In [1]:
%load_ext autoreload
%autoreload 2
In [2]:
import os
import expipe
import pathlib
import numpy as np
import spatial_maps.stats as stats
import septum_mec
import septum_mec.analysis.data_processing as dp
import septum_mec.analysis.registration
import head_direction.head as head
import spatial_maps as sp
import speed_cells.speed as spd
import re
import joblib
import multiprocessing
import shutil
import psutil
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
import seaborn as sns
from distutils.dir_util import copy_tree
from neo import SpikeTrain
import scipy

from tqdm import tqdm_notebook as tqdm
from tqdm._tqdm_notebook import tqdm_notebook
tqdm_notebook.pandas()

from spike_statistics.core import permutation_resampling

from spikewaveform.core import calculate_waveform_features_from_template, cluster_waveform_features

from septum_mec.analysis.plotting import violinplot, despine
16:00:32 [I] klustakwik KlustaKwik2 version 0.2.6
In [3]:
%matplotlib inline
plt.rc('axes', titlesize=12)
plt.rcParams.update({
    'font.size': 12, 
    'figure.figsize': (6, 4), 
    'figure.dpi': 150
})

output_path = pathlib.Path("output") / "stimulus-spike-lfp-response"
(output_path / "statistics").mkdir(exist_ok=True, parents=True)
(output_path / "figures").mkdir(exist_ok=True, parents=True)
output_path.mkdir(exist_ok=True)
In [4]:
data_loader = dp.Data()
actions = data_loader.actions
project = data_loader.project
In [5]:
identification_action = actions['identify-neurons']
sessions = pd.read_csv(identification_action.data_path('sessions'))
units = pd.read_csv(identification_action.data_path('units'))
session_units = pd.merge(sessions, units, on='action')
In [6]:
lfp_action = actions['stimulus-spike-lfp-response']
lfp_results = pd.read_csv(lfp_action.data_path('results'))
In [7]:
# lfp_results has old unit id's but correct on (action, unit_name, channel_group)
lfp_results = lfp_results.drop('unit_id', axis=1)
In [8]:
stim_action = actions['stimulus-response']
stim_results = pd.read_csv(stim_action.data_path('results'))
In [9]:
# lfp_results has old unit id's but correct on (action, unit_name, channel_group)
stim_results = stim_results.drop('unit_id', axis=1)
In [10]:
statistics_action = actions['calculate-statistics']
shuffling = actions['shuffling']

statistics_results = pd.read_csv(statistics_action.data_path('results'))
statistics_results = session_units.merge(statistics_results, how='left')
quantiles_95 = pd.read_csv(shuffling.data_path('quantiles_95'))
action_columns = ['action', 'channel_group', 'unit_name']
data = pd.merge(statistics_results, quantiles_95, on=action_columns, suffixes=("", "_threshold"))
In [11]:
data['unit_day'] = data.apply(lambda x: str(x.unit_idnum) + '_' + x.action.split('-')[1], axis=1)
In [12]:
data = data.merge(lfp_results, how='left')
In [13]:
data = data.merge(stim_results, how='left')
In [14]:
waveform_action = actions['waveform-analysis']
waveform_results = pd.read_csv(waveform_action.data_path('results')).drop('template', axis=1)
In [15]:
data = data.merge(waveform_results, how='left')
In [16]:
colors = ['#1b9e77','#d95f02','#7570b3','#e7298a']
labels = ['Baseline I', '11 Hz', 'Baseline II', '30 Hz']
queries = ['baseline and Hz11', 'frequency==11', 'baseline and Hz30', 'frequency==30']
In [17]:
data.bs = data.bs.astype(bool)
In [18]:
data.loc[data.eval('not t_i_peak.isnull() and not bs'), 'ns_inhibited'] = True
data.ns_inhibited.fillna(False, inplace=True)

