_mec.analysis.registration\n", "import speed_cells.speed as spd\n", "import septum_mec.analysis.spikes as spikes\n", "import re\n", "import joblib\n", "import multiprocessing\n", "import shutil\n", "import psutil\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import septum_mec\n", "import scipy.ndimage.measurements\n", "from distutils.dir_util import copy_tree\n", "from spike_statistics.core import theta_mod_idx\n", "\n", "from tqdm import tqdm_notebook as tqdm\n", "from tqdm._tqdm_notebook import tqdm_notebook\n", "tqdm_notebook.pandas()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "max_speed = 1, # m/s only used for speed score\n", "min_speed = 0.02, # m/s only used for speed score\n", "position_sampling_rate = 100 # for interpolation\n", "position_low_pass_frequency = 6 # for low pass filtering of position\n", "\n", "box_size = [1.0, 1.0]\n", "bin_size = 0.02\n", "smoothing_low = 0.03\n", "smoothing_high = 0.06\n", "\n", "stim_mask = True\n", "baseline_duration = 600" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "project_path = dp.project_path()\n", "\n", "project = expipe.get_project(project_path)\n", "actions = project.actions" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
actionchannel_groupmax_depth_deltamax_dissimilarityunit_idunit_idnumunit_name
01834-010319-101000.05ae0353a9-a406-409e-8ff7-2e940b8af03f3272
11834-010319-101000.057f514d43-17ba-4d88-a390-20eec8bc137832839
21834-010319-301000.05c977aa51-06cc-4d54-9430-a94ad422a03b3291
31834-010319-301000.05bd96a67d-ee7d-4cb6-90ab-a5fa751891b933012
41834-010319-401000.05abc01041-2971-4f62-bf06-5132cf3567373327
\n", "
" ], "text/plain": [ " action channel_group max_depth_delta max_dissimilarity \\\n", "0 1834-010319-1 0 100 0.05 \n", "1 1834-010319-1 0 100 0.05 \n", "2 1834-010319-3 0 100 0.05 \n", "3 1834-010319-3 0 100 0.05 \n", "4 1834-010319-4 0 100 0.05 \n", "\n", " unit_id unit_idnum unit_name \n", "0 ae0353a9-a406-409e-8ff7-2e940b8af03f 327 2 \n", "1 7f514d43-17ba-4d88-a390-20eec8bc1378 328 39 \n", "2 c977aa51-06cc-4d54-9430-a94ad422a03b 329 1 \n", "3 bd96a67d-ee7d-4cb6-90ab-a5fa751891b9 330 12 \n", "4 abc01041-2971-4f62-bf06-5132cf356737 332 7 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "identify_neurons = actions['identify-neurons']\n", "units = pd.read_csv(identify_neurons.data_path('units'))\n", "units.head()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAD3CAYAAADSftWOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAL60lEQVR4nO3dbYhld33A8e9kszejsgYLIrqog9j+uK9C2OKmWOuCkRoXieRlMRSDSCUvUmqN23SDUBQ2JdmCKVrIQ7f4AGIefOGyNS/a5qFFpEkEEy+/1dRVXyi0gWA03M7sZnwxd9ub2Xvn3j1z7z3zm/l+IHAfZub8/nvmfnP27D0zS+vr60iSarmi7QEkSZfPeEtSQcZbkgoy3pJUkPGWpIKuXMRGDh8+vH7w4MFFbGpmVldX6XQ6bY+xLa5hZ3ANO0PFNTz//PP/k5lvHvXcQuJ98OBBHnnkkUVsamZ6vR7dbrftMbbFNewMrmFnqLiGiPjpuOc8bSJJBRlvSSrIeEtSQcZbkgoy3pJUkPGWpIKMtyQVZLwlqSDjLUkFGW+9Rn/twp7arlTVQi6PVx3L+/excuz0wrd77sTRhW9Tqswjb0kqyHhLUkHGW5IKMt6SVJDxlqSCjLckFWS8Jakg4y1JBRlvSSrIeEtSQcZbkgoy3pJUkPGWpIKMtyQVtOWPhI2I/cCDwApwFfB54IfAKWAdeA64NTNfneuUkqTXmHTk/THgxcx8H/Ah4O+Bk8DxwWNLwI3zHVGStNmkeH8TuHNwewk4DxwCHh88dga4fj6jSZLG2fK0SWb+GiAiDgAPAceBuzNzffAhLwNXT9rI6uoqvV5vm6MuVr/fLzfzZk3W0O125zTNZKNm3av7YadxDTvPxF+DFhFvBx4FvpSZX4+Ivx16+gDw0qSv0el0Wo1CE71er9zMm1Vbw6hZq61hFNewM+yGNQzb8rRJRLwFeAz4bGY+OHj42Yg4Mrh9A/Dk/MaTJI0y6cj7DuBNwJ0RcfHc923AFyOiA/TYOJ0iSVqgSee8b2Mj1pu9fz7jSJKm4UU6klSQ8Zakgoy3JBVkvCWpIOOtHaG/dmHk44t4X+64bUs72cSLdKRFWN6/j5Vjp1vZ9rkTR1vZrrQdHnlLUkHGW5IKMt6SVJDxlqSCjLckFWS8Jakg4y1JBRlvSSrIeEtSQcZbkgoy3pJUkPGWpIKMtyQVZLwlqSDjLUkFGW9JKsh4S1JBxluSCjLeklSQ8Zakgoy3JBVkvCWpIOMtSQUZb0kqyHhLUkHGW5IKMt7a8/prF+b69bvdbivb1e52ZdsDSG1b3r+PlWOnF77dcyeOLnyb2j088pakgoy3JBVkvCWpIOMtSQUZb0kqaKp3m0TEYeCuzDwSEdcC3wZ+NHj6y5n5jXkNKEm61MR4R8TtwM3AbwYPHQJOZuY98xxMkjTeNKdNXgBuGrp/CDgaEU9ExAMRcWA+o0mSxpl45J2ZD0fEytBD3wPuz8ynI+Kvgc8Bf7nV11hdXaXX621r0EXr9/vlZt6syRrGXQ2o+ajyPbZXXw87WZMrLB/NzJcu3gbunfQJnU6nXBR6vV65mTfbDWvY7arsn93wvbQb1jCsybtNvhMR7xnc/gDw9AznkSRNocmR96eAeyNiDfgl8MnZjiRJmmSqeGfmOeC6we1ngPfOcSZJ0gRepCNJBRlvSSrIeEtSQcZbkgoy3pJUkPGWpIKMtyQVZLwlqSDjLUkFGW9JKsh4S1JBxluSCjLeklSQ8Zakgoy3JBVkvCWpIOMtSQUZb0kqyHhLUkHGW5IKMt6SVJDxlqSCjLckFWS8Jakg4y1JBRlvSSrIeEtSQcZbkgoy3pJUkPGWpIKMtyQVZLwlqSDjLUkFGW9JKsh4S1JBxluSCjLeklSQ8Zakgoy3JBV05TQfFBGHgbsy80hEvBs4BawDzwG3Zuar8xtRkrTZxCPviLgduB9YHjx0Ejieme8DloAb5zeeJGmUaU6bvADcNHT/EPD44PYZ4PpZDyVJ2trE0yaZ+XBErAw9tJSZ64PbLwNXT/oaq6ur9Hq9ZhO2pN/vtzbzO1bexRted9W2v063253BNJqnKq+LNl8Ps7Ib1jBsqnPemwyf3z4AvDTpEzqdTrmQ9Hq9VmdeOXa6le2eO3G0le3uVVVeF22/HmZhN6xhWJN3mzwbEUcGt28AnpzdOJKkaTQ58v40cF9EdIAe8NBsR5IkTTJVvDPzHHDd4PZZ4P1znEmSNIEX6UhSQcZbkgoy3pJUkPGWpIKMtyQVZLwlqSDjLUkFGW9JKsh4S1JBxluSCjLeklSQ8Zakgoy3JBVkvCWpIOMtSQUZb0kqyHhLUkHGW5IKMt6SVJDxlqSCjLckFWS8Jakg4y1JBZWId3/twsK32e12W9muJE3jyrYHmMby/n2sHDu98O2eO3F04duUpGmUOPKWJL2W8Zakgoy3JBVkvCWpIOMtSQUZb0kqyHhLUkHGW5IKMt6SVJDxlqSCjLckFWS8Jakg4y1JBRlvSSqo8Y+EjYhngF8N7v4kMz8+m5EkSZM0indELANLmXlktuNIkqbR9Mj7GuD1EfHY4GvckZnfnd1YkqStNI33K8DdwP3A7wJnIiIy8/yoD15dXaXX6zXc1MavJGvLduZuqs31arHa+P5qot/vl5l1nN2whmFN430W+HFmrgNnI+JF4K3Az0d9cKfTKRukqnOrhirfX71er8ys4+yGNQxr+m6TW4B7ACLibcAbgV/MaihJ0taaHnk/AJyKiKeAdeCWcadMJEmz1yjembkK/MmMZ5EkTcmLdCSpIOMtSQUZb0kqyHhLUkHGW2pJf+3Cnty2ZqPxD6aStD3L+/excux0K9s+d+JoK9vV7HjkLUkFGW9JKsh4S1JBxluSCjLeklSQ8Zakgoy3JBVkvCWpIOO9Ba9Ck2arrdfUbnwte4XlFtq6As6r37Rb+ZqaHY+8Jakg4y1JBRlvSSrIeEtSQcZbkgoy3pJUkPGWpIKMt7QHXe5FK91ud06TqCkv0pH2IC+Wqc8jb0kqyHhLUkHGW5IKMt6SVJDxlqSCjLckFWS8Jakg4y1p1+uvXWjtQqN5/RYfL9KRtOu1dVESzO/CJI+8Jakg4y1JBRlvSSrIeEtSQcZbkgpq9G6TiLgC+BJwDfC/wCcy88ezHEySNF7TI++PAsuZ+QfAMeCe2Y0kSZqkabz/EPhngMz8LvD7M5tIkjTR0vr6+