data.loc[data.eval('t_i_peak.isnull() and not bs'), 'ns_not_inhibited'] = True
data.ns_not_inhibited.fillna(False, inplace=True)
In [19]:
# make baseline for inhibited vs not inhibited
data.loc[data.unit_id.isin(data.query('ns_inhibited').unit_id.values), 'ns_inhibited'] = True
data.loc[data.unit_id.isin(data.query('ns_not_inhibited').unit_id.values), 'ns_not_inhibited'] = True
In [20]:
query = (
    'gridness > gridness_threshold and '
    'information_rate > information_rate_threshold and '
    'gridness > .2 and '
    'average_rate < 25'
)
sessions_above_threshold = data.query(query)
print("Number of sessions above threshold", len(sessions_above_threshold))
print("Number of animals", len(sessions_above_threshold.groupby(['entity'])))
Number of gridcells 225
In [21]:
gridcell_sessions = data[data.unit_day.isin(sessions_above_threshold.unit_day.values)]
In [22]:
gridcell_sessions
Out[22]:
action baseline entity frequency i ii session stim_location stimulated tag ... t_i_peak p_i_peak half_width peak_to_trough average_firing_rate bs bs_stim bs_ctrl ns_inhibited ns_not_inhibited
17 1839-120619-4 False 1839 30.0 False True 4 ms True stim ii ... NaN NaN 0.283497 0.606614 9.779867 True 1.0 NaN False False
19 1839-120619-4 False 1839 30.0 False True 4 ms True stim ii ... NaN NaN 0.261815 0.633750 7.437802 True 1.0 NaN False False
21 1839-120619-4 False 1839 30.0 False True 4 ms True stim ii ... 0.0008 0.000880 0.242524 0.534827 2.265039 True 1.0 NaN False False
29 1839-120619-4 False 1839 30.0 False True 4 ms True stim ii ... NaN NaN 0.279806 0.598967 10.924422 True 1.0 NaN False False
30 1839-120619-4 False 1839 30.0 False True 4 ms True stim ii ... 0.0005 0.002365 0.265158 0.581451 3.984881 True 1.0 NaN False False
31 1839-120619-4 False 1839 30.0 False True 4 ms True stim ii ... NaN NaN 0.246920 0.570844 3.497452 True 1.0 NaN False False
33 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.272875 0.602667 5.945508 True NaN 1.0 False False
34 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.226452 0.274814 2.860048 False NaN 0.0 False True
35 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.247266 0.570104 3.365674 True NaN 1.0 False False
39 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.284542 0.644111 17.471520 True NaN 1.0 False False
40 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.259920 0.581698 5.891739 True NaN 1.0 False False
42 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.263630 0.596746 13.436847 True NaN 1.0 False False
44 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.281399 0.607354 17.446704 True NaN 1.0 False False
46 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.285816 0.603160 7.914246 True NaN 1.0 False False
47 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.279177 0.585152 10.840470 True NaN 1.0 False False
49 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.282336 0.711705 5.890705 True NaN 1.0 False False
54 1839-060619-3 False 1839 11.0 True False 3 ms True stim i ... NaN NaN 0.270286 0.573804 14.025342 True 1.0 NaN False False
57 1834-150319-3 True 1834 NaN False True 3 NaN False baseline ii ... NaN NaN 0.277867 0.588852 17.162446 True NaN 1.0 False False
76 1834-120319-4 False 1834 30.0 False True 4 ms True stim ii ... 0.0044 0.018315 0.285028 0.578245 34.841257 True 1.0 NaN False False
87 1849-280219-4 False 1849 30.0 False True 4 ms True stim ii ... NaN NaN 0.272793 0.570844 10.825754 True 1.0 NaN False False
106 1849-110319-2 False 1849 11.0 True False 2 ms True stim i ... 0.0026 0.002400 0.230947 0.561223 2.339767 True 1.0 NaN False False
124 1833-010719-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.271262 0.615002 2.868000 True NaN 1.0 False False
125 1833-010719-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.307694 0.659653 6.912052 True NaN 1.0 False False
126 1833-010719-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.267708 0.630543 4.229867 True NaN 1.0 False False
128 1833-010719-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.289100 0.673221 16.735961 True NaN 1.0 False False
129 1833-010719-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.290402 0.650772 25.974728 True NaN 1.0 False False
131 1833-010719-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.272160 0.620429 14.686236 True NaN 1.0 False False
132 1833-010719-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.241405 0.595513 18.657578 True NaN 1.0 False False
134 1833-010719-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.269911 0.609574 3.106903 True NaN 1.0 False False
135 1833-010719-1 True 1833 NaN True False 1 NaN False baseline i ... NaN NaN 0.273069 0.651265 6.213807 True NaN 1.0 False False
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1154 1839-120619-3 True 1839 NaN False True 3 NaN False baseline ii ... NaN NaN 0.273572 0.611548 5.407135 True NaN 1.0 False False
1155 1834-110319-5 False 1834 11.0 True False 5 mecl True stim i ... NaN NaN 0.276394 0.585645 27.008837 True 1.0 NaN False False
1156 1834-110319-5 False 1834 11.0 True False 5 mecl True stim i ... NaN NaN 0.249700 0.569364 18.304313 True 1.0 NaN False False
1174 1839-200619-2 False 1839 11.0 True False 2 ms True stim i ... NaN NaN 0.249357 0.517805 8.992236 True 1.0 NaN False False
1184 1833-260619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.275930 0.594526 5.288548 True NaN 1.0 False False
1185 1833-260619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.225575 0.277528 2.693978 False NaN 0.0 False True
1186 1833-260619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.244049 0.571337 3.425185 True NaN 1.0 False False
1189 1833-260619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.222604 0.576271 6.484767 True NaN 1.0 False True
1191 1833-260619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.189559 0.248665 3.564358 False NaN 0.0 False True
1193 1833-260619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.257469 0.636957 26.839270 True NaN 1.0 False False
1194 1833-260619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.252255 0.587372 4.589373 True NaN 1.0 False False
1197 1833-260619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.261129 0.592306 7.407060 True NaN 1.0 False False
1199 1833-260619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.277189 0.615988 9.221822 True NaN 1.0 False False
1202 1833-260619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.287132 0.616235 7.835622 True NaN 1.0 False False
1204 1833-260619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.300175 0.610068 9.358786 True NaN 1.0 False False
1208 1833-200619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.293775 0.657679 7.071948 True NaN 1.0 False False
1214 1833-200619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.252895 0.600200 15.695836 True NaN 1.0 False False
1215 1833-200619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.271023 0.699617 11.768979 True NaN 1.0 False False
1217 1833-200619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.343906 0.698383 4.442023 True NaN 1.0 False False
1218 1833-200619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.304748 0.641151 3.102590 True NaN 1.0 False False
1219 1833-200619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.277708 0.585645 6.900656 True NaN 1.0 False False
1220 1833-200619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.294291 0.639177 22.458685 True NaN 1.0 False False
1221 1833-200619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.258204 0.608094 3.767155 True NaN 1.0 False False
1223 1833-200619-3 True 1833 NaN False True 3 NaN False baseline ii ... NaN NaN 0.276894 0.623636 12.778706 True NaN 1.0 False False
1255 1833-010719-2 False 1833 11.0 True False 2 ms True stim i ... NaN NaN 0.277537 0.570597 5.734302 True 1.0 NaN False False
1257 1833-010719-2 False 1833 11.0 True False 2 ms True stim i ... NaN NaN 0.248774 0.604394 2.814742 True 1.0 NaN False False
1263 1833-010719-2 False 1833 11.0 True False 2 ms True stim i ... NaN NaN 0.280033 0.560729 4.760330 True 1.0 NaN False False
1264 1833-010719-2 False 1833 11.0 True False 2 ms True stim i ... NaN NaN 0.281934 0.627089 15.890929 True 1.0 NaN False False
1268 1833-010719-2 False 1833 11.0 True False 2 ms True stim i ... NaN NaN 0.266512 0.594033 2.704037 True 1.0 NaN False False
1275 1833-010719-2 False 1833 11.0 True False 2 ms True stim i ... NaN NaN 0.257098 0.545188 5.292658 True 1.0 NaN False False