mV/UkTcDzycmWcG938GvCszz4/5+P8GfrqdQSVpD3pnZr551BNNr7D8FXBg6P4V48INMG7jkqRmmp42+XfgwwARcR3wg5lNJEmaqOmR96PAByPiP4Al4OOzG0mSNEmjc96SpHZ5kY4kFWS8Jakg4y1JBfnLGEaIiGfYeDskwE8ys8w/yEbEYeCuzDwSEe8GTgHrwHPArZn5apvzTWPTGq4Fvg38aPD0lzPzG+1Nt7WI2A88CKwAVwGfB35Iof0wZg0/p9Z+2AfcBwQbf+5/BvQptB8mMd6bRMQysJSZR9qe5XJFxO3AzcBvBg+dBI5n5r9FxD8AN7LxTqEda8QaDgEnM7PKj2D4GPBiZt4cEb8DfH/wX6X9MGoNf0Ot/fARgMx8b0QcAb7AxjvjKu2HLXna5FLXAK+PiMci4l8G72Ov4gXgpqH7h4DHB7fPANcvfKLLN2oNRyPiiYh4ICIOjPm8neKbwJ2D20vAeerth3FrKLMfMvNbwCcHd98JvES9/bAl432pV4C7gT9m469aX4uIEn9DycyHgbWhh5Yy8+J7QV8Grl78VJdnxBq+B3wmM/8I+C/gc60MNqXM/HVmvjyI20PAcYrthzFrKLUfADLzfET8E3Av8DWK7YdJjPelzgJfzcz1zDwLvAi8teWZmho+n3eAjaOPah7NzKcv3gaubXOYaUTE24F/Bb6SmV+n4H4YsYZy+wEgM/8U+D02zn+/buipEvthK8b7Urcw+BG3EfE24I3AL1qdqLlnB+f7AG4Anmxxlqa+ExHvGdz+APD0Vh/ctoh4C/AY8NnMfHDwcKn9MGYN1fbDzRHxV4O7r7DxP9D/rLQfJilxOmDBHgBORcRTbPyr9C1b/dCtHe7TwH0R0QF6bPwVuJpPAfdGxBrwS/7/POZOdQfwJuDOiLh43vg24IuF9sOoNfwF8HeF9sMjwD9GxBPAfuDP2fizr/56+D9eHi9JBXnaRJIKMt6SVJDxlqSCjLckFWS8Jakg4y1JBRlvSSrotyVHQHwFEVLQAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "units.groupby('action').count().unit_name.hist()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "data_loader = dp.Data(\n", " position_sampling_rate=position_sampling_rate, \n", " position_low_pass_frequency=position_low_pass_frequency,\n", " box_size=box_size, bin_size=bin_size, stim_mask=stim_mask, baseline_duration=baseline_duration\n", ")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "first_row = units[units['action'] == '1849-060319-3'].iloc[0]\n", "#first_row = sessions.iloc[50]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:85: RuntimeWarning: Mean of empty slice.\n" ] }, { "data": { "text/plain": [ "average_rate 3.168492\n", "speed_score -0.068927\n", "out_field_mean_rate 1.857990\n", "in_field_mean_rate 5.257561\n", "max_field_mean_rate NaN\n", "max_rate 23.006163\n", "sparsity 0.466751\n", "selectivity 7.153172\n", "interspike_interval_cv 3.807699\n", "burst_event_ratio 0.398230\n", "bursty_spike_ratio 0.678064\n", "gridness -0.466836\n", "border_score 0.029328\n", "information_rate 1.009215\n", "information_specificity 0.317256\n", "head_mean_ang 5.438033\n", "head_mean_vec_len 0.040874\n", "spacing 0.628784\n", "orientation 69.775141\n", "field_area 0.412306\n", "theta_score -0.430279\n", "dtype: float64" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def process(row):\n", " action_id = row['action']\n", " channel_id = row['channel_group']\n", " unit_id = row['unit_name']\n", " \n", " # common values for all units == faster calculations\n", " x, y, t, speed = map(data_loader.tracking(action_id).get, ['x', 'y', 't', 'v'])\n", " ang, ang_t = map(data_loader.head_direction(action_id).get, ['a', 't'])\n", " \n", " occupancy_map = data_loader.occupancy(action_id)\n", " xbins, ybins = data_loader.spatial_bins\n", " box_size_, bin_size_ = data_loader.box_size_, data_loader.bin_size_\n", " prob_dist = data_loader.prob_dist(action_id)\n", " \n", " smooth_low_occupancy_map = sp.maps.smooth_map(\n", " occupancy_map, bin_size=bin_size_, smoothing=smoothing_low)\n", " smooth_high_occupancy_map = sp.maps.smooth_map(\n", " occupancy_map, bin_size=bin_size_, smoothing=smoothing_high)\n", " \n", " spike_times = data_loader.spike_train(action_id, channel_id, unit_id)\n", " if len(spike_times) == 0:\n", " result = pd.Series({\n", " 'average_rate': np.nan,\n", " 'speed_score': np.nan,\n", " 'out_field_mean_rate': np.nan,\n", " 'in_field_mean_rate': np.nan,\n", " 'max_field_mean_rate': np.nan,\n", " 'max_rate': np.nan,\n", " 'sparsity': np.nan,\n", " 'selectivity': np.nan,\n", " 'interspike_interval_cv': np.nan,\n", " 'burst_event_ratio': np.nan,\n", " 'bursty_spike_ratio': np.nan,\n", " 'gridness': np.nan,\n", " 'border_score': np.nan,\n", " 'information_rate': np.nan,\n", " 'information_specificity': np.nan,\n", " 'head_mean_ang': np.nan,\n", " 'head_mean_vec_len': np.nan,\n", " 'spacing': np.nan,\n", " 'orientation': np.nan,\n", " 'field_area': np.nan,\n", " 'theta_score': np.nan\n", " })\n", " return result\n", "\n", " # common\n", " spike_map = sp.maps._spike_map(x, y, t, spike_times, xbins, ybins)\n", "\n", " smooth_low_spike_map = sp.maps.smooth_map(spike_map, bin_size=bin_size_, smoothing=smoothing_low)\n", " smooth_high_spike_map = sp.maps.smooth_map(spike_map, bin_size=bin_size_, smoothing=smoothing_high)\n", "\n", " smooth_low_rate_map = smooth_low_spike_map / smooth_low_occupancy_map\n", " smooth_high_rate_map = smooth_high_spike_map / smooth_high_occupancy_map\n", "\n", " # find fields with laplace\n", " fields_laplace = sp.separate_fields_by_laplace(smooth_high_rate_map)\n", " fields = fields_laplace.copy() # to be cleaned by Ismakov\n", " fields_areas = scipy.ndimage.measurements.sum(\n", " np.ones_like(fields), fields, index=np.arange(fields.max() + 1))\n", " fields_area = fields_areas[fields]\n", " fields[fields_area < 9.0] = 0\n", "\n", " # find fields with Ismakov-method\n", " fields_ismakov, radius = sp.separate_fields_by_distance(smooth_high_rate_map)\n", " fields_ismakov_real = fields_ismakov * bin_size\n", " approved_fields = []\n", "\n", " # remove fields not found by both methods\n", " for point in fields_ismakov:\n", " field_id = fields[tuple(point)]\n", " approved_fields.append(field_id)\n", "\n", " for field_id in np.arange(1, fields.max() + 1):\n", " if not field_id in approved_fields:\n", " fields[fields == field_id] = 0\n", "\n", " # varying statistics\n", " average_rate = len(spike_times) / (t.max() - t.min())\n", "\n", " max_rate = smooth_low_rate_map.max()\n", "\n", " out_field_mean_rate = smooth_low_rate_map[np.where(fields == 0)].mean()\n", " in_field_mean_rate = smooth_low_rate_map[np.where(fields != 0)].mean()\n", " max_field_mean_rate = smooth_low_rate_map[np.where(fields == 1)].mean()\n", "\n", " interspike_interval = np.diff(spike_times)\n", " interspike_interval_cv = interspike_interval.std() / interspike_interval.mean()\n", "\n", " autocorrelogram = sp.autocorrelation(smooth_high_rate_map)\n", " peaks = sp.fields.find_peaks(autocorrelogram)\n", " real_peaks = peaks * bin_size\n", " autocorrelogram_box_size = box_size[0] * autocorrelogram.shape[0] / smooth_high_rate_map.shape[0]\n", " spacing, orientation = sp.spacing_and_orientation(real_peaks, autocorrelogram_box_size)\n", " orientation *= 180 / np.pi\n", "\n", " selectivity = stats.selectivity(smooth_low_rate_map, prob_dist)\n", "\n", " sparsity = stats.sparsity(smooth_low_rate_map, prob_dist)\n", "\n", " gridness = sp.gridness(smooth_high_rate_map)\n", "\n", " border_score = sp.border_score(smooth_high_rate_map, fields_laplace)\n", "\n", " information_rate = stats.information_rate(smooth_high_rate_map, prob_dist)\n", " \n", " information_spec = stats.information_specificity(smooth_high_rate_map, prob_dist)\n", "\n", " single_spikes, bursts, bursty_spikes = spikes.find_bursts(spike_times, threshold=0.01)\n", " burst_event_ratio = np.sum(bursts) / (np.sum(single_spikes) + np.sum(bursts))\n", " bursty_spike_ratio = np.sum(bursty_spikes) / (np.sum(bursty_spikes) + np.sum(single_spikes))\n", " mean_spikes_per_burst = np.sum(bursty_spikes) / np.sum(bursts)\n", "\n", " speed_score = spd.speed_correlation(\n", " speed, t, spike_times, min_speed=min_speed, max_speed=max_speed)\n", "\n", " ang_bin, ang_rate = head.head_direction_rate(spike_times, ang, ang_t)\n", "\n", " head_mean_ang, head_mean_vec_len = head.head_direction_score(ang_bin, ang_rate)\n", "\n", " result = pd.Series({\n", " 'average_rate': average_rate,\n", " 'speed_score': speed_score,\n", " 'out_field_mean_rate': out_field_mean_rate,\n", " 'in_field_mean_rate': in_field_mean_rate,\n", " 'max_field_mean_rate': max_field_mean_rate,\n", " 'max_rate': max_rate,\n", " 'sparsity': sparsity,\n", " 'selectivity': selectivity,\n", " 'interspike_interval_cv': float(interspike_interval_cv),\n", " 'burst_event_ratio': burst_event_ratio,\n", " 'bursty_spike_ratio': bursty_spike_ratio,\n", " 'gridness': gridness,\n", " 'border_score': border_score,\n", " 'information_rate': information_rate,\n", " 'information_specificity': information_spec,\n", " 'head_mean_ang': head_mean_ang,\n", " 'head_mean_vec_len': head_mean_vec_len,\n", " 'spacing': spacing,\n", " 'orientation': orientation,\n", " 'field_area': fields_areas[fields].mean() * bin_size**2,\n", " 'theta_score': theta_mod_idx(spike_times.times.magnitude, binsize=0.01, time_limit=0.2)\n", " })\n", " return result\n", " \n", "process(first_row)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b2117ea9b6044c22abd353d0f9d774a7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "HBox(children=(IntProgress(value=0, max=1284), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:85: RuntimeWarning: Mean of empty slice.\n", "/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: divide by zero encountered in log2\n", " return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n", "/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: invalid value encountered in log2\n", " return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n", "/home/mikkel/apps/expipe-project/spatial-maps/spatial_maps/stats.py:13: RuntimeWarning: invalid value encountered in multiply\n", " return (np.nansum(np.ravel(tmp_rate_map * np.log2(tmp_rate_map/avg_rate) *\n", "/home/mikkel/apps/expipe-project/spike-statistics/spike_statistics/core.py:27: RuntimeWarning: invalid value encountered in double_scalars\n", " return (pk - th)/(pk + th)\n", "/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:112: RuntimeWarning: invalid value encountered in long_scalars\n" ] } ], "source": [ "results = units.merge(\n", " units.progress_apply(process, axis=1), \n", " left_index=True, right_index=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "output_path = pathlib.Path(\"output\") / \"calculate-statistics\"\n", "output_path.mkdir(exist_ok=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "results.to_csv(output_path / \"results.csv\", index=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Store results in Expipe action" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "statistics_action = project.require_action(\"calculate-statistics\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "statistics_action.data[\"results\"] = \"results.csv\"\n", "copy_tree(output_path, str(statistics_action.data_path()))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "statistics_action.modules['parameters'] = {\n", " 'max_speed': max_speed,\n", " 'min_speed': min_speed,\n", " 'position_sampling_rate': position_sampling_rate,\n", " 'position_low_pass_frequency': position_low_pass_frequency,\n", " 'box_size': box_size,\n", " 'bin_size': bin_size,\n", " 'smoothing_low': smoothing_low,\n", " 'smoothing_high': smoothing_high,\n", " 'stim_mask': stim_mask,\n", " 'baseline_duration': baseline_duration\n", "}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "septum_mec.analysis.registration.store_notebook(statistics_action, \"10_calculate_spatial_statistics.ipynb\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 4 }