271 rows × 73 columns

In [23]:
data.loc[:,'gridcell'] = np.nan
data['gridcell'] = data.isin(gridcell_sessions)

data.loc[data.eval('not gridcell and bs'), 'bs_not_gridcell'] = True
data.bs_not_gridcell.fillna(False, inplace=True)
In [24]:
data.query('baseline and Hz11 and gridcell').head()
Out[24]:
action baseline entity frequency i ii session stim_location stimulated tag ... half_width peak_to_trough average_firing_rate bs bs_stim bs_ctrl ns_inhibited ns_not_inhibited gridcell bs_not_gridcell
33 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... 0.272875 0.602667 5.945508 True NaN 1.0 False False True False
34 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... 0.226452 0.274814 2.860048 False NaN 0.0 False True True False
35 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... 0.247266 0.570104 3.365674 True NaN 1.0 False False True False
39 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... 0.284542 0.644111 17.471520 True NaN 1.0 False False True False
40 1833-260619-1 True 1833 NaN True False 1 NaN False baseline i ... 0.259920 0.581698 5.891739 True NaN 1.0 False False True False

5 rows × 75 columns

In [41]:
density = True
cumulative = True
histtype = 'step'
lw = 2
bins = {
    'theta_energy': np.arange(0, 2.1, .03),
    'theta_peak': np.arange(0, 1, .03),
    'theta_freq': np.arange(4, 12, .1),
    'theta_half_width': np.arange(0, 5, .1)
}
xlabel = {
    'theta_energy': 'Theta coherence energy',
    'theta_peak': 'Theta peak coherence',
    'theta_freq': '(Hz)',
    'theta_half_width': '(Hz)',
}

for cell_type in ['gridcell', 'ns_inhibited', 'ns_not_inhibited']:
    for key in bins:
        fig = plt.figure(figsize=(3.5,2.2))
        plt.suptitle(key + ' ' + cell_type)
        legend_lines = []
        for color, query, label in zip(colors, queries, labels):
            data.query(query + ' and ' + cell_type)[key].hist(
                bins=bins[key], density=density, cumulative=cumulative, lw=lw, 
                histtype=histtype, color=color)
            legend_lines.append(matplotlib.lines.Line2D([0], [0], color=color, lw=lw, label=label))
        plt.xlabel(xlabel[key])
        plt.legend(
            handles=legend_lines,
            bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)
        plt.tight_layout()
        plt.grid(False)
        plt.xlim(-0.05, bins[key].max() - bins[key].max()*0.02)
        despine()
        figname = f'spike-lfp-coherence-histogram-{key}-{cell_type}'.replace(' ', '-')
        fig.savefig(
            output_path / 'figures' / f'{figname}.png', 
            bbox_inches='tight', transparent=True)
        fig.savefig(
            output_path / 'figures' / f'{figname}.svg', 
            bbox_inches='tight', transparent=True)
In [43]:
data['stim_strength'] = data.stim_p_max / data.theta_peak
In [47]:
density = True
cumulative = True
histtype = 'step'
lw = 2
bins = {
    'stim_energy': np.arange(0, .4, .01),
    'stim_half_width': np.arange(0, 1.5, .01),
    'stim_p_max': np.arange(0, 1, .01),
    'stim_strength': np.arange(0, 50, 1)
}
xlabel = {
    'stim_energy': 'Coherence energy',
    'stim_half_width': '(Hz)',
    'stim_p_max': 'Peak coherence',
    'stim_strength': 'Ratio',
}
# key = 'theta_energy'
# key = 'theta_peak'
for cell_type in ['gridcell', 'ns_inhibited', 'ns_not_inhibited']:
    for key in bins:
        fig = plt.figure(figsize=(3.2,2.2))
        plt.suptitle(key + ' ' + cell_type)
        legend_lines = []
        for color, query, label in zip(colors[1::2], queries[1::2], labels[1::2]):
            data.query(query + ' and ' + cell_type)[key].hist(
                bins=bins[key], density=density, cumulative=cumulative, lw=lw, 
                histtype=histtype, color=color)
            legend_lines.append(matplotlib.lines.Line2D([0], [0], color=color, lw=lw, label=label))
        plt.xlabel(xlabel[key])
        plt.legend(
            handles=legend_lines,
            bbox_to_anchor=(1.04,1), borderaxespad=0, frameon=False)
        plt.tight_layout()
        plt.grid(False)
        plt.xlim(-0.05, bins[key].max() - bins[key].max()*0.02)
        despine()
        figname = f'spike-lfp-coherence-histogram-{key}-{cell_type}'.replace(' ', '-')
        fig.savefig(
            output_path / 'figures' / f'{figname}.png', 
            bbox_inches='tight', transparent=True)
        fig.savefig(
            output_path / 'figures' / f'{figname}.svg', 
            bbox_inches='tight', transparent=True)
In [28]:
from septum_mec.analysis.plotting import plot_bootstrap_timeseries
In [29]:
coher = pd.read_feather(output_path / 'data' / 'coherence.feather')
freqs = pd.read_feather(output_path / 'data' / 'freqs.feather')
In [30]:
freq = freqs.T.iloc[0].values

mask = (freq < 100)
In [31]:
for cell_type in ['gridcell', 'ns_inhibited', 'ns_not_inhibited']:
    fig, axs = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(5,2))
    axs = axs.repeat(2)
    for i, (ax, query) in enumerate(zip(axs.ravel(), queries)):
        selection = [
            f'{r.action}_{r.channel_group}_{r.unit_name}' 
            for i, r in data.query(query + ' and ' + cell_type).iterrows()]
        values = coher.loc[mask, selection].dropna(axis=1).to_numpy()
        values = 10 * np.log10(values)
        plot_bootstrap_timeseries(freq[mask], values, ax=ax, lw=1, label=labels[i], color=colors[i])
    #     ax.set_title(titles[i])
        ax.set_xlabel('Frequency Hz')
        ax.legend(frameon=False)
        ax.set_ylim(-30, 0)
    axs[0].set_ylabel('Coherence')
    despine()
    figname = f'spike-lfp-coherence-{cell_type}'.replace(' ', '-')
    fig.savefig(
        output_path / 'figures' / f'{figname}.png', 
        bbox_inches='tight', transparent=True)
    fig.savefig(
        output_path / 'figures' / f'{figname}.svg', 
        bbox_inches='tight', transparent=True)

Store results in Expipe action

In [48]:
action = project.require_action("stimulus-spike-lfp-response")
In [49]:
copy_tree(output_path, str(action.data_path()))
Out[49]:
['/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/data/freqs.feather',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/data/coherence.feather',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-ns_not_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-not-bs.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-not-bs.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-gridcell.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-ns_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-gridcell.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-ns_not_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-ns_not_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-not-bs.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-gridcell.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-not-bs.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-not-bs.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-not-bs.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-gridcell.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-gridcell.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-ns_not_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-ns_not_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-ns_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-not-bs.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-not-bs.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-ns_not_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-ns_not_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-ns_not_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-ns_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-ns_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-ns_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-not-bs.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-ns_not_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-gridcell.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-ns_not_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-ns_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-ns_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-not-bs.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-ns_not_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-ns_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-gridcell.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-gridcell.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-not-bs.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-not-bs.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-gridcell.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-ns_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-ns_not_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-ns_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-ns_not_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-not-bs.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_peak-ns_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-not-bs.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-ns_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-not-bs.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-gridcell.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-ns_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-ns_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-ns_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-gridcell.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-ns_not_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-not-bs.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-ns_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-ns_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-ns_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-gridcell.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-gridcell.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_half_width-gridcell.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_energy-not-bs.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_p_max-gridcell.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-gridcell.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-gridcell.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_strength-ns_not_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_freq-ns_not_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-ns_not_inhibited.svg',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-ns_not_inhibited.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-theta_half_width-gridcell.png',
 '/media/storage/expipe/septum-mec/actions/stimulus-spike-lfp-response/data/figures/spike-lfp-coherence-histogram-stim_energy-not-bs.svg']
In [50]:
septum_mec.analysis.registration.store_notebook(action, "20_stimulus-spike-lfp-response.ipynb")
In [ ]: