diff --git a/actions/identify-neurons/attributes.yaml b/actions/identify-neurons/attributes.yaml index c1a56601a..4ed761e22 100644 --- a/actions/identify-neurons/attributes.yaml +++ b/actions/identify-neurons/attributes.yaml @@ -1,6 +1,6 @@ -registered: '2019-09-23T14:45:07' -data: - sessions: sessions.csv - units: units.csv - notebook: 00-identify-neurons.ipynb - html: 00-identify-neurons.html +registered: '2019-09-23T14:45:07' +data: + sessions: sessions.csv + units: units.csv + notebook: 00-identify-neurons.ipynb + html: 00-identify-neurons.html diff --git a/actions/identify-neurons/data/00-identify-neurons.html b/actions/identify-neurons/data/00-identify-neurons.html index b615a7269..7d55d9412 100644 --- a/actions/identify-neurons/data/00-identify-neurons.html +++ b/actions/identify-neurons/data/00-identify-neurons.html @@ -1,14690 +1,14176 @@ - - - - -00-identify-neurons - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
-
In [1]:
-
-
-
%load_ext autoreload
-%autoreload 2
-
- -
-
-
- -
-
-
-
In [2]:
-
-
-
import os
-import expipe
-import pathlib
-import numpy as np
-import spatial_maps.stats as stats
-import septum_mec.analysis.data_processing as dp
-from septum_mec.analysis.registration import store_notebook
-import head_direction.head as head
-import spatial_maps as sp
-import pnnmec.registration
-import speed_cells.speed as spd
-import re
-import joblib
-import multiprocessing
-import shutil
-import psutil
-import pandas as pd
-import matplotlib.pyplot as plt
-import pnnmec
-import scipy.ndimage.measurements
-import quantities as pq
-import exdir
-from tqdm import tqdm_notebook as tqdm
-from septum_mec.analysis.trackunitmulticomparison import TrackMultipleSessions
-import networkx as nx
-from nxpd import draw
-%matplotlib inline
-
- -
-
-
- -
-
- - -
- -
- - -
-
14:34:31 [I] klustakwik KlustaKwik2 version 0.2.6
-
-
-
- -
-
- -
-
-
-
In [307]:
-
-
-
project_path = dp.project_path()
-
-project = expipe.get_project(project_path)
-actions = project.actions
-
- -
-
-
- -
-
-
-
In [308]:
-
-
-
identify_neurons = project.require_action('identify-neurons')
-
- -
-
-
- -
-
-
-
In [309]:
-
-
-
actions['1833-010719-2'].attributes
-
- -
-
-
- -
-
- - -
- -
Out[309]:
- - - - -
-
{'users': ['Charlotte'],
- 'tags': ['11hz', 'open-ephys', 'septum'],
- 'datetime': '2019-07-01T12:54:49',
- 'type': 'Recording',
- 'registered': '2019-07-02T14:53:28',
- 'data': {'main': 'main.exdir'},
- 'location': 'IMB',
- 'entities': ['1833']}
-
- -
- -
-
- -
-
-
-
In [310]:
-
-
-
actions['1833-010719-1'].attributes
-
- -
-
-
- -
-
- - -
- -
Out[310]:
- - - - -
-
{'users': ['Charlotte'],
- 'tags': ['baseline I', 'open-ephys', 'septum'],
- 'datetime': '2019-07-01T12:25:01',
- 'type': 'Recording',
- 'registered': '2019-07-02T14:53:03',
- 'data': {'main': 'main.exdir'},
- 'location': 'IMB',
- 'entities': ['1833']}
-
- -
- -
-
- -
-
-
-
In [311]:
-
-
-
data_loader = dp.Data()
-
- -
-
-
- -
-
-
-
In [313]:
-
-
-
sessions = []
-for action in actions.values():
-    if action.type != 'Recording':
-        continue
-    action_data_path = pathlib.Path(action.data_path('main'))
-    processing = exdir.File(action_data_path)['processing']
-    if not 'electrophysiology' in processing:
-        continue
-    elphys = processing['electrophysiology']
-    if 'spikesorting' not in elphys:
-        continue
-    tags = [t.lower() for t in action.tags]
-    
-    freq = np.nan
-    stimulated = False
-    control = False
-    
-    stim_times = data_loader.stim_times(action.id)
-    if stim_times is not None:
-        stimulated = True
-        freq = round(1 / np.mean(np.diff(stim_times)))
-        
-    
-    tag = ""
-    stim_location = ""
-    tag_i = [i for i, t in enumerate(tags) if 'baseline' in t or 'stim' in t]
-    if len(tag_i) == 1:
-        tag = tags[tag_i[0]]
-        if 'stim' in tag:
-            stim_location = tag.split('-')[-1]
-        elif 'baseline' in tag:
-            control = True
-        
-    
-
-    sessions.append({
-        'tag': tag,
-        'action': action.id,
-        'stimulated': stimulated,
-        'control': control,
-        'frequency': freq,
-        'session': int(action.id.split('-')[-1]),
-        'stim_location': stim_location,
-        'entity': int(action.entities[0]),
-
-    })
-sessions = pd.DataFrame(sessions)
-
- -
-
-
- -
-
-
-
In [316]:
-
-
-
sessions.query('stimulated and not control')
-
- -
-
-
- -
-
- - -
- -
Out[316]:
- - - -
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
actioncontrolentityfrequencysessionstim_locationstimulatedtag
11839-120619-4False183930.0 Hz4True
31839-060619-3False183911.0 Hz3True
51834-120319-4False183430.0 Hz4True
61849-280219-4False184930.0 Hz4msTruestim-ms
71849-110319-2False184911.0 Hz2True
91834-220319-2False183411.0 Hz2True
111833-020719-4False183330.0 Hz4True
121834-120319-2False183411.0 Hz2True
151834-150319-4False183430.0 Hz4True
161834-220319-4False183430.0 Hz4True
191833-260619-2False183311.0 Hz2True
201849-010319-4False184911.0 Hz4mecrTruestim-mecr
221833-200619-4False183330.0 Hz4True
231849-220319-3False184911.0 Hz3True
281834-150319-2False183411.0 Hz2True
301839-290519-2False183911.0 Hz2True
321834-010319-5False183430.0 Hz5msTruestim-ms
371849-150319-2False184911.0 Hz2True
381849-280219-2False184911.0 Hz2msTruestim-ms
431849-060319-4False184930.0 Hz4msTruestim-ms
441834-010319-3False183411.0 Hz3msTruestim-ms
451833-050619-2False183311.0 Hz2True
471833-120619-2False183311.0 Hz2True
501849-010319-5False184911.0 Hz5meclTruestim-mecl
511849-150319-4False184930.0 Hz4True
521834-060319-4False183430.0 Hz4msTruestim-ms
531834-060319-2False183411.0 Hz2msTruestim-ms
561849-060319-2False184911.0 Hz2msTruestim-ms
601834-110319-2False183411.0 Hz2True
611833-020719-2False183311.0 Hz2True
631833-050619-4False183330.0 Hz4True
641833-260619-4False183330.0 Hz4True
651833-200619-2False183311.0 Hz2True
671833-120619-4False183330.0 Hz4True
681833-290519-4False183330.0 Hz4True
701839-060619-5False183930.0 Hz5True
741833-290519-2False183311.0 Hz2True
751833-060619-2False183330.0 Hz2True
761839-120619-2False183911.0 Hz2True
771849-220319-5False184930.0 Hz5True
811834-110319-5False183411.0 Hz5True
821839-200619-2False183911.0 Hz2True
861833-010719-2False183311.0 Hz2True
-
-
- -
- -
-
- -
-
-
-
In [ ]:
-
-
-
 
-
- -
-
-
- -
-
-
-
-

Identify unique neurons

-
-
-
-
-
-
In [304]:
-
-
-
output = pathlib.Path('output/identify_neurons_weighted')
-
-max_dissimilarity = .035
-for entity in sessions.entity.unique():
-    unit_matching = TrackMultipleSessions(
-        actions, list(sessions.query(f'entity=={entity}').action), 
-        progress_bar=tqdm, verbose=False, data_path=output / f'{entity}-graphs'
-    )
-    unit_matching.do_matching()
-    unit_matching.make_graphs_from_matches()
-    # save graph with all dissimilarities for later use
-    unit_matching.save_graphs()
-    # cutoff large dissimilarities
-    unit_matching.threshold_dissimilarity(max_dissimilarity)
-    unit_matching.remove_edges_with_duplicate_actions()
-    unit_matching.identify_units()
-    units = []
-    for ch, group in unit_matching.identified_units.items():
-        for unit_id, val in group.items():
-            for action_id, orig_unit_ids in val['original_unit_ids'].items():
-                units.extend([
-                    {
-                        'unit_name': name, 
-                        'unit_id': unit_id, 
-                        'action_id': action_id,
-                        'channel_group': ch,
-                        'max_dissimilarity': max_dissimilarity
-                    } 
-                    for name in orig_unit_ids])
-
-    pd.DataFrame(units).to_csv(output / f'{entity}-units.csv', index=False)
-
- -
-
-
- -
-
-
-
In [282]:
-
-
-
sessions.to_csv(output / 'sessions.csv', index=False)
-
- -
-
-
- -
-
-
-
In [283]:
-
-
-
unique_units = pd.concat([
-    pd.read_csv(p) 
-    for p in output.iterdir() 
-    if p.name.endswith('units.csv')])
-
- -
-
-
- -
-
-
-
In [284]:
-
-
-
unique_units.to_csv(output / 'unique_units.csv', index=False)
-
- -
-
-
- -
-
-
-
-

yoyoyo

-
-
-
-
-
-
In [288]:
-
-
-
unit_comp = TrackMultipleSessions(actions, data_path=f'output/identify_neurons_weighted/1833-graphs')
-
- -
-
-
- -
-
-
-
In [299]:
-
-
-
unit_comp.load_graphs()
-
- -
-
-
- -
-
-
-
In [300]:
-
-
-
# unit_comp._compute_timedelta()
-# unit_comp.save_graphs()
-
- -
-
-
- -
-
-
-
In [301]:
-
-
-
unit_comp.threshold_dissimilarity(0.08)
-
- -
-
-
- -
-
-
-
In [302]:
-
-
-
# unit_comp.threshold_timedelta(timedelta(days=10))
-
- -
-
-
- -
-
-
-
In [303]:
-
-
-
unit_comp.remove_edges_with_duplicate_actions()
-unit_comp.identify_units()
-unit_comp.plot_matches('template', chan_group=6, step_color=False)
-plt.tight_layout()
-
- -
-
-
- -
-
- - -
- -
- - - - -
- -
- -
- -
-
- -
-
-
-
In [298]:
-
-
-
[d['weight'] for _,_, d in unit_comp.graphs[6].edges(data=True)]
-
- -
-
-
- -
-
- - -
- -
Out[298]:
- - - - -
-
[0.09634455200883546,
- 0.07499588360280243,
- 0.06162436970571908,
- 0.06857233657530502,
- 0.09694714236387678,
- 0.0804227088795645,
- 0.08824651636929137,
- 0.08722175061166056,
- 0.09845396075578684,
- 0.09294308631598447,
- 0.09659570944622126,
- 0.07647245393573131,
- 0.09195911715516754,
- 0.0833125753315933,
- 0.051087130456977776,
- 0.049521116821066226,
- 0.02600808417111924,
- 0.0320818045314623,
- 0.03229996342323004,
- 0.029418636630051426,
- 0.04647284442507242,
- 0.087113075493381,
- 0.05515341343597296,
- 0.05825520656684215,
- 0.0707770976250612,
- 0.04259170631553064,
- 0.04251915445433371,
- 0.08660506600667285,
- 0.060867941039334024,
- 0.09247442840294415,
- 0.05688725030444264,
- 0.02585312905314643,
- 0.02256877562004955,
- 0.03841936694076317,
- 0.050287440931407607,
- 0.08012546713128958,
- 0.015016185438421958,
- 0.039239181359156536,
- 0.04873498182486496,
- 0.07384202529475573,
- 0.031544066489664284,
- 0.038465046537750666,
- 0.038985147903295735,
- 0.045067437101008266,
- 0.07420871091322713,
- 0.017205498433729347,
- 0.05187686886128337,
- 0.043003485904860445,
- 0.06992615155905807,
- 0.06967030449524804,
- 0.044568413688232646,
- 0.0874738260681804,
- 0.09039484124249249,
- 0.09594371946463928,
- 0.055167110959496904,
- 0.04298880990313309,
- 0.07367751723966846,
- 0.07201899464292785,
- 0.05080452341862692,
- 0.04854896792437264,
- 0.04711365764947379,
- 0.052188349723749666,
- 0.06483119038403079,
- 0.023433139145706546,
- 0.08855768408846616,
- 0.08560448741739592,
- 0.08995174608668689,
- 0.08987859018329981,
- 0.062133641073307475,
- 0.02956535592106278,
- 0.014587645320492237,
- 0.02624471658364597,
- 0.03341375983806098,
- 0.07304877481520819,
- 0.0393218609123345,
- 0.08423515060892538,
- 0.05024844706593054,
- 0.07672057147673768,
- 0.05284121132788224,
- 0.05807034939928806,
- 0.07348830627663666]
-
- -
- -
-
- -
-
-
-
In [87]:
-
-
-
cmp = TrackMultipleSessions(actions)
-
- -
-
-
- -
-
-
-
In [95]:
-
-
-
from septum_mec.analysis.track_units_tools import plot_waveform, dissimilarity, dissimilarity_weighted
-
- -
-
-
- -
-
-
-
In [90]:
-
-
-
from matplotlib import gridspec
-
- -
-
-
- -
-
-
-
In [230]:
-
-
-
fig = plt.figure(figsize=(16, 9))
-gs = gridspec.GridSpec(1, 1)
-
-wf1 = cmp.load_waveforms('1833-050619-3', 143, 6)
-wf2 = cmp.load_waveforms('1833-200619-3', 126, 6)
-axs = plot_waveform(wf1, fig, gs[0])
-plot_waveform(wf2, fig, gs[0], axs=axs)
-
- -
-
-
- -
-
- - -
- -
Out[230]:
- - - - -
-
[<matplotlib.axes._subplots.AxesSubplot at 0x7f96971e2240>,
- <matplotlib.axes._subplots.AxesSubplot at 0x7f96a0c1fa58>,
- <matplotlib.axes._subplots.AxesSubplot at 0x7f9696fc2208>,
- <matplotlib.axes._subplots.AxesSubplot at 0x7f969628e2b0>]
-
- -
- -
- -
- - - - -
- -
- -
- -
-
- -
-
-
-
In [276]:
-
-
-
d00 = dissimilarity(wf1.mean(), wf2.mean())
-d00
-
- -
-
-
- -
-
- - -
- -
Out[276]:
- - - - -
-
0.24673824079040996
-
- -
- -
-
- -
-
-
-
In [275]:
-
-
-
d10 = dissimilarity_weighted(wf1, wf2)
-d10
-
- -
-
-
- -
-
- - -
- -
Out[275]:
- - - - -
-
0.12165202171836166
-
- -
- -
-
- -
-
-
-
In [233]:
-
-
-
fig = plt.figure(figsize=(16, 9))
-gs = gridspec.GridSpec(1, 1)
-
-wf3 = cmp.load_waveforms('1833-050619-3', 143, 6)
-wf4 = cmp.load_waveforms('1833-060619-1', 170, 6)
-axs = plot_waveform(wf3, fig, gs[0])
-plot_waveform(wf4, fig, gs[0], axs=axs)
-
- -
-
-
- -
-
- - -
- -
Out[233]:
- - - - -
-
[<matplotlib.axes._subplots.AxesSubplot at 0x7f9697399358>,
- <matplotlib.axes._subplots.AxesSubplot at 0x7f9695eec9e8>,
- <matplotlib.axes._subplots.AxesSubplot at 0x7f9695eeb320>,
- <matplotlib.axes._subplots.AxesSubplot at 0x7f969641b518>]
-
- -
- -
- -
- - - - -
- -
- -
- -
-
- -
-
-
-
In [278]:
-
-
-
d01 = dissimilarity(wf3.mean(), wf4.mean())
-d01
-
- -
-
-
- -
-
- - -
- -
Out[278]:
- - - - -
-
0.04522270245629878
-
- -
- -
-
- -
-
-
-
In [277]:
-
-
-
d11 = dissimilarity_weighted(wf3, wf4)
-d11
-
- -
-
-
- -
-
- - -
- -
Out[277]:
- - - - -
-
0.05528103485716783
-
- -
- -
-
- -
-
-
-
In [236]:
-
-
-
d00 / d01
-
- -
-
-
- -
-
- - -
- -
Out[236]:
- - - - -
-
5.45607023438829
-
- -
- -
-
- -
-
-
-
In [237]:
-
-
-
d10 / d11
-
- -
-
-
- -
-
- - -
- -
Out[237]:
- - - - -
-
1.1824085223080825
-
- -
- -
-
- -
-
-
-
In [239]:
-
-
-
t = abs(actions['1833-260619-2'].datetime - actions['1833-050619-3'].datetime)
-
- -
-
-
- -
-
-
-
In [240]:
-
-
-
t > timedelta(15)
-
- -
-
-
- -
-
- - -
- -
Out[240]:
- - - - -
-
True
-
- -
- -
-
- -
-
-
-
-

Store results in Expipe action

-
-
-
-
-
-
In [64]:
-
-
-
identify_neurons.data['sessions'] = 'sessions.csv'
-identify_neurons.data['units'] = 'units.csv'
-
- -
-
-
- -
-
-
-
In [67]:
-
-
-
sessions.to_csv(identify_neurons.data_path('sessions'), index=False)
-units.to_csv(identify_neurons.data_path('units'), index=False)
-
- -
-
-
- -
-
-
-
In [69]:
-
-
-
store_notebook(
-    identify_neurons, "00-identify-neurons.ipynb")
-
- -
-
-
- -
-
-
- - - - - - + + + + +00-identify-neurons + + + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
In [1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+
+ +
+
+
+ +
+
+
+
In [20]:
+
+
+
import os
+import expipe
+import pathlib
+import numpy as np
+import septum_mec.analysis.data_processing as dp
+from septum_mec.analysis.registration import store_notebook
+import re
+import joblib
+import multiprocessing
+import shutil
+import psutil
+import pandas as pd
+import matplotlib.pyplot as plt
+import quantities as pq
+import exdir
+from distutils.dir_util import copy_tree
+from datetime import timedelta
+from tqdm import tqdm_notebook as tqdm
+from septum_mec.analysis.trackunitmulticomparison import TrackMultipleSessions
+import networkx as nx
+from nxpd import draw
+%matplotlib inline
+
+ +
+
+
+ +
+
+
+
In [3]:
+
+
+
project_path = dp.project_path()
+
+project = expipe.get_project(project_path)
+actions = project.actions
+
+ +
+
+
+ +
+
+
+
In [4]:
+
+
+
output = pathlib.Path('output/identify_neurons')
+
+ +
+
+
+ +
+
+
+
In [5]:
+
+
+
identify_neurons = project.require_action('identify-neurons')
+
+ +
+
+
+ +
+
+
+
In [6]:
+
+
+
actions['1833-010719-2'].attributes
+
+ +
+
+
+ +
+
+ + +
+ +
Out[6]:
+ + + + +
+
{'users': ['Mikkel Lepperød'],
+ 'tags': ['11hz', 'stim-ms', 'stim i', 'septum', 'open-ephys'],
+ 'datetime': '2019-07-01T12:54:49',
+ 'type': 'Recording',
+ 'registered': '2019-07-02T14:53:28',
+ 'data': {'main': 'main.exdir'},
+ 'location': 'IMB',
+ 'entities': ['1833']}
+
+ +
+ +
+
+ +
+
+
+
In [7]:
+
+
+
data_loader = dp.Data()
+
+ +
+
+
+ +
+
+
+
In [8]:
+
+
+
skip_actions = [
+    '1849-270219-1', 
+    '1849-260219-2', 
+    '1834-250219-1',
+    '1834-230219-1'
+]
+
+ +
+
+
+ +
+
+
+
In [9]:
+
+
+
sessions = []
+for action in actions.values():
+    if action.id in skip_actions:
+        continue
+    if action.type != 'Recording':
+        continue
+    action_data_path = pathlib.Path(action.data_path('main'))
+    processing = exdir.File(action_data_path)['processing']
+
+    if not 'electrophysiology' in processing:
+        continue
+    elphys = processing['electrophysiology']
+    if 'spikesorting' not in elphys:
+        continue
+    tags = [t.lower() for t in action.tags]
+    
+    freq = np.nan
+    stimulated = False
+    baseline = False
+    is_i = False
+    is_ii = False
+    tag = None
+    stim_location = None
+    
+    stim_times = data_loader.stim_times(action.id)
+    if stim_times is not None:
+        stimulated = True
+        freq = round(1 / np.median(np.diff(stim_times)))
+        
+    
+    
+    tag_i = [i for i, t in enumerate(tags) if 'baseline ' in t or 'stim ' in t]
+    if len(tag_i) == 1:
+        tag = tags[tag_i[0]]
+        what, how = tag.split(' ')
+        if what == 'stim':
+            where = [t for t in tags if 'stim-' in t]
+            assert len(where) == 1
+            stim_location = where[0].split('-')[-1]
+            assert stimulated
+        elif what == 'baseline':
+            baseline = True
+            assert not stimulated
+        else:
+            raise Exception(f'Found {tag}, what to do?')
+        if how == 'i':
+            is_i = True
+        elif how == 'ii':
+            is_ii = True
+        else:
+            raise Exception(f'Found {tag}, what to do?')
+    elif len(tag_i) > 1:
+        print(action.id, [tags[i] for i in tag_i])
+        
+    
+
+    sessions.append({
+        'tag': tag,
+        'action': action.id,
+        'stimulated': stimulated,
+        'baseline': baseline,
+        'i': is_i,
+        'ii': is_ii,
+        'frequency': float(freq),
+        'session': int(action.id.split('-')[-1]),
+        'stim_location': stim_location,
+        'entity': int(action.entities[0]),
+
+    })
+sessions = pd.DataFrame(sessions)
+
+ +
+
+
+ +
+
+
+
In [10]:
+
+
+
sessions.query('stimulated and frequency!=30')
+
+ +
+
+
+ +
+
+ + +
+ +
Out[10]:
+ + + +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
actionbaselineentityfrequencyiiisessionstim_locationstimulatedtag
31839-060619-3False183911.0TrueFalse3msTruestim i
71849-110319-2False184911.0TrueFalse2msTruestim i
91834-220319-2False183411.0TrueFalse2msTruestim i
121834-120319-2False183411.0TrueFalse2msTruestim i
191833-260619-2False183311.0TrueFalse2msTruestim i
201849-010319-4False184911.0TrueFalse4mecrTruestim i
231849-220319-3False184911.0TrueFalse3msTruestim i
281834-150319-2False183411.0TrueFalse2msTruestim i
301839-290519-2False183911.0TrueFalse2msTruestim i
371849-150319-2False184911.0TrueFalse2msTruestim i
381849-280219-2False184911.0TrueFalse2msTruestim i
441834-010319-3False183411.0TrueFalse3msTruestim i
451833-050619-2False183311.0TrueFalse2msTruestim i
471833-120619-2False183311.0TrueFalse2msTruestim i
501849-010319-5False184911.0TrueFalse5meclTruestim i
531834-060319-2False183411.0TrueFalse2msTruestim i
551834-110319-6False183411.0TrueFalse6mecrTruestim i
571849-060319-2False184911.0TrueFalse2msTruestim i
611834-110319-2False183411.0TrueFalse2msTruestim i
621833-020719-2False183311.0TrueFalse2msTruestim i
661833-200619-2False183311.0TrueFalse2msTruestim i
751833-290519-2False183311.0TrueFalse2msTruestim i
771839-120619-2False183911.0TrueFalse2msTruestim i
821834-110319-5False183411.0TrueFalse5meclTruestim i
831839-200619-2False183911.0TrueFalse2msTruestim i
871833-010719-2False183311.0TrueFalse2msTruestim i
+
+
+ +
+ +
+
+ +
+
+
+
In [11]:
+
+
+
sessions.to_csv(output / 'sessions.csv', index=False)
+
+ +
+
+
+ +
+
+
+
+

Identify unique neurons

+
+
+
+
+
+
In [12]:
+
+
+
# save graphs
+for entity, values in sessions.groupby('entity'):
+    data_path = output / f'{entity}-graphs'
+    if data_path.exists():
+        continue
+    print('Processing', entity)
+    unit_matching = TrackMultipleSessions(
+        actions, values.action.values.tolist(), 
+        progress_bar=tqdm, verbose=False, data_path=data_path
+    )
+    unit_matching.do_matching()
+    unit_matching.make_graphs_from_matches()
+    unit_matching.compute_time_delta_edges()
+    unit_matching.compute_depth_delta_edges()
+    # save graph with all dissimilarities for later use
+    unit_matching.save_graphs()
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
Processing 1849
+
+
+
+ +
+ +
+ + + + + + + +
+
+ + +
+ +
+ +
+ +
+ + +
+
+
+
+
+ +
+
+ +
+
+
+
+

Plot comparisons

+
+
+
+
+
+
In [16]:
+
+
+
unit_comp = TrackMultipleSessions(actions, data_path=f'output/identify_neurons/1833-graphs')
+
+ +
+
+
+ +
+
+
+
In [30]:
+
+
+
unit_comp.load_graphs()
+
+ +
+
+
+ +
+
+
+
In [31]:
+
+
+
max_dissimilarity = .05
+max_depth_delta = 100
+
+unit_comp.remove_edges_above_threshold('weight', max_dissimilarity)
+unit_comp.remove_edges_above_threshold('depth_delta', max_depth_delta)
+
+ +
+
+
+ +
+
+
+
In [32]:
+
+
+
unit_comp.remove_edges_with_duplicate_actions()
+unit_comp.identify_units()
+unit_comp.plot_matches('template', chan_group=6, step_color=False)
+plt.tight_layout()
+
+ +
+
+
+ +
+
+ + +
+ +
+ + + + +
+ +
+ +
+ +
+
+ +
+
+
+
+

Store uniqe unit ids to csv

+
+
+
+
+
+
In [13]:
+
+
+
max_dissimilarity = .05
+max_depth_delta = 100
+for entity in sessions.entity.values:
+    unit_matching = TrackMultipleSessions(
+        actions, list(sessions.query(f'entity=={entity}').action), 
+        progress_bar=tqdm, verbose=False, data_path=output / f'{entity}-graphs'
+    )
+    unit_matching.load_graphs()
+    # cutoff large dissimilarities
+    unit_matching.remove_edges_above_threshold('weight', max_dissimilarity)
+    unit_matching.remove_edges_above_threshold('depth_delta', max_depth_delta)
+    unit_matching.remove_edges_with_duplicate_actions()
+    unit_matching.identify_units()
+    units = []
+    for ch, group in unit_matching.identified_units.items():
+        for unit_id, val in group.items():
+            for action_id, orig_unit_ids in val['original_unit_ids'].items():
+                units.extend([
+                    {
+                        'unit_name': name, 
+                        'unit_id': unit_id, 
+                        'action': action_id,
+                        'channel_group': ch,
+                        'max_dissimilarity': max_dissimilarity,
+                        'max_depth_delta': max_depth_delta
+                    } 
+                    for name in orig_unit_ids])
+
+    pd.DataFrame(units).to_csv(output / f'{entity}-units.csv', index=False)
+
+ +
+
+
+ +
+
+
+
In [14]:
+
+
+
unique_units = pd.concat([
+    pd.read_csv(p) 
+    for p in output.iterdir() 
+    if p.name.endswith('units.csv')])
+
+ +
+
+
+ +
+
+ + +
+ +
+ + +
+
/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:3: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
+of pandas will change to not sort by default.
+
+To accept the future behavior, pass 'sort=False'.
+
+To retain the current behavior and silence the warning, pass 'sort=True'.
+
+  This is separate from the ipykernel package so we can avoid doing imports until
+
+
+
+ +
+
+ +
+
+
+
In [15]:
+
+
+
unique_units.to_csv(output / 'units.csv', index=False)
+
+ +
+
+
+ +
+
+
+
+

Store results in Expipe action

+
+
+
+
+
+
In [16]:
+
+
+
identify_neurons.data['sessions'] = 'sessions.csv'
+identify_neurons.data['units'] = 'units.csv'
+
+ +
+
+
+ +
+
+
+
In [21]:
+
+
+
copy_tree(output, str(identify_neurons.data_path()))
+
+ +
+
+
+ +
+
+ + +
+ +
Out[21]:
+ + + + +
+
['/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-units.csv',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-7.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-0.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-6.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-1.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-2.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-5.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-3.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-4.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-units.csv',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/sessions.csv',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-units.csv',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-7.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-0.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-6.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-1.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-2.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-5.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-3.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-4.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/units.csv',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-7.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-0.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-6.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-1.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-2.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-5.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-3.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-4.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-7.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-0.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-6.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-1.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-2.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-5.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-3.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-4.yaml',
+ '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-units.csv']
+
+ +
+ +
+
+ +
+
+
+
In [18]:
+
+
+
store_notebook(
+    identify_neurons, "00-identify-neurons.ipynb")
+
+ +
+
+
+ +
+
+
+
In [ ]:
+
+
+
 
+
+ +
+
+
+ +
+
+
+ + + + + + diff --git a/actions/identify-neurons/data/00-identify-neurons.ipynb b/actions/identify-neurons/data/00-identify-neurons.ipynb index 73699236d..468b15ebb 100644 --- a/actions/identify-neurons/data/00-identify-neurons.ipynb +++ b/actions/identify-neurons/data/00-identify-neurons.ipynb @@ -1,1394 +1,976 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "14:34:31 [I] klustakwik KlustaKwik2 version 0.2.6\n" - ] - } - ], - "source": [ - "import os\n", - "import expipe\n", - "import pathlib\n", - "import numpy as np\n", - "import spatial_maps.stats as stats\n", - "import septum_mec.analysis.data_processing as dp\n", - "from septum_mec.analysis.registration import store_notebook\n", - "import head_direction.head as head\n", - "import spatial_maps as sp\n", - "import pnnmec.registration\n", - "import speed_cells.speed as spd\n", - "import re\n", - "import joblib\n", - "import multiprocessing\n", - "import shutil\n", - "import psutil\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import pnnmec\n", - "import scipy.ndimage.measurements\n", - "import quantities as pq\n", - "import exdir\n", - "from tqdm import tqdm_notebook as tqdm\n", - "from septum_mec.analysis.trackunitmulticomparison import TrackMultipleSessions\n", - "import networkx as nx\n", - "from nxpd import draw\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 307, - "metadata": {}, - "outputs": [], - "source": [ - "project_path = dp.project_path()\n", - "\n", - "project = expipe.get_project(project_path)\n", - "actions = project.actions" - ] - }, - { - "cell_type": "code", - "execution_count": 308, - "metadata": {}, - "outputs": [], - "source": [ - "identify_neurons = project.require_action('identify-neurons')" - ] - }, - { - "cell_type": "code", - "execution_count": 309, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'users': ['Charlotte'],\n", - " 'tags': ['11hz', 'open-ephys', 'septum'],\n", - " 'datetime': '2019-07-01T12:54:49',\n", - " 'type': 'Recording',\n", - " 'registered': '2019-07-02T14:53:28',\n", - " 'data': {'main': 'main.exdir'},\n", - " 'location': 'IMB',\n", - " 'entities': ['1833']}" - ] - }, - "execution_count": 309, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "actions['1833-010719-2'].attributes" - ] - }, - { - "cell_type": "code", - "execution_count": 310, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'users': ['Charlotte'],\n", - " 'tags': ['baseline I', 'open-ephys', 'septum'],\n", - " 'datetime': '2019-07-01T12:25:01',\n", - " 'type': 'Recording',\n", - " 'registered': '2019-07-02T14:53:03',\n", - " 'data': {'main': 'main.exdir'},\n", - " 'location': 'IMB',\n", - " 'entities': ['1833']}" - ] - }, - "execution_count": 310, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "actions['1833-010719-1'].attributes" - ] - }, - { - "cell_type": "code", - "execution_count": 311, - "metadata": {}, - "outputs": [], - "source": [ - "data_loader = dp.Data()" - ] - }, - { - "cell_type": "code", - "execution_count": 313, - "metadata": {}, - "outputs": [], - "source": [ - "sessions = []\n", - "for action in actions.values():\n", - " if action.type != 'Recording':\n", - " continue\n", - " action_data_path = pathlib.Path(action.data_path('main'))\n", - " processing = exdir.File(action_data_path)['processing']\n", - " if not 'electrophysiology' in processing:\n", - " continue\n", - " elphys = processing['electrophysiology']\n", - " if 'spikesorting' not in elphys:\n", - " continue\n", - " tags = [t.lower() for t in action.tags]\n", - " \n", - " freq = np.nan\n", - " stimulated = False\n", - " control = False\n", - " \n", - " stim_times = data_loader.stim_times(action.id)\n", - " if stim_times is not None:\n", - " stimulated = True\n", - " freq = round(1 / np.mean(np.diff(stim_times)))\n", - " \n", - " \n", - " tag = \"\"\n", - " stim_location = \"\"\n", - " tag_i = [i for i, t in enumerate(tags) if 'baseline' in t or 'stim' in t]\n", - " if len(tag_i) == 1:\n", - " tag = tags[tag_i[0]]\n", - " if 'stim' in tag:\n", - " stim_location = tag.split('-')[-1]\n", - " elif 'baseline' in tag:\n", - " control = True\n", - " \n", - " \n", - "\n", - " sessions.append({\n", - " 'tag': tag,\n", - " 'action': action.id,\n", - " 'stimulated': stimulated,\n", - " 'control': control,\n", - " 'frequency': freq,\n", - " 'session': int(action.id.split('-')[-1]),\n", - " 'stim_location': stim_location,\n", - " 'entity': int(action.entities[0]),\n", - "\n", - " })\n", - "sessions = pd.DataFrame(sessions)" - ] - }, - { - "cell_type": "code", - "execution_count": 316, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
actioncontrolentityfrequencysessionstim_locationstimulatedtag
11839-120619-4False183930.0 Hz4True
31839-060619-3False183911.0 Hz3True
51834-120319-4False183430.0 Hz4True
61849-280219-4False184930.0 Hz4msTruestim-ms
71849-110319-2False184911.0 Hz2True
91834-220319-2False183411.0 Hz2True
111833-020719-4False183330.0 Hz4True
121834-120319-2False183411.0 Hz2True
151834-150319-4False183430.0 Hz4True
161834-220319-4False183430.0 Hz4True
191833-260619-2False183311.0 Hz2True
201849-010319-4False184911.0 Hz4mecrTruestim-mecr
221833-200619-4False183330.0 Hz4True
231849-220319-3False184911.0 Hz3True
281834-150319-2False183411.0 Hz2True
301839-290519-2False183911.0 Hz2True
321834-010319-5False183430.0 Hz5msTruestim-ms
371849-150319-2False184911.0 Hz2True
381849-280219-2False184911.0 Hz2msTruestim-ms
431849-060319-4False184930.0 Hz4msTruestim-ms
441834-010319-3False183411.0 Hz3msTruestim-ms
451833-050619-2False183311.0 Hz2True
471833-120619-2False183311.0 Hz2True
501849-010319-5False184911.0 Hz5meclTruestim-mecl
511849-150319-4False184930.0 Hz4True
521834-060319-4False183430.0 Hz4msTruestim-ms
531834-060319-2False183411.0 Hz2msTruestim-ms
561849-060319-2False184911.0 Hz2msTruestim-ms
601834-110319-2False183411.0 Hz2True
611833-020719-2False183311.0 Hz2True
631833-050619-4False183330.0 Hz4True
641833-260619-4False183330.0 Hz4True
651833-200619-2False183311.0 Hz2True
671833-120619-4False183330.0 Hz4True
681833-290519-4False183330.0 Hz4True
701839-060619-5False183930.0 Hz5True
741833-290519-2False183311.0 Hz2True
751833-060619-2False183330.0 Hz2True
761839-120619-2False183911.0 Hz2True
771849-220319-5False184930.0 Hz5True
811834-110319-5False183411.0 Hz5True
821839-200619-2False183911.0 Hz2True
861833-010719-2False183311.0 Hz2True
\n", - "
" - ], - "text/plain": [ - " action control entity frequency session stim_location \\\n", - "1 1839-120619-4 False 1839 30.0 Hz 4 \n", - "3 1839-060619-3 False 1839 11.0 Hz 3 \n", - "5 1834-120319-4 False 1834 30.0 Hz 4 \n", - "6 1849-280219-4 False 1849 30.0 Hz 4 ms \n", - "7 1849-110319-2 False 1849 11.0 Hz 2 \n", - "9 1834-220319-2 False 1834 11.0 Hz 2 \n", - "11 1833-020719-4 False 1833 30.0 Hz 4 \n", - "12 1834-120319-2 False 1834 11.0 Hz 2 \n", - "15 1834-150319-4 False 1834 30.0 Hz 4 \n", - "16 1834-220319-4 False 1834 30.0 Hz 4 \n", - "19 1833-260619-2 False 1833 11.0 Hz 2 \n", - "20 1849-010319-4 False 1849 11.0 Hz 4 mecr \n", - "22 1833-200619-4 False 1833 30.0 Hz 4 \n", - "23 1849-220319-3 False 1849 11.0 Hz 3 \n", - "28 1834-150319-2 False 1834 11.0 Hz 2 \n", - "30 1839-290519-2 False 1839 11.0 Hz 2 \n", - "32 1834-010319-5 False 1834 30.0 Hz 5 ms \n", - "37 1849-150319-2 False 1849 11.0 Hz 2 \n", - "38 1849-280219-2 False 1849 11.0 Hz 2 ms \n", - "43 1849-060319-4 False 1849 30.0 Hz 4 ms \n", - "44 1834-010319-3 False 1834 11.0 Hz 3 ms \n", - "45 1833-050619-2 False 1833 11.0 Hz 2 \n", - "47 1833-120619-2 False 1833 11.0 Hz 2 \n", - "50 1849-010319-5 False 1849 11.0 Hz 5 mecl \n", - "51 1849-150319-4 False 1849 30.0 Hz 4 \n", - "52 1834-060319-4 False 1834 30.0 Hz 4 ms \n", - "53 1834-060319-2 False 1834 11.0 Hz 2 ms \n", - "56 1849-060319-2 False 1849 11.0 Hz 2 ms \n", - "60 1834-110319-2 False 1834 11.0 Hz 2 \n", - "61 1833-020719-2 False 1833 11.0 Hz 2 \n", - "63 1833-050619-4 False 1833 30.0 Hz 4 \n", - "64 1833-260619-4 False 1833 30.0 Hz 4 \n", - "65 1833-200619-2 False 1833 11.0 Hz 2 \n", - "67 1833-120619-4 False 1833 30.0 Hz 4 \n", - "68 1833-290519-4 False 1833 30.0 Hz 4 \n", - "70 1839-060619-5 False 1839 30.0 Hz 5 \n", - "74 1833-290519-2 False 1833 11.0 Hz 2 \n", - "75 1833-060619-2 False 1833 30.0 Hz 2 \n", - "76 1839-120619-2 False 1839 11.0 Hz 2 \n", - "77 1849-220319-5 False 1849 30.0 Hz 5 \n", - "81 1834-110319-5 False 1834 11.0 Hz 5 \n", - "82 1839-200619-2 False 1839 11.0 Hz 2 \n", - "86 1833-010719-2 False 1833 11.0 Hz 2 \n", - "\n", - " stimulated tag \n", - "1 True \n", - "3 True \n", - "5 True \n", - "6 True stim-ms \n", - "7 True \n", - "9 True \n", - "11 True \n", - "12 True \n", - "15 True \n", - "16 True \n", - "19 True \n", - "20 True stim-mecr \n", - "22 True \n", - "23 True \n", - "28 True \n", - "30 True \n", - "32 True stim-ms \n", - "37 True \n", - "38 True stim-ms \n", - "43 True stim-ms \n", - "44 True stim-ms \n", - "45 True \n", - "47 True \n", - "50 True stim-mecl \n", - "51 True \n", - "52 True stim-ms \n", - "53 True stim-ms \n", - "56 True stim-ms \n", - "60 True \n", - "61 True \n", - "63 True \n", - "64 True \n", - "65 True \n", - "67 True \n", - "68 True \n", - "70 True \n", - "74 True \n", - "75 True \n", - "76 True \n", - "77 True \n", - "81 True \n", - "82 True \n", - "86 True " - ] - }, - "execution_count": 316, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sessions.query('stimulated and not control')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Identify unique neurons" - ] - }, - { - "cell_type": "code", - "execution_count": 304, - "metadata": {}, - "outputs": [], - "source": [ - "output = pathlib.Path('output/identify_neurons_weighted')\n", - "\n", - "max_dissimilarity = .035\n", - "for entity in sessions.entity.unique():\n", - " unit_matching = TrackMultipleSessions(\n", - " actions, list(sessions.query(f'entity=={entity}').action), \n", - " progress_bar=tqdm, verbose=False, data_path=output / f'{entity}-graphs'\n", - " )\n", - " unit_matching.do_matching()\n", - " unit_matching.make_graphs_from_matches()\n", - " # save graph with all dissimilarities for later use\n", - " unit_matching.save_graphs()\n", - " # cutoff large dissimilarities\n", - " unit_matching.threshold_dissimilarity(max_dissimilarity)\n", - " unit_matching.remove_edges_with_duplicate_actions()\n", - " unit_matching.identify_units()\n", - " units = []\n", - " for ch, group in unit_matching.identified_units.items():\n", - " for unit_id, val in group.items():\n", - " for action_id, orig_unit_ids in val['original_unit_ids'].items():\n", - " units.extend([\n", - " {\n", - " 'unit_name': name, \n", - " 'unit_id': unit_id, \n", - " 'action_id': action_id,\n", - " 'channel_group': ch,\n", - " 'max_dissimilarity': max_dissimilarity\n", - " } \n", - " for name in orig_unit_ids])\n", - "\n", - " pd.DataFrame(units).to_csv(output / f'{entity}-units.csv', index=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 282, - "metadata": {}, - "outputs": [], - "source": [ - "sessions.to_csv(output / 'sessions.csv', index=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 283, - "metadata": {}, - "outputs": [], - "source": [ - "unique_units = pd.concat([\n", - " pd.read_csv(p) \n", - " for p in output.iterdir() \n", - " if p.name.endswith('units.csv')])" - ] - }, - { - "cell_type": "code", - "execution_count": 284, - "metadata": {}, - "outputs": [], - "source": [ - "unique_units.to_csv(output / 'unique_units.csv', index=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# yoyoyo" - ] - }, - { - "cell_type": "code", - "execution_count": 288, - "metadata": {}, - "outputs": [], - "source": [ - "unit_comp = TrackMultipleSessions(actions, data_path=f'output/identify_neurons_weighted/1833-graphs')" - ] - }, - { - "cell_type": "code", - "execution_count": 299, - "metadata": {}, - "outputs": [], - "source": [ - "unit_comp.load_graphs()" - ] - }, - { - "cell_type": "code", - "execution_count": 300, - "metadata": {}, - "outputs": [], - "source": [ - "# unit_comp._compute_timedelta()\n", - "# unit_comp.save_graphs()" - ] - }, - { - "cell_type": "code", - "execution_count": 301, - "metadata": {}, - "outputs": [], - "source": [ - "unit_comp.threshold_dissimilarity(0.08)" - ] - }, - { - "cell_type": "code", - "execution_count": 302, - "metadata": {}, - "outputs": [], - "source": [ - "# unit_comp.threshold_timedelta(timedelta(days=10))" - ] - }, - { - "cell_type": "code", - "execution_count": 303, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAkuCAYAAACgsaoTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4FNX++PH3zvbspvdGejahNwkREGJBQUAgEfCqIF6/CApIEUVRkCuKglgQUZErRVHRABaaSBOkKR0CWUJ6722z2T6/PxR+gGANIt55PU+eJ5lyWk4mnz1z5oxMFEUkEolEIpFIJBLJj4RrXQCJRCKRSCQSieTvRAqQJRKJRCKRSCSSC0gBskQikUgkEolEcgEpQJZIJBKJRCKRSC4gBcgSiUQikUgkEskFpABZIpFIJBKJRCK5gOJaF0AikUgkEonkjzh06FCAQqFYCrRFGvST/D4u4KTD4XioS5cuFZfulAJkiUQikUgk1yWFQrE0KCgo0d/fv1YQBOnFDpLfzOVyySorK1uXlZUtBQZdul/6tCWRSCQSieR61dbf379BCo4lv5cgCKK/v389P959+Jm/5QhyUlKSGBoaeq2LIfkTMjIyqoxGo39Lpyv1jevf1eobIPWPfwLp2iG5kiv0DUEKjiV/1E9957KDxX/LADk0NJS1a9de62JI/gSDwZB/NdKV+sb172r1DZD6xz+BdO2QXMnVvHZIJJeSplhIJBKJRCKR/An79+/XpaWlGc79fOTIEe2gQYMShgwZYpg4cWKk0+kE4N133/UfMGBA4sCBAxM/++wzbwCTySSMGjUqJjU11TB8+PD4oqIi5aXp19XVyUeOHBmbmppquOuuuxL27t2rA9i3b59u4MCBCYMHD0546aWXggGcTidTp05tdddddyWkpaUZsrKy1ABZWVnq4cOHx6emphpGjBgRV1VVJT+XflZWlrpv376tz/2ck5OjSk1NNQwdOtTwyCOPRDU1Nf0sXszIyNAMGTLEMHjw4IQJEyZE2u32i/bv3LnTfcyYMdEXbnvuuedCV65c6XuldlywYEHQgQMH3Jqbm2XLli3zu9JxTz/9dPh77713/m7C5dr1Sm32W/0tR5AlEolEIpFIfo8Ve/N81x4uumJQ9UcM7RxWNerGyOpfOua1114L3LRpk69Go3Gd27Zw4cKQsWPHlvbv379+3LhxURs3bvTs3r17U3p6esCGDRtOWSwWWb9+/dqmpqbWLl++3C8xMdE8ffr00pUrV/q+9dZbQXPnzi28MI/FixcHduvWrWH8+PEVmZmZ6ilTpkRv3Ljx9OzZsyMWLVqUHR0dbR05cmTs4cOHtfn5+WqbzSZ88cUXmfv27dPNmTMnbMWKFdkzZsyImDx5cnFycnLT2rVrvc6cOaPx8/NrWrVqlc9HH30UWF9ffz4wf+GFF8LuvvvuyhEjRtQsW7bM76233gp84oknSi8s0/z580MnTZpU3Lt3b9OECRMiN2zY4DV48OC6P9PeU6dOLQPIzc1VrVu3zm/06NFVF+6vqKhQTJ48OaqoqEgdFRVlAaisrFRcrl2v1Ga/tSzSCLJEIpFIJBLJHxQREWFdtGhR9oXbDAaDua6uTu5yuTCbzXKlUin6+/s7Nm7cmKFSqcSysjKlUql0CYLA+PHjKx5//PFSgJKSEpW7u7vz0jzGjRtX/uCDD1YCOBwOmUqlEuvr6wW73S6LjY21CoJAcnJyw65duzwOHjyo79mzZz1AcnJy05kzZ3Rms1lWW1ur3Lp1q1daWprhyJEj+m7dujUBeHp6OlevXm28ML/8/Hxt37596wGSkpJMR48e1V9apqVLl2b37t3bZLVaZdXV1UoPD4+flftKdu7c6X7vvffGjRo1KqZv376t58+fHwQwYcKEyM2bN3ssXLgwuKCgQHtuVPwck8kkTJgwoeSOO+6oObftSu16uTb7reUDaQRZIpFIJJLrQpPDiVYuIMhk17oof0ujboys/rXR3qth6NChdbm5uaoLt0VFRVnnzZvXaunSpcE6nc7Zu3fvRgClUsk777zjv3Tp0tC0tLTyc8crFAqGDRsWn5ubq12yZMmZS/Pw9vZ2ApSWliqmTZsW/eSTTxY0NDTI3dzczgeler3eWVBQoG5qapJfGKwKgiBWVFQoCwoKND179myYMWNG8eTJkyNWrVrlO2rUqOoBAwbUX5pfbGysecOGDV73339/9ebNm70sFsvPBlQVCgV5eXmqBx54IF6n0znbt29v/i3tJfup/5aXl6s2bdqUYbVahV69erWfNm1a2bljJk6cWJqdna2dPn36RaPW0dHRtujoaNuOHTs8L9x+uXa9XJv9lvKdI40gSyQSiUTyN1ZisfHoqXzidp8gZtcJxp/Kx+T4zYN1kmtgwYIF4StWrMjcvn17xoABA6pnzpwZfm7f2LFjK/fs2XPs8OHD7jt27HA/t/3TTz89s3LlSuOkSZNisrKy1GlpaYa0tDTD8uXL/QCOHz+uHTlypGHixIlFffr0MXl4eDibm5vPzyM2mUxyDw8Pp06nc5pMpvPbRVGUBQQE2LVarSslJaVREARSUlLqT548ecU5uTNnzizauXOnV1pamkEmk4menp6ONWvWeJ8r08GDB90AIiMjbTt37jyZlpZW+dxzz4VfmIZGo3HZ7faLPs2ZzWb5uako0dHRzUqlEr1e7/q9o7uXc7l2vbTNfk96UoAskUgkEsnflNnp4t7jOWysrOfBMD/SgrxZW15Lv0NnqLDafz0ByTWh1+sd50ZxAwMD7Y2NjfLMzEz1gw8+GONyuVAqlaJKpXLJZDJxwYIFQatWrfL56TynIAjExcVZ09PTjenp6cYHHnigKiMjQzNp0qTo+fPn5/Tr168BwNPT06VQKMSzZ8+qXS4X+/bt80hKSjJ16dLFtGvXLk/48SG+qKioZjc3NzE0NNSya9cuPcD333/vHhsb23yl8m/fvt1j2rRpRenp6Ua5XE5ycnJDampq7bkyde3a1Txq1KjYM2fOqAF0Op1TdsmdjcTExOazZ8+6lZSUKAGam5tlx44d03fs2PFXR5oFQUAUxd90q+RK7Xq5Nvs9pCkWEolEIpH8TT19pojMJgsftY9G3+jAbHNyY2wYU3NLuOd4Nus6xeGhkP96QpK/1OzZs/MnTpwYI5fLRaVS6Zo7d25+VFSULT4+3jx48OAEmUxGcnJyfZ8+fUwJCQmWKVOmRK1bt87f5XLx/PPP516a3rx580LtdrswZ86cVgA6nc6xYsWK7FmzZuVPmTIlyuVyyZKSkhq6d+/e5HQ62bNnj8fgwYMTRFHkpZdeygN44YUX8mbPnt3qlVdekQUHB1tnzZpVdWk+58TGxlqmTp0arVQqxaioqOaXX375Z9MTxowZU/rEE09EKZVKl1qtds2bN++iZfg8PT1dU6ZMKXzooYdi1Wq1y+FwCMOHD6+Ii4uzFhcXqy5N70IBAQF2u90umzVrVujs2bOLf+nYhIQE6+XaddSoUTGXa7NfSutCMlH8+62vPXToUFFar/L6ZjAYDhmNxq4tna7UN65/V6tvgNQ//gmka8f/d6LRzG0HzzDS35u870r4Pq8GRBFvVyPtDHq2xYRzk487H7aPRv4/MC/5cn3j2LFjeR06dLhioCeR/Jpjx475dejQIfLS7dIIskQikUgkf0Ov5ZXjLhfYvyWXugYrz90ahn3LchoKsqAAKOrKlt6DmXk0kxc6JV7r4kok/ygtGiAbDAYl8D4QCaiBOUAhsB7I+umwt41G4+qWzFcikUgkkn+S06ZmNlbVY2hwUVxl5v20WE4tmYPNbKbPyIeo1QZw9POdtD19iP8mdiFi5y7G9LnpWhdbIvnHaOkR5PuAaqPReL/BYPABjgL/AV41Go0LWjgviUQi+Uexu0TmZxbxQUk1Kid01Wp4pVs03ppfnK4n+Qf6sKQaJZB3sJxJvaNYt+YrMtTdaHtjZ2JbRXFHmyAi27Zj1Ds78Kmu5AW9Hr/01QxJHcalD0tJJJLfr6VXsfgMePan72WAA+gC3GkwGHYZDIb/GgwG9yueLZFIJP+jHC6RlB3HWFhejVt5KWJ9HRucFjpsO85HGSXXuniSv5DF6WJNeS0e9Q4CNUrW7MtinTOBWp9otuWaeGTVYQa99R1yQWDF2BTk2eCSyZnt1LN5+bv8HZ8tkkiuNy0aIBuNRpPRaGz8KQhOB54BvgemGY3Gm4AcYFZL5imRSCT/BCO/PcZZAUZv/prHTmXw6L6TDP96N0qsTC8qYvrbX+B0Oq51MSV/ga+r66lzOGkw1mJzOKkwOxnjkc3+x2/m2zbwvJdIYUkDg17bRcHeYlbd0gbVqUbKA0J5vUlg23/floJkieRPavF1kA0GQziwA/jAaDR+BKwzGo2Hftq9DujU0nlKJBLJ9WxDViHbgZvLdmGPy2aJ1oOlXu7kepm5a/dq3E31rIoJ4oknnuX0noPXuriSq+zT0lo0DhFto4OGZjt3la9nmLmekme3YTqoJaXMzDJHBX5OJ2P3Z5OdbmRrg5Ybc8wca9ONj/JK2L7sHSlIlkj+hBYNkA0GQyCwBXjSaDS+/9Pmrw0GQ7efvr8FOHTZkyUSieR/kCiKvHjoBJ7mGnLP6kg/exeyBhfhchN55ijWcjttjh3Ds9bEZ30Hs2zVu3z2wkIcduklEf9EdXYH39Y24Mysw+Zw0a3hCL2bHaibuyGKVqrK3qd+91y0X83jrZJFRFHEdBrJ8rEzP9dF5xoH2/qkcvx0Pd+u/K8UJP9F9u/fr0tLSzOc+/nIkSPaQYMGJQwZMsQwceLESKfzxzcfvvvuu/4DBgxIHDhwYOJnn33mDWAymYRRo0bFpKamGoYPHx5fVFSkvDT9uro6+ciRI2NTU1MNd911V8LevXt18OOLQAYOHJgwePDghJdeeikYwOl0MnXq1FZ33XVXQlpamiErK0sNkJWVpR4+fHh8amqqYcSIEXFVVVXnF9DOyspS9+3bt/W5n3NyclSpqamGoUOHGh555JGopqamK8aLn3zyic9dd92VcOn2nTt3uo8ZMyb6wm3PPfdc6MqVK32vlNaCBQuCDhw44Nbc3CxbtmyZ36X7r9Sur776atAdd9zROjU11bB+/XrPnyX8B7T0Q3pPA97AswaD4dxc5CnAawaDwQ6UAWNaOE+JRCK5bi3bvItsnyD895+lutmfAXVb8fKyUKl04efmwq4JYFdhEgGnihATw/hswIMoP3+HinGPk/r00wRFB17rKkha0JbqBhwuEXVZM35KJ11rDtMm8F+YVBYejXmdSmUt6h4iw/couPNAPnOiv2R6+1SmFNv4uEctQ6u7UKAVef/mvry5u4AjK9fRedTQa12tv8b3S3w5+vHPgqo/peM9VXQbU/1Lh7z22muBmzZt8j33CmWAhQsXhowdO7a0f//+9ePGjYvauHGjZ/fu3ZvS09MDNmzYcMpiscj69evXNjU1tXb58uV+iYmJ5unTp5euXLnS96233gqaO3du4YV5LF68OLBbt24N48ePr8jMzFRPmTIleuPGjadnz54dsWjRouzo6GjryJEjYw8fPqzNz89X22w24Ysvvsjct2+fbs6cOWErVqzInjFjRsTkyZOLk5OTm9auXet15swZjZ+fX9OqVat8Pvroo8D6+vrzgfkLL7wQdvfdd1eOGDGiZtmyZX5vvfVW4BNPPFF6ad0PHz6sXbt2rV9LfRCbOnVqGUBubq5q3bp1fqNHj75ojevLtWtERITt66+/9vn8889PA6SmpiakpKQ06nQ61+Xy+K1aeg7yY0ajMchoNPa54GuP0Wjs8dP3I4xG4+9+3Z9EIpH8U31sKkZ3uhyT2Y1bnIfwC/JE7uZPuCqcEGsoERUKhgdvodahR3WqApXZwmd3PkSVs4qPnpnKvrWHEF3SKOE/xVcVdShLzMicIklle7jBrQtKXRCLI9fxcM9H+WLwF7wzcDmN/zeEF0YokJXkMnP3B+gFJ/+3R80A2UKS6pqoUcCM7mFozvhyaslmaST5KoqIiLAuWrTooje0GQwGc11dndzlcmE2m+VKpVL09/d3bNy4MUOlUollZWVKpVLpEgSB8ePHVzz++OOlACUlJSp3d3fnpXmMGzeu/MEHH6wEcDgcMpVKJdbX1wt2u10WGxtrFQSB5OTkhl27dnkcPHhQ37Nnz3qA5OTkpjNnzujMZrOstrZWuXXrVq+0tDTDkSNH9N26dWsC8PT0dK5evdp4YX75+fnavn371gMkJSWZjh49qr+0TFVVVfIFCxaEPfPMM4WX7vs1O3fudL/33nvjRo0aFdO3b9/W8+fPDwKYMGFC5ObNmz0WLlwYXFBQoD03Kv5L7Wo0GjWdO3du1Gq1olarFcPCwqzHjx/X/t4yXUp6UYhEIpFcIzu3bSLDFYWqtIYOQjGBGhl+/loe+vdjaDQaAApLC0nfls4wtrG6/FbcM4qo6hzNZ3c+yN2bV7H305fIPX4f/cbeineQ7hrXSPJnNDqc7KxuQHa2EV+ZDUNTPpHhYzjgeZgZ971EkC4IgGjPaLoGdeVUwgheDZvGv5bmMGPnUp7oPZ6HMm/gE//HGNs8na2RcTzWRcXbBwXOLtlB7JiUf/YScN3GVP/aaO/VMHTo0Lrc3NyL1mKMioqyzps3r9XSpUuDdTqds3fv3o0ASqWSd955x3/p0qWhaWlp5eeOVygUDBs2LD43N1e7ZMmSM5fm4e3t7QQoLS1VTJs2LfrJJ58saGhokLu5uZ0PpvV6vbOgoEDd1NQk9/DwOL9dEASxoqJCWVBQoOnZs2fDjBkziidPnhyxatUq31GjRlUPGDCg/tL8YmNjzRs2bPC6//77qzdv3uxlsVguGlB1OBw8/vjjkTNmzCjUarW/a6T2XB8sLy9Xbdq0KcNqtQq9evVqP23atLJzx0ycOLE0OztbO3369ItGrS/Xrrm5uer3338/uKGhQbDZbLKMjAy92Wyu/D1lupwWf0hPIpFIJL/N8pqTKM/U4ylY6aAsQ99cxaPjpqHRaLBXNWPaW4L7ITv/DhrKAzc8yqDw3dRaPAg5YcSkdWN1//toDAym9PQyPnx2FT9syMXp/FN3FSXX0I6aRhwNNgSLk+TSAyS6d0Imk9M99ebzwfGFWvu2ZtGoNXw3804c2iKe2LeCU2IEj9Xdw/KiRxiS9S0nvDRM6CxDyFeSt+y7a1Cr/00LFiwIX7FiReb27dszBgwYUD1z5szwc/vGjh1buWfPnmOHDx9237Fjx/mlbz/99NMzK1euNE6aNCkmKytLnZaWZkhLSzMsX77cD+D48ePakSNHGiZOnFjUp08fk4eHh7O5ufn8PGKTyST38PBw6nQ6p8lkOr9dFEVZQECAXavVulJSUhoFQSAlJaX+5MmTV/xEPXPmzKKdO3d6paWlGWQymejp6elYs2aN97kyHTx4UFdcXKyZOXNmxGOPPRZdUFCgffrpp8MvTEOj0bjsdvtFn8jMZrP83FSU6OjoZqVSiV6vd6lUqt90i+Ny7dq6dWvL8OHDK0aOHBk/Y8aMVgkJCSZfX98/veSPFCBLJBLJNVBk/Jbdlk7Impx0kheiri0j7Z7R4IS6L7Mpf/UgdV9m03SglIatBai+qOGxolT+HZJLSUMgsacOY9Go+PC2YdS07oyt4Sv2pn/BmpcPUVPSdK2rJ/kDtlTVo8g3oRBdRDbnEO3ZCbNfMaHx7a54jkah4dk75mOa/ziCRyZjj61jm601c9ye4u2yWYw1fsIRXz0TOoHrLOR/duAvrNH/Lr1e7zg3ihsYGGhvbGyUZ2Zmqh988MEYl8uFUqkUVSqVSyaTiQsWLAhatWqVz0/nOQVBIC4uzpqenm5MT083PvDAA1UZGRmaSZMmRc+fPz+nX79+DQCenp4uhUIhnj17Vu1yudi3b59HUlKSqUuXLqZdu3Z5wo8P8UVFRTW7ubmJoaGhll27dukBvv/+e/fY2NjmK5V/+/btHtOmTStKT083yuVykpOTG1JTU2vPlal79+5N33zzTUZ6errxjTfeyGnVqlXziy++eNFUi8TExOazZ8+6lZSUKAGam5tlx44d03fs2NH8a+0nCAKiKP7sdsfl2rWiokJhMpmEzz//PPPll18uqKioULVt2/aKdfutpCkWEolEcg18euIz7LkD8FTaiHCWEKyW0apNR6o/PIXFWIuuezDuN4Uh91aDQ8Ra0EDzySoeOJaES5/J0upIumV9y4noG1nW8076+waSsPsrKvNsrH7BxI1DY2l/c9g/+5b6P4jDJfJ1SS1CaTNJVSeJczegFrSEDU654jlOuwtkIFcI3N/53+xaFEPZfx5jyFlfltObYMObzCycSgA1/CfhUSZ0MvHGYStFHocJu73zX1i7/z2zZ8/OnzhxYoxcLheVSqVr7ty5+VFRUbb4+Hjz4MGDE2QyGcnJyfV9+vQxJSQkWKZMmRK1bt06f5fLxfPPP597aXrz5s0Ltdvtwpw5c1oB6HQ6x4oVK7JnzZqVP2XKlCiXyyVLSkpq6N69e5PT6WTPnj0egwcPThBFkZdeeikP4IUXXsibPXt2q1deeUUWHBxsnTVrVtWl+ZwTGxtrmTp1arRSqRSjoqKaX3755YLf2waenp6uKVOmFD700EOxarXa5XA4hOHDh1fExcVZi4uLf/H1oAEBAXa73S6bNWtW6OzZs4t/qV39/PwcOTk52gEDBiQqFArx8ccfL1Io/nx4K/s7TtwfOnSouHbt2mtdDMmfYDAYDhmNxq4tna7UN65/V6tvwPXTP0wNRgZv2sXZIyH0VGbTrng/g0b/H4HloZgPluM1IBS9ZSUYN0N1FsjVENgaovsgxg3EXBHIzK17WFOr4Y6IHWQE9iDLO4o2xTmkbPmYEL9OmJu6Ednen1tHtUaj/9mqUX9b/6vXjv11JoauP47qZC0PZa1iYMRg/Ly1hD47EACbrYqSks8oK/2e+ppammr11Oa2xVzSEa3WDb8wPUExnoihJr5YM57C4n7sCenA3LY2BhU/zTqPTkwzTKNdjYXXD1vwuMObsJs6XuNa/z6X6xvHjh3L69ChwxUDPYnk1xw7dsyvQ4cOkZdul0aQJRKJ5C925Pv5ZBUMQ6GwEenIw0Mp0Mq3LbUbMnHvJKDfexuYqyHmZojvCw4bFB+C3QuQ7ZqPLqgd81MewHYikq+yUhiq/IoYWxzfBKdQcvd4+n3zCZ28zRScuolPX2zijofbEhDhca2rLfkFW6sbkJea8bHWE6RV4asKxvNGH0TRRV7eu+TkLkQUbTQ3u+N0KtEFNOIZsg+z2YPy4mSKKpIp2OqF3K4jWvM8niEZVNUXMeNECGLQk/S2r2bx6ed5NPEZHr1BzqtfV+KQHSKyV5drXXWJ5G9JCpAlkmugwWJnf3Y1xrJGtCo5MQF6ukZ44665fkb6JH+M1VbFBrMCWbWdCH0d7tkltL9tAA1f5KDwBo+se8DDD+5fC8EdLj65qRpOrYNDyxE2TuU1hTtOv1msPTuQQTEbGS9ksFz/bz4Z9BCl+zdzm/VLHI47WTP/EL1HGGjdM+TaVPo6k2lq5mi9mTsCPPFS/jX/JjcVViOvtpJUfpwoz/aIOFF3i+TI0bHU1m6jqrIVhVk98NF2occd7XHzEKis2gp8SFTc19QHHOVs1g1olPF4K6MQz7bmDtFFk93EM2W+TKu5gZ5tylmWMYOHWv+HcUnezP+6AnPTNlrfcctfUkeJ5HoiBchXmcPhoLysnIKcUswNVtRqDX5+vgQE+eHuq0Wpkv96IpJ/DLvTxeId2Sz9LodGy8UP2WqUAkM6hfFInxjCfdyuUQklV1tR/kp2lvUAoJ01E0VzE3GeXbDVV+Hv/gIyr0AYtR7cL/MCEJ0v3PAQdP03FB9GcfB93jzxLFphJGuy+5MSvovZbk+wqPFxdvS4k+KcDAZ+v5pWYYPZ8WEmFQWN9BoWh1whPZ99JWeqTAw+kkWdQob6TCHru8TTzuPq/j1W2Rzk5dejBKKac4gI7Y0mWsaJs1Oprd1Gbk5X6k8OotfN3ek2MPr8vPLw8P9DFP9NScmnnM2eh6fnJqqrysjMLME9wo+4kA4MO6Xi0yaY55NEzrEiBnt6sMz6FGM7PM+4HoE8e7AcU92n3DD8bmm+ukRyASlAvkqamprYvnUnx44fw+G0/Wy/zKVEZfXGUwghJCCcgAhPfEP1+ATr8ApykwLnf6A6s42xHx5if04Nd7QJYnSPSNqHeWF1ODlZ3MD64yWsPVxE+qFC7usewaRb4vF0k0aU/0lcLjvZeZ9QVjobjd5BcFkRMe1uwH6wDo0uGzXHYfjOywfHF5LJIKwLhHVBftt/mH9oOX47tvNu4c2UNwYxpcNzbKgdwabI23k7JIpe+7+mf1AgGbugpsTE7f/XFp2n+i+p8/WkvsHCiP1GnNUW+hVZ2Z7kzcKDebx3c+tfP/lP2F3biFBhwc9aR4iHPxq5nvI231Bb+w15uTdgOnoPN97ShqRBMT87VyYTCA0dgb9/X85mvwykc1PvAoqLe3DwdB2+fn5MSo5lwbeNfBYYRq4lkqGHWvFK8RvMvfVBpiQHcXe2G1WL3ua2h/+NUiX1C4kEpAD5qjh9+jTr1n6BzWZFZfGjyabBainEzVaOUhBR693ReHtjUdRQ4aqgpv406n1BqJuCkLvUIAOvADd8Q3T4hunxD3cnMNoDrf4XH/qU/I2ZrA5Gvf89p8saeXVYB+7qEMLhA9/xxuofKKuoR24x4e9qYGagN9nKEL7cUckXR0t45s5EhnQKlUZ2rpJmp4u9dSYKLTbuCfZBLVzdkdXKqq1saewCzS4iPKtRVFbRrstoRKMDD9VCGDIP/ON/X6I6X4SbpvLUjTZiv1jHjB+imLPnCR7osIok617edT3C132GsL+hhptPHMWR347PXvyB28e0IzjG8+pU9DokiiKPbjpJ9alKZFYXO4BWp+TsMnjgFEXkV/FvcENRNUKNlS4VGbTyak1jwEHKrasoK42nKWM4kTHhJA2K/sU0VCofWie+THBQKsYzswgKWkdEq46cOtWWk/ureSAmlM/qGzlYGUJlSDR3NiUw/pNj7LnZi0/iurLT3I39i5aqwqfMAAAgAElEQVQx6Z6B+ASHXrW6SiTXCylAbmF79+5ly5YtKB1aPN1EavX7yTcnkG+Lwexoi9Zpw9taTsesY/jbqnEztEMVEkhRWT7N+kLCg6Pwd4tE1qihqthE9tFK+GmhEa9AN4KiPWjVxpdWrX1QS6OL1wWnS+SRVYc5WdLAons6kZvxAzes3k2NzANIADU/fgE+5lra1Gdwd+NOZHU6lv+3A2vb38ic1M5E+klvSWtJtXYHdx3I5Iz9x6kuR4zFvHFzh185688pLvqQ74r7IQrQ0XwMtUaHtliJUnEUVWQgdLz3jyeuUHF36nDadK9lworvePXQo/QMOMCMxOkcqevNl4pBrOtxM2qrhY65DeQtOULqbRG0uzWq5Sp4HVu8KZPdpypROETGJsBOYwUZJWAN1/BNYQ13tPK9KvmKosi3Z6qQiRDiKCTE6wby2z6HyeRNU9G9aFw+3DKqNYL8t3148/buRrcbvqK4eBU5uW8QE3sMQ0IPThy30bNRRSsfkR01gbzvaec2RRva75PR7tR+PurVmSWdurN9VwbTwvK5q8eNV6W+Esn1QgqQW9APP/zAli1bCPasxrPVYT7OG8ixyhFoFc3E+5zFQ9VIg9mPzLoYjLp42jtqubHkKGrjJmI7dEYfn4gxO4f8kmyUSiWRhkha9wlFjR5bvYLGEsg9XkXmvjIEQUZIvBexXQKI7RIgBct/Y4u2n2XXmUrG9Qznxc92U2jTEWWzcq9bHT09wlDbFVQ5nGRiZ5vTi92KnmT6dKJP3XfcVLUb1bff8ulxbwJuGsqwwYNwU0u/699q87ZviAkJIS6xzUXbG+0Obl/zA+UFTcQ1OvDwU7O6nRdJX+7jX4OSr0pZmpuLqK7dT1nVvWjdRQLOFNO1zZ24apy4q9ZA/zd+nDrxJ7UO9Wb94/1ZuO0M7+0SOVzVkVsjdjA7fBpHS3uyXbiFH+LCOZAgZ31VFXcuymb6qB5o3bUtUMvrx1mzhY2V9QwN9Obr/QXM+z4fwSEywLseYfNH3BUWhVF+K2JJMyuVhVctQC6w2LBUmHFz2Yhz86EqYS0uoYmKkpHYcoPpc08M7j6a35WmICgIDx9FUNAg8vOXUFi0ksTW3yGXtyP7bBUeplB2O6P5Sq/kqMNESlM0o9dXUZOoZFmiHw/bBFZ8+Q2v9elOhIf7r2coYf/+/bpXXnklLD093Qhw5MgR7axZsyLkcrkYHh5ufe211/Lkcjnvvvuu/1dffeUnk8kYOXJk2d13311rMpmERx99NMpkMikUCoW4YMGC3LCwMPuF6dfV1cknTpwY1dTUJHc4HLInn3yy8MYbb2zKyspSP/PMMxEOh0OmVCpdixYtyvHz83O+9NJLwXv27PGSy+XiU089VZCUlGQuLy9XPPHEExEmk0nhdDplr7zySm5sbKwVoKKiQjF8+PCEjRs3Zmi1WrG6ulr+2GOPRf302mrHvHnz8gMDAy96cKakpEQ5adKkKIfDIXN3d3e8+eabuR4eHudf5Zmbm6t67LHHor/88svMc9vee+89/6qqKuVTTz1Vcrl2XLlypa+3t7dj4MCB9e+8847/2LFjL/vK6EWLFgVUVVUpn3vuueILt0+ePDnC09PT8dxzzxXbbDbZpEmTIsvKylR2u10YM2ZMycCBA3/2Wu0rkQLkFnL27Fk2bVyPIfoIZvcGXjo8gWa7jvsV0CelI83+7ZA7TqGv+Yha53/Zmp/ClrxbOO3Xh/t9biO5opqGgly6tNLjcfONVDTUk5eXR1ZW1kX5uAdo0cpUCDYNhWXu5H9Swu7VWuI6+9OhbyR+YdLF7O/kUH4tb2w7Q9dwd977Lg+VoCA0TkdBeAivKOBtpwsfm5VQi5XWjTYeq1BQW6PibZnAZ96308XXxf3NWTTV5lKzbhnbt79CaFwYcT36o09IAe/Ia13Fv7WJtSrk9ZU8vHcpabffQUhICDk1zQxatgdztR1vQYZTLZBRasZLJ2e1u5IRLhfCVZhqUVb2OYdMncEqEqirBrOZMGcEClkh6s4JENS2xfLSquQ82S+RtK7hvLwpky9P3cGW/JvpEbaXMcGvUlsUxg7nrZz2j+bdNn6s/vYED2jhkd5d8FD8bzz/sONkKfNOFDHP7kJe1IQgQntlLRGHVhPWuh1DnpzJznd380N5M/nBvy9A/T2+q2lEqLKSWJ9LeCt3mkLXU1zQDmduN4KiPGnT649Pd1AqvYmNfZJWrf6P4uKPKC75mMioE0TH+NKzti2fH2/LD80xrPSwE+VqoGe2B68XVrOztQerIn3pecDIGF8NT3RsfdWnH7WEj09/7Ptl9pd+LZnmoJhBVfck3lP9S8e89tprgZs2bfI99wplgIULF4aMHTu2tH///vXjxo2L2rhxo2f37t2b0tPTAzZs2HDKYrHI+vXr1zY1NbV2+fLlfomJiebp06eXrly50vett94Kmjt37kVvpVu8eHFgt27dGsaPH1+RmZmpnjJlSvTGjRtPz5gxI2Ly5MnFycnJTWvXrvU6c+aMJj8/Xzx8+LD7F198cbqwsFD16KOPxqxfv/70nDlzwgYMGFBz99131+7YscPdaDRqYmNjrV9//bXH66+/HlZbW3t+9OX1118P7tixo+nxxx8v27p1q/vcuXNDX3/99fwLy7Ro0aKgQYMGVd93333Vc+fODVmxYoXfhAkTKv5Me48cOfJ8Wy9btizk0gDZbDbLpk6dGnn69Gldnz59ai/ct3TpUr+cnBxtp06dGgE+/vhjHy8vL8fixYtzq6ur5YMGDWo9cODAE7+1LFKA3AJMJhNr16VjMOyhXiXy2veT0MpUhHT24n1/Le9hgmqAKNSyafSyHOO2oJ30DpnDJ1l38X55Zza4KXhYH8utDX641tuQWcvxdlahbMjB2tiIyeHApFbTpNNh0uup9fTErlGBBtQWOHwyhJOH8glSuUjs4o3hzg6ovaV1T68lu9PF02tP4K5WcLCwEZmXmprOYXhZXUTUZVJBFp5Ob+yqII66h7DPx5//tnKiaT5OQkUGt5REs7exFdPUBu4Oase/EKg3ZXH65ClyT/2XBM8XCfBTo4jpiUdiCkJUL/CQlvG6kOJIA02iwKsBUaz69AdcFifVjVpEmYwUL4jWbWPw8FE8v9bE4dxajvcIIvfbI8SktOzasKIoUlq2ju1FwwHoYjUS5BWDrF6OXrUZWcqLLZrfOTH+epaM7EpmWQNLvs3hy6NKthX0IdHHSEroRu6ocnEgpxcngtrxus6PpdsOMy7Ei7Gto9HJ/9mBctneTJRlLkTATy0nzF5Mn+wN+EVGM3jaMygVcgZH2dhbAqWiDFEUr8qzAGtOlyGzu4huOouz4ymsVjdE01CcDSpueiQemfDn81SpfIiKGk9ExFiqq3dSXLwKl2sXo3t9ywhHIp+d7MXeigQ+0MM2qknJrGNVvh+LE7W8pXCQvu0HXmoXR78gnxao8T9PRESEddGiRdmPP/74+flKBoPBXFdXJ3e5XJjNZrlSqRT9/f0dGzduzFAqleTl5amUSqVLEATGjx9f4XD8ODhbUlKicnd3d16ax7hx48rVarULwOFwyFQqlWg2m2W1tbXKrVu3ei1YsCAsMTGxadasWUVLliwJSEpKahAEgYiICJvT6ZRVVFQoTpw4oY+Pj28ePnx4fHBwsHXOnDmF8ONrnT/44APjkCFDzj+Nmpubq5kyZUoxwI033mh68cUXW11apjlz5hSKoojT6aSsrEzZuXNn629ts9zcXNWkSZOiAwICbMXFxerWrVs3vfLKKwVz584N8fPzs9fV1clNJpN82rRprebPn3/+LX4Wi0UYMmRIdXJyckNOTs75T6579uzRHT9+XJ+amlp5bvvQoUNrRVGshR+vwfLfeU2TAuQWsGHDesJCt+PQmXhj73QEhZqSGwNA3sCE/HQ6WQrx8Yug2iOSPUIgn+vbsFW4gdbNBYwKWMFtPt+xvOBu/tMUzPtaI3d4nqCnxo6v0x+ZpR32xkZMdcWU1BfRLDbQILpRolNS7R+IyT2YZpU7NtmPv0q5S8DNIuL98TGi6sqIV5hICNbQKjSI4NAQ1IGBCJ6e0kNff4H/fpdLZnkjMkScfhriorwYdjSHxtKTBNS1wiJrh1WtwqFsxqnIodxLTmawJ6fC23A0shPlnia6nqmktNrFR3L4HEjVRzNMn4jG2Z8CUwb7M0+BMZ/Ib+cTpX0CtUZHg0drRP92eMQnEZDYBYW3D7J/eLBzJc+2f4d15T04XNmWSrsKUSlDE+Li/piPSdbsQ7bJnf++vpNJSfdwX54Be4GJvQ0VLR4gNzQco7k5j5zaUAS9QKssI+2jhyFrbsYtKRI8w1o0v0slBHnw6vCOTO+XwOofCvlgt4zFJwwEaCvpE7aHB0z7ycppzQ/hNzFfpWT5toM8FhPGfZHBaH7j3NfrzaPD2uM1ZxbmmkoUMhFcLvxi4oh9cAhFtaeI+nomN+edAN7GVmPl6NliOsW1/O/peN6PA2ad4+pxehZSlHUTdmMQicnBLf5yF0FQ4O9/K/7+t2KxlFBW/hXl5V8ysuMS0uxufFPQl+35SazCjS2OCgYcdzKwKJRX4xWMPl1An9wiXumUQJjm7/nA+D2J91T/2mjv1TB06NC63NzcixolKirKOm/evFZLly4N1ul0zt69ezcCKJVK3nnnHf+lS5eGpqWllZ87XqFQMGzYsPjc3FztkiVLzlyah7e3txOgtLRUMW3atOgnn3yyoKamRlFQUKDp2bNnw4wZM4onT54csWrVKl+TyST38vI6Px3Czc3NWV9fL6+oqFB5eHg4Vq9efeall14KfuONN4JmzJhRcttttzVcml98fHzzli1bvDp37ty8fv16L6vV+rMLgSAI2Gw2Wf/+/VvbbDZh8uTJpb+lvWQymQhQXFys+eCDD864ubm5+vTp0660tPR8TDpt2rSy9PT0wAuDYwAfHx9n3759G1auXHl+zlNJSYly0aJFIUuXLs1es2aN97nt7u7uLoCGhgZh3LhxMY888shF0zF+zXURIH+64ksQnNw+6GY8Pa/81LW9vAnL2ToEjQJta18E7dWv3tmzZzE1fUpgWDEv7HoWq1xFU7I/o6u/4pmqL9ClPAltXwb5j3cu7gBmukQ+r6jl1TwVT2qfJVoFA+OLsOScZnuOH0vLbmeZzEG0Zx5RXgXo/M2Ylb6UytuTTwRVrgBEF8hcIhqbGTerGTlmREGOQ66kQQnZYTr2R0WDQgZyGchkKAsaCTqcQ6uKEiLqa4luNmFw2ojXqNBHR6Jt3x5t27bIVH/Pi9/lOF0ilY1WAj3U54N+p0sks6yBncYKThTW4xBFukX60L99MGHef836wrVNNhZuy0KQg1On4m4vd/rvzSLL6oGHtye2oKO4tBacTjnmJk8cDg3uLkgqEuhaJONUcDhHWsXxTVIUeouZmLximkpEPrDr+FC0ESc46OoVRZxXBJ5iI3m2Ig7bK7Ha7cgblagKqtB9l45v7RK8Gupwd1rReHmgjk/EN7Et6uBg5L6+yL28kOt0yNzcELRaZCoVsuvgVupv1UV9C600B6DdPirsfnibQ3GvbEXmgSTq2hXheXsRI95UscFvMd10T7GvQokxMBhbVTEqv5Z7kr+ichOVFj/sJvD1a0SwiXg1++Om3IHQe3yL5fNrAjw0TLgljnF9Yth0rIR3txzn06zBqAQbXQOPcmvDJ9ywN5p9UUk8o6zkjewixkUFMzIqFP0/bOpFZZUNN8PNhGotuKtdlGir+UjYTuGerQC0t9t5v+80wjebyatRs/tQZosHyCUWG9ZaO74uE4GdMjGZvFE198eFim4Dr+7DkxpNCJERDxMZ8TCmpiwqKzYT5LOd/lHr2VPcjQ25fVlm8cG3oYTeBx3Ig4L4JN6LG3cfY3JkIGOjw9D+Qz88tYQFCxaEr1ixIrNt27aWd99913/mzJnh54K9sWPHVo4ePbrq/vvvj9uxY4cpJSWlEeDTTz89c/r0ac3YsWNjly5dmvXUU09FAgwYMKD6gQceqDp+/Lh26tSp0VOmTCns06ePyWw2y7Rarevc+SkpKfV79uzxiIqKsjQ1NZ3/5ZjNZrmXl5fT3d3deeedd9YB9O3bt+7VV1+94kVu0qRJpTNmzGiVmppq6NGjR72/v7999+7d+jfeeCMUYPTo0WV33nlnvUqlErdu3ZqxdetW96lTp0atWbPGeC4NrVbrstvtF3USs9ksnBsJDw4Otpybs+zj42O3WCx/qEN9/vnn3vX19YpRo0bF1dTUKKxWqxAdHW0ZOXJkdUFBgXLcuHGxw4YNqxgxYkTN70n3ugiQF7pcVGm9eHPDt8QoBXolxNItshXhahVicxPGIwUYD9dS1izSKBMJdsrosU4gbnwndEH6q1Yup9PJt7sWExFxjKX7J1DqcMfW1YeX8l9jlI8MHt4BWq+fnacUZNwd5MOQAG/WV9axvLiKN+rDICQMgkXcGh3IKixkVWk5kx+LTLzkfP7/tBsn0IiCi3+VFhRYzm+RIaKQOxHkMhoUCo6pwvnBOwpXsAJRIwetgJ+1nsDvM/Hf8QPBHnrCgwMIjYkmKCgAP5UCH4UCH6UCRQvc7mtJ76z+htX7s0GhRHD3xixoqbGIOFwXH3cqs5IPt2Xz9tgk2oRc/aWtFm47g1kQEUUZI7zkDLAsp/7Gk8R7X/a5BNTqUHy8k/H17YWPTw/koo6KA9+TnnGYzz0DyIiPQUwQUNeZ0RbUk1stcsZ2brqYBqXWF7k7yBQyRIWAqJCBUkCuBqVSRCfYcBct+JhNhORWEfPtIeLzsggqL0LOJR1MoUCmVP74pVKh8PZGERKMOjISTfv2aDt0RBkacl3chYgfPIXY5mYa9vyA7vsKGvV+mOOCUZ1toGivD+pb5uEY6cS1TUPHwW05sL2GfXoFFRs/IWzk1BYpgyiKVFZuYWvxnciABEqJ9eqEDAW6jjrQB7RIPr+HQi4wsHMYAzuHcSK/hv9uOsimgk7sdSnxUtcRX3iA+HwfcoJa8R+lmtdySrhPJ+OhLh0J1f4z1sktLNuJd/h7yAQnVqWFYFUzU+VORLUC4biT9+0qFnW20ybIjYIyB4XVjS1ehl2V9Qi1VqKVeQj6OspO34Ld6EWnW8PQe1+9ec+X0uvi0EfFERU1AZutmo41e+hXvIEtp0xsK7iJtY1haEvr6VqfR3VQOC/LFbybVczDPv483CESt79gMOp6o9frHR4eHk6AwMBA+5EjR/SZmZnqefPmhS1dujRbqVSKKpXKJZPJxAULFgQFBQXZ7r333hq9Xu8UBIG4uDjruQf+ADIyMjSTJk2KfvXVV3M6duzYDODm5iaGhoZadu3apb/ppptM33//vXtsbGxzly5dmubNmxc2ceLE8qKiIpXL5cLf39/Rtm3bxq+//trz3nvvrdm3b597dHS05Url3717t/uIESMqe/To0bR27Vqvuro6U69evUy9evU6X6Zp06a16t+/f21KSkqjXq93CYJw0T+TgIAAR3Nzs5CRkaFp06aNxeFwsH//fo8xY8aUAb/6P0QUxV/cf84jjzxS8cgjj1TAjw/55eTkaEaOHFldVlamGD16dPzTTz9dcMstt/zuP+C/pFcbDAYBWAx0AKzAQ0aj8exvPb8uX8BiMVMok5PvpmD72QIQC8DuQmZ1InP9/Jz5chl3v3eApx7rgY/H1bnQHD68ndDQTfyQ34v9jXE4ot15qnQpo6KDod88+JWROIUgY3CgN4MDvSmz2jlY30S22UqV3Y49EdQyGTpBQOtwEYiccJUSFTKosaAob0aoaMJZZsZSZ8WGiFWwUa+qpUFdR52mnjpFLY3yZqwyMDu1NNndaLK70WjXU1fhSaNdD/zYQeuBRrkH2W5eOOQqHOVqRHMlrtxa0MhBJkMAAlVKwrUqwjU/frVz19Lf79pN2TCp/cgLBJnVCfwUHIYo8XRT4Cs4sMudFDnVlJxtRG93MOWdfXzweB8CrlKfAChvsPD+qVJkFhc3xNVwe8Tz2AUnjnp/KsuTiIzqTWxsV1RqNXZbLaamTOrrD1NZ9Q2lZemADA/3dviE9OSe1jcw1rMTtU4NO4or2O/dxMkgT87aHFhNdmQNdmQmOw6LE5nNhcLmQm53gkXEaXci/vS3UY8C0COqPBA14YhtO0NHAeQgl4koZC5Uogudy4mnaCfIZSPW2Uxnex1hlQXoCnJo+v4A4ooVyJAh9/RE3ToRbfsOaNu3Q5OQgCLkbxg01+Qg6ALwuvUmOt76/zeLosh3H6k5k30jkW23cEuFln2qQ0AUWVY71WfyCRPFFllVoqnpDM3NBRxvSEAUZHQ6e5R4z8GoBCOq2x/80+n/We0ifHh9bF9etDlYs+sA6w7lcawhDqtTjazeRqu8TFw6HUvCfVnSeJybKzIZqbNxc+9bkftHXOvi/2GqM1/jRzWNHp5YxGDqHB7YcKH3qMA3uZiHsh28veV9OnZegqywjiJ5yy+z+OHBDGQu6BZ/FJPJG7fGFJrVKrrcfu3aVaXyJShoEEFBg+jeycag/HTWfv8Jp4vjOVbVDkeWE/+CLJx+bsyzCCyuqKBvkYO0gEDi2gUQHOMpvakRmD17dv7EiRNj5HK5qFQqXXPnzs2PioqyxcfHmwcPHpwgk8lITk6u79OnjykhIcEyZcqUqHXr1vm7XC6ef/753EvTmzdvXqjdbhfmzJnTCkCn0zlWrFiR/cILL+TNnj271SuvvCILDg62zpo1q0qtVoudOnUyDR48OEEURdkzzzxTAPDss88WTZ8+PeKzzz4L0Ol0zjfffDPnSuWPj4+3TJs2LWr+/Pn4+fnZFixYkHfpMQ8++GDFs88+G7F48WJRJpMxe/bsi6ZDCILA888/n/fUU09FCoKAw+GQ3XTTTXUpKSmNl05JuZyIiIjmRx55JGrx4sU/a4/f4o033gg2mUyKt99+O+Ttt98GYOXKlWfc3Nx+U+Qt+60R+p9hMBiGAoOMRuMDBoOhO/CU0Wi860rHDx06VFy7du35n9d8PICTDg9K68MpawqlwaXFKigQlaDR2PDQmNAr63FTyehgkZNbYmOtswcuk4ubvQTen96vxetkt9v4av2tKLU1PLX7JRq0Sm73yeC90GwYtKhF/rH+Vi6bE0e1BWdNM846K85GO856K446C84aC456K82qasp0OdS4FdKkLQNNLXKVBbNMQZ1DT7XVm2JTEOXmAMqaAqi1np/Gg1Jux1Nrwk1rRaGVYXfX0+DjR5XWC7lMxqEebfFXXbz0mMFgOGQ0Gru2dF0v7RvL0j9mU7UVq0KJ2mHDx2zG31pMrWcxDQF2AmU2WhWbWeYznprTEOIUSWvjxpT7Ulq6aOeNXHOEbw+W4BVg5pV2M6gojaasKIHeKSPo3K3bFVdIEEUnDQ3HqK75jpqa3dTXHwVcgAw3t2jc3CJRqfwQBA2iy0WD00W1XcTsMCN3VKK35yE4yhBF50/pgcmup9LsS2WzLxXNfpQ2B1Ft9aXe7oHFocbmUOJwKHA6Bc59WLqoTDIQNXJENwUynYBC40KlsaPVWFEr7WjlzehFM1qnBXdbM94uG74i+KnUhGjc6NNtKDrfi29LX62+AT/vHyzsBKILhn8IQe3+/3anHeeqe/n4RBKBt7+D47A32xTebG6aSr1G4O3aEwx4uDtE/Pkl33Jy3yQn5w3GfLcQmUpkVuZ6bg7+F96Go+hGT/jT6V8NNQ1FLP9iEVn1Ts6awsitj8QhKgAR9AocPhq85WYGFe0lzXGGNu3CUCV2Br948DeA5o/fpfmrrh3Os/uonnUfzRUg1/lj06nI9+7MUfUNaGM3E2fYC9tVbOz8MGu+jyMsVseWQdG4BfzsWaU/rM2bX9JULOfNlCcpPtsVx8l/cUO/2F99Kci1cLLyBJ8ceoOyHAVljfFk1sXgEBUIKhc2fz0qX7jBWsj/Y++8w6yqzsX97n16n3amMpWZOUMHC4gBKSo2kDKjYIpYEi82IiJG441Koj8IBk1UvBYiSIKJiqJGQBSBaJByUaTJFGCYYXo758zpZe/9+2OAS5GmA8Jw3ueZB2btvdb61pr9nPPtb31l8B4NOcY0ci7NIe+iFKyJnZc+8Lueja1bt+7r169fS6dNEuOCY+vWrUn9+vXLObr9bJ2LDAE+BigrK9vgcDhO68OvV3V/coOlRNJLCad8jaySkWQ1gbAOd0QkKkQw6HzYEmrwyQqZ5u78KhLgun3XsLY9wua9zVySZ+/UBW3YOAubrZY3NjyMVxJIT5H5i2YdjH7rrCrHAKJWhTbNBGnfbeGQQxLRJj/pdV4iDT4iDT6Cu724Qu00iC5EsY2wqpkivYe+2t1YE3ehVqAtYqQpaqZeMlMTjae21U5Q7rC8qgQvOaY95JqqUWXKkN+5QU2nytXhDWTblyHrRRQ1iOr/C/6VJBV+v4lvU6LkCc/i6fk76rZ5adi2n7pWN+mJne9qsdfl4YvKJgQRfpPxd7Z8dR16t4k7HniA+OQTH6ULggqb7SJstovIy51KNOqlvX0rLvfXeD07CQSqaW/fiiyHAQFR1GJTmUjS2NAak9BoLkerTUKnS0anTUGrTUSlMiIIKkBA8gUJu9xEPO1EfC4i/jbCPjcRnxspFCKEhFcRaJXV7Jf07JWt7I9aaY2Y8QQM+J1aZFkkCATRABrACEIiaAGdCkmnQdGJKAY1ikHFDf9+n9cmnD0f22MY9zK8MxleGwlDp8PFt0HYB8umo9q7hkEXT+Cb1kzMvZowv++l+2U6vtntpcaSC3tWd4qC3Nq6huqmnsgBhWSrj3zLAAS8GMcc10bwo5Ng7caDv5gNwBeb/0H5V/+gTQc14QRKXQXsqcnDI6v5uzCYv9mGYWqJ0Pdfu7ne9yzXChtISbFAWl9I7w/pF0H6ADCeWxkQVPmDSX7pc1jz/6BmEyTHCtUAACAASURBVJgs5F1+LRcnDmPpy8k0NdZjH76P+C/eA35DkyzSuv0LjFf+gGIuh6EoCr6ADoPBh0oGY9OlhPR6+l+V2Snjdza97X146tr51HnrWFK+hOQt/ySpzcHuaAI7GjIJ12rZICayPl5LVmIVV7oW029lDdpIEgkpuaQX9sJiS0WjSUCjsaHTpSCKXcNdJ0bX5GwpyFY6TvEPIjkcDnVZWVn0eB0Op+ihJwjX1NC2aDGuF5eghEKgVqNOSyNkSaUiLp3tGUaMZhc9e60iaNlDWc4dlPh8vOXRMWPhGtb8/uZOW4zfv59A4E1qmnrwhbcb2HX8sfEvGB/6O6jOPV8sUadCm2lBm3lkjuQMXwRHS4BoW5BIm5/GhkaqWmvZ56mjJuIkioQeyCVEntKIVt1KUDHiREebSqA5oqXWmcduv4aBP87SSBw9lZRPthHZU4PkkpA9KnxSMq6ENPwpArr4Oi5NaGKQWMna9r+wMPleljYn8ZNXnmfsb3/XqbJIUoi7Vv0LpcXGiNS9VHzbjySPj9t/Ox1j4ukXGVCrzSQk/ISEhJ90joBmIOW7LymSguQKEm0JEGkKEG0NEG7x42vyIPiiaCSRIGFq8VMlBKkXorQi4wG8CHjDKjxhFe0ekXZFTZCOgK4WlRkmdI7434usQTDlP7DiYVg7q+MHQFTD2JfI6XUT/5m3hYR+S3Co4tgfV4egWNljiMe7eyPmkT9s+kiknfb27axu+y8A+vsb6Gbqiym1HCGp80+2zgRDL7mFoZfcQiQS4W+LF+OQN6HN/ZJmlZayUDbbXL1oq7Oxke5sELrzO9Pt6JHJaHLRo24Pg5VX6UUVWVqRRHsuQkovSMyH1L6QXPTjLs6WAePmHdFkBW6ZPoK/PltNYtIf6ZUSQFcP/mCUfbsqyLyyc6Ze37QXxSORltxIQ10h2rY0+lyZcc4XfUo3pzP1oqlI/e/lq8av2PDtOq7dshdtWx6f6kN85TNS05rEG4xD0ENKXCt9lB309S4gy1yLWes/MJKAVpuITpeCQZ+F0ZiD0ZiHwZCFwZCJTnecD6sYMc4SZ0ubawcO187EU1WOAVhwHdq2SlIvnYh90ov4Kn0Ed+4ism8P+vpSLt73H/Jq7fzrkuvZtWMU/S5ZyradT3D7DR+x9P06KvcplFbVUZT9w3PEKorC/371AADv7Pslsgyj/Ju5YsqzP+hY8cdAZdKgMmnQHUglFEcOjgPXZFmmtbWVxoZGanc30FTdiqfNgyESIl6IkCtHkUUPakTy7D9e7l2DtTu9StZ0+BO4qsFdg6KIyNZcwt4IO/9dzpdbtmPIXseQrB18mV/FnuYUPnYXcmMkgKDpnOM/SQrxt69mUr57BAZNkMw2Jyavl1vvued7KcdnG0EloE40oE40oHcce12RFORglJyQxOVhCZ/bR0ODE7czgN8TIOQOIHtDqHw+9GEfyCJuRYOSfA5YiExJUPI6DJkGe9eCWg8FoyA+Gw2QHDcSWIIp1YCs2goMpUIUaNrjwSxLIH7/7A0u10ZApiKQiSLCyLoAokWF6Zof65Xy+6PRaLjjttuA22ho8vDu31ZQULeLXnFfIaR7aVVp2EMW+/zptLbZqIxYqWQAyxiAYlSjqDQIHhFrNER6o5NLv1nMzFv+G7XmHHhGjkJrUHPLryax/JMlJOXvxeoME/BoqJFP/WvrZCz4z3qESDwOaznCvkvxkUDfkeem9fi7UIkqBqYNZGDaQLgSmt1NZH+2jft2hAiLZhZaomwUI9S32WloGManDANAo5aI03pJ17SSY6gjy1ZHTuIObKaVCIcFFOXnP0l21i9+pNXFiHH2FOR1wBjg7QM+yKdcyQSAa2fDuj/DpldRbZiHVa3HqrNAQivEy9C7hKzRz2KpbmHR4r/TUHkx/bp/xdKtsxml/TkfCfDHN1ey4NHbf/BCWlo+Ixr5hu27r2SXT4shXuC3fRIR7AU/eOxzCVEUsdvt2O12evf5vwpfQV+EtjofzgYf7uYAigLxSefA0akgQHw2xGcjACrAkAiX3JrJAGkEq98azOYNKxjbbznPJN/NZy0y37z1KgN+/usfPLUsR9i6/X6erRqN6ApzkboebTTAT4cOxZKf/4PHPxcQVAIqkwZMHdatuFQTcY6zn33hB5Ha50g/5AP0HngJO6tMSNkiStUmEIZSK0v4QtnQXAopvb5jsFOjzfklsqShLWhGNIkMCPUC7T40Pc7vL/7UZAv3Tu84lWvY7+Hj9zYhlX9NP7WTXjo3okFBtgZxqrXUkkRjJIEWlw1/gwEvUI6FvfpLedjjw5Zw7inIAHHJJjS+UajUL5KirqXJlUuTvvMqle6q6kggUEAtCe6exF2ehtF6/qTYPBq7LZkRE66CCRCs95L0eTVKaRvIMqvsKtbowpSpFHwRgUavniZfHFvdedDQ0V9UKxh1EWxaHwkaF2NKg9x1z4+7phgXNmdLQV4KXO1wOL6kIxLo9DTVbpd0BNkEnFDxKdRvhbAXLOnQc+yhY7q8Qht9e17Et+VBUrO3kFP5OT2LpvChR+GLhkS8gRDmH5CiSJJC7Nz1BD6fjWWe8SDL3Oj9kpzr/vC9xzzf0Js0pBfEkV5wbPq6cxWVSuTqnw4iY0MG7//rH2T0aqWh0cTKfc0M+IFjK4pCaeljvNOmxrXXgFEMUCDUcrnbSfr48Z0if4wzS1qejU1b0zHa67F/HUWVosYZihJR0mH/ph+mILetx9nWjYgfkuKjmDRxxJ1/xuMTkppp4bZfX4ksj6R+t4vdWxop3bwdT20VepWbZLEeWVWNolIh6zR4jFo8ai0oCrJ62I8t/gm5dtJdrF77D7Ljq9jhzKVGnQLBdtD/sAIeESlCe9SGoFYwueIJ+TX0GX5mi8WcTfRpZnpN7CjKFmkJkLi9mZGlLajq3IiKmnKLjr0pAhVahd1KiAZJxhNRaA9o8Xh01EbjkRIauOtHXkeMC5uzoiCXlZXJwJQfPJAhHvre3PFzHK4dcyU75mylpaGIlOxv2eH8J3H2m/DUB1j+6afcfOPo7z19be3fkaIN7Ng7hr1eMBijTLl+9LmX2irGd9Lzsm6E/TdRtu1z6gxWPtLk8KvdH5GY//2fiX375rGnYQVvO19CdLbTR11LclU5V8x9vhMlj3Em0RrUyIEC9KkVdPcmYOyu0N4WJaJKh5rNcMn3O3kKh1vw+yv4unUCyNBLgrDsxXT11Z28gnMDURTIKIwnozCeYROL8DqD1JY5adjbTkutB2ddI/7GJuJkN4rsQRQ1WAxnLk99Z2CxmfA3ZpMXXwYMp0ETh1y/DTF3yA8ad2fLDnwRI0ZrkKTmi1EyM0g4TpD1+Y4myUDaiCzSRnRk/5DDEnnNfhr3tNK0cz9Kgx9zQIVFNBEWoEkvsN8kI2mPm6I3RoyzQpdLVmg0Gunb4yL2N+aCDhJ3rWCIpKDoRN7efFpVBo8gGvWwt3IezrZ0PucqCMsMD5eRe/GgTpQ+xpmm/8gcrlXnIqToqHGm8sX2OUjSKZePP4KmppXsrXyOFcF7CVdHUAsSPdu/ZVi/i1DbOzdrSowzi9XQkYXFajdhs/gQwjJ7TOlQ/833HrO9fRsA24KFAFwVsREwVCLozk2Xgs7GHK/HcVkaw37qoHjGJfzyuRu49+XJ3P6n/2LSE1O5Zea9qDXnfnW+JHqSYejwA2hTG2gv2/iDx/xq68dEfWDT+Unwqeh/7bGuP10VUatCl2Eh64ocLrl7KJfOvIEec64l9fGBmCekkNA9QqHOxcjhfX9sUU+LDRs2mEpKSg5FcGzZssVw4403Fo0fP94xderUHEnqyLD0yiuv2EePHt1jzJgxPd555514AK/XK06ePLl7cXGxY+LEiYU1NTXHRGq6XC7Vrbfeml9cXOwYO3Zs0ZdffmkCqKio0E2cOLGwuLjYMWnSpIKWlhYVwOzZs9PGjBnTY9y4cUUbN240AjQ2NqoPzjNu3Lii3bt3H/owampqUo8YMaJ3IBAQAFpbW1U///nP88ePH++YPHly98bGxmMMqlVVVdqJEycWlpSUOIqLix2lpaVHfLhVVlZqb7zxxiMicV977TX7rFmzjhu4tGjRosR//etfNoCXX375uF+kL774YvKTTz55TCXAadOmZR/d3tjYqP7JT37Sd9euXadVAOHcS7nQCQy7+nK++csmQp54MpJc9NMH+FeKgS3Vafg87Zgsp388Vr1/AZLkprx6GKVhLSp1kP8a2S9mPT4PGf3TS3ntn+vYi8D/enLptXcuBQW/Pa0xPN5Sdn47nZBwMSsiF6FqbKYndWTV76PXn+aeGcFjnDGysodQHxTQZGgwGvcDBXyrtxJp2o3mewbqudu3oigCtWE7ikbgch9orjyz5YPPdVQaEWuioVNz455pBg0u4d/V7wPgREVb9W5+qINZafleBLkvdiWCP+glt9955s9/BlAbdSRfWkjypYXfe4y2vy9OdH/wQVInioVt7NiWhJ//rPVE9zz33HMpK1asSNTr9YeiDJ9//vn0KVOm1F9//fXuu+++O3f58uW2yy67zLdkyZLkZcuWfRsMBoXrrruud3FxsXPhwoVJPXr08D/yyCP1ixYtSpw3b17qrFmz9h8+x0svvZQycODA9vvuu6+ptLRU9+CDD+YtX75812OPPZY9bdq02sGDB/vee++9uPLycn1VVZXy9ddfWz744INd+/fv1957773dP/roo11PPfVUt9GjR7fddNNNzjVr1ljKysr0+fn5oZUrV1r//Oc/d3M6nYcU8z//+c9p/fv39z700EMNq1atssyaNSvjz3/+c9XhMj3zzDPpP/3pT5vGjh3rWrlypXXOnDndXn/99T0/ZL9vvfXWQ3u9YMGC9ClTpjQfft3v9wvTp0/P2bVrl2n48OHOw6/Nnz8/ae/evYYBAwYcqpoXDoeFRx55JFur1X5HSbkT0+UsyADxCXHY9Ck0tWYj5ypoa5Yi2vVIqFj9789Oe7xo1Mf+/QvxNOfwjXoguCL0jFbRe8iZKzYR48xhSdBzVZIZ2aBiTe0Iqve/jsu1+ZT7h8NtbNv2X6hVFj6qvJdIQwBQ6Ne4noE3jEPUnr+BNhcqGfnpBH1xiPYQ2mDHs1ClUuEOmMG573uN2e7eRsCbiDekwWBU0x6sIW1o7DPjfMPSowfhhkRUegmPLOBsaPxB40XkCI1Chw7Xx2chaBNjlefOc7Kzs0MvvvjiEYqhw+Hwu1wulSzL+P1+lUajUex2e3T58uU7tVqt0tDQoNFoNLIoitx3331NDz30UD1AXV2d1mKxSEfPcffddzfecccdzQDRaFTQarWK3+8XnE6nZtWqVXElJSWOLVu2mAcOHOjbuHGjedCgQe2iKJKdnR2WJEloampSb9++3dzQ0KCdOHFi4QcffJAwbNgwD3QE5f/tb38rs1gsh9K0VFZW6keOHOkGuPzyy73btm07xh/qiSeeqLnuuuvch8l0ykpoZWWlduzYsUW/+tWv8q6//voeDz30UBbArFmz0l977TX7M888k+r1elUzZsw4ojJPMBgUx48f33rHHXfUH96+bt0607Zt28zFxcVHKNRPPPFEt0mTJjUnJiZGTlW2g3RJCzJArx692bb7WzJzvsHa+Bk9Mm+lQi3w/le1jDlNl9P6+neIRt3srhnMNm0iEOGOHnGoY4rQecvdo/rxSvMG6muScHvi2fntdAYN/Ai1+sRR6rIcZcfOqYTDTUgNs1mZZkK7rpGcUB0ZARc9fzH5LK0gRmdiSzYQ8iehsTRhqNiKovopjci4I1kktZRDYvfTGk9RFNzubTjbU5GC0M2ooVXZjUZ/5kqcxzgzCGo1qv06DPow/ogOv+uHpXqraCujXuyGIsAwj4jp4nOvat75SsLPf9Z6MmvvmWDChAmuo0sn5+bmhubMmZM1f/78NJPJJB1URjUaDS+//LJ9/vz5GSUlJYfettRqNTfffHNhZWWl4dVXXy0/eo74+HgJoL6+Xj1jxoy83/zmN9VtbW3q6upq/ZAhQ9ofe+yx2mnTpmUvXrw40ev1quLi4g49qEajUXK73aqmpiat1WqNvvXWW+WzZ89O+8tf/pL62GOP1V199dXtR89XWFgY+OSTT+IuuuiiwEcffRQXCoWOeYuz2+1RgNLSUt2zzz7bbd68ebtPZb8EQVAAamtr9X/729/KjUajPHz48D719fWHdNIZM2Y0LFmyJOWZZ545onx1QkKCNGrUqPZFixYdyp9aV1enefHFF9Pnz5+/59133z1UBnjRokWJ8fHx0Wuuuab9tddeSzsV2Q6ny762Xj7yYryeJCIBE8mpYQoDISJ2PRv8qUhB7ymPI8tRqqr+StSVSTlF+Ntk4gQ3w6/ppGzxMX4U4uP0pOpBUQQ+3TmGYLCWsvKZJ+1Xsfv/4XSuJzP1d6xqjiPgCiNHoZfzGy65YSyqc7BQTIyTIwgChNMxGDx0azcg6FW0STIBKROay057vGBwP5Lsoqw9HxTIQ4Ccc7sARIzjEy+kYzH4iIZkQgF9R97170lF5Yc0+5IQjCJGbzOOweeXr22MU2Pu3LmZb7zxRunq1at3jh49uvXxxx8/lOR6ypQpzevWrdv69ddfW9asWXPIKvP222+XL1q0qOyBBx7oXlFRoSspKXGUlJQ4Fi5cmASwbds2w6233uqYOnVqzfDhw70JCQlRg8EgjxgxwiOKIiNGjHDv2LHDZDabJZ/Pd0i/8/v9qri4OMlisUg33HCDC2DUqFGuXbt2GY8n/wMPPFBfW1urKy4udtTU1Ojsdnvkiy++MB+UadmyZTaANWvWWO6999782bNnVxYVFR0R0GMwGORIJHKEnun3+0WdTicDpKWlBa1Wq6xWq0lISIgEg8HvpZO+//778W63Wz158uSChQsXpn766acJixYtSvzggw+SNm7caC0pKXHs2bPH8PDDD+ceroSfjC6rIJutRswqO61t2UQLFbLc5Uh2PT7BwDcbV5/yOK2tawiF66ip6cFOYxZiQGKkppH41B+vOEaMzmFoXiKKSqAiUEBtTX8aGpayv2bRce+v3r+Ampo3yMy8nX0rHXyQp8G4z01cuJ28wH763fzTsyh9jM7GoOuOKMp0w4igB29EIiJkfS8F+WCAXmmgw58yx9+KvXf/TpU3xtkjLX8QVq0HQjJt6mzwNn3vsQL71+LxGjHqRVrDjSSkHxNnFKMLYDabo1arVQJISUmJeDweVWlpqe6OO+7oLssyGo1G0Wq1siAIyty5c1MXL16ccKCfJIoiBQUFoSVLlpQtWbKk7LbbbmvZuXOn/oEHHsh75pln9l533XXtAEajUcnIyAh+/vnnZoBNmzZZ8vPzAwMHDvSuX7/eJkkSVVVVWlmWsdvt0d69e3tWrlxpA1i/fr0lLy/vuKlCvvjiC8ukSZOa33333bKcnJxg3759vUOHDvUelOmGG25wr1mzxjJ79uzMv/71rxWXXnqp/+gxkpOTo4FAQNy5c6ceIBqNsmHDBmv//v39wEljuJRTfBG95557mpYvX77rwF41XH311W233npr67vvvlv27rvvli1ZsqSse/fugTlz5lSmpaWd8hFQlzZ3dUvNpsmZTGrGt2TWv4eYPxNQ+GRzORefYvrN/ZV/Qwza2ONOoybOjCj4+fl5Fl0b47u5q3933trSRF2rjco9PbAnBykv/wNabRIpydcfcW/1/gVUVDyN3T4Kq/pe/h35FKfYHb1bosBXjmPwMDS62PH5+UxifB+8gM1kQqWXCDoVZCEdWr487bE8np3Isor6SDKKAKmtpaR2n9j5Qsc4K6T2vIiEL1chKFBlzOzwS7d8z1LIUhtSUCTFqiJskRHELmunuqCZOXNm1dSpU7urVCpFo9HIs2bNqsrNzQ0XFhb6x40bVyQIAoMHD3YPHz7cW1RUFHzwwQdzly5dapdlmT/84Q+VR483Z86cjEgkIj711FNZACaTKfrGG2/sefrpp/fNnDkz609/+pOQlpYWeuKJJ1p0Op0yYMAA77hx44oURRH++7//uxrgd7/7Xc0jjzyS/c477ySbTCbphRde2Hs8+QsLC4MzZszIfeaZZ0hKSgrPnTt339H3zJ49OzMSiQgPPfRQLkBWVlbw2WefPRTIJ4oif/jDH/Y9+uijOaIoEo1GhSuuuMI1YsQIz9EuKd9FdnZ24J577sl96aWXjtmPs0GXVpB79i6i4rMUFFkgRaygyK+w36TisyYLj0aCoDmxQhMIVOP0fEmobii7E7tBfZhu0Ub6XP7zs7SCGGeSwngjRouIv0lB5Yb/3dSP4SMUduy4n/bMb8jIuAVJ8rOv6hWampZht4+iV8/neG/uGtZkG9HVegABh7ecwRPn/NjLifEDsacV4W0GXbwKjSFIVNbhExKhubzjSP00MtZ4vOUEfDY8UT2CUY1c+y1JWTlnTvgYZxRT90IyPloM9KHKakRx7kPIOv0Un95APc2qjgC97rIKU278SXrEOF/Izc0Nf/jhh6UHfx86dKh36NChpUff98gjj9QDRwSYpaamRt98882KE43/xhtvfGd2iP79+weWLl16zDHXo48+WgfUHd6Wk5MT/uc//3nceb744otDVY4LCgpC77///jHyH87KlSu/PdF1OP4+HL1fB/9/QG4A3nnnnWN8sQ9yeLaLU2lfsmTJaR8FdulX18K+WRCKw+9JQZUnkev1Ekg1slvoRvO2T07av2b3YgDKGjIp1aYhRGRuSJZigTZdiERzx9+yRcwm2ZTA+i8Hk5Q4jur9r7N+w1Vs+t8baWn5jNzcX9On94vs3dXI1tBWKhPTMFW2khaoJzExkfi02DHp+U5SeibRiBZVXBiNtiN7UL3KhBLyQHvdSXofiae9DJ/fij+iwqQTsWbYUam7tD2iS6OyWuleXQNAg1nAX3dCXea4fLv/XfYGOoLy0sPtJGVlnqRHjBgxfiy6tIKsN2uwqpNpcaYSyVTIatlBxN6Rf/OLjZtO2FdRZBrqlqBpLaJWNOL06VAJEiVXdbE6sRc4A+w2ZJOabZYUikorkSSRdeu6c9GAj3EU/p5ePZ/j8sGrycudisvVzpL33mJPcgayX8Yv6Sn0VVB05XU/9jJidAKWBD0hXyJaixe91FFUqEpnIChpoO3UU3tGoz4i0XraPHaksEK8GMSeE8tUcL6T1+YGwCmqaan6fkWnGurXUu3NRAHsnnoSMmIKcowY5ypdWkEGSE/LxOlMBREKnCtQrBo0gsSn+0UIuo/br7X6E8IaF431DiqSuiE2BcmL1pHXL+Z/3JW4JjUeJVFHlSxS1QITrriC1tZW3nprFTrdKFJTb0SnS2Hfvn28/tfXkaJhWpIKidvbjKjIZAf2M+KakT/2MmJ0AoIgIAWTMRjbsfr2owBVKvBGk6Ht1F3gfP6OTEe7fR1KcUKghaTM7DMhcoyziCU9GUUj4FNU1NScdkpVAFSBCuo9aSgGFXpXNYkxBTlGjHOWLq8gFzi642lPRI5o6aavID0gY7JqWCf3Qt7+3nH71W55BTGqZ29LEhViCoKkMCbbgPg9KmrFOHe5NDMOkwEkBapSCjF//CkTJ07E7XbzP//zPyxYsIBXX32VhQsXEgkqXCpczI44DWJ9gG6BGpTMnuj1F0bp4AsBtdwNvd5HuscPehU1yPikbtB23FiWY/B5O9zmakMdSnG8dx+J3WIK8vmOqXsBohYCES21ztP/HgiFmtBrvbj8NjCqUfx1WJNjFfRixDhX6fIKcrf8RNQRG15PJlGHRJ6rHV+qhXbBzLdfLP3OfJbRxl20GcuQm3rRYFLj8YhohAjF1wz+EVYQ40ySatWjKCoUEfaa7Ozc1EJuXBz33HMPgwYNIhqNotVq+cllQ+nVMoDtKfHQHsUn6Cn07SbvJzHrcVfCYukoBZ0VCaMYVDQrMkF1/ukpyL4KJEmFM5qEAqS4a0jKiinI5zt2R380GoVQSIPbJIB8epVrnc5NKAoEghqMOhX6ZEvM4BIjxjlMl1eQE9JM6KR4GlvsSAmQ17YVT1qHH/JnrQmw+9jS03WfzEFWh9hbn0d5YgZic5D8aB3p+QVnW/wYZxhBECjQ6ZDjdWzXW9mb2oOm/3kVi8XCNddcw69+9Stuu+025P3JdNeoWZ4iE7+7EZUSxRpxM2Rgnx97CTE6kbjEjrzFySoJRSfilmTCQtppuVi43aX4/Tba0aMYVKQrEYy2uDMlcoyzRIKjDwYkIiE1KrsXydNyWv2raj+lLRCPIgtYVQrxGd3OkKQxYsToDLq8giyqROxxaThdqQD0dq0CnYoEVYSP5cvg338E+f/Knivb36VR3YgYstLUlsxu7AgyjM6znDSpdYzzk0HxZsQEDa0S+LRBtn3ZQrDs/7LL1O924d7agt+k4tt4A3JblGx/NbWJPclPPqY8fYzzmLikHACMRhFBp+CXZCQ5scOCfIpJ6z2ecvx+G56oiNogkJaeHvvs6ALoMjOxRMNIYRFtgpO2vftPq7/L9b9UNncYWeKVEAnpMQW5K7FhwwZTSUmJ4+DvW7ZsMdx4441F48ePd0ydOjVHkjr0jFdeecU+evToHmPGjOnxzjvvxAN4vV5x8uTJ3YuLix0TJ04srKmpOabspt/vF+68887uEyZMcPz85z/Pb2pqUgNs2rTJOGHCBMf48eMdd955Z14gEBAkSWL69OlZY8eOLSopKXFUVFToACoqKnQTJ04sLC4udkyaNKmgpaXl0BFGRUWFbtSoUT0P/r53715tcXGxY8KECY577rkn9/DKfEfz29/+NvO1116zH92+du1ay1133XVEhPKTTz6ZcXiZ6KOZO3du6saNG42BQEBYsGBB0qnOuWLFCuuNN95YNGbMmKIZM2ZkybJ83D07VS6IvEM5udns22VFCtrIiSvDHJawxBvZ1ZJJ0/4ykr+YC8Mehrpv8H3wIp7LRrTMXQAAIABJREFU6nA29aHZpuB3CRiFEJNuHP5jLyPGGaJ3mhVjSz0BoMGUgCGrL2m/f4G+r/+JQBA++etO+hpheVIUsS1EUNFS6N+DauhNMcWni5Fgz2R3LWjMEUQxjKJAu2KFiA98zWA+sc+oJAWRlWb8/nQCYRm9RYoF6HURBI0GkxQAxYBsCtK8pxX7gFPrG4m0o6KR6raOClUJ4XbiU9POoLQXJtvW1CSWbag/rlL1fXBcltbSd0S378yte5DnnnsuZcWKFYl6vf6Q383zzz+fPmXKlPrrr7/efffdd+cuX77cdtlll/mWLFmSvGzZsm+DwaBw3XXX9S4uLnYuXLgwqUePHv5HHnmkftGiRYnz5s1LnTVr1hFvYH/961+T8/PzA48++mjdW2+9Ff/cc8+lPf300/sff/zxnBdeeGFPQUFBaMGCBUlVVVXaXbt2GcLhsPjBBx+Url+/3vTUU091e+ONN/Y89thj2dOmTasdPHiw77333osrLy/XJyUl+RYvXpzw5ptvprjd7kOK+dNPP93tpptuap40aVLbggULkubNm5fy8MMPH5G/uampST1t2rTcmpoaXW5u7nGr8p0O06dPbwCorKzULl26NOn2228/4qjmu+Zsb28Xn3322cw333yzzG63R5977rmUlpYW9VtvvZV49J4dva8nostbkAHSchNQRyy42vOIFMrkOBvwZFoB+Cz1V7DmaXhlGLw2kpqEIhQxyq79mZQmpCO2hiiM1sWijbswPdKseL0iskXDN8YUQuxlo34Un/x6AUuf2YzGF8Iuqvk0KUpSTRsaOUxI0DDIEct93NUwx1uIBC1oTH5EbUfl1DbZ1HHxFPyQA4FqAFo9qSgymCQviRlZZ0zeGGcXMwEA/BqB/dWuU+7ndm9BEKDel4siQLyvAVty6pkSM8ZZJjs7O/Tiiy8ekQvS4XD4XS6X6oAlU6XRaBS73R5dvnz5Tq1WqzQ0NGg0Go0siiL33Xdf00MPPVQPUFdXp7VYLNLRc2zZssU8fPhwN8A111zTvnnzZmt5ebnOarVGX3311ZTi4mKHy+VSFRUVhTZv3mweMmSIG2Dw4MG+8vJyk9/vF5xOp2bVqlVxJSUlji1btpgHDhzoA7DZbNJbb711RCGNqqoqw6hRo9wAgwYN8n7zzTfHHJd6vV7x/vvvr7v22mvbTnfP1q5da/nZz35WMHny5O6jRo3q+cwzz6QC3H///Tkff/yx9fnnn0+rrq42zJ49+4g3ye+ac/369ea8vDz/zJkzu02YMMGRlJQUTU5Ojn7Xnp2OjBeEBTklx4o2HEdtfTKJyVDo2sh7heNJkcMsZyi3jNBD+QpCBdNo1f0HKZKE0JbNHmsSAmGuLzzuaUCMLkB3uxldS5hAmoHdngjexApoV9gjOzDv28Mgk0hlXAqliYmYt9ZQ4NvLdktvHsmNPRddDVEUiAbi0Ol9qIMewhhwcaAwUNteyLrshP0DgY4qq05/h1IcH3ESn150RmWOcfawqToU5NZoInrfqedCbmz6EkURcEaSUfQqtO212JK/Z6nqGMel74hurSez9p4JJkyY4Dq6dHJubm5ozpw5WfPnz08zmUzSsGHDPAAajYaXX37ZPn/+/IySkpLGg/er1WpuvvnmwsrKSsOrr756TAU5n8+nstlsEoDFYpF8Pp+qpaVFvWvXLvOTTz5ZnZ+fH5o8eXL+6tWr/T6fT2W1Wg8p2aIoKk1NTZrq6mr9kCFD2h977LHaadOmZS9evDhx8uTJraNHjz4m521+fr5/2bJlcb/4xS9aP/7447hgMHiMQTUvLy+cl5cXXrNmje109uvgyWtjY6N2xYoVO0OhkDh06NC+M2bMaDh4z9SpU+v37NljOFB58IRztrW1qb/55hvr+++/v9NsNss333xz0cCBA73ftWenI2enWZAdDofN4XD8y+Fw/NvhcKx3OByDD7SPdzgcexwOx9oDP8M6a85TxWY3YCABtzsJwloukr4CQaDIZOTLai8tF09FuWMVjd6LCMbvZp1LRVOcQqhJwiJ6+en4q8+2yDHOIhqViCPOSIolDIAqOph/j1zOypzfoDKvxBCfzYeXx6Op9xNVVPRTqonEpVEQ8z/umoQT0Ol8mKMdFkKXSkNQMkLryYuF+P37AGiOdijIdn8z8WnpZ0zUGGeXVFPH92tjyE7EsA8pcmqZLFpbN+HzxuNRtCgGNWa/E1NcrMx0V2bu3LmZb7zxRunq1at3jh49uvXxxx8/dAw9ZcqU5nXr1m39+uuvLWvWrLEcbH/77bfLFy1aVPbAAw90r6io0JWUlDhKSkocCxcuTDKZTJLH4xEBPB6PymQySYmJiVJaWlqwZ8+eQa1Wq1x++eXurVu3Gk0mk+T1eg8pg4qiCMnJyRGDwSCPGDHCI4oiI0aMcO/YscN0PPkff/zxmrVr18aVlJQ4BEFQbDZb9N13340/KNPmzZuNJ9sDvV4vRyKRI/wQ/X6/6qArSl5eXkCj0WA2m2WtVntqQR7fQXx8fNThcPjS0tKiFotF7t+/v2fbtm3G79qz0xm3M10sHgQ+KysrGwbcBsw70H4x8HBZWdnwAz//7sQ5TwlBFMhIy0BATTRUSFZWBZpoEHW6BUkReH9LLe2rqmkVP0FRBNr29WSrOQMxINFbrseW1KkuTTHOQXqkWRG8ErJFw3KNiTmBaUy94gmGpP4XUoqe5SYd5n1OkkItVMf34pLseEQx5n/cFVErKeh0PuJDARQRagQFj64vOE+eycLtriAS0dGiWFBESA+0YEmIfX50FfJTOoxWrcFEdHG1tNR6T9pHlqOEw6W0tyfhlUExqMgw6hHEC8LD8YLFbDZHD1pxU1JSIh6PR1VaWqq74447usuyjEajUbRarSwIgjJ37tzUxYsXJxzoJ4miSEFBQWjJkiVlS5YsKbvtttta+vfv7129enUcwMqVK639+vXz5OXlhQKBgOpgEN6WLVsshYWFwYsvvtj7+eef2wDWr19vys3NDRiNRiUjIyP4+eefmwE2bdpkyc/PDxxP/tWrV1tnzJhRs2TJkjKVSsXgwYPbi4uLnQdluuSSS/wn24MePXoEdu/ebayrq9MABAIBYevWreb+/fuftK8oiiiKckpfsgMGDPBXVlYampub1ZFIhB07dpiKiooC37VnpzLeQTrTxeI5IHTYuAcdti8GBjgcjgeATcBvysrKop047ymRkhNP6Vc26loLyMrZQVHzN3zd7WJ67lHxjxXlXI2Ie+RaysMG0p0FLMOKoI5yw4CeJx88xnlPzzQr7+yoQ8q3ULvTzbc7BS7daUOVoGfTmCycWyrR+kWujJbyUfQnPJKb8GOLHOMMYdJnEREVkqJhKvQqakMKAU0BtO04aV+3ezeBgAUnahSDSDaamCLUhSjMyEbZ5aU1kIwxfTXN1R5Sck7s1ujzlSEIYdqbMwjKCqJOJDkh9vnR1Zk5c2bV1KlTu6tUKkWj0cizZs2qys3NDRcWFvrHjRtXJAgCgwcPdg8fPtxbVFQUfPDBB3OXLl1ql2WZP/zhD8e8jd95553Nv/71r3PGjx/v0Gg0yl/+8pe9Op1OmTlz5r4HH3wwT1EU+vTp473hhhvckiSxbt0667hx44oURWH27Nn7AJ5++ul9M2fOzPrTn/4kpKWlhZ544onj5irMz88PTp8+PU+j0Si5ubmBP/7xj9Wnuwc2m01+8MEH9//yl7/M1+l0cjQaFSdOnNhUUFAQqq2t1Z6ob3JyciQSiQhPPPFExsyZM0/oz5SSkhK97777aiZPnlwAcNVVVzn79OkTzMvLCx+9Z6cj//dSkB0Ox53AtKOaby8rK/tfh8ORCvwdeOBA+6fA+0Al8DIwBXjx+8z7Q0jOtqBZF09VdRu5SWYGi1/zqv4yhin1fCwn8+XA/SSLXla06bCYE5CdEhmaJsZc97OzLWqMH4E+3WwIIZkhdi8bNQIv+Ot4tVc3Mkr6MufbPehLnZgjbq6+KIuPygQuzYkdj3ZVzPF5OAE7YRSdiqaQRIh0aP2wI9XbCTKXBEPVBANxuCTAJJJpiD0nXYlu3TJRdOV4AnGYLK3U7mmk9xUnDtZtbt5w4N++ABhVMnEpsQC9rkZubm74ww8/LD34+9ChQ71Dhw4tPfq+Az61R/jVpqamRt98882KE41vMpnk+fPnH6PgjRw50jNy5Mhdh7epVCrmzp17jELbv3//wNKlS8uObj/Ixo0btx78/2WXXeZbtmzZruPdeziPPvpo3fGujR8/3jV+/PhjIlqHDx/uGT58+CGL7sG5X3jhhX0H2z7++ONvT3XOiRMnOidOnOg8vO14e3aqfC8Fuays7K/AX49udzgcfYB/Ag8d5krxellZmevA9Q+A4u8p6w8iOduCNpSAj70QGULfxI0AuAqixJe5+fNOHXdcrKd3wzDei6ai6ER6qiLYjLEywhcCvdKtiAL0UhJYlxdkb5nC/9vyb3L6JVK1vQ21T2YSX7Ldfg/aPVX0zjitmIQY5xFxKd1xNkKcygcGFa3uKBEpEcJuCDjB+N3WP0kKIQhOgv5sfFEZjVoiPinmf9yVSEpPQ9HtwR8wodWGqG7cAVx0wj4NjesIhYz4g5mgA6MQxmaPBejFiHGu05lBej2Bd4CflpWVrTjQJgDbHA7HwYzoVwJfddacp4M1yYBRZ0GvNlEX6E+i202WVMlX6fHcnPUujb5E5m2ZwhdNVxAKisQlBBh2dSw470LBqFVTkGxhbwPcbK9EStaz2nQx81fUot7joW/gW6bfOopN+9ronxmHTh0rEdtVibfndPyrbkfRqWiXZSLhAwGZJ0j1FgzuRxAg5E1HkkFPiPi0WCrAroTZoEfUCAQjHeliI6qdJw3U8/u30e62E6EjpsksebHFLMgxYpzzdKZz3CxAD/zlQLaKD8rKyhTgl8B7Dofj34AReK0T5zxlBEEgNTcOfTSRvfsayWq8iSuUtXgM+dh7tXOt9hMkbzfqRBPhPvGo/RFu6BurdHQh0bebje01buYMupzplg/QZ2lIEUL8TP6U93qvIlR4DTtq3VyWF0vv1pWxJiYgRXTEaVpR9CoUwBU9LNXbcfAfSPHm83UEq5sVXyyDRRdEK8oEoyBJAvqESlrrjh+oFwzWIQhOPK4U/IIMIhhDzlgO5BgxzgM6LUivrKxs7HHaPwE+6ax5fghp+Tb2lMcTTazG1ft6xs19gHfuuYVV5t9yk2ENGbVLWTTuLuKjEn1Sc4k3ndCHPEYXo29mHO98VUODOoMH+vbmgRU3dVxI7Qa3rGFTpQtZgcExBblLo1KJRAJWzLp2kDsyD7miOlALJ1SQPe0dcTWeQIfyExd2E58aU5C7GnpRxqOAy5WMKa6Oxn3tJGd/d6BeS0uHK1+gKQeXEEXWazD63VjtJ67IGCNGjB+fCyq8Oq27DXXEitUcx7aKChIHlHD9F2v5wm9FJ8axvf9wPGYz8aVhxvWPHY1eaPQ94Fe8vcYNA38Fd34K41+FOz8BczJf7mlFqxYZkBX3I0sa40yjBK3otH5U6o7EPE5FA7ZuJ1SQnc4KJElFi9zxHCVFXJjiY9kKuhoGVUcq1daWdMyWFqp31xz33rr6z5EkNVJLX5rVAopBjSUSQmc8bvrZGDFinCNcUApyco4VlSiSYs6lqqoK+9130nt3LenNjfxy4Eg+730RhXVtGCSB6/uknXzAGF2KojQLOrXIpn1tHZkKMgdCv4lg63hZWr+3lYuz4tFrYv7HXR0xnIBW50ej6shW6RRUSLb8ExYL8Xj3EQyaaUCFohXJ0IqHKkbF6DqYNB1/U29rBmp1hKa2r497r8ezCbc7GXUkkRZBQNGrsKtjz0WMGOcDF5SCrNGqsGdbULcnoVKp+Gz1auLvfxDD+gZ6OFsYUrGdq74M8atrC9CqL6itiQHo1CoG5SXyeXnzMdfafGFKG9oZ3D3mXnEhoFUS0WoDGOUgCNCMQlBXBK27O1K9fQfBYC2hoJlGFBSjmm6xDDhdkjhTx9814Opwn5G03xIOHJvaPxRqBBrwerJQFBXtdBQJSdHHnouuyIYNG0wlJSWOg79v2bLFcOONNxaNHz/eMXXq1BxJ6jh5eOWVV+yjR4/uMWbMmB7vvPNOPIDX6xUnT57cvbi42DFx4sTCmpoazdHju1wu1a233ppfXFzsGDt2bNGXX35pgo5CIGPGjCkaN25c0ezZs9MAJEli+vTpWWPHji0qKSlxHCwkUlFRoZs4cWJhcXGxY9KkSQUtLS2HrD0VFRW6UaNGHSr8sHfvXm1xcbFjwoQJjnvuuSfX5/MdVyn67W9/m/naa6/Zj25fu3at5a677so7vO3JJ5/MWLRo0XG/SOfOnZu6ceNGYyAQEBYsWHBMlaUtW7YYJkyY4CgpKXHccsstBQ0NDWqA119/PemGG27oceONNxZ99NFHtoP7eu+99+ZMmDDBMWbMmKKNGzeetPrf4XRmoZDzgrTuNravreWKm4axZs1qRmVlMTDfhHnbf9B7u9EcZ2DCgJh7xYXKFQVJPLVsF7WuABlxhkPtn+xsQFFgZFHMd/BCQKdNJSyATQrh0ZloDsr4lBxMQRd4m8ByZJouRVEQxVaUYAFtSocilGW1HGf0GOczyfFmIIA/YkeKajAmVtJY1U5m0ZHuNPUNawHwthYgRloBE+hVpAkx94ozxZaPP0r89vPPOrV0Zc8rrmwZcO3o1hPd89xzz6WsWLEi8WAJZYDnn38+fcqUKfXXX3+9++67785dvny57bLLLvMtWbIkedmyZd8Gg0Hhuuuu611cXOxcuHBhUo8ePfyPPPJI/aJFixLnzZuXOmvWrP2Hz/HSSy+lDBw4sP2+++5rKi0t1T344IN5y5cv3zVz5szsF198cU9eXl7o1ltvzf/6668NVVVVunA4LH7wwQel69evNz311FPd3njjjT2PPfZY9rRp02oHDx7se++99+LKy8v1SUlJvsWLFye8+eabKW63+5Bi/vTTT3e76aabmidNmtS2YMGCpHnz5qU8/PDDR+RvbmpqUk+bNi23pqZGl5ubG6QTmD59egNAZWWldunSpUm33377EcVMnnrqqazf/e531QMGDAjMnz8/6YUXXki97777Gv75z38mf/jhh7uCwaB48803O6666qr2F154ITU/Pz8wb968fVu3bjXs2LHDMGjQoJNW8TvIBWcmze6diBSVSTcXkpmZyScrV2Ju3YXKkI7Zm8vUX/RFrbrgtiXGAa4o7HgJ/uIoK/Ky7fVkJxrplX7iqlkxugYma8dLcpwUQNaraEIhGD1gIGk+Nnd+NNqOShVG8SfhkwXQCWTGStR3SdKS41AEcGuMCG4LtoT9VO46ttBXTc0qIhEtkf09UKSOOgmKXk1G7MWpy5GdnR168cUXj/C/cjgcfpfLpZJlGb/fr9JoNIrdbo8uX758p1arVRoaGjQajUYWRZH77ruv6aGHHqoHqKur01osFunoOe6+++7GO+64oxkgGo0KWq1WcbvdYiQSEfLz80OiKDJ48OD2zz//3Lp582bzkCFD3ACDBw/2lZeXm/x+v+B0OjWrVq2KKykpcWzZssU8cOBAH4DNZpPeeuutIwqIVFVVGUaNGuUGGDRokPebb74xHy2T1+sV77///rprr7227XT3bO3atZaf/exnBZMnT+4+atSons8880wqwP3335/z8ccfW59//vm06upqw0Gr+EFeeOGFvQMGDAgASJIk6HQ6ZfPmzaY+ffp49Xq9EhcXJ2VkZIS2bdtm2LBhg1Wj0Si33HJLwQsvvJB21VVXtZ+OjBecBTm9IA69ScO+ra1MnjyZ6upqfD4fdRuhptlFZmGs8tWFTEGymVSrns8rmpk0MAsApy/Ml3taueuKvJjv4AWCNbk7Tg9Y8aPo1TQTJBw6YPlrKoW84Ufc7/MdSPHmzQQEdGI4Vi2ti5IaZwWtiEvRYWkK4+vho3rvl0CfQ/coikIg8DUeTwbaUBIBOoxgGpVEUlzMTetMMeDa0a0ns/aeCSZMmOCqrKw8Iu1Vbm5uaM6cOVnz589PM5lM0rBhwzwAGo2Gl19+2T5//vyMkpKSxoP3q9Vqbr755sLKykrDq6++Wn70HPHx8RJAfX29esaMGXm/+c1vqtvb21VGo/GQMm02m6Xq6mqdz+dTWa3WQ+2iKCpNTU2a6upq/ZAhQ9ofe+yx2mnTpmUvXrw4cfLkya2jR492Hz1ffn6+f9myZXG/+MUvWj/++OO4YDB4jOUwLy8vnJeXF16zZs1pVc46+D3a2NioXbFixc5QKCQOHTq074wZMxoO3jN16tT6PXv2GA5UHjxEenp6BGDdunWmt99+O/kf//hH2apVq6xms/nQeo1Go9Te3q5yu93q9vZ29T/+8Y+Kv//974m///3vu82bN2/fqcp5wZlKRZVIbr8k9m1rQVBE8vLycOT3oHpHGzl9EhHFmAJ0ISMIAlf2SOazXU00tXecGC3bXo8kK9wQC9y8YIjPLATAJrSj6FU0oxD1AIb477Qgt7Z2GF98/o5nxKQEYrluuyhpRh2KToVb1GCq7ciBHFVvQpH/zzfd5dqCKLqQQn0QEPAcKCxkkH1YEo9x1YzRBZk7d27mG2+8Ubp69eqdo0ePbn388cczD16bMmVK87p167Z+/fXXljVr1hw6Unj77bfLFy1aVPbAAw90r6io0JWUlDhKSkocCxcuTALYtm2b4dZbb3VMnTq1Zvjw4V6r1SoFAoFDfsRer1dltVolk8kkeb3eQ+2KogjJyckRg8EgjxgxwiOKIiNGjHDv2LHjuP4+jz/+eM3atWvjSkpKHIIgKDabLfruu+/GH5Rp8+bNJ/Xn1ev1ciQSOUKp8vv9qoOuKHl5eQGNRoPZbJa1Wu13B3d8B2+//Xb873//++xXX321Ijk5OWqxWCS/339ovX6/X2Wz2SSr1RodNWqUC+D66693lZWVnZZ/0wWnIAPkDbATDkrs29HxVr9tbQ3hoESf4bHCIDHgrivyiMoKL63dg9sf4c+ryumXGRdzr7iAsCUmI0W12EQnil5FBPD4FLD3gKZjFWSnswIAl6/DD9USaceWHCsn3BVJ1KlRtCJuRNw+HZFQEuakchqqXIfuKStbhCyLhJovR5GdtOpNqNQC5qAPS2LM9eZCwGw2Rw9acVNSUiIej0dVWlqqu+OOO7rLsoxGo1G0Wq0sCIIyd+7c1MWLF/9/9u48rqoy/wP455xzz90XBC6LiHDZDjiWmqZSlliTMyoqm8v0M3WkGiqHMdTSnFRGDUdjLJfGzEpopDTSLDVtCsk0l1QkIzmgAoqCLLLcfTvn9wfiIIpLaaY879fLV91zzn2eh+vh+r3P/T7P1/Pi89w0TSM8PNyem5vL5+bm8pMnT64rKiqST5s2LWTp0qWnhg0b1gwAOp1OkEgk4okTJ2SCIGDfvn3aAQMGmPr27WvavXu3DmhZxGcwGKxKpVIMCAiw7d69Ww0ABw8e1ISFhVk7Gn9eXp525syZlbm5uTzDMIiOjm5OTExsaB1Tv379rpvLGxUVZT1x4oTy3LlzLABYrVaqsLBQ3bt37+s+l6ZpiKJ4xYxlTk6O50cffeSTk5PDh4aGOgCgX79+5sLCQrXVaqUaGxuZiooKec+ePa29evUyff311zoA2LNnjyY4OLjDn/dqOl2KBQAERnnCw1eJPRtL4d1Ng8KvziDoPq8ON3snOpcgLxUSHwhAzoHTOFzRgAaLE1lTepL0ik5EwjJwWbXQMfUQZS0TEw02GvCJBI590rKTRZv7wWg6BZeLxQW7BKIc8IYNrEx+p4ZP3EY6CQNRxsAIoFaQwU/aEwy7Gwf27EKcIQGC4EKzcReMxmCYT3pCZt6DGs19oGQ0lFYTtGQGuVNIT0+vSE1NDWUYRmRZVsjIyKgwGAyOiIgIS1xcXCRFUYiOjm6KiYkxRUZG2tLS0gybN2/WC4KABQsWlLVvb8mSJQFOp5NeuHBhdwBQqVSurKysk/PmzatIS0szCIJADRgwoHngwIFmt9uNvXv3auPi4iJFUcTixYvLAWDRokXl6enp3V9//XXK39/fPm/evLr2/bQKCwuzTZ8+PYRlWdFgMFj/+c9/nr7Z10Cn0wlpaWlnnn766TCZTCa4XC563LhxNeHh4fazZ89esxKbj4+P0+l0UvPmzQtIT08/CwAulwuZmZnd9Xq94y9/+UsYADzwwAPGV1555dz48eNrxowZEykIAqZOnXpWoVCI06ZNq5o5c2bw6NGjIyUSifj6669f8bpeS6cMkBkJjd9P7oFPlhzCf17dB4oCHhxuuNPDIn5D0p7gUGO0o/S8CamPheN3XW8qxYq4B4gWHTxV9RDpiwGyKIHo3QOU/T3AWAVo/1clz2Iuh9ulwVlKgChn4MN2yi/nOgWdhAGkNEyCiCa3Dk94Poj9F76BSVwPUYxHefkWMIwJMmosRCcFfd0PqOnWF4JCApXLAVZOPjjdiwwGg+Ozzz4rbn38yCOPmB555JHi9tddzKm9LK/Wz8/PlZOTU3qt9rOysq66CXt0dLS5bb8AwDAMMjMzrwhoe/fubd28eTPf/nirAwcOFLb+/8CBA83btm278uuyq5g9e/a5js7Fx8c3xsfHN7Y/HhMTY4yJiTG273vFihXlrcd27NjxU9vnSCQSHD58+OjV+pkyZUrdlClTLgv4vby83O+9917Hm9dfR6cMkAHA16BFzIRIXDhrBjfQD/ruZGUx8T9+OjnW/bn/nR4GcQfRNg94epRDvFgYphaAWxHZ8qZ5/qfLAmTgAkSbF6okFEQFAz85KVN/r/JgJRBlDAQAFsEParsIh7kffPyPYFfeGjjdK+FwdAHb9DhEiRFBZ0tR05uCQymBjnwJRRB3jU49zdHj4a4YNDacBMcEQVxB4vaATnoBFAsAImohwCkxALQEqNh76TpRFMFKTaD0qouAAAAgAElEQVStXqijWYgKCbppr9gRibhHqBkauPgNgUX0BYzV6BHxEgAKIrUEFGWHISgDVT+5YPU8C5fcC1aqZW9sb1KFkyDuGp06QCYIguiIlNaDoUTIBTtoCXAeIqx1diCgL1C2+9J1jY2nwTBuiCZfWMG0FAnx8LiDIyduJ5qiwF4sN22nPAFjFYK4PjD/tAJVRWPg57MQ9rPhsDQ7UM9+i7ouLdtFinIJfEgVPYK4a5AAmSAI4ipUypZt2pQuG0SZiGrRDVtVE2B4FDh3BLC1bB16vnQHAKDR2LKLk6iQwKAnOxXcyxTyluxEK6MDms+BoihEjxqApqKhOL2Hw+EdFeh+nydsjQdRp2m5j0Q5Ax+V4lrNEgTxG0ICZIIgiKvQegYDAFSCBaKcQhXccNZbWwJkUQAq9gEAGs7sBwDUG1uCYkYiwN+P7Jl9L1MqW3LMLYwa1qaW9Ul+Bh16PRaIs3wDaIZC0FA5vBvcqNG07FohKhj4kSp6BHHXIAEyQRDEVXgGcgAANYwQlRLUAXA2OoBu/QGJHDiZBwBoNLUESDWmltlBFW2D2tPzjoyZ+HXoZBJQNGBmFChrvtCy7R+AQWPD8ZflMXg681HUSCvh1wDUarxa/qGV0uiqI7vhEMTdggTIBEEQV9ElxACXQwkNmiEoWbgpCg1mEaJEBnDDgMPrgK/mwyZxwOVQoNrlAmhAI9hB02Qx1r2si1QCSkrDyMhw2gXAdsUuVihrKoP/BRF1MjWUEgAUhW5e5IPTvWr//v2qpKQkrvVxQUGBYtSoUZHx8fFcampqsNvdUgn57bff1sfGxkaNHDky6uOPP+4CACaTiZ40aVJoYmIiN27cuIjKykq2ffsWi4VKTk4OTUhI4CZMmBBWU1NzaRcys9lMx8XFRR4/flwOAG63G9OnT+8+evToyKSkJK60tFQGAK1V8JKSkrgBAwb0mj9/fkBH4z98+LBy5MiRUQkJCdzLL78c2Dr+9lwuF5KTk0N27NhxRSGJ7Oxsr7Z9AMCzzz4bkp+f3+FXKa+88kpgRUWFtL6+nvnoo4+u+gtztT7nzJnTbeTIkVGjRo2K3LNnjwoAzp07x44dOzYiISGBmzRpUmhzc/NNxby3bJs3juMoAJUAWvfy28fz/GyO40YCmAvABeA9nuffuVV9EgRB3C6MjIXbpINO0Qi3SgkGNtQIFASjA8ywpUDFd8CeZcB9PSFYPVDDiICchhecd3roxG3mJZVAlLaUm65yy4Hmcy1lyNsoazyFBxsonGdkkLKA1G6Dp1fYHRpx52D67pyX+cj5W7oAQPWAb536oa7117pm2bJlvl988YVXawllAFi+fHnXlJSUquHDhzc999xzhu3bt+sGDhxozs3N9dm2bdtPNpuNGjZsWM/ExMSGdevWeUdFRVlmzZpVlZ2d7bVq1Sq/jIyMM237ePfdd33CwsKss2fPPrdhw4Yuy5Yt88/IyDjz/fffK+fPnx9UV1d3aW/Jzz77zMPhcNBbtmwp3rdvn2rhwoXdsrKyTubm5vIAcPLkSWlqamro9OnTqzoa/9y5c4NeeeWV0w8//LB5wYIFXTds2OD55JNPXmg7phMnTshmzJhhqKurYwF0WHTkZrz22mtnACA/P1+Tl5fnMX78+Ov2efToUcWxY8fUW7ZsOX7ixAnZtGnTQrZv33585cqVfqNGjaqfMGFCfUZGRtesrCzvv/71rzU3OpZbOYMcCuAIz/MxF//M5jiOBbAMwFAAgwE8y3Ecqb9KEMRdQbRooKMbISpa5hLOQ4TjnBlQ64Gx2XD8bixYuQmweqJWKoeoksCXbOV1z9PLpXArGDRSDJqsMqC56opras+UQuYQcZ5iQEkpKO0WyFSqOzBa4nYLCgqyr1y58rKCFBzHWRobGxlBEGCxWBiWZUW9Xu/avn17kVQqFaurq1mWZQWapjF16tSaGTNmVAHAuXPnpBqN5orp2oKCAnVMTEwTAPzhD39oPnTokBYA7HY79e9///tEYGCgrfXaQ4cOqQcNGtQEtBQSKSkpuezG+8c//tE9LS2tUqPRCB2Nv66uTvrwww+bAaBfv36mw4cPX7F3pclkol977bXyPn36GNufu57s7GyvZ555JuSpp54Ke/zxx3+XnZ3tBbTMch8/fly+evVqv6NHj2refffdyz7wXK3PgIAAp1wuF+x2O9Xc3MxIJBIRABYuXHjmT3/6U73b7UZ1dTXbWvr7Rt3KQiF9AQRwHLcLgBXAiwBkAE7wPN8AABzH7QHwKICPb2G/BEEQtwVl1aILU3+pWEiV6IbzrAmKSE+g+0Ccp/wh4x+H3eSLeokMbrUUXRUkc+1e56NgIcgYXKAoWGwyoPnsZecFUYCjohxuVoE6CtDJKaicDlKu/jZTP9S1/nqzvbdDQkJCY1lZ2WXVgQwGg33JkiXd165d669SqdyDBw82AgDLsli9erV+7dq1AUlJSedbr5dIJBg7dmxEWVmZYs2aNSXt+zCbzYxOp3MDgEajcZvNZgYABg0aZL7atW2DQZqmRafTCZZlUVhYqDCbzczjjz9+KcC82vj9/f3t+fn56piYGFNeXp6H1Wq94pN/7969rTfzOrUhAoDJZGI+/PDD0pKSEllKSkrYxIkTL/3dpaSkVOfk5OiTk5Mvm5m+Wp8SiUSkKApDhw7taTabmTlz5lRc/LnhcDio4cOH93A4HPSLL7545SfZa/hZ7+QcxyVzHPdj2z8AqgFk8Dw/BMBrAP4DQAugqc1TjQDIKgWCIO4KEqcWOskFgKHBUk6cEW1wnDNdOn+2rBA0LaK+KRhuioaolCBAS2YJ73XeUhaijIEVgMuqg9h0eYB8uvk0utRa0aALhADAqWCgEVx3ZKzEnZGZmRmYlZVVnJeXVxQbG1s/d+7cwNZzKSkptXv37i08cuSIZteuXZfycTdu3FiSnZ3NT5s2LbS0tFTWmi+8bt06b5VK5TYajTQAGI1GRqVSdTgbqlKp3CaT6VJAK4oixbItac2ffPKJV2JiYu31xr948eKyNWvW+I8dOzbC09PT5eHh4Vq9erW+dUxXy5NuTy6XCw6H47I402q10gqFQgCAiIgICwAEBgY6nE7nz55Z+PDDD728vLycu3btOvb1118fW716ddczZ86wACCVSsWvvvqqaO7cueXTp0833Ey7P2tAPM+/y/N8z7Z/AHwPYMvF83sAdEVLQNw2GVsD4MrVDARBEL9BMrELNGgGALASJ84KDjgq//dtYk1lIQDgTENL5piolKB7ly5XNkTcU3QSBqKs5Z9PWvRDfVP5ZeeL6otaFuh16QYAsKtYeNBk9rgzUavVrtZZXF9fX6fRaGSKi4tlU6ZMCRUEASzLilKpVKAoSszMzPRbv36958XnuWmaRnh4uD03N5fPzc3lJ0+eXNe7d29TXl6eBwDs3LlT26tXrw7TGvr27WvavXu3DgD27dunMhgMl2ZdDx06pHniiSeaOnpuq//+978ey5cvP7Vx48aSxsZGZtCgQc0pKSm1rWPq1q3bdRdb3H///Zbvv/9e2xrY19fXM+Xl5YoePXrYAFzzGxWKokTx4u4w16PT6VwKhcItkUig0WjcLMsKZrOZnjlzZvfWDyBqtVqgafrGGrzoVqZYzANQD2AJx3G9AJwB8BOAcI7jPAGY0JJe8fot7JMgCOK2UUn9ocG3AABK6kaNjYbQ5IBgcYJWsjDZyqACUG2UAypAUEoQ6keWWdzrPFgGkLVM0ImUHrzpJ7RNlPyp/icENNCo9wkCAFg0Cuhpxx0YKXGnpKenV6SmpoYyDCOyLCtkZGRUGAwGR0REhCUuLi6SoihER0c3xcTEmCIjI21paWmGzZs36wVBwIIFC8rat5ecnFz7t7/9LTg+Pp5jWVZ88803T3XU9+jRoxv37t2rjYuLixRFEYsXLy5vPdfQ0MB6e3tfNxc3ODjYNmHCBE4ulwt9+/Y1Dh8+/LpBdXuRkZH2MWPG1IwZMyZSqVS6XS4X9dJLL51uzX2+ltDQUPupU6cUK1eu9Jk6deo1F9aNGzfuwpEjR9RxcXGRbrcbw4YNuxAZGWmfMmVKzauvvhr01ltviRRFIT09/fTNjP9WBsiLAfyH47gRaNmxYjLP806O49IA7ETLbPV7PM+fvVYjBEEQvxVdPIMvzSDTMjfqaSXcEGE/Y4Q0RAdBch6Ci0WTkwIFAZDR6Ka5Yi0LcY9pmUFuCZAdki7gbbV4uM35ovoiDGhi8V2IFwDArZJCL5Iy0/cyg8Hg+Oyzz4pbHz/yyCOmRx55pLj9dbNmzaoCcFkurJ+fnysnJ6e0/bVtqVQqYe3atR0Gxa07VAAAwzDIzMy8ajC4b9++H25k/CNHjmwaOXLkDQXFK1asKO/o3LPPPlv77LPPXpHS0TbfWKFQiN9+++2x9j/H119/XXQjfUokkqv+vFFRUba27d2sWxYgX1yIN+Iqxz8H8Pmt6ocgCOLX4m0IBVvLQCJzglFQcFEMKhk3lHvPwWFthEzZDKfZGxcYQCJxQyK4oZWQXSzudW1TLCwSD5Q4/5eXLogCSmp+gledA+dZNVQQYZPQ8JGSMtMEcTchy60JgiA6oAruCpfRCxrBCFbZEuAcU16AvaQBJ7cWQqEwwmb0Q5VcAVYuQEt2KugUPFgJwNKgAZhYFeqMAKwty2vKm8vhWW0B7RZQxcjgSbd8m+xPykwTxF2FBMgEQRAdYDw9ITRpoUMTBLUcAHDMXgdaKcFZVzXkchOaGwNxgZWBUjHwIu+onYKGoUGBglxCo5lRgLkgRdP5lgWbBecLYDjfshboHCRQMS3pngGk/DhB3FXI2zlBEEQHKJoG1ayGjr4Au0IOFaw4YxXhldwTdZ6VoCgRZ5paFmK5dHL4y6XXaZG4F1AUBQVFgWVpNDAy+Ncz+OrUDgDA9rLtuO+CGoJSjSpQkEhaZpC7epAdTgnibkICZIIgiGtgLTp4oBE2GQsNZUa1W44G2gQRLXv8n7XoAQBWLw26a8kCvc5CTdOgZDTqaRbdL1DYXvM9qs3V+L76e9x3QQVzj35wAhDYlhlkL+l1t40lCOI3hATIBEEQ16AUukCLZlgkcmhpGxokHjj2QyGUypYF3jVWGeSCAw6NAoEe2js8WuLXopXQEOQM6kHDyyTF9/bzWFGwAhAFeJxpRK1fS00Cp1QELQhk8SZB3GVIgEwQBHENWoUvdGiEQEugk4hw0iwOHCuFwqMGDnMX1IKCRjQDFAV/hfxOD5f4lXhIJHAoGAgU0AwvsE4Rn538DI/RvwMsVpxXeAAAnDIBKhdZvHmv279/vyopKYlrfVxQUKAYNWpUZHx8PJeamhrsdrd8k/D222/rY2Njo0aOHBn18ccfdwEAk8lET5o0KTQxMZEbN25cxNWq1DU2NjITJ04MS0xM5EaPHh353XffqQCgtLRUNm7cuIjExERu/Pjx4XV1dQwALF682H/kyJFRcXFxkQcOHFACwPnz5yWt/cTFxUWeOHHi0t6DNTU1kiFDhvS0Wq0U0FLUY8KECWHx8fHcpEmTQs+fP9/hrmcrV670mT9/fkD742VlZdJRo0ZFtj32zjvv6DMyMrp21FZ2drbX559/rgOA1atX62+0z88//1wXGxsbNXr06Mj33nvPGwBcLhdmz54dGBcXFzlixIiorVu33lSe063cB5kgCOKe08XXH2pnESAFBEUzYAdONbkRpa6GpboXzrMs/NGyzacv+Rq90/CUSeBQtfwTWqcJwMfHiuGetwMe+YWoww84R8lBA3ApAI143boIxC1w8OBBr6NHj3pf/8ob17t377r+/fvXX+uaZcuW+X7xxRdecrn80l/08uXLu6akpFQNHz686bnnnjNs375dN3DgQHNubq7Ptm3bfrLZbNSwYcN6JiYmNqxbt847KirKMmvWrKrs7GyvVatW+WVkZJxp28dbb73l279//+apU6fWFBcXy9LS0kK2b99+fM6cOUEvvvji2ejoaPOmTZs8SkpK5BUVFeKRI0c0W7ZsOX7mzBnpCy+8ELp169bjCxcu7BYbG3thzJgxDbt27dLwPC8PCwuz79y5U/vGG290a2houPQG9sYbb/j37t3bNGPGjOqvvvpKk5GREfDGG29UtB2TxWKhpk+fHnz8+HFVTExMw614vdvuj/z+++93TUlJuWwP5av16XA4qMzMzMBNmzYdV6lUQmJiYuTw4cMbv/zyS53L5aI+/fTT4srKSvbTTz+9qTKnZAaZIAjiGjyC/SBvUgEAzunrIYEbtZQMHlIXis/3goNhoJO07IPrIyVzDp2Fj4yFQ9USTzRo/KE85UK4zBO2nV9D4ueHs4IMPhBhUyjQhSH/1N7LgoKC7CtXrjzZ9hjHcZbGxkZGEARYLBaGZVlRr9e7tm/fXiSVSsXq6mqWZVmBpmlMnTq1ZsaMGVUAcO7cOalGo7mi0t1zzz13fsqUKbUA4HK5KKlUKlosFqqhoYH96quvPJKSkriCggJ1//79zQcOHFAPGDCgmaZpBAUFOdxuN1VTUyM5duyYurq6Wjpu3LiILVu2eA4ePNgIADRN44MPPuA1Go2rtb+ysjL5Y4891gQADz30kOmHH364YoGFzWaj4+Pj66dMmVLV/tz1lJWVSUePHh35zDPPhAwfPjxqxowZ3QEgIyOj6zvvvKNfunSpn8lkYmbOnNn9en0eP35c3rVrV7unp6dbJpOJ999/v2nPnj2avXv3an18fBwTJkwImzVrVtAf//jHm6oGSN7NCYIgrkEW4A/lDzJAD9jZIPi4TuEU/CCIFI42hYAV3JBrnAAAPxmZQe4svGQsXCoJJAAaNL4w/iCD98kCmPbuhefEiai8wMIPAkoUSoSR++JX0b9///rrzfbeDgkJCY1lZWWXbWFjMBjsS5Ys6b527Vp/lUrlbg1GWZbF6tWr9WvXrg1ISko633q9RCLB2LFjI8rKyhRr1qwpad9Hly5d3ABQVVUlmTlzZsjLL798+sKFC5LTp0/LBw0a1DxnzpyzL774YtD69eu9TCYT4+HhcSnYVSqV7qamJqampkaq1WpdGzZsKFm8eLH/m2++6TdnzpxzTzzxRHP7/iIiIqxffvmlxwMPPGDdunWrh91uv+JTnqenp3vo0KHN2dnZXjfzelEUJQLA2bNn5R988EGJUqkUYmJi7quqqroUk86cObM6NzfXd+nSpZdVyLtan83NzYxarb70oUKlUrmNRiPT1NQkOX36tDw7O/vE7t271S+//HLwJ598csOV9cjHWoIgiGuQ+PnDo6zlvVdKaRGiuwAzNChv6o7jLg0i7FWwqNVgAXiQhVidhk7CACwNT1BokOrgskhQnbkKcLmge7gHzkKKLpQbVrkKeiXJTe9sMjMzA7Oysorz8vKKYmNj6+fOnRvYei4lJaV27969hUeOHNHs2rXrUgWZjRs3lmRnZ/PTpk0LLS0tlSUlJXFJSUncunXrvAHghx9+UEycOJFLTU2tjImJMXl6eroUCoUwZMgQI03TGDJkSNOPP/6oUqvVbrPZfCm+s1gsjIeHh1uj0bhHjBjRCABDhw5tPH78uLKj8U+bNq3q7NmzssTERK6yslKm1+ud3377rbp1TNu2bbtuPq9CoRCcTudlcabFYqFlMpkAAP7+/jatVitIJBJ4eno6bTbbz4pJtVqt22KxXHqu2WxmtFqtW6vVuocMGdJI0zRiYmJMlZWVN/WLSAJkgiCIa2DUKviWO0CJArRKOyb1fxw03PjgpydhoimE2ipwQe0NvZQlC7E6kdYPQ54UhQu0HLRUhPEADxnHwWKtwAVQUIlu2GQK+KpVd3i0xK9NrVa7tFqtGwB8fX2dRqORKS4ulk2ZMiVUEASwLCtKpVKBoigxMzPTb/369Z4Xn+emaRrh4eH23NxcPjc3l588eXJdUVGRfNq0aSFLly49NWzYsGYAUCqVYkBAgG337t1qADh48KAmLCzM2r9/f9O+fft0brcbFRUVUkEQoNfrXT179jTu3LlTBwD79u3ThISE2Doa/7fffqsZP3587SeffMIHBwfb7r//ftMjjzxiah3TiBEjrpuu4OPj47JarXRRUZEcaFk0t3//fm3v3r0tAK77fimK4g291lFRUbbKykp5fX09Y7fbqaNHj6oHDBhgeuCBB4zffPONDgCOHj2q8PHxcdxQgxeRFAuCIIjr0GtYqEUzZAoXaC85+vvloeB8b3g5HPA3nUCTdjDCFKRISGeiY1sCZBUDVLtZGOYMhnBoJyTT/439G1cACAIlWiDSNHxUHU7UEfeo9PT0itTU1FCGYUSWZYWMjIwKg8HgiIiIsMTFxUVSFIXo6OimmJgYU2RkpC0tLc2wefNmvSAIWLBgQVn79pYsWRLgdDrphQsXdgcAlUrlysrKOrlo0aLy9PT07q+//jrl7+9vnzdvXp1MJhP79OljiouLixRFkfr73/9+GgBeffXVylmzZgV9/PHHPiqVyr1ixYpTHY0/IiLCNnPmTMPSpUvh7e3tyMzMLL/Z14CmaSxYsKB89uzZwTRNw+VyUY8++mjjkCFDjO1TUq4mKCjI+vzzzxveeuutK16PtqRSqTh9+vQzkyZNihAEAaNHj67r1q2bc/LkyXUvvfRS0KhRoyJFUcT8+fMrrtVOe9SNRui/poSEBHHTpk13ehjEL8Bx3GGe5/vd6nbJvXH3u133BnD77o8z81/DqAED4S87gan0TkhdR8FvioF3hYBKdS1WTvo7hgf7Y1WPoFved2dzt7x37GkwIunoSQzKr8JRmxt7h12Ab/5fgac+xdvvf40MVzRGuIrxyYjH8VaPICT43tQCeuIqrnZvFBYWlvfq1avuTo2JuPsVFhZ69+rVK7j9cZJiQRAEcR1qzgBlA4tGtx4y4SiE5h6w1Z9HtaIGRrknbHIZAshCrE6lNcWCYWm4KArHHIEAzQJfvIxid1d4gIJDbInbPFmSm04QdxsSIBMEQVyHLDwcXZpNaLAHoMz8KOTiDNCML1wMhT3+D0GkKATISYpFZ+LBtmQoOhQt/z1aaQFCHwPqT6CY7opQRgJK0rK405Ml2YwEcbchATJBEMR1yMLC4Fd7BkYZi32HJ6LymAyedF/cp/VFiTYEAEiA3Mm0ziDXKCRQAeCr7cDYLLhmnMQpN4tguQR2uQIACZAJ4m5EAmSCIIjrYDw8ENp4Gi4JhbAGEQ3VFhjKv4GcexDixRlEkmLRuagYGjSAWhmNSDA4aaIBVoEyowR2AD6sAKu8ZfcKEiATxN3nlv3Wchw3C8AfLz70AODH87wfx3EvAngaQGu5wL/wPH/DGzUTBEH8FnRXtswQG1UMevlYoM//Abu0E0GLLW+j3cgMcqdCURS0DAOjhEK4CHwsSGB3uXGouAYAoBVNsMiVkFGAklTSI4i7zi0LkHmeXwxgMQBwHLcVwEsXT/UFMJHn+cO3qi+CIIhfW5CfDwDgS50FSXXfgZLLsUfwgIc3C6uEhoYUCel0PKUMmqU0utFOuEUaJdUm5B45i26gIbGeh7mLGnop+WaBIO5Gt/xjLcdxCQAaeJ7/8uKhvgBmcxy3h+O42be6P4IgiF9D5B+HAgAC7Kch7N8Lec+eOFZlglwrQ4CMzB53RnopC1rGwFvSUmp84dYfcbjGiNG0FDXGcpjUHvAmAXKnsH//flVSUhLX+rigoEAxatSoyPj4eC41NTXY7W5ZsPn222/rY2Njo0aOHBn18ccfdwEAk8lET5o0KTQxMZEbN25cRGVl5RU3jcVioZKTk0MTEhK4CRMmhNXU1EgAYMWKFT5PPPHE71or3BUXF8s6uvbgwYPKhIQELj4+nktOTg6xWq2XKnW0H//hw4eVI0eOjEpISOBefvnlwNbxt/X1119rRo8eHZmYmMglJyeHtK3eBwDZ2dle8+fPD2h77Nlnnw3Jz8/XoAOvvPJKYEVFhbS+vp756KOPPK92jcvlQnJycsiOHTu0bY+XlpbKhg4d2qP18alTp6SJiYlcQkIC9/zzzxvaj+96ftYMMsdxyQBebHf4zzzPfw9gNoA/tTn+EYBVAJoBbOY4Lpbn+a0/p1+CIIg7xTs0BNrS/fAVmqGqrYLz5Vkw7nFCJqPJAr1OyouVgJFJYJMCzzplWFPeCBZAfIQPcr6tgVmlQaSU5B//Ws5UZntVV232vpVt+vnH1wV2m1h/rWuWLVvm+8UXX3jJ5XKh9djy5cu7pqSkVA0fPrzpueeeM2zfvl03cOBAc25urs+2bdt+stls1LBhw3omJiY2rFu3zjsqKsoya9asquzsbK9Vq1b5ZWRknGnbx7vvvusTFhZmnT179rkNGzZ0WbZsmX9GRsaZ48ePqzIyMsr69etnab12xYoVvu2vXbRo0Zm5c+cGr1ix4mR4eLj9/fff966oqJBGRkbarzb+uXPnBr3yyiunH374YfOCBQu6btiwwfPJJ5+80HZMixYtCsrJySn28/NzpaenB2RlZXk///zzNb/k9X7ttdfOAEB+fr4mLy/PY/z48Zf1eeLECdmMGTMMdXV1LIBL+1+vX7/eMycnx7epqenSh4tFixZ1GzNmTO348eMvvP/++96rVq3yfemll6pudCw/awaZ5/l3eZ7v2e7P9xzH9QDQyPP8CQDgOI4C8AbP83U8zzsAbAPQ5+f0SRAEcacFylic9/LGx+ExWC+0TIw0UyJZoNdJebISCFIapRIGT0GKP2tkSIYMfr30kFkuwCZXQU8C5HteUFCQfeXKlSfbHuM4ztLY2MgIggCLxcKwLCvq9XrX9u3bi6RSqVhdXc2yLCvQNI2pU6fWzJgxowoAzp07J9VoNFdM1xYUFKhjYmKaAOAPf/hD86FDh7QAwPO88t///rdffHw8l5mZ6dfRtSUlJTKtVutas2aNb2JiItfY2MhERkbaOxp/XV2d9OGHHzYDQL9+/UyHDx9Wtx/Tf/7zH97Pz7/e1a8AACAASURBVM8FAG63m5LJZEL7azqSnZ3t9cwzz4Q89dRTYY8//vjvsrOzvQAgKSmJO378uHz16tV+R48e1bz77ruXfeAxmUz0a6+9Vt6nTx9j2+M6nc69YcOGy9a3VVRUKIYOHdoEAAMGDDAdPXr0ip/hWm71b+7vAXzR5rEWwI8cx0UBMAN4DMB7t7hPgiCIX0Ww3hNF9/fB+5XeEL8rxwOhnvjOLZAFep2Ul1QCFwMcouU4ay5FMiIAhoJR3gxGcMEqk8Gb7GDxqwnsNrH+erO9t0NCQkJj+9LJBoPBvmTJku5r1671V6lU7sGDBxsBgGVZrF69Wr927dqApKSk863XSyQSjB07NqKsrEyxZs2akvZ9mM1mRqfTuQFAo9G4zWYzAwBPPPHEheTk5FqtVutOTk4O3bp1q+5q19bV1UmOHz+unj9//umwsDD7pEmTwvLy8iyPPfaY8Wrj9/f3t+fn56tjYmJMeXl5Hlar9YpFFl27dnUCwObNmz0OHz6smT179tkbfMlEADCZTMyHH35YWlJSIktJSQmbOPF/f3cpKSnVOTk5+uTk5MuqJPbu3dt6tQZjY2Ob2h8LCwuzbNu2zeOpp56q37Fjh4fNZrupSeFbnYPMAbhU25vn+SYArwDYBeBbAEU8z2+/xX0SBEH8KrrJpTgPCv1CvNEzQIsXRkcBAKLUijs8MuJO8GQZiBSFcy4apfJC1EgqoY7uiuLjx2CVKyBSFFmk10llZmYGZmVlFefl5RXFxsbWz507N7D1XEpKSu3evXsLjxw5otm1a9elfNyNGzeWZGdn89OmTQstLS2VteYVr1u3zlulUrmNRiMNAEajkVGpVG5BEJCSklKj1+tdMplMfPTRR5uKioqUV7vWy8vL7e/vb+vRo4dNKpWKDz30UFNhYaGyo/EvXry4bM2aNf5jx46N8PT0dHl4eLhWr16tbx1Ta570ihUrfLKysvzWrVtXqlAoxLZtyOVyweFwXBZnWq1WWqFQCAAQERFhAYDAwECH0+m85Wvi5s6dW5mfn++RlJTEURQl6nQ61808/5YOiOf5F3ie/7TdsQ94nn+Q5/lBPM/Pu5X9EQRB/JoC5VJYBRFvPPUAPnthEMocLYuzepIAuVPyujg73OQW4BvZA99W5EL9h0CU/3gMNeqWXU9IikXnpFarXVqt1g0Avr6+TqPRyBQXF8umTJkSKggCWJYVpVKpQFGUmJmZ6bd+/XrPi89z0zSN8PBwe25uLp+bm8tPnjy5rnfv3qa8vDwPANi5c6e2V69exubmZmbEiBG/MxqNtCAIOHDggOa+++6zXO3akJAQu9VqZUpLS2UAUFBQoImIiLB1NP7//ve/HsuXLz+1cePGksbGRmbQoEHNKSkpta1j6tatm3Pp0qV+BQUFmpycHF6v118RfN5///2W77//XtsarNfX1zPl5eWKHj162ICWrRI7QlGUKIpih+dvRF5ennbmzJmVubm5PMMwiI6Obr6Z55PfXIIgiBsUeDGVosblRgBNochkhRcrgS8Jgjql1gAZUhqSbuFwObai+gSPxlPFONO1ZbmNN7k3OqX09PSK1NTUUIZhRJZlhYyMjAqDweCIiIiwxMXFRVIUhejo6KaYmBhTZGSkLS0tzbB582a9IAhYsGBBWfv2kpOTa//2t78Fx8fHcyzLim+++eYpDw8P9/PPP1/5pz/9iWNZVnjwwQeNw4cPbzKbzcb218pkMjE9Pb08LS0tRBRF3HfffaYRI0ZckZbQKjg42DZhwgROLpcLffv2NQ4fPvyya6urqyXr1q3rGhoaapk4cWIEAAwdOvTCs88+21rzApGRkfYxY8bUjBkzJlKpVLpdLhf10ksvndZoNNfNVQ4NDbWfOnVKsXLlSp+pU6f+rIV/YWFhtunTp4ewLCsaDAbrP//5z9M383zql0bot0NCQoK4adOmOz0M4hfgOO4wz/P9bnW75N64+92uewO4/fdHidmGRw8W41+RgXjS3wtDv+fRhZVgQ+/Q29ZnZ3M3vXcUGi34w6ESsEfqsXJQd5xYlobwB6NRevA7bHpgPE7274n8/hwiVeQbhlvhavdGYWFhea9eveo6eg5BXE9hYaF3r169gtsfJ+V9CIIgblC4Uga9VILdF4xwCiKKzTb8jqRXdFqtM8iilMYZM6DvHozSg99BpCg49V0BAHqW5CATxN2IfPdDEARxgyiKwuAuGuRdaEaJxQaHKKKnhgTInZXnxQBZo5XiVJ0ZL6f8DbWny/HKfiukXh5gKKALSyosEsTdiMwgEwRB3IQhnhpccLrx1umWtDgyg9x5KRkaCpqGWiNDWZ0ZviFh6PHo4+BNEkiVEnizEtDXWIhEEMRvFwmQCYIgbsKjni27Mn1yvgEPe6gRrpTd4RERd5KXlIFMxaKszgwAqGq2we4SAClDFugRxF2M/PYSBEHcBL2URbSHCkaXgPfvM5AZwk7Ok5XAJhPRaHGiwexAxcVA2SkBAkj+MUHctUiATBAEcZNy7g+FjKZIcEzAi5WgQtKyBWxZvRkHyi6AolpKx5IZZIK4e5EUC4IgiJukYGgSHBMAWgJka0vlXBSeacS2Y1Xob/BEvctFioR0Ivv371clJSVxrY8LCgoUo0aNioyPj+dSU1OD3W43AODtt9/Wx8bGRo0cOTLq448/7gIAJpOJnjRpUmhiYiI3bty4iNYqdVfz6aefeqSkpBhaH3/99dea0aNHRyYmJnLJyckhZrOZBoDFixf7jxw5MiouLi7ywIEDSgA4f/68pLWfuLi4yBMnTlzKD6upqZEMGTKkp9VqpYCWoh4TJkwIi4+P5yZNmhR6/vz5K27miooK6bhx4yKSkpK4xMRErri4+LJ8s7KyMumoUaMi2x5755139BkZGV07+vmys7O9Pv/8cx0ArF69Wt/RdStXrvSZP39+QOvjgwcPKhMSErj4+HguOTk5xGq1UjabjUpJSTGMGjUq8k9/+lN4SUnJTeXDkd9egiAIgviZvFgJmtwC+nT3wL/+WwKjzYWE6B74xtaEbhcLyxC/jvcqa702Vjd438o2x/p1qZvSTV9/rWuWLVvm+8UXX3jJ5fJLBTCWL1/eNSUlpWr48OFNzz33nGH79u26gQMHmnNzc322bdv2k81mo4YNG9YzMTGxYd26dd5RUVGWWbNmVWVnZ3utWrXKLyMj40z7fmbPnh144MABbVhYmLX12KJFi4JycnKK/fz8XOnp6QFZWVneAwYMMB05ckSzZcuW42fOnJG+8MILoVu3bj2+cOHCbrGxsRfGjBnTsGvXLg3P8/KwsDD7zp07tW+88Ua3hoaGS4H5G2+84d+7d2/TjBkzqr/66itNRkZGwBtvvFHRdjxLly7t+uSTT9aMHj26cefOndolS5Z0e++9907+ktd74sSJl17r999/v2tKSkpt2/MWi4WaPn168PHjx1UxMTENACAIAubOnRu8YsWKk+Hh4fb333/fu6KiQpqfn69VKBTCZ599VlxcXCybN29e9w8//LD0RsdCZpAJgiAI4mfSSyWwCAL+OjQCRpsLNAVwwV0A/K/yInFvCwoKsq9cufKywJDjOEtjYyMjCAIsFgvDsqyo1+td27dvL5JKpWJ1dTXLsqxA0zSmTp1aM2PGjCoAOHfunFSj0biv1k+fPn1Mr7766mXV4P7zn//wfn5+LgBwu92UTCYTDhw4oB4wYEAzTdMICgpyuN1uqqamRnLs2DF1dXW1dNy4cRFbtmzxHDx4sBEAaJrGBx98wGs0mkvlosvKyuSPPfZYEwA89NBDph9++EHdfjzz5s2rHDZsWBMAuFwuSiqVXrdCXpv2paNHj4585plnQoYPHx41Y8aM7gCQkZHR9Z133tEvXbrUz2QyMTNnzuze9nk2m42Oj4+vnzJlSlXrsZKSEplWq3WtWbPGNzExkWtsbGQiIyPtJ0+eVAwePLgJaKnqd/r0afmNjg8gM8gEQRAE8bN1V7R8a+vnp8bw+/wAAEa6JeWCBMi/rind9PXXm+29HRISEhrLysou+8s2GAz2JUuWdF+7dq2/SqVytwajLMti9erV+rVr1wYkJSWdb71eIpFg7NixEWVlZYo1a9aUXK2fsWPHNuTn52vaHuvatasTADZv3uxx+PBhzezZs8+uWLHCz8PD41Kwq1Qq3U1NTUxNTY1Uq9W6NmzYULJ48WL/N99802/OnDnnnnjiieb2fUVERFi//PJLjwceeMC6detWD7vdfsWEql6vdwFAcXGx7F//+le3VatWnbiR14uiKBEAzp49K//ggw9KlEqlEBMTc19VVdWlmHTmzJnVubm5vkuXLr3sA4Gnp6d76NChzdnZ2V6tx+rq6iTHjx9Xz58//3RYWJh90qRJYXl5eZbIyEjLrl27dKNGjWo8cOCA6sKFC1KXywWJ5MZCXzKDTBAEQRA/U2sQfMbmwFv/1xdv/V9fVNocl50jOp/MzMzArKys4ry8vKLY2Nj6uXPnBraeS0lJqd27d2/hkSNHNLt27boU8G7cuLEkOzubnzZtWmhpaaksKSmJS0pK4tatW3fNtJEVK1b4ZGVl+a1bt65UoVCIarXa3ZqLDAAWi4Xx8PBwazQa94gRIxoBYOjQoY3Hjx9XdtTmtGnTqs6ePStLTEzkKisrZXq93vntt9+qW8e0bds2HQDs2rVL88ILL4QtXry4LDIy0t62DYVCITidzsviTIvFQstkMgEA/P39bVqtVpBIJPD09HTabLafFZN6eXm5/f39bT169LBJpVLxoYceaiosLFROnDixTqVSCYmJidyOHTs8wsLCLDcaHAMkQCYIgiCIn601CD5tdVw6dsbmQBcJA7WEVNHrrNRqtUur1boBwNfX12k0Gpni4mLZlClTQgVBAMuyolQqFSiKEjMzM/3Wr1/vefF5bpqmER4ebs/NzeVzc3P5yZMn13XUz9KlS/0KCgo0OTk5fOuMbv/+/U379u3Tud1uVFRUSAVBgF6vd/Xs2dO4c+dOHQDs27dPExISYuuo3W+//VYzfvz42k8++YQPDg623X///aZHHnnE1DqmESNGNO3atUuzePHiwHfffbf0wQcftLRvw8fHx2W1WumioiI5ALhcLuzfv1/bu3dvC9BSmfRaRFG87usMACEhIXar1cqUlpbKAKCgoEATERFh+/7771UPPfRQ8+bNm/nY2NgGf39/+/XaaoukWBAEQRDEz+TFMlAyNM7YLg+Qyexx55aenl6RmpoayjCMyLKskJGRUWEwGBwRERGWuLi4SIqiEB0d3RQTE2OKjIy0paWlGTZv3qwXBAELFiwou5E+qqurJevWresaGhpqmThxYgQADB069MKzzz5b26dPH1NcXFykKIrU3//+99MA8Oqrr1bOmjUr6OOPP/ZRqVTuFStWnOqo7YiICNvMmTMNS5cuhbe3tyMzM7O8/TWLFy8OdDqd1IwZMwwA0L17d9u//vWvSwv5aJrGggULymfPnh1M0zRcLhf16KOPNg4ZMsTYPiXlaoKCgqzPP/+84a233rrm6yGTycT09PTytLS0EFEUcd9995lGjBjRVFtbK5k6dWrAO++8469Wq91Lliy54me4FupGI/RfU0JCgrhp06Y7PQziF+A47jDP8/1udbvk3rj73a57AyD3x73gbnzvGHywGAaFFOvuCwEAPHqgGGFKGd67z3CdZxI342r3RmFhYXmvXr06nGEliOspLCz07tWrV3D74yTFgiAIgiB+ge5y6aUZZFEUyQwyQdwDSIBMEARBEL9AoFyK01YHRFFEvdMNqyAgUEECZIK4m/2iHGSO4+IBjOF5/smLjwcCeBOAC8CXPM+ncxxHA3gLQC8AdgBP8zx/Q1uBEARBEMRvXaBcCqNbQJPLfWkHi24yEiATxN3sZ88gcxz3JoCMdm2sBvAkgEEABnAc1wdAHAA5z/PRAGYByPz5wyUIgiCI35buF2eLT9scKLO2LJQnM8gEcXf7JSkW3wF4rvUBx3FaADKe50/yPC8C2Ang92gJlncAAM/z+wHclsU5BEEQBHEntOYbV1gd2HWhGR4SBpzypop2EQTxG3PdFAuO45IBvNju8J95nt/AcVxMm2NaAG2rsRgBhFw83tTmuJvjOAnP8y4QBEEQxF0uTCmHmqGxrbYRuxuMeMxLCwl97T1eCYL4bbtugMzz/LsA3r2BtpoBtC2BqAHQCEDZ7jhNgmOCIAjiXqFkaIz398TaypbdxoZ6ae/wiIhf2/79+1Wvv/56t9zcXB4ACgoKFPPmzQtiGEYMDAy0L1u2rJxhGLz99tv6zz//3JuiKEycOLF6zJgxDSaTiX7hhRcMJpNJIpFIxMzMzLJu3bo527bf2NjIpKamGsxmM+NyuaiXX375zEMPPWTet2+f6rXXXgtkGAYDBw5smjVrVpXb7cZLL73U/cSJE0qWZcWMjIzy8PBwe2lpqezvf/97kMvloliWFVauXHnK29vbDQClpaWyF154IfTLL7/8CQBOnTolnTlzpkEURfj5+TmWLl1aoVKphLZjKigoUCxYsKA7TdNgWVZYtmxZmZ+f36X4Lj8/X5OTk6Nfs2bNpf2W58+fHxASEmKbOHHiVUuCZ2Zm+g0aNKj5/vvvt3700Udef/7zny/bwq+jPpcvX+67Y8cOT5qm8fTTT1fFxcU1ZmZm+u3bt08HACaTiWloaGAPHDhQeKN/p7esUAjP880cxzk4jgsFcArAHwCkA+gGYCSAjRcX8R27VX0SBEEQxG/BlAA91lbWgaGAIZ6a6z+BuOWyviv32nSk8pplmW9WwgPd6iY9FHzVYK7VsmXLfL/44gsvuVx+KYBcvnx515SUlKrhw4c3Pffcc4bt27frBg4caM7NzfXZtm3bTzabjRo2bFjPxMTEhnXr1nlHRUVZZs2aVZWdne21atUqv4yMjDNt+3jrrbd8+/fv3zx16tSa4uJiWVpaWsj27duPp6enB61cufJkSEiIfeLEiWFHjhxRVFRUyBwOB71ly5biffv2qRYuXNgtKyvr5Jw5c4JefPHFs9HR0eZNmzZ5lJSUyL29vc3r16/3zMnJ8W1qamJb+1u0aFG3MWPG1I4fP/7C+++/771q1Srfl156qartmBYuXNj91VdfPd2nTx/r2rVrvVesWOG3aNGiyl/yek+fPr0aAMrKyqSbN2/2bh8gX63PGTNmVG3YsMEnLy/vR7PZTI8aNapHXFxc48W2qgHgqaeeCktLS7upsd3qbd5SAKwHcBBAAc/zBwBsBmDjOO47AMtwZboGQRAEQdzVQpQyxPl44I/eOuhYUqS2MwkKCrKvXLnyZNtjHMdZGhsbGUEQYLFYGJZlRb1e79q+fXuRVCoVq6urWZZlBZqmMXXq1JoZM2ZUAcC5c+ekGo3G3b6P55577vyUKVNqAcDlclFSqVRsamqinU4nFRYWZqdpGtHR0c27d+/WHjp0SD1o0KAmAIiOjjaXlJSoLBYL1dDQwH711VceSUlJXEFBgbp///5mANDpdO4NGzbwbfurqKhQDB06tAkABgwYYDp69Ki6/ZhWrFhxqk+fPlYAcLvdlEwmu+HKc/n5+Zr/+7//C580aVLo0KFDeyxdutQPAP76178G79ixQ7t8+XL/06dPKxYvXux/vT5VKpXg6+vrMJvNtNlsptuXsN68ebOHRqNxDx06tBk34Rf9FvM8nw8gv83j/QAGtrtGQEvgTBAEQRD3rNW/C77TQ+jUJj0UXH+92d7bISEhobF96WSDwWBfsmRJ97Vr1/qrVCr34MGDjQDAsixWr16tX7t2bUBSUtL51uslEgnGjh0bUVZWplizZk1J+z66dOniBoCqqirJzJkzQ15++eXTzc3NjFKpvBRMq9Vq9+nTp2Vms5nRarWXjtM0LdbU1LCnT5+WDxo0qHnOnDlnX3zxxaD169d7TZo0qT42NrapfX9hYWGWbdu2eTz11FP1O3bs8LDZbFdMqHbt2tUJAHv37lVt3LjR58MPP+TbX3M1rQHs+fPnpV988UWR3W6nH3nkkftnzpxZ3XpNampq1cmTJxWzZs26bNa6oz59fHwcw4cP/50gCNRTTz112XPeffdd/2XLlnVYVrsjpFAIQRAEQRDELZSZmRmYlZVVnJeXVxQbG1s/d+7cwNZzKSkptXv37i08cuSIZteuXZfycTZu3FiSnZ3NT5s2LbS0tFSWlJTEJSUlcevWrfMGgB9++EExceJELjU1tTImJsak1WrdVquVaX2+yWRitFqtW6VSuU0m06XjoihSPj4+ToVCIQwZMsRI0zSGDBnS9OOPP6o6Gv/cuXMr8/PzPZKSkjiKokSdTuf65JNPurSO6dChQ8qLY+7yj3/8I2jNmjWlPj4+l60vk8vlgtPpvGw612KxMK2pKCEhIVaWZaFWqwWpVHrDs8/t+9y5c6e2vr6e3bVr17Fvvvnmh/z8/C4HDhxQAkBRUZFcrVa7wsPD7TfafisSIBMEQRAEQdxCarXa1TqL6+vr6zQajUxxcbFsypQpoYIggGVZUSqVChRFiZmZmX7r16/3vPg8N03TCA8Pt+fm5vK5ubn85MmT64qKiuTTpk0LWbp06alhw4Y1A4BOpxMkEol44sQJmSAI2Ldvn3bAgAGmvn37mnbv3q0DgH379qkMBoNVqVSKAQEBtt27d6sB4ODBg5qwsDBrR+PPy8vTzpw5szI3N5dnGAbR0dHNiYmJDa1j6tevnyUnJ8fzo48+8snJyeFDQ0Md7duIioqynjhxQnnu3DkWAKxWK1VYWKju3bu35XqvH03TEEXxiq1grtanTqdzy2QyQSaTiQqFQlSr1a6mpiYJAHzzzTfahx9++KZSK1qRRCmCIAiCIIhbKD09vSI1NTWUYRiRZVkhIyOjwmAwOCIiIixxcXGRFEUhOjq6KSYmxhQZGWlLS0szbN68WS8IAhYsWFDWvr0lS5YEOJ1OeuHChd0BQKVSubKysk7OmzevIi0tzSAIAjVgwIDmgQMHmt1uN/bu3auNi4uLFEURixcvLgeARYsWlaenp3d//fXXKX9/f/u8efPq2vfTKiwszDZ9+vQQlmVFg8Fg/ec//3m67XmXy4XMzMzuer3e8Ze//CUMAB544AHjK6+8cq71Gp1OJ6SlpZ15+umnw2QymeByuehx48bVhIeH28+ePXvNSjo+Pj5Op9NJzZs3LyA9Pf3s9frcs2ePZfTo0ZE0TaNXr16m3//+980AUFZWJh80aNDPCpApUbzhWe1fTUJCgrhp06Y7PQziF+A47jDP87e8KAy5N+5+t+veAMj9cS8g7x1ER652bxQWFpb36tWrw0CPIK6nsLDQu1evXsHtj5MUC4IgCIIgCIJo4zeZYlFUVFTHcVzFnR4H8YsE3Y5Gyb1xT7gt9wZA7o97BHnvIDpy2947CKK932SAzPO8/k6PgfhtIvcGcS3k/iA6Qu6Ne5YgCAJF0/RvL1+U+M0TBIECIFztHEmxIAiCIAjibvVjbW2t7mKgQxA3TBAEqra2Vgfgx6ud/03OIBMEQRAEQfw/e/cd1tTZ/gH8m0UgJIBAWMoeARc4WqriwG0VZYmjjirVl1qrfVFbta8oTqxSFSettqh1M+qoVetq1YoDkVqFgLJl74QESHLy+0OxiOJobdH+7s91eV3mnOec5z6Hx3jn5sl5nketVn9QVFS0vaioqCOo6EdeDgPgd7Va/cHTdr6WT7EghBBCCCGktdCnLUIIIYQQQpqgBJkQQgghhJAmKEEmhBBCCCGkidf6S3oSiYQNYAsAdwD1AD6QSqV3Wzeq1iORSG4AaFwyMQtANIANANQATkml0vDWiq010Ph4HI2PP9DYeByNjcfR+PgDjQ1Cnu61TpAB+ALQlUqlPSQSyTsAIgGMauWYWoVEItEFwJJKpf2abLsJIABAJoAfJBJJF6lUmtxKIbYGGh8P0fh4Ao2Nh2hsPBWND9DYIORZXvcE2QvACQCQSqWJEomk+3Pa/5u5AxBIJJJTePBzWwKAL5VK7wGARCI5CWAggP9Pb2Q0Pv5A4+NxNDb+QGPjSTQ+HqCxQUgLXvc5yAYAqpu81kgkktc9qf+7KACsBTAEQAiAbx9uayQDYNgKcbUmGh9/oPHxOBobf6Cx8SQaHw/Q2CCkBa/7G0INAFGT12ypVKpurWBaWTqAu1KpVAsgXSKRVAMwbrJfBKCqVSJrPTQ+/kDj43E0Nv5AY+NJND4eoLFBSAte9wryJQDvAsDDeWK3WjecVjUVD+bJQSKRWAEQAKiVSCSOEomEhQcVgAutGF9roPHxBxofj6Ox8QcaG0+i8fEAjQ1CWvC6V5ATAAySSCS/AmABmNLK8bSmHQBiJBLJRQBaPHhjYwDsAcDBg28bX2nF+FoDjY8/0Ph4HI2NP9DYeBKNjwdobBDSAlpqmhBCCCGEkCZe9ykWhBBCCCGE/KMoQSaEEEIIIaQJSpAJIYQQQghpghJkQgghhBBCmqAEmRBCCCGEkCYoQSaEEEIIIaQJSpAJIYQQQghpghJkQgghhBBCmqAEmRBCCCGEkCYoQSaEEEIIIaQJSpAJIYQQQghpghJkQgghhBBCmqAEmRBCCCGEkCYoQSaEEEIIIaQJSpAJIYQQQghpghJkQgghhBBCmqAEmRBCCCGEkCYoQSaEEEIIIaQJSpAJIYQQQghpgtvaARBCCCGE/BlJSUlmXC53O4COoKIfeTkMgN/VavUH3bp1K2m+kxJkQgghhLyRuFzudgsLCzexWFzJZrO1rR0PeXMwDMMqLS1tX1RUtB3AyOb76dMWIYQQQt5UHcVicQ0lx+RlsdlsrVgsrsaD3z48uf8fjocQQggh5FVhU3JM/qyHY+epuTAlyIQQQgghf0FiYqJ+YGCgpPF1cnKy3siRI139/Pwks2bNstNoNACA6Oho8YgRI9x8fHzcDh061AYA5HI5e/LkyY4BAQGSMWPGuOTn3BFa0wAAIABJREFU5/Oan1+hULCCg4Md/f39JRMmTHAqKSl5NEW2traW7evr65qamqoLABqNBnPmzLEZNWqUa2BgoCQjI4MPAIGBgZLGP56enu5Llixp21L8SUlJAh8fHzd/f3/JZ599Zt0Yf3NqtRrBwcEOJ06cMGi+b9euXSZN+wCA6dOnO5w/f17U0n1cuHChdU5Ojk55eTln//79xs33nzlzRjRq1CjXgIAASXBwsENtbS0bACIiIix9fHzcfH19Xa9cuSIAgIyMDL6fn5/E399fMnfuXJuWrqEllCATQgghhPxJ69atMw8LC7NtaGhgNW6LioqyCgkJKUxISJCqVCrW8ePHDUtLS7mxsbFm8fHxaXv27JGuX7/emmEYxMTEmLq5uSni4uKkw4cPL9+8ebNF8z527Nhh5uTkpIyPj5f6+PiUr1u3zhIArl27JggKCpIUFhbyG9seOXLEqKGhgX348OG0OXPm5C9fvrwdAMTGxkpjY2Olq1evzjI1NW2YM2dOYUvxh4WF2c6fPz83Pj5eKhQKNQcOHHgiWb179y4/MDDQVSqV6r+qe7ly5co8W1vbhlu3bgnOnj1r1Hz/ihUrbKOjo+/GxcVJbWxs6nfu3GmalJQkuHHjhujw4cOpGzZsyFy2bJktACxfvtx69uzZBfHx8VKtVoujR48+cb5noS/pEUIIIeSNt/PXbJP4G/mmr/Kc/l3blU3uaVf+rDa2trb1mzZtujd37lz7xm0SiURRVVXFYRgGCoWCw+PxtGKxWH38+PHbPB4P2dnZOjwej2Gz2Zg5c2aJWq0GABQUFOiIRKInSp3JycnCadOmFQHAkCFDarZv324FAPX19aytW7feDQ0NdWhse/36daGXl1c1APTo0aM2NDT0sQR26dKlNqGhofkikYhpKf6ysjKdXr161QJA9+7d5adPnzYaP358RdPzyOVy9sqVK7O3bt36REL/PLt27TK5cOGCYV1dHbugoIA/efLkokmTJpUHBgZKli1blrNt2zaLzMxMwY4dO0yDg4PLGo/77rvvpBYWFmoA0Gg0LD6fz1y5ckXo6elZw2azYWtr26DRaFglJSXc9PR0QZ8+fWQA0Ldv35oLFy4Y+Pr6Vr1ojFRBJoQQQgj5k/z9/at4PN5j86Dt7e3rIyMjbQYOHNihoqKC27dvXxkA8Hg8bNu2TTx+/Hi3oUOHPkq8uVwugoKCXOLi4syGDRtW2byP2tpajqGhoQYARCKRpra2lgMAXl5etTY2NqrmbQ0MDB4l2Ww2W6tSPWiSkpKiV1tbyxkwYIDsWfFbWlrWnz9/XggAZ8+eNVIqlZzmMXl4eCjbt29f9xK3qpEWAORyOWf37t13t27dejcmJuaxJDskJKTIw8ND1jQ5BgArKysVACQkJBglJSWJxo8fXy6XyzlNP1QIBAJNdXU1R6vVgs1+kOYKhcJH9+xFUQWZEEIIIW+8yT3typ9X7f2nREZGWu/cuTOtY8eOddHR0eKwsDDrNWvW5AJASEhI6ZQpU8omTpzofO7cObm3t7cMAA4ePJiempqqGxIS4rR9+/aMBQsW2AHAiBEjyvX19TUymYwNADKZjKOvr9/ihFp9fX2NXC5/lAxqtVoWj/dgWnNcXJxJQEBA6fPij4iIyFq6dKnNli1bWF26dJHzeDzttm3bxKdPnzYGgPXr12e2a9dO9axz6OrqMg0NDY8VYpVKJVtPT48BABcXFwUAWFtbN6hUqhcu2G7cuNHszJkzxjExMRl6enrah8nvo+MVCgXHyMhI05gcAw+ScaFQ+FKTkKmCTAghhBDyCgmFQnVjFdfc3Fwlk8k4aWlp/KlTpzoyDAMej6fV0dFhWCyWNjIy0mLPnj3GD4/TsNlsODs71zfOGX7//ffLPDw85I1zck+ePGng7u4ua6nvbt26yX/55RdDALh8+bK+vb29snHf9evXRYMGDap+Xvw//fSTUVRUVObBgwfTq6qqOF5eXjUhISGljTE9LzkGgM6dOyuuXbtm0JjYl5eXc7Kzs/Uaq84sFqvFY1ksllarffLhJGvWrLFITk4W7d27VyoWi9UA8Pbbb8svX75sqNFokJOTo8MwDMRisdrJyUnR+IXAn3/+2aB79+4t3rOnoQoyIYQQQsgrFB4enjNr1ixHDoej5fF4zKpVq3Ls7e0bXFxcFL6+vq4sFgs9evSo7tevn9zV1bUuNDTUPiEhQcwwDJYtW5bV/HzBwcGls2fPtvPz85PweDzthg0bMlvqe9SoUVWXLl0y8PX1ddVqtYiIiMhu3FdZWckzNTV9biXVzs6ubsKECRJdXV2mW7dusnffffe5SXVzrq6u9aNHjy4ZPXq0q0Ag0KjVatann36a2zj3+VkcHR3rMzMz9TZt2mQ2c+bMEgAoKirixsTEWDk6OiomTZrkAgCDBw+umD59emmXLl3kD6+X9b///S8XAD7//PO8hQsX2q1bt45la2tb5+/v/8TUlWdhPS1DJ4QQQgh53aWkpGS7u7uXPb8lIU+XkpJi6u7ubtd8O02xIIQQQgghpAlKkAkhhBBCCGmCEmRCCCGEEEKaoASZEEIIIYSQJihBJoQQQgghpAlKkAkhhBBCCGmCEmRCCCGEkL8gMTFRPzAwUNL4Ojk5WW/kyJGufn5+klmzZtlpNA8ePRwdHS0eMWKEm4+Pj9uhQ4faAIBcLmdPnjzZMSAgQDJmzBiX/Px8XvPzKxQKVnBwsKO/v79kwoQJTiUlJVzgwapygwYN6hAYGCgJDAyUpKWl8Vtqe/XqVYG/v7/Ez89PEhwc7KBUKh+t1NE8/qSkJIGPj4+bv7+/5LPPPrNujP9p1q5dazF9+nSH5tt37dplsmTJkrZNt02fPt2hcfGOp1m4cKF1Tk6OTnl5OWf//v3GzfefOnXKYNiwYe39/PwkX3zxhSUANDQ0sGbMmGHv7+8v8fHxcTt69Khhi8G+BEqQCSGEEEL+pHXr1pmHhYXZNjQ0PEo4o6KirEJCQgoTEhKkKpWKdfz4ccPS0lJubGysWXx8fNqePXuk69evt2YYBjExMaZubm6KuLg46fDhw8s3b95s0byPHTt2mDk5OSnj4+OlPj4+5evWrbMEgNTUVP1Vq1ZlNa5w5+rqWv+0tgzDICwszG716tXZCQkJUi8vr5qcnBydluIPCwuznT9/fm58fLxUKBRqDhw48ESyCgA//vijwcWLF41e1b1cuXJlnq2tbcOtW7cEjSsHNtJoNAgPD7fdtGnT3YSEBGl2drbuhQsXhPv27TM2MjJSx8fHS2NiYtIjIiJsXkUstJIeIYQQQt58V78ywc19pq/0nB7jyvD29PJnNbG1ta3ftGnTvblz59o3bpNIJIqqqioOwzBQKBQcHo+nFYvF6uPHj9/m8XjIzs7W4fF4DJvNxsyZM0vUajUAoKCgQEckEj1Rrk1OThZOmzatCACGDBlSs337disAkEqlgq1bt1pUVFTwvLy8qufMmVP0tLbp6el8AwMD9VdffWWemZmp5+XlVeXq6lrfUvxlZWU6vXr1qgWA7t27y0+fPm00fvz4iqYxZWRk8A8cOCCeOXPm/YMHD4pf5rbu2rXL5MKFC4Z1dXXsgoIC/uTJk4smTZpUHhgYKFm2bFnOtm3bLDIzMwU7duwwDQ4OLnsYE1coFGocHR0bAMDDw0N+9epV4fTp00u0Wm0lAGi1WnA4nJcJpUVUQSaEEEII+ZP8/f2reDzeY8sS29vb10dGRtoMHDiwQ0VFBbdv374yAODxeNi2bZt4/PjxbkOHDn2UeHO5XAQFBbnExcWZDRs27IklkWtrazmGhoYaABCJRJra2loOAAwaNKgiIiIid//+/enJycnCY8eOGT6tbVlZGTc1NVU4ZcqUkn379qVfvXrV4OzZs6KW4re0tKw/f/68EADOnj1rpFQqH8s6ZTIZOywszCYiIiKHy33pWqsWAORyOWf37t13t27dejcmJuaxqnlISEiRh4eHrDE5BgCxWKyur69np6am6qrValy8eNFQqVSyRSIRY2BgwNTU1LA//PBDxxkzZtx/2YCehirIhBBCCHnzvT29/HnV3n9KZGSk9c6dO9M6duxYFx0dLQ4LC7Nes2ZNLgCEhISUTpkypWzixInO586dk3t7e8sA4ODBg+mpqam6ISEhTtu3b89YsGCBHQCMGDGiXF9fXyOTydgAIJPJOPr6+hqGYRASElJiZGSkAYA+ffpU3759W/C0tiYmJhpLS8u69u3b1wFAz549q1NSUgT9+/eXPS3+iIiIrKVLl9ps2bKF1aVLFzmPx9Nu27ZNfPr0aWMACAgIKK2oqODNnDnTUS6XcyoqKniRkZEWc+bMKWo8h66uLtPQ0PBYIVapVLL19PQYAHBxcVEAgLW1dYNKpXpuwZbNZmPVqlVZYWFhNjweT+vo6Khs06aNGgByc3N5H374oVNQUFDJ2LFjK553rhdBFWRCCCGEkFdIKBSqDQwMNABgbm6ukslknLS0NP7UqVMdGYYBj8fT6ujoMCwWSxsZGWmxZ88e44fHadhsNpydnesb5xW///77ZR4eHvLGObknT540cHd3l9XU1HCGDx/eQSaTsRmGwZUrV0SdOnVSPK2tg4NDvVKp5GRkZPABIDk5WeTi4lLXUvw//fSTUVRUVObBgwfTq6qqOF5eXjUhISGljTGNGzeu4uTJk3diY2Ol8+fPz/Pw8JA1TY4BoHPnzopr164ZNCbr5eXlnOzsbL3GJJ3FYj2tazzcp9VqtU9s//nnnw2+++67jO+++y4jPz+f37dv35qioiLulClTXEJDQ/MnT578yj4gUQWZEEIIIeQVCg8Pz5k1a5Yjh8PR8ng8ZtWqVTn29vYNLi4uCl9fX1cWi4UePXpU9+vXT+7q6loXGhpqn5CQIGYYBsuWLctqfr7g4ODS2bNn2/n5+Ul4PJ52w4YNmUZGRpoZM2bkjxs3TsLj8Zi33npL9u6771bX1tbKmrfl8/na8PDw7NDQUAetVotOnTrJhw8fXt1S/HZ2dnUTJkyQ6OrqMt26dZO9++67LbZtiaura/3o0aNLRo8e7SoQCDRqtZr16aef5opEIuZ5xzo6OtZnZmbqbdq0yWzmzJkljdvNzMxUo0aNcuPz+cywYcPKO3bsWLdgwQJruVzO3bp1q9XWrVsBALt27UoXCARPZtgvgfW0DJ0QQggh5HWXkpKS7e7uXvb8loQ8XUpKiqm7u7td8+00xYIQQgghhJAmKEEmhBBCCCGkCUqQCSGEEEIIaYISZEIIIYQQQpp4LZ9i4enpqW3btu3zG5LX1u3bt8ukUulLrazzImhsvPn+rrEB0Pj4N6D3DtKSv/O9g5DmXssEuW3btoiPj2/tMMhfIJFIcv6O89LYePP9XWMDoPHxb0DvHaQlf+d7ByHN0RQLQgghhJC/IDExUT8wMFDS+Do5OVlv5MiRrn5+fpJZs2bZaTQaAEB0dLR4xIgRbj4+Pm6HDh1qAwByuZw9efJkx4CAAMmYMWNc8vPzeS318/333xuFhITYN74+c+aMaNSoUa4BAQGS4OBgh9raWjYAREREWPr4+Lj5+vq6XrlyRQAAxcXF3MZ+fH19Xe/evctvPE9JSQnX29u7o1KpZAEPFvWYMGGCk5+fn2Ty5MmOxcXFTxRUCwoKeEFBQS7+/v6SyZMnO9bU1DyWU2ZlZemMHDnStem2r7/+Wrxq1Sqrlq5v165dJkePHjUEgG3btrX424JNmzaZLVmy5LFfCdXW1rJ9fX1dU1NTdQGgoaGBFRISYu/r6+vq7+8vadz+oihBJoQQQgj5k9atW2ceFhZm29DQ8GhpuKioKKuQkJDChIQEqUqlYh0/ftywtLSUGxsbaxYfH5+2Z88e6fr1660ZhkFMTIypm5ubIi4uTjp8+PDyzZs3WzytnwULFlhHRUW1ZRjmUT8rVqywjY6OvhsXFye1sbGp37lzp2lSUpLgxo0bosOHD6du2LAhc9myZbYAsHz58nYjRoyoiIuLk86ePfu+VCrVBR6stjd58mSXysrKR4n5+vXrLT08POQJCQnSiRMnlqxateqJ+UmbNm2yGDlyZHl8fLzU1dVVuXPnTtO/ei8nTZpU7uPjUw0A33777ROJtEKhYH344Yf2sbGxZk23X7t2TRAUFCQpLCx8lPSfOHHCUKPRsL7//vu0Dz/8sHDt2rUvNcfqtZxiQQghhBDyMval7jM5cu/IX07SmhrpOLJsnNu4Zy5fbGtrW79p06Z7c+fOfVTZlUgkiqqqKg7DMFAoFBwej6cVi8Xq48eP3+bxeMjOztbh8XgMm83GzJkzS9RqNQCgoKBARyQSaZ7WT5cuXeSDBw+u2rdv36PK6nfffSe1sLBQA4BGo2Hx+XzmypUrQk9Pzxo2mw1bW9sGjUbDKikp4d66dUvo4uKiHDNmjIulpWX98uXL8wCAzWZj9+7dUj8/v/aN583KytINDQ29DwA9e/aUr1y50qZ5PMuXL8/TarXQaDQoKiride3atf5F72tWVpbOJ5984mBmZtZw//59fvv27WvXrl2bu2rVKitTU1NVVVUVRy6Xc+bNm2ezZs2a3Mbj6urq2H5+fuU9evSoyczMfFQRrq+vZ23duvVuaGioQ+M2JyenOo1Gw9JoNJDJZGwOh/NSK+NRBZkQQggh5E/y9/ev4vF4jyVf9vb29ZGRkTYDBw7sUFFRwe3bt68MAHg8HrZt2yYeP36829ChQx8l3lwuF0FBQS5xcXFmw4YNq3xaP0FBQZUsFuuxbVZWVioASEhIMEpKShKNHz++XC6Xc5om2QKBQFNdXc0pKSnRMTAwUB84cCDdwsKiYcOGDRYAMGjQoBpTU9PHknIXFxflqVOnjADg2LFjRvX19U/ki2w2GxqNhjVkyJAOycnJBo3X+DwsFksLAPfv39eNjIzMPnLkSGpiYqJhYWHho6LtvHnzioRCoaZpcgwAxsbGmsGDB9c0P6eXl1etjY2Nquk2oVCoKSoq0hk4cGDHFStW2E2ePLn4ReJrRBXkv0FDQwXKys+iTnkfQpErjNt4gcvVb+2wCCGEkH+tcW7jyp9X7f2nREZGWu/cuTOtY8eOddHR0eKwsDDrxmQvJCSkdMqUKWUTJ050PnfunNzb21sGAAcPHkxPTU3VDQkJcdq+fXvGggUL7ABgxIgR5e+//36Ly2lv3LjR7MyZM8YxMTEZenp6WqFQqGmciwwACoWCY2RkpBGJRJrhw4dXAcDgwYOrvvzyyxanHHzyySeFn3/+uU1AQICkV69e1WKxWHXhwgXhhg0b2gLAlClTioYPH16to6OjPX369O3Tp0+L5syZYx8XFydtPIeenh6jUqkeS6wVCgWbz+czAGBpaVlnYGDAAICxsbGqrq7ulRZto6OjzT09PWsWL158Pzc3lzdp0iTJjz/+eFtPT++FKslUQX7FysrPIzFxCLJvzEXp71/i998+xOXE/igqOgyt9qWq+4QQQgh5AwmFQrWBgYEGAMzNzVUymYyTlpbGnzp1qiPDMODxeFodHR2GxWJpIyMjLfbs2WP88DgNm82Gs7NzfWxsrDQ2Nlb6rOR4zZo1FsnJyaK9e/dKxWKxGgDefvtt+eXLlw01Gg1ycnJ0GIaBWCxWd+zYUXby5ElDALh8+bLIwcGhrqXzXrhwQTR27NjSuLg4qZ2dXV3nzp3lvXv3ljfGNHz48Op58+bZnDt3TvQwbobNZj+W5JiZmamVSiX79u3bugCgVquRmJho4OHhoQCA5tXw5v5qzmRgYKARCoUa4EHl+eF0i2d32gRVkF+h6uobuJsYjK7pdRBWywEAjL4J8uwY3K7/L6qqb8DFeRHYbLrthBBCyL9VeHh4zqxZsxw5HI6Wx+Mxq1atyrG3t29wcXFR+Pr6urJYLPTo0aO6X79+cldX17rQ0FD7hIQEMcMwWLZsWdaL9FFUVMSNiYmxcnR0VEyaNMkFAAYPHlwxffr00i5dush9fX1dtVot63//+18uACxatCh//vz5tocOHTLT19fXbNy4MbOlc7u4uNTNmzfPfs2aNTA1NW2IjIzMbt5m6tSpJYsWLbLdsmWLlsViITw8/LHpEGw2G8uWLctesGCBHZvNhlqtZvXp06fK29tblpWVpfO867O1tVXOmDHDfsuWLS90P5qbMWNGcWhoqJ2/v79EpVKxPvroo/tCoZB50eNZr2NV09/fX/umPa9SparEzZ8Ho0viPXB4BmD1WwjoGgLJu4HsC5Bbu+CaTTlMzAejY8cosNnPHRtvNIlEkiSVSru/6vO+iWODPO7vGhsAjY9/A3rvIC152thISUnJdnd3b7HCSsjzpKSkmLq7u9s1306lzFck894GOP+WBQ6bD9YHZwATxwc7OgcBiVsgPPU/9Ky3QSJzErcwE506bgab3eKjDgkhhBBCSCuhOcivgFJ5H9ob38CoRgXW8HWAiSNqypSQXilCbmoF6t2nA0G7wC8vQI90AaoLf8Kd1HnQal+40k8IIYQQQv4hVEF+BbKzNsI2Vw7GoiO0HUbj/M47SLtc9Gg/j89BJ+/26B6wDzrx7+GdVENc0R5GOs8YLs6LnjtRnRBCCCGE/HMoQf6L1GoZmFsHIKjTQNtnPk58fRtZKWXoMsgGLp4WkNfUI/ViAW6cyMHd6wIMGHQAVhfHwfM2H1eZb6DLt4Ct7fTWvgxCCCGEEPLQK02QJRIJD8A3AOwA8AEsB5AH4BiAjIfNtkql0gOvst/WVFR8FO3ya6BpYwNpeVdkpUjxtq8DDsuTMDs2CjJGDUZlCFfLLhhQZYaE/Qw8+xxA16z38PYtNZKYldAT2MJMPKS1L4UQQgghhODVV5AnACiXSqUTJRKJMYCbAJYC+FIqlUa+4r5eCxXp36CdTI1arxD8Gn8XMFBiUvYScPWSoDVigwsuWKwGZOEYvq12Q+/M8cDPBkhtG4PR7Nno/lsRUpiZ0O0XDwODTq19OYQQQggh/++96i/pHQKw6OHfWQDUALoBGC6RSH6RSCQ7JBKJ6BX32Wrk8nSIMn+HlsVCSn4n1CnV+M7mIDi6N2BQ1hO+2T54p2oW6tushtxwNFjCHJz3WITLFomovA9sKfgSFeiALillyDn/Hurqi57fKSGEEEJeK4mJifqBgYGSxtfJycl6I0eOdPXz85PMmjXLTqN5sJJzdHS0eMSIEW4+Pj5uhw4dagMAcrmcPXnyZMeAgADJmDFjXPLz8594xJVCoWAFBwc7+vv7SyZMmOBUUlLCBYCrV68K/P39JX5+fpLg4GAHpVLJ0mg0mDNnjs2oUaNcAwMDJRkZGXwAyMjI4I8ZM8YlICBAMnbsWOeysjJO4/kzMjL4gwcPbt/4OjMzUycgIEDi7+8vmTFjhn3TlfmaXqO/v78kMDBQMm7cOOeioqLHiq7nz58XTZ8+3aHptiVLlrTdtWuXSUv3MTIy0uLKlSsCpVLJ+vbbb02f1ufT7uvGjRvNfHx8XH18fFwjIiIsWzr/y3ilCbJUKpVLpVLZwyQ4FsD/AFwFME8qlfYBkAlg8avsszWVlvwIi5J6NLTrg5tXlcgwuQ+56AbMMgfgvbv1aJN6E26XD2Hq/q/QOcsURTbrAN3BuGW7Dz85bwWj1mJv7iKkNAxDh+Qc5J0KhEZT39qXRQhpJYqaBtw4mYOjkZdxNPJXXDyQisK7VbQKJyGvsXXr1pmHhYXZNjQ0PPrGfVRUlFVISEhhQkKCVKVSsY4fP25YWlrKjY2NNYuPj0/bs2ePdP369dYMwyAmJsbUzc1NERcXJx0+fHj55s2bLZr3sWPHDjMnJydlfHy81MfHp3zdunWWDMMgLCzMbvXq1dkJCQlSLy+vmpycHJ0jR44YNTQ0sA8fPpw2Z86c/OXLl7cDgM8//9z2k08+uR8XFycNCgoqTU9P1wWAPXv2GH/yyScO1dXVjxLzFStWtBs9enRpfHy89K233pJt3rzZvHlMy5cvt1m0aFFubGysdMCAAZUbN258Iu6XNWfOnCJPT09FUVERLyEh4YkE+Wn39d69ezonTpwwSUhISDt8+HBaYmKiYUpKit5fjeWVf0lPIpFYA0gAsEUqle6VSCRGUqm06uHuBAAbX3WfrUWREQ+9egbXCzpBy/Dwu+VBcEu6I7TIBHbGvSG0EgKaXCjU99Hl1+/R/dYV7Bo1BQ0GXmhTF4k4jxUYnvohLpd+gEKhNYZej0YhNwhth35PT7Yg5BXRaDTYtWsXjh49Co1GA5VKBW9vb8yePRs6OjqYP38+nJ2dERwc3GoxxsfH40jCMfQVj4dCwYYxNwdcNOBWhh1SzhXCzIqHt/zcYNvRpNXeG65du4Y1a9agrq4OIpEIERERsLa2bpVYCHmaiu/2mFQfPvxEUvVXGI4aVWY84b3yZ7WxtbWt37Rp0725c+faN26TSCSKqqoqDsMwUCgUHB6PpxWLxerjx4/f5vF4yM7O1uHxeAybzcbMmTNL1Go1AKCgoEBHJBJpmveRnJwsnDZtWhEADBkypGb79u1W6enpfAMDA/VXX31lnpmZqefl5VXl6upav3v3brGXl1c1APTo0aM2NDRUX6FQsCorK3mnT582ioyMbOfm5la7ePHifAAwNDTUHDhwQDpgwIBH8zxzcnL0Bg8enAMAnp6e8uXLlz/xj33jxo2ZVlZWKgDQaDQsPp//wp/kz58/L/r6668tuFwuU1hYyB80aFDFvHnzij7++GO74cOHV5w8ebJNbm6uXkREhOX8+fMLn3Vfra2tVTExMRlc7oOUVqPRsHR1df/yc3RfaQVZIpGYAzgF4DOpVPrNw80nJRLJ2w//PgBA0qvss7UolbnQz5eCARu/lHmhWP8+inRqsbrED+6GPaF3PwmK/XOh3B8JVux+2NzKQ+CvVxG3cCaWfr0XthUBaKdoj8PtV+Oe8TVky4dgf9VSmF1ORMWZ/7T25RHyr7FkyRL/BLQFAAAgAElEQVQkJydj586dOHz4MGJjY5GVlYXPP/+8tUN7RFZRh6LMKnDrSxDotA7DfH7FgMA7mOC9D32Nv0FdcS5+2Pwbjq2/jqoSxT8eX1FREWbOnInFixfjyJEjGDx4MJYsWfKPx0HI68jf37+Kx+M9lhza29vXR0ZG2gwcOLBDRUUFt2/fvjIA4PF42LZtm3j8+PFuQ4cOfZR4c7lcBAUFucTFxZkNGzassnkftbW1HENDQw0AiEQiTW1tLaesrIybmpoqnDJlSsm+ffvSr169anD27FlRbW0tx8DA4FGSzWaztSUlJbzc3FxdLy+vmoMHD0pramo4e/bsMQGAESNGVDdfgtnJyUnxww8/GAHAiRMnjOrq6p7IFxuT40uXLukfPHjQLCQkpPhF7lfjh/zi4mKd7du334uPj0/bu3fvY9XnWbNmFdrY2CibJsct3VcdHR2tWCxWMwyDRYsWtXN2dlZIJJK//Ov4V11BXgigDYBFEomkcS5yKIB1EolEBaAIwL/imWYlpacgLmtAvrYD+PV8SK0uwaN4BBzARvbtpTDNLEaiKwuJnUXw1ryLnlXtUaO9C0P17+h+JQVvp/4OACgyboNss93IsMuDts4XO8vXI+j8Ysh4CyHqu7KVr5KQN1teXh6OHj2KixcvQigUAgAEAgHCw8ORnJz8qF1ycjLGjh2LsrIyODs7IzIyEgKBALGxsThw4ABUKhWqq6sxbdo0jB8/HvHx8fjpp5/AZrORk5MDHo+H1atXw8XFBRMnToSHhwdu3LiBwsJCdOvWDatXrwabzcaNGzewdu1aKJVKsFgsfPzxx+jVozd+P30XbK0a3p0247ZTIbTsOwADMCbAkSpd3E6+CR0NDwbpHli/vxSRyzdj7c7PYWRkhMzMTIwbNw6DBg3CkiVLcP/+fWi1Wvj6+uKDDz5Afn4+fHx8Hl1v09fx8fH44YcfwDAMiouLYW5ujoiICJibP/7b1BMnTqB3797o0KEDAGDs2LHw8vL6h36KhLwY4wnvlT+v2vtPiYyMtN65c2dax44d66Kjo8VhYWHWa9asyQWAkJCQ0ilTppRNnDjR+dy5c3Jvb28ZABw8eDA9NTVVNyQkxGn79u0ZCxYssAOAESNGlOvr62tkMhkbAGQyGUdfX19jYmKisbS0rGvfvn0dAPTs2bM6JSVFoK+vr5HL5Y/mF2u1WpaZmZlKT0+PaezL29u7+tKlSwYAnnq/wsLC8hctWmRz+PBh0169elUZGhqq4+Li2uzbt88MAObPn5/XvXt3xcGDB9vs2LHD8quvvsowMzNTNz2Hrq4uo1KpHvuVl0Kh4DRWdx0cHJQ8Hg88Ho/R0dF5oepzS/dVqVSy/vvf/9oJBALmiy++yHmRcz3PK02QpVLpbACzn7Kr16vs53VQm30ctkoN9taPg4alRrpeJTaVOkN6ZynsMmW4/WF/DJoyH6N4AqSUpuDYz9cx9I4nynkdULDSHd1OfIOj5b3AUdXDPSMV76SdQbHpfdxuH4y9ZV9ixIlV4PK+gF7PT1v7Ugl5Y925cwdOTk6PkuNGYrEYgwcPfvS6uLgYu3btgo6ODkaPHo1Tp05h0KBBOHToEL766iu0adMGN2/exJQpUzB+/HgAD6YcHDt2DBYWFli2bBl27NiB1atXAwByc3Oxe/duKBQKDBs2DFevXoWbmxsWLFiAHTt2oF27diguLkZQUBDmBH4KhZKFNnrZyJCo4eDwGczEQ6DR8vBtzDbk3D+JT5eUo42Kg83rr4PPaoNLcfdQllcDS/O2OH78OABgwoQJGDBgAKZMmQKZTIb33nsPlpaWcHd3f+Y9unHjBuLj42Fvb4+1a9dixYoViIqKeqxNdnY2BAIB/vvf/yIrKwuWlpZYuHDhX/75EPJvJRQK1Y1VXHNzc1VycrIwLS2N/8UXX7Tbvn37PR6Pp9XR0WFYLJY2MjLSwsLCouG9996rEAqFGjabDWdn5/rY2Fhp4/lqamo4Z8+eNfL09FScPHnSwN3dXebg4FCvVCo5GRkZfGdn5/rk5GRRQEBAma2tbf25c+eMRo8eXXn58mV9e3t7pUAg0LZt27bul19+Efbp00d+9epVkZOTk7Kl+M+ePWswb968fFdX1/qoqCjzHj161AQEBFQGBAQ8qm7v3bvXODY2Vrx3716piYnJE9NC3NzclHfv3hUUFBTwrKysVEqlkpWSkiKcNm1a8f3793Wedf/YbDa0Wu0T88medl8ZhsHUqVOd3nrrLVloaOgre9oBLRTyJ2g0deBnXQWjZaNK4YBiozvoVNUL+cVb0TlThtL3/SGU9MaVU1dgYGAAKysr9Bw9C5npqdA7pIbTJQ+sd++HftWnkKmYjHET/wPnvCyM+2k3PJJXI8M1BEe0S9B7fzRcsAG6PZ/2mYMQ8jxsNhsM8/ypaAMHDoSe3oPvdDg7O6OiogL6+vrYtm0bfv75Z2RnZyMtLQ0KxR/TGzp06AALiwe/FWzfvj1++umnR/u8vb3BZrMhFApha2uL6upq3Lx5E6Wlpfjoo48etdNqgQu/SGGhI0WpkQpduiXg50wR9pzIRUpeFTQXboOxHILPLvdAW2EB9N1PgfebFP2NtyG+To36LCGklwtg7W6EGzdu4JtvHsxsE4lE8Pf3xy+//PLcBLlXr16wt38wdTIoKAijRo16oo1arca5c+ewZ88e2NnZYdeuXZg5cyYOHz783HtLyP9H4eHhObNmzXLkcDhaHo/HrFq1Ksfe3r7BxcVF4evr68pisdCjR4/qfv36yV1dXetCQ0PtExISxAzDYNmyZVnNzxccHFw6e/ZsOz8/PwmPx9Nu2LAhk8/na8PDw7NDQ0MdtFotOnXqJB8+fHi1RqPBpUuXDHx9fV21Wi0iIiKyAWDFihXZ4eHhNmvXrmVZWlrWL168uKyl+J2cnOrmzJnjwOPxtPb29srVq1fnNt2vVqsRGRlpIxaLG/7zn/84AUDXrl1lCxcuLGhsY2hoyISGhuZ98MEHTnw+n1Gr1ewxY8aUODs71z8vQTYzM1OpVCrW4sWL24aHh99/1n09cuSI0a1bt0QqlYr966+/GgJAaGhofs+ePWtf8Mf1VJQg/wlVVdfQpqIOvzPvQNDAR7plFnzvAu2TslHgYIcLSi54SUkQCoVITU2FRqMBh8NBx44d0e09D6iO5OKju+MRI9bHVctDCMm8jRjrj/Hpx1+g/8X96JIVBYuqibjQZgbKtnyPt+SrIRr8WWtfNiFvnM6dOyMzMxNyufyxKnJxcTEWLVr0qFLa+OUO4MH8OK1Wi6KiIowZMwZBQUHo1q0bhg4dinPnzj1qp6ur+8Qxz9qn0Wjg6OiIQ4cOPdoXu/IQirP1oBbsAK+iE97fXY6beffgINbHxHdsceWeEWw6WMCgvTXuFBggubwMLIUc/+X1gQF/O0w45Ti9Mw12HVhPPOmCYRio1eonYlOpVI+143A4jx3T9HUjMzMzdOnSBXZ2dgCAwMBArFixAnV1dY9dKyH/X9nb2zccOXIkrfF179695b17905r3u7hnNrH5tVaWFio9+7dm9G8bVP6+vrM9u3bM5tv79+/v6x///6pTbdxOBxERkbmNm/r4eGhTEhIkDbf3ujKlSspjX9/5513an/44YfUltpyuVwkJSXdfFbMAODn51fl5+dX1Xx7v379ZP369ZM173vjxo3ZjdtOnDhxp/lxT7uv9vb2Db6+vjeeF8vLogT5T6gsPgOHGhV2aAdBh6VCfb0RrDIOQ83j41bPXggYNQrt27cHh8MBwzDIy8vDrVu38NtvvyElJQX2dnZwN7LD1Ew/9FJ1QbjpNvBq5qKdJhxn+oxHiYktLCtj4XmvCqlCX1R/9St6SGfCYuZGgJ5u8UZjGC1+uFWI2KR83LpfjWqlCga6XNib6sPDug16O5uih6MJdHlPJink5Zmbm8PHxwcLFy7EypUrIRQKIZfLsWTJEhgZGT0zufv9999hbGyMGTNmgMViYevWrQAePBXjz/Dw8EBOTg6uXbuGt956C9d/Tcbi3UsRPqAX7tn2w83figA7GdaP8cBIdyuw2SzE1r2Lw4cPY92n08Bms/HRzD3IEetB34SP3zSW4OtVYKYwASm3R8HKyAbRG7fj4zkzIJPJ8P3332Py5MkwMDCASqXC3bt34eTk9FilGwASExMfzT/ev38/vL29n4h90KBB2L9/P/Ly8mBtbY1Tp07B2dmZkmNCyL/Wm50gN9QC8hLA0Brg/HOXokk/ChYDaGsckGd4F4Pu3IZtST1S+/dH8OzZEIn+WAuFzWbD1tYWtra2GDhwIJKSknD58mV8L89GO0tLdC6zwh5lBH41/A4bmblow/oAtzp4ozLfEmrNV2gnrwQwHGcvpqH79ZFw2rQXbNG/Zq2V/1eKa+oQevAmLt0tR1sjPQzpYI42Ah1UK1XIKJZjz5UcfHMpC3o8Dvq7msGvS1v0k4jB5bzq9Xz+f1m8eDG2bNmCsWPHgsPhoKGhAQMHDsTHH3/8zON69eqF2NhYDB06FHp6eujcuTOMjY2Rk/Pnvv9hbGyMqKgofPHFF6ivr4e8vAZD2k+C7Vvn8MXFXmC0hfh+Ri9ILP749+3v74+srCz4+vpCIBCgXbt2sDEzQfTHH8D3/CHUmzL4lN8V87h74eMagGNxP+LI0Xiw+Rz4+PjA398fLBYL8+bNw7Rp02BsbIyhQ4c+Fpe5uTnmzZuH0tJSODk5YenSpU/E7ubmhiVLlmDmzJlQq9UwMDDAhg0b/tR9IK+IVksFE0L+RqzX8QH0/v7+2vj4+Bb3q1RVYF35GtwzqwCtBnhnBjB01T8Sm0pVhaJvJai6b4dfilfhgkki5vwYC7VAgPbHjsHQyOgFzqHCjRs3cOHCBcjlcrTlmaKb3A7tBBW4yVuLZY4DcK/NexDVytHjShQahG3QM2cM9BWl8Mj8Gs5LP4dwwKB/4Gr/PIlEkiSVSru/6vM+b2y8ru5XKTHuq0SUyeuxdJAV/E1ywK7JB1gcwMwVaNsddSw+rmRV4Kc7RfjxVhHKaxtgZaiLCT1sMf5tGxgJnjll643xd40N4M0ZHw11asSEnkQ73SQccuuOS9ks7JvuiW62xgAArVaLAtl9/HT8KCrT72KoxBXG0MemH05Ah8vFzMFDADYLKk0lpIXf41RJW0BhhK6wQkGDB5ydauE9cxh4us8uHMTHx+PkyZOIjo7+Jy77hdB7x9NpK7JRcnI/iqTFkMlZYBg29PUZGFkaQNypAwy6DwL0nv//z5vsaWMjJSUl293dvcW5tIQ8T0pKiqm7u7td8+1vVAW5puY35OR+DZ2U72GZqovrmAY1yw4dL+yF1dtZgLH9c8/xV1WXX0abShV2YxBEYNA1QwqhQgm98PAXSo6BB89B9PT0RNeuXXH9+nVcuHABR/jXYac2w9vKVfghJR673L5ChOlEnO63AH0uf4vTrl+hX/pkXHP9BHUL1qOd5/ewXBwOrukrfSY6+RtUK1WYsP0K2IoS/OJ2HqbnDgHM4/NAGQ4PLGt39Ow4Gn2HjMVinw44k1qC3YnZ+OKEFJvO3sXknnYI6eMIQ8ETq5CSN0zaj5egYvSgbpuHc/e64X/DXdHN1hgltSXYdnwpEvMuYmBSA1xvMziu1OIEjkEDwA5ACFgo+vXyo3OZAhiPbACAkqcDnvN9ZGiHoeTTeLw7+x0YO9q0whWSV4ZhUBi3GZd+4aFY9WBJAS5HAzZbi4ZSLlAK4DdAtP8EbM3L4PiOPdr2GwCWDk1/IeSveCMS5KysTSgsjIOyLhdWpWzwbznjgCwUKi0PbDZQwMzGuFNrwB+75W+PpfLKHjgpNdDIJCjRK4B/WgoUri5w8/F56XPxeDz06NEDXbt2RWJiIi5evIhYVhk6qHth5O86GGq2A8Ocx+Fsn+nwuHUOvzhvQfecybjRZTYUt/ejduhQWMyfD8OAAFp57zXFMFrMOZgCg8rbOGi4EToZpcixdMS3KgtcVpuimmFgoJXBHmXoWp4L99NhcDj+PxTzXMCxGoQQd1983N8Te6/kYdvP97D3Si5mDXDGpB624NHUizeSVqvF7xcLYMKtxbKqYejpaIKpveyx/9o3WHtzPQbc1CDiPAO2FrjXzhgDLfRRJdAiX0+JYoN6zDdsQIPOgydzmNXy0IvthL5WvWGqrITiahyM7/wMo8JM3HF7HwcjfkcXo/3wmDUefOt2T8Ti7+8Pf3//f/oWkBelbsDNdZH49V536OvWoe8Ic9h7OkHfiP/gi6QVShTkVEOWmoZqKYO0Qkf8Hs+H6MhhSByq4TqwK0QuHcHi8+n/CEJe0huRIBedlUNd5Qk7gT3yM0zwu2IYGLEOdnZmQZfVgHGnjXDhijEGBNaDxeX/bXGoK+uAstu4yjGHsaItFMqL0G2oh/WSJ+fsvQw+n4++ffuia9euOHPmDG7evIlMLh/vlPrgl4ormN7ZDdc6ecO82AUcTRQcy0YCLhMgrzgPzaIlqD72AyyXLYUOLfv62tl7NRf3067isGAFVAwLU9v0RzJTCY4gC6L6GljILGEsMwZbbYzfGHsks2RQsyohVJTBoWgv7C/tgrBBD+9y7NDXqivOcTthxZFb2H81F+EjO6CnE/0G4U1TnJqHylpzmJv8iGqmP5YPd8CK3b6I09zDJ8d04ClV4ddOXRE15n0Um4gBAEKlCm1qymBZn4u3Zfcgys5CFrsEeWIlYkzS8I06DW0aOBjUzRXdx6ugLMgBzv0IYV0XXJd1R+7sffAQpMIsyBeiwYPBpi/Xvf4YDW6uX4dL9zzhaFuD/rOHg83n4PCN20i4cRcpuVrYlBTAsSofbeVlMKmrhnFDHfT0LVFt3AXXVc64Lq2CaflWtCv4BWa61eA7OUGvY0cIuneHXteuNA4IeYY3IkFW5Bkhreht3Hr4Ol1cj5+MD4AtuwGlVh/55u+BXdwb4quX4N6z/98WR+WRFPDrS3BaOwRGAHqmXoTW8y0IPZ79nNEXJRKJ4Ovri27duuGHY8dwpvgW0jUmWHsDuGj/C8Ls3kG5yQoo7mxBhaAAwADIvCzR4cZ3UI4aBfNPP4PRmCCqFLwmiqrr8O2PvyJO8AVyuFqMMeoIrU4mhqYNgWNlN4DTpsVjWYwa+ooiqGR50MiyYVKdCZtL8WiPOHzIZaHAxByHL3rgeO9+mD5pIGxM9P/BKyN/xW9HzoDLMsM3GidM8zTEztihOCxsQOhhY7wlLcXRIWMgaz8QH+aroJMnR4kuF3cM2EhqY4arepa4Ck+YtlXAtDIdpsXn0edmFtRcLbIslTgkTsXBHMBVwUavUedRX1sB3cvVKBV74LzKCZIv9sJ8xQoY+fmjzbix0LG1be3bQVpwb3c0Lt19C4621Rj8mS9O3vodi4+kQbewBqNzzmBu3u/gNzyYqqXic6A04KFWXwc1/FooG6qhqEiHiZ45qo3dUGbqDmFDIdqVXIX5V9+As2UrWHw+BO94QuTdH0LvfuA1Wz2RvJzExET9tWvXtmtc3CM5OVlv8eLFthwOR2ttbV2/bt26bA6Hg+joaPHRo0dNWSwWJk2aVDR69OhKuVzO/uijj+zlcjmXy+VqIyMjs9q1a/fYPDyFQsH6+OOPHSorK7kCgUDz5ZdfZpuZmak3btxoduTIEbGhoaEaAJYvX55tY2PT8LS2V69eFURERFhrtVoYGxurNm3alKWnp6d9WvxJSUmCJUuW2PJ4PMbZ2VmxcuXKvOaPgDxz5owoKiqqLZfL1RoZGamioqKy9fX1Hz14fteuXSaZmZm6S5YsefQc4+nTpzuMHz++tOkj3ppauHCh9X/+859ioVCo+emnnwzHjh1b0byNWq3Gf/7zH4fRo0eXDR06tAYAwsLC2qWkpAg1Gg3L39+/dOrUqWXl5eWcIUOGdLSzs6sDAG9v78qPPvqo5EV/pm9Egvxbr37ISc+DoroeV7TJ0FgeAYfdAMNKF1TpVyDF6BzaFX+AlF9u/m0Jcl1GJSoLfoMJNJApPCBiKtGmJg8O81/9N7mtra0xbfp0XLlyBefOnsMhTiU8cuxxvPAmpnWwQ1LnWSi6fxE1+rvQI3MsEj3non3OAWiXLIH84gVYLV8OzgvOhyZ/n+VHbyGCtR5ZXCXeN7OBS7EBvLNmQMsxgFGNFErOLeSK9VBkIoJMTw8aLh+CehZESgZGdWyI9ISoEXVFobYHAEDDUkLJzoau4h6c8lMx+c5JsO6cQO4eQ9z0HIAeU4Ng2rUzfUB6BlWDBmm/FiIvtQI6elx0HWwLY6t/7sOFqk6NrBwziHVTUCboAt69DxBvysbU01Z4S5qHO3188bOpJ25nVUPE58JJzIOXsgCzC0tg1mCHbH0RzplqcNJcF2n2HoC9B9qVqeBaVIXupTehun8N94UFyGgnR1o5D8a4A69+t2CaORz6mZ1xq+N0FNbeguTAQVTs3AmhtzdMPgiGoGvXf+wekOerTjqLs4nWMDOsgPd/fTFv//f4MUmDWdJY9L73GzRsIM2KjfsmXJQacCDns8ECBxyhFrqmtRBZVMLI6AZqVW1QWNkbBrku4JfqI01nFLItvWGp8xvsudVo+O0Win5eAiwBdDt1gmjwIBgMexc67dq29i14o6xbt878xx9/NGlcQhkAoqKirEJCQgrffffd6g8//ND++PHjhu+8805tbGys2Q8//HCnrq6ONWzYsI4BAQGVMTExpm5ubor58+cX7tq1y2Tz5s0Wq1atymvax44dO8ycnJyUCxYsKDhw4ECbdevWWa5atSovNTVVf9WqVVndu3d/tIrRxo0bzZu3XbFiRV5YWJjdxo0b7zk7O9d/++23pjk5OTqurq71T4s/LCzMduHChbm9evWqXbZsmdWBAweMx48f/1iyumLFCtu9e/emWVhYqMPDw9vu3LnTdMaMGS+cgD7NypUr8wDg/PnzorNnzxo1T5Dv3r3Lnzt3rn1ZWRkPQBkAnDt3TpSXl8c/fPhwWl1dHWvo0KEdfH19K5OTkwUDBgyoWL16dd5TunquNyJB3pX3KVT6OYA+CyyWBiKlGXqUdIQB0wZZmlr8ZngJWmjAlNajoEoJKyO9Vx5DzZlcaA2v4nY1FxY1zrAqvgpuby/ourm98r6ABw/67tmzJzp06IAfj/+I69I0pDO6WHfDGFfalWGd0zsoNWmPGr2t6HHXF79bT0dbs5/h+MtR1Pn5o+2XkRB06fK3xPY6k9WpEJeUj/PppWhrpIf3e9rB2fyffyze1awKWKd+Da4wE1Ms2qLf7e5wqfGHbn0ZuIJU6I3qCEe+BbpUVKGihotCmCNfzwBZphzcFLGQKeJAw2YBWi3sSmVwu18NJ1kVjOSG0GreRbbjCKS5yNCgvQXJ/ZtwPn8EZWfikd/GFCYj3oX4/9g77zCpqvPxf6b3mW0zu7O9zy596SDdhiIIAiY2LESyMWiM+Iuagr1EQ2xE0WC+xi5S7IIgoigdlrZsZXsv03f6zP39gZCIKCC7tOzneeZ54M45577n3tl73/Oet0ydgrJ///95ZXnbR1VEwgLGVB0dDW72f92Izx3EoLTjDSho2lvN1QsnoIw6PUpy6efrCQkq9srCXCF/nlfiJFy8N4XJO6rZM3g498aMYYQpijcvzGFkZiwS8X/uX8TtRrd6DTn7nNxSm0GjKsDqBBEfm+Ws62dEGr6InMZxDKjxMGjnPmoN6zmQ1MCH+FHErWaQ+XOG7p2BjVFsG3EfCeEicnd9hvva61APH47xjttRD+2R5CK9nAQRj511r1chEpmZMH88c15ZTsc+B0t3vozB7aE0CT4eLmFPpoigDCD83ee/DI4hoEMJeBGJ1xCTtRpTtpi4xsHkN19AtXcMTQEXxkEalFdeTm5YCt98Tfuiv9O+6O+oBg5EP3UqhqlXIDEYzsRl+Fns/bIhtmxLc7f6nVlGmjsGTEzu/Kk2aWlp/sWLFx+8++67j2QKsFgsHrvdLolEIng8HolMJhOMRmPo008/LZbJZNTU1MhlMllELBYzf/78tlAoBEBTU5Ncp9P9INl6UVGR9tZbb20BuPTSS51Lly5NBCgrK1O/+OKLCVarVTZmzBjHggULWo7Vtry8XKHX60Mvv/xyfFVVlWrMmDH2vLw8/4/J39HRIb/gggu6AIYOHepet25d1NEK8htvvFGWkJAQAgiHwyKFQnH8sqXf8dprr8Vu3LjR4PP5xE1NTYobb7yxZc6cOZ2zZs2yPPzww7VLlixJqKqqUr/yyitxc+fOPZKlxO12ix977LGaF198MeHwsZEjR7oHDhzogUOFmcLhsEgmkwl79+7VlJWVaWbOnGmJjo4OPvTQQ/WJiYnBY8lzLM4JBTnTWUCTwYwy6CXPqsfkjcGPFaXWy9B6F3tkA2jV1qELxPFNRQdXD+teX9xgaxeBGifi9K18JRpITERBfPs+Uv/6SLee51gYDAZ+ec0vqays5LNPPmWtbT8JLQZealfxXH4Uu/Lvo0P/bwYfNCC0jKP9gr7kHfyI0PU3YPr9ncTccgsi8fkbzBUMBtm5cydVNXVUNTRjdftpDyvp1GWz+aCI5TsbWH3nODLiTp+VMBIR+Of7n/N79fvcFG/mkqLBpPlnovfWMe2P4zDkX/PDTj4Hod1f4t1RibdUj0vIpUQvZ1cM7IhVsn6Ajs8kKSAIpDo7GNFeQ1qLH01LAc3m0dQn+QlygJyWPfDOCrpefw1xYiLRl1+Gfuo0lJbc0zb/swlXUytlu70czmaZEl3J0Jh/ERvVilV7Ee/vncWXf3uHyx6Ze1rkKf22CYNEyqdKMc2mVrKbTdyyupayjDT+lDqLP0/J55YLMhCLf7iwEWu1RM2aCbMgXLOPmK+/JqfKya01mRTrkvkkUcZqs4yS1GjUgTFYGoZRUGVDVrWW0qSt7EhwsTVvJYP8XzP2wGzqfRfQOTSdRE0rGd9+QMiMbY4AACAASURBVO31N6AZPw7TggUoc/83fy9nA/teeY0WXz8mTlVy+0df4t/ZzKLtSwlIIjxyjYz9aQJmbwxjrSkkuqPQuEWEPW5cvg5CBBFEAkGJQEAh4NOCUxXAZeiizeCnJH4XG+N3YXalMqruUvzOCYiLffiUW2geNoTEG3/H0Lp9+NaspvWRR2h76in0V0whZs6N/7PPkBPhqquusldXV38vD2dGRob/ySefTF26dKlZo9GEx48f74JDwflLliwxLl26NGnWrFmth9tLpVKuvvrq3OrqatXLL79cfvQ5urq6JAaDIQyg0+nCXV1dEoCLL77YOnfu3Ha9Xh+eO3du1scff2w4VtuOjg5pSUmJ9oEHHqjLzs7233jjjdnr16/3TJo0yXUs+c1ms3/Dhg3aCRMmuNevXx/l9Xp/UL3qsLK5atWqqJ07d+ruu+++xqPb/AgCgNvtlrz99tsV5eXlisLCwuw5c+YcWYgUFha2vPXWW8b/Vo7hUDXAowdTqVSCSqUKBwIB0R133JE+ffr0dp1OF8nOzvYNGDCg8aKLLnK9/fbbMX/5y19SXnnllR9UI/wxzgkF+YbSAIGgkjZjEgpRmIHNUmI6JAi+FiSxORRnVtGkryShaSINB+ugmxXkrq0tIBZwhSN0dA0iNhIkxhKNMi+vW8/zU2RnZ/Ob397Gzp07+XrDBrZ59zB1v56R8fm8mjOHNdFl1FcvYVTVVQQybybWNBTL86/QtWkT5scfP2/9y9Zv28vezW+i0neSlNTOKMGK0eFBbFej6zeJuaWD+NOqfbz5qxGnzZr64e4Gfut4iDuT45hQlEaG72p0dDDr2VkoY/TH7qQ0IB05Hd1I0AW9xB1Yj3nHFi6oC+GrzsFHIsUGCTviBDbHaVmVOYhQthhZKMSIllos9S3ENGfRYCqgzhRBJKoktXUPSW+sRL30FRT5+UTNnIlh2lQk+h+R4TxkTNe1jDaGcEWM6MVtCBIf/ydcwjPWe1F1eXgosYTqpr54K3ehyu5ZNwN7s402RyoGzQY8idtR+0Tcs8KFVafhwQHzeG52P0yRDlas2El7ezsej4dwOIxUKkWlUqHT6TAYDMTExBAbG0vcZVcTHWUgpmELpu3vc0FJHX+szGZ97Bg+iY9jY6qSosxEtL4bSG++moKGSvziFVSYD7J70IsUtA9heO1UKh2DaRwShcXgQvzZ21RPn4FhxnSM8+cjM5t79Jr08n3cpbvYciCLVFM7i9tVBLY38PDWpbTGiHjolxLyhYE8WjMBiTSRNpWMsEGCUi9BGZGgiIgQC2HEER/SoJNAqBNHoBWPtQN/gw2f24ZfHsCV7aQjsYHNA17C50piUNMkgh1jEFeJaW7ZzuvyNmxTfs3M+VEkb/wMx0cf41ixEs24scTNm3dW7zIMmJjceTxr7+li0aJFKf/+979L+/Xr53vppZeMCxcuTHnqqafqAAoLC9tvvvnmjhtuuCHnyy+/dE+cONEFsGzZsvKSkhJlYWFh9tKlSyvuu+++dIArrriiU6PRhF0ulxjA5XJJNBpNOBKJUFhY2BYVFRUGGDdunKO4uFh9rLaxsbFhs9ns69Onjw9g9OjRjj179qgnTZp0TF/gJ554ovqhhx5KfeGFF0QFBQVumUwmLFmyxLhu3boYgGeeeaYqOTk5+Pzzz5u++OKLmFdffbXisD/zYZRKZSQQCHzPQuf1esUqlSoCkJub6wFISUkJBIPBU7LkWa1WSWFhYdaQIUNcCxYsaAGYMGGCU61WRwCmTZtmX7JkSeLJjHlOKMhR1WXE136/JHhQKkOi1+Nv2MYtNhOPXOIHpIQOlgMXdNu5hVCErl1tyIwV1Af8ZLT3IcpeSeaff7oKV08glUqP5E8uKipi01dfQftWbrJHs9EymF19FtAW8xJ5tQaG1V+GbeSfSa9dh3vaVSTe9/8wXHnlebfl7u3YgL89A48tlnZRFtVhNZKwFpkAZmcVb0j/ztyqm1lTnMbkfj3/sg+EIkRW3MNLyQFyS6LIc1yHoAoy47GpKGNO0IotUyEeOAX1wCmoIxFoKya0fxOmkkZG1yr49cFcukQJ7I4Ssc7oZ2tcPN8kZ4EgkNHWyKCqCpLaTYhMs6k3zUYs1BPfUYbpHyuI/vuzRF9+CdG/+CWq/v169mKcBdwUuo8+7CFJaqUsOInVgWH0y0riN6lKPigq5XmrmRlIqPrsc/re3rMK8u6VHwNm1pjqscnr+csyEypfG09M+A2/snjY8fFrCIKAwWAgPj6e5ORkJBIJoVAIj8eDy+WiubkZj+eIqyEikYjo6Gji4gqIH3UhCeEGLm1+lZmle7CWjmZNwkzWRJvYmqxkf0Z/oD9Ghwdj51rqTZ+zL/YxBjRPYEjjhexukyK54AZGiNsRffg+zg8/IuoXvyD21luRxZt69Nr0AggCm17fgkAm1X1jafh8P49sW0p9HDxzdRR61VVsiRvMx330hMU/VYpeBxjRBtNJ8ggkdwmYXWGMjhBxdg/JTe24qpvoL24lGFNGW9J7FKV8hKJtNJmto9F6BiDZ38n7td9SJQ8yfN7dzPR14HvvXWqvvwHV4MHE/upXaCeMP693J08VrVYb0uv1YYD4+PhgUVGRtrS0VPHkk08mL1269KBMJhPkcnlEJBIJixYtSkhISAhcd911Vq1WGxaLxeTk5PgPB8wBOJ1Oyfr166NGjBjhWbNmjX7gwIEup9MpmTJlSt/Vq1fv12g0ka1bt+pmzpzZqVKpIke3zczM9Hu9XklFRYUiJyfHX1RUpJs5c+aPFlhZu3Zt1HPPPVcVFxcXvueee1LGjx/vvPzyyx2FhYXth9s89dRTCSUlJZq33nqrTK1W/6Dq3IABAzz//Oc/E10ul1in00U6OzslNTU1qj59+vjKyspUP6WPiEQi4UQL2Xk8HtH111+fe8MNN7Rec801R9xA7r777vSLL77YNnv2bNv69et1hxXyE+WcUJDHf/wuLRu+wVdSiiFKg7JfP1T9+oFMhvWNN+DRxxh0IArkIHO7CIYj3ZYjNlDnQvCFCBlXUtKlQ4cZFWWoBgzolvF/DjKZjOHDhzNkyBBKSkrY/MVaxuz/AnN8Opsy5/N11AEao59hSN1lRERTaUgaS9rza8ha8SFJf74HpcVyxmTvbrYecKMLpqFx5wAiguIAXVI/fiK43Hm8x2X8xfAyH+zM6XEFWYgIfP73l6iNK8LTqGDqwZm0xcdx5e8GoPm5WSbEYkjojzShP9KLQBMOQUc5oYrdmMtbmNSkwFeeRoMsxGdGL5tjpawZPAqPXEZCWzFDq2qIt8UTFE+g2XgRCEEMB2uIu+slzBoHSVPGYZhyObLEk1pYnzPMuHgUW6v6YAtryY3X8W6egVW1n/Nu9TfY0jpBqyRceiUHKyWEy8oZ0APbyKFOL/Y1NRwsUWJQlLA7vojrN5joU9PMyuEXMSiuA2erk5EjR1JQUIDRaPzJhazX66Wzs/PIp6Ojg/b2dioqKjj0QslHqx1MqsZPnvsVLmytQxnJZ0/0FWzSprIrSk5R6jS80iuRB1op031EY8JT5NZNJL91FBvFmXgujjCxrRbh7bexv/suhunTibnpRhRZWd1+fc4UgYCb6pJ1SBQOgvZ6InWN0OZCG3AQZVKjHHQDin5XnDZ5mjaspaIzj9TMBhavd/HEtpdpjhZ44ro+VGTdhSBWk+SwM76umHxPBanhZuRiMUGxCqdEhx0dHSIN7YIal0yJW67EpdKwI0aH06xCECkBLfKwkSx3HhmeCElugbgOLwl1zQid5bjiXsdp1KJyjSSxcxKJQJuzlkcN9dguz+HKej9DDtTRcNttyFJTib7mGgzTr0Qa/eMZef5XefDBB2vvuOOOLIlEIshkssjjjz9em5GREcjNzfVMnz49TyQSMWrUKMeECRPceXl5vrvuuitj1apVxkgkwsMPP1x99Hhz585t/93vfpc+Y8YMi0wmE5599tmqqKio8G233dZwzTXXWGQyWWTYsGGuyy+/3NHV1eU6uq1CoRAefPDBmrvuuitTEAT69+/vnjJliuPH5E9PT/ddf/31FqVSGRkyZIjr8ssv/17blpYW6auvvpqYlZXlmTNnTi7AJZdcYp03b94RBTovL88/e/bsttmzZ+ep1epwKBQS/eEPf6jT6XTH9VXOysryV1VVqRYvXmyaP3/+Twb+vfLKK8bm5mbFihUrjCtWrDACPPnkk9X33ntvwz333JP+7rvvmpRKZfjJJ5+sPd55/5vTUmraYrGIgReAgYAf+FVZWVnlj7U/mZKggiBQec0sXMVlfDX2ScKGUi67fS59E7snsMDxeQ2uL+tpSF7AurJ+RAeu57JLIPOqnksn93Oor69n8+qP2dVmY0tGX0oTzMS1LyetpZJBDZeS6MpBEvKQ2LyZ/L4K0u64BXnyDwsHdBenq1zst089j2zFKvzqaKQyA2JFFC59AsuNGXwbW8GVDiMJrgw0hk/4xcNPoZb3zJow2O6h6t8b+Si4lG3hAxSu6UtJ30KGXJTEyFk9uyARIgKh2mb8ZXUEam24WkNslAp8YRJRZNTSolGhse9lUO0BjC4tiY5cYr2H7r0s4ELvqkMvcxGbYybhgv6YxwxA3oNlrU9nqelR/xqLW2JHKRgIi8QEsCNCAOTohAQ8QifD6y5mYMsYOpO3cO2tC8g2abtNnkCDi45/7afZa2WLTcWutLeR23Zzx4duinMs7B9SwIgRwxk/fjxqtfqUzhUMBmlra6OxsZH6+npqa2txOp0AyCWQLLWR4KvBICiRC0mUR49ia3QKG41y6jViJIEGRtR9TJ+D+Zjt/fHIXLRrvmFQ+W4GlTcjCoXRjB5F1NVXo50wocdy6J6uZ8eaF56ncm/fY7ZVSzoZpX2TmvR0RtzwV6K1PZdfHyDsDbLyj2/hDmhZKTSx8NsluFUR/lB4KS2J13Fhs5V7k6zkmSQQ6AKvFbo6wO869PE5Dn28NgSPFbtfoJ1Y2oilnVjqxfFUqtNp10Rh1eixaaOwagy45f/5OxcLAnEBgTi/QIzbT2LbQTJtlYic6Uh9h9IB2pStVMcUEWMtZuLuJjJafAgSMZqxY4macgXaCeOR6HouKLq31HQvPcGZLjU9HVCWlZWNslgsI4FFwJXdMbBIJCL+t7cTuvU3hETtiINq9jc6uk1B9lfakccEKBcrMXfmEVI6Sb/y5Kvm9TQpKSmk3PobLnU42PrJMj4rqmJD1sXs6jsNu+5Votwf0adpPGHJBOodYPrd2+QkB8iZcxnqwQXnrOvFkCun0byrmGBjDRFbPYLXhR64A7g4tQ+Pj01jRlCL1DOUb4pKuWRE97sVePd30PHOAT4T7aJUXczvVynZN+haYs1Khk3P6fbzHY1ILEKWkYgs45AVOAZICYSZ3eTGX+tgX0UZH4cT2JmYyt4oOX5nNant75HqFki2pZIoT8EayaW6VQYrnbDia9QRB9F6geh0I6YB6cRlxhAdr0Yq/6mt3bMPueQmwsoa7OJ2REIYTVBLmlNDv1YxUsQERAG2Kx0MFGTopZ38cdVelv16dLecO+Tw0750H2KlhAPuUhD1xR7ZxcJPfLSaTOwfNZZ5N11DYjdZ72UyGUlJSSQlJTF8+HAEQcBut1NfX09dXR0NDQ1sbY8lHP7OeOMsJsq5j2trfPiVempj0igzXcWrmdGMPriLYeWQZr+MTtMlvJVZgd6xj+H79xN/5+8RFAr0EyeinzwZ7YTx52TBidcjB3DkbkHvjwYEvBI/LkkQVVDHwLaReBx3kNf4NFuffZQRt95DtKl7A33DXUG6trXg2d1Gc2MRbd5MQtLN3Lv5HQKyCPf9ejox4qksiU9lyCXDTnhcERAdDhLd1UGuqwlstdBRQbh1L+2trTTVeGmMxFKPmVppIlatAadSQ0CpxK/Q4lZoKY3W8K25H4KoPwD5nc1cVlGGqU1FdNMlwGSK+9v4ZmgVcbZa8ssbSPz2QSRhN/bEOBR9hxA3birKgYNQqJUoNFKUGhkSaa9LRi/nDqdLQR4DrAYoKyvbYrFYutU6oBs1hqBajN7dhkeSxt56O78YlnrK40Z8IQINLlQJlVjbHagVuUhldsSSs1dJMBgMXHLtrUwKBtn92assP+BkbdpsdqYYCKn/Rbn/Q1KaxyIwmja/mp3PVZASWUOfy/qQOHMyYkXPWkq6G2VuGhlvLzny/4jfj7+ikrZFi8jfvJm/fdDIi9OdjGu4Ftsna6GbFeSuHa3YVpSzWb6bA8pvmbNKoDH1SkJyPZNu6nfGXghiuQRFugFFuoELxqdyAYd+z67qDrbu9vO1/AIOpIZZlxLA6yknOricWG8XeY1G0jqTEAfM2HwJNLn87C8+CBwEQI4XhUaKJk5PVKKB6AQNulgl2igF0WYNSo3sjMz3x3j+uSWIvV46jWkEFTokoQ7UPgfqoAdJOIhTbyDU95AS0OSX4orY2V1vZ1DKqecRd66uQQhFiLJsxLU2nwbdfn7/fhC/Us3qyb/kgQVzUSp6zlJ/2D85OjqaAd+5hIXDYRwOB1arFZvNhsPhwG6zYe9sQ2qrI775IKPEElqio9g0QoXKX8ewMgdJdiMRyWyKB85mq7QedVclWfurMH/5AOKwm670PqjHTUM/cTxxGbHoYpVn/aJ7qG84HxkaqIp3EBHchBFAJIGwi4MxK5lRPoWg9TZasx8nsHQkk28eh9zcPbsLgQYXna8dIOwMIEnVst+nQSduJHnbe8giIe771eVcFriKu385AI3hZzyTJTLQmw99koYcOgQkAAmRMIPtdWCtwm9tpKmllYbONlocITq8YAtICUTEhEUinEoNDrUWl1LNuuQU3DlaNGEfwxrayGgJEeXJICAbQlUuVOVCJGJF42kitrIVx953EAefpSHGS21iNNb4PKLF2aRKo0iMBnOCjugUE9rkZNTRGmQKyVn/m+nlf4vTpSDrgf/2XwlbLBZpWVlZqDsGF0mlBPvrMbe3UacqoL6x9fidTgB/lQMi0Ohai6E8Fo9WT9/JPW8R7A6kMhlDp93KUEHgzp0f8d7mj/jUdBG70m7Bp12Ny/woAaeFIXUj8QkjqPgadJ++RWqKmPzZF2AqyDonH1ZihQJVv76k/d+/aLr3XiIffMi0L6ooHlaGuDOVcDCERNY9P/tAvQvbqgpaDY2sC7Zy1WcHEUvSaY0fw8CJKZjSzq5sEWKlFEN+ApfkX8Yl3x3zNB6k5tuv2NmgY49CwoE+Al8JVhSR7Wj8dSS0u8ltjCPFZibKZyIoj8OvMGDviKK1OhZBfNTLWxpErAoi1YpQRim46IoCzFmxp32uh8l96w3s7y5DvWMHweYqxEol0mQz8tRUREoFsm83cdP6z1k3fiwhXxKdxhr+uVrBP2698JTOG6h34SlqQzdSz8dbDyJEhjGwdCc6r8D/Tb2ZRxfcilJx+kNAJBIJMTExxMTEHPP7YDCIzWbDZrVia67B3lRJm7GT6qR2VOHdmJuVaF0JuJWjqc6eSHU2CJFOYq0HiVv9Nc7332B9QoCSnHSakizoxLHECBAjgziVlBitilitEoVKTbQpkWxL/hl7zozqLOXSpR9i10XTZkrFqzYQFsnwSwXaouPYERtgbJeYLutlPJPzJEUf6fjT9L5ITce+didKsMNL+8t7EatlyG5IY/27r+MMjSKl5l9E+fw8dvNo5mluZNa1/ZDIemCBLZZATAbEZKAAMr77HEYQBLxeL06nE5fLRVdX15GPx+3E4+zEKXHTlCCiRRJARgMpPg9xXRHUXUq8ihgatLnAfxZ/pqCH1MoOIkIHNlU5+6PtHHT7sLYJOEvFBJXRiKVRyCRRyEVRKCIKbpVIue6Kbtlo7qWXn8XpekI7ORRaexhxdynHh9FcXID2n22IEIOzpVvGDNS7QARfasSk2vLwaGHAuHMsSEUkImHoNG4fOo1bbc18/fk7rPXKKEq6E0+8D53+bVoFF7m1w8kMDKLYlkLxy3XIg/sxJojod+VQUvrHo1CdE/Gc3yPhoYdwfvU1g5ubOejaRES4mb3vf0PB7AmnPLYQjND5VgmoRbzftYULd3xNUruIrRf+ArVGyvBpGccf5CxAnZRFn6uz6APcwKGXY3lVNd8WlVBT1YQTJ/vyPHypdCGmmdSO3WQ0O0hv9mNpiaD3qfDLo/ApY2iJS8BmMBHwmwi74gk0q3in7Z/8/tF7z9j8lBYLCQv/8qPfRzweqm68kfj2WgLSZFS+t/E6BZqtwzHH/HxfSvemJkRKKbrAEvYHhmMUvPSrLOb1C37JfffdguYMKMcngkwmw2QyYTKZ4Kg0lkIkgq+zAVdDCe7a9TRUNNBljcLmS8Emy8UaNxwAUSRIQW0t4/ZXYVXuoszsYG1ODAfj+xBUpBARRaHwKoktrWOtOYmoM1SIYtif7sORqEC3p5L4pk5CDXWEXS74rmDDNJGYDYMLyRWGsi31U/5tXE3X5y7+OnM0ItXP22EQIgK2ZWUgFtMywsWn732MuaMvKm89KQ07WXxjLndk3MnYK/udsYWDSCRCrVajVqtJSEg4bvtgMIjb7cbtdtPldGFv6cRRvZ9wWw10+QkFpXi8GvyiGCJhE0pxHzLccjLc3w0gRAiIbbgUHXRqrDhU1QRkDvZqnFzXPZ6YvfTyszhdT+lvganAsu98kPd19wmixl6M9bmXD/1baCcUjiA9xUwWweYuJIYIgt1NQDWaCHZ0Meeer91hlNFmLvnF77kE2N9gY/U3myiOTEZqFFOvqKA5+AJOj4zRZfkku/Noac2j8V9lIJQgwYHUCEaLjuwBSRjNRtRqNSqViqPrs58tiOVyzAv/wq7HH2LStv1sHuWkeKuTgtmnPnbXtmbCNj8fmFaiK29hQLWXHWNH4Q+lcvEsC3Ll2akAHQ+RSIQlKxNLViYAoXCE0hYXO2tt7Kzu4KCvlQNGO9GxdhL6Ooj2OtF52olztWJy7CK3sotYRwBpBMJiGVv7RANnTkE+HmK1mvSXX6bkmkdQhQoI+Fqojo9n1WfruO26GT9rzEggjLe4E1WujHf2NxDjuYyEtv3sTstn7iN3EK8/N58hIrEYlTEVlTEVU8GlZB7+IhIh0LiJpl1f0FDcjrNTQ6cki0bDJASRlJQQZO1xov62Bq+kGJv6C9p1VloS3fhH/hvOkIIs1kYRfftD/Hf+BUEQiHR5CFQdxL58BSM/fJfNI+5nZvVoXpN/yJvmkaR/9B63zf4V/AwFtmt7C746B7vTStn1VTOqoAxvxEjfgy+xdHYCcwsuYvRF/btvkqcBmUx2xJUHgL4AY7/XRhAEHN4g7VY7jroynJu+JVhST6QzTNivxac04lXFYVb0IaA49HsQSbec3on00stRnK63+CrgYovFsolDMQQ3d/cJtLF9CKgOeXFowgGaHT5SYk4xKrzZjV3SSGxlGw59BqrEc/PFdiz6JUfT75dTCIUj7Gmw81VZO9/UVaJQ7aRy6D5Kg2+iaA0wsDKDRKcFty4XBxk0dEio/6YJv7wER0wYn8bLnddMJDEl7UxP6ZjoJ09G9eIiDG12QuEt2N0X4mp2ozsFX0IhGMa5oZ5AQgBfuY8p2/awtY8Kv2IaxmQROUPPn6IsUomYfkkG+iUZuHF0OgC+YJiazi7qOj002r20ufzUugPs9wexe4LYXR7oaCO6o4GJsy87sxM4AaTR0ViTDpWnz2xOYMsgH01F1dhsE/7z0j8JfKVWhECYNvc6VkQuZZKgRePdT/TjfyX3DJQ973HEYuQpY0hPGUP6YYOf302wuYSqonKaituwNkpwikz4pX1RiySk+SCjwodG1n0ZQ7oDkUiERKtBNWAAqgEDUA8bRsWr+3CFh6PM/ZTk9hU8mXA7U7a+TtrIOSc1thARcHxVxwb1bqpabVhjHPTbOwy5v4lPBtdz1VgpIycU9tDMziwikYgotZwotQmSTTD6Pwq0EA4TqKnBX1FJoK4Of8NePB0uzNd3gyWjl15OgdOiIJeVlUWAHv3LVyoT8caHkQTdyAJyatocp6QgRzxBwo4A+zQlmOu1lOXrGHbBOeZecQJIJWKGpMUwJC2Gu7DgDUzmQLODkqZm6lt20pSykUbPNnRNq4mtk2G0ZSORZOHUp6P1JBOW6Nmz+UsSU24601M5JiKRiJwrr2XbG68y9MBOyvMvofLTfRTMHfWzx+wqaiPiCvKeaCVDi3bRZoBI9iRCTi0Trx18TvpunwxKmYS8BD15CWeXj/WpYJg5AfeHMKoykS1999GuSeKbb79l6hUnnwfXs6cdp8bHe80+hrVZERFG3tfNhQXp3S/42YpCiyx9GJb0YVj+yxAfDkWwNjo4uKsCQVCjjT01f96exjD1CjL2vMH2hmgKd5t5pmAnkkAj9zRFeMfRAIYTT5XpLe7gC9cuqiQ2lClhRFVZBKUJBIJvMGqKlb59n0IsPruCXE8HIokERVbWOZ9je8uWLZq//e1vyYeLexQVFanuv//+NIlEIqSkpPiffvrpGolEwksvvWT86KOP4kQiEXPmzGmZPXu2ze12i3/7299muN1uqVQqFRYtWlSdnJwc/O/xPR6P6Pbbb8+02WxStVod/vvf/15jMplCzz//vOnDDz80GgyGEMAjjzxSk5qaGjhW223btqmfeOKJFEEQiImJCS5evLj6cPW7o+XfuXOn+oEHHkiTyWSRnJwcz2OPPVZ/rN3iUCjEr3/968zZs2d3TJ482fnf37322muxVVVVygceeOBICep58+ZlXnvtte0TJkw4ZgW/P/7xjym//vWvW7VabXjt2rWGX/7yl9b//r6iokLx5z//OS0UColkMllk8eLFVXFxcWGArq4u8cyZM/PuvPPOhqNl+TmcNzlXpFIdwXQJam8nKo+SqvrmUxov0NwFwEGPG5Ho0GZidp+4U5bzbEcllzAkLYbrR/XlvhlzeGTeTzOQ0wAAIABJREFUP3n0zq+556/7uPpfW8l6/s/Yr5LgTFiJKHA/cudfGDL21AKaehrDVTNoyzSQ1NqAX2xnX3ndKY3nKWrDo/cSv99Oos3JJ+Nj8bkuIXmAC2Pqmdku7uXUGDN2NJKQG5M7EZVnF00GM0VFu79Xte5EEMIRvBWdbBDtpAw1Jl8man8FYxbc30OSn1tIpGKMadGMnDGcUVeNPNPinBADbr8KUSSEqXYoyrBAUssKNkQPYtP6F05qnHUfLKdK0kpapprXYsYztEqEJGiD0fUkRWUSb5rSQzPopad5+umn4xcuXJgWCASOWEeee+65xMLCwuZVq1aVBYNB0aeffmpob2+XLl++3LRy5crSN998s+yZZ55JiUQivPrqq3H5+fmeFStWlE2ZMqXzH//4xw+cv1955RVTdna2d+XKlWVTp07tfPrpp80AJSUlmscff7x6+fLlZcuXLy/Ly8vzH6ttJBJh4cKF6X/9619rVq1aVTZmzBhnbW2t/MfkX7hwYdq9995bt3LlyjKtVht+9913f7CaraysVMyaNSuvrKys23IgPvbYY/VpaWmBffv2qdevX/8DZ/8//elPaXfeeWfjihUryq6++ur28vLyI1v79957b2p3GqjOTUfJH0GfK8Vb5UDli6Op5dQC9YLNXQgIqByNOAwDiIi8RMefmsvGuYxIJMKgltM/dyD9cweeaXFOCml0NGkmM15pLQpPMU6GEnT5kelOPn1SyO4jUO3kG8UGBu3fx45sETmRS4iIwoybfW688Hv5IXE6NWGxm6DMSG5dM205SiINIXbs2MG4ceNOeJxAo5vd4WraQj5SG6rxqkeTrdiAwvybHpS+l55EaVATZwrTGhjMjAMfs6LvfnS+Lv6Khfcrv0SUPfG4Y+xZ+TK7Qq0kGmJ41Dyc3772Mk7D9UjUH5GffZCMzBcRic4be9UZo2j1x7EHvv6iWy1ZfcZd2FEw+YrOn2qTlpbmX7x48cG77777SHS2xWLx2O12SSQSwePxSGQymWA0GkOffvppsUwmo6amRi6TySJisZj58+e3hb4LDm1qapLrdLrwD+ZWVKS99dZbWwAuvfRS59KlSxMBysrK1C+++GKC1WqVjRkzxrFgwYKWY7UtLy9X6PX60MsvvxxfVVWlGjNmjD0vL8//Y/J3dHTIL7jggi6AoUOHutetWxd17bXXfs+a63a7xY899ljNiy++ePxozqN47bXXYjdu3Gjw+XzipqYmxY033tgyZ86czlmzZlkefvjh2iVLliRUVVWpX3nllbi5c+d2wCErus1mk61bty5q0aJFyfn5+V33339/A8Czzz4bX1BQ4P7ps54c59VfpKFPKrKgA2lET4ftJysTHpdgcxedcifmliZsUZlIDE5E4vN76/x8pv+Y6RRnpWGpLkYUUVC7ofH4nY6BZ3c7IcJIy6tRBYJ8PiKRkGs0iQOqiTb2bCnrXnqWLr0YrzKOoRURmpTtuFVGtm3bRjj8g3fVj9J2oJ4iaTWC0Mmw5kOP1/y+/p8V0NXL2UO/S/vjV8Ywer+RgCRAVuMatkYN5OuN/wehwE/2bd7zBR/taSCGGN4YPI6ExhqyOuNBCDModzdaXR+McZf85Bi9nN1cddVVdplM9r2yxBkZGf5FixalXnTRRX2tVqt0/PjxLjgU1LhkyRLjtddemz958uQjirdUKuXqq6/OXbFihemyyy6zHX2Orq4uicFgCAPodLpwV1eXBODiiy+2PvHEE3XvvPNOeVFRkfbjjz82HKttR0eHtKSkRHvzzTe3vf322+Xbtm3Tr1+/Xvdj8pvNZv+GDRu0AOvXr4/yer0/8K8YNGiQt0+fPr6fcckEALfbLXn99dcrX3zxxcpXX331e0p2YWFhy6BBg1yHlWMAq9UqraurU44ZM8a5bNmyMqfTKXnzzTdjv/jiC11tba3ylltu6daKiueVBVkVm0VE4kAk0mILnNo2erC1i0pJHQnNfvabEkjr2WrBvfQw0RMn0PnFGxSsOUApIfbtbSJ7aubxOx6Fd38HB2QHsJSVU5QhYrDrQiQSP0Mvzzt+517OagSjGr9LzeADEghVs0NRwAT7XkpLS+nb99gliY/my72bEItENNrDDJRmIqaLuIEjeljyXnqa5PxDubwDoRwyOtqQKvei8U3m0egpjNv0PKJxC47Zr6u1mnfeX40CPXv6jKI8LPDUe/+g2Xw30codhFKryU1/6byPWzhdFEy+ovN41t7TxaJFi1L+/e9/l/br18/30ksvGRcuXJjy1FNP1QEUFha233zzzR033HBDzpdffumeOHGiC2DZsmXlJSUlysLCwuylS5dW3HfffekAV1xxRadGowm7XC4xgMvlkmg0mnAkEqGwsLAtKioqDDBu3DhHcXGx+lhtY2Njw2az2XdYoR09erRjz5496kmTJh3TF/iJJ56ofuihh1JfeOEFUUFBgVsmkwlLliwxrlu3LgbgmWeeqTraT/polEplJBAIfM8Q6/V6xSqVKgKQm5vrAUhJSQkEg8HjGmxjYmJCKpUqcvh6TZw40fHtt9/qN2/erG9paVHMmjXLUl9frywvL1fHx8dXFxQUeI835k9xXlmQVcokwrJD9zokCiAIwnF6HBtBEAh1eOlw1yGLHFrU5A/O7zY5ezn9iNVqTDFaQuIQhBpotHac9O8j3BUk2Oimo347eo+HNcNikTuHYczaSmLK+B6SvJfThdFsAJGYuK5Y4qylKNVitDo927ZtO6H+NdU1VHka6SsIDKgtwxadTYL8ACrLtB6WvJeeRh+nQqUOY4/KZdpeMXXqOobXVrLXYGF10VfQVPSDPgG3jXeWPodbUKKIHs0nRhmTN6wi1R5PSKajT+wWpLH5GI0Xn4EZ9dLTaLXakF6vDwPEx8cHXS6XpLS0VHHLLbdkRSIRZDKZIJfLIyKRSFi0aFHCm2++GfNdv7BYLCYnJ8d/2K/4pptu6hg0aJD7sE/umjVr9AMHDnQ5nU7JlClT+rpcLnEkEmHr1q26/v37e47VNjMz0+/1eiUVFRUKgKKiIl1ubu6PWn/Xrl0b9dxzz1UtW7as3G63S8aMGeMsLCxsPyzT8ZRjgAEDBni2b9+uP6ysd3Z2SmpqalSHlfSfWhiKRCLh6He0Wq0WkpKSfF9//bUWYNu2bbrs7GzvkiVLqt9///3S5cuXlw0fPtzx+9//vuFUlWM4zyzISmUiKA8F14nCIax2J7HRJx80FfGEiPhCROxW3NpDUcoJ6Wd3tHUvx2dQ9hh2J9Ri7KyiTZZEoM2DIv7EYwv8VXZsuIlpbKYpSkacMBEREfImxSESnZ25oHs5cbKzkti3qQ6vMo6+1VXU9tehMVioLdlOS0vLTxZNEASBtZ+tQS0oaBK3M7DBw54h8aRo1yEypJzGWfTSU6T1j+eg08uA4gj+SREu6uhke7qXP6Xfzsh3biP6VysPlXYGfC4by158lIagjlE5/bk9Lobkjk4m7vqMNtNMJCI3sowiEtIW9/oen6c8+OCDtXfccUeWRCIRZDJZ5PHHH6/NyMgI5ObmeqZPn54nEokYNWqUY8KECe68vDzfXXfdlbFq1SpjJBLh4Ycfrj56vLlz57b/7ne/S58xY4ZFJpMJzz77bFVUVFT4tttua7jmmmssMpksMmzYMNfll1/u6Orqch3dVqFQCA8++GDNXXfdlSkIAv3793dPmTLFcSzZAdLT033XX3+9RalURoYMGeK6/PLLf7Ttj5GXl+efPXt22+zZs/PUanU4FAqJ/vCHP9TpdLrI8fpmZWX5q6qqVIsXLzbNnz//iM/so48+WvPggw+m/u1vfxOZzWb//fff361uFf/NeaYgJyHRuSAE0U4P1Y2tP0tBDlt9uPEhd3Xg0A8hInGhMZx8QFcvZxfZF13OB+vWM7qsmo74SdTsaMEy5cRTC/kr7FQEDmCpr2PFGCWZHSNJMG4mI/emnhO6l9NGX0sS+6jDq4ojp/EAm0Z6qfOa0cpkbN68mRkzfrxwSGlpKY1tzYwJ5fFRoIO+ykPuO8Ykb6//8XlCUr6R0q0diAPxJNpaqdBWcOmB/qwoMPL/FNfxmxd/TcaEa2lxBPhi6z6sYTVTBsbxoDqXgDjCpWv+j5ymAEVDB5Cv3IgnOZV80+Vnelq9dBMZGRmBDz/8sPTw/8eOHeseO3Zs6dHt7r333mbge2m2EhISQm+99VbFT42v0WgiS5curTr6+HXXXWe97rrrrCfSdtKkSa5JkyaVnIj8U6dOdUydOvWElOLnn3++5se+mzdvXvu8efPajz4+Z86cI64wKpVK2Lhx4z6Aw2nmAL744ovio/sNGjTIu2rVqrKjj5+ILCfLebV0VSoTkRsP3c9od4SGlh/ckxMi1OmlTezA1NmKzZCMTH1WuDT1cooo4uLwpqgxOA89N7aXndx99Za1Y2/fjxiB2qTBICiJH9SEWn12Fknp5eSIiVUiiEL4omPIaQQftWxv66KgoIB9+/bhdB47rWYoFGLt2rVEK/TkRKJIbajEGpWBWOTH1LfXNet8ISn3UNEYe1QOF5aL2Kbdz/QGMUm+CN9kD2FFYDjPfVbKsk1VBCMCN17Yn88HzGK7XOBXuxsxOWoIqfNBrMQcsxlzTiFi8Xllo+qll/OK80pBlsuNSJPdiCJBdF4p7R0/T7ENdfpoFdkxt7sIKMyYTjqBSS9nK2k6LW5VF6KQjYZO+wn7IYesPpqcHSTW11OeoCTdPRKDrJ6MUb3R5+cLIpGIiMxHUBNDdrOA3FuLO9jK4KHDEQSBb7/99pj9tm/fjtVqZbQsh2JlO8Mqa2iLS8EorUGZc/KFRno5O9HFKFGpgnTFpjCwUky7zEYopoGLNrlxyVVUXTKdK8f04/qLBnHnHx/l26xJPFfXxvSGAHmlG0my22mM749c5EKWVkdCws8rZd5LL72cHs4rBVkkEqOPVyEPOFAGVFhtP9OCbPVh9zWAxIhIJCU1z9jNkvZyphiZP4Z6YyzR9ipk7hBhx0+naDpMoM7JwVANac2NFOVGE9OVSVL8N5hMk3tY4l5OJyKNgFdhRBmErIYKogxSWvxSCgoK2L59O21t308fabfb2bBhA9lZ2ZiteraIu4hzBQgpkomV1SBK6HeGZtJLT5CQosKpTyOpIYAiIFCsKCWvC65qhg2eEM/GD6YqbyL3VrWxoKyeAluEew/4qQuWkd0UwRrblzTFbiR9pyOVdltthV566aUHOK8UZAB1jBGx4EAW1uJ023/WGIGOLnA04/ouQC8xL6c7RezlDJI7/iLqEpKJcdSi9CupLjmxRZT3QA3N7kOuGfaYIUAE8+Bw70vuPEMeq8ItNiEAfeoacRii2dfo4MILL0Qmk/HJJ59wOKF/KBTivffeA+CSERMgIsZvL8OnjEWEimhDB0j+90oHn8+YchNxS80IIgVjasRs1x5g6OBoLF9buVWk5iurmzn7qnmtqZNpfhkPbHbg9rcjhOoIqJJBrMesKSI+7/YzPZVeeunlOJx3CrJUl4QEOyKRAbcQ/lmp3jo6O1G4XXRpEhAIY0xN735BezkjyNVqmhPi0brqAfim5MRKktcdrCa2tZkOjYw4/yAS5CWYhs7pSVF7OQPEJMQQRoFHrSa1xU2jVsKeBhsajYbJkydTW1vLsmXLKC8v5/XXX6exsZFp06ahcYBTChm1ZTTHHcpaEZPU6196vmHKOOSH7NSnMKReoFRVRchZS1rfWBKXN/KmIpYV+Rm8ZFMx5P1WzBIJzZ6DxNv9NCT0AyJEp7ag1mT89Il66aWXM855pyAr5EbEUgchmQGPyI/Xe3Kp8IRgmA6PDZ2jE6vBBPJOZDLl8Tv2cs6gUStBdEhBPtjuOW77iC9EccBJflUFRTnxRHvNJEXtINp44iWIezk3SEo65E7VZYwivU1ACDdxoP2QW0VBQQFTpkyhvLyct956i+bmZqZPn07fvn0Jlh1kUwwMqG6gLiENEWGMub07T+cbxjQdAJ6EFNJrJEREAkW2vVx8cx/ikrQUvVrG7gd20vB5I4MHxSBGxAHJXvIbIrSYBmKSHUTT9/ilqXvppZczz3mnIMvlcUhkTsJSFRJfF52dJxeoF7L66BS7iLXa6FIbkcutx+/UyzlFljEbayzIfe14PX4ioZ8uJezfs5uycBsan5dW8yGf0iSLtzd/6XlISpL+0D8MOtLaQOqvIxxuxxc89BsZNmwYd911FzfddBPz589n0KBBAPgbrBQLjUR3BfFo04mWNqBMG32mptFLD6HSytFpA3ijkolr82N2iCnSVWKvPMjMe4Zy0c19GHFlJjMWFBArOAlGAnhde5CFFQjyJFLku9EPuO1MT6OXHmDLli2aWbNmHam5W1RUpJo2bVrejBkzLHfccUf64ZL1L730kvGKK67Inzp1av57770XDeB2u8U33nhj1syZMy2/+MUvchsaGn7gm2W32yVz5szJnjlzpuXKK6/M27Rpkwbg888/11922WV9ZsyYYXnyySfNAOFwmAULFqReeeWVebNmzbIcLg7y/vvvR40fP77frFmzLLNmzbIcLiV9LPl37typnjp1av5VV11lueeee1IOy38s/va3vyXMmzfvB6VpX3vttdgHHngg6b+PzZs3L3PDhg26Hxvrj3/8Y0ptba28s7NT8s477xyzAEUoFGLu3LmZq1ev1h8+9sQTT5inTp2aP3369LytW7eq4cfvwYly3r3h5fI4pEo3AOouP1brySm4YbsfW8RBrLOLiNREtK6rJ8Ts5QwyeOxFtMfGEeWsJ94WoLL2pxdRTTt2oLK1ExaBnAFEy8qJLeitjnY+Yog5tFsk12hQBiGjpQyRTklx03/Sger1etLT09HrjzybCToUhKyH0ovKxAnESasRxfcG6J2PmJKV2BTpAFxcFWKrdh8H12xFLBZhGZHA0MvSic/UEa7poi1Uj84boi0mFxBjiqlFou8tHHO+8fTTT8cvXLgwLRAIHEl6/txzzyUWFhY2r1q1qiwYDIo+/fRTQ3t7u3T58uWmlStXlr755ptlzzzzTEokEuHVV1+Ny8/P96xYsaJsypQpnf/4xz9+kDvrhRdeiB8+fLhzxYoVZX/961+rH3nkkdRwOMyDDz6Ytnjx4spVq1aV1dTUKDdu3Kj98MMPowKBgPiDDz4oXbBgQcMjjzySDLBv3z717373u4bD1fAmTJjg/jH5Fy5cmHbvvffWrVy5skyr1YbffffdYyqrn332mf6bb76J6q5r+dhjj9WnpaUF9u3bpz5cDfC/qaysVMyaNSuvrKzsSADQzp071bt27dJ98MEHJc8++2zVww8/nAbHvgcnI8t55yQnVxhRqN3gA3VXiM6TVJCDdh9+TxNBuQGRSI6xN8XbeYclI4E1xiTMzXVoAoNZV1xJbpbp2I0jYbZZ/WTXVVNpNhLnTSNb+yaq7OdPr9C9nBYOFwQS1IcMK3l1NWwdHkdRnZ0haceuphlurueg2kBmxX7sagWSiB6DuhOU+mO27+XcxpgZz8HSCB6llr4tXbxW4KPEXUVubTXGtEO+xcXL1xAj0rND9C4DagUOZAxGQgBTfuIZlv78xr2pKbZrV2tcd46pGRzfoR2d+JNWlLS0NP/ixYsP3n333Uecyy0Wi8dut0sikQgej0cik8kEo9EY+vTTT4tlMhk1NTVymUwWEYvFzJ8/v+1w8G9TU5Ncp9P9wNT5m9/8plWhUEQAQqGQSC6XCx0dHVKtVhvOysoKAAwaNMi9bds2rdVqlY4ZM8YBMGrUqK677rpLA1BaWqopKytTv/HGG/F9+vTpuv/++xtkMtkx5e/o6JBfcMEFXQBDhw51r1u3Luraa6/9nkJVUVGhePfdd43z589vXLZs2Uml+3rttddiN27caPD5fOKmpibFjTfe2DJnzpzOWbNmWR5++OHaJUuWJFRVValfeeWVuLlz5x6plud2u8WPPfZYzYsvvnhEO9u6dat2xIgRTrFYTFpaWiAcDova2tqkx7oHJyNjt1mQLRaLwWKxfGSxWL6yWCybLRbLqO+Oz7BYLActFsuG7z7ju+ucx0Iuj0OlP2T11XsitHWcnILsbLfz/9m78+goqvR//O+q6up9TdLZyNZJSCWAEgygLA6gyLAkLCHgV37I+hk/GYdBBRdwPhNFUFAmIyBIcMABBEcgi6AyboACCoIBATFpEkI2kpCls/S+Vf3+aMIAISxOTDTc1zmcQ1ffrvukk5M8/dSt+7CWRthkQQAAv0jyR667kYtFqFYGQuL0rUPOr23/sotQchD7NRokXDiP4qg4AIA+sAKUWN4psRKdi2FpgHHByWrBU0B4dR2qlSrkl7f/99F96jscDWCQcKEc58J9v7NVHfonmvg1CYj2fZhuDItCcAkDhYvBjwGV+GLtWridDtSWlqDx8AXw8OKCOx8BLYBTHYtgcSEU8SldHD3xS0hNTW26PvkyGAzOzMzMiJEjR/Y2mUyiYcOGmQGAZVlkZWXpp02bljB69Ogrv1hEIhGmTp0al5OTEzhmzJjG6+fQ6XReuVwuVFdXi5577rnop59+ulKv13ucTiddUFAg9Xg8OHz4sMZut9NWq5VRq9VX/rDRNC243W488MADLUuWLCnPzs422mw2ZtOmTfr24g8JCXG2LsHYv3+/1m63M1c/bzab6YyMjIgVK1aUiUR3XGsVAMBisTDvvfde8fr164s3b958TTkyPT29JjEx0Xx1cgz4Oun16tXLcfUxi8XCXP2hQi6Xe5ubm5n2vge3qyMryAsA7DMajas4juMA/AvAfQCSADxvNBpzOnCudknEekiUvo5XajuFujtcg1xbVweZ1Q673PdhSGcgdxt3Rw70gEf+BQCg2UHD6nZBwYrbjKv75lO47GEQ8V5YVb2g9DQggIvv7HCJTkTLvLC5/WDWMoiodQNCE6obLgEYcMPxFuN5nPQLRHKdBSd6JkEDQBfm36kxE50nINx3dYHX6yEr/hGDL1L4NuIMHrKk4J0nZ8NjdyElLB1lojOQO3i4RQowjB/CxP8GFTm9i6Pv3pSDQxtuVe3tLJmZmeFbtmwp7NOnj2PDhg36jIyM8JUrV5YDQHp6et3s2bPrH3/88Z4HDhywjBgxwgwAO3fuPFdQUCBNT0+P3bhxY9HixYujACA5Oblh1qxZ9adPn5YtXLgwesGCBRWtyyOWL19+ISMjI4JlWSEmJsau0+k8drudtlgsVxJaQRAolmUxffr0ep1O5wWAkSNHNn322WftLo1YsWLFhVdeeSXi7bffpvr162dhWVbIysrSf/nll34AMHny5DqTycTOmzcvxmKxMCaTic3MzAxeuHBhTes5pFIp73K5rinE2u12WiaT8QAQFxdnA4Dw8HCX2+3+2QVbpVLptVqtV15vs9kYrVbrvdn34HZ05BrkNwFsuPx/EYDWDD8JwByO4w5xHJfJcdwvuqyDZf3BKnz7H8vcLFqa23wQu6mGpgZIbBY0qgMhUE7oQtusOye6AU1MElx+LkjtdQivbcaBM8fbDrKZ8Em1FIaKMjgZETTueBgk+VDFPdL5AROdRqKWwOL1g0fPIrJWAOOuhEjsRG2Lo+1gnoetwQ1703nQAKyKCFDwwi+aazuW6BbkajFkEheg8H0I6t/ohJWxo9zgQdQ9SRh832SIaSl2e3dh4DkeZ8MGAgBCAxoABbm0cLdQKpWe1ipuUFCQ22w2M4WFhZI5c+bE8DwPlmUFsVjMUxQlZGZmBm/fvt3v8uu8NE2jZ8+ezta1wrNmzao/e/as9Omnn45euXJlyZgxY670vf/666/V27ZtK9q2bVtRZWWlZNiwYS1JSUmWgwcPagDgyJEjCoPBYOd5HsnJyb0qKipYAPj2229VvXv3bncbpy+++EK7Zs2akp07d55rampihg4d2pKenl7XGtNjjz1m+uyzz37Kzs42Llq0qCIxMdF8dXIMAPfee6/t+PHjarPZTANAQ0MDU1paKmutAFMUdaOpcfk54Xa36R04cKDlyJEjGq/Xi7KyMjHP89Dr9Z4bfQ9u64SX/axkleO4uQCeue7wbKPReJzjuGAA2wA8ffn4FwA+BHABQBaAdABrf868t4NhJJCrXIDggcQjhdtuh8fjwe1eAqi1mqBracLFsEAwbB1k8uG/VKhEF4qNDIZdp4W6qgzhDb3wcUUzku+7blD+ZnwUfA9mfbkRP0YngOWliBN/D4Rd/6NPdCdqvQ4tNS0Q66VQnXMgsrYIzdqBOFnRhN/3vu6mhMpjOKzuDa70K/AAZKweKr4O4hBylaG7oigKAYEUGqsjIFFq0bO0CdFRcuT6HcBWx0qgzo0K4QecCmrA3Brgw4FJ8KMcCEqI6urQiU60ZMmSsvnz58cwDCOwLMsvX768zGAwuOLi4mwTJ06MpygKgwYNah4+fLglPj7esWDBAkNeXp6e53ksXbr0wvXne+ONN3q43W562bJlEQCgUCg8W7ZsOR8YGOieMGFCgkQi4ceMGdPQp08fR0JCguObb75RT5w4MV4QBKxYsaKUpmm89NJLZU8++WSsWCzmDQaDfdasWfVtI/eJiopyTJ8+nZNKpXxSUpJ57Nixze2NbU98fLxzypQptVOmTImXy+Vej8dDPf/88+UqlYq/1WtjYmKcJSUlsrVr1wbOmzev9mZj+/fvb+vXr5/l8tdL/d///V85cOPvwZ3E/7MSZKPRuAnApuuPcxx3D4APADxrNBq/vnz4XaPR2HT5+d0AJv+cOe8Eo/QDLVgg4uVwUwKam5vh73/rS56CIKDJbUZsUzPOx+ohF9eAYWS/dLhEF4jyV6BME4zQonJIvP1xiFaixVQBtd/lO8w9LlQd3Ynz0a+gZ2UZPhqWBjnlhlp9CVAFdW3wxC9KH6TGpVNasBrfr8c+Zefwxf0pOFlS1SZBdv24B0f9U5B0uABV/oDWo4KWqQD8k7scnqcJAAAgAElEQVQidKKTBETqcKoC8IYGom9REwIetqCEtWFD81bMcD2M1/3fQf8iX/VLovRHiKgQTNSgLo6a+CUZDAbXnj17ClsfP/jgg5YHH3yw8PpxixYtqgZwTYeq4OBgz/vvv190s/Nv2bLl/I2Oz5kzp37OnDnXJLoMwyAzM7PNUoJRo0a1jBo1quX64zeKPyUlpTklJeW2kuLhw4ebhw8ffsP1vU888UTdE0880aZl7YwZM64shZHJZMKhQ4fOAEB2drax9fi+ffvOtjfnW2+9VXr148WLF1cBqLr6WHvfg9vVkTfp9QKwC8A0o9H478vHKACnOY4LuzzsYQD5HTVneyh5IGjKDC+rhEcQ0NR0ey2neZsbVqcJSrsTAqODSnZH67mJ35CoAAUqvCFwS3wf1HUtQM7xf/9nwNF1+JvyUfQ6XwwAEMQJkEkL4Q3p2xXhEp0oQO+7AZOX+7YiDaupglUiRknJdb+6BAGO04dxNEAMrrwG50LEYNxaaKR1ZAeLbi6gZzh4sBDCAkDzwEP1HhgcYfgw4CCmJryE8yECks7RKNYZIOHVCBWfBSJJgkwQvyUduQZ5OQApgNWXd6vYbTQaBQD/AyCX47ivAcgB/KMD57whWhkMEW2Gm1WCdlnR2Hh765CbaxohsTbBzSpAQwKd+gZrDoluIcJPjsN8H7DaEkDgkXTBhHedPSAUfgqUfQvn/tfxUdQDGHY6Hw0qPZTuYPRhj0Ee80BXh078whRa31ZvNFhYZQz0dY2AwAOMHRWmq5bsXTqLIi8Hp9MEjc2NC/4G8IIYaq2riyInOktglG871SCNAg0KDbifgCqxCU/d+wwejhqD4AYKvSu9OBHh67bZQ1cLaCO6MmSCIO5Qh90wZzQaJ7Rz/HMAn3fUPLeDkYeAFbXAzRogcrbcdgX5UkU1FBYrnBLffqcacj9FtyVlGdg0Bui8FtTV1iCuSoQdQ+Kx/vDbeLJyB56Oex1miRQDC84iP7Y/AIAT50MZvaCLIyd+aUrd5QTZI0VzgAphdU3QWS/hkn8ovvrpIh4f6msh7cl/DzsDRiOh5CcAQI2yFwxWQBekaPfcRPeg0csgFrlBudT4OvheTCw4hNHJzdj4wydwCA14PJ+Hh6bRFBSLYLcTgXFk/2OC+K3pdp30AEAiDYKENcPFKiCzttx2BbnuUi2kNhscUh0AQBGkvMUriN8yg14NsVwLpbkIlFeDwZVOLIv+IyYN/wh5IQ9g/LGDkFmbYfLvBZe4DnJRPRB8T1eHTfzCWpuFUF45JD0jEF4P9KopwAm9AbWnP/INspkgnNiKfSHhGFyYDxcDeJlIAIAugnRK6+4omkJgoAf1zkgcj+kFATTGH6bgRhnETgdG/cjgYI++MDBShLA/gTGQK08E8VvTLRNkVuwHOWuGh1VCYbXddgW5zlQPqcOFRpWvgqwKJW30urOoADkqhQjYxEYIlATzT1vRq9qDSrMc91Sex4xvf4BDrICc7wmt9BRqlfGAqO1eyUT3IlWwAMXDxusQcE8MWC8QX/kT3AwDr6cShVWN8H73Ds6wPVGpEqNnaTFKg4AYXgIabigjYrr6SyA6QWCUFiZPJJLC3DjeawiU3wp4mwrCP4+FQeR0YW/MQ2DscoSJTwORg7s6XIIg7lC3TJDFrB+UjAUAoLLyMDXeXje9erMJCqsFTSo/gHJCHkr+0HVnkf4KnOGjQAf/CAg8asxFmF/swpQT32LY+Z/gX1WEMz3vAw0GD4n2wRnUr6tDJjoBRVMQSbyw8VrY/X37dPrXlUFh5/F9wECI3x0J+usVWBayAGK3ByG1TSgJkiGI56Fk6kEHkL3T7wZBCZHgIcJQqRNreowAr1ZDvaIE9JGz+Od9oxETGQUACNOUAwFxXRssQRB3rFsmyCyrg5T17UChcFCw2+xwOG59w53J3gyluRk2uQ6sqAFSBbmpojuL8pfDiHAkBNZCYa2AxU2jmPkWNsGE4fUqwNKA6sA+sLNmRLCFUESTy6R3C6mShdWrQ7PQAoeYhqK+DvfWmPFNEIcWMYM17P/DkfBI/O+J85B4BBQEhEDqZaFmLgEassTibhAY6+u2qrW5Ifj54+8zV0KzcDbO/H+PYWfESAyQ+0FCWxAQHw3cpCEC0T0cPXpUkZaWdqVD0MmTJ2Xjx4+PnzRpEjd//vwor9fXCXnDhg365OTkhJSUlIRdu3bpAMBisdAzZ86MmTx5Mvfoo4/GVVZWstef32azUXPnzo1JTU3lpk+fHltbW3vlHjKr1UpPnDgxvqCgQAoAXq8XCxcujJgwYUJ8WloaV1RUJAGAtLQ0rvXf/fff3/fll1/u0V78+fn58pSUlITU1FTuhRdeCG+N/2r79u1TTZgwIX7y5Mnc3Llzo6/uZgcAW7du9b96DgB44oknor/66itVe+/jiy++GF5WViZuaGhgPvjgA7/bnTMjIyNswoQJ8cnJyQnvvvtuAOBrTNK/f/++rV/zunXrAtub90a6aYLsB1bq2+pP4fT9DN1qHbLVaoXL64TGbIFL7AepyASJhOx3250ZApQw8mHo63HCRp+Di4mE2m7Fw8r74F/4BcwqDWSIB6+pBEUBAfFDujpkopModXLYeC2czXUwh+oQfsmJocVfQe4Q8P/13YB/JqVD6uEx8tT3AIDTujjwbjVU0hayDOcuodRJoJA6UFsrwZ+HRWF/mQUvSx7CIlsSRsYHgr/YgjD2NOiY4V0dKvELe/PNN4MyMjIiXS7XlU9Ca9asCU1PT6/Oy8szut1uau/evZq6ujpRdnZ2YG5ubuH27duNq1atCud5Hps3bw5ISEiw5eTkGMeNG9ewbt26Nus7N23aFBgbG2vPzc01pqSkNLz55pshAHD8+HH51KlTuerqaknr2D179mhdLhe9e/fuwoULF1YuW7YsDPDtMZydnW18/fXXLwQEBLgWLlxY3V78GRkZkYsWLSrPzc01KpVK744dO9okq6+++mrkhg0binNycowRERHOLVu2/NdbG7z22msVkZGRrjNnzsj379/fphX2jeY8cOCAqqKiQrJ79+7C7Ozswq1btwabTCbm5MmT8ocfftjU+nX/6U9/umnDkev9om2fu4pY7AdW6tvfWuaRAIIAk8mEkJCQdl9TV1cHmd0OEc8DtB+U4jKIRORu9O4s0l+OBkoLG6VCaVgBIk2PIKSsHip3DlBZgoO/S4VUoJEoOQKT4Ac/v8iuDpnoJFq9GuXndQiwNEHR/z745XyBC3w9pl2y4B8RKvibPfhzcTWc9T+gVgM0CvfAw6ugUnu6OnSiE4VHUbhg7I3pkc0oHhiOf/9Yg3vCtMh4MBYfHT2JAeoTQMysrg7zrnHs2DH/H374oUP3n0pMTKwfOHBgw83GREZGOteuXXv+2WefNbQe4zjO1tTUxPA8D5vNxrAsK+j1es/evXvPsiyL0tJSMcuyPE3TmDdvXq3H4/vdUVVVJVapVG3KtSdPnlT+4Q9/qAGA3//+9y0bN24MBQCn00mtX7++eMGCBVfWdn3//ffKoUOHNgPAoEGDrAsWLLgmmXnllVciFixYUNna0e5G8dfX14uHDBliBYD+/ftbvvzyS+20adOuWa+6bds2Y3BwsAcAvF4vJZFIbtkhr9XWrVv9Dx06pHE4HHRVVZVk5syZNTNmzGhIS0vjli5dWpaVlRVcUlIi37RpU8DcuXOvNEK50ZwPPPCApW/fvjbA1+nS6/VSLMsKp0+fVhiNRsXkyZM5nU7nfuWVVypCQ0Pdtxtjt6wgi0RqiGW+CjLPKCFyuWEy3Xwdct2lWiisVnhpEURQQyW7YbMZohuRsgzC/RQoY6MRoy2BEyW4RA+FeM9xOHQMBPEAXNLVItF7GBWqfuQy6V1EoZHAzmsgslsR8bvRYASAdraAij6AbJcG2dH+SLnEQlFXjXNhLNQO39UmjZ58qL6bRNxngFNQoenUaSxPvRcn/u8R5P1xMC6eMYECj+jQBkATdusTEb9pqampTSzLClcfMxgMzszMzIiRI0f2NplMomHDhpkBgGVZZGVl6adNm5YwevToK4m3SCTC1KlT43JycgLHjBnT5pK31WplNBqNFwBUKpXXarUyADB06FBrRESE+/qxarX6SpJN07TgdvuGnDp1Sma1WpmHH374Sie0G8UfEhLi/Oqrr5QAsH//fq3dbmeuj6k12czLy9Pm5+erpk2bdtMPElcRAMBisTDvvfde8fr164s3b958TdU8PT29JjEx0Xx1ctzenDKZTPDz8/O6XC5q/vz5URMnTqxTqVR8bGysY968eRdzcnKMDz/8cNNf//rXO1r/1i0ryBRFg1H6vtduVgHa47nlEovaqktQW+xwSnxbvCnV9l88TqLrxeqVOFMdhxnWXMyOzseDJVNQEj0c+QlxCLCqIY13IfBCI0p6kC5YdxOFRgIBDKROQNM3EfUA3OYy1H7XjPin/ox9u97HQHsg5A4vKiPCEQYnABk0QW2uQhLdWPh9MaDer0T5T40IngDQNAVBEHA+vwY9JGch5ch9C51p4MCBDbeq9naWzMzM8C1bthT26dPHsWHDBn1GRkb4ypUrywEgPT29bvbs2fWPP/54zwMHDlhGjBhhBoCdO3eeKygokKanp8du3LixaPHixVEAkJyc3KBQKLxms5kGALPZzCgUiraLgi9TKBRei8VyJaEVBIFiWd+y5pycHP/Jkye3af18vRUrVlx45ZVXIt5++22qX79+FpZlhaysLP2XX37pBwCrVq0qCQsLc7/11luB+/bt89u8eXORTCa7JsmWSqW8y+W6phBrt9tpmUzGA0BcXJwNAMLDw11ut/u2C7Y3mtNkMjHp6ekxSUlJ5oULF9YAwPDhw1vkcjkPAOPHj2/Kysq6ow3Ju2UFGQBouRKAHR6RAiKX69YV5Lo6aGxu2CW+JS9yHakW3g1iA5X42hYFGeWFkxKjSlWMsog0BFjvRb6+EL/T1gAAVNzwrg2U6FRytW8dscTDwqNywhygQNDFWjxQEYWn9s2HJ78GpsYTAIDyHomIZ3wfwDXhZGvIu4lUySJQ04iyGi3g9V0ib7hoRXOdEzGSw0CfyV0cIdFVlEqlp7WKGxQU5DabzUxhYaFkzpw5MTzPg2VZQSwW8xRFCZmZmcHbt2/3u/w6L03T6Nmzp7N17eysWbPqExMTLa1rcj/77DN13759ze3NnZSUZDl48KAGAI4cOaIwGAxXKn7ff/+96pFHHmm+VfxffPGFds2aNSU7d+4819TUxAwdOrQlPT29rjWmsLAw98qVK4NPnjypev/99416vb7N+rJ7773Xdvz4cXVrYt/Q0MCUlpbKevXq5QB8yyHaQ1GUIAhCm+M3mtNms1HTp0+PmzRpUv0LL7xQ3Tr22WefjcrLy9MBwP79+1WtCfnt6pYVZAAQZFowjAVuVg6x89ItK8j1pgb0sDvRqPYlyNIAcqn0bhATqMQudwzAAP2bHDiZVIrqmiKYzVKMHDYd7I9LUC+oEcUldnWoRCdqTZClvAim5nKwDz+IXrs+xXf3iBD8cQ2iRQ/BVrUZJh1QRPVBIt8IlrJBEhLVtYETnc7QW4Wj3/qj9vDnCBw2Fic+LYWIdiMmuBoIG9DV4RFdZMmSJWXz58+PYRhGYFmWX758eZnBYHDFxcXZJk6cGE9RFAYNGtQ8fPhwS3x8vGPBggWGvLw8Pc/zWLp06YXrzzd37ty6p556KmrSpEkcy7LC6tWrS9qbe8KECU3ffPONeuLEifGCIGDFihWlrc81NjayAQEB7VafW0VFRTmmT5/OSaVSPikpyTx27NhrkuqamhrR5s2bQ2NiYmwzZsyIA4BRo0aZnnjiiSvV6fj4eOeUKVNqp0yZEi+Xy70ej4d6/vnny1vXPt9MTEyMs6SkRLZ27drAefPm1d5sTqfTSVVXV0tycnL0OTk5egB44403LixatKjyhRdeiNqxY0egVCr1vvHGG2W3mvdq3TZBpmT+EDEWuFgFpHYrapqb4fF4IBK1/ZJtNhssDiskNguq/X1rCeWB/p0dMtEFYvRKmKCGTRmBiUw1/vHDeNAUEKiSYuYDMbB9fQxnRL0xTNpm1x2iG5NrLu9EIchRdrEEfcY/hqodn4I3X8Bg10AEi/WwXKrD/uE6VNdroPSaoWBqQfn9rmsDJzrdPanDceq7T3H4EwsGhTWj6Pta9FfkQZY0nty3cBcxGAyuPXv2FLY+fvDBBy0PPvhg4fXjFi1aVA2g+upjwcHBnvfff7/oZudXKBT8xo0b202Ks7Ozja3/ZxgGmZmZ5Tcad+TIkdO3E39KSkpzSkpKu5Xm4OBgz9mzZ0/cLGYAeOKJJ+quTppbzZgx48pSGJlMJhw6dOjM9V/Hvn37zt7unH/+859vuEPFrl27zt0qxvZ02yUWlFwPKd0Cp0QBuc0KAO121Lt06RIAQGpphFWuBUU5IPUneyDfDWIDfe3ELyp6o5fXiIl9Q/CnEbHIfXIwpLWn4OetQ6l+WBdHSXQ2udq3Y5LNq0VddSnU/frDqmShvHge9+lHofbiJ6AFQPLIeHgFCrRbAaW4EZCquzZwotOJlVLc368B1S2hyF2ZDxlrQz/1J8C9j3Z1aARB/Be6bQWZVgRDQVlQywZD3+DrqldfX4+AgLY7wFy6dAkUz0NhaYFDooGKaYRYF9vZIRNdQCNjoVdJcJruhZ6Wf2PVQxIgyLdXuvVwDliBARU3poujJDobK2HAigEbr4Wlvg4UTUMYfj/u2XsY3wS/g5jKn1AWSMHPMBE4dh4ujw5qTWVXh010kYS0MXAWvwJ47TBIjkOcvAzQkW0hCeK3rNtWkBllCNRUC7wiBVQWXwW5tvbGe0RfunQJarsbtCDAy2ogYxohlve44Vii+0kIUWOntR9Ai4BT//IdFARQP+3GN3wf3BNL/tDdjeQqEay8Dp4W31XGfn95A+YAOfodPAmx1YmS2Q+h2sRAwgMeXg6VttvWG4hboLWhuO/Fl3DfcD10Dz8OJM3s6pAIgvgvddsEWSzRQ0ZbwNNyaMx2SBSSmybIgRaX7wGlgUrUCLFY34nREl2pX7gWx+toeGJHAad2+O5GL/sWclslPscD6B2q6eoQiS4g18pg8/qBtlohCAJEOh0i33kHpb38cOmVPyB91hoU11kQLfZdoVIFKLs4YqJLqUOAcX8DRizu6kgIgugA3bbkwbI6iERWUBQNqYeBiOWvrDW+Gs/zqK2txQCLFwIAMa+BXNwEhpG0PSnRLd0XqQMvAEUh45Fwbi9w9G0gfzNqaT0qA0dBLOq2nyOJm1DoZKgt9YPc7YLH0wyW1aJHfBJ65H5zZUxxrQW9mBoAeqhDyB7IBEEQ3UWHJcgcx1EAKgG03ol5xGg0LuY4LgVABgAPgHeNRuM/OmrOm2FZHUSsr7LjZpWQWM1o8Hrb7GTR0NAAj8cDtdUNj0gGRhBDJrN0RojEr0RimG9rvwPeRCSEDQS++CsEUHjG83/oYyBLbe5WCo0ENl6HIK8DVut5aLVJ1zzP8wLO11kwivJtR6oKIz8rBEEQ3UVHlsZiAJwwGo3DL/9bzHEcC+BNAKMADAPwBMdxQR04Z7vEYn+wrO8Pl0ckh6jJDJ7n0dBwbZOdmhpfIwjGaUOdxlcBkigcnREi8SuhkbOIDVTi+0oLMOczIHUjiodk4htPApIidF0dHtFF5BoxPIIUfrwdZbVttiXFxSY7HG4eWi8gohyQhkZ1fpAEQfwqHD16VJGWlsa1Pj558qRs/Pjx8ZMmTeLmz58f5fX6th7esGGDPjk5OSElJSVh165dOgCwWCz0zJkzYyZPnsw9+uijcZWVlW32FW1qamJmzJgRO3nyZG7ChAnx3377rQIAPv/8c/WYMWN6TZo0iXvjjTdCAMDr9WLhwoUREyZMiE9LS+OKiookAPDhhx9qhw0b1ictLY1LS0vjWltJ3yj+/Px8eUpKSkJqair3wgsvhLfGf7WDBw8qU1JS4sePHx//0ksvtakQbN261f/ll1++5vgTTzwR/dVXX6naex9ffPHF8LKyMnFDQwPzwQcf3PCynMfjwdy5c6M//fTTa7YNslqt9OjRo3u1Hi8pKRFPnjyZS01N5Z588kmD1Wq9o5y3IxPkJAA9OI47wHHcXo7jOAAJAIqNRmOj0Wh0ATgMoFM2CmVZHUQS3815blYBidmX9F6/Drm8vBwiRgTK1ox6re+9lqradm8hurf7IrQ4Wd4IgaKAe6fgn5aBkLEMBse23fWEuDsoNL5lVmpBQGF1VZvni+t8V5rEbhlUTD0o9R11MSUIopt48803gzIyMiJdLteVja/XrFkTmp6eXp2Xl2d0u93U3r17NXV1daLs7OzA3Nzcwu3btxtXrVoVzvM8Nm/eHJCQkGDLyckxjhs3rmHdunVtWnK+/fbbQQMHDmzJyckxvv766xeWLVsW4fV6sWTJksi1a9cW5+XlGUtLS6WHDh1S7tmzR+tyuejdu3cXLly4sHLZsmVhAHDmzBn5U089VdnaDW/48OGW9uLPyMiIXLRoUXlubq5RqVR6d+zY0SZZXbFiRfjq1atL9uzZU/jTTz8pTpw4Iftv38vXXnutIjIy0nXmzBl5a+fAqxUXF0vS0tLijUZjm25uixYtiri6O9+rr74aNmXKlLrc3FzjgAEDzOvWrbujAu3PWmLBcdxcAM9cd/hPAJYbjcZdHMcNBbDt8pirN5o2A+iUO54YRgaR1NdV0C1SQG5xg6bpNglyaWkp/NVa0LZ6NAdHAwBkOnFnhEj8igyK8cfO7ytxuLgeAw1++PhUFX7fOwhKSbddpk/cgkLrS5AlPIui6rb75Rdd8l2h4l06qKVWgCZr1QmiK1VUbvWvqc7r0KpGcMik+vCwGQ03GxMZGelcu3bt+WeffdbQeozjOFtTUxPD8zxsNhvDsqyg1+s9e/fuPcuyLEpLS8Usy/I0TWPevHm1Ho+vU3NVVZVYpVK1Kdf+8Y9/vCSRSHgA8Hg8lFgsFurr60VKpdIbExPjAoDExETLsWPHlCaTSTR06NBmABg0aJB1wYIFCgAoLCxUGI1G+bZt24J69eplfemllypZlr1h/PX19eIhQ4ZYAaB///6WL7/8Ujtt2jTT1THt3r27gGVZmM1m2mq1Mkql8pYd8lpt3brV/9ChQxqHw0FXVVVJZs6cWTNjxoyGtLQ0bunSpWVZWVnBJSUl8k2bNgXMnTu3vvV1FouFfu2110rXr19/zYeI1atXB/Xr1++a9bFlZWWyUaNGlQHA/fffb1m2bFn47cYH/MwKstFo3GQ0Gvtc/Q/AcQC7Lz9/GEAofAnx1aV0FYAbd+v4BYikvu9Vi0IBidWOoKAglJX9p9Og1WpFXV0d1JQIEosJFrkvd5cFtFv9J7qpsfeEIEgtwdsHzmN/QS1aHB6k3hfW1WERXUhxuZueg9eivs7W5vkzF1sQIGuB3e0PldLT2eERBPErkZqa2sSy7DWXng0GgzMzMzNi5MiRvU0mk2jYsGFmAGBZFllZWfpp06YljB49+kriLRKJMHXq1LicnJzAMWPGNF4/h06n88rlcqG6ulr03HPPRT/99NOVer3e43Q66YKCAqnH48Hhw4c1drudtlqtjFqtvpJk0zQtuN1uPPDAAy1Lliwpz87ONtpsNmbTpk369uIPCQlxti7B2L9/v9ZutzPXx8SyLI4cOaIYO3Zsbz8/P3dYWJjrNt8yAQAsFgvz3nvvFa9fv7548+bN1yS86enpNYmJieark2MASExMtPfq1euadbD79u1TlZWVSefMmXPN2NjYWNsnn3yiBYBPP/1U63A47ijn7cjy2EsAGgC8wXFcXwAVAH4C0JPjOD8AFviWV/ytA+e8KZGSBsDDrFDA33wBIVEhOHn0JOx2O2QyGcrLfZ0YtY1WMF4v7FIN5LwVYh252eZuIxEx+MOD0Vj2SQFOVTYhWC3FELK84q7WWkG28n5wN/PweCwQif6zlduZyiYY5GVwegdCpSNXGgiiq4WHzWi4VbW3s2RmZoZv2bKlsE+fPo4NGzboMzIywleuXFkOAOnp6XWzZ8+uf/zxx3seOHDAMmLECDMA7Ny581xBQYE0PT09duPGjUWLFy+OAoDk5OSGWbNm1Z8+fVq2cOHC6AULFlS0Lo9Yvnz5hYyMjAiWZYWYmBi7Tqfz2O122mKxXEloBUGgWJbF9OnT63U6nRcARo4c2fTZZ5+1WcLQasWKFRdeeeWViLfffpvq16+fhWVZISsrS//ll1/6AcCqVatKwsLC3IMGDbIeOnTozNKlS0NXrVoV8uKLL15ZjyaVSnmXy3VNUmq322mZTMYDQFxcnA0AwsPDXW63+2dfgtu1a1dATU2NJC0tjauoqJCeO3dOHhQUdCEjI6Pyr3/9a8Tu3bsDhgwZ0qTRaO6oktGR1wRXABjGcdzXAP4OYJbRaHQDWADgMwBH4NvF4mIHznlzUhVEtBU2qQJySwvkwXIIgoDz588DAMrKyiASiaCt9VXlPSINpEwjGK3hZmcluqnHBkbg3jANRiYEYdv/3A+Gpm79IqLbEktFYMUUbF4dJA4BZmvxledaHG6UNthwD+u7yVetJ3sgEwTxH0ql0tNaxQ0KCnKbzWamsLBQMmfOnBie58GyrCAWi3mKooTMzMzg7du3+11+nZemafTs2dPZulZ41qxZ9WfPnpU+/fTT0StXriwZM2ZMS+s8X3/9tXrbtm1F27ZtK6qsrJQMGzasJSkpyXLw4EENABw5ckRhMBjsPM8jOTm5V0VFBQsA3377rap3795tL41d9sUXX2jXrFlTsnPnznNNTU3M0KFDW9LT0+taYwoNDXWnpqZyJpOJAQCFQsHTNH1NFfree++1HT9+XG02m2kAaGhoYEpLS2WtFeCr1wtfj6IoQRBu736wrKysCx9++GFhdna2ceDAgc3PPPNMZb9+/et4AyEAACAASURBVOz79+9XP/fcc5XZ2dlGhmEwaNCglluf7T86rOxhNBobAYy7wfGPAHzUUfPcEZkWEtqCFokCKosF5TILZDIZioqKEBcXhx9//BGRkZGQ/fSjbzythlpoBKvp2yXhEl1LIRFhz7yhXR0G8Sui0EpgbfFDsFCB4urzGKBJBAD8eNG3JjmaN6MZgDq8zT01BEHcxZYsWVI2f/78GIZhBJZl+eXLl5cZDAZXXFycbeLEifEURWHQoEHNw4cPt8THxzsWLFhgyMvL0/M8j6VLl7bZNueNN97o4Xa76WXLlkUAgEKh8GzZsuV8YGCge8KECQkSiYQfM2ZMQ58+fRwJCQmOb775Rj1x4sR4QRCwYsWKUpqm8dJLL5U9+eSTsWKxmDcYDPZZs2bVt43cJyoqyjF9+nROKpXySUlJ5rFjx15zIwZN05g1a9alWbNm9WRZVvD393dnZmaWXj0mPj7eOWXKlNopU6bEy+Vyr8fjoZ5//vlylUp1y7XKMTExzpKSEtnatWsD582bd+Mub7cQGxvrWLhwYTTLsoLBYLC//vrr5Xfyeup2M/TOlJqaKuTm5v7X56k8MBNHch9AuZvH2K/W4qt//A/0lyJx/vx59OnTB8ePH8fs2bNh+fNKCEX78dGol9CPLsBDr/8ZYrF/B3wldy+O4/KNRmP/jj5vR/1sEF3nl/rZADr+5+PDv5+At+wYXKpP4Rz2EGY9Mh8AsOHr81j+70Ks99uLkpLJmPOXCMjCYzts3rsZ+d1BtOdGPxunTp0q7du3b7uJHkHcyqlTpwL69u0bdf3xbn3bNSUPhJSygKd9u4E4isowePBgUBSF48ePIzY2FtpALbyOFtSqWcjdGkjZJrAs2fuWIAhArpHAJugRTtXibNV//gafrmyGXtYExhEClrKTPZAJgiC6mW6dIDOKIMjoFtCUb32gqKgWoaGh+N///V8MGDAAY8aMwcVL5fDaGnBJJ4OIF0MisYCiuvXbQhDEbVJoxLB6VDAwtcivCoTTWQePl8fRkloYNOfhsPlBLWkCxZCb9AiCILqTbp0JMooQSGkzRIIcAKCudkAQBGg0GowbNw7+/v6ora4Eba1Dnc5XZZbI2l2zThDEXUahlcDLi6ATnChtjkRh+REcKq5Hg9WLAcEnYLFroFbc7s5GBEEQxG9FN0+Qe0BKt0DES2GWstA1AU3Oa7dhbjAWQGw3o0lzOUGWu7siVIIgfoVat3qze7QIQQM+OX0BH568CKXYhf5BDTC7dFDr2mwPShAEQfzGdesEmZUFQcL4ul1VBSigMrtQ1lJ2zRjqXDUAwHy5SYhUTbb2IgjCR+3v65za4g3CAFUpcn8MwKc/VqF/4PcIFg2CR5BCFUgaCxEEQXQ33TtBFusgYn17HNfqFJCbm1FhrrhmjOKSHQDgkKoBANLLFSOCIAi1XgrAlyBP6UmBghdqth4jo89A7R7sG9MjqCtDJAiCIH4B3TtBFunAsr4KskmthNLchIrG/2wv2Oxshl+Dr2Ohm1WDghsSHdnBgiAIH6mCBStl0OwNxpAABv/+Uzj+NmI1fj9gHqwXfd1g1YbILo6SIIiudvToUUVaWhrX+vjkyZOy8ePHx0+aNImbP39+lNfr6/y8YcMGfXJyckJKSkrCrl27dABgsVjomTNnxkyePJl79NFH4yorK9nrz2+z2ai5c+fGpKamctOnT4+tra0VAcBbb70V+Mgjj/ROS0vj0tLSuMLCQkl7Y48dOyZPTU3lJk2axM2dOzfabrdfuWR+ffz5+fnylJSUhNTUVO6FF14Ib43/agcPHlSmpKTEjx8/Pv6ll15q04J469at/i+//PI1x5944onor776qt3Lbi+++GJ4WVmZuKGhgfnggw/8bjTG4/Fg7ty50Z9++qm69VhGRkbYhAkT4pOTkxPefffdAAAoKSkRT548mUtNTeWefPJJg9VqvaOct1snyAwjgUjiu+muWakELfCoPnfqyvPnGs9B2tKCaq0cYq8GCroJjDqsq8IlCOJXhqIoqANkMDPRQM2PCAgYgd89+D30+lFovtgAgIc6jDQJIYi72ZtvvhmUkZER6XK5riSca9asCU1PT6/Oy8szut1uau/evZq6ujpRdnZ2YG5ubuH27duNq1atCud5Hps3bw5ISEiw5eTkGMeNG9ewbt26Nr9UNm3aFBgbG2vPzc01pqSkNLz55pshAFBQUKBYvnz5hdYOd/Hx8c4bjeV5HhkZGVGvv/56aV5ennHo0KEtZWVl4vbiz8jIiFy0aFF5bm6uUalUenfs2NEmWV2xYkX46tWrS/bs2VP4008/KU6cOCH7b9/L1157rSIyMtJ15swZ+f79+9u0wi4uLpakpaXFG41GReuxAwcOqCoqKiS7d+8uzM7OLty6dWuwyWRiXn311bApU6bU5ebmGgcMGGBet27dHV3u6/Z7E7FSJwDAKvNt9eY9UwJe4EFTNM7VG3GvpQ5lQRIoXVrImUYwalINIgjiP9T+UjQ1hgJVJwHgyjaQpgYBapkVrJjcpEcQvwbvVtb576xpDOjIc04N1tXPCdM33GxMZGSkc+3ateefffZZQ+sxjuNsTU1NDM/zsNlsDMuygl6v9+zdu/csy7IoLS0VsyzL0zSNefPm1Xo8HgBAVVWVWKVStSnXnjx5UvmHP/yhBgB+//vft2zcuDEUAIxGo3z9+vXBJpOJHTp0aPPChQtrbjT23LlzErVa7XnnnXeCSkpKZEOHDm2Kj493thd/fX29eMiQIVYA6N+/v+XLL7/UTps2zXR1TLt37y5gWRZms5m2Wq2MUqm8ZYe8Vlu3bvU/dOiQxuFw0FVVVZKZM2fWzJgxoyEtLY1bunRpWVZWVnBJSYl806ZNAXPnzr2yCb3FYqFfe+210vXr11/5EPHAAw9Y+vbtawN8RQ2v10uxLCuUlZXJRo0aVQYA999/v2XZsmXhtxsf0M0ryADAyn3fL6fYlyCHV1EoaSoBANQU/ATGXIuKAAoKlxpyugmsJqbLYiUI4tdHrZfB7FBBMNcALb6bemGuQaPdH37+5KZegrjbpaamNrEse01bYoPB4MzMzIwYOXJkb5PJJBo2bJgZAFiWRVZWln7atGkJo0ePvpJ4i0QiTJ06NS4nJydwzJgxjdfPYbVaGY1G4wUAlUrltVqtDAA88sgjphUrVpR/8MEH506ePKn8+OOPNTcaW19fLyooKFDOnj279l//+te5Y8eOqffv369qL/6QkBDnV199pQSA/fv3a+12e5tKAMuyOHLkiGLs2LG9/fz83GFhYbe756UAABaLhXnvvfeK169fX7x58+Zrqubp6ek1iYmJ5quTYwBITEy09+rVy3H1MZlMJvj5+XldLhc1f/78qIkTJ9apVCo+NjbW9sknn2gB4NNPP9U6HI47ynm7fQUZMjnElAWAFjYxg9BGEU7UnkC0NhrILwEl8CgPdKG3RQWFuBFiLWkXSxDEf2gCZPB4adh4LRRVJwF1CPiKE2j09EBEmLyrwyMI4rI5YfqGW1V7O0tmZmb4li1bCvv06ePYsGGDPiMjI3zlypXlAJCenl43e/bs+scff7zngQMHLCNGjDADwM6dO88VFBRI09PTYzdu3Fi0ePHiKABITk5uUCgUXrPZTAOA2WxmFAqFl+d5pKen12q1Wi8A/O53v2s+e/as/EZj/f39vSEhIY7W5HLw4MHNp06dkj/00EPmG8W/YsWKC6+88krE22+/TfXr18/CsqyQlZWl//LLL/0AYNWqVSVhYWHuQYMGWQ8dOnRm6dKloatWrQp58cUXq1rPIZVKeZfLdU1SarfbaZlMxgNAXFycDQDCw8Ndbrf7vyrYmkwmJj09PSYpKcm8cOHCGgDIyMio/Otf/xqxe/fugCFDhjRpNBrPnZyz21eQBakGMroFUpcWF4IlCGxw4PtL3+NYzTGEXfRVlyv0Loi9CkhETWDEbZa8EARxF1MHXN7qjQ+5ssyi5dxZ8GDhFxvRlaERBPErpVQqPWq12gsAQUFBbrPZzBQWFkrmzJkTw/M8WJYVxGIxT1GUkJmZGbx9+3a/y6/z0jSNnj17OlvXFc+aNas+MTHR0rom97PPPlP37dvX3NLSwowbN6632WymeZ7Hd999p7rnnntsNxobHR3ttNvtTFFRkQQATp48qYqLi3O0F/8XX3yhXbNmTcnOnTvPNTU1MUOHDm1JT0+va40pNDTUnZqayplMJgYAFAoFT9P0NVXoe++913b8+HF1a7Le0NDAlJaWylqTdIpq/wocRVGCIAjtPn81m81GTZ8+PW7SpEn1L7zwQnXr8f3796ufe+65yuzsbCPDMBg0aFDLbZ3wsm5fQabk/pDSZsjcKhSEUUg4Uo8fSo/A6rbiMZMXbpEIZqXvhkqZpLmLoyUI4tdGHXB5qzd5P4RcTpBNJZUAkqALI7veEATR1pIlS8rmz58fwzCMwLIsv3z58jKDweCKi4uzTZw4MZ6iKAwaNKh5+PDhlvj4eMeCBQsMeXl5ep7nsXTp0gvXn2/u3Ll1Tz31VNSkSZM4lmWF1atXl2i1Wu+TTz5Z+dhjj3Esy/IDBgwwjx07ttlqtZqvHyuRSIQlS5aULliwIFoQBNxzzz2WcePGtZv0REVFOaZPn85JpVI+KSnJPHbs2GvG0jSNWbNmXZo1a1ZPlmUFf39/d2ZmZunVY+Lj451TpkypnTJlSrxcLvd6PB7q+eefL1epVLdcqxwTE+MsKSmRrV27NnDevHm1Nxu7adMmfXV1tSQnJ0efk5OjB4A33njjQmxsrGPhwoXRLMsKBoPB/vrrr5ffat6rUbeboXem1NRUITc3t0POVXfgjzj2YRTyYUChdhn+usONvz8qx9FoF7ZvCEapzIPVkxRI/XEBHgpfhYS/7OmQee92HMflG43G/h193o782SC6xi/1swH8Mj8fHrcXG/78NQbE/oSBrhXAlM34fsP7+M4yHX9Y9TuIpd2+ztCpyO8Ooj03+tk4depUad++fevbew1B3MqpU6cC+vbtG3X98Q77zc5x3CIAoy8/1AIINhqNwRzHPQPgfwDUXX7uf41Go7Gj5r0VWhkCKd0CuVuKoh48eIrGn+r7IS6Whcj0NY6NSIT88s4mUsXtri8nCOJuIWIZaIPkqKX7AV4X8P5UNAoLodSJSXJMEATRTXXYb3ej0bgCwAoA4DjuYwDPX34qCcAMo9GY31Fz3QlGGQYp9QMkXikcEgrloUEIO1OM31t7gIKAg72UCLH4uudJ1bc4GUEQd6XQWA2KT9SBT3sJ9Bcvok6UCL9Q0mKaIAiiu+rwm/Q4jksF0Gg0Gj+/fCgJwGKO4w5zHLe4o+e7FUYVDiltBi2IIPKyON4zGExdLej8s2gINqBW3QS5IxgUvJBqyR3pBEG0FdpTC5fdA1P442iZ9Akam2UITyDrjwmCILqrn1VB5jhuLoBnrjs822g0HgewGMBjVx3/AMA6AC0A8jiOSzYajR//nHl/DlZtgIz23bgo8SiwY5gBD13wwL/sNI72GwoRvxcqxwgo6EbQqpDOCosgiN+QkFjf7jZV51sgCJEAihB1b4f2IyAIgiB+RX5Wgmw0GjcB2HT9cY7jegFoMhqNxZcfUwBWGY3G5suPPwHQD0CnJchiRTgkjC9BljoCUK9uwsFJT2PKT+VYNyoUytp/wc+jhpwxgVaTLZsIgmhL5S+FUidBdXETHFY3dMFyaAPJFSeCIIjuqqPvMBkJ4N9XPVYD+JHjuAQAVgAPAXi3g+e8KZqRQMz69sGW2MIhcZbieIAYPeKi4KYqfEF65FDQZRBpenZmaARB/EZQFIXQnloU59dC4AX0G0U+TBMEQXRnHb0GmQNQ0vrgcuX4RQAHABwCcNZoNO7t4DlvSSL1JchyexhooQI/KHm8Gy2BzOpLkCUeKRRMI1gdSZAJgrixwZNj0fvBHggIV4F7gCzHIgjiP44ePapIS0vjWh+fPHlSNn78+PhJkyZx8+fPj/J6vQCADRs26JOTkxNSUlISdu3apQMAi8VCz5w5M2by5Mnco48+GldZWcm2N8+HH36oTU9PN7Q+3rdvn2rChAnxkydP5ubOnRtttVppAFixYkVISkpKwsSJE+O/++47OQBcunRJ1DrPxIkT44uLiyWt56mtrRWNGDGij91upwBfU4/p06fHTpo0iZs5c2bMpUuX2i2orl27NvDll1/ucf3xCxcuiMePHx9/9bF//OMf+uXLl4e2d66tW7f6f/TRRxoAyMrK0t/unDt27PBLSUmJnzhxYvzChQsjvF4vtm7d6p+WlsalpaVx48ePj+/Tp899jY2NbVpmt6dDE2Sj0fgno9H44XXH3jMajQOMRuNQo9H4UkfOd7skcicAQO4IBCgPBG8ljDJAX1cE2iMFvBIoaBNE6qiuCI8giN8AhUaC3/2/OEx9cQD8QhRdHQ5BEL8Sb775ZlBGRkaky+W60hpuzZo1oenp6dV5eXlGt9tN7d27V1NXVyfKzs4OzM3NLdy+fbtx1apV4TzPY/PmzQEJCQm2nJwc47hx4xrWrVsXfKN5Fi9eHL5mzZoePM9fmefVV1+N3LBhQ3FOTo4xIiLCuWXLloD8/Hz5iRMnVLt37y5YvXp1ydKlSyMBYNmyZWHJycmmnJwc41NPPXXRaDRKAV+3vZkzZ8Y1NjZeScxXrVoVkpiYaMnLyzM+/vjjtcuXL2+TANtsNuqPf/yjITs7O7Cj3ssZM2Y0pKSkNAPAP//5zzaJ9I3mtNls1Ntvvx36wQcfnPvwww8LLRYLs3fvXs2MGTMaWjv/cRxne+aZZ8p1Op33dmO5KzbxpGQSSJgW+PO+m2oGf38EzSHBcFgLwLNRAAA50whINV0YJUEQBEEQP9eWb0v9c09Udujds6n3hdXPHBzVcLMxkZGRzrVr155/9tlnr1R2OY6zNTU1MTzPw2azMSzLCnq93rN3796zLMuitLRUzLIsT9M05s2bV+vxeAAAVVVVYpVKdcMkrl+/fpZRo0Y1/etf/7pSWd22bZsxODjYAwBer5eSSCT8d999p7z//vtbaJpGZGSky+v1UrW1taIzZ84o4+Li7I8++mhcSEiIc9myZRWAryvee++9Z5w0aVKv1vNeuHBBumDBgosAMHjwYMtrr73WZl2Zw+GgJ02a1DBo0KCWkpIS6Z28rxcuXBA//fTT0YGBga6LFy9KevXqZf3b3/5Wvnz58tCAgAB3U1MTY7FYmOeeey5i5cqVVzrg3WhOiUQi7Nixo1ChUPBXvQ9XuuAdP35cfuHCBdnV57kdHb7N26+RIFVDQZsQzKoBjxS8+ygSP92EOr8GSFt8Pw8SqQW4SV9wgiAIgiCI66WmpjaxLHtNW2KDweDMzMyMGDlyZG+TySQaNmyYGQBYlkVWVpZ+2rRpCaNHj76SeItEIkydOjUuJycncMyYMY03mmfq1KmN1HV5SmhoqBsA8vLytPn5+app06Y1WCwW5uokWy6Xe5ubm5na2lqxWq327Nix41xwcLBr9erVwQDwyCOPtAQEBFyTlMfFxdk///xzLQB8/PHHWqfT2SZf9PPz844aNarlDt8uUBQlAMDFixelmZmZpXv27Ck4evSoprq6+krR9rnnnqtRKpXe65PaG83JMAxaPySsX78+0G63MyNHjrwyZv369SF/+tOfqu40zruiggyZDnLaBA0oeBzhaNGVQKc+DYEWEODqDQCQyh1dHCRBEARBED/XzMFRDbeq9naWzMzM8C1bthT26dPHsWHDBn1GRkZ4a7KXnp5eN3v27PrHH3+854EDBywjRowwA8DOnTvPFRQUSNPT02M3btxYtHjx4igASE5Obpg1a1a77bTfeuutwH379vlt3ry5SCaTCUql0tu6FhkAbDYbo9VqvSqVyjtu3LgmABg1alTT3//+9zbLJlo9/fTT1X/5y18iJk+ezA0ZMqRZr9e7Dx06pFy9enUPAJg9e3bNuHHjmm/2HshkMt7tdl+TWNtsNloikfAAEBIS4lCr1TwA+Pn5uR0Ox88u2nq9Xrz88sth5eXl0nfeeec8TftO1djYyFRUVEhb3+M7cVdUkCH3h5JuBOv0wmuPQIW/Fx8n2cC4/RHN+pb6yDWeLg6SIAiCIIjuQKlUetRqtRcAgoKC3GazmSn8/9m787imrrx/4J/sbAmChFVB1gtqXbpoXary1HUAZbFirYpLx0Gf1vKgzKO1avlJB62mal0et9at2FEJjFq1WlsdN9CpUrQULiibIPsWQhJIcvP7A7GI4tKi2Pp9v17zGnOTnPO9t6fpp6fn3pOVJZk1a5Ynx3EQiUQmsVjM8Xg8k0KhcExISLC98z0jn8+Ht7d3Y8v62YeF49WrVzumpaVJ9+3bx8rlcgMADBgwQJ2SkmJtNBpRUFAg5jgOcrnc0Lt37/oTJ05YA0BKSorUw8Oj3ZnBc+fOSSdPnlyhVCrZHj166Pr06aN+44031C01PSocA4C9vb1Bq9XyMzIyzADAYDAgNTVV1q9fPw3Q/HSghzGZTA99v7WFCxe6NTY28r/88ssbLUstAOD8+fNWr7zyyhPPcgMvyAwy39IBlvxqGDQcjFXD4OxSidu8dDRW9oW7uRAifjVEMto2lhBCCCG/X2xsbMH8+fM9BQKBSSQScfHx8QXu7u5NPj4+muDgYF8ej4dBgwbVjRgxQu3r66uLjo52T05OlnMchxUrVuQ9Th+lpaXCXbt2OXt6emqmT5/uAwCjR4+unjNnTkX//v3VwcHBviaTiffRRx8VAsDSpUuLFi1a5Hbw4EF7S0tL44YNG3Lba9vHx0cXExPjvnr1atjZ2TUpFIr8J70GfD4fK1asyF+8eHEPPp8Pg8HAGzZsWK2/v399Xl6e+FHfd3Nz086bN8998+bND70eV65csTh+/Lhdr1691OHh4QwATJ06tSw4OLj25s2bZt26dWt80toBgPckCf1ZCQ0NNSUlJXVYe5r/rMPNgyk4q/obTnoJILMVwc4hA8kXbBFvLYegKBMBoy7CcvzuDuvzRccwzBWWZV/t6HY7emyQZ+9pjQ2AxsefAf12kPY8aGykp6fn9+3bt90ZVkIeJT093a5v37492h5/IZZYiKw9YMmvBgC8ZCvFTwX1+Jn1gZ+DPfR1jZAJysGXduvkKgkhhBBCyPPghQjIwi7esOQ33xQ62sMOlhIhcsrVGOVnj4ZaHmSCMgitPTq5SkIIIYQQ8jx4IQIyz8oBFoLmGeSuAgG+ix6GFRN6YXJvF3AcHzJBOYRdPDu5SkIIIYQQ8jx4IQIyzG1gJmi+4bKhrglSMxGmDeoBNOgBADJBGXhWDp1YICGEEEIIeV68GAGZxwMszCAR1kFd8+tTTVSVzX+WCcoBWbtbgxNCCCGEkBfIixGQARjNrSETF6H6tvrusbpKDQAOFpJa2maaEEIIIYQAeIECMqzk6CrKR1WxGiau+dF2teW1MBfWgCeVdXJxhBBCCPmjSk1NtZw4cSLT8jotLc18/PjxviEhIcz8+fN7GI3NOzlv3bpVHhgY6BcUFOR38OBBGwBQq9X8iIgIz7CwMCY8PNynqKhI1Lb92tpawfTp073CwsKYCRMm+F68eNESAHJyciTh4eE+YWFhzOTJk70rKysFALBy5UqnoKAgv+DgYN9Lly5ZAEBZWZmwpZ/g4GDfGzduSFraLy8vF/r7+/fWarU8AKiqqhJMnTrVKyQkhImIiPAsKytrd9+MjRs32n/88cf37cqXl5cnHj9+vG/rY9u3b5fHx8e3+5/s9+zZ0/XIkSPWALBlyxb54/a5f/9+26CgIN/g4GDfBQsWuLZc75bzHjJkSJ/MzEyz9tp7kBcnIEudIOfnw9BkgqpKCwCovl0PmagEJplTJxdHCCGEkD+itWvXOixbtsytqanp7tZwn3/+uXNkZGRJcnIyq9freceOHbOuqKgQJiYm2iclJWUlJCSw69at685xHHbt2mXn5+enUSqVbEBAQNWmTZsc2/axefNmhwEDBqiUSiW7atWqvLi4OFcAWLJkiVtUVFSxUqlkJ02aVJGdnW125coVi6tXr0oPHTqUuX79+twVK1a4AUBcXFy3wMDAaqVSyX7wwQfFLMuaAcCJEydkERERPjU1NXeD+bp165z69eunTk5OZqdNm1YeHx9/XwDWaDS8uXPnuicmJtp31LWcPn16VVBQUB0A7Ny5874g/aA+NRoNb/Pmzc7//Oc/s//1r39lqdVqwbFjx6wBoKmpibdo0SI3sVjMtW3rUV6InfQAQCBzgz3/FACgskgNc6kYNbeN6CvNBN+6R+cWRwghhJDf5/K2rvjpa7sObbPf25UYMKfqYR9xc3Nr3Lhx482FCxe6txxjGEZTW1sr4DgOGo1GIBKJTHK53HDs2LEMkUiE/Px8sUgk4vh8Pt57771yg8EAALh9+7ZYKpUa2/Yxd+7cMolEwgGAwWDgicVik0aj4dXU1IhOnTrVRaFQdPPz82tYvnx50bZt2+wHDhyo4vP5cHNzazIajbzy8nLh9evXrXx8fLTh4eE+Tk5OjXFxcbeA5h3v9u7dy4aEhPRs6S8vL88sOjq6GAAGDx6s/sc//uHatiadTscPCQmpGjRokCo3N/eJZmfz8vLEUVFRHvb29k3FxcWSnj17NqxZs6YwPj7e2c7OTl9bWytQq9WCmJgY19WrVxc+rE+JRGLav39/VssW00ajkSeRSEwAsHz58m6TJ0+u2L59+xPPhL4wM8iCLh7oKiwEYEJVkRqluXUwmXjoLsgA39a7s8sjhBBCyB9QaGhorUgkumdbYnd390aFQuE6cuTIXtXV1cLhw4fXA4BIJMKWLVvkU6ZM8Rs7duzd4C0UCjFp0iQfpVJpP27cuJq2fdjY2BgtLCxMJSUlwpiYGI+oqKii6upqYWFhodnQoUNVBw4cYFUqlSAhIaGrWq0WtA7Z77Yu+wAAIABJREFUFhYWxrq6OkF5eblYJpMZ9u/fn+3o6Ni0fv16RwAYNWqUys7O7p5Q7uPjoz158mQXAPjmm2+6NDY23pcXbW1tjaNHj1Y96fXi8XgmACguLjZTKBT5hw8fzkxNTbUuKSm5O2kbExNTamVlZWwdjtvrUyAQwNHR0QAA//d//2ev1WoFI0eOVO3Zs6erjY2NYcyYMU9cI/A7Z5AZhgkB8BbLslPuvH4dwHoABgAnWZaNZRiGD2AzgL4AGgG8y7Lsjd/T72/Bl7qAz2uChVSFquIGcJwJPB4HRxELvvW7z7ocQgghhHSkAXOqHjXb+6woFIruu3fvzurdu7du69at8mXLlnVvCXuRkZEVM2fOrJw2bZr36dOn1f7+/vUAcODAgezMzEyzyMhIrx07duQsXry4BwAEBgZWzZgxo/LatWvmCxYs8IiOjr41YsQItUaj4Zmbm3Mt3/f396+7cOGCzN3dXdfQ0HA30Go0GkGXLl2MUqnUGBAQUAsAo0ePrv3ss8/uWzbRIioqqmTJkiWuYWFhzJAhQ+rkcrn+3LlzVuvXr3cBgJkzZ5YGBATUPewamJubc3q9/p5grdFo+C0z4U5OTjqZTMYBgK2trV6n0/3mSVuj0YiPP/64W2Fhodm2bdtu8vl8HDp0yA4AJk6cKLt586b53//+d/dt27blODk5GR6nzd9cDMMw6wHEt2ljC4ApAIYCGMgwTH8AwQDMWJYdBGARAMVv7fN3ufOcY0vLPFQU1qOYrYGVdTHEfB0ga3eMEEIIIYQ8ESsrK4NMJjMCgIODg76+vl6QlZUlmTVrlifHcRCJRCaxWMzxeDyTQqFwTEhIsL3zPSOfz4e3t3djYmIim5iYyM6YMaMyIyPDLCoqymP16tW548aNUwGAhYWFycXFRXf27FkrALh8+bLUy8tLO2DAAHVKSoq10WhEQUGBmOM4yOVyQ+/evetPnDhhDQApKSlSDw8PXXv1nzt3Tjp58uQKpVLJ9ujRQ9enTx/1G2+8oW6p6VHhGADs7e0NWq2Wn5GRYQYABoMBqampsn79+mkAgMfjPfT7JpPpoe+3tnDhQrfGxkb+l19+eaNlqYVSqWSVSiWbmJjIenp6aj/99NO8xw3HwO+bQb4I4F8A/gYADMPIAEhYlr155/UJACMBOAH4FgBYlk1lGObV39Hnb2fVvJ7bxuoqsm/0Q321Dt26XwP0AKy7dUpJhBBCCPnziY2NLZg/f76nQCAwiUQiLj4+vsDd3b3Jx8dHExwc7Mvj8TBo0KC6ESNGqH19fXXR0dHuycnJco7jsGLFiry27X366acuer2e33JznqWlpWH37t03P/nkk/zY2FjXNWvW8JycnBqXL19eKZFITP3791cHBwf7mkwm3kcffVQIAEuXLi1atGiR28GDB+0tLS2NGzZsyG2vfh8fH11MTIz76tWrYWdn16RQKPKf9Brw+XysWLEif/HixT34fD4MBgNv2LBhtf7+/vV5eXniR33fzc1NO2/ePPfNmzffdz1au3LlisXx48ftevXqpQ4PD2cAYOrUqWXBwcG1T1pza7xHJXSGYWYD+J82h2eyLPsfhmFGAIhkWXYywzDdAChZlh1453uzAHgAcLxz/Pid44UAPFiWbTfFh4aGmpKSkn7rOT2YXgd84oAcNws0eO7GjcuAp8VH6F/OAouLAYlVx/b3gmMY5grLsh3+L0NPZWyQZ+ppjQ2AxsefAf12kPY8aGykp6fn9+3bt7KzaiJ/fOnp6XZ9+/bt0fb4I2eQWZb9AsAXj9GHCoC01WspgFoAFm2O8x8Wjp8akRlMZtYwNxgApx/RO1AD6bnbMJlZg0fhmBBCCCGE3NFhT7FgWVYFoIlhGE+GYXgAxgA4B+ACgL8Ad2/iu95RfT4pnk0PSJvMUFN7CdU1KbAySsGj9ceEEEIIIaSVjn4OciSABAACND/F4hLDMP8BMIphmIsAeABmdnCfj8++Fyyzb6K+/mcAgEWDCejm1WnlEEIIIYSQ58/vCsgsy54BcKbV61QAr7f5DIfm4Nz5HHpBmL4PL3l+Br1RBdHZhYBz/86uihBCCCGEPEdemJ30AAAOzZvE2BsdATQ/9g3O/TqvHkIIIYQQ8tx5wQJy7+b/L/8FMNx5/J8TBWRCCCGEEPKrF2araQDNz0K2sAPKfgZu/wR0cQMsbDu7KkIIIYT8gaWmplpOnDiRaXmdlpZmPn78eN+QkBBm/vz5PYzG5p2ct27dKg8MDPQLCgryO3jwoA0AqNVqfkREhGdYWBgTHh7uU1RUJGrbvkaj4c2ePdszNDSUmTp1qld5ebkQAC5fvmwRGhrKhISEMLNnz/bQarU8o9GIBQsWuE6YMMF34sSJTE5OjgQAcnJyJOHh4T5hYWHM5MmTvSsrKwUt7efk5EhGjx7ds+V1bm6uOCwsjAkNDWXmzZvn3npnvrY+/PDD7tu3b5e3PX7mzBnpnDlzPFof+/jjj1327NnTtb22FAqF46VLlyy0Wi1v586ddo/b5/Hjx2Xjx4/3DQoK8o2JiXHlOA61tbWC6dOne4WFhTETJkzwvXjxomV77T3IixWQAcChF1CWAZT8RMsrCCGEEPK7rF271mHZsmVuTU1Nd7eG+/zzz50jIyNLkpOTWb1ezzt27Jh1RUWFMDEx0T4pKSkrISGBXbduXXeO47Br1y47Pz8/jVKpZAMCAqo2bdrk2LaPL774wt7Ly0ublJTEBgUFVa1du9aJ4zgsW7asx6pVq/KTk5PZoUOHqgoKCsSHDx/u0tTUxD906FDWggULiuLi4roBwJIlS9yioqKKlUolO2nSpIrs7GwzAEhISLCNioryqKuruxvMP/nkk25vvfVWRVJSEvvaa6/Vb9q0yaFtTeXl5cJ33nnH+8KFC9YddS0XLFhQOnDgQE1paakoOTn5voD8oD5VKhX/s88+6/7FF1/cOHLkSJazs3NjZWWlcPPmzQ4DBgxQKZVKdtWqVXktm6w8rhdriQXQvMwidVPzn1+O6NxaCCGEENIhvs78uuvhm4fbnXX8LcZ7jq982+/tqod9xs3NrXHjxo03Fy5c6N5yjGEYTW1trYDjOGg0GoFIJDLJ5XLDsWPHMkQiEfLz88UikYjj8/l47733yg2G5u0hbt++LZZKpca2faSlpVn99a9/LQWAMWPGqHbs2OGcnZ0tkclkhm3btjnk5uaaDx06tNbX17dx79698qFDh9YBwKBBgxqio6MtNRoNr6amRnTq1KkuCoWim5+fX8Py5cuLAMDa2tq4f/9+9s0333yppb+CggLz0aNHFwDAwIED1XFxcd3b1qRWq/nvv//+7dOnTz9xQD5z5ox0+/btjkKhkCspKZGMGjWqOiYmpvT999/vERAQUH3ixAmbwsJC85UrVzotWrSo5GF9pqSkWHl4eGhiY2O73b59WxISElJpb29vmDt3bplEIuEAwGAw8MRi8ePvXY0XcQZ50H8DIz4EXp8H9J3c2dUQQggh5A8sNDS0ViQS3RO+3N3dGxUKhevIkSN7VVdXC4cPH14PACKRCFu2bJFPmTLFb+zYsXeDt1AoxKRJk3yUSqX9uHHjatr20dDQILC2tjYCgFQqNTY0NAgqKyuFmZmZVjNnziz/+uuvsy9fviz74YcfpA0NDQKZTHY3ZPP5fFN5ebmosLDQbOjQoaoDBw6wKpVKkJCQ0BUAAgMD66ysrLjW/Xl5eWmOHj3aBQC+/fbbLjqd7r686OHh0fT66683POn14vGaJ9rLysrEO3bsuJmUlJS1b9++e2bN58+fX+Lq6qptHY7b67O6ulr4008/yZYsWVK0e/funH379jmwLCuxsbExWlhYmEpKSoQxMTEeUVFRRU9S54s3g2ztAoz4386ughBCCCEd6G2/t6seNdv7rCgUiu67d+/O6t27t27r1q3yZcuWdV+9enUhAERGRlbMnDmzctq0ad6nT59W+/v71wPAgQMHsjMzM80iIyO9duzYkbN48eIeABAYGFhlaWlprK+v5wNAfX29wNLS0ti1a1ejk5OTrmfPnjoAGDx4cF16erqFpaWlUa1W311fbDKZePb29npzc3OupS9/f/+6CxcuyAA88HotW7asaOnSpa6HDh2yGzJkSK21tbVBqVTafP311/YAsGjRoluvvvqq5mHXwMzMjNPr9bzWxzQajcDMzIwDAA8PD61IJIJIJOKedHa3NRsbGwPDMA1OTk4GAOjXr1/9tWvXLBiGabx27Zr5ggULPKKjo2+NGDFC/STtvngzyIQQQgghT5GVlZWhZRbXwcFBX19fL8jKypLMmjXLk+M4iEQik1gs5ng8nkmhUDgmJCTY3vmekc/nw9vbuzExMZFNTExkZ8yYUdmvXz/1Dz/80AUATpw4Ievbt2+9h4dHo1arFbTchJeWlib18fHRvfLKK+qzZ89aA0BKSoqlu7u71sLCwuTi4qI7e/asFQBcvnxZ6uXlpW2v/h9++EEWExNTlJiYyAoEAgwaNEgVFhZW01LTo8IxAPj5+Wlv3Lhhcfv2bREAaLVaXnp6ulW/fv0e+V0+nw+TycR71OcAoH///pq8vDzziooKoV6vx88//2zp6+urzcjIMIuKivJYvXp17rhx41SP01ZrL94MMiGEEELIUxQbG1swf/58T4FAYBKJRFx8fHyBu7t7k4+PjyY4ONiXx+Nh0KBBdSNGjFD7+vrqoqOj3ZOTk+Ucx2HFihV5bdubPXt2xQcffNAjJCSEEYlEpvXr1+dKJBJTbGxsfnR0tIfJZMJLL72kDggIqDMajbhw4YIsODjY12QyYeXKlfkA8Mknn+THxsa6rlmzhufk5NS4fPnyyvbq9/Ly0i1YsMBDJBKZ3N3dtatWrSp80mtgbW3NRUdH33r33Xe9JBIJZzAY+OHh4eXe3t6NxcXF4od9197eXq/X63nLly93iY2NLX7YZx0cHAzvvfdeUUREhDcAjBw5suall17SRUREeOr1en7LzXmWlpaG3bt333zc+nkm02+e1X5qQkNDTUlJSZ1dBvkdGIa5wrLsqx3dLo2NP76nNTYAGh9/BvTbQdrzoLGRnp6e37dv33aDHiGPkp6ebte3b98ebY/TEgtCCCGEEEJaoYBMCCGEEEJIK8/lGuSMjIxKhmEKOrsO8ru4PY1GaWz8KTyVsQHQ+PiToN8O0p6n9ttBSFvPZUBmWfa+LQsJAWhskIej8UHaQ2ODEPIkaIkFIYQQQgghrVBAJoQQQgghpBUKyIQQQgghv0NqaqrlxIkTmZbXaWlp5uPHj/cNCQlh5s+f38NobN75eevWrfLAwEC/oKAgv4MHD9oAgFqt5kdERHiGhYUx4eHhPkVFRaL2+vnXv/7VJTIy0r3l9ffffy+dMGGCb1hYGDN79myPhoYGPgCsXLnSKSgoyC84ONj30qVLFgBQVlYmbOknODjY98aNG5KWdsrLy4X+/v69tVotDwCqqqoEU6dO9QoJCWEiIiI8y8rK2l2Se+bMGashQ4b0aXs8Ly9PPH78eN/Wx7Zv3y6Pj493bq+tPXv2dD1y5Ig1AGzZsuW+ZVEFBQXisLAwJiwsjJkxY4Zny/keOXLEOjAw0G/ChAm+X375pV177T8JCsiEEEIIIb/R2rVrHZYtW+bW1NR0d+e3zz//3DkyMrIkOTmZ1ev1vGPHjllXVFQIExMT7ZOSkrISEhLYdevWdec4Drt27bLz8/PTKJVKNiAgoGrTpk2OD+pn8eLF3T///HMXjuPu9vPJJ5+4bd269YZSqWRdXV0bd+/ebXflyhWLq1evSg8dOpS5fv363BUrVrgBQFxcXLfAwMBqpVLJfvDBB8Usy5oBzTvzRURE+NTU1NwN5uvWrXPq16+fOjk5mZ02bVp5fHy8y4NqKiwsFO3cudPBYDA81q53jzJ9+vSqoKCgOgDYuXPnfUF669atDmPGjKlWKpWsp6enbs+ePXZNTU08hULRfc+ePdkHDhxgk5KS5KWlpb/7Hrvn8iY9QgghhJAnUf1VQte6Q4c6ZPawhfWECZW2U9+pethn3NzcGjdu3Hhz4cKFd2d2GYbR1NbWCjiOg0ajEYhEIpNcLjccO3YsQyQSIT8/XywSiTg+n4/33nuv3GAwAABu374tlkqlxgf1079/f/Xo0aNrv/7667szq1999RXr6OhoAACj0ciTSCTcpUuXrAYOHKji8/lwc3NrMhqNvPLycuH169etfHx8tOHh4T5OTk6NcXFxt4DmbZ337t3LhoSE9GxpNy8vzyw6OroYAAYPHqz+xz/+4dq2Hq1Wy/vwww/dVq5cWRAWFtaz7fsPk5eXJ46KivKwt7dvKi4ulvTs2bNhzZo1hfHx8c52dnb62tpagVqtFsTExLiuXr367i5+fn5+mtLSUhHQPPPu6OhoyszMNHN2dm60tbU1AkCfPn3U58+fl06cOLHmSWpqi2aQCSGEEEJ+o9DQ0FqRSHTPtsTu7u6NCoXCdeTIkb2qq6uFw4cPrwcAkUiELVu2yKdMmeI3duzYu8FbKBRi0qRJPkql0n7cuHEPDHaTJk2q4fHunah1dnbWA0BycnKXK1euSKdMmVKlVqsFrUO2hYWFsa6uTlBeXi6WyWSG/fv3Zzs6OjatX7/eEQBGjRqlsrOzuyeU+/j4aE+ePNkFAL755psujY2N9+XFxYsXu86ePbusW7du+ie5XjwezwQAxcXFZgqFIv/w4cOZqamp1iUlJXcnbWNiYkqtrKyMrcPxnfNtUiqV9qNGjep16dIl65CQkGqVSiWwsrK6W7+lpaWxvr5e8CQ1PchzPYPMMAwfwGYAfQE0AniXZdkbnVtV52EY5ioA1Z2XeQC2AlgPwADgJMuysZ1VW2eg8XEvGh+/orFxLxob96Lx8as/09iwnfpO1aNme58VhULRfffu3Vm9e/fWbd26Vb5s2bLuLWEvMjKyYubMmZXTpk3zPn36tNrf378eAA4cOJCdmZlpFhkZ6bVjx46cxYsX9wCAwMDAqhkzZrS7nfaGDRvsv//+e9tdu3blmJubm6ysrIwta3MBQKPRCLp06WKUSqXGgICAWgAYPXp07WefffbAZRMAEBUVVbJkyRLXsLAwZsiQIXVyuVx/7tw5q/Xr17sAQFhYWMW1a9ekRUVFZps2bYJarRbMmTPHY9u2bbktbZibm3N6vf6eYK3RaPgSiYQDACcnJ51MJuMAwNbWVq/T6R45aatQKLrFxsbmjxkzRnX06FHrqKgo95iYmGKNRnP3uw0NDQKZTPbAWfgn8VwHZADBAMxYlh3EMMzrABQAJnRyTZ2CYRgzADyWZUe0OvYTgDAAuQCOMgzTn2XZtE4qsTPQ+LiDxsd9aGzcQWPjgWh8gMbG02RlZWVoCWkODg76tLQ0q6ysLMmnn37abceOHTdFIpFJLBZzPB7PpFAoHB0dHZveeeedaisrKyOfz4e3t3djYmIi+6h+Vq9e7ZiZmWm5b98+1sLCwgQAAwYMUH/66afd5s+fX1ZUVCTmOA5yudzQu3fv+hMnTli/88471SkpKVIPDw9de+2eO3dOOnny5IohQ4Y0JCUldamtrVW/8cYb6jfeeONuTW+//XZ1y58HDhzYt3U4BgB7e3uDVqvlZ2RkmPXq1UtnMBiQmpoqmzNnTikAtJ0Nb8tkMt13zMrKythyXZ2cnJrUarXQz89PV1RUZFZVVSWwsrLifvrpJ6t58+aVPuraPcrzHpCHAvgWAFiWTWUY5tVOrqcz9QVgwTDMSTT/dfsYgIRl2ZsAwDDMCQAjAbxIP2Q0Pn5F4+NeNDZ+RWPjfjQ+mtHYeEpiY2ML5s+f7ykQCEwikYiLj48vcHd3b/Lx8dEEBwf78ng8DBo0qG7EiBFqX19fXXR0tHtycrKc4zisWLEi73H6KC0tFe7atcvZ09NTM336dB8AGD16dPWcOXMq+vfvrw4ODvY1mUy8jz76qBAAli5dWrRo0SK3gwcP2ltaWho3bNiQ217bPj4+upiYGPfVq1fDzs6uSaFQ5D/pNeDz+VixYkX+4sWLe/D5fBgMBt6wYcNq/f396/Py8sSP+r6bm5t23rx57ps3b757PZYvX14YGxvrumbNGh4ALFu2rEAsFpsWLFhwKyIiwofjOEyYMKHySZd9PAjvQQn9ecEwzA4ASpZlj995XQjAg2VZQ+dW9uwxDPMSgNcB7ADgDeA4gFqWZV+58/4sNF+bjzqvymeLxsevaHzci8bGr2hs3I/GR7M/w9hIT0/P79u3b7vLDwh5lPT0dLu+ffv2aHv8eZ9BVgGQtnrNf9F+wFrJBnCDZVkTgGyGYeoA2LZ6XwqgtlMq6zw0Pn5F4+NeNDZ+RWPjfjQ+mtHYIKQdz/tTLC4A+AsA3Fkndr1zy+lUs9C8Tg4MwzgDsADQwDCMJ8MwPABjAJzrxPo6A42PX9H4uBeNjV/R2LgfjY9mNDYIacfzPoOcDGAUwzAXAfAAzOzkejrTFwB2MQxzHoAJzT9sHIAEAAI03218qRPr6ww0Pn5F4+NeNDZ+RWPjfjQ+mtHYIKQdz/UaZEIIIYSQ9tAaZPJ7tbcG+XlfYkEIIYQQQsgzRQGZEEIIIYSQViggE0IIIYT8DqmpqZYTJ05kWl6npaWZjx8/3jckJISZP39+D6OxeWO3rVu3ygMDA/2CgoL8Dh48aAMAarWaHxER4RkWFsaEh4f7FBUVidq2X1tbK5g+fbpXWFgYM2HCBN+LFy9aAkBOTo4kPDzcJywsjJk8ebJ3ZWWlAABWrlzpFBQU5BccHOx76dIlCwAoKysTtvQTHBzse+PGDUlL++Xl5UJ/f//eWq2WBwBVVVWCqVOneoWEhDARERGeZWVl992zdvv2bdGkSZN8QkNDmYiICE+VSnVPpszLyxOPHz/et/Wx7du3y+Pj453bu4579uzpeuTIEWsA2LJli7y9z23cuNH+448/vrsTYEJCgu2YMWN6hoaGMrt27bJ72DV7XBSQCSGEEEJ+o7Vr1zosW7bMramp6e7WcJ9//rlzZGRkSXJyMqvX63nHjh2zrqioECYmJtonJSVlJSQksOvWrevOcRx27dpl5+fnp1EqlWxAQEDVpk2bHNv2sXnzZocBAwaolEolu2rVqry4uDhXAFiyZIlbVFRUsVKpZCdNmlSRnZ1tduXKFYurV69KDx06lLl+/frcFStWuAFAXFxct8DAwGqlUsl+8MEHxSzLmgHAiRMnZBERET41NTV3g/m6deuc+vXrp05OTmanTZtWHh8ff9+21Bs3bnQcP358VVJSEuvr66vdvXu33e+9ltOnT68KCgqqA4CdO3feF6Q1Gg1v7ty57omJifYtxyoqKoRbtmxx2bdvH3vw4EH22LFjtnl5eeL2rtnjet6fYkEIIYQQ8kjXThd1ZVNLfndIa4153amyj3+3qod9xs3NrXHjxo03Fy5c6H73ewyjqa2tFXAcB41GIxCJRCa5XG44duxYhkgkQn5+vlgkEnF8Ph/vvfdeucHQ/Bju27dvi6VSqbFtH3Pnzi2TSCQcABgMBp5YLDZpNBpeTU2N6NSpU10UCkU3Pz+/huXLlxdt27bNfuDAgSo+nw83N7cmo9HIKy8vF16/ft3Kx8dHGx4e7uPk5NQYFxd3C2je8W7v3r1sSEhIz5b+8vLyzKKjo4sBYPDgwep//OMf94XLuLi4WyaTCUajEaWlpaKXX3658XGva15enjgqKsrD3t6+qbi4WNKzZ8+GNWvWFMbHxzvb2dnpa2trBWq1WhATE+O6evXqwpbv6XQ6fkhISNWgQYNUubm5ZgCQm5sr9vDw0HTt2tUIAH5+fg2XL1+2fNA1e9z6AJpBJoQQQgj5zUJDQ2tFItE94cvd3b1RoVC4jhw5sld1dbVw+PDh9QAgEomwZcsW+ZQpU/zGjh17N3gLhUJMmjTJR6lU2o8bN66mbR82NjZGCwsLU0lJiTAmJsYjKiqqqLq6WlhYWGg2dOhQ1YEDB1iVSiVISEjoqlarBa1DtoWFhbGurk5QXl4ulslkhv3792c7Ojo2rV+/3hEARo0apbKzs7snlPv4+GhPnjzZBQC++eabLo2NjfflRT6fD6PRyBszZkyvtLQ0Wcs5PgqPxzMBQHFxsZlCocg/fPhwZmpqqnVJScndSduYmJhSKysrY+twDAC2trbG0aNHq1of8/b2biwoKDAvLS0VNjQ08H/88UeZVqsVPOiaPU59LWgGmRBCCCF/eH38u1U9arb3WVEoFN13796d1bt3b93WrVvly5Yt694S9iIjIytmzpxZOW3aNO/Tp0+r/f396wHgwIED2ZmZmWaRkZFeO3bsyFm8eHEPAAgMDKyaMWNG5bVr18wXLFjgER0dfWvEiBFqjUbDMzc351q+7+/vX3fhwgWZu7u7rqGh4W6g1Wg0gi5duhilUqkxICCgFgBGjx5d+9lnn923bKJFVFRUyZIlS1zDwsKYIUOG1Mnlcv25c+es1q9f7wIAM2fOLA0ICKgTi8WmU6dOZZw6dUq6YMECd6VSyba0YW5uzun1+nuCtUaj4bfM6jo5OelkMhkHALa2tnqdTvebJm1tbW2NCxYsuDV37lxPmUxm8PHx0dja2hoAoO01e5J2aQaZEEIIIaQDWVlZGWQymREAHBwc9PX19YKsrCzJrFmzPDmOg0gkMonFYo7H45kUCoVjQkKC7Z3vGfl8Pry9vRsTExPZxMREdsaMGZUZGRlmUVFRHqtXr84dN26cCgAsLCxMLi4uurNnz1oBwOXLl6VeXl7aAQMGqFNSUqyNRiMKCgrEHMdBLpcbevfuXX/ixAlrAEhJSZF6eHjo2qv/3Llz0smTJ1colUq2R48euj59+qjfeOMNdUtNAQEBdTExMa6nT5+W3qmb4/P598yi29vbG7RaLT8jI8MMAAwGA1JTU2X9+vXTAACPx7u/41Yed58OvV6PjIwMC6VSyW7dujW3sLD05K8PAAAgAElEQVTQbNCgQeoHXbMnQTPIhBBCCCEdKDY2tmD+/PmeAoHAJBKJuPj4+AJ3d/cmHx8fTXBwsC+Px8OgQYPqRowYofb19dVFR0e7JycnyzmOw4oVK/Latvfpp5+66PV6fsuNZpaWlobdu3ff/OSTT/JjY2Nd16xZw3Nycmpcvnx5pUQiMfXv318dHBzsazKZeB999FEhACxdurRo0aJFbgcPHrS3tLQ0btiwIbe9+n18fHQxMTHuq1evhp2dXZNCochv+5lZs2aVL1261G3z5s0mHo+H2NjYe5ZD8Pl8rFixIn/x4sU9+Hw+DAYDb9iwYbX+/v71eXl54kddQzc3N+28efPcN2/efN/1aE0kar63MCAgoKdYLOamT59eJpfLDQsXLnR70DV7VL8taCc9QgghhPwh0U565PeinfQIIYQQQgh5DBSQCSGEEEIIaYUCMiGEEEIIIa1QQCaEEELIHxXHcdzDH4dASDvujB3uQe9RQCaEEELIH9XPFRUV1hSSyZPiOI5XUVFhDeDnB71Pj3kjhBBCyB+SwWB4t7S0dEdpaWlv0KQfeTIcgJ8NBsO7D3qTHvNGCCGEEEJIK/RvW4QQQgghhLRCAZkQQgghhJBWKCATQgghhBDSCgVkQgghhBBCWqGATAghhBBCSCsUkAkhhBBCCGmFAjIhhBBCCCGtUEAmhBBCCCGkFQrIhBBCCCGEtEIBmRBCCCGEkFYoIBNCCCGEENIKBWRCCCGEEEJaoYBMCCGEEEJIKxSQCSGEEEIIaYUCMiGEEEIIIa1QQCaEEEIIIaQVCsiEEEIIIYS0QgGZEEIIIYSQViggE0IIIYQQ0goFZEIIIYQQQlqhgEwIIYQQQkgrFJAJIYQQQghphQIyIYQQQgghrVBAJoQQQgghpBUKyIQQQgghhLRCAZkQQgghhJBWKCATQgghhBDSCgVkQgghhBBCWqGATAghhBBCSCsUkAkhhBBCCGmFAjIhhBBCCCGtUEAmhBBCCCGkFWFnF/AgAwcONLm4uHR2GeR3yMjIqGRZVt7R7dLY+ON7WmMDoPHxZ0C/HaQ9T/O3g5C2nsuA7OLigqSkpM4ug/wODMMUPI12aWz88T2tsQHQ+PgzoN8O0p6n+dtBSFu0xIIQQgghhJBWKCATQgghhBDSCgVkQgghhBBCWqGATAghhBBCSCvP5U16f2hFPwL/XgWUXgecXwaG/x1w7tfZVZHngOr7X6A6lQ+TUQyBZQNspw2EmYdjZ5dFCCGEkDZoBrkj5Z8HvhwLFF8B3AYDRZeBL0YBV/d2dmWkk1Ur06D6rgrGujqY1DdhrLdExebrUP3wU2eXRgghhJA2aAa5o1TnAf98B7B1B2afBMxtgIYqIOld4PD7gMgceGliZ1dJOoE2swwNl1UwVv4Mx9fTYab/GQ36l1B1czTqjvMB01XI3ny5s8skhBBCyB0UkDvKyY8AzgC8cxAwt4HJZIKJJwMvPAG8r8KA5EjApgfQ7dXOrpQ8Qya9EdUJ12HSqCCVbcHVDAHSOUeY+NfhZfYf+DZ+hLqjTRA55cG8p3tnl0sIIYQQPIWAzDDMVQCqOy/zAGwFsB6AAcBJlmVjO7rPTpd3Dsj6BvivpTBZu6H62zxoUkrAazRC6GAB6eubYFk3ATg4E4g82zy7TF4Idd/nwGSQoLFsH46YO0GnE0NloYeFrguuc3yky79CuPBvqNyeDsfFNhDZd+nskgkhhJAXXoeuQWYYxgwAj2XZEXf+NxPAFgBTAAwFMJBhmP4d2edz4Yc4QNYNxtfm4j9r/wPtmSLcLs1BYf6/UVtUjJpDxaix2wqTqhQ48gFgMnV2xeQZMBk4qM8WQ1/J4qSoDnVGIb4bYMSF195G4+SlkA7pB15FI46rDgBCGUo//QFGTWNnl00IIYS88Dr6Jr2+ACwYhjnJMMwPDMMMAyBhWfYmy7ImACcAjOzgPjtX0RXgViq4Qf+N5C9+gXNFI9QZiai8sRNZjam4lq5AVcH3aMgwosp6B0wZR4G0rzq7avIMqC8XA5wYeQ1noTWI8V1fDXiS/4Zc6ItdqdXYUPUGnN/6G+obynC2+l+AoCtur/gGnMHY2aUTQgghL7SODsgaAGsAjAEQCWDnnWMt6gFYd3CfnSt1MyCRIblsEF67pUVDyY84bVWALDsrVHUVo8BBhlPcj8i+fRy6UltUS/4B07H/BcqzOrty8hSZTCbUf3cDTapbSOOqkOVWj3EDFuLYfwfg6zmv44cFI+Aht8SHPwogCfoAZbo8/Fj1LXgmexT9vyMw6SkkE0IIIZ2lowNyNoCvWJY1sSybDaAOgG2r96UAaju4z85TXwr88i9UM5MhvVgBNKnxXeM5qCxM+GZwCZLfLMXJ8Vpc8qtCWuNP+KX8B2hVPaEyvAMcnAE0aR7ZBfljaiqsB6cVokD1I/QCE6r6eODvwwPB4/EAAD3sLHEwcjAm9HOGIr0J2pHzUKD7GVcqj4PXaIP8FcfAafSdfBaEEELIi6mjA/IsAAoAYBjGGYAFgAaGYTwZhuGheWb5XAf32XnS/wlwBuzNHYqefHNk1F6AWtKEb14rQZj7TCw0W4hFdovx/sRPkTXWBtfVKcivS0O9bjzUJT1oPfKfmOr7HHB6La4ZcsG6qrHqLx/e9xmxkI+1k/ohYpAbtrMcVCPfxy19BlLLD0Gos0L+JydhqNV1QvWEEELIi62jA/IXALowDHMewH40B+Z3ASQAuAwgjWXZSx3cZ+cwmYC0r1DT9VW8UmoGra4KWZrrSHmpCeNUwai8WokbOTdw/vx5fJ/4PYYJx0I3cRh+rPwWpeobqDHMhfanPCBlU2efCelgnEaPxmw1KqrT0QQ9TP3d4WPr88DP8vk8fDy+F94d6o4vs/QoeTMaKsktnCk9CEGjCIUrz0B3q+4ZnwEhhBDyYuvQx7yxLNuE5idWtPV6R/bzXCj6D1CVgyOiZfgvoQV+rD2HG+4m9NcMhtRGipApIXBxcYFer8ePP/6IM2fOQMDnwxAwFilHkzBCOA3AYjh8+3eIbT0A37909hmRDtKQVg6Aj5+bMlDooMHMwbMe+nkej4clAX6QiPjYdPomggb9D4Zl7cR3t/bBXx6Kso1XIJ3kDdtXuj+bEyCEEEJecLRRyG91bT+MAjN0qfJGE1+LG4Zs2Fr0RVebrpg9ezYsLCwAAGKxGIMHD4avry8OHjyIkvwSmIa/iQtnD+C/us9ACVbA5eBiCGc5Ai60m1pHM+n1aEhJgeXrr4MnFj+TPtVnc6GrL0KloRIVnhIMdRl69736+nqkpaWhvr4eFhYW8Pb2houLC3g8HmLG+EJqJsLK41mocJ+BWQ4ncfzSVxjRdTwEB0XQNWjgPIx5JudACCF/BFeuXLEXCoU7APRGx/9XcfLnxgH42WAwvPvKK6+Ut32TAvJvYTQAvxzCFcF/ob/IGr/UpaLCzRlSoRmmTp16NxxznAnFWTWoq9RCbC7AlEnT8O2po8jIyID+lQE4/9M/MaLbdBQ2LIfr3r9BOOdA81bVpEM0XLiKiu3HoLv2LezmTINd5N+eep9NxWoY64AC1U9okBgw4o1gCPgCAEBKSgpOnToFo9EIc3Nz6HQ6/Pvf/4aLiwv8/f3h5eWFyOGecJBJ8L+J11Fm449l45zx3dEDGG4aD/tjwC29Ad3f7PXUz4MQQv4IhELhDkdHRz+5XF7D5/Ppph7y2DiO41VUVPQsLS3dAWB82/cpIP8WBReAhgrk1fvDWcTHdVEhzHlyBI8Pho1N8y55pbl1+O7LDKgqf73JisfnwfvVnhjyui0upJ7D7Z5++PcNJUY4vIW82sVw3zUbwjn7ASt5Z53Zn4bJwKHsQA7EjsNh6TAUdcd2ouucv4LHf7oTDOrUIpiMevyiv4GbHg2Y4xMMADh16hTOnz8PhmEwatRolP6iwy+phSgqz0VJYSG++uorWIsd8ErPIRj6iju+encAIr+6ig9ye+DTt6bh7IHdGGqaAMfvfJGPa+jxZp+neh6EEPIH0ZvCMfkt+Hy+SS6X15WWlvZ+4PvPuqA/hYxk6HgWeMnUDbmNN1BvawtHT0f07t18jW+mlSP5s6sAgNHv9kJE/BBMXPQq+ozohptpFbh5VIABzEiIxEIUujvj29p/QWCU4mb5ezDsmU2Pf+sA1zZ/DrG5M65UnoTRZESTpRcaLlx4qn2a9EZorpajtuo6mkyNkPbzhqOlI65du4bz58/j5Zdfxvi/hOD0jjz8ex8Lk16AAQMH4M1+YXCz7oP6xir8kJaELzbsw0//l4Zlcge8whNjwRVLOL01BxcqD6G0noXgZA1yL1x7qudCCCF/EHwKx+S3ujN2HpiFaQb5SXEcTJnf4HJTIDzEUhznLsIk4OPt8W8DACoK63Hqy18g7y5F4H/3hZmVCABgZSOBQw8Z+o7sjvMHc5D77wo4Og5Egx2LMpiQXHcCQRiJnMIIuH8dBbNpW4CnPNv5Z9WgKoNloTfK9YUwf9kWFWwxpPYMapVJsHrjjafWr+bnKsDIQ7b2OipljRj3ahiqqqpw5MgRuLq6YqT/aBz5/BpqSjUYNasnvF9zuPtc5CHwgVo9GqdO/oD06z+hxFSGultO6F/jgpdNZrhw1oheg6fhYspXGM4PR5cjHHIsrsG7P80kE0IIIR2NEtiTup0GnqYCpvoBKEAZ6i2E8HjZA9bW1mjSGfDttuswsxLhL3P73A3HrUltzTDuby/hL/P6gNckBvezJ5ytGNRbWyFReBY6Toi8zADUH/5HJ5zcn8PZvVtgJpShSP0fdB8xDVUGNSzNHFF+s/qp9qu+eAsGTQXyuVLccm2Cf3d/HD16FHw+HxMnTsS5f95A9e0GjIt8CT4DHO+G4xZWVlYIDh2P+fPfxyuvvgydWSlqHX+EhLkNdxhhyJID9mE4V5EMTWM1cKAUbNb1p3pOhBBCHi01NdVy4sSJd++iTktLMx8/frxvSEgIM3/+/B5GY/PuqFu3bpUHBgb6BQUF+R08eNAGANRqNT8iIsIzLCyMCQ8P9ykqKrovPGg0Gt7s2bM9Q0NDmalTp3qVl5cLAeDy5csWoaGhTEhICDN79mwPrVbLMxqNWLBggeuECRN8J06cyOTk5EgAICcnRxIeHu4TFhbGTJ482buyslLQ0n5OTo5k9OjRPVte5+bmisPCwpjQ0FBm3rx57g0NDfflxbS0NPPQ0FBm4sSJzNtvv+1dWlp6z6TrmTNnpHPmzPFofezjjz922bNnT9f2rqNCoXC8dOmShVar5e3cudOuvc99+OGH3bdv337PetTy8nKhv79/b61WywOA2tpawfTp073CwsKYCRMm+F68eNGyvfYehALyk8o5CaNJBBeJK1KEWWgS6PD26ObZ40uHc6Gq0mHU7F6wkD38iQnufezw9scDMTDIE6ZbzuhS0wd6sTkOS66gGA0oSumDitNfPosz+lPR6FSwu+GKBn0djlgwOLohHdUwA4/HQ6HjmzBqn87GG/oKDfS3NCir+BEmmOD22gDczLqJ3NxcvPnmm6jMbcSNK+V4LcAdbr3a/W0AANjY2CAwMBDz58/Hyy+/jFJVLrROV1HtUQm1wQWc5V9wplQJXpMBTXvzkVOQ+VTOiRBCyKOtXbvWYdmyZW5NTU13Zz0+//xz58jIyJLk5GRWr9fzjh07Zl1RUSFMTEy0T0pKykpISGDXrVvXneM47Nq1y87Pz0+jVCrZgICAqk2bNjm27eOLL76w9/Ly0iYlJbFBQUFVa9eudeI4DsuWLeuxatWq/OTkZHbo0KGqgoIC8eHDh7s0NTXxDx06lLVgwYKiuLi4bgCwZMkSt6ioqGKlUslOmjSpIjs72wwAEhISbKOiojzq6uruBvNPPvmk21tvvVWRlJTEvvbaa/WbNm1yaFtTXFyc69KlSwsTExPZN998s2bDhg331f2kFixYUDpw4EBNaWmpKDk5+b6AXF5eLnznnXe8L1y4YN36+IkTJ2QRERE+NTU1d89h8+bNDgMGDFAplUp21apVeXFxca5PUgstsXhCTZnHkdU4FlWiOqiFBnR7zRUSsQRl+SpcO12El4a5wNmry2O1JRIL8FqAO3q94YKrJwqQft4CNZbXcd4sG356J/T+1gk6s2R0HxTylM/qz+Ofyo8xWhKCnLIf4G49DJxRj8vdTHilRguZRICCC9nwGNnxyxIa/lMKk8mIDEMmSuQ6BPuNx3fK7+Dk5IR+ffpj38eX0bWbFfqPefy/P62trREYGIhBgwbh+PHjuHHjF5g8uiLtdjf0Mw3DmbJEvOk0BRU7MsBGAoyLX4efFyGE/FHsvpjfNelqUbuzjr9F6MvdKiMG96h62Gfc3NwaN27ceHPhwoV3H0PFMIymtrZWwHEcNBqNQCQSmeRyueHYsWMZIpEI+fn5YpFIxPH5fLz33nvlBoMBAHD79m2xVCo1tu0jLS3N6q9//WspAIwZM0a1Y8cO5+zsbIlMJjNs27bNITc313zo0KG1vr6+jXv37pUPHTq0DgAGDRrUEB0dbanRaHg1NTWiU6dOdVEoFN38/Pwali9fXgQA1tbWxv3797NvvvnmSy39FRQUmI8ePboAAAYOHKiOi4u770H8GzZsyHV2dtYDgNFo5EkkksdeC37mzBnp9u3bHYVCIVdSUiIZNWpUdUxMTOn777/fIyAgoPrEiRM2hYWF5itXrnRatGhRScv31Go1//333799+vTpewIyn8/H3r172ZCQkLuz4HPnzi2TSCQcABgMBp5YLH6iteo0g/wk1OUQl6dD0zAEV4W5MBpVmOo/FSbOhLNfs7CQifF6sOcTN2shE2PoW96Y8f/8MaxfEMwaHJApKsF50U1U/wvI/s+xp3Ayfz4FVdlwuewCo8mAq3w7WBrqoe92DV0ab+Go5EdYigTISr3vUYe/m8nAoeFyCXRl11HD16PClQd9rh4qlQpjx47Fz2dvo6G2EcPCvSEQPPnfcl27dsU777yDsLAwmJm0cLO5jnMOYtRLeuFcuRIOjV1RtuUq0ot/6vBzI8+WsUGP8ov5+GXnRVzfdRZFl2/CxNH9Ry+6rFIVVuxLwd/nrMSKsPlYGxqJTTMWYd/KL5D54y8wmWiMdKbQ0NBakUh0z18Ed3f3RoVC4Tpy5Mhe1dXVwuHDh9cDgEgkwpYtW+RTpkzxGzt27N3gLRQKMWnSJB+lUmk/bty4mrZ9NDQ0CKytrY0AIJVKjQ0NDYLKykphZmam1cyZM8u//vrr7MuXL8t++OEHaUNDg0Amk90N2Xw+31ReXi4qLCw0Gzp0qOrAgQOsSqUSJCQkdAWAwMDAOisrK651f15eXpqjR492AYBvv/22i06nu+8fXi3h+MKFC5YHDhywj4yMLHuc69WyvLCsrEy8Y8eOm0lJSVn79u27Z/Z5/vz5Ja6urtrW4RgAPDw8ml5//fWGtm2OGjVKZWdnd8+/WNjY2BgtLCxMJSUlwpiYGI+oqKiix6mvxZ9uBpnjTDBxJgiETyH7552FySRAvZUU9fwyoKc5ZBIZfrlwG+UF9Rg5syfE5r/9klpaSzBski/6/pcrtqxVokR4A9/zWQxP9MVV7iheHhjQgSfz56Ez6FCtq8aGrQvxvuR/UF71MyRmDOodfoKZRID/6FzxMr8Q6ZalMBZ1RZPW8Lv+Ot3Xf3YNTDoOt2rTwElM8O3/BlIupqBnz55wtHfBd+svwrVXVzh72/zmPng8Hl566SW4u7vj8OHDQHY2fnG2hneZI1IqjmCI/QTkb2Jx4a/1GOL+9G5EJE+HoV4H9rMTkDZIweeLIAMA8ICs27hxIBvlTbfAf8kOr0wdB7G5eSdXS56VRoMRaxJ/hGz3RoTdzoTIsT84m24wSizAGfQwpFxF09FD+FFTjEZvb3j9JQC2I4ZD7PpE/yX5TyNicI+qR832PisKhaL77t27s3r37q3bunWrfNmyZd1Xr15dCACRkZEVM2fOrJw2bZr36dOn1f7+/vUAcODAgezMzEyzyMhIrx07duQsXry4BwAEBgZWWVpaGuvr6/kAUF9fL7C0tDR27drV6OTkpOvZs6cOAAYPHlyXnp5uYWlpaVSr1XfXF5tMJp69vb3e3Nyca+nr/7N33nFSlPcff8/Mzvbd67037o4O0osCdhCVpjEaG9EQEzViNGp+QYkaNUqMLVGDiZqIDcESFRtWREA5OnfHda73ve1lZn5/nBCkyB0cCOe+X697vbjhmXm+uzc7+3m+z7dMnTrVsWbNGjtw0Pdr0aJFtX/4wx/S33jjjdiJEyd2RkREhF577bWoF198MR7gtttu2z1q1CjPK6+8EvXMM88kPf3007vi4+ND+17DaDSqwWDwO8k2Ho9HMhqNKkB2drZXlmVkWVZ7693tKVu2bDHdfPPN2QsXLtw9ZcoUV2/O7T8CuXknTW8tY1XpGXg9GplDYjnz6oF9KpRdpZ/iDYxgq1yHIRDkrFNnE/CF+Or1chKzIxgw5oAQnSMiItbMrfdcxoMPv4Gro4j3jds4dUU+7zle5Oxv453DdPPmqqfZvOx1nOYAM8ULEG0iW/W5+KIrCaheLrvoaja+V0d0VT2NkoMozU1TVRdphdF9ZoN3WytqyEuJVE9DbJAhnensVnZzxhlnsPWTWvyeEOMuyD78hXqA1WrlkksuYcOGDaxa9R7tSTqcrRaklncYGzed5r85ePW8Fcw7bXafzBfm2NPwwSa8q+qw6SKpcm+lzL2ROn0DoiySE8okRxpEsmUAcrmBXb9/lwZtNxkXjiVn8mhEUTr8BGFOSjrcAX7/1ze5asVDmAacg2XIVUiiTFANEFB9GEUDetEAgKKFaHdXUfleCRX/XokWrCfu9NNJnTEX0/Bhx7z+e5gDsVqtoT1e3ISEhGBRUZG1uLjY8Oc//zl16dKl5bIsa3q9XhUEQVuyZEliYmJi4NJLL223Wq2KKIrk5eX5ly9fXrLnel1dXdLq1asjx44d63nvvffsw4YNc2ZnZ/u9Xq+0a9cuQ15enr+oqMg2Z86c1oyMDP/HH38cOW/evI61a9dasrKyvGazWUtJSfF99tln1lNPPdW1fv16W25urvdQ9q9evdp+yy231BYUFPgfffTRhPHjx3fNmTOnY86cOXu928uWLYtevnx53LJly0piYmIOCAspLCz0lpWVmevr6+Xk5OSg1+sVNm/ebL3mmmua6urqvjdRSxRFNE0Tvm/M4di+fbvxN7/5TfZf/vKXiuHDhx/ytR6KfiGQvR99QO2HLWyTcggKxaQW5lC+sZm0wigGTU7ps3mCFWvY5JtDl8GLKtQwMmEkX71RgdcZZMav8g6oSnA0CILALTddwKMvReHa8hEfGncw6uNM/lX8GJf/+rq93dl+7KR/IzEg/gb8IScxxkTKvX4cli5cUgNTTptCWloap2R4CZarqDoN9E201Dj7TCBrIRXPthZ8TVvw6HS400zUFNcwduxY7NYItqzeTvqgGOLSbX0yH3TfG2PGjCEjI4MXXnqFLiHIl24zavPbjIufjumtIH9f/wKXXHMBkZHWPps3TN9T8vdVmKpM+LQgH7f+g9VDK5gw6mymZFxJvCGGUEcFDdWf8s2mF0gpH0qWbgIF1pGo7/j5+rXnaYl3MmH+RUQlHXVuTJgTiA53gJvvf41rvnyRiNPuwKyPoty9lYrYGmKGZpOTPRiLJZpAi4vOsgaCFa1Y1UjirGdD2tl4Q05aa4ppuetxdJ3FxJ47lYyf34guLtyE6nixePHi6htuuCFHkiRNlmX1vvvuq87KygoMGDDAc+GFFxYIgsD48eMdU6ZMcRUUFPgWLlyYtXLlyjhVVbn77rsr97/e/PnzW2688cbMWbNm5cuyrD3yyCMVBoNBW7x4cdXChQuzNU1jyJAhrhkzZjgURWHNmjX2Cy+8sEDTNO6///4qgHvvvbdq8eLF6Q899JCQlJTkv/POO1sPZX9ubq7v5ptvzpZlWcvKyvI+8MADNfv+fygUYsmSJelxcXGBX/ziF7kAI0eOdN5xxx31e8ZERESoCxcu3P3zn/8812AwqKFQSLz44oub8/Ly/IcTyPHx8cFgMCjceeedKYsXL67r5dsPwJ///OeUYDAo7knOs1gsoeeee668p+cLJ2Ls0uzZs7UVK1bs/T0UUBAk4aDxm4FdddQ+s5235W20iV0AmNUAmaYL8HsULl08DvEI4j4PwNOO9kAWz4YWUyd1EXd2JD8tvJYXFn1FzilxnHnVsWv/u+yTHdS9+Txuu5GsUCwBt5ezb72U9KTkYzbn0ZKfn/9NSUnJqL6+7v73Rlt1G9WPfIFFtFMVCFEVr9IqfENychJXXHEFoijyWWkLb/3rOaL0PkxuicL8mZxzzUEb5/QaX2kHrf/cRlnxs3xtaMR32lgkh8yNN95I+fp2PnuplFk3jziq8IrvIxgM8t9V77P5mw34FJHclnZOs52LJMh85Q0QPTmOqecNxWA+sOTgD8WxujfgwPvjRGbrQyuJao2lwV3GPyOeZeLcS7l46FXI4iH+Vm3ltG38D0WrPsXaOYm4yHEYZBshNUi9rxj/YJFJV12NLH9/BZ0TneP17DhR8QUVrlnyLletX0FO7s/wqW5KCms4+7KrkQSZqh0t1Fe04mjzEPKqoIlIog6dTodeUtC3NGDqcBEnxqITZRRNod1ZgVK7gVBCLUNvvQdz3rAf+mUeEQe7NzZv3lw1bNiwQwq9MGEOx+bNm2OHDRuWuf/xk8KD/MZfi/B0BZg4N4/s4f9bASsOPw3PbeNTXRltogNLfQ0jo6byubkCW1YbLZ8aKd/YQt7oow998Fd8gUfNZrfOQYwrwNmDz2fdygoAxl3Q+8S83vDTKQP5PGkhXz/6IFWxYLTrWXXfvzCPHMhPLj0fnfzj9SavqW/kLWslQXMsU3KjaS0pwmQyMXv2bMRvtxWHp0dyr5bCT9UOdpuaaSPvlTEAACAASURBVK48IP/hiPHuaENV/JSKdTTH6zE3q0w4dSxGo4lNH+0mIctOUg+rmhwJsiwza+YMRgwdwnMvr6RWUnnF/ynD1GzGmbMp/qyepV+0M/KMLEacnoHRcuII5R8zRQ+/RlxrPHWuYv6Rs4w75/+HNHsabW1tlO4sp3zHbjraHPi9AZSQiqCJ6HR6jMY8LGnDsBcIdLgrCJWWERdMISlyOHKFkbLfvUOltpH0i8YxePz0H/plhuklmqaxaHkRF218nZy8n9GuNBF13XAyOjP4599epKWjAVUMHPJ8QRMREMEsIoZqMCk6YlSRAdZEUgf+BFVV2LJkE03Bf1EwL438qdeCoe92t8KE6U+cFAK5RfoA1RPLu0/6yB4ex4Q5OdgjDex+cg3laifV+hb0zfU4MsfS1dRErNHG5h1fEmM5g9072/tEIDduWU2p7zRUi4Zfq8HqjKFkXQUjzkjHFm3sg1f5/UzOjyf9j3fx4r2PYDQJ1EcHsJRuYclvdzF59nTGTx6EIPZdiMfJwoS8BOo2GWhqKqNqG2RkZDB37lxstv899O1GGTkhhbRWkUq5mY6OTvyeYJ94VT1lHQQ6ynHKOoS4DAyygXHjxlG1uZWuFi/jL8zp09CbQ5GZkc4ffns9Kz5ex5eff8HX1LJZrSdfTiHfp2fHuxqbPtjNoEkpDD89DXtsONHrh2LL8+8Q0xhDs7eSlwe9xZ9+8jLFm4pZsXElHZ3fNrPRBHSCAZ1eRjCCoir4lQBdwRB00v0DEB8Jmhd9cCvRAcgRoxiom4a6IsgHz99PW0IVEy64lNShExClH+9CuscEPKjb3qLmy1qamiJwmWLJOmcsWcMTj8vz9fVNdeS99QiDMq/AobQQmpvBa6+9i9PtQFRkYmxJpGenkJAWjd4gEwqFUBSFYDBIIBAgFAoRCoUIBAJ0dXXR1tZOlaOdKtoRKSbGr6cgKoMh2gU433fz1puv4k4u5dzp44kYeg7oDMf8NYYJc7JwUgjkQIeAy9ZItNxM5dbx1G9pYWykDkXzsUbeiehxMXbGXKZNP4u7H1nFqc0uPtE7sSdrNFZ29YkNWt1GKuRzMasqtin5rHuzEoNJx8hzMvrk+j0hI8bCbx74HU/+811Gb9/BzigVb5SHD1e9zJpVKZxx3ukMG5fTNyElJwmxsbH88pe/pKOjA6PRiOkQGf7ZiTYsjU0gQ0jnpqXGSWrB0cUhq54gWquPTncNqmzApMYwevRozGYzmz7ciT3WSPaI4xfzJ4oic08fz7SxI7nnpU8JlW4gZKpBswrEmZrRB0S2fBJg2ye15I5KYMRZ6cSl/Xi9R5qmEdztJFTXjKA4MI4sRDCbj+mcVV9vx7xFwKV28GbWe5yacjVPPf4UiqIgByKICOUx5JRCRk3NJzL+wKZPiqLg9/txOlw01rbSWN9Cc1Mzze0NNPo6aKSLL7UaYkI28qLSGeYdQd0/S/jU+RKBGA9jTz+b3FNnYLT+eP/u+6K11yCofrSWXbSt3UprcTwGspHFZFIANaBR+lwJ2z+sZMZvxyMeQ5Fc2+Hhi789wFWJswhofrYMdlG26j2koIUUw0gunD+FuDR7r6/rdruprKykoqKC0tJSPneV8IVWQoLORrYpmbSuCWz4p4Pa0KNE5TZx+tgCrEPPhYi+y98JE+Zk5KQQyOO8Nawxp9Fo9DNA2slQNYdOrYNPpC1oSpCklBxOn3E2AHnjBxK1orsebFCpxtGQfvTeQlUl0lVJsxwkyaNjZPYs1r7TyJiZWcd9y9ooS/zmF+fx0aYhTHjiVXzxhRRJ5Th1jby5ahkfvJ3C+DHjGXFaLtaoH483ICrq+2N806PNCKofNAhJLpr7QCD7q7sXX3WhelzJcUiSyNixY2mscNBQ7mDSvLxj+oV6KKKtBv7y87P4uGQ4D67YwKnVn+CN1dFiCmEwbMCoSJRsGsquDU2kDIhk6LQ0MofG/iC2Hmvef+FLFJ9IZmE6MSlWbDFGBIcf17oqPN80Iir/2/0JvL6GkPwNeffeekyy/t0eL47nv8FiTOK/5o/RuQvZsmkLUVI6amMchSMzmXxRHibboWOIJUnCbDZjNptJSIpn30hSv9/P7t27KSkupaS4hLWuUtYCUQYLKREjiQ/qKHt3NxtevR2n0EFWXirjp88kdsgE+BFWOfjksWexVmUgomESLdikCRgFlSZ3AzW+rTSbXUQbUhlkHoyrEb56eTsTLumb3IX90TSNu59+lYt1WQgGC+9GFNFV5cfizGLwgBGcedUgdPoj2wGwWCwMHjyYwYMHo6oqdXV17Nixgx07tvOlowRkMJv0RKtWHG0ZvPy6g67lSzHYnQzKtDJsyBAiCiYi2MOJoGF+XBwXgZyfny8CfwOGAX7g5yUlJWU9Pf/vg65g3KbHsOtSKbW3UEoLAEIwiGZO4tobf7l37JSCeHZojRhVmXZHORLpNFV2kX6Y9r7fh6OuhBp1OIqkIrtaaPw8hMGsY+i0AxrLHDdOH55B12M38sXDbzG3fQx1wTbWaltxmnbzUVEtX6yNJztxMCMmDiBzaCx640mxFjpmpEebcYoubJqBgOygs8lz1Nf0lHeiqSEqZAdYBzN82HBsNhtfLNuKwayjcGJSH1h+5EzNj2fCLefwwlcDee2NL5hX+w2+lFQadS7E6K+RQkGU+qHUPdmJPdbIoMkp5I9NxBLZfxZW0esrMEtWOjdX0oaBGH0ENp0eTdNo8DsoDq6hTWhDkM1k6rPI04bxzoJ/ceajV/TpZ0bTNNbd8gDR9jG8Kn2GX4wmKzkLf3Ec+A1MuSKfAWOOToAYDAZyc3PJzc1l+oxzaW1tpbS0lF0lpeyoqemu4mICYmKBWDp9ULT8fbSX30VEw6KXSY2NIiUtlcyhI0nKyNwbx98faa2uwi+EMGo62gN+mpVGdmsN+K1W1FgrEEULbkpYR5oulugvC2iekE58Ru+9uIfj5TUlTNjxJfbk83jD8BWE9NjbhjBsdCFTLyvos/AOURRJS0sjLS2Ns846i7a2NioqKqgo3kV9eTVeOUTQsKdfhJXm3fDx7q3w363oVZEISSA50kR6aiI5w4YSkTMQQfpxf7eE6b8crzv7QsBYUlIyPj8/fxywBLigpyc/+tORXKddT2fZeq71fUSDL4IGxUJ1znT+9qtzvzM2KcLE+1aNhGAkDVodkQI0VjiOSiBXb/+SbaFByKJEwOahcksro87NxNCHzSaOBLtRZvrts6nY0UTks+u4WDybGmcVG9hJh7WRnY5myl/bhPWFLHLyM8gaFkvG4BgsEf1HAPWU9BgzNYKPaM1GndROV0uvSyIeQEdJO5qzBp89EkHo9h53Nnuo2NTCKWdnnBCLEoNO4upJWfxkTBovrp/Ehlfe4cK2BlwZuZTLLbTLOxAMPrxKIp0rBvHV6+WkDYwmb3QCmYNjMVpP7qS+T40lBPQyVs2EXTOxS6nEqXThFLwE7cZvPacxgMBmGtmiNZITm8Drd77LhYvP7bO/4ft/e4wI21De1G/AZLUxfuAUdr7jxhZjZMbCoUQlHhhOcTQIgkBcXBxxcXFMnDiRUChEa2srrXWNVK/Zgqu+E0kyowgaPjFAl+rEHfKxs6WDHa2dULQNVJBDEhbJQlJcMulpWcQnpRAZa8UaZUA26RAMOgTp5Nx5SJ11Jqs++GC/o4kkxMUxaMgQcnJy2L27nnde+ge7I8AfuZV1/4KZd53Rp3a0OP0UPXcvZ8efybv6jZjNduTqARSMzGRKH4rj/REEgdjYWGJjYxkzZsze4w07qil95UsMXj2KJODES4vaRofgplMI0uJwsdlRBtvK0Yfew6rJRMs6kuwWkhPjiE5LxhiTgM5mxhhjQbKc3FVVwvx4OV7f4JOAVQAlJSVf5efn96qEj80o8+xVY1j+TRKPfzEMWScwNT+ep0/PQ3eQeFtTeibWXa1U61uwJ+mOOg7ZU/UNDbpkYkImTIlTCboEBk0+cUqsZQ9MQLt/JpUflpHwoZM54rl0uttZyxbqza20m9rpqtlEyfYM9KEU4tJtpA+MJmVAFEm5kciG/p+8kx5t5htBIVWLolrXSkdrrxrqHICmaMgtXpo9tQQTYzBHmUhISOCTZSWIksCQqal9ZHnfYNbrmD8piysnXMdH2xsofXY5Z9RKtKVmUqyrxyl34kr4DEEJ4anNoGxXHDrVSHJ6PJlD40gfFENsivWkSwQ9/bKL+WrDZlobG2n1tYNOBUGH0ZLM8II8CgfkkpaWhslkYlNZHf/95z8oMzQR4wny1cpdnHpJ4VHbUNXQgq5czwe2bZjNeiYNvIBv3qojOS+ScxcMOS5hWjqdjsTERBITExl8ynAA1ICCe30ljg01BBr9yIoFQtAleGmig3qhlWbJRafURWd7FzvbijFvMmDQdICAioqCiopKSFBRBBUNDUkQ0OlE9DoZvSxjMJowWmwYTWZkWUYURSRJIj4hnlNGjTguSawHY+yECaRlZtLV1YWiKN1hKwkJWCz/W6ykpKSwyyvR+NrTNMeC3ltNQ3knSTl9V5nmwaf+wyj9AL40V2E3WNBVDyQ1L57Tryj8QcKekgZmkHRXBpqq4a9y0PRVBWklTZi8MnrNgDcYoFl00CQ6aJYctAhdtAsqZc5WcFbDrv9dS9AEZER0goheFLAaddhtBuxRViw2CyZrBEZ7DGZ7DHqDYU9zCHQ6HXFxcSfVDsZXX31leeihh1L3NPcoKioy3XnnnRmSJGlpaWn+hx9+uEqSJJ566qm4t956K1YQBC6//PLGefPmdbhcLvFXv/pVlsvl0ul0Om3JkiWVqampwX2v7/F4hOuvvz67o6NDZzablb/85S9V8fHxofXr15vvv//+NE3TiI6ODj7++OOVer1eu/XWW9PLysrMsixr9913X1VeXp5/165dhv/7v//LCIVCgizL6uOPP16xpz3zrl27DL/61a9y3n///R0AFRUV+ltuuSVL0zQSExMDDz74YLXFYlEPfOVwxx13pGVlZfmuueaaln2Pf/LJJ7Zly5bFPf300xV7jt11110p2dnZvssvv/ygHfyWLFmSOGnSpK6hQ4d6X3rppZirrrrqoCX89p2zqKjIdO+99+5tH1lcXGx56KGHyiZNmuT63e9+l97Q0GAIBoPC//3f/9WMHTu2x9vHx0sg2wHHPr8r+fn5upKSktChTtgfSRS4eHQ6F48+fAvNqIH5RJV031s6SydttUf3IRNbSnFK8cR7gvjqkskcEok16thXrugNgiiQfVYe2hm5tH1Th+G1Rs5lCv5gkK1KFdv1dXTFVWAJVuPokNj+oZHN79hRdUkkZieSnBdJYnYE8Zl2zPb+t+JPtBtpEowMUS2gA4ezEyWoIslHdm8oHT4kBHZLnagmC6NHjsHTFaB4bUN3mMIJ6qWXRIGzhiRz1pIbqO9w0/jMG5yx3YAnIY8qXSvVYhMuUyOYGgFoc8OOL4xIn5jRCxbi4uJIy0xmwJAMkrJijk1L9z5k+JDBDB/Ss7jREXmpbDj9IuyrP6XY3MzX6zcxdFoGkQlHnrinqhpfP/QgZbYIZEVhTN4cvnmrjpyR8Zx51cAjvv/6AlEvYZuUi21SbretfoVgsxvb5gpiikNkNin42nW4gl00yF469Aoe2UtQElAFEDUBGQm9qMck2jGJJgQEVDT8gSA+ggRQcAseOoUuQoKCIihoaChoyJrEgLxc7JF9H7LQEwRBICUlhZSU709G++lpI7jo80TO9VioM+7mi5c/Z94dM/vEhk+3VJG0/VPK0wdg1AQMLUOJSIjgnF8M+cE/W4IoYMyOJCN7JPBtUmunl47t1Qi1MpbdASIbW0noctGlenHrNFRJhyaKIIiIog5JZ0SnMyJJBjRJxBcKstvlxdvoICQcVGvtJcsYxxW3/ep4vNSj5uGHH0549913Y/a0UAZ49NFHkxcsWNAwffp0xy9/+cusd955J2LcuHHu5cuXx7/99ts7fD6fcO655w6eM2dOx7PPPhtbWFjoue222xqef/75mCeeeCLxvvvu273vHM8880x8bm6u9/bbb69/+eWXox5++OGke++9d/eiRYsyH3vssfK8vDz/v/71r9jq6mr9zp07TYFAQHzjjTeK165da7nnnntSn3vuufLf//73GTfddFPd+PHj3StWrIgsLS01xsbGul944YXoZcuWJTgcjr2r9XvvvTd13rx5LT/5yU/a//Wvf8U+8cQTCbfeemvDvjY1Nzfrbrrppqza2lpDVlaWry/ey5tvvrkRoLKyUr9y5crY/QXyweYcMWKEd8/CZPny5VEfffRR5DnnnNN13333Jefm5nqfeOKJqs2bN5u2bdtmOhEFchewb9q02Btx3FsyMmJRVEADj7sab5eVgC90RNulvkAIKaAHCSSvG78aYvCpJ252ryAKxI5OJXb0PILtHmr//RpDtzVQQCzlkQKVRhf1VhdYA0AXeq0Rb5dI9ToBZY0ORbVgNEQQEWkjIioCe7QVq92M2arHYDJgMMgIEqgoCALYoyxExUb80C/7sIiigNcaT5Sz2zukSG6c7b4jFj+dtd27EtVWFU3TGD1iNNs+rkUJqgw/4/CLuBOB5CgLF/72pwBUfrEF6xseJjIRn6RR7S+jSqmhTe3EZ5QIGa0EJAOurt1UbtnIZ1tAVPQYdBasZht2ux17pO3be8WA3qhDb5TJycnBfIwrQ/QlF08cwIur3iFGZ6XLUsGXK3cxfcGRN1V4ffUa6s2xKJqPUflnsPX9JgomJDH1soITLilSNEgY0uwY0obDecP3HtdUlVBrK6GWFlSHA6Wri5Cji/amZpqbm2jtaqTd1UF7QMEixRJhSCBBjsEk2dGJenSCDgERFZWg6kfVukWyT3GDcuiavicKkijwk+nzqX12EQZDLrWucnzu4FF7/gMhleXPPEJqah4A8YFRKLKZ83497AcP3zsYgiCgjzKTMKmQBA7cWVFVBXdrC45du+goL6e5uobO9jYcbdV4fF40RcOiiyRBH4lFF4lONKLpdGiSRFBQCRBE+fbe0AQNtWnXQaw4DOufjmHTi7F98HL/x/BLWhlz7UG9nXvIyMjwP/744+W//e1vs/Ycy8/P93R2dkqqquLxeCRZlrW4uLjQO++8s12WZaqqqvSyLKuiKPLrX/+6ORTqlkT19fV6m812QNvmoqIi6zXXXNMIcPbZZ3ctXbo0ubS01GC320NPP/10QkVFhWnSpEmdBQUF/n//+99xkyZNcgCMHz/evXDhQovH4xE6OjrkDz/8MHLJkiWphYWF7jvvvLMWICIiQnn55ZdLTj/99CF75quurjadddZZ1QBjx4513XPPPQckXblcLvH666+v//jjj3stAj755BPbP/7xj0SdTqc2NDQYzjzzzPZbbrml8frrr8+cMWNG+3vvvRdVU1Njuv/++5Nuu+22vcL8++Z0uVzik08+mfziiy+WAHz11Vf2M888s/2SSy7Js1gsyr333luz/znfx/H6FK4BZgKvfBuDvPVYTpYRY2a72IZJ0+H0NqNjEI5m7xG1+62sLKdOzUIQBYKKDoNFR0rBsemK1tfI0WaybvwZAEpDMdZlDzLs68/xOCOpsRbSYU/AY7XjNxrwyxDUB/DTgldopsMDeIDDNXjURK6/7npiEk7890SMTiKiS0HQNEI6D44W7xEL5PqKTqIBl1mHaFIwGcxs+6yOzCExRCf1bTzp8SBr0lCYNJSQK4Dj7W0YN+dQqA5C01S6fI00uHbT4q+jTW3FJQdRLJFoxiiCqkJbyE2Lazc0HNiVMzd1CJf9fM4P8IqOjAiTTMXgccwsaeQjw3Z2luzg1I78I9oxcniCtH3wX9pNRrJdMmVrghSMS2TaMYwrPRYIoogcH48cH/+d49FA7kHGBwN+3B0d+N0uggE/aigECN3b5cL/rmmLjMYe07da5lhx7pAkrojW8RN/DNuNjax7fwunzTrlqK75zJtrSDEYCIgaIz0F1AZMzL552HGpq38sEEUJW3witvhEUidOPuQ4VVHwuV2EAgGUUBBVUfaG2WiaBoqC6HITWXD04U3Hi9mzZ3dWVlZ+Z+s1KyvL/+c//zl96dKlSRaLRTnttNOc0N3c6cknn4xbunRpyty5c5v2jNfpdFx00UUDKisrTU8//XTp/nO43W4pIiJCAbDZbIrb7ZZaW1t1O3futN511101ubm5/iuuuCJ39erVHrfbLdnt9r0iWxRFrbm5Wa6pqTFOmjSp6/e//33dTTfdlPHCCy/EXHHFFW3nnXeeY//5cnNzPW+//Xbkz372s7ZVq1ZF+ny+A7Y0srOzA9nZ2YHeCuQ9f++mpib9u+++u93v94uTJ08eessttzTuGXPDDTc0lJeXm/YVx4eb8/nnn4+dNm1aR1xcXAjA4XDourq6dC+++OKu//znPzF//OMfU5944omqntp5vATySuDM/Pz8L+l+RF51LCcz6CS8ui7smhmH2oUN6Gz2HJFAbqzYxm7iiFYtuIhlwOCYg7a8PtGRkgpIvfkZUFWo+5qsHW/h2fIRYnkF/nqRNn8cTsM49PZhGCOyCejAR4BO1YFbcRHQvATVICoaOkGHHhlR0CGpKp6u1pNCIEfE2hGrHOhDoEo+ulqPPFHPWduFHGxHsRpJzIilbGMzXmfwhIs97i06q56Yi0cSPU8jWOfCu60JebtERGsiBYwFIKT4cYY6cHsc+BQPftVLIOTDp7pRRFBEgaAAfhEcph4XqzlhmDV5ILotVUToDLjMu9n+eR1jz+99t8xX3/2QRqOJpKAVp2cI6QOjmXp54Ukljo8EWW8gMqF/lQSzGnTEDbgaae37yAaJoo1fHZVAdvqCVH+xHKM9inG+HKpdMZx93aAj+o462RAlCbP9GO06jrm27XDe3uPFkiVL0p577rniwYMH+5566qm4RYsWpT344IM1AAsWLGi56qqrWn/2s5/lffzxx66pU6c6AV555ZXSnTt3GhcsWJC7dOnSXbfffnsmwHnnnddmsVgUp9MpAjidTslisSgxMTFKUlKSb+DAgT6ACRMmODZv3my2WCyKy+Xam1ykaZoQHx8fNJlM6p65pk6d6lizZo0dOOj7tWjRoto//OEP6W+88UbsxIkTOyMiIkKvvfZa1IsvvhgPcNttt+0eNWrU94YrGI1GNRgMfueB5/F4pD2hKNnZ2V5ZlpFlWdXr9Qd6WHrJu+++G/3EE0+U7/ndbreHzjrrrE6A6dOndz777LO9ejAdF4FcUlKiAguOx1x7CJklItxGWnXd22CO5iMTQ666HbTrBNL9Ek6SyBp2/Bo/HBNEEdLGIKeNIeLsuyHgxtawhdimbWhNOwi1vEOgtgZPSyytoUEYpCxEKRZZl4xOZ0QUJIKqn6AaQFEDeIOd6FX/D/2qekR8vAVV68CoiHh0fhxHUcnC1NJJtVYHgsCYkRPZ+notkQlm0o6ytvKJgiAK6NNs6NNsRJybixZUCTS4CNa7CDa6Me224m+JQg1oSJoeQTj4orG6ds1xtvzoGZMVzTJdKwOVDNbqS9m8dhejZ2T1qgGPN6DQVfQ5mmTA3iETjLJy5vxBJ1xYRZiec8GwTDZs3kqhcg47pDpa6juJSz6yZL2nX16F0RZJjpKA4klm3LxcMoecHN70MD3DarWG9nhxExISgkVFRdbi4mLDn//859SlS5eWy7Ks6fV6VRAEbcmSJYmJiYmBSy+9tN1qtSqiKJKXl+ffE1cL0NXVJa1evTpy7Nixnvfee88+bNgwZ3Z2tt/r9Uq7du0y5OXl+YuKimxz5sxpzcjI8H/88ceR8+bN61i7dq0lKyvLazabtZSUFN9nn31mPfXUU13r16+35ebmHvJLcPXq1fZbbrmltqCgwP/oo48mjB8/vmvOnDkdc+bM6ejpe1BYWOgtKysz19fXy8nJyUGv1yts3rzZes011zTV1dV9b7LTtwmbPX5gdnZ2SsFgUExPT9+b3Dhs2DDXRx99FDFq1CjPF198YcvMzOzVl/6JF+jUR/ijI7C7NBRZxhQp4mg+srq3gdbdKEIyss+PJOtJH9Q/BNBe9BbIGA8Z4xEA+dsfi6YRF/SA3wWaCmoIQj4IuCDoBb8TfCHQp0HewB/4RfSM1GgzAc2LCRm3zn9UHuSIgMDXuk5QQ6Saclhb+Q2T5uX1W++gIIsY0u0Y0vckVOXt/T9N1VC9IVR3EC2korq9+Oub8dbVccrEK38Qe48GSRSoSsljfIOJr7QSOkK11JV0kjaw55/9lz7ZhFPSMyAYT3sohfMvKzjuTYXC9C1TC+J5wRrBaU49260aX378NRdc2vuSb05vgI7StVgkE8N9eTTk2xl6ku88hTmQxYsXV99www05kiRpsiyr9913X3VWVlZgwIABngsvvLBAEATGjx/vmDJliqugoMC3cOHCrJUrV8apqsrdd99duf/15s+f33LjjTdmzpo1K1+WZe2RRx6pMBgM2uLFi6sWLlyYrWkaQ4YMcc2YMcOhKApr1qyxX3jhhQWapnH//fdXAdx7771VixcvTn/ooYeEpKQk/5133nnQChEAubm5vptvvjlblmUtKyvL+8ADD/QqfhcgIiJCXbhw4e6f//znuQaDQQ2FQuLFF1/cnJeX5z+cQI6Pjw8Gg0HhzjvvTFm8ePHhgj0pLS01JCYmfsdb95vf/KbhlltuybzgggsKdDqd9tBDDx3wvn4f/VYgS+kp2Ku7dw4M9gCdR+BB1jQNya2CBKpfIzE34oSobXtcEIRu8aw/+eJpD0WczYBXc2PGQAgnnc3uI7pOe4sbg2CgVQ4giB4qN7UhCJA3OqGPLT45EEQBySIj7RWAVox5cUQw6Ae162jIHD0I4fVdxPn1tBqb2bWxsVcCuW7dfxERsThCRI/OJq2wny2sf4QYZQl90lxcTd9gN5vYtWs70HuB/J/X30Mn65kQc50JPAAAIABJREFUKKApoDDl6mE/WKm7MH1HVlZW4M033yze8/vkyZNdkydPLt5/3Lcxtd+Jq01MTAwtW7bse7MSLRaLunTp0or9j0+bNs05bdq0nfsekySJJUuWHCBohw8f7l25cmXJ/sf3sG7dus17/j1u3Dj322+/vfNQY/fl9ttvrz/U/82aNatz1qxZnfsfnzJlinPKlCnO/ed+7LHHqvYcW7Vq1Y6ezjlmzBjPmDFjyvc9FhMTo/zzn/8s5wg5+YJpe0j0gAFY1O4vbEHowNHSew9yXaeXgGoBDfwhK4nZJ361hjCHJt5mxCt4sWkmEKCz84C8hB5RVtyKlwABHZhjbZRvbCZ5QGS/LI/3Y2VCXhy1ag05WiqqFKB4axmq8v1lqfZQUteGGlLJURJo9MuMn9X7+OUwJyan5OVRaSolR03EpXXQ0ti7cFdFUajb+TW2kExKKI70M+LRn4AVK8KECdOPBXJ2cjx6rbuEkC/QiNcZxO8JHuas71Jc20anZsemGfGoVhKyfph6nWH6hjibAZfoIwIrAP6Qh4C399UG22udtIndC9+EmHQ6Gj3kjIg/zFlhTiayYy1U6t3kCekIqoZTbaK+rGcLqjfe/xRVEEj06EgfNQp7rOkYWxvmeDEhJ4YKm4PMYCwIsO7zTb06/73P16MTBcaphTR7Osjbp5xemDBhTiz6rUCOMMmoohO9KuLxda/ye5uU1Vy9E6ekx6boEaTosAf5JMcoS3hEhUihO1Nclfy4OnufYOht99ImdAvkKG0ACJA94iRP3gzzHQRBoD0lDz06olx+AsY2yr5uOux5mqbhqd5CvGrH7XYzembBcbA2zPFiSEoEzdIgQr4ObIqBsvJD7lYfgKZpbPjyc0xBgTQlhuThYji0IkyYE5h+K5ABQpITq2bE+22VBWd77xq9BBqLcYkKhqCGPTY2vIXeD/DIIpFC90JHkXy4j0AgS51OWuhACPgINpiJS7OdsJ3zwhw5cUMKUDWFhKAFRfJRsrUSTf3+SkRf7+gua5evpNAlK8SkWI+HqWGOEzpJJCLlDOqUXWSpiXR6W/C4exa+V11djRbwMETJoNPjIO0nvY9fDhMmzPGjXwtkQRcgQrMS+LaygKu9d2JIbatFE0AKKCTmHFk5nzAnFj6DBb0gI4VCqJL/iARylLOLVtGFGHTTXOkkOS98b/RHhmfH0KY0kSZ2VxhwBBtpqur63nM+W7sBSROI9KgMOe/U42FmmOPMoOx0aszFZKpxIGh8s25Lj8776LM1iIrKQDIxqDuRrP0nATpMmP5I/xbIBgErRkKyHkkv4OzonQdZ8nQ3olH8AgmZ4fjj/oBq7a4moA8EUY4gxCIQUrGEQrikABIaSkgNC+R+SkGSjd1iK0mGdCL9XgKmVsqLWg45PhgM4qzbRZaSQKu3gcFnjTyO1oY5XoxMj6LO1kG0Ykav6ti+9ZCJ9ntxOp3srigj1W9BU1QSZ4bvjTBhTnT6tUAO2YyYNQOaKGKOFHH1IsTC6QuiKDrQIBjQEZ0SXu33B7SIGAAMIRVN13sPck27B7/UXc3AIHcL4+TcsEDuj8iSSK3diizqiW7pJKRzU7yxqrsd7kHYun0HaBp5ahJu0RFuCtJPGZoaQYdaQIe/ntRgBE0dtQQCge89Z9OmTYDGSArxtpVgmxreXehvfPXVV5a5c+fm7/m9qKjIdP755xfMmjUr/4YbbshUlG6H21NPPRV33nnnFc6cObPw1VdfjQJwuVziFVdckTNnzpz8iy++eEBtbe0BRdM9Ho8wf/78nNmzZ+dfdtlluc3NzTqAxx57LP7MM88cNHfu3Py5c+fmFxcXGw41dv369ebZs2fnz5o1K3/+/PnZXq9370Nqf/u/+eYb88yZMwtnz56d/7vf/S5tj/378tlnn1lnzpxZcP755xfceeedKfv///PPPx9z1113fef4tddem/3JJ58csmXkHXfckVZdXa1va2uTXnrppYPWxwyFQsyfPz971apV3/Fcut1u8Zxzzhm453hFRYV+zpw5+bNnz86/7rrrstxud680b78WyEKkFYvWHRsqm/y4OnouhqrbPAQ1AxbNgFezEJ0UFsj9AWNUd0yoIQTKEYRYVDU5cem6HxRGUolOtmC0hhtA9FeUAcMAiPd13zftvjoayg4o6QnAF19twKjoiAuZyTm18LjZGOb4YtbrCEZMpFGpYACpaKjs2HpAudu9qKrKhq+/weRTiBWjsOirEQ3hnIX+xMMPP5ywaNGijEAgsFdwPvroo8kLFixoWLlyZUkwGBTeeeediJaWFt3y5cvjV6xYUfzCCy+U/PWvf01TVZVnn302trCw0PPaa6+VzJgxo+2JJ544oCXyM888E5+bm+tdsWJFycyZM9sefvjhJICdO3da7rvvvsrly5eXLF++vKSgoMB/sLGqqrJo0aLMBx54oGrlypUlkyZN6qqurtYfyv5FixZl3HbbbTUrVqwosVqtyssvv3yAWL3//vvTHnnkkYo333yzeMeOHZaNGzcedcmeP/3pT7szMjICW7duNa9evfoA71NZWZlh7ty5BSUlJQeIsttuuy1938TXe++9N3XevHktK1asKBk9erTziSee6FWzgn5dgFGfGIuwfY+3pxNnu7nH51a2uvELesyqjGSKCSfo9ROsUd2fX70mo6HQ1dG7ZiGNdU6MghdB1cCRQPLgsPe4P5NXGI//62bslnQSLEHaQ63sXNtIcl7Ud8Z1dHTQ3ljL4FAaLd7dDDtv3g9kcZjjQUrmQJp2v8Ug7TQkVWLjhi0MP2XoQceWl5fT5ehkYCASRQpgnzbqOFv74+HFnS/GvFn+Zp/27D4/5/zWSwov+d6C1xkZGf7HH3+8/Le//W3WnmP5+fmezs5OSVVVPB6PJMuyFhcXF3rnnXe2y7JMVVWVXpZlVRRFfv3rXzeHQt0lR+vr6/U2m+0Ad21RUZH1mmuuaQQ4++yzu5YuXZoMUFJSYv773/+e2N7eLk+aNMlx8803Nx5sbGlpqcFut4eefvrphIqKCtOkSZM6CwoK/Ieyv7W1VT9x4kQ3wKhRo1wffvhh5E9/+tP2fW164403dsqyjNPpFN1ut2S1WntWLJ5u7/Lnn38e4fP5xPr6esMVV1zRePnll7fNnTs3/+67765+8sknEysqKszPPPNM7Pz58/d2/HO5XOKf/vSnqr///e/fWUQ88sgjCSNGjHDte6y6utp01llnVQOMHTvWdc8996T11D7o5x5ke0oKRk0CIBhsw9MVQAn17O9X39iER9QwKBCXnhIux9NPiIzpFshGuhc8XV3fn3S1P+3NbhyCBzmkoIWsxGUccqcoTD9gREY0TVo9dnMqaZ4ugjonOzdVEPB9t352UVERaDBYS6fdV43RGr4v+jMjM6JpiKxF0ARiA2Zqm6oOGWaxbt06BAWGSQPxN23Bdsa042xtmGPN7NmzO2VZ/k7sVVZWln/JkiXpZ5xxxqD29nbdaaed5gSQZZknn3wy7qc//WnhOeecs1d463Q6LrroogGvvfZa/Lnnntux/xxut1uKiIhQAGw2m+J2uyWAM888s/3++++veemll0qLioqs//3vfyMONra1tVW3c+dO61VXXdX84osvlq5fv96+evVq26HsT0pK8n/yySdWgNWrV0d6vV5pf5tkWWbt2rWW6dOnD4qOjg6mpqZ+f6zR/9AAXC6X9O9//7vs73//e9mzzz77HcG7YMGCxuHDhzv3FcfQ3Q1w4MCB34mX/eijj2zV1dXGq6+++jtjc3NzPW+//XYkwKpVqyJ9Pl+vNG+/9iDHpmTgo7vLoM/fDhq4O/09KtzvaCjDJyroghqxaVGHHR/m5CAu2kRIC2DACPjweNyoiooo9exz42vzoggepIAfQZCISwsLof5Mgt3I5zo3qWIWxq0b0Q0bh0u3m51rGhh2erczwu/3s27deiKCUVgxIsX09DsizMnKyPQoNqgpdPobyZWiaDI62bJ5K6NGn/KdcW1tbZSVlRHt1LAYrQSUCnTR4bbjx4pLCi9pO5y393ixZMmStOeee6548ODBvqeeeipu0aJFaQ8++GANwIIFC1quuuqq1p/97Gd5H3/8sWvq1KlOgFdeeaV0586dxgULFuQuXbp01+23354JcN5557VZLBbF6XSKAE6nU7JYLIqqqixYsKA5MjJSATj11FMd27dvNx9sbExMjJKUlOTbIy4nTJjg2Lx5s3natGnOg5jP/fffX/nHP/4x/W9/+5swYsQIlyzL2pNPPhn34YcfRgP89a9/rUhNTQ2OHz/e/fnnn2+9++67k//6178m3XHHHXtbQBuNRjUQCHzny9Xr9Yomk0kFGDBggAcgLS0tEAwGj9hh++qrr8Y2NjYa5s6dm797925jaWmpOSEhoXLRokW1f/jDH9LfeOON2IkTJ3ZGRET0qjNYv/YgW21RIHSiVyV8oe6tdFdPK1m01AIghiA6ORx/3F+IsxoIaD7MghEARQzg6eq5oDF0OekSvOAPIIpCODb9R0BrfBqiICL5bAweWEjA3MK6d0r3dubcsGEDfr+PQn8SnpCTrDPDHsL+Tlq0iTZhBI2BXeTpMpGCJr78Yt0B47788ktAYEDQjqoGsY3NPf7GhvlBsFqtIbvdrgAkJCQEnU6nVFxcbLj66qtzVFVFlmVNr9ergiBoS5YsSXzhhReivz1PEUWRvLw8/5644iuvvLJ1+PDhrj0xue+995592LBhzq6uLmnGjBmDnE6nqKoq69atsw0ZMsRzsLHZ2dl+r9cr7dq1ywBQVFRkGzBgwCEF0QcffBD56KOPVrzyyiulnZ2d0qRJk7oWLFjQssem5OTk4OzZs/Pb29slAIvFooqi+B0v9NChQz0bNmyw7xHrbW1tUlVVlWmPSP++nXlBELRDJUTvz5NPPln5+uuvFy9fvrxkzJgxjptuuql2xIgR3tWrV9tvueWW2uXLl5dIksT48eN7tWXcrz3ICAKq1IlF0xPQujABzh7WQja4HXgANRAWyP2JKLOeBs2HFRPQiSoGcHX6sUYZD3uupmnYfB10GDQIQVSyBUnu12vMMIB5cAE0NSFGZTPUbmcTCu1SGZ+/ksSoC1P4/LMvkP1R5IlRNHh2MXbi1T+0yWGOMYIgIKePpqX9SQqFU0kI2qh3NFNXV0dKSnfSfktLCxs3bsTgNJBlKsDXupP4+ef+wJaHOV4sXry4+oYbbsiRJEmTZVm97777qrOysgIDBgzwXHjhhQWCIDB+/HjHlClTXAUFBb6FCxdmrVy5Mk5VVe6+++7K/a83f/78lhtvvDFz1qxZ+bIsa4888khFZGSkct1119Vecskl+bIsq6NHj3ZOnz7d4Xa7nfuPNRgM2uLFi6sWLlyYrWkaQ4YMcc2YMcNxKPszMzN9l112Wb7RaFRPOeUU5/Tp078zVhRFrrzyyqYrr7wyT5ZlLSYmJrhkyZKqfccUFBT4582b1zxv3rwCs9mshEIh4dZbb62x2WyHjXXNycnxV1RUmB5//PH4X//61829eOv3kpub67v55puzZVnWsrKyvA888EBNb87v3wIZECU/FtVGiyBgomce5EBIRacEQNKjBHVhL2E/QhQF/IIfk2BCBFQpgKezZx5khzeIVeveidApFmLTwl3SfgwMzo+j6/2dmCKyMBRvZ+LEiaxZs4Zvtq1lXXkHQSFAXCADg2zEEaxBNh5+sRXm5GdgZirOml2obpU8v0SDUeb1lW/wiwXXIooi77/3PoImEefwYom1423fgmHAdT+02WGOEVlZWYE333xzbzmTyZMnuyZPnnxAeZPbbrutAWjY91hiYmJo2bJlu77v+haLRV26dGnF/scvvfTS9ksvvbS9J2OnTZvmnDZt2s6e2D9z5kzHzJkzDymgAc4///zO888//+Blfb7l2muvbbn22msPKCB/+eWX7w2FMZlM2ueff74VYPny5Xv7t3/00UfbD3Xdxx57rOpwx8eNG+d+++23D/p6e0L/d3/pNKyaiZBOxmDR9ciD3ODwIqk6dJpEQJPDZbz6GX4xiEE0okdDFf24HT3bVajv9CEK3WJaDEUSmxoWyD8GBiXb2S00EGNKp/qLD5k2bRpZWVl4rbsJSR6G5U0hXutuFmHOCN8TPxZGpkfiU1Po9NURI0QQ4cqnpbWZV199lZdffpldZbswOZLJlCNQ1RDWPHM42TtMmJOIPvMg5+fnC0AtsGcVtLakpOT2/Pz8mcAiIAT8s6Sk5B99NWdPUI0CFp8BRZYxG3W4e+BBruv0EkLGqhkw2SPCD7V+hl/WiAoakUMBfFLPY5AbHF78QgidKiBiJzacoPejwKCTqLNbGOQyEXDICMEgl19+OT5f97Pkv9tbyfk6A0eglZwZ4S30HwtDUyP5d3A4g/wlDIiYxrjhJj77pouyXeUoagibOwez6CbDUoivZTvRV174Q5scJkyYXtCXHuQcYGNJScmUb39uz8/Pl4GHgbOA04Br8/Pze1Wo+WjRLHrMdBdl15uDPWotXNfhxS+KGBWR2JQDmsOEOckJyRJ60YAU9KHpgnh66EFucPhwSyGMiogo2okJx6b/aNBGdLcGFmMG4P7ySwRBwGQyYTKZWLt1DbGGHBo8ZSQPOngt3DD9D5NewpU0hhbjGkRBRC7fRkHaCKLqxxPTNJ6shIHogpWYdFZoWI9l/Pgf2uQwYcL0gr6MQT4FSMnPz/8Y8AI3AQagrKSkpAMgPz//C+BU4NU+nPd7ESPMWGq7BbKAC1fH4dcEdR1ufKJCZEAjNrdXdaXDnARoJiOy24jo96KaArh76EFu7PAgCUH0IQ29JQKTLdw85sfCqKEpOD8pwxSZS/O7b2Gb1l2pQlE18neuRxRn4dU3oZPD4Vg/JoYMyMXYXoeroxXRZ2DGbUNpqXHh6vBjjXZRviQLRfFhyZEQ9OHnRZgwJxNH5EHOz8+fn5+fv23fH6ARuK+kpGQq8CfgP4Ad2DfI2wlEHK3RvUEfE4FJ634wKaE2fK4goeCBPcX3pbOxjqCgIoU0ohLD2+j9DcFiQRREdP4QKiFcnZ4endfZ6sEl+NCFFGJS4o6xlWFOJAanRNBAIzHmTJq/+BLt265Xa8paGe5Oxad4SD9r8g9sZZjjzcTcWFyBApqcG4k1pNG0o5TE7Aj+n707j4+quvsH/rn3zp19JiHJZGELSSA3iJBQXIpEFAUUSCAJATUiiKl06oPoAy7g82sKYgHFlFUJCDagKGCW2seHSgWkpVbE0pRSTC5LSFhDNpLMltnu/f0xSQwhYRMZZL7v14sXzJ0z93wZDpPvnHvu+fYdEo6dWz9CL11/uCr2Imhilr9DJYRco+tKkEVR3CCK4p3tfwH4FsCnLc//DUB3+BLi9hmmAcBl73i80bQR4dBIvlkdp9NXZMV2pWUWtacAAIwHCA6/+vLU5KeB1/nKQ3MtX5SaLJ3uk34Je30TvIwE1i0hhL44BRSOZXCkeySUnBruiEGw/nUvAGDrX/8PEZoBOGc/jr7Jw/0cJbnZfta7G/7G3IMmxR4wDIMTH/wFkuTF+RPH0eOUEbIsQTq9C7r7H/R3qISQa3Qj1yD/BsCLACAIQiKAUwC+A9BPEIQQQRCU8C2v+PoG9nlFwaYocIwDjAw4nL7JbOuFyyfICptvyz3JwyAo/MpV98hPiyLYdxFD6fHdfGm32yBJV7EheVPLTjoeIDiSvjgFmpiR98DhtUDb416cWvIGmix2PLrvWygUWjQpTkIXTBU3A41SwcITMxx9Qk6ioWo/erEJ+HJZHv7yu/cQp0+E69TXCHnkbjC09Oa2t2/fPl1mZqbQ+rikpEQzfvz4hPT0dGHWrFl9vF7fhMzatWtNKSkp/VNTU/t/8skn3QDAarWy06ZNi5s4caLw2GOPxZ8+ffqSAWO325ns7Oy4jIwMYcqUKX2rq6sVALBq1arwUaNGDcjMzBQyMzOFsrIyVVdt9+/fr83IyBDS09OF7OzsWIfD0bYDQcf4Dxw4oE1NTe2fkZEhvPrqq71a429v165dhgkTJiRMnDhRyM7OjrXZbBfllJs2bQqdP3/+RTdyzZgxI3bPnj1dzjC99tprvSorK5V1dXXcli1bOi076fF4kJ2dHfv5558bW49NmzYtLi0tLSEzM1N48skn+7X+G2RkZAiZmZnCE0880a+qquqalhXfyAR5CYAHBEH4C4DfAXhaFEU3gNkAdsCXGL8viuKZG9jnFWmCIyAzjVBJHJrdDgCXT5AlSYbS5bvkLrkZqHX0wXa70QT7tuLiZd+/rZd1wWG5/DpkWZahcfoufshuFt0i6Qa9QDNyQCQq5HKE6/vCWefA/skpuFMzAvXOKkSNphuwAtXwhB44xA7GectmeDwOxJ3vj3u1j8DiPAPPd9vQ7b9e83eI5Ee2bNmyiJycnGiXy9WWcK5cubK72Ww+V1xcLLrdbmb79u1BNTU1ioKCgvCioqKyzZs3i8uXL+8lSRLy8/PD+vfvby8sLBTHjRtX984770R27GPDhg3hffv2dRQVFYmpqal1y5YtiwKA0tJS3eLFi0+0VrhLSEhwdtZWkiTk5OT0efPNNyuKi4vF5OTkpsrKSmVX8efk5ETPnTv3ZFFRkajX671bt269JFn97W9/G7127dpjhYWFYu/evZ0bN24M+6Hv5aJFi05FR0e7Dh06pG2tBtjesWPHVJmZmQmiKF70Q/jMmTPqoqKisoKCAnHz5s1HAeCNN97o/etf//pkQUGB+PDDD19YtWrVJe/r5dywm/RabsQb18nx/wXwvzeqn2umCYGCrYda5uGSvdDg8kssaq1OaDwyHDwLRnHb11EJSPqgll1NWtamSy3lpnUtxztTb3NBLzvgBCB5WHSLoBnkQMOxDJqGJAD/YiDd/0uEVpeC10WgvOH/MO7h+f4Oj/hJ2uAeeOFP9+HdmL+i4m+/w4WB96HZoEePL7dBf3dPKEzh/g4xYNR/uDm08dNPf3CS1l7QhAm1IVOerLtcm+joaOfq1auPv/TSSzGtxwRBsDc0NHCSJMFut3M8z8smk8mzffv2wzzPo6KiQsnzvMSyLGbOnFntabmv4ezZs0qDwXDJdG1JSYn+2WefrQKARx55pGn9+vXdAUAURe2aNWsi6+vr+eTk5MY5c+ZUddb2yJEjKqPR6Fm3bl1EeXm5Jjk5uSEhIcHZVfy1tbXKYcOG2QDgrrvusu7cuTM4KyvrooIkH374oRgZGekBAK/Xy6hUqitWyGu1adOm0L179wY1NzezZ8+eVU2bNq1q6tSpdZmZmcLChQsr8/LyIsvLy7UbNmwIy87Orm19ndVqZRctWlSxZs2atmS3qqpKYbVauWnTpvW1Wq1cdnZ2VUpKSuOqVavKu3fv7m4X39XVrm5x+xcK4RRQMBbooIaLZaHUKC47g3y2sRksOOhkJQwhoTcxUHKzBLWUleZZNRiG9SXIjZefQT7f5IQGzVDLPDyyEsYwqpYWiMZOHIF/MAcQoY6Fqfc4nLSWonfKPVQ9L4AFaXhEJY6CqItFWPRxhPztE3Tf/j6UoY3ovnS9v8MjN0FGRkYDz/MXJV8xMTHO3Nzc3iNHjhxQX1+veOCBBywAwPM88vLyTFlZWf0fffTRtsRboVBg8uTJ8YWFheFjxoy50LEPm83GBQUFeQHAYDB4bTYbBwCjRo2qX7JkycktW7YcKSkp0X/22WdBnbWtra1VlJaW6qdPn1798ccfH9m/f79x9+7dhq7ij4qKcu7Zs0cPALt37w52OBxcx5hak8/i4uLgAwcOGLKysi77RaIdGQCsViv3wQcfHFuzZs2x/Pz8i2Z3zWZzVVJSkqV9cgwASUlJjjvuuOOighYul4vJyso6//777x/Ly8s7/vbbb/c6f/68ojW+r776Srdt27Zws9l8/irjAxAApaYBgGEd0EkmnFPw0OtUly03fa7BAQ/LQS0pYIqmPZBvR8HdNKgFoFBooFNr4La7rlhNr9rSDDBu6CQlWB5gudv/uyW5lEbJYcIbz+NPL70Ou9UG3aAoPPLIdH+HRfzsyaGx+NWB57Djjv9BUI8G2KtVsM14G2y3a7qiS36gkClP1l1ptvdmyc3N7bVx48ayO++8s3nt2rWmnJycXkuXLj0JAGazuWb69Om1Tz31VL8vv/zSOmLECAsAbNu27UhpaanabDb3Xb9+/dF58+b1AYCUlJQ6nU7ntVgsLABYLBZOp9N5JUmC2WyuDg4O9gLA8OHDGw8fPqztrG1oaKg3KiqquTW5vO+++xoPHjyofeihhzq9S33JkiUnXn/99d7vvvsuM3jwYCvP83JeXp5p586dIQCwfPny8p49e7pXrVoVvmvXrpD8/PyjGo3moiRbrVZLLpfroh+WDoeD1Wg0EgDEx8fbAaBXr14ut9t93T9UIyMjPc8880wNz/OIiIjw9OvXzy6KojoiIsK6bdu2bhs2bIhat27d0fDwcM+1nDcgfsp7eQ90UENS8NAGKS67xOJcYzOcLKDyAuFCTJftyE+XSudbWqHg1NCplFc1g1xtccLNeKGWFNDoabYwkHEKHmNz5yNz7VKMm/Uy7X1McGePIPz3pNF41vMy3tY/iaMzNqDn8Cf9HRbxI71e7zEajV4AiIiIcFssFq6srEz1zDPPxEmSBJ7nZaVSKTEMI+fm5kZu3rw5pOV1XpZl0a9fP2fruuKnn366Nikpydq6JnfHjh3GxMRES1NTEzdu3LgBFouFlSQJ33zzjWHgwIH2ztrGxsY6HQ4Hd/ToURUAlJSUGOLj47ucLfziiy+CV65cWb5t27YjDQ0NXHJycpPZbK5pjalnz57upUuXRpaUlBg++ugj0WQyXZJ8Dho0yP7tt98aW5P1uro6rqKiQtOapF+uSjHDMLIsX92KiF27dhnMZnMsAFgsFvbEiROa/v37N3/00UchW7ZsCf/oo484nUBYAAAgAElEQVTEuLi4qyt40E5AzCBLKkDbrAQYBrzKhfozXe+DfK7RDg/jhsmjRGgvWmJxO2I4Bm65GUpWDRUL4Cqq6VU3NcPBehHpZqAx0W4FgY7lLrnaSAJcxs96Ykj0L+GVZMSa9P4Oh/jZggULKmfNmhXHcZzM87y0ePHiypiYGFd8fLw9LS0tgWEYDB06tPHBBx+0JiQkNM+ePTumuLjYJEkSFi5ceKLj+bKzs2teeOGFPunp6QLP8/KKFSvKg4ODvc8999zpJ554QuB5Xrr77rstY8eObbTZbJaObVUqlbxgwYKK2bNnx8qyjIEDB1rHjRvX2FnsANCnT5/mKVOmCGq1WhoyZIhl7NixF7WtqqpS5Ofnd4+Li7NPnTo1HgBGjx5dP2PGjJrWNgkJCc5JkyZVT5o0KUGr1Xo9Hg/zyiuvnDQYDFdcqxwXF+csLy/XrF69OnzmzJnVl2s7ZsyYpr179waNHz8+gWVZPP/882e6devmyc3N7W0ymVy//OUv+wLAz372M8trr7129kp9t2KuNkO/mTIyMuSioqIbdr4Tq/8HZ88OwRfKf+OeiPtw4t8KmFc+CI6/dAL9v9/fg6CTe9CnUYvH3/hv2sXiOgmCcEAUxbtu9Hlv1NgQX/kM1baTKO9rx8lGF+6KSsWYXw7ssv1vCv4B5j+fIcEahKikRDww5aEfHEOg+rHGBnDjPzvIzXerf3YQ/+lsbBw8eLAiMTGxtqvXEHIlBw8eDEtMTOzT8XhALLHggjRt1fQkdx0gA5Yu1iEzFyp8v7tlSo5vY27WBZ5VgXHZ4YUL1guOy7avb/Bt8aZwe9A7oe/NCJEQQgghfhIQCbIy1Ait7NvCy2H3zdRb6jpPkNX2lqsDnsuXoyY/bW7OA55VAXbf/QlNjZevpmdv9F1dYjwSQvtQmWlCCCHkdhYQCbIuzAQVfIvBbXbfDa6dJcheSYbB6ZtJVATEOxO4PDygZNWQbb7E2GazQb5MNT3GbvX97pZhCKGb9AghhJDbWUCkgfqQCIBpAi8xsDttYFgGTXWXXlKvszqhlQBe5qAzUonp25ms4X0JcssMsodxwmF1d95WlqF0WaGUFZC8HjBs13feEkIIIeSnLyASZEYXBoa5ALXEo1mSoA9WdTqDfK6xGQw4aGUlwmKi/RApuVk4rQo8q4JktwHwVdPravu/JocHBtihl9XwSJ0n0YQQQgi5fQREggxdGFSoh05WwcVwMIapu0yQPSwDtZdD98Q7/BAouVmUOoNvDXKz70qCxLpg7SJBrrY0Q824oJPVkHH57eAIIYQQ8tMXGAmyNhQq5gL00MDNK2EIVaOp0wTZAScrQekFug+K80Og5GZRGvRgGAaMl4NarYbEdT2DXG1xgmU8MMhqgKMZZEIIIRfbt2+fLjMzU2h9XFJSohk/fnxCenq6MGvWrD5er+/G/7Vr15pSUlL6p6am9v/kk0+6AYDVamWnTZsWN3HiROGxxx6LP3369CVbaNntdiY7OzsuIyNDmDJlSt/q6uq2OhY2m41NS0tLKC0tVQOA1+vFnDlzek+YMCEhMzNTaC0OkpmZKbT+uvfeexPnz5/fVi64Y/wHDhzQpqam9s/IyBBeffXVXq3xd+TxeJCdnR37+eefGzs+t2nTptD2fQDAjBkzYvfs2WPo6n187bXXelVWVirr6uq4LVu2hHR8fteuXYYJEyYkTJw4UcjOzo612WwsAOTk5PScMGFCQkpKSv/3338/rPVcrX/fhx56aMD48eMTuuq3M4GRICtUkBkbDNDByyuhM3KwNTrhdV+8V/XZegucrAecR4ZaS1u83c5Uwb7/nyzUMBgMl11ica6+CTIjQyerwWtpdxNCCCHfW7ZsWUROTk60y+Vqu0Fl5cqV3c1m87ni4mLR7XYz27dvD6qpqVEUFBSEFxUVlW3evFlcvnx5L0mSkJ+fH9a/f397YWGhOG7cuLp33nnnkhrlGzZsCO/bt6+jqKhITE1NrVu2bFkUAHz77bfayZMnC+fOnVO1tv3jH/8Y7HK52E8//bRszpw5p994442eANBaBe/NN988ERYW5pozZ865ruLPycmJnjt37smioiJRr9d7t27dekmyeuzYMVVmZmaCKIq6G/VeLlq06FR0dLTr0KFD2tZqgO399re/jV67du2xwsJCsXfv3s6NGzeGffnll4ZTp06pPv3007KCgoKyTZs2RdbX13OLFi06VVBQIH700UdHdDqd94033qi8llgCopIeAEi8CzqXb/ywjKVtL+TgcG1bm6rqUwgFwNEWb7c9XbAOTgAsq4bRaESjsqbLBLmqph4AoJV48GFUIYsQQm5F//7ydKi471zYjTyn8POo2kEjetZdrk10dLRz9erVx1966aWYttcJgr2hoYGTJAl2u53jeV42mUye7du3H+Z5HhUVFUqe5yWWZTFz5sxqj8dXqfns2bNKg8FwSRJSUlKif/bZZ6sA4JFHHmlav359dwBwOp3MmjVrjs2ePTu2te0//vEPfXJyciMADB061DZ79uyLEtjXX3+99+zZs0+3VrTrLP7a2lrlsGHDbABw1113WXfu3BmclZVV3/48VquVXbRoUcWaNWsuSeivZNOmTaF79+4Nam5uZs+ePauaNm1a1dSpU+syMzOFhQsXVubl5UWWl5drN2zYEJadnd1WCObDDz8UIyMjPQDg9XoZlUol/fznP7cmJibaAV/5aq/Xy/A837Yt1dq1a8PvvffepkGDBl2+4EEHgTGDDMCrkqCTfdtzeZt973XHdcjuhioAAOemy+i3O53B92WJ4zQwGo2QWCdsXZSbrr/gKxKi9jIw9e5+02IkhBBy68vIyGhon5ABQExMjDM3N7f3yJEjB9TX1yseeOABCwDwPI+8vDxTVlZW/0cffbQt8VYoFJg8eXJ8YWFh+JgxYy507MNms3FBQUFeADAYDF6bzcYBQHJysq13797ujm2NRmNbks2yrOxuyWsOHjyosdls3MMPP9y2+X9n8UdFRTn37NmjB4Ddu3cHOxwOrmNMSUlJjjvuuKPzohKXJwOA1WrlPvjgg2Nr1qw5lp+ff1GSbTabq5KSkiztk2MA6N69uxsAiouLgw8cOGDIysqq02g0ckhIiNflcjGzZs3qk5aWVtOa/DudTqa4uNg0c+bM89caZMDMIDNaDrrGlmIhjWcB9EFjjQO9+n/fxmjxJUI8XH6IkNxMnNY39FmFGkFBQfDA2WU1PUtTE3QAFF4Zpl60Np0QQm5Fg0b0rLvSbO/Nkpub22vjxo1ld955Z/PatWtNOTk5vZYuXXoSAMxmc8306dNrn3rqqX5ffvmldcSIERYA2LZt25HS0lK12Wzuu379+qPz5s3rAwApKSl1Op3Oa7FYWACwWCycTqfr8lK3TqfzWq3WtoRWlmWG533LRgsLC0MnTpxYc6X4lyxZcuL111/v/e677zKDBw+28jwv5+XlmXbu3BkCAMuXLy/v2bPnZWcT1Wq15HK5LpqIdTgcrEajkQAgPj7eDgC9evVyud3uq56wXbVqVfiuXbtC8vPzj2o0GhkA6uvrObPZHDdkyBDLnDlzqlrb7tq1y5iYmGgJDg6+5qUBATODzBnVbdX0LtSfgVLNoe60te15t1dCWLMvMe6mkTo9B7l9sOrWBFkLvcZ3ZaGxqanTts32JrAyA9bjQWgP2v6PEELI5en1ek/rLG5ERITbYrFwZWVlqmeeeSZOkiTwPC8rlUqJYRg5Nzc3cvPmzSEtr/OyLIt+/fo5W9cMP/3007VJSUnW1jW5O3bsMCYmJnZZ/nXIkCHWv/71r0EA8PXXX+tiYmLaZn/+8Y9/GEaNGtV4pfi/+OKL4JUrV5Zv27btSENDA5ecnNxkNptrWmO6UnIMAIMGDbJ/++23xtbEvq6ujquoqNC0zjozTNc1BRiGkWX50uJdS5cujSwpKTF89NFHoslk8gC+GxinTJkSn56eXvvqq6+ea9/+q6++MgwfPvyKf9/O/KAZZEEQ0gFMEkUxq+XxzwGsAOAB8GdRFBcIgsACeBdAIgAngF+Ionjsh/R7PdQheqigACsBFyxNCO2pR92Z7xPkqsZmqBkGsqxERDRVSrvdsWrfl2slq4S6pYKew2mHx+WFQnnxlSTZYYVOUsHjdYIPDb3psRJCCPlpWbBgQeWsWbPiOI6TeZ6XFi9eXBkTE+OKj4+3p6WlJTAMg6FDhzY++OCD1oSEhObZs2fHFBcXmyRJwsKFC090PF92dnbNCy+80Cc9PV3geV5esWJFeVd9T5gwoeGrr74ypqWlJciyjCVLllS0PnfhwgU+LCzsirOpffr0aZ4yZYqgVqulIUOGWMaOHXvNSWZCQoJz0qRJ1ZMmTUrQarVej8fDvPLKKydblz9cTlxcnLO8vFyzevXq8JkzZ1YDQFVVlSI/P797XFycferUqfEAMHr06Hqn08mcO3dOVVhYaCosLDQBwFtvvXUiNjbWVVlZqc7MzLyuqwrXnSALgrACwCMA/tXucB6AiQDKAfyfIAiDAcQAUIuiOLQlgc4FMOF6+71e2lAT6uGAUmJhc7sR30OPsm+qIEsyGJbBmQYHJBbQSUqED4y58gnJTxrTMoPMsyrIdt/MscQ5YalvRrfIi2/IVXocMMhquL0OcEFBNz1WQgght7aYmBjXH//4x7LWx/fff7/1/vvvL+vYbu7cuecAXDTLGRkZ6fnoo4+OXu78Op1OWr9+fZdJcUFBgdj6Z47jkJube7Kzdl9//fW/ryb+1NTUxtTU1KtKiletWlXR1XMzZsyomTFjxiVLOqZOndqWtGo0Gnnv3r2HOv49du3adbj9ayIjIz2HDx/+Z2f9PP/889WdHf/www+ve0L2hyyx+DuAX7U+EATBCEAliuJxURRlADsAjASQDOBzABBFcR+Au35An9eN1ZvAMXXQyAo0g0VoTz3czd62/ZDPNjjg5LzQeFl0GzDEHyGSm4jhWUiyBJ5VwW3x/T+VOCcaay5eh+xweaBFM4zQwuu2g1Eq/REuIYQQQm6iK84gC4KQDeC/OxyeLoriVkEQHmx3zAig/SJOC4DYluPtv4V4BUFQiKLoub6Qr5MuDErmMHSyGhYFj9Cevu266k5bEWTS4OTZOjgYN5QeNZQhPW9qaOTmYxgGHjjBsyrY6s5DqVRBYi9NkM/UNkLBeBEk6yB5zvgpWkIIIYTcTFdMkEVR3ABgw1WcqwlA++ooBgANALQdjrM3PTkGAG0YOKYWRrknTvMqdIvQAAxQe8aK2MEmVJdXQMkAvMsFcAGzuUdA87Ju8KwKF6pPICgoGhar65IEufKs76qNUdbAKVs7Ow0hhBBCbjM3bBcLURSbALgEQYgTBIGBb33yXgBfARgLtN3Ed+hG9XlNdGHgUItuMAIsC+vpCgSZNKg95bsRlK9r2evW3flOBuT2Iykk8IwK1vpaGI1GQOVGU4cE+VyNbwtGg6yBjM73SSaEEELI7eVGb/NmBrAZwH4AJaIofgOgGECzIAh/B7AMly7XuDm0YVAwNQiCr3LeeVFED6EbTn5XD4fFBaPDl/wYGZolDBSMmgXPqtBsscBoNMLLXLrEoq7Ot1+7QdaAUVCFRUIIISQQ/KC1BKIo7gGwp93jfQB+3qGNBF/i7F+8GlBYEdTsS5BPlx/HXZMfwnd7z+KL9w9DCQ8UMotQI1XRCxQKnQpKVgWPw4GgoCC4pWY01togSTJY1rc/o/XCBSi8CvDgoNBcUkiIEEIIIbehgCkUAgCM1gstVGAkGaerzyIkSoc+A0NxqvQCvJwNBlmDkBjaxitQqHQa8IwKXpcbwcHBAAA3HLBe+L5yptvSBJXkq0CkDtb7JU5CCCG3tn379ukyMzOF1sclJSWa8ePHJ6SnpwuzZs3q4/X6rkCuXbvWlJKS0j81NbX/J5980g0ArFYrO23atLiJEycKjz32WPzp06f5jue32+1MdnZ2XEZGhjBlypS+1dXVCsBXVW7UqFEDMjMzhczMTKGsrEzVVdv9+/drMzIyhPT0dCE7OzvW4XC0VeroGP+BAwe0qamp/TMyMoRXX321V2v8nXn77bcjZ8yYEdvx+KZNm0Lnz5/fo/2xGTNmxO7Zs8fQsW2r1157rVdlZaWyrq6O27JlS0hnbTweD7Kzs2M///xzY+uxadOmxaWlpSVkZmYKTz75ZL/Wvlrfl/vvv39gZzFeTkAlyHywGgwYqL0MGp2+meJ7J8TC0McAF+eATlIiNIFKCQcKlVELnlNB8kowmUwAAK/CdtE6ZNllhcbr+6wyRkb4JU5CCCG3rmXLlkXk5OREu1yutoRz5cqV3c1m87ni4mLR7XYz27dvD6qpqVEUFBSEFxUVlW3evFlcvnx5L0mSkJ+fH9a/f397YWGhOG7cuLp33nknsmMfGzZsCO/bt6+jqKhITE1NrVu2bFkUAJSWluoWL158orXCXUJCgrOztpIkIScnp8+bb75ZUVxcLCYnJzdVVlYqu4o/Jycneu7cuSeLiopEvV7v3bp1a6fJ6p/+9Cfj3/72t+Ab9V4uWrToVHR0tOvQoUPa1sqB7R07dkyVmZmZIIriRQULzpw5oy4qKiorKCgQN2/efBQA1q1bV15QUCCuW7fumE6n886fP//UtcQSUNs18N1CIcMOnZdHE+dLesJ6GuAapkXzTgkaFwNtRB//BkluGt6gh4JthCQxbQmyR2FHQ7UDPRMAu90OBk4YvHq4GRdCe1KZaUIIuVWVfP5Z6Hd/3RV2I895x/CHawc/mnLZSmzR0dHO1atXH3/ppZfaqowJgmBvaGjgJEmC3W7neJ6XTSaTZ/v27Yd5nkdFRYWS53mJZVnMnDmz2uPxbe519uxZpcFguGS6tqSkRP/ss89WAcAjjzzStH79+u4AIIqids2aNZH19fV8cnJy45w5c6o6a3vkyBGV0Wj0rFu3LqK8vFyTnJzckJCQ4Owq/traWuWwYcNsAHDXXXdZd+7cGZyVlVXfPqajR4+qtm7dapo5c+aZbdu2ma7lfd20aVPo3r17g5qbm9mzZ8+qpk2bVjV16tS6zMxMYeHChZV5eXmR5eXl2g0bNoRlZ2fXtr7OarWyixYtqlizZk3bl4iqqiqF1Wrlpk2b1tdqtXLZ2dlVKSkpbdsLv/XWW90ff/zx6u7du1/TGtqAmkGGIQoKphZGWQ2XSg2v03dj3r8rSyAxgM4lAcYoPwdJbhZWpwbLcGAZJZRKJYKDgyGrHThf4dvJpKqqCgAQJPFwex3QmGgGmRBCyMUyMjIaeJ6X2x+LiYlx5ubm9h45cuSA+vp6xQMPPGABAJ7nkZeXZ8rKyur/6KOPtiXeCoUCkydPji8sLAwfM2bMhY592Gw2LigoyAsABoPBa7PZOAAYNWpU/ZIlS05u2bLlSElJif6zzz4L6qxtbW2torS0VD99+vTqjz/++Mj+/fuNu3fvNnQVf1RUlHPPnj16ANi9e3eww+G46CYci8XC5uTk9F6yZEmlQnHNc60yAFitVu6DDz44tmbNmmP5+fkXzZqbzeaqpKQkS/vkGACSkpIcd9xxR3P7Yy6Xi8nKyjr//vvvH8vLyzv+9ttv9zp//rwCAM6fP684cOCAccqUKRed52oE1Awy9BHgmWoEwwCwFtSIIiIHDYL1/BGEgEVQsw0wUIIcKFrLTbOsBgBgMplw2noep8vqIcsyTpT7KnWGSiq4ZQe4YCpBTgght6rBj6bUXWm292bJzc3ttXHjxrI777yzee3ataacnJxeS5cuPQkAZrO5Zvr06bVPPfVUvy+//NI6YsQICwBs27btSGlpqdpsNvddv3790Xnz5vUBgJSUlDqdTue1WCwsAFgsFk6n03klSYLZbK4ODg72AsDw4cMbDx8+rO2sbWhoqDcqKqq5Nbm87777Gg8ePKh96KGHLJ3Fv2TJkhOvv/5673fffZcZPHiwled5OS8vz7Rz584QAJg4cWJNfX09P3PmzDir1crV19fzubm5kXPmzKlqPYdarZZcLtdFE7EOh4PVaDQSAMTHx9sBoFevXi63233dE7aRkZGeZ555pobneURERHj69etnF0VRHRERYf3000+7jR49uu46kvjAm0HmmBqEMt0AAKdKfWW+Iy9YoJQVMEpnAE2ny2zIbYhtSZA5hQay5FuH7PRaYalvRlOtA0fLToL1KqGHCh6PHYrgG7bMihBCyG1Mr9d7jEajFwAiIiLcFouFKysrUz3zzDNxkiSB53lZqVRKDMPIubm5kZs3bw5peZ2XZVn069fP2bqu+Omnn65NSkqytq7J3bFjhzExMdHS1NTEjRs3boDFYmElScI333xjGDhwoL2ztrGxsU6Hw8EdPXpUBQAlJSWG+Pj45q7i/+KLL4JXrlxZvm3btiMNDQ1ccnJyk9lsrmmN6YknnqjfsWPHdwUFBeLcuXNPJSUlWdonxwAwaNAg+7fffmtsTdbr6uq4iooKTWuSzjBMZ12j5TlZluUun29v165dBrPZHAv4ZrZPnDih6d+/fzMA7Nu3z/jQQw9dV4GLwJpBNkSCY/6MSIQCsgzxu0MY6J4MvaSBiTEipFsJwAbWd4ZAxqp9V4x4Tg2n3Y7w8HBIsgQv58Dpsguor6uG7NFDyajh9DSCowSZEELIVViwYEHlrFmz4jiOk3melxYvXlwZExPjio+Pt6elpSUwDIOhQ4c2Pvjgg9aEhITm2bNnxxQXF5skScLChQtPdDxfdnZ2zQsvvNAnPT1d4HleXrFiRXlwcLD3ueeeO/3EE08IPM9Ld999t2Xs2LGNNpvN0rGtSqWSFyxYUDF79uxYWZYxcOBA67hx4xo7ix0A+vTp0zxlyhRBrVZLQ4YMsYwdO7bLtl1JSEhwTpo0qXrSpEkJWq3W6/F4mFdeeeWkwWCQrvTauLg4Z3l5uWb16tXhM2fOrL5c2zFjxjTt3bs3aPz48Qksy+L5558/YzKZPABw6tQpdWxs7HVV+WKuNkO/mTIyMuSioqIbf+IaEY6Vz6HOPR8fytvBwINhz/4SOz/4AEneGIyO+gTa//q/G99vABIE4YAoinfd6PPeyLHhrGxCzZqD+EvVNiT/v5lQaPR47733YHIOQkRID/zH+ic0NvfAf0m90FB/GEPWz77sN15ydX6ssQH8iJ8d5Kb5KXx2EP/obGwcPHiwIjEx8ZrXlxLS6uDBg2GJiYl9Oh4PrOlSQyR4tgIAENqsgEOjw992FAAMA6OLg9YU6t/4yE3FanwXUHhWjYoTR2EymcCyLJQRDpw6dQZggBp4oGTVkLx2So4JIYSQABFYCbLKCI63w8M4EQXfjiTN1Q6oJA7d3HSDXqBpXYOsZFU4f+YklEolEhMTcd56AtoBtQCnhMTVgWU4yHKXS7UIIYQQcpsJrASZYcAYIwG+BkF8DDibBbzLhTGuwdAzJ4Fg2uc2kLTOICtZNZrOnwEA3HffffB4PDh37ixsofGIVtpbGlMJckIIISRQBFaCDAD6SKj4s4jgjNCcPoags9UIQxCCVEeBENrGK5AwPAsZXvCsGs31NQB8W73dcccdCAkJwUk2CmFwAQAUKlpeQQghhASKwNrFAgAMkdBxx+Fl7oFH1RMRnK+UdzB/DAi5pjLd5HbAe6FkVfBYvr9BNyMjA5IkoWD5VzB6fTfbavRaf0VICCGEkJss8GaQDVFQeQ4BABzRY9G9xyhwmmbwTAUtsQhAnIqBilFBbna0HVMoFOB5HlVNzdB4fP9FDKYbWr2UEEIIIbewwEuQg3tD6f0OXJACZrUJ0S4eutAyMEFRAK/2d3TkJuO0SqhYFeC6eI3xBbsbLo8EtZsHAGhM3fwRHiGEkJ+Affv26TIzM4XWxyUlJZrx48cnpKenC7Nmzerj9XoBAGvXrjWlpKT0T01N7f/JJ590AwCr1cpOmzYtbuLEicJjjz0Wf/r0ab7j+e12O5OdnR2XkZEhTJkypW91dbUCAFatWhU+atSoAZmZmUJmZqZQVlam6qrt/v37tRkZGUJ6erqQnZ0d63A42tYOdoz/wIED2tTU1P4ZGRnCq6++2qs1/o48Hg+ys7NjP//8c2PH5zZt2hQ6f/78Hu2PzZgxI3bPnj2Grt7H1157rVdlZaWyrq6O27JlS6eV27rq8+jRo6rRo0ff0bH96tWrwzvGcTUCL0E2CWAYD7oNc8Pb6ARYBjp+Ny2vCFCsXgUlqwY8F//nP9fom1FWeXxfmhSmoJseGyGEkFvfsmXLInJycqJdLldbwrly5cruZrP5XHFxseh2u5nt27cH1dTUKAoKCsKLiorKNm/eLC5fvryXJEnIz88P69+/v72wsFAcN25c3TvvvBPZsY8NGzaE9+3b11FUVCSmpqbWLVu2LAoASktLdYsXLz7RWuEuISHB2VlbSZKQk5PT580336woLi4Wk5OTmyorK5VdxZ+TkxM9d+7ck0VFRaJer/du3br1kmT12LFjqszMzARRFHU36r1ctGjRqejoaNehQ4e0rdUAr6bPzZs3h7z44ouxjY2NbV8u7HY786tf/SqmoKAg/Hpi+UFrkAVBSAcwSRTFrHaP3wZwqqXJbwDsBfAugEQATgC/EEXx2A/p9wcxJQAA1GoR+uEjAQDc4f8A8Y/4LSTiP6xODZ5VA9LFN+GdudCSIEsaeLxO8KE0g0wIIbcy69/Phtr+ef6GrofT/SyiVn9f97rLtYmOjnauXr36+EsvvdR2p78gCPaGhgZOkiTY7XaO53nZZDJ5tm/ffpjneVRUVCh5npdYlsXMmTOrPR4PAODs2bNKg8FwyXRtSUmJ/tlnn60CgEceeaRp/fr13QFAFEXtmjVrIuvr6/nk5OTGOXPmVHXW9siRIyqj0ehZt25dRHl5uSY5ObkhISHB2VX8tbW1ymHDhtkA4K677rLu3LkzOCsrq759TFarlV20aFHFmjVrLknor2TTpk2he/fuDdt8rnUAACAASURBVGpubmbPnj2rmjZtWtXUqVPrMjMzhYULF1bm5eVFlpeXazds2BCWnZ3dVgimqz6DgoK8W7duFR9++OGBrceam5vZ9PT0uqFDhzaVl5df8xKB655BFgRhBYDFHc4xBMAroig+2PLrLwDSAKhFURwKYC6A3Ovt84YwRAKqIKCmDMFjYxD8sAmwVdMMcoBidRrwnBoyWDTYXW3Hy2ttAAAVtPB4HVRmmhBCSKcyMjIaeJ6/qCxxTEyMMzc3t/fIkSMH1NfXKx544AELAPA8j7y8PFNWVlb/Rx99tC3xVigUmDx5cnxhYWH4mDFjLnTsw2azcUFBQV4AMBgMXpvNxgHAqFGj6pcsWXJyy5YtR0pKSvSfffZZUGdta2trFaWlpfrp06dXf/zxx0f2799v3L17t6Gr+KOiopx79uzRA8Du3buDHQ4H1zGmpKQkxx133HE9RQJkALBardwHH3xwbM2aNcfy8/MvSnjNZnNVUlKSpX1yfLk+U1JSGvV6/UUlrENCQryjR49uuo74APywGeS/A/gDgF+2OzYEwGBBEF4EsB/AqwCSAXwOAKIo7hME4UcpMXvVGAYwxQM1ou/xhZaS57TFW0BiNQooWhLkE9VNGNzHN/lQXmNFqF4JtV0Lj8cOrhvNIBNCyK1Mf1/3uivN9t4subm5vTZu3Fh25513Nq9du9aUk5PTa+nSpScBwGw210yfPr32qaee6vfll19aR4wYYQGAbdu2HSktLVWbzea+69evPzpv3rw+AJCSklKn0+m8FouFBQCLxcLpdDqvJEkwm83VwcHBXgAYPnx44+HDh7WdtQ0NDfVGRUU1tyaX9913X+PBgwe1Dz30kKWz+JcsWXLi9ddf7/3uu+8ygwcPtvI8L+fl5Zl27twZAgDLly8v79mz52ULBKjVasnlcl00EetwOFiNRiMBQHx8vB0AevXq5XK73bfckt8rBiQIQrYgCP/p8OtuURS3ouVbQDtfAHgewHAAegBmAEYAje3aeAVB8O/2cibh+wS59qjv926UIAciVqMAw7BQsCqcOHW+7fjxGhsSujmgZDWQXDaaQSaEEHLV9Hq9x2g0egEgIiLCbbFYuLKyMtUzzzwTJ0kSeJ6XlUqlxDCMnJubG7l58+aQltd5WZZFv379nK3rip9++unapKQka+ua3B07dhgTExMtTU1N3Lhx4wZYLBZWkiR88803hoEDB9o7axsbG+t0OBzc0aNHVQBQUlJiiI+P73L294svvgheuXJl+bZt2440NDRwycnJTWazuaY1pislxwAwaNAg+7fffmtsTdbr6uq4iooKTWuSzjBd1xdgGEaW5Y4p5s11xURVFMUNADZc5fneF0WxAQAEQfgUwET4kuP2dyyyoih6rjXQG8qUAJR8CNjrgfIvAZURCL/kxkcSANqq6XFqnDhzAsAAAL4Z5JSok1CxPSF76sBqNH6MkhBCyE/JggULKmfNmhXHcZzM87y0ePHiypiYGFd8fLw9LS0tgWEYDB06tPHBBx+0JiQkNM+ePTumuLjYJEkSFi5ceKLj+bKzs2teeOGFPunp6QLP8/KKFSvKg4ODvc8999zpJ554QuB5Xrr77rstY8eObbTZbJaObVUqlbxgwYKK2bNnx8qyjIEDB1rHjRvX2FnsANCnT5/mKVOmCGq1WhoyZIhl7NixXbbtSkJCgnPSpEnVkyZNStBqtV6Px8O88sorJw0Gg3Sl18bFxTnLy8s1q1evDp85c2b1tfZ9IzA/JEMXBOFBAGZRFB8XBIEBUAngPlEUTwuCkAvgOIDzAFJFUXxaEISfA/iNKIpjLnfejIwMuaio6LrjuqKjXwCbM4HpfwI+eRqIvg+YlP/j9ReABEE4IIriDV9Oc6PHhuM/taj7sBQ7zryP7+66C7kv/BfqbS78bOEXeL7PXqQdH4Hmun9jwPsv37A+A92PNTaAm/DZQX50P5XPDnLzdTY2Dh48WJGYmFjb1WsIuZKDBw+GJSYm9ul4/IYtdRBFURYE4RcAigRBcAD4DsB7ALwARgmC8HcADIDpN6rP6xbhmyXE7t8C1vNA/KP+jYf4DdMyg8yzaljqzgLwzR4DAOeog5LVwI0rXkkihBBCyG3kByXIoijuAbCn3eM/A/hzJ03NP6SfG87YHRg6E/h6NcCwQN9R/o6I+AmrblliwarBXfCtQS6v8e1gobA5wTAMlKpb7t4BQgghhPyI/HuznD89/Bvg5NeAygDoQv0dDfGT1jXIaiiha74Ah8uL4zVWKBUsGJvvBgKlTunPEAkhhBBykwVugqxQ+tYgk4DWmiBroITO3Yw/f1eFr47XQogwQFGuBFQAF0Q36BFCCCGBJLCvHStUvl8kYDEqDoAMDVTQeL1463MR/znThMfu7gWN01fJUhGq92+QhBBCCLmpAjtBJgGPYRkwKhYqRgmFFzjT4IBRrUDGz3pA521JkMNpD2RCCCEkkFCCTAIeq1VCyarBeFkoWAZP3Nsbbo8VOvhmjvkoWqNOCCGka/v27dNlZmYKrY9LSko048ePT0hPTxdmzZrVx+v1AgDWrl1rSklJ6Z+amtr/k08+6QYAVquVnTZtWtzEiROFxx57LP706dN8V/384Q9/CDabzW2VzXbt2mWYMGFCwsSJE4Xs7OxYm83GAsCSJUuiUlNT+6elpSV88803WgA4f/68orWftLS0hGPHjrVdQq+urlaMGDHiTofDwQC+oh5Tpkzpm56eLkybNi3u/PnzXS7J3bNnj37YsGGDOh4/ceKEcvz48Qntj7333numxYsXd+/qXJs2bQr93//93yAAyMvLM3XVbvXq1eHz58/v0fp469atIampqQlpaWkJc+bM6d36frf+vYcNGzaotLRU3dX5OkMJMgl4rJaHUqEBwOKzX92N2aPicfLkIag4LTxuG/iIcH+HSAgh5Ba1bNmyiJycnGiXy9VWGm7lypXdzWbzueLiYtHtdjPbt28PqqmpURQUFIQXFRWVbd68WVy+fHkvSZKQn58f1r9/f3thYaE4bty4unfeeSeys37mzZvXa+XKlT0kSWrr57e//W302rVrjxUWFoq9e/d2bty4MezAgQPaf/7zn4ZPP/20dMWKFeULFy6MBoA33nijZ0pKSn1hYaH4wgsvnBFFUQ34qu1NmzYt/sKFC22J+fLly6OSkpKsxcXF4lNPPVW9ePHiHpdGBJw8eZL//e9/H+HxeLoui3cNpk6dWpeamtoIAL///e8vSaTtdjvzq1/9KqagoCC8/bF33323+5YtW4784Q9/KLNardz27duDAMDlcjFz586NViqVVyxO0lHg3qRHSAtOz0PJ+5ZTaBznoVKYcKriIIJZLSSXFQpTl19iCSGE3CL2798f+q9//SvsRp4zKSmp9p577qm7XJvo6Gjn6tWrj7/00kttM7uCINgbGho4SZJgt9s5nudlk8nk2b59+2Ge51FRUaHkeV5iWRYzZ86s9nh8BYbPnj2rNBgM3s76GTx4sHX06NENH3/8cdsPpQ8//FCMjIz0AIDX62VUKpX0zTff6O+9994mlmURHR3t8nq9THV1teLQoUP6+Ph4x2OPPRYfFRXlfOONN04BAMuy+OCDD8T09PS2ksInTpxQz549+wwA3HfffdZFixb17hiPw+FgXnvtteglS5ZUTpw48ZrKEZ84cUL54osvxoaHh7vOnDmjuuOOO2xvv/32ycWLF3cPCwtzNzQ0cFarlXv55Zd7L1269GTr65qbm9n09PS6oUOHNpWXl6sBQKVSyVu3bi3T6XRSu/dBBoDf/OY3PR9//PGa9957L+pa4gNoBpkQsHoleN5XDV08+k8AQEX5Yag5LeCygjUa/RkeIYSQW1hGRkYDz/MXlSWOiYlx5ubm9h45cuSA+vp6xQMPPGABAJ7nkZeXZ8rKyur/6KOPtiXeCoUCkydPji8sLAwfM2bMhc76mTx58gWGuXiitnv37m4AKC4uDj5w4IAhKyurzmq1cu2TbK1W621sbOSqq6uVRqPRs3Xr1iORkZGuFStWRALAqFGjmsLCwi5KyuPj4x1//vOfgwHgs88+C3Y6nZfki/PmzeudnZ19vmfPntdUTYthGBkAzpw5o87Nza344x//WLpv376gc+fOtU3avvzyy1V6vd7bPjkGgJCQEO/o0aOb2h/jOA6tXxLWrFkT7nA4uJEjRzZt2rQptFu3bp5HHnnkovZXi2aQScDjDDw4Xg9GlnCy/DsAQN3ps1BxGnCyBR0/kAghhNx67rnnnrorzfbeLLm5ub02btxYdueddzavXbvWlJOT06s12TObzTXTp0+vfeqpp/p9+eWX1hEjRlgAYNu2bUdKS0vVZrO57/r164/OmzevDwCkpKTUPf30012W0161alX4rl27QvLz849qNBpZr9d7W9ciA4DdbueCg4O9BoPBO27cuAYAGD16dMPvfve7TpdNAMCLL7547n/+5396T5w4URg2bFijyWRy7927V79ixYoeADBx4sSaf//734bTp0+r33nnHVitVm7GjBmx69atK289h0ajkdxu90WJtd1uZ1UqlQQAUVFRzUajUQKAkJAQd3Nz83VP2nq9XsyfP7/nyZMn1evWrTvOsiw+/fTTMADIzMw0Hj9+XPPKK6/ErFu37mhUVJTnas5JCTIJeKxeCYZRIMjDof70aQCAt9YJtVEDpstbJQghhJDO6fV6j9Fo9AJARESEu6SkRF9WVqZ66623eq5fv/44z/OyUqmUGIaRc3NzIyMjI11PPvlkvV6v97Isi379+jkLCgrEK/WzdOnSyNLSUt1HH30karVaGQDuuece61tvvdVz1qxZ50+fPq2UJAkmk8lz5513Wnbs2BH05JNP1n/99deG2NjY5q7Ou3fvXsPjjz9eM2zYMFtRUVFwQ0OD9f7777fef//9bTE98cQT9a1/vvfeexPbJ8cAEB4e7nE4HOzhw4fVAwYMaPZ4PNi3b59xxowZVQCuOPkky/Jln2/vpZdeiuZ5Xn7//fePcRwHACgsLGyLNTMzU1i4cGHl1SbHACXIhIDT+7LgEI8S1dWNsDVboG3ioOymBaOmVUiEEEKuzYIFCypnzZoVx3GczPO8tHjx4sqYmBhXfHy8PS0tLYFhGAwdOrTxwQcftCYkJDTPnj07pri42CRJEhYuXHjiavqoqqpS5Ofnd4+Li7NPnTo1HgBGjx5dP2PGjJrBgwdb09LSEmRZZv7f//t/JwHg17/+9em5c+dGf/LJJ+E6nc67atWq8q7OHR8f3/zyyy/HLF26FGFhYa7c3NyKa30PWJbFwoULK+bNm9eHZVl4PB5m+PDhDSNGjLCcOHHiiiVqo6OjHc8991zMu+++e9n348CBA9o//elPYQMGDLA+9thjAgBMmTLlfFpaWsO1xtwecy0Z+s2SkZEhFxUV+TsM8gMIgnBAFMW7bvR5f4yx0XysAbXrD+HYoTwc0DdiyPPZOPTOR0iPngVWeQzdX59+Q/sLdD/W2ADos+N28FP67CA3V2dj4+DBgxWJiYldLj8g5EoOHjwYlpiY2KfjcZoeIwGPM/hmkPXwlZT+5+7PfDfoAeCM17RtIiGEEEJuA5Qgk4DH6n1XenSsL0H2flcFBe9LjLkQKjNNCCGEBBpKkEnAYzUKgAGUCj28qnqcj3IjvCUv5qOozDQhhNzCpPaFMwi5Fi1jp9MiIpQgk4DHsAxYPQ/O0A1Tak5j6Yj+uNvrW3ah7tfTz9ERQgi5jP/U1NQEUZJMrpUkSUxNTU0QgP909jztYkEIAE6vBGs0wX1CAeZfH8LNzIXU3Ahl7DB/h0YIIaQLHo/nF1VVVeurqqruBE36kWsjAfiPx+P5RWdPXleCLAhCEIAPARgBKAHMFkXxa0EQfg5gBQAPgD+LorhAEAQWwLsAEgE4AfxCFMVj19MvIT8WVs+D1YXAYVUAYQKk+h5gYAfD0uctIYTcqoYMGVINYLy/4yC3n+v96T8bwC5RFB8A8DSAd1qO5wHIApAM4F5BEAYDSAOgFkVxKIC5AHJ/UMSE/Ag4vRJQ6OFxcJCmfAZZ1oHV+jsqQgghhPjD9S6xWAbfbHDrOZoFQTACUImieBwABEHYAWAkgCgAnwOAKIr7BEH4UfY/JeSHYA08IPnWHdtKDoNRBYELs/o5KkIIIYT4wxUTZEEQsgH8d4fD00VR/FYQhEj4llq8CN9yi6Z2bSwAYluON7Y77hUEQSGK4lWX+yPkx8bplYDMALwWli/+CoYdDmVvk7/DIoQQQogfXDFBFkVxA4ANHY8LgjAQwBYAL4mi+JeWGWRDuyYGAA0AtB2Os5Qck1sNH6kDAHDdomH7+iA0dw+HWujt56gIIYQQ4g/XtQZZEIQ7AHwCIEsUxT8BgCiKTQBcgiDECYLAAHgEwF4AXwEY2/K6nwM4dCMCJ+RG4nv4Nj4OfvyXYLVhAABld9oDmRBCCAlE13uT3mIAagArBEHYIwjCpy3HzQA2A9gPoEQUxW8AFMO3Rvnv8K1d7rhcgxC/43Q8uBA1uKDeCHl2FsAAXLDK32ERQgghxA+u6yY9URQndHF8H4CfdzgmwZc4E3JLU/bUw3XSAr67HlyQCgxHW7wRQgghgYgyAEJaKHsa4G1worm0DppBYf4OhxBCCCF+QgkyIS2UPX3rkBmeg+GBXn6OhhBCCCH+QqWmCWnB9zCAUXEw3N8DnI73dziEEEII8RNKkAlpwao4RL16NxgN/bcghBBCAhllAoS0w2pp5pgQQggJdLQGmRBCCCGEkHYoQSaEEEIIIaQdSpAJIYQQQghphxJkQgghhBBC2rklb9I7fPhwrSAIlf6Og/wg0T/GSWls3BZ+lLEB0Pi4TdBnB+nKj/bZQUhHjCzL/o6BEEIIIYSQWwYtsSCEEEIIIaQdSpAJIYQQQghphxJkQgghhBBC2qEEmRBCCCGEkHYoQSaEEEIIIaQdSpAJIYQQQghp55bcB7mVIAgsgHcBJAJwAviFKIrH/BuV/wiC8E8ATS0PTwBYC2AFAA+AP4uiuMBfsfkDjY+L0fj4Ho2Ni9HYuBiNj+/R2CCkc7d0ggwgDYBaFMWhgiD8HEAugAl+jskvBEFQA2BEUXyw3bF/AZgIoBzA/wmCMFgUxRI/hegPND5a0Pi4BI2NFjQ2OkXjAzQ2CLmcWz1BTgbwOQCIorhPEIS7/ByPPyUC0AqC8Gf4/t3mA1CJongcAARB2AFgJIBA+iCj8fE9Gh8Xo7HxPRobl6Lx4UNjg5Au3OprkI0AGts99gqCcKsn9T8WO4C3ATwCwAzg9y3HWlkABPkhLn+i8fE9Gh8Xo7HxPRobl6Lx4UNjg5Au3OofCE0ADO0es6IoevwVjJ8dAXBMFEUZwBFBEBoBhLR73gCgwS+R+Q+Nj+/R+LgYjY3v0di4FI0PHxobhHThVp9B/grAWABoWSd2yL/h+NUz8K2TgyAI3QFoAdgEQYgTBIGBbwZgrx/j8wcaH9+j8XExGhvfo7FxKRofPjQ2COnCrT6DXAxglCAIfwfAAJju53j8aQOAfEEQ/gZAhu+DTQKwGQAH393G3/gxPn+g8fE9Gh8Xo7HxPRobl6Lx4UNjg5D/z959h0dZZQ8c/75TMum9V0ggQ5MuRUAQUBCNlFAsqOuyInYFXRFXFLuryE9EBQVXWEWxYUFQkSYdCb1kgDQSkpCeTHqm/P4YYIPUkJk0zud58jwkeefeEzJJztz33nMuQLFarY0dgxBCCCGEEE1GU99iIYQQQgghRIOSBFkIIYQQQohaJEEWQgghhBCiFkmQhRBCCCGEqEUSZCGEEEIIIWqRBFkIIYQQQohaJEEWQgghhBCiFkmQhRBCCCGEqEUSZCGEEEIIIWqRBFkIIYQQQohaJEEWQgghhBCiFkmQhRBCCCGEqEUSZCGEEEIIIWqRBFkIIYQQQohaJEEWQgghhBCiFkmQhRBCCCGEqEUSZCGEEEIIIWqRBFkIIYQQQohaJEEWQgghhBCiFkmQhRBCCCGEqEUSZCGEEEIIIWqRBFkIIYQQQohaJEEWQgghhBCiFkmQhRBCCCGEqEUSZCGEEEIIIWqRBFkIIYQQQohaJEEWQgghhBCiFkmQhRBCCCGEqEUSZCGEEEIIIWqRBFkIIYQQQohaJEEWQgghhBCiFkmQhRBCCCGEqEUSZCGEEEIIIWqRBFkIIYQQQohaJEEWQgghhBCiFkmQhRBCCCGEqEUSZCGEEEIIIWqRBFkIIYQQQohaJEEWQgghhBCiFkmQhRBCCCGEqEUSZCGEEEIIIWqRBFkIIYQQQohaJEEWQgghhBCiFkmQhRBCCCGEqEUSZCGEEEIIIWqRBFkIIYQQQohaJEEWQgghhBCiFkmQhRBCCCGEqEUSZCGEEEIIIWrRNHYA59O7d29rWFhYY4ch6uHgwYN5BoMhwN7jynOj+XPUcwPk+dESyO8OcSGO/N0hxF81yQQ5LCyM7777rrHDEPWg1+vTHDGuPDeaP0c9N0CeHy2B/O4QF+LI3x1C/JVssRBCCCGEEKIWSZCFEEIIIYSoRRJkIYQQQgghapEEWQghhBBCiFqa5CE9IVoyq9XKruNFnCyppFukNyFeLo0dkhBCCCFqcUiCrNfrewNvGgyGQXq9vg3wKWAFDgAPGwwGiyPmFaKpKyqvZvKSBHakFgCgKPD3fq15epgeZ626kaMTQgghBDhgi4Ver/8nsBBwPvWhd4B/GQyGAYACjLT3nEI0B9UmCw9+tov96fl83349hsAZJLpMouv2J5nxwecUl9c0dohCCCGEwDF7kJOAMbXe7wFsOPXvVcBQB8wpRJP3/rpj7ErOYkPIe3RN+QhdYFt0XcYyzPkwbxY8wfdzn6CwtKqxwxRCCCGuenZPkA0Gw7dA7aUwxWAwWE/92wh42XtOIZq6grJqFm1K4cOgHwnM2wa3vQcTv4GR83CaupfCVrdwb+VnJMy9nSJjWWOHK4QQQlzVGqKKRe39xh5AUQPMKUSTsuCPJLrU7GFw8XfQazJ0v+d/n3TxIfBvS0i55gmGVq9l79wJFBjLGy9YIYQQ4irXEAnybr1eP+jUv28GNjbAnEI0GeXVJj7flsarnsvBOxJufOncixSF1vGzSO42nYE1G9k5906yiyRJFkIIIRpDQyTI04BZer1+K+AEfNMAcwrRZKzcn023mt20qjwM/aeC9sJl3aJHPsvxLk9yU806tr53H0k5xgaMVAghhBDgoDJvBoMhFehz6t9HgIGOmEeI5uCrP9OZ4bwCq3sYStc7L3l95KgXyLFWMnrfhyz74O/k3/MhvaL9GyBSIYQQQoB00hPCoVLyyshP209XywGUXpNBo7v0gxSFwNGvU9z9ESbwG6mf3s8v+zMdH6wQQgghAEmQhXCoFXszGafegFVRw2WsHp+hKHjFvUJF36mMV62l4KuH+XJ7qsPiFEIIIcT/SIIshAP9si+d2502ocQOB/fAuj1YUXC5aSY11z3Jneq1WH56goV/HHNMoEKIJi3XWMV/NqewcGMy25PzsVqtl36QEOKKOWQPshACknNLCcrdjLdTEXSbeGWDKAraG1/ArCjcufkdvvptKgssb/PAoFj7BiuEaLIWb0nl1ZWHqTb9r2pqn2hf3h7XhXAf10aMTIiWSxLkBlZWZWLj0Vy2pxRwPL+cvLJqqmrMuOk0+Lo5Eebtgj7Yg+6RPrQNdEelUho7ZHGFVu7P4lb1Niw6b1Rt6tFAUlFQD52JRaVm/Ma3+GbNND5S3mHywLb2C1YI0SQt3pLKCz8eZHC7QGaMaE+Au47luzOY/dsRbpu3mY/u7kHPVr6NHaYQLY4kyA2k2mThg/XH+GRTCjWVpVyjzaKNp4l2rlrMru6kWgJJyXdj87E8yqvNAIR6ORPXJZSJfaKI8JVVgubm9/3HWapJQNVhLGic6jeYoqAa8i/Mipqxf7zB56ufYaluDnf2ibJPsEKIJichrYBZPx3kxg5BfHBXd7Rq267Iv/VrzYDYAO5fvJOJi7az4O6eDIwNaORohWhZJEFuADkllTzwWQJuGRv5wms1HZRdKFYLlGF7O807Cuu1QzgZOpQ/zJ349VAOCzel8PHGZEZ1C+PJobGSKDcTx/PLCTq5EVenCug0xm7jqm+YjtlcxV2b57BoxTP86j6HYZ1C7Da+EKJpKK82MfWrvYR4ufDO+C625Li6DLbPh9RNxFQU8XNMZ55Pbs8/FluZPb4rt3UJbeywhWgxJEF2sJLKGiYt2sRdRfO53Wk1aEKg3xMQ1gNc/UBRQVUJ5B2F1E0o+5YRnPAJ4/31jL/+abJGjeCTzWks2ZrGin1ZTLk+moduaIOzVt3YX5q4iF8PZnOLehtmZ1/Ura6338CKgnroC9RUlTFp50e8/5ULQV5z6Brhbb85hBCN7t01R0nLL+eL+/vg4ayFE7vgyzvBmAUhXUDnicvhb3m72sjf3DrzyJf3kl4wiIcGxaAosjVPiPqSBNmBrFYr077YyROFrzJEtQv6PQ43/Ov8t9vb3gh9H4KaSkhcARtnw3f/ICSoE88Ne437+g3ijVWJzF17jBX7svj32M6y76wJ+31/Gv9R70HdYTyo7fxjpihoR7xJZVUZD+//nHmfOOP7yGwi/eTughAtwbEcI4s2pjCuRzh9Y/wgbSt8PhZcfeHvv0Fkb9uF1eWwawkd173Kb84zmPX7XUxJv5M3x3bB27We27qEuMq1iDJvVquVksqaxg7jHD/ty2Jw0pu25PiW2XDjS5fei6p1hmvGwpTNEL/Itrq85DZCV01i7k2efDapN9VmC+MXbOWtXxPPOtUsmoaTJZW4ntiMKxXQ/jbHTKJS4Tz6PYyxY3jEupQ1C6ZSVFblmLlEw8tJhO8mw7xe8H/XwGfxsG0+lOU1dmTCwaxWK89/fxBXJzXP3NwOSjLhq7vBI/js5BjAyRX6TEF5eDva6H68qv2EyRcalQAAIABJREFU+GPTGT9nJT/vy5JScELUQ7NPkHOMlYz6YAudX/yN4f/3B6l5ZZd+UAMorTKx6cdF3KFZh6Xfk3DtP+o2gEplS5Qf3gGDn4eUDfB+b/qnzeOXh3sS3z2c99clEf/hFo7lGB3zRTRHFjPs/ATmXAPLJkJFUYOHsPrQSYar/sTs5AGt7bi94q9UajxuX0huTDz3VX/B+g8eprLa5Lj5RMPYtQQ+7AuJP0NALIT3guIM+OUZmNMJfnnWljSJFun7PSfYmpzP08Pb4e+qhW//YVspvn0peF7gvIFnKMpd38JNrzBUs5cvTE/y45cLuGvhdgzZ8vdBiCvRrBPkHGMlYz7YwpFsI1MGxpBRWMG/f01s7LAA+GbjXqab5lPudw2qwc9d+UBaF7j+KXhsN3QeD5vm4L7oet661sj8id3JKCznlrmb+GRTChbLVb5aUFFouw254klw8QLDKvhkuC1pbkC/H8xkuCYBlf7m+levuBSVmoC7FpLaegKjyr5m6/uTMJvlrkKzlbAYfnwUom+Ax/fBhM9g7CJ4eDs8uAU6jobtC+DdLvDdA5C6GWSVsMUoLq/h1Z8P0zXCm7t6RULCfyBtM4x4CwL0F3+wSgXXPYrq/rX4BoWxwGkOD5yYwf3vfs20r/ZysqSyYb4IIVqIZpsgV9aYefE/P/LPstnsCniR6XkzeKKnjpX7szlworhRY6symVFv+T+8lXJcxy8Atbb+g7oHwqgP4N4VoCjw6S0Mz5jLr49cS/82/ry04hB/X/wnxeVNb6uJw508CDv/A+/3hpSNEPcuPLARbnsPcg9D6qYGC6WksgZTyia8MKK0v7VhJlWpaHXPAvZF3s0Nxd+z84P7sDbwiwJhBxkJ8PM0aloPYV7Qy9y59CgTFmxlxvL9rDPkUOPfHkZ/CI8mQPd7bSvMn46AuV1h3euQn9TYX4Gopzd+SaSwvIZXR3dCVZYDv8+y3YWqS5v6kM4o96+DG1/meu1h1jr/k7b7ZzPy7Z/56I8kauQFtBCXpVkkyObMfVhP7D6zUlJdXsLaeQ/xf/lTGOG0Gxf/KMj4k0kH7qGr80kW/JHcqPH+unUX48yryI0eBUEd7Tt46wEwZRNcez9s+4DApTexcKjCyyM7svlYHmM+3Ex6Qbl952zKElfCh9fBiifAMxQm/Ya52718uCGZ54+2oUbtCge+abBw1iXmMIQ/sah1UJ/mIHWlKHS+7z22htxN7/zv2bvgH2CRP4TNRnUZfPM3qlwDufXEPcxel0pxRQ1mi5Uf92Ry33/+5Lo31vLyikNsKfCg/MY34CkDjF4A3pGw4U14rzt8PMT2YrGqtLG/IlFHO1ML+GLHcf7erxUdQ71gzUtQUw63vGNbFKkLtRb6PYbyaAKaa+KZov6BtepHKf71Dca8+3ujLyIJ0Rw0iyoWhv88SIeaA1Tp/Klx8cepKIkR1JAUdhsxd7wNHkFQkIwyfwAzPVcwOSkCq9XaaKVulM3/h1qxEnjrTMdM4OQGt7wN7UbAD4+gLLqRu/s9Qex9DzD5833Ef7iFz/7Rm9ggD8fM35RED4I7v7Y9B4Kuocpi5ckvdrFyfzberlq613Qj7sAPaEbMdvx2B2DNoZPM0CSgtBli+z41JEWhz/1zWf+hhUEnP+fQR2Y6TP4PqKQkYJP3x1tQdJx/WF+iyt2L7x/qRpdTpfuqTGY2GHL5OiGD/25NY9GmFNQqhVBvZwLcI/B1e4GQ6AL6VqynV+Ev+K94AtPqF1D1moyqz4Pg5tfIX5y4lCqTmenf7SfM24UnhsZC5m7Y8zlc9wj416NjpmcojFkAfR/Gdf0bPG34intKfuetD2+n7dC/c//1baRbqxAX0CxWkItHLuZ1zcP8WNaBP/N1LFOGs6bf58RM/q8tMQLwjYZrJ9G1ZB1uZcdJbqTDeonJaQypWE1q6AgU39aOnSxmMDy01Xb7bdM79F5/N8vvsBWKH79g69WxSuDkCrE3QUgXaqzw6NLdrNyfzXMj2rN1+hDWaweiqS62HXJ0sBqzhZwj2wgmD6V9nMPnOx9FpWLAlHn85ncPHbJ/wPDh7VhNUt3iQg5lljB/QxLfJGRgaqxbz3nHsG6Zx8+qQRxz7sQXk/ucSY4BdBo1N3UM5uN7erJ75o188reePDQohp5Rvrg4qckoLOePk1qez7mBXoUvMabqRX4vj0W18S2q3u5I1hePYs1v3Ltq4uIWbEjmWE4pr4zqhJuTGn59zlYn//qn7TNBSGe4Yynctwq/4Eje1nxA77XjeW3+JxSWVdtnDiFamGaxgty3Uxu66V9m/4liSqtMxLf2xdXpPKH3eRi2zWeSehU7Um4kJsC9wWM98fv7tFOqCBr2VMNM6OwFI9+3Jcs/PUH0N8NZOfAVRm6M4I6Pt/HR3T1tdTRbsKLyavLLqnnxx4NsPJrHi3Ed+Fs/24uTbgPjsKx9nayDmwhre6ND40hIK6SfaTsWrRpV7HCHznUxarWKIQ/P5af5LsTlLCDp3Vto/fByVM5XwR2FOtideIykL57iOmsqByyt+Tj3eR4c3r3hA1kziyo0vFQ5gUWTehLi5XLBS910Gga3C2Jwu6Dzfr7GbCGzqIK9GRN4a98O9EmLGJ74OVbDf8kIHETgzc+ga93XUV+JuALHckqZt/YYt3YO4YZ2gXD4J9vBvFvesf1+t6eo69BMXod13zJiV83kXzlT2T57Cb63vEjbHjfYdy4hmrlmsYIM4KxVc20rX27QB54/OQbwCEJpO5TBmn3sSClo2ACB6qoqOmcu45DrtXhGdWnYyTvFw4ObIaQz/r8/zupW/6WVh4W7F21n6fbjDRtLA1pz+CRdX1rNkNkbSEgr5NXRnc4kxwDj+sSSag2m/PieBonlJnUCloi+toL+jUitUrhlypv80OpfRJUkcHzOUCqLcxo1pqYkPfFPIr8YzEhlI7GRoUzQrCd08784lFnSsIGcSIDDP/Jh1Qjir+9Op7D6JURatYooPzdu6xLK03eP4qbnvmf1Tb/zlcsE3E/+iW7xcNLnDMWYuE6qXzQBFouVGd/tx8VJzQtxHcFUDatfgIB2toOYjqBSoXS9A9dpe8nsNYNYSzJtfxpFxvtxWLMPOGZOIZqhZpMgXy6l1QDCOUlasqHB5z6ycRkBFFHdo441j+3FOxLu/QkG/wvXIz/wvdPzjI80MmP5fp76em+TbKZSX32i/Xgz/hpejOvA6qkDuat31Fmfd9NpyNBF41lyxOGxHD60D72Sjqb9LQ6f63KoVAq33fsUa7vMJqQyify5gyk9mdLYYTW66qwDeCyLx6yoKLzrN5z/sZLqfk8zUr2ZzT8tatBYLL/PokjxZJVnPI8Nqcde0wtw1qq5pV93JvxzPkfv3MoynwdwLjqCx5ejSH2zD/tWzqeyomnUjr8ardifxY7UAmaMaEeAhw52fAQFSXDjy/bvwPlXTq6EjngGHt/LN9734ZmzE+v8AdQsf1jqbAtBC0yQadUfgCjjbnKMDVv3Ubt7MVn40X7AmAad9ywqtW3f2j0/oq4q4dW8x/m44wG+25XO0Nkb+GHPiRbVXclNp2HCtZH8rV9rwrzPf2u60rc9QaZMrJWOWx1MLygntuhUOTn9zQ6bp64UReGmMX9nx4BFeJjyqZo/hJLknY0dVuPJSMC08GYqLSqODP+CwLY9AHAZ/E9ynCLpmvlVw5XBSvkDVcoG3quO48kR3XHWOu4wpaIo9NJHMuHxf1N4/05WRDyNUllM5x3PYHyjA9/Pe5oth5KllrrFDId+gLWv2DoXmh3XeMdssTJ3zVFig9wZ1yPC1iVxw79t1W9ib3LYvH/l4+PLmMfmsOy6n/jENBz2fonl3a7w81NSOlBc1VpeghzYkRonL3qrDpOa13Dlzqpzk9GX7WRvwEh0To6vlnBJrQfAAxtRInpxY9Jr7GnzCR3djDz+5R7iP9zClqS8FpUoX4wu3LbdJfvobofN8cfRXIaqEqjy1YOjD2degQFDR3L45mVUWUC75BaK9vzY2CE1jEXDYP4A2x/7ZROxLBxKfo2O5V0W0r9Prb24ag3G6BF0I5E9hgY40Ga1YlrzCjn4khgxnuGdgh0/5ymx4YHcOulfhP7rAPsHf0qxRxtG5X1Ex2X9WPrGZH7csr/xDiw2JIsZcg22LnXGk7byeB/0ga/ugY2zbZ0LPx0B5Y7Zrvfz/iyO5ZTy+JBYWyWJda9BdSkMe80h812MSqVw/7CedPjbe4zVzOXb6r6Ydn6K9b0etoY0kiiLq1DLS5BVKmrC+9BHdZiUvIarBZq5/mMsVgWPPg7aN3YlPILg7u9h+Bt4Zm3hk7KH+bHzNvIKi7jz4+3cNm8zy3dnUG1q2X8MQ/TXApBzzHErp1sPp3Gt+ghO7ZvO6vFf9e5zPSfiV5BkDcXj+3spXPdei9+Hmhl7F+VWJyz7vqL02BY+Mt3Cm5EfMnnUkHOuDek9Bo1iIXNnA7x4OLoaTcZ25taM5Nm4bo1SklKr0XDN9aNp89Qaqv++hrLQ65hY/RU3/Hoj/33zIZZuPERpVQtuXb5rMbzfC14LgdmxtlrqaicYvwTrcyexjlkIGX/akmUHWLwllegAN27uFAw5h21d8679x6U75jnQdW38+fTJcWzq+CJ9K95lqXokpoPfY53XE76+z9aUSYirRINUsdDr9SrgA6ALUAX8w2AwHHPUfM4xA2iV/Cs/ZKUDkY6a5n8sFryOfMtWrqFnl2scP19dqFTQ50HQj0D55Vk6G+aywW0Zu7rczQuZvXhy2V5eX5nIhGsjuLtPFIGezo0dsd1FR8dSbHWjOnO/Q8avNlkg+Q+0KhO0OTfxakqu7dyBPW4/sfG/9zBow7/IObGXwPFzbeXyWqCJOyJJzp165v07e0cyO64D6vPUfnWNupYilS/ex38Hpp7zebuxWKj69QVyrIGYu0ys98E8e3CK7EnoA99izTlM+Q8vcN+JL8j9fSXzVo/E2OEOhnZtw3Vt/NBpWlBN7a4TwcUH8o+BzgvCupPu0p5ZKw6x85v1BLgHsrzdONx3fAx9H7bVFLaT4/nlJKQV8szwdrbV49UzQecBg6bbbY4r5ePmxLu3d2Nbr0he+TmSOSeGMd17DaMNq1Af/A6uGQc3PNck75QJYU8NtYI8CnA2GAx9gemAY16Sn6IKtnWvq8k67MhpzrCk/IFPzUkMwXFN9w+IT9SZOphKoJ4ehrf5yfQA63puo3eQlXnrjtH/zXXMWL6f4/ktqxOfRqMm06kVbkVHHTL+3owielt2Y1K7QkQfh8xhT11jwgl/cDn/dRpP4LGvKZjTB1NKw7XjbkhfTu7DnAldeHlkR3594npeG33NhX9GVSoygwbSvWYXxaWOO79gOfAduvxDfKiawNSbm9YLaiWwPUH3fwWTfsc5tD3TVUt47vAoSj+/m2dfeonHP13PZ9vSOJhZ3Py3YWicoONo25mN3pP5IS+Em+duYntyAcM7BpNbWsXEY4OwWi2w6f/sOvXy3ScAGNk1FI5vh6O/Qf+pjV79prY+0X78+HB/nptwPbOtd9K9dA6r/e7CengFzLsWVjwJeY75nSpEU9BQdZD7A78AGAyGbXq9vqdDZ/O33aLSFjbMD2/RtiVorC749RjdIPPVS9R1tkoX6TtQNr5D6wNzeU/zMa/1GMvCmmF8uDODZX+mc1uXUKYMjEEf3DJq55a6hhNenOCQsf9MySdOtRdL6+sbpFufPbQJ8iJo6gd8sLQPI9NexXfxLeSHD8Uv7iX7t0dvRIEezozuFn7Z16sie+ORtZy9R/fRpVsv+wdkqsa48gUyLRH0GjXZVrmgKYq4Fo8HfoUTCegS/suwgz8QV7UNc+pcEpMj2GuJ4XNVLEX+PXAObEtMkAdtAt2J9ncjys8NJ03T371nsVgxnDRSVF7D4i2p/HIwm2tb+fDO+K5E+LpyT99W3PreRo6EXo/+kG2rGqr6f11Wq5Xv95ygT7Qvod4u8ONr4BYAve63w1dlXyqVwuhu4QzvGML7647x8B+ehGkGMDdkNZ12/Rdl5ycQ1hPa3QJtb4LADnb5PxKiKWioBNkTqN3WzazX6zUGg8ExG9w8Q6lSueJbloLZYj3v7VS7qS7DPWklyy29ualj1KWvbyoiesGdX9r2vm37AI99X/Gk6b881GYgP2mG8fqBapbvPsHgdoE8MrgN3SN9GjvierF4hhFQtJqq6ip0TvZNSo4fO0CEKhdih9p1XEfzcNby0N8nsXrvYFb89BZ3pC/H8mE/SiKG4D34cWg1ABqpXXtjCWh7LWyHouQEcECCnLF6HuGVGSwOe4NHu0XYfXy7C+uBOqwH6ltnQ/oOVMnriU7eTGzWn9xpWgsFkFPgy6aDHVht6cg2S3uylEDCvF1p7e9GbJA7+mBP9KcSaBenpnOH7Ys/j/PcclvdX3edhqk3xvLQoBg0aluC1yHUk/5tA1iW2ZGZpjWQtRvCetR73pS8MlLyyvh7/9aQvgOS18NNrzZ8a/o6cHFS89QwPWN7hPPKz4eJO+xJhNNNzAzbTb/KTbiumQVrZp3aqtLNljRH9rG96VrGIou4+jRUglwC1P4pUTksOQZQFEo9Y2idn0FmUQURvg7cX5n4M06WCg4FjGCCW/NYPTxLYHu47T0Y8gLs/ATdzv8w1riBeK2WTJ9O/JTahlc+7IhT1LX84/q2DG4XaNsz18xofKLQpFvITE8hMqad3ca1WKzoTmyzvdN6oN3GbUg3dmlNZYf3+Hrj/VRsfJ/447/A4jiM7tG4XHc/mm532PZqXgV8W11DDWqs2fbfr15QkI/b9jnsVHXm3omTGuVg3hVTqSGqL0pUX1xuACwWyDsCx7cQmLKRUckbGFNh26ZTpXYj0xJJYnYkG1OimGfSk2oNRlEUInxcifJzJdzHhQ6hXtzVK7LRfp+M7RFOiJczJrOVPjF+eDprz7lmXI9wnj/SkeddVCiGX+ySIG9NzgegX4wfbDiVVPb4W73HbQit/N1YeG9PDmWWsHBTMg/v9aLafD2dPcu4JziV3tpkQkoPotk0B6xmUGkg/FqIHmQrXxfSBdTn/j8L0RQ1VIK8GYgDvtLr9X0Ax5yWqsXiF0vbwjUY8socmiBXJSwl1+pPSOfBDpujQbj5w8B/2vbBpW1CObaGsNSNPGD8lim6rynJdmfTFx2Y79KJqI69ua53H3wCwmy/AJvBH3q3INuBkoKsJLsmyEdyjHQ2H6TSxRdnf/s3emgozlo1dw/uRnn/+Xy99SgnNn/B8JKf6f7bs9SsfpHitqPxG/gASmi3ZvH9vlKKRscJTRQeRYl2HbfGbGHdJ/8inhI8417Dqzm+mK5NpYLAdra3nn9HZbFAziFI344u10DrnEO0zt7GzepfQQ3VWi9yXKJJVcI4mh9Axglndh4O4o6ej6FSNc6qsk6jvmDL7tNu7BDEv1x8SXHuSPSRVTD4uXrPuyUpn2BPZ1rrSmw1l3s9ADr3eo/bkDqEevLO+K7MvLUDqw+dZPWhkzx/1JOKmo5AHG19FOL8TtDHup+2JbvwXv8GyvrXQeNs28IV2g0iekNUP/AKa+wvR4jzaqgEeTlwo16v3wIowH2OntAltAPuSd+yJisLYgMcM4kxG23aBpabb2N4+4arY+pQao3t1X70IACU8gJIXo/7kd8YdHQDrhU7YPcncKqkcJWTD7ondjWpwyXn4xsWA0CZnTvJ/ZlayEAlEUt47xaROLo6abh3YHssA2ax8dijvLRhDe3Tv+RWw3coR74k3zUG1TVj8Ok8wrYa1EjJjSMVebYjMn8LFovVbqub81dsZZLxW9LDhhPbbYBdxmxSVCoI7mR7O81qtR3iSt2IU/Y+wnMSCc/bQv+KU3WF1a7Aw0DTfQ45a9X0a+PHLyldeSj7v1CaA+6BVzye1WplW1I+A2MDUBIW22ox92qkzqt24O3qxLieEYzrGUGVycyutCL2ZhSxL6OIr08483+FoVisw/DGSD/VQfqp0+ial0p01lKc/1wIQJVHFJawnjiFXYPaLxpcfEFR2Vaem8mZDtEyNUiCbDAYLMCUhpjrNLewDgCYTiYCnR0zyf6vUWFhi9tQHglsXisAl83VFzqNQdVpDK4ApTkcT9zJwf27yMg8wfFyZ6aanWnqN+D9Q20Jsqkwza7jpiQd4W5VLta2LSvpUakUBsYGMDD2doyV8azadYS8bUvpUfQr3ba9DdvfolLlRkFwP1w6j8S7620ozp6NHbZdWII6EVCwkvSMVCIi61/KasORXLR/foCzpoaI+IZvAtFoFAUCYm1vtVWWQGWxbW9qM0iAukf6sPpAKx7SAZl76tXl7sjJUvLLqukT7QtblkH0QPCNtl+wjUinUdM3xo++MX5nPlZtspCaX8aRk0aScnqwPa+UZfnlnMg3ElSVRB/VIXoVJdK5ZB0hid+eNV5ix6m0G/dCQ38ZQpzRUCvIDU4JtN1G1xQ4rpKFZc+XHLDGENuhcQr9Nwr3QCJ7jiCy5wisVitVJotDW+Tai8rJhQLFG03JCbuOq8vcDoASdZ1dx21KPJy1jLmuI1z3KhmFz/HF7sOUHFyNf94Orj+xA5/M36j65QkMTp3I9uuFKaQnnpHX4OPrjz7M78yhp+bCs3V3OAwnj/xZ7wS5ssbM699u5TvNGqwdR4NfjJ2ibMacPW1vzUT3KB/+zxqFFQUlq34J8o4U2/7j6z0yoTAF+j9przCbJCeNitggD2KDzj2oZ6ysIb2gghNFFawpqcRYlItSlI6qsghFraJ/31saIWIh/qfFJsh4R2FCjbPxuGPGzz6AKucA35juZUj7i+9ja6kURWkWyfFphdogXCsy7TZetclCaMleqrUuOAU1rXq2jhLu48pdg3vA4B6YzBYOnihi94ENuCevJLJwO52zFkDWAthlu3591KMMuu+Vxg26joLbdAOgOrv+ddT/uzWNIaU/4aqtgAEObD4iHKZjqCfVGnfynSPwz6xfu/pDWSV4u2oJSl9lO7/RPs5OUTY/Hs5aOoRq6RB6+sVSFODYCrBC1EXLTZBVaoq0gXhU2i8hOsveLzCjZq26P89FN+39t8Km3CUUn2KD3cZLyi2lg5JCiU8H/NUt90fpQjRqFV0ifekSORo4VQO8vICS5B0UpR+kqqyErj3jGzXGK+HuE0QJbqgK67dfvbTKxAdrDfzuvA5aDTl7f65oNnQaNZ3DvDhYFMPAzD31GutQlpH2QR4oB5fbznk08bMbQlzNmte9zzoqdQnF15SN1Wq178BmE9Z9X7FJ6c41sTFNt3ueOIvZM5xgay5llTV2Ge/QiULaK8fRhHW1y3gtgqsvnp2GE3nzNNqOnYV3Kwft/3ckReGkJhS30vrtV1+5L4vO1bvxM+dCj3vtFJxoDN2jfNhcHg7GTDCevKIxzBYrhuwS+vsUQFEatLvVzlEKIeypRSfI1e7hhJFLYbl9EqIzktailOWwtKr/Vbu9ojlS+UThrNRwMivDLuPlpBzEVanCo5XcFmxpilwi8Kuu3371rxPSuc91E1ZXP4i92U6RicbQMdSTPaZWtneyrmwVOTW/jMoaC31VB20fiB5kj9CEEA7SohNkxTuSYKWQ7PxC+w6853MqNF6ss3bjBr2DSsgJu9P52OptluSl22U8y6nbreqwLnYZTzQd1Z6tCLLkYK6puqLHp+aVcSQ1nQHm7SidJzSLag3iwtoEunPQ2sr2Tta+KxrjcFYJADGlCeAdCb71r5AihHCcFp0gO/nbfgEVZdux9m1lMRhWsUYzgE4R/vi527dtsXAcN98QAMoLsuwynmfRIWoUJ/DX22U80XSo/NugVqzkph+5osf/sCeTIerdqK0m6DTWztGJhhbt70654oLRKQjyr6wyUmKWEa3Kimf2Nmh9vZ0jFELYW4tOkN2DbPUlK3LsmCAf+hHMVXxc3IvB7a68YLxoeF7+thXkmuL6J8hF5dXEmJIo9Ii1NVcRLYpbsK0rYmH6lXXU23Akh7Fu+8AjxNY1TDRrLk5qwrxdyNSE2ZqfXIHDWSXc5HsSpbIIWg+yb4BCCLtr0Qmy96nmEOYCOzaH2LcMo1sUe60x3CAJcrPi7m9bQbYYc+s9VmpeGR1VqVT7S2WClsg3wlZHvfJk3ZOh4vIaDqXn0NO0C/Q327rMiWavTaA7R80hkH/M1iWwjo7lljLY5dTzqVV/O0cnhLC3Fv2bW+0Zigk16hL77Dml+ASkbmK97gaCPV3oENJ8it0LUHQeVKBDKcup91hZJ47jpZTjFNLeDpGJpiYoOIwSqyvWguQ6P3ZLUh59lYM4WSqgnTQ7aCnaBLizpyIAqkpsLafroMZsIaOwgg6WJPAMB88QB0UphLCXFp0go9aQpwrApcxO3dMO/QBYmZ/fjRvaBVw93fNakGKVN9rK/HqPY8y03Xr3juhQ77FE06PVqMlUh+BSklrnx/5xNJcbtfuxal2hVctqQX41axPojsEUbHsnr257008UVmC2WAmvSIQw2XIjRHPQshNkoFgXjHeVnZqFHPqBMp/2HKwKYGCsbK9ojsq0vrhU1z9BtuTabpU6BcXWeyzRNBXpQvG8gt8dm4/lM9DJgBLZBzRyiLeliAl0J9lyauW3jgf10grK8aQUj/LjsiddiGaixSfI5S6h+Fnqv+eUkkxI38Yut+vRqBSua+NX/zFFg6vU+eFhKqj3OLriZKrRgleEHaISTVGlazj+5hywWC77MfmlVRgLsgmrSYGofg6MTjS0NgHuZOKHSeUMecfq9Ni0/DI6q04dFg/t7oDohBD21uITZJN7CP7WQqqqr6ye6RmHfwLgM2NXukf54OmstUN0oqGZXALwsRZhttSvu6JPRRqFzuGgki6KLZXZKwIdNVQXZ1/2Y/adKKaX6lTlCzmI1aJ4u2px1zmRqwuv8wpyal453TWnE2TpvClEc9DiE2TtVptDAAAgAElEQVTFMxS1YqXgZD27pyWuwOQby68nvRgYK81Bmi23AHwwUmCsuOIhistriLCcoNxDCv23ZFq/VgAUZl7+auHe9CL6qA5j1bjISmELoygK4b6upCthtkoWdZCWX0ZvXRr4RoOLj4MiFELYU4tPkDU+4QAYc+pR6q2yBNK2kuRrWxGSBLn50ngGoVasFOZdeS3k1NwiIpUcrH5t7RiZaGrcTtVRL8lOuuzH7MsoZoDTEZSIa6V7XgsU4eNCkjkAio6DxXzZj0vNLyPWmgrBnR0XnBDCrlp8hwNX/0gAKurTXjhlA1hq+L2mC75uTlLerRnTedtOoRvzTkBMzBWNkZdxFK1ixiVYOui1ZL6n6qhX5aVe1vVWqxXD8ZNEW9IgQrrntUThPq4cOuYLKhMUZ4BP1CUfY7ZYySkoxl+bDYFSFtLeEhISAjUazUKgE1fBop+wGwtwwGQy/aNHjx7nrdvY4hNkz+BWAJgK65EgH/kVq86Tz04Ec12MHyqVlHdrrtx8Q4H6tZuuOWkAwDO8nV1iEk1TSIAfeVZPKLy8u08niioIrjiCSmeR7RUtVISvC7+ZAsAJKEy9rAQ5u6SSCEsGClYIkBfV9qbRaBYGBwe3DwgIKFSpVPU7XCKuGhaLRcnNze2QnZ29ELjtfNe0+Fdbvr5BVFidUEqusNSb1QrHfqc0bABZpWb6t/G3b4CiQXn62xLkmpLLP3j1V5aC48D/2hGLlslZqyZbCcSp9PLqqB/MLKGz6lRjESnl1SKF+7hy3HKqxGdh6mU9Jr2gnDbKqeeQvyTIDtApICCgRJJjURcqlcoaEBBQjO3Ow/mvacB4GoWTVk2O4oe2/ApXDHMTwZjFHl1PAPq3lQS5OXP1sW2xsBivvJuexphhK/HmKs+Flq7QKRiPyst7cX0k20hnVTIW92DplNZCRfi6kIUfFkUDhSmX9ZjMograqk5gVdTgd2XbusRFqSQ5Flfi1PPmgnlwi0+QAQrV/rhUnryyB6dsBOBnY1ui/FwJ93G1Y2SioSnOXlShRV1x5c1CXCuzKNAEgOqq+PG5qpW7hOJnOnlZtZANJ41016SiCuvRAJGJxhDu44oFFSXOIZe9gpxZVEFb5QRW32hpHCNEM3JV/IU36gLxqr7CFcPUP7B6RfBLpo7erX3tG5hoeIqCUfFAU1V4xUN4VZ/EqJMVwquByTMCJ2qwll56S05GdjZR1hOyvaIFc9dp8HHVkqu+/AT5RFElenUmKtl/3KJt27bNbezYsWe+ybt373a57bbb2o0ePVr/2GOPtTKbbVVPFixYEHDrrbe2j4uLa//111/7AJSWlqruvffemPj4eP2ECRNiMzIyzmm0UF5erkyaNClmzJgx+okTJ7bJycnRACxbtsw3Li6u3ahRo9pNmzYt0mw2YzabmTZtWuTIkSPbjR07Vn/06FEdwNixY/Wn33r37t3lxRdfDLtQ/AkJCa5xcXHtx4wZo3/mmWciTsd/Pm+//Xbw5MmTo//68SVLlvjVngNg8uTJ0evXr/e40FgzZsyISEtLc8rPz1d/+eWX5yRda9as8Rg5cmS7+Ph4/aRJk6LLysrO5LFlZWWq4cOHd/jll188AdLS0pzi4+P18fHx+r/97W8xta+9HC3+kB5ApUswPuXrbWV56tLYwWKB1E2URN5I0ckarm0lCXJLUKb2QldTdEWPrTFbCLTkkOsmf+yuBmqfKEiHspMpuHuGXvC6apMFt/xDoEUS5BYu3MeV41VBtC3YeFnXnywsIZIsCLjdwZGJxVtS/b7blWHXvW9juofn3Xtdq4vecpwzZ07QqlWr/Jydnc/capo7d27olClTskaMGFH84IMPtl65cqVXnz59yr755pvAn3/++VBlZaVy8803d4qPjy/89NNP/du3b18+ffr0rCVLlvi9//77wa+//vpZlQUWLVoU2KZNm4pnn302c9myZT5z5swJef755zM++OCD0JUrVx5yc3OzPPDAA61XrlzpZTKZlOrqatUPP/yQuHXrVrdXXnklfPHixUnffPONASApKcnpsccei5k2bVrWheKfOXNm1IwZM47369ev7OWXXw5dtmyZ75133nlOG9pVq1Z5btq0yTswMLC6vv/XAK+99lo6wPr16z3Wrl3rffvtt58156uvvhq1dOnSxODgYNOsWbPCFi9e7P/QQw/lAEyfPj1SUf5XRGHBggVBw4YNK5g8eXLuyy+/HLZkyRL/Bx988LJXS+2+gqzX60fr9fqltd7vo9frt+v1+s16vf4Fe893OUzuoWgwYy2t4yryyQNQUcgBpy4A9JIV5BahUuuNi6n4ih6bU1hCkFKEVVpMXxVcAm17RouyLt4YIiWvjLacqnYRfI2jwxKNKMLXhaPVflBZBBWXvhOlKkhGjUUO6LVgUVFRVfPmzTurYLpery8vKipSWywWysvL1Vqt1hoQEGBauXLlQScnJ2t2drZWq9VaVCoVjzzySM5TTz2VBZCZmenk4eFxznLt7t273QcNGlQMMGzYsJKdO3d66nQ667JlyxLd3NwsAGazWdHpdNadO3e69+/fvxigb9++ZUeOHHGrPdZLL70UOXXq1AwPDw/LheLPy8tz6tevXxlAz549SxMSEtz/GtPRo0d1y5YtC3jkkUcu7yRzLUuWLPG7//77o+++++42Q4YM6bhkyRI/sK1yHz582Hn+/PnBe/bs8Vi0aNFZL3g+++wzQ3BwsKnW12sBePfdd4O6detW2qZNm/LT17Zv3768uLhYDbZVeo1GU6e96nZdQdbr9e8Cw4A9tT48H4gHkoGf9Xp9N4PBsNue816K4mVb+anIP45rXQ7PpG4C4LfytgR4qIn0lf3HLUG1kxfuFVe25aYgO5UwQOsrCfLVwDvMliBX5lz8QJbhpBG9ko7J2ReNe2BDhCYaSaiXCwcrfEGNbZvFRTrjWa1WXI0ptqUof6l642j3Xtcq/1KrvY4wZsyYopSUlLM6A7Vu3brq3//+d+TChQtD3NzczAMHDjQCaLVa5s+fH7Bw4cKwsWPHnjkcpdFoGD9+fGxKSorLRx99dOSvc5SVlam9vLzMAB4eHuaysjK1Wq3mdLL44YcfBlZUVKiHDh1asnLlSh9PT88zSbZKpbLW1NSg1WrZu3evS1lZmXrIkCHGi8UfEhJStX79evdBgwaVrl271ruiouKs2+9Go1E1c+bMyDlz5qQkJia61PG/zApQWlqq/uKLL44eOXJEN2XKlDb33HPPme/dlClTspcuXRowadKkvNoPDA0NrQFYvny5d0JCgsezzz57Ys2aNR5paWnO77zzTtqjjz7qXuva6vfffz/st99+86upqVGefvrpOpUzs/cK8hbgwdPv6PV6T0BnMBiSDAaDFfgVGGrnOS/JyceWzBhzjtftgRk7wDOc1RkaerXypfbSvWi+zM4+eFiNWCx1P/hcetKWKLkFSJvpq0Govy+5Vi8sl9hveiTbSHtVOqqgjiC/J1q0EG8XkkynFrUu8bwoqTARYj71N1kqWFxVZs+eHbF48eLEtWvXHrz11lvzZ86ceWZVZcqUKbmbN2/eu2vXLo9169ad2Y/71VdfHVmyZInhiSeeiDl69Kju9H7hTz/91N/Nzc1sNBpVAEajUe3m5mYGMJvNPP/88+Hbtm3z/Oijj5JUKhVubm7m0tLSMwmt1WpVtFrbtuZvv/3WLz4+PvdS8b/xxhspH330Ucj48eNjfX19Td7e3qb58+cHnI5pxYoV3gUFBdpHHnkk5o033ojYs2ePx+zZs4Nrj+Hs7Gyprq4+K8+sqKhQubi4WABiY2PLASIiIqpramouOx997733AhcvXhz86aefHnVxcbF+/fXX/snJyS5jx47V79ixw2vOnDnhu3fvdpk9e3b4rFmzUlevXn3w6aefTn/iiSfq9If7ilaQ9Xr9JODJv3z4PoPBsEyv1w+q9TFPoKTW+0bgnI3cjubqb3teVuTVMUFO/5OK4O5k7qvk/lYXXiUQzYvVxQ8fjBgrqvFyq9up8qo8221079AGfxqLRuDv7sReAvAyXrzR0JHsYh5WZaAKbvDX/6KBhXo5k2YNsr1ziQT5RFEFrZUsqnR+6Jy9HB+caDLc3d1Np1dxg4KCanbv3u2emJio+/e//x2+cOHCJK1Wa3VycrIoimKdPXt2cHBwcPVdd91V4O7ublapVLRt27bq9J5hgJKSEvXatWu9e/fuXf7rr796dunSxQjw1FNPRWm1Wusnn3xyTK225cQ9evQoXbdunfe4ceMKt27d6ta6deuK0+Ps3LnT47HHHrtk3dvVq1d7z507N9nf39/8zDPPRAwcOLBkxIgRxVOmTDmTXN9xxx0FYNsvvHTp0oBp06addZq5c+fO5R9//HGo0WhUeXh4WPLz89WpqakuHTp0qDQYDC4XW3RUFMVqtZ67iPXWW28FHz582G3p0qUGV1dXK8D8+fPP3OJ79NFHW91yyy0F3bp1q3B3dzef/h6EhIRUl5aW1innvaIE2WAwLAIWXcalJUDt04oewJWdjqoHb/8QqqwazEV12CZTkgklGaS2uhuArhHeDopONDSVqy9qxUpxYR5ebmGXfkAt1uIMANwDIh0RmmhiFEWhQBtCaEXSRa8rP5mEC5UQ2KGBIhONJdTbhTJcqNb54lRw8a03mUUVtFZlU+MdjRR4u7rMmjUr7bHHHotRq9VWrVZref3119Nat25dHRsbWz5q1Kh2iqLQt2/f4kGDBpW2a9eucurUqa2XL18eYLFYePnll895Yk2aNCn38ccfbzV69Gi9Vqu1vvvuu8kJCQmuq1at8u/YsWPphAkT9AATJ048OXLkyKLNmzd7jho1qp3VauWNN95IPT1OYWGh1t/f/8IlKU5p1apV5cSJE/XOzs6WHj16GEeMGFHngzvt2rWrGjduXM64cePaubq6mk0mk/LPf/7z+Om9zxcTExNTlZyc7DJv3rzARx55JAcgOztb8+mnn4bGxMSU33PPPbEAN910U8HkyZPPuyL+wgsvHJ81a1bk22+/rQDMnDnz8tqinuLQKhYGg6FEr9dX6/X6GGx7kIcBsxw55/n4eziTbfVFMdZh+0n6DgB2mGPQqhU6hHo6KDrR0LQefgAYi3IgvG4JslPpCQoUb3y1dd1yJZqrMpdQfIxbL1gFp9pkwb34iK2CRVDHhg9QNKgQb2cAip3DCLjECnJmcQU3K1moA6SySUvXunXr6h9//DHx9PsDBgwoHTBgQOJfr5s+fXoWcNYKbnBwsGnp0qVHLza+m5ubZeHChcm1PxYSEmJKTExMON/1s2fPPu8t861bt+67nPjj4uKK4+LiLispHjRokHHQoEHG831u8uTJuedLYGvvN3ZxcbFu3LhxP0DtVfM1a9YcrP2Y4OBg08GDB3ddLJb33nsv9fS/O3bsWPnVV1+ds5/7cjVEHeQpwOfADmC3wWDY3gBznsXH1YlsfHGqSze9jD9BrePX/CA6hHii09ShPJxo0pw8bYeoKorqflDPrTKbAo0cwrqa1HhGosUExvP//kjLL6Mtp/4WBbRrwMhEY/B306FVK+RoQi/ZTS83L48ApRhdkFSwEKK5sfsKssFgWA+sr/X+NqCPveepC7VKoUAdSNuKi75AO1vGn1hDurLneDnjeoQ7LjjR4Fy9AgCoKsm7xJXn8qjJp8xNng9XE7VPFJyAqtwUdF7nfu+P5ZSiV6VT5RGJTndOJSTRwqhUCiFeLqQTSMfi1WCuAfU5fR0AMOfZygOq/Ns0ZIhCCDu4KjrpARidAvGsyb2slrGYTZC1j0KfTpRXm+kaKfuPWxIPH9sKcE1p3RNkH0sB1c4B9g5JNGEuQbYDmUWZ56+FfCynlHZKOuoQ2V5xtQjxciapJgCsFii68OFvbeGpO+K+UsFCiObmqkmQK12D0GCC8stIivIMYKrgiNr2qr9LuCTILYnbqQTZWnZOU6CLqqioxFcxYnEPckRYoonyCYnGYlWoyE0+7+dTT+bTSpWNJrhTA0cmGkuotwsHK081jrrIPmSP8jQsKOArZSGFaG6umgTZ5HaqQUjJZVSyyLT1OdleGYWHTkMrP7dLPEA0JyoXb0yoUCrqVk++MMdWwULlIQny1STU35tM/LDmn7+SRXW2AQ0WqWBxFQn1dmZP6anSnxfYh2y2WAmqSsOoCwY51CtEs3PVJMiKp61agbX4chLk3eDkzoZ8TzqEeqJSSeH/FkVRMCoeqCvrVnGwJN/23HHyDnVEVKKJCvLQkWwNxaX43ATZYrHiWnTq0LUkyFeNEC8XsixeWNU6uECpt1xjFdFKJqUeUjNdiOboqkmQnXxth2sqCzIufXHmbqzBnTmUXUqnMCnu3hKVqTxxqq5bglxxKkF29ZEE+WqiUavI1UXhXZ4Kfylcn1FYQWtLGmaVVjqlXUXCvF2woqLSIwoKzr/1JrOojGglC7OftJi+Gmzbts1t7NixZ8qV7N692+W2225rN3r0aP1jjz3Wymy2lR5esGBBwK233to+Li6u/ddff+0DUFpaqrr33ntj4uPj9RMmTIjNyMg459RneXm5MmnSpJgxY8boJ06c2CYnJ0cDsGzZMt+4uLh2o0aNajdt2rRIs9mM2Wxm2rRpkSNHjmw3duxY/dGjR3UAp7vgjR07Vt+7d+8uL7744pk6p3+NPyEhwTUuLq79mDFj9M8880zE6fhr++OPP9zj4uLa3Xbbbe1eeOGFc2qmLlmyxK/2HACTJ0+OXr9+vcdfrz1txowZEWlpaU75+fnqL7/80vevnz969KhuwoQJsfHx8frbb7+9bV5e3pkSY2VlZarhw4d3+OWXX+xSl9ehdZCbEjffEKqtairz07nozS5zDZw8QGHHe6g8YqFTmNQ/bonKNV44m+qWIFcX25oEeQTWrXayaP4qvKJxzqu0NRDy+t/3/3B2Ce2UdKq82+B6gUoGouUJ9bb9FSl0bYVL3vnLrBZmJuGiVKMNat+QoV3ddnzkx54v/O06Ztc78ug1+aL78ebMmRO0atUqP2dn5zNVAObOnRs6ZcqUrBEjRhQ/+OCDrVeuXOnVp0+fsm+++Sbw559/PlRZWancfPPNneLj4ws//fRT//bt25dPnz49a8mSJX7vv/9+8Ouvv35W+85FixYFtmnTpuLZZ5/NXLZsmc+cOXNCnn/++YwPPvggdOXKlYfc3NwsDzzwQOuVK1d6mUwmpbq6WvXDDz8kbt261e2VV14JX7x4cdLpGsNJSUlOjz32WMy0adOyLhT/zJkzo2bMmHG8X79+ZS+//HLosmXLfO+8886zDu688cYbEfPmzUuKjo6uHjduXOyuXbtcunfvXkE9vPbaa+lg6863du1a79tvv/2sOZ977rmoJ5988kTfvn3LvvvuO+8jR444+/v7lwFMnz498mLd+erqqllBDvB04aTVF3PBJRqp5BrAVMkxtW01qFOorCC3RNVO3riZSy59YS2WEluC7BMgZd6uNir/WADMOYazPp6YZSRWlY6TVLC4qoT52BLkLE2EbYuFqfqca6qzbT0XPMJk601LFxUVVTVv3ryz9mDp9fryoqIitcVioby8XK3Vaq0BAQGmlStXHnRycrJmZ2drtVqtRaVS8cgjj+Q89dRTWQCZmZlOHh4e5yzX7t69233QoEHFAMOGDSvZuXOnp06nsy5btizRzc3NAmA2mxWdTmfduXOne//+/YsB+vbtW3bkyJGzDlK99NJLkVOnTs043dHufPHn5eU59evXrwygZ8+epQkJCefUsPzhhx8OR0dHVxuNRlVZWZna3d39MsqE2SxZssTv/vvvj7777rvbDBkypOOSJUv8wLbKffjwYef58+cH79mzx2PRokVnXvCUl5crhYWF2t9//9177Nix+v9n777Do6ryP46/75S0SW+kECAFLr3X0AVEkaaADVRsiGJdXXV/VnZXV1dFUVRUVHQBFWlKE0FQkN6lyNBreu+ZzMz9/TFBBgg9ySSZ7+t5fB5y586c78hh8plzzz1n+/btvp07dy4EmDx5cr127doVJCQkFF1uDZfiNiPIob6enNDCaJp34uInpuwCYGtpA7yMCnFhsq5pXWT1DMQvb8+lT3SiK0wjGz+CPL2qqCpRU/nVbw77IPvEHkIbX/fX8ROnThClZEFkKxdWJ6qbr6eBQB8jh4mmg2ZzTLMIP3uTGF2mY2TZVF8CcrXpPC7zUqO9VeGWW27JOXLkiIfzsdjY2NL//ve/DaZNmxZpMplsvXv3zgcwGo1MnTo1bNq0adEjR45MPX2+wWDg1ltvbXLkyBHvTz/99LzLEoWFhfqAgAAbgJ+fn62wsFCv1+uJiIiwAnz88cfhxcXF+v79++ctWbIkyN/f/6+QrdPptLKyMoxGIzt37vQuLCzU9+vX76+d7yqqPzIysvTXX3/17dOnT8HKlSsDi4uLz9stzWg0sn79etOzzz4b17Bhw+L69euf/02xYhpAQUGB/ptvvjmwf/9+z/Hjxyc47643fvz4lFmzZoXdf//9fy09lpWVZTh+/LhXjx498l544YVTTz31VMOZM2eG1K9f33Ls2DGvSZMmHXvssccqLbS5zQhyqK8HJ7UwvAouMQc5dTcYvFid6U/TCH/0coNenWT3CiKQAkrLrJf9HM+SNLJ1502JEm6gfkwj8jRvipL+POu4Mbl819P6HV1QlXCl6EBvdlvKV7SpYJqFKfcQOYo/iqlyr/iL2uGdd96J+eqrr/atXLlyz+DBgzNffvnlmNOPjR8/Pn3t2rU7t23b5rdq1aq/5uPOnj17/9dff21+8skn4w8cOOB5er7w9OnTQ00mky0/P18HkJ+frzeZTDYAm83GSy+9VH/Dhg3+n3766SGdTofJZLIVFBT8FWg1TVOMRscUsLlz54aMGDHivK2fz/XGG28c+fTTTyNvvfXWJsHBwdbAwEDr1KlTw07XdHqedLdu3QrXrFmzS1XVovfeey/S+TW8vLzsFovlrJxZXFys8/b2tgM0adKkCCAmJsZSVlZ2yTwaHBxs9fb2tvft2zdfp9PRt2/f3N27d5u+//770MOHD3uPHDlS3bRpU8C7775bf/v27de8dIzbBOQgHw9OEY6PJQPKLjJFJuUPtPDm7E4ppEWUzD+us7yD8VTKyM2//GkWPpZMCgwSkN1RfD0/DmtR6DLP7MZZbLERWbAbOzqIaufC6oQrRAd6s62wPPxWEJCDio+RamxQzVWJmsLX19d6ehS3Xr16Zfn5+fp9+/Z53nffffF2ux2j0ah5eHjYFUXR3nnnnYiZM2cGlz/PptPpaNy4cemcOXPMc+bMMY8dOzajbdu2BStXrgwEWLZsmX+bNm3yAZ555pmGpaWlui+++OLg6akWHTp0KFi9enUAwPr1602xsbF/hZ4tW7b4DRgwIPdS9S9fvjzw/fffPzx79uz9OTk5+h49euSNHz8+/XRNUVFRZbfccoualZWlBzCZTHadTnfWXcytW7cu2rx5s//pYJ+Zmak/evSod/PmzUsALjZfWFEUTTvnpmgfHx8tOjq6ZPXq1b4AmzZt8ktISCieOnXqkQULFuybM2eOuXPnzrlPPfXUyXbt2l3TXGhwoykWOp1Cjmck2ICcExDW5PyTNA1SdlMUfyP5h600i5SAXFfpTI6gW5SdDsGXF3r9rVlk+7apyrJEDeXvZeSUPobY/F2OzwlFYX9qPm2VgxQEqvh7yFrp7qZ+kA+/HwQtsD7KuQFZ04i2Hscc1McltQnXmzhx4rHHH388Xq/Xa0aj0f6f//znWGxsrKVJkyZFw4cPb6ooCt26dcvt06dPQdOmTUv+9re/xc6fPz/Mbrfzr3/967y1A++///70J554otHNN9+sGo1GbfLkyYe3bt3qs3Tp0tAWLVoU3HbbbSrAmDFjUocNG5azdu1a/+HDhzfVNI033njj6OnXyc7ONoaGhp6/JMU5GjVqVDJmzBjVy8vL3qFDh/xBgwadFap1Oh1jx45NHTt2bGOj0aiFhISUvfPOO0edz2natGnpqFGj0kaNGtXUx8fHZrValWefffb46bnPFxMfH196+PBh7ylTpoQ/+uijaaePv/baa0cnTpzY4O2331YiIyNLX3nllSvfEvcyuU1ABijxrQ+5QM6xigNyXhIUZ3HC6LhBr1nkBVciEbWc0c8x8lOYmw6oFz8ZQNMIsmdzyDu8agsTNVaqf0sCcn91zDcNiWdvUg436Q5C/VGuLk24QHSQN0UWG9agBIznBOTSjCMEkk9RsNy86S5iY2MtP/74477TP/fs2bOgZ8+e+8497/nnn08Gkp2PRUREWGfNmnXg3HOdmUwm+7Rp085aUzAyMtK6b9++rRWd/84771S4B/r69ev/uJz6hwwZkjtkyJCLjjQPHTo0Z+jQoRddDmrcuHHp48aNO29Kh/N8Y29vb23NmjW7AE6vtAHwyy+/nHejUNu2bYvnz59vPvf4aR988MHRi9VzJdxmigWAPaD8clfOBVayKL9Bb7fNcZ4aISPIdZWnXwgApXmX9+WzJD8LT6UMu68EZHdVENUdAOvBVQAc3LMNf6UYv/iurixLuEh0+VJvuaZGkHEA7GcGxbL3rwNAiZG56ULUVm4VkL2DorFggOwLBORUR0BeXxBBg2AffD3daoDdrXj7hwFgyb+8G55z0h03dxpkm2m31bxle5K0YLJ3L6fMZofjawFQYjq7uDLhCvXLl3pLMjUFSwGkn7mB03JsMyWaEf9GMiVLiNrKrQJyvUAfTtpDsWUdrfiE5J0QFMv2NJtMr6jjfIMcAdlWmHWJMx0Ksxyr8RgDIqqsJlGz9WgSxgatFaakdWw7ksEI+3LyA5pASIKrSxMucDog7zWWL/F3dO1fj3mlbmOXFkuDUFlHvxrY7Xa7LDclrlh5v7ngfGj3Csj+XpzUwrBmHq34hKSdWCPaciSzUCnyYcMAACAASURBVG7Qq+N8Ax0B2V58eQG5JMcxZcw7SEaQ3ZWXUU92vW742PKw/fJvmuuOYew2Hipx5yZRewR4GzF56NlXHAj+9eFYeUC2WgjO28cepTEhJo+Lv4ioDLvT09MDJCSLK2G325X09PQAYPeFznGrOQSRAV4c1cLplrft/AcLMyH3OKlNRqNp0DRCRpDrMr2nD8V4oCu+vO2my/IdN9H6Bkde4kxRl4W0G8Lhn6aTmPwVBTo/fNvf4eqShIsoikLDEBNHMougYSIc/tWxwknqbgyahVOmFhddxkpUDqvV+kBKSsq0lJSUlrjZoJ+4JnZgt9VqfeBCJ7hVQK7n78VKLQJjaTYUpINv2JkHk7cDYFZOr2AhI8h1Xb7ih6E0+7LOteenY9cUAkNkioU769de5Z9Hv+S2ku9RW3YEDx9XlyRcKD7cl+3Hs6FNd9g1GzIPwq452NCRG9bB1eW5hQ4dOqQBQ11dh6h73CogRwR4sVdr5Pgh5Q9I6HfmwaQdAGwqicHHI4eYIPnFV9cV6vwxWi65XjoASlEG2fgS5CPbTLszPy8jb92ZCCS6uhRRAySE+bLojyRKohPxAlj1Gpr5J36w9yAgXDYJEaI2c6vLEb6eBo6Vr3FMyjlLASZth+A4dmRoqBF+6GSL6Tqv2OCPl/XyArKhJIMcJUD6hRDiL/HhJjQNDtnrQc+nYc98sJXyQdkwGoTI5jFC1GZuNYIM4O0fQmZxPUKSzwnIyTvR6ndi35/53NhS5pm6g1JjAEFF521YVCGv0kzy9UFVXJEQojZJCPcF4GBaAS2uewkUPSfzbRxZH0mDYLkKKURt5lYjyOCYZnFAF/fXpiCAY2es3BPkh3Ugp6hMlnhzE2UeAfja8y/rXFNZNsVGCchCiDMahZjQKXAovdCxmsl1L7AmYiwAsTKCLEStVmkjyKqqBgAzAH/AA/ib2Wxer6pqV2AyYAV+NpvNEyurzatRz9+LXckN6Zq5AUoLwNMXDqwAYK9vFyCNprKDnluwewXhr+Wj2e0ouot/V/Sz5VDqG1xNlQkhagMvo56YYB8OpRX8dWzHiWyCfIzEBHu7sDIhxLWqzBHkvwG/mM3m3sBY4MPy41OBO4EeQBdVVdtVYptXLDLAi00l9QENUsu3+T643LFBSIEjAKmyxJt78A7CQ7FRWHCJechWC34UYvUOrZ66hBC1RkKYLwedAvL24zm0jQmUJd6EqOUqMyC/C3xS/mcDUKKqqj/gaTabD5nNZg1YBvSvxDavWMMQEztssWgocGAZlJXAkTXQeAB7k/OIDvQmwNvoyhJFNdGZQgAoyEm/6Hm2Asfjmo8EZCHE2RLCfTmSUUhJmY38kjIOphfQNkamYwlR213VFAtVVe8Hnjrn8L1ms3mzqqoROKZaPIljukWe0zn5QNzVtFlZ4sNMpBNEev3rCd80DfwiwVoMCQPY/WMuLaNleoW7MJgcVwwKc9KgQZMLnpefmUwgoPcLr6bKhBC1RfeEUD5ZfZjV+9MxeRrQNGjXINDVZQkhrtFVBWSz2fw58Pm5x1VVbQV8CzxjNpt/Kx9Bdp6v4Adc3tZlVSQu1HHX8drIu7n55DJY8gxEtScvKpEjGb8xon20K8sT1cjDzzEiXJKbcdHzirIdAdngL9tMCyHO1i0+hABvIz/tTiG+fFWLNjESkIWo7SptioWqqs2B74E7zWbzUgCz2ZwHWFRVjVdVVQEGAmsqq82rEWTyIMjHyKbShtB8GES1hzFz2ZtWCkCL6ABXlieqkXegYyfFsvyLB+Ti7BQAfIJkFz0hxNmMeh0Dmtdj+Z+pLNyZRFyYSabpCVEHVOY6yP8BvIDJqqoC5JrN5mHAeGAmoMexisXGSmzzqsSGmjicXgAPTncszaMo7D51GICWURKQ3YVvkGNE2Fpw8YBclpcKgClYArIQ4nw3toxgztaTHMko5IM7XHofuhCiklRaQC4PwxUd3wB0rax2KkNcmC+/7U8Hp6W9dp3KJcLfizA/TxdWJqpTQHA4dk1BK7x4QLYXpFGqGQkKDKmmyoQQtUnPxmGM7x3PwBb1aNdAbtAToi5wu41CAOLCTKTnl5JfUvbXsV2ncmkp0yvcipenJ7mY0BVnXfQ8XWE66QQQaPKopsqEELWJh0HH8zc2lXAsRB3ingG5/Ea9IxmFAKTllXA4vVDuPHZDuUoAhpKLB2RDcQbZBOBl1FdTVUIIIYRwJbcMyAnhji1AzSmObYZ/3e9Y57avKst4uZtCvT8eluyLnuNlySRPLyNDQgghhLtwy4AcF+pLhL8XP+913Hy1al8aEf5eNIuUHfTcTZExCJP14isP+pZlU+Qh20wLIYQQ7sItA7JOpzC4dSS/mdPJLChlzYEM+jYNk61B3VCpRyAm20W2mrbb8bPnUOopu+gJIYQQ7sItAzLAkDZRWGx2nvxuBwWlVple4abKPEMI0PJA0yo+oTgbPXas3hKQhRBCCHfhtgG5df0AGgT7sOZABj0bh9KrSZirSxIuoPkEY8CGVlLxNAutwDENB1/pH0IIIYS7qMyNQmoVRVGYfHtbMgos9G8WLtMr3JTi41jbuDAnDV/v82/EK85OxgfQ+8k200IIIYS7cNuADMialQK9n2NkuDArFd9I9bzHC8sDskeA7KInhBBCuAu3nWIhBICnvyMgF+WkVfh4SU4KAD5BkdVWkxBCCCFcSwKycGteAY6pE5a8igOyNTcVi6bHP0jmIAshhBDuQgKycGu+wY7VS6wFGRWfUJBGJgEE+3pWY1VCCCGEcCUJyMKtBfgHUqIZ0S4QkHVFGWRo/oT4elRzZUIIIYRwFQnIwq0F+HiQhR+64qwKH/coySBLCcTHw63vZxVCCCHcigRk4daMeh05BGAsqXgE2duSSYFBtpkWQggh3IkEZOH2svUh+JRWcJOezYq/NZN8D9llUQghhHAnEpCF28v3CMO/LP38BwpS0GGnyFvWQBZCCCHciQRk4faKverhZ8+DspKzH8hLAsBqkjWQhRBCCHciAVm4PZtveQDOTz7ruJZ7EgBdYHR1lySEEEIIF5KALNye4h8FgDX31FnHizNOAOAV3KDaaxJCCCGE60hAFm7PGOQYIS5MP37W8ZLMYxRqngQFyy56QgghhDuRgCzcnk+oY4S4KPPkWcetOadI1kKoF+DlirKEEEII4SISkIXbCwoKoVDzxJpz9hQLfX4SyVow9fwlIAshhBDupNK2B1NV1QTMAoIAC3CP2Ww+papqV2AyYAV+NpvNEyurTSEqQ7i/FylaMB55Z9+k51mUTLLWnE5+ni6qTAghhBCuUJkjyA8CW81mcy9gBvBs+fGpwJ1AD6CLqqrtKrFNIa5ZqK8nqVoQhsKUMwdtZfhYMsg2hOJl1LuuOCGEEEJUu0oLyGaz+T3gtfIfGwA5qqr6A55ms/mQ2WzWgGVA/8pqU4jK4O2hJ1MXgneJU0DOT0GHRrG3rIEshBBCuJurmmKhqur9wFPnHL7XbDZvVlV1JdAKGAD4A3lO5+QDcVfTphBVKd8jHD/LOrDbQaeDPMd85DKT7KInhBBCuJurCshms/lz4PMLPHadqqpNgcVAO8DP6WE/IOdq2hSiKhV6R6Ivs0F+EgTUh7Q/AbAGxbu4MiGEEEJUt0qbYqGq6j9UVb2r/McCwGY2m/MAi6qq8aqqKsBAYE1ltSlEZckNUB1/SN4JgD15J3maD4aQWBdWJYQQQghXqMyb9L4ARquq+ivwDXBv+fHxwExgE7DdbDZvrMQ2hagUpSEtsGkKJG0HwHZqO7vtjagX4O3iyoQQQghR3SptmTez2ZwK3FDB8Q1A18pqR4iqEBgQwAGtPo1PbUdvK0Of/ie7tf408JM1kIUQQgh3IxuFCAE0CPZhtxaLlrQD0s3obKXstjciKlACshBCCOFuJCALAagRfuyyx2IozoD9SwHYSyMah/td4plCCCGEqGskIAsBNAox8adSvgLhps8oUbwgOB5vD9kkRAghhHA3EpCFADwMOkqCm5OvCwCbhTmGm1Ajg1xdlhBCCCFcQAKyEOUaRYZxk3EahU8c4MX8ETSNkOkVQgghhDuSgCxEOTXCj+O5ZWw97tjLpmmkv4srEkIIIYQrSEAWolyTeo4R44U7kwBkBFkIIYRwUxKQhSinlgfkH3cm4etpoH6QbBIihBBCuKNK2yhEiNouJtibu7s15GhmEd3iQlAUxdUlCSGEEMIFJCALUU5RFP45rKWryxBCCCGEi8kUCyGEEEIIIZxIQBZCCCGEEMKJBGQhhBBCCCGcSEAWQgghhBDCiQRkIYQQQgghnNTIVSz27NmToarqMVfXIa5Jw6p4UekbdUKV9A2Q/lFHyGeHuJAq++wQ4lyKpmmurkEIIYQQQogaQ6ZYCCGEEEII4UQCshBCCCGEEE4kIAshhBBCCOFEArIQQgghhBBOJCALIYQQQgjhRAKyEEIIIYQQTmrkOsinqaqqAz4C2gClwANms/mga6tyHVVVtwF55T8eAT4BJgNW4Gez2TzRVbW5gvSPs0n/OEP6xtmkb5xN+scZ0jeEqFiNDsjAcMDLbDZ3U1W1K/AOMMzFNbmEqqpegGI2m/s4HdsBjAAOA4tVVW1nNpu3u6hEV5D+UU76x3mkb5STvlEh6R9I3xDiYmp6QO4B/ARgNps3qKra0cX1uFIbwEdV1Z9x/L29CniazeZDAKqqLgP6A+70QSb94wzpH2eTvnGG9I3zSf9wkL4hxAXU9DnI/kCu0882VVVreqivKkXA28BAYDzwZfmx0/KBABfU5UrSP86Q/nE26RtnSN84n/QPB+kbQlxATf9AyAP8nH7Wmc1mq6uKcbH9wEGz2awB+1VVzQWCnR73A3JcUpnrSP84Q/rH2aRvnCF943zSPxykbwhxATV9BHktMAigfJ7YLteW41L34Zgnh6qqUYAPUKiqaryqqgqOEYA1LqzPFaR/nCH942zSN86QvnE+6R8O0jeEuICaPoI8Hxigquo6QAHudXE9rvQ5MF1V1d8BDccHmx2YCehx3G280YX1uYL0jzOkf5xN+sYZ0jfOJ/3DQfqGEBegaJrm6hqEEEIIIYSoMWr6FAshhBBCCCGqlQRkIYQQQgghnEhAFkIIIYQQwokEZCGEEEIIIZxIQBZCCCGEEMKJBGQhhBBCCCGcSEAWQgghhBDCiQRkIYQQQgghnEhAFkIIIYQQwokEZCGEEEIIIZxIQBZCCCGEEMKJBGQhhBBCCCGcSEAWQgghhBDCiQRkIYQQQgghnEhAFkIIIYQQwokEZCGEEEIIIZxIQBZCCCGEEMKJBGQhhBBCCCGcSEAWQgghhBDCiQRkIYQQQgghnEhAFkIIIYQQwokEZCGEEEIIIZxIQBZCCCGEEMKJBGQhhBBCCCGcSEAWQgghhBDCiQRkIYQQQgghnEhAFkIIIYQQwokEZCGEEEIIIZxIQBZCCCGEEMKJBGQhhBBCCCGcSEAWQgghhBDCiQRkIYQQQgghnEhAFkIIIYQQwokEZCGEEEIIIZxIQBZCCCGEEMKJBGQhhBBCCCGcSEAWQgghhBDCiQRkIYQQQgghnEhAFkIIIYQQwokEZCGEEEIIIZxIQBZCCCGEEMKJBGQhhBBCCCGcSEAWQgghhBDCiQRkIYQQQgghnEhAFkIIIYQQwokEZCGEEEIIIZxIQBZCCCGEEMKJBGQhhBBCCCGcSEAWQgghhBDCicHVBVSkS5cuWnR0tKvLENdgz549GWazOayyX1f6Ru1XVX0DpH/UBfLZIS6kKj87hDhXjQzI0dHRzJs3z9VliGugquqxqnhd6Ru1X1X1DZD+URfIZ4e4kKr87BDiXDLFQgghhBBCCCcSkIUQQgghhHBSJVMsVFXtArxpNpv7qKqaAEwHNGA3MMFsNturol0hhBBCCCGuVaWPIKuq+iwwDfAqPzQJeNFsNvcEFGBYZbcphBBCCCFEZamKKRaHgFucfu4A/Fb+56VA/ypoUwghhKjxbHaNCbO28cXvR9A07cpfoCgL1k2BOffDzu+grKTyixRCVH5ANpvNc4Eyp0OK2Ww+/SmQDwRUdptCCCFEbbDrVC6L/0jmn4v28sqPe67syaX5MK0f/PwCHPoF5o+Dz/tD1uGqKVYIN1YdN+k5zzf2A3KqoU0hhKi9ck7A5wPhX2HwRkNY+rzjmKj11h7MQIedgc3DmbXxOPklZZd+0mmLn4bso2SPnM2qYRsoueUrR7/4tA8cWlllNQvhjqojIG9XVbVP+Z9vBNZUQ5tCCFE7ZR91BJ60vdDlIYjvC5s/gw/aw+JnIGUX2MvHHWxWyEuCtH2QeQgsRa6sXFyGjfuT2OL9GFNOjeIJ3XesP5R5eU88th7++I7VEffScZaNe6dvpe33nnzV6is0/2iYMRJ++RdYS6v2DQjhJqpjo5Cngc9UVfUA/gTmVEObQghRO614Fa2siHXXzWGfLYpGMT706f9P9Kv/C9u+coRlgzcYPByX3DWni3Q6AzTqCZ3uh6aDQVFc9z7EeYotNuwnNhFsyEYzxTOh5Afe2juW61tEXPrJmz7BYvRn3JEeDGsfxeDWkXy/5SSvrElhc9M3ebf5/zCuedvRR5oNhYhW4BcJvuEQHAfegVX/BoWoQ6okIJvN5qNA1/I/7wd6V0U7QghRp5zYDHvmszDwLh7/IYfTM9ISwn15/oaX6Nf/VRTzEseIsb0MPP3BP8oRfqwWSP8T9iyA78ZA/c4wbAqEqS59S+KMzUez6KDtRUNBGf4xyhfX47V/EdD34k/MS0L7cyEzrANpHx/FWyPboNcp9FXD+XLtUV5b8if7Qsfw5ZBbiDk4C3Z+A1s+d3oBBWI6Q4d7ofWtoNNX5dsUok6okVtNCyFEbVZqtXE8s4i4MF/0uisYxf19EoWGIP6R2pcXBjVjZIf6rD2UwaTl+3ng6y10iQ3m4T430H3AGIz6C8yQu+5l2DkLlr8MU3vCTW9D+7sr542Ja7I3OY8uuj+xh7dE36AL2b4JJOat5mhGIY1CTRd+4ravwW7j67L+/G9E67/6lKIo3NcjlqYRfjz2zXb6zYcJfV5m7JBpBFjSoDAN8pIhdbfji9OC8bDhIxgxTb44CXEJEpBrKpsV0vZAym7IOwW2MjB6Oy6ZhalQrwUYPF1dpRCiAtPWHOGtZWaCTR58MbYTbWMu4/J2YSba/p+ZWTaQm7s04cFecQAMbh3FwBYRzNp4nI9+PcjYLzdj8tATG2bCx8NAqdVOmdWOj4eeBsE+9GkazoCWo/FuPBDmPwQ/PgZJO+DGN0FvrOJ3Li4mLSuX9voD6GMfAMDe/GY6bXqLH/fuoVGvzhU/SdOw75rDVprRomVbYoJ9zjslMSGUZU/14qUFu3l3xX4+/u0gifGhdGgYRPOoGNp0up7gXs/Cnnmw9FnHHPebP4HmQ6vw3QpRu0lArknsNjj4C/zxLRxYAaW5Fz7X4AWNekDr26D5cMd8RCFEjbD2YAYxwd7kFVv5at1R2t7W9tJP2jsfRbOyyrMvUwc2Pesho17HPYmNuL1zDKv2pbPuUAYnsoootNjw9zLgoddRaLHy2/505m0/RbifJ09f34RbR89B+WUirHsfMg/CqOngE1w1b1pckmf6Trwog0bdAQjuOBI2vYXlz2VwoYCcugdd5gF+KLuX+3rEXvC1Q309+XhMB3afyuX7LSdYfSCDlfvS/nq8Q8Mg7uzcleEP/Y7++7th9t0weBJ0vK9S36MQdYUE5JrAboM/ZsPq/zrWs/QJgeZDIK4vRLaFwAaOAGwpdNyxnroHjm8A82KY9yCsmAi9nnFcRpW5ZUK4VJnNzvbjOdzWKYaCUivL9qRgsdrxMFx80aDSbd9yxB5Dp8ReBHhXPNLradBzQ8sIbmhZ8U1dNrvGhsOZTFq+n+fm7uKn3Sm8NepFQsOawqInHSOHt8903MAlql1QTvm6xzFdAFDCVLL0oYSmrbvwk/bMx4aOQ6H96NAw6JJttIwOoGW0Y7uBvJIy9pzKY9ORLBb9kcTT3+/kswg/3rtlJk3XPAaLnnI8SUKyEOeRgOxqJzbD4r9Byh+OX1qjpoN6U8Ujwh4mCG3s+K/FcBj4umPty9/edPzy2zodhn8M9ZpX97sQVyP7KKz/0PGFx8Pk+PuP7QXRHcHT98x51lLHF6OiTMeXKe8gx5cmo9cFX1q4zt6kPIrLbHRsFISXQc+crSdZfziT3k3CLvykvCQ8kzezyH4rd3RucNVt63UK3RNCSYwP4ev1x3htyZ/c9P4a3r/9BrrcuxS+uwumDYAhk6HNbVfdjrg6PsUplCkeGE3lfUFRSAvrRtvklaTnFhEWcM70CU3D8sdcNtqa069jiytuz9/LSLf4ELrFh/B4vwSW7Erh1YV7GPrJNl4f+h9GgiMk6z2h3ehrfn9C1CUSkF2lrARW/ssRkPyjYMTn0HLEX8syZRSUsutkLieyiyiy2NArCl5GHf7eRuLDfGlczxdPgx4a94eEfrB7Lvz0PHzaG67/N3QeJ0s8VSFN0/i/+bsI8/PikT7xeBmvbOQ+d+scvBY/hma3ckgfR4gxlXqHVqKseQcUnWOuucELSnKhKOP8F9AZILINNLnBcVd6UKPKeWPimm0+mgVA53oQdHAOMR6h/LQ75aIB2bZvKXogp8H1RAd6X3MNiqJwT2IjOjUKZsKsbdzx2Qae7N+ERx/8Fd3c+xw7sJ3aCgNfk3nJ1aSkzEagNZ0C3wiCnD6bPZr0IzBlIet2riWs14Czn5S8E4/cIyyxP8CTbaKuqX1FUbipdSRd44J54tsdPDN/Hyd6v8STcRaUHx91fOFuOeKa2hCiLpGA7Aopu2Hu/ZC+z3Fpq/9E8PKnzGZnya4kZm08zqajWWjahV/CqFdoFR3A9S0iuKVdNOGtRkJcH/hhguMmjBObYOgH4HH+DR3i2u1JyuObTY6dzX7bn86CRxJRLvMLSe7RHXgtfJi99gZ81+ifpOvCWXMwA6O1kDGRSQwPSybeMwcPewl4+YNflONLlG+4YwpNYaZjOa+ja2HVa7DqdWh6k2OaTVS7qnzb4jJsPprFoIBjhH/xMJTm8nrgYP6+LxRN0y7YR3J3LqLAHka3Lt0rtZbmUf4sfKwHL87fxaTl+9lyLIz3Rs4meP3rsH6KYzOSUV+BKaRS2xXnS84tIVLJpMwUedbx6PY3wGooMa+AcwKytmc+NvTkNLyBev6Vc8UoxNeTL+/txEsLdjP5t+OktX2e12JK0M190PHlvMXNldKOELWdBOTqtmOW45KWVwCMmQcJ/bDZNeZvPcl7K/ZzMruYRiE+PH5dYxLjQ4gNM+HracBm1ygps5NVaOFAWj67TuWy7mAmbyzdx9vLzAxpE8WT/RvT8PZv4PdJsPLfjptybpsBgTGuftd1zvztp/DQ63jsugTeWb6fLcey6dTo0jc/2Swl5M24i1LNB92d3/BG0yYAZBdamL3lBDM2BvPJH/EARPh74e/tWKUgv8RKYakVDwNEBUTSNqYZg3pNoEdYMfpt02Hz57BvEaiDoPdzEHUZN4WJKrHrZC7veK2BUkC9iW4HlmMpGszRzCJiK1rKy1KEX9LvLFb6MbJZvUqvx9fTwLu3taVzbAiv/riHQVM28P4dT9M5orVjhYvP+8PoORASX+ltizOSc4pppGSC/9nzvz0DIzliTCAy5ZytojUNy845rLe1pH+HZpVai1Gv4z+3tCIywJt3V+wnNe45Po1+A8Oc+x0rKLUeVantCVEbSUCuLpoGv0yE3991zDMd8TmaKYyVf6by5k/72J9aQKvoACYObUFfNRxdBWun+nlBmJ8naoQfg1s7LrcdzSjkfxuOMXPjMRb9kcTYxEY81u8J/Ou1gLkPwie9HGteJvSr7ndcZ9nsGgt3JtFHDeO+HrF8/Nsh5m07eVkBeefCKbS3HmdN5w/pWR6OAYJMHjzUO55xveLYdjybjUeyOJRWSGGpFU+jDj8vAz4eBixWO8cyC1myO5nvtpygYYgPD/Uay8hHH8Nj62eOUcFPezt2Uev7gsxHr2ZWm53U/FLi9fsdc8n7v4LBvJjR+hWsO5RYYUC2HVqFUbOQG9MPb4+quclWURTu7NKA1vUDeLR8ysUz13dk/D0LUb69A6b1h7vmyxerKpScXUAXsskPPn+OeXqDQXQ+9D5JR/YRFVu+gsnJLXgWnGSZMoQXL3BT5rVQFIUn+jcmOsibf8z7g5uDn+L7qMl4zXsQygqhw9hKb1OI2qR2BOTlL0N4c2hzu6sruTqaBj+/6AgvHcbCoLfZcCyPt5atZ+uxbGJDTXw0uj03toy47Mv0pzUKNfHS4OaM6xXHpJ/3M+33IyzYkcTLg9sweNwqlO/ughm3QPcnHIFJ1k6+ZhuPZJKWX8rwdtGYPA3c0DKCRX8k88qQFhedi1xaUkj0ro/Ya2hGjxvvrPAcRVHo0DCYDg0vHrZLrTZW7E3j0zWH+b/5u/joV28e6n0boyY8iNe2z2DdFDB3h3ZjHBtH+F7kBjFRaTIKLBjtJYQWH4HomyFMRYvvx52HfuXfBx9hdJeG5z0nfesPmDRvGnceWOX1tYwOYOFjPXh+3i7e/Gkf25vXY9KYJfh+NxK+Ggp3zYP6Hau8DneUl34CvaJhCjs/IEd2HwOH3id57UyiYv8FgG39hxThDU2HYPKsul/VIzvUJzrQm/EzttK3cAJLoj0IWvgEFOdAjyerrF0harqLrztUU+SnwoJH4Ojvrq7k6qx73xGOOz/E/k7/YuzX27n90w2cyi7m9Ztb8fNTvRjUKvKKw7Gzev5evDmyNT9M6E6EvxePfbOdBxfnknb7EkcoXzvZsavW8Q2V977c1J5TeQB0i3PM27ylXX3yS6xnrTlake0/fEg9MrH1+geK7tr+6Xka9NzUOpIFjyQy/d5OhPl58tKC3fSYvJWpjCB//Gbo8rBjSs8HudMvPAAAIABJREFUHRwrnFxsUruoFMm5xbRQjqLTbBDVHgCl5S1EkkHOoS1o5/4d2O34HF3O77Sld7PoaqnRz8vIlDva8fLg5qzcl8awb1I4MXyuY33k/93sWFlHVLqSTMc9C8YKRpBj4lR265oSfuxHx7/TrMPo9v7ATGt/BnVqct75la1bfAjzH0nE28eXxCP3cyzyRljximNwSj43hJuqFQH5YKdXsAXFwux7IPOQq8u5MkdWw4pXsTUbxn+Vexn0/u9sO5bN8zc25de/9+HOLg0uvGXsVWhdP5AFE7rzwqBmrDmQzvUfbmFRw+dg9FwoK4IvBsKiv0FJXqW16W4OZxQQbPIgyOQBKbvoVraBIB8jP+9JueBzbDYb0fu+5IChCa16Vt7uVYqi0EcNZ97Dicx6sAtNI/x4Y+k+EifvYJLuHvLuXQ2RrWHhE/C/4Y7l4kSVScktoY3usOOHaEdApsmN2BU9XS3r2Jt89r+7shNb8LdmkRHd74pXQrkWp7convFAFzILLQz53zG2XzfDsQb7jBGQsqvaanEX9pxTjj/4V7waxdEGtxBTdpS8RS9iX/ocZehYHTKK7vGh1VJfXJgv8yd0p1NCBH2OjGZz2C2OgZUfH3PMSxbCzdSKgPz0D4e5q+gp7JoGXw93rB9bG5TkwrxxWALjGHHqTj767TDD2kbz69/7Mr73lS8Ndrn0OoUHe8Wx+PGeNAwx8eis7UzYHEz6Xb9B10dg65fwYRfY+4OMDlyFQ+mFxIWa4Nc34ZNe6GeP5rH6h/hlXxoWq73C5+xYNYcYLYmCdlWz/J6iKCTGhzLjgS78+Gh3EuNDeH/lQbpPO8kH9SdhuWGSY2WTj7rBnwsrvX3hkJxbQivdYey+keBXPm/UFIK1fjcG6jazbPfZX6JObZyLVdPRsItrtvztGhfCgke6E2zy4NZvj7Oo/afg6ecYSU7b55Ka6iqPovIvp/4VXyloN+wx5tt74791ChxYwZtlt3HfwK4V3o9SVQK8jXxxT0fGdo9j1IkRLAgYA9v/B3PvA1tZtdUhRE1QKwLyxGEt2VEUymP6F7GX5MDUXrD1K7AUubq0i1sxES0/hftz7+d4oZ4vxnbknVvbEGyqnm2hE8J9mTu+G08PaMLyPan0/WALH3s9QOk9yxwjRbPvhpmjIPtYtdRTVxxOL6BVkAV+fd2xakREK8akvIFPSRobj2RW+Bzjpo9JJ5hWA+6u8vpa1w/kk7s6svSJnnSND+GdFQfovaoRK3rPQQtqBN+NgaXPgdVS5bW4m9S8ElrrjqBEn32zm0fLYTTRnWLvzk1nDtrtmA4sZJvSjK4tGldzpWc0CjUx/+HudI4N5tHF6XwWOwlN0cP0mxyb2IhK4VeaSqnO27GCUQWig3zIuu4t3i4bxc2lr7K7wV30axZezVWCQa/jlSEteP3m1jydfhOfet3vGEyZfY9j0yIh3EStCMhtYwL57O6OrMqL4jbtTfJ8G8HCx+Htxo5f9od/c3WJ50vaAVs+5xtlEIc9mjJnfDeua1r5SzhdikGv47F+jVn2VC+6xgXz5k/76DUrj69afknZgNfg2Dr4qCus/8ixS5u4qNziMjIKLPRQyi9B93waRk7HaC3kKY8fWFbBNAvzjrW0tmznSPxoDB7Vd5Nks0h/Pru7I7Mf6kaIrwcPLMrhDts/yWx5P2yc6phuk76/2upxB8k5xUQrGSjB5yyZ1vIWbIqBxNxFHEjNByBrzwrCyk5xvMGIS25DXdUCfIxMv7czd3ZpwGsbrbwa/Caa3ghfDoLjG11aW12gaRpB1nTyPepd9ArSPT0bo+/zLOPuuJUZD3S5pvtSrtWdXRrw5dhOvF88kDd1D4J5Mcy6FSyFLqtJiOpUKwIyQPeEUL4b140kXQStTz3LvbzKfGsiaXt/h6+Hsn7SbeQW1pwRMdsv/yJP8eMDbRT/u78zcWG+l35SFYoNNTHtnk58N64rDUNMvLJ4P11XqnzV/jvKGnSHZf+Az6+H1L0urbOmO5xeAECzok2OUfjIthCagNJuDCN1q9i44w+KLWd/0cj9ZRKFeNF86FOuKJnOscH8MKEHb45oxYFMC5229uPb2H9jzzoCn/R0zDOUOYaVIj8nAy8sjp0QnZlCsTQZwgj9ahZsOghAysqPyNJ86TL4XhdUej6jXsdrw1vywqBmfH3AyEPG17F6BcHXQ2Hnd64ur1YrstgIJ4ti74sv12bQ63hqQBNuah1ZqfemXK1eTcKY+3AiCz0H8bz9YbTDq2HmrVBa4OrShKhyrv8XeAVa1Q9g1TN9eGtkGxq0G8DaZi/yabt5rAy5nW55P/H1+/9HRkENuAR0bD36QyuYYhnM63d0d3k4dtYlLoTvxnXl23FdaRkdwCu/5dHu4AMsavyv8sDUC1b9Ry6/X8Dh9EIU7NRLWwvx/eD0ahQ9/4ZOgbut81i488yNcCcP76N93kr2RAzHN8B1u5XpdQq3dWrAymf6cFfXhvzfvjgGWd8iOay74071qT3gwAqZk36NrKdvgvSPPO8x724PEqAUUbLxCxYsWULjrNXsCBlMTPil18+uLoriuH/h49EdWJ3uzbDiVygKa+vYmnrJ3+US+1XKLrIQTB5279q3Y6Ea4ceCCd0xRwzhccsj2I+tR/t6mGNHTyHqsFoVkAE8DDpGdYxh4rCWvD2qDS8Ob891j04lO7ov40qmM2vJKleXSP7y/5CuBVDS7j76qtU/h+xSFEWha1wIX93XmSWP96R3k3Ae3RVP76I32RPcD357wxGUT25xdak1zqH0Alrrj6EvzoSE/mceCGyA0vFe7jSsZO3vK9A0Dc1uJ2P241gwEjfkOdcV7STA28jEYS35YUIPPAIj6XbkPt4LeRlLaTHMHOEYLUza4eoyayW7XcNQUD7F5twRZICGiVgbdOclw9dcv3Esmbpg1GE1o1+c64aWEcx+qBvpdj+6nnqMA/H3wKZPHVeZsg67urxaJ7uwjCAlH0zVsyJFZQv19eSbB7uitBrJw5bHsSbtxP759ZBx0NWlCVFlqiUgq6qqU1V1qqqq61VV/VVV1YRKbUBRCLp9KgbFjtfuGaTmlVTqy18JLWUXfid/Y7b+Jp6+qZ3L6rhczaP8+XB0e5Y92YvWajxDTt3Ng9bnyMnJRPt8gGN0scx1/z9rmiMZhfTxdaxnSsNuZz2m9HsJi2cwD2S/x6c/bWLd7LdpW7KRXeqjhEbHuaDaC2tVP4D5j3Rn4tCWfJ7Rklbp/2R+xBNYk3c7duKbc5/MT75CWUUWQrXyUbWKArKiYLhrHrnNR1MSEEfQhBVEN6xZ/cJZ6/qB/PhoD5pGhTBgz0CmRpZfZZraC7Z9LVcbrkB2fgH+SjEG35pzteBKeRn1TL69La0HjOGOkn+Qn52G/bPrYP/Pri5NiCpRXSPIwwEvs9ncDXgeeKfSW/CLwNLoOoYqa5n224FKf/nLdWrp2xRqnkT1e4QAb6PL6rhSaoQfH97ZnlXP9CG8wxCuK3qD2dbesHYylg8T4ehaV5dYsZJcOFR9Vw2Scopp5pEOBm/wr3/2g14BeA57l+a6E4zdMIju+17jT4+WdLz1H9VW35XQ6xTuSWzEr3/vw+jExvzjVDfa5fyX+b63Y/1zCdpHXRzblde2tcddJCW3hHByHD/4XWCuqdGLgFs/IvhvG/AMbVRttV2tiAAvZj3Yhb8PVJl0ojE3lLxOsk8Tx9q4M0ZA7klXl1grFOakA+DhX7t3tFQUhQl9E3hg9J2MtL3GQUsQzBoFP78k0/JEnVNdAbkH8BOA2WzeAFTJXqbeHe8gQskiddcv5+9YVQ0sOcnUO7aI5Z4DGNqtZbW3Xxkahph47eZWLH3uJvZ3eZ37bf9HWnYuTB9E8hejKU2rYZfUDq1ybIBRTaMYKXklNCQJQhLOzD92oms+FG387xyMuIndbV5CffZX9Iaa/UUpxNeTl4c0Z/3z/Xj4hna8Y7uNzoXv8qU2GMvuH9GmdEJb8HDtXA5w5ijYNadamkrPLyVCycLqGQhG72ppszoY9Dom9E1g6RM9iWjYhMSUp3jP+CDWo+vQPuoG22fKaPIllOQ5ArJ3QM2bcnc1bmgZyQePDGeC95vMsPWDde9j/3ygfJkWdUp1BWR/INfpZ5uqqpW/ubw6CIvBl8SiVRzLrP41kv9c+B5GrERc/wT6alzcvSrU8/fipcHNeev5p1iQOJ/PlREEHvsZ3YedWfPuGH5at43cYtcvHL/Xvzupng2xL3mmwnWxswot/HvRXn75MxW7/dp+idvsmiMElZ2EkPgLnmeIaE6Lh7+m5c3PoKvh4dhZkMmDR/oksPrvfZnywAB2N3+afrbJfFF2PWU7vsf2fnuK5zxSq34Jlhblof0ysVqWMMwushChZDs2CamD4sN8+ereTnx5bxd+Mg2lb9Hr7LHFwA+PoH03GgozXF1ijVX2V0Cu3SPIzppG+LPgif7safcqD1ueoDDZjPXjHmjb/idfmESdUF0BOQ/wc27XbDZX/rpSRm+sMd3prNvHmgPplf7yF1NYWEj0oW/Z5tmJLh06VWvbVSnY5MGjA1tz94vT2D58JZtDhtI1dyl9ll3P96/fwzPTfzlvWbPqVGw38Hje3ehyjjnusnf6YD6Qksfjk2eSte4rnvlqJU9/v/Oa2sosKEWvWQkoLR9BrqN0OoXEhFAm3dqWpS+MxGfofxkf/Dkzyvqi2zUb+wcdOf7JrRQc2+7qUi/pldReKDnHYd+iCh9fs2kLXy9YwqH0a1+2KqvQQriSjeJ/8aW8arPTW5svebwnf7v1eiYYJ/Ja2Z1Y9/1M2QedHRtKiPNYy1d80NfSm/QuxORp4D+3tOaeB57gId/32WJpiPLjo2R/MQoK0lxdnhDXpLoC8lpgEICqql2BXVXVkHdcN+J0KWz5s3pHudb88Bmh5ODX+1GXLu5eVYx6HYntWpH4+HT0j22hMGEI9+mXMvH43VCc7bK6OjQMIrJNP6bYRsCOGfDzi1CYSeofKyj85HpmWJ5kksdUVvm9woGdazmVU3zVbaXmlRKjpKHTbBDqup3PqpOvp4E7Ojfgi8eH0f3xL/my8498axxOUNJqfL/sw+43+7N68UxOZua7ZFrTpShNB3FSC6NszeTzRrWOLJtCx8U3cvv2MUye/CZ7k/Kuqa2cojIilCwMARVvJVyX6HQKN7erz/Kn+xEz+DnG6N9kX5EfzL6b1M/vQCuo3gGKmk4pKr9506f23qR3MV3jQvj6qVs4cOM3vKu7B5/jv5I/qQMHfvlKRpNFrVVdAXk+UKKq6jrgXaDKdkxQYhyjt5ajGymz2auqmbOk5hYTY55OirEBjbsNq5Y2XUkXEkvIXV+ie3QTphsn4u3n2g/9F25qzhfG2/lB1x/WT4G34qg3bwQNtFOkd38VxszD11PPe4YpfLfx6ufRpuSVEKckO36owyPIF5IQ7sf4mxK54/++4OhdG1kZNY6I4gP02vwIxvdbMnfiKN6c9F+en7mat5eZ+W7zcXKKXHvjzv29GvOBdTjG5K2wfcZfx/NXf0Ts+hfYbWiONbI97+k/YO261dfUVm5hEaFKHkoFayDXVR4GHXd3a8T058aybcD3fGIYTeDxn8l7pz1bFn+G1Sq7cwLoSsoHEbzrZkAGx1z1u7rF8tDzk1jY7VuO28NpvOZxNr4xiNVb/8B2jVPchKhulT8PuAJms9kOjK+Otohqh13R08xu5khGIU3q+V36Odfo+/lzeFQ5Qmb3Ny66jWidE9q4Roykhvl5MuOBrtw5DT4t7Us/3XYyfWK5846xtIhzrDRhuO4fJPz4GHs2/4K1fxMMV7FLVWpeCbF/BeQLz0Gu6xRFoVVCQ0h4C836b05tmo91x2yGZPyOZ95y7HkKe80N2WhvxqyTD/LIzf1cVmtCuC9ZjUex9ejvtFv2IrrABmjJOzGtfIVf7B1oOH4ePqZSeKcJ1n0/oWk3XfUVIFt+GnrsFS/xVsd5e+i5p2cTyhKnsHL1KBqu+TsdNz/D5q3/43C75+jZ8zqiAmvWjYs2u0ZucRnBJo8qb8tYmk2J4o2X0avK23I1Hw8DI2/oT0nfdWyZ8xptD3xM6Y/X89HS27B1GseITrHEBPu4ukwhLqlaAnK18jBRGtyMdmkHMafkV3lAXncog/hDX1Hs4U9I4t1V2pa4sOZR/vwwoTur9jWmxHoj93dqQICP0w1yLW7GuvhZ+pUsZ0/SaNrEBF5xG2l5JcTpktF8QlG8gyqx+tpLMXgSnXg7JN7uWObp1FZ0R9fQ/PBvtDi5Ci2wDeC6gAzwj5taMOH9B/mm7N8Efj0UBfjF1o6kAVPoF+HoBzl+jWmZs51dp3JpXf/K+waAvqD8y5N/VCVVXvsY9ToG9u2LvecG9i6eTLMdk+i09U6Wb2rP1IAheDXtT+e4enRsFESgT9UH04tZuWQ2li1fk/j0HIL8zg/vJWU25m47iVGn4/oW9a6pXq+yHIoMAdT9eHyGl6cnHUf/k7K0uyiZ+zceS53O0XVLefO3W8luNIhh7WMY2Dzi7M9pIWqQuheQAY9GnWmb8Q2fpeRAm6r7ZVVQauXTOYuZrt+MtevT4GGqsrbEpTUMMTG2e2zFD3r6UdJ4MEP+XMSSE6lXFZBT80rpZUhHCa65mzu4lMHDsXlKw27oej8LdhuKTu/qqogL8+X2G/vR5cdgbvbYRLLVj5A2N/J2j2Z/nePV5Do6bfmCD/84dtUBWSkqX8XBVDeW8roWOoOB5sOehuvvJ3vle3Tf8RUDCiaStnkyizZ05WNbF5SYzswal4iHwTUburYI1ojidxYtmcHg2x486zFN03hpwW6+3+pY53ne9mC+Hdetope5JE3T8LHmUep9df2qtjOGNyb84YVwYAXRP73AlMwPOJz8A1PmDeKVeYk0qx9K25gg4sNN1A/yISbIm8gAb7w9XP/ZIdxbnQzI+qi2+ClfkH7yINC8Stqw2TUe/2Y7wwu+w+bpgyFxQpW0IyqPqd0IlH3fk3doEySqV/z8lLwSIpUsCHD9tJJaoQaE49Pu7taQiAAvlu+No2+UP/ckNjprKoVXk+tg6yeUHd0AtLmqNgwl5ZuE+MjVhb94BxJ006sw8P/gwDJCtn/D2IPLuc/+E5l5DTFqm8BF46pRXUaS8cvLRP85jZKy+/AynumvszYdZ93W7SyK+ZmTQZ15/I9GHE4vIC7M94rbKbLYCCQPq0fdWeLtqjTujzG+L+yZT+zqt5iUPpXXDLP4Lb8HP25qztyyJuRy5v/vWyNbM6pjjAsLFu6uTgbk0/NirWlVs6PeiawiXliwm6QD2xnquR5d5wlgCqmStkTlUaLaA6BL2QncdcXPT80tJlTLAj/3vYReWymKwsAWEQxscYEl2Bp1x4aOqKyNwENX1YbBkgN6QKbfnM/gAc2GoG82xLH75YHlhOQlgcHTdTXpDRS0e5B2W/7N3MULGDF8BAAH0/L5euEKfjT9h5D0dFqmL+YNY0++26LyjxubXeJFz5dVaCGQAuzeTSv7HdQ+Oj20GonScgQcWon3jpncYF7KDfoloIdi/zjS/FtyyiuB+hFtXV2tcHN1MyCXrzDgW3iUIosVH49rf5v/z96dx0dV3f/jf907c2dfsicEQggBbhAqItalxbrRKmoAAWtLqVRpKd/Hz4+24tet/VKXttpafi61ihYsLlhRAbXfYt1RVHABVKTksoQtJCF7Zl/v/f4xExjIQoKTDJl5PR8PHyZ37sw96GHmNeee8z67Drvx6he12FjdjC0HWmGWRLxdvBai1w58t9+KclAy2QvhkvKQ596BSFTt80I9n7sVRi2Q0XNM05bRjlbLCBS59yEQjh4zmtgb/lAUds0NFSJEo7OfGpkmTE7gW7NT3QoAQOmUX6Jt6+M4betdqPr2Bchx2PCb597DU/r7kG1QgWs/AD5bhiu3voCHP9+J//0Duc/vG+3+MIYLbrSmaYm3kyIIwKhLYv9EgkDNZ8CBTTAf2ozSQ5+g1PMaUJYNDLsx1S2lDJaeAdmaj7DehtJIPXYd9pzUfNNEj63fjQff2glVA8YVO/DrKWPwk6ztyP3XRuCy+zl6PIh4c8fjtNpd2NPohVzU+wWcwUgUJn89YASQQWW8MknYUYrhnt3Y3+zrU98AYrvoZcONkMEJUxdbkNOpSTA5IFY+iLGvXIsXnliAdbqL8H/Up1Ckd0Gc+zowZAJwxlwYtjyDif5N2Nd8MUYV9K1vuL0+OAQf2vk50TW9ERgxOfZPB38rYMrMOdt06kjPd3JBgJo9EiOFOij17m/0Uht2NeLP/1EwZWwhPr3zErx2w2TceE4Wct+9BSg4Dfj2z5PUaBoIhmFnolyoRdWB2j49r8kTQpHQEvuFUyzSkpQ3EsOFBlQ39P09o8UbQpbgRdTA0ePBxnHGdLR96zr8SHwHz2i/xVhjM3RX/wMYOil2wrBvI2Qbiit1G6HU933HRb8rvoueLb120etX5uzMKplKp6T0DMgApMIxKBPrsb/Fe9KvEVU1/OHfO1CSY8ZDPzoDuTYjEA0Da38JBFzArOWAjiVqBpOsUWdDFDS49m7p0/NavSEUCvFi/xxBTkv2IaNhEYKorzvQ5+e2+cLIghtqGm8Ekc6yZj0E/HIDcPlfoPvVF0DFFUcfFEWI46/CBeJX2Ft7uM+vHXbHdhU02BmQiQaTtA3IYu4oDBWa0NDSftKv8e9tdaiqd+O2yypg1OsAVQVe+V/AnneAyx8ACvunQgb1H93QiQAAU2Pfdjtv8YZQhI4RZAbkdGQsiK1dcNf1fXFvqy+EbMEDgfNMB68hpwNn/6LL7aD1pedBEqLw1Gzv88uGvLEv1mY7p1gQDSZpG5CROwoiNESbqk/6Jf7zdR0KHUZc8a0hsf3k1y0Ctr0EXLIYmDQviY2lAWMvglu0w+bZ26entfpCGCK0IGrOTe3Ke+o/2SMAAGpz3/oGALT5QnAKXuisDMhpKT9WFlJrUvr81KgvNkhjsrO6CdFgksYBObYVsNHV9w87AAhFVGzY2YSL5IJYvdT3/wR8/hQw+dfA+YuS2VIaYO3GYjiCdX16Tkt8ioXG0eP0lTUcKgQY3fv7/NRWXxjZcPM2errKLkNU0CPbuxeBcLRPT1X9sYCsM3N+OtFgkr4BOb7bmdN/EJGo2uenf76vBe5gBBdVFAC1XwDv/xk4/Rrgkt8lu6U0wPzWYSiK1vfpg67VG1ukp3MO7ceWUUrpjfAaC1EYrYc3GOnTU9vdHliFIEeQ05VOD69tBMpxCNWNfVvXogVcsR9Mjn5oGBH1l/QNyOYshHUWFKIZh93BPj/93aoGGHQiJpfnAK/eAFjzgal/5sraNKA5h2OY0IRDrb3/oGv2hlAstkJgDeS05reVYLjQgMY+vmdEPPH56Vykl7aEfBmjhBrs6mOVEyEYD8hGBmSiwSR9AzKAsLUIhUIrDrX6+/zcD3c34eyyHFgPfQgc3gZ8/x7AzLqM6UDKHQGjEEZj3cFeP8ft8SAbLm4SkuZUZylKhcNo9PQtIGu+WCkv7qKXvsxDT8NwoQEHGlr69Dx92IUIdIBk7qeWEVF/SOuADPsQFAktONTm69PTvMEIdh52Y1JpNrD56dio0LgZ/dRIGmj2IbH56e76Pb1+juqOl3eyd7NVMaUFXU4p8oV2NLX3cZQwEC8ByCoWaUtfUAGdoEFt3N2354Xc8ItW3n0kGmTSOiAbsoehUGhFbVugT8/7+lA7VA04Kz8KVP0bmPBjVi5II1lDYuW8Qo29X8ApeJtiP1jz+6NJdIowZ8e+AHma6/v0PF2gLf4CDMhpK17JwtjWtzKAUsSDoM7WHy0ion6U1gFZn1WMAqENh/q4WciXNbEPu4nu9wA1DJz50/5oHqWIPndE7If23m8IIQbit9AtrFKQzszZsSol/ta+BWRDqCMgc4pF2sqNfbG2ePq2kYwp6kFIz4BMNNikdUCGvRgSonC39K2k15c17RiWbYbt0EdAVilQMLafGkgpIZnRKmbD5OndHGRN02AIxucdWlnsP53pbAUAgLCroU/PM0biAZlTLNKXZIZPZ4cp0Njrp2iaBpPqRZgBmWjQ0Sf7BWVZvgrA1YqizIn/fi6AhwFEALypKMrdyb5mt+JbAkfaDvXpaV8ebMMZQ+3Avg+BsVf2R8soxdqNQ+AI9O6LkzsYQZYWX4nOEeT0Zo39/9W8vQ/IqqrBHHEjIhmglyz91TI6BfiM+XC6mxCOqpB0Jx5fCkZU2OBD1MC1C0SDTVJHkGVZfhjAfce97lIAcwBMBnCOLMsTk3nNHsUrDkje3t8ubfYEUdPqx0XZh4FAG1B2QX+1jlLIaxmGQrUemqad8NxWbwi5ghtRUQKM9gFoHaVMfARZ9DX1+ineUARZcCMoObgQK82FzYUoENp6XQbQFQjDLvihscQb0aCT7CkWHwP4Xx2/yLLsAGBUFGWPoigagDcATEnyNbtnjwVkR7ix15tCbK+NjRROin4dOzDi/H5pGqVW1DoEhWiFyxc+4bkt3hBy4ELYmMMAlO4MNoQFAwyB3gdkdyACh+BDxMCd0tKevQgFQivqXb1b+O3yR+CADwI3CSEadE5qioUsy/MB/Pq4w9cpirJKluULE445ALgSfncDGHky1zwptgKogg6FQisaXEEMzz3x7U+lPlbeqbjtMyB39JFpGpReBHshjEIYta1NcFp7rm3c6gshR3BBNXP+cdoTBPikHFj8rVBVDaJ44i9E7kAEdvigGnh3Id3ps4qRhTZsa/cBOPGCTLc/iJHwo8XEL09Eg81JBWRFUZYDWN6LU10AEj817ADaTuaaJ0XUIWzKQ1G4BQ3uQK8CclW9GwU2Awz1W4ExUwegkZQKBmdsTqCr8RAwrOeA3OINo1xwQzhBkKb0EDLlItffjlZfCLm2E5d3dAfCsAs+aMZhA9A6SiUVYGTbAAAgAElEQVRzzjBIQhRtTfUATrztvM/TDlHQoLMwIPeXzZs3F+j1+mUAxiPdCw9QMqkAvo5EIj+fNGlSl4tOkr5IL5GiKC5ZlkOyLJcDqAZwKYCBW6QHQLUPQaGnFQ29nDNWVe/CefkBoK4ZKD6jn1tHqWKKl/PytZ54oV5rfIqF3j6hv5tFpwDVkofctv1o9AR7FZBdgTBK4Ydg4ghyurPkxkKxv+UQgEknPD/gjo0HSRbuwtpf9Hr9sqKiorH5+fmtoiieeFEJEQBVVYXGxsbT6uvrlwGY1tU5A/FtayGAlQA+BbBVUZRPBuCaR4jOYhQJLTjcizljkaiKXQ0eTLbVxg4MYSBKV/a82GhwqL0XAdkXQo7ght7OTUIygWgrQK7g6vVCLHcgArvgh45b0ac9Mb7wO9JW26vzg97YDotGG/tGPxqfn5/vYjimvhBFUcvPz29H7M5Dl5I+gqwoynoA6xN+3wTg3GRfp7cMziHIEz7o1QjyvmYvQhEV44S9gCACheMGoIWUCs782O1w1XX4hOd6vF7YBf+REmCU3iRHIZxox8beLsTqmIPM2+jpr2OreU/vSkSG4wHZZOf6hX4kMhzTyYj3m24HitN+vo5gK0CO4EFT+4l306uKL9ArCewE8sYABmt/N49SRGfJQQQ6oBf1blVPvKIBayBnBKOzEAYhCp+rpVfne30+mIUQDAzI6c9WCACQfL2rkx31tQMATBxBJhp00j4gwxq7LR5oP/FIoVLvhk4UYGv9LzCE84/TmiiiTXBC8p94VyzBH99mmiPIGcGYFQtB4V7cXQCAoDdWqEfPgJz+9AZ4dFmwhXq3m54WiPUNgVUs0t6mTZuss2fPljt+37p1q3natGkVV111lXzjjTeOiEZjpWafeOKJ/CuvvHJsZWXl2JdeeikbADwejzhv3rzyWbNmyddcc82Ympoa6fjX9/l8wvz588tnzpwpz507d1RDQ4MeAFatWpVTWVlZMWPGjIpFixYNj0ajiEajWLRo0fDp06dXzJ49W961a5cRAGbPni13/HPOOedMuOuuu46sND2+/Zs3b7ZUVlaOnTlzpnzbbbeVdLQ/0QcffGCrrKysmDZtWsXvfve7TqtWn3nmmdzEawDAggULRq5fv77bBRt33nlnyf79+w3Nzc26F154odPWpG+++aZj6tSpp1111VXyn//85yNlxpYsWVI0ffr0issvv3zsihUrkvJhnf4BOV74P9qLD7vdDR5MyApBcNdx/nEGcOtzYA42n/A8sSMgcwQ5I4jx9wzN07tRwogvthBL4GYQGcFnzENWtLlXmwx1BGSwDnJae/DBBwsXL15cGgqFjtSFfOSRR4oXLlxYt3btWiUcDgvr1q1zNjY26l9++eWCNWvWVK1cuVJ56KGHSlRVxYoVK/LGjh3rW716tXLFFVc0/+1vf+u09eLy5csLRo0a5V+zZo1SWVnZ/OCDDw7x+XzCY489VvzCCy/sfOWVV6o8Ho9u3bp1ztdeey0rFAqJr776atWiRYtqfv/73w8DgJdffll5+eWXlT/96U978/LyQosWLarrrv2LFy8uvf322w+sWbNGsdls0VWrVnUKq/fff3/Jww8/XP3aa69V/fe//7Vu2bLF/E3/W/7xj388WFpaGtq2bZvl3XffPebWSzQaxd1331366KOP7l67dq2yb98+04YNG2zr16+3f/nll7Y1a9ZUrVq1SqmrqzN803YA/VzF4pQQH0EWenErfW+TFz+w1wE+AEXdztumNOEz5MLqP/GGEIYAR5AzypH3jN6NEkb9sdvoDEGZIWguQKGnFq5ABE5zp4G+Y+hC8YDML08D4umP9+Wu2VKT1DfqmWcOa5r3nRE9jqSUlpYGH3300T233HJLWccxWZZ9bW1tOlVV4fP5dJIkafn5+ZF169ZtlyQJ+/btM0iSpIqiiBtuuKEhEokAAGpraw12u73TcO3WrVttv/jFL+oB4NJLL3UtW7as2Gg0aqtWraqyWq0qAESjUcFoNGqbNm2yT548uR0AzjvvPO/NN998zHzRe+65Z/jNN99cY7fb1e7a39TUZPjud7/rBYCzzjrL8/bbb2fNmTPnmHlnr7766g5JkuB2u0Wv16uz2Wxqb/+7PvPMM7kbNmxwBgIBsba21jhv3rz6a6+9tnn27Nnyvffeu3/p0qVF1dXVluXLl+fNnz+/Kd4mvc1mi5aXl4cA4IwzzvB8+umnNo/Hoxs1apT/+uuvL/f5fLpbb721prft6En6jyDHP+xMwRYEI93vpqeqGvY2efEtQ3x1cv7YgWgdpVDIlIesaOsJzzOG4udYuNAmI8T/P4uB3s1BVjsCMkNQRoia85AjuNHmC53wXF3YHVvrIH3jgTU6hc2cObNNkqRjbimUlZUFlyxZMnzKlCnjWlpa9BdccIEbACRJwtKlS/PnzJkz9rLLLjsSvPV6PX74wx+OWb16dcHUqVM7fTB5vV6d0+mMAoDdbo96vV6dTqdDUVFRBAAef/zxAr/fr5syZYrL6/XqHA7HkcAjiqIWDsd2jf3yyy/NXq9Xd8kll7h7av+QIUOC69evtwHAu+++m+X3+3XHt0mSJGzcuNF6+eWXj8vJyQkPGzbsxH8pYjQA8Hg8umeffXb3448/vnvFihXHjJovXLiw/owzznB3hGMAyM/PjwSDQXHHjh2mSCSCDz/80On3+8W2tjb9jh07LE8++WT1vffeu/+2224bqaq9zurdSv8R5Pjt0jyhHY3uIIZld71ZSJ0rgGBERZlWE/uAtLGkV7pTLfnIRTv8wTDMxq5HgjRNgznSBlUnQjRxoU1GiJdrE4KuE5wYowXjnzNG1kHOBKIlB9nwQPGGUJrb80JufdgDv2iBnVvUD4h53xnRfKLR3oGyZMmSkqeffrpq/PjxgSeeeCJ/8eLFJQ888MABAFi4cGHjdddd1/TTn/509Hvvvee56KKL3ADw4osv7tyxY4dp4cKFo5YtW7brjjvuGAEAV155ZbPVao263W4RANxut85qtUaB2LSDu+66a9iBAwdMTz755B5RFGG1WqMej+dIoNU0TZCk2Gfc6tWrc2fNmnXC22P333//3nvuuWf4Y489JkycONEjSZK2dOnS/LfffjsHAB566KHqYcOGhc877zzvhg0btt17773FDz300JA777zzSA1Ek8mkhkKhYwZi/X6/aDabVQAYM2aMDwBKSkpC4XD4hAO2oijivvvu27t48eLhkiRp5eXl/uzs7EgkEhHKysoCRqNRq6ioCEqSpDY2NuoLCwsjJ3rNHq/3TZ48KBhsiOpMyBPacdjVfam36kYPAKAwsBcoOG2gWkcpJNoLIQlRtDR1Pz/dF4rCoXkQlByAmP5/XQiAZEZYkCCFeheQxY6AzIVYGUFvy4NFCMLl9pzwXEPUi6DIakiZyGazRTpGcQsLC8Nut1tXVVVlvP7668tVVYUkSZrBYFAFQdCWLFlStHLlypz486KiKGL06NHBjjnDP/vZz5rOOOMMT8ec3DfeeMMxYcIENwDccsstpcFgUHzqqad2d0y1mDRpkueDDz5wAsDGjRutZWVl/o52ff755/bvf//77Sdq/1tvvZX1yCOPVL/44os729radJMnT3YtXLiwsaNNxcXF4ZkzZ8otLS06ALBarerx5fZOP/1032effeboCPbNzc26ffv2mU877bQAAAg9fHEUBEHrap7/+++/73juued2Pffcc7tqamqMF1xwgeuss87yfPzxxw5VVXHo0CEpGAyKubm53ygcA5kwgiwIiFrykRtyodHdfV3TvU1eABqsrt1A2Y8Grn2UMpIzVq3A1XQIQ4d2vU1wuz+MLMGDsCELvEmaOQI6O4yR3gVkXZgjyJnE4IhNcfW2NQAo6fncqA9hqeu7lpTe7r777v033nhjuU6n0yRJUu+77779ZWVloTFjxvhmzJhRIQgCzjvvvPYLL7zQU1FREbj55pvL1q5dm6+qKu699969x7/e/PnzG2+66aYRV111lSxJkvbwww9Xb9682fL666/njRs3znPNNdfIADB37tzD06dPb/voo48cM2bMqNA0Dffff/++jtdpbW2V8vLyup9vGjdixIjA3LlzZZPJpE6aNMl9+eWXHxOqRVHEz372s8M/+9nPRkuSpOXm5oaXLFmyL/GcioqK4NVXX91w9dVXV1gslmgkEhFuvfXWAx1zn3tSXl4erK6uNj/66KMFN9xww5FFZAUFBeHp06ePNRqN6tSpU5vHjx8fGD9+fODTTz+1T5s2bayqqrjjjjsO6PXfPN6mf0BGrBZyXls7qtu7D8jVjV6UG9oghtxAQcUAto5SxZQd2xXL19L9rljt/jCy4EHUyNHBTBKSHDAG3VBVDaLY8+1xfdgDCOAc5AxhjgfkgKsXC3xVH8J6jiBngrKystBrr71W1fH7+eef7zn//POrjj/v9ttvrwNwzE4zRUVFkeeff35XT69vtVrVZcuWVSceGzJkSKSqqmpzV+cvWbLkQFfHN27c+FVv2l9ZWdleWVnZ40jztGnT2qZNm9bW0zkLFixoXLBgQacpHddee+2RqTBms1nbsGHDNiBWaaPj+DvvvLP9+Oddf/31Tddff32nv3z33HNPUhbmJcqIe8Z6ewHyxXYc7mE3veomLyY74/8PuUAvI1izY2sCQq7uK5x0jCBr5k4VbiiNRSQ7HPDCE+r5Lp2qajBGPYgIEiCZBqh1lEpmZ2x9SsTTc0DWNA1m1YeoZBuIZhFRkmVEQBZsBSgQXDjcw9axe5s8mGiqj/1SwICcCRx5sRrj0R4+6GIjyF4I5uyBahadAlRjFpyCF+2+cI/neUMR2ODnKGEGEa2xKicRT89VTgJhFTb4oTIgEw1KGRGQYStAFlxo6Ga76XBUxaFWP8qF2lhZOAtHCzOBxZEHVRMAX88B2Sl4oLexT2QUcxYc8KHd33NA9gQjsAs+RCTOP84YHXeT/D0HZHcwDKsQgGZgQCYajDIjIFsLoIOKQHvXQaiuLQBVAwojtUDOyAFuHKWKoNPDJdig83dfFcjt9cEh+CHZWAM5k4hmJ5yCF20nGkEOxkaQowYG5IwRH0ARAz3XUPcGo7AiABgZkIkGo8wIyPGaxqq767mmB1t9AABn4BADcoZxiU5IPWwIEXLHHjPYuYteJtFbc+CAF22+7qdlAYA7EIFd8ENjQM4ckhlBwQgp2OPaJHgDIVgRgMDqJkSDUoYE5Fg5L3O4Gd5g50U3Na0+GBGC0VfHgJxhfPosmMLdf9BFvLGALHLaTUYx2LKhEzR43T2XC/UGo3DAxwoWGcavc8DYw/sGAHg9LoiCBp2ZAZloMMqogFyAti4X6h1s8aNMFx9dzi7r9Dilr4AhG7Zo9x900XhA7thdjTKDyR77QhR09zzP1BOfYiGYGJAzSdCQBcsJ6mQHvbEvV3oz+0Ym2LRpk3X27Nlyx+9bt241T5s2reKqq66Sb7zxxhHRaKz08BNPPJF/5ZVXjq2srBz70ksvZQOAx+MR582bVz5r1iz5mmuuGVNTU9Npa1efzyfMnz+/fObMmfLcuXNHNTQ06AFg1apVOZWVlRUzZsyoWLRo0fBoNIpoNIpFixYNnz59esXs2bPlXbt2GQFg9uzZcsc/55xzzoS77rpraHft37x5s6WysnLszJkz5dtuu62ko/1d+ctf/lK0YMGCTqOLzzzzTG7iNQBgwYIFI9evX9/tt8Y777yzZP/+/Ybm5mbdCy+80Glk6p133rFPnz69YtasWfL8+fNHer1eEQDmzZtXPmPGjIrZs2fLP/nJT0YnPueFF17ImT59ep/r92ZIQI5tN50vtHW5m97BVh8mWOPzyTiCnFHCxhw41B5GCTsW4rCKRUaRrLH35dAJKhV0LNLTmVknO5OEDVlwwA1/qPvQEPbFArRkYd9Idw8++GDh4sWLS0Oh0JGi6Y888kjxwoUL69auXauEw2Fh3bp1zsbGRv3LL79csGbNmqqVK1cqDz30UImqqlixYkXe2LFjfatXr1auuOKK5r/97W9Fx19j+fLlBaNGjfKvWbNGqaysbH7wwQeH+Hw+4bHHHit+4YUXdr7yyitVHo9Ht27dOudrr72WFQqFxFdffbVq0aJFNb///e+HAbEawy+//LLypz/9aW9eXl5o0aJFdd21f/HixaW33377gTVr1ig2my26atWqLm+jvv76644PP/wwaSNIf/zjHw+WlpaGtm3bZunYOTDRH/7wh9Innnhi9+rVq5Xhw4cHn3766TwAOHTokGnNmjVVL7/8srJy5cojNaW3bNliXrNmTV5Xu/KdSEZsFAKDDarejPxIOxq62E2vptWPGaZmIAQghyPImUQ158KpuRGJRNDVzju6jnmGDMiZJb5tdMR7goVYgTBs8CPEEJRRVFM2slGDVl8IZkPXe2yG/LGAbLRwBHnAfPpkLr74Z3IXjJzx4yacvaD7ldwASktLg48++uieW2655UiAkGXZ19bWplNVFT6fTydJkpafnx9Zt27ddkmSsG/fPoMkSaooirjhhhsaIpHY9M/a2lqD3W7v9M1r69attl/84hf1AHDppZe6li1bVmw0GrVVq1ZVdWwxHY1GBaPRqG3atMk+efLkdgA477zzvDfffPMxdSjvueee4TfffHNNx452XbW/qanJ8N3vftcLAGeddZbn7bffzpozZ84xIwa7du0yrlq1Kv+GG2449OKLL+b35T/rM888k7thwwZnIBAQa2trjfPmzau/9tprm2fPni3fe++9+5cuXVpUXV1tWb58ed78+fOPVFh47rnnlKKiokjCn1etr6/Xezwe3bx580Z5PB7d/Pnz66+88sr2pqYm3ZIlS4b99re/Pfjb3/62tC/tA5I4gizLslOW5X/Jsvy+LMsbZVk+L378XFmWP5Fl+SNZln+XrOv1iSAAtiIUCG2o72I3vYMtPpTrGmIfigxCGUWw5kEnaGhv6XoBpz4YH13mRiGZJT6lRvX3PM804PdAL6gwMCBnFksOsgQPWn2hbk+J+GLvHUYr+0a6mzlzZpskSccMUZaVlQWXLFkyfMqUKeNaWlr0F1xwgRsAJEnC0qVL8+fMmTP2sssuOxK89Xo9fvjDH45ZvXp1wdSpUzt9M/d6vTqn0xkFALvdHvV6vTqdToeOsPj4448X+P1+3ZQpU1xer1fncDiOhGxRFLVwOFaR58svvzR7vV7dJZdc4u6p/UOGDAmuX7/eBgDvvvtult/v1yU+7na7xcWLFw+///7795/Ets4aAHg8Ht2zzz67+/HHH9+9YsWKY0bNFy5cWH/GGWe4E8MxABQXF4cBYO3atVmbN2+2z5kzpzkUCglz5sw5/NRTT+1eunTpnr/85S8l9fX1+ltuuWXEb37zm4NdfeHojWSOIN8M4B1FUR6SZVkG8E8AZwJYCmAWgGoA/5ZleaKiKFuTeN1eEeyFKGxtxxfHzUEOhKNocAcx1Fofm14h9LytLKUXvT32pdfdchi5BcWdHpdC7VAhQuQirMxiigVkIdBzQO64ja7nQqyMIlpzkQUPFG/3u7OqgVj+MNkYkAfM2QuaTzTaO1CWLFlS8vTTT1eNHz8+8MQTT+QvXry45IEHHjgAAAsXLmy87rrrmn7605+Ofu+99zwXXXSRGwBefPHFnTt27DAtXLhw1LJly3bdcccdIwDgyiuvbLZarVG32y0CgNvt1lmt1igARKNR3HXXXcMOHDhgevLJJ/eIogir1Rr1eDxHAq2maYIkxaY1r169OnfWrFmdtn4+3v3337/3nnvuGf7YY48JEydO9EiSpC1dujT/7bffzgGAWbNmNba0tEg33HBDucfj0bW0tEhLliwpWrRoUX3Ha5hMJjUUCh0zEOv3+0Wz2awCwJgxY3wAUFJSEgqHw70esP3rX/9a8M477+SsWLFil9ls1oqKiiLXX399oyRJKCwsjIwePdpXVVVlOnTokKlj6siBAwfMd955Z8kf//jHg729TjID8oMAOt4t9AACsiw7ABgVRdkDALIsvwFgCoCBD8i2AgzRHcKhVv8xxw+1xX7PDR0Chn57oJtFKWZwxuan+1rrOz2maRrMkTYEjHZYxMyYrk9x8SkWulDPC7Ei8dvoYJm3jCLZcmNVTlwtAAq6PEcNeAAAAr9cZySbzRbpGMUtLCwMb9261VZVVWX885//PGzZsmV7JEnSDAaDKgiCtmTJkqKioqLQT37ykxabzRYVRRGjR48Ovvzyy0rH67lcLt27776bdc455/jeeOMNx4QJE9wAcMstt5RKkqQ99dRTu3W6WCaeNGmS57333su6+uqrWzdu3GgtKys7Enw+//xz+4033lh3ova/9dZbWY888kh1Xl5e9Lbbbiu54IILXJdffnn7woULj4TrH//4xy0AsH79evvzzz+fnxiOAeD000/3/f3vfy92u92i3W5Xm5ubdfv27TOfdtppAUVRzEIPA5KCIGhdzRt+4IEHinbs2GF9/vnnFYvFogGxhXsrV64seO6553a73W5x79695nHjxgXeeuut7QCwd+9ew0033TSyL+EYOMmALMvyfAC/Pu7wdYqifCbLchGA5wD8CoADQOInjBtAalbB2QqRhzbsb/Ydc7im1Q8dorD464DsESlpGqWOJR6Qg67OUyw8wQgc8CAkOWEZ6IZRahkdUCHAcIKAHPXH71JyM4iM0lEXPeDqfhdOLRjvG9xJLyPdfffd+2+88cZynU6nSZKk3nffffvLyspCY8aM8c2YMaNCEAScd9557RdeeKGnoqIicPPNN5etXbs2X1VV3HvvvXuPf7358+c33nTTTSOuuuoqWZIk7eGHH67evHmz5fXXX88bN26c55prrpEBYO7cuYenT5/e9tFHHzlmzJhRoWka7r///n0dr9Pa2irl5eWdcMrBiBEjAnPnzpVNJpM6adIk9+WXX95zzcsuVFRUBK+++uqGq6++usJisUQjkYhw6623HuiY+9yT8vLyYHV1tfnRRx8tuOGGGxoAoL6+Xr9ixYri8vJy37XXXjsGAH7wgx+0LFiwoHHDhg3OadOmVYiiiP/5n/85lJ+f37mmbx+dVEBWFGU5gOXHH5dl+VsAXgBwi6Io78dHkBOHVuwAer5n2V/shbCqbtQ2t0JVNYhi7JvLviYvCtEKUYsAWcNT0jRKHVtObNpTyNX5jlObLwwnvIgYOS8944gigjobDFF3j6dpwXiA5mYQGcXsjE3NCru7D8hiKDaCzC9PmaGsrCz02muvVXX8fv7553vOP//8quPPu/322+sAHDOCW1RUFHn++ed3HX9uIqvVqi5btqw68diQIUMiVVVVm7s6f8mSJQe6Or5x48avetP+ysrK9srKyl6F4gsvvNB94YUXdvlmuWDBgsYFCxZ0+oC99tprj0yFMZvN2oYNG7YBsUobHcffeeed7YnPKSoqimzfvn1LV9fpaXT4+D9bbyVzkd5pAF4CMEdRlNcBQFEUF4CQLMvlsiwLAC4FsCFZ1+yTeC1kR6QVhxMqWexu8GC0KT4fngE54zhyYwFZ9Xb+oGv1hZAleKCxBnJGCurtsETdUNUeygMF4yGIo4QZxRivkx3xdV/lRAx7EIUISLz/RDQYJXNi5X0ATAAelmV5vSzLr8aPLwSwEsCnALYqivJJEq/Ze/GAnC+0Y1/T0WkWuxs8mGiPjwIxIGcck9kCj2aG4Ou8rqPVF0Y2PBBZ2SQjRQxOOOCFu4vdNzsIR0YJOYKcSYT4e4LaQ0DWhb0ICGYu/CYapJK2SE9RlOndHN8E4NxkXeekxTcLKRBasb/Zi/PKcwEAuxs9uDa7LTY72jkshQ2kVHGJDkiBzhtCtPlCyBFcCNv7VN6R0kTU4IBDaIXLH4bT3GljKwCxUUIAHEHONB1fmnuocqKPehEULbB2ewYliaqqqiCKYt93gqCMpqqqAKDb+dCZszTfFruVXqRzYW+zFwDQ7g+j0R3ECF0zYC0ApK4LvlN6c+myYQx2HkF2udphFYKQHF2vUqf0phkdsMMHVyDc7Tm6SOy9hPNMM0y8DKAY6H6KpiHiRUjHeDwAvm5sbHTGww5Rr6iqKjQ2NjoBfN3dOZmxkx4AWPMACCg3e7ExPsVid0Ns9KdAbQCySlLYOEolvyEHWYFDnY4H22PrCkzOwoFuEp0CRLMDDsGHff7up1hIER8gAJAYhDKK3oCgYIIU6j4gG1UfwnrOP+5vkUjk5/X19cvq6+vHI5MG/eibUgF8HYlEft7dCZkTkHUSYMnFCNGFf8ZHkPfEA7IjUA8Mm5DK1lEKBU35cPo6f4mMemKl33Q2TrHIRKI5Cxb44O5mBFlVNUhRL0IGCwysk51x/DobDOGuywBqmgaT6kNU4vqF/jZp0qQGANNS3Q5KP5n1rp5VgmFiM/Y3+xCOqtjd6IFRD+g9NYCTI8iZSrXkI0tzIxo+dttYzROvbGFlQM5EkiULNiEAl7/r3dJ84Shs8COs5+hxJgrqHTBHuw7IgbAKCwJQeWeBaNDKrICcPQJD1Hr4w1Fs2NWIrw+1Y1JOGEI0xAoWGUywF0IUNLQ1Hbu5kODvCMh5KWgVpZrBGptnGnB3vRDLG4zAJgQQYQjKSGGDAxbV02UZQHcgDJvgh8YdFokGrcwKyFmlMPtqkWsW8eBbu/DxnmZMHxFfwMiAnLEMztgCTldjzTHHj1S2YEDOSAZbLCCHvF2X8nIHIrDCD1XiAr1MFDU44eymDKArEIENfghcvEk0aGVWQM4eAUENY85pErYdaofNqEfl8PhtdQbkjGXOLgYAeFqOHUE2hloQEgws4ZWhdGYnACDs7XohljcYgVUIQGP/yEiaKQsOwYt2X+c56i5/CDb4Icb7EBENPhkWkEsBANNKY9/4555bCou7GhBEIGdkKltGKWTPHwoACLUdG5Ct4Vb49dks9J+pjA4AQNTfwxQLBCr1UAMAACAASURBVCAwIGckwZwFJ7xo93cOyF6PC3pBhd7CgEw0WGVYQB4BABgtNeHZ+WfjV1NGA41VseN6Y0qbRqmTlR8bQY646o8cC0VUONU2BIw5qWoWpZopFm5Uf9cjyO5gbIqFYOI800yks2THFnF6fZ0eC3pi03IkK7epJxqsMisgO0tio8Wt+3H+6HyYJB3QuBPIr0h1yyiFbDYH3JoZgrfhyLE2fwg5ghsRU24KW0YpFQ/IQrDrSgUdUyxEBuSMpLfH3ht8rs67cHYs7DRaWeaNaLDKrICskwDHMKBtf+z3aARo3g3kjUltuyilBEFAm5gFva/xyLE2Xxi5gguqhQE5Y8WnWIihrgOyJxiBHX7ozY6BbBWdIky22N2lgLvzLpwRX2wE2WTnHSiiwSqzAjIQm4fcui/2c+teQA1zBJng0ufAnLDddKsniFy4ILIGcuYyxYKvLuzu8mGvzw+jEIbBwoCcicyOWHWboKdzQI76YtNyjDZOsSAarDI0IMdHkBurYv/O5whypvMb8mCLHP2ga2hpgVkIwZhVkMJWUUrpjQgLBkhhT5cPB+LVLTiCnJkMttj0iai38xQLNb6wUzAxIBMNVpkXkPNkwFMPtB8CGpX4MQbkTBcy58OpHq1W0NJQCwBw5hanqkl0CgjpbTBGu94MIuSLjyyzikVGEsyxgKz5uqhy0jFv3cQvT0SDVeYF5DGXxf6trIsFZMcwwMhFNplOs+TDAS8iwdiKdFdzrOSb5ChMZbMoxcKSHXb44A113gwi7I+HIG4GkZnMsdFhrYsygGIwXvnEyIBMNFhlXkDOHwPkjga2PhcLycPPTXWL6BQgZpcAABoP7gIARFrju+rZGZAzWVSyww5/l7Vuox0BmdsJZ6b49Akh0EVADrkRgR6QzAPdKiJKkswLyABQcQVQ9wUQ9gMX3p7q1tApwFkyDgDQtO9rAIDVUx17IHdUqppEpwDN6IBD8MLl7zyCrAXjUyx4Byoz6Q0ICiboQp3rZOvDbvhFKzcZIhrEMjMgj62M/fvMa4G80altC50SistPBwD4ancgElWRHzgAl6EQMFhT3DJKJcHkgB1+tPlDnR88EpA5xSJT+fUOGMOdywAaIx4E9OwXRIOZPlkvJMuyFcDzALIBhADMUxTlkCzL5wJ4GEAEwJuKotydrGuetKGTgKufBsovTnVL6BSRlZ2Dw8iBrmUX6toDGCnUwucYCc4gzGw6ixN2wYddvs5TLISQN/YDF+llrJAhC5ZAO1RVgygeHS02qR6E9byzQDSYJXME+RcANiuK8j0AzwG4NX58KYA5ACYDOEeW5YlJvObJEQRg3AyuMKZjNBqHw+7Zi4MtXowU6qDm8u5CppMs2bDDh7YuArLYUf6NUywyVtiYjRzBdcwcdVXVYFG9CEvsF0SDWdICsqIoDwH4Q/zX4QDaZFl2ADAqirJHURQNwBsApiTrmkTJ5LWPxJDwQTTW7Ydd8MNUxA1kMp3BlgWrEESb13fM8UA4CqsaH0FmpYKMpZrzkA03WnxHp+B4QxHY4YPKxZtEg9pJTbGQZXk+gF8fd/g6RVE+k2X5XQDfAvB9AA4AiRO03ABGnsw1ifqbkD8GjqY1cFe9DwBwlJyW4hZRqkmWWKWCgOfYSgXuQAQOwYuwzgJJl7SZajTIiNZc5Ahu7PKGgPimm7G+4YOfX5yIBrWTemdXFGU5gOXdPHaxLMsVAP4NYCKAxK/RdgBdVFUnSj370LHADiCv5i1AAPTcYZHiISfkaT3msCsQhh1+RAwOSKloF50S9PY8OAUfWt1eADkAYn1jGHzwm5ypbRwRfSNJm2Ihy/Idsiz/NP6rB0BUURQXgJAsy+WyLAsALgWwIVnXJEqmIeUTAAAXCp8jorcADu6il/Him0GEvccG5I4R5Chvo2c0oyM2bOxtazxyzO0LwCYEIJoZkIkGs2TeG3wKwNPx6Rc6ANfFjy8EsDJ+7E1FUT5J4jWJkiaraARqx/8S+Yc/gr7kTNYwJSC+nTB8x40g+8NwwAfNyBCUycxZsY2EAu0NR4753bG+ordkp6RNRJQcSQvIiqIcBnBZF8c3AeB2dXTqEwQUz/5zqltBp5L4bmk4brc0VyCMUsELwVyUgkbRqaJjBDniPjqC7HPFArLByi9PRINZZm4UQkTUG/ERZF3w2N3SXP4I7PBDF5+CQRnKkgsAiHqbjxxyt8d+tmflpqRJRJQcDMhERN2JB2BDuA2aph057A6E4RC80Fs4SpjRLHkAAMF3NCB7XS0AALM9JyVNIqLkYEAmIuqOZEZENMKmeeELRY8cdvlDcMDHeaaZzhILwbpAy5FDwfgcZNbHJhrcGJCJiHoQkpzIggdtCbulBbxu6AUVAisVZDadBJ9ohTF0dBGn6mmK/WDhCDLRYMaATETUg6gxC1mCF63eo7ulRXzxRXscJcx4ASkLlvDRRZyGwOHYDzYu4CQazBiQiYh6oJmccMKL9oQR5Kg/vmiPm0FkvJAhBzbVBU8wAk3TYAk2wavPBvSGVDeNiL4BBmQioh4IlhxkCR60+o6OIGv++IghA3LGE6y5yBVc2NcU+xKVp7UgYMpPdbOI6BtiQCYi6oHemg2n4EGb7+gIshroGEFmmbdMZ3TkI1twY1+zF4ddQRQJLYhYC1PdLCL6hhiQiYh6INlyjplioWkaIt6OEWTOQc501pwi5MKNfY0eHHYFUCi0QXAMSXWziOgbYkAmIuqB3poDqxBES7sbAOAKRGCMemIPcopFxpOyhsEohNF4uBYNbR7koR2GrOJUN4uIvqGkbTVNRJSW4rvptbXEthOubw/AAW/sMVaxoNxyAECkcSc8OQaIggZLbkmKG0VE3xQDMhFRT+LzjN1tsfq29a4AHIIPqmiAKJlS2TI6FcQDstS2F4GW2JcpQ/bQVLaIiJKAAZmIqCfxEWS/q2ME2Q8HfNA4vYIAwDkcUUGPgnANXA3x6hV21kAmGuw4B5mIqCfxgGwItaPdH0Zde2wEWTSzggUB0Onht5VghFAPV+OB2DE7F+kRDXYMyEREPYkHYSe8qGn1ob49gFy9HwIrWFCHnHKUCfUY7/BBE0TAyjrIRIMdAzIRUU/iI8hZghc1rX7UtQeQo/NzgR4dYR0yBqP1DZheBgi2QkDUpbpJRPQNMSATEfXE6IQGAVmCGzWtftS3B5CHNsDGzSAoRsgdBb0agLnmQ8DBEm9E6YABmYioJ6II2AowVOdCTasPh9u9yIo0MwjRUfFKFnAdAr77q9S2hYiSIulVLGRZrgDwCYBCRVECsiyfC+BhABEAbyqKcneyr0lE1J8EZwnKAi1Ye9gDKdAMnSnKgExHFZwGiBLwnRuA06alujVElARJHUGWZdkBYAmAYMLhpQDmAJgM4BxZlicm85pERP3OOQzFQhM+39+CYqH5yDEiAICtAFhUBVzyu1S3hIiSJGkBWZZlAcCTAO4E4IsfcwAwKoqyR1EUDcAbAKYk65pERAMiqwR50UaEIlFcXByJHeMIMiWy5gGCkOpWEFGSnNQUC1mW5wP49XGH9wN4QVGUL2VZ7jjmAOBKOMcNYOTJXJOIKGWcJdCrQWz735Ng3VkD/AeAg7ulERGlq5MKyIqiLAewPPGYLMu7AcyPh+ciAG8CuBKAPeE0O4C2k2sqEVGKOEsAAFZ/bWwhls4IWHJT3CgiIuovSVukpyjKqI6fZVneB+AH8UV6IVmWywFUA7gUABfpEdHg0jHfuL0mFpAdxbydTkSUxpJexaILCwGsBKBDrIrFJwNwTSKi5MmKjSCj7SDgquUCPSKiNNcvAVlRlBEJP28CcG5/XIeIaECYsgCD/egI8vDzUt0iIiLqR9wohIjoRAQhNmrcth9w1bGCBRFRmmNAJiLqjawS4NBmQA2zggURUZpjQCYi6o3cUYDncOznvNGpbQsREfWrgVikR0Q0+F14BzDmMsBWCOTLJz6fiIgGLQZkIqLeMDmAkRekuhVERDQAOMWCiIiIiCgBAzIRERERUQIGZCIiIiKiBAzIREREREQJTslFetu3b2+SZXl/qttB30hpf7wo+0Za6Je+AbB/pAm+d1B3+u29g+h4gqZpqW4DEREREdEpg1MsiIiIiIgSMCATERERESVgQCYiIiIiSsCATERERESUgAGZiIiIiCgBAzIRERERUYJTsg5yB1mWRQCPAZgAIAjg54qi7E5tq1JHluUtAFzxX/cCeALAwwAiAN5UFOXuVLUtFdg/jsX+cRT7xrHYN47F/nEU+wZR107pgAxgBgCToijnybJ8LoAlAKanuE0pIcuyCYCgKMqFCce+ADALQDWAf8uyPFFRlK0pamIqsH/EsX90wr4Rx77RJfYPsG8Q9eRUD8iTAfwHABRF2STL8lkpbk8qTQBgkWX5TcT+v90FwKgoyh4AkGX5DQBTAGTSGxn7x1HsH8di3ziKfaMz9o8Y9g2ibpzqc5AdANoTfo/Ksnyqh/r+4gPwFwCXAlgI4B/xYx3cAJwpaFcqsX8cxf5xLPaNo9g3OmP/iGHfIOrGqf6G4AJgT/hdVBQlkqrGpNhOALsVRdEA7JRluR1ATsLjdgBtKWlZ6rB/HMX+cSz2jaPYNzpj/4hh3yDqxqk+gvwRgMsBID5PbFtqm5NS1yM2Tw6yLBcDsADwyrJcLsuygNgIwIYUti8V2D+OYv84FvvGUewbnbF/xLBvEHXjVB9BXgvg+7IsfwxAAHBdituTSssBrJBl+UMAGmJvbCqAlQB0iK02/iSF7UsF9o+j2D+Oxb5xFPtGZ+wfMewbRN0QNE1LdRuIiIiIiE4Zp/oUCyIiIiKiAcWATERERESUgAGZiIiIiCgBAzIRERERUQIGZCIiIiKiBAzIREREREQJGJCJiIiIiBIwIBMRERERJWBAJiIiIiJKwIBMRERERJSAAZmIiIiIKAEDMhERERFRAgZkIiIiIqIEDMhERERERAkYkImIiIiIEjAgExERERElYEAmIiIiIkrAgExERERElIABmYiIiIgoAQMyEREREVECBmQiIiIiogQMyERERERECRiQiYiIiIgSMCATERERESVgQCYiIiIiSsCATERERESUgAGZiIiIiCgBAzIRERERUQIGZCIiIiKiBAzIREREREQJGJCJiIiIiBIwIBMRERERJWBAJiIiIiJKwIBMRERERJSAAZmIiIiIKAEDMhERERFRAgZkIiIiIqIEDMhERERERAkYkImIiIiIEjAgExERERElYEAmIiIiIkrAgExERERElIABmYiIiIgoAQMyEREREVECBmQiIiIiogQMyERERERECRiQiYiIiIgSMCATERERESVgQCYiIiIiSqBP9gvKsrwFgCv+614ATwB4GEAEwJuKotyd7GsSERERESVLUgOyLMsmAIKiKBcmHPsCwCwA1QD+LcvyREVRtvb0Ouecc442dOjQZDaNBtj27dubFEXJT/brsm8Mfv3VNwD2j3TA9w7qTn++dxAdL9kjyBMAWGRZfjP+2ncBMCqKsgcAZFl+A8AUAD0G5KFDh2LNmjVJbhoNJFmW9/fH67JvDH791TcA9o90wPcO6k5/vncQHS/ZAdkH4C8AlgEYDeB1AG0Jj7sBjEzyNYmIiIiIkibZAXkngN2KomgAdsqy3A4gJ+FxO44NzEREREREp5RkV7G4HsASAJBluRiABYBXluVyWZYFAJcC2JDkaxIRERERJU2yR5CXA1ghy/KHADTEArMKYCUAHWJVLD5J8jWJiNJCMBKFcqAN4VovxowvgD3LlOomERFlpKQGZEVRQgDmdPHQucm8DhFRuvl4dyO+fHY7pgZE6AUBrf/ahy0OPcp/PBbDRmanunlERBmFG4UQEaXYpupmfLHsK1QGdagNa/jEG8HuoIpSVwThJ7bh9ae/RCSqprqZREQZgwGZiCiFGlwBPPv0l5gGA/ZGNBTMqcD0//97OPOOs7FzdA5aIxq+tcOFdXd/hJoWX6qbS0SUEZK+kx4REfXeA+t2YKFfB7emofhHxdj7xWq89eTHCAeDcOTlI1w6Fu0HR+HMkA177/sMO2aNxPfPLUl1s4mI0hoDMhFRiuyocyFnczOydUbUDAe2PnkX/KEQnGMnwGwyI+pux87PP4AafAPegu/hdMu5aF9djb9vbcD1CyZCp+NNQCKi/sB31wGiqlqqm0BEp5gH/7MD0wUDWrUoNm95HB5nPtxl43DQH8a+VhcORgS4R30L2RdchnrTQXxw+EVYhTAu3uvCyjs2oLHOk+o/AhFRWuIIcj/aUefCv1b9F2NqAxiuCVAFoMWsg25iPi6sHM3RH6IMtqfRg6zt7XDozfgKX6LNWYCw1YlJljpM9v4HNqOIwwWT8ZXpPGzZ2wzNUYCKCaX49Mu3MT56Ni6S8rDlvg9QeNV4TLiwBIIgpPqPRESUNhiQ+8mzH1TD+Mo+/FjSIwqgMVwLQYtiDIqh39SAz97fgUMjczH1Z2fDYjemurlENMBWfLQPswUjvGoIX3q+RrhgKC7Bhzjf4kGkfDbUdheG1H+AYcFXMXnI9/CObTq+3FUNZ3EhsouCaNuoYJylAgde2Yy39rpwybzT+KWbiChJGJD7wTMfVMO+dj++bZSwz/tfbG56E0PGysgZWoIG9zaI1QLGmE5DcU0UH9/+PLzySFw89xzYc7gpAFEmaPeFUbXpEH6ps+DT0BcI5hdjnFaFs0ZOwIGP3PD+9d+xE0UdzCPPQvZQBTMKb8HEivn4v03Z2KgoOO07FXB9uR2nm8ehYdsurHvYh6n/Mwl6SZfaPxwRURpgQE6ybTVtcK3di4uNBuxxfYFDOftx7W/+iuyi4mPOa9p9AMo/PkWFfRQ8+9vwym2Po3zqZThnmgydnqNAROls9ZYazApLiOpV/NfQALOm4eLcbOx/eD0EowGuOZehvdCKrEYfdB/9F7Xv69BUMBoF9SuxsNyODyp+hQ937oQ5x4z2yE58p60cUk0d1j20CZf/6lyGZCKib4hJLInCURWP/n0rLtOLaAnWoXV4K6656/5O4RgA8kYNx3f/MBvBacWI6gy4IOdMuN98Hc/99iW0N7LWKVG60jQNL328D2fp9NiC/yJiMuMi4yE0LvsI7gIr/mdeBD8vfRuLTK9ifslb+OGPavGvX4yD32RHzQfZqP/Ihu998VssKNkDi8kAJXgQ/8nbCbvejrK6Rrz+0MeIhrmpCBHRN8GAnETPf7gXV7dHYBR1qDb+F1f8+lbo9D0P0pd/pxxj7roYB7KiGJf1bZweULHq9oexZ0vdALWaiAbSJ3tbcPrhCCRRw3apDlnhFmS9XQOXTYcbp7dgfMX5+Mel/8Bbs9/CM1OfwfXf+jneKGnF3B814L2pQ+DaG0H12yNg+ehdLHA/iDOGWVDnrcXL2dtg1ltRVteCN/66EVHuvEdEdNI4xSJJ3IEwvvrXXlxkNGCvdxvOv/16SEYT6urqsHXrVuzfvx/BYBBWqxWFhYUYNWoURo0aBYPBAMkiYfIdF+Oz13Yg96MILpay8cmjS1F76XRM/uFErk4nSjJN0/DS5hpUHWzH6cOcmPHtgdt444VPD2C6IGGHcBARvYizGpoQPtyI++aKuPGi3+BH8o+O/J0vshZhYsFELJywEK/ueRVL7Uvx2jANt70pIfqhDfZmG66o+CMKC2fgjTZglf0LzHKfjtKaZrzz2GeY8v+dDVHk+0c6afI34ZDnEKJqFIXWQgyxDoEoZO5Y1+bNmwv0ev0yAOPBQT/qPRXA15FI5OeTJk1q6OoEBuQkeebdalwe8gNmCebvFsJZVIx169bh008/hV6vx4gRI1BYWAi3243t27djy5YtMBgMGDduHM466ywMHToU3542FnvG5KH1H1/gewVTULV+A149UIsrfzWVcwqJkmjdtjq88ux2TPLsx3ZRxA++dR0spv5/O2z3h7H5i3rcpDNjlb4a1mA7ct7din+dI+DKyl/jxxU/7vJ5Bp0BV4+5GpUjK/HPqn/i/xQ9iUs+0OGHH/rgrRuF089+H1l5O7Bam4oXrVsw0zcBJfsasf6Jz3HRL8+CwJA8qKmaijf3vYm/b/s7drbuPOYxu8GOSQWTcEHJBZgyfAqyTFkpamVq6PX6ZUVFRWPz8/NbRVHkhgPUK6qqCo2NjafV19cvAzCtq3MYkJMgEI5i1zsHcbnJitrQHkyYfg1WrVqFXbt24eyzz8ZFF10Es9l85PxoNIoDBw7gq6++wtdff42tW7eipKQEkydPxhh5DBy3T8a7D32I7zrPREttPVbf8Q9c+X9+CquT5eCIvil/KIqVq77CWY0vQYsehgl6vPavSfjR1Wf2+7X/71e1mBGWsN/YiIBOxRl79qHFDrT8+Pu4dfz1J3y+SW/CdeOvw1WjrsJjox7DneX/xE3/CkB904Sc75gwd+j/Y++8w6Sosj78Vuc4PTnnPMMwQ06CZFGSkkyroqIuroJrVnZVUBGWXUQF14SrsCtBEQwkBQFBosCQJ+ecQ0/nUN8fCB8iCMKAgP0+D8/D3L517qnu6upf3XvuOZ+yVDaWz9X7uNnSibCCOra8s4f+D3tmkq9WjHYjz259lm0V20jWpTJV8gLqam/srRKcUhdGZTPF5Vm8k/Uxr3m9Rt/wvtwSfwvXh1+PTPKH+IlP84hjD78ViUQiBgQEtFRXV6edrc8f4ttzqfl8VxlDbM3IdUHoB0ayes1a8vLyGDVyJF29GuDbp6DqINhNINci9QolJiSdmPTrGTZkKgcOH2XXrl0sXbqU0NBQBg0axMhpA3jnnV3cXOlDT3zZMu1DOv91AqEJAb/36XrwcFXz0bYi0it+RHTV0Gv8Xexc8QmlG76GyyCQP/uxjGkSGTulhchtZhL2Z/PJWG+mDXz5N4VSeau8mdZzGlnxY3gtfjrdPz3M0B21yGOD+VOntSxV3MDXqr3cZOlEZHErW1/fQb/HeiOVe1agryaarc3c9819FDeX8FzjY7TtCMcuKBDMVcitRSA40Wm8SZBEkCgkgsqLsoICXj/4Af8Im8OdHe5gQuIENHLN730qlxKJRxx7uBB+um7OelP0COSLRBRFtq0r5K8qDQ3OKswBERz95gcGX9eVrof+DqU7EVU+uAM6I/FJQHBZoLkE8jfC1n+iUhrolTiM7oNv4qC5B9/v2M3//vc/YmNjueO2G3hnYzmDMsvJ0Hek6u1NVPaLo+vYrp64ZA8eLgCL3cWPaw+RZtlLRIde9B41nr1bjuGsz6Qor4KYhLBLNnZ+bRvWYiOi3EaT1EJkcTHlAXDDQzMxKA0XZDPFL4WPbvmExYmLmbf0Df68pgZ1lYIJNxxmpTqV9ep9DDClElMXypaZm7nuqetR6eTtfGYeLgUWp4VHNj1CbW0Zz+1/lDp3BKrWLcgUxbTYWhGFnzThqUmPjBDSFESYLB0xL5qdx7L5NOJPjOs5ijuT70Ql8+Ta9+DhfPFMJ1wkO/Mb6N1Uj06mx5yiYOPGjSRGBnLdvsdo3ZND6dE+5H7mT+4/s8l+aRf5C+soz+tFS8f3cN38H0gZBfkbkX5+H12+Gc0Uny0MS9ZTVVnBwvffo19gI1uvj+Y/tgp8Ff747Gpi4/SVWE2O3/vUPXi46li+q4TU2h245QrqtV7Mmj0LjX8AComCnRt2X9KxV+4vZ5xbwRFZGRKnk84Hsjg6NoMB0YMuyq5MIuP+tPt57ImlzJsSTq6fHduXhdxYVowWM1u0x8hyFZBokbNjxrfUlRnb6Yw8XEpm7ppJcfFhpmy7n1qHAql5EX4akU6+g+kXcwfpcbcRHz+W2IRRJMbfREr49SQpYzAYq3Bat+Nq+ISk/HqG7RjFkSWN/GnJ/Wws2YgoeiZbLwW7du3Sjh8/PunE35mZmerRo0cnjxkzJmnq1KnRLpcLgPfeey9g5MiRKaNGjUr57LPPfADa2tokEydOjBs3blzSbbfdllheXv6Lp1iz2SxMmjQpbuzYsUl33XVXfG1trQxg/vz5gUOHDu0wfvz4pPHjxydlZ2crz9Z3z549mrFjxyaNGTMmadKkSbEWi+XkTNvp/u/bt08zatSolLFjxyY9++yzESf8P5WtW7fqRo0alTx69Ojkl1566RezC4sXL/abPn36z9ofeuih2C1btujP9j5OmzYtoqSkRNHQ0CBdtmyZ75n6OJ1OJk2aFLt+/XqvU9tNJpPkxhtvTD3RXllZKb/11lsTx44dmzRx4sS41tbW36R5r4kZ5M1789m6ZT9OP38eGduHYMPle0r+cn0BYxVuzC4Th501KORShhe9QfluNaZSN7IQG4abb0YeForbYsVeWIjpxz0Y161HUCrRDRqI983/QRshQyj4FlnuN/QufpkMVGzU3MzOnTvwMeiRDujN5G2VzBFlpNgC2TNtOeF39Sf2Mu6+9+DhaqbV6mD3qh3EOXMhpTdNrS2EKwMoslfTPWQAhcWFl2xst1vki/0V/FNmZYO0AZ/Kcqp9Xdz6wL/abYwOfh14755VvBo3gwOfrGHC9iMMCK5je98u7NaW0Go20kfaldy539EwvjvJfS/dbLmHi+Prgq/59ugXPPPD7VQqRXydu+gSNI4CpZGNslIsgvN4RxEEQBQAOaD3QyL64+uQom9qocVUjr1tJRG2EKJqB7Myfwcru37FU/3/Sqx37O94hpeGRTuK/VbuL/dvT5tju4TXT+wT3fBrfebNmxe0bt06P5VKdTK34ltvvRU6efLkquHDh7c8/PDDMWvXrjX06tXLtGLFisA1a9Ycs1qtwk033ZQ2bty4po8//tg/JSXF/Nxzz1UtXrzY7+233w6eNWtW2aljfPjhh4Hx8fGW559/vnL58uU+8+bNC5k1a1ZZVlaWdtasWUXdunU7uZYwf/78oNP7zpw5s+zFF1+Mnj9/fkFCQoLto48+8i8pKVEkJyfbzuT/iy++GDVt2rTS6667zvTKK6+ECh+GFQAAIABJREFULl++3PfOO+9sPNWn2bNnRyxYsKAgNjbWPmHChMT9+/eru3TpYrmY9/u1114rA9iyZYt+06ZN3rfffvvPxszPz1c+9dRTMfX19XKg/tTXnnvuuchTV9cXLFgQPHr06Ia77rqrYdasWaGLFi3ynzJlyhkzVpyJq14gv/ef1Ri/XYROPP6ZzM7OY87MB1Fchmp0dUYb6uwKQnQhZPoUUFlVxc3idurXS3Ha5QS98DQ+t9+OIP15BgrR7cZy4CCtq1fTunYtxnXrkQUFYbjlFrzHrUChsaPJ/prRWV/T0bydr1qGUp9p5M4YNVOq43jMWEJPdRStyzLZuOkw/abegFJ91X+UHjy0OxW5Teh9VXj5q/nX0kziarbgCE/G7rYz3NCLzo8O4s25b1Cis6GvtV4yP3YVNhDa4KBMXYkgQtqRbGom3kC4Prxdx9HKtcwaMIevI/rx6qqXmfRFHdev3MCeGwdxTCeh2bqJG1T9aV25j02Hauh7fzqKy5C9w8P5U2euY/au13hiy3VUqv0JF0oJCxzMGsUxTIIDpW8oPTI60bVDHP4+3kilUux2O8WVdeTsOkJTfgFG0URxoBZRSELjAFlzHfamr0koDEGovo6Zh98ncaAfk7s9dMHhPR7+n6ioKNuCBQsKnnrqqZgTbUlJSebm5map2+3GbDZL5XK5GBAQ4Fy7du1RuVxOcXGxQi6XuyUSCY8++mit03n8oaeyslKh1+t/MV2bmZmpe/DBB6sBhg0b1rpw4cJQgJycHM0777wT3NjYKO/bt2/Lk08+WX2mvrm5uUovLy/n+++/H1RYWKju27dvc3Jysu1s/tfX1yuuu+46E0C3bt3aNm7c6H26QP7yyy+z5HI5RqNRYjKZpDqd7ryTry9evNhv27ZtBqvVKqmsrFROnDix+p577mkYP3580iuvvFLy7rvvBhcWFmo+/PBD/0mTJp0Uwm1tbZLXXnut+J133gk+1d6bb74Z1Llz57ZT21599dUyURRxuVxUV1fLu3TpYjtf/+AqEcjl2UdRabT4R0afbBNFkXlvfIJ713IEqS/pN9zPke8+J6zkO95Y04Nnbu58yf1a+UMxPdzN2AVvstw1RMua0K4sxS3zIup//0HdsSNwPEVPVmMWR+uP0mBtwOFyoJFr8L49hZB7rif8YDXCmk00fPABDe+9h7prV7zH3IL+jq+IcTTwcOZyvt99gB118YyS/ojRr4n3m9L5kySOxEYNe55bTuitvYi7Lu6Sn7MHD1cT+fNX0WA3UhQcgb5gG06DgE2roYcrDt+tiyn43zTS+g9ip0FL6iWMz1xzuIpbRBd50io0Lc245CZG3fvKJRtvVNwouj/cnVdSXyTo8x8Ys24j+owMshITWen8hoFib6KK6tn40np6Pz4Qn2DtJfPFw29j1p5ZDP9eTqOqBxFCIargDqyTHUSp1TPx1ruIiY76xTEKhYLE6DASo4+vCtgdLjZ/c4yGPfswSpqpCgDBPwCd0Yyr/ks65sThqAzlr7tmMGBoJ+7scAdy6dUfmz6xT3TDuWZ7LwVjx45tLioqUpzaFhMTY5szZ07kwoULQ7Rarat///5GALlczrvvvhuwcOHCsPHjx9ec6C+Tybj11lsTi4qK1O+//37u6WOYTCapwWBwAej1epfJZJICDB06tHHSpEl1Xl5erkmTJsWtXr3acKa+9fX1sqysLN306dNL4+PjbRMnTozftGmTedCgQcYz+R8SEmLbsmWLbsCAAW2bNm3ytlgsv8g1K5fL2blzp/aZZ56JjYqKsoSHh9vP8y0TAdra2qRLly7Ny83NVU6ePDn+nnvuOfnZTZ48uXrJkiUBp4pjgE6dOv1ihvq7777Tl5SUqF5//fWSKVOm6E60SyQS7Ha7MHz48FS73S55/PHHf1MFtqtDIL97CJujkdpUCUMmjKPO5OSTdz5CX7ITiTyC26fPIDQ+EIOvN9s+mUnV2i9xjcxAKr10s8iiKHJoawl91b7slmdjs1tJ3/EDbreK6I8XoUpNxeay8d9j/+XTnE+pMv3/5yIRJLjFnz9o+Qzyoc+wPgzJkhOxLZ+qv79A9cuvoOvfH/2wYQx6ZDJp+Tv4esNWii2hxHgdoMSxBpllHPGqeFxfFrNz3UHSHh2KPvis4T0erjAaWsxs27CX1iN5CE0tuG2tmB0tmAU7MrUBvW8g4dHRRKemEpEajVqvOLdRDycp9XITRjCJtbnk+4LJN4wolz9x274G8370YeC/5Tu4eTSiWo3FaEStb9/vj8stsvFwNZ0U9bgENxG5x7D/aQR65aX9ngZrg1lw03t8nfQ109e+xm1rD9Lv+2p29+7JauWPpNvC6SKkkDN7LbrhnegwNP4Pu/m3uKWY7MZsbC4bQ6KGoJX/Pg8M2yu2U7T9W7q0TEKqzUcITmK3PI/ImHj+dPsElMrzS/WpkEsZNrIj4og0vt9bgbjmID7OCvL1NTi8OiCzgqx2IxkHw6kqFPhrwnTGjhrMoNiBf9hroL2ZO3duxKJFi7LT0tKs7733XsCLL74Y8c9//rMUYPLkyXX33Xdf/d13352wefPmtoEDBxoBPv3009ysrCzV5MmT4xcuXJj3/PPPRwOMHDmyQavVuoxGowTAaDRKtVqty+12M3ny5Fpvb28XwPXXX99y9OhRzZn6+vn5uUJCQqypqalWgD59+rQcPHhQM2jQoDNuSpg9e3bRyy+/HPnvf/9b6Ny5c5tcLhfffffdgI0bN/oCvPHGG4Xh4eGO3r17m7Zt23b4lVdeCX3jjTdCpk2bVnnChkqlctvt9p8JMYvFIlGr1W6AxMREM0BERITd4XBcsGD77LPP/Kurq5Xjx49PKisrU+Xm5mqCgoKKOnfubFEoFOLGjRuPbty4Uf/kk0/GfP755znna/eqEMjNQRGktYSjzM7l46kP4hZdeAFSVUdGP/0oBVU5rN+6GovNgt0njkDjMQZ9NpRFN31ItCH6kvi0v7SJjo2lSHwjKZDWkVSbi7rMTNjbb6NKTeVow1Ge2vIU5W3l9A7pzZTOU+gc2JlgbTBSQYrNZaPJ2kRFWwUFzQUcbTjK3pq9rIkogztEhpkSGJ6vJ3TPPowbNoBMhqZbN8Zc14d8fwPbjgmUEEYX+TraLE0Y7ROJkMRS//oeinwFEu7ugTpMd+4T8XDZ2VZ0mM+/Xkf3fDXxgh9RKj0mqTc2nQ5RF4pclKJ0yxDtNhz1jTRV7GPbpi9pcZiRqcMJiEoiJqMLcd2S8A/TeYpA/Ao2sYitCjkEARiIcwbSY/8hNLqdWO/tRIAgwvJDKF0SbAopufuzyOjfo1192FvcSEKzmRJdFXqbgJ+xhn4TX2jXMc6GIAiMjhtNnwf6MDfjX9St+5o7fviWvJRuZIZIqbBXMEh5HfINRWzaepSuU4fiHfjHmE1usbWw6OgitlVsI7sx+2T7nB/n8Frf1+gf0f+y+uNwO3h9x2zu3d6F+sBG/IMTyZQXk5yazq3jb0Ei+e36QRAEBnQP5/quYazZV46w5gjJ5lKK1fVYI6Pwc6gIac5Fu19CZnY5G2JmMWR4LwaneYTyxaLT6ZxeXl4ugKCgIEdmZqYuOztbOWfOnPCFCxcWyOVyUaFQuAVBEOfOnRscHBxs/9Of/tSo0+lcEomEhIQE24oVK06KudbWVummTZu8e/bsaf7mm2+8MjIyjK2trdIRI0Z0WL9+/RGtVuvevXu3fty4cQ1qtdp9et/Y2FibxWKR5uXlKRMSEmyZmZn6cePG1Z/N/w0bNni/9dZbhf7+/q5nn302on///q3Dhw9vmTx5ch2A2+1m7NixSQsXLsz39fV1abVat91u/9lFk56ebv7ggw9CjUajRK/XuxsaGqTFxcXq1NRUa05OjvrXrjFBEMTz3VD67rvvFp34/5QpU6JHjBjR2LlzZ8vTTz8dOXz48KaBAwcadTqd+7emA7wqBLI1pZ71+XVkCEH0lz/AnuZCFMERJN4Qysr1S2lrayNApsNkM2ML8kYptiBtrOGxzY/xyfBP0CnaXyiu2VJCX5nIPmkBgugkYWcOfg/ch37QIDaUbOD5bc/jq/Llgxs+oFdIr18cr5KpCNGFEKILoVtwt5PtxS3FfFf6HRtKNvCY7hBChsjA5giGlnkTnVWOee7reAPDQ4LJ6duXA9KOHFS76KVajqxVic05gvCmeBrmZ2LTCvgNiMaraxASzdW/fHa1c6y2nBdWvs7tx2IZpQmj1NDMBkk+TuEsYVsqkIoSvEVvfMVwQl1alHYnQm0rDevWUbr6S2xSLerwSGJ7dCaqYwS+IVqPYD6FnkIRsTvrMHoF4y8a0NZ/w+ddG1iabgCKCNME82wvEZ8mBw16MyX78ttdIK87Us0QaRPFEivh1RWIYwejUl5eEeqv9mfW9bM5nPIn3r7udYK//IGOB+M4mpbB55KtdLJHke5MpnT2BnISA+lyX0/kymu7eufmss18dOQjOgZ05OluT9MzpCfm3Fw+XfkGGze/xVb3Z4RkdOaeB+9Cobr0RZo+y/mMrmvLqfEfSGSQD7sUJcTGJF2wOD4ViURgVPcIhncN56uDFeSsOUKPxhyMujYaAqR4+2kINdXgld3G0dx8tgUdIqWHkjHD70WpUJ97AA+/YMaMGSVTp06Nk0qlolwud8+aNaskJibGnpiYaL7llluSBUGgd+/eLQMGDGhLTk62PvHEEzGrVq0KcLvdvPLKK0Wn25s0aVLdY489Fj1mzJgkuVwuvvnmm4Xe3t6uv/zlL+V33HFHklwud3fv3t04fPjwFpPJZDy9r1KpFGfMmFH8xBNPxIqiSMeOHdtGjBjRcjb/o6OjrXfddVeSSqVyd+3a1Th8+PCf9ZVIJNx777019957b4JcLhf9/Pwcc+fOLT61T3Jysm3ChAm1EyZMSNZoNC6n0yk888wzpXq9/pyxynFxcbbCwkL1ggULAh999NHz3lh3Kvfff3/tCy+8EPXvf/9bFASBGTNmlP6W44UrMeXL2LFjxZUrV578+4eP/sO28nJsLjdKUY4GJUaJBafoIlD0ooc9gSCHGqfo5Bt1FrVCE3Vmga0ZX/BAxweY0nlKu/rncos88cRK7pbDGs1hkvKy6G0zEbn8C74t/45ntz5LR/+OvDnoTXxVZ8xScl5UtFWwqXQT35d9z/7a/TjcDsKtGm6qCyG9wEXA4QpMSDnUuRPlYWFIXU7iHXn4G63YHd2I0nXAWxGAGxF5nBq/4SkoLtOsclJS0r6cnJxu5+752zj92vg17E431S1WZFKBEIPqd50RmbdjJRVfbaKfK508TSNtghWVzUFYaQkB9XXoW40obTYEUcQhl2PVKrEHqGn101PnHUSj0hcHxwWLRBTwEXUEuL0IdBsIEg0onCKNtgYa3HacQf4Ed04hNMGPoBgv5IorS+hcqmsDfnl93LyoC+UOO6ENx3f6lwZCtCqAG5MnEKQJYkn2Eoqa8pj2fReOREbTyRTMLf+c3K4+DZyziduaD9MkN9Jx81cMXL0erdeF3xfag73Ve1n0/TziVucj8e5Bo58fQWY7fcQe+En9qLM3IukaTer4tMsulC/XvcPZ1ETz+nVIXCK2nGzqv9/KUY0fZX4CbpUaBA1SYxXS2J48Puvv7e3OzzA7zEx6Zyi3ru+BKiGBvd71+Pj4MfnRPyOTtf88ltPl5vP95byzMYeeVYcI0lloVTiRiRKC7GporqfNJMOs1+OX3MatI0bgG9MLfudZ5TNdGwcPHizOyMg460yoBw+/xsGDB/0zMjKiz/TaVTGDHL1yPl5FTqrCw6hPScOuCybYGUCky5/gmjoajKuYnvQjD6X2p2f2EL6UthBibqJrYE++LviaRzo9gkRov3jk3YUNdDZVkhukQCK6ScnLI2TV1+ys2cNzW58jIyCDd4a8c9HVi8J0Ydydejd3p96N2WFmZ9VOfqj4gc21B/gwshShn4ukcpEe+TvpvsuXiogkcsJSyJc58Wkoo77tGC6Lhhh9OtF5Hamdn4lN0YJXTwn+g/siqLzO7cRVhCiKFNWb+D6nlu17j9GcfxgvSwMuQYoY35Uptw+he/TlFSZu0c2jn02n43cWIgOjyFRV4m1xMNKRRWrXdOR33I8kMBZkalwmM87aGuy52diyDmM5loV1ew6i/SgiYAvQ0xrhQ42fFxV6P3Lk/mT/9OMpVQj4KXUE4YO/xYpry15y1xnZ7XQi99UQnBFLdO90/MP1SC5hbP6VxuJbv2Nv5kKqaw+hUXrRudMkooI7n3xY6h/Rn5tXjqRSVQREg7t9JwzKm8yE15ZRq20m1KJE2j3+dxfHAN2Cu9H11v+xq98uFq2ZTeLecuoC0/ja/SPRbRK6yXuhO9zK4X1fY00IIvmWdHxDrq3Qix8/+pw9B/eiNdtwKGQ0paXi1Gtxq/9/EkFwhqAuO8Tmbzcz8IaBl8yX/x5dzM3rRByRERQaWpFJpNz7wMRLIo4BZFIJt3WPZFyXcL49lsai7UXYcrIYLK2jVmvFEaRG7ZYTaHbiyGzgoz3LEQxfkJHoT48BfdB36AHXwKY+Dx5+jatCIB+b8TCuDUtJ23UM5+48nBYpEjmIPnY+7qpg1fVyZjq09Cz8FLOyhTBbd6r93fRoS+RH005+rP6RniE9282fDVtL6KmSsFtaTXx+EZGPPkShxsjj6x4n1juWtwe/3e6lPTVyDYMjBzM4cjAAVqeVopYiiluLyWvKY3XDMepzDhGfexR/dxINAeHUS0IxNDZyxHyQg7U/kqBIJsW7F7ZtSvZ9tx27rpiwzt6EDRqKzNCuqSMvG6u+/4bDy5bSKDPhdImoHeAlyomTqXEr1bh85AhuG/KC1bz3rzW0/uUfDE4NPrfhdsDmsvH8nLtIq0ykNliHUrQzVO+g99QHkPjG/KK/1B8UUTFouv9/SI7odGLNycFy8CCWAwfwOnqMwAPH6Oh2IwItBgONQYHUBvjR4O3FEW0LokwCCpBoBfxEPX5uGa2HKyg50EC9S4kcKVKJBIlEgkQCEjlIdaAIUqGK9kGZHIHUX3tNxCAa1D4M7vP0WV/3V/vzZLcnWVT+Gp0tYJX+Mhn+xbAjv4HekmZqBRHf6iq6vjStXe1fDIIg0Du0N70e+IINQzfy0RdvkFYeTr5PCJVtm4ls09FF3ZPAEie5s1dTppAQ2a8rcV0C8AvTXfXXx1EFNMUE03RKmw7oorLj4wggzy6nmCas4UnsXLbkkglko93IoZULGai9idYAGW1CK/fdez863aVf7ZNJJQzvGMLwjiHk13Zk2Z4y1u0tZnhjPl4aK5VaC6IuCL1LiZfFTemRanJ//AyHbDUh3hqiY4MJTkvEL70zal/9VX9NePBwKpdFICclJUmAfwMZgA14ICcnJ/98j1/XksXG4HpkY/zoqg0nVpTQ6LSy1V4LgpRZfaYzIm4k1BxD/cmdJJhGUKFsRL+jHH03PV/mf9luAtntFmk8kEeTXgKIdDJX4xg/lkfX3oleoeffg/99SWKeT0clU5Hil0KKXwo3xdwEgDhEpKS1hEP1hzhUtJ/WPUWgM4BvJACZdjOHLasJlPiTrEgm0JZA+ZY2tqzfjERdT3RHLWlDB+MTefUUEHBuLsIdFI2P+FOyfMD10z+FW4ZeVGITHFi9/IixO1n80RME/fVt0sJ8LqlfLbYW3ntqDOHKPtT6yYh0eDN+4o14JSad++BTEGQy1B06oO7QAe68EwC3xYKtsBBHaSlBlZU4ampwNTbham3BUVFLvc1KvctFq1ZHk38Q+QY92XLJ8UICgNIlQe2SoHJJUTklKG0KtGYdhgYD6qw6ZGsLcLndWF0WXBInogokXnIUfhq0/n7oAgLRBvqi89Og1iuQXOUxzyPiRzM78GX6FMowy9tXIG8vqCdGbsPg1iBt20lgXFq72m8PBEHghuihDJ46iMWHvmD1luV0cISSrYMS82bCTBo6a3rQEw0F32xgxRc2NMHJJPeOJ7FHMN5B7TsZcLm4yS+A8soALFShFZrwc3uhEFPAKkciNWGWVRJnDWOt6jASXwNHjuWRlprQ7n4sP7aUEd+rMfUMoVRWS58uvYmMimz3cc5FfKCev49M5Zkbk/k+t461h6vIz8xlsKUcucZBhdaGqNOjEuWEuLxR2GXU5ZmpPLyLpv/uwCQo8Pb2ISg6goCkGPyj/fAL1XlKm3u4arlcM8i3AKqcnJzeSUlJvYC5wM3ne/DrA17nUP0hNpZsZFfVLlYbK9AqtAwNH85fOv2FMN1Pgi4oFWHkHLzfzwQFmFpbGRwxiO/KN+Fyu5BKLj6W7mhlC6mWcgp9LETWm4h45TX+vPkxWu2tLL5pMUHaoIse40IRBIFoQzTRhmhGx42GIdBmb+P73L18t3sf1spavKVqrFInpRwBQK9UEejljcrqonBvGfu/X4hEokaqMCMNakWTYcA3vRN++iC8ld4YFAZ0Ch1qmRqZ5PdfgBhxky+aT8swy4OQS3RoBBVeogYflwKdqxXsDZjtKip9DOxQZJMgS2Lmoln877l/IL1Ewq6urYbPHxmDGDwIo0pOV3skw565HYV3+2x2kajV/y+az8CJbNhuux1XXR22mlqysnI5WphDY2sjdpcTs0SGUaHGpVYCFqAFqDjrmHKjFEWrDEWhFLkoQSnKUIkKVKIcuShD6hYQXW5EtxM3TqQKCQq9mi53DsM/9vLM2F8oSqmSftpwlE4JFpkLu9mCQnPxn5UoitRlH8FXZiHB5kvgjde3g7eXDqlEyn2dxnFP+i28s2ct3/z4FUmCHItGQ764mwCrlARDPNdrI6lpzuLAZ+vZscIX76A4Uvp2Irl3FIaAq0csh4wbiVdQAdZjfrhMIhK1AkWcP+qOASgi9Ow+9CGrvnuXm+vGc1jrZs2nX5E2/cl29cHitJC3fCE+CePIVtfjL9UxdNQN7TrGb0UhkzA0NYihqUHYx6Wzs7CBzdm1ZGWXEleZjUFqolJdR5EG0BzfSOwn6vBxaZA5TDTk7aXq8DYsdgcWlwSZQoXeW49XYCB+UTEExUbhG+qFl7/KU6TGwxXN5bo6+wLrAXJycnYlJSX9pg0YgiCQEZBBRkDGuTsnDMU3YBP+pgDafJwMqPPnC7uRnKYcUv1SL8j5U9m8pwIvLxcOwUU3eSOvNn7GkYYjvDHwDZJ9ky/afnujU+gYkTaAEWkDjuduLm/hm4Ml7D1WiKWlnkiaMUtrcWndoD1+szM43SjtKlStahSb1DjXlVHpyOWou4Z6VTWN2kZqvJqo9TGjDA5k0fjP8VL8PvHMmm5jGKGVQVMxorUM3AIo9Qh6H1AZwB2EWHkI7afrsemeZ5/3UTqZtbyzZSePDurT7v5UNJfx7cO30hw1CKdSwfW2BPo8d0u7iePfgkShQBIWhjwsjO5dOtP9tNdFUaTVYqe4roaqyhKayssw19dibWzAbmzBZbGAU0Qp1SKTaZBIVbikMhwSMEms2KQunL+SNUfqkFA5fyH3zru0G5zagyFh15O310mbwkpzfjmB6Rc/U1jcYCbNUoZdLeJlNNPl9kfawdNLj1Qi5dFeo3ik50g255WwaMcarFWF2EUpdZJcUIC/Uk+UTyd0Fictjcc4sHwt25cKqLwiCE9Oo+PAnkRnxFzRS+4ShRT9oET0gxLP+PrApPG8eOBNJh06hBDlj8LYgsPpQi5rv02La3K/ov9uPXnXSZCJAvdMfeiKes8UMgn9EwPonxgAoztgtg/lUHkLRypaKCwowp1/DJ2pDrOsiSZVK46fRDNIEEQVWlGJ1C3F7HbgaKqgtaGaiv17UKFCjRq1qESGAqkoBUGKUyFH0GuR+upJGBmLb6gnVamH34/LJZC9OD5FdQJXUlKSLCcnx9nuIwkCAUMGELKygiMaI+FHGiEKfqz+sV0Ecum+HIK0LvztSvaO78C6go94rMtjJ2ODr2QEQSAjwpuMCG8YmUFZo5lN2bV8l1XDkcIqOokmEiQmXDIjFbI23FoRsKAUZXiJGvRiLFHuBKIcbuwmN5ZmEeGgBXpUQPzvtOFPKoe0scfP7yxdhI7jCe37GI5Zj2E2DuOAvgDb5vW4B/Ru1/CA0pYSNj58G3WRA3ApVQywJJMx9QaUv4M4Ph8EQcCgUZIRFUnGOZZ0RVGkwWQnr7ae3IYKipoqqTU30GSqw9HWiqzFiNJmR28Ff5cWL1GNWlBjj/O7TGdzcfTrcCdZX36ARZBRvTe7XQTy0coWdIIboyhFaa1B6eXdDp5ePgRBYFBiNIMSH8Fid7Epu4aN+3MpKzlELA3Uy4zgBTq9llBXX2KcWlQ2J5KCFopzvyJHdCEqVahDg/DLSCC4Qwxe/hqU6qtj1tBb5U2CTwL7g3YR6ZxIha6RH/YcZmCfTu1iXxRFjn36AXEZw2mSGukVk46X4creOK1RyOgV60evWD/oFwsc/91zuNxUNVsoK6ukIvMwppIynGYjLuy4pBIsUoFmhRub4DoZCnc6ElFAKyrRmlXoTCqM7+xhyCsPXL6T8+DhNC7XnaoVOLVslOSSiOOfUKf3x2vZZ4hyqM4rJrpjNHuq9zCxw8SLsttsthPccIy2YCcpboFpBUu5KfomJqVNaifPLy8Rvhom9olmYp9oLHYXPxY3sjW3jjW5dRTWthIgmIlTWklUmjG7TLS5mrBJnLjlp8wa+kKbQ8mVfVsHtH5ETf+Q7CnziFb5USpvZPWeI4zu1bFdzNeZ61gz9TbawvvhVGkZYu1AyNhu6MMN7WL/90YQBPx1Svx1YfSOvXpi1M8XnXcUNmkL4Ed1cRXp7WAzp7QKm9xNqNsPr/RLn0f3UqJWSBmRHsqI9FBszn58n1PHV/sKKcjLI1ZsxCSpJlclggqUbim+bh1+eOMtalG1yOD7Kiq+zeOIrYF6eysNLiOCn4pJs565ZJka2oNuQd34Mr6Ev+42URLu5tiWPe1J3JA/AAAgAElEQVQmkA/WHiDtoI6j6SYC7GpunDi2Xez+HsilEiL9tET6JUCnXz5cWmwOsrIOcTR3FzXlOZgbypG0tKAyi6hcaqSocMvUOBVaTGodTUoVVvGMBd6uWHbt2qX917/+FX6iuEdmZqb6pZdeipJKpWJERIRt3rx5xVKplPfeey/g66+/9hcEgXvuuad6woQJTW1tbZJHHnkkpq2tTSaTycS5c+cWhYeHO061bzabhSlTpsQ2NTXJNBqN6/XXXy8ODAx07tmzRzN79uwIURTx9fV1LFiwoEihUIjPPPNMZH5+vkYul4uzZs0qTkhIsOXl5Sn//ve/RzmdTkEul7sXLFhQ6O/v7wLIy8tTPvLII3HffvvtMYDCwkLF008/HSOKIsHBwfZ//vOfJVqt9mf5izMzM9WvvPJKpEQiQS6Xu+fNm1cUHBx8Uttt2bJFv2TJkoD333+/8ETb9OnTw2JjY62nlpU+lblz5wb37du3NT093bJs2TK/++6774wp/KZNmxYRExNjffDBB+sA/vOf//h//vnnAVKpVHzooYeqRo4c2dLQ0CAdNmxYWnR0tBVg4MCBTY888sh551S+XHem7cAo4NOfYpAPX9LR5GrkNidooMZqpY+hM19Wf4vT7byouNnt2XXI9G4UooyVUQdI9ElkxnUzrqglsQtFrZByfWIA1ycG8HegqsXCjvwGdhU28F1RA2WtJ8qfi4TqZKSo3aQ5rQTJ5HjHRPyerp8/MiXXv3QXn09fjRAkkLN2NbSDQLY4Lfzv+TGIvr2xanTcaEvHFR9AZK/Lv9HGw4XjNjSD1Q+zydou9uy5P2KXugm26ukwYVS72LwSUMqk3NAhmBs6BNNm68GGY9WsP1zFwbwyvNwtBErNRCiNVLlK+dm6jhLkohStqEInBqBzCFgb6tAFhfxu53Iuugd3Z2n2UnzqM1GEpSEaW9vN9ner38ErsQ9g5br+V3Z8+sWiVsrp0qkrXTp1/Vm72WGmsq2SanM19ZZ6GiwNNJsasBnr6dHpAmaP97zvx4Gl7ZuSqdMd9fR46Ixi7gTz5s0LWrdunZ9KpTopIN96663QyZMnVw0fPrzl4Ycfjlm7dq2hV69ephUrVgSuWbPmmNVqFW666aa0cePGNX388cf+KSkp5ueee65q8eLFfm+//XbwrFmzyk4d48MPPwyMj4+3PP/885XLly/3mTdvXsjMmTPLXnzxxej58+cXJCQk2D766CP/kpISRVZWltput0u+/PLL7J07d2pfffXV8EWLFhX87W9/i3r88ccrevfubVq5cqV3bm6uyt/f3/TJJ5/4LlmyJKilpeXkjsqZM2eGT5gwoe72229v/Oijj/zffvvtoGeeeabqVJ9effXVyBdeeKG0c+fOloULF/rPnz8/eObMmeUX83Y/+eST1QBFRUWKVatW+Z8ukGtra2WPP/54THl5uTImJsYKUFVVJVu2bFngV199lWW1WiW33npr0pAhQ1ozMzM1gwcPbvzHP/5RdqaxzsXlEsirgKFJSUk7OH7HvO9SD+hQuvES1TT7B9O70ZclDhNZDVl0DLhwQZS/7gdaNW7inQF8pS9nWf9lqGVX5vL5xRJiUDOuazjjuoYDxwXzwbIWcmuMlDWaqWi2sK7Nhlou5Wr66VcHhxMSpcfVYqVY2UJpVT2RIRd3P10y9x6U9o7UBRq4ydGJRreDoff/snqihyubEH8ppeVgPVtlw9+IvL4Cm0KK2mJFF3ptPizplDLGdA5nTOdwrI4u7CpsYEdBAwdKmzlW1YJoM6MT7GgEO15SB74yJyESB1aXiRa5BIVvwO99Cr9K16Djgq4l0Y6/XUODwkxti5lAw8VtRrQ4Lfhuq6MkOpQIs5ZOw3q3h7tXHRq5hnifeOJ94n9vVy6KqKgo24IFCwqeeuqpk/k7k5KSzM3NzVK3243ZbJbK5XIxICDAuXbt2qNyuZzi4mKFXC53SyQSHn300Vqn8/jEa2VlpUKv1/8inU5mZqbuwQcfrAYYNmxY68KFC0Nzc3OVXl5ezvfffz+osLBQ3bdv3+bk5GTbf//734C+ffu2APTu3dv0xBNPaM1ms9DU1CTfuHGj99y5c8NTUlJML730UjmAwWBwLV++PGfw4MEnBVJJSYn6hhtuKAHo2bNn26uvvvqLmbD58+cXhoaGOgBcLpegVCrPO5H8li1b9B988EGwTCZzV1VVKYcOHdr49NNPV58oFf3NN9/4lJaWqmfPnh3y3HPPnRTmbW1tkilTplRu3rz55PLs3r17tR07dmxTqVSiSqVyhYWF2Q4dOqQ+dOiQNicnRztu3LgkHx8fx8svv1x2wt/z4bII5JycHDfQvuWpzoEiMgjfWht1BgNRRSYIhEP1hy5KIAtlmbiDVQiCled7PU+0Ibr9HL7CCTGoCTGouTHtys5IcD50vnsk5TM/QAwS2bj4U+5/9i8XbGv72jeRHlVSGxtEf3sqVmMbPf52yx+qGMe1QkZYJBVlAg7Zxa8I1Rqt4HQglctRyMzt4N2Vj0ouZUBSIAOSAoHjKTHLmyzk1RopbTRT3WKlyWynymjjqMmOTiVDKr2yqjyejq/Kl1hDLPsT5MQcErD5Odny9XZuvWvoRdn99ug6rME9UIouEtPaJ8zLA9DjoYZzzfZeCsaOHdtcVFSkOLUtJibGNmfOnMiFCxeGaLVaV//+/Y0Acrmcd999N2DhwoVh48ePrznRXyaTceuttyYWFRWp33///dzTxzCZTFKDweAC0Ov1LpPJJK2vr5dlZWXppk+fXhofH2+bOHFi/KZNm8wmk0nq5eV1UmRLJBKxtrZWXlpaqurbt2/r3/72t4rHH3886pNPPvGbOHFiw8iRI39Rcjo+Pt68Zs0a77vvvrth/fr13lar9Rc/aifE5vbt27Wffvpp4NKlS3PO5/06sepeU1OjWLdu3VGbzSbp169f+tNPP119os/UqVOrCgoK1KeKY4DY2Fh7bGys/VSBbDQapTqd7uT5ajQaV2trqzQ+Pt6anp5eMWTIEOPSpUt9X3jhhYgPP/ywkPPkmv0V9+2YiMGtwqSU4jqYTYA6gCP1Ry7YXmtLG1adAq2opDXWeTyNmoerEt9wA6JGS6BLT0NbA273hc0YWuvKKfvwG4pj40m1hxJgVaAe0g2f4Gur4tgfhQ6R3VC5ZNikIm6b7aJsHa1owSlT4i/q8e0Q3k4eXl1IJAKRfhoGpwRx33UxPD88hTnjM/jovh58+WhfPnmg1yVLtdiepPqlskNfj6KmCUEUaCo47xT+ZyVr2QpqVDZCzCp63T6kHbz0cKUxd+7ciEWLFmVv2rTp6MiRIxtefPHFkzOwkydPrtu+ffvB/fv36zdv3nxyf9ann36au3jx4py//vWvcXl5ecrx48cnjR8/Punjjz/212q1LqPRKIHjglCr1br8/PxcISEh1tTUVKtCoRD79OnTcvDgQY1Wq3W1tbWdfPoURVEIDAx0qNVq98CBA40SiYSBAwe2HDly5Kw/Vi+++GL5li1bvMePH58kCIJoMBicn3/+uc8Jn/bu3av5yWefl19+Oer999/PCwwM/NneMpVK5XY4HD/7kpvNZumJUJTY2FiLXC5Hp9O5FQrFBZcx1ev1LrPZfPJ8zWaz1GAwuAYMGNA6YMAAI8Do0aOb8/Pzf9PSzzUrkINiQlDbAQFqKyro6JvG4foLD30+9vFiLFoJUa4ARg269ZqIO/4j03XkDXi12jFJXRxaveGCbHz/1z+Rl9IFH4eS7q54cjXQddSZU0Z5uPJRBSSicEkwS53YK86eE/p8KC84ik0mEOD2ImrgtR1feq2T5JNEla2WIKEVb5cSm9N0UfYazUZ87LHHU2qqdMgVV+4mRQ8Xjk6nc56YxQ0KCnIYjUZpdna28v77749zu93I5XJRoVC4BUEQ586dG/zJJ5/4/nScSyKRkJCQYFuxYkXOihUrcu699976Tp06tW3atMkb4JtvvvHKyMgwxsbG2iwWizQvL08JkJmZqU9MTLR27dq1bevWrQaAnTt3amNiYiwajUYMCwuzbt26VQewZ88efXx8vOXM3sOmTZu8nn766fIVK1bkSKVSevfu3Tpu3LimEz5169bNvGTJEt9ly5YFLlmyJCcuLs5+uo2UlBRLfn6+prKyUg5gsViEgwcP6jp16nTOZTWJRIIoni3nyc/p1q2b6eDBgzqLxSI0NzdLS0pKVGlpaZannnoqetWqVT4/nY8+MTHxNy3nXbPfTO9ADVL78dy+TSoV3d0RbGrdTIutBYPyt2cWKNy3HzE2nFC3NyGR12Y84R+JuK4RbF/UhtxbxcEf9tBp9LDfdHzNey+R45uOKBG40d6NnLZiBvzttqu+qtwfGp9oZC5oUVixFJSgio29YFPOoj2IEvBz6lBFXtlxth5+nSTf49Uv5ZES1DaBGo2J1mYzXt4XFof84fplWHRyIm160m8d3p6ueriCmDFjRsnUqVPjpFKpKJfL3bNmzSqJiYmxJyYmmm+55ZZkQRDo3bt3y4ABA9qSk5OtTzzxRMyqVasC3G43r7zyStHp9iZNmlT32GOPRY8ZMyZJLpeLb775ZqFSqRRnzJhR/MQTT8SKokjHjh3bRowY0eJyudi+fbvXLbfckiyKIrNnzy4GmDlzZvGMGTMi//WvfwkhISG2l1566YwZIgDi4+OtTz75ZKxcLhdjYmIs//jHP0pPfd3pdDJ37tzIgIAA+5///Od4gC5duhinTZtWeaKPwWBwP/HEE2UPPPBAvFKpdDudTsltt91Wm5CQYKuoqFCcPuapBAYGOhwOh/DSSy+FzZgx41dnLEJCQpy333577YQJE5LdbjePPvpohVqtFp977rnyZ599Nnr58uWBKpXKNWfOnJJfs3M616xAVqhluB12pKKEFm9vkhtUABytP0qfsN9WIMLV3EyNlw9yUUqwbwCCRwRd9Wi8FEh8gwh2uKhQGbGUlKCOijqvY50VhexYv4/GjG70ssbitJvwHdYH31BPaMVVjVyFTHRhF5xU5OTgM3TgBZuyNNQCXujsAoLUc7+4mjkhkOtTtQj7RFxakR+3HWHwqB4XZE/YfQS32ge50U5Mp6skA5CHcxITE2P/6quvsk/83a9fv7Z+/fpln97vp5jan8XVBgcHO5csWZL3a/a1Wq174cKFv4ifHTRokHHQoEFZp7ZJpVLmzp1benrfTp06WVatWnXWOOHdu3cfPPH/Xr16mdasWZN1tr4ymYx9+/Yd+DWfAcaMGdM8ZsyY5tPbBwwYYDwR/nDq2PPnzy8+0bZ+/fpjZ7P7/PPPV5769/33319///33/0zwx8bG2j/77LNfxHOfL9dsiAWAGRfeopYW3wCCK8wICByqP/Sb7ZR9+QltBhXhLj/8OnpuaNcK6df3R91mwi5xc/CjT877uKK/TeFYSjpqJ3QgmkKFnW4jky6hpx4uFxKO7/Ooq6g5R89fp80CMlGCSn7uvh6ubHxVvgRqAjkQYsbVejwFYHn2hcUh59UYkUp98XZr0IZHeFacPHi4grmmBbJVIcFH1GI06BDziog2RHO0/uhvtnN03Re45FJCRR/U0VdXNSwPZyflugRMzXUoRRnZDa04m5rOeYz5+9XsdnjjkMsY5uhClaWS6x4b7vmhu0aQ/7SmZmo770xAv8DmdOEQFRhEDd6xQe3kmYffkySfJA7ZCtHZRHQuBW3Guguy87/vv6NFIRJgkZN2gyc23YOHK5lrWiCLeg1ebjVmhZy23FxS/VI51njWGfszYjO2YLUc32Qa6vZFEaE/xxEerhYMARrMCh1hDgPlPmpq/vu/X+0vOp3kzv4HBXFx+DqU+As+uDtF4huiu0wee7jUqFXHK97Z3Beefqy8uha3TIG3qMXnDFXFPFx9JPsmU9RShJ9OgdYu0ioYcTt/e/YbxaHdAAitVqLSrtwCKR48eLjGBbJXkB8a1/EpoRaTiXRpNLXmWuotZ41L/wV7139MVWgEKpcUpVyORONZM72WiEhNR2s045SIHNmyDZfx7OVNm96Zw/7geNyCyGBnZyrt1XS/x1MQ5FpC6X38Adgh/dX9I79KQ+EBXDIJBrcGRYjngfpaIN47HpfoQhOqR2qxYROcFB/9bcW5ShpMqN1KfN1aXDodcuWVnQPag4c/Ote0QPYJCkLqOJ55pE2nI7npeNW7Yw3nP4tcsfFLmny9CHYbUAZ7ZgqvNTr2742xpQidqKI4PJqG9947Yz9HRQV5y7+mNDKSQKsag0SP34iOSD0FQa4pdIEhCCI4ZTLc1gsrOV1etB8EMIgaZAHXZqXNPxqx3sczmtiipDisx1O9Zh/6bXHI6w+UYJSDr01BTK8/ZuU8Dx6uJq7pX3e/sCCwH0/z16bXEVp3/MZ2vgK5zd6GotiESy4lXAxEH+9J13StEdMxjCaXiyiHH9U+Gso//Qx76c83/4ouFxWPTeZwSipuwcUAdzq1rnriBif/Tl57uFTogkJQijLscimW8l9sAj8vKmuKAdC45EiU12yioD8UUV7HM9yURVlwWGVIRIHayspzHPVzsvZvRRRAZjKT2MOTL92Dhyuda1ogewf74nCYUYgyTN4GxMJSor2iz1sgf3/wCxSCLwCBogFlmGe59FpDppCiC07Ay3j8QSovIZ7yx/6Kq+14MQDR7aZm5muUVTVRHhZBgFmNQWogYHjq7+m2h0uEPjQMpVuKXQZVBQfPfcAZMDcdLwillnjE8bWCWqYmVBtKjqIGpVuO3qXAZD7/isZGq4OQ5kqUohyz2Y6/Zy/LNceuXbu048ePP5nOKDMzUz169OjkMWPGJE2dOjXa5TqeIee9994LGDlyZMqoUaNSPvvsMx+AtrY2ycSJE+PGjRuXdNtttyWWl5f/IpazublZes8998SPGzcu6eabb07esWOHFuDbb7/1uummm1LHjBmTNGfOnBAAl8vFk08+GXnzzTcnjx8/PulEIZEvvvjCu3///mknquFt2bLl5LL46f7v27dPM2rUqJSxY8cmPfvssxEn/D+VrVu36kaNGpU8evTo5Jdeeins9NcXL17sN3369J+1P/TQQ7Fbtmw56xdg2rRpESUlJYqGhgbpsmXLfM/Ux+l0MmnSpNj169d7ndpuMpkkN954Y+rp7QsWLAg83Y/z4Zq+g+t8VFhcDrxENSYfb2z5+aQMSWF/zf7zOr5w4yoM/v5I3CLeoha5p4TwNUmH6/pS/NUyor2TKYh3kbLqK0rvvx/vceNo27IF4+bNHBo1CLfEyUBXJ5poJm1A39/bbQ+XAN9Af+RuCTapm7rCLOIvwIbLpUHtlqPSX1ghCQ9XJjHeMRS3lpAh6wJ2J03qNtx2FxLFuWOJdxY04JJKCXV6IfhJPVlvLhFLs5b6fVXwlX972hwdN7r+jpQ7fvVpaN68eUHr1q3zO1FCGeCtt94KnTx5ctXw4cNbHn744Zi1a9caevXqZVqxYkXgmjVrjlmtVuH/2Dv3sKrKtP9/11p77fOJDZuTImxANuQh1N7UzMQOvmmICHiocdSfTg6V4ziJM1rp5GuFo8Or5SFTmwDLMmnMUsym0BlylExNzWAjCsgZOe/NPq+1fn9s4QUFD2U5sZ/PdXFdrGc9h5sHWPte93MfJk6cODg5Obk5MzPTLyYmxrps2bKa7Oxs382bNwemp6d3c3LfsmVLwP3339+2cOHC+qKiIsnzzz8f/umnnxauWrUqNDs72xQREeF89tlnDfn5+cqGhgaR0+mk9+3bV3Ts2DHFK6+80j8rK+viuXPn5L///e8rk5KSWm4m/8qVK0NfeOGFy2PGjGlfvXp18O7du3VPPfVUU9dxa9asCdm0adPF8PBw57Rp06JOnTolGz58eK/V+W6F1157rQIAjhw5osrLy9POnDmz25olJSWStLQ0Q0NDAwugW0DZsmXLBnStcmy1WqklS5aEFRYWKuLi4m6epuoa+rQFWa5mYeM5qAU5zHI5HCUlGKwbhDprHa5Yb5ymx+qygj5rQr2/P1RuEQRKAOMj/ZkkJ/ycxD4yHLX2OkS5AuCkGNROfxjuujrU/vnPsJ4oQH1cCK4o9AgwK6BlfaF5OIyUGu+j+KgkYDgKDsqN9prbC8ICAHBuuGkZNIIcsv4+d15Awl3DoDagrK0MOp0vKJsZTsqNiu9vzQ0n/0wJnLQAmd2FkCGxP7GkhJ+b0NBQx6ZNmy52bTMajdaWlhaG53lYrVaGZVlBr9e7c3Nzz4vFYqG2tpZlWZanaRoLFy6sT0tLqwGA6upqsUqlus5c+8wzz9TNmzfvCgC43W5KLBYLDQ0NIqVSyXWUeY6NjbV8/fXXym+++Ub54IMPtgLA6NGj24uLixUAUFRUpPj73//ul5SUZHzppZf6u1yuXuVvaGgQjxkzph0A7rvvPsvJkyevC8Lat29fYXh4uNNsNtPt7e2MUqm85dQu2dnZvk8//XT4r3/968hHHnlkUHZ2ti8ApKSkGAsLC6Vbt24N/Pbbb1Vvv/12txcei8VCv/baa2XDhg3rFlH/+uuvBwwbNswSGRnZWU7abrfTU6dObZw3b163wiy3Sp+2INMMDRtFwUeQoZSVwG02YyjtKfRxtuEsHhnwSK9j86vyEV4FFEQpEWlXgdfSpIJeH0WukUKsDYOtrQphrB7HBR6D0h6Hr0iHhrPZyLeNBC0XY1xbDFqEFgyaQKzHfRUpy4DhKdgoF1y1TTcfcA2WK2XgRWJoBAVUob4/gYSEu0W4Nhw2tw3yYDWc3zcDvjIUnbuI0FjDTceaL34HLQDB0oqwe0nqv5+KJ2OebLyZtfenICkpqaW0tLRb6huDweBYu3btgB07dgQpFApu3LhxZgBgWRZbt27V79ixo19KSkpnRSKRSITp06dHlZaWyrZt23Zd9TcfHx8OAGpqakRLly4N/9Of/nRZr9e7HQ4HXVhYKB04cKD9q6++0kRFRVnb29sZtVrdqWTTNC24XC6MGjWqbdKkSc0Gg8GZlpYW+vbbb+tTU1Ov9CR/UFCQ48iRI8q4uDhLXl6e1mazXXdUwrIsjh07pvjjH/8YHhoaauvfv7/zFrdMAACLxcK8//77F4qLiyWpqamRs2fP7vzdpaam1u7atUs/f/78blbi2NjY6yzUX375paq8vFz6v//7v+W/+93vOhV5nU7HTZgwoa1D+b5d+rQFGQBcYhHUggwCRaFdoUBoIw0RLcLZKzeuqPfV+YNQ8D4ARaEfFQDZAFIgpC9j/K8HUG4+iwddMZDTNHaebMH+gjxk2+KgUioRVqWAVuwL2ZgA8qLUx6E5AQIlAObbz3NbWHoCgoiBUpBC5EMyWPQlDGqPIuzsz8Bl50ELFGprbm6YqmiyItBxBWpehla7C4EGzU8tKuE/gIyMjJCsrKyivLy88/Hx8Y0rV67sLMObmpp65ejRo2dOnTqlOnz4cKc/7ocfflicnZ1tWrx4ccSFCxckHb7CmZmZfgBw9uxZ2ezZs42LFi2qjIuLs9A0jfT09NKVK1cOmD179sDQ0FC7j4+PW6FQcBaLpVOhFQSBYlkWs2bNaoiIiHDSNI1HH320pbCwsFc/sDVr1pRu27YtaPr06VE6nc6t1WrdW7du1XfI1OEnPXr06Pb8/PxzRqPRumHDhm7JvaVSKe90OrvpmTabjZbJZDwAREVFWQEgJCTE6XK5frA+umfPHr9Lly7JUlJSjF9//bVm/fr1/U+fPv2jH8B9XkFmlAooOM+LkUWphHCpHNE+0TdUkJ2cE1e+zkeTzuMf3g96KELJcWlfZkzKY2hytaDN1YQ4YSTCQsNRxNwD46ChEAcOxmjWiAZ3PcIT/+tui0r4qenQi12S2x5qKvME9ikFKRjt7Y8n/OfSkeqtpl87aMYHak4M8y0E6uUX18PN8NC7FeClasjVPzzHNuGXg1KpdHdYcQMCAlxms5kpKiqSzJs3L4LnebAsK4jFYp6iKCEjIyPwvffe010dx9E0jYEDBzpycnJMOTk5prlz5zacP39eunjx4vB169ZdmjhxYlvHOv/85z/V77777oV33333QmVlpWTcuHFtI0aMsPzrX//SAMCxY8cUBoPBxvM84uPj76moqGAB4N///rdq0KBB1p5kB4B//OMf2jfeeOPShx9+WNzS0sI8+OCDbampqVc6ZAoODnYlJSUZm5qaGABQKBQ8TdNC1zmGDh1qPXHihNpsNtMA0NjYyJSVlcnuueceO4AbuipSFCUIgtDr/a5s3bq19OOPPy7Kyckx3X///a1/+MMfKocNG/ajfKGBPu5iAQAqHx8wDS5ACth0ajhKSjA0eij2luyFm3dD1EOk+de1XyOszIYWHy0YToAcErB6EnDTl5Fr5PAJHYbvag/jYXYmwg2PY+b/G4CaJitMqz6BTNYPzjgF8T32AnjB8zvmGRUEQbit33lDdSWASI8FWUtiFvoSPhIfqMVqXBZVQE1pIXZyaGTM4F0caLb3QL2C70rgQwmQ2Z2Qh5PUkN7CqlWryhctWhTBMIzAsiyfnp5ebjAYnFFRUdbExMRoiqIwevTo1ri4OEt0dLT9+eefN+zdu1fP8zxWr15deu18a9eu7edyuehXXnllAAAoFAp3VlbWRX9/f9eUKVNiJBIJP3HixMbBgwfbY2Ji7EePHlUnJiZGC4KANWvWlNE0jT//+c/lzz77bKRYLOYNBoNt7ty5vVZNCwsLs8+aNcsolUr5ESNGmCdNmtTa9T5N05g7d27d3LlzB7IsK/j6+royMjLKuvaJjo52TJs2rX7atGnRcrmcc7vd1B//+MfLKpXqpsdzERERjkuXLsk2bdrkv3Dhwvpb3vg7SJ9XkDW+vkBtPWiBgs1XBXtxMYbqZ2NX0S5cbLkIo8543Zi8y3mIraRQGquBzOPDDpEfOS7t68TNTMbeNWm47KpGv0MCrA4OZw8XYqisH75zncHjj+St+XQAACAASURBVC+82yISfgZ4kRhAO3iJEs3meujUAbc81tbsAESAXBCDVpKqm30JiqIQpg5DmbkMI0WDwNvq4JJLUVVUiZAhoT2O4XkB7kqPrsOZ62AYP+nnFJnwM2IwGJyffPJJUcf12LFjLWPHji26tt+yZctqAHTzzQkMDHTv2rXrwo3mz8rKuthT+7x58xrmzZvXTdFlGAYZGRnXRZBOmDChbcKECW3Xtvck/+TJk1snT57c2lPfDhISEloSEhJabtRnwYIFVxYsWHBdVoSu/sYymUzIz88/BwA5OTmmjvYvv/zyfG/zbty4sexW27uudTv0eRcLtd4XNrcFSkECq1ICx4USDPUdAgD4pu6b6/rzAo/80jyE1QGtCi00bjF48CSDhRcQPiwa2pCh+KY6B5e5ZuBwJYZChRLzWdybFn+3xSP8TLjFntMiu1SKmsuFtzWWt8sBARAzIuKr3gcJVYeivK0cKpUGLovHqFV4tne9prC2DcFcA3S8Ek22NgRF+P9cohIIhB9Jn1eQNf5+sLrNUAtyWCRSCFYrAtoohKpDkV+Vf13/b+u/haq0ARalGjxNw09Qwy0D+bDzEp5cuQxuhsKJ8ix8WZODjy9vQtMEGkFBYXdbNMLPBK/yBS1QcEokqL98nQHoJoOVkAoi0AriZ9oXCVWHora9Fj79AmG3XgEj0Kip7j1Q76ipHhzthJ9bDjulgl/IdZmyCATCfyh9X0HWa2DlLFAJMrSJPcVVHMXFGNtvLE7UnIDV1d1H/dNLn2JQDYMWrSdrRSDlB7E/KRDiLcjVasx69S8Y8MB9aNS3YOySZ5E05Zm7LRbhZ0Ts6w+JIIJDLEZbVdktj2u3NQOMFEpBAkZLXLL6ImGaMAAAEyIHRSuhdbNoae89p/6J88XgKQESqw0SRRBkKvLiRCD8UujzCrJcLYGVc0IlyGCnJXCyLBzFxRgXMg5O3omCmoLOvg7OgUOlhzCmQY02fzUgCAhkAkkGCy/DP9SAlN+/gOf/moV7R4y72+IQfmbkvj4QCwxcIhq2mspbHldW8zV4kQQqQQ6ZPykl3BcJU4cBAMyBDtC0DgqHGy2CGXbz9ckA2h1u0HVVoATAZa6FfyjJf0wg/JLo8wqyTCWGneehEjwWHUc/PeymYozwHwEFq8A/K//Z2fdIxRGYnW0IKWtHq68WIqcAlhJBrCcWZALBW1BrZWB5Gk4GcNXfevB0Wd1ZcCwLJWSQ6clRel8kROVJZVvPVoFifMBbWiBQAr7/+npXnKMlDehPNUIvaNBoq0S/aKIgEwi/JPq8giyRi2AXAJXgCbJzBCjhKC4Gy7AYHzIeuaW5qG2vhYt3YeuZrRjEBYJqsaFZ6fN/GSz05LiUQPAWfDQSsDwFB82DabhhgHY3ysouADTlSfGmIUfpfRE5K0eAPADlXAloWguL+TIgAIXfl1zX9/B3l8HRDgQ6ZHBACn9yEkkg/KLo8woyRVFwi8SQ854PLJtKBGdZGXibDQuHLQTHc1h7Yi22fLsFJS0l+D31KOxSKeyMFBq3J7clSfFGIHgPOp0MDE/BSXOQNFtxq8nqWys9vqhKQQqa+Jr2WcI0YSizlEEu14Jz26DjJWhsru3Wh+cFlBV7sluILK2gmQASoNfHOX78uCIlJaUzb+zp06dlCQkJ0VOnTjUuWrQojOM8lZ/feustfXx8fMzkyZNj9uzZ4wMAFouFnjNnTkRycrJxxowZUR1V6nri448/1qampnbWN//yyy9VU6ZMiU5OTjbOnz8/vL29nQaANWvWBE2ePDkmMTExuqCgQA4AdXV1oo51EhMTo0tKSjqrGdXX14vGjx8/2GazUYCnqMesWbMip06dapwzZ05EXV1dr2mBN23a5P/yyy/3u7a9tLRUnJCQ0C359/bt2/Xp6enBvc2VnZ3t++mnn2oAYOvWrfpbXXP37t26yZMnRycmJkYvWbJkAMdxsNvtVGpqqiEhISH6ySefHFhcXHxb1ZvuWB5ko9FIAagE0JHz5pjJZFpuNBonA1gJwA3gbyaTafudWvNWYWVqCJwDYtBol1EAz8N+/jz63Xcf5g6ei21ntwEAHhnwCMK+aIPJ1xPMp+PlcIMDrSD5TAkEb8FXKwXNUXBSHFQWHk32JvjKfG86ztniAlhAIUjAEAW5zxKmDkPupVz4BASitRHwc7pxkW6B0+GEWOL5vR+/1IgQ5xUoaSmaLWVgJEaofYmh5aem6d33fFv37fO7k3Nqpkxp0M361Q3z6K5fvz7g4MGDvlKptLMAxhtvvBGcmppaM2nSpNZnnnnGkJubqxk1alR7Tk6O/4EDB7632+3UxIkTBycnJzdnZmb6xcTEWJctW1aTnZ3tu3nz5sD09PSKa9dZvnx5SEFBgToyMrKzStyrr74aumvXrqLAwED3qlWr+mVlZfmNHDnScurUKdW+ffsKKyoqxM8991zE/v37C1955ZX+8fHxTdOmTWs+fPiwymQySSMjIx2HDh1Sb9iwoX9zc3OnsrNhw4ag2NhYS1paWu0XX3yhSk9P77dhw4byrvJYrVZqyZIlYYWFhYq4uLjmH7fTHrrmLH7nnXeCU1NTu0XB9rSm1WqltmzZEpybm/u9QqHgf/vb3xpyc3M1VVVVYplMxn/yySdFRUVFkj//+c8D3n///Rvmm+7KnbQgRwA4ZTKZ4q5+LTcajSyA9QAmABgHYIHRaLz1rPt3CJlS48mFDCnMUk/wjO2MpyRs6r2peGP8G3jr0bew7qF1sBYcgzXY86avhxYu6Y3LIRIIhL6Fj0oC+urHnJKTo9pSfUvjKJvnxEkuSMCQIiF9lnBNOMwuMxSGQAAM1K1XwFE8vvri684+e76+BAXdiv5uDRrtVfDtZyCpQvswoaGhjk2bNnUr5GE0Gq0tLS0Mz/OwWq0My7KCXq935+bmnheLxUJtbS3LsixP0zQWLlxYn5aWVgMA1dXVYpVKxfW0zrBhwywrVqzoVgDk3XffNQUGBroBgOM4SiKR8AUFBcqRI0e20TSN0NBQJ8dxVH19vejcuXPK2tpa8YwZM6L27dunGzdunBnwVMXbuXOnSaVSuTvmLS0tlT788MOtAPDAAw9Yzp49e90RiN1up6dOndo4b9683nMd9kJpaal4ypQp0U8//XT4pEmTYtLS0gYAQHp6evD27dv169atC7RYLMzSpUsH3GxNiUQi7N69u0ihUPBd9kG4ePGibNy4ca2Ap6rf5cuXb6ugxZ2spDcCQD+j0XgYgA3AHwBIAJSYTKZmADAajV8BeAjAnju47k1R+fjAVmWGUlCgmdGADdDB9q1HQWZpFuMHjAfgCchxVtbCPDgWlEBDJ/KFWEfe+gkEb0LK0gDnUWZokRbVjZcwRD/khmPMTjNYlxROARBDBErW54uUei0R2ggAgFNjA8Xo0NJQCkVAEM5+ewYPP/Eg2uwulBZ+h1hGQFCzA1UAggZG3l2hvQTdrF813sza+1OQlJTUUlpa2u3YyGAwONauXTtgx44dQQqFgutQRlmWxdatW/U7duzol5KSUtfRXyQSYfr06VGlpaWybdu2Ffe0zvTp05uPHDnSLUVOcHCwCwD27t2rPXnypGr58uVVGzduDNRqtZ3Krlwu51pbW5n6+nqxWq127969u3jNmjVBr7/+euCLL75Y/dhjj11XXS8qKsr2+eefa4cPH27bv3+/1uFwXGdQ1el03IQJE9qys7NvfsTWBYqiBACoqqqS7ty5s1gul/NxcXFDampqOh+cS5curc3JyQlYt25dtxeCntZkGAYdLwlvvvmmv81mYx599NG2iooK8eHDhzUJCQktBQUFiqamJrHb7YZIdGvP5x9kQTYajfONRuN3Xb8A1AJIN5lM4wG8BuBdAGoAXUsVmgFofsiaPwaVTge72wINJ0cL1BAPUHdakLti+8ZTWa9Z5Qe4AYVIC8UAElhBIHgTFEWhw+3YoVChseL6AKxruWy+DBFUkPA0BBFFTp36MOGacABAs6QOFKNHEwRE8RRanQ240tSCjV8WYzBVh0Bei9aWS6AYPfxDtXdZasLPTUZGRkhWVlZRXl7e+fj4+MaVK1eGdNxLTU29cvTo0TOnTp1SHT58uFPh/fDDD4uzs7NNixcvjrhw4YIkJSXFmJKSYszMzLyh28jGjRv9s7KyAjMzMy/IZDJBqVRyHb7IAGC1WhmtVsupVCruiSeeaAGACRMmtBQWFsp7m3Px4sU1VVVVkuTkZGNlZaVEr9e78vPzlR0yHThw4Ka6nEwm410uVzc902q10hKJhAeAoKAgu1qt5kUiEXQ6nctut/9grwaO47BixYr+x48fV2/btu0iTdOYPXt2g0Kh4JOTk42fffaZNjIy0nqryjHwAxVkk8n0tslkGtz1C8AJAPuu3v8KQDA8CnHXtx0VgFsPC79DqP18YeMs0PEKCKDh0jNw19fDVds9sKL92HGApdAg8oHI7oaIZiENIIEVBIK3wfGeR6NDrkJbddlN+1c0XwQYOaSCCIKU+YmlI9xN/GR+ULEqVDGloBk9XAxgbC+EQAnI2PwuTh3Lh4h24B6HChddpaBFwfDtTz5HvA2lUulWq9UcAAQEBLjMZjNTVFQkmTdvXgTP82BZVhCLxTxFUUJGRkbge++9p7s6jqNpGgMHDnTk5OSYcnJyTHPnzm3obZ1169YFnj59WrVr1y6TXq93A8D9999vOXbsmIbjOJSXl4t5noder3cPHjzYfOjQIQ0AHDt2TBUeHm7vbd78/HzVzJkzr3z00UemsLAw+9ChQy1jx461dMj0xBNPtPY2tgN/f3+3zWajz58/LwUAt9uN48ePq2NjY63Azd1XbzVAGgDS0tJCHQ4H/be//a2kw9XixIkTigceeKBt7969pvj4+OagoCDHLU+IO+ti8WcAjQDWGo3GewFUAPgewECj0agDYIHHveKvd3DNW0Lt74tqzoIAwfOyZJPZwQCwnToFdtIkAIDAcTB/8Q/wBhHcAg0fpxtgAUZ3Wy4rBAKhD+C6+mi0KZSw1t7cB/lyQyE4VgqNIAGtJAF6fRmKomDQGlDiLsIwdixgA9xXTBgtfxTHcBFDRECUOwiKytPgaQGsKAi+wURB9jZWrVpVvmjRogiGYQSWZfn09PRyg8HgjIqKsiYmJkZTFIXRo0e3xsXFWaKjo+3PP/+8Ye/evXqe57F69erSW1mjtrZWlJmZGRwREWGdPXt2FABMmDChacGCBVeGDRtmSUxMjBYEgXrppZcuA8CKFSsqly1bFrpnzx5/hULBbdy48VJvc0dFRdmXLl1qWLduHfz8/JwZGRllt7sHNE1j9erVZcuXLw+jaRput5t66KGHWsaPH2++1iWlJ0JDQ23PPvusYcuWLTfcj5MnT8oPHjzoN2jQIMuMGTOMADBr1qy6MWPGWBYuXNhv+/btQUqlklu7du1t/Qx3UkFeA+Bdo9H4BDwZK+aaTCaX0Wh8HsAheKzVfzOZTFV3cM1bQq1Twea2QXO1WIiZccNX54O2zw5BfVVBtn5zElxzC2wjPEdhPi7Pm42IKMgEgtfhpK7mTZfJwNX3Xkq4g+raIjDiflBCBrFPr6eWhD5ChCYC/6r8F8b7/wr1bUCtQ4WHRLsgd86HCzzuoSw4XXUGCNBAGxgOVkJOFfo6BoPB+cknn3RWjBk7dqxl7Nix11WQWbZsWQ2AbkFtgYGB7l27dt1SdoW4uDhzXFycuWPc+fPnT/XUb/ny5dUAur3dh4WFOT/44INe18nPzz/X8f3AgQMdH3/88fUVcHqga+aJa+ltH67dr47vr8oNANizZ0+PvtjXrjlixAhrUVHRyZ767d69u9c5bsYdU5CvBuI90UP7pwA+vVPr/BBkajHsAg8JWEgYEZqgheEBf7QcOgyurQ2MWg3zoUOgWAYtOh9QFAVfQQoBAkRaoiATCN6GQyKFRBDBLpGAamqBIAg3PA5sq6yAmg2F0iUngb1eQLgmHHtL9kLbX4srF+VobHdAKvwbwwdOAM9rwP/7RbSIowBahsDI/ndbXAKB8APo84VCAECmYmHjAQoUNDI1muADTYwUgsuFtkOHwLW2ou2zz6A0SFAnC4dEpoRa5AMHzYFivWKLCARCFwSpDBKBhUPCQtXmRqP9xoHxznorAEABKcTk1KnPE671BOrxPjZQjD9aaAq2gBlQlL8MVcUf0GaOQqNSDprph4DQnz0unUAg3AG8QvuTKVm4IYKbd0PBKNHI+ENKXYA4LAwNb76JykW/B9fWBl9DJeoEP1C8CApWC0FBjsUIBG9EpFRAIjBwsiL4WIBKc2WvfVsdrZCZPc8KhSCBSH1bxZoIv0BidDEAgEZ5NSiRP9qlYlyp8AUmrgX/0ArUllrgYBnQov7Qh6puMhuBQPhPxCsUZJqhQbNK2DgLFLwcrZwU7qozCH5tNSiKhrWgAAGzn4DgA7Q5Ad7mhlKkhURPAisIBG9EolSB5Wk4RRR8LAIumy/32re8rRxah8dqLBckYFSkSEhfRy/Xw1/uj0tMIWjRAAgUUPbVP8EP+TVaaoJwReL5G6DF4fAjGSwIhF8kXqEgAwArV8PmboPaJYMACvWcEjJ/CoZ9HyNk+3b4DHKjlvGkKeTNNsgYJZT9Se5KAsEbkWqUEPEUnLQAH4tHCe6N8rZyKJwev2OZICal6b2EQb6DcMbxDcSyENCMBHUSESp/vxj1a9ehIkgLTqyEX79+EEtJ0RgC4ZeI1yjIMqUaNs4CX7vng6wWesB0AIxSCeWDY0Bd/BK1PvcBAJRWJyiKgiRAcTdFJhAIdwmlSgoRDzgoHnIHUN3Qe5ahsrYySHgpIAAyiMEQBdkrGOw3GGXmUmiDFJBrI9EY7I/2r78Gp1ahjWHAslHEvYJA+AXjNQqyUusDq9sMX4cEYrEYtZr7gJNZgNsBXPgcaLqEakkkVCoVtC7PGJEPCbYhELwRpVIMhgd4SoBbJEJzVa/pQlHeWgaalkPMUxAAUmbaSxjkO8jzjc4JAWGwOuxQbXsTtfNnghYoiOgoBEeSU0hv4fjx44qUlBRjx/Xp06dlCQkJ0VOnTjUuWrQojOM4AMBbb72lj4+Pj5k8eXLMnj17fADAYrHQc+bMiUhOTjbOmDEjqrKyste37I8//libmppq6Lj+8ssvVVOmTIlOTk42zp8/P7yjgt6aNWuCJk+eHJOYmBhdUFAgB4C6ujpRxzqJiYnRJSUlnQET9fX1ovHjxw+22WwUADQ2NjKzZs2KnDp1qnHOnDkRdXV1vT7Yjhw5ohwzZszQa9tLS0vFCQkJ0V3btm/frk9PTw/uba7s7GzfTz/9VAMAW7du1ffWb9OmTf4vv/xyv47r3bt36yZPnhydmJgYvWTJkgEcxyE7O9u3o/JfQkJC9ODBg4c3NzffcnCZ1zzJlT462C6dh0igEaD3R51TCrQ2AOf2ACd2QNCEoryNQv+QARAXFQIgRUIIBG9FrRajzfN5BodEAlt1Va+p3qquXEAY2w8SnoGb4kmZaS/hHt97AABtmnq43QPASmU4uHMHzM0NaFHLEEAHoX+Mz12W0rs4e7jS13S85oZlmW8X46ighqHj+98wjc369esDDh486CuVSvmOtjfeeCM4NTW1ZtKkSa3PPPOMITc3VzNq1Kj2nJwc/wMHDnxvt9upiRMnDk5OTm7OzMz0i4mJsS5btqwmOzvbd/PmzYHp6ekV166zfPnykIKCAnVkZKSto+3VV18N3bVrV1FgYKB71apV/bKysvxGjhxpOXXqlGrfvn2FFRUV4ueeey5i//79ha+88kr/+Pj4pmnTpjUfPnxYZTKZpJGRkY5Dhw6pN2zY0L+5ublTMd+wYUNQbGysJS0trfaLL75Qpaen99uwYcN1vmaXL19m33nnnQC3231HHnxd8xu/8847wampqd0S0VutVmrJkiVhhYWFiri4uOaOti1btgTn5uZ+r1Ao+N/+9reG3NxczezZsxs75lu6dOmAKVOmNPj4+HC3KovXWJBVvjrY3BYAgL/GD7WtdvC6SGDfc0D1abTetwhmsxlKHz8oGRl4gQejJhWxCARvRKuRgOY8ZU4dEinkzVY02Zuu6ycIAizVFbDJZJAJLHgxUY69BR+pDwaoBuA7+XFQtAzDJi6C09oONwtQuofgEyiH2pfkxPYGQkNDHZs2bbrYtc1oNFpbWloYnudhtVoZlmUFvV7vzs3NPS8Wi4Xa2lqWZVmepmksXLiwPi0trQYAqqurxSqVqkclbtiwYZYVK1Z0ixh+9913TYGBgW4A4DiOkkgkfEFBgXLkyJFtNE0jNDTUyXEcVV9fLzp37pyytrZWPGPGjKh9+/bpxo0bZwY8Fe927txpUqlU7o55S0tLpQ8//HArADzwwAOWs2fPXhdtarPZqBdeeCH01Vdf7T2KuRdKS0vFU6ZMiX766afDJ02aFJOWljYAANLT04O3b9+uX7duXaDFYmGWLl06oOs4u91OT506tXHevHmdxVYkEomwe/fuoo4S01f3obNO9YkTJ+SlpaWy+fPn91qyuye8xoKs8fdFCWcGAOgVOjidTrRMzoSu9l8A50S5YjiASjgcFHxEGtgZDhRNPuwIBG/ERysFeM//v0Ohhq+5GZfNl+Er8+3Wr7q9GqpmJxxSKfSCBJSM+B97E4+GPors89kY4TcVrQ1KTEv/K2Z8PB3JZ6MRMtz35hMQ7ihDx/dvvJm196cgKSmp5drSyQaDwbF27doBO3bsCFIoFFyHMsqyLLZu3arfsWNHv5SUlLqO/iKRCNOnT48qLS2Vbdu2rcfqb9OnT28+cuRIN8f24OBgFwDs3btXe/LkSdXy5curNm7cGKjVajuVXblczrW2tjL19fVitVrt3r17d/GaNWuCXn/99cAXX3yx+rHHHmu7dq2oqCjb559/rh0+fLht//79WofDcZ1Bdfny5QPmz59f179/f9ft7BdFUQIAVFVVSXfu3Fksl8v5uLi4ITU1NZ066dKlS2tzcnIC1q1b10351ul03IQJE9qys7M7/8EYhkHHS8Kbb77pb7PZmEcffbTzZ3rzzTeDnnvuuW5VBW8Fr7EgK30UsHIOAIAf6/ELq7HSwOjngAf/gMuVVZBIJGiqaYaC1YCXe827A4FAuAZfjRTC1RNDh0YD3zahx0wWpiYT9K0U3CwLBaRglCQHsjfxeNjjcAtucP1bUWVqxinz95Da+4HiGITE6O62eIS7SEZGRkhWVlZRXl7e+fj4+MaVK1eGdNxLTU29cvTo0TOnTp1SHT58uFPh/fDDD4uzs7NNixcvjrhw4YKkw382MzPzhm4jGzdu9M/KygrMzMy8IJPJBKVSyXX4IgOA1WpltFotp1KpuCeeeKIFACZMmNBSWFgo723OxYsX11RVVUmSk5ONlZWVEr1e78rPz1d2yPT+++/rzp49q9q8eXNwSkqK0WKxMAsWLAjvOodMJuNdLlc3PdNqtdISiYQHgKCgILtareZFIhF0Op3Lbrf/YJ2U4zisWLGi//Hjx9Xbtm27SNOeqZqbm5mKigrp+PHjzbc7p9coyHKVGA6eAi8IULlkkEqlMJlMnfcvX76MkJAQtFbXQSHSQupPclcSCN6KTMKA4z2PR06jhp+Z6llBbjZBb5EAFAUVpQCrIUfq3kS0Lhqh6lB8JzsOt4vHkSMnMaYiEQqtGP2jif+xN6NUKt1qtZoDgICAAJfZbGaKiook8+bNi+B5HizLCmKxmKcoSsjIyAh87733dFfHcTRNY+DAgY6cnBxTTk6Oae7cub26Bqxbty7w9OnTql27dpn0er0bAO6//37LsWPHNBzHoby8XMzzPPR6vXvw4MHmQ4cOaQDg2LFjqvDwcHtv8+bn56tmzpx55aOPPjKFhYXZhw4dahk7dqylQ6Ynn3yyKS8v77uOa6VSyW3btq1bNLO/v7/bZrPR58+flwKA2+3G8ePH1bGxsVYAN43XEAThhve7kpaWFupwOOi//e1vJR2uFgDw1VdfKUeMGHGdhfxW8BozqUzNArQCNt4GodmJmJgYnD9/Hi6XCw0NDbhy5QqGDx+O6hOHIZUNgjSEPNwIBG+Foig4BAqMQMMhlyHIKsa/m4qu61fcVIxBNjkqAaigAKshFmRvgqIoxIfHY+uptxCoHoqQb0YCAB58OgqsmFRi9WZWrVpVvmjRogiGYQSWZfn09PRyg8HgjIqKsiYmJkZTFIXRo0e3xsXFWaKjo+3PP/+8Ye/evXqe57F69ere80p2oba2VpSZmRkcERFhnT17dhQATJgwoWnBggVXhg0bZklMTIwWBIF66aWXLgPAihUrKpctWxa6Z88ef4VCwW3cuLHX9DxRUVH2pUuXGtatWwc/Pz9nRkZG2e3uAU3TWL16ddny5cvDaJqG2+2mHnrooZbx48ebr3VJ6YnQ0FDbs88+a9iyZcsN9+PkyZPygwcP+g0aNMgyY8YMIwDMmjWrLjExseXixYvS/v37O25XdsCLFGS5SgyKVsLmNoNudmDw6ME4ffo0SkpKUFRUBJZlERsbi1PvfAbIAFkQyYFMIHgzTkoECVg4JGL4tgn4vvH76zJZmJpNeMApRSU8RULEPkRB9jbmD5mPems9dvN/wczqJRgaOBgRw3vNTkXooxgMBucnn3zS+RY9duxYy9ixY697q162bFkNgJqubYGBge5du3ZduJV14uLizHFxceaOcefPnz/VU7/ly5dXA+jmdxsWFub84IMPel0nPz//XMf3AwcOdHz88cfXWwV6oaCg4ExP7b3tw7X71fH9VbkBAHv27OnRFxvonu1ixIgR1qKiopM99Vu8eHFdT+23gtcoyCIxA5pVwe5uhdzsRFhYGORyOb788ks0Nzdj+PDhkMlk0Fw9VmX9yFEpgeDN2GkRZAILm0gEqdkBs6URddY6BCoCAQDtrnZUmCsgcocC8JSZFmuJguxtsDSLFaNWGKJJggAAIABJREFUIGlgEow+RrAMCdQkEPoCXuODDABShQ9snBlsuwsMw2DixIkQBAE0TWPUqFFwuDloac/DTUQUZALBq3GwLCSCGA7Gc1SuMwPfN37fef9C8wUwnAA35VGKZRCDUZLUkN4IRVEY7DeYKMcEQh/CayzIAKDQ6mCtuwCWA3i7G0OGDMGQIUPA8zxomkZReR1UrBoOwQVa6lVbQyAQroGXyCAR2mG+Gg2tN1MobCrEwwMeBuBRlv1bALtUBoYTwIAGTcpMEwgEQp/AqyzISl8/WFwtAAB34/8Fb3akAym9dBlKkRZ2Ed/jeAKB4D0wMjlYnobjaj70aLe+mwU5vyofQ6xa2GRSsFdzJhMFmUAgEPoGXqUga/39YXFfVZCbbNfdr7x4GSpWB0FN/AgJBG9HpFCC5QEnBfAUhYEuHc5dOQcX74LVZcXXNV9jVLsOVpkMEp4GDwG0jJw8EQgEQl/Aq57mGn8ftLs8uaK5puvT/5kr6yAXDYEoSPNzi0YgEP7DkCiVYBo9eTjdvj4w2rRodphwpOIIGIqBk3diYBNwUSuDhhfBTfOk+iaBQCD0EbzKgqz0kcJNiWHlHXA2XG9BFjdZAACqUJIDmUDwduQqKRjO427FBevgW29HkCIIHxR9gM/KPoOSVUJTa4ZDIoEcEnAiohwTCN7K8ePHFSkpKcaO69OnT8sSEhKip06daly0aFEYx3EAgLfeeksfHx8fM3ny5Jg9e/b4AIDFYqHnzJkTkZycbJwxY0ZUZWVlr75aH3/8sTY1NdXQcf3ll1+qpkyZEp2cnGycP39+eEcFvTVr1gRNnjw5JjExMbqgoEAOAHV1daKOdRITE6NLSko6j8vr6+tF48ePH2yz2SgAaGxsZGbNmhU5depU45w5cyLq6uquM6hWV1ez06dPj0pKSjLOmTMnoq2trZtOWVpaKk5ISIju2rZ9+3Z9enp6cG8/X3Z2tu+nn36qAYCtW7dely/x0qVL4uTkZGNSUpLx2WefNXStGMhxHH71q18N3L59+x3Js+hVFmSFVgLQSpjdbZDWW+F7zX21ww3IAUWo+q7IRyAQ/nNQKFnQnMeC7NIp4DxXhunGuXj91OsAgGlR09De+CkEmoECUoAE9hIId5XTn+33/f5fX96wLPPtcs9DjzQMezy+8UZ91q9fH3Dw4EFfqVTaGcD0xhtvBKemptZMmjSp9ZlnnjHk5uZqRo0a1Z6Tk+N/4MCB7+12OzVx4sTBycnJzZmZmX4xMTHWZcuW1WRnZ/tu3rw5MD09veLadZYvXx5SUFCgjoyM7LTwvfrqq6G7du0qCgwMdK9atapfVlaW38iRIy2nTp1S7du3r7CiokL83HPPRezfv7/wlVde6R8fH980bdq05sOHD6tMJpM0MjLScejQIfWGDRv6Nzc3dyrmGzZsCIqNjbWkpaXVfvHFF6r09PR+GzZs6FZOdNOmTYEJCQmNs2bNakxPTw/Oysry+93vflf/Y/a7a37jd955Jzg1NfVK1/uvvvpq/2nTpl2ZOXNm0zvvvOO3efPmgD/+8Y81V+/1M5vNd6xCj1dZkBVaMShahXZXC7jG7i4Wbo6HFp59lQaSIiEEgrejVIpBe4w+cKlE4BobkRQwAY+FPoZXH3wVy4c+jza3RylWQwFaTlK8EQjeSGhoqGPTpk0Xu7YZjUZrS0sLw/M8rFYrw7KsoNfr3bm5uefFYrFQW1vLsizL0zSNhQsX1qelpdUAQHV1tVilUnE9rTNs2DDLihUrLndte/fdd02BgYFuAOA4jpJIJHxBQYFy5MiRbTRNIzQ01MlxHFVfXy86d+6csra2Vjxjxoyoffv26caNG2cGPIkKdu7caVKpVO6OeUtLS6UPP/xwKwA88MADlrNnzyqvleeVV16pePLJJxs5jkNtbS3bUVr7VigtLRVPmTIl+umnnw6fNGlSTFpa2gAASE9PD96+fbt+3bp1gRaLhVm6dOmAruPKy8tlEyZMaAWAkSNHWr799lslAHz00Uc+FEUJo0eP/kFlpXvCq0weCo0EFKWE1dUApt0FgeNBMZ53hLLaZviIVLDzTpLijUAgQKOWoPXqx4Vd4nlOyKqb8L9x/+tpM5lgk3nypWuggkglvStyEggED8Mej2+8mbX3pyApKanl2tLJBoPBsXbt2gE7duwIUigUXIcyyrIstm7dqt+xY0e/lJSUzipvIpEI06dPjyotLZVt27atxwpy06dPbz5y5Iiqa1twcLALAPbu3as9efKkavny5VUbN24M1Gq1ncquXC7nWltbmfr6erFarXbv3r27eM2aNUGvv/564Isvvlj92GOPXadURkVF2T7//HPt8OHDbfv379c6HI7rDKo0TcPpdFKTJk26x+l00n/4wx9qru3TExRFCQBQVVUl3blzZ7FcLufj4uKG1NTUdCpfS5curc3JyQlYt25dtxeCyMhI64EDB7S//vWvGz/77DOt3W6nz507Jz1w4IBu+/btF9euXdur+8bt4lUWZEZEQyL3hdXVDFoAuJb/K89daLoErdgfFuaWX4AIBEIfRqORgOcFsAID29ViIY7Sss77zrIy2ORXFWRKDZGaWJAJBIKHjIyMkKysrKK8vLzz8fHxjStXrgzpuJeamnrl6NGjZ06dOqU6fPhwp8L74YcfFmdnZ5sWL14cceHCBUlKSooxJSXFmJmZeUO3kY0bN/pnZWUFZmZmXpDJZIJSqeS6+uZarVZGq9VyKpWKe+KJJ1oAYMKECS2FhYXy3uZcvHhxTVVVlSQ5OdlYWVkp0ev1rvz8fGWHTAcOHNAAgFgsFr744ovzK1euLFuyZImh6xwymYx3uVzd9Eyr1UpLJBIeAIKCguxqtZoXiUTQ6XQuu91+U5105cqVlUeOHNGmpKQYKYoSNBqNe8+ePX5XrlxhZ8yYYczNzfXdtWtXwGefffajfWW9SkEGAIVPQJdUb//nZlFZUgaN2A+CD7ECEQgEQOcjhVMAZIIYVjCASATnpUud9+3nTnssyIIAOcQQaUh6SAKB4EGpVLo7XA4CAgJcZrOZKSoqksybNy+C53mwLCuIxWKeoighIyMj8L333tNdHcfRNI2BAwc6cnJyTDk5Oaa5c+c29LbOunXrAk+fPq3atWuXSa/XuwHg/vvvtxw7dkzDcRzKy8vFPM9Dr9e7Bw8ebD506JAGAI4dO6YKDw+/Pp3XVfLz81UzZ8688tFHH5nCwsLsQ4cOtYwdO9bSIdMTTzzRunTp0gEdCr5SqeRpmha6zuHv7++22Wz0+fPnpQDgdrtx/PhxdWxsrBXwVKC8EYIgXNeWl5enXrp0aWVOTo6JYRiMHj267X/+538qP/3006KcnBzTpEmTGp966qm6xx9//Ee7WnidL4Fa3w9V5U0AAFedFdKBVzNWXG4ATQVCEXZH/fsJBMIvFF+tBC5BgBwSWCCHuH8wnGWlnfdtJ7+BUysBzQmgQUOiJQoygUDwsGrVqvJFixZFMAwjsCzLp6enlxsMBmdUVJQ1MTExmqIojB49ujUuLs4SHR1tf/755w179+7V8zyP1atXl958BaC2tlaUmZkZHBERYZ09e3YUAEyYMKFpwYIFV4YNG2ZJTEyMFgSBeumlly4DwIoVKyqXLVsWumfPHn+FQsFt3LjxUm9zR0VF2ZcuXWpYt24d/Pz8nBkZGWXX9pk3b179ihUrQrds2SJQFIVVq1Z1c4egaRqrV68uW758eRhN03C73dRDDz3UMn78ePO1Lik9ERoaanv22WcNW7Zs6dyPyMhI+5IlS8JZlhUMBoPtL3/5y+UbzfFjoHrS0G8Vo9E4FcA0k8n01NXrUQBeB+AG8LnJZFplNBppAFsA3AvAAeA3JpOp5EbzJiUlCX//+99/sFw3Im9nIU4feAn/HfJbBMSGQP+rGADArkUb8ZA8FswMI4KG+f8ka3sTRqPxpMlkuu9Oz/tT/m0Qfh5+qr8N4M7/fWT+5g1QQSK00OVIqqyGs7YZEQf2Q3C5YBoxAkcfuR910iDMFibA9zeDIYskKSJ/LOTZQeiNnv42zpw5U3bvvff2amElEG7EmTNn/O69996wnu79YBcLo9H4OoD0a+bYCuApAA8CGGk0GocBSAQgNZlMowEsA5DxQ9e8E6h0UlC0D+qcdbCXtQLwmPH1vAQu3gl1OCkSQiAQPNhAQS6I0Q4xZKF+cF66BFd9PeyFhRCcLlhlMoivhi2IVMQHmUAgEPoKP8YH+d8Anum4MBqNagASk8l00WQyCQAOAXgUHmX5MwAwmUzHAfwklqNbResvB8Xo0GK/DMrsAtfqQEmdGXqRBi1uC+Qk0IZAIFzFTjOQCxI4KQaSe/wBQYD583/AevIUAMDCKiHjPY9RWtFrbn8CgUAg/MK4qQ+y0WicD+AP1zT/P5PJtNtoNMZ1aVMD6OoUbQYQfrW9tUs7ZzQaRSaTyY27gDZQDprWoc1aAvg8BMflNvy7uAjjxHpUCOabOo0TCATvwSGSQip4HpMuiR2SgZFoO3gQtEwGylcCByWBjBdBEATQcqIgEwgEQl/hpgqyyWR6G8DbtzBXG4Cu+flUAFoAyK9pp++Wcgx0WJB90GKvhxMCnOVmsN9WQUT3g8NXd7fEIhAI/4mIFWB5T5yGpf4yVI8/joaNmwAAzH95CgrJIYGL4kHR5OWaQCAQ+gp3LM2byWRqA+A0Go0RRqORAvDfAPIBHAUwCegM4jt3p9b8IbASBgqfQPDgcclthvlUHYbYNWh01EEx8I7llyYQCH0ASqoA4/ZUj7U01kAzeTJEej30C38LUbin2qtSkMF1x4qbEggEAuE/gTudBzkVwHsAvgZw2mQyFQDYC8BuNBr/DWA9rnfX+Nnx7d8ftEiN/Oav0O5ww4dR4pK1Gv4DVDcfTCAQvAaRXAWa8xx4ma1WiAN0GJj/L/gljIaZ8jwv1JQSEBMNmUAgEPoSP0pBNplMR0wm08wu18dNJtMok8n0XyaT6cWrbbzJZEo1mUwPmEym0SaTqejHCv1j0QUqwUiMULafx3JrKb5rPopKpwD/sB9deIVAIPQhRHIp4HaBEgAzlMAVk+dGgwnN8DwvtFCDlpMcyASCN3P8+HFFSkqKseP69OnTsoSEhOipU6caFy1aFMZxnnQ3b731lj4+Pj5m8uTJMXv27PEBAIvFQs+ZMyciOTnZOGPGjKjKysrrAhqsVis1f/78iKSkJOOsWbMi6+vrRYCnit5jjz02qKPCXVFRkaS3vl9//bU8KSnJOHXqVOP8+fPDbTZbp1/YtfKfPHlSPnny5JikpCTjn/70p5AO+Xvir3/9a+CCBQvCr23Pzs72ffnll/t1bVuwYEH4teWyu/LCCy+ElJeXixsbG5kPPvigR79Xt9uN+fPnh3etlrd69ep+kydPjk5ISIjumL+xsZG577777u3Ym82bN99WDl+vKxQCANpABSjaCFo4gXGtn+F8uxnqoKeh9CEfcgQC4f+QKVi4eDcUkKIZGqD+e6D/COCKCY2UH8ABCkYJKEj2GwLhbmP5d7Vv+6m6O1rtSzE8oEH5QHDjjfqsX78+4ODBg75SqZTvaHvjjTeCU1NTayZNmtT6zDPPGHJzczWjRo1qz8nJ8T9w4MD3drudmjhx4uDk5OTmzMxMv5iYGOuyZctqsrOzfTdv3hyYnp5e0XWNt99+2z8yMtK2fPny6t27d/usX78+KD09vaKwsFCRnp5eet9991k7+m7cuDHg2r6vvvpqxcqVK8M2btx4ceDAgY533nnHr7y8XBwdHe3oSf6VK1eGvvDCC5fHjBnTvnr16uDdu3frnnrqqaZrf/aDBw+qv/rqK62/v7/zx+20h9dee60CAI4cOaLKy8vTzpw5s9uaJSUlkrS0NENDQwMLoAEATp06JTt37pxi3759ReXl5eLU1NTIuLi470+fPi1/5JFHmv7yl79U9LDUTfG6UtMA4BMgB8XoodYHQ7C3Q9tvCoIGhpIMFgQCoRtSOQun4IaGl6MROqC+0HOjoRiNTADg5iCmpWCUREEmELyV0NBQx6ZNmy52bTMajdaWlhaG53lYrVaGZVlBr9e7c3Nzz4vFYqG2tpZlWZanaRoLFy6sT0tLqwGA6upqsUqlus5ce/r0aWVcXFwrAPz3f/932zfffKMGAJPJJH/zzTcDp06daszIyAjsrW9xcbFErVa7t23bFpCcnGxsaWlhoqOjHb3J39DQIB4zZkw7ANx3332WkydPKq+V6cKFC5Ldu3frFy5cWHW7e5adne379NNPh//617+OfOSRRwZlZ2f7AkBKSoqxsLBQunXr1sBvv/1W9fbbb3d74bFYLPRrr71WNmzYMHNH2/Dhw23vvfdeMU3TKC8vFyuVSg4Azp49qzCZTIrk5GTjb37zm/Dq6urbSjXklRZkXbACFEXBOGYeIobr8PGGSviHEvcKAoHQHZVaDCfPQyvIUUzpINSdA+W0Qig/jkb+/0HkdIESURCR/OkEwl1H+UBw482svT8FSUlJLdeWTjYYDI61a9cO2LFjR5BCoeDGjRtnBgCWZbF161b9jh07+qWkpNR19BeJRJg+fXpUaWmpbNu2bcXXrtHe3s5oNBoOAFQqFdfe3s4AwGOPPdY0f/78K2q1mps/f37E/v37NT31bWhoEBUWFipffvnly5GRkY45c+ZE5uXlWR9++GFzT/IHBQU5jhw5ooyLi7Pk5eVpbTZbt0ALs9lMr1y5csD69etLi4qKZLe5ZQIAWCwW5v33379QXFwsSU1NjZw9e3bn7y41NbV2165d+vnz53erkhgbG2vraUKWZbF69ep+OTk5/kuWLLkMeMpSDx06tOrRRx81v//++7oVK1aEvP32272W174Wr7QgK7QSBA/U4vL3AnjBDxAA/1ASoEcgELqj1Ujh4AWoBTlcAgNLdRFw5n1YnG44eBpSp+dEUqyT3mVJCQTCfxIZGRkhWVlZRXl5eefj4+MbV65cGdJxLzU19crRo0fPnDp1SnX48OFO5ePDDz8szs7ONi1evDjiwoULkg7f2czMTD+FQsGZzWYaAMxmM6NQKDie55Gamlqv1+vdEolEeOihh1rPnz8v76mvr68vFxQUZL/nnnvsYrFYeOCBB1rPnDkj703+NWvWlG7bti1o+vTpUTqdzq3Vat1bt27Vd8i0f/9+bVNTE7tw4cKINWvWhHz77beqDgt2B1KplHc6nd30TJvNRstkMh4AoqKirAAQEhLidLlcP1ofXbFiRVV+fv6ZnTt3BpaUlEji4uLa4uLizACQkJDQUlJS0uvP2xNeqSADQMyYILReseGLd76HVMEiKIKUmCYQCN3R6aRwAdAInudqo4MBDv4RjYpoAIDK5cmRLPG7XQMKgUDoyyiVSrdareYAICAgwGU2m5mioiLJvHnzInieB8uyglgs5imKEjIyMgLfe+893dVxHE3TGDhwoCMnJ8eUk5Njmjt3bkNsbKwlLy9PCwCHDh1S33vvvea2tjbmiSeeGGQ2m2me51FQUKAaMmSItae+4eHhDpvNxly4cEECAKdPn1ZFRUXZe5P/H//4h/aNN9649OGHHxa3tLQwDz74YFtqauqVDpmefPLJpkOHDn2fk5NjWrZsWUVsbKx5yZIltV3nGDp0qPXEiRPqDmW9sbGRKSsrk91zzz12ADd0a6UoShAE4Zb2Oi8vT7V06dIBwP9n777jo6rSP45/7pTMTJJJb5BAGnBDDb2sgIAI0juKy9rQXUQXXQu76v5YWQuuLqtiWQsosmAXrGBFmvTQ21BSSAghjfQymZn7+yOiEQkgmUnjeb9e+SMzd855JhzufOfec88Fs9ms6fV6TafTaQ888EDMypUrA89uczaQX6orcooFQHz3MDa8e4SyQjsjZ3XBJHfBEkKcIzTYwj6X8nNAjhlLTOrL5EUOgSNO/J3VZx3NYRKQhRA/mzdvXtrs2bPj9Xq9ZjQaXfPnz0+LjY21t2vXrmz8+PEJiqLQr1+/wkGDBpUkJCRU3HfffbErV64MdblcPPbYYynntjdjxoyce+65J2bChAmq0WjUnn/++eSAgADnrFmzMqZNm6YajUZXr169ikeOHFlYWlpafO62JpNJmzdvXup9990Xp2kanTt3Lhk1alTh+WoHiImJqZg+fbpqNptdPXr0KB45cmSt29YmISGhcsqUKdlTpkxJ8Pb2djocDmXOnDknrFar62KvjY+Pr0xOTra8+OKLYXfffXf2hbYdOHBg8apVqwLHjx+f4HK5mDp1anZcXJz9b3/7W8Zf//rXmPfeey/MbDY7n3766bTfUr9yqQm9Pk2cOFFbsWKFx/s5vPkU9gonXQZHebyvK42qqkk2m62nu9utr7EhPMdTYwPcPz7Ki+28c+8ihoZ24i3vtfTp1Z1h+q18XdWTLUl76ZGhkBh0NZGPXYVivGJPyLmV7DtEbc43Nvbs2ZOamJiYW9trhLiQPXv2hCQmJsac77kreo+e0K+FhGMhRK1MPkbsGNCh4GfyJa+gGIY9Rm5hKRZvb7z1vtg1p4RjIYRoZmSvLoQQtdDpFMp11Rd3++kt5OXl4XQ6ycjIwGg0Yzb4Ylca31k4IYQQdSMBWQghLsBp9KbSWU6IYiU3N5eNGzdSVlaGyWjGrPfBYZDdqBBCNDeyZxdCiAsx+VDuLKGtKwyTycT333+Pt7c3VWUVWPQ+YJY1kIUQormRgCyEEBeg8/ah3FGMV7meXr16AdClSxfK8nIw633R+8ot6oUQormRgCyEEBfg5Wum3FmGUqnQr18/2rdvT58+fVAKizDojCi+skSkEEI0NxKQhRDiAsw+RspdDgxOA95mb66//noCAwPxrrADYPCTI8hCXOm2bNniM3nyZPXs77t27bKMHTs2YcKECers2bNjnE4nAK+++mro6NGj248ZM6b9Bx98EAhQUlKiu/nmm+MnTZqkXn/99e0yMjJ+9a27rKxMmTFjRvzEiRPV6dOnt8nOzjYAvPDCC2HXXnttx7N3uDt8+LCptm23bdvmPXHiRHXChAnqjBkz4srLy3+6U8e59SclJXmPGTOm/cSJE9W//vWvrc7Wfy6Hw8GMGTPivvzyS79zn1u6dGnwo48+GlnzsT/+8Y9xa9eurfXWxQ8//HCrtLQ0r7y8PP27774bdO7zX3/9td+IESM6TJgwQX366adb1Hzu3PdQV1fsjUKEEOJSeFu9qHC5UFBwltgx+JvQXC6szurVK4yBEpCFaAy2bdsWvHv37hB3ttm1a9fc3r17511om2effTZ89erVwWaz+acbYCxcuLDlzJkzT40cObLwzjvvjF21apV/3759Sz/88MOwL7744mBFRYUyYsSITpMmTTqzZMmSkPbt25f97W9/O7V06dLgl156KWL+/PnpNftYvHhxWJs2bcofeuihzPfeey/w2WefbTF//vz0Q4cO+cyfPz+lZ8+eP90l7oUXXgg/d9snnngife7cuTEvvPDC8bZt21a++eabIWlpaV4JCQmV56t/7ty50Q8//PCJq666qvSxxx5r+d577wXdeOON+TVrOnbsmOmBBx6Izc3NNQJuWYv6ySefTAdYu3atdc2aNQE33HDDT306nU7mzZsXvXTpUlt8fLx91qxZsRs2bPAdMGBAyfneQ13JEWQhhLgAPz8TFa7qAy3OgkoASgoK8NZX313PFCx30RPiShYdHV354osvHq/5mKqqZQUFBXqXy0VZWZneaDRqoaGhjlWrVh3w8vLSsrKyjEaj0aXT6bj77ruzH3jggVMAmZmZXlar9VeHa3ft2uU7aNCgQoDhw4cX7dixww/AZrN5//e//42YMGGCumDBgojatj1y5IjJz8/P8dprr4VPmjRJLSgo0CckJFTWVn9ubq7XVVddVQrQs2fPkqSkJN9zayopKdE9+eSTqd26dSv+rX+zpUuXBt9xxx1xf/jDH9pcc801HZcuXRoMMHnyZPXQoUPmV155JWL37t3WxYsX//SFJzc31+Dr6+uMj4+3A3Tt2rVk27ZtvrW9h7qSI8hCCHEB/gEmcrXqXWX56QJM0X6kp5/EW199ltAcKgFZiMagd+/eeRc72usJEydOLEhJSfnFcjaxsbGVTz/9dOtFixa18PHxcV599dXFAEajkVdeeSV00aJFkZMnTz59dnuDwcDUqVPbpaSkWF577bUj5/ZRWlqq9/f3dwJYrVZnaWmpHuDaa6/NnzFjRo6fn59zxowZ8Z9//rn/+bbNzc01HDp0yPfRRx890aZNm8qbb765zZo1a8qGDBlSfL76W7RoUbl27VrfQYMGlaxZsyagvLxcf25NXbt2Lb/MP5kGUFJSon/nnXeOHjlyxDRz5sw2N91000//djNnzsx6++23Q2fMmPHTkenQ0FBHZWWl7tChQ+a2bdtWbNy40b9du3ZlcP5/g7qSI8hCCHEBwYFmKjUzAGWnqs/2ZWZkYjUGUuly4hPm3ZDlCSEaoQULFrR66623Dq9Zs+bA6NGj8+bOndvq7HMzZ87M+eGHH/bs3LnT+v333/80H/f9998/snTpUtu9994bf/ToUdPZecVLliwJ8fHxcRYXF+sAiouL9T4+Pk6Xy8XMmTOzQ0NDHSaTSRs4cGDhgQMHvM+3bXBwsLNFixYVHTp0qPDy8tJ+97vfFe7Zs6fWnddTTz2V8tprr7WYOnVqu6CgIEdAQIDjlVdeCT1b0/nmSZ/LbDa77Hb7L3JmeXm5zmKxuADOhttWrVrZq6qqLppHdTod8+fPT5k7d27rm266qW10dHRFYGCg42Kvu1wSkIUQ4gKCgyzYFR+cmpOKnOozidmZWfgaAynVwGj61YEVIcQVztfX1+Hn5+cECA8PryouLtYfPnzYdNttt8W7XC6MRqPm5eXlUhRFW7BgQcTy5cuDfnydU6fT0bZt28oPP/zQ9uGHH9puueWW3K5du5asWbMmAOCrr7418grZAAAgAElEQVTyS0xMLC4qKtKPGjWqY3Fxsc7lcrF161Zr586dy863bVxcXGV5ebn+6NGjJoBdu3ZZ27VrV1Fb/d98803AwoULk99///0jBQUF+v79+xfNnDkz52xNUVFRVRf7G3Tp0qVs+/btfmfDel5enj41NdXSoUOHCgBFUWp9raIomqb9+i6l69at81u2bNnRZcuWHc3IyDBdffXVRRer43LJFAshhLgAi9WIovejwlmCUlh9QV5Bzmmsxs4UGmUXKoT4tXnz5qXNnj07Xq/Xa0aj0TV//vy02NhYe7t27crGjx+foCgK/fr1Kxw0aFBJQkJCxX333Re7cuXKUJfLxWOPPZZybnszZszIueeee2ImTJigGo1G7fnnn08OCAhwzpo1K2PatGmq0Wh09erVq3jkyJGFpaWlxeduazKZtHnz5qXed999cZqm0blz55JRo0YV1lZ/TExMxfTp01Wz2ezq0aNH8ciRI2vdtjYJCQmVU6ZMyZ4yZUqCt7e30+FwKHPmzDlhtVoveiFdfHx8ZXJysuXFF18Mu/vuu7PPPh4WFlY1bty49iaTyTVixIi8Tp061Rry60o5X0JvaBMnTtRWrFjR0GWIOlBVNclms/V0d7syNpo+T40N8Mz4sFc4eP3e9fzOnIN3oB/qP0bw/AN/Y5JhFCetXvR5pI9b+7vSyb5D1OZ8Y2PPnj2piYmJbllBQVx59uzZE5KYmBhzvudkioUQQlyA0aRHU6DUVYmusvqUoKWoejUL/GWJNyGEaI4kIAshxAUoioLiY6DIacfkNJOfkUGAo3resUGWeBNCiGZJArIQQlyE2d+LbEclOkXP0S/WYzVW3+DJFCErWAjRwFwul6v2q72EqMWP46bW+dASkIUQ4iICQizk0RJN08jfmYrFK4wyl4avHEEWoqHtz8nJ8ZeQLH4Ll8ul5OTk+AP7a9umTpdgq6o6AZhis9lurPH7v4Gzt0j8B7ABeBlIBCqB220227G69CuEEPUpPMKHTMWPQqWEMHMrjMYQSpwarQJkDrIQDcnhcNyelZW1KCsrqxNy0E9cOhew3+Fw3F7bBpcdkFVVfR4YDuyu8XAPYI7NZvuoxnYTAbPNZuunqmpfYAEw7nL7FUKI+hYU5o0OhXQfE52JAWBHqYMECchCNKgePXpkA2Mbug7R/NTl29Ym4M5zHusB3Kaq6gZVVReoqmoA+gNfAthsti2AR5Z3EkIIT7EGVt9J77Cu+k6mqZqLUy6w+F70ZlJCCCGaoIseQVZVdQbwl3MevtVms72nquqgcx7/BvgYSAFeAWYCfkDNBaadqqoabDabx24PKIQQ7uQbVH2keHtROWFGL/IUPQEBRhSdTHsUQojm6KIB2WazLQYWX2J7b9hstgIAVVU/ASZRHY6tNbbRSTgWQjQl1qDqI8gGp8IjSilzTAH4+sn0CiGEaK7cNqFdVVUF2KuqatSPD10DJAE/ACN/3KYvsM9dfQohRH0weOmxWI2MaxtOr+gAjCVO/ENlBQshhGiu3BaQbTabBtwOrFBVdR3gDbwOrAQqVFXdBDzLr6drCCFEo2cNMuNld/H6xG7YSx1ExPs3dElCCCE8pE7LvNlstrXA2hq/fw18fZ5NZ9alHyGEaGi+QWbOnCrl1PHqSypaxAc0cEVCCCE8RdYMFEKISxDUwoeC7HJsW7MweRsIlLvoCSFEsyUBWQghLkGnqyPR6RRO2s7QIt5fVrAQQohmTAKyEEJcAh9/Ex36twSQ+cdCCNHM1WkOshBCXEl6XBdNfmYJ8d3CGroUIYQQHiQBWQghLpFPgInx93Vv6DKEEEJ4mEyxEEIIIYQQogYJyEIIIYQQQtQgAVkIIYQQQogaJCALIYQQQghRgwRkIYQQQgghamiUq1gcOHAgV1XVtIauQ9RJtCcalbHRLHhkbICMj2ZC9h2iNh7bdwhxLkXTtIauQQghhBBCiEZDplgIIYQQQghRgwRkIYQQQgghapCALIQQQgghRA0SkIUQQgghhKhBArIQQgghhBA1SEAWQgghhBCihka5DvJZqqrqgJeBRKASuN1msx1r2KoajqqqO4GiH39NAV4FngccwNc2m21eQ9XWEGR8/JKMj5/J2PglGRu/JOPjZzI2hDi/Rh2QgfGA2Waz9VNVtS+wABjXwDU1CFVVzYBis9kG1XhsNzAJSAa+UFW1m81m29VAJTYEGR8/kvHxKzI2fiRj47xkfCBjQ4gLaewBuT/wJYDNZtuiqmrPBq6nISUC3qqqfk31v9ujgMlmsx0HUFX1K2AocCXtyGR8/EzGxy/J2PiZjI1fk/FRTcaGELVo7HOQ/YDCGr87VVVt7KHeU8qAfwPDgZnAmz8+dlYx4N8AdTUkGR8/k/HxSzI2fiZj49dkfFSTsSFELRr7DqEIsNb4XWez2RwNVUwDOwIcs9lsGnBEVdVCIKjG81agoEEqazgyPn4m4+OXZGz8TMbGr8n4qCZjQ4haNPYjyD8AIwF+nCe2r2HLaVC3UT1PDlVVWwLeQKmqqvGqqipUHwHY0ID1NQQZHz+T8fFLMjZ+JmPj12R8VJOxIUQtGvsR5JXAtaqqbgIU4NYGrqchLQaWqKq6EdCo3rG5gOWAnuqrjbc2YH0NQcbHz2R8/JKMjZ/J2Pg1GR/VZGwIUQtF07SGrkEIIYQQQohGo7FPsRBCCCGEEKJeSUAWQgghhBCiBgnIQgghhBBC1CABWQghhBBCiBokIAshhBBCCFGDBGQhhBBCCCFqkIAshBBCCCFEDRKQhRBCCCGEqEECshBCCCGEEDVIQBZCCCGEEKIGCchCCCGEEELUIAFZCCGEEEKIGiQgCyGEEEIIUYMEZCGEEEIIIWqQgCyEEEIIIUQNEpCFEEIIIYSoQQKyEEIIIYQQNUhAFkIIIYQQogYJyEIIIYQQQtQgAVkIIYQQQogaJCALIYQQQghRgwRkIYQQQgghapCALIQQQgghRA0SkIUQQgghhKhBArIQQgghhBA1SEAWQgghhBCiBgnIQgghhBBC1CABWQghhBBCiBokIAshhBBCCFGDBGQhhBBCCCFqkIAshBBCCCFEDRKQhRBCCCGEqEECshBCCCGEEDVIQBZCCCGEEKIGCchCCCGEEELUIAFZCCGEEEKIGiQgCyGEEEIIUYMEZCGEEEIIIWqQgCyEEEIIIUQNEpCFEEIIIYSoQQKyEEIIIYQQNUhAFkIIIYQQogYJyEIIIYQQQtQgAVkIIYQQQogaJCALIYQQQghRgwRkIYQQQgghapCALIQQQgghRA0SkIUQQgghhKhBArIQQgghhBA1GNzdoKqqO4GiH39NAV4FngccwNc2m23exdro06ePFhkZ6e7SRD06cOBArs1mC3V3uzI2mj5PjQ2Q8dEcyL5D1MaT+w4hzuXWgKyqqhlQbDbboBqP7QYmAcnAF6qqdrPZbLsu1E5kZCQrVqxwZ2minqmqmuaJdmVsNH2eGhsg46M5kH2HqI0n9x1CnMvdR5ATAW9VVb/+se1HAZPNZjsOoKrqV8BQ4IIBWQghhBBCiIbi7oBcBvwbWAS0BVYDBTWeLwbi3NynEEIIIYQQbuPugHwEOGaz2TTgiKqqhUBQjeet/DIwCyGEEEII0ai4exWL24AFAKqqtgS8gVJVVeNVVVWA4cAGN/cphBBCCCGE27j7CPJiYImqqhsBjerA7AKWA3qqV7HY6uY+Gx2X3U7xV19R/O136P398e7VC7/rhqMYjQ1dmhBCCCGEuAi3BmSbzWYHbjzPU33d2U9j5qqo4PjtM3Ds2Emer4KXQ8P6/vscevIfWO/+Ex1uvANFURq6TCGEEEIIUQu5UYgbaZpGyuw/Y9+xk1dG6Pj0lkq23FLKR2N15HmVoXvsWVYP7822tR80dKlCCCGEEKIWbr9RyJWs6Ouvsa/fyPIhCmNaOxmqTgeDGYK2ku+zkY2ZVsK3g8+dc1nc50V6zf0XXeKumIPrQgghhBBNggRkN3FVVnL8n3PJDoXW7b0ZOuNr8P55AY+gokzGbl9MYcvF7Nqrp+/WbEom3cozoxKY+uBzRPtHN2D1QgghhBDiLJli4Sa5H7yPJa+IbwbCzdM/+UU4BsCvJVzzf/g/dJCBc/5G0FgNl7+T0R8eZvuUETz32RNUOasapnghRIOrPH6c008/Q/qsu8j652OU7dyFpmkNXZYQQlyRJCC7gaZppCxaSEo4dOk2CktgZO0be3mj63MHLR7fTa9H/4SlbzltT7no//dl/PXxEZwoOlF/hQshGoWiL78kedx48pcupSg5lbwVK0m78UZSp/+B8n37Gro8IYS44khAdoOypCT8skrY0UVh+vinLu1FRjOGQfcT88IW4u5IwGh1cMc7J3njwbFszdzm2YKFEI1Gyfr1nLzvfirbJnD3TcOZMrGcm++ys3iogaxDu0idMpWtM2+mPCO9oUsVQogrRrMIyDkvvsSJP/0JzW5vkP4PLnycMhMYu/dFb/iN07qtEVj/vJIOT92HPqaS69dVsmHObaw+/pVnihVCNBrOkhJO/d9cKiJb8ech2WSHf0VvTnFLRSUBXbx5dkYQK/vqMW/YxtHhw/hg5jjSUvc2dNlCCNHsNfmAXPjKY+S++CKl69aT+/rr9d6/q7QU004bW9or3DJ2/uU1oigY+99J21ffxty+ilE7nNj+7z4+PvKJe4sVQjQqOc8vpCo7m5d+V0CJNY9/FVaxJPwa7o4dzd+x8H7OXv4Sm8GR6QHsUH3osO4I+WOu55WZw0g6uqmhyxdCiGarSQdkp209p15YhneYHb/W5eT+9xXsqan1WkPWyrcxOiBbDaFFcHid2lKi+xLz2iosnTSG73SRPO8hPj7ysZsqFUI0JlUnT3LmnXfY09GfrXGlPGKMYeSsPTDuRRj9LPxxLdy7D8ugh5liKeG2Lkexji0lPdrM1WvTcUydwRNzRnMk91hDvxUhhGh2mm5A1jQKX3gEzanj0/FTONG7EhwOSrdsqdcyUt57g1w/iBt0u1vaU0LbEf3615g7KoxI0jjy2MN8cFhuLCJEc5O7aBEuzcUbA4oY4vBh8rRPwGD65UYBreHqOTB7D9z8Oa17D2dMnwzCrsunLNDIxE+Ps3faWP75/t+pdFY2zBsRQohmqMkGZO3Yd5zZfoq0MAOvBX/BrPggMClUHDpcbzU48s/gf7yApAQd0wac7w7bl0cJbE3Mm9/h1V7HmO0aR//1D5bsW+K29oUQDavqdDYFH37E3vYaRX4KD499A3T62l+g00HsAJj0Oso9ewm+bgaDBmXh07eE+NMw4smP+Ms/hrIn+0D9vQkhhGjGmmxALn//KeyFRr7s4eK6VpNx6HScCa6iYv+eeqshY/nz6F2Q3yEOr996cd5FKH4tiPvfWgwJRiZs1jj57NM8vfVpXJrLrf0IcSVylZWR8efZ5LzwIs6Cgnrv/8w7b6NVVbG4v46JQQMID+1w6S/2awHXPYlyzy5ajxxCx2FZGKw6/vxhLiseuZ6Xk96Q9ZOFEKKOmmZAztxN3vqjlHmBrWs8Tw+eS7gznp0tDFQePYbmdNZLGSdXfUZWAHQffq9H2ld8Q4l/ex36BAsTN2koLy7hnu/upbSq1CP9CXGlyFn4AsXffEPuS9Ur4NQnV0UFZ955l+NxGqX+Cndd9/TlNeQfCVPfwmvGWySOKMcUa+eGDU6Up/7NbZ/OpLCy0L2FCyHEFaRJBuSqL5+mKN3Cus4KcwY/gKIojGpzI4cjdGh2B/a0NI/X4MzLxT+tlD1t9YxNHOyxfnTegbT9YBP6rsGM3q6R8Nq3TP5oEvtz93usTyGas/IDB8hfupTKEeOw3vVnKvbspep0dr31X/jZZ7gKC/lfPwMjw0bga7LWrcH2Y9D9eROxk9sS0qmIQfs0Rry8gcnLx5F0Osk9RQshxBWm6QXkY9+Sv3odOpfC7n5tGNRqAAATOg0hNVwBoPKw5+chpy/9N3qXQn7HBHQ6z/4ZFaOZtm+vRzeoPUP2atzyvxPcunIa/0n6D+WOco/2LURzk/vyf7GbTTzQ9gueynsXgNLN9bNkmuZykf/GG+SFaKREKtxz7d/d07A1AuWWzwi9/SZa9DlDp3SNBxfn8uC7t/DM9v9gdzbMGvHCM4oqqtiXUciO1Hz2nywks6Ach1Om3wnhTu6dOOshruStKEYDitkX+zv3km3zY1+cwm1jH0RRqkNxdGAwJQEKTh1UHDqM38iRHq3p5Ndf4fCHHiPv8Wg/Zyk6HeorK0h54gG6LPucZ5e6eKTiDb5O/ZqHej/E1a2urpc6hHvkHUtl9/ufUbJnH/ozeejs1SsQVFl8sIeEo8XEYenYgdh+PVCjAjHqm9532caoMiWF4jVr+KovVJphY3QeN1ug9IcfCBg/3uP9l6xfjz0llXfH6LgqcCB+Xn7ua1xvhOvmE9CyO4bX70O3zof5Sww8U/wGY9O+5+mrn6BLaBf39SfqVWlpOasXryR/ww+Ys9PxdpVQZXBRajKQbzGRaQ0iPzIBn4QBdGrdkj6xQXRtFYBB9h1CXJYmEZAP3n4HxrIyIhOLSD8cQJWm58vx7XirVf+ftlEUhUB8yQ08g/8xz64L6szOwD+tnG97GJnd6SqP9nWu2Ef+TW5CF/jHfF5+o4oF43O4u+Ru+kf258FeDxLnH1ev9YjfpjzrNFse/AdhO9bTUtPIt/hTHGClygy4HFhK82iVcRDL9m/gAygzePF2WDvyu/UlfsJoru3dBovXBVY7EBd0evGbOHQa33dXWNL3KZYnLWFX7GG816+npcuF4uGzQXmvv0a5j8amBD0fX/OQZzrpMgXf/+tMbPhNpH98hnnLDbw1KJPfl/yeCW2mcH+ve/A3+Xumb+F2mqax6z//Rrd8GR3L7NgNkB4C5RYFs1MjpBi6Z4LFngzsoMK4jP1RFt6IimVX1GAGdBjAjX2j6doqoKHfihBNSpMIyP+5KpSZn2fiWheMC1gy2psnp73409Hjs8L04WT5F9D61EmP1pP+5jPoXQrZXTp7fHrF+YRMuglftTNpt9/Cg++WktTHzH8G72Bi5iSmJdzAzMSZ8gHYCJ38dh2nHniAQHsFG3p3ZvcghW2GI1S5sn65oaYRXKSnzSmNxFQX3Y8fJuiL/VStfoPlUYlUjhjPyOkjiQ31bZg30kTZMzIoWvkhazsrTGw1hPgOYxmmGVi2+0EGHCyi8tgxzO3aeaz/sh07KE/axcdDdHSwdqO1X5TH+iIsAdNf1xHb4e9kvvQRt34P3VOtPD/2A1anrGZWtz9xY/tpmPSmi7clGoyrKB/bjWOwHMsnuSV8MFKHM9bE1S6FhMJsoirK8HO50MI6UBCQyOkzFooPphG/4yg9Uw5i1x9ka7tF/H17Z4gdz+yBVzG0fTg6nXLxzoW4wjWJgDz7zjeY2+JBgk4eJCcqjIfHPEmU9dcfLhG+bcm1HqHyxCmP1nNqzfdUBECfEbM92s+FmDt1o81X60n/04302JLM/zLKefi6LizX3uaL5C/4S4+/MK7NOHSKnF5rDE5+vpq8OXPI9bOy6FYLtoCDxFrCmKaPpXNFBbElZwgtzcdYXkipDk6bfUmND8bWyZeXdU7KU3Ppv9/JwAO78Xl1F4fffYFP+42h+4xp9O8U9asvi+LXDvz9QRRFY2cfE2+MfR6APh1GsDB4DgD25BSPBuSc55/FbtH4orueRVfP8Vg/PzFa0E9cQFT3ieQ/dheJm4t49XU9C4Za+I9rAW/u+x93d/8T49uMx0vv5fl6xG/iPJ1G8g2j0E45+N8QPceHtuOh/nPpFtategOHHU7tgeS1kPw9wUfeI97lgOgItBHjyVVUjn27kd7fbWPAoR0cjtzBsuMRPBYzgrv7TmJit1iZuiXEBTSJgNy1ZTSfznqfKlcVRp2x1u3iI3qQ6vsFWkExmsOB4ua1iQEc6UfwO2Fnc28v7u3Q2+3t/xZ6f3+i3/mc/OcfJ/u15Tzzv7180qsjH16lMXfTXFYeW8ncvnNpE9imQeu80p3ZnkT+nDmkhHgz/8YiWvh482pWAf1KT6DoDBAUD4HRENENzAFYFR0RFYUkFqZDznEoSKNIp/BDN1/eHtwS16Eyhu3IZdiXb1L0/TKebd8P/8k3ce3gbrQO9m7ot9uoaBUloOhIXvwC5i27+bSfwpyJr6L78aYciqIQFBQJnKDgwG78rhvukTpKt2ylbPtOPh2s0MLShm7hnT3Sz/koMVcR/Oo2vN+bR+bCD/jbp6dIPhzIY4N1PLblMRbufImbO05ncrvJBJoD660uUTutJJ/U6aOxZzlYOE5P9ITpLO/1AEZ9jc8/gxe06lX9c/WDUFEIR7+BAytRkt4g1GknNDIS17zRnEz2ImbFNzz0eRbpIW/y6fG3eWZTH4a3Gced/QYRFSj7DSHO1SQC8lkXCscAPdsOYJdVQdE0HHl5GMPD3V7DiTf/hU5TyErs0SDTK86lKArB9/4fPoOuJfOemYzeeIirU324r9+17NU2MfmzKczofBu3d74di8HS0OXWG81u58w771Cybh2Kl4mQu2Zh6Vx/oeQse1YWyXfeRaGvjvk3ljLWXsID+Wfw6jwFOk6AVr3BeJF/l7J8/DK2MyJ1AyOOfkuB/0lWj/FmaWkQCUkOhu9ZD7vXs7Z1ENu7XkXra6YyJrEdarj1ij+yvO6aXgQUaZiqFPZFK4RM/gMdovv8YpvENsMo9F5Ewd5NtPZADZrLRfZT87H7uFjZw8gzV93vgV4uwuCF5fdPEDv0NnIfuR1+OMWS1DOs7tGeRd01Fu5ayH/3vMLwmGFMVafSNbTrlT12zt5opSH+Bk4HGXeMwJ7u4PURerpOm82dXS9hrW6zP3SeXP1TUQRHvoQDK9HtfZNWTjtR41tRWNEb5/pU7lqdzTTf9XzVYyNTjgZj9OnN0NaDmd59AHEhbrxwVIgmrEkF5ItJiGiJ/ces4cjO9khAzl6/lZIgGDD8Lre3XRfmrn2J/XoLef+4DeWznSxauZoNHTrzUh8Dr+19jfcOfcxfez/I6Pjhzf6Dr3zfftLnzMGZkkJhyxis5UWU3TaD1m8srteQrLlc7LnrPgwVxTx9q8Kfygu4VZ0Ggx4C76BLb8g7CNoNr/4Z9jgB+SlMs61mmm0VGcZtbOxpovy4D+r+fHp9+hnZ6z7j3Q4+bFFj8Y3uQr+ojozp0Iu2QVfeVIyU8YNx7dxCuUWH+pf5TO187a+26d7uGjICFhGS5ZmpWYWffkrFYRvvjtIRYo5mSHT/i7/IQ3Th8YQt+h7/798h6/EnuG7zIa6zefFq52tYrZaw2vUdnyd/Tvug9vyhwx+4Lua6Xx61bM6cVbDrfzi+eY6CXfk4tAACZj+FecDoei3jzII7KNlVxOe9FMKn3n5p4fhcZj/oMrX6p6IIbKtR9n1AQPLn+Pd1UNoxCq+jAUxbl8+UDblsVVfzXdfVjEu34OVqS/uATgyO68FItTsRPqFX3H5DCGhmAVmnU8BbD7hwnD4Nbg5DVbbt+GU4WN/PzIMderi1bXdQTGZCnnobv7EryX78/+i/dx/9j+hZndiVZT1P8fAPD/L05tf5U6d7uDFxQLO4UMNVUUH5rl0YwiNwFhSQuex/2L/8EpdJwTiwEt+ogxws6Ez8lkJO3v8A8au+8MjUm/NJ/u8ifA/s4r8jdYw1lnHrsNcgwQ3LDwbFQr9Z0G8WURVF3JD8PRz5irL232BLKcfrmDdTN5dy/eb9HGuxn03tdfy5jUJWoDdh5ni6hiZybXxfrorqhY/Rp+71NGK3PvjyRbfpHNmBpECFyBPuv0Oly24n57nnKAtx8kVnL57qd1+jCBumwdNo3X8ixS/dT87yr/nTuq+YcdCPV9uO5Js2Do46t/Lwxof5947/cEPCVK5XryfI/Bu+1DUllSVw+Au0df+iYPspsnYFgMMKOgdn7niQyEdP4XfDHfVSStUP75C5bBPJETpsk6/h9b5uuEur2Q8Sr6/+KctHsa3C99Dn+Aavo7KNnTPHfeif4stVhzQKAqpY1+EYG9rv47nSd3huv4IBHyIsrUkMT6B7RCc6hnSkXWC7i57RFaKpa1YBGcDlYwaqqMp2/52x0v73LAoK2V37NYoPudp4/W4CUZ+OpHzZ/5Hz1kpGbE1i5B4DW7rH80aXk/xr710s2NaeayKnMLvfSFoHN92QtG/xi3i9sPjnB3Qap9pX8fogMwf8qt9XfItj3FOqw7Iul6KvvsJ/1CiP11WRdoKS/y5kTxvwaePgztHvQmsPzFk3+0GHcdBhHN4uF91O7QbbaqqSPqcoKQ3jCQtt1nhx0xoo9C1jf9Rh9sbu4z9Ry3ggUIefvh1xvt3oGtqLPi0TaRPmT5jV1KjHt7t56b0o9tPhXezEZbej83LfBWsF772PI+s0S6boCdO3ZkTcELe1XVeK0YTfvS9inZ5M4b9nkbfmGHdteo87D1r5pv0Q/tfCl+zIXby8+2Ve3f06PUOGMqvHzXSP6NjQpbvH4VXw0QyoKsNerCd5TwRaRgB7WxtZfJ2LYi8rr72TR9YzC/EZMRW9v2dXBtIKMkj5+z+wa3renNiSZSP/5f7/h95B0G169U9VBaaMbUQkryXs6HqKtx3EJ9nEuM0mxm1SqAyysLdtS75q4c3eyDLSS1bzRepKAIyKhYSARPq17MPQmP4kBKtX1D5DXBnqJSCrqqoDXgYSgUrgdpvN5pHFivU+VpxKMQ4P3Do2e+tuyoNg8LDLOOVV3wwmLLc8TevJD1C+7O/kffQtfTYfps9mhRMdQ3gzMZmvTPNYvXIhwfRgSOtB/LH3UFoGNK2lw5J7h/DWzXqicjWKvCG5hUKhj5Fuod2YHTUAs8HM0j2v82jvHBbu1pH32uv4jRzp0Z25pmkk3fsXLDonawdrvHzdayieCMfn0ukgsjtEdsc45BGCi7MIPvYtVTtWU6FZdzwAACAASURBVLJlJ9YTJQSleHHV4eoL1BwGByfD9nOgxUFSIt5mY6iOSh8rRkckelMiIcGdaRsaQpuQQOJC/YkLCsBsNGHQNbvv1VQGeKNQTFVaCqa2qlvadFVUkPvKKxS3cLE23si/+j3QKEOEEhJHwFNf4n/0W0pefZj8bbkM3/wJw3UKJe3asSpuAp+0PMEW17ds/Wo1ZkdbugVdw4SEoQxu0wazsWmuy/3NugP4fhKMRgiBRQ4qjBrvDNWRPrQnY6O786HtM/4+poT5b1WR89RcIuY/77liXC6yH74B5yk9S68zMP/3/8Xb6OEL54xmiB0IsQPRXQP+t5bgn7YJx57VFK9ZS/HhM/TaXkYvlwIGHeWtotjdog2bfHUcCitkT/lR9p3ZwmsHnkdxWglQOhDjk0hiWBd6R6okRAQS4uvVKMe8EJeivj7pxgNmm83WT1XVvsACYJwnOrJ6BXHGNxP/zDS3tus8vgO/ky629DRzr5ro1rY9yjcMy8zXiPr9aeyrn+PMhx+jO5TNP/brqAwxsK6LkxXtv+ejU9/x4YrH8acjV0VexS3dRtAhrFVDV39R43veTFSrjhw5c4RKZyWTLSH0bdGXMO+wn7bpH9mfGz+Zwpe9ixn7jY2KvXuxJHru3zD5nQ8IOnSQpdcq/N/gOZjjGuguh9YI6DYdY7fpBN4BgUWZaFn7sR/YSfmRVCpST2NNzSZ6bwEkuQAXVYZ8UsPOkBp2gBOhCttD4eMQhUJvfrpgyYAFqzGEKJ9oOoYk0CeyC13COhJqabpzFZ1hLYBiivf84LaAXPzNtzjz8lg+RSFc15IR8YPd0q6nKG2HYn3mGqzJa6lc/SKFa3ZgSDnI1MM2rjfocKqRrG3nz7vR2WwueoXN217BtTGEAF1bEgI7MCC6E8PVRFr4hjb0W7kk5fGtOBZrxFxRRXrvIByDB3DXtXcS7RcNwM0db2bIu6PYp2aTuPo7wh6tRGfyzLrRlR8/Qc66XPbE62g3/UHUYM8tN1grky+0G4ah3TACp0BgwQlcez+j9JuPKdt3lLLTx+iXmkY/7cf/4xYj5WFBpIVYOBjsZH/wbo6FbWFXucKSNNCcZhSXBaPOgo/RB18vCyHeQcT4R9IpLJ4OwQm0DWyL2WCu//cqxCWor4DcH/gSwGazbVFVtaenOgowh3HGF4IzTri13ZPvLETvUjjZqWfTnLtrDcdr6nzCJz9B6LEfKHr7FQrW7GTYmjMMW6NREWVgq2rg47YHWa3fyerVL2B2xtI9ZCA3dhrFwNiERhl+FEWhV0QvekX0qnWbWP9Y/tLrr/ynbB5jvnVQ/O03HgvIjjNnKHzmn6S3hI5D+hPb/VaP9HNZ/Fqi+LXE1G4YNT/mNacTe9oJKg4dpGLPbnx3b6fNkRSU3faftnEaNSp9NIr99eT7lJNnSSfXkk6eZT0fWmCJBZxGI2ZDAF7mMCzWOPxCOnBr/7HEBjf+O3hZYrsARzi5ZzMhk29zS5uFK1Zgt8L38QYe6vbnRvn/51cUBeIHY7p7MGG35RNq+4ry71ZQtGkvxcmpDDmgZ4hOQ2uhcLSNlXWxTjaE7WRb8Wa27YcF+8GgBdLKuz39Insypt0AOoS0a5TrsY8degMMvaHW561eVu5MnMWnxx+jy2EnJd9+id8o9x/X0TL3kPz8W1TqjXw9sTtLevzB7X1cloDW6AbehXXgXVjtpZC2GdeRtVTs20nF8RNUZhZiKSjFJ9NAQpWOiT++zGlyURKgUBDgJM+/jDyrQp435FoVcr01NpjhGwO4FNAUCMVIa6zEKCFEm1rRLqQ9kZFtCe80EOVKuUBUNEr1FZD9gMIavztVVTXYbDaHuzsKsUaRb1Woyj7t1nbTt+4CX+g2pBEFnsuh06FrN4CARwcQMNeFfftqCj9YRtGmA1z9XSFXfwcEV3E81syXselsdi1h04a3UL5rSbSlN1e1HMA1cd3pHBnYpE6tTlDH8+L2haRF5mBc/Slh9z/gkX623P9HAiucbLnWypPjXvFIH+6m6PWY4mIxxcX+ND9b0zQc2dlU2g5j370R+/FDOE5lEni6gJY5lTgrXOA6t6VK4PSPP/uAT1g7ZDGxL6+r1/dzOWI6DKTC+CElqUfd0l5VZialW7awpY8LP82fqR3dcHFmffMOQuk2De9u0/DWNMILT1K+YTUla76nZOdh2q0rpt26YmZ6OdGFOChooeNwSyubQyvZGbidt8s38faxhRhdFsKNHWkf1JffRfajT6s2RAZYmsSBhps6T+bNpBcp8c6l4N0l7g/IVRWcfvRmOG1k2QgLC6Y91zi/SHn5QNuh6NoOxXsUeEP1jUoK09EK0nGkH6cyOY3KE6ewZ5zGmpVHyOlSoo9Ugnaxxp1ABZADHAK+5gywY3Q7Rv/7E4++LSEupL4CchFgrfG7zhPhGCAiKI4jvqBLL3Jbm1rRaSwZVeyMNTI9sc/FX9BU6HR49RlFaJ9RhAKVR20Ur1hKyboNxCflcNcOJ3cpGiUhLg60OsGmVhmsyV7J+8leuMrbEGDoxaDWA3l4eC+8DI3vCFFNRp2RGzvOZH27J4lZk0PVyZMYIyPd2kfW+m8I3LSfNT0U7rvzA5RGsE725VIUBWN4ePVSiQN/PUVE0zQ0ux1XSQnOwiKcZ/Jw5WXhKjiNM/cUhbkZFBScZvwk9xyN9bS+MZ05bAV9QeHFN74ERatWgabxXjcj10XfgF7XdL5MnpeioARE4T3mDrzH3EEYUHU6m7L131G64TvK9x/CJymfHkkV9KACFA3F20Wpr0a2XyUpfls47bONTZaFbDUq+OvMBAa2547738DLq/EeJTToDPRtNY61Hd9kdNJhnCUl6H3dd52G/aOHyNlcwcEYHVfd8QQh3iFua9vjDF4QHI8SHI8xfhDGQXDuX0arqsKRn48jOxvH6dM4C4twlZejOaqqg7PTgVZVhebSKKwq5WRhOlmFJymsOEPbcdMb4E0J8bP6Csg/AGOA93+cg7zPUx1Fhyew1apgKK/CVVGBzlz3+U2la9/GUq6QGd0Ks7H5XaB0lqmtiumvTxDyV3AWF1O+I4myTd/ivWMb1r0n6bOz+pChU1dGTsA+MgP2kxm6hKzEFbSOcs+8TU/6faexTGnzFDetcVH8+QcE/ckNSyj9SHM6OTb3L+i9IeSmOwgNiHZb242RoigoJhM6kwlDcDAQ+4vnm9r92CKt4WzzgaBS+8U3vgSlW7dRFAh5/gp/7NM8P+iN4WH4T5mG/5RpADiLiqg4eAh7SjJVGek4TqZhOZWJ/+ls4tKLcVVU1Xh1KVX6Hbhml4JX456Cc3v3SczdvITR2zXKNq3HOsxNZwNSN3L0zU9waibWTxnASx1GuKfdRkQxGn/+on2RZVdDAbnnq2hM6ivtrQSuVVV1E6AAHpunEBupUuxdfU7HWVCALiKizm0e/u4zfABdL88vD9ZY6K1WfAcPwnfwIKD6znSVx49TsW8n9n3b8D9+jPCs03RMd9LSu2nEIavJCqGdyLfuxnfdarcG5O2P30ZwlpPPRoYwZ/hf3NauqB+KolDurcfrtLPObWlOJ+VJO9jfViPGFUGYTxM6KlgHej8/fPr2wafv+c+yuex2nAUFOM8UUJ6fTZlRw+zTuMMxgBocR36LMKr0pyj57jP3BGR7KfkLZ6JLM/HxQG/mT3+m7m0KIdyqXgKyzWZzATProy8fsxl+PGPnLCzEWNeA7HJRciST4gCF4f09svBGk6B4eWFu3x5z+/Yw9fcNXc5lG9B6JEdb7sH/eAbuWqOjPGUXfLqV5AgdN/z9fTe1KupbhY8XlrKy6rmVhstfC7nyyBFcZeXsaK2nb+vxbqywadN5eaELC8MYFoaZdk3qLENi1HUcavUWxq1JtHBDe9o3/yR5UxWFQToSZv4TP5Pc3lmIxqbpTpK8EK/qixycbphPqOUewy8TjkWZ6BHl3jmrov7d2m0UyREK+kIXzuyTdW/Q5WLdP2/DWqpwctoEWge54+NTNAS7rzdmu4IrJ7VO7ZTtSALAFqUwo9+NbqhMNLTRCUM5EK1AVjGO/Py6NZa1j2PvL8enQMfqaztxQ/cr58ykEE1JswzIOnP10R9nYUGd2yrcsQpLpUJeVEyTuOpaXFhLvyCyQquPXVWs+6jO7WV8/R9CkyrY18bE7Xc8Vuf2RMNx+lePi5Lj++vUTtmO7RRaNUw+3oT5NKXjpKI2/aMTOdyq+kLLsh/qsCqLpuH8/G8U7vPlYJSOGbOedVOFQgh3a5YBWW+2ANVTLOrq2LbvAfDqNKDObYnGoTC6GwAlW7+vW0OleWxZugizHfzv/ie6JrxqhQB9SPUZoqxje+vUTtnOJA5GKUQZYy++sWgSDDoD5RGtqTJolG38+vIbOv4de3/Yi0+Zwq7hI2gfHuW+IoUQbtUsP9G9frzwo+pMHU+FAfnJqTgV6NJ3WJ3bEo1Dm+h+ZAVA9uG63e18/8p7iNuvsD8hhOHXjXVTdaKhWKLaApCXcfnjwlVaijMnj9RQHWqLge4qTTQCcREDSAtVKNh/+YswaZteovSwL8fD9dx+2yNurE4I4W7NMiB7+wRTpYfCU3W8m57DjpJdQVaQQt82Ce4pTjS4ITG9SG6h4Dhth/LLnIaTtZ9Na7ZhsUP0XTK1ojkIi6n+P16We+qy26hMTQUgMxiGdmqCNwcRtRrW9mpSwhWqMvLRtIve/eLX8o6zb+tWgs/A1r59iQmW6TdCNGbNMiBbzcGUmKE0t45308s+gG+ewqkQC77mxruYvfhtfhcTx8kgE+ZiHa7jmy6rjZ1fzaHzbj2HY8Ppe+0g9xYoGkRcXHVArqrD1Cx7SioAxf56ElvEuKEq0VgMje9OWriCoVKj6mTmb29gxxtkpvlSZIHBN8nRYyEau2Z51wt/7xBKzWDMz61TO6WHNxBQrJDfUlavaE4sXnpOB0UBx6hM+h7Lbz3Sd2IL6/Yc4boyI+U3zPJIjaL+xYZGsdsCFJdfdhv2YzZcgME/pHHeMlhcNpPBi4IQX6CIiqRNeEVNufQXu5yU7XiPFqlG1naIYHaHGE+VecVJSkoKMxgMi4BONNODfsIjXMB+h8Nxe48ePbLPt0GzDMiB1nBKLGAtqttFekd2bcQMaG17uKcw0Wg4ozoCx8g7sIPfeplM8sZnCLN5ke/jxYBpEzxRnmgAJoOJYm8FXZnjstsoPbSH7AAItca4rzDRaNhbxuFUdlORtBG/cb8hIJ/YTFKanRCHkeLfjZIvT25kMBgWRUREtA8NDT2j0+kuY+6LuBK5XC4lJyenQ1ZW1iLgvBcRNctvWyH+LSkxKyglZXVqJ+t4KgBteg52Q1WiMQlr0wuHDk6nZ4DLdekvPJPKqpQkuiZrZPW7FqOXTL1pTkp8dBjKgaqKy3p98fFjZAYpRAZ1dG9holFoEdGLk8GQt/83rnRy8FNK07zJ9tMxbOxNninuytUpNDS0SMKx+C10Op0WGhpaSPWZh/NvU4/11JuIoNaUWMBQdnkfcmdV5ZdQYYQ+3Xq5qTLRWPSJ7kZWIJSfAfKPX/LrnFtf40yGBZ0GXWfc5rkCRYMo8/HCVKZAac5vfq3mcqGcLuBUMKit+3mgOtHQerbuRVq4QlX6bxgfLhel+z6lRYbC9tiW9IwJ9VyBVyadhGNxOX4cN7Xm4GYZkFuERFNiBmP55Z8qxWFHX+Qkz09HqNXivuJEo5AYGcHJICP6Ah2kb720Fzkq2XroPTocg4zgIOK7tfdskaLe2a3e+FxmQHZkZaGvcpEZpNAnptaDEqIJGxKXSEaIgrHYibOk5NJelLmLvRkleDmhvMsAueGUEE1EswzIZm8/7CYw2l1odvvlNXImBUuxQoG/l3uLE41CS38LGf6BWAt1aCmbL+1FtlV863CRkAFlMu2mWXJa/TFVQWl2+m9+rT0tDYAifx3hvn7uLk00AiE+fuQHmgCwH7rE9ZCPfUtOtgW7ATpfe70HqxMNacuWLT6TJ09Wz/6+a9cuy9ixYxMmTJigzp49O8bpdALw6quvho4ePbr9mDFj2n/wwQeBACUlJbqbb745ftKkSer111/fLiMj41dz9woKCvQ33XRTm0mTJqnjxo1L2LRpkw/A5s2bfcaMGZMwfvz4hKeeeqoFgNPp5P777289bty4hMmTJ6tHjx41ARw9etR0/fXXt5s0aZJ6ww03tM3NzdWfbf/o0aOmYcOGdTj7e3JystekSZPUiRMnqrNmzYotLS2tNS++++67QePGjfvVWrhr1661/vGPf4yr+dijjz4auXTp0uDa2lqwYEHE1q1bvcvLy5U333wzpLbtHn744Vavv/76T6djXnjhhbAxY8YkjBkz5qe/w1kff/xxwMyZM3/znZuaZUAGcFTvw3AWFV3W6105RwgoVCgOlLUqmyOdTqEgtBV6DQr3XVpArtq5jOJT1dMr2kwY4+EKRUNQ/Kv32znpR37za6syTwLgtPq6tSbRuJSHhgNQuWvjJW2vHf8Wa7qBAy18GdhR7q7YHD377LPhc+fOjbbb7T+dHli4cGHLmTNnnlq5cqWtqqpKWbVqlX9OTo7hww8/DFuxYsXh5cuX25577rlWLpeLJUuWhLRv377so48+so0aNSrvpZdeiji3j5dffjm8d+/eRR999JHtX//6V8rjjz/eGmDevHnRzz77bMqKFSsO79+/32fnzp2WTz/9NMBut+s++eSTw/fff3/G448/HgXwyCOPRN97770nP/roI9vUqVNzjhw5YgZYvnx50L333htXWFj4UzB/4oknoqZMmZKzYsUKW69evYpfeuml8PO99507d1pWrFgRcllrg5/H/fffn9WnT5+yrKws48qVK38VkLOzsw2///3v2/7www/+Zx87fvy415dffhm8cuXKw5988snhLVu2+O/Zs8cC8NBDD7VauHBhpMvl+s2nbprlKhYArrMBubAQQ0itX0JqlXms+iYQ9vBWbq5MNBqtOgJJpGWeJqAsH7yDat+2KJOdmT/Q6VgQeb4+/G6gzEtvjgzB1Qce8rJSifmNr61KOQyAzv9Xn22iGTFEJmI3/D979x4eVXXvDfy7Z2bPTGaSTELIBQKBhISdKAoVNEThGIqiCEggCF6OFa2Hxr5CYyI9ooWYFiqCkVq0r1Ss4jnBikko9IEXWyuUFm+tUlRqhnBLyP0+95nMzJ73j0nChFwADSQm38/z+DzO3mtm/zpd7vxm7bV+6yzMx48i7GKNHa04c+pLxDSH4/C1E3G/nk8kr6QdH56NKPm88vL/4Pdh8Q1jGh+6eXxTX23GjRvnevnll089+eSTnb+AJEmyt7a2KmVZht1uV4qi6IuMjPTs37//uCiKOHv2rFoURVmhUODxxx+v93j8U0Krq6vVISEh3guv8dhjj9VpNBoZADwej6BWq30mk0nhdruFxMREFwCkpaWZDx8+HNrQ0CDOmDHD1H7MlpOTo7fb7UJLS4v4/vvvhxUUFIxJSUmx5eXlVQKAwWDwvvPOO8bZs2df13G98vLyoDlz5pQDQGpqqnX9+vXdkqHGxkZlQUHBmJ/97Gfnfvazn427nO/10KFDIa+99lqMSqWSa2pqNLfffnvz6tWra1euXDl+3rx5ze+99154RUVF0MaNG0c99dRTnbs3Wa1WxcqVK6sPHjzYmSCPHTvW/eabb5apVP6U1uv1ClqtVgaA733ve9Y5c+a0vv3225c9+X/IjiB7Ne1f1Dcs+l9xwr9KWTtOukhL+q4ak3wLAKDRqgYq/9F34y/fxSGNFpPO+tCYciMUiiH7n86wpo/y1zy3NtZe9ntbz5TCHASMDJ/Y32HRIDJh9DRURQAtpy5hce+Zv+JkkxYAoJ065wpHRgNl8eLFraIodhlCjY+PdxUUFMTddttt1zY3N6tuvfVWCwCIoohXX3018v7770+58847OxNvlUqFpUuXTiwuLo6aO3duy4XXCA8P9+p0Ol9NTY1q9erVCdnZ2ZVms1mp0+k6k+ng4GCvxWJR2mw2ZWhoaOdxhULhq6+vFysqKrQzZsww79q1y2g2m5WFhYURADB//nxTcHBwl3JOiYmJ9n379oUBwIEDB8KcTmeXP3oejwdPPvnk+GeeeeZcTwl9XzrKHNbV1am3b99+qqSkpHTnzp1dRhZWrVpVExcX5whMjgEgISGhbfr06bbAY2q12hcZGemRZRlr164dk5SUZJckyQUAS5cubfmmZRWH7AiyTysCcMPb+s0S5NbqKoQDiJUm92tcNHhcFz8R9aECXGYRqPgYmHhHzw19PviOvY0TthDc3eZB+C0zr26gdNWER40GADhNzZf9XnN1JZpDgHFRvGcMZdPHXovSCAGjz1ku3vjUB7A3aGDVCrhxJhPkK+2hm8c3XWy092opKCgYu2PHjtJJkyY5t23bFrlu3bqxmzdvrgCArKyshocffrjxwQcfTDp48KB11qxZFgDYtWvXia+//lqblZWVuH379rI1a9aMB4D58+c3LV++vPGLL74Iys3NTcjJyTmXnp5uNZlMCofD0TmP2Gq1KkNDQ71Op1NhtVo7j/t8PiEqKsodFBQkd1xr1qxZpiNHjoQC6PH7WrduXeXatWvj9uzZM/KWW25pNRgMnuLi4vC33347CgCefPLJyqqqKm3H1JKKioqgp59+euwvf/nLzgUcWq1WdrvdXbJTu92u7BjdTUhIcIiiCFEUZbVa/a3maDgcDuGJJ54Yr9Pp5E2bNpV/m8/qMHSHwYL8cyy+6Qiyq8X/A2XSlJv6LSQaXKSYUFSG6aAxqYCzf+u9Ye2XONFyEqMr/D+wJy34/lWKkK62UbH+p4TuS61QEEBuNqEpREBy7HUXb0zfWTeNSUL1SAEaiw9eS99Jsu/0QYTVKPDvGAOmJvTrk38a5IKDgz0do7jR0dFui8WiLC0t1TzyyCMTZFmGKIo+tVotC4LgKygoiCksLBzR/j6vQqFAUlKSq6ioyFhUVGRcvnx54/Hjx7XZ2dkJmzdvPj137lwzABgMBlmlUvlOnjypkWUZH330UWhqaqp16tSp1sOHDxsA/yK++Ph4h06n88XGxjoPHz4cDACffvppSGJiYq/bhn7wwQehq1evriwqKjIqlUqkpaWZMzMzWzpimj59uu3Pf/7z8aKiIuNLL710Oi4uzhGYHANASkqK4+TJk7rq6moR8Cexx44dC54yZcpFN6lQKBTw+XyXNPQryzIeeeSRxIkTJzpefPHF8o6pFt/WkB1BVuj0AFrgae32pOLiZC9g9sISpERyNG9qQ1VsWBCqw0bi2n+Xw1H5GYJsTYC+h8W1/9qJv+n1mFTuQ3XEKKTEco7pUBUbG48qALLj8rebFs0uNI8Gbo+5rKl49B2jFVVoDdMDsKDtX39D0MxetqpvPoOT9bWIbonAX69NhCGImwoNJ/n5+eWrVq2aoFQqfaIoys8991x5fHx828SJE+0ZGRnJgiAgLS3NlJ6ebk1OTnbm5OTE7969O1KWZfziF784c+Hnbdq0Kdbtdis6Fufp9XrPjh07TuXl5ZXn5OTEy7IspKammqdPn27zer04cuRIaEZGRrLP58PGjRvPAsCGDRvO5ufnx73wwgvCqFGjXHl5eY29xZ+YmOjMzc1NEEXRFx8f73j++ecrLvc7MBgMck5OzrlHH300UaPRyB6PR7Fs2bL6pKQkV1VVVZ8T8qOiotxut1vIy8uLzc/Pr+qr7d69e8O+/PLLELfbrfjwww8NAJCTk1N588032/p638UM2QRZrQsBAFibGnHZKa6tAaJFgWaDyC1BhzBBEGCOSoDmi3KUtalx/am/ANcv7drI7QCOvY0jUaPwk3NmnJsxbWCCpasi2DACbiUA5+XVUJddLmgcPlj0LPE2HJhi4gAch/OzPhLkM3/FyZYgjAegvI5lIYe6+Pj4tr1795Z2vJ45c6Z15syZpRe2a59T22VebUxMjGfnzp1lfX3+jh07epz0npaWZgu8LgAolUoUFBR0S2inTJni2L17t7G3a3zyySfHOv59+vTptn379n3dV0wdLvzfHmjRokWtixYtar3weHp6uiU9Pb3zEUzHtbdu3Xq249iBAwf+3ds116xZU93x7xkZGa0ZGRmf99b2wmtdqiE7xSJYGw6nCFgaay7e+ELmKuitAiyh3CBkqAsaNwUAUOkKA8r+1L3Bv/fC1GaGvcoKjdeHkTNvvsoR0tWkUChg0wKCU76sLcg99fUAAId+yI45UABF3I1wqIHWr4723uj0IdgbdbCrBVx78+yrFxwR9YshmyCHakfArgGcLd9gRyzTOYTaAJeBI0FD3ejrUgEAzS4DcPJ9wHvByOE/f4cjkXFIqfBBBjDpjv+4+kHSVWUPUkBwCYCz26BHrzznzgIAXCH6KxQVDSbXRl+DikjAfLa65wayF77Tf0VYtYCvY0IxbQK3lyb6rhmyCXKYLhJ2DeA2XfofuQ7Vlf+GzgV4R/RYF5uGkAkTRqM1SIm2RjfgaAG+Kj5/8tRB4NzHOBQ9AddWKFA7cixCIvuolUxDgkOrgsolALZep+d14z7rfxLpNfS6QRQNIbeOn4KKKAGK+jb4PD3s1lp9FKetFoxu9OHkqHiMCefTSKLvmiGbII8IjYFdA/hslz3tBDXtBf9V0XH9HRYNMlJ0CMrDwhFZ50R9dDLw9xf9j9Z9PuAvP4c7dAyOWKuQVCXDkXL9QIdLV4FLp4HaCcBWf8nvsZzxT+sTInnPGA4mj45F9Qg1VG0CPMd7qIBT9meUtfh3VPRcM5NrWYi+g4ZsghwVHgu7RoBgv/zV6K31/sdmYbFcjT7URYZoUDFiPOLqgX9Ic4CGUuDQL4EDTwHVn+MfU+9FzDkbNB4ZI26ZPtDh0lXQptNB6xQgWy49QW6pOA27BjBEcWOh4UClVKBuZHvN7E//0r1B2Z9gbQmFSwUkpnL+MdF3IhZFcgAAIABJREFUUb+tKJEkSQBQCaBjJeZHRqNxjSRJCwCsA+AB8Duj0fhaf12zLzERcfhEAyjMPTz+ughHi780XGw8d8Qa6gRBQNu4G6A+/k+cqDdhXsrdwOHN/pOpj+EDtYBJ5xQAvLhmDjcIGQ68IaHQOetga61FyCW+x1lfj9ZgYExkyhWNjQYP57gpAM7AfOwfXfuJtR6+6s8RUjkGpTEhmJbEspBE30X9OYI8AcDnRqMxvf2fNZIkiQC2AJgD4FYAKyRJuioTe8MNo+FQA6rLLNcEAB6Lf9Q5IYl/7IaDsOv9Gzu0fnkUWPY/wIN/AJb+Dzx3rMcH5z7A5NNa1Iwcg7DRnJM+LIRFQOMB6hsuveyn12KDSQ9IUZxiMVwkjfke6sKA5pPlgMd1/kTpPpzyiBhTJ+PfUeOQHHOpP7Pou+zjjz/WL1mypPMR0tGjR4Puvvvu5EWLFkmrVq0a7/X6d2Petm1b5Pz581MWLFiQ8u6774YDgNVqVTz00EMTMjMzpWXLlk2srKzsVjS7tbVV+YMf/CAxMzNTWrhwYfKHH36oB/wbgSxYsCA5IyMjeePGjaMAwOv1Ijc3N27hwoXJS5YskcrKyjQAUFZWplm2bNnEzMxM6d57701qbGzs3G2vrKxMM2fOnGs6Xp8+fVqdmZkpLV68WPrxj38cb7PZes0Xn3766bGvvfZat5Wohw4dClmxYkVC4LFnn3029q233up1sUZBQUHMJ598onM4HMIbb7zRrUrv0aNHgxYvXiwtWbJEuu+++5Jqa2s7B3q9Xi8eeOCBpI5Y7Ha78MMf/nDC4sWLpf/8z/9MrK+vv6xB4f5MkKcCiJUk6aAkSfslSZIApAA4aTQaW4xGYxuAvwO4KmUAFGod3GofxLbL2iLcP//U5oFHAYRER12Z4GhQSfxeChwqJQxnm3Cq9RQwYRZwzd04dO4QTOZ6JFba4Lie9Y+HC024/57cUn/uIi3PU1rdMOkFTGKCPGzMiJuCr8cK8NUK8J384PyJz96E0RoLBQDztbdBpRyyMxmp3ZYtW6I7tlzuOPbrX/96dFZWVs3u3buNbrdb2L9/v6GhoUFVVFQUVVJSUlpYWGj81a9+NVaWZbz55psjU1JS7MXFxcZ58+Y1vfLKK90eO/zmN7+Jvummm8zFxcXG559//kzHhiH5+fnjtmzZcqakpKT0q6++0n/++edBe/fuDWtra1Ps2bOnNDc3t3L9+vVjAOCZZ54Zl52dXVVcXGxcunRpw4kTJ7QAUFhYOCI7OzvBZDJ1JuYbNmwYc8899zSUlJQYb7zxRssrr7zSbYSovr5e9cADDyQdOXLE0F/fZW5ubm1qaqq9trZW3L17d7cEef369XFr166tKCoqMs6ePbtl69atnd/Vhg0bYi0WS2fS//rrr0clJiY6SkpKjAsWLGjasmXLqMuJ5RtNsZAk6YcAnrjg8P8B8JzRaHxXkqQZAP63vU3gXs8WAP32RfZJEOBVC1C7ffB5PBAudetBexMEhwCLXgFBwRvbcPC9+Aj8zTAa8XVV+H3p7/HM9GcAAO8Y38GNNQaIcjNivs/ybsOFfqT/h7GltemS3yM6ZNi1ChiCWK1guEgdNx57Y3VI/9IG16G3oU2eC1QfBWr+BVdVElp1HiTclD7QYQ4vn/42Av96u3+3v51yXyNuWtHnzWDcuHGul19++dSTTz4Z33FMkiR7a2urUpZl2O12pSiKvsjISM/+/fuPi6KIs2fPqkVRlBUKBR5//PF6j8f/tLu6ulodEhLSbWTvscceq9NoNDIAeDweQa1W+0wmk8LtdguJiYkuAEhLSzMfPnw4tKGhQZwxY4ap/ZgtJydHb7fbhZaWFvH9998PKygoGJOSkmLLy8urBACDweB95513jLNnz76u43rl5eVBc+bMKQeA1NRU6/r168deGJPValWsXLmy+uDBg5ed1x06dCjktddei1GpVHJNTY3m9ttvb169enXtypUrx8+bN6/5vffeC6+oqAjauHHjqPbNVQAAW7duPT169Gg3AHi9XkGj0fgAoLi4OFwQBF9aWpq5o+3Ro0eD/+u//qsWAO644w7z9u3bR19OjN8oAzQaja8bjcZJgf8A+AeAPe3n/w5gNPwJceDzpRAAl1937Rvytm9kKFutl/4mcxVEuwALC/4PG9GhWtREJiC+Dvhj2R5Y26z4d9O/8XHNx7jxdBTaFCpce+etAx0mXSVh0e2LryyXdquSXS5oXIBLx62EhxNDkIiTo/zT8Cwf/R1oPAn8fQvsyiCMOWnD52MiMVPiU8jhYPHixa2iKPoCj8XHx7sKCgribrvttmubm5tVt956qwUARFHEq6++Gnn//fen3HnnnZ2Jt0qlwtKlSycWFxdHzZ07t+XCa4SHh3t1Op2vpqZGtXr16oTs7OxKs9ms1Ol0ncl0cHCw12KxKG02mzI0NLTzuEKh8NXX14sVFRXaGTNmmHft2mU0m83KwsLCCACYP3++KTg4uMvOSImJifZ9+/aFAcCBAwfCnE5nt3wxISGhbfr06Ze9nXNHVZe6ujr19u3bT5WUlJTu3Lmzy6j5qlWrauLi4hyByTEAdCTHR44c0e/atSsqKyur7ssvv9Tu27dvxNNPP92lMLnNZlMaDAYvAISEhHhtNpsSl6E/s8A8AE0ANkmSNBnAOQD/BpAkSdIIAFb4p1e80I/X7JOs9i+u8lptUIaFXdqbbA3Q2gXYwnRXNDYaXDzJ10JT+leMOmfHf//tv1HaXIqooCiMK21B9diJmBzM/jBcRI2KhRtAm91+Se291WcAAC6d9gpGRYNR1Nj/QEPoP+FuEBH5f9MAbxuORi7ACMdnODbqemSNucS/O9Q/blrRdLHR3quloKBg7I4dO0onTZrk3LZtW+S6devGbt68uQIAsrKyGh5++OHGBx98MOngwYPWWbNmWQBg165dJ77++mttVlZW4vbt28vWrFkzHgDmz5/ftHz58sYvvvgiKDc3NyEnJ+dcenq61WQyKRwOR2fSZ7ValaGhoV6n06mwWq2dx30+nxAVFeUOCgqSO641a9Ys05EjR0Lhz9u6WbduXeXatWvj9uzZM/KWW25pNRgMnuLi4vC33347CgCeeuqpc9OmTevzJqnVamW3292lxqHdbldqtVoZABISEhyiKEIURVmtVvt6/pTudu3aFf7666+P+u1vf1sWFRXlefnll2MaGhrEZcuWSXV1dWqVSuUbO3asS6/Xey0WiwIALBaLUq/XX9ac2/6cQ7ARwK2SJP0VwIsAlhuNRjeAHADvAfgI/ioWVf14zT7Jan//kK2XXgvZ3lqNUBvQZrg6M0FocDDcOhNeQYFHW27AP2r/AZvbhp+G/B/EttRBnJk+0OHRVRQZ43+SKDsurQKOp8JfA9kdwp03h5t5E9NxPE4Bb50GvpCxwB2/RMOn1XCKgHZaBpQK1j8eroKDgz0do7jR0dFui8WiLC0t1TzyyCMTZFmGKIo+tVotC4LgKygoiCksLBzR/j6vQqFAUlKSq6ioyFhUVGRcvnx54/Hjx7XZ2dkJmzdvPj137lwzABgMBlmlUvlOnjypkWUZH330UWhqaqp16tSp1sOHDxsA/yK++Ph4h06n88XGxjoPHz4cDACffvppSGJiYq91cD/44IPQ1atXVxYVFRmVSiXS0tLMmZmZLR0xXSw5BoCUlBTHyZMnddXV1SIAOBwO4dixY8FTpky56HsVCgV8Pl+3/4B27tw54ve//33Uzp07jRMmTGgDgJ///OeVf/zjH0uLioqMd911V9P9999fd+edd5qnTJli/eCDD8IA4L333gudPHnyZW2M0W8jyEajsQXAvB6O/xHAH/vrOpdFrQLQdllTLMrrTsJgB3wjWbFgOPn+jUn4KCIeSf+sw/6f74fL68I/c16CW1DihoeXDXR4dBUFt++g6XN5/BvGXGSTh7aq0/72hv6d+kiDX/rEsXgifjTSv6pES/QaOKKuxYR/vIz/lzIW069PHOjwaADl5+eXr1q1aoJSqfSJoig/99xz5fHx8W0TJ060Z2RkJAuCgLS0NFN6ero1OTnZmZOTE7979+5IWZbxi1/84syFn7dp06ZYt9ut6Ficp9frPTt27DiVl5dXnpOTEy/LspCammqePn26zev14siRI6EZGRnJPp8PGzduPAsAGzZsOJufnx/3wgsvCKNGjXLl5eX1ul1oYmKiMzc3N0EURV98fLzj+eefv/SyPu0MBoOck5Nz7tFHH03UaDSyx+NRLFu2rD4pKclVVVWl7uu9UVFRbrfbLeTl5cXm5+dXAYDH40FBQUFcZGRk249+9KNEALjhhhssF06t6PDDH/6w4Sc/+cn4RYsWSaIo+l566aXTlxP/kJ5o69NqANjhtVz6j4a6qrOIBqCOHnPF4qLBZ/xIPXal3Igpf/s9QuttUIwajahPD6E8aQquj+U8wuFEodfDowB8bQLgsgDavkeGGyv8pd+VI1nBYriJDtWifNz3UTrmLbh//SIa4sMR4wN2j7sbRVK3qlc0hMXHx7ft3bu3tOP1zJkzrTNnziy9sF37nNou82pjYmI8O3fuLLuwbaAdO3ac6ul4WlqaLfC6AKBUKlFQUNAtoZ0yZYpj9+7dxt6u8cknnxzr+Pfp06fb9u3b93VfMXVYs2ZNjwkqACxatKh10aJF3RZ0pKenW9LT0zuTs45rb9269WzHsQMHDvw78D0qlQqfffbZvy41Fr1eL2/fvv2ykuJAQ7pMg6J9RXmbyXyRlufZG+sAACGjmCAPN2MX3AkAOPXCSziS/wLCnBaEZGQMcFR0tQmCAIdG8CfI9otPZzTV+WeNBcVyF73h6Ptj5qMwdTzEFiui/nUOe6eOxjXXpyI2jBVNiL7LhvQIslKnBwCYmxrRa1XqCzgt/mQ6MrZbRRMa4uZ8fwpeuuYO3Pfn/4coAMeSpyPzQSbIw5FDq4TC5QXszcCI+D7bOpuboFABo6P7bkdD04Np4zH3nw9h46NvY+yE/8D/fjIR/3PL+IEOi4i+pSGdIIvB/oV21sZeR/+78dr8c8fHxCVcpCUNNRHBGix8cR3e/VkQRpgbcc8bL0IUh/R/ItQLp1YFlcsN2HudotfJa/bvopcQcVklNmmImBgdgvunTULhJyugaBaQFKXHjETORyf6rhvSf/11+jB4BcDRVH/J7/GvXBcQzikWw9LU8SNw7Rvr0eaVEaplXdvhyqXTQrQ54bM14qJ1CKxtMOmAmyMua5MmGkKeuH0ijHUWXBdrwKMz4zvrvBLRd9eQTpCDg0bArgHc5m41t3smy4DDC6+ggiIk5OLtaUjSikpoxcuqJ05DjFuvR0hzK9osDdBcpK3K4YUlTIGRet4zhqsRejV2/ShtoMMgon40pBfphekjYNcCXovp4o0BwNECwaWALUjgCADRMCYHh0DnBEytNX039LigtgP2IP6gIiIaSoZ0gjwiOBoONeCzXeJOiLYGqJwCbLohPbBORBehCDVA7wSazX0nyD5TFbQOwK672DgzEQ1lH3/8sX7JkiWdpWyOHj0adPfddycvWrRIWrVq1Xiv17+J27Zt2yLnz5+fsmDBgpR33303HACsVqvioYcempCZmSktW7ZsYmVlZbf5fa2trcof/OAHiZmZmdLChQuTP/zwQz3g3whkwYIFyRkZGckbN24cBQBerxe5ublxCxcuTF6yZIlUVlamAYCysjLNsmXLJmZmZkr33ntvUmNjY+cv+7KyMs2cOXOu6Xh9+vRpdWZmprR48WLpxz/+cbzNZuuWLx49ejRo8eLF0pIlS6T77rsvqba2tkvydOjQoZAVK1Z0WdD17LPPxr711lu91k0oKCiI+eSTT3QOh0N44403uk3mP378uHbRokVSRkZG8sqVK8e73W4AwNatW6MWLFiQvGDBgs7voaCgIGbJkiXSkiVLpDvvvPOa1NTUyb1dtydDOkGOCI2BXQMoHL1uFtOVrR5qhwCnrs/61UQ0xKnDwqH0AWZz34v0vDWnofAJaNPrr1JkRDTYbNmyJXrdunXj2traOh89//rXvx6dlZVVs3v3bqPb7Rb2799vaGhoUBUVFUWVlJSUFhYWGn/1q1+NlWUZb7755siUlBR7cXGxcd68eU2vvPJKzIXX+M1vfhN90003mYuLi43PP//8mY4NQ/Lz88dt2bLlTElJSelXX32l//zzz4P27t0b1tbWptizZ09pbm5u5fr168cAwDPPPDMuOzu7qri42Lh06dKGEydOaAGgsLBwRHZ2doLJZOpMzDds2DDmnnvuaSgpKTHeeOONlldeeaXb7mnr16+PW7t2bUVRUZFx9uzZLVu3bu0W9+XKzc2tTU1NtdfW1oq7d+/uliBv3rw5Njs7u+oPf/hDKQDs27cv7NSpU+oDBw5E7N69u3TPnj2lH3/8seHYsWNBubm5tR07/0VGRrb1tAFLX4b0UGnkiFg4NAIUZtcltfeY66B1AJYY/rEjGs50I/z3ZZu57zrI3ip/7X5PSPgVj4mI+vb2129H7D21t19LiNw94e7G+1Lu6/NGMG7cONfLL7986sknn+ys9ShJkr21tVUpyzLsdrtSFEVfZGSkZ//+/cdFUcTZs2fVoijKCoUCjz/+eL3H4wEAVFdXq0NCQrwXXuOxxx6r02g0MgB4PB5BrVb7TCaTwu12C4mJiS4ASEtLMx8+fDi0oaFBnDFjhqn9mC0nJ0dvt9uFlpYW8f333w8rKCgYk5KSYsvLy6sEAIPB4H3nnXeMs2fPvq7jeuXl5UFz5swpB4DU1FTr+vXru9W+3bp16+nRo0e7AcDr9QoajcZ3qd/roUOHQl577bUYlUol19TUaG6//fbm1atX165cuXL8vHnzmt97773wioqKoI0bN45q31wFALB9+/ZTKpUKLpdLaGpqEkNDQ71jx451v/nmm2UqlT+l9Xq9glarlTves3v37rCQkBDvnDlzLn1TDAzxEeTQEP8IssrluaT2TU3nEOIAvAbDFY6MiAYzQ/tW8y5r37twmiv9CbJvxLceOCGi76jFixe3iqLYJTmMj493FRQUxN12223XNjc3q2699VYLAIiiiFdffTXy/vvvT7nzzjs7E2+VSoWlS5dOLC4ujpo7d263ygLh4eFenU7nq6mpUa1evTohOzu70mw2K3U6XWcyHRwc7LVYLEqbzaYMDQ3tPK5QKHz19fViRUWFdsaMGeZdu3YZzWazsrCwMAIA5s+fbwoODpYDr5eYmGjft29fGAAcOHAgzOl0dssXO5LjI0eO6Hft2hWVlZVVdynfV8car7q6OvX27dtPlZSUlO7cubPLTXTVqlU1cXFxjsDkuON7Onv2rPqOO+641mQyqa6//nq7Wq32RUZGemRZxtq1a8ckJSXZJUnqHBl9/fXXRz3xxBOXXu+341qX+4bvEqVaD7faB9HV7cdYj+qayxHsAIRw1rAkGs4iYkbDCcDtdPbZrqG6HAIAdeS4qxIXEfXuvpT7mi422nu1FBQUjN2xY0fppEmTnNu2bYtct27d2M2bN1cAQFZWVsPDDz/c+OCDDyYdPHjQOmvWLAsA7Nq168TXX3+tzcrKSty+fXvZmjVrxgPA/Pnzm5YvX974xRdfBOXm5ibk5OScS09Pt5pMJoXD4eicR2y1WpWhoaFep9OpsFqtncd9Pp8QFRXlDgoKkjuuNWvWLNORI0dCAfT4fa1bt65y7dq1cXv27Bl5yy23tBoMBk9xcXH422+/HQUATz311Llp06bZd+3aFf7666+P+u1vf1sWFRXVZTRSq9XKbre7S8UDu92u7BjdTUhIcIiiCFEUZbVafcmjz+PHj287dOjQV2+88cbIZ599duzLL7981uFwCE888cR4nU4nb9q0qbyj7fHjx7XBwcGepKSkS5tKEGBIjyBDEOBWA+o2GT7fxb/75qZqKABoRkZd+diIaNAKj/TXNHa3yUBb74t8re011g2j4q5KXET03RAcHOzpGMWNjo52WywWZWlpqeaRRx6ZIMsyRFH0qdVqWRAEX0FBQUxhYeGI9vd5FQoFkpKSXB3zZ5cvX954/PhxbXZ2dsLmzZtPz5071wwABoNBVqlUvpMnT2pkWcZHH30Umpqaap06dar18OHDBsC/iC8+Pt6h0+l8sbGxzsOHDwcDwKeffhqSmJjY6wKtDz74IHT16tWVRUVFRqVSibS0NHNmZmZLR0zTpk2z79y5c8Tvf//7qJ07dxonTJjQduFnpKSkOE6ePKmrrq4WAcDhcAjHjh0LnjJliv1i359CoYDP5+tWTuyhhx5KPHHihAYA9Hq9VxAEyLKMRx55JHHixImOF198sbxjqgUA/PWvfw295ZZbLmtqRYchPYIMAF5RgFL2wedyQdBq+2xra/H/kAqNYsF/ouFMF+7/kexpUwC2BkDd87oEp8mMEAAxsdxmmojOy8/PL1+1atUEpVLpE0VRfu6558rj4+PbJk6caM/IyEgWBAFpaWmm9PR0a3JysjMnJyd+9+7dkbIso6fFZJs2bYp1u92KjsV5er3es2PHjlN5eXnlOTk58bIsC6mpqebp06fbvF4vjhw5EpqRkZHs8/mwcePGswCwYcOGs/n5+XEvvPCCMGrUKFdeXl6vq5ATExOdubm5CaIo+uLj4x3PP/98ReB5j8eDgoKCuMjIyLYf/ehHiQBwww03WJ5++unOqQwGg0HOyck59+ijjyZqNBrZ4/Eoli1bVp+UlOSqqqrqsxpCVFSU2+12C3l5ebH5+flVHcdXrFhR89Of/jReFEVZo9HImzZtKt+7d2/Yl19+GeJ2uxUffvihAQBycnIqb775ZtuZM2e0M2bM+EYJsnApI6tX2+LFi30lJSX98lmbf3wt5n8gI+nvf4NqZN9TJ4qfnoZrSmzwvbge19yV2S/XH64kSfrMaDRO6+/P7c++QQPjSvUNoP/6h9diwYkbb8LRW9y4/9m3gbE39tju4NJrEGr0IejPf8Y1Udx9sz/w3kG96alvHDt27OzkyZMvvic8UQ+OHTs2cvLkyeN7Oje0p1gAkNX+aTiy1XrRtm6Hf77hqDEcDSIazhR6PWQBkDtGkHvi8wF2D8xBQHw4p2UREQ0lQz5B9mnay35YLp4gyw5/wWl9JKdYEA1ngkIBu0YBtAmArb7nRi4zBCdg1QkIElk7nYhoKBnyCbKg8e9w5b1IuSbIXsDpr3KiGjHiSodFRIOcM0iE0iUA1l5GkC21UDoFWIOG/FIOIqJhZ8gnyApdEADA3nqROdqOVghOAS4RUGi4bSzRcOfSaaFyCfBaeintaa6GxiHAwW2miYiGnCGfICt1wQAAc0Mvj0k72JugcAmwBSn7bkdEw4JHHwSNC3Caans87zPXIMghwKEPvsqRERHRlTbkE2S13r8rnqWxqu+G9kaITgFOndh3OyIaFnwhIQh2AK3WnhNkb90ZqGTAHcptpomIhpohnyBrDf75xM6mvkeQ3ZZGaJwCXLq+ayUT0fCgCAtHiANodfa8MVfruRP+f+HOm0TD3scff6xfsmSJ1PH66NGjQXfffXfyokWLpFWrVo33ev07+m7bti1y/vz5KQsWLEh59913wwHAarUqHnrooQmZmZnSsmXLJlZWVnYbqWttbVX+4Ac/SMzMzJQWLlyY/OGHH+oB/0YgCxYsSM7IyEjeuHHjKADwer3Izc2NW7hwYfKSJUuksrIyDQCUlZVpli1bNjEzM1O69957kxobGzsfmZeVlWnmzJlzTcfr06dPqzMzM6XFixdLP/7xj+NtNlu3fPH48ePaRYsWSRkZGckrV64c73a7u5w/dOhQyIoVKxICjz377LOxb731VkRv32NBQUHMJ598onM4HMIbb7zR68316aefHvvaa69Fdrxes2bN2LvuuitlyZIl0pIlS6TW1lZlQ0OD6r777ktavHixtGLFioSe/jf0ZcgnyKGhkWhTAm2mvneftLbUIMgJuIN73hCAiIYXbUQEdE7A6mzp8XxjbaW/3cjoqxkWEQ0yW7ZsiV63bt24tra2zp3ffv3rX4/Oysqq2b17t9Htdgv79+83NDQ0qIqKiqJKSkpKCwsLjb/61a/GyrKMN998c2RKSoq9uLjYOG/evKZXXnkl5sJr/OY3v4m+6aabzMXFxcbnn3/+TMeGIfn5+eO2bNlypqSkpPSrr77Sf/7550F79+4Na2trU+zZs6c0Nze3cv369WMA4JlnnhmXnZ1dVVxcbFy6dGnDiRMntABQWFg4Ijs7O8FkMnUm5hs2bBhzzz33NJSUlBhvvPFGyyuvvNLtRrd58+bY7Ozsqj/84Q+lALBv376wb/td5ubm1qamptpra2vF3bt3d0uQ6+vrVQ888EDSkSNHDIHHS0tLdTt27Cjr2OkvLCzMW1BQMGru3LnNJSUlRkmS7L/73e8uazRjyC+/DtNHwq4BvJbWPts1tlYhxAGYDXxcSkRASGQ0FABsLhfgaQNUXUu5WVsaoAcQGskNQogGg+b/LYww7dnTr490DAsXNo74zwf6HGEbN26c6+WXXz715JNPdm6iIEmSvbW1VSnLMux2u1IURV9kZKRn//79x0VRxNmzZ9WiKMoKhQKPP/54vcfjAQBUV1erQ0JCvBde47HHHqvTaDQyAHg8HkGtVvtMJpPC7XYLiYmJLgBIS0szHz58OLShoUGcMWOGqf2YLScnR2+324WWlhbx/fffDysoKBiTkpJiy8vLqwQAg8Hgfeedd4yzZ8++ruN65eXlQXPmzCkHgNTUVOv69evHXhjT9u3bT6lUKrhcLqGpqUns2Fr7Uhw6dCjktddei1GpVHJNTY3m9ttvb169enXtypUrx8+bN6/5vffeC6+oqAjauHHjqKeeeqqm431Wq1WxcuXK6oMHD3YmyF6vF1VVVdr//u//Htfc3CwuWrSo4aGHHmr64osvgn/yk5/UAMDs2bNmzwvdAAAgAElEQVRNL7zwQuzKlSsvsiDtvG81gixJ0iJJknYGvJ4uSdInkiQdkSQpr/2YQpKkVyVJ+kiSpEOSJCV+m2terojQaDg0gM9m67Ndk6kGOiegCmeJNyICRoyKBQCY3SrAfsFGXT4fnGZ/bfXIMeOvcmRENJgsXry4VRTFLtsSx8fHuwoKCuJuu+22a5ubm1W33nqrBQBEUcSrr74aef/996fceeednYm3SqXC0qVLJxYXF0fNnTu322Or8PBwr06n89XU1KhWr16dkJ2dXWk2m5U6na4zKQ0ODvZaLBalzWZTBiarCoXCV19fL1ZUVGhnzJhh3rVrl9FsNisLCwsjAGD+/Pmm4OBgOfB6iYmJ9o4R4QMHDoQ5nc5u+aJKpcLZs2fVd9xxx7Umk0l1/fXX2y/l+xIE/0B7XV2devv27adKSkpKd+7c2WXUfNWqVTVxcXGOwOQYABISEtqmT5/eJaGz2WyKJUuW1G/duvXMW2+9dWLXrl1Rx44dC7Lb7UqDweAFgJCQEK/NZrusKgzfeARZkqSXANwB4F8Bh18FkAngNIB9kiR9D0A8AK3RaEyTJGk6gAIAC7/pdS/XyLDRqNUAQQ5Hn+3MLbUwANBGcD4hEQFhkbFwAHC0KQBzNRA6+vxJRwvanP6/h3HjkwYmQCLqYsR/PtB0sdHeq6WgoGDsjh07SidNmuTctm1b5Lp168Zu3ry5AgCysrIaHn744cYHH3ww6eDBg9ZZs2ZZAGDXrl0nvv76a21WVlbi9u3by9asWTMeAObPn9+0fPnyxi+++CIoNzc3IScn51x6errVZDIpHA5HZ9JntVqVoaGhXqfTqbBarZ3HfT6fEBUV5Q4KCpI7rjVr1izTkSNHQgH0+H2tW7eucu3atXF79uwZecstt7QaDAZPcXFx+Ntvvx0FAE899dS5adOm2cePH9926NChr954442Rzz777NiXX375bMdnaLVa2e12C4Gfa7fblVqtVgaAhIQEhyiKEEVRVqvVXX5gXA6dTidnZWXV6fV6GQCmTp1q+eqrr4J0Op3XYrEodTqdx2KxKIODgy95hBv4diPIHwJ4rOOFJEmhADRGo/GU0Wj0AXgPwG0AZgA4AABGo/FjANN6+KwrJjx0FOwaAUqXq892zvYpGIaoblN/iGgY0ozwr/9wtSmB1vKuJ03n4HYpYVcDE0bFDUB0RDSYBQcHezpGcaOjo90Wi0VZWlqqeeSRRybIsgxRFH1qtVoWBMFXUFAQU1hYOKL9fV6FQoGkpCRXx3za5cuXNx4/flybnZ2dsHnz5tNz5841A4DBYJBVKpXv5MmTGlmW8dFHH4WmpqZap06daj18+LAB8C/ii4+Pd+h0Ol9sbKzz8OHDwQDw6aefhiQmJvY6cvjBBx+Erl69urKoqMioVCqRlpZmzszMbOmIadq0afaHHnoo8cSJExoA0Ov13o6R4Q4pKSmOkydP6qqrq0UAcDgcwrFjx4KnTJly0ZFmhUIBn88nXKwdAJw4cUJ7zz33JHs8HrS1tQlffPFF8OTJk+3XXXed9b333jMAwF/+8hfD9773vYtvqRzgoiPIkiT9EMATFxx+2Gg0viNJUnrAsVAAgbtxWAAktB83BRz3SpKkMhqNnssJ9JvS62PgUAPKFnef7dps/p32ImJG99mOiIYHZbh/vYm7TQG0nut60lQJ2amAWaeASjnkl3IQ0WXKz88vX7Vq1QSlUukTRVF+7rnnyuPj49smTpxoz8jISBYEAWlpaab09HRrcnKyMycnJ3737t2RsizjF7/4xZkLP2/Tpk2xbrdb0bE4T6/Xe3bs2HEqLy+vPCcnJ16WZSE1NdU8ffp0m9frxZEjR0IzMjKSfT4fNm7ceBYANmzYcDY/Pz/uhRdeEEaNGuXKy8trvPA6HRITE525ubkJoij64uPjHc8//3zFhW1WrFhR89Of/jReFEVZo9HImzZt6jKSYDAY5JycnHOPPvpookajkT0ej2LZsmX1SUlJrqqqKvWFnxcoKirK7Xa7hby8vNj8/Pw+6/Rec801zrlz5zZlZGSkqFQq37x585omTZrkfOKJJ2pycnLiS0pKIg0Gg/uVV17p9r32RfD5vvGoNtoT5Cyj0Xhv+wjyx0aj8Zr2cz8BIAIY3X58V/vxSqPR2OeqlsWLF/tKSkq+cVwX2r4kBddVKJH66Ve9tnknJwXX7weid76JETek9tu1hytJkj4zGo39/rSgv/sGXX1Xqm8A/ds/vFYrTky7EYdm+vDYwruA+S+eP/nxq/jTz7bAgSAsfP9fvX8IXTbeO6g3PfWNY8eOnZ08eXKviR5RX44dOzZy8uTJ43s6129l3oxGoxlAmyRJEyRJEuCfn/w3AEcA3AX4F/EB+LK/rnmpPKIAtUvus43s9I8w6yM4xYKIAIVeD69CgM+pAFovGDwxnYPaLsCq1w1McEREdEX197PBLACFAJQA/mQ0Gj+RJOkfAG6XJOlDAAKAh/v5mhflUQPqNh98Ph8unCMDAHA74GufoqwKZ5k3IvKvtLbrRChdHvhaKxB45/CZzkFvF9AWGjpg8RER0ZXzrRJko9F4CMChgNcfA5h+QRsZ/sR5wHjVCih8XvgcDgi6HkZ8bI3wuRTwCoAiJOTqB0hEg5JLp4XGafEnyD4f0P4D29pwFsFOQA7jD2qiASbLsiwoFIpvPl+UhiVZlgUAvU4vGPI76QGArPH/DvBaelnAaG+E4BJgD1L0PMJMRMOSJ0SHYKcPTq8TsLVPc5RlNNacBgCoI7mLHtEA+6qhocHQnuwQXRJZloWGhgYDgF4Xpw2P5dcaEYALXqsFYnRUt9OytRFKlwBnULftz4loODOEIuRcLZqVCuhMFUBwJNByBi1OL4IAhEbHDnSERMOax+N5tLa2dnttbe0kDJNBP+oXMoCvPB7Po701GBYJsk+rAWCFvdkE7YTu5x2mOqidAlx6zVWPjYgGr6CIkVCfOIF6pQpjWiuA2KlA3Vcwt6kQBCB6XA83FCK6aqZOnVoP4O6BjoOGnmHxa0vRPu/Y0tjzBju25loEOQB3SPDVDIuIBrmw6FEIcQA1SuX5Sha1X8Hq8o8txE+QBjA6IiK6UoZFgqxsX3hnqelW5xoA0GyuQrATgCHsKkZFRIOdIWoMRC9QoQgFqo/6D9Ydh63N/6N7ZGz8AEZHRERXyrBIkNWhIwAA1vrKHs+3WGsR4gDEcCbIRHReUIR/u+kz3gjg1EFA9gJ1X6LNqYJDFKDsqSoOERF95w2LBFk3wv9HztlU1+N5s6URag8QFNl9AR8RDV+qkSMBAK12EXC2AqcPAq0VUNgBs56LeomIhqphkSCHj4iBSwV4WnvejdJpaQXgn29IRNRBFdN+T7B54BMUwB+zAQAahxeOkKABjIyIiK6kYZEgR4ePgU0L+CymHs+7bTYALNlERF2JMf46x+E2KzyjbgBM51B37X0Is3rh4a6bRERD1rBIkKNGjINVCwj2njcK8TjbAAChUWOuZlhENMgpQkPhVqsQYXPjZNJ9wKQleC9uCSJNgGbM2IEOj4iIrpBhkSCHGcbBpgWUdmf3k542yC7/ToO6yJirHBkRDWaCIMAdYUCEBfg0+DpgyesoO/M11F4gOjF5oMMjIqIrZFgkyCFBI2DTAqLT3f2kvQlepxIAoOQjUyK6gCo6GhFmH061nAMAmMu/BgDEpUweyLCIiOgKGhYJskJQwKUVoHZ6up+0N8LnEuBVAIr2eslERB30sWMQYQFOtfjLRCrq/fXUdWPHDWRYRER0BQ2LBBkAPBoBGpev23GvpQFKpwCbTglBEAYgMiIazIJjxyHcApQ1nIXP50NIezUcMZaLeomIhqphlCAroXYDPnfXaRbWllqITgWces0ARUZEg5lm9GgofYDoPI6j51oQZbHCGqyBIohl3oiIhqphkyDLQf6i/q7WrqXenM1V0DiAtmDuiEVE3ami/aXeIttqkPuHfYgyyXBHRQxwVEREdCUNmwTZp9MCAFprm7oct7VUItgByGGGgQiLiAY5McZf3WakxYc67RuINPkQMSFxgKMiIqIradgkyAq9HgBgrq3qctxkrUSIHVCMYAULIupO1Z4gR1k0UIn1iDILCB8vDXBURER0JQ2bBFk0hAEAzFVnuhy32OoQ4gT0kSMHIiwiGuSUYWEQdDrc2BaNGJsIheyDOIabChERDWXDJkEOCo8EANjqznY57rQ1AwD0UdFXOyQi+g4QBAH6m9NwzQkHfh22AgCglSYOcFRERHQlDZsE2dC+jbSzueb8QZ8PHrsNAKAfyV30iKhnIbO+D7m2Dqo3iiGOGQPtZG4SQkQ0lA2bBHlkbAIAwGsKWKTnNMHe5v/X8JjxVz8oIvpOCE6/FRAEuKuqYLh7AWumExENccMmQY6MmgCnCPisAWXeLLWwtfm3mdZHjhqgyIhosFNFRCBoyhQAQOj8BQMcDRERXWmqb/NmSZIWAbjHaDTeH/D6BQDn2pvkAfgbgN8AmAzABeBRo9F48ttc95swhMSiLghQ2Gydx9yt1fA4/AmyKirqaodERN8hET9aAcc//wlNQvxAh0JERFfYN06QJUl6CcAdAP4VcHgqgJ8ajcbigHaLAWiNRmOaJEnTARQAWPhNr/tNhWnD0RIM6K3OzmPmhgoINgXcKgHKsLCrHRIRfYeEpKcjJD19oMMgIqKr4NtMsfgQwGMXHJsK4BFJkv4mSVKBJEkqADMAHAAAo9H4MYBp3+Ka35hWpYUpWIDOen6raXtTJdR2BWwGLecUEhERERGASxhBliTphwCeuODww0aj8R1JktIvOP5nAH8AcAbAqwCyAIQCCNzf2StJkspoNHq+cdTfkDVEAd1ZD+xtHujUKrhaKqGzAG0R3EWPiIiIiPwumiAbjcbXAbx+iZ/3O6PR2AoAkiTtAZAJf3IcEtBGMRDJMQC4Q7TQtNlQWVGFiYnjYLZVYYQVEOK5SQgRERER+fVbFQtJkgQAX0iS1LHF1GwAnwE4AuCu9jbTAXzZX9e8XIoI/3bSLV9+BgCw2yowwgJoR7GCBRERERH59VuCbDQafQAeBVAiSdJfAegAvAZgNwCnJEkfAtiC7tM1rhrd6LEAAOepY4DbAa+tAaL3/HEiIiIiom9V5s1oNB4CcCjg9Z8A/KmHplnf5jr9ZWTiJAAfwVldCtR/DZNLiSgAoWNYtomIiIiI/IbNRiEAEJng3x5Wbq6G+cxnsDv8vw9GxCUNZFhERERENIgMqwR5VFQC7GpAYTWj5fTncNpFAIB21OgBjoyIiIiIBovhlSDrR6ElGFDZXRBqv0CbXYRXASgjIgY6NCIiIiIaJIZVgqxVaWEOUUJt9yHWdhwKB+AI10FQDKuvgYiIiIj6MOwyQ/fIUKjsKpxTqRDZIkOIiRzokIiIiIhoEBl2CbIcOQIhVhnPhq3ChBpAf+NNAx0SEREREQ0iwy5BbpsiQSkD93x+BEofEJs+d6BDIiIiIqJBZNglyDfd9TBa9EDCRxVwiwoE3zB1oEMiIiIiokFk2CXIKVGT0Jg2EQDQmjIaCrV6gCMiIiIiosFk2CXIAJD6gycBABEzvz/AkRARERHRYPOttpr+roq+aSZ0r/5f6FNTBzoUIiIiIhpkhmWCDAAh6ekDHQIRERERDULDcooFEREREVFvmCATEREREQVggkxEREREFIAJMhERERFRACbIREREREQBBmUVi+PHjzdKklQ+0HHQtzLuSnwo+8aQcEX6BsD+MUTw3kG9uWL3DqILCT6fb6BjICIiIiIaNDjFgoiIiIgoABNkIiIiIqIATJCJiIiIiAIwQSYiIiIiCsAEmYiIiIgowKAs89ZBkiQFgN8AmAzABeBRo9F4cmCjGjiSJH0OwNz+8gyAbQBeAuAB8Cej0Zg/ULENBPaPrtg/zmPf6Ip9oyv2j/PYN4h6NqgTZAAZALRGozFNkqTpAAoALBzgmAaEJElaAILRaEwPOPYvAJkATgPYJ0nS94xG49EBCnEgsH+0Y//ohn2jHftGj9g/wL5B1JfBniDPAHAAAIxG48eSJE0b4HgG0mQAOkmS/gT//2/PAtAYjcZTACBJ0nsAbgMwnG5k7B/nsX90xb5xHvtGd+wffuwbRL0Y7HOQQwGYAl57JUka7En9lWIH8AKAOwBkAXij/VgHCwDDAMQ1kNg/zmP/6Ip94zz2je7YP/zYN4h6MdhvCGYAIQGvFUaj0TNQwQywEwBOGo1GH4ATkiSZAIwIOB8CoHVAIhs47B/nsX90xb5xHvtGd+wffuwbRL0Y7CPIRwDcBQDt88S+HNhwBtQj8M+TgyRJowHoANgkSZogSZIA/wjA3wYwvoHA/nEe+0dX7BvnsW90x/7hx75B1IvBPoK8G8DtkiR9CEAA8PAAxzOQXgfwpiRJfwfgg//GJgMoBKCEf7XxJwMY30Bg/ziP/aMr9o3z2De6Y//wY98g6oXg8/kGOgYiIiIiokFjsE+xICIiIiK6qpggExEREREFYIJMRERERBSACTIRERERUQAmyEREREREAZggExEREREFYIJMRERERBSACTIRERERUQAmyEREREREAZggExEREREFYIJMRERERBSACTIRERERUQAmyEREREREAZggExEREREFYIJMRERERBSACTIRERERUQAmyEREREREAZggExEREREFYIJMRERERBSACTIRERERUQAmyEREREREAZggExEREREFYIJMRERERBSACTIRERERUQAmyEREREREAZggExEREREFYIJMRERERBSACTIRERERUQAmyEREREREAZggExEREREFYIJMRERERBSACTIRERERUQAmyEREREREAZggExEREREFYIJMRERERBSACTIRERERUQAmyEREREREAZggExEREREFYIJMRERERBSACTIRERERUQAmyEREREREAZggExEREREFYIJMRERERBSACTIRERERUQAmyEREREREAZggExEREREFYIJMRERERBSACTIRERERUQAmyEREREREAZggExEREREFUA10AD1JTU31xcbGDnQY9C0cP3680Wg0Rvb357JvfPddqb4BsH8MBbx3UG+u5L2D6EKDMkGOjY1FSUnJQIdB34IkSeVX4nPZN777rlTfANg/hgLeO6g3V/LeQXQhTrEgIiIiIgrABJmIiIiIKAATZCIiIiKiAEyQrzCz043KFjucbu9Ah0JEREREl2BQLtIbCurNTvyy6O8Yf+b3GOlrxikhDpZrH8Bjs1MwITJ4oMMjIiIiol4wQb4CzjXb8dy2HdjsfBZ6pRMu0QCN+y/48uvD+OHxJ/DY3bdi2Y1xAx0mEREREfWACXI/83hlrP+fP2KjawNUhhjgwV3QRErAv/fi2j/8GP8rb8bcYi3ONtnx0zskCIIw0CETERERUQDOQe5n2/56Co82vQC9WgHNQyVApOQ/cc3dUNxbiFi5CkWRr2HboTI8vfsryLJvYAMmIiIioi6YIPejerMTJw/uwI2KE1Df8QsgYkLXBgm3Qrhr8/9n777Dm67ax4+/P1lNm266C3Q3LbPsLaCC7NWyRIagPCBDQHF8fVRUFB4QUEBEQRkKyBJQVtmy9y40LVAK3XvvJL8/AvwQRGibNm35vK6r12XS5Jy7MbR3zuc+90GdfYp1XqGsO32H6ZsuoxWTZJFIJBKJRKIqw+glFmq1+jyQde9mFPAD8C1QAuzRaDSfGXvOqmL5oQimS9ZS6NgQsyav/fODmo+GhKu0OvsTSxrX463zIAjwv+BGSCViuYVIJBKJRCKRqRk1QVar1UpA0Gg0nR667yIQDNwCdqjV6iYajeaCMeetClJzCkk9uxE3SSp0+R4k0ic/uNtsSLhCj6ivmNFuBTOOxVCs1fH1wMbIpeKivkgkEolEIpEpGTsbawxYqNXqPWq1+oBarX4BMNNoNDc1Go0eCAVeNvKcVcKGszG8xk6KbLzAt8u/P1imgIErQCpnVPRH/PclN7ZdjOM/v5wjr6ikcgIWiUQikUgkEv0jYyfIecDXwCvAOGDFvfvuywZsjDynyen1eq6c2k8TyQ0U7SaA5BleVpvaMPgXSLvFG/EzmNXHn0OaJF5ddoq03KKKD1okElV5cRn57L4az5+X4riZnINeL+5XEIlEospg7BrkCODGvdXiCLVanQnYP/R9KyDDyHOa3LnodFpn76FEoUTWeMizP9GzPfRZCFvHM1T+KbVe/R+T1l8l5PvjrB7Tktp2FhUXtEgkqrJuJefw8barHLuR+rf7A1ysmPKyP6/UdxZbRIpEIlEFMvYK8mhgHoBarXYDLIBctVrto1arBQwry0eMPKfJ/X46it7SkxDQE8ysSvfkoFeh+1zQ7KDrpamsHdmA5JxCBi09QVRKbsUELBKJqqwjkcl0//YIV2Iymf6Kmj8mtmPX2x34om99irQ6xv16jpErzhCTnvf0wUQikUhUJsZeQf4JWKlWq48CegwJsw5YA0gxdLE4ZeQ5TapYqyPnWih2QjYEDS7bIK3GGuqSt0+jWd5wNgxfybC1kQxbdpJN49viZmtu3KBFpldSCDcPQPRxUNqAugc41zN1VCITuxqbybhfzuHloGL16JY4WSsffC/Q1ZqhLevy68lo5oZq6P7tEWYPaETPRq4mjFgkEolqJqMmyBqNpgh49R++1dqY81QlJ2+l8rL2MEXmdih8Xiz7QM1GgaULbBhBYOirrB28goFrbjPi59P8/lZbrJVyo8UsMrGUSFj/GiSHg0QGuhI4+CW0GgddPgep+P/6eVRQrGXSugvYmMtZNbolTmYlkHHH8AFKadi6IZNKGNXOi5cCnZm07gIT1p7n+M26fNyrHkr5v3TOEYlEIlGpiEdNl1PolRjek1xCEjig/ImNuhsM2wC/DSPgj96s6bGUAdtymbb+Ij8Ob45E7JNc/SWGwc/dQSqDQavBvzsUZhsS5JNLIC3K0OFELl41eN4s2BdBVEoua18PwvnUV3DmJyjKMXyIajwUXvwYrJwBqGNvwcZxbfg6VMMPh29xLjqdRUOb4OdcyhIvUbUTlZzDquO32a9JIiGzAEszGYGu1vQLcqdvEzfMZOIHJZHIGMSmu+Wg1elJCjuMtZCHLKCbcQb17gRj9oLMjEb7XuO71hnsu57EkkM3jDO+yHSyE2HNIFBYkDViL5vym/H+1nAmbI1mhm4MFxt9gj5iN/wyAAoyTR2tqBLdSs5h+ZEohjV1ou3pSXBsIfh3gz6LodnrcHkDLHsR4i8/eI5cKuHDHoGseL0FydmF9Fl8jC0XYkz4U4gq2pYLMXRfeIS1p+8Q6GzF6HaedG/oSkJmAe9tvszL8/8iNCzB1GGKRDWCmCCXw+WYDJoWnkYnyAyJrbE41zMkyfZedL04mY+9I1iwL5Jz0WnGm0NUufR62DYB8tO42H4pL/0UxbsbL7H3eiLXE7LYePYu/U4H8AFvo717Ct2KnpCTbOqoRZVk/t4IzGQSPtYtgZv7oc8iCPkJmg6Hnl/DG3sBPfzUFS6u/dtzO6ud2PV2BxrWtmHq+kvM+COMYq3OND+IqML8ejKaqesv0ai2LUemteLHLnI+7GDPV/0asP+djqwa3RKVQsZ/fjnH+F/Pie1CRaJyEhPkcjgSmcKLkgto67QtffeKp7FygVE7ENybMTruM8ZYHmfyuotk5hcbdx5R5biyEW7s5Xq9qQzYmouNuZzN49tw7r8vc+CdTlyZ8Qrr3mxNqlcvRhe+S1GihpylL6NPizJ15KIKdi0ui+2X45njr0EZ/jt0/q8hMX6Ya2N48yDUbg5bx8Mfk6A4/8G3nayVrH2jFWPae7Hy+G3GrDorHjpUg+wJS+DjbVfp5yfnN7sfcP5ODT92hHlq+LkbQuw5Ovo78uek9rzXTc3+60l0++YwRyLFD9kiUVmJCXI5XLsehr8kFnnAKxUzgbktDN+C4N2JD4sW0yZnDx9tuSIeFlDdFGbD7g/JcWxC/7P1Capjy7YJ7WjmYf+gl61EItDGpxbLR7Zg0thx/NfqC0qyk8lZ3JGkS3tN/AOIKtKPh29S2yyPnne/hjqtoP3Uf36glTMM3wod3oHzq+HHThB77sG3ZVIJH/eqx+wBDTkamczwn06TUygmydVdbEY+7268RF/nZBakjkei2QEtx8LAlfDyZ5AeZbiycOxb5BKBtzr5snVCO2zM5Qz/6TQz/ggTPyyJRGUgJshllFVQjHXCccMNn84VN5HCAoauQ/B6gTmyH8m6upvfztytuPlExnd8MeSl8HbmUFztVPw8qgUqsyfvj23uac/sKWPZ23YtyVoVDr8P5Nyyt8jJFuuSa5rErAJ2XIlnnnMoQlEO9F5o2MD5JFIZvPQJvLYZCrJg2UuwZTykRz94yJCWdVn8alMu3s1gzMoz5BdpK+EnEVUEvV7POxsu4qeLYl7+pwhyCxj7F3T7Cur3h/ZTYOJZCOwFez+BDcOhIIt6btb8Oak9o9p6svL4bV755jAnbqY+fUKRSPSAmCCX0fEbKbQWwihW1gKnCu5fKzeHIWsQnAP5wWwhq/8I5WqsmCxVC7kpcGIxl6w7cTC7NvMHNcbWQvHUp8mkEga+0gnziUc4ZtOLZrFryJ7XhO2//yKuBtUgv56Mxk2XQMuUrdB0BDgFPNsTfV+Gt05A20lwdTMsagY73oX8dAB6NHRl/qDGnL6dxqR1FygRa5KrpS0XYgm7FcMq1UKkZioYtf3xfulKaxi4CrrOhPCdhtKL2PMo5VJm9KnP+rGtkQoCQ5ed5Msd1ygqEd8LItGzEBPkMjoamUx7SRhS7xegMo58NbNCGLYRM3NLlsoX8OG6YxQUiytDVd69Vl3Tknvy5gveNKlrV6qnuzo60GHar9zouQmdTEWvyxPZM2sQGw6dEzdiVXPFWh3rTt9lZq1QBIkUOn1YugHMbaHrFzD5gqFm+exPhrODOIIAACAASURBVET5whrQ6+kb5M6M3vXZdz2Rj7eFiaVZ1Ux2QTGzdoWzxGY1qoIEQ0mFncc/P1gQDB+WRm2HkiL4qQscmg0lRbTyrsXOtzvwWuu6LDsSxcClx0nILKjUn0Ukqo7EBLmM7kZexklIR+LTqfImtXZDMnAFdUlgQuZ8/rfzWuXNLSq9kiL0Z3/mollz0i28mNDZt8xD+bbogvv7Z0io/ya99IfodrAXX8/9nJM3U4wYsKgy/aVJRpYTR7u8/dBkuGFjblnYuEOvBYZL7/Y+sO0t+DUYcpIY2daTCZ19WHf6DvP3Rhj3BxBVqGVHomiSe5QOhYcROn8IdVo+/UkebWHcEUP5xaFZ8F1LuLIJC5nAzH4NWfpaU24k5dD3u6Ncj8+q+B9CJKrGxAS5DOIz86mTedZww6tj5U7u1QGhy+d0k57B4vRCDoQnVu78omd3/Q+EnAS+ye7MpBd9y38aolyJy8CvkU44gdYxgA8LFpC+cijfbDsmXjathjacvctE8z0Iep1h9a+8XBvB6FDo8TVEH4Pv28HNg7zbVc3QlnVYdOAG3+6LLP88ogqXllvEuiNh/M/iF3BuAO2mPPuTLewheDkM2wRyC9g8BhY3h7AtdKvvwqbxbZHcK7m4EiOW6olETyImyGVw/EYqLSXhFKtcwM6z8gNoMwFtg4FMl29gz/olxGfmP/05osp3dgWJMjeuWbRkaMu6RhtWcFRj99Y+ijp/QhfZBYadH8JXCxdxOyXXaHOIKlZKTiHHwmMIkRxEqN//yZfOS0sigZZvGlrCWdjDL/0RDs1mZt/6hDSrzYJ9ESw+ICbJVd3Sv24yTPcndiUp0Oubsp3S6tcFxh2FQb+AzBw2joJlnQnMOsaGsa1RKWQMW36Sa3HiSrJI9E/EBLkMjt1MoYU0EplHm8qpP36UICDtu5h8t9Z8rlvMstWr0OrE+sIqJe0WRB9lVX57RrX3Rik38vGvEimKju8gG38EpY0zM7I+YdvCqfxyPEp8L1QDu68m0IVTKLU50GyU8SdwrmdIkhsPgb9mI904gjl9/OjfxJ2v90Sw5lT008cQmURWQTFbT15nrCIU1D2gTouyDyaRQL0+hrKLPosNmzjXDaHOjlfZFGyHykzG8J9OEZmYbbwfQCSqIcQEuQxu3YzAlRSEuq1MF4Rcifnw38i39mRqygw2/rnddLGIHndxLTokhMo6M6yVkVYH/4lTIFaTjpAfEMzbkvXIdk5l0PdHiEnPq7g5ReW280o8o8wPo7f3Bs/2FTOJwgL6fQ/dZkP4DiRrQ5jTy4MXA5z479arbDwrtousin47fYdgbSgWuhx4YbpxBpVIDRs5J56D7nMh7gKua19it3oHlkIBQ5ed4kaSmCSLRA8TE+RSis3Ixz37iuFGHRMmyADmdli/sY1iuTXdz4/l3NHdpo1HZKDToruwhiO6RrRp0hAb83LWHj+N3BzzwT+h7/AuQ2UHGZM0m34LD/FXhHiKVlWUklNI/K0wgrRXEZq8VrFXoQQBWo831KTePYX8174s6VeX9r4OvLf5Mtsuxlbc3KJSK9bqWHM0gv+YhYLPi+De1LgTSGXQaixMvgjNX8fm8s/sU75HY/11Qpae4Fx0mnHnE4mqMTFBLqWzt9NoLtGgk5mDS0NTh4NgUxuLsaHkSG2ot3c4sWfFlWSTu3MCSXYcm0raM6SF8WqP/5UgILz0Mbz0KT2EYyyRfs34FYdZtD9SbO9VxYSGJdBPehQ9AjQeWjmTNgyBIesgWYNydXeW9Xakpac972y4xL5r4kbfqmL31QRa5e7HVpcO7d6uuIks7KHnPBizB7ncjOX6GYyQ7WfY8lPigSIi0T1iglxK56LTaSGNBPdmZds4UQGUTl5I3tjDXcENx+0jyTy/2dQhPd+u/k4BZsQ6d6KBu03lzt1hGvT6hhbaC4Raz+bXvSf5vy1XxIMiqpDdV+IZKD8G3h3B2q3yJvbvCiO2QV4qylVdWdG5iPpu1oxfc45dV+IrLw7RE608epO3FLvQuzSsnA5JdVrCf/5C8HmJaUVL+dBiG6+vPMVh8eqTSCQmyKV1MSqRACEaSXk2TlQAV7e6FA//gzC9N1Z/jCH/2A+mDun5pC2h5OpW9mmb0K+ln2liaP46wpB11NbHsd9qBlfP/MXrK8+QmV9smnhED2TmFVMUdRw3fSJCZa0eP6xuaxizF5S2WPw2gPUNz9DIzYoJa8+z/sydyo9H9MCluxkoY4/hqY9BaDOx8jaAK21gyFoIGsbIwnXMtljLmJWnxPIb0XNPTJBLIaugGFnSFWRowb25qcN5TH0fD/KGbOYvXRDme9+jYP8sEC+vV67bh5EVpLJL35Y+jStxdfBR6m4IY/ZgaWHBFvMvaBi1gkFLDnMnVdy8Z0r7wxPpLRxFKzOHgF6mCcLRH97cD+oeKA/OYIPyK4Z5ZPL+5ivM3xshluSYyK8noxkhP4DO3B7q9avcyaUyQ5eL1hPoV/gnq62X8sH6U/x2WvzQJHp+iQlyKVy6m0Fj4Ybhhnsz0wbzBO0C61Iy8Be26tqjPDKboj+ngU48krqyaMO2kYcZ8oCu2FooTBuMc3148wAyv5d5T7aO+dnvMnXxOo7dEE/fM5W9V2PpITuDxL8bmFmaLhClDQxaDX0WIU3V8HniBFa5b+PH/VeZuPYCeUUlpovtOZRdUMzJy9d5WTiLJOhVkCsrPwiJBF75ErrOpHXBUXZYzWbe70f4dp+4j0H0fBIT5FK4HJNJY8lNdJauYO1q6nCeqEvDOlgOXs4ybS8U539Gu2EUaMXL6xVOp6Uk7E8OaJvQt4WPqaMxsHSEoWth0GoClBms07/H6ZXvs2jPVbFfciUrKNaSF3kYe7IQ6lfyCuE/EQRoOgImnUdoOpKOqes5bfsRedd2MmDJceIyxAOIKsv2y/H01u1HihaavW66QAQB2k5CGLIGL/1d9ljO4Pj+bUxZf5GCYnGhRfR8ERPkUrh0N4Pmsigktavm6vHDXq7vitvAr5lZ8hrS8D/QbhwFWnFVqELdOYlZYSpHZW3p4Otg6mj+rl5fpBNPI6nXl6myTfQ+OoD5ixaQnFVg6sieG6ei0uiiP4FWag5+XU0dzv9nbgu9v4HXd2FtacUK+VzeSf+Ccd9t5Xq8eMpaZdh4+jYjFIfQe3UEB19ThwMBPRFe34WttSW/mc2k4dX/MeS7g9xKzjF1ZCJRpRET5FKIjomhtj6+ypZXPKpnI1f8+33AZ8XDkYZvR7tjmliTXIGKr26jUC/HokE3ZNIq+E/L0hHZoJ9h+BbsrVVMT/+MhAUduHL6gKkjey78FR5PN+lZQzcJhYWpw3mcR1vD0cQvfcJL8stsKJ7M7qXvc0QjdrioSHdS87COO4yLPgmh+WhTh/P/uQUhjDuK0Hw0b8h28W3GROYsWsSak7fFkgvRc6EK/hWvmpKyC3DKuW64Yezm7RVoUPM6ePV6l+9K+iA9vwrtoTmmDqlm0uspuradI7oGdG1SBVaA/o3Pi1hPPU1ch//hRjL1dwzg7NKxFOaLq0MVKe36YRyETKQN+ps6lCeTKaDDO0gmnkXv24Wpwlqs1/Rk876jYlJUQf68HMcw6X60Fk4Q0NPU4fydQgW95sPwrbjbWbBUMhufnUOY+/0PpOUUmjo6kahCVY8EOT0ainJNGsKVmEwChWjDDZdGJo2ltEa08cSi22ds1nZA+tdXFJ/+2dQh1TwpkajyYjkrb0ELT3tTR/N0UjluL43DbOp5TtTqR/OE9cTNbcPl8ydNHVmNFJ2aS1D2X5RIzMC3i6nDeTrbOpi/tpb8fj/hJ0vgpSODWLHyBwpLxDpUYzt6IYwXpReRNh1WZXrrP8anM7IJJ9F3m01jZRLvJb1PxrymROxcBCVioiyqmSolQVar1RK1Wr1UrVafUKvVh9RqdemW2DYMh1/6m7Qbw+WYTOpJ7qCzcjWcQlTNvN7em/zu33BQ2xjpzncovPqHqUMyjvwMuP4n6Ex7EEaxJhQAWcArSCWV1L/UCCyt7Wk3eSUXO/2MjS4Tv229Wbt8Phl5RaYOrUY5HJFEN+kZCj1fNG33ilIyDwpB+dZRilRujI5+n23zxxOfLl5pMJYbSdnUS92DFF3lnapYVjIFQuvxmE+/RmzHeWgFBf6n/0vqnCbkXt1h6uhEIqOrrBXkfoBSo9G0AT4A5pXmyTf9Xoe7p+DYtxUS3LO4GptJY3kMkipwvHRZvdbWl8xey7ms84JNY8gJCzV1SOV35ySsfw3WhECO6U5/yrqyiwidOy2DGpsshvII6hSMcvJxUqwDeTXmM7bPGcWaY5HiznUjSQw7iouQjkXQAFOHUmoSB2+cph4hxjOYQXnrubOwO8cuXDF1WDXCrisJDJAeodg5CBzVpg7n2ciVuHd+gzofnGGd/zekFYBq06vc+WEQuizx2HJRzVFZCXJ7YDeARqM5CZTqlI13rvlxSNYO/cEvIeZcRcT3VDfiUqmriwHnBiaZ31j6tfInte+vROldUGx8lcQzW00dUrncsG3HDo8P0N8+Ct+1gEu/Vf5GxKJcbJJOc1xoQivv6nd14T4L+9rUeXsfafVH8ho7aBA6iD6zNvG/3eFEp5q2xKnMik3fpUOv12MXewAtUoSq1L2iNOTm1B71M0md5tBYH079ra+wcvm3JGSa/vWtzq5fOkl9STTypsNMHUqpKRUyhr76OkVv/MVa1XCc4/aTs6AZUfuXiZvBRTVCZSXI1kDmQ7e1arVa9qxPfq97AG/njiRD6gCbRkF+utED/DcZeUVYZt809Kh0qd4JMsBLzeqRO3QbkdTFbvsYDv35K7pq2hM3u7CEyZGNecduIVp7X9jyH/htGBRmV1oMuqhjyPTFZLt3xEwmrbR5K4RMgf3AhegHraaBIoF1wn/56/BBOs49RM+FR5i/N4JLdzOqzfsld1FbcjeOM+kf7MikHFprz5Fq38TQUq0ac+r0H4RxR8mz9GBUzCeEzhvJl1vOiu2/yuBuWh710vaiE6TQoPpdWbivfl1Hhr67iCMvbuY2bngdeZew/73EiUvXqs3vCZHon1RWgpwFWD08r0ajeeamvG19HBj6QmNez3kLbWYcbBgJJZVXI3k9PptAyb0Nes7Vt8TiYc0CvLEft5MYhRdtz05m0YIvOHM7zdRhlVqTunbMH9SYrbFWDCr6hLxOn0HEblg7BIor56CDlKv7KNTL8GjSuVLmqwxCvb5IR++iloWU7RafsaLJTZQyCYsPRNL3u2O0nrWf/9tyhZO3Uqv0H8ENBa1Qha0j//BCk8VwKewa9SXRKAJeMVkMxmTmosZt6l9kNx7DSMluRlwcwpJvPmfwkr9Ydfw2KdWlu4FOW6kfpB8VejWenpKTFNZuB6oq1je9lARB4OWOnfD94CiHfN7Hu+AKPr9354OvZvPVzuucjkqjRGvafSIiUWlVVoJ8DOgBoFarWwOlLmCb/ooax8B2vFf0BkT9BbumGzvGJ7oen0WgcAe9zBxqVZET0ozA1cUVz6n7yHBoxtvZ87iyfDzDlh5i15X4avXLrG+QO0uGNeNKfC69zgaR2nUhRB+DHe9Wyvz6qMNc1PvSvp5HpcxXadyCYOwhJG5BdL7+MZst53DhP+7MH9SY5p52bL0Qy5AfT9Lp60N8d/AGSVXw0JFGr35BqK4lZgc/pchEG1MLwvcAYNu4irXwKg+ZAqv+82HUTlycnPha/gPfJ48gf+dHvDnrB8asOMmuK/EUV+XfIxfXwlw/uHXIJNNHXT2OlyQR86AQk8xfESzMFHQa/n9Ixx5AaePInJLZdDg5lq9//JmmX+xh0roL/HkpjuwC8WRXUdX3zGUO5bQF6KJWq48DAlDqszSlEoGFQ5owckUxS2PiGHduJXh1rJRLU9fjswiWxRo2UUiq+SX0R0gsbHEav4OS3R8x+uyPdEm8xPvrXmemdQtGtvVgcPO62FhU0dZDD+nWwIU1b7RizMozdD/gQmjTCdidXwxBr4Jnu4qbOD8dhxwN+y2H0kqlqLh5TMXKBUbtgDM/wcGZ2KzsxICAngxoMpi8Xm0IvVXIhjMxzA3VMH9vBC8HOjG0ZV1e8HNEUgW6eTTzdOCP3ku4/Odg6m0eQ7H578h9OlTa/Hq9Hrfko2TIHLF1qldp81Yaz3bI3zoGN/Zhf/Zn/hOxi3H67RREK7gWVZc/ZD64efjSsF4DLN0DDXs4qkgrsyuWbXGSu+G0djDCwJWg7l5pcxcUa/FI2INWKkUa2LvS5q0sCreGKN4+AaeW0u7IAjrkf0Ga3IUjEYFcuurGUcGaOnXq0N7fhYauKqRyM7DzAFuPGvc3VlR9VUqCrNFodMC48o5jrpCyYlQLRv/0Jq0SrtPwj8nI6rYBa1cjRPlk1xOy8JfGITi+XKHzmIxMgazXXAjsQe3tU1mb/hVn9K35bFcvvt3nx8i2nrzZwRu7Kp4AtvC0Z9P4try67CQDrrZjr/U2ZDvegfHHQVIxF0tyNIexRIfU+4UKGb9KkEih1VhoGALHF8GFXyB8OxZAf8cA+juqyWpuw+U0OdtvWfH5tdroberySmMPRrfzxMlaadLw+7TwY2Peciz3D6P2ryGUvLoRc7/K+f8VnZxNM90VUt26YCuY/gNDhRAE8OsCfl0Q8tLg5gEUMefwunUGdcpRVFGhEGV4qE6qRGLvZSgpsPOA3gtNlhBlCjaMzJjOJqv5eP32KkKXz6HNRMPPU8Eu3MmgM+fIcGpFrWrYNvSZSOXQdhKS5mMgbAv21/+kz91T9NUfNHw//t7XwwQJmN2rxuzxNTQaVJkRi0R/U1kryEajMpOxdGRrJiyexsr8SRSGfoLZwGUVNl+JVkdsYhL2shRw9K+weaoEn84Ib52Ak9/T4ugCtpudJEpZj2+OdKbriVa82j6QMR28sFZWjRWgf+LvbMWq0S0Z8sNJFisHMyX5a0NJjk/F1AcnXtmHTC/Hv1mnChm/SrGwh5c/hc7/BzFnDGUsd05B4jWs89Non5dGe/RgBhRAwUk5RxLfpsuoj00dOQM7NmWrZA36va9Re+0gMl/dgo1fmwqfN/LycboIueQHvFjhc1UJFvbQMARJwxDs7t0VGZPE5oPHidOco2HJTZrnpOFJPjbm2SY9qaq9nwPvD2hHz80KVtr+RKs9/4Xo4zBgWYX3qg4Lu8QbklgKGoyv0HmqBIUFNBkGTYYh6PVQkAn5aRRnJXM2KoU94Slcv5uMh5BAS9sc6teC2rWssHStni0zRTVHtUuQAexUCj4Z2YufFu9ifNgGaPMfqF2qznHPLDYjHw9tjOGVcgyokDmqFLk5dJgGLcbAxXV4nf6Rbwu+o5gfOXq4HguOtaZOuyEM6dgIC0XVfPvUd7Phi34NeH99HuOsbFCeW1lhCbIs7hzXBB8aezhXyPhVklQOHm0NXw/TFkPSNUi8Bpl3keZn8XKjqnP5uF+Hphwy/w3FnyHYrwkmY+RObL2CKnTO4huG1TLnRtW0vZsR+NV24oPh/UjM6saak9G8efoOKXeLcM82Z78WlCbMkge3qItSLuW1jUqmWddjXMTPCL/0h2EbK7bjSOReAJSBlVfWUSUIguF1NbdFbu9NG09o0xniM/P5/XwsS87HcDPC0FLyf27mDHY0bbii51vVzHCeQYCLNWsavkXatYOYH/wa8+G/Vcg8t1Jy8ZXEGm44VJNG7sagtIHW46DlWLh9BHlEKO3C/qRz9g8UHV3OpWOBSOo0w79hK6yaD62wEoay6hvkxp+XavPbrfaMDN+BkJMMlkb+bVtSiGu+hus2/avV6XkVRioH18aGL6AqXmfo1LwRFxQbMd/cF+kvAyiYcBBlrYrbXOmYfJJYuQfuNhVbBlYdOFsrmdZVzcQX/Th2I4WYjHyUctPXm/YNcqeWyozxa2TcktoxJ24BwtrBMGKrYcHAyPKLtPhkHifNvDb2DqU7VLamcrUxZ0JnX97q5ENkUg6notJo5VXL1GGJnnNVK6sppfGvBLFB1xmzm6GQGVMhc9xKzsVXiEUvVYCdZ4XMUaVJJODdEbp9hWLaZRj7F2kNx+Akz6PRnV+R7phKRmqCqaN8jCAITO+mZk1xRwRdMVwz/oEoGVHnUVCCULul0ccWVZwmjRqj6bIShTaPtJ+HQEnFtCXLyMqmQck1Up0qvpSjOlHIJHQOcGJ466rT9aW9nwO/j2/LMVlrpusmoL97ytBTvQL6Z4fdSaKNEEZO3eek7KYUBEHA39mK4a098HRQmToc0XOuWifIbrbm3Kw7CNCjP7eyQuaISskhUBYHtXxBWm0X3I1DEMAtCJeQuXh8dIHot6LY1eMENg5Vc3UswMUaJ5/G3MUFXeQeo48ff/UIAK71K7BLhqhCdGjfiU11/g+33Gtkb/+wQuaIDjuJuVCE3KcGb+CsQfycrdg4vi2nLTqxWDIMrm2DyxuMPk/CtaMohWJs6ncx+tgikch4qnWCDNAiKIiD2iBKzq6ukE/7USm5+EviEByfo/KKZ+TrbENwKx+EKrw7f3Q7L/aXNEJ364jRjx3W3j1Dgt4etf9zUJteA70S8iardd1QXfwZ4i8Zffzcm8cBcGtQeW3lROXjbmvOTyOb82NJT67LAtHveg9yko06hz76GDoEbNTi+0IkqsqqfYL8cj1ndutaIs9LhMSrRh8/NikdZ13i81V/XIN0UjtxQdEMmTYf7hw36ti1Mi4TrQys/sdLP6fcbM2JC5pKht6Skp0fGP0DtjLxPPE4YuNU16jjiiqWn7MVn/VrxMTc0egLs+HoAqOO75J+njiFF5jbPf3BIpHIZKp9gmyvUpBd+94lzBv7jDp2XlEJ0uy7SNDXqBP0nidSiYBVQGcK9XJKIvYabdyC7HRcdQnkOzYy2piiyte7dSDzS0KQ3T1u9BPV3HOuclfVwKhjiipHvyB3LN3rsUt4Af3ZnyEnySjjJmfkUF8bToaTuG9BJKrqqn2CDNBAreaazsOoCRDA7ZQ8PIV7G9DsvIw6tqjydG7oyRmdP/kRB402ZozmLACquhXbJkxUseq5WnOxVm+yBGs4t8Jo4+al3MFZn0K+U1OjjSmqPBKJwP/1CGRufi/0JYVwfKFRxo26cgwLoRClr1heIRJVdTVi11mj2rb8pWtEwN1dUJj9/0/iKaeolFw8hHsrB/ZiglxdtfN1YKXEnzbpf0BRnqFxfTml37oAgJu6YvpviyqHIAj0aubJb3s78Gb4DoTsRLAqf0/r+LAj+ADm3q3LH6TIJFp62aNyVXM0uy0dLqxBePETkJXvNNGCm0cBcGskdrAwlnPnzjnJZLLlQANqyKKfqFLogKslJSVvNGvW7B8vEdWQBNmG73WNGK//03ASkv8rRhk3Oi2XukIieoUlgoXYk7G6UsqllLg0RZq4BRIuQ93yJy36hCtkosKtjrcRIhSZUtd6zozZ/SJjdTvg4hrDQTnllB91mkK9jDr1WxkhQpEpCILA0JZ1+fmPtrygOAoRu6Fen3KNqUq+QJzggpu9m5GiFMlksuUuLi6Bjo6O6RKJxPg79UU1kk6nE5KTk+slJCQsB/7xH3aN+LRla6Eg3bYBOgSIu2i0cWPS8/GVJSPYextanImqLWsfQ6KSc+uUccbLiiBG4YNQxQ5IEZWel4OKbJUnt5X1QLPTKGOapVzjplAHFztro4wnMo2+QW6ckwWRJatl+PBUTnXyrhGrqmeEyEQPaeDo6JglJsei0pBIJHpHR8dMDFce/vkxlRhPhfKr48odwQ3ijZcgx6bn4ylJEssraoB6/n7E6B3Ivln+BLm4pIQ6xVHk2ort3WoCQRBo5WXPgeIGEHsO8tPLN6Bej1OehnilX5VugSh6OiulnBcCXNmi64A+ci/kpZV5rNzkaJz0qeSJdenGJhGTY1FZ3HvfPDEPrjEJcuPaNlws8UBrxBXkuLRsXHSJ4ga9GqCBuw1X9D4ok8r//oi+cQ2VUIjcraERIhNVBS087diRFwh6Hdz6q3yDZSdgo8sk1y7QOMGJTKqTvyNb8psi6LVw80CZx0m4dgwApZdYdiMSVQc1JkFu6G7DFZ0X0uw4ozR21+v16DJjkFEiriDXAEq5lCSr+tgVxkJuarnGSr5xHgAHnybGCE1UBbT0qsVFvS/FMstyJUEA2dGG94fgKrYArAk6+jtyWe9NvswWIsveKakw6iSFehnuAS2MGJ2oqjh58qQqJCTkwYEJFy5cMO/Tp09A//791ZMnT/bUarUA/PDDD469evUK7N27d+DGjRvtAHJyciQjR470CQ4OVg8ePNg/JiZG/uj4GRkZ0hEjRvgGBwer+/btG3D8+HEVQGRkpNngwYP9g4OD1UOGDPFLSUmRAsyePdu1d+/egf369Qs4deqUBUBiYqLs/jz9+vULuHHjhtn98ZOSkmSdO3dukJ+fLwCkpqZKX3vtNd/+/furR44c6ZOYmPjYnrXo6GjF4MGD/UNCQtTBwcHq8PBws4e/HxUVpejTp8/fLrUuW7bMcdasWU8swl+9enWtP//80wZg6dKljk963OLFi51mzJjhDhAfHy8LCQlR3/9q0qRJ0LJlyxzz8vKEMWPG+AwYMED92muv+SYlJZVq312N2KQH4ONkSZj+XiIbfwn8Xi7XeKm5RThrE0AK2IsbsWoCmXtjiICi+KsofDuWeZyihGsAuPqKLd5qCrWLFRZKMyJUTal/84Dh0JAylkdk3DqHFWDrLX6AqgmcrJWoXW05V9CE9jf2gU4HZdh7YJF8kXDBi0YOthUQpQhg1fHbtX4/H+NgzDEHNK2dMrKt57+uqixYsMB5165dtZRKpe7+fQsXLnQbN25cfI8ePTLHjx/vtXPnTpvWrVvnbtq0yWnHjh3XCgoKhO7duzcIDg5OX7lypUNgYGDeBx98EL969epa3333ncusWbPuPjzHkiVLnFu2bJk1ceLEwd8c9AAAIABJREFUpPDwcLNp06Z579y58/pHH33kMXXq1Ng2bdrk/v7777YRERHK6Oho/fnz5622bdt2/e7du4oJEyb4bN++/frMmTNr9+rVK23gwIHpBw8etNJoNEpfX9/C0NBQ62+++aZ2enr6g8T8m2++cQ0KCsp59913E/bt22c1a9Ys92+++Sb64Zjmzp3r9uqrryb17ds3IzQ01HrOnDm1f/7555vleb1HjBjx4LVesWKF27hx4/624pmXlye88847ntevX1d16tQpHcDV1bVk06ZNGoDjx4+rvvnmG/fXX389+fvvv3f29fXN//DDD+PWr19vt2DBAtdHX9d/U2NWkGupFETLfQ03jFCHHJuej4eQaLghlljUCC73EtrkW+V7f8jTb5AoOCIzN047QZHpSSUC9d2sOaatD5l3ISu2zGPp4y9zW+eMl7urESMUmVJHf0e2ZAdCXgoklOFYcp0Wl9xw4iwCxbr0GsjDw6Nw8eLFf0sM1Wp1XkZGhlSn05GXlyeVy+V6R0fHkp07d4YpFAp9QkKCXC6X6yQSCRMnTkx699134wHi4uIUVlZW2kfnGD9+fOLo0aOTAUpKSgSFQqHPy8sT0tPT5fv27bMNCQlRX7hwwbJly5a5p06dsmzVqlWWRCLBw8OjSKvVCklJSbIrV65YJiQkKAYPHuy/bds2+44dO2YDSCQSfvnlF42VlVXJ/fmioqKUL774YiZA27Ztcy5fvmz5aEyffvppTPfu3TMfikn36GOeJCoqStG3b9+AN99807tHjx6B7777bl2AWbNmuS1btsxx7ty5Ljk5OdLp06f/7SjSgoICSf/+/VNHjx4d/+iYOp2OL7/8su7nn38eLZPJuHDhgmWnTp0yAV555ZWss2fPlmrXdI1ZQRYEgVoODiRkuuGScLnc48Wk5+MupKAXpAjWYkuemsDby5csvQX5sdfKNY59XhRpFp6Uv1uuqCoJcLFmX0xtxkqAmLNgU7tM46jSr3NW8KSLjblR4xOZTitve975q5HhL+aN/eBWuqsD+uRwlBSS6yCW3VSkkW09U5+22lsRBgwYkBEVFfW3JtleXl6Fc+bMqbt8+XJXlUqlvZ+MyuVyli5d6rh8+XL3kJCQxPuPl8lkDBo0yD8qKsr8xx9/jHh0Djs7Oy0YygmmT5/u/f77799JS0uT3blzR9m+ffusjz76KHbq1Kkea9asqZWTkyO1tbV9kOxaWFhoMzMzpUlJSQpra+uS9evXR8yePdv122+/dfnoo4/iunTpkvXofP7+/vl79uyxbdq0af727dttCwsLH1tQdXR0LAEIDw83mz9/fu3vvvvuxrO8XoIg6AFiY2OVv/zyS4SFhYWuU6dODePj4x/kpNOnT0/YtGmT89y5c+88/Fx7e3tt165ds1avXv1Y790dO3bYeHl55QcEBBQC5ObmSm1sbLQAVlZW2tzcXOmzxHdfjVlBBvCspeKW3g1Sy7XCD0BsRh5uQip6KzeQlOo1FVVRdWupuEltpKmP/e55Ztn5hXjoYii09TNiZKKqIMDFigtFddBLzSDmTNkGKcrFrjCWFAtfJBJxpbCmaFLHljSsSVX5GHrtl1LWzdMAyOqIBws9L+bNm1dn1apV4QcOHAjr1atX6ieffFLn/vfGjRuXfOzYsUvnz5+3Onjw4INLkRs2bIhYvXq1ZsqUKT6RkZFm92tqV65c6QBw+fJl8xEjRqgnT54c06lTpxx7e/sSc3NzXefOnbMlEgmdO3fOvHr1qsrS0lKbm5v7IL/Ly8uT2traaq2srLQ9e/bMAOjatWvG9evXn3hq1pQpU+JjY2PNgoOD1TExMWaOjo7FR44csbwf044dO2wADh48aDVhwgTf2bNnR91PTO8zNzfXFRcX/y3PzMvLk5iZmekAXF1dC6ytrXUymQx7e/vigoKCcuWkf/zxR60hQ4Y8KMlQqVTa7OxsCUB2drZUpVI9tjL/b2pcgny9yAl92i1DDWE5xKTn4yFNRWJb5+kPFlULUolAirkndnm3yjxG9C0N5kIRChexxVtNE+BqTTEyMmzrGdq9lUWyBgl6Cu3F90dNYmuhwNtRxSVJfbh7CrQlT3/SQ3KjzpCtN8fZ64ktV0U1jKWlZYm1tbUWwNnZuTg7O1saHh5uNnr0aB+dTodcLtcrFAqdIAj6efPmuaxZs8b+3vO0EokEPz+/wk2bNmk2bdqkGTVqVEpYWJhyypQp3nPnzr3VvXv3LAALCwu9u7t7weHDhy0BTp8+beXr65vfsmXLnBMnTthotVqio6MVOp0OR0fHkgYNGmSHhobaAJw4ccLK29u74EnxHzlyxGrIkCHJmzdv1nh6ehY0atQop0OHDjn3Y+rZs2fmwYMHrWbPnl3np59+imzRokXeo2M4OTmV5OfnS8LCwpQAJSUlnDx50jooKCgPeGq5kb6UeZxGo1G1bds29/7toKCgnAMHDtgChIaGWjdu3Di7NOPVmBILAE8HFRd1zgjFeZAdD+UojYhNz6e2kAq24iWxmqTQzh/b+D3oc1MQVKXfy5F6+woA9h5ii7eaxt/ZEkGA22YB2MVtBW0xSB/bTP6viuOvIgdkLuJhEDVN07p27Lnmw4v6Pwwncro/ez9jWeJFruq88HcRD455Xnz22WfRkydP9pFKpXq5XK6bNWtWtJeXV5G/v39ev379AgRBoE2bNpmdOnXKCQgIKJg2bZrXli1bHHU6HV988UXUo+PNmTPHvbi4WDJz5sy6ACqVqmTVqlU3v/zyy9ufffZZ3a+//lpwdXUt/PTTT1PMzMz0TZo0yenXr1+AXq8X/vvf/94B+Pjjj2M++OADj40bNzqpVCrtokWLnrha5O/vXzB9+nSvuXPn4uDgUDRv3rzbjz5m9uzZdYqLi4V3333XC6Bu3boF8+fPf7CRTyKR8MUXX9z+8MMPPSUSCSUlJcILL7yQ0blz5+xHS1L+iYeHR/5bb73ltWTJksdej0clJSXJLCwstJKHNtCOGTMm+e233/bs37+/Wi6X67/99ttSrY7VrAS5lgVb9S6GG6k3y5Ugx6fn4KBPKXMdoqhqUrrVg3hIu32ZWvVfLPXzC+PDAXDyFj841TQWChmetVSc1/rQpCQfEsPArXSdSrLvXsFCL8emtn8FRSkylaZ17VhwzheUQPSxZ0+QS4qwz45gl6wHbSzNnv54UbXk5eVV9Mcff4Tfv92hQ4ecDh06hD/6uA8++CAe+NsGMxcXl5K1a9dG/tv4q1at+sfa0aCgoPwtW7ZoHr3/ww8/jAPiHr7P09Oz6LfffnviPEeOHLly/7/9/PwKt27d+lj8DwsNDX3qhp4nvQ6Pvl73//te3ABs3LjxifWQD3e7AMNq9e7du/8Wj0ql0i1fvrzMl4xrVImFRy0Vt+8nyGnlq0PWZsUjRScmyDWMg1djAFKiyraRU54eSaZgjcTSqJ2ERFWE2tmKfdn3Nk2XocxCl3CNSL07Xo7iSmFN09TDlmTsyFZ5lK4OOfEqMn0xabb1Ky44kUhkdEZbQVar1QIQA9z/dHJCo9F8qFarewOfACXAzxqNZpmx5nyUg6WCLIUzJYIcWTk26hUUa7EsSAAzwKbuUx8vqj68ffzJ0SspjC9bJwu7vNukKj2wMXJcoqpB7WLFwmsq9Da2CGXohmOeHk6EPpCXa6kqIDqRKfk5WWEulxKpbEjT6KPP3A9ZH3seAdC7ikdMi0TViTFLLHyA8xqNpvf9O9RqtRxYALQAcoFjarX6D41Gk/iEMcpFEARq21uSlOOKW1rZN2IlZhXgLqQYbogryDWKtbmCcIkb8oynljQ9JqewBHddLMk2nSsgMlFV4O2oQq8XyLevh0V8KRPkvDRURSnclXliY1662mVR1SeVCAS6WnGiwJ+mBdshRQNOTz9OPO/2afL11jjWETvfiETViTFLLJoB7mq1+qBard6pVqvVQCBwQ6PRpGs0miLgKPCCEed8jJutkmi9K5QrQS7EXbhX3iImyDVOunldbPPvPP2Bj7gdE4ujkIXUUfxDV1N5ORhWfpMs1ZB0rXTdCpKuA5Bt7VsRoYmqgPpuNmzP9DTceMYyC33seS7pfPB3Fg8WEomqkzIlyGq1eoxarb768BeQAMzSaDSdga+AXwFrIPOhp2ZDxV6ddrFRElHiZEiQdc98qMvfJGQV4CakoDWzBbPHDo8RVXOF1t44aRPRFT2xw80/So42lGVYu4stvGoqz3sJ8k2pF5QUQEopemYnGd4fekexg0VNVd/NmuuFtSixcII7J57+hMJsVJk3uKzzFhNkkaiaKVOJhUaj+Qn46eH71Gq1BYY6YzQazVG1Wu2GISF++LeCFZBRtlCfjauNORHFjkAB5CSUqZNFYmYBPkIK2Ig9kGsimZMf0gQ9STEanLwbP/Pz8uIMyVItD3GzTU1lrZTjYKngcokHL4GhnZfzsyW8JYnXydObY+PsWZEhikyovpsNIJBs1xTX6GdIkOMvIaAnyiwAO9VTu1qJRKIqxJglFp8CUwDUanVj4C5wDfBTq9X2arVagaG84hl+q5Sdq42SWP29EwgzY8o0RkJWAe6SNCR2YnlFTXR/BTj5dlipnqdPvYEOAYWjT0WEJaoiPGupOJXtADIllKIOuSjuKpH62ng6ihv0aip/F0tkEoEweX3IioGMp5Rq3euEUuj07B/ERdXTyZMnVSEhIer7ty9cuGDep0+fgP79+6snT57sqdUaDnH74YcfHHv16hXYu3fvwI0bN9oB5OTkSEaOHOkTHBysHjx4sH9MTMxjmxgyMjKkI0aM8A0ODlb37ds34Pjx4yqAEydOqHr37h3Qr1+/gNmzZ7sCaLVa3nnnnbp9+/YNCAkJUUdGRpoBREZGmg0ePNg/ODhYPWTIEL+UlJQHxwRHRkaade3a9cFqwK1btxTBwcHqAQMGqN966y2vh0/me/hnHDBggDokJEQ9dOhQv4SEhL8tuh46dMhq7Nix3g/fN2PGDPd/Oib6vnnz5rmcOnXKIj8/X1ixYsVj7aLCwsKU/fv3V/fr1y9g0qRJnsXFxQAsWrTIqXfv3gG9e/d+8Drct3XrVttx48Z5PWnOJzHmJr3ZwK9qtbonhpXkURqNplitVk8DQjEk4z9rNJpYI875GBcbJXH6e69p5l2o07LUYyRkFeAqpCFYuxs5OlFV4OZtOM0qN+6x1pH/SpUdRarMBUeZ2Mu0JvNyUPFXRDI41TOsID8LvR5ZqgaNrgn1xQ4WNZaZTIqvkyWHCv15GSDqCDQZ9sTH6++c5K7eGVc3cbGlUpz+sRYX1xm3B2fQ0BRajk39t4csWLDAedeuXbWUSuWDus6FCxe6jRs3Lr5Hjx6Z48eP99q5c6dN69atczdt2uS0Y8eOawUFBUL37t0bBAcHp69cudIhMDAw74MPPohfvXp1re+++85l1qxZdx+eY8mSJc4tW7bMmjhxYlJ4eLjZtGnTvHfu3Hn9s88+81i8ePFNb2/vwhEjRvieP3/ePDo62qyoqEiybdu28BMnTqhmzpxZe9WqVTc/+ugjj6lTp8a2adMm9/fff7eNiIhQOjg45K5Zs8Z+7dq1zpmZmQ8S8y+//LL2wIEDk4cMGZK2YsUKh++++875vffe+1v/5pkzZ9b9+OOP7zRp0iR/+fLlDosWLXL58ssvy7Yyec8777yTABAVFaXYsmWLw+uvv57y8Pfnzp3rPmXKlNiOHTvmTJo0yXPHjh22DRs2zNu9e3etbdu2XZdIJAwYMCDg0qVLGY0bN87/8MMP65w6dcra19c3v7SxGC1B1mg06UDPf7j/T+BPY83zNG425sSVcwU5IyMDa3LKddCIqOqq5eBIKjal6pVdotXhWBxDtq0HjhUYm8j0vBxVbDwXQ3H9hsjDtxqOrX/KkajkJKEoyiBSX5setSwqJ1CRSdR3s2FPRAEzLRwg6q8nJ8g6HbroE5zQNsbPWdzLUpN5eHgULl68+Ob9E+UA1Gp1XkZGhlSn05GXlyeVy+V6R0fHkp07d4bJ5XJu376tkMvlOolEwsSJE5NKSgwbguPi4hRWVlbaR+cYP358opmZmQ6gpKREUCgU+szMTElxcbHg6+tbCNCmTZusw4cPWycnJ8vbt2+fee++3GnTpqny8vKE9PR0+b59+2znzZtXOzAwMPfTTz+NAbCxsdGuX79e89JLLz04IjY6Otq8a9eu0QCtWrXKmTlz5mM1p4sWLbrl5uZWDKDVagUzM7NnPhv60KFDVsuWLXORyWS6+Ph4sy5duqRNnz49YdKkSZ49e/ZMCw0Ntbtz54757NmzXe8drgLA8uXLb8pkMgoLC4XU1FS5tbW1tk6dOsUrV66MlMkMKa1WqxXuf1hp0qRJTteuXTPWrVtX6j/dNeokPTCsIOdgQYHMCmUZE2Rd5r1FbnEFuUYSBIFEeW1UObef+TnRqbl4Ek+8fduKC0xUJXjdWwFOUvnjXpBpuBJl+5R+6MmGDhZ35WKLt5qunps1m8/HUNC4Pcpbh578ASrpGtKCdE7pAhgqbtCrHC3Hpj5ttbciDBgwIOPRo5O9vLwK58yZU3f58uWuKpVK27Fjx2wAuVzO0qVLHZcvX+4eEhLyoOWtTCZj0KBB/lFRUeY//vjjY7uD7ezstADx8fGy6dOne7///vt3srKypBYWFg+SaUtLS+2dO3fMcnNzpdbW1g/ul0gk+qSkJPmdO3eU7du3z/roo49ip06d6rFmzZpaI0eOTO3Vq1fmo/P5+vrm7dixw3b48OGpu3fvti0oKHisxOJ+cnzs2DHVhg0bnNatW/dMl2WFe/9eEhMTFbt27QorLCyUdOjQodH06dMT7j9m8uTJ8Tdv3jR/ODm+/zrdvn1bMWrUKH+VSqVt1KhRnkKh0Ds6OpbodDo+/fTT2n5+fnlqtboQYNCgQemHDh0q0z/AGnWSHoBSLsXOQk66zAky7j79CY/Q6/XIcu+9Z61c//3BomorV+WJc9Gzvz/u3InCUijA3Fls8VbTed2rIb4lu1c69yx1yPdavBXY+T/45S+qmeq7GU5JjLZpATmJkPyEnCD6GACndIH4O4kJ8vNm3rx5dVatWhV+4MCBsF69eqV+8sknD1Zgx40bl3zs2LFL58+ftzp48OCDN8eGDRsiVq9erZkyZYpPZGSkWUhIiDokJES9cuVKB4DLly+bjxgxQj158uSYTp065VhbW2vz8/Mf1BHn5ORIra2ttSqVSpuTk/Pgfr1eLzg5ORWbm5vrOnfunC2RSOjcuXPm1atXn1gP9sknn8QcOnTINiQkRC0Igt7GxqZk8+bNdvdjOnv2rMW9mO0+//xzjx9//DHSycnpb30xlUqlrri4+G+/EPPy8qT3V3e9vb3z5XI5lpaWOoVC8cyrz56enkWHDh26GhISkjxjxow6APn5+cK9WmnpnDlzop91rH9T4xJkMHSySBQcy1RikZZbhIPuXsmLuIJcY+lr+eBABhnpz7bYkHHX0MLLXuxgUePVtTeUSISV1AFBAglXnv6kpOtkYoVNLfF3Rk0X6GpIkE8LjQx33Dr0zw+8fZQ0uQsl1rWxsRCvKjxvLC0tS+6v4jo7OxdnZ2dLw8PDzUaPHu2j0+mQy+V6hUKhEwRBP2/ePJc1a9bY33ueViKR4OfnV7hp0ybNpk2bNKNGjUoJCwtTTpkyxXvu3Lm3unfvngVgY2Ojk8lk+hs3bpjpdDpOnDhh3apVq5xmzZrlHD582AYMm/i8vLzyLSws9O7u7gWHDx+2BDh9+rTVv9XlHjhwwHr69OkxmzZt0kilUtq0aZMVHBycfj+m5s2b561du9b+t//H3n3HyV3V+x9/fafs7GzvJZtkd9NmE1JJIRACIdIEhQACol5UQEH0ouIVkPtTBPWqFBXwIlcERKQIYiT0HkpCQhLSyyTZlrK915md8v39MUuy6WVndjaz7+fjkQc73/nO+X42nMx85nw/55xnn815+umn3aNHj+7Zv43x48d3b9++PaGqqsoOoSR27dq1SVOnTu060t+fxWLBNM0DRhu+/vWvj9m6dasDIDExMWAYBsFgkGuuuWbMuHHjun/3u99VflZq0V8xV2IBoZUsdnZlMrV1yzG/trbNS77RFHqQohHkWBWfPw5KobpsA2nTzzzi+b660B2vhHytgRzrEuJsZCc7KG0JQuaYo0qQzZoNbAqOYGSWJujFulSnneHpTpY3J/EfGaNh2xsw+4Z9TwoGoHIJq5jChN6EWoaWO++8s/Kmm24abbVaTbvdHvz1r39dWVxc3DNu3LiuBQsWlBiGwamnnto6b968jpKSEs/NN99cvHDhwuxgMMgvfvGLA7Z6vfvuuwt8Pp/ll7/85UiAxMRE/xNPPFF6xx13VN58883FwWDQOOWUU9pmz57dGQgEWLJkScqCBQtKTNPkN7/5TQXAr371q4o777xz5L333mvk5+d777jjjob9r/OZMWPGeH70ox+NstvtZnFxcfdvf/vbfZZs8fv93HfffSOzs7N7rr/++jEAJ598cvvtt99e9dk5qampwZtvvnnnddddN8bhcAT9fr/lyiuvrBs7dqx39+7dh133MCcnx+fz+Yw77rij4M4779yzuMO3v/3t6ltuuaXYbrcHHQ5H8O67765ctGhR2vr165N9Pp9l6dKlqQA333zzrtNOO63zqP5nHUJsJshp8ZRWpoPZAt52cBz97a26dg+5RhP+uFRscfqwi1XZI0MrWbTs3AxHkSDHNZfRQxxxKZqNPhQUZiRQ2dQFeZNh5/LDnxwMYNZtZFPwLAozNEFvKJiQn8KmqjaY8kVY+iB0NUFCxt4TKpdAVyOLfJOYMEwJ8lBQXFzcs2jRoj2jcnPnzu2YO3fuAaN0vTW1+9TV5uXl+Z9++ulth2v/iSeeOOis8lNPPbWz73UBrFYr99133wFrEE6dOrV74cKFh6wTXr58+drPfp49e3bnK6+8svlQ59psNlatWrXmcDEDXHLJJS2XXHLJAftfzJs3r33evHnt+1/7wQcfrPjs2Ouvv75p/9fNmTOnc86cOfv8vgsWLGhZsGDBp4eKYf9rHa2YLbEo9aaFHhxjmUV9e2gEOaj645iWU1RC0DTw1R32PQkI1aWnd1fSFD8CLDH5T0b2MzIzgR2NXZA3KTRJr6vp0Cc3lmLxe9gULNxTniGx7aRhqZQ3dtI97iIwA7Dl5X1P2PAvgjYnbwWmMiE/opvHikiExOSnfU6yg9171kI+tgS5rt1LntGENVW1hLHMGuekzpqNvbXsiOfWtHkYYVbhTR11xHMlNhRmJFLT5qEnp7fOtPowAyW9ayVvMgsZqSXehoQJw1IwTdgYLIL0Itj4771PBvyweRG7ss/Eg2PPpD4RObHEZoKcEr93LeQj7XS0n9AIcjPWNCXIsa4pfiRp3UfuH6XVTYw06rBkawWLoaKwN9HdGd+7MVbvjmgHVbuBgGGj0jKc/FTnAEQn0TZleGhUeM2uVjjp0tBEvc9Ws9j2BnQ1siT+DBLjrLqrEHnBYDCopWPkmPX2m+Chno/JBDk7yUEd6QQNK7RVHfkFfTS1dZBptEKyNgmJdd7U0RQEduPp8R/2vLodbmxGkNQREw57nsSOz0aCyztskDUOdh+yvA1q1lNlLyQvPQWrRZ/TQ0FOSjwFaU5W72yBU78LcUnw2q3Q3QKv/hiyxrGo6yTG56dgUZ+ItA319fWpSpLlWASDQaO+vj4V2HCoc2Jykl5OioMgFrrjskg8xgTZ11qFBVO76A0BtuyxpFR3s3VnBeNGjznkeR27Q/MBkodpBYuhoqh3s5DKpi4YdjKUvXfoDSFq1uPmpD2jzjI0TB2ZxpodLZB4Mpx1O7x+K9w/GbztBK55i3WPNHDZ9PDueiwH8vv919XU1PylpqZmIjE66CcREQQ2+P3+6w51QkwmyBkJcVgtBq32bBLbdh/5BX1Y2ns3clGCHPNSh5fAOqgr33DYBDnYEJrIZ2SpxGKoSE+wk+ywsaOxEwqmw7pnQ3ej9p+b0LobOmpZETyfwkytejOUTBuRxivrqqlr95Az8zrwdUHjdhg9n82WsXT21DK9MD3aYca86dOn1wEXRTsOiT0x+W3LYjHISoqjwZJ1zCUWcV29CbJWsYh5eaNDE7A6dx+wkswewaBJansp7fYscKYNVGgSZYZhMDKzd6m3gumhgwerQ97xMQAf+cZRrDWQh5RpI0PvB2t2tIDVBnNvhgUPwaQv8Ul5aNWTmUUZh2tCRAaxmEyQAbKTHVSbGaEE2Ty6HQw7vH7SA707q2kEOebFZYykEyfWhkNvKLOjqYvR7KAzVaPHQ01RZiKVjV2QNxGscQdfD7lyCQF7EpvNQpVYDDEnDUvFZjH4dMcBS7zySXkTw9OdDEvTpE2RE1XMJsg5yfHs9KeBrxM8rUf1mvp2L7lGEwFLHDh1ayzmGQb1zmLSOw66/joAW6pbGWvsxpqrCXpDTVFWAjuauvAZdhg5G0rfPfCkyqXUpU0jiGVP3bIMDfF2K9NGpvHhtvp9jpumyYqKJmYVa/RY5EQWswlydpKDsp7eW+JHWWZR1+Yhz2imJyHv4JNxJOZ0p42jMLiDlq4DtpEHoLpiC06jh9TCyQMcmURbUWYigaDJruZuGHMO1G3ad131zgao38I252SsFoOCdI0WDjVnj89lY1Ubu1u69xwrre+ksbOHU5Qgi5zQYjZBzklxsK27d4vpo0yQ6ztCm4SYqj8eMuz5E8gy2theXn7Q5z27QyvAxA2bOJBhySAwKjs0IlzR0Aljzwkd3P7O3hMqlwLwiVnC8HQndmvMvp3KIZw9IReAdzbX7jn22c+zR2VGJSYRCY+YfUfPSXZQFez9Bn+UK1nUtXnJpRlbquqPh4rM4qkA1JetPejztsbe+uRs10CFJIPEZyUTZQ2dkF0CKcNh+1t7T1j7LCRk8VHncJVXDFFcr3o8AAAgAElEQVSjs5MYlZ3IW5tCSXEwaPLMJzuYWZSuVU1ETnAxmyBnJ4c2CzExjrHEogl7unbRGyrSCicB4K06cK3wunYPuZ4y2uKHgSN5oEOTKMtIjCM53hYaQTYMGHcubHs7tLRby07Y+hrmyVdT2uijSBP0hqzzTspjaWkjG3a3srS0kYrGLr56SmG0wxKRforJdZABspPj8WGjJz4Lx1GOIHe0NhBv+LSCxRBiJOfTaUnC2uA+4LlVFc24jJ2Y2eOjEJlEm2EYjMpKpKKxM3Rgzg9gzdPwxu2QELp93jj+q7S/7aZIS7wNWdefMYoXVu3ipmdWY7UYpCfYOX9iXrTDEpF+itkR5JxkBwCdjpyjHkEOtPQm0qpBHjoMg9YUFyO8W6lr9+zz1JrSnYwxdpNUeHKUgpNoK8pKpKy+N0FOL4TTfwib/g0rH4WJX8LdHZoIPC5XdxiGqrSEOO69fAplDZ109QS4+0tTiLdbox2WiPRTDI8ghxLkFls2GUeZIFs6qkM/aAR5SLEWzuak5od5a+tuLpg+es/xztLlWA0TimZHMTqJpqLMRBatrcLjC4SSnjk/AKsd8qdA8Ty2LtsJwNicpChHKtF0xrhs3v/xPPJTncTZYnbcSWRIidl/yfF2K8nxNuqPYTc9R1fvTGSNIA8pWSWnYzcC7N60dM+xDq+fzOY1oRr24TOjGJ1E06jsREyTvWUW9niY+yMYczZYbWyr6yDVad/zhVyGrsLMRCXHIjEkpv81Z3+2koW3Fbzthz3XFwiS5Otd8F0J8pBiHXlK6Ic+O6V9XNrIdMNNZ9o4iE+NUmQSbSV5KQBsqT74+8e22nbG5SZhaN10EZGYEtsJcpKDHf7eHfFaDz9Rr7Gjhzwa8cSlgy1uAKKTQSMxk5aEIoq6N7Klpg2Apz4u42RrKc5Rp0Y5OImmUdmJxFktbK5uO+A50zTZWtvBmBzVH4uIxJp+1SC7XK5LgMvdbvdXeh/PBu4H/MCbbrf7TpfLZQEeAqYAXuA6t9u9vX9hH53sZAelLb2jf227IKfkkOfWt3sZZjTRkzCM+IEITgYV5+hTmbHuZX7y5lZuu2A8tdtXk+TogkIlyEOZ3WphTE4Smw6SINd3eGnt9jEuV/XHIiKx5rhHkF0u1/3Ar/dr42HgK8DpwCkul2sasACId7vdpwK3Afcdf7jHJjvZwZau0C3SI9Uh17V7yDcaCWqC3pDkGDOPdKOdli3v8a2/reRS2xJMwwqj5kU7NImy8fkpbKk5sMRiW20HoBUsRERiUX9KLJYC3/nsgcvlSgEcbre71O12m8AbwNmEkuXXAdxu9zJgRj+ueUyykx2Ue1NCE62OUGJR3+4l32jElj5igKKTQWXCxQTj0/luwjuk2PxcHf8hxvgvQLLWMx3qxucnU9/upaHDu8/xz8ouxmoEWUQk5hyxxMLlcl0L/HC/w990u93/cLlc8/ocSwH63odsB0b1Hm/tczzgcrlsbrfbf3whH72c3s1CggnZWNt2HfbcluZGUoxu/JkjIx2WDEZ2J5YZ32DukvuZO/o1WNEKM6+LdlQyCEzID92F2lzdxtyx2XuOr6hoYkSGk5xkFWWJiMSaIybIbrf7UeDRo2irDeh7rzEZaAES9jtuGYjkGPauhexJyCPxCCUWPc2hBFojyEPYzOvg4/+FFY/A8FlQNDfaEckgUHKQBNk0TVZWNHOmK/twLxURkRNU2FaxcLvdbUCPy+Ua7XK5DOA84ENgCXAB7JnEtz5c1zyS7KRQgtwel3vEEos9z6cURDgqGbRSh8P3VsB/fgrfeAW0dJcAGYlxFGUmsLS0cc+x0vpOGjt7mFWUEcXIREQkUsK9zNsNwFPAJ8Bqt9u9HFgIeFwu11Lg9xxYrhExn40gN9uyoW03mOYhz7V19CbIqUqQh7T0IsgcraX+ZB/zS3JZWtpIV0/o5teKiiYAZhYrQRYRiUX9WubN7XYvBhb3ebwMmL3fOUFCifOAy0iMw2JAnZHF+J4O8LYdctMHZ3cNQQws2iRERPZz9vgcHltSzofbGjjvpDxWlDeRlRTHqKzEaIcmIiIRENMbhVgtBplJDnYHD79ZiGmapPTU0WnPBKt9ACMUkRPBzOIMkh023tlcS2OHl7c21TJnTJZ20BMRiVH9GkE+EWQnOajwZYYetOyA3AkHnNPa7SPHbKDbmY9WNBWR/dmtFs50ZfPq+hrq2r10+QL85/wx0Q5LREQiJKZHkCFUh7zZ21sn2FJ50HNq2jwMMxrxJ2uTEBE5uFvPLyE3xcFidz1XzRqhLaZFRGJYzI8g5yQ7+KA6HuwJ0Fxx0HOqW7o5xWiiPW34wAYnIieMERkJ/OvGOTy3YidXzNRykCIisSzmE+T81HjqO3owhxdiHCJBbq3bRYLhxZs9emCDE5ETSqrTzrfOGBXtMEREJMJivsQiNzWeoAne5BGHHEHuqd8OQFL+uAGMTEREREQGo5hPkPNSQtvAtsUXQHPlQddCtjSXAWDXCLKIiIjIkBfzCXJub4LcaM8HXyd0NhxwjqOtEj9WSB050OGJiIiIyCAT8wlyXmooQd5t5IUOHKTMIqV7F422PLDGfEm2iIiIiBxBzCfIGQlxxFktVASyQwcOkiDn+HbT4tQKFiIiIiIyBBJki8UgJ8WB29u7m15LxT7Pe31+CsxqPEmFAx+ciIiIiAw6MZ8gQ2ii3s4OICkPGsv2ea6htooUo5tgenF0ghMRERGRQWVIJMi5qfHUtnkh9ySoWb/Pc61VWwGwZY+NRmgiIiIiMsgMiQQ5LyWemlYPZt5kqN8Mfu+e53qqNwGQqDWQRURERIQhkiDnp8bT7QvQnXkSBP1Qt3nPc/aaT2kxE8krHh/FCEVERERksBgSCfJnayHXJPSOEtes2/NcRtNaNlnGkeCIi0ZoIiIiIjLIDIkEuSDdCUB5MAfikqF6begJTxu53nJ2JpwUxehEREREZDAZEglycWYiAOWN3ZA3Cap7R5CrPsWCSXPm1ChGJyIiIiKDyZBIkNMT40h12ilv6IT8KVC7Abwd+Co/AcAcdnKUIxQRERGRwWJIJMgAxVmJVDR2wsTLwNcFKx4hsPkVtgULyMvNjXZ4IiIiIjJIDKkEuby+E0bMhFFnwTt3EV+3hj/5v8jIjMRohyciIiIig8SQSZCLMhOpavXg8QXgzFvBDLI1/2L+FTyDwsyEaIcnIiIiIoPE0EmQs0JJcGVjFxSeCjcu59m8H5EYZyUzUUu8iYiIiEiIrT8vdrlclwCXu93ur/R5fC+ws/eUO4APgYeAKYAXuM7tdm/vz3WPx6isJADKGzpx5SVDTgllTZ8wMjMRwzAGOhwRERERGaSOO0F2uVz3A+cBa/ocng7c4na7X+hz3qVAvNvtPtXlcs0G7gMuPt7rHq/PRpDLGzoBCAZN1uxs4ZzxmqAnIiIiInv1p8RiKfCd/Y5NB65xuVwfulyu+1wulw04HXgdwO12LwNm9OOaxy053k52sgN3TRsA2+s7aOnyMbM4IxrhiIiIiMggdcQRZJfLdS3ww/0Of9Ptdv/D5XLN2+/4W8C/gXLgYeAGIAVo7XNOwOVy2dxut/+4oz5Op43O5MNtDQSDJp+UNwEwq0gJsoiIiIjsdcQE2e12Pwo8epTtPeZ2u1sAXC7Xi8BlhJLj5D7nWKKRHAPML8nhxTVVrN3VwsqKJrKTHVrBQkRERET2EbZVLFwulwGsc7lcw3sPfQ5YBSwBLug9ZzawPlzXPFZnjsvGajF4d0sdKyqamVWUoQl6IiIiIrKPsCXIbrfbBK4D/uVyud4HEoBHgIWAx+VyLQV+z4HlGgMmLSGO6YXpPPJhGbtbupk9SuUVIiIiIrKvfi3z5na7FwOL+zx+E3jzIKfe0J/rhNOVM0ZQ1dLNlTNG8OVZI6MdjoiIiIgMMv1KkE9El00fzmXThx/5RBEREREZkobMTnoiIiIiIkdDCbKIiIiISB9KkEVERERE+lCCLCIiIiLShxJkEREREZE+BuUqFhs3bmxwuVyV0Y5D+qUwEo2qb8SEiPQNUP+IEXrvkEOJ2HuHyP4M0zSjHYOIiIiIyKChEgsRERERkT6UIIuIiIiI9KEEWURERESkDyXIIiIiIiJ9KEEWEREREelDCbKIiIiISB+Dch3kz7hcLgvwEDAF8ALXud3u7dGNKnpcLtenQFvvw3Lg/4D7AT/wptvtvjNasUWD+se+1D/2Ut/Yl/rGvtQ/9lLfEDm4QZ0gAwuAeLfbfarL5ZoN3AdcHOWYosLlcsUDhtvtntfn2BrgMqAMeMXlck1zu92roxRiNKh/9FL/OID6Ri/1jYNS/0B9Q+RwBnuCfDrwOoDb7V7mcrlmRDmeaJoCJLhcrjcJ/X/7OeBwu92lAC6X6w3gbGAovZGpf+yl/rEv9Y291DcOpP4Ror4hcgiDvQY5BWjt8zjgcrkGe1IfKV3AvcB5wA3A473HPtMOpEYhrmhS/9hL/WNf6ht7qW8cSP0jRH1D5BAG+xtCG5Dc57HF7Xb7oxVMlG0FtrvdbhPY6nK5WoGMPs8nAy1RiSx61D/2Uv/Yl/rGXuobB1L/CFHfEDmEwT6CvAS4AKC3Tmx9dMOJqmsI1cnhcrmGAQlAp8vlGu1yuQxCIwAfRjG+aFD/2Ev9Y1/qG3upbxxI/SNEfUPkEAb7CPJC4ByXy7UUMIBvRjmeaHoU+KvL5foIMAm9sQWBpwArodnGy6MYXzSof+yl/rEv9Y291DcOpP4Ror4hcgiGaZrRjkFEREREZNAY7CUWIiIiIiIDSgmyiIiIiEgfSpBFRERERPpQgiwiIiIi0ocSZBERERGRPpQgi4iIiIj0oQRZRERERKQPJcgiIiIiIn0oQRYRERER6UMJsoiIiIhIH0qQRURERET6UIIsIiIiItKHEmQRERERkT6UIIuIiIiI9KEEWURERESkDyXIIiIiIiJ9KEEWEREREelDCbKIiIiISB9KkEVERERE+lCCLCIiIiLShxJkEREREZE+lCCLiIiIiPShBFlEREREpA8lyCIiIiIifShBFhERERHpQwmyiIiIiEgfSpBFRERERPpQgiwiIiIi0ocSZBERERGRPpQgi4iIiIj0oQRZRERERKQPJcgiIiIiIn0oQRYRERER6UMJsoiIiIhIH0qQRURERET6UIIsIiIiItKHEmQRERERkT6UIIuIiIiI9KEEWURERESkDyXIIiIiIiJ9KEEWEREREelDCbKIiIiISB9KkEVERERE+lCCLCIiIiLShxJkEREREZE+lCCLiIiIiPShBFlEREREpA8lyCIiIiIifShBFhERERHpwxbtAA7mlFNOMQsKCqIdhvTDxo0bG9xud3a421XfOPFFqm+A+kcs0HuHHEok3ztE9jcoE+SCggL+9a9/RTsM6QeXy1UZiXbVN058keoboP4RC/TeIYcSyfcOkf2pxEJEREREpA8lyCIiIiIifYS1xMLlctmBx4AiwAH8EtgE/BUwgQ3Ad91udzCc1xURERERCZdwjyB/DWh0u91zgfOBPwK/A/5f7zEDuDjM1xQRERERCZtwT9J7Hvhn788G4AemA+/3HnsNOBdYGObrioiIxKZgAMoWQ/n7kD8VXJ8HuzPaUYnEtLAmyG63uwPA5XIlE0qU/x9wr9vtNntPaQdSw3lNERGRmBXwwXNfB/crBDGwYFLrGInniucpHF0S7ehEYlbYJ+m5XK4RwHvAk263+2mgb71xMtAS7muKiIjEpJe+D+5XeMB6NTMCf+W3aXfg9DTg+Nv5vL7kk2hHJxKzwpogu1yuXOBN4Fa32/1Y7+HVLpdrXu/Pnwc+DOc1RUREYlLFR7DmKZ6Ou5y/Wy7mqRvnc+sPbsb/9VdIsXgZ8cZ1PLtkc7SjFIlJ4R5Bvh1IB37qcrkWu1yuxYTKLO50uVwfA3HsrVEWERGRgzFNePtOOuKyuavtAn572WTG56cAkDHqZOxXPs54yw6cr9/MmxuqoxysSOwJdw3y94HvH+SpM8N5HRERkZhW+i7s+oTfBq7j7MlFnFWSs8/T9pLz6TnjNi7+4Nfc8dy9jMy6g5K8lCgFKxJ7tFGIiIjIYLPqr3TZ0viH/wx+eM64g54SN+8WvIVncbvlCe5+4gVau30DHKRI7FKCLCIiMph01GO6X+Wf/tM5c3wBo7OTDn6exYLj8kcwnGnc3nUPP3n2Y4JB8+DnisgxUYIsIjKIBIMmr66v5if/WscdL27grU21SnqGmnXPYgT9/M17Bt8+Y9Thz03KJu5LjzDaqOLM0vv443vbByZGkRinBFlEZJDwBYL88Lk13PjUp7y8rprnVu7iW39byYKHlrCpqi3a4clAWfccW+0lBLNczChMP/L5o8+CuT/iSttiKt/9C+9vrY98jCIxTgmyiMgg8dsXPmLihrvZmHIT63LvYsO8ldx/6RhqWj1c+qclLFpbFe0QJdKaK6FmHc93ncyl0wowDOOoXmbM+wmBkXP4lf1xHnhmEbuauyIcqEhsU4IsIjIIrN1WwZUbbuBa2xskjpqNkZCJ9cN7uPjDBbxxmYPJBWnc9Mxq/u/9UkxTJRcxa8srALwRnMmCaQVH/zqrDevlj2FLSOGe4H3c/PcleP2BCAUpEvuUIIuIRJkZDBB47hsUWWrxfuUF+PJT8PVFcO1bYHOQ/twlPDVzOxdOzufXr23hN69vUZIcq7a8TJmlkLzC8QxPTzi21ybnYbv8cYqNar5Wdx//8/KmyMQoMgQoQRYRibItbz/Byb7VrJt4G85xZ+19YsQs+PZ7UHQ69pe+x4MjPuBrs0fyf++X8bMXNypJjjWdjZg7PualnumcNzHv+Noonosx/7+5yPoxgRWP8sbGmvDGKDJEKEEWEYkmn4fs5b/BTRETLzrIPkvOdPjKczDxMizv3MEvEp7j+rnFPLmsUklyrClfjGEGeS8wlXMn5B5/O6ffTHD05/iZ/e88+vyL1LR6whejyBChBFlEJIoalzxGVqCW9Sf9F464uIOfZIuDS/8CM6/DWPoAt/kf4oa5hTy5rJJ73nAPbMASOaXv0WEkEcibwoiMYyyv6MtiwXLpn7EkZvJb8/fc/g+tjyxyrJQgi4hEi2kSXP4X1geLOeO8yw9/rsUCF9wLZ9yCsfpJbu28m6/NyOehxaU8vqR8YOKVyDFNAtvf40P/eM6ZeAyT8w4lMQvb5Y9SaNTyhZ338thHZf1vU2QIUYIsIhIlwcplZHeXsiJrATkp8Ud+gWHA/P+Gc3+FselFfuH9DReUpHPXy5t4a1Nt5AOWyGksxdq+i4+Ck5hfkhOeNotOx5h3K5daP2L7W3/GXdMennZFhgAlyCIiUdL0wcO0mQlkn/rVY3vhad+DC3+Hse0NHrTcy/RhTm56ZjUbq1ojE6hEXtl7AGx0TuekYSlha9Y448f0jJzLz62Pcd/f/43Hp6XfRI6GEmQRkWjo6SSl/HVeZQ6fm1J87K+feS188QGsZe/wVPKD5DhNrntipSZknaCCFUuoJpMxrklHvTnIUbFYibv8USzxKdza9ivufXF5+NoWiWFKkEVkSPM17aDylfsI9nQP6HUDW14jzvRQN/JCEuJsx9fI9K/DRQ/iqHiXl3Mfpru7i2/+dQXtHl9YY5UIM038FUv5JODiLFeYyiv6Ss4l7qonKbLWMWftbby4ekf4ryESY5Qgi8iQ5du4CP+Dp1C44i5W/uNXA3rt1hX/oMZMZ+zMc/rX0MlXwxcfIHnnYt4Z/iiVtU1c98RKunt0K/2E0bKDuK5aVgVdnD42KzLXKDwNPn8PZ1nX0rDwJ2yqaovMdURihBJkERmafN14Ft5EWSCb1dZJlGx/lLIdAzSy5mklZdd7vG7O5syS49wQoq/pX4cL7yOz6j0WFzzM+ooqrv/7KtWbnih2fAxAS84MUp32iF3GOutauqZew7WWl1n02K+pb/dG7FoiJzolyCIyJLV+9BeS/c0sc93CyK89SKLRzfZF9wzItc2tb2IzfdQMP//4yyv2N/M6uPghchqW8UHeA6zZVsG3/rZSSfJxaH71F7T8cgwb7pzJ5s3rIn49X/lS2swECsZOi/i1Er54N+3Dz+S/fA/z0CN/otPrj/g1RU5ESpBFZOjxezGW3s/yYAnnfv5SMounUeEYT27TygG5fOuaF6k3Uxhz8llHPvlYTPsqXP4EWa0b+SDrHrZt38pXHllGU2dPeK8Tw3rWPk/6J/eyzZdFSXA72197KPLXLF/CquBYTh0Tgfrj/VntJP/HU3Sll/Dj1v/hnkf/ri9RIgehBFlkIAUDsP6ftDx5NVW/n8emez/Pq3/8IY8+8xxPLSunvKEz2hEOCd2rniHFV8/Kkdfu2bGsK2sSowNlNLZ1Rfbi/h6cle/ybvBk5o/PD3/7Ey6Crz5HmreK99J+hb9qPV944EM+KW8K/7ViTVsVvHgTK4Pj8Hz5BaoyZjG55R027GqJ3DW97SS0lrKOscwoSo/cdfpyJJNy7b8JJObwg9rbuevPT2skWWQ/sZcgV34MW14Fb0e0IxHZV/1WvA/Phxeuxbd9MTuaPTg6d3J+w+Nc6/4WZ702n4W/v4nL7/03//vedtUHRkowiOf937MhWMSZ51+x53BC4XSSDA9bN6+O7PUrPsQR6KQs80wyEg+xtXR/jZ4P33wVpw0Wxt/JOXzMl//8Mfe96cYXCEbmmjGg/aWfYAZ8vDHuLuaOLyBr9lcotNTxztuvRe6i1WsxMOnInBS+cpujkZxL8rdexp6Qwm11t3DXnx7XnQaRPmInQQ4G4PWfwOPnw7NXwR8mQXNltKOizeNjVWUzb22q5cNt9VS1dGOaZrTDkoFWvZaev5xLZ20pt3ETL539HiW3fcDoOzZguaUM85I/k1Y4mZvt/+TpjmvJfOdHfPk3T3HrP9exozHCI5pDjG/jItK7Kngv8yomDk/bc7xgwmkANG37JKLX79zwMt1mHBmTzo3odcifAt96D2vuBO703sPzOU/w7Lsr+cIDH7GiQqPJ+zNLF5O87d88blzEDQvmA5Aw+WJ82Ble9WrErtuzcxUAqaNnRewah5ReROL1b2JLzuYXzbfxyAO/oKxeg0siAAP4dTXClj4Iyx6CWd+GcefBc1+Hl26C//h3aHvWAbazqYtHX17M6q0VNAYS2GVmAaE4CtKczC/J4fIZw5nc5wNaIqS5AroaIWscOJIH/vpt1fieuIR6j5WfpvyGu665iOHpCXufT8jAmHIlCVOuhIbt2Jc9xBWr/84VgQ9YtG4O16y+hLNOO5XvzR8b0RnuQ4K3g55XbqU8WMDkc6/e56n4/PF4cWCpXhPREAJb32Z5cAJnTSyM6HUASMmHa16H9+9m+ke/4+Okj/h7xwVc+/A5nDu9hNs+X0JWkiPycQx27TV4n7uG3cF8Es7+LzI/+ztxplGbMpHCli14fAHi7dawX7qt9BM8ZhYTxo4Oe9tHJW0kCTcupu3Jr3Jr9QM8879uqr78e04vKYhOPCKDRGyMINdvhff+B8/YC/nPlquY9Q+4J/gVKFsMG14Y8HA+eeUxOu8/hZ+XXcWLtp/wkeP7bE+9kU/HPs5T07YwMxf+uWoXF/1xCZc8tIQ3NtZoVDkSAn54++dw/xR4ZD786TRorx3YGIIBPM9di9/TwX8n/py7r79k3+R4f1lj4Au/w/KD9VhOvZGL41byhv3HjF12G1ff8wxPLqvEr1vkR839u/PZ+sT3wO+FgJ/ORT/G2V3L37J/xBkl+9X/Wm3UJo4lp2MLwWCE/j02lZHStYO1jhmMzUmKzDX2Z7XD/P+G736CbdzZfCPwPCsTvs+kdb/i6nuf5clllZH7fQexnp2r6HjuO7Dkfjx/Po+gp4P/zb6Dq+aU7HNeMHMso4wqtta2RyQOe80a1geLmTZigOqPDyYhg5TrXqJt2g1cxRukPX0h/3zjPX0uyZB24ifIpgmv3Izf5uSC7Qt4c1Mtp4/N4v3kL7AjmE3V+48NXCzBABV/vY5ZK36I026h9cxfwJVPwRd+j23CRWS0u5mz+S7+sPNy1o19hCenl9LV3sz1T67ii3/8iMXuOr0hhYunFZ6+Aj76PRtyF/BC4U/xt9fD05eHkqUB4v/kUeJ3LeF/zG9y57WXHv1oXXIunPcrjB+sxzr7er4Ut4yFwe+T98o3+dlv7+bJDzbT2KEa5SMpt49jXPmTNN89mY4HZpO48Wke44t8+ytXHXQ7367MiZRQTkN7ZLZr9m19GwBjzOfCu53w0cgcDVf8DW5YQtykBVxtf5eX+T55r3yDu+5/kA27mgc2nij7cGMl3Rtfgbd+RmWrn9sct/Pf37wUu3Xfj8WkgglkGB2UVkagZK+riVTPLnY5S0iPVD360bLaSLn4t3Rf9iRFtgYuXHoF/374p3i8qkuWoenEL7HYvAgqPuQey7fwOrJ45TuzGJOTRI8/yGt/OIsLGl6gpaGGtKwwLMZ/OMEgjc9cT1HF8yxKupxzvvtHnM74vc/PuCaUzFevgY0LsW9YyNzWt3nd6qCqaC5/bprCdx+v5aSiAm48azRzx2ZjtUT4A9Q0wdMCbdXQXgWeNvC2QXdLKMEEsMWDI6n3vyngTIP4VEjIhMRsiE+JbIzHo2YD5vPfJNhUys+D3+apHfNIiLPxtu/b/Kn6fswNL2BM/Urk4+hqwv/2L/gkMIE5V3yfwszEY28jKRvO/zWW03+IuexhzlzxOOd4f43nnXtZ8XYJVSlTcRSdQvrYU8jMyiUvNZ7MxLiBT74GqbNv/ANPPjme3NLnyfM08Yz1B5xx2Q2MzDz4KL4layyJO7xsr95JTuq4sMfTtuF1OoPZTJ5yctjbPmp5E+GShzHO/jl88ghzlz/OOa0/ZccjD/Bq/uXMvOQmsnMjsLrGIDPncxfzfMpUNmzcwMjRJfxsVuHe0oo+0kacBEBz5UaYMyWsMZ+WqxwAACAASURBVJjVazEAM39qWNvtD+ekiwiOnEHlX7/FJbUPsuWet8j88v+SPWZGtEMTGVAndoLsaSP4+n9Tbink+eDneO6amYzpvW0ZZ7Mw+bxvYH/hOd5f9Fcuvua2iIbS/f4fyNz2PI9Zr+CyGx/CebBaUcOAYdNCf86+E3atwNjwAgUbF3Jnz9v8zGlnVe14Pn5yNG/HjSAzv5iMnAIS0rLxW500e0ya29owOuqhsw6Ht4H0QDNZljayrR1kWj2kWHuIj7Nhj0/C5kzB5nBiNQwI+iHQA93N0FEbSoo7aiFwiFFIiw0wIOg7/C+eOgJu+BCcUbo92NMJ5R9Ach54OwhsehFWPUGLmcj3vLeRXDKfdy4Yz4h0J3e8mM+2Nf8ke/H/kjblqojXpre/8Uucvg7eKfoRP500rH+NJeVgnP0z4ubdhlm5hM7VL1FSupg5HX/HsuFJ2ADVZgY7zAzWkUKHNQ2fIw0jIQNnWg552TmMKBhGZlYuRnIeJOaA5cS/gXQkNquF//jGd6hr+yard7Zw++hMkuMPXcedlFMMQEt1KZSEOUEO+Emq+pg3OY0Fo7PD2/bxSM7D+NxPiT/zFrrW/pvge3/igpqH6H7oL6zKOp+R875O9oR5YD2xPyYOJd5u5T9OGwWnjTrseZacUD/oqd0S9hgay9eQBWSPmR72tvvDkjqM4pteZt1rjzB8+V2k/v0cdo39CsMv/WX03utFBtiAvPO5XC4L8BAwBfAC17nd7u39atQ06Vn4Paxtu7ndfwcPX3sKY3L2nYBVPPE0GhcNI7PyFTq9/0WiI0K/bu1G7B/8D28EZ3LyNXeTmnAUE6kMA0bMCv05739gx8dYt7zKjPIPmFn7IkYwCLsJ/TmCABbaSKI5mEAjDiyYOPGSZHQThw8wCGDBj5VWkmgilTqjkDbrNFodWXQ5sggmF5CQkoE9IZWAIw2rIwGb1YrV9GP1d2EPekjAQ6rRSbqlixxrOxlmS+h2ZNwA1VIeRPmK1yh+69o9j4NYWeg/nWdTr+GGL83m3JP23jm4a8Ek/m/7RdzY8ic8FcuJL54ducDaqohf9zcWmvO49rILw9euLQ5j9Flkju7dYMLTSlfFSpq3L4d6N7ntNQzzNOPs2YnT20qcpweagLJ9m/EbcXQ5c8GZgTUhDWt8MvY4BxaCGEF/qH476N/7xSrgAzMImKGfDSP0QRnfe0chPiV0V8GZAQkZoecSMkMTIy3hn9h0rHJS4jnvpCPfRcooGANAV11F+IOoXosj2EVT9myccdH/O9nD5iBh+pUUTb+SKvcKdr7+ByY3vI7zhUV0L0zEkz+TtNGzMDJGQWoBpPT+sccfue1YkDoCnxGHo7UM0zTDenemc8c6MFMoGROlCXqHYxhMvuDblE+6gI+evIULtz5Fx30vY51/O85TrgnVtovEsIEaGlgAxLvd7lNdLtds4D7g4qN9cUtHN15/gNy0UCJmBnxUP/9fDHO/yD2Bq7j6iiuZVZxx4AsNA9+Y85ix6e+8tWEnX5xeHJ7fpq9gkPbnb8QTdLJlxi84b+RxfLu2WKHodCg6PVQU7vNASyW0V+Nvr6O7tRHD14nDamKPiw+VNiTlhP6bnI/VmUG6xUKc18+Opi6qW7tp6Oihw+Onw+vH6w/g/2wSjgn+oIk/EKTDG6Db56e120dNq4e6XV7ave3AkSajOHv/5DAyI4GXpkHqYeadRZKl5PPcueVRbM2lBOxJGHkTmT2phOdLcg4oUbFaDGYt+C4dTz1OxZt/ZuL1kUuQG964m7RggNYZ/8mwNGfErkN8KgklnyOh5HMHf76nC297PWU7qyjfVUVtTRXdzbuJ79hFRnsjGe3tpBi7cOLFjh/TsPR+mbIRwErAsOI37BgWG1arNZQcWBKwWyG5rYGkYDmOQCcOfzvW4EHuRpzxY5j//yL3+4dZfFZoZYlg846wt92y+V3SgLQJYd49L4yGuWYyzPUUVfUNvPzaM1C2mMk7t5C6+30M9psfkZgD6UWQOSZUtpEzPvRzSsGg+FIUNhYrHYmFjGjdRX27l5yU8H0xsDduYZs5ghkDNWHzOBSPGE7+j5/ksYUvMXnDrznlzVto//B+Es78PtYpV2hEWWLWQCXIpwOvA7jd7mUul+uYipmq/3AW2b7dLLJMx2tPZVrPp4xhB88YF3DGN37BKYe5XZkzcR6WzY+zbsX7EUmQgxteILlhDQ86/pMfnh+mdSzt8ZDtgmwXNuBoFyZLdNgYn5/C+Pzjrws2TRNfwKQnECQQMAmYJhYDgib0+IN0eP00d/Wwq7mLqpbQRKZojoYVZiZyx7VfOurzZ4wbwQrnyYyo+YBgIIjFGoEyg85GUjY9xcvGGVx+ztzwt38s4hJwZBYyPrOQ8X3KHE3TpLbNS2VjJzvavbR1+2jz+Gj3+DFNCJomvkAwVKbuC9Da7aOly0dPIEinN/SlqrXbR1fP3i1qnXhIp4N0o4PixB5GJHiZnfoFzozCr33cnGl0GonY23eGvemurYupDxYwc6Ir7G2H27DsLC6/+j/p7rmRNzfVcO+qMspKt5JDI+MT2jgty0OJs5lcfzX20ndh7dN7X2yxQXoxZIyClGGhOwpxSWBPCI06WuNCyy1ml0BOyaGDGER60sYwuu1Tqlo94UuQg0Eyu0pZ4Tz3gImBg0283cq3rljA+lPn8Zt//ZXzGp9k2uu34H/z/xEoOhNHyXlQcDLkTAB7BAcERAbQQCXIKUBrn8cBl8tlc7vdR7W3ZdqC39L+wQOc1bSKhJ5WdiVMYNm433LJhd864rqUlsLQ4v/2Xcto6vxKeHeu8nvxvPZTyoOFTL7whsF12/Q4GYZBnM0gznb4N+yZRQcZsT9B2EvOI2/NUlavXsa0GaeFvf3a9/+PXLOHrunfGbTrFhuGQV5qPHmp/fuw7/EHaenuoamzh4b2HuraPexu7qaisYsN7R6mxmeFKeKB0xKXR2J3dXgbDfhJb/yUpba5XDaIRwv354yzcvHUAi6eWkBjxyze2VLHW5tq+d62ejy+0HKDJXnJzDsJZiTWMZJqsn01pHRVYG2thN2rQvMezMCBjVtscHs12KK8esNRMLLHMXLn67zd2AojwrR2fUsFDtNLT+b48LQ3ACaNSGPiTd/nvS1f5tZ33mRczaucW7qSEWVvAWAa1lApTs54yD0p9CUob1Loy5ImDssJZqAS5Db2HQi1HG1yDJA/8UyY2DsOZZoUGgZHvcR+Ug7e1FFMb9rCYncdl548/GhfeUT+VU+S0F3Ns6l3ceckLap+oiiZeymsuYMdy18Mf4Ic8GP/9K8sN0/iwrMPUfYQQ+JsFnKS48lJjocILxQzULoShpHZWEEgaIZtJZlg1VqcwS46C2afsCuMZCY5uGLGCK6YMQKvP8Dana18Ut7IsrImnlzfzMM9TmBU75/TyE52kJ8az8gCJyVZcUzMsTMhx0lOAuBtD400ngDJMUBCbjFWw6S1ficc/afPYbVUriUNcBZMDEt7A8UwDOaPz2P++KvZXncpz366k5XrNpDesoHxlkqmt1YzoeNT0je/tLcsJyEztLNjzoRQ8pw/NTQ/4QT5/y9D00AlyEuALwLP9dYgrz/ulo7jwyVu1Bxmtv6Ln26pDV+CHPDhXXwf64NjmH/hl7FEekk2CZv4zJHUxI8mt+7DsO+O1bTmJTL8tVSM/gGnDNLRYzm8YMpwhjWtpKbNQ0GY6sdrNy0mH8iaMC8s7UWbw2ZlVnEGs4oz+N58CARNats87Grupqqlmx1NXVS1dLO7pZt1u9t4ZUMXny3xnpPsoCQ/hekjHXxvfvi+hERSYmboc6OrcVfY2mwuW0MakDtm8CzxdqzG5CTx4/PHY55Xwva683l/az0Pu+v5pLwJS6Abl7WaL2TVMie+jOGN20mqWIol0LvGuMUOqcMhOR8SM8GRGlpS1JEcmvw7+YrQXBuRKBmoBHkhcI7L5VpKaL/lbw7QdQEwCk8jZfWT7N72KYHgyWF5Qw6ue57E7ipeTPkZd7j0j/hE4yuax7TNT/DxtirmTRgRtnYbP3oUn5nGnAu/FrY2ZWDZMwpJqezGXVNDQVp45i10ly1nl5nFtJNOnNvpx8JqMRiW5jzkhNROr5/N1W2s393Kul2tbKtr5+3NtXxv/pgBjvT4GMmh2yP+1vCV3vhrN7PLzGLcyH4uATkIGIbB2NxkxuYmc93cUXh8AVZVNvPB1nr+ta2BX1W2hc4jyChLDXMTdjLJXsXInnqyG5tJbawhPthNXKATS097aOTZaodTro/ybyZD2YAkyG63OwjcMBDXOqjhMwEo7tnKul0tTDuelSb6Mk3a33+Q2mABM8758gl7y3Qoyz3pDOK2PMq2NUuYN+HLYWnT21JFcfMS3kq7gs9nDsINVOSoJOb2roVcVQol4UmQUxvXsMbm4nORXNFkEEt02JhRlMGME3XuQlJv/VB7TdiadLSVs9s6PCbvNMXbrcwZk8WcMVn8BGjz+Civ72R7XQflDZ1UtXazsM1LXbuH6hYP7d69FZfxNhidZuHHadOZF7XfQORE3yjkaGWMxoxLYkqgjMXu+v4nyLtWkNqyiUccN/DD/m4AIVERVxRa4s1T9jGmeWVYvuRse+sxJhIk+4xr+t2WRE9Kb4LsbwrPUm9mWzWZ/lrac45+tRUZZBIyCWDF3l0XnvZMkwzvbrYmzg9Pe4NcSrydKSPSmHKQCY6madLS5WNHUxfb6jrYWttOVUt35PYtEDlKQ6MHWiwYw6Yxa9cObt/ewA/P6d8OWc2L/4jVdJIz5+oTon5ODiI5j474YRR3bqa0vuOATWaOq0n382y0uDh5WpiW+5OocPauhWy2VYWlvfotS8gBnKNOCUt7EgUWC51xmSR1N4Rl8qbZ2UCS2Yk/7fC7+A0FhmGQnhhHemLcQRNokWgZ3IsvhtOwqYwKVLBxZwOd3qNeQONAXU0kl73KS5zJJbPDvBWtDChj5CxOtmzjo20N/W5rx6blFPoraBpziSZsnugSsghiYHSGZ7Swyb2UHtPK6EmnhqU9iY4eZw7ZNFPX7ul3W827Q9tW27MH4Q56IgIMqQR5Gjazh1HmTlZWNh93Mx0rn8Fm+mgbfxXJ8bFXOzaUJI46lWFGE1u2uvvd1q4P/obPtDLh7K+HITKJKquNdiMZW3f/vzgB2GpWs80oZFT+oTc0ksHPTMolx2jZs0FSfzTvCCXIqcNPjI1SRIaioZMg54eW0pliLWdp6XF+8JkmnuV/ZV2wmHPmx/4atzGvd/Kmf+cKgkHzCCcfWo/PT3HN62xJnElmjmrSY0GHLQNnT2P/GzJNcrq20ZDk0p2FE5wtdRg5RjPVrd39bqu7disB0yCvcPDvqigyVA2dBDljFMSnclbKbj4uPb4PvmDVGrI6t7Ii/cKw1KxKlOWeRNCwUdSzjW11HcfdzKoPXyWfBqxTrghjcBJNHkcmSf7jv9O0p52mnaSY7fizTwpDVBJN8RkFZBgd1DW39bsto6mcKrIZlpEahshEJBKGToJsGJA/hUmWCtbvbqW1y3fMTVS9/yhe007B6VrjNibY4/FnuphoVLCs7PhHC7s/fY5uHLjOvDKMwUk0+Z1ZpAVb6PEH+9XO7i0rAEgqnBaOsCSK4tNDd4c8zf1fCzmxo5Jae4HuKogMYkMnQQbIn0JO13aspp+PjzUh8veQuv1F3rfMZP403RaLFXHDpzHFWs6y4yy7qW3pYHL7+1RmzsUanxTm6CRazMRssoxWGju9/WqnrWI1ACPGzwxHWBJFRnI+AMH+rm5immT17KYjYWQYohKRSBliCfJULMEeJtqrj7kOuWH1IpKDbbSXXEGcbWj9tcW0/Cmk00Z5+XZM89jrkD9590WyjDYyZl0VgeAkWqzJuSQZHhqaW/rVjqVuI7vIIT9Hu22e8JJzATDaa/vVTKCrmSQ6CaYXhSEoEYmUoZXp9U7U+0J2HUu2H1uC3Lz0r9SZaZx6jhb7jyn5UwAY7tl6zHXIpmli2/wvugwnOSd/IRLRSZQ40kI7p7U37O5XOxntW6lxjtFum7GgdwS5v5uFNFaVARCXoRFkkcFsaCXIGaMgLolTnTspre+kpvXoluvxtNRQ1LyU1WnnMixDk/NiSt5ETAwmWspZfoxlN2sq6zm152Pqhn0O7PERClCiISEjlAx1NR1/vWlPdwfDArvxZEwIV1gSTc4MghjYPU39aqa1phyAhOzCcEQlIhEytBJkiwXyJlPsLwXgo6McRd7y5mPYCZAz95uRjE6iIS4RssYxI24Hy8qO7YNv7fsvkmZ0kjP7yxEKTqIlOTM0IcvbUnPcbVSVrsdqmDiGKUGOCVYbHmsy8b7+rW7S1RDawjw9vygMQYlIpAytBBkgfwrOxk3kJ9l4b8uRb5WZpkmy+3ncljFMna6dsGKRkT+FiZYKlpc3HnUdsscXILX8ZbotiSSMPzfCEcpAc6SGSiyCHcd/O715x0YA0kdqibdY0ROXRlKwDY8vcNxtBJp34DOt5OSpxEJkMLNFO4ABN3wGxvI/cdWYdh7ZCj3+4GEn3a1b+SFTAmV8Mv4nqiOMVcOmkrb+OQxPHVtrO3DlHbmM5r1NuznLXEFb4Tk4bY4BCFIGVGLvrncd9cfdRE+Nm6BpUDBqYpiCkmjzOdJJ72insbOHgjTncbVhaa+izsigwKn3jXBYtWpVjs1m+wswkaE46Cf9EQQ2+P3+66ZPn37AaMiQTJABzk7Zwe+8LlZUNDFnTNYhT6//4C94sTP589cNVIQy0Honb55kKefDbfVHlSBv/vhVPm90Eph1eaSjk2iwxdFhJGH3HP9209aWMmqNLPITtfxfrDCdGWQYZTR1HH+C7OyqodmWQ0GYYxuqbDbbX/Ly8sZnZ2c3WyyW498SVYacYDBo1NfXT6ipqfkLcNH+zw+9b1tphZCYw7iezcTZLLyz+dC3ULfsrGNG29tUZp9FfMqhk2g5weVNAuDM5Co+2HbkhKihw0vu7rfoscRjHaMtx2NVf7ebTu2soCFet9FjiSUxkzSjvV/rY6f4aumMzwtjVEPexOzs7DYlx3KsLBaLmZ2d3Uro7sOBzw9wPNFnGDBiFraqlZw+JotX11fjDxx8t6yPXnqCNKOTYWddP8BByoCKT4HMMcx27mJ5WeMR6wtfXL2Lsy0r8RaeBfbjG0WSwa8rLoPk49xu2gwGGebfRVdycZijkmiyJWeRQTuN7ceZIAeDZAUb8CXmhzewoc2i5FiOV2/fOWguPPQSZAiVWTSV8dVJidS0eVjsPrDOcN2uFkqqF9LqGEZSyfwoBCkDKn8qxT3b8PqDrKg49GoWpmmybtk75BotJE+9ZAADlIHmi88gOdhGMHjsn7111ZUkGh6MrLERiEyiJT41h3jDR1t723G9vr1pN3YCkKoCC5HBbogmyLMAODOhnJxkB09/smOfp03T5LGX3uV060b+P3t3HmBzvf9x/Pk9y+z7xmQZg+aLhFK0UHTbZF+SFqS6XapbUrr10+ZSFFNp30ulBUMbRYpLokVSiSOMfZh9ObOfOef3xwyN7JyZY8zr8U/N93zP9/Oe4+N4nc/5fD+fgE7DK5eHk1NbfHsCinYRbytg4dpD75T16448zLxluA0bJGn1ilOZOyCaSKOA/JLyY35u+ubfAQg5rZW3yxIf8g+tnGpXlHd8q5tk7azaJCRaayCfalauXBk8aNAgc+/Pq1evDuzTp0+r/v37m3feeWeziorKbyZfeeWV2F69erXu3bt361mzZkUCOJ1Oy/Dhw1sMHDjQvOaaa5J27Nhh//v1c3NzrcOGDWs5cOBAs2/fvq2+++67YIA///zT/5prrkkaOHCgOWTIkNMzMzOtAJMnT47v3bt36379+rX6/vvvgwD27Nlj29tOv379Wm3cuHHfnaLp6em27t27ty0uLjYAsrKyrDfccEPL/v37m8OHD2+xZ8+eQ96z9vzzz8c9+uijB3zqS01N9evTp89+b4KvvfZa7KRJk0471LXeeeed6M8++ywc4OWXX4492jY/++yz8F69erXu27dvqzfffDPmcK/Z0aqfya/R2WALwLZlKYPPacJiRzrrd/81IvDBD9tpufNj3FjwP2eoDwuVWtOk8kPT8CYZh5128+GP27nM+jPupudDYGRtVii1zBIcTSQFZDuPbkOh6py71gEQpxUsTilGUDQA5fnHt7pJQfpWAELjFJBPJU8//XSDhx9+OKGsrGzfUlfPPvvsaSNHjkybO3euo7y83Jg/f354RkaGbfbs2XFz5sxZP2PGDMczzzzTxO128/bbb8e0bt26KCUlxdGzZ8+sF1544YBJ6i+++GKDTp065aekpDieeOKJ1IkTJzYFGDduXMLo0aN3pqSkOAYPHpyxYcOGgFWrVgX9/PPPoZ988sm6adOmbZ4wYUICwMSJExv36tUrOyUlxXHXXXftdDgcAQALFiwIGz58eFJOTs6+YP7MM8/Ed+jQwTl37lzH0KFD0ydNmnRAAC4qKjJGjRqVOHv27DhvvZbDhg3L6t27dx7AW2+9dUCQPlibZWVlRnJycpN33nlnw8yZMx1z5syJ3b17t+1Qr9nRqn+rWEDlvNFmXeHPrxhx03/56Kft3PH+aj6940LWbM/jyXm/sthvGUaLy/RVWH0R3wEsdi4P28rk1OYs35TFxUn7f3jNKSxj1eqfmGTdAa3/7aNCpbZYQ2KwGh7ycjIhLuyYnuvJTqXUYyc6XnOQTylVAdldeHw3b5ZkbQcgSv2iRkz/bkv0nJ93ePWO+gFnN84cfkGzw/6BJyQklD7//POb7r333n1/sKZpFuXm5lrdbjdFRUVWu93uiY2Ndc2fP3+t3W5ny5Ytfna73W2xWLjjjjvSXS4XALt27fILDQ094EaYUaNG7fH393cDuFwuw8/Pz1NUVGTk5OTYFy1aFJGcnNy4devWhY888siOV199Na5z5875FouFhISEsoqKCiM9Pd3222+/hSQlJRVfc801SfHx8aUTJ07cDmCxWHj33Xcd/fv337erUWpqasCYMWN2AlxwwQXOxx9//IBwWVJSYunfv3/W+eefn7958+Zj2k42NTXVb/To0c3j4uLKdu7c6d+mTZvCqVOnbps0adJpMTEx5bm5uVan02kdO3Zs0ylTpuz7mv9gba5bty7gtNNOK42KiqoAaNeunfPbb78NPdhrdiw11s8RZIDTL4fsTUSX7eSZazqwKcPJuRMXcf3rKxkYtJpIdzbGuVrard6wB8BpHWhW9DuhATY+Wb3zgFPeW7mVru4fK38wr6zlAqW2+YdXfkAqzDn0lJtD8XPuIN0ah2Gxerss8aW9Abno+Lab9hTsocxjJTqmgTerEh8bMGBArt1u3y98JSYmliYnJze99NJLz8jOzrZdfPHFBQB2u52XX3459rrrrmt95ZVX7gveNpuNwYMHJ6WkpMT16NHjgLuDIyMjK4KCgjxpaWm2sWPHNh89evSO7Oxs27Zt2wK6dOmSP3PmTEd+fr51xowZ0U6n01o9ZAcFBVXk5eVZ09PT/cLCwlwfffTRhoYNG5ZNmzatIcBll12WHxMTs18oT0pKKl64cGEEwOeffx5RWlp6QF6MioqquPzyy495Qr5hGB6AnTt3BiQnJ2/59NNP161cuTI8LS1t36Dt2LFjd4eEhFRUD8eHajM/P98aEhKyr/7g4OCKgoIC68Fes2Ops36OIAOcfil8Afy5iAs738o7N3Xiqz/24Ge18MCe58DZDFpe6usqpTY16Yzlx9fpd2YsH61O454rzH1rnRaVuZi+YgszQn6F8DMgsplPS5WaFxhe+Q1eSd6xf50eVrKLPL+GNPF2UeJbQVEA2EqOLyBbitLJNiJoaKu///TWpOEXNMs60mhvbUlOTm4yffr09W3bti155ZVXYh9++OEme8PeyJEjM0aMGJE5dOjQ0xcvXuzs3r17AcDMmTM3rFu3LmDkyJEtX3/99T8feOCBZgC9evXKuvHGGzN//fXXwHvuuaf5mDFjtnfr1s1ZVFRkBAYGuvc+v3v37nnLly8PS0xMLCksLNwXaIuKiqwREREVoaGhFT179swFuPzyy3OfeuqpQ35FPnr06LRx48Y1HThwoHnhhRfmxcbGli9btixk2rRpjQBGjBixu2fPnnmHew0CAwPd5eXl+wXroqIiy95R3fj4+JKwsDA3QFRUVHlJSclxDdqGhYVVFBUV7XtuYWGhNSwsrALg76/ZsVy3/o4gRzWHqBbgmAdA19Nj+W/ftjx4VgnW7Svg3Ft0c15906QTuEr49xnFADzz1YZ9Dz35pQPDmU5S6e/Q5oD1xOUUFBJZOcpXXnBsm4V4PB5iXHsoCWlcE2WJLwVE4MEgoDz3uJ7uX5JJvjXKy0XJySgkJMS1N6Q1aNCgvKCgwLp+/Xr/m266qYXb7cZut3v8/PzchmF4kpOTG86YMSOq6nkVFouF008/vXT27NmO2bNnO2688cbMtWvXBowePbr5lClTNvfo0SMfICgoyNOoUaOSpUuXhgD88MMPoS1btizu1KmTc8WKFeEVFRVs3brVz+12Exsb62rbtm3BggULwgFWrFgR2rx580PeYLFs2bLQIUOGZKSkpDiaNWtW0q5dO2fXrl2de2s6UjgGiIuLcxUXF1vWrl0bAOByuVi5cmVYhw4dioAj7k7s8RzdjIjWrVuX7NixIyArK8taWlpq/PLLLyGdO3d2Huw1Oxb1+2Ns+2th8URIWwPx7cHjga8ervwa7ezhvq5OalvV6iZxWasYdt6lvLk8lU6JUbg9Ht7+bgvPn74ZY7sH2vT1caFSGwKqplhUFB5bQM7LyyHKKGBjuDYJOeVYbZTYwggsycNV4cZmPbZBlKCyLAr8vHY/k5zExo8fv/XOO+9sYbVaPXa73T1p0qStiYmJZUlJSUX9+vVrZRgG559/uNM9+QAAIABJREFUfl63bt2crVq1KhkzZkzi3LlzY91uNxMmTEj9+/WefPLJRuXl5Za9N5oFBwe7pk+fvumxxx7bMn78+KZTp0414uPjSx955JFMf39/z1lnneXs169fK4/HYzz44IPbAB566KEd999/f8KsWbPigoODK5577rnNh6o/KSmpZOzYsYlTpkwhJiamLDk5ecuxvgYWi4UJEyZseeCBB5pZLBZcLpdx0UUX5Xbv3r0gNTXV70jPT0hIKL7tttsSX3zxxQNej+r8/Pw899xzz/bhw4cnud1u+vbtm9m4cePycePGNT3Ya3a09RtHm9Br04ABAzxz5syp+YaKc+GZM6FFdxj8DqyfBx9eBz2ehM7aHOREmKa5yuFwnOPt69Z433jpQggIJ2/IJ/xz+k/8ULUmcvvG4cwJnoy1cA/c/kPlhjNyXGqqb4CX+0dZITx+Gp83GEmvUU8c9dP+/O0HTk+5jF86P0WHHjd7p5Z65GR/78h78kyWFpzGhfd/RlTwEf+N30/mowlsjuxCp7tmnHAd9dHB+saaNWu2tG/f/vj3hJd6b82aNTHt27dv9vfj9XsEOTACOt0Ky5Lhw+vhz4UQ2xo6jvB1ZeIr5lWwbCrh7jw+uPU8Pl69k2B/K5c3NbA8vRy63qNwXF/YgyjFD2vxsc03zUurHKAIbdC8JqoSH3P5RxFR4CSnqOyYAnKFy0WkJ4+KYI0gi9QFXgvIpmmGA+8BYYAfMMbhcKwwTfM8YBrgAhY6HI7x3mrTK7reA2VOWPU2ND0Prp4OtmMbFZBTSKuesPRJ2PAl1rNuYGDHqnmk/3sSPG5oN8S39UntMQyc1jDsZce23XRp5hYAYptoF71TkScoimhjE7lFx7aBTHbmLmIND5ZQrWAhUhd48y60McDXDofjYuBG4IWq4y8D1wFdgM6maZ7lxTZPnF8Q9HgC7tsMwz7dd5ey1FPx7SGsMaz77K9jFeXw05vQ4h8Q09J3tUmtK7ZFEHisN2TlbqUEO2ExWkP9VGQJiiLMKCSvuOyYnpeXXrl0pF94fE2UJSJe5s2A/DTwStX/24AS0zTDAH+Hw7HJ4XB4gAXAybl2ml+wvjqXyj7QbjBsWFB58ybA2o+hIK1yOo7UK6V+kQRXHPFm7f34OXeSYWmg95NTlDUokgic5BQe2whyYdYuAIKiD7nLroicRI5rioVpmjcDd//t8AiHw/GjaZoNqZxqMZrK6RbVl9YoADQxT05uF94FP0+HLx+Ank/B/Huh4Zlw+mW+rkxqmSsgkrC87ZRXuLEf5YoFYaW7yPOP1xrIpyj/0GgCjBLyCouO6XkluZUBOSxWy/+J1AXHFZAdDscbwBt/P26a5pnAh8C9Dofjf1UjyKHVTgkFjm8BSZHaEhgBlzwIn98NL3YG//DKVU60K1q94wmMJsooIKeojLjQo9tJNcaVwZaINkc+Ueokv5DKaXgl+ce2H4UrbzcAUXGaeiNSF3htioVpmm2AWcB1DofjCwCHw5EPlJmm2cI0TQO4AljmrTZFakzHEXB9Clz8H7juo8qNZaTesQRHE2EUkl1wdKOFBU4n0UYe7jCFoFOVpeo+lXLnsa1uYhSm4yQQ/6CwmihLfGzlypXBgwYNMvf+vHr16sA+ffq06t+/v3nnnXc2q6io3An5lVdeie3Vq1fr3r17t541a1YkgNPptAwfPrzFwIEDzWuuuSZpx44d9r9fPzc31zps2LCWAwcONPv27dvqu+++Cwb4888//a+55pqkgQMHmkOGDDk9MzPTCjB58uT43r17t+7Xr1+r77//Pghgz549tr3t9OvXr9XGjRv9914/PT3d1r1797bFxcUGQFZWlvWGG25o2b9/f3P48OEt9uzZc8gB1SVLloRceOGF7f5+PDU11a9Pnz6tqh977bXXYidNmnTIeUbvvPNO9GeffRYO8PLLL8ce6rznn38+7tFHH933RvvBBx9EXXXVVa179erV+tVXX40FKCsrM2677bbEAQMGmL17926997pHy5tzkCcBAcA00zSXmKb5SdXxkcAM4AdgtcPh+N6LbYrUDMOo3I68+/9Bwvm+rkZ8xBYaA0BBdvpRnZ+RtrXyeZH6Gv2UFRgBgKvw2AKyrTiDXEtkTVQkPvb00083ePjhhxPKysr23Xjw7LPPnjZy5Mi0uXPnOsrLy4358+eHZ2Rk2GbPnh03Z86c9TNmzHA888wzTdxuN2+//XZM69ati1JSUhw9e/bMeuGFFxr+vY0XX3yxQadOnfJTUlIcTzzxROrezS/GjRuXMHr06J0pKSmOwYMHZ2zYsCFg1apVQT///HPoJ598sm7atGmbJ0yYkAAwceLExr169cpOSUlx3HXXXTsdDkcAwIIFC8KGDx+elJOTsy+YP/PMM/EdOnRwzp071zF06ND0SZMmHfRT/7Zt2+xvvfVWA5fL5ZWbLoYNG5bVu3fvPIC33nrrgCBdVFRkjBo1KnH27Nn7rZc4bdq0xu++++6GlJSU9e+//36D7Oxs6wcffBAVERHhmjNnjuPtt9/eMHny5GPavclry7w5HI6Dbi/mcDhWAud5qx0RkdriH1Y5gFGUmw60OvzJQP6eyoAcHKMZyKeswMqQ6yk+ttmCgaVZOG1aJalG/fBqNL98EOPVa3a4NpNOtx52Pk1CQkLp888/v+nee+9N3HvMNM2i3Nxcq9vtpqioyGq32z2xsbGu+fPnr7Xb7WzZssXPbre7LRYLd9xxR7rL5QJg165dfqGhoRV/b2PUqFF7/P393QAul8vw8/PzFBUVGTk5OfZFixZFJCcnN27dunXhI488suPVV1+N69y5c77FYiEhIaGsoqLCSE9Pt/32228hSUlJxddcc01SfHx86cSJE7dD5Y537777rqN///775oalpqYGjBkzZifABRdc4Hz88ccPCJfFxcXG//3f/yVMnjx568CBA49pXllqaqrf6NGjm8fFxZXt3LnTv02bNoVTp07dNmnSpNNiYmLKc3NzrU6n0zp27NimU6ZM2bb3eSUlJZb+/ftnnX/++fmbN2/eN+8tMTGxOC8vz2qz2TwejwfDMBgwYECOx+PJgcptq63WY5sm6c0RZBGRU0pQROUgRUl+xlGdX5RZ+T4eFqdtpk9ZAZUjyJQc2/rYoa5sSvwVkE9FAwYMyLXb7fttS5yYmFianJzc9NJLLz0jOzvbdvHFFxcA2O12Xn755djrrruu9ZVXXrkveNtsNgYPHpyUkpIS16NHjwM6V2RkZEVQUJAnLS3NNnbs2OajR4/ekZ2dbdu2bVtAly5d8mfOnOnIz8+3zpgxI9rpdFqrh+ygoKCKvLw8a3p6ul9YWJjro48+2tCwYcOyadOmNQS47LLL8mNiYvYL5UlJScULFy6MAPj8888jSktLD8iLDzzwQNObb755T+PGjY9pSRfDMDwAO3fuDEhOTt7y6aefrlu5cmV4WlravkHbsWPH7g4JCamoHo4BoqKiKi6//PL8v1+zRYsWxVdffXWbq666qu0FF1yQFxkZWREaGuoOCwtz5+fnW0aNGtXitttu23ksddbvnfRERA4jJLJyUwdXwdEFZFdO5ftv9GmJRzhT6qyqKRbW0mNb/i/cnUdmgHcHN+VvOt2adaTR3tqSnJzcZPr06evbtm1b8sorr8Q+/PDDTfaGvZEjR2aMGDEic+jQoacvXrzY2b179wKAmTNnbli3bl3AyJEjW77++ut/PvDAA80AevXqlXXjjTdm/vrrr4H33HNP8zFjxmzv1q2bs6ioyAgMDHTvfX737t3zli9fHpaYmFhSWFi4L9AWFRVZIyIiKkJDQyt69uyZC3D55ZfnPvXUU4e8WWL06NFp48aNazpw4EDzwgsvzIuNjS1ftmxZyLRp0xoBDBw4MOPXX38N3bFjR8ALL7yA0+m03nrrrc1fffXVzXuvERgY6C4vL98vWBcVFVn2joTHx8eXhIWFuQGioqLKS0pKjmvQds2aNYHfffdd+Ndff/1bSEhIxe233544e/bsyEGDBuVs27bNPmrUqJaDBw9OHzJkyDHNi9IIsojIIdhDK6dYuJ1H92+uxZmGk0DsQRE1WZb4UtUIsl/ZAYNYh1RUUkI4TjxBCsj1RUhIiCssLKwCoEGDBuUFBQXW9evX+990000t3G43drvd4+fn5zYMw5OcnNxwxowZUVXPq7BYLJx++umls2fPdsyePdtx4403Zq5duzZg9OjRzadMmbK5R48e+QBBQUGeRo0alSxdujQE4Icffght2bJlcadOnZwrVqwIr6ioYOvWrX5ut5vY2FhX27ZtCxYsWBAOsGLFitDmzZuXHKr+ZcuWhQ4ZMiQjJSXF0axZs5J27do5u3bt6txb07XXXpv9zTff/L7355CQkIrq4RggLi7OVVxcbFm7dm0AgMvlYuXKlWEdOnQoAjCOsFa8x+M57ON7hYeHV/j7+3sCAwPdNpuNqKgoV15ennX37t22ESNGJI0ZM2bH8OHDj/mDk0aQRUQOJSgaAKP46N5b/YrSyLHGEFKTNYlvWW2UWoMJLM0/6vWxszP20NjwYA095E35cooZP3781jvvvLOF1Wr12O1296RJk7YmJiaWJSUlFfXr16+VYRicf/75ed26dXO2atWqZMyYMYlz586NdbvdTJgwIfXv13vyyScblZeXW/benBccHOyaPn36pscee2zL+PHjm06dOtWIj48vfeSRRzL9/f09Z511lrNfv36tPB6P8eCDD24DeOihh3bcf//9CbNmzYoLDg6ueO655zb/vZ29kpKSSsaOHZs4ZcoUYmJiypKTk7cc62tgsViYMGHClgceeKCZxWLB5XIZF110UW737t0LUlNT/Y70/ISEhOLbbrst8cUXXzzg9aiuWbNmZQMGDMgYNGhQK5vN5m7UqFHpDTfckPXoo482djqdtpdeeum0l156CYB33nlnQ1BQ0FElb+NoE3ptGjBggGfOnDm+LkNOgGmaqxwOxznevq76Rt1XU30DaqZ/FI1vyNLgK7ny3rePeO66Cefi8QulzX++8WoN9UldeO9wTm7NgsIWXPyfFGJC/I94/h9rVtJm7hX8fsE02l5+o1dqqI8O1jfWrFmzpX379pm+qknqvjVr1sS0b9++2d+Pa4qFiMhhFFrD8Ss7uhULIl2ZlAYdsEKTnGJc/mGE4yS3qOyozi/KTgMgKEJ9Q6SuUEAWETmMYnsEgeVHDsgFRcXEkoM75JBr4MspwhMQSbhRSE7R0d28X5pXeZNnSHSDmixLRLxIAVlE5DDK/CIJdR95xYKMtG1YDY82CakHjMAIwikk7ygDsit/DwDhMfrwVAPcbrfbK5tUSP1T1XfcB3tMAVlE5DAqAqKJIJ/isgPW7t9PbtUmIQHRCsinOltQJBFGITlHOcWCoizcGPiHahWLGvB7RkZGuEKyHCu3221kZGSEA78f7HGtYiEicjhBUURSQHZRGY38Ag95WknmdgDC4xJqqzLxEXtodNUI8tEFZEtxJnlGGJGWY9vJS47M5XLdsnv37td3797dFg36ybFxA7+7XK5bDvagArKIyGFYQmIINkpJzc2nUcShA3J51SYhkfEKyKc6v5AoDKMcp9N5dOeXZuO0hhNZw3XVRx07dkwH+vi6Djn16NOWiMhh+FV9LV6Qu+fwJzrTKMWOv9a6PeUZgZVRt/QoN5AJKs+hyK5tpkXqEgVkEZHD8A+PA6AkN/2w5/kV7ibHEgVH2B1KTgFV2027Co9u59qQilzK/RWQReoSBWQRkcMIjqxcmqs07/ABObgsnXy7Ro/rhaoRZHfRkQNyeYWbSE8ersDomq5KRLxIAVlE5DCCIyoDsst5+M26IlyZlARqndt6oSogU3zk9bFz8guJMAoxgrWChUhdooAsInIYlqpg4y48dEAuKXMR68mmIlg7pdULVQHZWnIUATmrchc9m+ami9QpCsgiIocTGIEbA6Po0DdkZWSkE2iUYYRrI4h6oSog28uOvIGMM6vy5s6AqrnsIlI3KCCLiByOxUqBJRx7yaEDcs7uLQD4axe9+sEvBDdWAt0FlLkOugnXPkVVq58ERcbXRmUi4iUKyCIiR1Bojyao7NAB2Vm1SUhoXJPaKkl8yTAo8wsjAid5xYffbro8rzIgh0Vr+o1IXaKALCJyBKUBMYS5svF4PAd9vCxnBwARDbRJSH1R7hdBhFFI7hF206twZgAQFKmALFKXKCCLiByBKyiWGCP3kKOFnvzKG7FCYjSCXF94AiIIx0nuEUaQPUVZVGDBCNQ6yCJ1iQKyiMgRGCENiCWP9PySgz5ude4m1wgDm38tVyY+ExhJhOEkt+jwAdlWkkWBEQoW/XMrUpfob6yIyBHYwhvib5STnZVx0McDi9PIs2kZr/rEGhxFBIXkHGGKhX9pDoW2iFqqSkS8RQFZROQIAiMrl29zZu086OMR5ekUBmqJt/rEHhJNuOEk7wgjyMGuHEr8NL1CpK5RQBYROYKQmMrwW5KTdsBjRaXlNPRk4ApVQK5P7CFRhBnF5BcWHfIcj8dDqDuPcn8FZJG6RgFZROQIgqpGkF35uw94LG3PHkKNYiwRTWu7LPEho2qzkBJn9iHPySsuJ4p83EHRtVWWiHiJArKIyBEYoQ0q/6dgzwGPZe3aBEBgrJZ4q1eqAnJp/qEDcmZ+IZGGc9925SJSd9i8fUHTNFsB3wMNHA5HiWma5wHTABew0OFwjPd2myIiNSoggnJsWIsOvEmvMH0LABHxLWq5KPGpqoDsKjz0BjJ5VdtM28O0zbRIXePVEWTTNMOAZKC02uGXgeuALkBn0zTP8mabIiI1zjDIt0URUJp5wEPl2dsAiIxvXttViS9VBWRPcc4hT3FmV07JCYjQJiEidY3XArJpmgbwKvB/QFHVsTDA3+FwbHI4HB5gAXCpt9oUEaktRX7RhJQfGJAteTsoxY4lRKOE9UpVQDaKcw95Sklu5QhySGSDWilJRLznuKZYmKZ5M3D33w5vBT50OBxrTNPceywMyK92TgGgYRYRqXNcQXFEODeTV1xOeKB93/GAol1kW2OJ10YQ9UtVQPYrz6PM5cbPduCff3lB5ZSckCiNIIvUNccVkB0OxxvAG9WPmaa5Ebi5Kjw3BBYCvYDQaqeFAof+uC0icpKyhjWkQcYqtmUVcWbj8H3Hw8t2UxAUT7wPaxMfCKjsAxGGk5yiMhqEBRxwSkVVQLaGaBMZkbrGa0MeDoejpcPh6OZwOLoBu4HLHQ5HPlBmmmaLqikYVwDLvNWmiEhtCYhtTpThZMfuv5Z6K3VVEOvOoCxYayDXOxYr5fYwwikk01l68HOKMnFjQJDWQRapa2rjO8GRwAzgB2C1w+H4vhbaFBHxqvBGlVPH8nc69h3blJZFHLnYo7QGcn1UERBJlFFAduHBt5u2FWdRaAkDi7WWKxORE+X1Zd4AHA5Hs2r/vxI4rybaERGpLf4NkgAoz9i479iujb/RxvAQ1riNr8oSXwqOISo3nyznwQNyUFkWzoCY/eYZikjdoLtKRESORmQiALbczfsOFe74HYCY5u19UpL4ljUklhgj/6BTLMpcbsLd2ZQFaJMQkbpIAVlE5Gj4BZFriyW0cNu+Q0bGeiqwYI9L8mFh4iu20DiijXyyDjLFIsNZSix5uIO1/J9IXaSALCJylJzBTYmv2ElhqQuAcOdGMv0ag83fx5WJLxghsUQZ+WQXFB/w2J68YmKNXKyhWgNZpC5SQBYROUruyOYkGHvYmlVEXlE5TV1bcYZr9LjeCo7FhpuSggO3m87KyiTAKMdPu+iJ1EkKyCIiRymgYRLRRgF/pG5jw84MEox0LA1a+7os8ZXgyvWNXQUH7rBYkLmz8pQoLQEoUhcpIIuIHKXYhMow/NPPP7Jh7U9YDA8RCe18XJX4THDlDXhGUcYBD5XkplWeEtWoVksSEe+okWXeRERORUaDtgBE7F7JuowIsEBkM61gUW8FVQZka9GBUyxceZUbyljCNAdZpC5SQBYROVpRiZQ2Oo8hOxZT4AmiLCwBv+iWvq5KfKVqikWoO5e84nLCA+1/PebcU/nfEAVkkbpIUyxERI6Bf6ebaGbs4UxLKn7dxmqXtPosKBqAGCOPHTlF+z1kL87AhQ0CInxRmYicIAVkEZFj0aZvZegJbwrth/i6GvElqw2XfyTR5LM9+6+l3jweD4GlWRTao8Cif2ZF6iJNsRARORb2ALj2A7AHgdV+5PPllGaExBJVlL/fCHJWYRkR7hzKArWLnkhdpYAsInKsEi7wdQVykrCExBKXmc2POX+NIKdmFhJr5GKENPdhZSJyIvTdj4iIyHEygmNoYC1ge/ZfI8ibM5zEGnkERMT7sDIROREaQRYRETlewbFEkcf2alMstu7JIYY8iGniw8JE5ERoBFlEROR4hTQgxF1Aek4eHo8HgLzdm7EYHixRiT4uTkSOlwKyiIjI8YpIACCqfA/ZhWUAuLJSKx+LbOajokTkRCkgi4iIHK+qENzUSGd7TjGuCjcBBdv2e0xE6h7NQRYRETle+wLyHrZmFRIeaKcR6VRY/LFqFz2ROksBWURE5HiFxOGxBdKSTP63IYMAu5WmRjploU0I1CYhInWW/vaKiIgcL8PAiGzG2aF5LFy7h3dWbCHRmoFfrNZAFqnLFJBFRERORGQzEq0ZOEtdLN+YSaI1A6tWsBCp0xSQRURETkRUIkGFO4gJttPQXohfRaFu0BOp4zQHWURE5ERENsMoL2TSVfHYCipgGQrIInWcArKIiMiJqArDl8UXgz2r8pimWIjUaQrIIiIiJ2LvaHH6OtjwJYQ1hthWPi1JRE6MArKIiMiJiD4dolvC9y9D1iY492YwDF9XJSInQDfpiYiInAiLBc6/A9L/gIpSaN3H1xWJyAny2giyaZpW4CngHMAfeNThcHxumuZ5wDTABSx0OBzjvdWmiIjISaH9tbD4MTCs0KSzr6sRkRPkzRHkoYDd4XBcCPQFWlYdfxm4DugCdDZN8ywvtikiIuJ79gAY9BYMeKVyRFlE6jRvzkG+AvjdNM15gAH82zTNMMDf4XBsAjBNcwFwKbDai+2KiIj4XmJXX1cgIl5yXAHZNM2bgbv/djgDKAF6ARcBb1E5cpxf7ZwCQPtvioiIiMhJ67gCssPheAN4o/ox0zQ/BD53OBwe4H+maSZRGY5Dq50WCuQeZ60iIiIiIjXOmxOlvgWuAjBNsz2wzeFw5ANlpmm2ME3ToHIaxjIvtikiIiIi4lXenIP8GvCSaZorqZyDPLLq+EhgBmClchWL773YpoiIiIiIV3ktIDscjlLgpoMcXwmc5612RERERERq0km5k97atWszTdPc6us65IQk1MRF1TdOCTXSN0D94xSh9w45lBp77xD5O8Pj8fi6BhERERGRk4ZWMxcRERERqUYBWURERESkGgVkEREREZFqFJBFRERERKpRQBYRERERqUYBWURERESkmpNyHeS9TNO0AC8C7YFS4BaHw7HRt1X5jmmaPwP5VT+mAq8A0wAXlbsUjvdVbb6g/rE/9Y+/qG/sT31jf+off1HfEDm4kzogA/2AAIfDcb5pmucByUBfH9fkE6ZpBgCGw+HoVu3YL8BAYDMwzzTNsxwOx2oflegL6h9V1D8OoL5RRX3joNQ/UN8QOZyTPSB3Ab6Eyi2rTdM8x8f1+FJ7IMg0zYVU/rk9Cvg7HI5NAKZpLgAuBerTG5n6x1/UP/anvvEX9Y0DqX9UUt8QOYSTfQ5yGJBX7ecK0zRP9lBfU4qAqcAVwEjgrapjexUA4T6oy5fUP/6i/rE/9Y2/qG8cSP2jkvqGyCGc7G8I+UBotZ8tDofD5atifGwDsNHhcHiADaZp5gFR1R4PBXJ9UpnvqH/8Rf1jf+obf1HfOJD6RyX1DZFDONlHkJcDVwFUzRP7zbfl+NRNVM6TwzTN04AgoNA0zRamaRpUjgAs82F9vqD+8Rf1j/2pb/xFfeNA6h+V1DdEDuFkH0GeC1xmmuZ3gAGM8HE9vvQG8LZpmt8CHirf2NzADMBK5d3G3/uwPl9Q//iL+sf+1Df+or5xIPWPSuobIodgeDweX9cgIiIiInLSONmnWIiIiIiI1CoFZBERERGRahSQRURERESqUUAWEREREalGAVlEREREpBoFZBERERGRahSQRURERESqUUAWEREREalGAVlEREREpBoFZBERERGRahSQRURERESqUUAWEREREalGAVlEREREpBoFZBERERGRahSQRURERESqUUAWEREREalGAVlEREREpBoFZBERERGRahSQRURERESqUUAWEREREalGAVlEREREpBoFZBERERGRahSQRURERESqUUAWEREREalGAVlEREREpBoFZBERERGRahSQRURERESqUUAWEREREalGAVlEREREpBoFZBERERGRahSQRURERESqUUAWEREREalGAVlEREREpBoFZBERERGRahSQRURERESqUUAWEREREalGAVlEREREpBoFZBERERGRahSQRURERESqUUAWEREREalGAVlEREREpBoFZBERERGRahSQRURERESqUUAWEREREalGAVlEREREpBoFZBERERGRahSQRURERESqUUAWEREREalGAVlEREREpBqbrws4mM6dO3saNWrk6zLkBKxduzbT4XDEevu66ht1X031DVD/OBXovUMOpSbfO0T+7qQMyI0aNWLOnDm+LkNOgGmaW2viuuobdV9N9Q1Q/zgV6L1DDqUm3ztE/k5TLEREREREqlFAFhERERGpRgFZRERERKQaBeQa4nZ7fF2CiIiIiByHk/Imvbrszz0FPPDZEtak/0qkrRnDzunEPy9qjr/N6uvSREREROQoKCB70aYMJ/3fm4wRNZ+ARi6Kged/78CXf9zIOyO6EhXs5+sS5WRQmAkFuyEwEsK17JSIiMjJRgHZS4rJ8QIxAAAgAElEQVTKXIz46C2MmE+5IKgZt4e3YWmAH6+mfkJqyVSufsXFzFu7ER3i7+tSxVdK8uGbCfDjG+CpqDwW2xrOGwntrwObPkCJiIicDBSQveS5JavJD5yOWVbO86lLsbOUdsAZSRcxmm3sdr/EiOkBfPjPCwny08te77grYOZQSF0KHW+E5t0gbwf8Ngs+uwuWPQX/eBjaDgTD8HGxIiIi9Ztu0vOCvOJyvlj/FFhLmOwKx377DzB2E/zjYbpvWsmEAheWoE1sKPuQf7+/mgrdwFf/LH4MNi+B3tNYf8543slrz+uuHnz/j9m4r50FAWGQcjO83QsyHL6uVkREpF7TUKYXvLDkR/JDf6dniZuWw7+AoKjKB7reAy3+QZ/3B7PWAu9Hfcv/diQwcV4Qj/Q+w7dFS+3J3QbLp+Fudy1P7D6XV2Yu2+/h5rHB3HXJB/SpWISx6FF4uQtc/B/ocjdYdHOniIhIbdMI8gkqc7lZvfFx3IaHkeeO+Ssc73VaB7j5K+51h9GutIzwxh8x/ccfmL1qh28Kltr37dNgWJhcOohXlm5mSKd4vv1PN3568FKmDemAv83KXR/9yrU/t2LnDUuhVc/Kucrv9K28mU9ERERqlVdHkE3TtANvAs0Af2Ai8AfwNuABfgdudzgcbm+260vzft3AjuAtdHMF0OTsmw9+UmQC9psWkvzREK6p2EFowsuM+ySU0+MupX2TiNotWGpX/i5Y/R6bGvfn1d9yObfjjyws/IpF8yx0bNCRO8++k8//3YUPf9zGpPnrufK1fJ4ePJlLW14K88fCy11h0JuQ2NXXv4mIiEi94e0R5BuALIfD0RW4EngeeAp4sOqYAfT1cps+tWTlFJxWgyHtbz78zVVBUTQc+hnJIWeSZy3kjEaTuW36UnblFtdesVL71nwAFWXctq0Tcae/y5/FC7gq8SquTrqadVnruPbza3n9t1e5tlMTvrirK4mxwfzzvVW8UXghnlu+hsCIypHk71/x9W8iIiJSb3g7IM8CHqr6fwNwAR2B/1Ud+wK41Mtt+sy2zEJ2Wn6gsQs6d/zXkZ9g8+ecqz9kfIOL+DOglDaRD3L36/PILiyr+WKl9nk8sOZDtoW2Z1v0IkosqUy9eCoTu0zkP53+w7wB87iq+VU8/8vzPLDsAeIj/Pjo1vO5vE0DJnz+Bw+vcOO66StIugK+uA++eqTymiIiIlKjvBqQHQ6H0+FwFJimGQrMBh4EDIfDsfdf9QIg3Jtt+tK8Je/hCITecRdiWI7ypTQM+vR4kXua9mRliIf4gHFMfOVN8orLa7ZYqX27fobMDTziaootdC2jO47m0oS/Ph+G+oUyqcsk7jzrTuanzmfct+Ow2zy8dH1H/nVRc95duZXh768nt/ebcM5NsPwZWDBOIVlERKSGef0mPdM0mwCLgXcdDsf7QPX5xqFArrfb9AWPx4Mj7QMMj4dBXe875uff2H0ydyYN4etQP1wBU3ntxQnklygkn1LWfESO1Z+fYjbSMrw1w9sMP+AUwzD4Z7t/ctfZdzE/dT73Lb2PCo+LB65qzZOD2vFjag59X1rJn+eMh84jYeUL8M1EH/wyIiIi9YdXA7Jpmg2AhcB/HA7Hm1WHV5um2a3q/3sAyw723Lrm99Q0HIF7aOsJIy6i+XFd45/nj+P+Dv9mcXAgv4Z8wOznRlFQrOkWpwSPB8/6z3k8rDnYCnms66NYD7Nk2y1n3sLYc8by1davuHPxnRS7ihl8ThM+uPU8Cksr6P/SCpYkjoGzh8OyqbDkiVr8ZUREROoXb48g/x8QCTxkmuYS0zSXUDnNYrxpmisAPyqnXtR5S5dNY4fdRu/T+5zQda5vfytTuz7B7/6BzI78lpkvDCVfIbnu2/0b+c5dLAotpV1kV9pEtzniU4adMYxHz3+U5TuXc+vCW8kpyaFjQiSf3nEhTaKCuGn6T7wbe3flttRLHodlybXwi4iIiNQ/Xl3mzeFw3AXcdZCHLvZmO77m8XjYnP819lAPPc8ddcLXu6L5VTQIOY1/f3ETb0T9TubL1zNy5PuEB9q9UG09tesX8A+F6Ba+ad/xBe+FheGyunjwwoP9lTi4gUkDCfMP4/6l93PD/Bt47pLnaB7RnNkjz+fOD1bz0Cd/sLPr7fznTBfG1/8FwwpdRtfgLyIiIlL/aKOQ4/D7+vWsCSqkvaUBYf7eueewQ1wHPhrwGTHWEN6PXMejrw/WjXvHy/EFvHYJPNcR5o7yyU1tBX98xnth4TT270jraPOYnntZwmW8ccUbOMudXDf/Or7e+jXB/jZeGdqRG85rysvLtnJP+UgqzhgIix6B756vod9CRESkflJAPg4rVzzHHpuNq1oP9up1TwttxIdDvqYTESwK28gdb/chy1ni1TZOebtWw6wbIb4dnHUDrHkf9vxeuzUU7GZB8WacVvhX+xHHdYkOcR34qNdHJIYlMnrJaCb/MBk3Lib0bcu9lycx55fdjMi9hfJWfWHhOFjxopd/CRERkfrLq1Ms6gOPx8PGwuXYQ6FH++u9fv0g/xBevuEb/vvu5cwJ2sG/3u3Dc9fOIT4ixOttnXJcZfDx7RAYCdengMcNv8yAtR9DwzNrrQzPxq95LyyUEFccfVtddNzXaRjckOk9pvPUqqeYsW4Gq/asYnLXydxxyek0CAvggTm/0S/2Rma3dBG44AGwWKHzUazHLSetzKJsZq//knXZfxAVGEL7Bq3o0qgLMYExvi5NfKjC7eHXHbn8vjMPu9VCs5hgzmoagb/t0Df+isiJUUA+Rpv+XMtPQWWcaWlCiF/NhFarzY9Hh35F5LtX8kZQGrd90IenBn1MYmxYjbR3yliWDOlr4doPITi68lizLvDHx3DJg4ff6dCLlv6ewiY/Py6LuQbjBNv0s/pxf6f7OT/+fB5a/hCDPxvM6I6jub7j9TQMD2DUez/zj6JhfNGsgvAv7qv8UHDeic+Ll9pV6qrgv199xqdpT4K1AE9FABguZm90YWDl0iY9GXPuKBqHNvZ1qVLLvvpjD5O/WMemjML9jgfarVxxRgOGdGpK58SoE36vEZH9KSAfoxUrXyXdZuNmc2CNtmPY7IwetgD7ez15OWgX/5nZh4f6zuHMxlE12m6dte5z+N9kaDcEzB7syCnCZrHQsE0/mDcG9qyFhm1rvg63m4+dfxDo788d513ttcte3ORi5vSdw/jvxvPkj0+ydMdSHu/yOLNHnc/Nb/9E101D+appBQ2+vB9K8uHi+2rtA4GcmNTMQm768AMyQp4nwBLD9YnjOTPmTHblFrNo82p+ylrAQvc8vtr+Of9o3IMx595G07Cmvi5bapjb7eGprzbw4uINDI1cy8NJa5hvbGYjZZQD4S5/8ndH8sY7zfkwpD2XXNyNnh1Px2rR33sRb6jTAbmsvJiHZw0kpySLyyNbMbD/9Bpvc33ecqyh0LPDkBpvC6uN24fOx/VBH14P2cZTc/pwy5WzuDApvubbrisKM2H+vZUBuVFHPL2e5q1vU3ls/jrcHg/Xt2rMRICty2slIGduXcqSQBtmSUuaR0d69doxgTE8e8mzpPyZwpM/PsmgzwbxxEVPMPf2C/jn9J+4cPMwvmjmz+lLHgfnHrhqSuW0CzlpbdhTwJC3PqO8wSvEBzUmpd/7hPn99U3RsAsSyXL25IVlq/how7ssci/gmx1f0LP5Vdxy5i20iPDRKi1S4x6fv47Fy79lefgLzPPL5i5LOEFY6GAEYnNXsM3iZHOEE0/kDjoVL8Rv8SOs/7IR4e360LjbzRDeyNe/gkidVqdv0hufcgPzyrfzp9vJf/NWsWvTkhptL3P3Nn4JKMQkmnAvrV5xRBYrd177GdcFtuSn8Dw++KIPX/64vnbargt2/1Z5Y965t8B1M3l6yXb++/kfXNIqjus7N+W9deW4/MIgw1Er5Xy4+k1chsF5TYfVyPUNw2BQ0iA+7PkhUQFR/Ourf/HFto/44J/ncdkZjbg8dQjfNrgefnoDPrwOSp01UoecuJ25xVz3+jJc0dMJ8w9g+lWv7heO94oO8efhHhfwzYinaeueTGnWBczfvJD+n/Tn7sV3szZzrQ+ql5r0+rLN/P7dPOYFPszbEWVMi4rg0mZXMG/I/3hx+Pc8O+InPr75dxYPXMhd5vXsCG/I2AYxjDqtlM9SXyPt2XYUvz0A1s+DCpevfx2ROqnOjiB/+eN0Pi3dQLeCEE5PeoTX0sYyc+kkRrfoVmNtfvfdW2zzs/OvJlfUWBsHY1gs3H/1HPj0Rt7nZ/xX9se5ezIDe/XRvLMW3eGuNXg8Hp7/ZiPPfrORIec24fH+Z1JW4Wb+b7vZajSmRS0EZI/Hw6e5v3JGmYcBnS+r0baaRzRnxlUzeHD5g0z9aSrb8rfxzJD7eeKLQG5Y3pNxsRHc8udLGG9fBdfPhpC4Gq1Hjo2z1MVNb/1Iaein4LeLyRe9yGk5O+CHNys/9BWkgasULDbwCwH/UBoEx/BBQiO+zj6DR39rR1HcRpbvXM6ibYvo1LATw9oMo2vjrliMOj3uUe8t35jJx198wSz/p3g5Pp73/Vzc0PoGxp479oA/2+jQ07jlvPsZ0Wks3+78lnf/mMGLu1fwUkQEXQr/YOjHIzjXLwbbeaPgnJvAL9hHv5VI3VMnA7Kropxpa56iERXc3vM9Tk9ozhevP8I3xlbuytuJUUNfLf26ewkEw8BzbqyR6x+OYRjc3+dtgpY8wOvb5uHZNgbjuW+49KbJhIcE1no9J4vyCjdzf97JZ7/uYtmfmfTrcBpXdcrj6s8H4fa4ad36bH5cE0ez9N+o6ckGP+1aSZq1gi7FTWgaHVTDrUGQPYipF09l2s/TePP3N9mav5Upl02hQ9MIHkix8osllGfTn8H6xuUw7GOIbFbjNcmReTwe7p25hs3ONQQ0Xc4NzXrSddETsGVZ5cYvsa0qvx63BYC7AsoKoCgT0tdhFKRxqaeCS62Qlh3HVxmt+KV5a9bkbuaOb+6gSWgTBiUNon/L/kQGeHeKj9S83XkljHt/KR/5P80nMVG84edicNJg7jv3vsMOhlgtVi5ucjEXN7mY7fnbefu3D5i7cQ7LQuzElhtc+/2T9PpuGvGd/lW5Xb0+MIscUZ0MyM99MoYddje32C6jVWLlHLwzInqwoDiF7356lwv/cb/X2/S4K/jTkkYjVzDxYb6ZA2wYBnd1n0z46gSSf32R/OL5NH16GZarXqZjx04+qcnXFv2xh/tSfiUyyM64nklk+s3m9m/ep1lYM6ICovg5dyahgW0YUpwFhVl/rW5RAz785XVCK9y0jbuyxtr4O4th4e6Od9M8vDn/XfFfBn8+mCkXTWH+XV2588NQBu0IZIZnKgGvX45l2FxocEat1VYX7C7czZb8LbSNbltjq9L83atLN/PlH9to3PZTwqxR3Ln8HbAFQo8nof21EHCY1WpcZZC5AbYuJ27zUq7e+D+GbSmgFIMvGrVjboWbp1c9zQurX6Bn855c3/p6zKhj26hGfMPt9nDPzNU8WPEC24KKeCI0hIsbdeH/Ov/fMX1T2CSsCQ9deB/3nXcXb67+lDfXfMizURt4zgOd/niVXj8+y+WNLyLo7BuheXew1skYIFLj6tx3cb+sX8KHeYtpW2ww8uqp+44P6nQdAKt2/FAj7f75+1J+DbBxRlDrGrn+sbjxrFE81uUxVgUGMb5hCcFf9GXW60+QV1T/dt67tE0ML9wcxLgh+XyR8x/eX/8+Q9sMJaVPCq9f8TqJ4Yn8HLedcoDMmptmUVRexJLMVfQoLMQ8t2eNtXMofVv25Z0e72A1rIz4cgSL02Yx61/n0aV7DwaUPEhWYRnlr18BW76t9dpOVkt3LKXvx/3458J/csmsS2plLu8v23OZssBBq9bfkefazfitDgLj2sDIbyvXsD5cOAaw+VXebNr5X1ivnUHguK38cuVc3rVezZk7Mpi+dgUf79hFv1IPX278lEGfDWLkgn/yQ9oPeHywo6QcvTeXp9JoSwpn2lZzb6PGNA5twqSuk7Ae5422/lZ/Rp1zNStHzObmhFfw5F7GT9YGPBQTwT+K1vDYl/9k03NtYclkyE/z8m8jUvfViYC86OOHWTDzPpYtncH4pf/G4vFw5wVP4+9n33fOOU1aEuiGncXba6SGpWtm4DIMLmnjvaW7TkSfFn149YrXyQ2OZHijWCKzn+Z/U65m3qqN9eofwsXbF3P/d3cyfsV4XG4XT3V7ivvOvQ8/qx92i517Ot5Dsb2AL4ODavRGvW+2f0MZFXRwhtC6pW9WFjgj5gxm9p5JtybdSF6VzL8X38b1F4Yz9fZruS8ima2lobje7kvusld9Ut/JZMaaRdy+6N8UOCOoSLsRd4Ufk394okb/7hSXVTD6w9VER+8mzbOAqwsKOTeuIwz7BI73WymLlQ7nXcLV977Ii20+4MrSyfzPdgN3uxvy1Y7d3JWdy7qdy7l54c30+aALryx7mLT8mnmPlOO3Md3JuwuW85DfDO5tkkiJYTCt+zRC/UJP+NpWi8Hobhfw9U2Pc0HgNIq2jKSstCOzwyLoF2nn33+8xncvnY37w+th4yJwu73wG4nUfXXiu5XnMhew2V6EsXk+Vj+4PfZazm/3j/3OsVktxLkCSTPywePx+hqw6wp+xT8QLmvbw6vXPRHnNjyXWX1mc8+SMdxt8TAofw0DPu3Dgz88yM2D+tA89tTffe+yhMtI6ZOCzbCREJZwwGhL18Zd8TdCWRZYTI8962qsw8/bNI+Grgqigjti8eE6pGF+YTzV7SlmOmaSvCq5cqWDjnfzyh0DeHdxc3Ytu4uLvh7L1t8X0OT6F7CENfRZrb5Q4fYwccFyZu0ah90TzdAmE9gdYeez1Dx+8czl621fc2nCpTXS9jNfb2BLdh6t2n+Iq9DFGNtpcN1HXrlxKjzQTvI1HfjqzHgemPMbE1JLub5jA8a0zuOGnYtZsHUhc0rSeX7zXF7YNIfzrGFc1fAC/nHObYRGNvfCb3eKyE+jInUZrtjWuGKaE2QPqvEbod1uD2Nnr+FR29u8HB3EL0YZUy58jOYR3v1ziQsL4MUbOvLdxgQmzmvHuu1pxDX6iR9Cl7IkuJCGRb/Qc95N9LdEknD2TXDWUAjSuvtSf9WJEeQ3rvuC4Q0G0SuoE7N6pHBLzwcPel6stSGpdgvu3G3eLcDtZpO9gBYVIfhZ/bx77RMUHxLP9B7vMKLtCFLCQvlPU4MBOXez6LlRvLXoF1wVp/ZogGEYJEUm0Tyi+UG/irQYFlpHnM3KwECcO2vmK/Sckhy+2/UdVzmdBLfoUiNtHAvDMLim1TWk9E6hTXQbJqycwNAvr+fs9tDs3/P4KPwmGu7+HyVPn8WeBVMrV0s4xbndHlZsymLIi5+zcPs9hFqK+Hj3Gu5b1ZOnrM8xuHkP3GVRvP3bRzXS/rq0fF5flso5ZyxjZ2kajxZCyHUz/5+9M49vos7//2smmdxJz/S+r7SlQKEKctMVUKRAoSiKCLi6bvXnYr+wqOgKsrCCYFE8wRsUV6UFQUVR5BA5FZC705be95E2aZp7Zn5/hHaBUmhLSks6z8fDh+1k5v15d2iT17w/7wMQO/chdny8L35ZOAaPDg/HVydrMPxLK16zzsLwBw9g48OH8GPCM3hCEooSmx4vVezC2O1TMH/jMHz76zI0G+ud6stthaEGtqwnYFsbi6zd/4e0nffjrv/ehbu+GIYfC3/s1qX/+3sJ3Mv2gpOdwyalDA9qHsS9Yd1XxzA8yhvf/WMk3p45Cr7sFFSfXwyydjYo6WB86u6OFBWLh8++g40fJKH0u2cAQ223+cLD05u5LSLI3jJP/PPepTc8z18Vhz+aC1GYdwCRQ0Kdtn5h/hEUUAJMoqKdZtOZUAIKC5IWYGTASPzrtxfwVyGJR3S/YtZvv+Cr46lIuv85xEY4737cbowNHY43GvajRFcG926wv79sP1iwmNBsRPCgu298wS0iWBWMDyd8iO8Lv8frx1/HnB/m4J6we/DMYwuw+/g0uO9/CSMOL4fu+PuQjH8R4qTZLjdY5MOvt6K0vAz1TSZEM8cgDDgHo0iIDZwPQpMfB3RlwLEPsCyoFD9aY3Cm7iRsrA0USd3YeCdY+UMOFIoK5DM/YarBiJHTvwJUAU5dowU3KYUlk+Mxb3gY3tidi48PFuKzI8V48M5gPDHmYTyd9Dj+H8viTN4O/HBmI37S52FvYRbEBVswWuCBCT5JGB44EirPSEDmDci9Acr1OuU0WZtwKn8nQisvgD32IQ6JCLwTGAWdyIoIVoF/aMuwWe6B5359DiRBYkLYBKf7UG+wIPOHs/hQsRlP+6gR7xmHRXcucvo6V0OSBCYN8Md9/f1wrFCLDw4E4pfTCSCFkxAVQaNOeQSvScrwWv0ehH35M0a5azAyKR2Dg8dAIpR0u388PL2BWyKQNRoNCeBdAAMBWAA8TtN0vtPXCRmBby/sxJnCg4gcMttpdn878w04gsDgsO7ZenUWQ/yHYOvUb5B5PBMbc7PwvUqAJ+u3I2DjFpzxnQjNtOch8o/vaTdvOePDR+KNP4FT0GNAN9jfX7of7owAfnYlVP69a7IZQRBIiUjBX4L/go/PfoyN5zZiT8keTI+ejmlPfoIPf9yHOy6+hcTv50P361tQ3fMiiPipAHlbbC7dkO/1S2FU2hEqteErkRg2gRirE/6OIUlP/e+kkLsgzPorHgn2w0eEBYfLTmJ0iPO6whzMr8OvuZXQxH0Ku92ORYMzgKA7nGa/PUK8ZFg7MxH/uDsa7+3Lx+ajJdh8tATj4nwxJTEAY2JS8JwmFYvsVpw6vRE/0Fn4yVyOn6t+AVG5G+E2O6KtVoTZ7AiilAhTBCLMOwFugUNABCUBXlG39TjzbXtWYE31Tsc3AY6WeKGKUKwc+n8Y6T8cpvcnIKWCxoMRiVh1bBXGBo91+g7iW3vykWL/EWsCGECoRObYtbd0l5IgCAyN8MLQCC8U1Bqw5XgZvj/tixLtHRCI6pEYdBpy4W/4qikPn/36T4hAoL8yHAkBQxHpFYcQVQhClCHwlnrzPfl5XI5bFUFOBSChaXqYRqO5C0AmgKnOXmR01BC8dgEo0uU61W6O9gQEFIfxg1Kdarc7UIgUWDpsKaZGTsWa39dgOXEa6zyFmKE7ALePvoeH30gok59xtPfpI29owcpgqBgJTkiMeMTSBIhvvvClBQtjwcHyg0huNqPeYxC8euk9lVEyPD3oadwfcz/Wn16P7LxsfE1/jSH+Q9AQPR/bjhbgkYYsuGXNg8k9BtJxzwPxqbd9RHn+2FewNedL1FgaMcorFn9P/H9tczsT0oAz2ZhTuBcfBbjjyzN7nCqQX/85F+EBv6ACOrxNBcPtrqedZrsjhHvLsXrGQDwzLgYf/1aI7X9W4MdzVRAJSdwV4YWxMWqMjnkIiwc9juc4FmfKDuJw8W6c1+bgvLESP1t1YMEBqATqKqGs3oWgY3YEcyQi5QGI90lEv9C7oQ4ZBkhvn97LYb6PYPw5E2o9lYiNjMbk2CT0Vye0Cj3ZtHWQrR+BQWUK7AksxncF32F69HSnrV9c34ztRy/g7+ofsU0swZoR/0aQMshp9jtLhFqB5+6NxbP3aHChsgk/nK3E96dDcLwuGTHCQkxV/4hm8gJOWi7gv7qLsF5Wa6EUiKFRhCDOux80voMR5RmDSLdIPtrMc1tzqwTySAA/AgBN00c0Gk23hE/CPf2gZAiUMlqn2i1iqxFko+Auu0ELpl5Eok8iPr/vcxyuPIzPz3+OT8jf8LGHAvHmXEzZ/ghGigMQOuTvwICZThWMvRGCIBBM+CFH1AQ0VTn15/296neYGBMmGRsg7T/caXa7C1+5L5YOW4q/D/g7tuVvw/cF3+No5VrAEzgUoIGqKgFzm89hYtZfwan+DdGYBcDABwGhuKdd7xLJUZORHDX5xife/RI83h0GX1sAjtf87rT1/yxtxPHyYqij9mGsyYIxD33cYw+mge5SvJQSj8UTY/FHcQN+Pl+NvTk1+Pd35wEAPkox7orwwoioMKQNfAFPqhzixsbaUGmoRKGuEMW6QpTWnkGZNg8Xmiux214DtvInoPIn+PxmRz87MECgQJLEHwlSH1AAIHFzCGeFL+AZAfjEAUr/Hn9AHz0oAaMHvdn+CX4JsPrfgacqzuA4GYFPzn6C1KhUp00qXPdLHqaJt+NDNxGS1YNxT9itndDaHgRBID5AhfgAFRaMj0FOVRN2nIrEl6fjUaPVYRiVh395lyBIWgwTU4lScy0uCgnkNOuxpYGG+eI3ABwFThECBWLlgYjxjEWoT38E+yQiyC0EUqHrpezwuB63SiCrAOgu+57RaDRCmqadPiTei5GgjjA4zZ65uQG5IhZD2Z4ZDnIzEASB4QHDMTxgOKqaq7CV/hafn83GKkk5ADNCT72G4cdWY2TAcAxNSoc4eGiPf2h1F36yYJw3FaKuOh/e3s7LJT9QdgAUhBhqNoOMH+U0u92Nn9wPTw58EukD0nGx8SL2le3D/tL9OGU+hRfdBVjChiPezGL0gX9h8L7lGDRwNqikRwEPF81l94kDEXU3knU0/ktdhLbZCE/5zU9D/Pi3QoT6ZkMHFv+MvB9w67kIYQtCgSNyfFeEF15KiUdJvRG/5dfhSEE9jhTUY8epCgBAlI8Co6PV+EusD+4IC0SIKgQIHnOFLaPNiAvlh3GuaA/Oa8/jbHMF9rJGgCmEtKkQA+yAxmpFqMmAYJsNAXYGHiwDhcQTZOTdQOq7gMC5+d7ORDR4FjSVC6CoGYcidg9ytDmI97r5NLXaJgv2nsrHuMCjIEgJXhjzaq9MUSAIAnH+KsT5q/DsPRqcKtPhm5MxWHW2EtWVFpAEkBggx/ggG6Z6NCGCqkV9Uz5yG3KR21yOCyYtjlka8Z2eBoq2O2xyQACEiCElCHOUrJEAACAASURBVBEq4S3xhJvcByr3cCi9NBCrAqASuyFMFdYr7wlP3+FWCWQ9gMvDdmR3iGMAUBEKaAV6gLE7ZULQyQu7YSZJRKhu7wlkfnI/PDX4b3hq8N+w/ewpvLp/G2pxFNmycvxXfxyyXx5Dsl2A+/zuwrDYB0CFDnNK+6neQphHHDjzAZwtP4Wx/ZzXqu+P6j8QZJFDwAkgDOyODOfuhSAIRHlEIcojCo/3fxw6iw7Hqo7ht9Ij2FN0GO9IOYAApKVbcEfe50gS+yIpfDzi+8+GyDuqp913LrEpGLD3EL5UeGPPxfOYMeDmNrpqmyzYeZ6GMpLGDDOH0DEvOslR5xLiJcMsrxDMGhoCjuOQU9WEfXQtDl2sw+dHi/HxwUJIKBIjIr0xVqPG8ChvRHjLQRAEZJQMSWF3Iynsf8WpjeZGHK8+jt+rf8eJ6hP4SlcAi/zKvFqCA4J0J/ANx0CE3iuQ0W8amB+ew336MnzgDRyqOOQUgfzfYyW4V7QN38tEeDT0PvjJe3+7RYIgkBjsjsRgdyxJicfpch325NTgyMV6rP3DiFcZMYAgBLpHI9bvAfQLdcO9ajn+ITNAaclDfeNZlDfmo6ipDAWWeuQyRhxiDbDYKoGmc0DV3ivW+1vAdMwfv6xnflgeHtw6gXwQwGQAX1/KQT7TXQupKC/ks9Vg9ZUgPYJv2t7ZokMAgLiQETdtq7cwNWEgJsX1xxfHSvD67gsATiLC7zB+pYrxvfYw3A/8hr/sMuMekQ+GeA2AUKG+tDUaD/j1d3prqltBXOCdQOX7yNPmYqyTbOosOuQ15GFSswgN8kioXaDS303shvGh4zE+dDyWjQSKGmrx1sFdOFy8G6dE53BAoAdKsiEqykICQyJJ5o947wT4Bw+HKiAJUpECJEHCyljBciz85H5O25LudjT3IfKnZwEAh0pvXiD/eK4Kge470AgOc/rNBUQ3H5Hubi6PGD45NhJGqx2HL9Zjf24t9uTU4JecGgCAh4zC4BAPJAa7I9pXgWBPGVQSChwH6M0ECFMCQrhoiMTT4CcwgG4oQ7G+FHZSC0JgBCkwwahyA8f1YnEMADJPcGFjkHLxPLYIInGw/CAe7//4TZlkWA5ZR3IxSH0cCkKMvw5b7CRnbx0k+T+xjPGA0WrHyZJGnC7TIadKj/MVeuyla8C2zt0hQBL9IRIOBOC4BwRBgGFZMDDBS1CDQEEpAoTlCCQr4SWoh8Y7sMd+Ph4e4NYJ5G0Axms0mkMACACPdtdCnlI/GE05qKjIQZATBHKxPgcCksPQuL84wbveg1BAYs6wMKQOCsSmQ1H4+OCd0DYbEeKXC3/Po/hBeRFb0Qx3/SGMrjaj/1kTgu12eLKA2FsDU1ASmgIGQuo3EAN8Env9VtgdYQMg+J1DsbHCaTZP1pwEBw4TzLXgQrqvb2lPEuahRmbKbNiZWTiQV4ftZ2jQJT9DRh5DrawKH1nLwVZWAJU/XfP6v/X/G+YPnn+Lve4iSl+E+yaC4Kpwvi7vps19e7oQZs+zGGe2I3jo/3OCg7cemUiIu+N8cXecL5ZN4VBcb8SRgnqcKGnAH8UNrYK5PUgC8HeTItLHH6PCoxHjp0SsnxLRPkpIRbdHAagwaiwiCnYDutH4kz2GZlsz5FTXd9d+L9LiTstO7JEJMSswGW5iNyd62zPIREKMiPLGiCjv1mMmK4PCumaUaJtR3mhGQ7MV1kt9+QUkAZbjICQJSCkBPOQi+Cgl8FNJ4KMSQ60Q9+jAJR4e4BYJZJqmWQDpt2IttVsYYAKKKs8hqN/4m7ZXbquBH0nAU3H7FOh1BpWEwtN/icbjoyLw/elKfHfaHwdzE2BlLBAqaLBu5/CdPBc75M2XXdUA1OwGanaD5DjsmfotvDzCe+xn6Ahechn8bUA5nFfAeaL6BEgIMMyqgyDKeV0PeiNCAYnkWB8kx/qA40airMGEEyUNOFRQgfzy3yEx/IFQsggRwmJICTPACnGRiIBf4+2VhiGNuReB9AeotTpGtnf1wa+myYzyuh9gDOQwM+xel0hXIggCYd5yhHnL8eCQEABAs8WOgtpmlDYYYbDYQQBQSij4qMTwU0mgVopBCW6THYT2CB/t+F8Di5MKO45VHkNySHKXze06U4EA9z2wE0Kk3XGbPDx2AalI0Frsx8NzO3JbDArpDEHqOKAKqGgocIq9coEZAczt/4R/IySUAGlJQUhLCoLVzuJCpR45VYNBVxmQW6NHkbYC9eZq2KAHCAZSlkEiV44oxgBO4NPT7ncIf7sI5SKz0+wdrz4Otc0TEq4QCOn+vra9BYIgEOwpQ7CnDFMTAwHcCaudRYm2GSV1TbAVHoRP0beYpt2D+sYjAO7raZc7TuAdiDz7HuqEpShvNCHIo2tpEbvOVkGtOgiKYZA0vPsHP/QUcrEQ/YPc0D/Ihd8jffuDEbvhXmMVThFCnKw92WWBzHEcqs7+ghJfDkmKEKePk+bh4XEeLieQo/1jgDNAraH8pm3pG0pQSZEYRPZ85fmtRCQkMTDYHQOD286ds9gZ6E12GK12mGwMFGIhvFW9P7cSAHzhhuOCWlgYC8SCm2tbZmNsOK89j0HNHrATFITqOCd5eXsiEpKI8lEiykcJxN8P4H6A4yDr5ak3bQhIRITVhgMqPY6X1HdZIB/ILUK5vBFThT4QqPhcytsakgQZPhpjcw7jbcSB1tJdNnW6TIc45gf8RlF4LP4RJzrJw8PjbG7zva+2xHg7xGyjte6mbf1xfhcAIMgz4aZtuQpioQBqpRihXnLE+qm6LCB6Al/KByxBoKih8KZtFegKYGftSDAboFdGA8JbN/3qtuF2E8cAIHFDhNgLLMnhRHnX8pAZlkNz9WaYSQL3xM10soM8PQERPgoBqIPA6IEcbQ44jrvxRdfgwPkSkErH79Wo0N4zlp6Hh6ctLieQpZQECoaAjtHftK1z5Y6BAf3CxtzgTJ7bAR+5o2gzt/zsTduiGxxRpFG2WpB+fW98tysT7e3YDThf2zWBfL5CD7HkNJQsh8GJjznTNZ6eImAwAMBDz0Fr1qLWVNslM/acH/C7TIA4RTDUMrUzPeTh4XEyLieQAcCNFaGRsNy0nYrmUlAch8Ro1y7A6isEXCokLKy9+VHkudpcCCDEILsWytDEm7bH03sICRwGAGhsyunS9UfzK1Et1WMg5QUBv7PgGvglgCMESLCaAAA52s7/bphtDHwb9uFPsRijwl2z6w0PjyvhkgJZBTkaBIxjWMhNUGfTQm0DPOW3f39bHiDQMxJCjkO5vvSmbdENNFR2DwgBCPxu7yEyPFeiDBkGJcOCZApgsTOdvr7i/PcoEQlxZ+Bd3eAdT49AScGpNRhtc7S1u1B/odMmThZrIZTRYAkCo4JGO9tDHh4eJ+OaAlnojhqhAFxz17bBWqgjTPBkbq6Yi6f34KH2h6+dQY2p+qbscBwHuoGGp/FSjasvn6PuUvjEI9Buh4CqR1GdsVOXMiwHe9NuAMBgzfTu8I6nhyADBuEushhizqc1xaozXDxzGHkSFlKSQoI3/57Bw9PbcUmB7ClWQysQoK6u7KbsVAsYuBF8D0dXwd3LDwF2O+rtN9cLud5cjwZzAyItVphEnoDi9mhzx9NBKCn8CDGsQgNyq5s6dWlBrQGcpAgijkA/38Hd5CBPjxAwCO6cDkKzZ5c6WQgKfsEpiQj9vfpBSLpcAykeHpfDJQWyh9QXAFBR1/VuBbrGEjQJSHhQvPhxFYRyL/jb7WhgDTdlp+XD8Q5rAyyesc5wjaeXESjxgo6yd1og0/R55EoZxIl9QQl6+Rhlns7h76g1cDcC5YZy2Bhbhy+1MyyCm46AFokx0O/O7vKQh4fHibjkY6yX0h/QATWNJV22kVtyDACglvfuCXE8nUAghDcjgI6wwMbaQJFdEzBF+iIAwEh7NSj/m5/WyNP7CFKFwNxYh9zKYgCaDl/XlLcPuSIRZgf0ncExfQa/BHAEiUibBeUcg9Km0g4P+siv0kIgLgVDeGGgemA3O9q3OH78uI9QKPwQQAJcNOjH022wAM7a7fbHk5KSaq5+0SUFsrd7CFAG1Osru2wjr/wMACDAi2/h5Uq4sWJwBFBjrEGgomsDHEr0JaAgRhBrAvz5CLIrEuClARpPwKA9DmBCh6+z1P8Guy+B2KAR3eccT89AScG4hSLBoMevAAr1hR0WyGXnDqNY4tBuA9QDutHJvodQKPzQz88vTq1WN5Ak2bUG1Tx9EpZlidra2viqqqoPAUy5+nWXfNoK9A4DAOi62KsSAEobLwIAokL47TBXwhMKAECFoaLLNkqaSqBgVCAAEF78qFhXJNA/CQBAWGgwbMc+c01WBhyRDwDQ8Kk3LonANw4jGMfnSpGuqMPXWQqP4JRYjFB5IDwkHt3kXZ8lQa1W63lxzNNZSJLk1Gq1Do7dh7av32J/bgkhnv4AgCZrQ5dtVJsq4cawiA6KcpZbPL0AD6FjfHZ5U9cFcmlTKRSWS5svnpHOcIunl+Ef4HgwlgkrUNbQsU4WdH4eGkRGCEEi1C20O93j6SEIdSziuUoIWGVrqlVHcKs7gXNiKfr58OkV3QDJi2OernLpd+eaWtglBbKP3BMEx8Fg71yBzeXUMjp42UiopC6ZhdJn8ZY4ii4LGrrW4cTO2lHWVA61mQFDUIBbkDPd4+klqKSeULKAgNKioLa5Q9doc34FLaIQLgvscn47Ty/HJw5CMBBaVB2OIJssdvjbz6NGSEDj2fF8dh4enp7FJQWygBRAzhIwsB37YLsW9YQFbqwEBEE40TOenkYq94E7w6C0i/nplc2VYDg7Im1mmBTBAClwsoc8vQV/gRQWyoiLtR3rekKWHwctEiHOj48SuixqR+qMh0WIgg4K5Py882gQOybwxXjEdJdnPD3MkSNH5DNmzGh9Ajp58qR0ypQpsdOmTdPMnz8/jGEcQ4c2bNigTklJiZs8eXLcli1bPADAYDCQc+fOjUxLS9PMnDkzpqysrM0TdmNjo2DOnDlRaWlpmqlTp8YeOnRIDgB5eXnimTNnxqSlpWkefPDB6Lq6OgEArFq1yn/y5MlxqampsUePHpUBQHV1tbBlndTU1Nj8/PzWQQ81NTXC5OTkBJPJRABAfX29YPbs2VHTpk3TzJ07N7K6urpNtLC4uFg0c+bMmBkzZmjS0tI0OTk5VwyOKCwsFE2ZMuWKfLMPPvhAvXLlyoD27uOmTZu8vv32WzcAWL9+fbvz2N9++22fl19+ubWQ6K233vIZP358vxkzZmhmzJihycnJEdvtdixevDg4NTU1dtKkSXHfffedW3v2roXTBLJGo3HTaDTfajSa/RqN5rBGoxl26fhdGo3mqEajOajRaJY6a70boWAFMKLr46brBSyUhNKJHvH0BiiVN9QMgxpDVZeuL700ha+fXQd48vnHrkyAxAsNFIPSqo7VMgj1p1AvFEDjGdfNnvH0GN7R4AgSITYGemsjdBbdDS+pzz2MXMqhd3iB7Jq8/vrrvkuWLAm1Wq2tEbU333wzID09vXLbtm20zWYjdu7c6VZbWyvMysry2bp1a87mzZvpN954I5hlWXz66afecXFxxuzsbHrSpEn177zzjt/Va7z77ru+Q4YM0WdnZ9Ovvvpq4YoVK0IA4MUXXwzNyMgoz87Oph944IHa3NxcyfHjx2UnTpxQbt++/cK6desKli9fHgoAK1asCEpJSdFmZ2fTzzzzTDlN0xIA2LVrl2ru3LkxDQ0NrcL8jTfe8E9MTDRs27aNfuSRR2pWrlzZpqp9zZo1AbNmzarJysqin3jiicrVq1ff9JbqnDlz6idPnqwDgE8++aSNkDYajcSTTz4ZnpWVdUUP3gsXLshXrlxZmJWVRWdlZdGxsbGWL774wstutxPffPNNzoYNG/KLioo6NfnNmfkDCwD8QtP0GxqNRgPgvwAGA1gPIA1AAYDvNRrNIJqmTzpx3Wsi40QwEF3rd9tsrIORJKEU8sUUrobMzRfqUgal5q5N0ytpcrQOvNNeC4lvijNd4+ll+CmDcNxQAlvVBQBDr3uuxWoBQ5YB8EC0R/Qt8Y+nB6CkYN1CEWcy4BiAQl0hEn0Sr39NxUnkiMRwF7tBLW03IMbjBDYeKvLaeqLM25k2pw8Oqps7PKz+eueEhoZa3n777Yv//Oc/W/vCajQaY2Njo4BlWRiNRgFFUZxarbbv3LnzHEVRKCoqElEUxZIkiaeffrrGbrcDACoqKkRKpbLNjPsnn3yyWiwWswBgt9sJkUjEGY1GoqGhgdq9e7d7ZmZmUFxcXPPSpUvL3n//fZ+hQ4fqSZJEaGiolWEYoqamRnjmzBlFTEyMaebMmTH+/v6WFStWlAIASZL47LPP6GnTprW27SosLJQsWLCgHACGDx9ueOWVV0Ku9mnp0qVlbm5uzGU+sR29r4WFhaKMjIwIHx8fa3l5uTg+Pr75tddeK1m5cmWAt7e3rbGxUWAwGASLFi0KWbNmTWvPXrPZTE6bNq1+2LBh+oKCAknLcZqmZe+9956fVqulRo4cqVu4cGHVwYMHVVFRUabZs2dHAcDLL79c2lH/AOemWLwOYMOlr4UAzBqNRgVATNP0RZqmOQC7AIxz4prtIiekMJAswHU+d7+y5gIAQCXih4S4GkpPX3gzDHRdLOAsaSqBABSCWTOE3nyBnivj6xGFJgEJge78Dc8tuXAClSLHe02EG7+z4MoIfOMxhHVM4yxtuvHnrUfjWZyTKBDjoeFT9lyU6dOnN1IUdYXYCA8Pt2RmZoaMGzeun1arFY4ZM6YJACiKwvr169WzZs2Ku/fee1uFt1AoxAMPPBCTnZ3tM3HixDYfUB4eHoxMJuMqKyuFixYtisjIyCjTarXCkpISyciRI/Vff/01rdfrBZs3b/YyGAyCy0W2TCZjdDqdoKamRqRSqexfffVVrp+fn3XdunV+ADB+/Hi9t7f3FaI8JibG9NNPP7kDwHfffedusVja6EW1Wm0XiURcTk6OeO3atUEZGRkdqn4nCIIDgPLycklmZmbRjh07Lhw5csStsrKyNWi7aNGiKoVCwVwujgHA09OTmTBhgv5qm+PHj9euWrWq5Msvv8w9efKk4rvvvnPT6XTCkpISyaZNm/Iff/zxqueeey6sI/610KUIskajeQzA/111+FGapn/XaDR+AD4HkAFABeDyH6QJwC359JALFKgmagBrMyBWdOrawiqHQPZStnlg4rnNEal84M0wMHBN4Diu0x9YpfrS1hZv8OIFsivj5x0H0ICUuQi92QaVpP3Cu4a8wyiiKEhIMXxk/IO1S6PW4A76R4ALat1Rag+LzYZwWz6KKF88wKdXdDtzh4fV3yjae6vIzMwM3rhxY05CQoJ5w4YN6iVLlgS3iL309PTaRx99tO6RRx6J3rt3ryE5ObkJAL7++uvcCxcuSNLT06M+/PDDvMWLF4cBQEpKSv28efPqTp8+LV24cGHEggULSseOHWswGo2EVCplW65PTk7WHTx4UBUeHm5ubm5uFbRGo1Hg7u7OKJVKZtKkSY0AMGHChMa1a9e2OwwgIyOj8sUXXwxJS0vTjBgxQqdWq20HDhxQrFu3LhAAHn300apJkybp9u7dq1yxYkXIqlWrCmNjY6/Ia5VKpazNZrtCWBuNRrIlEu7v729WqVQsAHh6etrMZnOXgrYsyyI9Pb3G3d2dAYDRo0frzp07J1OpVExycnIjSZIYO3as4bnnnpPcyNbldMkZmqY/omk64ar/ftdoNP0B/ALgBZqm98Mhji9P5FUCaOzKmp1FLnSDViCAWddmOMoNKdcWAQB8PPgWby6HzBNqhgULFo2Wzv8qVjRXQGG9JJQ8wpzrG0+vwk/hSH9zpyqRX3P9dC2y4jjyKDHC3MP5KKGro9ZABgZCuxIl+usL5CL6DBopG6wEy6fe9DEUCoVdpVIxAODr62tramoS5OTkiP/6179GsiwLiqI4kUjEEgTBZWZm+m3evNnz0nUMSZKIjo62tOTTzps3r+7cuXOSjIyMiDVr1hRMnDhRDwAymYwLDAw0//rrrwoAOHbsmDIqKso0ZMgQw+HDh90YhkFxcbGIZVmo1Wp7QkJC065du9wA4PDhw8qIiAhze/4fOHBA+eCDD9ZmZ2fTYWFh5gEDBhhGjRplaPGpRRyvWrUq+KOPPsq788472/TD9PHxsZtMJvLcuXMSALDb7Thy5IgqMTHRCOCG75VcBzMA9Hq9YNKkSf2amppIlmVx9OhRZf/+/Y2DBw9u2r9/vxsA/Pnnn1IfHx9rhwxewmk5yBqNJh7AFgAzaZo+BQA0Tes1Go1Vo9FEwpGDfA+AZc5a83qoxF6wmwhU1xYh1KdzQevqpnIAQJAfP0XP5ZB5wftSNXGtqbbTTfurmqsQaLn0EKrq2iQ+ntsDP7mjTkYsqkNedRMGh7T/u+KtO4vCAAnuUPGj6V0etaNRgdwqwcWG4uueqs07DKPI8UAd7c4L5L7EsmXLiufPnx8pEAg4iqLYlStXFoeHh1tjYmKMqampsQRBYNiwYbqxY8caYmNjzQsWLAjftm2bmmVZLF++vPBqe6tXrw602WxkS3GeXC63b9y48eJ//vOfomXLloW89tprhL+/v2Xp0qV1YrGYGzRokCE1NTWW4zjiX//6VwkAvPTSS2XPP/986JYtW3zkcjnz1ltvFbTnf0xMjHnRokXha9asgbe3tzUzM7Po6nNWrVoVbLPZiJbc65CQEPPatWtb/yhIksTy5cuLFi9eHEaSJOx2OzF69OjG5OTkpsLCQtGN7mFoaKjpqaeeCn/33Xfb3I/LcXd3Z5566qmyhx56SENRFHvnnXc23XfffTqz2Uw8++yzoVOmTInlOA4vv/zy9f9gr8KZRXorAUgArHPU6EFH0/RUAOkANgMQAPiJpumjTlyzXdzlvoAJqKwvRmdb9tebayFnWQT78bmELofEDV52Rx1BnbGuU1XlRpsReqseg+1CmERekAo7VRDLc5vRkiphFZpQWFED4NopVzaTHj5MMeoEwQhzC7t1DvL0DN6O9wxfG1BquH4EmS0/CZpyPFB3dCw1z+1JeHi4dceOHTkt348aNcowatSonKvPe/755ysBXNFn1M/Pz/7FF1/kXc/+xo0bL17reGJiomnbtm301ccXL15cAeCKnOCwsDDrl19+2e46Bw4cONPydXR0tOWbb75p4//l7Nq164YFGu3dh6vvV8vXl/wGAGzZsiW3Pbtz5sy5IpXm4Ycf1j788MPay49JJBLuzTffLLqRj+3hNIF8SQxf6/gRAHc5a52O4q0KBOqAOl2nihYBAA02HTw4wFvJCyCXgyCggBSAI4LcGaqaHa3hQu1m2BXttnHkcRFEAhG8KAWqhAaQ5WcA3HHN8yrOH4aNEoIjgFAVP0HP5RHJwbqFIMJuQa69CTqLDm7ia7dX9Wg8hzNeHvCXqyGn5LfYUR4enpvBJQeFAICvp+ODStvc+XZejTBCxQghFLjs7enTqAhH0WatsWsCOYppAunOT9DrC/jJ/VElEEBaf67dcxrzjqCIcsQa+Ahy34BUa5DIOOrP28tDtlgtCLflo1giQqQ7X9DLw3O74bIKMMjLsR2qs2hvcGZbGgg7FGynih15biOElBskLFDZ3LkCziqjQyD3Yxog9gruDtd4ehl+qhBUUiIEW/KhM9queY6w6gT+pBz5yWGqsFvoHU+PodYgye54/2ivk0Vxzp8QEVZUkRZEufMF3zw8txuuK5DdfQEATbY27fKuC8dx0Ao4yPkpei4LJ3GDux2oaOqkQG6uAkAgjDFC6M4L5L6An9wP1UIh+pFFyK1puuY5vvqzyJW4Qy3lt9H7DOpYhNtMAAcU6q5d91OfdwRlQiFsYPgIMg/PbYjLCmSVWAGS42Bkmjt1XaOhEjaC4KfouTJSd3gxLGq6kGIhZuWgAMCNT7HoC/jKfGEkOASSZcirbLsbZdeWwJutQ6VEzOcf9yV84iHmAJFdinO116ydAspP4IzI8cAU6cYLZB6e2w2XFcgEQUDOEjCxbVrzXZeqWkdRpUrcZhQ6j4sgkHnAl7FBa67r1HWVzZWQ2i+l3vACuU/Q0uqtngLqCk+3eb3i1G7H60ILQlT8YKE+g288OEIAtVWIgsZrd6Dy1J3Dn1LH7w8fQebhuf1wWYEMAHJWABM61RcaZbX5AAB3Od/j1lURKTzhz1ihs3YuP72quQoy66U/Gb4Hcp/AX+4PAKgUCmAt/bPN66a8/SiHAk2sASH85M2+AyUFvKMRabOhxlQClmOveNnQbECYvRCFcgUC5AGQUbIecpTnVnHkyBH5jBkzNC3fnzx5UjplypTYadOmaebPnx/GXOq/v2HDBnVKSkrc5MmT47Zs2eIBAAaDgZw7d25kWlqaZubMmTFlZWVtxnY2NjYK5syZE5WWlqaZOnVq7KFDh+QAkJeXJ545c2ZMWlqa5sEHH4yuq6sTAMCqVav8J0+eHJeamhp79OhRGQBUV1cLW9ZJTU2Nzc/Pb23VVVNTI0xOTk4wmUwEANTX1wtmz54dNW3aNM3cuXMjq6ur2+16tm/fPsWIESMGXH28sLBQNGXKlNjLj33wwQfqlStXttsGatOmTV7ffvutGwCsX79effXrxcXFopkzZ8bMmDFDk5aWpsnJyWn9GZqbm8nU1NTYCxcuXFFEVl1dLRwxYsSAq4/fCJcWyFJOCCNx7cKa9qhscLSF83bnP+xcFYnKMSzExplhtHVsh4HjOFQ1V8HTBrCEAFDyOwx9gUCF40GoVCRDgOEMdKYr3088ao5hn8QxAIJPsehbEP4DkcToYIcF1Vd1S8o9vh9iwo5yMYcYT37EtKvz+uuv+y5ZsiTUarW2joZ78803A9LT0yu3bdtG22w2YufOnW61tbXCrKwsn61bt+Zs3ryZfuONN4JZlsWnn37qHRcXeLe2CQAAIABJREFUZ8zOzqYnTZpU/84777T5gHn33Xd9hwwZos/OzqZfffXVwpaBIS+++GJoRkZGeXZ2Nv3AAw/U5ubmSo4fPy47ceKEcvv27RfWrVtXsHz58lAAWLFiRVBKSoo2OzubfuaZZ8ppmpYAwK5du1Rz586NaWhoaBXmb7zxhn9iYqJh27Zt9COPPFKzcuXKa0aFSkpKqE8++cTXbrc7ZYTonDlz6idPnqwDgE8++aSNkF6zZk3ArFmzarKysugnnniicvXq1UEA8Pvvv8seeOABTWVl5RX9ea1WK/H888+HikQi9mpbN8KZg0J6HVKIYCQ7l4NcZ3C80fl581XHropI7gGvS0/z9eb6DkV39FY9zIwZAYwEFokPpKSgu93k6QV4Sb1AkRSK3YIxp+EMThRrkRzrKABmG8vgY69Ake9QAPUIVvKFm30KvwHon/sNAF/Q2nz4K/xbX9Ln/goLAVTatUjx0LRvg8e5HHvfC3/+19upNhMfqsOQJ+qvd0poaKjl7bffvtgyUQ4ANBqNsbGxUcCyLIxGo4CiKE6tVtt37tx5jqIoFBUViSiKYkmSxNNPP11jt9sBABUVFSKlUslcvcaTTz5ZLRaLWQCw2+2ESCTijEYj0dDQQO3evds9MzMzKC4urnnp0qVl77//vs/QoUP1JEkiNDTUyjAMUVNTIzxz5owiJibGNHPmzBh/f3/LihUrSgHHxLvPPvuMnjZtWuv44MLCQsmCBQvKAWD48OGGV155pU3U0GQyES+88ELoqlWritPS0jo1eriwsFCUkZER4ePjYy0vLxfHx8c3v/baayUrV64M8Pb2tjU2NgoMBoNg0aJFIWvWrGltFbN06dIyNzc35rL7wAKAxWIh3nvvvfwFCxZcMZFn6dKlQQ8++GDtBx984I9O4toRZFIKAwmgg/O8AaDBXA8hx8Gvk+OpeW4fCOllAtl03fe9VqqNjgenUJsZjKLTf2c8tykkQcJf7o96Ny8Ek7UoyDnV+lrVqZ8AADpvx8Q9Pge5j+E/ABFWx47CgaIr+2Qrq3/HQUkIWLCdmtbJc3syffr0RoqirhAa4eHhlszMzJBx48b102q1wjFjxjQBAEVRWL9+vXrWrFlx9957b+sHkFAoxAMPPBCTnZ3tM3HixIar1/Dw8GBkMhlXWVkpXLRoUURGRkaZVqsVlpSUSEaOHKn/+uuvab1eL9i8ebOXwWAQXC6yZTIZo9PpBDU1NSKVSmX/6quvcv38/Kzr1q3zA4Dx48frvb29rxDlMTExpp9++skdAL777jt3i8XSRi8uXrw45LHHHqsOCgrq1FY9QRAcAJSXl0syMzOLduzYceHIkSNulZWVrUHbRYsWVSkUCuZycQwAarXaLhKJuJycHPHatWuDMjIyKgBg5MiRzSEhIVf4sWnTJi8PDw/7Pffc07l2Zpdw6QiyjJRDzxHgLHoQkmtPOroana0RbiwLb7eOnc9zGyJ1vyKC3BFqjI6WcGFsM0i36G5zjaf3EaAIQLXJka8uKPgFwAQAAPvnVyjjvGFVAT52H0iF0h70kueW4zcAniwLESPE6er/Te/VNZsRYz2PT9V3AiiCxpOPIN8yhjxRf6No760iMzMzeOPGjTkJCQnmDRs2qJcsWRLcIvbS09NrH3300bpHHnkkeu/evYbk5OQmAPj6669zL1y4IElPT4/68MMP8xYvXhwGACkpKfXz5s2rO336tHThwoURCxYsKB07dqzBaDQSUqmUbbk+OTlZd/DgQVV4eLi5ubm5VdAajUaBu7s7o1QqmUmTJjUCwIQJExrXrl3bbjFNRkZG5YsvvhiSlpamGTFihE6tVtsOHDigWLduXSAApKWl1Z4+fVpZVlYmeeedd2AwGARPPPFExPvvv1/QYkMqlbI2m+0KYW00GsmWSLi/v79ZpVKxAODp6Wkzm80dCtru3btXuWLFipBVq1YVxsbGWto7b/v27d4AMGPGDNXFixelzz77bPj777+f5+/vb+/IOq4tkCkl9HYSzbo6KDookPVMM1QsAZXUpW9N30biaPMGdDyC3DJ1L4rRQ+zOR5D7EgGKAOxvyEO9OBhhjUdQrTdDba9CUMMRfKmYjXpLJV+g1xeRuoPwjECwnUCJoaj18NkTBzGCMKHc0x1SixRBCr7jTV9EoVDYVSoVAwC+vr62kydPKnJycsSrV68O+vDDDy9SFMWJRCKWIAguMzPTz8/Pz/rwww9rFQoFQ5IkoqOjLVlZWXSLvXPnzkkyMjIi1q5dW5CYmGgCAJlMxgUGBpp//fVXxejRow3Hjh1TRkVFmZKSkppXr14dNH/+/OqysjIRy7JQq9X2hISEpl27drk9/PDD2sOHDysjIiLM7fl/4MAB5YMPPlg7YsSI5q1bt7o3NjYaRo0aZRg1alSrTw899FBrpfvQoUMHXi6OAcDHx8duMpnIc+fOSfr162e22+04cuSI6oknnqgCHN3Grgd3jd3/vXv3KletWhX80Ucf5YWFhV23C0N2dnarrzNmzNAsX768uKPiGHBxgawQeYBjCNTUl0Lh27E2O02wQM4Kb/gPx3MbcxMR5CimCQIVX6DXl/CX+6PeXA8m7h6MOPkJPt+1E3cTxxHEEXAfPhclZYuQHJzc027y9ARR49C/YBsuCsrRaLTCXSZC+R/fAgCqpSyipdEQ8PUKfZJly5YVz58/P1IgEHAURbErV64sDg8Pt8bExBhTU1NjCYLAsGHDdGPHjjXExsaaFyxYEL5t2zY1y7JYvnx5m96Bq1evDrTZbGRLcZ5cLrdv3Ljx4n/+85+iZcuWhbz22muEv7+/ZenSpXVisZgbNGiQITU1NZbjOOJf//pXCQC89NJLZc8//3zoli1bfORyOfPWW28VXL1OCzExMeZFixaFr1mzBt7e3tbMzMyizt4DkiSxfPnyosWLF4eRJAm73U6MHj26MTk5uamwsFB0o+tDQ0NNTz31VPi7777bej9WrVoVbLPZiJZ875CQEPPatWuvPa3nJnFpgaySegImoKahDB3NKNYTdoSw/FapSyNxBwVAxAg7HEGuMdaA4mQQAYDCtzu94+llBCgchdTG4XNBnf0Gk89mwINowm/EYCQlRkObr+Xzj/sq0RMQm/MFoGzGuv3HMPuORPRv2I0y9wHIayrGuJBxPe0hzy0iPDzcumPHjpyW7y9FW3OuPu/555+vBFB5+TE/Pz/7F198kXf1uZezcePGa06kSUxMNG3bto2++vjixYsrAFRcfiwsLMz65ZdftrvOgQMHzrR8HR0dbfnmm2/a+N8eR48ePXWt4+3dh6vvV8vXl/wGAGzZsiX36ut27dp1/np+XB5178jx6+HSRXrucoeQqW+q6vA1OpKDlOB7Vro0YiVYCCBjBKgzdlAgm2ogZi49OCn4CHJfIkDuEMgVdgP0E96ECgbsFo5B86R3Ud7sCFxEuPFFvX2SsJEYZHPsNmad+Q0bsr5DHFmKugEToLPokOiT2MMO8vDwdBWXjiB7qBy5orqrelS2h8naDBNJQEaqutMtnp6GIGCllFDaSVQbOzZNr8ZYA7H1UotIhU83OsfT22iJIFcYKjB8yAzYBpbhHrHjIXpr3lYA/CjhPgslRUzQcMit56EX5SGiKgcsQeKMlzdQDgz1G9rTHvLw8HQRpwtkjUYTC+AoAF+aps0ajeYuAOsA2AH8RNP0Mmev2R6+Ho6+pE2mNh1TrklDYxEAQEF5dJdLPL0ERuQGN6bjRXo1xlrIbZf+XPghIX0KH5kPBIQAFQbHzh8l/t8OU0FjAUSkqFVE8/Q9hIPnYOC+DNR4/Im/N5WCiLwHR7XnEKIMuaI3Mg8Pz+2FU1MsNBqNCkAmgMvbbqwHMAvASABDNRrNIGeueT38PR0dTAy2xg6dX1XvSPFRSPgIoavDStzgxbBosNxYINtZO7SmenjZAQ4kIG8z/ZLHhRGSQgQrg1Gga1vPUqArQLhbOF+I1ZeJS8Egn0G4yFmg94qAfcqb+KP6Dwz156PHPDy3M04TyBqNhgDwPoAXABgvHVMBENM0fZGmaQ7ALgC3rGrBT+GIBDfbmzp0frnWkU/oLuejQa4OIXWHmrHDzBhhtrfb6QaAI8rMgoUPY4NN4gnwYqjPEekeiYuNbWtkCnQFfP4xD5KGLQRHEPjj7mdxxliOZlszhvgP6Wm3eHh4boIupVhoNJrHAPzfVYeLAXxJ0/Qpjaa1MboKwOUTTJqADjeUuGmklBQUy8HEGDt0fk1jGQDA2z20O93i6QUI5R7wbcgHIES9uR6Binb7paPW5OiBHGS3gFXyHSz6IpHukdhXug9WxgqRwNGdyGgzosJQgdSo1B72jqenGeA7CAHyALx+/mPIKTncxG4Y5j+sp93i4eG5CboUQaZp+iOaphMu/w+ABsBjGo1mHwA/AD/BIY6Vl12qBNCxfAcnoWAJGDlTh86tb3b0uvX15gtuXB1K7olA1hE5vlEecsuY6TDGCAEvkPskUe5RYDgGhbr/tSct0heBA8dHkHkgFoixfMRyFOuLcb7+PF4e9jLcxPw01r7EkSNH5DNmzGiNDp48eVI6ZcqU2GnTpmnmz58fxlzqvb9hwwZ1SkpK3OTJk+O2bNniAQAGg4GcO3duZFpammbmzJkxZWVl1NX2GxsbBXPmzIlKS0vTTJ06NfbQoUNyAPjpp59UEydOjJ82bZpm9erV/gDAMAwWLlwYMnXq1NgZM2Zo8vLyxADwzTffuI8ZMyZhxowZmhkzZmj27dunaM//48ePyyZPnhw3ffp0zXPPPRfc4v/V2O12PPbYYxE//vhjm+4GmzZt8nr55ZeviD498cQTEfv27VNefW4LL7zwQnBxcbGovr5e8OWXX3p2dM0lS5YETZ06NTYlJSXu448/9gaA4uJiUVpamiYtLU0zb968yMunC3YEp6VY0DQdRdP0WJqmxwKoAjCBpmk9AKtGo4m8lIJxD4ADzlqzI0g5AUy47rCVVhos9RCzLHzVfATZ1RHIPBB8aWfhRgK5ZYpeDKuH0I0vuumLRLo7HpovT7NoyUlueY2nbzPEfwgW3bEI/xj0D4wL5fsf9yVef/113yVLloRardbWCWNvvvlmQHp6euW2bdtom81G7Ny50622tlaYlZXls3Xr1pzNmzfTb7zxRjDLsvj000+94+LijNnZ2fSkSZPq33nnnTaV4O+++67vkCFD9NnZ2fSrr75auGLFihCGYbBs2bLQt99+O3/btm10UVGR5MCBA4odO3a4W61Wcvv27TkLFy4sW7FiRRAAnDlzRvbMM8+UZWVl0VlZWfTYsWMN7fm/ZMmS0Oeff75k69attEKhYL766qs2YjU/P188Y8aMWJqm5c66l6+88kppaGio9cyZM7I9e/a4d2TNvXv3KktLS8Xbt2/PycrKytm0aZOfVqsVbNiwwfeee+7RZmdn05GRkeZNmzZ5d8aXW9HmLR3AZgACOLpYHL0Fa7Yi4ygYyY6lWOhtTXBnOXipnPZvzdNbkbjBj7EBAOrM12/1VmOsAQESkWwjCH5ISJ8kTBUGASFAfmN+67FTNacgFUr5ISE8rczpN6enXejT/PfCf712XNzRKRF0I6ZETql7KO6h60ZRQkNDLW+//fbFluluAKDRaIyNjY0ClmVhNBoFFEVxarXavnPnznMURaGoqEhEURRLkiSefvrpGrvdMQG5oqJCpFQq24Rrn3zyyWqxWMwCgN1uJ0QiEVdXVydUKBRMZGSkFQASExMNx44dU2i1WuHIkSN1ADBs2LDmBQsWyAEgJydHTtO07PPPP/eNj49vXrp0aRlFUdf0v66uTjRixIhmALjjjjsMu3fvdp81a5b2cp8MBgP5yiuvFL333nudbu20adMmrwMHDriZzWayoqJCPHfu3Ko5c+bUt4yEXr9+vV9BQYHso48+8n7sscdaP6SvteZdd91lGDhwoBFwjK9mGIagKIqLi4szVlVVUS3X+fn5tZ1dfR26ZVAITdNhNE2bL319hKbpu2iavpOm6Re7Y73rISXEaCbYDp3bxBohZ0koxC7dHpoHuGLcdN0NeiFXG6tBsUqIwfAt3vooIoEIIaqQKyLIf1T/gcE+g0GRbXZDeXh4+hDTp09vpCjqCvEVHh5uyczMDBk3blw/rVYrHDNmTBMAUBSF9evXq2fNmhV37733tgpvoVCIBx54ICY7O9tn4sSJbXrTenh4MDKZjKusrBQuWrQoIiMjo0ytVtstFgt54cIFid1ux2+//eZmMpnI5uZmgUqlahXZJElyNpsNd911l37ZsmUlWVlZtNFoFHz00Ufq9vz39/e3tKRg7Nmzx91kMrWpTk9MTDTFx8dfv8r92nAAYDAYBJ999ln+e++9l//pp59e8eGanp5elZiY2HS5OG5vTalUynl6ejJWq5WYP39+WGpqaq1SqWQDAgKs2dnZPuPHj+939OhRt2nTpl0h8G+EyytBKSFDraAeYJkbdh8wwAI5KwRBENc9j8cFuDRummKlqDPdOIJM2S/1vuVbvPVZotyjkKN1TEatN9UjvzEfKREpPewVDw9PCw/FPVR/o2jvrSIzMzN448aNOQkJCeYNGzaolyxZErxmzZoSAEhPT6999NFH6x555JHovXv3GpKTk5sA4Ouvv869cOGCJD09PerDDz/MW7x4cRgApKSk1M+bN6/u9OnT0oULF0YsWLCgtCU9YuXKlYVLliwJoSiKi4yMNHl4eNhNJhNpMBhaBQ/HcQRFUZg9e3adh4cHAwDjxo1r3LVrV5sUhhZWrVpV+O9//zvk3XffJQYNGmSgKIpbv369evfu3Z4A8MYbbxQEBQXZrncPJBIJa7VarwjEmkwmUiqVsgAQExNjBIDg4GCrzWa7qYCtVqsVpKenRyYlJTUtXLiwCgAyMzODli1bVnTPPffov//+e7eMjIzwzz//PP9Gtlpw6VHTACATyqEnSTDGG9cGNhEMpKz4FnjF0+NIHAU0FCNp7VLRHjXGGohs/BS9vk6SbxJKm0qR15CHP6r/AADc6XdnD3vFw8PTG1EoFPaWKK6vr6+tqalJkJOTI/7rX/8aybIsKIriRCIRSxAEl5mZ6bd582bPS9cxJEkiOjra0pIrPG/evLpz585JMjIyItasWVMwceLE1u5g+/fvV33++ed5n3/+eV5ZWZl4zJgx+qSkJMOvv/7qBgCHDx+Wh4eHm1iWRUpKSnxpaSkFAIcOHVL269ev3fzTn3/+2f3NN98s+Prrr3MbGxsFI0eO1Kenp9e2+HQjcQwAAwYMMP7++++qpqYmEgDq6+sFRUVF0pYI8PWCkQRBcBzXsYwIo9FIzJ49O2batGl1zz33XGXLcYVCwbT8G/j7+1sNBkOngsIuH0GWU+4w2kg0aivgpfC67rl6koOUkN4iz3h6FKnjwVlkE90wglxtrIG79VLkmI8g91kmhk/Ea7+/hh0Xd8BkN0EmlCHeK76n3eLh4emFLFu2rHj+/PmRAoGAoyiKXblyZXF4eLg1JibGmJqaGksQBIYNG6YbO3asITY21rxgwYLwbdu2qVmWxfLlywuvtrd69epAm81GrlixIgQA5HK5fePGjRd9fHxsU6dOjROLxezEiRPrExISzHFxceaDBw+qUlNTYzmOw6pVq4pIksTSpUuLn3rqqSiRSMSGh4eb5s2b1+6HX1hYmHn27NkaiUTCJiUlNd133326zt6D2NhYy/33319z//33x8pkMsZutxPPPvtsiVKpvGHea2RkpKWgoED69ttv+zz99NM11zv3o48+UldWVoqzs7PV2dnZ6kv3q3Dp0qUly5YtC3nttdcIAFiyZElxZ/wnOqrQbyXTp0/ntm7d6hRb/8legC8NP+PLga+iX+J97Z5ntZmR9MWdmGgOw+q/f+uUtfsyGo3mOE3TdzjbrtN+N7SFwJuJmOA5DJw/i5/v/+mapxltRgz9Yij614bjC8N+4NlCQHbNzjM8HaS7fjcA5753XIv5e+bj+P9n777jpKjvP46/Zsvd7ZW93ult6F2aBTU2UEAFY2JPorEkJkZjYvIzURPTY6olFtRo7Ng7WBABAaXXpR4HXO97/bb8/phDDqWzd3vcvp+Phw9uZ2ZnPqdfl/d89zvfb/FyfAEf47LH8e8z/91u14pUnf6zQ8LmQG1j9erVeSNGjDh0L4fIIaxevTptxIgRvb66vcsPsXDHWg+0llXvOeRxlTXWjYXLedAhOdKVtA6xcPttlDeWcbAbxb1zIKf7/QQMB8SofUSyGf1mUNNcQw93D3414VfhLkdERNpJlx9ikRyfCSVQWVN0yONKyq05TROi9RV6RGgNyEl+aAm0UNNcc8CJ/fcG5BxfC35XKjZbl7+nlEM4s/uZ3H/m/YzNGkucU9NBioh0VV3+b/u0RGsRl+rDjDMtKLd6kN1xmsYrItjs+JwJpPmsoVB7FwP5qpJ6a+hTD38DRrxuniKdYRhM7j5Z4Vik8wgEAgFNPSXHpLXtHHBMdJcPyJmp3QHwNn5tWsH9FFcVAJDs7tbuNUnnEIxJJP0wi4XsDcj9ArVaZlpEpPNZV1pamqiQLEcrEAgYpaWlicC6A+3v8kMscpOsHuG6lkM/gFnR+lV6ZkrvQx4nXYfhSiK7zlqG/GA9yMV1xTiIpZtRjqEZLEREOhWfz3dtUVHRY0VFRUOJgE4/CakAsM7n8117oJ1dPiCnuKxxpfW+2kMeV9VQjhEMkpXRpyPKkk7AHptMN791Y3Swqd5K6kuwB5JIDW4HDbEQEelUxowZUwJMD3cd0vV0+bsth81BbADqAwedDxsAb0sNCYEg6YnJHVSZhJsRk0iOrQE70YcMyEZLHFE0aw5kERGRCNHlAzJAXMBGA02HPKbGX4vbD4kuZwdVJWHnSiKJOhzBxIOupldcX4ytqXV1xTitoiciIhIJIiIgu4J26o1Dr4pYG2wiNmDHZtM4/4gRk0QC9Rj+JIrrir+2u9HXSGlDKa6m1psm9SCLiIhEhAgJyFE0GP5DHlNrtBAbiOqgiqRTcCURHWwk0ORmd+3ur+0uqLVmNklpaR2qrzHIIiIiESEiAnKsLYZa26GX1K4xAriI6aCKpFPYuypeo4vS+lKa/c377d4bmjN9rW1HPcgiIiIRIWSzWJimaQf+BowFooG7PR7PW6ZpTgD+CfiAuR6P555QXfNIuWxx5GMQbK7HiIr92v5gIEC13TpOIkhrQI5uiqGZIIV1hfR09/xy926vFZC7t/isW8nWZctFRESkawtlD/KVgNPj8ZwMzAD6tW7/D3AZcAow3jTNUSG85hGJdSRQbbfRUFN+wP01tXvwGwZxDs1gEVFcVkB2t1hjjPfU7tlv9+7a3TiMaLoF6gi6ksGhITgiIiKRIJQB+Vxgj2mabwOPAm+apukGoj0ezzaPxxME3gfOCuE1j0hCVBI+w6C8Ys8B95eWbQMgLko9hBElxpojO8VnB/aNOd5rt3c3LiOdbEcthmawEBERiRjHNMTCNM3vAT/5yuZSoBG4ADgNeAKr57imzTFeoMNX4kiISYVGKK7YSXcmfG3/7taAnBSX09GlSTi5UgBI9wWwYf9aD/Ke2j04Amlk27dCvAKyiIhIpDimgOzxeGYDs9tuM03zeeCt1p7iT0zTHIAVjhPaHJYAVB1jrccsKSELqqC86uszFQAUVuQDkJbYoyPLknCLtQJyilGL25m+X0AOBoPs9u7G0TyeNKMa4sxwVSkiIiIdLJRDLBYCUwFM0xwB5Hs8nhqg2TTNvqZpGljDMD4N4TWPSHqyFXwrvQUH3F9WWwhAZmq/A+6XLiomkaBhI8moxWWk7zfEorKpknpfPQ31iSQGqrRIiIiISAQJ2SwWWOOOHzJNcwlgADe0br8BeAawY81isTSE1zwiuenWqI6qg6yWVtG6zHC3rP4dVpN0AjY7RkwS2cE6nMEs9tSu+3LX3hks6r2xuAJ1mgNZREQkgoQsIHs8nibguwfYvgQOMPC3A/VKzgbA21RxwP01LdW4CZCVnNiRZUlnEJtCRks9QV8yZS1lNPgacDlcbKrYBEByk8u6tVMPsoiISMSIiIVCUlzJGMEgtf6aA+73+utI8BvERdk7uDIJu9hU0u21NNVlArC+bD0Aq0tXk+BMJt3Xepwe0hMREYkYERGQ7TY7cQGD2kDdAfd7aSQu4MAwjA6uTMLOlUKyUUtFRS4GBsuLlwOwqmQVWdEm6UbrTZV6kEVERCJGRARkgISAgzqj+YD7agwfscHoDq5IOoXYFBKCXiq9Tvom9WN58XIqGivI9+YTF+xHpq01IGsMsoiISMSImIAcRzS1Nt8B91XbgsQaWmY6IsWmENtizTzY3z2CVaWrvuxFprEnfVz11s/qQRYREYkYkROQjVi8tiAE/Ptt9zV5qbbbiLO7w1SZhJUrBXugiRiayIoeTIOvgdlrZ+OwOaiqzqR7dC1Eu8EZE+5KRUREpINETECOd7iptNvw1Zbtt728fKu1Pyo1HGVJuLUuFpJMLbGB/tgNO+vL13NhvwsprPSRbfdCnIZXiIiIRJJQzoPcqbmjkqlqslFZVkC6O/PL7btLrIDsdmWFqzQJp1jrxijD7qXKG8MzU58hOSaZpKgMnnj9fVLjqjWDhYiISISJmB7kpNhMgoZBYem2/bYXlO8AIDWhWzjKknBzWT3IfRNa2F1Zz5C0IeTE57CnsgEAd6BSPcgiIiIRJmICcmqCtVhIceXO/baXVu0CID2tb4fXJJ1A6xCL3rGN7G4NxQDby6wpAV1NpZCgbxdEREQiScQE5MykngCU1xTst72kzlpSuFfO8A6vSTqB1iEW3aIb2FO1LyCv21NNgq0JR7MX3Dnhqk5ERETCIGICcm6G1UNc3VCy3/bypjLi/EH6petr9IjkSgYg29lAqbeJxhZrlpPVu6sZn9ZkHZOggCwiIhJJIiYg90y2viavaa4dyBoUAAAgAElEQVTYb3tFsJZkv50Yp5aZjkh2J0QnkhNlzXe8alcVwWCQtburGJfSaB3jzg5jgSIiItLRIiYgp7T2FDb4vhKQjSbcAVc4SpLOIjaZLGcdNgMWby1jd2UDlfUtDEloXZrcnRve+kRERKRDRUxAdtgcxAVsNAS8+zb6miizQ4KRGL7CJPziMohqLGNYtyQWbStnze5qAPpGW3+SoB5kERGRSBIxARkgMRhDla3py9X06sq3UWW3kxideZh3SpfmzoGaQk7um8qqXVV87Ckhym4jnQqISYKo2HBXKCIiIh0oZAuFmKaZCDwPxANNwBUej6fINM0JwD8BHzDX4/HcE6prHq0Uewp7HNX4qnbjSOnJtl0rAUiN7xGukqQzcOfAlnmc3DeVB+dvY87y3Zw3JAu7t1AzWIiIiESgUPYgXwOs9Xg8pwIvALe3bv8PcBlwCjDeNM1RIbzmUcmM7cYeh4OyXR4AthdtBCAnbWC4SpLOwJ0DLXWMybIzONvNNZN68a9vjwJvgYZXiIiIRKBQBuS1QELrz26gxTRNNxDt8Xi2eTyeIPA+cFYIr3lUuiUPpNlmsGPXKgAKq6xV9PrkjghXSdIZtPYSx9QX8c6PT+Xu6UOIctigpkA9yCIiIhHomIZYmKb5PeAnX9n8A+Ac0zQ3ACnAqVhBuabNMV6gz7FcMxQGdBsBe2BXxSYmAmUNxRAFw3K0il5E2ztLRU0BZA62fva3QG2JArKIiEgEOqaA7PF4ZgOz224zTfMV4M8ej+dh0zSHAy9jDatIaHNYAlB1jLUet+HZAwAorcsHoNpXTqLNIDlWD2FFtL0huGbPvm3eIiCogCwiIhKBQjnEohJonReLEsDt8XhqgGbTNPuapmkA5wKfhvCaRyU3IRtbECr85dBQRZVRS2wgLlzlSGcRnwUYVg/yXt5C60+toiciIhJxQjaLBfAr4DHTNG8CnMB1rdtvAJ4B7FizWCwN4TWPitPmJDkQRYXhpX7LB6yNjqK/Y0C4ypHOwhEF8RnWQ3l7lW+z/kzuGZ6aREREJGxCFpA9Hk8BMPUA25cAE0J1nePltqVR7PCy8aO7qU+2MarXOeEuSToDd87+Pcilm8DmhJSwDZkXERGRMImohUIAMtNHssMZzdqANRR61rAzwlyRdAru3K8EZA+k9Qe7M3w1iYiISFhEXECebp5KrR1mJ7lJ8sfRM0ljTIXWHuQ2D+mVboR0M3z1iIiISNhEXEA+v+9UesUPpspuJ8c9PtzlSGfhzoHGamisgeZ6qNwJ6VpARkREJBJFXEC2GTb+esZvcNqiuXr0+eEuRzqLrGHWn3u+gLLNQFABWUREJEKFchaLE4aZYvLZZYuItkeHuxTpLLpPAMMOeYsgrXVmEwVkERGRiBSRARlQOJb9RcdDzijIWwhBP9gckKoVFkVERCJRxAZkka/pdQp89oA1m0XWMM1gISIiEqEibgyyyEH1OhUCLVCzG877U7irERERkTBRD7LIXj3GQ0wSjL/B+llEREQikgKyyF7RCXCbB5wx4a5EREREwkhDLETaUjgWERGJeArIIiIiIiJtKCCLiIiIiLShgCwiIiIi0oYCsoiIiIhIG51yFov169eXmaa5M9x1yHHp2R4nVdvoEtqlbYDaRxehzw45mHb77BD5KiMYDIa7BhERERGRTkNDLERERERE2lBAFhERERFpQwFZRERERKQNBWQRERERkTYUkEVERERE2lBAFhERERFpo1POg7yXaZo24EFgBNAEXOvxeLaGt6rwMU1zBVDT+nIH8DDwT8AHzPV4PPeEq7ZwUPvYn9rHPmob+1Pb2J/axz5qGyIH1qkDMnAhEOPxeCaapjkBuA+YEeaawsI0zRjA8Hg8p7fZtgqYCWwH3jZNc5TH41kZphLDQe2jldrH16httFLbOCC1D9Q2RA6lswfkU4D3ADwezxLTNMeGuZ5wGgHEmqY5F+u/291AtMfj2QZgmub7wFlAJH2QqX3so/axP7WNfdQ2vk7tw6K2IXIQnX0MshuobvPab5pmZw/17aUe+CtwLnAD8ETrtr28QGIY6gontY991D72p7axj9rG16l9WNQ2RA6is38g1AAJbV7bPB6PL1zFhNlmYKvH4wkCm03TrAZS2uxPAKrCUln4qH3so/axP7WNfdQ2vk7tw6K2IXIQnb0HeREwFaB1nNja8JYTVt/FGieHaZo5QCxQZ5pmX9M0DawegE/DWF84qH3so/axP7WNfdQ2vk7tw6K2IXIQnb0H+VXgbNM0FwMG8J0w1xNOs4EnTdNcCASxPtgCwDOAHetp46VhrC8c1D72UfvYn9rGPmobX6f2YVHbEDkIIxgMhrsGEREREZFOo7MPsRARERER6VAKyCIiIiIibSggi4iIiIi0oYAsIiIiItKGArKIiIiISBsKyCIiIiIibSggi4iIiIi0oYAsIiIiItKGArKIiIiISBsKyCIiIiIibSggi4iIiIi0oYAsIiIiItKGArKIiIiISBsKyCIiIiIibSggi4iIiIi0oYAsIiIiItKGArKIiIiISBsKyCIiIiIibSggi4iIiIi0oYAsIiIiItKGArKIiIiISBsKyCIiIiIibSggi4iIiIi0oYAsIiIiItKGArKIiIiISBsKyCIiIiIibSggi4iIiIi0oYAsIiIiItKGArKIiIiISBsKyCIiIiIibSggi4iIiIi0oYAsIiIiItKGArKIiIiISBsKyCIiIiIibSggi4iIiIi0oYAsIiIiItKGArKIiIiISBsKyCIiIiIibSggi4iIiIi0oYAsIiIiItKGArKIiIiISBsKyCIiIiIibSggi4iIiIi0oYAsIiIiItKGArKIiIiISBsKyCIiIiIibSggi4iIiIi0oYAsIiIiItKGArKIiIiISBuOcBdwIOPHjw/m5uaGuww5DuvXry/zeDzpoT6v2saJr73aBqh9dAX67JCDac/PDpGv6pQBOTc3l1deeSXcZchxME1zZ3ucV23jxNdebQPUProCfXbIwbTnZ4fIV4U8IJumuQKoaX25A3gY+CfgA+Z6PJ57Qn1NEREREZFQCWlANk0zBjA8Hs/pbbatAmYC24G3TdMc5fF4VobyuiIiIiIioRLqHuQRQKxpmnNbz303EO3xeLYBmKb5PnAWoIAsIiIiIp1SqANyPfBX4DGgP/AuUNVmvxfoE+JrioiIiIiETKgD8mZgq8fjCQKbTdOsBlLa7E9g/8AsIiKtCqoa+HRLKXVNfs4enEn3lNhwlyQiEpFCHZC/CwwDbjJNMweIBepM0+yLNQb5XEAP6YmIfMVbawr4xctr8Tb5ALj37Q1celJ37jx/MHHRnXLCIRGRLivUn7qzgSdN01wIBLECcwB4BrBjzWKxNMTXFBE5oS3ZXs7Nz61kVPckfn/xMGKdDp5cnMcTi3fw2bZyHr5yLGZWQrjLFBGJGCENyB6Ppxm47AC7JoTyOiIiXUVNYwu3vbianimx/O/a8cRGWR/Lv542mPOGZvHDZ1dw0YOLuP+yUZw5MDPM1YqIRAYtNS0iEkaPfLKdguoG7vvmyC/D8V7jeqfw5s2n0Dc9nuueWs5LX+wKU5UiIpFFAVlEJExqm3w89Vke5wzOZEzP5AMek+mO4bnvT2Bin1Run7OGf36whWAw2LGFiohEGAVkEZEweX5ZPjWNPm6Y3Hf/HQE/tAnB8dEOHr/mJC4encvfP9jM7XPW0OwLdHC1IiKRQ49Gi4iEQSAQ5MnFeYzrncKoHq29xxU7YP4fYN3LgAG5o+Gk62DoTKIcNu67ZAQ9UmL5xwdbKPE28Z8rRn9tWIaIiBw/9SCLiITBkh3l7K5s4LJxPawNpZth9jmw8S0YfRVMuBHqy+GVa+HRM2DPCgzD4JazBvCnmcNYuKWUq2Yvo7Z1Wjjp4rzFsOCv8OYt8NHvoEAL0oq0J3U9iIiEwZwvdpMQ4+C8oVlQXwFPTbd2fP9jSDetn8/+jdWbPPdOeOwsOPVWmPxzLj2pB/HRTn70/Eq+9+TnPPmdcbii7OH7ZaR9ffEEvPcL8DVCbAo0VMKCP0Of0+GseyBnZLgrFOly1IMsItLBvI0tvLOukGkjcohx2q0AXFsCl7+0LxwDGAYMmwU3LYHhl8KCv8Dj50L5Ns4fns3fvjmCZXkV/PDZFfj8GpPcJS17FN66BXpOgpuXw8+2w+3b4NzfQ9E6eOR0q1e5QYvUioSSArKISAebt6GYxpYAM0fnwo5PYdUzcPKPD94T6EqCix6CS/4L5dvgP6fCiqeZMSKH384YyoebSvjlq2s1u0VXk78U3v0ZmFPh289DauvDnLEpMPEH8KMV1lCcFf+FB8bBhtfDW69IF6KALCIRKRgM8vqqPcxZvrvDr/32mkJyk1yM7p4EH90L7lyY/LPDv3HIhXDjYug2Bt74Ibx8LVeMSuFH3+jPi1/s5sH529q/eOkYTbXw6vWQ2I3GaQ8xb3Mlf5u3mYfmb2O+p4QWfwBiEuG8P8B1H0N8Jrx4FbxwpTVeWUSOi8Ygi0jECQaD/PLVdTy3LB+n3eCUfmlkJcZ0yLWr61tYsKWU75zcGyNvAexaAlP/Ck7XkZ0gMReufA0W/g0+/j0UreEn33ya/PIc/vK+hx4psUwbkdO+v4S0v0X/gModbDj3eW58aCU7y+v3250aF8UlY7tz1cSe5OSMtELy4n/B/D/CjgVwwd9h6MVhKl7kxKceZBGJOIu3lfPcsnxmjemGPxDkiUU7Ouza728oosUf5Pxh2dasBAk51qwVR8Nmh9Nuh6teh4ZKjMe+wV+G5nNSr2Rue2k1y3dWtE/x0jG8RfDZA5T1uoAZb1nDZmZfPZZNvz2Pdfecy6NXjWVsr2QeWbCNU//8MT95YRU7KpushzhvXGQNxZjzHXjtJmiuC/MvI3JiUkAWkYjz+MIdpMZFce+FQ5k6LJtnl+bjbWzpkGu/taaQ7ikuhjt3Qd6nMOEGcEQf28l6nwbf/wTSTZxzruK/fT8hxx3Ntf/9gu2ltaEtXDrOgr8Q9Ldwdd659EiJ5Y0fnMI3BmUS47QTH+3g7MGZPHzlWBb87AyumdSL99YVcdbfPuH2l1azy5YL333fuoFa9Sw8eiaUbQn3byRywlFAFpGIsqOsjo88JVw+oScxTjuXjeuBt8nH8p2V7X7tirpmFm0tY9rwHIzPHwOHC0ZdeXwnTcyFa96B4d8idtEfeav7/4jGx9VPLKOkpjE0hUvH8RYRXPEUH8acTX4wkye/M47EWOcBD+2WHMuvLhjMJz87nasm9uSN1QWced987n13C95JP4crX4G6UnjkDGt+bRE5YgrIIhJRnv5sJw6bwRUTrAU6BmW7Adha0v49ru+uK8QfCDLdjIM1L8LwS6wZCY6XMwYu+g+c+SviPS/zQcY/8NVWcNXjy6iu75iecQmRJQ8S9Pv4TeXZ3DF1IN1TYg/7loyEGO6aNoRPbj+Di0blMnvRDs7+2wI+ahkC1y+AtP7wwuXw8R8goOkARY6EArKIRIyGZj9zlu/ivKHZZCRYD+Ulx0WRFh/F5mJvu1//zdUF9E2Pwyx5F1rqYez3Qndyw4DTfgozZxNfupIPk35HS+l2rpi9VCH5RNFYTfDz2cwzJpLeYyDfPqnHUb09KzGGP88awSs3TiLR5eS7T37BnR9X0njlWzDiMvjkj/DildDU/m1d5ESngCwiEePN1QXUNPq4ckJPa0NdGXiL6Z+RwJZ27kEurmlk6Y4KLhieg7Hqf5A1rH1WQBs2C658jdjmCt6N/w2u4uVc+shnFGu4xZHZPh9eusb6x9fcsdde8TRGcy3/bpzCL6cOxGYzjuk0o3ok88bNJ3Pdqb3535J8LnlsJbtO+yuc90fwvAuPfgPKtoa4eJGuRQFZRCKCzx/g8UU7GJAZz0m5MfDqjXDfQHhwPJPcJWwtrm3XhTbeXlNIMAgzcyugcDWMOsqZK45Gr5Ph2g+IinXzfNRvGVPxNhc/uLhDeslPaOtehqdmWCF5/avw3h0dd22/j8CS/7CcQWQNnMCYnsc39CbaYef/zh/Mo1eNJa+8jgvuX8THSTPhyletccmPngEb3wxR8SJdjwKyiHRZ/kDwy9D7xKI8NhV5+cmZfTBe/h6sfg7GXA32aL6341YcTRUUtWMv6xurCxic7abHzlfBHm319LantP5w3UfYek7kd7b/8Iumf3LFQx+xaGtZ+173RJW3EF69AXpMgls3wqQfwRezrZUOO4LnHWw1u3ik+TxuO8c8/PFH6OzBmbx18ynkJrn4zpOf85ctmfium29NBffCFfD2bZoKTuQAFJA7gr/FWh529xewZ4X1sz6QRNrduf9YwMUPLeb+j7Zw3zwPZw9M47wdfwDPOzD1L3D+ffCtZ4ltKuV8+1K2FLfPMItdFfWs2lXFjGHpsPYlMKeE5uG8w4lNgStehdN+xvnBT3jV9nP+9sQzPL5wh5albqtkEzx/GST3hm8/ay3acsYvwREDm97ukBJaPvsPe4LpRA05/8sHR0OlZ2ocr9w0iW+d1J0HPt7GpS/sYfdFr8LEH8Lnj8GDE2HrByG9psiJTivptZdAADa8BsufJJi/BMPf9LVDKo0kipzdqXSbRHUfTe+Rp5PaY7D1sI10bd5iKN0IjdXgjIW4dEjuCa7kcFfWpdwztoU/zt/FX+dWcWrPWP6Z8DTGqmdg8h0w7jrroNzR+JP7cE7ZF2wpqeW0Aekhr+OdtYUAXOzeBPXlMOJbIb/GQdkdcOb/YfQ5nexXvs9Lgbt59L2l/Hj7D/jtJeNIdB14CrGIUL0btn0Mc//PCsNXzAFXMnPXFzFvQzG3JI4mZ8s8jCl/bN86Sjbi3LWI//m/xY/PHtQul4hx2vnjzOFM7JvK/726jikPLOPeC29i+jVTMN78MfxvJgy5CM75nTV1oEiEU0BuD1W74LUbIe9TqqJzeCt4Liubc6g2EshwR5Mb3Ui2UUlaSwHpjXmMLHuT2LI5sBKqjEQq0seRMmIKSSOmQXxGuH8bCRVfM6ybA8sehYIVBz4mIRuyR0K3MdBtHHQfb03hJcfk5DW/4I3AFlq6DSKqtgyKS+DkH8PpbcaWGgb2wdOZuOjffFxQAPQOeR3vrS9iaK6b9O2PQWwq9Dsr5Nc4rF4nY7vpM4Jz7+T6Ff8lf9vn3Pv367jsiusY1SMCb8zWvASvXGv93G2cNU1eUg9eW7mHW19chctpJ97fl7uci6FiB6SEvl3sVbvwPziDTuqHXEa/jPh2uw7AjJG5jOqezC0vrOTHz6/ivaFZ3H35R2SufRg+vQ82z7VmQ5n4g2NfwEakC1BADrXC1QSfuYSWhlp+47+OZ2smc+bALGaN6cYp/dOJj/76v/KAz8fWTSvIXzWfYP5ihhR/QdK8eQTm3UZJ8hhix34L9+hLwJUUhl9IQmLbR/DOz6B8C6QPgm/8GrqdZPUYtzRAbTFUbIfiDVZ43vyu9T57NPScaAWqfmdB+kB9w3A0rnoDY/mTRBWshIz+MP4G6Dnp68cNmoZz0T/ILfkEODmkJRRVN7Iyv4pfnJkDS99tHfccpl7bGDfG9H/BsEvIeO1H/KX6d3z02Ds8Mfb/uPL8b+CwR9Couz6nw4wHIamH1SZsdlbkV3LbS6sZ3zuVx685iTtn10Lx07R45uGc+P32qaO5Dse6F3k3OIHvTxnXPtf4ih6psbx4/UQe+XQ7//hgC59uKeO2cy7hqhsvwT73/+DDe2D5k3DW3Vavsj5zJAJ1rYAc8MPm96Fmj/WASp/TO/b6BSsJPjmNcr+Lb9XfRa+Bo/nw/MH0Tos75NtsDgf9ho6j31Drw3F7iZdnFi/Av+ENTi7/hKx5P6V53i/YmXoa/sEz6Dn+QlzxiR3xG8nxammAuXfC548RTOlD/jmzmR8cw6biWoq3NdLQXIc/EAQjjRhnJpkJp5PRP5oeI1oY5t9Er5rPid31iXWOuXeCuxv0Pwv6nwt9JkPUodtWxHNnwxm/OPxxOaOpsiXTx/t5yEuYt6EIgAtdq8DfBENnhvwaR633qcTcvJTGRQ8w6ZM/c+ryS5m7cQrDv/1buvXoE+7qOkZ8Ooy6/MuX1Q0t/Oi5lWQnxvCfK8fgirJz8VmTyX86HVa9R492CsiFn71AdqCe6kGXkZvkapdrHIjDbuOm0/sxZWg2v359Hfe8uYFXVyZy17QHGDPuWnj/TpjzHfjsfvjGXdbnjUgE6RoBORi0pqv56LdQtnnf9gsfgpGXdUwNpZvxP3UxJS0uvtn8a2648DQuG9cD4xjuvPtkJNDnwvMJzpjK5iIvz372IQmb5zCh7FPSP/2QhgU/ZWn0aIpzziRq4LkM7Nefnqmxx3StLi3gB18TRB1+Jap2UbnTekq8aA2fZ1/GbWXTyX8jAGwgKdZJbpKL2Cg7dptBMAhV9c14imooq222QjOxwGRyEs/ljN4tnBeznmENy0hc+zLG8iet3uXep4F5HvQ72xrDLMfGZqModgDd6naE/NRzNxTTJz2OzPx3rRucbh3TS3hYjihiJv8ERl9G3iu/4pwdL+Gf/T6eHhfRf8Yd2NL6hrvCDlPf7OO6/35BUXUjL1w/8ctx2ZP6pbEwuj99yza127VrFj9OE9nMmB6eG6feaXE89d1xvLG6gN+/s5GZDy3mvCFZ3HrROwwoehs+/h08NR16ngKTbob+54Atgr5pkIh1YgTk1c9D9S7oPgG6jQWni2ZfgM82F5C37E3G5j/BkICHrXRjbtqdjDh5KievuQPevAUyh0D2iPatr7YU39MzqW4M8N3gndx37fmM6338T6gbhoGZ7ca8+CLgImrqG1m5fB7+da/Tp3Q+4/OWQN7v2RrI4RXbICqThxPXczQDh45iWO/cyPi6NOCHXUsh4LN6a6t3QcEqa8aQim3gbyYYm4ox6go4+ZaOmTkAYPdygs9+k6amJm7x/5y5eSM4w0zjx8OymdA3lZzEmIPe0PgDQYprGtlRVsfGwhpW765m/s5KnqkaCAwkzn4FF6bmcY5jNSP3LCFx6zwAgondMPb+P5I7FrKGWk/jyxGpSejHCO8KAr4WbI7QDIFo8vn5PK+Ca0YlwbqPYPz1nS9cJGTS6+pHKM77CRtevJtJ+a/A/S/h7XU2CafcAH3O6Hw1h8Da3dU8uTiP7iku3llbyNaSWv75rVGM6blvPLZhGATTBpJZ8BlNjXVEx4T2G5tVq5YzsmktS/rcTK+48I33NQyDGSNzOWtQJo8s2M7shTt4f0MRU4YO5DvTP2Rs6asYn90Pz10Kyb1gzDUw4tuQkBW2mkXaW4cEZNM0bcCDwAigCbjW4/Ec8TI+yz58mXE1cwHw4aDUkYm3xcYYSplsNFJuz+DdXnewMOFc5m+p4s8v5HHnmXdxbdEsWPh3uOTJ9vi1LL5mfM9djq+miB9yN3+6bgbDu7XPWGF3bAyjTp0Gp06DYJCWgjWUr34X146FTKlYRmzlh1AJrILyYCLe6EyC7lxi0nqQlNUTV3Ku9dBfQrb1T0ziiT+2bOMb1opXbQRjkilIGMIXMUPZUmNjkDePKYv+hW/1y0R9901IaeevkLd+gP+5yykOJHJF410MHDqaeeeY9E0/sodv7DaDnCQXOUkuTu6X9uX2oupGVuRXsnp3FRsKMri9aBAl3gvpYxRymm0NE6s3M9b7Manr5gAQNGz4kvrgyDAx0gdASl9I6g7xmRCbZt0s2Ozt8q/gRNSYMpDowhaqCjaT1GNISM65Mr+KxpYAF8SshkALDLk4JOdtD5m9BpFx+/O8sXAFxR/ez8wd8yBvLn53d+zDL4EhF0LW8BP/M6NVQ4ufJdvLeXlFAwOzEnjoijGcO+Trgc/dYyj2wiCeDSsZPPqUkF0/GAyy8YMnGQmMPL+dxjcfpbhoBz85ewDXTOrF7IU7+O9nebyztoh+GUO4dPQrXBK7kqR1T8EHd8OHv4Fep8KgaTDgXGsst0gX0lE9yBcCMR6PZ6JpmhOA+4AZR/rmwjP/wY9XekgsW8GA5g30spWQHAuV6acSNfoCUs2zmeKIYgrQ2OLn9jlruPejAs4fOYPsTc9CXTnEpbbLLxZ492c49izlVt+PuPmaS9stHH+NYeDMHUFWbmvveCAAlTuoy1/Jrq3rqCncSrB6D0klW0gtXYprU/3XTtFkRFNhT6famU5tVAYtMSnYYlOIcaeSkJRGcnoWiSlZ2GJTrCfvwzVU4RCqek1lycT/EWu0UO1zsKwsmte2BfFW+RmQGc/kCeksD8ALKz/mn94/EHjkHGJ+sLDdej4qlr+C+83r8ARy+WXcPdx7+alMahNyj0dWYgxTh2UzdVj2l9vKa5vYVOTFU3QWn5bV8mihl4qinfRr8TDUtoMBZXvoV7GSXp73cODf73wBbDRHJdEck4YvJgVfdBL+qER8UW4CzjgCUfEEnXHYXYk4Y1zEREUR74omKtplTU0X7YboeOtPp+uED05GxmBYD3W71oQsIC/eWobNALN6kXVTmjs6JOdtL4ZhMOPUMVSOfph/z11H5fKXuajqU05e+E/sC/9GMLE7Rv9zoO8Z0OuUE3pawnG9U1h0x5lU17fgdjkO+o1Oj4FjYCkUbQ1tQP5kcykjaj6hJGUkGamdK1wmx0Xx03NNbjqjL2+tLuS5z/P53Xvb+L3hZmzPXzHjpAa+0fwxWbvewXjnp/DOT60b8N6nWe2i58nW+H+RE1hHBeRTgPcAPB7PEtM0xx7Nm2eMzGXGyFzgzMMeG+O085dZw/l8RwV/LD6Jf/qfhDUvwMSbjqXuQ1v1HLblT/Af3zROmfH9kAWhY2KzQWpf4lL7MnDUvhW6Sr1NLC+oZvvuYmrKdhOoKSS6sRR3cylJvlKS/eWkNpfSrWE5iVU1uIzmg16iyYihzu6myR6P3x5N0LDjj80g97v/xekK7cT2R2r1nhpunG8jGLS+nkyLtzOy93EAACAASURBVHHe0Ay+Pb4Ho7onffmXXtU3+nHv48n8rvRHlL10C2nffT6kdZTVNvHhG09zkednrAv25tPxD/Pc2SOJjWrf/8VS46M5uV/0fj3NweBECqutIRo7y+t5ubKe8po6fJW7MGr2YK8vIaa5klSjhnRfFekNNSQZFSSTT6JRRzL1xBgtR1VHi+Gkzuam3h5Pk+GiBSc+w4Fv3I0MP/PSUP/a7SImZzD+oIGvaF3IzrloWzmjcuNw7vgYhl58wtxEJMdF8euLRpN/2kBmL9zOL5Zv4GT/MmbUreGkFc8S9cVswICsYVYgyh0DOaOshTZOsOEYibGHHk6T0n0wPuw0FqwP6XXnzP2E+2078Z3UOXqPDyQ2ysE3T+rON0/qzrbSWt5cXcDc9cXc+WkjdzKRGOckzsnwMtW1npEtK0lf8xL25U9Yb07uZQXl7uOtG8P0geGbvUXkGHRUQHYD1W1e+03TdHg8Hl97XCzGaeeWs/pzxyuN/CZnOImrnw19QC7ZhO/Nn/BFYBCFY37KDSd1D+35QyQ9IZozzAzOMDOAYYc9vq6uluKSYkqKi6gqL6KuqhiftwLqy4hursLlqya6uRZnsBlb0E9tQzPJTQESwzTUdfKAdFb96hzK65pIdDlJiYs6YE9QUmwU915/KU/9ZTHX5T9N/do3iR027bivX93QwiMLtrFs4Qc8ZbuHYlc/0q5+nZuzw9d7Yhhth2i03TPmy598/gDeRh/eRh/1LT5afEG8gQBVAWt1taC/BZpqoakWX6OX5sY6GpqaqGtspr6+nsY6L8EmL0ZzLdG+Glx+L/HBWuICtcQGG3AaPpw00dLUfks3h1p6ciJ5wSxiSkPzQFZdk4/Vu6q4d0Q5lHlhwHkhOW9H6pEayz0zhnL7eQN5fdV4/rFyD6vyShllbGFqwlbOqPPQ/fPZ2JY8aL0h2m0985E7xvone4T11fsJcmNwQI4oyqO74araSjAYDMnD0Kt2VdGjaB44wTHkiL9MDau+6fHcctYAbjlrAOW1TSzbUcHnedaQr1t2umlsGY8dPyMcuzg/cQcT/Jvou/5tYlY9Y53AHg3Zw1vbxlirbaT21TAv6bQ6KiDXAAltXtvaKxzvNWtMN/7+wWbmBccxq+gx8BaF7mv1lkZaXrwGr9/Jg6m/5LFpw0Nz3k4gLi6ePr3j6dP7xHmCPTHWedheILBunMZe9mvynpiLbe5f6XEcATkYDPK/pfn8ba4HZ30J8+LuwxGbSffr37amj+rkHHYbyXFRJMdFHeKozA6rpzNIT4jmk2B3JlVvPvzBR2BDYQ2+QJBJ/i+scHACT5MVH+3g8vE9uXx8TwqrG5i3YQRz1xdz7/ZyCLQwMb6YC7PKGR+9k5z6Tdg+e8Aacw3WMIys4ZA5FNL6WUNNYtOsWVdOkIWQmpL606twLXuqGuiWfPxDzWYv3ME1jjX4s0ZgT+qcnSuHkhofzZRh2UxpHe7l8wfYVlrHhsJq1u/px7yC0fyjoAZvYwu9jCJG2rYz0bGLUaXb6V3wBM6l/wHA74ilOW0w/vTBODIHEZXeF5s7C+IyNERDwq6jAvIiYBrwYusY5LXtfUGH3cb0ETk8tbgvs5xYCzWEaMq3wLxf4yzbyC8Dd3DP5d8gynFifaUYyUb1yuDVtBlcVP4ITYUbic4++mVdG1v8/GzOGt5YXcDJfZJ5mH8QX9oIV75zQoRjObC4aAc7bd2Z0vC5teqh41A3D4e3bo/1pVl2+RJrIYouMmd1dqKLqyb24qqJvaiqb+bDjSV8sLGYX28upa55ONGOGUzqGc+56eWcFJVP90YPUWXr4YvHwdew70QOF9yRf9z/njuCLXMQ3Yo+ZHFh+XEH5Iq6Zj5am8c/ordg79MOQ//CwGG3YWYlYGYlcNEoa1swGGRXRQMbCqvZUOhlQUkts0u87Krz0tO/i6G2HQzx5TG4YCeDCucQY+z/nMzq4b9ixMU/DcNvI2LpqID8KnC2aZqLAQP4TkdcdMbIXB77tDsNcam4tn4YmoCctxDbsod5wncuU2ZdddhFQKTz6XbG92h+aTY75z3EgKv+ddTv/81bG3hjdQG3n2tyU/S7GHMXwfR/Q8bRh23pXLzRWRjNQfAWHve80usLaugb14SzfBOMuCREFXYuSbFRzBzTjZljutHsC7BsRwUfbSph8bYyfrHdSTDYF+hLTuLF9Ml0MSqpgT6uerKcteRkpNPzBBmT6s41sa0JUrpnGww+vh7feRuKGIUHe9BnPdTWRRmGQY/UWHqkxnLe0H29wcFgkPK6Zkq9TZTXNlNc38yOxhZ8NcU4vbuJaSrB2VzNoFEnxtAT6bo6JCB7PJ4AcENHXKutITlu+ma4WdYyksnbP7ZmejieB0haGmh4+SZKghlsHX4rvxuZG7pipcOMHWKy4LXxjNzxKgT+flRj4N5dW8izS/O5fnIffnCSG/71J2tVu1FXtmPF0lGa4nKhGajefdwBed2eaqYn74QyrIeVurgoh41T+qdxSn/rgdHqhhZW76pi7Z5qtpbUsr20lifW+ahtsgFuHLZmNgwLEuXo/OOTEzJ6AVBTtB04/bjO9d66Is6J3Uww4MDoMeG4azvRGIZBWnw0afFfnfe5J9BJFtER4URZKOQYGYbB+cOyeW2+yWTnh1C02nrS+hjVfXwfcd6d/Dvut/zmwqOaiEM6EcMwaDank7h+McXrF5A57Iwjel9Ds5+73ljPsNxEfnqOCW//GHyNcN4fTuyHkORLQXeuNZd4zZ7jOk+Tz8/Wklom9fCAI6bTT+/WHhJdTk4bkM5pA/YNOwoGg9Q0+ij1NhHtsJ0ww9OM1nHCLRX5x3WemsYWFm4t47dJHozk0RCdcPg3iUhYnBifTsfh7MGZLPYPtl7sXHzM5wlW7cLx2b94JzCB7115TbtP3yXta9ApF9EctFO47JUjfs9/P8ujxNvEry4YjLNmF6z8H5x0rfUktnQJ9qRu1g/Vu4/rPJuLavEFggxoXAPdTgJH+FZJ60wMwyDR5aRfRjzdUzrfvOoHlZBDAAPbcd44zfeUYvc3klu/0ZoeT0Q6rS4fkIfkuLEl5lDqyIb8z475PNteuINgIED95LsYlB2eOX8ldLplZ7E+ajhpBR8d0fHexhYemr+N0810axnxpQ+DYYNJN7dzpdKR3O5EKoPx+Kt2Hdd51hVUE0cD7uqN1gN6cmJzRFEXlU5CUxENzf7DH38Qn++oYGR0IUbQH5HfKoicSLp8QDYMg7MGZbKouT/BnZ9BMHjU59i5eTW9C95mfuKFzDxzYjtUKeFQ2/Nsuvl3U7htzWGPfW5ZPtUNLdx69gBorIYVT1nLBidqHHpXkhTrpDCYir/y+HqQt5bUMtKZjxEMWHO+ygmvJT6HHKOcvPK6Yz7Hyl2VnJVcbL3IOvy89CISPl0+IAOcNTiTJf4BGPVlUL71qN7b4g+w9eV7aDacjLns1yGZJF46hz4nWysO7ljy2iGPa/YFeHxhHhP7pFpLia9+AZq97bM6o4SV2+VkTzCVYPXx9SDvLK9nUlyh9UJBqEuwJ3Unxyhje+mxBeSGZj8bC72Mjd4N0YmQdHwPgYpI+4qIgDyxTyobHEOsF0c5zOLxtxcyufFjivt9m/SsHu1QnYRLbm+TXfZuuPI+PuRxb6wuoKimkesn97E2rPqftfDBcTzwKZ1TosvqQbZ7C47rPPkVdYxw5lsLYoRqgSIJq9iMXuQYFeSVeY/p/Wt2V+EPBOnl227dNKmzRaRTi4iAHOWw0dMcSSVuAkfxoN7neRW0LJuNzYBe59/WjhVKuFRmn8bg5rXsLi474P5gMMijC7ZjZiYweUA6FK2DwtUw6ooOrlQ6QqLLSUEwFUdztbXU9jEIBoPkV9TT179DQagLcSb3INpoobqs8Jjev3JXFTYCJNZ49K2CyAkgIgIywDlDsvjC35/mHUfWg1zX5OOOF77gcsdHBPqfc9xzokrnlDVmGtFGC6sXvXPA/Qu2lOEp9nLdaX2s4TWrngGbE4bO6uBKpSMkxUZREEy1XhzjjAUl3iZ8Lc1kNGxXEOpKWqd681ce21RvK/MrmZRcjdFSr3YhcgKImIB8upnOSkxiavKgtvSwx//+nY0Mq/mYZGpwTLi+/QuUsMgYeiZNRNO08T0Cga8/wPnIgm1kuqOZPiIH/D5YOwcGnAtxqWGoVtrb3h5kAI5xHPLO8nr6GgXYgy3WUBzpGhKtKQCNY5wCcENhDWck6QE9kRNFxATkhBgngW7WKj3+/CWHPHZFfiXPLM3n5tQvIKkH9D69AyqUsHDGUJk5gbFNy5jvKd5v1+JtZSzaWs61p/SxFjTIWwB1JTD80jAVK+3NHeOgiL09yMc2DnlneR2DjZ3WCwWhrsNtzVgTU3/07aK+2cfuygaGOgsBA9IGhLg4EQm1iAnIAMNOOp2moIOidfMPeozPH+DOV9cxJKGOPt4vrDB0PMtTS6eXNvZCethKeX/+/C+3BYNB/vyehyx3DFdObB1es+Yl6+nz/ueEp1Bpdw67jYao1oBcW3JM58ivqGegbTdBmxNS+4WwOgkrVzI+I4p4XwX1zb6jeuv20jqCQegeLITE7uCMaaciRSRUIir5nTm0BxvoQ0vewXuQn1maz4bCGv5ibrbmMB3+rQ6sUMLBYU4BIHX3h7y9xnoA57+L81i1q4ofn9WfGKcdWhpg45sweJr+cuviYlxxNNjijzkg7yyvZ2BUCUZKb7Brxc0uwzBoikkj3aiioKrxqN66tcR64DOlaRek9mmP6kQkxCIqILui7FSmjianfhNeb/XX9pfVNvHXuR5O6ZfGoNJ3IXcMpKkHqMtzZxPIGcMM12p+Nmc1v359Hb95awNnDcrgm2OtB3PY+KY197GGV3R5iS4n1bYkazjNMdhZUU8fWzGkaAnyriYQl0E61RRWNxzV+7aUeHHYILomD1IUkEVOBBEVkAF6nzSVKHzMfff1/bYHg0Huen09jS1+fneKE6N4HQz7ZpiqlI5mGzgF0+dhSLyXFz7fxcS+qfzr26Ow21qn6Fr5tDWxf89TwluotLukWCflRtIx9yAXVNSR5S+AVAXkrsaekEm6UUXhUfYgbymuZViyH6OxWjdOIieIyAvIY86ixXBStX4uJd59H3LPLM3n7bWF3Hq2Sc+Cd8CwwZCLwlipdKhhlwDw4vg8PPdO4ZlrJxAb1fr1eMUO2LEARl2p8egRINHlpCyYeEwB2ecPEFVfiDPYrIDcBUUnZ5NuVFNwlD3IW0tqmZBUZb1QuxA5IUTe3/ZRcfhyxjKBtVz+6FKW76zkofnb+PXr6zjdTOf6U3vD2peg92mQkBnuaqWjJPey/puvfBoCgf33ffE4YMDIb4ejMulgiS4nRQH3MQ2xKKttpqdRZL1QT2GXY0/IIsXwUlx55IvINPn87KyoZ5irdTEitQuRE0LkBWTAZX6DIUYejdUlzHxoMX96bxNThmZz/2WjsRV8AZV5WggiEo26Eqp2WtO57VVbCp8/BsNmfTkPqnRtiS4ne1rc0FgNLUf3VXqJt5HeewOyegq7nvgMbASprSw64rfsLK/HHwjSx1ZifTOZ3Kv96hORkInMR6z7nAEf3cvrU5pYFn8K7hgnE/umWiulrfgvOONgyIXhrlI62qBpEJ8J798J3/8Y7E5Y+HfwNcLkn4e7OukgibFOdgbcYAfqSr9cQe1IFNc00csoImCPxpaQ035FSnjEW98qtlQfeUDOK6sDINO3x5rizRHVLqWJSGhFZkDOGQ3ubqRseYXzrrxi3/bGGlj3CgydCdEJ4atPwsPpggv+Ac9/G979mfVQ3pIHYNQVkNY/3NVJB0l0OSkNJlovakuOKiBbPciF+JP7YNN49a6nNSDbaosPc+A+O8vrAUioz9e3Cu1g+fLlGQ6H4zFgKBH6rbgckwCwzufzXTtmzJgDjqeLzIBss8HIy2DBX6B6DyRaKySxbg601MOYa8JanoTRwKkw+urWcceAORWm3hfemqRDffmQHhz1OOTimibGG8XY08a0Q2USdvEZAMT5Kqhr8hEXffi/QndW1OGOceCo2QW5I9u7wojjcDgey8rKGpSenl5ps9mC4a5HTgyBQMAoLS0dXFRU9Bgw/UDHRO7d1sjLgCCsfs563VQLn/wFckZZ8x9L5Jr2T7h5BVw+B775lBYGiTBJrihKg0nWi6OcyaK0poFutjJsyT3boTIJu9aAnE4VJd6mI3rLzvJ6BqTYob7cGmIhoTY0PT29RuFYjobNZgump6dXY33zcOBjOrCeziWlN/Q5HRb9C0o2wid/BG8BnPcnMIxwVyfhZBjWV6H9z7bGIUtESXQ5KcdtvTjKgNxQVUwMzZDUox0qk7BzuvA5E0g3qimqPrIHOPMr6hnhbp31QgG5PdgUjuVYtLabg+bgyA3IANPvt3oHHzoZFv8bRlwGPcaHuyoRCaNEl5NmnDQ7j36qN1t1futJFIS6qkBcBulG1X7z6B+Mzx9gT2UDA12tcyAfxXh2EQmvyA7ISd3hshetcacXPmR9tS4iES0hxhpXWu9MhaN4GAsgqq7A+kFBqMuyJWSSblRTXHP4gFxQ1YgvEKS3o9LaoKkiu6wlS5bEzZo1y9z7euXKla7p06cPvOiii8wf/ehHvfx+PwAPP/xw+gUXXDBo2rRpg1566aVkgNraWtvVV1/dd+bMmeall146YPfu3V/76rKqqsp+1VVX9Zs5c6Y5Y8aMgYsXL44DmDt3rnvKlCmDL7roIvPPf/5zNoDf7+e2227rMWPGjIGzZs0yt2zZEg3w2muvJU2ePHnorFmzzFmzZpnz58+PP1j9y5cvj502bdqgiy++2Pz5z3/efW/9bS1YsCB+2rRpA6dPnz7wrrvuyv3q/qeeeir17rvv3m/797///T7z588/6CwIv/zlL7vv3Lkzqry83P7888+nHOgYn8/H9773vT7vvfeee++2q6++uu+FF144cNasWebll1/eH2DFihWuiRMnDt/7+7744ovJB7vugUTmQ3pt5YyES/8X7ipEpJOIbw3ItY5kkmpLj/h9Pn8Ad1Oh9amqHuQuy+7OJNPYQVH14ccg76ywpnjLohQMO2jqv3b138V5qa+s2J0WynNePLpb2dWTepUf6pi///3vme+++25qTEzMl6tM/etf/8q54YYbCqdOnVp944039n7nnXcSJ0yYUDdnzpyMt99+e0NjY6MxZcqUoTNnzqx88skn0wYNGlR/xx13FD711FOpDzzwQNYf/vCHXW2v8eCDD2aOGzeu5oc//GHJpk2bom+99dY+b7755sZ77rmn51NPPeXp27dv80033dT7008/jS8rK3M0NzfbXn/99U2fffZZ3L3/3969RzdZ5vsC/+bypmmTtE1paLmUthT6FGQEBnRgYG+6D86eoYNcSgGHwYqgc4qDyDgoLpcH9eCCHtigstDFMDBberzLxnE74ygeocpNUUBEhr7cSrkWekvbJG1ze88fSdr0SoG2oe33s5arvE/e5P0JT9Nff/m9z/PSSwO3b99+9vjx4xFPPPHEpczMTOuN4l+5cmXis88+e2HChAn2VatW9X/vvfdi5s2bVx78vNzc3IRNmzadHTx4sHP27NmpR44cCf/pT396c9tMNrF69eqLAJCfn2/avXt39AMPPNDommfOnAlbvnx5cmlpqQSgNDB++fJl/a5du04Erx507Ngxw29+85trS5cuvblKh1+HVZCFECohxGUhRL7/vzX+8fuFEN8KIQ4KIR7tqOsREXUGSaNGuKRBpcbsWwe5ncrsTvRDGZxaIxAe3YkRUiipDH0Rq6rCtXa0WASWeItxXQMi+wMa1qR6osTExLpNmzadDR4TQjisVqvG6/XC4XBoJElSLBaL+5NPPjmh0+mU4uJiSZIkr1qtxpIlS64vX778KgBcuXJFZzKZmpVrFy9efG3hwoUlAOB2u1U6nU4pLS3VGo1GT0pKihMARo0aZTt06JDxu+++M06cOLESAMaPH28/deqUAQAKCgoMO3fujM3MzBTPPffcQJfL1Wr8paWlugkTJtgBYOzYsbbDhw8b0cRHH310cvDgwc7q6mq13W7XGI1Gb9NzWpOXl9fn0UcfHfzggw8OmTx58l15eXl9ACArK0ucPHlSv3nz5vjvv//etG3btka/8NhsNvXq1avPjx49ujowVlxcrLXZbJqHHnpoyMyZM8Xf/va3KAA4ceJExL59+6JmzZolnnjiicSqqqqbynk78rs1BcARWZbvDwwIISQALwO4B4AdwH4hxH/LsnxL2TwRUVcw6bWwqqJuKkG+XlWHgapS1Bn6g1tB9GAGC4ywo9xadcNTL5Q7EKZVI9xxhe0VXeChnyeV3aja2xkyMzOthYWFjb7tk5OT69auXTto69at/QwGg2fSpEnVACBJEjZv3mzZunXrgKysrPpcSKvVYs6cOamFhYXhW7ZsOdX0Gmaz2QMAV69e1T711FODV6xYccFisbjr6urUJ0+e1A8dOrR23759UampqQ673a6JjIysT7LVarXicrkwbty4qoyMjIrk5GTn8uXLE7dt22bJyckpaSn+fv361eXn5xvT09Ntu3fvjq6pqdE0jUmSJBw8eNDw9NNPD05MTKwZOHCgs51/ZQoA2Gw2zTvvvHP61KlTYTk5OUOys7Pr/+1ycnKK3377bcuiRYtKg584atSoZhVqp9Opmjdv3rXFixdfKy8v186dOzftnnvusf/kJz+xP/DAA6Vjx451rFu3Ln7dunX9V61adamdMXZoD/IYAAOEEHuEEJ8IIQSAYQDOyLJcIcuyE8A+AP/agdckIupwRr0W5YgCaq2Au33v+SW2WgxQlcIbyfaKHs1oAQA4q258A+eFMgcSYiKgqrzEtpteZv369Qnbt28v2L1794mpU6eWrVy5sn4C5OTklOzfv//YkSNHTHv27Knvx33//fdP5eXlycuWLUs5ffp0WKB39o033ogFgB9++CE8OztbLF269FJ6erpNrVZjzZo1hStXrhyUnZ09NDExsdZsNrsNBoPHZrPVJ7SKoqgkScL8+fNLU1JSnGq1Gvfdd5/15MmTEa3Fn5ubW7hly5Z+c+bMSY2JiXFHR0e7N2/ebAnEFOiTHj9+vH3v3r3HhRCOV155pV/wa+j1eq/T6WyUZ9bU1KjDw8O9AJCamuoAgISEBKfL5brlfDQ+Pt69cOHCEkmSEBcX5x46dKhDlmX9tGnTrGPHjnUAQEZGhlWW5Vb/f1tySwEJIRYJIX4M/g9AMYA1siz/G4DVAN4EEAmgMuip1QCibuWaRERdxaSXUKL4f2452leQKre7MEBVAhVv0OvZDL4EWbFdh6K0vbrYhXIHEs1hQNVl3rjZyxiNRnegihsXF+eqrq7WFBQUhC1cuDDF6/VCkiRFp9N5VSqVsn79+vi33norxv88j1qtxtChQ+t27Ngh79ixQ16wYEHpiRMn9MuWLRu8bt26c1OmTKn/+OLLL7+MfPPNN0+/+eabpy9duhQ2adKkqjFjxti++uqrKAA4ePCgITk5ucbr9WLq1KnDL168KAHAgQMHTHfddZejtfg///zz6I0bN557//33T1mtVs3EiROrcnJySgIx9e/f35WZmSnKy8s1AGAwGLxNl9u7++67Hd9++21kdXW1GgDKyso058+fDx8+fHgtAKjaWFJXpVIpN/r+Cvjiiy9MOTk5gwGgurpaXVhYGD5s2LDa7Ozsod98800EAHz11VeRaWlprf7/tuSWWixkWd4GYFvwmBAiAoDb//g+IUR/+BLi4LsVTQAaNYcTEd1pIvVaXKv03yBtLwEi+7X9BADVlWWIUjlQG8tNQno0g2+zkEivFVaHC2ZDyw01iqLgYrkDk/trAcXDFote5sUXXyxaunRpikajUSRJ8q5Zs6YoOTnZmZqa6pgxY0aaSqXC+PHjK9PT021paWm1Tz75ZPKHH35o8Xq9WLVqVWHT11u7du0Al8ulfumllwYBgMFgcG/fvv1s3759XdOnTx8WFhbmnTJlStmIESNqhw0bVrt///7IGTNmpCmKgtzc3PNqtRrPP/980WOPPTZEp9N5k5OTaxYsWFDaPHKfpKSk2vnz5wu9Xu8dM2ZMdUZGRnCxE2q1GgsWLLi2YMGCoZIkKX369HGtX7/+fPA5aWlpdbNnz74+e/bstIiICI/b7VY9/fTTF0wm0w17lVNSUurOnTsXvmnTpr5Llixp8+OaKVOmVO3duzdq2rRpaWq1Go8//vhli8XifuGFFy6sWrVqkFarVWJiYlzr1q0739brNKVqb4Z+I0KI/wOgTJbltUKIkQD+BOBfAPwTwM8A2AAcBDBNluXLbb1WZmamsnPnzg6Ji0JDCHFYluWxHf26nBvdX2fNDaDj5sdjbx2G9tIhbKx5Bpi/Exgy+YbP2fpfH+OR4/OhZP0nVCMybzuG3uqOf+8oLwQ2jsJy1//EoiXPYVi/yBZPszqcGPW/P8fGCXWYdvhh386cQ39x+9fvxVqaG8eOHTs/cuTIVhM9orYcO3YsduTIkUktPdaRPci5ACYJIb4EsAHAAlmWXQCeBPAZfMnxX26UHBMRhZopTMJll8F3YG/fz151le+tTcVe057N32IRi0oUt7EW8oVy36e5iZL/Q9PIZsvEEtEdrMNWsZBluQLAr1sY/xjAxx11HSKizmbUa3HRafSVENq5koXWdtX3hygmQj1amBFebTj6uKtwxdr6kq8Xy32PxcPfwx7JNZCJupPevZMeEVELTHotrjt1UDS6difI4TXF8EANGOM6OToKNZXRAouqEletN64gmz2lgGQA9Lw/nag7YYJMRNSESS8BUEGJiG13i4XReR1V2j6AutlyodTDqAx90V9ra7OCfKHcgRiDDjr7VV/1uI079onozsMEmYioCZN/u2m3vk+7K8hmdwlsur6dGRbd1rrh7wAAGAFJREFUKQwWWDTVuFLZeoJ8qcK3BjIqL7PthqgbYoJMRNREpD9BrmtnguzyeGHxlqIm4sbLwVEPYIhFjGLF1cq2WywGxUQAVVd4gx5RN8QEmYioCWOYBAColWLa1WJRYatDvKocbgMT5F7B2BcmTyWKrQ54vc2XSnV7vLhcUYNEswTYinmDXi/w9ddfG7KyskTg+OjRo+HTpk1Lmzlzpli6dGmSx+Pb+flPf/qTZerUqcPuv//+YR988IEZAGw2m/qhhx5KmTVrlpg7d25qYJe6YFarVZOdnT1k1qxZYvr06WkHDhwwAMCuXbsip0yZMnzmzJli7dq1/QDA4/Hgj3/846Dp06enZWVlidOnT4cBwF//+tfoSZMmjQjshpefn29sLf7Dhw9H3H///cMyMzPFihUrEgLxN+V2u7Fo0aLBn376abP1DvPy8vq88MILjX47/N3vfjc4Pz/f1PTcgGeffTahqKhIV1ZWpnn33Xdjbuaadrtd/atf/Wp4YLyoqEg3d+7c1KysLDFr1ixRUFAQ1tp1W9Jhq1gQEfUUgRYLu2SGxV4CKEqbPaRWawn6quqYCPUWBgvU8CDCU4UyuxMWU+Ofu5cqauD2Kkgz1ACKl/Oiqxza0gffvxPboa856jeluPd3bW6n+fLLL8f94x//6KPX6+s3wNi4cWP/nJycqxkZGZWLFy9O/uSTT6LGjRtn37FjR9+///3v/6ytrVVNmTJlxKxZsyreeOON2GHDhjmeeeaZq3l5eX1ee+21+DVr1lwMvsbrr78ed++991YtWbLkekFBQdiTTz45+OOPPz754osvJubl5ckpKSnOxx57LHnv3r3G0tJSrdPpVH/00UcFBw8eNLz00ksDt2/ffvb48eMRTzzxxKXMzEzrjeJfuXJl4rPPPnthwoQJ9lWrVvV/7733YubNm1ce/LwzZ86ELV++PLm0tFQC0CFrUa9evfoiAOTn55t2794d/cADD7T7ms8888yg4N351q1b13/evHnXp0+fbv3ss88i165dO/Avf/nL2fbGwgoyEVETgQTZpokG3DWA097m+Y7rvp9l2mjultYr+NdC7qOqwtUW+pALS33zZYjev/kYWyx6tMTExLpNmzY1SryEEA6r1arxer1wOBwaSZIUi8Xi/uSTT07odDqluLhYkiTJq1arsWTJkuvLly+/CgBXrlzRmUymZuXaxYsXX1u4cGEJALjdbpVOp1NKS0u1RqPRk5KS4gSAUaNG2Q4dOmT87rvvjBMnTqwEgPHjx9tPnTplAICCggLDzp07YzMzM8Vzzz030OVytRp/aWmpbsKECXYAGDt2rO3w4cNGNGGz2dSrV68+P3r06Oqb/TvLy8vr8+ijjw5+8MEHh0yePPmuvLy8PgCQlZUlTp48qd+8eXP8999/b9q2bVujX3hau+arr74aN3r0aNuQIUPqt5N+/vnnL02ZMqUy6O/shjv4BWMFmYioCd8qFoBVHe0bsF8Hwpr9fKhXV+5LkMP6cJOQXsHouxnToqrEFWsN7h4Y3ejhc/4EeYC6wjfABLlr3Pu7shtVeztDZmamtbCwsNGe48nJyXVr164dtHXr1n4Gg8EzadKkagCQJAmbN2+2bN26dUBWVta1wPlarRZz5sxJLSwsDN+yZcupptcwm80eALh69ar2qaeeGrxixYoLFovFXVdXpz558qR+6NChtfv27YtKTU112O12TWRkZH2SrVarFZfLhXHjxlVlZGRUJCcnO5cvX564bds2S05OTklL8ffr168uPz/fmJ6ebtu9e3d0TU1Ns+V5Ro0a1fpdqm1TAMBms2neeeed06dOnQrLyckZkp2dXf9vl5OTU/z2229bFi1a1KhK3NI1v/jiC1NRUZF+w4YNRY8//nj9G7XFYnEDQEFBQdiGDRsGvvbaa2duJkhWkImImghUkMtV/sTHdr3N872Vvl30jJbETo2L7hD+ta4tsOJKC2shny+1I1KvhbHOn/+wxaLXWb9+fcL27dsLdu/efWLq1KllK1eurP/tOScnp2T//v3Hjhw5YtqzZ099P+77779/Ki8vT162bFnK6dOnwwK9wm+88UYsAPzwww/h2dnZYunSpZfS09NtarUaa9asKVy5cuWg7OzsoYmJibVms9ltMBg8NputPqFVFEUlSRLmz59fmpKS4lSr1bjvvvusJ0+ejGgt/tzc3MItW7b0mzNnTmpMTIw7OjravXnzZksgppb6pJvS6/Vep9PZKM+sqalRh4eHewEgNTXVAQAJCQlOl8t1y/noBx98EHvu3LnwrKwscejQoaiXX3554NGjR8MBYM+ePabf//73Q3JzcwvT0tLqbuZ1WUEmImoiTKuGpFGhRAkkyNfaPF9VdRkeRYUoCyuFvYI/Qe6vqWxxLeTCUjuSYw1QVV8FtOFAuLmrI6QQMxqN7kAVNy4uznX06FFjQUFB2Nq1awdu3br1rCRJik6n86pUKmX9+vXx8fHxzt/+9rflRqPRo1arMXTo0LodO3bIgdc7ceKEftmyZYM3bNhwLriK+uWXX0a++eabpyVJUhYtWpQyd+7c0lOnTun37NkTPXv27IqDBw8akpOTa7xeL6ZOnTr83XffLUhISHAdOHDAdNdddzlaih0APv/88+iNGzeei42N9axYsSJh0qRJVRkZGZU5OTntW/cSwN133+3485//3L+6ulptMpm8ZWVlmvPnz4cPHz68VpblcFUb93WoVCpFUZrfANuSzZs3Fwb+/Pjjjyf9+te/Lh89enTNnj17TLm5uQnbtm07nZSU5Gxv3AFMkImImlCpVDDpJVzz+j+tq247QdY5ilGmikZf3U3dJE3dlT4K0OqRorNhV3nzHKOw1I57ksxA5UXfGsjcJKTXefHFF4uWLl2aotFoFEmSvGvWrClKTk52pqamOmbMmJGmUqkwfvz4yvT0dFtaWlrtk08+mfzhhx9avF4vVq1aVdj09dauXTvA5XKpX3rppUEAYDAY3Nu3bz/bt29f1/Tp04eFhYV5p0yZUjZixIjaYcOG1e7fvz9yxowZaYqiIDc397xarcbzzz9f9Nhjjw3R6XTe5OTkmgULFrR6Y11SUlLt/PnzhV6v944ZM6Y6IyOj8mb/DtLS0upmz559ffbs2WkREREet9utevrppy+YTKYb9gKnpKTUnTt3LnzTpk19lyxZ0vZHeK3Izc1NcLlcquXLlycDwKBBg2o3bNhQ1N7nq9qboXelzMxMZefOnaEOg26DEOKwLMtjO/p1OTe6v86aG0DHzo9J6/Zg1AATXj3978DEPwCT/1er5xas/R/w1lZj+MpvO+TavVm3ee945W4c8gzBCmUp9ixPrx+udXkwbOWnWDY5FU8U5vh617M/6rjr9mItzY1jx46dHzlyZIesoEC9z7Fjx2JHjhyZ1NJj7EEmImqBSa9FVZ3Xt2LBDVosIp3XYJW4i16vYopHvLoSRWV21LoaFh0oKnNAUYCk2Aig8hIQyZVNiLojJshERC0whUmornUDpri2E2RFQYy7BNVhcV0XHIWesS/M3gp4lYZl3QDgXIkNADDYLPnmTRQTZKLuiAkyEVELTHqtL0E23iBBrqmAHnWoCY/vuuAo9IzxiKjzfbJ/+rqtfvj45Upo1SqkRtgAKL4eZOpMXq/XyyZvumn+edNqPzQTZCKiFpj0EqprXb41b9u6Sa/yEgDAbeBSXr2KKQ4aZyX0KifOXGvYs+D7i1YM6xeJMPtV3wAryJ3tx5KSkigmyXQzvF6vqqSkJArAj62dw1UsiIha0FBBjgfsJYDXA6ibrZUPV8VFSAC83AyidzH6PjEYbXbWV5A9XgU/XKrEzNEDgKp/+s5jD3KncrvdjxQXF28tLi4eARb9qP28AH50u92PtHYCE2QiohZE6rWwOd3wGvpCrXgARzlgtDQ7r6b0AiQAmmjuotermHwJ8sjoWvw/f4J8rsQGW50boxKifUu8AWyx6GRjxoy5DmBaqOOgnoe/bRERtSAyXIKiADVhsb4BW3GL57kqLsKpaKA39+vC6Cjk/NtNDzPVoLDUDqvDiaMXrQCAkQnRQOVl3wYhOkMooySiW8QEmYioBYHtpu26Pr6BVm7U81ZcxDUlBmYDNwnpVfwtFvfGuuDxKvjr0cv4/qIVJr0Wg2MNvt509h8TdVtssSAiaoFJLwEAqjQx6AsAtpY3c9LYruAK+iA6Qtd1wVHoGWIBlRr9NJX4yYAobNtfiNJqJ/4tzQK1WgVUXQai2HZD1F2xgkxE1IJABdmqjvENVLfcYqGzX8VVJQZmg9RVodGdQK3xLQFYdRVz70nAxfIaROg0eP7+u3yPB7aZJqJuiRVkIqIWBCrIlR4JCIsCqq40P8nrRXjtNVxRxiA6nBXkXicqAbAWYfqv+iNfvo6HJyQjLlLvu6GzthIwJ4c6QiK6RUyQiYhaEOmvIFfXuoHoQQ2rEgSrvgKN4sY1lQXhuuZLwFEPZ04CLn4Nk17C1ofuaRgvL/R9jRkckrCI6PbdVoIshJgJYLYsy/P8x+MAvArADWCXLMsvCiHUAF4HMBJAHYBHZFk+c3thExF1rvoe5FqXL0EuP9f8JP9YWRh7TXslcyLw4w7A4wI0QS025Wd9X5kgE3Vbt9yDLIR4FcCaJq+xGcA8ABMB/EwIMRrADAB6WZbHA3gGwPpbD5eIqGuYgivI5kTAegFQlMYn+RPkyggmyL2SOQlQvPW7KdYrPwdA5XuciLql27lJ7wCAxYEDIUQkgDBZls/KsqwA+AzAffAly58CgCzLXwMYexvXJCLqEnpJA51G3VBBdtkBR1njk8rOwgkJHm4z3TtFJ/q+VpxvPF521rfEm6Tv8pCIqGPcsMVCCLEIwB+aDD8sy/J7Qoj0oLFIAFVBx9UABvvHK4PGPUIIrSzL7lsLmYioa9RvNx1IhKxFvuW9AsrP4ao6DtFGroHcKwUqxE0T5PJzbK8g6uZumCDLsrwNwLZ2vFYVAFPQsQmAFUBEk3E1k2Mi6g4iw6WGm/QAoKIIGDCm4YTyQpz3xnMN5N4qsj+glny/OAUrPwcMnx6amIioQ3TYOsiyLFcBcAohUoQQKgC/BLAXwH4AGUD9TXzHO+qaRESdyVdBdjUkyNYLDQ8qCpTyczjj6QtzBNdA7pXUGl8rRXAFuaYCqClnBZmom+vojUJyALwF4BCAo7IsfwPgQwC1QogDAF5G83YNIqI7Un2LhT4SCDc3rhRWF0PlrkGhN45rIPdm5iTfJwsBgdVO+qSEJBwi6hi3tcybLMv5APKDjr8GMK7JOV74Emciom7FFCbhepXNdxCd2LiC7E+EipQ4jDYwQe61zInAP/+74bhE9n2NYYJM1J1xq2kiolbUV5ABX5tFcKWwzLec+3klDjFMkHsvS5qvpcLq30jmwkFAHwXEpoY2LiK6LUyQiYha4btJz+U7iE31VY3r/BXlS9/CpYvCJcUCMxPk3itpou/r+X2+r0UHgEE/B9T88UrUnfE7mIioFSa9FnanBx6vAiT+HFA8wMVvfA8WHUCJ+adQoEYMV7HovfreBYTHAOf3AtXFvk8WkiaEOioiuk1MkImIWhHYbtpW6wYSfgaoNEDRfl8iVH4WF0yjAABmA1ex6LXUal8VuXCvr3oM+H6ZIqJujQkyEVErAttNV9W6gDAjMOCnvo/Si/YDAGT93ZA0KhjDbut+Z+rukv8VqLwAHPozIBmA+JGhjoiIbhMTZCKiVkSF+yrDlTX+PuTECcDlI4D8D0BnhIwkmCN0UKlUIYySQi55ku/rhQPAqN8AGv7CRNTd8buYiKgVZn9vcYXD6RtI+hdg/yvA8Q+Aof+OUoeXK1gQYEkFHv4UMMUDMcmhjoaIOgATZCKiVgR2yKtw+CvIg9OBX64GImKBIZNR8X9P1SfR1Msljg91BETUgZggExG1Itqf/FoDFWSNFhj/+/rHKxwnkBpnDEVoRETUidiDTETUimh/BdkaqCA3UWF3soJMRNQDMUEmImqFpFHDGKZt6EEO4vUqqHA42YNMRNQDMUEmImpDdITUYgW5qtYFrwJWkImIeiAmyEREbTBH6FqsIJfbfWOsIBMR9TxMkImI2hAdITWsYhEkkDSbmSATEfU4TJCJiNpgjtA1rGIRpNzuS5pj2GJBRNTjMEEmImqDuZUe5Ap7oIIsdXVIRETUyZggExG1ITpCh6paFzxepdF4ia0OANDHEBaKsIiIqBMxQSYiakN0hARFASprGleRS6rrYNJrEa7ThCgyIiLqLEyQiYjaEFjGrelKFteqahEXqQ9FSERE1MmYIBMRtaFhN73GCfL16jrERbK9goioJ2KCTETUhvoKsr1xi8W1qlr0NbGCTETUEzFBJiJqQyBBtgb1ICuKgutVdejLCjIRUY/EBJmIqA3RhuYtFpU1Ljg9XlaQiYh6KCbIRERtMIVpoVWr6reWBoBrVb4l3tiDTETUMzFBJiJqg0qlQlykHlcra+vHrlf7/swKMhFRz6S9nScLIWYCmC3L8ryg4/8AcNF/yvMA9gJ4HcBIAHUAHpFl+cztXJeIqCsNMIfjckVN/TEryEREPdstJ8hCiFcB/BLA90HDYwA8LcvyfwWdlwlAL8vyeCHEOADrAUy/1esSEXW1geZwfH22rP6YFWQiop7tdlosDgBY3GRsDICFQoi9Qoj1QggtgIkAPgUAWZa/BjD2Nq5JRNTlBkaHo7iqFi6PFwBwvYq76BER9WQ3rCALIRYB+EOT4YdlWX5PCJHeZPxzAH8FUAhgM4AcAJEAKoPO8QghtLIsu285aiKiLjTQHAGvAhRX1iIhJsK/BjLbK4iIeqobJsiyLG8DsK2dr/cXWZatACCE+AjALPiSY1PQOWomx0TUnQwwhwMALlXUBCXIbK8gIuqpOmwVCyGECsAPQoiB/qHJAA4D2A8gw3/OOADHO+qaRERdYWB9guyAoig4fd2GpFhDiKMiIqLOclurWASTZVkRQjwCYKcQogbAPwH8GYAHwC+EEAcAqAA83FHXJCLqCv2iwqFSAZetNbhQ7kB1rRs/GRAV6rCIiKiT3FaCLMtyPoD8oONdAHa1cGrO7VyHiCiUdFo14kx6XKqowY+XqwCACTIRUQ/GjUKIiNphgDkclyocOH65EpJGhdR4Y6hDIiKiTtJhLRZERD3ZQHM4DhWWQ61SITXOhDAtl3gjIuqpWEEmImqHdGHB1cpaHDhbxvYKIqIejgkyEVE7zBg1AFNGxAMARjBBJiLq0dhiQUTUDiqVCrmZdyMuUo9f+RNlIiLqmZggExG1U1SEhBem3RXqMIiIqJOxxYKIiIiIKAgTZCIiIiKiIEyQiYiIiIiCMEEmIiIiIgrCBJmIiIiIKMgduYrFiRMnSoUQRaGOg25LYme8KOdGj9ApcwPg/Ogh+N5Brem09w6iplSKooQ6BiIiIiKiOwZbLIiIiIiIgjBBJiIiIiIKwgSZiIiIiCgIE2QiIiIioiBMkImIiIiIgjBBJiIiIiIKckeugxwghFADeB3ASAB1AB6RZflMaKMKHSHEEQBV/sNCAH8C8CoAN4Bdsiy/GKrYQoHzozHOjwacG41xbjTG+dGAc4OoZXd0ggxgBgC9LMvjhRDjAKwHMD3EMYWEEEIPQCXLcnrQ2PcAZgE4B+DvQojRsiwfDVGIocD54cf50Qznhh/nRos4P8C5QdSWOz1BngjgUwCQZflrIcTYEMcTSiMBRAghdsH37/YCgDBZls8CgBDiMwD3AehNb2ScHw04Pxrj3GjAudEc54cP5wZRK+70HuRIAJVBxx4hxJ2e1HcWB4D/APBLADkA/tM/FlANICoEcYUS50cDzo/GODcacG40x/nhw7lB1Io7/Q2hCoAp6Fgty7I7VMGE2CkAZ2RZVgCcEkJUAogJetwEwBqSyEKH86MB50djnBsNODea4/zw4dwgasWdXkHeDyADAPx9YsdDG05ILYSvTw5CiP4AIgDYhRApQggVfBWAvSGMLxQ4PxpwfjTGudGAc6M5zg8fzg2iVtzpFeQPAfxCCHEAgArAwyGOJ5S2AXhDCLEPgALfG5sXwFsANPDdbfxNCOMLBc6PBpwfjXFuNODcaI7zw4dzg6gVKkVRQh0DEREREdEd405vsSAiIiIi6lJMkImIiIiIgjBBJiIiIiIKwgSZiIiIiCgIE2QiIiIioiBMkImIiIiIgjBBJiIiIiIK8v8BQjizlcVqjWcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "unit_comp.remove_edges_with_duplicate_actions()\n", - "unit_comp.identify_units()\n", - "unit_comp.plot_matches('template', chan_group=6, step_color=False)\n", - "plt.tight_layout()" - ] - }, - { - "cell_type": "code", - "execution_count": 298, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[0.09634455200883546,\n", - " 0.07499588360280243,\n", - " 0.06162436970571908,\n", - " 0.06857233657530502,\n", - " 0.09694714236387678,\n", - " 0.0804227088795645,\n", - " 0.08824651636929137,\n", - " 0.08722175061166056,\n", - " 0.09845396075578684,\n", - " 0.09294308631598447,\n", - " 0.09659570944622126,\n", - " 0.07647245393573131,\n", - " 0.09195911715516754,\n", - " 0.0833125753315933,\n", - " 0.051087130456977776,\n", - " 0.049521116821066226,\n", - " 0.02600808417111924,\n", - " 0.0320818045314623,\n", - " 0.03229996342323004,\n", - " 0.029418636630051426,\n", - " 0.04647284442507242,\n", - " 0.087113075493381,\n", - " 0.05515341343597296,\n", - " 0.05825520656684215,\n", - " 0.0707770976250612,\n", - " 0.04259170631553064,\n", - " 0.04251915445433371,\n", - " 0.08660506600667285,\n", - " 0.060867941039334024,\n", - " 0.09247442840294415,\n", - " 0.05688725030444264,\n", - " 0.02585312905314643,\n", - " 0.02256877562004955,\n", - " 0.03841936694076317,\n", - " 0.050287440931407607,\n", - " 0.08012546713128958,\n", - " 0.015016185438421958,\n", - " 0.039239181359156536,\n", - " 0.04873498182486496,\n", - " 0.07384202529475573,\n", - " 0.031544066489664284,\n", - " 0.038465046537750666,\n", - " 0.038985147903295735,\n", - " 0.045067437101008266,\n", - " 0.07420871091322713,\n", - " 0.017205498433729347,\n", - " 0.05187686886128337,\n", - " 0.043003485904860445,\n", - " 0.06992615155905807,\n", - " 0.06967030449524804,\n", - " 0.044568413688232646,\n", - " 0.0874738260681804,\n", - " 0.09039484124249249,\n", - " 0.09594371946463928,\n", - " 0.055167110959496904,\n", - " 0.04298880990313309,\n", - " 0.07367751723966846,\n", - " 0.07201899464292785,\n", - " 0.05080452341862692,\n", - " 0.04854896792437264,\n", - " 0.04711365764947379,\n", - " 0.052188349723749666,\n", - " 0.06483119038403079,\n", - " 0.023433139145706546,\n", - " 0.08855768408846616,\n", - " 0.08560448741739592,\n", - " 0.08995174608668689,\n", - " 0.08987859018329981,\n", - " 0.062133641073307475,\n", - " 0.02956535592106278,\n", - " 0.014587645320492237,\n", - " 0.02624471658364597,\n", - " 0.03341375983806098,\n", - " 0.07304877481520819,\n", - " 0.0393218609123345,\n", - " 0.08423515060892538,\n", - " 0.05024844706593054,\n", - " 0.07672057147673768,\n", - " 0.05284121132788224,\n", - " 0.05807034939928806,\n", - " 0.07348830627663666]" - ] - }, - "execution_count": 298, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[d['weight'] for _,_, d in unit_comp.graphs[6].edges(data=True)]" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [], - "source": [ - "cmp = TrackMultipleSessions(actions)" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "metadata": {}, - "outputs": [], - "source": [ - "from septum_mec.analysis.track_units_tools import plot_waveform, dissimilarity, dissimilarity_weighted" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [], - "source": [ - "from matplotlib import gridspec" - ] - }, - { - "cell_type": "code", - "execution_count": 230, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ]" - ] - }, - "execution_count": 230, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6wAAAILCAYAAADsVRGmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4W+d5P/zvwSK4RVLUoqhpidbwUry3YzuOYzuO47hxVptVp02aWf/aZrdp0jbTjbPeNKNppkeW4zge8kg843gPyaK2RImSKA6sM5/1/nEACsQiAALEAXh/rouXL4skcEgC55z7ee6hKaVACCGEEEIIIYR4ja/WB0AIIYQQQgghhORCASshhBBCCCGEEE+igJUQQgghhBBCiCdRwEoIIYQQQgghxJMoYCWEEEIIIYQQ4kkUsBJCCCGEEEII8SQKWAkhhBBCCCGEeBIFrIQQQgghhBBCPIkCVkIIIYQQQgghnkQBKyGEEEIIIYQQTwrU+gByOeOMM1RfX1+tD4OQmtqyZcvo4OBgb62PIxd6jxJC71FCvM6r71F6fxLiKvY96smAta+vD7/+9a9rfRiE1NTAwMC+Wh9DPvQeJYTeo4R4nVffo/T+JMRV7HuUUoIJIYQQQgghhHgSBayEEEIIIYQQQjyJAlZCCCGEEEIIIZ5EASshhBBCCCGEEE+igJUQQgghhBBCiCdRwEoIIYQQQgghxJMoYCWEEEIIIYQQ4kkUsBJCCCGEEEII8SQKWAkhhBBCCCGEeBIFrIQQQgghhBBCPIkCVkIIIYQQQgghnkQBKyGEEEIIIYQQT6KAlRBCCCGEEEKIJ1HASgghhBBCCCHEkyhgJYQQQgghhBDiSRSwEkIIIYQQQgjxJApYCSGEEEIIIYR4EgWshBBCCCGEEEI8iQJWQgghhBBCCCGeRAErIYQQQgghhBBPCtT6AAghhBBCvMzhEhYTCPp9CAV88Pu0Wh8SIYTMGRSwEkIIIYTkYTgcCYtDATCZgA9Ae3MQ4aC/1odGCCFzAqUEE0IIIYTkYDgc8WSwmiIBRE0Gw+G1OixCCJlTKGAlhBBCCMmglIJu5w9K4xaH6YhZPCJCCJmbKGAlhBBCCMlgOgJSFf6amMVgcwpaCSGkmihgJYQQQghJI6WCXmTKb8xgYEJW+YgIIWTuooCVEEIIISSNyabfXU2RAKIGgyz2GwghhJSEAlZCCCGEkDSl1qYKpRA1GZSioJUQQiqNAlZCCCGEkCSHS4gyAk9HSMQt6hxMCCGVRgErIYQQQkjSTJoomUzQuBtCCKkwClgJIYQQQpIsNrOuv3GLU+dgQgipIApYCSGEEELg7q5WondSzGQQ1ISJEEIqggJWQgghhBAANqvMeBqpgKjhUBMmQgipAApYCSGEEEIws/rVTEwqJGyqZyWEkJmigJUQQgghc57DZUXSgdMZjphxTSwhhMx1gVofAJl9SimYTIBxCQ0afD6gKehH0E/rF4QQQuYmp0qNkuImQ8CnIUDXWEIIKQsFrHOMxQQSFs+aMac7AkGfhtZwAE0Bf42OjhBCCKkNh1emfjWThNuEqas1BE3TqvIchBDSyGi5bw5hQiJusrwD0ZlUiBgMcYtRowhCCCFzhpQKrIpdfamelRBCykcB6xwhpULUYChm/dhwBCIGg6SW/IQQQuYAR1RndzWd4Qiaz0oIIWWggHWOiFv5d1ZzcYRExHAoaCWEENLwnAqNs5lO3OR0XSWEkBJRwDoHMCFhlVGb46YI0xw5Qgghjc0WRe58KgWHC5hMQLc4DJvDZgJCFneNFUohYVFqMCGElIKaLs0Bpl1+ChJLphJ3tgSpWQQhhJCGw0Rx42xsJmA4HLnWfzUATQEfwiEfgv7CjQtNLhBiPoSD1OCQEEKKUfGAdWBg4FkAseT/7gHwXQBfB8AB3Dc4OPhvlX5Okp+QCtYMa2ZsIREzGTpbQhU6KkIIIcQb2HQZSEoh4QiYTv5rqQJgcQmbS4T8Eq1hP/y+/ElscYsh5PfB56OFYEIImU5FA9aBgYEwAG1wcPDCtH97HsC1AHYDuGtgYOCUwcHB5yr5vCQ/w+GoREKvxSX8FkNbOFiBRyOEEEK8oeA4myKC1SlfDneR19ElwkE/WkI++HIErlK5QSstBBNCyPQqvcN6EoCWgYGB+5KP/a8AmgYHB3cBwMDAwL0ALgFAAesskFLBKvIiWwzdEfD7fGgOURoTIYSQxsAKdAg2mSw6WE2nAJhMwGIC4aAfzSFf1o6rxSVCjqBrKiGETKPSAasB4CsAvg9gDYC7AUTSPh8HsKrCz0nysLksaoxNKRIWg9+nIRSgfl2EEELqm1PgOimlhO7MrEFSZuDaFNQQ8vsnM58SFkMo4IOfUoMJISSvSges2wHsHBwcVAC2DwwMRAF0p32+HVMDWFJFNqv8vDcJIGo66G5togssIYSQusYL7K4mLIFKNck/FrgCfh9HSyiApoAPUtMQMxm6Wik1mBBC8qn0Ntm7AXwVAAYGBpYAaAGgDwwMrB4YGNAAXAbgkQo/J8lBSlW1QehSAVEad0MIIaTO5atftZmAXYVrqALAJRCzOCYMBw4XcISEYdOoG0IIyafSO6w/APCjgYGBR+Gel98Nd1PuZwD8cLsEP1nh5yQ5WFxUpNlSPkwqxE2OjhZqwkQIIaQ+5axfVQrGDFOBi8ElEDM5Wpvc3YNgwIegn8ptCCEkU0UD1sHBQQfAW3N86sxKPg+Zns2qs7uazuQCfltDaxON8yWEEFJf8tWv2lzmnLVaDQpAwubgUkLTgJ62Jpp5ToiHyeTQZhpJNbso0mhAoorpwJkSNoffp9EAdEIIIXUlV/2qBszK7momi0lMSIag30ejbgjxIIu5462YcBeXOpqDaArQve9sodyTBmTzyjdbKiRusYKNKwghhBCvyZUObHMxa7urWc8tJI7EbOhUz0qIZyilELcYoiaDIyQU3F4uEYPVZHFrrqKAtQE5s5AOnE4qIGoyasJECCGkbuTKRDKd2i6+OkLiSNSkRWBCPEAphajBYOSZxaxbHELSve9soIC1wSilCg5BrxYuFWImm/XnJYQQUn1KKThcwmJisoarnjEhkfljCClrcv3MZDCJkZhFi8CE1Fjc4gW7hUvUpoRgLqKAtcE4Iv8Q9GqzuKRUJkIIaUCmIzBhOJNpcfUudzqwrGp3/VJELYaI7tT6MAiZswyHw2TTl9hZjqBd1llAAWuDyTdTbrYkbD7rNbSEEEKqy0q7cWuEdFXOM24wlZryM9aakMC4zmg+KyE1YHOBuFXce08CtFkzCyhgbTC1DlgBIGayhkgZI4QQ4gaoLO2czkT9n98zd4kdIeG1ONziAhHT8VQgTUijE2WUuFmMdlmrjQLWBiKkAvfAG0YqUD0rIYQ0CDtjIbTed1iFVBAZ9aEOK3ztFFLhSMzCC0MRDI0b1Ty8SQpuE6i4yTxRW0tIo1PKDVZLvZV236uV3WWV0u1OHDMYYiab8wExzWFtIF5KxbWFhGFztDTRS4wQQupZ5g6fhFsDGvTX55p3ZvAnlYIl8l8/tw7H8O93bZ2SInj26h5cf1o/VvW2Ve04AXeXtUX5EDEcdLWEEKjT3zkhtWBzAaWAoN8Hv08r+LWpYLXcGn2TCbQ2BaBphZ+nGA6XbpCatrDmcInOlmDdnndniqKJBsI8kA6cTrc5QgEfXWAJIaROMSFzZu40UsDKuES+hryvHIrhs7/bgu7WEN559gos7Ahjy8EofvfCMJ7YNYb3nrcSrz9pSUVuUnNRyt1lbW3yIWIwdLWGpr3xJmSus5iAbvMp566AT0NLKIBw0Jf1fhVSIWo4U0ofSiWVG7S2hGYWWjEhETWcrAaqQilEDAfzWkJ1e+6dCQpYG4gX6lfTSbipwd1tTbU+FEIIIWWw89RP8jquY81c3M1MeU7ZdTSBz9yxBfNagvjCNRsxP3ktO7l/Hq4+pQ83P7AD33tkD4YjFm44f1XVAkmLCTSH/ACAqOGgqzVUtQCZkHpnODxnwyQuFWIWQ8IGmgJ+NAV9UMq9d7a5KDkNOBfTmXnAmrB43mkfUgFRg6G7NQTfHFu4mnsheoNyeO3G2RTCpKLuaYQQUqfyLYTWa02lUlN7PSilcqYAKqXw3T/tRjjow3++8YTJYDWlrSmAf7n8eLxxUx/ueukQvnzvYNVqzKQCbOYeI6OZ54TklS9YTZfaCY0YDFGTwWSVCVYBNyieSZM0w+HTpiQLpZAosoNxI6GAtUF4uQmGYfO6vbkhhJC5SkqVN0VOSFWX3eAdMXXWKuMqZzrwiwei2Hoohjef1p8VrKb4NA3vPmcl3n3OCjy6cxTfeHAHZL7c4hkyGZ98bItLJCwKWglJV8oommqynPICViEV9CKP3+QCZpnPU68oJbhBlJMOLJUC5yq5O+tetIMBDUG/hqDPB1Qo5UgCiJuM0pgIIaSOFFrpVwCYlGjy+WfvgCogM5U517VTKYWf/2U/ultDeM36RdM+5hs3LYXJBH7xlyE0h/y44bxVFb/WCenusqZSg3VHIOD3IRysr98/IdWgPLTraAsJLmTJ/VssJkrKlExYDKHA9M2kGgUFrA1AKVXaDqZSMJmE4fCsNIjUgk3AB4SDATQFffBV4MLLpILhuB3UCCGEeN90C6FcKNTbKX1K/apScGT2LsVLB6PYMhzD+85fhVCguJvOt56+DIYjcMfzw5jXHMKbT+uv1CFPMhmf0jAmbjGE/L45V8tGSKbMBku1ZjGBthID1lJ3TCXcoLWzJVTS99UrSgluAEyooldlpFKIWxwJOztYTcclkLA5IoYD0xEVSXNK2NxzjaEIIYTkNt35ut7mAmYu7jpCItda7y1PDaG7NYTLNky/u5qiaRrec+5KXDTQi5/8eR/u23q4Eoc8hZCAxY4dsFRu0ErIXMaEhO6x9FiTCagS7pttLrJmQxfD4nJGNbP1hALWBlDs7qpUbqtsq4SgUaQFrgnLDTiFklBKQQOmfECpad+gMZPVZd0TIYTMJVzIaW+gSrkh84LMxV2Wo9Px4aiFFw9EceWJi4veXU3xaRo+fPEabFo2D998cCee3js+wyPOll7LCrg3rIbjjVRIQmrB8GBjT6mmLi5Nxy7hazPFLVZ35+JyUMDaAIqZvyqlRNRgKHeDU0h3xShqMkzoDGO6g9GEjTE9/cPBmO5M7srmegMJRR0OCSHE66brVAnU3w5renNCDYDDs3cmHt05CgC4YG1vWc8R8Pvw8cvXYeX8VnzxnkHsG9PLepx8hASMjN0k3eJ197cgpBKYkCVtwswms8iFJKVU3vFhxZCq9HTiekQBa50rpn5VKYWoWX6wmv147odU7sUz9SGT/86EQsLmiJk8ZyqxLSSNuiGEEA/jfPoAqJwUtlpKv1ZymTsd+OHtRzGwqB0LO8JlP09zyI9PXbEeTUEfPvf7rYhWeJHWcgSETEsNhtvYkJC5xou7qylMKtg5FsUyWWzmYyl1hzf8LisFrHWumPpV3RYVC1ZL4Qg3BVnK7CdP2LyoNzIhhJDZZ4vpz8/1dn+UvmvMhELm4Q+NG9g9quP8NfNn/Fy97U349BXrMa47+K+7t1V0B1QB0K2pfx9bUGowmVu8vLuaYtrFBKwzvxdOzZZtZBSw1rnp5q86rLYF2VwCUZNBquzjjJmM0pgIIcRjHC4LNuVLUaiftGAupv5MuWrGHtkxCg3AucfNPGAFgIFF7fiHi47DSwej+L8n9lbkMVNsIbPmPeo2px4RZM7w8u5qSmrETd7Pc1FU+UUxjCKC43o2pwJWpRQiuoOxhI0J3an14VREoXRgqRQSDstaRZ5tXAJRg2WlB0sFRA2n4dMYCCGknuSq7cynEh3kZ0N6gyWlFHhG5o9SCg/vOIqNfZ3oaWuq2PNevG4hXnfCIvz62YN4PFkfWykJh09NDZ4DuyyEAO4ClNd3V1Mya86nfK6CQaZQqqE7Bs+pgFW3ubvaIRUc0RitoAutzLh1LrN4MAVwCcTN7Bx7JhWixtzocEYIIfXALqmTfH2cu9mUdODsHeQ9ozoOTJg4f21ldlfT/e15q7B2YRtuun8HDketij2uUkAs47pq5NllNR2BqOFgQnfcaQEljt0gxEvqaWHGZiLnLmsld1dT6mHXuVxzJmB1ePacpsx0mnqTmeKUTioJw2NvaCfPrCxbSMTNxn2TEUJIveDJRd1i1UvMk37DyHOMs3l67wQA4MyVPRV/7qDfh3+5/Hj4NOAr9w1WNMjnUiFucohk2Y0EptSyqmRn/pjFYHHpLtZziajJMJqwaTY6qTtSqrq6f5cAIkZ2CVw1UniZVDN+TyulYNgcEd3xVInBnAhYlVI5h2tPl1vudblmyKUYtpz2RiJiOHhy9xie3D2G0YQ9K6utpiNytu82uaAB6IQQUmOl3uzUQ0qwmwJ87DhzNfx7dv8EVve2oqs1VJVjWNAexvsvOg7bDsdx61NDFX1sW0jEDAYmBDS411mR7FA6oTt5d6NSZTlzYSQGaRwWEzPuqjvbhFKY0B23URQTiOhOxXdXU2YSzAupMJZwEE9mpEZN72RABmp9ALPBdETeFWOTCbT76zNuz1e/KmThdOetwzF848EdGJowp/x7b1sTrj55CV67cRHCQX9FjzVd3Obw+zQEMn7vhiPg1zS0NM2JlyUhhHhOKenAQH2kBKd3BBY5xtkYDscrh+O45pS+qh7HBWt78dTecdzy1H5sWj4Pxy/qqNhju70iOPw+jpDfD0cIBPzTX8clgJjFoGmo6nWfkEopVBOaTim3/E8pYPIEoAE+TUPQr0HTtKodYy5CKYzPQv8ciwu0ygD8vtJ/voTFpowrc4REzGTobKnOQl4pGj4ykFIVnPlpOQJtTYFZf+FWQr6A1XRkzkZLSinc+eIh/ODRPVjQ3oR3n7MCxy/qgKYBO0cSeGL3GL7/6B788tkDeM+5K3HRwIKqHLdSQNximNcSyvq9x20On0+jCychhMwyKaef653JK6vvhaQ3WBICWdfHF4aiEFJh07J5VT+Wv79gNbYcjOHr9+/AzW85BcEKLpgruIErlwIWA+a1+oq+aY1bDEF/8V9PSC1YTBSc/6yUgp2cjsFl9uiqFB+AYEBDKOBvuPtNBcB0ONrCwZK+z2IiZyMri0uEuUBToLa/p/rcWixBwuYFUwckCjcu8iopVc6VbanyDyr+6Z/3438e3o3Tlnfhv998Mt64aSnWL+nAusUduOqkJfiPa07Af73xBCzsCOOr923HTZu3Vy1ViEt3PmwuUZM1REMsQgipJxYXJXeVr4cdVs6n7hhkenb/BJqDfqxbXLkdz3xamwJ4/0WrMTRh4rYKpwany6xlnfbrFRA3qSyHeFuhe1I3BZ4hbnOwAsEq4L4/bK4QtzgihtNwtdwmEyXVn0qZu3QyRbdq32embgPWYmpPmZBFdRITBWpBvcoRuXdRHZa7EdPLB6O47ekhXLJuAT5xxTq05km73djXiS9deyLeclo/Hhocwcduex4jscp1NUxnstz1rIA7o5WCVkIImR1KFc5GyqcO4lWw5A6rBoCJqdcVpRSe3T+BE5d2VnS3s5DTVnTjgrW9uP2ZA9g7plfteRwmS1pQsIUsKcglZDYxIfNuMJkOR8zkBXdf8z+uQtRkiJvMU02GZqLUEVcJmxc8lzNZ+5E5dRuwxqzChcBKqaJXC3N1DPS6nBchpWCy7IuN4XDcdP92LOoM433nr4ZvmvRnv0/D285cjn+/eiPGdQc3/vJF7D6aqNShTxG3ec7FBwUKWgkhZLbo09yw5OP1pktKHctG4iq7fnU4YuFIzMamZV2zelw3nL8KLSE/vvHAzqr9DiVKH3OhW7wuds3J3JNvd9WwORIV6Lhrcek2KWuQRRvDyR4lmUuxm3u1HplTtwGrEKrgKJSYycCKPOkyWX+pACxH+oIjJHJlNXzvkT04GrfxsUvXojlUfA76Sf3z8MU3nQgNwD//6iW8cig2gyPOLVXPmuuCrVA4PVgmV3ysElMfCCGEHMOFLLqRSSYFePr8m56NJHh2/eqz+91xNq9aPrsBa2dzEO89bxUGj8Rx75bDVXsei8uS0h0l3MYrhHiJlCpnRp7FRM5xiWU/D4CELRAxnLqeIgK4u6zFnNcTRab71nqXtW4DVsAdhZIrhUm3ec7C4XyEVJ6+4OaSK8i2Wfa/DY0b2Lz1CN5wcl9Z9TkrelrxletOwryWID77uy3YOVL5nVYugYSZfyUoarLJNCUh3flQ4wkbowkbUZNNzpOL6PV/giGkWlgy3S9uue+nUpvrkMYipEJEd5CwGOIWL7l2dcpjeXiXNb3kJ9dr/tn9E1jcGcaiznBpD6wU/OYoNGGXfWwXDfTixKWd+NHjezFhVK97aKk7IxYvPGmAkNmWa5SNw2XVaiuZUIgYDPo02ZxeN90uq8VESX18yikbqZS6DlgBN+96PGHD5gKmIzCesJEo8ReqUF+7rEKqrNQtoSTsHC+63zx3ECG/D9e+amnZz9fb3oQvXLMRbU0BfPqOl6tSc2MLiXihoNVwMDxhYDRu5SyoV8nHGEvegNXzCYaQSlDKXQ2NGQxH4xbGdQdxi8NwBOIWx7ju1DzFh9SOUgq2kNCd0m5YcvFyCml6yY+TUb8qpMLLB2M4qb/47sDhsa1Y9PhnsfaWc7Hup5uw4YdrsO5HG9B///vQcvgvmHYAehpN0/D3F6yGzSR++Oieor+vVEyqkmczJixedwv5pHFlpqwqpdzXaBWfUwEwmMSEzvI2M/U6qYB4nqBeSlX07moKl6pmc5vrPmAF3JNxxGCIWcWnAWeqp8ZLuVaJHaayrpPjuoMHt43g0vUL0dlcWnvrTAvaw/jCNRsR9PvwmTu2YCRe+UZMtpCImRxSHfv5ZLIRyLjBMJ78G09Hd9xh6bTbShpFakFOtzkMm8N0BGwuwIWcsjiTSpOPW2wyA8HkIm9tYtzmNV0xJY3By+uDqWBc5Khf3TmSgMkETlraOf0DKYmeF7+L1b+5Et3bfg6rewCHzvg0jpz6/xBd/Xq0Dj+OVXe+CSvvvBahyK6ij6+/uwXXvmopHho8ipcORkv50UqiO6UFoEIV7hpKvEdKBYdL2Fw01KK9wyV4xmvXsMtrsFQOoRRiJq/bpkwmEzmDzIRV3u9Qt4urja20hp/DWqx6aryUKxCzcjRb+t0Lw5BK4Q2nLKnI8y7ubMbnXr8B//SrF/Gvv9uKL117ItrClX0JOUJiXJfwa0Ao4IfNxZSbDJsr6BZD6zTzpZhUmNAdtDcHG27GFpkbpFQwHO62p8/ZY01B0zSkWqhpQFmrzamMlHydw0ljklKBC4lAvs64SkEkGxaF/D6gQLM+rzZeUkpNHlvO+asHIgCAE/oKB6wat9B//9+hY+hBRFe8FsPnfQkiPHVX9tCZn0bX9tux4Jmv4rhfX47Dp38c4xveWfD3lvJXpy7Fg6+M4PuP7MbX/urkqsxClcl+EZ0toaK/x+ISIUeU1PuC1E7UZJMLNB3hYMP83TLT07mQsHKUwFX9OLiEIxy0hQM1n0laqoTFEPRrk+d70xEwy9w1FkrBZAItodm9Z2iIHdZKqKeU4MzgmovslWPD4bj7pUM4e/V8LO5srthzr5jfik9dsQ7DEROf/8PWqtTBKeXWtRqOyPq5ADdFo5j0Jgl3rly9pnKQuctwOMZ0G7pzLFiVUsG0OaKGg7GEjbGEg7G4+9+YxWCw8lfVEzancRZzjFTHRjk4TMLhAg4XMJlAzGQYNxxM6AxRk2PccAqmgXk1YGXiWOlIrmvViweiWNHTgnmFgjilsOSxT6Jj6EEMn/05DF3y3axgFQBUsAXjG/4GO6+9D/qSs7Dkic+i70//CMjp31dNAT/eec4K7Dqq44FtR4r98UrmCPccUoqExShbqQ6YGan9jXI+Vyq72ZJuVzcVuBCpgJjJoddZ9oEEMGE4mNAdxC0248ZqtdhlpYA1qZ4aL2UG1zbPnsn68PZR6I7ANaf0Vfz5T1w6Dx+5ZA1ePhjDt/+4qyapAQmbF9UUQgKIGazhhkKTxiSTjXDi1rERIw6XiJsME7qDhCPgCLeGXcF9fQulYDHp1qUmnLJvMOMWr1ltCqkNpdxdg6jlBqZRkyNhcdjcXQSd7K4r3RuUfOdRr14702trMwNWJiS2Dsdw4tLC9atdr/wUXdtvx8imDxe1Y8pbF2HfZT/CkU0fRdeOX2LZ5hug8elLaM5fMx8Di9rxkyf2VTXYMBxR0kKzRP4aOOINUiok7KkBCJeqIRbrLSanBKduk6Dan28MJhE1HM+e+3KRys1iNJzsBlblPFa5neXLRQFrUr00XspquKRyn5T+uH0E/V3NWLuwrSrHceHAArz5tH5s3noEdzw/XJXnKETBnRdXzAlZAoiaVNNKvM3hEuO6M9k8zWJuLXbUZLC4LOoCIwGYTCJaZnfDmEWzj0luCoBu535NefWeTSSv6emzWFO2HY7DEbJg/WrzyPNY/MS/It5/EUY2fbT4J9Y0HH3VRzF8zufRvv8BLL/nndMGrZqm4YbzVmHCYLj96QPFP1eJJFByZ1Un2WGceFMizwzlUhtteVHm9chLP5Mj3CwVLzedqybDnt3GbBSwpqmHxkuZK6NOjnTg0YSNLQdjOH9tL7Qi6mfK9bYzluGsVT344WN7JmfZzSYJdxxOMavFUgERY+6eWIi32VwgajgQyq0rjBruLmtmo4liSbgrwOO6U/IFvhJp9KkOxbp9bIxOIzUBmau4zO7WCXi3S3CqfEbI7KaELw5F4NOADfnqV5XE4sc+BdHcgwMXfh3QSr9dGl//1zhw4U1oPfQElm3+22lH4AwsasdFA7347fMHcTha+caGKSw5Hq4UusU9+3eey7iQOd+TgJs9Uc8L9UKqKWnONhdlN1atFi4VosbcTJuXmN3UcwpY03h5llxK5pvCYdnH/PD2o1AALljbW9Vj8Wka/vE1a9Hf3YKv3DuI0UT58+jK5dapFrfKI5RC1HDoxpl4ChMSMYO5u6MOR9RgFUt5ksrtBBzRnaLT4lNp9OXUpwupEDMZRuNuh2K3NtYdozOasGmMTgMwHAGhpr42vHpOTS348IwxaADwwoEoVvfUcdaoAAAgAElEQVS2oS1Ps7GO3XehZfRFHDn1/+WsWS1WdM0bcfD8L6H9wJ/Q/8D7AVm4duxvzl4Bn6bhh49Vb8wN4NY8lnKTLQHEzPqq25sLpkvLtOu4HCpzd9WrJSsi2Q9gLgatpZ5HZoIC1jT1kIue3nDJnaOX/Qb+0/ajWLOgDUvmVa7ZUj7hoB8fv/x4MKHwpXsGa/KGFSq7fiMfllwN8+oNFplbuJCIJHdWY6aDhD3z2pJcmHQvqFHDKS4jAUCkyK9NMRx3JraZY8A7MDV4pp2a+qUUwPnUv5+C94LW9A7BmY0KLSYweCSOE/OkA2vCwcKnvwSr+3hEjnvjjI8lMvBmDJ/zeXTs24wlj36y4Byg+W1NuO7UpXh811hVx9xIuGMtSvm7OULSGCwPETK7IVEm1iABq80FmIezIKXCnAxa3ZK72bmnrtuA1eGy4sPf6uEmKr3OlgmVVbdwYMLArqM6Lhyo7u5quqVdLfiHVx+HrYdi+PET+2btedPZvPgUJ1tIxE266JLaUsrdjUztStq8+ucfR7gzq+NF1N24afTF1X7HDOY2iiriGGwhMa7bDdEQZC5SSoHlDFhrczz5TO0QPPW1tu1wHEKqvONsurb9Ak2xfTh82r8AvsqMrxhf/9cYOeVD6B68Bb3P3Vzwa685pQ8L2pvwPw/vrup9CZNqcqxVsRIFmm9N+3xCwkjOkqZa+ZkznOnPudWY5DAbmJg6e9VLtav5pDoIz7WglUs1K43Z6jZgTdgME4YDh1UucPV6SnBmwyUnxxyqP20/Cg3AucfNn70Dg5t+fPnGRfj1cwfx9N7xWX3uFN0RRbfsN7mg9CZSUwmbwxESMbNyKcDFsrhERHdgTNOaXipgQncK3lzGTFbyPLdUTflMW+uT2fHc/gl88BfP4e3ffxLXfucJPLFnNOu667XRNqlATyqFzLfXloNR+DRg/ZKOrO/ThI3e526GvvhMJPovqugxjbzqHzGx5losfOar6Nzx67xf1xTw413nrMCeUR2bt1ZvzA3gdmEtNRiIldhoxkmeb8Z1B3GbI25zRE1GJQLTKHhulqro8X71GLSm7xxzIT3RGbgYqfTguTaZwmSi6u/nug1YAbcBRNRy58UZNofDy59DCLjXX6+lNaVLP+nkSwd+YtcYNvR1oKetaTYPDQDw3vNWYnlPC266fwcmdGfWnx8AEqUErUwgZtANM5l9FhMwHIGExWt2IZZwF3ki04x9SqX8ZNa18mTtbb6GH8XQHbfZFPG2W58ewoTu4IxV3dA04Mnd41kNwbyWoJTqECykzFrTfnk4hlW9bTkH33fu+h2C5lGMnPwP046wKZmmYfi8L0JffCb6HvlnhEdfyvul5x43HxuWdOAnf95X8i5oqXS7uI77KUIpjOv2tIGQlAoxw91csHN8bZzmPxfkpEpGcry59CJ2V1PqMWC10jZk6m03Xiq3eWE97ApXUrVLfuo6YE0RMnnjY3KM6w4mdBsxk0G33JlyqQ/d4jBZdsOIFAVvpwWn19gynp0OPBK3sHfMwOkrumf5yFxNAT/+6bIBWEzgq5u312zFvaSgNdmd1csLFXOBSHatjBoOYrNUD1ErSikkrGRanAdWYXmyvnW61VGTC4zrDsYTNiK6gzHdKXlnNReLSwpaPexw1MLLB2O48qTF+OCr12DtwnZsOxzP6taZ3daotlJ1q5lvMSYkBg/HsSHH7iqUQs9LP4DVtRZ633lVOS7lD2H/xd8GD/dg2eYb4DfHcn6dpmm44fxViJkMt/xlf1WOJSXVcb+UXSGpgEiB7AubC4zp9rTniHiR4+nmKpu7JRTpDYe4kCU1IMqsOfc6m4vJjEelFOwc2YReJ+EGcHGT1UV/nEqxhcR4wsZY8qOS6dENEbCmk8q9QNlcwmACZtqHwdwdjQmd5W024OW04PTGEblO8E/vdUfLnFajgBUAlve04m/PW4XnhyL47XMHa3YcCaf49ASLS0SM4k4qFhOTb8ao4dC4jgqwmMC4biOeDODM5PzRRq0D0W0O3eHQPbb66u62Tt9NmEmVc7dkJiwuKdvBox4aHAEAvHpgAQB39MruUR1xc+oig9dOg5MdgjNu1nccScAREhuXZNevth76M5rHt2Js43sqv7uaRjTPx/5L/wcBcxT9D3wAkLmvVat723Dp+oW488VDODBhVO14gFTH/dJSGdOzL1LXTykVdJu719QiXxPFdvqfq6RyZ2SPJezJcWGl/LbSe5/UAztjd7W+jn6q1P3lXFqUkXDPv7m6s89EwwWsxVDKTQdNWDy7DsfD74zUSUeq3DeMT+0dx+LOMJZ2Vb87cCGXbViIs1b14MdP7MOuo4maHYfuCCSs4nbrHCExUaArqsWEG6SaDCz5RrS4nDKugwLX0iUshqiZfWOT6mrbaL9TLqSb7eHR2i0mjnUTnu0aHKor9x6lFB7cNoITl3ZiQUcYAHD8onYIqbDtSGLK+9NLNaypDsEaACan3ii+POx23s1Vv9rz8vfBw92IHHdN1Y/R6j0Rw+f+B9oOPY4Fz3wt79e946zlaAr48P1HqjvmBjgWtJaaymhy9/o4ErNwNGGXnMIslEKc6tmnxaXC0biNQ1ETNiu+BI5LVVcLAunBnVWHu6uZ3CkA7kzyevo7eM2cDFhTLC6RsMWUoNVLF910Sh074XCePQTdYgIvDEVx6oouaFVcGS6Gpmn44KuPQ0dzEF++d7Cm9Qcmk0UPdeZSTaY86rYbVMSTq5pRk2XVbKWkxnVQ4Fo8lZyJW2iXkUs1o/pIL4pbHAmbe67eL5OTFrjO5sqwycSMb1yd5G4tZT/M3NZDMRyKWrj4+AWT/zawsB0A8MpwbOoCn4d+1amVfaGyS2e2HIxhWXcLOpuDU/49FNuL9n33Y3zd26EC4ZyP6wPQEvShuzWE7tYQOpuDCAfLv42KrL0O4wPXY8Hz30Tb/gdyfk1XSwjXn9aPp/dN4KlZaGg4mcpY5GJv+vfN5CVgcUn1rBkYd7sqS6mglIKZ/LtwCcQsjgnDQcLik/XahTh1krFkczH5nrW5yHvfVY8s5m6MzLXa1kqZ0wEr4N4gOWkpQ8Kjnci4VJNpEbluIF86EIUjZE3TgdN1NAfxsUvX4sCEif99bG9NjyU1e9Us8mKYavWfsDkMp/gTZipwndBLm18510jpjlYppn5Tb6AFAIsJxKzifm6vcIS7MjyecBvbzcbr2nBEWXXMXEhM6A4mDLe2NpX9UG8NO7zkgVdGEA76cPbqY13nu1pDWNjRhMEjcaS/HLy02JvqRZHZcElIha2HYtjYl7272jV4K6BpGF/39pyPGfBp6GoNoTUchN+nwe/TEAr40B4OYl5LEEFfeQvFh87+HMyeDVj6x48gGMtdq3rVSUvQN68Z339kz6xdW6zkYu9s9vWIWzTuJpPhuCUyEzpDwhFTFmCERLKEhkG3ecH3YL2U2KRn9uSahFHvJueRlzjnnFDACgDQHTa5y+rVGtb0Fv0504H3jSMc9OWdK1cLJ/fPw9UnL8FdLx3Cc/snanosEkDCFrNykmBSIaI7DRVsVQoXEuO6U/Rqr1TuBbveKaUQNxkMuz5/FqHUZEfh8YSDuMXc2qIq3cyaTBRdVw648wgncryuUsPcvZqC7WVcSDy2axRnrepBc2jqLNKBhe0YPByfci710kbIsYB16r/vGdVhMoENmfWrUmDejl8hsfRC8NZFWY/n04D2cAC+PEFp0O9DZ0sQTYHSg1YVCGPoku9AUwrLN78XPqbnfPz3nrcSByMm7nxhuOTnKBeTChGj8FirSoubc6verxgShe9NFdzrZNRw8u62Mo9uxmRK1a9KqRp6NAxLzUSnNOGiUcAKt0lTapfVq12CU6tjjGe36FdK4ak9Ezi5fx6Cfm/9Sf/6rOVY2tWMrz+wo+qt+YuRfpKo5t/aDZDdrtWNfNLNRyk15ferlILpCEwYTsmLQqmUqHpmOAIJm3t2QawUQilYzK3fHtcdRA0HplP5v5GTXNwodPPqcHdXNW4VHvGQSHagrvfX0WzaeigG3RZTdldTBha1YzTh4HDUxGSI5qFf7WTAmnGT/vJBt341s0Nw28FHENQPY2LtdTkfry0cQGCaa6umaehoDpWVIux0rMDQxd9G08R29P3xo0COSQanrejGqcu78Iu/DGE0YZf8HOWSyt35jJnVG1cx5fkAxAxGO61l4NJdoMu1m1oPO6wOl5PXSJvXd7OlYlnMvYaZtMExLW9FNzWU2mX16gsmdaHIFfwMTZg4mrBx6nJvpAOnawr48dFL1mJcd/A/D++u9eFMsph7Mxwx3BOFzQW4kBX/+3OpMGE4iExz491ohFDYNRLH0JiOsbiF0biNmFV818h0EvU3hy2dkAoJk5U0hqBeKLhpwwlbYCz5frKcmc3DTieUu8AUy+heanMxOd+x2N16i8s5u4BUjif3jCPo13DKsnlZnzt+kRvwvXI4PnmD6aWU4NTCRGZ31K2HYljY0YT5GXPKuwZvBW/qQnz5JVmP1Rz0oSngz/r3fNrDQTSXEbQmlp6Pw2d8Cp1778nbhOnvLlgNIVVNrqU2dzOHYqZ7LavmvVKq+zDVtJZOSLejsMx47Ut4d0MmxWmwZkvFknAnW8y1bsKlooA1KbXL6tU3NRMqbzrwC0MRAG4KrhcNLGrHdaf248FtI3h052itD2cKJhQSjkDM5JhIpjtGdAd6hdM0bOG2Nh+N227ThDpY7ZwpJhWiFsfhuNu0ymHlLwjUc/Mlw+FIlDDkvZ4xoRBPZhYkkmnDlTifmszdnT+aXPyIGKysGbBCuQtIlCJcmFIKf9kzjpOWzkM4mB2sreptRcCnYduh+LFxJh4KWIVSQI4sj63DMaxfPHV31W9F0L5vMyLHvQHKPzWQ9QFoDgVKfv62MoPWsY3vcZswPXczurbdkvX5RZ1hXH9aPx7fNYa/7Kl+A6ZMEm7gmqprjxpubbthc5i2W3/q8Mot/MYtNzOCav1KIySQsLLPj17/PdrJxUSHy4ZqtlQsLpPdhM3ZrR2vFxSwpkm9Wbz2QpHSDVZzdQcG3IB1YUcTFnXm7mzoBW85rR9rFrThmw/unNV0plJJuIGWkermVuFASSgFwxFzapdHKXd3K2oxN5AxOWwm3FqbEtry1+PKo5AKusXrcvD5TEjlduhOpQ1P1r06YkaLNVJVps9AwuaI6JQinM/QhIlDUQunr8ydtRP0+7C6tw3bR+KTo+C89KuUUkGoqdfL4aiFiMmy6lc7d/0WPukgMvBXWY8TCvrgL7OZUlu4jA7Cmobhc7+A+NILsOTRj6Nt6KGsL7lmUx+WdbfgO3/aVdOsDQk3u0J3hDtCznEbnUVNNrlgVYl7qVRmRGruORMSTrKj8FxY+C2XLSTsjPsXL5/vuDgWpNbjtb6SLC4RSaYJk2MoYE3DpJic3+YlqRb9do4gR0iFlw5GZ7a7KgUC+mE0jQ/C58TLf5wCAn4fbrxsAFxKfG3zds/9jnNJ1e4kaD5cxUiVnLdpcUzobDKNNGG5QWxmGlO6emwFr1tzZ3e1kMm6V9vNZBiL28m/e+1q1WwhMabblHaYQ2r3Ll/ACgALO5owGnfAk/WWlR0RXz4pj2VKpR/R1uEYgOz5q/N2/hZm93pYPRuyHqs5x+5yKdrDZTRi8gUxdPF3YHWvQ//9f4/mI09P+XTQ78MHLlqN0biNHz2+d0bHVy2pBauI4VQsqEzNPR9PdgKPW43RE6CadIdDptVDcw83XkqVdkipGrI7cKlSacLjCTfjby5tcuRTeq5LAxPSTZnw2iqUSM7gckT2jd3OkQR0R+CkpSUGrJKjY+89mP/SD9B89AVo6thNGw93Q19yNiKrr0ai/8KsNKly9c1rxg3nrcLND+7EbU8P4frTllXkcavNZBJCOmgPB/N2iSSlU3A3WKVQYELAZIAGIODX0BLyI5RRN2ZzCSFV2Tses40LCd2Ze7urxZBI/d0VwCQMW6ApoCEU9M+4cdzkSn3yNK6UAlfu/wcDPjQFfJOzqlOLUpYj0NIUyJn+Ohc9uWcMq3tbs2o903W1hjBhOGBcAqGikyWqLhXEZN6bbz0UQ3s4gKVdzZP/FkwcRMvIszh82j9lPU5TQJu20VIx2sNBSJOV1KVVhtqw77U/wso7r8OKu/8Ge674OazekyY/v2FJJ15/8hLc8fwwzl7dg5M8Wg4kFRAzOTqap29aRSpPSMBwJNqa3N89L2Jea62kgtRKNltyuMSeUR0TY0ew8MA96DKH0MlHEfBpEF2rEVy8HmL1JZDB1go9Y+UJpWAw9zrp1zSEAhpCAT+Cfm3yOjZXUMCagQnluVU7IaUbSOdJBwZQ0gWreeQ59D/4QYTi+2F3rMDoiTeAtfVBhDoQ1IfRFNmF9v0PoHP378GbujBx/PUYX/cOsPalM/5ZLl2/EC8ciOJnf96PgYXtOGVZ14wfczY4QiFqMrSFA57rxNxIFNz3YNTkCPkl2pv98Gm+yc9ZTKC1qT5OW4YtoDvcI/tO3pa6KBtMIuDTEPJrCAb8CAUKv9dSwalI/pcLVfBmx+ISuga0hgIIp41qYdJ9fycsjqagL3lj4JuTN9kRw8G2Q3G85fTCC4rdrSHYXCJuMcxrCQFwd0dqvaiXr0Pw1uEY1i3ugC/tJq9j9x8AALGVV2Y9TjhYmfOMpmnoCAcRMVhJ9xa8ZQH2XvGLZND6duy94pYpu8DvOHM5nto7jq8/sAPffOspaCmj1nY2COXW5c1roQXfWrCYQHPIB7/m81y5W4pSarK+dqbNlpiQeGjbCB7bNQb94Cu4Qfs13uF7Ek0ag6WCOKy64YdE3+hm+HYqGI80Y2v3xZCnvhctyzdV4sepGqEUTKZgMgkfgGBAQ9DnQyDgmxP3pd48w9WQw6s3W7BcQqrJsTuZnj8QwYqeFnQ2B4t6rHmDt2HJo58Ab12IfZd+D/FllwC+HLsKkqPt4GPoGvw55r/4P5j/4ncRWXMtRjZ9BKy9v+yfRdM0fPDVx2HPqI4v3zuIr19/CnrbK7ODW21cKkQNhtaQH811EjTVM0dIRAyJ9nAAQb/7GrXrJGBlyd1VSm0qHZfK3SFNXpShARo0KGTX8Jdzpk4Nbre4QEsoMCUoTtWYA0CHFkQJzWEbxiM7RqEAnLmqcNf57mSQOqo7WNLVAp+meWJxZrJDcFpGUsRwcDBi4tL1C6d8beeeu2D2bIDTuWLKv6cWLCrF59PQ0RxA1GAl7R6xtiXYc8UvsPL3f4UVd70Fe1/3c1jzNwIAwkG3A/8//fJFfP+RPfjQxWsqdryVJpRCzGLobA7OuV2hWlPKnW3aEvJBwl3k89pCnCOkWxM9g2ZLQirc/fIh/PKZAxhPWPho6314X/AWwBfE8PI3Qd/wdjjz10MoIGIw/HEsAnvfU+jf9xucO7YZrff9Hs+2nAvn3H9C2/KTK/sDVkGqAZoNATgCfk1DOOhDU9BfN1lopfL+nV+FpFrBvzwcxYTuoLs1hJvefHLWqoSQ3iv45kLmTAe2ucArh2J43QmLi3qc3mduwsJnb0Ki71wMvfpbEOECu5u+ABL9FyDRfwGCiWH0vPR9dL/yE3Tu/C3G178DI6/6GGSoI//3FxAO+vGJ1x2Pj976Av7jD6/gi9eeWNGbg2pScOsKTCbRHPIhHPTTBbiKhASiJkdHGAgF/GBS1UVasGFzGFS7OmMSSEallQ+FWDJrIuTX0JwRuM5VSinc/fJhrF3YhlW9bQW/tqvVDVjHE27zKp9fg1QKftR4hzU5ni79vnfrIbd+NX3+ajAxjJaRZ3Hk1NzpwJUW8PvQGg4gbpVWM806lmHPlbdi5V3XY8Uf3oK9l/8MVu+JAIB1iztw7aal+OWzB3DGym6csaqn4sddKUwoJCyO9iIX10nlWEygOXmvwqXy3EJcqj4zs0lUsaImw5fvHcTzQxGcttCH37f/NxZNPI3Y8tdg+Nz/AG9ZAAAIJj8WdfqxqHMRsOoqAFfhmbERJP74DZw3dhta7r0aTy64Dm2v/Sx84fbK/ICzQKhjDdCCfg1NAR9CgcYKXufMFfoXf9mPu146hPmtTThlWRf2jhnYvPVI1tcpADbzwjrxMTYXyNW34JVDcTChimq4NG/wVix89iZMrL0Oe1/748LBagbWtgSHz/oMtr/5EUTWvgk9L/8v1tx2ETp3/rbswqWlXS342KVrsWMkgW89tNOz82/zEcqdPZne2t/24O58I1DK7eoq5LGW917mdrAUVLtaJ1Lp/jQ+A9gyHMP+cQOXb5x+EbQ7FbAax7rBeqGZXqqrfvqhbB2OIejXcNyCY0F4xx43HTi66oqsxwhVqZY5HPSjpYxxN6xjOfZceRtksB0r//BWNB99YfJzbztzGVbNb8XXH9iBCd2p5OFWnMUlNTGsASGPpdp6MS3Y4W7vmHKu7buPJvCRW5/HluEoPn7ePPzY969YEH0BBy74KvZf+r3JYLWQ7p4FWHbtv+PFNz2Ch9quwJkjt2PhTy9A4pXN5fw4NceSs9HHk00tJ8dOOQIWcz/yNUNTyXFgXEhwUbkRVZUwJwLWZ/ZN4NanhnDJugX4t6s34MbXrMXxi9px+zMHct6gWMw7XSO5kLDzpAO/eCACnzZ11TiXtgMPo++Rf0F86QU4eN5/Ab7yNtZ56yIMn/dF7HrD78DalqD/oQ9h2eYb4DfLm6161uoevPX0ZXhg2wh+98JwWY9Ra+mt/WOm28FwLGFjPOGO8hhL2JMdUQ2b2vCXS0ggZjJIJacMF/ciIzmPkP7S9cURChGDIWI4sBzhqQv1bLn75cNoDflx3pr5035tKiV4XHcmb4K98CsTUkHIqXvyWw/FsGZB+5SMqs7dd8HsXg+nc+WU7w/4tKrWg7U0BRD0l77rwdr7sefK2yCaOrHirrei+cizANyuwTdeNgCLSXz9gR2ef92aTEKnoHXWWYy7s4k91ilYJEtA7DKumcMRE5++YwuUUrj5dQvwrm3vQyi+H/te+yNE1l4HlJj91tm9AIve+m3ceeoPoasmnPnoe2De9QmAe3cU43RY8v404QjEbY645X5MGAzjCQcx0w1qxxMOxuI2xhJOshM3czv6J+9jJ3QHEd1B3HQ7+9fiPNPwAetowsZX7xvE8p4W/N0FqwG4dZRvOX0ZjsZtPLhtJOt7uFTgHtnFKTR/8uWD7kW4ULOFgH4Y/Q+8H1bXWgxd/G3AN/N0HKv3JOx+/W9x6IxPoW3oIaz55aXo2HVnWXcr15/ej7NW9eAHj+7B03tnfxB6pSkcmxUpkmlpEsdOGhMGQ8yknZxycAkYlqzoYPpKc7iExQXMGo1qITPHhELc5jnHiDWyqMnw2M5RvHrdgqK6Jbc2uZ0qJ3Rnsu7MC2/L1Lk3hQmJ3Ud1HL/4WHpfQD+MlpFnEMuxu9pU5dRwTdPcjvNlZOqx9qXYc+Vt4M3dWHH329F68DEAwLLuFrzrnBV4et8Efv/ioQofceUZzG3W5cXdvkbFJcCkBPNYp+DUrqpZYkZS1GT47O/cYPU/rzwOFz73YfitCey98lbofefN6JhWb7oYh/7qHtwdfh1OG/4pWn92BeTEvhk9phcJpWBzNdlsViK7+CZ1T8ulApPq2Hip5Lid2XwPN3TAqpTCNx7YCZtLfPzydVMuwpuWzcOaBW247emhrF0vqbxTx2qz3OnANhfYfiSODX0FdleVwpLHPglN2Bi65P+DDFUwH9/nx9iJN2DXNXfBaevDsgc/gGX3vRvBxMHSHkbT8LFL12JFTyu+eM8g9ozqlTtGj7K5op3WMllcwBbCs8GEbrtjbOg+jNSbu18+BC5VUenAgBt4dbeGMG44EFJCA2q+kKSSqcDpu0h7R3VwqbB2wbHrX/v+BwAAseWvyXqM2ahl9vvc0V3lYG192HPl7WBtS7D8nr92S3MAXHniYpy2ogs/fGxPXVxHLSYxkdqxccRkWqhK1iBzIWExAd1y0/XTv7bWr7N6ZTM1OSbRKxh3/86ldNBmQuJzv9+KsYSDT19xPE5/4ZMIj27B0Ku/ATNt/NNMdHZ2YsnbvoOfrfgCeuwhLP/l62Bvu68ij90IJNyFp4ju7tJaTvVL4ho6YH1g2wie2T+Bd569An1ps9cA92J7/en9OBKz8ZeMnT2FY0OMa83mIme7kcHDcXCpsHFJZ97v7dh9Jzr2bcaRU2/MSnuq2PF1D2D31b/FoTM/g7bhx3Hc7Rej58XvAbL4tOrmkB+fuWo9mkN+fO7OrRhL1G/6BakuBcCwpSfrWG0u4CRvsgjxsojh4PZnDkw2AHpw2wh+/uR+nLGyG8u6W4p+nHktIYzrjptJolTNuwQL6R5D+rzJHSMJAMCahcfqV9v3bYbT3g+7a+2U7w/4KjN7tRjNoQCCZTZE4a2LsPuqX8FYeCr6H/oQep+9GRqAj1yyFu3hIL50z7a6OA8puHWtcZsjajKM6U4yBdFNSYxbHAaTcISbNpr62nHdLbHxUuBVD2wuIJUquxNvNTii9DKf254awuDhOD566Rqcf+Sn6NxzFw6f8Qkkll1c0WPz+zScdOk7cP+5t+IIunDKw38L7b5PQuNWRZ+nnqW6FafelzHTqdqGX8MGrKMJG997eDc2LOnAFSfmXjHetKwLAZ+G7YcTWZ+zPRKwGnbuP/yW4Rg0AOvz1K/6rQksefyzMHpPwtjG91TxCAH4Ahg74b3Y8ab7oS8+E4uf/Hes/s2VaB55ruiHmN/WhM9etR5xm+Ff79wK3fZOHTHxFkd4s3GHYQvYXIB56GaAkFx2jCTw6Tu24D0/fgr/ff923LR5Ozb2deL/XTZQ0uN0t4QwoTtQyYC11k2XuFTQMLX50/YjcXSEA1iQHJ+mMQNtw48htvzSrBq3cmpLZ6I1XP6gBtnUiX2X/xgTx70RC5/5CvofeD/mBRg+dslaHJgw8b1HdlfwSGePwtQReIIAACAASURBVPQ9waUCDEeAe6we0+ukAhhXnknFFtKdv5qvT0suO47EcevTQ7hooBeXdh3Bgme+hsiqqzB2wg1VO86160/G8LV34o7ga7Fh30+w8JbL0DzyfNWer14puMFrzOQYS9hImKyiu651F7AqpfDQtpGCq4cWE/jKvYPgUuHDF6+ZMig8XdDvw/KeFuw6mh2wemEHRyRXFHN5+WAUK+e3oi3PTMre526G357AwfO+VHaTpVKx9n7sv+x/sf+S7yJgj2PVHW/A4kc/AZ8dKer7V/e24eOXr8P+cQOfv+sVT/wNiDfFLOaptGqLubur5bblJ2Q2nbaiG3e8/2xsXNKJ+18ZwUn98/CZK9cXVbuaLpUS7NY5KagavyVlWu+AlO1HElizsH1y/FjbwUfgEzbiyy7N+v7Znk8Z9PvQXEbX4BTlb8LBC2/CoTM+iY69d2PV767BafOieNOrluLeLUfwp+1HK3i0pBGYzDvTDBwuYTrFb044XOJrm7ejqyWEvzu3H0v/9DHwcBcOnfOFkhsslWp+dxf63vYtfL7r82BGFCvvuBoLHyn+/naukcrNnigl1Xs6dTeHdTTh4D3/9xSWdDbjxssGprSpB9yUh8/f9Qq2DMdw42UDWDKvOc8juVb3tuHPu8eglJoyT1MJd+Wnmt0Cp+PWr2b/sZmQ2HY4jtdsWJjju4Bg4iC6t/4EkTXXwe5ZV/A5gn5tyk2KSK52lf0i0zTEVl6ORN95WPDM19Cz5X/RsfdeHDrrs4itumrak8qrlnfhI5eswVfv244v3zuIf7n8+IaaI0Uqg0sgYXHMS47WqDXD5hBSlbRSXAqLCewcSWDvmI7RuIMx3YZUgE8D2sIBLOlsRl9XM9Yv7ig56CBz08CidnzmyvUYjprobWsqK1jrag1Ct936QyU11DopWErl3ownD8N0BA5MGDjnuGPzSTv23Q8R6oC++PQp3+tD9Rsu5dISCsDmTvl175qGsRPfB7trAEsf+iCO+80V+PsLb8aW4fn45oM7sWZB27T3QWTucHc0BVrybHbM6rFwkXdTJpdfPnMAQxMm/u31G7Byy7cQHt+Gfa/5IUR4+tGOldASCuCqN74DNz+yCcdt/Qbeue3nmLf7Loye8g8YX/8OqEB4Vo5jrqr9K7ZEve1N+Nl7z8QHf/Esbrz9BbzuhMU4f+18LO9uxUsHo/jt8wfx0oEoPnLJGlywtnfax1vd24b7th7BaMJBbzJlCAC4qn3AajCe8/K/cyQBm8u89au9z34dADDyqo/kfezUjW5T5gTpoB+tOLby5ZSZciNDbTh81mcQWXstljz8z1j24D8gvuPXOHjuf4K3FW7qcdHAAsRMhu89sgdf27wdH7t0LQWtJEvMYp4IWC3mpgFbJawUT0cphT2jOp7deRDhXfegKz6IPu0ozkMCttYE5m/Bfl8fXsFK/NlZiTuZ21Am6NdwQl8nzl49H+eumZ83A4OQlMWd5QczqdE2E4aD7rZQzZuNSel+pA5j19EEpMKxhktSoH3//Yj3X5jVMT/g16YsWs8Wn09DS9CPhDOz7IxE/4XY9YbfY9nm92Hlfe/CtzZ8AFePn4v/unsbvnzdidnXejInKcAz9c1xhxd9zhhN2PjVswdw7nHzcXb7CHo3fxsTa69DfPkl1T3IDH6fhrddsBEPL/483vjABfhn/AJnP/nv6Hn5Bzi66cOYWPumikzjINnq8m7mrNU9+M5bT8G3/rQbf3jp0JQZnuGgDx+6eA0uXpd79zHT6gWtANwLW3rAqhTAuQJqeD9s5WnzvWU4BiD3/NVQZBe6tt+GsQ3vBGvry/n9PgAdzcGCwXgo4EMoEILDJXSbl12kb/VswO6r70DP1h9h4VNfwppfXYpDZ35m2hlZV5/cB4dL/N8T+xD0a/hQgdRuMjeZyc6Ss9HVs5BU849SVorzsZjAHweP4oUXnsFVsVtwo/9JtGkWWDAEvXkxtJYehJQNvzOKYPwxaFCAH9B7BrC383RsVqfj9iNBfPOhnfjuw7tw1qoevP7kJTh+UeFZzYSUo6v12CzWlaL2NayZI222H4kDONZwqfno8whYYznTgUM1XJwOh/ww2czT51jHcuy++jdY8ugnsXLLN3F3z1O4avhd+M4fW/Hhi9fUJCAn3mM6tS+nEVJBt4pf5P2/x/dCSIV3nrUcix99F0SoDYfP+FQVj7Cw89f2YlnP1fjHu9ZideIZfBG/Rd8j/4z5L3wbRzd9BJHVbwB8tEhUSXUZsAJuwHXjawbwdxesxlN7xnEgYuKEJZ3Y0NdR0q7oip5W+DRg10gCZ646ljYklappp2CHS4g8N8AvHYyiv6sZ81qyo+kFz94E6Q/j6EkfyPm9PgBtzYGif0ehgA9BfxC6zUuek3XsSf0Y2/gexJddjL4/3YilD9+IeTt/g+Fz/6Ng9+LrTu2HIyR+8ZchhAI+/P0Fq+mCSyYxqaDbDKFA0/RfXCWp3dWZjrJRSuFP24/iV4++hL92bsH/Bu6HDIUwvvIqjKx/M4yFpwLa1Pesj+kIj21By+Gn0Db8GNYduA0bxE/w/tYl2LvxctzCz8etuyfw8I5RDCxsx/Wn9ePUFV30HiIV050MWCd0ByI5UqaWpFJTRtrsOOIuRKeule1DD0FpPsT7L8j63kANF740TUNLk3+ya/NMqEAzDl7wVRiLTsfixz+Nh9o+jXdt+wDuXdSB125cVIGjJfXO5gJSSvh8NcwgtIvP4Nt+JI6HBo/iTZuWYu34A2g79DiGz/k8RLirykdZ2IqeVtz05pPxtc0tOGfPenxs+R68l/0cS//4Ucx//ls4uukjiK68ggLXCqnbgDWlrSmAi45fUPb3h4N+LO1qwc6MxktKuau1Uir4apCOyoUEy3H1l0ph2+EYzj1uftbnQrG96Nz9e4ye8LcQLbnToVua/CWnBmmahrZwEAG/QMLKnab8/7N33uFxlOfevqds39VqtbvqXbLk3hvNmGCD6RA6CTkJIQ3Sky/JAZKclJPee0JIaIfeO4Ru3MDGvchNsmSrd2n7zsz3x2hllVW1Kux9Xb5sr2ZnRtK+877P+/ye3zMcwkn5lF/8CCn77yft3Z9T/Ph5NM7/PI3zPztgj9gblucSiqo88f4JTLLETWfkJxbcCbrpCEZJshgnTTLu73KzDpyCxKrFF+YXL5dhqd7Mo+Y/k2Joo6X0euqXfG3AcQygGmz405fjT19O48JbEcMdOCpfxXnkGWYcuZvvaXfxtfSlvO64lF9UlvCD5/ZRmu7gxhV5LMhxJsZRglMmJgmO9WKd7DYjqqYRUU+OxYP1Hczo4XNhP/42Ae9CVFPvmjdRYFLLf0BfiwTCyti0HBEEWmZeR8A7j5z/fI5Hoj/if9eXc9Dz/yhJqC0+9CiarlCymSfvM98ZGp7Tv6Zp/OudcpItBq5bmEL60z8mkDKb5pkfG+c7HB52k8wdF83igS2V/OY9gZfTf8Yvz6qkcM8fyHn9i6Q5fkHj/M/RMuNKNMPwW4Yl6M+0cwkeD4q8No409G60HZszJivLGo6qcQ2XqlsD+EIKpWn9Azz3rjvRBHnANjYGUcBiHP0ehdkg4bDInFJsIIg0z/4Eh65+jfa880jd/ntKHjoT965/IEb6NzsXBIFPnZ7PRfMyeHL7Ce7bfGzSF0UJpg6RSex7GmthE4yMfpF5uL6Trz28nbPr7+ch0//icDg5esVz1Jz1k0GD1XioRgdtxVdQef6/KbthM7XLvoMx2MBlR77Hm/IXeazgGdI79nDH07v59uO72VnVmhhLCU6JJIsBUYAWXwRV0xeXk/WZ0jQNTT3pENwWiFDXHqKka64UQ61YGnfRmXVWv/dOphy4Jxbj2GZigu45HLniedqzVvN9+R5Mz91KR0fHmF4jweSiaRrvljfztYd38Ol73mPj4cZhve9UNllPFU3T6Bxm68LtVa3sqW7n2mU55JT9C6OvmprTfzClspaiIPDxlXl8e10phxv9fHxjOk+tfJRja/5B1OImc8PtzPy/pWSu/7be7jEx746KqfGUnmSKvHaafWFa/OHu12KT7mT0q9K6DJ/UOLFyWa0+2ZSk9w5YpUAjroOP0Drjo0Rt8WU/Y+EKZ5Kl7kXKqRC1pXP83D9z+PJnCXrmkrHlx5Q8uJLU936B3FnT61hBEPjc2YWcPyeNR7Ye55/vlCcW2gkAiCrapAWsga4eyaO9/vuVLXz78Z18RbuPb0oP0lF4IUeueI6ge84p31vUmkbjwls4dM1bVKy7l0DqEhbXPcE9yn+zK+lrfLb1N2x65k5++th6diQC1wSjRBIFkq1drW00iDJ5smC1z/XLG/UN0GKvnmG1V29E0FQ6s87s917DJNfBxzAbJKQxVj6oJifVF9zFvtIvcoH6NqmPXYrYfnxMr5FgcugIRvjOE7v54XP76AhGsRplfvLiAX7ywn4CQ5h4TWbAGggrRIYhB9Y0jfs2HcPrMHFxkQHPrr/Tlr8Of8aKCbjLkXPWDC+/vGo+ZoPIbU/t5a7GORy6+EmOXvI47QUXkHz4KYqevozix87Fs+PPGNsqJvuWpxXTXhI8FhR1SYaONvhYkqdLnDT0wTIZvR4jSqyXXP8BfbCuE4tBIsfVW1rg3ns3ghKmcf7n4p7TYhDHzJzGIIk4zAY6AhFO9acT9C6g4sL/w1K3Dc+uv+Pd8We8O/9CZ9aqLge4tWiyGVEQ+OI5xZhkiad3VBMIK9x6TnHCPfhDTrSr8fhEO3pHFJWQohKOqsOaePtyuL6Tn7ywjx9aHubayDM0zf4ENaf/aOx7yQkinTmr6cxZjRhqI6niZRxVr3PxiXe4XHsdWv/I/hdy2G9dhmfxxbhnrkKTJt95OcE4o0QQ6vcBeaf8mXNZDTT79M1eTdVluSIT/1xWu0p4YqOxstkPQJ5bnyvtx9ejGGz40xb3e+9ky4F7YjGKdIbGOJgQRNRV3+IpoZA1+++Axy+m/uJ7CXrnj+11EkwYHcEIdzy1h8pmP7eeU8TaLqPRJ7ef4J5Nx5iRWs3VS3MGfL8+d01OJwx/ODqsja13y5s5VN/Jlz9STMbuPyNGA9Qt+9b43+ApUOi187trF/LH1w9z7+ZjbKlo5qvnziHn7F9Tc9r/4Dz6PMkHHyX9vZ+T/t7PCabMpK3gItqKLh3U0yVBImAFoNDT5RRc38mSPL2IW2+EzqgWo6dKRNHlwPGufLCug+JUe69ATYz4SNl3D+355xNOLur3HhG9f9RYYpRF7BaZjsDoa1p7EkhbQtXaf2BsryD54GMkH3yM3NdvRTHYac9fR0vpNfjTV/CZswqwGiUeeq+KZl+Yb60rHfPvLcH0QUOX7QcjyoROvLHsamgUu9S1bUH+55m9fMXwDNdGnqJp9n9Rc/oPx73xuWpy0lp6Da2l14AaxdK4G/Pxd7AceoNL2p/GsPEJfJvsNGavQZt9Ob6sM9CkyTO0SjCOlL+F6f4rycldQ/UZ/ztkq7HBSLEZaeoMd8+Zk9XaRlG1XqqkyiY/dpNMslVvMWGrfgdfxsr+7WxEYUptfJoNEv6wMi4/xxlnXslvfU4+Xflt8p65iuo1f6Yjr79jcoKpTWcwyh1P7eFYk5/vXjy7e90KulnljqpWnt9dwxWLsgbsr6yoGpHoxAesqqoRCCtDrhtVTeO+zcfIcJpZlx0m5bH7aSm5hnBy8YTc56lgNcp86/xSVhSk8Pe3j/Llh7Zzw/JcrliURcvM62iZeR2GjiqSKl4mqfxFUrf9hrRtv8bvmU/LzOtpK7oM1Wgf+kIfMqbOtuIkYjPJZDjN/YyXFFXr3rWdSMLR+Pb24ahKeaOvX/1q8qHHkUNtNM7/bNzzGQ3iuBhHmWRpzPs8hpPyqV/6TQ5et4HyCx+kveAikipepvC5a5jx6Dl49v6LTyzx8MVzinm/soXvPL6bxs7QmN5DgomlqTPE2wcbePtgAxuPNOIbZm1LDHWCZcGKqhGIKkQVdcStbEJRhR8+t48z1Pf4vPoQrcVXTEiw2g9RJpC6iJbFX6Lz2ifYecMO7s37Ca+oS3BVvkL+y59kxj2LyHrtizgPP4UUGF5dVIJpQuE5RM79EfYT7zDjsXPJeOc2kspfxNRcprtOV76Oo+IVkspfRPbVDnoql9XYXU6jahrxt1rHn5hRYozKZj+5KVYEQcDQXomp/dgA9aunNvaErj9jhSDofVnHA0EQuGztuXzX/TsORDPIe+XTpL73C1DHrod0gvGlIxjh9qd2c6zJz+0XzeoVrMa4dGEmjZ1hNh1tGvA8iqqvKSeaYFQhFB36GfFeeTMVTX5uWJ5LxvbfgSBQv+TrE3CHY4MgCKwuTeUvNyxmWX4K92w6xlcf3sGBWr0tZcSRQ9O8mym/9HHKrt9MzYrvIqphst75b0ofWEb65h8j+Rsm+buYWiRSU11kJVuoaw/2ek2ffHXZoXGCdmBjMmQtznPkaGMnUVWjJL3Hzoum4t7zL/zehQRSl8Q9p2WcJj/Q+8cpqop/tC1vBkKU8GWdgS/rDKpP/wHO8udJ2f8AGZt+gPf93+Gd9XEKz72A29/y8fVHdvK9i2dTnJrYkZouaJrGexUtvLinhm3HWnplE9KTzNx24UwKvcP7fUa7jFZCUWXEDtijwR/ucgYeokYoHv/eUIGh5RC/tf2FYPIcTpz184kPVuNgtjlZfN7H8YWu4/e7KmnY9TKnhzZx3tE3yTn6DAAB91x8mafhyzgNf9qSSW8pkOAUECWUFbdQ7jmbtHd/RvLhJ3Hvvz/uoapkpmHhLTTO/zyabO73dZfNSFsggqJqujJokjKsmqahKCf/fazZx1kzdOMy+4n1AHRmr+r3vtG2s7HIEhaT1J2hUlSNQDhKIHLq2VFTLMt6aqeJiyyJfO7i0/nKIz/llsA/uGrHn7DVbeX46t8O2Ls9wdSgPaDLgKta/Nxx0SyW5qfEPW5ZfgoZTjPP7KzuHgN9UTWNcHTi61hDEbWXk/dAPLn9BF6HiXMzwyS/8yRNcz45oD/LVMZlM3LbhbPYfLSJv711hP/36C7WzU3nv07Lx27WQ7CoPYOm+Z+had7NWOq34957N+49/yRl3720lF5L8+wbCblKJvk7mXymX8CqaVD2AqJlAcjxW6GMBo/dxOH63hnW2EZxVFUxTlAyOqyoqDBg/SrQ7XoIYK96E1PbUarO+WPcha9REgaUhIwVNrMBRQsPa9dsNGgGK60lV9NacnV3ratnx1/4KH/m7NQl/LV1OT98vJ3Prl0Yt91PgqmDompsPNLII1uPU97oI8Vm5Kol2Zxe5MEki9S1B/nD64f55qO7+PK5xawuHbplVUy2H4qo4x6wappGMDy67Op7Fc28uquCN5L+jCiaKF97Z9wAYDKxmWSuWFaIsuTzvFt+DZ/bc4LI8e2cKezivLb9zG6+G8/uOwEIO3IIeOYT8C4g4F2A37sgYds/zYgk5VO15m+gRrDWb8fQWYNiSkYxOtAkA4IaxbPrH6Rt+w3OI89w5Irn0WRLr3OkWI2omu7KazVKkxawKppGtGsh3OKP4Asp5KV01a+eWE/ElkHY2btkRmTkDsGiAE6LsZ8nhCTq7d9sJpn2QGTEz4de1xAFTAZx9L3Ph8Bukrnj8sV85/Fb2RaZzY/q/0XxY2upXfldWkqvmxKbaAl6s+t4K3947TDNvjB3XDQ7bmY1higIXDw/gzvXl3OoroMZcbpKaOi9zMNRdcz8TYZCVTUCkWhcQ9GelNV2sKe6nc+cVUDq3rsAaJp38wTc4fixstDN/GwnD2yp5Jmd1Ww80sR/nZbHmtlpiLHxJggE0hZzPG0x9Yu/infHn3AdeBD3vnvwpa+gpeRq2gsuGLAN5Aed6Rew+hrgkU+Qb03j+Kpf4Isj8RkNbruR1kCkVxF6zDkzOoF1rLFrxZMEl9V24LYZ8dhP1pV59txFxJpGW+GFcc9nHmOb/IGwmwxElPC41y/Fal3lzhqSDz+B6+Cj3KH8lW/Kd/HCq8t5++iVnHHu5UjS1LE8/7CjahpVzX42HmnipT21NPnCZLssfGNtCatKvL3qx3JSrPzhuoX89MUD/PbVQ+S7beR31ZgPRKxfciiioJnlce0vGujKeow0u9oWiPD7Vw/xU/sjZIQrKL/g/imdzZBEgdOK3JxW5Kaps5Q3ys7lln11NHS2sdJwhEs8tSw3VZDesBNn+fMAaIJEwD0HX9aZtOetIeBdNKVaDyQYBNGAP3153C9VrfkrrRWvkPefm/Hs+gcNi7/S6+vOrhrRtkCEVIdx8iTB6sn62com3XApN8UKmoatZgsdOav7BWKyJIzoeSESP1jtiSAIOK1GpGAE3yhUGDEsRplAJDz0gaMk1WHmJ1fM4ztPaOyMzuRe131krf82zqPPceLMnxJJyh23aycYBoFWmvdvZWNHHu8ea+M/++rIcJr58eVzmZ05dC/dtbPTuH9zJc/vruGrcQJW0NVJUWXiAtZQVEVRGPIJ8dT2E9iMEuuKLbgee5C2okun9Hw5XKxGmZvPKuQjM1P521tH+cPrh3lhTy03nZHP/OzevaHDyYWcWP0balfcjuvgI7gOPEj2299E3XAH7QUX0FJ6rV6TL3x4KjunX8BqT4VPvYT6+OcoeOFjNJdeR93y21DMyUO/dxBiQWBTZ5h0p571ULsD1onT+Ue6dmXjtdM5WNdBaY92NqbmMuwn1lO39Fv9jCRAN5OYCIkk6DvCdrNMe2BiamGi9gwaF95K44JbsNRvJ+ngo6w7+BTWY+9Qe/fPCMy6msicawg78yfkfhKcpL49yH8/sZva9iBRRaOqxY+/a+G2JNfFLauLWJqfMqDRSbJVl9B84f5t/PH1w/ziqvlDmqJEVBVRlAhFVczjKIH3jzK7evfGCpaFt3CF4UUa530WXxxp4lTFbTdx1ZJsrlycxYHaDv6zL4fvHmokEFHw2I2cVyxzUUoNM0J7sNW9h2fXP/Du/AuKMYmAZy4Bz3yC7jkEU2YSSi6M+6xKMLXpyD+PtvwL8Oz8Ky0zrydqPal8sHeZ3vlC0a5erJNzj1FF7V4IH2vWW9rkuq0Y2yuQg03405b2e89Is6tO6+DBak/sZgMadD/7RookCphl8ZQytUOR7jTzv1fM47Yn4JyGr3Hv/D3MP/A7Zjy+lrolX6dp7k2J8TpJ7HjtIRZu/TanqflsVq7msgUXcuNp+cOe36xGmaX5ru62ZfE2ZrSuDKt1grz1wlGFyBDp1dq2IBuONPLRRdlkHX4QKeIbsPvFdKXQa+fnV87j7UON/HtDObc9uYd5WU4+tiKXuVnOXscqFjeNC75A4/zPY6nfTvKhx0k+8jTJh58k7MihpeRqWmdcScQxsCP0B4XpF7AC5Czj2JUv4nrv13h2/5OkY69Qt+xbtBZ/dNQSO49db+XQ2Bk6GbB2fW0ie7FGuoLjvmO6PRChpi3I+XNOavhT9t+HKplonnVD3HOZJ7i3nEmWsBjUcZMxxaVLQhFIW4xw2vep2vgIjgMPc9qePyPu/RMB91w68s6lI/scgp65iZYdE4CGPmZEQcBiFDm7xMvMdAdzs5ykJQ1vfDotBj6zqpBfv3KQ53ZVc9nCwXdXFUUDGcKR8QtYgxEFRdNGnF3dV93O9n0HedN2J4HkOdQt+3/jcn/jjSAIzMpIYlZGEp9dVciW8mbeOtjAI/taeEB1kp50LqtKrmX1YiNzg9uw1WzG0rAT9567ENUIAKpkIuieQ8A7H3/qYvypi/WJNiFBnPLULf9vko79h9Rtv6b6rJ93v24z6ePNF9Yd4yejFRxARFO7UzeVzX4cZplkiwHr8a0AcQNWaQQBq80ojTgTZTfJRBWN8Ch/JmajNK4BK+j+HT+/cj53PLWHG3bM4ycfeYJzy39Bxpb/xVX2MDWn/c+02mD7oJCz6hNsDEeZf/hv3OX/JYGmF2moupX2/HXDVq7My3Ky/lAjte1BMpyWfl9XNK17zTneaJoeHA9VN/vsrmoEQeCSuSm4n/0XHVmrCLpnT8g9TiSCIHB2iZfTCt28tLeWR7dW8Z0ndrMg28nHVuT1z6L3WOvWrvwuSRUv4ip7mLRtvyFt228IpMzCl3UWvowV+FMXoVg+eOVx0zNgBTTZTN2K22kt/iiZG24ja/13SHv357TOuJKOvDX4vQtHVE/VnWH1nZTgxCTBKkxIv6pwVO0OkvvWsMYcjEvSdCMaIRog+fBTtBdciGKOX3hvHMdM00DYTDJRJUJkEnobaLKZ7FWfoGbB1XzylU3MbHiZK9p3MvP9P5L6/u9RJZOe8UldjN+7gKB3PmFH7odKUjERpFngroWHOZS0nKglvuHDcFhd4uXNsgbu23yMM4o9vaTwfYl27fCEogqaNj6y4MAosquKqvGXNw/zM8u9WLUAR875/QeiVYzZIHF2iZezS7x0hqJsOtLE24caeGzbcR7ZCpnJGawouJnSeQ5KPUaylBNYWg5gadyDpWEnrrKHce+9GwDFmETQVULINYOQs5hQciHhpHwijpzEBtMUIuzMp2nOJ3DvvZumOTcRSikFwGqKZVh1rd9Eu+rH6JlhrWoOdDsEW+u2ohiTCLlm9DpehGEHoLIoYBuFI74gCCRZDDT7QqMqlzFIIgZJGPf2eulOMz+/ch7ffXov33ilkc+e9SOuK72ejC0/pODFj9OZcRqNC2/VXZYTm0sTgjvJyvwLP8exhutIPvg4np1/Jfe1LxBKyqdp7k20llyNahi8XGZeV7Zu9/G2+AGrqk3Y+jbU1f1isI9yMKLw6r46ziz2UNjwOoZAAyfm/WZc72uyMcoily7I5Pw5aby4u5bHth3nW4/vYm5mElcszmJZfsrJGtcuNNlMW/EVtBVfgaHjOM4jz2A/8TYpe+/Gs/sfAITtWQQ88wi65xJMKSXkKiHsyAFx2oZ90zdgjRFyz6L8ksexVW8gZf8Dj1dNegAAIABJREFUuPfejWfPP9EEiVByMeGkXMKOPILu2QQ8c3WnrTgBirtHhjVGzyynomqMd/wX25mO14O1vFGXOBV01fM5jz6HFG6neeb1cc9lkCant5wg6NLgNn9kXBwOh0OG08I3rjyH53aVcuWWSmzRVr5UWMfapEqSmraTsu9ePIr+e1YMtq6BnEvEkU3IWUjIVULQVdLPXCTBMGk9hvjsrZQIMm3FV9A49yZC7lkjPo0gCHzh7CI+e99WXtxdy42n5Q14bGzTVoVxkQWHoyphRR1xdvW5XdXManmDNcZN1C799gfS6c9uklk7O421s9No9YfZfLSZdw438uzOap7crj/JXFYDpWmlzEhbSuFcGwUpJjJDR7E37sDUfABzSxlJFS8jBx/sPq8miESs6UQc2URsGSgmJ4oxCcWcQtSaStieSdhZfMrlIAmGT+OiL+Peey/JR56iLuXbAN2tzXyhrgzrJGmCY4mimEPwqi53VGvdNvxpS/rN+wZ5+POj/RRq4yVRwGE20BaIjOr9ZoNERBn/Uhu33cSvrp7PL18u429vl3Nkdj6fv+xlMg89gGfX38l/8eMEUmbRMutjtBZfjmocuo4ywRggGvTenSVXk1T+Ap49/yRz4/dI2/or6pZ8g+bZNw4YhGS7LCRbDew+0cZ5c/o77MY2USaiH2s4quoby4M8Ht4sa8AXVrh4fgYpW28nlJRHZ/bY+NRMdUyyxOWLslg3N52X9tTy9M5qfvTcfrwOE2cUuTlrhpeSNHu/51DEkU3jwltoXHgLQjSApWEXloadWBt2YG7ci7Pipe5jNYSu+dNLKCmfsLOAoKuUoGceIWfhlPecmJCAtbS0VAT+AiwAQsDNZWVlh8fsAoKop8KzzkIMtWGt24at7j1MzWUY249hP/42YleAEnIW0bDwFlqLL+9Vm2E1yliNUu+AtcfAiioq4x2xxqQZ0Tga//JGHx67EYdZv2fXgYcIOQvxp6+Iey7zBNWuxkOWRKwmic7QxFumx5BEgcsWZrFqhpe7N1bwvQMOfmWeybXLPs0F6zwktZVhadqLuXk/ppaDukPm0ecRNH1hoIoGAqmL6cw6i/b887s2OhI7y8PCW4ry+S20v/l7kg8+iuvgw/hTF9FSeh3t+ecPqAiIR7rTzJI8Fy/vq+W65TkDTqqKprfUkESBUEQZ84A1GFaIjDC72haI8PyWvbxguodAytwPXB1OPJKtRtbNTWfd3HQiit43uqy2g4N1HZTVdbC5vLn7WEkUSLHNxGOfT4rNSEqekSxjgEKhmkytltRIDSmRGiy+E1jrtyOGO5DC7Qha7+dKxOIlmDKLoGcOAfdcAt75RBy5ifE6xpgNInZ7OpHMpTiOv03dMj1gtRpPSoIB1KEsQMeBWEsdgGZfGF9IITfFihhqxdxykLbCS/u9xyAOb4FukaVT9oIwGyRCEWVU8l6zQcIfUuIaMY41VqPMdy+ezf9truSRrVXsrW7j62uvYdZ1N5J86ElS9t1L5oY7SN/8Y9oKLqS19JoPnfHLpCFKtBddQnvRJVjq3idt26/I3PR9XGUPceLsXxP0zO33FkEQmJflZNfxtrh1rDE1xETIgkNRhegg8aqmaTy3q5oir40Fphpste9Ss+L2D91ny2zQA9dLFmSy4XAjb5TV89yuGp7aUU1akqlbRlyUao+TebXgz1iBP2MFsQ68YrgTU+thTC0HMXZWIQWaMPhqMbUexlH5Wne5jmJw4Etfhi/zdDpzVhNKnjHl5tCJyrBeDpjLyspOKy0tXQn8GrhsPC6kmpx05n6EztyP9HgxiqntqN7faM+/yX7rG3h2/pXyix/ppfN224w0dfaXBMPEOAXH6lzi9WAtb/R1Z1dNLYew1b1H7fLb4n6gRiJ1Gi8sRpmIoo5bq5vh4rIZ+draEi5ZkMndGyu4c305j247zuULs7hw3tVYZ/YYAmoUY3tlVwD7Pvbqd0jb9ivStv2KkLOItsKLaCu6rJ+0LEEc3MXUnPUT6pb+P5IPPY7rwANkrf82me/8N770lbQXXEB7/vnD6qt24bwMfvDsPrYcbebMGQPXZUQUFUmUdGm9qiGOkcJAUTWCUYVAeGRZjvs2H+Or2v0k0cnRs381raU4o8EgiZSkOXq14fKHoxxt8FHZ7KexM0RDR4gmX5iKRj/vH2slEFEAK1DY9QeSLQayXBaKs+zM8NqYm6KRKbdh6qjC2HYEc8tBzE37cO/+Z/fkG7F46chbS3v+Ovzpy4aUziUYGrNBQhAEwvmrsW/4GVKgEcXiwSCJmGQRf9cG5WSUsKrayYC1sll3CM5zW7HWbwfAn96/fnW4/VctprHZ/LKbDYQ7Q6NSHlmM4oRtAIuCwI2n5bEgx8lvXz3Etx7bxUXzMrhhxZW0zLwOc8MuUg48iPPIM7gOP0HYnkVb0aW0FV1GMGXWlFvkfhAJpC2m4oL/I6niRTI2/Q8Fz15F1dp/xO0zHKtjrWkLkpncWzWmos9vo62xHi7hqIqqQXSQ9eDe6nYqmvx8+SPFuPf/BVU00lpy9bje11RGEgVWlXhZVeLFF4qy+WgTbx2Mld0cx2kxsDAnmXlZTuZlOclMNsdVgahGO4HUhQRSF/a/iBrF1HoES+MurHXvY6vZRFLV67Dlx4QdubQVXkTLzOsJJ+WP/zc8DCZqBXUm8BJAWVnZ5tLS0v6zx3giyoRcJYRcJbSWXIOj4mVy3vgyeS/fRPnFD3dLPz12U68Mqwbdu1JDOZudKlFF7c7o9q1fjSgqx1sCrCjQM1OusofQBJmWGVfGPZdBFsZssX4q2E0GokpkQnaGh6I41c6PL5/LruOtPLr1OHdvrODRrVVcND+DSxdkkmw1gigTTi4knFxIR8E66gDZX09SxcsklT+Pd8efSN3+BwLuuTTP/gStxZdPuT6aUw3F7KJp3s00zf005qa9JFW8RFL5C2Ru/C4ZG7+HP315V2+xC1GN9rjnWJzrItVh4oU9NYMGrLHdYhUIRhWsxrF5vAXCUcIj3Hw52tBJzd4NXGN6k4Z5n/tAmkaMBqtRZm6Ws58TYoxgRKHFH6bZp/+paw9R3Rqgstmvy6S6MlTJVgMlaZkUeGZQmHUlRQvtpNvA3HIQS+Mu7NUbcR55mpQDD6AJIsGU2QS88wi6ump5nAVEbBkfut370WKQhG51QyjvHOwbfob9xHraiq8AdO+CzpC+oTORJoUxVE3rVibFAtbcFCvWfdv0dkveBb2OFwWGJYE0y+KYSSUlUcBmlukIjlzeazZI+MPKuLeN68n87GT+dP0i7tlUwfO7a3ijrIHrl+dw4by5BM/6KTWnfZ+kipdIPvxUlzP4Xwnbc2jPW0N7wYW6ydUUlxhOawRB/zmnLibvpU+S99InOb76N7QVX97rsO461hNt/QJWoFuZFFVU5HGSBUcVFQGIqANvujy3qwa7SWZ1gY3kRx6nvfCiEamxPsjYTDLnzkrj3FlptAUivF/ZwrZjLeyoauWtgw2ArnQp9Ngo8Noo8Ngo9NjJdlkGV5uJMqGUUkIppd2bA4bOahyVr+E49p/ucd2ZdSZt+RfQkbd2WEmG8WKiAtYkoK3H/5XS0lK5rKxsYnqg9EQQ6ChYR5XwR3L/81lyXv8SlWv+DqKE227kWKW/+1ANXRYsCfrfY5m16UtPU4W+AV5lsx9F1fQMqxoh+dATtOetRbHGN7QxTqIcuCcnW91EJqkzX3/mZyczPzuZQ3UdPLrtOI9uPc7TO6o5b3YaVyzOItXROwCNWlNpnn0jzbNv1IPXo8+RUvYQWeu/Rdq7P6G94ELa88/Hl3n6B8JMZ9wQBIKeuQQ9c6lf+k1MLQdJKn+B5ENPkv32N1E2fo/m2TfSNO8zvVpmgL7QWzc3nXs3HaOq2U9OSnwztZ6ypmB4bAJWTdMIRBSCI6hd1TSNO98+zI9N9xI2e2hY9OVTvo8PC2aDRIbTMqBByLEmHwdqO9hf086RBh9bK5q7F/EOs0yBx0aB53Ry09eQWfR9SkO7yGzfib1+G0nlL5Jy4GSNrCqZiNgyidrSiFo8KEYHijEJTTKhiUbExdeC7YNXczwaepaYRNPmo1hScFS9dTJgNUrdkuBJCVh79GA93hLAYZZxWgxYa7cSdM/ql2E3SMObxy1jtOkVw2qUdfO2Ef6MBEHAJIsT68CPvlC+ZXUxF8zN4J/rj3Ln+nKe3lHNDStyOac0lbbiy2krvhwp0EjSsVdwHPsPKQcewLP330QsXtqKLqWl9Lpug64EY0/Ulk75JY+Q+8pnyH7za0RsGfgzTpaKZbssuLrqWM+PW8cakwVrjNfSMaKoRDW1X/eLGC2+MJuONnHJ/AzSKp9HinTQPOvj43Mz0xynxcA5pamcU5qKpmmcaA2w50Q7Rxo6Odrg45W9dYS6NnYFIDXJRHGqndI0B6XpDopT7YOWOETsmSfXvL5aXGUP4Tr4GFkbbocNtxNwz6EzexWdWWfhT108InPbU2WiAtZ2oGfnYnFSgtUedOSfT83pPyBz4/dIOfAAzbNvxGM30eIL99ppUjUNCX1yi6gqpnHaMey52O7rsljRw3DJUfUmcrBpQKmEwMh7y40nRlnEZpToPIUG6uPBjDQHt104i6pmP4+/f5wX9tTywp5aVs3wcOXibPI9/SWEUWsqzXNvonnOp7DWbiFl333dWRxVMuFPXYI/YxnBlFmEkouJ2LNQZWtCIhWHkKuEBlcJDYu+gqX+fd0sbfeduPfeTeOCz9Ow8Eu9HGLXzk7jgS2VvLKvjk+fWRD3nD0XgRFVGxPnw0BEIRwdWe3q9qpWZtS+wALjIY6v+DWqMX7T9gQjQxIFCr12Cr12LpyXAehSs2NNPg43dHK4vpPyRh8v7antnrDBgiisJMW2ijSHiZlpQeYYqslQqkmLnCApXI890IC1bTdWpRNDpBNRDSOg4Uv2QFYiYBUFMBl6jCNBJJx7NvbK9Xr9iiBiNcndkuCRBmNjQU+H4Pr2EGlJZgRNwdqwnZbSa/sdP5z6VaMkjktpjc0kj8qAyWyQJjxgjVHgsfHjy+eyo6qVezcd43evHuLh96q4ZmkO55R6weKhZeYNtMy8ATHiw175Gs6jz+sGh3vuwp+6mOZZH6Ot8OKEmeE4oBqTqDzvnxQ9eTE5r93CkY++2L3xG6tj3T2MOlYL47O+DSsqijJw/eprB+pRVI3z56STvPEJQs6iuG2oTgUBums+BUHvF62h6c7mY3qliUMQBLJdVrJdJ4NGRdWobQtS0aSX3lQ2+TlY38GGw3pVqywKFHntzMxwMCsjiWKvnbQkU1w5cdSWTsPir9Kw6CuYWg7iqPwPjqq38Oy6E+/Ov6IJMgHPHF3B6iwgYs8ianajmJL1jV+DDbxjt1k1UQHrBuAS4JGuGtbdE3TdQWme/V8kH34az86/0TzzOjx2ExrQ4o/gdejZsp7y3Fivx/GgZ8Dat5zgaKMPkyyS4bSQvO0xomY3HTlnxz2PQZoacuCeWEwyIUUdd2v+0ZCTYuWra0r42Io8ntx+glf21fJGWQOLcpO5eF4GS/NT+rstCwL+jJX4M1YiRIPYqjdgP7EeW80WvO//AaHHY1mVTCgmJ5poQpMMCEoEQQkSXvFFWP3VCf5upyCCQCBtCcfTllC/5OukbvsNqe//nqTylzh+9q8Idkn5XFYjC7KTea+iecCAVdXotdkUiiinHrCGlRE5A2uaxmObDnKX8WF8ngW0DiDbTzA2GGWRGWkOZvSok1VUjYaOEHXtQeragzR0hKjvCFHTFuT14/C43wt40T0A4yOi8tXwTBK5cTDJYr/FTDj/HCxlT2Ju3k/QPQe7UaY92GXeEc+EYZyJKifdXOo7guSkWDE3H0CMBvCnLul3/HDqVy3G8Vm86yZK0RG3fpMlEaMkEJ6keVQQBBbluliYk8yW8mYefLeS3792iEe2VvHxlXmcNcODKAioBhvtRZfSXnQpUqCJ5ENPkHLgAbLf+gYZm35Aa/FHaZ55/aic4xMMjGp0ULn27xQ9dSk5r91K+UUPdvsmzMl08vahRho6Q/1UZIp2MmAdDxRV0+fmAdKrmqbx8t5a5mQmUWhsxVqzhfolXx+TjX5JEDDKQtfYEQdcG6uqRlTVCEUVwhF12gawoG/sZrksZLksnNHj9VZ/mLLaDvbXdLCvpp0Xd9fy9I5qACwGiTy3lXyPjQK3jZwUC9kuKy6rQX/2C0K3dLhx4RcRwx1Y67ZirX0Pa9372I+/jevgo3HvJ3jtwzBr3Zh8bxMVsD4JrC0tLd2IvtHxqQm67uAIAg0LbyXvlZtIPvIMbvs5gN7aJhaw9lTnjpfxktrD4VC/Zu/rlDf6yE2xYgy34Tj2Gs2zP97L4bgnk222NBAOs4FWX3jKPgi8DhOfXVXI9ctzeGF3Lc/vruFHz+/HazdxyYIMzp+THrcPnyab6cw9l87ccwEQIn5MbUcwtRzC4K9DCjYjhdoQlDCCGkETDWiyGSktTgH8h5yws4DjH/kjbUWXkbnhNgqfvYpj5/8LX5Zua78gx8m/NrTQ2BkasCdrVD0pawpEFOzm+ONkOISiCqERZle3Hmvh7KaH8RpaOHL6XYkayUlAEgXSnWbSnfHryyOKij+s4AvptclRRSMY0Tcm/BHdDTqqaJw/J22C73xqYopTAxXOWw2Aveotgu45WE0SNe0BQE+6xsvkjCfRrlZwmqZR3xFicZ4Lc9N7AAS883sdO5z6VUkQxtxpvCc2s0yrf+RZVpNBIjwBLW4GQxAEVha6WVGQwrsVzdy36Ri/fLmMx7cd56YzC1iYc7LNlGJx0zT/MzTNu1lXJe3/P1wHHsC97278qUtonPdp2vPXfegM6caLUMpMqs/6Kdlvfk3vlzzvZuBkO8Rjjf5+AWsswxpVtXEpe4sFwuEB5tHdJ9qoaQty/fJcko4+iYBGW9GpebIaJQGLUR72elgUBYyigFEW0UwanaEowUlSM4wXyVYjKwrdrCh0A/rv5WiDj6ONnVQ0+qlo8rH+UAMv7antfo9BEnBZjbisRpKtBlxWIx6HkTSHGa9jMe6SlaQsMmKURKSID9lfjxxsRAq1IigREAQ8eWPXlmhCnhJlZWUq8PmJuNZI6cg9l2DKTDw7/oJn9XkAAzsFj5PxUriHnCnWyLnn9SsafawsdJN09FlENUzrjKsGPNdUqV/ti9TVeL0jNLmT7VA4zAauXZbDlYuzeLe8mWd2VfOvDRU8+G4V581J45L5mQMuhAE0g5WgZx5Bz7xBr5ORlKh3HYiOvDUcTl1E/gs3kPfyTVSedxed2atYlOuCDRXsqGplzaz4wYTSo/2UqukmPqNdeAZCCqHIyLKrz2/axT2G52jNW0dgjCVNCcYGgyTitIg4LYNvZvRd2H0YkUUhbnCn2tMIe+ZgP7GexoW3YOshCVY56f0wUcR6mLcHo4SiKqkOE5amvSiylXBS7/7Nw6lftY5TdjWGSZYwSQqhEWa1JrLFzVAIgsCKAjfL8lN4+2AD9246xh1P7WFZvoubzijo7TXQQ5UkBVtIPvQ47r13k/vaLYTt2brLcMGF+ryZKKE5JVqLP0ryocfxbv8DLSVXo5qc5Ln130VFk49lBb2NjHp+BMOKinmMy94iigqaNmBt+8t767AZJc4odpP87NP4vQsIO/NHdS1ZFLCaTq0NlSDofZONskJnMDqhRmcTiUESKU3X61pjaJpGky/M8eYAVS1+GjpDtPjCtPgj1LUHOVDbEbecQRT0Z5PTYsDrsOCxJ+OyGvDaTdysSoxVlWtiW0sQaFhwCzlvfJkZLW8Dzl5OwT1F9+NlJtHzvH2v0eQL0x6MUuCx4Tr0hN7k1z0n7nkMotBfvjqFMBslwooy6a1uhoMsiZxe7OH0Yg+H6jp4cvsJnttVwzM7qllWkMIFc9NZnOua0j/v6YxicVNx0YPkv/Axcl/5NOUXPUxe6iKSLQa2Vw4csPaV2QXCowtYo4pKSFFHtMv6bkUzl7Teh0WOcGL5t0d8zQQJphrmQTIU0YxFmA8+D5qG3XjSJVjTIBJVkcY56OtJrNykoUOfu1MdZsxV+wi6Z/VTOQxVvyrCuGZXY1hNMiF/eOgD+zCRLW6GgygIrC5N5fQiD8/srObh96q49YH3WTc3neuX5+KyGnsd3+0cP+dTOI79B/f++/Ds+jvenX8hYk3Fl3E6vozlBDzzCaXM7OVlkGAYCAK1K26n6IkL8e74E3Urbsdmkkl1mKho8vc7XO3VvvHkhu9YEYmqugIizrKvIxhh45FGzpudjqOzHEvjHmpWfm9U1zEbROwmecyUHSZZQraKtAcik1KXPxkIgoDHbsJjN7EwNznuMaGoQn17iIbOULebfzCiEIgotPkjNHSG2H28jRZ/GFXTWJrvYs3ssXEWTgSsQFvhxaRt/SXZh+7DJH+5V8DaczCrMC7W35EeUom+LW3KuwyX5lkasdZvG7D3KkxdOXBPbCYDESU8rXatZqQ5+Na6mTR2hnhxTy0v76nl3fJmUh0mzpuTxppZaQNKVBOMHsWcQsWFD+hGEq9/icNXvsiCnGR2VrUOKDlU+sj2w4pKOKqOeGz4wwqh6PAzGZqm8c7md7lTfp3mmdcTTi4a0fUSJJiKGAdZvEbdM7GG7kcONGA1SURVrXus9Z3HxptY27n69iAAqQ4D5qZ9tM74aL9jpSHmb5NBmhAfCKMsYpLE0WVZJ7jFzXAwyiJXLclmzaxUHny3ihf31PDa/noumpfBRxdn6a3jeiJKdBSso6NgHVKwBcexV7CfeAdb9QaSjzwFgCoaiDhyCDtyidjSUSxuoqYUVKMd1ZgEzkuA0Zd9fFAJuufQWnIV7j3/pnn2J4g4cshzW6lo8vU7VuNka5ux9hmJ1YYqXZL9vrx9sJFIV/lF8pG/oyHQVnjxiK9jN0lj7ugNujLQaTHQEYxMWu34VMMkS+SkWAfs1hBD03Tjy5kZSWN27UTACiDKtBVejGfXneTYor0kwX2nkp41cmNFz2L3vvWrMYfg+W1vANA6iLbfMA0C1m5p8Ch60U02HruJG1fmcd2yHLYcbeaFPTXcv7mSB7ZUsiTPxZpZaSwvSBmzvn0J9N34qo/8gcJnryLzndtYlHMHbx1soKLJ312X0xMV+rkDB8JRjPLwd+mjikogMjI58O4TbVzSdh+aQaZxScJMK8H0xyANrtiJemYCYGopw24qBsAX0seaMs59y/vdS9ccWt+VYc0RGpAinf36H4sMLQkeL7OleNjMMiHfyLKsgiBgNUw95/0YyVYjX1hdxKULMnnovUqe2nGC53fXsG5uOlcsyoq7uauYXbSWXktr6bWgaRg6KrE07sbSuAdjewXGjkrMTXuRgy0I2sm1Q9AYhBU3TeS3N22oW/JNnEeeJXXbbzmx+jcUeGy8X9ka1z0/qqpIoqS7bY9h/XlE1cvdBgqEXy+rJ99tpdBjw/nGs/gyTxtxn0+7cXyC1RiiKJDUFbROB3XgVEFvxTW2z9JEwNpFR845eHf+lY8Y97Pe16OpfZ/P51hLJiJKb0eyfi1tmvx4HSa8lS/iS1tC1J4R9zzDbYQ+FTAbJCIjNLOZShgkkTNneDhzhofq1gCv7Kvj9QP1vFdxAIdZZnl+CisL3czLdmKPY9SUYGQE0pZQv+QbpG39Bed7z+R3ZLOjqjVuwAp6lrXnEA1GVWwjUEb4QwqqqhEZweS0YfNm/iBtoHF2/z6yCRJMR0xDbIDGAlZzy0FsJv3fnaEoLpuRiVzXKYpKbD1c3xHCYpBwd5QB9CufkSRh0MW4YYCa3fHCIImYZXHEc6HZKOGPTL0sa0+yXBa+cV4p1y7L4dGtx3l2ZzXP76phdamXSxZkUuS1x3+jIBBJyiOSlEd732ybpiGG25EiPkQlREbB7PjnSEDUnkFL6bW4DjxI7co7yHPbUFSN4y2BfnNnzNhbRU/KDLdP8ZD3oMQciPtvrpxoDVBW28GnzsjH2HYUU9tRmuaMzI/VahCxTMAaSxAEkixGOoKRD5wZ03QisZruwp+2BMXg4AztfZ7qXNz9el9p01jXsfa1Eu87FE60BljmaMbSvG9Qbf9U6r06HOxmmah/+tcGZCZb+OTp+dy4Mo8dVa28WVbPlvJmXjtQD0B6kpmiVBtFXjtFXjseu5Fkq5F0R6IuZyQ0LPgCjsrXKN71awqT/8COylauWJQV91jdHK33ppI/pJBkHXqMRBWVQFTPrg53WjpY18GaxntQDCaaF05Jb7kECUaECEPujmtWL4rFjam5DGuufqy/K+s3kRnWaA+5YX1HEK/DhKV5P5ogEnT17gFoGELqa57A7GoMm0kmGP1gZVl7ku2y8rW1JVy/PJcnt5/gtQN1vLq/npI0O2cWezi9yDOokWEvBAHV5EQ1ORG6/p9gYJpnfRz3vntwlT1CQc4nAF211zdg7bnOHYv+5d3niqqomka8BOubZfUIwNklXhxH7wF0E9ThYpIFbKfQBWA0OMwGBCKT1g/5w04iYI0hGujMPpMFVVtp8t+IqmmIgtCvUHysNf7RPlvRPTOsmqZxoiXAl1M3A9BWcNGA55ku2dUYuhObTJs/MmVb3YwESRRYkudiSZ6LqKKyr6adA7UdHGno5HB9Z3fT5hifPiOf714S3zwrQRxEibql36DghRv4bOomvl+9csB68njtpwJRBVNUHHIR7usyjgmNIOOxcfNGfi5upH7WZ1AsnmG/L0GCqYrFOLw6zoh7JuaWg9hn6EuJmPHSeBkUxr0HRetWQjV0hEh1mDA37SXkLEKTewdCg9WvioB5Elz2ZUnEYpAIjKAEAfTgOhBRp4Rj8HBId5r5wuoibjwtj1f31fFGWT3/2lDBvzZUkJtiZWmei8W5LmZlOsZcSvhhJZRSii99OSn77ydzzs3IohC3jrXneI1EVRij/fSIqnbJjHu/rmkab5Y1MD/+uFgDAAAgAElEQVTbicduwlH5GsGUmUQc2cM6rywK2E2TU7ust8pLBK2TwYcuYDWIApIkIAL+Ph+4zuxzyCp/kWKtkjb/clw2Yz/JjaKNba+qSJ+d6J7Xa/FHCEQUlgfW408dWA4M06N+tS+yJGIzT8961sGQJZH52cnMzz7pstYZjFLR5KPJF6YtEGHNTO8k3uH0xJd5Br60JVzU+iDfjS6mstlPYRxZme5I2L8OpyMQxWAbuHm4PxwlGNUn2L5uwwNxojXAGTX3oMgmWhclsqsJpj+SIAy7jjPqLsWy72FsXcfHNnwmUjijqGqPDGuI0nQH5up9+NOX9zpOYHAlkkmeGLOleNhM8ohUHdCVZTVJ027+tJtkLl+UxeWLsqhtC7LpaBPbjrXwzM5qnth+AlkUKE13dKmSbKQ7zXgdJtw2U8KVfxQ0z7qRnDe+RHLNO+SmOKlo7O8U3HPTIzxCE7CBUFQNVSNudvVAbQc1bUGuXZaDGGrDVvsujQuGN3+K6Aq9yRqroAetohDFNw0UDh8kPlQBq0nWdegxVC3Sq3akI2c1AKvFnbQFLsNlMxLP2yyiqpjGoFdVzEGt12s9HhwnWgPkCbWk+w9SM39gObA8Ru1sRPRJUBD0+5iIRYfZIBEZYfuQ6YjdLDM362RtdKIP6ygQBBoWfZX8l27kSultDtfPjBuwaugZ0r6tKRRNozMYJcnaf2c2HFXp7Fr4jcRs6a13t/NDcSO1Jf+VyK4mmFaIgoAsCv02Z6wmadimK4pnJlLEhytaB5yUBI9Xz/K499A1ZwbCCh3BKHmWEEZfNc19DJckURh0kWsyTt6mryQKWE0nWwMNl+nuB5HuNHPFoiyuWJRFIKywt7qNncfb2FfTzst7a3spXWRRIDPZQlayBa/DRKrDxKfOyO/KeCUYiPaCdUQ3e0jZfx957m+x63hbv2N6DldVG5tuGLFyt2icz+abZQ2YZJHTi9zYq15A0BTahykHtpqkKaEotJr0oNkX+uD2ap1qfGgCVoOkNwPuidUkE46Gu3c1o7Z0WhwlrG7dSXlQb44bT22jKNqY/OT67mRpWu9eVSdaAlwkbgGgveDCAc9zKgXyogA2o4xBFvs7xymq3hYkov89XmPSbpKJKtO/njXB+NOZvQq/dyFfrH+an9VfC3PiOwoqA5ijBaIKBPTPXGzxGlFU2gLh7s/3cJ0AW/1hCo/ejyCBb9FnRvX9JEgwWfR0vwwrGiJgNIgj6kGqeGYB4PEdASwne7FOYPwUq5et79Bb2pRSAUCgT8A62Dwpi2PvaDlSrEaJQHj4rbRi2Ewy4WnWKi4eFqPE0vwUluanAHqGrro1QH1HiIaOELVtQY63+Dne4mdHVSuBiEKR18b1K/Im+c6nNppkoqX0Wjw7/8rceV/mjbIwHcFIr/WwqvVWJUWUU++GoagaAvFUhBqbjjaxJM+F1SiTVPkaUXMKAe+iIc9plIRxdQQeKWaDHjz7QgkH4Ylg6vzmxxFZFEgyG/rtGkuiLn3qmdZvTF/F0vZ/s6+zDdAlnX0lwPFq5EZD3zqfvr2qTrQG+IT0Pn7vAiL2zAHPM9qdMJtRwjZIo2VZEpElEatR/xl0hqIjrrMZDh+0etYE44gg0Ljg8+S++nmcJ9YDpXEPG6zWPBDRe6yaDRLhrqbmMcLR4deEvbrjMF8XX6Mue92wa29Ggijozy5dQSHqmsYuBAEEhK6/TxIrWVC6/zBtatwSTDyxoDWsqBglccTtLKJuffzZ2w8hCvPxh7skwerYls4Meg9dYz3W0iY/ehSgX0sbWRx4nhxJkD5eCIKAwyLT6o+M6H3iNG4VNxiSKAza7zEcVShJc0zwXU1PWosux7vjz5wR2cwfmUNFk595PRRfsV6ssnRyE9fCqY2JqKKiqCp9xRaH6jpp9oU5rdANqoK96g3dbGkI1aIuBZ562XRJ1JWbwYiSyLaOM5OfVx9nRMAxiN7dYpTo+SV/1ukYBAV70y5AH8h9P399d4xGSyQ6cP0qQHtzLQvEw3TkfGTAc+hujiP7NYqA02LAHieIH/A9XQsbp8UwLh+aWD1rggRD0ZG7hk7JyZm+l7v7L/Yl2rVgHghV0+WLfbP64ejwNmRCUQXr3gdIEgIEln5h+Dc/BLqZhITLasBtN+G0GrGZDZiNEmbDyT8mWcLYpYqQe/wxyXpPOrvZgNNqJMVuxGU1YDdKyIn6rwRxiPXLG03vRc3sJGLLwNJSht0k4wvp40fTtAnbKIlt/DZ0BazpgSNELN5+En15kAzrVAhYQa+jtYziXswGCYvhA7+c68VkZ8SnEyFXCSFnIaXNbwC6U3BflD5OwadKRNGIKv3Xz5uPNiEKsDTfhbX+feRQ67Dcga0maUrXMJsNEi6rEfOHbBxOJB/4n6zNLA+agRS66ni6ydBlCa6WPd0vxWtto43BZNyvpU2fc+Y2b0JEozN34IB1qL5yfREFcFqNo56gzQYJp9U4Lh8cs0HCPgltBRJMLzTJyOH0izhX2EptzYn4xzBy8whN04btDvzm/hpu0F6g3rWYgHfBiK4TD6lLZeCyGbEYB39mjRRZ0nvVuWxGHGY5EbgmGFPCKaWYWg5i61GDqdB/PhsvYjW49e0hZFHA4asglFzc6xhRGFiJZJTEKbUQdphlpFFsHthMibGdYAAEgfaCC0iu30KGwU91W6DfIT03eIfa8B0KVdU3rOLVsm8+2sTcLCcOswFb9QY0BHyZZw56PsMYS4EF9OBnrNexoqiXHjothsRYHAc+0AGrvSsrMRQ9P1iS3U2llkpq597u1/pOvBqn3t4mqqj95K9azweGorIw+B6dUjIBz7wBzzPS/qtJFgPGU3QUNsoiDsv4SDMsJhnzNHQ8TjCx+OZch1FQMO5/fMBjBsq+DkQoqg5LzqNpGs3vP0O20Ehgyak7A5sNIi6bYdBnlSwKmGURq1HSpfxGPRMz0oWt2SB1B65j1Rw+wYebiLsUU+th7Aa6JcFo9JMCjgeapvWqYfU6TJjaygk7C3odN9ji0TTFMiKCIOCyGYfsGRvvfYkNqQQD0ZZ/AYKmcIV1J7VtwX5f7xugnopbcOy9oT6KpRMtAapaAqwsdANgr95I0DMHxZzc7xwxRHTPibHCJIm47Sa8SWa8SeZuh/OxxCiLJFsNWKfYs2W684H8acZkwJZhfsj79mY7IM4g23+g+//xNopP1QUxXsDbMzCua/OzStxJpfsMEAb+NY0kE2M3yWMmozEbJBxj+BDpiT2xmE4wBI7cBezRCimpfir+AGXkm0rDdQfeUdXKusBzdJjS6MhbM6Jr9MVhkvVm5HECT90QTcJtM3bLgx1mXcpvNxtIshjwOEyk2IxYRjiuzQaJZKsuF7YaxFFldBIkAIimlCIqIYoMjSclwYyNCmko1B6BcX1HiEJbCDnUQshZ2Ou4gYI4gcnpvToUkqgHrTajhFkWscgSVqOE3SRjN8lY5PgSf1kScVoMGBPzZ4I+BD3zCNtzWMsWauIFrH2G66nIgvWWNlq/ljaby/V+9CsLUhCiQSx179OZecag57IapTFRHAlAktlAss3YS1FhNxtGJcMf8nqCgC2RbR1Tpm3AajXJ2I163YZZFjHJAmaDiM0o4bQOnq3oS98P01FjCR6lHsnfoL8QL2A9xQxrvIdBzwdG+Nh7uIRO2rNXD3gOEYadLTVJIrYxDjCt45QNFQTdJCsxyBMMhCgIrLevIzt8FHPj7rjHjETWpKga4WGO6Xe3vstZ0h465nwcxNGPKbtJwhxndzcmD/bYTdjNhiEna4MkkmQ14B5FVkavHTeQYjeSZNHH87SdFBJMCtFkPZuZJzbi68qwatrEmH3p5Tn6v+s7Qswx6XN2uE/A2ndTOoZRGrgv82QjCEJ3LXqS1aBLKE0yNpOsj3e7CXdXUNvzWxBFAafVmMjuJOhNlyx4Xuh9Otua45p+9qSvx8pIiCp6P/O+j4AtR5sp9NhITTJjrduGqIbxZZw24HlkURh24mkwRHR14UD9pZMshnFT9sWyrTajlJhbT5Fp+/MzyxIWk24u4rAYSLLo2QeraeT1X7LUe5FWaZ4JgLVhJ0DcneKRyg37Ei9g7TnBO4+/gaIJiMUDF6Mb5GEaJsG4SXgdZsP/Z+9NgyW5rju//11yr/VtvaMXNPCwgyAhgaJ2UVw0ImVxNKOxFOOQJhy2IyzbMbK/2GFrxuPxhD2OCc8HO2JCntAo5HHMJoVlipJIaiSKpEiAlABiaWwPRKMbjUb32/dac/OHm5mVVZVVL2t53a/7nV9ER6Mrs7IK7+XNe889//M/h5KdUbUAEkd0LUEcAW6e+WtohwLFd/9g4DntnJNuO2d29cOtBp5e+X/hQ2D30V/K9Z4sCrrIrMmxpMCMo8PWB7t3D0IKjoqtj1wmEGNIgaKloeroZNJE5MYvnwEAnMEqaq1OwHonWtvE/cL9IMR2vY3LYhkA+jKsg/o2Zm0Y3UtIwVEwNcw4Rt9mlWNqKFk0hxIddi7+DCQ8/Dhewkat1XWsd4PJnaCO1fXDPkPD3YaLt27v4rlLqm2Rc+t5hEygfvIHB15nUIA5ChxAKUcSa9oJnTSMqT7LFUcn9cME3LMB67QRqZtotfAIfHBY6ypgzTKP6N2NGgVVd9P//vTHnN/8Nl5li7DLc33nxeRtnuwY8tBMJWL34MO4uhQcpUNyJSbufc6cOoXngydQeO/LA2XBzZyuv82cge2fvHodf0N8E5vnPwvPXsj9XdOYkvftGsdypZKtTZTx4ZyhYmswJpBQ8WhXu+qQwzCRg8IphEziJNKS4DuTYQ0iA8S9posgBM4GHyJkEu3SueQcwVjm/DeOw/5RJZYQ92aJDKmk/zR+CQBoLDyDplbBj4rXcXu7WxYchv3JmXHqWGPDpd7N4tc/3EEI4JlzVQCAc/t5NOafRqAXMq+jcTaxe3dsMpqnFE61cDzcDSwRqR8oGTMe98fTegqkH+iGXcLV8AystU5rm14CjK/xb/tB9jWjIFY0NnC+/X1cMZ8d/p1zLEpl1Gv2MNEln2pRfBpNcBQseSgBMXFvc3mhgC8HPwin/gHMzTczz1HW+sPHacvrb2+TRdsLYH3/i6iwGvae/JWxvrPGGQo97Zs4gLI9WK40KowxlG1tZHlwFmmH4Yp9eLIp4t6FCw2ucwoL/goarp/IdO+ES7AXqLl0u6F6l55o30S79ADAO4qiQWtVXY7ed/Yow5jaPO4d9yLaxKLMzv0FA0ZfFzGO3RMfxw/xN3B7u9spOAQy2ryNvsZ1gwBh2J9hvfLhDgzJ8dCJArhbg736KvZPf2LgdSxjsvlQcoaqrY9kMuro8o4ERXELnOPWimpS6KcVkW4qXjIlXvEvwVp7FQjDQcmbsetYs94XBGESxDrL3wUAfFgdLJXgLF+GtWCOLi0ch8OqZwXULrEz4cOLuPOoe5TB0jgKukDRlF1/ypaGGUdP/pQsOZIB0MmyiW/yH0AAjtK1rww8r3mA3LfRzpeFfeG9DXw++Bp2nAuon3wu13vSqMbn3eORM6Di5NsBHgXGGCq2PlW5viaUO3jV1mBqVOtKKDhncItnMeutAFBOwSHCOxKw+r6aN3fqKmCdbd1Aq8chWOPZd6pxRHqvThO1WaX3ZW/i1ylovbfhUEZ9FVvDbEHHbEHNnaO0Qmo/8CM4wzbgrl/tO9ar/BsnYPX9EG5G/eqVD3fw2KkSNMFhL/8VWOihdjq7flUTbKI5URccVVsfuTyQcyXdvRNwrmrUq7YGI2d533GH1hwRaUlw0dLwWngJsrkJbf/mwIl37AxrxkMgCDsBq3HzedRDA+2Fwf0d89SpKTOqOzcpH1Y9KwBYuqSGzPcQnDPMOAYqtq5c+AwJUxNdf3Sp+h/Gfwwp4JiakrTmeIBzxlCaOYXXtcdRuv7lgee1vGCgY2nL83O7Cb/22st4jr+N+mN/Cxi3T2Jq3HIAZUvPLe0flVgePG3pkRQcRVNLXEzJYZhwi2dQaav60VrLj+SF2f4PU/3cyCJ4u+GCIUCxdgPt8oNd5/CMIO1+kgP3IqJekFkUyczwnkVypZwxdQFNKHUAi+Tuql1ZvjYq9TOq5+n8+nf7joW9RkzhwQqlXjw/RO9bdhourm/U8eSZMgDAufVtBFxH/US2inASKbClCTXvjXmfW9qdNUdSpW+q/MbSOEmFh3B/PrHHQHKWyCuKpsSrgZr0rNVXMuW7wHgBazjgAZCu97FvvYAXg4cxV3YGXifPIvcwi8iz4NED9bAGXMGgdjfHAVUXrefqj3Z+1sYfuc/C3HoH+nb/jjGg3LdbA3aKG6182dXbOw08tvbHCMCwc/mv53pPGkOyPoOX4hR6Ih+EanOhj/2g51AbXwVDZcRLpnI7lJwlu9EzBR1lK8q60vA8lnjFcyi016DBS5yCY0OkQ/3caPjuNFycxgZE0OrKsDJkZ1jvNzlwL6YmMhVPZGZ4b6ILtfk4LGMYt1E5SOnWLl/EBp/Fg/sv9h3LqjsfNcvqBkFf/9XXP9wBADx5NgpYl/8KjfmnEUqr7/1ygtrVoiGVp8oEY5vzybK749IxUNNRNCR0wShA64F+HhEsZcxQMjW8HT4An0lY61cGS4LHcFFr+wGyhn/sqCgaGyjufh/fCR7DiZI58DrygMDNktPpXTUqWuRUehgTImMMZYuaMR8X8sjML8w5+GLzowCA0vXBsuBG2+8bq03Xh5tz/P7pG7fxC+Kb2D75w/AKp3K9J4YzoGB0ZzyKppzYUCIvuuQju4QLxlA0ZNL/1Yky5JYuIhmT3mXspEuVdY3labbGodGEe2zwS2fAEOIU20Ct5SEEDr2OVdXJqYlzp+7iQX4bQHdLG85YZqblfpQD9zJI2hj3aqVM672BqXGUbT13EFYw5fDfLWO46nwUT7lXEAbdgWXWeB0lYA1DJQceWL+6UADzWzDXX0f9xEczrzGOkk6plbSpyXkN/e7NXIypze2yraMazaeGpLkUoIC1C5kErBIuJHbsCzC23hk66Y7qojao7jWWTsX1q98JHsV80cg8l7PhhkscgH0Xaz61qH7AktOXVsS7iCUrf80Gce9SMOVQ86ALszaWMYu18pNDA1YvCLFddxN1Q6Plodb0cn2HIAyx/dbXcZato/bo3xrtfwBK6ZBeNDu6gJ3R0uYwMTWBcg43bzPqGTdXNGD3fO80sZrC6tmJZkztjitpt55kXwuG6pmtC5a5mcURuUJKDlvj0U65yuoWdEG1d0ccL3LlPcO6nYIPM2BNr4m36m08ZqwCAFqVTsCaNU3ez3LgNJrgAzf84qCVxtXRRgpV5zgKqn/vcKPKlbnnMMt24d7uNivMWs6qetR849j1lTtwZv3q6RKk4DDX3wAP2qgvfKzv/ZyNLgeOfSCmuQFsyKNR6sKjbHPJioLXY64yvLOrpiNOnGGN6z9WrUu4tPVWtk1whOsHIw2UQbtVsRTDufUdtJmJN9mDmHH0zHMPumFN/e5kV9NIwVGyOcJQouUF8AMlhfZT5lKCMQihMtuSq3pGBvWzaLR8NIa0JDGkgO5w7Lc8NN070PCPGBmGoUMn3zWiyXen7mYqE87PKtn8FecT+KlbvwlZX4Fnn8i8lh+G2Gm4EIzlzqwCwJu3dvFp98/Q0h3sXvjMSN/f1HjX88GSYuQFyLQwNQHGgN2Mn6UpOWxDjlRPyxhD0ZJwa/076ulzdMnQuzfqB8qUJwxVObDkbHAGQXJYUL2vG66PtputUiHuHkFRBaxn2Vq3JPgQf1HxPQQoSfBDYgU+c+BZnXZTWZmmuP7vOGDpEk2vnXmMRy02ak0XdZpDjyTj3qea4DAkH9iurXH6E8A1gF3/JnDmyeT1LMVgAFVSk2ed6wVB3xp3p+Hi/Y06fvzheQCAvfo99R1OPNP3fnNEqb5gB0ulx8XSBfZb+Ta17wScq8yrqQv4QYi258P1A7heeGzmQwpYU/BooJQs9WO5pZ/HI+t/AubWEIbZkgx3RLnEoAL2eEfKWf4OlozHUdGc5Pv0Ige4HgJRdvUOZ2+GEWdcRoGDQbM5TE9gp94eOBgZU+YSphag5fpo0UL2yKBMl3Q0XB/Ntj/R70UKDn3A5Bs7DX8dH8NPASje+Bq2HvmlgdcKxpApfnfpA/zP/C+xe+nnEcrBMv2+781ZV7snjasA725iSIGZAlfjxQsgOIM9wQZX3Epjq9YeaXNCcAYxQlMGQ6g62lnO4PsB1mtt1FreoddI3s9wprLd0/gZBsXTCMFwlq0ni7zDNl2KNzwAZbp0id1WcuDUvCmy6lePUUmJLjkMwdEaogRzTA1C+Kg1PZo/7yMMTQwMWIsnL+F6cALl5edRx68lrwdQQWuvsqbl+rnWca4X9N1rV6L61aei+lV75SW0C2czN5bNEdaunOHQglVAbfDG5Q1HDcEZLF0irgBue0H/uib1zyAM0XSDO9Ib+zC5Z5/ch1EUzaKfhqUpU5H3+QUAgL71/YGT+ih1rIPqVwF1Q4nmJszNt/EiHsdCKVsODHQ7Gvdi6SKzSfq9iC55rmyUFhWrVx0dNrXbODLEbrJzRQPFg+pqDmBYzdn5WRvf3l1Au3AGxRt/OvZnZOEHIfSrfwKHtbC3+AsjvdcxOi1s4gbmRyGzIyKzpKqjo2RNPuFrgh+KwZvafBOYdXRUnE4drWNqOFe1cbZqoaDfWUfH+4nYyTuP4/yBSB2uc1JlWBNJ8OG2tgnSGda6i7PBLbRS9atA9lx5NwxV7iZ5+lmamkDJPjyXf+LOo0s+sJzmZNnEd4NHcXLnVfTqd7PUMrFK7iAabb9PDry0vAdNMFyeLwAArNWXUV/oz65qguVeu3IAlTHa1oyC6lxwb8wuuuR9XRjibKypi25zRHnvrpHv1e+Nkq11ZS+mQfywVpk7iavsLAAMrWMNkb+OdVjf1iAEnNuqfvUb7UUsDKhfZRjc0uaoZVengaULWDkztJyr+lZqt3G0YIzB1pWBz4yjo2CMXn88bPK9MOvgxlYDu+c+icLNvwDzmtP42gCAKzd38Cn/G9g3TqB+cnBf5F5MjXc5AJcs7b7ZSMrCmXIfZlPyyHAiO6COnaQXyiaqjj7VllexM/Kw2un7BRG1PioYcqLFgOAMbuEMzvGNRBIchjhcSXCqFVy90cCsv4J26UJynKFfEqzx/Ivi+wVDilybhcowUTsW9/29gh7VGluaGMvIsteZPkYTHO8Yj8L2d6HvvNd1LGutG0JlWQ+iliGhfXd1HxfnHEjBIWvL0Gu30MgwXDJH2Egq2dqhtYNLc7+Zs8UGjNUec8R7hXs2YAXUIqlsaVP7n0hLcIumhqveHAJhwNxaGugUDCB3n6phAz4IQ9grLyEQOp6vn8NCMVt6OKzWa5hJyr1M8QDjnV7S7TaKpiRjiSNEnI2bKxqR6Uf+0WsMCEouzNpw/RDXZn4U3G/CufX8tL4uXnr7Xfw4fw37D/0HHQnGAXAGOKmNI0cXxyKrU7K0LufgcYjdHss5d89tPcoUmxrK1mSLbV2ojcrZaCda3iO765PCGIMTOUIXDQlLCuhitBZFnDG4xXM4w9bQiushD9klOAhChGGIpuuj7K2CI0S7eLbrO/XOlYfdRuqoYuVoEQZ0zNSmuflEjE9cUlWyNMwVDJTMEedMOXgcLxefAtCpKY3xB6xnGwcErC3XR7PnvUEY4uraPi4vqOyqvfISAPQZLnEMnt97KRryjs2nw35+9zKxmVNsjhhnXqfNtH909/xTydSU/fM0birOO9bRJVNitxWiVXnoQKdgd0jmNMbzg4FGL2FUi2OtvozdyuNoQw6UBA9qZ8OZks/djzDGxv4dx/dHxb63pRD3I6rZuXpY5sm4mgMaesfGS6/wJ+BLe2qyYNcPUH3/y9CYj/2Hv5D7fbYuko0jydkd74d8t1DjdLQFVRqNsyhbOtpzLF7Q6ZKjEjkp5s3gcwCWxjFX0HGqYuFU2cJCycR8ybxjbYeOCvFGX8lWO/DzRRNzBSXnP+g3yhngFs7gBDbQaiuTn0OXBIfqz27DxVm2DgBwC52ANWtNqx+DjaMsrAHPziyUmZqWqw82cedgjMHS1ZxZtfVcAQZjbOB5XvUyduEkQWTMoDpHLwiHtrjZb3t9iZ3bO03U2z4ejOTA9urLCISB5uxjXefpWj6zJUPwqbWuycM4Hiz3InHmdcbRYY3ZT51DybotjaNgCBRNNZdMs33WfbGS0iXHjGOg1vSGOsvmgTEGhCFKloabWw20Tj8E5/YLQ+1O234Azw+GZgRaQwZ6EAJh4MJafw03zv4iAAyUBA/6DEeXR6I+7rAQnKFs6diqZzseHoQmODSLww9CtROYUYDOoAYcY8qtuOUFR7Lg/n7D1AQMqRyf6+3B45cxBl3jfa7QD8zY4Ax4d9vD/tkfQ+nGn+F2bD87AVc+3MFngr/AVuEimjOPHfwGqADVSmVXi+ZkTczvNVjk2rhdd0dq+VUwJGxdjP2zMjWBIAyx1/Rg6gKGxtVz2QvQ9sO+uizOADsKdG1DwhjRnfK4oEy5JCTn2G24AxezjDG4xbOQCGC1VgE8BoSDF7/TwA/URu92w8VZtgYAcItnOt+95/fJ2fHNsMa9HYc9X3uxDQlNctRaXq5NeeLOoUsOXerQ2z72m9kO+jFSciDDBXquZOFl/0H84EpPhnXIxRptD7rs717hByF2G27f6++u7gNAkmG1Vl9CY+4JhKL7GnnGJWcYuZ/4NDC10cbNMBjUsuSomgUKrtooOWGIlhfA9YNIydIxrAzR+f/QBIMmOKTgAyXa05xX75unt+AMJTvaIZig/2dsKlg0JXabLprVRWi1ZbDW9tD3DQtIAaB5gBzY3HgL3G/hqvEIAAyUBGfdFCLaebvf0SVH0Zxsj0X0yIXjRY0e1e+UbWVEU7Q0VCbIFhGjETs+Vw4w/tCyXD8lx+mKhffXa9h74FHbePkAACAASURBVKeh1W7DXL8y8Xd69/tLeI6/jfriF3IHv+lx6OjiWC6Q46D1IHmwYMqheCYyVJp0YrN1mTwfGGMwpEhq2suWBlvjKOgCJUPidNnCmRkbMwUjavdDweow9KimeNhv1I3kuOXWbQDdLr6HQXz9nbqLM2wdIRhc53RyXPTcf8dBlj+MUbKsMaquVZ/YNI84HCxdoOLoQ+dMXWQryxaKBr4XPARzawm8vZu87kdS+yyaXoB6u79Odb/pZmZfr67tQ3KGB2ZsML8Na/11NHrkwCJ6Vh9E0bw7PhCamNzPIHY0ni8amCsYR75OPM4sF021Jq44qqf6bEHHrKNjrmhgtmCgZOmw9NHa4U3Cfbea0gRHydbUD9McXQYaD/yiqWGv6aFZfRgAIDfeGfq+xpAdmLY3uE8hENWvrr0CAHiDPQzOgNlC/y4WZ8gcsNNY7N0r2LqqsZoGpiYw62g4UdRRtmRf9lo1V5e5TZ+IyTGkkjwN2ijQBgSAF2cdXNuoYe/8TyNkHKXrX534u5y88QcAkFsOrImOfEiw4yMFzoIxhkoUKMYLXY5IIh0Fqco9errmGbae7WugS46yrWOhZOLsjI2Ko9+xSfZ+QUR9AAfhFVQv1mp7GYASJYXI7u04KXE/7zAMowzrOlrWQlfmpneuPI6bR2mk4GNvbMflG0VD3pc1ffcymuAo24O9XBhj0GT/L22+aOB74UNgCGGtvpK8HgJDHYFrTa/Lt6Xl+Wh6AfyMLHxsuKQJDmPzbXC/hfr8013n6BnfrRdd8LsqzR323DsIBqBs6TCk2hiNS9zuRVNQxthd9cm5b5/gnKusY9nWE4OXPJnX+B4qmRJ+EGKrcBkAIDfeHvo+PwzRGiBHHvR6TBgA1sr34FrzWGpWMDNgMZW1wyn58ciupila09ntNSXHbNHEfMlSNbJZJzGGgiEmNpMh8hM7l2ZtTAjOMh/0F+ccrOy2sMtKqJ38OErXvzzRd7i1Vccn21/HB4Wn4JbO53pP2qG7YB6fTaRhmJrAbMHAfMHAfMnEbMFAYcpBatZnxotrSyqX8aqtY7Zg3LfGdHcKWx9cz+oXVXZz1usErMDhyILjLFAIYKfh4gzW4aUMlzIdgukZDmcMh/Y0pi5QsXUYOYIM4s6hCT5ULpt17y8UTbwSXEYI1me8NDTBAlU3Xmt52K272G24Sjrac14YGS7F9avW+msAgEZfwHrw+rUwobJuUsZ1aQbUd+/dLIvXODSKRuNYPMETp7Uo8zrMnCh+mJeiwb8hFuBLG/rm0oGf02pny4KHyYEBNbDttVfQWHgGq/utoQ7BvdxvbWzyoCSH4+9QcdZxIo134U1tiLSGMRQsiWO+QX9HYUxJ/LM2CrJs2C/OK+Ola+s17F78LMztd2FsfX/sz7/51nexyG9i7+G/nut8Q7JkUrrbu8FHkTsdJMrInKNka4khEzE5YsgGaaiZ2OUVzPjr0Qvqr8MwXorlwCGA7XobZ3l3wCp63PTlMWxnkwVjbOLFv4haShUM6oF8lDA1MbDVY1ZQOFfQUWM2VoyLsHvqWA9SRbhBiP2W8owJQmRmV5d3m6i1/E796tpr8IwK3OK55Jw8deWWFHd9s4kxNpbSzpJi4BpdCn7P9Hk9Khy7nxbnqlZuxsl2nWU8lgSrm2yn6aNVfRj65nBJMKAyqb0Dfa/pHlxg3diEsfMe6gvPYG2vhfkBhku9NTmcYar9B+8lROQoOmrQakqOWcfIDCg0wZMa6F44Y8rNdgo/blo25aec0Rcwyyn74lwqYL3wWQBA6fpXxv7cufe+CBcS7PF8AaupdWdXCeJ+ZVCWlTNgV86gGmwCUC7BAA6ljjUIOw7EO/UmTrGNpIYWQN9z+m4veI8Spiam0sLC0SXmCjpsXfVypLX33ccxslsACs76Eh4yWu8saY+oDGvYSbgMkwRn4WU0XO4zXFp7DY25p7r8IA4KVjkA54jMp9aIySHBGIrW8Pfcb31eD5tj+4jRBEfR7JdQdCTB6the080dsAZQu72xvr/eHu56GqMvvwwA2J/7CNb32zgxqKVNzwPnfncGPog4aM1TwM6Z+p2WbX1otodH5l1lS4Otq36Egql2R4Ir06dxf+KcKWlJ2ZaUgctJVkujLKfsWUdHyZS4tl6D55xEfeGjY8uCm60WPl7/Gt4sfBy+WTnwfE10sqtHYTeYIA4TzlnmQpOBYV+bw2y4BaDjhHkYNaxBECbXF/srkPDRLnQcgnnPvEgZ9m6Kpja2xFFytXk7XzKxULZwYbaAuYKBGUf18T3GS5IjQSFjXQtkK5MWiiZeDh+CaO/C2L6avD5ywJqRYb26WoPkDOdnbTCvAXNrKUMOPHxcGpo4MsoIwQe3CMqiZB3cIeB+7fN6WBzrp7ipCRR7JBQd0yX1+l7TQ6tyGbKxBtYc7hQMKKnEVq2N/aaLvWa/m1oWxsrLCBnHh/Yi/CDMlARzdC/UOcvfDPx+RnCGmYKR9FkVUUsaQGUyOVMtM2YdY6SfV+yQVo3MYeZLJuaLBk6WLJyumnA0nruOVnLV7HrG0VEwJTRBrqSjIDhDwehMwprof8gzxnBxzsF76zUAwM7Fn4G1/jq03Rsjf97GlX+PBbaNzQfzmS2lNx9sg8Ykcf+TZX7GGFDT5zCHbbXgPUxJcNC5rt34EADgFjpSw17lDW0idcM5S8qecr8HnXks/czjPCrRiUy5qrZG2da7iC55pnw1a8zOFw18p30RAGCtvZq8PkrAGoZh5vnvru3j/KwNTXCYG2+ChT4a808lxznDgV0YhpXv3Q3yZlkLRn/dahbHpc/rtDj2jxXbkF2DRnAV8MQZ1t2mi1blQQCA3Hw31zUDALUR+jYZK99Dq/owbjfUZ2ZJgkXP7phFrRi6MGTHYGu+GJm8FA3MF004UzJaYYxBCo6qbeBU1cZsQUfJkpk7lwzqYVy2JGYcA+YEPSYJtTmTHqdZP/NL8wW8v1GDH4TYu/AZABgryzr77u9hJ3RQeepnDzxX8s6EY0kxtBczQdwvZLWhYAAaxhzmsIOW6yamS4fRczBt5FRqKpOndqoHK0s976l+NRtDDq55TMOhAofYtCxrHhO84yshOFedCw7hOxP5KGS4OWuc9/1OFooGXqrNw5c2rLXXktcDoMsJeBiuH2b2gb22XsOl+Y4cGICSBEfoYnjv66M4n+qSH5hlNSUfqUMABaz5OVp3w10inXljUYYufuCqDOtDAACxOb6Jy0DCEOb6FTTmnsbaXguAeoj00pvNG1VPf5yIrbcPM0BULXEMzDoGTpWspJbHkBwFQ2LG0VC2NehS4BDWa8eSotmpncvqx3pxzoHrh7i5VUe7dAH1+adRfed3Ryqik/UVfGTvG/gL56ehmfaB56dryC3KrhLHhKyaOM4YmuY8NObD399Iht2hSIJD5RIchCGqrgpY3ZQkOB2gUnZ1MI4RtYFK/SrjzdY4mzpfMpWE+ICgP+0roUtBCrC7COesz+yHc9YnlV8oGXADhr3q44mLb8wwp+A0fkb96la9jZ2Giwuzag611l6Fa83Dc04m5wxqURdzVOfTgjm4hZCMPHJGYRp9Xo8L9CSHCj7Sky+PdmRtXaDW8tAunkXA9dwZ1lHgex9CNjfRmH8SG7U2gOwerDK1QDclpx3jIwDnqtdmydZwsmzh0nwRZ6u22t3MCKiIyUj3Eew1IAOASynjJQDYeuSXYW69A2v1pdyfob38O+BhgJuX//aB53J0dkdNyWlhTBwr+iRvDGhb8wCAcG85MV06HEmwcgmutTycxhr2ZRWhtJLjYgRjl+NOvPlasZUZ5VzBQNXRYRty5GdaHLTKaP00jfZzxHhYWr+Lc68wIi4/Wy48BnPjDSBwk2NhzoA1K7B9f70OADg/q+Zka/01JQdOj8sh95Yhju58Knh2j/W4+8Q4aj4yX8rH0bwj7gLp3cD4fnMMqaS9XKJdvnAoGVaxHEslnsRmrQ1Ly7bBTkuC6eY+uli6wGxBh6OT5f9hYOky6bHYOy2crVqQnHXqWB/8Ofiag5m3/3WuazO/jRPf/1f4evA0Li4+deD5htaRNE3SWJwg7kV6A0HGGDzrhPrv/eVUDet0PzcIlAQxDENs112cYeuoWaeT4xzdbZSO6sL3KME5gxEZxk1aPiM4w4yjq81cq2PCpGoWGWxNZW9LlkTBUI7F9BuaPjyjBZXs2UiP1XzXjYfB/RbMVPtGL+dGk+tlBKybag4+P2uDt/dhbF/tkgNrnA29z476fNpboiQYQ9XWx5Yw36lNtUKkqOhVVdwr0HMiIt0YOJZNxBlWAGhVHoTcmn6GVa6+ipAJNGcexWatjRmnP7uaboIuqEj7yKN63WmYKRgqcO15MPQuqIj8KKc+kSlvkoLj/KydZFgDzcHOgz+P8tUvgbd2Drx26dofoeBu4ovG53G6nN0LOU28cSSjxR5BHCd00R9oBI4KWEVtJSmFCKecYY3rVwMAOw0VsDbtVMCaeraqmkp61t5pGFPSyIWiiTMVEzOOjtmCgbKtwzE1mLqAIQUsXaJoaZgpqL6ulJGdLlZPC6redUfsl/IWu6zOT8mCs5x/e/H8oKuePOb6Rh1lS0PV1mFuvA6GsMshOMuDIvmODEe+PyljSklQtXXYulCqggk2xrSoG8VhUjQlHEN1qFA9e0eTLh8FjvZdcQdJNwaOx3TBkKmA9SGI7euA357q52qrV9CqPoRQmtistVF1+m+idBN0qgu5dxBcBa5zBQOzjo6KrR7g8yWTNh0mIN59zZofLs45uLZWS/69+egvg/tNVN79/4ZfNAwx8/pv41p4Cv6Fnziw/lnjLMnc0JgkjiOMsa7sJWcMQXEBACDrawBUsBpgunWsiSNpCGzXWzjL1uEVOw7B6TX5sIUxcfhIwVGxjUzX2jSMMVi6RNXRUTT7e4kyptz2daE2LCUHtc/JgeCsS5HXuyFgagIlU2KpNQfPKHc5BXtBtvtvGtfLNma6vl7D+aR+taMiTL7HkIDUvIcMRXWp2mNOY1PM0A4vHCuask+5aeniUGtnWfRnmlDAmkKPsiTxLpRjSOynMqws9CG2r03vA8MQ+upraMw+AQDYrLUx6ww2XGLAgQ9+4ugRuwsbUlA91RTQJYcustsKXZxzsN1wsRnVgzfnnkRj7knMvPUvgWCwc3fp2h/DWXsFv+V9Fs9cmDnwO8STCwdgUnaVOKakn2eMAbrhYDe0oTVWEaLjdzbNOtb0NYO9VRjMRVA+mxxPLx6PmsvocaU0ggTR1AQqjo6iIWFrsdO+jqqjMrRFS6LqGKja49ULHjfSm+MyQxWxUDKxut9Cc+6pLqdgYHBAGtPKcBIOwhA3NuudgHX9NbSd0/BtVd/OMbx+9bhu5h9W6YIpeWaZITC4Z+8kWJrArKNjoWRioWRO9f+LnuYpNMHAgWR3xzEk6lF7mlZ5tNY2eeC1FYj6GhpzTyIMQ2zV26ja2RlWIJJg0QOaIGDpAiLD2OqhhSIAYGl5L3lt7an/DObWO5h58//OvBZv7+HUC/8jPjQv43fDT+KpM5Whn83RaethaILGJHFsSXsr8KhcZTWswGxGGdboWJZscFzi4DcEoO/fVC9WHuh8p1R2huTARwMxYt9XQ3Ccqli4OF/ArGNkusJLzvtqMol+dNm9udvbInGhaGB1r4X6/NMwN5fAvGZyzB3S2iYIwkzZ8MpuEy0vwIXYcGntCprp7KoY3MEhrVw6bhiHUMvNMTwozdOmJ/dnMWDG0VGytEPbKDyed8YAGGPQJU9q4xyjU8PaTnqxvjO1z5MrSn7RnHsCtbaPlhdk1rDGC2IyWyIIhSF5Zrb6oRMFaILhjVudmtXdS5/H3pkfw4kX/zfI/dt971l48Z9A1lfxD/GfYvF09UCJryY7hhHHdTeYIIBuExcG5fuwGlZgtTqSYPX39D4zlimGIWDUbqn/LnckwekerMMyOcSdxZACxQP6UwrGULY0VBwdulSmdrYhMVdULsZlS0PRlKjYGuaKBimWcmIOkQXPFw2s7bXQmHsSLPRgbryZHGsPCVjbfpDZsu965BB8YdYBb+/C2L2mHIIjKLuaTRx/TBPHkAdu2tkj9IwdBGdAxdYPfbOBRnsPWqpljKOrDGsQhgg0B17hNMQUM6za6hWEjKMx+zi2IgljVsAqOItaaNCviyAA9XB3dNFXI6EJjodPFPHm7d30ybj1I/8ILPBx+vm/13V+4YM/x+ybv4MPL/8yvrJ9Fh99oHrgZ8elA5JPf4IhiHsJwVnHrJAzGJJjFRU47Q0AnQzrNGtYg1TAajVWAABe4VRyPN5wFmy4Eylx57ENCWfAhqClKYf9QUGLIZVZjK1LGPLeqXM8CqR/pr0BzELRQMsLsFp8HAC66liDEGgPkAUPyr7GDsHnZixY668DQJdD8LD61eOelDmoN+0oyAyX6MzPFBzGBIEmx50JVuPPIlLogifFwo4hEQKJLNitXp6qJFhbeRXtymWEmp30YO0NWGOH4Hi3kSAIha6JzN3Dx0+XcHWthqbbqVl1S+ex+rFfR+n9r+KBr/wqCjf+DCef//u48JVfQav8IP5d6VcBAD90aXboZ6brb6ienCD6e4SvhVUU3HUgDA+lhjWRBIchnNYqmtAR6OXkePxMIMOlo0nBjNpqoLO+KVsaSpZGa5xDQnCWBCW9pTRxL9abXgWuNd8VsALKCTiLQYHs++t1nCgZsHXZMVyaV5Jgjv4Mb4zGydHblNNrh+gYMvd4sozx1zIFU7tjMm4KWHuQqYbFTvRLrCfGS5dVL9YpTb5y9Qqac8pwaVCGlTOl9z/uO08E0YshOQzZ/0B+7FQJfhB21bECwPqT/wlWPvrrsNav4MJX/w7m3vhtrD/+d3D1C3+Eb9xo41zVwpmqNfQzpVBZGwbaDSYIQI2JGM45NnkVWtgGb+8ijHKswXDvlpHwUzWsRXcNG3w2sYzl6ASsZLh0dDE1gdmCgfmigdmCcayloHeKeL7SRHcP8xMlZfS5ut9GY+EjXa1tgGxZcNP1B/ZXfn+zjvNR/aq5fgXtwln4pjIyFEPqV2k+jVQqU/g5aHy09peGHM8x2JT8jnZJoCd6BiqbCRQiZ63YKbhdvQzu1sAz6uBGhddWIfZvJ1bfgzKsgscmL/SrIog0jLFM97tHT5XAALxxa7f7AJdY+9iv451fegHvf+qf4+rP/T6WP/EPsOdJXPlwBx8/ILsKdMyWdMGP/W4wQQA9dawM2BZqcarVV6eeYQ2jrG0sC65469gSc6nPTzsE0/g8ynA+OHghpo8hI/VgT2/ihZLKsK7sNtGYexrm9rvg7c7c6fnd7W2CIES9le247/oBbm7VcSHlENzVzmbInEnlNYppBICOOXpd6qi1rCLqtXwnoTskg9h4yYl+gbVIEtwxXvr+xJ8hV68AAJqzqm5gq96GqfXbTwvOqF6DIAZg67KvjtUxJC7MOd11rClCoWPvwmfQOPExAMBfXd9EEOLAgJWhM6ma1HuVIAB018QxBuxKNY5kfTUpYp2WS7AfqJxt/KcabGBX6wSs6aRqlrMsQRxXeMqBNz1OClFd8epeC42FjwBAV3ubEMBuw02C1lrbGzieb241EITA+VkHvLUNY/f9RA4MDFY9CHZ83YF70QSfyCzOiFoojoqpiaEbCr2UrDvfVorukAxU+xh0AtZEEvwQAEBuvD3xZ2ir6oFQjwLWzf32QMMlncyWCCITU+PIerY/frqEt5d3D2x8DgAvvLeBGUfHQycKQ8+L5cCckeKBIGLSEkMGYD8KIGVjtSMJnlbAmqpfRRhiLtzEvr6QHI8XUGS4RBD9xPMW70mALJTMKMOqzJGstVe6jntBiJ26i2bbR9MdrO9/f0MZLp2fsbMNlwaMSYPWuF2MK5FXbWzGd/11cmZZC4a8Kxlxuksy4JxBYyypYY0DVs+cQ2DOQGxM3tpGrlyBV7mEQFd9IzfrbczYAwJW2nkiiEw0KWBm7CY+frqEphvgvbX9oe9veT6+d2MLH7800zeJ9xKbVpDigSA6MMaSscMZQ02PAtZUhnVanktxLWwQAry5CQMu6mYnYI17sJLhEkH0E7vQ9paznIh6sfpmBa3SRdirr/a91w9D7EVr4UHc2KyDM+BM1UqytHEPVs4GZ1hJDtyNqXGMs99mG3Ki2v08WVZd8NyB7bShu2QAuhRw9G5JcAAGb3YRcmNp4uvLtStop6QSm7XsDKulSdopJoghZLV7euxUCQDwem8daw+v3NhG0w1y1a/Gkz1NrgTRTRIgMiDQCmhCVzWs0fEQyKV2OIjEIRghwl3Vg7VtnUiOJy1taM4kiD40wSFYf+3wQsnE6m4LYRgq46WeDGtebmzUcbpiQRMc1voVtIvn4JuqVdygQCjtvE8oGGMoGKPVh0rOYE+j/nVIMMqZkgLfLeguGYAmWZ8kOEQIby4KWCfYMmbNbcidG2jNK4fgMAyxWWuj2usQjOkUYBPE/Yypyb7dyNmCgfOzNr71/fWh7/3y68uo2BqePFMeel68O0wGaATRTxwgcgCmLrHBqpD1VSXdjZiGLNhP9WANdlTA6jknk+OMx9+HxihBZKFL3hc8nigZaLg+9poe6vNPQ6uvQNaWR772+5t1PDATGS6tvdolBx5Uo0otG7Ox9PzOvQxA0ZxOWyhTEwM3EEqWdlc3A+mpPgCNKxdQSxOJS3AYAt7sInhrF3x/9MEcExsutaOWNg3XR8sLMNsTsMb9VwmCGIwms00KPv3YCSyt7OH6ei3zfR9uNfDi+1v4a0+cOtDwQSc5MEEMJJahMabaKawjClhT50wlwxpfI0SSYfULnYCVMqwEMRxdqrVteoTEvVhX91pozEfGS6ujZVlbno/lnSbOz9iQtWXo+zdRj4wNAdXSJguN1rgDKeRw4eUMKNvaVGOFsqX1bWo4uhjLzGma0J0yABm1trF1kWRYAcCbeVgdn0AWrEUBaysKWDf2VUub3gyrLjk5pxHEAYgBGzs/sbgAyRm++kb25tKXXrsFyRl+5smTmcfTxOOQDNAIop94ccMYYGkCK2EFWn2lK2CdRh1r2nRJRJvGvNgdsDIMb59BEMcZQypZcNqzIe7FurLbRHP2MYRMwl7vr2Mdxs2tBkIAD8zasFe/BwCoL3wUgMoADnLtJjnwYHTJYQ0xYNI4w4xjTD2Q5JyhYuvgTH1GwZC5gufDhu6UASitv9Jz16Ma1hBAe2YRwGROwXLlNfjFs3Ajbf9WXQWsvRlWap1BEAcjOIPsaYYOqF3CTzw4i68traLldfeNq7U8/Nlbq/ixh+dRzTA760WTJAcmiEHEGRsGBlPjWPYrkPU1pCPWaUiC4wxrCEDWlrEWlmBZFgC1KBacgTGQ7wNBDIBFLWTS8WO6F2soTTRnHxk5w3pjow5AtbSxV76HQBhozqkuGIJnu3YLxiYyCToOlCwNTk8swAEUDYmZgnFoahLBGeYKBmYKxl0zWeqF7pQhSC5QMGQiCQYAz5pFYM1OnGF1F55Mdpw3alGGtWfhPGxnhSAIheQMkme3t/nM4ydRa/l4/t2Nrtf//ZsraLg+fu7p0wdeX0SN1qnWhiCyYUwFimCqBmolKEG4e4DXSM6ZNGANghBxQ40gDGE0VrASziSLqXhoSqpfJYihaFGWNSbdixUA6vMfUS6/gT/oEn28v1mH5AynyybslZfQmHsSoVCZ20ExKWVX81EwNZQtDQVDomxpmC0YsO9AEHnU1jt0twyAMwYpVWubtCQ4rmMVYwasrL0PsXUV3omnkgl8KwpY0y7BjAEGBawEcSBxW42s8fLk2TJOlU38wau30HTV5PvW7V38q7+8gSdOl3B5YXjvVUAZsAE0HgliGJKrMhpTE9iAcunm9c5GUTi4fWMu/FTAGwKwmqtYDqsoRAs3ql8liHxIwfrGSdyLFQDqJ56FcPdgbuVXEt7YjByC4cJcv9JVvzpoE4nqV/NjagKOIWFq4tgqSOhuGQBnSCTBtVZnlykIQ3izj0BuvDNWUY5cewMMIdyFJ7oyrIbkXZbUkvqvEkRuJGeZvRc5Y/jFZ8/h3dV9/Jf/+mV86dVb+I0vvo6ypeG/+fRirmtrgoOBdoMJYhhxXZylCayHynVbNNaS4/6EGda0aVMYhii011WGNZo3OxnW47mYI4i86IIP7MUKAPVTzwEA7NvfzX3NGxt1nJ+xYa6/Dh60UV/oBKyDAiwyFSVGge6WAXDGIASDo0vU293Nkr3Zh8Hbe+D7t0e+rlxRzZS9hacQz79bUQ/WdPrdlPzY7qIQxKgIoWTBWUPmU4+dwD/6whPwgxC/+c33sFA08Y9/4SnMF41c19YFj2p+aDwSxCA4V3WkhsY7AWu901ZqYklw+v1eC46/jXU+k9TAxcOTxilBDIcxBqPHQDDdi9UtnEG7cBbOcr6Aten6WNltKsOllZcAAI0TH02OZ20iSd6f5SWIYRyNStojCOcMGuMomKqtTRiGYIwhDEN4s7Hx0hLaxYNr4NJoK6/AdxYQOCcQRu7Am7V2X/0qSSUIIj/KbEUFrW2/X3v41NkK/s9ffgZfe3sVP/rQPMo5m1/LyCyCzJYIYjicpzKsiDOsqYB1wrY26feL/RUAwI6cS16LN3wpw0oQB2P2OMume7GWLA21U8+h+MHXlZLwgFrGxCF4xoZ9/SW0i+fg2QsAVFYsy1iJsqvEqNAdcwAlU0MQAk1XLYLDEPDmOgHrqGi3X4J76lmE6BgobjdcVJ3OApoxwBRUL0cQeYl3aoe1nbF1ic89dTp3sAqoWh+ANpAI4iBih15TCqyHcQ1rRxIcQkl5xyVI7UOJmmpps6stdF5jbODimCCIbgxNdAUA6V6sAFA/+RxkcwP6ztUDr/X+hup1/kDVgr38Iuonnk2ODcqikjkaMSp0xwyBMYZS1HuoFsmCwzBEaM3Ct+cg198a7Xr16ki9LwAAIABJREFUdcjta3BPfQxB2AlYdxouKlYnwyoYoFG/R4LITTz5aby/vc0kaFy5KVI/ZIIYjmBK5WDrHE0YcIUNmcqwhuiuQx2VdA1sHLDWjfnkNWpnQxD50QWHSPk+pHuxAkAtqmN1bn/nwGvdiByCz8sNaI21LsMlkeEtASDTc4IghkGrsCFwBpQspZqOW9vEm7zewlNJPWpetGXVTNk99WwycXt+gL2m15X10aXoshwnCGI4gkfZFc4wzY1bKfprfQiC6CfuxRr3D6/rMxCN7nZSk6iC08Gu3FcBa8M6kbymSgJo3iSIPPSWuqR7sQJAu3QBrjUP5/ZfHnit6+t1nK1aKN/+FgCgdvK55JjMWMtyRkoIYnTojhkCZwxFUwWs9cgpOJY0uSefgdx4G3Brua+n3XoRIZdwUy1tdpsqEK7YnYBV42TwQhCjIjgDGIPGpyOnjydVyq4SxMHEvVhtTc2ZNTkD2VjrkgFPYryUvo6sL6MJHTDKqc+nljYEMQrpgDXuxbqyqyTBYAz1U8/BWf7OgR0xrm3UcHHOQfHG19AunEGr+nByjGdkUjWSAxNjQHfNEBgDSlHmM+7FGo9b9+QzYGEAbeVK7utpt1+CN/84oNmJHnin4QLofA4DIGSnpxxBEPmIZcG6nM7YkVHWlgyXCCIfknNYkSJhX1YhG+tda91xA9YgCBN1UxCEkLVlrIQzKKSUSZwxCFoIE0RuenuLn65YuLXdSP5dO/VxaLVlaHsfDLzGTsPFZq2NyzManA+/hb1zP9Vl0pQVnJInBDEOdNcMgTGGsqlqS/fbvQHrRwAA2vLL+S4W+NCWX4Z78mPRddSFduoqYK1EE6/ggGT9PbIIghhOXCujienUsWqCQ5e8q90UQRCDEYzBNtQieFdUIRsbSIeo4zoFp+tXQwCyvoLlsIKC3ml0IBi1ySCIUYh7jMecrVr4YKue/DuW9hZufWvgNa6tKZXhc3wJwqtj/9xPJsf4gLpySfWrxBhQwDoEzoBCJAlOMqzRsdCeh186B20lX8AqN94Gd2twT6mANd5p3m6o1jZxDWssZ6SJlyBGIx4zgnNMQ8UrBIMuya2bIPLCuVIkMADbvALR3ETou8nxoL/jVC7S9atBGELWVrASVpP5mUEtjGneJIj8GJJ3eT6cq9pY32+jHiVoWtWH0SqdR+m9Px54jffW9wEAj9VeQCAM7J/54eRYVk05A0mCifGgu2YInDEUjO4a1rSkyT35DGTODKt2WzVTdk8ru+943o4lwXENq5SM5MAEMQbx5BgCEweaDIAhOMmBCWIEVC9WDlMT2GIVMIRgjc3kuD+BJDgmDEJo9VWshFU40fzMWFROQwErQeRGct7VXuZs1QIA3NpWxktgDLuXPofCrW/3GajFXFuvYcbRMXvr66id+iGE0kqOZY1HEfU2J4hRodXYEBhj0KWSBcaS4LS+yT35DOTODbD6evYFUmi3X0JgzcIvn1eXiTOsdReCs2TiFZwmXYIYByl48kCb1DJfcpVdpYmVIPKjjM8ASxfYRNSLtdbpxTpuWxsvHbC29yD8BlbDCpxIEswZbfQSxKhwzmCk5EhnZ2wA6JIF71z6HFjoo3T9K5nXuLZewyfK2zB2r2PvgZ/qOpbVa5Wyq8S40J0zhHj+KxiySxKcdgoGAG35lQOvpd16UcmBo4vG0qidhouypYFHDotKzkgTL0GMQzx2NMExyfpVCkbZVYIYEcE6RmXrYQUAwBudgDUIwy6337ykM6wiammzGlY6kmByCCaIsZApk8JTZROcATe3OsZLzZnH0CpfQvm9P+x7r+sHuLnVwKc0tQbeS9WvAgPqV6dkikgcP2hFNoR4wVs0JWpxWxt0esl5C08hZPxA4yW+cwNy6120z34ieS1IuQSXoklXsNjpkAY0QYxDvKPLGJtoJzc2XCIIIj+Cq0ynpQmshXGGtaNASs+fo5DOsIraCgBgFVU4Uc9XzkC9ywliDIyU8ZImOE6VLdxMZVjBGHYufQ7O7Rcg6mtd7/1gsw4/8PGje3+ExsxjcEvnu45n1bBSmzhiXOjOGUIsMSoaMilCBzp1rKHuwJtdPDBgNd77EwBA68HPJK8lkuCGi4qtnIg1EU++NPESxDiIlBRY18Z/vJmaoMbmBDEijKn6NFMTWPGLAADes8gdRxac9o4Q+1HAGlYSjwnOGEhpSBCjo0nRNXbOVq2uDCsQy4IDlHtkwdfWa/gMfxEz9WtY/8h/3nUsyyGYITuIJYg80CN+CHHgWDA7kmCge/L0Tj6jAtYhMifj6lfhzTwEv3oJgApW47N36m7iEBxbfdPESxDjkVYn6GO2txGsU1NOEMRoaILB1Dg2PQsB1yEa3R4Po/Zi9YOwqzUOr68CAFZTLsGckZELQYyD4KzPeOnDrUbXxlKruohm5TJm3vqXYH4ref3a2j7+K+330SpdxM7Fn+27bi+SM2oTR4wNhUZDiPwjVA1r209eT8+37TMfB29uDnQLZq1d6DefR+tSJ7sahB3vpp2GmzgExwkdkjYRxHikd2/lmO1tdKpfJYixEVy5BDe8AJ411ycjHDXD6vX0whG1FbSZiRqzYGpKlUQ1rAQxHpyxLpnu2aoNLwixutfsnMQYVn7wv4W5+TYWXvwnycszt7+Ox9j7WHvmvwB4tzN/ZsBKqiViAujuGQJjKkNTNLWuDGt6u7f14GcRCh3m0u9nXkO//udggYfWg59OXot3mFuej4bro2xpieESWfMTxPiknYLHbW9jGyQHJohx4RywNIGm68Oz5sB7XPRHDVh7zxe1FezIGTiGlqigOGO00UsQY8A5ujZ249Y2Nze7ZcF75z+NjUf/NuZf+004N78J6/Z38R/u/jbW5QlsX/75vuvKjPEoJ3TvJ443tCo7CBa7BKczrCmLfbOM1oVPwlz6IhD4fW83rn4VgTkD99SzyWtxwJr0YLW0xHCJMZBkgiAmoEsWLEeXBZMcmCDGhzNVw9p0ffjWXL8keMSAtfd8UV/BJp9NWtoAlGEliHERjEGkymfigDXd2iZm+eO/gWblMi58+T/Cg3/4N3EmXMG3Lv5dgGt957JMSTCFHMT40N1zAJwxFAyJth/A85U0qbcGp/nIFyBqK9BuvtD9Zt+Fce1P0br0qS65RBi3tKmrgLVsaYnhEu0SE8RkpCdFbURZsMaBgtE/+RIEkQ/BGAyNozVIEjxiDWuPIhiytooNVoVjdOZUyTlt9BLEGAjOoDGeeKcUTQ0VS+szXgKAUFr44JP/DDsP/hy+/NA/wLOtfwbjqS9kXrfXXIlh8v7oxPGGAtYD4IwlE2MsC+6ZP9G69CkEmtMnC9bf/zp4awetS5/uej3tEAwAZVtLpBK0S0wQk5F2CgZjMEaQBdu6JPMWgpgAwRlMqQJW15qDaGx0GT+MmmHtrWGV9RWshpUuJYRGY5YgxoIxZdbSZbw00+8UHNOaWcTNn/o/8HvuD0MzC0lGNg1Hf72qIMMlYkIoYD0AzpA4EdbdSPLbO99qNloPfhbmO38I+G31mltD8c//e3jlC2hd/GTX6XGGdjeRBOtJFogGNEFMRu+mjy55LlkwQ2esEwQxHpJ3Noma+ixY4IK1dpLjAUYLWtMZWdaugbs1LAcV2LHhEgCNTNIIYmxEhvHSB1v1rvK3Xl6/tYPHT5cz16xZm76T9EUnCIAC1gNhYEmvt3qcYc0YxM1HvgDe2ob9vf8LCAMUvv2PIXfex+6n/ymgde9AxfvF26ka1niAU4aVICajV4qkiXyyYE1w2FS/ShATITiHEfVAbugzADJ6seaUBQdBiHRsy2uqB+tyUIaldxyCSRVBEOMjOOtae16eL2Cv6Q3Msq7vt7Cy28ITZ0oDrtf/GhkuEZMytdXZ4uIiA3ATwPejl15YWlr67xYXFz8P4O8B8AD8i6WlpX8+rc+8EzCOJGBtumrmzJpr2+d/Aq0HfgzFv/iHMN/5EuTKq6g//atwz32i79x4d3mn7sKQHLbBIRlHCDX5EgQxPlJwcIZkoRsCMDWJ/bTTdw8MgKNz6OQOTBATIbjqwwoAda0KAOC1NfgzDyXn+EEILYdSvzew5fvLAIAP/TJsvdODlbwfCGJ8OGeQXM2DIYCPnKsAAF75YBvnZuy+89+4tQsAePx0OfN6WeNRUMBKTMg00wkPAvje0tLS5+MXFhcXNQD/FMAPAKgB+Pbi4uIfLC0trUzxcw+VtEyw6SlJcKaaSWjY/oV/C/ONf4PiN/8nBMUz2P+R/yHzmvEcvN1wUbY0SC4SlTGniZcgJkbjHC2/U/tmSIZaO3uzCVDZVcfQSJJPEBPCmGprAwD7MjvDmqVSyqK3pU2cYf2gXcYTekcSTBlWghgfwVjSpSIMgZNlE6fKJl75YBuff/p03/mvf7gDSxO4OOdkXy9D/kuSYGJSphmwfgzAmcXFxT8H0ADw6wAMAO8uLS1tAcDi4uK3APwYgN+d4uceKrFLMADU2ypDM1DXzziaT/wyWg99Dgh8hEYx87R4Dt6pu5FDcGeypYCVICZHk90BK+ccjp6dZWUAbINDpzo4gpgYxhhsTc2Ze4MC1pw1rL3nxRnWW0EZPxgFxZzRvEkQk8A5A5iSBQe+GnNPn6vgG0tr8IOwr1TtjVu7eOx0aWAJW+8GkmCMNpWIiRkrYF1cXPyPoQLSNL8G4H9ZWlr63cXFxR8B8P9E5+ykztkDkK0hOKow9AesB7wlNLJ1/cnxuA9r00XF0rrc2aiGlSAmJ2scmRpH0wW8oPd1AU0IMm4hiCkR15fusiJCJjIC1nzX8TIyrL4wsAunq4a1t26dIIj8xBs+muBwfaUk/Mi5Cr7y+jLeWdnDo6c6a9qdhosbm3X85OJ85rUYsnwkaHwSkzNWwLq0tPRbAH4r/dri4qINVaeKpaWlby0uLp6GClDTacYigO3xvurdgTOW1MrU2n6i8Q+CcKwdozAMk4B3p+7iwqyd9L9iULvFBEFMRlYtKmMMjq5ht+kmY9CUHAVDgDN0uSQSBDE+dhRMtnzAN2fBa90Ba2+rmkH0SYL3V9Ay54EaSz6Dc07ZG4KYgHiDNx1oPnWmDAZVx5oOWF/5QC3hB9WvZpmg9ba4IYhxmOZd9PcB/F0AWFxcfBrABwDeBPDQ4uLizOLiog4lB35hip95RxBcTY61ppeYIuWtwenFD1TAGoYhthttlG0teVgwRm1tCGIaKBOJ/rGkaxwlU4OtCViaQNGUAGNktkQQU8SKNnlbng/Xnoeor3Yd7w1EB+H53YEtr62gacxHn6ECVhJGEMRkCM7AUn8DQMnScHmhkASogFq3/v7LH+JkycTiyeyStyx1EykHiWkwzUf9/wrgxxcXF78B4H8H8KtLS0sugP8awFehAtV/sbS09OEUP/PQiaUSRVNiv+0nGdARe58nxO9ruD5cP8SM3TF6oTocgpgeg0wedI3DMaUyU4ulULTqJYip4RhqPLXcAL4115dhDdAfjPbi+gF6zxC1FezrcwCQ1MlKMnMhiInhUQ1rumn50+cqeHt5D422kgm/+P4W3l3dxy8+e3ZgEJr1OqmXiGkwNdOlyFjpZzNe/xKAL03rc+40cQxZMCRqTQ+SC3iBP3aGNX7fdl31YK3aRnKMrPkJYnpIyaIihYOhDCtBTA9H1wAALS+AZ83B2rnad44XhJBDWtt4fv8cK2qr2C/8AIBOhpXaZRDE5AjO4IcMggFeNPQ+cq6C33vpJv7wtVv4Gx87i3/zlx9goWjgJx9ZGHgd2bOO5YwyrMR0mKZL8H1JnPV0DOUwKgRyL4IziR4Eu00VsM4W9L7PIghicvLu6grGqMaGIKaIHfVhbXk+PGtOmS6FYVejcc8PMKwZa1+dq1sHb+9iJ3IejmtYaaOXICZHJMZLKikDAE+cLuEHLlTxOy+8j7+6voWllT382k8+OHRuZb31q6SAIKYE3UkHEA+9QhywRoN6YGubA4gzrLsNFfVWbS05RuOaIKaHJniuB1ycqSEIYjo4Ue/ylhvAtebB/BZYa7frnKwM6rDjoqbqYLf5LIDOuCXDJYKYnFipIFOKBSk4fuNzj+FXfug83l7exVxBx08/emLodXq9IyQpIIgpQRnWA+BREXrBkLixWU+CyjHj1U7AGmdYHcqwEsRhIQVH+4BaOYPqVwliqhhCOW83PR9eVZkk8foafLPjLOoe4BTcZ7gU9WDd4N0Z1kG16gRB5Cdef/YmTzlj+JvPnsPHzlehCT48u4p+R2DKsBLTgu6kHMQB637TA2cqgB23hjV+224jrmFNBay0U0wQU8XQhj/idMFJDkwQU4ZxBlMTSQ0rgP5erOFgt2Avw3CJ798GAKxBBaymJsAAMBq+BDExcVwpOEdW7uTSfAHnZuyh18iqVaUMKzEt6FGfA8YYCqaSBHOoMpzJM6weNMFgG50kNyVYCWK6mFIMfciZQ2roCIIYD8bU2Gu5ATyrk2HtxR2gfvAyAllRWwEArKAKSxNJRogyrAQxOXG5m2DKeGmsa/RmZ0EOwcT0oDspB4ypDKsXhGj5ITgDQoxbw6r+3m24KJlaV99VMo8giOnCOYMxwIqUAzAPyMASBDE6DErdEJsuAQCvrfadNyzD2gvfX0YgTWx6VlK/yhjNmwQxDeIerCEAycfbyO0di+QOTEwTWq3lgDOGQpQJrbVUa5vx+7B2algrKcOluGkzQRDTxdCzH3OGFF0bRgRBTAfGOpJg36giZDwzwzqoF2uWIRPfX4Znn0DdDZL6Vc4ASTXoBDExjLFE5TeujFf0qB2o3IaYJnQ35YABKESuh/stD1KwsSXBnRpWD2WrO2ClxTNBTB9Dij7nQs46TqYEQUwXBqVeaLo+wAUCaxa8liUJzp5IswyZxP4yPOcEGm0flkYtbQhi2ogBxkt56fVhofpVYppQwJoDzhicKMO61/TA2XimS0HQERL3ZVhp4iWIQ8PqqVUtmhopGgjikGCMwYoyrADg2/MQGRlWPwwR9MiVmq6fqWDitWV49knUXa/Tg5XGMEFMjXg8xfLgUelraUP15cQUobspD1ENK6AyrJwD45SwpoPc3abb5RBMEy9BHB62IVG2NGhcyfvJbIkgDg/GkEiCAcC35jNrWAHV+iZNo+33nxSG3RnWKGClBTFBTI94HSo5x6hDi6M7w6oMl2hdS0wPetrngDOgmKphjQdlOGKW1Y/O94MQ+81uSTBJmwjicDE1gZmCkaglCII4PEyNo+Wq4NO358Dr65nn1ZpeYr7U8vzMvsmsvQfmNdC2T6De9mHragxTKziCmB7J2haAGLFfVG/SRXBGykFiqlDAmoO4rQ0Q1bAyDjCMbLwUx7e1locgBCqpDCv1kiMIgiDuB3ozrJ41r0yXMjZ5AwB7UV/yeisju4pOD1bPigNWlWEloQRBTA+eCjA1OVqw2RuwamSGRkwZuqNywBiSrMx+y1O7T5yNXMcaphyCAXTVsFKGlSAIgrgfYGCwpFCmSwB8aw7Mb4G19zLPb/kBdhtuZnYVUIZLANC2T6DhdkyXOO30EsTUSAedcsSxRfWrxGFDd1QOGBhsXYAB2G96ANRgHD1gVX/vNdQ1ulyCKWAlCIIg7gMYAyw9lWG15wEgs7VNTMPNzq4CAK+tqHPMefhBmMzH5P1AENMjnTgRAiMZL7HeDCvVrxJThgLWHDDWcQreb6lgU4zR2iauYd3JyLBSvEoQBEHcDzAARiQJDsMQnhUFrAOMlw4ilgTvyFkASEyXKGAliOnBOUuCAsHYSMZLssdwiXqwEtOG7qgcxMFkIR2wgo3sFBxLgvfjgNXq1LByilgJgiCI+wDGGExNLS/afgDPngMwPMM6DLG/jEAvYT8wAAC2LsEYldIQxLRJjMwYyy3r7Q1QKVglDgO6q3IQB5MFsxOwcj56L9bYpGk/MpZIS4Jpo5ggCIK4H+AMMKXKgrbcAJ4ZBay18QJWvr8Cv3AykQ1bmlABKy2MCWKqpDeBtJzjq89wieTAxCFAT/scxEOvYMikhpVzNnJbmyDyk9hveTAkT3ag///27jVGsvS+6/jvec6pe3fPbM/szu56l9hOdg92EI5lIxxwHKMkcjCQCyhCigDh2JEc5QWKEBAgIUJBAqEYFISiRMEWFyUQcQkIR3GMIkxMViYoSsB4w/GFje31rtc7szPTl7qf8/DiXOpUdXX1qe6u6uo638+r7epTPUfjOX76V///838kKqwAgO2QVFiTwNofRxo39+WMPXeF1R4nZ7B20zNa23VP1hi20gCXzCuEzbKfB80GViqsWAX+VZWQV1gbvo7T6qhnzLIdwXlF9qA/0o1WLR+0ZMR5cgCA7dFOP5AdjGLJeIpb++few+odfVVR53F1h8kHxq26J4/ACly6qUnBni31jJ2ssBItcPn4V1WCMUmoLO5hdVquKhrFTk7JzznojRi4BADYWo10MNJgHMtJituPyeueI7C6WPb4FUXtO+rNVFjpTAIuVzF8WmNUpru3WHDxjGEYGlaCwFqCMUZGUqfh6XAwmry+xNDvrLpqrfSwN2bgEgBga2VnpQ7GkZyT4p0nZI9eWfrnmN49mXis8c7jhZZgX9ZbZgUGUMbsoKWa55V4z+RJrPvECqwG/7LKMsnQpeN+lO9dXabrIUonLtWs1YPeUDcKFVYmHQIAtkkeWEexnJyi3Sdkj15a+ud4acgdt+9MDV2y4sNe4LJ5haNtpLMHKM1OCCawYlX4l1WSNUa7jZoi59QfJdOTrFXpwUvZdb5n9bA70s2pCcEsugCA7VGssCqtsHrdu9J4sNTPyc5gHbcfU3cYyUhq1qysYTsNsArT+1gXdzLMzl9h/ypWhX9ZJWUtwZIKR9tYxXG5wJpd5xTroD+e3sPK/woAgC3SSvewDtM9rNHOE5Ike7xcW7B39FVJ0rjzuHrDSK10/2oydInECly2YlvwWcPNiu3AvmX/KlaHqFSSNUY7DV/SJLAmrbzlHs44vfJ4OO8MVh5wAMD2yCusUdKRFO08Lkny0oppWTYNrKPWo+oOx2qnQZjJ+sBqTG1jNWZh1dRj/yrWhH9dJZl0D6uk6UnBZ+9Hl5RUWK2VjnrJe2+2J0OXyKsAgG3SqSfr5XAUJRXWTlphXTKweocvKurckfNq6g6jJAibk0dpALgc3szgpcaCIFr84Ih2YKwS/7pKMukeVkk66o/z18uM/Jak2CVtFg96yZRhKqwAgG3VzI+1SbbDjHeelCR5h0tWWA9eVLT3lJyTeqNI7bovo5O/VAO4HLMfBi3ax5q1BBtJdQIrVoh/XSUZI+2mFdaD/vJH28TOqeZZPegm7+UcVgDAtqr7RtZIw7QlOK7vyvmtpScFewcvKk4Dazffw1p2Mw6AZfl2+jdbz9q5p2JYM5kQ7FtDmz5WisBakjUmD6yHhQprmeqoc07OJcfgUGEFAGw7a4yaNS+ZEiwpllG0+2Q+RKkUF8s7eknR7tNyknrDSO106BLrJrAa1p4ctNSs+SeuKw5catZK7o8DzonAWpKRtJeGzIPeaOr1s/4So9hJZnKkjURgBQBsL5MH1qTC6uQU7Twhe1i+wmqPvyYTDRXtPaXYuWRKcM2TNZbp+sAK+TMt97U5bcHZnlUrAitWj//LL8mkk9KaNTtVYXU6e/hD5Jw8kwTTB72hmjWbP9xGSVsFAADbIjsvdZieW+6ys1iXqLB6B1+WJEV7T0lO6o6SKcHW0hIMrNKJfazWaHbbeNYC3PA92oGxcgTWkrIi6G6zNrWHNXIu7+E/jXNSIw2oD7ojPTIzIZiz5AAAW8VITd9TP20JlqR49wnZ469KLi71I+zBi5I0VWFt1/20ZZF1E1gVfzaAGqOGP11FzSqsjTpRAqvHv7KSsrXxRrM2XWF1yQS1RVzs8of/QXc0NXCJdmAAwLYxSluCR3FSDXVStPOETDyW7d4t9TO8NLCOd57SYBwrdkqGLolhhcAqzauYtmqT4UueMfKskW9PBllgFQisJWXd+7tNX4eFCqvT2ZOCY7n8k6j73eHUGawEVgDAtjEmaQnOKqxOTvFOehZryX2s3uGLihs3Fdd31B0mP6dd95LOJJqCgZWZd0SNtTY/XznLqC32rmJNCKwlZR827bZ8HfTGU9/z7OJ9qL6xefvSw95IN6cGLl36rQIAcKWSwJpUWGWUVFh307NYSx5t4x28qGjvdXLOqTtKAmsydOnkFFMAl8em1dNZjZqnVs1T3fe016yp3Tg5PRhYBQJrSVngnN3DKkmx08KWCK/QMny/O5zZw8qqCwDYLllLcH8UZXl1UmEtOXjJHryY7l9NjrSRksBqLC3BwKrV/fkRodPw9NhuQ6061VWsD4G1pOyg8r2mP7WHVUr2sZ72YEtJr78k9UeR+qN4Zg/rSm4XAIArM2kJjmVNch553L4tZ315ZVqCnUtagnefkpNTP6uwNjxZGVqCgRWrnTJQ1MwZwASsGoG1pGKFtTeKNI4mUw5j59Tw7dy/TCspK7A+SM9gZegSAGCbGaVTgkeRrDFykmSs4s7jpSqsZvBQdnikaO9puZkKKy3BwOrVPTv3Y6HkiBseQKwXgXUJxiQVVkk6KFRZY+dO/cSp7lvF6cp6vzuUpKmhS7QEAwC2jTFZS3Asa2wSWCVFu0+U2sPqFY60Sc5gTQJrp+7JiQ97gVU7bR8rg5ZwFQisSzAy2ksHJhUnBcdxshTXa9N/ndZMtwo/7KUV1uLQJf4XAABsGaO0JXgUycgpS6zxzhOyhy+f+X7v4MuSksBabAnupENeiKvA6s1ud7NKhqkB60ZcWoI1ybE2kqYmBad59URbcKfuy7nJ11mF9RGOtQEAbDFjkkqMkzSOneJ0MYx2npB39LKmFsc5bKHCWmwJ3qn7MmLoErAOtZnA2vA92oFxJQisSzDGaLeZVEeLk4LHcZx//0a7roZn5VmjVt3TOJosyuxhBQBUQdYSLEkU76S1AAAgAElEQVTDKM5bguPdJ2XGPZn+/YXv9w5flPNbcq3bcs6pl1dYvTSwsnYCq1b3pgsxjTqxAVeDf3lLsIU9rIf96QprlLUF+1Y3O3Xtt+syxuRhVkoCq2eMdpqTliY+qAIAbKNmuk1mMI7yluDxI2+UJPn3v7Dwvd7Bi4p2XycZo1hSbxSp5hnVah79wMCaZIWYWrqflenAuCoE1iUYGe01T+5hlaRRYWqwpLxlIguyUtISfKNdy6uqfEoMANhWeYV1PKmwRvvPSpK8e59d+F4vPYNVkuSSY+FaNU8eR9oAa1X3rfZ3GrpRmL8CrBuBdQnGFvawzpzFOp4JrNlrxVcfdkd6pNAOTFgFAGyrbJroYBznFdZo72k5ryH/tc+d/kbn5D34fUU3/oCkZBJ/bxipVfck49i/ClwB/5RzWYF14F/fEoySB7Zd93TQm66wFveq5q/F06/d7w6nPqFi0QUAbKtmIbA6k66H1tN4/xsWBlZ79FXZwQONb79JUpJ1e2mF1RrD7AcAqBgC6xKyRXK36U/tYZWkUTy/wlr0oDtiQjAAoBJa9TSwjiZ7WCUp2n9G/r3w1Pf5d5+XJI1vv1mS8inBzZonY9nCCgBVQ2BdRrpK7jZrU1OCpenBS5nZrx/0RjMTgldzmwAAXLV2WmHtj+OpjqLx/rPJsTWj7tz3+a9mgTWtsLqkwtque7IydCcBQMUQWJeQVUT35lRYpZODl0aFNuEodjrojXSzUGFlDysAYFu10wprfxTLGiOXnr06vvWMjNypk4L9Vz+jaPcpueYNSZKTU38Uq1VPWoJZOwGgWgis57DXrJ2YEixNV1SdmxyULkkHvZGcNDV0iQorAGBbtfLAGskYo2xJHKeTgv1TJgXX7j6v8aNvzr/OWoJbNU9OzH8AgKohsC4h38Pa8nXQO1lhLe5ZHUWuuGVH97tDSZoausQeVgDAtmrXkqn6vVGUVFjT16NH3ihnPHnzBi+NB/Je+7xGj2b7V13+MzqNyRnmAIDqILAuwSzYwypNtwDPG7gkaWroEm1NAIBt1cyHLsWydhI+5dUV3Xz93Aqr/9rnZFyUD1yKXXqszSjK98TyYS8AVIt/1TdwnRT3sA7GsYbjWHV/kvlj5zQcx+oNx+qPZwJregzOzQ7H2gAAtl/dN/KMOVFhlaTx/jNzj7bJJwQXKqzj2CmKndqNJLBSYgWAaqHCuoRsjdxtJqFzdh+rU9L6OxtWJelB2hJ8s8WxNgCA7WeNUaNm1R9FsjJTcx2iW8/Ke/D/pGh6HfVffV7Oayq6+QZJSYW1O4wkSe161hLM2gkAVUJgXYK1yTK520wWzYM5k4JPk7UEc6wNAKAKjDFq1Tz1RpFknAp5VeP9Z2XisbyHvz/1Hv/Vz2h8+w9KNllnkwnBSWDtZIGVtRMAKoXAuiSjyeCkeZOCT3O/O9ROw1fNm/yVU2EFAGwrI6lZ8zQYxfJmPqEd7z8j6eSkYP/u8/n5q9JkQrAktRvJ+snSCQDVQmBdkjFmUmGdMyn4NA+6o6nqqhGLLgBgixkVKqySKVRYo/1n5Kyv2lc+lb9mj78mr3s3nxAsSXLJhGBJ2mnQEgwAVURgXZIxkz2s8yYFn+ZBb15gZdEFAGwno2QPay/dw1o87M3VOxo886fV+sy/kRkeS5LqX/oNSdL40W+cXCeXB9Z2GljZTgMA1UJgXZI1RntphfVwqT2sw6mBS4RVAMA2M2mFtZ9OCZ7VfesPyg4O1Hz+l6RoqM5z/1Cj22/S6HXvyK8ptgR30mNtWD8BoFo41mZJRtJOHliXqLB2R3r2zm7+NZ8QAwC2Xavu6eBgJCfJzCx8oyffrtHjb1X7d/6ZTDyS//CLuv+9/1qyXn6Nc5OhSzuNpEuJ5RMAqoUK65KsMfKtVafhlZ4S7JzTa8dD7Xc40gYAUA3GSA3fqj9Kjnqbt+p13/qD8u9/QTu/8ZMaPP1ODV//J6a+H2tyrE2z7jH/AQAqiMC6rHSh3GvWdNArV2F92BtpHDvd3mnkrxFYAQDbzMioVffyPajzVr3+s39GUeeOTDzS0bv+zsk06pRXWNt5YGX9BIAqoSV4SVlH0812LT9b9Sx3j4aSpNs7hT2sfFQAANhixkhN39MgDZx2XmT16jr8tn8g7+GXNL7zlhPfzoYu2bRaSz8wAFQPgXVJ2Se7+526Xj0clHrP3aPkultUWAEAFWGkqQrraWFz8A3vPfVnxOmxNq26J2MMR9oAQAVR51tStlTe6jT02vGw1HuywPpoIbCSVwEA28wYo4ZvNYqcxnF8vnUvnRLcTicEM7AQAKqHwLqkrMJ6q1PX/eORotid8Y5JS/CtHYYuAQCqIauwSlJ/FJ+rNppVWNv1pCGM/asAUD0E1iVla+Wtnboi5/SwxOCle0cD7TR8NWuTUf2suQCAbZbtYZWU7mNdfuFzcuoPY7Ub6Rmsl3mDAIBrgcC6pCxoZkfUlGkLfvVwMDVwSaLCCgDYbsaYvMLaG0WSObsjaZbL9rCmH/iydAJA9RBYl5QNfMgC673jswcv3TseTh1pIxFYAQDbr+Unv2b0R7G8JUcmOZcE3N4oUqdBSzAAVBWBdUk2bwlOAui9o7MrrHePBlOB1Yi2JgDA9mtOVVhNUjItyTnJKR26VKfCCgBVRWBdUvFYG+nslmDnnO4eDqcGLkmSZdQhAGDLtWpJZXQwihRruQppnIbbfnHo0qXfIQBg0xFYl2RNsmB26p4avtW9MwLrYX+sYRTr0V2OtAEAVEu7WGGVZJb4sDarxWbnsEpspwGAKiKwLin7dNgYo1s7db12RktwdgbrrQ5H2gAAqqV4rI203Ae2sXOKYqfBOFYn/TmUWAGgegis51CcFHzW0KXsDNbiHlYCKwCgCrLpvlmFdZlfOpxL2oGlSfBdbmwTAGAbEFjPIQuctzqNM/ewZhXW6cC6unsDAGBTZC3BgzR4LjcmeBJ08z2srJ8AUDkE1nPI1stbnfqZU4Kz7xeHLjGWHwBQBa36bIV1mT2sTr1hFliZEgwAVUVgPQdbmBT8oDfSOIpPvfbu0UDtupefIZe8f+W3CADAlWv5M3tYlwmshZbgNi3BAFBZBNZzyFuC06rp/e7o1GvvHg1OHmnDR8QAgAow1qhZs3mFdTL792zOuRMtwXzgCwDVQ2A9B5P+rd3qJPtSFw1euns01O1OY+o1WoIBAFVgTDJ4KdvDakz5GqlTcQ9r1hLM+gkAVUNgPYdsudxPj6pZtI/17tFAt3dnA+uq7gwAgM1hJDVr3uQcVlN+7pJzk2FNk5ZgAEDVEFjPYbYl+LRJwc65JLDSEgwAqCBjTBJY0+FJsZNsyb7e2Ll872ur7smID3wBoIoIrOdgCkOXJOneKYH1eBipP4p1a2e6wsoeHABAFSQVVqv+OB1O6Mp/aOucNEjfNznWhgUUAKrGP/uS0wVB8L2Svi8Mw+9Pv36HpJ+WNJb08TAM/24QBFbSz0h6i6SBpA+EYfj5i9321crWy2bNU7vu6d7R/D2s2euPngisLLgAgApI97D20wqrk5NXNrBqMiW4VfOorgJARZ27whoEwU9L+vszP+NnJX2/pHdK+qNBELxV0vdIaoZh+M2SflTSh85/u5uhuGje2qmf2hL86mESWIstwUbl26EAALjOjIwaNU/98aQl2JT8zSNOpwS3ap48azjSBgAq6iItwc9J+qHsiyAI9iQ1wjD8QhiGTtKvSfp2JeH1Y5IUhuGnJL39An/mRihWSG91GqcG1pcf9iVJd/aa+Wt8QgwAqIpsSnC2h9W5JSqsTuoOo8KE4JXdJgBgg53ZEhwEwfsl/cjMy+8Lw/CXgiB4d+G1PUkHha8PJb0xff1h4fUoCAI/DMPx+W756hXXzP1OXV/42tHc6164e6y6Z/XkzVb+Gu3AAIAqadW8fC+qU7l9qHHskmNthmO1G0wIBoAqOzOwhmH4YUkfLvGzDiTtFr7elfRAUnvmdXudw6o0W2Gt639251dYX7h7rK+71ZZXaAEmsAIAqsKYZOjSZEqwky3R2xU7JyOpO4rUYeASAFTapU0JDsPwQNIwCIKvD4LASHqPpE9K+k1J75XyoUyfvqw/86pYO9lJc3unocP+OF+Mi164e6w33O5Mv5f1FgBQEUbJsTbZHlY5lWoJdsmb1R1MWoJZPwGgmi77WJsPSvoFSb8l6XfCMPwfkn5ZUj8Iguck/WOdbC++lrJ1MwukX3h1ui24Oxzr5Yf9E4GVT4gBAFWRVFg99UexYpe0+Xr27PFJsXOyJtnD2mmkFVaaggGgki50rE0Yhp+Q9InC15+S9I6Za2IlQXarGGMk5/TMnR1J0mdfOdQfet2N/PtfvNeVJCqsAIDKMkr2sErScByrVfPk0rNYI+dOfV92TXc4aQkmrwJANV12hbUysuD5xI2mdpu+PvvKdIX1hbvHkqQ3PjobWFlxAQDVYIxRs5b8qtEbRnJSXmVdJJkmbNUdjpkSDAAVR2A9pyx4GmP0zGM7+uwrh1Pff+HusXxr9LpHWlOv0xIMAKgKo6QlWFK+j9U5VyKwStZKx4OIKcEAUHEE1nMq5s7g8V19/mtHGsdx/lo2IdifGYdIXgUAVEV2DqukwqRgyS9RYY2d0zCK85ZgOpQAoJoIrOdUrJQ+e2dXg3GsL6X7VqX5E4IlFlwAQHUkLcFJYJ2cxepkzwissaTBMLk+awmmxAoA1URgPafiWvvsneSY2Wwfa38U6Sv3e6cE1rXcHgAAG6FV2MMqJe2+Zfaw9sbJke1tpgQDQKURWM+pWGF9/a226p5VmO5j/eK9rpxOTgiWqLACAKqlVZ/dw5qcxbpoNXRO6o2SCmuHoUsAUGkE1nMqLpy+Z/X1j3X0uTSwZhOCT5zBKp3ZBgUAwDZp1ZIKaV5hTVuCFwVQY6TBKLk+O4cVAFBNBNZzmq2UPntnV+Erh3LO6YW7x/Ks0dP77alr+HQYAFA1rXryq0a2h1Xp8auzQwmLPGN0NEgCa7aHlQ4lAKgmAuslefbOrg56Y/3Kp1/Wr3z6Zb3+Vls1b2ZCMPtvAAAV0z4xJThJrN6CAOpZo+4w2cOaTQkmrwJANRFYz2n2k94gHbz0kx/9PbVqnv72n3rTifecNWQCAIBt00oDZ76HNX3d8+avic45ecbqOA24nMMKANXGxpBzms2ez9zZ0Tc9fVN/+Kkbev8735CP8S9isQUAVM3sOaxpgfXUFt/YScZKx4N0SnBeYWUVBYAqIrCe0+xC26x5+rm/+Lal3gMAwLbzPaO6ZyfnsGYtwad0HTmXDGXqpgG3U/dkxIe+AFBVtASfkzHLL56Gv20AQMUYGTXr9kSF1T8lsBoZeSbZw9rwrfx0HgRT9gGgmohQ52TOOENuHiqsAIDKMVLT99QbTe9htdbM/SXE2uSa7iDKJwSzegJAdRFYL2DZ/TTkVQBA1RiT7GPtj6anBEvz24KzyuvxcJzvXyWxAkB1EVgvYNkASoUVAFA1RlKzPqmwFgNr3T/5a0i2VHaHkTr5hGDWTwCoKgLrBSwbQAmsAICqMcaoU/em9rBmg5cacybq2zScHg/GhQnBa7pZAMDGIbBewLLzH5gXAQCoGqPkaJrjwWQPa5wWWWuelTeTRm3eEjzZw8oHvgBQXQTWC1imRcno9BH+AABsLSO1656Oh+P8pSietAU3apNfReqezdfW7nCsTsPPfgQAoKIIrBewzDE1Rhx6DgCoHmuM2nUvP1dVmt7H2vAnbcE7TT//3tSUYJZPAKgs/6pv4DqbbWNahLAKAKiqdsNXt1BhLeRV1f2kLbhZs6p5Ng+sx8OxOtkeVmqsAFBZVFgvYJkQSjswAKCKjJE6dU/9UZy3AhcrrFLSMpy1/8YuaRnuj+J8SjB5FQCqi8B6AcsUTcmrAIAqMjJ5GM0mBZ8IrA0//xDYyeXXZVOCWUMBoLoIrBewTNXUstoCACrIpEOXJOWDl+LYnXq9c5PrJntYWUMBoKoIrBewzJh9RvIDAKooO9ZGSs5WlSbH2syKYidXuI4pwQAAAusFWFN+ESWwAgCqyKRTgiXlk4JnW4Iz2R7Xbt4SzB5WAKg6AusFGGNK72MlrwIAqiipsM4E1lNKrKcFVqYEA0B1EVgvqGzllAorAKCKjJF20tbe7GgbJ8nNqbLmR9rMtgSzhAJAZRFYL6hsEOVYGwBAFRlj8vNUjwdJ5dRp/j7W2Qprfg4rSygAVBaB9YK8EquoESP5AQDV1clbgsf5a9GcxDoJrDNTgmkJBoDKIrBekCnxN2gMI/kBANXVbmbH2kT5a/MGL2WBNavE0hIMACCwXlCZlmD2rwIAqqzhefKsmaqwzgus+R7W4Vi+Nar7ya8prKIAUF0E1gsqE0bLtA0DALCtrDXq1D11B5MK62xezc5glZI9rO2GN3k/6ygAVBaB9YLKrKEstACAKjNK2nuPF1RYx3Gc//fxYDwZuCRaggGgygisF1SqJZi/ZQBAhRlj1J6psM6exVrIq+oOozywZu8HAFQTUeqCyhxXQ4UVAFBl1kjtup8fVyOdPNamWHHtDsd5SzArKABUG4H1gqw5ezHlk2EAQJUZJRXW4wXH2kRRMbAWKqwsoQBQaQTWCzLGnLm3hpZgAEClmeRM1WKF1c3sYY0KXx8PxpzBCgCQRGC9FGe1/NISDACoMmOSoUvFY22cpkNrseJ6PJhMCS6x8wYAsMUIrJfgrEDKsTYAgCozSiqsx8VjbTQJqc65qT2sB/2Rdpu15L2soQBQaQTWS7AokBol588BAFBVxhh16kmFtVhV7Y+SAFs8g3U4jjUYx7qRBdZ13ywAYKP4Z1+Cs5gFsZ92YABA1RlJ7Yan2EmDcaxmLWn3PU73tNb8yUJ62B9Jknab6TmsLKMAUGlUWC/BolDqU10FAFRdeqyNlAxUKjoeRlOvHfST/54EVtZRAKgyAuslWBRYPY+FFgBQbdmxNpKmJgVnRoUjbbIK614r28O6hhsEAGwsAuslWLSYelRYAQAVl00JljR1Fus8B72ZCutqbw0AsOEIrJdgUSglsAIAIHWyCuvgZIW16CDfw5pUWJkFAQDVRmC9BL49/Vhz3/JXDACoNlPYwzqvJbjoMN3Dmk0JpsQKANVGmroExpi5lVQrKqwAABT3sJ7VEpztYd3JW4JZRwGgygisl6Q2p5JKWAUAIK2wNk4fulR00B+r0/DyNZSOYACoNgLrJfHnTAOmHRgAgPQc1lOOtZl10BtpL2sHFoEVAKqORHVJ7JxqKkfaAACQbJ1ZdKxN0WF/nE8IlmgJBoCqI7BekppHSzAAAPNYI3lpaO2edaxNnworAGCCwHpJPGs0m099AisAADJp6kwC63IVVo61AYBqI7BeouLgJSMqrAAAZLJ9rGftYT3sj7TXKlRYV3xfAIDNRmC9RMXBS9aY/BNlAAAqzyQV1uMlKqxGtAQDQNURWC+RX9jHWmPgEgAAOSOjTsNXd0GFtT+KNBjH2p3aw8p6CgBVRmC9RMU9qzWfv1oAADLGnL2H9bCfhNm9rMJKVgWAyvPPvgRl+Z6VZ412Gr6aNe+qbwcAgI1hJHXq/hmBdSRJ+ZRgjrQBABBYL9l+uz73TFYAAKrMlDjW5iCtsO62qLACABL0rV4ywioAACcZSe3GWS3BsxVWAEDVEVgBAMDKJXtYfQ3GscZRPPeag15aYU33sHIGKwCAwAoAAFbOyKhTT+Y7HA/mV1kP0gprNiWYvAoAILACAIDVM9Ijnbok6X53OPeSw/5YRtJOIzuHlcQKAFVHYAUAACtnjPRI+6zAOtJO05eXzoMw/JYCAJXHUgAAAFbOGqP9tML62vH8wHrQH+f7VyWGLgEACKwAAGANjHRmYD3sj/L9q1JyFA4AoNoIrAAAYPWMdKNVkzXSvdMqrL2x9qiwAgAKCKwAAGDlrDHyrNGNVk33qbACAEoisAIAgLW51WnotVOGLh30Zyqs5FUAqDwCKwAAWLksfO536nP3sDrndNgfaa9VO/E9AEB1EVgBAMDK2TSxPtKp6f7x6MT3B+NYo8hNTwmmwgoAlUdgBQAAK5dlz9MqrA97SYgt7mG1JFYAqDwCKwAAWLlsgNJ+p67eKFJvGE19/7A/liSmBAMAphBYAQDAylmz+CzWw35SYd1jSjAAoIDACgAAVi4Ln4+008A6Myn4a4cDSdKtneT7RknIBQBUG4EVAACsxaIK68sP+pKkJ260JtdTYQWAyiOwAgCAtTDGnBpYX3rY036nrlbdS65d+90BADYRgRUAAKyFMZOW4PszgfUr93t68mazcPE67wwAsKkIrAAAYC2MpLpvtdv051ZYnyy0A3OkDQBAIrACAIA1yULofnv6LNZxHOuVhwM9ebOwf3XtdwcA2EQEVgAAsBZZ0XS/Mx1Yv3YwUOScXneTgUsAgGkEVgAAsBYmrZs+0qnrfuFYm5ce9CRpag8rR9oAACQCKwAAWBOT/tYxW2F9KT3SZrolmMQKAJD8i7w5CILvlfR9YRh+f+Hrn5L05fSSn5D0SUk/I+ktkgaSPhCG4ecv8ucCAIDrJ4ug+526DvpjjaJYNc/qpQc9ecbosb3GyYsBAJV27sAaBMFPS3qPpN8tvPw2SX89DMN/X7juz0pqhmH4zUEQvEPShyR993n/XAAAcD1l+1Kzs1jvd4d6bLeprzzo6c6NhnxrC9deyS0CADbMRVqCn5P0QzOvvU3SDwRB8MkgCD4UBIEv6Z2SPiZJYRh+StLbL/BnAgCAayofupSexZq1Bc8eaSNxrA0AIHFmhTUIgvdL+pGZl98XhuEvBUHw7pnX/4uk/yjpBUk/K+mDkvYkPSxcEwVB4IdhOD73XQMAgGsn25eaVVjzwPqgr3d+w+2ZawEAKBFYwzD8sKQPl/x5HwnD8IEkBUHwnyT9OSVhdbdwjSWsAgBQPcVjbaQksPaGkV47Hk4daZNcvOabAwBspEubEhwEgZH0v4MgeCp96dsk/bak35T03vSad0j69GX9mQAA4PrIAuutnbo8Y/S/vvxQLz9MjrR5onCkjURLMAAgcaEpwUVhGLogCD4g6T8EQdCT9Lykn5cUSfqOIAieU/J56fsu688EAADXR9YS3Kx5+vN/5Gn94m99Ka+2PjlbYQUAQBcMrGEYfkLSJwpff1zSx+dc+sGL/DkAAOD6KxZNf/Bdb9Cv/99X9C+e+31J0pM3qLACAE66tJZgAACARYohtF339dfeE8hJatZsXmmdXLvmmwMAbKRLawkGAABYZDaDfsszj+o7v/Fx3T0a5Ge05tdSYQUAiMAKAADWxJgktLrCaz/xXW8+EWSNqLACABIEVgAAsBbGmBOBdd5eVSMqrACABHtYAQDA+pTJoWRVAECKwAoAANbGlEijTAgGAGQIrAAAYG3K7E0lsAIAMgRWAACwNmX2phJXAQAZAisAAFibMmGUCisAIENgBQAAa1MmjBp+OwEApFgSAADA+pQonlJfBQBkCKwAAGBtynT70hIMAMgQWAEAwNqUagkmsAIAUgRWAACwNmWiKHkVAJAhsAIAgPUps4eVwAoASBFYAQDA2pRpCWYPKwAgQ2AFAAAbhcAKAMgQWAEAwNqUyaLEVQBAhsAKAADW5qzqqZFkLZEVAJAgsAIAgLU5M7CSVQEABQRWAACwNtYsbvk1NAQDAAoIrAAAYG2MWRxJ6QYGABQRWAEAwFqZBX2/TAgGABQRWAEAwFotqqKSVwEARQRWAACwVt6CxLqo+goAqB4CKwAAWKvFLcFrvBEAwMYjsAIAgLVa3BJMYgUATBBYAQDAWi0arEReBQAUEVgBAMBa2QUlVqYEAwCKCKwAAGCtFmVS8ioAoIjACgAA1mphS7BIrACACQIrAABYq0WBlSnBAIAiAisAAFgra3RqHZU9rACAIgIrAABYK2PM3L2qRuxhBQBMI7ACAIC1m1dJTQIriRUAMEFgBQAAazcvsHpsYAUAzCCwAgCAtZuXTQmsAIBZBFYAALB2dk44JbACAGYRWAEAwNrNawmeF2IBANVGYAUAAGs3b7YSFVYAwCwCKwAAWLu5Q5eYEAwAmEFgBQAAazcbWI2osAIATiKwAgCAtZvNptYYzmAFAJxAYAUAAGs3W2H1qa4CAOYgsAIAgLWz1sjMfA0AwCwCKwAAuBLFIisVVgDAPARWAABwJYpTgamwAgDmIbACAIAr0ah5+X8zIRgAMA+BFQAAXIlWzct/EeEMVgDAPARWAABwJaw1atY9WUNLMABgPgIrAAC4Mu26TzswAOBUBFYAAHBlPGvUrvtXfRsAgA1FYAUAAFeqWRi+BABAEYEVAAAAALCRCKwAAAAAgI1EYAUAAAAAbCQCKwAAAABgIxFYAQAAAAAbicAKAAAAANhIBFYAAAAAwEYisAIAAAAANhKBFQAAAACwkQisAAAAAICNRGAFAAAAAGwkAisAAAAAYCMRWAEAAAAAG4nACgAAAADYSARWAAAAAMBGIrACAAAAADYSgRUAAAAAsJEIrAAAAACAjURgBQAAAABsJAIrAAAAAGAjEVgBAAAAABvJv+obmOczn/nM3SAIvnjV9wFcsa+76hs4Dc8oIIlnFNh0G/mM8nwCuVLPqHHOrfpGAAAAAABYGi3BAAAAAICNRGAFAAAAAGwkAisAAAAAYCMRWAEAAAAAG4nACgAAAADYSBt5rM1pgiCwkn5G0lskDSR9IAzDz1/tXS0WBEFN0kckvV5SQ9Lfk/S8pH8uyUn6P5J+OAzD+Ipu8UxBEDwm6bclfYeksa7Xvf9NSd8lqa7k385/0zW6/+uGZ/Rq8IyiLJ7Rq8EzirJ4Rq8Gz+hmu24V1u+R1AzD8Jsl/aikD13x/ZTxFyTdC8PwWyR9p6R/KukfSfqx9DUj6buv8P4WSv9P6Ock9dKXrtO9v1vSH5P0xyV9q6SndY3u/5riGV0znlEsiWd0zXhGsSSe0TXjGbNHNpsAAAJUSURBVN181y2wvlPSxyQpDMNPSXr71d5OKf9W0o+n/22UfGrzNiWffkjSr0r69iu4r7J+StLPSnop/fo63ft7JH1a0i9L+s+SPqrrdf/XEc/o+vGMYhk8o+vHM4pl8IyuH8/ohrtugXVP0sPC11EQBBvd1hyG4VEYhodBEOxK+neSfkySCcPQpZccSrpxZTe4QBAEf1nSq2EY/lrh5Wtx76nbSv6P/vskfVDSL0iy1+j+ryOe0TXiGcU58IyuEc8ozoFndI14Rq+H6xZYDyTtFr62YRiOr+pmygqC4GlJ/1XSvwrD8BclFfvIdyU9uJIbO9sPSPqOIAg+IembJP1LSY8Vvr/J9y5J9yT9WhiGwzAMQ0l9TT+0m37/1xHP6HrxjGJZPKPrxTOKZfGMrhfP6DVw3QLrb0p6ryQFQfAOJSXwjRYEwR1JH5f0N8Iw/Ej68u+kPeeS9CclffIq7u0sYRi+KwzDbw3D8N2SflfSX5L0q9fh3lP/XdJ3BkFggiB4UlJH0q9fo/u/jnhG14hnFOfAM7pGPKM4B57RNeIZvR42usVgjl9W8inIc0p65N93xfdTxt+S9IikHw+CIOvv/yuS/kkQBHVJv6ekfeK6+KuSfv463HsYhh8NguBdkn5LyYczPyzpBV2T+7+meEavHs8oFuEZvXo8o1iEZ/Tq8YxuGOOcO/sqAAAAAADW7Lq1BAMAAAAAKoLACgAAAADYSARWAAAAAMBGIrACAAAAADYSgRUAAAAAsJEIrAAAAACAjURgBQAAAABsJAIrAAAAAGAj/X/u3NkebpxhaQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(16, 9))\n", - "gs = gridspec.GridSpec(1, 1)\n", - "\n", - "wf1 = cmp.load_waveforms('1833-050619-3', 143, 6)\n", - "wf2 = cmp.load_waveforms('1833-200619-3', 126, 6)\n", - "axs = plot_waveform(wf1, fig, gs[0])\n", - "plot_waveform(wf2, fig, gs[0], axs=axs)" - ] - }, - { - "cell_type": "code", - "execution_count": 276, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.24673824079040996" - ] - }, - "execution_count": 276, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d00 = dissimilarity(wf1.mean(), wf2.mean())\n", - "d00" - ] - }, - { - "cell_type": "code", - "execution_count": 275, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.12165202171836166" - ] - }, - "execution_count": 275, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d10 = dissimilarity_weighted(wf1, wf2)\n", - "d10" - ] - }, - { - "cell_type": "code", - "execution_count": 233, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ]" - ] - }, - "execution_count": 233, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6wAAAILCAYAAADsVRGmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmcXGWVN/DfvXVr6X3J2p3OvnQgQNhkJyyGfRFRRB0dx3HUcRwZUWd8FUUdx2VEwGXwlZEZl1dmxBUkCAgKKCBbQhISkg7Zk+50p5fa7/Zs7x+3qtNLVXd1p6rrVvf5fj79gXRX171VXXc5z3OeczSlFAghhBBCCCGEEL/Ry70DhBBCCCGEEEJILhSwEkIIIYQQQgjxJQpYCSGEEEIIIYT4EgWshBBCCCGEEEJ8iQJWQgghhBBCCCG+RAErIYQQQgghhBBfooCVEEIIIYQQQogvUcBKCCGEEEIIIcSXKGAlhBBCCCGEEOJLFLASQgghhBBCCPElo9w7kMvZZ5+tFixYUO7dIKSstm/f3tfR0TGn3PuRCx2jhNAxSojf+fUYpeOTEE+hx6gvA9YFCxbg17/+dbl3g5Cyam9vP1DufciHjlFC6BglxO/8eozS8UmIp9BjlFKCCSGEEEIIIYT4EgWshBBCCCGEEEJ8iQJWQgghhBBCCCG+RAErIYQQQgghhBBfooCVEEIIIYQQQogvUcBKCCGEEEIIIcSXKGAlhBBCCCGEEOJLFLASQgghhBBCCPElClgJIYQQQgghhPgSBayEEEIIIYQQQnyJAlZCCCGEEEIIIb5EASshhBBCCCGEEF+igJUQQgghhBBCiC9RwEoIIYQQQgghxJcoYCWEEEIIIYQQ4ksUsBJCCCGEEEII8SUKWAkhhBBCCCGE+BIFrIQQQgghhBBCfIkCVkIIIYQQQgghvkQBKyGEEEIIIYQQXzLKvQOEEEIIIX5mMwGHCQBAQNdQGwmWeY8IIWTmoICVEEIIISQHJiSSFgOTatj3dU1DdZhuoQghZCpQSjAhhBBCyAhKKSRyBKsAkHQ4HC7KsFeEEDLzUMBKCCGEEDKC6QrwHMFqVsJikGP8nBBCSHFQwEoIIYQQMgQXEqbDx3yMVEDaHfsxhBBCjh8FrIQQQgghQ6QdDjnk31Iq2ExAjJhRNV0BLiQIIYSUDlUMIIQQQgjJUErB5ceCUJdLpGwOobxg1dA11EUMGAFvzD9lczTWhMqyr4QQMhPQDCshhBBCSIbD5eDsqs0EkhYbDFYBgEuFuMUGiy45QlIBJkIIKSEKWAkhhBBCMtiQFF/LFciV8CsVkLA47Exv1rRNa1kJIaRUKGAlhBBCCMlwmBeiWi4fs0ow4AWqLpdgmTWuhBBCio8CVkIIIYQQeLOrQikopWC64wegEkDSZgVVFSaEEDI5FLASQgghhABgPDu7KlBoi9VserDDJc2yEkJICVDASgghhBACr+ASANhsYq1qhFJIWAwpm5VitwghZEajgJUQQgghM56UCixT8XdoVeBCMakQNV1YBaQSE0IIKRwFrIQQQgiZ8VwhoQC4E5xdHcrhCr1JC2oSAS8hhJDcKGAlhBBCyIzHhIRSCi6ffMAKAAlboD/tFGmvCCGEUMBKCCGEkBmPcQmHy5x9VyeqL+nAcqlqMCGEFAMFrIQQQgiZ0aRU4FLB5cVZf8ol0BO3IQotNUwIISQvClgJIYQQMqO5QkJIBZcXL8BMuwK9CVrPSgghx4sC1hlMSAVJo7+EEEJmOCbkYNGlYlEAohZDPE2tbggh5HgY5d4BMrWUUrCZhOlycKmgAdAAhI0AwiEdYSNQ7l0khBBCphTjEuw4iy3lIiTQm3IQDGqoCQeL/vyEEDIT0AzrDBM3GRI2A8/MrCoAEoDFBWImQyzt0pobQgghM8bg+lVR/IAVABwh0R134DDqz0oIIZNBAesMkrQZnHEuyI6QGEg51PicEELIjOCKTHXgEo7VWkygO2bTMhxCCJkEClhnCNPlMAsMQiWAhM1gOlSSnxBCyPTGhQQrUnXgsSRdjiNxs+TbIYSQ6YYC1hlASoW0PfHgM+lwpGwqFkEIIWT6YkKBiamZ+YyaHEcT1pRsixBCpgsKWGcAi4lJN0JPuwJpmmklhBAyTTlMgE1hqm5f0kXMdKZse4QQUumKXiW4vb19E4BE5p/7ANwL4NsAOIDfd3R0fKnY2yT5KaVguscXcKYcDg1AdZiKShNCCJk+mJBwpiAdeCgJoCfuwNB11EaocjAhhIynqBFIe3t7BIDW0dFx8ZDvbQbwNgB7ATzS3t5+WkdHx6vF3C7Jz3JFUQpJJB0OXdcQCVLbG0IIIdMDE3LK0oGHbVcqHE3Y0HUN1SEaDCaEkLEU+yy5FkB1e3v77zPP/UUA4Y6Ojj0A0N7e/jiA9QAoYJ0CSimkj3N2daiExaBpoF6thBBCpgUuStfOZjwmk+hPOQjUa3RdJYSQMRR7DasJ4JsArgDw9wB+mPleVhJAQ5G3SfIodpl+BS9o5WW6uBNCCCkvLuS0ugZYLi9pO5vxpGyBeJquq4QQMpZiB6y7APy0o6NDdXR07AIQB9A85Od1AGJF3ibJoxRNyqUCYiajXnKEEDLDMCERNV3YJbi2lIOUCnaZe44LpRC3XcQtBqXoukoIIbkUO2D9WwB3AkB7e3srgGoA6fb29uXt7e0avJnXPxd5myQHKRUcPv6IrVIKLhdwmYTDREGjvEIpxEyXLq6EEDJDcCERM11IBdhseswGMinhyvK/FocrJC2GpEUV+QkhJJdir2H9LwA/am9vfxZeBunfwiuIdz+AALwqwS8WeZskB5sL5AsnhZJgXA2W8h8ad2oAAjpQHTIQNnRA03I+B5MKCYuhoTpU9H0nhBDiLxY7VsBPKAWXS4SMyu6Mx4UC4/4YeDVdAcNgCBo6qkK0npUQQoYqasDa0dHhAnh3jh+dU8ztkPE5eUbATYfDZAL5JkcVAC6BhM1hjBO42lwiYDMqy08IIdPcyGuKzUTFB6ymyyfdo7zYJICkxRHUNBiBMIKByn5vCSkll0sIqWhwZwahM+I0JGTuqoemw5F28werI2UD16jpwnZFzhTgtCtglXkNECGEkNJxuYQYcf53eO5rQiUxfXbtEkoh4TAkaD0rIXnZTCBuujCL2AWD+B8FrNNQrmJLliuQnuTFmUuvD2vMdMHE6OdI2mzKG68TQgiZGrnO71KhoDoJfsWFhOvD4lEOV0jaDGmHbsYJGYkJiYTFIAFwqaZNATgyPgpYp6GRNxEuF0W5+HEJxE2OtMMhh4z+UrsbQgiZvvItMWEVfM5nQoIJf85iphyBqOnCreABAUJKwXKG12cpd5VvMnUoYJ1mpFTDbiKkUkg7PG8BpolS8NKoYqbrzeRmAlepgLhF7W4IIWQ6yaYDcyFhOhwpm0FkzvPcpwFfISwmfLN+NZekzRE1HbqmEpIhpII1ItvDmWZ9oUl+FLBOMw6Xw4JT0xEoxSCtyKxvjVlsME2YZyoHE0IImR6y6cA285aVWEyCZS4q3ActYSbL77UXpAKiaUbXVEIy8q1ZtSgteEaggHWacYeMPrlclDy/nwk1mCaslIIjJFI2XWAJIWQ6cJj0zu1DRj5ZJlCVChU5A6iUqoiCLVwqHE3aMGk9K5nhpFR5039pHevMQAHrNKIyvfGyLFcWLRV4zO3iWJowE94oPJ1ACCGksnHhpQM7XGJoXDo0FZhXYMDKhAL3Sf/V8bhCoTtuU9ojmdHsMVL4vQJwdM853RW1DyspL1fIwQPa5WLKC2JwCcQtjvqwhiQYggEdAX10/1ZCCCH+lx0AZSPWlXCpIKWCrmvgUiJUYWPfpssxkdtbJiQe2tyFfX1p9CRszK4N462nLUD7/LqS7eNQJhPoiplY2FwDLUdPdEKmu/EKkLlcImxQT9bpjALWaaQcs6sjKQUkbAahDBgWQ1NNqAx7QQgh5Hg5XI7K3MlyhUREDwwWYKok9gTSgV0u8dXf7cArB6KYVx/G3LoINh+K4dndfVjb1oB/Wr8Sc+siJdxbT8IW6I5ZaGmqLvm2CPGb8SZgbCZQFwlO0d6QcqCAdRrJ3lSUY3Z1KAUglVnTGjJ01ITpY0YIIZUkW3HeYTJnKp4QEggGICqwUnChS1ZsJvBvj+zAlkMx/OMlK3DlSfMBeDO0j23rxs9ePoRbH9iCz169GmtaG0q5ywCAfpMhaNiYPQUBMiF+4fLc56ChsmnBNMs6fVVWHg/JS0g1uJbI5aoss6sjpV2B7oTttb8hhBBSMVzhZenkWxvGMtcbVmGVgoVUsPL0lR3pv5/bh62HY/j4+pWDwSoAVIcM3Hh6G+68aS1qwgHc9ptteKrjaKl2eZiehIN42p2SbRHiB4Wu36a+xdMbBazTxOCBqhRc4Z8A0XIFuqIWZIXd1BBCyEzmZqoD5+u1KoSCUqriKgXbLkchk8LdcRuPb+/BlSfNx5tPmJfzMQubq3HXTafixNZ63PX7XXhqZ+mDVgXgSMKqiCrHhBRDoRmDToEDUaQyUcA6TWSLYjAp4bfYMM0EDg9YFXVTQwghM5kjxLBCfiNJeNV2gcqqFFxo/9X7XzyAgKbh5jMXet9QClU9r2DBM59E2x8+iobdD0J3E6iNGLj92hNxclsD7n5y15TMtHIJdA1YYFQZlcwAboEBq1AKcdOFUpVzPiKFo8WF04STmVVlPkkHHinhcPQkLMyrr4JOlYMJIcS3bCYgFcDHSbETUgLQK6rwksXGn5k80J/G0x29eOvpCzCrNoyA2YvFj78f1X1bIYK1kEYVGvc+DGlU4dCl/wEsvgy3X3sivvTw67j7iV0IBXScv2J2SV+HLSSOxGwsnFVNlYPJtMXE8JZa47G5hEi7aKgO5exSke0pHQrodC9aYWiGdRrIHtAa/N2LKmoy9KVtmmklhBAfy85CuuPkzmYDVe63tJ4xmAXUVLj/xYOIBAN4++ltgGRY9IePIBLdhc4LvoqOv3oZHX/1MvZc/2vYTauw6IkPoXHXLxAJBnD7tSdi1bw63PF4BzYeiJb8tSQdjr6UXfLtEFIukykgyqTCQNqBmSn+CXjL5lI2Q1/KQdxi6E85SJiM+htXEApYp4FsOjCXEn4+9qQCoimGqOlQygYhhPgQExKukMMK+eUjM+fxSqkUbLkc49VlGUi7eGFvP645pQX1VUG0vPBl1HS/hM51dyB6wnsggzWApsOadyb2X/2/SLeei7ZnPonm13+CqlAAX7x+DRY1V+Orv9uBHUcSJX09CkBvykXSYiXdDiHlwvnkzi1SeQM6/SkXvUkbUdNF2hWDs7USgMUFomkXpkPrwSvBjA9YmZCImy4sV1TszN+xdjb+TAceikmFaJohbjIKWgkhxGeys6usgIqb2YnVSlnDajOB8S47z+zqhVTA+hPmon7vBsza/iP0nfxBxFe8ZdRjZagWB674IRKL1qPluc+jbt9jqA0b+PINJ2FWbQhf3vA6OqNWiV5NZh8k0BU34VI1fjINFbp+NR+RKQyXj0Q2sHVgupzuS31sRgesSikkLAabSyRshlQFjrIopQZTJvycDjyUzSVipoukVXnvNyGETFdSqsE2ZIWk4g3OVlTITV4hVUSf7jiKlXNr0dYYwdyNd8FqPgHdZ30m7+NVIIxDb74H1txTsfCpj6Gq5xU0VAXxpevXQNM0fOG32xEzS9uGhgmgM2pW1FpiQsYjpIKYonMLlwpJm6Mv5RRcmI1MrRkdsCZtPmxkuBJ7ODGhIOHdMFTKKDcApFyBmO0iQalMhBAy5aRUwwIcpRRSDh+sClzIzEY2UFWojNY26XFawRzoT2NPbxqXrJ6LuoNPIhLbjb61/wDoY9enVEYVDlz+32A1LVj8+AcQiu9HS0MVbr/2RERNF//2yI5JrcWbiDST6ElYNENEpo1SHzO5SAUkbIZo2i3L9kl+MzJglVIhZTNYI1JohFIVN0KZPaA4V+OmOvlNyuZI2oyCVkIImWJSeYVJLFeAC4lo2h28Jrq8sMqcCscKL03VTMhk8cza3LE81dELXQPWrZyN2Vu+D7e2DfFl1xT0/KJqFg5c+RMAwOLH3oeAHUX7/Drcetkq7OxO4p6ndpc8mIyl6XpKpo9yFkRyhcRA2kXCZBUXF0xXMypglVKhM2rijaMJHI7mHomstBGV7Dqj483zLwepvFnutMORMOkiSwghUyk7m9CfdsGGZRsVnhKXvZnze1qw6fIxe5RLpfBMRy9OX9SE1sQW1PS8gr6TPzju7OpQbsMSHLz8PgRTnVj0xAehCQcXrJiNd75pIZ7ccRS/3dJVhFeSnwQopZFMG9wHxdwsLgYrCldafDDdzJiAVSmF7piFqMnAhJev7uRIAa60tGAmJDQArqjMCxSXCnGLIe1yGhkmhBAfcCdQmTMbqPq9s43D5JhFCV/vSqA35eCS1XMxe+u94OEmRNtvnvB2zPlvQufFd6Gm+yW0PXULIAXeffYinLOsGf/17D5s74pP/kUUwGFeIUm6uSaVjvnkpKLgBa4DaZeOrTKq2IA1ZroFT9MrpXA0aWNgREBk5xiFrKSAlQkJCa+djU+O60nh0it+ZbocKZuCVkIIKRcm5ITSe7OZSn5fO2mPU3Dppf0DMHQN586XqDv4B0RXvwsqWD2pbcWXX48j59yOhn2PovXZz0AH8InLVmFefQR3PN5R0sFZCSDlcGp1QyoaF4UtS5hqNpcUuJZJ4bkuPsO4xEDKQU3EQFUwAE3Tcj6OC4mo6aI/NbpKH5MKDhcIG4HB72XXsQb03M/nJ9mDhYmJt7M5NGBie1cCu3qSAIBlc2qwen49ls+pyftelhLLzLQCgK5pqA5X7EeTEEIq1kTbo8gKWMMq82RUDfXK/ijWtNZjXucT0JRAbPnoNjYT0X/y3yFgRzF383chwg3oOeuz+PSVq/GpX2zB3U/uwu3Xnliya63NJUwmEHE4XUtJRfJ7EVGbS9jcRTigIxIKIGzoZbl3nkkq+kwm4a2BNB2B6lAAQUNHMOBNGmcLLKRtjrjF8o7U2O7wgBXwAsGAHsj9Cz6SXb9aSKn+wd8REj96fj8e2uytpamLGNAA/P71HgBA+/w6vOOMNrxpaTP0KT74mFBI2gyapkHXNUSC/v8bEELIdOJOcN1Y9uqjfDzZwKQEl/kD8Z6EjYMDJi4/cSka9m6A07AcTvPq497u0TM/hYAbx5yt90LpIeDMT+EDFyzFvX/ai4e3HsH1a1uPexv5mA5HOKAjZOgwAhWbTEdmqOOdvRTSa/nIhRxWkFTTvEmRQEBDKHD8QaYjJBxLQteASDCAsBFAyKDjrRQqOmDNEkoh6XDAyeQ4a8f6w7lcwh5jZNUVo2dUXS4rIlhyhYRSCrzAfOCjSRtf+91OvHE0hWtPacH1a1vR0hABAPSnXby0bwC/2nQYX35kB9a2NeDWy1Zhdm24lC9hFIcrJC0GHYCha3ShJYSQKcKEnPDMRiXMsDpMYqw4/JX9UQDA+fMlaja+gN7TPubd2R4vTcOR8/4VmmSYu/m7gB7Ataffik0Ho/jx8/txxqImLGiqOv7t5OAKBYsLGDZHU02oJNsgpFQmW3DJ4QIOE3AKWIevAwgZOqpCgeO+15QKMF0B0xUI6hoaqkMVkalZSaZdNOD1JD32b9MZu+8aMHokpxLy0rP5/VwWlufvcokvb9iBzpiFz161Gn9/0XK0NlZB0zRomobZtWFcfXIL/vO9Z+IfLl6Ojp4kPvo/m/DnN3pL/2JGsLlE3GKImawievsRQsh0YE8wHRg4dr31c5Vgm/Ex2769vH8ALQ0RrBr4IzQlEV96bfE2runouuBriK56B+Zu+hbmvvod/OMlKxAM6Lj7yV0lbZlhOQKukDDH6T9LiN9MtKWNUt5kR8LiBQWrgBcv2FwiajIk7eK1r2HSaxk2mfMpya9iA1argLL7lsuHlerPR4w4MCohSGKZ0adCuw/88Pl92NeXxqcub8d5K2bnfVxA13D1yS34zjtPQ1tTNf79sQ789IUDU15QwzuJOIiaju+LeRBCSKVzuRy3MFEux6oE+/c8PdayGZsJbD0cx5lLmtC4dwPsxpVwmtuLuwOajs4L/x3RlW/DvI13YvWue/Hhi5ZhZ3cSv3m1s7jbGoJJBZsJpG1e1p6WhExEtqBooYRUiJtszGzK8dhMIpZ2YTq8KPecUgFxi1GLqSKq3IDV4XDGiNYcLpByCvugjAxqJeD7RsHZWeBCqhq/uK8fD2/x1suctbS5oOdvbazC1288GZedOA8/e/kQ7ni8Y8pnnh2u0J/yqrERQggpnUKykXJRypvdUPBnpWAu5OAAby6vHY7DFRLr5nNUd7+E+PLrSrMjegCd676J6IobMW/jN3GT+QDOXTYL9794AIejZmm2CcB0hLdsyqZZ1unOj8ffZEwkHVhmukwUMjk17nMBSLsCMZONGV9MRMKmoLVYKjZgBYCUzXMGlkxIpKzCT84ix8FREQFrAetXbSbw3T/sxrLZNXj/+UsmtI1gQMctl67A35y3BH96ow9feWTHlLf9cYVCT8JBLE1BKyGEFIuUCi4XkFLBcgrLRspFwbteZv/rN0yoMfs5vnIgirCh42z2EjQoJJZcVbqd0QPovOhOxFa8FfNfuQNfmftHhAwd3/3j7pKlVAulYDrcSw2e5KAE8T8u5OAAvx+Pw4kotC6LUgoJmxW9orDXapEjYRXnvaSgtTgqOmCVyuvHamXWZyilYLkcSYtPKJ1AYnS+vJ8PeJVpvcOlGnNdDgA8tq0bMYvh7y9aPlhBeSI0TcPbz2jDP16yAq8ciJYlaGVS4UjcRm/SnjYjiIQQUk5SKSQtjv60i9Rx3kxlCy758bLJhBjzer7pYBSntDWg8fBTcGsXwmlaVdod0gM4fNGdiC2/Hss2/zvuWfYitncl8Ni27pJt0mJetdSUwyuiRgeZGCEVYiaDUMrrE5pyKjoFPNckUi4pm4+ZPXG8HK6KliacsBmtaT1OFR2wAt4FMuUIRNMuBtIuUpn0l4kamYLg5wISrpBQ8EaBxtpLJiR+/WonTl7QgBNb649rm1eeNB//eMkKbDwYxVd/t2PKT4ZCKRxNODiaoKCVEEKKoVhn0uwp2Y/XTZuJvAO73XEbR+I2zmyrRm3Xc0guurQ41YHHoxs4fPG3EF96FS7edxdumfMqfvjcfvSlnJJsTgFIORwKQMJidA2dRriQiKbdYfe9El7F2ko1VkZEls3Eca1ZLVQ2TTiaPv6AM2FR0Ho8Kj5gzeJSHdfo7sgUBD/PsGZHn9g4ldCe3NGDgbSLm89cWJTtXnnSfHz0kuV45UAUdz/5xpTfnCgAvSkXR2mmlRBCfEPJ7Ayrv87LSim4LP/A7uZDMQDApeFd0LnlBaxTRTdw+JLvINVyLj6e/hbOVlvwX8/uK9nmmPBSg7mk9azThcslouaxYDVtMwykXPSnHCTsykwNFgXcyyulYBZYo6ZYsuvAk9bku1coAEmLVfTsdzlNm4D1eI2cYfXzgc6EhAaAjdEIXUiFX248jFXzarF2YUPRtn3VSS1437mL8cyuXtz7zN6yBI79SRd9aaoeTGYel3vr0BImQyztrVdKZtbH+PmcRaa3wZRgn30GuVTgY1wnXj0UxezaEJZGn4MMRJBuOXcK9w5QgTAOXv4DOI0rcG/obhzdvQlbD8dKtr20K+BwAYsJmumpYFxIpGyGuOkOBnculzCZhFBewGe5oiLbGRWyfjXt8LL1fbYzgwSTPX4kvOrBfjtXVgIKWDOEVMMCID/f/DGhIKTEWMf1X/b0oyfh4OYzF0IrcorT289ow42nL8Ajrx3BLzceLupzF0IC6E046E3Zvv47EVIMUiqYLkd/ykHUdJF0OCwu4AgJm0uYrkDCZuhLOYimXViuoMEcMqWOpQSXdz9GElLlXbMppMKWQ3Gc2taA+kN/RKr1PCgjMsV7CMhQPQ5c+WNo4TrcF/4Wfvr01pLOwKRsDim9npV0/awsDheIpV30p12kXTFYq0UphfSIgloOV0hVYGA03vpVJiSsSbTfKiapgKTNkbbZpH7fy3KY3O/OZBSwZkhg2OJtqZQvb/qEVBBKgYmx16/+YWcPZteGcOaSwtrYTISmafib85bgolVz8OO/HMAzu3qLvo3xSAX0JV30JW1KryDTEhMSCZOhP+UgafOCKiG6QiJhM/SnXKpKSKaMb2dYhcw7Y7P7aAoph+OSOQmEkgeRmsp04BF4zXwcuuz7WKD14ROpO/HbzaUbCPbqfjBvpsd0fXmfQzwOF+hLel0SBlKO124lx/1ONtV7pDSrvFnW8VraWD56PSaTkz6GbE5VuyeKAtYhxJALm39L9MvMf/PvW9R0sfFAFBe3z0VAL00BCV3T8PH1K7GmtR53P7ELr3clSrKdsUgFDKS9m3OqfEimC5HpKzeQdmEyDptJpGyOlM1hOhwOE17lU+W1ttKAwa/B58iU+x9IOUXrJ0dIPtlLp9/WsDIu8876Ztevnic2AgCSCy+Zqt3KyZp3JrrPvR3rA6+i7pX/KFkBJsCbfbNcr5URrWf1N6EUHCHztp0SUsHOM+PoZq4dlTSoP1ZKsMslnHFqt0w1VyjEzcnNZFPV7omhgHWIkQFquXLkx8IHA9b8N6F/2tULqYBLV88t6b4EAzo+d80JmFMXxlcf3VHSC2w+QilETRdRujEn04DNBLrjFvqSDuKmV/k8bjNYzFt3lnYFEjZHzOSIphj60y4G0g76M1/RtIOkxWG5Ai4XsIVAPLPelS6MpFSyMwx+u2Y6XOYthfzqoSiWz6nBnJ4/wW5cAVZXnOKEx2PgxPehe+HV+Kj2CzzxxydLui3TEeBCeucWysaoWJabv42jBLzrRgXN5I01UeSn2dWhWLat0ASDVqraPTEUsA4xcnS4wN7FU4oLBaEkxrr3/OPOo1g5txaLmqtLvj91kSA+d80JsJnA1x7dWZabYi4V4jZDwqSS4aQyKaWQMBm64zZiJoPJBFwxdrVEBS/LgEtAZL64BGwukHI44lY2qHXQm3LQGbPQl7Th0sAOKTIF7zPsp/supbz1q7l2yWYCO48k8aYFEVR3v4xU28VTvXu5aRqiF3+1gQJlAAAgAElEQVQNTrAB7z7ydWw9ULrlNhLeelalFFI2owGtCiSkgjPOek6WqXVQCQP6XMi8wbfLJdwS9lw9XkJ5M60Tnc3m0uuHTcZHAesQIwNUv6U3AV5/KiHy98/b35/Gnt50yWdXh1o8qwYfX78KHd1J3PunvVO23aEc7i1ij1uMRotJRVGZC11f2hnslVi054YXyDrcSw3rSTjY05tC54BZkQU5SHlxIXMWC/ECVn8tpWFC5V33vb0rAS4V1tfsgS4cpNrWTfHe5SciTehZ9zWs0Q/A+uMdJQ0kmVReESZg0mmNpHzGml3Nyq4JTVdA6vdYdRr8Ors6lFAK8Um0rbF4Zc2Cl4tR7h3wk5HpTONVK5tq2f5UY13Antp5FAFdw7pVc8Z+MslRd+iPaOp4AJGBndDdBDQp4DQsg9O0CukF5yOxaD1kuLCWOBesmI23nb4Av9rUiRNb6qc0YM4ymQTg3UxJpVATpo838TcpFWKmi7QjpqTRezaAjVoMUYuhOqSjIRJEVchAJBiAXqI176Sy/WlXL/7vM3sG1zt+5qrVOH/F7GGPkUpBhwapFAIo/+dIyPwB62uH4zB0DSfZGyEDYaRbzp7ivRubvfwq7Hn9avz1kV/gB3+5BusuuKh02+IShsNRFTaQsBgaa0Il2xYpnkJmV4FsQVEJQIeQqmR1TYohX6DHhL9nV4eSyhv8qYl419RCpRyOgK5N6HdmGrqjH0Ip7wYye9Pmt/U42UA1X0qfUgrP7u7DqQsb0VAVzPs8kf7tWPT7v0Mo1QlWPRfp1vMhQg2ABoRje1B3+Gk0vfFLSD2IVNs6RFf/lVeQQh/7QPrrc5egozuJe57ajWVzarBkVs3kX+wkmUxCZYJWIRTqqoyit/UhpBiU8oorOUIi5ZanxL3pStjMQU1YoDoYQDgYQE3Y8PVNDZl6v9x4GDUhA9evbUXHq3/Gq/tn5whYs//1x3WTSzmskOJQWztjWDWvDo1dz8Kc/yYoo2qK92587mVfg3n/czj/9S/i6MkbMLehdNfTlCugZY75lM1QG8l//0D8wXTGn13N4kIiGNDhcIHqkH9v+/NlZ1TaUi8Jr+2NlArVE5g4SVoMuqYhZFDyay7+/eSWgYIXpOqZ0WG/pDZleTOsCvkGmg70m+hJOLjpjPzFIyJ927Dkd++GNKpx4LIfILnoUkAfcXFSElW9W9Cw9xE07P4N6g/+AW7tAvSd8veItt+ct1ddQNfwL1euxi0/exVf/91O3HXz2rKcHK1s0BoBeFqivioII0AnAD9zuIDjSjApoWsa6quC0z5oStocjpAwHTHmmvRSy/aUY1yiRio4TKAq5AWuNNhDdh9NYW9fGh+5aDneVfMyFumfwf8ceiuAbw97XDZQ9Um8CsZkzmul6XLsPprCB9ZGENnZge6Vb5v6nSuAiDTh8FlfwNoXPoGfPP5tzH3HZ0u6vaHVgnVNm9CNNplaLvfWpRaKCYkqeFWz4eMJdDfHhVBIBbfMfVcnK+0KuEKiNmwUdA+abTXVUB2ioDUHekdGGBqk+q0XKxcSXMi8NwQv7OsHAJy1NHfv1Uj/61jyu3dBBmuw79oHkFxyxehgFQA0Hdbc09B9zufQ8e4XcHD998FqWtH6/Oex6ufr0Pz6/4Mm3JzbaK4J4V+uaEdX3ML3nt5TtvfPZhIJy4UrJKJpt+J6kc0kaYcjZjJY3Kta6XKBgbRTcaOqE2E6HJbLkXY4LJ+8TptLRE0XaYcj5XD0p9xp/Tcghfn9690IBXSsXyjQ+txtkNBxI9sAp/9gzsf7ZYbVyVPsYXtnwquib2wHAF+tXx1JnfQ27Ko/F2+P/RA7d24r+faStndeSjqcjn0fm+j9TLYNosulr+5ph5Iyd5FBu4B1un7GMm1vTIcX9N5ng1Z3AgMSMwUFrCMM/UD5qYAE4H3wx5qJeXHvANrn1aE5xxoUjdtY+IePQhlV2HfNA2D1iwvbqB5EYunV2HfdL7Hv6v+FW9uG1uduw8pfXILGN34FqNE7dEpbI9511iI83dGLJ17vKfTlFZ3DvROFKySSNkcs7frq7zkTCalgOhwJiyGednF4II3uuI24yRBNO+hPu4iaXguWpD09i4AwIZGwXcQtPiXrVidCKi89cCDtImkzRNMu4iYdNzOVzQSe6ejF+cubseqFz0DnDp4+83vQoFD3wp3DHqt8NMMqpQLPU5xwa6e3frXdfBmsag7s5tUTfv6grsHQtdLfQGka3Cu/CWga5j93O9wpCCJTjkDSYoiZNGBVbrkCHMvlgwFooaQ6VoHX8WkglGt2VSk1oZlkv5LwZltjJiuoWnM2aKXjbzgKWEcYeYPsl3WsMpMOnO/D3pdy8MbRFM5Zlnt2de7GOxGO78Hhi+4Eq1808R3QNKQXnI991/0K+6/8CUS4AW1P34plv70Rkd6tox7+jjMXYm1bA77/zF7s70tPfHtFwqQXtFqul345kHIKHukikyelQm/SRm8i85X0vvpSDpIOR8Jm6IrbiFneDKMrJLg81qYlajKYjteeZTpRSqE/aSOaGUjxK6m8C2w07aIv5aAnbtFxMwM9v6cfaVfgw40voe7wM+g++zbUn3QF7peXYUXXQwhHdw0+NvvR8MNnhEkJnmMwFQC2Ho7hhPk1qO96FukFFwBa4bdBYUNDQ1UQjTUhNNWEMKsujLqIAaOUyxcaFmJH+0dxgXwF25/639JtZwibS8RMhr6UQ1X3y4gLNThw4HCBmOki5Uzu75GtFuzX9kW5BkUdJsds7VZpuFRIWBwJyx23krAEqOvFCBSwjjAyQPVLL1aeXb+a5+h9ad8AAOCcZbNG/ayqZxNmv/YDDKx+N9ILLjy+HdE0pBZejD03bMDhi+5CMHkIyx+8DvNe/MqwNOGAruFTV7SjOhzANx7vKGsPMAlv1DhmunCERDKT7mi5whc3V9OVVN57L7P/n3mrbSaQMNmYg0FKAUmHozfpTJu+oUop9CZs9KdZWdesToTXeF5iwGQ4OGDiUH8aUdOB9MuJkZTU71/vRktDBKd0/wp20yoMnPjXiAQDeKThr2AjjDmbjq1jzaYC++EGU0g1eIM+VMrm2NubxhXNvTDsgQmlA1cFddRXjV5bFgkG0FQTQk2odNU9wxf8Aw4Gl+LN++/E0b6+km1nKC693tBHExZSOVoZkanBhULS5khYE59ZHYplztmFVBYuh1wB3HSdYcxm/6ULyCJL2CxnK7GZiALWEUbeh/kloPEqHuZvzP7C3n60NkbQ1jSi2qHkWPCnfwaraUH32bcVb4c0HbFVb8cb73gK0dXvwpyt92Lpb29EKL5/8CFN1SHcun4VDg6Y+OFz+/M+1VRhQiFmMqRsb3YrYTP0JR0kLAabCUp7nAKmw73qeQU+3mICXVHLN8fhZEipkHY4uhM2jqbcovZZnUpcKiQcgc6ojTd6kuiKmkhOouccqQwDaRfbOxN4+1IX1UdfRWzl24BMEa62tjY8KU9H1dFXBx8/eIj64AMupcpZIXhbVxwKwIUBLysoteCCgp4vFNDGrZxbHTZQFzFKc1OlB9F/0dfQqvUj8fhXp+x8KAEkHYGumIXepE3XyAqWHcARSvnynD0yGGdCgk3jz5uE19UiarqwxsleMl2BWNqdlkukJoIC1hFG9WL1yY0yzzRBz7U3psux9XAc5yydNaqqZ+PuBxGJvYHuc26HDNUVfb9kqB5dF34dB9ffi1DyAJY9dB2qejYO/vyMxU14y6mt2LD1CF7OzAKXm8UkYmkXKZvB5hIWE4hbXvpTb9JGNO0iYXmL5G0m4HI5408UE6WUgu1yONx7/0zHW0OcnkR6S8r1/j6VyHQ5+lMOUg5HskJfQy5Mwpt1jZrY25tGZ9REPO1QoYhp5IW9/VAArsOfoaAhtvyGwZ+d0FKPPWI+QqlOaNwGAGSvTn4ouiRE7mr6r3XGEQroWJZ4GXbzavDqeeM+l6FrqCuwzUskGEBdVRClyBAOLj0Pm+dch2vSv8HWTX8p/gbG4AqF3oSDwwNppGm2pyJ5Ex7eQZGvP3G5ZJe8DTVdZ1dHytaNiKbZmK/ZEXKwvsdMRXXLR1DKu9nOBn5+CVS8CsH5m6BzqXDmkqbhP5AMczd9C9ask5BYcmVJ9y+x9CpYs9ZgyaPvwdLfvRsH19+L1MKLAQDvO3cJthyK4Vt/eAPfeeepmFUbLum+FCKb6mgxCV3zUpgDmub9f0BHKKAP9uPN0gHog4/TRi190jPfNwIagjO8jY7KrIEs1uETTbtoqApWTJsVKRXi1rF1qjYTFdP4fCKU8opluKa35i2g26gyDNRWBVAdCiIS1Cvmb0aG+8vefrQ2hLG4awPSreeC17YM/uzElnr8UrVAg0IocQBOc7uv+rA6Quac6d3WGccp84Oo6XkFA2v+pqDnqgoFRl0LxhIydDRUBZGweNEHvINXfBnm/c/gxE1fQHT1w2iqyd1irhSys60px/TW8VYHETICCAY0OsYrgIIXqAYDmu9mypmUww5XeTytbJRCTeefUdPzMkLxfTDsKJz6JXCaVsKaexqsWWsA3X+hj1Be6rfNBGrCRs57SC4VYmkXtZEgqkq4BMGv/PdXK7NsZWAjkAlYfXJcC6nARO7Rl00HY4gEdZzQUj/s+027foVQ8iAOXP7fg6lcpcTqF2Hvdb/Cksf+Gosf/1scevN/ILH0aoQMHZ++cjU+/sBmfPP3u/BvN5zkqx6bUgFSKLDsKZNJ6AAiQR3VQ3pRSmSqTxaQ86YDCAZ0hII6wkbAV693qhTz0DFdgZTNUVfl/4b2UnqFMrLpTEqpGVE4wbshApIuR9Ll0ODACGgIGzqqg15f12rq7VoRUo6XtXPLqijC+w+g97Rbhv28uSaEePUigAPh+F44ze3Hii5N/e6OwoQctR9px1u/evsJXdD7XaQKqOdg6BoiwYnfGBoBHfVVRtGDVlXVjANnfAanvfIZ3Pe7e3DOTZ8s2nMXvA8AYhZDymGojRgIBbz3RwOgaRoCuoZgwHvfqP+5vwihEAx4//WTkfvjMDHxVjZKoe7gE5i76duo6nsNStPBatvAw41o3PMQAm7C21awBub8s5BqvQCptgvhNLVPyf1xobJL1yJBHTUhY9RgmYS3rtVyOWojwRnVr5UC1hyEUoNvjB9GoriQ4Cp3ihMAbDoYxckLGoaNyGjCxZxXvwNzzlokF715ivYUENVzsO/aB7D4sfdh4R8+ikOXfBuJ5ddjYXM1PnLxcnzryTfws5cP4q/OLrCtTplk1xc4PHNRnuBJQcIb5XeERBIchu7duNNFfHIUgGjaQW3E3wGPUsODVcCbXfVbCtZUUPAuvkwIpBwBLeXC0IHqkIGasIGqkAEj4LUH8fPfdCZ6ed8AhFS4Bn+CDIRzZujos5cD3UAovhfA0KJL5f2sK6VyHm+vdyWgAJyrtkAGwki3nDXucx3PLEY2aI1brKgD3/qp78a+nT/H26P34dfbrsFZJ028LU8xcAnETY5ISKEqpCOg6YBSEELBFV6GTZURQF2Vv8/ZMwmXEkAg81//GJk9aE1wdlUTLlqe+xyaO34Gt24RDq+7A/Hlb4EyMhkISsEwe1Dd/RJqjryI2q7n0XLoy8CLAKueh1TbxUguuhSptnWQwZpivazjYjMJl7moCgUQMvRR941MKkRNFxFDR1Vo4veolYgC1hyGpgGX++ILeGkAXMicBZe64zaOxG1cv7Z12Pcb9jyEUOowui74ypSPHslQPQ5c+f+w+PH3Y+FTt+CwkoivuAHrT5iHrYfj+NlLh7CmpQGnLmqc0v2aDKEUEhZDTTiAqtDkDxcuFbgrBi/iNRFjRs66Ho+UK2C5HNVh/86y2mx4oQillO96rZaLgrf2NW5zJGyOgA6EgwFEDH0wgC1WKr1SatiMH5fe+TNsUIpyIf6ytx/zq4ElRx5DYvHlOesfVNc1o7e7EeH4Pu8bPim6JKTKOYP0WpfXf3Vx7CWY886EMqpy/PYxk51dHfYcAS89uKhBq6bBueKbqP7VFZj//BdxdPGPMLdu6lKDh1IALFfA5QJVQWPUEgCLCyhLob6ClnNMZ9kJGD9MxAzFhgTQNhMTykoI2ANY9MSHUdP9Io6e+jEcPePWYSm/SikkbI7edC1EzSUIrLoUdacYaEE/6o88i7pDT6N+/6No2vUAZCCMVNs6RFfdjOSiS8ueOpzt35p2BQxdQyigIWgEhgWnNpewuYtQQEc4qCNiTGwJQyWhgDWHoQGryvy7nB8AIceeXQWA0xcNX7/a/PpPYDeuQKrt4hLvXW4yVIv9V/4Yix9/P9qe/gREqA6pRW/GRy5ajj29KXz9sZ24++a1aGkY+6bBDxS8tjhcKtQWIaXR4gIG01AdpsNvIqQC4pbfA9bhwaldxHW800k2fZg7AqYjELMYwsax4DUSCiBsFBYsSKngCgGXSTChwKUEl17/PpVtrSQUhFJQUsIwAqgydASNAHTNW3uuaV46o6YBhq4jbIxewz5T2Exg44EoPt32OozuGKLtN+d8XHNNCHvlfKyJeTOsCpmBAk0bVgdiqnGpct7wbuuM45w5LqpiHehedeO4z1OsNWJGQEddJIikxSae5pgHb16JQ2s+gqu3fxdffOR+vPUdf1vWAVAhvTRym3kZFGFDHxwot7kELIaG6lDZ9o94spkHEl7mnh+yvdSIdo3OBIotacLB4sfeh8jAThy65LuIr3gLAOBAfxov7h3A5sMx7OpJws4xYxsMaFjQuBKnLnwTzrr4X3FWoAONh55Ew94NqD/wBFj1XAyc8B4MnPAeiKrZx/9CjxOXmcyRTN2VUEAfrJdiBHSvloSQSIMjZOgIBwPTboCW7phzGHmDKZSCjjJeDIQCy1N9c9PBKObWhdHaeGyEtap3C6p7t6DrvH8ta26+Clbj4OX3Yekj78SiJ/8e+6++H5h/Fj5/zYm49eeb8eUNO/DNm05B9XHMXE4lm0mwSaYIk+JI2QxMhH1Z1IpnLhhZSimYM6TS4fHw6gZ465RNVyBqMRi6dyGOGDoCmUAyG4AKrzIepFKDAapQGJaBMtYYgesK2K5AJCjyrKkV0AHUVQWPe4atEr24bwAOl7jafRxu3UKk87R+8QLWFpwW3wIgM7irMPi3CpTp0uP1Kx9+vTRdjt1HU/jAsl1AHOOuX9XhzcYXS8jQURMxkLR50Z7TPvuf0L93Az6Y+A/86OXz8Zazy5MaPBSXQMLmMHSgJhREyNAATYPNJTSLob4CahBMZ1J5EyABXQOXCgWOCZaUw4+tN/euoYWP8LY8/0VU927BgfX/ieTSK7GtM45fbDyMjQe8iZyls2tw2Qnz0NJYhTm1YRgBzasxYTF0xizs601jw9YjeHBzF+bUhXHjaR/CZW//DOZ0P4PmHfdj3sa7MGfzPYiuugm9p90CXjO/BO/AxEmVGQjiACAGA9hszRRv1tWrxWIEdAQDGgK6Dl0/VhzUW3OOYdc/r1aOzJxDFZT0zqdSHetQosErUqpnrtFTGRRXRqRQBEopPLS5C9u7EohbDM01IfzzFe05RyVHtbaR3kL1csnOGIz6vpDYejiOdSvnDPvANL/+EwijGrGV448il5oM1WH/lT/BsoffhsWP/y32XvdLzG9ejU9fuRq3P7QNd/1+Fz5z9QkVkx4rlFf9NWxoiAQpcJ1qTChYLkewyn+j9SNnVy2aXZ0UpY6tfS1VOnV2jbrNXVQFA4gEh6dRSSDnEoyZYMPWLrypPor5Ay+j58x/xqhy6BmzakPYp+Yj5DwF3YlBhhshlUIAWqZ9RnnO6ULIUcfdjiNJSAWcqV4DDzfBnnXimM8RKkF160gwACUVUkX6TKtACLH1d2Lpw2/DolfvwM7Fd2P1/Prxf3EKcAnEbQZDByJBA+GgDosJBHQNNZRZVFZcSgT0gG86YAxt0zKRVjaNHT9H88770bv2H9C/8HL84KndeHRbNxqqgnjvOYtx+Zp5aCpgVj+bUfLQ5i7c+6e9+Pkrh/DBC0/DhVdchnB8D2a/dh+aOh5A065fov/kD+DoqR+DClZP6rWWSjaAtbmErnGEDR2hTOqwN/MKAKPf25FnuEI/EceWPYljBUYz62yNTDBbCjPmbnvD1iO479l9ODCQBhMSz+7uw5/f6M352JGxYblvXFwuRu0TAHT0JGG6AqcNWQsasKNo2PNbxFbeCBnyx8VLVM3C/qt+CmlUYcmj70EweQinLmzEBy9chhf2DeDHz+8v9y5OmMO9wDWa7efKhC+bcU83EkDcYmM22S4Xa8jFVik17N/En2Sm/VL2OPbb2q6ptvtoCjuOJHFr8wtQWgDRVTflfWxzTQj7lNfqJhzfD+DYtbKcbyPLUe9hW2ccAR1oi7+CdOs5eYPwrFINRFaFDUSK+NzW/DPRc8Lf4L2BJ/D0oz9HyineDG4x8Eyq8EDaRcx00ZOw0Z+yYbkCNjv2ZbkCaYcjaTMkLIaEyZCyGSyXrqvFJoW/erE6mXRdpdTg/48nmOpE63OfQ6r1fGxZ+VF88hdb8Oi2brzt9AX47785Eze/aWFBwSrgDSSdv2I2vvH2U/D1G0/GrNowvvF4B77w2+04HGhD14Vfxxs3/RGJpVdhzuZ7sPKX61F76OnJvtySk8orWhW3GPpTDpI2g5053hwu4HKZOUd6s6ZDv0Yq5D4rW2A06XBETRe9KQe9SRtJmxW9Z+yMCFhf64zjB3/ei7OXNuP77zkDd75jLZbMqsb9Lx7MeYMy8o9UzsJLQiqw3C3lsPlgDLoGrF14LGBt3PUL6MLBwAnvnbqdLACra8P+q34KndtY8uh7EbD6cd3aVlxzcgt+/WonHtvWXe5dnBQuFSwmkbQ5oqZ3gohlLs4x00Us7SKadpG0vJOGX0Y1K5l3k+OvmxibDZ9NHflv4m/Zvsyx7LHKhC8HRUptw9Yu1AYlzow9iuSiS8dMgZtVE8LeTMDqp0rBLEdK4fauBC5sTiGc7kK69fwxfz+gaQWvn56M2ogBo4gzEAPnfAaJmqX4LLsH9z252Zef22zWhOkKHIk76IlbiFts8CthM6QcDtMVsJiAxb1CMwmboT/toi/pIDGDj8tiygaqfhic40IOZjTaE2hlM+/FrwIAtpzxFfyfB3egL+XgC9eeiPefv/S4jt2TFjTgzpvW4sPrlmHHkSQ+9j+v4pldvWD1i3H4km9j73W/hDQiWPLYX6Pl2c9CE+6ktzUVpPKWsiUdjqTNkbA44hZDzGQYSHn3qCmbIWkxxEzvXrU/5aAv6X31p9zBe9q46SJheY93+NiD8VJ5S3yiabeoA07TPmDtSzn4+qM70dpQhU9evmowf/u95yzGkbiNP+zsGfU72UJLWeU8sLmUebe/tTOO5XNqUZtNsVEKTR0/Q3reGXBmnTCFe1kYp7kdB674bwRTnVj82Puguyl8aN0ynLGoCd97ejde2T9Q7l08bt6aeJVJaVRgmYXyNs+MQGVuiGnUePIY99KC/WRok3Ov7yr9fSuRhJdalbQ5nDx1A6aF3g4EH/4HBOzY4LfiFsMzu3rxhXl/QcjuQ7T9XWM+RW3YQLc+DxL66ErBZcTl8B6sTEi8cTSJK2vfAACkW84d8/fDRmlTmTVNQ13EKNrNlzIi6F3/LczXorji4LfwyGtHivTMpZNyBdI2K3gAV2QyVuIWQ1/SQdrhFLhOUjZg9UNrG5cPTQcubH+qj7yIxr0P4/CJH8S/PBGF5Qp85YaT8KalzUXZp4Cu4bq1rfjuu07DwuZq3PF4B+56YhcsV8Ccfxb23Pgoek/5MGbt+CmWPHIzjHRlTrZIZJZYMS+V2KsHobxaETj2lb2ndYWCw73HJyyO/pQD0+FjHsP5Zm4na1oHrFIp3P3ELjhc4LZrThhW3Oespc1YObcW//vSoVHT1grDR4jLeWLMLoIeyWYCHd1JnNLWMPi9SP92RGK7EVtR/rWr+Zjzz8KhN38PVf3bsejJD8FQLj59VTuWzKrB1x7diY7uZLl3saSyN8TFTpWYSSS8NDM/Bf2OODbi6DA5obL8hEw5paC//hssfOKD0IQDAPjtli6skPtx48B/IrHozeP279Y0DbU1Negz5g3OsKoyz7B6PViHf29fXxpMKJwhXwOrmgOnccWYzxEusGCFrgF1EQPNNSE0VgdRHwkiYugF3VQZAR3V4eLN4lpzT0PvqR/FTcaf0Pfcj7Grx//XUZPJYdlHLvcG56VU3t9RSNjMC2wT1rFMJdMVSFgM/anizt7MFCLz/mYLMJVTNmAtuFe5FGj5y5fgVrfgI/vXeTOr163Bsjm1Rd+3+Q0R/PvbTsG7z1qEpzuO4tYHNmNfXxoqEEbP2bfh4KX3INK/A8sfvBZVRzcXfft+N3Q5TcJyYbui5J+naR2wPrylC1sOx/F3FyzDwubhi6Q1TcN7zlmM3qSDv+zpH/W7Q9/3ch7UQqqcI2E7jiTApcIpbUPSgXc/CKUZSCy7dip3ccKSiy9D57pvoLbzWbQ99XFUGxq+dP0aNFYH8aWHt6MzapV7F4nPuVxOqEBDKbl8eJEXWrtK/K4nsgQbln0eNd0vYsEzn8RvNh7AQy/vxn0134OMNKHzojsLqjA/qyaMQ1rr4AzrYCvWMl0yuVSjrtfeIKjCosRGpFvPG/N1GbpWUKuPKiOAWTVhVGd6B4eNAKpCATRUhzCrNoy6sIHAOO+f13e4eLO5vWfcivi8s/Fvxn/hV797DEmbFe25S2Uwo8HxUhUH0i760y76Uy6iJkPS5jCZhMNHZyolLJcGfifBaylW/llWpY5NxhTayqZx929Q1b8N/9Pwd9jey/AvV7TjxNbS1WoJ6BreffYi/NsNJ8FkAp/8+Rb8cedRAEBi+XXY+5aHoAJhLN1wExp2P1Sy/fAzCa+mS/a4jJtuyVL3p23AenDAxI+e3483LWnCFWvm5XzMqQsbEQro6GaSUhMAACAASURBVMgxGjl0hLicsyUuy11waevhOAK6hhNbMgerFGjY8xCSiy6BiDSN/gWfia26CUfO/hwa9j2CBX/+NJqqDfzr9ScBAD734DYcTdhl3kPiZ66QsHyynskdsp6j4JFiQsqoJ2HjUztW4hv8nWjc81t8ftOF2Bb5IFr5YRy++FsQkcLS67K9WEPxvYOthoDyZSWJXAFrTxKnV/chbPci3Tp2OnCogACyLmygvjqYtxKmrns9tmfXeYHrWGrDxUsNhm7gyPp7oMIN+Aq7A99/fFNZ1xIfj/H2OrvmvNwzhJUq+76V8/1zuBzsB1tQKxspMOfV76K/rh1f3Lca161twdnLZpV8PwHglLZGfOedp2J1Sx3uemIX7vvzXgip4DS3Y88ND8OacyoWPvUxzN14Z/mrtJaRAuAKhaTNMZBykTDdon7GKi5gdbnEt598A4fHmIXrTTr48obXURUM4JY3r8xbnj6ga1g2pwZv9KRG/UwNSwk+/v2eLJuLnCfvrZ1xrJpXO9jcvObICwiaPYgtv2Fqd/A49J/yIRw9/eNo2vVztPzli1jQGMGXbzgJpstx24PbMJD294J2Uj5SeecCP6wzHLoPE2l6Tki5nNLWiCduXYfONR/GrfwWPNz0Pgyc/AEcevP38vZdzaW5JoSdbB4C3IRh9pS9SnCuHqwd3UlcW5dZv9p63pi/b4xTwbehKojqCbRlqQ4baKoO5Z1tNQL64DW8GHj1XBy57HtYqPfiQ0e+iF+9tLdoz02mD+mDgDU7u1poplTD3ocRTuzDV1PXYvGsGrz/vKWl3L1RGqtD+Nfr1+C6U1rw4OYu3PbgaxhIuxCRZuy/+n5EV70Dczd9G21P/RM0ThMuEl7wWsxBs4priGW6HD98fh8sV+D95y/B1Se3QB9yMeiO27jtwdeQsjm+9JY1o0pb604cczb/B8Kx3ehb+xGsnDcLv9/eM9hMOWtkE/qRP58KUo5ejwN478EbPUncdMbCwe817n4QIliL5OLLCn5+HUA4qCMcDAz2Y+JSweUCjKuCK7Ydj6On3wqdmZj92n96B/kFX8UXr1+Dzz+0DZ97cBu+8taTCi5PTmYWJiQcJhApY5NkLuTgjCqbYNPzQqVsjo6eJHb1JHGw30Rf2sFA2oVU3jq62rCBefURLGiswiltDVjT2kD9gcm45taF8aF1y8HO/wSMgI6jk3iO5poQ9vMmIAQEzR6Ieq9qcNlmWEf0YI1bDEfiNs6u2g63phVu3eK8v6sDCI2RDlxlBCZ1rgkZOpprQoiZ7pD+hUOeNxSAXcR172bL2ehadwfOf+YT6H31Nmyafw9OXzw1M1GkMmQD1XJ2LXC5hJQFtrJREnNe/S4OB5fgt+nTcfcN7WW5xhkBHR++aDlWzK3F957eg1v+91V86vJ2nLqoEZ3r7oDTsATzX/4GgukuHLj8Pshw4/hPSgpWcQFrY3UIj/3jufjoA1vx/Wf2YsPWIzhv+SwsnlWD1zrj+P/svXd4XOW1vn3vOn3Uu2TJsmy5YmMwvWN6h1ACyTkJIY2Qyi+F1JNeTtpJIHzJITkJCQkJvZsWmjHNxg0bd1u2JauN2vSZXb4/9oysMpJGtmYk2XNfl64LNLuNvPd+3/WutZ7njZ0+dMPkh1ctoqF0cCN2/rYHKH/rh0iRbnR7AfVPfIDPFS/nFe169neHqC1y9W87dFVgMgJWzTDRtNQS/YYJixKCS4IWwbv7afrqLsSU7WkdWxEFPA5l2HeSJcuXyjBMyx8t0/YcgkDrid/AkB2Urv0f5EgXwjl38u1L5/PdJzZzx8Mb+dFViyh05YLWHIPRdJNoQqgj289mkthA0/PYxGVXW3sjvLytndV7utnW5scwLZPv8jw7JR4b8yq8SIKAblrlN3t9Id7a3cUDa/ajSiJLa/M5a04py2YWZNSiI8f0J52ezZEocqmsN622FCnsI6ndPVlVSXF9sELwtkT/an14I6Ga00ftX1VkYcRqLOCwRJJEUSDfqdIbjg96Z4Clp+G0SfgjE6d83jvnAwj+A1z57n/zl2e/Scu1v6CywDn2jjmOCpKLI5OVYdUT7gnRNK1svLufwd6znZ/FbuPKY2uoK3aNvVMGOXdeGbPLPPzkmS1867H3uOGEGm5YNoPOJbcR88yg+uUvUf/4NTRddC9xd9WkXuuRxLQLWPG3UX7XQv53/n/wt4aP8cLWLh5csx/DBIcicUx1Hh86qZaZQ27o4nV3Uv7OzwiWLePARd8lmldP8cY/0LDm19wq29nRvmRQwDp0wJ2MXhDLg3X4JHjj/l5kUWBehQcAd/OrSHE/vbOuSOu4iijgdYzcgwMH+3AcqkQgqmXW91IQaD/+djRHERWrvkP9E1cjn3s33718Af/1xKZE0LqQIrctc9eQY9oRS0xOo5o+SAE8q9eQeC50wxwk0X8omKbJ6qZuHlvXwrp9PQhAQ6mb64+vYWFVHrPL3KN+z0hcZ2NzL+82dfP6Th9v7urCpUqcO6+MSxZVUFXgOKzry5FjKIUuFR9WwCpHfET6S4InZyKsGQxqgNzS5qda8OGIdtJdunTUfVVp5IDUIUuHFdhDMmhV6A3FiQ4JWu2KRDSuT2iFRs/S2zD8bfzn9nv5x6MK+Tf+AqdNmbDj55i+9PewTtJzmhwrw2llV02K1/+OfUIlbzpO53fLasbeJwvMKHTyy+sWc/fLO/nH2/vY1NLHly9ohFmX0+QoZsZzH6f+sStpuvAvRIrmT/blHhFMv4DVXQrHfZTCt3/PzRWbOO/Cu+gR5tLaG2FmsSvloFLy7m8oW/NzemZdyf6zfgmi9bU7ln4BtXsHH975HN9p+QTMOyjONPRBnowBOK7ppBq/NjT3MrfC05858e56Gs2WR6Bq9P4csFQQxwpWB2J5ximosk4womf0Bde14CPE3dVUvfJFGh65BMcZ/833Lj+V7zy+iTsesTKtxbmgNUcCw0wINsQNJqNqXDfM/mxJJKYdVgn9ns4g96zczbp9PZR4bNx04gyWzyujxJP+/W5XJJbVFbKsrpBbTq/nveZentvcxtMbD/D4+hZOri/ihhNqmJUBC4AcRydFbpUu01o4lcO+g6JLk3Q92pAM69ZWP+fl7YcIhEqXjLqvMkqJ4URZ0AiCQN4IQavTJhMLTaCyryDQd+b32RqN8cG99/PEQxK1N/wCUcy1CxztGKZVDiyIAqZpjlpZkAniCZX/dOaTzrZ3cHZu5Ifxm7n5vNmT2gI0FLsi8cXz5rCoOo+7X97JF+5fxx0Xz2Vu5Snsuvwh6lb8JzOf+AD7zr2bQM2Zk325057pF7AKAlz8Mw4451D22tdpeOgCWk7/MZ7a84dvGg9R8cZ/Ubj1frobrrak+sXBN7tvya007HqcBc0PAAcHtGEZ1kkonYjpxrCRPxLX2dUR4NrjrVUmQY/ibXqevpkXgTj26qnbLqcdrA7EJkvIThF/OJ6yD2ei8NcuZ+dVT1PzwqeZ8cIn8TRcjXrR7dzxzH7ueHgjP746F7TmOIjVN2r1whzKfX04hGOa5dlsmIdcgWCaJk9uOMA9K3fjUCQ+cUY9Fy0sRxm68GZoqH17sfXuQgnsR/XvRw53IIc7EeMBBD0GpoFuy0e3F6A5SilzlXLGrGraF9Tz8F4Hj27s5I1dPpbVFXD9shrmlmfODiDH0UGhSyWAA01QkCK+AaJLk1dqOPC/t7b6ua1oN0bcRrRw3oj7KaIwYluBXRYPO7s6kJGCVkUSscsikYkUkhME4uf/lDWPa1zW/iDvPBzBcfVv0por5Jg+mIZB8O17qWxeQaGqY0o2DpzyXWL5s0bcR0uMmbphIk+gvVI6RHU9bYHCvA1/pBcX28ov4YaGqdmLvXxeGfXFLn709Ba+9tBGPnbaTC49ppGdVzxG7YqPUPvsR2g57Ud0z/3gZF/qtGb6BawJ+hqvJVC4kOqXv0jtc7fQM+tyuudcR7DyZMR4CGfbGsrf+gG2np20L7mN9uNuHxasAkSK5rPZdSKXBx5jf/QbSDarz2PogDsZpf4xzRi2Up3sZ5tbbq1qu5pXWuXA9ZeMeTynIg6fCI8DSbQGWn8kTjRFb+1EEffUsPvyhylZ91tK1t7JJS2vU7rsq3zsnUq+8uAGvnfFAqpz/Tg5sPpYrbJgY0LVNsfCNM1+v9VImn04Q4lqOnf+ewcvbe1gWV0BXzpvDh67NZEU40E8e57F2bYaZ/tabN3bEY2DqtmGZENzlqI5itEVD6ZdBUFAivZi696Gu3klUqwPgBpgqSDztbLFrBYX8fvWOfy/B7o4pjqf646vYXF1XtZX2HMcGThVGYci45fykSNdwMHMTbYxDHPQYmpzT5hwXGe+sY1I0UJMaeQyjNH8UG0ZyOgkg9a+cHxQgOpQpYkNWK2ToV72c554yMFl3X+l6ZFegpf/L4YyuX2AOSaGDbtbKH3lDpbHX2KnUcFOpYj5wmaqX/4Cuy5/pL+icCjJJIxmmGRT5iCuG8R1M63yd8W/n4KmZ/mDdgk3nTZvSo9T9SVufn39En7x/FZ+/+ou3t3bzReWz8G47EFqXryVqte+itrXRNuyr4CQq3I4FKZtwAoQLZrHrisfp2Ttbyne+Afydz6OITsQNcvyJu4oYc/F940p07+l4Rbmr/84zevugxM/DkyRDGuKrM2WVsszNhmw5u16Cl31Eqw8ddRjSYIwLjn+kRAEAa9DxT9koJ1oTEml/bjb6ZtxHlWvfoVT3v0SL5efwic6ruMrD+p857IFNCb+BjmOXpIluTFNz2rAGtUsNdKBget4iOsGP3p6C+82dXPTiTO4flkNoiAgBw5Q/N4fKdh6P1KsD13xEC5dgm/hzUQLZhPNm0XMU4PuKB5VQAasChPVvw9b91Ycvs24DrzBWe33cjYG7fkz+avvDH716EkUlVXxwWUzOL6uYEpPCHJMTQpdKr16HoVhHyYHi4KyXWpomOagcXp3ZxAZjbLAFrpnfGjUfZURZuyiALYMqZFaY6kCA8ZSORNZVkAQRaqv/j6/ud/LZ3y/I/jw5bReeA+xvOxag+SYWF59Zy1nv/tZGsV9rKz+OOvqbuGe1/dyeuxVfqv9luINf6Bzya0p97Xsn6SsV0PENSPt7Kpz3Z8wTNg64wZOK536rSxuu8y3L53PExsO8KeVu/nM39/lk2fUc9r5f6Rq1bcpWf871L7dNJ/xcww1N38dL9M6YIVEYHP87XQs+Qzu5ldx71+J5iwlVLqYcOnStFYR3bNPZ8PamRTveoSuZMAKg8oMs/1QG4ZJ1Bg+aL1/oI/qAgceu4Kgx/A2PUdf7fmjrh6D1YMzkZMHz5CBNlNESo5h51VPUrj5XspW/4JHeZMnxbP41SNXcv15p3FqQ3FGz59jatPfx0p2J8jhhCJwJDZ+FW3dMPnl89tY09TNZ89p4IIF5QhahOKN/0vJ2t8iGHF6Z15M14KPECpdmrIyJB1MxUm0sJFoYSN9sy4HQIz2kLfrSQq2PcDt7X/hC46/sbJvKX98+hzuLzmVm06q5dia/FzgmiNtCl0qvl4PpckMq2liImCYkM1KQ900B/XE7ekMMl/aj2RECZceO+J+osCIFhl2ZWLHzaFYmVYVIRQnrFnvlIxkWbFKjo+98ot87v5Cftj3K2Y+ciktZ/8Kf4p2qhxTn1UrX+SazV/ELcXZed6fya89m7OA42eW8Km/mbyhvsuJa36Jv3Y50YI5w/ZPPivZTsbENCOtFhpBC1O47X6eN5dxyWnLsnBlE4MgCFy+uJJFVXn8+oVt/HTFVv5dV8Cnz/w28/LqKX/7R9h9l7Jv+d05MaZxcsTkpU3Zjr/2fA6c+j06jr2NYNXpaZe8VOQ7WC0spCSwFUGP9v9+4OCXbTU1zTCGSY6bptWT018O3LIKKdZH38yLRz2WIgoZaVT3OBTUbMxIRJmuhTez7fpX8C28mUtYybPyl/A8fzsrXntz0jz/ckwcunHoBtOabnkGRzO8eJIk2TdrmiahQ8iu/u9ru3hteycfPbWOCxaUY+9YT8NDF1C2+r/x15zNtuteYf+5dxEqX3bIwepIGLZ8uud9iF1XPMb2D7xA16JbOMW+m3vVn3J37628/+RvuP3vb/Li+21EtYmz6clx5FLoUukwPMhhH3BwcTfbi7ymOfice3xBznQ2ARAqGVlwadRy4CzVSnqdCo7EuZJZ1kxQ4FK5+Mobudb4Mbu0Emqfu4WK17+JkKhKyzGF8O1EeetO5GDr4N9rUXY99Utu2vwpJFll35WPEK09u/9jt13mssVV3Nb7ITTZSdk7/53y8Mn26RR5kYxhmiaBWDy9+fTGB3AZAbbW3kh5Xnp2jVOJmcUufnndEm4+tY4N+3v59H1ruTt6Idsv+geiFqL+sSsoXv//gTFxdlZHOtM+wzoRCIJAm2cBSuAJ7L73CSfUBAcOftmOiaJxY9g5W3oj9EW0frEU754V6IqLQPXpox7LnsFSSa/DEo/IpBBTEt1RTOvJ36Zz0ccpXHsX1275B8L7r/D63nMpPP+rCCXDVxFzTF2CUY3Xtnfy0tZ2NrVY/ZaiAOfPL+eW02emvciiJUqbYnEjKwqCwYRf4qFkV1/Z1sGTGw5wxZJKrjm2iqKN91D29o/RHCXsuehvBKrPyMAVpyZaMIe2E79B+/FfxrvrSco33sOPfX+kO/Qgf3rpPD736gUcM2cWy+eVMafMncu65khJkUvlQNyNFLEC1uS4le0xU9cHj5lNvhCfU3ahSUXEPSNbYYxkZyMJwoiZ10zgdSoYQZOobmDPUJYVoLbIxc2XnsVVj+bxfc/DXLP5Xlwtq2g+61eESxZn5Jw5DgHfDtSXv8ds4Yf01l9GzFuLYGgImx5iYbyF9x3HYlz1e0x3+bBdL15Uzr9W72Ol7QzObH4BQY9iSoPFKpOZ1WwmY6KaQSSW3n3t2vhXtpnVHHf66AmZqYwkCly9tJrTGoq5Z+Vu7n2ziRfy7Xz2xH9wyZ6fUP72j8jb9QTNp/+USPHCyb7cKc8Rk2E9XDrzFgHgaF/b/7uBz3GyRDhbxDR9mODSlgPWpH5uhQdME8/eFwlUnzHsRTQQOUPZ1STJPhwpi5NZzV1B++k/YMcHV7K67AOcEHyFBY+eR9Gzt6IEmrN2HTkOjQ5/lHte28VH/u8d7nxpB73hOB84rpobT7CsXFZsauX2B9azryuU1vG0hHhDVM98RjAS14kmVInHm11t7glz5793MK/Cw0dPqqHq1S9T8eb3CNScxc6rV2Q1WB2IKan0zr6aXVc9xe5L/olUs5TblQd5SfoMZ2z9EXc9+Ayf+Osa7nuziZaeXCYmx2CSGVZJCyFokf4m1mxnWLUBAWsoptHujzJX32bZ2YwyPo1kZ5PNnvgkXoeCLAookpjR6qVFVXl84YKFfMV/PV9zfR8xFqD+sSspe+eng6rMckwicy4g9Mm36Z57E3l7nqHs3V9Ruu63dEZl7q76CfGbHkkZrAJ47Arnzy/j/q45SFoIZ+s7w7YxsCqbhlbyZZJYXE/LrzzatJq66FbWlV5NgWv6u0KUeu18/eJ5fPfyBQgI3PFsKx+LfIG1J/4aJXiAWY9cQsXKryNFuif7Uqc0uQxrAim/mrb9+djb1/X/zhzyIOumiUh2ArNU5Y3vt/pxqhIzCp3YfZtQQm34Zywf9TiOLGScRFHA45DpC8UPy4tyvOjuCtxX/Jwnt3+K3pd+w4eanqJk//N0Lf4UHUtuxZQdWbyaHKOh6Qbr9vWwYlMrb++2et3OmFPC5YsrmV1qZe+ksA9bbxvn1lby45c7+NrDG7nrxmPJH8NkVTNMTNPEQCCuG4elhD0apmkSjCayq/HxZVfjusFPn9mCLAl89bxZ1L32RfJ3Pk77sZ+zFMynQvZSEAhWnkyw8mRsXVspeu+PXL/9YW6QXuQt8yR+sfo8/vFOI/MqvJzdWMqpDcXkOXL2GEc7BS6VvVhVP3LEh+maHPVZbUh21UuQkmgTbSXXjrjPaHY2mRJbGg1RFMhzKHSHYjhUmVh4An1Zh3BKQzFfEwR+ugK2FP2S39c/TNm6u3DvfYl95/6OWH59xs6dIz2MvFrWL/o6a7yf5G9vNhGIGdx0Qi3XHl89ZsXLFUuq+PzG+WiCgmffyynFRzXDQM6iorc/Tb/y2Fv3EDJtlJ72nxm/pmxyXG0Bd954LE+sb+Efb+/jmr2lXDXvT3xJeZjKLX8lf+fjdC76OL6FN+dEmVKQC1gTlHjtrDMaOH1AhnW4tU02M6wpFIIP9NFY7kEUBDx7X8BEwF9zdoq9LSRBwKZkZ9BVJBGnTSIQzX7f27zZDbSW/oxbnrmMD/T8kSvX/g952x6g9ZTvWoISUyEYOIroi8S5+8WtNPVE0XST/d1hdnYEiGoGeQ6FK4+t4tJFFZQ5DDz7X8b70grcLSuRw50AzBRkzi49ha/tP5nfvezljovmjjo4m0BcN1FlgZiWuYA1HNPRDEuJNCm6lC7/emcfuzqDfOuSRo5d/RXydj1J67KvjajgONlECxtpOeNntC37CkWb/8Lxm/7CA7Y3aLfP5F+Bs/jHy0v4/aulLKnO55SGIk6qL8oFr0cpbptMl2lNrqRwJ5gzgOxnWHX9oA1cky/EPGEvAOGSY0bcZ6T+VZs0sd6r40GWRDx2BcOMo0gC8TTsPw6Vk2cV8Y2L5/GjZ97nGu0m7jp9OQvevoNZj1zMgdN+SM/sazJ27hyjs3J7J5/+2xr8iUXSeRUebju7gdqi9BaEyvPsNNaUs7ZzPov2vQQnfXPYNoZh2cLphjniws1EEdcNImnMD4O9Ppb0vMBbnuUUF5dk9JomA0USuXppNefMLeUfb+/jkfcO8IR4If/RcAaf1P5O2ZpfUPTePXQ33kD33JuI5dVN9iVPGXIBa4Jit431xiwu8K9GivSg2/OHrQRlqzndNM1BhuJglTjt7Qpx8izLONmz90XCpcda9hYjYJOFrPadOVSZuG5k1KN1JMrz7Py/a8/l3jcbuG/ti/xY+DMNz3+cQOWptJ7wNSK53pys4d+zji+9cyG7qeQtYTFtjtlcWF9LVVkxS/IDOAKb8ax6BVfL64h6FM1WgL/mbCLFC4l5Z+BsXU3+zsf5o/Ian90d4tXtxZw5Z/SBS9cNkEVimkEmKohimtGfXQ2luUqcpMkX5IE1+zmrsYTLuu+1gtUT7qBz8acn/kInGN1RTPtxt9NxzKfJ3/k4BVvv57b2/+M2O7SptbzUuZCX9s/hvpfmUl1l9eqcXF9EgWv0rHiOIwe3TcZnJjOsXf2BarZ7WLUBJQ97fEHmKy0ARAoaR9xHHkkdeBLKgQedX5GIxi2rrng4s6Isy2YW8v0rFvL9Jzdz86pifnrew5y87mtUv/xFXC1v0nLq93LVSpNARb6dq5dW4bHL1BW7mFNmJSvGw5KafFY0L2RZz30ogWbi7qpBnyfLgbMRsEYT7TRj0b7yLziEGNKymzN6PZNNvlPl02fN4oollTy4Zj//t6WdP/MxPjLzGj7OI5RuvIeSDb8nWHESvfWX0TvzolHn+0cDuYA1QYnbxnNmAwCOjnUEas4apj6bLTXauG5iDFlV3d4WwDBhbrkXOdSGs2M9bcd/ZdTjZMLwfCzcNgVNT1MFboKRJZGbT53Je3XX8tEXF3Ju4Elub32Mhkcvo3fmxbQv/SLRwpEnLzkmhqrZx6Iv/y8q33+Gmw48ixh6AvZi/SSIemvpmvdh/LXnESxfNsjc3F97Pu3HfZHapz/Mr9t+x+dedrG4+pZRS4OTk9V4Qr13IhdqNN2gNxzr7/mJpiHJn8QwTe58aQdOVeJrM7ZQ+tr/0D3nOjqP+dSEXV82MBUn3XNvoHvuDag9u/Ds+zeefS9xXesL3KA+BcCBzhI2tNWyaWUFmqeKwrJaikpKKS8tw+4pRLflYSjuXMXDEYbbJuNLlgSHfSQ7ILOt3j40YD3P3oZuutFcqfv8REBNkUXNpPfqeHDbFWK6QTiqZ1zUcGFVHj+95hi+/fgmPvNkG587+3+4tuLvlKz9LY6Odew7587c2JllZpW4+fIFjTT5QsP0TNJlSU0+v1m1mG9xH+59L9M976ZBn2dT0TsQ08Zso4lpBrNbHmWnPJuChhMyfk1Tgcp8B587dzY3LKvhoXeb+ctm+JPxES6s/Qif8q5iTtszVL7+DSpe/ybh0iUEqs+kr/Z8IkULjrqxNBewJij22NhozMREwNG+lkDNWcMermwFYTFNZ2jhxM6OAAANpW48TQ8B0Dfj3BGPoUjCpJQ0TVY/60AWVuXx6xuX8c93yjlj7Zl8THqaW5qeoWH3M/TVX0L70i+k9CXLMUFIMuZJn6Gp/j8gHkEJtKAEmxFjQTRnKZqrnLirYtSXrSk72Hvh/1H12HX8svsX/OHt2Zxz1nkjbp8smzOx+r8nSmhMN0x6QvH+d8F4s6sr3mvl/QN+vn+yyJxVXyZYdhwtp/1wWg80sfx6fPn1+BbdgqBHcXSsx9m6GodvE6e2v8e5wfXI4TjswfoZQER04XfPRCtqxChbRLRkIZHC+Rjq1DeFz2EhwqBnwGWT6EpkWKVIV//kOsv2jujJd4Bp0uQL0ehoJuqZPeKzJkupK5Ay7b2aLpIo4LYphGI68UjmrS/qil38+vol/HTFFv77+V1sXnQVnz/vOOpX3s6sRy6h/fjb6Vz0iQm32sqROeqKXbTbaumUSvGkCFgPWttk9mE1DJNQdOx7eNO7K/kwe3h79tdxZvSKph6lXjufPmsWNyyr4bH1LTy7qZWn95xCVd45XFXfy8Xyaup6VlGy9jeUvvtrot5a+mZeQm/9pUdN8JqVgLWxsVEEfgcsBqLALVu3bt2RjXOni0uV0BUPB9RaPB3rgeElwGaWIrBUcva7OoMUuVTyHAqevS8Sc1cRLZw74jEmc4V4MvtZk9hkif842fK5/POqHzT0nAAAIABJREFUGu7Zfj632lbwn3uepWHXU/TOuoyOxZ8hWjRv0q7xaMCU7cTy6w9JwMNQPbRcdh8V953N8u0/IHrqmShK6iyrblq9paJoCS9NRMBqBaux/oUqTU/P8DxJdyjGX1btYVmVnWv33IGhutm3/PejqnpPN0zJRqj8BELlA1bDTQM53EGs+wBtHW34Otvo6/ER7vWRHztAQ3cLc3qfp2T3Q/27tEkVHLDX0+magz9/LuHixahF1RS7bRS61HGXwuWYeOyKiEuVEUWB3lCMWCJAdNlk/DjQBNkSXTIPBo7ZQjfM/ue0KxjDH9GoVvYSzR95UTdVdhWyI1SYLg5VwmOTCUX1rCyYF7pUfnjlQu59o4mH1zbz7l4PXz7tIc7d+RPK3/4x3j3Psf/MnxPLn5Xxa8lx+IiCwDHVBbzcvJirWlaCEQfxoNZAtqxtYmmMnaZp4th0PzFk3MddP2kJj8mmwKXykVPq+OAJNbyytYNXt3dy95YodxqnUuo5h/MbZC63r2Wu70WKN/yekvW/I+qtwz9jOf4Z5xAqPwFTOjJbcrKVYb0SsG/duvXkxsbGk4BfAFdk6dxpIQgCJR4bW5nD6e3vgGkOK8PIVoY1msIuY1dHkPoSFxhxXC0r6Wm4asQVFZHsGZ6PhEOV0XQzY15y6VLmtfPVC+eyY2k1f3tzBnc3XcCttmf4j13PMXvn44RKFtM95zr66i5Edx55Df7THd1eyLqFX+esDV9m5Su/JX/57SNuG9MN7KJENG7gOUyf8WSwOrDMMBQbX5bj/17fQ1Qz+Hn+g9h3bmXPhX9Fc5Ye3oVNBwQRzVmG6CyjogoqBnwUiGjs8QVZ1RUk2nMAT9cmigPbqIzuoC64m2MCqxDbTdgGB8xCtho1bKSMPkcl5NXgKKmlrLScqrJSZLsLU1IxRfWoWF2ebOyKhJjoc1MkkVjCRkqRRGyyREDKRw77JsWH1TAPBqx7fCHyCOCO+zhQMHvEfVL1ryri5FQmjYbbruCPxPFnaQFYlkRuPm0mx9cV8JsXd/Clp5o5e84X+X8nLadx7fdoePhC2o7/Mr6FH8tlW6cBS2ryeXXXHD5gPo+te8egRfp+a5sMCnuB5bk+VhJ3Y1MnF8ZfZk/JWRiOgoxez3TAJkucv6Cc8xeUE4hovLXbx8odndy/qYe/GXOwK3M5qfwzXGVfywnhlZRtvpfi9+7BkB0EK04iUHU6/ppzjii172wFrKcBKwC2bt36ZmNj4/FZOu+4KHarrO+bxdnR51ACzWie6kH9cNmo8zdNk/iQxvRIXGd/d4hTZxXhbF+LFA8SrDp9xGOostg/sZhM3HYZLRQfNOmfLBpK3fzX5QvY2jqDR9fWc/fOi7lKWslHe16j+vVvUPn6NwmVHUeg+iwCVadYBupiTvV0KlC47Fpee+9fLNt9N019HyDurU25na4boEjopommG4c18QxEBt+34xUTe6+5l39vaec7c5qo3fl3Ohd9nEDNmYd8PUcKbrvMwqo8FlblAZXAcf2fBYGN0SD6gY3IB9bi6lxHo383y8Jv4Ir5oQPrZ/PgY5oI6JINQ3YiJCbQAqZVEmOaIIiYgogp2TBkB4bqJu4sQ3OWo9vz0VUvui0P3ZaPZi9Ac5YTd5UBOaGZJIokDFLfloao67psMn1iPvkRX/9Cbzbf+oZp9o/PTb4gDYLlxx3NTx2wigIp1cQz6Vl+qKiySL5TJRgLZ7XM+pjqfO688Vjuf2cfj69rYeXOSj447098PvI7Kt76AXm7n8llW6cBi2vyWGFaY6aja/OwqrKB1QmZIpzGYm/z2w9TKAToPvamMbc92nDbZc6dV8a588oIRjU2Nveydm8PG5t7+fy+xcBiHES41L2N5bbNHNu+nop9L1Hx5veIeOoIV5xAuOQYwsXHECmciykf5or+JJGtgNUL9A74f72xsVHeunVr5hszxkGJx8bmdivLpvr3EvdUY5iQHJszXecPVi/e0NWuPb4ghgn1JW7czQ9hCiKBypNHPMZIRujZRhAEPHaZ3knsZx1KY7mHr140l9beOh5f38jyzRczU9vDhwve44LQu5St+Tlla8AQVaIFs4kUNBIpmke0cB7RvHrirvJBAkE5Mo8oiqw/5lssWXs9ztd+SO8lf0i53cAAM6YdesAa141hlQHp9N8k0Q2Tu1/ZySx3nJs6fkm4cD5ty0YXSMthIdlcSHUnQd1JhIEw4APEWB+Kv5lI5x46Otvp7urGH+gjEAxixMPYtTjOaASHIuK2ybhsMnabgkORcSoCDhlsgoaohZBifmw9O3G3rEKK9aW8DlMQCZ3/Czj5yFaqTJehgZwqWY7kySfObZPp0b0UR7oGZFizWBKsm/3n3dcdZrG9FUyIjpBhHdHOZgoGrGBlWV22OP4s9LIOxK5IfOSUOi5ZVMF9bzXxt03t/FO6hW/NOJnrO39Lw8MX0rH4VnyLPp7rQ5+ilHvtBF11xDQVu28zDLEqMhJWbZlCN0wiKaoGB3KgN8zSrqfptRUTnnFWxq7lSMBlkzmp3rKSA+gNx9na6mdXZ4DdnVV8v/NEWvrCVNLB2eJazulZx7H+FVRu+xcAhiARzZ9NrKCBaN4sYt5aYt4ZxLy1aI7SKV2tlK2Zdx8w0AVXnGrBKljWNq9FC8AGin8fMFju24QJVyAdimYYaEMG+l0dQQBmlbhwbVpJuPgYDFt+yv2tcuCpEbCCVV7ksstZH2jHojzPzifOqOfGE2awYlMtP18/m68HL2FhfpyPz2jmRHUPrp5tuFtep2DHw/37mYJE3FVO3FWO5qpAsxdZmRlnCTF3df+Dn8vOTiwnLF7Ig++ew4dbVhAMtacsrdUGLPRENQPnIbaKBofcqzHN6O/XS4eXtrbT5AvxzMxHUFq72Hvhn4+ovtXJwFC9RIu8CEXzKG2Egf/6feE4uzqD7OoI0OQL0dQVYn9XaFjPlE0WKc+zU+qx4c6TcZbIqKKBW4iQR4B8IUQBfeRrHXjjnVQXH0t6jodHNpIgDAtYBUFAFoV+9Vq3TaYr5EUO7+oPHLOZDdR0o/+8bX0RLlIPYOiOYTYeSVJlV1VJzLi1x6EiiQL5DoVgZHyibxNFicfGF5bP4drjarj/nb18e9t87hR+wl0F93Pcu7+iaPO9dBx7G11zb5q22ZsjFUEQWDSjiG07q6n1bR72uWGaGNCvATHRpDN+vrp2C98R19MyO3Nl5pIgIIlWPCYgYGItcpmm9a4yUrQBTgfyHAonzCzkhJmF/b+LajrN3WH2dZ/Gs10hftfuJ9C2hxmxbSwSd7PI18Sc3tWUGU8jDnijaLY8ovmziburibvK0JxlllCmozjxU4puy5u0oDZbAevrwGXAvxI9rBuzdN5xUeKx0WIWYSKiJgLWgWXAJgzKuGYC3TCHiT3t7AjgtsmU2WI429fSMYp/o3IY3qtD95qoh9euSFbWahyCNdnCbZf5wHHVXLGkkle3dfD4+hY+v0HBpc7irMYPcuEF5TS4o9i7tqD2NaH496MEmlFCrdh9m5EiXUjRXqsEMYEpyETzZhLNbyCWV0c0r55o/ixieQ3o9tQLDTlGx6nKvF95NXLrU+Rt/Se+Yz87bBsDKzuqSCJx3TikATimGSk9kMez/31v7uW6wp3MO/AoHYs/TaR40biuIcf48DoUltTks6Tm4LNlmib+iEZbX4SOQJTOQIy2vgitvRE6/FH2dYUJxTTiutWCYWXnbUBJ4gduLXfwlZFbII8aHErqBVBZOhiwumwSvoAnoRKcVOzOruhSkra+CLPFZqL5DSCkvvZUAatthO85VfDYFexqjFBs8sQMqwoc3H5+IzeeOIOH3m3m+s2fYiHn8hP7w8x947sUb/g9HYs/Q3fj9bnAdQqxoNLLxm21zOlcm2iTODgu6gOEl8Rhs8DDJxwfvX81quko259EFgxi866esPOKWPNhVZJQ5LEXowzDJKYZRDS933VgumKTJepL3NSXHKx6MM0FdPiXs7XNz8Otfra1+dnb3k2p0cEMoZ2ZQiuLpVYauw9Q1vU2BVoHshkfdmxDshF3VRL3VBP11hHz1hF3VxB3VRB3VVrJhAwtOmQrYH0EOK+xsXEVVlz00Sydd1wUu21oyITsZf0B61AybbAc14xhvbJJwSV361sIpj5G/+r4bhS7LOJQZSRRQIBBE3wtMZGLaQZRTT+sFXO3TUbTp0Y/ayoUSeTceWWcM7eUTS19PPNeK89uauWpjQeYX+Hl8iVzOHnOyan/7ROqqIp/H7a+Jmzd27F1b8PevQ3P3hcQjYMPfcxTQ6h0KcKJnwLPKVn8htOfqoZjWNU8n8Wb/45v8a0pX4q6bqJI1mJLUoRpPASjw7Or4xm8nt54gL6An28V/J6odybtS784rvPnmBgEQcDrUPA6FGaXecbcXjdMwnG9P4jVDZMT6grH3O9IRwDUEcpkZUmExCKk2ybTZniQ9ADEI4Atq02smmGFx7ph0hmIUePcSyQ/9TgpCcOFlQTAPslChWMhigIFLmVSA9YkFXkObju7gQ8uq+HBd8u57L0GTmQT/2U8TsOqb1G65pd0zbuJ7nkfIu6unOzLPeqZWeziHbOWD8ZeQg61DfImTvav6oY1dk40wTEWfFdu7+Q8/XV6vXVECucf9vlEAZyKhF217KnERO/CWOkSURSwq9Z+kbiellDUdEIQBEq9dkq9dk6fbS3KxnWDlp4we7tCNPlCPNAVYq8vxIG+CLphkE+AYqGXEqGXUqGXGtVPrdRLTdxHpa+dktZ1FOn+QecxBBnNXUHMW2ctGi7/GqipvbDHS1YC1q1btxrAp7JxrsOhxGOV7XWrFRQkAtahfTiZFl6KxvVB47ymG+zxBbn0mEpczSsxJDuhsqUp9x1PObAI5DlV1FG2lyURWbIypKYpE9UMYvFE8Jr+VwKsh8Vtn1x/1nQQBKFfFOaTZ9TzwvttPLXxAD95ZgvFbpULFpRz/vwyitwDSjwTqqias4xw2RA9MUND9e9H7d2JvXs7jo51ONvWoO19FebkAtbxcOyMAu7Tl3NK6De4m18lUHP2sG3ihoEda9SNxcdnbxOJ68SGZFejWvqTw1BM41+r9/H9whV4QvvZfc79uSzDNMHyvJRx2+RBvzvaUSRhxL/DwCylyybTprlBSHixml7MLJaNaYmyJF8gisMIkq910DpS/6o8/LpUaWoIFY5Fnl3FJ8cmXX0/SZHbxifPmMU1S6u5/51yzt80n9PkbXzV9m/mr7uLknV3Eaw8hZ7ZV9NXd1Guz3WSqCl0ch+W8JLdt4nAwIA1EZVlYm6rGyax2Oj36pvrN/NZ6X065nzusEtNHYqIyyb3VxkqokC+U8UwTQIRbVj11EjYFQlVEglE4+MSW5xuKJJIbZGL2iIXpw94XeqGSWtfhE5/lJ5wnJ5QjN5wnG2hOKsCUdr7onQEokQ1nTyCVAhdlAs+KoUuqoQOZvR0UO9vobRlMy31l9Jw3DQKWKcLxW7Lu6hdLqfMvwYYLs2fyYBVN8xh/av7u8PEddPKsG5YSbDixBH74cZTDuyyy6MGq0MREn1MdkXCMGQicZ1QbHzecIok4lQlAlNghTgdvA6Fq5dWc8WSKt7Z08VTGw9w31t7+cfbezm+rpDz55dxfG3B6OI+okwsr45YXh2BGQc9ASu8tqPOGPtwKXSpbC84g+7QvRS+f1/KgHVQH6uuA+n1EpuJAW0ghmESG0cZ+2PrWiiO7uUDwoP0NFxFsDK3IJFjejOaCJEkCkiCgG6auG0yB+IuUEGK+DDNOkwhc31xQ0nOQ9v8UWYJLcAogktiCnVgdWpnV5OIokChW6WlJzLZlzKIYreN285u4Mollfz1zWIu2dHIXPv1fLViLSf3PU/1K7djrPw6/trz6Ks9j2DlKWjOssm+7KMGRRIJ5s+FIDh8mwfNRaw+zswIL43Vv7qzI0Bj14uIiknfrMsO+TyiYLV3DbRztMsiXodiZVkRyHephGJa2noqoijgdagEI3FCU7CdLZNIokBVvoOq/NGV8kMxje5QnGhcJxI36A3H6QxEeSUQ47FwjHBc5xuV80Y9xnjIBawDsMkSXrvMfrOUpaE2BC2CoQwOKzKZYI3rxrAShJ0dAQDmu4PYe7bT3Xj9iPurUnqDriIKONVD/6cXRQGnTcahSoRjidKJNPd12GSi+vjKLCcbSRT6VdlaesI8t6mNF7e08fbuLvIdCmc1lnDuvDJmFuckWjLNMXWl/HPDGXxy75NIkZ5hPcF6QvFQFAUM0xow01mYCUa1YYsv0Xj6lQTBqMaj6/Zzv+dvmDg5cOI30/1KOXJMSURh7IodRRLQNROXTWa76QVADndl3dpGS2Qc2xP9qzCypY08RIQine85lch3qPgCMaJTJMs6kOoCJ3dcNI8d7QH++kYTH91diMt2Hp+Z1cVV8huU7H2avF1PAhDJbyBcehyhsqWEixcRLZidE6fLIGUlJewLluEdIrxkYpXUD9VOmQgi8eHj6kCe29TGx6Q3CBbMJVow55DOIQkCXoc8KHEgClbP99AEjlOVEQWB3vDw3syRcNkVJFEnENWmpShTJnGq8qixhADUFU3cvDgXsA6hxGNjj1YMgBJoxrQPHvT0DBa164aJOeT4uzqD2GSRhtAGAIIj2NkIkHbG1G2fGAVbQbACV5si4Q/H0y638NgVekKxadkfUJnv4COn1vGhk2awpqmbF7e08+SGAzy6roW6IidnNZZy4sxCqgscGVWTPlo5rraAB95dyqekx3G1rKSv/tJBn5tYZcG2RO9qJK6P+VxoukE4RdZ/PGV3j69v4ez46ywS1tFy6g/RnSVp75sjx1TEJotjvsPkRPbUZZPowgpYpYgPwzSREBItNZl9D5qmSbJqr7UvwmyhGUNSiXlqhm2bqn/VrkjT6l0tigLFbpXmKZZlHUhDqZvvXrGAbW1+/rV6Hz/bbPBr6RLOm/ef3Dijl1mB1Thb38bT9CwF2/4JWGKFkcJGwsWLCJcsJlR2nLXokCEBl6ON+hIX7+2cwZmdm4Z9likv1tH6rWOawdZt77NU3E7brEOzfUsVrAK4VHnEyg67IiEKAppu9H9nAWs+q+smmmFYC98D91ElBBEC4clR6c5hkQtYh1DitrG1yxLbUP37iBc3DPo8k95yAx+gJHt9IWoKnbg71qDLTiKFqdPrsiikVXrlUKRxlQKngyRa5RbBqEYgDb9KSUz0s4anltXNeJAlkRPrizixvojecJzXd3Ty7y3t/HnVHv68ag8VeXYWVHqZWeyivsTNzGLXoP64HIfG3HIP2+Q5hEQX7v2vDgtYwRJeSr7ZonEdwzby4AWkrBCIanraAmHBqMaz63azwn4/4YKFdM29Md2vkyPHlGU0AT9VEonpBkLiuXLbZHz9GVZffwCZjTVJwwTdTGZYo5yj+Ii7q1P6ZafyX7VNcbGlVOQ5VLoCMcJTMMs6kDllHr55yXz2dYV4ZG0zz25u56n3TI6pPo3z51/D8WcWUBjdj923CYdvE/aOjXj3rKBw6/0A6IqbSOFcIoVWBi6a30C0YPaU94uciswsdrHZqOVC/2rEeBBDOZj5Mg1zwpMxpmkSGUUD4q3dPk7X3gAFeusvGffxRYGUwaokCDjGKPFXZTGthey4bhKN60R1A5ssIToF+sLxaZlsORLIzaCHUOyx8V5zAYhWwBod1sOauXNrhjmsR3Z/d5iFVV6cbWsIlyxJOQhDetlVAUscI1O4bDKyJKQlrGSTJdyqOW36WUcjz6Fw8aIKLl5UQbs/wuo93byzp4vVe7p54f32/u1KPDZK3DbyHAo3nVjDpYtTewTmGBlFEllYU8gbBxZx+v5Xh0n0g1Van8TAyrI6R7jvo5qeMpM6nt7VJza08GH9EYqFDnadcncuI5Bj2qNIwohjikOR8Nhl+sLxflEyt02mDye6ICNHfMTJnJDLUAzz4LjZ1hehRuwaUZl2qJ2NLI78PacyoihQ5LGxvzs82ZeSFjWFTj537mw+fHItz29uY8V7rfz8uW1IosCiqjyWzljC0vqzqT3eaVWL+ZtwtL2Ls30t9q73yd/5OFKsr/94mqOYcNECxAt+ADXHTN4Xm0bUF7v5t1mLgImtawvhsuP6P9PN4XPPwyWmG+ijCBa9sLmdr6rriOQ1EMubOe7ju+3Dg1VgkOjS4ZAUHXWoErphEohYZcR5DoW+8Oilzjkyw1EZsIok0v8pbrhit42mmAfDqaL49w7rWc1USbBpmsM8WMMxnY5AlJleAfvezXQsvnXE/UcV/klgV6SMK1/aZIk8p0BvKDZm0OqwyWimOSX9WQ+VUo+9P3g1TZPuUJxdHQF2dwbZ4wvRHYrR0humeZpMNKYii6vzeaFpAeeab2Lr2TFMXGVoZjQUGzlgDaYQYDBNy8opHcIxnbfXredJ+Ul6Zl1OqPyENL9FjhxTExFGrAYROTghzHOq6KZJX1hLbC8Qk92IMX//uJmNOZ1uGP3nafNHKaOTuGtxym2H9q86MuHjkSW8dgWPLYY/On0WfQucKtcdX8M1S6vZ1ubnzV0+3t7dxZ9e38OfXt9DvlNhUWUe8yu91JecS93xl1uL7KaJHGrD1rMDW/c2HL7N2Hp2IoQ6J/srTRvcdplW52zQwO7bPDhgHWALNVFzRE0z+n2ah9IZiLJjXzPH2TbTNePj4z62W5VSVkaIMGZ29VCQROt9Z4vr+CNx8pwKfeGpa9N4pHJUBaySIOBxyCiSiGma9ISG33BFLhUTkbCzAtW/b9iqU6ZKguN64oUx4PjNPVZQs0TahWDqhAa8YAYiCmNnWJMTjWygyiL5LjWtPlW3TUbX4yO+2KYzgiBQ6FIpdBVy/BBPxwpvTlziUGks9/BLw1pVd+9/ZVjAaphWljWZTdFNk0hcH2ZxE47pKe+7aNxIu09lxaZWPqv/FVERaTvh6+P/MjlyTBKWeiYMDXccqjTiAqhdHbzo6VCkQZU7UcmNFPNn1YNVNxLCMbpBbyBInq2LTnfFsO1EYfjC7mgqyFMdq5fVRjgennYTZ0kUmFfhZV6Fl4+eOpN2f4S1e3vY2NzLxv29vLbjYCDqscsUu22UeWxUFlRRmddAUe2VlC6wccaM4kn8FtMPV3EtkVYVW9+eQb9P3j4TGbCGhlg0DuTfW9o5TdiAhI6/dvm4jmuXRRwjzGWHVlBMNHZFQpFE+sJxRAECEW3KWEwdDRw1AevQendLMEga1kfpdViCRH57FXn+fcMGXoPMSPUnfeQGxsP7ukMANMYtVbdwaWr/VTWNh9SWhezqQBRJJN+p0hMcPdOa9GftneL+rDmmDjOLXbQKpbSrNbibX8O36JZh22iaMWjwCiZ6qy1PYZNAVBtREGK0vpuBxHWD7e++xLekN2lf8vkRyxBz5JiKSKKAx6HQFznYkyWLI/d/iTBMEVISxUGLoWHRiSvWh5nFkmAtEbF2BmKUmN2ImMRdw5/FoeOkTRKnvdeu0yaT51TwBWKTfSmHRanHzgULyrlgQTmmaeILxtjdEWSPL0i7P0pnIEpLb4TVTd2DgvMfXrmAm06qm7wLn2bUl7hpaimlrHfPoN8nLW0m8nmNxEceR1/d1sG33RvRhAJCpakTMamQBGHUxMvQCopMIIkCBS6VvnAcQRBQ4gmnjOm1ZjQtOSoCVhErEB22uipL2GVj0ApJXiJg7bZVUNz5PiZWVnVgTbxhmogTrHyoJ5reB97z+7vCiAKU920kkt8wzMIjiZJGD45zEnzmFEkkz6mOWR4sSyIuu5y2P1aOoxtFEplZ7OKt2BIuaXkeQYtgyvZB28R0g4EOYpph0huO93utjtR/oo3DcumFza18RruXsL2IzkWfPKTvMhYiIEmW3yVCQs0Qa6FHgGECrKZ58F0yVOkwR46hKLK1sBiJaciyiCqNrAycatFTFgVEScCpWpnWkODCGw8cXHjNwiQuqazf2hehUvABEHcP1wcYOpmdztnVJIIgkO9QicR0gkeAHgRY36nYbaPYbWPZzMGVSbph4gtG8QVi9IbjLJ+X83IdDzOLXew1Synvbhr0e4ODlnATwWge5s3dYfb5/JzkWoN/5vJxaT647NKoyaJ0WuMmCq9D6a+4VCWRUEwjfAS1t01FjoqA1Z0oA06F0yYT0w4GVF679SfplMqZF+1GiAUwzEIGjnW6aU74H07Th6u07esOUe614Wpfg7/2gpT7CYydYVUlMasP8qBzyyIehzKm75VdkTCNI0OEKUfmmVPm4ekt87hMegJn2zsEq04f9Lmmm8MWmmDkQDVJdJRV4UHHMUxaVz/KieIWmo//AYbqHt8XGAERUBURRRSRpeEWHONFN0ziukFcM4hp6Zc65zh6kEQBVxpWZ0NL6sEqS5UFgXiiYimIEzHW1T+Ry0bSQTOthd72vggVyYDVNbwkeJBPI2BXpp/YUiocqoTXoRDXDWLTyN/8UJBEgVKPnVKPPeMikkci9SVumswyzgy+P0ywUDOGu1QcKjF95P7V13d2slTYjlPvo3Mc5cBORRxT0TvTJcFD8ToUjFCcGAZuu4JNMQhGtbQXvXOMjyPjjT0Kblvq5uwkkiggDYhGkyXBB0Rr5U5J0ceaCYNlTTdSKgSf4O1CjvaM2L+ajp1NJprQx4NdkdKydHHY5CNmEpEjs8wpc/NKfC6GIOFqeXPY5wbWoDleoqOoGg7k9e2tfDL2V3qctXTP++C4zzMUEXCpEgUuFY9dwT5KH+F4kEQBuyLhcSgUuFRcqsQ0r4LMMQmMpqabnCS6bTJ+HEixQH+gmkkbuCT9CsH+KFViMsM6uCRYZPBk1iZPL+/VsXDZZDx2xarEyJFjBEq9NpqFMlQjjBzuGPSZaTBhGda4ZowoULpqp49rPe9hiAqB6jPTOp4sCiMKJyaRBCHrJf6CIJDnOPjcJVvhPDY5N85mgCM6OnAqIg7pIie0AAAgAElEQVR17EBJGXBn2RUJmyyyn1KArAgvabqV+Rh4XN0waekJc5KyA2DEgHVMsSXBMoCfbFw2GXsa1+GxK6hZ6EPIMb2ZU+YhhJ0O52ycbWtSbqONUwwhEtfTWmE2TZPwW/cyR2ym5+Q7QBw7OzUaNtnyMXaO4Rd7uIiJQb/QpeK2Sci5ETVHmoymppv0NnXbZPpMB2K8r78kOBt9XcmJcVtfhHq1B131DvKYBAYtSoNVxXAkYVcky27IIeeC1hwjIgoCAWc1AIp/76DPdGPkIHO8hDQtZXVFW1+EHe0BTpM3ES47DkP1jHksAUvheKwFplQey9lAFAW8DmVQMGVXJQqcalpz3hzpc0T+NUXAY5PTKnMCkIZkMrx2hSa9BAA1lbXNRAesyYb3AS+L1r4ImmGyQN+KrnqJ5s9Kue9YWRiHMnVWkr0OZdDiwOFul+PoparAgUOR2CzPw9mxFozhJefjLcuJpSm2tGnPAT4cuY9mz2ICMy8a1zmG4lYlvA71sFaGRcFaXZbF1D9D3xCCIOBQZQpcKnkOBYci5laDc4yIVT47WsBq3WEum0yvkciwmonFoiwGrO19UWZIqT1YB44nU2URd6Jx2eVEhkeZtMl7jqmPllcHgK1vSB+rOXFz22gs9WLx6zs6cRGmIrydYPmJaR3LqUpplfpmuxx4IKps6bAMREyI2nkdcm5xeIKYtg0ADpuMqltmx6YJJla/miQIKLI4rpt36M3kdci0xBQMyY4SbCU2VCl4gpeNtUTp4sDD7k8oBFdFthMuXgjC8O9jlTmN/iCMNtHINknvvu5gbNQXoyBYK1a9OZ+rHCMgCgKzy9y8HmzgbC2M3beZSMlg78V4QkQinaylbpjE0iwHNt+4k1Khh61n/HFQD9B4cduktCpAUiGLAg5FSvtdl+xl1XSrlzXZX6TKIqos4gaimk4snut1PVpICneNddfb5NGFTiT5YIa1u9eOYOoQDwM2zCxErNoA0aUKyUfMVTv8Go/gcuAkiiTikCXCmk6+UyUYiRPKicDkGIJcWIvRJiD3Dg5YdSMxl06h/TAerLE09eLvqp0+LinYjxA2CJUvG/ta0ygFTjK0iiLbOFUZTTMJD/nuNllClUTCMZ1wTM+NrYfBtF1mdMgSTpuM264kVjGs3i+nbWSBpZGQJXHQH8LrUOiL6GjOEuRQ+7AS4ImOobREJmhgELevK4yETr5/O5GiBSn3U2Rh1BfLZIotjYRlwKyMeeMlyyxy5U05RmJOqYcVvdbk1NW2OuU2sTTLgqOjeMYNpHnfbi4PPMCm/LOIV4494I7EoQSrIpYHXb5TochtG9e7LtnL6rYrFLpt5DsVbClU05O9rm6blKtyOMKRRCEt9XiHbQyhE1HsF8Dp0iy1biHaBzCsOikTGAlF7O5gjCK9M3WGdWDAeoSVAw/EbT/YO+eyW9md3BiaYyBlhXkcoBCza/eg3+sJ8bLDLQuO6waptAu7QzG2tPq5yLsbUxAJjWDTOJB09VfSER/NBp4RsqmWjaZMvitXJnw45P5yCQYJL9kT2T1HKXK4fVgP60TV+SeJJ1ScBoo57e8OscTRgWjEiBTNT7nfWJPVqTowJ+1uxro6SRTwOnLN6zlSM6fMzX6jkKCjAmdr6oB1NC+4wdulF9hKq36Nikb8zG+lfZ1DcaTZWy8KiYU5VcJjlyly28hzqmMqJaaDTZbId6kUulQcsjTIHUcUrZLhfJdKkcsSkFAlYYKNvHJMBVy20QMahzJ2OV5ygua2yfg0GwBiLABkx4dVN0z6wnFsRHHpvWhDPFgHirFY5cBTp+pookku9CaxyVKuRDjHICrzHew1ypCGZFhNM7H4c5jPrKalVhvesL8XgIX6ZiJF88dU1lckIe0KQUkcPXmTLZLVgSO9MaVcmfBhMTUjmklg4M3jdcj0ReLEnaXIoY5hmZeJFF3SDbM/YzvwuPu7w5zsOgBAuHD8AasA2KfwwJy0uxkLWRLJcyi5oPUIRMB6ASV/xsvsMkuwYY9jEc621SnTOXHDHDPLmq7YUqS7lVN7n+Id73Lk0tmHcMWgSgLuNHrrVUmk0GXD61SsyhE1M4JMiiTiTWZsVWnYv4MoCthViTynFdzmVIaPLARBwG1PvXgiCqSl7q7KVg+0yybRpScyrDE/kPkWVtO0JtjdodgAD9bBljYDg7Wp1CKTKWyyhGfAv5soCv296jmODAQSCzHCcI2CsajMs9NkluIMDhZdMrGyrIfrghEaoRx43b4e8mwmRd0bCJaNXZ00HsuiyexfHYoiiWOO8cmFJLctN56Oh2nbwzrRyJIIiSyL164QiunE7MW4wquGzYMNSLs3biziyf5Vw+yvbTdNk/3dYRYV7MMQVWIpBJckYXSPRlUSM6o4OhHYFQnThL7I6B6tsiTitsv0hbUsXVmOiUCRhP7shigK/Zkck0SwKgy2ZEr2WUbjelp+gsVuFa9dZoPQyILQcyiBZuKe6mHbReP6qGra4TS9f6Ov34WNOJETPos3rT0GIwkCnlEGMgFrsLMpIs5D7G09VCTRujaXKhNJ9rLqxqCAI6ky7FAlInGdSNzI9ZgfAdgVCU03CA55DlxpqlaLoogkgEuVCZgO63dZKgk2TOunOxQf4ME6OMMqDwhYj+Ts6kCcNhnDNPv/Ta2FCQWT+P/P3pvGWJZk932/iLjL23LPyqqu6qW6qntyOMPhaDaS4gpKFkFIJi3JlGXqCwUbAgwL8CJAXj6YBgwYtmFDAgzpg2yRtmXLhkRRlkmapCCLIqmhSBGaGXJmOGT1Wl37nsvb7xb+EPe+/WW+LatrOT9guibfXV5WvRc34sT5n/+ZWU0iPHt4WlENPXwznFFM0oxWlMzUlm27GvBVfZ5a/AQVt7B+pXcszSxplgGLj5NJvcyttfzezUN+bO8R+mGH1oXvPPEepXl9aJ4xBUE5MFgs9c70NWthfhh6bj5tx+lTcVV/npGANWcww7qRZ/6awS7nukfYpAMMLzRTa9ErEMkV8uLBDE+9k9DoJryVfUh36xNYE4xdF3inmC19zL1XZ6UcGDJraXRPDkZDz1ALLY3ubMGF8PHidvXHv7cnYbTCaEPJN7S7Cc3o5LpSpRSXd6v8evsKPwFU7v8rjiYErFGSTd1gakfJTEGX6h7xHXd/li8H38Pele+Y42/Vp1YaDwCqgatltdaOBfAfB1orKoFHJXCbaFGa5ZsIfZlXMdGWAzFqelGolXyM1jQ6sau3Csxcmya+Z6iVPOq4xa/uZVjPdgWW5JsqhwMZ1mikhtVot/A1anov2ReRWsnH9zT1dtIbu2slH2ujmftNC88OJU9Pbe/iGc16OaATpycGSeCe3/Xya9B1XTC625/sHbPZchlWay3dCRnWe8cdHtS7/NAr7wPQuvDFE+8z7/r1WcqwFhTPz9M+j8GN4G4y+4b9y8iz9yl/TAwaLxU1IEdmCwDdfDh2/qpqcwqH4MG62Af1LgCvtN+ls/NtU3/faWieL9v+auid2OevoBx4VJ+TQFxYjnLonVgLUvDmbpVfP9wj9atOFjyBjOm7vu0p9vujxL/9t1mjxa1P/3sznT9KNTBji+WyZ/JAwaklPu5gdRSdGzWtlXx210K2KgG10CMw/a26wqhpuxawVnK9lp+fJ48wSDkwbNdCdtfCmZ05C3yjqAUeddsPWG3u4H+WpJkFC4ftmIu4gDWpXugdV/QlwaWXUBIbeoadfGwWChfpdf58oXDtz9bK/ql1miXfUAsMnoaTloDRhjMrDI6HZcGJtSRLRKxJZkkmxGe/e/MQgE8n36K7/gZJ5fzUewRGzRWAasY7fTwrVAKPzcps5qFKufm2KL+pBYbAzC/5fpGRDOsAxiiy1LKe1/Q8UdsA6NZD4MrQucvq/AuKXpGD9av3jjuc45BK/ISjKYZLJzmiPY+2/et5neqoLG2USujhGU2jk6y8H67wbBF4mmroUT8h+35lt0o7VRxsfZbqFOMlgFaUovSwiUOrO9t3SKURl9/7O3yZz/LJz33/fH8J3IJ5NAAIjGat/Hw9fosWONUwrx3MLEneOijJLKHnXssy1zYnSTPSDJIsczVXRjt5+IAyxZKXQli3CWizvI7KZnmwo2ScP0UW7Qcc5GUbDXJJcNwgs64Odtk2GSdRbPQetmI+ZZ4Ql89hTdg7PmjG4j9Hm7irxGXM3aZwN8noRCm6oqh3YtoiD37mqZW9uaTsm5UALLTThKPWZAWR3noTHoB3dH3o9WVNl6I4I5lw/e/dPGK36rPz5KvUX//jJ95j3uzqs2K4NI3QM/hVTb0T05mxa4HRinLoUabIWmdESUqcuPlylnZkLyLP14rpjPG0Ik5tL8P6SG2611v3x85dhfFSltlepnbwdvePO3xKOwe39oSWNp4+WToYBs/nxFwr+TMFo4Gn2ar6tLqJ9Jl7QQiMJvRcG6ZitzSzlgMVkWTZ1IXVm7tVAD4sf5ov3vhpdNSY6D6Y4aQ5NrMYo2l1k14v0tPw3/1/2cwO+Mar/xnfP+eiVyvG6lY1boPmWZ5kT0MphWcUJ62jBgOVIqgtaqSSooc2bvL1jMYzCq0UnnZ1z3Hqapo7cUorSmhHIpV6VjHG1dYVAauJjomtxaKwdql2xSeSZbYnCX7NPCGuDhsuFc8SzbPR9uLjpMjgOO8Iy0bFp9FJaLRj4jxQsb3WJh/3byuA22SZNVg1uYFa8fkmDctmRXHcTohGPtCt3fMc/WGF9PEHQ6+nWV4XvqBHSycd31zOrOXrtw75k6928G49ObGdja/V3HXmz8NGlNaKjUpAEKU0OvFc5TNKKSq+oZY7umdY0tT1us2s29BN0ow4y8iyFzuQfWkD1pKnx3Y7it3ljXyB+SBzAatpPhi7fhW7/knWr/AZvN/94w6f9W8C0BmoLyg4qcDcW2DAP0sUE2qUuNq5KMlI0vH6OKUU1ZJP4Ge0uoksZJ8xlIJKYGidkjEvTCQmuXdqnEV8ZiFOo4k7xa9tV/C04mt2ny/ZjPLD36V56fumvl8jSoH56qDLv/u/8lG2xyuf/1NzXQd525DRutUJr72IDAbkWiuC3t95tudT4Kleln2HkChxxiKNTkyzm5BYwL7YE/Tzgq81tcCQoYl0BR01ep/LWX4+xbzpTJeeENeGN3iLgNUz+rneIFo1Srl1QlgzbJTzNn79dgVEed16N8lkfD3jaNxm/2DP0qIOvd61lHw9FrBe2ixzw+6xdTjc2ibLNy0W9WjpTiix+fBRk+NOwg+s3QOgs/vtU69fxHvF089+wFpQDgyhp3veEDYDpZ0BpQJQUDSQU8q9brSauF4oMq9JmhGn+WawzUhTtzmcpJY4TUnzefJF2IN6bgNWz4wPwlnw8z5IvtEkje7QIlj1ajzcP8u9tIZF4bUfkI7sOGUrsPMarBUYzNjeP+ry4/5NotKrZOHmhL/D9AE6a6PlZ51B+SEUzahdZsZam7tDWjSaoBKQZpZOlNCOxfzlWUDljrhl3wWtcZqRDmzQaFzgdlqtXGG21e4mebA5jG80r21X+I3W6/wlFJX7XzkxYJ2X8Mk1Xqt/jb8Z/CQ/sLc217VlX48F4p5WL8wYfdq4Z0LAZiUgyyytbkI9iklSS5q5Z0TxTC0epzb/jyy6zxbPaGq5xL1tqpio3lMPZdZizqiLb5Z/3oetiD37iOZIhlXlc/bLZLY0L57RbFcD6u2EdpKCUgSeIfAM5TSj1U3HHMOFp4OnNUZNL4vQCjbKwcTvd8k3NLuJk8wy/Ay8uFniht3jYvMmhwOvu+y6C34W6QA1yXCp6L/6KXMDqzSdrf2pf5dFvFeeNYfg09BaUcrNJZehUEyc9EEVQW03SqlHyXOf3HluA9bNis9xe3ZNODhJ0GalL8Ur+2aoPk6r/m5sNTQcdCxpaRuv9ZB4ZMdpFfbTycAXZ7Am9n69wyf4iM6U+tVpEggNM5kXPY/4ZrrNue0tjCCKU+qdmKNOTJSctUelcBrOvdB9bkXdY2qtm4hnzDJWQ4+o4lpNTRrtb+5W+dqNiO7WJ6jc/8oKf3so/97/Qtf6HH3yz8+VoTFKTewjN83lUZgPrRW1sk+15NGKUlrdhGwkLLLW1fsU37vMQppa4izfPBkMakdQ+f+E2fCMJszl/G1dpRzX+/++Z/gQLsxuO80GZdocVc4NHS/mjGfRRfRZQinFesXH66qhNZFnNOsVTZSkTtUgu8FPFaOV20yYUP/o5zLTafNo0UM77VqUGh6HG2Wf9/Q5at2vM6rZL3wJ5iXN7ET36Xfu19lbC9muX6O7cQXrlSZeX/LmV0FoZGyfxGAZwEY1cO3LugnH7Yh25NrSPU9D+rkNWJVyg1V34lNlh5AP7pG6sWIHqvjABgf+eskFxHFlD6/1YCxATVeRYR3IEPfVOJbD4zoX/Vs82v4zY9cUfS0nUQqeP7OlVVD8nY1y7rLl0OPceolG18kHj9ox6Quu7X8e6NU9LnDtZiWgFSUctMZrZK7sVvnVP3zAwZXPsXfjl+jpbJZERw3OffB/8wvZH+U7P/XWXNdWS+Nj0dXpvpgbSh8XSvUl5c1OniHqH3QOi0rRW9MU5cTWkuJMniwueLXWzQGh5zLj5afcC/d5Riv3b1cJDC1VoZa3tYGzbW2T5dkgr/sYQkhLO2O/k1vUvnzz4iJUQg9jFMfteGjNE3gG32jaUUrrlHZjwmop6h/DOKWdq5UqgaEanr75WQnchp5Ww0kWpRTt0nnCbgcdHZOFG71jNvcbmJcoTide9+79Bm+fr1F6/C1a578w9fpwgWTLSd0yhHE8o9moBGzkqsQoyWjFCfV2TLubzlks9fR57j/ttZLP2imyQpdZDcaKyPVIvWchnQBninLcSUjK5/DaD8cm3VWYLg0GvXagFudidhdNRnfr7bFrTpp4X9Ts6iIUktRXNiu8tbfGKxsl1kJn9y5Ll+cPpRR7ayXCCRNUYbz0funTmOiY8ODdlbzn+vs/T5i1+c3NH+PCxuRd4UmUphhliBT47DDaZYi2q8HE78gYSmGUM/kKPcNWJeDSVoVLWxV210q9dkPCbGil8v68hiaVXlsbONsMa5pZjjsxW7gAORkIWIvPz5f61bkoxsNoqxClnNv5VtV/6Q2sPg5KvmGrGrBTC6mVZjPtM1pR8jS+GZ97kpqTz/vNe8Ov28UyrO10PNw5asfcO+7wmW1L0LhNZ3uKatCohYLP500O/Cxh8vKknWrI5d0aV/ZqnKuNj/t50cp9niVPU/b1TC19Zr73yu70MVIJPTbK472OFFALPbaq48FqwWiRdyEL3ii7DGtS2cNrPRybdDOWq2MdNBLKBtLy9487XFV3AOhuXh27btoADYyW3aYpeEazXQt5fafK6ztVdmu+k5983L+YMBe+Z9ioeGOfWxGwfs1+AoDKg6+u5P0q3/p7vJtd4pVPzV4TW9TmjmKUWrpmRTgd32g2qwGbFZ9KYE6cfAvVzW6+AJQAdXG0Vr3veFOV0XGjJ2k5U0lwlnHYitlRx+7n8nbvWPHZS/3q/BR1rbXQG1skGq3ZKHvUQu/M3J+F6cz7nAp9M3nduH7R3a9xZ+jlwrRnXroTlI7vPWgA8MXSbQA6E7peAJQWVB6JHHh1hL7h/EaZq+eqLsETGIw6OcHj3NcV1cCwVvLYzjdUNisBa2WfaslfaX/5F0bzVOi0O7GTTHjamfacNrgDb7ioXStILayXPD542CCp5BnWLGPU3XJRJzVg6IGQDRouDQas62+OXTctKJXszekU/egqgcd2LaPRjjlox3STVGz8nxNqJZ8nzWiolmq97LNbC/hXx+skpW0q97/CwSd/Yqn3CQ7fZ/vJ1/hb6U/wfW/tznxdJTATH9AyPp8uoWd6We40s3TilG6copVrnRNMMMQSlkPhAtZ6p4KJjgdcgs8uYk1Sy0ErYhsXsKaTMqwSsC7EkNy+m9CJB6TAeTY98BSNTrqQAabwdAiMZtIQCLZegw8henILXu+/nubtFuftn9yeELC+c7+OAt62HwLQ2fm2sXM0EPrzj1FpVXU2+J5hp2bYqYWuU0ecOuOmvHOHzXvRGe1a0D1N9coLE7AWFIHrPASeph27waY1kLlF8FE7Ji7vobMY1TmAcG/oumyJrePB+tXhljZdPqfv0q1exPqVoWumFZgv6q72MuMbzVYtpFb2qbdjGt2Edpw6F+KP+5cTpuIbTSXwOO4M17K+uVvlw8ctWnufX4nx0tY7P0uK5us7P8KPVoKZrjFKTbTlf5HN0J4HTN46aVLmW1gdRivKvuG4XXZtbU5ytVoRmbUctmK2VSEJ7mdYjdZiyrICjHbtxaqhRzOfJ/vHNBu5KZNzg5fZ81lDa0XJ81AqGVI7VHYukllFcnBr6PwMej2zZ5XcppmlO2HT4t0HDV7dKrN+dI24fI6ksjd2TrCA2RK4TclVZu+EcQqz02r+c5pZkrzf62D8o3r/cYqazNq8TISVSoJlBmckYFXOAHy95BOnlnbgsiu6cR82RgLWJTYVh+tX+6/fP+6wb+4SbY6bvJgpD4+y/3KaLa0CP5cLh76h0U1I0izvQZeKUdMziG80JV/TjIab2189V+MrHx1w/MnP8+qN/w/TeUI6sHidiyxl/Z2f49fSz/L21dnNlirh5HEY+jKxCi8+RitKvuYoK2OSFlmWAP6ZPUOzLCOzrqXNOXVMpn2yYB1waydvSv9CYTGKwNVl0eMhlVjRBidKUtpRnon5GH9XYZhyLu8cNPHd21jjIRtQvzN2fpxmzs1/xvt3omRMpWat5Z37dT7/+halx9+au+vFaYSBbEQ9bVxP2I9v810+cYZ3YIvdgPW8p9yhcYte3Xo4dt0yGdbBnUg78OC/d9TmTe4QbV4Zu2ZaPZa4WS5PNa+DDjyXwduuhmxXfTZKPhU/N2s6Rc8vPB1Cz4zVvFw9VyOz8G7ZNSWv3v3the9fu/3PCdv3+dn0B/nON2cLen0zvUZVpKfCy0CRYT3MnEGZ7rqs5zLz5EmkmcsGHbZizuk6aWmr155DK4XWCu+EnuXCYgSeq2+tTlCTBJ5ho+KzVfWphZ6YHD4jBJ7GGwk09tZD7tptgtbdsfNtnmGdlc6E7OqjRsRhK2Z/NyQ8eIfO9gQ58ILqQKOUOO6/hMjTnL4WG/qNxjfKrv/BE7XpzmneH7suXVD+kuU1Ar2fB/6/Pb5LhTbdCRnWSfWrpRnqdIXZKPmG7WpIydNYQGtN4GuqJY+tash2NWCr6rNR9lgreZR9g29cywz5BJ4evtGE/nD1+NU9J1r5V9FVUr9K9fZvLnz/zXd+lrpa45vV7+aN7crpFzC9RtXXSkxfhJcCo904OEzLAKi8tc1ZmS4lmZPAHLQi9kxjyCG4WMtOUyUJy6GUolby2aoEEyV/RmvKgXMb3qh4VAODKLM/Ppwb+vAH4BvNE71LtfNg7Px5e7F2ovF2c+/ed+P/89WH6CyeaLi0qBxYPCFeTiQ1lxN4miRKe6536yUXsD7EBay69XBM4pIuOBMn2XCdZPFcSDPLRus6+NDdmOAQPCEwXaR3lTAdM9DzLEqynmYf6yZpe0JPxyyzuba/2JQYvrfFolBoJf3DlsHPjdK07suCz9VC1kse7z7u0LzwXdTuLBaw6u4h69f/MX83+SE+9/b5mSZT30zf7Z1U0yoILyI6dwl+kpbAgMozrGelDS0yQIetmF1dJy31zdEKt3/ZzD1bAk+zVQ04aEaT10NK4RuDb9yzsBtntONx+ahw9pRDzVFn+LV6eJ6N6Pc5GDk3nTPDOtFw6UEDoxVvZ9MNlxbZzFWIaullRQLWHCcLTgckwS4aeRQFZF4Zr3mfeOSaZMEi1tHrigzr40aXy0xuaaMZD3KkVcbZMcm8y1r3EE+tJc5d05LMup6OKIxh1Eh6KmIEsji+0XkbDU2aN4RSSnH1XI33HzZofvr7WL/5q/iNO8S1i3Pde+ODX0RnEX8/+X7+rRnlwNPGoGZxu35BeN4oJMH30xAM6OisJcFu47dwCU7K+0O/C0wvoxFWh9GKrWrAYSs6sR2Kzp2FS77uBa6JBK5PjZJvcA4tfTrl89S6TXTUIAtqvdfTzM5soJWk2cRz37lf583dKtXj98i0T3djuMxNq8VcfkuekY2olxRZNecUA8dohQI28gzrcSchKZ/DTKhhtZa+E+IcJCODu3jG38tb2sSmQlI5P3TOJGmTyCKeLkqpXFpjqJV8dmpOJhxK8PnUCYwe2529eq7GR49bHF74HgCqC2RZt975B9z2L/Oe9xbffmnj1PM9PX3TSMyWhJcJrZwBYN06GX1PEnxG71dk9A7bMRv2eMhkTSmFRjKsTwujFVuVYKYNApW7qW9VAjbKPr5RUlLzFCh7htGPJ1tzG7q6MVzHmgFRks4kC+5EKaPxqrWWDx42uXquSnj4PtH6G6CH82OLyIE1UC1Jnu1lRVbaOXqgp5BSUA3d4D7uxMSVPbzWuM7fwkINlpN0cob1Qb3LVXWH1voVRjtyj04E0irj2cA3ms1qwFZFAteniW/0WE3U1b0qSWZ5x75GUt6ldvvLc90zOHyfyoOv8rPJ9/P5N7ZmyoKftGkkG0rCy0RRt1jHBayF6dIim7qzUBjDdNotyllzqIbVaGe6JO75Tw+dB63+rJsEytX3b1YC1ssegVm0q70wC8aM+53odRewth7dGDs/zizxDCrCTjwuB37UiGh0E97crRIcfTDRk2URlVkpkOzqy4yssAcoMjauf5DK+46lJJVzEwNWYC6dP/RlpYM/F/P5o0aXK/ouydak+tXhj0p6UD1bBF4/cJVm1meP72nMyM781XNO0vT+wyaNi99D9faX53J82Xz357Bo/m77u/nS5dPlwCdJ8oO8f5kgvCxo5STBDetMl3R8thnWzEK9E7Nhh3uwKtzYFDnw00drxWYloDRnbWLhLrxR8T49au0AACAASURBVCh7ZnS/XlgRo0mO0s7rAHSf3Bo7N8vsTMaikwLWDx81AbiyHRAeXScakQMr5pcDa6AqHTFeamRFNUARFBbzXC30XG/O8jlM59FEecQ8TmqQu68NXm/7E3qjfsSr6hHJ1tvjv9uIJDjw5aN7FilMKDbKviyYzhBPK3w1nGW9sFGiEhjef9ikefH78NsPCQ/eme2GWcrmu/+Qd9a+k4ds8YU3tk69pHTCGJTsqvCyYYyi7GuOexnWY+DsaliTLOOgFbOj3PukZZdhVSpXTMmG0ceCzo0LN8o+Wrn1lFGK0Ghqefu47WrAuVrIViVgLfR6wYtvDLWyx3bVZ63kEXq6d4+irZzC/eyLPf/cjJbRrJ17DYDsaDxgdXWsJ2dYrbU0JzgEX88D1k+GT1A2GfNk8YyaK+GiFdRKviRpXnJku2KAIijUWkFqqRYB6+4OXveILInQQTh0zbxOweP1qwPNt4+uA6cbLmkW610lPD0K06ZuktKJUuLUtTJSudGALKaWQ+V9Fn1tSDK3w6uV4spulfceNmh84XsBqN35Mt3t/ZNuBcDaR/+EoHmHv1f5ST5xvsZWJTj1mmkO3SfVtQrCi4pSUAkMXXwy5aHjhtucPaMUa2bhsBWxrYoMqwtYjTgEPxNMMi4cJcjbflVCiNOMTuzmS5Sm5PeNgjLrDLaK/goGlTsQyzw6D/7IJuv2xhqP7DqmcW/s3GiKmdIgze5k46wPHzU5vx6y0foIGO96Mal8quRpyoFHnGZ086yt0e4zLgdG5P2CZFgH8XRu1JAPjFro0ewm/Z3bzpOxa+btxTrqEDwoD15vOvvv0YB11HBp0d5VwtMn9AwblYDdtZC99RLn1kpsVALpzbkCfK3xvOFxcHWvxvVHTTrVV+lsvs36B7840712v/nTdKqv8r89+fRMcuDQU1MXxJJdFV5GFIpK6AGKyKthororeTmj90uzjMN2zDYuw5rk83RRPSMB6/OFbzRruZlhLfR6i1NLvkGpnDO8UXrM40OYjZIZnps8o3mkdii1xwPWzEL3FOOlVjeZOL4/fNTkzV1nuATQ3RyWBHsD6x8FbJT93rqoGnps10K2ayEblYBK6Ml6VwAkYB1CKbcI1QMBa6Ob9HZuVevR2DXLZlgHR/tmx8kyovU3hk4ZlZYG0ipDEPBMbpQ28NrVczW6ScbNJy0OP/HnqN7/CsHheyfep/ToG1Tv/Ut+Z+/HSdEzBazTxqDJ6/gE4WVDK6jkNWZdU0VH9V4J+VkYL2UZNDpJXxI8kGFVSEub5xWtnX/ITi2kEhhR/a4Qz2i8keDvyD/HWjTZoyVKshONlxrdcTlwJ065c9TuGS4l5V2ycLN3vCfnzgk9LYokYSYkYB3BMxqV/6tUQ+MkD8XObXM8YJ27hnWKQ3CaWc7F9zj2trFeeeic0Z1ikQMLglvYGK2G6pg+9co6AN+8c8Th238Wqwxb1/7+iffZ+ebPkPpV/vfuD7JV8blyrnri+dPMlvy8H6HsBgsvI0qpnilKEbAWUs4FzPRPJc0yGt2EbVXHKkMaujZUxXNBxuHzjdZqKOPqaUXxuPe0ohKYMTNK4WQ8rRjda22VzrOTjq9twcmCx5IsxbE4pTNBD/zR4xaZhTd3qoSH7431Xx01W5IEjDArMtpH8Mx4hrXYudXtx2PnZ8zuFJykGaPDuwhYD1oRr6kH1EuXxq4bLDQPjJbCc0HA7dKqETfQ8+sh52oh37x9TFLZo/76H2Pz3Z+DLJ54D691n433f57Hb/85/sWtiC9d3u6N/2mEIzJkjetxt1UNRIYovLRoBdVcDt/WVScJzo+dRYY1tS7Ds6frpKUtip3m0WeC8HxjBjKu59ZK7K2X2KmFrJV8ed7OidYKfyRAjKqvsEmdpNsaOz9JLVEy7gIM0IqSiRtR1x87w6U3z1UJjz4YK3HzR+TAkoARZkW+KSMYrXo1rNXQI04tLd85hurWeMAKcwSsk1yG84n8cSPiNfWQTu3VsXMGdxGl9lEQHCbfcR8cH0opvv3SOt+8fYS1loNP/Hn89kPWbv7axHvsfeWvoWzKl7f/TZpRyne9OYMcOM+uauVqb3bXQtYrvmR0hJcapRTVkhsbLVVBx42+JHjF72WtJbWWRidhzzR6LW0g96KQQEYQJjK2hlxzvVjrD8d7sVqgNaFtDUCjO/n1Dx81KfuGi0Ebr/NkzHBpMMPqSwJGmAOJfkbwte7JTmqhkzcdUcMqjW5Plk3Mk2Edpbj0Sb3JK+oxyfrrQ8e1GpYES8AqCH08rcdaPn3m0gaH7ZhbB23qr/8QSXl3oiy4evufs/2H/xePPvOX+JU7Fcq+4XOvn9zOxtN9Z8q1ku9cLCVQFQTALUYDo2mqCiY67rm6rjrBap1lLI1uwo6q930mGN50FgRhmNGMpr/lkiStR+MBK0Cnm46tcdNscjsbcAHr5d0KpeMPgGETUaOGN5NCac8ozIF8W0Zw9S8ahcuwAjSjjLS0PVESDLP3mZtUC1BcGh/cwlMZamvYcGkwWB0tVheElx3PKEaHxGdedbVs37h9BNrnyf6/zfpH/9hJg3N03OTSb/yndDeucPdzf4Xf/uAx3/nm9qkbQoHplwuIUYQgDKO1ouRrmlSGTZdWnGNNswybB6zbHJPmGValXKZXNpEEYTKBcUmZgto5F7DGB3cmnt9NM5oj5kqHre5ExaC1lus9h2AXsEYDGVZ/ZHM5lPpVYQ4k+pmAb9yEV2RYC6dgMy3DOmNrm0lua4Vpkz50/arMzptDxwcD1tDI4BaEQTztJEWD69ML6yV2qoELWIGHn/8PabzyPVz69b9K9fY/J3zyh7z6z/4D/MZtbv3g/8DX73c57iR871s7p75f4BtCo3ubWYIg9NG4tk5NW0In7d7rq86wppmTK9Y7CRv2qGeMWMyX4sUjCJPpmRXmVHZeA8AeTw5YMwuP6h3iXCHY6iY8bsQTx/SDepdmlHI5N1zKtE+01i9zG1RD+Xp6azhBmIQ81ifg5TtQvYC1UwSs431YYby36sRz0mysQH2wR11Yd3KMUUnwoAX5aM9JQXjZ8YzCU8M7xq6OdYNv5HWs1oTc+OH/ie7WW1z+5Z/k7Z/7YWq3foP7X/pPaJ//Ir/53iNCT/P5GeXAJemzKggTMdq1qGjYEJ12IXWZmdUHrBkWaHe6rNl6L8NaSIFFEiwIkzGjgWK4RpMyXmu8F2tBK864e9giSTMe1jtEE8rbYMBwadcZLkXrl0H3N3e9wXY2olAS5kQC1gmYPGPTC1ijhLS8jZkiCU4ze6oL4qQBntm+GUWtfZsUTVx9ZegcNfBgETmwIAxTuIGOtjf4zKUNDlsxtw9dlicL1rn+I3+H48t/grvf9V9w7S/8Do/+yF8mzSy/9f5jvnR5+1SJb2DU1JY2giC4spWyb2hkoXshdgvY1UuC3Z9+dADQq2Et/CckcyMIkzFK4Y9s6ByYHSqdhydeV++k3HzSmmq2BHD9kXMafmOnQjDiEKwZXsPKGBXmRXRtE/CNxihFNXQLU5dh3Z0asGZAnFqCEzKgk+pXBwvZN6O7PDZ7Q7tR0F+QS/2qIIyjlNst9oxisMzmM5f6dayvblUASKoXuPmv/a2h679195jDdjyTHNj3DGXJrgrCVIzWlH3DcdcFrCpqAtsrtwnOyIjTjFp6BB49l2CtFQqkhlUQpuAZPZQIAWgE51hvTS55K7BAM5oerILLsJ5fD6l4iuD4BvXX/3jvmBmpXx3txyoIpyHfmAkYrVB60HQpISlvY6IjSKOJ10xyAB4knphh7c/i55J7HIQXh45r+hIKGdyCMBlPO1nwIBc3S+ythXz53ZMn4V/6xl0qgeGLb5zczkYr564o2VVBmI7Rrob1OAuAImCd3ZhwVjLrNpJ31DEAaV7DqqWljSCcyqi5YLe8xzke0+hOdv6dlY8et3hjp4rfuofOIqL1vomoPzAuR92CBWEWJAqagm80vtGEnu7VsALoKXWskwLSgiyzEx3Vil3nVpRwifs0ypeGDhuRAwvCqRitMMZJAQuUUvzIpy/we7eOuPlkvCE6wP3jDr/53iN+5NsvnJo59Y0i9LTImAThBLTWlH3NceoC1r4keLVkmc0dguvAoCRYWtoIwmmERg/Nl1ntFfY44P5Re+o1pxGnGbcOWlzeqRAcOxPRaP1y77gZWMNKAkZYBPnWTMEfaF/RjNLeDq6aIpuYVoR+0rGi7vXo6JBz6pio9trQ8cHFsScDXBAm4kzS1HDECvyJT5/H04pf/uZkM4l/9Lu3UUrxY5+9OPH4IL7RYhIhCKeg8hrWwyTPsCZus2j1pkvWOQQrFxCnoSsB0JK5EYRTMUYPOeubjYsEKuXo0XTjpdO4+aRFZuGNnepAwNrPsA4GqaO90wVhFiQKmoLJTVxqJW8ow6qakwPWzE6XBU97Pc1n8e7D6+4em8MOwT2Lfsb7VwmC4HAmaYrRIbJVCfjet3b5p39wn048XHtT78T8k2/d5wfe3mW3Fp76HqFnxhquC4IwjEJRCbxewKpzSfDKa1ity7Cu0w9YFU66L/GqIJzMqFNwadup+9pPbi18z48eu82pIsOaaZ+46jaDRyXAkoARFkG+NVMoBnM18PIa1tyU5YTC9HhKP9Zprxe7ztlB3oN1e7gHazHAfaPFREIQpuDlRiu+Hs+A/snPXKAZpfzGO8MOiL/8jXt04ow/+/lXx64ZpXAGljEoCCejFC5gzSXBKj6bGtY0lwRvqCaZ9rGmhFKuFEAyrIJwMloNB6xmwwWsydHthe95/XETTysubZYJjq8T116FfE4eTLgoJAEjLIYErFPwRzKsaWkXAD3FKRgm17Faa6dmWItJ3M/lE6W9K0PHiweKyCcEYTpKKTcBT3Dp/tQr61zeqfAPv3abh/UuAF9+9xH/5+/c4AtvbPHmbvXU+weeGjOpEARhHKWc6VLb5i7BZ1TDmvYyrC2SYB3yZwDQ+1MQhMloPdyrOKmed6/XF5cEX3/c4rXtCp7RBMc3iDYu944NBce5IkoQ5kVWYVMwedamGhiaUUIarmOVQZ+YYR0PTNtxyrTq1mLTudS4RcuGeGt7vWOK/gNF5BOCcDK+GZcEgwtmf/KPXuZhvcu//3e/yt/41ff4737lD/nE+TX+6g/vz3RvLzdgEwThZLRSVAJDkxIAKnYmLqf1KZ+XLLM08hrWLK9fLdbAYowmCCdjRjKscWWPDIXffrDwPT963OTyTgWsJTj+iGitX7+qxUBUWAHyzZlCYDSofoYVpUlK2+jW9AxrmlmyATdgay2tE5osFzWsa53b3NN7DFbBK9Uf5J5MwIJwIs4pWI36LgHwpTe3+Zt/4fO8fb7Gr/z+Pb54eYv/6t/4NLXS6W2oFVD2jGRYBWEGtFJUQkOrF7CelUsw1LsxW7rVC1iNZFgFYSZGa1jRPg2zRa37YCH5fqOT8KgR8cZOFdN5gonrROt9TxZfDJeEFXD6iu0lxfM0RkEt8GhFKZm1pOUdTHt6htXiBu56xQdcdjU9YfAXh7aiezz2LlAeONabfJEMqyCchtEaT2m0hkkK/AsbJf7rP/3tvHO/wVt7tZmzMJ5WhL6MP0GYBYWTBEd4ZMpDR01SVusSbK11kuBOwoZukwbO2KUwCpcMqyCcjFKqV/ZW0A7PsRc94UkzmsmIcJDrj93GlDNcug70W9poJS0ahdUg35wTMFpRK3lYoNVNSUo7J9awArSTlON2jLWW5glNmLPM9nadd7OHHIcXho4XzxKZfAXhdIxWWMDT0x9pSin2L6zNNaY8o/AluyoIM6G1ouYbQJGYMirJM6wrjFgz6wLgRjdhk+ZwSxvJrgrCTHhGDTlqR9XznFcH3DvqzH2vnkPwbpWgPtzSZlAhOFjqJgjzIiuxE/CNphq6JHSj65yC9QkZ1oJ2nHLQishOmKML2YWOm2zQoFUeCVilflUQZqbnFLzi8eIbLU3OBWEOKoGbM2NTRhc1rCu8f2YtmbU0uyk1mqTBOuAyrLLBKwizMSYLXnuF8+qA+8fzB6wfPm5SCz12qgHB8UdYFNHaa733KRgsdROEeZGV2Al4WlMbDFhLO5j2k5mundbKpqAIZtMD1/cqql4aOi4OwYIwO1qrMav+VVDyjGwaCcIcVELXyiLSZXRewwqry7JaC1hodGJqtknWC1iV9GAVhBnRWg1lO72Ni+yqYx4eHs99rw8eNrhyropSiuDoOnH1Fazn6tgHVU8nKaAE4TTk23MCnmYow5qWdjDRMaTR0vcuMqzRwQ3389rFoeOF7bcMcEGYDU8rPOeVtrL7lfzx3q6CIEynMDPr5gGrta78ZVWq4CzLyIC408AjGZYES8QqCDMx6hSc1V4BoPXk7lz3STPL9UctruQt4oL6Rz05MIAZSLqIHFhYBomGTsAz/Qxrs5uQlLcBTnQKnpVit9ke3gRAbb42dLxoqyMOwYIwG8a4LOuq5kTPKLwJvV0FQZhOLXCmg11VQietXqC6iPvoJNLMSYxN5DJBhSRYK1kQC8KsFKqkgjjvxRrnqr9ZuXnQIkozru7VAFwP1jxgHV3DGlEMCksgAesJGK2o5fImJwneBTjVeGkWirlbHd8mtQp/s59hLQa57BgLwuwYrUCplW3yBNJ/VRDmphq6MdNReYY1f31VdaxpltFNUipZw/0crPfcgWW+FITZ0EqhBqa3uOJ8VFT9HulJBiwjfPDQyf6vnquhowZ++2EvYDVa9dSCxXsKwqLIauwEfKNZK/UzrGl5BwDdOt146TSK3eageYcHbLFRq/SOKZXbjstulCDMTCGfX1WQGXpGAlZBmJPAGAKjaasSKmn31UQrilhT8vZxuIVyGm6gcHOmrIcFYTaMHm5tk+QZ1h37mAf12Y2X3n/YIPQ0lzbLBHVX4jbJIbh4T0FYFFmNnYDWimpg0KpvugTM5BR8GkXAWmnf447dYbPs944ZcQgWhLnxTSGjX37cGKUIpZ2NIMyNUopyYGhRwsTNnsGgXVGONbMZjW7CunKtNLJwo5fFkQyOIMyG0Qqj+p4PabhFqgPOqwNuPGnNfJ/3Hza4vFPFaEVwXLS0uQxIwCqsFlmRnYBzHTXUQo9mNyXJM6xqJRlW9+da9x4P9Lmh4FR6sArC/ChVyOiXN17ypf+qICyE1lD2NU0b5pLgFWdYM6h3EjaKDGuw0XMHloBVEGZHa90fM0oRVy5wUT3m5pP2TNdn1vLBwyZX93LDpePrQD/DqgbWsBpZ0wrLISuyEyj6ulVDj0Y3IQvWybSPbi4fsNrcNnEzfsChd27oWC/DKoNbEObCNyqvm1nuPp5R0lJKEBZAK+eu7QLWvunS6lyCLc2BDGsarvc2qWTKFITZcXXf/Z+TtUu8bmbPsN4/7tCKUq7sFoZL10lKO2TBGjBcniP15cKySMB6Ajrv61bLA1aUIi3vrCjDajGdxwTEHAcXht83dwiW3ShBmI/C5GHZzZ7QaAKR5AvC3BSS4EZWQtmk1wZuVZJgm1knCe5lWNd6kmAlGVZBmBmjhnuxxrWLXNKPuTljwPp+z3Apz7AefdSTA49mVCUBIyyLrMhOoHDp7QWsQFLaXdp0yVqLteA3bgPQLg8HrIV5hEy+gjAfhbQ+8Bbvn6oVlAJPxp8gLIBSUPYNdRsAoCO3qF2VTXBiXcC6oZqkXhW0j87fVxCE2XGt4Po/x7VL7GSPuXNQn6kN1QcPGxiteGOn34O1O+AQPIhkWIVlkYD1BLQCjZMEN4uAtbyztOlSZt3c7Tdcg+Zu9eLQcU8r6ScnCAtQTJLLJEd9Iw7dgrAoCpdhPU5dwErsAtbVtbWxuUtwizQserAqqV8VhDkZbZ0Y1y6iydiIH/Oo3j31+vcfNHltq0zgaVTSwW/cGWppM4goBoVlkYD1BJyJix3KsKal7aX7sBY7V/rYNWjO1l/tvyduYK/C6VQQXjY8rdC4TOui61df66UytILwMlNkWI/TEOhnWGfJ2MxCZqHeTdg2LbJww72nloBVEOZFqeHMZ1y9BMBF9ejUOlZrLe8/anD1XF6/Wr+JwhJtXAbGJcAyPoVlkajoFLRRVENDq5sCkJR3MUtKgouJ2x7domN9grXd3rFCCizxqiDMj8p3jPUSdayhbwjEIVgQFqYSeBz2Mqxu4buKeNVa22trs6VbpIHLsColhkuCMC9Gj9awvgLARfX41ID17lGHw1bM/gVnsDTa0kaNDEipYRWWRVZlp2CUq2GN0owoyUhKO+ik1ZM5LYLN3J+6fpvbdpfNajD0fiB6f0FYlKIZ+iKmSRqoBt6KfyNBeHlQCkq+5jjNe4vHDffnCgLWzLr5s9FxLsFFwKqVQi3dzEoQXi6Kjd1i5MR5edqV8JCbBye3tvn6rSMAPnPJqRz6LW0uA8MBqpiICqtAAtZT8LSmGroFbDNKSMouG6pbi8uCbb7VHDTucMfusFnuB6zSg1UQlqNoR+MtELB60n9VEJZC4draHCZOEqyKDOsKItbCsLAVpazTJM0lwUYplAxbQZiLwlW/SLJmQY0k3ODt8PDUDOs3bh+xVfF5dasMuAxrGqyThpu9spwCrZSYGApLI4/4UzBaUQtdPVuzm5CUdwCWcgouJMGVzj3u2h22Kn7vWDGoxXRJEBajUCcYM79zaGg0oQSsgrAwWkHFN7QYrWFd/t6FYWErSqjZJmmw7vqvSg2rICyEHm1tU73E6+YJNx63SKcMWmstX791yHe8utlbswbH153hklJiuCScCSvTvu3v7yvgFvBu/tJvXbt27T/f39//UeCngAT4mWvXrv3Pq3rPp4HCSYIBmt2UtMiwLuEUnFlQaUQlesQddrg6ELAaJT1YBWEZimblRmmMgmSOhXIpNCLHF4QlUEpRCgxNW3I/92pYl49YM2tJraXVjSnbFs1wvbcpJfGqIMyPVrmyLy9Vi2sXeaX7Ee045b0HjV6N6iC3DtoctOKeHBhchrW9+xlggkOwDE5hBayyWOsq8NVr1679aPHC/v6+D/x14EtAE/jN/f39n7927dr9Fb7vmaI0rJVcQNnoJiTb28BykuDMWrzmPTSWR/oc4YAjaWHPL/IJQVgMo11vucy6fqxJlM50nVZQC/3TTxQEYSoKV8NaZFhV3MSyurY2WDDxMVpZ0mCjl1mVDKsgzE/feMmN0Lh2ic17v4MCvnrjYGLA+o3bef3qq3nAmsUE9VscXfnR3j0HERNRYRWs8mv0BeDS/v7+P9vf3/+l/f39feDbgPeuXbt2cO3atQj4MvADK3zPM0cB62W3iG12E5LS8pJga8Fvuh6s9fD82BtKdlUQlqMwXAq82a1YAqPEHVgQlkQpqPgebYoMa96HdRWS4CwjsxY/qgOQhhuSYRWEJdB6vBerFx3zHec0X71xMPGab9w6YqcacHHDjfGgcRtlk15Lm1GVkqiWhFWwUIZ1f3//3wX+45GX/zLw31y7du1n9/f3vw/4P/JzjgbOqQMbPEdopVgv9U2XrF8h8ypLSYJTa6k07wDQLr8ydGzUZlwQhPnxjaaTZPhaYzQk2enXlAOvJycWBGExlFKUfU2MR6p9dNwiYzWmS2kGnSRjDSczToON3oaUuAQLwvyMKvrimuvF+oMXIv7GNzManYRaqR8qWGv5xu0jPvf6QP3qUd7SZu11QHqwCmfDQgHrtWvXfhr46cHX9vf3K7g6Va5du/bl/f39i7gAdVBPsAYcLvarfjwopVjrZViLXqw76OaSGdaGC1gLG/ECoxTGyOAWhGXoORQqRTijLLiQ/guCsByVwJW5JKYyUMO6/H1TmzmHYOWytmm4PiAJXv7+gvCyoUdMkqKaW5N+cbNJZjf43VuHfN9bu73jN560OGzHfTkwENTzgHXj8kQPFglYhVWwynTCfwn8RwD7+/ufBW4C3wLe3t/f397f3w9wcuDfWuF7njlKQcUzeFrR7CYAJOVd1IKS4Cxz+8x+8y5HVCnX+vG8uB0Kwmrwjeo93AJPn5p78bXqLbIFQViOct7LONZl9EDP8mWNlzLrSnPWyZ2Hg77pksybgjA/WjPmEgzwZnBANTB89aNhWfCvXXuIAv7Iq5u914Kj62RemaS812uVM4iUuQmrYJUB638L/OD+/v6vA38N+IvXrl2Lgb8C/GNcoPoz165du73C9zxzlHLGS9XQoxnlAWtpZ2FJcJpP2F79NneykR6sxU6xqBIFYSmUUr0sq2+cLPgkqqFZqG+rIAjjlPPNn8j0A1bL8lnWNLO0opSNXobVSYKLzV5BEOZDK1fDWsx+SWUPqwxh8w6ffW2Tr9446G00HbYifuHrd/j+t3fZWy/17hEevU9342re0mb4/tL1QlgVK3MJvnbt2gHwpya8/gvAL6zqfZ42CpfxrIamJwlOSzvox99c6H5FD1ZTv8Mdu8PmQEubIlD1JGIVhKXxjSJK3UK55Hs0coXEJKqlVRqmC8LLTTVwc1iky/i5JBiWdwpOraUdpaz3aljXCZUSwyVBWJAiu2q0IsssaENcfYWgcZsvvLHFv3j/Mdcft3hzt8o/+MotoiTjL3zX60P3CA/epXXhS0P3KxDlg7AqJDI6BZ1nWGtBf8GblHcw7ccLbRcXlwTNO9y122yWBwJWle8Uy/gWhKUZzJiG3vRFrVGwJu1sBGFlVHw3njrKZViLDE22ZIrVWmhFCeuqiUWT+VWUUmK4JAgLUmRXB/Mkce0ifuMOX3xji9DT/NT/801+9Q8f8EvfuMcP7e/x6lalf33cJGjcorv5NgBmJOEi2VVhVUjAegpaKTTKSYIHa1izGNU9nvt+NrOopE0QH3HH7vRa5vTeS3qwCsJKCEy/dlVrTdmfXKO6XvJFDiwIK6QSurHWVSV00u5t1C4rCU6yjGaUskGTJFh3u8lKNnkFYRmUGvZOiWuX8Bt32KmF/Pc//h2slXz+2j95h9RafuI7h7OrGT2+MwAAIABJREFUweF7AHS2XMA6Ks2XrhfCqpBV2iko5QackwT3M6zAQnWsmbU9h+C7doeNkYBVdqMEYTVoPTyeyoEZq68JjGZnLUAQhNVRGJh1VMllWPPXl21tY7Miw9oiDdYBN0eL7FAQFme0nWJUu4TfvAtZzJVzNf76n/8sP/75V/l3vvcyFzZKQ9eWDt4FoLv5NgpXijOIVLgJq0IKt06hyHbWQo9m3hojKeUBa+sR6dbVue6XAX7eg/Uu4wGrxKuCsDpCT/da2milKA/UshoNGxWPki+PQUFYJVprQk/TKgJWawG1AtOlvK0NLbLQtdXQSpz1BWEZXOnbQMC6eRVlE4Ljj4g23yL0DH/xey9PvDY8fJdMB0Trr2MmKATFDE1YFbL3MQsKaqW+JDgtu55UeoHWNllm8Rt3AZdhHWzIrLQMbkFYJaURGXDJ19RCj42Sz2bZpya1q4KwcpRyY69lS+i4tbTZEuQt4Sy0o5QN3SILXEs4hZs7BUFYjFE1UievRy2ypycRHrxLtHkFtDfRjV82k4RVIY/5GdBKsRb6dJOMOM36kuAFAlZr+xnWZnh+aDBrpUTvLwgrxDOacGAWVUpRDgyBrzFajwW0giAsj8JtDrUI0UmLLMuA5UyXirY4zShhXbV7AatkWAVhOUy+9ixGUXfzLcAFo6dROninF+BOKmmTsSmsCglYZ0ABa3kmtNlNSErbwIIZVgt+4w6HeotKpTJ0bJKcQhCE5SgFk4PS0NNSMy4IZ4BSipJnaNgSymaQdNyBJVKtmbVYXB/WNdqkQa3Xf1VGsSAsjsp7sRbLT+tXiGqvER6+c/J1SRu/fpPu1vSAVeZYYVVIwDoDWinW8lrTZjcF7ZOGG4ubLjXv8kDtsl7uy4GdrbiSAnVBWDEl34z3hgMqodSuCsJZ4DKshmYWup/zXqzLSIMza8kstKKUKm0yf60XqMpGryAsTrHuHJwnu1tvn5phDQ/fR2F7LW1GS9oUErAKq0PCoxnQSrGeL257vVhLu+jmw7nuk2XOI9FvuB6sg4ZLxYQrkmBBWD3lkSzrWtnHl1Y2gnA2KCcJrlsXsOqoCSwpCbbuf+1uQpUWabDWmzdl2hSExSnWnYMJk87W24RHH0CWTL0uPMwdgvMMqzeScRE5sLBKZMU2C7npEjhLfYCkch7dvD/XbYrJ2m/e5VY2HLAW41wGuCCsnmrosVH28bWiGhipXRWEM8Q5chvqWd4yKnYB6zIuwda6DG0atTBkZEGt56ov86YgLI7O61cHx1F382102iWo35x6XXjwLlZ5ROuX0YxnUyW7KqwSCVhnQCtYLw1IgoG4eh6du/3OSmotOjrGxA0+irfYKPUDVqNUTxYsCMLqKfmG7VpIrSTOwIJw1pR8w3HqAtYiw2qXyrBaMmtRUR2A1K9BL2Bd7ncVhJeZog58MMAssqYnyYJLB+/S3biMNQHGTKhflY0kYYVIwDoDSqlevWkhCY4r5zHN+3NtGVtLr6XNHbvD+pAkWOpwBEEQhOcfpZzZ2VHqJMErybDm/9GxC1izYE0yrIKwItSI6WfPKfgE46Xw8N0TDZfEk0VYJfJ1mgGloFpyEsJmIQmunkelEarzZOb7WGvxG7eB8YDVKCXyCUEQBOG5R6Eo+5rj1M1xagU1rFmeYfXz4Dfza26RjdSwCsKymJFerFmwRlx9ZWovVh01CI6v0936BADehEEoG0nCKpGAdQa0UlR9D61cWxuAuHIBANO4N/N9ssz2erDetTtjpksinxAEQRCed5SCkmc4iPMa1mR5l+A0tXSSjApt93PgXIJdwCpzpyAsg1bgjbSI6mx9omesNErl3u+gbEbzwne56ydIgqXETVglErDOiNGaWugN1bAC6MbsxksZThKcoXnA5lDAigIln4YgCILwnKOVohwYjooa1rytzbIZ1mY3YZ38XkHNmcVIsCoIS+P6sKohtUJ3823Cg/fAZmPnV+/+FpkOaJ3/IjDuEAySYRVWi4RIM6CVwuKcRnttbfIM6zzGS9ZagsYt6sF5UsywS7BkWAVBEIQXANeHVdNmuA/rMinWxFpaUUqtyLD6tdz7YclfVhCEXnA52otVpx38+q2x86t3fov23uewXgmtJtewSpmbsEokYJ2BYvy6DGsRsJ4DcMZLM5Jl4Ndv8th3we563ioH3MAW+YQgCILwvKMUlH2PVi9gzU2XlrhnluUBq3IBaxasoVCSxRGEFVAMo8Egs5MbKpUOrg2dq6Njyo+/SfPid49d07sf4t4trBYJWGegmBBrodczXbImJC1to+eoYU2tJajf5IE5TzU0eMb98xcDW+ZdQRAE4XlHKUU50CR4ZNpHxS7ItLjAcxFSa2kPZFizvK2NTJuCsDzFOncwyOxsf4rMK7N241eHzq3e/ZeufvWV7wFc7eso0vlCWDUSsM6AzifFWqlfwwoQVy9gZpQEW2sh7uC37nObvWHDJcR0SRAEQXhxqPjOWT8x5V4NKyyeZc0ySzNKWFNtUh1iTZDXsK7glxWEl5yeJNj0wwLrVzi+/COsf/iLqDTqvV69+9tkJqS19zl3zaSWNjIwhRUjAesMFLtEawM1rABJ5Tx6Rklwmlm8vKXNR9k51kvDDsEuyyoDXBAEQXj+KfUC1goq6QesixgvWWv7kmBapH4NkCyOIKyKIugcDT4P3/rTeN0jajd/rfda9c5v0dr7AtYr5deMhxKSgBFWjQSsM6KUy7C2on7AGlfOz2y65OTArnD9w2S4pY3WuSxYBP+CIAjCC0AlcB4NsSn1TZeARYyCrQUstKKEmmqTBi5glQyrIKyGQkk42tqmcen7SUo7bL73DwEwnUNKj3+/V79aXDN2P1nPCitGAtYZUSjWSh6dOCNJncV3XD2Pbj6ELDnlaucK7tdvAPBuNBKwKhncgiAIwotDNXAZ1lgPS4IXybBm1mKh5xJs8x6sWokySRBWQdHSRqkRIzPtcXj1x1i78U/R3SN2vvm3UViar/xRd1hNNgwVh2Bh1UjAOiNawVru6tuM8l6slfMorAtaTyHLDZcyHfB+p8Z6eVgSLJOuIAiC8KJQDt18GekSekASvAiZdSqlVpSyrjtkwRrQL6cRBGF5enWsI5HB0Vt/Bp12ufqPfoy9r/2PHF3513v9V0fPLZAlrbBqJGCdEaUUtXwC7re2OQ/M1ou1CFi71YvEmRrOsCJ6f0EQBOHFoTBd6qoSOm4540EWlARTZFgTNlSLLKj1F8QydQrCSjBqch1r+9xn6W5cIajf5O53/xQ3/9jfBO3G9yQ5MIjyQVg93umnCOAyrIVRUhGwxlXXT9U073GaKDizFr9+k2blVYARSbBiQs26IAiCIDyXVEK3oO2oMip5iLUu62IXMl1y17k+rB0yvzbQhkMWxoKwCvSUgBWl+OiHfwaVxXS394cOTTJcmngPQVgSCZNmRClFrezi+8ZYhvV0p+Asg6Bxi6PwFWA4YFVaJMGCIAjCi0PFd/NlR4XopN1rZ7NIW5vMWqyl7xIcrEtiVRBWTBF7TqpJjTavjAWrAMZIhlV4OkjAOiNKwWaeYe0FrKUdrDKzSYKjBl7nCY99l5UdCljFml8QBEF4gSgFGgV0GJYEL9bWxgW67W5CxbaHJMGyMBaE1VCMJX9GyZ8G/AlFrArJsAqrRwLWGdFKsVkJAKh3cgGwNiSVPcwpvVittfjHNwF4YFzAul7qq7HFml8QBEF4kdBKEfqaFiE6afUzrAukWIsMaxy18UlIByTBMncKwmooEidaK2aJNyW7KjxNJGCdEYXrwwrQ6PQrVpPq6b1Y08z2WtrcZg9gyCVYKyW7UYIgCMILg1KKkm9cwJp2yVI3by5Uw5q5QFdFDQDnEpxPmTJzCsJqGEyszrIm9acaLq3qNxKEPhKwzohSitAzhJ6m3h0IWCvnMY17J16bWfDrtwC4ke0SeppS7qAoveQEQRCEFw0FlDxD04buhbwX6+IZVouJ6wAuw5ofk7lTEFbD4FiaJWA1U3raSAJGOAskYJ2RYhyvlzzqnbj3ely5cKrpUq8Hq1fmTlRlszJcv6rVbPILQRAEQXguUFDydS9g1UXAusCtLG4e9eIiw1rr9WCVeFUQVsNge0VvhoE1qX4VJps2CcKySMA6I8XYXSv5Q5LguHoe3T1ERc2p19rMBazR2mscdpKxljZu0pUBLgiCILwY6FwS3Eid94OKXMC6iOlSkmZ04owa+T38NWdWiMydgrAqtFY9ib06Jeg0J5SyiepBOAskYJ2RYgCul70hSXB3/U0AzMH7U69N8x6s0dprHLdjcQgWBEEQXnhKvqGe5ZLgxG3qLiYJhmaUUKMNQBrUUCgpYBWEFVOsdQOjTxxenjn9HoKwSiRgnZFi+K2X/L5LMNDdfAsA78k7U6/NspSgfoN47TUOW/FIhlUK1AVBEIQXC5VLguuZm+90VNSwzh+xplmW92B1AWvmO9MlJRGrIKyUYj2qtcKb4gIMJ7e+mbErjiDMhXytZqSfYfV7fVgBoo03scpgnrw79VpzeAMTN2lvfZKjdsxmORi6rxSoC4IgCC8SCkXZNxynLsOqFqxhzTJLZqEdp9RUkWFdy/0fVvkbC4IwmB0NptSownTDpdF7CMKqkIB1Rop6GZdhjXu7xNYEJBtv4D15b+q1/uM/AOBwfZ8ks6yXR3uwyuAWBEEQXhyUgrJvOEpzRVGcS4JxQeisZNZisbSjlLUiw5pLgmXuFITVMmiY5E0JShXgn5B9NTIuhTNAAtYZKRwJ18secWrpJlnvWLT5Ft6UDKu1lvDxt7Ao7oau3nWz0s+wyi6xIAiC8KKhcDWsR7npUtHWBubLsmaWoQxrqn2sCaWcRhDOgEHFn2/UxCDBN9M3izTiEiycDRKwzoOiV386JAveegtz8AFkydglaWYpPf4Doo03OYxdZnXYdEmJfEIQBEF4oVBKUfJ1b97Tcbt3bJ461sxasNDOa1hTr9a7v9SwCsJqGVyOKqXwvfExFvrTHZckWBXOCglY50Ar1ZPzjhovqSzGHH00dk2SWUpP/oDO9rdx2HL9W8UlWBAEQXiRUUA5GKhhTfqt3+ZQBAMuwO1lWIOaa2dTvIkgCCtjNIEy2mvV5O2qpiFyYOGskIB1DrRSPcOkeifuvd7ZyJ2CH487BWftI4L6DTo7n+Ko7a7ZrPQDVqOUND4XBEEQXiiUgrJnaJEHrNGgJHjeGlZo5TWsNlgDXCZHkjmCsFpGTUBHA9aSf3LYIBlW4ayQgHUOnOnS/9/evcbIkp/1Hf/+q/o2PZdz213WBmLHdlzYCTHGDqzBYKPYsvGLGBLxxooiDE5khAiXRIREoAgpEm9wkKPEOEImCQlREAGSgMB2AjFyvBgjwMJcUsg2rE2w2fU5M+fMTPdMX6ryoqp6uud+7bnU9yOt5kx39ZzS6NRW//p5/s+/qLBuTFVY+7deBLDvpOD4uWLg0tbdl00C6+y2NrYES5JulhACC62YMTFZ1CKMpgLrCSqseV6E1v5gzHLokbWWJ4VVu5Ok87X7/WgjjmiVA5YiOLS6CnsDr3ReDKwnEIUwGZi0PrWGddxaYbT45L6Dl6oJwVv3XsZaf0C3FU8+sQoUn0Z5gUuSbpqF8s3tqNElGp4usE4qrMMRK6FfTAgu31SbV6XzFUd7V4bf6rZYWWiw0IqPrKBagNFFMbCeRIDlTlEdnV7DCjC8s3dScJbltL/wh4xbKwwXn8+j/mjv+lWcdChJunk6reItxjhemOzDCicbupRn5RrWwZjlsEXWXJ4EVYcuSedvv9DZbsR02419jt71WlOFLoj/tE4gCkX/fjMOMy3BANu3X1y0BE/diIdZVgxcuvdyCIG13mBPO3DAtiZJ0s3TbRZvcIdxZ7Yl+AQ/I8tz8mpbG3qMZ1qCz+9cJRXO0vXn0CVdFAPrCYRQ7D213G6yvj2ceW7r1kuIBhtEG5+fPJaNxrQf/F+27n4ZAA/7Q247IViSVAPddtESPIxmW4KzE25rk5fb2ixStQQXz3n7lM7fafNq0THoRamLYWA9geo6XF5o7GkJnkwKXt1pCw5rf0o86rF19+VAEVhXZiqstgNLkm6mbqMIrIOoc+o1rDnFNjjD7S1aDG0Jli7YaSf9VnNZpItgYD2B6ua40mmysb0rsN75KwA0/+w3J4+1P/thAPqP/VWyPC8qrN3pCqsTgiVJN9NCueZtO+oQjXo7a1dPPHQpJww3AMp9WMuppd4+pXN32rZew6oukoH1BKpreGWfCuuo+wS9F76B7sffRxhskI+H3P34j9N77K+zde+vsbk9Ist3bWmDF7gk6WbqtooK63boEEb9SWX1JC3BeQ7kEA3Wi9c2F6dagr1/SufttNeV61d1kQysJ1BVQ1c6Tda3hnuev/+V3020tcrCx/8drT/6eVrrn+W5r/yH5cClg/Zgnc+5S5I0T1Vg3QpFS3AVU48bV7MsJy+3tWmMNoFiG7kAk/8kna/TTvq1AKOLdPSMak1MKqydvRVWgM3Hv4LtF3wDi7/944zbt+jffRnrf+mNQLF+FeD2Qmvq59kSLEm6mbqt4i1Gn+mW4HDsCmuW52R5EXCbww1oQtbc2YfVN8jS+TttpfQs04Wlo1hhPYEqXN5aaLI9yhiMspnnx1nO2t/4HqL+fZprn+a5V37XJOVWgfXW1BpWnBIsSbqh2s2IKECf9kyF9fiBtTh2OM5YyIuhTdWUYO+c0sU4bSHFAowukoH1BKpLsZr0u3vwUg48d+eVrH/J69i6+2U8euE3Tp6bBNbd+7B6fUuSbqAoBDrNmF7eIcoGZOPiPnjcJaxVhbU3GLNEH4Bxsxi65Ie90sWIonCqcHDaVmLpOGwJPoEoKmYTVqFzfWvI3cXWnuM+88afIORjiOLJY1VgXens/MqLbW286UqSbp4QAgvNmM28vE8OetBqF1vVZPmxWnpzcvqDMcuhCKxZa6nsTrrAE5dqLooCWXaCcd44dEkXy89DTmg2sO5dxwqQNzpkzcWZx9Z6Q5baDRrxzq88CsGef0nSjRSATjNmM28DzOzFepy24CzPyXPoDUYsTiqsy7YESxfspMWUgGtYdbEMrCcUQpgE1t0twYd52B9ye6oduLq4vb4lSTdSgE4zYqMMrGEmsB798mpLm/5wzFLokxGRNxYIOLBQukgnrZYGZ7LoghlYTyiEnTWsB1VY9/OwP5wZuFR9QuwFLkm6iQJFS/D6uGgJDsPNyXPHr7CWLcH0GTWXoNwOzlundHFOuh7VdmBdNAPrCUUhsNLZWcN6XA/7w30GLnmBS5JuphCKluD1rAysg5O1BOdZMcywPyyGLo0ai+XP9f4pXaSTdjDYDqyLZmA9oSjAYjsmCidrCV7rDSaVWShu5F7fkqSbrNOMeVRWWJmqsB5nUvA4z8nyvJgSHPrFljZU3UkXcrqSOPkex+6JrItmYD2hapz+cqd57Jbg4Tjj0daIe1MThZ0QLEm6yUKAhWbEw1HxYW04zdAloF9ua5O3loGdif2SLoYVVl01BtYTCuVvbKXT4NExW4JXNwcAM4E1BIdGSJJurmINa4OH472BNc+Ofn2WlWtYh8W2NnlreRJUvX9KF6dx0gqr16MumIH1hKpL8u5Si9XN4wXW+2Vgnd6zNcJNliVJN1cI0GlFrI3KKcGj41dY87K6mudlhTVskbeWdtau+v5YujBRFE4UEE4acKWTMjKdUPUp0mOLbVZ7g2O9pgqs95baMz/HT6QkSTdVABaaMavDRvH94PhTgsfZTmDtlRXWcWuZnbzq/VO6SMdt83UPVs2DgfWkymvy3lKLB5sD8mOsw7m/sQ3MVlidcihJuslCCCy0YnpU+7D2J88dtQ/ruLy3Tq9hzZpLk5jq7VO6WMcNoe56oXkwsJ7QpMK61GJ7lNEfjo98zYPNAY0osNJp7DzoPnKSpBusqrBmRIzj9kxL8FEf9lZPZ3lOf3vAIn2y1qL3TWlOjhtYbQfWPBhYT6lq7z3OOtb7mwPuLbVmPoGyJViSdJMVU4JjAMbxwuyUYIqhSgeZPJdDXrYSj5s7LcHeP6WLFR9z0Ipb2mgeDKwnNF1hBXhwjHWsDzYH3FtszzwWuQ+rJOkGK1qCi7cZo0aXaCqwwuHrWLM8nwxeigbrxWOtpcnaVfOqdLGOOxjUCqvmwcB6QtV1+XhZYX2weXRgvb8xmFm/ChBbYZUk3XDdZrEUZhQtEEabM88dto41y4q24ByIhxsAjJtLOCRYmo+GFVZdIQbWEwqTCmvVEnzMCuvS1MAlirUBXuSSpJtsoVW0BA/iBaJhf6YN+LAK6zjPJ8/HwyLoZlP7sDrkRbpY8TG3tnFCsObBwHpCUSgC562FJs04HNkS3BuM6A/HuyYEe7OVJN18i62iwjqIukTDDaYj6mFzl7KyHRigMSoqrFlzqZhIiktqpHk4qrASKDoGpYtmYD2hnU3LA3e6rSMrrPc3yj1YpwJrMXDpwk5RkqQrodsuKqxb0QLRcHOmqnrYpOAsKyqs4yynPS7Wvo6bS5NeYD/0lS7eUetTQ7AlWPNhYD2F6j55b7HFau/wKcH3y0C7u8Lq+lVJ0k3XLSusW1GXeLg5U1U9qCW4GraU57A1HLMcisBaDV3y7inNx1Htvsdd5yqdlf/STqEKm3cXW0cOXaqer7bBKV5vYJUk3Xzdcg3rVugQDTfJp5qCs2z/14yz8qgc+sMxS/SL45vLRYXV26c0F0dVT20H1rwYWE+hCpv3ltqsHrGG9f7GdnHsTIU1EPzNS5JuuCqw9lgo1rAeo8I6Lh/PyekPdgLruLVYzIAwsUpzcVSFNY69FjUfxqZTqC7Px5ZarG+NGI4P+JiYoiV4sRXTKTdPh+KXboVVknTTdRoxgTKwjrdhPJo8d3BL8M7X3mDMUugzijoQNQk4A0Kal6MqqL6X1bwYWE9hp8JaVE0PG7z0YHPvHqyRe7BKkmogRIFOM2aTTvH9YGPy3EH7sFZb3+R5VWHdYthYBMpJ/d4/pbloxNGh/QwNK6yaEwPrKVTtvJO9WA8ZvHR/YzCzfhXKlmCvcUnSDRcCdJoRG3kRWJkKrAdNCa4qrxnQG45YCn3GzcXy59kQLM3TQW3BEdCMjRGaD/+lnUJVHX2srLAeNnhpvworDl2SJNVAADrNmPVJYN2cPFdMAt4bWifDmHIma1iz5vLk53n7lOan1dg/KhhWNU/+azuF6l75+HJVYd0/sGZ5zoPeYGbgEhRrAlyDI0m66UIILDRj1rPiPhiGUxVW9m8LroYuZXleTAkOfbL2EoFiaqk1Vml+DgqmzQOCrHQR/Nd2CtX6mduLTQIHV1gf9oeMs3xPhTWOXMMqSbr5igprxKNxUWGNpiqsUGxhs1vVEpyXFdZl+uSt5UlMdcq+ND+tA9axWmHVPDXO8uIkSb4Z+JY0Td9Wfv8U8G5gBHwwTdMfTpIkAt4DvALYBt6Rpuknz3bal6vKmq0o5la3eWBgvb9R7cE6taUN5T6sllglSTddKFqCH/bLWQ6D9ZmnR1lGa9dn59XQpazahzX0oL08aW/y7inNTxQFGlFgOPXhUrF+1StR83Pqj0eSJHk38CO7fsZ7gbcBrwW+OkmSVwLfBHTSNH0N8APAu05/uldDVR2NQuDuYuvAluCdPVh3hi5VLU2SJN10gcBCK2ZtXNwHo2Fv5vnhaHZbuHGWM1nCmuf0BmOW2SJrLU9agZ0SLM3X7nWsjTjyOtRcnaWe/zTwHdU3SZKsAO00TT+VpmkOfAB4A0V4fT9AmqYfBV59hr/zSqjyZg7c67YOnBL82dVis/Mvvr0weSyEcOS+VpIk3QShrLCujso1rFNTggEGu/YxH5QBNs9zcop9WBdDn6y5OLn3egeV5quxq/3X6qrm7ciW4CRJvh343l0Pvz1N059JkuT1U4+tAI+mvl8HXlQ+/nDq8XGSJI00TUdcU9OfKt1davGpL2zue9wz9zd5bKnFUmfn1xw5IViSVCMLzZjVUVFhDbvWsGY5jMbZ5A1xVXHN8uJD4cF2jxajYkpwFVi9h0pz1W4U61irpmAHLmnejgysaZq+D3jfMX7WI2B56vtlYA3o7no8us5hFcqNyykrrItt1noDxlm+Z6+qZ+73eMHdxZnHgoFVklQTIRSBdW3UII8C0WiTbNcxw3FOIy7+vD0eAzuDl9guKrLj1tLO0CVvodJchRBoxhGDcUagGMQkzdO5/YtL0/QRMEiS5MVJkgTgTcCHgY8Ab4HJUKZPnNffeVmmNy7/4tsdshw+97A/c8w4y/nsao8X3OvOPB6FQOR1LkmqgUCg04zYGmZFW++ulmCAYdkWPBhlk21uqrwalUOasuaSQVW6RAutmOVOgzuLLbscNHfnHZ3eCfw08DHgd9M0/U3gF4CtJEmeBn6Mve3F11J1sSZPrgDwyWdnb8J/vtZnOM73BFYrrJKkugiheKOb5TBuLhINN8nz2a1sqsA6nFrPWlVYq4A7bi1P7rveQqX56zRjuq2G29noUpxpW5s0TT8EfGjq+48CT+06JqMIsjdKKHuCX/RYl2Yc+OSzG7w+eWLy/DMPikmIL7g32xJcVFi920qSbr5A0RIMMG50CcNNshymZ7aMspwsyycDl4DJYrnGcKrCOvmZ3kMlqU78mOSUqippsxHxlx9b5JPPzVZYn7m/SQC+9O7CzOMh+OmwJKkeQii2tQEYxovE+1RYAbZH2UyFtTqmMSqGNGVTa1j9zFeS6sXAekqT8foBXvLEEp96dnNnSATFwKXn3e7QriZJTF7ntjaSpHqIwk6FddjoEg032BtXoTcYzTye5TnjLKc9LgLruLk01RLsPVSS6sTAekrVDTMKgZc8vkR/OOZza1uT5z+zz4Tg4nWuYZUk1cNMhTXqEg17Mx/uVkbZ7GMZ0B+MWQrFfTVr7Qxd8g4qSfViYD2laGcxDS95Yglg0hYcr4akAAAaEUlEQVS8PRrz5w/7ewYuATRcwypJqpHFssK6HS0UFdb9Sqy75HlObzBiiWIC/7i5TChXr/qZryTVi4H1lCYVVgIvvLczeAngz1b7ZDm88N7eCmvsnjaSpBqpKqxbUZdouMm+PcG7ZDn0BmOWQ4+MiLyxAOUe6LYES1K9mJ5OqbpfRiHsDF4qA+sz96sJwbu2tKEY0iRJUl10m8WGBFthodjW5hiJNa8CKz2GzWXsB5ak+jI9nVK1DjWnuH++5IklPvXcBlme88z9TRpR4Hm3OjOvKdavzv9cJUm6LN12EVj7YYF41CPPsiNeUQxd6g1GrIQysFLcd93SRpLqx8B6StMdSdXgpd5gzH94+k/55U98nhc/vkRj1+bK7sEqSaqbbtkS3Avlh7iDjUOOLpUV1hV6jFsrgNvCSVJdGVhPafpT3ihEk8FLP/c7/4+XP2+F739zsvc1TgiWJNVMt1VUWDfzYl/ycERgzfOiabg/HLMSNsnat4rXYUewJNVR47JP4LqaLpRGEbzg3iJv/Yrn87InV/jal9zbdyhEZGCVJNVMp1l8Nr5JUWENg96hx2d5sdymqrDm7RcWrwvBe6gk1ZCB9ZSmb5pRFIijwN//uhcd+poQgu1MkqRaiaNAuxGxkZeBdbh+6PHVPq3VGlY6twgUH/p6D5Wk+rEl+JSiaKcp+Li/xJjixi1JUl0EAp1mzHrWLh4YbB56/E5gHbPCJlmrbAl26JIk1ZKB9Qyq2+ZxP/GNbGeSJNVMiGChGfGoDKzREYG1zKtsbw9YDNuM2ys7MdVbqCTVjoH1DKp1qsfNoKFsHZYkqS4C0GnGPMqqluCjhy4BsPUIoJgSXG3D6i1UkmrHwHoGVfYs9oY7xvGGVUlSzYQQWGjFrI1bxfdHTgkuX7f9EICstTLpTrJLSZLqx8B6BtGkwhqO1abUjL3RSpLqJQCLrQYPRkVLcBj2yLL8wOOrCms8KCusUy3B3kUlqX4MrGdQBdY4BI5TPG1G/rolSTUTYLHdYHVQbEwQDzcmg5X2k5VfG8OqJfgWJlZJqi8T1FmUN86co9uUAtCI/XVLkuolEOi2YjaGOVljgWi4yfiQwFpVWFvl9jdZa3kqr5pYJaluTFBnMD1AKQ6H/yqjY1ZhJUm6SUKAxXZMbzBm3FwiGm5ySF6l6hZuj4rAOp5aw+oSVkmqHwPrGUzfOI8qnkbBoUuSpHpabDXoD8ZkzW4RWA9dw1pUWdvjYjjTuO2UYEmqMwPrGUy3AR8VRqPI6YaSpPqJQmCx1SAHRo1FouHGoS3BWZ6zNcxYDj1yAllzyZZgSaoxA+sZzATWI+6hUXAPVklS/VQtwQDDuEs07B3aEpzn0BuMWKHHdrwEIdoJrN5GJal2DKxnMLOGNTr8c984CjQMrJKkmglAtwysg6hLfEiFdZzl5EBvMGYlbDJoLgNT28jN44QlSVeKgfUMoqntV4/aizWOQ3GMJEk1EkJgsV1sabMddw8dujQu17b2BmNW6DFsLJc/pPji0hpJqh8D6xmEECbtSXE4vMLadEsbSVINBYqhSwDb0QLRcIPsgKFL1eP9wZiV0GPUWil/RnGPNa9KUv2Yos6o+rS32Iv14ONaBlZJUg2FAMtlhbVPp1jDys5+q9OyvKqwjlhhk6w1W2G1U0mS6scUdUbT7UlxdPCv08AqSaqjoiW4WMPaCwtlS3A+af+dNmkJHo5ZDn3yzq3yZ7h+VZLqyhR1RnGYHby0nwhoxN5qJUn1tFRWWDdZIJATjXrs1xU8zqfXsG5CFVgxsUpSXRlYzyhM/QYPCqwhgmYcz+mMJEm6WqqhSxv5AgDRYH3S/jsty4qv/e1tVkKfMFVhdeCSJNWTgfWM4mPsxdpwD1ZJUo21GzHNOLCWLwIQbz/cs4Y1z/NJiM231osHy8AaHTHYUJJ0cxlYzyjMBNb9b6hOCJYk1VkcoNtqsMpS8f322p5JwdUerABsPSwea1ctwQ5ckqS6Mkmd0fScpXDAb7PV8NcsSaqvEEV0WzEPxlWFdY1s1zGjqQAbth8BMG6tTLazMa5KUj2ZpM5oZkowYd894poOXJIk1VgAuq2Y56YDa7a3JbgSbxcV1qzahzUE17BKUk0ZWM9oeg0rIey7jrVhS7AkqcZCqAJrMXQp3l5j98yl6W1uGsNiDeu4tbzzQbB5VZJqySR1RlE0u2519zTggIFVklRvgVC0BA9a5KFBY3ttsoVNZXpqcHMSWFeo7rIWWCWpnkxS52C6TanVmL2jhgAtA6skqc7KoUu9Yca4c5t4a78K686fW6MysLZXJkHVvCpJ9WSSOgfTbcDNOGI6nzaiyAqrJKnWQij2Yu0Pxozat4m3V8mZbQOeXtPaLgNr1lyeBFWnBEtSPZmkzsH0HqshBFrRTltwtxUduD+rJEl1EIDFVoPeYMy4fYt4ew2AUVaUVbMsn0wNHmc5nfEGW9EiRPFOhdV7qSTVkoH1HOz+1LfVLH6tjSjQbsZ+KixJqrUoBBbbMYNxxqh1ezIFeGNrxGCUzWxp0xuMWAk9thvLAFMtwd5LJamODKznYHcFtRkX04IXWw0akb9iSVLNlWtYAbabK5MKa5bDen/IYDSeHLq+NWKFTQbNMrA6dEmSas00dQ6iaPegpcBCK6bVCDPtwpIk1VEgsNgqlstsxTstwQAZ0B/uTFxa3yoqrOPmbIVVklRPBtZzsN9m5t1mDCHQMLBKkmquGroEsNlYIR5uEsaDfY/d2B6xTI+svVK8dupnSJLqx8B6DvYLrNWdNY69w0qS1G0XFdZeVFROo3Id627rW0NuhU3y9i1gZ07EvvdaSdKNZ2A9B43o4FEQrmGVJNVdCLBUVljXy8DamGoLnrbeH3KXdVh8bPJacB9WSaor09Q5iKKw7ye/EbiGVZJUe9NrWB+xBDCzjnXaoL9ON2wTlp6YvBbch1WS6srAek6a+7T+GlYlSZpdw/rwiMAaNp8FIOs+Xj5QVFe9o0pSPRlYz0kz3vurtB1YkqQibFYV1tV8ETg4sDZ6zwEw6pYV1jKp7p7IL0mqBxPVOdlvuFLDgUuSJBGFwEI7JgAPsiqw7j90qb1dBNbhQlFhDRw8J0KSdPMZWM9Jc59qqp8GS5JUVEkbIWKhFbM27pCHiHhrdd9jO9sPABgtTA1d8nYqSbVlYD0nURSIdw2EcA9WSZKKgUkhQLcVsznMGbdvH9gSvDi4T0bEuHMXKKqz1lglqb4MrOdoevBSBDT2WdcqSVIdBaDbatAbjA4NrEvjB6zHtyCKJ69zQLAk1ZeJ6hxNB1TbgSVJ2hFCYKEZ0xuMGbdv77sPa57n3B6vstm8V7yGIqzut3WcJKkeDKznaHobm/3WtEqSVFdRCHRbO4F1vwprfzjmsbBGrzUdWG0IlqQ6M1Wdo2YcEYC4nIYoSZIKUbmGtT8YM27f2jewrm+NeCw8YtAuBi5VSdUCqyTVV+OyT+AmiaPAQitmqd0geHeVJGkihEC3XQTWUfv2vtvarPeHPM4a97uPE8Nk2JI1VkmqLyus52y50zSsSpK0SwhhdujS4BFko5ljtjdWaYcRWbmlTbXSJvhuRZJqy1uAJEm6cFVLcK9sCQaK0DolW/988YflLyq+hpkvkqQaMrBKkqQLFwgsthrkQL+xAkC8tWsd6+ZzxePLT5avKV9r55Ik1ZaBVZIkXbwAy51idMZ6KAPrrsFL8eazADRWigprtZ2NcVWS6svAKkmSLlwIcG+xBcCDbBHYG1ibW18ojt3VEmxilaT6MrBKkqQLF4C7i20AvjDuAtDYXp05prX1BUbEkzWuVU6NbAmWpNoysEqSpAsXhcDdssL67LAIrPHWbGDtDu6zGm5PxgIbVCVJBlZJknTxAtxdbALwuUGHcXOR1vpnZg5ZGj1gLboz/ZLiq7lVkmrLwCpJki5cINBqxKx0Gqz2h2zfeSntB388c8zK6AEbjbvTL5q8VpJUTwZWSZJ04UIAAtzutljdHLJ1J6GzNhtY7+RrbLbuTr2mCKqReVWSasvAKkmSLlwIRcH0TrfJam/A9p2X0uh/gbhfTAbOszF38odstR/b57UmVkmqKwOrJEm6cFEoGnvvLLZY7Q3YuvNSADqrRZV1vPmAZhgz7OwE1jBpCZYk1ZWBVZIkXbiiIzhwp9tirTecBNb2gxSAwaO/AGC08PjkNVXItcAqSfVlYJUkSRcuhAAh53a3yfYoY71xj1H71qTCmq8+U3xdemLnNdOvlSTVkoFVkiRduCgU/93pFnuxrvZHbN9JaK8WFda7f/ZrbOZt+o+/Yuo1weqqJNWcgVWSJF24EAKBwN1usRfr6uagmBS8+seQjfjiz/8vfi17Jbdv3SqOpxrUZGKVpDozsEqSpLkI0U6Fda1X7MUaDx5x69O/SHe4yvuzr+aJ5fbO8VZYJan2DKySJGkuIgJ3FsuW4N6ArbsJAE/8zrvZDm1+v/tVNOPirclk/eplnKgk6cowsEqSpLkIAZY7DaKwU2EFaD/8NB+LX8XtW7enjg0zXyVJ9WRglSRJcxGHiCgK3O4We7GOO3cZltvY/I/RV/G8WwuTY6ucGplXJanWDKySJGkuolC0+N7pNlntDQDYvvNSsrjNL299OU/e6kyOrQKrQ5ckqd4al30CkiSpHuKo+Jy8qLAOAXjuld/F6uc+zebTCzxvOrBWX/1oXZJqzduAJEmaj1BUTu90m6xuFhXWzed/DR+79WaA2cA6qbBKkursTBXWJEm+GfiWNE3fNvX9jwKfLQ/558CHgfcArwC2gXekafrJs/y9kiTp+gmTluAWa/0hWZ4ThcDnH24B7GoJLqJq5NAlSaq1UwfWJEneDbwJ+PjUw68Cvj9N05+bOu5vA500TV+TJMlTwLuAt57275UkSddTFT7vLLYYZzkbWyNWFpp87mGfWwtNuq2dtyVhzx8kSXV0lpbgp4Hv2PXYq4BvS5Lkw0mSvCtJkgbwWuD9AGmafhR49Rn+TkmSdE0Fisrp7YUmwGTw0ucebvHkSmfPscVXE6sk1dmRFdYkSb4d+N5dD789TdOfSZLk9bse/5/AfwP+BHgv8E5gBXg4dcw4SZJGmqajU5+1JEm6dkIIRCFwZ7EFwGpvyAvuwV882uLLnlyZOTaa7MM699OUJF0hRwbWNE3fB7zvmD/vJ9M0XQNIkuS/A3+HIqwuTx0TGVYlSaqfYg1r4E53p8I6HGc8t77NNySdXQfvvEaSVF/nNiU4SZIA/F6SJF9SPvQ3gd8GPgK8pTzmKeAT5/V3SpKk6yUEuFtWWD/17AbPrm+T5bMTgmGnFdihS5JUb+e2D2uapnmSJO8Afj5Jkj7wh8BPAGPgjUmSPE3xeenbz+vvlCRJ10cUihjabTV4ffI4v/h7n+N2twivT946oMI631OUJF0xZwqsaZp+CPjQ1PcfBD64z6HvPMvfI0mSrr8Qdlp8/8HXvYiPf2aNn/qNPwXgebcWZo6N3NZGksQ5tgRLkiQdJgphsr/qykKT73j9i8lyaDeiybrWnWOrqcKXcKKSpCvj3FqCJUmSDrM7gH7tSx7jG5LHWesPJ0F2cuxkSrCJVZLqzMAqSZLmIoS9rV3f98aX7j2OssJqVpWk2jOwSpKkuQghTKb/Tj+257gDjpUk1Y9rWCVJ0tyEKD/GQcWXyLwqSbVnYJUkSXNznKm/ketXJUklA6skSZqbavrvYYJ7sEqSSgZWSZI0N1F09FuPaNISbGSVpLozsEqSpLk5zhuPYIlVklQysEqSpLk5TtW0OsKhS5IkA6skSZqb6BiLWB26JEmqGFglSdLcnGjoknlVkmrPwCpJkuYmiqIjg2hVWQ0uYpWk2jOwSpKkuQnHqLBOHytJqjcDqyRJmptAOHJt6s4a1nmckSTpKjOwSpKkuQnh6EnB0WRXGxOrJNWdgVWSJM1NCBAdEUSrQOu2NpIkA6skSZqboiX4sOfLrW9wWxtJkoFVkiTNURR2Aul+wtRXK6ySJAOrJEmamzg6osI69aQVVkmSgVWSJM1NCIH4kOd3Bi5JkmRglSRJc3ZoS3AVWK2uSpIwsEqSpDmLjxVY53QykqQrzcAqSZLmKo4O3mE1TLa0MbFKkgyskiRpzg4Lo9UbE+OqJAkMrJIkac4OawmuwqwFVkkSGFglSdKcxVE4uITq0CVJ0hQDqyRJmqvjrGE1r0qSwMAqSZLmLI6iAwNp9bhDlyRJYGCVJElzdlhH8GQN6/xOR5J0hRlYJUnSXEUhHLhGdWfokpFVkmRglSRJcxZFgcYBgbR61LwqSQIDqyRJugT7VVADRZgF17BKkgoGVkmSNHeNffZinQ6ph2zVKkmqEQOrJEmau0a8N5HGU+9KrLBKksDAKkmSLkG0Twk1jnYmBO/3vCSpfgyskiRp7hr75NF4MiF4zicjSbqyDKySJGnuwj4twaGsqsYmVklSycAqSZLmrhH2vgVpOCFYkrSLgVWSJM1dHAWmY2lgZw2rgVWSVDGwSpKkudsdSqMQJnuz7lN8lSTVlLcESZI0d7v3YXVLG0nSfgyskiRp7hpxNDMNeHobGwOrJKliYJUkSXMXwmwwbUz92bwqSaoYWCVJ0tyFEJje2SZYYZUk7cPAKkmSLkW7FU/+HM8E1ss4G0nSVWRglSRJl6LbjIlCsaVNNYRpensbSZIMrJIk6VLEUUS3GRMCO1vasPNnSZIal30CkiSpnuIo0GnFDPNs8phhVZI0zQqrJEm6FHEUCCHQbe58fm43sCRpmoFVkiRdimqtaiPeeTvihGBJ0jQDqyRJuhT7hdPIEqskaYqBVZIkXYrGPuHUvCpJmmZglSRJlyKKwp43IrYES5KmGVglSdKl2d0C7JRgSdI0A6skSbo0u9uCI9+ZSJKmeFuQJEmXJt4dWK2wSpKmGFglSdKl2d0SbGCVJE0zsEqSpEszXWENOCVYkjTLwCpJki5NPFVRbUTBoUuSpBkGVkmSdGniKFBF1E4rvtRzkSRdPQZWSZJ0aUIIRKHYj3WhaWCVJM1qXPYJSJKkemtEgSiKbAeWJO1hhVWSJF2qKAp0rK5KkvZhYJUkSZeq1YhoNXxLIknay7uDJEm6VFZXJUkHMbBKkiRJkq4kA6skSZIk6UoysEqSJEmSriQDqyRJkiTpSjKwSpIkSZKuJAOrJEmSJOlKMrBKkiRJkq4kA6skSZIk6UoysEqSJEmSriQDqyRJkiTpSjKwSpIkSZKuJAOrJEmSJOlKMrBKkiRJkq6kxmlelCTJLeA/AStAC/i+NE1/I0mSp4B3AyPgg2ma/nCSJBHwHuAVwDbwjjRNP3kuZy9JkiRJurFOW2H9PuBX0zR9HfCtwL8pH38v8DbgtcBXJ0nySuCbgE6apq8BfgB415nOWJIkSZJUC6eqsAI/RlEtrX7GVpIkK0A7TdNPASRJ8gHgDcDzgPcDpGn60SRJXn22U5YkSZIk1cGRgTVJkm8HvnfXw29P0/S3kiR5kqI1+Hso2oMfTR2zDryofPzh1OPjJEkaaZqOznTmkiRJkqQb7cjAmqbp+4D37X48SZIvB/4L8I/TNP31ssK6PHXIMrAGdHc9HhlWJUmSJElHOdUa1iRJXg78LPC2NE1/BSBN00fAIEmSFydJEoA3AR8GPgK8pXzdU8AnzuPEJUmSJEk322nXsP4I0AHenSQJwMM0Td8KvBP4aSCmmBL8m0mS/BbwxiRJngYC8Pazn7YkSZIk6aY7VWAtw+l+j38UeGrXYxlFkJUkSZIk6dhOW2G9UH/wB3/whSRJnrns85Au2Qsu+wQO4jUqAV6j0lV3Ja9Rr09p4ljXaMjz/KJPRJIkSZKkEzvV0CVJkiRJki6agVWSJEmSdCUZWCVJkiRJV5KBVZIkSZJ0JRlYJUmSJElX0pXc1uYgSZJEwHuAVwDbwDvSNP3k5Z7V4ZIkaQI/CbwQaAP/AvhD4N8DOfD7wHeW+9VeSUmSPAH8NvBGYMT1Ovd/CvwtoEXxb+fXuUbnf914jV4Or1Edl9fo5fAa1XF5jV4Or9Gr7bpVWL8J6KRp+hrgB4B3XfL5HMffBe6nafp1wJuBfw38S+AHy8cC8NZLPL9Dlf8T+rdAv3zoOp3764GvAb4WeB3wpVyj87+mvEbnzGtUJ+Q1Omdeozohr9E58xq9+q5bYH0t8H6ANE0/Crz6ck/nWH4W+KHyz4HiU5tXUXz6AfArwBsu4byO60eB9wJ/Xn5/nc79TcAngF8AfhH4Ja7X+V9HXqPz5zWqk/AanT+vUZ2E1+j8eY1ecdctsK4AD6e+HydJcqXbmtM03UjTdD1JkmXgvwI/CIQ0TfPykHXg1qWd4CGSJPlW4Lk0TT8w9fC1OPfSYxT/o/8W4J3ATwPRNTr/68hrdI68RnUKXqNz5DWqU/AanSOv0evhugXWR8Dy1PdRmqajyzqZ40qS5EuB/w38xzRN/zMw3Ue+DKxdyokd7duANyZJ8iHgK4CfAp6Yev4qnzvAfeADaZoO0jRNgS1mL9qrfv7XkdfofHmN6qS8RufLa1Qn5TU6X16j18B1C6wfAd4CkCTJUxQl8CstSZIvAj4I/JM0TX+yfPh3y55zgG8EPnwZ53aUNE2/Pk3T16Vp+nrg48DfA37lOpx76f8Ab06SJCRJ8nxgEfjVa3T+15HX6Bx5jeoUvEbnyGtUp+A1Okdeo9fDlW4x2McvUHwK8jRFj/zbL/l8juOfAXeAH0qSpOrv/27gXyVJ0gL+iKJ94rr4R8BPXIdzT9P0l5Ik+XrgYxQfznwn8Cdck/O/prxGL5/XqA7jNXr5vEZ1GK/Ry+c1esWEPM+PPkqSJEmSpDm7bi3BkiRJkqSaMLBKkiRJkq4kA6skSZIk6UoysEqSJEmSriQDqyRJkiTpSjKwSpIkSZKuJAOrJEmSJOlKMrBKkiRJkq6k/w9pAYSy1fseNQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(16, 9))\n", - "gs = gridspec.GridSpec(1, 1)\n", - "\n", - "wf3 = cmp.load_waveforms('1833-050619-3', 143, 6)\n", - "wf4 = cmp.load_waveforms('1833-060619-1', 170, 6)\n", - "axs = plot_waveform(wf3, fig, gs[0])\n", - "plot_waveform(wf4, fig, gs[0], axs=axs)" - ] - }, - { - "cell_type": "code", - "execution_count": 278, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.04522270245629878" - ] - }, - "execution_count": 278, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d01 = dissimilarity(wf3.mean(), wf4.mean())\n", - "d01" - ] - }, - { - "cell_type": "code", - "execution_count": 277, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.05528103485716783" - ] - }, - "execution_count": 277, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d11 = dissimilarity_weighted(wf3, wf4)\n", - "d11" - ] - }, - { - "cell_type": "code", - "execution_count": 236, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "5.45607023438829" - ] - }, - "execution_count": 236, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d00 / d01" - ] - }, - { - "cell_type": "code", - "execution_count": 237, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.1824085223080825" - ] - }, - "execution_count": 237, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d10 / d11" - ] - }, - { - "cell_type": "code", - "execution_count": 239, - "metadata": {}, - "outputs": [], - "source": [ - "t = abs(actions['1833-260619-2'].datetime - actions['1833-050619-3'].datetime)" - ] - }, - { - "cell_type": "code", - "execution_count": 240, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 240, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "t > timedelta(15)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Store results in Expipe action" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "identify_neurons.data['sessions'] = 'sessions.csv'\n", - "identify_neurons.data['units'] = 'units.csv'" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "sessions.to_csv(identify_neurons.data_path('sessions'), index=False)\n", - "units.to_csv(identify_neurons.data_path('units'), index=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [], - "source": [ - "store_notebook(\n", - " identify_neurons, \"00-identify-neurons.ipynb\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import expipe\n", + "import pathlib\n", + "import numpy as np\n", + "import septum_mec.analysis.data_processing as dp\n", + "from septum_mec.analysis.registration import store_notebook\n", + "import re\n", + "import joblib\n", + "import multiprocessing\n", + "import shutil\n", + "import psutil\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import quantities as pq\n", + "import exdir\n", + "from distutils.dir_util import copy_tree\n", + "from datetime import timedelta\n", + "from tqdm import tqdm_notebook as tqdm\n", + "from septum_mec.analysis.trackunitmulticomparison import TrackMultipleSessions\n", + "import networkx as nx\n", + "from nxpd import draw\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "project_path = dp.project_path()\n", + "\n", + "project = expipe.get_project(project_path)\n", + "actions = project.actions" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "output = pathlib.Path('output/identify_neurons')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "identify_neurons = project.require_action('identify-neurons')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'users': ['Mikkel Lepperød'],\n", + " 'tags': ['11hz', 'stim-ms', 'stim i', 'septum', 'open-ephys'],\n", + " 'datetime': '2019-07-01T12:54:49',\n", + " 'type': 'Recording',\n", + " 'registered': '2019-07-02T14:53:28',\n", + " 'data': {'main': 'main.exdir'},\n", + " 'location': 'IMB',\n", + " 'entities': ['1833']}" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "actions['1833-010719-2'].attributes" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "data_loader = dp.Data()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "skip_actions = [\n", + " '1849-270219-1', \n", + " '1849-260219-2', \n", + " '1834-250219-1',\n", + " '1834-230219-1'\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "sessions = []\n", + "for action in actions.values():\n", + " if action.id in skip_actions:\n", + " continue\n", + " if action.type != 'Recording':\n", + " continue\n", + " action_data_path = pathlib.Path(action.data_path('main'))\n", + " processing = exdir.File(action_data_path)['processing']\n", + "\n", + " if not 'electrophysiology' in processing:\n", + " continue\n", + " elphys = processing['electrophysiology']\n", + " if 'spikesorting' not in elphys:\n", + " continue\n", + " tags = [t.lower() for t in action.tags]\n", + " \n", + " freq = np.nan\n", + " stimulated = False\n", + " baseline = False\n", + " is_i = False\n", + " is_ii = False\n", + " tag = None\n", + " stim_location = None\n", + " \n", + " stim_times = data_loader.stim_times(action.id)\n", + " if stim_times is not None:\n", + " stimulated = True\n", + " freq = round(1 / np.median(np.diff(stim_times)))\n", + " \n", + " \n", + " \n", + " tag_i = [i for i, t in enumerate(tags) if 'baseline ' in t or 'stim ' in t]\n", + " if len(tag_i) == 1:\n", + " tag = tags[tag_i[0]]\n", + " what, how = tag.split(' ')\n", + " if what == 'stim':\n", + " where = [t for t in tags if 'stim-' in t]\n", + " assert len(where) == 1\n", + " stim_location = where[0].split('-')[-1]\n", + " assert stimulated\n", + " elif what == 'baseline':\n", + " baseline = True\n", + " assert not stimulated\n", + " else:\n", + " raise Exception(f'Found {tag}, what to do?')\n", + " if how == 'i':\n", + " is_i = True\n", + " elif how == 'ii':\n", + " is_ii = True\n", + " else:\n", + " raise Exception(f'Found {tag}, what to do?')\n", + " elif len(tag_i) > 1:\n", + " print(action.id, [tags[i] for i in tag_i])\n", + " \n", + " \n", + "\n", + " sessions.append({\n", + " 'tag': tag,\n", + " 'action': action.id,\n", + " 'stimulated': stimulated,\n", + " 'baseline': baseline,\n", + " 'i': is_i,\n", + " 'ii': is_ii,\n", + " 'frequency': float(freq),\n", + " 'session': int(action.id.split('-')[-1]),\n", + " 'stim_location': stim_location,\n", + " 'entity': int(action.entities[0]),\n", + "\n", + " })\n", + "sessions = pd.DataFrame(sessions)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
actionbaselineentityfrequencyiiisessionstim_locationstimulatedtag
31839-060619-3False183911.0TrueFalse3msTruestim i
71849-110319-2False184911.0TrueFalse2msTruestim i
91834-220319-2False183411.0TrueFalse2msTruestim i
121834-120319-2False183411.0TrueFalse2msTruestim i
191833-260619-2False183311.0TrueFalse2msTruestim i
201849-010319-4False184911.0TrueFalse4mecrTruestim i
231849-220319-3False184911.0TrueFalse3msTruestim i
281834-150319-2False183411.0TrueFalse2msTruestim i
301839-290519-2False183911.0TrueFalse2msTruestim i
371849-150319-2False184911.0TrueFalse2msTruestim i
381849-280219-2False184911.0TrueFalse2msTruestim i
441834-010319-3False183411.0TrueFalse3msTruestim i
451833-050619-2False183311.0TrueFalse2msTruestim i
471833-120619-2False183311.0TrueFalse2msTruestim i
501849-010319-5False184911.0TrueFalse5meclTruestim i
531834-060319-2False183411.0TrueFalse2msTruestim i
551834-110319-6False183411.0TrueFalse6mecrTruestim i
571849-060319-2False184911.0TrueFalse2msTruestim i
611834-110319-2False183411.0TrueFalse2msTruestim i
621833-020719-2False183311.0TrueFalse2msTruestim i
661833-200619-2False183311.0TrueFalse2msTruestim i
751833-290519-2False183311.0TrueFalse2msTruestim i
771839-120619-2False183911.0TrueFalse2msTruestim i
821834-110319-5False183411.0TrueFalse5meclTruestim i
831839-200619-2False183911.0TrueFalse2msTruestim i
871833-010719-2False183311.0TrueFalse2msTruestim i
\n", + "
" + ], + "text/plain": [ + " action baseline entity frequency i ii session \\\n", + "3 1839-060619-3 False 1839 11.0 True False 3 \n", + "7 1849-110319-2 False 1849 11.0 True False 2 \n", + "9 1834-220319-2 False 1834 11.0 True False 2 \n", + "12 1834-120319-2 False 1834 11.0 True False 2 \n", + "19 1833-260619-2 False 1833 11.0 True False 2 \n", + "20 1849-010319-4 False 1849 11.0 True False 4 \n", + "23 1849-220319-3 False 1849 11.0 True False 3 \n", + "28 1834-150319-2 False 1834 11.0 True False 2 \n", + "30 1839-290519-2 False 1839 11.0 True False 2 \n", + "37 1849-150319-2 False 1849 11.0 True False 2 \n", + "38 1849-280219-2 False 1849 11.0 True False 2 \n", + "44 1834-010319-3 False 1834 11.0 True False 3 \n", + "45 1833-050619-2 False 1833 11.0 True False 2 \n", + "47 1833-120619-2 False 1833 11.0 True False 2 \n", + "50 1849-010319-5 False 1849 11.0 True False 5 \n", + "53 1834-060319-2 False 1834 11.0 True False 2 \n", + "55 1834-110319-6 False 1834 11.0 True False 6 \n", + "57 1849-060319-2 False 1849 11.0 True False 2 \n", + "61 1834-110319-2 False 1834 11.0 True False 2 \n", + "62 1833-020719-2 False 1833 11.0 True False 2 \n", + "66 1833-200619-2 False 1833 11.0 True False 2 \n", + "75 1833-290519-2 False 1833 11.0 True False 2 \n", + "77 1839-120619-2 False 1839 11.0 True False 2 \n", + "82 1834-110319-5 False 1834 11.0 True False 5 \n", + "83 1839-200619-2 False 1839 11.0 True False 2 \n", + "87 1833-010719-2 False 1833 11.0 True False 2 \n", + "\n", + " stim_location stimulated tag \n", + "3 ms True stim i \n", + "7 ms True stim i \n", + "9 ms True stim i \n", + "12 ms True stim i \n", + "19 ms True stim i \n", + "20 mecr True stim i \n", + "23 ms True stim i \n", + "28 ms True stim i \n", + "30 ms True stim i \n", + "37 ms True stim i \n", + "38 ms True stim i \n", + "44 ms True stim i \n", + "45 ms True stim i \n", + "47 ms True stim i \n", + "50 mecl True stim i \n", + "53 ms True stim i \n", + "55 mecr True stim i \n", + "57 ms True stim i \n", + "61 ms True stim i \n", + "62 ms True stim i \n", + "66 ms True stim i \n", + "75 ms True stim i \n", + "77 ms True stim i \n", + "82 mecl True stim i \n", + "83 ms True stim i \n", + "87 ms True stim i " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sessions.query('stimulated and frequency!=30')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "sessions.to_csv(output / 'sessions.csv', index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Identify unique neurons" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processing 1849\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6300f6db34594cd884fafdfb3ea48ad4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(IntProgress(value=0, max=231), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "# save graphs\n", + "for entity, values in sessions.groupby('entity'):\n", + " data_path = output / f'{entity}-graphs'\n", + " if data_path.exists():\n", + " continue\n", + " print('Processing', entity)\n", + " unit_matching = TrackMultipleSessions(\n", + " actions, values.action.values.tolist(), \n", + " progress_bar=tqdm, verbose=False, data_path=data_path\n", + " )\n", + " unit_matching.do_matching()\n", + " unit_matching.make_graphs_from_matches()\n", + " unit_matching.compute_time_delta_edges()\n", + " unit_matching.compute_depth_delta_edges()\n", + " # save graph with all dissimilarities for later use\n", + " unit_matching.save_graphs()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Plot comparisons" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "unit_comp = TrackMultipleSessions(actions, data_path=f'output/identify_neurons/1833-graphs')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "unit_comp.load_graphs()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "max_dissimilarity = .05\n", + "max_depth_delta = 100\n", + "\n", + "unit_comp.remove_edges_above_threshold('weight', max_dissimilarity)\n", + "unit_comp.remove_edges_above_threshold('depth_delta', max_depth_delta)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAokCAYAAAAwwpPoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4VEXbwOHf2V6y6Y0SWoClFxEIRQHFAlIUUBQLKqCoiAU+u9heRRRerAgIvKCggjQbivQOUkKHJfQa0kiyJZtt5/vjBERpCaSQzdzXlYvs5pydWbI5++zMM89IsiwjCIIgCIIgCIJCVdYdEARBEARBEITriQiQBUEQBEEQBOE8IkAWBEEQBEEQhPOIAFkQBEEQBEEQziMCZEEQBEEQBEE4jwiQBUEQBEEQBOE8IkAWBEEQBEEQhPOIAFkQBEEQBEEQziMCZEEQBEEQBEE4j6asO3AxrVu3lqtUqVLW3RCuwa5duzJsNltMcT+ueG2UfyX12gDx+ggG4tohXEpJXjsE4d+uywC5SpUqzJ07t6y7IVwDq9V6pCQeV7w2yr+Sem2AeH0EA3HtEC6lJK8dgvBvIsVCEARBEARBEM4jAmRBEARBEARBOI8IkAVBEARBEAThPCWSg2y1WlsDo2w2W0er1VobmArIwE7gGZvNFiiJdgVBEARBEAThWhX7CLLVan0JmAQYCu76L/CGzWa7CZCAnsXdpiAIgiAIgiAUl5JIsTgA9DrvdgtgRcH3vwOdS6BNQRAEQSgfTu8Ge+pVnx4IyBzOcBIIyMXYKUEQzlfsAbLNZpsDeM+7S7LZbGf/iu1AWHG3KQiCIAjlQiAAU++CCTdDuq3Ip689kMHtn6yk4+jl3DZ2BUv3ni6BTgqCUBqL9M7PN7YA2aXQpiAIQrkmyzJnnB5yXN4rHyyUH5kpkJcFznT49h4I+At9aq7by9Dvk/H4Arx8Zz3UKomB0zYxe/PxEuywIFRMpREgJ1ut1o4F33cBVpVCm4IgCOVWrtvLfRPW0fy9RTR770+Gfp/M0UxXWXdLKA7HNyr/tn8Bck9A2u5Cn/rp4hQynR6+vK8+T9U8zbxBN9A2MZrhP25j1qZjJdRhQaiYSiNAHga8Y7Va1wE6YHYptCkIglAueXwBHpn8F1uPZfPibXUZdFMtFu0+ze2frGD8igO4vYUfcRSuQ8c34ZLMPJpsVW4f21Co0zIc+Uxbe5h36h6m8eyb4X9dMH/ZhP812c1NdaJ5ec52pq09jCyLvGRBKA4lUubNZrMdBpIKvt8HdCiJdgRBEILNz9tOsvVYNp/e34yeTSuDJPFYuxq8OX8nH/6+l0mrDtI2MZpIs45sl4cjWS7OOD2oJIlqUSa6NqpE96aVMerUZf1UhIvwH9vIJl8tkh3hpMnhmA+sxdxy4BXP+33HKcID2Tx46kOIqAad34at36Fd8DxTbn2PpzRteOvnXaw/mMnTHWvTsHIoKpVU4s9HEIJViQTIgiAIQtHJsqwEwLFeeiQPhJ83QkQNKnV6jUmP3MP6Q1lMW3uYjYezcLh9hBq1VI8yUbVqOP5AgD2n7Lw0ZzufLknhg16N6VA3pqyfknA+jxNV+m6S5Z4817kumxfWof3Rwo0g/7LtFCMts1D78uDeqRBdBxr1gbmD0C55k4md3+XLql0Zv+IAv+9MxaLXkBBpolKYgTpxFu5sFE/TqmFIkgiaBaEwRIAsCIJwnViVksGp1FPMDX8T6aQdWg6AI2th9mOwYzZJ3T8l6aEWlzxflmXWHshkxE876T/lL17oXJeht9YWQdH14tQ2JDnA1kBtxjSvwvRlDeji2giONAiJvfRpOXmcPLKX2/TLoN1zSnAMoNFB78mgUqNaPIJnb7bzyCsvsXDXaXacyOFkdh4nsvNYmZLO+BUHaFUzko96N6FGtLmUnrAglF8iQBYEQShuAT+c3gmxDUCtLfRp87ee4FnD7xjdaTBwMVS9Efw+WD8Olr4H41pDp9ehWT/QGi84X5Ik2tWO5rehN/HavB2MXbyPE9kuRvZqglpMt5e9HKXahNtSnUizDnX1JDg4Df+R9agb9rjkaX/sTOVu1Rrlxr/TMdQauGciaE2w8mPCTu/mvi6juK9lo3OH5Lq9zNtygtF/2ujy6SrGPXQDnayXDsgFQRAB8nXN5w9gO23nYLoTt9ePUaemUpiR+pUsmHTiVycI161d82DOADBGQJ8pkHjLFU8JBGS27d3PSOl3pIa9lOAYlACo3VCo3RkWDIffXoQ/34QqN4AxHHz5ypdGD1G1oUFPDAmtGXNvU6qGG/ls6X58AZnRfZqKnNSy5lBqFsdXrgZAzcZJ+A6oSN+3gUqXCZBX2tJ4R7cWqrWD8GoXHqDWQI/PIbY+LHkPPm8B1i5Q906o3obQ8Or0b1uDOxrGM/CbjQyatolP72/OXU0qlcjTFIRgIKKs60wgILMiJZ05m4+zwpaOPd93wTEqCZomhHNnw3j6tkwg3KQrg54KgnBJx/5SRvQ0BtgwoVAB8rbj2XTLX4BOmw8dXrnwgLgG8OhvcGgF7JoPaXsgI0VpQ2MAVxYcWqWMNickIfX4nBdvt6JRq/jvon3o1Co+uKexCJLLUH52KrKspXZCZQDa1K3KAbky+uPbLn2Oz4/90CaqqU9Ak5cu/eCSBG2egfrdYc1nsGsu7J6v/CysGjTuTXzLgXw/KInHp27k+ZnJhBm1tK8TXZxPURCChgiQryOLd5/m44U2bKftRJi03NWkEm0So7DGWzDrNDg9Po5l5bH9eDYr9qUz8ve9fLI4hUE31+LpjokYtGLVuiBcF1K3Q3xjJcVix2wlTUJ9+cvtsr1pdFOvx5fQFm1M3YsfJElQq6PydTH5Dtj+gzKKOOFm6P01Q2/tjtcf4POl+wFEkFyGcjNO4JbDaVw1HIAIs45NutrcmL3zkudsOnyGW+T1BCQNqgY9r9xIeDW4azR0GQXpe5Uc9v2LYc2nsGECllvfYtIjj9N34nqemr6Z+UPakRgTUlxPURCChgiQrwPp9nxem7eDRbtPkxhj5pO+zejauBI6zYVlquvFh3JbgziG3W5lb2ouXyzdz2dLUvh56wk+vb85TRPCy+AZCNfCH1Dqlooc0SARCEDqDmj6ANRoB5v/Bye3QEKry56WsmszdVUnoNHzV9+2PkTJUa3XDX54EGY+DF1G8eJtTwDw+dL9ePwBPu7TVLzeykDAfpp0wkiINJ27zxXVgIjTy5Ed6UghF1YdWZmSzj3qZOSEJCVlp7BUaohrqHy1GgRnjigpOn+8TNipbUx++EN6jPuLQd9s4qdn2mExFD5XXhAqAhEgl7HVKRk890My9nwfr3apx+Pta6JVF27/lnrxoXzR7wb6tcpg+I/b6P3VWt6/pxF9W14kR0247uxPc/Dm/J0kHzuDSpJoUjWM2xvE09EaQ81o87nKA2ecHg5nOknNcePxBwgzarHGW6gUduEiLeE6cOYQeBxQqQnUuFm579CKywbIOXleamcuVa7I9btfex8s8fDorzBnIPz+EpIrk2G3vYq2IN3C4wswtm+zQl9rhOKhcaWRIYdRJ+TvtDhTtWZwGtL3byK2WZcLztmzdzevSsfA+sS1NR5RHfrNghWjYPlIquTn8uUD/+XBKZv5vx+389VDN4hqJ4JwHhEglxFZlpm8+hAfLNhD7dgQvn8iibpxlr8PCAQgwwand4E7ByQV6MxgjFRyEUMrnzu0be1oFjx3E89+n8zLc3Zw/EweL95WV1zsStrid8DvgVtHKAukimDLwVOs/uZtxrEAyWjkcMgNfG7vybu/ZvHurxCi12AxaMjN8+L0XHzntFrRZro3rcyDSdWItRiK4xkJxeGUkk/qj2vMryluusY0QntwBdz8f5c8ZdPhLO5QbSQ3pgWhocW0cEprhHunwS/PKUGRM4OhXT/GoFXxwYK9eHwBPu/XHL1GpGaVFkN+JllSDUL0f7/1Vq3XGjZCesqFAXKa3U1CxmrQAnXvuPYOSBJ0fAUM4fDHyyTpzLx650v8Z4GNCSsPMrhD4rW3IQhBQgTIZcDnD/DmTzv5/q9jdGkUz+h7m2I+e8HMy4a/JsLmqZB74tIPEpag5CE26wfV2hBu0vG/R1vyxvydfL50P3a3j7e6NxBBcklx58LazyHgheMb4dEFV8wxPXeqx0fOjMcYyjryatyKMSSCZnt/Y7J/Ifbm97Ek5mG2OiKwu32EGjVUCTdSPcpMlXAjOo1EpsPDzpO5LNubxqdLUhi/4gCPtqvBM51qEyqmScte6nZklYb75+ew8dhJLPH1uOX4r+D3XrLk2y7bPm5VHcbb6JHi7YtaAz2/AHM0rPkE3Nk8cc8E9Bo1b/28i2dmbGHcgy0ums4lFDO/F6MvG5cu6h/X5To1qnFSjiJw8sKFeqv2ZdBJlYzHkoAu+hJ56VcjabAyy7H0PQa0Cie5UV8++mMv9SuFis1lBKGACJBLmdvrZ8h3W1i8J41nOiUy7DarsmAm4IeNk2HZ++DOhsRblXqnlZsX5J3J4HGCMx1ObYeja5WV7MnfQpUWcOsINLU6MrJXY0L0GiatPkRAlnmnR0MRJJeEg8uV4LhJX9g+E46thxrtC3Xqstnj6OJfx5Fmw6h+9wjlTvtpWD0Wy6bJ3L1nJnfX6gAJScrmAX4vnM6CIzmg1lI7rBqta7dlQLtWHMp08fnSFCauPMi8LScY0b0BdzWuJH7nZSl1J2dMtdh4zEnzauH8cqoyt6jdkLYbKjW96Cn+A8sA0NbtXPz9kSS47R3lOrL4Lci30//eqahUjXhz/k6GfLeFcQ/egEakW5QsZwYqZDzGf1aN0KhVHDdYScjZccEp62zH+I96F9p6/ZXfY3G6aRi4MpHWj2PszZEcyGjLs99tYd4zYtGeIIAIkEuV2+tn0DebWL0/g/fubsTDSdWVH6Tb4KchcPwvZVT4tveU/MWLia4D1dsWjAA4YfssWPVf+KYnNH0A6c4Pef2u+kgSfL3qEP6AzHs9G4lV68Ut5U/Qh8GdHyo1b22/FypAzsnOJsn2EQeNDanV4/W/f2CJgy4fQvvnYeMk2PubMi2OXHCABHqLktLhcyt3VW5OzZuG8d97u/FImxq8Pm8HQ75LZlbd47zXsyHVo8RuWWUi9ySpqlhCDRre6t6QZ8fZQA2c2HLRANmZ76NG9gac+gjMcY1Lrl/tnwdDmFJH+ZuePNxvFn5/A97+ZTcvzdku6iSXNGcaAH7ThRt05FdpTaWDa8k6dZjISjUApeSnZ/8KDHiUmsbFTZLg9vchLxvdypF8f9M7dF7bkMenbmT+0+2IMIvyoULFJoYMSkkgIPPs98msSsngo95NlODY74VVY2D8TZCZouyG9PD8SwfH/6Yzw42PwZCNcNNwJVj+qh3SkbW81rU+T3aoxYwNRxn+4za8/kDJPsGKRJYhZREkdgJTpBIY71tYqFN3/jGRCMkOt7+rrDL/N0s83PIGPL0OXk+FF/fCS4dgRCa8egzeOA3P74SuoyHfDjMfgmndaWZI46dn2vFW9wZsOXKG28eu5KvlB/CJ33vpc6Zx0htC3TgLTauGoY2sSa4UCic2X/TwzYczaa/agaPKTaAq4UvyjY8pecmntsHUbjzaxMSw2+oyd8sJxi7eV7JtV3QOJUBWWeIu+FF8k1sB2L/pz3P3bT2eTSvPX/jUxkLPThWZSqVsMFK/OxGr3mJuKxunctwM+mYTbu/F1z4IQkVRLgLkjxfuZeSCPWXdjWvyyeJ9LNp9mhHdGnDvjQnKG9TXt8CSd5XFF8/8BU37Xt00mtYAt74JAxeBRgfTuiGtGsMrd9Rl+O11mZt8goHTNmF3e4v/iVVEaXvAkQp1blNu171T+YCTeeCyp8mBAFVs0zigqU2t5rdeuR2tAUIrKUH4+cF0eIJStunpDXDXGKWk2Ph2aJa9y2M3RrP4xQ50qBvDqD/2cu+EdRzLcl3DkxWKJOBHdmVyMM9MnTgLkiTRrWlltvhr4j9+8QD54M4NxEg5hDe6vXT62KCHUs3gzGGY2pUhNxq5v2UCny/dz9wtx0unDxWQPzcVAG1Y/AU/S2yUhAMjngOrz903Z9MxblUnIyfeUuRFwEWi1kDvKVDnDqqve4NZrQ6w6cgZhs3aRiAgX/l8QQhS5SJA1qnVTFh5kOW2tLLuylVZnZLBZ0v3c9+NVXmsdSWliP/ETsq2o/d9C32/VXJNr1WVFvDkSmh4Dyx9D2nWIwxpF8/IXo1ZvT+Dnl+uYX+a/drbqegylQ0XiC+YDq97p/LvFUaRd6/9hRrycc40frx48gnVGqXm7ZCN0LAXrB4Ln99I/JGfmfDQDXx6fzP2pzno+ukq/tiZeu3tCVfmykKSAxz3hlA3TsnjbFs7mm2BRFQZe5W0qH9RH1oKgN5aAvnHl5LYCR6eC440pKl38W6nCJJqRfLK3B1sPZZdev2oQPLOnATAFHlhlRKVRssxc2MqZW8mEJBxe/0c2L6KSlIW2nolkF7xbxod3PcNJN5Csy1vMLX5fn7bcYoPyvnAlCBci3IRIA/uWIvEGDOvz9tJbjkbBc3z+Hlt3g5qRZt5r4MF6X93wqrR0PR+eGaDMppTnPQW6D0Z7hip5MVOvoMH6sKMga3JzfPS84s1/Lb9VPG2WdFkH1X+DVfqTQfCqkFkLTi08rKnuTdOJ1c20ej2R4u3PyGx0GsCDFisjDjPHYQ05XZ6xpzm9+duIjE2hMHTNzN6oU2MCJW0gjzTTDnsXNnG5tXC2S3VRpIDcHLrPw53eXzUyd1Amqm28rsrTdWSlJQuZya6GXfzVc+qxFr0PPntJjIc+aXblwogP/sUubKRyLCwix9Qox2JHOeXNVtYsOMUvX1/4NeYiv894lK0Brh/BtTqQIe9bzPaamPS6kNMWX2odNoXhOtMuQiQ9cve5fuEeaTm5vHqnB3Icvl5k/98aQpHs1x83taFfsotkHkQ+k6Hu8cVbVekopAkaPM0PDQbco7D17eQpD3AL8+2xxpv4ZnvtjBywR6Rn3q1so+CPpQ8lYUXZ22l5fuLcVRuo2zpGrh43p7bmUP97BXsibwVg7GEFs8ltISBS6Hnl8quWV/fQtW1bzLz0Qbc3zKBL5bt59kfkkVuYUkqyDPNkMOoUzCCrNeokRJaEUCCw6v/cfi2/ce5QbLhrt6p1LsKQNUWynUi9xQRs+9l8r21yHZ5ee6H5HM7PArFw5+rbBISY7l4uoS144MEUJG5eCyj5q6lp2Ydqqb3KwsrS4vWCPd/j1S9Hb2P/odXq+/lvd9288dOMagiVDzlIkDGFEXs7qlMabST33ac4tMlKeUiSE7LdTNlzSFerX2MhosfAXMMPLGseHbKKozEW2DgYtCFwNS7qGSbzg+DkngoqRoTVh6k39cbSM1xl05fgknOMQhLYMj3ycxLPoHd7eP7tBqQn3Nuk4h/27NsJiYpH1PLB0u2byoVNH8Int0ErQfDpinox7dlZJM0Xu1Sj9+2n+KRKX+R4ypfMzHlhjMDgHxDFDEhfwdCTerWZEegJp6Upf84PHXbInSSn5hmXUu1m/9QLQn6/QBnDmH982E+7FqNNfsz+eiPvWXXpyAUcGWRTQgxIRff1EcVUwd3/V48IC3kE/M0dHiRWg0q5V4COhM88ANS1ZY8kf4BA2NtPD9zK9uPi9QboWIpHwFymyGQeCs3HxjDcGsGnyxO4ZU5Ozide30Hd+OWH8AaOMCg0+8ou98NWARRpbxTUUxdGLRUKR+3YDi6WQ/wn1uiGdu3KTtP5nDXZ6tYsz+jdPtU3mUfxR+WwMqUdAa0q8nzt9Vh4tEqys8ukWah3TWLk8TQoHUpLcQyhCll4wYsBr0FaUZvnnRN5Mv7GrD1aDb3f71eTKOXhIIUi7Doyv+oRd2+djRrAo3QnNykVB8poDu0hDzJgDGxXal39R9q3gx9Z0D6Xu7Z9SwDWkYzYeVBftx0rGz7FUSk/FxyZTPRlkuXTzN1fg2D5CfJsw7aDlXeN8qCPgQe/BEpvgmvOT7kNoONgdM2cSonr2z6IwhloHwEyCoV9PoaKbwaz6S+wQfNs5m95TjtRy3lyW83selwVln38AJpdjfzNuxjivlLVKYo6PcjGMPLpjOmSHhgJtw5SgngvmzNPd7f+fnpNkSYdTw8eQNfLT9QLkbly5wsQ/ZR0tVxeP0ySbWiGNi+FurQeI5rq180QM5KPUJ91yYOVe6GWl3K2/pWbQFPrlBGkzeM5671/fj+7lAOZzjp89VaDqY7Src/wc6RhhcN5rCof9zduEoYe4wtUMk+JRUHOJyaSbv8lZyK7VCyVQoKq05npQTcya28nvM2nWqZeXXuDlalpJd1z4KCxpOLS2XGpLvM9gNRiUiP/Y707Ca4/b3S69zFGELhoTlIUYl8Kn+I1bOLx6duwpHvK9t+CUIpKR8BMoA5Ch6eh2SKpN+ep9lV41PmxU7h0YMvkjn5PtZMff2S+Z9l4fsNx3he+p4oz0m4Z4KyEURZUqmUzUWeWgNVmsOC4dSedxe/dJPp0rgSo/7Yy1PTt4iL35W4syE/lwPeSABuqB6BTqOib8sEFuY1QD68WtmG+jz7F09BLclU7vBYWfRYySvsMgoenA3OdFos7MUfNx3Anufl7i/XsHKfCICKjTOdLEKJ+tc0uiRJVGrcAbesJd+2CADbih8Il5yEtX28LHp6cfW6Qq+JqI6u42vDZ9SL0TP4283X5SBEeaPz2fFqQ698YLXWyqLf64EpEh75CVVYFf6nHYU+bSvPi/x0oYIoPwEyKPVfn1oHHV/FIHlpJB2gVbyKpsbTtDv8Bae+HQiBsl945vEF2LB+Bf01f0KrJ6BGGU+fni8qUVm5fu9UcGdj/K4nX6j/ywe3hPPn7lTu+XINhzIuLEUlFCioYLHNHkqtGDORBbtN3d8qgQWB1kj+fLAt+Pt4WSb24Fz2aOpR03rxbYZLTZ3b4Km1UL0t1de+xso631ErDB793198tiRFLNosBgFHGmmBUKJCLpxGv6NpdRYHWqDeOh1yTxKbMos0VSxRjUsp7aawGveB7p+iObiE2bFTiLdo6T/lLzYczCzrnpVfsozR78CrtZR1T4ouJBYe+RlNSDQzTR9zfO8mRon8dKECKF8BMigLCDq+ouTVDk1G/eRyIl/axjRtXyodmotv45Sy7iELd6XyeP50/FoLdHqtrLtzIUlSaiUP2QidXkdKWUy/jX1YmrSVbLuTHp+vZvHu02Xdy+tTQYC8Kt3EjdX/rkJSKcxIZN12nCIK34655+63bfidGoGjZNfpU+pdvaiQWHhwDtzyBuZ9PzFX8zpP1HPz30X76D1+naiTfY38dqVSQdRFtultnhDBVOMjBPw+7F92pLlvKydq3Vfyu+ddjRb94Y6RGFJ+5deE6VQO1fLIlL9YskdcF66KNw8NPny6QowgX4/CqkD/n9EZQ5hj+pDlq1YwadXBsu6VIJSo6/DKXHQ6jYqEXu+yPVAT56qvlDzRMpS89k86q5NR3/R8yZVyKw5aI3R4CYb8BbU6UiP5I9ZGjKB36C4GfrORsYv2ibq5/1YQIO/Oi6BF9X/+bp+6pQ6/+JKQDiwBVxbIMoGlH5BOBE27DS6L3l6cSgU3/58yderO4ZVjz/Bz0j6OZjjo+tlqJqw4IKZQr5YjjUzCiAq5MKdYpZJ4/t47GO/vidmdxq9hD9Kk71tl0MlCavM03DoC4965/BY3kcZxWp74djNzNovd9orMnQOArC+nATJARA2k/r9gMhmZbfqQ7xcs5oe/jpZ1rwShxJRKgGy1WlVWq3W81WpdZ7Val1ut1trF3UanenH8pu9KmGM/HF1f3A9faKdz3bQ5+Q0uTRiqpOsoKLqc8GrwwPfwwA9oCfC2/R1+j/6Mn5eu5OkZW3CKvOS/ZR/FpzGTg/ncRhBn3VAtgmMJPZDlAO75z7H9z2nU9+xgf90nMJmvw6nVmjfD4NWQ0IomW99mQ9VPebhGDiN/30vvr9ay+2TulR9D+Jsso87LvOQIMkD7OtG0enQUHzT8mY5Pf4Zae+mKBteFm4ZB19HoDixkpvZdulXzMuzHbeLDc1GdDZANZbRQu7hEJSL1/wWLQcts00gmzv+T70WQLASp0hpBvhsw2Gy2NsArwJjibkCSJPz178EuG/FvnFzcD19oy9as4Tb1ZvKbPQ66EtoQoqRYu8DT6+H296nn3cNiw8s0s43lwXFLOJJ5/eYl5+SVYk1fx2mcumhAokqE8YIf39+9C58E+mLY9zNN1j3HYVUCze95rvT6V1SWOCUnvdsn6DJ288bxwaxOnI4600b3L1bz/m+7xQekwnLnoAp4SJdDLzqCfFZSYjRv3HczIfrLVDO4nrQaBA/8gPrMIT7JeY63ah/i0yUpPPOd+PBcaAUBsspYipt+lJToOkj9fyZcr2KO8X0mzfuDL5ftF1WQhKBTWgFye+APAJvNth64sUQaaVidhYGW+FMWl1maRWjyBDxoiej4TJm0f800Omg7BOnZzaib3MdgzS9MzHmSSZ+9y29br7+Rgm3Hsmnx3iI2HymlVfbODHJVYeg1qn9sBHFWw8ph3P3MKH413cPCmAFEvbC25HbOKy4qFdz4GAzditT+BaqmrWBO4AV+ifqSbasXcPt/V7B0b/nMPf1j5ym2HSulDQ5cyiK2LDn0kiPI5Zb1TnhiOVJ4dR47/jp/1vyedbv20/urtRw/4yrr3l33PM4zAGhM5XwE+azY+kiP/kq4Qc3PxndZ+ed83v55l0jNEoJKaQXIoUDOebf9Vqu12IdPkmpFsV2qhy7/DGSV/gKClEOHuSV/KUeqdIeQmFJvv1iFxMI9X8GAxYTF1eQ9aTyN5t7KnM9fIv3U9RMo14kLoYrRy9hFKaXToDODTDmMKuHGf2wEcb7acWF0e2kqdzzzXyyWcpRzaAyHzm/B8zugwys08O1mlv49JvleYfo3ExkyYzNp1/nmPP/2vzWHeX3+jtJpzK0E4nYphDCjtnTaLE1RicpmRzcNp27qAjaEvU7d7JXc/eUathw9U9a9u6657coHeK35Ol6TUlSx9ZEGLMIUWYnvDB+g/ms8z0zfLLayF4JGaQUCbxlyAAAgAElEQVTIucD5SZgqm81W7HNzBq0auWpL5caxv4r74a/o5NLxGCQv0bc9X+ptl5iElugHL8V/73S0EVXonTmBiAlNOTGuJ/KeX8BftlsWm9K3szQwAOeBdfx16CKjyOn74LPmMKv/uQV218SVQarffNH0iqBhjoJOr8ILu+CuMdQLcTNFN5pn9j3Gp6Pf5uulu8j3lY83wcfj9uM9uZOU06VQnaOg/rVkCEWluviHp3JPo4Nb34RBS9GHxfEZHzNK/oRnJi7k1+0ny7p31618h3Jt0ocEUYAMEFkTaeBi1NYujNB+y30pw3hq/ALS7WKXTqH8K60AeQ3QFcBqtSYBJTakE1G9MXbZiO/ohpJq4qJkn4f6x2ax03ADETXKuN5tcZMk1A27U/mF5Rzvt5xfzX3QnN6KNPMhfP9tBNlluB1tjBWVIZSXDXMZ8dPOf45eZB7AN6UrbnsWgX1/wLTu11YnOxAAVybH881UCQ/iAPksnQlaDkQaugXu/orESB3vq76i94rbmTnqSVYnby/rHl5Rp4wZfKSdyPytJy7688wtP5E2rT8cWXftjRXkmaqDZRr9cio3g0HLoNPr3CJv4E/tcJbP/IQxC/eIxXsX4XUqswtGS2QZ96QEGMKg73S4cxQdtHsYmzGY8Z/9hz0nc658riBcx0orQJ4HuK1W61pgLPBCSTVUr3I4yYHaeA+XbiWLQytnEEsmOU0Glmq7pa1q3eb0GDaRZV2WMZSX+C63GYdzy/ANUWdGav8cSfI2TKc38/5ve/D5A9jtuZyceC+5rjzucrzOCP9AOHMYTmy6+rbyzoAc4LinggTIZ6m10KwfuqEbof8vBKom8ZB3Nq3nd2TDRz048lfZzyRciq5hd5qqDpK8ecMF+ZE79+xG9/NgYg/Nh//dCSmLr62xggBZa64AATIoo8kdXkIavApzlXqM1k6g05qH+GDSDOzu6/P1UFb8rmzcspaQkOt8PcLVkiRIGoz6qdVo46y86f2M3Al3smbd6rLumSBctVIJkG02W8Bmsw222WxtbTZbG5vNVmLb8NSLt7BFroMhywb5pbTpgSxj2DiO/XIVmt5yb+m0WYZUKon7k2rx5rDheG4fSWx85bLtUMuBEBLHxNApzF+/h04fLWHpx/2onH+AJfXeY9STffhLl4QXDfLun66+HVcGAJlyaHCnWFyKJEHNm4keNAff05vZW+1+6rk2UX3BQzjer0naxHvwLf0Ads6B07vAex3kKze+l4Ckpr1rMT9v+3sU+WiGkzM/PIUGP8OjxmGXjWRtnn1tbeUrKRbGkCAcJbyc2PqoHv8Tuec46hvO8NqJIawecz9Hjx4u655dNwJ52eRiJtQQhLnp54upi3nwYnI7f0wD1VFa/dGDLROfIuASOepC+RMUG4Wcr3qUmT1SbSQCypt0KfAdWEHlvH1siH+AEEOQrV6/jBiLnoE31cKkK+NyVToz9JlClPckqyp9yjjep6dqFaktXuTeBx7nxhqRPHF7c1b6G+PdMf/qK5w40wHIJJSqEaZifALljy42kcYDxsELe/m1/miWyjfiOL4b1YqPYPbj8FVb5A8qweK3y7ajIbFItTtzn3YNn/+5G68/gNcf4JtvJnCTtJX8m1/j9cfvZV2gAepDK66t+o07B78sYQ4NglJeRaVSITV/EOOLWznVYACdvcuInJLEvjnvgkdUucCdQ65sIjQYF2/+m0pFaPsn0D6fzKaILjQ78T3O0U3JWzb6XJ6+IJQHQRcgq1USUnTBPiSlVMnC/udI0uUwKrXvXyrtCRdRoz1Sj88Jx05jeT/cMZL47n/vUnZLvVgWBlqicxyH1KvMnXUqI8hZFXUE+SLCwkLp1ncQXd6Yy5F+q3ij4Z/0lT7mWc8QvvTdw085xb4nUJFJrQYRLWdyc+4vPPHNJh6csIb7s7/GEVKD8A7PEGHWYTPfSFj+yWu6Zvhc2dgxERViKMbelzOGUKr0HUPGw8vZpWtC3R1jcIyqT96iD8p2rcLFONLwbZh8besSCkmVn0supuAfQT6PISyWpOem81ub70n2Vce44j18YxrAknfBkV7W3ROEKyonleqLJrJSbXxnVKgzD1Dia8kPLicibT2jVI/xQv2qJd2acDnN+ilfsqykA5wn0qwjr3ISpE+EU9uh0lUspCwYQT4jhRFnufRGEBWRVq2iU71YOtWLxee/kU1HzrBsbxrqqtfBaGrtzsg1O/DKsZ+443B7nmQOtVUnodt3Sn414Kp6M+yfgHxgGVJU4lU143GewS6biDSL10alxCZEvvQ7M+b+SMLOL7l5zShYMwpfpRvQ1O8KdW6HuMZKDe4ysmvTShouf5EsUwKRjW+/8ABfPix8DVRaqN8darS76rbUnlzsmDFog25M6rIkSaL7nV3Y2bgtg2fMood9Fneu+i/Sui+RmvRV0uPiG19wvRaE60FQ/rXWqRLJiUA0+Wn7S7ahQADvonc5KUfha/YoOk1Q/neWP5e42DZr3IR8WUPu8d1X97gFG0HoQqLQqMXv+lI0ahVJtaJ4tWt9ujUp4/x0AElCuuN9DAEny1VP0U9aCG2fBWvXc4ck1G7McTkal23pVTfjd2WTi4lwU8UZJbwcvUbNg/fdT9zTC3g1YTofefuy+2QOLP0PTLgZPmkMjrQy65+5XidyZBPpq6de/ICVH8PGSbD5fzD7sWsaadZ5c8lTh1yydnqwa1QljE9eeJwtrT/lNs/HzPe3x7f1B5hwE4xLgj9ehW0z4cSW0ls7JAhXEJQjyIkxIRyR44jKOFCyDW34Cu2pzYz2DuappKsbdRJKT9s6cRxaXInwk3u4qu07nOk4VBYiQoN0JXowi28MT65CSv4WjJFw8/B/fJBqVi2CPYHqtErbd9VNyHk55MpmLIagvKxeNWu8hZEDumNL7cjk1QdZu3UXrQLbaOPL5vaAgbKaY6gRH8Ufpo50PL0I2Z2DZDivJ6k7kVeP5WjVHhjq3Ubc4mfh+Eao1vqq2tL7HeSrLVc+MIgZtGre6NaAHs0q8+ZPDXj72H08GraF+wPJxG+aguQ7b1FvSBx0fAVufLzsOixUeEF5Ja8SYWSNHE9SzvqLTrcXi6MbkBe/w1pNK47E9qBOXMW++JUHtWLMLJEr0Sb7KmcWnBmcISz4thGuKOIawJ0jL/qjunEhbJJiMTj3XPU1Q8rPxU4IcRUoz7QorPEWPurTlOyu9Zmf3IblR85wh66Mc/mbPoBh/QJOrJ5Blc5PK/fJMvz+EnkqMz3334V8QMUWgwb13l+uLkCWZYx+B16jeI8AaFI1nPlPt+X3namMW16ZT0/cjEnt566qbjrHZNPUkE6s7xSqUJGyKJStoJwnrhJu5Igch85nB9dFdle7Fo50WPERTL2LPGMczzke4+E2NYq3DaFE6DVq0g01CHOfUPILi8qZQYYcSlSIyDENNhq1Cn9oAvqAS6l3fRXUnlxyESPIVxJu0vFou5p82e+GMl+0lnTTHWyXEzGtHwvePOXO3T/BkTW8n9ebzi3q07RODdYFGiLv+fXqqpx489Dgw68TAfJZkiTRtXElfhnSnvnPtOPhdnXY7o7nyU1VSFrdjMZbuvFtlrWsuylUcEF5JTdo1WTpq0IAZVW6OeraHzRlMawarWxhLfuRrV15MrM/hggd3ZpUuvbHF0pFfnhtVOkB5XURW79I58quDNL8oUSLADko+UOrggNlS3JT0WsZa7x2cmUTFjGCXG6Em/X8Uu9FmtieIXPhKKJaP4D/t//jgFyNA1V7822vxizbm8aCAzfS/sxkyNwP0XWK1khBTq0sAuQLSJJEs4RwmiWE82rX+qTlull3MJPko9lUFZWChDIWlCPIAJ7Q6so3xVHqbd04mNFHWVDS/gV4egPrW33BquN+nri5lliwVY5o45RRCX+arcjnyo500gMWokNEikUwUkVUA0DOPlL0kwMBtD4ndkxiBLmc6dbjPpbILYnaNBZ5XBty8zwMl4fycd8b0KpVtK0dzW5qKgenF/26gccBgKQPKcZeB6fYUAM9m1Xh7R4N6WSNLevuCBVc0EZ26qiaBJAg6xoX6mUfhT/fAGsXGLwabn0Tf7SV//y2m0phBu5tkVA8HRZKRURCAwCyj+0s2omBAJL7DFlYiBIBclDSxyhBkCvtcNFPzs9FQsYpmTFo1cXbMaFERZh1ZHf5ild9T/CbryWPBN5iSN/uJEQqmwGF6DVEJRRM91/NgEtBgKw2iBFkQShPgnaoIy4yjPT94cTmHLu2Wsjrv1IW7HT9GHTKBXPWpmPsOpnLZw80x6gTb4blSc3KsZyQo+BUEUeCPHYkOUCObKa5SLEISlFRsdhlI/nphyhynRJ3DgBerQiCyqPeSXVonvgWc7YcZ1zLaueC47Na1KvFmVMh6NP2U9Q9ND15dnSARizSE4RyJWhHkKuEGzkth+PNPnX1D5J3BjZPg0Z9IExZUXsow8n7v+2hVc1Iuovc43InMTaEU3IUcu7Jop1YEADlYiZKbAQRlOLDTRyXo5HPHC36yfnKFrp+3VUVEBSuA7ViQvi/O+pdEBwD3FAtgiNyHPmni14Bx+1Qrh1aMYIsCOVK0AbIlcONnJYj8OemXv2D7FsIXie0fgKAPI+fp6ZvRqOWGNu3WYUt+l6eheg15Gqi0LqKuEFBXjYAubJZ5CAHqcphBk7I0ajtV7ElcsEHqIAIkINStUgTR+Q4tDmHi3yux6Us0tOYxGtDEMqToA2Qq0QYSZfDUTlPX/2DHFkDhjCo1BxZlnl9/g5sp+2M7duMKuFihW155dbHEOLNLOJJZ0eQTUSKOshBKSpEz0liMLmKOLsA4FZGkDFcB1trC8UuLtTAMeIx5Z0Cn6dI53rzlNeGVqRYCEK5ErQBctVwE2mEo8/PAr/36h7kyDqo1gZUKuZuOcHcLScYeksdsbq2nPOaYzHLTvC4Cn9SQYAs68NE1ZIgpVZJ5OgrY/A7il4LueD1IRnFKGEwUqskHKYEVAQgp2gzDL48ZQRZJ0aQBaFcCdp3+lCjhhx1Qf1jRxGn08+ek5kC1duS5/Ez6o+9NK8WztBbi1gDU7juyCHxyr/2IqTfuJUUC7U5oiS6JFwnfKY45RtHetFOLAiQ1cbwYu6RcL3whtdQvsk6VKTz/G4lQDaaRYAsCOVJ0AbIkiThMcYoNxxXkYd8dJ3yb7W2/G/tIdLs+bzapT5qlcg7Lu+0YcriSlfW8cKfVBAA6USAHNQ0lmjlG1cRU3AKFulpzCJADlba6FrKN0Us9RbId5AvazAai1r/QhCEshS0ATKAz1SQCnE1I8hH1oLWhC+uMZNWHaKjNYZWNYu+u5Zw/TFGVgHAnl60ADmAhDlUBMjBzBSmfKiWXRlFOi/gziFP1hFiNJREt4TrQGRsVZyynvz0otXWD+Q7cGHArBclQQWhPAnqABmLMpVOUabSzzq1DSo15a+jDrKcHu5vKTYECRahMcrv0pV5ovAnuXNwYCQqRARAwcwcqaRYuLKLlmLhddlxYCBUbDMdtBIizaTJ4eSdKVrpUMnjwIkBsz5otx0QhKAU1AGyNixe2U3PUcRKFrIMabshtj5/7ErFoFXRoa5YmBcsomPiyZc1eLMLX60g4DpDTsBMhKhgEdRCwpW/87ycogXIPrcdp2wU20wHsYRIE1mE4rMX7bUheZw4ZQNmnXhtCEJ5EtQBcmSIiSzZQqCoI8j2U8qUekx9Fu5KpWPdWLFjXhCJCzOSTjhyET44+VzZ5GIi3ChGCIOZJTQMt6zFV8RFen63Mo1uESPIQatalIlMORTJWbTXhsrrxIUBgzao324FIegE9V9sVIiedDkcX1F300vbA8ABqRqnc/O5s1F8CfROKCtGnZpMKQKtq/ABst+VTa5sJswkAqBgFm7UkoWFgDOrSOfJ+Xac6AkVI8hBK9Sgxa4OQ5dftNeG2ufELRnFxlKCUM4EeYCsI00OJ2C/ugB5vV1ZsNO2dlRxd00oY3ZNFEZ3EUaC3DnkYCZMjCAHtXCTlmzZUvQqFh4nTtlIqHh9BLU8XSQmXzYEAoU+R+Nzka8SG0sJQnkT3AGyWU+aHI5U1Bzk9D1gjuWvNBWVwwzEWsTCrGDjNsRg8RU+CJLys8mVTSJADnLhRh1Zcghqd9FGCZWFWHqRgxzkvPoo1PjP1UUvDK3fhUctSrwJQnlT7AGy1Wq9x2q1fnfe7SSr1brBarWusVqtbxV3e5cTY9GRTjjavAxl4V1hpe2B2HpsO5ZN0wRR1zQYeY2xWGQHeN2FOl7jySUXESAHO4tBwxksaPOLtpOeyufCJYsc5GDnNxbMJhZhhkEfcOEVAbIglDvFGiBbrdZPgZH/etzxQD+gPdDaarU2L842LyfKrCdTtqCSfecK+V9RIABpe3FHWDma5aJJVREgByN1iLIhhN9ViJFCvw+Nz0WObBZT6EFOpZJwqcMweHOKdJ7G58KBqGIR9MwFm08VYaGePpCHT2MuoQ4JglBSinsEeS3w1NkbVqs1FNDbbLYDNptNBhYCnYu5zUsKM2rJlsKUG85CFv7PPQFeJ0dVVQFoWjWshHonlCWtRRkJsmcVIv2mYBe9XJGDXCG4teEY/Hbw+wp3giyj9TvJVxnQqoM6a63C01qUADlQ2M2n/F50eAloRYAsCOXNVQ13WK3WAcAL/7r7MZvNNtNqtXY8775Q4PyhWztQ62ravBoqlYRPHwF+lCmxqMQrn5Sl7JK0Mz8WSYJGIkAOStoQJUB2ZGdwxTmCgnzDPLUZvUaU+wt2Hn0EKq+s/N7N0Vc+we9BLfvxiWn0oKcPVzaSyctOo1Ahr8cBgF8EyIJQ7lxVgGyz2SYDkwtxaC5gOe+2BSj86oZiEDBGgYPC54xlKgHyhpxwakabxM5YQcpQsKWwO7cQMwsFI8h+XWhJdkm4TvgNEQXXjKzCBcgeJ4CYRq8ATAUbybizUwsXIOcrAbKkE68NQShvSnQ+0Gaz5QIeq9WaaLVaJeAOYFVJtvlvZ3NNC51ikXUQNAY2ZRqoG2u58vFCuWQOU14XHnvhA2RZL/LRKwLZGKl8U9gP1fl2APwiQA56kZYQsmUz3txCplgUfHiSdeK9RBDKm9JImBsMzAD+ApJtNtuGUmjzHG1owaKKIowgByJqcviMm9qxISXXMaFMWSKUqVKvoxCL9ApSLCSDCJArAtXZUePCXjMKgqCAVqRYBLtIs45MORS5kAMucsGHJ5VefHgShPKm2Jdc22y25cDy826vB5KKu53CsljCyZN1GF2FHUE+gMtSC39AFgFyEAsLDSVf1iAXJghyK2n0KpPIR68INAX56X5nJoXKOC/IM5V14noR7KJCdBwhFHMh30/yXbkYALVRjCALQnkT9DWJIkzK1rHxjowrv9kF/HDmMGmRNwOQGCPe8IJViEFLGiGQV4iU+IJRIJ0IkCsEfcGsU35uGoUaEy4IkBF5pkEvwqRjixxKortwswv5TiVA1hhEgFxSNm/eHKvRaCYBjQjyzc+EYhUAdvp8voEtWrS4aM5U0AfI4WYdWbKFaEf6lQPknGPg93BIjgcgMVa84QUrSZJwSBY0hdkQoiAAMpjFIr2KICQkFI+sxuM4U8gAWUmxkPTiA3Ww02lU2NVhGDwphTrem6d8uNYYxLWjpGg0mknx8fH1Y2JizqhUqiLsCCZUZIFAQEpPT2+Qmpo6CehxsWOC/tNWhElLlhxKwFGIKbGCCha786OpEm7EpAv6zw8VmlMditZz5Q0h/O5cHLKBUJPYcrwiCDPrsGPC4yrkZiEFlQpUejFKWBHkayMw+nILtTurJ09Jz9KZxIenEtQoJiYmVwTHQlGoVCo5JiYmB2Xm4eLHlGJ/ykS4UUcWFqTC7JiWdRCAjfYIEkX+cdBza8Iw+q4cBHmdOTgxEGYUH5gqgnCjFodsJJBXyAC5YIZBYxTXjIogoA9FReDv1JrL8LuVEWS9mH0qSSoRHAtXo+B1c8k4OPgD5IIRZE1hcsayjyCr9WzK0JEYI9Irgp1XF4bJf+UtyH15OThkI2EmURO7Igg36XBgRHYXbnv6QL6SYqEW0+gVg75gLUIhXh9+t/La0ItFeoJQ7gR9gBxRkIOs8TnBl3/5g7OP4bdUweWVqSUW6AU9nyEci2y/4lSp323HjlFsM11BRJi02DEhFSzOvBJfXi4BWUJvEB+qKwKNuaDco/vKMwyBfCduWYvZqCvhXgllbf369eY+ffpYz95OTk429ujRo94999xjHTp0aA2/3w/AhAkTYrp161a/e/fu9X/88ccIAIfDoerfv39i7969rX379q17/PjxC95sXC6XNGDAgMRevXpZH3roodppaWkagJkzZ0Z279693t13311v2LBh1fx+P36/n2HDhlXr2bNnvT59+lhTUlL0AH369LGe/WrdunXTt99+u8ql+r9582ZT9+7d6/fq1cv68ssvJ5zt/8WMHj06/oknnrhgl+Rvvvkm6vw2AJ544olay5cvv+Qnxtdeey3hyJEjuszMTPUPP/wQ+e+fL1myxNKzZ896vXv3tg4YMKCW0+lUAfTv3z/x7rvvrtenTx/rgw8+WOf8c3744YfInj171rvkE7iEoA+Qw41KFQvgynVNs4/iMFYGoEaUqGka7GRDBHq8yF7X5Q9023HKIkCuKCwGLXbZiMpbyADZbceJAZNBpOBUBBqTEiDLhQmQPS5c6DGL9SxBbezYsXEjRoyo7vF4pLP3ffbZZ5UHDx58at68eTav1ystWLAgLD09XTN79uzYuXPn7p0xY4btk08+SQgEAkydOjW6fv36rjlz5tjuuuuuzC+//DL+321Mnjw5tnbt2nlz5861de/ePXPs2LGVXC6XNG7cuMo//PDDvvnz5+91OBzqBQsWhP3888/hHo9H9dNPP+0dNmzY8f/85z9VAWbPnm2bPXu2bdSoUYeio6M9w4YNO3Wp/o8YMaL6K6+8cnTu3Lm2kJAQ/8yZMy8IVgF+//330NWrVxfbJgEffPDBserVq3t27NhhWrp06QWP+/7771efMGHC/jlz5tiqVauWP23atGiAEydOGObOnbt39uzZthkzZpxbRbtlyxbj3Llzo+VCrBn4t6D/qzXp1ORKBVNizgwIrXzpg3OOkVlQ4q16pBgNCnYqk/L37szOIORyFUs8dhyEEicC5ApBrZLIU5nRelMLdby/IEAWQVDFoC4o9+hxZqO/0sEeJy4MmHSFqqgtXKNpaw9Hzd1yvBD7wxderxuqZvRvW+Oyo2vVq1fP/+KLLw4MHz685tn7rFarKzs7Wx0IBHC5XGqtVivHxMT4FixYsEur1XL48GGdVqsNqFQqhgwZkubz+QA4efKkzmKxXDBcm5ycHDJo0KBUgDvuuCN30qRJlfV6vTxz5sy9ZrM5AOD3+yW9Xi+vX7/e0r59+xyANm3aOF988cV/vMG9++671V588cXjFoslcKn+Z2Rk6Nq1a+cEuPHGGx2LFy8O79ev3z8Wc6WkpOhnzpwZM2TIkBOzZs2KKcr/6zfffBO1atWqMLfbrTp58qS+f//+qY888khmnz59rO+9996R8ePHxx88eNA0efLk6AEDBpyrsjB9+nRbfHy877znG0hNTdU4HA51//79azscDvWAAQNSu3XrlpORkaEeM2ZM1TfeeOPYG2+8Ub0o/YMKMIIsSRJefYRy43IjyN48cKZzUo5Go5KoHC4qFgS7sxtC2LMuv22s2uvAgZFQgwiQKwqP2ozOf+VFWAB+twOnbMAogqAKQWtW3k/c9kKsa/G6yJP1mPXiw1Mw69WrV7ZWq/3HEGXNmjXzx4wZU61z584Ns7KyNB06dLADaLVaxo8fH9OvX7/6d95557kXkUaj4b777qs7Z86c2C5dulxQf9TpdKrDwsL8ABaLxe90OtVqtZqzweJXX30Vm5eXp+7cuXOu0+lUh4aGnguyVSqV7PV6Adi2bZvR6XSqb7311nNTZBfrf6VKlfKXL18eArB06dLwvLy8f1zg7Ha7asSIEdU+/PDDIxpNkV/fMoDD4VB/++23+7/66qv9U6dO/ceo+eDBg1ObNWtmPz84BqhcubIXYN68eeGbN2+29OvXL9Pj8Uj9+vU7PWXKlP3jx48/MHr06ITU1FTN8OHDa7z++uvHLvaBozAqxF9twBgFDpQR5EvJOQ7AQV8kVSKMaNRB/9mhwtNblIEGZ076ZY/TeJ3YZSMWESBXGPmaEAwep5KfLkmXP9jjFNPoFYguRAmQ851X3mRI5cvDgQ69RryflIb+bWtkXmm0t7SMGTMmYdq0aXsbNWrknjBhQsyIESMSPv7446MAgwcPTn/ssccyHn744TrLli1zdOrUyQ4wa9asfXv27DEMHjy49qRJk1JeffXVGgDdunXLNJvNfrvdrgKw2+1qs9nsB/D7/bz99ttVjx49apg4ceIBlUqF2Wz2OxyOcwGtLMuSVqu8f82ZMyeqd+/el3/TAz788MND7777brVx48ZJzZs3d2i1Wnn8+PExixcvjgTo3bt3elZWlnbIkCGJDodDnZWVpR0zZkz8sGHDzk29GQyGgMfj+ceLPy8vT2U0GgMAdevWdQEkJCR4vF5vof9IPv/889glS5ZETp06NcVoNMrx8fG+xx9/PF2r1RIXF+erU6eOa+/evYYTJ04YzqaOHD161Pjaa68lfPDBB8cK206FuKIHzNFKgHy57UGzjwCw2xVOtUiRf1wRGMOUEeT83MtcK2QZrd9BnmTEoBVvchWFX2NG7fErM0u6K1wP8u04MWLSixHkisBoUQJkbyECZLXPRb5kQLrShywh6ISEhPjOjuLGxcV5k5OTQ/bu3av/6KOPqk6aNOmAVquVdTpdQJIkecyYMfHx8fGeBx98MCskJMSvUqmoU6dO/uzZs21nHy83N1e9dOnS8NatW7sWLlwY2rRpUzvA8OHDq2u1Wm8juXIAACAASURBVHnKlCn71WrlGtSiRQvHsmXLwu+9994z69atM9esWTPv7ONs2rTJMnTo0FNX6v+iRYvCP/vss4PR0dH+l19+OaFDhw65Xbt2zRk8ePC5N8wHHnggC2D58uWW7777Lub84BigSZMmrq+//rqy3W5XWSyWQGZmpvrw4cPGBg0auG02m/FyfxeSJMkXyxv++OOP4/fs2WP+7rvvbCaTSQZl4d6MGTNip0+fvt9ut6sOHTpkbNiwoXvRokW7AA4dOqR77rnnahUlOIYKEiDrzBH4UaG+3AhytvL/lpxroXUtkX9cEZjCYwHwOi4z4ODLRy378WrM4k2uAvFpCxb25tuvGCBLXidO2UCEGEGuECxmM25ZS8BViADZn4dHJQZcKqJ33nnnyNChQxPVarWs1WoDI0eOPFKzZk1P3bp1XXfffXc9SZL+n737jpOquvs4/pnetxeWvrQLFopgFAWViF2KKBoNEisPSbDHmieKYmKJxPIYW0SJLVawG1CQYkdARMpQl872Mr3e54+ZhV22gDDLuNzf+/XKK+ydO/eexcOd7/zuuecwdOjQ2tNOO83bt2/f4M0331w8e/bs/Hg8zrRp0zbve7yrr766/IYbbuh+wQUXKCaTSX388cc3LV261P7JJ5/kHX300d5LLrlEAZgwYULpmDFjar788suMsWPH9lVVlQcffLCk/jjV1dWmvLy8/Q456N69e3DChAmK1WqNDx482HPuuece4MTwe/Xt2zc0fvz4svHjx/e12+2xaDSqu+2227bWj31uTc+ePUObNm2yPfnkkwVTpkwpA9i9e7dx5syZHXv27OmfOHFiH4AzzzyzatKkSeWLFy/OHD16dF+9Xs911123Iz8/P/pz27svTVzRsxxWasgg19dKpbB2G6rOwMaAi4tlBgtNyMhOPFMQba0SlJzqK2qUaf+0JG6uD8h14CpsdV9dxI+fDHkQSyMyrCbqcBzQQjLGWJCwvtmH/8URpri4OPz++++vrf95+PDh3uHDh6/dd7877rhjF9CogtuhQ4foa6+91ur65Q6HI/78889varitqKgounbt2qXN7T99+vStzW3/+uuvfzyQ9o8aNap21KhRBxSKTzvtNM9pp53W7LQ/kyZNKp80aVKT8DVx4sQ9lSmbzaYuXrx4JSRm2qjfPm/evFUN39OhQ4foqlWrljV3ntaqw/v+bgdKE/eMM+0mytUM1FaHWGwj4igihkGGWGhEhtNFWDWgBps8D7FXKLEYQNwsAVlTrA0C8n4YkxVkeRBLG+qnATyQeZBN8QARve0wtEoIkWqaCMjZdjOVcRdxT+sV5DpL4iHKbrkyxEILjEYDHpzoWlsRK1lBVs2yEpaW6KzJqSEPYLEQQ8wvU3lpSIbNSB0O9KH9B2RzPEjUIAFZiPZIIwHZRCUZqK3OYrGDSkNiTGqXHLmgaYVP78AQbiUgh5NTfVkkIGtJ/bLR+10MQlUxxYIEdVaZqUAjbCYDHuwYDmAhGXM8SNwonydCtEeauKJn2sxUqhnoWhpiEY+DZxe71Wyy7Cbs8rCNZvj1LkyRVkJQsoJYH5iENuhtiQpy1L+fIRaxMHpiRAwyU4FW6HT1C8nsJyDHY1gIE5MKshDtkiYCcrbdRKWakagURsNNdwhUQTzCjlgWRZlyMdOSoNGJJdrKghDJgGy0SQVZSyyOREDe71y3YR8AcQlBmhIyurBE9xOQk0vYx03yTIsQ7ZE2ArLDTBXJCmBzVeS6nQBsDLroJCvoaUrE5MLayoppan1ATi4vK7TBlPzvHfHvZ4hFfQgySgjSkrDRhTXu289Oib6BBGQh2iVtBGR7YogF0Pxqep7E3Nbr/E6pIGtM1JyJI95yJag+INVXFIU2OOw2AqqZ2P4CcjIEqRKCNCVqcmFWwxAJtrxT8ssTZnnoWwu++eYbx0UXXaTU/7x8+XLb6NGj+15wwQXK9ddf3z0WS0w9/Oyzz+aff/75/UaNGtXvrbfeygbwer363/3udz0vvPBC5ZJLLumzffv2Jsu2+v1+3dVXX91z3LhxyoQJE3qVlZUZAd54442cUaNG9R07dmzfW265pWssFiMWi3HLLbd0HTNmTN+LLrpIWb9+vQXgoosuUur/d8IJJwyYOnVqp5bav3TpUvuoUaP6jRs3Trn99tu71Le/oUWLFjlHjRrVd/To0X3vueeeTvu+/tJLL+U2PAfApEmTeixYsKDFW7J33XVXly1btpgrKysNr7/+epM5EufOnZtxzjnnHHXBBRcoDz/8cFH99unTp3cYM2ZM33PPPbffzJkz81o6/s+hiYCcZTdRqSb/ezQ3F7KnvoKcQZFUkDUlbs7AqSaXFG5G2FdLTNVhs8sQCy1xWYx4sRFrbYYTgEhyiIUEZE2JmZMFl9amAUwGZN3+VmIU7d6jjz5aWL+kcf22J554ouPkyZN3zZ492x2JRHQff/xxZnl5ufHtt98umDVr1tpXX33V/dhjj3WJx+PMnDkzr1+/fv533nnHfd5551X+85//7LDvOWbMmFHQq1evwKxZs9yjRo2qfPTRR4v8fr/uqaee6vj666+ve/fdd9d6vV7Dxx9/nPn+++9nhcNh/Xvvvbf2lltu2X7//fd3hsQcw2+//bb7oYce2pyXlxe+5ZZbdrXU/rvvvrvbHXfcsXXWrFlup9MZe+ONN5qE1QcffLDL448/vun9999fu3r1aseyZcsOucL4t7/9bVu3bt3CK1eutM+fPz+r4WuxWIx7772325NPPrlh9uzZ7pKSEuvixYudCxYscK1YscI5a9astW+88YZ7165d5kNtB2hkoRCTQU/Qkvxv629m1bRkBbmcLDpKBVlTdLZMzLoYoYAHi73pg3jRQC1ebLhsTb7QiyOYw2KkTrXj2F9ATlaQdRKQtaX+od1gHTgLmt0lGvRiRALyYfXdc7n88J+UVA/3GHhpBb+a1Mpyq9CtW7fQk08+ufFPf/pTcf02RVH8NTU1hng8jt/vN5hMJjU/Pz/68ccfrzKZTJSUlJhNJlNcr9czZcqUsmg0sfDbzp07zS6Xq0m5dvny5c5rr712N8BZZ51V9/zzz3e0WCzqG2+8sdbhcMQBYrGYzmKxqN98841r2LBhtQBDhw713XzzzY1uY9x3331db7755u31K9o11/6KigrzySef7AMYMmSI97PPPsu67LLLqhoe57333ltjMpnweDx6n89ncDqd+10hr95LL72Uu3jx4sxgMKjfuXOn5Xe/+93uiRMnVl500UXKtGnTtjzzzDMdNm3aZJ8xY0be1VdfXZFsk9HpdMZ69uwZBhg4cKD3u+++c3q9XkOvXr0CV111VU+/32+47bbbth9oO1qjiQoygGpP/ptproJct5OwNZcIRooypYKsJXpbNgDemqpmX48GPHiw47Rq4rukSHJaExVk3f4WCqmvElrkNrqW6JKznLS2WEjQn3i2wSB944g3bty4GpPJ1Og2ZHFxcWj69OldR44ceXRVVZXx1FNP9QCYTCaeeeaZ/Msuu6zf2WefvSd4G41GLr744j7vvPNOwTnnnNNk9Sqfz2fIzMyMAbhcrpjP5zMYDAY6dOgQBXj66acLAoGAYeTIkXU+n8+QkZGxJ2Tr9Xo1EokAsGLFCpvP5zOcfvrpe8YWNtf+oqKi0IIFC5wA8+fPzwoEAk0mejeZTHz99deOc8899+icnJxI586dm5kFoVkqgNfrNbz88ssbnn766Q0zZ85sVDWfPHny7oEDB3rqwzFAfn5+NBQK6desWWONRqN88cUXmYFAQF9TU2Ncs2aN/bnnnts0bdq0LbfffnuPePyAs3qLNPOpb7JnE/UbMLYwBtlnTiw73DFLKshaYnAk7uD46irJ7di9yetqyINXtZEhAVlTnBYju1QbReFWZjiBPbNY6GWcqaYYkl+sY4EaWloeJhKonyJSVuE8bH41qXJ/1d7DZfr06V3+/e9/rz3mmGOCzz77bP7dd9/d5e9///tWgMmTJ5dfeeWVFZdffnnvzz//3DtixAgPwJtvvrluzZo11smTJ/d6/vnn1995553dAc4///xKh8MR83g8egCPx2NwOBwxSAw7mDp1auetW7dan3vuuY16vR6HwxHzer17uqaqqjqTKXEX9J133sm98MILW1k1LeHBBx/cfN9993V96qmndIMGDfKaTCb1mWeeyf/ss89yAB577LFNnTt3jgwdOtS3ePHildOmTev42GOPFd111107649htVrj4XC4USE2EAjobTZbHKBPnz5+gC5duoQjkch+C7Z6vZ4HHnhg8913393VZDKpPXv2DGRnZ0ej0aiuuLg4aLFY1L59+4ZMJlO8vLzcWFhYGN3fMVs936G8uSFFUTIVRflAUZSFiqJ8rSjK0OT2ExVF+VZRlC8VRbknVef7ubIdZmp1mS2OQa425KHTQWGGVJC1xOxIDL3x17VwTQ3V4cOKyypDLLTEaTHixY5xf3PdRgIAGKwSkLWkflabkKf5O08AkWDiy5VJ+oYmOZ3OaH0Vt7CwMOLxeAxr1661XHXVVT3j8Tgmk0k1m81xnU6nTp8+vcOrr76ak3xfTK/X07t371D9mOErrriiYuDAgd76Mblz5szJGDBggAfgT3/6U7dQKKR/4YUXNtQPtRg8eLB30aJFmQBff/21o7i4OFDfru+//951xhln7HcZyE8//TTriSee2PTmm2+uq6mpMQwbNqxu8uTJ5fVt6tixY2TcuHFKVVWVAcDhcMT1en2jKnT//v39S5YsyagP9pWVlYaSkhLbUUcdFQRanTtep9OpajPPBi1cuDDjlVdeWf/KK6+s3759u+XUU0+tGzJkiPerr77KiMfj7NixwxQKhfS5ubmHFI4htRXkm4F5brf7MUVRFOA/wHHAM8CFwCbgI0VRBrnd7uUpPO8BqZ/qLbeFCnK5uTt5TgtmWQ1LUyyuREAOt/BBpwt58ao2OkoFWVPsZgNebBgj+6kgJx/SM1ikSqglZmfizlPQV0tLI4wjwUTfMFrlAV8tuvfee7dcf/31PQ0Gg2oymeIPPPDAluLi4nCfPn38Y8eO7avT6Rg6dGjtaaed5u3bt2/w5ptvLp49e3Z+PB5n2rRpm/c93tVXX11+ww03dL/gggsUk8mkPv7445uWLl1q/+STT/KOPvpo7yWXXKIATJgwoXTMmDE1X375ZcbYsWP7qqrKgw8+WFJ/nOrqalNeXl7TKSn20b179+CECRMUq9UaHzx4sOfcc89tFKr1ej1XXHFF6RVXXNHbZDKpubm5kenTp5c03Kdv376h8ePHl40fP76v3W6PRaNR3W233ba1fuxza3r27BnatGmT7cknnyyYMmVKWf32goKCyJgxY/pZLJb4OeecU3nMMccEjznmmOB3333nGj16dL94PM6dd9651Wg89M/sVH7qPwqEGhw3qChKBmBxu90bARRFmQOMBA57QM6xm9kdz6K3d3fjF6Jh8JWzw5BFRxl/rDn2jERAjviaDPkCwBipo44iqSBrjE6nI6y3Y4r5W90vFvJhAIwyzlRTbMmAHPa1XIiL1VeQbfLlSQuKi4vD77///tr6n4cPH+4dPnz42n33u+OOO3YBuxpu69ChQ/S1115b39rxHQ5H/Pnnn9/UcFtRUVF07dq1S5vbf/r06Vub2/7111//eCDtHzVqVO2oUaNarTSPHj26ZvTo0a2upjRp0qTySZMmNbl1P3HixD23bW02m7p48eKVkJhpo377vHnzVu37vquuuqriqquualLpvO+++1LyYF5DBxWQFUW5Grhpn81Xut3uJYqidABeAW4EMoCGT7l4gB4Hc85Dle0wsy2WjVr7E42K+t5SAErCGRTly/hjrXFkJh7ejPqbD8imiAcPvXCYWxppKI5UEaMdc8yfmAKwhVuBkYAXA2CySUDWEntyXvRooJWAHEpUkC2yCqcQ7dJBBWS32z0DmLHvdkVRjgVeB/7kdrsXJivIDa8OLmA/a7e2jRyHmR1qHjpfeWJyd1OyWpxcRW9D0EVhhiUdTRNplJGVC0C8hQ86S9RL0OBodayUODJFjQ4MsRhEg2Bq/stzLOQjpJqwWlIy7aZoJ1x2K17VSizQ8iwn8ZCPuKrDapXCixDtUSof0jsKeAu4zO12fwLgdrvrgLCiKD0VRdEBZwGLU3XOnyPbbmKXmghD1O3Y+0LNFgDWhXIokAf0NMdktuBTreiCzXxviwQxqmHCxqbzI4sjX8yUvDUeankccizkxY8Fu9xh0BRXchrAeCvzZKthf6JvWOT5hTYWj8fjUsEQP1uy37Q4HjqVT6Q9AFiBxxVFWaAoynvJ7ZOBV4HvgOVut/vbFJ7zgGXbzewkGZBrGwxVqU4E5O1qPgUuqSBrkVfnQN/cfLfJbVGTjCHUItWUHDYRbnkmi1jIhx8LNpMEZC1xWo14VRu6VvoGER8BLNjNEpDb2E/l5eWZEpLFzxGPx3Xl5eWZwE8t7ZOyf7lut3tMC9u/AU5M1XkOVo7DzM5mK8glhG35BIMWmeJNo/x6J8ZwMwE5uQjAnmVlhaao5v1XkNWQj4BqwSYhSFOcFiPbsZHd2jzZkQB+1UKWfHlqU9Fo9Jrdu3c/v3v37mPQ0OJn4pDFgZ+i0eg1Le2gmat6tsPMbjW53PQ+FWSvrRNUyxzIWhUwujBHmwvIyW1WCchapLMkH59oNQT5ZYiFBlmMenzYyGulb+iSfaNI+kabGjx4cBkwOt3tEEcezXzbyrKZCGHGb8qB2m17X6jeQpW5I4AMsdCosNGFLdrMrdLkuOT65aiFtuit+68gE/YTkCEWmqPT6QjqHZiiLfcNfdRPEKvMrS9EO6WZf7lGg54Mq5FqUwHUJodYxCJQt51SfSFmg54su8x1q0VRcxbOeMtjkOtXzRLaok/eOVBDLY8z1UX8+FULNqkSak7I4MAU9bX4uiEaIKSXoosQ7ZVmAjIkxiGX6wv2DrGo3QZqnK1qPvkui0zlpVExazYZqod9l7WM+hMVZItTKshaZEzOXxttZaYCfSwgQyw0Kmx0YIm3HJCNsQBhnQzbE6K90lRAznaY2U1u4iE9Vd0zg8XGSJ7Mgaxl9hxsujB+X+PbpSFvYvEQCcjaZLQlKsgRf8sVZEM0QAArdpNmHucQSTGjE1s8uZBMM4yxAGG9zIEsRHulqYBc4LJQEslOPHQTqN4zB/LqYA4FLvmmr1UGR2J2k7qq0kbbw95qYqoOp0uGWGiReU9AbrmCbIgmhlhYzZq6lAogZnaiJw6R5pcjt8T9hA2ywqIQ7ZWmrupFmTaWhhIP5LHtO6guAb2R1V6nVJA1zOhMLDftrW68XHzEV4MHOxl2WSVNi+w2K0HVRKyVIRbGWJCgzoLZoKlLqQDi5uQsJy2MUbfEA0SN9sPYIiFEKmnqql6YYWVhsDeq2QHr58CmhcTz+1ETjMsqehpmzUwE5EBtWaPt8UAtdaqdLJs8vKlFdosBLzZiLc1iEY9hUkNE9VZ5fkGLLK0E5HgcqxqUgCxEO6apgNwh00IYE77Op8CPb8HOZdQo4wGZ4k3L7JkFAIQ8jSvIajBRQc6UgKxJDrMRv2pBDbYwBjl5az1qkHGmWlQ/ywnNrcIZSTy8FzPKEAsh2itNBeT6hUB2F5ySWD7WYGFT0fmNXhPa48xOBOSop7LRdl3IQ53qIEuGWGiSw2LAhw21pQpyOBGQY0YJyFpkSAbkaKC5KSKTfcYsAVmI9kpTAbkoM/FBti5jaGJDv/Mp8Scqx11y5FaYVmXkJAJy3F/VaLshXIcHGxlWmaFAixxmI16s6CItBOQ9VUK5dmiRIfkQZ8hb0/TFcKJv7FmuXAjR7mjqk79Dskq8OeSCS9+AogFs/daDTgedsqQKpFVGsxUvNnSBxgHZFPUQ0HfCKA9gaZLdYsCn2tCHW5jrNllBViUga5LJkZjdJuirpUmdOJwYlqO3SEAWor3S1Ce/zWwgw2qktC4IytmQUcS2Kj8dM22yHKjGeXQujKHqRtssUS9ho3zAaZXTkqggG1paLS05Blk1SUDWIktyhc2Iv7bJa9Fg4q6Drv5BPiFEu6O5VNgh08ru2uCen7dW+emSI9VjrfMZMrCEG9wqjcexxP1ETBnpa5RIK6sxMQa5xeWE62+jm2ScqRZZnYmAHG0mIId8iW1Gq3zBFqK90mBAtrG7bm9A3lblp6uMP9a8oDETa6TBB12oDj0qMYsEZK3S63WE9a0E5GQFWW+R64cWOez2FufJDiVXXzTZ5fohRHulvYCcYdlTQQ6EY5R5QnTJlg84rQubs3DEG3zQ1U/dJAFZ08IGB6Z4oPnlhEP1t9GlSqhFLqsRDzbUZgJy/eqLRpsMsRCivdJgQLZS7g0RicXZXp2oAHXNlYCsdVFrDq54g/luvYk5keP23DS1SPwSRI0O9Kh7hlM0Ek7ObiHjTDXJaTHhVW3NLhQSTc6dbXXIF2wh2ivNBeSiLBuqCrtqgmytSgRkmeJNYMshU+cjGAoBoNbtSPy/qyidrRJpFq1f6CHczFRvyW0yzlSbnFZjYvabZubJjgYSAdksQyyEaLc0F5AHdM4CYElJFduSAVnGIAu9IweAuqrEctPh6kRA1mV0TFubRPrF6x/AayYExZIhSAKyNtlNBjzYMUSaDrGIhzwEVRNOmyxAJUR7pbmA3LeDi2y7ia83VVJS6cduNpDrkJXStM7oTAyl2BOQa3YSUQ1YMgrS2SyRZnsWegg3cxs9UIdXtWI1y1LkWqTX6/DrnJjCTQOyGvLiw4rDoqmlBoQ4omjuX69er+PEHrl8uaGCSEzlhOIcdDpdupsl0syR2xmAurItcPRgwtXbqSOLPJdMAahlav0DeM1VkJMhyG7W3GVUJAUMLizRzU1fCPvwqVYcZsPhb5QQIiU0V0EGGNozl121QSq8Ia4aVpzu5ohfgNwuCgDBso0AxGt3Uqpmy/h0jdObkw/gNfMgVjzowavasEsI0qyQ0Yk11rRv6MI+qSAL0c5pMyD3SNxOVwpdDOuVl+bWiF+C7MKuhFUjVJcAYPCVUqpm0zlbKsiaZkssBrFn2r8G1JAXPxZsEpA1K2xyYVWDEIs02q6PePFhw2aSviFEe5Wyr7eKojiA14BsIAz8zu1271AU5UTgcSAKzHW73fem6pwHq1eBk3GDOjFqYEcZXiEA0BmMlBoKsXi2AmAPllFj7CsVII0zJAOyGqylyZUi7JEQpHFRcyb4gGAtOPYWWwxRPyGdFb1ePl+EaK9SWUG+FljqdrtPAV4Bbktufwa4DBgGnKAoyqAUnvOg6HQ6/nHJQEYo8gCW2Kva3JGM4A4IebHGfYRshelukkgzgz0x601zywkT9uFVrTLEQsNUS/IOQ6Cm0XZT1EdQL8OzhGjPUhaQ3W73Y8Bfkz92BWoURckALG63e6Pb7VaBOcDIVJ1TiFQKOLtQGNsNnt2JDTIHsubZbDZCqomIv6bJa/qIL1FBloCsWTpb4gsUwcZfoEyxABGDBGQh2rODun+sKMrVwE37bL7S7XYvURRlPnAscAaQATQcvOcBehzMOYVoa/Gs7mRU+PBtX4kDMGV3SneTRJrZzUbqsGFtpoJsiHjxqRacMgxHs+rvMKjBmkZDcMxxPxGzBGQh2rODurK73e4ZwIwWXvu1oih9gY+AQUDDdVhdQNNSjBC/AOa8HrABqlZ/jgNw5nVJd5NEmjktBjyqHXOguYCcqCDLOHXtMiYXGAp7q7A02G6NB4hKBVmIdi1lQywURblTUZTLkz96gZjb7a4Dwoqi9FQURQecBSxO1TmFSKWMot4AmLd/BSRmthDaZjcb8WBvOotFPIYpHsSHVSrIGmZxZgMQ9FTt3RgNYSRK3CQrLArRnqXyyv4C8O/k8AsDcGVy+2Tg1eS2uW63+9sUnlOIlMnv1geAQv961sS7UlSQn+YWiXRzWIx4VFvTgBz2AeDHhsWoydkyBWBxJaYMDXsbBORk31DNjnQ0SQiRIikLyG63uxQ4u5nt3wAnpuo8QrSVzMxs1tOFmriN/wnfzBcyB7LmuaxGyrCjD1U1fiGcWFkvYnTIVJEa5nI4CalGIr4GIweTfUM1SUAWoj2Te4NCJOl0OiouncuHqyq40GKUJYQFTosRj2rHENnS+IXk0tNxo4wz1bIMu4k67MT91Xs3JvuGziJDLIRozyQBCNHAUKUjQ5WO6W6G+IVwWRNjkI0Rb+MXklXCmIwz1bRMm4k61YG5wTRv8WAdekBvcbX8RiHEL54MnhNCiBY4zEY82DDH/BCP7X2h/ja6WQKylmVYTdThQB/cO8Qi7CkHQLXnpqtZQogUkIAshBAt0Ot1hA3JENzwQb3kbXTkNrqmuaxGalUHhvDevhGuKwNA78xr6W1CiHZAArIQQrQiYkreKg82CMjJCrJeKsiaZjTo8esdmCJ7+0a0LlFBNkhAFqJdk4AshBCtiNYH5FAzAdkq40y1LmjMwBL17Pk57i3Hp1qw2qVvCNGeSUAWQohWqJZmKsjJIRYGm4QgrQsbXdhiHlBVAOK+CqrUDDJspjS3TAhxKCQgCyFEK1RLZuIPzVSQTTYZYqF1UXMGBuJ7FgjBV0ElLnId5vQ2TAhxSCQgCyFEK3S2ZEBuUEGOBT14VStOi4QgrYvXf4EKJOZC1gcqqVIzyJGALES7JgFZCCFaYbA1rSBHAx78WHFYZCp5rQvbCxN/8OwCwByqoooMsuwSkIVozyQgCyFEK0z2+gry3sUg6ivIDoshTa0SvxQRZ6fEH2q3gapii1TjN2Zh0MsS5EK0ZxKQhRCiFTabg5BqIhbYG5DVQDV12KWCLFAzEgE5Vr0Vwl5MapigOSfNrRJCHCoJyEII0QqX1UgdNqL+vaul6XxlVKiZEpAFNlc2taqdSNVW8FUAELNJQBaivZOALIQQrXBajdSpDmINArIhUEmFmolTArLmbAaduAAAIABJREFU5TjM7FTziFZtA38lAKpdFgkRor2TgCyEEK3IsBqpIBPVm1hCmHgcU7CSCjJxmCUga13HLBs71NzEGORkBVnvyE9zq4QQh0oCshBCtMJpMVGmZmHw7U5sCFSjV2PJIRbykJ7WJQJyHmbvDqLexDLT5kwJyEK0dxKQhRCiFU6rkVI1G6O/LLFami9RSa5UM2QMsqDQZWE3eZijHkJlGwCwZRamuVVCiEMlAVkIIVrhqg/IUT+EPOBLVAkrkDHIAowGPT5bEQDqzh8IqiYyMrLS3CohxKGSgCyEEK1wWRIBGQDPbkiORa4iC4tRLqECYq7OANh3fMkmtSM5TkuaWySEOFRydRdCiFa4rCbKqA/Iu/ZUkP3mHHQ6WQxCgCmnKwD6eIRp0QnkOWUVPSHaOwnIQgjRCqtJTznJeW2TFeQYBmLmzPQ2TPxiOPM6UqU6WdPpIr6OH02OQwKyEO2dDKATQohW6HQ6ApY8UNlTQfYYsrBbJQSJhI7ZLk4L/YMzM/qg0+0kyy59Q4j2TirIQgixH3qri6Denqgg+8qp1mWRIyFIJHXMslKHk683V5PrMGPQy9AbIdo7CchCCLEf2XYzVfpc8OwEbxnlagZ5LgnIIqFztg2AHTUBLh7SJc2tEUKkQsqHWCiK0hf4Fih0u91BRVFOBB4HosBct9t9b6rPKYQQbanAZaGsNpuOyQry7lgxeTJTgUjqmJUIyMV5Dq4/vXeaWyOESIWUVpAVRckApgOhBpufAS4DhgEnKIoyKJXnFEKItlaQYWFnLAvqdqF6y9gVdUlAFnvYzUbuPv8onvrtcVhNsrqiEEeClAVkRVF0wHPAXYA/uS0DsLjd7o1ut1sF5gAjU3VOIYQ4HPKdFrZFMlBrt6GLhShTs8h3SUAWe101rJh+RRnpboYQIkUOaoiFoihXAzfts3kL8Lrb7V6hKEr9tgygrsE+HqDHwZxTCCHSJT/Dyhfx3qi2HCq7n8us5SfzsFSQhRDiiHVQAdntds8AZjTcpijKBuDqZHjuAMwFzgdcDXZzATUH11QhhEiPApeFOfHjWfXbmyj3Bqle/r0sBiGEEEewlD2k53a7e9X/WVGUEuDM5EN6YUVRegKbgLMAeUhPCNGuFCSHU5R5glR6wwAyBlkIIY5gh2OhkMnAq4CBxCwW3x6GcwohRMoUZFgBKPOEqPIlArKMQRZCiCNXmwRkt9vdvcGfvwFObIvzCCHE4ZCfrBaX1YWoCYRxWowyW4EQQhzBZKlpIYTYD7NRT7bdRJknSG0gIuOPhRDiCCcBWQghDkC+y0K5J0RdMCLjj4UQ4ggnS00LIcQBKHBZKfOEqPCGJSALIcQRTgKyEEIcgIJkBbnCG5IH9IQQ4ggnQyyEEOIA5GdYKK0LEo2rUkEWQogjnFSQhRDiAAzonAUkxiIfX5yd5tYIIYRoS1JBFkKIA3DusUWcc0wHdDpdupsihBCijUkFWQghDpCEYyGE0AYJyEIIIYQQQjQgAVkIIYQQQogGJCALIYQQQgjRgARkIYQQQgghGpCALIQQQgghRAMSkIUQQgghhGjgFzkP8qpVqyoURdmS7naIQ9KtLQ4qfeOI0CZ9A6R/HCHk2iFa0mbXDiH2pVNVNd1tEEIIIYQQ4hdDhlgIIYQQQgjRgARkIYQQQgghGpCALIQQQgghRAMSkIUQQgghhGhAArIQQgghhBAN/CKneWtIURQ98BQwAAgB17jd7g3pbVV6KIqyDKhL/rgZeBZ4HIgCc91u973pals6SN9oTPpHY9I/9pK+0Zj0jcakfwjR1C8+IANjAavb7R6qKMqJwHRgTJrbdNgpimIFdG63+7QG234ALgQ2AR8pijLI7XYvT1MT00H6RpL0j2ZJ/0D6RgukbyRJ/xCiee0hIA8D/gvgdru/URRlSJrbky4DALuiKHNJ/HebCljcbvdGAEVR5gAjAS1dxKRv7CX9oynpHwnSN5qSvrGX9A8hmtEexiBnALUNfo4pitIegn2q+YFHgLOAycCLyW31PEBmGtqVTtI39pL+0ZT0jwTpG01J39hL+ocQzWgPF4Q6wNXgZ73b7Y6mqzFptA7Y4Ha7VWCdoii1QE6D111ATVpalj7SN/aS/tGU9I8E6RtNSd/YS/qHEM1oDxXkL4FzAZJjxVamtzlpcxWJcXIoitIRsAM+RVF6KoqiI/Htf3Ea25cO0jf2kv7RlPSPBOkbTUnf2Ev6hxDNaA8V5NnAGYqifAXogCvT3J50mQHMVBTlC0AlcVGLA68CBhJPGn+bxvalg/SNvaR/NCX9I0H6RlPSN/aS/iFEM3Sqqqa7DUIIIYQQQvxitIchFkIIIYQQQhw2EpCFEEIIIYRoQAKyEEIIIYQQDUhAFkIIIYQQogEJyEIIIYQQQjQgAVkIIYQQQogGJCALIYQQQgjRgARkIYQQQgghGpCALIQQQgghRAMSkIUQQgghhGhAArIQQgghhBANSEAWQgghhBCiAQnIQgghhBBCNCABWQghhBBCiAaM6W6AEEK0JUVRDMANwGUkrnlm4APgbrfbHVIUZSbwk9vtfiSNbbwCuMjtdp+frjbsj6IopwAPAzagFrjC7XZvSm+rhBCibehUVU13G5o44YQT1E6dOqW7GeIQrFq1qsLtduen+rjSN9q/tuob0Hz/2LlzJ7FYjI4dO2IwGIjH42zfvh29Xk/nzp3ZsWMHFouFvLy8tmjSAamurqauro5u3bqlrQ2tiUQibNy4kW7dumGz2aisrMTr9bZJe+XaIVrSltcOIfb1i6wgd+rUiVmzZqW7GeIQKIqypS2OK32j/WurvgFN+8e2bdsYNWoUX3zxBU6nc8/28vJyli9fzplnnskdd9yB1+uloqKCiooKevfuzfTp07Hb7bz99tu88cYbRCIRamtrufbaa7nsssuYNWsWn376KXq9ni1btmAymXjooYfo06cPl19+OQMHDmTZsmXs2rWLwYMH89BDD6HX61m2bBmPPPIIgUAAnU7Hddddx4gRI5g1axZz5szh2WefbfT7xGIxHn74YebPn4/L5aJ///5s3LiRl19+mcsvv5zMzEw2bdrEpZdeyhlnnMHUqVPZsWMHqqoyduxYrrnmGrZv386oUaNYvnw5QKOfZ82axUcffUQ8Hqe0tJTCwkIefPBBCgsLG7Vj5syZ/PTTTzzySKLIHgqF2L59Oz179kz5f0O5doiWtOW1Q4h9/SIDshBCpMLq1avp1atXo3AMkJ+fz5lnnrnn59LSUl566SXMZjPjx49n7ty5nHHGGbz11ls899xzZGdn88MPP3DllVdy2WWXAbBkyRI+/PBDOnTowLRp05gxYwYPPfQQAFu3buXll1/G7/dzzjnn8N1339GvXz/uvPNOZsyYQefOnSktLeXiiy9GUZQW2//WW2+xatUqPvzwQ3Q6Hb///e8bvZ6RkcHHH38MwIQJEzj99NO58sor8Xg8/Pa3v6WoqIgBAwa0+ne0bNkyZs2aRXFxMY888gh//etfeeKJJxrtU1JSgt1u56abbmLz5s0UFRVx11137edvXwgh2i8JyEKII5Zerycej+93v5EjR2Kz2QDo3bs3VVVVOBwOnnnmGRYuXEhJSQlr167F7/fvec/RRx9Nhw4dADjqqKP49NNP97w2YsQI9Ho9TqeTbt26UVtbyw8//EB5eTl//OMf9+yn0+lwu90ttmvhwoWMGTMGi8UCwCWXXMLLL7+85/UhQ4YA4Pf7WbZsGS+88AIALpeLcePGsWjRov0G5JNPPpni4mIALr74YsaMGdNkn2g0yueff86rr75K9+7deemll5gyZQrvvfdeq8cWQoj2SmaxEEIcsfr378+mTZvwer2NtpeWljJp0iSCwSAARuPeWoFOp0NVVXbv3s3YsWPZsWMHgwcP5sYbb2x0DKvV2uQ9rb0Wi8Xo2bMn77333p7/vfHGGwwbNqzF9jdsFyQCf0N2ux2AeDzOvs+TxONxotFok7ZFIpFG+xkMhkbvafhzvYKCAgYNGkT37t0BuOiii1i7du2evz8hhDjSSEAWQhyxCgsLGTVqFHfdddeekOz1epk6dSpZWVmNguy+fvrpJ3JycvjDH/7A8OHD+fzzz4HEuOCDMXDgQLZs2cKSJUsAWLNmDWeddRZlZWUtvufUU0/l/fffJxwOE41GmT17drP7OZ1OBgwYwKuvvgqAx+Ph3Xff5aSTTiIjI4NIJMKGDRsAGlW6Ab755htKS0sBeP311xkxYkST459xxhksW7aMbdu2ATB37lx69+7d6t+fEEK0ZzLEQghxRLvnnnt46qmn+M1vfoPBYCAcDjNy5Eiuu+66Vt938skn8/bbb3P22Wdjs9no378/OTk5bNlycM8J5eTk8MQTT/Dwww8TCoVQVZWHH36Y1mZWGDduHJs3b2bs2LHY7XY6d+68ZyjIvh555BHuu+8+Zs2aRTgcZtSoUYwbNw6dTsett97KtddeS05ODmeffXaj9xUWFnLrrbdSXl5Or169uO+++5ocu1+/fkydOpUpU6YQjUbJyMjg8ccfP6i/ByGEaA9+kdO8jRs3Tm3XTxtHAlC+FgqOAqMl3a1JC0VRlrrd7iGpPm577xu1oVo2Vm6iZ24PMi2Z6W5OWrRV34D23z/29cUXX1BZWblnXPD999+PxWLh1ltvTcnxW5o9I53k2iFa0pbXDiH2JRXkVNvwGXx4E9RsBZMDTv8LnPj7/b9PHPFeWvQm6z/wUODpykfOVfS/oIAxJ5+5/zcKzerduzczZsxgxowZxGIx+vbty9SpU9PdLCGEOOJJQE6lsrXw+m8huzuM/j9Y8wH89w7wV8Kv/zfdrRNpNHvFB+x620CuvgM5x0NkZQZbXoHZ4blcMEJCsmheYWEhL774Ypsdf9y4cYwbN67Nji+EEO2VPKSXKrEIzLoWzA6Y+D4cNxEufR0GTYBFf4fV76e7hSJNaoI1fP/6DmwxJ5eMDvHb3Nlcc946gs5atrwV45uVy9PdRCGEEEI0IAE5VX58E3b/COf9A1zJVaj0BjjvUeh4HLw3BWq3p7eNIi2e//wVOlb3oW/PVXRYcCX+hR9jnfM3Ls/+K1FjmIUzN+Dxe/d/ICGEEEIcFhKQUyEeh6+egMJj4KgxROIRFmxbwHM/PsfXZUtRL5wBsXBiuIXQlHJ/OTu/DBI3hBmy7nHWftSdLZ/Y2PhhIZ6PgxxrfQanL5d//UvuMAghhBC/FCkfg6woyjKgLvnjZuBZ4HEgCsx1u933pvqcabd+bmLWinH/IhQPc8sHU9i2eiVeW5Qns0IM6nAc/zfsejIWPATrP4XeZ6S7xeIweXfFhxRXDKCn6VNKFzoosefw+ennM8geRZn7Bl3/u5kNv56HZc3pfLjoc84/pekctEIIIYQ4vFJaQVYUxQro3G73acn/XQk8A1wGDANOUBRlUCrP+Yvw/QxwdUQ9aix/fXQSXV/fySkr8jj3mw5cueh4vCvrmORZgSe3F3xyO0RD6W6xOAxUVWXFNyXoMdBx2Zeszi9gRd8OdPF/h70wSuG/niaYUcBpn79PyFjG6neq2VaxI93NFkIIITQv1UMsBgB2RVHmKooyX1GUUwCL2+3e6Ha7VWAOMDLF50wvbzlsmAf9L+bt2U+TuaQSk6kPrvwJFGQPQw3UcdIyPdZlLm7t2oNo1Ub45ul0t1ocBktLl5K3vQc2dTPrrXpKCpx06tqZvkOHs/WnH3j7/x7Gcc9dqFY7J614EVvIxQtPf0IkFtn/wYUQQgjRZlIdkP3AI8BZwGTgxeS2eh7gyFodYdVsUGPszDmJknc+BVMXcjNO5VeLHmXw4lcYtmYT+jgcu8ZD3Uo7T/QclJjVom5nulsu2tgny+eR7+tCxs5FbM3LxDzgVCbc9xBnTJrCVY89R27nLnz4wlPo77yVjJoddCv9kLwdPXj8Py+lu+lCCCGEpqU6IK8DXnG73arb7V4H1AI5DV53ATUpPmd6/fgGFB7Lu+/OBp0Rq/0cjvr6Mb49+kQuOnsq1/76NvR1FnRqkCGrzXxS5eAbow7m/DndLRdtKBqPsmOFFzXuZ6e5HL/excQbpqDTJ/7JObKyGf+Xv1HYoxefvv0apttupdeaT7EF12L6shMvLPxPmn8DIYQQQrtSHZCvAqYDKIrSEbADPkVReiqKoiNRWV6c4nOmT8022PE9W7NGEFi3HbNlKN23LuLz4mN57qjz+d+Lf8XzN5xJ9R/+jC9agBrbxXlL+3Nvfm9q1rwLG+en+zcQbeT70u/pUN4Lg+9zIkY9pnOuINNha7SPxW7ngtvvwZWXx6cL52D//dUMXjoTU8zP7ll63vvpozS1XgghhNC2VAfkGUCWoihfAG+QCMzXAK8C3wHL3W73tyk+Z/q4PwFgzopdxAxmLAYFg28Nrx97Lq9deyKXndCV47vnMHX00Yx86AF0sWxioZWM+OoU7inqgvrBDRD2pfmXEG3hs1ULyfMWEAqvR41a+M25w5rdz56Rydjb7iEej7Fg2yZyRp/KcT88T2Ywm69f3sKCLYsOc8uFEEIIkdJp3txud5jEjBX7OjGV5/nFWPsh5dZ+1K3Zjdl6Mp12fcPfjx7Dw5cch9LB1WjXob3ycDz4EPPvvA48a2H9ibxV+BEXz7sPznkoTb+AaAuxeIxNP5YxIPQjMX2ckl5n0D3P0eL+OR07MerGO3nngbtZMuA4fjW0K74Vr0PfCfxn5jyc/+NgSIfBh/E3EEIIIbRNFgo5WIEa2PIl3/h6E9fpMJmOoSxWRs+TjuP0foXNvqV/r44MmXQTqAG67zDzevxoSpY+D5sWHN62izb1Y8WP5Jd2Jx78AVcwzMBzz9zve7r1H8jpV01m8/LvWXvssfQ9WqXz9s/pv+tU/v7SDJbtluWohRBCiMNFAvLB2vAZwYjK+o21GE0KedXr+U+PE/nzef1afduwM4bR7fgziEdL+PWKX/GXnG5EZv8eAtWHqeGirc3b8DlFlU7iqodqQwHn9+94QO8bcMa5DBk1jhWffsLWEWdyXKcScqpWM3zTBfzlzYdwV7nbuOVCCCGEAAnIB2/DPNYFu6HG4hgtgwgFt6EMH0K33JZvpde78JYpOLO7E4qs4ISvfs2jpiB8cAOo6mFouLbUlPr56Kkf2bam6rCcT1VVflqxCUJrMcRhW/+z6ZBpPeD3n3LZFRw1fARfvfUqZedfwAnWL3H6yjhr9QT++PYdVAQq2rD1QgghhAAJyAdHVWHjfFb4uxI32DDFnczNKeR/TulxQG/X6XRc8Y+HMRichKJbCf90Mv/d8iks+3cbN1xbFn49j5fuW0jJjxUs/3TLYTnnuup1OHfkEwuvI9/j55jTft7we51ez1m/v5HeJ5zEgldeoPbSSzkh8B6WiMpZK8bxu3evIxwLt1HrhRBCCAESkA9O2Rpqq6opq4hhNvUnp3oloRNOon/nrAM+hMVu57K//Q3UMA6PmQ8rjmXlvP+FsrVt2HBtmf/BD8TVKO68b9m2poqgr+1XqJu3ZT5dS51AhCpzLmcc3eFnH0NvMHDe9bfS47jjmT/zOSLXTGRg+dvYo0X0X3os1396d+obLoQQQog9JCAfjI3zWefJA0BvPob1+jAXn1j8sw9T0L2YM676I/F4GX22Hc30UBcq3rkCIsEUN1h75n75MvmVR9N921JGL1oAqo7NK9p+eMJ3q37AFNiOMaZjTfFp9Mx3HtRxDEYTo266k279B/HZzOdw/WE8xbs/o7P3RGqW7+KFH95JccuFEEIIUU8C8sHYOB93oDOqwYklpuPLTsWc17/ooA7V/6wzOPqks4jE1nPCmpHc7asjPG9qaturQYv/uxidzkxRVjXZdVvRxarYuLysTc+5zbMN3SYb8chmCuv8dDt9+CEdz2g2M+aWP1PUpy9zXnqeXhMHkVm7kVM2X8yLXz7NqrKNKWq5EEIIIRqSgPxzxaJ4Ny2l1GPGZDwKW52bAacOxm4++Cmlz7zuD+R37I0/toKBSy/k/tVvom78PIWN1paNm1dQtGMg1kA5gx66nbLuGeRUrWbXhradKWT+1vkU784GosQxceoxnQ75mCarlQtuu5vsoo7M+eBtBgyuwxBXGb/iUq758EYCkdChN1wIIYQQjUhA/rlKf2JjVWJWAr1FYaM+woWDOx/SIfV6AxffPw2rNQOPuo6ipWN47uM/QLA2FS3WnI9n/wPV1Buno4R161YTO6ofWXUVhANxwoFom513wbrFuOpqMMQNLM0fwuBu2Sk5rtXp5MK77sNsd/DVhhX0M36FQV/Mr1f2ZeKsaSk5hxBCCCH2koD8c239mg2eXNBbMMadrOzRk+O6HnoQsjqcXDztfnSECah11P5wPB+8dWUKGqwtkWgMy0ojsch6dtd9y5ynH8PR50SswUoAPFVtM767zF+GZ32UeKSEfG8Y47BTMRlS98/LlZvHhXdMJRIKsdFeRYe6b+noPwv9xp94ZNEHKTuPEEIIISQg/2zRzV+x1Z+F0VCMzbeJX502CL1el5Jj53ftznk33ooaK8Ucyue778J8t/DJlBxbKz6d8yZmfz8ivrnkd+9BbueubFq+jLA+EZDrKgJtct55W+fRe0chECHL5+FXv2p9wZiDkde1O6Nv+TM1u3cT7lqGNVDKrzdO5IMV01m4cVPKzyeEEEJolQTkn0NV2b7qR+KqHp2lL6V4GTPwwFZJO1DKiSdx/OiLiUXcFNScyBtzXmfT5h9Seo4jVSyuUjP7n9SYq4EY5/zxJoZd+jtqdu9kR16iclxX2TYV5Hkl88mvjqBXjax19eJUJb9NztP1mP6c/fsb2Ll5Pa7CpcR0Nn6z7BJun3MD26p9bXJOcfh5wh4isbafllC0D6qqsnPdGj6b8TRvTbuHN6fdy7wXXmS7ew2qLDAlRJs4+CfLtKi6hC2VOkCH3tiFko5GlEJXyk8z/NIJlG3cyJZV39Jnyxj+76X/4Z5bPiPLmfpzHUnmzFuIZdcxxJwr6fWrEWQXdSKrQ0fsmVn4fSH0sRC1pZ6Un7c2VMuW9bvoF64iO6Bn1VEnkue0pPw89foNH4GnqpLFr82kU26MithofrOslAn8mfev/DuZNlObnVu0nZpgDS+89gzBrzZg8fnRAXqdCVemg2GXjKLPqWej06XmbpVoP/x1tfz3qcfZvPw7wIjOkA1qjG0/fc8Pc97BZM2j55CzGTLqbAq6ZUofESJFpIL8c+z6gc2+bPT6bGzBSrr+ekibXIx0ej1jbruTrPyOeKNfceyacUx7YjTBSNs9YNZeBUNh5ry/mJc++wnno7eyI9MOwK+vmAgkVi0s6N6DqM6MLVhF6aadKW/Dkt1L6LOjM6ghOlaV0fnUk1J+jn0dP/pCBp0zih2VG8mKfIjJeApn/6gy4eWnCIRjbX5+kVpfrf6G5ybfgTrnCyyeKsxxCybVRjwepaZqKx8+/QzPXnIl3/7zMeJhWUlRK+oqynnpthvZvHwpRtvJxAqHEHaCXQ2RGc/CZuhMLBxh7Rev8OqdU3jqD0/x+RtrqNjuTXfThWj3jpgKsrptCSXvXUvXE2/AMKRtHm7zbVhCZciBydKHUGQnZx57TpucBxLTe11871/595+upzqwnIHLR3D/w1cz9Y4XMabw4a/2rmTRYvLvvofOoUo2dhlGJLaeLoOH48rN27NPfvcelPy4DEusnLqK1Ffhv9n1DZ0qTIABv8HG8GO7pPwc+9LpdIyYeC0hn4/Vi+aTE/sEbGMY8uPrXPXyK7w4cQJWk6HN2yEO3Xufzmbji+9hiFWSH3TRy7aJkmIDmRlGuka3UFVp5cfKnvjCpXyxaD4/fL6CHv0KGHHTHRhzUjNTivjl8dfW8Prdd+CrqcXkGknx5vfptWM7AJWZTkI2I6aQn+yaMLuz81jXwUCw6hOWzf6CHz8ZjK3DAIaMVDhqaBFWh9xVEuLnOiIC8qrVb3HPl3fjdpq4/Kv7uC23JxSfkvLzbF/7EwA6czG7jeUM6nLgS0sfDFduHhffcz+v/flPlOs2cMySrjzwwB3ceeeDEpKTvC4d3554H0RLCQcWQ0zPOddc3Wifgm7FoII+tINwUEl5G5Zs/Z5TvFacETvLivowqnNmys/RHJ1ez1mTbyAWjeL+ahGZMR15jovpt+wVrlH1PDfx0kOan1u0vY/mv8vGF2ajxus4KuJnwfDRdDrvMcb3yd8zC0rcU4ay6F/s/moVi7f3wRus5Md1lWy69kZyOjk57+57sOcVpPk3EakUi0aY/dD9eCorsdnO5KTv/k15lh7Pdbcy6NIL6Nfgi1EsGIQvP6Duo5eJrC3FawhTqy7Au/lLFr00gK/fHkCvoT0YfkE/7BnmNP5WQrQv7T5l+cJebv72fnS+3lz13UMES+7jg9f+nfoTqSo7tpUDOnSGAsyD+qZs9orWFHTvwYV/vheoY6d9J8oSMw/dcy/BiNxGB+g/ZBiRY5bji31JPLqVkdf8AVdObqN98rv3ACAeKyeuWgj5U/fw007vTizr9aB6KajzYzj+xMP65UVvMHDulFvoe/Kp1EZWY/R9Qk7ktxyz5FOufu5fVHplIZFfqmWrv2Pdv95DjdfQ0xSg7LrHeODmazi9X2GjKQL1rgI6nPdnBt67gCm3nMd5xxmx2HLxGmvYWrqVmb+/k+evvJoS9+o0/jYilRa+/CK7N67FbPs1x655G/fl53P6gi/51R+vwrTPXQOD1cqxp4/nwn+8zyUffcdJT9xPVk8zjmA1seASglUvsOazV3nhT2+x6OXPicfiafqthGhf2n1AfmjejcS8nRn241lQNZP80s1s2XohwarK1J6odhs7PGb0+iwsoSr6Dz82tcdvRZejjmXsbf8L8Qq2O3bS58c4j994p4QfoHrbNmKLP8fgL+GECy5mwMizmuyTXdQRo9mM31gHpHYmi293fUv30kTFuKB6N8rzJKqyAAAgAElEQVSw41J27AOlNxg4Z8rN9D/9bLwRN3r/ezjV33LS90u48amHWdcGDyaKQ1PpqWTR/c8Rj5fTyaon+87n+d2IY1v/0m00o+s/nr63z2LKI3cx/sKhOJwFBPSV1PpL+eCeJ3jxt79jzZfzD98vIlJu+9pVLP/v+xgsA+hSupKyv1zDJbf+Bb1+/x/XOp2Oo4p/xdV/m8WVs+Yy+Dfnk0UANbiKUO1/WPrfWTz7x8dY9e5rEJWx7EK0pl0E5Fi8+Wlsvti+mA92Lef8ZccT9X2CLu7DH/kONVbFwv+k9kMiXLKEsqATg7GYcHQXJ/fK2/+bUqjHoCGMvf1uUCvZ5iih+w4br1/xP6zcUnVY2/FLk9+tO5f9dTp/eP41hv1mYrP76PUG8rsWEzAmvlD4qlP3xWJV5Spya6IYddlsyixiWJ/ClB3759DrDYy89o8MvehSApES8L+JznwRI7+v5Kknr+OTlbvS0i7RlKqqvHbj/xKL7SbP4KDT7Y9z6tE/c9x6Xm+6XnwHk2fMYNLfppLdoRthtZSqaCWf/t9/+M+Fl+H+z/MyBdjBUlWItM2UkK2JRSPM+edj6HROssMFlF7SgQvPv+ygjmU2mDlt3O+5+s3PGHvTTRTFo+hDm/FXz2fOm/P5943Xs+u9v4KvIsW/hRBHhnYRkF+6+lpeGDee0uq9T+bWhmr584LbOXft6cT8P5ATs3DV35/EnOEg7vkvW1bGU/rhsPPHbwAdmIupc+rJbcNpvFrSY9AQxv/lfnR6L9utbjLVHrj/n703D4+izN6/79p6X7JvZN86YZEgm0AQREAEgiQEUGQEjTIZR9GBcURnjCIo8I75gSgCCg7iIAohUUcRR0QUGQHFiChJJxCSELJ10knvW3XV+0cIXyAJWWjIVp/r4rqSylPPc7ro7jp1nnPOvXghdv73V3BtPET0dUiSQnCsBlKl6rrjfMPC4aSarpHd4rkUi6KKM6AdjVA6JTgbOQxhPjKPzd1ZCILA2LkPYtrjf4GLq4fb+m8Y1WMwUpuI3997ANmf5YMVtle7nT2vrYbTfAESwg9+TzyH8QMjbmg+ZUwSHnl9Ex7f/j7844bBBT0qaSO+/OQo8mbMgXb5Y7AXCukXHaKxHLr/PImPN4zA1rX34/P/9xdYygpu2fL5Bz5DY20VGOkkVMYdxR8Xe0ZKPmrsZCzYewAPLF2GSCcHytWAOl0Fdn9YgD3PZKB2ZwZQcbLpwUBAQABAL3GQ7bJEQDEHHz+aiZ9KdDA6jVj42SPwq4qG30ULCJ7DjKVPQhURidumTgfLN8LJKT3a6qby3HkAAEkHQzUo3mPzdpawgUOwcM160GIeNXQ+GoJGI/yFp7BsbQ4qG2+OSlxfQOnrD54gwfNu2IyeiSCzHAvidxMAHgEGE1Qjhntk3htl0IS7MS/rVYgVNFzm3aiT0fCpzoDy4+V47q13UGu89ZGxnsrZhrPIPfMB/vPzZpgsupu+XsX5Ilw8eRokoYLynsmYMTbJY3NLFQo8tHoV/vzu+/AeMgYuWHBe6cQXFSZ8/JeVyL97PHRvrANbJ0QML2PWAfrzgPYLlO5diOffnYl1h5w498u9sJ0djvOFd+Pt7N9RdvrcTTfFajTg6O6dIOlIsEwZ/vTcFo+vEXDnJKTlfo4HHstAGKsAyXG4UO/Gv/eb8EHWK6hdMwLswdVA/c1/vQICPZ1eUeI+Zpwc3x+ygBI/iJ/+sRZPj/sFwZZI3FkwFE72vxgek4iAOycCAKIGJuEnYi84dxW0Rwrhv2CkR2yoqTWCIFSgOB4Jd93mkTm7in94JB5ZvwnvvfA3GOt+xK+xI5D6+S68WlSIKU8/gvuSBnSrfT2Ry23f3EYYq/QAIm94zlJDKYJqZQBc8GusBOlBZ+dGGZAwEH9Y+zoObN6A0l++gZEaAIb/I4Z++w3erfoUI+5/C5Nvu7HIZW+F4zl8e+Ew3vvxTZhLfBBTNww+tiD8KMnBsKhapGZmATdJbCHvH6vB83ZIAyOwcNGDN2UNiUyGR/7xdzhsdvz7rbfRkH8SF1X1uAgfKA6fRtSe+YjydSEgdTaUc5eAlCluih09He3JHOR+8hpYkoPV4Q2m3g8+higQuAgeVWB5Dqz9BFjibnyyVYKMV0IhV9+8ncP//ftfYF0sxIo74D9XDy+Zz01ZhyAIBEydjnlTp0P3y0/44q330GA0o8qiw/unIqH+TYtJPinwTwyEfGgqSM09gF/8TftMCAj0VHqFg3yxzgS37QhkoqGwqWbggdMzwHM2uKzvwkskw/jVay6PDY7VgAfAO8tR9asc8ISD7GZRYwRowg+Uoxq3x0y+8TlvEKWPH/70+la8l/0SGn4+hZPh3kjW61Gz4hk8df+T+Mec2+GvvPVpID2V5s4WlEsHw0W5R+Ys0BdAbeJBUQGokFtxZ8ytzUtvD7mXN9KefRG/fn0A3/77X7CbP4BLPgIDziWg7tX7sfGOuZj38OMIUku629Sbxn/m3gnG4IY1XgxmwhgUqa04WJkPVY0Go85PB2W9AN55DOAskDKRuNg4CYff3oGJf/R8L/Wv3loHJ6uHmA7H/Fdfu+ldcMRSCTKWLwXrZpHz8Uc499//AYZqnA6R4jeo4b3vB4Ru34fQYB5BMybAe8IsIHgoIOq+NKFbycnD1RBp/SACIAMAwg4pQhBfUYKQ+nJYpGL8HB4Am/4rwDsSedsPYOGy+26KLUZdLX799mtQ4kGoDTqNP09ee1PWuRb/pBF46O0RMJnq8clrG1FfVAGDuwZ5uhgwdYEI/OEXDPT9HAMCG6BOGA4qfBQQOhIISARIoc+6QN/mljjIGo2GBPAWgKEAHAAe1Wq1Zzt6/sSHHkX12SJYDb9jKHsctoYglJBGuGgO0194BRT1fy+DkUggCVCCqy2FqSHWI/ZbL/wGCysCI46AkzT1GClfimbwyLOvYP/BD3B6Rw4uShvAKKIx9d+vY8XREZjw8BwsGB0h9EwGoLgUQSZdepgbfdsZ3TEKqk5D5LBCQoThfMggpCt7nqNJkCSGTpmO6OGj8N2//4XCo9+ilpCAYWYg7tNfcfrrCfjy/hcxd+7UPtkz+aw0ARxtgqgxBpI8byioENxLx8LtKgbn+hgcD/iCgkgmQ6VVC6axEr/9/CgST51B4NCBHrPDaTHht2+PgyB9EDlvNnxuYQ0DTdG4f86DwJwHcaZMiy93fQxXUTn0qIJe6o1fATD/0UKdtwYDxDXwHyBC+OgR8L5tMhA+BrhJkczuZs78VBwtrIRRb4TcbkEQYYLPQCUUD/4ZstGjQfv6wi93Hz7euxO0/kMYipbgYkk9BkR75vvjSg5v3gieJ0BKkjBzoe8tl4tWKn2xcOVK8DyPL/Z/iMJ9X4G1GFDhsqGimgFRGwf6DAEf0RGEynIQoypFUFwsmKixQPhoYMBwQOx5ESYBge7kVt0RZwOQaLXaMRqN5g4A2QA6/Cgu9/JG+j9W4z/r1+JESTFA60ExDFL/+iKC4xNajA/RxON8zc+wu1Xgef6Gv2xqfzvW9AMTDKIH3iumT16AxKGjsG39i/A+V4pCX2Bk41ko/vEX/E2TjHGL5yBleAREdP91lJtTLAh3Ixw2z/SQvqD9HZEAlHYe1tHDPDLnzULp44cZS5/BiJmpOPz+DlScOYYzARLIMB4D33wdR3a9hoaFz2LmnLuhEPcdR3nmE5n4/qPd0FecghM84AbgBGiCxpDEJIxc9AjUUU19sgsPH8TnmzdAZPsJX+0JwkIPOsgfvvA0ODghlQRh5n1TPTZvZxkYocHA55+Fg3Xgs2Nf4tThfIjKzSCtDtRROtTx/kAFgIpiiPYWwYdbB5nEDbevEqYB/jBFh4EZEAmV2htqiRQqsQpRqiiEKkNvuVN3o4hDB2DSO69ed0zUvPnQlJ5HwcnvwbA1OPjZUSxaOsujdugvVqD4t19ASW5HXWghRg18yaPzdwaCIDB9xgO4d/r9+LnmZ3yVtwWi76sgt7lgp3WocdlRYyFwUhcFnONA0ccBxWE41HqYvTk4/WSgvHwhlftCrQpGmO9ADAwchlivWFBCxFmgl3Gr7oTJAA4AgFarPabRaEZ0dgJ1QCAWrH4NBd8fBud2I0STCN8BrbdGirltLM4fOQk3rDA3OKD0ubHIXs3ZpipmkgpA0PCeKe0a5R+Ll1fvxIfHd0L7/iGgvhLn/YGE2tNQ/GU/tgTEw/vuSZg8byqCA2+uAmBPRCSVgWRo8A4jWNYzX9TceQMAAj5mM8RjPZPrfrMJjI7F/BdX46K2AF+9+x7qS3/DT+ESSLkBiNm8Hj++vQrnZzyKyY/MRbivZ1JRupO4UbcjbtTtsFvMuFh4BqzTAYW3L4LjNCCpq98Hmgl348T+T1Bf+gMadUvQWG2GV9CN5+c2XiyD7mItKEaDSSv+fMPzeQIxLcac5FmYkzwLOqsOh0u/xW8F5+A6ZYdPlQKMiwfrrkENWwWebQRqANQ0gDjZANL9KxrAoYZxwShzodbLDYMXi2AJhUEqBcb4hSDeJwakKhiQ+QKqUMA7ounnXuZEA8Cdjy1BwcnvIW34GsaCdDjtLEQSz906D2/MBgESpCQJ983399i8NwJBEBgeNBzD//QOrI9akV/5I8oO7weO/gyqQgw3FQSDTAU7HOAMOtCNFLzKms7lSR4sU4dKeSV+UR/Fv9QOsBIHImQ0hnoFYph3LGJ9EuEjDwIh8waUQYBqAEALKYECPYtb5SCrABiu+N2t0WhorVbLdmYSkqIwaMLd7Y4LDo8DAPCcAbVn66AcFdqZZVpQW1EFghCB5EkMnTjohua6mVAkhQfHPAzbyPux6+B2VOb9AjTW4bcwGcScCV65/0bVllX4KcQf1O2jMPy+2QgYNQIE3Xcihm1BEASk3l5wV1nAczf+RWxn7VDXEiAoP9CuRgwbeGPvsVvNAE0iFq9bi5rzZfh4yzswl53BbyE0CATA+7v/4PT+7TiQMBoBD/0RU4dH9fr0C4lcgZjho647hiAITFr8R3y0cgU453mc+lyKCRmTbnjtnLXPAaAhFXshQdPzCiP9Zf6YOzAdcwcCmAOYnCb8UvYbygp1sJcT4C7ycNY1wO1qAO9ugIszgOeM4DkzlBYrlBYAF5vm0gP4HDp8RpoAshAExQAEc8kx5uEm3eB4J8A7wFEuzH9hFWIie+53KgAovH0QkTQKFSePg+YI/PR9EcZO9szuQn15Kc6fLwItHg598DkMT0jzyLyeRMbIMC5iAsYtmgAsaurjbTDXwaD9Ha7fy2A8Z0FNjQ06iw1m3gYnYQPJNsBfr4e/XgpAenkuC3h8T1bgCFkDnqSb3hskBRA83CQPF+kGR9jBwwL5kAA88+TW7nvhAv2eW3XXMwK4MkGJ7Kxz3BnUAUEAmhzksvwyxNygg1xTZwZFBIF21SEmsOfnWUlpKR6d9gTYqSwOH9mL33L+B0edDkUBHIoC4yGGD4JOVeP8oRdwwVmFi/EhCJg8DSPSF4Hx9Xx+XU9B6esPfXUpeEJ6w6k3VZYqqCwESCoQjaJziPbrndHWwKgI/HHdajTqG/Hvbe/A+ns59EQl9DI1UF8I/v9bhhzeCXvcEESmLcbEkQP7dKpOSEIiSJoCZfsVRfl+mHCD89WVlcBQawQlHokJT8z3iI03G6VIifFxYzA+7v+O8TwPp42FxeCE3eKC3eyCzeyErUoHS2kpjBfLYK7TwWkzwgUnXCQLlmDBsXbwMIMHBx6XbjiECCAVIEglLIUVQA93kAFg5MxZKPvlBMSWU/jlqMVjDvJ3b24AARKUdBQmz+wdxZEEQcBL6Q+vEROBa/aCeZ6Hq8EA/Zly1J+tRmNFFYy1NTAZ9LA6bHCxNrAcC5bgwBFOcLCABwseHEiwuLK6R3GcBp68la9MQOBqbpWDfBRACoA9l3KQT9/MxcQyGTiaA+msha70xpTmWJcLBhsBER0MDqZelWdHkzQmT3gAkyc8AMf5k/jpvX+hsNSARrsOZWoWZWo5SPpOSN1i2P9zFqbdT8CusEI5PAlD0+fBe/DAXvV620PlF4BaoggigoLTxkIs63qxZWl1MRiWAy1SQB8U1uuvk5ePF5742zOotdRi6xfvwXCsDiE6ESx0NczuGqC8EKc3rEAhT0AqZeCjSUDiuIkIihsElX8AaKZnFK7eKCRJIX7MeBR99y14lw+sRidkKlGX5/vv1nUAGMhIJRKGdV//9BuFIAiIZUwrn5kBAK5ub8jW18NVUQG2vh6c1Qbe4QDAAxQF4pJcMkfQ4H0D4DO209l23UJo4iCQFA3aegaOqtvAutygmRtL1WqouoiS0mIwzGAYvKqQPPIxD1nbfRAEAZGPF4KSvRCU3LIdKs/z4AwGsHr9pfeGHbzTCRAkeJ4Hy7rgdFGwuMUIGtGyvqg1Tp48GUDT9DYAg9FLtB0EegwcgN9Yln10+PDhtdf+8VY5yHkApmg0mv8BIAB4vofSNRAKEnxjA6yNNyYKYSgvBkCAF4WAUPTez544ajjGvTQc4/TnwR5/F9pvv0FhnReqbTWw8A5Y5ECFHAAhAVlUgYJVG8G43eDFDGhvP8iCQiEOCgLj7Q1K6QWKJMGDg8JLjHEjNd398jqEt18QOLjB8xzsFtcNOcgXSrUAAJmTBzewd7z+jhAgD8AL6c+galoV9hbk4KeT9VBduA2RtT5gXCzcbA1MzmoYT/2K0lO/Xj6PIQGJmIZCrYBU5QVSogAlVSJ+3ETEjx7Xja+o8ySOm4DCI4fBsRdw4bcqaMZ2LS3CqKtF1bmLoCSjEHZHlIet7LnQvr6g+9hOFEUzCLttGCp/+gkkz+BcYRU0Q25sZ/LY22+BAAFSPg63je8fCnYEQYDy8gLl5bk6GJqmtwUFBSX6+/s3kCTZPy6kgEfgOI7Q6XQDq6urtwFoUX17SxxkrVbLAci8FWs1I/OSw9logusGC7L055qC3QTlDa+w3rEFdl18okDfuwqD7nFj0IUTwNmvYCs8jJqycpRbAlHu8EOd0wobz8JG2Jqq/usuoKEuH/ittQkJVE5Jx9xHF93iF9J5lL5+TY9nvAU2swvqG6iH0V0oBQAo7A4wQxI9Yl9PIlgRjKUjnwQ/gkehvhDfVnyLY+Un0HDOgtjKUIQ03A4RqwQPJ3jOCI63wMLaYK01gajWg+BrQPAu2H8/2esc5PDBSQB4wFGMwiPBXXaQTx/IAQCIyShMzUjxoIUC3UHs7SNRlv8jxGwdTh5z3ZCD7LRZoT1zCmIiGHYRh2n3zvSgpf2OwYJzLNAVSJLk/f39DdXV1YNb+3vvrry5Dt5+fqgsLYcLshvKN9WXFQNocpDDb2+9a0avhKSAiDFAxBhI785CpMuGyOrTQPWvgE4LGCpQ22jGiUYKVWYJHEYKvJ0E4SIgcvFg3BwojgBNcZg6KqS7X02HaG71xnMm2M2uG5rLUlkLORjIHFaEDvNcO7CeBkEQSPRNRKJvIjKHZsLpdqK4sRhF+iKUGktR39AIW5kZdJkL8kYp5PZYiDk/kIQfeEqJCrqgu19Cp6EZBmJfL/C6MlSXda1Uguc4nPz6vyDpMEilelBMn/2q7TdEDr0dACAyn4T+t+sXfLbH6f98DDcAUnEnVPFGMP2gUPomQgrOsUBXufTeaTU9oM9+KoMGRKPypzLwhB02k6vLeYQNVRcB0CB5GkPG9t4cwnZhpEDYqKZ/lwgA0CKuwfMAawdsjYCtoelYYO9wEOVeTS36eM4KW4P1hubia8wgKF9wsEEzoGe2/rsZiCgRBvkOwiDftgur3JwbJqcJVXW1CPMdfQut8xwxt49GwX//C8IthcXg6LTE8IUzp+GysWDkQzBs2tCbZKXArcQrMAhStRp8XRkIxzQ4bCzE0q7dQvP3fwoJKwJPh+De2UM8bKmAgIAn6L1Jte0QGtVUOMJzRpjqu+4M6XX1oAgFaFc9FLKuF+v0GQiiyZlWBTc5xr3EOQYAqVIFAOB5G0y1hnZGXx+RkQVJ+cIhJSEVCQ3wr4QiKXhJvJAYGg+FtHd294geNAw8AfBuHXRlxk6fX/z9VwBIiBCAwdPv8LyBAt1CWOIQOCgLAKC4qLxLc9RXlMNgM4OTDoRTXYPQ8ABPmijQTRw7dkyenp5+uSAlPz9fOmvWrITU1FTN0qVLI93uJoGqrVu3+s+cOTMxJSUlce/evd4AYDabyUWLFsXMmTNHM3/+/PiKiooWBTJWq5XIyMiISUtL0yxcuDC2traWBoA33ngjYMqUKYPS09M16enpmsLCQnFbY0+cOCFLS0vTpKamajIyMqJtNtvlrfVr7T958qQsJSUlMS0tTfPss8+GNdt/Jd99950iJSUlYdasWQkvvvjigGv/vnPnTt+XXnrpquNLliyJPnz4cJvtwJ5//vmwsrIyUX19PfXhhx+2Ks3GsiwyMjKiDxw4oLryuMViIadNmzaw+XhJSYlozpw5mrS0NM3jjz8eZbFYOuXz9lkH2Te8KdrLuw0wlOm6PE99oxUk6QsQnb9JCvQsmh1kcFYYahq7PE9DYy1ETh4E5QOXV89v+yfQeYJjm+4THFuFC6fLOnUuz/M48+P/QFFhkJKVoGjhAaqvEByngYsEeM6CgpOFXZrjzGefAAAI2UjEjQj0pHkC3cT69esDs7KyIpxO52WHc+PGjSGZmZlVeXl5WpfLRezfv1+t0+nonJycgNzc3MJdu3ZpN2zYEMZxHHbs2OGXmJho3bdvn3bGjBn1mzZtCrp2je3btwfExsbacnNztSkpKfXr168PBoCCggL5mjVrzufk5GhzcnK0CQkJjtbGchyHrKysyHXr1pXm5eVpk5OTjWVlZaK27M/KyopYsWJFeW5urlahULg/+uijFs7q2rVrw15//fWSTz/9tPDMmTPyn3/+WXrtmM7y6quvXoiIiHCePn1adujQoRbVnGfPnhWnp6cnaLXaFtGXFStWhF+ZTvvKK6+Ezp07V5ebm6sdOXKkadOmTZ36wPXZFAuVf9N14DkDdOd1iJ8Y184ZLbGZTXA6AVoSDFIqpDj1dmixGDzBg3QbYanv+gNP8bmm7g0E6QME35hKo0DPROnnD4ImQDrO48LpSLRo+HodGqoq4TQ7QUtjED+q/3Sv6A8ExTYFXmirFvUFXYv8Fh47CikrAU8qMeHuMZ40r9/z3v9KfXN/rvDz5Jxpt4fWLRobWX+9MREREY4333zz3F//+tfLH3iNRmNtbGykOI6D1WqlGIbh/f392f379//OMAxKS0tFDMNwJEniiSeeqGXZpnqHyspKkVKpbBGuzc/PVzz22GPVAHDPPfcYt23bFgIAWq1Wtnnz5iC9Xs8kJycbli9fXt3a2KKiIrFKpWLffvvtwJKSEmlycnJjQkKCoy376+rqROPGjbMAwIgRI8wHDx70WrBgwVV9cz/55JMChmFgMplIi8VCKRQKrqPXdefOnb5HjhxR2+12srKyUrxo0aLqhx56qD49PV2zatWqsi1btgSVlJTItm/f7peRkVHXfJ7ZbCZfffXV0s2bN1/1EPH6668HDhs2zHzlsbKyMunUqVPLAGD06NHm1atXd6qQrM9GkGmRCBztBu82oL6ya85QQ2WTPBRB+ULhL0QKezsEQQAiEnCbYTfZuzxPdXUpAIDhaCiiepeCnkDHIAgCitAQcO4aGBs71w7w/M8nAAAUHY5hc25UakSgJxEYGdPUqsx+Dm5j52XIG2uqYbSZwUk14LzroPK94YCbQA8gLS2tkWGYq6JoUVFRjuzs7PDJkycP0uv19IQJE0wAwDAMtmzZ4r9gwYLEadOmXXa8aZrGvHnz4vft2xdw7733Nly7hsViodRqtRsAlEql22KxUAAwZcoU/dq1a8s//PDDovz8fMVnn32mbm1sXV0dXVBQoHj44Ydrd+/eXXTixAnVoUOHlG3ZHxwc7Dh8+LACAA4dOuRls9labIUxDIMffvhBPn369EE+Pj6u0NBQZwcvGQ8AZrOZev/9989u3rz57I4dO65yeDMzM6uTkpJMVzrHAJCUlGQbOHDgVTfwr7/+WllWViZ55JFHrhobGxtr/fzzz70A4MCBA152u71TPm+fjSADAC/mQdqMsDR0zRkyXCwFABCUFwKjbqAnmECPgZAygMMGl73rQo4NtVUAAKmThV9MpIcsE+hpRA0dgV/PfwKKF3eqUK/o2CGQhBJypwESX1X7Jwj0GhiJBL4hITBf0AGEFyyNdsi9Or6LdO7INwAAXno74oe32EUXuEEWjY2sby/ae6vIzs4Oe++99woHDx5s37p1q39WVlbYP//5z3IAyMzM1D388MN1f/jDH+K++eYb81133WUCgD179hQVFBRIMjMzY7dt21b83HPPRQLAzJkz6+VyudtkMpEAYDKZKLlc7uY4DpmZmbVeXl5uALjzzjsNv//+u6y1sb6+vu7g4GB7s3M5duxYw6lTp2STJk0ytWb/2rVrz7/88svhb731FjFs2DAzwzD8li1b/A8ePOgDABs2bCgJDQ11jRkzxnLkyJHTq1atCtmwYUPw888/X9k8h0Qi4ZxO51VOqc1mI6VSKQcA8fHxVgAICwtzulyuLgds9+7d61ddXS1OT0/XXLhwQVJUVCQLDAw8n5WVVfHCCy+Ef/LJJ37jxo1rVKvVnbrx99kIMgCQMhI8Z4LN2rX0COPFcwAAglQi8rZID1om0F3QChl43g7W1fWUGXN9PQAGUocJwfGRHrNNoGcRETMIIADeXQ9deav3kBZwbjeqSkpBMFGQyjt2jkDvIlgzGE7SBp7n8dtvRZ06t/j7I2DcJAjSC8PvaKk0J9B3UCgUrEqlcgNAYGCgy2QyUYWFheJHHnkkhuM4MAzDi0QijiAIPjs7O2jXrl0+l85zkySJuLg4R3Ne8eLFi+uSkpLMzTm5X375pWro0KEmo9FIzZgxY5DJZCI5jr8QmcwAACAASURBVMPx48eVQ4YMsbY2Njo62mGz2aji4mIxAOTn5yvj4+PbjB5+9dVXXhs3bizZs2dPUWNjI5WcnGzMzMzUNdsUEhLiSktL0+j1egoA5HI5d227vdtuu836448/qpqd9fr6eqq0tFTa7KRfr/0uQRA8z3fsPr1ly5bzH3/8cWFOTo521KhRhr/85S8Vw4YNsx06dEj1zDPPVOTk5GgpisKYMWM6lU7QpyPIYpkILG+Hi+3ayzTVVAAgQYBG2OA+1AO5HyNVqWCFDm531wun7PV6EKQSNGvEgMD+0+Ktv+EfEQkA4Nw61JTUI3JI+6mNuvJS8G4epGQAEkZ0TWBEoGcTEBWD0yAA3oTzJ3QY3YqkcmvwHIeaqgtgyECwEgt8B3Q+RUOg97By5cqypUuXxlAUxTMMw61Zs6YsKirKGR8fb509e3YCQRAYM2aMYeLEieaEhAT7smXLovLy8vw5jsOqVavOXztfRkaG7qmnnopMTU3VMAzDv/766yVeXl7uxx9/vOKBBx7QMAzDjRw50jR9+nSDxWIxXTtWLBbzK1euLF22bFk0z/MYMmSIecaMGW22c4qMjLQvXLhQI5FIuOHDh5umT59+1ViSJLF48eKaxYsXxzEMw/v6+rqys7NLrxyTkJDgmDt3bu3cuXMTZDKZm2VZ4m9/+1u5UqlsN1c5JibGUVJSIn3zzTcDnnjiiRYy0B0hNjbWvnz58miGYfioqCjbunXrOtV6pk87yAqlDHrCBBck4DkeBNk5sRBDnQ4kIQXtMoBmhEr0voDcywdmXIQbXZeZZhvNEFGhAGwQ0X16E6Zf4xUQBBA8SEcFLvxyDqPva19SvLLwDACAJIOgmTbyZpso0A34RzTVMdHWszCUtdqFqlV05aVgwYOQDURQnKjL4lUCPZOoqCjnp59+erm1yfjx483jx49v0epkxYoVVQCqrjwWFBTEfvDBB8XXm18ul3Pbtm0rufb4gw8+qH/wwQf1HRk7adIk06RJk1pVb7rW/pSUFENKSsp1+6HOmjWrcdasWddtCbVkyRLdkiVLWrQSe+ihhy6nwkilUv7IkSOnASAnJ0fbfPzrr7/+va1533jjjdL2jt9xxx2Wzz//vMtqVX367q5SeQHgAYKFw9b5nNOGxkaQhBIkL2yV9hXkXn7gCfcNOciEyQWCVIITC51N+jIESYLxUoBgq9FQ6+jQOaWnfgBBSCC3N0A6QGjh1RfxD2/aGSBcZeCsHY8Cl3x7CABAimKQNEZIrxAQ6On0aQfZx6epDQ/PWWExdOwGdyVmkwME6Q2K6WhhpkBPR+XlCwDgCB6cu8MdaS7jtNtAufgmB1kpVKD3dQLiNXDxRjhcCrCulo3yr6VcWwiSDoNE1KIIXaCPIJLKoPb1hhs6cKQPnB0s+D174jgYNwOQckQkCkXfAgI9nT7tIPv7hzf9wFlg7aRymsNqgdvFg2f8IOmiTLVAz0OtbnKQed4Gp719h+daTHVNO0UEqQIRJChg9XWiNUngSDcAGxqqrq/IaazTgbU6QdChGBAnOEB9Gf/IWLCEGSBIFPx6pt3xPM+jXlcFkg4EoTJALOv6DpaAgMCtoU87yAFB0QAAnrfCVNm5iI7xCkfId0DH88wEejbe3pe2vTkbnF1IuzHommoFCFIJVUQLZU2BPkZwVJPAEOfWoa7i+qlW1eeaOhqQdBASxw+56bYJdB/+UbFw8Tx43oWSY7+2O76huhIsAbglsQiPFwp7BQR6A33aQVYERwJokgXVV3dOWvj/IoVKBMcFe9o0gW5CoW66OXU1gqyruQAAIAg5fKKEHNO+jl94ZNMPrhqUF1Rdd2xVUQEAAhKWge+IQTfdNoHuwz88CgAB0nkR+nPtd44q/+5bAABJh2Hg7cJ7Q0CgN9CnHWSJ7wDw4MFzFhh15vZPuALj5UihCqEJglpaX0GqbBJu4Hkb7Mbrb5m3Rl1NBXgAIhbwEyLIfR6pQgmCIUA6K1Cjrbzu2JLTP4IkfSBzVoKUCBLkfZnmThak4yzc5vZrEYqP/QCSJ0BQvggRIsgCAr2CPu0gkzQDjnGDdBtgaexckZ6p+sKln6RQRQq5pn0FifKSZDhng72+891JGupqQBBiiFwWBIQKEeT+gCzQB7xbB4uRRluN63mOg/5iFQgmFApV12XMBXoH6oBAMCIGHF8JNxkElr3+bpSushQU4QNKaYJUIdS09EWOHTsmT09Pv9wLMj8/Xzpr1qyE1NRUzdKlSyPd7qb3yNatW/1nzpyZmJKSkrh3715vADCbzeSiRYti5syZo5k/f358RUVFiyR1q9VKZGRkxKSlpWkWLlwYW1tbSwPAiRMnZGlpaZrU1FRNRkZGtM1mI9xuN5YvXx5+3333JaSnp2uaxUGKi4vF8+fPj58zZ47m/vvvj6urq7vcv7a4uFg8derUgc2/l5SUiObMmaNJS0vTPP7441EWi6VNf/H5558Pe+edd1oUXhw+fFi5ZMmS6CuPvfTSSwN27tzp29Zc2dnZQcePH5fZbDbiX//6V5vN569cMz8/X5qenq5p/jd48ODbDxw4oDKbzeSf//znyLS0NE1KSkrC8ePHZW3N1xp92kEGAF7EAW4THNbO5ZsaaypAEGIwbjNoWuiB3FdgRGLwBA+et8Og77yDbGlsAEFIQbktUMg6Jj0s0LsJGTgUTsIGN0/DVN+686uvvAiwHEgqCHFJUbfYQoFbDUGS8AsNBUc0gKPEKP755zbHOmxW2HgOnDgKEXGC9HhfZP369YFZWVkRTqfzcnPrjRs3hmRmZlbl5eVpXS4XsX//frVOp6NzcnICcnNzC3ft2qXdsGFDGMdx2LFjh19iYqJ137592hkzZtRv2rSphQ759u3bA2JjY225ubnalJSU+vXr1wdzHIesrKzIdevWlebl5WmTk5ONZWVlok8//dTL6XSSn3zySeHy5csrVq9eHQoAf//73yOefvrpi/v27dPOmzdPV1RUJAGAXbt2+Tz99NPRBoPhsmP+yiuvhM6dO1eXm5urHTlypGnTpk0tIkK1tbX0gw8+GHf06FG1p67l8uXLq0ePHm2trq5m8vLyWjjIra05bNgwW7PC3/333187fvz4hmnTphnfeOONoOZrtnr16rKzZ892amuvTwuFAAAlAXiLFc5Odnkz1NeChBSUW+iB3NfgqabCTUtdp1QnAQAOowEEIQfFdT49Q6B3Eh2fhOL/HgLP6aErN0Hl13JL/XKBHumHiA4qqwn0bvyjNKg9fw40z6Pou3wkjmpdGObC4W8AggDJhCFuWOIttrKfceJtX/yyu33Jy86Q9EAdRi2pv96QiIgIx5tvvnnur3/96+WnY41GY21sbKQ4joPVaqUYhuH9/f3Z/fv3/84wDEpLS0UMw3AkSeKJJ56oZdmmIF5lZaVIqVS22JLIz89XPPbYY9UAcM899xi3bdsWUlRUJFapVOzbb78dWFJSIk1OTm5MSEhwvP/++/7JyckGABgzZoxl2bJlcqvVSjQ0NDAHDx70ys7ODk1MTLS8+OKLFQCgVqvdH330kfbuu+++XF1cVlYmnTp1ahkAjB492rx69eoWcsJms5l88sknK7/55ptOO8iHDx9WvvPOO0E0TXNVVVXiKVOm6J955pnqJ598MnLGjBn6L7/80ru8vFy6du3a4EviKu2uaTabyS1btoTs3r1bCwDHjh1TTZkyRf/AAw/EyeVy9yuvvNIpJb0+H0EWSWlwsIHtpLSwsVkkhLDdJMsEugueBsA7YGvo/MOPy2gBQSpBEkJv7P5CUGQMAIBna3HhbOvdcMoLTgOgobKaIEuIu4XWCXQX/pHRcPMk4G5Aw9m224ie+fprAABJBSEkvs2dZYFeTFpaWiPDMFflX0VFRTmys7PDJ0+ePEiv19MTJkwwAQDDMNiyZYv/ggULEqdNm3bZ8aZpGvPmzYvft29fwL333tvii8ZisVBqtdoNAEql0m2xWKi6ujq6oKBA8fDDD9fu3r276MSJE6pDhw4pLRYLpVKpLjvZJEnytbW1THl5uSQ5Odm4Z88erdFopHbt2uULADNnzjQoFIqrhAFiY2Otn3/+uRcAHDhwwMtut7fwF6Ojo5133HGHpbPXq1lFsqamRrRt27Zzubm5hR988MFVUfOlS5dWhYeH2650jttbc+fOnX6TJk1q8Pf3ZwHAYDDQRqOR3r17d/HEiRMNL7/8cqcKyvp8BFkmE8EAJ1h0Lu/LZraBotSgBbW0PgcvJgCzDY5OFulxnBu8zQWI1SCIzouMCPROvIMHAOBB20tR8dsFYF5Lyelzv/4Ekg6GlKsGQff5r1UBAP6XOpxQjiJwzrZbgdaUFoGiZGAULOReQlrWTWXUkvr2or23iuzs7LD33nuvcPDgwfatW7f6Z2Vlhf3zn/8sB4DMzEzdww8/XPeHP/wh7ptvvjHfddddJgDYs2dPUUFBgSQzMzN227Ztxc8991wkAMycObNeLpe7TSYTCQAmk4mSy+VuX19fd3BwsH3gwIF2ABg7dqzh1KlTMrlc7jabzZejgjzPEwEBAS6pVMo1r3XXXXcZjh49qgLQ6vXKysqqeOGFF8I/+eQTv3HjxjWq1Wp237593rt37w4AgBUrVlwYMWLEdW+iEomEc7lcV2mqW61WSiKRcAAQHR1tYxgGDMNwIpHohp2tL774wmfTpk3nmn9XqVTs1KlTGwFg+vTpjTt27GiRunI9+nwEWa6QA+DBkVSHlLAAwGW3g2N58LQXpCrhC62vQUhogLfDaetcFNhuMoHgAYKQgZAIjf77CxRNQ6SWgHdVw6RztijUc9qssNc3gqAHwD9YeF/0F5pbAPJ8GVxMCJzWlkEtt8MBG+8Gz4QiIqpT9UECvRyFQsE2R3EDAwNdJpOJKiwsFD/yyCMxHMeBYRheJBJxBEHw2dnZQbt27fK5dJ6bJEnExcU5mvNqFy9eXJeUlGQ+dOiQFwB8+eWXqqFDh5qio6MdNpuNai7Cy8/PV8bHx9uHDx9u/u6779QA8MMPP8ijoqJsMpmMHzBggP27775TAMCJEyeUsbGxbW6RHzp0SPXMM89U5OTkaCmKwpgxY4xz5sxpaLapPecYABITE21nz56VVVZWMgBgs9mIU6dOKZKSkto9lyRJ8DxPtDeumcbGRsrlcpHh4eGu5mNDhw41f/3112oA+P7775WRkZGdSgnwWKhDo9EQACoAFF869INWq31Oo9GkAMgCwAJ4V6vVvuOpNTuCSqFEJQwAZ4PN5ILSp/1UC3OjHkBTr1vfIEEkpK9ByCXga+xgO9kH2dLYtOtFkHIQqs73UBbovQQmDsTF//0ChhPBWGeH2v//8pCrzhaBAEDSIUhIFjqb9BfEMhnUvj5wmXRgGQVOH/gcw9PmXTXmwsGDcNEUaCYckcPiu8lSge5g5cqVZUuXLo2hKIpnGIZbs2ZNWVRUlDM+Pt46e/bsBIIgMGbMGMPEiRPNCQkJ9mXLlkXl5eX5cxyHVatWnb92voyMDN1TTz0VmZqaqmEYhn/99ddLxGIxv3LlytJly5ZF8zyPIUOGmGfMmGFwu904evSoavbs2Qk8z2Pt2rWlAPDKK6+Urly5Mvy1114jgoODHS+++GJdW/bHxsbaly9fHs0wDB8VFWVbt25dp/J3AUCtVnPLli278Oijj8aKxWKOZVly/vz5tXFxcY6LFy9ed1s/ICDA5XK5iBdffHHAypUrL7a3VlFRkTgoKOiqarOnn3666plnnom87777Emia5l977bUW1/V6eHIvMAbAz1qtNqX5gEajYQCsBzASgAXAUY1G86lWq63x4LrXxUvtC6ACPG+D1eiA0qf9IkZLQ5ODDFKOoEhBMravwSgVcEMH1tW5NAmLoUlshiBkEAUIrZr6E5qkZFw4lg+e0+NiUcNVDvKFgt8BAHIHCZ9RQ7vLRIFuICBGg4s/fw8AKPnmtxYO8q+ffQoAIOlghA3p1O6uQC8jKirK+emnnxY2/z5+/Hjz+PHjC68ddymn9qq82qCgIPaDDz4ovnbslcjlcm7btm0l1x6fNGmSadKkSQVXHqMoCtnZ2S0c2qSkJFteXp62rTWOHz9+qvnnO+64w/L5558XtDX2Sp577rk2m8SnpqY2pqamtlBqmzhxomnixImXC4Ga137jjTdKm48dOHCgTR33a9ccNWqUddSoUeeuPObr6+t+9913z6GLeDLFYjiAARqN5huNRrNfo9FoACQCOKvVahu0Wq0TwPcA7vTgmu3i49MU0eF5GyxVHZObvjJS6BcjfKn1NaRKBQA3XGznUp6sl94XIOVQhgjFNv2JMM1gAABhP4/i01cHXX7/6X8gSF/4mEvADBDEY/oTwfGJsLIU4KqHq+bq4AvPcTCWFQOgIVczkKuFdD0Bgd5ElyLIGo0mA8Bfrjn8ZwBrtFrtXo1Gkwzg35fGXFneawLgsX55HcHP91LRIm+DqYNy080RZIJQQB0tyEz3NWQqb5gBuN1djCCTMviFC+Ix/Qnv4BAQBA/GVozKMyPA8zwIgoCbZWGqqABND4Svv+VydbZA/yA4tiltguDy4ZAMQeO5QnjFJAAAzD/+BKOIAcmEIT7hlt72BAQEPECXHGStVrsdwPYrj2k0Ghma8oyh1Wq/12g0IWhyiJVXDFMC6JiX6iEUfk0RHZ6zoaGm7VY8V2Ju0AMgQLk5iJXty4gK9C6kqqa8chadiyBbGvTgQYDgKQTFhdwM0wR6KARBQBakBluuA5wEGqqt8AmW42Lh7yDcblCiUCTeJewq9DcCo2NBEASk5DlYxZPx697duHPFSgDAT++9C5uYAU1HIHxkQjdbKiAg0Fk8mWLxIoCnAUCj0QwFcAHAGQBxGo3GR6PRiNCUXvGDB9dsF4lPMHjwAGeBqb5j7frMdVUgIAIjiIT0SRTqJkfG3UkH2dCgA0EwYFgrfAMFZ6i/ETd6Euw0C56z4uwvtQCAk98eAUDC1+yAOnls9xoocMthxBL4h4WBcTftOlq/Pg+32QLnhQuw//pL0xhREEIShVQ9AYHehicd5LUAJmg0mm8B/D8Ai7VarQvAMgBfoskxfler1bZbjehJCJkP3LQbpNsEm6ljbb0a66pBEDJQvPkmWyfQHSiVXgAADnyLll3Xw9RQD4IQg3JbQVF9vkOiwDXcNm4yQBBgjN8h/6sLcDlYnDt+BCQdjiDTz2DCWghNCfQDgjWDoXeKwMEMk2IwCl56BsV/ewZ1CilASKDRyEGLOidUJSAg0P14rIuFVqttADCjleP/AfAfT63TaURycIwbsJvhsHasNZdRXw+SVIGiOqlPLdArUF5KseDhgtvFdfjmZTE0goQMFG+/meYJ9FD8wyMhEgMwngFrnYaD7/8PhMMCKRmHmMG0kH/cTxmgScSpr/Yjnv4S5QH3If7LHDAuE6qT4kDT4Ui8e3B3myggINAF+n4YjCBAiDjwvBWuDupC2EwW8JQajFhQS+uLqNV+AACed8DZiV7IdoMBJCEDKTjI/ZaY0aNgFgNw/orCb/YCYBB/4Qz873+wu00T6Caibh8JkiLBuH4FCBpvT78br6QrQfIclPJgBA+N7W4TBW4Bx44dk6enp1+W2czPz5fOmjUrITU1VbN06dJIt7vpXrN161b/mTNnJqakpCTu3bvXGwDMZjO5aNGimDlz5mjmz58fX1FR0UJxyGq1EhkZGTFpaWmahQsXxtbW1tIA8MYbbwRMmTJlUHp6uiY9PV1TWFgobmvsiRMnZGlpaZrU1FRNRkZGtM1mu/xUf639J0+elKWkpCSmpaVpnn322bBm+6+FZVlkZGREHzhwQHXt33bu3On70ksvXdXaZ8mSJdGHDx9WXju2meeffz6srKxMVF9fT3344YetClG0tWZxcbF46tSpA68d/+abbwZca0dH6PsOMgBaxIODAyzXfsDczbrAOVgQpBIydfs9kwV6H97qS72teTucdtf1B1+C49xgLTYQhBIE2bFzBPoeyfP/BILnwRr/C449D1+LBYHSWkhHjOhu0wS6CYlcgcjbhqHcIkWAohyJ1qkYU5MMQIRxdwYLOwv9gPXr1wdmZWVFOJ3Oy//ZGzduDMnMzKzKy8vTulwuYv/+/WqdTkfn5OQE5ObmFu7atUu7YcOGMI7jsGPHDr/ExETrvn37tDNmzKjftGlTi6T17du3B8TGxtpyc3O1KSkp9evXrw8GgIKCAvmaNWvONyvcJSQkOFoby3EcsrKyItetW1eal5enTU5ONpaVlYnasj8rKytixYoV5bm5uVqFQuH+6KOPWjirZ8+eFaenpydotVq5p67lq6++eiEiIsJ5+vRpWbNyYEfW3LVrl8/TTz8dbTAYLj9cWK1W4k9/+lNUTk5Ol9pOeVIopMciEpFwwwk32hd3sDRearJByuEdJBRi9UUUEiV4NEWQHXoTEND+Z9tuvpSPTilBUjcsGS/QS1H5+WP6Q4vw/Za3wVI8Rp6tRMjKlYIT1M/RjJ2AkvyTmMBvwGnv1SjTnkeASoHE+fPaP1nAY+wu2O376blP/Tw556yYWXUPJD5Qf70xERERjjfffPPcX//616jmYxqNxtrY2EhxHAer1UoxDMP7+/uz+/fv/51hGJSWlooYhuFIksQTTzxRy7IsAKCyslKkVCpbhGvz8/MVjz32WDUA3HPPPcZt27aFAIBWq5Vt3rw5SK/XM8nJyYbly5dXtza2qKhIrFKp2LfffjuwpKREmpyc3JiQkOBoy/66ujrRuHHjLAAwYsQI88GDB70WLFigv9Ims9lMvvrqq6WbN2/udBXqzp07fY8cOaK22+1kZWWleNGiRdUPPfRQfXp6umbVqlVlW7ZsCSopKZFt377dLyMj43Lz+bbWVKvV7o8++kh79913D2k+ZrfbydTU1PoxY8YYS0pKOh3x7BcRZKmEAgcX3ISo3d631ivU0oIihFZefRGSIMGTAHg7rPqOdSqxGY0AAJ5WgxILBTf9mYSZ83D3kMGY2OiA/6MZ8Eqd3d0mCXQzMSPuAC0W40RDIKiLrwBwYdKskQAtKG72B9LS0hoZhrkqchIVFeXIzs4Onzx58iC9Xk9PmDDBBAAMw2DLli3+CxYsSJw2bdplx5umacybNy9+3759Affee28LVTOLxUKp1Wo3ACiVSrfFYqEAYMqUKfq1a9eWf/jhh0X5+fmKzz77TN3a2Lq6OrqgoEDx8MMP1+7evbvoxIkTqkOHDinbsj84ONhx+PBhBQAcOnTIy2aztbjxJSUl2QYOHNiVnEMeAMxmM/X++++f3bx589kdO3Zc5fBmZmZWJyUlma50jq+35syZMw0KheIqB8/Hx8c9depUYxfsA9BPIsgKqRhGcACcsJtd11U0uuwgk3KoQ4UIcl+Fo5oiyCZ9xzqV2IyXemgTUjAy9iZaJtAbiFqzobtNEOhBiGUyzPrLc/g0ezVqXQzuum8qBqQs7W6z+h0PJD5Q316091aRnZ0d9t577xUOHjzYvnXrVv+srKywf/7zn+UAkJmZqXv44Yfr/vCHP8R988035rvuussEAHv27CkqKCiQZGZmxm7btq34ueeeiwSAmTNn1svlcrfJZCIBwGQyUXK53M1xHDIzM2u9vLzcAHDnnXcafv/9d1lrY319fd3BwcH2Zudy7NixhlOnTskmTZrUapRo7dq1519++eXwt956ixg2bJiZYRh+y5Yt/gcPHvQBgA0bNpSEhoZeN99QIpFwTqfzqkCszWYjpVIpBwDx8fFWAAgLC3O6XK4eF7DtcQbdDJSKpi10nrO12+rNYrj04EbIoIoMvNmmCXQTHMUDvB2Whg46yKamh1CCkILxUtxM0wQEBHohUcNGYP7Kf2LGU3/D7QsE57i/o1AoWJVK5QaAwMBAl8lkogoLC8WPPPJIDMdxYBiGF4lEHEEQfHZ2dtCuXbt8Lp3nJkkScXFxjua84sWLF9clJSWZm3Nyv/zyS9XQoUNNRqORmjFjxiCTyURyHIfjx48rhwwZYm1tbHR0tMNms1HFxcViAMjPz1fGx8e3Gf396quvvDZu3FiyZ8+eosbGRio5OdmYmZmpa7apPecYAG677Tbrjz/+qGp21uvr66nS0lJps5N+vdQ0giD4zrRhvRn0iwiyt0INwATwNtjqzUBomwWUsF7KQaZ4BmLfFkWZAn0ENwPwLgdsDR3bfbFeiiATpBQS37Z3IAQEBPovQTFxCIqJ624zBHoAK1euLFu6dGkMRVE8wzDcmjVryqKiopzx8fHW2bNnJxAEgTFjxhgmTpxoTkhIsC9btiwqLy/Pn+M4rFq16vy182VkZOieeuqpyNTUVA3DMPzrr79e4uXl5X788ccrHnjgAQ3DMNzIkSNN06dPN1gsFtO1Y8ViMb9y5crSZcuWRfM8jyFDhphnzJjRprxwZGSkfeHChRqJRMINHz7cNH369I5JEV9BQkKCY+7cubVz585NkMlkbpZlib/97W/lSqWy3RZhMTExjpKSEumbb74Z8MQTT9R2dm1PQHS3h94aaWlpfG5ursfmK9j7D+zP+QWMYjamzBuHxHsS2xz7zY638fMXn0MtW4BH/zXfYzb0NzQazUmtVuvx0n5PvTdefnw65A1eGDh4Nu79e/uFNMdyP8LRj96H2Gspht+jxpi00TdsQ3/lZr03AM9/dwjcenr6d4dA99Hae+PUqVOlQ4cOrWvrHAGB9jh16pTf0KFDI6893i9SLPx9LuV+czY01Fz/Icigr7uklibITPdlOCkJcHa4zLYOjbcZDeAJAgRBwyek1daMAgICAgICAn2EfuEgK32CAQA8b4Oh7vo5p/q6apCEHDRhvRWmCXQThEIEwAmntWPqMTaTEcSlj4tfuP9NtExAQEBAQECgu+kXDrJI7Q+O4EGwRlgbr9+RxNKoB0gFaEaQme7LkEopAMDl6Nj/s9VoAIimlH21X9s57AICv5xDEgAAIABJREFUAgICAgK9n37hIBMyH7gZN0i3CXbz9QsvnWYLQKkgkd4i4wS6BYmiqROFu4P641aTASREIDgnaJHQB1lAQEBAQKAv0y8cZEi9wDEseM4Cp6PtokQ3ywIOFwhCBpW3IDPdl5EpmzqUNKsXtYfVYADFi0G5O5azLCAgICAgINB76R8OssQLBMOC521g2bZf8mUxCFKGgBCPqlUK9DBkSm8AAMu3UPRsFbvJCBJSkHxXRIMEBAQEBAQEehP9w0EWyUHTbnBwwM0zbQ6zXCEz7R0ZequsE+gGZOomlUR3Bxxkl8MOt8sFkpCDhJCbLiAgICBwNceOHZOnp6drmn/Pz8+Xzpo1KyE1NVWzdOnSSLe76V6zdetW/5kzZyampKQk7t271xsAzGYzuWjRopg5c+Zo5s+fH19RUdHCUbFarURGRkZMWlqaZuHChbG1tbU0ALzxxhsBU6ZMGZSenq5JT0/XFBYWitsae+LECVlaWpomNTVVk5GREW2z2S4rdVxr/8mTJ2UpKSmJaWlpmmeffTas2f7WeO2114KWLFkSfe3xnTt3+r700ksDrjy2ZMmS6MOHD7dZyPP888+HlZWVierr66kPP/yw1ZZRLMsiIyMj+sCBA5fFKhYtWhQze/bshPT0dM2DDz4Y17xW83UZP378kNZsvB79w0EmCIhFPDjCCTchBse1nmZxpcy0KjrsVloocIuRqZo+dxzfbr9y2IxNYiIkoQBJdixnWUBAQECgf7B+/frArKysCKfTednh3LhxY0hmZmZVXl6e1uVyEfv371frdDo6JycnIDc3t3DXrl3aDRs2hHEchx07dvglJiZa9+3bp50xY0b9pk2bgq5dY/v27QGxsbG23NxcbUpKSv369euDAaCgoEC+Zs2a880KdwkJCY7WxnIch6ysrMh169aV5uXlaZOTk41lZWWituzPysqKWLFiRXlubq5WoVC4P/roo1ad1S+++EL1/fffe3nqWr766qsXIiIinKdPn5Y1qwFeydmzZ8Xp6ekJWq1WfuXx/5+9Ow9sqkofPv69WZuk6UJpy1roeguCgLghHRUVFQFZ3RBFrEt1FP2B46gzoiiOONphFBVEUIQBEaHojPKKIqCIAg52QBEuS2lZSzfaJk26ZHn/CMVCQQRKI+T5/GNzc3Lv03JMnpz7nHP27t0blpOTs2XhwoXa3LlztwFMnz49b+HChdr06dO322w277PPPrv7ZGIJiZ30ACwmHZX48APVzjqsEaZGbQ4nyH4z4QmtmzlC0ZzC7YH/77zKb0iQD20zjd6OznDi9kIIIZpf2b/mxlR8/HGT1kdGDhpU0mLk7aW/1qZDhw41r7/++o7HHnsssf6Yqqqu8vJyvc/nw+Vy6Y1Goz82NtazZMmSTUajkfz8fJPRaPTpdDoeeuihovr5MPv27TPZ7fZGw7W5ubnh9957byHAddddVzljxow2AJqmWadOndqqrKzMmJGRUTFu3LjCY7XdunWrOSIiwjN9+vT4vLw8S0ZGRnl6enrN8eIvKSkx9e7duwrgwgsvdC5btixqxIgRZQ1j2rZtm/mDDz6Ifeihh/YuWLDgpNY/nT17dsyqVasiq6urdfv27TOPGjWq8M477ywdPny4+vzzzxdMmzatVV5ennXmzJktMzMzD28E43Q6dX/729/yp06devhLRGFhocHpdOpHjRqV4nQ69ZmZmYUDBgw4vOnF3//+9za33nprUZs2bU64PXZDoTGCDNjCDn0X8LtxO449ClhVfhAAk9eLLky2Ez6X2cMDNcg+TlxiUb/NtNcQhd4sK1gIIYT4xdChQ8uNRuMRt6YTExNrsrOzE6655przysrKDFdccYUDwGg0Mm3atNgRI0Z0uv766w8n3gaDgZtvvjlt0aJFcf369Tt49DWqqqr0kZGRXgC73e6tqqrSA/Tt27ds0qRJu+bPn781Nzc3/JNPPok8VtuSkhLD5s2bw0ePHl30/vvvb123bl3E8uXL7ceLv3Xr1jUrV64MB1i+fHmU2+0+4sPP4XDoxo8fnzBp0qQCg+Gkx1r9AE6nUz9nzpztU6dO3T5r1qwjRs2zsrIKu3fv7miYHAN0797d3blz5yMmA9XW1iojRow48M4772yfNm3ajldeeaX9gQMHDAAHDhwwrF+/PmLkyJEnvdtiyIwgR1rD2E9gs5CqMhcxbcMbtXEcLAP0GH2ySci5zma0AXp8nHgVi/oRZJ8hCpO16gxHJoQQ4lS0GHl76YlGe5tLdnZ2+/fee29Lly5dqt96663Y8ePHt3/55Zd3AWRlZRWPHj265I477khdsWKFs0+fPg6ABQsWbN28eXNYVlZWyowZM7Y9+eSTHQEGDBhQarPZvA6HQwfgcDj0NpvN6/P5yMrKKoqKivICXH755RWbNm2yHqttTEyMt3Xr1tX1yeVll11WsWHDButVV111zG2DJ02atPO5555LePPNN5UePXo4jUajf9q0abHLli1rATBs2LDisrIy40MPPZTsdDr1ZWVlxuzs7Fbjxo0rrD9HWFiYr7a29oiBWLfbrbNYLD6AtLQ0F0D79u1r6+rqTnnAtlWrVp6777672Gg0Eh8f70lNTXVpmhYWHx/v/Pjjj6Ovvfba0lNI4kNnBDnKFkiI/T43jv2NvpwBUFpchKJY0Ptlm+lzndVoxa/o8FOHp+bXk+T6GmRFsWCJkk1ChBBC/Lrw8HBPRESEFyA+Pr7O4XDot2zZYr777ruTfT4fRqPRbzKZfIqi+LOzs1vNnTu3xaHXeXU6HampqTX1dcV33XVXSffu3Z31NblLly6N6Natm6OyslLfv3//8xwOh87n87F27Vp7165dXcdqm5SUVON2u/Xbtm0zA+Tm5trT0tKOuyzTF198EfXaa6/lLViwYGt5ebk+IyOjMisrq7g+pttuu61s6dKlPy9cuFB74okndnfv3t3RMDkGOP/8813ff/99RH2yXlpaqs/Pz7fUJ+mKohzr0hx6zu/3H39Z3oa+/PJLe1ZWVhIERrZ37txp6dSpUzXAmjVrIq666qrK33Sio4TMCHLLiGjABX43pXuPnSCXlRShKOEYdDJKeK6zGqz4dYCvmupyJ+Hxx59jcLgGWTFjibEdt50QQggBMGHChIIxY8Yk6/V6v9Fo9L344osFiYmJtWlpaa7BgwenK4pCr169Kq688kpnenp69dixYxMXL14c6/P5eP7553cefb7MzMziRx55pOOQIUNUo9Hof/XVV/OioqK8Dz744J7bbrtNNRqNvosuushxww03VFRVVTmObms2m/0TJkzIHzt2bJLf76dr167O/v37VxwrdoCOHTtWjxw5Ug0LC/P17NnTccMNNxy37fGkp6fX3HTTTUU33XRTutVq9Xo8HuXxxx/fZbfbTziZJzk5uSYvL8/y+uuvxz300ENFv9a2X79+latWrYq88cYb03U6HQ8//PDe2NhYD8Du3bvDkpKSTmn5KeW3ZujNaejQof6cnJwmPefB//yVd/71P4xhV5LYuRsD/9y3UZvJ998BVbEkWOwMe3tCk14/1Kiqul7TtAub+rxN1Teq6qqYMnokJl9L7vjrX4nt3OG4bb94+3U2Lv+MsMixXHRDDBff2O20rx/KzlTfgDPz3iGa1+/9vUMEz7H6xoYNG/K7det20vWlQtTbsGFDy27dunU8+vhpjSCrqjoEuEnTtBGHHl8KvAp4gM81TZugqqoOeBPoBtQA92iatv10rnsqIqLjAdB5K6gqP/ZdBa/TgUHfEVu4rFRwrrMYLHgMYKqpobK4kl+bfut2VKIQuBUU3arJVrMRQgghxO/UKdcgq6r6KvDiUeeYBowAMoBLVFXtAQwGwjRN6wU8AWSferinTh8eg0fvRfE4qHE1rjmtq65G8XhQdDaiY6xBiFA0J52iw6v34ffX4Cj79ZrzQIIc6OYRcZHNEZ4QQgghguh0Jul9CzxQ/0BV1QjArGnaDk3T/MBS4BoCyfJnAJqmrQHOyK3VEwqLwmPygs9J3TFWeXOWB5b3UxQbsa2imzk4EQweox/81bgO/nrNubuyEt2hmy2WcFn+TwghhDjXnbDEQlXVTOD/jjo8WtO0D1RVvbLBsQig4UxBB5B06HjD4m6vqqoGTdNOvL5WU7JE4Td68eHG6238a9evgYzORlTCMTeMEeeYOnOglKaqtOxX27kdlej8gT5jsoTMvFYhhBAiZJ3w017TtJnAzN9wrkqg4RpYdqAcsB51XNfsyTFAWBR6Yx1eqvEqZvx+/xFLjFQdDCTIOsKwJx9/wpY4d3gtgf9Wl5cft43f78ftqCTMH4UfMIXJRiFCCCHEua7J1kHWNK0SqFVVNVlVVQW4DlgFrAZugMOT+H5sqmueFEs0JmMtPqUOv2KgrvrIHdScBwNri5s8HgytEoIRoWhmXlvgC1Kt8/g1yDWuKvw+Hzp/GIqvGp0+ZJYOF0IIIUJWU3/aZwFzgXVArqZpa4HFQLWqqt8Ck2lcrtE8LFHYDHX48eH3e6iqOHJZvNLiUkDB5KlCsUgNcijwRQZuoNRWu4/bpn4NZIPfis5/3DXVhRBChLA1a9bYhg8frtY/zs3Ntdx4443pQ4YMUceMGdPR6w0Myr311luxAwYM6DRw4MBOH374YTSA0+nUjRo1KnnYsGHqLbfckrZnzx7j0ed3uVxKZmZm8tChQ9WRI0emFBUVGQCmTJkS17dv3/OGDx+uDh8+XN2yZYv5eG3XrVtnHTp0qDpkyBA1MzMzye12H76NfnT869evtw4cOLDT0KFD1T//+c/t6+Nv6Msvv7QPGjQofdiwYWpmZmZSVVXVETnl7NmzY5599tm2DY/dd999SStXrjzujltPPfVU+4KCAlNpaal+/vz5x6x39Xg8ZGZmJn322WcR9cdGjRqVPHjw4PThw4ert99+e2r9v8HQoUPV4cOHq7fddltqYWHhSdVInlaCrGnaSk3Tbm3weI2maZdqmnaRpml/OXTMp2lalqZpl2ma1kvTtC2nc81TZrQQYQxUdvh9VVSWHpnslBQFdtEzUg46GSUMBUZ7oMbCU3OMWZuHVDsCo8s6xYrCKa01LoQQ4hw2efLk+PHjx3eora09nHC+9tprbbKysvYvXrxYq6urU5YsWRJZXFxsWLhwYVxOTs6WuXPnav/85z/b+3w+Zs2a1bJTp06uRYsWaf379y994403Wh19jZkzZ8alpKS4c3JytIEDB5ZOnjy5NcDmzZttL7744s76He7S09NrjtXW5/Mxfvz4ji+99FL+4sWLtYyMjMqCggLT8eIfP358hyeeeGJXTk6OFh4e7v3ggw8aJasvvPBCh7feemv7okWLtISEhJr33nuv5en+Lf/2t7/t7tChQ+2PP/5ord8NsKHt27ebhw8fnq5p2hG7du3duzcsJydny8KFC7W5c+duA5g4cWLC008/vWvhwoXa1VdffXDKlCmN/q6/JqRmHLUI07EfwF9F2a4yOpwXc/i5spIi0Nkx6o+9y54494SFhwOVeLx1x21TP4KsU+wouuO3E0IIEVwbV+yJ0dbsP+0krSH10tYl5/dpV/prbTp06FDz+uuv73jssccSD79OVV3l5eV6n8+Hy+XSG41Gf2xsrGfJkiWbjEYj+fn5JqPR6NPpdDz00ENFHk9gAG/fvn0mu93eaLg2Nzc3/N577y0EuO666ypnzJjRBkDTNOvUqVNblZWVGTMyMirGjRtXeKy2W7duNUdERHimT58en5eXZ8nIyChPT0+vOV78JSUlpt69e1cBXHjhhc5ly5ZFjRgx4ogZ7f/617+0Vq1aeQC8Xq9iNpt/8yYSs2fPjlm1alVkdXW1bt++feZRo0YV3nnnnaXDhw9Xn3/++YJp06a1ysvLs86cObNlZmbm4Y1gnE6n7m9/+1v+1KlTDye7hYWFBqfTqR81alSK0+nUZ2ZmFg4YMKBiypQpeW3atKlrEN9J7YwXUkOlcdawwA/eSooKjtx4p/pgKYrOhtXkDEJkIhgs4YG7M17f8eeM1ifIfr0dnUE2kBFCCHGkoUOHlhuNxiOSr8TExJrs7OyEa6655ryysjLDFVdc4QAwGo1MmzYtdsSIEZ2uv/76w4m3wWDg5ptvTlu0aFFcv379Go3UVVVV6SMjI70AdrvdW1VVpQfo27dv2aRJk3bNnz9/a25ubvgnn3wSeay2JSUlhs2bN4ePHj266P3339+6bt26iOXLl9uPF3/r1q1rVq5cGQ6wfPnyKLfb3WiGen3yuXjx4qj169fbR4wY8atfJBrwAzidTv2cOXO2T506dfusWbOOGN3Nysoq7N69u6NhcgzQvXt3d+fOnY8oAaitrVVGjBhx4J133tk+bdq0Ha+88kr7AwcOGOrjW716tW3BggVxWVlZB35jfECIjSC3iQiUvejqSinbV3nkk85KFEM77JG/uuW3OIdYI1rgBby+xrVV9dyVgRUKvYZI9ObjtxNCCBFc5/dpV3qi0d7mkp2d3f69997b0qVLl+q33nordvz48e1ffvnlXQBZWVnFo0ePLrnjjjtSV6xY4ezTp48DYMGCBVs3b94clpWVlTJjxoxtTz75ZEeAAQMGlNpsNq/D4dABOBwOvc1m8/p8PrKysoqioqK8AJdffnnFpk2brMdqGxMT423dunV1fXJ52WWXVWzYsMF61VVXHXOW+qRJk3Y+99xzCW+++abSo0cPp9Fo9E+bNi122bJlLQD++c9/5rVr165uypQpcV9++WWLWbNmbbNYLEck2WFhYb7a2tojBmLdbrfOYrH4ANLS0lwA7du3r62rqzvlAdtWrVp57r777mKj0Uh8fLwnNTXVpWlaWHx8vHPBggXRM2fObD19+vRtcXFxJ7WCWmiNIEfE4FP86OpKcVX8Unda46pC8dah6CKIaxlS3xlCms3WAjDg4wQjyAp4DREYLabmC04IIcRZKzw83BMREeEFiI+Pr3M4HPotW7aY77777mSfz4fRaPSbTCafoij+7OzsVnPnzm1x6HVenU5HampqTX1d8V133VXSvXt3Z31N7tKlSyO6devmqKys1Pfv3/88h8Oh8/l8rF271t61a1fXsdomJSXVuN1u/bZt28wAubm59rS0tOPOPP/iiy+iXnvttbwFCxZsLS8v12dkZFRmZWUV18fUrl27updffrlVbm6ufd68eVpsbGyjD9Lzzz/f9f3330fUJ+ulpaX6/Px8S32S3nCp3aMpiuL3+39bRcSXX35pz8rKSgJwOBy6nTt3Wjp16lQ9b968FvPnz4+bN2+elpycfPzJRscRUtmgLjyWGvNBwqsqqav55btBZXFg1FjRRdKmQ8zxXi7OMVazHYdixMuvjCA7KtHpwWu0Eia7TAshhPgNJkyYUDBmzJhkvV7vNxqNvhdffLEgMTGxNi0tzTV48OB0RVHo1atXxZVXXulMT0+vHjt2bOLixYtjfT4fzz///M6jz5eZmVn8yCOPdBwyZIhqNBr9r776al5UVJT3wQcf3HPbbbepRqPRd9FFFzluuOGGiqqqKsfRbc1ms3/ChAn5Y8eOTfL7/XTt2tXZv3//imPFDtCxY8fqkSNHqmFhYb6ePXs6brjhhiPaFhYWGmbNmtUmOTnZdeedd6YBXHvttWX33XdfcX2b9PT0mptuuqnopptuSrdarV6Px6M8/vjju+x2+wnrFZOTk2vy8vIsr7/+etxDDz30q7f2+/XrV7lq1arIG2+8MV2n0/Hwww/vjY6O9mRnZyfExsbW3n///SkAF1xwgeOpp57ad6Jr11N+a4benIYOHerPyclp+hMvm8CED74mpjwWpcU9PDD1anQ6he3fr+HjVyZiDRvM/ff50PW+r+mvHWJUVV2vaVqTbyvelH1j8bbF7Bz/AXrsPPL+28ds8/ErE8n/33cYwseRfKGB6++5vEmuHcrOVN+AM/jeIZrN2fDeIYLjWH1jw4YN+d26dSs53muEOJENGza07NatW8ejj4dUiQW2ligmDx6lBhQdVeWBZbv27tkLgNnjQdeidTAjFM3IYrTgV/T4Of7qFK7KSpRD3yFjWjXp5GghhBBC/E6FVoJsbYnBWIdXCSREjrLABhG7d+0F9Bi8DrDFBjFA0ZxsBht+nQ6fvxZfzbHXOHZXlqM7lCBHxskGMkIIIUQoCK0E2RaDxRio0/b7PezbFSipKd1XiKKLwuzfA1YZJQwVVqMVrx781OCpOHYplquiAr0v8L9JWLhM0hNCCCFCQWglyNaWhBsCI4V+n4N92woBqC4pRNHZCTPkg00S5FBhNVjx6AF/DZUHyho976mtpcZVhd4XWP7RZAmpOa1CCCFEyAqtBNnWkniTCwCjK4/S/EO7pLnKUfSRRNnzkKUKQofVaKX20NroRbsLGz3vOrQGst4bGDk2S4IshBBChITQSpCtLUnTB5Jik3sH7nIFV6UTna8Wg89Im7g6+JV1+cS5xWqwUm0KLPF2cF9xo+frNwkx+M0AmK3G5gtOCCGEEEETWgmyMYwkgwmnpQ6/pwi/X0/uOg0Aa0017Vq1CHKAojnZjDZc5sDa5pUljTdfqqoI7PZp8NoAMFka7bQphBBCsGbNGtvw4cPV+se5ubmWG2+8MX3IkCHqmDFjOnq9gcGYt956K3bAgAGdBg4c2OnDDz+MBnA6nbpRo0YlDxs2TL3lllvS9uzZ02g0xuVyKZmZmclDhw5VR44cmVJUVGQAWLdunXXo0KHqkCFD1MzMzCS32614vV7GjRuXMGjQoPThw4er9ZuDbNu2zXzLLbekDRs2TL311ltTS0pKDn+obdu2zXzttdd2rn+cl5dnGjZsmDp06FD1wQcfTKyqqmqUL+bm5lqGDh2qDh8+XL3ttttSCwsLj7jNunLlSvt9992X1PDYs88+23b27NnH3XAiOzu71dq1a61ut1t59913j1vz+tRTT7V/++23j1hVoaioyNCnT58ubrdbASgvL9ffeeedKcOGDVMHDRqU/u2339qOd75jCa0EGTBZY3DbvbhNgQ1kln76HQAGXxWW8LhghiaamcVgoSossKKJu/xgo+ddFfUjyDbw12EwSoIshBDiSJMnT44fP358h9ra2sO3oF977bU2WVlZ+xcvXqzV1dUpS5YsiSwuLjYsXLgwLicnZ8vcuXO1f/7zn+19Ph+zZs1q2alTJ9eiRYu0/v37l77xxhutjr7GzJkz41JSUtw5OTnawIEDSydPntza5/Mxfvz4ji+99FL+4sWLtYyMjMqCggLTv//976ja2lrdxx9/vGXcuHF7Jk6c2A7gL3/5S4dHH31076JFi7Sbb765eOvWrWEAc+fObfHoo48mVVRUHE7MX3jhhXY33XRTcU5OjnbRRRc53njjjfijY5o4cWLC008/vWvhwoXa1VdffXDKlCmN4j5Z48aNK7zkkktchYWFxsWLFzdKkIuKigy333576urVq4+oh126dGnEqFGj0g4ePHj4d3jzzTfjL7744spFixZpL7300s6JEycmnEwsoVdUaY1BH+6lRq8Q6SoiqqoAv2JBMewFSZBDiqIouG2BDX1qnJWNnndVlANgIByF4+7IKYQQ4ncg97NPYn7++ssmnWnf+fKrS3pcP6DxLcYGOnToUPP666/veOyxxxLrj6mq6iovL9f7fD5cLpfeaDT6Y2NjPUuWLNlkNBrJz883GY1Gn06n46GHHiryeAJ3M/ft22ey2+2NtnfNzc0Nv/feewsBrrvuusoZM2a02bp1qzkiIsIzffr0+Ly8PEtGRkZ5enp6zZw5c2IzMjIqAHr16lU1duxYm8vlUg4ePGhctmxZVHZ2drtOnTpVPfPMM3sAIiMjvR988IF29dVXd62/XkFBgeXaa68tALjkkkucEydObH90TFOmTMlr06ZNHYDX61XMZvNv3nlu5cqV9rfffruVwWDw7d+/39y3b9+yP/3pT4UPP/xwx/79+5ctXbo0eteuXZZJkya1fuKJJ/bXv87pdOoefvjhfStWrDgiQdbpdMyZM0cbMmTI4VHwBx544IDZbPYBeDwexWQyndTOeCE3goytJXZrHaAQUZ6L37OXiBoFxf4jRLQNdnSimdVEBBLkOndVo+dcFeXoDQa8BjuK7qS3cRdCCBEChg4dWm40Go9IvhITE2uys7MTrrnmmvPKysoMV1xxhQPAaDQybdq02BEjRnS6/vrrDyfeBoOBm2++OW3RokVx/fr1a3RLs6qqSh8ZGekFsNvt3qqqKn1JSYlh8+bN4aNHjy56//33t65bty5i+fLl9qqqKn1ERMThJFun0/mLioqMu3btCsvIyKhcsGCBVllZqZ87d24MwIABAyrCw8OP2P45JSXF9emnn0YBfPbZZ1HV1dWN8sX65Hj16tW2BQsWxGVlZR34LX8v5dBcrwMHDphmzJixIycnZ8u8efOOGH0eM2bM/oSEBHfD5BggKSmp9tJLL230gd23b9/Kli1bHvHFIjo62mu1Wv379+83/OlPf0p69NFH9/yW+OqF4AhyS1qZt1NKFBbnGrDYaVdcQoVaC5GSIIcafbge8FNX23ijEFdlBUazEU+dBcXgaf7ghBBC/GY9rh9QeqLR3uaSnZ3d/r333tvSpUuX6rfeeit2/Pjx7V9++eVdAFlZWcWjR48uueOOO1JXrFjh7NOnjwNgwYIFWzdv3hyWlZWVMmPGjG1PPvlkR4ABAwaU2mw2r8Ph0AE4HA69zWbzxsTEeFu3bl3duXPnaoDLLrusYsOGDVabzeZ1Op2HawL9fr8SFxdXZ7FYfPXX6tOnT8Xq1asjgGP+vcaPH7/n6aefTvj4449b9u7duzwyMtKzaNGi6Pfffz8O4Iknnth94YUXuhYsWBA9c+bM1tOnT98WFxd3xAdlWFiYr66u7oiVD1wulz4sLMwHkJSU5DYajRiNRt/Jju7+Vhs3brSMGzcuaezYsbuXzHtMAAAgAElEQVSvvPJK58m8NgRHkGNIohSPzkderB2AtWoN0S1qIKJdkIMTzS3MagIlDK+38XbTropy9HoFj8GK7rffORJCCBHiwsPDPfWjuPHx8XUOh0O/ZcsW8913353s8/kwGo1+k8nkUxTFn52d3Wru3LktDr3Oq9PpSE1NrVm4cKG2cOFC7a677irp3r27c/ny5VEQqLft1q2bIykpqcbtduvrJ+Hl5uba09LSqnv27On8+uuvIwG+++47W2Jiottqtfrbtm1b/fXXX4cDrFu3zp6SkuI+XvzLly+P+NOf/rRn4cKFml6vp1evXpXDhg07WB/ThRde6Jo3b16L+fPnx82bN09LTk5udJu1U6dO7u3bt1v37dtnBHC73cqGDRvCu3fv7jrR30+n0+H3+09rWbFNmzaFPfroo0kvv/xyXr9+/RrXUZ5ASI4gJ9ZWMalHCX03tkHn95GTUccDe2QEORSFhZlQFANeX+MRYldFOTq/F4/BgsEaet8lhRBCnJoJEyYUjBkzJlmv1/uNRqPvxRdfLEhMTKxNS0tzDR48OF1RFHr16lVx5ZVXOtPT06vHjh2buHjx4lifz8fzzz+/8+jzZWZmFj/yyCMdhwwZohqNRv+rr76aZzab/RMmTMgfO3Zskt/vp2vXrs7+/ftXeL1eVq9eHTF48OB0v9/PpEmT8gFeeOGF/AkTJiS88sorSuvWrWueeeaZkuPFn5KSUj1u3Lgko9HoT0xMdL/00ku7Gj7v8XjIzs5OiI2Nrb3//vtTAC644ALHU089ta++TWRkpG/s2LG777nnnhSz2ezzeDy6W265pSg1NbVm7969v7o1bVxcXF1dXZ3yzDPPtJ0wYcLek/zzA/D3v/+9bV1dna5+cp7NZvO89957O37r6xW///c3MjZ06FB/Tk7OmTn5/+bh+egBeqekcUXUZRSW7sYf5mDO5nXw+E6wylJvTUFV1fWapl3Y1Odt6r7xf19kkfCuF6O3ioc+mHfEc9Oy7sRQV46PewjvpDDisYFNdt1Qdqb6Bpzh9w7RLM6W9w7R/I7VNzZs2JDfrVu34yZ6QpzIhg0bWnbr1q3j0cdDb1gsKgEDcHuby/l/pcvJZRvXGGPAYAFLdLCjE83MaopEUUx4/UeWWPh9vkCJhacWj8GCLUZ2WBRCCCFCReglyNEdAbjLlozdFKhB7ltLoLxCdtELOeFhUYEaZI4sn6qucuL3+dDVefEreuySIAshhBAhI/QSZHtr0JuIqCzkzxf9mdvSb6ONs0SWeAtRNqMNdCb8ipca1y/zBqoOlgFQv3iF3W4NRnhCCCF+nc/n88noljglh/qO71jPndYkPVVVhwA3aZo2osHjV4Ddh5o8A6wC3gS6ATXAPZqmbT+d654WnR6iEuBgPoP6PseglEHwzRxI7hO0kETw2Iw2KvSBjXccB/ZjTkwGoKK4CABjXWClnAj7Se1QKYQQonn8VFxc3Dk2NrZCp9P9/iZVid8tn8+nFBcXRwI/Hev5U06QVVV9FbgO+F+Dwz2BxzVNW9Sg3VAgTNO0XqqqXgpkA4NO9bpNIjoRDuYHfvZ6wFkIEW2CGpIIDpvRRqlBhx4oLyig5aEEubI4sN65qS6QPFttYcEKUQghxHF4PJ57CgsLZxQWFnYhFO+Ki9PhA37yeDz3HOvJ0xlB/hb4CLi/wbGeQA9VVR8F1gF/BjKAzwA0TVujquoZmb1+UqI7wp51gZ+dheD3SYlFiLIZbdQawQKU7t5NyqHjFUUHMJjMmMoDd+7M1tBbEVEIIX7vevbsWQTcGOw4xLnnhJ/6qqpmAv931OHRmqZ9oKrqlUcd/4JA0rwTmAZkARFARYM2XlVVDZqmBW9rsuiOUF0B7oNQdmi5wahG24yLEGAz2nCZPYEEed/h5RupLC4iIjYO/f7AjpYmiyTIQgghRKg44ae+pmkzgZm/8XzvaJpWDqCq6sfAMALJsb1BG11Qk2M4vJIFB/Nh1xpAgbY9gxiQCJZwYziusBpiFCuVJcWHj1cUH8Aa3QLl0DrhYVZjsEIUQgghRDNrsnodVVUVYKOqqvX7NV8NrAdWAzccanMp8GNTXfOUNUyQC76B+PNkDeQQZTPacJrdKDo7zoryw8cri4swGYx4DIHVK0wW/fFOIYQQQohzTJMlyJqm+YF7gBxVVb8CrMDbwGKgWlXVb4HJNC7XaH7RHQL/3b8Rdq+DDpcFNx4RNDajjUqLC0UXTo3LCUCNy0W104HB58FjsOBXatDpZe6HEEIIESpOq7BS07SVwMoGjz8HPj9G06zTuU6TM9shqQ98+xr4PNChd7AjEkFiM9pwm6pRdG2orc0HoLIksMSbocaN29ACv77uV84ghBBCiHNN6A6LXT/pl59lBDlk2Yw2avQuFJ0dn99LrdtFRVFgiTdjlYM6gwXF7A1ylEIIIYRoTqE7NT8uHa74M+xdD+FxwY5GBInFYKHOUI2iC8wjrSwpPrwGssF5EI/Bit4q9cdCCCFEKAndBBngiseDHYEIMkVR0Jt9KPp4AHb9tIEDO7ZhttnQVZZSa7JhjDAFOUohhBBCNKfQLbEQ4hCDRYdOH43JZ2LL6q/Y9v0aUi++DJ3TSa0pnDC7LPEmhBBChBJJkEXIC7OYwe/D5olg/zaNumo36b2vQOdy4zGEYw03BztEIYQQQjQjSZBFyLOZwgEXVl/LwOOoaNqf1xVdtREUPeERYcENUAghhBDNKrRrkIUgsJKFT3Gj17WkZdv2pPbKQKfTgyewSUhkZHiQIxRCCCFEc5IEWYS8cFM4Hp0br8FG/7sepuX5nXG5a/FjAyA60n6CMwghhBDiXCIlFiLkRZojcRvd1BkslBfsAaB49348hsDIcWSUjCALIYQQoUQSZBHyosxRVIa58BisVGzPA+DAph+pNQZGji3hssybEEIIEUokQRYhL8ochcPswmO04NyxEwDnTxuoMwZKLCx2SZCFEEKIUCIJsgh5keZIag3VeAxWfLsLAFDytlBjCsen82Awyf8mQgghRCiRT34R8iJNkdQYXPh0RsyHtpk279+D0xaO11yDoihBjlAIIYQQzUkSZBHyosKiqNG7ATBXVeP3eLCWHqTKGo4/zBvk6IQQQgjR3CRBFiEv0hwYQQbw682UbtmByVlDtSkcxeILcnRCCCGEaG6SIIuQF2WOotpYBUCtKYJNH3+G4gePPhyDVcorhBBCiFAjG4WIkBdhisBpOghAtTka36qvAdARjtkmJRZCCCFEqJERZBHyDDoDyqFEuMYSTdv8n/Epeox+C2HhxiBHJ4QQQojmJiPIQgDhViteoxt9Bys/2LqTatsEQESkLciRCSGEEKK5yQiyEBxaCznMQW1YFCMe7My+1AgAWsZEBTkyIYQQQjQ3SZCFIDBRzxXmwOltifLzR5R62wDQvn18kCMTQgghRHOTBFkIAiPIDnMFTm9LKN2O03w+Pry0ad0y2KEJIYQQopmdUg2yqqqRwL+ACMAEjNU07TtVVS8FXgU8wOeapk1QVVUHvAl0A2qAezRN294k0QvRRKLMUewwFlPjv4DarqOo2ZIIlkoMRn2wQxNCCCFEMzvVEeSxwJeapl0B3AW8cej4NGAEkAFcoqpqD2AwEKZpWi/gCSD7tCIW4gyINEdSqg9sM+287EWUCjN1EVVBjkoIIYQQwXCqCfJk4K1DPxuAalVVIwCzpmk7NE3zA0uBawgky58BaJq2Brjw9EIWoulFmiNxmgNrITvLqjE57ShRdUGOSgghhBDBcMISC1VVM4H/O+rwaE3TvldVtRWBUotHCZRbVDZo4wCSDh2vaHDcq6qqQdM0z2lFLkQTijJHUWUqB6AwrwKDz4glRkr0hRBCiFB0wgRZ07SZwMyjj6uq2hWYDzymadpXh0aQ7Q2a2IFywHrUcZ0kx+L3Js4adzhBzt9cAkBEnCWYIQkhhBAiSE5piExV1c7Ah8AITdP+H4CmaZVAraqqyaqqKsB1wCpgNXDDodddCvzYFIEL0ZSSo5Lx6Xzo4mopznMCENc6MshRCSGEECIYTvUe8otAGPCqqqorVVX9+NDxLGAusA7I1TRtLbCYQI3ytwRql48u1xAi6FqEtSDaHM2BK/5LeAcFh7mUVrGyxJsQQggRik5pmTdN0wYd5/ga4NKjjvkIJM5C/K4lRyWzrWYz3Yd35R/fvMCI8H8HOyQhhBBCBIHMQhLikOSoZPLK8yh2F+HTeYm1xgY7JCGEEEIEgSTIQhySEpWCs87JR9s/omNERywGmaQnhBBChCJJkIU4JDkqGYBdjl3crN4c5GiEEEIIESySIAtxSEpUCgAWg4VBKccssxdCCCFECDilSXpCnIuiw6LpGNGRjLYZRJgigh2OEEIIIYJEEmQhGlh04yL0ij7YYQghhBAiiCRBFqIBk94U7BCEEEIIEWRSgyyEEEIIIUQDkiALIYQQQgjRgCTIQgghhBBCNCAJshBCCCGEEA1IgiyEEEIIIUQDkiALIYQQQgjRwO9ymbdNmzaVqKpaEOw4xGnpcCZOKn3jnHBG+gZI/zhHyHuHOJ4z9t4hxNEUv98f7BiEEEIIIYT43ZASCyGEEEIIIRqQBFkIIYQQQogGJEEWQgghhBCiAUmQhRBCCCGEaEASZCGEEEIIIRqQBFkIIYQQQogGfpfrIDekqqoOeBPoBtQA92iatj24UQWHqqo/AJWHHu4E3gJeBTzA55qmTQhWbMEgfeNI0j+OJP3jF9I3jiR940jSP4Ro7HefIAODgTBN03qpqnopkA0MCnJMzU5V1TBA0TTtygbH/gcMA/KAT1VV7aFpWm6QQgwG6RuHSP84JukfSN84Dukbh0j/EOLYzoYEOQP4DEDTtDWqql4Y5HiCpRtgVVX1cwL/bs8CZk3TdgCoqroUuAYIpTcx6Ru/kP7RmPSPAOkbjUnf+IX0DyGO4WyoQY4AKho89qqqejYk9k3NBbwCXAdkAe8eOlbPAUQGIa5gkr7xC+kfjUn/CJC+0Zj0jV9I/xDiGM6GN4RKwN7gsU7TNE+wggmircB2TdP8wFZVVSuAFg2etwPlQYkseKRv/EL6R2PSPwKkbzQmfeMX0j+EOIazYQR5NXADwKFasR+DG07Q3E2gTg5VVdsAVqBKVdVkVVUVAt/+VwUxvmCQvvEL6R+NSf8IkL7RmPSNX0j/EOIYzoYR5MVAX1VVvwUUYHSQ4wmWmcAsVVW/AfwE3tR8wFxAT2Cm8dogxhcM0jd+If2jMekfAdI3GpO+8QvpH0Icg+L3+4MdgxBCCCGEEL8bZ0OJhRBCCCGEEM1GEmQhhBBCCCEakARZCCGEEEKIBiRBFkIIIYQQogFJkIUQQgghhGhAEmQhhBBCCCEakARZCCGEEEKIBiRBFkIIIYQQogFJkIUQQgghhGhAEmQhhBBCCCEakARZCCGEEEKIBiRBFkIIIYQQogFJkIUQQgghhGhAEmQhhBBCCCEaMAQ7gGO55JJL/G3btg12GOI0bNq0qUTTtNimPq/0jbPfmeobIP3jXCDvHeJ4zuR7hxBH+10myG3btiUnJyfYYYjToKpqwZk4r/SNs9+Z6hsg/eNcIO8d4njO5HuHEEeTEgshhBBCCCEakARZCCGEEEKIBiRBFkIIIYQQogFJkIUQQgghhGhAEmQhhBBCCCEakARZCCF+Lzy14CwOdhRCCBHyJEEWQojfg40fwms94JUU+NcwKNsZ7IiEECJkSYIshBDBtnc9LL4PwmMhYyzs+R7mDAZnUbAjE0KIkCQJshBCBJO3Dv49BsLj4c6P4ZpnYGQOOA7AB3eAzxvsCIUQIuT8LnfSE0KIkPHjh3DgJ7jlX/j1Vta++R7FixYTFt6T3u3XYk6fir73Q8GOUgghQookyEIIEUzfz4CWKn61P9+M/iMt166kOiKOiGIH+VtjiXdNwph4HRFtUoMdqRBChAwpsRBCiGDZ+0Og/viiTHZMf5eWa1eyOmMIEf9+lV1zHqM8qR1F34az42+Z1Hik1EIIIZpLk44gq6pqBN4BOgJmYCLwMzAL8AM/AX/UNM3XlNcVQoiz0vpZYLTiadcXV+YQNrTpzJ47w3l16R0AmAf7+ftsA61XHeDDNyczcsxjwY1XCCFCRFOPII8ESjVN+wNwPfA68A/gr4eOKcCgJr6mEEKcfbwe2PIJqDew7e356Dx1rLu1DYvy5nOn+Y9kW2bzqPUV5gxKodqnQ/1oJjnrZOk3IYRoDk2dIH8IPH3oZwXwAD2Brw4d+3/ANU18TSGEOPvs+g5cpXjaX01dzoes7pjKav13ZO4dj3VlGjtWllOxysSF28fw9eWjMRdZ2DX9EXaVuoIduRBCnPOatMRC0zQngKqqdmAh8FfgFU3T/IeaOIDIprymEEKclTb/BwxhHMitxFhbzbKrK+mffy+m0hb0vjmVrle0xe2oY8OXu/nfl7Dm4gR6bJrG07Nn8+4j96PTKcH+DYQQ4pzV5JP0VFVtD6wA5miaNg9oWG9sB8qb+ppCCHFW8fsDCXLy1RR+9CnbWsSAP4VWxalcNjSFble1R6fXYYsyc9mwFIaM64nOHsPm8x6j19ol/HPl98H+DYQQ4pzWpAmyqqrxwOfAnzVNe+fQ4VxVVa889HM/YFVTXlMIIc46B34Cxz6qbRdizd/Ot+eHcdmuIbRJjaTbVe0bNW+dHMnN4zMw69347Q+ybekU1u/eH4TAhRAiNDT1CPJTQDTwtKqqK1VVXUmgzGKCqqrfASYCpRdCCBG6tn8JQMmGCjyKjqI2nTB5wrhsaCrKcUonImIs3PxkTyw1RXQ9eDsT5k+kwu1uzqiFECJkNHUN8iPAI8d46oqmvI4QQpzVdizHH9uJ0g9Xs7FdNGpJH+JT7MQnRvzqy2wdk+jfew6ffKPn2u03MHr2X/jw3pfR6/TNFLgQQoQG2ShECCGaU20V7PqO2vCLMBXuZWtaMuG1UVx4beJvennsvX/lD+4ZhNVW03tjBg8ufB6/33/iFwohhPjNJEEWQojmVPAteGup2GMBwGPrjsEGCV1iftvrdXoSJ03iAm0K1loz7b5L5sWvpp7BgIUQIvRIgiyEEM1p51egN1G8bhtaqxa0dpxH+kVtTmrZNn3KJaTe1oWuP80g2tWKg0s9/OunD89g0EIIEVqatAZZCCHECRR8hyeyGzptCz9f3ptIvwH14tYnfRr7g5NJ/uoi3NsXoqTewvLFn9Mxqi0Z7S47A0GLoKp1wY4v+c/i+RTnbiXM6WJ/jJk91/bgrn5j6BbbLdgRCnHOkQRZCCGaS20V7P8fVcaBwF5qbOdjMisnnJx3THoj8S+/TdXNI3AUJ9CTa5n8wbvEjW5JWou0Jg9dBMmBTXjfv5OVX1cQs7cT5YmjOZiQSpiip9NKB8tWL+Ojy1fw2PB7sZltwY5WiHOGlFgIIURz2fNf8HmoLPBSbgmjRU0aqd1aoSintiueLvEi2j08kHTtfWzVu7l8+3DGffA8pe7SJg5cBEVZHv53+/P1Sic1VQPJ7fF/1LVKpnvEZ1wUvpAI327sdcm0XHU+U578lO++/UkmbArRRCRBFkKI5rLrO/x+hYoNO9iYmozBZ6Jjl9jTOmXYbS/Q5g8KPda/jtFbzeWbhnPfh49T461poqBFUNQ4Yd6t/LRNj6t6ADsTB5J6cRx3/v0aej9+Pxd3WMstSRPoE/8F5/38DpEVXn6YXcSsV76kqkL+7YU4XZIgCyFEcyn4lhpDOvqDBymKSwe9n7Zq9Omd02gh6vE3iO9YyMX/nUyYx0z33Ku576Mn8fl9TRO3aH5fv0z17m2UbD2f/A796NAzir6jz8Ng0kNsGmR+gdKuJ6lh81Cvj+HybydiLvuYyp0e3n1mJTt/Lgr2byDEWU0S5Gbg9/spL3JRvMtBVXmN3AITIhT5fLD3B6ocgQl5el1nWqdGYjQ1wSYfiZcTP3ogcZG76LlhKlHuWNqtSef/PntB3m/ORiXb4Ls3WLktne0pI9FHerhuVLcjS3GsLWBkDiReQeva92g56lp6b/yciN3TOKgU8+lrG1m5ZKP8+wtximSS3hnkrfPxw+cFbFq1j6ryX255hUebSekZR9cr2xHR0hLECIUQzaZ0G9Q6cO7xUhAbQ2RtK5K6xDXZ6ZV+L9Buyxd4P8uj67Z5KKkj2f1VLc+apzDhqjFNdh3RDJY9S6nDiq/qUmrjohlyb49jf5EyWeG29+H9W4nfOQtl9N1c+u4SVtfOZ+sF16L8W8e+vSu4NbPPSS0jKISQEeQzpqq8hgUvfs+6/+ykZbtwrrxdpV9WV/5wSyot29vZuHwPc59Zw6oFW6l1e4IdrhDiTNv7A34fOLbsYVvHJIDTL69oyBKNbuCLtO+1h3a1P9N512ISyjvj+gL+8e07TXcdcWYd2ARbPuHb7ckUJFxLRJJCm9Rf6SdGC9w6DxIuI676HWJGXU/vgh2oa79ke5v1HFwPr7+cQ3Wt1CULcTIkQT4DXJW1fPzPXByl1XQaGc6eP3zHMttCtkatp8NlEfR/8HzueKEX6b1as3HFHuZNWEvBTzLrXIhz2t711FRFoHe5KY9Kw2BRaNk2vGmv0WUYhvP7ktBrF+0O/hd13yd0PNiFwn9XMX3d/Ka9ljgzvn6FyupwdK7u+PRm+t9x8YlfY7LB7QugQ2/iat4h7vYruGzfVi5Ytoq8DpvQ74zmn88tovigfM4I8VtJiUUT8/v8LJv1M5Wl1eRnfMWUHQsB0Ct6vH4vFoOFwSmDubvL3fQZmU7n3m1YPmczn7y+gc4Zbeg9PAVTmPyzCHHO2bueKncHoBSTotIuNQalqW97KwoMeh3TvstI6OfD/8lqUMBPf3Z9uJP3lIWMumh4015TNJ2KvfDzR6za1YV9bf5AWOs6WrT+jWsbm2xw+0JYlEnMlvdRbulHzwUbMX/i4bsBFhJ3JfDOxBUMeKAb56WkntnfQ4hzgIwgN7GNK/aw++cytqZ/zY+7FjLiiyQy53Xj2o/60KXwPlJtvflw64f0z+nPi2tfxB/n4uYnL6LHtQn8vHofH0xcR8Em+ZYvxDnFUwMHfsJRZKQgNorw2hjapkWdmWuFx8HgaYT5NBLu7Un7/as5b/dC4hwJ7J5Xy3vffnBmritO3//m4q3zoS/sSK05iquH9jy51xvD4ObZcOkfaaH8P9oObsN5Fbvpt2g2P7XIw1Br4ovJ21m67LszE78Q5xBJkJtQVUUNa/6dhzN2F1G5H/DyTA+D1m/lmtLNjP75M/767lQueaOElgWPcmHLa1igLeD6Rdfzp9WP4bukkIGPno9Or+OTKRv4aHIuuzaV4vfJDGQhmpTfD3vXw7q3oWR781zzwCb8nlqceWXs6BAYvWub1oT1x0dLvQYuvg/L3rkkTLifNiW59NgxG1t1FMXzwnjr8zln7tri1Ph88MMc1jg6URZ7GZjcdDgv5uTPo9PD9X+Dga8Sackl8UYTbanmgY+nUuD4LxW2ErYvdPPOlM+orqpr+t9DiHOEJMhN6L+f5uOprcO0811u+saHKc1K2ggPXQZsJ2W0nZZDr+KafblMXPgG5fNjuNz6CrekjWBd4ToeWPYAt/0wiA1XLCb8iipK9lXynykbmP2Xb1nxry1s++8BWfxdiJO0RztIUUHlkQeXPQNvXwVLHoMFd4C3GZKEA5uodejRu2o5GJmMwawjpl0T1x8fre9zEN8Vy/+eocPkZ4h35dNr4+v4fV6qF8fy2uJ3ZAmw35OdK6FiF8WahYNRqXS7KuX0SnB63gV3LMZqLyLtRgfh6ck8sOZDEtblsK3l9zh/1jP9qS/ZsKpABmKEOAZJkJtIRbGbTav24FRWcf1/i9h55Q0kf/xfDH/RYPg7GC11xJvmkPTH7rRMaMWza9+l/cy5LPm8K090nsvkKydzZfsrWVe8lldqn2JK50dY3XkBey072LR2N5/P2MSsP69m1hOr+eytH9m4Yg+Vpe5g/9pC/K5t+HI3i15az09f7QkkAV+/AqtfDSQPg96Aop9hzdQzH8iBTbjL7QDodSqtk6PO/LJbRktgCTBDGGFrxtHxzReJDfdxzbd/p85XhrK0Pa/Me1s2E/m9+CmH/Z4IzL6uoOjo2jvh9M+ZeDnc9SlGi4eUC9YTe/9tXFyax+3//oCd/hyKjXv4Zu4O5kz8hj3awdO/nhDnEJkN1kQ2LvkJn99Ln7VL2dwhlQGvTQos6q4o0GUYqP1hVTZhq14hsU9HirvdQP8Pl9CzPJ+X9gwn/tILeXrAE0zsHc7Oyp38cOAHfiz5kdzS/5BfXkBERSzxzkQS3CqVW5PYkVvMqgXQoUsMF1zXgTYpZ6ieUYiz2DV3JPP5O3V89f5WflryA138a9ElDOFhbRCmHQbea3UlcV+/DJc+CPoz+HZ44CcqnTGUW/3Y62JpnRx55q7VUFR7uCMHZg/G9PloOr76Lntffo/rvvk7Ky4Zg3VVCn9zTePPd9+LUW9snphEY9462PIJ3xS1wRl/CeFxEBnbRGvktz4fMj9H+dcwWjqmYX/zNQpe+5D7Vq4kt9U2Vl6RTHLptXw8OZcO58fwh5tSiYy1Ns21hTiLSYLcBGpddWxaV4LZuQF9nZOUl+ZgMh31YWMMg6v+AklXoMu5j3jjLGwPj8Dw4U/8Y9XrLNvbi+E/9SXjwjRuuziBwclDGZ4WmG3u8XnYWbGT3KJc1uxfwwf756NUmOlUdinebZdT8GMpCefFkHFTCtGtfuOMZxFUHp+H/c79OOuctLO3w26yBzukc9Jrc67G7t3PFS0uZGPFjXzlfQDfj35uVEr4unUY/yjvyiRWQvFmaNX1zATh98OBnzhYGM3WjkkoKLRKaqYEGQK/192fwZyh6BfeRPuxb2P8VOWqWZP5rsf9RK/vzHPVb/Jk1r1YjZIYBUX+N/jdBzHlp+JKas3lV6U17flbJMLo/wfvDcT81UOkPhau1dQAACAASURBVP06B38cRNfsyZy/4Bs+P18jt1N3PJuuZ9emUi7un8QF1yWg08tNZhG6JEFuAps/WobXa6aHtoJ119zMA91/ZQmdjhnwwGpY8jjhP84maVA6xQeupu9/VnDVrv+yYktPspd1oSA+meSOcSTG2GgdFUabSAvtoq/iiQtupEW4gfUH1vNp3qfM3zGRpD098Wj92PVcCT2uT+CSG5LRG+SN7feosKqQtze+zecFn1NeU374eGp0Ktd2uJaBHW4k1hyH3qiTf8MmkPZ1OBRZmd9pGyb3W1yQH4HP0pM9bS9n0Lb9bNT5IQnYve7MJciO/XgryjEWWTiQnoRNgfjEiDNzreNpmQr3LIP3b0X58A5aX/8i+uTnuGT8s2zofAdsuoDnXp3Kn/54FzGWU5gYJk7Pzx/zQ10kRqUr4CepR2zTX8MeD3d9Ch+MRMnJpEWfvxDxxWfkvTyZ6z7O4fKfl/N5r40cbHED/n/D9g2F9LunW9ONZAtxlpEE+XR5PfxvXQlmVx2VuhJueOLRE7/GEg3D3oYuw9Av+ROtwmYTPeZGSnfE0feLFVyT9x1+RaEkKp6d9lbkm6PZZo2myBLNAWs04a3juOC8BPp0+iOPXDCOpfmfkrPxXdr92BOWKPywZitX3dmJzulJZ/73F7+J3+9nvjaff/z3H3j9Xvp26Msl8Zei2xvO/s0OKjd7qP7Mzke+LcAWwI8t2kyb5CjadWpBhy4x2CLNwf41zjpX3fcUec8/Q9qXJcBBCtvXsb33DrZ4/z97Zx4eZXn1/88z+2QmmWyTfQ9kkgAh7PsuLkBQAmpVlCotpX15tVXbqtdbWotV+lZ+uFXBQl9ccAGEVi1qZVNE2SN7JgkhCdkzk2X2/fn9MWJlUwIJS5jPdeWSeea+7+fM+Mw8Z859zvc0YKi9iyHmJkz+CCJrdiMbMrd7jGg6gqtNjgB4FbnEJmqvjNb5KQdp/U/h48eI63cHkuUv4njwt5z0uoCRPL10JQt+cTuZkZmX377rFVGEso853BQL+kKik5Td91nX6mHOB/DBQ7D1T8hsTeQ89QyW+2az44k/MePzvbgUq9g2+CCNJ+/kzT/uYNK9+eQOTeoee0KEuIq5JhzkQ9tqcdm9DLw5HelVtuVj3rYemyuZnLo1HLhxDpPjOxEZMtwcLKLY/izKHS+QpI8i4Y3ncbRqcR48RISxlOTyCoaeOAy+09tR+wUJHQoNOzRRRKSl8z8DRuAdqOaD1i/QHuzL5ueO837frcy4cwwGfRdv14XoFN6Al9/v+D0fVH7AIP0IEtx34f5MSmWTD7UPRGkUKalaovtJqXCXcrjtEB6nj2h3Iu2HDZTvbQYgJl1NVr94ErMiCY9RodLKEUURj9OP2+HFYfHgtHpwO4LXSphOQVS8hugkzXUbjQ6fOJGCcePwNTYiqFTkRkczQRCot9WzauEbSAL9OVzTi6FRu7vvy7DpMO3tCkQEtIEUEjIvY3rFmSjC4I434IslsOVPxNbvR/bqYiwP/z/kPhcwkeeff5c5P7uJAQkDrpydl4GjtUZef/8faAwimkgFUkGKXq1nWvY0IhSXMcLffBSvtQFNbSFNGSmMGtkFxXnfh0wRLFDVxMCXL0LdfiKmv8DNG15n7btbMK9cyeSv9uJUH2fnoPvZ/HcJBw6WM3POaGRyaffaFiLEVcQ14SD/q+wjwvdnU3GogWnzBhIerbrSJgXx+9i15WsQJ+DwGrn5Z4s7v4YiDCYthL6zYN0DSNbdhXbwXLTzFgU7IwGi34/PZMZbV4e3oR6/yYTb3Iqnsg51ZTUq4yGUX29HCdwF2NN7cTjzJiSH83mvfB+NA1YxdGgfbkifRIImoUvfghDfj8fv4ZFtj7CtdhujXLeQvEJCvLYRb1g8uvZyYpt3cULiYaOlDx2K4cwcNoJnCoupsBzk0+pP2drwKh0NLtLb+pJh6ofpQztCJ8VnJDKBpF6RpPeNIbO//rrbMhWkUuTJyacdS9ImETU1lsBaBa3tAwmzrABHK4RFd70BzaU02yIwxcYhC8iJy7jC+eYSCYz9NaQOh/XziPzoHsb8aREfLN1FWs2/gRt564VNNP2kmZuzbrqytnYjokVOysFBBA4FaFMdxu/dh9VxkCdjFjE+K5OiuWu//Q7uVso/ZaegRuvrSxOQVdgN6RVnIpHAjU9BylD44EFYNgah/13ccfPj7B72Eo8u/zdTDnzMhC+fpzKziFpu4KWyfzL9v4aSlZ7S/faFCHEVcE04yBOL+rPU+XeGld3KG09+waR78zEM/s6Wj6kcvlgKpR9CeBIM/QkM+Um32yUe3sAJ80BizEcpGXoLt6ZcgpJEfD7M2wpbnoKv/gpV22HGckgeGLzBx8chj48D/hPVSfzmvza3j817Kti/eTe+g19jaKmk4Iu/4QjPxphzJ7qdN9C2o4pnw3+Fc4CPkYNu5abMm4lVx17S6w/x/fgDfp744gl2Ht/Kbz5NJKWpntLcexECTkbYVpIcacYfHU9GyQnG79mH9fA/WL99JDcZxjB5WG9mDvw5jw99Aoung6OtR6nqqKLGVEJrnR1Hmxe3w4fb78YuWHDLnDjlVpxyK26ZAxCI8unpTV/SnAYCTYnUlraxY10Fsalaeg+Op9egOCJiry9n+bvcNmwKb6/9B21Rw/E6/468bn+wwUZXY67Aa5ZQk5IOQFz6Zc4/Ph+ZY2D+F/DeXNSbf8PMO27lzd0a0o98CExj9/NHKLurnJ8P/RlySc9TuPB/tZGRO9/hZMoE1PoBeJSFSCUuBh34BMmuzRgtkzA8uh26W92jYhOHzbHoYvqgjRQu72cyf3rwOvj82WDjnENrGTpoDm/8Yh4//1cabx2t4LfmL+l3aBnHcmez8elDxI7bxx0/KkIiuT53pUJcP1wTDvJXR6KQRhaxd+S/yCoZyKYVEj7a9gXZN0aSbPycgqPL8QtS6uInkk490n89CkkDIXlg9xklihz79B3gv5DbPmb4vX+49DXlarjpT9D7Rlg/D/42AfJvhYm/CxbZnAetUsato3O5dXQudvfdfFFh4oPSBiy7dpNk/JT0Vi0d0SPJdPwU5eZW1Gv28LHwJo7YDhL7DWPMlJ+gyzIgyK+9m2CjvZH/3fO/DE8czi2Zt1xVahDP7n2Wo7s/5q9roCMii6P5d5IY0czNo8sIcwBVR8H1FYlTw7GLA2g9HGDOgY+5+/hWPjk8lF9sGY2YkMSkvHjGG7K4MX0QsXln5yaKoojL78LsNNPmaqPN3UaTo4nqjmoqOirY2v4ODVENhLtiyGotoLd5EKYNNr7acBx1vEBijo4sQwIp2dGEhfkQJDKQKYMShT2YRG0i3qRGXPUGWtpSiDeVI+1qB1kUCTSWo2nT0Jbfm3CFhKjEq0hpRhMDs9+DHc8j3fon7ovTsjfpNjyb/oGQXkRgZTO/OvpfPDzzMbJ0PaumwTBjFhVVh0hzN5CRHYfakEvFUS+VsluJau2FZPNf0Q1/jYRx3Rhscdvw1uxEXZ1Ke3wv+g++AtFZdVTwvjP850FHed9r6PesZE3vyXw4YjyPHrqF/BQrDzZupNFWgPnzXF7d8TqTfzaM7IK8y29viBCXiWvCQR5Qtw/Pli95K3ok+2MbGaHZT2FFf45VW1mZdpRodQo1ztlUnMhlSIKUdzX/jeTDX8FPtwTbbnYHFZvYfjIdQfSzNzGORX27sIghaxz81y7Y+XIwmnzsQ8ieCGnDICwWZCoQ/eC2gcMErg7wOiDgRwPc5OrgJksdRB6HATYA3KzhYPsNnPAPpSHpBhBuQuVsRvrxLqr+by5yrwUxUoY2XktYghZFtBpppBZpZAyK5ESkyVkI0RkQm9M929AXiaPVT+QnhWxTlPJW5IeEp2voHzOI0ape6NUKklMzUUUl/vBCXcwa4xr2fPoGz7zrx6LvT1nvO8nsF8WN88b9J4/P54aKzQhlH6Et34Q2rx5XsprW2kymHdnB1ONfUJ1dwHvHB7DgKwNeqRydWo4+XIlaLsXrD2D3+HB6/Hh8AWRigAxPO7luE5nWRvLsJoZ77KiIRSZG4ZX6satqaVMc56RMoF2aidLUF1tTOpXbg4oaAYkdibSRcGk9ifIG8iLNxERrQJMQ3G7WRCFoYxF0CQiRyUjjEpFqu7kjXDeSNLI3lnVQZu+HrLacuK4+gaMVZ5MDiaghoMhCnxbe/Q1COotECmMehpybET5+jCEnVlE4XMO2o2ZOaG+nz1fFrNn9F5J+MpDZg+YiEXpG5FAZnUCfRctPO5YzPljz8vk7EGEtomXD/yNhzP3ddx85uZMSmYTkjt6UJcpI73cFd/V0KVD0XDD9Zu/fkXz9FtOt/+aWqHjWi+N5RjoIg0rH2IpPaVOO4pOXatFJtjDqzsFkTBh25ewOEaKbuCwOssFgkAAvA/0BN/ATo9FYcaHzc7YtR7+rkWl8iixSRKbw0SZP5UDyT5h8fAGZJ/5FUu0KmseN4HFxKi/F38uDDUvgxOeQPaFbXpNt58sEbDPROipJnn0Xsq4uHlRHwoQnYMhP4asXg05yxadnjxMkoIwAeRhIvvnfqYoAbXwwxzA+HxILUcb3ZYhUxhDAZfNSvruaQ58HOKEuojLzFrz+/USaPiOnoYooYxuCKJxxGhG51oc62ktYupawIQNR9B8H+jxIH3nFoo3Wdhfxdg8x7YPp0zQaf5mXE9GH+H/6/+U+bwlZdgft0hh8udOJnfRQUA+0mznQcoA3PvgTf1zjR4yI5VDOXBIyI7hxXsHpRS4yJeROCf6JItTvR3VoHUnHPkCfUU9bhQZ5zSEeqTjAIyolbVn5NEYn0S4Lw+/zofJ70LrsRFhb0ZkbULebkHzTOjiAQFuYDrNCi08ixS9IkQd8RHjtpHptGNxuBI4DmwgIUqzaVCwR6dg1iTjVcdg0/SlTjKHMCsryVmJajxLVbiSqrRSF137a65XIQRauQB6rRZEYjTI9FUVmJoqMLGQFExA0V88PqjPp27cPO9+toymQS7bp664/gbmCWouKgCBBLeqJy7hK0ivORXw+zHkf6vYh37eKSaoP6Gjcyb/NDxLQ3A5Lyvh7RDG3PLKQ5Jxu3J27wvQdl8wJYx3V4k2oj++go2Q9ukG3d8/Jqr+kxK4lLqIPEkng8jWQ+T50yTDpd8H7T8Vm5LuXc8fxtdypfJcaMYEv03NxiR2oG5KxSAfxr3ftRKxaTrZBTuGPJhGWlX6lX0GIEF3C5Yog3waojEbjCIPBMBxYAtx6oZPj//oekZvfxLb1M5zHG/F7BWLDtdyQauQgWk4wlbqUKIZtW83S3ibmi/eyIFyJpOzj7nGQzcd5v6KGgDyJZmEn94zu1fXnOIVWD5P/GPzzOsHZBj4XCNJgRE8d1enohkorp9/EXvSb2Iv2JgeHPqvl6A4FjvihfJp9koPxm+nwtaBo6U28PZkxShe5ATOxLSexHa+io8oFn+1Frt1JeJIL/XNrkWQN76Y34PspiPORHHgZl0dKCznUCgUoWvrSyzyQ4/5jPBX7KUPkNiYefh3/0TeQDPsZwqSFwcYt3UC7q53fb/wVj6/xopKIbB/4MEq5ipt/1u/7K8AFAZIHBf9uehp581Hiyv+N3vgp9r37sZ1UoGzcT3T5AURvsDWwoFAgjYxEFh+PYuRQFImxyHWg1LpRhruRuFvwt9fi76hDcFuQeSwIoh8AH0patQNoihhOu6YfEr+UKK+baL8Pp8tNk9NIk8OKw67ApojBrh5EfdJoRAJ4hBZEsQmNz0S0sw2d24ra60Hu9MBBN7K9RhSePci9dsIHxpD61vZuea+7gtzYXHYEvsAuz0Zmeb/rT9B6HLNFgScqCYkoJS796kkBOi/fXIeSac8R1WJk9JEvKHn/39T6R+Hnv9j564+Ik/4PBXffTfj0O5AoFFfa4i5FEAQm/aiQVfs/wyreQOPmd7vNQRard9DRrEYelUtqTuTVpTYjkULOjZBzI4K1EUo/JNn4CTOqd6L0boM02BuIZU/TrdhloyipieLg00eIca4nJ1NCxpg8wvr1RZaYGOwqGyLENcblcpBHAx8DGI3GnQaDYXBnJgth0aiKHkRV9OBZz6WIIl+sLefglpG8f3MjMzdu5l7p5xweXkiB8SO4eXGXRzcDe1ZiqhuGVAbNhYUk6i5TUYVcHfzrQiLjwxhzRw7DirIw7mrk680q9MdTccsdlMXspTpjP8skGtos2fh1I1H0imCEzMqItgryaw7gbKol3BvNleq/5W4TadnqAb8fFfvpHVZK79jPqY3oT0XkKGJNP0OsXcOqvhOIUOziRzv/CpY6mPV/wUruLubpnX/iR+82EmkLsHfSbLweHRPnGDqnayoIEN8H4vsgjP4V2tk2tMc3w9H3EU9sB0sTCMHNAxThoDaDexfY2sH2zRoSOUQkIY1IRpo2BFS64I+p8ASI74ssaQBxctUFpxS02E18/vVuyg7U4awTCLdk4qeAlnBoOY/PJ4oinshWHr7wV37ZUcvUuCKaEJx9EFrsPzyhs5gr8Frk1MWlAqBPvQYc5FNIpBCfT3J8PskT4Wh5I9tW/ItGBtMkDqF11RdkLB6Dvn8K4bfegeam25Aoe4ZWt0anRJ5uodE/nOyvNwR3eLrayfM6OdF0gNT6bFpT9aQWxHft+l1JeAIM+QnSIT9BKooE2k9iPLSHxmP76S3bT4q4lm2evtjNowhoBtBsUlPyZgMptb8jyVGKJrc3qtxclL17IU9NCxadp6YiSEOycSGuXi6XgxwBdHznsd9gMMiMRqPvfBMuFEEQGDWrN+Y6OxyfwecFh5l2bBvrs8dRoNkFLUaIy73U0/wHn4cdR9eisz+IQ2Vi8rRxXbf2FUShltFvfAp9xyZTfcRM6VcNqA+G0a9xLAB2eQc2ZRsupRkvMvZFJvGpOov27AiWauLoph5kP4gqN5ecnV+B348kLAzhm2hWLjC0sYN3nt1EpfResg68jy8qnqezfsQTR9+BbTnB1t9dyKbqTbBuI/0rRTyDdNiF0WQURNNr0CVmtiq1wWLN/FsRRDF4TdfuBrsJbE3BHHSFBqKzIS4P4vJBG9elN3S9JpaZo6bAqODjRnsjh+qOUl5fSX17I2anGZfHjcPpwuvwo/BoUHu1JPW+BGWXy4QkRwYHwNyWToLLEkxR6irMFWjaJLSmZCCXS9DFXbutnPN7J5D/57mUGJvZ8OZHBCRjqE0eSWr9Z6T9z1LU//N7wvNi0A7vh2b8FKT5E4PX7jXKiFv78/mLJ6lyDyGn7hDKlIKuPUHdPnZJpMQ6cmgFUgxRXbt+dyEISKLSyBubRt7YmYiiSK2pgz67P0BydB0O79/Z5RuJteUG7Jp7MAZsJHbsJfO9jahsLf9ZRilHlZ6AIjsLdeFAwkZNQJHdKxRtDnHVcLkcZAvw3dCJpCuc428XkwhMvj+f1X/YSVNGMbKDr+CtEqAPUPZR1zrIFZvY0SRHp+1Ns9DKTw2XQbPyMiJIBDL6xZLRLxaPy0d9eTvNNRZO1jXS0qLE2eFF7JCh9P0nkh2wNANXzhGShp87KheRoOOBZ25j6ZK3qWQ6WZXvk1PSyMahY7jli6UI/X8EMdldYoPT5+RvnzzFE58FUCe6+CznWcQmkVEzuzj9RhCC13NXXtMXQYImgYScBCbnTDzn8x6/h0Z7I/qwq//zkTgwi9YD0OhNI7+9BiGhb5et7aktQ+MEjyqdhGTN1VegdxEMMMQxYNEcth44yMZ12wkIk6hJnojecZCs8o/RHvgMlm9DFeVD0ysCzeCBqCcWIzGMuzy6wl1E3/xefB74GpukH/V7PiCzqx3k6q+o6VCj0OWgUIhEX03qJp1AEARS9ZGkTr0Xpt6Ly2ElYddHNJZu5mDrR7RZhxKQjKF+8FhE5TFyvV/Rx7YXSbsNd7sN2+YqOj76DFiKNExAnRGNOicV3b0LkPcZdaVfXojrmMvlIO8AioA13+QgH+rqE2gilfQdm4z3Ux/H0vSMqzlIY2EKCSd3d+l5mr5+jdhKA+4YBWGDc7q+OO8qQqGSfessD+U/Ek+iKNJgbeTrmkPUWmrJ6jXkClr5/cjkUub9cjrPLF4FTKfvkRXs3a9n0lA5yo8fh3vWdMl5Vh3+P279RzNyRA4MHk2gSU2/cclExl+7EcNLQSFVkBbRzR3Buoj8rP7s9FZhFhOxNlUS0VUOsihSW1uPiAa5NJ7YlGsoveICmNC/gNH98nhx6/9Rtr0eQ/MwTP0H4Jc7yZOWk3xiM669FZj37EBY/gVhcV40efFoxoxDOboYIbFft9UCdAWCIBDQNdERyMG/61mY0bU7Tv7avXhNStoic0gxRCH0gB9PAKqwcPpNuIN+E+5gMlBjtrPqiy3UH6gg1ZxEWeAnGMMewBrdgRjuQqfxkkgbieaTRNQcx3uykbayMrzmxST+7YMr/XJCXMdcLgd5AzDZYDB8CQjA/d1xkv6TUvl6Sw3Het9A8ea3OdqcRLz6IF32teNsY2P1TmKds6kVfUy9sRuL865iBEEgKSKRpL6XXz7tYtCpIph8X1+2vXwCSZ85jNv1NO/WjeO+wEdQXwJJl9ZS1+w0U7JhBb+qFIksdGCJm4/0pJdBt2R0zQsI0a1kRGSw27cbp5BAe/1xIvp30cIOM40doFZGIhUVxKZcu+kG50MukfPwpHmcGHyC/93+PB2HfRiah1HmKKAssQChl4SECC9RbaXIK75GsacG1fZPUEjWo030k/h/HyFNOr/G+5VGOyACx+dq2k7KuzwP+WjLAdIa47AmRZHat8sFBq8a0mI0LLy1CG6FOouZN7b+m7pjjYS1q4i0xBJoiaOBNBroD1EE/wBrtp3HrqjlIa53LouDbDQaA8D87j6PRqckZ3A8h/cMJiCswVynRIiq7bIWsuKxD6mpVyOJNGBX+MhPu/rzK0MEmZg5gbdHriF6SwKlBfeTvPdveKarUez+G9z28iWt/frBv3PXJ04EnY9tBbOxVLoZMDmNsIieVd3fU9EpdfgFE26pAbdpW9ct3HESq1WBKyLY/KEnOsinyNRl8sq05zg8/DArD61iS9mbJLf1JrGjF+3mVCI8+QgpfeCbPhiC6EPttzDTreYqFr6jz8h89nzWTr2nL/62aqTRGV2zsKWBPQEbiY5hWIGE7OvjXpIcEcNjt94FtwZ3Ik0OM3vrjByvbqbJ1Iat3Y7X6cHls5Dbr2vS30KEuFiuiUYhnaHXwHiMO5uoyMhF1dIWPNhwoEvk3g4ffZdcoxZTehKReVevtmuIsxEEgQWj5/Onir8yvvIuEsNz2HlCw1jJuqCEnubiBPrbXe20vL2ahHbQjPWjipyFrMHCgMnXRnpBiCABtRW/GImvpa7rFu2ohQ4pjbFBBYuYHuwgn6JvbF+WTngWx2gHO+t38knlF3zWtJZWRzMapwKdOxatOwq1NxxfIIzBshFXrMD3QuiX0oc9/rfoUOTTUr6HhGEZXbNw/X6q7Uqi1RnIpAGik67N/ONLQRAE9JpYbsmJhZwrbU2IEGfT4xzklLwoBIVIdWIBY3avRQyA0Hjw0h1kZzvba47Q1zYUkyBhzKgr0BI0xCXRX98fctuxtDZS2es2+ux7mkCqG0nJGzD6Vxe15poDr1P0uRsh3sNX/X+B+UgHfcYkow4PRY+vJYQoP2IruJr9XbdoRy2aNoHK+FTCopQoVD3u6/a8hMnDmJg+kYnp/ynidPvdHG6u4FBTFUdNRtrczaTpr+b4cVAG0Ktqwi4MpO3gv0kY1jV6yGLdfvwtCjoiMolLCesRxZtXin379sXJZLIVQF+g5xYFhegOAsBhn8/3k0GDBjWf+WSP+8aWyaUk5oZTfagApe8d6lv1JDccvOR1xdKNtNcqaYvsTUAQMeRfwZagIS4KQRAozinmjcoNTG2fj1PXh+pmkcySN2HULzudX+gL+Gh/YzWRDpCMUBIVNRWT2EjhDand9ApCdBfKFDXOVnB1dF0kz2mqJMoi4FEmknIdRgjPRClVMiixD4MS+wBTr7Q5F4w0VSBwQoHzaG2XrdlUv4eEJiW2yGQM+Vex/vE1gEwmW5GQkJCn1+vbJBKJeKXtCXHtEAgEhJaWlvzGxsYVwPQzn++Rv7byB6UhFyPoiEjlZGM0Yhc4yGWl6+ldIaE5OhdlQhhSeY9863o8U7Om0hxTiS/aRmXmLTQelCKaKqBmZ6fX2lH2KRO+sOBM9fD1iEep2t1M9kA9EbGXqXFMiC5DZ0gAoMPTdalTJ6uNCAhIpTFEXaMSXiFA1y9YQGdt7bomKAfMpSRY00CQkpB1FbSXvrbpq9frLSHnOERnkUgkol6v7yC4+3D285fZnstCck6w4KEuMQe3WQatFeB1XfyCfi+f1x6gd4MKtzqR3IKrX9s1xLmJUEQwOmU0+5M+xaOMwU8i9rYIKHmj02tVvvocWhe48vSkx07E4/LTf1IoenwtEt87D6WrFWsgHnzuLlmzuaERlyoaASlR16ncX08go29vhICHNl8y2M2XvqCthaMBN2p/BgAJmSEH+RKRhJzjEBfLN9fOOX3hHukga6NUBDQeWqLTULe7EMQAtFZe/IInd9NeI8EWnokgCGTlx3SdsSEuO+NSxvG1ZjsytUB18jiqT6TB4fXgbLvgNUymk/TdUkNTup/jN/yRsh0NJGRFhG521yjJujRkXhMO4nB1NHXJmh0mC46w4PZ5KIJ87ZIdnY3EW4dVyMBy8tJ3I2k5RoNNgV2ThiYsgEorv/Q1Q1xxdu7cqZk1a5bh1OOSkhL19OnTc2fMmGF48MEHM/z+YH3D8uXL9dOmTcsrKirKW7t2bRSAzWaTzJkzJ3vmzJmGO++8M6e2tvasi8LhcAhz587NLi4uNsyePbtXc3OzDODFF1+Mmzx5cp9Zs2YZZs2aZSgtLVWeb+zu3bvDiouLDTNmzDDMnTs3f1CBYQAAIABJREFUy+l0fptXeKb9+/btCysqKsorLi42/Pa3v009Zf93+fzzz7VFRUW506dPz/3973+ffObzr7/+eswf/vCH047Pmzcva9u2becVhX/iiSdSq6urFWazWfrOO++cc0vP5/Mxd+7crI8//vi0Ioby8nLljTfemP/dtU69LxMnTuwzffr0TnXY6pEOMoA2RYJHmUm404nPLQFT2UWvZTF+SFy1hIbY3iBAXHrPEvy/3hiTMoaAxE/A0Ep7TB9cJwN4rW74+u0LXuPQ0sfRuqCibzaDk/tjaXFSMDEUPb5WSdIm4acdjySK9paGS1/Q68Jt8WHVfOMgJ4QiyNcqiZpEXNI67KpUmo8fueT1Ak3HwCzHGp5KXNrVXaQY4sJYunRp/MKFC9M9Hs+3DucLL7yQNH/+/IYNGzYYvV6vsHHjRl1LS4ts3bp1cevXry9dvXq18bnnnksNBAKsWrUqNi8vz/Hee+8Zp06dav7rX/+acOY5Vq5cGderVy/n+vXrjUVFRealS5cmAhw7dkzzzDPPnFi3bp1x3bp1xtzcXPe5xgYCARYuXJjx5z//uWrDhg3G0aNHW6qrqxXns3/hwoXpjz32WM369euNWq3W/+67757lrC5evDj1+eefr3z//fdLjx49qtm/f/8l5xc+/fTTJ9PT0z2HDh0K27Jly1n6hxUVFcpZs2blGo3G06IOq1evjv7lL3+Z1dHRIf/uWuvWrTO+9dZbZRqNxv/UU09Vd8aWHlekd4rUXrEYjTLcCh2uNjNaU/lFr7WncjN9q+DLgXlEJWquq2r0nkisOpb8mHz2O7ZQKMykOW4I5mYfCXtXwvCf/2Cxnt9mQ/evfRzNAv+Nf6LiywbCdAqyBoRSb65VlFIlAYkVr1SHpbWRs+5OncVSh2CT0qZLRB4mQ60NqZpcq0gECa5IC3Kbmo5Dxy+5vrCucT/JzWpcOj3xuT23QciV4LUvq2LW76/t0gr64oEppjkjM743tyY9Pd390ksvHX/00UczTx0zGAyO9vZ2aSAQwOFwSOVyuajX630bN248IpfLqaqqUsjl8oBEImHBggXNPp8PgPr6ekV4ePhZ4dqSkhLtT3/600aAm266ybJixYokAKPRGPbKK68ktLa2ykePHt3xyCOPNJ5rbFlZmTIiIsL36quvxldWVqpHjx7dnpub6z6f/SaTSTFq1Cg7wODBg22bNm2KvPvuu1u/a9M///nPY3K5HKvVKrHb7VKtVhu40Pf19ddfj9m+fbvO5XJJ6uvrlXPmzGm87777zLNmzTIsWrSoetmyZQmVlZVhK1eujJ07d67p1DybzSZ5+umnq1555ZXTvqZ1Op3/3XffNU6aNOks5cjly5fHDRs2zFJQUOC8UPugB0eQ8/IzAOiIyKClTXfxEWS7mbIaE2qPAKokUntfH4LuPZ2xKWPZ5dxORKqaquQxtBwREVsqoGLzD86t/cvDqF3wef8MpuT1ouZIK33HJiPtwW3HrwdEhRNRIsPa1HLpi3XUorJKsGkSr9t24z0JWUYwKOWo79T99ZwcMx0jqSO466xPC+1G9gSKi4vb5XL5aXnQmZmZ7iVLlqTdcMMNfVpbW2Xjxo2zAsjlcpYtW6a/++67826++eZvHW+ZTMYdd9yR895778XdcsstZ+X72e12qU6n8wOEh4f77Xa7FGDy5MmtixcvrnnnnXfKSkpKtB9++KHuXGNNJpPs2LFj2vvvv7/57bffLtu9e3fEli1bws9nf2Jionvbtm1agC1btkQ6nU7pmTbJ5XK++uorzZQpU/pER0d7U1JSPBf4lokANptN+sYbb1S88sorFatWrTrN4Z0/f35jYWGh9bvOMUBhYaEzPz//rKKyadOmdZzLQXe73cKGDRv0CxYs6HTuXI8NhSakR+KX+GjW9yKi9Ri+ZuPFvdjqHfjqFVi0iUgIVRz3FIYlDGPZgWVo+jqxnIzBIcZgMdnQffk89L7hvPMCbS1Y/rmdQ1kC6hG/pGpnIxKpQP7opMtofYjuQND6wQ32xgvPRT8f7vZqIi1QqYwnNiTxds0TlZ+C6zA4rJe4EyCKHLc3kOYvAECfGnKQu5I5IzPMPxTtvVwsWbIk9bXXXivt27eva/ny5fqFCxem/uUvf6kBmD9/fsv9999vuvfee3tv3brVNmHCBCvAmjVryo4dO6aaP39+rxUrVpQ//vjjGQDTpk0zazQav9VqlQBYrVapRqPxBwIB5s+f3xwZGekHGDt2bMeRI0fCzjU2JibGn5iY6DrlXI4cObLjwIEDYRMnTrSey/7Fixef+OMf/5j28ssvCwMGDLDJ5XJx2bJl+k2bNkUDPPfcc5UpKSneESNG2Ldv335o0aJFSc8991ziE088UX9qDZVKFfB4PKdFjpxOp0StVgcAcnJyHACpqaker9fbLRGmzZs3R/Tv39966j3qDD025CWVSfDpbLRFJiO2gWAuB7Hzha6mys1kVQuUJQej9iEHuWfQT98PpVRJRWwJogQqUsZjOhEPJz6Huv3nndf25/9G5oJ/DtOyYPhIjn3ZQK9BcWh0XScBFeLKIIsOOj+uZvslr3WyuRSNWw0SDZFxoQjytU56tgGZ14bNF3VR95FvsTXRbPPjDEtFrfSHGgr1YLRarS8iIsIPEB8f77VardLS0lLlAw88kB0IBJDL5aJCoQgIgiAuWbIkYfXq1dHfzPNLJBJ69+7tPpVX/OMf/9hUWFhoO5WT+8knn0T079/farFYpFOnTu1jtVolgUCAXbt2hffr189xrrFZWVlup9MpLS8vVwKUlJSE5+TknFfe69NPP4184YUXKtesWVPW3t4uHT16tGX+/Pktp2xKSkryFhcXG1pbW6UAGo0mcKaaSEFBgWPPnj0Rp5x1s9ksraqqUp9y0oXvSWcUBEEUL+Wz9g07duwIHzt2bMfFzO2xEWQAuV7E3ZqAyuZBcDnBUg+6swotv5eDx3eQ0QjHMvOI0sqJiFV1k7UhLidKqZL++v7sad3JnfmTqPcNwLX9LRyGKMK2PAWz3zsrF9l/ZBOmjSUcSpfi6D0W86F2vCFptx6DOiEMRwN4OryXvFZ9TSUqVVDtRqcP6WJf66SEp3DC9wUOIQHR1oQQfpFZ6i2luDvkWLWp6BND10VP5sknn6x+8MEHs6VSqSiXywPPPPNMdWZmpicnJ8dx22235QqCwIgRIzrGjx9vy83NdT388MOZGzZs0AcCARYtWnTizPXmzp3b8tBDD2XMmDHDIJfLxeeff74yMjLS/4tf/KL2rrvuMsjl8sCQIUOsU6ZM6bDb7dYzxyqVSvHJJ5+sevjhh7NEUaRfv362qVOnntdxzMjIcM2ePdugUqkCgwYNsk6ZMuW0sRKJhB//+MdNP/7xj3vL5XIxJibGu2TJkqrvjsnNzXXffvvtzbfffntuWFiY3+fzCb/5zW9qwsPDfzBXOTs7211ZWal+6aWX4hYsWHBWl7sLpbq6WjVr1qyL2lXo0Q5yVJKajjIVXrkGj1WKylTWOQfZbqb+RCuJKJFp0olLj/jeXzwhri0GJwzmla9fIX9UNE2HW6lNGoq2uob0yM1w9B/QZ8Z/BttaaP3TfxPwSFg9QcKcgikcfOckCVk64tJDleg9AW1yDOb9AZyus1LtOk17YxM6VdCJigg5yNc8SdokfDTjlOXSXmskKu/iHGRPSymKdiWOsDj0vUNFvT2JzMxMz/vvv1966vGYMWNsY8aMKT1z3GOPPdYAnCaVk5CQ4Hvrrbe+V0lAo9EEVqxYcZZe7T333NN6zz33tF7I2IkTJ1onTpx47ELsLyoq6igqKvreyOv06dPbp0+f3v59Y+bNm9cyb968swo77rvvvm+dVrVaLW7fvv0QwLp164ynjm/evPm8sjEvvvhi1bmO79q168B3H7/55psV32ff99FjUywAUtKCX0B2TRLuDjmYO/k+1XyFv1mOUy5H7leE5N16GEPihyAiUh9VjqiWciD9RhzHarF7c2Hjb8B8PDjQ68Sz7E7MB0T2ZuuoSlRT4M7DYnKFosc9CF1SGgqPBY/30h1ap9mCUx0spg91Vrz2iVBE4FSY8CoiaS4/p39xQVQ0HyKpLR4ECTFpoYLvECGuZnq0g2zolQGARZuMvUPVaQfZW7sbfZ2E0pRcEEP6xz2NAn0BSqmSfc17yR4Sh1oRS4c+k8ZdGvyeAPzfFPj3/yC+NIz6f1Thlyv520QphbGDOby1nvAYFVmFXaooFOIKEp2YgdLdji9w6Z9zX4cLpzoWqUqKUt2jN+quG9yRwXTN9mOdklI9DaOpnGhHUBs7OlS8GSLEVU2PdpAT9LG45HZaY9Jp7wgj0EktZOPxHaQ3wcm4YMVxaCu9Z6GQKijQF7CvaR8jJ6cjIPB+wf146ptoqB1PQBmL+OUyGreD06RkxdAptMVauCFsEg0VHRRMSEESknbrMcREJCD1teMVdFxqcYjEFsCqiUUTE6pZ6ClIUk5JvZ23rukHOWlrRCEmAmKoeDNEiKucHn13FwQBl64DqzYRr0WKr6UTEeSAn5qyaiSAJDqfMJ0CTWRIqaCnMSR+CKWtpQg6H5oMLZGBaFrvnod165dUfqClctdQ2o96OTn1R3yYGcxNVR1IQamRhaTdehgxqhhEsR2vEInd4bj4hXweFHZwqWOJDjlBPYYwQyyIAVy2i7wPBPzY2+041YmEawJI5T369hsixDVPj/+EymJ9eOVxyGx+pK0nwee+sIktpTibBHwS0MhiQtHjHsrghMGIiJQ0lTChKAuNKLDKX0jSq68ii4lBnppC5JOL+I1uBPGJNeT7B9Fc6qDwhrRQR8UehlwqJyBYCEg1mOrrLnodv62RMJsErzyamFCTkB5DTFoWCnc7Dt9FSn1a6vC1S7FrEokJtR4PEeKqp8c7yBFxSgSUeJQ6vFYJtFVd2MTavaibpJzQaxGtfvSp2m61M8SVoV9sP+QSOXub9pKeH4MiRklGk5f3SCLj7bdIWbacJz2ZWJwuPLIyhtcUoQyTUTA+5UqbHqIb8MtsALQ1XHyvAVNrORpPJAjSkIJFDyIlIhWp34SDaPBfhBSg+TgSixKnWk9MVqh2IUSIq50e7yDHJQUrhR1hCZ1SsvBU7ySxSaAiMR+A2FDHox6JSqaiQF/AnsY9CILAzbNziQxI+PQfx3l5WwW/ee8gHx9pZM5ECSmNuSgaoxh+WzaKUOFVj8SvCjo+VvNF6coD0NhsRCqEFCx6GsnaZHy04pLF4mur7fT8tuYjRFkTggoW6SEFi57Gzp07NbNmzTKcelxSUqKePn167owZMwwPPvhght8fbOS2fPly/bRp0/KKiory1q5dGwVgs9kkc+bMyZ45c6bhzjvvzKmtrZWfub7D4RDmzp2bXVxcbJg9e3av5uZmGcCLL74YN3ny5D6zZs0yzJo1y1BaWqo839jdu3eHFRcXG2bMmGGYO3dultPp/Fa39kz79+3bF1ZUVJRXXFxs+O1vf5t6yv5z8eyzzybMmzcv68zjr7/+eswf/vCH07R1582bl7Vt27bzOlRPPPFEanV1tcJsNkvfeeed6HON8fl8zJ07N+vjjz/+dmt/0aJFyUVFRbnTp0/PPbV+fX29/I477sgpLi42zJkzJ9tisXTK5+3xDnJaelCv0qpJxG2RwQUW6p04vBeVFxxx/QHQp4Uc5J7KsMRhHDUfpc3VRmpeDEn5UYxwyVj1YRn/KKnjgVGZRMlqGVlVTGy6hj6h3OMeixAeLM5ztHyvtOf30lJbhuubJiERoSK9HkOSNgmX1IxHHkVL7fFOzy9rOEik8xsFi8SQgkVPYunSpfELFy5M93g83zqcL7zwQtL8+fMbNmzYYPR6vcLGjRt1LS0tsnXr1sWtX7++dPXq1cbnnnsuNRAIsGrVqti8vDzHe++9Z5w6dar5r3/961lC2ytXrozr1auXc/369caioiLz0qVLEwGOHTumeeaZZ06c6nCXm5vrPtfYQCDAwoULM/785z9XbdiwwTh69GhLdXW14nz2L1y4MP2xxx6rWb9+vVGr1frffffdczqrH330UcQXX3zRZb/4nn766ZPp6emeQ4cOhZ3qBvhdKioqlLNmzco1Go3ffoj279+vPnTokOaf//xn6fPPP1/5zDPPpAK89NJLCdOnTzevX7/emJub63zttdc6tXXT48NgWQlpbJfW0RaditWsRm+u4AdbfXhdNFaZiEOFOtKAyi5HGxUq0OupjEoaxctfv8zOhp3cknkLN96Xz7o/7+UnHhkjZ+QQoZGz9m+JyCQybry/L4Ik1CympyKLVkADuE2Wi16jo74WlSodENGEvjd6DGqZGqfaglaE5tITJBZ2bv7xthOo/f1oQwx1V+wudr8aw9dvd23+SuFdJobO+96cq/T0dPdLL710/NFHH808dcxgMDja29ulgUAAh8Mhlcvlol6v923cuPGIXC6nqqpKIZfLAxKJhAULFjT7fD4A6uvrFeHh4WeFa0tKSrQ//elPGwFuuukmy4oVK5IAjEZj2CuvvJLQ2toqHz16dMcjjzzSeK6xZWVlyoiICN+rr74aX1lZqR49enR7bm6u+3z2m0wmxahRo+wAgwcPtm3atCny7rvvPq0hSXl5ufLdd9/VL1iwoG7NmjWd6nzz+uuvx2zfvl3ncrkk9fX1yjlz5jTed9995lmzZhkWLVpUvWzZsoTKysqwlStXxs6dO9d0ap7NZpM8/fTTVa+88sq3PyIGDhzoXL16dZlEIqG6ulqh1Wr9AE899dRJURTx+/00NjbKBw4ceIFFaEF6fAQ5WhWNJcyELTweV4ccX3PZD09qPoKnRUarFiLESGJTtaEOej2YPjF90Cl17KjbAYAmUknRfxeikEv5bOVRPnjhAKJXQD29haiEUOSnJxMeHwWAy9Kp79HTsLaYcCujkCgEpCEZwB6FJzLoxFiON/zAyLNpbm/GL49HJfchU1x6t8YQVw/FxcXtcrn8NG3IzMxM95IlS9JuuOGGPq2trbJx48ZZAeRyOcuWLdPffffdeTfffPO3jrdMJuOOO+7Iee+99+JuueWWtjPPYbfbpTqdzg8QHh7ut9vtUoDJkye3Ll68uOadd94pKykp0X744Ye6c401mUyyY8eOae+///7mt99+u2z37t0RW7ZsCT+f/YmJie5t27ZpAbZs2RLpdDpPu2itVqtk4cKFaYsXL66WyTodaxUBbDab9I033qh45ZVXKlatWnVa1Hz+/PmNhYWF1u86xwCFhYXO/Pz8s7QW5XI5ixYtSn7ooYd633rrrSYItsP2+/3CTTfd1KekpCTi1P+DC6XHR5AFQcAXYcdjTUGwiQSaLsBBbjiAplmKMSEMX6sHfWF89xsa4oohlUgZnjicr+q/QhRFBEEgOknDvX8aQc1hM7vqd7O48fesLnzzSpsaopvRJiYj3evE4wxc9BreVisuZRTyiLPSCENc40iSldAGrpZO/oASRVztDhzqOKKiQ9dFtzF0nvmHor2XiyVLlqS+9tprpX379nUtX75cv3DhwtS//OUvNQDz589vuf/++0333ntv761bt9omTJhgBVizZk3ZsWPHVPPnz++1YsWK8scffzwDYNq0aWaNRuO3Wq0SAKvVKtVoNP5AIMD8+fObIyMj/QBjx47tOHLkSNi5xsbExPgTExNdp5zLkSNHdhw4cCBs4sSJ53QaFy9efOKPf/xj2ssvvywMGDDAJpfLxWXLluk3bdoUDTBz5syW1tZW+YIFC7JtNpu0tbVVvmTJkoRHHnmk8dQaKpUq4PF4TosSOJ1OiVqtDgDk5OQ4AFJTUz1er/eSowm/+93v6h566KGGmTNn5o0cOdLWq1cvt0KhEDdt2nRk06ZN4Y888kjme++9Z/zhlYJcF+ENeYwIhOOXqhBbrGD//s+Pr3w3UR0CJ+PzCfhFYtNCChY9nVFJo2h2NmNs+89nRyqVkNlfzzb5ByRExJMfk38FLQxxOdDok1B4rPi8Fx/hE6weXKpItDEhKa+ehjo7FiHgw23vZGzJboIOCY6wOKKSQ5Kh1wNardYXERHhB4iPj/darVZpaWmp8oEHHsgOBALI5XJRoVAEBEEQlyxZkrB69erob+b5JRIJvXv3dp/KK/7xj39sKiwstJ3Kyf3kk08i+vfvb7VYLNKpU6f2sVqtkkAgwK5du8L79evnONfYrKwst9PplJaXlysBSkpKwnNycs7b9ebTTz+NfOGFFyrXrFlT1t7eLh09erRl/vz5Ladsuuuuu1o/+eSTo+vWrTM+9thjJwsLC63fdY4BCgoKHHv27Ik45aybzWZpVVWV+pST/n0784IgiBfasGnLli3hv/71r9MAVCqVKJVKRYlEIv76179O27p1a/g372tAIpF0qgNUl0WQDQaDDngTiAAUwMNGo/Erg8EwHHge8AH/NhqNT3bVOS+U8LhgHqAjLB63pQGVyQiakecd33JgPwC+uAJoA31IwaLHMz51PDKJjA+Of0BudO63x81OMzvrd3J/3/tDaTbXAeGxSSi8x3D5Lj53WGH1Y4+NIjk25CD3NHRJGeBuxSV0MtWqrQq5NRK/Uk10SOLtuuDJJ5+sfvDBB7OlUqkol8sDzzzzTHVmZqYnJyfHcdttt+UKgsCIESM6xo8fb8vNzXU9/PDDmRs2bNAHAgEWLVp04sz15s6d2/LQQw9lzJgxwyCXy8Xnn3++MjIy0v+LX/yi9q677jLI5fLAkCFDrFOmTOmw2+3WM8cqlUrxySefrHr44YezRFGkX79+tqlTp55XricjI8M1e/Zsg0qlCgwaNMg6ZcqUTkv75Obmum+//fbm22+/PTcsLMzv8/mE3/zmNzXh4eE/uEWXnZ3trqysVL/00ktxCxYsaP6+sWPHjrVu3Lgx6rbbbssNBALccccdzVlZWZ4HHnig+Xe/+136yy+/LAqCwJNPPlnTGfu7MsXiYWCz0Wh8zmAwGIC3gYHAMmAmUAn8y2AwDDAajSVdeN4fJD4pknbApknE3XEYWoyQfh4H2eehqaoFuaAiQpeLzCZBF+qG1eOJUkUxLmUc/6r8F78c9EvkkuA26CdVn+AX/UzJnHKFLQxxOdDFJiP37sEhdqre5FtEUUTtVGGVqogNfW/0OBLCE2nxVeGUR4MowgX+aLY2lxJhi8OjhKikUMClJ5KZmel5//33S089HjNmjG3MmDGlZ4577LHHGoDTktgTEhJ8b7311vdKbGk0msCKFSsqzzx+zz33tN5zzz2tFzJ24sSJ1okTJx67EPuLioo6ioqKLsgpHj9+vHX8+PHnTNWYN29ey7x581rOPH7fffd9u5WvVqvF7du3HwJYt27dt9u4mzdvPnK+c7744otVp/4tk8l49tlnz3J+8/LyXN9dr7N0ZYrFUmD5N/+WAS6DwRABKI1G43Gj0SgCnwA3dOE5L4i0lAT8gh9zdDrODiWYvicPuekwbpOMk7EQ448mOkmDJKRacF1wa/atmF1mvqz7EgBfwMfasrX0jupN76jeV9i6EJeDSE00gt9KoLMRwm9weO2ovMFCv5DEW88jPiwev9iKUxaLaDf98IRvqGg4RLgnDoDI0A+nECGuCS4qgmwwGOYCvzrj8P1Go3GPwWBIIJhq8UuC6Rbf1UuyAmeJSXc3aZFpfKbagVaXhL1Ggb+5lPNlGIq1e1G2SKkwyFC1+oktDOUfXy+MThmNXq3n+ZLnGZo4lPXl66lor2Dp+KVX2rQQl4lwRTiiaMUvaBEDYqcl/cwdNSj9QelObVTIQe5pJGgS2CUzgyyC9roTRBkubKeh2lSOIpCHgB9tdOi6CBHiWuCiHGSj0bgSWHnmcYPB0A94B3jUaDR+9k0E+bv7SeHAxSvwXyRJmiTa1c1Eu1IRbOCtNZ7XQfYc2IHSLVCTkEG63UdMSmg77HpBLpGzaNQifr7p58z5aA5VlipGJY1iUtqkK21aiMuERJAQEGwgSHHYvGgiFJ2ab2qtQBCCEeSQdnrPIy4sDquyjXCgvqyKKMPQC5pnNtejVY4jTOkN7UiGCHGN0GUpFgaDIR9YC9xtNBo/AjAajRbAYzAYsg0GgwDcBGzvqnNeKHKpHF+4g4AYQUCQEKhrAY/9nGMdBw4A4IkfAEBsSiiCfD0xKnkUvxz0S9rcbYxKGsXvR/w+VJx3nRGQBr8bTGZHp+e21VfgUUYBATS6zjnXIa5+FFIF9vDg9dFWXnfB89ytFhxqPdGxoehxiBDXCl1ZpPcMoAKeD9bo0WE0Gm8F5gOrASlBFYtdXXjOC0YRIyJUS3GpYnC1tRLWdARSz/j177LQVt2GTRVGrDYo6RUTcpCvOx7o+wAP9H3gSpsR4goRkDkBMLXYSc/sXAfVjoZqRFU8EokHSahJSI/EGyeBKnA02S5sgs9DoMOPUx1LZLKuW20LESJE19FlDvI3zvC5ju8EhnfVeS4WXUKwtWerLo3E9iqo23+2g9zwNQ6TgrJkgSRfPPJYJUp1j++lEiJEiO8QUASlQdtb2oDkTs21NjUgVxqQKTsltxniGkKWpkOo9OO+0G7kHScRbLGIKjnRmRenjhIiRIjLz3UT4khIigbAHG/A3q6G+v1njfEbtyNtl2FMFpC1y4kN5R+HCHHdIYQFJTrtLWd1e/1BXK1tuBU6FOGh/OOeijY1DaW7DY/7wtIlAq3VKJzfKFiEJN56LDt37tTMmjXLcOpxSUmJevr06bkzZswwPPjggxl+vx+A5cuX66dNm5ZXVFSUt3bt2igAm80mmTNnTvbMmTMNd955Z05tbe1Z7RYdDocwd+7c7OLiYsPs2bN7NTc3ywBefPHFuMmTJ/eZNWuWYdasWYbS0lLl+cbu3r07rLi42DBjxgzD3Llzs5xO57f5g2fav2/fvrCioqK84uJiw29/+9vUU/afic/nY+7cuVkff/zxWR1wXn/99Zg//OGRm9yEAAAgAElEQVQPp0UZ5s2bl7Vt27bzfhCeeOKJ1OrqaoXZbJa+88470Wc+X15errzzzjtzZs6cafjRj37U22QySQEWL16cWFRUlHfbbbfl7tq1q0ukYq4bBzlNn4xDbsERlYS3XYK/Zu9ZY5xfbQXgRKIOq8lDbGoovSJEiOsNqU4CYgCXqdO6+PjbrXgUOlSxoW5pPRV9ZBIybysu8cLSJerqjhDmCUaO/z979x0eVZX/D/x9Z+ZOL+k9hJCQmyBNERAEAbsCSrOhgsqum3X9qV9c27qiLAq6mkWwgQu7iIsFKbZlLVixAIqAlHADhARCEtKTqZly7++PAAZIaCaMJO/X8/iY3Lkz55Nwnpv3nDn3nIg4U3uWRmEye/bs+GnTpqX5/f7DgXPu3LlJubm5ZStXrpQDgYCwatUqR2VlpW7ZsmVxK1as2LFkyRL5+eefT1UUBYsWLYrJycnxLF++XB45cmT1Sy+9lHB0GwsXLozLzMz0rlixQh49enT17NmzEwEgPz/fMmvWrD2HdrjLzs5ubOlcRVEwbdq0rs8880zRypUr5SFDhjQUFxfrW6t/2rRpaQ8//PDeFStWyFarNfT2228fE1Z37dplmDBhQrYsy6e3LmYLZs6cuS8tLc2/ZcsW86HdAJt79NFH0+677779y5cvl6+//vrKgoIC44YNG8w//fST7b333sufM2dO4YwZM9LaopZOM38g1ZaKL01fwaaNg6AA/sK9MPnqAePBi1ywEe6tuxDSmKDGnAcc4A56RJ2RISoSuiovGuu9p/xcwRVC0GCGPZ4BuaOKt8SjSv0ZXk13QAkBmuNvS150YDsMSiwENQiLg58stKc389+Mfn/3+226VeE1GddU3ZRzU/XxzklLS2t88cUXd//5z39OP3RMkiRPXV2dVlEUeDwerSiKamxsbHDVqlXbRFFEUVGRXhRFRaPR4O67764IBoMAgNLSUr3NZjtmuHbjxo3W3//+9+UAcMUVVzQsWLAgCQBkWTa/8sorCTU1NeKQIUPq77///vKWzi0oKDDY7fbgq6++Gl9YWGgaMmRIXXZ2dmNr9VdVVekvvPBCNwCcf/75rtWrV0dMnDjxiA1JXC6XZubMmUWvvPLKMYH+RBYvXhy9Zs0ah8/n05SWlhomT55cPmnSpOoJEyZIM2bMKJ43b15CYWGheeHChTFTpkypAppG0Wtra8XVq1dH5OXlpeTk5Lgff/zxkldffTVu4MCBDRqNBmlpaf5QKCRUVFTo4uLigqdaV3OdZgQ51ZaKGlMZQkErVACeCj1QuumXE0p+gHu/DnKyBunacwAAMQzIRJ2OJTYeYsCFgKfxlJ+r8zZ9shcdy80gOqp4czwaNbVo1EXCX1d+wvMPVO5BSIyDUd94yutq09lh3LhxdaIoHnHjQXp6emNeXl6XSy+99JyamhrdsGHDnAAgiiLmzZsXO3HixJwrr7zycPDW6XS4/vrrs5YvXx531VVXHTO/y+12ax0ORwgAbDZbyO12awHgsssuq3n66af3vvXWWwUbN260fvjhh46Wzq2qqtLl5+dbb7/99oo333yzYP369fbPP//c1lr9iYmJjV9++aUVAD7//PMIr9d7zDvBvn37env06OE7jV+ZCgAul0v7+uuv73rllVd2LVq06IiQnZubW963b1/noXAMADU1Nbq9e/cahwwZ0rB06VK5oaFBu2TJkmiXy6Vt/qbCbDaH6uvrj//O9SR0mhFki2iBz9EAHNCiJLY7rAe2ILpkPdBtGAAguOkTNNaJ2NgXSAmkQG8TYYngMk1EnY0lJhFiwA1v46mN9qmqCtFvgx9ALANyh5VgToBbXwODoEHpzkJ0HXj8Gzm9FQcQNMXCEXXMtFJqYzfl3FR9otHeMyUvLy/1tdde29GzZ0/f/PnzY6dNm5b67LPP7gWA3Nzcyttvv73q1ltv7f7FF1+4RowY4QSApUuXFuTn5xtzc3MzFyxYsPORRx7pCgCjRo2qtlgsIafTqQEAp9OptVgsIUVRkJubWxERERECgIsuuqh+27Zt5pbOjY6ODiUmJvoOBdrBgwfXb9682XzxxRe3uEX0008/vedvf/tbl5dfflk499xzXaIoqvPmzYtdvXp1FAA8//zzhSkpKYHj/Q6MRqPi9/uPGIj1er0ak8mkAEBWVpYHAFJTU/2BQOCEA7ZRUVFBk8mkHPp9jRgxov7bb7+1p6en+9xu9+Hnezwe7aHfya/RaUaQAcAQ1/QGqTJjIFyVRiiblwNq0zHXV6sBAJvTBRhqbYhJsXL9W6JOyJqQDjHghho8tfEDZ8AJQ7BpaoWNm4R0WHGWONSZmgb4KnbsOeH5wVovvKYYxKYcM4WTOjCr1Rq02+0hAIiPjw84nU7tjh07DHfccUeGoigQRVHV6/WKIAhqXl5ewpIlS6IOPi+k0WjQvXv3xkPzim+77baqvn37ug7Nyf3444/tffr0cTY0NGhHjhx5jtPp1CiKgnXr1tl69erlaencbt26NXq9Xu3OnTsNALBx40ZbVlZWq6O/n376acTcuXMLly5dWlBXV6cdMmRIQ25ubuWhmk4UjgGgd+/enh9++MF+KKxXV1dri4qKTIdC+vEyliAIqqoeuRqQ2WxWk5OTfV9//bUVANavX2/LzMz0DhgwwPX99987QqEQiouL9YqiIDY29ldNrwA60QgyAMQdXINS7dIDwlrAJ++CuXwLEArAvX0/XCYb9sVq4dugIqY3p1cQdUb2pAyIge1Q1C6n9LxqbzX0SlNA5lzTjsugNcDl8CC+Fmgoqjr+yX43BJcDqkFEVDcu8daZTJ8+vfiee+7J0Gq1qiiKyqxZs4rT09P9WVlZnjFjxmQLgoBBgwbVDx8+3JWdne2bOnVq+sqVK2MVRcGMGTOOeec1ZcqUynvvvbfr2LFjJVEU1Tlz5hRGRESE7rrrrpKbbrpJEkVR6d+/v/Pqq6+ud7vdzqPPNRgM6vTp04umTp3aTVVV9OrVyzVy5MhW70Tu2rWr75ZbbpGMRqPSr18/59VXX33Kdy1nZ2c3XnfddRXXXXddttlsDgWDQeHBBx/ca7PZlBM9NyMjo7GwsND04osvxt19990Vh44/9dRTRdOnT+/y3HPPCYmJiY2PP/54lcFgUM8991zXmDFjslVVFf7617/uPdVaW9KpAnK32K4o19cg0p4IBYCz1ALzT68hdGAfnPtNWJ8ZiS6BFCghFXFpvMmGqDNyRCVCF3RDwamtOFDrq4VWdQBqCEYLP07vyIJJeqBGgbfaf9zz1NpiCN4EwABEpp7apjN0dklPT/e///77Ow59P3ToUNfQoUN3HH3eww8/XAagrPmxhISE4BtvvLHzeK9vsViUBQsWFB59/Oabb665+eaba07m3Isvvth58cUX559M/aNHj64fPXr0SYXiF154oai1x+68887KO++8s/Lo45MmTTo8FcZkMqlr1qzZAgDLli2TDx3/7LPPth39vL59+3pXrlwpH338kUceKQVQejL1nqxONcUiIyIDNeYy+BoC+CG5N6p3WRH6diFqVn0LNShg1UAR5yjnAQDi0xmQiTqjCGMEVLgAQY+A/+SnsdVV70VIdEALN2/G6uD0XRJgaKyD33v8N0KuA4XQBZruPYqI47x0orNJpwvI1eZSeKtCqB57KwS/gpL9F6OmMAYbErNQklSLRHc6LA49rJxDSNQpiRoRIcENAPC5TjjN7jDn/t3w6+3Qak7npm46mzhiU6BvrIYvdPyBlPL9O6BTYiGofpgdvOmb6GzSqQJygiUBTlsloAgYOrgfvk7qDc+6fHihx+LeA6EgCENVBOK7OXiDHlEnppxOQD6wr2kXPf0Jp9fRWS7emgBVrYJXiDp8o3dLSkt+hqqLhyh6+DeF6CzTqeYgawQNTCkqIAPG+iA+G5OLNwr3ocwUhf69i1HrtiBYp0F8V06vIOrMFK0HAOBqaEQsTu6GXXfFAQh6O2wWjiB3dPHmeFRodsAvRqKxrgqGyJZvwGsoLYTHPBLWCIZjorNNpxpBBoCUxAR4DA0o212PZyYOwPAR5+GScxLRPbUBSe4MAEBCNwZkos5M0TXtoldXd/Kbhfhr6hHQ22CI4HbCHV28JR5OQ9M9RiX5Ba2eF6yqh9cYjRjeoEd01ul0ATkjIgP7rTtRurMWXaPNmH5tT7xySz+UeHajR+P50GgFxHZhQCbqzFRD0yhwXd3JjwarDU3/t8QzDHV08eZ41JibAnL59t0tnxQKIuhyAIIGSVmntmQgEYVfpwvIPaJ7oNy2B576AJw1TX/8AkoAWyq3ILG6O5KzIiAafvUOhUR0NjM2rV7hrD35gKzxNK1oYE+Oa5eS6Lcj0ZKIMkdTQHYWt7xxm1JbjJAnHgAQ3TXmjNVG4bF27VrLhAkTpEPfb9y40XTNNddkjx07Vrrnnnu6hkJN15T58+fHjho1Kmf06NE577zzTiQAuFwuzeTJkzPGjx8v3XDDDVklJSXHLI/i8XiEKVOmZIwbN0665ZZbMisqKnQA8MILL8Rddtll50yYMEGaMGGCtGPHDkNr565fv948btw4aezYsdKUKVO6eb3ew3N/jq5/w4YN5tGjR+eMGzdOeuihh1IP1d/cZ599Zrv22muzx48fL02ZMqVb893sAGDx4sXRTzzxxBFbTd55553dvvzyy1bnrf3lL39JLS4u1ldXV2vfeuutFnfXCQaDmDJlSrePPvroiNHMnTt3Gi6//PIeh74vLCzUjx8/Xho3bpx01113pR9d34l0uoDcJ7YPqhxNa0iX725a4m9r1VbonGZo681I68ULGVFnJ1gM0AXc8NS6Tvo52samqRUxybyGdHRGnRHuBB00IT98tS1v2FW7Lx9CIBEAl3jr6GbPnh0/bdq0NL/ffzhwzp07Nyk3N7ds5cqVciAQEFatWuWorKzULVu2LG7FihU7lixZIj///POpiqJg0aJFMTk5OZ7ly5fLI0eOrH7ppZcSjm5j4cKFcZmZmd4VK1bIo0ePrp49e3YiAOTn51tmzZq159AOd9nZ2Y0tnasoCqZNm9b1mWeeKVq5cqU8ZMiQhuLiYn1r9U+bNi3t4Ycf3rtixQrZarWG3n777WPC6lNPPZU2f/78XcuXL5e7dOnS+Nprr/3qi9/MmTP3paWl+bds2WI+tBtgc7t27TJMmDAhW5ZlS/PjS5Ysibrvvvu61dfXH35z8dRTT6Vcd911lStWrJD79+/vfOmll+JPpZZOdZMeAJh0JiSnxSCw3YfCTVXIGpCAtaVrkVZ3DgCga6/oMFdIROEm2i0Q61zw1Z38co9iwIpGAHFxlhOeS2c/Q2oKjD/UoFFpuY/U7suHgCRoVCc3jjlDav6zJLr+vffa9B2q49prq6JuubnljwkOSktLa3zxxRd3//nPf04/dEySJE9dXZ1WURR4PB6tKIpqbGxscNWqVdtEUURRUZFeFEVFo9Hg7rvvrggGm95olZaW6m022zHDtRs3brT+/ve/LweAK664omHBggVJACDLsvmVV15JqKmpEYcMGVJ///33l7d0bkFBgcFutwdfffXV+MLCQtOQIUPqsrOzG1urv6qqSn/hhRe6AeD88893rV69OmLixIlHbEjyn//8R05ISAgCQCgUEgwGw0kv4bN48eLoNWvWOHw+n6a0tNQwefLk8kmTJlVPmDBBmjFjRvG8efMSCgsLzQsXLoyZMmXK4S0rXS6XZubMmUWvvPLKEW8iHA5H6O2335YvueSSXoeOFRcXmy6//PJiABg4cKDrySefTD3Z+oBOOIIMAP0Tz0d+zFoUbqqEp8GPtWVrcY7zAkQmmOGI5Tt9os7OYI+EGHAj4Dq5m/S8QS90StOnhlZuM90pxEWlQPRXwKdGtvh4Q9HP8JkSoTO6z3BldKaNGzeuThTFI9b7S09Pb8zLy+ty6aWXnlNTU6MbNmyYEwBEUcS8efNiJ06cmHPllVceDt46nQ7XX3991vLly+Ouuuqq2qPbcLvdWofDEQIAm80WcrvdWgC47LLLap5++um9b731VsHGjRutH374oaOlc6uqqnT5+fnW22+/veLNN98sWL9+vf3zzz+3tVZ/YmJi45dffmkFgM8//zzC6/UeM/c0KSkpAAArV66M2LBhg23ixInHfSPRjAoALpdL+/rrr+965ZVXdi1atOiIwJubm1vet29fZ/NwDDTtpNejR49j5r6NGjWq3mq1HhHQMzMzPf/9738jAOCjjz6K8Pl8p5R5O90IMgAMSBiAt+IfQe+y4di8pgi1OwOIqE5C9tjEcJdGRL8BlqhouANuuH0nNyBS66uFTrVDG3JDq+uU4w6dTpI1CSG1HG5dDwS9LuhM1iMed+4thNt8MyITGsJUYecTdcvN1Sca7T1T8vLyUl977bUdPXv29M2fPz922rRpqc8+++xeAMjNza28/fbbq2699dbuX3zxhWvEiBFOAFi6dGlBfn6+MTc3N3PBggU7H3nkka4AMGrUqGqLxRJyOp0aAHA6nVqLxRJSFAW5ubkVERERIQC46KKL6rdt22Zu6dzo6OhQYmKi71C4HDx4cP3mzZvNF198sbOl+p9++uk9f/vb37q8/PLLwrnnnusSRVGdN29e7OrVq6MA4Pnnny9MSUkJvPDCC3GfffZZ1KJFi3aaTKYjQrbRaFT8fv8RF0Sv16sxmUwKAGRlZXkAIDU11R8IBNr8wjlt2rSSxx57rMt7770Xc+GFF9Y5HI6W50O1olNeyfvE9UHA5oIzphwb/leMi3bdCFOsBn0uOaXRdyLqoGwx8RADLijBk7tht9ZXC0GwQ6e0+LeGOqAkSxIaDOVQNToUb956zOO+Gg0UrR4xWbxpszOyWq1Bu90eAoD4+PiA0+nU7tixw3DHHXdkKIoCURRVvV6vCIKg5uXlJSxZsiTq4PNCGo0G3bt3bzw0r/i2226r6tu3r+vQnNyPP/7Y3qdPH2dDQ4N25MiR5zidTo2iKFi3bp2tV69enpbO7datW6PX69Xu3LnTAAAbN260ZWVltXoX8qeffhoxd+7cwqVLlxbU1dVphwwZ0pCbm1t5qKaUlJTAs88+m7Bx40bbG2+8IcfGxh4TPnv37u354Ycf7IfCenV1tbaoqMh0KKQfb/McQRBU9Tib8JyMzz//3P7AAw+ULFu2TNZqtRg0aNApvVvtlCPIBq0Bj17wKJ52/QP9cRUyXX1w5aS+HPkhIgCALTYF+kA+VOXk5o7W+mqgaO3QCid/Ux+d3ZKsSdhiL0diCCjZkI+MCy745UFPDRq9cYAe6Nqze/iKpLCZPn168T333JOh1WpVURSVWbNmFaenp/uzsrI8Y8aMyRYEAYMGDaofPny4Kzs72zd16tT0lStXxiqKghkzZuw5+vWmTJlSee+993YdO3asJIqiOmfOnMKIiIjQXXfdVXLTTTdJoigq/fv3d1599dX1brfbefS5BoNBnT59etHUqVO7qaqKXr16uUaOHFnfWv1du3b13XLLLZLRaFT69evnvPrqq484t7y8XLdo0aKkjIwMz6RJk7IA4PLLL6+58847Kw+dk52d3XjddddVXHfdddlmszkUDAaFBx98cK/NZjvhR3MZGRmNhYWFphdffDHu7rvvrji1336TzMxM3/33399NFEU1PT3d+8wzz+w9lecLvzaht4dx48apK1asaPd2nv3hWWyq3IR/XvZPmEXOPW5LkiRtkGX5/LZ+3TPVN6j9tFffANquf5Tu/Bo/37UMuzPG4M65wyDqjz+S/N/NS3HgHyr0hgO45dV7fnX7ndnZcu0orCvEY7PHY/CBPHSx/ITReX8+/FjN1k/x2fQPURF9LX4/eyj0Jt6k1xZa6hubN28u6tOnT1VrzyE6kc2bN8f06dOn69HHO+UI8iEP9H8g3CUQ0W+QIy4dmlDTaLDPFYAYdfyA7KzYD78+G1Zx/5koj34DEq2JKI4P4OKiKvhCR/4prSxYj5CaBEGpYTgmOktxTgER0VHMlngoaFp9wOcKnPD8htIyhLQGGLjLdKdh0pmgjYqC0VcOT+jIJWJDO36E15QK1dTqJ9hE9BvHgExEdBRBp0dI0zSC7HX6T3i+r6zp3g+DnaOFnUmSNRmKUAGPLh4h7y/LuamFZfBYEiB2+e1NYSSik9PmUywkScoGsA5AvCzLPkmSLgAwB0AQwCeyLE9v6zaJiNra4YB8EiPISm0QWgDGaG4S0pmkO9LRYCgDNCLkb75Bj8uugOr3oMqZBEQCsf2Swl0iEZ2mNh1BliTJDiAPQPPV9ecBmAhgCICBkiSd25ZtEhG1h5DYNCLodZ14BBmupkupJZk7cXYmGREZ2BMhAwCKvtwMAKjc8R2qlRwIih8552SEszwi+hXaLCBLkiQAeBXAXwB4Dh6zAzDIsrxblmUVwMcALm2rNomI2osi+gBVgbP+xAFZ26gHAESkxLd3WfQbkhmRiY3pdTB7yuE60DQBvfqb1+A0dEdQ3YNuUekneAUi+q06rYAsSdIUSZK2Nv8PwIcA/ivL8uZmp9oBNF+Y2QnAcfrlEhGdGYpRA13QDWf9ibeb1gYsgKogNokBuTPJjMxERaQAq3cnqjWZqCr4EZFb1sJlSYHHUQ69Vh/uEukMWbt2rWXChAnSoe83btxouuaaa7LHjh0r3XPPPV1DoRAAYP78+bGjRo3KGT16dM4777wTCQAul0szefLkjPHjx0s33HBDVklJyTE3M9TV1WknTZqUOX78eOnaa6/N/u677ywAsHPnTsMNN9yQNX78eOnGG2/sXlVVpQWAp59+OnH06NE5Y8aMyV63bp0ZAA4cOKA71M6YMWOyd+3aZTj0+hUVFboRI0b09Hq9AtC0qcctt9ySOXbsWGny5MkZBw4caHVK7osvvhj3xBNPJB99fM+ePfprrrkmu/mxf/7zn7GzZs1qde7R4sWLoz/44AMHAMybNy/2ZNv84IMPHKNGjcq59tprs//1r3/FAEAwGMQjjzySOmbMmOyRI0fmfPjhh6eUP08rIMuyvFCW5Z7N/wMgAZgiSdKXABIAfIKmcGxr9lQbgLrTaZOI6ExSTSL0fhdcDccPyCElBJ1ihRh0wh7V6vWcOqBESyJMOhN8sdVQNAaULZwOuWoEIGjgPrf1XcKoY5k9e3b8tGnT0vx+/+F/9Llz5ybl5uaWrVy5Ug4EAsKqVasclZWVumXLlsWtWLFix5IlS+Tnn38+VVEULFq0KCYnJ8ezfPlyeeTIkdUvvfRSwtFtvPzyy/EDBgxoWL58ufzMM8/sefLJJ7sAwKOPPpp233337V++fLl8/fXXVxYUFBg3bNhg/umnn2zvvfde/pw5cwpnzJiRBgBPPvlkyqhRo2qWL18u33vvvftlWTYCTbvtTZ48Oau2tvZwMH/++ecT+/bt61q5cqV86623VsyaNeuYAOzxeIQ//vGP6cuWLWuz7SInTZpUPXr06HoA+Pe//31MkG6pTb/fL+Tl5aUuXry4YOnSpfKKFStiy8vLdW+88UZ0MBgU3n333R3z58/fVVRUZDj69Y6nzW7Sk2U589DXkiQVAbj84E16fkmSMgAUArgCAG/SI6LfPK3FALHKDW+997jnOf1OaGCHNlQPjYE36XUmGkGDDEcGdudUI/5nPzZVjoHHHo9gaDsSzuGbpTPt5y9KouW1ZTFt+ZrSBYlVvUekVB/vnLS0tMYXX3xx95///OfDc2okSfLU1dVpFUWBx+PRiqKoxsbGBletWrVNFEUUFRXpRVFUNBoN7r777opgsGmn5tLSUr3NZgsd3cYf//jHAwaDQQGAYDAo6PV61ePxCLW1teLq1asj8vLyUnJyctyPP/54yauvvho3cODABo1Gg7S0NH8oFBIqKip0W7ZssWZlZXlvuOGGrMTExMYnn3xyHwBoNBq8/vrr8tixY3scam/Pnj3GqVOn7geAwYMHu2bOnNnl6Jp8Pp9m7Nix1YMGDWooLCw0nsrvdc+ePfr77ruvW1xcnH///v2GHj16uJ977rm9s2bNSoqJiQnU1dVpXS6X9oEHHujy7LPPHt4Br6U28/PzjUlJSY1RUVEhAOjdu7frm2++sX377bf2zMxM7y233JIJAE888cS+U6nxTCzzlgtgCYD1ADbKsrzuDLRJRPSraK1m6AMuNLqOP4Jc21gLCA7olHpA4KhhZ5MRkYGvY/ejb8OncOlSENQZ8Vn395ARwRv0Ootx48bViaJ4xJp+6enpjXl5eV0uvfTSc2pqanTDhg1zAoAoipg3b17sxIkTc6688srDwVun0+H666/PWr58edxVV11Ve3QbkZGRIbPZrJaVlekeeOCBbvfdd19JTU2Nbu/evcYhQ4Y0LF26VG5oaNAuWbIk2uVyaZuHbLPZHKqvr9dWVFTo7XZ78O233y5ISEjwz5kzJwEALrvssoaYmJgjQnlWVpb3k08+iQCADz/8MKKxsfGYvBgVFRW6/PLLG44+fiKCIKgAsH//fmNeXl7R+++/n7927VpHWVnZ4UHbBx54oNxqtYaah+PW2mxoaNBardbD9VsslpDT6dTW19fr9u7da1y8ePGu3/3ud+UPPfRQ11Ops1120pNluWuzr9cCuKD1s4mIfntMdjvUgAtB7zGDOUeoa6yDorNDDJacocrotyQzIhPv7X4PWQseQvz7P2Ldvs3YE1+O8+LOC3dpnU7vESnVJxrtPVPy8vJSX3vttR09e/b0zZ8/P3batGmph8Jebm5u5e2331516623dv/iiy9cI0aMcALA0qVLC/Lz8425ubmZCxYs2PnII490BYBRo0ZV33bbbVU///yz6f777+82derUfcOHD3d5PB7BZDIph54/YsSI+m+//daenp7uc7vdhwOtx+PRRkREhGw2W2jkyJF1AHD55ZfX/eMf/zhm2sQh9913X9mjjz7aZfz48dKFF15YHxsbG1izZo11zhSR1DQAACAASURBVJw5yQBw++23l48cOfK4O+GYTCYlEAgcEaw9Ho/m0Eh4YmKiz263KwAQFRUV8Pl8pzVoa7fbQx6P5/Bz3W631m63h+x2e2jEiBF1Go0Gw4cPdz300EOnNMrNjUKIiFpgjYqCGHBBDQhQ1dY3fKhxViMg2qA/uG4ydS79E/oDAL4u/xbdbr4aH/XZhpyoHMSZ22xaJp2FrFZr0G63hwAgPj4+4HQ6tTt27DDccccdGYqiQBRFVa/XK4IgqHl5eQlLliyJOvi8kEajQffu3RuXLVsmL1u2TL7tttuqtm3bZrzvvvu6Pfvss4VXXXVVAwCYzWY1OTnZ9/XXX1sBYP369bbMzEzvgAEDXN9//70jFAqhuLhYrygKYmNjgz179nR+/PHHDgD4/vvvbd26dfO1Vv+aNWtsN954Y+Xy5cvlrl27+nr37u0aOnSo61BNJwrHABAXFxf0er2abdu2GYGmm+bWrl1r79u3rwcAhBN84na8625zOTk5vpKSEmN1dbW2sbFR2LRpk3XgwIGu8847z/nVV185AGDTpk2muLi4k1iz8xftMoJMRHS2i4iOhytQC0ADvzcIg7nlXfLq9x8AhEToda3+raEOrEd0DyRbk/Fx8ce4uMvF2Fy5GXf0vCPcZVGYTZ8+vfiee+7J0Gq1qiiKyqxZs4rT09P9WVlZnjFjxmQLgoBBgwbVDx8+3JWdne2bOnVq+sqVK2MVRcGMGTP2HP16f//735MDgYDm0M15Fosl+Nprr+1+6qmniqZPn97lueeeExITExsff/zxKoPBoJ577rmuMWPGZKuqKvz1r3/dCwCPPfZYycMPP5z2zjvvxFksltALL7xQ2Fr9WVlZvgceeCD92WefRUxMjD8vL6/oVH8HGo0GM2bMKHrkkUe6ajQaBINB4aKLLqobMWKEc8+ePSdc4iUtLc171113pb/88svH/D6a0+v16v33379v8uTJWYqi4Nprr61KSUkJ3HbbbVUPPvhg2jXXXJOtqiqeeOKJ4lOpXzjZhH4mjRs3Tl2xYkW4y6BfQZKkDbIsn9/Wr8u+cfZrr74BtG3/2Pfly9j5+Drk50zGzX+7ABFx5hbPW/zWXDi/7Ils7XJc8tJLbdJ2Z3Y2Xjtmb5iNxdsW48EBD2Lmupl4/arX0Teub7u01Zm11Dc2b95c1KdPn6pw1URnv82bN8f06dOn69HHOcWCiKgFkXFp0Aeapk34jrPdtPuABwBgsvAGvc7qiq5XIKgGMXPdTMSaYtErple4SyKiX4lTLIiIWmCxJyCkNgVkr7P1qWv+Gj90AIyRLU/BoI4vJyoHt/a4FQatAWMzx0Kr0Ya7JCL6lRiQiYhaIJgiENI0rSbkaWg9IKvOpmlqpnjrGamLfnsEQcCD/R8MdxlE1IY4xYKIqCUGO0LaEwdkwStCF/TAlMBtponCQFEUhfOb6LQc7DtKS48xIBMRtcRoR9AQhCbogqe+9YCsDZog+htgjjlmd1gian9bKysrHQzJdKoURREqKysdALa29DinWBARtURnQNAAiMEGuBta301Po1ghButhcWSfweKICACCweDvysvLF5SXl/cEB/3o1CgAtgaDwd+19CADMhFRKxSjAH1jA9x1LY8g+4I+CLBDp+yB2R59hqsjon79+lUAuCbcdVDHw3dbREStUI0amHwNcLUyglztrYaidUCv1kEwRZ7h6oiIqL0wIBMRtUJjEmFsbICvwd/itqcHaqoBjR5G1ACmiDBUSERE7YEBmYioFTqTHnp/A5SgioAvdMzjFQdqAABmVAF6LvNGRNRRMCATEbXCYDFD729a6s1df+w0i9oDdQAAi64OEHgTPRFRR8GATETUCrPDfjggt7QWsqe06TGb3nVG6yIiovbFgExE1IrI6OjjBuTGykZolADMlhbXmSciorMUAzIRUSvi4pJhOBSQW9gsJFgvwOCrhRBhP9OlERFRO2JAJiJqRURMEoSQB1BDLW837TXA0FgLTSSXeCMi6kgYkImIWqExR8BtViEoLnhauElPCFphbKyFLiYmDNUREVF7YUAmImqN0QGvSYU2WAtnje+Ih5SQAkG1QQzUQB+dEKYCiYioPTAgExG1xmiH36TC4KtAfaX3iIectV4IggY6pRYmR2yYCiQiovbAgExE1BpjBBSTCrO7Aq7aRgT9v2wWUnqgCgAgCtUw2jnFgoioI2FAJiJqjSkSglFBhKsCAFBf9cso8oGypl30TJoKCObosJRHRETtgwGZiKg15ijoDCE4nJUAgPqKXwJyZYkTguKHTVsOmKPCVSEREbUDBmQiotaIZuiNgMl7MCA3m4dcX+aF1V0Oiz4ImBiQiYg6EgZkIqLWCAJMZhFi0AtBFzoiIDdWqLC4S+HQBziCTETUweja6oUkSdIC+AeA8wEYADwhy/KHkiRdAGAOgCCAT2RZnt5WbRIRtTebzQIVPkDnRn2FBwDgcwcArx4WdxnEGAAG7qRHRNSRtOUI8q0ARFmWLwRwLYDMg8fnAZgIYAiAgZIknduGbRIRtavoiKZd8hS19vAIck2pGwBgdZdCsZgBQQhbfURE1PbaMiBfAWC/JEn/BfBPAB9IkmQHYJBlebcsyyqAjwFc2oZtEhG1q8jYg2scByrhqvEh0BhC9X4XAMDiLgUibWGsjoiI2sNpTbGQJGkKgP876nAlAB+AUQAuAvBvNI0cNzQ7xwmg2+m0SUQUDrrIODSKgMa7A6rhfBRuqkTVfidU1QPRXwdNdFK4SyQiojZ2WgFZluWFABY2PyZJ0lsAPjw4UvyVJElZaArHzYdXbADqTrNWIqIzzxQJj0mFsX47dDlGbPmyBDVlLmj8BWi0ADo710AmIupo2nKKxTcArgYASZL6ANgry3IDAL8kSRmSJAlomoaxpg3bJCJqX6YoBKwqoupdkAYm4MCeBgT8CmLK3wesCoyOuHBXSEREbawtA/I/AQiSJK0F8CqA3IPHcwEsAbAewEZZlte1YZtERO3LFAnYgoivCyH5PAsEAbD3DSGp6gBMlgB0Fo4gExF1NG22zJssy40A7mjh+FoAF7RVO0REZ5Q5CiZrCDY3UOLbjesf7Y8Py99GpBNwpPm5BjIRUQfEjUKIiI7HFIUosx8AsGvLD4hJsaG+dBc0ACzmIGDmCDIRUUfDgExEdDymSMSbmgJy9a58AEB98W4AgGgJcZtpIqIOiAGZiOh4zFEwW4MAgND+vQiEAqgv2gngYEDmFAsiog6HAZmI6HhMkdDqVbiNAswVVdhavRWRtX4oAiCaQ4CVq1gQEXU0DMhERMejMwCiBQ0OHSJr3Pi65GvE1QFekx6CBoAtMdwVEhFRG2NAJiI6EXMUdDY9EmoV/GvLQvTcp0VjpAGqKRIQTeGujoiI2hgDMhHRiVhiEWfTIKYBkPYqiHQGoUvRQrBxm2kioo6IAZmI6EQcyYhM8UGjAg//zwQFAmK7+AE7p1cQEXVEDMhERCdiT0FsRBXWxefAVOOCHNkFieZ6zj8mIuqgGJCJiE7EkQJNwI2tw66CAgE/JveA0V/NgExE1EExIBMRnYgjGQBw6bCu+NOIqfBfMgyCqnCKBRFRB8WATER0IvYUAMCweD/M2RJu7H1w5QrepEdE1CExIBMRnYijKSCbvGVYde9QnB/pazrOEWQiog6JAZmI6ESscYBGB9Tvb/reWdb0f44gExF1SAzIREQnotE2heH6kqbvnWWARgTM0eGti4iI2gUDMhHRyXCkAA0HR5AbyppWsNDwEkpE1BHx6k5EdDIcyUD9vqavyzYBsVnhrYeIiNoNAzIR0cmwJzeNHDvLgcodQNeh4a6IiIjaCQMyEdHJSOwDKAHg8xlN36czIBMRdVQMyEREJyN7JGCOATb+B9DbgIQ+4a6IiIjaCQMyEdHJ0BmA825t+jptMKDVhbceIiJqNwzIREQnq9/tgFYPdL8s3JUQEVE74hAIEdHJikwD7t0MWOPDXQkREbUjBmQiolNh5+55REQdHadYEBERERE102YjyJIkOQC8BcAKoBHALbIsl0uSdAGAOQCCAD6RZXl6W7VJRERERNTW2nIE+TYAW2RZHgrgbQAPHDw+D8BEAEMADJQk6dw2bJOIiIiIqE21ZUDeAsB28Gs7gIAkSXYABlmWd8uyrAL4GMClbdgmEREREVGbOq0pFpIkTQHwf0cd/hOAyyVJ2g4gCsBQNAXlhmbnOAF0O502iYiIiIjOhNMKyLIsLwSwsPkxSZJWAPi7LMvzJUnqDWA5mqZV2JqdZgNQd5q1EhERERG1u7Zc5q0WQP3BrysA2GVZbpAkyS9JUgaAQgBXADjhTXrbtm2rkiSpuA1rozMvrT1elH2jQ2iXvgGwf3QQvHZQa9rt2kF0NEFV1TZ5IUmSkgAsQNMqFiKAabIsf3pwFYvnAWjRtIrFo23SIBERERFRO2izgExERERE1BFwoxAiIiIiomYYkImIiIiImmFAJiIiIiJqhgGZiIiIiKgZBmQiIiIiombach3kdiFJkgbAywD6AGgE8DtZlneFt6rwkCTpJ/yyM+EeAPMBzAEQRNMSeidcY7ojYd84EvvHkdg/fsG+cST2jSOxfxAd6zcfkAGMAWCUZXnQwTWV8wBcG+aazjhJkowABFmWhzc7tgnAeDRtwvJfSZLOlWV5Y5hKDAf2jYPYP1rE/gH2jVawbxzE/kHUsrMhIA8B8BEAyLK8VpKk88NcT7j0AWCWJOkTNP27PQHAIMvybgCQJOljAJcC6EwXMfaNX7B/HIv9own7xrHYN37B/kHUgrNhDrIdv2xhDQAhSZLOhmDf1jwAnkPTdt25AP598NghTgCOMNQVTuwbv2D/OBb7RxP2jWOxb/yC/YOoBWfDBaEBgK3Z9xpZloPhKiaMCgDskmVZBVAgSVI9gKhmj9sA1IWlsvBh3/gF+8ex2D+asG8ci33jF+wfRC04G0aQvwVwNQAcnCu2JbzlhM0daJonB0mSkgCYAbglScqQJElA07v/NWGsLxzYN37B/nEs9o8m7BvHYt/4BfsHUQvOhhHklQAukyTpOwACgNvDXE+4LASwSJKkbwCoaLqoKQCWANCi6U7jdWGsLxzYN37B/nEs9o8m7BvHYt/4BfsHUQsEVVXDXQMRERER0W/G2TDFgoiIiIjojGFAJiIiIiJqhgGZiIiIiKgZBmQiIiIiomYYkImIiIiImmFAJiIiIiJqhgGZiIiIiKgZBmQiIiIiomYYkImIiIiImmFAJiIiIiJqhgGZiIiIiKgZBmQiIiIiomYYkImIiIiImmFAJiIiIiJqRhfuAloycOBANTk5Odxl0K+wbdu2KlmWY9v6ddk3zn7t1TcA9o+OgNcOak17XjuIjvabDMjJyclYsWJFuMugX0GSpOL2eF32jbNfe/UNgP2jI+C1g1rTntcOoqNxigURERERUTMMyEREREREzTAgExERERE1w4BMRERERNQMAzIRERERUTMMyO1I9bmhOquAUCDcpRARERHRSfpNLvN2tivduQ1fvLwEDa4BULR22LSV6NurHj0n3QiN2R7u8oiIiIjoOBiQ25CqqnjnzYXYkb8PikMP2DYhsbQRqjMdazZlYnfB27j8jwNg6d4n3KUSERERUSs4xaINff75J9heUAJdIAYpQRsyzslAWYoBtVEbkblrMQ54UrH8+R2o++mbcJdKRERERK1gQG4j+/fvx5qvv4PJbUeiKxqT//JHXHlxPK64Qged5MWOHiLO2ToXAcWIFQsqUf3DmnCXTEREREQt4BSLNvLhf1dCF1RgdvXEkPFubM6fjPr6nwAAOT0Af6YRJZHJOOerecg/50689+9KjBXXIrLvBWGunIiIiIia4whyGygpKUFZaRWsDXGIMpShxr4QLlcBMrrPwkVDN6Bv39eg0yUgbthu1F9Thh6lbwGCFu//cx+c238Md/lERERE1AwDchv4+puvoQ0EoQ1K6HbFZ3C58jFnw80Y/pIFj72yHdVrE9HfvBA1VQOg6+tE44hN6Kv9Gn7VjA9e2QFv0fZw/whEREREdFCbTrGQJEkE8C8AXQEYADwJYDuARQBUAFsB/EmWZaUt2w0nj8eDnXIBomr1MFtL4NZ/h9XFw5Adcwke9/kRUxoESkvhApAjTMb3XQV067kOHuF9DGpMxze7u+PD2Wtx7aNW6OO6hPvHISIiIur02noE+RYA1bIsDwVwJYAXAfwDwF8PHhMAXNvGbYbVli1boKqAihwk9X0PfkWHnMQ7kVvkQkS9Fz97v8W/6t7HPcFiaAZnIK1mDAoKLoCvh4L6qNdx0QA3Khu74H9//wghV224fxwiIiKiTq+tA/I7AB47+LUAIAigH4CvDh77H4BL27jNsNrw0wZYnD4YjSp08duwy3UpBqyvguoKYovmW2gkA6IC+3Hhvrfwj0/eQK/cq6ELXITCggvh61qFevMiXJ4egsvbHZ/OfAdKgLvuEREREYVTmwZkWZZdsiw7JUmyAVgG4K8ABFmW1YOnOAE42rLNcKqtrUXFgQpYG2yI6PoFIAD96/rD5nGgPrkBo2b+FVfe9X+488UFSL1gBHIqfsDLf/0rRo4dhQNV3VFYOBCemG2oTH8BQx0K4holfPf0O1BV9cSNExEREVG7aPOb9CRJSgXwBYDXZVl+A0Dz+cY2AHVt3Wa4yLIMAFCELNjT18EZyEHk1kh4tC70ums0BEEAAOhNZlz/f/cj4tIbYa/ajbeemYkhgwdjf0kW9uzoBk9UPvb2m4UoYyO6uFKw/e8fQVUYkomIiIjCoU0DsiRJ8QA+AfCQLMv/Onh4oyRJww9+fRWADrNDRv6OfJjcXpjiaiBa6hGxrxusYiSir86CRjz2/sc7fnczKgbciEBlCbYtW4L42FhUuS5B3dcONDr2YN/w2XCJlXDUWlH03DdQA6Ew/FREREREnVtbjyD/BUAkgMckSfpSkqQv0TTNYrokSd8D0KNp6sVZz+v1Ym9xMRz1Wti7rEVI0cOR3wcBMYCoC7q1+BxBEPDYn67Hd1nXo77BCe9P38Hf6Icz408Q3tPDry1A3VVvYJ9SAl21iv1zfoTiC57hn4yIiIioc2vTZd5kWb4XwL0tPDSsLdv5Ldi9ezdUFRBCqbAl/xeahq6I13eH+aJECFqh1efZjSKe+sMo3DpXjzE1n0JfVowiRUHchQ8h+u2ZcN2wCZYxBuS/PRbZlfEof2UzEnL7QGPipodEREREZwI3CjlNhYWF0ISC0MbpoTO5IOxMgwoFjsFpJ3xuz2QHHr1+EF6LGoVgYg9o3U78sL0QBxLHwPqBFm7fOkRe8y42eZwIlrtRsWALR5KJiIiIzhAG5NO0Z88e2Ot8sCVvgqoKSK67BNp0C7QW8aSeP6FfCn4/rDsWerJhO+8KCIKATV4FWyt6QPedDg3CWiQNfQ0/uv0I7HeiatE2zkkmIiIiOgMYkE9DXV0damtrYfZYYEvaBKU6DlY1AZFDup7S6zx0ZTbG9E3C85sDiOk7HIrJiqrYZPy0JQPBAhG10RuQKP0bG9whNBY1oHrJDqjBDrMJIREREdFvEgPyaSgqKgIAaM2RMESUwlCWDUVUYZSiTul1NBoBf5/QB5dkx+Hv6zyISOkOb0Qs7N1ysP2bdASqdKjv8QMsUe9isycI344aVL+5A2qIIZmIiIiovfDOr9Owa3chNEE/9Cn1AICE+mEw94yFoDv19xt6nQYv3Xwe7nx9A17aGcId0Q7UWq3IEjTY9YmCrLGF8A9djcb/dcE2X1+cs60aNW/JiLox+7g3AxLRWUxVoR7Ih6swH559ArR+OzS6GKgwAkLTNqUQBEArQGPWQRdphJhogT7VBkHLcQ8iol+LAfk05O8qhK3BD2vmTigeI8yedFjPTTjt1zOKWrx6az9Mee0HvFPYiGuNO1CTdQ5yamqx6+MgMkYXA5e+jtL/JsOgxCNzSxVqhB2IuoEhmaijCRV+hw0r/o1aRwBmRxW0uhDEQDTEqu4wV/SCUXBANJkBjRZqUIXiDQIHp14JBi1MPWNgGZgAQxd7mH8SIqKzFwPyKaprcCLkdcHiMcASvx1ieSagF2DI+HU7aBtFLRZM6o/fLxawZo8HatEeJI2ZgMx/voy9Xyah66X7kTw8DztW/w2GRBtSf65CrbYAkddlQdAwJBN1BM7PX8aa3athOG8zxJAOGndXqEYRLkc+lKTvUZWjgXP/uXAXDEZ3cwC9RveDqedwKM4A/Puc8ObXwLu1Cp4NB6BPt8NxWRoM3SLC/WMRtZsNGzbE6XS6BQB6gtNG6dQoALYGg8Hf9evXr+LoBxmQT9HKb34GABiiNNAafIiuvQDmXnFt8rGmSa/Fgsnn4w+vC5ALXcDatRh73wMITX8MZfZYJA6ohDRgFn5a/wTMWTZgYwUgAJETGJLPNp6Kvdi7/k246ndDFwzBrjUjOaELDBkDgdSBgM4Q7hLpDPN/vwDfHFgOQ0YRbMWXIMI5GjVxdbBHpyAhozt0tgaUl63Efs3bsKduQEVlBpa/qyD1nR9x3tgBsJ83HKaeMVCuyYD7h3I4vy5B5atbYMyJQsSobtBFm8L9IxK1OZ1OtyAhISEnNja2VqPRqOGuh84eiqIIlZWVPcrLyxcAuObox8/agBzYvx8V/5gN1e+HY/w42IYPb/c2VVXFd5sLkKwq0CfVAQBstX1gHhnbZm0YRS1endQPd72uoGLPGrz75Ve49cFHEXxqGqrtDkRn70d2/Vx8I9+DK/rHAT9VABoBkeO6MySfBXwuF757dyqC0d9Da/YA5qbj1QB2NVrg/2wdHGUOZCREI3HgAAjSFYDBFtaaqf1596zDR7vfhD2pCAXyIBw4kASNbw3E/GqIdZUQFAUmixm9LxuF7IFvIiD+gGJxIcyxr8JTl4x3VylIWrkN5988HBHZ58A2JBnWgQlwfVeKhs/2onz2BtiGpcI+PBWCyEG2jibk9CNQ7kawxodgtQ/Bai9CdY1QfUGoKqAx6yDGmWFId8CYEwWtVR/ukttST4ZjOh0ajUaNjY2tLy8v79nS42dlQA45ndiXm4vGkv3QGgzwbd8O69ChELTadm33h6JaaL01MHp9MEtbgLpYaGGDMaNtP8I06LR4+db++H+vBeDa+zXe+GkjJv/uT/jpXy+hYbIFtt5bkOZZjk9/HIfRFyXD8+MBaAxaOEZ1gyAwJP9WVRZux48//Qn6pL3AgTRoQv1g1/WESWdBCOVwCuvgTfsR/m5+yHXpKPnMhqg3NTCKRoh2G7SxUdAnW2GUoiCmWPlv3UHUVJRj5aoX0TWnCA2Fg5G6Zyjc9d+jISIaSnwq/DEJSCwsgFhejXUr38a6d5fCEhGB1HNGITKzAdqIr5A8+J9orE3Gu2+EkG7biAG/uwamSDtsw1Jh7huHulV74PxsL7ybKhAxJhPG7pHh/rHpVwrW+eD6rgy+bVUIVvt+eUAnQBdlhDbCCE1s06cGiisAX0EtPD9VABrAKEXBOigJhu4RHeE6omE4ptN1sO+0OGpw1gVkVVFQ+ucHsEUQsOWaq5HlKUTmp/lwffklbJdc0q5tr9iwFzGCG3aPCnPMftj3XQxzTsxprV5xIgadFi9MHoz/t7AR+tLv8J+Katw8+jr8tOQdeO4IwTTgY0Q3xuOjdUMwalAyXN+WQmMRYb+4S5vXQr9e7f4y/LgpFzr7ARxY0x22kguQZj8fFrFp7rqqxsGu7QmYboUzeS1q4j6Fs88iOAMm6PYPhGX/BYjMT4Yh34qG1XuhizXBOjgJ5n7x0Ojb940htZ/Gxka8/Z+5SO+xAUptIs7bdRuW13+IjD/8DSlRFmzIL8SOH7+F2l1EUAmix/bvEFPqQrnThV3uBgS/VQDBgcgMAYkDKpE6fA5qS7rirZlenDtAQq9xQ6B1GBB9UzZ8/eNR9+5uVC3cCvP58YgY1Q0a41n3J6DTU4MKGj7bC+dXJQBUGLtHwnJBIsQkK3QxJmht+hY/TVRVFYEyN7ybK+HecABV+VshJlpgG5EKU88YfgL5K61du9by3HPPpSxbtkwGgI0bN5oef/zxNK1Wq6ampjbOnj27SKvVYv78+bEffPBBjCAImDRpUvl1111X63K5NH/605/SXS6XTqfTqXl5eXtSUlICzV+/rq5Oe88996S73W5tMBgUHnrooX2DBw92f/LJJ/bZs2enGI3G0KBBgxoefPDBslAohAcffLDLrl27zKIoqrNmzSrq3r1747vvvhsxe/bslNjY2AAA3H333fuHDx/uaqn+DRs2mJ944ok0URSV7t27e2bOnLlP28og5HPPPZdQUFBgfvXVVwubH1+8eHF0YWGh8Yknnth/6Nidd97ZbeLEiZXDhw93tvRaf/nLX1L/8Ic/HLBaraFPP/3UceONN9YcfU4wGMQf/vCHbtddd13VlVde2QAATz/9dOK3334bodVq1UceeWTvwIEDPa39G5yss+6ztpp/L8La6ipsPO881Bqc2GbJwI8XnI+a1xa1a7u+QAjfbCmETlBgjfBBo1Ngq+0FU8+YdmvToNNi7h0jUBHbD56GOrylNeLcgZdAed0Of4OIiAtfh8G0Has3V8DQKwYNnxTD/WN5u9VDp8ffGMR3X/0Bor0Uu346HyWhochPMuATw2Z8VfMuftwxF19ufhwrdj2LZVvn4qtvtsGzdywihamw2QYhmPYd6i98GvKAp/FN9GfYFdoHv7sBde/tRvkz6+H8ah8UP3dZPBt9uPIdWGM3Qafzo1v+n7DVJyN3zt8x9rxU9O8ahdyrzsdzf/l/iO99ERSNAdvPGYYfxk1ArD6Iy3/ciT779kDIMsDY61rgwBTUbO0Gc9xepFz+DPJLnsfbj7yFMrnp3hNjZiTi7/3/7J13fFRl9oefO72XlEkvkx5qQg+gIGKhKVLUtaHL6qKiu+KyuuWHYi+LuC7uWnAVCzaKbUX8PQAAIABJREFUrApWmnSBEAik994zvc/8/mBxLaiUUM3z+eSPTO4977kld773vOc9JxfNmHice1poWbwHd0X3GT4DvRwPAYeP1hcLsG2owxXhpiW3nebkJiwR3YRM0h8VxwCCICCL1aCfYCbm/mEYZ6QT8gfpXF5My+I9OPNbCQV7A7EnwuLFi6MWLFiQ5PV6vzn5zz33XOycOXOaVq9eXeLz+YS1a9fq29raJCtWrDCtWrWq+K233ip59tlnE4LBIK+99lpEdna2c+XKlSWTJk3qeP75539QFuuf//xn1LBhw6wrV64sefLJJ6seeeSRxEAgwMKFC5OWLFlSvnr16pLq6mrFV199pfnPf/5j8Hq9ojVr1hTfe++99Y888kg8wIEDB1S/+93v6lesWFGyYsWKkiPi+Gj+L1iwIOn++++vXbVqVYlGowm8++67R230sG7dOt2WLVt6bBr9scceq0tKSvIeOHBAtX79+h/YLS8vl8+YMSOrpKREfeSzPXv2qPbu3atds2ZN0d///vfKhx9+OAmOfg2Ox5dzI3wQ8IPfRefb75G/fDnl43OJi95HpMLLwfZoGkPxdK1eQ1xXFxLjqZk6/OxQC3KfDWQgi2qGoAilJQNF5qmdqlRIxTx32+X87kUfQvs+3o6MY0bKYPa/sQfRLZ1EXfAcNRv+ytZGBSNT9XStKkdsVPR42kcvJ85X7z2EIu4glRWD6XZmExvQYvM0YVGJaY/RIMT2RfC5iastJa6ykS6NnRLr5xzcdPhNVyxLxtTfR1hGJ5GD38TrUbCt7CLUtpEMkMVjWVeNbWsjunEJqIdEn5IZjV56nuLiYsqq9zJkSBnymiGELGFc8JcJqBTfbVcvEYu4fdo4qkYM4KXlK/DZm/k890qyL1Iy4KO3mfBeEYcSinjpciXRA4YxVrgMbedaTAML8JiLWLtsN0mJMxh53RBUOhmGCWaUfcPper+U9qUHDucmX5LUWzLyLCdg99Lw7E5CNj87Wj+kvqoUdn57CwFBFIZEFo5KpcMYpiEyPoLYAX2I6ZuBSq//Jp1CkIhQD4lGNSgK14F2bBtq6Xy3BMmGOvSXJ6PIDjsnUy+WbasOX7W3vkejVtMGxbfPGpnc8VPbJCUleZYsWVLxhz/8wXzks8zMTGd3d7c4GAzidDrFUqk0FBkZ6V+7du1BqVRKdXW1TCqVBkUiEXPnzm31+/0ANDY2yrRa7Q8iHrfffnuLXC4PAvj9fkEmk4Xa29slGo0mkJqa6gXIycmx79q1S9PZ2SkZPXq0BSAvL88xb948NUBxcbG6pKRE9eabb0b16dPH8cADD9RLpdKj+t/e3i4bNWqUA2DIkCH2L774wnDdddd9J5pbVlYmf/fddyPnzp3b8N577x3XYqzXX389/KuvvtK73W5RY2OjfNasWc033XRTx4wZMzIffvjhmhdeeCG6srJS9corr0TMnj27/ch+drtd9Nhjj1X/61//+uYlYufOnZrhw4dbRSIRSUlJ3kAgILS2tkqOdg2Ox8dzQiC3/GECrfvr6RIZqLk2lsHJHyISAgS8coZHllJamkddQgLppaVIhg8/JT5sKG4lTu5GCAZRmaqRWRJRmWMQyU/9KVTKxDw3ZwrzXwJa9/G2OZurXS4OvnkQ1axOEsc8SvWXD3HA0Ie+EQo63izCdGcO0ojeVetnmvKvd+GPeg97dxSGirFcGEgi+jeD0GfGAOD1ejlUUspnG7dSL1VQkTIQ3G3klucTX2bDLZVRGy6lvkxPU3MWWlE7EdktRPZbRyD9C7YcvIxwLqSfPIHuDyqwbapHNz4JVa6pd8r0LMbtdvPRh2tISdpHKCAmoeZ6PLladJE//mJrjo3gsXt/y3827mLXV+tp6Gpn28jruMDnZujnb/PoUidbhu9l8YgtBDRKrrPmkS3KJ3n8GrortrH8gVmMuHIyfS+MR56ow3RXLt3/qcC2sQ5vrZWw67LOt8Vb5w1Br5+qZzYhsYvZYf2cNlE6cv04whUV6JUlgAWXM4jF7sbuqcLS6cPSCdXlwMbDNsRiOeExCWRfNI6+Y8ai1OoQRAKqgZEo+0fgKmzH+lkNHa8fQp6iRz8pBVmc5gwe9bnDtGnTuquqqr7zz2M2mz1PPfVU4tKlS2PUanVgzJgxNgCpVMoLL7wQuXTp0rgZM2a0HNleIpFw9dVXZ1RVVSlfeuml0u+PYTQaAwBNTU2S+fPnp9x33321kZGRfo/HIyoqKlKkp6e7t2zZos/IyHA6HA6xTqf7RmSLRKKQz+djxIgR1okTJ3aZzWbvH/7wh6RXXnklcs6cOW1H8z8mJsazceNGzdixY+3r1683uFyu7+Qm2Gw20YIFCxIXL15cVVxcfLxiIwRgt9vFb7/9dllpaal8zpw5aTfddNM3LyJz5sxpXr58eeS3xTFATk6O6/vG7Ha72GAw+I/8rlKpAhaLRfxj1+BYOScE8s6hMtRTvEArybRiaU6iebOagEdE0mUVJCbupyZpJJ6CXahPgUAOhUJsr+jgYoUXVacTVXgXmtoRKPufuvSK76OQinlmzhU88KoE6nbzelp/rt3voOytEOobO0ka+yBlGx5CP3IgscUddCw7iOn2gYhU0p833sspwe8NsLd4IcaYAKL8yxga6kPU3EHIk/7XwEEmk5HTvx85/ftRXVvL+//5BEd7iK/7TeSTnGgu8ZbRd/sWhn9Vg0NRw6a+AjsM4QyyZhEfXkz0oI/wWNfzef61ZOmHkCxX0fV+KbbN9YcjQVnnZiTofGfLli34Ay2EmWpRlI/C71WQcfWIn91PEASuvGg4l+UN5P2PPiNUmE+FVGDtxb9mYvVBRu/cyKhDKvKnZrEkoRh3QOC3zljSkprQJjzDvp1fcGjLbYz/9WjCYtWEzchAbtbTtbqc1uf3EXFzX6RR6p/1o5fTy6HFH2NwhvG1bQ9WTTb9st5EktiAV/K/xXlyIFJqRK3OQK3oj8ilxVXvp6PITWu9jXZrkLbGNlrfeInNby4lPmsQF9x4AzGpaYeF8oBIlH3DcexqxvpFDa1L8tHkxaK7LBmR/NxY5zBrZHLHz0V7TxeLFi1KWLZsWXG/fv3cL774YuSCBQsSnn766VqAOXPmtN1yyy3tN954Y/qGDRvsF110kQ3gvffeKy0qKlLMmTMnbenSpWV/+tOfkgEmT57ccfPNN7fv379fee+996bMmzev7kh6xOOPP161YMGCRKlUGkpNTXUZjUa/y+US2e32by5aKBQSpFIpN9xwQ/sRoT1+/PjuTz/99EffyJ944omqhx56KPGf//ynkJuba5dKpaEXXngh8osvvggDmD59eltnZ6d07ty5qXa7XdzZ2SldtGhR9L333vtNnqdCoQh6vd7vTGm6XC6RUqkMAmRkZDgBEhISvD6f74SnPjUaTcDhcHyzv9PpFBsMhsBPXYNj4ZwQyNW2EUitBmRSL5LuGNp3VRKdmU3YpF8TrFqGQvUerhQR1gN7OWqSzElS0+Gk2epCpraiV3QiiEMoujJQZoefgtF+HKlYxKOzJ/H3FUo6CrfwVlYuV+1z07Q8iOqGbpIuXMjXGxcydtxAtF8307G8mIhb+va2nj1DfPT2EsLii+mqyCbPNw7DlanfEcffJzkxkflzb6OsvIIP1n6GurOOfJGWlaNuYYxRzcWlW5iweSMT97RTlNjBZwMlZNn7kBpdQeKYf9Nc9wlFB24ir28OhrYgHcsOITPrMExO7Y0EnUV0dXWxffs2shIPQFBEfMMM1OMSjys1RqFQcOOMK+gcN5qP1n2CtKyU0uwE1kb/lmv3fMbg13fzqtlMybWDeZbNSBuV3KoSETN0H67Oeax69gr6jLiFoZNTUQ+OQmpS0f76IVr/VUD4DX1QpPWmaJ0tFC5fh6ErjHJXKaGB+aSmb8EXEnPQ0h+rPx2jLp4+MToSDS7c7hrs9lKaWlcRDLpAC8JwMUljk+inTEdoCafhawOlZQrqigpY/ufdGKMyGH39LWQM748gFqHJi0WVY8LyWTX27Y24ijsJuzoDefLJNcP6paHRaPxHorhRUVG+/Px8TXFxsfypp56KX7p0aYVUKg3JZLKgIAihRYsWRUdHR3uvv/76To1GExCJRKSnp3uOLJgDOHjwoOL3v/99yjPPPFP57Sjqpk2bdG+++WaZVCoNzZ49O/Waa65pLy0tVWzYsMEwc+bMru3bt6vNZrMrGAwyefLkPu+8805xQkKCb9u2bdq+ffs6f8z/zz//3PDcc89VRkREBO67776EMWPGWCdOnGiZM2dO25FtfvWrX3UCbNy4Ubt8+fLIb4tjgAEDBjhffvnlWJvNJtJqtcGOjg5xdXW1sk+fPu6SkhLlTwVvBEEIhULHlhExbNgw+1NPPRV/9913t9TX18uCwSCRkZH+o12DYzL4X84JgWwvdyJtcCAK+IFKvBl5PBfKJWp1NQ2iQTxx0QpMUdXUbw+RfArG317ZgUbwEAr4UIW1QUhApxyIWHv6pyMFQeD3My9mlSmM3es/Ys2AIVyaH8T6ThDlrywkXriQDV8+yOVj+sHuFrpWl2Ocnt4bRTzNNDe04le/j98nI6fqN8jMOtQjYo5p3/S0VP5w1xwqKytZ9+VGVI11tHQJPBKWheHX47jGVkWfTR+T/WETndoKPhsswZwbTWxSHZrYJ9l3MAeJZSajRw/Gn99O65J81EOj0V2WjFjdO6Nwptm4cSNSiQ1DbDXy2kEQ1BBxUdoJ2QoLC+Om6687fK+sW4ci1Eb+lAmsLbVwff46Mh9fwYsDcyiYOoZF3nUMqtNyRbgL8+XvUV+8hdL/+zUX33IlCVlhmO4cSPurB2l/tRDj9HTUg6J6+Mh7OV4aDxUj3RukW1GD68Jl6I0N7Gi6gBZuIiTSUmNpoKSsGX+oE51SxAjzAMamX86gAbGosSN463E6S7HbS+i2FeCRNCPOg/6jtci6I6nfr6G+tJIPn/kTSk0Sgyb9iqFXjESslGC8Mg3VgEg63y+l7cX96MYnob0ooTd16xhZuHBhzd13350qFotDUqk0+Pjjj9eYzWZvRkaGc+rUqVmCIJCXl2cZO3asPSsryz1v3jzz6tWrI4PBIA8//HDV9+099dRTcT6fT/TII48kAqjVav+yZcsqTCaT78orr8yWy+XBCRMmdPTr18+dnZ3t3rp1q27q1KlZoVCIJ554olokEvHAAw/U3HHHHWkymSxoNptdN998c/sPPT9McnKy+4YbbshUKBTBwYMH2yZOnGg53nOQlZXlmTlzZuvMmTOzVCpVwO/3C3/84x9rtVpt8Of2TU1N9VRWViqXLFlimjt37g+63H2bIUOGOHNzc+3/PV7hr3/9ay0c/Rocj//CsSr008m0adNCq1at+ub3wlf30lncwgZnDc3yKMZIDOQJEsQhsEsEijMfQR5Zh+OFFKav/KDH6yH/7p18KstKGBwoJidtLeFaJQO1b5zxkmq7i6p5/713kAU95OXvxW+qQ3mNFU+nmvqtDzBpeDbCgXa0FyeivyTptPqWmZm5p6SkZEhP2/3+vXE2EgqFePEf80nvtxrRgTGktd5CzLwhJ9zJrKWlhU1bt3Oo8AAEA3QFlTQL4VwgDzH2wAbE+fm4pbB9uBzTBVKMCZ147TJa9o0nKXwa/WPice9uRqSUYJicijIn8oy+MJ2qewPO/vujvb2dJc8/T5/YHYSZy0jZ+hTGUTkYx6ectO1AIMCuXbvYuHEjPr+fYHgaXV8d4JqiLzC6bZCWys48LS9H7memWky/KAd+j5imXYOIibmTsTeOQCYW6HjjEJ4KC9qLE9FdnHjaBdEv+dnxbTxOBzv++hpJmkRKBz+KoOzCpn0QmddB5YY1BMurULqCCCHwi8EtA7sCurQCrXqojxDo0gpo5XpMqkjCFGEkqXRkKSVECe0IzkJ8vk6EkBhvvYG6Qh3WOjlSWTL9x01jxIwLUGpkBN1+uj8ox7mvDXm6gbBrMs9YrvrR7o2CgoLqgQMH/qjQ66WXn6OgoCBi4MCByd///JyIIKeNTKazyUeK8N/ouEqCZlAUsngNwuc1xHblYYsroyFRg7e2FrnZ/NMGj5OvqzoZrQ9CRwBNpAVV80AUQ09FMsfxMSQ7mejbb2PJy8vYmZtLdrES0fslyGdaiRv5EOu2/5VJA7KwfVmLWCVBMyruTLvc81gb4aN5BLxgP9iIpbwLpwV0RimG6dNQXffX0+7S1u27McVvxe9SkN1yPfqLk06qzW9UVBRXT5uKe+Ll7N+/n+2792ForafdC6+kD0DVZwSDOyoZsnUL2i129o/Ror7ER8LotdjbNvPRngkM7j8DU4eYzndLUBS0YbwqDbG+t5316SQUCvH6qnWIBTeGhCqkjdlIfOHoL+iZF22xWExeXh79+/fnk08+obCwkMRhJlaP/hPWr/K5snorw9+oYKhCzsFBRt7IDTA5LkjimK+x1s3l9T9PYPSM28m6ue/hBZ9f1uJvdWKckXHO5KCeT2xb+iZmeRqVuY8hUnUSaLgE3WuPE9fsIxXwKaSE9DrEEimCL4DgdCPYHfx3/RMA3QoZRTFQbnZQleHj08hy3vcfLkQgFgQuDM9kpE5CZFINKQlVhFwyWgq72L+xgoIv15Ax5GIuuPEyjNdkIk8x0PWfclqeyyf82izkKb0pF72c35wTAlmRGUbM/KF4620IEhHSaPU37VIFmRjnB8nYgEBcCM+hwh4VyBaXj0aLmzCdB5m8HUHqR25PQxpzdixkiTeF8cC9d/D0y29RnA0x9VriV+5BMd1CzKiHWLfjL0zIyKL7w0oQC2hGxJ5pl3uUxrJdHNAfwO+W48pV4+yfiM0eTqBUTe6/1pFraUdz+7OnzR+7083XO/7NgJxW9PuvRKrXoB0T3yO2FQoFw4YNY9iwYdhsNr7O38+2/ELcXS3sNxjYP2kykmCQ6MZ6VK+10NGvHe3IbhIufp+K+i/Y13g5o7KvQijvpvmZPegvT0Y9POYXOWXqqaig4rlnEDndhA/IJeLOOxBEpy5Xv8Xq5o/Lt5HUVEEf0wHEMh9xdVejG5PU45VwNBoNM2bMIDc3l08++QR1WwFxI01sHHcP/9xby/jKnYzblU//bUFKsjVsv9zB0GQnyRNXsHvT1+R/dB2X3jkTfZQKy7oq/G1Owq7PRhqp6lE/e/lxqvJ3o6lQ0jz0NYK6epq39KO7FZxDx1Oo1xEdl0R4fDwajQa1Wo1Go0Gr1aJTqxFZrXhranGXlRHcuZecvXvIW18H66FNqSc/ZiAtA+KwD1HSLVTzdPUBAsEAA1UqLjHKiBnaQtTgFizVLdQd2s/Suz8lJWMIo2+eiumOHDrfKqLt5f1ox8SjG5/UW1ayl/OWc0IgAwhSEXLzD99YFVlhiETJhEIgC3fiLdoLk6b02LjlrYergoi8NnSqw7npYVHDzqqcXqVCzv/NvYXXVn9KdWgHdouGrBVbUUzvJGb0Q3y67R4uNQ+h+4MKQp4Amgvjzyr/T4aCGhvN3aloNR3IVTZ0qmbiJEFciRp2x49AeGMbw4d+jHTIpFPuSyAYYuFLqxiRXEDApcTUOgnDDWmn5AtEq9Uy7sJRjLtwFE6PlzXbDrG1oARHRzP2OBn18YejkvIdDuIjC4jMqkEb/zb5VZ8TDExiuP5SutdU4NjZhH5iyvnScvaHNB+AoB9icwEIOS2UPnwv67sktERHgxGiDxxgzEOPkf3gqZltKGyw8OvXvibdW4ZEHMCQVI2oNRmZOwnd6J55eToaqamp3H777RQWFrJ582ZUjbsZl2nAM+Iq7q+cTM7+LUyt3Erm4hAVA7V0X+UgbmQ1zrZnWLV4B5mZMxh8/WBsq8po/Uc+himpqIZEnZ/3yVmEw2Zjx4uryewrxhq7i5qqHBp82SijQySk98Pn9dFmsVC6fTvB4A9TORUKBUajEaPRSMRVk4i54zdEicX49+Tj+XwDF+39GmnlHvxrRBSFm8nrNwHJkHDaIxx86DhAl7WIYWoPw5KspKVY8Vhb6Cjay/KHthBhGMKISaPQd+ixbazHXdyJcXoGsgTtGThTvfRyajlnBPKPIYgEjCPMVNrCUWltdBSU0ZPF10pb7AiEcNu60Sd0IfKq0Wf068ERegZBELhl2uVsN8ezbs0q9svH0e/tTciubid27NN8+tWvGZ8wHsu6agIWL/pJKedFYwBzxhg0y1RY/RYsfg/tHghFNhA+/D9k99/EVtvFRC96jLS3T61ADoVC/GXFHqICWzAYWgg/NBNFcgSK7FOfiqOSy/jVRTn86qIc2u0ePjvYzPqCSupqa+jrqcHfPpTq3UOIjzlIbEIR4uRlfF39MQrrVAZYLqD934XIknXoLk5EnnZ+CeXd22/CK+4iwqFGsMqodYFliJxEhYMom5zWqiSaY/uzt+QQsg8/JXXKZT06vtPr54639qIU/GRJO8gwFiNVuYgtmoH+wiREylP7CBaJRAwYMIB+/fpRVFTEjh07qKvexzARqMem897oXESFJUws3ETKg04ax6kQT/SQNmU97eX7ePvlyYwYlEe0K4qulWW4DnVgnNqbnnOq2FvbxXvPLGZidDTtWUuwdUYj+TJI7m+SmDLu1u9sGwwGcbvdOBwO7HY7NpsNq9VKd3c3XV1dNDc3U1RUxJF1RiaTiZSrp5J4z52YLFaav9xMwqbN9N+4EjZCEIGRBhOuhEEEsqPpyhRRGFZApKyclOFtxAzdhLVmDxu++BIs4xieHofBKqb1+X2oBkehvzSp977o5bzinBfIAJpUI5Itsai01ZRaDGT2oO2yFjvhUj/BYBCN0YLSmoLigrO3BFJebj8So8L596vLyJdezMA3tyG9uoGEcS+zYXsdo6KuhW2N+NqchF2bdc5XNYiKjqAzPJY+FhPSEKCGQKAftTv74xy7gLSB+WwqjiJmzyeoB19+yvx44pNiKvbtJDfnICGvAmPjxRjvTjvtYjNCI+e64UlcNzwJi9PHp4eaWVtQj7DnK+QNSTQ1ZBKTWExsfAkS81Lym95DWnsp2fWX433FijRajWZULKqcSATpuZ93WrwxCsNgP85YJ0KUG79fimAX42yUoYp0kTZ0H+wNUJaZg/rt5T0ukBd9Vkptp5PHRkop3etDE1OKqNuEwtoH7ejTtyZAJBLRt29f+vbtS0dHB0VFRZSUlOCsryGULGdj8mUIfoGY6mqy/1aE60Ir+tFdGMyvU1Synm0VkxmT1A/KRDQ/swft2Hg0o+IQyc7he6SzEjY8BrGDILofqCNBJAWRGDRRIFMRCoVO+f9ws8XNusIm1uxrpKO0kNsR05nzJsqgCMlyL+r5k5iS95sf7CcSiVCpVKhUKiIjj97EzOfz0dzcTE1NDRUVFezevZsdO3YAhwVz7N2/xSWT4ahvxVZWA1VVhDXWEVu6j4RAgIHBIN1xGTgH63H1b0QRW0+SeR8BXwHF9dG4rKPIFA0iem8IZ0ErmpGxaC+IPyMVnnrppac5LQI5MzNTBPwTGAh4gN+UlJSU95R9aYwapT2JgOkAtdKePaSyVhuZBhA5fEi13Uiq8s56URkXG8Pv7rqD119/k3zJhWR+cAD1JcUkXLiO3ftLSZTOJqlSoGXxHowzMlBmnfkFhyeKMULFyPvzCPmD+Dvd+FqcuEs6SdoNbcXXIen7Oo2DUjj47NMMe+PUCOSP9zfx702lzDZUEB5eT3jFZLQ5CUijz2yeul4l5eohCVw9JAHr9UNYX9TK1q0FOPdKaajJJiq2kriYImTDV1Bk+w/BqqEkdkzEt9JB90eVKPuGoxwYiSLNeM7ONlSr8vBXBKESxCIvotYOlBYdYuVgFIlKYtJfIDX3IB07UmlWSbA1NKONi/55w8dAu93Da9uq+dXQeFoq1pMS2YTCYMdUeC3GseZTHj3+McLDwxk9ejSjR4/G7XZTX19PbW3t4R8ZNKYlInd7SHvrEOoBNYQPqCcs80UOlMXhcE8gV9WP0KcB7Nsa0Y1LRD0s+pystV5duYFS5WZE1ZuRHwDBBR6nFGe3gmCHhKBEzmrjBAwDLuf+CVnEGnq2M6nbF+C5L8t4cXMlgWCIvpEypgcP4c6pJ0rXjndlONW3Xc7vjiKOjxWpVEpCQgIJCQmMHj0av99PQ0MDVVVV1NXVUV5ejt1uP7yxGuiXfPjnCKEQIn8AhceDcpsBgzUGjbGVYGY36qRWDOYVdPtX0dSUgqFtDIlbBmPdXI87MUhwpAGV2YheYUAn051XM1O9/DI4XU/oqYCipKQkLzMzcwSwCLiyp4wLEhEStxlBgEDEz5bXOy5KW2xcZPSjEXUiCCFU0owetX+q0Ol0/Pa3t7Ju3Tr2AsadMSQnb8M0sIL2pkeo+XoqFygvoeO1g6iGRGGYnIJIce5OKAgSEVKTCqlJhap/BKGMMPzLvXSmr8BkrqN0l5JslwetsmenAJssLv68+gDjda3ExRdBUIy+bgz6a0++bFdPolNImZobx9TcODz+y1hfUM3u9Z/T0JBFeEQD8VEH0Q3YSktwKzWNJjSNFxC/bwyKva24FT5smSGUgyKJN6egkZ07TUfGxwyjvr2ZTr8Hv12BKjyMzIEm0sPCEdx+PBELOMRNJETup8o7gp0vv8H4B+f3yNgfFTQSCIa4JD7E5gMWklMLENxqVG1D0Iw6OxbLKhQK0tLSSEs7XIfZ5XJRXFzMgQMHOKRUELLlYtjURmJsPsa0BsIyX6ayzkBp1YUk2y4ido2P5g0liMeZSByahbiHS2yeSg5UxeNoikcd1UIwyYNYGgICqHAT8Itpa4yn/75ytOufZkbVr1l3zxj0yp4JjoRCIX73Tj6fHmxhxuB4bh+byp53XqIuKUBicgH+4kQ+GxrJU5f+X4+MdwSJREJSUhJJSf8r++nz+bBarVitVhwOB16vF7/fj9frxe124/Z4aemw0N7UTKfTQkhIhzbptEdXAAAgAElEQVSQNniIkNWgi6nHEFeDL+EVygKvQnsKms6ByD5Oo8ahYYu6kK8j9qLVaUmOTGZI/BDyYvNI0CacV6J5x44d6r/97W/xR5p75OfnKx944IEksVgcSkhI8CxevLhaLBbz4osvRn744YcRgiBw0003Nc+cObPLbreL7rzzTrPdbpdIJJLQokWLquLj433ftu90OoW77rorpaurS6JSqQLPPPNMtclk8u/atUv1xBNPJIRCIcLCwnxLliypkslkoT/+8Y+J5eXlKqlUGnr88cer09PTPWVlZfK//vWvSX6/X5BKpcElS5ZURkREBADKysrkd955Z+pnn312CKCyslI2f/58cygUIjo62vv000/XqNXqowqsP//5zwlms9l96623tn378yMNRF566aXKI589+OCDcSkpKe5vt5X+NosWLYoePXq0dcCAAa533nkn/JZbbjlqCb/vj7lu3Trdv/71r9hQKERWVpbzySefrLVareK7777b7HA4xH6/X7jvvvvqRo4c6TjWa3q6FNFo4BOAkpKSHZmZmT1e41KlycYCiCL8hHw+BOnJP8gsLh8tVg/GcDc69eHrHpE6+qTtni6kUilXXHEFaWlpfPjBB+zrmkzWxl0YR1agvOwdvtyxHbPvelL3gKe8G+PMDBSpZ2/6yPEQPiCCyh0mDA0XIiR/yn7zKDa9u5zJN9/So+Ms+qwUr89HgqiKKFMl+uYR6IemIdadvVOMcomYCYNTmTA4FbvdzscbtnHgwD5klc1ER5djMlUSiF9JVXA11i4T1q4ErHVxBIoikSCiW2XFGx8iOcXMQPNA0o3p6OX6s/LLbtC00ZhXl+NrsIOSw/NXFT48da2IVFKCBwJoBg8jOnkvNW3DaDuQ32Njf7CvkaxoLa1VxRi1TrSx7YRVXknYuMyz9mVUqVSSm5tLbm4uDoeDQ4cOUVhYyP6aSKRdLuKiioiKLUeW+B863euorzej77iQsDX9qPp4P7v6lBA7IIUxCWNI0p3e2uvHi17cjrV8CuXVcpxyF0FlJ1KZC6XCTkR4LVHx5egiuigsHMeM+jUsXKXjmeuH9cjYr2yp4tODLfx5Yha3XZjK9i8+o6SzncGDt4HLwIfdTv466zmkolM/WymVSgkPDyc8/Oc7wwaDQdrb2zlQWsmhgyW0NGloakiHJtDp2oiIqMEY1ogoaiVOAL+UXLuRDKcBp1WCq9VC1e7tFHq24pZ60URoiUlOwpyUQVpUOvHaeKTis3uG9mgsXrw4at26deEKheIbAfncc8/Fzpkzp2nixImW22+/3bx27Vr9iBEjHCtWrDB9/PHHh9xutzBhwoR+06dP73rttdcisrOznffff3/T66+/Hv78889HP/7443XfHuOVV14xpaWluf70pz81vvvuu8bFixfHPProo3ULFixI/sc//lGRnp7uefXVVyNqampkRUVFSq/XK1qzZk3x9u3b1Y888kj8smXLKv7yl78k3XPPPQ15eXmOVatWGUpLSxURERGOt956K2z58uVRFovlm5P/6KOPxs+cObPt2muv7Xz11Vcjnn/++ag//vGPTd/2qbW1VXLPPfeY6+vr5Waz2U0PcKQbX1VVlWz16tUR3xfIRxvTarWKnnnmmYTly5eXREZG+hcvXhzV3t4uWbp0qWnYsGHWuXPnthYXF8vnzZuXsnbt2qJj9eV0PaV1wLe7sAQyMzMlJSUl/p4aINKcQWNAQKoP4G9rQxp78hGaIxUspF4b+rBuJK4wwob1PWm7p5s+ffqQnJzMl59/Tn6+CNnePvRN2UTCmCq6mxaxeW8uuV3XEXj5AOq8GPSXm8+LuqdpV6ZQteQiSP4EQ0Y3ns/eJzTr5h4TcnWdTlbnN3BjopNwUSViiR9NTR7GP54794hGo+GaKZcSnDSetrY2qqprKKmuw1Gfj16yF314A4lpXwNf4/fKcFqj0VgjsLSF01wdpNlTw1pPEy5xO+gE5HFG9Ilmokxm4rTxDIoahE724+21TzWyeC2mO3PwNTnwNtgQycRIIpRIYzUggGtfG65PLsUxfCeRxnJaI8Lw2x1INCeXHlPd7mBfXTd/vCSFsm2bSIvORwgJqBpGob3p3KhHrlarGTp0KEOHDsVut1NeXk5lZSUlxRWIpUWYTFWEpZRDWiktPjmdnbHoOuNoXuXldU8xTlk3uqgwkjOzGWDOISMuA6nk7BE/cYmD2Wh8lxCgE6vQSxIJFyKRuwy0FYSoLS0ldtTf6Zv+JfnuyRjzV7NjaAIjMo6tI+aP0e308rfPShifbeLWC1IoLy3hs6+2kJ1WgFxppWh9JlfdNo9odc+k+vQkIpEIk8nExSYTF48eARyOQJfUNlNY1UhNVQOlO2uRO8uIMNRhCG9HF+FDF1mNEOv9ji2/X4rHo8Jt0dC0U0uVXYPXosRl0xD0SYhLNnLDnQ8cn4O7Xgpn39s9uU4fcn7VzrDbjhrtPEJSUpJnyZIlFX/4wx++qTGbmZnp7O7uFgeDQZxOp1gqlYYiIyP9a9euPSiVSqmurpZJpdKgSCRi7ty5rX7/YTnU2Ngo02q1ge+PkZ+fr7n11lubAS677DLr0qVLY0tLS+U6nc7/0ksvRVVWVipHjx7dnZWV5XnjjTciR48ebQHIy8tzzJs3T+10OoWuri7pF198YVi0aFF8dna244EHHqgH0Ov1gXfffbfk4osv7n9kvJqaGuWll15aAzB8+HD7I488kvB9n+x2u+iuu+5q3LBhw3EXxd64caP25ZdfjpZIJMGmpib5JZdc0jl//vzmu+66K3nSpEmdn376qbG2tlb5xBNPxNx///3fCPOjjbl9+3ZNSkqKc+HChfGNjY3yq666qt1kMvlvv/32FrlcHgTw+/2CTCY7rs54p0sgW4Fv14ER9aQ4BtBnRRLYq0am8uCprewRgVzbebhNucvaiSbRgtgWi+QMdRA6WVQqFVOuvJJRF1zA9o0b2bdfS1h3OclJ+9BM2sah+hI0JRfRZ9skugsaib6mH8rMczc3GcAYpeZraTwiWyyGyBbcHh3lrXbSo3qmJNELmyoQCwLarlJi+5Ugt5jRJZjOyYVLIpGIqKgooqKiGDF8GDD9m7+1WWo5VPQRrsYPUKgbSUqp/eZvAY8Gu0OP3aXF5dTh6pTir2qh0dpOq2cLe7WvMu/xZWfgiP6HIBKQxWmQxf0wNUSVa8JQOJQGt4FwfRNFxjQqvtpJ5oRxJzXmxpLDnVGzFDa+CnoJi6tD05aLemSfc/LlU6PRkJOTQ05ODnC4a5/D4cBma6Op+kOaWz4k3FBPVNThDrk+pwGbLYxuu5HmfW1UbCnE75Mh8bkREUQsEaHSqbj59nlo1WemRFjqkCzuN8/HubMZT4UFf6uTkO+/AUAJ+OW57NpzG+F5z5MWuYGy0Hg2v7mMEQ/df1Ljvvt1HW5fkHsvzaS+vp7lb7+DSd9AeFwx3qKRtFyexNyki3vgCE8PUqmUfqkJ9Ev9rn6ye/zUdjgpbejg4P79aGoL6S8OEKaT4Vd0YRHX4pc1oNTYMEQ3I5b8TxP63HI6q7NP96GcMNOmTeuuqqr6jjgwm82ep556KnHp0qUxarU6MGbMGBscPl8vvPBC5NKlS+NmzJjRcmR7iUTC1VdfnVFVVaV86aWXSr8/hsPhEOv1+gCAVqsNOBwOcXt7u6SoqEjz4IMP1qalpXlmzZqVtn79eqfD4RDrdLpvTqhIJAq1trZKa2trFaNHj7b+5S9/abjnnnuS3nrrrfBZs2Z1TJ48+QdtpNPS0pwff/yx4cYbb+z45JNPDG63+wcLDVJSUrwpKSne4xXIR4JULS0tsnXr1h30eDyiCy64YMD8+fObj2xz9913N1VUVCi/LY5/bMzOzk7Jvn37dB988MFBjUYTvPrqq7OGDRtmz8zM9AA0NTVJ5s+fn3LffffVchycLoG8FZgCvPffHOQDPT2A1KQm5NEjVTqxFhWgGXHyqRCN3W4kBPD73UjV3dCS0wOenlnCwsKYNG0al06ZQvHu3Rzc8CmeiHyik0uQxK9gb/cGFLUjCb3uois8SP9bxiAznrsNAkx5MdirB0DKp9REpbE1v5T0yweftF23L8AH+Q1MzVAgdDSgUltR75tE7N1X9YDXZxeR+kTGjLgDRtwBgNfbSUX5BioObkDkrkSv6kYfVQmS/0WIQiHw++R0VZxdudhHwzgxBfXafvgidxOsEFP+1faTFsj5dd1E6xQ0VZcRHVGDROFDU3gBMdPOjTUMP4dYLEan06HT6YiL+z2M+j2hUIDOzr1U7H4Du7WYSH0nYVHfpB7icSpwWvW4LTo8Vg3eNg1FB/YwbMTYM3YcsnAVsomH79FQKETIEyBg8eCptGD9spYRruHsq9hNVMZOLOXFtOqzObRvP31yBpzQeIFgiNe31zDcHEa42M0rr72JJGglK2svgjWetwUH/xx+cgL8bEEjl9AnVkefWB0MNXNk2ZG9qZv6dUXEVbqR+yX4Qj4aXBW0BPdhU1UgNliQGzwIHSewXmTYbR0/F+09XSxatChh2bJlxf369XO/+OKLkQsWLEh4+umnawHmzJnTdsstt7TfeOON6Rs2bLBfdNFFNoD33nuvtKioSDFnzpy0pUuXlv3pT39KBpg8eXKHWq0O2Gw2EYDNZhOr1epAeHh4ICYmxt2nTx83wMiRIy0FBQUqtVodsNvt37yJh0IhwWQy+ZRKZfDIWBdddJFl69atOuCo52vBggX1//d//5e4Zs2aiFGjRnXr9Xr/ypUrjW+//bYJ4P77768bMmSI86fOgUKhCPp8vu9M2TqdTvGRVJSUlBSXVCpFKpUGjze6+22MRqM/MzPTERMT4wfIycmx7d+/X5WZmenZv3+/8t57702ZN29e3dixY+3HY/d0CeTVwCWZmZnbAAHo2URQDkeJcOmR6+toLiihJ5bANFlcxCiDKFVWBFEQsc/UA1bPDqRSKf3z8uifl0fA4aDk3WWUt32AuE8LkgEfUh5Yh7c9Dcdr2+iwmYi9YhTDBuaelXmmP0X60Gh2bB+AkPoJ8tQgzg2roAcE8raKdhzeAEmWQ+ijKhD8cgRr4BfRVUomCyO7z3Sy+/wvyhwMBukoLaP14D7cnWUEaQOZnchQTxZdPDVIwpXogkOwyrag0XTSXviTz/xjIr+2m0HxGioqKuiXXorEFY5TnnxORo+PFUEQEx4+lPDLhgIQ9ARo2bCHrqJd+JQNuDRVyNVVhEzlCKIQoSBEqm48w17/D0EQEBQSRAoJ0ig1iswwWl8oIL35V9Qn70KfUYa9IoFPV646YYG8pbydhm4X941PZvny5QS9XoamFBKUOSj6+jLu+u30c2oR7ImgiTGQ9es8QoEQnspunAVtyA8pSXZmARDygrvbg3rsuZGK9GNoNBr/kShuVFSULz8/X1NcXCx/6qmn4pcuXVohlUpDMpksKAhCaNGiRdHR0dHe66+/vlOj0QREIhHp6emeIwv+AKxWq3j9+vWG4cOHOz/99FPdwIEDbSkpKR6XyyUuKyuTp6ene/Lz87XTp09vT0pK8mzYsMEwc+bMru3bt6vNZrNLpVKF4uLi3Js3b9ZceOGF9l27dmnT0tJcP+b/+vXrdfPnz6/PysryPPfcc1F5eXnW6dOnd02fPr3rWM9Bdna2q7y8XNXY2CiNjY31uVwuoaCgQHPrrbe2NDQ0/OR0vEgkIhQKHZPgyM3NdT766KPKtrY2icFg8BcWFqqvu+66toMHDyp+//vfpzzzzDOVOTk5P3qsP8ZpEcglJSVBYM6pHifkNiCLLKGutZVBPWCvsdtNvDqEWnX4ftCHnR/Rn+8jVqvp8+s7yA78FuumTRxcv4SWhDYUSVX4oorRhgQ6Kt9n1ZYoSpokuFRppKUOol+fvmSlJ6Hu4coQPYnaIMct9EXul6GL6sS/w4Ld40dzku19Py1sQSsXY+tqID2rBlXTEPrcfE0PeX3uIRKJiMzKJDLrf4I45A/COVIeLiJ+LPWhvxNmaMAuCSMUCCCcYEWGDruH2k4n01MEbCIXush2tNUTSLv23Fng2xOI5GJiLh9G9KVD8VR049jdgmtPO8GgB6+qCYe0k+ibzr6mS0eQhCkwXpFK8E0vwephRKXtxHKwhFbNYKorKkhOTT1umxuKW1FKBdoPbMJmsxEf2IM4oRxx8RU4R+sZGj30FBzJ2YkgFlCkG1GkGwkFQ/ga7Hiqrfga7chaHKjFx53WelaxcOHCmrvvvjtVLBaHpFJp8PHHH68xm83ejIwM59SpU7MEQSAvL88yduxYe1ZWlnvevHnm1atXRwaDQR5++OGq79ubPXt22+9+97vkq666KlMqlYb+/ve/V8rl8tDChQur582blxIKhejfv7990qRJlkAgwNatW3VTp07NCoVCPPHEE9UAjz76aPXChQsT//a3vwkxMTGeBx544KgVIgDS0tLc9957b4pUKg2ZzWbXk08+eVzpCQB6vT44b968ut/85jdpcrk86Pf7Rddcc01renq65+cEsslk8vl8PuGBBx6IW7hwYcNPbRsVFeWfO3du/axZs9IBxo8f39W/f3/3rFmzUn0+n+iRRx5JBFCr1f5ly5ZVHKv/wpEuO2cT06ZNC61ateq491v30j3I0v5D/Xv9mfXCByftx+XPbiZLaCLH8CYJcaXkxH5IeJ/zUyR/H39HB52r36Kw7AvazKCIaUKj7QTA7VLT1RFLd1sE9lYNgy6bwaXjxn9n/8zMzD0lJSU9Xq3kRO6NLe+W4gn9AZe2htY3kjAvXMpFmSc+G+APBBn22JeMM3kx+98jK3sL0i8mcuFj/zhhm78kTtW9ASf+7PA2Odi1cwrtPg9Fu/K48ze3ocs8sf/1L4tamL1sNwsGuvF1ryQtcyfaLfcwbMHcE7J3PhH0BvBWW/FUWvB3uTFelfaDih5n07MjFArR/u9CuhpLqBt1H0UFBqytlxJvMnHTPfcctw/j/raRAaI6DNYKUpUBYvuuQRYw8FnhOP58330oJT1ba/l842j3RkFBQfXAgQN/VOj10svPUVBQEDFw4MDk739+dtYaOkEkwuHECl8PzVA1WdwM11nRqLuR2KIxZBx/xOBcRRIejuk3dzOOuwn5fbg2vsuBLfvoMLoQmyqIjqkmJr6MYFCE1nNKtE6PEZdlpHJzJkrTQewRWg7Udp6UQC6o76bT4SXeVkZkYg0itwFT1A8WHfdyDiGNVqFwpqAO245HpaJqdyEDT1Ag59d2IxYJWFrqSI6tQuqIxm06f9KzTgaRTIwiw4giw3imXTkmBEFAMzIWz7JufB3hJMQ76dhTSaVMhsViQa8/9ihnbYcTR0czBnkF/fv2JdTwLCidBLbO5Yob+vaK4156Ocs4rxImjdrDiy0khpMvJeTw+LG4fMi9NjTqbrBGI5acv/mDP4UgkaIafwPDF/yNiXf8nbF9/oK56C+EfX0X4QdvwKw9u1cbx6QZcHYeboQgTRRj3b31pOztqTmccuOyt2I0NiKu60vmNXeetJ+9nDkEQUCtyEQkcyOTu6guOnjCtgrquxkQIcZhb0Eb3oameQgDfnVJD3rby+lEkRGGSCtF25KHJtxFc3QlCAL7th7fc2RjSQsjpDWotTrCy7dh6NuGtnEkxTIHQ1NGnSLve+mllxPlvIogG03pWACx9uS76TVZDudzi3zdSOVOArZzI+JxyhFLUPS/gNT+Fxz+PRgE0dn9nqVQSwlIswmFBBQRVgwbNwOzT9jenpou+mq9aPRNiMQBXNVihKg+PedwL2cEfXhfGgOg1nTRXms9YTvlrXYuNLowyJoRhBCe5mQM+t7nx7mKIBZQ5UYRs2ssVXyELMOHfl8r+/LzuXDChGNeuLxvz9cYRS4mjBpL+e7fokUgWHwFV8/95eQd99LLucTZrWyOE118PMGgGKnGQ9Dn+/kdfoLG7sNNYaSyw9HCkOfM1Oo86znLxfERwtOiwR6FRteBwmuh1XpiTX9CoRB7a7vJFTUQEVGL4FWTqA/COVbdo5cfoos5XJlAo+7CFTyxMu1Or58mixtD0EKYoQGRT4lDOLmmI72ceVQDIpC5I/B3GDHrg+ja6ujy+aivrz+m/d1uN8qOUnyqSPjoNTRZdoz147BKHYTFnN0dB3vp5ZfKuaFujhFNjIaAW4NE5cLV3PTzO/wEjd0uJASQqw6XzZOIz48WzL9UTEk6hK4UtNp2vAo5Bxp+UBf9mKjvctFm86DydhBmbIKGPmRNvLKHve3lTKCKj0LqjESn6sKtUBEKHv9MVGWbA4CQtQWjsQlVZx8SJuT2tKu9nGaksRoEhRhZZya6MCfVYdWI/X7yd+48pv2/3LQFKX5SI+Kol2xBEEBVPZ4hU34Zi7576eVc5LwSyAqNlIBbh1ThwFZT+fM7/ASNFjdawY1SeXiqNSz2l7NA73zElKTF15GGVOolFKVmf23nCdnZW9uFhAAyVTsSqQdPgwohbWzPOtvLGUGkkiJzJqLRWHCrNfgaG4/bRkWbHSU+xEITMqUTcWsWGYPO7kWsvfw8gkhAnmIg3DoIkThE4wA/8fX1FB46hO9nZiudTid7d++iOmBk8Pa1iIZ6ULcOxOoSEzZoxGk6gl566eV4Oa8EsiAIBD0aJDIXHZU/6NR4XDR1u0iRuw4LZLeO2P7nfhe9XzIGkwq7zQyANNpP04GSn9nj6OTXdpMuakdvPNwRU+Wygurcbsndy/9QitKQqroJKkR0Hio67v0r2xyYxDYMhsP3h6s19pxrrtPL0ZGn6tF39ycUhBSdkvDWerzBICUlP/0s2bFjBwGflzaLDLdnM2JlAGPdJRhT3L2pWecRO3bsUM+YMeObQvD5+fnKK664Iuuqq67KvPvuu5MDgcOVjl588cXIyZMnZ0+ZMiX7/fffNwLY7XbRrFmzUqdPn555zTXXZNTX1/+g0oDT6RRmz56dOm3atMwbbrghrbW1VQLwj3/8w3TJJZf0nTFjRuaMGTMyi4uL5T+27a5du1TTpk3LvOqqqzJnz56d4nK5vrkBv+//nj17VFOmTMmeNm1a5n333ZdwxP9v8+WXX2qvvPLKrOnTp2fOnj07xeFwfEdTvv766+EPPvjgdzq+3HbbbSkbN2780ZzVP//5zwk1NTWyjo4O8TvvvHPUL1e/38/s2bNTPvnkE92RzxYsWBB/5ZVXZk2ePDn73//+dwRAR0eHeMiQIQOPnJvnn3/+uMoJnVcCGSDoVSGRemitrTkpO602D9GCHYXShuCIRJfYmyd2LiOIBKT6dEIhAanehrrk2KZGv09Js40+0k6MhmawRTF0yNnfKa6XY0ery0QQQKmyUbb/+CtZVLY7SFG40WnbEHt0+DS/zMo35yOKVAPigJJAZxjpygBlYc2onE727t79o/s4nU527NiBQxXNNVU7sQ4XwKVB0p5B4sTe1JvzhcWLF0ctWLAgyev1fiM4n3vuudg5c+Y0rV69usTn8wlr167Vt7W1SVasWGFatWpV8VtvvVXy7LPPJgSDQV577bWI7Oxs58qVK0smTZrU8fzzz0d/f4xXXnnFlJaW5lq1alXJlClTOhYvXhwDUFRUpH788cerVqxYUbJixYqSrKwsz9G2DQaDLFiwIPnJJ5+sXr16dcno0aOtNTU1sh/zf8GCBUn3339/7apVq0o0Gk3g3Xff/YFYffTRR5NefPHF8pUrV5YkJiZ6li1bFnGy5/Kxxx6rS0r6f/bOPDyKMmv7d1V19b5l6U4nZN86YREQHWRTQMWFBLIgjMgqI5NxEB2QUZzXKIKCYkY2FRwYAQUUswgqLzgsjowK+GEGEZOGkIUle3d636vq+6NJXiAJBAUinfpdl9ekK0/Vc7omdN91nvPcJ857/Phx6f79+9vVtlZUVIgmTJiQZjAY2jZ3HDhwQHH27FnRjh07ygsLC8s3b96sM5lMVGlpqfTee+81td6bP//5z43XEktQuVgAAOeTQyDwoaml/lddx+jwIIoLZJC52iTQMt6j8lZHE6eB0xkKqcyMcGsVfAwLmrq2Z8RTjTb0hQMqVSP8lYMgvXvIDYqWpztQaJKBFkAsseFMRbtmVlelssmOfqQdSoUREksSdPem3YAoeboDQYQUpFQAoTEJVMr/ww96IXJKK3BcKkVDQwMiIiLanfPNN9/A6/Wi3C7H1PNH0JDqheLMcLhghSh2dDe8i+BmW9m2sJ2nd/5qkXYx45LGNT+a/qjxSmPi4uI8a9asOf3ss88mtB7T6/VOs9lMsSwLp9NJ0TTNaTQa/65du07QNI3q6mohTdMsSZKYM2dOo98f2BhcW1srVCgU7dK1paWl8ieeeKIeAB544AHr+vXrowDAYDBI3333XZ3JZKKHDx9umT9/fn1HY0+ePClSKpX+9957L6KyslIyfPhwc1pamqez+Jubm4XDhg1zAMAdd9xh37t3r3ry5MmX1CZ++OGHBp1O5wcAhmEIkUjU5Y0bmzdvDjt48KDK7XaTtbW1ounTp9dPmzbNOGHCBP3ixYtr1q5dq6usrJRu2LAhfNasWW2NYOx2O/naa69Vv/vuu20PEXfddZe9f//+TiBQScAwDEHTNPfjjz/KDAaDLDc3Vx8SEuJ75ZVXzkZFRXXZwSHoMsgcG8i4+7hrbrt9CUa7F0rSBqHQw1u8BQnaOCVg6wWpzAxSxKHG6Lym800OLyx2FyTKBpCUH746ARDzuxsULU93IAsP7DWQiG2weK7tM4TjOFQ32yFHM8QyK8iWOMTyNaZBA0EQoHvJobD3BUFycMZTiD1fAwHH4bvvvms33mKx4PDhw0hN74PbfzoEbz8GJAWENA6FNNrRDe+A50aRk5Njpmn6krbECQkJnoKCgtj77ruvj8lkEtxzzz02AKBpGmvXrtVMnjw5/cEHH2wT3gKBABMnTkwtKirSPvTQQy2Xz+FwOCiVSsUAgPqIekIAACAASURBVEKhYBwOBwUA999/v2nZsmVnPvroo5OlpaXyzz//XNXR2ObmZkFZWZl85syZjdu2bTt55MgR5f79+xWdxR8ZGen56quv5ACwf/9+tcvlarcc1io2S0pK1EePHlVMnjz5ig8SF8EBgN1upz744IOKd999t2Ljxo2XZM3z8vLqBwwYYLtYHAPAgAEDXL17977EhkoikXChoaGM1+sl5s6dG5+VldWkUCjY5ORk95w5c84XFRUZ7r33XvOLL74Y08X4AARhBpkkA6sAnPCXt9DmOA5GuxdyVeBv1GeXXpfYeLqX8Bg5qo7EQhJxHD65Aqeb7EjWdr3t4skGG7SEFQpl4N9rpN8KyPkOacGEWBsO6oQCMpENNkpzTec2WD0Q+BxQhAVW8fzGKBCCX9+0iOe3Ax0lR2hNP1gA9COk+CnBj4SaGhwXCHD33XcjNPT/VqH37dsHjuMQFtcHD1UvQ/04QOyQQWxJgmY8/51yI3g0/VHj1bK9N4uCgoKYTZs2lfft29e9bt06TX5+fszy5cvPAEBeXl7TzJkzm6dOnZpy4MAB+6hRo2wAsH379pNlZWXivLy85PXr159auHBhPABkZGQYZTIZY7PZSACw2WyUTCZjWJZFXl5eo1qtZgDg7rvvtpw4cULa0diwsDAmMjLS3Souhw4dajl27Jh09OjRto7iX7ZsWdUrr7wS+8477xADBw600zTNrV27VrN3795QAFixYkVldHS0b/Xq1dp9+/aFbty48ZREIrlEeInFYtbr9V6SiHW5XKREImEBIDU11QkAMTExXp/P96sStiaTicrLy0saNGiQbf78+fUAMHLkSKtUKmUBYNy4cea1a9dGXcs1gy6DLJYElrkIyS9/azaPH16GhVAc+LthGdF1iY2ne1GGS+C2RYMgOJA6AWqqrs2l4FSDDXFohlLRDDhD0Lv3Nf1b47kFIEUC0E4tpBIHPCIpuA42pnTG2RYnQgln4AGKI+BxKK9+Es8thTBKBqE3FH67CH1IDvtS3Ug79iMoADt27AB7wRrw2LFj+PHHHzFs2DB4v9wLJesAHeuHsCEdLsYJcdrt3ftGeG44crncr1QqGQCIiIjw2Ww2qry8XPT4448nsSwLmqY5oVDIEgTBFRQU6LZs2RJ64TyGJEmkpKR4WmtnZ8yY0TxgwAB7a03unj17lP3797dZrVZq7NixfWw2G8myLA4fPqzo16+fs6OxiYmJHpfLRZ06dUoEAKWlpYrU1NROGwL861//Uq9atapy+/btJ81mMzV8+HBrXl5eU2tM0dHRvuXLl+tKS0sVW7duNWg0mnbm8bfddpvz+++/V7aKdaPRSFVXV0taRfqVNjATBMFxXNcSnU6nk5gyZUpqdnZ283PPPdfm8fvss8/Gl5SUhADA/v37Fa2CvKsEXQZZoYqBCwAp+eXd9Ix2LwBAIAl4IEuk/BddMECSBDgq0I6cCnXCfMIAZHT9i+pkgx2xlB0qpRFMUwIk6fwmm2CE9kdALDsOj0QCb20dRDHRXTrvfIsLoaQTCnkzhPYoiCKD7uO1x0NHBVacWKMW6vAm/BRPgKaBwXY7DtbUoLi4GFqtFl9//TXi4uJwz4gR+P5/XkHl7wSQCHwINd0FSG23TIMlnl/OokWLaubOnZtEURRH0zS7dOnSmoSEBG9qaqozKysrjSAIDBkyxDJy5Eh7Wlqae968eQklJSUalmWxePHidhsgZs2a1fT000/HZ2dn62ma5lauXFmpVquZJ5988tyjjz6qp2mavfPOO20PP/ywxeFw2C4fKxKJuEWLFlXPmzcvkeM49OvXzz527NhOGwLEx8e7p0yZoheLxeygQYNsDz/88CVj6+vrBRs3boxKSkpyTps2LRUAxowZY5o9e3ZT65i0tDTPI4880vjII4+kSaVSxu/3E3/961/PKBRXb3eclJTkqayslKxZs0Y7Z86cK26u27Bhg6aurk5UVFSkKSoq0gDAG2+8UfX888+fe+655+I//vhjrVgsZt54441rcm8Iuk/wsIhEnHMApKTrmZ/LMdo9EHB+0GInOL8QuhjewSJYkIUmgWNJSORmmH+6Nhuvk/UW3Ca2gRbb4W5WAb34LFAwIqJiQYm/BWgC1qpKaLoqkM0uhBMOyGUtEJsGImFg7A2OlOdmIwiTgKBJCFtigbiz0JgTcbyvF7fv+RJDX3sNR344ip9++glJSUnIysqCY+9eqEwNODqCgZ4hoTT3g0hv7u63wXMDSEhI8O7cubO89fWIESPsI0aMKL983PPPP18H4JJOZjqdzr9169ZTV7q+TCZj169f367Bw2OPPWZ67LHHTF0ZO3r0aNvo0aM7/OK7PP7MzExLZmZmpwJap9P5T5w48cOVYgaA2bNnN10smluZNm1aWymMRCLhDh48eBwACgsL23wT9+3b16mV0OrVq6tbf37qqacan3rqqQ5F9CeffPKLPX+DTiArwiPA2kiQEi9YlgFJXrvNUrPdizDWApHIAc6lgi6Nt/IKFkKjQ2F0aCCVWiC2nwHHcV32qW1qbIAiJFB/LLHYAW3vGxkqTzchVySgmQDEYjvOnzoJzd13d+m88y1O6IQmCMUuEBYdwvr3u8GR8txsCJIAHSmDsrkvrPgGfSDDJ6l1uP1bBoNqz2PoM8/A7XYjPDwcnM+H0ytW4myIBKGRNjANOpCsCKHD+3T32+Dh4ekCQbfOI1OK4PdJQAo9cFmtv+gaRocH4az1gkBWQxF7TRsfeX7DhEXJQNgjIJFaQdMMjA5vl84zO70QesxQKJoBlkSKDADNW/8FI7KQQBmORGJDZfXpLp9X39wCtTyQyPFZwkEo+Q2cwQgdJUeY6zawDIE0xonTkQSsAxJhfH8jpBSF8PCAy1jL9u3w1dSg5GEvtEIWkqZ0eFgn6ETe+o+H51Yg6ASyWEaD8UpAidywN12TJ3QbRrsXas4REMjOEAhV7byqeW5RQqPkYG1REIvtYKTSLlu91RidiCQsUMnMgE0LXcJ1tdrk+Q0hDwtYvYnFVhgtXV8Ot7UYIZUFnG8Yp+qGxMbT/dA6GYScDB6jFNFyM+IUSdg5QgTGaETTmjXgOA7un39G09/fQl1KJPxpgb1LavOd4EQ2vnseD88tQtAJZKFEANYrBSl0wXT2/C+6hsnhRSTthlDoAesIAcFvqAgaZGohfK4okCQLLpxGbVXX/kaqjQ5EEjbI5S1gWrSge/HlFcGKWKMD6RdDJrLD2cW9vhzHwecwQyYzg/RJIZTw9m7BCq0NWLSxRg3ESjP6KIfhM3kF6PEPwbThnzj7xGycmfUHEAoFlj3oQgotA+OWIMSjhzKW76zIw3OrEHTKjyAIsF4pKKEbzWfP/KJrNNs9iJAFHCwYh+wqo3luJQiCACEIbJ4iQ9ww/dy1+v2qOiNkYgcokQOMRQ7o+PrSYIWSCyFwhUEicsJDd83i0ez0Qc45IJe2QGSLgTaa97kNVgQRgf9vaVMMCAGDOMRAQArw0fgQhM6YAW9lJcTpafjxhfGol9uQJvXAV6cFAQKKfvyGbx6eW4WgE8gAwHpkENAuWGvP/aLzjXYv5Bcs3hgnnwkKNoSqZACAWGqDo6prArm29jxkF5bPFQ4XEMEL5GCFIAgIvGEQi53wSKVg7ParnnPe7EIo4YBUZoHIHo1QPV+CE6xQMhqETACpNbB5m7b/iPHJ41Fy+lOQcx9H8v59EK9ZhlWmYsQRvSATuEDWBx7KhX35lScenluF4BTIPhkEAj/c1l/WUMfo8EB0QSD7ffySWLChjogEfBJIpFb4W7r2EGU3NUJ+QSBHER5Afm1d1nhuLQRMGGiJAwwthK2ynVtSO86aHNCKm0EJfCCsOihSEm9ClDzdhTBCBjWTBJ9TDIXvv3i87+NgOAYv/OcF1Nnr8MLBF+DyuxDrC2zwVrbcBh8coOTibo6c50Zx6NAh2YQJE9osr0pLSyXjxo1Ly87O1s+dOzeeudB0aN26dZqMjIz0zMzM9E8++SQEAOx2Ozl9+vSk3Nxc/aRJk1LPnTvXLjPndDqJWbNmJeXk5OinTJmS3NjYKACA1atXa++///4+EyZM0E+YMEFfXl4u6mzskSNHpDk5Ofrs7Gz9rFmzEl0uV1tB/OXxHz16VJqZmZmek5Ojf+6552KYDpomff311/LMzMy0cePGpb300ku9Lv/95s2bw15++eVLjs+ePTvxq6++UnR2H1944YWYmpoaodFopD766KPQjsb4/X7MmjUrcffu3W1NKvLz86PHjx+flpGRkf7Pf/4zHAAqKyuFubm5+pycHP2TTz6Z4HA4rknzXjeBrNfrVXq9/jO9Xv9vvV7/nV6vH3Lh+F16vf6wXq//Rq/Xv3S95rsSrD9g5u5nf1m/e6PdC4E4sHlLxDsVBB0hETKQdi0kEisIrmub9AiHCWqZFYRLiYiITv9t8wQJIlIHknaDonxoqLiiPSkAoKa2EXJZwDXHbw0FoeaX0oMZQYQUKjocjnoFVLIz0Emi8PLQl/F9/fcYUzQGh+sPY7r+L+ijOgOPXYtQLhkCVadNy3hucd56662I/Pz8OK/X2yY4V61aFZWXl1dXUlJi8Pl8xK5du1RNTU2CwsJCbXFxcfmWLVsMK1asiGFZFhs3bgxPT093FhUVGcaOHWt8++23dZfPsWHDBm1ycrKruLjYkJmZaXzrrbciAaCsrEy2dOnSqtYOd2lpaZ6OxrIsi/z8/PjXX3+9uqSkxDB8+HBrTU2NsLP48/Pz455//vkzxcXFBrlcznz88cftxOqyZctiVq5cWblz587yn3/+WfbDDz/8asH02muvnY2Li/MeP35c2toN8GIqKipEEyZMSDMYDG31rwcOHFCcPXtWtGPHjvLCwsLyzZs360wmE/Xqq69GP/LII03FxcWGO++80/b2229HXEss19MHeR6AfQaDYYVer9cD2AbgdgBrAeQCqATwhV6vH2gwGEqv47zt4QIChhO063x4VRiWQ4vDHcgeeWRQa/guesGGOkKK6mNayDRl8IvFcHkZSISdrxRYXV6EcBYo5Baw5ghIo3jbv2BHIg8siYtEdpyrOY2rOaE3NjZCJwkIZNYpB6igs5jnuQg6QgoBQcN9Xgl1YhMqan9CVnIWdDIdShtKMSp2FH6u5CBXvwS7IQ0KOgSK1K61zeX55Zg+3BJm2bHjutY3qcaPbw6d8tgVl6Pj4uI8a9asOf3ss88mtB7T6/VOs9lMsSwLp9NJ0TTNaTQa/65du07QNI3q6mohTdMsSZKYM2dOo98f0Cu1tbVChULRLl1bWloqf+KJJ+oB4IEHHrCuX78+CgAMBoP03Xff1ZlMJnr48OGW+fPn13c09uTJkyKlUul/7733IiorKyXDhw83p6WleTqLv7m5WThs2DAHANxxxx32vXv3qidPnnxJQ5IdO3aU0TQNm81GOhwOSi6Xd7mF8ebNm8MOHjyocrvdZG1trWj69On106ZNM06YMEG/ePHimrVr1+oqKyulGzZsCJ81a1Zz63l2u5187bXXqt999922h4i77rrL3r9/fycQKJFjGIagaZqrqamRjBkzpgYABg8ebF+yZMk1fXlfzxKLtwCsu/CzAIBbr9crAYgMBsNpg8HAAdgD4L7rOGeHUHTAYokQXns3PbPTC4nfCYHIAdatgC6u3aoBzy2OSiOB166DUGyHRyXDmeraK47/6fQ50CQDgdQIxqIGoeUbxwQ78tBAiYRI7EBjU8NVx9vMRkgkFpA+CSTCoKxc47mIVicLqinwfVtV+28AwF2Rd+FPA/6EtNA0NDb/BxTJwl8T+B4X6lO6J1ieG05OTo6ZpulLnoASEhI8BQUFsffdd18fk8kkuOeee2wAQNM01q5dq5k8eXL6gw8+2Ca8BQIBJk6cmFpUVKR96KGHWi6fw+FwUCqVigEAhULBOBwOCgDuv/9+07Jly8589NFHJ0tLS+Wff/65qqOxzc3NgrKyMvnMmTMbt23bdvLIkSPK/fv3KzqLPzIy0vPVV1/JAWD//v1ql8vVLotE0zS+++472cMPP9wnNDTUFx0d3bXGAgAHAHa7nfrggw8q3n333YqNGzdekjXPy8urHzBggO1icQwAAwYMcPXu3fuS5RiJRMKFhoYyXq+XmDt3bnxWVlaTQqFgk5OTnV988YUaAHbv3q12u93X9OH8i9Icer1+FoC/XHZ4psFg+F6v1+sAfAjgGQBKABd367ABuOHFeUJp4AGSEF77E7vF5UMIa4NQ6ALrDEP4bXwtYbBBCUhw/kD7YFLtxbnSn6BP7fzB8lTVGUgkVoBkQdspQJN+s0Ll6Sak6jjACUhpG1pcV68b9dvNkOosEDp1UITxmcJgRxARWN2VeWLhsynh8R8EMPeSMYTnO7hJGcTmSCAUEMaGdUOkPYvQKY8Zr5btvVkUFBTEbNq0qbxv377udevWafLz82OWL19+BgDy8vKaZs6c2Tx16tSUAwcO2EeNGmUDgO3bt58sKysT5+XlJa9fv/7UwoUL4wEgIyPDKJPJGJvNRgKAzWajZDIZw7Is8vLyGtVqNQMAd999t+XEiRPSjsaGhYUxkZGR7lZxOXToUMuxY8eko0ePtnUU/7Jly6peeeWV2HfeeYcYOHCgnaZpbu3atZq9e/eGAsCKFSsqo6OjfUOGDHEcPHjw+OLFi6NWrFgR+cILL7RlnMRiMev1ei8RpS6Xi5RIJCwApKamOgEgJibG6/P5flVmwWQyUXl5eUmDBg2yzZ8/vx4A8vPzz7344ouxO3bsCB82bJhZpVJdU1nBLwrIYDBsMBgMfS/773u9Xt8PwD4ALxgMhn8jII4vLthUALjhjehl6igAACH+BRlklw9qzgEh7QbnVkIWxWeQgxFKHA8g0C2t0dBha/o26mrPQSEJtKQPdZsBDZ9BDnakYVEgWAGkQidcuPpGXcprhVRqg9ChgyKWt3gLdlqdLFTCcFhroyEjfgLL+tp+7/e7ESn+f7C26KGmI8AQbpAK3hGpJyGXy/1KpZIBgIiICJ/NZqPKy8tFjz/+eBLLsqBpmhMKhSxBEFxBQYFuy5YtoRfOY0iSREpKiqe1rnjGjBnNAwYMsLfW5O7Zs0fZv39/m9VqpcaOHdvHZrORLMvi8OHDin79+jk7GpuYmOhxuVzUqVOnRABQWlqqSE1N7bQw/l//+pd61apVldu3bz9pNpup4cOHW/Py8ppaY4qKivLl5OToTSYTBQAymYwlSfKS7MBtt93m/P7775WtYt1oNFLV1dWSVpFOXKFpDkEQHMd1LdngdDqJKVOmpGZnZzc/99xzda3H9+/fr1ywYMG5wsJCA0VRGDJkyDW1V75uhXJ6vb43gE8ATDIYDMcAwGAwWPV6vVev1ychUIP8AIBF12vOzgjTxqPZAZCia69Btjh9COdcoIVuuFxK0Cr+qT8YkYYlwQNAIrHCZriyk4XTWI8ErR1gSWhJLyDtcGMtTxAhUEsgcIdCInbCLZKA47hOP8y9Xh/ksEIocYI+p4NqULv9NTxBiDBCBrU5AqfOhCJM70VT815EaB8CAJRV7YCMdsBcGQ+1UAtBKHtFMcATfCxatKhm7ty5SRRFcTRNs0uXLq1JSEjwpqamOrOystIIgsCQIUMsI0eOtKelpbnnzZuXUFJSomFZFosXL666/HqzZs1qevrpp+Ozs7P1NE1zK1eurFSr1cyTTz557tFHH9XTNM3eeeedtocfftjicDhsl48ViUTcokWLqufNm5fIcRz69etnHzt2rKWz+OPj491TpkzRi8VidtCgQbaHH374krEkSWLGjBkNM2bMSKFpmgsLC/MVFBRUXzwmLS3N88gjjzQ+8sgjaVKplPH7/cRf//rXMwqF4qq1yklJSZ7KykrJmjVrtHPmzLliW+QNGzZo6urqREVFRZqioiINALzxxhtVycnJ7vnz5yfSNM0lJCS4Xn/99WtqjnE9d5IsBSAGsDKwRw8Wg8EwHkAegC0AKABfGgyGw9dxzg4JC4lAg5UCIfSCZRmQZNet2swuLyLFDhAEB84l59uCBikhEVo02hWQie0w+l2djnO5XCC8dihldhCOMIRH8ps2ewIETULgDoVYbIJPLIarvh7SyMgOx1acrYVMGlil5GzhEOoSOhzHE1zQOhlUlWGwnqHgdyhQVf3PNoFcW7sNRocG1pMiqDThkCbxvtjBTkJCgnfnzp3lra9HjBhhHzFiRPnl455//vk6AHUXH9PpdP6tW7de0S5HJpOx69evb+c5+dhjj5kee+wxU1fGjh492jZ69OgOl0wvjz8zM9OSmZnZqYAGgHHjxpnHjRt3xaqA2bNnN82ePbvp8uPTpk1rK4WRSCTcwYMHjwNAYWGhofX4vn37TnR23dWrV1e3/vzUU081PvXUU+1EdGJioveLL7648hLxFbhuAvmCGO7o+CEAd12vebqCWCoE4xeBFHrhcTggUXRd1JidPoRKAvZwnJO3eAtWQnRSNP03HAqJA+dkEnAMA4Jq/yB1/vx5EABE8hZwZl789CQE3jDQ6rMAgKaTJxHXiUCuOlMHifSCg4VdDSijb1qMPN2HIEIKCgJI4IOj4ncQyPbBav0Rfr8NAuY4jtdmI4nzgiIFECVck7sUDw/Pb4Cg3G4tkgrA+EQghB64bB3Wn3eK2emD/IIHsr/9pk2eIEEdIQNj10AkscEhV8ByqqLDcVXVNSAJHzipEaxFwdcf9yCEnAak2AGCYHDmdLtEUBu19fWQigOJFoFHxlu89RDoCy2nlXQI6k8NhY+VovS/0/Dj8T+hydULdPM9UF9YvaSjZFe6FA8Pz2+Q4BTIEgFYvxgk7YHDek012bC4fBCLA0vurCcobw8PAImCht+pBSm2gaT8+PnQ9x2Oq6iqQRhlAggOAjvFC+QehFgYqCUWCR2ou0Lb+hZTM6QiMwSuMAh/wb4HnluTVqs3pTAcfpcdP383AQpFP9BCHZYdyUMvoxkhIg04goUgnN+4ycNzqxGUCpAWUWB9YhC0GybjtTm+WFw+0BcEMknymaBghSAIgAs0g5BIbKipPN1ujNfrRWPtOYSLAyU3alcLEM4L5J6CTBUop5HQZphsnXfldFlMkEpsEDojIFb5Oh3HE1yQUhqkQgi1KAIkexYhTVpIdG+jEu+Bc6rhbjEhRBgBSisCQfF7WXh4bjWCUiATJAHWKwYl8MBUe3WT/4sxOzwQiJ1g/EJIZaIbFCHPbwGhPOBxrRRaYbS332dQU1MDjmOhVrgBRoAowgrItTc7TJ5uQq5JBQDIaBtsXMcflU6nE5zXCbHMAdoZAXkk/1Ddk6AjZQiX9QJN1cPtTcQ/9xvwzlen8YBYCs5fjxCRDpIE3gmJh+dWJCgFMgCwPgko2gNHw7VlkG12OyiRC6xHBmUovywWzMgvlEuoxQ5YxBL4fZdm/yoqKkCwLCQqG0ibBmFRvKtJT0ISGg2wJGQiF5xiKVpbwV5MXV0dBAIPKKEXQmcEVMkh3RApT3ch7CWHDEr4fE4wnAD+oz+hwexGis0PNWkCTQohjFZc/UI8PDy/OYJbIFN+eEzNVx98ER6LGZTQBdYjR1gvzQ2Kjue3QIguHKQzFGqpCz6hEBXffnvJ70+fPg21qQmsshGsJQwCbVI3RcrTHdAhMgg8IZBKXOBIEs2V7VyTUFtbG+iyCAD2cAij4m9ukDzdijBaDgIEZIQaYdRRpLp6YS6phMfpgpxSXRjDC+SewKFDh2QTJkxoq8ErLS2VjBs3Li07O1s/d+7ceIYJNC5bt26dJiMjIz0zMzP9k08+CQEAu91OTp8+PSk3N1c/adKk1HPnzrXrKuN0OolZs2Yl5eTk6KdMmZLc2NgoAIAjR45Ic3Jy9NnZ2fpZs2YlulwugmEYzJ8/P3b8+PFpEyZM0Lc2Bzl16pRo0qRJqbm5ufrf//73Kc3NzW1OBKdOnRKNGTOmd+vryspKYW5urj4nJ0f/5JNPJjgcjnZ6sbS0VJKTk6OfMGGC/tFHH02pr6+/ZAntq6++UsyePfuSdsQvv/xyr82bN3e6rFJQUKA7fPiw1OVyEe+//347f8TO7uvq1au1mZmZaZmZmWnLli3r2HLoGglegewPWLQxrmtr3Mc4LKAvCGRNbOyNCI3nN0KITgrYtBArLCAZBmVHj7b9zmg0orm5GTE2MxixGaxFDlxYcufpGZByIWhXOMSSQLOp8+Xt7TTr6uogoy+sUtlVQEj8TYyQp7uhL4jfUKEO8SmNUJF1EJk9SBWsR4hIBwgICDT8SmSw89Zbb0Xk5+fHeb3etiXGVatWReXl5dWVlJQYfD4fsWvXLlVTU5OgsLBQW1xcXL5lyxbDihUrYliWxcaNG8PT09OdRUVFhrFjxxrffvvtdt2GNmzYoE1OTnYVFxcbMjMzjW+99VYky7LIz8+Pf/3116tLSkoMw4cPt9bU1Ah37typ9nq95I4dO8rnz59/bsmSJdEA8Le//S3umWeeOV9UVGSYOHFi08mTJ8UAsGXLltBnnnkm0WKxtAnzV199NfqRRx5pKi4uNtx55522t99+u51X4ZIlS2JffPHFM4WFhYZ77723ZfXq1b+6S9L8+fPrBw8e7Kyvr6dLSkraCeSO7uvp06eFu3fvDispKSnfsWNH+aFDh1THjh371T69QVswx/rFgf8lOt9cczkcx0HgsUEodMHjVkKm4+tNgxmVVgKfVQdBeAUU5mZUcFxbx7QjR46AAIdwuR8+ALSNA8J5gdyTIEgClDsUAnUtwHE4U12BQZeNOXe+FlqREeAIkG4RIOFLLHoSlFIIUk4jik1BpfkEcgfsgKumDAfdfRDLRYOOlPMb9G4iPx44F2Y4VHddu7Lo74psvm1U9BVrNePi4jxr1qw5/eyzz7YZ5ev1eqfZbKZYloXT6aRomuY0Go1/165dJ2iaRnV1tZCmaZYkScyZM6exx73D7wAAIABJREFUtYSrtrZWqFAomMvnKC0tlT/xxBP1APDAAw9Y169fH3Xy5EmRUqn0v/feexGVlZWS4cOHm9PS0jwffPCBZvjw4RYAGDJkiGPevHkyp9NJtLS00Hv37lUXFBREp6enO1566aVzAKBSqZiPP/7YcO+99/Zrna+mpkYyZsyYGgAYPHiwfcmSJTGXx7R69erKqKgoHwAwDEOIRKKu9YZGILv8j3/8QycQCNi6ujrR/fffb1qwYEH9U089FT927FjTnj17Qs6cOSNZtmxZ5IXmKp3e15iYGN/GjRtPCQQBScswDCEWi6/are9qBG0GGQg8tZOCrtsu2T1+aAknBAIfWLcSolBeIAczApoC64oCR/khlVjhEAhw6uRJuN1ulJaWQttUDyY28EAd6m7iBXIPROAPASR20F4XGkyXfke6XC5YLWZIxVbQrnAIaG83RcnTXRAEAWG0AmHSXjh/sgxszjtQ/mUXzplECKEjIIrnO2/2BHJycsw0TV8iDhMSEjwFBQWx9913Xx+TySS45557bABA0zTWrl2rmTx5cvqDDz7Y9qEiEAgwceLE1KKiIu1DDz3UcvkcDoeDUqlUDAAoFArG4XBQzc3NgrKyMvnMmTMbt23bdvLIkSPK/fv3KxwOB6VUKttENkmSXGNjI33mzBnx8OHDrdu3bzdYrVZqy5YtYQCQkZFhkcvllwjK5ORk5xdffKEGgN27d6vdbnc7vdgqjr/55hvZ9u3btXl5eV1yRWhtu97Q0CBcv3796eLi4vKtW7dekn2eO3duXWxsrOticdzZfRUKhZxGo/GzLIsXX3wxOiUlxanX6z1dieVKBG0GmaACS1+kqOu2S2anDxGiQMaZdclBSPgPt2CHFgXqitUKPxwmC3YWFyMmMRFerxf9jv4I/6AokB4ZYgT1/PJ5D0RMaACCgxjNMPkj21YYgED9MQCIFW7QzniIFO7uDJWnm6B7ySE0CEFxFCp+/BEkSUHJhoIECXEKv6JwM7ltVLTxatnem0VBQUHMpk2byvv27etet26dJj8/P2b58uVnACAvL69p5syZzVOnTk05cOCAfdSoUTYA2L59+8mysjJxXl5e8vr1608tXLgwHgAyMjKMMpmMsdlsJADYbDZKJpMxYWFhTGRkpLt3795uABg6dKjl2LFjUplMxtjt9rb6Yo7jCK1W65NIJGzrXKNGjbJ88803SgAd3q/8/PxzL774YuyOHTvChw0bZlapVP6ioqKQbdu2aQHg+eefP3vHHXc4t2/fHrJhw4bI995775RWq70kIykWi1mfz3fJEorT6aRas7uJiYkumqZB0zQrFAq7lH3u7L66XC7iL3/5S7xUKmXfeOONmq5c62oEbQZZIFYDAAhRu5WKTrG4fFCLAl30OJeEdyzoASiibgMAKEMI9P3vETjdbpw8eRL9/B6orGYQaiMIqxbqqDCA5Dsr9jSkkigAgIgywSug0dz8f5t+T58+DXAsaKULQocOUn5Pb49EFK8EOCAl5nfY//467H9/LZKiBgECAqIEPsnSU5HL5f7WLG5ERITPZrNR5eXloscffzyJZVnQNM0JhUKWIAiuoKBAt2XLltAL5zEkSSIlJcVTWFhoKCwsNMyYMaN5wIAB9v3796sBYM+ePcr+/fvbEhMTPS6Xi2rdhFdaWqpITU11Dxo0yP7111+rAOC7776TJSQkuKRSKderVy/3119/LQeAI0eOKJKTk12dxb9//37lggULzhUWFhooisKQIUOsubm5La0x3XHHHc6tW7eGfvTRR9qtW7cakpKS2i2hpaenuyoqKqS1tbU0ALhcLuLYsWPyAQMGOK92/0iSBMdx7URYR/eVZVk8/vjjyampqa6///3vNa2lFr+WoM0gSxWBenLyGgRyoM30hS56rqC9NTwXER4bA0etGlKFC3vSzBj75b8QOXUqXGtWY98dUvRR1gInB4GICu3uUHm6AUV4GgBAJXag2Q+cPn4cmtGjAQCnTp2Cyl8PkmYgdERBmS7vzlB5uglRogqkVIA7Esai8b9nYTcZERuSDjpECoLmH6p7KosWLaqZO3duEkVRHE3T7NKlS2sSEhK8qampzqysrDSCIDBkyBDLyJEj7Wlpae558+YllJSUaFiWxeLFi6suv96sWbOann766fjs7Gw9TdPcypUrK0UiEbdo0aLqefPmJXIch379+tnHjh1rYRgG33zzjTIrKyuN4zgsW7asGgBeffXV6kWLFsW++eabRGRkpOell17q1OYrOTnZPX/+/ESaprmEhATX66+/fubi3/v9fhQUFMRqNBrvH//4x2QAuP32220vvPBCbesYlUrFzps37+wf/vCHZJFIxPr9fnLSpEmNKSkpnvPnzwuvdP+0Wq3P5/MRL730Uq9Fixadv9J93blzp/r48eMKn89HfvvttyoAmDdv3rmhQ4d2fRNaBwStClSHxMINgBB6wbEsCPLqyXKzy/t/babdXa4157mFCe0lQ015BAiVCV/1FSP3qAOeVavgkBBoGdgfIP8N1iQGBqR3d6g83YA0Qg+iloZM6YPovAunT/yEu0aPRktLC5qampDqC6zkCew6iGN7dXO0PN0BQZEQp4fB9VMzJr/yJjxGOyzvGCD+XVR3h8ZzE0lISPDu3LmzvPX1iBEj7CNGjCi/fNyFmtpL6mp1Op1/69atp650fZlMxq5fv76d1+To0aNto0ePvsRih6IoFBQUnLl87IABA1wlJSWGzuY4fPjwsdaf77rrLscXX3zR3rrnAgKBAEePHv3vlWIGgOzsbHN2dnY7O7GRI0faRo4cabt87tWrV1e3Htu9e/fPl5/X0X1NSEjwZmVl/XC1WK6VoC2xCA3Vwe+nQQi98Lo7XUW4BLPTB6EoUEfIdT3xzHMLowqXwGeKgU9Rh+imIXhqJoM185Mx948kUujABj2VrQWI6H2VK/EEI3SYFLQzAhK1DwqzCWeMRrAsi4qKCgCAigqU7xG2MBBh8d0YKU93IukXDs7DgKl2wXfYDJAEJH2uq5kCDw/PTSZoBbJSKQfjE4GgvXDb7V06x+LyQSB0g2VJCGm+/rgnQJAEGEcSQHC4hxJCER6PM+HAA/o50KrrQTnDkESVA9o+3R0qTzdAhYghdOogUDpBOJrhAYGDBw/i8OHDkNEUEOYB4ZWC8xKAqp0LEk8PQZysBqUUwvRxOZxHG6AY0QuC8F9tw8rDw9ONBK1AFklpMH4RCNoDt6NrAtnq8oIUucF4JZAqgrb6hOcyJKp+AEcgKbQBY1QF+Cz7M/jNw0CFnAOMUQhVegA5b/nXEyFFFARODUi5HX7Gjoj6Ohw4cAAmkwlJNSfAaVkIHZGgaBtAtWt+xdNDIAQkNE8OAB0lhyBcAsW9fJMpHp5bnSAWyII2geywWrt0js3qACV0g/VJIFeLb3CEPL8VevVLBWWNgiS8Ebt/qgfHcTCcPgFWYgZjCgWh68M7mvRgaE84QLIgQwS467vDiFKrkfHAA0j67kfQYX6IHb0gktmufiGeoEagFkHzx9sQ8ZdBIIX85jwenlud4BXIEgFYnxiEwAOL2dKlcxwWMyihC6xXhlAt71/ZU+jVNwZscyyYkPM419CM//2pHqMl3wIAuFoBEPO7bo6QpzsRkwFHHJHMCafAi7v+ewjSqmPgJIBA4ofQEQV5ON8khCfQAIHvnMfDExwErUCmRRRYnxgU7YbZ1LUMsttmBkW7wXpkCIvidyD3FKRKIbzGKHACDyYo/ov5249B3+sHCE0JiMOPQMxd3R0iTzeiUsUDAMQqH767XQ360DG433wHdSmBLKHQEQVFPG/xxsPDwxNMBK1AJkgCnE8CUuCFu7lrGWTGbgZNu8F55JDr+JrTnoQIaaDcKoxO+xa/7+0ClHXw1iQiWVoOxNzZ3eHxdCPyqDiQXhnkoRxC7hwJsxQoD/eialhglUloiQYdF9+9QfLw8HQrhw4dkk2YMEHf+rq0tFQybty4tOzsbP3cuXPjGSZgjbVu3TpNRkZGemZmZvonn3wSAgB2u52cPn16Um5urn7SpEmp586d63RDw6effqrOy8tLaH29b98+xfjx49Nyc3P1s2bNSnQ4HCQALFu2LDIzMzM9Kysr7fDhw1IAaGhoELTOk5WVlVZRUSFqvU5jY6Ng1KhRfV0uFwEARqORmjJlSnJ2drZ++vTpSQ0NDe02ZtXW1tITJ05MzcnJ0U+fPj3JarVeoimrqqqE48aNS7v42D/+8Q/N0qVLO81Abt68Oeyzzz5TAcDatWs7bb+0Zs0a7csvv3yJt6bD4SCzsrLSysrKxADg9XqJvLy8hKysrLScnBx96/GuErQCGQAYnwQU5YfH1K6teYeIvVYIBH6wXgXEoXxjiJ5EjD4M/rKhYEOrMTL0NYCl4GsIBRGRDkj4cpueDBUVAZE9BhKNG9FEJD5+cwyYt/6GMAULwqEG5xGB0KZ2d5g8PDzdxFtvvRWRn58f5/V62+prVq1aFZWXl1dXUlJi8Pl8xK5du1RNTU2CwsJCbXFxcfmWLVsMK1asiGFZFhs3bgxPT093FhUVGcaOHWt8++23dR3Ns3DhwphVq1b1Ylm2bZ5XX301bt26dRVFRUWG2NhYz6ZNm8KPHj0q/eGHHxQ7duwoW7lyZeXixYvjAGDJkiXRGRkZpqKiIsPTTz993mAwiIFAZ77p06entrS0tAnzFStWRA4YMMBeUlJimDp1auPSpUvbGb2vWbNGN27cOGNxcbEhLS3NtWnTpl/tbTht2jRjZmamBQDef//9dkLa6XQSf/rTnxIKCwsvyWJ+//330okTJ+rr6uraRP/u3btVDMMQn376afmf/vSnujfffPOazOqD2qqB8wXuE+tu51HdISoEMs2sSwFKGXbD4uL57ZEwajC+/1cNeqX8FyQrBHV8DJLpfwMxg7s7NJ5uRhAug7QlBc4EAxqOn8KKJ1aBYfz48vQrELUMAEeYADXvWsDD092U7v487Oev911XA+red9/bPPDBDOOVxsTFxXnWrFlz+tlnn23L7Or1eqfZbKZYloXT6aRomuY0Go1/165dJ2iaRnV1tZCmaZYkScyZM6fR7/cDAGpra4UKhaLDTgwDBw60jxkzxrxt27a2zOqHH35o0Ol0fgBgGIYQiUTs4cOH5YMHD7aSJIm4uDgvwzBEY2Oj4Pjx4/LU1FTXpEmTUiMjIz1Lliw5CwTaOn/wwQeG7OzsNsP/qqoq8bx5884DwNChQ+2vvfZauw+5JUuWnOU4DgzDoL6+nr799ts9Xb2vVVVVwmeeeSZRq9V6z58/L+rdu7fjzTffPLN06dKo8PBwn9lspux2O7VgwYLY5cuXtzU9cbvdZHZ2tnHIkCHWysrKtoywx+Mh3n333Yp58+Ylth5LTk52MwxDMAwDm81GUhR1TR3grnsGWa/Xp+n1eoterxdfeH2XXq8/rNfrv9Hr9S9d7/muBOMP3DuWvbrNG8dxUNCBroScWwoI+ZrCngSl1mFochnO7MxCxY6ROOeKQ6zgOBA3rLtD4+lmKJUIYnMKCJKD010GlmFwtuIQhFI/FJY0CEQWgORdC3h4eio5OTlmmqYvEV8JCQmegoKC2Pvuu6+PyWQS3HPPPTYAoGkaa9eu1UyePDn9wQcfbBPeAoEAEydOTC0qKtI+9NBDHS57T5w4sYW4zFEpKirKBwAlJSXqo0ePKiZPnmy02+3UxSJbKpUyFouFamxsFCqVSv/HH398UqfTeVeuXKkDgPvvv98aHh5+iShPTU11ffnll2oA+Pzzz9Uej6edXiRJEgzDEA888ECf0tJSZet7vBoEQXAAcP78eXFBQUH1zp07yw4dOqSqq6trS9ouWLCgXi6XMxeLYwAIDQ1lxowZ025j2fDhwx2xsbG+i4/J5XKmvr5eeN999/V99dVX46dPn97Qlfhaua4ZZL1erwRQAODip4i1AHIBVAL4Qq/XDzQYDKXXc97OYP2BVt8EcfVOei4fA8WFNtOMQ8TbevVA4ob0Q1PtUUjHzEV602sgzocD6RndHRZPN0OQBESOaIAjINVYcerItzjTuBukApBaUiALbezuEHl4eAAMfDDDeLVs782ioKAgZtOmTeV9+/Z1r1u3TpOfnx/TKvby8vKaZs6c2Tx16tSUAwcO2EeNGmUDgO3bt58sKysT5+XlJa9fv/7UwoUL4wEgIyPDOGPGjObO5lq9erV23759oRs3bjwlkUg4uVzOtNYiA4DT6aTUajWjUCiYsWPHmgFgzJgx5r///e+dlhw888wzdX/7299ic3Nz9cOGDbNoNBrfwYMH5StXruwFADNnzqwfO3asRSgUcnv37j2xd+9exfz58xOKioraWllLJBLW5/NdIqydTicpEolYAIiMjHQrlUoWAEJDQ31ut/u6Jm3XrVsXMXjwYOtLL710/syZM/S0adP0//u//3tCIpF0KZN83YLR6/UEgPcAvADAeeGYEoDIYDCcNhgMHIA9AO67XnNeFe5CJyPB1S2YrC4/JBfaTLNuPhvUI0nPwB3yQvRufAXEqd3A754AaL4bFg8gCxWBtsZCFuXFkU8LYWn6D1ifACJ7NBTRoqtfgIeHp0chl8v9SqWSAYCIiAifzWajysvLRY8//ngSy7KgaZoTCoUsQRBcQUGBbsuWLaEXzmNIkkRKSoqnsLDQUFhYaLiSOF6+fLmutLRUsXXrVoNGo/EDwO9+9zv7d999p2IYBjU1NUKWZaHRaPx9+/a17dmzRwUA3333nSIxMdHd2XUPHjyo+P3vf99UVFRkiI+Pd9922232ESNG2FtjGjt2rGXBggWxBw4cUFyImyVJ8hLhqdVq/S6Xizxx4oQYAPx+Pw4dOqQcMGCAEwjYIl4Jjrumioh2KJVKRi6XM0Ag83yh3KLL2c9flEHW6/WzAPzlssM1AD4yGAzH9Pq2jZxKABenwm0AEnGTIMiAuCGF/quOtbp9ELUK5KsnnHmCEXUsMPhPwPfrAVoK3PmH7o6I5zeCOFYNWUsqPL3247zlZ0RE14Jr6AewJIQJHe6n4eHh6cEsWrSoZu7cuUkURXE0TbNLly6tSUhI8KampjqzsrLSCILAkCFDLCNHjrSnpaW5582bl1BSUqJhWRaLFy+u6soc9fX1go0bN0YlJSU5p02blgoAY8aMMc2ePbtp4MCB9qysrDSO44j/+Z//OQMAL7744rnnn38+7pNPPtHKZDJm9erVlZ1dOzU11b1gwYKE5cuXIzw83FtQUFB9+ZjHH3+88cUXX4x75513OIIgsGjRokvKIUiSxOLFi6sXLlwYT5Ik/H4/cffdd5tHjRplq6qqEl7t/cXFxbmefPLJhHfeeadL9+NynnzyyYZ58+bF5+Tk6H0+H/HnP//5vFwuZ7t6PvFrFXorer2+AsC5Cy/vAnAEQAaAQwaDofeFMU8DoA0Gw5tXulZOTg5XXFz8q2PatvptaPv8HbYfhyPrmU1XHPt9tQmV//oDwhJ/RGPRTEx+52+/ev6ejF6vP2owGO643te9Xn8bV8RpAjw2ICTuxs7TQ7lRfxvAjfv7cJ+oxbmSr1A9+BWAYMERLJT/XgKdR4y4vyQBun7Xfc6eyi392cFzQ+nob+PYsWPV/fv37zTDysNzNY4dOxbev3//+MuPX7cSC4PBkGwwGEYaDIaRAOoBjDEYDFYAXr1en3ShBOMBAAev15xXQyoPbGYlhD5w7JUfGqwuHyiRG36vGCJxhxtIeXoK0lBeHPNcAh0bDrE9Bsx/p4EgGZSdHY5wdxREgtOAtvfVL8DDw8PDc0txM2ze8gBsAUAB+NJgMBy+CXMCAJSqcPhZEhB64XE5IZZ17kxhsTtBCj1gfRJIZDcrQh4enlsBSiEEIbBDVXcX/vUfHShjJEQSAvIIB+9gwcPDwxOE3BCBbDAY4i/6+RACJRc3HXVIOOo9QpBCL9x2+xUFsrnFglChG6xPAqXyqqUxPDw8PQyR2g2tl0VobTx60YF9HsIUviU9Dw8PTzAS1J30lOowMH4RQHvgtl/Zns9mtoCi3WC9UqjDFDcpQh4enlsFOl4LISkHTfrQK9QLAm7QfQd2d1g8PDw8PDeAoBbIUqUCjE8EQnB1gWw3myGgXeC8UoTpOm3/zcPD00ORjbodAIdsXQ2ifDTEgmMgovp3d1g8PDw8PDeAoBbIQgkF1i8CQXvgsLZrvHIJHqsJNO0F65FDEXFdO1Xy8PAEAYIwCWQJZnic6QDrh2qwH6BuxjYOHh4eHp6bTVALZJFEANYnAUm7YTFZrjiW9hhBEBxYjwKiEPVNipCHh+dWQpk9BBTVBHV6NQQZz3V3ODw8PL8RDh06JJswYUJbE4jS0lLJuHHj0rKzs/Vz586NZ5iAO9a6des0GRkZ6ZmZmemffPJJCADY7XZy+vTpSbm5ufpJkyalnjt3ju5snk8//VSdl5eX0Pp63759ivHjx6fl5ubqZ82aldjaQW/ZsmWRmZmZ6VlZWWmHDx+WAkBDQ4OgdZ6srKy0ioqKti5HjY2NglGjRvV1uVwEABiNRmrKlCnJ2dnZ+unTpyc1NDR0mg346quv5MOGDbvt8uNVVVXCcePGpV187B//+Idm6dKlnW7e2Lx5c9hnn32mAoC1a9e2W86vqakR5ubm6nNzc/UzZsxIan2/n332mSojIyN9/Pjxaf/85z+vS5YzqAWysFUgC7xwmK5cYiFmAwKa9SghDAm7GeHx8PDcYlDaCOgWZ0E2fTbfjp6HhwcA8NZbb0Xk5+fHeb3etg+FVatWReXl5dWVlJQYfD4fsWvXLlVTU5OgsLBQW1xcXL5lyxbDihUrYliWxcaNG8PT09OdRUVFhrFjxxrffvvtDrsPLVy4MGbVqlW9WJZtm+fVV1+NW7duXUVRUZEhNjbWs2nTpvCjR49Kf/jhB8WOHTvKVq5cWbl48eI4AFiyZEl0RkaGqaioyPD000+fNxgMYgDYs2ePcvr06aktLS1twnzFihWRAwYMsJeUlBimTp3auHTp0g7bUp85c4Z+//33I/x+/3X5QJw2bZoxMzPTAgDvv/9+OyG9bt26iAceeMBUVFRkSEpKcm/evDnc6/USBQUFMZs3bz65fft2Q3Fxsaa+vv5XL+8F9fogLaLAeKWgBB64Lc4rjhWRdgAA55KBkITcjPB4eHhuQQgyqPMKPDy3LPZva8McPzRc1xpJ2e0RzfKhUcYrjYmLi/OsWbPm9LPPPtuW2dXr9U6z2UyxLAun00nRNM1pNBr/rl27TtA0jerqaiFN0yxJkpgzZ06j3x/o+FtbWytUKBQdNmMYOHCgfcyYMeZt27a1ZVY//PBDg06n8wMAwzCESCRiDx8+LB88eLCVJEnExcV5GYYhGhsbBcePH5enpqa6Jk2alBoZGelZsmTJWSDQ8e6DDz4wZGdnt5m6V1VViefNm3ceAIYOHWp/7bXXYi+Px+VyES+88ELcsmXLanJzc6/JEL6qqkr4zDPPJGq1Wu/58+dFvXv3drz55ptnli5dGhUeHu4zm82U3W6nFixYELt8+fK2Dn3p6enO+vp6Gghk3nU6HVdWViaOioryhIaGMgBw22232f/zn/8oJkyY0HItMV1OUH/SEwQBxicGQXDw2c1XHCsWBAQ04xICIt7FgoeHh4eHh+fq5OTkmGmavqQtcUJCgqegoCD2vvvu62MymQT33HOPDQBomsbatWs1kydPTn/wwQfbhLdAIMDEiRNTi4qKtA899FCHwm7ixIktxGUrV1FRUT4AKCkpUR89elQxefJko91upy4W2VKplLFYLFRjY6NQqVT6P/7445M6nc67cuVKHQDcf//91vDw8EtEeWpqquvLL79UA8Dnn3+u9ng87fTiwoULY2fNmtUQHR3tu5b7RRAEBwDnz58XFxQUVO/cubPs0KFDqrq6urak7YIFC+rlcjlzsTi+8H69RUVF2vvvv7/P4cOHVdnZ2Sar1UrJ5fK2+GUyGWOz2X61QX1QZ5ABgPVIAj/4r1xiIRK6A+OdAn7plIeHh4eH5xZDPjTKeLVs782ioKAgZtOmTeV9+/Z1r1u3TpOfnx/TKvby8vKaZs6c2Tx16tSUAwcO2EeNGmUDgO3bt58sKysT5+XlJa9fv/7UwoUL4wEgIyPDOGPGjE7baa9evVq7b9++0I0bN56SSCScXC5nWmtzAcDpdFL/n707j4u62v84/poZZoZlhh0EFdmEL65g7rlr5l6KW7uVN7Out71rdW+WectuZWZZmj/tmjcry6XbYllmlplbhqgog4qACMi+DMwMs/3+QIsMWwxE8fN8PHo85DvfOefznY7j2+P5fo+/v7/TaDQ6x4wZUw5w9dVXl7/44osNLpsAuO+++/L/8Y9/tJs4caLSr1+/ipCQEPu2bdsMixYtagMwceLEov379xtzc3M9X331Vcxms2bGjBkxy5YtyzzThpeXl8tut/8sWNfU1Kj1er0LIDw83Orr6+sCCAwMtFut1t+ctF2wYEHbuXPnZo0YMaLyk08+8bvvvvuiH3744ZM1NTU/vre6ulrj6+v7p7dEbtEzyADO2ro16G73uZdYOF1utPq6gOy0uM95nhBCCCHEbzEYDI4zIa1Vq1b2qqoqTXp6uv7222+PdblcaLVat06nc6lUKveCBQvCVq9eHXj6fU61Wk1cXJxt7dq1prVr15p+LRw///zzYSkpKca3337bFBIS4gDo1auXeceOHX5Op5Ps7Gydy+UiJCTE0blz56pNmzb5AezYscMYExNjPVe727ZtM1533XVF69atM0VFRVm7du1qHjBggPlMTddff33pli1bDp752WAwOOuHY4DQ0FCHxWJRp6WleQI4HA527tzpm5SUVAN1/8r/a9zuX+Yxg8HgPPO5hoeH15rNZo8OHTpYc3NzPUtKSjQ2m021b98+Q+/evc2/2vjv0OJnkJ2OuoCs8jjnOKAxbhO+AAAgAElEQVTKasdDb8Pl1KBSOS5UaUIIIYRogebOnZt9zz33xGo0GrdWq3XNnz8/Ozo6ujY+Pr5m/PjxCSqVir59+1YMHjzYnJCQYH3ggQeiN2zYEOJyuZg3b97x39NHQUGBx8qVK1vHxsbW3HLLLfEAV199demMGTOKunXrZh4/fnyC2+1W/fOf/8wBePzxx3MfeeSRyPfffz/Ux8fH+corr2Seq+34+Hjrww8/HP38888THBxcu2DBgqw/+hmo1WrmzZuX9eijj0ap1WocDodq4MCB5UOGDKk6fvz4b25ZHBkZabn77rujX3vttR8/jyeeeCJn7ty57V544QUVwJw5c7J1Op37wQcfPDFt2rR4l8vFtddeW/xHl300RNVQQm9uycnJ7vXr1zdKW//31Dxi+q+kas9Qxs/+vwbPySo2s/fTSXgH5VH56WSmvvJ4o/R9OVMUZa/JZOrR2O025tgQzaOpxgbI+GgJ5LtDnEtDYyM1NTUrMTHxnDOsQvyW1NTU4MTExKizj7f4JRYalTcAKr29wel6gJLSCtQ6Ky67F55ef3rZihBCCCGEuIS1+ICs0/oCdQHZbmt4mUVJcQkanRVXrRfePn/6xkchhBBCCHEJa/EB2cfoi9PpgUpnw2pu+EkW5aVldQHZ7o2vv77Bc4QQQgghxOWhxQdko68Bh10HOhtWc8M3NVaWluKhteK2GfAP8rvAFQohhBBCiItJiw/Ifn5+OByeqHTWc84g15QX4uFhx2XzxT808AJXKIQQQgghLiYtPiD7BgTW7aanPXdAVlmLAHBZ/fAKlBlkIYQQQojLWYsPyN5+frjsXqi0VmrKKxo8R+uqO+6y+uHp738hyxNCCCHEJW7nzp0+kyZNUs78nJKS4nXNNdckTJgwQbnnnnuinM66J2S9/vrrIWPHju0wbty4Du+//34AgNlsVk+bNi124sSJytSpU+Nzc3O1Z7dfU1Ojmj59emxycrJy0003tS8sLPSAul30hg8f3mnSpEnKpEmTlPT0dP25zt29e7d3cnKyMmHCBGX69OkxFovlx506zq5/79693uPGjeuQnJyszJ49O+JM/Q154YUXwmbMmBFz9vFVq1YFPfnkkz/brW/GjBkxW7duNZ6rrcceeywiOztbV1JSonn33Xd/8U/6n3/+ue+oUaM6TpgwQXnuuefCAWpra1V33313dHJysjJu3LgOH330UaPMdLb4gKz3NeKq9ULtYaWq+BwBWV0NgNPqi9Yv4EKWJ4QQQohL2MKFC1vNmTMnsra29sfA+fLLL7eeOXNm/oYNG0x2u121ceNGv6KiIo+1a9eGrl+/Pn316tWml156KcLlcrFy5crgDh061Kxbt840ZsyYkldffTXs7D5WrFgR2r59e8v69etN48aNK1m4cGE4wOHDh33mz59//MyOdgkJCbaGznW5XMyZMyfq3//+d9aGDRtM/fv3r8zOztadq/45c+ZEPvLIIznr1683GQwG55o1axpcf/rpp5/6fvvtt402s/jMM8+ciIyMrD1w4ID3li1bftau0+lk7ty5kYsXLz66YcMGU1ZWlue2bdsM77zzTqC/v79j/fr1ppUrV2Y8++yz7Rqjlha/k57exwOn3RuN1kZNyTkCsrZuG2pntRcqbwnIQgghxKVm9+7dQfv27QtuzDaTkpKKe/XqVfJr50RGRtoWL1587KGHHoo+c0xRlJry8nKNy+WipqZGo9Vq3SEhIY6NGzemabVasrKydFqt1qVWq5k1a1ahw1G3i29eXp7OaDT+Yro2JSXFcMcddxQAjBgxonL58uWtAUwmk/eSJUvCSktLtf3796948MEHCxo6NyMjQ+/r6+tYtmxZq8zMTK/+/fuXJyQk2M5Vf3Fxsa5fv37VAD169DBv3rzZ/4YbbiitX9ORI0f0a9asCZk1a9bJ9957L+SPfK6rVq0K2rZtm5/ValXn5eXpp02bVnDLLbeUTJo0SZk3b1720qVLwzIzM71XrFgRPH369OLTNXkYDAZnbGxs7en/N+bdu3cbZsyYUeh2u8ugbntqjaZxHtfb8meQvbW4ar1Rq53YqiobPEerq3s+st3sAZ6yxEIIIYQQv09ycnK5Vqv92U5k0dHRtgULFrS76qqrOpWWlnoMGjSoCkCr1bJ06dKQG264ocPIkSN/DN4eHh5MmTIlft26daGjRo0qO7uP6upqjZ+fnxPAaDQ6q6urNQDDhw8vffbZZ3PefffdjJSUFMPHH3/s19C5xcXFHocPHzbcdttthe+8807G7t27fbds2WI8V/3h4eG2rVu3GgC2bNnib7FYfpY6q6qq1HPmzGn37LPPZnt4/OG5VjeA2WzW/Pe//z26ZMmSoytXrvzZrPnMmTMLkpKSqs6EY4CQkBCHzWZTHz582NPhcPDtt9/6WSwWtdFodPn6+roqKyvVd911V+zdd9998o8W1JAWP4Os89TgrDUA4LQ1fJOeRm/F5VLjsjtA0+I/EiGEEKLF6dWrV8lvzfZeKAsWLIh488030zt37mx9/fXXQ+bMmRPx/PPP5wDMnDmz6Lbbbiu++eab47766ivzkCFDqgDee++9jMOHD3vOnDmz/fLly488+uijUQBjx44t8fHxcVZVVakBqqqqND4+Pk6Xy8XMmTML/f39nQADBw6sSEtL827o3KCgIGd4eLi1Y8eOVoArr7yyIjU11Xvo0KENBqNnn332+FNPPdXutddeU3Xr1s2s1WrdS5cuDdm8eXMgwMSJE4tKS0u1s2bNijWbzZrS0lLtggULwh588MGCM214enq6amtrfzYRa7FY1F5eXi6A+Pj4GoCIiIhau93+mxO2arWa+fPnH58zZ047rVbrjo2NtQQEBDgAcnJytHfddVf7KVOmFF533XWlv9XW79FoaVBRFA3wItAD0ANPmkymjxVF6QMsAhzA5yaTaW5j9fl7qDVqHDZPANzu6l+87nQ40OitOGq90KgtF7I0IYQQQrRABoPB4evr6wRo1aqVPSUlxZCenq5/7rnn2i5fvvyYVqt163Q6l0qlci9YsCAsLCys9sYbbyw1GAxOtVpNXFycbe3ataYz7VVWVmq2bNni37t375pNmzb5JiYmVlVWVmrGjBnT6bPPPjvo4+Pj2rVrl3HixIklXl5errPPjYmJsVksFs2RI0f0cXFxtpSUFOPEiROLz1X/F1984f/yyy9nBgcHO2fPnh0xaNCgytGjR1fMnDmz6Mw5119/fSnA1q1bjW+//XZI/XAM0LVr15r/+7//a11VVaU2Go2ukpISTVZWllfHjh2tJpPJS6VSnd3tj1Qqldvtdv/i+Ndff+371ltvHdFqte7p06fHTp06tbigoMDjtttui3/sscdyhg0b1vBM6HlozOnSmwGtyWTqpyhKG2Dy6eNLgYlAJvCJoijdTCZTSiP2+5ucpwOySmP7xWvVFRWo9Vactd7otBKQhRBCCPHnzJ07N/uee+6J1Wg0bq1W65o/f352dHR0bXx8fM348eMTVCoVffv2rRg8eLA5ISHB+sADD0Rv2LAhxOVyMW/evONntzd9+vSie++9N2rChAmKVqt1L1q0KNPf39959913515//fWKVqt19ezZs2r06NEV1dXVVWefq9fr3XPnzs164IEHYtxuN126dDGPGTOm4RuzgKioKOtNN92keHp6urp37141evToc557LgkJCbbJkycXTp48OcHb29vpcDhUf//733OMRqPrt94bGxtry8zM9Fq8eHHorFmzCs8cDw0NtV977bUd9Hq9a9SoUSWdO3e2PvrooxFms9ljyZIlrZcsWQLAqlWrMry9vX+ZsP8AVUMJ/XwoivIOcBC4ElABfwOKgF0mk6nD6XPuBXQmk+n5X2srOTnZvX79+kapC2DpnKeJG/wG1buuYtSDL6PV/bSddGZ6BgfTb4ZaHxw7B5H84hON1u/lTFGUvSaTqUdjt9vYY0NceE01NkDGR0sg3x3iXBoaG6mpqVmJiYnnnAkV4rekpqYGJyYmRp19/LxmkBVFmQ7cf9bhIsAKjAUGAv8BbgDq3xlXBfziWXlNzu4FgNrLQU15OX6hrX58qehUIR46K3ZzKD5/7i8bQgghhBCiBTivgGwymVYAK+ofUxTlXeBjk8nkBr5WFCWeunBc/4HQRqD8PGs9bxq3F243qLws1FT+PCAXnypAG2DBVmvAz09u0BNCCCGEuNw15mPevgVGAyiKkgjkmEymSqBWUZRYRVFUwAhgWyP2+bt46bTY7XrQW6mp+Hk+Lzt1Eo3GicvmS2CQ4UKXJoQQQgghLjKNOWX6f8ASRVF2UrcGeebp4zOB1YCGuqdY7GrEPn8XL4MOe60XHp7VVJf/PCDXVp8CwG3zw9imUXYnFEIIIYQQl7BGC8gmk8kG3N7A8Z1An8bq53x4+3lirfXBQ19NzVkBWeWs+9lp8cPL75zbgwshhBBCiMtEi99JD8DPaMBh80Gtq8Za/vPd9Dw86p6N7KwJxjNAdtETQgghhLjcXR4B2dcPp82IRldDbdlPm4W43W60XnXPPrZWBaMPlIAshBBCiD9m586dPpMmTVLO/JySkuJ1zTXXJEyYMEG55557opxOJwCvv/56yNixYzuMGzeuw/vvvx8AYDab1dOmTYudOHGiMnXq1Pjc3Fzt2e3X1NSopk+fHpucnKzcdNNN7QsLCz0AXnnlldDhw4d3mjRpkjJp0iQlPT1df65zd+/e7Z2cnKxMmDBBmT59eozFYvlxp46z69+7d6/3uHHjOiQnJyuzZ8+OOFP/2RwOB9OnT4/57LPPfM9+bdWqVUFPPvlkm/rHZsyYEbN169Zz/nP9Y489FpGdna0rKSnRvPvuu4Fnv37kyBH91KlT4ydOnKhcd911ccXFxT9ugV1dXa0eOXJkx4ZqOR+XRUD29jPitBlRaxzYKn961rWlsgIPbysup4baajUqn+BmrFIIIYQQl5qFCxe2mjNnTmRtbe2PgfPll19uPXPmzPwNGzaY7Ha7auPGjX5FRUUea9euDV2/fn366tWrTS+99FKEy+Vi5cqVwR06dKhZt26dacyYMSWvvvpq2Nl9rFixIrR9+/aW9evXm8aNG1eycOHCcIDDhw/7zJ8///jatWtNa9euNSUkJNgaOtflcjFnzpyof//731kbNmww9e/fvzI7O1t3rvrnzJkT+cgjj+SsX7/eZDAYnGvWrPlFWD169Kh+0qRJCSaTyaexPstnnnnmRGRkZO2BAwe8t2zZ8otZy3/84x+R991338l169aZpkyZUpSRkeF55rVHHnmk3a/tzvdHXRbPNdP7++Ow1N2AZ7f+tEV3VUkxGm8LdpsPaqrBO6i5ShRCCCHEn3Aid1VQQf6GRp3pCgufUBzR9paSXzsnMjLStnjx4mMPPfRQ9JljiqLUlJeXa1wuFzU1NRqtVusOCQlxbNy4MU2r1ZKVlaXTarUutVrNrFmzCh0OBwB5eXk6o9H4i+nalJQUwx133FEAMGLEiMrly5e3BjCZTN5LliwJKy0t1fbv37/iwQcfLGjo3IyMDL2vr69j2bJlrTIzM7369+9fnpCQYDtX/cXFxbp+/fpVA/To0cO8efNm/xtuuKG0fk1ms1n9zDPPZC1ZsuQXgf63rFq1Kmjbtm1+VqtVnZeXp582bVrBLbfcUjJp0iRl3rx52UuXLg3LzMz0XrFiRfD06dOLoW4WvaysTLt582b/BQsWtO3QoUP1E088kQuwaNGiVt26dTP/0Tp+zWUxg6z398NurQvIKq0VW03dMovKkiI0ntV1yy8wg04e8yaEEEKI3y85Oblcq9X+bKex6Oho24IFC9pdddVVnUpLSz0GDRpUBaDValm6dGnIDTfc0GHkyJE/Bm8PDw+mTJkSv27dutBRo0aVnd1HdXW1xs/PzwlgNBqd1dXVGoDhw4eXPvvssznvvvtuRkpKiuHjjz/2a+jc4uJij8OHDxtuu+22wnfeeSdj9+7dvlu2bDGeq/7w8HDb1q1bDQBbtmzxt1gsGs6SlJRk6dixo/U8PjI3gNls1vz3v/89umTJkqMrV678WcieOXNmQVJSUtWZcAxQWlrqkZOT49m/f//K9957z1RZWalZvXp10JdffmnMzs72vP322xt1R8XLYgbZ0+iJ3RIAgNrHRWleLuHtFaqKi/DQV2Mva4tWUwONODUvhBBCiAsnou0tJb8123uhLFiwIOLNN99M79y5s/X1118PmTNnTsTzzz+fAzBz5syi2267rfjmm2+O++qrr8xDhgypAnjvvfcyDh8+7Dlz5sz2y5cvP/Loo49GAYwdO7bEx8fHWVVVpQaoqqrS+Pj4OF0uFzNnziz09/d3AgwcOLAiLS3Nu6Fzg4KCnOHh4dYzgfbKK6+sSE1N9R46dGhVQ/U/++yzx5966ql2r732mqpbt25mrVbrXrp0acjmzZsDAV566aXMtm3b2n/tM/D09HTV1tb+bCLWYrGovby8XADx8fE1ABEREbV2u/03J2wDAwMdXl5erjOf15AhQyq2b9/uu2PHDt+CggL9pEmTlBMnTnhmZGR4t2rV6ni3bt0sv9Xmr7ksZpA9DVocNXXLZ9Tedsry8wAoLshHq6/BZfVHr/1Tn6MQQgghBAAGg8Hh6+vrBGjVqpW9qqpKk56err/99ttjXS4XWq3WrdPpXCqVyr1gwYKw1atXB55+n1OtVhMXF2c7s6741ltvLU5KSjKfWZO7adMm38TExKrKykrNmDFjOlVVValdLhe7du0ydunSpaahc2NiYmwWi0Vz5MgRPUBKSooxPj7+nLO/X3zxhf/LL7+c+d5772WUl5dr+vfvXzlz5syiMzX9VjgG6Nq1a82ePXt8z4T1kpISTVZWlteZkP5r64VVKpXb7f7ZpDbe3t7uNm3aWL/55hsDwO7du43t27e3LF269PgHH3yQvnbtWlOvXr0q7r///tw/G47hMplB1nioweKF261C5WWlLC8XgKK8Y4RFunBaAvHxbvgOTSGEEEKIP2Lu3LnZ99xzT6xGo3FrtVrX/Pnzs6Ojo2vj4+Nrxo8fn6BSqejbt2/F4MGDzQkJCdYHHnggesOGDSEul4t58+YdP7u96dOnF917771REyZMULRarXvRokWZ/v7+zrvvvjv3+uuvV7Raratnz55Vo0ePrqiurq46+1y9Xu+eO3du1gMPPBDjdrvp0qWLecyYMRUN1Q4QFRVlvemmmxRPT09X9+7dq0aPHn3Oc88lISHBNnny5MLJkycneHt7Ox0Oh+rvf/97jtFodP3We2NjY22ZmZleixcvDp01a1bhmeNPP/101ty5c9u98MILqvDwcNsTTzzRqMsq6lOdndAvBsnJye7169c3aptL/7qGyLHzcBW1x1XShzH3Psx//nkrUVd9R/Gem2nr0NDvH483ap+XM0VR9ppMph6N3W5TjA1xYTXV2AAZHy2BfHeIc2lobKSmpmYlJiY2WUgSLV9qampwYmJi1NnHL4slFgA6nR273ROVvoay/JOUnMhB511316i9OoRAf8/faEEIIYQQQlwOLpuA7OntxG7xRe1dhuVUBbnpaWgNdcsqbOZQvPy8mrlCIYQQQghxMbhsArK3UYO1KhgPr3K81d788Mn/8DDU4nKpsdb44+MvAVkIIYQQQlxGAdnfV4e1KhyV2kXruDDKT+XjYTRTazUCGryDzrnzoRBCCCEuTi6XyyXPaBXn5fTYafCmwcsmIPv5GbCVtwPA2N6PmO690PsWYq8IBbcTr8CAZq5QCCGEEH/QwaKiIj8JyeKPcrlcqqKiIj/gYEOvXxaPeQPw9jdgL2uH262iynGUIbc+yN6Db2ItCUNDBWrf+OYuUQghhBB/gMPh+EtBQcHygoKCzlxGk36iUbiAgw6H4y8NvXj5BOQAXzR2G1arAQ9NDsfSvgTAcao1OlU5GMObuUIhhBBC/BHdu3cvBK5p7jpEy3PZ/G3LMygAlVuDrcofvAsoKtqL262i+lQUXpoy8A5q7hKFEEIIIcRF4LIJyF7BdQHYUeGHh1c5Lo9DWKr9qXWH4etZA+rL5qMQQgghhBC/4rJJhV5+3gDYsoNQqV3o/U9iqwjGrjUQ5CvbTAshhBBCiDqXzRpkjYcajboG9fG27P1+DGHhx7AdCgTA1++y+RiEEEIIIcRvuGxmkAE8tRY0dgPq747zypE7CNtTAYCPbDMthBBCCCFOu6wCslFvp9rbl/a2cizVNfhafQDwCTQ0c2VCCCGEEOJicVkFZH9/F7X6UMIqzSzuWY1N7weAT0hgM1cmhBBCCCEuFo22+FZRFD/gXcAA2ICbTCZTgaIofYBFgAP43GQyzW2sPv8ov2A97hx/vMrdWA/sxqYLRIUDz9BWzVWSEEIIIYS4yDTmDPKtwAGTyTQAWAM8fPr4UuAGoD/QW1GUbo3Y5x8S0LpuxtjmFUrgRzso8w/GqClG5du6uUoSQgghhBAXmcYMyAcA4+lf+wJ2RVF8Ab3JZDpmMpncwCbgqkbs8w/xj6zbLW9Hx1Zoa53UGNsR7JEFxrDmKkkIIYQQQlxkzmuJhaIo04H7zzr8V+BqRVEOAYHAAOqCcmW9c6qAmPPpszH4RUcDpzAmXsEa70OEEEyw/mvQ+zZXSUIIIYQQ4iJzXgHZZDKtAFbUP6YoynrgOZPJ9LqiKF2BddQtqzDWO80IlJ9nrX+ah8GA0aOUMHMAg+//hE8XHiI40AoqVXOVJIQQQgghLjKNucSiDKg4/etCwNdkMlUCtYqixCqKogJGANsasc8/zN+rkopKHeY8OwAh0UHNWY4QQgghhLjINOYWco8DyxVFuRvQAnecPj4TWA1oqHuKxa5G7PMP8/ezk57nT/HRPDxVFfjEdm7OcoQQQgghxEWm0QKyyWTKA0Y3cHwn0Kex+vmz/IM12HM9yTxYRaj2OKq2Vzd3SUIIIYQQ4iJyWW0UAqAk+RCl343NpqaVZxaEdmjukoQQQgghxEWkMZdYXBL0V4xnzO7+FJ16F7/oSFBrmrskIYQQQghxEbnsZpDR+cCEZYTostFFXdHc1QghhBBCiIvMZTeDDEBET5j5Lfi3a+5KhBBCCCHERebyDMgArTo1dwVCCCGEEOIidPktsRBCCCGEEOJXSEAWQgghhBCiHgnIQgghhBBC1CMBWQghhBBCiHokIAshhBBCCFGPBGQhhBBCCCHquSgf85aWllasKEp2c9ch/pTIpmhUxkaL0CRjA2R8tBDy3SHOpcm+O4Q4m8rtdjd3DUIIIYQQQlw0ZImFEEIIIYQQ9UhAFkIIIYQQoh4JyEIIIYQQQtQjAVkIIYQQQoh6JCALIYQQQghRjwRkIYQQQggh6rkon4Ncn6IoauA1IBGwAX8xmUxHm7eq5qEoyg9A5ekfjwOvA4sAB/C5yWSa21y1NQcZGz8n4+PnZHz8RMbGz8nY+DkZH0L80kUfkIHxgKfJZOqrKEofYAFwbTPXdMEpiuIJqEwm0+B6x/YBE4FM4BNFUbqZTKaUZiqxOcjYOE3GR4NkfCBj4xxkbJwm40OIhl0KAbk/8BmAyWTaqShKj2aup7kkAt6KonxO3f+3JwG9yWQ6BqAoyibgKuBy+hKTsfETGR+/JOOjjoyNX5Kx8RMZH0I04FJYg+wLVNT72akoyqUQ7BtbDfACMAKYCfzn9LEzqgC/ZqirOcnY+ImMj1+S8VFHxsYvydj4iYwPIRpwKXwhVALGej+rTSaTo7mKaUYZwFGTyeQGMhRFqQAC671uBMqbpbLmI2PjJzI+fknGRx0ZG78kY+MnMj6EaMClMIO8HRgNcHqt2IHmLafZ3E7dOjkURWkNeAPViqLEKoqiou5v/9uasb7mIGPjJzI+fknGRx0ZG78kY+MnMj6EaMClMIO8ARiuKMp3gAq4rZnraS4rgJWKonwLuKn7UnMBqwENdXca72rG+pqDjI2fyPj4JRkfdWRs/JKMjZ/I+BCiASq3293cNQghhBBCCHHRuBSWWAghhBBCCHHBSEAWQgghhBCiHgnIQgghhBBC1CMBWQghhBBCiHokIAshhBBCCFGPBGQhhBBCCCHqkYAshBBCCCFEPRKQhRBCCCGEqEcCshBCCCGEEPVIQBZCCCGEEKIeCchCCCGEEELUIwFZCCGEEEKIeiQgCyGEEEIIUY8EZCGEEEIIIerxaO4CGtK7d293mzZtmrsM8SekpaUVm0ymkMZuV8bGpa+pxgbI+GgJ5LtDnEtTfncIcbaLMiC3adOG9evXN3cZ4k9QFCW7KdqVsXHpa6qxATI+WgL57hDn0pTfHUKcTZZYCCGEEEIIUY8EZCGEEEIIIeqRgCyEEEIIIUQ9EpCFEEIIIYSoRwKyEEIIIYQQ9UhAFkIIIYQQop6L8jFvQghxOTpRWsPLXx5h8+FTRAb5cH2vCKb0iEClUjV3aUIIcVmRGWQhhLgIFJtt3Lh8F58cyKd/XAi1Dhez1x3gkXUHsDtdzV2eEEJcVmQGWQghmpnb7eaut/ZSWGXlnTv60K1dAC6Xmxe/yGDxV0eprnXw0tQkPDQypyGEEBeCBGQhhGhmnx86xZ6sMp5N7kK3dgFgLkRtreShQeH4ennwzMZ0tBo1CyYnolbLcgshhGhqEpCFEKIZuVxuFn6RQUywD5M6eMOHf4Mf/gu4QaNnRsIY9P1v4YlvT+KpVfP0+C4SkoUQoolJQBZCiGb0lamQ9IIqXpncAY8110HePmrjbkHdLglN5WFUqe9wi2sjbZS7+ctuNy4XPJPcBY2EZCGEaDISkIUQohm9/30uwQYdY068SPXeVE5ldcX29hfAF+hiYgi580WMVe9z1dEX2dRmGOO/v5HqWgcvTklC5yFrkoUQoinIt6sQQjST0upavkw/xV/bl1Kz8T1ObAvF5dLicd8MHLNuxuF2cnL2E+Tvj8E14J8opV/xTfBzfL//INPf3IPZ5vcXrHIAACAASURBVGjuSxBCiBZJArIQQjSTD/edxO50MTH7NXK/C4SYSBbd2o5/FxaxIl/Lwt69+PrqXpR/9BFZL22jdvCrhNSe5Cu/eZRl7uX6ZTspNtua+zKEEKLFkYAshBDN5H+pedwclEH5xhO4PXS8OCCcmO3j6VYwjE7u7nQpGoizdhrrrr6TouJKjj+8iOqk5/HSa/nA61+EFG5n8tId5JbVNPelCCFEiyJrkIUQohnkV1hIySnnhZoPqD6l55NrOtAxaxKBoQbG3XkFAWE+1FodpGzNYs/HTr7rFkv7nDW4Hv4XYbPvJ6B6JcsLn+Mh8z1ct8zFO3f0ISLQu7kvSwghWoRGDciKomiBN4AoQA/8CzgBfAwcOX3aEpPJtKYx+xVCiEvNpoMFRJKPes9JLCEB1NomYPDSMfHeXvj46wHQeXrQe2R7Erq3Yd1rO8hx3UaxIYjez7yIffo0Qtp4s+DkIh6ywA3LYf1d/Qgx6pv5yoQQ4tLX2EssbgJKTCbTAGAksBjoDrxoMpkGn/5PwrEQ4rL36cECHjF/hLVMx6dXDMTPFsqo25J+DMf1+YV4cctjg2ib5EuN/zVs6TuV4hWrOHmoE+6wHjyvXkxM1V7+8uYeLLXOZrgaIYRoWRo7IL8PPH761yrAQV1AHqMoyjeKoqxQFMXYyH0KIcQlpcRsIyWrkIS0w5j9jXg5hhKk6InsFHTO93hoNVwzozuJw9ui0g/k00F3UP7Zl2RtDcBtiGGFfiHWvIM8+WHaBbwSIYRomRo1IJtMJrPJZKo6HYLXAv8EdgMPm0ymgUAm8ERj9nnRs1VR/dVCyhf2oXp+e8pf7E3pe3/DlbMb3O7mrk4I0Qy2pBcyumYH1nwN2xOHoHd6M3xq4m++T6VW0X9iPP2nxOGp6srGIbOoSDvCkU99cNUaec/4El9+f5APUk5egKsQQoiWq9GfYqEoSgTwFfBfk8n0NrDBZDLtPf3yBqBbY/d5sXIWmih5sQ8+Xz/J0TInn1R3ZH+ZFs+0NajfGE7u8/3I2fmBBGUhmklaXgXv7M654P1uPnyK63O34tB44PLoh2+ciqDWht/9/sShEVw9vTM+7ji+GHwfpeVVHP3MiLawilXGV3nyg33klMiTLYQQ4nw1akBWFKUV8Dkw22QyvXH68CZFUXqd/vUwYG+Db25hnCXHsS4dhstaybKYV/C8czPDHnmf1n/7lM9Hb+OdkHtxVxfR7rNppM0fxPe7v8UtQVmIC+ZUpZVpb+zm0fUH2GoqvGD9Wu1OfkjPIiCzlAOdr0TvNDBk7G/PHp8trmcrxtzVFaMrgu39HiRfpyFrSyCRJzJ4RLWS+9ak4HC6muAKhBCi5WvsGeTHgADgcUVRtiqKshV4AFh4+tf9qHuyRctmt1L8xnU4nE62XPkWM265hc5t/Agy6GkfamR8b4Xr//oUvg+lsi1uNm1qM0n6ZBz/e346e47kNXf1QrR4breb+9fso9rmpG2AF09+mIbNcWFubttxrISp+RtxWDScDO6PKthGm/iA82orqksw42YlYnS1IqXnw2QGGcjeFsLoE98Qlfshr3+T2cjVi+bmtLsoP1VDaX41DrvckClEU2nUx7yZTKZ7gXsbeKlfY/Zzscv76ClaV6ezot0z3NKtA8VLX6d6+3ac5eWovL3QtWmLd6+eGIcNY8CNj2GrvIOs92cz/sQ6jv53B6/EP8Vtkydg0MtjqoVoCvtzK/juWAlzxnYkOtiH21bu4fO0U4xLbN3kfX9x+BQTc/dRFhSJt7MNSYPDUalU591e24RArvlbNz5avI+MxL9jPfw8fOfmsZ6ruXVzFEOUUDq29m3EKxDNwVptZ9f/MsnYc4paS90W4yq1irAYX5TeYcT3DkOr0zRzlUK0HLKTXiNzlmYTvH8Zm9QDuaZ1e46MGU3RSy9x+OQ+dnrkcMiSRdHOryl4ci5HBg/hxF9n4Ug7SuztK7Bdv55QvZ2ZR+5k9cK/c6KkurkvR4gW6e1dOXjrNEzu0ZZ+7YPRqFWYCqqavF+3282+fYfxOVnDfmUATo2DHv3i/nS7reP8ufbebhjcgZzoOJsf2gdQtNvIosyX+Oea7Rdsdlw0jcLsSt6dt5tD3+ZhjDVi7xFASRcDzjgDxSUWtq42seqx70jdcgKXLKsRolHIFGUjy107m1C3Ci/jcIoeuI9jYR58OKkbkSFX4qHTkKk6zK7arYSXarg1J5LEXXswf/klupgYAq6bit/0zZR98jB3nljBlsUHKL95JV1i2jT3ZQnRYlRa7XyYmsf1nX0wFuwGn2Cigrw5Utj0ATktr5KxRz7Ajie1+m74dXCj82qcr+GwGD+uuTeJDxftoyjuUb7TPseVKcXMrn2cl+IjmD2mc6P0Iy6skpNmPly0D7VOzXcxHuwu2EFnyw5izXlUuNyUePpSaehJZ2cvrO8dYdfmHIbclEBcx3M/MlAI8dskIDei2oLDROR9xsaqq4lcu5QfEnpRFn0dScf1cLzunEQUevpMxBpXwNLE5VQnWvlbaV/67ijn1DPzKVzwIr6jRpEfF8ugE69z9M2RfJ+8mh6JXZv34oRoIdbvzcVoL+axzDvhcDlovekasYbUU+Ym7/uLQ6cYdPIQuRGJeLg9GTCsQ6O2Hxbtx/j7u/Hhy/swRz7KVu0LDE7NJ+n1v7IzYR19YoMbtT/RtKzVdj5enIpTDSs0BQzKWMLKvXn4/+wfF/MBE5Web3GofS8q3JPZ9PI+3gzT0WNsFKOSWqP3kKUXQvxREpAbUf5HTxNo0xOy4ygHlfFUhF5FWIiRK0ZGEtLOiMvhpjCnkqPfF5KV6mSq+jEssQUs813G4uRq7rn5egb/YKfq4424PqihOr4PAcFp+K69lr3WN+nee2BzX6IQlzSXy81/th/nFd+38HBaYcQzsOkxRql28r+STtgcziYNE/v3HmBkoZUjA/rg8qkmJiGs0fsIjfRlwgNX8OGifVSHPcIm3UuM2HOc7L9NpeydDwnw82n0PkXjc7vdbF2dTnWFjY2GbB7cvZBOJ+yUt1MT2L2YoEAH+LXGbvMkM7+aslN2lKzdGA/vxxQ3ARX9Obz8IK+GpDN+aDS3XhmFj9zXIsTvJr9bGomr5DhtT37Cl2kJ1Pr3pzT0KroMasOAqfGo1D/dgOPfypv4nmFUFltI+TyHQ9/BDa7HKY/OYrHfG6zq6s29Ux6lz95qyt5+m5LvfFAb3LTNvpHUqudJvOq6ZrxKIS5tX6YXEl++jd66HTD8KehzN3z/BleUb8Ll7sTx4moSwprmhraiKhu9U9Zi1QWgVscR2k31p27O+zVBbQwkP9ydDxelUOl8kA8GLGf8tn2kTBnDoPWfoPGRkHyxO/ZDEcd+KCLdUMl93y4gpNKJo18VfbsEwOCFkDAGPP3wADoBnWqrqT6+jS8+WYJ5+7t0PpBKRvyNTCg0kPvWVwz7NpJ/XNP5gtyIKkRLIDfpNZK8L16mvFiHV0lbsiNHEdcnhAHX/Twc1+cb7MWgGxRunteXTv3bEJAVzS37n+KKY6OYu+NFZgV9RuXKp2nzystoWsdRutuAzyOPk/7UX3G75CYMIX6Pf2w4wL8+PoTL5aam1sGiTQeZo38Hd3ACls4zOJVVRWXsNIJLvqetqpCMJlxm8U1GEb1PHiIrqgcq1Awd1r3J+gLwC/Fi4t97ENrWD1/NHXwwbAShOaf4btxQ7MXFTdq3+HPstU62rzuCw6BmzHdzCTQ7UV1VTpdRV8Nfd0PSDeDp9/M36XzwUUYy/oH/MeWdPWQ+Gk2R9t8Yyw/SRhvLrMOZfPv0q8xetQOzzdE8FybEJUQCcmOwmQkwrWH/gSjSEm7CKxSG3tjxd80OGQI8GXSDwo1z+6D0CKNdViK3ps4jdH9n7vzkbzyp/RT1qkUE/Hs+Vg9P3G9vwTSkN+Zt31yACxPi0tYmwIvl3x7nb++mcNdbP9CnZB0R7nxyE/7Fqsd3sfbf3/POZ12odvozQH2Qo6ea7ka9H75Pw7PYxomwntQGlxMa7t9kfZ3h7atj/APdaN8jFF/nNXwx7Ha8iy3sGTuErBT5DrlYpXyeg7nUhkfmm0SUWikeWk3X4TfCxBWg9frN93vrfLht7Avc/fIm8mbkc8L7HSoNkcQY+3DVf5byn5vu51DqkQtwJUJculpMQHa63Ow+XkpZde0F79u8ZzWlOVAacC0OrTfX3tkLD+0fW8foG+zFsFs7csOTfYjrHoZyoi+37puH/etAbnnvL7zo/x3mNW9QMDAGD3M5J+64k5zbb8V66FATXZUQl7672pfzZE8nGw/kYz36DY9q15AVdAcfr9egrzhJp9y1OO0u9tTcQJJ3MUcKm2YG2ely027b25i9W6NRtSWye2CT9NMQrU7D1dM70Wd8DDpnd3YPeBib2o+yW+5k/bKHqHVe+O9McW5Ws519m3OwaYoZemgne3s7GN5/OIx6Dv7gkhx/T39mD3ueO+Y8QtrgtZT4FJGhTKOVKwrLzTez/a4Hqc3ObqIrEeLSdkmsQT6cX4nT5aZzG78GX/8hs4C31q7DUn6KvdoruGdUN27qE3nB6qv5bgXpWVdQENeHuMH+BLUxnHdb/q28GX5bJ3qMiiLl8xzUu/qh5PflZJaJeaELMIzxI7xLX+7fvpWa73dyPHkixpEjCb3vXnRRUY13UUK0AKc+epORJ3Zyi9IK1ckfOK4ay6bDo/CqzCEi8xXKfWy0zg3hUJuhJPkvJ6/C2iR1HDhZwRUnDpDTbhguXAwb3LtJ+jkXlUpF95FRBLc1smm5BlPiI7TOeYMOL37Csn076Pv4S3QP73lBaxINS/kiB7vVyRWpyzgWDiN7BaG6djGoz38+K9Y/lsXXL+fLXp+zYe0mFNVQioMUYjM+JGPkaPyuHk7wjDvw6tSpEa9EiEvbJRGQl3+dwQep+cwcHMc9w+J+dpf519u3E/L53byoygIdmLQdmfTR3xkUH0JEoHeT1+bOS6Em/ST5rWaCRw1DJwxqlHYDwnwYeksHel8bw8GvT+L9rY626QnYjldzOHAX0wZ1pEPvbCbvrsW9ZTNVmzfjP3kSwXfeiTas8e+MF02kMB0yPoOCA7ir8nDU2qj1MFLjFU6NXxzu1kl4R3UnyM8PzTnWs4tz2+u4lazSCbQ9cAQ8byS3pBVeNSeIOrqY3Pk3syd3B7e+8Dkn2wzCZQ6hWGtrkjpS9h+ld2ENeUoP7OHl+AU0z01ykZ2DmPqPXnz8Wgon3LNw+X/CkK8+44ecaXx+fzKzBszGqDM2S20XE4fTxZFCMy63m47hvk12M+XZrGY7+7fmorFkEFRxkhPDbYROfet3Lav4LSqViqvaj6DfQwNZ/vli8r/yxR13HZkxV9Lp+w8wb5qEYfBggu+aiVdiYiNcjRCXtksiID+rXsI/Dd8w++sbGbl/ELf2iybMV0/h9lVMzFuAXaXnSLfl5GXrCc5dxTz9ShZ9GcMLk5v+N3nJN8tJyx9MVWQUVySHodU37iOifPz09L4mhh5josg+UEL6jnw8D/qQlD+UEuNJlnT7hsJ+e7lpey1XvreG8rVr8Z+QTND029FFXrhZdPEHuN3UHviM7A/XUpZtx1JroMZlwOaMRussJ0B9gna6fYT6rUXva8eh0ZDqjiHVsyflrQfSrvOVDO/cGl9PbXNfyUXvZP7TuLRdKfYaiNPuIKjoE5SMz3EtfpybBk3hipKrOfrGRPS1JVRZwyk3m3G73Y0eiDw2r8Hs3Ra1OoSYbs27ss0vxIupj/bmy7fSOLp7DNZ+7emw9y0i/rGOWVO3cv34fzIiasQFC4UXk+oKGz98X8Abe7L5uqwKlwpu6RvJU9demE1W9m/NxWFz0uvAe3zVHe4YPguC2zdqH14eXvxt9MOcGpDHW6tfx5mWyIEu9+B07qfX/k8wT70O7169CJp+Oz4DB16W40AIuEQCckHCTbjyc1lmX0iuZQ0pn7YjWnWCEeqTHPHpT6r6EU59aketAZfzboI9jvHN3jRyr4qjbUATziLbrZi/2cipkGdQaUvpPXhIk3Wl0aiJSQohJikEi7mWjF2nSPvWm6DMNrg0yeTEbmdj0k6G7MtjyLr3KXv/PTQ9uxE6bgLGoUPxCJJdlS4GRenZ7Fj2KSero3GpbgQNcNbkUBZwyFZGQE4GAaVp+LiO4eVtZqT+Y3TeH2L7yoPvPaMoDutOqwHX0ndQP3TaS+K38gXXQx+N1/o1VHqtQecA1Gp08x+h06ApAHQI7MD/rggkLjOTAn08rZ35VFod+Hk13l8+XC43EYd3UhDWCzcuBg9s/qUMHjoNI27vSkRCLt+8VcsPvR8l8vgHPPR/23n/8INsmPA+D/d5lPYBjRvOLjaWqlqcDjcFmRWk78wn+0AJAD2Anj4GTl7hy6od2fSNCWJUl/AmrcVuc7L/qxN4m004yKdtbyNeV97TZP21MrbmwZlzKc438c5/1uDO7cGerp2wsJ1+BzdTc+dMiIum9cxZ+I4cgUojm42Iy8sl8afqJ29k4LA8jC48l2H+uxjmSKFa054vfR7l0P4QXPYa0oM/YnfUdm7zmEHxToXx9h/47mgJU3o2XUB2pn/KgbwBWMJa0W1SIOoL9E/gXgYdicMi6Dq0LfnHKjj49Uk8ftATVjwUTasM3piYgn/+HgYeSMH1eAr5c57A1VUh7Jpk/EePxSMg4ILUKX5itznZtmwLh9M0eNjbElq0jeOBBzme4KD1FYm0DVPwIwBbqYvqHBuWTAf5Xl0pCOsNbheeNZmEFh0g7OghfKrzCKeQcD6FNZ9yVA0ufx88o2Mwdu2OZ+fOeHXujDYiAtWfWLfYElzxxAIK+w7D8uF7qHx8iJ0+C2P8T7vXqVQqAq8age8LxznVqieK6wjFZlujBuQjhVWEFhRzuHs3bCHl+PtfPEsYOl7ZlrbxgXz8wqccjb6BolbduXbPO5Sm72Tu0AnEDJ/AXUl3E+bT8pZtbd6ajendYz/+XOsBJzwLGeX/OVGOcraU/IUrDpWSHm7k6Y2HGdk5rElnU9N35GOrdtA94yM2X+lm9tiFoGn6P6KDwxX+9tgcCtN28/F/t6Iq78f3XXtTptlCn31fwoMPYvr3E7injKHrtPvwMjb901eEuBhcEgF5SEc1pv9t4aSzH58VTAYm//iaR20G3dLWcXVFLk4PNcuHLaaL90PoLO3Zc6yEKT0jmqyu3E9WUOR3M25VAX0HNt3s8bmoVCpat/endXt/LFPjSN9+koNfWGhfGI/aYzzb+x8jzzuD8Lxv6Z2ejmbeMxQ8PZ+yK6LQTxhHxzE3YvBsmk0RLgZut5v8CitZJdXEhhho5evZLHVUFFn48OnNVFq8aHPyS0yBn5Fz1zBu7PUMHQI7nPMPXZfLzamsClK/P0b2gWhyfNqTEzUBm6aKSu1R7KoT+NmLaFV2knalpwjI3Edtyn5Urrr2VJ56PNrHou/cCa+uXTF0SUQfE3PZzQSFXj2a0KtHn/P1/j2SKal5EIBop4OiKhuxIed/o+3Z0rd8TVtVCC5ta9p2dTZau43FN9ib659JZu+qdaTsimBXr38QWvAtf3//YzK+W8f9g/5Hx6GTmNZpGu182zV3uY2mZwcPKiJSyCjTolPnc7XXl3RRmXB7+qPqeA3u7D18kTaAuw3fM72iE4fyK+nUuuEbxf8st9vN/q9y8bLkYlEfp0vveLRR/Zqkr3MJ7dSL25/txfZNW8j6LAMPyygyuwwiXbeH6LTPiV+8hrTla8jqE0nwtcn0GnYj3jrZcEa0XJdEQFZm3EHk4AzSX5hPRZoFi2coKrcL/4oj+KrL8R85Cq/ERMo/+pA7Pt/Ju2M3EeaagfnQcSCpaYqylLE/1QeLXwjRI53Nvk7Ly6Cj24hokq6O4lTqYQ5/uJVj+REEmDvi9hjL3n5V7A84ieH4N3T9/hDG71/mh+deJnVgGzTjRzEg/mo6BXdCrbq0ZhxLzDZe2pRBVIgPccEGtC4X5VkZmI99j2dJCm3c6bjQstjVk1Ptr+PFG3piuIDbrRbnmtnwzDe4bBCWt5j1V1fx2LTVJAQm/OZ71WoV4TH+hMd0hylQVWolN72UrMNF5GYYqa3oBoDZCIeMYIupwaKtwkUVHvYyvC2lBJYX03ZzKn4fbEFvK8OhcVEUoqc61ABB/ugDgjCEReDfLo5W7bsQGNsRjWfz/EWiucQHKnzqlYfKVUug05Oiqsa9Uc9z6zpKAzsCMODKJvo++pNUahU9bp1Eh147+faNrziqGkJhq960y93CP1ZvJm37u9wzYA1hPfszKW4SgyIGoVVf2mvgS0/uoCx3GfHeVkLcDsoqQthSmoTPcTPa9duobRNCYHRnSvL86WzMYlNaXJMF5FxTGeWnauiQ9SVb+sITY15ukn5+j34jhtLrqsFsXP8FFdtPUGUdQF5sP4o7ZmAs2Yvy7S50Wxeyz/ASed3bETh6DN1H3Iyfp8wsi5blgiQFRVHUwGtAImAD/mIymY7+kTY84+NJWvYf7AUFWFL346qqRNvmRry6d0et0wHgO3oUqVOvZdSWg6T2stCmwkxhpZXQJpg5tO15nxLNKFSOQkaNndLo7Z8vlUpFWFJHwpI6MujkPk58+DY5RxzkmJMor+iMU9WZ1CvdGHyq8Tq5j6Tt+9F9uZqNXVYwp38wXToOZnDEYHqE9cBXd/HPLhcfOEjrL4qxouXAz15JApI4qaqlnfEQ92n/Q/7xr7lj2XMsu2MIxgtwg1vJSTMbnv4GlcWCruIVPvtLF5Zd+zyeHuc3Ho2BnnS4sjUdrqzbKtZabacsv5qKIgsVJTUUlZZRUWakpMSCvaItGp2OylA1h0LPtOBC7SpHW1uGp6UEQ04xHodLUVv2U2v5iiJbGYW4KQ7SUBzugzkiEGtMOJrYaPyj42ntF0GEMYIwn7BLPhzVp9VoqQj3xqcmF5U+kGJz4wbkoMzDHAq9Dqt3Fa3bhDRq243Np2MfRsyNo+tbT7I7LYbsdmPJbjuMmJNbmPfWlxzeuZMX+3/Lv9oFMy52HONixxEfEN/cZZ8XldWXPl+r0bjOLMOzYfYs5Hi0F2YfLZ3ScvG1fEVWVDL/1L/Kk2ldeGB401zrwa0n0Tiqcdf+QKe+3fEIjGqSfn4vrUbNtZNHYE92sfnz7yjb+gPVlVEUGTpSMeAaUGfiV5JK/Pa96L9+jQP/eo0jSSHYB/ekXd+r6BzShTaGNs0+cSTEn3GhptLGA54mk6mvoih9gAXAtefTkDYs7JyPMVN7etLu3ocovPseUJkIsMey63gJ4xLbnH/l5/DVmq+pNkyHyGOoNRfnrKu6TRKRdyURWXUKy953KNi1mtpSPQW1CierO1LocyWnuvYH3LQy5zHtfxkUb8lghfIJ90fV0j4wnm6h3egU1Ilov2gijBEEegZeVF96WqMVQ+UHOPUG0IJK40DrrEVf60Jl12PVtCHH3Zkc9UIGGl/jr0VzmftBIC9c16NJ66r5f/beOz6Kcu3//8zMzvaWbDa9t0koAgIiGpQiKIaWogioiBz55fEockDPI55HlCMKlhyQcgQFRRQbKYrKAQugyBGwRKQkm0Aa6Ztstved+f0RwhcIgYSElp3365WX7Ow9933tmOx85rqvYnZj+yt7AacHLsdq/DH7drw99eVevXZiGY2wRDXCEi/sufF5fThebsSRkha0Vp0C3VwHic0GgZuCWxqHuoCh4HB2uIUXFNsK2m2ExGFEQKkJoiNm0J4ToLx/wCg0okpigUHuhFNFwxekAq0NgSg4GLRKDalaC5k2DGqZBkqhEhKBBHGquMt+ILia+GLCoDiuh0mZiOZe9CC7vT6Imq2wxCdDGnuDNOSQaRA2bzWmHs1HVUEu/mi5C+VR6aiIHI/IxgP450e7UdcfWD90CzYf24ybtDdhasJUTIiZAPUN5EWMvW0CfD8fQMOvP8FkN4AMCkL/m0dhuKgtvGbvoW1QzH8D4KaBM4egxXEKpwz2Xi8f6rC4UXFYj8j6A/hxmA//l76qV+fvCTRFYuLENGBiGgyNDfgj73O0nnBD7+gPvXoIDKPuA4lqKA3HcdMvv0K6bwcM8h0oSCJwNEUCdkg/JIcNRJI6CQnqBMSp4vgygjw3DFdLIKcB2AkAOp3uAMMwV0ydBN45FuWBEsj1JTBrBuPw8SsgkB1GNJqGghJbkP3XB3p37iuBIgSS0QsQN3oBnC3VMO3NR0RJHu5yFsPtDUedJxXl9HDUy0aBJcbgtnoW4yqbwAobUaE8ibfDf0BNYCNAcFDQCsSp4hCjjEGkIhIxyhjcE3sPKPLaxLWqFFpEWo9AfcwAsYsDAHgowKQgYZVToDkW8UYpTiY+gj3sX3G36lUEHNmEL1PDMXlQ+BWxyedh8eXSXXC6BYB9Db6dmorCXhbHXYESUBiYrMHAZA2A8zxfXhfcDaWoK9GhrtqA1mYXbCYWbgcNj0cKuzQepgAFWAgvOLcYANnsAl1vg9BthshtBu0xAb4GNJMuVIlsaJW5YLhZgn/OX3vFP2tPkSQmQfx7CxrY4Wg2916zkPLf/4RVFAeQEqQOurJVEHoVggAGZiMm+R5EHFiPuu/+iWLLWJwIvR2nQu9AoKkUf/98P7gBHN4f2oqX9C9h+aHluD38doyOGo1REaMQIgu51p/iklAqFSLGpeNCd4jRt9yH7VO+Q+AfJSgmb8Pdgb/gt6rRvS6QS39pBMcBcuMBBN56M2hZUK/O31sEhoRi7F9zAACu6iM4tmMv6k660GhLQEtAKlpuzYKYbYTEdgopjaUYWVoO0We/ozzsd5REcNgZSqBaS8AZGoBoTTziVHGIVEQiSBKESHkkopXR0Eq015UDhse/uVoCWQnAdNZrH8MwAp1O5+3thQiKAjtpLPp/dgA/awBzhbm3l0DpV5thld0EjjuIIOVlOcKvGWJNNG7J+huAv0FX7xtOqAAAIABJREFUZ8TRX/eCKtuFQeZ1SEId6hwMig23oMmXCIc3HuHWQQgvBSivHRJXLUiiEQ5xExoUJdgTuAPloT7ETYtDP02/a/J5NDHJGLP9JwCAz+UC5/WAksrOfMlyHIfiql8hfGExlOYZ+IZbiEeCn8Nfdx7AvQMzrkjzjT1v7kazTQapcSPevZvGN9lvXn9f+gIRhJEDERs5ELHnveXxsagzOlDTake93g6z0QHWZAJpNoO0WCBwOUB77KAdDsDBweMWws0GwsZFwAMxvIQEIEjQAFJ///MafLjuo+k3BKTzWwAkXPrWXpvXtOcrGAIYcGAxYugN2KVMJIfgzqcRfWsOlP99Fyn7nofe3B9HiLtxTDUHlMuBKV8exmPRw3FkjBcFrYfwQ80PAICkgCSkRaRhWMgwDNIOgkp0ZeJ3ryTj5q/Atw8shSFwCiaQx7CnxohpQ3rX4VLyYzXklmocTKnHX6d+3KtzXylE0QNxc85A3AyAsxlQd/BnlP5SgZYmCkYqGWWKNh8Yxbogd9QgtaUKw6tqIXXoQbuNsIn/QF3g72hQ+VAtJ7BXChgUgFEjhiAqEkGKEMxImYEx0Vc/+Z2Hp52rJZDNAM7eVyGvhDhuJyY9G61bvgaFZohben8758C3zQABCEdfnwk3XYUJV4OZMg3ANLAsh/raStiPfI3U8l0YY9gKgduJekMMjltHoolNgl0QAbcoHiAoaGzAaBtwT2kzhCkccHUTri8IJRIBItE5xwiCQL/Y4WDe24X/PPYA7N7Z+E/LI8hkt+KbYyN7vbZp8c5j0J0gEaj/DmvuOomNkwsgEYoufeJ1BE2RiNHIEKORAd0pg8txgNMEztwAV3M9nPoayBNHXykze5XY5OGo8bSJE8rYewKZ/PMXtKruhktlhER+Y/0enINIDvWY+VDf+QQ8B77AoB83QGO0QWcdjXLtbah3iUBvN+NxIgqKJBlqUh3YRx/CB8c/wHtH3wNJkOiv6Y/hocMxLGQYBgcPviG22mXyABCpQsACSJwkKqqrAfTeg46h3obmBhcSGg+iODMeSnnwpU+6ziBkgYgYm46IsW2vOZ8XRl0Jqv4oRUOlCa0tUtTL0+DjztqN4lhI3XqE2ZoQX9cMsdMAkdsEocsEymtAs7IeFelKjHmaF8g8146rJZD3A5gM4LPTMchHLjG+R4QMGI56IQGBuxZKKhFeHwtBL8UJe112OHw3Q+I+jgkT/9Irc14PkCSBiKg4IOoJAE8AXhdQ9V9EnPweERX7gMZ8gPXAxwlg9IaiwZaIBns8rJQKlPzSFRmuNRRJ4d5/f4jtD/wdtSFTEcd9g00/HOtVgWxusmBffiXk9ga8m/Y1Hh6yEv1Cej/+/bqFIACJGoREDXFICq7/yOP/R4w6FsclBgCAyGLrtXkF1adgTo2FPOqK+QOuLiSJxNsygNsyUHFSB+G3b2FK/XxYLMnQuW5DAzkQtZVyoBIYysVgnPBeiNR2WJRN0Jl0yKv9CO+K3gUApASmYMP4DQgUB17bz3QJBkwdj9otXpRYBkLRcAhe3929dj85cagO4FjUKouQlX79hyJ1BYISIKDfAAT0+3/dB1mWg1nvgFlvg7WxGZYGI1obOBia1Wgwp8Lr6yhF4ioPXk2zeXg6cLUEciGA8QzD/BcAAWDOlVyMoCi0xAVAZqqHUzgQVXobEkJ7x1vxwyeb4aVT4CH/e2W79F1rBCIgYUzbDwB43UBrJShDOTStFdBY6tHf0gh4moG46zszvx1SJMLw+elofbcBJdz9CMdOlOtvRXwv1LzlOA7fLPsPfFDgQNQHkAfdh5xbx/aC1TxXA5qk4VK4QLBeSFxesCzX48Y/nMcDj10FjpQgNqnv1YuNS2AQl7AKLvdraPh5JzSHCzGseRMERhFqDKmoc6WglY6H0RkJVh+GCAzCTC4bYk8rhFQrPAEWUGOu/0qj8beNg3T9ZjjoZAzk9qK00Yp+4b1T4afsxxNQmWvwywAWc2OubOLwtYQkCahDpFCHSIEB594vOI6Dy+6FzeSC3eSGtdkKl74BUUPmXiNreXjauCrfTjqdjgWQczXWaocbwCBkXy0MWhKlZYZeE8jlB6ygvE7YRt7RK/PdMAiEgDa57ecGJmLMBARvfhaVxAQwgi/xXXEj5vWCQD7y4T40uoPAerbhl1gVdmU83QvW8lxNuCAVRC4D5GIKJocHAbILJyh2FWPJMVjlsQCAwf2ZXrDw+kQkFOLmO6cAd04Bx7KoPXEY1NHvEVdzEMNMhVBbmmGwRaDZFQODOwrNbAwsVDjYpkA4TtRCNfj6LidJkCTEChPsvn6IJ0txpNbYKwLZpLfDaBMh3FyEsLQHe8HSGxOCICCW0RDLaGjCASAQQN9pSMNz43L9P75fJoHDRoL7z1YAQE2lCRjV8zltDjs83n5QWg8jYeSjPZ+Q55pw60PjUfeRGZaWO3Diz8PAHQk9ms/aaMSBH0yQuhqx4faDWDR8CzTyGynAgAcAiGAtJGUtcMqD0Gp391ggtxz8EWZlLHykE8FXqMHE9QZBkohMHoLI5CH/76DbDlGtDuTJY5A16KAwFEFhyYfEawIdsuvaGdsNIgZFoeUPGk6zDMWnmoDhPRdwJ36qAACUaw7jsVHLezwfDw9P79JnBXJi2r2ocawCOA+MdfZemfOHHdvBUcFwCspxS+z1HTfH0zmBY0YjbN0/4BZOgFBfAINtEgJ7IIZ+WPElvGQo9sV/ilDxHDxw8w1YrYAHdGgoBEdaYPLFwOzsecyw/dgfMCvvgDfAAuIKVEu5YRBKoYkbAk3ckEuPvU5hxozEn3/o0GqNBlH3B4Ceh0NU/HgUMqsbxwYooZH4xwMUD8+NxPXZ4aIXUGkj0KoChJ56+Fp6RyCf+m8NSJ8btVFxUEn7Ticxf4OgKKSMigY4FoFOGXaXNF32XFXfH0alIwKsezeOB8uxZsqj119JN54uIQuLhNjZDBZStJp6XgvZXlUBizwC6pieh/DwXFuCksJBsB5wjkgEtRb1eD6v24cmuxpiewmS0/jdSB6e65E+K5ABwBIsgcRWC5HN1+O5WJaFzxwFlVkHwa339oJ1PNeSqGn3IMBYBqXpZhwoKb2sOViWxU8fHQXtNiJ/6HeYnrwYUYF9LxnLX1BFxkPsbCvx1trs6PF8bpMAICjEJ1yZhjQ8Vw+SJCAijBCw4Qj06WB392yHoe6PcnAEjQZ5KeYOn9RLVvLw8PQmfVog+yI0UJsaIfRRcNo8PZrrt9I/wVFaCNkSDE24cKtrnhsHUXw8gl3HQEMLc9U34Diu23Mcfe97GOkw1Eq/gg8ZWDCm72ah+wNBUQyE7rbGQmZjz9pNcz4ffJ62jmhJ8TE9to3n2qMMIOEWhYFja1HR3LNSgBU79oFgfSiPdkAhkvSShTw8PL1JnxbIdHwiFLZmAEDVKdMlRl+cP3YdAgA4RC0YHKXusW08156UkXEgfW5ozHJUdjMMx+f24tf9RggdtfiJqcTyiY9BKOjTf059ntDgOHBcm0C2G3vmQfZUV8MhaXuQ9pcEvb5ORFI4XOJAuI1AVWPPmslU1VCQWysgHD6xl6zj4eHpbfr0HV2dOgQShx4AUHvK2qO5XGVeSOxNOBbeH6EqvkJBX0Bzz13QGI4hxNQf3xR3L8ziz03fwiHUoDToa0QpF+H2xBujFjRP50hpKZxCCwCAM/Xsgdp55CDs0lB4KRNoEdUb5vFcY0IGxQMAfK3RMFYfvex53CYjLFQEnMQJZA3iBTIPz/VKn61iAQCh/YbB7FgHANDXX75AdnqcINxRkNsOw5zKN3/oK4gHDkSwZSX02iH47Y/dwKiuZdn7vD4U/WKG0OdCebwHy+/xs5rYfRiH3ANwXrDWnuUtGI/+Bpu0Pzzy3kkQ5rn2aKLbdgIEzgiwjUcBXF7scP233wFEIBqU9XgsJq4XLfRPfvvtt2CBQLARwAD0cacfT6/DAjjq9Xr/MnTo0A7Z+n1aIEfEDEAz5QTJmmHSX36jkIPFfwCkDBKcRGr09F60kOdaQpAk4pMlKHa5IW10g+O4LlWgOLp1NxxCLVqFmxAb9TSSQ3qnCQ3PtccTIAXtMcNp71kN5MYKHezScRAG8wK5r6AMkoDgvBB7w2AzHbnseaoPlQEYgbrYAL7iTS8gEAg2hoaGpmq12laSJLufTMLjt7AsS+j1+n4NDQ0bAUw5//0+/bQloARo0VAQupvhbL38pJuSgzoAAClswk18/HGfQn1POjQtRxFjSMXek1276RX9WAehUw9DkBf/39gBV9hCnqsJp1FB5DKDcLE9msfc4gZLCREWE9FLlvFca0iSgFTkBCgt3O6Tl5XYCwA1ejFETj2CB93eyxb6LQO0Wq2ZF8c83YUkSU6r1ZrQtvvQ8f2rbM9Vx6GVQGLTg7NcfhULe4kNQpcRlUo1borgE276ErK0NITof4OQVWL7j3suOf7o3l9ho6NAkt/DE/EY7z3uYwiCgyFyWUD2rIgF3M62VsQpSXzL3L6EWiOBQ6IFZTHA7LiMUm+WRliJaLC+KoxPuq33DfRPSF4c81wup393LqiF+7xA5sICoTI3g3Kx8Hm67xXysl4IrCFQmU5AFzG0x+1nea4vKLUakaoWkD4HuAo3fOzFY09//uxXUF47hEGVmDn6xu0MxnNhJCGRbaXevD2LPuN8bZ02Y2P4jpt9CU20Bg5JEDxmoK6psdvnm37+Fm5hAFokdRgezdfH7kscOHBAlp2dzbS/LioqkkyZMiUlIyODmT9/fqzP13Zv2bBhg3bSpEmpkydPTt22bVsAAFitVnL27NkJWVlZzPTp05Nramo6dCKz2+3E3LlzEzIzM5kHH3wwsampSQAAhw4dkmZmZjIZGRnM3Llz4x0OB+Hz+bBo0aLoqVOnpmRnZzNlZWUiACgrKxNNnz49OSsri3nggQeSmpubz2QQl5WViSZMmNCv/XV5ebkwKyuLyczMZB5//PE4m83WqV587rnnot55550Omep79+5VzJs3L/7sYy+++GLEli1bNJ3NlZubG3rw4EGpw+Eg3nvvvaCurFlUVCTJzs5m2n8GDBhw886dO5V6vV4wY8aMpMzMTGbevHnxF/sMF6LPC2RReBikDj0IEDC3dL90U3FNGUgiADJfObwRvCDqi6jG3oFg/WHEtKTi+4rOvcj7jxyA25eIQOsPOKKdilvjefHT15AGR0LkNgOcGCx7eU4pn9UGryAQHOeGXMU/UPclAuK1YEkanEUDY01Jt8+v2t92TrWGhJjmq5v0FVauXBmyZMmSGLfbfSaofPXq1eE5OTn1hYWFOo/HQ+zYsUOl1+sFeXl5wQUFBSVbt27VrVq1KoplWWzevDkoNTXVnp+fr0tPT29Zt25dh2YLmzZtCk5MTHQUFBToJk+e3LJy5cowlmWxZMmS2FdffbWysLBQl5aWZq6qqhJu375d7Xa7yS+++KJk0aJFNcuWLYsEgH/84x8xCxYsqM3Pz9fdf//9+tLSUjEAbN26NXDBggXxJpPpjDB/+eWXI++77z59QUGBbvjw4ZZ169aFnG9TU1OTYNasWUn79+/vta31RYsWNYwYMcLe0NBAFxYWdhDIF1pzyJAhjry8PF1eXp7ugQceaBo1alTrPffcY87NzQ2bOHGioaCgQMcwjP3dd9/tVHBfiD6dpAcAijgGAuePAABTkwMBod3rdHb0eCkABWT0KUSF8w1C+iLy9PsRsu1/0RB6Kwp2fYfx/zOuQ/KMh/Xgpy37oOAGIVm+F95ReXyCTR9EERwBh/swABIOixsylajbc3hqa+EUBYIlTfzvSB9DHdJ2/5Bbg2GpPwrgrm6dX13rASgWvpTkK2Adz/v/rdQU/F7TLRF0KTJvjmyefVtsy8XGxMTEuNauXXvy6aefPlOWhGEYu9FopFiWhd1up2ia5rRarXfHjh3HaJpGZWWlkKZpliRJPPHEE01eb1vITl1dnVChUHTYyiwqKpI/9thjDQBw9913mzdu3BheWloqUiqV3rfffjukvLxckpaWZkxJSXF98MEH2rS0NBMAjBw50rZw4UKZ3W4nWltb6e+++06dm5sbmZqaanvhhRdqAEClUvk+/fRT3bhx4wa2r1dVVSWZMGFCFQCMGDHCumzZsqjzbbJareSTTz5Zt2fPnm4L5L179yreeeedUIFAwNbX14vGjx9veOaZZxqefPLJ2PT0dMOuXbsCqqurJStWrAh79tln67uyptVqJdevXx/+8ccf6wDgzz//lD/11FP1ADBu3DjTG2+8EfHkk092qFbRGX3egxyUPBQSR1uzkObG7nc/ajrWAHAsWJEVDB9v2icRJSchmKuE0NOEoIp4HGo41GHM2z+/C7lpIEKaD+GH8Jsx7WY++aovogqOOtNNz9TqvKw57Cf+hFOsgY/uWe11nusPVbC07b9OLZpau1nJwuuGyRkE2t2MYYkjroB1PNeKzMxMI03T52w5xcXFuXJzc6Pvuuuu/gaDQXDnnXdaAICmaaxfv147c+bM1HvuueeM8BYIBLj//vuT8/PzgydOnNihE43NZqNUKpUPABQKhc9ms1HNzc2C4uJi+Zw5c5o+/vjj0kOHDil3796tsNlslFKpPCOySZLkmpqa6OrqanFaWpr5s88+05nNZmrr1q0aAJg0aZJJLpefE4OamJho//rrr9UAsHPnTrXT6eygF+Pj49233nprt4VVu+OgsbFRuHHjxpMFBQUlH3300TkeyPnz59dHR0c7zhbHl1pzy5YtQWPHjm3VarVeALDb7R2uWXfs7DUPMsMwKgAfAlACEAJYqNPpfmYYJgPAGwBOnR76gk6n+6G31r0UYcnDUO21ApwbjQ3dF8hsDSB1NKFCFYIRvEDukxAEAeWtNyHm2I9w09lY8+07GDhjIKR0283w14ZfceLrRiQhHoOIQlQO/hekwj6/+eKXBIZEo/60QNY3OxAe2/2dw5ay3+EUj4BX2mVHBc8NglwtAkmwoAgtTNYD3TqXa/gTTioSXtTjjli+QciVYPZtsS2X8vZeLXJzc6Pef//9kgEDBjg3bNigXbJkSdTrr79eDQA5OTn6OXPmND/00ENJe/bssY4ZM8YCAJ999llpcXGxOCcnJ3Hjxo1lixcvjgWASZMmtchkMp/FYiEBwGKxUDKZzKfRaHxhYWHOfv36OQHgtttuMx0+fFgqk8l8Vqv1jBjkOI4IDg72SCQStn2tMWPGmPbv368EcMHrtWTJkprnn38++osvvgi6/fbbjSqVypufnx/w8ccfBwPAs88+e2rYsGEXrWMpFotZj8dzzjaa3W6nxGIxCwDx8fEOmqZB0zQrFAp7nGj5n//8J3DdunUn219LpVKfxWKhpFKp12KxUHK5vFsF7nvTg7wQwPc6ne5OAI8AWHf6+FAAf9fpdKNP/1w1cQwAKmkgWpWAwGtAa1P3YpA9Pg8E9iDILdU4okxAYrD8ClnJc61RTJuF0PoDAOdGSEl/PL//eZhcJvxY8yOe/WoJEgwjEV6/H6eiJZg2aui1NpfnCqGQa4DT7aaNl5GzAACtlZXwCBUg1NLeNI3nOoAgCchlgEOihdfY3K1znX/sg1OshZE28vcSP0Aul3vbvbghISEei8VClZSUiB599NEElmVB0zQnFApZgiC43Nzc0K1btwaePs9HkiSSkpJc7XG1jzzySPPgwYOtu3fvVgPArl27lIMGDbLEx8e7HA4H1Z6EV1RUpEhOTnYOHTrU+uOPP6oA4Oeff5bFxcU5pFIpFxER4fzxxx/lAHDo0CFFYmJip19yu3fvVj7zzDM1eXl5OoqiMHLkSHNWVlZru02XEscAkJqa6jhx4oS0rq6OBgCHw0EcPnxYPnjw4EueS5IkOI7rcoya0WikPB4PGR0dfaZk2cCBA627du1SAcD333+vGjJkSLe29XrTDbYSQHtxJAGA9v3JoQCGMAyzAMAhAP+r0+kuoz7O5WNRkRC6WmDv5pbp8RpdW4KetwrWwBF8UkUfRnrHXRBLPUjQ/wcgpmJn0S+4o/oOEF4K03XPQOBzo5/jC2yPn40xWv7m1lchCAJuQVu7abPx8kIsLI0uQAXIgjrktPD0AdTBErQ0aMFZXADHAV2MM688VAwQg9CgoPh7iR+wdOnSqvnz5ydQFMXRNM0uX768Ki4uzp2cnGyfNm1aCkEQGDlypGn06NHWlJQU58KFC+MKCwu1LMvipZdeqjh/vrlz5+qfeuqp2IyMDIamae7NN98sF4lE3NKlSysXLlwYz3EcBg4caE1PTzf5fD7s379fOW3atBSO47BixYpKAHj55Zcrly5dGv3GG28QYWFhrhdeeKHTp7zExETnokWL4mma5uLi4hyvvvpqdXevgUqlYhcuXHjqL3/5S6JIJGK9Xi85ffr0pqSkJFdtbe1FM5iDg4M9Ho+HeOGFFyKWLl1ae6m1SktLRaGhoecU6Pzb3/5Wv3DhwriCggKtSqXyrFu3rsN1vRiXJZAZhpkL4G/nHZ6j0+l+YRgmFG2hFgtOH/8WwOcAKgCsB5ADYO3lrHu5uNQ0pPYWNHezFvJxXQUAGQLJcohDHr4yxvFcFxAkCfW4WxD1+bcoi7wHk6ofg115CorGMLgsFPoffwuCfjYMHnP/tTaV5wrjFnlBsG5Yze7LOt9lowEVEBDWIaeFpw+gjgxATZkWhJmAo+UUJEFdq3VdVcMBQsAeG3OFLeS5FsTFxbm3b99+prTJqFGjrKNGjepQ6uR0TO05cbWhoaHejz76qOxi88tkMnbjxo3l5x8fO3asZezYscVnH6MoCrm5uR0E7eDBgx2FhYW6ztY4ePDg4fZ/33rrrbavv/66uLOxZ7N48eK6zt7LyMgwZmRkGM8/Pnr0aMvo0aMt56+9Zs2ayvZjO3fuPN7VNW+55Rb7LbfccvLsY125rhfjsgSyTqfbBGDT+ccZhhkI4BMAT58VSvGuTqcznn7/CwBZl2nr5RMkh7KsBc0uFm6nF0Jx1z62/qQeFGRQSJoQG8qX9OrrBDy6AC2F+xFb+w5swxfD+0skCJkAqXWFiGB/x/cJU/CX/mHX2kyeK4xbJgDls8JpubxuIT5vW5OQ4DA+Z6EvogpTgKWEEBnV0Ff9ieiuCGS3DSZnMAiBC4mJAy89noeH55rTazHIDMP0A7ANwEydTvef08cIAH8yDBN5etg4AL/11ppdRRiigcRpAABYWrq+beqtckPkaoVBIUZsUPfKw/HceNBJAyEdoEFi8XE4AivwwPO3ID3+OMJKd0I2yI3Y8Tl82S4/gJWLIPBY4bV2P8SC4ziwRADA+RAeyofi9EWUQRIAQIBdg/KaX7t2UsNRuBAOwtuAgeH8QzYPz41AbybpLQcgBvAmwzB7GYb5QqfTcQD+AqCAYZgfAEgBvNOLa3YJeUQ0JM62RM3uCGTKLIfMWocyZSTigviEG38gYvmboGgWg995Bc2rXkHrmjehiHTga+ZhjBvC1y71BwilDCK3DT5799vTszYbPMJAAEZold2vocxz/aPUtAlkhSsIp1q71izEV/ErXKIw2MlWMPyDEw/PDUGvJenpdLqpnRz/BsA3vbXO5aBJ6A/WeRAAYO6iQG61G0H5tJA6j+F3UQymaHgPsj8gSBoG9fSbQRX+BveXhVDEOmAZrsakOc+BJHnvsT8gUCsharbB7Ox+LrGrqQFOcSBYwoQAKd9Fry+iCBK3/YPSwGA42KVz6n47ALdoDppIH2L4ewkPzw1Bn28UAgChSbeA8lgAzgNLF0s3HT2pA0HQkHKnUE9HQyPjb3b+QvAz70G9ZAaiMlvRMHEkhH/ZjmA1f1PzF+hADYQeK7juO5DRWl0Gl1AJH2XnH6j6KLSQgkQMOMUaOFs75B5dkJMnT5cODFCDpvzitsvDc8PjF90OgkL6oVQOkF4DjM1di/8qr6gDoIJGUA0ucAYfe+pP0BJoJv8TSH8Rw0j+ZuZvSILC4PTaAJ8ArI8F2Q1B01p1DG7hAPiEnSZ18/QBFBoRHPVB4Mw+wOsGBBdxoHhdaDGqAAUgjEm6ekby8PD0CL+4+xO0GGYlIHK3wKjvmgfZUNEKcCy04noEavmkCr+EF8d+iSwkBkKPDQABl717YRbGmhqwlBCslL4yxvFcF6jClHBINCDNJLjWyosPbiqG2xMOsF7ERodefCzPDcuBAwdk2dnZTPvroqIiyZQpU1IyMjKY+fPnx/p8bU3cNmzYoJ00aVLq5MmTU7dt2xYAAFarlZw9e3ZCVlYWM3369OSampoOXyB2u52YO3duQmZmJvPggw8mNjU1CQBgzZo1wePHj++fnZ3NZGdnMyUlJaLOxh46dEiamZnJZGRkMHPnzo13OBxnPH/n2//bb79JJ0+enJqZmcn87//+b1S7/efj9Xoxd+7c+J07dyrPf2/Lli2aF198MeLsY/PmzYvfu3dvpyV+nnvuuaiqqiphS0sL9cknn3QoH/bNN98oJ06c2C8jI4N57bXXzhFn53+GnuI3CsChICC1N8PaxRhkX60PUoceJoUYcXwFCx4ev0EZngDa09ZwyWHtXpyFtamtrCer6n6Lap4bB1WwDC5RAAKNFPR1RRcdy9UfBkuEAawe8SF8gl5fZOXKlSFLliyJcbvdZwTn6tWrw3NycuoLCwt1Ho+H2LFjh0qv1wvy8vKCCwoKSrZu3apbtWpVFMuy2Lx5c1Bqaqo9Pz9fl56e3rJu3boOT1KbNm0KTkxMdBQUFOgmT57csnLlyjAAKC4uli1fvryivcNdSkqK60JjWZbFkiVLYl999dXKwsJCXVpamrmqqkrYmf1LliyJefbZZ6sLCgp0crnc9+mnn3YQqydOnBBlZ2en6HS6XhNJr7zyyqmYmBj3kSNHpO2dA9vx+XxYunRpzNq1a08UFhbqKisrxfv27ZN39hl6il+EWACAT0VD2dCMFqcPTpskd03zAAAgAElEQVQHYtnFPTy0RQmZrRa1QUF8iTceHj9CHRaLOo8NAODspkB2mVhADNDKoCthGs91gjJIDBAktJYAlNT9huBB0zsdayr+L1zisbAQRsQH8QL5inLobQ3++Lh3//gGz2jGLfNaLjYkJibGtXbt2pNPP/10XPsxhmHsRqORYlkWdrudomma02q13h07dhyjaRqVlZVCmqZZkiTxxBNPNHm9bbtVdXV1QoVC0cFdW1RUJH/ssccaAODuu+82b9y4MRwAdDqd9K233go1GAx0WlqaadGiRQ0XGltaWipSKpXet99+O6S8vFySlpZmTElJcXVmf3Nzs/D222+3AcCwYcOs3333nXrmzJmGs22yWq3kK6+8UvnWW291e2tky5Ytmn379qmcTidZV1cnmj17dsPDDz/ckp2dzbz00ktV69evDy0vL5du2rQpaO7cuc2nbRLI5XJfQkKCGwAGDx5sPXTokHzUqFHWC32GnuI3HmRBgAwye1tXxUuVemuxGkCxGkgcdTgpieCzjnl4/AhVUMQZD7LT1j2B7HW0PXjTgZpet4vn+qG9FrLSGYQTzZ02JgMAlJUcg0OsQZMAiNfy95K+SGZmppGmae7sY3Fxca7c3Nzou+66q7/BYBDceeedFgCgaRrr16/Xzpw5M/Wee+45I7wFAgHuv//+5Pz8/OCJEye2nr+GzWajVCqVDwAUCoXPZrNRADB+/HjDihUrqj/55JPSoqIi+VdffaW60Njm5mZBcXGxfM6cOU0ff/xx6aFDh5S7d+9WdGZ/WFiYa+/evXIA2L17t9rhcHTojz548GBHv379ul8wHuAAwGq1Uh988MGJt95668TmzZvPEdk5OTkNgwcPtrSLYwDQarVel8tFFhcXi71eL3766SeVw+EgO/sMPcVvPMiyYM2ZWsjmZge00Z13uTp+8iQIgoQEdahCOO4L5Gsg8/D4C6RIBJY7LZC76UHmPG3CSRLEd97sy7QLZJ8wCHr9RUIsWB/q6gSAkIReGQSFmI9Nv6LcMq/lUt7eq0Vubm7U+++/XzJgwADnhg0btEuWLIl6/fXXqwEgJydHP2fOnOaHHnooac+ePdYxY8ZYAOCzzz4rLS4uFufk5CRu3LixbPHixbEAMGnSpBaZTOazWCwkAFgsFkomk/lYlkVOTk6TWq32AcAdd9xhOnbsmPRCYzUajS8sLMzZLmhvu+020+HDh6Vjx461XMB8rFixouKf//xn9L///W9iyJAhVpqmufXr12u/++67QABYtWpVeWRk5EW/IMViMet2u89xxDocDlIikbAAkJycbAeAqKgot8fjuaTDliRJLF++vGLJkiXRNE1zCQkJjoCAgO7X4+wifuNB1kREQXxGIF/8gaeqqq1NeiBVjXoyDEFyvsQbD48/4aPaQiwcVne3zuNYBQjWiQCV+EqYxXOdIFeLQJKAQ6yFo8UKcJ04rgzlcNjb8ojoMD5Bz5+Qy+VepVLpA4CQkBCPxWKhSkpKRI8++mgCy7KgaZoTCoUsQRBcbm5u6NatWwNPn+cjSRJJSUmu9rjiRx55pHnw4MHW9pjcXbt2KQcNGmQxm81Uenp6f4vFQrIsi4MHDyoGDhxov9DY+Ph4l8PhoMrKykQAUFRUpEhOTu5UDH377bfq1atXl3/22WelRqORSktLM+fk5OjbbbqUOAaAm266yf7LL78o28V6S0sLVVlZKWkX6RerDkYQBMdd4O/qhx9+UH744YdlH374YVlNTY3ozjvvNF/KjsvFbzzI2tgU2Lx7ADhhbr54JYuWU0YIOCnCRKfgVcXwJd54ePwMt9ALgnV3y4PM+XzgSBUImKHmq1j0aQiSgDJQCEdjELxmApy5DoQqouPA+sPgPOEAxyI0svNdS56+x9KlS6vmz5+fQFEUR9M0u3z58qq4uDh3cnKyfdq0aSkEQWDkyJGm0aNHW1NSUpwLFy6MKyws1LIsi5deeqni/Pnmzp2rf+qpp2IzMjIYmqa5N998s1ytVvsef/zxmhkzZjA0TbPDhw+33HvvvSabzWY5f6xIJOKWLl1auXDhwniO4zBw4EBrenq6qTP7Y2NjnQ8++CAjFovZoUOHWu69995Ox3ZGSkqK67777mu67777UqRSqc/r9RJ///vfqxUKBXupcxMSElzl5eWStWvXBj/xxBNN7ceDg4M9U6dOTRWJROzEiRNbBgwYcDkhHl3CbwRyaNRAHKMBwtcK8yWahXhqvVA69BAqvJBooq6ShTw8PNcLHjEF0meF1dx1D7JNXw+3UAXwAtkvUIUqoK/SQmUk0FxzAFpVVocx5qoDIBEKljUjPiT+GljJc7WIi4tzb9++/Uzv8VGjRllHjRrVoRf5s88+Ww+g/uxjoaGh3o8++qjsYvPLZDJ248aN5ecfnzVrlmHWrFmGrowdO3asZezYscVdsX/y5MmmyZMnd0kUr1mzprKz9+bNm6efN2+e/vzjDz/88JlQGIlEwu3bt+8IAOTl5Z0J6v/++++PnX/eo48+2vzoo482n3/8Qp+hp/hNiIVQFYVWJSB06S8ZYiEwySCz1aNVoURkIJ9UwcPjb3gkFAReK2yWrgvk5rpyuEUqcKQNKgkfltXXUQdL4RAHIcwA6Gp/vuCY0uKf4ZSEwAI7EoL5ChY8PDcSfiOQIQ+GXcFBam+CucUBjr1wzJjVYYPAGwipvR6nZFpE8Ql6PDx+BysRgvbY4OiGQDY2VMElVMJLOhHAe5D7PEqtBBwlQlirArqWCzjlvG7UVDXALg1Bo4BGopYXyDw8NxL+I5BFCrgVHFTmZrBeDjaT64LDjp88AYKgIPHWoZoKRmQAL5B5ePwOqRhilw3ObiTpmWtPgaVEcFE+qCS8QO7rqILbKllIfVqcNNR2HNB4BCZTCFiSRq1EgXC15CpbyMPD0xP8RyATBAglBbW5EQDQ2mC/4LDy8joAgJqoxCkuGFGB/JcaD4+/QcplELltcNu7nqRnbWgLA3TSNASU/3y1+iuq06XeHOIgWJucgO/c3xX21C8QWNsS9+ggGSiST/bm4bmR6LUkPYZhCAA1ANoDzX/W6XSLGYaZDGAJAC+Ad3U63Tu9tWZ3EaulkNkbAACtDTZEpXasVao/ZQbFqhAsrMUpbjwfYsHD44cIlCrAYwPr5sCyHMguiBunoS351yXlt9L9AYVGDBCAQ6KFsJWEo/YXSKJvO/N+edUPkDtDYQQQFM7nsvDw3Gj0ZhWLBAC/63S6ye0HGIahAawEMByADcB+hmG263S6xl5ct8uogrUQuitBkF4Y6i/sQXbX+aC11UOmcKNVGAYlX9idh8fvEKs1cHlsAAi47B5IulAL3WMFQAFeGS+Q/QFKQEIeKIalKRiReuDPkgKMaBfILIsjJ/+ATzQbHtaBuPALlIDj4eG5runNfcChACIYhtnDMMwOhmEYAKkATuh0uladTucG8BOAO3pxzW4RGRUHAgCIVrTW2zq8z3EcBEYF5NZaCJVecOqYq24jDw/PtUemCQHtbfuOcNm61qjJ52x7mPYpVFfMLp7ri4AQKUzySMToOfy37qxKFnW/o6HJA6s8Ai2kj69g4QccOHBAlp2dzbS/LioqkkyZMiUlIyODmT9/fqzP5wMAbNiwQTtp0qTUyZMnp27bti0AAKxWKzl79uyErKwsZvr06ck1NTWdeuY+//xzdU5OTlz76++//14xderUlKysLGbu3LnxNpuNBIAVK1aETZ48OXXatGkpBw8elAJAY2OjoH2dadOmpZw4cULUPk9TU5NgzJgxAxwOBwG0NfV48MEHEzMyMpjZs2cnNDY2dnCoVlVVCadPn56cnZ3NZGVlMSUlJaKz36+oqBBOmTIl5exj77zzjnb58uXhnX2+LVu2aL788ksVAKxfv17b2bi1a9cGv/jii2eePNesWRM8fvz4/tnZ2Ux2dvY5tpx/zbrKZQlkhmHmMgxz9OwfAA0Alut0ujEAXgHwIQAlgLPr6FkAXLO7R3gUA4cQoFx1aG3oKJBNrTYIfDLIrbVwK4XQaDr9f8PDw9OHUYZEgva0fUc4bV2LQ+Y8YoBjAWXAlTSN5zpCEy6DVxyEmCYCP7taAHfb74z3+OdwGcSwS0NRLaSRwFew6NOsXLkyZMmSJTFut/tMLNbq1avDc3Jy6gsLC3Uej4fYsWOHSq/XC/Ly8oILCgpKtm7dqlu1alUUy7LYvHlzUGpqqj0/P1+Xnp7esm7dugu2XVy8eHHU6tWrI1iWPbPOyy+/HLNhw4YT+fn5uujoaNf7778f9Ntvv0l///13xRdffFH85ptvlr/00ksxALBs2bLISZMmGfLz83VPPfVUrU6nEwNt3fZmz56d3NraekaYr1q1Kmzw4MHWwsJC3UMPPdS0fPnyDtsgr7/+evjMmTOb8vLydPPmzat/7bXXInt6LR9++OGW9vrL7733Xgchbbfbif/5n/+Jy8vLCz77eHFxsWz58uUV7Z3+UlJSXJ1ds65yWSEWOp1uE4BNZx9jGEaKtjhj6HS6nxiGCUebID67fZACgPFy1uwNBAGRMKo4iK2nYBUMgsPqPmfr9HhZW11tqasOdRINn6DHw+OnaMPj0doukLvYTY/jZKBYC0SKhCtpGs91RGC4HCAocJQWBkcLWsp2QdMvAwdOfIkQQygMkRQaBT7EBfExyFeDj4s/1mw/uT2oN+eckjCleUbqjJaLjYmJiXGtXbv25NNPP33GS8kwjN1oNFIsy8Jut1M0TXNarda7Y8eOYzRNo7KyUkjTNEuSJJ544okmr7dtp6qurk6oUCh8F1pnyJAh1gkTJhg//vjjM967Dz/8UBcaGuoFAJ/PR4hEIvbgwYPyESNGmEmSRExMjNvn8xFNTU2CI0eOyJOTkx3Tp09PDgsLcy1btuwUAJAkiQ8++ECXkZHRr33eiooK8cKFC2sB4LbbbrO+8sor0efb88ILL9SoVCofAHi9XkIoFF6yQ95Z8wsXLFgQHxwc7K6trRX169fP9sYbb1QvX748PCgoyGM0Gimr1Uo988wz0a+//np1+3lOp5PMyMhoGTlypLm8vFzcflyn00nfeuutUIPBQKelpZkWLVrU0Nk16yq9GWLxAoAFAMAwzCAApwAcB5DEMEwgwzBCtIVXXLii+tVAEQ6ngoPaeAoA0HpeHHJVeVsCn0JQiyqOL/HGw+OvyEPjIeimBxlQgGQtUEtFlx7K0yfQRLQJX6ssDAMqOfz8y2pAtwP/cVsQZDtdwUIjhEzkN01r/ZLMzEwjTdPnNFeIi4tz5ebmRt911139DQaD4M4777QAAE3TWL9+vXbmzJmp99xzzxnhLRAIcP/99yfn5+cHT5w4sfVC69x///2tBHGuIzQ8PNwDAIWFherffvtNMXPmzBar1UqdLbKlUqnPZDJRTU1NQqVS6f30009LQ0ND3W+++WYoAIwfP94cFBR0jihPTk52fPPNN2oA+Oqrr9Qul6uDXtRqtV6hUMiVlJSI/vWvf0UuWLCgrivXiyAIDgBqa2vFubm5ldu3by8+cOCAqr6+/swfyjPPPNMgl8t9Z4tjAAgMDPRNmDDBfP6c48ePN6xYsaL6k08+KS0qKpJ/9dVXqs6uWVfpzb/aFQA+ZBgmHW2e5Ed0Op2HYZiFAHahTYy/q9PpLlAw8iqhDAMn9yG4vA41sW2VLMKT1Gfebil3QOywIkDcgp85BkkBvAeZh8cfEQSFnolB7opAdngcYCkFSFj4NtN+REBYm0BuUsdjROVxbOjfgGHbHkKTKwxOSQRYsIiIUl9iFp7eYkbqjJZLeXuvFrm5uVHvv/9+yYABA5wbNmzQLlmyJKpd7OXk5OjnzJnT/NBDDyXt2bPHOmbMGAsAfPbZZ6XFxcXinJycxI0bN5YtXrw4FgAmTZrU8sgjj1ywvTLQFn/7/fffB27evLlMIpFwcrnc1x6LDAB2u51Sq9U+hULhS09PNwLAhAkTjP/61786zR5dsGBB/T/+8Y/orKws5vbbbzdptVrPvn375G+++WYEAMyZM6chPT3dtGfPHsWyZcuiV6xYUdEe1tCORCJhPR7POcLabreTIpGIBYCwsDCnUqlkASAwMNDjdDovy2nLsixycnKa1Gq1DwDuuOMO07Fjx6STJk3qUqvszug1gazT6VoBpF/g+JcAvuytdXqEIgximQ8qaytoMYHGSjP6j2r7/WBZDmy9GJrWPyBVulHDaTGG9yDz8PglhFAIH+EAOF+XQiwMzafgoRUgiWYo+CYhfgMtpCBSC9FgTcSdxQJUCVhMiorA7F0cLMpI6EkOqeF80qY/IpfLvUql0gcAISEhnqKiInlJSYnotddei9y4ceNJmqY5oVDIEgTB5ebmhoaGhrpnzZplkMvlPpIkkZSU5MrLy9Ndap3XX389tLi4WPbRRx/ppFIpBwC33HKL9bXXXoucP39+Y01NjZBlWWi1Wu+AAQMsu3btUs2aNcvw888/K+Lj452dzbtv3z7FAw88oL/99tttBQUFaqPRaB01apR11KhRZ2zas2ePYsWKFVGbNm0qi42N7dBVKTg42OtwOMhjx46J+/fv7/R6vThw4IBy3rx5DQBwKc8ux1244/H5mM1mKj09vf/OnTuPymQy9uDBg4qsrKwePyj5176PQASFggQBDlK1BTXFInAcB4IgoK+2gPLSUBvLIEr2opILRSTvQebh8VtcYoDg7F3yILfUVcItVEJIOKDkBbJfoY2Uo8wQDNrmwBOSSfhSeBxja834KTUOjQIOt4cpLj0JT59j6dKlVfPnz0+gKIqjaZpdvnx5VVxcnDs5Odk+bdq0FIIgMHLkSNPo0aOtKSkpzoULF8YVFhZqWZbFSy+9VNGVNRoaGgSbN28OT0hIsD/88MPJADBhwgTDvHnz9EOGDLFOmzYtheM44v/+7/+qAeD555+vefbZZ2O2bdsWLJPJfGvWrCnvbO7k5GTnM888E/f6668jKCjInZubW3n+mBUrVkR5PB6iPfY6Ojra+a9//auq/X2SJPHSSy9VLl68OJYkSXi9XuKOO+4wjhkzxlJRUXHJ2pkxMTGOxx9/PO7f//73Ra+HWq32Pf744zUzZsxgaJpmhw8fbrn33nt75D0G/E0gAwgNUsMGO3wuHaytcpibHVBppSg93haXHGA8AaHSA5M4ko8b4+HxY1wigPTZ4exCmTdjfQ1YKhYcXHztdD8jNFqJ6qMSeEkak4tlmHnXYhy3L4WXEOGUwI1+YcprbSLPVSAuLs69ffv2kvbXp72tJeePe/bZZ+sB1J99LDQ01PvRRx+VnT/2QowePdoyevRoS/t5x44d+/1C4xYvXlwH4JyY4NjYWPcnn3zS6Tr79u070v7vpKQk1+eff97B/rPZtWvX8UvZ29l1OP96tf/7tN0AgG3btpV2Nu/DDz98jod41qxZhlmzZhkuNPbsa9Yd/K4fqig4Ag4hQDb9AgA4VdwWC19R0giW1UPIWkDKASog6lqaycPDc43xiEhQXmuXPMjmurbvai/lhVLCP1j7E9ooBUgQ+GnQNBg//RQ1Tz0FS+KtAACDlECEmt+J5OG5EfE7gSxQR8Co4aCo0UEeIEJNiQEmvR2WExzkluMQh0nQSAUjIpDfFuPh8Wd8Ygq0x9YlgWzXtyVVOymK9yD7GREpAeAI4GDIbRAPHw6SpuG8ZRIcQgKREYoutSnn4eG5/vA7V4c4MBKEyouwKgLSfgqc/LkZJr0DLOFD/9JdkCaxKPUF8/HHPDx+jk8kgNBtg9PaIfekA+7WtlyXVqGQF8h+hkgigDhUgugmFo5XViFZQeHHfx5GBeHFkOiQa20eDw/PZeJ3HmRpUBQUKjeUDkDZvxGhCSo0n7KiKvAHKGwmiGStqGCDERnIV7Dg4fFnWIkIElfXPMiste2/zQIx5GK/8zv4PdH9AhHiI3G00ozmVsBl96KS9GE0E3zpk3l4eK5L/E4gEwFxiJC1leqrK9mPyU8OQlymEA77VwAAqdKMai4EcRq+8xEPj18jlUDsssHn4eB1X7Cx1RlYV5vX2C6UgOK31P2Om4a3dQY+/ksDDm0vB0sTqJECw2L5tuM8PDcqfieQERgPrbJty7Tyjx9B0SSKlD8gqYkDIRJCqPCiigtBjIb3IPPw+DOUVAG6i930OK8ElNcKt4hvCuGPhEQr4VYKoCm14VRxKw4rOQxL0kAkoK61aTw8PJeJ/wlkRRhYsQAWhQDa4w042nwUu6t3Y1CLDOK4UBAkUEuEIZzPPObh8WsoZQBob1s7+kuGWXAyCFgzWEngVbCM53qDIAmMyRmAcgELh5TEHq8DdzLaa20Wz1XkwIEDsuzsbKb9dVFRkWTKlCkpGRkZzPz582N9vrZdqA0bNmgnTZqUOnny5NRt27YFAIDVaiVnz56dkJWVxUyfPj25pqamQyKD3W4n5s6dm5CZmck8+OCDiU1NTQIAOHTokDQzM5PJyMhg5s6dG+9wOAifz4dFixZFT506NSU7O5spKysTAUBZWZlo+vTpyVlZWcwDDzyQ1NzcfOYJrqysTDRhwoR+7a/Ly8uFWVlZTGZmJvP444/Hnd2Z7+zPmJmZyWRnZzMzZsxIamhoOCe+bO/evYp58+bFn33sxRdfjNiyZYums+uYm5sbevDgQanD4SDee++9oM7GPffcc1HvvPPOmT+yd999Nyg9PT11ypQpKe1tpltaWqhhw4YNys7OZrKzs5l169Z1K+bJ/wQyScIsiYA3VIibKjj8feeT8DU2IqTCBFmCGixIICCa3ybl4fFzREoNaE9bcPHFuun5WB84QgGKNQMSfkvdXxkcH4gTjARraRv6R6kwZVD4tTaJ5yqxcuXKkCVLlsS43e4zwmH16tXhOTk59YWFhTqPx0Ps2LFDpdfrBXl5ecEFBQUlW7du1a1atSqKZVls3rw5KDU11Z6fn69LT09vWbduXej5a2zatCk4MTHRUVBQoJs8eXLLypUrw1iWxZIlS2JfffXVysLCQl1aWpq5qqpKuH37drXb7Sa/+OKLkkWLFtUsW7YsEgD+8Y9/xCxYsKA2Pz9fd//99+tLS0vFALB169bABQsWxJtMpjPC/OWXX46877779AUFBbrhw4db1q1b1yHjdNmyZdHPP/98dV5enm7cuHGta9as6WB3d1m0aFHDiBEj7A0NDXRhYWEHgdzU1CSYNWtW0v79+8+0qKyvrxd88sknwfn5+SVbtmwpW716dYTT6SSKioqk48aNM+Tl5eny8vJ0f/3rX5u6Y4tfZpM4FTEIiDgBlAHxpRbcS90CgvsZqgQf6prDEKHlvUA8PP6ONCAc8BQBABwXEcgmtwkspYQIFZBJ+Z0nf+bljAH445QRM26JBk35n//pWmP4cKvG9MUXnXodLwfV1KnNgQ/Oumjb4piYGNfatWtPtneUAwCGYexGo5FiWRZ2u52iaZrTarXeHTt2HKNpGpWVlUKaplmSJPHEE080eb1tDYnq6uqECoWiQ9JDUVGR/LHHHmsAgLvvvtu8cePG8NLSUpFSqfS+/fbbIeXl5ZK0tDRjSkqK64MPPtCmpaWZAGDkyJG2hQsXyux2O9Ha2kp/99136tzc3MjU1FTbCy+8UAMAKpXK9+mnn+rGjRs3sH29qqoqyYQJE6oAYMSIEdZly5Z1aA6xZs2a8vDwcA8A+Hw+QiQSda03NNq8y++8806oQCBg6+vrRePHjzc888wzDU8++WRsenq6YdeuXQHV1dWSFStWhJ1urgKgzdv+5JNP1u3Zs+eMQP71119lAwcO/P/Zu+/AqKr0/+Pv6ZMp6QkJAVIIuaGGJl0BKYp0sKKiqL9dXPnaXUVXkbWg67IrVlBRdAUVpdhQUEHpHUK/tFDSSe/JlPv7I6ChtwmR8Lz+0bkzOefJcLh85sy555ZYrVbNarV6oqKiKrds2eK3ZcsWu6qq9pEjRypBQUGuf/7zn4eP1Xsursi/wVpQLNFh2WhOf57M60Limkz8OnbA5N7Hdk8U0XKBnhBXPEtYQ8xVZ59Bzi0+gtvoxKgrxilbvF3R2jQKZHTXGAnHV5gRI0YUmEym48JhbGxs5eTJk5v07du3ZV5enrFnz57FACaTialTp4aNGjWq+fXXX/978DYajdx8880Jc+bMCR8wYED+iX2UlpYaAgICPABOp9NTWlpqyMnJMe7cudMxZsyY7M8++2z32rVr/RcvXuwsLS01+Pv7/x6y9Xq9lp2dbTp06JC1R48eRbNnz1aLiooMM2fODAEYNGhQocPh8NbsLz4+vuz7778PBPjxxx8DKyoqThrUx8LmihUr7LNnzw4fO3Zs1rm8Xzpd9UR7VlaW+YMPPtg3d+7cXbNmzTpu9vnBBx/MaNKkSXnNcAwQFxdX1aVLl9Kax4qLiw0Oh+P339dms3mKiooM8fHxFePGjUubM2eO2qdPn4Jnn332vO4Ad0XOIJvD47GpVZS264Dul8UARIy+HdTv2OFuR0yoBGQhrnTm8Eg87urzcHnx6fdCzk0/jMdoxaCV4i9bvAlRZ4LvuD33bLO9l8rkyZMbf/zxx7tatWpVMW3atLDnnnuu8WuvvXYIYOzYsUfGjBmTc+eddzZbsmRJSe/evYsBZs+evXvnzp3WsWPHxn/wwQd7xo8fHwMwaNCgXLvd7ikuLtZDdSC02+2ekJAQT2RkZEWLFi0qALp161aYnJxss9vtnpKSkt/XF2uapgsPD3f5+fl5j/XVu3fvwhUrVvgDp3y/nnvuudRnn322yddffx3avXv3goCAAPecOXOCPvvss3CAp5566nDHjh3LZs+eHTR9+vTI9957b094eLi7ZhtWq9XrcrmOW69aVlZmsFqtXoC4uLhyk8mEyWTyms3mc559PpHT6fSUlZX9/vuWlZUZAgICPJ06dSq12WxegCFDhhRMnTr1vNY9XZEfc52RzQDI6N+dxtM/oOGrrxDYrRk6NMagJJsAACAASURBVFStMTGyg4UQVzxzeBR6zQta2RmXWOQfrp7g0OnK8PeTGWQhBDgcDvexWdwGDRq4iouLDbt27bLcc889Tb1eLyaTSTObzV6dTqdNnjw5YubMmcFHf86j1+tp1qxZ5bG1s3fffXdO27ZtSxYvXhwIsHDhQv+kpKTiuLi4yvLycsOxi/A2bdrkTEhIqOjQoUPJ0qVLAwBWrVplj42NLbfZbFpUVFTF0qVLHQBr1651xsfHl5+u/sWLF/s/8cQTqV999ZVqMBjo2rVr0ciRI/OP1dSxY8eyWbNmBX/++efhs2bNUps2bXrSLELz5s3L9+7da0tPTzcBlJeX65KTkx1t27YtO9v7p9fr0TTtnC4G69ixY2lycrKjvLxcV1BQYDh48KC1VatW5Y8//njMvHnzgo7+Ps6EhISz9lvTFTndYYuoDsgV+Ydw3Hh79cFNnwIcDcgygyzElc4WGEqRWUOnlVBefPqAXJyZD0SBwYVTZpCFEMDEiRMPPvjgg00NBoNmMpm8kyZNOhgbG1uVkJBQNmzYsESdTkfXrl0Le/XqVZKYmFjx6KOPxs6bNy/M6/XywgsvpJzY3r333nvkoYceihk+fLhiMpm0KVOm7LdYLNrEiRMPPProo3GaptG6deuSgQMHFno8HlasWOE/bNiwRE3TeOWVVw4AvPTSSwcmTpzY5N///rcuMjKycsKECTmnqz8+Pr7iscceizOZTFpsbGz5q6++eqjm8263m8mTJzcJCwur+utf/xoP0L59++Knn346/dhrAgICvI8++ujh++67L95isXjdbrf+lltuyW7WrFllWlqa+UzvX3h4uMvlcukmTJgQNXHixLQzvTYyMtJ96623Zt90002JXq+XcePGpfn5+WlPPfVU6pNPPhnzxRdfhFutVs+//vWvg2dq50Q6TbvgWe3jKIryFHD90YeBQISqqhGKojwC3AccOfrcX1VVVc/U1ogRI7S5c+f6pK5T8rhxvRDBd36DGP7kjOpjPz6Na80HtPfMYPPzA2QXi4ukKMoGVVU7+rrdWh8botbV1tgA346PovIqdvZsw6bWjxHRsgPDHm1/ytd98uorFKd0IsjwCfq7/smtnZr4pP8rlZw7xOmcamwkJycfSEpKOm3QE+JskpOTQ5OSkmJOPO6z6Q5VVV8BXgFQFOU74O9Hn+oAjFZVdYOv+rpoBiMZjhY0Ld6Cx6tVh+HsHRw0NKZ5RJCEYyEEdosJlxkMrpIzLrFwFVQvuys2GWgsSyyEEKJe8PkaZEVRRgD5qqouOnqoAzBeUZTliqKM93V/F6o4oist2c/hjExwVaClrmN9VQxtogLO/sNCiHrPoNfhtugwuoopLzr9RXqeo9dT51hMssRCCCHqiQs6myuKci/wyAmHx6iqug4YD9xW4/jnwNtAETBPUZRBqqp+dyH9+pKlWU8Me6eSu30JMcWB6KpKWODuwMhGEpCFENU8Zh3WymLyS11oXg3dKb5d0iqMGD0l5BkC8Jdt3oQQol64oICsqup0YPqJxxVFaQEUqKq69+hjHfC6qqqFRx9/D7QD6jwgR7XuSeUCExxcDqVeqoz+rKpoycRGgXVdmhDiT8JjMeJXXkKeBhVlLvwcp7iuxG3F6CmiALvsYiGEEPWEr78P7Av8UOOxP7BNUZTmQClwLfChj/u8IH42O5sNCrGZiyCniu3ObljdVqKDZYs3IUQ1r9mEo6AYgPLi0wRkzYHJU0SB5pB9kIUQop7w9RpkBdh/7MHRmeOngSXAMmC7qqoLfNznBfutwWgqPUBlIV9WdqVVwwD0coGeEOIozWLBr/LY3fROXodc5ioDnROjVkQBDrmTnhBC1BM+Dciqqj6gqur8E479T1XVq1RV7aGq6gRf9nexmnYdTNeK13km5nNm5TVjWLvzusmKEKK+s9oxHb3d9Kn2Qj5SdgSPwR8zhZQZ/DEbr8h7LwlxxVu9erX9xhtvVI493rRpk9+QIUMShw8frjz44IMxHk/1nZCnTZsWNmjQoOaDBw9u/uWXXwYBlJSU6O+6666mI0eOVG655ZaE1NTU037Snj9/fuDYsWNjjz3+5ZdfnEOHDk0cOXKkcu+998aVlpbqAV555ZXIwYMHNx82bFjimjVrbABZWVnGY/0MGzYsce/evZZj7WRnZxt79+7dqry8XAeQm5truOOOO+KHDx+u3HXXXU2zsrJO+/XYW2+9Ff78889HnXg8JSXFPGTIkMSax95///2wSZMmnTZsffLJJyHffvttAMDUqVPDzrXPL774Injw4MGJw4YNS3zssceaeDweKioqdGPHjo0dMmRI4m233dZs9+7dltO1dypX9Nl8YOtIkhoFMnOXl/hwByPbN6rrkoQQfyIGvwDMrqMB+RRbvWXlH0EzWPAjF80q1y8IcSX673//2+C5556Lrqqq+v0r6DfeeKPh2LFjM+bNm6e6XC7dggULAo4cOWL86quvwufOnbtr5syZ6uuvv97Y6/UyY8aM0ObNm5fNmTNHHThwYO7bb78dcap+xo8f3/iNN96I8nq9v/fz0ksvRU+bNm3vnDlz1CZNmlR+/PHHoRs2bLBt3LjR+fXXX++cMmXK/hdeeCEa4MUXX2w0aNCgvDlz5qgPPfRQmqqqVqi+M99dd92VkJ+f/3swf/311yPbtm1bMm/ePPXOO+/MnjRp0kkBuKysTHf//ffHfvXVV+G+ei9Hjx6dO3jw4EKAjz766KQgfao+y8rKdO+8807Dzz//fPf8+fN3lZSUGBYsWBAwY8aMUD8/P+8333yza8KECYcmTJhwXpvUX9EL5nQ6Hc8MbMG9M9bxzMDmGA1X9OcFIcSJHIGYXLsAKC8+eYlFZloW4IdNn4/dz3qJixNC1LRlSWqIujoj1JdtKl0ic9r0bpR7ptdER0dXvvXWW/sef/zx32d2FUUpKygoMHi9XsrKygwmk0kLCwtzL1iwYLvJZOLAgQNmk8nk1ev1jBs3Ltvtrt5PPT093ex0Oj2n6qddu3Yl/fv3L/jss89+n1n99NNP1YiICDeAx+PRWSwW75o1axydO3cu0uv1REdHV3k8Hl12drZx69atjoSEhPJbbrklITIysvLFF188DNW3df7f//6nDh8+vMWxdlNSUqyPPvpoGkC3bt1KXn755ZPCZUVFhX748OG5Xbt2Ldq/f/95nQBTUlLMDz/8cFx4eHhVWlqapUWLFqX//ve/D02aNKlhaGioq6CgwFBSUmJ44oknmrz22mu/38XvVH1aLBbtiy++2GW327013gdt3759fj179iwESExMrDx06NB51XjFJ8JOscFseLYfvRWffQASQtQTbmcwes0D+spTziAXHq6+gZfNWCzrj4W4Qo0YMaLAZDIdd1vi2NjYysmTJzfp27dvy7y8PGPPnj2LAUwmE1OnTg0bNWpU8+uvv/734G00Grn55psT5syZEz5gwID8U/Vz88035+t0x18n1bBhQxfAvHnzAjds2OAcNWpUbklJiaFmyLbZbJ7CwkJDdna22d/f3/3FF1/sjoiIqJoyZUoEQL9+/YpCQ0OPC+UJCQnlixYtCgT47rvvAisrK0/Ki8HBwZ7+/fsXnefbhU6n0wDS0tKskydPPvDNN9/sXL16dUBGRsbvk7ZPPPFEpsPh8NQMx6fr02AwcOxDwrvvvhteXl5u6Nu3b1FiYmLZkiVLArxeL6tWrbLn5eWZj30QORdX9AzyMbJuUAhxKp6g6skojdJTziCXZ1XfJcRqLpebhAhRx9r0bpR7ttneS2Xy5MmNP/74412tWrWqmDZtWthzzz3X+FjYGzt27JExY8bk3Hnnnc2WLFlS0rt372KA2bNn7965c6d17Nix8R988MGe8ePHxwAMGjQo9+677z7t7bTffPPN8F9++SV4xowZe/z8/DSHw+E5thYZoKyszBAYGOhxOp2egQMHFgD079+/4D//+c9JyyaOefjhhzOeeeaZJiNHjlS6d+9eGBYW5lq2bJljypQpUQBjxozJHDhwYOGZ3gM/Pz+vy+U6LmCVlZXpLRaLFyAyMrLC39/fCxAcHOyqqKi44DDm8Xh4/vnnGx06dMj63nvv7dPr9YwePTpnwoQJfiNHjlTatGlTEh8fX2Y0nvt5WpKhEEKchjfo6FJArYDS/MqTnnfluUDz4rJ4ZA9kIcTvHA6H29/f3wPQoEEDV3FxsWHXrl2We+65p6nX68VkMmlms9mr0+m0yZMnR8ycOTP46M959Ho9zZo1q/zqq6/Ur776Sj1TOH7ttdciNm3a5Jw1a5YaFhbmBujUqVPJqlWrAjweDwcPHjR7vV7CwsLcrVq1Kl64cGEAwKpVq5xxcXEVp2t32bJlzltvvfXInDlz1JiYmIo2bdqUXH311SXHajpbOAYIDw93l5eX67dv324FcLvdrF692r9t27ZlUL3M9Uw0TTvj8zU9/vjj0ZWVlfoPP/xw77GlFuvWrbN369ataN68eeqgQYPyIyMjTz6Jn4FMeQghxGno/ENxmTRw5VKcd/K/Jd5iPdaqIgr9/WQPZCHE7yZOnHjwwQcfbGowGDSTyeSdNGnSwdjY2KqEhISyYcOGJep0Orp27VrYq1evksTExIpHH300dt68eWFer5cXXngh5Vz6yMzMNM6YMaNh06ZNy0aPHp0A0L9//7y//OUvR9q1a1cybNiwRE3TdP/4xz8OATz77LOpTz31VPSXX34ZbrfbPW+++eb+07WdkJBQ8cQTT8S+9tprhIaGVk2ePPnA+b4Her2eF1544cD48eNj9Ho9brdbd8011xT07t27OCUl5RSbyh8vOjq6/G9/+1vsO++8c8b3Y8OGDbYffvghtGXLliW33HKLAnDHHXdkde/evWTcuHFR77//fqTD4fD861//Oq/fQXc+Cf1SGTFihDZ37ty6LkNcBEVRNqiq2tHX7crYuPzV1tgA34+P75auJvKxu1ibOBTNOYCxb/U6bq/0Nx94n8B8A6bob0m5+mXG39DcZ31fqeTcIU7nVGMjOTn5QFJS0mlnWIU4m+Tk5NCkpKSYE4/LEgshhDgNkyMEr1XDWpGP5tUoKzz+Gzqdy465Kp8sfYCsQRZCiHpEArIQQpyGxeaPzuLFUVZ9UXlx3h8B2eP1oCMAo6eAPPxlFwshhKhHJCALIcRpOKwmNIuewOI8AEry/1iHnF2YA3o/zFo+eZoTfz+ZQRZCiPpCArIQQpyGw2oEs4HgwmMzyH8E5LSsbAAsulzycOK0yAyyEHXAW/POckKcj6Njx3uq5yQgCyHEaTgsRrxmE7bKCnQmLyU1tnrLyq7ebtWmyyNP85c1yELUjW1HjhwJkJAszpfX69UdOXIkANh2qufljC6EEKfhtJhwm6yAC6wVlNSYQc5OKwD8CdWnH11iITPIQlxqbrf7vszMzA8yMzNbIZN+4vx4gW1ut/u+Uz0pAVkIIU7DbjFQYrETTDFeY9FxM8glh8uxuPSEGHPJxykzyELUgQ4dOmQDQ+q6DlH/yKctIYQ4DaNBT7HVCYBLyzvuIj1PjgF7STp6m4kqTDKDLIQQ9chFTXkoijIcuElV1VFHH3cBpgBuYJGqqhMVRdED7wBJQCVwn6qqey+ubCGEuDRKbIEAuKoyKS9rQVWFG5PFgKHEH0fpNtxhNnQ6cJhlBlkIIeqLC55BVhRlCjDphDamAqOAHkBnRVHaAcMAq6qqXYGngMkXXq4QQlxapfZgACoqdgOQlVJEUW45eq8Ze2k6FXYnDrPxuDvsCSGEuLxdzBKLlcD9xx4oiuIPWFRV3aeqqgYsBPpSHZZ/BFBVdTVQK7eYFUKI2lDuCEHTa5jK9oIO0vcUkHrwCACO0nRK/QNkeYUQQtQzZ/1OUFGUe4FHTjg8RlXVLxRF6VXjmD9QVONxMRB39HhhjeMeRVGMqqq6L6xkIYS4dNzWIDSrhn9ZBbY4HWm787G6PQD4VWVQYG6K0yTLK4QQoj4561ldVdXpwPRzaKsIcNZ47AQKANsJx/USjoUQlwuvJRCT1UNQiYGKyFKyksFc4UHnLsDsV8ph/PGX20wLIUS94rNdLFRVLQKqFEVpqiiKDrgOWAasAG6A3y/i2+qrPoUQotb5BeNnc9OgAPKD0/G6NSpS9QTlLMLq5yLH65At3oQQop7x9TZvY4GZwFpgk6qqa4B5QIWiKCuB/3Lycg0hhPjT0tuCMTs8hBVqHLLtwGIzUt76MPEHl2O1ecj0SEAWQoj65qLO6qqq/gr8WuPxaqDLCa/xUh2chRDismO0BWC0eTB5IO/IXsa81oO757/BwHINk81DRpWdALlITwgh6hW5UYgQQpyBw89Mlb06ALvSUskqz+TIgV0AmGwe0qr8CJSALIQQ9YoEZCGEOAOHxUip3QpAUJ6LZ5Y/Q2ihBoDJ7iFTCybAZq7LEoUQQviYBGQhhDgDp9VIztG76bWsCmV91noUVwgARpuHLC1IllgIIUQ9IwFZCCHOwGk1kmEIweAH3fTNAEjyNAS9DoKDcWGUJRZCCFHPSEAWQogzcFhMZGrBmGwuQvLcvNzjZVq5G2B0GKi0RwAQaJOALIQQ9YkEZCGEOAOHxUiGFozZ7sKVeohBcYPwbtmBNQRKLA0AZImFEELUMxKQhRDiDJxWY/UMssODKyOLqr17caWmYg8vodAUDkCAzCALIUS9IgFZCCHOoHoGOQRbWBV4vWT849nq46GF5BqqL9aTGWQhhKhfJCALIcQZ2C3VM8j2iEosjUMpT07GFBWB2ekhWxeKn8mAxWio6zKFEEL4kARkIYQ4A7NRT7ExEK/eQEif6l0sHG2r/5vhDZYL9IQQoh66qFtNCyHElcBhNVOkCyOwqYGKe+4hsLkBNsAhT7AsrxBCiHpIZpCFEOIsnFYTecZQdKUZNPj7E1icVYCOgy5/CchCCFEPSUAWQoizCPAzcYQQKEqrPlCYCo5w8splD2QhhKiPJCALIcRZBNvNpGvBUJQOmgZZ2yC4KQXlVTKDLIQQ9dBFrUFWFGU4cJOqqqOOPu4DvAi4gGxgtKqqZYqifA2EHj1erqrqgIsrWwghLp0gm5m97gbgroADyyF9M/R+msIUF4E2c12XJ4QQwscueAZZUZQpwKQT2ngHGKaq6jXAHuC+o8ebAT1UVe0l4VgIcbkJtpv4urIt6PTw/aOARmV0LypcXplBFkKIeuhillisBO4/4VgvVVWzjv6/EahQFKUBEAh8qyjKckVRBl1En0IIcckF2y2kufzxxPSEnN3gF0RBYEtAbhIihBD10VmXWCiKci/wyAmHx6iq+oWiKL1qHlRVNePoz4wAegPPAmHAZGAKEAysUBRlraqq2RdfvhBC1L5ge3UILmw2nOCUJRDXm8JKLyAX6QkhRH101oCsqup0YPq5NqgoyiPAjcD1qqpWKIqSCUxVVdUNZCuKsglQqF6jLIQQf3pBR9cZZ0b2JbhBa0i6jYIyFyAzyEIIUR/5dBcLRVGeAa4G+qqqmnP0cF/gy6PPO4BWwE5f9iuEELUp2F4dkHNcZrh/OST0J6+0CvgjPAshhKg/fHYnvaNrjScAG4EfFEUB+EJV1XcVRblOUZTVgBd4ukZ4FkKIP72gowE5v6zq92PZxRUAhPtb6qQmIYQQteeiArKqqr8Cvx79/yzglFMpqqo+fDH9CCFEXQo+Okt8bNYYIKuoAoNeR4hdArIQQtQ3cqMQIYQ4C38/E3od5B8XkCsJd1ow6HV1WJkQQojaIAFZCCHOwqDXEWgzk3vCDHK4v7UOqxJCCFFbJCALIcQ5CLKZjl+DXFRJA6csrxBCiPpIArIQQpyDELvluDXImUUVNJAZZCGEqJckIAshxDkIspvIL63e+7jC5aGw3EVEgARkIYSojyQgCyHEOQi2m8k7usQiu6gSgHBZYiGEEPWSBGQhhDgHQTYz+aVVaJpG1tE9kGWJhRBC1E8SkIUQ4hyEOS24vRpHSirJLKwOyLLEQggh6icJyEIIcQ4SI/wB2JlRTFbR0RlkpwRkIYSoj3x2q2khhKjPWkRWB+Qd6UXkl1VhMerx95NTqBBC1EdydhdCiHMQYDPRKMiP7emFQPX6Y51O7qInhBD1kQRkIYQ4Ry0b+pOcWkBhmYveieF1XY4QQohaImuQhRDiHLWIDOBwXjlFFW5Gtm9U1+UIIYSoJRKQhRDiHLVsWL0OOdxpoXt8aB1XI4QQorZIQBZCiHPUMqo6IA9rF4VBL+uPhRCivrqoNciKogwHblJVdVSNx/8GDh99yQRgGfAOkARUAvepqrr3YvoVQoi6EBngxyf3dKJ9dFBdlyKEEKIWXXBAVhRlCnAdsLnG4Q7A31VVnVPjdSMAq6qqXRVF6QJMBoZeaL9CCFGXrkkIq+sShBBC1LKLWWKxErj/hGMdgHsURVmmKMpkRVGMQA/gRwBVVVcDHS+iTyGEEEIIIWrVWWeQFUW5F3jkhMNjVFX9QlGUXicc/wmYD6QAU4GxgD9QWOM1HkVRjKqqui+4aiGEEEIIIWrJWQOyqqrTgenn2N6HqqoWACiK8jUwkupw7KzxGr2EYyGEEEII8Wfls10sFEXRAVsURTm2OWgfYAOwArjh6Gu6AFt91acQQgghhBC+5rM76amqqimKch8wV1GUcmAH8D7gAfopirIS0AFjfNWnEEIIIYQQvnZRAVlV1V+BX2s8XgQsOsVLx15MP0IIIYQQQlwqPptB9qXt27fnKIpysK7rEBclujYalbFRL9TK2AAZH/WEnDvE6dTauUOIE+k0TavrGoQQQgghhPjTkFtNCyGEEEIIUYMEZCGEEEIIIWqQgCyEEEIIIUQNEpCFEEIIIYSoQQKyEEIIIYQQNUhAFkIIIYQQooY/5T7INSmKogfeAZKASuA+VVX31m1VdUNRlI1A0dGHKcA0YArgBhapqjqxrmqrCzI2jifj43gyPv4gY+N4MjaOJ+NDiJP96QMyMAywqqraVVGULsBkYGgd13TJKYpiBXSqqvaqcWwzMBLYD3yvKEo7VVU31VGJdUHGxlEyPk5JxgcyNk5DxsZRMj6EOLXLISD3AH4EUFV1taIoHeu4nrqSBNgURVlE9Z/b84BFVdV9AIqiLAT6AlfSSUzGxh9kfJxMxkc1GRsnk7HxBxkfQpzC5bAG2R8orPHYoyjK5RDsfa0M+DdwHTAW+OjosWOKgYA6qKsuydj4g4yPk8n4qCZj42QyNv4g40OIU7gcTghFgLPGY72qqu66KqYO7Qb2qqqqAbsVRSkEgms87wQK6qSyuiNj4w8yPk4m46OajI2Tydj4g4wPIU7hcphBXgHcAHB0rdjWui2nztxD9To5FEVpCNiAUkVRmiqKoqP60/+yOqyvLsjY+IOMj5PJ+KgmY+NkMjb+IONDiFO4HGaQ5wH9FEVZCeiAMXVcT12ZDsxQFGU5oFF9UvMCMwED1Vcar6nD+uqCjI0/yPg4mYyPajI2TiZj4w8yPoQ4BZ2maXVdgxBCCCGEEH8al8MSCyGEEEIIIS4ZCchCCCGEEELUIAFZCCGEEEKIGiQgCyGEEEIIUYMEZCGEEEIIIWqQgCyEEEIIIUQNEpCFEEIIIYSoQQKyEEIIIYQQNUhAFkIIIYQQogYJyEIIIYQQQtQgAVkIIYQQQogaJCALIYQQQghRgwRkIYQQQgghapCALIQQQgghRA3Gui7gVDp37qxFRUXVdRniImzfvj1HVdUwX7crY+PyV1tjA2R81Ady7hCnU5vnDiFO5POArCjKRqDo6MMUYBowBXADi1RVnXi2NqKiopg7d66vSxOXkKIoB2ujXRkbl7/aGhsg46M+kHOHOJ3aPHcIcSKfBmRFUayATlXVXjWObQZGAvuB7xVFaaeq6iZf9iuEEEIIIYSv+HoGOQmwKYqy6GjbzwMWVVX3ASiKshDoC0hAFkIIIYQQf0q+DshlwL+BD4BmwA9AQY3ni4E4H/cphBBCCCGEz/g6IO8G9qqqqgG7FUUpBIJrPO/k+MAshBBCCCHEn4qvt3m7B5gMoChKQ8AGlCqK0lRRFB1wHbDMx30KIYQQQgjhM76eQZ4OzFAUZTmgUR2YvcBMwED1LhZrfNynEEIIIYQQPuPTgKyqahUw6hRPdfFlP0IIUd94KyvJeettihctwhAaStBtt+E/8AZ0Ol1dlyaEEFecP+WNQoQQ4krirariwOjR7M92kB43mkpsBH64k4S5i2g99TX0ZnNdlyiEEFcUudW0EELUsZy33mZrqYKq3I6frRirI4X80ASWm4ey4N7JuAoL67pEIYS4okhAFkKIOlSxcye75q0ltVEvWtm+56fQMvb16c+WbuHYK9dz0N6ZLx6ZR0lGdl2XKoQQVwxZYiGEEHUoY+qH7G52MyGGA2wNqOCZcX8hOsQOwI7+Ldg4/iVKTD35/LnlDHmqO+FNG9RxxUIIUf/JDLIQQtSRqoMHUXdWUWkOoH3ADNrd/Dib8n/i5m9v5vo51/Nq8v9R+nAzIsvngUtj7r82sn9LRl2XLYQQ9Z4EZCGEqCM5Mz4hNaonUYYtbA7vwNdH3uXZFc/i1by0C29Hubuct7ZM4aXrNxFc+h7Wsjx+fHsLa5cdrOvShRCiXpMlFrVE0zQK580n/4vPcaWnY2kaT9DNN+G87jp0BkNdlyeEqGPeykr2rDxMZWx3WjnfZWbStfyQMotxbcfxlzZ/+X17t/0F+5m+bTovDfiWp758HV3wA6yfqSM1v4wRQ5rX8W8hhBD1k8wg1wLN6yXrpZfJePppvGXl0LU/mflmdj/zKim3jqJy//66LlEIUcdKFi/mcFBHHGSSHKxn3uEvGBw3+LhwDBAXGMdLPV7iq5Ffs+Jv7QhLfRNbSTqZCw4x5X/r8Hq1OvwthBCifpIZ5FqQO306+Z9+inbbAyyrSKQ0Xw+RQCRYKvOJHPcunf7vOsIG9K3rUoUQdSR9/iIKAwfT2f4pu2EGEgAAIABJREFUrze2Y9WsPH7V46e9MUhsQCz/HTSNn0Nn0uyhKexo8SjaShfjy5Yz8Z5uWE3yzZQQQviKzCD7WFVqGjlvv0PZtaNYkpmIVpiPMexzVinTWRb3OYeCMzjQZADzvixh1pNvUVLpruuShRCXmDsvj5QD1f9fFLCZ5Ko9jGk5hmBr8Bl/TqfT0a/rHTR5fRJtt76N3uWm4bZ0Hv5wGVVub+0XLoQQVwgJyD6W/eorFNujWENXAg0HWNDmP7wVv4qqeBdte8VhvamIza0+QtPyyC9swbSH3+aj31TcHvnHTYgrRdFPP5MV3pEwncqXEU78jH7c3vz2c/75xt36Ev/ieNpufQ9jVSCx6k4e+2ytLLcQQggfkSUWPlS5bx9FP/3Cjr4vY/IWM7vlh6Q7XEzuMZl+0f3++Oq0C6jqYjb94wdyQwaQO3s1N21cyyu3DUOJcNbtLyGEqHXpi9ZSar+BVs5v+Je1mEGxQ3CYHefVRtCAgSRk5VD28Wx2KbcTtPMHXv8pkEevS6ylqoUQ4sohM8g+lDdjBpmNulPi9udA1BwO2cuY1u89+sf0P2ldoaJcy00fPEOL9I9xVIZx9R4/Hpj+H77fkl5H1QshLgVPYSEHMwygedkWsoNKzcXIZiMvqK2Qu++i1YBEGqYvp0FeT1JWv8WCrbJPshBCXCwJyD7izs0l/5vv2dN0GAbLXr6J2sLjVz1B+wbtT/szhoBArv74da7K/gRnuZ7Bqe15Y8ErfLhizyWsXAhxKRX9soTs0CTC9Lv4OsRKfGA8rUJbXXB74U88TseWVdhL0ojP6Mesb/7FrswiH1YshBBXHgnIPlL4zbdkBbbCrfNjSfQi2gUlMCpx1Fl/zhgURNtPptI1/wscZWUMPHA9X658mf/8knwJqhZCXGrpP62hzBZBw4Dl7DVVcEPsDafdueJc6HQ6Gv1zAh3M6zB7LLTMTGDCp1MpLHf5sGohhLiySED2AU3TKJg7lwNNB+I1p7MjeDePd3vunP/RMwQG0vzTD+mhLcJRXswN+0aycMvLTFq4rpYrF+LKlZtWwralaRzclnvJ+vSWlXHwkBc0L7uCtwJwfcz1F92uzmSixRsvk1j4M/4uhfjsTJ757Hu5aE8IIS6QBGQfqNi+g+xsL2XmMNZG/UqfkFa0CWtzXm0YHHYSPniXHrZV2CrKGbxrFEt2vsBrP0tIFsLXSgsrmT1pHb/NUvnmrWTKSy/NbGvJsuUcCWpJoG4/3wabaBnSksb+jX3StsHhoPubT9CgYBMNC2/A78AM3vl5q0/aFkKIK40EZB8onD+f9Ibd8eoq2Ba2iXs7/f2C2tGZzTR7azI9G6pYqrwM23YXvyU/w+tLJCQL4UvrFx3E7fbya+Mf0AO/LL00d7fMXLicEkcjovyXs9/k4bqY63zavrlBA657fhh+lTnEp43m8KqH+GWHXLRX3+SVVrFqXy5r9ueSml+Gpsk3BUL4mgTki6R5veT/tISssPYcDtlAK6uT1g3aXnB7OoOB+Jf/wbWdyjBgYci2Maxe9TBv/rbSh1ULceWqKHWx7bdU9oZsIq3JWioN5axbt63W+9VcLg6qxQCkBFf31zfa93fTdCY2pf/diXgMdpqrI1n85Z3sSCv0eT/i0lt3II9bpq2i/Qs/MXrqcm55bzU9Xl3CVS/9wvi5W1i+J0f21BfCR2Qf5ItUvmkT6brGaHoTGyPW8lTre3zSbtP7b0c3dxkLfzRxw7a72ZQ3jjerJvF//Xw74yTElWb78nRww+aon/h08EdM3bmQkCMNcbk9mIy1d7vmsg0byXYo+GlZLAyqJDGoBY2dvllecaJGvdrS6fBK1qxoQevN+5j/wV04/28WjYNttdKfqF1er8abv+xh9f/mMSJ1Dc/kpmCqrKDKZuFIZDA7GkXwbVkMn29SCPNryG1XRXN7lyaEO611XboQly2ZQb5IRT8uJDOiE5WmI1TZDtCz5W0+aztuxNVce0sMxc5YuqTcgft/j/Ha/P/5rH0hrjSaprF+yUEyHAfo4AkhfPMhwhqYcLiczF66plb7zvt5KYWBTWloX8UOi54+0X1qtb8Od3QlOlZHbvhAmq8y8snb95NdVFGrfYraMWneJoyvTuS5tTOILtvH4paVfH6NniVKFZWlGfT5bRNvzJ3Hq2tfJcH1PO8mT6XHa9/w96+SOZBTWtflC3FZkoB8ETSvl5xfllMQ0Iwd4RsYHNQCk97k0z6UPgo9bownJ6wt0YW30njaJF788BU8cnW6EOctY18h7gI3ac7l3DdtC4fH3k+fWR8DsFPdV2v9appGysZ0NJ2B3JDNaDro06R2A7JOp+O6R64hIAiyGo2h1bJU3n7jcbIkJF9WPlu6m/j//oNeaRv54mo9Ex7wwzqgCX1btqZ3Uleib+iL6/8NoWRoHxKKnDzzWR5PLf+RqLCX+C79Tfq98S2v/LCLsip3Xf8qQlxW6sUSC03TKM6rwOPyEtjAdlF7ip6Pih07yaAR6PTsCdnMk22fqpV+kvrFUFHuZf0CiEz3cNWHn/Bcfirjx72Ow1Iv/giFuCRWLUyhSl9Bn6270WseQttWkJWcj4aX8oLyWuu3KuUAWURi1Er5NSiTaGc88YHxtdbfMSazgaF/78EXE5eRHfU32i19jdd1T/O3+1+U5RaXgV1pBbiee5IOOSm8NVhPi4AW3L+uKxlVrdhyin++jUkDCeMg8TuXMeX9LXzdeTXfddrE9K19WbCtH/++sT2dYoPr4DcR4vJz2acrr1fj3f/8AHur11o17R3M9bdc+EVy56Pkt1/JDm9PmTmTcEsWzWKvrbW+Og2OxevV2PgjhBsMXPfFLP5ZeiMP/G0m0aH2WutXiPoiL6OUjK15pPuv5PrFuQS3KCbo+VkcGTEWnbcAQy1u9Va8fCV5wS0INm9mnc3C6CZ9L9kHeWewlaGPd2HOK2soCH+Ajsv+y+vaU/zlvpdQIpyXpAZx/qrcXn588kWuy9zFx/3C6OC6lcrURIoCDST1jKJBnD/OYCtGk4GqChdFKSlkbtzK/gPhZDS/F0dVBj13fsOAzTuZ2/E7fmm9kVs/Hskd7Xrw5PWJ2GVyRYgzuqz/hmiaxpv//QbjXifJDVbhrLLj/bUVHbuXENrIUev95/62hoKgu9gRvpAbQpNqtS+dTkeXoXHoDTrWfw9uo4Xh8z9hiqcvQ279jF7NY2q1fyEuR9OW7sLfauG2TrF8N2sbLn0VLff+it7kJeSWQRgSr8EvqTX28lz8Kiy1Vsfh1XtwG69BC1mNRwfXNqm9D9OnEtbYycBx7fn2jY0YPffTcfWbvK17mNG3v0bHGJlR/DOaP+Nb+q3/niXtYmji/Stgo/cdCs27NUSnP/nDVURcOxL6tKNHlYt9P/7CuiVmtrb6K6GluxixZjZD16Uzp+tbzNu1ncXqEP59Y3u6xIVc+l9MiMvEZRGQN2ZtxKN5uCriquOOz/hkIcY9TjZFbGLCQ+N4+Ov/Erm+lB9nJXPH37vXak3unBzSso0QrCMlOJlJbcbXan9QHZI7D47DbDGyci54TA5u+u49PtYPYl/nZ7n3+ltqvQbhO56CAkpXr6YqJQVXdjbewiI0txtjaAiWxEScfftiDJbwcjF2L3sPV6WTLQva0yjTyd7QJTywJJfAll4MA18AwNGzN84f87AHNqOsqhyb2c+nNWhuN+lpbojwsjbkACHmwPO+kZAvNG4eTP/72rDwfR3B7v9H6w3v8T/D3ZQNf59rlAaXvB5xejlHCgib+gqHIiJxBz1AkAUGPdGdoMizf1uoN5toNuR6mg70sm3ectYuiWFdp6eJzV3EXT//yDDbz3x71UbGTL+Tmzr14InrFJxW3147I0R9cFkE5HnTZ3OkysKqPuv4a7d7MevMzJy5iLJVZtSgnTx863Ccvy7hmZIw3g9ahyWlF65KDyZL7W3ZVLJsOUfCkqg05NLYlEZETM9a6+tE7fo3wc/fxOJPYFfrv3P3t2/znnsiqYfn8/c7PsTPz7f/wAvfKlmxgrxPPqF0+QrwePDoTRSFxVHgCKPCaMO8+wjWJYcwT5lNZSMdxhv60mbY7YQE1P63IvVND7tCamoces3A1ojfGJqyCh0awePGgyMMAHv37ljnf4zNdRWb0vbSPba1T2uo2LGDPHscfqSx1AEDo/ui19XN9dHxHcKpKm/Okk91hB25m8T1HzHbMpj8ghkM7dyiTmoSJ1v29EvEVbpZ3OlvBBi8DBt/Lc6w81tKpzfoaXPjNcT3q2TFR0vZvesGcnu2plHaXEb/upvh1iksSPmGwRvH8PCwbgxt2/CSLfsR4nJwWQTk9laFtMNReGfBK99+hs0VgK08gF1BO+jS5yps4x8nY+dO/IB2bbviCtSTsa+AJi1q7+ujguWryQvqjRq2nOuCW8IlPrEkdonEEWjhh6lb2NJuPGN+eZ//XbOFh2Zcxbg2T9Om222XvCZxZp7CQjIn/pOiBQtwRcaxp8//cUizY3SHo9dO/1fR9nMGR+a9TErgAQ50asHVnYfSX0kg1FF7SwLqi+EP/YXDnz3Axv3r6V+Yhnutk4COjTD1+mO/cktcHNaKXHToSd67y+cBOX/pGoqcsQQ4vqdcr6NPLdwc5Hy06NEQV6WH5V9CeJaHpKWfMNNyE/tTn+XB4bdgOMXX9+LSSduq0nT5ApZ1HYtZczD4gUScYRf+4dgWYKHfw/1olpzF0k89bIt6iOhGv6FPXcAtG1MYsm0C83e2ZlaXe3l8eEe5iE+Ioy6LgDz80TGsf/dJDqZUUehuS4Ypj73OQ9zU9zq6T3uR8r17afTGG5StXUnXz+bx69W3sSU5pdYCsub1cnhHHlq0iQPB25jY/M5a6edsGiUGc9PTnVjwdjJb9OMYuX4uSwt/5WHTCzy0/nX69x6PX6shoK+9mXRxbir37yf1/r9RcqSIvYMmklEShK7KQIH9IN6gJcQEumkXGU5DpwG/0gN4M/ZRfKSQvVXNOEQ7jth64dAZ6bQqg5Jl7/JI44OkxnVmQNPrGdm2BU0v4h/Q+iz/88+xlXVgQLfOpL30NprTS/gbXx73Gr3djp+uBIDMQ77f6u3w1kzQNeVA+DbsOjOdIzr7vI/zldSnMR63l1XzIDwbhn3/MR8M/ieZ7/zKw3f8h8jAK3uHiyOZBaSkptK+XXOMhkt7/tw+4Z9UNekJ5pZcc00pYYkxPmk3JqkBUYnXsv77FDb/fA3m6E4Yms6gcP9WbtuyheLdj/Dphu6803sMj1zXnKTGgT7pV4jL1WURkHNnzKBJeQQtW69n5L4HWRV9P+aejxL5wRQKN2wgalRLnGvvwFZeSY6lMabKQ6Ts9NRaPZWqSo6pEV7KCbKoRCQMrLW+ziYw3MaN46/i5+nb2Ku7kaTspjT78Ute6l/C5t8eYezCZwm75kH07e8Ekyy9qAsVqsqhu8eQ45/A5q6P4SnV2Ba5DFPoKsb1uJvENi+fcrY/yFVBk8wtsG8JFeqb7N5lI9nVlzL7jXQtcBGwOJmM1S/xwtIMikKTaB59CwNatuWq2CAstXhHuMtJ1aHD5H30EdkARiNR/5mMMSjopNf5B5kBKMvz7S2ZNU0jK9eAPriKn0MyuDryakyGP8d6z/bXRYMOVs2F8Gwd4z/7mBdvXM5Ln/TkhvaTuaHHNXVd4iVXUepixluL8aRU/xn97LedbndF06ttl0vSf/pvKwlOSWV1pzsJCd5Pq1t8c2fWY0wWA11HxJPQJYJfP93F3v3306BlPjsSp2LYnMr9G5Zx+MAaJmzuT+hVN/H0DS2Ikw/f4gp1WQRknU5H7nvvUdauLQ069ecqdRrZ876hcLdGaKsS/HW/QdIoDF43Idu+ITJ7D4es0bW2DrlkxUpyg1uQ7r+b3n4RYKzbr7rNViMD7k9i008HWT1Pw1wZw4tz5jK7fTI3NYXnfnuO7otfwdznaQwd7gbDZfHHftGqyt3kpJaADsKbODGaL31orDpwgEN3jyE9rCPbGg4l35zOqvgZ/E3pyqA+i868DMZkhcadoHEnrL2epE1VKW0OrebIlh1sWeFir9YcP0NHeh7IJGjjGtKcL/Bt4wKmBLfCEj6K3koL+jYPJzrkyt0GsMGTf8dxdQ/Kt2whYMgQTA0bnvJ1/o3CodKLVu7bMeJKS6PAEomRw+SadFzbdLBP279Y7ftHA9Uh2WP24z8fT+fN68t4e+df2bWpC0NvmkzTiCvjK/eDe7P56u21mCrMbGqwEpcllLbpUSyZpdKtVXvMRnOt9q9pGvtefpl9Le/Aa3AxZGwfdPraWase0tDBiMc7sGt1Bqvn76esaDwNO2WxLeEjItYdZtLP37Hy0E/ct7s7Se1u5uHeHa/o84i4Ml0WSSn4rrswBIeQ9eKLHNhUCEQAGqFdnYSOug06joagGNA0bJvSCf5pH6mN+5NzuJjIeN9/TZS9ahuV1sHsD/mZ++Ku83n7F0Kn19H+uhiilGB+nraRPZZ7GbBjFTev/o5FLTVmRRt4+JfxRPz2Ht7BbxCReGlmRC61qgo3B7bmsH1lGulqAXirA6glUEe/O9sQ3fLSbWvkKSjg8F/HkhXQgm0Nh5IeoKLGfsDU3i/RRBlw/g2a7RDfh7D4PvQZAT2rPKjLD7JjYSVp9qHAUBIzM+m6cxtFxvc4sO4g4xs0pqpBb/q36s+AVnFX5M0h7N26Ye/W7YyvsTRuiGV7AaYK3+4LXLJpCyX2RnjsP6PXoHujHj5t3xfa94/GbDXy2yxwJT3JQ9++gdqkkI97ruPwl1cT5T+OkQNHE1vP9ltfvG8bzy59FcWZSMShSCL2NMJlqmR1yy28MfBOgvHy+Oy1JKY05qNv5/LX4bfWaj05i37GVRFKqaMpbTvswt6kdj9M6fQ6mndrSHzHBmz9NZXNP5kodz+FvmcmJRmf02HzHrrsWcwydQn37ozFFNmf21oNYHDrGILstfthQYg/g8siIAMEDB6Eo3dvir77Dq2qCmvrVtjatTv+RTodfgPvw/b1vwDIzizweUDW3G7S0j0QDVWObcS1eNKn7V+sBjH+3PLPq1n/3X42LtLIbdCW/jvmE/nLSnY1CmVpfBG9Zw1lreMGSrv9nQHtmxJou3xPdnkFhcz9bCkmlxVvkYGyDA08OkrM+WQGbEDHIUr8TDTO78u3b3kZ/kh7ohJO/ord1zRNI/3pZ8gpMrKl7a1k21NIjXmXD/q/TVCcb766NpoNtLw2jpbXxlGUW87+jVmkrNSRnhGGRl/C3eUkbtuF35pdZCz5mg8jj+COtBDnZyNJbyLOaMTPYsZs80cXGA0RbSCme/WHzSuMuVEjrBvy8KsI8Gm7GRtS0PTN2dVgHy0tYfib/X3avq+0uiYKe6CFnz/czvoeE2m+4yP+88EmNsXBkvZvMumTz/EGPs2NnZLo0zwck6FuduHwJXOpgX7briewPBiT18KBgH20iHHz6sI1FLz1PwqAcZ0UvgwchbbcizZMq7VdHjRNY+9/32JP/N1U2FK4+o4xtdLPqZjMBtr3j6Z1r0bsWJ7O5p8sZNofJrdPIeE5C+m0fT09t+1na/Q0Vmz9kA9+UXCE96RfbE+6N21Im0YBWE2ypEvUP5ckICuKogfeAZKASuA+VVX3nm87BoedoFvPvNevqcMAjIa/g+Zlz4FUknrEXEjJp1W5eze59qZU6bJpbShAFxzr0/Z9wWgy0GV4M5p1imTp57tR9beR2moE4Yd/pNdvS/DognE1W4lfzlAeX3g7hoSBDG0bxbWJ4ZfdiW7jqiWUbyqhTFeOhwI0zyGC8rdz1d69OCvdv79ud/RetifezzfvbuTO57rjCLLWal0FX35J3rK1bOn5T4oN+eyKe5e3r37ZZ+H4RP4hfrTtF0PbfjFUVbhJ3ZnP/pX7OLSrOUdc1R8ko4ryCDy8F483nWUBmcwMy6IkNAeH/RCJmauJ2foxcS4XfroIskK6UdiwJ/qYrgQHhxLmtBDqsNTbHQ5MUVGYXeuxusKp9FRiMfhm2VTWgSKwwrqQdO6LurQ3BzlfsW1CuWn8Vfz4/jaSPfcR26WAViveot1XGRwOzeanqx5hcnYHnvn6Zm7t2IzbO0fTMPDyva6htaGcYn0+usgqGvpXMHjVD5R+vQev3UN42xI8VRZy1+2iWYel5DhGkLx3J22b1c5WeCW//UauLgG3KYDefQvQWS79+2oyG0i6tjGtekaxd30225elsafiZvZ1uZEI1zZCD6/nnsW7Mbu2UmbeSoHjLTLNFpJtIZSGxWOJa09gt660bN6E5pH+9eJDlLiyXaoZ5GGAVVXVroqidAEmA0NrpSe9Hq1xMKaqPLJSfX+SKV2/kcKApqQGbuL6kJY+b9+XQqIcDHu0HQe35rLu+xRSqoaSFj0Mh2szjTd8R8iudHSNPmdr+TwmHe7Jk/M70y+hBTe0jqRHs9DLIix3ahJHw823oyt2gaYDvYbJ7sHWsApbWCVmh4fyPBO6rV6cZdPY1uoZfpu3g4H3tK+1mqpSU8l85V/s7PIQ5R49axLe55XmowlrdWnWn5qtRuLahRHXLgxN0yjMLufwjlwObTxM5gF/KlydMAJxpaAr8WB0FeOhhO3GEtZYy8i3lVLhKsKQ9xPmXZ9Qbs6nEAulWiAeXSB+xiBCTIE0sQUS4wgkyj8Mv4AILKExBDodBNnN2M2Gy2pPVVOjRphcv2Jxx5Kdf5DGoQkX3abm9ZJbakFvyqfcXEx3ZYQPKq1dgQ1s3PhkB9Z+m8Lmn3Wkd5hA8yblRCx6nXt+OEiO/3rmd9/EzO0dmLa6B/2atuP2zjF0axqC/jL78GTIyCDm27d/f1xh8RDewU3QTcPQdxkDDVrh+b+7SFixgZzOI1i6dFutBeSdb07nUOPbKQzcSPsBj9VKH+fKYNCjdI5A6RxBXkYpO1eks2edlXTj/2fvzOOjKLO9/6vqrt6701k66ex7OmFHUDaRAIKKBMgCyIgyrxm5URkuV2EGnIErw2AcGS5qQBFwgKgoEl9cWGSuRmZQATWERUw6CyF7Z+99r6r3jya8bCEJaUKW+n4+fD7p6vM8ddJpqk6d5zy/MwKIBnyIBkisF8FaLwHWGsS21COoog7k6X+D+egNFAX5YXfkMDSNfgRJCYkYEabEyDAlwnzF/e47wjG46a0A+UEAXwGAVqs9pdFoxt7Nk4lHj4fslyY0NQV6fe6GghK4qWRU+V3C+Lh7p17RVQiCQNSIAEQO90ddiR7nj9fg8rlRaB01EhKhCQHl/4uUY6cxSfpP/Gv41zhDibFcpwF5eCimhE9G+qgETIztu8GyYugIDPnxAlhjA3DpX0BLGQiCAWRBgG804BcNiUCKur3boN52AFrLCVT8NAVtsyzwVXu/ppJlWdSvXYvK4Klo4YXih6iP8axvMDRT/9Pr5+oKBEFAGSSBMkiC4VPDAQAOqwstNUY0n69Aa0k9zI02WPVOOMwC+Nh9obJI4aau37lOutvAczVB6GiAyNYIgaMEDr4eerEJZQoj7D5u0DIGZgUFM+UDOx0AKxmNqcMXYsX029f/9gWokBBQLgv4jAxVumKvBMiuunoYpeFw8y7DhwGSAkd5wdO7D5/iYWJaHDTj1Dj5WTnOXqBBJaxBzHQXFN++id8dLcMjqh/xQfLP+N7mj/xDSQjgD8PTI6diwZiEflOfKk1+BKFvUqDrLkHgy4N4eBLIqHHANSojAWuyoZ85A6T7MgzFdyera/vlImpd8WBIEtMeDepT+vV+wVJMyojHhLQ4NFWZUFPcippiX+guBcMtZgB/oDGSRim/CQ7oAGsrghqbMF9bB3HhqygLtuFkpAzv+/nBJPKHRByGMGUMhoYNRUJoKIIDfeAjE0Mm4ve7h2qOgU9vBcgKANfqJ9EajYav1WrdHQ3oCX4Tp0Py0ymQ1iivzsuyLOorzEAIoBQWQx77qlfnv5sQBIFQjS9CNb6wGp0o/akB2tM6VDnSUB2eCj9rKSaXnkbayfNw8s6gPLgQZcEf4GChGLk+wfBXjEJo4EMICItHjEqOqAAJgn3EfWbJnVAEAaMWdPj+8GUb8Nk5PSae+gr/enACfjikxeO/834W2fDZ52g4X43y+59Emf8ZPCA5h1m/+d7r5+kJQgmFkAR/hCRcv2GRsdvhKC2Fo6QE9opzMNS2wWBkYXRLYSZ8YOErYBFFwKy8vjzFl2Ug0JvBa7aBZNxg4QYLJwA3nMV7gX4QIJMiEUjSCYLgoa7+EjCs53OateWwi/zRJDuBoaTPPeued6f4h8ow+4WRaKoy4dw31SgraAQd/l/wH2JH4K+f4Q+fnkJDUBP2T2zD6bjvkXNpJ976NRzR0vuxaNhjWDjifvD78DI7wedD8cjM29pQoaFQPPIwIooKwfBToWtohjoowKt+lO3ch7rgZDT7ncT4KWu9Ore3IEkCQVEKBEUpMObRKNA0g9ZaC5prTGjTWWFoDIKhPhxGxoHmEBLNV8RiKJcew4w63N/QBLGtGWJ7FYT2c6DcH4ByWUC7bWjmMdCJAasPH4YAJfSBkWiKHoWRM9IxZXjMvf3FOQY1vRUgGwFcuz2cvFvBMQD4JA6H2PYlSFYMu8UFkdQ7uqPuujq08YLghh5D+BZAEeyVeXsbiUKAkdPDMXJ6OFrqzCg53YDSn8QoFidACwZBdDlUupNI/PksBC4rgHI0+pSjJvBTWPxZ/DNYgRJ5HC7TYxDkPxLbn5yEYJ++X4uYvOk1lCdPgMhUgIrCB+B20l6VfqNNJug2b0HxqOdgo8wwBn+EpzI+7TeyeqRIBPHw4RAP93SSU3dgZze7YGi2wWpwwGp0wtRshbm+DQ6DBW6jBS6LDW6nG26aQVJM77Vg7yl8iSeYa2pq8sp8LUW1AIJQHNCEaco4r8x5L1BFyPHw/xmCSfPjUHK6Ab9+X4ei8CdQHpWBkLp/4bl8VBO3AAAgAElEQVRD32IFWqCLIHBeXY1f/S7jk9o87Ppeggh5Iu4PewTTh85CnMqnX9alKmbNgerff8PlSOCnn88j5XHv1ZK7W1tRUikFG0Qj6UHfPpU9vh08HglVhByqiOtVX1iWhUXvRGudCS1ltWi5TKOtnocWYxQczM37PliWBgsTSNoMkcMOqd0BQbUJkZfa0KxdDbz7SW/9ShwcN9Fbd+7vAaQA+ORKDfKFu3kySh0Eod1zkzM02iCK9k6AbPv1V+h9YtEsuYRHVH27/rir+IfIMCFVhvHzYtBUZULpz40o+1kMHS8eZMQSqIMIBNDl4FV+jbjyIshKHSBhgllUiKLwsyiOIFCnexvBPn0/EFIqpaiZPBdDfirAuVGTcPlcA+Luv7Uu7p3Q/PY7qBSPgIkKxOmoXVgY/TxU6iivzd9XEMkoiGR9o9mFNxHJPDdwk9HslflaqtoABKHOpwFjQjte3egviGWeB+sR08JQX2bA+fxqXGKmozJoGgKZSgRX5mPGd2fxCMtcGWGCWfQT6vx+wr/9NuIzPwGKo6JhDJ6MOL8heCgqCbNHRPT5ZXXphAmQ2HVgWRsu/9IIeLGyrvbjQ2gIuh86nxN4/tH/9t7E9wiCICDzFULmK0TE0Osz7Q6rC8YWOyx6B+wWFxwWN2wmJ0x6GwwGM6w2O4xmO9xGN1gnBXXCyHv0W3BweOitAPkggBkajeYHAASAu6phQ/D5YHmtAICWuhYERXtHWqn1XAkcoiRU+ufjvohkr8zZVyAIAoGRCgRGKjAxNRYNl424VNiES+eaUNcYDYiehe90CYLCxJBYasGUfA9NcQFGnmhE5FPOe+1+l5mw4lk0zH4UDGtEwdenEXd/qlfmddXWov6TQ7g09mVc9r2AKIERaY95twsWx91FqpQCNsBq88732dDsBCgaFmEzhsbcfim/P0EQBELilQiJV8LUascv/65F8Q9CNJBREA3jIzJGgGBJG/wMxZBevgiitAhhFW2Q/OIA/l2My4HFOBNHYHcshTD/zzA6rO8pAV0LKZWCGHUf5KbLaGrwnkQky7Io+HctWEUQeMPsIMm+uc/DWwglFFQSCqpw72qNc3DcLXolQNZqtQyArN44Vzu0xAWwDGrLSzFkkncuwLqSZoAEROJySCKf98qcfRGCJKCO8YE6xgcT0+PQprOg8pcW1GjbUFFkgMMiAjAdiJ8OUkMgLPz+e+1ylwmMjcCZuKEIaDqDJnISXHY3KFHP/xs0vZWDkph5cJFAdfCnWDnrY27Hdj9DESAFqgGH3Tt/N4ONB5JsQiztgsS3bweBd4rcT4QJ82IxLiUaVb+2ouS0DuUXWqB1CAGMhG/wRATNl8M/TAY+awRz8jME/3gc807WIfUHByLn1gN9PEAGgICZMxCwrxAmxWNw2NwQint+zWj78QIa5KNh4v+IxY+t8IKXHBwc3qR/FEfeAW5VECiXEQ11dq/N2dzkBgIZxPOqgMAkr83b1/FVS+GrlmLUwxEAAJvJCX2DFaZWO1gW8Ans+/XH1+Lz8COQfXwErYHJqCv4BZGTeqYu4CgvR8W/i9E0ciYKQg8hUpqCsbHeK93g6B3kKjlQDTCOnpeP0EYjrHw/2HgNSIS839SW3ikkj0TU8ABEDQ+A20WjocKIulI9GiqMqLzYguJTuiuWE4GwiSAjALmcRGT4mHvqd1fxGf8AlO98CgIkLp39BUkTeq5IUvjxD2DIOJRFn0W8irtecHD0NQZsgMyLGgpRuRFmPeuV+dxNTbDw/OEkGjBcFgQM8OWw2yGWCyCWC9A/tygCI+Y/jop3c8CyNIp+LOxxgNz49rsojZ8Ps6AZtKwQL8z7q5c85ehNhH5KEIwbfHvPH/js5ZdgFavQKrmAOGm4F7zrP/ApHkITfK/rWGk3u2BossFqdMDc5oBZ7wDg0ezuDwhjYiC2VYNlGfxacK7HATLtcuOSIRA8pghRQ++g7TwHB8ddp39cne6AgNgktBTVw2j179y4C9iLimCSh6NNXIaRof2npIDjZqQhwWhSB0Foq0Bldc86pjkuVaD4rBGW+GD8HLkTQyNeRoS/xEuecvQmfH9fUK428F0ygGEA8s4VF1qLqsCSMugUjZgdmOhFL/sn/X1jJ8HnwxocCsrZgMb6nteolx4qgFOgRL3wAJ6ftNMLHnJwcHib/qe500WCNLEQOIyAS9a5cRfQnyuBQ+iLJt8qqMMneWVOjnuH4MHpCGksgcsaCkd9xR3PU79zDyqiZqFBWgoCNJY/0vfVPDhuDd/XFwKXGZRLBqeprkdztVZ7ZN9rfBuREMTtxh8IUEnDoDTWwmlS9niuX/LLIXDoURZjRIiPd+5RHBwc3mXABsiqhBgInQYQjAwM0/Myi4ayFgCAVFwBQj28x/Nx3FtiZ06Bb5sWBEjUfXdnjTxcDQ345bwDLkqGc5EHMXHkn+HXT7qIcdwMz9cXlMsCkVuGVv3lHs1lbLYBANziRvgFDgxJyMGO35hRUJjqwHf6w2kwdD6gA6wmBxqcKhCOHxEaMdeLHnJwcHiTARsg832VIBgTQJCwteh7PF9Do2dZLZxfCfhG9Xg+jntL4P2jIbFUgWVdKNE23NEc9bs/RE3wQ6iWn4GIDsV/PMQFQv0ZT4BsBsVIYTDV9mgui9ENgnEhlG0DlJFe8pDjXhI2fgxkFs/3ovnCnUv5l39bAhA8VPidRdoIL4oqc3BweJUBGyATBAGG8Aj+W+tqejQXy7KwOAVgmVZopD6DeoPeQIEUCqEPDYHQXoWqFjlAd6+xI2Oz4cKpNtA8AbQRXyF14p8h9mJXPo7eh5TLwXdbwGNlaDbW92gus40AQesRQZOAkFtCHwiIoqPAd3gepqu1ZXc8T9l35RDZmlERbMW4qP661ZmDY+AzYDfpAYCb79kpbayrh2rknZdFuBsaYBMGwsZrwMgB0kGPA5CMHofACxWolkwBXV0IXlTXN1+2HDqG6oDxaJSchS8bhfn3R909Rzl6BYIgwCOcICBGs75n7abttABugR4RPO80KeK49xAkCYOCD4KxoabOhHF3MIfD5ka9QQp/409ggh8Evx+23u5rFBQUBPL5/F0AhmEAJ/047goMgF/cbvfvxowZ03jjmwM6QHZeaf3e1NiA2B7M4ygvh1USBLPoFNTq+7ziG8e9J2rqJNi/24Ua9mE0FvyM4G4EyL8cughaPAEXI79B1rQd4HFNQQYEPD4DgiDRajDd8RyMzQYHpYCDV44hUi5DOJBwhERBYqlDq/7OpACrLjaDJXhoFp3D6MgXvezd4ITP5+9Sq9VJKpWqjSRJ7+i6cgwKGIYhmpqahuh0ul0A5tz4/oB+2qJ9PHJbrW13frMDAH1xFWi+CG55HQj1MG+4xtEH8HtgLHwMHgWLmhJdJ9b/H5u2BJcQBwfKESpQYvrQsLvlIkcv095V0WK98wZDzvp6OARKmAV6xPnFe8s1jj6AMCYJSmMdnDY1WIel2+OrfigDz22DNrgKD8dx6iZeYphKpTJywTFHdyFJklWpVAZ4Vh9ufr+X/elVeH4B4LvM0Ot7plvZVObJvEvENUAQV2IxUOD7+sLsQ4FwN6G0SQq4uhYUlez/F+xiFS6EHceiqf8NYoB3SRtMCKSeZSeL3XXHc5gqdGBJHgxiPUI4DeQBhVyjgcRaDzASWCuLuz2+tkwPpaEcl4MCMTzUt/MBHF2B5IJjjjvlynfnlrHwgA6QRYEhEDqNsJl6tnmqodYIAFALmgGJnzdc4+gjsEkj4NdWDr0jAWzNT53bMwxKiqwgaDN8lTqMT+ICoIGEWOEJkO2OO7/fGquaPXNIW0H5xnjFL46+QeDwJEitno16+tLu6adb9A6YnBIIbCWw+46DgD+gb78cHP2eAf0/VBkSBYHTCJejZ61jLVYSYGyIlPW8BS1H3yJs4kSoWsvB0groLxR0at/23U9olieiSVSAeWN+3wsecvQmEl8pAMB15wlkmHQejVxW2sJJvA0wwjRR4Dk8K4qt1d3byFmjbfOME5ViqOpOtvhx9GVOnTolzcjI0LS/LiwsFM+ZMycxNTVVs3z58iiapgEA7777rmr27NlJKSkpSQcOHPAFALPZTC5ZsiQ2PT1ds3DhwoSampoO205+9tlnyqysrOj2199884187ty5ienp6ZrMzMwYi8VCAsBrr70WnJKSkjRv3rzE06dPSwCgoaGB336eefPmJZaVlV1tJdvY2MifOnXqMJvNRgBAS0sLb/HixXGpqamaJUuWxDY0NHS4Z+348eOySZMmjbjxeEVFhWDOnDnXZZF27typys7ODulortzcXP8vv/zSBwC2b9+u6shu69atga+88kpo++v9+/f7paSkJM6bNy/xpZdeiqBpGrm5uf4ZGRmajIwMzZw5cxKHDRt2X1tbW5czpgN6k55faDgaHWVg6Jg7bh3LOBxw8HzhIhqQ4B93F7zkuJeoJz6A5rd2AQDqiurhe1OZ/vX8+nkBGDIRLeE/4qHxr9x9Bzl6FVmAAqgGYLvztsimFk+TEAXVBMjVXvKMoy8gFlJolgJgHKhvtKE72kjVZ2vBd1lRrqrF1Biu/vhusPeHy/7/90xNgDfnTLsvrHnJxKiW29ls2bIl6OjRo/4ikYhpP/bWW2+FZGVl1c+aNcvw3HPPRR85csRn/Pjxlry8vMDDhw//arfbiccee2xYenp62549ewKSkpKsq1evrs/NzfXftm2bOjs7u/rG86xZsyb89OnTiri4OFv7sY0bN0bu27evWK1Wu9evXx+6d+/egHHjxpnPnDkj//zzz4uqq6sFL7zwQuyhQ4eK/vrXv4bNnj27df78+W3ffvutXKvViuLi4hzHjh1TvPHGG2FtbW1XL3xvvPFG8KhRo8wrV67Uff311/Ls7OzQN954o/JGn6qqqqjdu3cHud1ur9QaPv3001c/6927d4dkZWVd9yRqtVqJl156KaqoqEianJzc1n7s7bffDjly5MivUqmU+Y//+I/oI0eO+Dz99NMt7fOtWrUqYu7cuc2+vr50V30Z0Blkv7BgCJ0GsKwCrPW23+8OcdXWwSoJgo1qQBjXEWvAIYyLA0m3gWWMKG+Q3LYOmaVpVOiEINz1uC8iBuBqjwcc0gA5AIB03nlHRLPRBYJxwh8WTgN5ANKqCoLY1oAmg7Bz42uo1zbBx1iOqiApRod3mBjj6IdERkY6tm7dWn7tMY1GY9Xr9TyGYWC1WnkURbEqlcp95MiRiwKBgNXpdBRFUQxJkli2bFnjypUr6wGgrq5OIJfLbxnEjR492rx27dqqa4998MEHWrVa7QYAmqYJoVDInD59WjZu3DgjSZKIjIx00jRNNDY28i9cuCDT6XSChQsXJnz++ed+U6ZMMQEASZJ4//33tXK5/GpDgIqKCtG0adMMADBx4kTz+fPnb7qY2Ww24uWXX47cuHFj1Y3vdUZFRYVg7ty5ic8++2zMrFmzklauXBkBANnZ2SE7d+5Ubdq0SW02m3mrVq2KuHac3W4nU1NTW5555pmrYvVCoZDdv39/sVQqZa75HK7Wyf3000+SiooKcWZmZnN3fBzQGWT/sCBQLjMAAVytOghk3b8o2auq4RD6ghY2gPRP9rqPHPcWgseDNTYGUnM56gQaoOoHIHbaLW0bj/8MozwaLcLPserRl3vZU47eQKj03ANI152XU5ntJAhKjwBS4i23OPoQzuBIKOsa0KKIAhzmLj0E2S0uGK0CRJoqcFkZjTBfrlzvbrBkYlRLZ9neu0FaWpq+oqLiuqfq6Ohox+uvvx6xa9euYKlUSrcHoxRFYfv27apdu3aFZmRkXG3jyufzsWDBgoSKigrxjh07Sm51ngULFrQdP35cfu2xkJAQFwAcPHhQWVBQIF+zZk1tTk6OWqlUXg12JRIJbTAYeI2NjQKFQuHev39/yWuvvRb85ptvqv/0pz/VzZgxw3jjuRISEmz//Oc/lffdd5/t0KFDSofDcVNCdc2aNRGZmZkNYWFh3SpKIwiCBYDa2lrR+++/XyKRSJjk5OTh9fX1V2PSVatW6fLy8oI2bdp0XfDt5+dHz5w505ibm+vffozH46H9IeGdd94JtNlsvIcffvjq7/TOO+8Ev/DCC3Xd8REY4BlkoVgIGh4pHnvznQn/t5V55L/44kbAvydqyhx9leAHkxHcWA7aHQjTuX91aPfjF2cBALzIUoiVoR3acfRfKB8FeG47SLeoy6omN2JnhWBgQADl42XvOPoCoohESKw6uGkVXHVdU7LQXfLUpVt4lyCSDOeUbwYBmzdvDt+7d29xfn7+xdmzZ7esW7cuvP29rKyspu+///7cmTNn5N9+++3VgPeTTz4pyc3N1a5YsSK2tLRU2F4/u2fPntuWjeTk5ATu3btXvWfPnlKxWMzKZDK6vRYZAKxWK0+pVNJyuZx+/PHH9QAwc+ZMfVFRUYdP8StWrKivra0Vpqena2pqaoQqlcp14sQJWbtPH330kd/58+fl27ZtC8nIyNCYzWbe0qVLr9uVLBaLGZfLdV2cabVaSaFQyABAcHCwXaFQMHw+H35+fi673X7HMSlN01i7dm3YqVOnFDt27Cgnr5TUtrW18aqrq0VTp07ttt7vgA6QAcDF80i82Vva7mi8rsKzIUMhbgD8uB3pA5HgKQ/Cv81zo6s63wCwNysYMAyDRoMPeI5SzHlwfm+7yNFLkHI5+LQNpFsC2Lp/zWBZFi5CDBdpglrMLaMPRBRxmqtKFobyrrWc1pUbAJZGvaIKGr+ku+keRx9BJpO5FQoFDQBBQUEuk8nEKy4uFj7zzDOxDMOAoihWIBAwBEGwmzdvVn/44Yd+V8bRJEkiPj7ekZeXp83Ly9P+9re/7bA0YNOmTerCwkL5vn37tCqVyg0ADzzwgPnkyZM+NE2jsrJSwDAMVCqVe9iwYaZjx475AMDJkyflMTExHWYBTpw4IX/iiSeaPv30U21UVJR9xIgR5smTJ5vbfVq0aFFrfn7+L+2vZTIZvWPHjkvXzhEYGOi22WzkxYsXRQDgdrtx6tQpxahRo6wAOn1QZG9xL+6IlStXRjocDvIf//hHWXupBQB89913sjFjxtyUIe8KA7rEAgCclGeVwdyqR+AdjG9pMAJ8QCW0AAKpd53j6BOIRowA5WgEwzSjpC0GQ5tLAVXCdTbFh36CXRQIG/+fGD525z3ylONuw5PLwXfbwWfEcFoaIVB0rxMeY7HARUnh4JkRquAayAxE/ONjILgSILdVNqErO8Lqf62H3FyLwiAX7g/hmk0NBtavX1+5fPnyWB6Px1IUxWRnZ1dGR0c7ExISrPPmzUskCAITJkwwJCcnmxMTE+0vvvhi9MGDB1UMw2DDhg1d0hDU6XT8PXv2hMTGxlqffvrpBACYOXNm69KlS5tGjx5tnjdvXiLLssSf//znKgBYu3ZtzerVqyMPHDgQKJVK6ZycnEsdzZ2QkGBftWpV9KZNmxAQEODcvHnz5e5+BiRJYsOGDZfXrFkTRZIk3G438dBDD+mnTp1qurEk5VZERkbann/++ei33377tp9HQUGB5OjRowFDhw41L1y4UAMAixcvbpg3b56+vLxcFBYW5uiu78AgCJAdIo+iR5vBcEfjbWYW8HEhVMHVjA1USIEAloRYKNvOo573IFwXj4JKvj5A/vHwefDoYKjGuQGyZ7raHH0XUi4Hz20DRYtgNNUiILh7agOupma4KRkclBnBflF3x0mOe0pwsB9q0QqwDFobOi/DYWgGjTU2qA2XUKuRY3GoV0UWOPoI0dHRzi+++OJqzc3kyZPNkydPvqkGZ/Xq1fUA6q89plar3fv27SvtynmSk5NNycnJpvZxFy9ePHMruzVr1tQBuK7uNioqyvnxxx93eJ4TJ05caP85Pj7e8dlnn3W5G87p06fP3ep4R5/DjZ9X+89X/AYAHDhw4Ja12MD1ahdjxoyxFhcX31KndcWKFQ23Ot4VBnyJBS33PKToTXf0AAE3LQLLtCGKk3gb0ERNnYGY6gtgWQGqvy/wyAJewaS3w8pGgG/7EfPTNt5DLznuNqRUCr7bBj4jhtFc3/mAG7DUea7ZjMAInoKTeBuIhCjFaJALwXM1o62t81toa70FboYHmekyymThSAiSdzqGg4Pj3jPgA2QoZCAYGkaTu3PbG6BNJjgpXzh5LVAHJHQ+gKPf4pc8BUpDGWhY8GtjIlD+zdX3vsg5DJakwARdgMQn/DazcPR3CJIEyTpAQgSjpbHb4y0NegAASRkBeZC33ePoA4goHhp9fCG16NBs8wdcttvaN1R4yh9tvAqQgljIRXeusc3BwdF7DPgAWeAXCMplhtXS/WVxV00N7CJ/uKlmkL5cR6yBjGjYMDgClJDq/4VKx3g0/e/HAMuipdECQ40U/k0/I/l3WffaTY5egIQbJMQwWLslmQkAsDZ5giG+0ADIuAzyQMXgHwylSQejOwRM4+1XxhsqjKBcJtT4tiBcym305uDoLwz4AFnsrwblMsPh6J6oOwBYq+rgEsgBYROgjOh8AEe/hSAIBM2ZhzG/5MNN2nGyeAhsB/+Ew69/CrAEaEk+EoY8cq/d5OgFCJIGCBHarK3dHmtttQIAKJERkHEZ5IGKOygKUosOLPgwXrq9koWupAkKYyUqgwho/OJ7yUMODo6eMuADZKU6FJTLDLdbAtDd0rJGa4VHO5kSNwDc0vqAx3/OHAjdNhiII6h2jsbuf06FyRSCuPKDGPfi6nvtHkcvweMDICi0Wc3dHmsxeAJkOd8ASPw7sebor4gihkJq9Wjkt17WdWjntLnR1uyCwliBShUPI9TRveUiBwdHDxnwAbJPUAgELgtoRgFYurdkWl/lCZB9RE2AnFsuHegIExIgGDYUM0/m41jEbtSLSjDk4lvg+5UibnTyvXaPo5egKM9l0Wjr3gM1AJiMns3AMj4NkAP+8jpo8Y1LhKRd6q2+4wephkojAAIK42VUKAMRF6joJQ85ODh6yoC/gvuoA0C5zGBZGdDNTTdtzZ7GK4EiJyftNQggCAKhG1+FwsVD1jfnkPzjVijtlZj4xt577RpHL0KJPeqXtjsQvrHZGJC0GQqq8/bDHP0XdZAv2iQukLQebS0dNztouGQAWAYMU4k2MgyxKk5Lf6By6tQpaUZGhqb9dWFhoXjOnDmJqampmuXLl0fRNA0AePfdd1WzZ89OSklJSTpw4IAvAJjNZnLJkiWx6enpmoULFybU1NTctJPTarUSmZmZsWlpaZrFixfHNTY28gFPF70ZM2YMbe9wV1xcLOzI9scff5SkpaVpUlNTNZmZmTE2m+3ql/dG/wsKCiQpKSlJaWlpmj/+8Y/h7f7fir///e/qG7voAUBubq7/K6+8cl3b2aVLl8bc2C77Wl5++eXwyspKQUtLC+/jjz/2u5WN2+1GZmZmzFdffXX1iXPDhg2hKSkpiXPmzElsn7+lpYU3duzYke2fzbZt27rVDmPA6yD7BvqD7zKDhRSMsRFkN3T/7RYWkNEIU3TYjZFjgCHSJCD4z2vBz8kBK6YQ+voGiEK5hg+DCaGYAmyA3d39dsBONw8gzfARKO+CZxx9hWAfMUqUYojs9Wi2+AFOKyC4+T5RV6qHzF6Han87BEwI/KSd9kbg6Ak/7vDH2Y+8KzQ9alEzHljacjuTLVu2BB09etRfJBJd1Qd96623QrKysupnzZpleO6556KPHDniM378eEteXl7g4cOHf7Xb7cRjjz02LD09vW3Pnj0BSUlJ1tWrV9fn5ub6b9u2TZ2dnV197Tnee++9wLi4ONuaNWvq9u/f77tly5bg7Ozs6qKiIml2dnbF2LFjre22OTk5QTfabty4sXrdunVROTk55fHx8Y7du3cHVFZWChITEx238n/dunWRL7/8ctWkSZMsGzZsCNm/f7/fb37zm5s2Zhw9elTx3XffKQMDA509+6A9vPrqq9UAcPz4cXl+fr7yiSeeuO6cZWVlwpUrV0Y3NzdTAJoB4MyZM+ILFy5IP//88+LKykpBVlZWXHJy8q+FhYWS6dOnt/7tb3+rvsWpOmXgZ5BlIjCsBSBIOFqaujWWdgsBxoAwTvB/UOG7cAESvjsBzTf5kD046V67w9HLiGSeIMbp7H7+wM0IQMMMXxHXDGIgE6oUo06ugLKtEm3ucLjrfr3JhqEZ6Mr1ULReQmUQECyJ6rS1Lkf/JDIy0rF169bya49pNBqrXq/nMQwDq9XKoyiKValU7iNHjlwUCASsTqejKIpiSJLEsmXLGleuXFkPAHV1dQK5XH5TurawsFCWnJxsAIBHHnnE+PPPPysAQKvVSt555x11amqqZvPmzeqObEtKSoQKhcK9Y8eOoPT0dI1er+clJiY6OvK/ublZMGnSJAsAjB071lxQUHDTslhpaalw//79qmXLltV29zPLzc31f/bZZ2OeeuqpuOnTpw/Nzc31B4CMjAxNUVGRaPv27eqzZ8/K33vvvesupmazmXz11Vcvjx492tR+7L777rN9+OGHJSRJorKyUiCTyWgAOH/+vFSr1UrT09M1v/vd72Lq6uq6pbE44DPIPJKAm/R0O7LrjehqPzyWZUETUjDQw98v9u45yMHB0aeQKMVAE8A6u6dXy7Is3KQEbrIBKk4DeUCjkgtRq/DH2LIq1IXx0VxUCnXU2OtsWmotcDlZKA1lqBxCIF7JNZu66zywtKWzbO/dIC0tTX9j6+To6GjH66+/HrFr165gqVRKT5kyxQQAFEVh+/btql27doVmZGRc7fLG5/OxYMGChIqKCvGOHTtu6iBnsVh4Pj4+NADI5XLaYvFo186YMaM1MzOzSaFQ0JmZmbGHDh3yuZVtc3Mzv6ioSPbKK69UxcXFOZYsWRKXn59vnTZtmulW/gcHBzuOHz8uS05ONufn5yttNtt1daYmk4lct25dxJYtWyqKi4u722qYBdw1pjcAACAASURBVACz2cz76KOPSktKSoRZWVlx13bHy8rK0u3bt0+VmZl53eaxUaNG3VJ4nKIobNiwITQvLy/wpZdeqgKAuLg4+4gRI2offvhh00cffeS3du3a8Pfee6/D9to3MuAzyADg5Hky/za9qRPL/w+t18MlUILmtYHgJN44OAYNcqWnTpTspjQkYzTCRcng5Jmh5LroDWh4JAG9XzgUpioAQNOlmzeA15V6msYoDeW4HCDAkEDuPjKY2Lx5c/jevXuL8/PzL86ePbtl3bp1V6WwsrKymr7//vtzZ86ckX/77bdX63E/+eSTktzcXO2KFStiS0tLhe21s3v27AmQSqW0yWQiAcBkMvGkUinNMAyysrIaVSqVWygUsg899JDh4sWLklvZ+vv708HBwfYhQ4bYBQIBO3HiRMO5c+c6rB997bXXKnbs2BG8YMGCBD8/P7dSqXRv375d1e7ToUOHlK2trdSyZctiX3vttfCzZ8/K2zPY7YhEIsbpdF4XZ9psNlIsFjMAkJCQYAWA8PBwp8vl6nE8unbt2toTJ06ce//999VlZWXC5ORkY3tb7jlz5ujLysq6VS87OAJkyrNaYTHYuzzGpdPBLlQC/FZAyUm8cXAMFqR+npVE0ikCWLbL41wtLXBRUjB8E0QK1d1yj6OPQKvjIXS0gQ8zGnXMTe/Xl+khYVpBMnrUStWIC+Q2bg4mZDKZW6FQ0AAQFBTkMplMvOLiYuEzzzwTyzAMKIpiBQIBQxAEu3nzZvWHH37od2UcTZIk4uPjHXl5edq8vDztb3/72+ZRo0aZ8/PzlQBw7NgxxciRI01Go5H3+OOPDzWZTCTDMDh9+rR8+PDh1lvZxsTEOGw2G6+0tFQIAIWFhfKEhIQOg6L//d//Vb711luXPvnkkxK9Xs978MEHjVlZWU3tPi1atKj12LFjv+bl5WlXr15dPWrUKNNLL710nebhiBEjrD/99JOiPVhvaWnhXb58WTxkyBA7gNuWHBEEwbJdvP7m5+fLV61aFQEAIpGI5fF4LEmS7MqVK6MOHjzo227THpB3lQFfYgEALqHnOaDN0vVt6ZZqHRieEKSwFfDhNmlxcAwWRH5yAC6QbgngNAPCDjdcX4et0QAQJFjKCILTQB7wyEOHwMUDhEwdmvQ+noepKzd8hmZQo21FgKEYlUEk3K4gxHAKFoOK9evXVy5fvjyWx+OxFEUx2dnZldHR0c6EhATrvHnzEgmCwIQJEwzJycnmxMRE+4svvhh98OBBFcMw2LBhQ8WN82VmZjb953/+Z1RqaqqGoij2zTffvKRUKunnn3++ZtGiRRqKopj777/fNGvWLIPFYjHdaCsUCtn169dffvHFF2NYlsXw4cPNjz/+uKEj/6OiouyLFy/WiEQiZsyYMaZZs2Z1aNsRiYmJjvnz5zfOnz8/USKR0G63m/jDH/5QJZfLb36ivIHY2FjHpUuXxFu3bg1ctmzZbSXIHnroIdORI0d8582bl8gwDBYsWNAYExPjXL16dc0f//jHqP379weKRCL69ddfr+yO/14LkDUaDQGgBkB7382TWq12jUajSQGwDoAbwD+0Wu1Ob52zq7iv7Bw2WDuWKbmRtsuNAFQQCpsBechd8oyDg6OvQfnIQdL1IN0iwG7scoDc3maapEyA5JbqRBwDiHA/FXS+BETWGrSSU+BquARK7dmvUl9mgMNKw6/+F/wYyYJ1BiHCjwuQBzLR0dHOL774orj99eTJk82TJ08uvtFu9erV9QDqrz2mVqvd+/btu23PcqlUyuzateum+tknn3yy9cknn2ztiu20adNM06ZNK+qK/ykpKYaUlJQuBcXJycmm9lKGG1m6dGnT0qVLb1JIuLbeWCwWsydOnLgAAHl5edr24998883Fjs6Zk5Nzuf1nPp+Pv//971U32sTExDgPHDhwUz13V/FmiUUsgDNarTb5yr81Go2GArAFwEwAUwAs1Wg0vb57hVAoQNIOmKxd/3Xrqjy18xKJGaBEd8s1Dg6OPgYpl4NPO8CjRYDD2OVxtjYLAIBPmbgueoOAEF8JqvxF8GsoAQsean74+ep7FeeawSNo+LYUo1xNwF8QDgF/UFQ0cnAMGLz5P3YMgFCNRvOtRqM5otFoNACSAJRptdo2rVbrBPAdgIe8eM4uwVOqQLkssNm7vulG3+zpjuQvcd8ttzg4OPogpFwOntsOPi2C03aT7GeH2PSeAFlEmQAxl0Ee6IQqRSjzVyK05iJEpAml5zz3DJZlcelcE4KIUvBpB8qDCUT7cEpIHBz9jTsqsdBoNJkA/uuGwy8AyNZqtQc0Gs2DAD64YnNtit4EwOdOztkTxH5quErMcLilgNMCCDpf6nJYWEDCIETBLYtxcAwmeHI5eLQdFCOE2dKEroa6ZoMZgD+kAq7EYjAQohSjTKkGydYjXFqFisY4uGwuNNVaYGqxI67tJFxCEvVKIR705zZ6c3D0N+4oQNZqte8BeO/aYxqNRgJPnTG0Wu13Go0mBJ6A+NoCPjkA/Z25eucogkJhdFXAQcsBS3OXAmS3SwCCMSLCj7uwcXAMJgiRCDzaAT4jhMXW9QDZYvTIc8r4DoDfPYk4jv5HsI8YZYooAIXwJWtRyg7FhcMF0P5KQCZxQnWhAGWhErgdasQGdq2OnYODo+/gzRKL/wawAgA0Gs1IANUAfgUQr9Fo/DQajQCe8oqTXjxnl/AJCgHlsoBmZYD1Zr3KW8FACpbVw9c/6u46x8HB0acgCAIk6wTJimC2dr3EwmpxAQBkg0IbiEMh4oMWRECnBPhNFVBTxTj5tRWtdRY86PMx3K0sCkPdYBzBiAngJN44OPob3gyQXwMwRaPR/AvA/wD4rVardQF4EcAxeALjf2i12m63JOwpiiAVBC4zWFYGWDpvssM4nXDz5WBJPQif0F7wkIODoy9BwAUSIpgdbV0e47CzIGgb5BRXljUYIAgCQZIwVKgJoLwKqRNPYYpyFyYMr4Sq6ijAAmci3WDswZzEGwdHP8RrAfKVjXiPa7XaKVqtdrpWqy2+cvxLrVZ7v1arHaPVard563zdQRmgBElbwEICxtx5Btnd2ASn0AcsTw/Ig3vBQw4Ojr4EARoEhLDYuy796XaTIBgLZALlXfSMoy8RoQzE5UAKogY9mMlrMcz3B9zXtAIWWywYsRBlIYCICUWgnCu5GeicOnVKmpGRoWl/XVhYKJ4zZ05iamqqZvny5VE07ZGZfffdd1WzZ89OSklJSTpw4IAvAJjNZnLJkiWx6enpmoULFybU1NR02Of+s88+U2ZlZUW3v/7mm2/kc+fOTUxPT9dkZmbGWCwWEgBee+214JSUlKR58+Ylnj59WgIADQ0N/PbzzJs3L7GsrOzqF7OxsZE/derUYTabjQA8TT0WL14cl5qaqlmyZElsQ0PDTWtjdXV11IIFCxLS0tI0S5YsiTUajdfFlBUVFYI5c+YkXnts586dquzs7A61c3Nzc/2//PJLHwDYvn37TR2XLl26JEhPT9ekpaVpnn/++ej23xcAaJrGk08+Gb9z506vdGoaFIuBSqkANKwAQcLR1orOmoY7dA1wUTKQlB5QcBlkDo7BBkGyYAkRTI6uB8g0wwcLGxQiTuJtsBDtL8OZkAAsQh3MP12EcsH7QO3PsHx/FK1DlKB51YhVxt22YxiH9/io6CP/L8q/CPDmnHNi5zQvSlp026XnLVu2BB09etRfJBJdbYDx1ltvhWRlZdXPmjXL8Nxzz0UfOXLEZ/z48Za8vLzAw4cP/2q324nHHntsWHp6etuePXsCkpKSrKtXr67Pzc3137Ztmzo7O7v6xvOsWbMm/PTp04q4uDhb+7GNGzdG7tu3r1itVrvXr18funfv3oBx48aZz5w5I//888+LqqurBS+88ELsoUOHiv7617+GzZ49u3X+/Plt3377rVyr1Yri4uIcx44dU7zxxhthbW1tVwPzN954I3jUqFHmlStX6r7++mt5dnZ26BtvvHFdo42tW7eq58yZ07J48eKW7OzskL179wb8/ve/v21Tj864Vh959+7dIVlZWddpKG/cuDFs/vz5TU888UTr7t27A7Zt2xb0hz/8of7Ke6Emk4nXk/Nfy6AQZlSI+HARni56dv0ttayvw1Dl+ftSgjZAwWWQOTgGGzweC5ACGO2WLo+hIQQDCxSyXpd657hHRAdIUKwMQbOSB+ORI0D0ZDjDUuGqrkZJnAhw+UMTyLUdH+hERkY6tm7dWn7tMY1GY9Xr9TyGYWC1WnkURbEqlcp95MiRiwKBgNXpdBRFUQxJkli2bFnjypUr6wGgrq5OIJfLb9nVbPTo0ea1a9de1xDjgw8+0KrVajcA0DRNCIVC5vTp07Jx48YZSZJEZGSkk6ZporGxkX/hwgWZTqcTLFy4MOHzzz/3mzJligkASJLE+++/r5XL5Vd1bSsqKkTTpk0zAMDEiRPN58+fv6mQ/q9//Wv1okWLWmiahk6no9pba3eFiooKwdy5cxOfffbZmFmzZiWtXLkyAgCys7NDdu7cqdq0aZPabDbz2ltIt1NZWSmeOXOmAQDGjRtnPnv2rAwAPv30U1+CINgJEyZ0Xby+EwZFBpkgCDh5TgCAzWiFbyf2uqo6AFEQiw1d7qLFwcExcOBRniSEye7qkj3LsmBIEViiDUI5FxANFiL9pWBcgfgukUHAyR/gbmtD846dIAQCfBVuhMsWjHgNt0Gvt1iUtKils2zv3SAtLU1fUVEhuPZYdHS04/XXX4/YtWtXsFQqpduDUYqisH37dtWuXbtCMzIyGtrt+Xw+FixYkFBRUSHesWPHLbu/LViwoO348ePXBSUhISEuADh48KCyoKBAvmbNmtqcnBy1Uqm8GuxKJBLaYDDwGhsbBQqFwr1///6S1157LfjNN99U/+lPf6qbMWPGTUFlQkKC7Z///Kfyvvvusx06dEjpcDhuSqiSJAmn00nMmjVriNPpJP/rv/6r/kabW0EQBAsAtbW1ovfff79EIpEwycnJw+vr66/GpKtWrdLl5eUFbdq06boHgri4OOvhw4eVTz31VMtXX32ltNvt5IULF0SHDx/227lzZ/nrr7/utdbHgyKDDAAOyrPyYTPaOrEEmus8G3Oksq7dHDk4OAYWlNATIFsdbJfsWbsdbr4UDGmFUMEFyIOF6AApaIcaPySRgJuGbt1/w/DZZxDMn4tiqgG0NQrxQVySZTCyefPm8L179xbn5+dfnD17dsu6deuuasZmZWU1ff/99+fOnDkj//bbb69+QT755JOS3Nxc7YoVK2JLS0uFGRkZmoyMDM2ePXtuWzaSk5MTuHfvXvWePXtKxWIxK5PJ6Gtrc61WK0+pVNJyuZx+/PHH9QAwc+ZMfVFRkaSjOVesWFFfW1srTE9P19TU1AhVKpXrxIkTsnafDh8+7AMAAoGA/frrry+uW7fu8ksvvRR97RxisZhxuVzXxZlWq5UUCoUMAAQHB9sVCgXD5/Ph5+fnstvtncak69atqzl+/LgyIyNDQxAE6+Pj4z5w4EBAU1MTtXDhQs2RI0f89+3bF/TVV18pOpurMwZNgOy88mynt3Qe9Fr0nnIMf2mHdfIcHBwDGErkSWR0MYEMt8EAF18MlmcBJeOahAwWQpRikI4oXA4C6meMgCk/H6RYjKLHhwAAaGsMEoK4DPJgRCaTudtLDoKCglwmk4lXXFwsfOaZZ2IZhgFFUaxAIGAIgmA3b96s/vDDD/2ujKNJkkR8fLwjLy9Pm5eXp/3tb3/bobrApk2b1IWFhfJ9+/ZpVSqVGwAeeOAB88mTJ31omkZlZaWAYRioVCr3sGHDTMeOHfMBgJMnT8pjYmLsHc174sQJ+RNPPNH06aefaqOiouwjRowwT5482dzu0+OPP25YtWpVRHuAL5PJGJIkr8soBAYGum02G3nx4kURALjdbpw6dUoxatQoK4BOa/NZ9uYERX5+vmLVqlU1eXl5Wh6PhwkTJhj/8pe/1Hz55ZfFeXl52lmzZrX85je/aXj00Ud7XGoxKEosAMAtoUAA0Fs7zwi5bCwgoRHi21kxBgcHx0CEkggAO2B3dy2H4GjWgyUpgG8BxNx1Y7DAIwmEK1WwEOH4ZI4vcv78DVi7HR/V7gZFSCFBGNQK0b12k+MesH79+srly5fH8ng8lqIoJjs7uzI6OtqZkJBgnTdvXiJBEJgwYYIhOTnZnJiYaH/xxRejDx48qGIYBhs2bKjoyjl0Oh1/z549IbGxsdann346AQBmzpzZunTp0qbRo0eb582bl8iyLPHnP/+5CgDWrl1bs3r16sgDBw4ESqVSOicn51JHcyckJNhXrVoVvWnTJgQEBDg3b958+UabZ555pnHt2rWRb7/9NksQBNavX39dOQRJktiwYcPlNWvWRJEkCbfbTTz00EP6qVOnmm4sSbkVkZGRtueffz767bffvvp5xMXF2V966aUYiqLY6Oho29/+9req283REwZNgMwoFKAsTphsFMCywG2eXGi3AARtRLB/dIc2HBwcAxehVAC0Aoy9a6tItiZPg1CSbwZEnMzbYCLaX4qL9hgUNv4MQuUPiuTjp4KfIHLHISJQwSlYDBKio6OdX3zxRXH768mTJ5snT55cfKPd6tWr6wFcV6urVqvd+/btK+3KeZKTk03Jycmm9nEXL148cyu7NWvW1AGou/ZYVFSU8+OPP+7wPCdOnLjQ/nN8fLzjs88+u8n/a0lKSrLn5eVpb2fT0edw4+fV/vMVvwEABw4cuKkWe/z48ZbDhw8XdXS+a8f3lEFTYkEqA0C5LLC5pIDj9koWLCsBCwOk/lybaQ6OwYhE4RGDZF2dJjkAAPYWMwCAT5kBMRcgDyYi/aUw6MNgdVuhbdVCZ9GhylQFkz4CScFc/TEHR39l0GSQhb5BoMossNM+gKUJEN26ftvTRU8BkE0gFEm97CUHB0dfQOJzRS3dJQLcDoB/+0YPllYjACUElIkrsRhkRAdIYDdFQaYGvq76GianCSTBg1GfgNER3HeBg6O/MmgCZJkqDKyzEhZG7gmQ/WNvaUc3NcEh9AHIUq6LHgfHIEXm58n8EW6xZ8WpkwDZpDcDUEIoMANCn17wkKOvMDxMCdatwAjlFLx34T0QBIExvo8j36nCfVyAzMHRbxk0JRY+gSEQuMygWQVg7rjRi0PXCDclA4/SAwqvyelxcHD0I2R+HuUBwi0CHJ1vhrYYPA1FxAIHQA6ayyoHgKEhCogoEjHIxAjVCCiFSvjYZ8NHTCEmQHqv3ePg4LhDBk0GWREUCLfTBIaVAxZdh3atl3UAhBAIWwGJVztWcnBw9BMEShkIxgAeLep0zwIA2K7IR0r5TCeWHAMNikdidLgvzlZZ8H9f2A2ry4qMbWdxX4QSJMlt0OPg6K8MmlSH0k8OkjaDJcRwGzqUFLzSRQ8QiK1cJoiDY5DCk8nAo+3gucWg7YZO7e12GmBpSK904OMYXNwf5YuLdQY4XATASFDaaObKKzg4+jmDJgJUSii44VkGtbV1vGTarPN00bumJTkHB8cgg5TJwKMdoGghrJamTu1dDoCkbZBTXP3xYGRslB8YFjhbpceRCx4Fr3Ex/vfYK47e5NSpU9KMjAxN++vCwkLxnDlzElNTUzXLly+PomkaAPDuu++qZs+enZSSkpJ04MABXwAwm83kkiVLYtPT0zULFy5MqKmpuUlf0mq1EpmZmbFpaWmaxYsXxzU2NvIBTxe9GTNmDG3vcFdcXCzsyPbHH3+UpKWlaVJTUzWZmZkxNpvt6hLHjf4XFBRIUlJSktLS0jR//OMfw9v9v5ZvvvlGPnfu3MT09HRNZmZmzLXd+wAgNzfX/5VXXgm99tjSpUtjbmyXfS0vv/xyeGVlpaClpYX38ccf37LrktvtRmZmZsyN3fIsFgv56KOPDmk/bjabyRdeeCEqLS1Nk5KSknj69OkOOwfeikFTYqGUCOAkPG2mbXoLOvrrWNucAAkEcOLuHByDFlIqBZ+2g2JEsNhaOrxetEPTPIC0QSbksoaDkdERSvBIAu+fuoxf640YGeaD+6O470Jv0/rBh/6Gzz/3am2kz9y5zX6Ln2y5nc2WLVuCjh496i8Sia7WWL311lshWVlZ9bNmzTI899xz0UeOHPEZP368JS8vL/Dw4cO/2u124rHHHhuWnp7etmfPnoCkpCTr6tWr63Nzc/23bdumzs7Orr72HO+9915gXFycbc2aNXX79+/33bJlS3B2dnZ1UVGRNDs7u2Ls2LHWdtucnJygG203btxYvW7duqicnJzy+Ph4x+7duwMqKysFiYmJjlv5v27dusiXX365atKkSZYNGzaE7N+/3+83v/lN67U+bdy4MXLfvn3FarXavX79+tC9e/cGPP/88x1v8uoCr776ajUAHD9+XJ6fn6984oknrjtnWVmZcOXKldHNzc0UgOvKAVavXh1xre54Tk6OOi4uzrZt27bL586dE//yyy/icePGWdFFBk0GWSrgwc5zAgCspo77xzptBMC4EOKr6i3XODg4+hiEQACSdoDPCGGxt3ZqTzMUwFohFXFtpgcjchGFPzyiwbGLDahutWH59HiuQcggIjIy0rF169bya49pNBqrXq/nMQwDq9XKoyiKValU7iNHjlwUCASsTqejKIpiSJLEsmXLGleuXFkPAHV1dQK5XH5TurawsFCWnJxsAIBHHnnE+PPPPysAQKvVSt555x11amqqZvPmzeqObEtKSoQKhcK9Y8eOoPT0dI1er+clJiY6OvK/ublZMGnSJAsAjB071lxQUHBTz/QPPvhAq1ar3QBA0zQhFAq7vAkjNzfX/9lnn4156qmn4qZPnz40NzfXHwAyMjI0RUVFou3bt6vPnj0rf++996574DGbzeSrr756efTo0ddtDnnzzTeDRo8ebY6Li7saAJ86dUpBURS7aNGi+JycnOCHH364W+2nB00GmSAIWAWev53Z3HH5BEMLQTJ6+PtF9ZJnHBwcfQ2CIEAyTpCsEGa7vlN7BkKwhBUCGbesPlj5jymxcNEMyhrNmJYYeK/dGZT4LX6ypbNs790gLS1Nf2Pr5OjoaMfrr78esWvXrmCpVEpPmTLFBAAURWH79u2qXbt2hWZkZDS02/P5fCxYsCChoqJCvGPHjps6yFksFp6Pjw8NAHK5nLZYLDwAmDFjRmtmZmaTQqGgMzMzYw8dOuRzK9vm5mZ+UVGR7JVXXqmKi4tzLFmyJC4/P986bdo00638Dw4Odhw/flyWnJxszs/PV9pstps2WISEhLgA4ODBg8qCggL5mjVrarv4kbEAYDabeR999FFpSUmJMCsrK+7pp5+++rfLysrS7du3T5WZmXldlnjUqFG2Gyf75ptv5JWVlaL/+Z//qfz9739/NZA3GAx8o9HI/+ijj0o/+OAD/7/85S9h27Ztu9xFHwdPBhkAbCLP37fZ1vGvzUAKsAZIA6N6ySsODo6+CAEXSIhgcXS+SY8mhWAJGygZl0EezCybFo83nhjNZY858P/Yu+/wKKr9j+Pv2b6bbCppEEoCZOgdpIlcFJVeBFREQUBFpVmwXlGuBX8qooCIKIooFkQQURAERBGlSJO6gKEEIZCeTd02vz8CGjpKkoXk+3oen5vMzM75Dpy7fHb2zDmTJk2q+uGHH+5ZtWrVzu7du6eNHz/+r6V5R4wYkbJ27dptmzdvtv/www9/jeCaN2/e3jlz5jjGjh1bc9++feZT44pnz55dKSAgwOt0OnUATqdTHxAQ4PX5fIwYMeJERESEx2w2ax06dMjauXOn7VzHhoeHe2NiYgrq1atXYDKZtLZt22Zt27btvGNyX3755QMzZ86MGTBgQEJYWJgnJCTEM2PGjIhTNZ0aJz116tTIDz/8MHr27Nn7rFarVvwcFovF53K5Tgtc+fn5OqvV6gNISEjIA6hatarL7Xb/6zz6xRdfVEpMTLT269dP3bBhQ/DkyZNjt2zZYg0KCvLceOONmQBdu3bNdDgc/2jexQoVkAvtQei9hWQXWotWxzqD5nbjMQSDkok+tJofKhRCXCkUvChYyHFdeJo3n8uFV28FJQ+zXQKyEAICAwM9QUFBXoCoqCi30+nU79mzxzx06NCaPp8Po9GomUwmn6Io2qRJk6Lnzp0bdvJ1Xp1OR+3atQvnz5/vmD9/vmPIkCGpTZo0yVm1alUIwLJly4IaN27szM7O1nfr1q2+0+nU+Xw+1q9fb2/YsGHeuY6Nj48vzM/P1+/bt88MsGXLFntCQkLB+er//vvvQ6ZMmZI4b968vZmZmfr27dtnjxgxIuVUTbGxse5XX301esuWLfZPPvnEERERcdZX840aNcrbuHFj0KmwnpaWpj948KC1Xr16BcAFP0gqiqJpmnbe/cXNmDHjwFdffbVn/vz5jlatWmU99NBDR5o2bZrfuHHjnJUrVwYD/Pzzz/YaNWqcdff5QirMEAsALSQSY7KTHE9I0Wp6wbGn7XenplJoDkbRZ5y1TwhRsSg6Hyhmct05FzzO53TiMdhAn4fZLkMshBAwYcKEQ6NHj66p1+s1o9Homzhx4qG4uDhXQkJCXu/evesoikKbNm2yOnbsmFOnTp2Chx9+OG7hwoURPp+P559//sCZ5xs2bFjKmDFjavTp00c1Go3am2++mRgSEuJ94IEHjtx+++2q0Wj0tWzZ0tm1a9es3Nxc55nHms1mbcKECQcffvjheE3TaNiwYU63bt3O+/VYjRo1CgYNGqRaLBZf8+bNnV27dj3t2OTkZMPs2bMr16xZM++uu+5KALjxxhvT77333r+m/alTp05h//79T/Tv37+OzWbzejwe5bHHHjtst9svOla5Zs2ahYmJidZp06ZFjhw58l89+Dd27Nhj48aNq9GrV686BoNBe+211876c70Q5VITelnq27evtmDBghI/76v/N43obVbcoTkMiBxj1QAAIABJREFUfaItVG152v6MDVv45P0MzIZ5DJ/yFuhkTtN/S1XVTQ6Ho0VJn7e0+oYoO6XVN6Bk+8fnd75Gqq0J9nb/x113fX/e4/L2JfLBpIMo+q944NF+ENehRNqvqOS9Q5zPufrGtm3bDjZu3Pj8ixsIcRHbtm2r1Lhx4xpnbq9QQywCIqtjcjnxeIMg++yx5McPHAHAYMmRcCxEBac3KKDocLouPCd6QVrRg9F6fQ5YQsqiNCGEEKWsQgXkkMpVMbqdeLVzB+TUI0UPlBoDzz8NnBCiYjCYij4k57ku/C1b3qmAbMwFq8x9K4QQ5UGFCsjBUREY3Dn4CELLOnrW/ozkoiE2AaGms/YJISoWg6XoEY1894W/TcpOK1p906zPBavcQRZCiPKgQgXk8CALPi0XFD2F6WcvH5uXUbSQSESYPIkuREVntBat9upyX/hZ5pyTS9ebjblgOmsufSGEEFehChWQKwWacCm5AOSmnT11k7vQiM6TTVREfFmXJoS4wpgCzQD4Co0XPC43u+g9xWR2g8x/K4QQ5UKFCshhAWbydUVTNjkzzn7wxusLRPGlEiQBWYgKz2q3AqC5LeA9/3MJBTlFc6pbTZe8yqoQQogrXIUKyCFWIzn6on/MsnP04Pt7uXPN58NjCAUljeCYOH+VKIS4QliCiwKy4rJC4fkXCynMK/qwHWCsUG+nQohi1q1bF9CvXz/11O9btmyx9uzZs06fPn3U0aNH1/B6i/LGO++8E9G9e/e6PXr0qPvFF1+EAuTk5OgGDx5c85ZbblFvvfXWhFOr1BWXl5enDBs2rGbfvn3VQYMG1Tpx4oQBilay69y5c/1TK9zt2bPHfL5jN2zYYOvbt6/ap08fddiwYfH5+fl/feV1Zv2bNm2y9ejRo27fvn3Vxx9/vOqp+ov76aefAnv06FGnZ8+edZ599tkqZ+6fM2dO+HPPPXfa9nvvvTd+9erV9jOPPeWpp56qeujQIVNaWpr+s88+O+d4V4/Hw7Bhw+K/++67oOLbc3NzdTfffHO9U9uPHj1qHDBgQELfvn3VwYMH18zOzv5Hb9IVaqEQnU4h16Ij0Och1VsJck5AUAwArhMpFJrDMCgbMYdX93OlQgh/CwwrGk+seKxQmA22cz+b4CrQUBQ3NtN5V20VQpSB3384Eu5Yd6xSSZ5TbR2T2ug/sWkXOmby5MlRS5cuDbdYLH99jTRlypTKI0aMONa1a9es+++/P27JkiXBrVu3zp0/f37kt99+u6ugoEDp0qVLg1tuuSVj9uzZlerWrZv3xBNPHJszZ074W2+9FT1x4sSk4m3MmjUrslatWvlPPvnk0c8//zx08uTJMRMnTkzavXt3wMSJEw+0aNEi79SxU6dOjTrz2BdffDFp/PjxNaZOnfpH7dq1Cz/44INKhw4dMtWpU6fwXPWPHz+++lNPPXW4Xbt2uc8//3zlzz//PGzgwIHpxWt6+eWXq06bNu2P+Ph4V//+/RM2b95sbdas2T9are5ML730UhLA6tWr7atWrQq57bbbTmtz//795kcffTQuNTXVCJw2//UTTzxRrfjqfNOmTYvu2bNn2qBBg9ImTpxY+cMPP6w0atSoS150pMLd8iiwh2EuzCDdG3naVG/pe5PQdHp0pgwwn/fDjRCiggiKKLo5ofdYLngH2evWofjyCTDLw71CVETVq1cvnDZt2h/Ft6mqmpeZman3+Xzk5eXpjUajFhER4VmyZMlOk8mkJScnG41Go0+n0zFy5MgTjz766DGAo0ePmux2+1m3a7ds2RLYsWPHLICbbrop+7fffgsCcDgctrfffju6T58+6qRJk6LPd+zevXvNQUFBnpkzZ0bdcsstamZmpr5OnTqF56s/NTXV1K5du1yAFi1a5GzatOmsJ5AXLVq0Oz4+3uV0OnW5ubn6wMDASx5nNmfOnPB77rkn/s4776x1/fXX158zZ044QL9+/dTdu3dbZsyYEb1161b7rFmzTvvAk5OTo3vppZcONm3a9LQ35TfffDOqadOmObVq1frrg8ILL7yQdPvtt6d5vV6Sk5ONp5b+vlQV6g4ygDekMpakDJzuiJMBuWhRnj/3HQDC0dku68OPEKKcCAwLAi0TnefCQyy8XgOKPh+zLBIihF81+k9s2sXu9paGvn37Zh44cOC0+WHj4uIKX3nllWrvvfdeTEBAgPe6665zAhiNRmbMmBHx3nvvVenXr9/xU8cbDAYGDBiQcODAAevMmTP3ntlGbm6uPjg42Atgt9u9ubm5eoDOnTunDxs2LCUoKMg7bNiwmt98803wuY5NTU017N69O/C55547XKtWrcLBgwfXWrVqVV6nTp2c56o/JiamcPXq1YEdO3bMWbVqVUh+fv5Z810ajUZ+/fXXgMceeyy+evXq+bGxsa5L/CPTAHJycvSffvrpvr1795pHjBhR66677vrr727EiBHJn3zyScSwYcNOu0vcpEmTs0LaypUr7YcOHbK8/vrrh0aNGvVXkNfpdLhcLqVr1671XC6X7qGHHjp2ifUVvf6fHFwuRCVgKUyn0BsB2X/PhZx6pOjvQB924SfWhRAVgzE4CIOnAKPXgisv/bzH+TQjaHnoA8LLsDohxJVs0qRJVT/88MM9q1at2tm9e/e08ePHVz21b8SIESlr167dtnnzZvsPP/zw11fW8+bN2ztnzhzH2LFja+7bt898alzx7NmzKwUEBHidTqcOwOl06gMCArw+n48RI0aciIiI8JjNZq1Dhw5ZO3futJ3r2PDwcG9MTExBvXr1Ckwmk9a2bdusbdu2nXdc2Msvv3xg5syZMQMGDEgICwvzhISEeGbMmBFxqqZT46TbtGmTu2bNmu2qqua98cYbMcXPYbFYfC6X67ScmZ+fr7NarT6AhISEPICqVau63G73v86jX3zxRaXExERrv3791A0bNgRPnjw5dsuWLVYAk8mkrVixYuf48eMPPvLII//oAbMKF5BNVWphKUjHq4XgTUn8a7szJQ80H0FRlf1YnRDiSqELtKP3FgXknLyz500/xYcZyMMQIEMshBBFAgMDPae+0o+KinI7nU79nj17zEOHDq3p8/kwGo2ayWTyKYqiTZo0KXru3LlhJ1/n1el01K5du3D+/PmO+fPnO4YMGZLapEmTnFWrVoUALFu2LKhx48bO7Oxsfbdu3eo7nU6dz+dj/fr19oYNG+ad69j4+PjC/Px8/b59+8wAW7ZssSckJBScr/7vv/8+ZMqUKYnz5s3bm5mZqW/fvn32iBEjUk7VVLlyZXffvn3V9PR0PUBAQIBPp9Odtuxoo0aN8jZu3Bh0KqynpaXpDx48aK1Xr14BgHKBaTEVRdE07cKrmJ4yY8aMA1999dWe+fPnO1q1apX10EMPHWnatGn+uHHjqp36ABIYGHhWfRdzWUMsVFXtA/R3OBwDT/7eGngT8ADLHQ7HBFVVdcB0oDFQCAx3OBz7L6fdyxEcVQmdJwMUHblHDnHqEciCXAWDkkWlmCb+Kk0IcQXR2axFAdlnJjc/lXPFX03T8OmsaEoqxsASfTZICHEVmzBhwqHRo0fX1Ov1mtFo9E2cOPFQXFycKyEhIa937951FEWhTZs2WR07dsypU6dOwcMPPxy3cOHCCJ/Px/PPP3/gzPMNGzYsZcyYMTX69OmjGo1G7c0330wMCQnxPvDAA0duv/121Wg0+lq2bOns2rVrVm5urvPMY81mszZhwoSDDz/8cLymaTRs2DCnW7duWeerv0aNGgWDBg1SLRaLr3nz5s6uXbuedqxOp2PIkCHHhwwZUttoNGrh4eHuSZMmHSx+TJ06dQr79+9/on///nVsNpvX4/Eojz322GG73X7Rsco1a9YsTExMtE6bNi1y5MiRl/xgXXFDhw498cwzz1SfPn26pigKEyZMOPxPXq9cakI/k6qqbwI3AVsdDsdtJ7dtBW4BEoFvgaeBOKCnw+EYcjJAP+lwOHpd6Nx9+/bVFixY8K/quphPNxzG+Mw4jsfdR5/IF6n83Peg0/HBXe/i1mm0fLQdTRvUL5W2KxJVVTc5HI4WJX3e0uwbomyUVt+Aku8fHw6cRZatkBtvTaJO54ln7ffl5/Peg8vw6bcy6MGmBDa54FubuATy3iHO51x9Y9u2bQcbN26cer7XCHEx27Ztq9S4ceMaZ26/nCEWvwD3n/pFVdUgwOxwOP5wOBwasAy4AWgPfAfgcDjWceqpOD+pHGIl03RyLuTCAMg8hM/rxWWMBOUElWJq+LM8IcQVRNHc6DULOQWZ59zvycrCY7Ch6HOxBMsYZCGEKC8uOsRCVdVhwENnbL7b4XB8rqpqx2LbgoDsYr87gfiT24vfmveqqmpwOBxnL2VXBmJDrfxshhDghDeaOsd3kHZEw2O0o5BEdIjVH2UJIa5ACm4U7DgLz/1NZGFKJprOgE6fi+E88yQLIYS4+lw0IDscjlnArEs4VzZQfAJhO5AJ2M7YrvNXOAaoEmIl2RZGldxjHDHWgeQd7N/rAYIpDEzHqK9wzy0KIc5DwYuiWHC6ss+5PyelaFYioyEHrDLNmxB+4PP5fMo/fQBLCACfz6cA5xwTXWJp0OFwZAMuVVVrqqqqUDQ+eQ2wFugKfz3Et72k2vw3LEY9OSHVCMncR5anDr5jOziyKwmd18WRqHh/liaEuMIoeg1NseD05J5zf8bxoqGPZr0TrKFlWZoQosiOlJSU4JNBR4hL5vP5lJSUlGBgx7n2l/RCISOAuYCeolks1ququhHorKrqL4AC3F3Cbf5jSnQCIVu+5c8qHUj94yhOZwAWVxJ50d39XZoQ4gqi0ytoOjNZrnMvIJSdngXYMRvzwCjDs4Qoax6PZ3hycvJ7ycnJDaiAU9eKy+IDdng8nuHn2nlZAdnhcKwGVhf7fR3Q+oxjfBQF5ytGULXa2LOLZppLctaiwFAFc+Faakd18HNlQogric6oA0VHtvvcsxLlZeYAYDJf6gJSQoiS1Lx58xNAT3/XIcqfCrfUNEDlSnb2V9JhLDzB5sJb0XQ6Mo0pJETZL/5iIUSFoTPpwAe5nrNWWQUg31k0z77V7C3LsoQQQpSyCvl1RNUwGz9Xrk/0ie24XRpVk1ax3ZKPGi0BWQjxN4Ol6B5CvuvcAdmdV/S8scVw7v1CCCGuThUyIMeGWlkb3oGaiV/R7qdxBKd+yaZKrakRHuDv0oQQVxCD1QSAx2UB99mrsroKNNB82E2Wsi5NCCFEKaqgAdlGuiWcpKo2TN5CFt90MzHh9TAZKuQfhxDiPEyBZgB8ngAoOHsuZI9Lh86bh9kiU7wJIUR5UjHHIIdY0Cmwt8e9hOmOsTHvWhrI+GMhxBksQUUzUyguGxRmgz3qtP0+rxFFnw9WWSRECCHKkwp5y9Rs0NO8eihLfXVoeM/THE7PQ5WALIQ4Q0Bo0bArndt2zjvIPs2EouVBQKWyLk0IIUQpqpABGeCm+tHsPpbNgi1H0DRkBgshxFmCIoIAMLkD8OSnnbXfhwXIRR8QXsaVCSGEKE0VOiADjF+0kyohVq5LiPBzRUKIK01w5TAUzYvVbcOZe+K0fZqm4dNZUZRcTEGRfqpQCCFEaaiwAblqmI26MUF4fRr/7VYXq0mmaRJCnC44qhIGdx4WtxVnbspp+7T8fDwGGzpdLuYg+YAthBDlSYV8SO+U0Z1qselQBjc3iPZ3KUKIK5A5JBiDJw+TwUb2GUMs3JmZeIw2rORiC4k6zxmEEEJcjSp0QO7SMIYuDWP8XYYQ4gqlGAzovAUYfTayCw+cti/7+Ak0RY9Bl0tAqAyxEEKI8qTCDrEQQohLofgK0WtWsgtPn8UiLTkZALM+B51NpnkTQojyRAKyEEJckAcFG9mF2adtzT6RCoDeUAD6Cv1lnBBClDsSkIUQ4kIUL+hsON3O0zbnpBbdUdabXf6oSgghRCmSgCyEEBeg6MGns5JdmHPa9ryMXABMVsUfZQkhhChFEpCFEOICFJMCip4cl++07YVZRXeOA2WKSCGEKHckIAshxAXoLEXji50uA2jaX9vdeUU/my0Wv9QlhBCi9EhAFkKIC9DbTAAUuAIgP+Ov7V6XEZ03B58t1F+lCSGEKCUSkIUQ4gIM9qI7xJ5CO+Sm/rXd57Og8znxWcP9VZoQQohSIgFZCCEuwBwaCIDmCkDLOfHXdh82dJoTbBKQhRCivJGALIQQF2ANtxf9r8tGdvZhAHxeL159IHolG31gJX+WJ4QQohRIQBZCiAsIjCoaY2wrtHEiqyggO9OO4TbaMeqyMNklIAshRHkjAVkIIS4gqHIYiubF6raRknMUgBNJ+/EYAzDrszCFVfNzhUIIIUqaBGQhhLiAoIhwDJ58zB4bJ/KKxiCnHj4CgE2XRVBEVX+WJ4QQohRIQBZCiAsIDrSg9+Rh9NpIKUwHIDO5aDYLvaGQSkEyD7IQQpQ3EpCFEOICAkwGdO5cjARz3JUNQG6KEwDNCDaTwZ/lCSGEKAUSkIUQ4gJ0OgXNl4eOUFK8+QC4MouWmXbZrP4sTQghRCmRgCyEEBfhVjx4DSGk+DwAeHKLlpnOCwjyZ1lCCCFKiQRkIYS4CJdZB4qeHLcdPIV48hUUn5uCgEh/lyaEEKIUSEAWQoiL8J58EM+cHU7qkfXoXRYMPifeoFg/VyaEEKI0SEAWQoiLiQgBIDI7lPd/fx89YVi0DAiRKd6EEKI8koAshBAXYa5WNJQiyhnC8gObyLfFEE6SLBIihBDllARkIYS4iMC4Kug9BVQpDCc2xYLLFITNdILQoEB/lyaEEKIUXNYEnqqq9gH6OxyOgcV+fw1IOnnIs8AaYDrQGCgEhjscjv2X064QQpSliLAgCt3ZWPURVEuPASDD6iE6wOTnyoQQQpSGf30HWVXVN4GJZ5yjOfCYw+HoePK/H4HegMXhcLQBngAmXU7BQghR1iKDzPg8eXi0EJpkVgLgE2NzKtnNfq5MCCFEabicIRa/APefsa05MFRV1TWqqk5SVdUAtAe+A3A4HOuAFpfRphBClLlIu5lCzUWBzo7JXRm9t4DfqEa43EEWQohy6aJDLFRVHQY8dMbmux0Ox+eqqnY8Y/v3wFfAAWAGMAIIArKKHeNVVdXgcDg8/7pqIYQoQxF2MzmKF53RTqq1Liac6HSBhNgkIAshRHl00YDscDhmAbMu8XzvOxyOTABVVRcBt1AUju3FjtFJOBZCXE3MBj2/VI6ia2YhubYYDIYUwgLM6HWKv0sTQghRCkpsFgtVVRXgd1VVT82cfz2wCVgLdD15TGtge0m1KYQQZaUgJoL99YvmQz4QE0OEjD8WQohyq8QCssPh0IDhwAJVVX8EbMC7wEKgQFXVX4DJnD1cQwghrniRQWYSTT7ufKENP+JGjZIp3oQQory6rGneHA7HamB1sd+XA8vPceiIy2lHCCH8LdJuYcOBdNwWHcecBdSvHOzvkoQQQpQSWShECCEuQaTdTIqzkJ1HswGoVznIzxUJIYQoLRKQhRDiElQLt+Hy+vhy8xEA6ktAFkKIcksCshBCXIJuDWMwGXQs2nqUKiFWmeJNCCHKMQnIQghxCUJsJro1LFpmWoZXCCFE+SYBWQghLtHAa6oBUC9GArIQQpRnlzWLhRBCVCQtqocyqX9jOiRE+LsUIYQQpUgCshBCXCJFUbileezFDxRCCHFVkyEWQgghhBBCFCMBWQghhBBCiGIkIAshhBBCCFGMBGQhhBBCCCGKkYAshBBCCCFEMRKQhRBCCCGEKOaKnOZt586dqaqqHvJ3HeKyVC+Nk0rfKBdKpW+A9I9yQt47xPmU2nuHEGdSNE3zdw1CCCGEEEJcMWSIhRBCCCGEEMVIQBZCCCGEEKIYCchCCCGEEEIUIwFZCCGEEEKIYiQgCyGEEEIIUYwEZCGEEEIIIYq5IudBLk5VVR0wHWgMFALDHQ7Hfv9W5R+qqm4Gsk/+egB4B3gT8ADLHQ7HBH/V5g/SN04n/eN00j/+Jn3jdNI3Tif9Q4izXfEBGegNWBwORxtVVVsDk4Befq6pzKmqagEUh8PRsdi2rcAtQCLwraqqTR0OxxY/legP0jdOkv5xTtI/kL5xHtI3TpL+IcS5XQ0BuT3wHYDD4VinqmoLP9fjL40Bm6qqyyn6e3sOMDscjj8AVFVdBtwAVKQ3Mekbf5P+cTbpH0Wkb5xN+sbfpH8IcQ5XwxjkICCr2O9eVVWvhmBf0vKA14CbgBHABye3neIEgv1Qlz9J3/ib9I+zSf8oIn3jbNI3/ib9Q4hzuBreELIBe7HfdQ6Hw+OvYvxoL7Df4XBowF5VVbOAsGL77UCmXyrzH+kbf5P+cTbpH0Wkb5xN+sbfpH8IcQ5Xwx3ktUBXgJNjxbb7txy/GUrRODlUVa0M2IBcVVVrqqqqUPTpf40f6/MH6Rt/k/5xNukfRaRvnE36xt+kfwhxDlfDHeSFQGdVVX8BFOBuP9fjL7OA2aqq/gxoFL2p+YC5gJ6iJ43X+7E+f5C+8TfpH2eT/lFE+sbZpG/8TfqHEOegaJrm7xqEEEIIIYS4YlwNQyyEEEIIIYQoMxKQhRBCCCGEKEYCshBCCCGEEMVIQBZCCCGEEKIYCchCCCGEEEIUIwFZCCGEEEKIYiQgCyGEEEIIUYwEZCGEEEIIIYqRgCyEEEIIIUQxEpCFEEIIIYQoRgKyEEIIIYQQxUhAFkIIIYQQohgJyEIIIYQQQhQjAVkIIYQQQohiJCALIYQQQghRjMHfBZzLNddco1WpUsXfZYjLsHPnzlSHwxFR0ueVvnH1K62+AdI/ygN57xDnU5rvHUKc6YoMyFWqVGHBggX+LkNcBlVVD5XGeaVvXP1Kq2+A9I/yQN47xPmU5nuHEGeSIRZCCCGEEEIUIwFZCCGEEEKIYiQgCyGEEEIIUYwEZCGEEEIIIYqRgCyEEEIIIUQxV+QsFkIIUZHtSN3Bp3s+5VjuMarZq3F3g7upHlTd32UJIUSFIXeQhRDiCrJw30IGfjuQlYdX4va6WXpgKX0W9eGzPZ/5uzQhhKgw5A6yEEJcIVYeXsmzvzxLm8pteL3j69gMNlLzU5nw6wReXP8iOe4chjcc7u8yhRCi3JM7yEIIcQXI9+Qzcf1E1DCVl3w9Od6lC44G9cm+sTPP/67RLbYTb25+k6UHlvq7VCGEKPckIAshxBVg9o7ZHM87ztNZrTkx5lG07KOE1tdQcJP8zipGTv6GZqYonl07nn0Z+/xdrhBClGsSkIUQws/y3Hl8uOtD+lrbYn31fSzhbuLfeZGoz3cRt3ob4XcNwLnfxLMf7cPqcfHEj+NweV3+LlsIIcotCchCCOFnyw4uI9edS7+vEsHrIfaZB1Ga3gqKgmIwEPnUBCo9cD+FiTYmLXeyN+sPpq6d4O+yhRCi3JKALIQQfvblvi9p4a6CYUsSoS3DMd409qxjKo0aRXCvngRsNjNmu4c5iYvY4fjKD9UKIUT5J7NYCCGEH/2R+QfbUrYx9ZcIFAVCR/2Xeb8dYc66gxzJyKdysJWh7ePo07QK0f/7H4UHD9J+hYMfI908u+YpPgtJwBhVz9+XIYQQ5YrcQRZCCD9afnA5FhdEbThGUP0gpqbW5LEvf8frg+6NYlAUePSLbQx+fwM5mo7YKVPR24N47LsQDmk65i24DXJT/X0ZQghRrkhAFkIIP1pxeAUDDkeAB45d24Upq/Zza4uqLBndnhd6N2TxyPa81Kch6xLT6Pf2L6Ra7FR+9RUMR9N55JcQ3rJ4Sf/8dvAU+vtShBCi3JCALIQQfnI4+zB7M/bSYXM2xkAvYzJb0KxaCC/2aYCiKADodAoDr6nGnKGtOJZZwC3Tf+FYfAPChgyhya9pqIk6pufug8VjQNP8fEVCCFE+lOgYZFVVjcD7QA3ADLwA7AJmAxqwA3jQ4XD4SrJdIYS4Gq08vJJQp0bQHzm4W0RxJE/HWz3qY9Cffe+iba1KfHZfawa/v5EB7/zKnEF3Y/v1V0YvO8SYIXYG7vqC+Jgm0HqEH65ECCHKl5K+gzwISHM4HNcCNwPTgNeB/57cpgC9SrhNIYS4Kq1OWk2Pg0GAwtzwa+jVpDKNq4ac9/j6lYP5YkQbrEY9t3+4hexHnsFS4OO+ZfB6bAIsewoOryu7CxBCiHKqpAPyF8AzJ39WAA/QHPjx5LalwA0l3KYQQlx1clw5/J7yO633uDDavcy3tmVou7iLvi6uUgCf39easAATd6xIofCue2jm8ODZmc2aSlXhy+GQl14GVyCEEOVXiQZkh8OR43A4nKqq2oH5wH8BxeFwnBoY5wSCS7JNIYS4Gm1I3oChwE34gVzyYu3Ex0TQKPbS3h5jQ218fm8booIsDMqMx63W457vYbo5DJczGRaPlvHIQghxGUr8IT1VVasCPwAfORyOT4Di443tQGZJtymEEFebX47+QovDRhQv/BKhcvs11f56MO9SRAdb+Oy+1sSEBTC6Rk/MXj295h/nvUZdYfdi2PJRKVYvhBDlW4kGZFVVo4DlwOMOh+P9k5u3qKra8eTPXYA1JdmmEEJcjdb+uZbOB0zojD6+CutAz0aV//E5Iu0W5t3XhuCEWsyo15PGBzWSVm7hj7jWsPRxSHGUQuVCCFH+lfRKek8BocAzqqqeGos8BpiiqqoJ2E3R0IsKxaf5+C35N/Zn7sdmtNGoUiPiQ+L9XZYQwk+O5hzliDOJmntBHw1RtZsSbDP+q3OFBpj4ZPg13G8xsO74dm5btZcpDYy8ZrRh/GIIDF8JJlvJXoDwK19+PllfL6Zgxw4UeyCmtq0IbXfdP/oGQghxYSUakB0OxxiKAvGZrivJdq4miVmJPLv2WbambD1te7sq7RjddDT1wmWJWCEqmk3HN1ElDUxOLwdqR9PtX9w9Li7AbOC9wS15yjsWdfrD3Dz3D959uicP/PpB0Xjkvu+ChKdyIX/nTo4+/DDllDnYAAAgAElEQVSuQ4fJtyoYXBrG9z9gXTUDOSN606vXfzHrzf4uU4irniwUUoqSnEkM/W4oB7MPMqHtBFb1X8Xi3osZ02wMu1J3cds3t/HCuhfIc+f5u1QhRBnadHwTrQ4V3TFeG9WYG+tHXfY5TQYdLw+7jl97P0iNE5D52XI2tb0Htn8Ba9+47PML/3MfO0bS3XfhTDvE87fpeHSUjpWj7Tg6KUSmuKnzzHzeGNmMLcufkJlMhLhMEpBLSZ47j/tX3I9H8/Bhlw/pW7svEZZwalgjGV73Lr7t+y131L2DeY553PrNrSRmJvq7ZCFEGdl0fBNtDukw2T1kqJ0JsZlK5LwGvY4xzwxlV5P29Fzn483f1pJZvxeseA52LiyRNoR/aB4PR4YPojA/l8cHGjDWa0Fdy3vssk5nU+fPyZk4BV+9aHr+4GPP5EXMm9IcVr0ALrkBI8S/IQG5lEzdMpVD2YeY3HEy8QUF8Pkg+L/q8FIMvBCB/Y3GPP77CmYGNSU7L4U7lgzkl6O/+LtsIUQpS81PJSnjAFUT8/FF6mjSsEGJnt+g19Fj5utkhYQx/KsMHiwEreo1sOA+SNpYom2JspP5wRQK/jjKW130pJhb8uPmfmw8kENSeh4Ltx5lyGo3t6nj+KHbnTQ4rBC+yMLMNe+iTb8G9q/0d/lCXHUkIJeCnWk7+WTPJ9yq3krLpG3wTgc4uBbq94EbJsB/noa6PUBvovXulXx6YC8xedmM/P5+Vvw+29/lCyFK0abjm6h1FPRujf2RVbih7uUPrziTKchOw+lvEeZUuOGL35hQ9UYIioHP74DsoyXenihdPmcWx2e8x77KsLZGVWK1wcy7rx3rn7qe78Z2YOv4zsy7rw39WlTlbXtznmg7AnuBkWYLbHyUDNrHfWHxWLmbLMQ/IAG5FLy99W2CTEGMIQy+fQRq/gft/nX4bngZre1ouO4x6PEm3P0tPHGIyoMW80FQc+oVFvDI5tf4dO7NkHHQ35chhCgFW09spclhHaDhiGtF1bDSmWEiqGkTwsaMpbVDI/fr2cxr/nBRQPpsoASlq0zGq4+i5Wp89B8jDayjmXfftbSKC/tr1gqDXkeruDBe6N2Q9U9dz4C7ezKhy9Mk2wNo/pWHrzKaoP32Abx3A2Qm+flqhLg6SEAuYXsz9vLjkR+5o8p/sH/3FO7oThzblcCedp1xNGvOvg7XcfTpp8nfubPoBTo91GhH8ICPmHnrSjrYYnnJ8yevzL0B74aZshqWEOXM7ym/0+KwDkuoG1uj60u1rZh7h6Nr15a7Vnn5bPUUfuvwLBzdCoseBJ/v4icQfufLyyH5m5/5vYbCn5W68/4dN2Ex6s97vM1kYHDbGsx/rh9/PDmL9TXDqLPsBAsczfCmH4b3rodjv5fhFQhxdZKAXMLe3/E+NoON27d/T6E3hoNz08j6ejHc1JXU24eTkdCQjCVLOXhLPw7ceRe5v/7612ttwbG80e9bBsb35CO7lbG//R95n90uTyMLUU4UegvZf3wnsUmFKJHQpFGzUm1P0emo9frrKBGRPLQon7FbPuJw24dh5wJYOaFU2xYlI+vtCejy4NuWVmb1fhSr6fzhuDirSc+Ybo25cc5SlrerSr2tySxdEYMzVwezu8GBn0q5ciGubhKQS1BGQQbLDi6jT2BNAg7v4dAKOy63l9dveYouhmu5M78Ot0Z2o3+np3i3fneSduzl8N1DWd73TlYt20B2gRu9Ts+T177Iky2f4KeAAAbnbCX5nXawf4W/L08IcZl2p+2m5mE3ei8ciYqhafXQUm9THxxMzbemE1ZgYOzXafQ/9CsZTe8smvrtt/cvfgLhN5rPx5H5S0iMBkPjO6kbE/aPzxEbHsSo977j+7uvITY1h83fmNifHYL2UV/Y+mkpVC1E+VDSK+lVaEsOLMHj89A3cRPH99XGnZ3Pgx3uQQuI4vmb4mgZF4ZRryMtx8WxrDZs+nMw5kXzaP3L15jGDOG9Gq34pUM/6tarQZuanXi5fRUm/DqOOwwFTP/8NlS1J1z/LIRW9/elihJ0MOsgG49vJDk3mUBjIHXC6tA0sikWg8XfpYkSti1lG/UPa6BonFBbYtSXzT0Ka4P6xL74ArrHHmfA6sN0v9HG9zVvwLZkHITVhPgKu5bTFS1v6acYMnys6GLi/26651+fR6foGPXYB3ypvkqV/31A2ncKu2+Io8dXI+DIBrjpJTBaS7ByIa5+EpBL0MJ9C6lviaTK3t85vFPHZ+oNtOl8Dc/2qH/amLGaESd/aFIFujUg/8Ro9rz2Jjd9s5BOn25jUe0OPBrXgTyjhZpVHiYn5G0Gxxp4K3E5zXcvhraj4NpHZfnYq1xGQQavbHyFbxO/ReP0seYBxgA6V+/MHXXvoE5YHT9VWP5oXi+ZCxbgXLEC+/XXE9K7N4qpZOYgvhTbUrbRKUmPJbSQgPody6xdgOCePSnYuYuuH37I/hgHvZs0ZHF4Tczz7oShyyFS+tmV5o/3p1NoAdc1fYiwB1zWuRRFoV/vx9hWrRHZDzxK5WU5PHtTY5757X0Mh36BvjMhpnEJVS7E1U+GWJQQR7oDR4aD3qnHObo7hhPWEHwDB/NSn4YXfKACwBpZiaavPE+tbxZT6fqODNi1nPlrXuVN016iTdXI2D8CZ2EIQyIrMSO8OayZBFObw+aPwOsuoysUJWln6k76L+7PsoPLGFJ/CEv6LGHbXdtYe/ta3rr+LW6sfiPLDy6n/+L+jFw5Eke6w98lX7W0kw+6uo4c4dDAO0h+ZjwF23eQPP5Zjv/fK2Vai+PY71Q/6sES6aZes2vLtG2AyEcfwdayJfd/B5Y/tzMwXMVjsMDcfpB9rMzrEefnOfYn+t1p/NRQx+M3jSyx8zZudjMNv1hEYVggfZekMMZZl+05aWjv3QAb3pUHw4U4SQJyCVl6YCl6dHTcmYIn2c361t2Y0K/ZX9PwXApzfByxb0ymxpfzCWxQj4R5M3l+2SR+7VmPp5q+RZBSk7cC/uS6oK7syg+Ar0eiTW0OW+aCz1uKVydK0q60Xdyz/B4MOgMfd/2Yh1s8TNWgqugUHUGmIDrEduB/7f7H9/2/Z1TTUWw+sZn+i/szfu14knOT/V3+VeXIyFHsv/56Dt97L4nde1CYmEjlV1+h9tqfCe7Vi8yFC/E6nWVSS0ZBBoH7jmHwQkZUOFUj//l40sulGI1UeWMy1koRPPmlmeT0Ldwfdy1aXjrM7Q8F2WVekzi3gzNeQudTONy0DtVCK5XouUOq1qTVwuV4E2ow8tssPj5k4amQeJxLxxX1A5krWwgJyCVB0zSWHVxGa10AeTuDSbfY6f/fBzD8y/GF1vr1qTprFlXemIw3JZUTgwZy/dL5rOjxDn1q9ic9fAcDo8O5VTeEvdkGWPQA2tttYdci+fR/hTuRd4L7V9yP3WTng5s+oF54vfMeG2QK4t5G97K071LurHcni/9YTJcFXXj656fZmLwRnybTdF1MaOVELJY03In7CenTh7iFCwju0QNFUQi98060vDyyFn1dJrXsTt9N3STQ0MhW/fdVtiE8nKrT3yK00Mu4haFsyF7PMw16Qcpu+ORWcOX6rTZRRNM00lf8xN7K0KfXf0ulDUNoKE0+XYip03UMWeUlfL2TTlXieDdtE7lvtYL1M2UqQFGhSUAuAbvSdnEk5wg9dh+h8Lie9C63EFfl8u4OKYpC0M03E790CaGDBpHx2eckdevJQ8fqMuW6NwgP9rCr+irujGnAYIbwZ3ouzLsLZnWGQ7Jk9ZXI6/Py5Jonyffk8/YNbxMTGHNJrws2BzOu5Ti+6fsNt9S+hRWHVjB02VBu/vJmpm6ZytEcudtzPse7D8R4fS41228i2vweprnXwptN4OvRWGtVxdKoERmflc2T/LvTdlM3ScMY6sFWt+yHVxRnqVePmP9NQE1KZcjyGBZl/sy7LYZA0jr49DZwF/i1voouZ9MG7Gkette30LFm01JrR2exED/1LULvupNuv2mMm2/kPUsAnaLDeG39ixyf0xXSE0utfSGuZBKQS8Cyg8swoKP+VgWX3kjHR4aX2Ln1gYFEP/0UcV/OxxQfT/Iz46nxyNvMq/4/7mt0H9j2sDnuB7qFN2GkcgfO4wfggy7wUR9I2VtidYjL95njMzYkb+DJVk8SHxKP5vGQs+ZnUqZOI/mFFzkx6XUyv1xAwd69aOe4c1MlsAr/bf1ffhjwAxOvnUh8SDzv/v4uXRZ0YdyP49iest0PV3VlezZpJbfERLLlP49Cg37QoC9E1YctH8PiMQTd2BnX/j/wZGSUei17UnaS8KeGvZKLuKYdS729iwnu1YvQu+7k5i1H6LY2giknVrC83UNF8+POHwpej79LrLC2Tn8Jlx7sHW4u9bYUvZ7op54i+vn/0fBIPm98HIb1SG3mBAXRhSO8NrczWT+9Iv1BVDgyi8Vl0jSNFYdX0D5LIe+gjbTrbqRxpfASb8dSty7VP/6I7G++5cRrr3HiruH06dGD20bP5ZOUpXy862N+CnDROvUmhnhhzKFFGN9ui9J2JHQYB6bLewJaXJ70gnTe2voWbWLa0LtWb1K/XEDK669BWgaaAopJD24f+IqGyChWI4Ya4Rib1sR2bXsstVpijKyFyWjCZrTRPb473eO7cyznGJ/u+ZR5e+fx3cHvaBDegN61enNTjZsIsYT4+ar9L/9YH5xM5q6D82gW2QyrwUpOkIK1bgse2beYqrHxABTu3o2hbdtSrSVj1zYsbvBFGLFHxZdqW5cq6vHH8RxLZvD331NoDOURvmJ621Fc+8tUWHAP9H0X9PLPRFnS3G5sW/axpZbC3T2eLLN2Q/v3x1S9OvpRo5m+KIlXrxvE1mrbmBO8naX7PuBZx0I6dJkKsS3KrCYh/OmqeOdLzU/FqDMSbA72dyln2Ze5jyRnEuM25qD4LDQfe1+ptaUoCsE9umO/vhOpM2eSPut9clat4o4H7uf2Wxbyxo7pfM3XfBIewifJt/O8Zx/df56MtvUTlGsfhaZ3SFD2k2lbppHvzmdQ/IOsubUvEb/vwRruIqx9DsZIL5lGO/g0jLkefCngSjWQf6iAvN3J5H/2M7aoQmzVXOyvHMt6czO2hXTGFF6dhGg7TasO4rbud/PDn0v4ct+XvLD+BV7e8DLNoprRrko72ldpT+2Q2v/ogdHy4qUeHbl9lg+37WeSTHsJCygg1BLEftzcWTmGKdnLCQEKdu8hoBQDcrYrm6B9RQ9Y5sbVhivk70LR66n82qv8OWYs965cTUChnQfbLeHNVvfwnw3vguYtCskGs79LLXE+l4uCHTsx16qJPijI3+X85dDS77DlaxyrF0yQpWzrCmjVihpfzCPp/gd47LuP+PWGgbwQ0oHgah/zoCmLaxffxpjKnVBvfh3MgWVamxBl7aoIyP+38Gn+SN/Oi7fPom543bP2ay4XriNH0NlsGKOjy7S2lYdXovNpVN5lJL2mSl21dqm3qbPZiBw7lpDevUmeOJETr76G4eO5PDJsGL2vuZ4piR+wVVnGf73hvHHiDl7O3USLpePwrXoBXdM7oNlgmfO0DB3KPsSCfQtoGHA9plHDCT6Qg7mhgew7R+FT2xNSuTZ2k5E8l4fUXBe5hV4KPV68Hi/alg1Y1izFs2kjuetzCNZl0yfiOwbFLuJA9Xjm72nNM776HKUSanQ1ron7H70bZHLMs551yT8zedNkJm+aTGxgLF3iutC3dl9i7bH+/iMpMwlRdr689waeWRTNmm2pJAIhNiNxkT7MARN4w3SCF6KiKNizp1Tr2Ju+l4Q/NbwWH7b615RqW/+UzmwmduoUjj7xJHd8+y3hzgDG3vQ9z7UcTJ+NHxYtdT9gDtjKftaN0nR8zY9kPjgaFAVDTDSmqtUwqwkEd+2KpXFjv32gTPxoGoEWSOjU0y/tm6pVo8bnn3H08Sdos+wjPm/WmocLHkQXsZHfKq2iX+avdJ7ThlHtJxBXt69fahSiLFwVAbndlxkM2ZnBL6tvJXvoWFp2GghAwY4dZC3+Bud33+HNygIg5NZbiX52PIqubIZXrzy0kl4ODV+unmr3DCuTNk8x1ahBtXfeIffXX0mZOo3jL7xAoE7H802akNq4Gx+F7OKH6J+4nxhCj93BA3n76b5uJoZ10/FGNULfYjA0HABlfJeiopm+dTpoeu6b+wPBB/IJurkRVV7/BHSnz48daDYQaT9j9Ty1B9zWA83nI3/rVpwrVpKzYhknNv1JwOY07o9YwGNV52KN9uLJMJKVbiH7twA86OllNOIMCGVLsJWNBYXM2v4e725/l1pBcbSu0o6W0S25JuYaAozl+1uFGpUC+GjYNfx+JJPfDmbwR0oOP+w5gSm7CX9G/Yw7ykLhnt2lWkNiViIJf2pYKrmIqdeuVNv6NxSjkcqvvoIxJpqb35tFdIaN/+u7ikPNBzJm63yUd66DAbOhSnN/l1piftF28ekgPR3/0Lim0Eal/Dwy531BxpyPCLz+eqq89io6a9muLufNzaXS7sOsaQDDrn2wTNsuTh8YSOzUKWR8PBdl0iRm7tzK1mbX80rIaGLjfmStfRMr14+n5+Zp3H3tBOKr+fehUyFKw1URkDt3M3BYc9PMoWB5+FUcvFr0FaWmoVit2Dt1IqB9ewq2byfjk09QTCain36q1OtKzk3GkeHg4c0u3LZAKncr/QcqziWgTRtsrVtTsGsXOStXkvPjTwR8sIgRwD3BgeyqlsW6yj/yTu1gJuluoVF6Lvcmb6fxt4/gXfoUvoSbMTa9HWp1virHG3p9XvS6Cy/G4i+JmYksObCUIb9aCd+VTfB1DYmZ/Nk//opd0emwNWuGrVkzoh4bR8HevWR/uwTnkq85vqlogQdDkBlLNTuBwQquEB15djBk5XFT5jEGKxmkG3x8F2hjbX4BX2Qd4OPdH2NAR8uwurSt3JYmUc2pG9kYs8FWVN8VMgygpDSKDaFRbNG47Kw8N4Nmecn1rWGnPZUGO134CgrQWUpnee/Dh3fQMANCqrkwVb0yQ6ai0xH56KOYatRAe24C//e+nsl91rCj/s1MOryF4Fk3wnVPQPuxoDf6u9zLdkunUWTkHOTdKt8zhwMMyXTTod/dRKeHkvLmFA4Pv4fqsz9AMZbdte5cuASjB7LUQCwW/w4pVHQ6wu66k8CO15EybRpNvvmWufrl/Fb7GuZWvpuohCUsCTrOVz88QF3FynVVO9K27q00iGyEUXf19w8hroo0FNDjWWpn9Se7/lEmZ9dCl+/EhAG7Wg/7tR1oUK0FjSMaE9y7F5rbTcYnnxA+fBjGqKhSrWvNn2sIz9YITdJD/55l+kZ6JkVRsNavj7V+fSJGj8aTkkLOmp/JW7+ephvW03C7E5ZlcDjyZ36rBc/XsnI8tD318/LodmgN7fYuJsASianVUJSWwyGg5B80LA2/HtnOqKUDaV21Fy91eowg05V1N/y/q6dQ7Th0XZOFrXYEMdPmlshXt5aEBCwJCUSMHYP78GFy160nb/068nfsxL0zCTQNI2CLjSWv9jWsCYzgeH4+yv5kbipM4W6Oo7ekcSAAfg/YyhL7Dj4OhGy7RjWfhwS3h3jNQIRiJEpvpYY5lCh7VZRKtSG8FkTUKfrvKvxABRBsM/J0t+ZM+SaYHyIyaODVKNy3D2vDhqXSXt7vRTOM+KKDrvj/b4X064e5Vi2UMQ/xwpzjzG+3ha7tg3ksKp7uP7yAftci6DUNKjfxd6mXR6djeO/JdMs+yqNLRvK2bh8rsmYzIjeSek89jvPFl0mfM4fwYWX3zeCxhR8SYoUG7TqXWZsXY6pWjSqvvELEyJGkz55NqwULabnrZ/50JLA0uj6uertICzvCzENLmHF4KRZFT73gWlQJq03t0AQaRzSmYURDCc3iqlMm/7qpqqoDpgONgUJguMPh2H/JJ4hQMdy3msBvx/H8zvlsjLTzYVgNVgUkcmL3DtgNIaZgHr/mCTrfM5zM+fPJ+OwzIseMKaUrKrLmyBp6bPGhaQq17r2nVNv6pwwREYT07UNI3z5omobr4EFyfliNedVKqq7bQt9f8nAGHmJTnI/FNW28EBdAlGZg8G9v0uWnSVga9EbX6j6IvTLvdp0S+6eL2a97cRu+ZKN9IabQKGKr1MRSJRZzXDzWRg2xNGyIoi/7O8zLHLvYk7KStxe60Zt1VHn38xL/EKUoCqbq1TFVr07orQMA8DqdFOzYQf72HRTs2AG7dlHl6CqqnDV1nJkmQFHM+XslxoxAA0fDDRyupLE9UuNAVD5JEfmEZB+l5fEfaJ1fQLv8AqJ0FqjaCuKuhdhWULnpVfXgTuv4cOYZEtgRuRHwUrj/j1ILyIb9SUU/1Cmd85c0a5MmJHz9FUnP/Y9bly6h2b4c3u6RxQd1WzL2+BGue7cTSpsH4dpHwHp1z5YSE1SZj2/9ku8PrmDCT0/zTFg6jxx7nebt25Py1nSCunbFGHNpc5ZfDldePlF7E1lbT+HOlveWenv/lKlaNaLHj6fSqFFkLViI6YsvGL7xe7y/W9lasx31InzY43aSZzvBnvxtrE/bzeKTi2UF6q38p1onetXuQ6voVhXygWFx9Smr2z+9AYvD4WijqmprYBLQ6x+dwRaGqf8sfC2HE7J0Cs8cX0cU6WTpFDZZLMwK9fDkmidJa/EonTp2JPPzeVS6/350JlNpXA9ur5v1SWsZ/LsXX0J1TLFX7oNPiqJgjovDHBdH+NC78WZmkrNmDTmrfyT455/puD0LTadwOBr2RIXwUqiOhmmr/p+9846Pqsz+/+fe6X0yyUwmhSQzKZPQpLhAhEhwFRuBhETAGgW/LrrKUsQF3QX5qQsrYkNcRVyKC4pGAZWAhSIsJQiEACGZ9N7r9Hrv748hWSAEkjAhkNz368XLzDPPfZ6TazI59zznfA7u++07iCPvBOf+RSAi7r0lj9yDRwyB4C+pOJGZh+rq85DYa2DMrUXASTb4FgcAgOXjA/mMGfCdM/umVaub7S68tv9jzMhwQ9pMIPCdZWCrA2/K3iyJBKLYWIhiY9vHaIcDlNUKmqJAEARomvaMWSyg7Xa4m5vhrK6Bo6oKRF4hhEXFiDpfCo7dCgBwE0CdhIcWmQhGAR87uYCcx4cmrxCh7hMQ8Nxg8QDSLxAs/xCw/ZQgZSogJgEIje3M1D7nD5q7cbDydwCAq6a6V/ZotbcisMoCm5SCbPC4XtmjN2DJZAh7bw1aJ98L599fxz//bcKPf2jByxPYCFfo8EzWBvwx8wtwYv8MjHkO6OOUgBuBIAhM1tyHO1TD8ez3j2ONshoLzeUYftyBpi1fwP+vr/S6Dae++wlyJ426SA6kPmG9vl9PYfv4wHfObChmPwNr5hm0pKXhzr17MfqCBeZzKhwOeACRgcAsZRUG8/ORj2b8JhRgn/MH/FC8GxFsCf4SOQsTRz4HgtM7KU0MDN7gZjnIEwDsBQC9Xn9cp9P1WEiRDItF5POxsDhcSMssxYGsfJhKTmOp6Ut8orbio9Mf4O6EpXAfOADL779DPL53CmJO153G4DwbhCYSqtm33tP+tWDJ5ZAlJECWkADa7YY16yxMhw9BePIUQi5kgzBbAHBQCyVqfyoF8cmL4PqwwQ0LByf6TnBCw8ENDQUvXAt2QECfRgOIJj38av6BhwIAWheMffwAfAY7coQGKIxcJJpGIrFShMZPP0Xrd99h0PpPwY/pqITibd5Iz0RQy2EkZFCQ3RUB8ZRZvb7ntSC4XLC6+LCouvhfmqLgrKiA9cIF1Jw+B3ZOAYTVNRDWNYPvMkLgtkFkpdGESx0jG4A8zz82DZ9J56Fee3NaOfeECSMfwHs178AqZMFZXdMrexS2FCKslgahcII3aFSv7NGbyB58EIPHjkXBireQ9FM64s4J8P3dNJYM94Uvi4MnTn2AGcfWQjT2BY+jfBurXfiL/LFh6lY8kvYwNg8qwXLdYLB++AGqhQt6PYWuds934HGBsJG3R+oKQRAQjhoJ4aiRUL/2Koy//orWXd/jgeOHgWwKVf4avOOfiAptOP4U6sArgjwcqP8dnzmb8FLOZ4jK+hdmCkLwYPQMSGISb/nUI4aBx81ykKUAWi957dbpdGy9Xt/j1jxCLhspY8ORMjYcdYZ4LN0+HrOr/ozfBU6spfbh/0gS1lOnes1B3ldyCJMzKdBCEoopib2yx82AYLHaP+QAT+MTd1MTcrIPYetvn8JdV46gRjaGNLgRqM8F63QeaPf/HGKWjwxhX20HNzS0b76BgDuAZ/cDJYdA1Gbj3no9/thUgqomCz6Ty7Ax4CS+9efhrckLEPDeVyh9/AmEbNkCwdAhvWbS8aJG7Mr9Dm//5AAhIOD/9r97ba/ehCBJcENCwA0JgeyBB6C7OO6maBQ3mJBV0YSDhUdQUXMcbkMe+M4aiJxOSKyAzAzILDRqVQKs7tPv4toMUgcgwkGjUQL4VfdOBLm44jwGtwC8MAfgf3ukWFwJW6FA9AdrYDj5GAzL3sTsvbl4+LAY++6WY+1QJzaxOZh7ai1SjnwAztBkYPQzQNCoW/LU6Xr4i/yxOn41nj04DyeDS3BPthWmw/+F5J5Jvbanw+WGOvcMzoYRmHjHY722T29BikSQTZsG2bRpcNXXw5CeDt7OXXjh7E5Q5wicP6zBBwGR0MbOxbq7dThl+BFbq3/BG+4qvH3uXYw/sRLj+P7QBdwJtXokhEF/gMwv5qapUTEwXI2b5SAbAEgueU3eiHN8JSopH5/MjsM7a5/F44Z38Tl5FM/rImA5ddpbW3Tg3KmfkFhEQ/DQaBDs27NQ6WoQBAG2ry+G3Z2ElXGJOFp1FOtObcG/m06AJlgATSPEAEQ0uhDQQENqbsGUliyE9JWDDHjypC/JlSZoGkGGKvyt7ATGHPk3PmIXYEHjh1j256kYvO44KufPh+bbNLBk3nBMAsMAACAASURBVD8Stjnd+Ou3WUgp34uIGiBw4WNg+amuf+FtBIskEKGSIEIlQfKoUACeP+hmuxP6hgroG0tR2FiL4lYDJmn+0LfGdoEQSopqqQGa6qpeWb/i1AkMBiD1E972UTLpnaMxZvd3qPppHxrXfIDH9hTgof0CnBwlwpfRTmwbJMBfCn7AHzO/AOE/FBj9NDA0+baLKo8NnYQ4bhD+M6wM4/8rQuuOHb3qIP9+4CQUZicKNARStZN7bZ+bAVuphCI1FYrUVNj0ehj27sXQX/ZjaPbPIM//BPNnQDSAZRIZoFDDSJjQ4jLAjiYUsH7BWd4vMAoB8VgNnlmwu6+/HYYBzM3y7I4ASADw9cUc5HPe3oDDIjF95mzkbvgPKLkd1eE+UP2aBdrhAOHlPORmazOGnK4CCCD4+Ze9uvatBEEQGB80HuODxsPoMGJ33lGk5/2OYncl9pMt4CktELo4GC0dhpC+NvZSCAKQBYE9LAkPDUuC6sxBvJkxD//P+D0+e+phCN7dg9p//AOB//yn17f+aH8BnM1HMe2IDeYwLqTPvub1PW5VRDwORgVpMCpI09emdItIUSgapOdgz+kdB9mV46lH5uiiemX9mw1BEAh64F4E3v9HlO0/jLKPPkP88dO49xiFVpEFhWoRNgWqMb7FhpDcJeDKloCMvtfjKEfeBwh8+vpb6BJL/vg2pqY/htwwGiOOHAHtdPZamkXxj3uhAMCJ9utXUVO+Tge+TgfVX/4Ct8mM0szzOHE4C6XZBWA31kNqN0MGMaS8QMhZbrDcZvBbjeBVWcC/Y3Bfm88wwLlZDvIOAPfpdLqjAAgAz/TGJroAKfT+UxDh+BKHZFVIttlgy8mB4I47vLrP1+f2If4cDUcIB5zI4V5d+1ZFwpVg1tD7MWvo/QAAp5tCYb0JDUYHRoXc2tGhO0fE41XJ11h4cAaWU7uwLuE+tO78Eb5/+hN4Wq3X9imsN+HTQ4VYVrwTAgcQ9Leb17CGoeeMDL4TadLzIC1WuI1GsCSS61/UDWQV9TCLaEiie1x6cUtCEARC/3g3Qv94N/T6cuzZ8C1YZ35HZFMhgopb4aaA4osZ7ST/LDj8U2ALloCrlIKrCYVg3D0QJM67ZdMwQlTDMZYS41i4AXdk07CePw/hyJFe34eiaPhkHUCJChgWPcHr698qsMQiaOPGQhs3FjRNo7DejGOFDTha2ozzVQZUtVhhcfxPTWfOMA3+3of2MjDcFAdZr9dTAObejL00sdPw4K+fY4tvFZIBWE6e8rqDXJj+Fe42An6z7vbqurcTHBaJaLUUuLmdvXvMmPBoPFr1Oj4pWo5disO4j8dDw78+QdDqt722x4ofLmCU/QJGZJlRMkqIIROSvbY2Q+8RrR2PBukmAICzutqrDrKbckNdb4XVhwKpHuq1dW81dLpB0K2ej9waAz4/XIz0szlQU78g0pkJVYsd/iYWNFYpfFscEOfaQZ7NA3blITxqLLhDbl1lj0fDp+BV+1eYCzcsGSd6xUHOLmnAoPo6/DSKwKOD+7aY92ZBEAQiVGJEqMR4Mjasfdxkd6Gy2YriBjOGBt1amvYMA4/+kzx7kaFDR6D+RxFaFQRc/grYsrO9ur7N6cbQ03pY+TT8Huu7VqAM3efPcdPxS/4GbPMtxf0ThsPw449QLZgPTuCNy68dyqvHobx6fF74JdwkoFn0Ny9YzHAzECqj4BZ5NKJdNTVAlPdSIWrNtQhsomGJdAHq27NArztEq6VY/cgd+NuUwfg+KxZpp0rwi/Qk2OJccETFIDj1AEj4mACxDfgkOPDWSs+6grg/vABxwVZU+ZEQHD8Ov7l/8voep38+gjFuGtWDWAj2Hxgnkp0h5rGhU0ugU3v3FIeBoSf0OweZIAiIfMaDS2Wg3l8AUUHX+5F0he9PnMYdRS40DGaBCGBypG43Fv/xbTx/4FGkq8/gfhBo2bEDyj/f2IMORdH4R3oOHsF5qHPNODJOgP8befsqmww4hL7gCCkApNel3rLPn0SwA3DLaEAR7tW1b2VkAg6eHBeKJ8eFotYwFscKG3GmvAX59c0oaq5CpaUeoEnAdWsXLbKECkyifXEmrAkBp0+Dcji8rq1vPPZfUADEkTdHJ52BgaFr9DsHGQCUwx5C9PnDyJeYEZhTB9rl8prSRN6OjRjmAlRx3j9qY+h9xocORSQRhl3qQiQM0aD1ux3we/75G8oV3nO+Brk1BryT8xUcbAKCp59gOkXdThAEBEI23AQFa0UlvFlCVpp1CsEAZCrFbduW+0bxl/KRODIIiSOD2sdsTjcsDjcUot5p5ORN7gmegE9Df8BDJx2wnT8P4SjvaVk3muzQFP+OMhUQHX7rppowMAxE+mUFUfCQuzDE7sAFuQm00wlHWZlX1m02OxB97gQaJUD0Q896ZU2Gm8/U4XPQwGahPLAWzspKWI4f7/FaNE1j7f58vMA6BiLPin0jSNz/hye9aC3DzUDFlqBZArSUlnt1XWtBHgAgICLaq+ve7vA5rNvCOQaAO4dMR4PKk4Jju5Dj1bUz8moR0liP7BACwyMe9uraDAwMN0a/dJC58gBonWwUK2kAgD3fO2kW+04WILrcjKIoGpyw/ltt3N+ZNfxB8Cg2ftU2gRQJ0Lq751qb+3LqUFTThFkXdoAiCFRMGQmVsH/pHg8EAvl+aJQAxgrvPEy3IaisgplPQxze//OP+yuswJEYwnLCIARaz5716tr5R06B7aZREExA53/7dVlkYOjP9EsHGQDU7DBUXUxvsxfke2XNwh9/BIsC2HcEDNjj0v4Aj8XDENkE/CwTgBXhA+Ov+0A7nT1aa+PRYixm7YY5j8LhoQTuGjHVy9Yy3Aw0PsEwCAm4mxu9uq5ffQtafWgQyv6hgTwgYXEwhhuEIn8CjVnebT5lP/M7AIDQKMBh9W4rawYGhu7Rbx3kINUosNk0DL5C2L1QqGeyuxB4/hcYBIB23L1esJChL5k5PAlWkkStqgxUayvMPUizKKgzIq+gAAl5vwBuAj+MZeGekHt6wVqG3maQXAuDEOAYWr22ppuiEdDogN2HApS661/AcMsyNvRuFKsBfnklKIfDK2s2mR0IKzuDJjGg0XpXipSBgeHG6bdhUFXkGGhO70SlQgClFxzkgznVGFxVhd8jCTw+ZKYXLGToS+JDx4H8LwvHtQ5MEYph2LsX4ri4bq3xxbFSLCa/gSGPh5xoIfyHDIOfwK+XLGboTQL8omEQAgKrDTRNe6XIsqC0BFIr0CRxDygFi/5IYMQkmHy/AYsiYM/Lh2DokBte80RxE0JbKpEbSGBoSPyNGzlAOXXqlIrNZm8AMBT9OOjH0CtQAM67XK5nR48eXXflm/3WQZZpRyMsw4UShRMxp0tBu90gWKwer5f9y1GE2ylUaFmQ+EZ40VKGvkDIEWKQcAh+c55GSrgIpn37Qa/outqJzelGZuYJzCv9HXV2Gb68047E0Pt62WqG3oIvD4WbT4NFAZTBAJZMdsNr5p87g3AAHLkA4PBv3EiGvsN/GHzkDgA8WC9ke8VBPnOhFNOMDuSPJhGnZvKPewqbzd6gVqtjlEplM0mSdF/bw3D7QFEUUV9fP7impmYDgA75kf33acsnDEFOoFThApzOG9I3pWkaZMZ/4SYAdgyjVdlfuE8bj2IuG25FOdwtLbCcPNXla3/KrsFc1zY054lhCvdHbjAQPyi+12xl6GWkwWDzPEoF9gbv5CHXFXoUDyRqf6+sx9CHiJUIFbFh4QJlvx/1ypLGU5kAgLIAEqGSUK+sOUAZqlQqDYxzzNBdSJKklUplKzynDx3fv8n23DwIAr6kArUXRU2d5T2vTs+vM2FYdSYKA4Bo7RgvGcjQ1zwYPhEAcDbMCYLLhvHXX7t87bHj/0Vc7Vk4jSwcmCBDhE8kgsRB17+Q4dZEqACL7/n72lBR65UlbeUlAIAALZN/3B8YKtKg0hdozrtxqTc3RcO/IAM0aJBaNVhkz083GUAyzjFDT7n4s3NVX7j/OsgA1MIQ1Ph4cgkdpT13kI+cr0BwUyOyQwkMi5jiLfMY+phIeSR4hAT/lUggDBPBuG8faPr6n7PVrVaMrdyCBr0ULLUK2wNKmejx7Q5BgC306PI2VXnHQebWVsDKBVQhjMRbfyAyeCQafQBB9Y3/fBTWmxDVUoQ6HwKaQUyBHgPDrUi/dpBDlUPQJAFcbBKOG4ggl/52DCwa0A8iEKUe7UULGfoSgiAQoxiODJ4YYkUFXNXVsJ3Pvu51v2WcxGTDCdjqOKh/eAwchBsTgyfeBIsZehOBRAQAaPGSgyxtbkSTFOAzNQv9Ak7gcFAyN2QGO9wm8w2tlVXeApWhCcUqAjp/5m9Kf+D48eOilJSU9uOizMxMwdSpU6OTkpJ08+bNC3O73QCATz/9VDllypSYhISEmG+++cYHAEwmE5mamhqenJysmzlzZlRFRUUHzT+LxULMmTMnfPr06bonnngioq6ujg0AJ06cEE6fPl2XlJSkmzNnjtZqtRJutxuLFi0KmTZtWnRKSoouPz+fBwD5+fm8mTNnRiUnJ+tmzZoV2dDQ0H50kZ+fz5s8efLgttdFRUXc5ORk3fTp03UvvPCCxmw2d+ovvvrqq4M+++wz5ZXjBw8elDz33HPaS8def/31oC1btnTaY37NmjXqjIwModVqJTZu3Nhp1fuVe+7Zs0c6derU6ISEhOjFixeHUBTV6T3rKv22SA8AAkOGwb8hDc1yPnx62E3P5abAOXcaFEHDFSZltCr7GfGhY/F+4xG4giwASwbD3j0QDLtqOlI7osz1aMkXguDxsG8YAVmLDMP8mCjh7Y7URw7AAENt1Q2vRdM0fAwWGKU0IA+5ceMY+h7/IRBKnABYsBQVQDK855HfC8W1GGJ0oVRFItE3xns2DnA2Hy3x/e50hVelhKaPCm5IvSvsmoUJ7733nv+ePXt8+Xw+1Tb24YcfBs6dO7f6oYcean3++ec16enpsnHjxpnT0tJUu3fvvmCz2YgHH3xwaHJycvOmTZv8YmJiLEuWLKnesmWL77p169QrV668rK3n559/roqIiLAuXbq0avv27T7vvfdewFtvvVW+bNmysLVr1xZGRkbaN27c6FdaWsrNyckROBwOcteuXbnHjh0Tvfnmm8GbN28ufO2110IXLFhQGRsba/7uu+/keXl5fD8/P/PWrVsV27Zt829tbW13cN56663gRx55pH7WrFlNGzdu9Fu3bp3/K6+8Un2pTXV1dewFCxZoKioqeBqNxuaN+71o0aIaACguLubu2LHD75lnnmm43p4Gg4F89913B23btk2vVCpd7733nn9DQwN7+/btvlfesyvv67Xo1xFkvn8UwpxO1MhoOMp61kJWX2vEyNoLKFETCFNqr38Bw23FnRerx3+WB0IUyoVxz95rpllUVFUhvuVnGMpEkCYk4DfDKYwLGMfkEPYD/CS+sHIBW2PPC3rbqDPa4GtwwSGhAPkgL1jH0Of46eAndgEASs4du6Glms6eAwGgTAVE+kR6wTiGviQ0NNT+0UcfFV46ptPpLC0tLayLkUwWh8OhlUqlKz09PZvL5dI1NTUcDodDkSSJF198se7ll1+uBoCqqiquRCJxX7lHZmamOD4+vhUA7r//fsPJkyeleXl5PKlU6lq/fr1/cnKyrqWlhRUdHW0/efKkeMKECa0AEBsba87LyxNZLBaiubmZ8+uvv8pTUlJ0mZmZ4jFjxpgBQCaTubdv366/dL/S0lLB5MmTWwFg7NixpjNnzoivtMlkMpEvvfRS1QMPPNDU3Xt28OBByeOPPx6ZmpoaPnny5MGrV69WA8BLL70UtnfvXumHH34YUFZWJli1alXA9fY8duyYWKvVWlasWBE8ffp0nZ+fn0ulUrmuds+6Y2O/jiDDNxxhThcq5S4Mzynvkb5pZmEdRrTU4Mc/EIgK+EMvGcrQVwxWDAab4GInxw9TlFmozrDBdu4cBMOHX3V+5a8fg1/EBlw0zNMmou7CTsQGxN5kqxl6Az+hEgYhgJb6G16rvLQWIgdASUmAK7px4xj6Hg4fgQo5KMKFivOn0dMzIzdFQ13k6aBnC5JBxGF+PrxF6l1hjdeL9vYG06dPbykuLuZeOqbRaOxvv/12yIYNGwJEIpF74sSJRgDgcDj45JNPlBs2bAhKSUlpz+dis9mYMWNGVHFxsWD9+vV5V+5hNptZMpnMDQASicRtNptZDQ0N7JycHPHrr79eFhERYU9NTY3Yv3+/xWw2s6RSabuTTZIkXVdXxykrK+NPmDDB8Nprr1UuWLAgdOvWrb6pqamNU6ZM6dAhKSIiwrJ79275k08+2bh37165zWbrEFDVarUOrVbrOHDgQLd0Mdv8sNraWu6ePXuy7XY7GRcXN3zx4sXt0Yl58+ZVFxYWCpYsWXJZ1PpqezY1NbHPnDkj3blzZ7ZYLKZmzJgRPWbMGNPV7ll37OzXEWTwJPCjeKhU0KAtFrgbGq5/zRWU/X4WLIpGQSCBqICxvWAkQ1/CYXEwWDEEeXwawmAXwCJg2L376pMdFkQVbkFdvhzCceNwXOT5vY0NZBzk/oCvOAAGAcA1Nt/wWlW5nmAM20dww2sx3DoE+UaiXgY4iop7vEZJoxnRLUWwcWnIQpnocX9lzZo1gzZv3py7f//+7ClTpjQuW7as/Shp7ty59UeOHMk6ffq05MCBA5K28a+//jpvy5Yt+vnz54fn5+fzUlJSdCkpKbpNmzb5iUQit9FoJAHAaDSyRCKR29fX1x0QEGAbPHiwjcvl0nfddVdrVlaWUCQSuU0mU7szSNM0oVKpnAKBgJo0aZKRJElMmjSp9fz5850+nS1btqzi4MGD8pSUFB1BELRMJnN9++23Pm02nTx5Uni9e8Dn8ymn03lZVNJisbDaUlG0Wq2Vw+FALBZTXC63x0okPj4+Lp1OZw4ICHBJJBJqxIgRxrNnzwqvds+6s27/dpABKDh+7VJvjvLup1nYz50DAI+DrIjypmkMtwh3BowEza/FYcldkAQ70LJjJyhbx3Sq5sOfgixzgLBQUKQ+haNVRxEmDUOgmNHG7g/4SoJhEBIQWkw3vFZjsUcKTOzPdFbsT4gDYmDwoSGs6X6wpQ19jRFBrXUoUxLQqq5d78Bw+yIWi11tUVx/f3+n0Whk5ebm8mbPnh1OURQ4HA7N5XIpgiDoNWvWqLdu3aq4eJ2bJElERkba09LS9Glpafqnn366YcSIEab9+/fLAeCnn36S3nHHHUatVmu3Wq2stiK8zMxMSVRUlG306NGmQ4cOyQDg2LFjIo1GYxUKhXRQUJDt0KFDYgA4ceKEJCIiwtqZ/fv375cuXry4Ii0tTc9isRAbG2tITk5ubrPpzjvvtFzvHsTExFgLCgqEVVVVHACwWq1EVlaWeMSIEde9liRJ0DTdpSP/kSNHWoqLiwX19fVsp9OJ8+fPi6Kjo61Xu2ddWa+N/p1iAcBfEopam+f0wFFWBuGorncsajTZEVCRC6uQBiEXwFfQaeElw23McOVwgKDwjnMY0rTHYDzAgSF9D+TTk/43yWYA99haFGX7ghMaAl7cXTi1/a+YFj6t7wxn8CpicSDMAkBcY4fTTYHD6nn8wFZTAgDwDWYK9PoTbGUUaKkbqnIbKLcbZA+6s+ZWteJ+gxWlQwhoZUxdS39lxYoVpfPmzQtnsVg0h8OhVq5cWarRaBxRUVGWxMTEaIIgEBsb2xofH2+Kjo62LVy4ULNjxw4lRVF44403OhxRzJkzp/4vf/lLWFJSko7D4dAffPBBEY/Ho1esWFGycOFCLU3TGDZsmOnhhx9udbvdOHLkiDQxMTGapmmsWrWqBADeeuutkhUrVoS88847REBAgH358uWdPulFRETYFi1apOVwOLRGo7H+85//7LbSgUwmoxYuXFj+7LPPRvB4PMrlcpEzZ86si4yMtFdWVnKvda1KpXI6nU5i+fLlQStWrKi81lx/f3/Xiy++WJGamhoJAPfee2/zsGHDbFqt1nHlPeuO/f3eQQ5TRaPecRY0ATgrrnmPO3CmvAWDW0pQqgaipEyno/7KcD9PvnEBzw1z9FBwM6vQ/J8tkCUl/i9nff+bcBZawDbwEPj6S7jQlAOry4qxTNpNv4EQK+EQ0BBbnag12BDsc90TxE7hNFTARQJ+gUyTkH6FXyQEYie4LjZqy3MRENb9ltNlReUgHUClgkCcnHGQ+wsajcbx/fff57a9jouLM8XFxeVeOe9iTu1lebVqtdq1bdu2/GutLxKJqA0bNnRw8O655x7jPffcc1n3GhaLhTVr1nRwaEeMGGHdsWOH/srxNjIyMrLavh43bpx59+7dXeqKs3Tp0k6lf5KSklqSkpJarhyPj483xsfHt0d02/Zeu3ZtSdvY3r17L3R1z5kzZzbPnDnzsvy4zu5ZV+n3KRZBAUPAIWkYxVw4K7vnIOcWVENpbMW5IBKRyqsXbTHc/iiFSgSKAiGRVeED7v9BEWmE7UIuDD9ezEUu+g3uI5+h+Kw/TMFhkDzwADKqM0CAwJ3+d/at8QzeQ+gHSkCBQwFNdTeWhywwNKBZDCj9or1kHMMtgW8kFEInAKAs52SPluDle66r9AUTQWZguIXxWgRZp9PJAPwHgBQAF8BCvV5/TKfTjQPwAQAXgJ/1ev0Kb+3ZFViKMAS6XGiQcqGuqOjWtY2ZnoepvEAC05VMrlh/ZrhyOA5bT+KrHDleS3kc/MLvULviNYg42WD9/i5KTgWCa3ZC9c5rIEgSJ2pOQKfQQc6X97XpDN5C6AuSRwEg0VJdD+h63jpcYjKhRQyIFUwRVr9C5Ad/EQsmAOU5ZzH2we5dbra7EFTjCYpZAiSQ8bpV/M/AwHAT8WYEeSGAfXq9fiKApwGsuzj+CYDHAEwAMFan04304p7XxycUgS436mUUHJXdc5DdeR6llSI1AY1M0xvWMdwiDPMbBjPVAIpsRZrfXAT838OgLHYU/fVzFP+igqOEwtF7ZiJo0gTY3XacqTuDP6gZ2b9+BZsLDteTUtNa33OlKKvDDYnZDosIIGQ9d7IZbkEIAtKAUFAEYC7p/sltXq0RWmM1nCwa8hCm6JuB4VbGmw7yewA+vfg1G4BNp9NJAfD0en2hXq+nAfwE4F4v7nl9hL7wdwNVcjdcNbWgnc4uXdZoskNVWwKHkIJRSEAjZRzk/swI1QgAQFhQPT4/Wgb2U+8jbNPH4A0ZiVZBKD4ckYLIeXMBAGfqzsBBOTBGPaYvTWboBQRCT92Iqb7buvftVLVaIbW4YRfSAE9y/QsYbiu46mgYJAC7pvstyQvqTPA3NaFGQUDDnC4wMNzS9CjFQqfTzQGw4IrhZ/R6/e86nU4NT6rFfHjSLQyXzDECuLlJVwQBP1KMXB8nQFFwVleDG3L9yvLsKgOiDGVo9KWhYIuYo/R+TowiBnwWH4M1jdh90ILvMisxY8w9UG66G7PW/AZfMRd3R6kAABnVGWARLCb/uB8iEosAGGBs6nk3veraVvjaabgkLKCbjYkYbn146ijYpb9B0mi4/uQrKKw3I8ZoxblgAmGyMO8bx8DA4DV65CDr9frPAXx+5bhOpxsG4CsAL+v1+t8uRpAvDaFIAHSoZuxt1DwlDsk8BY/OioquOcjlTYgzNuH3CAIaRsGi38NhcTBMOQyNTj2GBd2Hd3/OQ4xaiq9PlqO61YYPZo0ESXqcnYzqDAzzGwYxt0PnTYbbHLFYAsAA2w1002soq4QvAEiuqWLEcJtCKjQgxG6oytxotjXDh+/T5WvLqhpAmmlU+hKYyPxdYWC4pfFaioVOpxsM4BsAj+n1+j0AoNfrDQAcOp0uXKfTEQDuB3DYW3t2lUHyENTJPc6No4tKFlXn9GBRFM6rWdAoYnrTPIZbhJGqkchtysWyhHC4KBoJH/0XXxwvxWNjQzBGowAAGBwGnG88z8i79VMkcs//Z7eh5ykWreWeh3GuD/MA1S9RaCESuSCzAEXV2d26VFDwOwiaQJWCSdvrbxw/flyUkpLSruuYmZkpmDp1anRSUpJu3rx5YW63p4nbp59+qpwyZUpMQkJCzDfffOMDACaTiUxNTQ1PTk7WzZw5M6qiooLT2T47d+6Uz507t/2HZ9++fZJp06ZFJycn6+bMmaM1m80kAKxatSogISEhJjExMTojI0MIALW1tey2fRITE6MLCgp4bevU1dWxJ02aNNRqtRIA0NjYyHriiScikpKSdKmpqeG1tbWdBlQPHjwoHj9+fAepr+LiYu7UqVMvk/L57LPPlCtXruy0u9aWLVt8f/jhBxkAfPLJJ8rO5n300Ueq119/vb3IY/v27YqEhIToxMTE6EWLFoW43W643W4sWrQoZNq0adEpKSm6toYqXcWbOsgrAfABfKDT6QCgVa/XTwMwF8BWACx4VCwyvLhnl9CootFoyICbJLqshWzXe6QCc9QkHvUJ703zGG4RRqlGYT29Hm5eKdL/MgH/OliIe6JViIv83+/oyZqToGgK4wLG9aGlDL2FTKaCiwRg6vlBl7G6BAAg8GMaC/VLFBoohQ5YIERFbiZGayZ06TKnm4K62qNgUevHQoA4oDetHJicWO+LM196t33liEcbMOa5a1btvvfee/579uzxbWuhDAAffvhh4Ny5c6sfeuih1ueff16Tnp4uGzdunDktLU21e/fuCzabjXjwwQeHJicnN2/atMkvJibGsmTJkuotW7b4rlu3Tr1y5coOrX+XLl06KCMjQ3ppB7y33nordNu2bblqtdq1YsWKoM2bN/uNHTvWdPr0acmuXbtyysvLuX/+85/Df/zxx5w333wzeMqUKU2PPPJI84EDByR6vZ4fERFh/+mnn6Tvv/9+cHNzc7tj/v777weMGDHC9PLLL9f8+uuvkpUrVwa9//77pVfaVFZWxtm4caO/y+XySj7ZU089uQ1JPAAAIABJREFU1X6vN27cGDh37tzLjvMsFguxaNGisJycHFF8fHxz29jHH38cmJ6efkEkElF/+tOfNOnp6TKXy0U4HA5y165duceOHRO9+eabwZs3by7sqi1ec5AvOsNXGz8OoE+9CV9fHViFQKuEB58uSL3ZnG6IKktAk0CVLxgFiwHCHco7QBIkMmszMS5gHJYndGwCcKzqGARsAe5Q3tEHFjL0NjJxACr5AM/acweZrvM0wZL4My3I+yUCH8gkPFgA1OVdALoo9VbWZIHW5Pn7ww4JApvs9326BgyhoaH2jz76qPDll19udxZ0Op2lpaWFRVEULBYLi8Ph0Eql0pWenp7N4XBQUlLC5XA4FEmSePHFF+tcLhcAoKqqiiuRSNxX22fkyJGmyZMnt3z55ZftUZv//Oc/erVa7QIAt9tN8Hg8KiMjQzx27FgDSZIIDQ11uN1uoq6ujn3u3DlxVFSUdebMmVEBAQH2N998sxzwtHX+4osv9ElJSYPb1i0uLuYvXLiwEgDuuusu0z/+8Y8OualWq5V49dVXQ1etWlWanJw8+Mr3r0VxcTF3/vz5WpVK5aisrOQNHjzY/M4775StXLky0M/Pz9nS0sIymUysxYsXh6xevbq96YnNZiOTkpIaY2NjDUVFRXwA4PF49Pbt23NFIhF1yX2gjx8/LpkwYUIrAMTGxpoXLlwo6o6NA+I3lFRo4O9yo0HKRWBFh4eyDhTUmRDeWgG73A03i40waVjvG8nQ54i5YgxWDMbRqqN4fsTzHd6naRoHKw5iXMA4cFidnoAx3MZIxWrk8QGRzQSKotvzzrsDv7kSLhKQq8O8byDDLQEREAygEdayrnffLao3Q21ugkkA+PtH9J5xA5kxzzVeL9rbG0yfPr2luLj4sqIDjUZjf/vtt0M2bNgQIBKJ3BMnTjQCAIfDwSeffKLcsGFDUEpKSrsUCpvNxowZM6KKi4sF69evz7vaPjNmzGg+ePDgZdI4gYGBTgDYsWOH/NSpU5KlS5dWrl27Vi2Xy11tc4RCobu1tZVVV1fHlUqlru3bt+etWrUq4IMPPlC/9tprVffdd1+HitOoqCjrzz//LB81apT1xx9/lNvt9g4puUuXLg2ZM2dObXBwcNfkwS5CEAQNAJWVlfwvvvgiTygUUvHx8cOqq6vbfdLFixfXpKWl+V/qHAOAQqFwT5482bBly5b2IzoWi4W2h4R//etfKqvVyrr33nsN6enpPlKptP1hgyRJ2ul0gsPp2t/vft9JDwAgD0WAy4U6GQVn2fUd5NwaI7SGKjT50mATLKhF6ptgJMOtQFxwHM42nEWLrWMEMacpBzXmGkwaNKkPLGO4GUjEapj5gMhhhcHWrc/8dsTGRjSLAV85c/LUX+EGR8DGAzi1XS/mLKw3QWYyoUoBJugyAFizZs2gzZs35+7fvz97ypQpjcuWLRvU9t7cuXPrjxw5knX69GnJgQMH2h3er7/+Om/Lli36+fPnh+fn5/NSUlJ0KSkpuk2bNl0zbWTt2rWqzZs3qzdt2pQvEAhosVjsbstFBgCLxcKSy+VuiUTifvjhh1sAYPLkyS05OTnCztacP39+dWVlJS85OVlXUVHBUyqVzsOHD4vbbPryyy8VZ8+elaxbty4wJSVFZzKZWM8999xlKmUCgYByOp2X+ZkWi4Xk8XgUAAQEBNikUinFZrOhUCicNputxz6p2+3G3//+9+Djx49L169fX0iSJEQikdtkMrHa5tA0TXTVOQYGioPMl0JJkahRuOFubobbZLrm9MKSGvhYTShXAsFCf+YobAARFxQHiqZwpOpIh/cOlB8ASZCYOGhiH1jGcDMgBQrYeYDI4UCDydHt690UDYnF5HGQFUyUsL/CV0XALqEgazLDRbmufwGAwlojWGYXqn0IhDIKFv0esVjsaote+vv7O41GIys3N5c3e/bscIqiwOFwaC6XSxEEQa9Zs0a9detWxcXr3CRJIjIy0p6WlqZPS0vTP/300w2d7bN69Wp1ZmamZNu2bXqlUukCgDFjxpiOHTsmc7vdKC0t5VIUBaVS6Ro6dKjxp59+kgHAsWPHJFqt1tbZuocPH5bMmjWr/ttvv9WHhYXZhg8fboqLizO12fToo4827d+//3zba7FY7F6/fv1l3XNUKpXLarWS2dnZfABwuVw4fvy4dMSIERYAIK4jg0nTdJfuNQC8/PLLoXa7nfz3v/9d0JZqMXr0aNOhQ4favl+RRqOxXnuVyxkwnp+KJYZe4flZcJaVgTW483SZ5mxPgZ5exUKonCnQG0gM8RsCBV+Bw5WH8bD24cve21+2HyOUI6DgK/rIOoZeR+ADJ4+GqNGFBpMdEaruKVE0mR0Q2+woVwAyxkHutxC+WpBiN1QtJKpMVQiRXl86tKWqBLCQqFYQGM04yP2eFStWlM6bNy+cxWLRHA6HWrlyZalGo3FERUVZEhMTowmCQGxsbGt8fLwpOjratnDhQs2OHTuUFEXhjTfeKO7KHjU1NexNmzYFhoeHW5566qkoAJg8eXLTc889Vz9y5EhTYmJiNE3TxN/+9rcyAPj73/9esWTJktBvvvlGJRKJ3GvXru20HWRUVJRt8eLFmtWrV8PPz8+xZs2aku7eA5Ik8cYbb5QsXbo0jCRJuFwu4u67726ZNGmS8cqUlKsRGhpqfeGFFzQff/zxNe/HqVOnhHv27PEbMmSIaebMmToAeOKJJ2qnTZvWcuTIEenF+4BVq1Z163sYMA5ygFCJgwpPgYSjrBz8azjI7qICAMAZNRuTGDH3AQVJkBgfOB6HKg/B7raDx/KowpytP4u85jwsGbOkjy1k6FUEcrh5NAQON+p6EEGuN9ohtLlgFwAk00Wv/6LQQiBygl/OQUlLUZccZEXZaQBAjQ+TYtEf0Wg0ju+//z637XVcXJwpLi4u98p5S5YsqQZQfemYWq12bdu2Lb8r+8THxxvj4+ONbddlZ2efvtq8pUuXVgGounQsLCzM8dVXX3W6z+HDh8+1fR0ZGWnfuXNnB/s7IyMjI+tq453dhyvvV9vXF+0GAHzzzTdXzcUGLle7GD16tCU3N/fU1eatWbOm64UCVzAwUiwABEuDUXuxGZ6jvPP71Wx2QFFXAXCASjkQKmGe9Aca0yKmodXeih8Kf2gf25y9GRKOBIkRiX1oGUOvw5eD4tIQ2mk0Grt1GgcAqDfaILTRcAoHzEfrwEShhULoBMcNVJZcXwu5xeJASJMnWNfsx4efwLtKZAwMDN5nwHyKq33CYeMRMAv5cF6j8ji3xgiNoRouuQs0QWCQdFCncxn6J2PUYxCjiMHm7M2gaAplhjL8WvYrUnQpEHG6pRLDcLvB4YPgASQNtDR0X+qtsbYRLAqgRQPmcG5gIlJCJPbU/tTkX7ju9KIGMzRmT9CQFxp63dxLBgaGvmfAOMgBfp6UigYJB45rKFnk1higMVbDqPDofTPFFAMPgiAwe+hslBhK8Pcjf8effvkTBGwBHot+rK9NY7gJsPke59bS2H0H2VBVBwAgxXyv2sRwi0EQoNUedSNLyfXTRYvrzVCZmmEUAv7+2uvOZ2Bg6HsGjIMs8dNBSFFokAL2a0SQS/LLIbVbUOMLcAg21EJG4m0gcl/ofXhq8FNIL0qHwWHA+vvWM3J/AwSO0CMDZGnqvpyquc5TbM6WMScN/R1uSDhoAKzauuvOLW4wQ2SyoMqHCbowMNwuDJhzQEIeArXLjUa5G66CGlAOB0huxyJKc44nZ7zAn0CwOAgsktVhDkP/h0WysPgPi/Fo9KNgEUxb2IEEV8gH4IC99fqOz5U46i4eo/vIvWwVw62GICgKdlEm5E0WmJ3ma6ZfldU1ASYK1RFsxkFmYLhNGDARZHCFUNMkanxdIGj6qnnIFEWDU+Qp8MwK4iKUaTE94AmWBDPO8QBDIPY4Oi5jp9KjnUI2lXjW8FVeeyLDbQ/pGw5C4oZ/M42S1pJrznVV5gBWFqoVjAYyA8PtwsBxkAEEskUo9PfkFtvzOyqdlDVZMKi5EqSYRJ6Y3SXpHgYGhv6FWObj+cLU3O1reQZPBFmkCvKmSQy3IgotBGIX1C1AsaHzPGSKoqGsPAsAqPZhlJH6K8ePHxelpKTo2l5nZmYKpk6dGp2UlKSbN29emNvt6Xj86aefKqdMmRKTkJAQ88033/gAgMlkIlNTU8OTk5N1M2fOjKqoqOjQ7q2lpYX11FNPRSQnJ+umTZsWffToURHgaYCRkJAQnZiYGL1q1aoAwNNVbtGiRSHTpk2LTklJ0eXn5/MAID8/nzdz5syo5ORk3axZsyIbGhraj8jz8/N5kydPbte/LSoq4iYnJ+umT5+ue+GFFzSXduZrIzs7m5+UlKRLTEyMfumll8Kczsu7jx48eFByZXe9119/PejSNtFXsmbNGnVGRobQarUSGzdu7FTu5dVXXx302WeftUci1q5dq0pISIhOSEhovw8ulwtLly4dlJiYGP3www/H/Pjjj7LO1rsaAybFAgCCBCrsUpWCIgiPg/zgg5e9n1tjgLa1CqSPAzaCjxAJ4yAzMAw0JHLPZzfb2gKaprulOMA3N8HCA+Q+jPpNv0ehhVzoBGUWILMqD+ik9q6q1YoIQykAwOQvhpzPpN/0Fl/mfOn7feH3XtXQmxo+teHRmEevWZDw3nvv+e/Zs8eXz+dTbWMffvhh4Ny5c6sfeuih1ueff16Tnp4uGzdunDktLU21e/fuCzabjXjwwQeHJicnN2/atMkvJibGsmTJkuotW7b4rlu3Tr1y5crL1AQ+/vhj/zFjxhhefPHFutzcXN7ChQu16enpOStWrAj96KOPCrVarf2pp56KOH36tKC0tJTncDjIXbt25R47dkz05ptvBm/evLnwtddeC12wYEFlbGys+bvvvpPn5eXx/fz8zFu3blVs27bNv7W1td0xf+utt4IfeeSR+lmzZjVt3LjRb926df6vvPLKZfrNq1evDpo/f37lxIkTTS+99FLY7t275YmJid2vbr6ERYsW1QBAcXExd8eOHX7PPPPMZUd5dXV17AULFmgqKip4Go3GBgCFhYXcvXv3+u7atSuHJElMnz49OisrqyUrK0vocrmInTt35lZUVHB27tzp0x1bBlQEOUAaDCebQL3M56oR5AvF9RhkrINF4WkQwEi8MTAMPKQ+KlAEIHYYYHG4u3yd3eWGyGqEQQDIpcG9aCHDLYEkAFyp5+GpNq9zLeT8OhNCzJ58dl4Yk7bXHwkNDbV/9NFHhZeO6XQ6S0tLC4uiKFgsFhaHw6GVSqUrPT09m8vl0jU1NRwOh0ORJIkXX3yx7uWXX64GgKqqKq5EIunwwfP888/Xzp49ux4AXC4XweVy6dbWVtLpdBIRERF2kiQRGxtrOHTokPTkyZPiCRMmtAJAbGysOS8vT2SxWIjm5mbOr7/+Kk9JSdFlZmaKx4wZYwYAmUzm3r59u/7S/UpLSwWTJ09uBYCxY8eazpw506Gt6IYNGwonTpxostvtRGNjI6ettXZXOHjwoOTxxx+PTE1NDZ88efLg1atXqwHgpZdeCtu7d6/0ww8/DCgrKxO0RYPbMJlM5EsvvVT1wAMPNLWNDRo0yLlp06Z8NpsNkiThdrsJPp9PHTlyRKpSqRxPPPFExJIlS0IfeOCB1q7aBwywCHKgTxTQcBQVUj6C9R0btFSfyQYJGrV+nv7fTK4YA8PAQy5Wo44HSJ0mNJkdEPG69jHZYHJA7LDCIARi5MxnR7+HJEGoVQCssJV2nmJRUGvCOFMrWsRAqL+u03kMN86jMY82Xi/a2xtMnz695crWyRqNxv7222+HbNiwIUAkErknTpxoBAAOh4NPPvlEuWHDhqCUlJTatvlsNhszZsyIKi4uFqxfv76Dg+Lj4+MGgOrqavbixYu1f/3rX8sMBgNLKBS2O6VisdhdVlbGM5vNrEudVZIk6bq6Ok5ZWRl/woQJhtdee61ywYIFoVu3bvVNTU1tnDJlSgfHMSIiwrJ79275k08+2bh37165zWbrEFBls9koKSnhPv3001Eikcg9fPhwS1fuV9upXG1tLXfPnj3ZdrudjIuLG7548eKatjnz5s2rLiwsFFzsPNiOVqt1aLVax4EDB9rTJbhcLq1UKl0URWH58uXBkZGRFp1OZ29tbWWXlZXxt2zZUnDo0CHxX//617Bvv/32sgeBazGwIsiq4QCARgUBZ3k5KOv/OmVRFA2n3nPfivwJsBmJNwaGAYlYqIKZB4hdVjRbut5uutFkh8jmhEFIQCZhIsgDAa42AgDAr20ARVNXnZNXYwDXZEelAtDKGA3kgcKaNWsGbd68OXf//v3ZU6ZMaVy2bFn7kfTcuXPrjxw5knX69GnJgQMH2nvSf/3113lbtmzRz58/Pzw/P5+XkpKiS0lJ0W3atMkPAM6ePSt46qmndPPmzauIj483SaVSt9Vqbc8jNplMLKlU6haJRG6TydQ+TtM0oVKpnAKBgJo0aZKRJElMmjSp9fz5851Kryxbtqzi4MGD8pSUFB1BELRMJnN9++23Pm02nTx5Ugh42lcfPHjwfEpKSv3rr79+2bE7n8+nnE7nZTlqFouF1ZaKotVqrRwOB2KxmOJyuXTP7zZgtVqJi7nSrLfffrsUAKRSqXvSpEktJEkiPj7eVFFR0S2B+gHlICsDRoBN02hSOgCahr2wqP29wnoTtLWFgICNPKUAwZJgRuKNgWEAwhL6wsYDxA47mszdcZAdENhcMAkBAUfYixYy3CoIQobCKaDg3+RClanqqnMaasrhNpGoVhAIl4ffZAsZ+gqxWOxqi+L6+/s7jUYjKzc3lzd79uxwiqLA4XBoLpdLEQRBr1mzRr1161bFxevcJEkiMjLSnpaWpk9LS9M//fTTDdnZ2fz58+drV69eXfTggw8aAEAmk1FsNpsuKCjgURSFY8eOSceOHWsaPXq06dChQzLAU8Sn0WisQqGQDgoKsh06dEgMACdOnJBERERYO7N///790sWLF1ekpaXpWSwWYmNjDcnJyc1tNt15552W1NTUiLy8PB4AiEQi95X1GjExMdaCggJhVVUVB/A4sVlZWeIRI0ZcN9JMkiRomu5SAQhFUZg9e3ZEVFSU9d133y1lsz2nfqNGjTL+9ttvMgA4c+aMQKVSdf0DHQMsxYIlUkLtptHg77lH9rw8CIYOAQBklrdgeEMhhEEclAoYBQsGhgGLQA4HDxA6nd2KIDcYbVDaaDiEAyruMKAhVNFgSdzwbyZR0FKA4CtODmiahqg6C4SNRLUPgRQZ4yAPFFasWFE6b968cBaLRXM4HGrlypWlGo3GERUVZUlMTIwmCAKxsbGt8fHxpujoaNvChQs1O3bsUFIUhTfeeKNDzs7bb78d5HQ6yTfffDMEAEQikWvz5s2Fy5cvL124cKGGoihi7NixhnHjxpndbjeOHDkiTUxMjKZpGqtWrSoBgLfeeqtkxYoVIe+88w4REBBgX758eadalhEREbZFixZpORwOrdForP/85z87aOM+99xz1a+88oqGw+FQPB6PaovctiGTyaiFCxeWP/vssxE8Ho9yuVzkzJkz6yIjI+2VlZUdG1FcgkqlcjqdTmL58uVBK1asqLzW3O+//15+7tw5idPpJI8ePSoDgIULF1Y8/fTTDa+88kro1KlTo2maxuuvv156rXWuZEA5yAAQSPJQq7TBxuHBmpUF+fQkAEBeVh6GWZsh9nWhnBBiDKNgwcAwMBH4wMWlIbW4UGZ2Xn/+RVoamsGiAEo04D5WBy5+UZCInFDXc3ChOR/xg+Ive7vGYMPgpgsAgAZ/HtONsx+j0Wgc33//fW7b67i4OFNcXFzulfMu5tRellerVqtd27Zt66gccAmbN28uvNp4bGys+dJ9AYDFYmHNmjUdHNoRI0ZYd+zY0WkObkZGRlbb1+PGjTPv3r0751o2jR8/3jx+/PgO3+OlJCUltSQlJXVQtoiPjzfGx8cbr9x77dq1JW1je/fuvdDZukuXLm0/sklMTGxJTEw8fbV5H374YcnVxrvCgAt1BHDlaOS4cNovEobfDoGmPWkv1t9/BwDYfFthBcVEkBkYBip8Odw8GkI71a0Isrm2HgBAi64ZGGHoT/hFQih2QWEC8qs6Klnk15oQafQEv0htWLckAxkYGPqWAecgB4nUaCSB0/7hoGqq4SgoQH6tEaqiC3ALBSi7KDvNFFMwMAxQ+DLQXBp8B9WtHGRbg0d1iC1h8o8HDFwRoJQCAJpyOzrIebVGBBgbYecAvmHRN9s6BgaGG8DrDrJOp4vW6XStOp2Of/H1OJ1Ol6HT6Y7odLrl3t6vuwTKtaAJAg0hHj1s02+/If1EEcbUXIBYF4AinmeccZAZGAYoJAvgkhA4gBZTpzUsHaAaPYpNbJnkOjMZ+hP8CE9esbC8Gg735Q9UWWVN4BlsKPMDtD5M/jEDw+2EVx1knU4nBbAGgP2S4U8APAZgAoCxOp1upDf37C6hgWMAAMN1LSiSBaJx9x44t22B3GGGapwcxQIJJBwJ/ARebcbDwMBwG0EKPAo25qau68pzmz0pcXwfRa/YxHBrIooZDopFY1AdheLWy2ur6sr0cBhYqFASGOI3pI8sZGBg6Alec5B1Oh0BYD2AVwFYLo5JAfD0en2hXq+nAfwE4F5v7dkTNIMmAAD8RFXYrbkL7pwLeDgzHa0jxkLILkCRSAaNXMPkijEwDGDYfE+hna2lucvXcE0ejXuRX8B1ZjL0Jwj/GLDkLoTUA3nN/+vv0GCyw7/hPEgriQo/AkN8GQeZgeF2okfl1jqdbg6ABVcMlwL4Sq/XZ+l07d2CpAAMl8wxotOO9TcHmUABH5pAta0SwuRl+H8iOZ6vPorRf5sPpMWjSBqJOCa9goFhQMMVCgA44DDUd2k+TdMQWBrhJgCxb1DvGsdwaxE4EhKpA6G1HPxadx4J4QkAgDNlLbjT5BEMcIb4Q8JlUm8YGG4nehRB1uv1n+v1+qGX/gOgAzBHp9MdBKAG8DM8zvGlnwoSAB3kPm42YRwZih2t+EfiEKxfNw93p38LkciIVhJopGxM/jEDwwCHK75YaGdubFe6uRYGmwtihxEmASCXBPaydQy3FKoY8HwJyCzAOf3x9uEz5S0YbCgBAMgH39FHxjHcLI4fPy5KSUlpjw5mZmYKpk6dGp2UlKSbN29emNvt6fz86aefKqdMmRKTkJAQ88033/gAgMlkIlNTU8OTk5N1M2fOjKqoqOB0ts/OnTvlc+fO1bS93rdvn2TatGnRycnJujlz5mj/P3v3HdhU1T5w/JukSZs06d6UtszLXiJDBQEFZE9REVmKgriFV3kVFMcPXxUBZckGxQWICshQBGQJyJ4po0ChdO+mI+v3R0GLAqImDYXn81e4uT3Pc8vh8uTk3HMKCgrUAO+8805kt27davfs2bPWjh07DAApKSlel+L07Nmz1okTJ7wvtZOamurVtm3beoWFhSqAjIwMzYABA6r36tVLGTRoULWUlJQ/DagmJSVp+/XrV7N3797KoEGDquXm5l5WUyYkJOi6d+9+2dOps2fPDp0wYcJVb5KLFi0KXrFihT/AzJkzQ6923tSpU8Nef/31P41GPP/887GXjttsNp555pm4nj171urVq5dy8ODBv7WTnssW7DSbzdUvvVYU5TTQwWw2FymKUqIoSjXgFNARGO+qmP9UFVM0G4sz0OWdRRd0sRg+v5sErTygJ4QAg8kEXMDHlktesQ0/n6v+fwWUbjNtLCkkTw9RfjKCfEtRa9BWrQK/puB1+hR5JXmYdCYOnM2gW1YO6UYd1Wo083SWt4TMTxcH53z7rUsfIPLv0SM9aMDDGdc6Z9KkSeGrV68OvrSFMsCHH34YNXz48AudO3fOGTFiRJXvv//ev0WLFgVLly4NW7Vq1ZGioiJVp06d6vXp0ydrwYIFIbVr17a8/PLLFxYtWhQ8bdq0iAkTJiT+Mc6YMWMq79ixw6/sDnhvv/127GeffXYsIiLCNn78+EoLFy4Mad68ef6ePXtM33777dHExETdyJEjq61cufLoW2+9Fd21a9fM+++/P2vDhg0ms9nsU7169eK1a9f6TZ48OTorK+u3G93kyZMjGzVqlD9q1KjkH3/80TRhwoRKkydPvmyjjalTp0Z07949Y8CAARkTJkyIWrhwYcjTTz+d+m9+3wMHDvztdz1//vyo4cOHX/Y1nsViUb344otxR48e9W3Tps1lc+DmzJkTcurUKX3jxo3zAFatWhUA8M033xzbuHGj6f333690tfWkr6Q8lnkbDiwGdgJ7zWbzjnKIeU1xIXXJ1GjISSyTyvndnAoonTsoBbIQtzaDXyAARls+Wdex1FtGQQn6kmLy9OBnlAL5VuPbqDkAsakO9qTsIS2vmJyE3ZSkeXG0sor6oQ08nKFwp9jY2OKpU6deVngpimLJzs7WOBwOLBaLRqvVOkNDQ23ff//9YZ1O50xOTtZqtVqHWq3mqaeeSh01atQFgKSkJJ3JZLJfKU7jxo3zx44de9kGIJ9++qk5IiLCBmC321Xe3t6OHTt2GJs3b56rVquJjY0tsdvtqtTUVK+DBw8ak5OTdQ888EDNb7/9Nujuu+/Og9JtnT/55BOzyWSyXWo3ISHBp127djkAd9xxR/6BAweMf8znrbfeSnzooYcy7HY7ycnJ2ktba1+PhIQEXY8ePWoNGzasaufOnWuPGjUqBmDChAlRs2fPDn3vvfci8vPzNaNHj75sU4qioiJ1r169MoYOHXrZZitbt271PXDggLFPnz6/FdQ9evTInjhx4mmAxMTEq/5er8YtWz6Zzea4Mq9/AVq4I84/FRfVDI5/yekzG2jY8CGwlcCZrRyuVAWjykKUUb4iFeJWZgoIpQTws+WRWVBCbLDvNc/PyC/GWGwjyaQiQB9YPkmKG4ZXrTvxMn5N3TNZ/Q3tAAAgAElEQVRa1p7cxlFVNHdZ9uFVoCYh1ptBgTU9neItIWjAwxl/NdrrDr17985OSEi4bIegKlWqFL/77rsxc+bMifT19bVfKka1Wi0zZ84MnTNnTqW+ffumXDrfy8uLfv361UxISNDPmjUr/o8xAPr165e1cePGyyazR0VFWQGWL18esHv3btOYMWPOf/TRRxEBAQG/FbsGg8Gek5OjSU1N1fn5+dm+/PLL+HfeeSdyypQpEa+88kpS+/btc/8Yq2bNmoXr1q0LaNKkSeHKlSsDiouL/zSgqlarKSkpUXXu3LlOSUmJ+vnnn7/wx3OuRKVSOQHOnz/v88knn8QbDAZHmzZt6l+4cOG3mnT06NHJS5cuDX/vvfcu+0AQFBRk79ChQ+6iRYuCLx1LSkrSTp06NWrOnDknly1bdtkNWKvV8tRTT8Vt2bIl8N13373u0WO4BTcKAYgLrAHA6dMbwW6FEz+AJYMDOi/qh9RHo9Z4NkEhhEf5BZd+m+Rvy7uu3fTS80vwKbaTrwej9k8DLeJmF90UU2QR9c442XpyG1/sPEur/NIaJ/iO1mg1156iI24+EydOrLxw4cJjP/300+GuXbtmjBs3rvKl94YPH562devW/Xv27DFt2LDht4L3q6++il+0aJH5ueeeq3b8+HHvvn37Kn379lUWLFhwzWkjH330UdjChQsjFixYcFyv1zuNRqP90lxkAIvFogkICLCbTCZ7ly5dsgE6dOiQffTo0avuavTcc89dOH/+vHefPn2Uc+fOeYeGhlo3b95svJTTqlWr/AF0Op3zxx9/PDxu3LjTL774YpWybej1eofVar2szrRYLGpvb28HQGRkZJGfn5/Dy8uLoKAga1FR0T+qSb/55pvAnJwcr0GDBtVYsGBBxA8//BBUtoCeOnXq6dWrVx984403YvPz8687xi1ZIEebotGqNMRTDMd/gH2fYTGGEV+YTAP5KkyIW56fKYJCHZisBWQWWP/y/Iy8YryLnZToVbJE5K3ILwpj7TB0Nqh85hSpBftRpSWT7wN33vmgp7MTHmA0Gm2XphyEh4db8/LyNMeOHfMeOnRoNYfDgVardep0OodKpXJOnDgxYvHixUEXf86uVqupUaNG8dKlS81Lly41Dx48OP1qcd57772IvXv3mj777DNzaGioDaBZs2b527dv97fb7Zw5c0bncDgIDQ211atXL2/t2rX+ANu3bzdVrVq16Grtbt682fTggw+mLVu2zBwXF1fUoEGD/FatWuVfyqlLly45o0ePjrlU4BuNRodarb7sieawsDBbYWGh+vDhwz5Q+tDcL7/84teoUSML8Jf3yut5QBrgySefTP3++++PXvxdJbdv3z5z4MCBGYsXLw6aOHFiBIDBYHCoVCr+mOO1uGWKxY1Oq9bSILQhv5b8Cj+9CenHOdSoD46sbTQMlaeNhbjVeRtCsHiD0Vp0XXOQs7Nz8bKD3SDfPt2qDF0Ho1o1jeYJWpztvkP1nYZTsTr6RsoDerei8ePHn3nmmWeqaTQap1ardUyYMOFMlSpVSmrWrGnp2bNnLZVKRcuWLXPatGmTX6tWraIXXnihyvLly0MdDgdvvvlmwl9HgOTkZK8FCxZEVatWzTJw4MCaAB06dMh8/PHH0xo3bpzfs2fPWk6nU/Xqq6+eBRg7duy5l19+OXbJkiVhvr6+9o8++ujU1dquWbNm0ejRo6u89957hISElFyay1vW0KFDU8eOHRs7ffp0p0qlYvz48ZdNh1Cr1bz55punx4wZE6dWq7HZbKrWrVtnt23bNu+PU1KuJDY2tvDJJ5+sMn369Ov6ffxRjx49sp9//vm4Pn36KDabTTV69OhEg8Fw3QWy6nor9PLUu3dv59dff+3WGNP3Tefj/TPZnJyNnzGK2bf15EPzYrY8uAV/b3+3xr4VKIqy22w2N3V1u+XRN4R7uatvgAv7R+JO1j80iFSTkbPPfsJL99W65ukvTVvL4I+eY1VXX0a9/+u/j38Lq7D3DksmZ7veTnaODz9Xd3LPfienJjxKl16j3BfzFnOlvrF///7TDRs2vOoIqxB/Zf/+/SENGzaM++PxW3KKBcDtEbfjwMme/otg5C8cKDhPnF+cFMdCCPDxp0TnxGC1XtcIcnF66XNBKuPfWmZT3EwMQYT2vgNvq5V79jvRNqspxbEQFdgtWyA3CG2ATq1jZ/JO0gvT2X5hO80i5KswIQTgE4DVGwwldjKuo0DWZJVuM63xkwf0bmX6J2YTN+sD/Du2IvadGZ5ORwjxL9ySc5ABvDXeNAprxKbETVjtVkrsJTxS5xFPpyWEuBH4+OPQOfHJdFzXCLJPTmmBrAuQJd5uaVofvFt0JapFV09ncitxOBwO1d95+EqISxwOhwpwXOm9W3YEGWBA7QEk5SfxhfkL2se2J84/ztMpCSFuBFofHDrwKXaQ+RfLvBXb7PhZSqdA+gSFlUd2QojfHUpLS/O/WOgIcd0cDocqLS3NHzh0pfdv2RFkgLYxbZnZfibT9k3jyUZPejodIcQNRKVXYyiG7PyrroQEQEZ+CQG2bAB8Q2WTISHKk81meyw5OXlOcnJyPW7xQT/xtzmAQzab7bErvXlLF8gAzSOb0zyyuafTEELcYNQ+XqidNorzcrE7nGjUVx6gysgvwWTNxeIN/v5SIAtRnm677bZUoLun8xA3H/m0JYQQV+BlKF2m09eWS07h1TcLSc8vxlhiIVcP/qZK5ZWeEEIIN5ICWQghrkDnqwfAZM8m8xoP6qXlF6MvKSZfD/6+4eWVnhBCCDeSAlkIIa7Ax1i6ZJvRlnPNAjkjvwSfkhLy9CoCfGQVCyGEuBlIgSyEEFdg8CvdNMhkyyMjv/iq56XnF+Nd7CgdQZaNhoQQ4qYgBbIQQlyBb2AIAEZbHunXUSAX6MHgZSiv9IQQQriRFMhCCHEFpuAIAAJtOaTlXb1AzsqxoCuBEr0GlUqWYhVCiJuBFMhCCHEF/kHROIBgh4W0a4wgF2ZkAuD0veVXzRRCiJuGFMhCCHEFvqaI0rWNbYWk5V39IT1bRukuehj15ZSZEEIId5MCWQghrkBlCKLQB4wlRVcdQS6xOdDnpACgMcn8YyGEuFlIgSyEEFeiD6TY24m+uIT0q8xBTs0rItxaOsVCGyArWAghxM1CCmQhhLgSfQBWb/ApsZGWV4zT6fzTKSm5xYSVZAHgHRRa3hkKIYRwE5c9VaIoigb4AGgKeAOvm83mlYqitACmADZgndlsHu+qmEII4TY+Adh0Tvxy7JTYHeQW2fDXay87JSW3iGBraYFsCInyRJZCCCHcwJUjyI8AWrPZfCfQA6h+8fhMoD9wF9BcUZTGLowphBDu4aXD4QPeRQ6AKy71lpxThMmaS4kX+AVHl3eGQggh3MSVBXJH4LyiKKuA2cAKRVH8AG+z2XzSbDY7gbXAvS6MKYQQbqPy0aAvKp1acaUCOSW3CKPNQp4e/E0ygiyEEDeLfzTFQlGUR4Hn/3A4DSgCugKtgfmUjhznljknD6j6T2IKIUR5U+m98LZZ0dqtV9xNLzm3iObWIvL0EG4I80CGQggh3OEfFchms3kuMLfsMUVRvgBWXhwp3qQoSk1Ki2NTmdNMQPY/zFUIIcqVl0EHWPG15V51ioV3iZUMvQrFO6D8ExRCCOEWrpxisQXoDKAoSkPgrNlszgVKFEWppiiKitJpGJtdGFMIIdxGayhd2ziA7CuuhZyaV4yuyFY6xcJblnkTQoibhSv3Rp0NzFAU5RdABQy/eHw4sBjQULqKxQ4XxhRCCLfx9vMF0ojUWP40gux0OknOKUJb5CBfr5ICWQghbiIuK5DNZnMxMPQKx38BWrgqjhBClBe9fyBwmgh1PuezCi97L7fIRnGJFV0RFBrUeKldOd4ghBDCk2SjECGEuApjUOmDd5HkcjbTctl7KblFmEoKUAE2k/YKPy2EEKKikgJZCCGuwj+sdG3jIGsWSTmFFNvsv72XnFNEeHHpJiEOk49H8hNCCOEeUiALIcRVBIbGYFODqTAHpxPOlZlmkZBeQExJCgAqP6OnUhRCCOEGUiALIcRV6I3h5OvBx5IPwNmM36dZnEjNp4o9EwCvoECP5CeEEMI9pEAWQoirMQRj0YOuoLQwPpNR8NtbJ1LzqabKA8A7NNwj6QkhhHAPKZCFEOJqjGEU651o84sx6DScKfOg3om0fMJsOThUYAqP81yOQgghXE4KZCGEuBp9EFYfJ975VmKCDL9NscgptJKWV4xvSS65BggOiPFwokIIIVxJCmQhhLgajRdOvRofi52YIMNvI8gnUkvnJGstBeQYINhXplgIIcTNRApkIYS4FoMGQyHEBnpzNtOCw+Hk5MUCWWUpIsdXRbBPsIeTFEII4UpSIAshxDV4mXxQA3VNdkpsDvaczeJEWj46LzWqghJyDRDkE+TpNIUQQriQ7I0qhBDXoDX5AgXU9y/ER6tm+d7z7D6ThRJuQlPgINegIkgvBbIQQtxMZARZCCGuQR9YusaxNesC99YO5/OdZzmWnMew5pXwKoEiXw3eGm8PZymEEMKVpEAWQohr8A0KBaAg+Sw9GlXC4YTakX50jFABYDfqPJmeEEIIN5ApFkIIcQ1+ETHYgMKURO6uGUrXBpEMuTMOR9I+AFT+Bs8mKIQQwuWkQBZCiGsIiKhKOlCSnozOS83U/k0AyN99GgCvQNlmWgghbjYyxUIIIa4hILQahTqwZWZedtyaeBoAbUSEB7ISQgjhTlIgCyHENWhNkeTrgZy8y44XJ57GpgZDdFXPJCaEEMJtpEAWQohr8Q0lz+jEK7PgssOWpPNkmiAoINZDiQkhhHAXKZCFEOJadAYK/cCQVXLZ4eK0bNL8IdgQ4qHEhBBCuIsUyEII8Rfs/hpMuQ6cVutvxxxZRaT7qWQXPSGEuAlJgSyEEH9BE2xA7YSipHMAOK1WVAV20vwh0jfSw9kJIYRwNZct86Yoij/wBWAEioEBZrM5WVGUFsAUwAasM5vN410VUwghyoMhPBTIJ+3UEWJiq2BNTEDlVJHprybcEO7p9IQQQriYK0eQBwMHzWZzK+BLYPTF4zOB/sBdQHNFURq7MKYQQrhdYOXSlSqyju8HwHriAACOYCMatcZjeQkhhHAPVxbIBwHTxdd+gFVRFD/A22w2nzSbzU5gLXCvC2MKIYTbhdVsgl0FBSePAGA9dQwAXYSMHgshxM3oH02xUBTlUeD5PxweCXRQFOUIEAS0orRQzi1zTh4gi4YKISqUyKgm7PIDzicBYD2bAIBfbA0PZiWEEMJd/lGBbDab5wJzyx5TFOVr4F2z2fyxoigNgGWUTqswlTnNBGT/w1yFEMIjDKG1yfKD4LTS21fh+XNk+0JUWC0PZyaEEMIdXDnFIgvIufg6FfAzm825QImiKNUURVEBHYHNLowphBDu5+VNgb8Kn8xiAApOp3AuWEUlv2gPJyaEEMIdXFkgjwUGKoryM7AcGHbx+HBgMbAT2Gs2m3e4MKYQQpQLW4AOQ56D4vh4SClmXzUVlY2VPZ2WEEIIN3DZMm9mszkJ6HyF478ALVwVRwghPKGgTjDqLUmcf+FZAPZUUzHaWMnDWQkhhHAH2ShECCGug2+d2hyNhuITpykwOciO8MXf29/TaQkhhHADKZCFEOI63HnbCFY1K71lHqnuRZXAaqhUKg9nJYQQwh1cNsVCCCFuZtVC6pBaP5QfziezsqGKQVW7eDolIYQQbiIjyEIIcR1UKhVta3RndjstmaHedK3a1dMpCSGEcBMpkIUQ4jq1i2kHQPu4DjL/WAghbmIyxUIIIa5Tg9AGPNvkWTrGdfR0KkIIIdxICmQhhLhOapWax+o/5uk0hBBCuJlMsRBCCCGEEKIMKZCFEEIIIYQoQwpkIYQQQgghypACWQghhBBCiDKkQBZCCCGEEKIMKZCFEEIIIYQo44Zc5u3w4cPpiqKc8XQe4l+JdUej0jduCm7pGyD94yYh9w5xNW67dwjxRyqn0+npHIQQQgghhLhhyBQLIYQQQgghypACWQghhBBCiDKkQBZCCCGEEKIMKZCFEEIIIYQoQwpkIYQQQgghypACWQghhBBCiDJuyHWQy1IURQ1MBxoCxcBjZrP5hGez8gxFUfYAuRf/mAB8DEwBbMA6s9k83lO5eYL0jctJ/7ic9I/fSd+4nPSNy0n/EOLPbvgCGegJ+JjN5paKorQAJgI9PJxTuVMUxQdQmc3mNmWO7QP6AKeAVYqiNDabzXs9lKInSN+4SPrHFUn/QPrGVUjfuEj6hxBXVhEK5LuANQBms/kXRVGaejgfT2kIGBRFWUfp39vrgLfZbD4JoCjKWuBe4Fa6iUnf+J30jz+T/lFK+safSd/4nfQPIa6gIsxB9gNyyvzZrihKRSjsXc0CvA90BIYD8y8euyQP8PdAXp4kfeN30j/+TPpHKekbfyZ943fSP4S4gopwQ8gFTGX+rDabzTZPJeNB8cAJs9nsBOIVRckBgsq8bwKyPZKZ50jf+J30jz+T/lFK+safSd/4nfQPIa6gIowgbwU6A1ycK3bQs+l4zFBK58mhKEoUYAAKFEWppiiKitJP/5s9mJ8nSN/4nfSPP5P+UUr6xp9J3/id9A8hrqAijCAvB9orirINUAFDPJyPp8wFFiiKsgVwUnpTcwCLAQ2lTxrv8GB+niB943fSP/5M+kcp6Rt/Jn3jd9I/hLgCldPp9HQOQgghhBBC3DAqwhQLIYQQQgghyo0UyEIIIYQQQpQhBbIQQgghhBBlSIEshBBCCCFEGVIgCyGEEEIIUYYUyEIIIYQQQpQhBbIQQgghhBBlSIEshBBCCCFEGVIgCyGEEEIIUYYUyEIIIYQQQpQhBbIQQgghhBBlSIEshBBCCCFEGVIgCyGEEEIIUYaXOxpVFCUM2A20B2zAAsAJHAJGms1mhzviCiGEEEII8W+5fARZURQt8DFQePHQB8CrZrO5FaACerg6phBCCCGEEK7ijhHk94GZwJiLf74N2HTx9WqgA7D8Wg00b97cWalSJTekJsrL4cOH081mc6ir25W+UfG5q2+A9I+bgdw7xNW4894hxB+5tEBWFGUwkGY2m9cqinKpQFaZzWbnxdd5gP9ftVOpUiW+/vprV6YmypmiKGfc0a70jYrPXX0DpH/cDOTeIa7GnfcOIf7I1SPIQwGnoij3Ao2ARUBYmfdNQLaLYwohhBBCCOEyLp2DbDabW5vN5rvNZnMbYB8wEFitKEqbi6d0Aja7MqYQQgghhBCu5JZVLP7gRWC2oig64CiwtBxiCiGEEEII8Y+4rUC+OIp8yd3uiiOEEEIIIYQryUYhQgghhBBClFEeUyxuOcdT8li4/TRZBVZa1Qihz23RaDXyWUQIIYQQoiKQAtnFfo5P48nFe3A6nQQYdKw6eIEF206zcGgzwv18PJ2eEEIIIYT4CzKs6UIZ+cWM/GwnARG/cOedK3ihdxZT+9cnMdPC/TO3cyGn8K8bEUIIIYQQHiUFsgu9u/YIjojp5BiWEp99mNe3v843F95g3tBGZBaUMGT+LvKKrJ5OUwghhBBCXIMUyC5yMi2fb04vQK0/y9t3vc2Gfht444432Jm8k/nHX2dq/4YcT83n6c/3Ync4/7pBIYQQQgjhEVIgu8js7dvRBm+gY0xXuoc1Q7XqBXp9+zJjizRsTdpKfP6XvNmjHhvNabyz+qin0xVCCCGEEFchBbILWO0OVicuQ63S8N9Gj8MnvWDfZxDTgr7GGnTOtzDt4Gzqef/IoJaxzN6cwJe7zno6bSGEEEIIcQWyioULrD6cgN2wi2bB7Qha/TKkH4cBS6FqG7DbefXMNvZsGsnYXe/yRd1nOFXjNl5ZfojKQQbuqBbi6fSFEEIIIUQZMoLsAvP3L0WlLuHZyo0hfg3cM5YSr6okjnyK+Nubca7z40xaYOKOLWoW//g/5sT8QJVgA8M/2c2J1DxPpy+EEEIIIcqQAvlfstodnLBswaSKoeHuxWCKJL+kLqd69MSyYwd+PboT8vRT+NdpSNdfocXnBhKmzOGriG/QadQMmreL1LwiT1+GEEIIIYS4SArkf2nD8VM4vc/Qxq8GnN1GSY2hnP/Pf9HFxlJ1xXdEvvYaoSNHUnnGdMJXf8PGZj7YTulJfWc13xTNJjO/iKELdlFQbPP0pQghhBBCCKRA/te+PLwWlcrJQ/ZcnF4Gzs/fjkqjIXrqVLSRkZedGxJTk9hxbzDqUQ25UUbylh3k22PvkZCYxlOf7cFmd3joKoQQnuZ0Ovnp7E+M3z6eafumkZib6OmUhBDiliUP6f1L+zK2otMFUe/4enKLb6fo6DGi3nsXXXSlK57ftWpX1jRaw8jQHXy2pyrWtSdZeuFthhQ+w+uBet7sUQ+VSlXOVyGE8CSbw8Z/fv4PP5z5AaPKC4vDytx9M3jM5svwRiNQN+oPXjpPpymEELcMGUH+F85kZlOsPcbtuso4C7JJ25SBT506+HXpctWfUalUjGsxDi+tjtfa+xM14i40efnM2zKRHau3MHdLQjlegRDiRjB592R+OPMDT1pU/HTqLC+dDqdqvh8ztBZe3vEGlqnN4ORPnk5TCCFuGS4dQVYURQvMA+IAb+At4AiwAHACh4CRZrP5pphL8PXhbajUVrrZ8shNDsWamknE2/9Dpb72545w33Bea/kaozaNYsGdjzI8wEDilNVM3j6NF3FSNbQP7WqFl9NVCCE8aVvSNhYeWUi/Yg2PpCTzlNcbtGrbmZHBBuYdmsdqPiMn38q0T3qhafY4qg5vgZe3p9MWQoibmqtHkAcAGWazuRVwHzAV+AB49eIxFdDDxTE95ufE7eBU0+rCfrJOBaKrVg3fu+68rp/tGNeRPjX6MOfQXDa37kbsqC5464p5f9t0Ppi+guMpsvybEDc7h9PB5N2TidIYeSkpgfHa5xk/cgiD76xC21rhfNJ3DCPqPc82o5oBQQ1g5yzsczpAtsxPFkIId3J1gbwEGHvxtQqwAbcBmy4eWw3c6+KYHnPaso9gZzjac/kUnc8n8OH+f2v+8JjmY2gQ0oD/bn2FhI4jiH2xM97aYv5v0xT+O3U1uUVWN2YvhPC0dWfWcTTzKMOTz/OT/XYGDR5OdKDhsnOevG0oTzR4gsP+2XQ1daIwOR7brHZwfreHshZCiJufSwtks9mcbzab8xRFMQFLgVcBldlsdl48JQ/wd2VMTzmRnobV6yx3qnzIOmFEbTDg3/3vDY57a7yZ1HYSRq2RZzc8h6XXeGKe7YiPs4Qxq/+PMXN/xu5w/nVDQogKacGhBcSqfOmUl8/RBi9Tr9Lvt0d7fj7FJ09SfCqBEXWG0b1ad86GHKaPaQDJBU7s8zrD4W88mL0QQty8XP6QnqIolYENwCdms/kzoOx8YxOQ7eqYnrDs8GZUKgcdcy+Qd96A6b770Bh9/3Y7YYYwJrWdRIolhec3vYD64Q+IfvxODJYiHl78Mh+sOOCG7IUQnnYk4wiHMw5zf0Yq62nB0K53A2DZs4czgwYT37wFp7p05VTnzsQ3uY1HPzjKizvDMDh+4Omwp9lnrQxLBuHYNs3DVyKEEDcflxbIiqKEA+uAl8xm87yLh/cqitLm4utOwGZXxvSUHRd2g1NNnf2JOEqc+Hfr+o/bahjakPF3jGdX8i7GbX8N/YjZRPWvT2BmHo0mP82ynWdcmLkQ4kawNH4pOpWGXnmZpNYZgp+PF6mTJnOm/8OUJCQQ/OijRE18n6j/vUPwY4+hMZpovimV/5tbzKPLZvOzqjurbU1Rr/svxWvGglO+bRJCCFdx9TrI/wUCgbGKolyai/ws8KGiKDrgKKVTLyq8swWHCSOIwtM5eAUHYmjW7F+1161aN5Lyk5i6bypRxiieHvM51oxOsPoc5nFPsGPapzSvFuKi7IUQnlRoK2TVqVW0sTg4ZatKx45dSfvgAzJmz8G/T28i/vtf1L5//kbKlpXFueVfYJo7jfu+/JycmBi+rdqSHr98SF5OCqa+00Ejy9sLIcS/5dI7qdlsfpbSgviP7nZlHE/LslgoUp/hvoIA8i/4EPRIN1Qazb9u9/EGj3Oh4AKzDswi3BBOv3dXYMtpg7LtDHteGE7w7PlUDzO54AqEEJ7087mfsdgs9MtO4Vj4cKru2sL52XMI6NePiPGvX/VhX6/AQOKGjsDe815mv/8I3dafo+ZGBxviGtG65Csyc9MJGrwYtPpyviIhhLi5VOiNQhIzLWw0p5KaV1SucVead6JS22h/LA0cKvw6dXJJuyqVildavEKrSq14e8fbrE/aSti0Nfg38KaJ+TBbn3qy3K9VCOF6a0+vJQAdDQptRNftRPKrY/GpU4eIV1+5rpVwqgXV4PH/fMZrTwWzprWR8LPp7F9bFe99m0md0RWKcsvhKoQnOJ1OMgtKOJ9dKA9xC+FGFfa7uKW7z/HymsXoQtcS6lWXTUM/KrfYm87sAiDaXIDDPwifBg1c1rZWreX9u99n2A/DGP3zaKbdM40Wc9Zif+Qemh34le+HP03vudPx89G6LKYoXza7g91nsjCn5OF0Qp0oPxpGB6DzqtCfV8V1slgt/HzuZ7rkFbBD3YQaa1eQa7EQ+/57qHTXv5101YCqzOg6l6HaoRys7cOo7zSc3hBKWOYxkoo7EDnye1SGIDdeiShPGQUWPlj9KZaEHcQWZBNmc5CqCsYRWodqTdpy7+318fWusP+lC3HDqZD/mg4n5TB2/Wz00V9jcGrJVG3kkwOreKTB1bd4diVz9kGCigxYk0oI6HrXX+6c93cZtAam3zOdIWuH8OyGZ5nXcR5153/PuYEdab57C98Ne4rec6ZhkJthheJ0Oll9KJk3Vx7hQs7l3wQEGrT0aFSJh5vHUCNcptHczDad20SxvZjueZmk6O8n94tlBA0ZgnfVqn+7rRqBNZjTYQ7D1iS3josAACAASURBVA1j1GAnEzffTvqWnRgzUzhXeA+hT3+PT2CkG65ClBe7w86Enz/i21PzKdI4IKz0eO0SO/1zsumSuQTtj+PZ90MNLsR0pUHnYVSKrOTZpIW4CVS4IavcIisjPv8On9DltCwsZOOZU8QVO5iybwJWh/s31nA4HGQ7TtApAZx2NaZu97sljr+3P7PazyLIJ4iR60eS6AXR87/DWN3Bbbt+ZuWjIyi22t0SW7ie0+nknTXHeHLxHgINOqb3qcOWtj5sDD/Fl8VbeDl+Bdo5U5k7fBz/98y7rPt8DZasHE+nLdzgp7M/EeDUUrvIQdy+02j8/QkZ/sQ/bk8JUpjXcR4WHxUj7klANewh8s76ULwyn7S325F1/oQLsxflqdBWyEPfPMKXZ+Zye3EBb3nVZV7z8bzQ5Hls4bUYGxpM99q38UXdBwj2cdApcRKBMxuzYcpQ4uOPeDp9ISq0CjUEWWS188IXG9D4TcTPaeP/ajyM/s76jFjzNC95qzmSFk/D8LpuzWHvhQTQ5NHiuB21txpD8+ZuixWiD2HGvTMYuHogw9YNY2GnhUTP+47zj3Wj/q9bWDvoMTotnI1WW6H+Gm9JH64/wcebTjGwUSCd9i/C94nt5FlKAAjwM9FY40UDiwWKi0vXelkHCeNVZEfG4NuyJdV7dcG36W1/a6dGceOx2q1sPb+V1gUW9mXXJXDPrwSPehGNn9+/ard6YHXm3zefx9Y9xqNRa5k58RWKx03GtiYfVVpHskZ9StX6LV10FaI8WO1Whq8dybHcg4xNz6b9PR8R2LgnALcVFtInJYb4g2s4HL+V7IIt7PSLJC9yMPbso9yetRLdJ9+w2b89wZ1fpU6d+h6+GiEqngpRWS2dO4Cs3GOcs9chzbSXXJ2TuQFd0VlbYo+9gxh9TSCTjQk73V4grzu5C5xOwhJs+Narjkrr3rnAVfyrMLP9TB5b+xiPrXuMOR3mUGn2tySN6E6NPb/ww6DH6LhoLhqvf7+KhnCPLcfTmbw+ngfD4uk4eR5+2Ta21VGxqb6GY9Hg522jn1cQj+jrofeJoIRg4hNVHNiTgvbIQWovX0Li11+QHxqJ6aGHqTmkP2q9rFJQEe1O3U2eNY8OBdloT8ai8fcn4MGHXNJ2Ff8qLOq0iMfWPsajWR8yee54Al+fTd4OM4YXB7Dnmddo0nWgS2IJ95u2dwZ70nfxRnoGd7WZRmDjnthzc0mf+THZX32FIz8fX7WaloGBWNR+WE5fwLE9CS8nJBKMU6shJnQXvvvuY0Pt1kT2G0+tGjU9fVlCVBgVYorFRj8vPgwq5uvQveQ7HXy8oxre49Zw/rnnOdnxPvxUrQi02zlwfqvbc9mdvI+qySpUhRqMbdu5PR5A3eC6zLh3BhmFGQxeM5hzeiNRM77Dr66NKnt28OMjQ7HbZLrFjSjHYuX5r/bRRrWJfgtmAZD9bDOGNC9khvoc/8vJplZxCdOs5+mUvY1vj8xDt2McDZLGMqDyfPoOBa8x3fmlQ3fO2bU4P3yfX+9sw8Z3plFskRVNKppNiZvQoqZBkgPjibMEDhr4j3bgvJpKxkp80vkTYkwxjDzwKkkTR2IY8giWRB1+r73JjjdH4HQ4/roh4VEH0w4y7/AceuTl0yjyfkKb9sKyaxcnO3Umc/58jHffTcyC+Sh7dlNz6xYabf6Fyj+t5f33bufZxzWsGVQLbbf7KHbGkvarHxGf7kX/5H1seukhEpOSPX15QlQIFaJA/r/AAXxuvoePd9dn+kJ/fH8+QeD9fan88Uw0gYEUL9tC/cISzuSb3Z5LYsEx2sRrACfGrg+7Pd4ljcIaMafDHAqsBQxYPYDDGjuR07/DVM9GzN6drB8wEKvVVm75iOszeX08vpm/MHLVCgoCvKn9UCh3pnyDV+XmmAYs557nTjJ92CE+7/I5seGNGRcSyKAmHTja+f+gUX80hRnUOTWNIUEz6d7jJJq+NSgyeRO+YCq77mrL169/SGZ2gacvs2JJPQo/vEb6+texZp4s19Cbzm2icaGd8+ZKqPR6gvr3d3mMEH0I8+6bR53gOry4ZTRH+jUmYu5sitV6/BZv4GC/uyhIT3F5XOEaDqeDcVteJ9jmYEiunioPvEvOqlWcGTIUjclE3NIlVJr4Pr4tWqD28fnt5yr7VWZelwUM6fwKX8Qk0a/Wela824WIJYsx9ulBQaqBsG/3UdSnNRtHPUF2Vp7nLlKICqBCFMjFZjPaH7YRtPEwvrffTtyXXxAxbhzGu+8m9OmnsCWlcMcJSHVmU2B1X7FQbCvBwhluO1WCT6QPXhHl+3R43ZC6LOq0CL2XnkGrB7EiL55KH6/BWB8q79vDzw8/IA/u3UCOp+SxZOuvjNv+OQ4vNXW6+hCUdwR6z4b+X0C1tuDlDUC9kHos7LSQN+54g7OFqTxw9GPG+GkxPzAPXoyHnjPQVLubmqaDtGqzn+h2Ofgbi6j9xQwOtWvPp/+dRFKaPNT3JxknIf3iQ2oFGbDqRY7OvZuBpz6n7bllPPp1LyxF5fN7O5t7lsS8RO5Ly8brbAkBvXqiCQhwSyw/nR+z2s+iUVgjXvr5JdYFnafWT1spblId7aEsEju14dzq5W6JLf6dladWciI3nhczM/Dr9B55m7eR9J+X0DdqSNxXX6Kve/VphGqVmodqPcSq3qvoXr07C44spM/RUfw6qAU1tv2C8cmB2J1awlf+TFKb5mx++lkKki6U49UJUXFUiAI5dORIlF07UfbtJfrDKejr//7Agenee/EKDaX6IT1OFRzJcN+Tu5tPH0RfYiUkxYFvw+pui3MtVfyr8FmXz2gU1ohXt77Ky4dnYZq5Ap+GPkQdOMKvD9yHpajEI7mJy72/zszIY7MJz3IQ2CuE4KIT8OCn0KDfFc9Xq9T0qtGLFb1WMKTeEH448wN9V/Tl4Z9fYIlBS2bX92D0CVRD12Dq0p96nTKpfHcGUYZMbvt6Fgkd2rNo9LucS84s5yu9gX0/GqbeBlMawQe1+enw5zwSEcleTTBh2dXY7+Vg+JI+5ZLKlvNbAGh8QI3a7iDwkUfcGs9X68vMe2fSOro1b+14iynxs2mw+DtKnnsUld1B3gtjOPrC4zht8s3TjaLEXsIHuyZRq8hKTW1j/Iw1Of/iKHxq16byzJnX/TBniD6E8XeM59POnxLpG8m4beN4aP1gzvZpTc0t+/F9pjf6ECshP6zlzD3t+PXRJyg8IqteCFFWhSiQL7nSesMqrZaA+/vil2jDt9DJ/uQDbou/+ew+6p51onKq8G1dPvOPryTIJ4iP23/MyEYjWXt6LX1+eoKk/72P1+3hBB05x4n77yAnTUYFPOlwUg4FmxfS5lgGie2iqGHbB10/gOr3/uXP+un8eP6251l//3r+c/t/KLAW8Mb2N2j7VVsGrR3KnNzDHGkxFOeLRzE+PYNqwxQq351BJd8Mbl8xn9SO7Vjy1Kskn0sthyu9sY0La8WoKm352i+CEZUb8Gx4MKq8MMaWDOOrLlPonh/AXkcKh5KOuj2XrUlbiS5WUXLcF32rVnhXqeL2mD5ePkxuO5kHlAeYf2g+T61/irghw/Ce/xnEauH7zRy9pwUFRw+6PRfx11acXEFGcTrPZ2cR1uFVzj39DGqDgehp09AYjX+7vYahDfm086e82/pd8q35DP9xOI/+OIy0Pr2J++4XjCNbElijAOOOTZzu3YdD9z9E3saNMk9dCCpYgXw1httvB6BWkoMT59xXIB9KP0zDBFBpHOjb9XZbnOvhpfZieMPhLO68GF+tL8M3PceUQXXIal0D7fEC0ge0IfXwZo/mWN6cTieHzufw/lozQ+bv5KWlBzh6wTNb7k5fuZcRe37ifISWdqH7oU4PaPz3Rgz9vf15pM4jLO+xnK+6fsWw+sOw2CxM2TOFB1Y+QOuvOzAuZz8HOr+B74SdxL35KNFdISQoh3o/LiOtU1tWD3+a84m3bqF8KDOTNc7TvKY+z4H8dIatq8zC+RnU//A9UrveR19zHABfbJ/t1jyK7cXsvLCTBw8WoCqCkEcGuDVeWV5qL15p/gqvNn+V7Re203dFXy6ElhC7fAdZHeqgycrjbN/7SXh3HE6nbF3sKXaHnVn7ZqEUWwn0bYVl8SpKzp6l0gcT0YaH/eN2VSoVnap04rue3zGm2RhO555m8JrBPPPL6zD4DcJmrcY0JI6whjl4ndzDueEjiO/ajZyVq3DaZcqeuHVViGXe/orPxTlZDZIcHMg+5bY45y0naHLaiaGSFnVAhNvi/B11Q+qytNtSPj36KbMPzGbTnfkM04XQ/sd0ckcOpvjZYVTu8R9w8W5/N4r0lCR2zHiKQoc/yYVOCp2ZWEzZ6IOdnMr15aEFzZj14DM0qxJSbjmdSssnZvUHBOQ7sPcORKfOgS4fwD9cw1ilUlE7uDa1g2vzVOOnSC9MZ3vSdrYnbWfN6TUsP7GcKv5V6Fa1G/eNXUtMximylk8lb/UevDb+SM7WHznRRMH4xGiatLzjllpL+aNdFnK26bH46jFcSEXFGfy6dsG/WzdyVqwg97sVdPJ3sCduh1vz2Je6jyJ7EY0OqLCGBON7111ujfdHKpWKB2o9QN2QuozZPIbHf3icDrEdeO7tyZz7cTNBU96gaN4Sjq7/kWozF+FdxTNTyG5lGxI3kFSYxMTsbAIrdyJr6vsEP/44vs2auaR9nUZH/9r96VWjF58f+5yP939Mj2960L9Wfx4b+QXe3Q/g++1Y/A6ZST5ygqRRo0j56CPCRz6JX+fOqLxuinJBiOt2U/R4jZ8f2thYql9IYKPVPfMvrQ4ruryzhGY68W3597eEdSedRsfQekO5v+b9LIlfwnK/5ZzQZfL4ah0p781n/9Fv6fjYPLRhtT2dqsvFb/+Oql+Ufj1e9tGVhAj4+q4M7DXO85+1h/l64CcEGQzlktOS5Rvpcuw4e5oaGVByELpMBF/XFegh+hC6VetGt2rdeMX6CmtPr+XbE9/y4d4P+XDvh9QOqs1dbVtzW8+hVPp5I9bPVhO2w4x6z1CO1fImv31HqnYeRnD0zb8masD9fVF5e2PKzMS7W3cCevZEFxcHgKFpU4oOHKTfujOsHZHD0dQkaodFuSWPHRd2EJPqRJeiRffkwy7fnv561Qupx5JuS5h/eD7zDs7jp7M/0bVaV+6dPRvthDcJ2nmGU926oXvkAaqOGotKc+usr+50OjmWnM2a+L0EGXzpVb8xfj66cou/4OACIq12Iu0NyZu+EO9atQh9aqTL4+i99AytN5QuVbowdd9UFh1ZxNLjS3mo1kP0H7EE26l96Fa9RvDxU6QcspP0n5e4MGkS4cNH4N+zB2pvb5fnJMSN6KYokAH09eoRuekMmbhnFYvdSceofa50K2tDy/Id/bleJp2JofWGMqTuEI60OsKm2jO4fdp6Ir/M5r8ZvTE1rUKnFi/QJLYtGvXN8R9fi+6Ps8NbS1rCYVROJ/4+wVQq1qOsWM+Ly89ysLONN+vF8+x3L/PJgx+6PZ8ci5WoJZMo1kH1RkWofOvBbUPcFs9X60vvGr3pXaM3SflJrDu9jvVn1zPv0DxmO+2o1CqqjqxGs3QjTb+Lp/LBPAzHVnB6zVJ21wvFu25HGrfoi1/l+jfltwy+LVvi2/LKO8ip9XpCnhxByX9eokoyfLF3FeM7DnNLHjsu/EK/3TacajWxjzzolhjXy8fLhxENR9CnRh9mHZjFdye/45sT3xDWKYy6t9fl/mVHCJn/JQdXrSLijXcJa9PWo/m6S975o8R/8yK5Wj+O2fLY40xhv76Ywou3xvcPBDC93SxaVXH/wEJ8Vjz7M/bzQl4uPudisGVsI3rGDFQ69xXo4b7hvHnnmwysM5AZ+2cw9+BcFhxawF3Rd9Guz3+onuNAtWk+0Ud+JetoCcmvvcaF994h+OEBBPUf8K+mfQhREZRLgawoihqYDjQEioHHzGbzCVfG8KlXD+OqVVBoo8Regk7j2hvLptN7qZ3oBC8HPnd0cWnbrqZSqagbUpe6w6aS3z6B3U88ytBVF9h/NIExyc/hCDXQs9aD9KvdnwjfG2OqyD+lVqtp2enRPx23D3yCswMH0WDdCfoHFfBl5AbO5Z4n2q+SW/NZ89lKmiYmsfYeI8/mx0OPZVBOH0aijFEMrjeYwfUGU2At4EDaAfan7edg+kF+tp9kSV8rUSkauv/i4I6jPlQ6kse+astY8usyEqo6UXl7Y9QZCTSGEx5YnZhghSjfKGL8Yojzi8OgLZ8R+PJkbN0a1GqaHXdwKmob4PoCOb8kn+MXDvHSEciqVQOvwECXx/gnwgxhvNriVZ5t8izrz65n87nNHFQd5MkBXtxx1MnAn/LRDn+Sg3FGjMMepXGPoei8ym9E1d02rPuGqFkJ5AaDOlBFIx10dGoJ16spCE7njdoOnv5pOF91/4Kaoe5d0vPzI5+hczhpmBiObf0WgoYMQV/PvbvCXlIjsAYftPmAs7lnWRK/hO9Pfc/GxI0AVKtWjar170d7LpH6R45Rc38ufDyLjFmzKWlUl5gHH8H/7rvdtlyhEJ5UXiPIPQEfs9ncUlGUFsBEoIcrA+jr1wOg6gUnKZYUKpsqu7J5DqYdZUCiE0OoA1VELZe27U7GuCq0XrWO/R/NptbcGUyZbeVAg2ym58xl/uGF3Bt7D/1qPUTT8KY31dxUjdFI9EcfcuK+TnQ+GMPSiFTe2vg2M7tPd1tMh8OB4dMpZJigXrUcVEGtoPo9bot3Lb5aX1pGtaRl1O+jp3aHnZySHCzDLWSePU7+sm+ps2ozTVZYsKvhXFQJiZVTORaTxs/RR0jTXX57CPUJplpgDeL84og2RaMEKVT1r0qoPrTC9h1NQACGxg1pEb+HnS1OuyXGntQ9NDXb0ZaocN7vvm8T/imTzkTP6j3pWb0nAOmF6RxIO8D6FsswrN7EHbvz8XtlClsmTuFEs0hC+zzInbf1JMxQsUcQO/Z5kt2nzhF1+CQ1Mixoim2oHA7sOTmEYGT2r8UMezCD0T++z7cPTXRbHharhZUnV9A5rwDdgRC8woyEjHT91Iq/EuMXw4tNX+SF214gPiuerUlb2Zm8kwNZR0nzSuP7+lqoryU808m9+x20OnSYlJde5gKQEqkjq2Y4qob1CGjYhEq1mhJhjMRP51dh7w1ClFeBfBewBsBsNv+iKEpTVwfwrlVatMakQXLeeZcXyOnpx6mcBoZWYeU2IugqKi8vGj0/grwHerPt1bdpsO1HZh5ycLJ+AVPvWsuaMz9QxRRLz5q96RTXiUhj+W6A4i7aSpUI6N2b7GXL6F+3gE9VW8grycOkM7kl3t4l31M9OYXP7/PhtdxT0PeTf/xgnjto1BqCfIII8gkium401G2L81UHhXv2kLdhI+qNPxO7/Th3bQe7Wk1hkAZnVDGFlfI5EQkJhnyO56Wx0msH+arfVzvw1fgQY6pMsG84wT7BhBpCCTeEE6oPpUl4EwJ9bowR06sx3tuByP/thbxM7A4nGrVr/852XNhB2wNO7L4qGvTo5NK23SFEH0K7mHa0i2kHPZ38uuVrjnz+AaFH02m15gKONZPYXHkSJxsF49OxAw2Vu6kbUpcQffk9COsK3n7+3PHmtD8dd1gsZC/7mtR3JvDO51ZG9V/PuexMogOC3JLH2tNrKXKW0GmvF5pzKYS9/75Ltx//u1QqFUqQghKkMLTeUKD0w3W+NR+L1UJmcSbnU46zY98qHEf3EXoml7ALxVTfmohuUyKwmnwdfF9JxZnKWrKqhpJfJQxdWDgmnQmTzkSkbySVjJWINkUTbYpG76X32PUKcTXlVSD7AWW3q7IriuJlNptdtkK9xmjEptcRlmPlXPoxbo9q4aqmAYg8cwY1YGjcwKXtlidTVDgd531Iwt4j7HvzPZS9vzDpoIPMBhYW3HGSSXmTmLR7EvWC63FHpTtoVakVDUIboFZV3LmpIY8PI3vZMpoeDmdBdAHrE36gp+L6JfqcTie5MyeRGwA14yxogttBTHOXx3E1lVqNoWlTDE2bEj56FLasLCy7dpHxyy5KduzC+2A8pgNGQlBRz6THHqDBN9CGISSfzIBcTgZqOOOt5UxeFhk6H457acnAjo3SArp9zL180HaSh6/y2ox3tyb1f/8j5ryNwxdSaVAp3KXtJxzdSpczDpIaV6OeoYI94KRS0bRVH5q26kNiUjJHv5qCYfv3xJ4tos6KDOwrP+dw7BesrKEioZY/+riqhPqGEW2M5v/Ze/fopuqs//99Tu7Xpm2SJi1tml6SFioUUBAEAUdRBootZQHDI+Bl1nzBnw92wD4Lvo4gD2hRrIIiD6Azig4q0lpBxQcHhxEGKchFgdqm0KYtvaa3JE1zP+f8/gjtF6ilBQKF9LzWYpmefM7+7Bzbk/fZn/3ZOz4sHnGyOOjkOihFyrsmkkiKxYhY8AS4SgXoZS9g9hEv/lv7N2yf+cItmW93yU6kdPgg/0UM0ag0yKf//pbMczNwSA7CBGEIE4RBK9ViWOQwTB0aWHFwe30oOXMC9WcOgv/rQQhbLoJn9cLQxMUIMw3iUB2AOnSICVRHc1CuBf6pplGtItCsABiCgJwvR7Q0GkOkQxAjjYFKrMLv4n6HIbIhA/vBWQY1t0sg2wFcHrYjgymOu6CUkVC3N6LKUh5Uuy3OFiTVd4ImGIjG993o4U5HP3Io9F98gJ8Pn0LV62/CeOok/nyWhMBox4/pDL6jy/B+awm2n9mOCGEExkWPw1jNWIyKGoVYWexdJZh5MTGQjB2LSNOviPL5sffsp7dEILd+fxCahnq8N42LtbaLQPbHQZ/jdsAND4d86lTIp06FHgBlt8N1+jSsJ0/Df/os6MoK8C82wQ8O5AjHPQQJnUQCr4QHkcSHCHknlJI2eML8aFcwEHMHpg719cCPjwfNJxHfxOBQ1bmgCmQP5YH6yAUQIGCZMrC102+W2GgNYnPy4PvPV3DkzHmc3/d3aE/8E6l1LRj+DxL4Rzus8pM4l8zDcT2D3TEMHOKAKBZyhIiWRkMn1yFJkQRDhAHDIocFfaUvmMinzYDi07cx7WQNckbuBRB8gWy2mXHWZsJbh33gOAlErVx51zxIdCHk8zD63nHAveMA/F+0d3px6nwNGs6fBFl9AuqqX6BtqYfW2olICwdpF7gAAp+R4gLWCB6aI32oUzeiUt2Ig+H/Qp3Ch1p7A14ct2JAPxvL4OZ2CeQjADIAfH4pB/mWtG0itDHQljfghK06qHZ/qi9FQgNAh1MgE357R/zdSPrEUUif+Hec+ecx1Ly9GfpzJ3BvCYFxcX6EJzbheDwXh6IkOFp9EN9UfgMAEHPFGKYchhGqERiuHI5hymF3fC6ibOpUdB45gsdrvPgb1xT0NAuGYWB+ayNcckCV4IdEPhGIDU7t0oGGI5dDOmkSpJMmoSuWQ3V0wFNejs6KSrSaKiCsrAK/vg68JguoShpNCGzYIQCUj+cg/j8GzP1+QZAkOLGR0Dc143/rTgMIXt74r62/YmwpBZeaRvSDd/bm3v7C45CYPNIIjFwLH7UGp6vbce4fRZAX78OQ6guY+LMXE04GBJA7goMWXTgaEpWo1stw2l+FQ7WHQDEUOAQH+2btQ7T01pTWCwaqnFy0P/GfyDzWgiNVpXggPrgVLb65sAdKKw3tWT7kM2d276W5mwmX8PG79CQgPQnAXACA1elFhcWOpouV8FT/DEn5CYTVXYCstRXR1k5oalxIKeXgd5eEM0MADZNKgdD5umW5C7ldArkIwCNGo/FHBL43b8lOFV58EiJP/ARLZ1NQ7f5UW4JHGxmIYglAfufezG+U4Q+NxfCHxqL6lzL8/O7foC3+HlR1JGIkAjyr68BLagvqo4GS2BT8KovDGbcVH577EH7GDw7Bwe6M3UgOTx7oj9Ersod/h8Y1a2Asj4A/0Y3iuh/xiP7RoNl3nTwJacV5fDaVxHP2RmD61qDZvhPhyGQQjx4N8ejRUF31HtXRAW91DbzVVfBWVyNu5MgB8fF6kRuN0B1oRrM1uJ04S385iJEWoGFk2G1tVnO74HFIjEmIxJj/80fg//wRLQ4Pjp6rgufAJ1Cd+zfUjfXQlVgw5HQL7gOQTQIupQwNQ1SoS0mCjBs50B/hmvBGPgxuKh8PnvPhwxPfBFUgMwyDr0yFePYHP0DyoM55Pmi27zQUYj5GxyuBeCUwcQyAP/2/NxkGsNag0/wzOn8uhu9COai6Jox68O5/WGC5u7ktAtlkMtEAFt/qeWRJSXDQBKh2W9+Dr4N681nIXYA8PjQ2r/WGbkQKdNtfR4fNgX//9XM4v/sOSWUlcP6qBE0SSFO2Ynx4FcQqL2CMRUXSSDRGxCFOemfniXEjIyEePRpK83mIaBo/VXwbVIFc//7f0CEkYDcCev4IQP9g0GzfbXBkMojSht22ElXBQjxiFET7/g1he1VQ7Xr+8Q8AwMXkMXhIEDJl53tFKRUg434jcP8aAIDLS8FcXQ3n0SLwf/4XxFVVEDW1QfKzHYmnKuGclg3ZfXfw3wtBIO73D6GqZD/4R/4XmB28NItzLedANLRj2K8E+PPmghcdesGXfkEQQLgOknAdJKOCWtyKheWmCKk7tiIhHg4AIqsnqHYFF0wAAOk99wTV7p2KLEyKacueBpY9jcqLLTix5wAcxccQbi5D4vmL4Jko4N+dkMj/jRFqN6zrJiEq/c5uJiB5cCKcP/2Ese1+HOOdDJpdb00NvD/8C9+NA+Z0tgJTXr2jKlew9A/BqAcAvA11sx1+igaXc/N59gzDIOrkRbSqaDiH3v17F24EEZ+DockJQPJyYOHywEG/F0zzBVBtzeAOnTiwDvYD4UPZcGz/Fvedq0ezww6VVB4Uu9+aCpD9Iw2ay0H8888FxSYLC0vwCCmBLIgLbPiQ2igwDBO0zQ6aBgtogoFw5ANBPv3FIwAAIABJREFUsXc3kRCrRMJz84Dn5oGiGVTWt+HCoZ/gPn0aYtMZyFsaEM+58yMfkvvuQzOA0WYufoiwwuaxIUwQdtN22z/bBZoAjqST+C9ogJQZN+8sy21HYDCCJgBNqxcNNhdiI26+zFZT/Xno6yjUjKYQbRwVBC9DBC4fhHYouHfJghwROwZI9GPYKRLfHPoGT/7+Dzdtk2EY/HLyW/zfX2k0T37kjmkew8LC8v8IKYHM02pBE4DSysDhcwRlI5bVbYWu0Q93OA1SN7i/5DgkgeQhkUie/xgw/7GBdue6EA4bBkIsQtRFLph7Xfi56RQmxd1c1Jvx+dD+5Zc4mQhMggP8+1+862pkswQgBQI4I7kYYqFgslgQG6G/aZtV//oGYQBaVZGYEBd6+ceDBq4AutHJaD1VjbZ//wMIgkA2tZsw9qgDDEkgflluEJxkYWEJNndPva5+QPB4cEm5UNuAdldbUGya2syIb2KASBqISAyKTZbbD8HjQZw+EpEWEjyGwYmqf9y0Tcfhf4Npa8PBEQRmuBlgxM1/cbIMHIxKAk07g9Lm4FTBcf74bzj5QKNiOGIj2EYIdzOq+38Pu4SBsvTXoNj74dSnmFjCoDFRg/jkuKDYZGFhCS4hJZABwKUQQ21l0N5RGxR7JRfOIrwT4KtkACekAu6DDvGY+yBrs2GU1YuSpp9v2p6tqAh2MQfWIRSGps0FBNIgeMkyUIi1SqhtgLnFHBx7v1TAPIQBNKPvutq2LFdC6B5AawyN5Bo7KIq6aXuOPfsg9AENjy0KgncsLCy3gpATyH65HOEOoN1eExR7zaWBsk9hsQlBsccycIjvDXQ4H1FDoNzZAIZh+jijd2inEx2HfsCRVBpT3U6QY/7U90ksdzRhsTrwKMBbd/Nl2n0NDQhr8cAeTUEWPzoI3rEMKJo0cDU+KDoZ/Hz0XzdlqqmzCSNPONCiIWCcNjM4/rGwsASdkBPIjCISik6g2RqcCDJjDnTlU6TdvS2mWQIIU1PBEASiGoWwwY8WV8sN23IcOQJ4vDhuIHA/Xw8ok4LoKctAoEhIAQDwLTcfQW4/egQA4IkikaBjl9DvergCqPWBqt/nv9t7U6Z+PvARtO1AZUIsRsUpguEdCwvLLSDkBDJXGQO+H2i1XAyKPWlDE/wcBrJh9wbFHsvAQUok4MfHQ2HhAwDOt954PqHj+3/CKSThi/IjdfSTQfKQZSARJAfKOErbmm/aVtOpI/BwAadYiaHRwSkLxjKwpKaOQXMYQJbc3AqD46uv4OMAraNnB6WcIAsLy60h5P46uVGBaI2zqTEo9iJbOuFQMCDUxqDYYxlYREOHIqI9kENYXnv0hmwwfj86/nUQJxIZTHR7IRoxK5gusgwQPMNwMGAg7+iEx39zeaaeknOoigLcSIZGLgyShywDiSD2PjSraWhrb/wBivL7EP1zM+p0DGLuHZy1sVlY7hZCTiDzYgLlmfxtN1/Fwu61Q9NKwR9GA+G6m7bHMvAIhw6FpNOFeLsf55tvrK2w68xZ0FYbTiQTSOCnAsKbr6fMMvAQ0gh0yoDwDi+abDfebIihKAgqGlAdBZCyUewGvVAheiTcKgpKmx/+9vYbMnH+h71QOICGOBnGJqqD7CALC0swCTmBLBkSiCAzNsdN26q2XIDaCiCcB3B4N22PZeARDhsKABhTR6G848Y2cjqPFYMhgJpYGolJs4PpHssA4w0jEWmjUX8T9w9vVRW4Xgp2FQ3hkPQgescyoKhTIYgIrCzU/3Rjq0+N3+yCnwSqtGOhixQH0zsWFpYgE3J1y+RDNOgAwOlw37Styl9OwACAr468aVssdwbClMBGLH0jD1+m2OGn/eCS1/dn0HnsGC6qCNwDD+Lvz7wVbrIMEEy4AOpKNyrbG3A/bizC5y4pAQD4IxjExt18wxGWOwQODzJtJIBOVP74A+Km/v66TfBOlqNiCMDV/55dWQgSJ0+eVHO53PcBpCEEg34stxQawDm/3//H0aNHW65+M+QEcrgmElYS4Dv8N22r1VQGAJDHsQ1CQgWOQgEqSovIpjZ4CQr1jnrEyftfZYD2etF56jTOjgDivFGQyCNuobcstxuOMgyKs2782HIRwIgbstF57iw8XMAvEyKV3aAXUuijDKiJOA3q0kPQ9eBraEBEkwelDzAwGIfdAu8GJ1wu932NRpOqUqnaSZK88dqdLIMOmqaJ5ubmoY2Nje8D6FFzMeSetsR8LpxiAsJO+qZt0bWVAACFYeRN22K5cxAkJUHWHvjVr7JcXx6y+5dfQHi9KIkjoAqbfAu8YxlIpDFRAABH9fkbttFx7hdUqwHCH4FEFds8JpRIGJKOag2gqLr+MqL1B74GALRoFLgvgV2VDCJpKpXKzopjluuFJElGpVLZEFh96Pn+bfbnlkMQBFwiDqROwEf5bsoW32KBU8BAYWDzCEMJeYoBYXYPSJqBufHkdZ3befw4GAB2LQXtsOxb4yDLgCGPDqwmEI0VN2zDX2nGRRUBLoZAyOMEyzWWOwCuZhgcShryDg/8ra3XdW7z99+gRQ40i4dCHym5RR4OSkhWHLPcKJd+d35TC4ecQAYAt5gPRSeDdvfNVbKQtHeiQw6IVGwXvVBCkJwELk0juYVCVVv5dZ3rPHUKtSoCOoZESgq7TBpqhMcmAwD4bQ03dD5ltYK0OlAfSUAkTgmmayx3AqoUkBGB9D13WVm/T2NoGtyzFSiNA/gRD4Ek2fxjFpY7naAJZKPRGGY0Gr8yGo0/GI3Go0ajcdyl4/cbjcZjRqPxiNFoXB2s+a6FRyKCwgG0O27sS64LhdUHj4wGZNogecZyJyBIDHS9G95Eo8pR1+/zGJqG88wvMMUAUk8MouSCW+UiywAh1QVErch+Yw/XHnOgC59VQUOiZLtvhhzh8ZCFBSpZtJ/9pd+neS5cgKDTD7uWhjph1K3yjmUAKS4ulsyePbu7YcLp06dFM2fOTMnKyjIuXbo0nqICvzfbtm1TzZgxIzUjIyN19+7d4QDgcDjIRYsWJWZnZxvnzp1rqK2t7VE2y2q1chYuXJiUnZ1tfPzxx1N+/PFHCQCcP39eMHfuXEN2drZx3rx5yS0tLRwAWL9+vTYjIyM1MzMz5dixY2IAaGpq4nbNk5mZmXLhwoXuLzGLxcKdMmVKmsvlIgCgtbWV88QTTyRlZWUZFy1alNjU1NTrnrXNmzerX3755Zirj5vNZv7MmTOviBS89957qry8vOjebH300UeRX331VRgAbN26VdXfOXft2hWRkZGRkpmZmbJ8+fK4ruvd9bkfeOCB4aWlpddVlD6YEeRlAL43mUyTADwJ4N1Lx7cCmA9gAoCxRqPxlif0emUyhDmBDuuNlfECAukZEXYGPhkH4ITcXsZBjSAxsCIQ18xFlc/a7/O81dVARyfORxMQi8axu9BDEDIyBk4hA2lH5w2d760MCGQijII8hm0uFHKQHERII9EiA5p+7n96VsexYwAAu0qMETo2/zjUeOutt6JWrVql83q93V8Kb7/9dvTixYsbioqKTD6fj9i3b19Yc3Mzt6CgQP3FF1+U7dy507Rx48ZYmqbx4YcfKlNTU52FhYWm6dOnt7777ruaq+fYsmVL1JgxY+yFhYWm1157zbxu3bo4AHjxxRd1OTk5dYWFhaY5c+Y0l5eXC0+ePCk+deqUbM+ePaWbNm2qXLt2rQ4A1q1bN2TGjBlthYWFpueff77OZDIJAWD//v3yRYsWGdrb27uF+caNG7Xp6emOoqIi04IFCyx5eXk9BLDT6SSWLFmiLygoCFpR74ULF7ZmZGTYAOCDDz7oIaR/a06n00ls2bIl+rPPPiv/8ssvyxwOB2ffvn1hAOD1eokVK1bo+Hz+dW9MC6byewtAV3V9LgC30WiUAxCYTKYKADAajfsBPAzgdBDn7YFfHgGSqUJngxm4we+o5voLEPoAWsZGCUMNUiyGR6WBsqUNLaDg8Dog5fe9mcp9JrChr01NI0U37Va7yTIQSJRwSABZpwc0zVz3UrjXXAk/ByBEHOii2AonocgQeQJ+VZcg+Xz/N3I2HzmAVjnQwYvBiCGKW+jd4GbHj1WRX5yqVQbT5qxRQ1oWjY+/ZsK5TqfzbN68ueKFF17orutoNBqdVquVQ9M0nE4nh8fjMSqVyr9v374SHo+HqqoqPo/Ho0mSxHPPPWfx+wOpO/X19XyZTNajleeSJUuaBAIBDQB+v5/g8/mM0+kk2tvbeQcOHFDk5+cPSU1N7Vy9enXt9u3b1WPHjrWTJAmdTuelKIqwWCzcs2fPSg0Gg2vu3LkGrVbrWbdu3UUAIEkSH3/8sSkrK2to13xms1m4bNmyOgAYP36849VXX+1R7sntdpNZWVmt48aNs1dWVl5XdNZsNvNzcnIS1Gq1t66uTjB06NDON954oyYvLy9aqVT6rFYrx+FwcHJzc+M2bNjQHe38rTkFAgGza9euMolEQgMARVGEQCBgAGD16tVD5s2b1/zee+9ddyrADUWQjUbjM0aj8dzl/wAkm0wml9Fo1AD4O4CVAOQA7Jed2gHglrcdYxSBBwtXY/+Xz6+mqSJQxocMZ29moQih00PRGhA/Va39yyV0/XIGbj4glpBI0rP1bUMSgRxuKYOwTj/anN7rPt1dUYH6CIBPS5CgZDdihSKJ2hGojgKkDS2gPX13XGQYBv5TZ/BrLAGGHIFIKRt0CTVmzZpl5fF4V2wU1Ov1nvz8/LiHH354WFtbG3fSpEkdAMDj8bB161bV/PnzUx977LFu4c3lcjFnzhxDYWGhetq0aT1aNYaHh1NisZhpaGjg5ubmJuTk5NS2tbVxa2pqhBMmTLB//vnnJrvdztm5c2ekw+HgXC6yxWIxZbPZOBaLhS+Xy/27du0q12g03k2bNmkA4JFHHrErlcorRLnBYHB99913CgD4+uuvFR6Pp4dejIiIoKZOnWq/+nhfEATBAEBdXZ0wPz+/au/evaXFxcVhDQ0N3UHb3NzcRqlUSl0ujnubk8PhQKPR+AHgf/7nf9Qul4vz8MMP2z/66KPI8PBw/6OPPnrdPgI3GEE2mUx/BfDXq48bjcZ7AHwG4AWTyfTDpQiy7LIhMgD9X9O+QbiRgZUAV0vzDduwlP+KOAB8dY9VBZYQQGI0gDxVDJImYa4/hjTtvX2e0/HzSVzQEhB4onDPELa9dEhCEPBJSUS20Gju8EB5nWLGVXEBdZEESH8YohWiW+Qky0ASFj0UHZE0SJqA58IFiIZde7Ou11wFnt2NqiGAUDPxNnk5OFk0Pr61r2jv7SI/Pz92x44dZWlpae5t27apVq1aFdsl9hYvXtz81FNPtSxYsCD54MGDjilTpnQAwOeff15eWloqXLx4cdL7779/fuXKlfEAMGPGjNYnn3yy5cyZM6Lly5cnLFu27OLkyZMdTqeTEIlEdNf5U6ZMsR05ckSu1+vdnZ2d3YLW6XRyFAoFJZPJqOnTp1sBYOrUqdY333yzV4GTk5PT8OKLL8ZlZ2cbH3jgAZtKpfIdPnxYumnTphgAeOqppxqnT59uu9Y1EIlEtM/nu0JYO51OsisSrtVq3XK5nAaAiIgIn9vtvuG0X4qi8PLLLw+pqakRbt++vYIkSezZs0cJALNnz5ZXVFSI/uu//ku/ffv281qttl+NMoK5SW8ogN0A5ptMpm8BwGQy2QF4jUZjotFoJAA8CuBwsObsDaE6HgDgbu/xENZvOisD1Q0UuqF9jGS5GwkfagCXZqBtZ2BuPtfneNrrhc90Hhe0gM8/FBr5da0msdxFMFIu5J1AY9v1BR1orxdUbT3qIwAhGQUOW6kgNFEmA+GB71dPaWmfw50nTwAAvFFAbFzSLXWN5c5BKpX65XI5BQBRUVG+jo4OTllZmeDpp59OpGkaPB6P4fP5NEEQTH5+vmbnzp0Rl86jSJJEcnKyp6CgwFRQUGB68sknW0pKSoQ5OTkJGzZsqJw2bZodAMRiMRMTE+M+dOiQFACOHz8uS0pKco0ZM8Zx9OjRMIqiUF1dzadpGiqVyp+Wltaxf//+MAA4evSoLCEhodeWw4cPH5bNmzevubCw0BQfH+8ePny4Y+LEiY4un/oSxwCgVqv9LpeLLCkpEQKA3+9HcXGxPD093Qmgz308DNP/6n0vvPCCzuPxkH/7298udKVaFBYWmgoLC00FBQWmxMRE1+uvv27urzgGgpuDnAdACGCT0WgEAJvJZHocwGIAOwFwAHxnMpmOBXHO30SojQcAULYbiqoDAJiGenSIAOUQtpRXKCJODnxRjWikUDWkqs/xHlM5CIpGlYYEN/xhdoNeCMNRiECiA43V54FhQ/p9nq+2FgRNoz6SxBBR/K1zkGVgiUiAQuKHi8+Dq+RXKGZfe3jHiZ9gEwOMUIa0GHblabCwZs2a6qVLlyZyOByGx+PReXl51Xq93mswGJyZmZkpBEFg3LhxtsmTJztSUlLcy5Yt0xcVFalomsbatWvNV9t7/fXXY3w+H9m1OU8ikfh37NhR8corr1StWbMm7o033iC0Wq1n9erVLQKBgBk5cqQjMzMzhWEY4i9/+UsNALz00ku1K1as0O3evVstkUiod955p7I3/w0Ggzs3N1e/YcMGKJVKb35+ftX1XgOSJLF27dqqlStXxpMkCb/fTzz44IPWKVOmdJjNZn5f5+t0Otezzz6r37JlS4/rcTknT54Uf/vtt8phw4Y55s6dawSAJ554oikzM/OmMhaCJpAvieHfOl4M4P5gzdMfhFGXNj52uG7YhqDFBruMQWI0m2saivATApUsEltIfOvuOxXHfam1LBXBIDbGcEt9YxlYxJEKAB1ou3gBwJR+n+e7eBEA0KggkBaWemucYxl4+BJoIESlBpCc/Rl97fxx/FSMsiEE/O5YDGNbj4cser3eu3fv3u4NLRMnTnRMnDixxwaXFStWNAC4ogatRqPxf/LJJ9fc9bljx47f7F6Unp7uKioqMl19fOXKlfUA6i8/Fh8f7/3ss896nefw4cNnu14nJyd7vvzyy35t0Fm4cGGvaS29XYerr1fX60t+AwB2797da6OCy+ccPXq0s6ys7JplZQoKCnpco74IyUYhMpkYLj5Adva9gaI3RB1euCQMwjVsk5BQhCOVolMegagWLqppD/z0tVddnOfOwiEEwA9Dipb9kgtlZFGB0pveputrJ+y9GBjvllEIU7MPUaGMWqCBOYqAv/wCGH/v9w6fxQKivhllsQQ8xIjrzmlnYWEZOEJTIAu5cIkAnrPfqSY9bXT44ZEApFDW92CWuxJ3dBwUrSR8BFBvq7rmWPvpY6jUEPC69UjRsL8ToYxCGwsA4LRcn0D2XbwIHxcQCxhERsXeCtdY7hB0imRUagiQXh88Fb2uUsN16hQAoCGahiBq3O1yj4WFJQiEpkAWcOESEuC7epQS7Be01wuZC/CK2QYhoQwZr4fC5gPBMDBf/LHXcbTXC7qqDpUaoNY1Cknqvmsms9y9RGoS4OUAwnbLdZ3nratFq4KAws/BkAi2xFsokxCTjvqowAairvSr38J5/Dg8PIAbBsTH6m6XeywsLEEgNAWykAe3kIDQ1f8dkJfjbArUT6bY5bCQRmJIBt9PI9IOmC0/9zrOU34eJMWgSQ2Q8lEQ8ji30UuW202YPBY2CSDuuL79Hb6LtWgIA8R+IWLDxbfIO5Y7AZE2BSKpHx4ecU2B7CguRmksAakvDGls/jELy11FSApkIY+ER8CB6AYFcnvNBQAAJWUjhaGMaligzWKKhYLZeqHXcV1fgN4IAVK0bOOYUIeQqtEhAWQOZ7/PYRgG3osX0RAO8Cg55CJ29SmkURqgp/yoiiLgutRh82p8Fgt8lWac1RGgXEPYChYsLHcZISmQCYKAR8iFxHV9dfS6sNUFcsrI8Mhgu8ZyB6G6JwUAMNRCotLZ1Os4+4kf0SEEbFwtm388GJBEwillIHN6+33/oKxWME4nmhQEBKSKLQMY6oQNQZwPOBfHwP3rr6Acjh5DnMd/AgCc0xHopNOgDWNrp7Ow3E2EpEAGAI9QALEXcDr7rGXdA1tVIJrIj2S76IUyvIgI2CQKxFo4OE87QTP0b46z//wTKrQEWl3DYNSwy6Qhj0QFr5iBvJNCp7d/+xi6SrxZFICI3//aySx3KQSBKK4S53QEQFFwnjjRY4jzWDE8QhIdkRQE6vHsQ1OIU1xcLJk9e7ax6+fTp0+LZs6cmZKVlWVcunRpPEUF7iXbtm1TzZgxIzUjIyN19+7d4QDgcDjIRYsWJWZnZxvnzp1rqK2t5V1t32q1chYuXJiUnZ1tfPzxx1N+/PFHCQCcP39eMHfuXEN2drZx3rx5yS0tLRwAWL9+vTYjIyM1MzMz5dixY2IAaGpq4nbNk5mZmXLhwoXuPFKLxcKdMmVKmsvlIgCgtbWV88QTTyRlZWUZFy1alNjU1NRjWay+vp43Z84cw6xZs4yLFi1KtNvtV2hKs9nMnzlzZsrlx9577z1VXl5edG/X8aOPPor86quvwgBg69atqt7Gbd68Wf3yyy93i7SdO3dGPProo0NnzZpl/PDDD5XXumb9JWQFslcYaPNqb+h96bw3XHU18HEAmZqtgRzqtGt0UFpIdBLARUvPjnq0ywWyrg2VWqDSNZqNIA8G+BL4xQwkHgatrf1rNuTtFsgEwuRsacjBQIwsEeUxBGgupzta3AXDMHAcOYLzcQQSfQR0sWxVk1Dmrbfeilq1apXO6/V2PwW9/fbb0YsXL24oKioy+Xw+Yt++fWHNzc3cgoIC9RdffFG2c+dO08aNG2NpmsaHH36oTE1NdRYWFpqmT5/e+u6772qunmPLli1RY8aMsRcWFppee+01c1fDkBdffFGXk5NTV1hYaJozZ05zeXm58OTJk+JTp07J9uzZU7pp06bKtWvX6gBg3bp1Q2bMmNFWWFhoev755+tMJpMQAPbv3y9ftGiRob29vVuYb9y4UZuenu4oKioyLViwwJKXl9cjYrh582bNzJkzW7/44gtTSkqKa8eOHcqbvZYLFy5szcjIsAHABx980ENIO51OYsmSJfqCggJ117Hm5mbu1q1bYz755BPT7t27Tfv27Yswm8383q5ZfwnZRDmfWAagAY76SiDp3us6l25uRrsUiIxIvDXOsdwxePVJUFSeAddPotS8H7qo4Ve87y4tA0kDDjUXPK4CMQrRAHnKcjthJIGNmO0XG6CLjuhzvK82sLG3Wc5ApUzpYzRLKKDXjgJTfxYNseEQH7uyQazr55/hr2/AwRkkZO5wpEWz+ce3hePbI/Hzpzct0q4g/Q8tGPOnXhthAIBOp/Ns3ry54oUXXuiOqhmNRqfVauXQNA2n08nh8XiMSqXy79u3r4TH46GqqorP4/FokiTx3HPPWfyX6mnX19fzZTJZj6WrJUuWNAkEAhoA/H4/wefzGafTSbS3t/MOHDigyM/PH5Kamtq5evXq2u3bt6vHjh1rJ0kSOp3OS1EUYbFYuGfPnpUaDAbX3LlzDVqt1rNu3bqLQKDj3ccff2zKysoa2jWf2WwWLlu2rA4Axo8f73j11Vd7iMt169ZdZBgGFEWhsbGRN2rUqH43nzCbzfycnJwEtVrtraurEwwdOrTzjTfeqMnLy4tWKpU+q9XKcTgcnNzc3LgNGzbUdJ3ndrvJrKys1nHjxtkrKyuFAFBZWclPSEhwRkZGUgCQmpraefz4cclvXbP++geEcATZLw3ckJyWi9d9Lqe9A1YpEKFkI8ihDt9gAIdhoGtmUNrQsxGP46fDgf+qtDBoZCBJdpl0MEBKA11Q7XUNfYwM4Kurg0vCgYTDIJxdeRoURManI87nR9kQwF1aCn97e/d79m+/BcPj4oSBgMcZz3bQC3FmzZpl5fF4V4gvvV7vyc/Pj3v44YeHtbW1cSdNmtQBADweD1u3blXNnz8/9bHHHusW3lwuF3PmzDEUFhaqp02b1n71HOHh4ZRYLGYaGhq4ubm5CTk5ObVtbW3cmpoa4YQJE+yff/65yW63c3bu3BnpcDg4l4tssVhM2Ww2jsVi4cvlcv+uXbvKNRqNd9OmTRoAeOSRR+xKpfIKUW4wGFzfffedAgC+/vprhcfj6aEXSZIERVHEo48+Ouz06dPyrs/YFwRBMABQV1cnzM/Pr9q7d29pcXFxWENDQ3fQNjc3t1EqlVKXi2MAiIiIoKZOnXrF0l5ycrKnurpa1NjYyO3s7CRPnDghd7lcnN+6Zv3xr4uQjSDT0sBDpKu5vo+RPRHa3LAoGcjVbA5yqBM+Ig0AcF8TgbLoqh7vNx39DjYZYKaG4x42vWLQwFdIAHhhq6vpcywQEMhWOQElxUCt7DvizHL3w4lKhdHrxQ/JTvzuMA1bYSEi//hHMBSFjm//Fy1DI+Hmt6CdGoX4SLYu9m1hzJ9a+4r23i7y8/Njd+zYUZaWlubetm2batWqVbFdYm/x4sXNTz31VMuCBQuSDx486JgyZUoHAHz++eflpaWlwsWLFye9//7751euXBkPADNmzGh98sknW86cOSNavnx5wrJlyy5OnjzZ4XQ6CZFIRHedP2XKFNuRI0fker3e3dnZ2S1onU4nR6FQUDKZjJo+fboVAKZOnWp98803exU5OTk5DS+++GJcdna28YEHHrCpVCrf4cOHpZs2bYoBgKeeeqpx+vTpNj6fzxw4cKDkwIEDsuXLl+sLCwu7WzqLRCLa5/NdIaydTifZFdXVarVuuVxOA0BERITP7XbfUNA2IiKCWr58+cUlS5YkyuVyv8FgcEZERPgB4Oprdj12QzaCDEUgdcXbdv1/KxKHH24JEK4ID7ZXLHcYsWkGuDk8JFv4KKUcYOgrN+r5y6pxQQuUWkfDGMUK5MGCJPLSClRT/1agfPX1aJExkPo5iA5j03AGBfIYpHiBsigvePeNQtvOT8D4/bDv2wd/czNOJvt3FUdaAAAgAElEQVSg9/khir6PXXkahEilUr9cLqcAICoqytfR0cEpKysTPP3004k0TYPH4zF8Pp8mCILJz8/X7Ny5M+LSeRRJkkhOTvYUFBSYCgoKTE8++WRLSUmJMCcnJ2HDhg2V06ZNswOAWCxmYmJi3IcOHZICwPHjx2VJSUmuMWPGOI4ePRpGURSqq6v5NE1DpVL509LSOvbv3x8GAEePHpUlJCS4e/P/8OHDsnnz5jUXFhaa4uPj3cOHD3dMnDjR0eXT9OnTbbm5uXEHDx6UXfKbJknyiii6Wq32u1wusqSkRAgAfr8fxcXF8vT0dCeAPjeu9reKkM/nQ0lJibiwsNC0bdu2ypqaGuG4ceMcv3XNroeQjSCTEYF0GV97j5WKa0I5OiHwAl4xCQGXbQgR6mjDJfgpTAu1pR3tpA9NjaegiQ7krHtrqiG0+tF4Hx8ULWMrWAwiFBFK+MkqUC2NfY5lGAa+hgbU38NA5BdCJWMbDA0KCAI6ThQAB6ofG43ote+h6dU82L7+GsIRw1GYUIpRnXzEG6MG2lOWAWDNmjXVS5cuTeRwOAyPx6Pz8vKq9Xq912AwODMzM1MIgsC4ceNskydPdqSkpLiXLVumLyoqUtE0jbVr15qvtvf666/H+Hw+smujmUQi8e/YsaPilVdeqVqzZk3cG2+8QWi1Ws/q1atbBAIBM3LkSEdmZmYKwzDEX/7ylxoAeOmll2pXrFih2717t1oikVDvvPNOr33SDQaDOzc3V79hwwYolUpvfn5+1dVjnn76actLL72k27JlC0MQBNasWXPFkhtJkli7dm3VypUr40mShN/vJx588EHrlClTOsxmM7+va6jT6VzPPvusfsuWLT2ux+XweIG9hdOnTx/K5/PphQsXNqlUKv8LL7yg+61r1te8XYSsQBYr4uDmAZS9Xykx3VAtzQAAH1vof1BAkgTqo5OQWPYDeH7gxzM7MOuSQG7+6m8AAE+CAWgCUrVsBHmwEC5RwyoBOO3NfY6l2trAuN2oU5AQMhJw2GjhoEGvuhccz0HsV7qw9JGH0f7JJyBEIthzF8JWsgLizhiMjGNXIgcDer3eu3fv3rKunydOnOiYOHFi2dXjVqxY0QDgis0NGo3G/8knn5y/lv3ehF16erqrqKjIdPXxlStX1gO4Isc0Pj7e+9lnn/U6z+HDh892vU5OTvZ8+eWXPfy/nNTUVHdBQUGPuS+nt+tw9fXqen3JbwDA7t27y3uzu3DhwivSA1asWNFw6dp2cz1i+LcI2RQLsUwNhwhgOlzXdZ6n2QIAoMVsUffBgjVlBLh+CuNqgX82/Nh9vObQfljFQE3kLAwJF0Eh7vOBlyVECJNEoV0KiGx9r0D56i5VsAgDRASbfzyYUBsnweD1obzlJwx55x0kfX8ACUVf4GjnERAMg0bHKKTHst03WVjuRoIukI1GY4rRaLQZjUbhpZ/vNxqNx4xG4xGj0bg62PP1hkwkgFMIkI5+Vx0BANgbAysEtJhdTh8sCO+9FxRB4pHGSByFB52WEjA+NzgVNlTpOLjQFIV72Daxg4pwaTTapQQkjr7T1nz1gYBHi5yAhM8upw8mpEkPIM3jQZ2vBjRDgxcTA358PI42FCPV60NL2AMIl7AP1iwsdyNBFchGo1EOIB/A5ap0K4D5ACYAGGs0GkcGc87ekAm5cAsBjst/Xec56qsAAEwY22Z6sJCk16BcEYu4iwJ4SQL/PvTfuPj+M5A5AHK4EdWtLqSxAnlQIZFqYJMAckeve1i68dUFBHJzGCCXXFcdepa7HbkWCT4R3IQPv7b+CgDo9HXijLsZiS4RjDq2qyILy91K0ASy0WgkAGwH8H8BOC8dkwMQmEymCpPJxADYD+DhYM15LaQCHtxCAnxX/1rFduGurwZNAJxw7S3yjOVOI0Ujw8+qJAgr6xDr4+MN2xn8818n4eMA0mkvAAArkAcZhCQSLikDqdsPyn1tkeyrr4dfxIVTSCBCkXybPGS5U0gVpEFAM/isdDcA4BtTIfwEgI5EPJSivvbJLCwsdyw3JJCNRuMzRqPx3OX/AHwN4BuTyfTLZUPlAC5fo+wAcFuUhkzIhUdAQOCm+x58Ga6mBthFgEzaa6twlhBDr5TgZMwwEDSN/I4skKQc95QS8E2+Dw2+wJJ5Glvof3AhjoRXErh3OPpoFuKrq4MjjAcBTUOlNtwO71juIMITJuKxzk78r/kb2Dw2/O3Mdgx3e1DhGo+JhuA2dWNhYbl93JBANplMfzWZTGmX/wNgBPCM0Wj8FwANgO8QEMeXb/2XAbDepM/9QibkwsMnIXT1v5YeAPhb22CTAGEydmlssMDjkKBT0lCePArEx0XYcu5+iL1A6h//jLN1NkSHCREpZUt3DSpEEaDEgftGe1XdNYf66uvRLgOUFI3IKPa+MdjQTfwPZHR44WE8WPDtAtT5bHjcLgQZNx5yIW+g3WNhYblBgpZiYTKZkkwm02STyTQZQCOAqSaTyQ7AazQaEy+lYDwK4HCw5rwWMgEPHgEHXBpgnM5+n0daHbBJCEQqdLfQO5Y7jRSNDO+nZQA+H7z7/gHFnDkQjhiBE1XtGMHuQh988CXAJYFsq+1dIDMMA19dHZrlFBQUAY2C7Zg22OBII+GXPYqn2jsgcNnxcKcTxe2P4XdD2Q2bg4ni4mLJ7NmzjV0/nz59WjRz5syUrKws49KlS+MpKpDuuW3bNtWMGTNSMzIyUnfv3h0OAA6Hg1y0aFFidna2ce7cuYba2toeT1ZWq5WzcOHCpOzsbOPjjz+e8uOPP0oA4Pz584K5c+casrOzjfPmzUtuaWnhAMD69eu1GRkZqZmZmSnHjh0TA0BTUxO3a57MzMyUCxcudEd+LBYLd8qUKWkul4sAgNbWVs4TTzyRlJWVZVy0aFFiU1NTj9q31dXV/Llz5xpmz55tzM7ONpaVlV0RSTKbzfyZM2emXH7svffeU+Xl5fW6RP/RRx9FfvXVV2EAsHXrVlVv4zZv3qx++eWXuzsBHj9+XDxr1ixjVlaW8ZlnnklwuVwERVFYvnx53OOPP54ye/Zs4/nz568r0nU7yrwtBrATwHEAp00m07HbMCekQi48/MD/T8pm6/d5vA43OiQMwiJjb5VrLHcgKRoZzjIyRH7wERK/3Qftf69BdZsLdVYXHkhil0kHHQQBrixw/3DV9d4shLJaQXd2ol5OQ+LnQs02CRmUCCb8J5a227DbdBor23j4nvsgZgxn0/QGC2+99VbUqlWrdF6vt7sI+ttvvx29ePHihqKiIpPP5yP27dsX1tzczC0oKFB/8cUXZTt37jRt3LgxlqZpfPjhh8rU1FRnYWGhafr06a3vvvuu5uo5tmzZEjVmzBh7YWGh6bXXXjN3Nb948cUXdTk5OXWFhYWmOXPmNJeXlwtPnjwpPnXqlGzPnj2lmzZtqly7dq0OANatWzdkxowZbYWFhabnn3++zmQyCQFg//798kWLFhna29u7hfnGjRu16enpjqKiItOCBQsseXl5PdpSb9iwIXr+/PmWgoIC05/+9KeG119//aaX0BYuXNiakZFhA4APPvigxx+R0+kklixZoi8oKOhO8KdpGqtWrYp/7bXXqoqKikwTJkywV1dX8/fu3avwer3knj17ypYvX167bt266/LvlnTDMJlM8Ze9LgZw/62Y51pwSAJugQBAJ/zt7eBF932zYhgGAocfbhEgl7PF3QcTXZvwzkq1eCg+EPn594UWAMAEViAPSqRiEVx8F7yNvecg+y5Fl2sUNES0BDxOyJaWZ7kG6feMwJ+/W48Wqw3n3HosyxgGTRhbS/9282npp5F7K/YG9YY9M3Fmyx9S/9B6rTE6nc6zefPmihdeeEHfdcxoNDqtViuHpmk4nU4Oj8djVCqVf9++fSU8Hg9VVVV8Ho9HkySJ5557zuL3Bypu1dfX82UyWY/qAkuWLGkSCAQ0APj9foLP5zNOp5Nob2/nHThwQJGfnz8kNTW1c/Xq1bXbt29Xjx071k6SJHQ6nZeiKMJisXDPnj0rNRgMrrlz5xq0Wq1n3bp1F4FAx7uPP/7YlJWVNbRrPrPZLFy2bFkdAIwfP97x6quv9ijRs3r16tqwsDDqMp/6venLbDbzc3JyEtRqtbeurk4wdOjQzjfeeKMmLy8vWqlU+qxWK8fhcHByc3PjNmzY0N2hz+12k1lZWa3jxo2zV1ZWCgGgvLxcIJfL/du3b4+qrKwUTZgwwZqSkuL5+OOPVRMmTLABwLhx4zqXLVt2XUt8IX039wpFAABXc30fIwPQnU7w/Ay8IiBcwkaCBhP3xodDwufgQKml+9iR8y2IUYigixQPoGcsA0UkT4pWGeBvvoZArqsFAFwMJyAGu5FzsMLlkMh7/hkY75+OScMTsXBc/EC7xHIbmTVrlpXH412x2Umv13vy8/PjHn744WFtbW3cSZMmdQCBtshbt25VzZ8/P/Wxxx7rFt5cLhdz5swxFBYWqqdNm9ajQ1F4eDglFouZhoYGbm5ubkJOTk5tW1sbt6amRjhhwgT7559/brLb7ZydO3dGOhwOzuUiWywWUzabjWOxWPhyudy/a9euco1G4920aZMGAB555BG7Uqm8QpQbDAbXd999pwCAr7/+WuHxeHroRZVK5efz+UxZWZngzTffHJKTk9MvsUUQBAMAdXV1wvz8/Kq9e/eWFhcXhzU0NHQHbXNzcxulUil1uTgGgIiICGrq1KlXFKhvaWnhlpaWSp966inLp59+Wn78+HH5P//5T1lnZydHLpd3fy6SJBmfz9cfFwGEcKtpAPAJAg8LLkt1v8ZTrYGIoVdEQi5iN1cMJgRcDiYmq/B9aROYzDTQDPBjRQumpWlBEGzr4MFIhCAMbbIWaFotvY7x1QYEskUB3OtnV50GM1IBFy/PHDbQbgxq/pD6h9a+or23i/z8/NgdO3aUpaWlubdt26ZatWpVbJfYW7x4cfNTTz3VsmDBguSDBw86pkyZ0gEAn3/+eXlpaalw8eLFSe+///75lStXxgPAjBkzWp988smWM2fOiJYvX56wbNmyi5MnT3Y4nU5CJBLRXedPmTLFduTIEbler3d3dnZ2C1qn08lRKBSUTCajpk+fbgWAqVOnWt98880eaRNd5OTkNLz44otx2dnZxgceeMCmUql8hw8flm7atCkGAJ566qnG6dOn2w4ePChbt25d3Pr1680pKSlXdGYTiUS0z+e7Qlg7nU6yKxKu1WrdcrmcBoCIiAif2+2+oaBtZGQkpdVq3UOHDnUDwPjx422//PKLWCKRUA6Hg9M1jmEYgsfrv7YL6Qiy/1I3PNc1IkBXjG8N/F15RVxwSFYUDTZ+l6pGk92Dc3V2/O+5Rtjdfkwy9rpHgCXECRdGoF0KCKxtvY7x1taCkYnhEhCQCXukDbKwsAxSpFKpvyt6GRUV5evo6OCUlZUJnn766USapsHj8Rg+n08TBMHk5+drdu7cGXHpPIokSSQnJ3sKCgpMBQUFpieffLKlpKREmJOTk7Bhw4bKadOm2QFALBYzMTEx7kOHDkkB4Pjx47KkpCTXmDFjHEePHg2jKArV1dV8mqahUqn8aWlpHfv37w8DgKNHj8oSEhJ6LfJ++PBh2bx585oLCwtN8fHx7uHDhzsmTpzo6PKpSxyvX78+9q9//ev5++67r0c1BLVa7Xe5XGRJSYkQAPx+P4qLi+Xp6elOAH0Gn/pbgSwhIcHjcrk4XZvwTp8+LTMYDO7Ro0c7Dh061PV5JXq93tUvg5cI6QiyXxIBAPC09R4BumJ8cyCC7BOx6RWDkYdS1CAIYOuhCpyptSJFI8Ojw1jRM1iJkKjRKgekHR1gKAoEh9NjjK+2Dp5ICQAvFFK28g0LC0uANWvWVC9dujSRw+EwPB6PzsvLq9br9V6DweDMzMxMIQgC48aNs02ePNmRkpLiXrZsmb6oqEhF0zTWrl1rvtre66+/HuPz+ciuzXkSicS/Y8eOildeeaVqzZo1cW+88Qah1Wo9q1evbhEIBMzIkSMdmZmZKQzDEH/5y19qAOCll16qXbFihW737t1qiURCvfPOO5W9+W8wGNy5ubn6DRs2QKlUevPz86uuHrN+/fpYn89HdOVex8XFud98883uJXuSJLF27dqqlStXxpMkCb/fTzz44IPWKVOmdJjN5j57sOt0Otezzz6r37JlS4/rcTkCgYBZs2ZN1bJlyxIYhsE999zjmD59uo2iKBw5ckR+6Tpg/fr1PT7DtQhpgUwIIuHhAmjvPQJ0Od6WgJD2iaS30CuWO5VIqQD/3+QkbD54AQDw8TNj2JWEQUy4RIM2KQEOQ8Pf2gqeumdXNF9tLexhAeEcFZF0u11kYWG5Q9Dr9d69e/eWdf08ceJEx8SJE8uuHrdixYoGAFcsa2s0Gv8nn3xy/lr2d+zYUfFbx9PT011FRUWmq4+vXLmyHsAVOcHx8fHezz77rNd5Dh8+fLbrdXJysufLL7/s4f/l7N+//9drvQ/0fh2uvl5dry/5DQDYvXt3eW92Fy5ceEUqzUMPPdTx0EMPlV5+jMPhID8/vwY3SEgLZJ4gAg4RILT3r8xbZ+NF0AAYKVv3drDywqNGPJCkREWzAxOT2fSKwYxCFoPWS/vu/E2WHgKZoWn46urQGhMOHsMgiu2ix8LCwhIyhHQOslCoRIcIYOyOfo13N9TAIQIEvIhb7BnLncy4xEg8cT+7XD7Y4cs0cEkDOXDeS9UqLsff3AzG50OT1Aeln4JKw3bRY2FhYQkVQlogi0RqOIQEGEf/8rK9LU2wSgCRgK17y8Iy6BEr4ZUFynp2VPashNNVwaJe5oOCAjThbBc9FhYWllAhpFMsxBI1OkUAafX2azzV2ga7hIBYpL3FnrGwsNzxSJQQc2nYRVyQlT33iHirAqK5SuGFlOJByOu5iY+FhYWF5e4kpCPIYWIpnAKA09m/wtCM1QGbGAiTs22mWVgGPeJIRFAUmhUkvDU993l4KipA8Pm4EE5BSrNd01hYWFhCiZAWyFIBFx4hA56L6lc9PU6HGzYJoFCw+acsLIMeDg9h4KIxnAF+IwfZW1EBbrwODi4BKcF20WNhYWEJJUJaIEsEXHgEBDgUwDh71LC+AtrrBc9NwSECFIpem8uwsLAMIsI5AtRFAtzWZtDuK2vqeyoqQMcG6mTLeJED4R4LC8sdQnFxsWT27NnGrp9Pnz4tmjlzZkpWVpZx6dKl8RQV6Hi8bds21YwZM1IzMjJSd+/eHQ4ADoeDXLRoUWJ2drZx7ty5htra2l7bvX355ZeKxYsX67t+/v7772WPP/54SnZ2tvGZZ55J6Oqgt379em1GRkZqZmZmyrFjx8QA0NTUxO2aJzMzM+XChQvdTR8sFgt3ypQpaS6XiwCA1tZWzhNPPJGUlZVlXLRoUWJTU1OvKbmbN29Wv/zyyz2Ek9ls5s+cOTPl8mPvvfeeKi8vL7o3Wx999FHkV199FQYAW7du7bWU1NVz7tq1KyIjIyMlMzMzZfny5XEUReGjjz6KnD17tnH27NnGmTNnpqSlpY1qb2/vdy5cSAtkmYALjyjwESmr9ZpjqUtd9HwiIELKLpeysLAAETwpGi51kPZdvNh9nHa54KurQ4c6cK8IF7EP1Swsg5W33noratWqVTqv19tdOP/tt9+OXrx4cUNRUZHJ5/MR+/btC2tubuYWFBSov/jii7KdO3eaNm7cGEvTND788ENlamqqs7Cw0DR9+vTWd9999zc7VK1cuTL27bffjqFpunueV155Rbdt27YLhYWFpri4OM+OHTuUJ0+eFJ86dUq2Z8+e0k2bNlWuXbtWBwDr1q0bMmPGjLbCwkLT888/X2cymYQAsH//fvmiRYsM7e3t3cJ848aN2vT0dEdRUZFpwYIFlry8vB43OafTSSxZskRfUFDQs0j8DbJw4cLWjIwMGwB88MEHPYT0b83pdDqJLVu2RH/22WflX375ZZnD4eDs27cvbOHCha1dnf+MRqPzz3/+c014eDjVX19CepOeRMCFh08CoOBvt4IX0/uXmL810EzEIyKgEPXZ4IWFhWUQEMGXozHcDgDw1tRAkJwceG02AwyDeqkfABAVru/VBgsLy+2h7e87I2179gS1DFXY44+3RDzxH63XGqPT6TybN2+u6OooBwBGo9FptVo5NE3D6XRyeDweo1Kp/Pv27Svh8Xioqqri83g8miRJPPfccxa/P3Avqa+v58tkst8UcSNHjnRMnTrV+umnn3ZHVv/+97+bNBqNHwAoiiIEAgF97Ngx6dixY+0kSUKn03kpiiIsFgv37NmzUoPB4Jo7d65Bq9V61q1bdxEIdLz7+OOPTVlZWUO77JrNZuGyZcvqAGD8+PGOV199Ne5qf9xuN5mVldU6btw4e2Vl5XVFFs1mMz8nJydBrVZ76+rqBEOHDu184403avLy8qKVSqXParVyHA4HJzc3N27Dhg3dm0B+a06BQMDs2rWrTCKR0Jddh+682p9++klsNptFl9vpDyEdQZYKufAIAs8AfUaQ2wK//14hiTBxr6sbLCwsg4hwYTgaL0WQu6pWAICnItChtUrSCQCIjUq97b6xsLDcGcyaNcvK4/Gu2Oik1+s9+fn5cQ8//PCwtrY27qRJkzoAgMfjYevWrar58+enPvbYY93Cm8vlYs6cOYbCwkL1tGnT2n9rnjlz5rQTxJXdXaOjo30AUFRUpDh58qRs/vz5rQ6Hg3O5yBaLxZTNZuNYLBa+XC7379q1q1yj0Xg3bdqkAYBHHnnErlQqrxDlBoPB9d133ykA4Ouvv1Z4PP8/e/cdHlWV/3H8fae3THolJIR2adJBuoCIorioCLqKCmLXZdWfBeta1tVVEBEFdW2IYkNdUVYpivQiSC9DEkiAFFJIb1N/fwQkNClOMinf1/Pss5mbO+d+ZzxMPnPvuedUnZQXw8LCPMOHDy8+x7cLRVF8ABkZGaapU6emzZ8/f9fatWuDs7Kyfj9p+/DDD2fbbDbPiaH2VMfUarUc/ZIwa9asqIqKCu2wYcN+32fWrFmx995773GrCp6NRn0G2WbUUWnUAxV4Ck7Z337nzjsSkI16goyN+m0RQpylcEsUZWaFUqORkPSaATkFtFrSzMXYvF7i49v9QStCiLoQNu7G/DOd7a0rU6dObT579uzdnTp1qnz77bcjn3766eZHw95dd92VO2HChLybbrqpzdKlS0uHDBlSAvDFF1/s2bVrl+muu+5q/e677yY/9thjLQBGjhyZP378+LzTHWvGjBlRP/30U9iHH36YbDabfTabzXN0LDJAeXm5NiQkxBMUFOS54oorCgGGDx9e+Oqrr572svr999+f9cQTTySMHj1a7d+/f1FkZKRrxYoVtunTpzcDmDBhQvYVV1zxh8sUm81mr8vlOi5Yl5eXa4xGoxcgNja20m63ewHCwsJclZWV533S1uPx8Mwzz8Tv37/f9M4776RqNNVNFRQUaA8cOGA6+h6fC78lQVVVtcCrQE/ACDzjcDi+V1W1DzAdcAOLHA7Hs/465pnYjDoqDNVj0D2FfxyQj55BdplNaDTKH+4rhGgaIm1xkAvpYUGEb9v6+/aq3Q4MiYnkegqJ8niIjDrtPSdCiCbIZrO57Xa7ByA6Otq1adMm2+7du40vv/xy/Lvvvpuq1+t9BoPBqyiKb+rUqTExMTHOG2+88bDNZvNoNBratGlTNW/ePMeZjvPKK6/E7Nq1yzp37lyHxWLxAfTu3bv05Zdfjp80adKhgwcPGrxeL5GRke5OnTqVLFy4MPjGG288vGbNmqCWLVtWnq7dFStWBF1//fW5/fv3L/v6669DCgsLSwcOHFg6cODAM9Z0VFRUlLuiokKzY8cOU8eOHSvdbjdr166133HHHdkAJ54NP9HZzD521EMPPZSo1+t977//fopWe+w+vJUrV9p69Ohxzme5wb9nkG8C9A6Ho7+qqs2AMUe2vwWMBvYCC1RV7eZwODb58binZTFoqdCb8QLuvNw/3NeVm0elHtDLalhCiGph9uZofD52NrPQccNu3IcPo7HZKFu3jpCrr6LI+x0hHg1abaMerSaEOEfPPvts+qRJk1pptVqfXq/3vvjii+lJSUnOtm3bll911VXtFEWhb9++RYMHDy5t165d5YMPPpj0zTffRHq9Xp5//vmTVyY6hezsbN2HH34Y16pVq/Kbb765LcDw4cMP33HHHbndunUrveqqq9r5fD7lySef3A/w1FNPHZw8eXLil19+GWW1Wj0zZszYe7q227ZtW/nwww8nvfLKK0RERDinTp2adq7vgUaj4fnnn0977LHHWmg0GtxutzJo0KDCIUOGlOzbt++MN3slJiZW3HPPPUkzZ878w/dj48aNlh9++CGiY8eOpdddd50KMG7cuENXXXVVYWpqqik+Pr7qXGsH/wbkS4HtqqouABTgb6qq2gGjw+FIBVBVdSEwDKiTgKwoCopipcwEwXlZf7ivMyeTIivosdVFaUKIBkBnjSLC42FPggY2QPm6dWiC7PgqKrAOGkRh6jwSvMYzNySEaNSSkpKc8+fP33308ZGzrbtP3G/y5MlZwHGBJCYmxj137tzksznO4MGDSwYPHlxy9Hk7duz47VT7PfbYY5nAceNuW7Ro4fzss89Oe5wVK1ZsO/pzmzZtqv773/+eVP+p3Hzzzacd1nK69+HE9+voz0fqBuDLL7/cczbH7NGjR/nu3bs3nmq/+++//9CZX8GpnVdAVlV1IvDACZtzgUpgJDAI+AC4Aah5arsEaHk+xzxfimKjxAxVeX/8HlXlZlFkAb02uI4qE0LUe7ZIIj0eDsQ68VptlK1eg2IyoRiNGHv1oDDNS7ASEugqhRBC+Nl5BWSHw/Ee8F7NbaqqfgZ873A4fMAyVVXbUh2Og2rsFgT88XQSfqbR2imxgOsMY5DdefkUWxSMMiCysWEAACAASURBVOG/EOKooDii3B4OGMsobd8Fw7JloNFgubA3Oe4SvIpCsD4s0FUKIYTwM38OnFsJXA6gqmoXYL/D4SgGnKqqtlJVVaF6GMYKPx7zjLSaEErMCp7CP7zZEm9BEYU2MBn9Nt+1EKKhs4QT6fXh1FVy4II+uHNycGdnYx9xObsyq+9VCbfEBrhIIZo0b82FM4Q4F0f6jvdUv/PnGOT/ALNUVV1L9Rjku45svwv4BNBSPYvFOj8e84x0hjBKzOA7XHbafXweD0pxOYVWBYvllAvYCCGaIo2GKJ2VSq2HzWoPrtm8CZ/LhTYoiL0/vQFAXEhigIsUoknbnpub2yEyMrJIo9Gc/bQHosnzer1Kbm5uMLD9VL/3W0B2OBxVwK2n2L4W6OOv45wrnT6CEgsoJaedzQR3fj6KDwpsCq2CmtdhdUKI+i7KEAIUklaUhcbUDUzVC0al5VffP9IhvnMAqxOiaXO73bdlZ2e/m52d3YlGvviZ8DsvsN3tdt92ql82+hUxjOYoSswKGpcXb0UFGrP5pH08edXzbxdaISQ4vq5LFELUY1GWCKgqZF/B8TPhZJelE+bz0DyhU4AqE0L06NEjB/hLoOsQjU+j/7ZlM0dQciQTn265aXdu9RzJpRaIsNnrqjQhRAMQZatebCqn/BCVrmOrsea784h3eVDsp12MSgghRAPV6ANyiNFGWfUV0dMH5CNnkN0WCDHr66o0IUQDEBVcPcbYpM1nb271vQw+n48CTRnRXj1otH/0dCGEEA1Qow/IdrOeqqMBueDUU70dPYPsNGkItkhAFkIcYw9Jwuj1YtHnkpxTAkBGUQlFWg9RWrniJIQQjVGjD8hBJj0uU/UMMO7TBuQ8Koyg1egJMZ9x9UMhRBOi2JsR5fFg1OeTklMKwNr0FHwKxFviAlydEEKI2tAEArKOKlP1JdCjN+OdyJ2XR4kVdB4DwTLEQghRkz2WJJcbn7mQ5EPVAXl7xlYAWke0DmRlQgghakmjD8g2kw6XQYtbC66cnFPu487NocAGWq8Zk77RvyVCiHMRFEtbp5NiXQl7cqqvQmXkVU+b2Ta2SyArE0IIUUsafRq0m3TovAZKrMfGGp/InZNDnk1B57OiKLIgjxCiBp2RthjxKj72l6aTU1JJZlEqVq+X0Mj2ga5OCCFELWj0ATnIpEfjNVBoA3fOyQHZ5/PhzsvjsA20SnAAKhRC1HdtjywnrRiyGPfuOip1ObRwuVDCkgJcmRBCiNrQBAKyDrxGDtuqh1KcyFtWjq+yikKrgl4bFoAKhRD1XWJ0F/Q+H2rzEvbkHCbfXExPtwIm+VIthBCNUaMPyDajDp/HTJ5NOeUQi6OhudAKen1kXZcnhGgAdHHdaO10EWnPxB56AI8C/YzRgS5LCCFELWn0Adlq0OHxWjhsU/AWl+Ctqjru9+5D1QG5IAiM5thAlCiEqO9iutDG6SStNIVxg0ox+Hx0bz4o0FUJIYSoJY0+IGs0CopioyCo+vGJZ5FdGRkA5AYrWK3N67o8IURDEN2BLlUu8lylfL7nS7pVVmFqIQFZCCEaq0YfkAEUTTAF1uqfT7xRz5WRgU+BPDuE2+SSqRDiFPRmRpvjuV0Jx+lzc1FFJST0CXRVQgghaoku0AXUBY02lELbkdX0TnEGuTJIi08DUbaQQJQnhGgAtLFdmZTyE1eFxtPMEgomWWZaCCEaK78FZFVVg4HPABtQBYxzOBzZqqr2AaYDbmCRw+F41l/HPGv6SAqOvNITA7Iz4yAldrB6FUItxjovTQjRQLS6GLZ8SkJZDvS9L9DVCCGEqEX+HGIxHtjmcDgGAp8DDx/Z/hZwAzAAuFBV1W5+POZZMRijKLGAT3PyTBaujEwK7D4sHi2hFkNdlyaEaCguuBZuXVQdjntNDHQ1QgghapE/h1hsA9od+dkOuFRVtQNGh8ORCqCq6kJgGLDJj8c9o2BTCD6XgsumxV1juWmf04n70CHyEr0YPHpCLPq6LEsI0ZAoCiRcWP0/IYQQjdp5BWRVVScCD5yw+V5guKqqO4EwYCDVQbm4xj4lQMvzOeafEWYKARdU2hTchw79vt2VnQ1eL9nBPnQeowRkIYQQQghxfgHZ4XC8B7xXc5uqql8DLzscjrdVVe0MfEX1sIqgGrsFAYXnWet5s5tNmAqhKBTC9u37ffvRKd4OhijgMREiQyyEEEIIIZo8f45BLgCKjvycA9gdDkcx4FRVtZWqqgpwKbDCj8c8K3aTHotXy6EwD+6sLDwlJcCxgLwvVAMeG1aDtq5LE0IIIYQQ9Yw/A/JTwM2qqi4HvgFuP7L9LuATYD2wyeFwrPPjMc9KkEmHwaPnYJgHgKrkFACcBw+CRkN2sIKiBKMoSl2XJoQQQggh6hm/3aTncDgygctPsX0tENAZ9YNMOnQeI/siiwAtVcnJWLp3oyo5BU2kHa+mFEUbGcgShRBCCCFEPdEkVtILMurBYyY9WIvGYqYqORmf10v5hg14WoUCoBhiA1ylEEIIIYSoD5pEQLaZdHjdVgp1GowtmlO1Zw9Ve/bgLSqipHn1zBVGU7MAVymEEEIIIeqDJhGQg0w63J4gyjUadPHhVO3ZQ/n69QBkxzoBiDDJEAshhBBCCNFEAnKwWU+lJwQAT4wFT2EhBXM/Rd+8OVnG6hktom0SkIUQQgghRBMJyGFWA+Xu6rHGFV3DMXXpjDMtDUvvXuS5ijF7FMIslgBXKYQQQggh6oMmEZDNei1VhANQrBSROGcOUY8+SsTtt5PrqcTsNsgqekIIIYQQAvDjNG/1maIo2PRhVAAFFbloDAbCJ4yHikLyNKB3mwmVVfSEEEIIIQRN5AwyQIipeohFUWXBsY0lWeRpteC2SUAWQgghhBBAEwrIYebqm/QKqgp/3+YryiBPq8XlDiEySAKyEEIIIYRoQgE53GrB6NVQWOMMcnFhOk6NQrk7nAibMYDVCSGEEEKI+qLJBORQix69R0+htwoqiwHIK9oLQIU3imCz3KQnhBBCCCGaUEAOsxjAY6ZAo4HD1cE4t+QgABZ9NIqiBLI8IYQQQghRTzSZgBxqNeB2hZKl00F+CgB5BdVBOcwUEcjShBBCCCFEPdJ0ArLFQJkzloM6Hd78VPB6yCvJACDKIgFZCCGEEEJUazoB2WrA5YzCqVHIydsF+ankKh60Xi3RtuBAlyeEEEIIIeqJP7VQiKqqVwNjHA7HDUce9wGmA25gkcPheFZVVQ0wE+gCVAG3ORyOlD9X9rkLtejxuqpX0ztQmEpM1hYO6HQoLjuRQaa6LkcIIYQQQtRT530GWVXV6cCLJ7TxFnADMAC4UFXVbsBVgMnhcPQFJgNTz7/c8xdqMeB1HgnI5dmQtZk9RiOVlfEyxZsQQgghhPjdnxlisRq4++gDVVXtgNHhcKQ6HA4fsBAYRnVY/hHA4XCsBXr+iWOet1CrAZ8rGA0KB3xVlO7+ngydFk9VHBFBEpCFEEIIIUS1Mw6xUFV1IvDACZsnOByOz1VVHVxjmx0orvG4BGh5ZHtRje0eVVV1DofDfX4lnx+rQYtBq8emiWC/BVLyMiEkBk9VDJFyBlkIIYQQQhxxxoDscDjeA947i7aKgaAaj4OAQsBywnZNXYdjAEVRCLXqMSixHIgOY0/8AMhZgbcyVpaZFkIIIYQQv/PbLBYOh6MYcKqq2kpVVQW4FFgBrAIuh99v4tvmr2Oeq1CLAa0ngoOlmThCYjForPjcwTIGWQghhBBC/M7f07zdBXwCrAc2ORyOdcA3QKWqqquBaZw8XKPORAYZcVaGUeIqYXnGckK0Cei1GllmWgghhBBC/O5PTfPmcDh+AX6p8Xgt0OeEfbxUB+eAaxFuZfO2diR2TCS9JJ14bSeigkyyzLQQQgghhPjdnwrIDU2LCCslZTbeHvoJv2R9z5yfLLSMtAa6LCGEEEIIUY80mZX0AJIiLABkF3n5q3oD+3PMtI6yBbgqIYQQQghRnzStM8jh1WeL0/LKiLYbKXd6JCALIYQQQojjNKmAHB9qQaNAWn4Z4bbqqd3aRAWd4VlCCCGEEKIpaVIB2aDTEB9qYV9e2e8zV8gZZCGEEEIIUVOTCshQfaNeen45NqOOMKuBMKssEiKEEEIIIY5pcgE5KdzCpvQCDDqNnD0WQgghhBAnaVKzWMCRqd6q3GzaXyABWQghhBBCnKTJnUG+skscGQUVZBZVcG2P+ECXI4QQQggh6pkmF5AjbEaeHNkh0GUIIYQQQoh6qskNsRBCCCGEEOKPSEAWQgghhBCiBgnIQgghhBBC1CABWQghhBBCiBokIAshhBBCCFGDBGQhhBBCCCFqqJfTvO3YsSNPVdX0QNch/pTE2mhU+kajUCt9A6R/NBLy2SFOp9Y+O4Q4keLz+QJdgxBCCCGEEPWGDLEQQgghhBCiBgnIQgghhBBC1CABWQghhBBCiBokIAshhBBCCFGDBGQhhBBCCCFqkIAshBBCCCFEDfVyHuSaVFXVADOBLkAVcJvD4UgJbFWBoarqb0DxkYf7gLeB6YAbWORwOJ4NVG2BIH3jeNI/jif94xjpG8eTvnE86R9CnKzeB2TgKsDkcDj6qqraB5gKjApwTXVOVVUToDgcjsE1tm0GRgN7gQWqqnZzOBybAlRiIEjfOEL6xylJ/0D6xmlI3zhC+ocQp9YQAvIA4EcAh8OxVlXVngGuJ1C6ABZVVRdR/d/tGcDocDhSAVRVXQgMA5rSh5j0jWOkf5xM+kc16Rsnk75xjPQPIU6hIYxBtgNFNR57VFVtCMHe38qBKcClwF3AB0e2HVUCBAegrkCSvnGM9I+TSf+oJn3jZNI3jpH+IcQpNIQPhGIgqMZjjcPhcAeqmADaA6Q4HA4fsEdV1SIgrMbvg4DCgFQWONI3jpH+cTLpH9Wkb5xM+sYx0j+EOIWGcAZ5FXA5wJGxYtsCW07A3Er1ODlUVY0DLECZqqqtVFVVqP72vyKA9QWC9I1jpH+cTPpHNekbJ5O+cYz0DyFOoSGcQf4GuERV1dWAAkwIcD2B8h7woaqqKwEf1R9qXuATQEv1ncbrAlhfIEjfOEb6x8mkf1STvnEy6RvHSP8Q4hQUn88X6BqEEEIIIYSoNxrCEAshhBBCCCHqjARkIYQQQgghapCALIQQQgghRA0SkIUQQgghhKhBArIQQgghhBA1SEAWQgghhBCiBgnIQgghhBBC1CABWQghhBBCiBokIAshhBBCCFGDBGQhhBBCCCFqkIAshBBCCCFEDRKQhRBCCCGEqEECshBCCCGEEDVIQBZCCCGEEKIGCchCCCGEEELUoAt0Aady4YUX+po1axboMsSfsGPHjjyHwxHp73albzR8tdU3QPpHYyCfHeJ0avOzQ4gT1cuA3KxZM77++utAlyH+BFVV02ujXekbDV9t9Q2Q/tEYyGeHOJ3a/OwQ4kQyxEIIIYQQQogaJCALIYQQQghRgwRkIYQQQgghapCALIQQQgghRA0SkIUQQgghhKihXs5iIYQQQohjispdzF6ThlGnYWi7KNpEBwW6JCEaNQnIQgghRD22aX8Bt3+0gbxSJwBTF+/h7XE9GNIuKsCVCdF4yRALIYQQop6qcnt46MstGHVaFkwawNrHLkaNDuKOORtYtzc/0OUJ0WhJQBZCCCHqqbeX7SU1t4ypw2yoyx4lbP7/MbffYeJDLUz6bBP5pVWBLlGIRkmGWAghhBD1UIXTw39W7OXxhJ20nfY6KZus+LwKGv0SPhrWgcssE5j89TbeuakHiqIEulwhGhU5gyyEEELUQ99vzSSyaj9XL5/JoY02rP36EfvP5zC3iqH0h918sXsaP+3I4rutWYEuVYhGRwKyEEIIUQ/NXZfOG663yN9mJGjIQOL/8x4h144h4b/LiBihotmRzaw97/DMt9spKHMGulwhGhUJyEIIIUQ9k3yoBHvGcmy/HkYxmoh57oXjhlFETplH+IUhJOxKYdSO+fz7x90BrFaIxkfGIAshRD2yYOlW0qe/SYirDGs7lUuevh9LsMx529Qs3J7FpNJ5lB0yEXH/nfxSvoXvfv4Oi95Cv7h+XNHyCiJf+4KqsUMZu/UnHrK35dce8fRqERbo0oVoFOQMshBC1BMfv/MtEZPGMyh5JWpeMm0XzGXz0EvZv25ToEsTdSx96zLiUvNQ9FpmtkjlgV8eYHv+dtZnrefxlY9z68JbyTeZifvnM+gtbv752/s8/+lanG5voEsXolGQgCyEEPXA1t0HaD3reUJN5bS5NIseI3aTcEkhRl85ubdPJGP1+kCXKOpIVlEFPbO+oyjNwv6+LZl3aCF3d7mbRaMXsWTMEp7r9xw783dy28LbKOx8Gc3GXYCpvJLrF8/inWUpgS5fiEZBArIQQgSY1+tjxyOPEVxZSrNLDKTdMp21186iqG9/Ol+cjsbgIeueeylN3x/oUkUdWLotnUFZW/B5FGYl7eXattdyd5e70Wq0KIrC1W2u5s2L3ySjNIN7f7oXbn2dyB4eumWmsOuDT0jLKwv0SxCiwZOALIQQAbb6l9/osmcj+vZOHhrQlWs3v8ztG1/kcncKz/bsS8Lggxg8FWy95Xa8FRWBLlfUsuLN83Ed1FAUqie3RTD3d7//pHmOe8X04pWLXmFn/k6e2vwaYZOnYomq4u7N85j6wRJ8Pl+AqheicfDrTXqqquqB94EWgBH4J7AT+BDwAduBex0OhwySEkKII0pnvki4xseTl8WSVriHB3s8SKeITiw9sJRPd33K1i6tmF6+H93PHtbd/xh9334t0CWLWuJ0e2mb8QOlh4ws6+Xmri53E2wMPuW+g5sP5v4e9zNt4zQuiLiAGyYOZu/UVYz6agpfDujE2L6t6rh6IRoPf59BHgfkOxyOgcBlwBvAq8CTR7YpwCg/H1MIIRqsFEc6CTt3sLmjwh5zBTMvnsmEThPoFdOLR3o9wjvD3+GwzsBdvWMwdqogZNlCdn/4aaDLFrVk674sLshIRvEqbO1kY3Tb0X+4/4SOE7g44WKmbZzGjmG3ETvEQLPCPNL+/QoHDpfXUdVCND7+DshfAk8d+VkB3EAPYNmRbT8Aw/x8TCGEaLAOzHwZxQuz+2iZ3Hsy3aO7H/f7XjG9ePuStynUG3j0UiuaaC/OV/5F0bYdAapY1KaMjQsoztKTHwSdB12DWWf+w/0VReH5/s8TY43hsbXPo7t/JsGtyhm5exmvTf0ct0cu2ApxPvwakB0OR6nD4ShRVTUImAc8CSgOh+PoYKgS4NTXioQQoonx+XyEr19BWiwEtVEZ3ebUZws7RnRkykVTcRg0zBvpRmvwsOvOe3EXF9dxxaK22fb+SNkhI5tbKoxtd91ZPSfIEMQLA14gozSDV7J/Jub+ezDY3Fz/wwxmfr+llisWonHy+016qqo2B5YCcxwOx1yg5tfXIKDQ38cUQoiGaM/ixegLXPzUScP/9XoYrUZ72n0Hxg/ktgtu47MoC9lDi7EXHGL1XQ/IzViNSGlFFR0ObkTvVCju2oqk4KSzfm6P6B6M7zSeeXvmsbxtL+JGt8JWUU7Ym8/yiyOnFqsWonHya0BWVTUaWAQ86nA43j+yeZOqqoOP/DwCWOHPYwohRENVMud1PBofOb1acGHMhWfc/96u99ItqhtPdInE2LWUyN9Ws/xfM+qgUlEXHJtWUpzrw6tAq2FXnfPz7+t6H2qoyj/WPkv5nW8Q3k1Dj/0Ovn15Jun5MvWbEOfC32eQHwdCgadUVf1FVdVfqB5m8ayqqmsAA9VDL4QQoknzeb3od6eyLVHDtf3vPGkar1PRaXS8NPAlNHozj18ajaVZJeEfv8WyrxbXQcWitpXuWkxhtonkOIWhHf9yzs83aA28NPAlSp2lPP3bq0S89BHGMDe3//oFj876kdIqdy1ULUTj5Ndp3hwOx9+Bv5/iVxf58zhCCNHQZf78LYYS2NJfz3MtLjvr58XZ4niu33M88MsD/Hd0OJe/X4z5+Uf5MSKWyy7qVIsVi9oWnr4cJVdL3mXNiLREnlcbrUNb82DPB3lp/Ut8Hj+Qa/7xEPsefJWHFr3AA/HxvHVzb7SaM38ZE6Kpk4VChBAiAHK/eBcAy4ChGLSGc3rusMRhjGk7hnetVRwaZcLuKofH7uPTlbLMcENVXlqIMTsdDRAxcOifauuGdjcwoNkApvw6hb09BxF9w0CsORVc+d1T/PvH3f4pWIhGTgKyEELUNZ8P96697ImDUYPGn1cTj/R6hLahbZncyobxYj2Jhw/Bcw/wxk975Ma9Bihtw2Iy841U6aDb4LF/qi1FUXhhwAuEGEN4aNlDaP5vCvau0bTZsZ/geS8wd50sWS7EmUhAFkKIOla+fTnWXNjZ2kTnyM7n1YZJZ+LVwa/iwcfDQ1ti722g6/4UrG88xvPf78LrlZDckJQnL0OTbSAt0URi+J9fAS/MFMaUwVPILM3ksZWPE/XONxhjzAz79Vd2zZkqM1sIcQYSkIUIAJ/TSemKFeRMn07erFkUL1qEp1TuMm8q9n3+DgC+nv3P6ua800m0J/LKRa+QXJzGS+P6ENTRQp9dO2nz8WQenbdFFok4TwcLypm9Oo380qo6O6Zl/zoi8hXc3dv7rc1uUd2Y3HsyKzJWMCP5A5p/9BWKUcdNq37gv/95g20Hi/x2LCEaG7/epCeEOLOyNWvIfuZZnOnpoNGAtzrEKCYTYTffTPgdt6O12QJcpahNhVu3oLXA0BG3/um2BjQbwKO9HuXF9S8S9fdRjH/1J7puSSZE8yB/q3yRaX/tiUl/+vmVxfEqXR7uem8NVcnJvBTRnA8n9uHCluG1ekxvVRnFuYcIxkrcoEv92vZYdSx7CvbwwfYPaNGvBZe/9yHpN93Mfcs+ZbrezJ333UOnZrJ+lxAnkjPIQtShogUL2D/xNgCavT4d9beNqFu3kDjnI4Iuvpj8d95h78grKV0h04U3Vr7CDMwH3OxsoaV3fFe/tHlD+xuY2GkiX+z7lk8fvhJbpxhabMpi4nd3c+vMhRw4XO6X4zQFLy7YydX/m8Xry6bz/oJnWTp/Wa0fM2vHCgrzDFTqocuAq/3atqIoTL5wMv3i+vHsmmf5xZ5P81lv4q7QMemnD3jztTdZmZzn12MK0RhIQK5lZWvXkvX0P0i7cRz7b7ud3Ndfx7lfbpBoikqXLyfz4UewdO9O0jdfYx8+HI3JhMZgwNKrF82mTqHFZ5+isVk5cPsdZP/zBbxVdXeJV9SNgoWzMVcoZLVJRKP47yP4793/zrj245iT8ikfTBqArW97rNsqeHbRA9z/6kfMWZOGR8Yl/6EdmUVEzv87/TJ3sLQLmH1Owhd9W+s3PRbsWobxkI6DiTasZrvf29dr9EwbPI2ukV2ZvGIyy+OcJLz5Gt5KLQ8smc2nr03njZ+TpX8IUYME5FriKS3j4N8msX/8BIp/+AEvXiryDpE36y1SLxtB1rPP4imUVbebCldWFpkPP4KxTRuav/0WeZQye8dsJv08idsW3cYjyx7hg+0fkNcqnKSvviL05pso+Phj0m+4EefBjECX32gdOFzOM/N3cPXMVXU2HnPPT/8DIHzIGL+2qygKj/R6hNsvuJ0v9/2Xf98Qi+3a4bhTNbzyyxTSPn+ZEa8tY9GObJnl4hR8Ph9fzH2Evhuz2Juo4cvhGra1dtL5wDb2ZNbuZ7U3bTVRuQp0aVdrx7DoLcwcNpOuUV15dMWjLIgtJvG9t0DR8LdlX1I0Zwo3vruWjMKKWqtBiIZEAnItcBcUsH/8eEp+/pnyW69i2jMXcPWlO7j26n3cea+GNX2CKfj8C1JHjqR4sayA1dj5fD4yJz+Gz+Uiasq/eW3VI4z4chhTNkxh34GVVOYnszX7V17d+CqXf305k9c+he6BO4h/YwbO/fvZN3o0pcuXB/plNDrFlS7ee30KvT/6O7d+9ixvvLOg9s+geb0403I5EAHXDjz3pYTPRFEUJnWfxJMXPsnKrFXc3SMVnrwDV4mRsUt+4qVNj/L8nB+48o2VEpRPMG/pt4RvWo7JCQNe+5QXO97GL6qC3VXBlh9qcZiFz0dx1n40QHTfIbV3HMCqtzJr2Cz6xfXjuTXPMc27muZffIYhTM81a5Zz48JnGfHqUr7YcED6hmjyJCD7mc/jIeOBB6nas4dVfxvA+OjvSStN5db4YTzX81HGDZrE/L9E8ch4hUxTJRl/m0TWU0/jLZcxgo1V8fffU75uHaaJ13Dryuv5IGs5l5VX8b0nmu8qg/g4eTs/7vqNha5Ibm9+GUv2L2HUf0exqrWbpK/moY+N5cAdd5IzdSo+lyvQL6dBcXm8p/xD7/N6+H7mXxm69BOStmfQMn8/YxfN5Iv1abVajy9jE/Yshb3xZiKsIbV2nOvaXcf7l75PhauCG7wfseqVcRjaJmD+tZiPVvyLsWnvc/ec9Vz++koWNtGgXFjuZM7adIoqXOxJT+XHX59gyCbQXTaI4Pad6XPh/Rxu7sOlhcqlS2utjqqcZIryNbg10GHQqFo7zlFmnZkZQ2cwrv045u6ey4TdL+KbO5vgbpG03pHOx6ufZMrcpdz+0Uby6nAWDyHqGwnIfpb7xhuUr13L0tGJTDev4uaiEubv2sTfl7/L1V/exx2bvuOrdrcz7sonePxmDQv6myiYN499Y8ZSuWtXoMsXfuYpLePQv19G2yqOewwfcwAXd+gv4ZBpNveW/YObdC/zr04L2NzpcaKLspm0/B2+0rUk0RLDw8se5sWMD4j95ENCxo4l/z/vsu/aMVRs3hzol9VgvP3WNF544y3KqtzHNvp8zPrgGnI27CTykIaPro/g9ZFa4grz2fvhJ7VaT/6SzzC6FHLbqLV6HIDu0d35etTXDG8xnGlZc7nrrwo5f7sSV6WJXgvW8NPuJ2lX8Bt3ztnIdW+vZWN6Qa3XVJ8cTHNQ8sO9vDxtPM9+dyVjd0JHyQAAIABJREFUvveimI20nPx89Q6KQldbJLsSIDZ1W63VkbVzNfocPZmxRmz22p0t4yidRsejvR/ltcGvcbD0IGOW3sa3j1xH+I0D0WeU8/GKF9H/uoBLpy1nqcyXLJooCch+VLlzJ/nv/IfUHmHMbLGPhwvL6a2/kqdt/+IezVPMNoyl4MButJ/dwHWr3ufzvs+x/qo2PH+9QnFeJvvGjCX39dflbHIjUjDnIzx5ecy4MIN8nQ4l4xambr2YtIIqImxGiipczN1SxFUbOtEx7wW+ChlPQsoKZm9fza0hnZm3Zx63/Hw7Vf83gfg338BTUEDa9X9l/x13ULZ6dZM883cumq34mFarp/Hmm3dxILeQ/JJM7v9wML+lpHDpbz4s467nhX8so7RLBOkx0HPzYipdnlqrJ3VV9aX6iP4ja+0YNQUbg/n3oH/z/qXvYzcFc5/tB555pBUll3SgwuHkrnkzWZD/FrlZWYyetZr75v5GTnFlndQWaOXbFnDRF6kkbtjEjfN8JOZCi2mvo4+O+n2f3hGdSY9UiCrJodJZO1dvilPXEHVIobxdUq20/0cuTryYb0d9y7DEYczc+hbjOx4k56nRKF74+8+fMnnvh0x4fz0vLNhJlbv2/l0IUR9JQPYTn8dD1j+ewWnR8s+BRdxQZmZG1rPcmXk5mWG9CO50KWua38kQ13Qedd1OYWYy8XP/yhxNPJ2GXcs9451susBC3sxZpF56Gbkz3qAqJeWsApDP56PS5cHp9srCAPWIp7iY/PfeJT3Jy/IEPaUHxtGh+RAW3j+IJQ9exIcTejP/vgFs/cdw/jdpIHcM6cC/y65kYNnLbNZ04YFN3zOjwkhmcTpjvx/L1zEHabHgOyIfeIDKbdvZf+tEUoYMJeuZZyj+8UdcOXKm50SRFwyg6yYtuo2rGfdtP4Z8NZzU3DzuW+BD36kTCY8+jkbRcGf3v7GhpUJ8UQ479x6qnWI8bpzpRRyIgCv7XlY7xziNXjG9+Hzk5/xrwL8oNriZ2DOZGQ+1obJtKJoVKbz93RO87VvBT9szufjVZXzZBMagdv3L3yi/egj9U7S0NjYn9qUXsQ0adNw+vVpdTlaYgsHjITO5dmYfyt+7CaMbwnv2qpX2zyTcHM7Lg17m7Uvexqg1cp9rPq8+0hlfCzOd1vzGd1tf4Jslv3HNzNWk5cliRqLpkIVC/KTo2/lUbtvGO1cqdFTMzN7/CGP7tuPRy9phNR57mytdHr76rSPXLhnELZUfMe7XD3jMEs7AHmN5LmI9IZ3KuGuDD9fMmeS9+SbasDAMLZPQhYWjMRlRPOVUlORTWlpMhauKCq+XQo2RHK2ddEMMOw2JFIbEYmwWhxprJyHMQnyomeZhFlpF2ogKMv6plbvE2Tv8zht4S8t5Y6web+5QHhw6lgn9W5z0/ms0Ch3i7HSIs3PPkNZ8seEAdyyOpZdrLf/O/4SvcnN5LqENUzZMYX7Kt/zfyIe48JafKV28mOKFCyme/x2Fn30OgC46GqPaFlOHDpi7dMHctSu60NBAvPx6of/jr3PA9xwjPv6M7ge15MeZUHc4MdiDSXjtNRS9HoCB6mgWNHsejc/JvpW/0l31/1hQX9ZWgg4p7GhvYnhw3VxKr0mjaLiy1ZWMSBrBgr0LmLl5JuNGlTH6oiTGfLOPhG+/5duYX3i/30Qenufm282ZPDeqIy0jG+eiNQazlV7/monvOTdotaf8XIxIGoxi8wAK2TuTadnxzy8BfRyvh8qcfMBAy77D/dv2OeoX148vr/ySb1K+YcZvM/jrdR6e2BxJp4U5fJL1L94ruoYr88p4eUwXRlwQG9BahagLDSMge9zgqQKDNdCVnJLX6ST39dfIiIat7RQK907iiat6cVOfxJP2Nem13HhhIld1bca0xa25es0Qni6bw6AVb/K10c5HLTrwePMczEUahqYb6Z3hJPLQNgypTrROD4pXwUf1qX+rRyHIBdE+BRUYyNbfj+M2atkfHc+PEd35MKYrJUfeO7tJR7tYOx1i7XRqFkzX5iG0irQ26NDsraxEYzIdty2vIo+djlW4f15B7MEKItp0InjkSAzNm9dRTRUcnvsJW1tCRlAcj3W/nxsuPPMlVJNey819W3Bl5zimLYmj37rO3KJdzL8O/MBaQzlT3R7uXHInrbRW/hLUlsHXdaTN+L5UZRRRnpxJ1b4MKvfuI3/lqt9X6DO0aoWle3fM3btj7toFQ4uTQ3pjpSgKCU/+g+IevdG99G9idhRg6tyZZlOnoo+OPm6/+DaJQDIlG9fDRP8H5LJ1/8PoVMhNaOH3ts+FTqNjVOtRXJZ0GZ/t/oz3tr3HV+O13JRi5oqFh7nl61cZ1X8QkzSXc9lrh5k4MIl7h7TGZmwYfy7OlaL7g9elNxMabgYqKU7d5/djVx1y4M7XUmJWUNt293v750qn0TGm7RiGJw5nxqYZPM8XtGtu5eH/ljJh9VdcnLSZR0puYu3gjkwe0R6zQVZoFI1Xg/jES3n6L4RlbKGkywX4Wg0mtFUP7BHNUPBBZTEU7ofDqbhz0snfXQS+SEw9L8M+4jIUbe3/Ay787DPc2Tm8f70G76Er+PtlA08ZjmuyGnU8ObIDKb2b89riPkzb+RNXe5Zz7Z6d3KI5zCKrhZ9bWfhHRxMVGoXq/1Sn+M/l86F3g60S7OVgL/cRUwCtM710Tkvnnv3p3Kl8w94WOlLaBLEzNp5kTTO2O4KYszUYrzOcIG0MHWKDSYqwkRBmIS7EREKYhWahZsKtRrSa+hum8jeuIufG2yhpE0ZRlxgygyo4kJtFs+Qqeib70Hmh2Az872fy33uPpM8/x9jKz2eBTqF4+oN4y73M76VlePxDZxWOawq1GnhuVCcm9E/izaVJXLj5MvqUb2GCcyflwaksMRYxzbOJaYWbCPJ4SXK5iDG7CVe9hLTxEuT0EpcNkdk6NDlpFH6bRuGXXwKgjYnBPvwSgkeNwtShQ5MIy/YRI7CPGPGH+3Ru0ZuMsGTsqetqpYZ9q39BB2g7D6iV9s+VUWvklo63MKbtGD7d/SmzTbP5LKmCO3/xMHDVMj4K/43v//J33vzFy7yNB3nwkraM6RGPTtu0RuZFRcfh1O6lMm2v39vOSd2ELUdDdvMgNJr6874GG4N5ss+TjGk7hmkbpzExdCV/XefjL8tT+PjQizxXeCMj9uTy4jWd6duq7q+GCFEXGkRA/i3DwwVr7RTvSOdQ17epau3Ep4NijYaDOh25Hh2tt+oYtAEsziNP+mwJmcsW0+7labUaAHxuN3lvvU5yPByMjqBb8PVMHHD2Yah1VBBv3NiDnOKOLE++gbcyisgrKMDnqgSdkYEWG3ZbKXERbpIidVgMWvRaPRadBbPejE7R4fK6qPRUUuWuosRZQpGziKKyXLbl7UazfSdhmzJptruCNosKGEEBByK28VtrhU0tFRwtFBSNlly3harMINJTgjE77bgrmpHnjeaQEoExKIIIu4lYu4mEcAstI6y0irLRMsJKmNUQ0ICVpjvM94MVBm0+TPy8w8QDvYFys8KhdhYiWx9mV4yLzwjl+U8q2X/PPbT86iu0ttq7bOwrSCfr2yUciNBxsPnFfHTFJefdVlKElSljuvDE5e35fltnFu46xIa0Akqr3Bj0OVgsu3GaD+Aw5LNLX4rHXIlXe+QfQTTQpfrHKKebXjkuuuz3EZWWQ/THH1Pw0RzyIiPZ360vJb0HEtK2IwnhQcSHWIgNMaFvYkGoa8vhzG02l57J2RSWOQmxGvzafvHeDPQm6Nn7/PtDbbDoLUy8YCI3tr+RBXsXMC9yLovbObj3u1JGfvACnQYk8V7MTTz2dRXvrtjLg5eojOgUg6Yef3H2p8TgBA6F7kWTmeL3trOT1xKVr1AwoK3f2/YHNUzlrUveYm3WWt6KfpNHWm3i/m+reG7N+6wq/JXxh67nit4tmTyiHVFBpjM3KEQDUicBWVVVDTCT6j/XVcBtDofjrD9tmr/wD378eibq/G20WQHl60xsa6FQYoM2RRquTvdicPvY0T6OLRd1Ic+8h1ZrUrniu4UkJ71G23seqK2XRvFXH+M5XMbXQzVUlY7npVs7n1dgjLKbuLZHPNf2iPdvgUOP/L/Ph3PrSkr+9w2WNRtpvj6HUWt9ePU+cuOcpMZVsCahkM3xmVQZFDQ+H61cLkZWOWnjVIguC8NZ2JwNexL42N2aXb5EPGiJthv54s6+JIYHZvhLfNIl5F5oZU67vUQ6q2iutdG+fRu69O9Kj2ALPmc5YZ8/SOvMb5gyKoJn5u6n8PMvCJ94a63VVDH7ITisY9ElBmaNnOyXM/ChVgM39Unkpj6JeLw+0vPLSM8vJ6voYkoqXViMOuJDqseaR9v1oHGSW55LWnEaKYUp7M5PYXfwDpbEZ1DVz4O1wkff3T4Gbc+l+6L5sGg+h0JgY6KGOfEWtkdHURkcS5QpkQRbS5JCWhJricVu1hNiMRBi1mM2aLGb9NjNOsz6U4/hbEiCY7tRFO3Fts3H/l2phPRs77/GizLQZntJidNxTcsO/mvXj0w6E6PbjmZ029HsHbSXJV2msm/uUi5cuY//2/Qc318cwk+WXkz6pg2tf+7EpKHtuKxTTL2+wuQPCaFt2RC6jIS8TL+3nZeylRZAbK++fm/bn/rE9qFPbB+29tzCZy2eI3z+Li7/dRvtM3fyRlU/hu68gklDO3FLvxYYdTLsQjQOdXUG+SrA5HA4+qqq2geYCpz1IL++zfrR92/98N3no2DNSgq/+Zq+W7bjyyxEHxONdWxvQsaOpX27dlx75Dm/aEaxK3MPMR++T+s7/obmj8aZ/Ql5b08nOwy2RLXl1UuvqL/j9BQFQ5eBhHcZSDjV8/OWr11D6cqVmNatJ3rNPvqtARQv7mYR5MeZSAmtZHNQMavD3OREVGJSkulauY0rqqp4wqUQaerAAWsvgg2B+3CPtpt4Y8JQjn0TOJ5isND8xpkYPyigW+l6dsWb8H4ym7AJ41Fq45LmwY2k//wrVToz7kFj6RDj/5tZtBqFlpG2M9w8ZSTIEETLkJYMTTj23vh8PgqrCskrSqfw4FqKszaTmuZAuy0bW7qbi3ZpGbalFCjlcNBedjRfTWqswqYoWBihwaTVY3VZ8LjCKHVFk+9sxmF3HBpvCMHGUKKDTMQEm4i2G4kPtXBpxxhaRzWQm7y0eoJDjICT3ORU8GNA9iSvJrhAw/4Odkz6evoZUUPLkJbcMfJNGF7O/o8nUzF7IePmFzIgejGfXPQTW+0W/m9pe15Y2pvx3YdzbfcWhPn5jHt9kRjdhe/CoOveEnxer18/N6pycgFo1f0iv7VZmzpHdaHzmK8oGLCJpf+5m4gfCnl68Qo2tlrFh7TnvQ1DeWjQFVzTPaHRf3ESjV9dfVIPAH4EcDgca1VV7Xk+jSiKQli/gYT1G3jGfQePeYPvt1xE6BJY89936H/tPedzyD9UuXgOzsxKFlyioVPYDQxRo878pHpCa7MSNGwYQcOGAeApKqJi82Yqtm2ncudOzLt3E70+l/5H9vcpChUhJvJsOjKsBlYFQZnpADbDPtr3HwRq/bpsfByNhqjrZnDXtC483c1K++9yKFuxAttF/v+j5Fr0Is59Jta00/GPK+/ze/t/lqIohJpCCTWFQnTX439ZfhhfbgqVG1ZQsWUbQY79RKTmMXDn0flfvZTY3GSEV7A/7DBZYankhECuXeFwEFSaFSp8JjKcdtIzI/kxOZbt2Zcz66/1uG+cID4uAUghJ2Ur4L+5iovX/wJAQVI7v7VZJwwWEm59nebXH6b4zcfRfvELT3zhJS+mjLn9N7OqzW+8nvwh0za3p5WlD6PaDeTKTm2JCW48l9utEW0psfvQe6Ag/SBhSQn+adhVgVLgptyopV1S/byqcDqhsd245snVeIZ/yK6ZL9F5s4/pe3ewvNNOZnlnM2VDb27tei239RqItokN1RKNR10FZDtQVOOxR1VVncPhcJ/uCX9aSHO6de1JxuptHPz4A3yj7/bvJWCfj8Pvv4ZLCytbtuDzEZf7r+0A0AYHY7voouNCo6e0DOfeVKr27sV14CCurCwis7NomZGBM/0QmooqPDodvjvtAaz8LNmi0PV7kPabZ1BotaL5/GNUfwfkrC0cXLkagyuY0mFDCDUF+7f92mYJQ0nsjTmxN+bREHZkszs/n8rdu6natQv7nj1E7kujQ8o+vCWlxz3do4UyWwm5wSVk2jM5bN2KRtkANJyA3KJtN7xKCu4DO/3abvqOLRiBkE79z7hvfaRYwgh++C3s9xRROPMZ9POWMOkrF/cGedjZ3sncLptJtW/m9ZS3mLk9AqP3AjqGd2dQQi+6xTejdZQNi6H+nzk/paBYtDYvoCE7Od1vAdl1aBfGwxpyIhvo1JsaDdo+t9Kp62jcS6aR8/7HDNqpY9D2Yta0+5nvC5Yyc2c4F4T1YWyHYQxM6Fn9xVyIBqKuPrGKgaAajzW1Go6PiO1zA6kLH6TDDnBkbqVdsy5+a9u7/XsKdpSyvq2Wzs3HBmwMbm3S2qyYO3fG3LnzKX/vczqrp5wzNIxLq7aB9zBqzTS+banQd+16fB6PX2c5cS2fRvrBIDR2GHfjZL+1G2i68HBs/ftj6398uHMXFOA6mIErKxN39iHcOYdwZWQQlb4PNSsbd1EpwbFdT9Nq/ZQY153NQV9iysvwa7tlB/Mpt0LPDvV7rOmZKNZgQh+eRsgDbkq++4qCT2Zzwa/7eHG9G2+4h4MtPKxMOsiiFjmsr1jKegdYt1rRljdH4QLigrrSMqQFCeEWOsTauahtZP0PhxotNqse8FCSme23Zg+lbCAiX2Ff14Zz5fGUTMHoRj5D3LAHiFz8Ooc//pQBO9z036UhJzyXpR0WMD1tAU+EKth10XSOvIDecZ3pEN6BdmHtCDY2sBMJosmoq4C8CrgS+OLIGOTaW9i+Bk3b4bSMdFLiNbLihw9pd9s0v7Vd+slUNE4NP3e0MWXYaL+125AoBgP1/E/b8QxWTK1H4cn5CeM2H+U7tmPt7KcvTSWHqNryHeEHo9hwUQKDguL80249pgsNRRcaivmCToEuxW/sYa0pCAZbYdGZdz5bFQVo87ykRWm5MrF+zlZwrhSdDvvV12G/+jpcWVkU/+9/lCxZQsJvW7hho48btD48EZAbVsmeiCo2RxazP3QXae4vOFioEJ1tY+mGWBJvfo+kqPp/VjHUbgcKKMny3416qTtXElUFhnYX+K3NgDIFo7/yKaKveJyIXT9T/Om7mFfv5LoVbq5bAeVhHnYmZLIqKZe3Wiym3FT91yPcEIca2oGesZ3pEdOFdmHtsOgtAX4xQtRdQP4GuERV1dWAAkyok6MaLJi79KNo6TYK163EN9Hnn7MV2dvJ2ZhOgdVEVfvhxIU0kJuQBGEDb6Ptnm+BYFIWf00XPwVk14bZbMq2EeGFDtfXTfcWtSA4nsogL1H7q/zWpO/AZmwFCpktLViNer+1W1/oY2MJnziR8IkT8RQVUb5xIxWbNlGxbTsGh4OYXQUMwgd4AHDrocRcSH5QIcaRWyGq/t+gFhvZDK9SQElOmt/azE/fSxTQsmfDHHZzWhot2o6XEPrPS/6fvTsPj6JK+4f/requ3pdsnQ1I0tkqAWRRJIRFQREXAiQEQRkFUX8+0Z8ymTA8r4wjyAsOKEZk85UBR3AGUEgIoPIMPioIgywKyDakCWQja3e2Tu9b1ftHkwwhK2ST5Hyui+tKV1edulN0krtOnXNu+AJw5etQn70d5uMnMepiBUb96gTAw+PjQUmQEBeC9TgfoseW0P/FerH377MYvng29mUsSpzXq98K0b/1SIKs0+k4AGk9ca7b+TzwFIoDziGy0IwLVRcwXNP5hMhzdCPsZWKcHEFh8YT5XRAl0WNC78dgaSAuaxxg/nUUWNQFbXIeOE79DcYbcrgDBHhowtNd0CjRKyRqQMFDZeZgs9gglUs73aTj12MQcBQMwX3/qYJArYbykUegfOQ/K6d4h+KUeP+VlcOt18O/rg5asQiBAx/oxWg7boCfFvXSS+Cry7usTbe+DgAQ8+Bv/wahM5hIFv6L/wL/xd6qp7azv8B65BvYzv6CyPxyhOvsmHZzX7eCQ7WfAHpFHYyJvwAkQSZ60T06a6LjBOFjERBgh+CqAscLjnQ+QXZaYP72fyDwyHAubiAywmK6JlCiZ1AU5LFPomZANoZcrIDH4YBALO5Uk57rR1BvMSC8NBBl04ZDQJN1QO9ZFAWhWgQaHly/dBlDE+5qwZ0mDBd+AQC4I/vIo/Q79J+hOPfu9x/kH4tfFYCoTt81DfI8hEYXjHIBJD79pxIdLZFAPnY85GO91SR5noe7ogL2X47CcfZfcOh0UJQbMKDIDr+hll6Olujv+nyCjIAYyIOFMF8BCn/6Hhj9+861d+VrVBQJUKMAIhKTuyZGokf5Dp+KgEM7wXhkyD93GDFjnuhUe/pjn+FfNb64jwPipj3fRVESvUXppwZQg/zcs12SIOsLbkAoAEIHP9j54IheEeAbBaOMQoDJ1DUNWqshMVKo9el7Q27uBEVRYEJCwEybA+W0Ob0dDkE00fcXKKQoUEO9qzAwunyYneZ2Dmgbd2YHnOVi/BxL49WEmV0RIdHTBiVAq+IAAFdPfte5tuz18L3xLWxlEljlQoQlTu6CAIneFDRgEACgtuBK5xvjeTirrCjzBxIj7q0VPYj/YJQhsMl5yCz2LmnPWXUNaiMFi/89sEQmQfRTfT9BBqAaNhGc3IOICg5nKs/cfUOmClhOnoLQDVyLC0OoMrjrgiR6joCBKnoM7AxQc/HXTjVVdXoPCgQcBhd44Ei4r0uXjSN6R3TUffBQgLu8uPONWatBGwG9D42RoYM63x7RO+QauCU8FBY3eJ7vdHPX8k7Czwy4QwZ0QXAEQXSHfpEgC8ITofBxIkIPnCw/efcN5X4NfYUEdgYIf7jrqmwRPU819HHUB3BQFVWA47m7bqfu7F78YAmAwg5EPJ7ShRESvUXur4VZBoiMVZ1ui6/MhbyeQrWPFGKG3Dzds6S+4GQcGA/AmTv3FBIAiq54O2qk/XRcOkHcC/pFgoyQ4ZD4eBBSzeNc8d0nyPyVr1FfJsMFLYWnR0ztwgCJniaJHAeRrwuD9B5crdbdVRseWz0G1p2CqdpbKCVwwqNdGSLRW9QDYZXxkJo6nwi5rvwCAUeh1l/TBYERvYamQUu9fy5tlYZON1dfWgQAGDR0dKfbIgiie/SPBJmRgg/1Bw3ApcuDyXkXEy1sdXD8+hMkZuBKrC8i1BFdHSXRkwJYaNQ8pE7g3NlDd9XE1Z/2oVAEaIvdsEcEQejn1/5BxG+fagBcUh5yS+fXQjbpzgMA7MFRnW6L6F1CufdGuKak81UWPVXeJd5ih98by9wRRH/UPxJkAMxgb7WviEoe5w3n77yBvP9Fbbl3xrFq/CPt7Ez85tE05NpoAEDRzz/dVROW8/vxjcgHcSU8/MZN7MLgiF6lGgBeykFu9XS6qYqC6wAAWWTfqTbYX0kUcgBAZVF+p9uijS6YJYAigNxUE8RvVb9JkNXDEkGLOGgrgbOVZ++8gav/g1KDAiX+wGMJ07s+QKLHqUdPBEfxQMH1O554Y3c4EWM8gSKTEiI34Deuby/2368wElASCmorYHVZO9WUuaIaVjGgDR/SRcERvUXh5y2JXVtW1LmGPC5IjUBdP1/ijSB+6/pNgiwcOBISHxeiKgU4pz93Zwd73PDkfg9RBY1LWgYjgshyTX2BjH0ILiUPTbUNFZaKOzr28i9HYBPa4V/qBE8Bsgc7v14u8dshkDEQuYEKfcHdN+Jxw1PrRLkvcP8AUlDoXufvPwAeCrDpyzrVjsdUBt86wOwr66LICILoDn2/UEiD4Psg9nEhNN+Ny4aLcHlcYAQdvIMv/QW2EisYtwzm4fFgaHLn3ycMeAAipRuh1TTO6s9iqqLjEy9rzv8P8qRSxJbyoCMjIFAquzFQoqeJ5FIAFhQXXEXkgLvs/TWVgTHSqBwowORAMknvXhfqMxDlMoCrqexUO5UVl+FrBsr8+k8Fve505syZQKFQuBXAUPSjTj+iS3AALrnd7pcfeOCBZmUy+0+CLFaC16ghuuqBosaOKzVXMEwzrGPH5n2LGwY53DQweDIZXtFniGSQ+skResWF3cU/Y2pkxxJkD8dDoz+OncH+eKPcA/UMMhO9r5Gp1AAsqLxx/a7b4KsKIDNTqFHJICFLvN3zQv0jkCcB6Pq6TrVTeO0sfDmACgjtosj6N6FQuDU4ODheo9HU0jTd+UWqiX6D4zjKYDAMrqio2AqgWXLXr+626CjvTPIww51N1OPzvkW1QY7rIcC4WLKUV1/CRGghcgMFuac7fMzFa0WIRh6qzTykdg7SESO7MUKiN/j4BQEA6itK7roNd+EV0DwFk5pMxOoLRMoQ2CWA0GrpVDv6oqsAAPHAuK4IiwCGajSaepIcE3eKpmleo9EY4X360Pz9Ho6nV/mMTAAARFfJOj4O2WwAX3IJPlUcirQ+CJaT6nl9iXrEgwAAYemNDk/IKjr7Lc5LRYgs9RYYkY4Y3m3xEb1DGTwQAOCsurOx6bcy5XtLVTsCwrskJqKXyQPgEvOQ2Dq3/J+pwjuGOSCK3Fh3EZokx8TduvnZaTEX7lcJsjhqFBiZG5GVApzXn+/YygWFR1FbJYKAA+SjH+z+IIkeJR3lXbIvtIbDpapLHTqGKjqOH6VyxJXRoH18IIqI6MYIid4gCR0EDjxQc/dFIQw3vMuBiUIjuyosojfJNfCIeUjs7k4146o1AgCCosja2ATxW9avEmTvRD03Buod0Nv0KLeUt39M/o/Iq1XBQwH3PTqz+2MkepQwejQoMYcB1TzOVLb/VKHW4kSU5RyOKVQYWimCbPhwUBTVA5ESPUkeEAq7FBASf5vYAAAgAElEQVQZ76Ko0E11ld7JXH5h5FF6nyDXgBdzkNnuvjQ9AFD1drgFgGYAeRrZl5w8eVI+a9YstuH1uXPnpNOnT49LSUlhFy5cGOHxeNdV37x5syYpKSl+2rRp8Xv27PEFALPZTM+fPz8qNTWVnTNnTmxJSUmrKwHs27fPJy0tTdvw+vvvv1fOmDEjLjU1lX3ppZciLRYLDQCrV68OmTZtWnxycnLcqVOnZABQWVkpbDhPcnJy3LVr18QN7ej1euGkSZOG2mw2CgCqq6sFzz33XHRKSgo7f/78qMrKymZz1oqKikRz5syJnTVrFpuamsrm5uaKb32/oKBANH369Ca/ALds2aJZtWpVqwPwP//8c/+vvvpKDQCffPJJq7ObN27cGPjOO+8MaHh9+vRp2cyZM9mUlBT2pZdeirTZbJTdbqfS0tK006dPj3v22Wdjrl69Km6tvZb0rwRZGQzaVwD/WjsEHh6/6n9t9xBP/o8wV4pREEJjZMTYHgiS6FECIYR+YmgNwE8lZ9rd/dS/r0PJlKLK7YZfpRWSYff1QJBETxMqA+GU8pCabXfdhqPGgnopEBVKlnjrExgJIKYgcQG803n3zZg8MMkpqG9W5iPufWvXrg1aunRpuNPpbOwtWb9+fWhaWlp5Tk6OzuVyUQcPHlQbDAZhVlZW4N69e3N37Nih++ijjwZxHIdt27YFxMfHW7Ozs3VTp06t3rRpU4t3T0uWLBm0fv36ARzHNZ7n3XffDd+8efO17OxsXVhYmGP79u0BZ86ckZ09e1a5f//+K+vWrctfsWJFOACsXLlyYFJSUk12drbu97//falOp5MAwKFDh1Tz58+Pra2tbUzMP/roo5ARI0aYc3JydM8//7x+1apVA26PZ82aNaFz587VZ2Vl6V555ZXy999/f2Bnr+W8efOqp02bZgSAzz77rFkibbVaqVdffVWblZUV2LCN4zgsXbo04r333ivMycnRjR8/vr6oqEi0bdu2AKlUyh04cCB32bJlxcuWLQu7k1i6bBULlmXVAP4BQAVABCBDp9OdYFl2DIB1ANwAvtXpdMu76px3jKKAgSGgL1ch3CjGWf1ZPBX5VOv71xYC1YUINITil/EDIBKQX2h9kWhQCEIvFiG39iI4ngNNtX7fWH7hBxhlEmgrAYoHJENIAYg+Sa6BR8pDYfG0+5loEceBr3ehWiUAqyGrFfQVlNi7GomjrgaSwDvvAeY5DlILD4tcRJ48dYPtPxX67z1bEtCVbc68f2DV/LER1W3tEx4e7ti4ceP1P/7xj409uyzLWuvq6gQcx8FqtQoYhuE1Go374MGDlxmGQWFhoYhhGI6mabz++ut6t9s7dKesrEykVCpbLOM5cuRI85QpU+p27drV2LP6j3/8QxccHOwGAI/HQ4nFYu7UqVOKhISEepqmER4e7vR4PJRerxdevHhRERsba5szZ05sSEiIY+XKlTcAgKZp/P3vf9elpKQMbmi3oKBAkpGRUQoAY8eONf/lL39pllwuW7asRK1WewDA7XZTIpGow49XCgoKROnp6ZGBgYHO0tJS8eDBgy0ffPBB8apVq0IDAgJcdXV1ArPZLFi8eHHYmjVrihuOs9vtdEpKSnViYmJ9fn6+BACuXr0qVqlU7r/+9a9B+fn50vHjx9fFxcU5Pv30U+nDDz9sBIC4uDhHcXGxpKPxAV3bg5wB4HudTvcwgBcAbLq5/RMAcwGMB5DAsmyvzkyQD/H2+A2tDsaZynZ6DAuOotAoBeMBAsdO6IHoiN4gY4dAaqNAW03Ir2u9jCzP85CU/oSjMhlG1qoAAFKSIPdNcg0oCQe1hYfRYbzz4y0GMBYKtQoBBvgouj4+olfQYm8HW53h7lY3qa69Dl8TYFNIuzIsopfNnDmzjmGYJpOatFqtIzMzM2zy5MlDampqhA8//LAJABiGwSeffKKZO3du/BNPPNGYeAuFQsyePTs2Ozs78Mknn6xt6TyzZ8+uvf3GKjQ01AUAOTk5PmfOnFHOnTu32mw2C25NsmUymcdoNAr0er1IpVK5v/zyy6vBwcHOdevWBQPAY489Vh8QENAkKY+NjbV9++23PgDw9ddf+zgcjmb5okajcYtEIj43N1f84YcfDkxPT+9QFR2KongAKC0tlWRmZhYeOHDgysmTJ9Xl5eWNnbaLFy+uUCgUnluTYwDw8/PzTJkypf7WbVVVVcIrV64oFixYoN+1a9fV06dPq3744QdlXFyc9fDhw2qO43DixAl5TU2NqOFGpCO6ch3ktQAapvcKAdhZllUBEOt0uusAwLLsIQCTAdxhKbuuox41HuXUD4gs5XEg5hpq7DXwk7S8DBNfcBS6GhW0AIY/+nTPBkr0GPGwMQD+ByE1wOmK04j2jW5xv6uVZgx2X8CHUimm16ghDBZDqCEFIPokqS+EYg4iO1Blq4KvxPfOjjfegNRMoXaQBApx/1luvq9jpFIALlRVliJ4yJ1XzyzXX4S/CaiOvMPPE9Eh88dGVLfX29tTMjMzB23fvj136NCh9s2bN2uWLl06qCHZS0tLMyxYsKDq+eefjzl8+LB50qRJJgDYvXv31StXrkjS0tKit27dmrdkyZIIAEhKSqp+4YUXqlo714YNGwK///57v23btuVJpVJeoVB4GsYiA4DVahX4+Ph4lEqlZ+rUqXUAMGXKlLoPP/yw2bCJBunp6eVvvfVWWGpqKjtu3DijRqNxHTt2TLFu3boBALBgwYKKqVOnGg8fPqxcuXJl2OrVqwvi4uKaLPEilUo5l8vVJLG2Wq20WCzmACAkJMSuUqk4APDz83PZ7fa76rT19/f3hISE2AcPHmwHgLFjxxrPnz8ve/311yuXLVsmTU1NZYcNG2aOjo62CoUd/318V8GwLPsSy7KXbv0HIEan09lYlg2Gd6jFEniHW9ya6ZsAqO/mnF2FCnsQYpUbg0q9YbXai8zz8Fz/ES6DCKWBDAYNHNzyfsQ9TzT4AQBAjJ7CsZITre536nIebLJK2CkeoSVWMryiL6NpCMQCKOxAtaVZgaV2eUqvQuKgYFSouiE4oreIFN6nAbWVpXd1vL7k3xC5AY9/SFeGRfwGKRQKt0ql8gBAUFCQy2QyCXJzc8UvvvhiFMdxYBiGF4lEHEVRfGZmZvCOHTv8bh7noWkaMTExjqysLF1WVpaureR4zZo1wefOnVPu3LlTp9Fo3AAwevRo84kTJ9QejwdFRUUijuOg0WjcQ4cONR06dEgNACdOnFBGRkbaW2v32LFjymeeecaQnZ2ti4iIsA8bNsw8YcIEc0NMDcnx6tWrB3366ad5Dz74YLN1UgMDA902m42+fPmyBADcbjdOnjypGjFihBVAu8OMOrTSGIDIyEiHzWYT5OXliQHg3LlzytjYWPvPP/8sHzt2bH1OTo4uKSmpNiQk5I7WaLyrrg2dTvcpgE9v386y7H0AvgDwR51O9+PNHuRba/AqAXSuDFFn+UWB8eURqDdCLJDgl4pf8Fj4Y833q7oKh8WAgeUhKB3bco8i0TeIBg0CKGCEwY11lb/Aw3kgoJtXPqv992H8SyaFyimAsEQPaSpJkPsyoUQCwI1aQwlwh1NPbEU6AIDZl6xU0JfIlL4AylB/l+tj15YUIBQAHUiWeOvrli9fXrRw4cIogUDAMwzDrVq1qkir1TpjY2OtycnJcRRFITEx0Thx4kRzXFycPSMjQ5uTk6PhOA4rVqwo6Mg5KioqhNu2bQuNioqyzps3LxYApkyZUvPKK68YRo4caU5OTo7jeZ7685//XAwAb7/9dsmbb74ZvmfPnkC5XO7ZsGFDq2MKY2Nj7YsXL9auWbMGAQEBzszMzMLb91m9evUgl8tFNYy9DgsLs3/44YdFDe/TNI0VK1YULlmyJIKmabjdbuqhhx6qmzRpkqmgoKDdSV3h4eG21157Tfvxxx+3eT3EYjG/fPnywoyMjEie53HfffeZp06dajQYDMLXX399wJYtW0IUCoXn/fffb/Y9tKUrJ+kNBrAHwBydTnceAHQ6XT3Lsk6WZaMA5AN4HEDvTdIDAJoGHxoIcWEdhjAsfq78ueX9Co7iZ5scQU5g4PhJPRoi0bMokQiMRoXY6irYPGbk1uRiSEDT5NficMPXcBI7w+R40hkH4DzpQe7jxDIFgDrU3kU1PUOxt0S1WxPRtUERvUrlEwTgMmzVrXbotclU7l1aVDKIPJHsa7RarfPAgQO5Da8nTJhgnjBhQu7t+7355pvlAJqsMRscHOzeuXNnXkfOM3HiRNPEiRNNDcddvnz5bEv7LVmypAxAkzHBERERzi+++KLV8xw7duxiw9cxMTGOffv2NYv/VocOHfp3e/G2dh1uv14NX9+MGwCwZ8+eq621O2/evCZDaR555BHTI488cuXWbRqNxv3ll1+22kZ7unKS3ioAEgDrWJY9wrLs/pvb0wDsAHAawDmdTneqC895VyTx8QCAuMpA5NXmocLSvDeAu34EeTXex6Pxj6T2aHxEzxNrtVDXeh/3nChrPsziiM6AANG/UcoIMN7iHbYlGUz+yPVljNIHAFBn6MB66bepqfQeIwslPYV9idovFBwAd93dJciOWu8DVGWYtp09CYLobV3Wg6zT6Wa0sv0kgDFddZ6u4JPwMKo/PYGwPAswCvih+AfMjZ/7nx08blgKfoSkUoU6fymkoZ1e2o/4jROxw2D55VcE20Q4mP+/eHnYy03eP/XrBfgpTRDCBxGVPFwaDYQBXbqaEPFb4+sPoBDWqjsfg2yuNkIGIHggKRLSl8jUgaiSADDe3UhBzuRdV9t3QFAXRkUQRHfoX4VCbmKGPgyB2IPA/AJo1VocvnG46Q6lZ/CTwA32Bg/RA726Kh3RQ0SRUeA9FJIrrcgz/htF9Y3DqOBweyC4fgjfymUYHTAMnO4axIPjezFaoifQvt4bIHddzR0f66q3eYuEBIV3dVhELxKr/GGX8BCYLXd1PG12wckAfv69OledIIgO6JcJMuUbDiaAgsZQgYSgh/BLxS+od96y2Eb+YfzkUEBpB7QT2ygkQvQZokjvI88ZlbUAT+Fg/sHG945erUKA5ARuMAySIpLhyM9vHKZD9F2M5uZKA3V30VtoccMopzDIh6xi0ZdIlQFwigHGencVFkVWDjYJBR95q5WECYL4jeiXCTIoCoKoMIjrnQi2x8PNu/HV9a8a376a90/Y9N6S3YrRCb0VJdGDxNHelUqktTT8bL7Ivrofbs4Nnuex7chlnPWthoYWY6IzEvB4IIkn44/7OpEmBBzNQ2C5w95ChwlCK1AvFyBIdUeFm4jfOJHSD24xD7HVdcfHWl1WyK2ATSqAkqyNTRC/ef0zQQagSnwIAAXFySu4P/B+/O3S3+D0OAFrDXY6ijG4mAcXFAjRwFbX0Sb6EKGfHwR+fnBYlEiud6PSVopdubtwIr8aqMrGaakYz4U9AbfOOwFYMoQkyH2dzEcDlxgQW53g+A5XUAVMlZBYKNRLRfCRkp7CvoSS+YEX85DaW6wE3CaDpRIqKw+HREzKTBPEPaDfJsiKyXMAAL6XfkTa8DTorXr87dLf8K9TH+EbqRTDCin4PvRwL0dJ9CRxdDScLg0W2v4NoTkSa39Zj4z/+f9QMPAogj08Zo1eBPuVK6CVSjADyI1TXydVBYATc1DYeNQ5Oj7MgjeWQm6lYJbJQNMkEepTpL6gxBzkNr7DRQwa6Ovy4WMBnDJZNwVH9KaTJ0/KZ82axTa8PnfunHT69OlxKSkp7MKFCyM8Hu9N1ebNmzVJSUnx06ZNi9+zZ48vAJjNZnr+/PlRqamp7Jw5c2JLSkpavbPet2+fT1paWuMyKN9//71yxowZcampqexLL70U2VBBb/Xq1SHTpk2LT05Ojjt16pQMACorK4UN50lOTo67du2auKEdvV4vnDRp0lCbzUYBQHV1teC5556LTklJYefPnx9VWVnZ7LFHWVkZM3v27NiZM2ey8+fPj6qvr2+SUxYUFIimT5/eZKbyli1bNKtWrQpt7fv7/PPP/b/66is1AHzyySetlqrduHFj4DvvvNPsD/Ef/vCH8Nu33/5/01H9NkEWDoqFQEUhqKIIYdLhGD9gPDb9ugmvFudgbBEgdXJQTBjf22ESPUgcHQWH3gaK5/GG0w8OpxgW5W4w8GBL9HNQSX1hv3gRkqFDSA9QPyBU+IMS8VDavOWmO8pWeg1CDrAoSDnhPoeRgmIAmQMwO813dKi+Jh8qK+CSk89FX7N27dqgpUuXhjudzsY/DOvXrw9NS0srz8nJ0blcLurgwYNqg8EgzMrKCty7d2/ujh07dB999NEgjuOwbdu2gPj4eGt2drZu6tSp1Zs2bWqxwtCSJUsGrV+/fgDHcY3neffdd8M3b958LTs7WxcWFubYvn17wJkzZ2Rnz55V7t+//8q6devyV6xYEQ4AK1euHJiUlFSTnZ2t+/3vf1+q0+kkAHDo0CHV/PnzY2traxsT848++ihkxIgR5pycHN3zzz+vX7VqVbNkdOPGjcHTp0+v3rt3ry4uLs62ffv2Ti/tNG/evOpp06YZAeCzzz5rlkhbrVbq1Vdf1WZlZQXe/t7WrVsD8vPzpbdua+n/pqP69UAoJmoQcKUAR06cwsYnNuKby//Ar0fewfALWvACPeSJib0dItGDRNHR4CxWeIInYUH9EcQOeg/+RRsRWlcM9XNvgHM4YL96Ff4LFvR2qERPkPpBeLMHudpWDXQwr9Hf8K6db1W32klC3MNoEQ2aB2pry6AM7ninVG35NUTygFtJlnjrNqf/6o9fd3Xt+psjnq3C6Feq29olPDzcsXHjxusNFeUAgGVZa11dnYDjOFitVgHDMLxGo3EfPHjwMsMwKCwsFDEMw9E0jddff13vdrsBAGVlZSKlUtniGJ6RI0eap0yZUrdr167GntV//OMfuuDgYDcAeDweSiwWc6dOnVIkJCTU0zSN8PBwp8fjofR6vfDixYuK2NhY25w5c2JDQkIcK1euvAF4K979/e9/16WkpDSOHSwoKJBkZGSUAsDYsWPNf/nLX8Juj2flypU3eJ6Hx+NBRUUFc//993e4lHNBQYEoPT09MjAw0FlaWioePHiw5YMPPihetWpVaEBAgKuurk5gNpsFixcvDluzZk1xw3F2u51OSUmpTkxMrM/Pz2+c5HH8+HH5hQsXFKmpqYZbt7f0f9NR/bYHGQD8Up6Dxy5A4P9+CAEtwLTy61haXQO1gYds5EgIlMr2GyH6jIaJeo5Bs0ExMow/8X8QX5kL9VOZgEgOR24u4HZDct/QXo6U6BFiFUQiDgobUG1v8+9jE7Xl3t/lnN+g7oqM6EW02Fsht776zgrI1FfeAAB4fMnwrL5m5syZdQzDNBlzo9VqHZmZmWGTJ08eUlNTI3z44YdNAMAwDD755BPN3Llz45944onGXyxCoRCzZ8+Ozc7ODnzyySdrWzrP7Nmza29/ehkaGuoCgJycHJ8zZ84o586dW202mwW3JtkymcxjNBoFer1epFKp3F9++eXV4OBg57p164IB4LHHHqsPCAhokpTHxsbavv32Wx8A+Prrr30cDkezfJGmaXg8Hurxxx8fcu7cOVXD99geiqJ4ACgtLZVkZmYWHjhw4MrJkyfV5eXljZ22ixcvrlAoFJ5bk2MA8PPz80yZMqX+1m1lZWXMxo0bQ1etWtVkX6Dl/5uO6tc9yIonZgDvrMKQggso+uYDhP2yATl1YxFXXQjFC3Pbb4DoU8QxMQAAh8EBxStHgH+tBYbPAUKGAwBsFy8BAKT33ddLERI9iqYhFNFQ2oACW8fXQq43GCABIAuK7L7YiF5Di8UArDDVNK/A2paG8tSeQHLj1G1Gv1LdXm9vT8nMzBy0ffv23KFDh9o3b96sWbp06aCGZC8tLc2wYMGCqueffz7m8OHD5kmTJpkAYPfu3VevXLkiSUtLi966dWvekiVLIgAgKSmp+oUXXmh1nNeGDRsCv//+e79t27blSaVSXqFQeBrGIgOA1WoV+Pj4eJRKpWfq1Kl1ADBlypS6Dz/8sNW7tfT09PK33norLDU1lR03bpxRo9G4jh07pli3bt0AAFiwYEHF1KlTjSKRiP/uu+8uf/fdd8pFixZps7OzdQ1tSKVSzuVyNUmsrVYrLRaLOQAICQmxq1QqDgD8/Pxcdrv9rjpt9+3b52s0GoXz58+PqampETocDjoyMtJ+eznqO9Wve5AFKhXE94+AuUSCsNMrUMr5o6wkHBAIoJ4+vbfDI3qY0NcXgoAAb0+xQgM88ZfG5BgA7BcvQuDvD2Fwi8PDiD6IFoshdgO19ZUdPsZa6+3c8A+N7q6wiF7ESOQAAEud4Y6Oc9V5O9eo4GZPqok+SKFQuFUqlQcAgoKCXCaTSZCbmyt+8cUXoziOA8MwvEgk4iiK4jMzM4N37Njhd/M4D03TiImJcWRlZemysrJ0bSXHa9asCT537pxy586dOo1G4waA0aNHm0+cOKH2eDwoKioScRwHjUbjHjp0qOnQoUNqADhx4oQyMjLS3lq7x44dUz7zzDOG7OxsXUREhH3YsGHmCRMmmBtimjp1qnHx4sVhhw8fVt6Mm6NpuklPbWBgoNtms9GXL1+WAIDb7cbJkydVI0aMsAJody5PRyfCvvbaa/qDBw9euXmtKh577LGazibHQD/vQQYA36TpqPjlHP5S/xqKQ4fiDzc2QDF5MpggMk6sP5IOGwbbr7+2+J7t0iVIhw4lE/T6EY9MCsAKS1XHewvd9Q7YGCAoKKT7AiN6jUjmA8AAS82dJci80VtcRBpMPhf9wfLly4sWLlwYJRAIeIZhuFWrVhVptVpnbGysNTk5OY6iKCQmJhonTpxojouLs2dkZGhzcnI0HMdhxYoVBR05R0VFhXDbtm2hUVFR1nnz5sUCwJQpU2peeeUVw8iRI83JyclxPM9Tf/7zn4sB4O233y558803w/fs2RMol8s9GzZsyG+t7djYWPvixYu1a9asQUBAgDMzM7Pw9n1efPFF/dtvvx3+8ccf8xRFYfny5U2GONA0jRUrVhQuWbIkgqZpuN1u6qGHHqqbNGmSqaCgQNTe9xceHm577bXXtB9//HGHrkdX6/cJsvLxx2HYuAmz/30OcgUDo9EI37lkeEV/JR05AuYffoC7thZC3//MynLX1sKZnw/VVFJZsT/xKBQArLDdSTJk8aBeTiNAIW5/X+KeI1b6AQCstXdWglxgcYGjAJXGrzvCInqZVqt1HjhwILfh9YQJE8wTJkzIvX2/N998sxxAkwHswcHB7p07d+Z15DwTJ040TZw40dRw3OXLl8+2tN+SJUvKAJTdui0iIsL5xRdftHqeY8eOXWz4OiYmxrFv375m8d8qPj7enpWVpWtrn9auw+3Xq+Hrm3EDAPbs2XO1tXZb6yFuafvt5+qofj3EAvA+Vh/40Vq4S0th3LMHvs89B9noB3s7LKKXyEaMAADYzjXtRbaePAnwPFnZpJ/hFGoAgLOmg0/r3A4wVsAkE5AEuY+i1f4AAPsdJMhWlxUyKw+7lIKfknwuCOJe0O97kAFANmoUwrb8FZRYDNn99/d2OEQvkgwdCgiFsP36K5SPTGrcbvnpJ9BKJZmg18/wPn6gALjrOlgoxGKA2Eah1ldEEuQ+ivbxriLG1Xe8eEy1vRoqK+AU0wiUtftkmSCI3wCSIN9EegYJAKClUkji4pqMQ+Z5HubjxyEfkwBKSH5k+hPK9+aSqiYTeJ5vd/y5x1QBhRUwBUvgJyeJUF9EqwPgFPKAueOFQqpt1VBaeTjFQviSBJkg7gn9fogFQdxOev9I2C5cgOfmH0BnYSHcZeWQjxvXy5ERPY0O8K5YIrV6YHa1nxBVG65BYQcsMhUEpMx0n8TIfOEUAbTF1uFjDBY9VDbALhJDLW21ijBBEL8hJEEmiNuok5LA2+0wHjgAAKj/6msAgHw8KT3e3zB+weAEPBT2m9X02mEo9c4Dsco17exJ3KvESl+4xTwYm7PDx1SZbkBpBZxiBblxIoh7RJcnyCzLxrEsa2RZVnLz9RiWZU+xLHucZdllXX0+guhqkvvug2TIENTt2gVPXR1qPv8cyilTIBo4sLdDI3qYROkPiHgobECNvf1JWdXlRQAAp5oUg+irJAo/eEQ8RDZ3h4+pqr8BuR1wyny6MTKCILpSlybILMuqAGQCuLUe9ycA5gIYDyCBZdmRXXlOguhqFEXB99ln4Mi7hsLfPQfOYkHA6/+3t8MieoHMRwNa3PFy06ZqvfcLf203R0b0FqnKD2B4SBwcHB5H+wcAMOlLQQNwykmC3FedPHlSPmvWLLbh9blz56TTp0+PS0lJYRcuXBjh8XgrOW/evFmTlJQUP23atPg9e/b4AoDZbKbnz58flZqays6ZMye2pKSk2Ticuro6wbx586JTU1PZGTNmxP30009yADhx4oR82rRpccnJyXGrV68OAQCPx4NFixaFzZgxI27WrFlsXl6eGADy8vLEc+bMiU1NTWWfeeaZmKqqKkFD+3l5eeIpU6YMbnidn58vSk1NZWfOnMm+9tpr2lsr8936Pc6cOZOdNWsW++yzz8ZUVFQ0maRz5MgR5SuvvNKkpOg777wz4PPPP/dv7TpmZmYGnzp1Smaz2ajPPvssoKPnXL9+fdBTTz0Vn5SUFL9v3z6fhrZmzZrFzpo1i33iiScGJyQkDL+9vbZ0WYLMsiwF4K8A/gTAenObCoBYp9Nd1+l0PIBDACZ31TkJoruokpLg8/TTAAX4zXsektjY3g6J6AUydSAYEQeFnUdNB8pNW2u9KxsoAsK7OzSil0iV/qBFPOQOoM7esZUsrDXeSox2ZbO/90QfsHbt2qClS5eGO53OxvEz69evD01LSyvPycnRuVwu6uDBg2qDwSDMysoK3Lt3b+6OHTt0H3300SCO47Bt27aA+Ph4awIvnMoAACAASURBVHZ2tm7q1KnVmzZtalau9eOPPw4aPXp0fXZ2tu69994rWLlyZRgALF++PHzt2rUFe/fuzb106ZL87Nmz0gMHDvg4nU56//79uYsWLSpZuXLlQAB46623wtPT00uzs7N1s2fPNly9elUCADt27PBLT0+PNBqNjYn5u+++O/Dpp5827N27V/fggw+aNm3a1Kx62sqVK8Pefvvt4qysLN2jjz5au2HDhk6XmV20aFFFQkKCtaKigsnJyWn2A9PSOWtrawVffvllYE5OTu7nn39+9YMPPhjU0FZD5T+NRuPsaAGWBnc1JZ9l2ZcA/OG2zUUAvtDpdOdZtvEmSgWg/pZ9TAAiQRC/cbREgpAV/29vh0H0MpHSHyLGA4UNyO9AD7Kz3goAkAYGdndoRC+hxXIIGA4yB1DnqEOQvP2qq/abN04OH/K56E67ruzyP3D9QJfehUyPml71bPyzbf7wh4eHOzZu3Hj9j3/8Y+OjI5ZlrXV1dQKO42C1WgUMw/AajcZ98ODBywzDoLCwUMQwDEfTNF5//XW92+0dslNWViZSKpWe28/x6quvVorFYg4A3G43JRKJeKPRSLtcLio6OtoBAImJifVHjx5VGQwGZvz48cab2ywZGRlyq9VK1dbWMt99951PZmbmwPj4eMuyZctKAECtVnu+/PJL3aOPPtq4jmlRUZF0ypQpRQCQkJBgXrlyZbNxYxs2bMgPDQ11AYDH46HEYnHHakPD27u8ZcuWYKFQyJWXl4sfe+yxmsWLF1e88cYbEVOnTq05dOiQb3FxsXT16tUhN4urtHpOuVzOBQUFOS0WC22xWOjbVxvKycnxUSqVnilTptTjDtxVD7JOp/tUp9MNvfUfABbASyzLHgEQDOBbeJNj5S2HKgF0fPFIgiCI3sTIQIsAZQfHIHNmJ1wCQB2g7oHgiF5BUQAjgMwOGB3GDh3iNlkAAC7/0O6MjOglM2fOrGMYpklyqNVqHZmZmWGTJ08eUlNTI3z44YdNAMAwDD755BPN3Llz45944onGxFsoFGL27Nmx2dnZgU8++WTt7efw9fX1yGQyvry8XLh48eLI9PT0kvr6eoFMJmtMphUKhcdkMgksFotApVI1bqdpmtfr9UxxcbFk/Pjx9bt379bV19cLduzY4Q8ASUlJRoVCwd16vujoaOs333zjAwD//Oc/fex2e7N8sSFRPX78uHz37t2BaWlplR25Xg0JbGVlpWjr1q3X9+7dm7tz584mvc8LFy4sDwsLs92aHLd1zsDAQOdTTz01JDU1dfDs2bObxPHpp5+G/OEPf2hSVbAjumxRV51OF93wNcuyhQCm6HQ6O8uyTpZlowDkA3gcwPKuOidBEES3oii4xQwUdqDKVtXu7rSFg0VGwU9OioT0ZbRIAJEHqDQZgJC29+V4DpTZO1aZCiAJcnd6Nv7Z6vZ6e3tKZmbmoO3bt+cOHTrUvnnzZs3SpUsHrVmzphgA0tLSDAsWLKh6/vnnYw4fPmyeNGmSCQB279599cqVK5K0tLTorVu35i1ZsiQCAJKSkqpfeOGFqgsXLkgXLVoUmZGRcWPixIlmo9FI22y2xnHEZrNZoFKpPHa7nTabzY3beZ6nAgMDXVKplGs416RJk4zHjx9XAWjxei1durTk7bffDtu/f3/AuHHj6tRqtTs7O9t3165dgQDw5ptv3hg1apR19+7dvp9++mnIX//617zAwMAmM1clEgnncrmadOdarVaBRCLhACAyMtLGMAwYhuFEIlGHe59vP+dXX32lrq6uZg4fPnwRAJ577rnY0aNHmxMSEqyXL1+WKBQKd0xMTMcmDNyiJ5Z5SwOwA8BpAOd0Ot2pHjgnQRBEl3BLxBC5gVpjO50jnAeMDbBIhaRISB9HM97/X3Nt+x1mRocRMpv3b79EQ8Yg9xcKhcLd0IsbFBTkMplMgtzcXPGLL74YxXEcGIbhRSIRR1EUn5mZGbxjxw6/m8d5aJpGTEyMo2H87AsvvFB1+fJlSXp6euSaNWvyn3zyyXoAUKvVnFAo5K9duybmOA4nTpxQJSQkmB944AHz0aNH1YB3Ep9Wq7XJZDJ+wIAB9qNHjyoA4PTp08ro6OhWF/P+4YcfVIsXLy7JysrSCQQCJCYm1qemptY2xDRq1Cjrzp07/b744ovAnTt36qKiopqtexgfH2+7du2arKysjAEAm81GnT9/XjFixAhre9ePpmnwPN9sTcSWzqlWqz1isZgTi8W8VCrlFQqF22g0CgHgxx9/VI0bN+6OhlY06JayYDqdLuKWr08CGNMd5yEIguhuLokEgAXWGn2b+9nqSyG3AhaxCGEKkiD3ZUKRFIAL5pr2E2SDzQCllQcnAJRqRfcHR/wmLF++vGjhwoVRAoGAZxiGW7VqVZFWq3XGxsZak5OT4yiKQmJionHixInmuLg4e0ZGhjYnJ0fDcRxamkz2/vvvD3C5XHTD5Dy5XO7evn379WXLlhVlZGRoOY6jEhIS6seMGWPxeDw4fvy4Kjk5OY7neaxevboQAN59993C5cuXh33wwQdUSEiIY9myZa0+FouOjrYvWrQokmEYXqvV2t57773iW993u93IzMwM02g0zv/6r/+KBoD777/f9Kc//alxKINareYyMjJuvPzyy9FisZhzu930nDlz9DExMY7S0tI2f0kGBga6XC4XtWzZsgHLly8vbe+c//rXv6wzZsyIo2kaw4cPN0+ePLkeAAoKCiTjx4+/qwSZ4vkO92r3mJkzZ/J79+7t7TCITmBZ9oxOpxvV1e2Sz8a9r7s+G0D3fD4u/N9JYL6vwP/zf8TYn3Gu1XLTRdf/FyVzFqIgOACP7/oOGiUZZnE37oXfHed+/ygkh8pwdNlT+K9nM9vc96eyn/Br+ssYdw0o//x7PDG0nTEZRKta+mycP3++cPjw4e2PfyKIVpw/fz5g+PDhEbdvJ5X0CIIg2uCWqwAAEqu7zUlZFbXXobICdSIVfGWknHBf5pZ5557b6zpQPMZWDaUVcIsEUJEy0wRxzyAJMkEQRBs8Kl8AgMLOw2AztLqfvuI6hBxglgZCKCC/Wvsyj8y7Sonb2P6iTAabAQobD5eIgUpCEmSCuFeQ3+IEQRBt4H28E6sUNsBgbT1BrtWXAAAsirAeiYvoPR6VtyKeq779Zd6qrFVQ2wC7SAI16UEmiHsGSZAJgiDaQPl7C0EobGizB9lc5X3P4TuwR+Iieg+n9lbK5U3mdvetspRDZeVhFsmgJkNvCOKeQRJkgiCINgj8ggGab3eIhb3OO1FaEECW8urrKFUAOJoHbWl1laxG1aZyb1ERsRwKUbcsHEUQRDcgCTJBEEQbGGUABCIOPnZBm0MsXCbvOvQikiD3eQK5LzwiHmKbB1ZX20u6WmoMoEDBIlWDplteAYUgiN8ekiATBEG0QaLyJsi+NrrNHmTK4gZHAbJAvx6MjugNjNwXvIiH3AHUOdqeqOes875vVZDPRV928uRJ+axZs9iG1+fOnZNOnz49LiUlhV24cGGEx+Ot/Lx582ZNUlJS/LRp0+L37NnjCwBms5meP39+VGpqKjtnzpzYkpKSZmNx6urqBPPmzYtOTU1lZ8yYEffTTz/JAW8hkGnTpsUlJyfHrV69OgQAPB4PFi1aFDZjxoy4WbNmsXl5eWIAyMvLE8+ZMyc2NTWVfeaZZ2Kqqqoaq+3l5eWJp0yZMrjhdX5+vig1NZWdOXMm+9prr2ktFkuzfPHy5cuSlJQUNjk5Oe6NN96IcLlcTd4/cuSI8pVXXom8dds777wz4PPPP/dv7TpmZmYGnzp1Smaz2ajPPvus1d6GP/3pT4O2bNmiaXjd0nVt7Zp1FEmQCYIg2iDzCYRAzEFtbb3ctNlphsTKwy6h4KeQ9nCERE8Tyf1AiXjIHECtvbbV/exuO2iL98mCValpdT/i3rZ27dqgpUuXhjudzsZHBOvXrw9NS0srz8nJ0blcLurgwYNqg8EgzMrKCty7d2/ujh07dB999NEgjuOwbdu2gPj4eGt2drZu6tSp1Zs2bQq+/Rwff/xx0OjRo+uzs7N17733XkFDwZDly5eHr127tmDv3r25ly5dkp89e1Z64MABH6fTSe/fvz930aJFJStXrhwIAG+99VZ4enp6aXZ2tm727NmGq1evSgBgx44dfunp6ZFGo7ExMX/33XcHPv3004a9e/fqHnzwQdOmTZuCbo9pzZo1A9LT00v37duXCwDffPONT2ev5aJFiyoSEhKsFRUVTE5OTrMEWa/XC3/3u9/FHD9+XN2wrbXr2to16ygyIIogCKINCrUGJjEHpZWH3tpyNb0KSzl8LIBNIoQvKTPd54mVfnAzHGR2HrWO1hPkans1FDfLTNvUzXIeoovV/GOHv3H//i4d46SeMaPK77nfVbe1T3h4uGPjxo3X//jHP2obtrEsa62rqxNwHAer1SpgGIbXaDTugwcPXmYYBoWFhSKGYTiapvH666/r3W43AKCsrEykVCo9t5/j1VdfrRSLxRwAuN1uSiQS8UajkXa5XFR0dLQDABITE+uPHj2qMhgMzPjx4403t1kyMjLkVquVqq2tZb777jufzMzMgfHx8ZZly5aVAN5SzV9++aXu0Ucfva/hfEVFRdIpU6YUAUBCQoJ55cqVg26PaevWrdeFQiEcDgdVXV3NNJTW7ogjR44ot2zZEiwUCrny8nLxY489VrN48eKKN954I2Lq1Kk1hw4d8i0uLpauXr065M033yxvOM5sNtNvvPFG2eHDhxsT5Naua0vXrKPxAaQHmSAIok1KuRSciIbc6kGVrQotVR+tqMuH2sLDJpbAnyTIfZ5M5Q8hw0HeTg9yla0KqptDlN1+oT0UHdHTZs6cWccwTJNfDFqt1pGZmRk2efLkITU1NcKHH37YBAAMw+CTTz7RzJ07N/6JJ55oTLyFQiFmz54dm52dHfjkk082+1D5+vp6ZDIZX15eLly8eHFkenp6SX19vUAmkzUmpQqFwmMymQQWi0Vwa7JK0zSv1+uZ4uJiyfjx4+t3796tq6+vF+zYscMfAJKSkowKhYK79XzR0dHWhh7hf/7znz52u71ZvigUClFYWCh6/PHHhxiNRuGwYcPaHpB/U0M10srKStHWrVuv7927N3fnzp1N7iAXLlxYHhYWZrs1OQaAyMhI55gxYyy3t9nSdW3pmnUkvsbv7052JgiC6G9omoJLIoTYxsHptsPoMMJH0vRJYkVtPvytQJ1KjkiSIPd5CrkcLgaQ24GKthJkaxUUNxe6EPq3OuyS6CJ+z/2uur3e3p6SmZk5aPv27blDhw61b968WbN06dJBa9asKQaAtLQ0w4IFC6qef/75mMOHD5snTZpkAoDdu3dfvXLliiQtLS1669ateUuWLIkAgKSkpOoXXnih6sKFC9JFixZFZmRk3Jg4caLZaDTSNputcRyx2WwWqFQqj91up81mc+N2nuepwMBAl1Qq5RrONWnSJOPx48dVAFq8XkuXLi15++23w/bv3x8wbty4OrVa7c7OzvbdtWtXIAC8+eabN0aNGmWNiIhwHjly5NJnn30W8M477wzauHFjYUMbEomEc7lcTWamWq1WgUQi4QAgMjLSxjAMGIbh7rR3tyUtXdfbr9mdtEd6kAmCINrhEEtA84DMDpSaS5u9X15fBB8LYBT5wI8kyH2eXCwELxRA1s4kvSpbFZQ2HjzNQ65W9mCERG9TKBTuhl7coKAgl8lkEuTm5opffPHFKI7jwDAMLxKJOIqi+MzMzOAdO3b43TzOQ9M0YmJiHFlZWbqsrCzdCy+8UHX58mVJenp65Jo1a/KffPLJegBQq9WcUCjkr127JuY4DidOnFAlJCSYH3jgAfPRo0fVgHcSn1artclkMn7AgAH2o0ePKgDg9OnTyujo6FbXKfzhhx9UixcvLsnKytIJBAIkJibWp6am1jbENGrUKOv8+fOjr169KgYAuVzuaegZbhAfH2+7du2arKysjAEAm81GnT9/XjFixIh2e5ppmgbP8x1a9qW169rSNbsTpAeZIAiiHXaZAlLUQmUFbphvYEjAkCbvl1cXQuICDCJfkiD3AyIhDRcjgsTFw2hpeeImAFRaK6GyAbyIhooUCelXli9fXrRw4cIogUDAMwzDrVq1qkir1TpjY2OtycnJcRRFITEx0Thx4kRzXFycPSMjQ5uTk6PhOA4rVqwouL29999/f4DL5aIbJprJ5XL39u3bry9btqwoIyNDy3EclZCQUD9mzBiLx+PB8ePHVcnJyXE8z2P16tWFAPDuu+8WLl++POyDDz6gQkJCHMuWLWv1wxsdHW1ftGhRJMMwvFartb333nvFt+/zyiuvlP/3f/+3lmEYTiwWc++//37Rre+r1WouIyPjxssvvxwtFos5t9tNz5kzRx8TE+MoLS1t8xdlYGCgy+VyUcuWLRuwfPny5r0St4iLi3O0dF3nz58f1dI1a6utW5EEmSAIoh12ucqbINuAElPzYWzVBu8wOYMsADKRoNn7RN/jFInBwA5LbesJst6qx1Ar4BEJSJnpPk6r1ToPHDiQ2/B6woQJ5gkTJuTevt/NMbVNxtUGBwe7d+7cmddW+60ldomJiZZbzwsAAoEAmZmZzRLaESNG2HJycnStnePUqVPnG74eM2aM5ZtvvrnSVkzjxo2zjBs3rtn3eKuUlJS6lJSUZo9ZJk6caJo4caLp9nNv2LChsGHbP//5z3+31u6SJUvKbn3d0nW9k2S4JWSIBUEQRDscKu/40VCXvFmCzPM8TLXe3/8mVQhuf8xI9E0OiXc5P1td2z3IPjYeTpGQJMgEcY8hCTJBEEQ7nD6BAIBBbiVKzE0T5Gp7NcRm7xJNHj+y1m1/4ZB4aw7Y2ulBVlq9q5uoJCRBJoh7SZcNsWBZVgDgQwCjAIgBvKPT6b5mWXYMgHUA3AC+1el0y7vqnARBED3B7T8AABDiEOP723qQi+qLoL455UToT6ql9RcOiXfSndNYC57nW3xyUGmphMwGVKolCCE9yN2F4ziOomm606sgEP0Px3EUAK6l97qyB/l5AIxOpxsHYAaA6JvbPwEwF8B4AAksy47swnMSBEF0O9o3FJSQg58FqLBUwMX9p6RqcX0x1DdX5ZRourRGAfEb5lR46xQwVifqnc0nyJudZlhcZogcQL1IBhVJkLvLJYPBoL6Z6BBEh3EcRxkMBjWASy2935WT9B4HcIll2W8AUADeYFlWBUCs0+muAwDLsocATAZwrgvPSxAE0a0EKg2EIg5Kkxse3oMKSwUGKb2FpQrrC+Fn5uEW0VCr5b0cKdFTXHJfAIDc4V3OTS1WN3lfb9VD6gBojkKtSAmVhMyJ7w5ut/vlioqKrRUVFUNBho0Sd4YDcMntdr/c0pt39RPLsuxLAP5w22YDADuAJAAPAfgM3p7jW2+tTQAi7+acBEEQvUWiDoZAwkFmcgDwrmTRkCAXGQsx3sjBJpGRKnr9iFvtfVogs3uT4SifqCbvV1groLq5ymw1oyY9yN3kgQce0AOY3ttxEH3PXSXIOp3uUwCf3rqNZdkvAHyt0+l4AD+yLBsLb3J86+roSgCtr6pOEATxGyT3DYRAzEFssgMAbphuIBGJAIAiYz5STDxMUhn85OLeDJPoQR6lBqB4yBw8qmzNJ+rprfrGKnp1Ml8wAtK5SRD3kq78if0XgKcAgGXZ4QCKdTpdPQAny7JRLMtS8A7DONaF5yQIguh2aoUcHhENgdkOP4kfftX/CsA7zrTAVAy1GaiRqOAnJ72E/QUt9wXN8JDf7EG+XaWlEkqbd96YRUlWNyGIe01XJshbAFAsy54E8FcAaTe3pwHYAeA0gHM6ne5UF56TIAii2/nIGDjFIsDqwqigUfi58mfwPI9fKn8B3B6IrBQqJH6kB7kfEch8IRBxUDnpVnuQg+3eh7RmVWhPh0cQRCd12awBnU7nAPBiC9tPAhjTVechCILoaT5SBjfEYkhcDoz2HYFvi75FiakEJ8tPIsgqBAUPSiQaPEnGIPcbjNwPAoaDj53Gv1vqQbZWQmvzVlXkff17OjyCIDqJDIoiCIJoh1BAwyL1rlDxABUBAPi58mecKDuBRLt39YIiaTD8SILcb4iUfhCIeKjsaLEHudJaCY0FAAWIfNTNGyAI4jeNJMgEQRAdYFJ5l/UKtgjhL/HHbt1u5BvzMdLkfRBXJfUl5YT7EblMDoh4KKx8szHIPM/jhukGNBYPeDEFlZQMvSGIew1JkAmCIDrAcnNZL3dZKR4JewSXqy9DSAkRX+stGsIFaCCgSa2C/kIhEcItFkBq5VBlqwLP/6eQW7W9GhaXBT5mD9xiAVnijSDuQSRBJgiC6ACjn3fdY3dRHt4e8zaOP3scx589Dp9qM3ga+P/Zu+/oqKrtgePfO31SJr0RSEK9dEJRivQqiCKKXVTAgiKWp4I/fGJ/VgRFRQXBgoCAICogVelNWqgDhJaQSkJ6m/b7I6h5todkJpOB/VnLtZKb5Ow9cjLZc2bfc0xh0md6OQkw6qgw6DGUOSm3lVJoK/z1ayfzTwLgX2SnzGiQAlkIHyQFshBCXIDi4PpojQ5sKcdRFAWLwYKf3g9bXhEOPz2RQSZvpyhqUIBJR6nBiAIElFUeHvOLUwWnADCUOCk2muQUPSF8kBTIQghxAWwB9dD7ObClpf12sSwfe6GdIrMfEQHSZ3o5CTTqKTT6ARBQCsl5yb9+7VTBKfQaPUqZQoHBT3rThfBBUiALIcQF0ATXQevnxJ6V89vFnGTspVqyjBYiLVIgX05Meg0FhgAAQkq1HM8//uvXThacpL4hEqdNwzmjRVoshPBBUiALIcQFCA7wo9xsoCK36Ndrrqwj2Iq1nDZHygryZUZRFArMldu3NVDCOZZ37NevnS44jWqzAHDWGCQryEL4ICmQhRDiAkRZTOSb/XGVO3AUVRbJFYf34HIq7A+sT6RFepAvNwV+lTdmxjuDf22xcDgdnC48TYPyyj2xMw0hWExSIAvha6RAFkKICxBlMZLlFwyAPT0dgPIjhwE4HhhLRKCsIF9uigIjAYgtN5BamEqZvYz04nRsTht1z7/RcMYQjsUsN+kJ4WukQBZCiAsQGWjijKmyILKlnACg4lTlzgUpgdJicTkq9otE0biIKAUXLk7kn2BX1i4A6hU6AEgxRkqLhRA+SApkIYS4AJEWI8nmOgDYkg+Ay0V5Wh4ui5EynVFWkC9DDv8ItAYnwYWVh8UcyzvGqlOriPaPJjq/DIACUzABRllBFsLXSIEshBAXwKjTkhLcEK3BSeme3VCURXkelIaH4m/Q4i9F0OXHPxyt0YlfYRkmrYlvk79l85nN9I3riyMvHzSgDwpEUeSERSF8jRTIQghxgcotCfhFllOy+yCuzINUFOjIDq0jN+hdpnQBlQWys6CQR9s9ytb0rVQ4K+gX3w97fhGYFIL8DN5OUwhxEaRAFkKIC+QXHEF+nTBsucUUL56Oy6lwIKSp9B9fpgL8zDgNGhwFJdzR7A66xXYjNiCWxMhEHAWlOEx6QqRAFsInyXuCQghxgaICjayO7Ex/1pC5YAegY09AAhFySMhlyWLSUWHQoZwrQ1EU3un1DqWOUjSKBntROWXGYIL95AY9IXyRrCALIcQFirQY+UTfE63JSUWBjqDBfdihCyNGWiwuS0FmPaVGI44SOy6XC71Wj8VggfJC7CUuCkz+BMsKshA+yW0ryKqqBgHzgACgHLjTarVmqKraCXgHsAMrrVbrC+6KKYQQNSnKYqLAZcavQ2NsJzNwPPEiZe9soUFEgLdTE14QZNZTbDBhdFXgLCxEa6k8Pc+Vcxp7qZYMUzDBssWbED7JnSvI9wD7rFZrN+Ar4Knz1z8Ebge6Ah1VVW3rxphCCFFjIgMrV4rzXviShFU7OHF+r9sGEf7eTEt4SZBZT4Gh8sWR/WzOr9ftpw6CS+G0MZwQf1lBFsIXubNA3gcEnv/YAthUVbUARqvVmmy1Wl3ACqCvG2MKIUSNiTrfa5xVWNlzejy78rg0KZAvTxaznmy/IABsaam/XredOALACb8Y6UEWwkddVIuFqqqjgMd/d3kM0F9V1YNAKNCNykK5oMr3FAINLiamEEJ4W9T5XuP084dAHD9bTKBRJ7tYXKaCzHoyzGEA2E8eg67dALClngLgiKku15llBVkIX3RRBbLVav0E+KTqNVVVFwFvWK3Wj1RVbQ18TWVbRWCVbwsE8i4yVyGE8Kooi4kAo45D6ZWv+49nF9MgMkAOgrhMBZn1nDBFg+LCdurYr9ft6WkAZJjDCJEVZCF8kjtbLM4B+ec/zgIsVqu1AKhQVbWhqqoKMADY4MaYQghRY7QahcR6wew6Vfk6Pzm7iIbh0l5xufIzaDmtrYPO5MR2+sSv121ZOShGhVK9iSApkIXwSe4skJ8F7lJVdT2wGLjv/PXRwJfAdmC31Wrd5saYQghRo9rFBXM4o4DswnLS88uk//gypigK54x10fvbsaWn/3rdllOIEljZWiEHhQjhm9y2zZvVak0DBv3J9a1AJ3fFEUIIb2obH4LTBd/sPgMgW7xd5ox+gRCgw3b2fPegy4UtvwJ7SOXNe3KTnhC+SQ4KEUKIf6BdvRAA3llzFJ1GoVVskJczEt5kMespDfDHlleGy+GAsnzsxQqllmAMOg1mvdbbKQohLoIUyEII8Q8E+elpGOFPUbmdcVer1Av183ZKwouCzHryAoLBCfbsbJwZx3BUaMizhBNs1ssNnEL4KLe1WAghxOXitivjsGYUcm9X2bXycmcx6TjjH0kwGdhOn8CZvR2A04Fx0n8shA+TAlkIIf6he7tJYSwqBZn1HDXG0IIkbEeTqLBWbtS0J7iF7GAhhA+TFgshhBDiIgWZ9ezWxwFgSz5M8R4rWn8dVv8o2QNZCB8mBbIQQghxkSxmPYeVWEyhFeSvQvAepwAAIABJREFU2UTxqXL8W8aTWWQjIlBOWBTCV0mBLIQQQlykYLOeAgII7BhDRWYhjnItxq49yCuxERVo8nZ6QoiLJAWyEEIIcZF+WSXOuuddtCYnACVdhwCVR5MLIXyTFMhCCCHERfqlCD6trUPk6LsJ7tWKbL9wACIt0mIhhK+SXSyEEEKIi/RLgZxVWEbw6AkEA7v3VR47HSktFkL4LFlBFkIIIS5SmL8BnUYhI7/s12uZBZUfR8kKshA+SwpkIYQQ4iJpNAqRgUYyC8p/vZZVWI5eq8hBIUL4MCmQhRBCiGqItJjIKvzvFeTIQBMajRwzLYSvkgJZCCGEqIZoi+m/WiyyCsplD2QhfJwUyEIIIUQ1RFmMv/YdQ+UKsvQfC+HbpEAWQgghqiEqyERBmZ3SCgdQ2YMseyAL4dukQBZCCCGq4ZcT8zILyiizOcgvtUmBLISPq9Y+yKqqDgVuslqtt5//vBPwDmAHVlqt1hdUVdUAHwBtgHLgXqvVeqx6aQshhBC1Q3RQZTGcUVCGRqm8MU96kIXwbRe9gqyq6jvAq78b40PgdqAr0FFV1bbA9YDJarV2Bp4GJl18ukIIIUTt8ku/cWZBGSdzigGIDTZ7MyUhRDVVp8ViM/DgL5+oqmoBjFarNdlqtbqAFUBfKovlHwCsVutWoEM1YgohhBC1yi/tFJkFZew4mYtWo9CmXrCXsxJCVMf/bLFQVXUU8PjvLo+wWq1fqaras8o1C1BQ5fNCoMH56/lVrjtUVdVZrVb7xaUshBBC1B4BRh0xQSa2n8iloNROyzoWAozV6mAUQnjZ//wNtlqtnwCfXMBYBUBglc8DgTzA73fXNVIcCyGEuFQoisLg1jHM2nQSjaJwz1UJ3k5JCFFNbtvFwmq1FgAVqqo2VFVVAQYAG4BNwCD49Sa+fe6KKYQQQtQGQxJjsTtdVDicXJkQ6u10hBDV5O5t3kYDXwLbgd1Wq3UbsBgoU1V1MzCZP7ZrCCGEED6tRR0LDcL9URS4or4UyEL4umo1SVmt1p+An6p8vhXo9LvvcVJZOAshhBCXJEVReLRvY5JS8wky672djhCimuQuAiGEEMINhiTGMiQx1ttpCCHcQE7SE0IIIYQQogopkIUQQgghhKhCCmQhhBBCCCGqkAJZCCGEEEKIKqRAFkIIIYQQogopkIUQQgghhKhCCmQhhBBCCCGqqJX7IB84cOCsqqqnvJ2HqJZ4Twwqc+OS4JG5ATI/LhHy3CH+iseeO4T4PcXlcnk7ByGEEEIIIWoNabEQQgghhBCiCimQhRBCCCGEqEIKZCGEEEIIIaqQAlkIIYQQQogqpEAWQgghhBCiilq5zVtVqqpqgA+ANkA5cK/Vaj3m3ay8Q1XVXUDB+U9PAB8B7wB2YKXVan3BW7l5g8yN/ybz47/J/PiNzI3/JnPjv8n8EOKPan2BDFwPmKxWa2dVVTsBk4AhXs6pxqmqagIUq9Xas8q1PcCNwHFgqaqqba1W624vpegNMjfOk/nxp2R+IHPjL8jcOE/mhxB/zhcK5K7ADwBWq3WrqqodvJyPt7QB/FRVXUnlv9vzgNFqtSYDqKq6AugLXE5PYjI3fiPz449kflSSufFHMjd+I/NDiD/hCz3IFiC/yucOVVV9obB3txLgLWAAMBqYdf7aLwqBIC/k5U0yN34j8+OPZH5UkrnxRzI3fiPzQ4g/4QtPCAVAYJXPNVar1e6tZLzoCHDMarW6gCOqquYDoVW+HgjkeSUz75G58RuZH38k86OSzI0/krnxG5kfQvwJX1hB3gQMAjjfK7bPu+l4zUgq++RQVbUO4AcUq6raUFVVhcpX/xu8mJ83yNz4jcyPP5L5UUnmxh/J3PiNzA8h/oQvrCAvBvqpqroZUIARXs7HWz4BPlVVdSPgovJJzQl8CWipvNN4mxfz8waZG7+R+fFHMj8qydz4I5kbv5H5IcSfUFwul7dzEEIIIYQQotbwhRYLIYQQQgghaowUyEIIIYQQQlQhBbIQQgghhBBVSIEshBBCCCFEFVIgCyGEEEIIUYUUyEIIIYQQQlQhBbIQQgghhBBVSIEshBBCCCFEFVIgCyGEEEIIUYUUyEIIIYQQQlQhBbIQQgghhBBVSIEshBBCCCFEFVIgCyGEEEIIUYUUyEIIIYQQQlQhBbIQQgghhBBV6LydwJ/p2LGjKzY21ttpiGo4cODAWavVGuHucWVu+D5PzQ2Q+XEpkOcO8Vc8+dwhxO/VygI5NjaWRYsWeTsNUQ2qqp7yxLgyN3yfp+YGyPy4FMhzh/grnnzuEOL3pMVCCCGEEEKIKqRAFkIIIYQQogopkIUQQgghhKhCCmQhhBBCCCGqkAJZCCGEEEKIKmrlLhaXko1Hz/LzqVzMei39mkfRICLA2ykJIYQQQoi/IQWyh5TZHDz05S7WHs769dqryw/Tr3kUz1/XgthgsxezE0IIIYQQf0UKZA957Jtv2Ff2HrHNCqmj92dw/BDOlQ7ko3Wn6P/2Ol69sTXXtanj7TSFEEIIIcTvSA+yB7y27gs2FT9PqC6D/gVnoSiDt47NYlvaPXx2u5mmMRYembub/1u0jzKbw9vpCiGEEEKIKqRAdrO0wnQWHp9Eu/IyFkZdzXP372P+bet5K6I7KfYiHtk6htGt1jG6R0Pmbj/Nde9tZP+ZfG+nLYQQQgghznNri4WqqnpgJpAAGIGXgYPAp4AL2A+MsVqtTnfGrU2e+uFxNNh4UNeBwGsnA6AYAxkw6H3apG7l8VWj+VfyHEabNvPZ8Hd56ptkrn9/E4/0acyDPRui18prFiGEEEIIb3J3NXYnkGO1WrsBVwPvAW8D/z5/TQGGuDlmrXH03FGSSg5we56N9re8/4evR9ftxKe3b2CIOY4Py07y9ZYhLLlBYWCrGN5edYQbp23mWFahFzIXQgghhBC/cHeBvAB49vzHCmAH2gPrzl9bDvR1c8xa46NNb2JyOmkafiv6gNA//R6jMZCXbvqepxvexHqdi4c2PsTTAZ/w0U1NSMktYfDUjczfkYLL5arh7IUQQgghBLi5QLZarUVWq7VQVdVAYCHwb0CxWq2/VHuFQJA7Y9YWuWW5rD27lYFF5SRePfZvv1dRFO7oOpEPek0h0+jH7dlrid14HT9eU0S7uBDGfZ3EC98dxOGUIlkIIYQQoqa5veFVVdV6wI/AF1ardQ5Qtd84EMhzd8zaYMXhhdgUFwn2tkRHRFzQz3SJ78PsIV9j9o9mZJCOQ6tGMztkOmM6RfDp5pM8Om83dscl264thBBCCFErubVAVlU1ClgJjLdarTPPX96tqmrP8x8PBDa4M2Zt8d3BhdSvsBGb+NA/+rkGQQ2Yfd186oU0ZmydOmxPXsZTpx/gzW5avk9KZ9zCJJyykiyEEEIIUWPcfVDIBCAEeFZV1V96kR8F3lVV1QAcorL14pJytvQs+yvSGVakpVPHrv/458PN4cwY8AmjVo7iEUXLjJxibtozEnO7F3l4FwT7GXh2cDMURfFA9sIbskqy+ObYN+zK3IVeq6dJSBP6x/dHDVW9nZoQQghx2XNrgWy1Wh+lsiD+vR7ujFPbrLYuwqVAOB0I8tNf1BghphA+7vcxdy2/izG6fL4oiuSaQ+OwNZ3A45ugTrCJe7s1cHPmwhs2ndnE0+vHk1eRT2N9ECha1qes4+Okj+kU04mxbcfSOqK1t9MUXlZUbmf21lN8s/sMZ/JKCTLraVkniGvb1KFf8ygMOtkSUgghPEWOmnaDVdZvSKiwEdn0zmqNE24O56O+H3HHsjsYGxbIbENnhp54icK4p3h+GTSI8Kd30yg3ZS28ISk7iYfXPET9ChufZWZS35aCgotzGg2Lg0L4XNnJHcvu4JqEQTx15TjCzGHeTll4QUpuCaM/+QlNbjLt6/jRo1VT0iv82Ho8hx8OZBARaOTOjvHc2SmOsACjt9MVQohLjhTI1VRqL2V3aQpXl2hof0WXao9Xz1KPt3u+zX2r7mN8TAfepyfDT7xFRuiTPDJXxzdjrqJRZIAbMhc1La8sjydWjSaqooKpFdFMDXyShWlhBFBKW80x+lf8zPy87cwL1jHrxFI2nlrFM60fZGDifd5OXdSgs3n5bHx/DAscK/EzlkMOlf9FNMPZ6Rp+DujFBwcNTF59hA9+Osaw9nUZ1bU+DSLkeeFy4XK5OJheQHJ2MRV2JwFGHfVCzTSODJR3FoRwEymQq2lH6kZsCgTamlA/3N8tY3aI7sCEjhN4ccuLTGsxkoeddp5KmUyKdhz3f2FkyZirCDRdXCuH8J73108gu6KA95zx9EsbQ0iAP+MHJdAsxkK5vReHM27lyaNp+J1ay2P5P/JDVAbj9r7Lmp0fMjFxLJbEO0Erv7KXtLJ8zn00mFvs+8hvPBS/9jeCVg9ZB+HYGjQb3+ZK11tcGdWK7N5DmZbbgdk/p/LlttP0bRbJgz0b0j7+z/dgF5eGtdYzvLRqOalFp3E5zDjKYnHZKt9pMuk1JNYL5sqEULo0CqddXIgUzEJcJPlrW00bDi3E5HQSETXYreMOazyMfdn7+OjATFp2f52eqwuZkjWZG3L/zVMLApl2Zzu5ac+HnMo9ysK0DVxfruGh06NpHBPCrBFXEupv+PV7+jSLYkyvRmQWXMni3cMp35FE86KZrAo7wf7dr/P6hkm07vcSSvMhIP/2lx6Xi+zP7ia+5ACrmr/CgFvG/Pa1JgOg6+NQlAUHFsPeeURsfpGJGh3jm/XnW+NgXjmo48ZpWfRrHsWz1zQnLszPe49FeMTENV+w+MQ0CCzEFPjb9cZOA1drGxHk6szyvATe+zGXd9ceI8Coo4cawZA2dejdNBKdVoplIS6UFMjVtD5rF+3KbCR0HeDWcRVFYULHCRzOPcyEbS8z97qpxM+7mznayfQ5YGH6hmDu797QrTGF57y/9gn0LifnCm7H5Bfwh+K4qiiLidE9GvJA9wYcSOvNR1vXsiXvVUYGlfDa0tG02/QpYbd9CIHRNfsghEc5t88gIv1H3jfdy/3DHmRX5i6WHl/KodxDAMQGxJIYmUiP5tdQt+MDkHUYdn+Bce88bipZxg112vNd+L1M2KOl/5R1PNlfZeRV9dFo5MXUpeDfP77DktQZqE4HD2Xm0tS/LoXB9djuKmKRM4uproMkVOzlX+V5fBIbx6nwHnzn6MznyRqWJqVTN8TMI70bc1OHurK4IsQFkJeT1XCmMJU0yogsCaNjY/cXKyadicm9JqPRaHhs+8uU3Pw5fpTzVdBUpvywj52nzrk9pnC/zHPHWVl0nP4VwSzJSeTtmxP/sjiuSlEUWsYGMfXGoXwz7Hsi/Jryr8gIFhftpmjKFRQfXFUD2YsaUZyDc9VE1jlaE91/DC9ve4G7f7ibpSeW4qf3I9AQyN7svby2/TUGLhrIncvuZHH+Icr6PAuPH4DBk9EWZXJ90oPsajyLa+PsvLz0EHfP2k5WYZm3H52opll757Lk9AwGFpUwp8xI79u+pc6Yn1HvWMzwO1ex6J49vNtjMpqQeB6JiuCxQAX/5E959OgIdkT9h8W9cojw1zPu6yRum76VzAKZE0L8L1IgV8P2Y0sB8NO291hPcGxALG90e4PkvGSePzYPbviYuPKjTDbP5JE5u8grqfBIXOE+Cza+gBPYlzGIa9vUoWvj8H88Rt2gSL65cTZ94/vxTpiF/1iCMM6/mdTlb7s/YVHjXJumoNjLmBl4LxsK3mXR0UWMaDmCH2/+kRn9Z/BRv49YOWwly4Yu4/H2j1NUUcTEzRPpu7AvU/dP51zLoTB2J/R9HtPpDbyR/SBzO55kx8lcrp26kV2n5cW0r0rOS+ad3W9wZUk5zzkjMNz/E9S78r++R1EUeiX0ZeEN3/NE+yfYqnUytH4jvusyEqXsHG23jGWR6QU+7qMhKTWfwVM3slvmhBB/Swrkath0fCVhdgeR9a/3aJwusV14pN0jLD+5nE/tmSi9JjDAsY6+Jd8z/uskXC45aa+2spUXs+DsTtpXGDhU0Y5xAy7+IBCTzsRbPd7kVvVWvgtWGBPemJhtL5D8+cPglCPJfVZhJs5tH7PE0QVD8xOsOb2GcVeM41/t/4VZZ/6vb61nqcfIliNZPGQxswbMon1ke6YnTWfQokHMODybis5jYMxWlOhWdN47ga3NFmLRVnDrx1tZvi/dSw9QXCyny8lja8bj77QzMc+B/92LwRT0l9+v1+i5p+U9fH3d1zQOacKE9NU83aY/JddOQck7Tf/Nt7Ox7VqC9E5um76V1Qcza/DRCOFbpEC+SC6Xix2FybQqc9GyZaLH441qOYqrE65m8s7JrKt/BTTuz0Td56Qe3Mbsbac9Hl9cnPU73iFXo1B8thO3d4yjXmj1bpzSarRM6DiB+1vfz+bAUu6OaUPc8S84Mu1WXPZyN2UtatTPM1Ec5Uwzd2V77mJubHwjw5sP/9sfURSFDtEdeKf3Oywesrjy413vcMO3N/BzWRbc8z30GE/wka9ZHvAyvaNKeGjOLr7cdqqGHpRwh++Sv+NkkZX/yzlL9KA3wBJzQT8XZ4lj5oCZjG07lh9OreDOM99xZsS30O4uQvd+xHLLf7gqvJQHZu/k271pHn4UQvgmKZAv0vFzR8lVHASWxJAYH+LxeIqi8OJVL9I8rDlPbRjPwZ5PoAmIYLr/NN5euovj2UUez0H8c98lf0uow8XuogGM6lrfLWMqisLYtmN5vP3j7DWd4/Z6HYg/uwLr1Btw2aS30KfYK3D+PJOfnK0pjdtIhDmCJzo88Y+GaBjckKm9p/Jh3w9xOB2MWDGCN3e+ja37U3DHQnSFqUwrfYpRCTk8s3g/MzYc99CDEe5Uai/lre2TaV5mI9GvLcbWN/yjn9dqtNzf+n6m9ZlGRnEGt69+gD0dR8Ats9GfS2ZG2ZPcFXWax+btZsmeMx56FEL4LimQL9L2I4sB8Dd1wajT1khMs87Me33eI9gYzJhN/0faoFeJsafyrPZzHvtqDxV2eZu9NsnL3Mc6VxH1CmMY2Kr6q8e/N7LlSJ7t9CxWXTa3xHUgrmATh98ditMmK8k+49C3aIqzmOzXhHzHaZ7s8CSBhsD//XN/4qrYq/j6uq+5Vb2Vzw9+zp3L7yQlWoV716IYA3kmexzjGpzk5aWH+GzzSfc+DuF2C6wLyLPlMC43l6ghr1701o5dYrvw5aAvCdAHMGrFKFb7meG+H1H8w5mY/wzjI7fxr/l7WXEgw82PQAjfJgXyRdp6egMxdjvRjd27//H/Em4OZ1rfaVQ4Khh9eCb5XcZwA2upl7aCSausNZqL+Hsrt03Grigcy+3nttXj37tZvZlXur7CSW0ONyckUqd4KwfevQGHTW7e9Ak7PyVFE01qVDJqiEr/hP7VGs5P78cznZ5hSq8ppBSmcMt3t/BjSQqMWo0SofJg+rM8E7ef5749wNc7U930IIS7ldnL+HjvDNqVVhAedBX6um2qNV79oPrMHjSbpmFN+ddP/2Le2Z/h3tUoDXrxQP47vB60iLFzdrHp2Fk3PQIhfJ8UyBfB5XKxsyQFtVRDYrMmNR7/l7dU04rSeNh2ktK6HXjLNJOl67ex/kh2jecj/oTLxQ9ZO4ixaYiI6EybesEeC3Vtw2uZ1HMSaZoCbopvQWTJFva+dxtOu91jMYUb5B6Hkxt4xdAMu+YsD7d9GI3inqfkPnF9mD94PvUs9Xjkx0d47+hXOO9aghLfhXuzXuXpmF2M+zqJNYfkJq3aaPGxxeTbzjEm7xxRg591y5ghphBm9J9Bj7o9eGXbK0w99BmuW+dC+xEMK13AVL9PGP35Nvam5LklnhC+Tgrki5Cce4R8xYl/aR1a1/Vc4fN32kW14/Xur5N0dh/j69ZHp4OP/D7kqa92yr6ntUBO8mp26lyY8xswvGOCx+P1ievDB30/oEBv5+Z6jQgq+YntH4zE6ZC2m1przxycKGwNKSTB0oAedXu4dfi6gXX5fODnXN/oej5K+oiHN00g/8bpKA168MC5SdwfuoeH5+xmX2q+W+OK6nE4Hczc9ynNyhxE6ptjimvntrHNOjOTe03mhsY38HHSxzy79QVsg96AHk8zwLaaqbp3uX/WZpLlnhYhfL9Azi/Pp9xRsz2XO458A0CAqTN6Lx7d2Te+L+OvHM+Pmdt4rU0/mjsOMcI2lyfm78XplK3fvGntno9xKgppZQO4tk2dGonZKaYTswbMQuPnz+2xceiLf+DHGeNkG8DayOnAtWcun5lb4DBlcU+LuzxyuplRa+TFLi/y747/Zkv6Fm5ecQ9JfZ9BievMuJJJXGNKYsSnOzidU+L22OLirE1ZS0ZJGvfl5xLQ81G3j6/T6Hi+8/M82OZBliQv4eG1Yym6aixc/Ro9nVuZ5HyTUdM3kJZX6vbYQvgSny6Q16euZ8DXAxi+bDjFtuIai7s1pbL/OKrhwBqL+VfuaHYHI1qOYP7ZnXzSvAejNd+gSV7DJxtPeDu1y5fDxsrc/YRV6OjfvAtmQ83cxAnQLKwZswfNJjKoLvfFREP+bFZ/8WqNxRcX6MR6lIJUPvf3x18XxDUNrvFYKEVRuKXpLXwx8AsA7l79AJ+3HwpRLXjD+RaJjiTumrmN7EK5ubM2+Gz/50TYFFpWhBDedohHYiiKwkOJD/FClxfYlr6N4cuHc6bldTB4Cl3ZxYvlr3PPjI3kFMmcEJcvny2QN5/ZzMNrHibSL5Ij547w1LqnamSlzOVysbskhSalGto0u/hDH9zpsXaPMTBhIO+UnuCHOk143zSNL1dsIClVesm8If/IMnYYtBgKG3LLFXE1Hj82IJbPB35O0/AWPB4ZQX7W+6z86r0az0P8jb1zOWUI5GxAJsMa34hJZ/J4yJbhLZl/7Xy61+3Om3um8kj95hSGJvCR9k2iC/Yx/JNt5JfYPJ6H+GsHzh5g79k9jCzIpbjlcNB49k/0DY1vYFrfaWQWZ3Lb97exLbY5DJ5Cd2U3Txa8zr2ztpBfKnNCXJ58o0C2lYHjt1/SYlsxz295noSgBOZdM4+HEh9iw5kNpBSmeDyVk3knOKc48S+NpnXdvz7RqCZpFA0vd32ZtpFt+bfZyQk/LR8ZpvDkl1soKLu8ntxcLhe7s3Yz3zqfAzkHvJLDxn1f4FAUXLqBtIr1zhwJMYUwY8AndKnTmRciQjl55g2Wzv/IK7mI3ykrwHXwW970awSKk1uaDaux0EHGIKb0msLTVz7NxsxtDIsIICk4ktmmN/A7m8TIz3ZQWuGosXzEf5tzeA4Gp4aBheXU7/tAjcTsXKczc66ZQ4gphPtX3c8nRieuAa/RX7ODB7JfYfjHspIsLk++USB/+zBMaQVJC3Bl7Oe1FaPJKE7nRUN9/MqL6VWvFwC7snZ5PJVdyUsBCDS0w6SvubfO/xeD1sDknpMJM4fzaJ1YgrSneaJ4Ek/M23VJ9yPbnXa2pm8lKTuJ+db5DPtuGHctv4uXtr7E8GXDWXNqTQ0nVM7anH342zXcnNjDI32lF8pP78fUPu8zMK4fU8OCOJD+Kt98+b70JHvboW9x2EvZFFBK06AO1AusV6PhFUXhjmZ3MHvgbHRaIyMsMDMshLnm13Ck7ODBL3fKnupekFuWy/ITyxlcWEx2RD+0AWE1FjshKIE518yhb1xfpuyawmOlhynq+wJXa7YzNucVbvlgndy4Jy47PlEgv6BpxAdGE+WL72XW3Kv5JmcP953LJ3H7ZzCzPw1dWiwGC7syPV8g7zi9jlCHg8j4qz0e658KM4cxtc9Uil12Hm3Uhu7an+l0bDKTVh72dmoeczT3CPetvI87lt3BS1tfwu6089JVL7FkyBKahzXnyXVPcqao5k6Jqji6ik0mHebi+lzftmYLnz+j1+p5redb3NroRr4IDmR37lt88+lrUiR70955LA+Mxa4vYVTr27yWRovwFiy4dgH9EwYw1QyPRoUw3f81bEfXMnbuLmyyA0qNWnR0ETanjbsLzxHZa3SNx/fX+/NWj7cYf8V41qWu47bsNRzpNZ5+mh28XPISt7+/mnWyjai4jPhEgZyicTAt0MGV8QlMDg2hW2hbHhxzFEaugJIcNMueol1kO3Zn7fZ4Lj8XHKdlqZMmTVt6PNbFaBLShNe7v86h8rM806QDI3TLcWyYwtztp72dmkc0q6hgSWoa7xQ4WaSJ55tyC9dbN9CgrIQ3ur+B3WXn++Tvayyf7ftnU6zREBY4gIhAY43F/TsaRcOELs9xb/O7WGQJYEvJdJZ98Dh2u7yVXuPyTsPJDXxsDseAhT4JvbyaToAhgNe7vc7EzhPZbtRzR50IxgVOwf/QAh6cvYsym8yRmuBwOlhgXUDzUgUTdQht2s0reSiKwp3N7+STAZ9QZCvijpTFfNf9QToqB5itfZH/m7WcD346dkm/KynEL3yiQJ4x5BlurvsczsIrKU29jWWbhtH+P+v41xYjpYkjIXkt7YIbc7LgJGdLPXcSUEZxBpmKjaDSMNolhHosTnX1rNeTJzo8waqKTCY3voKn9fM4tORtfth/6R0l6opujbH7ZHqFt6FxaTFK9mHYMxc+6k6dfd/QIaoD3x//vmZWTB021mftQudUuL3tAM/H+wcUReHRK57iscSxLA/wZ6nmeza+fQP5+ZfnjZzljnIWH13MsuPLyCurwf8HSfM5q9Fw0i+frjED0Gv0NRf7LyiKwk1Nbqrc5SIgkhF1Iugc9gUdj77JyE82y417NWBT2ibSitMYWZBFUfM7LvpYaXdpH9WeBdcuoEV4CyakLOWVjjcRr83kB7+JbFi5iHs+3UF6vmwDJy5tPlEgAzzbZxg7Rn/ItKGjeO7aVvRrHsX3SelMPNkSXE7a5mUBsCdrj8dy2HPqRwCMSnMsJu//Yfs7dzW/i1vUW/jUnsmnDa7gRf0sfv7qFX6yZnk7Nbc6mFHIVUvDuOHcGH7q8RWOh7Z0kP2TAAAgAElEQVTD4/uhUR9Y/RzXRnfiZMFJ9p3d5/FcXCc2sNGowVIWzaAW8R6PdzFGtbmfiZ0mstHPzCdBhzj5bleO7t/h7bRq1PrU9Vyz6Bombp7I+A3jGbJkCLlluZ4P7HJB0ld8FlJ5c95DHW73fMx/oEV4C+Zfu5ArYzrzYngYyTE7GJP+GKPfXyT9px423zqfQKeOriU2GvQd5e10AAg3hzOj/wzuaXEPX2Vu5v6WV1EREsYcw3/odXIKQ95eyZfbTslqsrhk+UyBDGDSa+nXPIoRV9XnrZva8OKQFiw4aSYzsCVNrZU3Yx3PP+6x+HtO/YTJ6SQ8qqfHYriLoij835X/R7/4fkxyZTK3YWf+rf2c5NmPsWp/mrfTc5vmMRbeHNaalNxS7pm1gy6vrWHSxmyK+k8CjY5+1vXoFB1rT6/1eC7J++aSotcTbeldq27g/L2b1JuY1PNtDpr9GR/jpPyb61g35/VLsuXihfUTeGjl/WxO28yuzF08s/EZxqwZg8VoYXr/6UzvP52C8gKm7Jzi+WTS9+A6e4RFJh3BmkaooY08H/MfCjYF837faYxJHMPygABeiStlrP1JvnzveX7Yd+k8b/wVl8tFblkudmfNHdOeWZzJhtQNDMkv4FRoT3SBETUW+3/RaXQ80eEJXu32KgcKTnBLZBB72wxlhGYpS3VPsmHJTG79aIu8gBKXJJ8qkH/v1ivj6NoonAVlHTBlHSTMGEJakeeexHflHKRZuY26TTt5LIY7aTVaXu/2Ot3rduc/zjN83rwfo7RLMc6/hUUb93o7PbdQFIWbOtRj4/heTLujHc1jLLz34zGu/+IE5xJHE3joexoHxnEw56BnE3G5WJe6EYBbW3nu0Ad36Rffj5kDP6XUP4x7YsMpOjOFA6/14lDSdm+n5lYND2xgX+omHlj1AHf/cDcrk79nhMvC3MxzdDpziE6R7RneYjiLjy3mwFkPbwu49ysOmMwUGIoYED/Ys7GqQavRMrrNaD4ZMBNHYAwPxgTjH7qAkIWDmDF7NiUVNVc8epItL4U9Sx8j1fod285s4eWtL9P9q+70+KoHQ5cMZV+25991Avg2+VucOLmtKI+QrrVj9fj3BjcYzOxBszFojYwo3MOsPo8TEhbGh4YpPJP5CK+/+w4frzuKQ1aTxSWkRgpkVVU1qqp+qKrqFlVVf1JV1W1LJ9e1qcP6osrdAmL1gR7bsaDCUcExex51y4y0Toj2SAxP0Gv1vN3zbXrX682bpVYmdbiRjppDdFp1PfMWfnXJ7GZg0msZ2CqGWSOu5Mt7O5JTVM7DBysPcmmuGDmYe9CzjzUjia16G4EVAVzbooXn4rhRm4g2LBjyNc2j2/J0ZDizg9OJXHw1G6fcxZnUU95Ozy0yg8fz+MloPsg8y5TMbFZl5PMvhz9Ghw2+fwy+fYT7Wt2HTqNjxckVnkvEYYf9C5kV1ABcOh7scKPnYrlJh+gOfH39EoY2uZFPgy08G2ejftqT7H69P/t3b/F2etU2b/cyhp9dw8CtE7h39f18c/grOmPm0Wb3UOYoY8SKEWQUe/a+DafLyeJji1HLdBidYcQk1r7dkX6hhqp8de1X9IrrxdvHv+be+iqn+k2kZWApH2vfoM+aa5k55RlSMjx3H5AQNammVpCvB0xWq7Uz8DQwyV0D92sehVVJAKCOS0N6cbq7hv4vB88ewKaAqaIOCWF+HonhKUatkUk9JzGsyTA+zdnBYx0GUmo2M2zfaJZ/8CQVFZfWTThdGobz1k1t2JQTSJ5fAs0LzpJfnk9asefeXSg88C27jCbq+F2BTus7b8xE+kUyc8BMRrcZzSqLH9fGx5NuX0vg9CvYOP1xCvJyvJ1itYy9aRCr1Te4K/dj5ofO5fTtu3GNXAEPbICrHoW9cwhMS6JdZDs2nNnguURO/IStOJsfjeVE69oT5hfsuVhuFGAI4PkuzzNzwEz8wxrxWFQE70emkbfiena+dyclub7bdjHsqlH0MI2naUYrbsmsz9dFkbxxbC/3rn6bTxvegcPpYNb+WR7NISk7iZTCFO4syCSr4Y0ePzmvuiwGC5N6TOLFLi9iPXeEG47P4cNeD1A85ANCQsO4r+B9/KclcnThC1Be6O10haiWmvpt7Ar8AGC1WrcCHdw1cIi/gdYN63FGiSamvIS0ojScLvfv35l0/gY9i6mdVw9/uFg6jY6JnSbyTMdn2HbuAPfVj+SrmE4Myp7Bsbd6k59xwtspulXvppF0bxLBkpKWNEs/BODRNout1u+p0Cj0bdzfYzE8RafRMSZxDF8Nnk+DyBa8GBHCrXH1KD83F/uU1myfPZGyEt/8Y2fQaXjvtnY8f10rNpwu57r3N9N70jr+s/wwWe0eg6A4WD6OrnWu4ljeMc+tGB5YzIaAYGzaCq5reK1nYnjQFdFXsOC6r3mu83NkBMfwYEwkrxl28N3Mzuxe+AIue4W3U/zHzAYd791yJ0/f+h5bzU/RI/VfvNHoc5zhTYhd/m+urdebhUcWkl3iub1/V5xcgdal0KekhPjetbO94vcURWFo46EsuX4JveN68+G+6VxzZDrf9b2Pk0PncMLQhMb736bkzZY4t3wAPjg3hICaK5AtQH6Vzx2qqurcNXgvNZIkez2i87OxOW0e2ertQPoOIu12Qup1dfvYNUVRFG5teitzrplDkCmE18ypjGzSE4P9GMqHXUnZ+KW3U3QbRVF4pHcjVlS0pklZCTpF47kCuSibffYMNC6FO9r09EyMGqCGqnwx8Ate7/Y6Skg0j0VFcFvdCE5nzuDsmy3ZMPslCot8r1DWaBTu7pLAlv/rw3+GtiIu1I9Zm07Q653tJNUfAZn7ucpcB4BNZza5PwF7BRz6njmWWHD4MbJ97doC8ELpNDqGNRnGD8NWMLHzRAotCbwcYeGhwvlM+LAdy1b75lHm7eND+eahqxjdoyEf7LEzJehpcDm4N+04Fc4Kvk3+1iNxnS4nq06tokOJg3RTGywxte+mzb8T6RfJmz3e5IuBX9AouBFv7ZzErQdeYnnvvjxf/yV2lceiWfF/ON7vCIeXVu7iIoQPqakCuQAIrBrXarW67U6P5nUsHHAmUK8wE8AjN+odzD9J43I7sY0T3T52TWsa2pT5g+czJnEM+5xp3JwQw5shEYSuGcOJGcOhrMDbKbpFu7gQUvzboEFPI22AxwpkW/KPbDGbiFbiCDQGeCRGTVEUhUENBrHk+iW82u1VLFGNeSE8jJvigvg5ZzrHpiTy4+xXOVfge3etB5n13N4xjs9GXsmqx3vQNMbCQz9HAdA4bT+RfpFsSvNAgXz8J4rL89mhLyFW3wV/g8n9MWqQQWvgpiY3sfyWH5jZfxbNTK1Y4Q/jz7zH4Bntmbp+Us3uLe0GOq2Gpwc25f7uDXh3t519De8n7uhaGgfEsTV9q0diJmUnkVmSyZDiXCpa3uqRGDUhMTKRGQNmMGfQHHrW68miYwv5muk83yKSwQHXsaugHObdDp8OhtSd3k5XiAtWUwXyJmAQgKqqnQC33h7cNDqQg6546tgra253F8jljnJSnEWEV5hpHRfm1rG9Ra/VM7rNaL69/lv6JfTjm2AHfeIasD1vLVlvX0nFsXXeTrHaNBqFvq3rYXXWRbU5seZaPRLnxN5lHDYaSKzj3VPR3Emn0TG4wWDmD57PrAGz6JzQh0+Dg7mrnh9ziz7hx2ltWTrjWc5k+ubRswnh/ky/qwOugBgOKY1wWX+gTUQbz8yRQ0tYGxiCU+Pguka1f4eTC6UoClfEdGDmbfNYNnQFt9ECk7OYj098Ss953bl/6Si+S/6OggrfecE9boBK+/gQnkxujUvR0smlZ1fmLsrsZW6Pteb0GnQuhS7Fdhr18N0C+RetIlrxWrfXWH3TasZdMY7wABOnIvYwsp6OXlFt+DzPytlZfWHOLXByk6woi1qvpgrkxUCZqqqbgcnA4+4cPNjPwNmAJsSc38fV3TdjJecl41DAbIsi0uLbqz+/FxMQw+vdX2fuNXNpEt2SlyNCuStCy4ZFt5A3fwyU+tZK0O9d0yqGg444YgtyyCnLocRW4t4ALhdHzlauMA1p1sO9Y9cCiqLQIboDb/eazIphKxmTOIYjgVE8F21ikrKQmfM6M23qnazbvpNyH9tHOdTfwPPXtWBZRSLKmZ9p5BdDSmGKe4shpxOOrmJxYBQuu4U723Z339i1SHRwLBPunseMISt5ubgxt+cXkJyxhQkbJ9B9XnfuXXEvXxz8guS85Fq9c45Oq+Hxvk2wFppIC7+KTmlHqHBWsCfb/QdQbU7bTKsyG6f9O2IKCHH7+N4SagplePPhzBs8j++Hfs/9rR+gPNDEm6Fmeteryz2FSXy26BaOftQF19aP4Pw7v0LUNm7rA/47VqvVCYz2ZIyImAR0p7SEagxu3+rNmv4zABZjE7eOW5u0DG/JZ1d/xk8pP/GfLW/ymEFD4rlV3PfBCrr2fgFNm9tq/R3Wf6ZdXAhr9fVpVb4DMHKm6AyNQxq7L0DucQ7rStG6jHSIae2+cWuhaP9oRrcZzahWo1ifup4Fu2eySJuEXdlL1L47Ubf5E2HqRNvWI+jZujVB5tp92iRU3sz5pV9HFNtCGpYW48LF8fzjNA9r7p4AGXspKc5iV7iZCFdPLCaDe8atpYKj4hjy0CLSj++n25KX0JeuY72/kdW2nbyRsQ2AQEMgTUOb0j6qPfe1ug+Dtnb9P7mqURht6gXzcf4VjLdtQBccz9a0rXSKcd/+92dLz3Lk3BEeLS3C3uIGt41b28Rb4hnbbgwPt32IH47s4c2N8/mZ7ewMywKKCDr4Dq13v0lrQzgtotrSOKEPkQ37ojH7xi4v4tJWIwVyTVBjgkg/GUa0S+f2FotDadsxO52EhLlt841aSVEUesX1olvdbny2bz4f7prKmPAiWm9/gTu3vUu/Xs+hazIQfGgXD41GwRHRkrp5cwBILUx1a4FccHgNu4xGYvTxte4PvafoNXr6xPWhT1wfCioKWHNoIcuT5rJDk06pZh2LD/1EzF4N4c4I+jQZxYjetetI5aq0GoUrruxG+UYd0TmV7SLJecnuK5CPrGSD2YxDcdK7bl/3jOkDYhq0JObxrzh+/CjNlk7l5tNL0ejPscnsz56QQI7nnea7/FPc1OQmIv0ivZ3uf1EUhZFXJTB+Xkue89PTWh/C9gz3HqCzLb3yxUJiiQO1W+3fE7u6FEVhoNqWq5sksiU5h8k/bWN39s+Y/Q5wKOAUG7XFuHI2Qs5G9D8/T6xLy/0Nh3Jt9+e9nbq4jF0yBXLTGAtnnGFE2myklmS5dewDOVYaV9iwNPH9G/QuhE6jY1Sb27m9+Q08vXI6W9JnM05fQuTGJ7h+w3MMbjOK+u1Ggbb2rxACBNVvS70dlf3pqUWpbh07/fB6DhoNDI69yq3j+gqLwcLQNiMZ2mYkFbYydh5cwLqD33CkIpljhnQOJk+DWlwgAwy9IoEjG+oSlHoUXYiOY3nH3Df40RUsD47BaTcwvG1P943rIxo0aEyDse+SmvsfVq38Dg5/z335O0jQZOJQdNj7lEIt3Fa+T7MonFozZ8wqLUpLWeA4isPpQKtxzxHyW9K2EOhw4dC0JDAwyC1j+gJFUejSKJwuja7hVE5Pvt2Txg8HMjiRkYWf8STNg63UC0jHpslG73D/dq1C/BOXTIHcLDqQvYQTXJ5MUlmuW8c+UZ5NjwqoH9/ArePWdma9iXeuGcup3HsY9/2XZJV/xXS/bD4++D5xSVO5IqgRV6o3MrDl8Fq9N3SzBnEUbQ3B36UhtdC9BfLJvCQc4Qr9GnZ267i+yKA30bnNcDq3GV55obwIdLW/Z79OsJk9hoZ0zdtJQnw7kvOS3TNwWT7OM7vYGt8Ac0UzEsIC//fPXKLqhgZw9623UWa7mZUHMpi562fs2Ud5TBtO7Vo/rhRg1NGtcTg/pTSiybnVlIWHkFKYQkJQglvG35q6iU5lpRTV7e2W8XxRfJg/Y/s0ZmyfxmTkl7HmcCZrDmWx9NhZKuxO6kQ1oPaeKyguB5dMgRwX5scyVzgRtiTyyw04XU40SvV7ZvPK8ihUHJgqLDSO8u0tvC5WfGggX901ml2nb+GNlVvIz52HJWA/KwuO8fWuN4k3hdGice29Oz+xbjA7nXHE2HPcu4Jcls9JzTkgmLZRl8e7C/+ID215ZwtvjiVjDY3867Iv76h7Bk3ZgdWgo1hjo23wFe4Z08eZ9FquS4zlusRYb6fyP13dMpplRxrxlPZ7AI6cO+KWAvls6Vkyy8+SWFZOePfa+7xZk6KDTNzRMZ47OsZTXG5nS3IODSN95/lDXJp8766rv2DUaSkwRhHicOBwOSgod8/WQqcKTgJgIBqT3j1vr/mqdnEhzLt3EK/e9i4RIZ+gTR5Hj+S+6M21+49/iL+Bs6Z44irKSClMcdu4pSd3YDUaCFWCsRgsbhtX1Lzg+u0AiKzQcabojHt2O0nZyia/yv6BAQ27VX88UaP6Notil6sx9W0ONCgcddMLp1/2Yw8qD6JZ0xZuGfNS4m/U0bd5FPXD/b2dirjMXTIryAC2gFhCzm81da78HMGm6t8Jezr7AAAW0+XVXvF3EusF8+5tbTlX3ILdKVeTEB3u7ZT+J21oAvEVP7GxMNVt7y5kHdrEQYOBhCA33dAlvKZBy06wBQJyK19Ypxal0iSkmrvWnN7KOv8QHGWR9FPduHOKqBEh/gZiomLILo4nHg1Hco+4ZdwD2UkoLhcYOmDQXTJrVEJcci6p305NcF1CnZWN/efKzrllzBNZ+9C4XISHtnTLeJeSEH8DvZtG+cSTvDGiPnXtdiqcNrJL3HO4RX7qNs7odVxRr71bxhPeU7dODBmEE5pTuQNORnFG9QZ02Cg/s5N9ehcBzuZEBtb+XmzxR+3jQ9hRUZ8mZaUcOeeeAjkpdSsNbDb0se7bNk4I4X61v7L5B0yh8QQ7zq8gu6lAPpZ7jDp2O4ExzdwynvCO4JjG1LW7dyeLrNLK3Q7aRcmLJ1+nKApnzfWJK6o8tKDaBXLmfg5p7DgUFy1C27ghQ+ENHRJCOGCPpUlJEalFqW5pvTl47ggtyisIVi/PnW+E8BWXVIEcGRYC9sqev9xy9+xkcbokgzibnfDYRm4ZT3hHdHwTos4XyFnu2AawrIAzuso/lk3DmlZ/POF1tsC6NKrIRKfoSC9Or95gZ3ay12gEoHucvMPgqzrEh2J11aWRzQZQ7R1OskqyyHWVUqdcT9Mm8rwhRG12SRXIdYJNlDgqj+zMK6v+Eckul4s0RyFhNj3xUZfOUaCXo7ioUFz2yrui3dFiUZBygINGA8FKIKGm0GqPJ7xPF5ZAhFJEqDG8+ivIWYfYY/bHWRFC5/r13ZOgqHF1Q8zk+jeinq3yxXV1T2k9lHMIAIOjHqH+l8fBQkL4qkusQDaT6wzDzwW5btgLOacsh1LFidkWQGSg0Q0ZCm8x6bUUK9EYXJBdWv0COfv4Ho4Y9MQHNHRDdqI2sERX/lta8K/+CnLmQXYbjVAeT6MI2a7KVymKQkJcAgF2M1D99qwTWXv/n707D4+iTPfG/62t9zVJZyGQjZBKFBVXYIQRHNfDIhBHHGcUlzleOEcZJsi5dDyCXOJxwbiMy6sjXsqcF51RAiMzOjo/jzr4ouA5I6PCQLEmkD2dpPfudHdV/f6oJCZkIQkJHbrvz19JdXXVbVN27nrqee4bAGAwXXjasRFCxlbSJchu1Qa7rKC94/TnIB/3HQcAmJA5rhthkKEJGnORFldGJUEO1e9DjSBApPnHSSNzklZpwhITTm8EWVXR6N6PVk5Fll4EzyXV12zKOWeCHdXxiUgfhUZDB+u/Rposw5r3g1GKjhAyVpLqmzvdrIOXtSNNjqM9fPojyPXtWt1Lkz7/tI9FEi9uy0OWHENzsOm0j9Xm2Y8Yw+BcF5XvShbGTK2UozWioCnYBFmRR3YgfwO+RQQAMDX9vNEKjyRIaY4NkjoRudEO1J5mHfUj3hoUxGLInkLz0gkZ75IqQWYYBrIhA2myjPZw62kfr9GtlfWx2mgxRTLQZRQiU5bR6Ks/7WP5YtpIUqGD5pcmDbMLHYwe9lAEcTWO1sgIv0Oa/4mDOh2gMvjBJEqQz3al2VYcVCdhUiyKWl/NaR2rLt4OV5RHSV7OKEVHCBkrSZUgAwDM6XDKMtpHYQ7yibZjsMoKHNmUICcDa3YxXHEZradZ4USN+NDOBwEABbaCUYiMjAsMA58+B1khrVnIiOchN/0Th3UCEE3DRXmuUQyQJMJEpxH1/CRMjMXREGpGTImN6DjeDi+8jAxTzE4L9Ag5CyRdgsxaXHAqCtqjXqiqelrHqg80IkuOIy2HRgmTQVpOPlyyjJASQTgeHvFx3DX7UC3wMDEGOA1U3SSZRK0TURL3AjiNBLl5Pw7qDJCjOdQuNwkwDAO9qwgT43EoUNEYGNn89Op2rW66mZs4muERQsZI0iXIvDUTTllGhxI7rSQIAFpiHrjiKrKzskcpOpJIGTl5cHU2knGH3CM+jvuEhGpBQK5hwmiFRsYLRx7Ok7WpFSNNhCLuA6jlWdi4SRBogV5SyMzNR3ZcG3A5ERjZPORj9V8BAGxWak1PyNmAT3QAo01nz4T9eGe76Y52mATTiI/VqoRQFOeR7TCOVngkgQSjDVaZAwA0h5sxyTZpRMcJNx9DtcBjWhot0Es2+owipB8KQMfkjLjayVH/CajpRkyyFI1ydCRRxBwnmG/tADDiShZSwz/Aqyqysi8bzdBS3t///vdMnuc3ApiKJBz0I2NKAbA3Ho///OKLL+7TQSzpEmSLIwt2RUuQPREPci25IzpOTI7By8gwykaYdEn3MaUsvWoFcHq1kMPtR9Bi4VHmEkcrLDJOWDPzwQAwMRa4wyN4yhDx4bASAmDEOeklox0eSZApmRYE4y4IqmfEtZCPth/DpFgc2YXTRjm61Mbz/Mbs7Owyl8vVzrLs6c2rJClFURSmpaXlnMbGxo0AFp78etLdbTmsZrCyAADwx/wjPk5LuAUqAxhV+2iFRsYBI6t1vTudbnptEa0+doGjYDRCIuOI3qFVFzAperSOpBJOezUOCwIYhcUFOdSePlkUZphRq2YhKy6PuEZ2U6wNaTEOk3MzRjm6lDfV5XL5KDkmw8WyrOpyubzQnj70ff0MxzPm0i06yLK2MMYfHXmC3BTQFugYefoySyZ6YzZ4VUXzaSTIQUUbWZxoocU2SceqrTcwxriRjSC3V+OQTgAfdaI0yzHKwZFEcVn1aGSzkBWPock/snbTzeiAOW6krqyjj6XkmIxU57XTby6cdAlyhkWPmKK1dj2tBLmzSYjVQElQMmGtOciIKzjhHVmFAlWREeYCAIAcM9UyTTqWLACAKarAHRlZgnxc4BGLZqPIRRUskgXDMIja8pAly2gewQhyoMMPPwuYmTTqykrIWSLpEuR0iw4RWZtnejoJcl2rVpLHaZs8KnGR8UFwTEC6Ekezv898/CFxNxxHM89ADx52PU2/STp6K6KsAbaOOLwdXkTl6LDeHm87gjqeh4HLhUHgxihIkghcWiGy4jKaI23DLiFa594HALDoRrYmhox/u3btMt94443dC1P27NljXLhwYenixYvFFStWFMidFZReffVV1/z588sWLFhQ9u677zoBIBAIsMuWLZtcXl4uLl26tKS2tlY4+fgej4e77bbbisvLy8Ubbrih9IsvvjADwJdffmlesGBB6aJFi0qfeOKJHACQZRmrVq3Ku+GGG0pvvPFG8dChQ3oAOHTokH7p0qUl5eXl4s033zzF7XZ3f0kdOnRIf80113SXWDl69KiuvLxcXLJkifiLX/yiMBgMDpgv/vrXv5702muv9Sn6/tlnn1nvvvvuXquVH3nkkdzf/e536QMdq7KyMnv37t2mcDjMvPHGGwM+wj/5nH/5y19sCxcuLF2wYEHp6tWr8xRFGdLnOpikS5BNOh4dqgOMqp5WglzbXgOTosCWTglyMrGk58IpK2gf4SK9lhMH0cDzSBccNBKUjBgGYb0LrriWGLcNs+FQQ/sRyAyDbCOVAEw2luzJyJLjiKpxeDo8w3rvicZ/AACcVvp7koyeffbZrDVr1uRHo9HuPwq/+c1vJixfvrxh27ZtUiwWYz744AN7S0sLv2XLlsytW7ce2Lx5s/Tcc89NUhQFb775ZkZZWVmoqqpKmjdvXutLL73Up7bsyy+/nHXZZZf5qqqqpCeffPLY+vXr8wBg3bp1+c8+++yxrVu3Hti7d6/566+/Nm7fvt0RjUbZ995778CqVatq169fPxEAHnroofyVK1fWVVVVSTfddFPLwYMHDQCwefPmtJUrVxZ5vd7uBPKxxx6b+OMf/7hl69at0qWXXup/6aWXsk6Oqbm5mf/pT386ZefOnaM2WrRq1arG6dOnhxobG4Vt27b1SZD7O6fP52OfeeaZSa+//vrhP/3pTwcmTJjQ4Xa7+aF8roNJyvIMHTonzKqKwGkkyA2BRmTGZdizCkYvMJJwjuw8pH0j47uYd0Tv9zceRj3PY4KZEqBkJZsyMTGgfXe4w25km4f+nXo8cAIwA3m2/LEKjyTIhKwssHu1/KEp1DSsJkFHGvcDALIzLxiT2Ihm0xfV6Vu/rh3VhUNLLproXvaDgkFX7Obn53e8+OKLR+6///7urmKiKIY8Hg+nKApCoRAnCILqcrniH3zwwT5BEFBdXa0TBEFhWRb33ntvczweBwDU19frrFarfPI57rnnnia9Xq8AQDweZ3Q6ner1etlYLMYUFxd3AMDMmTN9O3bssLW0tAizZs3ydm4LVlRUmEOhENPe3i58/PHHjsrKyollZWXBtWvX1gKA3W6X//CHP0g/+tGPzus6X01NjfGaa66pAYDp06cH1q9f36cuaiAQYO+77776Tz/9dI7LPTwAACAASURBVNgJ8meffWZ97bXXsnmeVxoaGvRXX3112+rVqxvvu+++gnnz5rV99NFHzuPHjxufeOKJnAceeKB7TmR/5/zyyy8tRUVFoXXr1k2sr6/XL1682J2ZmRkfyuc6mFEbQRZF0S6K4p9EUfybKIpfiqI4s3P7DFEUd4uiuFMUxbWjdb7BdOjTYVUU+EeyCr1Te9SLNFlBRibNM00mBmcunIqCoBIc0fvj7mo08hzy6clC0mJtWShQtHnmw1qop8g40TniXJJeMAaRkUQqdJnBxLTpe82h4U3ROuGtgUFRkJd30ViERhJsyZIlHkEQes27KSws7KisrMy76qqrzm1ra+OvuOIKPwAIgoBXXnnFdcstt5Rdd9113UkKz/O46aabSqqqqjKvv/769pPP4XQ6ZZPJpDY0NPCrV68uWrlyZa3P5+NMJlN30mexWGS/388Fg0HOZrN1b2dZVm1ubhaOHz9umDVrlu+dd96RfD4ft3nz5nQAmD9/vtdisSg9z1dcXBx6//33HQDw4YcfOiKRSJ98saioKDpjxoxh/zHtevra1NSk27hx45GtW7ceeOutt3qNRKxYsaIhLy8v3DM5HuicbW1t/D/+8Q/bQw89VLtp06ZDb731VpYkSXrg1J/rYEZzBLkCwH9LkvScKIoigLcBXATgFQDlAI4CeF8UxQslSdoziuftQzGmwyor8A3z8WhPXiWINJlHtoMW2iQVSxYcsoI4IyMUCw27kUzcfxztaRxyR9hkhIx/escETK75G4D04SXIvjqc4FmwCotSF801TTaF6WYcjTkAeIZd6q0p0oJMWUV+1oBTL8koWPaDgtZTjfaeKZWVlZM2bdp0YOrUqZFXX33VtWbNmkkbNmw4DgDLly9vueOOO9y33nrrlE8//TQwd+5cPwC88847B/fv329Yvnx58caNGw89+OCDBQAwf/781ttvv9397bffGletWlVUUVFxYs6cOQGv18uGw+HuecSBQICz2WxyJBJhA4FA93ZVVZnMzMyY0WhUus41d+5c786dO20A+v281qxZU/vwww/nvffeexmXX365x263x6uqqpxvv/12JgA88MADJy655JLQYJ+BwWBQYrFYr7mIoVCIMxgMCgAUFRWFBUGAIAiKTqcbcSUSp9MZF0UxmJOTEweAadOm+b/99luTKIodQO/P9W9/+9veoR53NOcgPwvg1c6feQARURRtAPSSJB2RJEkF8BGAq0bxnP1izemwqAoCHb4RH8OHGPSyDhZ9Us5CSV16K6yKdtm3dwzrZhIAEIxpN7M5FnqykKwMzgnI73zCMKwE2VuHEzwPXcyKwgzLGEVHEsVp1iGGLLCqiqZQ07De26IEYI/rqMRbCrFYLPGuUdysrKyY3+/nDhw4oL/zzjsnK4oCQRBUnU6nMAyjVlZWZm/evDmt830yy7KYMmVKx5YtW6QtW7ZIt99+u3vfvn2GlStXFm3YsOHo9ddf7wMAu92u8DyvHj58WK8oCr788kvb9OnTAxdffHFgx44ddkBbxFdYWBg2mUxqbm5uZMeOHRYA+Oqrr6zFxcXhgeL/5JNPbKtXr67dsmWLxHEcZs6c6SsvL2/viulUyTEAlJWVhQ8fPmyqr68XACAcDjPffPONZdq0aad8L8uyUFV1SAt9LrzwwtCxY8eMLS0tfCwWw969e82lpaXh/j7X4RhR9ieK4l0AfnXS5jskSfofURSzAfxfACsB2AD0zFL9AMa8/6rOkgZbi4KGEc5Bjitx+FkVBlCL6aTDMDAwWvIykk6LIVVLqqnEW/JirNkQAOhgGv4IssBD7UjDJOfIW9yT8StqzEGGvA/N/vphva+ZlTFVcYBlaWFvqli3bl3NihUrJnMcpwqCoDz++OM1hYWF0ZKSktCiRYtKGYbBzJkzvXPmzAmUlpZGKioqCrdt2+ZSFAWPPvrosZOP99RTT+XGYjG2a3Ge2WyOb9q06cjatWtrKioqChVFYaZPn+6bMWNGUJZl7Ny507Zo0aJSVVXxxBNPVAPAY489Vr1u3bq8p59+msnJyelYu3btgF9wxcXFkVWrVhUJgqAWFhaGn3zyyePD/QzsdrtSUVFx4uc//3mxXq9X4vE4u3Tp0uYpU6Z01NXV6QZ7b2ZmZiwWizFr167NXbdu3aDFx7OysuL33ntv7bJly6YAwFVXXdV+3nnnRVwul/tUn+tgRpQgS5L0OoDXT94uiuJ5AH4P4H5Jkv7WOYJs7bGLFcDwlv+OgNGWBmuTCik2snmmXSuUDYz1FHuSs5GJswEIoCU0vCdxsqIixAUAWGiRXjKzaou19bJxWN30FG8tTvA8mI4JMOqoxFsyUqwTkBWX0eQ/MeT3BILN8HMMLFyfKlgkiRQWFka3b99+oOv32bNnB2bPnn3g5P0659T2mlebnZ0df+uttw4NdvxNmzYd6W/7zJkzgz3PCwAcx6GysrJPQjtt2rTwtm3bpIHOsXv37m+6fp4xY0bw/fff3z9YTF0efPDBAe8YFy9e7Fm8eHGfvG/OnDn+OXPmdI9idp37hRdeqO7a9uGHH/5zqOdcunRp+9KlS3s9Fh7K5zqY0Vykdw6AdwHcIknSXwBAkiQfgKgoipNFUWQAXAvg89E650BMtnRYFAX++IBPDwbVFtJuqoz80Fcpk7OHVa+1mz7hHV6pt+b2dngEGSwYuEz0xy5pWbS1IoY4P6wR5BbPMXSwLGz6vLGKjCSY4JyoNQsZxhSLhs4Sb3YjNZ0i5GwymnOQHwdgAPC8KIqfiaL4Xuf25QA2A/gKwB5JknaP4jn7ZXVoVSyCahSKqpz6DSdp89YAAMw6SoKSkcOYCQCo9Q0vQW6tr0YTx8HJmsGzNDc9aXW2mzZFgZZh1Muu92sDNrlmWqCXrMyufGTGZTQOYwH40QatSYjLTpVvCDmbjNpfeUmSbhhg+y4AM0brPENhM5ugV1ioAEKxECy64S2YaW6v1o5jonmmychpmwDeq6IxMLxWwt7m42jhOWTo6clCUjOmQWF42OMKDg5jikVdsBEQgAIHjRQmK2d2PlzfyQgq0SFXwalxa094J2add4o9CSHjSdJ10gMAh0kHVtHmf4+km15De612HDuV8kpGJmcWnLKMtsDwSjWFW+vQwnHItgyrGQ8527Asonon0mUZETmCUOyUC64BAHURbZpdmYuahCSrXFcaTHGtWchQp980+uvAqiomT6ImIYScTZIzQTYK4GQtQfZFh1/qrdnfCFZVkeYsPPXO5KxjTsuBQ1HgiwxvioXs6UyQ6cYp6cnGDGTLWrvpISVCcgxNagR6mUdhOj1hSFa5TiOYuFYbf6jTb1o72uCUgXyXYyxDI4SMsqRMkG1GAVAMAIBALDDs97dHWuFQFNgz6FFpMmLNGUiTFYRiwyuoIgfq4eU4ZFqogkWyYy0u5MoRAEBrZAjTLPwNaOA56GMm5DqoPGSyMul4MKq2yLclNLQEuU0JwB7nqKY+IWeZpEyQOZYBVG1u2EimWHg620w702mRXlIyu+CUZYTV4d08dUS1yjwuU+ZYREXGEcGWhTxZuz6GVOrNV48GngMbsyHbbhjj6Egi8ZxWBnCoI8htbBRWlepiJ7tdu3aZb7zxRrHr9z179hgXLlxYunjxYnHFihUFsqx1fn711Vdd8+fPL1uwYEHZu+++6wSAQCDALlu2bHJ5ebm4dOnSktraWuHk43s8Hu62224rLi8vF2+44YbSL774wgxojUAWLFhQumjRotInnngiBwBkWcaqVavybrjhhtIbb7xRPHTokB4ADh06pF+6dGlJeXm5ePPNN09xu93d9SgPHTqkv+aaa87p+v3o0aO68vJyccmSJeIvfvGLwmAw2Cdf3Ldvn2Hx4sXiokWLSu+7776CWCzW6/XPPvvMevfdd/fqffHII4/k/u53vxuwpWRlZWX27t27TeFwmHnjjTcyBtrv17/+9aTXXnutO0l74YUXMhcsWFC6YMGC7s8hFAoxd9111+QlS5aIP/vZz4qbm5uHdZealAkyAHCdNYxHkiD75CCsMoMMK40EJSVzBpyygjCGNre0S0zVHrVTibfkx9uyMFnRvjuGkiCr3lrU8zw4ZELgkvZrlQAQzBOhU1S0BBpOua8aj6KZA6wMTa9IZs8++2zWmjVr8qPRaHcnmN/85jcTli9f3rBt2zYpFosxH3zwgb2lpYXfsmVL5tatWw9s3rxZeu655yYpioI333wzo6ysLFRVVSXNmzev9aWXXuqz0OXll1/Ouuyyy3xVVVXSk08+eayrYci6devyn3322WNbt249sHfvXvPXX39t3L59uyMajbLvvffegVWrVtWuX79+IgA89NBD+StXrqyrqqqSbrrpppaDBw8aAGDz5s1pK1euLPJ6vd2J+WOPPTbxxz/+ccvWrVulSy+91P/SSy9lnRzThg0bcleuXFn3xz/+8QAAvP/++6d9oa9atapx+vTpocbGRmHbtm19EuTm5mb+pz/96ZSdO3fau7YdOXJE9+GHH6Zv27btwHvvvXdg165d9m+++cb4+uuvZxYXF4e3bt0qLViwoPXZZ58dVuWFpH3mw3I2ACNMkNGBdJmHQaBi/0nJlA6nIiPKxhFTYhDYPjfrfYSjMmTOD0APl5ES5KRndmGCEgbAwB059Rxkb/tRhFkWTh3NT092nH0iMjpkNPtO3VjM6z6ACMvCpqenTmfEV79Nxz/eHnDUcUSm/cSNy+4e9C45Pz+/48UXXzxy//33dy9cEkUx5PF4OEVREAqFOEEQVJfLFf/ggw/2CYKA6upqnSAICsuyuPfee5vj8TgAoL6+Xme1WuWTz3HPPfc06fV6BQDi8Tij0+lUr9fLxmIxpri4uAMAZs6c6duxY4etpaVFmDVrlrdzW7CiosIcCoWY9vZ24eOPP3ZUVlZOLCsrC65du7YWAOx2u/yHP/xB+tGPftRdaqWmpsZ4zTXX1ADA9OnTA+vXr+/z5bZx48YjPM+jo6ODaW1tFbpaaw/FZ599Zn3ttdeyeZ5XGhoa9FdffXXb6tWrG++7776CefPmtX300UfO48ePG5944omczuYqALTR9vvuu6/+008/7U6QJ02aFHvzzTcP8byW0sqyzBgMBmXPnj2Wf/3Xf20EgGuvvda3cePGYc2PTNqhDp7X5on5O7zDfq+PicOo6Ec7JDJecALM0BZxNgfaT7GzptEbRpTT5qTSCHIKMLvAAxCUoXXTq/dWAwDSTNQkJNnp0ybCJcto8J263fShWq1JSLq1YIyjIom0ZMkSjyAIas9thYWFHZWVlXlXXXXVuW1tbfwVV1zhBwBBEPDKK6+4brnllrLrrruu+8uF53ncdNNNJVVVVZnXX399nz9MTqdTNplMakNDA7969eqilStX1vp8Ps5kMnUnpRaLRfb7/VwwGOR6Jqssy6rNzc3C8ePHDbNmzfK98847ks/n4zZv3pwOAPPnz/daLJZeTSOKi4tDXSPCH374oSMSifTJF3meR3V1te7aa6891+v18ueff/6QHssyjDbQ3tTUpNu4ceORrVu3Hnjrrbd6jZqvWLGiIS8vL9wzOQaAoqKi6IwZM3q1SdbpdKrL5YorioKHH3544pQpU0KiKHYEg0HObrfLAGC1WuVgMDisUc/kHUHWO2FQFPhDw6t1G5NjCLKAgTGPUWRkPLCwZgAqqtubkWs79ehOS0sj2nmABwuHnh6XJj2zdhPEy4ahJciBOgDARBs1CUl2tsx8uGpkSEO4LqobtQ7AuRmlYx0WAYDL7m491WjvmVJZWTlp06ZNB6ZOnRp59dVXXWvWrJm0YcOG4wCwfPnyljvuuMN96623Tvn0008Dc+fO9QPAO++8c3D//v2G5cuXF2/cuPHQgw8+WAAA8+fPb7399tvd3377rXHVqlVFFRUVJ+bMmRPwer1sOBzuTvoCgQBns9nkSCTCBgKB7u2qqjKZmZkxo9GodJ1r7ty53p07d9oA9Pt5rVmzpvbhhx/Oe++99zIuv/xyj91uj1dVVTnffvvtTAB44IEHTlxyySWhgoKC6Geffbb3jTfeyHjkkUcmvfjii9VdxzAYDEosFmN6HjcUCnEGg0EBgKKiorAgCBAEQdHpdL1uMIYrHA4zv/rVrwpMJpPy1FNP1QCA2WyW/X4/CwB+v58zm81DHuEGkngEGUYHLIqKQGRoI4RdPB1aZQMDax2LqMg4YRO0pzM1nqEttPE216KF45DGW8Ayyfu/Delk0RJkXWxo7aZrO2/Ei9NoikWyy5hQiAxZRlv81NP3Gjq7shZNmjbWYZFxxmKxxLtGcbOysmJ+v587cOCA/s4775ysKAoEQVB1Op3CMIxaWVmZvXnz5rTO98ksy2LKlCkdW7ZskbZs2SLdfvvt7n379hlWrlxZtGHDhqPXX3+9DwDsdrvC87x6+PBhvaIo+PLLL23Tp08PXHzxxYEdO3bYAW0RX2FhYdhkMqm5ubmRHTt2WADgq6++shYXF4cHiv+TTz6xrV69unbLli0Sx3GYOXOmr7y8vL0rpksuuSS0bNmy4oMHD+oBLRntGhnuUlZWFj58+LCpvr5eALQk9ptvvrFMmzbtlCPNLMtCVVXmVPsBgKIouPPOO4tLSkrCzzzzTE3XVItp06YFPvnkEwcAfPTRR7YLLrhgWHNuk3cE2eiAOaggOMwpFt6g1jzCKFAt02RmN6YB8KDON7QnDKH2erTwHDINaWMbGBkfOkeQzXEOLaFTD0g1xHwQWAbF6TTXNNlNcKXDGucQRAyReAQGfuCqJe5wE1hexbk5RQPuQ5LTunXralasWDGZ4zhVEATl8ccfryksLIyWlJSEFi1aVMowDGbOnOmdM2dOoLS0NFJRUVG4bds2l6IoePTRR4+dfLynnnoqNxaLsV2L88xmc3zTpk1H1q5dW1NRUVGoKAozffp034wZM4KyLGPnzp22RYsWlaqqiieeeKIaAB577LHqdevW5T399NNMTk5Ox9q1awf8A1hcXBxZtWpVkSAIamFhYfjJJ5/sM+n+7rvvbvj3f//3QkEQFL1e3z1y28VutysVFRUnfv7znxfr9XolHo+zS5cubZ4yZUpHXV2dbrDPLzMzMxaLxZi1a9fmrlu3rm6wfbdv3+747rvvrLFYjP3iiy/sAFBRUVF71113tfzyl78sWLx4sSgIgvr8888fHew4J0vaBFmwpMHsV+DvGF6jkLZ27RowG0Z3nj8ZX9KtWUDgKBoDbUPaP+ZpQAvHId/cZyEvSUadCbIjDhw5VR1kVUWzEoElZsdEJ03NSnZGHQe9rJVtc4fdmGgduF5+m+xBGhjYjLSmJdkVFhZGt2/ffqDr99mzZwdmz5594OT9OufU9ppXm52dHX/rrbcODXb8TZs2Helv+8yZM4M9zwsAHMehsrKyT0I7bdq08LZt26SBzrF79+5vun6eMWNG8P33398/WEyXX3558PLLL+/z39jT4sWLPYsXL+7TdGDOnDn+OXPmdI/odp37hRdeqO7a9uGHH/5zoOM++OCD3YsAFi1a5Fm0aNHX/e23cePGYSXFPSXts2K9OQ0WRYUvOrxat43t2o2KjWrdJrVMm7aY1T2E0UEAUPxNaOY4uKw0xzQl8HrEdVakKzI6lFO0m4540MAz0MdNmOCgGsipQAdtitapaiG3IwI7Lfgm5KyUvAmyNQ0mRUFgsD9s/XB3rky2U7e0pGa2ZkOvKPCHmof2hlATfByHDLouUofJhayhtJv2N6KB58HLdlgNpy4ZSM5+JkF7wtA82PeHoqCVk2FnaD0LIWejpE2QTY4MWFQVoc52sUPVFtRGBDKcVK4pmTHmDNgVBZHo0OYgx+LaH8IMI029SRWsNRMThtBuOuKpQRvHwcDRU6dUYTNp0yqa/QM3C4n56tHEc3AIVBaSkLNR0ibIdqsFBhkIqbFT79yDL9IOTlWRnkYJclIzZ8AhK+iQT72IMxpXoDLaXGVKkFMHa3GhUNWeQLWEBn6U3tiuTR206KmCRaqw2wugVxTUuA8PuM/h6j2IMwwyLAPPUSaEjF/JmyAbBQgKj7Aah6oOvbyeL+qDXVHgSKfFWEnNlAGHoiCmnrrqS7M/AnDaXHZKkFOIORNTZO36GOxReoOnGgDgsBWfiajIOGB25SNLlnHCM3A3vSP1ewEAuWlTzlRYhJBRlLQJssOoA6vwiDMqokp0yO8LxAOwyCocFuMYRkcSzpwBhywjxoYRk5VBd230RiDzWrnIdGP6mYiOjAeWLOTJXjAqP2iCfMJXCwCY5KRSXqnCkZWPrLiM5lDjgPs0tGtFByZPpBrIhJyNkjZBNggsOFUrsxcYRiWLoBKGSWFhEIbVkZCcbUzpcCgK4mwU7kDHoLs2tvsQ5rWpOukGSpBThiUTDABWtqBxkESoLtQCRlVRkkGP0lNFVl4xsmQZbbE+1au6uUPagu+pE8vOVFgkgXbt2mW+8cYbxa7f9+zZY1y4cGHp4sWLxRUrVhTIstbE7dVXX3XNnz+/bMGCBWXvvvuuEwACgQC7bNmyyeXl5eLSpUtLamtr+6z29Xg83G233VZcXl4u3nDDDaVffPGFGQAOHTqkX7p0aUl5ebl48803T3G73RwAPPHEEzkLFiwoW7RoUenu3btNANDU1MR3nWfRokWlhw8f7i6x0tzczM+dO3dqOBxmAKC1tZX72c9+Vrx48WJx2bJlk5uamvqUBa6vrxduuummkiVLlojLli2b7PP5euWUx44d0y1cuLBXG8nXXnvN9fjjjw+42v13v/td+p/+9Cc7ALzyyisDTuB/8cUXMx955JHuslJfffWVacmSJeLixYvFu+66qygcDjPRaJRZvnx54aJFi0qXLFki7t+/f1hlhpI2QWYYBpyq/dsPWqLpJEFEYVSStjw06cIJsEJABxdHo3fAZkIAAG9LPdwcBxtrgMBRlYKUYdGmWfFRA5qCA48gN0a9sMssJjmpWkGqMFiccMRZeBCGovb/BKo93gqDAqQZ7Wc4OnKmPfvss1lr1qzJj0aj3Z3ffvOb30xYvnx5w7Zt26RYLMZ88MEH9paWFn7Lli2ZW7duPbB582bpueeem6QoCt58882MsrKyUFVVlTRv3rzWl156Kfvkc7z88stZl112ma+qqkp68sknj3U1DHnooYfyV65cWVdVVSXddNNNLQcPHjT8/e9/N3399dfW9957b//zzz9/9NFHH80HgPXr10+cP39+W1VVlfTLX/6yTpIkA6B1mVu2bFlJe3t79x+45557LmfatGmBbdu2Sbfeemvz448/3qfG6Ysvvpi9cOHC1q1bt0qlpaXhTZs2nfYcxNtuu611wYIFXgB44403+iTSoVCIueeeewq3bNnSvSpaURSsWbOm4Mknn6zetm2bNGvWLF9NTY3uww8/tMuyzPzxj388cM899zQ8/fTTw6rTmtSZIMcYAYQQiA1jBJmJI0elWqapwMYZoTIqjnvacGHewB3ygq31aOU4uPS2MxgdSbjOBNkc16Eh2DTgbk1qBNaYAROdNC0rlZhUKxQmjrZIW79rE7wIwSnzOLn9Lhk7b+9/O337ke2julBk4eSF7p+U/WTQgvn5+fkdL7744pH777+/sGubKIohj8fDKYqCUCjECYKgulyu+AcffLBPEARUV1frBEFQWJbFvffe2xyPxwEA9fX1OqvVKp98jnvuuadJr9crABCPxxmdTqeGQiGmvb1d+Pjjjx2VlZUTy8rKgmvXrq397W9/mzl9+nQfy7LIz8+PyrLMNDc38999952lpKQkvHTp0pKcnJyO9evXnwC0ts7/9V//JS1evPicrvMdO3bMUFFRUQcAP/jBDwL/+Z//2adywfr160+oqgpZltHY2ChcdNFFgz+O7eHYsWO6lStXFmVmZkbr6ur055xzTvDpp58+/vjjj0/IyMiIeTweLhAIcKtXr87bsGFD92T/SCTCLl68uHXmzJm+o0ePGgDg4MGDepvNFv/tb3+bdfToUeOsWbM8paWlHYqiMLIsM7Isw+/3sxzHDX1BGpJ4BBkAOEbrajWcBDnAqtCDEuRU4BS0Eb8az+C1kKPeBrRyLDJoekVqsWgDFPY4C3e4uf/FvoqCZlaBIW6Cy0INIVKJhde+D5r6u3lSFHi4KByM5QxHRRJhyZIlHkEQen1BFBYWdlRWVuZdddVV57a1tfFXXHGFHwAEQcArr7ziuuWWW8quu+667sSb53ncdNNNJVVVVZnXX399+8nncDqdsslkUhsaGvjVq1cXrVy5sratrY0/fvy4YdasWb533nlH8vl83ObNm9MDgQDXM8k2mUyy1+vlmpubdTabLf6HP/zhYHZ2dvT555/PBoCrr77al5GR0SspLykpCf/1r391AMCf//xnR0dHR598kWVZyLLMXHvttefu2bPH1vXfeCoMw6gAUFdXZ6isrKzevn37/l27dtkbGhq6B21Xr17daLFY5J7JMQCkpaXJ11xzTa8WyW63m9+/f7/ljjvuaH777bcPfvXVV7ZPPvnEarFY5MbGRt1VV1019bHHHitYtmzZwCMd/UjqEWSB00b8hjrFIqbEEGIZGFnTWIZFxok0oxOQfajzDd5NT/U3we3kMJXaTKeWzgQ5Pa7imBLVKtzoez8uj/sb0cBzKFOdYFkaKUwlTmMugCYcba/FuRnn9nrN01SNOp7D+QLVxj6TflL2k9ZTjfaeKZWVlZM2bdp0YOrUqZFXX33VtWbNmkldyd7y5ctb7rjjDvett9465dNPPw3MnTvXDwDvvPPOwf379xuWL19evHHjxkMPPvhgAQDMnz+/9fbbb3d/++23xlWrVhVVVFScmDNnTiAUCjFGo1Hpev/cuXO9O3futBUWFkaCwWB3QhsKhTiHwyFbrVZ53rx5HgC45pprPM8888yAUw5WrlzZ8NBDD+WVl5eLl19+udflcsU+//xzy/PPnZ++xQAAIABJREFUP58LAHfccUfjvHnzvDqdTv3444/3ffzxx9ZVq1YVVlVVdbeyNhqNSiwW65VYh0IhtmskPCcnJ2Kz2RQASEtLi0UikREN2qanp8s5OTmRc845JwIAP/jBD7zffPON6b//+7/t06dP961du7bu+PHjwm233Sb+5S9/2Wc0Goc0kpzUI8g6XkuQA5E+N2P98oe0WrdGnh6lpwKnSRsBavAP/n0qhJvh5jhkWKjNdErh9VAMDmTL2gLNplDfwYdG917EGQYWPudMR0cSLLOzfNvB+v19Xjt85O/wchwm2qmySaqyWCxxm80mA0BWVlbM7/dzBw4c0N95552TFUWBIAiqTqdTGIZRKysrszdv3pzW+T6ZZVlMmTKlY8uWLdKWLVuk22+/3b1v3z7DypUrizZs2HD0+uuv9wGAyWRSc3NzIzt27LAAwFdffWUtLi4OX3bZZYEvv/zSLssyampqdIqiwOVyxadOner/6KOP7ADw5ZdfWouKigbspPb5559bb7755paqqiqpoKAgcv755wdmz54d6Ipp3rx53tWrV+d9+umn1s64FZZleyWemZmZ8XA4zO7bt88AAPF4HLt27bJNmzYtBOCU04+GWqK3qKioIxwOc4cOHdIDwJ49e6wlJSURm80mWywWGdBGnjunWwx5JCOpR5B1OicAIBge2g1lq6cGAGDufB9Jbg5TJuAH3KGBr4+OuAwh1oIwyyLDTKNBqYaxZCHfp02raw41o8RZ0uv1E+5/AgDsxsI+7yXJbWLOOeC9Kupaj/R57Wjd1wCAkgnnn+mwyDixbt26mhUrVkzmOE4VBEF5/PHHawoLC6MlJSWhRYsWlTIMg5kzZ3rnzJkTKC0tjVRUVBRu27bNpSgKHn300WMnH++pp57KjcVibNfiPLPZHN+0adORxx57rHrdunV5Tz/9NJOTk9Oxdu1at16vVy+88MLAokWLSlVVZf7jP/7jOAA8/PDDtQ888ED+u+++m2k2m+UXXnjh6EDxl5SURFavXl24YcMGZGRkRCsrK6tP3ufOO+9sfvjhh/NffvlllWEYrFu3rtd0CJZl8eijj1Y/+OCDBSzLIh6PMz/84Q89c+fO9R87dkx3qs8wPz8//Itf/KLw5Zdf7vN59KTX69V169ZVV1RUFKmqivPOOy8wb9487w9/+EN/RUVFwZIlS8RYLMb827/9W53FYhm8rmsPSZ0gGw3pgAL4B0mAemporQYAWKgZREpwWHKAJiAYGXhaUqM3AgNPXfRSFWPJhOjTuuj1Vwu5ul37+5KdNvWMxkUSLytPRNZeGe5gbZ/XGryHAD1wXuFlCYiMJEJhYWF0+/btB7p+nz17dmD27NkHTt7vgQceaADQq0d5dnZ2/K233jo02PE3bdrU904MwLRp08Lbtm2TTt7+4IMP1gOo77mtoKAg+vvf/37A83z++effdf08ZcqUjj/+8Y994u+prKwssmXLlj7n7mmgz+Hkz6vr5864AQDvvvvuwYGOe9ttt/VK7K688kr/lVde2etxjtVqVV577bUBbwJOJamnWBhNaWBUFZ7w0KZYNLdr/y4Oc58KKyQJWS0TwKsqYrGWAR/l1HnC4AVtPQDVQE5BlkxMUbR1J/1NsTjqOQ5BVZE/4Zw+r5Hkps8oQHY8jraYu89rbVEt/8mz91n4Twg5S4z6CLIoiqUAdgPIkiQpIoriDADPA4gD+KskSetG+5wD0VnSYPGq8IWGliC3+rVmAGk2mmuaChhLBpyyjCjjhS8ch93Ut8ZxgycClQ8C0NMIciqyZMGltAFyQb8jyLWRVmTFVBS6HAkIjiSUzoycOIsDur4L9z3wwSlzMPJU+o+Qs9WojiCLomgDUAmgZy28VwDcAmAWgOmiKF44muccjN7shElV4OsYUuUReDvnKrvS6K4/JZgy4JQVsHwA9QM0C2nwhBDjqM10yrJkQq+EoUZtqPH2fZRerwSQHuORl2ZOQHAk0bJhRZCT0RL8fhAmEo2hjY8ik6Fr4gxRFEWhEjJkRDqvnX7nJY9agiyKIgPgtwB+DSDUuc0GQC9J0hFJklQAHwG4arTOeSoGaxosioLgEFtN+zu0tqFZroIxjIqMG+YMpCkyVC6ERm//i3nbWlvQzjPgwCDNMHAzEZKkOpuF6KN2HPP2XieiqioamDiscQMyLKdcb0KSUK5FG0zZcXRf97aa6sOoFThk66ks5Bmyt6WlxU5JMhkuRVGYlpYWO4C9/b0+oikWoijeBeBXJ22uAfB7SZK+EcXuduQ2AD0LOvsBnLG6NyabE2ZFRTA+tDrIwZgfFihId1AilBLMLjhlBbIugoYBEuRIex1aOA7pggUsk9RT9kl/OmshW6NGuCMHEIqFYBK0Oult4VaEWcAKJ3VLS1EluRcB9Yewp+Z/UX7eLADAkf274OY5TM4oOcW7yWiIx+M/b2xs3NjY2DgVSb6uiow6BcDeeDz+8/5eHFGCLEnS6wBe77lNFMXDAO7qTJ6zAfwVwHwA1h67WQF4RnLOkbDanDApKtxy/4/PTxZUQrAAMAjc2AZGxgdeDycjoIOLoWGAKRZRTwMCNg4Zeir9l5KsEwAAWVEOrQCO+4+jNK0UAHCiTVuA7RCoBnKqKi2+Anzd71Hv3tO9re7E54AVKCuYnsDIUsfFF1/cDGBhouMgyWfU7rYkSSqWJGmOJElzADQCuEaSJB+AqCiKkzunYFwL4PPROuep2Ix6GBQGYTU6pP3DagQmhW5AU0kab0aUU1Dn6TtPXVZUwN8EN8fBZaIayCnJMQkAMFmOA0CvaRZSw98BANnmyWc+LjIu6HIuwMRYHJ6IVv5VVVW0d2i1scWsaYkMjRByms5ENrgcwGYAXwHYI0nS7jNwTgCA1cBDp3IIq7Eh7R9SozCqNHqcSpx6rWviCV/fCgX1njDS1Da08BwyLBPOdGhkPNBbAYMDF7EdAJheCfLXjd/ALsvIzShLXHwksQw25Co8vJwHoWgcR5r9aNe1wqJyKLAVJDo6QshpGJNGIZIkFfT4eReAGWNxnlNhWQaCwiPMyEPaP8zIcClUlieVpBnSgUgr6nx9a5nWtIaQznjQzrJwWegxespyTILo84CV01Dtre7e/E/fEUztiMKZS3NNU9kkXQZ2M2688781cITrcMDA4lzTRJqXTshZLunnEwiqgAhUKOqpuwsGWQUGRn8GoiLjRVpn++iWoBsd8d43UtWtQZj4NqgMQ1MsUpk9DzloQTScgSMerSlTOB7G8VgbxI44CgpoikUqOzezFHGGwRv/72P8ffdfcEQQcHEuddAj5GyX9AkyDwNUBgjFTl3JIsAyMLJUuzKVODunThg4D2pae18j1e4gdIK2ppSahKQwRx4c0UYoHRmo9lVDURUcaDsAhQGyoxZk2k2JjpAk0OxzfwJWVTGB3wYX+yVUhsEF+VcmOixCyGlK+gRZx2hTJgKxwWshh0Pt6GAZmHjroPuR5JJmywcAWPgWHG3pfY1Ut4YgdHbJchldZzw2Mk44JoGPh6CPuBBVOvC/jf+LvW6tbGYOS3PTU116wRWYzprhsR0HYzgKBsB5mRckOixCyGlK/gSZ1UZ3grHgoPvVt1QDAEw6+1iHRMYRq30SOFWFgffgSEvva6TGHUCU1ZJml4kS5JRl1ypZFHe4IDAmbD28FX878TlccRl2O02vIMD1pTejVuCw0WHHjOzpsOpooIWQs13yJ8idI8L+Dt+g+zW1nQAAWKlbWkphrTlwyArM+gCO9kiQFUWFv70R7Z1FTdIN1GY6ZXWWepvu6IAldik+OPoBdjd+iZ/5fDDl0AI9Alx5wZ0wsjpMTSvFM3OfS3Q4hJBRMCZVLMYTvaCNCAdDLYPu5/bUAgDsZlqMlVKsWXAqMqAL4UiPKRb13jBccgtaOA5O3gyBExIYJEkou9ZO+FyzD/+3aRqQ+zcU8gVY5j2OQH5pgoMj44Fdb8eflnwAp8EJHUdtxwlJBkk/gmzqHBH2+JsG3c8T0F5Ps2aPeUxkHDE4kKYAMhfG0ZYAVFUFAHx93IMJTCtaOA4Z9FQhtZnSAMGMUkM7/L4cLBf/E1e3XwAOgD1XTHR0ZJzIMmdRckxIEkn+BLmz+kCbf/ARZG+oFQCQ4Zg45jGRcYRhkMHoEGI64IvE0RrUui7+z7E2FPBtaOY5ZJrppimlMQzgLEAR04BchxH/9YkJaDwBBVz3/GRCCCHJJekTZJslCwDQHhg8QQ50tAMAcjLyxzwmMr5k8Sa0MlEACr6u0a6D/6luwwX2IBp4ATk2uiZSXu6FYOu/xj1XFKHRF8FUQwsYxySApt4QQkhSSvoE2WHTOqD5wp5B9wvGtEV8OWlUtinVZOsdiDOAzRzFh3sb4Q3HIDX5MUnfhnaORa41N9EhkkSbeBkQbsNNRR346WWTMEt3CMzEixMdFSGEkDGS9Amy2Z4Bk6KcsopFSA7AqKjQC9RJL9VkW7QEeMYU4P/b34RdR1uhqoDKak8dcszUZjrlTbwUAKBr+BqPzdZDCDUDhVckOChCCCFjJekTZIvdBYuiIBjzD7pfRAnDfOpu1CQJZTmLAQDnZ7XDH4ljzXt7oeNZeOLavPQJFnqqkPJcpYDeBtR+BRzboW0r/GFiYyKEEDJmkj5BtjmcsCgqQvHBW02H0QGTwp2hqMh4ku06FwBg4+thNwqIyyr+z83nobFz2s0EMyXIKY9lgdyLgNr/AY5+BjjygLTCREdFCCFkjCR9HWSrQQeDAoSVyKD7hZk4jKASPakoLfM8CKoKt68Gf77vftgMAuwddXiW58AzLHXRI5q8mcBnjwPN+4ELbk50NIQQQsZQ0ifILMtAr3LwqR2D7hdiZdhB849TEePIQ1ZcRmOwAZPStNbkqJXQwPPI1qeDZZL+QQsZih/cBygyUP05MO1niY6GEELIGEr6BBkA9AqHCOIDvq4qCkIskAPTGYyKjBscj2yGR1NnqT8AQNNe1PM8cm15iYuLjC86M3DlQ4mOghBCyBmQEkNjeggIM/KArwcCXvhYBhbeegajIuNJlmBFU8956k37UK/TI8dGjSAIIYSQVJMSCbIOeoSZgUtUuFtqEWZZWHWOMxgVGU+yDRloYmQoinYjFW3aixaWFugRQgghqSg1EmTWiDDLQFb6H0VucB8DANhNGWcyLDKOZFtzEWcYtLUfAWIR1HmqAVCJN0IIISQVpUSCbGDNADBgqbfW9loAgLOzLTVJPRPSSgEAx2v+Brgl/FOnlfwr7dxOCCGEkNSRGgmyoM0t9gXd/b7eHmgAAGQ6qKVwqjqn7EYAwHeH3wea9mGvXgcDq8Nkx+QER0YIIYSQMy0lEmSTzg4AaGmr7fd1f1hrKZyVThULUlWGLRe5jB7ftB8Avn0Hew0mlKWfA55NiUIvhBBCCOkhJRJks8EJAGjxNPT7erCjDQCQ7aSKBans/LQyfMMziB39FAcMBpybMTXRIRFCCCEkAVIiQbZ2Lr5r8zX1+3oorrUUdpjSz1hMZPy5oOAqNPM8vsi/CBE1jqmUIBNCCCEpKSUSZIdVaxXsCbb0+3pECYBTVZh4ahSSyqZlXwIAeD1Tq1xxXsZ5iQyHEEIIIQkyahMsRVHkADwD4BIAegCPSJL0Z1EUZwB4HkAcwF8lSVo3WuccKpdDmzrhC7f2+3pYDcOisGAY5kyGRcaZkrQSGHkj9ri/RVlaGSZZacoNIYQQkopGcwXSrQAESZIuF0UxF8CPO7e/AqAcwFEA74uieKEkSXtG8bynlJtVDADwRdr6fT3CRGFWaTFWqhNYAS/96CXElBguzb6UbpgIIYSQFDWaWeG1APaKovg+AAbAfaIo2gDoJUk6AgCiKH4E4CoAZzRBdqXnwKAoCMY9/b4eZuIwgaZXEODS7EsTHQIhhBBCEmxECbIoincB+NVJm1sARADMB/BDAG8AuAWAr8c+fgBFIznn6WBYFlYFCMrBPq91xOIIcQrMrPFMh0UIIYQQQsahESXIkiS9DuD1nttEUfw9gD9LkqQC+JsoiiXQkmNrj92sAPofxh1jZoVFWA332e7xeOFnWWTw5gRERQghhBBCxpvRrGLx/wD8CwCIongBgOOSJPkAREVRnCyKIgNtGsbno3jOITOpAsJMtM92b1sDvBwLW2czEUIIIYQQktpGcw7yawD+jyiKu6DNQV7euX05gM0AOGhVLHaP4jmHzMTo0dxrtoemzV2PIMvCYUxLQFSEEEIIIWS8GbUEWZKkDgB39rN9F4AZo3WekTKxJgThhaqqvaoTtLqPAAAybDmJCo0QQgghhIwjKdEoBAAsvA0+joXX5++13eM7DgDITs9PRFiEEEIIIWScSZkE2ap3IsYwaGg62mt7MNgAAEh35CUiLEIIIYQQMs6kTIJsN2UAABrcx3ptD0WbAQAZ5qwzHhMhhBBCCBl/UiZB7ppj3Np+vNf2sNIOAEg3pp/xmAghhBBCyPiTMglyVpo2hcLjb+i1vQNBMCrg1DsTERYhhBBCCBlnUiZBnuDSFuH5wy3d2yIxGRGuAzbw4FguUaERQgghhJBxJGUSZKdtIgAgHG3r3tbU7keQk2FnqM00IYQQQgjRpEyCbNc7AADh+PfNQtqaatHKsUgTqIseIYQQQgjRpEyCbOAN0KlARAl0b/O5T6CV45BuogV6hBBCCCFEkzIJMgBYVA4xhBCXFQBAyF0HN8ch2zohwZERQgghhJDxIrUSZNYAhYvgRFsQABD01yDKMshxTkpwZIQQQgghZLxIqQTZobOjnWNQW30YANDe2WY63UZtpgkhhBBCiCalEuRJ9klo4Dl4avdDUVSEIvUAgHSTK8GREUIIIYSQ8SKlEuT89BK0cBxCzQdQ3RqEjdES5AxjRoIjI4QQQggh40VKJcgT0kugMgxCfgn7qhvB814AlCATQgghhJDv8YkO4EyaYMkFAMTitWg+/L8I8iw4sLDrqQ4yIYQQQgjRpNQIco45BwCgcq1oPfQVGjke6YY0sExKfQyEEEIIIWQQKZUZZpmzwAKICmFMiR2ApDeg2FmS6LAIIYQQQsg4klIJssAKyNTZ0cBzmM99gWM6DmKamOiwCCGEEELIOJJSCTIATHBMRn3mFNTodIgBmOKckuiQCCGEEELIOJJ6CbJlAupZFQcX/wYAUEJTLAghhBBCSA8pmSA3h5qxP1gHnuVRZC9KdEiEEEIIIWQcSbkEOd+WD1mVsf3IdhTZiyBwQqJDIoQQQggh40jKJcjXFVyHizIvQlukjaZXEEIIIYSQPlIuQdZxOjw39zlclHkRrsy7MtHhEEIIIYSQcWbUOumJomgH8HsAFgAdAH4mSVKjKIozADwPIA7gr5IkrRutc46U0+DEpus3JToMQgghhBAyDo3mCPLtAL6TJGk2gD8AWN25/RUAtwCYBWC6KIoXjuI5CSGEEEIIGVWjmSB/B8Da+bMNQEwURRsAvSRJRyRJUgF8BOCqUTwnIYQQQggho2pEUyxEUbwLwK9O2vxvAK4RRfGfANIAzIaWKPt67OMHQHXVCCGEEELIuDWiBFmSpNcBvN5zmyiKWwE8JUnSq6Iong+gCtq0CmuP3awAPCOMlRBCCCGEkDE3mlMs2gF4O39uBmCTJMkHICqK4mRRFBkA1wL4fBTPSQghhBBCyKgatSoWAB4GsFEUxV8AEAD8a+f25QA2A+CgVbHYPYrnJIQQQgghZFSNWoIsSVI9gH/pZ/suADNG6zyEEEIIIYSMpdEcQR41+/btc4uiWJPoOMhpyR+Lg9K1kRTG5NoA6PpIEvTdQQYyZt8dhJyMUVU10TEQQgghhBAybqRcq2lCCCGEEEIGQwkyIYQQQgghPVCCTAghhBBCSA+UIBNCCCGEENIDJciEEEIIIYT0MC7LvPUkiiIL4GUAFwDoAPBzSZIOJzaqxBBF8WsAvs5fjwF4FcDzAOLQmrCsS1RsiUDXRm90ffRG18f36Nroja6N3uj6IKSvcZ8gA1gEwCBJ0kxRFGcAqARwQ4JjOuNEUTQAYCRJmtNj2z8AlAM4CuB9URQvlCRpT4JCTAS6NjrR9dEvuj5A18YA6NroRNcHIf07GxLkWQA+BLSufKIoXpLgeBLlAgAmURT/Cu3f7REAekmSjgCAKIofAbgKQCp9idG18T26Pvqi60ND10ZfdG18j64PQvpxNsxBtgHw9vhdFkXxbEjsR1sIwNMArgWwHMAbndu6+AHYExBXItG18T26Pvqi60ND10ZfdG18j64PQvpxNnwh+ABYe/zOSpIUT1QwCXQQwGFJklQAB0VR9AJI6/G6FYAnIZElDl0b36Proy+6PjR0bfRF18b36PogpB9nwwjyTgD/AgCdc8W+S2w4CXMntHlyEEVxAgATgKAoipNFUWSg3f1/nsD4EoGuje/R9dEXXR8aujb6omvje3R9ENKPs2EEeRuAq0VR/AIAA+COBMeTKK8DePP/Z+++w6Oq0geOf+/0lkx67yQMoUnvCEgRFQRE1LV30bWwILv2svaCa18VLKigIp0FadKkhR4gkFBCgBRCejLJTKbd3x8RfliQkpk0zud5fB7I3HvOO/Fy551zz3mPxWJZD8jU3dQ8wAxASd1K47RGjK8xiGvj/4nr44/E9VFHXBt/JK6N/yeuD0H4E5Isy40dgyAIgiAIgiA0Gc1hioUgCIIgCIIgNBiRIAuCIAiCIAjCGUSCLAiCIAiCIAhnEAmyIAiCIAiCIJxBJMiCIAiCIAiCcAaRIAuCIAiCIAjCGUSCLAiCIAiCIAhnEAmyIAiCIAiCIJxBJMiCIAiCIAiCcAaRIAuCIAiCIAjCGUSCLAiCIAiCIAhnEAmyIAiCIAiCIJxBJMiCIAiCIAiCcAaRIAuCIAiCIAjCGUSCLAiCIAiCIAhnUDV2AH+mZ8+ecnR0dGOHIdRDRkZGcVZWVqi32xXXRvPnq2sDxPXREoh7h3A2vrx3CMLveT1BtlgsO4DKX/96BPgUeA9wAcuzsrJePFcb0dHRzJ0719uhCQ3IYrEc9UW74tpo/nx1bYC4PloCce8QzsaX9w5B+D2vJsgWi0UHSFlZWQPP+NkuYCyQDSy2WCyds7KydnqzX0EQBEEQBEHwFm+PIF8GGCwWy/Jf234B0GZlZR0GsFgsy4AhgEiQBUEQBEEQhCbJ2wlyDfA2MA1IAX4Cys94vQpI8nKfgiAIgiAIguA13k6QDwCHsrKyZOCAxWKpAILOeN2P3ybMgiAIgiAIgtCkeLvM293AFACLxRIFGIBqi8XSymKxSMCVwC9e7lMQBEEQBEEQvMbbI8ifA19ZLJb1gExdwuwBZgBK6qpYpHm5zybJ6XayLm8deqWe9qHt8df4N3ZIgiAIgiAIwnnwaoKclZXlAG7+k5d6ebOfpm7XyV1MXvs4J2oKAdBJau5rewd3dX4ItVLdyNEJgiAIgiAIf0XspOdlhdWFPLLy7yhLC5i6tYwv00q56ngFH2RM4/pv+3M475IYQBcEQRAEQWi2muROes3ZU+ueoFVWOZMXulHY/AD4GzAsQsmMfhXc6L6bx4L7ces1HyKpxGiyIAiCIAhCUyMSZC9KL0qnZNdWXp7jRg6LIGbK86hCQ6nZkoZq5nc8OjuPo1Hw2ZANbCvszktXfoR/fN/GDlsQBEEQBEE4g0iQvWjqpneZON+NrNfR5vtZqMPCANB3aE/QbbdRPncufPAhr3xdwvq2Hu623cuE2EH0u/Y/oNI2cvSCIAiCIAgCiDnIXnO88ji6FVsIrQC/J586nRyfImk0BN50E5blywgeP57eB5Q88SXM3LyGqZ/2xHMys5EiFwShqbA6rOw8uZMCawGyLDd2OIIgCJcskSB7yaLdPzBmkwdbpJ74MePOepzCaCRswmOkLFyIqVU7Hlko417t4JUZI6jZM78BIxYEoamQZZlP0z9lyOwh3P7T7QybM4x7l9/LvpJ9jR2aIAjCJUkkyF6Sv/BHgqygveN+JEk65/HapEQsP3xP0EMP0j9DpvMCNa/8NInqTZ81QLSCIDQl0zOm8+GuD+kS2oMbYp6hr2Y4GSf387fFN/PRro9wepyNHaIgCMIlRcxB9oLsimw67K7C5geX3XrfeZ8nqVSEP/oohg4dcE94DONceNP9Ok8qVeh63O3DiAVBaCp2FO7gne3v0C1kAIlpau50Pk6oVEmlQuKloFA+Sf+En7MW8NaQD2gVbGnscAVBEC4JLWIE+ZfcX5i8djIOt6NR+l/+y3Ta58jY2sWhVCkv+Hy/QYNI+XYGgQ4tg+dp+WTlv3HvW+iDSAVBaEpkWea9He8RoA1m6IZj3LnzBypWB3F4XQeKswZw+6HWvFBQTVF1LuMWjeW9eXfgtFU0dtiCIAgtXrNPkIuri5iy6F/s3PkTP2T90Cgx2P63BAUQdPNDF92GvkMH2nw7E/9aFW2X6Jk1/xHI2+G9IAVBaHI25G9gx8kddD0SRvefMinO8EOd2Altuy64jpWiWppN+8WxPLW9Bz3KlEyr3MG4b/uwddWr4HE3dviCIAgtVrNOkGVZZs/fxvDae2W8M83DjM2fYnVYGzSGElsJrTOtlIZDmyEj69WWrm1bkj+bSmSZhGa1gQ0zb4KqE16KVBCEpubzPZ8T7grkofk7cbtVJHz/HfHTpxPzwfukrF1L7KefoEtMIOHnNB6bqePJtSnU1krcc2wm//60G1VHNjb2WxAEQWiRmnWCfHL1ciIOlJDfIwG1Syb2QBlLjixp0Bg2bJ1D0gmwJUchKer/6zT17EXQv1+g7XHI2qzkyDfXg9PuhUgFQWhKsiuy2Va4jfuW1eCqUBDz9ivoO3U6/bqkUGAaMID4r6cT/91MTD2703njfqZ8ruGB9UHM1zi5Y+VdbJ0zEdyuRnwngiAILU+zTpCPTfuYMiOs79MLl0ZFtxwlh8oPNWgMuQvqpnUEDT17abcLFT32Bhx3/Y3eGbC5PEbZAAAgAElEQVR4RxFVc+4HURNVEFqU2QdmE1Mi0XGPFXXnKEzDxpz1WEPnzsR++CGJCxfg17cPV6wvYurXAZjyNDxWsYzFHw9ArixowOgFQRBatmabINdmZ2PacYC1nVQ8d+IdAsOquCzbQ075kQaLwe1xE7a3gPIgmTbX3urVtjv+81lO9unE4PUKfti0AffKf3u1fUEQGo/D7WDhoYXc9zMoVDLxr757XufpWrcm9sMPiZ06FbNaz5M/uLluvZbnjOXMnzoAZ166jyMXBEG4NDTbBLlo9g+4JTCkVFLaagy6CCfmSjf2Qw03grz/6DYsx2XK4w0YDCavti1JEv3/+xW5iaH0WKlh8bLPIe1Tr/YhCJeyxdmLSStIa5S+f8n9BWNBOamHnSi6RqFO7HhB55v69yNp0ULMo0ZxzUYbT8zT8Zqfmp9mXosja6WPohYEQbh0NMsEWXa7KZ0/n12tJPrKDoLHvEVeYhsAwrJOYnPZGiSO3XM/R+UBXac+PmlfodVy+bfzKAnQEbXCSNrcF2HXTJ/0JQiXkv0l+3nilye4d/m9PL/x+Qbvf/GRxYzZLCEpPUQ/+q+LakOh1xP52quEP/sM7Q/beWWmmrcMfqxdcAeO9B+9HLEgCMKlpVkmyNWbNqMurSQ9VSY2aiiYQrF1uR5ZKRNWLnOs8liDxCGnbadGK5M46l6f9aENDqbjt7Owa5R4VprJnDkRds7wWX+CcCn4cNeH+Gn8GJE0grkH51JmL2uwvqscVezcv4Z+e11oUlQYOl950W1JkkTQLbcQ+8l/iS2Hl2YqeU0fyLafHsa58RMvRi0IgnBpaZYJctHMb7DqIDqyhrDBjwKQcvk4JKObkEo4Uun7ecjVtVaSDtdQFCsR3/rCHo9eqODEFCI/+xRJlihdFUj+zAmw7i2xcE8QLsLe4r2sy11HT/O1dDLXJae7i3Y3WP8rj66k/85alB7Qjh0H57E1/bmYLr+cuGnTiLCreGGmxAv6UDLWPotr+fPg8XghakEQhEtLs0uQbRkZ2Fet5aduEt0VYUjRXQEIDg5BaZAIrZDJqcjxeRy71s0hoBpqE8O9Ut7tXFp17ov6g7dRuuHYqhBKFr4BP94JtQ1b91kQmrs5B+dgcqp58K3PSXnmUbQuBelFDbe4bdGBBVy5U0YfXkv0dY94rV1Dt27Ef/EFYU4dz86EpzSRHN72Ec4f7wJHjdf6ERqfLMsUVNg4dNJKblkNdqfYNEYQvE3V2AGcD9npRJZlJKWSk//5D9U6iT2dPEzs/MBvRl/cRh1hBU42VOb4PKaji2YRAIT2He3zvk7p2vdqfnnXiuofz3NwVRiyewkhJwfBuOkQ3rbB4hC8Y1fBIb5NX8mR8mNYnVYkJAxqE7GmODqFt+PyhI4khfgheWGEUahT665l6eGfeGaOHXeBEn2Bk5dmwKzInQ3Sf25VLmzcSlCVjLt/AhiDvdq+/rLLSPh6Otx9N89+V8VT18XwxqHFxE+7EvXNMyEg1qv9CQ0rPfck72xYxK7CDOzuKnSyG71HgdppRKtIICqkB53jQukaH0iPxCB0amVjhywIzVazSJB/eWAc5t05+MW3ojZjH7MHK7jLbsPU7abfHGcPCMD/cBF5xb6fYhG49yiF4TKdh/zN532dqf+AG1j1rgvtxJc4sjqUWoqJmjoI6cpXoNs9XnlcK/jWtoIMHv/5JUrcGQDIshKFrK/7s7uGg7UeVpXAlD1aFPZU2pr787d2V3JV+1g0qmb30KdJWXN8DX22VJF0RMb/thFUFheS8NM2ig6k4x7uRqnwbULxv+z/MXSHjKR3E3Lzgz7pQ9e2LYnffgv33M0z3xfz8rUxPCYdof0nA1BfPxWSB/ukX8F3qh02Hpv7FjX75uFX66CzGsqCZQoDoFr5/9es1TMNDmjZu601z9mvpkvbjtzUI47uCYHii7YgXKBmkSBnpDoxFjlIzj3A99eoqUy2MdDyKGh/W1rNGRqJjiLkgkKfxpOfm0VcvpuD3dQEhoT7tK8/c8XlN/Pze+Cc9BKFK/XkDY6kx+JJcHAFXPsBmMIaPCbh/EzdOYv3019Fdmvpoh/NhBATl1UdRFm4DypycbtsHNWZ2GUKZoPWwAbDfjJcu3hq++c8/0tvbm5zMw/274yfTt3Yb6VZmr3jO+5d74FIDVFPvYVu03JO/rQNS3Yth8oPYQmy+Kxvj+xhQ9psnjoi49fBhbnTtT7rS5ucTKtZP3L43ruZPCebGQODORbt5NpvxyL3fgTF4GdApfVZ/4L35Bcd5fvH/8aj28pQ/24mhTrUH333VOzdEzkUUs2mkt2sIY8SUwYB7t2oCvR8/sVA/hM1iklXtadbQlDjvAlBaIaaxXBUh1bXoBpYySv3utEnVjPZGYph4IQ/HCfHJAKgPlmO7MMFbLvnf44CULRp57M+zmVw35tR/vd1SsygXVHGFyevxHN4FXzcG7KWNlpcwtl9uHU67+9+CU1tLP/TpvL1wY/osvFVlNlrwRyD23Id7la3ER08lJFE83bpSdbnHOS/J05yhcuKx+9nvsm9n75TH+Hd1VvFvMMLlF2eTfRPW/GvgaDHJtRVgOg5BNnooWOOTGZppk/735i/kfYb8pElGeegQT5PUNXh4bT+fhaagf25bbWDsq0Sr0pdUWx6H8d/L4e8HT7tX6i/orxD7Bk7gqvSynAm1hI7ykjSf58lfuZMwp99Bm27LlSt3Injxe9JenkLDx4fzE+Xz+Ozns/T3S+BZQEOtictJdV5H4s+n8w/vvmF3DIxH10QzkezGEHud91D5GyKpM+2zwmObYPfoAnwJ49CNSkdgAWYy53YXDYMaoNP4rGtXUelARIG3uaT9s9X/86jSJtmJPfBx+i+Zg//7H0dT6TuIOS7G6HXQzDkRVBpGjVGoc6yI2v4NGMKQbYYlpXvRpNfTZXftVQXm7FlFOA4cgSPdc9vzpH0BrTxA0iO9eNVazFlyl18EWxgvt8GvsjZzDf7LueRrg9wa/dUVMpm8V23UX298E3GbPTgTtIRPvouACSlEk+sH+2PVLO1Mt+n/c/eO5Obd8uYou1EjvDN9IrfUxiNJH/8KbmffUS39z4i8UQ+fx80hGeKdxA+bQhSj/uRBj0JOnODxCOcP1t5Cek3jyOi1IVzcAVdrxwLV799+ouVoUtngm65BbfVinX1aiqX/ETpV9Mp/fwLovv25cW/TWTCFUl8lvYyc6StmEybuOPkama9Mwhtn4e4a/BlGDTNIgUQhEbRbP51JPQeA73H/OUx5nbdsEsyoZUypfZSnyTILqeDmIMVnIj3MKzHEK+3f6F6thnCni+/4Mj993HXxnU86+7HqLZtGL75YzieBuO+goC4xg7zklZsK+aJdU9gqvVj8Yk0rMfjKc2Mwl2ahsJgQNehA+Zrr0UdHYUyOBhJrcZdUYEjJ4faAwcpX59Omc0GqjDuSY3k9tCjfNHaycKA1by37xc+2z6MB7rew41dW4lFOWeRcXQ7naevQ1bJxLz6/m9ekzp2xJC5ifIt26GLb/rPt+bjWrEOPxso2/mhju3qm47+hCRJxD7wMKZu3al5ZDzjF+7jy8tbExWi4/a0T/DsnoVy0JPQ9U5Qiqk7TYEsy6x96GZiTtopHmZlwPA7YPirf7rGRGkyYR45EvPIkbiKiiifPZuy738g9+FHUEVE8NgN47h9yP1MyXqPD5R7SfDfwN/TV/DdliswXv4Io/t1EvcNQfgTzSZBPh9Rca04aJQJrYBSeykxfjFe72P/uvmY7FATF4BW0zTm8HVI6EnQjHnsuPtGHt28ni8V7VgcPYG3T0xF8+kApLHTLsmFOaX2UlYeXYkkSQyNG0qALqDBY5BlmYeXP4XbY+frA4UUbozBUWbH2K8bQbfdirF3byTNX4/yyw4HNTt3YV2zhsolS3DtUXDbZn9ubeVhVlsrPyYu5qOMZXy/qQs9kh7k1l5tSAn3a6B32LTNu60/fsfL0NjcJFdA9ai2BHTq/5tjAgZdQ+WsTagOHPRZHN/u/5ZhOzwo/F2or7qrURbTBnbtSeclq9j46G2MWXOY/Ul6buvydybU/Ez3JY8jb/oQacC/oMMNoGxRHw3Nzo5PXiN+xzF293YyuufAukXY53HNqEJDCXnwQYLvuw/rmjWUzfyO4vc/gI+UPDt0CEevHMxrVd8zWVNIL9sGHtm4lJXrelDR7jYuH3Q1scHGBnh3gtA8tKi7oE6jwmVUEFIh+2xnrJxF35MoQUDnoT5p/2JFh7Yi4PuVrLt3DHdtzGBFj2KGxf6TLz2fk/jtWOj7D6QrnrpkRojW563n6fVPU2ovBWD2gdlMHz4dnUrXoHEsyV5JRvkmnt1Tg3tFIAQHETvtFUz9+p53G5JGg7FnD4w9exD2+CRq0tIonzefquXLGbdHxfWBStJa2/jusi2sLk6j+tsgIuXLSeo0jMt79iTYr2Hfc1NSFa5HU1CERw+lo7rQ/59f/eGYkC6XU6KSMRRX+iSGSkcl29bOYmS+TFAXG6H97/FJP+dDHRDI5dMXsX3aG7R6fzoPF87j25FD+MhxDc9UziN5/oN1mxANfBLaXw8NUOO9KZFlGevq1dj27UMKNBPyt1sapM79maqP56D4+Fsy42FQOyPa6z+94P8PkkqF35Ah+A0ZguPoUcp+mEX57NkELV3GeynJHLr8Ct4J3MwtMTqGVO/nwawHcewOYY55MObOo+ndZyBGsRBYuMS1qAQZwG3QYS63n06MvM2w8yDHo2Qs/W/2Sfv1YTQGcOU3K/jln3cxdMk2ok9+wcRB13FD1S5u3vAOpRkr8Lv5S9RhKY0dqs/Issw3+75hyta3iC4Nx//YDRi7hbKv5GNe3vwyL/d7ucFiqXXX8vLG1+h7VKbjMjWaxARiP/8KdfjFVxmRlEqMffpg7NMH93PPUrV8BZWL/0evTZvpleYmP0rJT+1LWW6ZyzUZ31C4UeKIJhVVfC9adb0Cv8TuoNZ77002cbe/vRynvRqXrQp9YMSfHqP1D6HaLBNQ6vBJDD9m/cjlW2uQlTI1ffp4vfbxhZIkiW73PUFhr8Eceng893+/gpVXRHCz3yN0tB3nBet8YubeBxvfh6H/hqRBl0T5SGdeHgXPPU/1hg2nf5a29nv6vz8DcwM9fZJlme2TxuOHTGiPSkJvWQKa+k0V1MTHE/7PyYQ+/HcqFi+m/PsfiPt8Oe+qVBR1jGZBdCF3JmnpoNLycNEsOqz7lqK1AWT6d8EvpQ9JHfuiiroMNGJ0Wbi0tLgEWdIb8Cuwk+ODBLk8N5uoQhd7eilITE71evveoFCpGPDON2R1+YSU19/nye9nsWh0MpON43mm7GvcH/dhe+tHaT/mn5j0TWOKSH3YXDaWHllKhDGCGmcNs9dMI2zDbj7YoSTUmgfMpGB9CN+M6MxCFvL3Tn8n0hTZILF9tP0r9KUneWSOE1VoGHFffY0qJMRr7Sv9/AgYex0BY6/DWVhI5eIlaBcu5J7lmbh/ltiZZOL9thIq8zGuP7YLXdZ/cKKmKKgLmjbDCO4yGikk2WvxNFVqnRG17i8+3CUJu7+SkHIPNpcNvcp7XyBcHhfz02fy8j4IiK8hZPjfvdZ2fYV36E7I4rVsm3w/w1btJDruLX66aTDDjz3FFc6dPFf8IyHfjEGO74c07N8Q3XDzphuK7HLhLi+nYsECij/+Lw63g+lDFfxyWTg3bVAxfF02i955hFuf+qZB4sn93xxCdx9lY38XY/uMR4q8zGttKwwGAseNI3DcOOz791OxcBGqZUu5d4edeySJrDgH36SEUdY+nK5uJVcXpRO3YxXsAA8K7AEp6Fr1QZHQr+5LUyN/0RMEX2txCTImP4z2Ukprir3e9P7/fUsA4EpMavJF1y23jqem5xXsf+wBbvnuEFss2bwxdgxDC7IYdOBt9r4xj93tJnPlVdcRbGq+ifKWzetRP/M0Jcj418Cjvz4lV0VLhKSWIylkVPtk/j6vksfv9bDg8ALGXzbe53FVOar4fs9U3pjrRImauK++8Wpy/Hvq8HCC776L4Lvvwp6ZScW8+XRfvIhuC0qxayTSE4JYnKSiOsxE15pcrtv8CtLGlzimSSYvchiuNiOJbNWRhGDDJVkRw2nWEX7MxomqAhIDk7zW7trja7FsOYHGKSO1NaNpdbnX2vYGpclEj49ncGL2d1heepWE91YSPGwDJ3qM5sp9rzHCuZYJR+cROPUKSuKvxnz1C6jCfVcruiHV7NzJsdvvQHY6AchOCWLKEDvtlB5+yd2OI1bHhsPRhC/ezrGHjxHn79vFzh6bjfxXX6E8FHqlaAkY+k+f9aVLTUWXmkrYPydjz9hH1c8r0axYQZuVh2FlAQei4POOQdh7jsBQFUhQ7jE6lhyia/kPmLZ/WZcwR/VE22EUyrbXgjnaZ7EKQmNpcQmyxy8ABUexFnm/ZFPZ6pVghOhu13u9bV8wpLSmy4LlHJ/6MV0+mUqnN1azupuG9CvGMO74Om7OGM+Wve+xLHYcHYfcSvuEht/0pL66+asoNlZTZtcghygwt6ohJLoaTZIFLrsP/KPRzX8d9w9WJszT89+Iudzf8X4Ukm+TwLc3f8b1a2uIKFQQ9fZLaBISfNrfmXRt2qB78gnC/jmZmq3bKP9pMd1WraTn0jKgDIcK9uojcGoUKFU2TOofCdfPxGk0MNecQkbCAFzJA7gsIZyOsWaSQ00tPmmWgwPQuG2cyN5HYlfvJcgzM2cydo8CbUAtquEPNMmpCpIkETnuZoJ79OXwvyZy16J9HNv0HT/101PUZwSTit+jS84i7spZDP9dSlrAVdDnETp36dmsd3bcr7aztp8ZJAXr4ys4FF7B38sruFlKQjP0Qdw7vsOSdAzbZn8W/PgKj9zzqW/jef81/MvsZI6yMWDU5w2ykYskSejbt0Pfvh1hjz1G7ZEjVC5bhmvRXFovPY572QrSkyR2dw1iX9f+fFF9N/IRK93s2xieu5XW+U/Asic4pG3H0YiheCwjaJWSSkKwEYWi6V3rgnAhGiRBtlgsCuBj4DKgFrg3KyvrkE86C6x77GMt9G6CLLvdhB4o5miCh/49Rnq1bV+S1GriHnoM55gbyH7rFYYuXQVb0tiQbMLZuz19OUCP3H9T+eVbrNT3R9/1b3QbMALtOSorNBXGDgMxvv0h8TkboLYSDMGQei3EdDudjOgiOhJ6YAjyVongjDx2Xr6TruG+e1xcbi/n8OrpPL1Fxm9wF/xH/HV5Ql+RlEqMvXpi7NWTqBdexHEkh+rt28jPSMN14gjW8pPUVpZhrVbjKVZjskMHDtJh7UGkwP+iiFZSE2tgq58eldaA3mDEZPLHLyicgOhklJGXQeRl9Z4j2RRoo+KAAgoydkDXEV5ps7C6kKP70kgscGPs5CC0751eaddXNPHxtJn5I1XLl8O7U3hgfi7lK35kffu5lPbvypeJ79Bu7yr6li1As2Qxu5a0JidkEH7thtGlez8CTc1rMaij6jDbOxVSrFTSvraWRyqCuPzKN1C2uRokCX2X2wks7UrpTvD/30YcdzrQKH1zX3Tk5eH+Zjbb20DvpC7oLI1TdUibmEjo+PGEjh9P7cGDnJz7Ix0WLaTLrBLs8+azs5XE/ngl2SlJvBc9Br3Dn3Ynj9C/bCODj74LR9/l8NJIliqS8Jgi0ZnDCQgKJSoygvDgYJR+YRCYAPqGrygkCBeqoUaQRwO6rKys3haLpRcwBRjli44UwXWjoM6yEq+2e2LnRkw2meooHeGhzW/ulToyEss7H+KYmMehr/9L4oJFmL4+yHGzgh09+xARoaK3bR3GDcsp2hBIdsRwIgfcS1xqt8YO/a9JEqSOrPvvbEJb43f7gxTv/ZLRmyS2jN7i0wT5zZVTuG+xE7dZQdQbvh11Ol+SJKFNSkSblEjQuHGnf+7yuNhfsp+dhTvYf2gzxXu3EXWshi6H1LTeC9q9dmoDa6mOrsRudqM1OdHqK1Gk14ICXJKKUv92OGJ6oUnsjalVLwyBDTPH25sCW3UE0qg+5L3d9NYcX0O/fTIyMtZuPQhvBkmBpFDgP3w4fsOGYV23DtV333D1+s0o0rZQpdvC8TgdP7cZRnCQnkjXbjoVfwprP6VsjYld+lSUUZcRddlgglMHNvkvTr1730rvtgOhMr+uVrzf7xZx6gNwdr8beec0Oh7SsT03jd7x/f+0rfra+9KTKJFRd7GRPO4dn/RxobQpKcT+6yliJj9BzZatlC35Hz1+XknvzHJYdgAPBzgZAPnBEisCtawP7IafBGZPDfFyNjElO9CpnEhKGUkCj0LGAyBDjTYMR1h7NCm98Ws3EEVUJ1FaUGhyGuqK7AcsBcjKytpssVh8lnVpwqPq/lBZ5dV2s3+aRRAgterg1XYbmiYmmrZPvYw8+Xky539N7fdfY1megwLYHRxJdWo0gX7VdHLNQvvDd2Sq21JiuYnWV9xOaFBgY4d/0TR97iPI8jEddpmYvnUNdPLNTmYlthJCvptLaKVM9JQnUZhMPunHW1QKFR1CO9AhtAO0vwPPKA+Hyg+RXpTOgqw0lL9sI373SVpnutG6wIWa49R9QaxVSzhV4FYXIevmg34uGDzUGlRUmgKpCogidPC9DBt2TSO/y3MLSu1MmRKkPO89eVp1fBU37pMwhDoIuuoBr7XbECSFAr+BA/EbOBB3RQXlq1ZStXohoXv2ErRoF0oZKpQSJ5K6oI0PR9JYMdUeJcH2BarsaTjmqTkR2BVV25FEdB+DIqCJzlE1x9T9dxYhAx7ANe9jyjJ1bF87l963ez9Btm7fhn7NVpb1gjFtb0QRlOD1PupDUihOP4mKfvHfuPLzse3bhy1zP9K+XZiPHkHKLEVTnY9CPn0W+Zzr82Jf3X/SNGS9TK1RQ7W/P9UhUchxyXS94x5Ck1v+ImKh6WqoBNkfqDjj726LxaLKyspyebsjXXQ8LkBRbUeWZa8tpqvZupWaEIjv2DzmH5+LpFaTOu4eUsfdw4njmWz+4X3c6zaTvCkbjRuyNFFUxpkJNZfSvfRF7LtfY4VpEJUp1xHfaRAdY4Oa1/xDYwjOAX3x7N5F4Mb9OO92ovZBTeip059h5HYP9suCMF9zq9fb9zWFpKB1YGtaB7aG1uNgJNhddnJKsynYt5WSzN3YC/NxV5Qj19iQ7bVI1Tb0VQ7M1TJBhRBuh3AqgUqyDjwNzSBBDo2zkG2WMRR5pxZylaOKI5mbiSxxo+qqxD/1Cq+02xiUZjPBY8YSPGYsAMcLD7L5p88p3byeiAMnSFp1ApUHnEBGUGvsIYG41LWE6XII2v9vXEufIzcomROxw5FTryWpdTsi/HVNfqEzAMYQqtr3wb1hDzXrN8Ht3m1e9njIeu5JbH4Q08ZF/MhnvNuBl0mShDo6GnV0NP5Dh3LmqhVZlqmuKiX7WDrHs9MpKjhMaVk+FdZiKm3l4HYjA7IEkgxKD2idYLLLBFgh0OomuKKUkOOlGNL2sjx7NbfM2NxYb1UQGixBrgTO3NpL4YvkGMAvrhVlgMHmodpZjUlT/xE82eMh+GglWSkeBndrvh90ZxMR24bRj3+MZ5KHtOy1/LLoC9iaTrvDpXgOwWHCqTEriQ1PI+rAKqq2GJih7s3hyKtJat+HO/omomwGCzIChzxI4ex76JYpsbd4D53DvbuvcHlNGe1/WIvdINP+7Wlebbsx6VQ62oS1pU1YWxj458e4PW6qHFVUOauwlhdReSwbR+5RunQ+ywlNjM4cQY1JxljpnVrImws20za77hZX1XUAKFrOVr6x4SnE3vk63Ak5FTmsObSM7G2rcGVkkpBXRWxRJVGl4HIpTj9tkKUq/I3fozDMJN+gZasxnhOWgdz07AT89U17vYOx8wjKw3aRdKCCY5XerWZRunA+hsO5LL7Kw/09J4G2+e6AKUkSJv9gOra/go7tf/s56ZE9FNUUUWovxeq04vQ4kWUZl8dFrbsWGRmVpELhrKHoxD6qj2RweaexjfROBKFOQyXIG4CRwKxf5yDv8VVHgdFxlCpk/GrqdtPzRoJcfTALfa2MNUxLWIC/F6JsmhSSgt6tBtF7wiBq3bVsKdjC8h1LsK5fT9y+Etof0ZJ3QItHgnaB22kblIZzs4aDIbNpk9quscM/J31SX8zRLnRb1OzYtozO13g3QZ77ynh6F8gUX9sabWxbr7bd1CkVSgJ0AXXbefvFQqx3f7c+p1BQa1AQWu72SnN7i/fSMQeUejfmITd5pc2mKMGcwJ1dH4CuD2B32dlTvIf9JfvZVp5D+fFD1OYdR5lfTEi5m7ByFSGVMiFlHpKOHiFp3xFOjOqIf8/hjf02/lJkl6upDH8WQ7qKPYc2ENfFOwmyx2bj+JuvczwC2sdqiRhwn1fabYoUkoJwYzjhxvOolJQ8sm5SpiA0soZKkOcBQy0Wy0ZAAu7yVUdajQq3FvxsUF5bTiyx9W7z6C9LUADOmPj6B9hMaJVa+sf0p39Mf7gWjlYeZevxjeRvWoMifT+BR0pILFAQcBjcJ9KhGSTIKFXUWlLxbMnBueoXuOZJrzVdWVxIu592kxclM+DZL73WrtBwao1q/KqdXpmatb9oH/fleNCFuwhvN8BLETZtOpWO7hHd6R7R/Tc/d3qclNhKKLYVU2IrocReQlbhPhQledzS6fy3XG8skikUdVQwcrqdwrR10OVvXmm36Msv0JZWse4GN/8a9HaLesogCC1BgyTIWVlZHsD3uzP8yq2VMNmgyumdhXrFG1ahNUBI8qXxQfdn4v3jiW8XD+3qPhycbifHrceptpbTNqpTI0d3/hxth1Ae9hlBGXlebXfV0/eQUgMlt/ZG7df8qpwI4DZoULud1JaXogu8+P+Hsixj3b+37h6UGAM+mOvenKgVaiKMEUQYz6gSkXJd4wV0EWrbD0BeuhTbngyvtOcqK+Pk1Hrv4BQAACAASURBVKnsTJHoEhJKSKervdKuIAje04xWWZ0/j06Fn02m2lntlfY0B45zJApatxM3sVPUSjVJ5iQ6RHfx+aYb3hTe+SocYW5i8h3Yar1zfVhzsklaf5g9bWHYQx96pU2h4Xn86rajLs87Uq92CmsKic6uW+zn6jmk3nEJjc+/03CsgTJBOSU43PWfp17y2Wco7LVs7OPmiqFvNskNZAThUtd8MpsL4NFp8LOB1WGtf1s1NfiXOLGGgCWlZWyxeikLj2uDJ0iJ3gE5u9d7pc0tz/wdGXAPH4hKZ/RKm0LDkwLq6hQXHq3fHkb7SvaRUCgj6zxEDWwZVW8udZGpvVAEO0k84eFAaVa92nKVllIy41vWtZfoYIogPLXpTzMRhEtRi0yQZYO+LkF21j9Brjl0EAVgDzCi14g5Ys2dpFDgCq/byOLk9g31bs9+8CDh23PY2Amuu/3tercnNB5NUBgA5UcP1qud/aX7SSiU0QS4CYlr443QhEamNASgDdJiroHM/fX7Yl327Qwkh4tfustc3ucF7wQoCILXtcgEWTL6183/s1ec++BzKNxVl0S5I89eTF5oXrQxnanWQm367nq3tfelx3GooKJ/V/Ri9LhZM0bUVSew5R+rVzsHTu4jrhicwX5IihZ5i700RScCULpz60U34bHZKJnxLduSJZJ0AXToOshb0QmC4GUt8+5tDkTlAWtRQb2bKtq1EYcSjHEdvRCY0BRoojqRFyGjzapfIlSbfQT91gP83EXi9humeCk6obEER7TCqQRX8cl6tWPLPozKDTXR9a+gIzQdnnY9cCtk2HfxU3Aqly1DrqhkUU8FHRPu8GJ0giB4W4tMkKWAuhXo9pMn6t2W49ARckMgMV7ME2spAhK7UB3mIbjAhsduv+h28qa8hFMJOV1iiQo6j/qeQpMWGZZIuREUZeUX3YYsy+iz676Yy6mdvRWa0AT4W3pjDZAx5Zciy/K5T/gTlUt+otQfFCFuhlxxp3cDFATBq1pkgqwMqkuQXWVl9W5LX1BBYQhYUnrWuy2haYhLbI0c6EEpQ/WBzItqw1lYiG31JlZ2kujfZ4KXIxQaQ1hYAhVGUFVefHWTUnsp0SeceJQyft3F4/OWJDq1B26zm/BiN2W1F/7Z4i4vx7phPetTJRI97Qgy6XwQpSAI3tIiE2TVrzVM3TX1q4PsrqzEVOWmMlAiOtjsjdCEJiDAqMVmrvv/Wbh7y0W1UTb9c5BlNnfSMa7rld4MT2gkOv8wqo2gs158Ga98az7xJ8EV6CaubfdznyA0G1pjILJZRXg5HCk6cMHnV/38M5Lbw6Y2Ep1SH/RBhIIgeFOLTJBPrUaXa2z1aqf2UN1cM1ugDoVC1KlsSRyB8djVULnvwhfqeex2Sn6YxdYUBaExA1GIhVgtg0KJzQD6atdFN5FXnUd4uYzbT43eIBZttjSKgECUMuRn7bjgc6uWr6DULKEMlBjSQ+ylLAhNXYv8ZNeF1iXIClttvdqxHq6rd+kODql3TELTYjK35XgIuLIuvKZp1YqVUF3L0m4So7rc7oPohMbiMEgYamRk18UlyfkVuYRUgOzv7+XIhKZAFZUEQFnmngs6T3Y6qd6SxtZWEOmKJdik9UV4giB4UYtMkA1hUQAo7PXb8ahw32YAdBGt6x2T0LQEhnUiNxQ0OYUXvOCmYs53VJlkjkcZGJYsqpu0JA69CgV1mzlcjLKjB1HKQEiYV+MSmgbFr//e7YcurJKFbfduZJud3QkSccFiSpYgNActMkE2hdclyMpad73aqThyiFITREWK1egtTUBsO6qCZbTVTlxFRed9nqu0lOotO1ndTkG8sa+YXtHCeAwaoG5B1cWozq7bZMQdFee1mISmw5TUEatJRpt3/vcMgOoNG/FIkB8t06PTDT6KThAEb2qRn+5akxGPQkbj8OD2XHySLBeWUOwPrWJFgtzSREbGYA+qGzmuzTr/BTeVS5eCR2ZdewXDLSN9FZ7QSCS9HgDXRSbInry6Em+qpFSvxSQ0HWGJ7akNcBNc5MDpdp73edWbNnEsAoIx0rOVKAkpCM1Bi0yQJUnCpQZ9bf22m9aUVVPiL5ESKz7sWpqYIAM15rp5gPbM8y/1VrVkMZWBHvJCFFzXTtTGbmmUprq5w0X5uRd8rizLaEuq8ChkjG06eTs0oQkIDI3GY4aoUpk8a955neO2VmNLT2dngkQQCeg1Sh9HKQiCN7TIBBnAo5EwOKDaeXE1TWWPB2OlC6u/TKCoV9ni6NRKJHUwxf5g3X9+C25cZWXU7NjJ9tYSQXIcJq24Lloa9a+bDJXlHb7gc0vsJYSWeXAaZcLiLd4OTWgCJIUCt58BvQPyju49r3Pse3aDx8O+OInI4P4+jlAQBG9RNXYAvuJWS+hrocpxcbWQXUVFKD1gM6mQJFHirSXSqqLJCSskeF/GeR1vXbsWPDLLUlUkBonR45ZIE1i3uM5WlH/B5xbVFBFaIeP2kwn4tRa70PIogsOB45Qc2AMdR5zz+JqdO5GBYxFwo+XcxwsXZvv27WEqlWoa0J4WPOgn+IQH2Otyue7t2rXryd+/2GITZI9Gid7huugRZGde3Qekw1+U42mpTIYUcsJ30HVTPh67HYXur0eErT+vwmWUyY6AW1qJOqYtkSkgDJcCnKXFF3xuib2EsHJwxqjFl+oWTBPbBjiO9eD5lYi07dzFyRAIltR0TYz0bXCXIJVKNS0iIiI1NDS0TKFQXNwe4MIlyePxSEVFRW1PnDgxDbj296+32G9bskZVrznIztzjALgCxA56LVVQWBdywiUkj0ztwb8u2+SprcX6yzqOJbhRyipGtunRQFEKDSnQLxyrHtwVF75Ir6ysgIAa8PibfBCZ0FSoWnXAqZRxH8k557Gyx4Nt5072xkj4O8KINItpWT7QPjQ0tFIkx8KFUigUcmhoaAV1Tx/++HoDx9NwtBr0DrA6Li5BLj9Yt8OaFBzhzaiEJiQspiNlwR4AarP+eqFeTVoasr2Wja0l/OU49GrxZKElCjKHY9WBVHXhU7Osx3N+bUTUQG7JTNFtqAyQ0Z0495cox+HDeKxWMqMlAnUdxZMF31CI5Fi4WL9eO3+aC7fYBFnS6uo1glx2OJNKPQQEJXg3MKHJiA0xg1FBrQbs+/86QbauWYOkVrCilZpoP7E5SEsVGhSDVQ+Ki9im3pp7BABFmKiB3JKFx7eh1uwhqNhxzk2GanbuBOBAtER8zOCGCE8QBC9psQmyQm/A4IBKe8VFnV9bUECJP0QEJ3s5MqGpiA8yoHcZyAsF+/79Zz1OlmWqVq/BGeXCplbQPUrUxW6pQgNisOokVDUXvgtnbX5d2S9lTJK3wxKakMCgENz+EmHlMsXWwr881paejl0vUW2W6dyqawNFKDSGzZs3G6+//vrT5Wt27typv/baa9uMGTPG8uijjya43XV7Mnz66aehI0aMSB05cmTqjz/+GAhgtVoVd9xxR6uxY8dabrzxxta5ubnq37dfXl6uvP3225PHjh1rGTVqVJuNGzcaATZt2mQcOXJkm9GjR7d5/fXXIwHcbjeTJk2KGzVqVJvrr7/ecvDgQS3AwYMHtTfeeGPrsWPHWm666aaU4uLi0zUHDx48qB02bFjbU3/Pzs7WjB071nLddddZHnroocTq6uqz5ovff/990KhRo9r8/udr1qzxu//++39zQ3zhhReiv/7667OuYp4yZUpEWlqawWazSV9++WXI2Y576qmnYqdOnRp66u8ffPBB2MiRI9uMHDny9O/hlPnz5weMHz8+8WxtnU3LTZANJjQuKKu4sB2PTpErKig3SiRGdfByZEJTEWBQo3IHsD9Kwp6Rgcfx50lR7YGDuAoKyI2ve/3q1j0bMkyhAWl1Zmp0oLGd/yYQpxXXbU+tixdfqlsySZJw++lReSDv4K6/PNa+ezdHI2TCHTraRYn1LC3Vf/7zn/Dnnnsu3uFwnJ5D8/7770eNHz++YN68eVlOp1NasmSJuaioSDV79uywuXPnZs6YMSPr3XffjfV4PHz11VchqampNXPmzMm65pprSj766KM/zO38+OOPw3v06FE5Z86crDfeeOPIyy+/HAfw4osvxv/nP/85Mnfu3My9e/cad+zYoV+4cGGAw+FQLFiwIHPSpEm5L7/8cgzA008/HT9hwoS8OXPmZN1www1FBw4c0AHMmDEjaMKECUkVFRWnE/NXXnklZty4cUVz587N6t69e9VHH330pzvc7NixQz937tyQcz1NOV+TJk060bNnz5oTJ06o582b94cE+eTJk6pbbrklZcOGDaf/QR0+fFizdOnS4Hnz5mUuWLAgc/Pmzeb09HQ9wJNPPhn7/vvvR3s8ngue39Riq1gofi34X1P6h8od50VVZaciGFJj2nkzLKEJkSQJrTKGfbH5XLO1FvveDAxd/jg6XPXzSgDSkiXUbhNtQmMaOlShoUgStToZrd1zwaeqK2pwaGQCohO8H5fQpEhBYUAuxVnp0GX4nx7jtlqpPXSY3X0ljM5wQv3EugVfm74xJ3jujtyzjjpejOu6xBTf0Seh5K+OiY+Pr/3www8PP/7446dHKS0WS015ebnS4/FQU1OjVKvVcmhoqGvJkiUZarWanJwcjVqt9igUCh5++OGTLpcLgPz8fI2fn98ftgB+8MEHC7VarQfA5XJJGo1GrqioUDidTik5ObkWoHfv3pXr1q3zLyoqUvfr16/i159VT5w40VhTUyOVlZWpV65cGTBlypSY1NTU6ueffz4XwGw2u3/44YeswYMHnx4RPHr0qH7YsGFHAXr27Gl9+eWXY38fU3FxsXLKlCkxzzzzzPFnnnkm/kJ+r2vWrPGbOnVqhEql8hQUFGiHDh1aOnny5BOPPPJIwjXXXFO6bNmywGPHjulff/31yCeeeKLg1HlWq1XxyCOP5K9evfp0ghwbG+v86quvDqpUdSmt2+2WdDqdB6Bz587WYcOGlX/33XehfwjiHFrsCLLkV/e7c1aWXfC5siyjq3Fj14O/Qe/t0IQmRG9oTWZs3RdL247tf3pM1fIV6OP92Rykw6z6w1MkoYVx6CQ0Thn5LE8UzsZQ6cBukDGH/uFzRGhhtNF1T9KrD5x9apZ9zx6QZQ5ES/jp/nSRvNBCXHfddeVqtfo3Q6iJiYm1U6ZMiRsyZEi70tJS1YABA6oA1Go1n3zySejNN9+cOnz48NOJt0ql4oYbbmg9Z86csKuuuuoPiUtgYKDbYDDIBQUFqsmTJydNmDAht7KyUmkwGE4n0yaTyV1VVaWsrq5W+vv7n/65QqGQT548qT527JiuX79+lbNmzcqqrKxUzpgxIxhgxIgRFSaT6TejAsnJyTWLFy8OAFi6dGmA3W7/Tb7ocrl4/PHHE55++unjf5bQ/5VTi1ULCws106ZNOzx37tzMmTNn/mbU/NFHHy2Ii4uznZkcAyQlJTl69er1m/q9Go1GDg0NdXk8Hp599tmYlJSUGovFUgtwww03lF3s4tgWO4KsNNclyO6LWI3uqapC6QanvsV+fxB+FRzalarSmdSG6anZtp3ge+/9zeuOY8eozczE1FtBnlpJn0Cx7XhL59IqADfuigpUoec36OCRPZisbhwGMJsDfBug0OhUMW2pMK1EPnjkrMfY0usqIR2KlBgRcUVDhXZJu6NPQsm5RnsbypQpU2KnT5+e2b59e/unn34a+txzz8W+9dZbxwDGjx9fdNdddxXfdtttKatXr7YOGjSoCmDWrFkH9u/frxs/fnzytGnTDj755JMJACNGjCi58847i3fv3q2fNGlS0sSJE48PHDjQWlFRobDZbKfnEVutVqW/v7/bbrcrrFbr6Z/LsiyFhYU59Xq951RfgwYNqtiwYYM/8Ke/r+eeey732WefjVuwYEFI3759y81ms2vOnDmB3333XRjA448/npuXl6c7NbXk2LFj+qeeeir21VdfPX6qDZ1O53E6nb/JTmtqapSnRneTkpJsarUatVrt0Wg09ZqjYbPZpH/84x8JBoPB8+abbx6tT1untNgMUPXrTlZy9YVXsXAV110vTn2L/f4g/Kp1RAoKWaYwSqrb8crz20frVcuXA5AXXXdN9I7u1OAxCg3Lqav7XHFXnP8C38raSgKsMi6DAknRYm+rwq9MEa0pD5Ix5Z79CaUtPZ2KIAUKDXROEJVvLjUmk8l1ahQ3PDzcWVVVpczMzNTefffdrTweD2q1WtZoNB5JkuQpU6ZEzJgxI+jX89wKhYKUlJTa2bNnZ82ePTvrzjvvLM7IyNBNmDAh6a233sq+6qqrKgHMZrNHpVLJhw4d0no8HjZt2uTfs2dPa9euXa3r1q0zQ90ivsTERJvBYJCjo6Pt69atMwFs2bLFLzk5+azlelatWuU/efLk3NmzZ2cplUp69+5dOXbs2LJTMfXq1at6xYoVGbNnz8567733suPi4mxnJscAqamptkOHDhny8/PVUJfEpqenmzp16lRzrt+fQqFAluXzGvr1eDzcfffdya1bt7a98847R09NtaivFpsBaoNCsQNSjf2Cz3WX1O2i5TSKou4tXVKIGbNLyZEIB3G7arDv24++fd28c1mWqfjfYnStotkYXPckYliyWIne0nl0KsBxQQlysa2YICucjGuxt1ThDMEJbckNdBO514nH5ULxuw9kWZaxpadzONJDWK1RLNC7BL344otHH3300VZKpVJWq9We11577WhiYqKjdevWNaNHj24jSRK9e/euGDhwoLVNmzb2iRMnJs6bNy/U4/Hw0ksv/eHRxJtvvhntdDoVpxbnGY1G1/Tp0w8///zzRydOnJjo8Xiknj17Vvbq1ava7XazYcMG/9GjR7eRZZnXX389B+CVV17JefHFF+PefvttKTIysvb5558/65ahycnJ9kmTJiWp1Wo5MTHR9sYbbxy70N+B2Wz2TJw48fi9996brNVqPS6XS3HjjTeeTElJqc3Ly9P81blhYWFOp9MpPf/889Evvvhi3l8du3DhwoA9e/b4OZ1OxcaNG80AEydOzO3Tp8/FbaX8qxZ7N9eFhmMHFLbaCz7XVVRX+UI2iR2xWrqEYAM6p5FticUM1OipmDfvdIJs276d2sxMIq5vyx6tAaU7mCj/s1anEVoIj14H1OAqP//d9MqKczG5QDaKNQuXgqjwCHYESGjcUHggnci2v/3i7DiSg7u0lG09JfS1YcQFGRopUqGhJCYmOhYuXHi6oH7//v2t/fv3/0OB/V/n1P5mXm1ERIRr5syZB/+q/enTpx/+s5/37t27+sx+AZRKJVOmTPlDQtupUyfbvHnzzrpHelpaWvqpP/fq1at68eLFZ59kf4bfv/czjRkzpnzMmDF/uJkOHDiwauDAgafnwJ7q+4MPPsg59bOlS5fuO1ufTz75ZP6pP48ePbp89OjRO8527O/7Ol8t9lmgMbyuDJ6y9sLrmZ4u+C/mErZ4oX5aZGcYWX4q/Pp2pmLRIjz2uqcOpd98i8JsxhyUQ7pGT7Ba1Le9JBjrkhl7yfkv8K3MywH+f3Gw0LKplAqcAXWfDyf2bPnD66cW/O6LVWDUtEWhEDvoCUJz03IT5NAoAFS1F7S4EoDyY4fxSKAR20y3eJIkIalaU65UouwSjKeykooFC6nZsZOqlSsJvPYqqqzZFKs9tBYL9C4JCj8/AKyFBec48v9V5detCVEFinvGpUIKTcADVO3f84fXarbvwGVQkR8E4eEDGzw2QRDqr8UmyAqTCRkZzUUkyDWFeVTqIcgv8twHC81ekF9d4pvrfxxd+/aceOEFjt1zD5rYWIIGxLNPU1c7vVeUWGhzKdCZAnBLUF34l9PefqPmeF2CrBPbTF8yjMHtKQwE94E/Phmv2bGdgmgFJg90jBX3DUFojrw2B9lisUhALnDqbrEpKyvrSYvFMhJ4DnABX2RlZU31Vp9/RZIkXBrQ1MrIssyF1MFzlZZQaYQQs9gQ4lLQNiSFjJOQXXqALtM3UPjmW9gzMoj56ENUaa+wS183onhlSvdGjlRoCCZ9INU6UF7AJkPuk3XHqv+PvTuPj6JK98f/qe6u3pPOQkIgsgQSKlEURtCQARQGRRlAlqC4jeIyDvoVBhNxXK4gd/AnihkcEa8LLngvOCJJBAcGHEcQB1xmFEEYUqwBAwnZO72ml6rfH53EQMImSTqkP+/Xy5fpquo6j+1J5+nT5zyH20xHDGPSZTiepCJdLoOqKE3VSwIVFfAfOYo91wroXm/GZcmcdkN0MWrLRXr9AXwny/LExgOSJIkAlgC4CoALwDZJktbJsnzmDezbSEAUYPQD3qAXJt15LJ6xO1BrEdCr23lv3U0XoSuTU1BQpsFhfw00Gj96LHgmdEJRgP1/x3ZrHHRBG5Ki4sIaJ3UMmykeLiNgtp/7HGSh2o56UYU56bw2k6KLWEyfyyEnB2DeK6B+3z4Y00ObCDm3fgEA+DxFgN7TA2ndudib6GLUllMshgBIliRpsyRJGyRJkgBkADggy3KNLMs+AP8EcE0btnlGiijA6APc/rOW3DuJzuGF3Qz07t6/nSKjziQ9yQbRF4PDoggc/vynEyXfQHUcx39EBT2MUvgCpA5ls3aDywCojrpzfo7ocMNlBqzderZjZNSZ9OrVB7ruobrplVs/azru+OQTKPFWHEwSoNNdCYNOe7pbEFEn9rMSZEmS7pMkaXfzfwCUAXhOluXRAP4/AP8HIBpA82KiDgAd9n1TUBRg8AHuwPklyAaXH3YL0D06sZ0io86kb7wZbl8vHNQbgN0FP53YU4gf9Wb4tD5ckcB5hJEi3tYDLqMAwX3u7xtGpx/1ZhWxicntGBl1JvFWA4xiLErigeovNgMI7dzq3L4dJZIIDYDu3a8Pb5DUYb766ivLtGnTmkZSduzYYbrpppvSp0yZIs2ePbtvMBhaD/X6668nTJgwIWPixIkZH374YSwAOJ1Ozd13390/Oztbmj59+oCSkhLx1PvX1tZq77rrrtTs7Gxp0qRJ6du3b7cAoY1AJk6cmD558uT0RYsW9QCAYDCI3Nzc3pMmTUqfNm2atH//fgMA7N+/3zB9+vQB2dnZ0q233ppWWVnZ9Olt//79hrFjx17a+PjQoUP67OxsaerUqdJDDz2U4nK5WuSLO3bsME2dOlWaNm2adNttt6WVlZWdNCthy5YtUQ888MBJ886eeeaZ5Pfee++09VLz8vKSvv76a7PH4xHeeeedbqee37Nnj3HKlCnS5MmT02fNmtXX7/cDAJYuXZo4ceLE9IkTJza9Dnl5eUnTpk2Tpk2bJt14442XZmZmDjpdu635WQmyLMtvybI8sPk/AP4FYG3D+X8C6IlQQhzV7KlRAM69uOgFUkUtTD71vEaQFbcbuoAKjxkQNS36KHVBOq0GMWIvlOk0cO/fBNQ7Q9Mr/rMWn3cL1US+rt/VYY6SOkpiTA+4jYDGfe411M2uIHxGwGqNbsfIqDMRBAFazWX4oa8Azc4iKG43nJs3A34/vujrRLJPi6v6ctFmJFiyZEn3xi2XG4+9/PLLPWfOnFlaWFgo+/1+YcOGDbaKigrdmjVrEgsKCopWrlwpv/TSS70URcG7777bLSMjw52fny+PHz++atmyZS3K4bz66qvdr7766rr8/Hz5+eefP9y4YciCBQv6LFmy5HBBQUHR7t27Ld99951p3bp1MT6fT7N27dqi3NzckoULF14CAE899VSfOXPmHMvPz5dvueWWin379hkBYOXKlXFz5szpZ7fbm5KeZ5999pKbb765oqCgQL7qqqscy5Yt635qTAsXLuz99NNPH12zZo08ZsyYmqVLl15wGZ/c3NyyzMxMd1lZmVhYWNgiQV68eHHynDlzjn300UdFALB+/fqYgwcP6jdu3BhfWFhYtHbt2qKvvvrKtnPnTlNubm5Z485/CQkJvtY2YDmTtpyDPB+hPb1fkCRpEIAfAfwHQJokSXEAnAhNr3ixDds8I0WvhdHjhydw2t0UWwg2bA7gN3bZAh/Uir7R/bDLDxwUgri86K+A1w44SvGPuEGAUoNr+gwMd4jUQWKie8JpBHRe/zk/x+pWUJmgOa/FwHTxCyRm4VDaN9B8p+L4Hx6HZ/du6Hr2wN8vKUNfRxKu7MNa+h3qmzfi8f37LZKqCzL4tkpc/UDVmS7p06dP/SuvvHLw0UcfbVq4JEmSu7a2VqsoCtxut1YURTUhISGwYcOGPaIoori4WC+KoqLRaPDwww+XBwIBAMDx48f1UVFRLcpvPfjggycMBoMCAIFAQNDr9ardbtf4/X4hNTW1HgCysrLqtm7dGl1RUSGOGDHC3nDMlZOTY3G73UJNTY346aefxuTl5V2SkZHhmj9/fgkA2Gy24AcffCCPGTPm8sb2jhw5Yho7duwRAMjMzHQuXLiw16kxLV269FDPnj39ABAMBgWDwaCe68u6ZcuWqDfffDNJp9MppaWlhuuvv7567ty5ZbNmzeo7fvz46k2bNsUePXrUtGjRoh4Nm6sAAJYvX35Qp9Ohvr5eqKqqEqOjo4O9evXyv/vuu/sbt5gOBoOC0WhUGp9TWFgYExUVFRw7duy5z5tD285BXgTgWkmSPgfwJwAzZFn2A8gBsAnAlwhVsTj32kkXSi+G5iCfxxSLxgQ5aOC8sUhyZffBAIB/x/UE1s0GPnkaSLsB3wdrESX0g17HbxMihdUUB5cR0NcHoKpnf7/3BeoR5QYCRr5nRJqoASNhSfBhwwgDHH//OxSHA56HRsOt1cJfLyEtMersN6GL3tSpU2tFUTzpzSIlJaU+Ly+v93XXXXdZdXW17tprr3UAgCiKeO211xJuv/32jBtvvLEp8dbpdLjlllsG5OfnJ44bN67FCuHY2Nig2WxWS0tLdXPnzu03Z86ckrq6Oq3ZbG5Kpq1Wa9DhcGhdLpc2Ojq66bhGo1HLy8vFo0ePvhfWgQAAIABJREFUGkeMGFG3evVqua6uTrty5cp4AJgwYYLdarUqzdtLTU11r1+/PgYANm7cGOP1elvki43J8bZt2yyrV69OnDlz5jkVYGgcSDhx4oR++fLlBwsKCopWrVp10ujz7NmzS3v37u1pnhw3vk7FxcX6G2644TK73a674oor3Hq9Xk1ISAgoioKnn376krS0NLckSU1fAb711ls9HnnkkeM4T202gizLcg2A8a0c/xjAx23VznnR62H0AR7/eYwg20NTplWTob2iok4os3cK3j7YDZ8k9sY9tkuBE3vw76vmIvjlvfhF/A3hDo86kEFrgMcAaIOA6vVCMJ25Ak5tRQm0KhA06TsoQuosLu3fBwe+NOO94QFkD7ofSSOvw5I9c6FXVZhjp0LLHfQ61tUPVJ1ttLej5OXl9VqxYkXRwIEDva+//nrCvHnzei1evPgoAMycObPinnvuqfzNb36TtnnzZufo0aMdALB69ep9e/fuNc6cOTN1+fLl+5944om+ADBhwoSqGTNmVO7atcuUm5vbLycn58dRo0Y57Xa7xuPxNH0ydzqd2ujo6KDX69U4nc6m46qqComJiX6TyaQ0tjV69Gj7tm3bohH65r+FefPmlTz99NO9165d22348OG1NpstkJ+fH/v+++8nAsDjjz/+49ChQ92rV6+Ofeutt3q88cYb+xMTEwPN72E0GhW/33/SL4Hb7dY2ju7269fPI4oiRFFU9Hr9OY8+9+3b17dly5bd77zzTrdnnnmm1yuvvFLs8XiERx55pK/ZbFZeeOGFI43X7tmzx2i1WgNpaWnnPmeuQZeeRyAYjDD5gLp65zk/x18V6isai6W9wqJOaGjfWKje/ihy7EVg+v8Cv9+J/93/NQDgtoE3hjk66kiCIMDf8Pk4WOc46/V1ZT8CABTLeZSSpC6hf4IVFndoDdJfs3TQpffH37zHkOa04so+nH8cyaxWa6BxFLd79+5+h8OhLSoqMtx77739FUWBKIqqXq9XBEFQ8/LyklauXBnX8LygRqNBWlpafeP82RkzZlTu2bPHOGfOnH6LFy8+NG7cuDoAsNlsik6nUw8cOGBQFAVffvlldGZmpnPIkCHOrVu32oDQIr6UlBSP2WxWk5OTvVu3brUCwDfffBOVmpp62tHDzz77LHru3Lkla9askbVaLbKysuqys7NrGmMaOnSoe9WqVXF/+ctfEletWiX379/fd+o9MjIyPAcOHDAfP35cBACPxyPs3LnTOnjw4LN+ra/RaKCqaotPmHfffXfqvn37DABgsViCgiBAURTce++9qQMGDPD86U9/OtI41QIAPv/88+jhw4ef19SKRm05B7nT0ZrMMPqBWmf1OT/HWRqaAaK1srh7JDGKWgyIHoyD+Bp7q/bi8oTL8e+KbdAGEzGi76VnvwF1KX6DBkAQSp0d6H7majbOiuMwABC4QC/iaDUCXNHX4lr3HqwpWoU+7jrUajWItw/FkL6smx7JFixYcGT27Nn9tVqtKoqi8txzzx1JSUnxDRgwwD158uR0QRCQlZVlHzVqlDM9Pd2bk5OTUlhYmKAoClpbTPbCCy8k+/1+TePiPIvFElixYsXB+fPnH8nJyUlRFEXIzMysGzZsmCsYDGLbtm3RkydPTldVFYsWLSoGgGeffbZ4wYIFvV988UWhR48e9fPnz688Xfypqane3NzcfqIoqikpKZ7nn3/+aPPzgUAAeXl5vRMSEny/+93vUgHgyiuvdDz55JNNUxlsNpuSk5Pz4/33359qMBiUQCCgmT59enlaWlr9sWPHzviVW2Jiot/v9wvz589PXrBgQdPU3AceeKD0scceSxFFUTEYDMoLL7xwZN26dTE//PBDlN/v12zfvt0GADk5OSW//OUvXYcPHzaOGDGCCfKptObQKLCrpuKcn+MsKwEA6G2nrUJCXdSNqcOx7ODrWH/gc8QZkmBX90Kyjgt3WBQGSkOCHKw7+/uqs/RHGABo+Z4RkQJp45C58/+wxeLGU4dWIymg4Kj/BmT1Y3+IJCkpKb5169YVNT4eOXKkc+TIkUWnXtcwp/akebVJSUmBVatWtdyzvJkVK1YcbO14VlaWq3m7AKDVapGXl3f01GsHDx7sKSwslE/Xxtdff72z8edhw4a51q9fv/d01+p0Onz77bffnylmAJgyZUrtlClTWlQvGzVqlGPUqFFNX9E1tr106dLixmMbN278z6nPGz58uGv48OEn/fdOnjy5dvLkyd+11n7jtJafo0tPsdBZQqPAHvu5T0lyV5bCKwJRUQntFRZ1UhMHpiPgSsEH+1fgN399CBCAuy7PDndYFAZBQ8Nq6HNIkF3HQ1MsjPE92jUm6px+mZqA1XV34057HR5y+hFbcgduuKIP9Lou/eeVqMvr0r/BOmtoBbHfce5bxvprquA0ATGWtq0UQ51fcowJQ80Pw+cXUeEvwkDDbzDp0qHhDovCQDGFqpYo55Ag+ypOQAFgTeDW9JFoRGo31CdeiYr6x5Dyi/fxjWcQJg7ijopEF7sunSBro0M1KAPOsy+0aaTU2eE0AvHRHA2KRMvvHINfmp+AuW46/uemh8MdDoWLMbTgzltz9n2N1Oqa0IfquBZlQikCaDQCfndtP6yp6osHPz6OXnEmZKZwegXRxa5Lz0HWRdvgB6C4XOf+JJcbDpOAPrEcAYhEBp0Wb942Eao6gZs+RDChoSKFt+rs3z5p61xwmoFusS02mqIIMXFQT3y88ziSY02Y/as0lncj6gK6dIIsxsTBD0D1nPtGIVp3PZwJQI94luiJZEyOI5tJb4VHD2irys96rd7hhcesIirugndZpYuUqNXgnXu4HT1RV9Klp1gY40LziAXvudeHFj1+OI2Azcw5yESRyqKPgssI+KvPvsDX6PKj3qQiOu7M5eCIiOji0aUTZHNcqBKFUN+ifnWrVFWF3huE0wRYRWt7hkZEnZjVEA2nEfDbz15D3ewKwm8UYDQaOyAyIuqMvvrqK8u0adOkxsc7duww3XTTTelTpkyRZs+e3TcYDO38/PrrrydMmDAhY+LEiRkffvhhLAA4nU7N3Xff3T87O1uaPn36gJKSEvHU+9fW1mrvuuuu1OzsbGnSpEnp27dvtwChjUAmTpyYPnny5PRFixb1AIBgMIjc3NzekyZNSp82bZq0f/9+AwDs37/fMH369AHZ2dnSrbfemlZZWdm0297+/fsNY8eObSr6f+jQIX12drY0depU6aGHHkpxuVwt8sU9e/YYp0yZIk2ePDl91qxZff1+/0nnt2zZEvXAAw/0a37smWeeSX7vvfdOO0k/Ly8v6euvvzZ7PB7hnXfeOe1I5ZNPPtnrzTffbCo39sQTT/T69a9/nTFt2jRp2rRpUm1trbaiokJ32223pU2dOlV64IEH+rX233AmXTpBNnULvXZan/8sV4YoLhc0CuAzCNBqtGd/AhF1SVHGGLgNoUW7Z6L6fDDXAz4Tp+QQRaolS5Z0nzdvXh+fz9f0RvDyyy/3nDlzZmlhYaHs9/uFDRs22CoqKnRr1qxJLCgoKFq5cqX80ksv9VIUBe+++263jIwMd35+vjx+/PiqZcuWtZiv9eqrr3a/+uqr6/Lz8+Xnn3/+cOOGIQsWLOizZMmSwwUFBUW7d++2fPfdd6Z169bF+Hw+zdq1a4tyc3NLFi5ceAkAPPXUU33mzJlzLD8/X77lllsq9u3bZwSAlStXxs2ZM6ef3W5vSsyfffbZS26++eaKgoIC+aqrrnIsW7asxSKLxYsXJ8+ZM+fYRx99VAQA69evj7nQ1zI3N7csMzPTXVZWJhYWFrZIkMvLy3V33HFH2rZt207aza2oqMi8YsWK/Y07/cXExATz8vJ6jBs3rrqgoECWJMn99ttvn9fUgC49B1ljC70WuvrgOV0frA39MfQZ+ceOKJLZLPFwGQXAceYFvoGGKhcBU5d+KyW6KLy/9/34dQfXten8yJv631R5W8ZtZ5xr1adPn/pXXnnl4KOPPtpU61GSJHdtba1WURS43W6tKIpqQkJCYMOGDXtEUURxcbFeFEVFo9Hg4YcfLg8EAgCA48eP66OiolokLQ8++OAJg8GgAEAgEBD0er1qt9s1fr9fSE1NrQeArKysuq1bt0ZXVFSII0aMsDccc+Xk5FjcbrdQU1MjfvrppzF5eXmXZGRkuObPn18CADabLfjBBx/IY8aMubyxvSNHjpjGjh17BAAyMzOdCxcubFGmZ/ny5Qd1Oh3q6+uFqqoqsXFr7XOxZcuWqDfffDNJp9MppaWlhuuvv7567ty5ZbNmzeo7fvz46k2bNsUePXrUtGjRoh4Nm6sACI22z5o16/jmzZubEuRgMIhjx44Z//CHP/Sprq4Wp0yZUnH33XdX7dq1y/r73/++FADGjBljf/HFF5NnzZp19oUlDbr0CLLGaERQo0LnP8cE2R76Yxc0cvSYKJLFRiXAaQQ0bs8Zr6uvPAEACJrOuGsqEXVhU6dOrRVFUW1+LCUlpT4vL6/3ddddd1l1dbXu2muvdQCAKIp47bXXEm6//faMG2+8sSnx1ul0uOWWWwbk5+cnjhs3rkX5nNjY2KDZbFZLS0t1c+fO7TdnzpySuro6rdlsbkpwrFZr0OFwaF0ul7Z5sqrRaNTy8nLx6NGjxhEjRtStXr1arqur065cuTIeACZMmGC3Wq1K8/ZSU1PdjSPCGzdujPF6vS3yRZ1Oh+LiYv0NN9xwmd1u111xxRXnVBGhcRH8iRMn9MuXLz9YUFBQtGrVqpNGzWfPnl3au3dvT/PkGAD69evnGzZs2EkjFy6XSzNt2rTypUuXHn7vvff2rV69OnHnzp0mt9uttdlsQQCIiooKulyu80ruuvywR1AEdD717BcCCNY2JMimFtN/iCiCdIvujh0mQOs58/oFR/kxAIBqNndEWER0Brdl3FZ1ttHejpKXl9drxYoVRQMHDvS+/vrrCfPmzevVuO3xzJkzK+65557K3/zmN2mbN292jh492gEAq1ev3rd3717jzJkzU5cvX77/iSee6AsAEyZMqJoxY0blrl27TLm5uf1ycnJ+HDVqlNNut2s8Hk9T0ud0OrXR0dFBr9ercTqdTcdVVRUSExP9JpNJaWxr9OjR9m3btkUDaPX1mjdvXsnTTz/de+3atd2GDx9ea7PZAvn5+bHvv/9+IgA8/vjjPw4dOtTdt29f35YtW3a/88473Z555pler7zySnHjPYxGo+L3+0/6St7tdmuNRqMCAP369fOIoghRFBW9Xn9uiVorzGazMnPmzBMWi0UBgCFDhjh2795tMpvNQYfDoTWbzQGHw6G1Wq3nPMINdPERZAAIigL0fhUBJXDWa/0NX5eqJi62IYpkUdbucJoE6PxBKL7TJ8mu8uOhH6zRHRQZEV0MrFZroHEUt3v37n6Hw6EtKioy3Hvvvf0VRYEoiqper1cEQVDz8vKSVq5cGdfwvKBGo0FaWlp943zaGTNmVO7Zs8c4Z86cfosXLz40bty4OgCw2WyKTqdTDxw4YFAUBV9++WV0Zmamc8iQIc6tW7fagNAivpSUFI/ZbFaTk5O9W7dutQLAN998E5Wamnrar8g+++yz6Llz55asWbNG1mq1yMrKqsvOzq5pjGno0KHuu+++O3Xfvn0GALBYLMFTy6NmZGR4Dhw4YD5+/LgIAB6PR9i5c6d18ODBZx1p1mg0UFX1nOa77tu3z3jzzTenBwIB+Hw+YdeuXdZBgwa5L7/8cuemTZtsAPCPf/zD9otf/MJ5LvdrFAEjyAJMPsAT8CBKH3XGa13loakpGgtHg4gimcUYC2fD5+RgbS00ia2XcHOdOAY9AK0truOCI6JOb8GCBUdmz57dX6vVqqIoKs8999yRlJQU34ABA9yTJ09OFwQBWVlZ9lGjRjnT09O9OTk5KYWFhQmKouCPf/zj4VPv98ILLyT7/X5N4+I8i8USWLFixcH58+cfycnJSVEURcjMzKwbNmyYKxgMYtu2bdGTJ09OV1UVixYtKgaAZ599tnjBggW9X3zxRaFHjx718+fPrzxd/Kmpqd7c3Nx+oiiqKSkpnueff/7oqdc88MADpY899liKKIqKwWBQXnjhhSPNz9tsNiUnJ+fH+++/P9VgMCiBQEAzffr08rS0tPpjx46dcV5aYmKi3+/3C/Pnz09esGDBsTNde+mll3rHjRtXNXny5AydTqeOHz++auDAgd5HHnmkNCcnJ6WgoCDBZrP5ly1b1uJ1PRNBVX/2qHa7mTp1qlpQUNAm9/rqmstw2KLiV2s2o7vlzDtdHXjuOfhXvIf3nhyI5+76sE3aj1SSJH0ry/LQtr5vW/YNCo/26htA2/WPOl8dcudlIecjBSnr1sI4YECr1335+O9gXbcVu/5rAu64ffEFt0t876DTa61v7Ny5s3jQoEGnTfSIzmbnzp3dBg0a1PfU411+ioUqamH0q3AHzj533Ft5AvU6wGyJ7YDIiKizsugscIZ2m4ZiP32pN19lBerMQHQUt5kmIupKunyCrOi1MDZMsTib+toKuIxAjPm0NayJKAJoNVr4DKHpb4GGxbutUWtqUWcGYqN6dlRoRETUAbp8ggy9CKMPcPvPPoIcsNfAZQRiLQlnvZaIurZAQz30M40ga+tcqDMLSIjr01FhERFRB+j6CbJBD6MPcPjOXPAfAFSXEy5jqMQTEUW2xnrowTOMIItOL1wmFbHxHEEmIupKunyCLBiNMPmAWs/Zq3to3B64jAISYy/pgMiIqDPTiiICWiBQe/oRZKPLD68ZiI5rvcoFERFdnLp8gqw1mmEIALXO6rNf6/XBZQBiOJ+QKOKZNAZ4jCq8Va2/dyj19TD4VPhMKowmSwdHR0RE7anLJ8g6c+gPl6f6xNmv9QbgMgLRJlaxIIp0Jq0JbiNQX916ghxsOO43nlMteyLqwr766ivLtGnTpMbHO3bsMN10003pU6ZMkWbPnt03GAxt4vb6668nTJgwIWPixIkZH374YSwAOJ1Ozd13390/Oztbmj59+oCSkpIW2/nW1tZq77rrrtTs7Gxp0qRJ6du3b7cAoY1AJk6cmD558uT0RYsW9QCAYDCI3Nzc3pMmTUqfNm2atH//fgMA7N+/3zB9+vQB2dnZ0q233ppWWVnZtNve/v37DWPHjr208fGhQ4f02dnZ0tSpU6WHHnooxeVynTZffPLJJ3u9+eabLRZvbdmyJeqBBx7o1/zYM888k/zee++dthJCXl5e0tdff232eDzCO++80+3U8zt27DBNnTpVmjZtmnTbbbellZWVNe3nEQwGcccdd6Q1xuJ2u4X77ruv/9SpU6U777wztby8/Lz2/ujyCbJotQEAvLVn3n1SVRSI9QpcRpx1QxEi6vpMOjMcJgHBqtZLrAaaEmRtq+eJKDIsWbKk+7x58/r4fL6mT8svv/xyz5kzZ5YWFhbKfr9f2LBhg62iokK3Zs2axIKCgqKVK1fKL730Ui9FUfDuu+92y8jIcOfn58vjx4+vWrZsWdKpbbz66qvdr7766rr8/Hz5+eefP9y4YciCBQv6LFmy5HBBQUHR7t27Ld99951p3bp1MT6fT7N27dqi3NzckoULF14CAE899VSfOXPmHMvPz5dvueWWin379hkBYOXKlXFz5szpZ7fbmxLzZ5999pKbb765oqCgQL7qqqscy5Yta7E4q7y8XHfHHXekbdu2zdZWr2Vubm5ZZmamu6ysTCwsLGyRIC9cuLD3008/fXTNmjXymDFjapYuXdr0Wj377LPJDoej6Q35rbfeSkxNTfUUFBTIEydOrFqyZEmP84mly++kp4+yQQXgqzv9QhsAUJxOCAA8BgEGraFDYiOizsuqj0KdCVDsrb93NI4gK6YWgz1EFAbV/7cy3r52bYuk6kLYJk2qjLvzjjOOsPXp06f+lVdeOfjoo4+mNB6TJMldW1urVRQFbrdbK4qimpCQENiwYcMeURRRXFysF0VR0Wg0ePjhh8sDgQAA4Pjx4/qoqKjgqW08+OCDJwwGgwIAgUBA0Ov1qt1u1/j9fiE1NbUeALKysuq2bt0aXVFRIY4YMcLecMyVk5NjcbvdQk1Njfjpp5/G5OXlXZKRkeGaP39+CQDYbLbgBx98II8ZM+byxvaOHDliGjt27BEAyMzMdC5cuLDXqTE5nU7NrFmzjm/evPm8E+QtW7ZEvfnmm0k6nU4pLS01XH/99dVz584tmzVrVt/x48dXb9q0Kfbo0aOmRYsW9Xj88cdLG5+3dOnSQz179vQDQDAYFAwGgwoA+fn5sYIgqFlZWXWN1+7YscP629/+tgwAbrjhhrrly5ef1/zZrj+C3LAFbNB5+oU2ABCsC72mAQO/LiUiwGaMQa1JAOrqWj0fqAiNLAetxo4Mi4g6malTp9aKonjStsQpKSn1eXl5va+77rrLqqurdddee60DAERRxGuvvZZw++23Z9x4441NibdOp8Mtt9wyID8/P3HcuHE1p7YRGxsbNJvNamlpqW7u3Ln95syZU1JXV6c1m81NybTVag06HA6ty+XSRkdHNx3XaDRqeXm5ePToUeOIESPqVq9eLdfV1WlXrlwZDwATJkywW61WpXl7qamp7vXr18cAwMaNG2O8Xm+LfLFfv36+YcOGnb1E2CkEIZRnnThxQr98+fKDBQUFRatWrTpp1Hz27NmlvXv39jRPjgGgMTnetm2bZfXq1YkzZ8488cMPPxjXr18f9+STTx5vfq3L5dLabLYgAERFRQVdLtd5fd3X9UeQY2LgA6C6z/z/UGn4Ixg0dPnPDER0DmymODhMAFyt11CvLy8DAKhWawdGRUSnE3fnHVVnG+3tKHl5eb1WrFhRNHDgQO/rr7+eMG/evF6LFy8+CgAzZ86suOeeeyp/85vfpG3evNk5evRoBwCsXr163969e40zZ85MXb58+f4nnniiLwBMmDChasaMGZW7du0y5ebm9svJyflx1KhRTrvdrvF4PE1Jn9Pp1EZHRwe9Xq/G6XQ2HVdVVUhMTPSbTCalsa3Ro0fbt23bFg2g1ddr3rx5JU8//XTvtWvXdhs+fHitzWYL5Ofnx77//vuJAPD444//OHTo0DNuMGE0GhW/33/SqKPb7dYajUYFAPr16+cRRRGiKCp6vV5t/S4trV69Ovatt97q8cYbb+xPTEwMvPLKK0kVFRXi9OnTpRMnTuh1Op3aq1eveovFEnQ4HBoAcDgcWovF0mJk/ky6fDaoj22YC+4+80YhjSPIirHLf2YgonMQF5UAp0mAJhCA4vW2OO8uLYHLAOhNbTb9joi6CKvVGmgcxe3evbvf4XBoi4qKDPfee29/RVEgiqKq1+sVQRDUvLy8pJUrV8Y1PC+o0WiQlpZWv2bNGnnNmjXyjBkzKvfs2WOcM2dOv8WLFx8aN25cHQDYbDZFp9OpBw4cMCiKgi+//DI6MzPTOWTIEOfWrVttQGgRX0pKisdsNqvJycnerVu3WgHgm2++iUpNTT3tFsOfffZZ9Ny5c0vWrFkja7VaZGVl1WVnZ9c0xnS25BgAMjIyPAcOHDAfP35cBACPxyPs3LnTOnjw4LM+V6PRQFXVFl/pr1q1Ku4vf/lL4qpVq+T+/fv7AOC///u/Sz7++OOiNWvWyL/+9a+rbr/99hM33nhj3eDBg52fffZZDABs2rQpetCgQY6ztdtcl88Gzd0SUQ1AU9/yD1xz9TWheYYq5xMSEYD46CQ4TaGfg7W10CSdvG7GdexH1FoAqz4mDNERUWe2YMGCI7Nnz+6v1WpVURSV55577khKSopvwIAB7smTJ6cLgoCsrCz7qFGjnOnp6d6cnJyUwsLCBEVR8Mc//vHwqfd74YUXkv1+v6ZxcZ7FYgmsWLHi4Pz584/k5OSkKIoiZGZm1g0bNswVDAaxbdu26MmTJ6erqopFixYVA8Czzz5bvGDBgt4vvvii0KNHj/r58+e3vgIZQGpqqjc3N7efKIpqSkqK5/nnnz96vq+BzWZTcnJyfrz//vtTDQaDEggENNOnTy9PS0urP3bsmP5Mz01MTPT7/X5h/vz5yQsWLDgGAIFAAHl5eb0TEhJ8v/vd71IB4Morr3ScOrWi0X333Vfx+9//vu+UKVMkURTVP//5z4fOJ/4unyAb40OVRzRe3xmvc1Y2TPkxmdo7JCK6CERZEkNTLAAE7XaIpyTI/opy1FgFWE1tuiaIiC5CKSkpvnXr1hU1Ph45cqRz5MiRRade1zCn9qR5tUlJSYFVq1btP9P9V6xYcbC141lZWa7m7QKAVqtFXl5ei4R28ODBnsLCQvl0bXz99dc7G38eNmyYa/369XvPFFOjJ554otUEFQCmTJlSO2XKlBYrnUeNGuUYNWpU04huY9tLly4tbjy2cePG/zR/jk6nw7fffvv9ucZisViU5cuXn1dSfFJ7P/eJACBJ0hQAN8uyfHvD42EA/gwgAOATWZYXSJKkAfAqgEEA6gHcL8vygQtp93xoY0OVSbT1gTNe562sCF1nYcF/IgKiTfFwNqy/C9a0WDMDVNegNgGIs3AXPSKiruZnz0GWJOnPAJ475R6vAbgdwAgAmZIk/QLAZABGWZazADwOIO/nh3v+hKgYqFCh8505QfZVlUMRAIOV8wmJKFQPvdYamgIXqDx5HYuqqhBrXaixAt1s3JqeiKiruZBFetsBPNj4QJKkaAAGWZYPyrKsAtgE4DqEkuWNACDL8lcAhl5Am+dN0GjgFwGdTznjdf7qSrgMQJSRCTIRAVbRipqGAhWB8vKTzikuF7T+IGotAnomprTybCLqIIqiKKzPSj9LQ99pNUE86xQLSZLuA/DIKYfvkWX5A0mSRjU7Fg2gecFQB4B+DcebFyEOSpKkk2X5zEO6bSigB/RnSZAD9iq4jECMKa6DoiKizixKHwWPHgjoWibIgYrQlKxai4rkpNRwhEdEIbsrKipYRfGuAAAgAElEQVQuTUhIsGs0mnMuFUakKIpQUVFhA7C7tfNnTZBlWX4LwFvn0FYdgOZ7NEcBqAVgPuW4piOTYwAIiAL0/jP/3igOO5xGINZy2i3CiSiC6LV6iNDAbQmeNkGutwBmS2w4wiMiAIFA4P6ysrLlZWVlAxEBpWupTSkAdgcCgftbO9lmVSxkWa6TJMknSVJ/AIcA3ABgAYBLAEwEsLphEd8PbdXmuQrqBRh8gD/oh6g9TRk3twtuo4Bu0S22GyeiCGVRtXBb/PCfJkH2s+gNUVgNGTKkHMBN4Y6Dup62/rQ1E8BKAN8A2CHL8tcACgF4JUnaDmAJWk7XaHeKqIHJp8IdOH1taq3bC5cRsEUxQSaiELMgwmFR4D/ReoKsmM5r51IiIrpIXNAIsizLWwBsafb4KwDDTrlGQShxDhtFr4XRFYQn4IHN0PoiPK3XB6cRiDIzQSaiELNgQF2UisCP5VBVFYIQWgsUrKyEXwsIxjPWuiciootURMzXUfU6mHw47QiyqqoQvUG4jECUmYv0iCjEojWh2ioAXi8Up7PpeKCiAnUWwKwxhzE6IiJqL5GRIBtEmOqBOq+r9fNeL7SKCpdRgFW0dnB0RNRZWUQrKhprITebh1xfcgyV0YBFy/cLIqKuKCISZMFogNEHVLsdrZ4P1oWq0zmNYIJMRE1sxmiURbeSIB8+hJJ4AVY966YTEXVFEZEga4wm6INAjaPFduAAgGBtqEyz3wBoNVx0Q0QhcaY4HIsKvU02JshBhwNqdQ1K4wREG1gWkoioK4qIBFlntgAAnNWlrZ5X6kIJctDA5JiIfhIXnYjyhhHkxlJvvuJiAEBpHBBr5aJeIqKuKCISZL0ltE+Jp6a81fP1NaEEWTEyQSain0Rbe6BeLyCo1yFQHirt1pggH48TkGBLDmN0RETUXiIiQTZGxQAA6msrWz3vrKwO/WBmySYi+onVHJpC4bPo4C8pCf18uBgqgBMxQI9ufcIYHRERtZeISJBNMd0AAH5HTavn3VWh44KJ22IR0U+i9dEAAGe8Bp6dO6GqKnzFxXDb9AjoBPRM6B/mCImIqD1ERIJsjAnVNg646lo976sqhwIVOqulI8Miok4uSh+anuVIDCJYXQ1fcTF8xcWwx4SmY3EOMhFR1xQRCbIpPjSCrLpbr4Psr6qExyAg2hDdkWERUScXZwx9uK7tXg8A8Hy3A77iYtTEqBBVFSYdv3UiIuqKIiNB7pYAABDcre+kp9RWw2kCYowxHRkWEXVy8cbQHGRHt3oI0dGoWr4cituN8vgAohRN09bTRETUtUREgix26wEA0HnqWz2vOGrgNAJxZtY0JaKfWEQLRGjg0gWhZlwK3+HDMAwYgF0ZAVjARb1ERF1VRCTImvhQgix6fa1f4KiDyyggPiqxA6Mios5OEATEaM2o0mrhSe0PaLUwPvEkavVBxGijwh0eERG1k4hIkAVTNOr1KvTeYKvnNR4PXEbAZkno4MiIqLOL09tQpdWg9qrL0X/TJlRFGVGh06KbsVu4QyMionYSEQkyBAF+A2Cobz1B1nnr4TQC0ZakDg6MiDq7BHMCqrRa+Bzl0F+SjNrj+1Cp1SIpipuEEBF1VZGRIAPwGwQYvUqL46qqQvQG4GKCTEStSLQmoUqrRdBxAgBQXr4XiiCgT2JamCMjIqL2EjEJcsAgwFivQlFPTpJVjwcaRYXLKCDKaAtTdETUWcVHJaNGq4HiKAMA2B2HAAA9u0nhDIuIiNpRxCTIQaMWFi/gCXhOPl4X2jzEafxp1ywiokbx5gQEBQF1zmMAAFf9cQBAYlSPcIZFRETtKGISZMWog6UeqPWevJte0B567DaGSjoRETXXWAvZpJbgRJ0X9Uo1ACDRxKo3RERdVcQkyDAaYPECJ5wnJ8iBmhoAQNAgsOg/EbUQbwolyAnaY/jmYBl8Ggc06k+77BERUdcTMQmyxmKC0Q9U1FSedNxZHnrst+jCERYRdXJNu+npVGzc+Fe4dH7EaYzQarRhjoyIiNpLxCTIWkto+kRNRelJx10nKgAAqlns8JiIqPNrHEGu0mpxn+cdVOg0SGLNdCKiLi1iEmS9LQYA4Ko4dtJxT8MIsmA1dXhMRNT5ReujodPocExvw5WaAzghmtA9liXeiIi6sohJkM220HxBX1XZScfrK8rhMqqI0lvDERYRdXKCICDOGIdaW2hRXoXegAQzF+gREXVlEZMgW7uFNgEJ2k+egxysOAGHWYDNEBWOsIjoItA3ui8OmQxwJ18Jh1KP7pbu4Q6JiIjaUcQkyLHdQ9vCqnW1J5+oqUaNGYgzxYQhKiK6GAxNGooi13F8NiYXAHBp3KVhjoiIiNpTxCTI1qRLAAAap/Ok4xpHLeosAmLNLNlERK0b2n0oVKhYtmMZTDoThiYNDXdIRETUjiImQdZ26xn6t9t90nHR6UCdGYgyc1U6EbXuioQroNfoUeIswbAew6DX6sMdEhERtaOISZA1tgT4tSp0Xm/TMTUYhOiph90MRFu5bSwRtc6gNWBQ4iAAwDWXXBPmaIiIqL1FTIIMQzS8RkDv8TcdCtrtEADUmQXYopLDFxsRdXqZSZnQCBqMTB4Z7lCIiKidXdD2cZIkTQFwsyzLtzd7/CKAHxsumQ/gCwCvAhgEoB7A/bIsH7iQdn8WnR4+PSDWB5oOBauqAAB2MxBvTerwkIjo4nHXZXdh5CUjWcGCiCgC/OwEWZKkPwO4AcD3zQ4PAfCYLMv5za6bCsAoy3KWJEnDAOQBmPRz270QfqMAozfY9NhbGUqQ68w/bSdLRNQak86ES+NZvYKIKBJcyBSL7QAePOXYEAD3SpL0hSRJeZIk6QCMALARAGRZ/gpA2JZ/+y0Cop0KfAEFAGA/Xg4AcJoExBhY5o2IiIiIzmEEWZKk+wA8csrhe2RZ/kCSpFGnHP87gI8AHAbwGoCZAKIB2JtdE5QkSSfLcgAdLBitQ2KxH0drapCaEA9HWQU0ABSLFlqNtqPDISIiIqJO6KwJsizLbwF46xzv97Ysy7UAIEnSWgDZCCXHzbep04QjOQYAIcYEQ8CP4uKDSE2Ih7uiElYABrMhHOEQERERUSfUZlUsJEkSAOySJOmShkNjAHwLYBuAXzdcMwzAD23V5vnSx8cCAMoOyQAAX0Ul3EYVMdxmmoiIiIgaXFAVi+ZkWVYlSbofQIEkSR4A/wHwJoAggOslSdoOQABwT1u1eb6ik3sCOALH0YMAAM2xI6iyCUgw2MIVEhERERF1MheUIMuyvAXAlmaPPwHwSSuXzryQdtpKQp/+cONLaEqLAQDGshL8pyeQYO4W1riIiIiIqPOInI1CAMT3yoBPCxgqy6B4PDDW1uDHeA3iWdeUiIiIiBpEVIJsie2LmijAbLfDd+QIAOB4PBBv7RnmyIiIiIios4ioBFmI7gl7NBBV50Ft0X4AwLF4AXHRvcMcGRERERF1FhGVIMOSALdVhc3hR+luGSqA0lgg3tYn3JERERERUScRWQmyRgtvlACbS0H1niI4rVr4RQHx5oRwR0ZEREREnURkJcgAArEiNCoQ+8O/4YxVAQBxprgwR0VEREREnUXEJciuQbH4d5oAU6AedbEB2AQRokYMd1hERERE1ElEXIJss8Ri8VQN3rnyenxytYoUI2sgExEREdFPIi5BTjJ3h6oR8Kv7UvBNvIjL4y8Nd0hERERE1IlEXIJ8VfzlAIBNZWtRr9Hgil4jwxwREREREXUmEZcgdxs4DRk+Pz4NVAEAruiZFeaIiIiIiKgzibgEGVFJGG5LAwDEQ4selh5hDoiIiIiIOpPIS5ABjLhyJgDgClMSBEEIczRERERE1JlEZIJ8Rb+xSIvqjV9dPiPcoRARERFRJ6MLdwDhIGpEFExdH+4wiIiIiKgTisgRZCIiIiKi02GCTERERETUDBNkIiIiIqJmmCATERERETXDBJmIiIiIqBkmyEREREREzTBBJiIiIiJqplPWQd6zZ0+lJElHwh0HXZA+7XFT9o0uoV36BsD+0UXwvYNOp93eO4hOJaiqGu4YiIiIiIg6DU6xICIiIiJqhgkyEREREVEzTJCJiIiIiJphgkxERERE1AwTZCIiIiKiZjplmbfmJEnSAHgVwCAA9QDul2X5QHijCg9Jkr4DUNfw8DCA1wH8GUAAwCeyLC8IV2zhwL5xMvaPk7F//IR942TsGydj/yBqqdMnyAAmAzDKspwlSdIwAHkAJoU5pg4nSZIRgCDL8qhmx74HkA3gEID1kiT9QpblHWEKMRzYNxqwf7SK/QPsG6fBvtGA/YOodRdDgjwCwEYAkGX5K0mShoY5nnAZBMAsSdInCP1/ewaAQZblgwAgSdImANcBiKQ3MfaNn7B/tMT+EcK+0RL7xk/YP4hacTHMQY4GYG/2OChJ0sWQ2Lc1N4AXAdwAYCaAdxqONXIAsIUhrnBi3/gJ+0dL7B8h7BstsW/8hP2DqBUXwxtCHYCoZo81siwHwhVMGO0DcECWZRXAPkmS7ADimp2PAlAblsjCh33jJ+wfLbF/hLBvtMS+8RP2D6JWXAwjyNsA/BoAGuaK/RDecMLmXoTmyUGSpJ4AzABckiT1lyRJQOjT/xdhjC8c2Dd+wv7REvtHCPtGS+wbP2H/IGrFxTCCXAjgekmStgMQANwT5njC5S0A70qS9E8AKkJvagqAlQC0CK00/jqM8YUD+8ZP2D9aYv8IYd9oiX3jJ+wfRK0QVFUNdwxERERERJ3GxTDFgoiIiIiowzBBJiIiIiJqhgkyEREREVEzTJCJiIiIiJphgkxERERE1AwTZCIiIiKiZpggExERERE1wwSZiIiIiKgZJshERERERM0wQSYiIiIiaoYJMhERERFRM0yQiYiIiIiaYYJMRERERNQME2QiIiIiomaYIBMRERERNaMLdwCtyczMVJOTk8MdBl2APXv2VMqynNDW92XfuPi1V98A2D+6Ar530Om053sH0ak6ZYKcnJyMgoKCcIdBF0CSpCPtcV/2jYtfe/UNgP2jK+B7B51Oe753EJ2KUyyIiIiIiJphgkxERERE1AwTZCIiIiKiZtp0DrIkSSKAtwH0BWAAsBDAfwC8C0AFsBvA/5NlWWnLdomIiIiI2kpbjyDfCaBKluWRAG4E8AqAPwH4r4ZjAoBJbdwmEREREVGbaesE+UMATzf8LAAIABgC4POGY38DcF0bt0lERNS1KQpQ8i3grg53JEQRoU2nWMiy7AQASZKiAKwB8F8AXpRlWW24xAHA1pZtEhERdWkl/wYKfgtUH4Ki0cN++T2InbQI0HAZEVF7afPfLkmSegHYDOB/ZVleBaD5fOMoALVt3SYREVGX5KwAPrgTnnofngj+DoX+TMTufB1bXv1/8PiC4Y6OqMtq0wRZkqTuAD4B8AdZlt9uOLxDkqRRDT+PA/BFW7ZJRETUZX08G4q7GtPts7Cz20Qk3fUO/p04FaMqV+F/31iMQJBr3onaQ1vvpPckgFgAT0uS1DgX+fcAXpYkSQ9gL0JTL4iIiOhMKmRA3oAPLHeiXJuGv92fiViLHui/HBV/PoCbK5ZiSWEW5k67NtyREnU5bT0H+fcIJcSn4m8vERHR+fj6NQQ1eiyuGoFHp6SFkmMA0GiRcOdbCLw6HAN3/hF/vzQd11/aPbyxEnUxnOFPRETU2XhqgZ1/wWb9tbDGJeHmoZecfD5hADDqDxin/RfWffg2Kp314YmTqItigkxERNTZyBsAvxuv2Efi7l/2haht+edaN3w26mMH4DHlLTy39rswBEnUdTFBJiIi6mz2/hV1+kTsFlIxaXDP1q/R6WGYtAS9hAr03vsGPis60bExEnVhTJCJiIg6E58L6sF/4G+BIRid3h3drIbTX9t3BIKXZeNB3cd4teBTOOsDHRcnURfGBJmIqJP5sdqN1z4/iJf/sR+7j9nDHQ51tAP/gBDwYq33F8i+Mvmsl2tvWAitTo+HPG9g8d/2dkCARF0fE2Qiok5ki1yO0S9uwaK/FWHJp/swYek/MffDnXB4/eEOjTrKvk3waKPwveZSXDMg4ezXR/eE9ldP4lfa71H2r3x8d7Sm/WMk6uKYIBMRdRJ7S+uQu/JL/L+YL/HvqS58l/MLPDSqP/K/K8Gtb3yFGpcv3CFSe1NVqIe34Btchqv7d4dZf47VWDN/h2DCpfhv8T0sWPMNfAFuIEJ0IZggExF1En8pyMd6TQ4ecb+Mbht+i9i3huGx5N14a8ZV2F/uxO3Lv4bdw5HkLq3mMAR7CT71pmNMeuK5P08rQjvxJXRHFSZUv4s3vzjUfjESRQAmyEREncD3+4rxQPkfYTbqgbvWAfd+AnQbAOTfh9FlK/DmXUNxoNyB3773b3j9wXCHS+3l8FYAwHblMow+nwQZAHpnAkNm4F7dRnzyj7/jSJWrHQIkigxMkImIOgH32lx0F2ogTn8X6HdtKNm5ZyNwxa3A5oW4tvRd5N0yGP8qrkbuhzuhKGq4Q6b2cHgrarRx0HQbgEtizef//OueAcxx+KN2OeZ9tAuqyn5C9HMwQSYiCrPK4t34petTfJd8J0wpmT+d0OqAyf/TlCTfFPwUT47LwPpdpXhhkxy+gKl9qCrUw1/gn/4MDE87h8V5rTHFQnvjc7hCOIBehz7Apj2sjUz0czBBJiIKs4q//wn1qojEsbktT2o0wKRXgP5jgI/n4P6k/bgjszde+/wgPtpxrOODpfZTUwzBVY4vg+nI6h//8+9z+c1QUq7F4+JqvPLxdnh8nJJDdL6YIBMRhZOrCv2OfYwtxtHo26dv69doReCW94CkgRA+nIEFQ33ITInDH/J3Yc9x1knuMkr+BQD4Xk3FsJQLSJAFAZrxeTBrfLjH/Tbe2MoFe0Tnq10SZEmSMiVJ2tLwc6okSf+UJOkLSZL+R5IkJuVERA2qvnkfBvjgHHTfmS80WIHbPwTM3aD7y614bXw8YswiHl61gzWSu4qSf8ErGCEmXQabWbywe3VLg+aXs5Ct/QLffP4xjtd62iZGogjR5smqJEmPAVgOwNhw6E8A/kuW5ZEABACT2rpNIqKLlW9nPvYpycjMuubsF0d1B+5cAwTrEfvRnVg2tT+OVrsxb+2e9g+U2p3y47/wfbAfru7/M+cfn+qaRxGISsY8zdvI28g+QnQ+2mM09yCAqc0eDwHwecPPfwNwXTu0SUR08XGUoXvtDnxtuubcKxYkSMD0lUD1IQz9Zg5mX9sXhTuO4eOdx9s3Vmpffg9Q9gO+VVJx9YVMr2hOb4Hu189DEn5EzA9v4/sfa9vmvkQRoM0TZFmW8wE0/75PkGW5sc6MA4CtrdskIroYeXd9BA1UeAdMPL8npowEbnoZOLQFs/xvYXCvGDxV+APK7N72CZTaX+lOaNQAdihpGNIntu3umz4Bgf7XI0fMx9KPPmd5QKJz1BHzgZvvdxkFgB9hiYgAOHeuxQGlJ674xbDzf/Lg24FfzoLm38ux/LIf4A+qeCyfdW8vWse+AwDUxl6OOIu+7e4rCNCNfwFGjYKp5a8g/7uStrs3URfWEQnyDkmSRjX8PA7AFx3QJhFR5+ZzIabiX9imuRJX/twRw+sWAKnXo9vWp/BSlhtb91XgvS+PtG2c1CHU0p2oQAxS+/Vv+5vH9YNw7R8wXvsNvt7wLuxuLuokOpuOSJBzASyQJOlLAHoAazqgTSKicxKoPori/30I3sqOTSzV4n9Cp/pR02MkRO3PfCvWaIHs5UBsX4zd8xim9lfx7Ia9kMscbRsstTtfyffYHezTttMrmtGM+D088QPxePANvLTuy3Zpg6graZcEWZblYlmWhzX8vE+W5WtlWc6SZfleWZZZsZyIOofjO1D/6jXoe3Al9vzl6Q5t2rFnEzyqHt0uG31hNzLFALe+D8HvxfPBF9HNoOChld/CWR9om0Cp/fm9EGv2Y4/aF0P7xrVPG1oRpptfR6zGjSv3PIvtByrbpx2iLoI1iYkoYlUUPg6XX8UXwhBcVrEBR3882nGNH/gHvlIyMGxAzwu/V8IAYMprEMt2YN0l/4fiSgceW7OT85EvFuX/gUYN4rCuP/rGn2M1k58jaSCUa/6AidqvsPGD/+GHKKIzYIJMRJGp+hASKr7CRtN4pN+ZB6Pgx+51f+6Ytu0liHYVY4d4JfonWNvmnhkTgOv/G92ObEB+2t+x4YcyvLrlYNvcO9LYS+D4bAm2FLyJqtoO2KmwbFfo3z2ugCAI7dqUeE0OnAmDket7FS/nb27XtoguZkyQiSgiVX2xHEFVgH7oXUjo/wscNF6GvlWfn/2JbUA9vBUAEOgzsm0Tol/OBobei8FHV+D5Pv/G4k0y/vZDadvdPxIoCqrfuwtRW5/BqF2P4tsPX2j3JgPHdsKhmtCjT3q7twWtDtbb3oFJC4wp+i/89f9n777joyrTBY7/zvRMS2+0JJQMwUgRpAgq2NYC0lxFV0TUu4tllYvLvXrdtSy6uCIqdl13FV10RYoVe1mRJgLSGVoCSUhPJtPrOfePCSxIS2AmIcn7/Xz4SCZn3vMQJzPPec/zPu+GFrxrIghtiEiQBUHoeCJh9Fv+xXfKAC4dOgAAT0ofukZKcbfAts3OHd9Rp5jJLRgU24ElCa6YA70u49qqZ/hd5jbu+dfP/LBL1Js2VWjt66TUruN54x2UaHNJKvsWfyi+S2f8pRvZpuTQr1uc6o9/KaU7qjFPMUS1g9L3H2J3lbtlzisIbYhIkAWhpe35Fu87N1M3ZyB7/zqCz5/5HS/8813eWllEmcPX2tF1CJGdX2AO1bI9exypZj0Auqw+WCQfe/fuivv51fuWs0YuYEiPtDgMroFrXkfqPJD73E8wPmk3t8xfK2aSmyLgJvLVI6yK9OGc8TNQ9bqM/soOvv45jqUqioK2zs5OuQv9urTcPlqaAdfjOet6fist5W9/f4Ead6DFzi0IbUH7S5D9TnBXtXYUgnC0cBD543vhrXEEdnzFOqcVlz/ExY73uHP3bzn3szH89YlHuf6VH/hsS4XY8SqOale8To1iJX/EhEOPpeb1BaB678b4nrx+H2bfAbbq+tItJU4LsvRmuGEhUmovHg88xqS0Iu54ez1//6EoPudrJ0JrXsMQauDTrN9xXq90sgeNQSdF2Lnmk/id1FWOPuymQp9HhtUQv/Mcg2nsU/jTCnnQ/xSzXnsXj1i0JwiHtK8EuXYPvDwcnsyHf04En9i0TzhDKAqR9+9A9dNr/C18JbP7vE/v//6Efg+tQfO/e1HGPEv3NBPP6p7nzxV3suDt17ny2eV8v7O6tSNvfzy1pJR+w2fS+Yws6Hzo4bTGBNlfvi2up1eKfwAg1HV4fBdkGVPgpg+QknN4xPUwD3TdwqyPt3H/ks1xLxlok0I+wj88y/JIIaOvvBoAVbehBFQJdK1dGb/zVm2P/jfdFr9zHI/OiPGm91AbE/lj/R+Z9cb7BMPyyZ8nCB1A+0mQPbXw+hUQcMN5d8Hur+GHp1o3pECY+SuLuW3+T1z17HImvrSS/1m0kU82lYsPqI5m+ZOot7zHnNC1qC7/C09cN4iuB2cPE5KQBk5Bd9cqmPh3eiYqvKV7nAdcj3L/Pz7h9n+uo1bc/owZ/8qX0RDGWTAJneY/b4GSKR2nZEVbF98SC/euFTgUE11t58T1PACY02Hqp0hdBnFb1V9Y0u09PvhxJxNeXElRjSf+529DIt8/TUKwlq/SpzA4r7EWWKOjInkgZ0e2xW33uVBF9ILM3PXsuIx/UtZsDLd8jFmvYcaBe3nsjSWEIiJJFoT2kyAvnwuearjpfRpGPISv4BpY8wo0lLVKOKvsZcz662Ps++RJbAeW0l9fgU4l8dmWCu58ez2DHv2K2cu2i8Qn3hQFtn0IK56Folba5bx6J/K3j/NRZCjyiBncOiLv2MepVHD2NUh3rYWLH2KEajPfGf+HHva/ceXT3/D19sqWjbs9CPmjr4GDvHVIq1/g08i5XDDiwiOPlSTqjHmkeovi2j9Y3r+a9XIvhnSPQ/3xsRhTYPJSOO/3nFP1PutTHqC34ztGP/s9H/zcOu+PZ5zqnfDDU7wfOY+LLh9/xLeklJ50karZWx2f3QmdJVuoVSzk5eTEZfwmSc8n4b8+xazXcHfJdJ54Y6FIkoUOr30kyPX7YO3fCBROYvIyP/3+/AWX/jycSCSMsuqFFg9n7bI36PX2UB6Xn+JB7VvMDDzPY+W38Y7vt/w8Yg2LbujKqN4ZvLp8LyPnfMer3+8Rt7XiQVHgiz/Cwsnw5Z/gzbFQsrbFYwh+dC9uRceHWfdw72VNuI2q0cP5M5Du/BFt/qX8Qf0O/1Lu45U33+L+JZtFnWAzbJ93NSVzhiG7a0FR8H/+ENqwl1XdplHY+egFUaHkXvSghPJ4LZb01ZPo3sM2TW96ZsSo/3FTaPRw2aNwy+cYzCk8pTzJe/pZzH93Ifcv2dQh72iFDmzG+7crUD5/gNA/rsQt61jd614uzE8/4jhjZh4mKUDZgdK4xKFUbmeX0oWCbGtcxm+ydBvG332B3mDinv338MrfXxVJstChtY8EeflcFCRu3H0Ra4rquOfiXgzuP4Afwn2o27isRUM58OVzDFwzHYcuC9/1S+B/i+GudTBmHqTZUK14mkFLL+Q55vDDRDg3N5m/LNvBmOd+YMP++haNtV1TFPjsflj1PMU9buTN877AZ8yGxbdCID4zQce09zt0+79nXuTX3H/tBWjUzfiVS+oKkxbAdQvINYdYqJ/FyA3TufPJf7B0Qylh8eF1Uvu6/4YMz24a5g0j8NoVGDa+yRvy5dw09lfHfkK6jSTJQ3VlnGZWS38CwJ81KO4bQhxTtyHwu+9h9NMU6GtYon+YURum89/Pvd3hSi42VMPmkjqkVc+zzWNlmubP/M/EC446LrFTTwAcB+LQyUJRMDt3Uyx1oWtyHHfQa6rUHpjv/JGta1QAACAASURBVI6ApRvTyu5n8Ut/ItgBL54EAdpDguwsR9n4Dt8ZL2Oj08zbtw3hvy/NZ+61/ajKGE6qrwhXVXGLhBK0f0XWij+xQj2QpDu+JMF2MSQkQ1pPGHgz3LgI7tkIw6dDyRo6f3wD//DcyafDdhDyNjDhpZX8+aNtuFqgD+txyRFwV0PVDqjcCnV7wVsH4cCRt6rPZIoSnTFe8xLLTOMYufUKHvymhpvrpoJjH2xa2GKhuL58nAolmcQRv6X7qe6YVjA6WnYx8v+42GDnjdBMei29ilf/8nvmf/AZOyucYkvh4/jV+Jv4V+9n2ezPoLbUzhPhSfgvmkXPDMsxjzek5wLgrtoXl3g8e1YQVlSk5A+Ly/hNotbAoFuQ7t4Aox7gIoOdl5x3sfu5cXz57dcd5rU06OxCSsYuZmrWYt4fOJ+n7v4NKSbdUcdpU3IB8NfEoQOIqxyD7MFl7YVK1QoXTMdizSb1999Qln4Bk2qeZ+286wn6OtbFkyAAaFo7gNO2+kWUSJgHay7ivqt6Myg3urhCkiT6j5wAi1/ip68XM+r6e+Mbh6uSyHu3sFfugvq610lLTjr2cUnd4JKHYOR9sHUprHmFgg1/5mudiZ+yL+LJVf255Oez+c153bmqbzbd00xHzDRFZAWXP0SNO4jDG0QBLAYN2SYNibiis6OSBFojJCSBxhD9WlEgEozWaTeURRPFhhJwlIBjP9QXg7cm2iaP43xAqvVgSgNjKpgzwJIN6b3h3NtA27LtiY4r4IJlM2HjO7zLr5jlvp7HJ/ThisJs7no7ld37O5G57l9Yzr01/rHsX4OlYjWvqqYwbeRp7pClM8HI/0Uz5LfIGxfSZc1b3FH/T9jwTyrXJ/Gp6mxKTYUEEntgSeuMPqUzaWmZ5KWbyU01Nm/muh2RJIkp19/AptIr+de2Si7tncGAbsnHPd6a3hUAb118ZpB9e1axR8mhf4/OJz843nQmuPB/0Jx7G67vnmX42lcwfDeRNT+NotvEx+jUvU9rRxhXKpXENQO7cM3ALic+MKkbAJIj9hdNSu1uJECT0SvmY58WvYWcO5by8z//l+F7X6XkqeFkTP0n+k6FrR2ZILSYtp0g1+9D/vFVPpGH0b1XIVOH5x7x7V6F51K/NIXQzq+JyDNQx/EK3f3pw+hCbhb3eJYHCrqd/AkaPfSbFP1Tug7pp79z7talvKv7CK9sZPO/u/HTt1l8qUlFTkjDq7bgCEp4PB6yqCNLqqWTVEdnqYZ0qY5E6fhlA4qkRlKOfZtMNqRAUjdUWWdHk15D0n+SYJUGQl7wN0DQHU2evbXRP+5KKN8EmxdBj1GQedap/uhOj7Oc8Kf3obZmQzhAeOuHaP01PBW6hs9SJ/Ph5EGHZm5fmjyItx4fwe8q3oteJCTGN0lxfDsPFBOW8/8Lkz5Gv2oJyaiG/o6kob8DRwkNW7/Av+VLzq9eg8W9HNxAY24XUDTUYmUbycgJKSRY00nK6Exqp+5o0ntBSvfoRY7uJLd2FQXkMChy9E8kBCigt0YvvtqAvl2S6NvlOBeth7GmR18T4YY4bKohy5hrN7OF87imU8ttCHFSxhQsVz5M5MJ72LTwEfoVL0AzfwT2tJHkXPxfGPIvir5fdVQGK161FaOnDFlWYjrT6yi1kwwkdW6BLaabS6Wi/01z+OajfvT96X6kV0fhuexxTMNuaTO/94JwOlokQbbZbCrgRaAfEABus9vtu0933ODHM4mE4UXNZOb/uu/RNX2ShKvzBQza/xWbSuoZkBOnbTwrNmPc9g7zlSu4bfzlzX9+l4HRP1f8FXZ/jbHo3/Qv28zZdVsxBGpQ+Q6b0dVG/xPUWgkaswiYuuPWD6VISWS/30ixW02VO4gq5CUJN3opiAoFGRVBRUM9FsqVFPYrGZQpafj9enBAarWOLilG0kw6dBoVCVo1Oo0KSZJQFAVJktBrVFiNGlIz9HRLMdIj3Ux2og6tpvWus3ZUOHFt3c7Z0icE0LFR7s5zyj0MG3k5H47sgUGrPnSsWa/BNHASqp8WUrHqbbIunxm/wNxVWIo+423pV9wwoiA+50jqSuLwW0kcfms0iXUegPpiZFcF3tpSPLVlBOvLMTZUIHvrSKgoJrHySzRbjizhiaj1yDorktaACgVJDkfvNkRCSHIoWl5zrLsKKm30QsqYGu2UYEoHc2a0tdjBv3cdHC0zaiMkc1b0L66K2A9etxeD7MGRfPYR7eXOFGpTMv2nPkNl2XS2LnqMc2o+wbDwa0LqBKRuw9BkF0YvqpJzISUPEruCSn3ScdsDn6kz2fVVVDj9dEpKiNm47gM7MSoasrv1jNmYsXbRmBv5IuNsjJ/cyYgvZuDa+TmWa56PTqgIQjvWUpnNOMBgt9uH2Wy2ocBcYGxTnyzLCsGIfESyU//VUyTv+ZzHI7/hTzdeSobl2Lf4U3uPwFTyPks3bWRAzqjT/Gccm/vzWYQVI/WDppN5Ojsh6S1w1jg4axyH5mvkSHTG1u+ESCBa5mDJQqc3owPMQCqQAww6bChPIIzTH8LhDeENRg4t6JKVaJlGKCLj9IdwB8I4vCFK672U1vsob/ATjMj4QxFCEZmIDCopmh75QxHcgfARpchGnZoP7xrRsivyD9OzRy+WjFnMsvIGdFo1PdPN/L0wC6tBe8zjx150Afa1Oag2LYtrguxaPR8LETyFkzHHavb4RCQpOiOe2BkV0dfFL/+P1LgDfLO3FvveIhpKthGpK8ISrCEp7MYc8KKXQiioCClqQmgIoSGCirDagEajI0GvRaVWo9HoMOrUpKrcpODEqjRg8rhIqF+P1leNFDysXrHPOLh2fvz//bGi0dEgWdF4Y78bZ7BkHTpAnzMw5mPHUmbnXDLv+Rvr95bz1SeLyKz8N8P22ulevByNctjFlVoPqT2jd4+6DoYu50ZLrs6UcqsYkhO70cWxmQMOX0wT5EjtHkqUDLpntnIHi5O4bEg/1mV+wDNvPsLtRW8TeGYA2lH3oTr31pPfgRKENqqlEuQRwGcAdrt9tc1mG3SS44+w/LlbSK9bz0rrlYQTc+jlWM7F7o/5TBnC0Ov/yHk9j99P1JQbbcZftWstEIcEuWYXxqIveJkJTLmof+zHV6mjV+rNvFo36TWY9BqyE2P3Zg7R5LrOE2RfrYe91R6c/hBZia33gahRq7j23K5A1yYdn2jUsil1EAPrPiYUDKDVxeHWsaIQ/mk+a+TeXDHqwpMf30LSzHqu7NuJK/t2AoajKArVrgAl9T7qPEHqPUEcviARGSKyTDAsowC+YIQ6b5AadxB/KIInEKbOEaTWHSR4jE4anU0wKD2EzeTj3LMHc26L/0tPj1ubRkKwJubj1u1aQ6Kio1uvOLxPxME53bM55/e/Z1PpZF74oYhPN5WRKtfxq2wvV3Xx0TehBn39TiheDpsbF75KakjOgYw+kNk442zOiK6H0FlAowNNQnQrbG1s35viSZWcQ5f937Db5Y/puAZnMTukLC40n/klLANzU8mdMYfH/jWSi/c9zYVf/pHQ93PRDLwJqd8kyCgQpRdCu9JSCbIVaDjs64jNZtPY7fYmNXTtef51aL7cxG2uF8EFITSsTR3LgBtfIDP52KvRD8k4Cxk1lrqt1LoDpMb4jcj3/TwkRYOn79SYj30mUqsk0i160i36Qwsi2xpL/giMqxezcf0K+g29KObjh0t+Itlfwpb0exmSaor5+LEiSRIZVgMZp3jXQ1EUXIEwte4gVU4/5Q1+yhw+ims87Kx0sbzYR11ygHPjVGESL35DOokNsU+QlbL1bFNy6JfbQhuExEjfLknMmzSA/7uygEXrSlm8vpQ31nrQqGycmzuGSwZncFnnIF1926Odb2p2Rv+74xOOu+AXwNoF/usbsGS22L/lVOnScjFIIVy1B4BOsRlUUUgOlNKQcHbrtPw7BalmPY/cOp6PNg7hdx8vYqL3Ay5e+RzqlfNQTBlI3YZG7yR0Pgc6DYguBBWENqqlEmQncHgmq2pqcgzQ+ZzLYcCvoi3HnAfQZp7FucYmJmdaA4HkXpxVU8QPu2sY2z+GC7O8dWi3LGShfD7XXNgC28YKMWE791JYDQc2fxOXBLl8xQIyFA05wyfFfOwziSRJWA1arAYteWnt54MwbMwgtWEXLn8Iy3FKdZpNjpDi3M4P2osZeJxysDNdptXAnaN6csfIHvxc4uCLbZV8ta2SWZ9sZxaQbrHQI/1i8tKupkd/M71StORqaumsdaEJuiDogbAvWtPud0Tr5vUnmeA4Qxgb2/8F60o4spjtNLgq0CsBQom5sRmvhUiSxNX9O3PZWXfx3rpx/Prf6+jpXMlI7w6G7VlL8vYPGw9UQXoBdD0Xuo+CnOHR9QmC0Ea0VIK8AhgDLGysQd7c7BEkCVJ7RP80k77rAArrPuXZ4vqYJsiRje+ikQPYu17HDe0oQWjvElK7Uq3JxnBg7aEFiDEjR7Ds/oiV0gAu6HvmLrwRjk+yZpFe3sC+Bl/sEuSaXegVP/60tt8mS5IkBnRLZkC3ZP738t7sr/Xy3c4qNpU2UFTj4fOtldR5Sg4dr1VL2LIsDMrJYXBeCkPyU9rc3TZ1Y4lbyFkdszH9lTsxAJr0tvk+YdCqmTw0h98M7sYPu8/n3Z9KmLG9ElOonlGWMsakltFPvZfELUuQ1r0RfVJybnRmOWd4tG49ow+oY/Q7Jggx1lIJ8lLgUpvNthKQgKktdF4AVJ36k77pHfbs3Q3E6ANKUfCu+gd75e5ceEF8Fv8J8ePOHERh6b/ZU+WiZwwXyLh3/0BSpIaa3N+fkZ0KhJPTJnZCK0Woqz4AMXptOIo3kASYcs/sBXqnoluqkZuG5R7xWL0nyN4aN/tqveysdLOxxMG/1u7njZXFAPRIN9G/azKPjD2rZRaxni5TKgCyJ3YJcm3JDjoD1jOxxVszqFQSF+Snc0F+Ou5AmC+3VfDJpnJ+u6uGQFims0XD1Px6hmns5ATsmEp+RNq6NPpkSRUttbFkQkIKGBKj9erGVDhrPKTbWvcfJ3RoLfLOZLfbZWBaS5zrmLL7AmCo3YLTf9VxOxw0S9k6LM6dLNP+jpm9xG2jtsbSYyhpZR+xYvt2emYOidm4ZasWkatosJ1/TczGFFqWMTW6cYSzqhSITfJSv3cDJkVNTn6/mIx3pks26RhoSmHgYa01g2GZzWUNrN5by88lDkrqvQTDMrSFyWRjtG5c8tbGbEhvxW5Ciprsbs2/K3qmMus1jB/QhfEDuuAJhPlqeyUfbyrniW0ywfAgYBAJ2skMS3YzzFBEvqqMzlSTGqrHHCxHU70Dye+I9t4P+eDSR1r7nyR0YG3g0j0GMqI7QuVTwvp99Yy0nX7/Ru9Pb6NStCQMuLbD7lLWlqX2GAjfQ/XudTAyRgmyopBU8hXr1X0Z2v0M2ClNOCVJGdEE2Vd/IGZjKpVb2aN0oneXtrVAL5Z0GhUDc5IZmNN2+mIforcQRoM2UBezISP1JVQoKeRlnEGbxsSQSa9hbP/OjO3fmWBYZneVmy0HGthe7qSoxsPC+gwOOHx4gv/ZxCrJqGVA1yR6ZyQwoW8uZ9j+gkIH0zES5IQkZHMW+Q1lrItFghwJw7b3+UYewNihbWyJvgCAlBm9aJIrtsRszIb9m8kMH2BD7uQ2sypdOJo+ubFLQQw3C0l07WSDrje920I5gXA0ScKnTcYQqI/ZugWdp4xqdTpdte1/sxWdRkWfTlb6dDqyZElRFGo9QXZVutld5WJzWQM/lzhYsbsWRaXlvivadvmJ0LZ1mHdrVUYBhb5S3iuuP/3B9v2AMVjL5uTfcaVYnNc2GRJxGTrR2bMnZs3/9614j75A7nkTTz8+ofU07qan9lTGZjyfg9RwFd60Ju+NJJyBAvpkEv1O3IFwTBZvWgKV7Nf1iUFkbZckSaSZ9aSZ9QzrkXro8Vhv6S0Ip6Lj1Aak9yZHKWVLWT2yfILenE3QsPZfuBUDnQaNiVFwQmtQMgvpLe1nbXFsbpsmFH/FDlVPbL3yYzKe0Eq0BrwkoInR7XTn/k0AaDqdHZPxhNYhG1JIkVxUuwIxGCxCcqSGgCn79Mdqh0RyLJwJOlCCbEMv+7AGKtlb4z71ceQI2l2f8o18DpcPaD+LKzoic7d+5EnlbN13+jOFzpoKegS2U519oSivaAc8aivaYMPJD2yCqt3rAUjtMSAm4wmtxJRGCk5q3MHTHkp2VqAhgmLtEoPABEGIhw6UIEdrmXqpythYcuoffMr+1RjDDvZlXES6pS0svxaOR5VViFpSaNjf/Lbcv2Rf+T4qSSHjHHFXoT3waRIxhGKTIAfKNtOgGOnVQ7Ssass0lnRSYzSD7KjYC4A2pdtpjyUIQnx0oAQ5+uF0luYAG0sdpzxM7U9LCCgaOg0aHavIhNaSFb3lraneRuQ0y27knV9Qh5Ve/S+IRWRCKwvqEjFGYpMgax172a/qQkob2xxDOJI+MQOr5KXOeRp3IBs5yosAMGfknvZYgiDER8dJkI0pYM5kkKmKjaWn+MGnKGh2LWOlUshFfUV5RZuXnEtEpSNHLmFP9al/6Pn8QWyuNexLOQ+Vuv2vSO8IIvokrLKLcEQ+7bFS/PtwJIiZwrYuITHa/cjjqDrtsXy1+wFI7dT9tMcSBCE+Ok6CDJCWT76qjO0HnATCkZMf/wtK5VaSAgcoShtFskkXhwCFFqVSE07qTg/pAJtO9aIJ2PTjNyRJbhIKfhXD4ITWJBuSSZTcNPhCpzeO30WaXEswUSRCbZ3KFO1hHWg4/QQ5Ul+CU0kgOzPztMcSBCE+OlaCnG4jI7CPYCTC9nJXs59eufZ9AFIHXB3ryIRWos0qoJfqAJtPo+zGsfkzZCR6DBWvi/ZCZUolEQ/1ntOrN63ZvwMATabobNLmmQ7upldz2kNpXGVUSmmYRF9sQThjdawEOc2GNuwmAwcbS5qfEMk7PuFnuScXDiyMQ3BCa1Cl2+giVbG95NRmhSKyQnb1CvYbeqO1dNxd0tobtSkVtaTgcpxeMlS7bysASV3EhkJtnjHap1fynf5200Z/OQ6tmD0WhDNZx0qQ06OzOINMVfzczARZcZbTybONPSkjSDKK8op2Iz0fFQr+ip2ETqHe9OedxZyl7CKYOyoOwQmtRW+JJkOe+tO7ne4ttwPQqftZpx2T0MqM0Qtgrf/0+2MnhqrxGUSCLAhnso6VIKdFO1mMSKpr9gxy6Y/R8gpzX3EbvV1pfE3kyCXsqmz+Qr3itR+jlhQ6i64m7YohMR0Av/P0ZpBV9XsoJ5W05KRYhCW0JmMKMhK64GnuxhoJkSg7kU0iQRaEM1nME2SbzTbeZrO9fdjXQ2022xqbzbbCZrM9FOvzNYslC/RWztZXsLfGQ4O36QtwfFs+pkRJZ+iQ8+MYoNDiUnuiSCp6qg6wpax5C/UURUG/7994JBOmvCFxClBoDeakaIIcdJ/e7XSLu4gqXTexeUx7oFLjV1swhk99vQKAz1GJSlLAIhJkQTiTxTRBttls84DZvxj3ZeAGYAQwxGaztd52UpIEafl0lUsBmtwPWQ54yHH8iD1xBImie0X7ojVAUg691QfYVNa8D749VW76hzZQkz4U1GKxTXtycAY5cjoJsqKQGSrFa86JUVRCawtqrRgi7tPqm+6oLgNAk5gVq7AEQYiDWM8grwRuP/iFzWazAnq73b7HbrcrwOfAJTE+Z/Ok27C69yJJsGF/0xKiXas/Rk+QhLPFbfT2SEq3UaCtYHMzW72tXf8jXaQaEgtFe7f2RkpIjv7Fe+r1pu6GWix4UZLzYhSV0NrCWitWvDhPo/2fuzaaIBuTs2MVliAIcXBK0142m+1W4L9/8fBUu93+rs1mG3nYY1bAedjXLqB1G4Km5aP6eQEDM1SsLW7ah59r44e4lAT6D78yzsEJrSItn067vmZnhYNgWEanadp1o3fbFwAknS0S5HbHkEQEFZL/1OtNq0t3YgZ0abkxC0toXbLeilWqo8EXOuVe+L66AwBYUjvHMjRBEGLslBJku93+d+DvTTjUCVgO+9oCnF4B1+nK6APAlZn1zNkuEYrIaNXHT4iCwRC5dcvZaRnCQKOxpaIUWlK6DY0SIjNSgb3CxdldEk/6lDpPkFzHGupNXUlOzo1/jELLUqnwqMxogqf+dtVQvhcAa5bYdbPdMCRipQTHacwgh52VACRliARZEM5kce1iYbfbnUDQZrP1sNlsEvArYHk8z3lSmdF2S4ON5fhCETafZGHW+pVfkEYDhr5jWyI6oTU0drLoKR1gQ0nTZgz/vb2MIartRHIvjGdkQivyqa3og6e+w6K/ugiAtC49YxWS0MpUCYlYJe9p7bCouCpxKQmkJInOJoJwJmuJNm/TgAXAj8AGu92+pgXOeXzWTmBIoodcDMCPRScus3CsX0oIDbbh41sgOKFVNPbH7m+oZP2+piXIu39egVnyk1J4aTwjE1pRQJuIMXLqCTKO/XgVPcmpoltBe6E2JmPFi8MbPOUxNN4q6qRk1CrR2UQQzmQxX3pvt9u/A7477OvVwNBYn+eUSRJkFpJQt4Me6RP5saiOaRce+xZoldNHQcP3lCQNorspuYUDFVqMIREs2Qyiinf3nzxBDoZl9CXLQQJVnmj7114FdUmYPWUoinJKbdr07jKq1JnkqjpWu/n2TGdOxigFcHu8pzyGPlCLU5MSw6gEQYiHjtmbKvMs+HkBQ3sn8/7P5fhDEQxa9VGHffXv77hBqqSq/y/XIwrtTlo+3WvKKKnzUeXyk2ExHPfQH4vqGChvxpXaG4sptQWDFFpSWJ9EInYCYfmY7w8nYw2U06AXnQraE705OlHidZ764k1TqI5yg6hLj5V169ZlaDSa14BCOtrmZ8LpkoEt4XD4toEDBx61bWrHTJCzCiHo5urcMAt+jPDDrhou6XPkbdBQRMb18/vISGQMEuUV7V66jdTSdYDC+n0OLi88fo/Srzfv4z7VTtT5t7VcfEKLUwxJWPHg9IWanSArikJ6uJLalNZr+y7EnsYYTZCDnlNPkJPkOvYlnDk3Vds6jUbzWlZWVkF6enq9SqU69QbVQocjy7JUXV3dp6Ki4jXgqG2SO+bVVuNCvYH6MhITtCzbUn7UIV9uq2REaBXO1AHRHfiE9i0tH3XITTd1Pev2Hb8uXZYVKrf9gF4KoekhFui1Z6qEJKySjwaPv9nPdTrqsEoelMSucYhMaDWGaIebsPfUEuRIwBvtjW1Kj2VUHV1henq6UyTHQnOpVColPT29gejdh6O/38LxnBnSC0BSoanawqV9MvlyWyXBsHzo27KssOTrFZyl2of1HDF73CFkFADR9n/Ld9Uc97BNZQ3k+39GQQXdhrVUdEIrUDfOFnpczU+Gqkp2AaIHcrvTmCBHvKfW/u/gLnpqsc10LKlEciycqsbXzjFz4Y6ZIOuM0VnkkjVceXYWLn+YZZv/M4v80aYD5FR/A4CqYExrRSm0pMa7CiOTqthR4aK8wXfMwz7fWsFQ1XYimWdDgmjT1J5pTdH/vz5n87ebdlbsAUQP5HanMUHGf2rdTRpqogmyLknUpgvCma5jJsgAXYdCyVou7JlCYWcrsz/djjsQpsYd4InP7Fxj+AklsxBSxDaxHUJCMiR2o49qHwD/tlcfdYgsK3y2oZhzVLvRdBfdK9o7vTnaacB/CjPIgdoSAFKzc2MZktDaGhNkVcB5kgOPzVMbnYgxpYiyvfZm9erVpmuuucZ28OsNGzYkXH311b3Hjx9vu/vuu3MjkQgAr7zySvro0aMLxowZU/Dee+8lA7jdbtWUKVN6TJw40Xbdddfll5aWan85vsPhUN900009J06caBs7dmzvlStXmgB27dqlv+666/InTpxomzRpUq+amho1wOOPP549ZsyYgnHjxvVes2aNEaCyslJz8Dzjxo3rvXv3bv3B8auqqjSjRo0q9Pl8EkBtba36xhtv7Dl+/HjblClTelRWVh53zdrzzz+f8fDDDx+1801RUZHu6quv7n34Y3/729/SZ8+e3el4Y7355pupH330USLAyy+/fNxapF+e86OPPkocPXp0wdixY3v/4x//SDvRz6ypOm6C3G0ohDyoq7Ywa2whlc4AU/7xI9e+vAq9p5SCiB2pcEJrRym0pKxCLA47WVYD3x0jQV5TVEemazM6QpArEuT2zmCNJsghT9O2pD+c4ionrKhITDvu54DQFjUmyOrgqSXIQVf0fcWcLGaQ25Onn34688EHH8wJBoOH+kE+++yznaZNm1a+dOlSeygUkpYtW5ZYXV2tWbRoUcaSJUt2LFiwwP7MM890lWWZN954I62goMC7ePFi+1VXXVX7wgsvHHUF9eKLL2YOHjzYuXjxYvtf//rXokcffbQbwAMPPJAzffr0ssWLF9uvvfba6p07dxrWrVtnXL9+veWDDz7YPm/evL2zZs3KAXj00Ue7jB49um7x4sX2e+65p8xutxsAPv/8c+uUKVPy6+vrDyXmzzzzTHb//v3dS5cutU+ePLlq9uzZRyXAXq9Xuv322/MWLVqUEauf5U033VQ7ZsyYBoDXX3/9qDfQY50zGAxKc+fO7frmm2/uXLhwoX3JkiXpFRUVmuP9zJqqY3axgP/Uj+5fw4ChA3hoTB/eXLUPlz/MksFlsA44SyTIHUpmIdLOz7j0LCtLN9fgCYQx6f/zK7JkfSkXaHegSCqkbmIVentnskZb+IVPoWOBxlNJnSqZDHXHfYttl3QmZNRoQ6eWIIfd0XIda2rM8gnhMPNXFqcuWV+aFssxJ5zTpWbKebknrLPKyckJPP/883v+8Ic/HLrlbLPZvA6HQy3LMl6vV63VapX09PTwsmXLtmq1WoqLi3VarVZWqVTcddddVeFwGIADBw7oLBZL5JfnuP322yv1er0MEA6HJZ1Op3i9Xqm+vl771VdfJc2dwSo4cwAAIABJREFUO7dLQUGB56GHHip99dVXM4YMGeJUqVTk5OQEI5GIVFVVpdm8ebM5Pz/fd9111+VnZ2cHHn300RIAlUrFW2+9ZR8/fnyfg+crKioyzJgxowzgvPPOc//lL385Krn0+/2q8ePH1w4bNsy5d+/e4/dGPYaioiLd9OnTu2dkZATLysr0ffr08Tz55JP7Z8+e3SktLS3kcDjUbrdbPXPmzG5z5szZf6Jzbt++3dCpU6dASkpKBKBv377uH374wXKsn1lzYuy4M8iJnSGxK+xfBcDU4Xl8+4eRrH3gYrod+BQ6nSPKKzqarEJQZG7I9eAOhFmyoezQt+o8QZZtLudy006krL6i/rgD0DZuDiT7mr8gy+CvokEd089p4UwgSQQ0Zoyyh1BEPvnxv+SpJaBosVoSYx+b0GomTJjg0Gq1RyRfeXl5gblz53a75JJLzqqrq9NceOGFLgCtVsvLL7+cfsMNNxRcfvnlhxJvjUbDtddem7948eKMK6644qir8uTk5IjRaFTKy8s1M2fO7D59+vTSuro6zf79+w0jRoxwLly40O50OtULFixIdbvd6sOTbKPRGGloaFBXVVXprFZr+N13392ZlZUVnDdvXhbApZde6kxLSzsiKc/Pz/d98cUXSQAff/xxUiAQOCpfTElJiVx22WXNvlqUJEkBKCsrM8ydO7f4ww8/3L569erE8vLyQzMKM2fOrDCbzZHDk+PjndPpdKrNZvOh+E0mU8TlcqmP9TNrTpwde3qj2zDY8zVEQqCO3lmQKrdC+Ua47LFWDk5ocVlnA9Bb2ke/Lj14fUURvxncDZVK4rlvdqEKucnzb4Nzft/KgQot4tCCrObPFppDNbgSRIu39iiktWINeHD5w6SYdM16rspfh0OykCl2V4yLKefl1p5strelzJ07t+v8+fN3FBYW+l955ZX0Bx98sOvBZG/atGnVU6dOrZk8eXKvb7/91j1q1CgXwMKFC3du377dMG3atJ6vvfbarvvvvz8XYPTo0bU333xzzaZNmxLuvffe7jNmzCgZOXKk2+v1SgkJCfLB548aNaphxYoV1ry8PL/H4zn0IvN6veqkpKSIxWKJXHXVVQ6Ayy67zPHUU08dVTZx0PTp08sfeOCBbhMnTrQNHz68IT09PbR8+XLzvHnzOgNMnTq14qqrrjrhatWEhAQ5FAod8WL3er2qg7O62dnZfqvVKgOkpKSE/H7/Kf1iWK3WiNfrPfRcj8ejtlqtEYBf/syaM27H/i0tnAjeWtj52X8eW/0iaI0w4DetF5fQOpJyQWdBKt/ILSPy2Fvt4Y2Vxfxc4uCfq/fxB1sNkhyG7qNaO1KhJegtRFAhBZrfsSAlUkfIKG6jt0dhnRUrXlz+ULOfqw3U41FZ4xCVcKYxm83hg0laZmZmyOVyqXfs2KG/5ZZbesiyjFarVXQ6nSxJkjJ37tysBQsWpDQ+L6JSqejVq1dg0aJF9kWLFtlvvvnmmq1btxqmT5/efc6cOXuvuOIKJ4DRaFQ6d+7s//77780AP/74o6Vnz56+wYMHu1etWpUYiUTYt2+fTpZl0tPTw4WFha7PP/88EWDVqlWW7t27H7fJ+/Llyy2TJk2qXrx4sT03N9fft29f9/nnn+8+GNPJkmOAjIyMsM/nU23dutUAEA6HWb16tbV///5eAEmSTvh8RWlaRURBQYG/tLTUUFtbqw4EAtLPP/9sHjJkiPtYP7Pm6NgzyD0vAUs2rJsPBWPAVQmb34NzpkS7Gggdi0oFXQfDvhVcecWTvL+hjD9/vA1JgnSznl8n74ZSA3Qd0tqRCi1BkvBKJrTB5iXILreLZMklNhhqpxR9IlapBpc/3OznGkIOvBpRntURPPLII/vuvvvuHmq1WtFqtfLs2bP35eXlBfPz873jxo3rLUkSw4YNaxg5cqS7d+/e/hkzZuQtXbo0XZZlZs2aVfTL8Z544onOoVBIdXChmclkCs+fP3/PY489VvzII490e/LJJ6Xs7OzAQw89VKPX65UBAwa4x40b11tRFOmPf/zjfoA//elPpffdd1/Oe++9l2EymSLPPffc3uPFn5+f7585c2benDlzSEtLC86dO7e4uT8DlUrFrFmziu+///5clUpFOByWLrjgAseoUaNcRUVFJ739kpOT47vjjjvyXnzxxaN+HofT6XTKvffeWzJlypR8WZYZO3ZsTZcuXUIPPPBAt2P9zJoav9TUDL0lTZgwQVmyZEnLnOybR+H7J2HKh7DyOdj9Fdz1E6SK/qWnw2azrbPb7YNiPW7cXxs/PA1fPQx/2EU4IY25X+4kEJK555JeJP7j/GjSc9P78Tt/BxCv1wbE/vVR9WhvtqpsjPq/D5r8nOLd28j95zA2DHiUAWNFOU5znenvHbX/mERt8SZqpnzPeT2aV2e+/899qDH25Jw/fHjacXREx3ptbNy4sbhfv37H391JEE5i48aNaf369cv95eMdewYZYNAtsGEBzG/cEGT00yI57sjyLoj+t3g5msKJ/O/ljS0ca/dA9XYYcGPrxSa0uIDGgj7oatZznFXRNSWGlC7xCEloZVJCIlbJS9EpzCBbZCflenF3UhDagpglyDabLRH4J2AFdMAMu92+ymazDQXmAWHgC7vd/kiszhkT1k5w5xpY+Syk9oR+k1o7IqE1ZfUDvRWKlkdr1A/a2jjzdNa41olLaBVBjZUEf/MSZG9ttPuJJV0s0muPNMYkEvA0u8QiEg5jVdwoCalxikwQhFiK5SK9GcDXdrv9QuBm4IXGx18GbgBGAENsNtuAGJ4zNgxWuOiPIjkWQK2BnPOg6Hs4vPxoy5Jo15NEMSvYkUR0VkyyG1lueilauCGaIKdkNasnvdBGaI1JJEhB3N5jb0d/PA311aglBcmUEqfIBEGIpVgmyE8DrzT+XQP4bTabFdDb7fY9drtdAT4HLonhOQUh9vIvh7o9sG9F9OvKbVC17cgZZaFDUAxWrJIXd7AZs4XOCgJoMSYed5dUoQ3TmaLt/wKeZi7erK8CQGMRrwtBaAtOqcTCZrPdCvz3Lx6earfb19pstiyipRbTiZZbHN5awwV0P5VzCkKL6TcJvn0MfngGcobD138GTQL0EeUVHY1iSMKKlzpfCKtBe/InABpvJXVSCtknaWEktE3qhGibtpC3eQmyu64SAL1IkAWhTTilBNlut/8d+PsvH7fZbGcD/wL+YLfb/904g2w57BAL0PxtqQShJWkTYMjvoh1O3r8Ddn4Kl84Cs/hg62hUCUkYpQDFbg8kG5v0HGOgGpc2lew4xya0En00QQ43M0H2O6sBSEgSOywKQlsQsxILm83WB3gPuMFut38KYLfbnUDQZrP1sNlsEvArYHmszikIcXPuf0HOCNj4DnQaAEPvaO2IhFagMUV71noamr45lyVch08nkqB2Sx+d85GbuXgz5Ip2IrMmi/7Y7dHq1atN11xzje3g1xs2bEi4+uqre48fP952991350Yi0Z2QX3nllfTRo0cXjBkzpuC9995LBnC73aopU6b0mDhxou26667LLy0tPep2lcPhUN900009J06caBs7dmzvlStXmgB27dqlv+666/InTpxomzRpUq+amho1wOOPP549ZsyYgnHjxvVes2aNEaCyslJz8Dzjxo3rvXv3bv3B8auqqjSjRo0q9Pl8EkBtba36xhtv7Dl+/HjblClTelRWVh53QvW7774zDx8+vO8vHy8qKtJdffXVvQ9/7G9/+1v67NmzOx1vrDfffDP1o48+SgR4+eWXjzsr9fzzz2c8/PDDh3YCfOedd1KuvPLKgtGjRxe8+uqr6QDBYFC644478iZMmGAbM2ZMwcFxmyqWNcizAQMwz2azfWez2Q42Dp0GLAB+BDbY7fY1MTynIMRHQhJM/QTu2wdTP40u3hM6HJ0p2pLL56pv8nMSZQdh0amg/WqcQZabuQV5xN2YIKeKHRbbm6effjrzwQcfzAkGg4fqqp599tlO06ZNK1+6dKk9FApJy5YtS6yurtYsWrQoY8mSJTsWLFhgf+aZZ7rKsswbb7yRVlBQ4F28eLH9qquuqn3hhReOuop68cUXMwcPHuxcvHix/a9//WvRwc0vHnjggZzp06eXLV682H7ttddW79y507Bu3Trj+vXrLR988MH2efPm7Z01a1YOwKOPPtpl9OjRdYsXL7bfc889ZXa73QDw+eefW6dMmZJfX19/KDF/5plnsvv37+9eunSpffLkyVWzZ88+5rbU+/fv177++uuZ4XA4JjVlN910U+2YMWMaAF5//fWjEmmv1yvdfvvteYsWLTriF2nevHld3nrrrZ2LFy/e8fbbb2fW1dWp33nnnZSkpKTwkiVL7G+88cbOxx9/vFkrp2P2qW+328ce5/HVwNBYnUcQWpShWRecQjujt0QT3aC7rknHe3x+knCjmEQ5TrvVOIMsBZq5c623nqCiQW8U7ylx8+Orqfz8Tmxv3/S/vobBvz3hLaScnJzA888/v+cPf/hD3sHHbDab1+FwqGVZxuv1qrVarZKenh5etmzZVq1WS3FxsU6r1coqlYq77rqrKhyOLgQ+cOCAzmKxRH55jttvv71Sr9fLAOFwWNLpdIrX65Xq6+u1X331VdLcuXO7FBQUeB566KHSV199NWPIkCFOlUpFTk5OMBKJSFVVVZrNmzeb8/Pzfdddd11+dnZ24NFHHy2B6I53b731ln38+PF9Dp6vqKjIMGPGjDKA8847z/2Xv/zlqOTS5/NJ//d//5fz+OOP75s4cWKfX37/RIqKinTTp0/vnpGRESwrK9P36dPH8+STT+6fPXt2p7S0tJDD4VC73W71zJkzu82ZM2f/wef5/X7V+PHja4cNG+bcu3ev4eDjeXl5voaGBrVGo1EURUGSJCZMmFCvKEo9RLetVqvVzQkxpjPIgiAI7YrRGm3JFfY0LUGurz6ASlJQWTLjGZbQmhoTZFUzN5BR+WtpUFlBLN5sdyZMmODQarVH9ILMy8sLzJ07t9sll1xyVl1dnebCCy90AWi1Wl5++eX0G264oeDyyy8/lHhrNBquvfba/MWLF2dcccUVR92ySk5OjhiNRqW8vFwzc+bM7tOnTy+tq6vT7N+/3zBixAjnwoUL7U6nU71gwYJUt9utPjzJNhqNkYaGBnVVVZXOarWG33333Z1ZWVnBefPmZQFceumlzrS0tCOS8vz8fN8XX3yRBPDxxx8nBQKBo/LF+++/v9utt95a2aVLl1Bzfl6SJCkAZWVlhrlz5xZ/+OGH21evXp1YXl5+aNJ25syZFWazOXJ4cgyQkpISueyyy466Ou3Ro4fv17/+dZ8rr7yy8LzzzmtITk6OWCwW2Wq1yk6nU3X77bf3uOOOO8qaE6e4bywIgnAcCZbGBLmJC7KctQcA0CWK2+jtliFaYqEOuZv1NF2wAY/Kgri3EEeDf1t7stneljJ37tyu8+fP31FYWOh/5ZVX0h988MGuB5O9adOmVU+dOrVm8uTJvb799lv3qFGjXAALFy7cuX37dsO0adN6vvbaa7vuv//+XIDRo0fX3nzzzTWbNm1KuPfee7vPmDGjZOTIkW6v1yslJCTIB58/atSohhUrVljz8vL8Ho/nUELr9XrVSUlJEYvFErnqqqscAJdddpnjqaeeOmbZBMD06dPLH3jggW4TJ060DR8+vCE9PT20fPly87x58zoDTJw4sXrTpk2W0tJSwwsvvIDb7Vb/9re/7f7qq6/uPThGQkKCHAqFjkisvV6v6uBMeHZ2tt9qtcoAKSkpIb/ff0qTths3bkxYuXJl4tdff73ZbDZH7rzzzrxFixYlX3PNNfX79+/X3n777T2vvfbaqkmTJjVtpqORmEEWBEE4DpUxWoOs+JpWg+yprQDAmCx6WLRbWiMyKrRhT7Oepg834NdY4xSUcKYxm81hq9UaAcjMzAy5XC71jh079LfccksPWZbRarWKTqeTJUlS5s6dm7VgwYKUxudFVCoVvXr1CixatMi+aNEi+80331yzdetWw/Tp07vPmTNn7xVXXOEEMBqNSufOnf3ff/+9GeDHH3+09OzZ0zd48GD3qlWrEiORCPv27dPJskx6enq4sLDQ9fnnnycCrFq1ytK9e3f/8eJfvny5ZdKkSdWLFy+25+bm+vv27es+//zz3Qdjuv766+u++eabLQe/NpvNkcOTY4CMjIywz+dTbd261QAQDodZvXq1tX///l4A6SR3UxSlaRs0JSYmRvR6vZKQkCBrNBpSUlLCDQ0N6oqKCs3UqVPzZ8yYUTplypRmXziJGWRBEITjaaxBl5q4ICvYEE2QrWnHnZgR2jpJIqgxYfB7CEVktOqmzTMlhF24TWL78Y7ikUce2Xf33Xf3UKvVilarlWfPnr0vLy8vmJ+f7x03blxvSZIYNmxYw8iRI929e/f2z5gxI2/p0qXpsiwza9asol+O98QTT3QOhUKqg4vzTCZTeP78+Xsee+yx4kceeaTbk08+KWVnZwceeuihGr1erwwYMMA9bty43oqiSH/84x/3A/zpT38qve+++3Lee++9DJPJFHnuuef2/vI8B+Xn5/tnzpyZN2fOHNLS0oJz584tbu7PQKVSMWvWrOL7778/V6VSEQ6HpQsuuMAxatQoV1FRke5kz8/JyfHdcccdeS+++OJRP4/D5ebmBidMmFB9zTXX9NZoNHLnzp0DN954Y+3DDz/cxe12a1566aVOL730EgBvvvnmTqPR2KTMW2pqht6SJkyYoCxZsqS1wxBOg81mW2e32wfFelzx2mj74vXagPi8PoIPp/G1dQJXzHj1pMd+/8afuKD4WUIzi9E2dsAQmqctvHe4H+/NZ55eXHzfYpJNJ/2cB6Dy4TzKUoZxzt1vxySGjuhYr42NGzcW9+vXr6a1YhLavo0bN6b169cv95ePixILQRCEE/CqzKhDTexY4KkhgBatMSm+QQmtKqI1Y8aHy9+0LcgjsoJF8SAbxOtCENoKkSALgiCcgE9tQR9uWoKs9VXjkJJEp4J2TtZZMOPF6W/a4n2ny41RCiAliARZENoKkSALgiCcQFBjwRBuWscCQ7AOt0aUVrR7egtmqekzyC5HtAJAbUqJZ1QdlSzLsrgiFU5J42tHPtb3RIIsCIJwAiGdFaPctJ63pnA9Pp1Igto7yWDFgg9XE2eQPY5qALQiQY6HLdXV1YkiSRaaS5Zlqbq6OhHYcqzviy4WgiAIJyDrrJiVvQTDMjrNiecUEiP1HDA0a0MpoQ1SJ1ixNGMG2eeMdpjSWcUW5LEWDodvq6ioeK2ioqIQMeknNI8MbAmHw7cd65siQRYEQTgB2ZBEouTB6Q+RZtYf9zhfIEQKTkqNsd3pVjjzaBISGxfpNW0GOeCOllgYreK1EWsDBw6sAq5u7TiE9kdcbQmCIJyAKiERK14avMETHldXW4VWiohtpjsAnSkJoxTA7TvuPgtHCLmjG82YE0WCLAhthUiQBUEQTkBlTEYjybhdjhMe11DTuM20VWwz3d6pE6I74gW9TetuEvFGd7g1J4uNpgWhrYhZiYXNZjMBbwPJQBCYYrfby2w221BgHhAGvrDb7Y/E6pyCIAjxpmnc8MPbUAccfyc0b110Fz1DclZLhCW0Jr0FgJC3oUmHSz4HMhLqhMR4RiUIQgzFcgb5v4B1drv9AuCfwP80Pv4ycAMwAhhis9kGxPCcgiAIcaU3R3vXBtx1Jzwu0LjNtDm1U9xjElpZY4Ic9jUtQVb5HXgwgkodz6gEQYihmCXIdrv9GeCxxi+7AQ6bzWYF9Ha7fY/dbleAz4FLYnVOQRCEeDNYop0HTpYgh11VACSmZsc9JqGVNSbIiq9p7f/UQSdulSWeEQmCEGOnVGJhs9luBf77Fw9Ptdvta2022zfA2cClgBU4vEjLBXQ/lXMKgiC0BmNja66Ip/6ExynuGmRFwmAVdabtnj5aKqEEmlaDrA814NeIBFkQ2pJTSpDtdvvfgb8f53sX2Wy23sAnwADg8HcFC3DilS6CIAhnEL05urmD7D3xW5faV4NTspCkFt0z273GGWRVsGkJckLERcAg6o8FoS2JWYmFzWa732azTW780g1E7Ha7EwjabLYeNptNAn4FLI/VOQVBEOLuYGLjP3GCrAvU4lIntUBAQqtrTJDVwaZtQW6UXYR11nhGJAhCjMVyquMfwPzG8gs1MLXx8WnAgsbHvrDb7WtieE5BEIT4OpQgn3hBljFUj1eb3AIBCa3OEE12NaGT1yBHZAWL4sZpEK8NQWhLYpYg2+32SuDyYzy+Ghgaq/MIgiC0KJUar2Q86e10S8SB09y7hYISWpXWiIwavewlHJHRqI9/M9bpDZKIhzJRYiEIbYrYKEQQBOEkvGoL2hMkyOGITLLiICK2me4YJImQxoQFL+5A+ISHOhrq0UoR1EYxgywIbYlIkAVBEE4ioLFiCB+/xKLO5SZR8iKZRAeLjiKktWCRfLj8J06Q3Q01AGjMqS0RliAIMSISZEEQhJMI6pIxR5woinLM7zfUlAOgtohtpjsKWWfGghenP3TC43wN1QDoGruhCILQNogEWRAE4SQihmQSceEJRo75fXdtdBc9fZLYZrqjUPRWzJx8Btnvim4wc7CftiAIbYNIkAVBEE5CSUghRXJR7wke8/s+RzRBNiZntmRYQiuS9BYskvekCXLQHd1gxpgk6tMFoS0RCbIgCMJJqEypWPFS7/Ye8/vBhkoAEtM6tWRYQitSJSRiwYfrJCUWsqcWAHOiSJAFoS0RCbIgCMJJaC1pqCQFt6PmmN+X3dE6U3OKKLHoKNQJVsxNWKSn+KIbzKhEFwtBaFNEgiwIgnASemu0O4XXUXXsA9xVBNAi6cVuaR2F1pSEBe9JZ5AlfwNh1KAzt1BkgiDEgkiQBUEQTsKYFO1OEXAeewZZ56/GoUoBSWrJsIRWpEn4//buJjau67zD+HNnOBx+DYekbFmiLEeRnByjRes4TmEXddKkcGMgdpAA3blI0doFaqAoUHfXLNoYXbSLOoU3bdpASRc1kCKLAE0C1Fq0Te00dhZ2A8dpj23Z9YdkUaL4McMhZ/g1XdyRODIpi+GMeDni89uYPPdS9wX8YvTX4bnnlCkmqywubb3s5pJ8Y56FZMTekHqMAVmSruFSQF6tXtj6emOaWsFtvPaV1m8LVmoffAR5/8o8S/nSblQkqYsMyJJ0DfnhdIuu5uLFLa+Prs1QH/CQkH2lFZDXlj44IBdXKzQKLr2Reo0BWZKuZai1h+3S7KZL9ZU1DjRnWR1yi7d9pZjOCl8rIA+tLbBSKO9GRZK6yIAsSdfSP0SDfvrqM5suXZitMJ4skJTcwWJfGUhnhZv1qwfklbV1Ss0qa768KfUcA7IkbUMtX6Z/eW7T+NyFdwAojB3e7ZKUpdYMcrNeveotlaUVykmN5oBbvEm9pq/bf2AI4Q7gBeCWGGM9hHAv8BSwCpyKMT7R7WdK0vW2VBhjcIuAXJ0+C8DQhIeE7CutWeFc4+oBebbW4DiLTLkHstRzujqDHEIYBZ4EGm3DXwMeBu4D7gkh3NXNZ0rSbljuLzO8tvnX6fXZNCCXbr51t0tSlgbSdcW5lSrNZnPLWxbmL5JLmuSHDchSr+laQA4hJMA/AF8GFltjo0Axxng6xtgEngHu79YzJWm3rBYnKDcXqDWuPDltde49AMo3GZD3ldYSi+HmIguNrU/Tq7VOXuwfdgtAqdfsaIlFCOFR4PH3Db8FfCvG+JMQwqWxUaDSdk8VOL6TZ0pSlnIjB5g4X+Vcpc6JmzdORUtqU6yRI186mGF12nX5Aqu5AUrJIvNLK5QGCptuWaqmL3UOjt6029VJ6tCOAnKM8SRwsn0shPA68GgrPB8CTgEPAe07pJeAzYv4JGmPK5ZuokyNn84sXBGQC4vnqSSjjOfyGVanLKwVRigtLzG3uMKtW6yiWKmm+2YPlg/scmWSOtW1l/RijLdf+jqE8H/AZ1sv6S2HEE4AbwAPAL6kJ6nnDE9MkkuazJ4/A2FjS7eBxjTVwk24ynT/WS+WKC2mM8hbWa6lM8jDBmSp5+zGNm+PAU8DPwZeijG+sAvPlKSuGrnlGAC1C29dMV5avchS0V+h70vFUUqkM8hbWaulB8skg65BlnpN17d5A4gxHmv7+nng3uvxHEnaLYXx2wBYnX378tjc4jI3NWeYG/mlrMpShnKDY4wmZziztLzl9eZS62CZwbFdrEpSN3hQiCRtRzndpSJXOXN56K2pGW5J5shPHMuoKGWpb2SCMrWrLrHoq89ST4pQGNzlyiR1yoAsSdsxUGYpN8TA4tnLQ9Nv/y8AI5MfyaoqZSg/NM5YUmP+Kkss+lfmWMw7eyz1IgOyJG1HklDtP0R5eerywRAL770GwPiR8EE/qRvV4DjlZIG52tZLLIZW5mkUyrtclKRuMCBL0jY1hg9zS/PC5ZeymjNvAFA8ePsH/ZhuVIPj9LFOfXHz7qWN1TVKzQorRfc3kXqRAVmStqk5eiuTyUXOzi8B0F95i1oyAkPuUrAvDabhd721nVu7mdoy41RZdwcLqScZkCVpm/ombuNAUuXcdLp9V7n+LrMDHjG9bw2k64vXt5hBvriwzHiyQDLsHshSLzIgS9I2DR88BsDM2TeYrS1zZP0cjdJt2Ral7LRmkHONLQJydZGxpEbfiHtkS73IgCxJ2zTaOizkjdORNy/McSSZJnfgeLZFKTutgJyvbw7IC3MXgPSIckm9x4AsSduUlI8CUH3vNP/xwosUkjUmjt6RcVXKTOsAkKH1Ko3VtSsuLc2dT6+NHdz1siR1zoAsSdtVvpXlgQPck7zMz37y43Ro8qMZF6XMtGaQx1jYtBdyvTKd3lK+edfLktS563LUtCTdkHJ5+n7hIX7jxX9mkAarxXH6jtyddVXKSmGQtVyR0aTGhYUGB0cHLl/wx2TqAAAHMElEQVRaW0gDsi/pSb3JGWRJ+jnkfvGLDFPn/vxL9H38t6EwcO0f0g1rbWCMMRaYqtSvvLB4Mf2v27xJPcmALEk/j2OfvLy9Fx//nWxrUeaSwTHGkhpTlcaV40vpVoAMOYMs9aKuLbEIISTAu8BrraEfxRj/NITweeDPgFXgGzHGr3frmZK06/IFuOcPYOZNuNkjpve7/PAEY8kc/zN/5QxyX32G5aSf/v6hjCqT1IlurkE+AbwYY/z8pYEQQgH4G+BXgBrwwxDCv8QYp7r4XEnaXZ/5ctYVaI/IDU4wkTvL+epGQF5dW6ewPEdjcIz+DGuTtHPdDMh3A0dCCP8OLAGPA0Xg9RjjLEAI4TngU8C3u/hcSZKyMTjOeK7GubYZ5HOVOmNUWS2OZ1iYpE7sKCCHEB4lDcDt/hD4yxjjt0MI9wH/1Lpnvu2eKlDeyTMlSdpzBscYbS5wrm0N8ruzS61jpj0kROpVOwrIMcaTwMn2sRDCEOk6Y2KMz4UQJkkDcantthKw+cghSZJ60eAYxWadufnK5aF3Z5e4m3kKJQ+RkXpVN3ex+HPgjwFCCHcC7wA/Az4SQpgIIfSTLq/4URefKUlSdlqHhawuzl4+Te/MzCKHklmKB45mWZmkDnQzIP8V8OshhB8AXwV+N8a4AvwJ8AxpMP5GjPFMF58pSVJ2htOjpA8m85xvLbO4OD3FYLJMX/nWLCuT1IGuvaTXehHvwS3Gvwt8t1vPkSRpzxg9AsCh5CLnq3WOTgzRmHmnde1whoVJ6oQHhUiStFOjkwAcTmY4N5/OIK9XzrauHcmqKkkdMiBLkrRTIwdpJnkOJTOcq9RZW2/SX3svvdYKz5J6jwFZkqSdyuWhdJijfXPEcxWmKnUOMkOTBEZuybo6STtkQJYkqQPJ6CRhsMp/vjrNy2fmOcQMK4M3p8eSS+pJBmRJkjoxOslkbpZzlTpPnoocLczRN+b6Y6mXGZAlSerE6BFGlqeAJq9OLXB7sUKubECWepkBWZKkToxOkltZ5O6D6V+pB9anfUFP6nFd2wdZkqR9qRWGH/nlIh+eGiD/WgVK7oEs9TIDsiRJnWjtd/zgh5o8+LGD8BrugSz1OAOyJEmduLSconIGGvPp1wduz64eSR0zIEuS1InSIUjycPF1qM9BsQyH78y6KkkdMCBLktSJfAGOfxpe+Q6QwIc/CXn/epV6mbtYSJLUqY89DPPvwPzbaViW1NMMyJIkdeqOB6E4mn59/DPZ1iKpY137HVAIIQ98FfgEUAS+EmP8XgjhXuApYBU4FWN8olvPlCRpTygMwl1fgtP/BgdOZF2NpA51cwb5S0AhxvhrwBeAS6/wfg14GLgPuCeEcFcXnylJ0t7w2b+Ax56FJMm6Ekkd6uZbBA8APw0hfB9IgD8KIYwCxRjjaYAQwjPA/cBLXXyuJEnZy+WBfNZVSOqCHQXkEMKjwOPvG74A1IGHgE8B3ySdOa603VMFju/kmZIkSdJu2FFAjjGeBE62j4UQvgV8L8bYBH4QQvgoaTgutd1WAuZ2WKskSZJ03XVzDfJzwOcAQgh3Am/HGCvAcgjhRAghIV2G8WwXnylJkiR1VTfXIH8d+LsQwvOka5Afa40/BjxNujDrVIzxhS4+U5IkSeqqrgXkGGMDeGSL8eeBe7v1HEmSJOl68qAQSZIkqc2ePCz+lVdemQ4hvJV1HerIh67HH2pv3BCuS2+A/XGD8LNDV3PdPjuk90uazWbWNUiSJEl7hkssJEmSpDYGZEmSJKmNAVmSJElqY0CWJEmS2hiQJUmSpDYGZEmSJKnNntwHuV0IIQf8LXAn0AB+P8b4erZVZSOE8CJQaX37JvD3wFPAKukx3k9kVVsW7I0r2R9Xsj822BtXsjeuZH9Im+35gAx8ERiIMf5qCOFe4EngCxnXtOtCCANAEmP8dNvYfwO/BbwBfD+EcFeM8aWMSsyCvdFif2zJ/sDeuAp7o8X+kLbWCwH5PuBfAWKMz4cQPpFxPVm5ExgKIZwi/f/2FaAYYzwNEEJ4Brgf2E8fYvbGBvtjM/sjZW9sZm9ssD+kLfTCGuRRYL7t+7UQQi8E+25bBP4aeAB4DPhma+ySKlDOoK4s2Rsb7I/N7I+UvbGZvbHB/pC20AsfCBWg1PZ9Lsa4mlUxGXoVeD3G2AReDSHMAxNt10vAXCaVZcfe2GB/bGZ/pOyNzeyNDfaHtIVemEH+IfA5gNZasZezLSczj5CukyOEMAkMAbUQwokQQkL6r/9nM6wvC/bGBvtjM/sjZW9sZm9ssD+kLfTCDPJ3gN8MIfwXkAC/l3E9WTkJ/GMI4TmgSfqhtg48DeRJ3zR+IcP6smBvbLA/NrM/UvbGZvbGBvtD2kLSbDazrkGSJEnaM3phiYUkSZK0awzIkiRJUhsDsiRJktTGgCxJkiS1MSBLkiRJbQzIkiRJUhsDsiRJktTm/wH7233tnC/HfgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "unit_comp.remove_edges_with_duplicate_actions()\n", + "unit_comp.identify_units()\n", + "unit_comp.plot_matches('template', chan_group=6, step_color=False)\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Store uniqe unit ids to csv" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "max_dissimilarity = .05\n", + "max_depth_delta = 100\n", + "for entity in sessions.entity.values:\n", + " unit_matching = TrackMultipleSessions(\n", + " actions, list(sessions.query(f'entity=={entity}').action), \n", + " progress_bar=tqdm, verbose=False, data_path=output / f'{entity}-graphs'\n", + " )\n", + " unit_matching.load_graphs()\n", + " # cutoff large dissimilarities\n", + " unit_matching.remove_edges_above_threshold('weight', max_dissimilarity)\n", + " unit_matching.remove_edges_above_threshold('depth_delta', max_depth_delta)\n", + " unit_matching.remove_edges_with_duplicate_actions()\n", + " unit_matching.identify_units()\n", + " units = []\n", + " for ch, group in unit_matching.identified_units.items():\n", + " for unit_id, val in group.items():\n", + " for action_id, orig_unit_ids in val['original_unit_ids'].items():\n", + " units.extend([\n", + " {\n", + " 'unit_name': name, \n", + " 'unit_id': unit_id, \n", + " 'action': action_id,\n", + " 'channel_group': ch,\n", + " 'max_dissimilarity': max_dissimilarity,\n", + " 'max_depth_delta': max_depth_delta\n", + " } \n", + " for name in orig_unit_ids])\n", + "\n", + " pd.DataFrame(units).to_csv(output / f'{entity}-units.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/mikkel/.virtualenvs/expipe/lib/python3.6/site-packages/ipykernel_launcher.py:3: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version\n", + "of pandas will change to not sort by default.\n", + "\n", + "To accept the future behavior, pass 'sort=False'.\n", + "\n", + "To retain the current behavior and silence the warning, pass 'sort=True'.\n", + "\n", + " This is separate from the ipykernel package so we can avoid doing imports until\n" + ] + } + ], + "source": [ + "unique_units = pd.concat([\n", + " pd.read_csv(p) \n", + " for p in output.iterdir() \n", + " if p.name.endswith('units.csv')])" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "unique_units.to_csv(output / 'units.csv', index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Store results in Expipe action" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "identify_neurons.data['sessions'] = 'sessions.csv'\n", + "identify_neurons.data['units'] = 'units.csv'" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-units.csv',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-7.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-0.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-6.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-1.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-2.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-5.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-3.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1834-graphs/graph-group-4.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-units.csv',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/sessions.csv',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-units.csv',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-7.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-0.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-6.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-1.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-2.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-5.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-3.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1849-graphs/graph-group-4.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/units.csv',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-7.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-0.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-6.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-1.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-2.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-5.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-3.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-graphs/graph-group-4.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-7.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-0.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-6.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-1.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-2.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-5.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-3.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1833-graphs/graph-group-4.yaml',\n", + " '/media/storage/expipe/septum-mec/actions/identify-neurons/data/1839-units.csv']" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "copy_tree(output, str(identify_neurons.data_path()))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "store_notebook(\n", + " identify_neurons, \"00-identify-neurons.ipynb\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-0.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-0.yaml new file mode 100644 index 000000000..46bca4268 --- /dev/null +++ b/actions/identify-neurons/data/1833-graphs/graph-group-0.yaml @@ -0,0 +1,5360 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1833-010719-1_127: + 1833-010719-2_265: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + ww0hc4Vssz8= + 1833-020719-1_123: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YHVlj6i7qD8= + 1833-020719-2_105: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b3j2JJRJwD8= + 1833-020719-3_143: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iprZcLOlsj8= + 1833-020719-4_302: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yGMZ+XrPsj8= + 1833-120619-1_139: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 6016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /uqFeKr/vz8= + 1833-120619-2_175: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oWrH2D77wD8= + 1833-120619-3_153: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 1019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uMpZipeEwD8= + 1833-200619-1_147: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0OKxJqLovz8= + 1833-200619-2_268: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + quJ5pm4swD8= + 1833-200619-3_91: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y1m6EqgNvz8= + 1833-200619-4_78: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oJFSLFpHwz8= + 1833-260619-1_130: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W5hNphFyuj8= + 1833-260619-2_164: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jLi0tbhovT8= + 1833-260619-3_141: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iTq3r8Kftz8= + 1833-260619-4_115: &id374 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6PPWhSofuj8= + 1833-290519-1_112: &id439 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FHh5ivsvyT8= + 1833-290519-3_137: &id536 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JMG6zQWezT8= + 1833-290519-4_117: &id556 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WweB7NshyT8= + 1833-010719-1_161: + 1833-010719-2_239: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vMWBp0l5nT8= + 1833-020719-1_145: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jzmNFzs2tT8= + 1833-020719-2_142: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /Xhs/1jLsj8= + 1833-020719-3_156: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LCM9iRWMsz8= + 1833-020719-4_308: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yp1WmyHIsD8= + 1833-200619-4_1: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g8as0WVYyj8= + 1833-260619-1_120: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0ak8s0FbtT8= + 1833-260619-2_2: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mo3auV9exT8= + 1833-260619-3_0: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XtchKCNinj8= + 1833-260619-4_202: &id390 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ex2oUyqKrz8= + 1833-010719-1_191: + 1833-010719-2_254: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1HkQ3MaLwD8= + 1833-020719-3_116: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B1N5hBnpwz8= + 1833-260619-1_132: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MIE7RcHnwj8= + 1833-260619-2_174: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G8Hj2Cd+wz8= + 1833-260619-3_209: &id370 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CW6Bg4y5wz8= + 1833-260619-4_233: &id417 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9Ej0DnmAwz8= + 1833-010719-1_223: + 1833-010719-2_261: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 67OMO8YNoT8= + 1833-020719-1_119: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tqIdqWvWtT8= + 1833-020719-2_129: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YJ3uNTFQrz8= + 1833-020719-3_141: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gCYXnudnrT8= + 1833-020719-4_306: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0gSod6z/rT8= + 1833-060619-2_90: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Qro0Yj/+xT8= + 1833-200619-4_90: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + r3sLIYXMxj8= + 1833-260619-3_194: &id354 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m7TH32eNxT8= + 1833-260619-4_222: &id404 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KWJJwocexT8= + 1833-010719-1_225: + 1833-010719-2_267: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QS/ST4a/qD8= + 1833-020719-1_121: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + txJV/XvnvD8= + 1833-020719-2_95: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vmTZAbIUwz8= + 1833-020719-3_112: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BdspNNVXyj8= + 1833-020719-4_258: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AoIoMrn/wD8= + 1833-200619-3_93: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P37Glu+nxj8= + 1833-200619-4_96: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S9ziNb+ivz8= + 1833-260619-1_118: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RvjaZyoZvj8= + 1833-260619-3_182: &id346 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SfxqXDUHvT8= + 1833-260619-4_235: &id427 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4mVowtIAyj8= + 1833-290519-1_146: &id470 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +x0ObsNExz8= + 1833-290519-2_78: &id484 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1PQR7F58wz8= + 1833-010719-1_235: + 1833-010719-2_4: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MdqSmZfulT8= + 1833-020719-1_158: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q+4rgUFrqz8= + 1833-020719-2_8: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eTfMvBF4rj8= + 1833-020719-3_162: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cvqUw8Xirj8= + 1833-020719-4_320: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wkIv2MAasj8= + 1833-060619-2_76: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UjME9AzKwD8= + 1833-120619-2_89: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G1aJkhLXxD8= + 1833-200619-2_283: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aCDKLgVywT8= + 1833-200619-3_0: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GOYl9jyXwT8= + 1833-200619-4_92: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xc+9jgCLwz8= + 1833-260619-1_2: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dn15JxNTvD8= + 1833-260619-2_152: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /EyBuCrzwj8= + 1833-260619-3_1: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MMRPoTOjvT8= + 1833-260619-4_208: &id398 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w+sllqg+wz8= + 1833-290519-1_120: &id455 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jsmxR3n4vj8= + 1833-290519-2_82: &id500 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9mWMKLBjwT8= + 1833-290519-3_107: &id519 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JR+lz7TixT8= + 1833-290519-4_88: &id577 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fq/WDmI3wT8= + 1833-010719-2_239: + 1833-010719-1_161: *id002 + 1833-020719-1_145: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wQ8r8pmNsz8= + 1833-020719-2_142: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oL7c0pcbsz8= + 1833-020719-3_156: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /H4VRbXlsj8= + 1833-020719-4_308: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eOvbwUKTsT8= + 1833-200619-4_92: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qSK7rDKPzD8= + 1833-260619-1_120: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2LzThJCEsj8= + 1833-260619-2_2: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qtKyyNsJxT8= + 1833-260619-3_0: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V16BS59Zoz8= + 1833-260619-4_202: &id391 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sRPWGN8XqT8= + 1833-290519-2_78: &id485 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3QOvFT3LwD8= + 1833-010719-2_254: + 1833-010719-1_191: *id003 + 1833-020719-2_95: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w34jwP3wvD8= + 1833-020719-3_116: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A2codC5WwD8= + 1833-120619-2_175: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uUu6ADStwD8= + 1833-200619-1_147: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xUkpQAhLwD8= + 1833-200619-4_90: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7XV16KpLwz8= + 1833-260619-1_132: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4HA4aG61vz8= + 1833-260619-2_174: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mi0qDxejwD8= + 1833-260619-3_182: &id347 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fkocrMrPuz8= + 1833-260619-4_233: &id418 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mRqY1eO4wD8= + 1833-290519-4_117: &id557 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + quD8R11Cxz8= + 1833-010719-2_261: + 1833-010719-1_223: *id004 + 1833-020719-1_119: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SXi/0CaYuT8= + 1833-020719-2_129: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GfElkxWGsT8= + 1833-020719-3_141: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vWXPdXo0sj8= + 1833-020719-4_306: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B7/iWZ7Msj8= + 1833-260619-3_194: &id355 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q4lRQHPTwz8= + 1833-260619-4_222: &id405 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ecr2kOU3wz8= + 1833-010719-2_265: + 1833-010719-1_127: *id005 + 1833-020719-1_123: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NyTRGDHOtD8= + 1833-020719-2_105: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /enDyb/OvD8= + 1833-020719-3_143: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SDyMVa0MtD8= + 1833-020719-4_302: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OCJbbkjEtz8= + 1833-060619-2_90: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mWI9vwEawj8= + 1833-120619-1_139: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 7804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MTCwmNN7vT8= + 1833-120619-2_89: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bkiW86v5wj8= + 1833-120619-3_153: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K29usE2Tvj8= + 1833-200619-2_268: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ptBJaK/pvz8= + 1833-200619-3_91: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RON280qNvz8= + 1833-200619-4_78: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ekx8EqPNwT8= + 1833-260619-1_130: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /d4i3n65uD8= + 1833-260619-2_164: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B7lzGNbDuz8= + 1833-260619-3_141: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N+fYwzrJtT8= + 1833-260619-4_115: &id375 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SPUF6QdZuD8= + 1833-290519-1_112: &id440 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fw/RTQ7+wz8= + 1833-290519-3_137: &id537 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YH+JKP2gyj8= + 1833-010719-2_267: + 1833-010719-1_225: *id006 + 1833-020719-1_121: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TjnjyPGRwD8= + 1833-020719-3_112: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yulBbonJxz8= + 1833-020719-4_258: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fJ+pYWBGwj8= + 1833-200619-3_93: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BYI5C98Gxj8= + 1833-200619-4_96: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XvTbaSJRwD8= + 1833-260619-1_118: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LQGJtwUywD8= + 1833-260619-3_196: &id364 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0mSCgEKfwT8= + 1833-260619-4_235: &id428 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h6ACxDxxyD8= + 1833-290519-1_146: &id471 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jU+JLsUxxz8= + 1833-010719-2_4: + 1833-010719-1_235: *id007 + 1833-020719-1_158: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3hQ5NDg9rj8= + 1833-020719-2_8: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1mP4h/E7sD8= + 1833-020719-3_162: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wMYqH90UsD8= + 1833-020719-4_320: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oga/Di2ksj8= + 1833-060619-2_76: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gBY4za44wT8= + 1833-200619-2_283: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aQBClfOzwT8= + 1833-200619-3_0: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7pqoIwvEwT8= + 1833-200619-4_1: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uX4gYNOwwT8= + 1833-260619-1_2: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pCwvs0B1uz8= + 1833-260619-2_152: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dbF/Lk8uwz8= + 1833-260619-3_1: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QdzOo2i9vD8= + 1833-260619-4_208: &id399 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d2Sg3rw+wz8= + 1833-290519-1_120: &id456 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G90pJOk8wD8= + 1833-290519-2_82: &id501 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zoYugVlJwj8= + 1833-290519-3_107: &id520 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JsHv8C8Kxj8= + 1833-290519-4_88: &id578 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +4Gh112awT8= + 1833-020719-1_119: + 1833-010719-1_223: *id008 + 1833-010719-2_261: *id009 + 1833-020719-2_129: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q3YmEMXqrj8= + 1833-020719-3_141: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2noni9YYrD8= + 1833-020719-4_306: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T/aHsiLOrj8= + 1833-200619-4_90: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sLSxw5ZVzT8= + 1833-260619-1_132: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5uFNUwNTyj8= + 1833-260619-3_194: &id356 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O1ww+Sppxz8= + 1833-260619-4_222: &id406 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NcFN/PR7xz8= + 1833-020719-1_121: + 1833-010719-1_225: *id010 + 1833-010719-2_267: *id011 + 1833-020719-2_95: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +xHAcsxmuj8= + 1833-020719-3_116: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zd2ulMzosz8= + 1833-020719-4_258: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pM1QJJsLtD8= + 1833-200619-3_93: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 85985, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ow8ckz8sxj8= + 1833-200619-4_96: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oiOEKsbnvj8= + 1833-260619-1_118: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + shdSSiI2wD8= + 1833-260619-2_174: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2sex5pdpxT8= + 1833-260619-3_182: &id348 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Om7a5h/yuz8= + 1833-260619-4_233: &id419 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6yyahSg4xT8= + 1833-290519-1_146: &id472 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MQX3LGELxD8= + 1833-290519-4_117: &id558 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2hapERflxj8= + 1833-020719-1_123: + 1833-010719-1_127: *id012 + 1833-010719-2_265: *id013 + 1833-020719-2_105: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Xaq2dS/uj8= + 1833-020719-3_143: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fIu0wAg7pD8= + 1833-020719-4_302: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dog9rIGToT8= + 1833-060619-2_90: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84389, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wd8h3zZCyD8= + 1833-120619-1_139: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qdY9g/2MwT8= + 1833-120619-2_175: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ANPMshJ5wj8= + 1833-120619-3_153: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LDNxwkP5wT8= + 1833-200619-1_147: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FiSuZa7wvj8= + 1833-200619-2_268: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1NVqAN6xuT8= + 1833-200619-3_91: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 85985, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jliWASdPvT8= + 1833-200619-4_78: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZgWDAcbTvz8= + 1833-260619-1_130: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kaXCcHF1uT8= + 1833-260619-2_164: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vbPvi/vPuz8= + 1833-260619-3_141: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q9tlgaCktT8= + 1833-260619-4_115: &id376 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zz8/E6uHtz8= + 1833-290519-1_112: &id441 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nveT/K6txj8= + 1833-290519-3_137: &id538 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gl24HqH7yz8= + 1833-020719-1_145: + 1833-010719-1_161: *id014 + 1833-010719-2_239: *id015 + 1833-020719-2_142: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GhC2bojKoD8= + 1833-020719-3_156: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1PRal2URlT8= + 1833-020719-4_308: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ac268MROpj8= + 1833-200619-4_92: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p5SyAU0hzD8= + 1833-260619-1_120: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s0RT1m6rqz8= + 1833-260619-2_2: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UXmaUt55xz8= + 1833-260619-3_196: &id365 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8WbxEHrKrj8= + 1833-260619-4_202: &id392 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MzDvHngdsD8= + 1833-290519-2_78: &id486 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /npXvhFZwj8= + 1833-020719-1_158: + 1833-010719-1_235: *id016 + 1833-010719-2_4: *id017 + 1833-020719-2_8: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B0lFAORQjz8= + 1833-020719-3_162: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ni8z54cAkT8= + 1833-020719-4_320: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a8tVvakSoD8= + 1833-060619-2_76: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84389, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CvxFHpJ+vT8= + 1833-120619-2_89: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JhLePCBexD8= + 1833-200619-2_283: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eIOpWL2cwj8= + 1833-200619-3_0: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 85985, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2GOBzF2dwj8= + 1833-200619-4_1: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WNEJLC6pwj8= + 1833-260619-1_2: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t/x0/5HUvj8= + 1833-260619-2_152: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vayQ5pm1wz8= + 1833-260619-3_1: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YyLLVjXmvz8= + 1833-260619-4_235: &id429 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aMIeT70fwD8= + 1833-290519-1_120: &id457 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WTNqS0eWuz8= + 1833-290519-2_82: &id502 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8XyPLxKxwT8= + 1833-290519-3_107: &id521 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oLWSsDVexT8= + 1833-290519-4_88: &id579 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IKEvuDTHvz8= + 1833-020719-2_105: + 1833-010719-1_127: *id018 + 1833-010719-2_265: *id019 + 1833-020719-1_123: *id020 + 1833-020719-3_143: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kd0HWMHxtD8= + 1833-020719-4_302: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gfTWH1q6uD8= + 1833-120619-1_139: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2s4g/92Dwz8= + 1833-120619-2_89: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QSA+ZZPbwT8= + 1833-120619-3_153: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 2503, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ziNecpwIxD8= + 1833-200619-2_268: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3246, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HtlJkt3jtj8= + 1833-200619-3_91: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hbKLxjM0wz8= + 1833-200619-4_78: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rka6GSvZvT8= + 1833-260619-1_130: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mBMF3XdAvT8= + 1833-260619-2_164: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +xZwRDpJwT8= + 1833-260619-3_141: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +fJ0gtaxuT8= + 1833-260619-4_115: &id377 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eGXDvugGuj8= + 1833-290519-1_112: &id442 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lX7/2wVnyT8= + 1833-290519-3_137: &id539 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Myih5hOKzj8= + 1833-020719-2_129: + 1833-010719-1_223: *id021 + 1833-010719-2_261: *id022 + 1833-020719-1_119: *id023 + 1833-020719-3_141: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JmHqhgvmz8= + 1833-020719-4_306: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ahHVUQ2IpT8= + 1833-200619-4_90: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7odGBwj3yT8= + 1833-260619-1_132: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wk1DokOhyD8= + 1833-260619-3_194: &id357 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U4s5wX1VxD8= + 1833-260619-4_222: &id407 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y/GawSIDxD8= + 1833-020719-2_142: + 1833-010719-1_161: *id024 + 1833-010719-2_239: *id025 + 1833-020719-1_145: *id026 + 1833-020719-3_156: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K4cHYm9Zkj8= + 1833-020719-4_308: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LzbFT/E4mD8= + 1833-200619-4_92: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cbLCYDh+yz8= + 1833-260619-1_120: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pvaL39+Hrz8= + 1833-260619-2_2: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IKiKQA7Ixz8= + 1833-260619-3_196: &id366 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SWPZ/iDJsD8= + 1833-260619-4_202: &id393 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ElT2dFJJsD8= + 1833-290519-2_78: &id487 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DjFvt19Awz8= + 1833-020719-2_8: + 1833-010719-1_235: *id027 + 1833-010719-2_4: *id028 + 1833-020719-1_158: *id029 + 1833-020719-3_162: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oFboj4FyiD8= + 1833-020719-4_320: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xS0G4fgFlz8= + 1833-060619-2_76: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 94, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DgNs0hJQvj8= + 1833-200619-2_283: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3246, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GPQBpNzmwj8= + 1833-200619-3_0: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wzZUL9vpwj8= + 1833-200619-4_1: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R1L+bnjywj8= + 1833-260619-1_2: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CQAXsoJyvj8= + 1833-260619-2_152: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bj5oEWtuxD8= + 1833-260619-3_1: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +VLR/op5vz8= + 1833-260619-4_235: &id430 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ciIOqZDMvz8= + 1833-290519-1_120: &id458 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YDX/hewjvT8= + 1833-290519-2_82: &id503 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R5wwsUAtwj8= + 1833-290519-3_107: &id522 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oJW69y+7xT8= + 1833-290519-4_88: &id580 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vki/ag9VwD8= + 1833-020719-2_95: + 1833-010719-1_225: *id030 + 1833-010719-2_254: *id031 + 1833-020719-1_121: *id032 + 1833-020719-3_116: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tUMCm/w2pz8= + 1833-020719-4_258: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4UD/oBMDtj8= + 1833-060619-2_90: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 94, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bHUp1lrExz8= + 1833-120619-2_175: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pwR360aZxT8= + 1833-200619-1_147: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + os8XoL4gtz8= + 1833-200619-3_93: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CVbQ51Ewxj8= + 1833-200619-4_96: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EBWQq6o8uD8= + 1833-260619-1_118: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uOaRwKheuj8= + 1833-260619-2_174: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tfjZF/gqxT8= + 1833-260619-3_182: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TUIA+CN6uT8= + 1833-260619-4_233: &id420 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Yf2RtlYSxT8= + 1833-290519-1_146: &id473 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZlDriSetwj8= + 1833-290519-4_117: &id559 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hmO0mjQqxD8= + 1833-020719-3_104: + 1833-260619-3_1: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h0bcOLgl0j8= + 1833-020719-3_105: + 1833-260619-3_141: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gbAXFmzqwT8= + 1833-020719-3_112: + 1833-010719-1_225: *id033 + 1833-010719-2_267: *id034 + 1833-260619-1_132: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HHTFjdAcxz8= + 1833-260619-3_209: &id371 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ntULnTJCxz8= + 1833-020719-3_116: + 1833-010719-1_191: *id035 + 1833-010719-2_254: *id036 + 1833-020719-1_121: *id037 + 1833-020719-2_95: *id038 + 1833-020719-4_258: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DOM0miKerj8= + 1833-060619-2_90: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + if/xTqBYyD8= + 1833-120619-2_175: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6bx328s5xj8= + 1833-200619-1_147: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /iGw6GgluD8= + 1833-200619-3_93: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tyX4FZaFxT8= + 1833-200619-4_96: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GV9PK8Totj8= + 1833-260619-1_118: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zkFWahYxuj8= + 1833-260619-2_174: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7hwTaNtGxT8= + 1833-260619-3_182: &id350 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EWKjN+j3tz8= + 1833-260619-4_233: &id421 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q+Np/DEoxT8= + 1833-290519-1_146: &id474 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dL4y2zhawj8= + 1833-290519-4_117: &id560 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jppIGbp3xD8= + 1833-020719-3_141: + 1833-010719-1_223: *id039 + 1833-010719-2_261: *id040 + 1833-020719-1_119: *id041 + 1833-020719-2_129: *id042 + 1833-020719-4_306: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XHSqhlagnj8= + 1833-200619-4_90: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jnj3sijUyT8= + 1833-260619-3_194: &id358 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dSKVo76NxD8= + 1833-260619-4_222: &id408 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZpVmP3dfxD8= + 1833-020719-3_143: + 1833-010719-1_127: *id043 + 1833-010719-2_265: *id044 + 1833-020719-1_123: *id045 + 1833-020719-2_105: *id046 + 1833-020719-4_302: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HES3c8qMoD8= + 1833-120619-1_139: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p7n8GViuwT8= + 1833-120619-2_89: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B8ObhxKjwD8= + 1833-120619-3_153: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d2oaPiQDwj8= + 1833-200619-2_268: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VSMTGJAKuj8= + 1833-200619-3_91: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rKDwPigvwD8= + 1833-200619-4_78: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t1okTqoNvT8= + 1833-260619-1_130: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + exJM2tMTuT8= + 1833-260619-2_164: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aiHlJ++avD8= + 1833-260619-3_140: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IbMj3nVXxT8= + 1833-260619-4_115: &id378 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2CW3Nb1Wtj8= + 1833-290519-1_112: &id443 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BKglywMwxD8= + 1833-290519-3_137: &id540 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cj5hYk4Gyj8= + 1833-020719-3_150: + 1833-260619-3_0: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rbLP5fWpxT8= + 1833-260619-4_235: &id431 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kF1kBd4KyT8= + 1833-020719-3_156: + 1833-010719-1_161: *id047 + 1833-010719-2_239: *id048 + 1833-020719-1_145: *id049 + 1833-020719-2_142: *id050 + 1833-020719-4_308: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pDLiIQHfnD8= + 1833-200619-4_92: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8QTMUhS4yz8= + 1833-260619-1_120: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aGEZgXNPrD8= + 1833-260619-2_2: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iiMIMjCNxz8= + 1833-260619-3_196: &id367 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B3jM3q72rj8= + 1833-260619-4_202: &id394 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z5mrvF8Hrz8= + 1833-290519-2_78: &id488 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FgU4dmbVwj8= + 1833-020719-3_162: + 1833-010719-1_235: *id051 + 1833-010719-2_4: *id052 + 1833-020719-1_158: *id053 + 1833-020719-2_8: *id054 + 1833-020719-4_320: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Qmhs0zIWlD8= + 1833-060619-2_76: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G7WtzwLOvj8= + 1833-200619-2_283: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FkAWRgJBwz8= + 1833-200619-3_0: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rrg7h7k0wz8= + 1833-200619-4_1: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f91pJbw5wz8= + 1833-260619-1_2: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oongbVpTvj8= + 1833-260619-2_152: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YgPVzGT9xD8= + 1833-260619-3_180: &id342 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Qsxw6+xwz8= + 1833-260619-4_208: &id400 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9KpYwNaexD8= + 1833-290519-1_120: &id459 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lB5zb0NMvT8= + 1833-290519-2_82: &id504 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hYu7I7Tdwj8= + 1833-290519-3_107: &id523 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LOZ9EZENxj8= + 1833-290519-4_88: &id581 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lrvnqaVZwD8= + 1833-020719-4_258: + 1833-010719-1_225: *id055 + 1833-010719-2_267: *id056 + 1833-020719-1_121: *id057 + 1833-020719-2_95: *id058 + 1833-020719-3_116: *id059 + 1833-200619-1_147: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nLA2ibE6wT8= + 1833-200619-3_93: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3UtU17Oixj8= + 1833-200619-4_96: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Paaj0UX2uz8= + 1833-260619-1_118: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kAYkh2wlwD8= + 1833-260619-2_174: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FnaZhcF+xj8= + 1833-260619-3_182: &id351 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q9+0vtm2vD8= + 1833-260619-4_233: &id422 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kgOiYDJUxj8= + 1833-290519-1_146: &id475 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n7N3isl9wT8= + 1833-290519-4_117: &id561 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sO8oM8sdxT8= + 1833-020719-4_302: + 1833-010719-1_127: *id060 + 1833-010719-2_265: *id061 + 1833-020719-1_123: *id062 + 1833-020719-2_105: *id063 + 1833-020719-3_143: *id064 + 1833-060619-2_90: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0z0x+M6vyT8= + 1833-120619-1_139: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 12294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Bje2Ut3wj8= + 1833-120619-2_175: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1/s9LT84wz8= + 1833-120619-3_153: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fek54j6gwj8= + 1833-200619-2_268: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + msrMyPJbuj8= + 1833-200619-3_91: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I2PLU+VCwT8= + 1833-200619-4_78: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J/r5TUg4vT8= + 1833-260619-1_130: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IAzGW+69uT8= + 1833-260619-2_164: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GBDjUvJfvT8= + 1833-260619-3_141: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i3AdUhwdtj8= + 1833-260619-4_115: &id379 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YwOgqJc0tz8= + 1833-290519-1_112: &id444 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lWbKtwsCxj8= + 1833-290519-3_137: &id541 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 932C/Pc5yz8= + 1833-020719-4_306: + 1833-010719-1_223: *id065 + 1833-010719-2_261: *id066 + 1833-020719-1_119: *id067 + 1833-020719-2_129: *id068 + 1833-020719-3_141: *id069 + 1833-200619-4_90: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fl9jZNvcyT8= + 1833-260619-1_132: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RRQW6dNoyT8= + 1833-260619-3_194: &id359 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j76/uOejxD8= + 1833-260619-4_222: &id409 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xitDOgedxD8= + 1833-020719-4_308: + 1833-010719-1_161: *id070 + 1833-010719-2_239: *id071 + 1833-020719-1_145: *id072 + 1833-020719-2_142: *id073 + 1833-020719-3_156: *id074 + 1833-200619-4_92: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D0jwlWelzD8= + 1833-260619-1_120: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pr/ypmK8rz8= + 1833-260619-2_2: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JySFeLBfxz8= + 1833-260619-3_196: &id368 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6fsv+lZ1sD8= + 1833-260619-4_202: &id395 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tb7Co1HnrD8= + 1833-290519-2_78: &id489 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XayO/SH6wz8= + 1833-020719-4_320: + 1833-010719-1_235: *id075 + 1833-010719-2_4: *id076 + 1833-020719-1_158: *id077 + 1833-020719-2_8: *id078 + 1833-020719-3_162: *id079 + 1833-060619-2_76: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SH1aXHRYvj8= + 1833-120619-2_89: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oyL/1Q4cxj8= + 1833-200619-2_283: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TH7TO9oBxD8= + 1833-200619-3_0: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d+8lv876wz8= + 1833-200619-4_1: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LG5cpT/9wz8= + 1833-260619-1_2: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dHtw/Yjlvj8= + 1833-260619-2_152: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bNH4XHlRxj8= + 1833-260619-3_1: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kyavD6Xyvz8= + 1833-260619-4_235: &id432 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lzhxZbgZwD8= + 1833-290519-1_120: &id460 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4dbIRK1mvj8= + 1833-290519-2_82: &id505 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + swOOWkacwz8= + 1833-290519-3_107: &id524 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /pUiFcJmxj8= + 1833-290519-4_88: &id582 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + waVRk+KKwD8= + 1833-060619-2_76: + 1833-010719-1_235: *id080 + 1833-010719-2_4: *id081 + 1833-020719-1_158: *id082 + 1833-020719-2_8: *id083 + 1833-020719-3_162: *id084 + 1833-020719-4_320: *id085 + 1833-120619-2_89: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81379, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nw/sbLAIvj8= + 1833-200619-2_283: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XBHuM4Foyz8= + 1833-200619-3_0: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ycdPyuBZyz8= + 1833-200619-4_78: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + baDBNpkdxD8= + 1833-260619-1_130: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sYBizlU/vz8= + 1833-260619-2_2: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c5YKCx4exT8= + 1833-260619-3_141: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gGK1TpfFvz8= + 1833-260619-4_115: &id380 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sZoA5nmPuj8= + 1833-290519-1_120: &id461 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JjnuELksuz8= + 1833-290519-2_82: &id506 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ici5gjCuyz8= + 1833-290519-3_107: &id525 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9yrluvwOxT8= + 1833-290519-4_88: &id583 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DE8r0tnbvj8= + 1833-060619-2_90: + 1833-010719-1_223: *id086 + 1833-010719-2_265: *id087 + 1833-020719-1_123: *id088 + 1833-020719-2_95: *id089 + 1833-020719-3_116: *id090 + 1833-020719-4_302: *id091 + 1833-120619-1_139: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LawRQJfwwj8= + 1833-120619-2_175: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81379, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cVsrZkzPwj8= + 1833-120619-3_153: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sTgT4WZWwz8= + 1833-200619-1_147: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wdUH6DIsxj8= + 1833-200619-2_268: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g6KBwF4NyT8= + 1833-200619-3_91: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d95btSeOxj8= + 1833-200619-4_96: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + am8rzw6QyD8= + 1833-260619-1_132: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qxpNemJxxT8= + 1833-260619-2_164: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T662u2eKuz8= + 1833-260619-3_194: &id360 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PLKR+eV0vD8= + 1833-260619-4_222: &id410 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WbGJSwYvvD8= + 1833-290519-1_112: &id445 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rISauHYK0D8= + 1833-290519-2_78: &id490 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mEWQz8zAyz8= + 1833-290519-3_137: &id542 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nYpxK6L/0z8= + 1833-290519-4_117: &id562 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w8nyH+iA0j8= + 1833-120619-1_139: + 1833-010719-1_127: *id092 + 1833-010719-2_265: *id093 + 1833-020719-1_123: *id094 + 1833-020719-2_105: *id095 + 1833-020719-3_143: *id096 + 1833-020719-4_302: *id097 + 1833-060619-2_90: *id098 + 1833-120619-2_175: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2385, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VcGkC41FpT8= + 1833-120619-3_153: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0blQbdK8oD8= + 1833-200619-1_147: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GvoRjuXKxD8= + 1833-200619-2_268: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dD24C7h9xD8= + 1833-200619-3_91: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JdnSMiirwz8= + 1833-200619-4_90: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hJBpbxPawz8= + 1833-260619-1_130: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fttiFseKvT8= + 1833-260619-2_164: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2IJhffcuwj8= + 1833-260619-3_141: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 6275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2oAHG2DNvT8= + 1833-260619-4_115: &id381 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 8228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jhzgjDifwD8= + 1833-290519-1_112: &id446 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OEk/WLXexz8= + 1833-290519-2_82: &id507 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83400, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kyvhnuIBxz8= + 1833-290519-3_137: &id543 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yuwLQ+84yz8= + 1833-290519-4_117: &id563 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78526, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XHVyQOVEyT8= + 1833-120619-2_175: + 1833-010719-1_127: *id099 + 1833-010719-2_254: *id100 + 1833-020719-1_123: *id101 + 1833-020719-2_95: *id102 + 1833-020719-3_116: *id103 + 1833-020719-4_302: *id104 + 1833-060619-2_90: *id105 + 1833-120619-1_139: *id106 + 1833-120619-3_153: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lUlS20xeoD8= + 1833-200619-1_147: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rcKk8IbwxD8= + 1833-200619-2_283: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3oJZsKNKyj8= + 1833-200619-3_91: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9ki6tNRzxD8= + 1833-200619-4_90: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lf/hVJimxD8= + 1833-260619-1_132: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85413, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vWRrP2HhwT8= + 1833-260619-2_174: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M6BY/aCvwj8= + 1833-260619-3_194: &id361 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cHfBF2xuwj8= + 1833-260619-4_222: &id411 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZvZMf4NEwj8= + 1833-290519-1_120: &id462 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mrMcuTc6yD8= + 1833-290519-2_78: &id491 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UWpcgrZuyD8= + 1833-290519-3_107: &id526 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f1OibzpMyz8= + 1833-290519-4_88: &id584 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ynFcbyySyT8= + 1833-120619-2_89: + 1833-010719-1_235: *id107 + 1833-010719-2_265: *id108 + 1833-020719-1_158: *id109 + 1833-020719-2_105: *id110 + 1833-020719-3_143: *id111 + 1833-020719-4_320: *id112 + 1833-060619-2_76: *id113 + 1833-200619-2_268: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RZGec9dyxT8= + 1833-200619-3_0: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k4R9nKJpzj8= + 1833-200619-4_78: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jySqrzb0wD8= + 1833-260619-1_130: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85413, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d7pJvn8rvj8= + 1833-260619-2_164: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hXNEUIRSwj8= + 1833-260619-3_141: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XHKLZ3kdvD8= + 1833-260619-4_115: &id382 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mHaYxbXruT8= + 1833-290519-1_112: &id447 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Lcy5NgNiwj8= + 1833-290519-2_82: &id508 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + umr0hij+zD8= + 1833-290519-3_137: &id544 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9lBzNMjXzD8= + 1833-290519-4_117: &id564 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RJxIpLKHyT8= + 1833-120619-3_153: + 1833-010719-1_127: *id114 + 1833-010719-2_265: *id115 + 1833-020719-1_123: *id116 + 1833-020719-2_105: *id117 + 1833-020719-3_143: *id118 + 1833-020719-4_302: *id119 + 1833-060619-2_90: *id120 + 1833-120619-1_139: *id121 + 1833-120619-2_175: *id122 + 1833-200619-1_147: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kt7NhQ+JxD8= + 1833-200619-2_268: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j308fjTpxD8= + 1833-200619-3_91: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PbB6/4R5xD8= + 1833-200619-4_90: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zsvw1A+nxD8= + 1833-260619-1_130: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1+Gv9LjUvT8= + 1833-260619-2_164: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T4uLqIH9wT8= + 1833-260619-3_141: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q2Az9ahwvj8= + 1833-260619-4_115: &id383 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gyX5vIWawD8= + 1833-290519-1_112: &id448 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ADgG/mHExj8= + 1833-290519-2_82: &id509 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rOHu8hPXxT8= + 1833-290519-3_137: &id545 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f+siKsvJyT8= + 1833-290519-4_117: &id565 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pF0b0c6Ixz8= + 1833-200619-1_147: + 1833-010719-1_127: *id123 + 1833-010719-2_254: *id124 + 1833-020719-1_123: *id125 + 1833-020719-2_95: *id126 + 1833-020719-3_116: *id127 + 1833-020719-4_258: *id128 + 1833-060619-2_90: *id129 + 1833-120619-1_139: *id130 + 1833-120619-2_175: *id131 + 1833-120619-3_153: *id132 + 1833-200619-2_268: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WFTbCMWYxj8= + 1833-200619-3_91: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lZdsJWO6wz8= + 1833-200619-4_96: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jlgCQYVrvT8= + 1833-260619-1_118: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QRsgkJ9Uvj8= + 1833-260619-2_164: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xt7tmpJIuj8= + 1833-260619-3_141: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g897u4iQvD8= + 1833-260619-4_115: &id384 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +UNu8D4lvj8= + 1833-290519-1_146: &id476 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2gj0jqWqxD8= + 1833-290519-2_82: &id510 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t+ZVl/jfxz8= + 1833-290519-3_137: &id546 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jilrUFY70j8= + 1833-290519-4_117: &id566 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kd0Yyp1uxj8= + 1833-200619-2_268: + 1833-010719-1_127: *id133 + 1833-010719-2_265: *id134 + 1833-020719-1_123: *id135 + 1833-020719-2_105: *id136 + 1833-020719-3_143: *id137 + 1833-020719-4_302: *id138 + 1833-060619-2_90: *id139 + 1833-120619-1_139: *id140 + 1833-120619-2_89: *id141 + 1833-120619-3_153: *id142 + 1833-200619-1_147: *id143 + 1833-200619-3_91: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5mHoiQk9vT8= + 1833-200619-4_78: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w347CDDGtT8= + 1833-260619-1_130: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k7TZjEEewD8= + 1833-260619-2_164: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jEoWmwKivz8= + 1833-260619-3_141: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ibmqlnu9vD8= + 1833-260619-4_115: &id385 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k4wzg9ztvT8= + 1833-290519-1_146: &id477 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wLBGXizryT8= + 1833-290519-2_82: &id511 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Myq9boZazj8= + 1833-290519-3_137: &id547 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3E31nyu+zz8= + 1833-290519-4_117: &id567 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8qcWKkVyyz8= + 1833-200619-2_283: + 1833-010719-1_235: *id144 + 1833-010719-2_4: *id145 + 1833-020719-1_158: *id146 + 1833-020719-2_8: *id147 + 1833-020719-3_162: *id148 + 1833-020719-4_320: *id149 + 1833-060619-2_76: *id150 + 1833-120619-2_175: *id151 + 1833-200619-3_0: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N8wCASSzlz8= + 1833-200619-4_1: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DBgN6+0Smz8= + 1833-260619-1_2: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wMpEqwWpuT8= + 1833-260619-2_2: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VltQ709GuT8= + 1833-260619-3_1: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hfie2U8guj8= + 1833-260619-4_235: &id433 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ln8WcB1Kuj8= + 1833-290519-1_120: &id463 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 91LDYsi5xj8= + 1833-290519-2_78: &id492 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2oBzg18Rxz8= + 1833-290519-3_107: &id527 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IjnH59GByj8= + 1833-290519-4_88: &id585 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ThoqBszkxD8= + 1833-200619-3_0: + 1833-010719-1_235: *id152 + 1833-010719-2_4: *id153 + 1833-020719-1_158: *id154 + 1833-020719-2_8: *id155 + 1833-020719-3_162: *id156 + 1833-020719-4_320: *id157 + 1833-060619-2_76: *id158 + 1833-120619-2_89: *id159 + 1833-200619-2_283: *id160 + 1833-200619-4_1: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NyoOyRRbhz8= + 1833-260619-1_2: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nYf4kOafuT8= + 1833-260619-2_2: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + STpRh8bpuD8= + 1833-260619-3_1: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oyMbLW/iuT8= + 1833-260619-4_235: &id434 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zkUUjXL6uT8= + 1833-290519-1_120: &id464 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c7Lj2eOJxj8= + 1833-290519-2_82: &id512 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FUKepLOVwT8= + 1833-290519-3_107: &id528 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2kNofxT3yT8= + 1833-290519-4_88: &id586 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 14agSbaCxD8= + 1833-200619-3_91: + 1833-010719-1_127: *id161 + 1833-010719-2_265: *id162 + 1833-020719-1_123: *id163 + 1833-020719-2_105: *id164 + 1833-020719-3_143: *id165 + 1833-020719-4_302: *id166 + 1833-060619-2_90: *id167 + 1833-120619-1_139: *id168 + 1833-120619-2_175: *id169 + 1833-120619-3_153: *id170 + 1833-200619-1_147: *id171 + 1833-200619-2_268: *id172 + 1833-200619-4_90: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4eHzdqbbpT8= + 1833-260619-1_132: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hbVw9FXHxT8= + 1833-260619-2_164: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WuMTRcd1vz8= + 1833-260619-3_141: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mIHLxNmxvT8= + 1833-260619-4_222: &id412 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BuYLn5eJwz8= + 1833-290519-1_112: &id449 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W3IeK2/h0T8= + 1833-200619-3_93: + 1833-010719-1_225: *id173 + 1833-010719-2_267: *id174 + 1833-020719-1_121: *id175 + 1833-020719-2_95: *id176 + 1833-020719-3_116: *id177 + 1833-020719-4_258: *id178 + 1833-200619-4_92: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZoF0J+WHpj8= + 1833-260619-1_130: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wu6+Lj8Awj8= + 1833-260619-2_152: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /WJdgmjUwT8= + 1833-260619-3_180: &id343 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +UBIuNo6xT8= + 1833-260619-4_115: &id386 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Muv5hNn8wD8= + 1833-290519-1_146: &id478 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OdVQuZ7buj8= + 1833-290519-2_78: &id493 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N+rlUoGOxz8= + 1833-290519-3_137: &id548 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IE2qWk/9zD8= + 1833-290519-4_117: &id568 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VMH0owQcvj8= + 1833-200619-4_1: + 1833-010719-1_161: *id179 + 1833-010719-2_4: *id180 + 1833-020719-1_158: *id181 + 1833-020719-2_8: *id182 + 1833-020719-3_162: *id183 + 1833-020719-4_320: *id184 + 1833-200619-2_283: *id185 + 1833-200619-3_0: *id186 + 1833-260619-1_2: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JrDSWf9BuT8= + 1833-260619-2_2: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A3Hy8BKEuD8= + 1833-260619-3_1: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JqA3fF+uT8= + 1833-260619-4_235: &id435 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lERxHICMuT8= + 1833-290519-1_120: &id465 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 46uZAMivxT8= + 1833-290519-2_82: &id513 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2/DCACSgwT8= + 1833-290519-3_107: &id529 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KLef8uhjyT8= + 1833-290519-4_88: &id587 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lYC0Njewwz8= + 1833-200619-4_78: + 1833-010719-1_127: *id187 + 1833-010719-2_265: *id188 + 1833-020719-1_123: *id189 + 1833-020719-2_105: *id190 + 1833-020719-3_143: *id191 + 1833-020719-4_302: *id192 + 1833-060619-2_76: *id193 + 1833-120619-2_89: *id194 + 1833-200619-2_268: *id195 + 1833-260619-1_130: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PKLtaGWuvj8= + 1833-260619-2_164: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ajBRUmB0vz8= + 1833-260619-3_141: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vLyw3j9NvD8= + 1833-260619-4_115: &id387 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 90g1duhvuz8= + 1833-290519-1_112: &id450 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rcwD90SyxD8= + 1833-290519-3_137: &id549 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PqCqFqtnyD8= + 1833-200619-4_90: + 1833-010719-1_223: *id196 + 1833-010719-2_254: *id197 + 1833-020719-1_119: *id198 + 1833-020719-2_129: *id199 + 1833-020719-3_141: *id200 + 1833-020719-4_306: *id201 + 1833-120619-1_139: *id202 + 1833-120619-2_175: *id203 + 1833-120619-3_153: *id204 + 1833-200619-3_91: *id205 + 1833-260619-1_132: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LvyyVrtdxj8= + 1833-260619-3_194: &id362 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UQt7KUDYwz8= + 1833-260619-4_222: &id413 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mw+DUoPYxD8= + 1833-200619-4_92: + 1833-010719-1_235: *id206 + 1833-010719-2_239: *id207 + 1833-020719-1_145: *id208 + 1833-020719-2_142: *id209 + 1833-020719-3_156: *id210 + 1833-020719-4_308: *id211 + 1833-200619-3_93: *id212 + 1833-260619-1_120: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u+UBU8bdyj8= + 1833-260619-2_152: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ritUj1M3uz8= + 1833-260619-3_180: &id344 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GHRWugvywD8= + 1833-260619-4_208: &id401 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RQn/mUOdwT8= + 1833-290519-1_146: &id479 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gdDc7oFXuj8= + 1833-290519-4_117: &id569 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mx0lus//uz8= + 1833-200619-4_96: + 1833-010719-1_225: *id213 + 1833-010719-2_267: *id214 + 1833-020719-1_121: *id215 + 1833-020719-2_95: *id216 + 1833-020719-3_116: *id217 + 1833-020719-4_258: *id218 + 1833-060619-2_90: *id219 + 1833-200619-1_147: *id220 + 1833-260619-1_118: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1J8Qxfw5tD8= + 1833-260619-2_174: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MEcPY8rIwz8= + 1833-260619-3_182: &id352 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gyVmr7H8tD8= + 1833-260619-4_233: &id423 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pw9JnkG2wz8= + 1833-290519-2_78: &id494 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WsUYOcoExT8= + 1833-260619-1_118: + 1833-010719-1_225: *id221 + 1833-010719-2_267: *id222 + 1833-020719-1_121: *id223 + 1833-020719-2_95: *id224 + 1833-020719-3_116: *id225 + 1833-020719-4_258: *id226 + 1833-200619-1_147: *id227 + 1833-200619-4_96: *id228 + 1833-260619-2_164: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G+JajfFJwT8= + 1833-260619-3_182: &id353 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1paDe5SCpD8= + 1833-260619-4_222: &id414 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PEKatd45wz8= + 1833-260619-1_120: + 1833-010719-1_161: *id229 + 1833-010719-2_239: *id230 + 1833-020719-1_145: *id231 + 1833-020719-2_142: *id232 + 1833-020719-3_156: *id233 + 1833-020719-4_308: *id234 + 1833-200619-4_92: *id235 + 1833-260619-3_196: &id369 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fSwmEmQqnz8= + 1833-260619-4_202: &id396 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jig5659/pj8= + 1833-290519-2_78: &id495 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UjwQPYp0wD8= + 1833-260619-1_130: + 1833-010719-1_127: *id236 + 1833-010719-2_265: *id237 + 1833-020719-1_123: *id238 + 1833-020719-2_105: *id239 + 1833-020719-3_143: *id240 + 1833-020719-4_302: *id241 + 1833-060619-2_76: *id242 + 1833-120619-1_139: *id243 + 1833-120619-2_89: *id244 + 1833-120619-3_153: *id245 + 1833-200619-2_268: *id246 + 1833-200619-3_93: *id247 + 1833-200619-4_78: *id248 + 1833-260619-2_152: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ec9fVlJrwj8= + 1833-260619-3_141: &id341 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W3mn4FMQoz8= + 1833-260619-4_115: &id388 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uG3drCZMoj8= + 1833-290519-1_112: &id451 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6l/T1s6OvT8= + 1833-290519-2_82: &id514 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HUKgk8z8vj8= + 1833-290519-3_137: &id550 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7TD8BRwIxD8= + 1833-290519-4_117: &id570 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ANuL7RDUwT8= + 1833-260619-1_132: + 1833-010719-1_191: *id249 + 1833-010719-2_254: *id250 + 1833-020719-1_119: *id251 + 1833-020719-2_129: *id252 + 1833-020719-3_112: *id253 + 1833-020719-4_306: *id254 + 1833-060619-2_90: *id255 + 1833-120619-2_175: *id256 + 1833-200619-3_91: *id257 + 1833-200619-4_90: *id258 + 1833-260619-2_174: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MabK4Nw6kD8= + 1833-260619-3_209: &id372 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eW30A8gkkT8= + 1833-260619-4_233: &id424 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4pYBZDZXlT8= + 1833-290519-1_146: &id480 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + up0H2Jx9yD8= + 1833-260619-1_2: + 1833-010719-1_235: *id259 + 1833-010719-2_4: *id260 + 1833-020719-1_158: *id261 + 1833-020719-2_8: *id262 + 1833-020719-3_162: *id263 + 1833-020719-4_320: *id264 + 1833-200619-2_283: *id265 + 1833-200619-3_0: *id266 + 1833-200619-4_1: *id267 + 1833-260619-2_2: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t9hLGKJ2kD8= + 1833-260619-3_1: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VXHvhMbGhz8= + 1833-260619-4_235: &id436 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XKXGfXS7jz8= + 1833-290519-1_120: &id466 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + is/F0ICowj8= + 1833-290519-3_107: &id530 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YAmFEi4Qxj8= + 1833-290519-4_88: &id588 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 09YvCn5Ewj8= + 1833-260619-2_152: + 1833-010719-1_235: *id268 + 1833-010719-2_4: *id269 + 1833-020719-1_158: *id270 + 1833-020719-2_8: *id271 + 1833-020719-3_162: *id272 + 1833-020719-4_320: *id273 + 1833-200619-3_93: *id274 + 1833-200619-4_92: *id275 + 1833-260619-1_130: *id276 + 1833-260619-3_180: &id345 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zxcTRkZrpj8= + 1833-260619-4_208: &id402 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PqSBLLVRpT8= + 1833-290519-1_146: &id481 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w2YqCxtbvz8= + 1833-290519-4_117: &id571 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E0GtDc1iuz8= + 1833-260619-2_164: + 1833-010719-1_127: *id277 + 1833-010719-2_265: *id278 + 1833-020719-1_123: *id279 + 1833-020719-2_105: *id280 + 1833-020719-3_143: *id281 + 1833-020719-4_302: *id282 + 1833-060619-2_90: *id283 + 1833-120619-1_139: *id284 + 1833-120619-2_89: *id285 + 1833-120619-3_153: *id286 + 1833-200619-1_147: *id287 + 1833-200619-2_268: *id288 + 1833-200619-3_91: *id289 + 1833-200619-4_78: *id290 + 1833-260619-1_118: *id291 + 1833-260619-3_194: &id363 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bgQ/Ow67pj8= + 1833-260619-4_222: &id415 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4OMJGLForT8= + 1833-290519-1_112: &id452 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mSXBGVnpwT8= + 1833-290519-2_82: &id515 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rxBAAZlDwD8= + 1833-290519-3_137: &id551 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8casWPzjxz8= + 1833-260619-2_174: + 1833-010719-1_191: *id292 + 1833-010719-2_254: *id293 + 1833-020719-1_121: *id294 + 1833-020719-2_95: *id295 + 1833-020719-3_116: *id296 + 1833-020719-4_258: *id297 + 1833-120619-2_175: *id298 + 1833-200619-4_96: *id299 + 1833-260619-1_132: *id300 + 1833-260619-3_209: &id373 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F6DOEDr6lT8= + 1833-260619-4_233: &id425 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8/LoAhuFlT8= + 1833-260619-2_2: + 1833-010719-1_161: *id301 + 1833-010719-2_239: *id302 + 1833-020719-1_145: *id303 + 1833-020719-2_142: *id304 + 1833-020719-3_156: *id305 + 1833-020719-4_308: *id306 + 1833-060619-2_76: *id307 + 1833-200619-2_283: *id308 + 1833-200619-3_0: *id309 + 1833-200619-4_1: *id310 + 1833-260619-1_2: *id311 + 1833-260619-3_1: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WEbDyEHqgj8= + 1833-260619-4_235: &id437 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5TkZELQliT8= + 1833-290519-1_120: &id467 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Yj0k6NHswj8= + 1833-290519-2_78: &id496 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sLRnDNIcxD8= + 1833-290519-3_107: &id531 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sa8nwIw+xj8= + 1833-290519-4_88: &id589 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + szot0pJ5wj8= + 1833-260619-3_0: + 1833-010719-1_161: *id312 + 1833-010719-2_239: *id313 + 1833-020719-3_150: *id314 + 1833-260619-4_202: &id397 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vuCF1aOSqT8= + 1833-260619-3_1: + 1833-010719-1_235: *id315 + 1833-010719-2_4: *id316 + 1833-020719-1_158: *id317 + 1833-020719-2_8: *id318 + 1833-020719-3_104: *id319 + 1833-020719-4_320: *id320 + 1833-200619-2_283: *id321 + 1833-200619-3_0: *id322 + 1833-200619-4_1: *id323 + 1833-260619-1_2: *id324 + 1833-260619-2_2: *id325 + 1833-260619-4_235: &id438 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ajLOWd9agj8= + 1833-290519-1_120: &id468 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LK7D3kQ9wz8= + 1833-290519-3_107: &id532 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6Ltesw6Oxj8= + 1833-260619-3_140: + 1833-020719-3_143: *id326 + 1833-260619-3_141: + 1833-010719-1_127: *id327 + 1833-010719-2_265: *id328 + 1833-020719-1_123: *id329 + 1833-020719-2_105: *id330 + 1833-020719-3_105: *id331 + 1833-020719-4_302: *id332 + 1833-060619-2_76: *id333 + 1833-120619-1_139: *id334 + 1833-120619-2_89: *id335 + 1833-120619-3_153: *id336 + 1833-200619-1_147: *id337 + 1833-200619-2_268: *id338 + 1833-200619-3_91: *id339 + 1833-200619-4_78: *id340 + 1833-260619-1_130: *id341 + 1833-260619-4_115: &id389 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WWHIpGpsnj8= + 1833-290519-1_112: &id453 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dqSm6Q9kvT8= + 1833-290519-2_82: &id516 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XIht7U0Gvz8= + 1833-290519-3_137: &id552 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qGscbBY4xD8= + 1833-290519-4_88: &id590 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FcaMYN8QwT8= + 1833-260619-3_180: + 1833-020719-3_162: *id342 + 1833-200619-3_93: *id343 + 1833-200619-4_92: *id344 + 1833-260619-2_152: *id345 + 1833-260619-4_208: &id403 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8Kjj5oLTlz8= + 1833-290519-1_146: &id482 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1ByeFjqRwT8= + 1833-290519-4_117: &id572 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cR7BqwMsvz8= + 1833-260619-3_182: + 1833-010719-1_225: *id346 + 1833-010719-2_254: *id347 + 1833-020719-1_121: *id348 + 1833-020719-2_95: *id349 + 1833-020719-3_116: *id350 + 1833-020719-4_258: *id351 + 1833-200619-4_96: *id352 + 1833-260619-1_118: *id353 + 1833-260619-3_194: + 1833-010719-1_223: *id354 + 1833-010719-2_261: *id355 + 1833-020719-1_119: *id356 + 1833-020719-2_129: *id357 + 1833-020719-3_141: *id358 + 1833-020719-4_306: *id359 + 1833-060619-2_90: *id360 + 1833-120619-2_175: *id361 + 1833-200619-4_90: *id362 + 1833-260619-2_164: *id363 + 1833-260619-4_222: &id416 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rsc8ZHujlz8= + 1833-260619-3_196: + 1833-010719-2_267: *id364 + 1833-020719-1_145: *id365 + 1833-020719-2_142: *id366 + 1833-020719-3_156: *id367 + 1833-020719-4_308: *id368 + 1833-260619-1_120: *id369 + 1833-290519-2_78: &id497 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F1DFdFi3wD8= + 1833-260619-3_209: + 1833-010719-1_191: *id370 + 1833-020719-3_112: *id371 + 1833-260619-1_132: *id372 + 1833-260619-2_174: *id373 + 1833-260619-4_233: &id426 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RNAlbEr2jz8= + 1833-260619-4_115: + 1833-010719-1_127: *id374 + 1833-010719-2_265: *id375 + 1833-020719-1_123: *id376 + 1833-020719-2_105: *id377 + 1833-020719-3_143: *id378 + 1833-020719-4_302: *id379 + 1833-060619-2_76: *id380 + 1833-120619-1_139: *id381 + 1833-120619-2_89: *id382 + 1833-120619-3_153: *id383 + 1833-200619-1_147: *id384 + 1833-200619-2_268: *id385 + 1833-200619-3_93: *id386 + 1833-200619-4_78: *id387 + 1833-260619-1_130: *id388 + 1833-260619-3_141: *id389 + 1833-290519-1_112: &id454 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m2Yy0sZGuT8= + 1833-290519-2_82: &id517 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M+dqk23qvD8= + 1833-290519-3_137: &id553 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lAdSmu9nwj8= + 1833-290519-4_88: &id591 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZYfWCdYsvj8= + 1833-260619-4_202: + 1833-010719-1_161: *id390 + 1833-010719-2_239: *id391 + 1833-020719-1_145: *id392 + 1833-020719-2_142: *id393 + 1833-020719-3_156: *id394 + 1833-020719-4_308: *id395 + 1833-260619-1_120: *id396 + 1833-260619-3_0: *id397 + 1833-290519-2_78: &id498 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xZoAGiniwT8= + 1833-260619-4_208: + 1833-010719-1_235: *id398 + 1833-010719-2_4: *id399 + 1833-020719-3_162: *id400 + 1833-200619-4_92: *id401 + 1833-260619-2_152: *id402 + 1833-260619-3_180: *id403 + 1833-290519-1_146: &id483 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iXhNih+bwT8= + 1833-290519-4_117: &id573 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xBEwNvqQvz8= + 1833-260619-4_222: + 1833-010719-1_223: *id404 + 1833-010719-2_261: *id405 + 1833-020719-1_119: *id406 + 1833-020719-2_129: *id407 + 1833-020719-3_141: *id408 + 1833-020719-4_306: *id409 + 1833-060619-2_90: *id410 + 1833-120619-2_175: *id411 + 1833-200619-3_91: *id412 + 1833-200619-4_90: *id413 + 1833-260619-1_118: *id414 + 1833-260619-2_164: *id415 + 1833-260619-3_194: *id416 + 1833-260619-4_233: + 1833-010719-1_191: *id417 + 1833-010719-2_254: *id418 + 1833-020719-1_121: *id419 + 1833-020719-2_95: *id420 + 1833-020719-3_116: *id421 + 1833-020719-4_258: *id422 + 1833-200619-4_96: *id423 + 1833-260619-1_132: *id424 + 1833-260619-2_174: *id425 + 1833-260619-3_209: *id426 + 1833-260619-4_235: + 1833-010719-1_225: *id427 + 1833-010719-2_267: *id428 + 1833-020719-1_158: *id429 + 1833-020719-2_8: *id430 + 1833-020719-3_150: *id431 + 1833-020719-4_320: *id432 + 1833-200619-2_283: *id433 + 1833-200619-3_0: *id434 + 1833-200619-4_1: *id435 + 1833-260619-1_2: *id436 + 1833-260619-2_2: *id437 + 1833-260619-3_1: *id438 + 1833-290519-1_120: &id469 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LoMWJ6Mgwz8= + 1833-290519-3_107: &id533 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zII438ZQxj8= + 1833-290519-1_112: + 1833-010719-1_127: *id439 + 1833-010719-2_265: *id440 + 1833-020719-1_123: *id441 + 1833-020719-2_105: *id442 + 1833-020719-3_143: *id443 + 1833-020719-4_302: *id444 + 1833-060619-2_90: *id445 + 1833-120619-1_139: *id446 + 1833-120619-2_89: *id447 + 1833-120619-3_153: *id448 + 1833-200619-3_91: *id449 + 1833-200619-4_78: *id450 + 1833-260619-1_130: *id451 + 1833-260619-2_164: *id452 + 1833-260619-3_141: *id453 + 1833-260619-4_115: *id454 + 1833-290519-2_82: &id518 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Thl0VTzQxz8= + 1833-290519-1_120: + 1833-010719-1_235: *id455 + 1833-010719-2_4: *id456 + 1833-020719-1_158: *id457 + 1833-020719-2_8: *id458 + 1833-020719-3_162: *id459 + 1833-020719-4_320: *id460 + 1833-060619-2_76: *id461 + 1833-120619-2_175: *id462 + 1833-200619-2_283: *id463 + 1833-200619-3_0: *id464 + 1833-200619-4_1: *id465 + 1833-260619-1_2: *id466 + 1833-260619-2_2: *id467 + 1833-260619-3_1: *id468 + 1833-260619-4_235: *id469 + 1833-290519-3_107: &id534 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lp+Xopf/xz8= + 1833-290519-4_88: &id592 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Uj5rxeYzrT8= + 1833-290519-1_146: + 1833-010719-1_225: *id470 + 1833-010719-2_267: *id471 + 1833-020719-1_121: *id472 + 1833-020719-2_95: *id473 + 1833-020719-3_116: *id474 + 1833-020719-4_258: *id475 + 1833-200619-1_147: *id476 + 1833-200619-2_268: *id477 + 1833-200619-3_93: *id478 + 1833-200619-4_92: *id479 + 1833-260619-1_132: *id480 + 1833-260619-2_152: *id481 + 1833-260619-3_180: *id482 + 1833-260619-4_208: *id483 + 1833-290519-2_78: &id499 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OL4OOMakxz8= + 1833-290519-3_137: &id554 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QFEQFlZkxD8= + 1833-290519-4_117: &id574 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WsW4xAk9qj8= + 1833-290519-2_78: + 1833-010719-1_225: *id484 + 1833-010719-2_239: *id485 + 1833-020719-1_145: *id486 + 1833-020719-2_142: *id487 + 1833-020719-3_156: *id488 + 1833-020719-4_308: *id489 + 1833-060619-2_90: *id490 + 1833-120619-2_175: *id491 + 1833-200619-2_283: *id492 + 1833-200619-3_93: *id493 + 1833-200619-4_96: *id494 + 1833-260619-1_120: *id495 + 1833-260619-2_2: *id496 + 1833-260619-3_196: *id497 + 1833-260619-4_202: *id498 + 1833-290519-1_146: *id499 + 1833-290519-3_137: &id555 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sbjufP/c1z8= + 1833-290519-4_117: &id575 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3DRq0qrTyz8= + 1833-290519-2_82: + 1833-010719-1_235: *id500 + 1833-010719-2_4: *id501 + 1833-020719-1_158: *id502 + 1833-020719-2_8: *id503 + 1833-020719-3_162: *id504 + 1833-020719-4_320: *id505 + 1833-060619-2_76: *id506 + 1833-120619-1_139: *id507 + 1833-120619-2_89: *id508 + 1833-120619-3_153: *id509 + 1833-200619-1_147: *id510 + 1833-200619-2_268: *id511 + 1833-200619-3_0: *id512 + 1833-200619-4_1: *id513 + 1833-260619-1_130: *id514 + 1833-260619-2_164: *id515 + 1833-260619-3_141: *id516 + 1833-260619-4_115: *id517 + 1833-290519-1_112: *id518 + 1833-290519-3_107: &id535 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d+El2sFyzj8= + 1833-290519-4_88: &id593 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JQ4v1cwryz8= + 1833-290519-3_107: + 1833-010719-1_235: *id519 + 1833-010719-2_4: *id520 + 1833-020719-1_158: *id521 + 1833-020719-2_8: *id522 + 1833-020719-3_162: *id523 + 1833-020719-4_320: *id524 + 1833-060619-2_76: *id525 + 1833-120619-2_175: *id526 + 1833-200619-2_283: *id527 + 1833-200619-3_0: *id528 + 1833-200619-4_1: *id529 + 1833-260619-1_2: *id530 + 1833-260619-2_2: *id531 + 1833-260619-3_1: *id532 + 1833-260619-4_235: *id533 + 1833-290519-1_120: *id534 + 1833-290519-2_82: *id535 + 1833-290519-4_88: &id594 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AvcitzOTzT8= + 1833-290519-3_137: + 1833-010719-1_127: *id536 + 1833-010719-2_265: *id537 + 1833-020719-1_123: *id538 + 1833-020719-2_105: *id539 + 1833-020719-3_143: *id540 + 1833-020719-4_302: *id541 + 1833-060619-2_90: *id542 + 1833-120619-1_139: *id543 + 1833-120619-2_89: *id544 + 1833-120619-3_153: *id545 + 1833-200619-1_147: *id546 + 1833-200619-2_268: *id547 + 1833-200619-3_93: *id548 + 1833-200619-4_78: *id549 + 1833-260619-1_130: *id550 + 1833-260619-2_164: *id551 + 1833-260619-3_141: *id552 + 1833-260619-4_115: *id553 + 1833-290519-1_146: *id554 + 1833-290519-2_78: *id555 + 1833-290519-4_117: &id576 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Je39CT6Vxj8= + 1833-290519-4_117: + 1833-010719-1_127: *id556 + 1833-010719-2_254: *id557 + 1833-020719-1_121: *id558 + 1833-020719-2_95: *id559 + 1833-020719-3_116: *id560 + 1833-020719-4_258: *id561 + 1833-060619-2_90: *id562 + 1833-120619-1_139: *id563 + 1833-120619-2_89: *id564 + 1833-120619-3_153: *id565 + 1833-200619-1_147: *id566 + 1833-200619-2_268: *id567 + 1833-200619-3_93: *id568 + 1833-200619-4_92: *id569 + 1833-260619-1_130: *id570 + 1833-260619-2_152: *id571 + 1833-260619-3_180: *id572 + 1833-260619-4_208: *id573 + 1833-290519-1_146: *id574 + 1833-290519-2_78: *id575 + 1833-290519-3_137: *id576 + 1833-290519-4_88: + 1833-010719-1_235: *id577 + 1833-010719-2_4: *id578 + 1833-020719-1_158: *id579 + 1833-020719-2_8: *id580 + 1833-020719-3_162: *id581 + 1833-020719-4_320: *id582 + 1833-060619-2_76: *id583 + 1833-120619-2_175: *id584 + 1833-200619-2_283: *id585 + 1833-200619-3_0: *id586 + 1833-200619-4_1: *id587 + 1833-260619-1_2: *id588 + 1833-260619-2_2: *id589 + 1833-260619-3_141: *id590 + 1833-260619-4_115: *id591 + 1833-290519-1_120: *id592 + 1833-290519-2_82: *id593 + 1833-290519-3_107: *id594 +_node: &id597 + 1833-010719-1_127: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id595 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + fwAAAAAAAAA= + 1833-010719-1_161: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + oQAAAAAAAAA= + 1833-010719-1_191: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + vwAAAAAAAAA= + 1833-010719-1_223: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + 3wAAAAAAAAA= + 1833-010719-1_225: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + 4QAAAAAAAAA= + 1833-010719-1_235: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + 6wAAAAAAAAA= + 1833-010719-2_239: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + 7wAAAAAAAAA= + 1833-010719-2_254: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + /gAAAAAAAAA= + 1833-010719-2_261: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + BQEAAAAAAAA= + 1833-010719-2_265: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + CQEAAAAAAAA= + 1833-010719-2_267: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + CwEAAAAAAAA= + 1833-010719-2_4: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + BAAAAAAAAAA= + 1833-020719-1_119: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + dwAAAAAAAAA= + 1833-020719-1_121: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + eQAAAAAAAAA= + 1833-020719-1_123: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + ewAAAAAAAAA= + 1833-020719-1_145: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + kQAAAAAAAAA= + 1833-020719-1_158: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + ngAAAAAAAAA= + 1833-020719-2_105: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + aQAAAAAAAAA= + 1833-020719-2_129: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + gQAAAAAAAAA= + 1833-020719-2_142: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + jgAAAAAAAAA= + 1833-020719-2_8: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + CAAAAAAAAAA= + 1833-020719-2_95: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + XwAAAAAAAAA= + 1833-020719-3_104: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + aAAAAAAAAAA= + 1833-020719-3_105: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + aQAAAAAAAAA= + 1833-020719-3_112: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + cAAAAAAAAAA= + 1833-020719-3_116: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + dAAAAAAAAAA= + 1833-020719-3_141: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + jQAAAAAAAAA= + 1833-020719-3_143: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + jwAAAAAAAAA= + 1833-020719-3_150: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + lgAAAAAAAAA= + 1833-020719-3_156: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + nAAAAAAAAAA= + 1833-020719-3_162: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + ogAAAAAAAAA= + 1833-020719-4_258: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + AgEAAAAAAAA= + 1833-020719-4_302: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + LgEAAAAAAAA= + 1833-020719-4_306: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + MgEAAAAAAAA= + 1833-020719-4_308: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + NAEAAAAAAAA= + 1833-020719-4_320: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + QAEAAAAAAAA= + 1833-060619-2_76: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + TAAAAAAAAAA= + 1833-060619-2_90: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + WgAAAAAAAAA= + 1833-120619-1_139: + action_id: 1833-120619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + iwAAAAAAAAA= + 1833-120619-2_175: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + rwAAAAAAAAA= + 1833-120619-2_89: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + WQAAAAAAAAA= + 1833-120619-3_153: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + mQAAAAAAAAA= + 1833-200619-1_147: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + kwAAAAAAAAA= + 1833-200619-2_268: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + DAEAAAAAAAA= + 1833-200619-2_283: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + GwEAAAAAAAA= + 1833-200619-3_0: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + AAAAAAAAAAA= + 1833-200619-3_91: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + WwAAAAAAAAA= + 1833-200619-3_93: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + XQAAAAAAAAA= + 1833-200619-4_1: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + AQAAAAAAAAA= + 1833-200619-4_78: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + TgAAAAAAAAA= + 1833-200619-4_90: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + WgAAAAAAAAA= + 1833-200619-4_92: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + XAAAAAAAAAA= + 1833-200619-4_96: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + YAAAAAAAAAA= + 1833-260619-1_118: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + dgAAAAAAAAA= + 1833-260619-1_120: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + eAAAAAAAAAA= + 1833-260619-1_130: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + ggAAAAAAAAA= + 1833-260619-1_132: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + hAAAAAAAAAA= + 1833-260619-1_2: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + AgAAAAAAAAA= + 1833-260619-2_152: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + mAAAAAAAAAA= + 1833-260619-2_164: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + pAAAAAAAAAA= + 1833-260619-2_174: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + rgAAAAAAAAA= + 1833-260619-2_2: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + AgAAAAAAAAA= + 1833-260619-3_0: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + AAAAAAAAAAA= + 1833-260619-3_1: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + AQAAAAAAAAA= + 1833-260619-3_140: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + jAAAAAAAAAA= + 1833-260619-3_141: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + jQAAAAAAAAA= + 1833-260619-3_180: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + tAAAAAAAAAA= + 1833-260619-3_182: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + tgAAAAAAAAA= + 1833-260619-3_194: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + wgAAAAAAAAA= + 1833-260619-3_196: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + xAAAAAAAAAA= + 1833-260619-3_209: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + 0QAAAAAAAAA= + 1833-260619-4_115: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + cwAAAAAAAAA= + 1833-260619-4_202: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + ygAAAAAAAAA= + 1833-260619-4_208: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + 0AAAAAAAAAA= + 1833-260619-4_222: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + 3gAAAAAAAAA= + 1833-260619-4_233: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + 6QAAAAAAAAA= + 1833-260619-4_235: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + 6wAAAAAAAAA= + 1833-290519-1_112: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + cAAAAAAAAAA= + 1833-290519-1_120: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + eAAAAAAAAAA= + 1833-290519-1_146: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + kgAAAAAAAAA= + 1833-290519-2_78: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + TgAAAAAAAAA= + 1833-290519-2_82: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + UgAAAAAAAAA= + 1833-290519-3_107: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + awAAAAAAAAA= + 1833-290519-3_137: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + iQAAAAAAAAA= + 1833-290519-4_117: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + dQAAAAAAAAA= + 1833-290519-4_88: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id595 + - !!binary | + WAAAAAAAAAA= +adjlist_inner_dict_factory: &id596 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id596 +edge_attr_dict_factory: *id596 +graph: {} +node_dict_factory: *id596 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id597 diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-1.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-1.yaml new file mode 100644 index 000000000..6210b5462 --- /dev/null +++ b/actions/identify-neurons/data/1833-graphs/graph-group-1.yaml @@ -0,0 +1,5200 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1833-010719-1_146: + 1833-010719-2_227: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + +r/LkuH7sD8= + 1833-020719-2_14: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s3qs9+E+uT8= + 1833-020719-3_123: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +au7MG1WtT8= + 1833-050619-4_84: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FoJnuyK4yz8= + 1833-260619-1_104: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B8I3OR6QpT8= + 1833-260619-2_123: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RIoHmYzvrD8= + 1833-260619-3_119: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gn7lOdyZrj8= + 1833-260619-4_178: &id362 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + etlEkf+Qtz8= + 1833-290519-2_102: &id449 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g1Dkk0CpxT8= + 1833-290519-3_119: &id505 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LFv6tBa9yD8= + 1833-290519-4_85: &id546 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tw81rezYxj8= + 1833-010719-1_219: + 1833-010719-2_135: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hSUAOERitj8= + 1833-020719-1_147: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YjcsCbwztD8= + 1833-020719-2_131: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dqpnZh2/tD8= + 1833-020719-3_154: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kW/Q6LGasz8= + 1833-260619-1_116: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gCswuo9btD8= + 1833-290519-2_116: &id478 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F3jc7y+Uyj8= + 1833-010719-1_221: + 1833-010719-2_269: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PLR3/MW2vD8= + 1833-020719-1_155: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RixcNRxVsT8= + 1833-020719-2_87: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HitHtCnOtT8= + 1833-020719-4_300: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g51DN1K0xT8= + 1833-010719-1_229: + 1833-010719-2_273: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fYZHSdsPpz8= + 1833-020719-2_152: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IDzuRkgzvD8= + 1833-020719-3_166: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9LRR3SgotD8= + 1833-050619-4_86: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FRyU+E1i1T8= + 1833-060619-2_64: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oUEACX93xj8= + 1833-260619-1_126: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EYY7pbDjvz8= + 1833-260619-2_166: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +4a4ge0Cwj8= + 1833-260619-3_207: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fRCi/piXsj8= + 1833-260619-4_226: &id404 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N/2lhzaVtD8= + 1833-290519-1_138: &id412 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1/2G6cRkxj8= + 1833-290519-2_120: &id488 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dMRfRIz9xj8= + 1833-290519-3_72: &id524 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lIRwpMgP0T8= + 1833-010719-1_6: + 1833-010719-2_233: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ef+9gTzOvz8= + 1833-020719-3_139: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gkg3VluHsj8= + 1833-020719-4_278: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N//nKbAnvT8= + 1833-050619-1_75: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 3013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UN6f/0zhwD8= + 1833-050619-2_129: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vDCB+vhrxD8= + 1833-050619-3_125: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S9R+DShlxD8= + 1833-050619-4_68: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cspwt09fyT8= + 1833-060619-2_78: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SZmH1xj5vT8= + 1833-120619-1_114: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 6016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Dh6xbEwwD8= + 1833-200619-1_155: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fJKMLM3xsT8= + 1833-200619-2_278: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hRrKQOOItD8= + 1833-200619-3_89: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PfceidQvwT8= + 1833-200619-4_70: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j8l29GmUwD8= + 1833-260619-4_204: &id389 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uQeJ4knLuj8= + 1833-290519-4_96: &id564 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kbKmVn+tvD8= + 1833-010719-1_8: + 1833-010719-2_18: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 21c3UtcWuz8= + 1833-020719-1_115: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cQfGabllsj8= + 1833-020719-2_15: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xGXqyEIbuD8= + 1833-020719-4_256: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lGpvjv8CvD8= + 1833-060619-1_137: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oz80eYxhwj8= + 1833-120619-2_104: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bUCl9ROWvz8= + 1833-200619-1_159: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oeZRzOCtuj8= + 1833-200619-3_97: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N9UGHd6YvD8= + 1833-200619-4_76: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MJyCXE8yuj8= + 1833-260619-1_10: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +lvfAoXNwz8= + 1833-260619-2_130: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pNWDTdbqsz8= + 1833-260619-3_170: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PJcFnNLpuz8= + 1833-260619-4_198: &id370 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ID3A4wmiuz8= + 1833-290519-1_92: &id427 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8VwWXKxjvT8= + 1833-290519-2_104: &id470 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OPubXdmMzj8= + 1833-010719-2_135: + 1833-010719-1_219: *id002 + 1833-020719-1_147: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xSR2iwoutT8= + 1833-020719-2_131: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yt2pThwapT8= + 1833-020719-3_154: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R+uEUeLMtD8= + 1833-020719-4_278: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KK5q04Kdwj8= + 1833-200619-1_159: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m8bda66OuT8= + 1833-200619-2_278: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DF+KHJBXrz8= + 1833-260619-1_116: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oL6ek406uj8= + 1833-260619-3_170: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mgj3Z9v8rD8= + 1833-260619-4_204: &id390 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sJHIoFPgvD8= + 1833-290519-2_116: &id479 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KeezrhP7zD8= + 1833-010719-2_18: + 1833-010719-1_8: *id003 + 1833-020719-1_115: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h7Btgc8+sz8= + 1833-020719-2_15: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UUJhSPX2qD8= + 1833-020719-3_139: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iN/nrIlTsT8= + 1833-020719-4_256: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P/JvDAxsvj8= + 1833-060619-2_78: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LM3gOX6lvT8= + 1833-120619-1_114: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 7804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hJuf+NMzwT8= + 1833-120619-2_104: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tg6qQAWBwD8= + 1833-200619-1_155: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TAf4dLPpuD8= + 1833-200619-3_97: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8XRykVSdrD8= + 1833-200619-4_76: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WkgeDEqcrT8= + 1833-260619-1_10: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MKPX+wuTxD8= + 1833-260619-2_130: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + stLkEArlsD8= + 1833-260619-4_198: &id371 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xhlclErxrz8= + 1833-290519-1_92: &id428 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DmN31hgEsz8= + 1833-290519-4_96: &id565 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P8ZbRLXUuT8= + 1833-010719-2_227: + 1833-010719-1_146: *id004 + 1833-020719-2_14: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LDsHstfYqD8= + 1833-020719-3_123: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T6/NZMFApj8= + 1833-060619-1_137: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 3232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k3PVXvGfwD8= + 1833-260619-1_104: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SJbWHux9tj8= + 1833-260619-2_123: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MEg5bzC+sj8= + 1833-260619-3_119: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qKnfM6W0uD8= + 1833-260619-4_178: &id363 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9DRHJd63rz8= + 1833-290519-2_104: &id471 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gg9fB6Ezxz8= + 1833-290519-3_119: &id506 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PZJ+Kw11yz8= + 1833-290519-4_85: &id547 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iRxUYFLsyD8= + 1833-010719-2_229: {} + 1833-010719-2_233: + 1833-010719-1_6: *id005 + 1833-020719-4_300: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f4d1NHBMtD8= + 1833-050619-1_75: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MJEjuvigvz8= + 1833-050619-2_129: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9G5e88hmxD8= + 1833-050619-3_125: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + elMWF3Ytwz8= + 1833-050619-4_68: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84833, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + InVjDDZ2yz8= + 1833-060619-2_64: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w4dqOO6+xD8= + 1833-200619-3_89: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g0Y91c9Vwj8= + 1833-200619-4_70: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jff6P9c5wT8= + 1833-290519-3_72: &id525 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Qw08h67Hzz8= + 1833-010719-2_269: + 1833-010719-1_221: *id006 + 1833-020719-1_155: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d6bt0VTWtj8= + 1833-020719-2_152: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8SS5SEcFsj8= + 1833-020719-3_166: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pA1/HCrbrz8= + 1833-050619-4_84: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84833, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SRgR29dcyD8= + 1833-290519-2_120: &id489 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5c7HrCCKxj8= + 1833-010719-2_273: + 1833-010719-1_229: *id007 + 1833-020719-2_87: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y4Hy/jNItD8= + 1833-050619-4_86: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84833, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1+ZNx8e81D8= + 1833-260619-1_126: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nYb4Z9gxwT8= + 1833-260619-2_166: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NrOehoFdwz8= + 1833-260619-3_207: &id350 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fo9CFvn+sj8= + 1833-260619-4_226: &id405 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SRBuH8yHsj8= + 1833-290519-1_138: &id413 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OotYErM3xT8= + 1833-290519-2_102: &id450 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fcHnSlwdyj8= + 1833-020719-1_115: + 1833-010719-1_8: *id008 + 1833-010719-2_18: *id009 + 1833-020719-2_15: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PCDpjp91rj8= + 1833-020719-3_139: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t7u5R3sbuT8= + 1833-020719-4_256: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 10TL3IAswT8= + 1833-050619-1_75: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t6iagkGbwz8= + 1833-050619-4_84: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 82424, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0qp9v4yP0D8= + 1833-060619-1_137: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vd9TQK4dwz8= + 1833-060619-2_78: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84389, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d82sDyRZxD8= + 1833-120619-2_104: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HJmGeDGiwj8= + 1833-200619-1_159: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ne9TV/xauD8= + 1833-200619-2_278: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vh/KFVJRtT8= + 1833-200619-3_97: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 85985, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eEOaj+6atz8= + 1833-200619-4_76: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oGSPXA3CtT8= + 1833-260619-1_10: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IRGPHVgAxz8= + 1833-260619-2_130: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7GBr7qzUsz8= + 1833-260619-3_170: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IDG07sYStD8= + 1833-260619-4_198: &id372 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1PBgAgQ1tT8= + 1833-290519-1_92: &id429 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XWnkk7ZZtz8= + 1833-290519-2_120: &id490 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + r9AEzz2hyT8= + 1833-290519-4_96: &id566 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 34nyjT8/wz8= + 1833-020719-1_147: + 1833-010719-1_219: *id010 + 1833-010719-2_135: *id011 + 1833-020719-2_131: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VyGFbymzrj8= + 1833-020719-3_154: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fT20DnNDqD8= + 1833-020719-4_278: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QapIiEcGxT8= + 1833-050619-4_86: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 82424, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dipev5vw2T8= + 1833-260619-1_116: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mZtglRtotz8= + 1833-260619-2_166: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RofcG5R5yT8= + 1833-260619-3_119: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pDO5o/ah0D8= + 1833-260619-4_204: &id391 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7JT5GAuswT8= + 1833-290519-2_116: &id480 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jh4Xq5Tyxj8= + 1833-290519-3_119: &id507 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lkQscj8q0z8= + 1833-020719-1_155: + 1833-010719-1_221: *id012 + 1833-010719-2_269: *id013 + 1833-020719-2_87: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fRea7qXvpj8= + 1833-020719-3_166: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /4HPc9WPpz8= + 1833-020719-4_300: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 74dnzIWrwD8= + 1833-050619-2_129: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 545, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cDq1HQcIxT8= + 1833-050619-3_125: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84242, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f3rk+4dqxT8= + 1833-050619-4_68: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 82424, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rn1U+tYExj8= + 1833-060619-2_64: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84389, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /h4TGFbnwz8= + 1833-120619-1_114: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G1hPm1mwxD8= + 1833-200619-1_155: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7kt1QSsnuz8= + 1833-200619-3_89: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 85985, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v+ueZbQivz8= + 1833-200619-4_70: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oF6yBTy5vz8= + 1833-260619-1_126: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KexpXlzSxD8= + 1833-260619-2_123: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AHYXopUvzD8= + 1833-260619-3_207: &id351 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9WfmcgwRwD8= + 1833-260619-4_226: &id406 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hz3fIJJ8vj8= + 1833-290519-1_138: &id414 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ai8YmoiFxz8= + 1833-290519-2_102: &id451 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JouJbnKZyj8= + 1833-290519-3_72: &id526 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X87xAPBj0D8= + 1833-290519-4_85: &id548 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xJP9r1h5zD8= + 1833-020719-2_131: + 1833-010719-1_219: *id014 + 1833-010719-2_135: *id015 + 1833-020719-1_147: *id016 + 1833-020719-3_154: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RCy6fqFOrT8= + 1833-020719-4_278: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + upRuAxLpwj8= + 1833-260619-1_116: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9xgSATZXtz8= + 1833-290519-2_116: &id481 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SQMktqMRyT8= + 1833-020719-2_14: + 1833-010719-1_146: *id017 + 1833-010719-2_227: *id018 + 1833-020719-3_123: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JglfEXVOlj8= + 1833-050619-1_75: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M3ZeRLsEwD8= + 1833-050619-4_68: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZLSqiGhKyz8= + 1833-060619-1_137: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2928, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zWw8x8VDvz8= + 1833-260619-1_104: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UIccUzQivj8= + 1833-260619-2_123: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eYEQh1FSuz8= + 1833-260619-3_119: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z8K1B9IOvj8= + 1833-260619-4_178: &id364 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mYICI+YitD8= + 1833-290519-2_104: &id472 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7x3adeYRxz8= + 1833-290519-3_119: &id508 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e/3DgeoJzT8= + 1833-290519-4_85: &id549 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UHa5Pl5iyT8= + 1833-020719-2_15: + 1833-010719-1_8: *id019 + 1833-010719-2_18: *id020 + 1833-020719-1_115: *id021 + 1833-020719-3_139: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rxoUd6cxsj8= + 1833-020719-4_256: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iaU6okqCvj8= + 1833-060619-2_78: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 94, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j0nwL+DPvj8= + 1833-120619-1_114: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G5TQOMGiwj8= + 1833-120619-2_104: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ph1x6pjxwT8= + 1833-200619-1_159: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V5kx838qsD8= + 1833-200619-2_278: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3246, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nNq41LZ6sD8= + 1833-200619-3_97: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WTE6Pyk6pz8= + 1833-200619-4_76: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uyKFQCPnpT8= + 1833-260619-1_10: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RHtwi2pBxT8= + 1833-260619-2_130: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NgffectAtD8= + 1833-260619-3_170: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /J09KbqOqj8= + 1833-260619-4_198: &id373 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vI75dvb/qz8= + 1833-290519-1_92: &id430 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AxBLfHDGtD8= + 1833-290519-4_96: &id567 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h01aLrKsvz8= + 1833-020719-2_152: + 1833-010719-1_229: *id022 + 1833-010719-2_269: *id023 + 1833-050619-4_86: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z+M/4ix40j8= + 1833-260619-4_226: &id407 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zjsgyla4wD8= + 1833-290519-2_102: &id452 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7Nf9+o/Jyj8= + 1833-290519-3_72: &id527 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B9/fXIVqzj8= + 1833-020719-2_87: + 1833-010719-1_221: *id024 + 1833-010719-2_273: *id025 + 1833-020719-1_155: *id026 + 1833-020719-3_166: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AuRN3W8Tpj8= + 1833-020719-4_300: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z94mElCBwD8= + 1833-050619-2_129: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7HNlBArpwj8= + 1833-050619-3_125: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 86347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S72ECK4JxD8= + 1833-050619-4_84: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qsbwASbMxD8= + 1833-060619-2_64: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 94, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oLFSQ7aywT8= + 1833-200619-1_155: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +uu2kzjJuT8= + 1833-200619-3_89: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NCuxEXcLuz8= + 1833-200619-4_70: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FCV7koMevD8= + 1833-260619-1_126: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SbmbWhj3wT8= + 1833-260619-2_166: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cYklLQ/3xD8= + 1833-260619-3_207: &id352 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + puN5iF6bvD8= + 1833-260619-4_204: &id392 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zdleQiBBtj8= + 1833-290519-1_138: &id415 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Bv9R6pwxD8= + 1833-290519-2_120: &id491 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cqRliL29wz8= + 1833-020719-3_123: + 1833-010719-1_146: *id027 + 1833-010719-2_227: *id028 + 1833-020719-2_14: *id029 + 1833-050619-1_75: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 6962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4P3mEm8twD8= + 1833-050619-4_84: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ne51WL6uzD8= + 1833-060619-1_137: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Qa1gTYgivj8= + 1833-120619-2_104: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2J1LcKxWwT8= + 1833-260619-1_104: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ad2druBFuj8= + 1833-260619-2_123: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i7TIsG08uD8= + 1833-260619-3_119: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + chosF7f4uj8= + 1833-260619-4_178: &id365 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zIwhqh1vtT8= + 1833-290519-2_104: &id473 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cTcNs3SDxj8= + 1833-290519-3_119: &id509 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kTqrxK2wyz8= + 1833-290519-4_85: &id550 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J9CJpY3yxz8= + 1833-020719-3_139: + 1833-010719-1_6: *id030 + 1833-010719-2_18: *id031 + 1833-020719-1_115: *id032 + 1833-020719-2_15: *id033 + 1833-020719-4_278: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7DubhqWjuj8= + 1833-050619-4_68: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hI8wYQ1syT8= + 1833-060619-2_78: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hTCZ55JDvT8= + 1833-120619-1_114: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OqVahenCwD8= + 1833-200619-1_155: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a5bHksQCtz8= + 1833-200619-2_278: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ICJ3K3BQqz8= + 1833-200619-3_97: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0CLC1C6Wrz8= + 1833-200619-4_76: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xTrRYaU3sz8= + 1833-260619-1_10: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wm9ioo9KxT8= + 1833-260619-2_130: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FqsCj7X+uz8= + 1833-260619-3_170: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WqiORVFKsz8= + 1833-260619-4_198: &id374 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iZHUIMXwsz8= + 1833-290519-1_92: &id431 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZtV+dzMLuj8= + 1833-290519-2_102: &id453 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9NZsjj97zT8= + 1833-290519-4_96: &id568 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /si7HvknvD8= + 1833-020719-3_154: + 1833-010719-1_219: *id034 + 1833-010719-2_135: *id035 + 1833-020719-1_147: *id036 + 1833-020719-2_131: *id037 + 1833-020719-4_256: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FFm8awFHxD8= + 1833-200619-1_159: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zcqEKgQbvj8= + 1833-260619-1_116: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q9PrLLmWtT8= + 1833-260619-4_204: &id393 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JS257qUwT8= + 1833-290519-2_116: &id482 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8vSjN/A2xj8= + 1833-020719-3_166: + 1833-010719-1_229: *id038 + 1833-010719-2_269: *id039 + 1833-020719-1_155: *id040 + 1833-020719-2_87: *id041 + 1833-020719-4_300: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AixopUfKwT8= + 1833-050619-2_129: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OYQ3q4+oxD8= + 1833-050619-3_125: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8D41+vpdxT8= + 1833-050619-4_86: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bvLO1ZoN1D8= + 1833-060619-2_64: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cfj2WpAfxD8= + 1833-200619-3_89: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mKCX/NwOwD8= + 1833-200619-4_70: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gvk79kiBwD8= + 1833-260619-1_126: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + faWhEiqLwT8= + 1833-260619-2_166: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8RTH1JsOxD8= + 1833-260619-3_207: &id353 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W2WM9LYFuj8= + 1833-260619-4_226: &id408 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g9DFbhdnuj8= + 1833-290519-1_138: &id416 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8RtgY+A+xj8= + 1833-290519-2_120: &id492 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I+2BNHy6xD8= + 1833-290519-3_72: &id528 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YNbGd7tJzz8= + 1833-020719-4_256: + 1833-010719-1_8: *id042 + 1833-010719-2_18: *id043 + 1833-020719-1_115: *id044 + 1833-020719-2_15: *id045 + 1833-020719-3_154: *id046 + 1833-050619-4_86: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NRzKuHZx2z8= + 1833-120619-2_104: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tyRP2a5ZvD8= + 1833-200619-1_159: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rL+dnX5Ovj8= + 1833-200619-3_97: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lpkQXpsPvj8= + 1833-200619-4_76: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +1njhsC+vT8= + 1833-260619-1_10: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wUl+UopsvT8= + 1833-260619-2_130: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + beIjwupnvD8= + 1833-260619-3_119: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RBwuNrkmzD8= + 1833-260619-4_198: &id375 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sy5E1DX2vz8= + 1833-290519-1_92: &id432 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d5qtvKJawT8= + 1833-290519-2_104: &id474 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AqWzKlM+zD8= + 1833-290519-3_119: &id510 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rVFPXX2M0T8= + 1833-290519-4_85: &id551 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZraqjUzRxT8= + 1833-020719-4_278: + 1833-010719-1_6: *id047 + 1833-010719-2_135: *id048 + 1833-020719-1_147: *id049 + 1833-020719-2_131: *id050 + 1833-020719-3_139: *id051 + 1833-050619-2_129: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 7444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c2jRIf5zwj8= + 1833-050619-4_68: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vTOT2ZgPyD8= + 1833-060619-1_137: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 7722, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SteJIRtkwT8= + 1833-060619-2_64: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kbFKQM/TwD8= + 1833-200619-1_155: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vIaUbjMAuz8= + 1833-200619-2_278: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lGWJhigzuz8= + 1833-200619-3_89: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UTpA2qiPwT8= + 1833-200619-4_70: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jyPxSjMawT8= + 1833-260619-1_126: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xr2/KkKPxT8= + 1833-260619-2_166: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sbtW8fB3xj8= + 1833-260619-3_207: &id354 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZBoiZR3rxj8= + 1833-260619-4_178: &id366 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MPMclCbXxT8= + 1833-290519-1_138: &id417 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LOzfilPixj8= + 1833-290519-2_120: &id493 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ve+q5nQIxz8= + 1833-290519-4_96: &id569 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DEEvnsdzwD8= + 1833-020719-4_300: + 1833-010719-1_221: *id052 + 1833-010719-2_233: *id053 + 1833-020719-1_155: *id054 + 1833-020719-2_87: *id055 + 1833-020719-3_166: *id056 + 1833-050619-1_75: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 9291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LAdk/j+Avj8= + 1833-050619-3_125: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lJV7pFxWwz8= + 1833-050619-4_84: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UhsYEgebzD8= + 1833-060619-2_78: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wY0dhfC/uz8= + 1833-120619-1_114: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 12294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ft2ENmLtwj8= + 1833-260619-1_116: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jk/b5Bk9yT8= + 1833-260619-2_123: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3hgTa/nIzz8= + 1833-260619-3_170: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6+4+/B5bwj8= + 1833-260619-4_204: &id394 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3rSfY3FZwj8= + 1833-290519-2_102: &id454 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zSNEAC8GzT8= + 1833-290519-3_72: &id529 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LmrkcFi+zz8= + 1833-050619-1_75: + 1833-010719-1_6: *id057 + 1833-010719-2_233: *id058 + 1833-020719-1_115: *id059 + 1833-020719-2_14: *id060 + 1833-020719-3_123: *id061 + 1833-020719-4_300: *id062 + 1833-050619-2_129: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MfnDc3l4tj8= + 1833-050619-3_125: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jzM1FNMVtz8= + 1833-050619-4_68: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6368, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q+RYNSUMwT8= + 1833-060619-1_137: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XqYOH3HUvD8= + 1833-060619-2_78: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oW8HH2wGtj8= + 1833-120619-1_114: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QCd3Njd+uj8= + 1833-120619-2_104: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QlJ0dKZWwT8= + 1833-200619-1_155: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85092, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HXZ/MslVwD8= + 1833-200619-2_278: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + soE4gbd1wj8= + 1833-200619-3_97: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mAangd1vwD8= + 1833-200619-4_76: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NIjCthP2wD8= + 1833-260619-1_10: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PVYnyCV4wj8= + 1833-260619-2_130: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XIIeFl1pwz8= + 1833-260619-3_170: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3272, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gq7CFCdHwj8= + 1833-260619-4_198: &id376 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WnyawkxnwT8= + 1833-290519-1_92: &id433 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kNsNq8V3wD8= + 1833-290519-2_102: &id455 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0Sy1Yp5hxD8= + 1833-290519-3_72: &id530 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QBrUGSHMyD8= + 1833-290519-4_96: &id570 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BCS9kKgjtz8= + 1833-050619-2_129: + 1833-010719-1_6: *id063 + 1833-010719-2_233: *id064 + 1833-020719-1_155: *id065 + 1833-020719-2_87: *id066 + 1833-020719-3_166: *id067 + 1833-020719-4_278: *id068 + 1833-050619-1_75: *id069 + 1833-050619-3_125: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e5J77lffpj8= + 1833-050619-4_68: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xH3CGIE8sT8= + 1833-060619-1_137: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9Tgivxa+wj8= + 1833-060619-2_64: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PlVUQgmKtz8= + 1833-120619-1_114: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dl9qK2VewD8= + 1833-120619-2_104: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83935, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GtZp19jGxT8= + 1833-200619-1_155: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KciQCK2rwz8= + 1833-200619-2_278: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YgYvv9afyD8= + 1833-200619-3_89: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3RmPnK2hwz8= + 1833-200619-4_70: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FWsmDF0nwz8= + 1833-260619-1_10: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lS6lzLjjxj8= + 1833-260619-2_123: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /qc7s8lDyT8= + 1833-260619-3_119: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Lz1CJ4JyD8= + 1833-260619-4_204: &id395 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WQNHf+3DxT8= + 1833-290519-1_92: &id434 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q+BVqpUlxz8= + 1833-290519-2_102: &id456 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + brCk14gAxD8= + 1833-290519-3_119: &id511 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mp5UHOXSyz8= + 1833-290519-4_96: &id571 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zePh0iF8vj8= + 1833-050619-3_125: + 1833-010719-1_6: *id070 + 1833-010719-2_233: *id071 + 1833-020719-1_155: *id072 + 1833-020719-2_87: *id073 + 1833-020719-3_166: *id074 + 1833-020719-4_300: *id075 + 1833-050619-1_75: *id076 + 1833-050619-2_129: *id077 + 1833-050619-4_68: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cbCQ4tHDsz8= + 1833-060619-1_137: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yh8DrW7wwz8= + 1833-060619-2_64: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IPRmEVxzvD8= + 1833-120619-1_114: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 78847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sBaFCsEavz8= + 1833-120619-2_104: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5ecInCnkxj8= + 1833-200619-1_155: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l2jum9u+xD8= + 1833-200619-2_278: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pV242WWoyD8= + 1833-200619-3_89: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ktwGWLI1xj8= + 1833-200619-4_70: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7G4oTviGxT8= + 1833-260619-1_10: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F8r0eNN4xz8= + 1833-260619-2_130: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z2iZnACDyj8= + 1833-260619-3_119: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t/1JoSrryT8= + 1833-260619-4_204: &id396 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uMXiFaE+xz8= + 1833-290519-1_92: &id435 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1qYBcM/jxz8= + 1833-290519-2_102: &id457 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N+hcmQLdxj8= + 1833-290519-3_119: &id512 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hzx07LeAyz8= + 1833-290519-4_96: &id572 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HHY09SoAwD8= + 1833-050619-4_68: + 1833-010719-1_6: *id078 + 1833-010719-2_233: *id079 + 1833-020719-1_155: *id080 + 1833-020719-2_14: *id081 + 1833-020719-3_139: *id082 + 1833-020719-4_278: *id083 + 1833-050619-1_75: *id084 + 1833-050619-2_129: *id085 + 1833-050619-3_125: *id086 + 1833-060619-1_137: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zkJ0BFxxyD8= + 1833-060619-2_78: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 61xVx6hwwz8= + 1833-120619-1_114: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 77029, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lXI0cHsIwz8= + 1833-120619-2_104: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 79414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ukVxXS4iyz8= + 1833-200619-1_155: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78724, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OI1nUrP1yD8= + 1833-200619-2_278: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gNKr2DWiyz8= + 1833-200619-3_97: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VVhGrRuZzz8= + 1833-200619-4_76: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Iz3PxW6U0D8= + 1833-260619-1_104: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uCcsn08Xzz8= + 1833-260619-2_123: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AmPR/R0Ozz8= + 1833-260619-3_119: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83304, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + flvydvRXzj8= + 1833-260619-4_204: &id397 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NszkmuzRxz8= + 1833-290519-1_92: &id436 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d2ERdLFfzj8= + 1833-290519-2_104: &id475 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6371, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XM9/1kEz0D8= + 1833-290519-4_96: &id573 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sbf8ZekvxD8= + 1833-050619-4_84: + 1833-010719-1_146: *id087 + 1833-010719-2_269: *id088 + 1833-020719-1_115: *id089 + 1833-020719-2_87: *id090 + 1833-020719-3_123: *id091 + 1833-020719-4_300: *id092 + 1833-060619-2_64: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AmoVySfWxT8= + 1833-200619-1_159: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78724, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uJ46iiOP0j8= + 1833-200619-3_89: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E0UBqVwFxD8= + 1833-200619-4_70: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + btUTKsPwwz8= + 1833-260619-1_126: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /YRQZnRxxD8= + 1833-260619-2_166: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w7V96TkfxD8= + 1833-260619-3_207: &id355 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83304, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M0LsHt2NyD8= + 1833-260619-4_226: &id409 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jPK1Sfihyz8= + 1833-290519-1_138: &id418 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CWnh5QMTwD8= + 1833-290519-2_120: &id494 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6371, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w7y8D09Fxz8= + 1833-290519-3_119: &id513 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ai+gfvGP0D8= + 1833-290519-4_85: &id552 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jLiGJbsb0D8= + 1833-050619-4_86: + 1833-010719-1_229: *id093 + 1833-010719-2_273: *id094 + 1833-020719-1_147: *id095 + 1833-020719-2_152: *id096 + 1833-020719-3_166: *id097 + 1833-020719-4_256: *id098 + 1833-260619-1_10: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +bCPj15q2D8= + 1833-260619-2_130: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yanDj7xS2j8= + 1833-260619-3_170: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83304, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LEEHlMGZ2j8= + 1833-260619-4_198: &id377 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5gzBuF7E2j8= + 1833-290519-2_102: &id458 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6371, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8X9JWa2i1j8= + 1833-290519-3_72: &id531 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g0W/sSHl0D8= + 1833-060619-1_137: + 1833-010719-1_8: *id099 + 1833-010719-2_227: *id100 + 1833-020719-1_115: *id101 + 1833-020719-2_14: *id102 + 1833-020719-3_123: *id103 + 1833-020719-4_278: *id104 + 1833-050619-1_75: *id105 + 1833-050619-2_129: *id106 + 1833-050619-3_125: *id107 + 1833-050619-4_68: *id108 + 1833-060619-2_78: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3Fr3WcvQvj8= + 1833-120619-1_114: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81828, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 36SuagVCwD8= + 1833-120619-2_104: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wAdia2vmtj8= + 1833-200619-1_155: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qwQ3ieNkwz8= + 1833-200619-2_278: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pJPN4B+awz8= + 1833-200619-3_97: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5hZs10Zfwj8= + 1833-200619-4_76: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0IpljMqowj8= + 1833-260619-1_10: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /nVs9W1Avz8= + 1833-260619-2_130: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E9x/NlMpvz8= + 1833-260619-3_170: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 1703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aY/vmpDSwj8= + 1833-260619-4_198: &id378 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mT5ZoLbtwT8= + 1833-290519-1_92: &id437 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v/F5c3iAwD8= + 1833-290519-2_102: &id459 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1572, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dM/BI06Kwj8= + 1833-290519-3_72: &id532 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c5hoLRip0j8= + 1833-290519-4_96: &id574 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ncTQSnDovT8= + 1833-060619-2_64: + 1833-010719-1_229: *id109 + 1833-010719-2_233: *id110 + 1833-020719-1_155: *id111 + 1833-020719-2_87: *id112 + 1833-020719-3_166: *id113 + 1833-020719-4_278: *id114 + 1833-050619-2_129: *id115 + 1833-050619-3_125: *id116 + 1833-050619-4_84: *id117 + 1833-200619-1_155: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7XIN25nWwT8= + 1833-200619-3_89: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yrg0hqcvwT8= + 1833-200619-4_70: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y/m7VpxQwD8= + 1833-260619-1_126: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YFfAxWXlxz8= + 1833-260619-2_166: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j6z1MKViyD8= + 1833-260619-3_207: &id356 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + axYoXQFOyT8= + 1833-260619-4_204: &id398 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xxTrFir6wj8= + 1833-290519-1_138: &id419 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oXbOsJvqxT8= + 1833-290519-2_102: &id460 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vUilr+cZwj8= + 1833-290519-3_72: &id533 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /BGcL0mz0j8= + 1833-290519-4_96: &id575 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bKKQ/0E4vz8= + 1833-060619-2_78: + 1833-010719-1_6: *id118 + 1833-010719-2_18: *id119 + 1833-020719-1_115: *id120 + 1833-020719-2_15: *id121 + 1833-020719-3_139: *id122 + 1833-020719-4_300: *id123 + 1833-050619-1_75: *id124 + 1833-050619-4_68: *id125 + 1833-060619-1_137: *id126 + 1833-120619-1_114: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ItGobpW/uj8= + 1833-120619-2_104: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81379, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RCxEi669vT8= + 1833-200619-1_159: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1Aj+C3Elwj8= + 1833-200619-2_278: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l1G00TGjwT8= + 1833-200619-3_97: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sf5a5p52vT8= + 1833-200619-4_76: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3s1t/iwnvz8= + 1833-260619-1_10: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 20B7gil3wD8= + 1833-260619-2_130: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0D0dxHqJwj8= + 1833-260619-3_170: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SF6X5dE8wT8= + 1833-260619-4_198: &id379 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4/xwAGBiwD8= + 1833-290519-1_92: &id438 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NzLChPRdwD8= + 1833-290519-2_120: &id495 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gKOISnoSzD8= + 1833-290519-3_119: &id514 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1wghe9vVyz8= + 1833-290519-4_85: &id553 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tI1WHpXRxT8= + 1833-120619-1_114: + 1833-010719-1_6: *id127 + 1833-010719-2_18: *id128 + 1833-020719-1_155: *id129 + 1833-020719-2_15: *id130 + 1833-020719-3_139: *id131 + 1833-020719-4_300: *id132 + 1833-050619-1_75: *id133 + 1833-050619-2_129: *id134 + 1833-050619-3_125: *id135 + 1833-050619-4_68: *id136 + 1833-060619-1_137: *id137 + 1833-060619-2_78: *id138 + 1833-120619-2_104: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2385, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EWpE0Vntvj8= + 1833-200619-1_155: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j0lqOgmowz8= + 1833-200619-2_278: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CAlQD2auwj8= + 1833-200619-3_97: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /oL7+U3dwT8= + 1833-200619-4_76: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hFRUUp/Lwj8= + 1833-260619-1_10: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RxYrIq5swz8= + 1833-260619-2_130: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FxZeFwfHwD8= + 1833-260619-3_170: &id341 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 6275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lGYTNT8Owz8= + 1833-260619-4_198: &id380 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 8228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 35+VCyy8wT8= + 1833-290519-1_92: &id439 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Af3zaL4qwj8= + 1833-290519-2_102: &id461 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83400, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D5D1ycSfyj8= + 1833-290519-3_72: &id534 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yyej7aC90D8= + 1833-290519-4_96: &id576 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78526, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jld50OZAtD8= + 1833-120619-2_104: + 1833-010719-1_8: *id139 + 1833-010719-2_18: *id140 + 1833-020719-1_115: *id141 + 1833-020719-2_15: *id142 + 1833-020719-3_123: *id143 + 1833-020719-4_256: *id144 + 1833-050619-1_75: *id145 + 1833-050619-2_129: *id146 + 1833-050619-3_125: *id147 + 1833-050619-4_68: *id148 + 1833-060619-1_137: *id149 + 1833-060619-2_78: *id150 + 1833-120619-1_114: *id151 + 1833-200619-1_159: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YAkeWAx4wz8= + 1833-200619-2_278: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uYOTCrVfxD8= + 1833-200619-3_97: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nmQjM43ywT8= + 1833-200619-4_76: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ggGTv4fawT8= + 1833-260619-1_10: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85413, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZFetwLzdtD8= + 1833-260619-2_130: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AKSwXAmztz8= + 1833-260619-3_170: &id342 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JwFjZnhswT8= + 1833-260619-4_198: &id381 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UNCm6o+xvz8= + 1833-290519-1_92: &id440 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lO7Lrev7vD8= + 1833-290519-2_102: &id462 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5nXkiLk6yD8= + 1833-290519-3_72: &id535 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LruXbZxJzz8= + 1833-290519-4_96: &id577 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M7l9VXpKuj8= + 1833-200619-1_155: + 1833-010719-1_6: *id152 + 1833-010719-2_18: *id153 + 1833-020719-1_155: *id154 + 1833-020719-2_87: *id155 + 1833-020719-3_139: *id156 + 1833-020719-4_278: *id157 + 1833-050619-1_75: *id158 + 1833-050619-2_129: *id159 + 1833-050619-3_125: *id160 + 1833-050619-4_68: *id161 + 1833-060619-1_137: *id162 + 1833-060619-2_64: *id163 + 1833-120619-1_114: *id164 + 1833-200619-2_278: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YAR/yTUZtT8= + 1833-200619-3_89: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /ReKb2yptT8= + 1833-200619-4_70: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ikjzbxtJtT8= + 1833-260619-1_126: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gRjGfIeBxT8= + 1833-260619-2_166: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2bwkoRiRxj8= + 1833-260619-3_207: &id357 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VI9A64hkxT8= + 1833-260619-4_204: &id399 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2AiJiq5ntD8= + 1833-290519-1_138: &id420 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pscbVPb8yD8= + 1833-290519-2_120: &id496 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PBsmsXxVxj8= + 1833-290519-3_119: &id515 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j8g7nGKO1D8= + 1833-290519-4_96: &id578 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + toCPS2dJwT8= + 1833-200619-1_159: + 1833-010719-1_8: *id165 + 1833-010719-2_135: *id166 + 1833-020719-1_115: *id167 + 1833-020719-2_15: *id168 + 1833-020719-3_154: *id169 + 1833-020719-4_256: *id170 + 1833-050619-4_84: *id171 + 1833-060619-2_78: *id172 + 1833-120619-2_104: *id173 + 1833-200619-3_97: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7D9z+8t2qj8= + 1833-200619-4_76: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cAf0T8tJpT8= + 1833-260619-1_116: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4avyQZAVwT8= + 1833-260619-2_130: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xm3e5lbQuD8= + 1833-260619-3_170: &id343 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NA5gC18vsz8= + 1833-260619-4_198: &id382 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9kiEOw7nsz8= + 1833-290519-1_92: &id441 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RJRHLMtZvT8= + 1833-290519-2_116: &id483 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uuzY2Vcuzj8= + 1833-290519-3_72: &id536 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fzQH0C2t0T8= + 1833-290519-4_85: &id554 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pk8KqCquyT8= + 1833-200619-2_278: + 1833-010719-1_6: *id174 + 1833-010719-2_135: *id175 + 1833-020719-1_115: *id176 + 1833-020719-2_15: *id177 + 1833-020719-3_139: *id178 + 1833-020719-4_278: *id179 + 1833-050619-1_75: *id180 + 1833-050619-2_129: *id181 + 1833-050619-3_125: *id182 + 1833-050619-4_68: *id183 + 1833-060619-1_137: *id184 + 1833-060619-2_78: *id185 + 1833-120619-1_114: *id186 + 1833-120619-2_104: *id187 + 1833-200619-1_155: *id188 + 1833-200619-3_97: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Jw3s8nCsD8= + 1833-200619-4_76: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cFiSLpDEsj8= + 1833-260619-1_116: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7HObB/bavT8= + 1833-260619-2_130: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PNzz7Lv0uj8= + 1833-260619-3_170: &id344 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Opj/25NsD8= + 1833-260619-4_198: &id383 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bw00D5HYsj8= + 1833-290519-1_92: &id442 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KzT4TGw9uD8= + 1833-290519-2_120: &id497 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Te5/7UNxyT8= + 1833-290519-3_72: &id537 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IG3Z+mPU0j8= + 1833-290519-4_96: &id579 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g1dwxfQnwT8= + 1833-200619-3_89: + 1833-010719-1_6: *id189 + 1833-010719-2_233: *id190 + 1833-020719-1_155: *id191 + 1833-020719-2_87: *id192 + 1833-020719-3_166: *id193 + 1833-020719-4_278: *id194 + 1833-050619-2_129: *id195 + 1833-050619-3_125: *id196 + 1833-050619-4_84: *id197 + 1833-060619-2_64: *id198 + 1833-200619-1_155: *id199 + 1833-200619-4_70: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6RPFiEmFlD8= + 1833-260619-1_126: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QqSH+dAkwj8= + 1833-260619-2_166: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zK3YqQ42wz8= + 1833-260619-3_207: &id358 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yX7FoZOVxD8= + 1833-260619-4_204: &id400 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + keUNdO+YuD8= + 1833-290519-1_138: &id421 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5mFFKK7RxD8= + 1833-290519-2_102: &id463 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TW0yDYycxz8= + 1833-290519-3_119: &id516 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CoWdRrxT1T8= + 1833-290519-4_96: &id580 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rmn5vY7XxT8= + 1833-200619-3_97: + 1833-010719-1_8: *id200 + 1833-010719-2_18: *id201 + 1833-020719-1_115: *id202 + 1833-020719-2_15: *id203 + 1833-020719-3_139: *id204 + 1833-020719-4_256: *id205 + 1833-050619-1_75: *id206 + 1833-050619-4_68: *id207 + 1833-060619-1_137: *id208 + 1833-060619-2_78: *id209 + 1833-120619-1_114: *id210 + 1833-120619-2_104: *id211 + 1833-200619-1_159: *id212 + 1833-200619-2_278: *id213 + 1833-200619-4_76: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FM4DMlePkz8= + 1833-260619-1_116: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YiUxXZRYwT8= + 1833-260619-2_130: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5EJ1w2wktj8= + 1833-260619-3_170: &id345 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bRQqVzmlrT8= + 1833-260619-4_198: &id384 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eU/3Nbutrj8= + 1833-290519-1_92: &id443 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z5/AYNsouD8= + 1833-290519-2_120: &id498 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AxXvDDrNyj8= + 1833-290519-3_72: &id538 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sZaw6Inw0T8= + 1833-290519-4_85: &id555 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YLhCMz15yj8= + 1833-200619-4_70: + 1833-010719-1_6: *id214 + 1833-010719-2_233: *id215 + 1833-020719-1_155: *id216 + 1833-020719-2_87: *id217 + 1833-020719-3_166: *id218 + 1833-020719-4_278: *id219 + 1833-050619-2_129: *id220 + 1833-050619-3_125: *id221 + 1833-050619-4_84: *id222 + 1833-060619-2_64: *id223 + 1833-200619-1_155: *id224 + 1833-200619-3_89: *id225 + 1833-260619-1_126: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bFM6n1Ljwj8= + 1833-260619-2_166: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TG8UfrbMwz8= + 1833-260619-3_207: &id359 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ww3zfyU9xT8= + 1833-260619-4_204: &id401 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2oxgI5wTuT8= + 1833-290519-1_138: &id422 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jzQB6effxD8= + 1833-290519-2_102: &id464 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6gE8P9+Jxj8= + 1833-290519-3_119: &id517 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ufV/1/be1D8= + 1833-290519-4_96: &id581 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OTVJFCawxD8= + 1833-200619-4_76: + 1833-010719-1_8: *id226 + 1833-010719-2_18: *id227 + 1833-020719-1_115: *id228 + 1833-020719-2_15: *id229 + 1833-020719-3_139: *id230 + 1833-020719-4_256: *id231 + 1833-050619-1_75: *id232 + 1833-050619-4_68: *id233 + 1833-060619-1_137: *id234 + 1833-060619-2_78: *id235 + 1833-120619-1_114: *id236 + 1833-120619-2_104: *id237 + 1833-200619-1_159: *id238 + 1833-200619-2_278: *id239 + 1833-200619-3_97: *id240 + 1833-260619-1_116: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fPIwb/xGwD8= + 1833-260619-2_130: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qT7dWwC5sz8= + 1833-260619-3_170: &id346 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CQP2kQlHrj8= + 1833-260619-4_198: &id385 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sfe15hVorj8= + 1833-290519-1_92: &id444 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F3Fx47oxuD8= + 1833-290519-2_120: &id499 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3x1fmla4yj8= + 1833-290519-3_72: &id539 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lI4wjhxi0j8= + 1833-290519-4_85: &id556 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NL+Pc9idyj8= + 1833-260619-1_10: + 1833-010719-1_8: *id241 + 1833-010719-2_18: *id242 + 1833-020719-1_115: *id243 + 1833-020719-2_15: *id244 + 1833-020719-3_139: *id245 + 1833-020719-4_256: *id246 + 1833-050619-1_75: *id247 + 1833-050619-2_129: *id248 + 1833-050619-3_125: *id249 + 1833-050619-4_86: *id250 + 1833-060619-1_137: *id251 + 1833-060619-2_78: *id252 + 1833-120619-1_114: *id253 + 1833-120619-2_104: *id254 + 1833-260619-4_198: &id386 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fY1S5tedwj8= + 1833-290519-2_102: &id465 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YkryVJCxyD8= + 1833-290519-3_72: &id540 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ty+MCRtlyj8= + 1833-290519-4_85: &id557 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 20ZStSGDuD8= + 1833-260619-1_104: + 1833-010719-1_146: *id255 + 1833-010719-2_227: *id256 + 1833-020719-2_14: *id257 + 1833-020719-3_123: *id258 + 1833-050619-4_68: *id259 + 1833-260619-2_123: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PKp3WNl9oz8= + 1833-260619-3_119: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dlKtaMZCrz8= + 1833-260619-4_178: &id367 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BTayD31ruj8= + 1833-290519-2_104: &id476 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wmOpZxg5yT8= + 1833-290519-3_119: &id518 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VBhxZE5yyz8= + 1833-260619-1_116: + 1833-010719-1_219: *id260 + 1833-010719-2_135: *id261 + 1833-020719-1_147: *id262 + 1833-020719-2_131: *id263 + 1833-020719-3_154: *id264 + 1833-020719-4_300: *id265 + 1833-200619-1_159: *id266 + 1833-200619-2_278: *id267 + 1833-200619-3_97: *id268 + 1833-200619-4_76: *id269 + 1833-260619-2_130: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uWEeu+WtuT8= + 1833-260619-3_170: &id347 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VBMhZAt4vT8= + 1833-260619-4_204: &id402 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SxVLn+wNwj8= + 1833-290519-1_92: &id445 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DLAzqTb7vT8= + 1833-290519-2_116: &id484 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lO5rABjeyT8= + 1833-290519-4_96: &id582 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VCI5/ExayD8= + 1833-260619-1_126: + 1833-010719-1_229: *id270 + 1833-010719-2_273: *id271 + 1833-020719-1_155: *id272 + 1833-020719-2_87: *id273 + 1833-020719-3_166: *id274 + 1833-020719-4_278: *id275 + 1833-050619-4_84: *id276 + 1833-060619-2_64: *id277 + 1833-200619-1_155: *id278 + 1833-200619-3_89: *id279 + 1833-200619-4_70: *id280 + 1833-260619-2_166: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yvfRIh7apD8= + 1833-260619-3_207: &id360 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y//Oq1Viuj8= + 1833-260619-4_226: &id410 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8SJIxfRSwT8= + 1833-290519-1_138: &id423 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 34nueh4/wz8= + 1833-290519-2_120: &id500 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f1ohJ9Jrwj8= + 1833-260619-2_123: + 1833-010719-1_146: *id281 + 1833-010719-2_227: *id282 + 1833-020719-1_155: *id283 + 1833-020719-2_14: *id284 + 1833-020719-3_123: *id285 + 1833-020719-4_300: *id286 + 1833-050619-2_129: *id287 + 1833-050619-4_68: *id288 + 1833-260619-1_104: *id289 + 1833-260619-3_119: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nz8UthshtD8= + 1833-260619-4_178: &id368 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MEbGFG0ftT8= + 1833-290519-2_102: &id466 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ET+eJfiZxz8= + 1833-290519-3_119: &id519 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + haD1Ex4XzT8= + 1833-290519-4_85: &id558 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WMpPll/Vyj8= + 1833-260619-2_130: + 1833-010719-1_8: *id290 + 1833-010719-2_18: *id291 + 1833-020719-1_115: *id292 + 1833-020719-2_15: *id293 + 1833-020719-3_139: *id294 + 1833-020719-4_256: *id295 + 1833-050619-1_75: *id296 + 1833-050619-3_125: *id297 + 1833-050619-4_86: *id298 + 1833-060619-1_137: *id299 + 1833-060619-2_78: *id300 + 1833-120619-1_114: *id301 + 1833-120619-2_104: *id302 + 1833-200619-1_159: *id303 + 1833-200619-2_278: *id304 + 1833-200619-3_97: *id305 + 1833-200619-4_76: *id306 + 1833-260619-1_116: *id307 + 1833-260619-3_170: &id348 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZmuZt1bIsz8= + 1833-260619-4_198: &id387 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dPVc0zG6sD8= + 1833-290519-1_92: &id446 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7kUjvJmFsD8= + 1833-290519-2_116: &id485 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fUtk/WbyzD8= + 1833-290519-3_72: &id541 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v3VuUN6J0D8= + 1833-290519-4_96: &id583 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wZe3pbjpvj8= + 1833-260619-2_166: + 1833-010719-1_229: *id308 + 1833-010719-2_273: *id309 + 1833-020719-1_147: *id310 + 1833-020719-2_87: *id311 + 1833-020719-3_166: *id312 + 1833-020719-4_278: *id313 + 1833-050619-4_84: *id314 + 1833-060619-2_64: *id315 + 1833-200619-1_155: *id316 + 1833-200619-3_89: *id317 + 1833-200619-4_70: *id318 + 1833-260619-1_126: *id319 + 1833-260619-3_207: &id361 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OtyK+smtvj8= + 1833-260619-4_204: &id403 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cbuJMvYQwz8= + 1833-290519-1_138: &id424 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i1UywQHAwj8= + 1833-290519-2_120: &id501 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NBM/gx1owj8= + 1833-260619-3_119: + 1833-010719-1_146: *id320 + 1833-010719-2_227: *id321 + 1833-020719-1_147: *id322 + 1833-020719-2_14: *id323 + 1833-020719-3_123: *id324 + 1833-020719-4_256: *id325 + 1833-050619-2_129: *id326 + 1833-050619-3_125: *id327 + 1833-050619-4_68: *id328 + 1833-260619-1_104: *id329 + 1833-260619-2_123: *id330 + 1833-260619-4_178: &id369 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FFbLK4PRuT8= + 1833-290519-2_102: &id467 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gT7NjaxlyD8= + 1833-290519-3_119: &id520 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n51ef5jqyD8= + 1833-290519-4_85: &id559 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aPZ+qAawyD8= + 1833-260619-3_170: + 1833-010719-1_8: *id331 + 1833-010719-2_135: *id332 + 1833-020719-1_115: *id333 + 1833-020719-2_15: *id334 + 1833-020719-3_139: *id335 + 1833-020719-4_300: *id336 + 1833-050619-1_75: *id337 + 1833-050619-4_86: *id338 + 1833-060619-1_137: *id339 + 1833-060619-2_78: *id340 + 1833-120619-1_114: *id341 + 1833-120619-2_104: *id342 + 1833-200619-1_159: *id343 + 1833-200619-2_278: *id344 + 1833-200619-3_97: *id345 + 1833-200619-4_76: *id346 + 1833-260619-1_116: *id347 + 1833-260619-2_130: *id348 + 1833-260619-4_198: &id388 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SkEG1qqhlz8= + 1833-290519-1_92: &id447 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PXFqLXRdtD8= + 1833-290519-2_116: &id486 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QbTMPFTnyz8= + 1833-290519-3_72: &id542 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2O9aKHB+0T8= + 1833-290519-4_96: &id584 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1+q1h16Ovz8= + 1833-260619-3_207: + 1833-010719-1_229: *id349 + 1833-010719-2_273: *id350 + 1833-020719-1_155: *id351 + 1833-020719-2_87: *id352 + 1833-020719-3_166: *id353 + 1833-020719-4_278: *id354 + 1833-050619-4_84: *id355 + 1833-060619-2_64: *id356 + 1833-200619-1_155: *id357 + 1833-200619-3_89: *id358 + 1833-200619-4_70: *id359 + 1833-260619-1_126: *id360 + 1833-260619-2_166: *id361 + 1833-260619-4_226: &id411 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DyKWurv1qT8= + 1833-290519-1_138: &id425 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hmDWHeesxj8= + 1833-290519-2_120: &id502 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MwG85PjgxT8= + 1833-260619-4_178: + 1833-010719-1_146: *id362 + 1833-010719-2_227: *id363 + 1833-020719-2_14: *id364 + 1833-020719-3_123: *id365 + 1833-020719-4_278: *id366 + 1833-260619-1_104: *id367 + 1833-260619-2_123: *id368 + 1833-260619-3_119: *id369 + 1833-290519-2_104: &id477 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xWzHs0IAyj8= + 1833-290519-3_119: &id521 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QXAOE52nzj8= + 1833-290519-4_85: &id560 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZENBkvo/yz8= + 1833-260619-4_198: + 1833-010719-1_8: *id370 + 1833-010719-2_18: *id371 + 1833-020719-1_115: *id372 + 1833-020719-2_15: *id373 + 1833-020719-3_139: *id374 + 1833-020719-4_256: *id375 + 1833-050619-1_75: *id376 + 1833-050619-4_86: *id377 + 1833-060619-1_137: *id378 + 1833-060619-2_78: *id379 + 1833-120619-1_114: *id380 + 1833-120619-2_104: *id381 + 1833-200619-1_159: *id382 + 1833-200619-2_278: *id383 + 1833-200619-3_97: *id384 + 1833-200619-4_76: *id385 + 1833-260619-1_10: *id386 + 1833-260619-2_130: *id387 + 1833-260619-3_170: *id388 + 1833-290519-1_92: &id448 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SFeZM8lYsj8= + 1833-290519-2_116: &id487 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E6ZYljrdyz8= + 1833-290519-3_72: &id543 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 77TUtZk/0T8= + 1833-290519-4_96: &id585 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CWePetg6vT8= + 1833-260619-4_204: + 1833-010719-1_6: *id389 + 1833-010719-2_135: *id390 + 1833-020719-1_147: *id391 + 1833-020719-2_87: *id392 + 1833-020719-3_154: *id393 + 1833-020719-4_300: *id394 + 1833-050619-2_129: *id395 + 1833-050619-3_125: *id396 + 1833-050619-4_68: *id397 + 1833-060619-2_64: *id398 + 1833-200619-1_155: *id399 + 1833-200619-3_89: *id400 + 1833-200619-4_70: *id401 + 1833-260619-1_116: *id402 + 1833-260619-2_166: *id403 + 1833-290519-1_138: &id426 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GcxZ0OZtxj8= + 1833-290519-2_102: &id468 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5vfvINPOyz8= + 1833-260619-4_226: + 1833-010719-1_229: *id404 + 1833-010719-2_273: *id405 + 1833-020719-1_155: *id406 + 1833-020719-2_152: *id407 + 1833-020719-3_166: *id408 + 1833-050619-4_84: *id409 + 1833-260619-1_126: *id410 + 1833-260619-3_207: *id411 + 1833-290519-2_120: &id503 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bWdBDDSFyD8= + 1833-290519-1_138: + 1833-010719-1_229: *id412 + 1833-010719-2_273: *id413 + 1833-020719-1_155: *id414 + 1833-020719-2_87: *id415 + 1833-020719-3_166: *id416 + 1833-020719-4_278: *id417 + 1833-050619-4_84: *id418 + 1833-060619-2_64: *id419 + 1833-200619-1_155: *id420 + 1833-200619-3_89: *id421 + 1833-200619-4_70: *id422 + 1833-260619-1_126: *id423 + 1833-260619-2_166: *id424 + 1833-260619-3_207: *id425 + 1833-260619-4_204: *id426 + 1833-290519-2_102: &id469 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xTAxR5CmxD8= + 1833-290519-3_119: &id522 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oOKxNXlH0j8= + 1833-290519-4_85: &id561 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TfTpEQAA0T8= + 1833-290519-1_92: + 1833-010719-1_8: *id427 + 1833-010719-2_18: *id428 + 1833-020719-1_115: *id429 + 1833-020719-2_15: *id430 + 1833-020719-3_139: *id431 + 1833-020719-4_256: *id432 + 1833-050619-1_75: *id433 + 1833-050619-2_129: *id434 + 1833-050619-3_125: *id435 + 1833-050619-4_68: *id436 + 1833-060619-1_137: *id437 + 1833-060619-2_78: *id438 + 1833-120619-1_114: *id439 + 1833-120619-2_104: *id440 + 1833-200619-1_159: *id441 + 1833-200619-2_278: *id442 + 1833-200619-3_97: *id443 + 1833-200619-4_76: *id444 + 1833-260619-1_116: *id445 + 1833-260619-2_130: *id446 + 1833-260619-3_170: *id447 + 1833-260619-4_198: *id448 + 1833-290519-2_120: &id504 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +ydmMV0cyD8= + 1833-290519-3_72: &id544 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q/PJktcj0z8= + 1833-290519-4_96: &id586 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JKdPMXHQvD8= + 1833-290519-2_102: + 1833-010719-1_146: *id449 + 1833-010719-2_273: *id450 + 1833-020719-1_155: *id451 + 1833-020719-2_152: *id452 + 1833-020719-3_139: *id453 + 1833-020719-4_300: *id454 + 1833-050619-1_75: *id455 + 1833-050619-2_129: *id456 + 1833-050619-3_125: *id457 + 1833-050619-4_86: *id458 + 1833-060619-1_137: *id459 + 1833-060619-2_64: *id460 + 1833-120619-1_114: *id461 + 1833-120619-2_104: *id462 + 1833-200619-3_89: *id463 + 1833-200619-4_70: *id464 + 1833-260619-1_10: *id465 + 1833-260619-2_123: *id466 + 1833-260619-3_119: *id467 + 1833-260619-4_204: *id468 + 1833-290519-1_138: *id469 + 1833-290519-3_72: &id545 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZEs3ArW1yj8= + 1833-290519-4_85: &id562 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7LmdjWJxyj8= + 1833-290519-2_104: + 1833-010719-1_8: *id470 + 1833-010719-2_227: *id471 + 1833-020719-2_14: *id472 + 1833-020719-3_123: *id473 + 1833-020719-4_256: *id474 + 1833-050619-4_68: *id475 + 1833-260619-1_104: *id476 + 1833-260619-4_178: *id477 + 1833-290519-3_119: &id523 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gvgEXMN/zz8= + 1833-290519-2_116: + 1833-010719-1_219: *id478 + 1833-010719-2_135: *id479 + 1833-020719-1_147: *id480 + 1833-020719-2_131: *id481 + 1833-020719-3_154: *id482 + 1833-200619-1_159: *id483 + 1833-260619-1_116: *id484 + 1833-260619-2_130: *id485 + 1833-260619-3_170: *id486 + 1833-260619-4_198: *id487 + 1833-290519-2_120: + 1833-010719-1_229: *id488 + 1833-010719-2_269: *id489 + 1833-020719-1_115: *id490 + 1833-020719-2_87: *id491 + 1833-020719-3_166: *id492 + 1833-020719-4_278: *id493 + 1833-050619-4_84: *id494 + 1833-060619-2_78: *id495 + 1833-200619-1_155: *id496 + 1833-200619-2_278: *id497 + 1833-200619-3_97: *id498 + 1833-200619-4_76: *id499 + 1833-260619-1_126: *id500 + 1833-260619-2_166: *id501 + 1833-260619-3_207: *id502 + 1833-260619-4_226: *id503 + 1833-290519-1_92: *id504 + 1833-290519-4_96: &id587 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xoXCDvRkzT8= + 1833-290519-3_119: + 1833-010719-1_146: *id505 + 1833-010719-2_227: *id506 + 1833-020719-1_147: *id507 + 1833-020719-2_14: *id508 + 1833-020719-3_123: *id509 + 1833-020719-4_256: *id510 + 1833-050619-2_129: *id511 + 1833-050619-3_125: *id512 + 1833-050619-4_84: *id513 + 1833-060619-2_78: *id514 + 1833-200619-1_155: *id515 + 1833-200619-3_89: *id516 + 1833-200619-4_70: *id517 + 1833-260619-1_104: *id518 + 1833-260619-2_123: *id519 + 1833-260619-3_119: *id520 + 1833-260619-4_178: *id521 + 1833-290519-1_138: *id522 + 1833-290519-2_104: *id523 + 1833-290519-4_96: &id588 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +YPGs28Czz8= + 1833-290519-3_72: + 1833-010719-1_229: *id524 + 1833-010719-2_233: *id525 + 1833-020719-1_155: *id526 + 1833-020719-2_152: *id527 + 1833-020719-3_166: *id528 + 1833-020719-4_300: *id529 + 1833-050619-1_75: *id530 + 1833-050619-4_86: *id531 + 1833-060619-1_137: *id532 + 1833-060619-2_64: *id533 + 1833-120619-1_114: *id534 + 1833-120619-2_104: *id535 + 1833-200619-1_159: *id536 + 1833-200619-2_278: *id537 + 1833-200619-3_97: *id538 + 1833-200619-4_76: *id539 + 1833-260619-1_10: *id540 + 1833-260619-2_130: *id541 + 1833-260619-3_170: *id542 + 1833-260619-4_198: *id543 + 1833-290519-1_92: *id544 + 1833-290519-2_102: *id545 + 1833-290519-4_85: &id563 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lA7HPLffxT8= + 1833-290519-4_85: + 1833-010719-1_146: *id546 + 1833-010719-2_227: *id547 + 1833-020719-1_155: *id548 + 1833-020719-2_14: *id549 + 1833-020719-3_123: *id550 + 1833-020719-4_256: *id551 + 1833-050619-4_84: *id552 + 1833-060619-2_78: *id553 + 1833-200619-1_159: *id554 + 1833-200619-3_97: *id555 + 1833-200619-4_76: *id556 + 1833-260619-1_10: *id557 + 1833-260619-2_123: *id558 + 1833-260619-3_119: *id559 + 1833-260619-4_178: *id560 + 1833-290519-1_138: *id561 + 1833-290519-2_102: *id562 + 1833-290519-3_72: *id563 + 1833-290519-4_96: + 1833-010719-1_6: *id564 + 1833-010719-2_18: *id565 + 1833-020719-1_115: *id566 + 1833-020719-2_15: *id567 + 1833-020719-3_139: *id568 + 1833-020719-4_278: *id569 + 1833-050619-1_75: *id570 + 1833-050619-2_129: *id571 + 1833-050619-3_125: *id572 + 1833-050619-4_68: *id573 + 1833-060619-1_137: *id574 + 1833-060619-2_64: *id575 + 1833-120619-1_114: *id576 + 1833-120619-2_104: *id577 + 1833-200619-1_155: *id578 + 1833-200619-2_278: *id579 + 1833-200619-3_89: *id580 + 1833-200619-4_70: *id581 + 1833-260619-1_116: *id582 + 1833-260619-2_130: *id583 + 1833-260619-3_170: *id584 + 1833-260619-4_198: *id585 + 1833-290519-1_92: *id586 + 1833-290519-2_120: *id587 + 1833-290519-3_119: *id588 +_node: &id591 + 1833-010719-1_146: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id589 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + kgAAAAAAAAA= + 1833-010719-1_219: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + 2wAAAAAAAAA= + 1833-010719-1_221: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + 3QAAAAAAAAA= + 1833-010719-1_229: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + 5QAAAAAAAAA= + 1833-010719-1_6: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + BgAAAAAAAAA= + 1833-010719-1_8: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + CAAAAAAAAAA= + 1833-010719-2_135: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + hwAAAAAAAAA= + 1833-010719-2_18: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + EgAAAAAAAAA= + 1833-010719-2_227: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + 4wAAAAAAAAA= + 1833-010719-2_229: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + 5QAAAAAAAAA= + 1833-010719-2_233: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + 6QAAAAAAAAA= + 1833-010719-2_269: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + DQEAAAAAAAA= + 1833-010719-2_273: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + EQEAAAAAAAA= + 1833-020719-1_115: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + cwAAAAAAAAA= + 1833-020719-1_147: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + kwAAAAAAAAA= + 1833-020719-1_155: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + mwAAAAAAAAA= + 1833-020719-2_131: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + gwAAAAAAAAA= + 1833-020719-2_14: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + DgAAAAAAAAA= + 1833-020719-2_15: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + DwAAAAAAAAA= + 1833-020719-2_152: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + mAAAAAAAAAA= + 1833-020719-2_87: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + VwAAAAAAAAA= + 1833-020719-3_123: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + ewAAAAAAAAA= + 1833-020719-3_139: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + iwAAAAAAAAA= + 1833-020719-3_154: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + mgAAAAAAAAA= + 1833-020719-3_166: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + pgAAAAAAAAA= + 1833-020719-4_256: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + AAEAAAAAAAA= + 1833-020719-4_278: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + FgEAAAAAAAA= + 1833-020719-4_300: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + LAEAAAAAAAA= + 1833-050619-1_75: + action_id: 1833-050619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + SwAAAAAAAAA= + 1833-050619-2_129: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + gQAAAAAAAAA= + 1833-050619-3_125: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + fQAAAAAAAAA= + 1833-050619-4_68: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + RAAAAAAAAAA= + 1833-050619-4_84: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + VAAAAAAAAAA= + 1833-050619-4_86: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + VgAAAAAAAAA= + 1833-060619-1_137: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + iQAAAAAAAAA= + 1833-060619-2_64: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + QAAAAAAAAAA= + 1833-060619-2_78: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + TgAAAAAAAAA= + 1833-120619-1_114: + action_id: 1833-120619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + cgAAAAAAAAA= + 1833-120619-2_104: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + aAAAAAAAAAA= + 1833-200619-1_155: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + mwAAAAAAAAA= + 1833-200619-1_159: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + nwAAAAAAAAA= + 1833-200619-2_278: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + FgEAAAAAAAA= + 1833-200619-3_89: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + WQAAAAAAAAA= + 1833-200619-3_97: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + YQAAAAAAAAA= + 1833-200619-4_70: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + RgAAAAAAAAA= + 1833-200619-4_76: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + TAAAAAAAAAA= + 1833-260619-1_10: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + CgAAAAAAAAA= + 1833-260619-1_104: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + aAAAAAAAAAA= + 1833-260619-1_116: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + dAAAAAAAAAA= + 1833-260619-1_126: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + fgAAAAAAAAA= + 1833-260619-2_123: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + ewAAAAAAAAA= + 1833-260619-2_130: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + ggAAAAAAAAA= + 1833-260619-2_166: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + pgAAAAAAAAA= + 1833-260619-3_119: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + dwAAAAAAAAA= + 1833-260619-3_170: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + qgAAAAAAAAA= + 1833-260619-3_207: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + zwAAAAAAAAA= + 1833-260619-4_178: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + sgAAAAAAAAA= + 1833-260619-4_198: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + xgAAAAAAAAA= + 1833-260619-4_204: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + zAAAAAAAAAA= + 1833-260619-4_226: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + 4gAAAAAAAAA= + 1833-290519-1_138: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + igAAAAAAAAA= + 1833-290519-1_92: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + XAAAAAAAAAA= + 1833-290519-2_102: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + ZgAAAAAAAAA= + 1833-290519-2_104: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + aAAAAAAAAAA= + 1833-290519-2_116: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + dAAAAAAAAAA= + 1833-290519-2_120: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + eAAAAAAAAAA= + 1833-290519-3_119: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + dwAAAAAAAAA= + 1833-290519-3_72: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + SAAAAAAAAAA= + 1833-290519-4_85: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + VQAAAAAAAAA= + 1833-290519-4_96: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id589 + - !!binary | + YAAAAAAAAAA= +adjlist_inner_dict_factory: &id590 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id590 +edge_attr_dict_factory: *id590 +graph: {} +node_dict_factory: *id590 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id591 diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-2.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-2.yaml new file mode 100644 index 000000000..798e45f2b --- /dev/null +++ b/actions/identify-neurons/data/1833-graphs/graph-group-2.yaml @@ -0,0 +1,2887 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1833-010719-1_202: + 1833-010719-2_249: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + yqFsP4Htoj8= + 1833-020719-1_143: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NDo9TtzPqD8= + 1833-020719-2_119: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T5kzVuy3uD8= + 1833-020719-3_147: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0gJzTxHirj8= + 1833-020719-4_260: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qtN0yQTEwD8= + 1833-050619-1_99: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 3013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M7rbP5LytT8= + 1833-050619-2_135: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vGMj7iBHtz8= + 1833-050619-3_133: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KPrdJybGtj8= + 1833-060619-1_168: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z5MaP9qrtj8= + 1833-060619-2_106: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KgZKggRAtz8= + 1833-120619-1_120: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 6016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y+zMQjIXuj8= + 1833-120619-2_118: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P0Xgx8optT8= + 1833-120619-3_104: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 1019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gPgm/+9vwD8= + 1833-200619-1_228: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + huHO/ZvNuT8= + 1833-200619-4_115: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4c6pcwXtuz8= + 1833-260619-2_148: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TFnaapCxqj8= + 1833-290519-2_112: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lqNp8ukCvz8= + 1833-010719-1_231: + 1833-010719-2_29: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MywAlCA0oj8= + 1833-020719-1_149: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DRpPd3eQsz8= + 1833-020719-2_120: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pAIAPgG0zD8= + 1833-020719-3_168: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LUF+5QhF0D8= + 1833-050619-2_111: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0kaJPy/kxz8= + 1833-050619-3_111: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IVX6e3EdyT8= + 1833-120619-2_142: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UTg6iFvBxD8= + 1833-200619-1_239: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bwqjNE/1wj8= + 1833-200619-2_325: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mhw994EkwT8= + 1833-200619-3_142: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IA9tN81Ewj8= + 1833-200619-4_117: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bA0DbSm4wz8= + 1833-260619-1_128: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + or2uBwMUvj8= + 1833-260619-2_168: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JnCyytFuvD8= + 1833-260619-3_198: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2qiZ5MqAvT8= + 1833-260619-4_216: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AC8uRjhrvj8= + 1833-290519-2_100: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SSgt2t4Wxz8= + 1833-010719-2_249: + 1833-010719-1_202: *id002 + 1833-020719-1_143: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lyUfLzn2mj8= + 1833-020719-2_119: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + naKHxkzsuj8= + 1833-020719-3_147: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KVNj9WmNsD8= + 1833-020719-4_260: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8UvPTievwT8= + 1833-050619-1_99: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4q2icdYbtj8= + 1833-050619-2_135: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bS/iNlZAtz8= + 1833-050619-3_133: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p78Y+xU4tz8= + 1833-060619-1_168: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 3232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JG5RjpItz8= + 1833-060619-2_106: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5CUe00lbuD8= + 1833-120619-1_120: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 7804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uidQ6WWJvz8= + 1833-120619-2_118: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5MsX/AQctT8= + 1833-120619-3_104: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q/AVNRT/wT8= + 1833-200619-1_228: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C9kLCQ++uj8= + 1833-200619-4_115: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yCxJQGgZvj8= + 1833-260619-2_148: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mlAa6zuiqj8= + 1833-290519-2_112: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Yza1b3bdwD8= + 1833-010719-2_271: + 1833-020719-2_120: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q6piWt7vzj8= + 1833-050619-2_111: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v5cuPElO1D8= + 1833-290519-2_132: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PD5Uy3yCzj8= + 1833-010719-2_29: + 1833-010719-1_231: *id003 + 1833-020719-1_149: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3ifWvvECtD8= + 1833-020719-2_93: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xrduqnwczz8= + 1833-020719-3_168: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z8dIpBvi0D8= + 1833-050619-2_89: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v7JFcEt4yj8= + 1833-050619-3_111: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AKP9fahqyz8= + 1833-120619-2_142: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + znUKsdgYxj8= + 1833-200619-1_239: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R7uRVr2pxD8= + 1833-200619-2_325: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GtUs2MB5wj8= + 1833-200619-3_142: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LNC3invWwz8= + 1833-200619-4_117: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vpPPwU+JxT8= + 1833-260619-1_128: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dyasu8iswT8= + 1833-260619-2_168: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tSdjq0RYwD8= + 1833-260619-3_198: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pgQecbHGwD8= + 1833-260619-4_216: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UAAvLDKVwD8= + 1833-290519-2_100: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PZDqprJDyT8= + 1833-020719-1_143: + 1833-010719-1_202: *id004 + 1833-010719-2_249: *id005 + 1833-020719-2_119: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GglSi8ofuD8= + 1833-020719-3_147: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w55dIgAprT8= + 1833-020719-4_260: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jK8Zkf26wD8= + 1833-050619-1_99: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ks9nOEGctj8= + 1833-050619-2_135: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 545, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UFBcHKgntz8= + 1833-050619-3_133: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84242, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iAgX71V1tz8= + 1833-060619-1_168: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dpI37G6Btz8= + 1833-060619-2_106: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84389, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TIivpNmKuD8= + 1833-120619-1_120: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xD2KbPwuvz8= + 1833-120619-2_118: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RlCggmcvsT8= + 1833-120619-3_104: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QnyxToWxwT8= + 1833-200619-1_228: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6BewjSE2uj8= + 1833-200619-4_115: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mPl1EwTOvT8= + 1833-260619-2_148: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2LN7pzKJsT8= + 1833-290519-2_112: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + abQG6eOowD8= + 1833-020719-1_149: + 1833-010719-1_231: *id006 + 1833-010719-2_29: *id007 + 1833-020719-2_93: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4X2j2OZLzT8= + 1833-020719-3_168: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AG3AM/tmyz8= + 1833-050619-2_89: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 545, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uT2dW408yD8= + 1833-050619-3_111: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84242, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SdeOmGpXyT8= + 1833-120619-2_142: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L/kEf11uxT8= + 1833-200619-1_239: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nsDw9vBExD8= + 1833-200619-2_325: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JuiYKTzhwD8= + 1833-200619-3_142: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 85985, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R0Wb20lqwj8= + 1833-200619-4_117: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w/DZo+XAxD8= + 1833-260619-1_128: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J3A5XnmKwD8= + 1833-260619-2_168: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S3FkRw0Ovz8= + 1833-260619-3_198: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rUzhVa34wD8= + 1833-260619-4_216: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ifNJ3cflvT8= + 1833-290519-2_132: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UbGRDdtVxT8= + 1833-020719-2_119: + 1833-010719-1_202: *id008 + 1833-010719-2_249: *id009 + 1833-020719-1_143: *id010 + 1833-020719-3_147: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /WLVmoS7qz8= + 1833-020719-4_260: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rBtknOUssz8= + 1833-050619-1_99: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vb1nd2xjvT8= + 1833-050619-2_135: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + olmLL7B/vD8= + 1833-050619-3_133: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 86347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JxQDK9m0vD8= + 1833-060619-1_168: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2928, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oq/PatKwuz8= + 1833-060619-2_106: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 94, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4JcPS+4Yuz8= + 1833-120619-1_120: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ciiQI7p6tj8= + 1833-120619-2_118: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sr6GRX1ctj8= + 1833-120619-3_104: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 2503, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FILN8BkhvT8= + 1833-200619-1_228: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z1K/dcyOuT8= + 1833-200619-2_325: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3246, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AvwbxUoKvj8= + 1833-200619-3_142: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yVA6HokUwD8= + 1833-200619-4_115: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tJQQMF+yuD8= + 1833-260619-1_128: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bw0qvpu+wD8= + 1833-260619-2_148: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lNdgldELwD8= + 1833-260619-3_198: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + obbDqmjbwj8= + 1833-260619-4_216: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C7p5ozbYxj8= + 1833-290519-2_112: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Uhn0fyMzvD8= + 1833-020719-2_120: + 1833-010719-1_231: *id011 + 1833-010719-2_271: *id012 + 1833-050619-2_89: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X3wldRKh1j8= + 1833-290519-2_100: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /R62WI4q0T8= + 1833-020719-2_93: + 1833-010719-2_29: *id013 + 1833-020719-1_149: *id014 + 1833-020719-3_168: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qZqdVF64xD8= + 1833-050619-2_111: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9oFBNpL7zz8= + 1833-050619-3_111: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 86347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5iwZThQR0T8= + 1833-120619-2_142: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nUcsCybQzT8= + 1833-200619-1_239: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OZ2XODJXyj8= + 1833-200619-4_117: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4EQd2WNUyT8= + 1833-260619-2_168: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9eUD8EC/yj8= + 1833-290519-2_132: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2D+GLIaZyT8= + 1833-020719-3_147: + 1833-010719-1_202: *id015 + 1833-010719-2_249: *id016 + 1833-020719-1_143: *id017 + 1833-020719-2_119: *id018 + 1833-020719-4_260: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + APTwuNBFuD8= + 1833-050619-1_99: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 6962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K0ofyfB/uT8= + 1833-050619-2_135: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0Y6/dewquT8= + 1833-050619-3_133: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YWqJwkp0uT8= + 1833-060619-1_168: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s36oc5wAuT8= + 1833-060619-2_106: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lPLo+X63uD8= + 1833-120619-1_120: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6VtT/xDPtz8= + 1833-120619-2_118: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JpH+mW7Ssz8= + 1833-120619-3_104: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5aLq69q+vD8= + 1833-200619-1_228: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JuxNeo/itj8= + 1833-200619-2_325: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HvB2M/aEwD8= + 1833-200619-3_142: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UKw3DuDvwT8= + 1833-200619-4_115: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m/VdTx6ztz8= + 1833-260619-1_128: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7dgEhV01wj8= + 1833-260619-2_148: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1L0pqifVsz8= + 1833-260619-3_198: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lA/dlBYrxT8= + 1833-260619-4_216: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xbP3/P17yj8= + 1833-290519-2_112: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8e5MYUCYvT8= + 1833-020719-3_168: + 1833-010719-1_231: *id019 + 1833-010719-2_29: *id020 + 1833-020719-1_149: *id021 + 1833-020719-2_93: *id022 + 1833-050619-2_89: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YMMir+gezz8= + 1833-050619-3_111: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E3s2KP9Uzz8= + 1833-120619-2_142: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wVNnl7TNzj8= + 1833-200619-1_239: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iDjQb0MD0T8= + 1833-200619-4_117: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mW0MarPO0D8= + 1833-260619-2_168: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +NcjGCic0T8= + 1833-290519-2_132: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gus9yrvLyj8= + 1833-020719-4_260: + 1833-010719-1_202: *id023 + 1833-010719-2_249: *id024 + 1833-020719-1_143: *id025 + 1833-020719-2_119: *id026 + 1833-020719-3_147: *id027 + 1833-050619-1_99: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 9291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dqI/R0L8wD8= + 1833-050619-2_135: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 7444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IUKodMXlwD8= + 1833-050619-3_133: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7OwBFcvfwD8= + 1833-060619-1_168: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 7722, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gh0KMAkVwD8= + 1833-060619-2_106: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R0ovZ8g7wD8= + 1833-120619-1_120: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 12294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IxWusUMitT8= + 1833-120619-2_142: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GNdQihRUuD8= + 1833-120619-3_104: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UuSjtVbatD8= + 1833-200619-1_228: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D2sMGPmwuD8= + 1833-200619-2_325: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JE3/F8Cvuz8= + 1833-200619-3_142: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yO1g1xMivT8= + 1833-200619-4_115: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GfuJ5QCUtz8= + 1833-260619-1_128: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + exApI2I9wD8= + 1833-260619-2_168: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vSc70Ybwvz8= + 1833-260619-3_198: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vEtgyfZxwT8= + 1833-260619-4_216: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /jf9Ok4txD8= + 1833-290519-2_112: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BwNOJvG/vD8= + 1833-050619-1_99: + 1833-010719-1_202: *id028 + 1833-010719-2_249: *id029 + 1833-020719-1_143: *id030 + 1833-020719-2_119: *id031 + 1833-020719-3_147: *id032 + 1833-020719-4_260: *id033 + 1833-050619-2_135: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lj8v5W96iz8= + 1833-050619-3_133: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CRbruw07jD8= + 1833-060619-1_168: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J8eq76YilD8= + 1833-060619-2_106: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7MoPgxrwnj8= + 1833-120619-1_120: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uZaCFvmYuD8= + 1833-120619-2_118: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ANDdhe/Stj8= + 1833-120619-3_104: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4OZc/71nvT8= + 1833-200619-1_228: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85092, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UMNdLORIvD8= + 1833-200619-2_325: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7D+UjzQNwT8= + 1833-200619-3_142: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jI7uyLW1wT8= + 1833-200619-4_115: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HTzSoGMMuz8= + 1833-260619-1_128: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ps4i8xxYxD8= + 1833-260619-2_148: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uFtuqzhUvD8= + 1833-260619-3_198: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3272, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fNI+4/U+xT8= + 1833-260619-4_216: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J9rE4HcExz8= + 1833-290519-2_112: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /LrNmDfquj8= + 1833-050619-2_111: + 1833-010719-1_231: *id034 + 1833-010719-2_271: *id035 + 1833-020719-2_93: *id036 + 1833-290519-2_100: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +87Os8ETzj8= + 1833-050619-2_135: + 1833-010719-1_202: *id037 + 1833-010719-2_249: *id038 + 1833-020719-1_143: *id039 + 1833-020719-2_119: *id040 + 1833-020719-3_147: *id041 + 1833-020719-4_260: *id042 + 1833-050619-1_99: *id043 + 1833-050619-3_133: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + furxMbmaiT8= + 1833-060619-1_168: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EYFdM7eckD8= + 1833-060619-2_106: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9/i5GNFGmT8= + 1833-120619-1_120: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ST+o+uP/uD8= + 1833-120619-2_118: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83935, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gxlNQrpBtj8= + 1833-120619-3_104: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OFsuAKCzvT8= + 1833-200619-1_228: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MXeKSyswvT8= + 1833-200619-2_325: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nhSD4EG9wD8= + 1833-200619-3_142: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MsWu3VJnwT8= + 1833-200619-4_115: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A9YvRpRcuz8= + 1833-260619-1_128: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ulg89XzJwz8= + 1833-260619-2_148: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v7KxGGAPvj8= + 1833-260619-3_198: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + soGbj9+6xD8= + 1833-290519-2_112: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s6bmi/wWuz8= + 1833-050619-2_89: + 1833-010719-2_29: *id044 + 1833-020719-1_149: *id045 + 1833-020719-2_120: *id046 + 1833-020719-3_168: *id047 + 1833-050619-3_111: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NF1CrBkImT8= + 1833-120619-2_142: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83935, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h1ly4IFuyD8= + 1833-200619-1_239: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qphMQb+jwj8= + 1833-200619-4_117: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sRCFXE81wj8= + 1833-260619-2_168: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B7SWr8J0xT8= + 1833-260619-4_216: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M49A/01nxj8= + 1833-290519-2_132: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MIZgrZLPyz8= + 1833-050619-3_111: + 1833-010719-1_231: *id048 + 1833-010719-2_29: *id049 + 1833-020719-1_149: *id050 + 1833-020719-2_93: *id051 + 1833-020719-3_168: *id052 + 1833-050619-2_89: *id053 + 1833-120619-2_142: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oNQUDADXyD8= + 1833-200619-1_239: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /MReVp9Dwz8= + 1833-200619-4_117: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jzHlbf25wj8= + 1833-260619-2_168: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rCIaCnE6xj8= + 1833-290519-2_132: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MTb85YpTzD8= + 1833-050619-3_133: + 1833-010719-1_202: *id054 + 1833-010719-2_249: *id055 + 1833-020719-1_143: *id056 + 1833-020719-2_119: *id057 + 1833-020719-3_147: *id058 + 1833-020719-4_260: *id059 + 1833-050619-1_99: *id060 + 1833-050619-2_135: *id061 + 1833-060619-1_168: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ioSFUre5kT8= + 1833-060619-2_106: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dpQlav8amj8= + 1833-120619-1_120: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 78847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DRnUUp0MuD8= + 1833-120619-2_118: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tZXZRkNptj8= + 1833-120619-3_104: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IAm+Y7X7vD8= + 1833-200619-1_228: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2efpjfVOvT8= + 1833-200619-2_325: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + srtejYgJwT8= + 1833-200619-3_142: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hnu30JOxwT8= + 1833-200619-4_115: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fslIZDBquz8= + 1833-260619-1_128: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H23l8Ow8xD8= + 1833-260619-2_148: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1cnkSpvMvT8= + 1833-260619-3_198: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O8ajreNVxT8= + 1833-260619-4_216: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sf86dxATxz8= + 1833-290519-2_112: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + THpgH42puj8= + 1833-060619-1_168: + 1833-010719-1_202: *id062 + 1833-010719-2_249: *id063 + 1833-020719-1_143: *id064 + 1833-020719-2_119: *id065 + 1833-020719-3_147: *id066 + 1833-020719-4_260: *id067 + 1833-050619-1_99: *id068 + 1833-050619-2_135: *id069 + 1833-050619-3_133: *id070 + 1833-060619-2_106: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aUC07a+Rkj8= + 1833-120619-1_120: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81828, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iMD3Ok9Ntz8= + 1833-120619-2_118: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RERYcex5tT8= + 1833-120619-3_104: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LBVum0LIuz8= + 1833-200619-1_228: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hYsrVE8TvD8= + 1833-200619-2_325: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4AHlAdZ3vz8= + 1833-200619-3_142: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bqWwRC9VwD8= + 1833-200619-4_115: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LYBE0f4iuj8= + 1833-260619-1_128: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x2fT2ZOwwj8= + 1833-260619-2_148: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E2x7RfWCvT8= + 1833-260619-3_198: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 1703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + niU3PxiQwz8= + 1833-260619-4_216: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CbK2T7tvxT8= + 1833-290519-2_112: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1572, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L7Qc/z4suT8= + 1833-060619-2_106: + 1833-010719-1_202: *id071 + 1833-010719-2_249: *id072 + 1833-020719-1_143: *id073 + 1833-020719-2_119: *id074 + 1833-020719-3_147: *id075 + 1833-020719-4_260: *id076 + 1833-050619-1_99: *id077 + 1833-050619-2_135: *id078 + 1833-050619-3_133: *id079 + 1833-060619-1_168: *id080 + 1833-120619-1_120: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nHmk1209tz8= + 1833-120619-2_118: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81379, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j9E/+xKltT8= + 1833-120619-3_104: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5lYuojcYvD8= + 1833-200619-1_228: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ebS0TGBCvT8= + 1833-200619-2_325: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6/d/PZNMwD8= + 1833-200619-3_142: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +qjJbdO5wD8= + 1833-200619-4_115: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S4Og08CAuz8= + 1833-260619-1_128: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0QZ3ubtmwj8= + 1833-260619-2_148: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IOK3UnH/vj8= + 1833-260619-3_198: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SReO9qCLxD8= + 1833-260619-4_216: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9cj19LVdxj8= + 1833-290519-2_112: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xCWnPYQPuT8= + 1833-120619-1_120: + 1833-010719-1_202: *id081 + 1833-010719-2_249: *id082 + 1833-020719-1_143: *id083 + 1833-020719-2_119: *id084 + 1833-020719-3_147: *id085 + 1833-020719-4_260: *id086 + 1833-050619-1_99: *id087 + 1833-050619-2_135: *id088 + 1833-050619-3_133: *id089 + 1833-060619-1_168: *id090 + 1833-060619-2_106: *id091 + 1833-120619-2_142: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2385, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qSnhG0XVrD8= + 1833-120619-3_104: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I2Ja4KsQpT8= + 1833-200619-1_228: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wus8/2vAsT8= + 1833-200619-2_325: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KNHxtq5jtj8= + 1833-200619-3_142: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eLOCBjJhtz8= + 1833-200619-4_115: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aBQpIuogrj8= + 1833-260619-1_128: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NXvTvq8Cvz8= + 1833-260619-2_168: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 98pKpMp0vj8= + 1833-260619-3_198: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 6275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eIwC0FKwwT8= + 1833-260619-4_216: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 8228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PeroSWDSxD8= + 1833-290519-2_112: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83400, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YcX85mR7tj8= + 1833-120619-2_118: + 1833-010719-1_202: *id092 + 1833-010719-2_249: *id093 + 1833-020719-1_143: *id094 + 1833-020719-2_119: *id095 + 1833-020719-3_147: *id096 + 1833-050619-1_99: *id097 + 1833-050619-2_135: *id098 + 1833-050619-3_133: *id099 + 1833-060619-1_168: *id100 + 1833-060619-2_106: *id101 + 1833-200619-1_228: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2fUt839YvD8= + 1833-200619-4_115: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VJIXGz4dvj8= + 1833-260619-2_148: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nRfpxqnfvD8= + 1833-290519-2_132: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H4U8kJEgwj8= + 1833-120619-2_142: + 1833-010719-1_231: *id102 + 1833-010719-2_29: *id103 + 1833-020719-1_149: *id104 + 1833-020719-2_93: *id105 + 1833-020719-3_168: *id106 + 1833-020719-4_260: *id107 + 1833-050619-2_89: *id108 + 1833-050619-3_111: *id109 + 1833-120619-1_120: *id110 + 1833-120619-3_104: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ma5wAbIopj8= + 1833-200619-1_239: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iCCRJp9zuD8= + 1833-200619-2_325: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xiITkP1Xsj8= + 1833-200619-3_142: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cv+srMLgsT8= + 1833-200619-4_117: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uifng5tJtj8= + 1833-260619-1_128: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85413, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OoXBm0+QvD8= + 1833-260619-2_168: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xIp8VdQcvD8= + 1833-260619-3_198: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9lsn7NWevj8= + 1833-260619-4_216: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CxgMz09Lwj8= + 1833-290519-2_112: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gx91AYxWuz8= + 1833-120619-3_104: + 1833-010719-1_202: *id111 + 1833-010719-2_249: *id112 + 1833-020719-1_143: *id113 + 1833-020719-2_119: *id114 + 1833-020719-3_147: *id115 + 1833-020719-4_260: *id116 + 1833-050619-1_99: *id117 + 1833-050619-2_135: *id118 + 1833-050619-3_133: *id119 + 1833-060619-1_168: *id120 + 1833-060619-2_106: *id121 + 1833-120619-1_120: *id122 + 1833-120619-2_142: *id123 + 1833-200619-1_228: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t9rS6m98tD8= + 1833-200619-2_325: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M6xTCvAvtz8= + 1833-200619-3_142: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cJch9BXZtz8= + 1833-200619-4_115: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f8Itm7pisT8= + 1833-260619-1_128: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rqZbzJ+2vz8= + 1833-260619-2_168: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3mG0gBJNvz8= + 1833-260619-3_198: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8Vgx+cSTwT8= + 1833-260619-4_216: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aSJMpOofxT8= + 1833-290519-2_112: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K3VWT8qPvD8= + 1833-200619-1_228: + 1833-010719-1_202: *id124 + 1833-010719-2_249: *id125 + 1833-020719-1_143: *id126 + 1833-020719-2_119: *id127 + 1833-020719-3_147: *id128 + 1833-020719-4_260: *id129 + 1833-050619-1_99: *id130 + 1833-050619-2_135: *id131 + 1833-050619-3_133: *id132 + 1833-060619-1_168: *id133 + 1833-060619-2_106: *id134 + 1833-120619-1_120: *id135 + 1833-120619-2_118: *id136 + 1833-120619-3_104: *id137 + 1833-200619-4_115: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5Qk1SBVEmD8= + 1833-260619-2_148: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t/MnCEwBuz8= + 1833-290519-2_100: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QrdA3ArhwT8= + 1833-200619-1_239: + 1833-010719-1_231: *id138 + 1833-010719-2_29: *id139 + 1833-020719-1_149: *id140 + 1833-020719-2_93: *id141 + 1833-020719-3_168: *id142 + 1833-050619-2_89: *id143 + 1833-050619-3_111: *id144 + 1833-120619-2_142: *id145 + 1833-200619-2_325: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D6tSzs64pD8= + 1833-200619-3_142: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fjMXQ6BNoD8= + 1833-200619-4_117: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oqVMwddWjz8= + 1833-260619-1_128: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N9JjWw1Qsj8= + 1833-260619-2_168: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kIXRNhe+sT8= + 1833-260619-3_198: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cb5pYxYwsT8= + 1833-260619-4_216: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fXb+LWFAsj8= + 1833-290519-2_112: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lme3TwyQwj8= + 1833-200619-2_325: + 1833-010719-1_231: *id146 + 1833-010719-2_29: *id147 + 1833-020719-1_149: *id148 + 1833-020719-2_119: *id149 + 1833-020719-3_147: *id150 + 1833-020719-4_260: *id151 + 1833-050619-1_99: *id152 + 1833-050619-2_135: *id153 + 1833-050619-3_133: *id154 + 1833-060619-1_168: *id155 + 1833-060619-2_106: *id156 + 1833-120619-1_120: *id157 + 1833-120619-2_142: *id158 + 1833-120619-3_104: *id159 + 1833-200619-1_239: *id160 + 1833-200619-3_142: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Phpzjk3tkD8= + 1833-200619-4_117: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +V2kyNvVoz8= + 1833-260619-1_128: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KeoOPK52rj8= + 1833-260619-2_168: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xrFCj3/zqz8= + 1833-260619-3_198: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6MSdjbD4rT8= + 1833-260619-4_216: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e3QK9GkQsj8= + 1833-290519-2_112: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PZLLh9bvvT8= + 1833-200619-3_142: + 1833-010719-1_231: *id161 + 1833-010719-2_29: *id162 + 1833-020719-1_149: *id163 + 1833-020719-2_119: *id164 + 1833-020719-3_147: *id165 + 1833-020719-4_260: *id166 + 1833-050619-1_99: *id167 + 1833-050619-2_135: *id168 + 1833-050619-3_133: *id169 + 1833-060619-1_168: *id170 + 1833-060619-2_106: *id171 + 1833-120619-1_120: *id172 + 1833-120619-2_142: *id173 + 1833-120619-3_104: *id174 + 1833-200619-1_239: *id175 + 1833-200619-2_325: *id176 + 1833-200619-4_117: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FAUftmMQnD8= + 1833-260619-1_128: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8xjQw68VsT8= + 1833-260619-2_168: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1Q0wTEiHsD8= + 1833-260619-3_198: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3IbEDK6bsD8= + 1833-260619-4_216: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zi8X4Ni1sj8= + 1833-290519-2_112: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hfsz3wq0vj8= + 1833-200619-4_115: + 1833-010719-1_202: *id177 + 1833-010719-2_249: *id178 + 1833-020719-1_143: *id179 + 1833-020719-2_119: *id180 + 1833-020719-3_147: *id181 + 1833-020719-4_260: *id182 + 1833-050619-1_99: *id183 + 1833-050619-2_135: *id184 + 1833-050619-3_133: *id185 + 1833-060619-1_168: *id186 + 1833-060619-2_106: *id187 + 1833-120619-1_120: *id188 + 1833-120619-2_118: *id189 + 1833-120619-3_104: *id190 + 1833-200619-1_228: *id191 + 1833-260619-2_148: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5QdaQiFsvj8= + 1833-290519-2_100: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ghyzbpzQwj8= + 1833-200619-4_117: + 1833-010719-1_231: *id192 + 1833-010719-2_29: *id193 + 1833-020719-1_149: *id194 + 1833-020719-2_93: *id195 + 1833-020719-3_168: *id196 + 1833-050619-2_89: *id197 + 1833-050619-3_111: *id198 + 1833-120619-2_142: *id199 + 1833-200619-1_239: *id200 + 1833-200619-2_325: *id201 + 1833-200619-3_142: *id202 + 1833-260619-1_128: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eazxCUtVsz8= + 1833-260619-2_168: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zp6Q8UgTsz8= + 1833-260619-3_198: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xb5dlUV0sj8= + 1833-260619-4_216: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5fsB/aiysz8= + 1833-290519-2_112: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tw2xR1WBwT8= + 1833-260619-1_128: + 1833-010719-1_231: *id203 + 1833-010719-2_29: *id204 + 1833-020719-1_149: *id205 + 1833-020719-2_119: *id206 + 1833-020719-3_147: *id207 + 1833-020719-4_260: *id208 + 1833-050619-1_99: *id209 + 1833-050619-2_135: *id210 + 1833-050619-3_133: *id211 + 1833-060619-1_168: *id212 + 1833-060619-2_106: *id213 + 1833-120619-1_120: *id214 + 1833-120619-2_142: *id215 + 1833-120619-3_104: *id216 + 1833-200619-1_239: *id217 + 1833-200619-2_325: *id218 + 1833-200619-3_142: *id219 + 1833-200619-4_117: *id220 + 1833-260619-2_168: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Maps3lrwjj8= + 1833-260619-3_198: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EUi1uhwNoz8= + 1833-260619-4_216: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J6bgJsBWsj8= + 1833-290519-2_112: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jeCmG0ddwT8= + 1833-260619-2_148: + 1833-010719-1_202: *id221 + 1833-010719-2_249: *id222 + 1833-020719-1_143: *id223 + 1833-020719-2_119: *id224 + 1833-020719-3_147: *id225 + 1833-050619-1_99: *id226 + 1833-050619-2_135: *id227 + 1833-050619-3_133: *id228 + 1833-060619-1_168: *id229 + 1833-060619-2_106: *id230 + 1833-120619-2_118: *id231 + 1833-200619-1_228: *id232 + 1833-200619-4_115: *id233 + 1833-290519-2_100: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 33Q7SvqyxD8= + 1833-260619-2_168: + 1833-010719-1_231: *id234 + 1833-010719-2_29: *id235 + 1833-020719-1_149: *id236 + 1833-020719-2_93: *id237 + 1833-020719-3_168: *id238 + 1833-020719-4_260: *id239 + 1833-050619-2_89: *id240 + 1833-050619-3_111: *id241 + 1833-120619-1_120: *id242 + 1833-120619-2_142: *id243 + 1833-120619-3_104: *id244 + 1833-200619-1_239: *id245 + 1833-200619-2_325: *id246 + 1833-200619-3_142: *id247 + 1833-200619-4_117: *id248 + 1833-260619-1_128: *id249 + 1833-260619-3_198: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9zu6rItJoD8= + 1833-260619-4_216: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PeLkdGi0sD8= + 1833-290519-2_112: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 94vn1NRVwT8= + 1833-260619-3_198: + 1833-010719-1_231: *id250 + 1833-010719-2_29: *id251 + 1833-020719-1_149: *id252 + 1833-020719-2_119: *id253 + 1833-020719-3_147: *id254 + 1833-020719-4_260: *id255 + 1833-050619-1_99: *id256 + 1833-050619-2_135: *id257 + 1833-050619-3_133: *id258 + 1833-060619-1_168: *id259 + 1833-060619-2_106: *id260 + 1833-120619-1_120: *id261 + 1833-120619-2_142: *id262 + 1833-120619-3_104: *id263 + 1833-200619-1_239: *id264 + 1833-200619-2_325: *id265 + 1833-200619-3_142: *id266 + 1833-200619-4_117: *id267 + 1833-260619-1_128: *id268 + 1833-260619-2_168: *id269 + 1833-260619-4_216: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9bdvR95+pj8= + 1833-290519-2_112: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sdIJiay3wz8= + 1833-260619-4_216: + 1833-010719-1_231: *id270 + 1833-010719-2_29: *id271 + 1833-020719-1_149: *id272 + 1833-020719-2_119: *id273 + 1833-020719-3_147: *id274 + 1833-020719-4_260: *id275 + 1833-050619-1_99: *id276 + 1833-050619-2_89: *id277 + 1833-050619-3_133: *id278 + 1833-060619-1_168: *id279 + 1833-060619-2_106: *id280 + 1833-120619-1_120: *id281 + 1833-120619-2_142: *id282 + 1833-120619-3_104: *id283 + 1833-200619-1_239: *id284 + 1833-200619-2_325: *id285 + 1833-200619-3_142: *id286 + 1833-200619-4_117: *id287 + 1833-260619-1_128: *id288 + 1833-260619-2_168: *id289 + 1833-260619-3_198: *id290 + 1833-290519-2_112: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8W1CjD0SyD8= + 1833-290519-2_100: + 1833-010719-1_231: *id291 + 1833-010719-2_29: *id292 + 1833-020719-2_120: *id293 + 1833-050619-2_111: *id294 + 1833-200619-1_228: *id295 + 1833-200619-4_115: *id296 + 1833-260619-2_148: *id297 + 1833-290519-2_112: + 1833-010719-1_202: *id298 + 1833-010719-2_249: *id299 + 1833-020719-1_143: *id300 + 1833-020719-2_119: *id301 + 1833-020719-3_147: *id302 + 1833-020719-4_260: *id303 + 1833-050619-1_99: *id304 + 1833-050619-2_135: *id305 + 1833-050619-3_133: *id306 + 1833-060619-1_168: *id307 + 1833-060619-2_106: *id308 + 1833-120619-1_120: *id309 + 1833-120619-2_142: *id310 + 1833-120619-3_104: *id311 + 1833-200619-1_239: *id312 + 1833-200619-2_325: *id313 + 1833-200619-3_142: *id314 + 1833-200619-4_117: *id315 + 1833-260619-1_128: *id316 + 1833-260619-2_168: *id317 + 1833-260619-3_198: *id318 + 1833-260619-4_216: *id319 + 1833-290519-2_132: + 1833-010719-2_271: *id320 + 1833-020719-1_149: *id321 + 1833-020719-2_93: *id322 + 1833-020719-3_168: *id323 + 1833-050619-2_89: *id324 + 1833-050619-3_111: *id325 + 1833-120619-2_118: *id326 +_node: &id329 + 1833-010719-1_202: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id327 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + ygAAAAAAAAA= + 1833-010719-1_231: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + 5wAAAAAAAAA= + 1833-010719-2_249: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + +QAAAAAAAAA= + 1833-010719-2_271: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + DwEAAAAAAAA= + 1833-010719-2_29: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + HQAAAAAAAAA= + 1833-020719-1_143: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + jwAAAAAAAAA= + 1833-020719-1_149: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + lQAAAAAAAAA= + 1833-020719-2_119: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + dwAAAAAAAAA= + 1833-020719-2_120: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + eAAAAAAAAAA= + 1833-020719-2_93: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + XQAAAAAAAAA= + 1833-020719-3_147: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + kwAAAAAAAAA= + 1833-020719-3_168: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + qAAAAAAAAAA= + 1833-020719-4_260: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + BAEAAAAAAAA= + 1833-050619-1_99: + action_id: 1833-050619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + YwAAAAAAAAA= + 1833-050619-2_111: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + bwAAAAAAAAA= + 1833-050619-2_135: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + hwAAAAAAAAA= + 1833-050619-2_89: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + WQAAAAAAAAA= + 1833-050619-3_111: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + bwAAAAAAAAA= + 1833-050619-3_133: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + hQAAAAAAAAA= + 1833-060619-1_168: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + qAAAAAAAAAA= + 1833-060619-2_106: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + agAAAAAAAAA= + 1833-120619-1_120: + action_id: 1833-120619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + eAAAAAAAAAA= + 1833-120619-2_118: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + dgAAAAAAAAA= + 1833-120619-2_142: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + jgAAAAAAAAA= + 1833-120619-3_104: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + aAAAAAAAAAA= + 1833-200619-1_228: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + 5AAAAAAAAAA= + 1833-200619-1_239: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + 7wAAAAAAAAA= + 1833-200619-2_325: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + RQEAAAAAAAA= + 1833-200619-3_142: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + jgAAAAAAAAA= + 1833-200619-4_115: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + cwAAAAAAAAA= + 1833-200619-4_117: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + dQAAAAAAAAA= + 1833-260619-1_128: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + gAAAAAAAAAA= + 1833-260619-2_148: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + lAAAAAAAAAA= + 1833-260619-2_168: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + qAAAAAAAAAA= + 1833-260619-3_198: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + xgAAAAAAAAA= + 1833-260619-4_216: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + 2AAAAAAAAAA= + 1833-290519-2_100: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + ZAAAAAAAAAA= + 1833-290519-2_112: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + cAAAAAAAAAA= + 1833-290519-2_132: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id327 + - !!binary | + hAAAAAAAAAA= +adjlist_inner_dict_factory: &id328 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id328 +edge_attr_dict_factory: *id328 +graph: {} +node_dict_factory: *id328 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id329 diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-3.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-3.yaml new file mode 100644 index 000000000..db8941e4d --- /dev/null +++ b/actions/identify-neurons/data/1833-graphs/graph-group-3.yaml @@ -0,0 +1,4411 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1833-010719-1_171: + 1833-010719-2_241: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + QttR9lwYsz8= + 1833-020719-1_140: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SWraR9jarj8= + 1833-020719-2_140: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7fhmKHSdrj8= + 1833-020719-3_23: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oBYmRXyJsD8= + 1833-020719-4_290: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GKvbp4QDuz8= + 1833-120619-2_69: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8RAUTeSkwD8= + 1833-260619-3_160: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bM68hT3tvj8= + 1833-260619-4_196: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PJKOjIT4wT8= + 1833-290519-1_176: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Blt0W9SXuj8= + 1833-290519-2_72: &id365 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ++gXoGFguD8= + 1833-290519-3_153: &id413 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JflW9u4e0z8= + 1833-290519-4_130: &id454 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oO15hUDfuj8= + 1833-010719-1_198: + 1833-010719-2_174: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pgB3Cb1xrT8= + 1833-020719-1_153: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + omeByqZOvT8= + 1833-020719-2_107: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lK7MCX/usj8= + 1833-020719-3_164: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SgMOipo2wD8= + 1833-020719-4_318: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /qcY0Bqusz8= + 1833-200619-1_151: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KHplQeOOwD8= + 1833-200619-2_264: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EUTBhjDWwj8= + 1833-200619-3_82: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kb4ZhR+JuD8= + 1833-200619-4_74: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QOxvB76uuj8= + 1833-260619-1_114: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VOjsXnDRuD8= + 1833-260619-2_146: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fUTwfYCHtT8= + 1833-260619-3_176: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eeK7CaNorz8= + 1833-260619-4_206: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UIkBnLBlrT8= + 1833-290519-1_162: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SHHkD63Q0z8= + 1833-290519-2_108: &id351 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 01u6uEpDuD8= + 1833-290519-3_99: &id428 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YLkOyp3zyj8= + 1833-010719-1_216: + 1833-010719-2_243: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VPF3Kdm1oj8= + 1833-020719-1_151: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T4e8EWs4mz8= + 1833-020719-2_136: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xLGmbqCfmj8= + 1833-020719-3_17: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rl6dRNwJmz8= + 1833-020719-4_289: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ++zxMvNwsj8= + 1833-050619-1_107: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 3013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bDydhP9txD8= + 1833-050619-2_143: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tom8xyNqxT8= + 1833-050619-3_147: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KTzA1ta5xT8= + 1833-050619-4_148: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sw7Ee2h+xT8= + 1833-060619-1_174: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t/Ks16fgxD8= + 1833-120619-2_143: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RFpH/L1Yvj8= + 1833-200619-1_184: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gtyeNfoNwz8= + 1833-200619-2_257: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h3dzkMQQwT8= + 1833-200619-3_128: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gAOZbLzGwj8= + 1833-200619-4_102: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xNB7PN8Zwz8= + 1833-290519-1_102: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6sSD9cHovD8= + 1833-290519-2_74: &id379 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z5MAAkoPwj8= + 1833-290519-3_102: &id393 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 67ZaXqaxyD8= + 1833-290519-4_92: &id470 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NtNER6FquT8= + 1833-010719-1_240: + 1833-010719-2_133: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9uZwre1qkz8= + 1833-020719-1_135: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D9UtHLIjxz8= + 1833-020719-2_139: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HbS52bJ9yz8= + 1833-020719-3_152: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g3j6U780xT8= + 1833-020719-4_298: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w8hhG3Bnyz8= + 1833-290519-1_101: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sc2fGq9ExD8= + 1833-290519-3_68: &id420 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kS7WS7vtzz8= + 1833-290519-4_129: &id445 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wTd40+93zD8= + 1833-010719-2_133: + 1833-010719-1_240: *id002 + 1833-290519-1_162: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7Uaiwi8vzT8= + 1833-290519-3_153: &id414 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OiqHuRjRzz8= + 1833-290519-4_129: &id446 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bMoDxAkPzD8= + 1833-010719-2_157: + 1833-020719-3_170: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LF5gJEMnwz8= + 1833-290519-1_101: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SFV3TfTZwD8= + 1833-010719-2_173: + 1833-020719-1_164: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nCyzG6mcwz8= + 1833-020719-2_139: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0E5ff0qOwz8= + 1833-020719-3_152: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cfpdN7uMvj8= + 1833-010719-2_174: + 1833-010719-1_198: *id003 + 1833-020719-1_153: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VEiNaSSPwj8= + 1833-020719-2_107: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hxRgy/Xwvj8= + 1833-020719-4_298: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SuQu6+5csD8= + 1833-200619-2_257: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cewu4IlmwT8= + 1833-260619-4_196: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t+1gwHclxT8= + 1833-290519-2_74: &id380 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rAj7XpTGuT8= + 1833-290519-3_99: &id429 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hv1OgD1RyT8= + 1833-010719-2_187: {} + 1833-010719-2_188: {} + 1833-010719-2_241: + 1833-010719-1_171: *id004 + 1833-020719-1_140: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + poxbsWh4sT8= + 1833-020719-2_140: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sJU4q/KhrT8= + 1833-020719-3_23: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EwQO2yY4rz8= + 1833-020719-4_290: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d1vnHSugvD8= + 1833-120619-2_69: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IL2ThGSGwz8= + 1833-260619-3_160: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vFLXJzj6wj8= + 1833-290519-1_176: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p9e3GTyDtz8= + 1833-290519-2_72: &id366 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +e3RgUGBvz8= + 1833-290519-4_130: &id455 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fRqmrH3guD8= + 1833-010719-2_243: + 1833-010719-1_216: *id005 + 1833-020719-1_151: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9kxNW4wepj8= + 1833-020719-2_136: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ChAvP0c4oD8= + 1833-020719-3_17: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t+JF6Wx+pD8= + 1833-020719-4_289: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YCBEKXjosD8= + 1833-050619-1_107: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2/UmusjrxT8= + 1833-050619-2_143: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u9VG8pwKxz8= + 1833-050619-3_147: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uu1QfutExz8= + 1833-050619-4_148: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84833, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1p9q14oLxz8= + 1833-060619-1_174: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 3232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5Twvnn/uxT8= + 1833-120619-2_143: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ukdkVE6Pvj8= + 1833-200619-1_184: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BuEd0jIKwz8= + 1833-200619-2_264: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BZBEftmpwD8= + 1833-200619-3_128: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hxJi5zg+wj8= + 1833-200619-4_102: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FPdngSl8wj8= + 1833-290519-1_102: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 97WYefOowD8= + 1833-290519-3_102: &id394 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iWeZQg1DyT8= + 1833-290519-4_92: &id471 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DiPVa9LgvD8= + 1833-010719-2_259: + 1833-020719-1_135: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +JLSvyMdtT8= + 1833-020719-2_146: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jKgSYtlXtj8= + 1833-020719-3_164: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KfAsfMQVvj8= + 1833-020719-4_318: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hiYzh2l2qj8= + 1833-200619-1_151: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uCHQZZbJvz8= + 1833-200619-3_82: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RXLQwREWuz8= + 1833-200619-4_74: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MCHs2Ehzvj8= + 1833-260619-1_114: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6dS9ug7Tsz8= + 1833-260619-2_146: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gxwvMAYAtj8= + 1833-260619-3_176: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l/Zk+m84tD8= + 1833-260619-4_206: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lju6Rctftz8= + 1833-290519-2_108: &id352 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k9v/UdJSvT8= + 1833-290519-3_68: &id421 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TqzzaUBU0D8= + 1833-020719-1_135: + 1833-010719-1_240: *id006 + 1833-010719-2_259: *id007 + 1833-020719-2_107: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DxTdXx8yuj8= + 1833-020719-3_152: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Y2uc0hPrD8= + 1833-200619-1_151: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wb1nOEghwT8= + 1833-200619-3_82: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 85985, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cst3jUWxwT8= + 1833-290519-1_101: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R+adKc6IyD8= + 1833-020719-1_140: + 1833-010719-1_171: *id008 + 1833-010719-2_241: *id009 + 1833-020719-2_140: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7nTEYqmqlD8= + 1833-020719-3_23: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KOrLn6SZlz8= + 1833-020719-4_290: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4A4GRqcwvD8= + 1833-120619-2_69: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7QcjAMdqwj8= + 1833-200619-2_264: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8yr5J5oCxT8= + 1833-200619-4_102: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MD6Wfgq+xD8= + 1833-260619-3_160: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4+TV8JVnwD8= + 1833-260619-4_196: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /ZnT/QNewT8= + 1833-290519-1_176: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d18Qx7jttD8= + 1833-290519-2_72: &id367 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lq+OeZlxvj8= + 1833-290519-3_153: &id415 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vaDG07Ke0D8= + 1833-290519-4_130: &id456 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4ZV1Hzbrtz8= + 1833-020719-1_151: + 1833-010719-1_216: *id010 + 1833-010719-2_243: *id011 + 1833-020719-2_136: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J7QjpiyUoT8= + 1833-020719-3_17: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CPVzvJNHlj8= + 1833-020719-4_289: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BmVJEosotD8= + 1833-050619-1_107: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RnbSVhlyxD8= + 1833-050619-2_143: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 545, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N4tr4Oh6xT8= + 1833-050619-3_147: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84242, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BRaD3cWlxT8= + 1833-050619-4_148: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 82424, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y0sGYXB9xT8= + 1833-060619-1_174: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1b0WR//MxD8= + 1833-120619-2_143: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nc8JHIe8uz8= + 1833-200619-1_184: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mgqVJoMVwj8= + 1833-200619-2_257: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jlG3Lv2gwD8= + 1833-200619-3_128: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 85985, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XJfPKv4ywj8= + 1833-200619-4_74: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + As0RABtJvz8= + 1833-290519-1_102: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HQXCQyhkuz8= + 1833-290519-2_74: &id381 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JsjO7kl1wT8= + 1833-290519-3_102: &id395 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FjDt9bDWxj8= + 1833-290519-4_92: &id472 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A9dI45rxuD8= + 1833-020719-1_153: + 1833-010719-1_198: *id012 + 1833-010719-2_174: *id013 + 1833-020719-2_146: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iWssl+wCuD8= + 1833-020719-3_164: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6AowyZ3Goz8= + 1833-020719-4_298: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5HLNo7APwD8= + 1833-260619-1_114: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NlrFktikwD8= + 1833-260619-2_146: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OESOyRCdwD8= + 1833-260619-3_176: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0S1NNrcSwD8= + 1833-260619-4_206: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pnsFNaIqvz8= + 1833-290519-3_99: &id430 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gLYjcYAfzD8= + 1833-020719-1_164: + 1833-010719-2_173: *id014 + 1833-020719-2_139: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fKLzh4busT8= + 1833-020719-3_170: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8DMQ0302mz8= + 1833-020719-4_318: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ci8bPF6muj8= + 1833-290519-1_162: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OlwcZKFfzz8= + 1833-290519-2_108: &id353 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v8fIWrGdwz8= + 1833-290519-3_68: &id422 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nwQfQ47QzT8= + 1833-290519-4_129: &id447 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0FtTEmGfzT8= + 1833-020719-2_107: + 1833-010719-1_198: *id015 + 1833-010719-2_174: *id016 + 1833-020719-1_135: *id017 + 1833-020719-3_152: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FI08+sKLvT8= + 1833-020719-4_298: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6LKBNNVCwT8= + 1833-120619-2_69: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Szzoi3wKwj8= + 1833-200619-1_151: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 40hQolpKvT8= + 1833-200619-2_264: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3246, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ihc+GQvfwT8= + 1833-200619-3_82: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /5uwDiKkuT8= + 1833-200619-4_74: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + phWZDIj0vT8= + 1833-260619-3_176: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2mVW06n3uD8= + 1833-260619-4_206: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gC9xQuftuj8= + 1833-290519-2_108: &id354 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sZfJbpeguz8= + 1833-020719-2_136: + 1833-010719-1_216: *id018 + 1833-010719-2_243: *id019 + 1833-020719-1_151: *id020 + 1833-020719-3_17: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CheZ0LrMlT8= + 1833-020719-4_289: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s67823+9rj8= + 1833-050619-1_107: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + izHkEDCYxD8= + 1833-050619-2_143: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HsiwnjGFxT8= + 1833-050619-3_147: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 86347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3XoyG3XpxT8= + 1833-050619-4_148: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e0LyVhebxT8= + 1833-060619-1_174: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2928, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lNPSWmAIxT8= + 1833-120619-2_143: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q+10GVKwuz8= + 1833-200619-1_184: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Lbupxkw6wz8= + 1833-200619-2_257: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3246, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ptKHXGU2wT8= + 1833-200619-3_128: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3tu4Ay03wj8= + 1833-200619-4_102: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6FrxS9CLwj8= + 1833-290519-1_102: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H07XfsFfvz8= + 1833-290519-2_74: &id382 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ybmDwAv7wj8= + 1833-290519-3_102: &id396 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6nNthG7uxz8= + 1833-290519-4_92: &id473 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kZDTCrf8uj8= + 1833-020719-2_139: + 1833-010719-1_240: *id021 + 1833-010719-2_173: *id022 + 1833-020719-1_164: *id023 + 1833-020719-3_170: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nYE6A79dsT8= + 1833-290519-1_101: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7OmP9XRPyD8= + 1833-290519-3_68: &id423 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hR9dAZjIzz8= + 1833-020719-2_140: + 1833-010719-1_171: *id024 + 1833-010719-2_241: *id025 + 1833-020719-1_140: *id026 + 1833-020719-3_23: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nRuPJjbckj8= + 1833-020719-4_290: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MRwFHaGFuj8= + 1833-260619-3_160: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n4kP9IsrwD8= + 1833-260619-4_196: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nyB6fEdiwT8= + 1833-290519-1_176: &id341 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dz60jW1ktD8= + 1833-290519-2_72: &id368 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ExYCXtwtvj8= + 1833-290519-3_153: &id416 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eES/XHaD0D8= + 1833-290519-4_130: &id457 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8VWjoEjZtj8= + 1833-020719-2_146: + 1833-010719-2_259: *id027 + 1833-020719-1_153: *id028 + 1833-020719-3_164: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ICTF9VDstj8= + 1833-020719-4_318: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bUEIo73Osz8= + 1833-260619-1_114: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0GgL/tTmvz8= + 1833-260619-2_146: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yRQfaKGzwD8= + 1833-290519-1_162: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tVJJ1/Lz0D8= + 1833-290519-3_99: &id431 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xu/cNuT9yz8= + 1833-290519-4_129: &id448 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SbTwRTPVzz8= + 1833-020719-3_152: + 1833-010719-1_240: *id029 + 1833-010719-2_173: *id030 + 1833-020719-1_135: *id031 + 1833-020719-2_107: *id032 + 1833-200619-1_151: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oBiiVfJAwD8= + 1833-200619-2_264: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ecYi28YBxT8= + 1833-200619-3_82: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MmW2uXhTwj8= + 1833-290519-1_101: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F8TTb5eNxj8= + 1833-020719-3_164: + 1833-010719-1_198: *id033 + 1833-010719-2_259: *id034 + 1833-020719-1_153: *id035 + 1833-020719-2_146: *id036 + 1833-020719-4_298: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NiSHl4FLwT8= + 1833-260619-1_114: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + viBclVeGwT8= + 1833-260619-2_146: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EldjVPSzwT8= + 1833-260619-3_176: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 50XQCz5UwT8= + 1833-260619-4_206: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GmJZ+VnpwD8= + 1833-290519-2_108: &id355 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q7Wuzn5QxD8= + 1833-290519-3_68: &id424 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LrPrtF4EzT8= + 1833-020719-3_17: + 1833-010719-1_216: *id037 + 1833-010719-2_243: *id038 + 1833-020719-1_151: *id039 + 1833-020719-2_136: *id040 + 1833-020719-4_289: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kce9PLWJsT8= + 1833-050619-1_107: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 6962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6bizrQooxD8= + 1833-050619-2_143: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qArqIHwOxT8= + 1833-050619-3_147: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rfFyQDRfxT8= + 1833-050619-4_148: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mg/N5csZxT8= + 1833-060619-1_174: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jv0+IobHxD8= + 1833-120619-2_143: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SG1U4lFxuj8= + 1833-200619-1_184: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lqAruX0Mwz8= + 1833-200619-2_257: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q2cSPk1DwT8= + 1833-200619-3_128: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OqKLd709wz8= + 1833-200619-4_74: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +V52t3ROwT8= + 1833-290519-1_102: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /g4JGOGBvT8= + 1833-290519-2_74: &id383 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c45SvuJbwj8= + 1833-290519-3_102: &id397 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8i0nZZQexz8= + 1833-290519-4_92: &id474 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g8lYq64Luj8= + 1833-020719-3_170: + 1833-010719-2_157: *id041 + 1833-020719-1_164: *id042 + 1833-020719-2_139: *id043 + 1833-020719-4_318: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zn7Eaao6vT8= + 1833-290519-1_162: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +YHON4qWzj8= + 1833-290519-3_99: &id432 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aPRGn7MYzj8= + 1833-290519-4_129: &id449 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QfDjxA/BzD8= + 1833-020719-3_23: + 1833-010719-1_171: *id044 + 1833-010719-2_241: *id045 + 1833-020719-1_140: *id046 + 1833-020719-2_140: *id047 + 1833-020719-4_290: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RNMCLFcevD8= + 1833-120619-2_69: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VVH7JBaQwj8= + 1833-200619-4_102: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /a7MG2QsxT8= + 1833-260619-3_160: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zxniqv+bwD8= + 1833-260619-4_196: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 68nO6Kx/wT8= + 1833-290519-1_176: &id342 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LOATE68utT8= + 1833-290519-2_72: &id369 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5s08g/1Evz8= + 1833-290519-3_153: &id417 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HJPx8qeV0D8= + 1833-290519-4_130: &id458 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FAhPn229tz8= + 1833-020719-4_289: + 1833-010719-1_216: *id048 + 1833-010719-2_243: *id049 + 1833-020719-1_151: *id050 + 1833-020719-2_136: *id051 + 1833-020719-3_17: *id052 + 1833-050619-1_107: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 9291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6hJwgpGRxj8= + 1833-050619-2_143: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 7444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rHwCwoGBxz8= + 1833-050619-3_147: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PUJdfTrVxz8= + 1833-050619-4_148: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tV/c6x+Cxz8= + 1833-060619-1_174: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 7722, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yoHJkTqaxj8= + 1833-120619-2_143: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rqJ/bFklvD8= + 1833-290519-1_102: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LzTQkJmrxT8= + 1833-290519-3_102: &id398 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m2QjkbSDzD8= + 1833-290519-4_129: &id450 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g0bLNZ860D8= + 1833-020719-4_290: + 1833-010719-1_171: *id053 + 1833-010719-2_241: *id054 + 1833-020719-1_140: *id055 + 1833-020719-2_140: *id056 + 1833-020719-3_23: *id057 + 1833-200619-1_184: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9vgVh0tevz8= + 1833-200619-3_128: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VyDM7897vz8= + 1833-200619-4_102: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jHybHWRxvz8= + 1833-260619-3_160: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p4KE+7sGuT8= + 1833-260619-4_196: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bkckE6yUuj8= + 1833-290519-1_176: &id343 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FjNB3A2CvT8= + 1833-290519-2_72: &id370 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gubGMFHXvD8= + 1833-290519-3_153: &id418 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iLGGs2mP0T8= + 1833-290519-4_130: &id459 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RsD+u5NDvD8= + 1833-020719-4_298: + 1833-010719-1_240: *id058 + 1833-010719-2_174: *id059 + 1833-020719-1_153: *id060 + 1833-020719-2_107: *id061 + 1833-020719-3_164: *id062 + 1833-200619-2_257: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y/GeAPhrwz8= + 1833-290519-1_162: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RRmIvNlX1D8= + 1833-290519-2_74: &id384 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uIs9YB8kwD8= + 1833-290519-3_99: &id433 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I//n8ogAyj8= + 1833-020719-4_318: + 1833-010719-1_198: *id063 + 1833-010719-2_259: *id064 + 1833-020719-1_164: *id065 + 1833-020719-2_146: *id066 + 1833-020719-3_170: *id067 + 1833-120619-2_69: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k80htVFNxD8= + 1833-200619-1_151: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZgyuwDzKwD8= + 1833-200619-2_264: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yovhUTFuwz8= + 1833-200619-3_82: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Qffe2dwvj8= + 1833-200619-4_74: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ywf5ez10wD8= + 1833-260619-1_114: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IG4W8Aueuj8= + 1833-260619-2_146: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0z4M4wmXuT8= + 1833-260619-3_176: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D1WkgDA9tj8= + 1833-260619-4_206: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GRLqUw7+tj8= + 1833-290519-1_101: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xt/3WxxwzT8= + 1833-290519-2_108: &id356 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1BGpnJaCuj8= + 1833-290519-3_68: &id425 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fjcH4R3xzD8= + 1833-290519-4_92: &id475 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LUAzhMyxxD8= + 1833-050619-1_107: + 1833-010719-1_216: *id068 + 1833-010719-2_243: *id069 + 1833-020719-1_151: *id070 + 1833-020719-2_136: *id071 + 1833-020719-3_17: *id072 + 1833-020719-4_289: *id073 + 1833-050619-2_143: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RoGFtzaPkz8= + 1833-050619-3_147: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + smh6JO5RlT8= + 1833-050619-4_148: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6368, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZpeAeaBBlD8= + 1833-060619-1_174: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MC5LHCBErD8= + 1833-120619-2_69: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0CtXlfogyD8= + 1833-200619-1_184: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85092, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CTsePwjOxD8= + 1833-200619-2_264: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t6zFIfU7yD8= + 1833-200619-3_128: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jr2HXggyxD8= + 1833-200619-4_102: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gRyOxeVlxD8= + 1833-260619-1_114: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WozC9Y5D0D8= + 1833-260619-2_146: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zVH3g9Drzz8= + 1833-260619-3_160: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3272, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3+XTEZi7xD8= + 1833-260619-4_196: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YNl5Z6O/xz8= + 1833-290519-1_102: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qDgALBdzwj8= + 1833-290519-2_74: &id385 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nBMzp5hjyT8= + 1833-290519-3_102: &id399 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j6mHSxQFzj8= + 1833-290519-4_92: &id476 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m3x+rhjlwj8= + 1833-050619-2_143: + 1833-010719-1_216: *id074 + 1833-010719-2_243: *id075 + 1833-020719-1_151: *id076 + 1833-020719-2_136: *id077 + 1833-020719-3_17: *id078 + 1833-020719-4_289: *id079 + 1833-050619-1_107: *id080 + 1833-050619-3_147: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d2ekRLItlj8= + 1833-050619-4_148: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WuC6CYhakj8= + 1833-060619-1_174: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FtvSLS90sT8= + 1833-120619-2_69: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83935, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RUXSMk5UyT8= + 1833-200619-1_184: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GavdvaE3xj8= + 1833-200619-2_264: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c/aEotGoyT8= + 1833-200619-3_128: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rBtiS6alxT8= + 1833-200619-4_102: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + olX4siLfxT8= + 1833-260619-1_114: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hoTR52pB0T8= + 1833-260619-2_146: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dz7XZHzi0D8= + 1833-260619-3_160: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 59G6j9nNxT8= + 1833-260619-4_196: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EXd5egELyT8= + 1833-290519-1_102: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N+BkSOQ3wz8= + 1833-290519-2_74: &id386 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gOHMm8mKyj8= + 1833-290519-3_102: &id400 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bEIFJEBuzz8= + 1833-290519-4_92: &id477 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z4smuGCZwz8= + 1833-050619-3_147: + 1833-010719-1_216: *id081 + 1833-010719-2_243: *id082 + 1833-020719-1_151: *id083 + 1833-020719-2_136: *id084 + 1833-020719-3_17: *id085 + 1833-020719-4_289: *id086 + 1833-050619-1_107: *id087 + 1833-050619-2_143: *id088 + 1833-050619-4_148: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vNaT9rXDkD8= + 1833-060619-1_174: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ndsUJm7lrj8= + 1833-120619-2_69: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + brDXzRVAyT8= + 1833-200619-1_184: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VG/5rnmExj8= + 1833-200619-2_264: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BlRsysh9yT8= + 1833-200619-3_128: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IN3dpzXwxT8= + 1833-200619-4_102: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g/Dto7wfxj8= + 1833-260619-1_114: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hY9XWbux0D8= + 1833-260619-2_146: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CqWKsdho0D8= + 1833-260619-3_160: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sN75mhIcxj8= + 1833-260619-4_196: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uz6KonAbyT8= + 1833-290519-1_102: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c+e5rUiKwz8= + 1833-290519-2_74: &id387 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7MPEJvRZyj8= + 1833-290519-3_102: &id401 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zzQZK34bzz8= + 1833-290519-4_92: &id478 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vofPHQX0wz8= + 1833-050619-4_148: + 1833-010719-1_216: *id089 + 1833-010719-2_243: *id090 + 1833-020719-1_151: *id091 + 1833-020719-2_136: *id092 + 1833-020719-3_17: *id093 + 1833-020719-4_289: *id094 + 1833-050619-1_107: *id095 + 1833-050619-2_143: *id096 + 1833-050619-3_147: *id097 + 1833-060619-1_174: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wLIWhdiSsD8= + 1833-120619-2_69: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 79414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1SP0aldkyT8= + 1833-200619-1_184: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78724, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 92zdJuVJxj8= + 1833-200619-2_264: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LaaYZJmUyT8= + 1833-200619-3_128: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2PCNnq2xxT8= + 1833-200619-4_102: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + trl6cWHmxT8= + 1833-260619-1_114: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 36kCICHp0D8= + 1833-260619-2_146: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lNitvjuP0D8= + 1833-260619-3_160: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83304, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D03G1scHxj8= + 1833-260619-4_196: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QgXZZtAPyT8= + 1833-290519-1_102: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hpWsXuyMwz8= + 1833-290519-2_74: &id388 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6371, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BMqnFTZ1yj8= + 1833-290519-3_102: &id402 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h6eqTJj+zj8= + 1833-290519-4_92: &id479 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0P+caNfowz8= + 1833-060619-1_174: + 1833-010719-1_216: *id098 + 1833-010719-2_243: *id099 + 1833-020719-1_151: *id100 + 1833-020719-2_136: *id101 + 1833-020719-3_17: *id102 + 1833-020719-4_289: *id103 + 1833-050619-1_107: *id104 + 1833-050619-2_143: *id105 + 1833-050619-3_147: *id106 + 1833-050619-4_148: *id107 + 1833-120619-2_69: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YukajHocyD8= + 1833-200619-1_184: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9+y9llBNxD8= + 1833-200619-2_264: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + En3g8MbVxz8= + 1833-200619-3_128: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RTCkbWuNwz8= + 1833-200619-4_102: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SW4kU6qmwz8= + 1833-260619-1_114: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YcvfslUWzj8= + 1833-260619-2_146: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q54y6z29zT8= + 1833-260619-3_160: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 1703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /SFJ/ngYxT8= + 1833-260619-4_196: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4xqGvhMHxz8= + 1833-290519-1_102: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d2meW/M1wz8= + 1833-290519-2_74: &id389 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1572, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cat1FDGuyD8= + 1833-290519-3_102: &id403 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KVYoVjZvzD8= + 1833-290519-4_92: &id480 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xy4pem6owz8= + 1833-120619-2_143: + 1833-010719-1_216: *id108 + 1833-010719-2_243: *id109 + 1833-020719-1_151: *id110 + 1833-020719-2_136: *id111 + 1833-020719-3_17: *id112 + 1833-020719-4_289: *id113 + 1833-200619-1_184: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5SigY8UdxT8= + 1833-200619-2_257: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xx4hNtvfxj8= + 1833-200619-3_128: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nMVEY2Y/xD8= + 1833-200619-4_102: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UlhK7MlexD8= + 1833-260619-3_176: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vf2ARhbbzD8= + 1833-260619-4_206: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A4m6YrVtzD8= + 1833-290519-1_176: &id344 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WWPa2Vlsyz8= + 1833-290519-2_74: &id390 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AOL7wEHfyz8= + 1833-290519-3_102: &id404 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uUYxy/QYxj8= + 1833-290519-4_92: &id481 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JK7YM1sUyz8= + 1833-120619-2_69: + 1833-010719-1_171: *id114 + 1833-010719-2_241: *id115 + 1833-020719-1_140: *id116 + 1833-020719-2_107: *id117 + 1833-020719-3_23: *id118 + 1833-020719-4_318: *id119 + 1833-050619-1_107: *id120 + 1833-050619-2_143: *id121 + 1833-050619-3_147: *id122 + 1833-050619-4_148: *id123 + 1833-060619-1_174: *id124 + 1833-200619-1_151: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZtH/jjlcuT8= + 1833-200619-2_264: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DdKsjZ3/sz8= + 1833-200619-3_82: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qmen/iQjwT8= + 1833-200619-4_74: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sbpk0HnQwD8= + 1833-260619-1_114: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85413, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CfS7K4Tgxz8= + 1833-260619-2_146: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JPK2GqyZyD8= + 1833-260619-3_160: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JTBItRfAwD8= + 1833-260619-4_196: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h74hZ7tuxD8= + 1833-290519-1_102: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Eprn2Stwz8= + 1833-290519-2_72: &id371 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rthSHSsvvz8= + 1833-290519-3_99: &id434 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MZVzUdqM0z8= + 1833-290519-4_130: &id460 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + srUV5ph3wj8= + 1833-200619-1_151: + 1833-010719-1_198: *id125 + 1833-010719-2_259: *id126 + 1833-020719-1_135: *id127 + 1833-020719-2_107: *id128 + 1833-020719-3_152: *id129 + 1833-020719-4_318: *id130 + 1833-120619-2_69: *id131 + 1833-200619-2_264: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j7MrAG7Gsz8= + 1833-200619-3_82: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TcjMgTrjtz8= + 1833-200619-4_74: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QDb+7y0Cuj8= + 1833-260619-1_114: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rEXHNOBIwz8= + 1833-260619-2_146: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /i8zMIxwxT8= + 1833-260619-3_176: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rJ++VDnPwz8= + 1833-260619-4_206: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UzWTwqtoxT8= + 1833-290519-1_176: &id345 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VNN26yC5xT8= + 1833-290519-2_108: &id357 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CgQVpxLFvz8= + 1833-290519-3_99: &id435 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DISF69kC0z8= + 1833-290519-4_130: &id461 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f2tskog+xj8= + 1833-200619-1_184: + 1833-010719-1_216: *id132 + 1833-010719-2_243: *id133 + 1833-020719-1_151: *id134 + 1833-020719-2_136: *id135 + 1833-020719-3_17: *id136 + 1833-020719-4_290: *id137 + 1833-050619-1_107: *id138 + 1833-050619-2_143: *id139 + 1833-050619-3_147: *id140 + 1833-050619-4_148: *id141 + 1833-060619-1_174: *id142 + 1833-120619-2_143: *id143 + 1833-200619-2_257: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2kjyPMbjuT8= + 1833-200619-3_128: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G7vzyMPWjT8= + 1833-200619-4_102: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VVjGZPlPkD8= + 1833-260619-3_160: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P46HeaGjtz8= + 1833-260619-4_196: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OgF2OstFuT8= + 1833-290519-1_102: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3tjQDxYevj8= + 1833-290519-2_72: &id372 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n8Rb8cFhwD8= + 1833-290519-3_102: &id405 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sI2DhqdQxj8= + 1833-290519-4_92: &id482 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N6St7kOTvT8= + 1833-200619-2_257: + 1833-010719-1_216: *id144 + 1833-010719-2_174: *id145 + 1833-020719-1_151: *id146 + 1833-020719-2_136: *id147 + 1833-020719-3_17: *id148 + 1833-020719-4_298: *id149 + 1833-120619-2_143: *id150 + 1833-200619-1_184: *id151 + 1833-200619-3_128: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6iDhQL8Duj8= + 1833-200619-4_102: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qh6ZcDv2uT8= + 1833-260619-3_160: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vVRTyPLBwz8= + 1833-260619-4_196: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9qzwIRD+wj8= + 1833-290519-1_176: &id346 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oTIAuIQzyD8= + 1833-290519-2_74: &id391 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X7qHbNnSxD8= + 1833-290519-3_99: &id436 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aBgCy5nVyT8= + 1833-290519-4_130: &id462 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9deWqUgoyD8= + 1833-200619-2_264: + 1833-010719-1_198: *id152 + 1833-010719-2_243: *id153 + 1833-020719-1_140: *id154 + 1833-020719-2_107: *id155 + 1833-020719-3_152: *id156 + 1833-020719-4_318: *id157 + 1833-050619-1_107: *id158 + 1833-050619-2_143: *id159 + 1833-050619-3_147: *id160 + 1833-050619-4_148: *id161 + 1833-060619-1_174: *id162 + 1833-120619-2_69: *id163 + 1833-200619-1_151: *id164 + 1833-200619-3_82: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9E0PjMvzvT8= + 1833-200619-4_74: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tycI747NvD8= + 1833-260619-1_114: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cSRpwtDIxT8= + 1833-260619-2_146: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SVxeVerGxj8= + 1833-260619-3_176: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZDH+0p69xT8= + 1833-260619-4_206: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q5IGQLUCxz8= + 1833-290519-1_102: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + krqRbkIewz8= + 1833-290519-2_72: &id373 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I2zBNuWmwj8= + 1833-290519-3_102: &id406 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t1q8gXjA0j8= + 1833-290519-4_92: &id483 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IA6X50m5wj8= + 1833-200619-3_128: + 1833-010719-1_216: *id165 + 1833-010719-2_243: *id166 + 1833-020719-1_151: *id167 + 1833-020719-2_136: *id168 + 1833-020719-3_17: *id169 + 1833-020719-4_290: *id170 + 1833-050619-1_107: *id171 + 1833-050619-2_143: *id172 + 1833-050619-3_147: *id173 + 1833-050619-4_148: *id174 + 1833-060619-1_174: *id175 + 1833-120619-2_143: *id176 + 1833-200619-1_184: *id177 + 1833-200619-2_257: *id178 + 1833-200619-4_102: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g8KMNiEwgT8= + 1833-260619-3_160: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4uGfIXvAtz8= + 1833-260619-4_196: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LZQLLbofuT8= + 1833-290519-1_102: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +2qJkyBnvT8= + 1833-290519-2_72: &id374 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YGebpZxpwD8= + 1833-290519-3_102: &id407 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n3SRW4uIxT8= + 1833-290519-4_92: &id484 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kTm3i7LyvD8= + 1833-200619-3_82: + 1833-010719-1_198: *id179 + 1833-010719-2_259: *id180 + 1833-020719-1_135: *id181 + 1833-020719-2_107: *id182 + 1833-020719-3_152: *id183 + 1833-020719-4_318: *id184 + 1833-120619-2_69: *id185 + 1833-200619-1_151: *id186 + 1833-200619-2_264: *id187 + 1833-200619-4_74: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lFtMtoVWoD8= + 1833-260619-1_114: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xAfgp2uJvD8= + 1833-260619-2_146: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + amY/5f0uvj8= + 1833-260619-3_176: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z3HmmIgDvj8= + 1833-260619-4_206: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Lm97MbdkwD8= + 1833-290519-1_176: &id347 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 664rNJP/xz8= + 1833-290519-2_108: &id358 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aCteJN0lwT8= + 1833-290519-3_99: &id437 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + okK+ClC10T8= + 1833-290519-4_130: &id463 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AHtpOtDHyD8= + 1833-200619-4_102: + 1833-010719-1_216: *id188 + 1833-010719-2_243: *id189 + 1833-020719-1_140: *id190 + 1833-020719-2_136: *id191 + 1833-020719-3_23: *id192 + 1833-020719-4_290: *id193 + 1833-050619-1_107: *id194 + 1833-050619-2_143: *id195 + 1833-050619-3_147: *id196 + 1833-050619-4_148: *id197 + 1833-060619-1_174: *id198 + 1833-120619-2_143: *id199 + 1833-200619-1_184: *id200 + 1833-200619-2_257: *id201 + 1833-200619-3_128: *id202 + 1833-260619-3_160: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gIRFpB/ptz8= + 1833-260619-4_196: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CY3xK64WuT8= + 1833-290519-1_102: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + opgvoR8cvj8= + 1833-290519-2_72: &id375 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TENYNXxuwD8= + 1833-290519-3_102: &id408 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WBz7EiFwxT8= + 1833-290519-4_92: &id485 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M6UGGFGRvT8= + 1833-200619-4_74: + 1833-010719-1_198: *id203 + 1833-010719-2_259: *id204 + 1833-020719-1_151: *id205 + 1833-020719-2_107: *id206 + 1833-020719-3_17: *id207 + 1833-020719-4_318: *id208 + 1833-120619-2_69: *id209 + 1833-200619-1_151: *id210 + 1833-200619-2_264: *id211 + 1833-200619-3_82: *id212 + 1833-260619-1_114: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E7bwEB4ovz8= + 1833-260619-2_146: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +a3Y4iXPvz8= + 1833-260619-3_176: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mj9g6wpMwD8= + 1833-260619-4_206: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0ZKSFKJNwT8= + 1833-290519-1_176: &id348 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fngJOD6vxz8= + 1833-290519-2_108: &id359 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eIzSHITXwT8= + 1833-290519-3_99: &id438 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X7+gFgdW0T8= + 1833-290519-4_130: &id464 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YRUEupNIyD8= + 1833-260619-1_114: + 1833-010719-1_198: *id213 + 1833-010719-2_259: *id214 + 1833-020719-1_153: *id215 + 1833-020719-2_146: *id216 + 1833-020719-3_164: *id217 + 1833-020719-4_318: *id218 + 1833-050619-1_107: *id219 + 1833-050619-2_143: *id220 + 1833-050619-3_147: *id221 + 1833-050619-4_148: *id222 + 1833-060619-1_174: *id223 + 1833-120619-2_69: *id224 + 1833-200619-1_151: *id225 + 1833-200619-2_264: *id226 + 1833-200619-3_82: *id227 + 1833-200619-4_74: *id228 + 1833-260619-2_146: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xrCRUVNlqD8= + 1833-260619-3_176: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QQC4SWhnsz8= + 1833-260619-4_206: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XyNEk+zauD8= + 1833-290519-1_102: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kyuULBM/zD8= + 1833-290519-2_108: &id360 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HVUrEPUnwz8= + 1833-290519-3_99: &id439 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T4VohQps0T8= + 1833-290519-4_92: &id486 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mx6zfLR7yz8= + 1833-260619-2_146: + 1833-010719-1_198: *id229 + 1833-010719-2_259: *id230 + 1833-020719-1_153: *id231 + 1833-020719-2_146: *id232 + 1833-020719-3_164: *id233 + 1833-020719-4_318: *id234 + 1833-050619-1_107: *id235 + 1833-050619-2_143: *id236 + 1833-050619-3_147: *id237 + 1833-050619-4_148: *id238 + 1833-060619-1_174: *id239 + 1833-120619-2_69: *id240 + 1833-200619-1_151: *id241 + 1833-200619-2_264: *id242 + 1833-200619-3_82: *id243 + 1833-200619-4_74: *id244 + 1833-260619-1_114: *id245 + 1833-260619-3_176: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nZBMDlTOqz8= + 1833-260619-4_206: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xgE7sfsNsj8= + 1833-290519-1_102: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g3R+kQcnzD8= + 1833-290519-2_108: &id361 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g6aMBzFLwz8= + 1833-290519-3_99: &id440 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K7X9F7NQ0D8= + 1833-290519-4_92: &id487 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LLBcJ0z6yj8= + 1833-260619-3_160: + 1833-010719-1_171: *id246 + 1833-010719-2_241: *id247 + 1833-020719-1_140: *id248 + 1833-020719-2_140: *id249 + 1833-020719-3_23: *id250 + 1833-020719-4_290: *id251 + 1833-050619-1_107: *id252 + 1833-050619-2_143: *id253 + 1833-050619-3_147: *id254 + 1833-050619-4_148: *id255 + 1833-060619-1_174: *id256 + 1833-120619-2_69: *id257 + 1833-200619-1_184: *id258 + 1833-200619-2_257: *id259 + 1833-200619-3_128: *id260 + 1833-200619-4_102: *id261 + 1833-260619-4_196: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mg0mhweasz8= + 1833-290519-1_176: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h9WCKYW9vj8= + 1833-290519-2_72: &id376 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D5kDLLzzvT8= + 1833-290519-3_102: &id409 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xgy1g/t3zT8= + 1833-290519-4_130: &id465 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CqrTHu6OvD8= + 1833-260619-3_176: + 1833-010719-1_198: *id262 + 1833-010719-2_259: *id263 + 1833-020719-1_153: *id264 + 1833-020719-2_107: *id265 + 1833-020719-3_164: *id266 + 1833-020719-4_318: *id267 + 1833-120619-2_143: *id268 + 1833-200619-1_151: *id269 + 1833-200619-2_264: *id270 + 1833-200619-3_82: *id271 + 1833-200619-4_74: *id272 + 1833-260619-1_114: *id273 + 1833-260619-2_146: *id274 + 1833-260619-4_206: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1p1Nqk3/oT8= + 1833-290519-1_102: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w/orQFthyj8= + 1833-290519-2_108: &id362 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8e2YCphxwT8= + 1833-290519-3_99: &id441 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5AUuLe8u0D8= + 1833-290519-4_92: &id488 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WovLui+WyT8= + 1833-260619-4_196: + 1833-010719-1_171: *id275 + 1833-010719-2_174: *id276 + 1833-020719-1_140: *id277 + 1833-020719-2_140: *id278 + 1833-020719-3_23: *id279 + 1833-020719-4_290: *id280 + 1833-050619-1_107: *id281 + 1833-050619-2_143: *id282 + 1833-050619-3_147: *id283 + 1833-050619-4_148: *id284 + 1833-060619-1_174: *id285 + 1833-120619-2_69: *id286 + 1833-200619-1_184: *id287 + 1833-200619-2_257: *id288 + 1833-200619-3_128: *id289 + 1833-200619-4_102: *id290 + 1833-260619-3_160: *id291 + 1833-290519-1_176: &id350 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RkjkamOUwD8= + 1833-290519-2_72: &id377 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Su5a3zTvz8= + 1833-290519-3_102: &id410 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b9qrn09/zD8= + 1833-290519-4_130: &id466 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3A/7h2Ltvz8= + 1833-260619-4_206: + 1833-010719-1_198: *id292 + 1833-010719-2_259: *id293 + 1833-020719-1_153: *id294 + 1833-020719-2_107: *id295 + 1833-020719-3_164: *id296 + 1833-020719-4_318: *id297 + 1833-120619-2_143: *id298 + 1833-200619-1_151: *id299 + 1833-200619-2_264: *id300 + 1833-200619-3_82: *id301 + 1833-200619-4_74: *id302 + 1833-260619-1_114: *id303 + 1833-260619-2_146: *id304 + 1833-260619-3_176: *id305 + 1833-290519-1_102: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bKmI6Qjxyj8= + 1833-290519-2_108: &id363 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M7ROS5mvwT8= + 1833-290519-3_99: &id442 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t3NK2VrSzj8= + 1833-290519-4_92: &id489 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LHIKervnyT8= + 1833-290519-1_101: + 1833-010719-1_240: *id306 + 1833-010719-2_157: *id307 + 1833-020719-1_135: *id308 + 1833-020719-2_139: *id309 + 1833-020719-3_152: *id310 + 1833-020719-4_318: *id311 + 1833-290519-2_108: &id364 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wrl+qnbLyz8= + 1833-290519-3_68: &id426 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YKXFfXZP1j8= + 1833-290519-1_102: + 1833-010719-1_216: *id312 + 1833-010719-2_243: *id313 + 1833-020719-1_151: *id314 + 1833-020719-2_136: *id315 + 1833-020719-3_17: *id316 + 1833-020719-4_289: *id317 + 1833-050619-1_107: *id318 + 1833-050619-2_143: *id319 + 1833-050619-3_147: *id320 + 1833-050619-4_148: *id321 + 1833-060619-1_174: *id322 + 1833-120619-2_69: *id323 + 1833-200619-1_184: *id324 + 1833-200619-2_264: *id325 + 1833-200619-3_128: *id326 + 1833-200619-4_102: *id327 + 1833-260619-1_114: *id328 + 1833-260619-2_146: *id329 + 1833-260619-3_176: *id330 + 1833-260619-4_206: *id331 + 1833-290519-2_74: &id392 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pIKjXCUlxT8= + 1833-290519-3_99: &id443 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j/gP9sPO0j8= + 1833-290519-4_92: &id490 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YEe1Wv1Ioj8= + 1833-290519-1_162: + 1833-010719-1_198: *id332 + 1833-010719-2_133: *id333 + 1833-020719-1_164: *id334 + 1833-020719-2_146: *id335 + 1833-020719-3_170: *id336 + 1833-020719-4_298: *id337 + 1833-290519-3_153: &id419 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vDhJecfs1T8= + 1833-290519-4_129: &id451 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Co7WeuNerT8= + 1833-290519-1_176: + 1833-010719-1_171: *id338 + 1833-010719-2_241: *id339 + 1833-020719-1_140: *id340 + 1833-020719-2_140: *id341 + 1833-020719-3_23: *id342 + 1833-020719-4_290: *id343 + 1833-120619-2_143: *id344 + 1833-200619-1_151: *id345 + 1833-200619-2_257: *id346 + 1833-200619-3_82: *id347 + 1833-200619-4_74: *id348 + 1833-260619-3_160: *id349 + 1833-260619-4_196: *id350 + 1833-290519-2_72: &id378 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tm8VuInXwD8= + 1833-290519-3_102: &id411 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X+1v7cskyz8= + 1833-290519-4_130: &id467 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WkGFgKaxoD8= + 1833-290519-2_108: + 1833-010719-1_198: *id351 + 1833-010719-2_259: *id352 + 1833-020719-1_164: *id353 + 1833-020719-2_107: *id354 + 1833-020719-3_164: *id355 + 1833-020719-4_318: *id356 + 1833-200619-1_151: *id357 + 1833-200619-3_82: *id358 + 1833-200619-4_74: *id359 + 1833-260619-1_114: *id360 + 1833-260619-2_146: *id361 + 1833-260619-3_176: *id362 + 1833-260619-4_206: *id363 + 1833-290519-1_101: *id364 + 1833-290519-3_68: &id427 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mJdJf2ZJ0T8= + 1833-290519-4_129: &id452 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sKuWAMZAzj8= + 1833-290519-2_72: + 1833-010719-1_171: *id365 + 1833-010719-2_241: *id366 + 1833-020719-1_140: *id367 + 1833-020719-2_140: *id368 + 1833-020719-3_23: *id369 + 1833-020719-4_290: *id370 + 1833-120619-2_69: *id371 + 1833-200619-1_184: *id372 + 1833-200619-2_264: *id373 + 1833-200619-3_128: *id374 + 1833-200619-4_102: *id375 + 1833-260619-3_160: *id376 + 1833-260619-4_196: *id377 + 1833-290519-1_176: *id378 + 1833-290519-3_102: &id412 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G9BBRuZX1D8= + 1833-290519-4_130: &id468 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l9jQDzeWwD8= + 1833-290519-2_74: + 1833-010719-1_216: *id379 + 1833-010719-2_174: *id380 + 1833-020719-1_151: *id381 + 1833-020719-2_136: *id382 + 1833-020719-3_17: *id383 + 1833-020719-4_298: *id384 + 1833-050619-1_107: *id385 + 1833-050619-2_143: *id386 + 1833-050619-3_147: *id387 + 1833-050619-4_148: *id388 + 1833-060619-1_174: *id389 + 1833-120619-2_143: *id390 + 1833-200619-2_257: *id391 + 1833-290519-1_102: *id392 + 1833-290519-3_99: &id444 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7IpjHwR80D8= + 1833-290519-4_92: &id491 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pdP7dt56xD8= + 1833-290519-3_102: + 1833-010719-1_216: *id393 + 1833-010719-2_243: *id394 + 1833-020719-1_151: *id395 + 1833-020719-2_136: *id396 + 1833-020719-3_17: *id397 + 1833-020719-4_289: *id398 + 1833-050619-1_107: *id399 + 1833-050619-2_143: *id400 + 1833-050619-3_147: *id401 + 1833-050619-4_148: *id402 + 1833-060619-1_174: *id403 + 1833-120619-2_143: *id404 + 1833-200619-1_184: *id405 + 1833-200619-2_264: *id406 + 1833-200619-3_128: *id407 + 1833-200619-4_102: *id408 + 1833-260619-3_160: *id409 + 1833-260619-4_196: *id410 + 1833-290519-1_176: *id411 + 1833-290519-2_72: *id412 + 1833-290519-4_130: &id469 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QzSTQyOJyz8= + 1833-290519-3_153: + 1833-010719-1_171: *id413 + 1833-010719-2_133: *id414 + 1833-020719-1_140: *id415 + 1833-020719-2_140: *id416 + 1833-020719-3_23: *id417 + 1833-020719-4_290: *id418 + 1833-290519-1_162: *id419 + 1833-290519-4_129: &id453 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5fkPTye01D8= + 1833-290519-3_68: + 1833-010719-1_240: *id420 + 1833-010719-2_259: *id421 + 1833-020719-1_164: *id422 + 1833-020719-2_139: *id423 + 1833-020719-3_164: *id424 + 1833-020719-4_318: *id425 + 1833-290519-1_101: *id426 + 1833-290519-2_108: *id427 + 1833-290519-3_99: + 1833-010719-1_198: *id428 + 1833-010719-2_174: *id429 + 1833-020719-1_153: *id430 + 1833-020719-2_146: *id431 + 1833-020719-3_170: *id432 + 1833-020719-4_298: *id433 + 1833-120619-2_69: *id434 + 1833-200619-1_151: *id435 + 1833-200619-2_257: *id436 + 1833-200619-3_82: *id437 + 1833-200619-4_74: *id438 + 1833-260619-1_114: *id439 + 1833-260619-2_146: *id440 + 1833-260619-3_176: *id441 + 1833-260619-4_206: *id442 + 1833-290519-1_102: *id443 + 1833-290519-2_74: *id444 + 1833-290519-4_92: &id492 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oTbHCkif0j8= + 1833-290519-4_129: + 1833-010719-1_240: *id445 + 1833-010719-2_133: *id446 + 1833-020719-1_164: *id447 + 1833-020719-2_146: *id448 + 1833-020719-3_170: *id449 + 1833-020719-4_289: *id450 + 1833-290519-1_162: *id451 + 1833-290519-2_108: *id452 + 1833-290519-3_153: *id453 + 1833-290519-4_130: + 1833-010719-1_171: *id454 + 1833-010719-2_241: *id455 + 1833-020719-1_140: *id456 + 1833-020719-2_140: *id457 + 1833-020719-3_23: *id458 + 1833-020719-4_290: *id459 + 1833-120619-2_69: *id460 + 1833-200619-1_151: *id461 + 1833-200619-2_257: *id462 + 1833-200619-3_82: *id463 + 1833-200619-4_74: *id464 + 1833-260619-3_160: *id465 + 1833-260619-4_196: *id466 + 1833-290519-1_176: *id467 + 1833-290519-2_72: *id468 + 1833-290519-3_102: *id469 + 1833-290519-4_92: + 1833-010719-1_216: *id470 + 1833-010719-2_243: *id471 + 1833-020719-1_151: *id472 + 1833-020719-2_136: *id473 + 1833-020719-3_17: *id474 + 1833-020719-4_318: *id475 + 1833-050619-1_107: *id476 + 1833-050619-2_143: *id477 + 1833-050619-3_147: *id478 + 1833-050619-4_148: *id479 + 1833-060619-1_174: *id480 + 1833-120619-2_143: *id481 + 1833-200619-1_184: *id482 + 1833-200619-2_264: *id483 + 1833-200619-3_128: *id484 + 1833-200619-4_102: *id485 + 1833-260619-1_114: *id486 + 1833-260619-2_146: *id487 + 1833-260619-3_176: *id488 + 1833-260619-4_206: *id489 + 1833-290519-1_102: *id490 + 1833-290519-2_74: *id491 + 1833-290519-3_99: *id492 +_node: &id495 + 1833-010719-1_171: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id493 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + qwAAAAAAAAA= + 1833-010719-1_198: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + xgAAAAAAAAA= + 1833-010719-1_216: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + 2AAAAAAAAAA= + 1833-010719-1_240: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + 8AAAAAAAAAA= + 1833-010719-2_133: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + hQAAAAAAAAA= + 1833-010719-2_157: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + nQAAAAAAAAA= + 1833-010719-2_173: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + rQAAAAAAAAA= + 1833-010719-2_174: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + rgAAAAAAAAA= + 1833-010719-2_187: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + uwAAAAAAAAA= + 1833-010719-2_188: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + vAAAAAAAAAA= + 1833-010719-2_241: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + 8QAAAAAAAAA= + 1833-010719-2_243: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + 8wAAAAAAAAA= + 1833-010719-2_259: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + AwEAAAAAAAA= + 1833-020719-1_135: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + hwAAAAAAAAA= + 1833-020719-1_140: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + jAAAAAAAAAA= + 1833-020719-1_151: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + lwAAAAAAAAA= + 1833-020719-1_153: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + mQAAAAAAAAA= + 1833-020719-1_164: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + pAAAAAAAAAA= + 1833-020719-2_107: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + awAAAAAAAAA= + 1833-020719-2_136: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + iAAAAAAAAAA= + 1833-020719-2_139: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + iwAAAAAAAAA= + 1833-020719-2_140: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + jAAAAAAAAAA= + 1833-020719-2_146: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + kgAAAAAAAAA= + 1833-020719-3_152: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + mAAAAAAAAAA= + 1833-020719-3_164: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + pAAAAAAAAAA= + 1833-020719-3_17: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + EQAAAAAAAAA= + 1833-020719-3_170: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + qgAAAAAAAAA= + 1833-020719-3_23: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + FwAAAAAAAAA= + 1833-020719-4_289: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + IQEAAAAAAAA= + 1833-020719-4_290: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + IgEAAAAAAAA= + 1833-020719-4_298: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + KgEAAAAAAAA= + 1833-020719-4_318: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + PgEAAAAAAAA= + 1833-050619-1_107: + action_id: 1833-050619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + awAAAAAAAAA= + 1833-050619-2_143: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + jwAAAAAAAAA= + 1833-050619-3_147: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + kwAAAAAAAAA= + 1833-050619-4_148: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + lAAAAAAAAAA= + 1833-060619-1_174: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + rgAAAAAAAAA= + 1833-120619-2_143: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + jwAAAAAAAAA= + 1833-120619-2_69: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + RQAAAAAAAAA= + 1833-200619-1_151: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + lwAAAAAAAAA= + 1833-200619-1_184: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + uAAAAAAAAAA= + 1833-200619-2_257: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + AQEAAAAAAAA= + 1833-200619-2_264: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + CAEAAAAAAAA= + 1833-200619-3_128: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + gAAAAAAAAAA= + 1833-200619-3_82: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + UgAAAAAAAAA= + 1833-200619-4_102: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + ZgAAAAAAAAA= + 1833-200619-4_74: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + SgAAAAAAAAA= + 1833-260619-1_114: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + cgAAAAAAAAA= + 1833-260619-2_146: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + kgAAAAAAAAA= + 1833-260619-3_160: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + oAAAAAAAAAA= + 1833-260619-3_176: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + sAAAAAAAAAA= + 1833-260619-4_196: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + xAAAAAAAAAA= + 1833-260619-4_206: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + zgAAAAAAAAA= + 1833-290519-1_101: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + ZQAAAAAAAAA= + 1833-290519-1_102: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + ZgAAAAAAAAA= + 1833-290519-1_162: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + ogAAAAAAAAA= + 1833-290519-1_176: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + sAAAAAAAAAA= + 1833-290519-2_108: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + bAAAAAAAAAA= + 1833-290519-2_72: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + SAAAAAAAAAA= + 1833-290519-2_74: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + SgAAAAAAAAA= + 1833-290519-3_102: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + ZgAAAAAAAAA= + 1833-290519-3_153: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + mQAAAAAAAAA= + 1833-290519-3_68: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + RAAAAAAAAAA= + 1833-290519-3_99: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + YwAAAAAAAAA= + 1833-290519-4_129: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + gQAAAAAAAAA= + 1833-290519-4_130: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + ggAAAAAAAAA= + 1833-290519-4_92: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id493 + - !!binary | + XAAAAAAAAAA= +adjlist_inner_dict_factory: &id494 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id494 +edge_attr_dict_factory: *id494 +graph: {} +node_dict_factory: *id494 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id495 diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-4.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-4.yaml new file mode 100644 index 000000000..282011e9c --- /dev/null +++ b/actions/identify-neurons/data/1833-graphs/graph-group-4.yaml @@ -0,0 +1,2434 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1833-010719-2_223: + 1833-020719-3_95: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + 12S7QF5HzD8= + 1833-050619-2_137: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /c33oNwWyz8= + 1833-050619-3_145: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T0dn11WXyj8= + 1833-050619-4_151: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84833, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bBVl04zAyT8= + 1833-060619-1_172: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 3232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZxJsIWNKyD8= + 1833-120619-2_170: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EQLD2js+xj8= + 1833-120619-3_147: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D9xBGMnvxj8= + 1833-200619-4_124: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N8gJIMBP2z8= + 1833-290519-1_80: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6lKnyGry1D8= + 1833-290519-2_122: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N3qYcmam0T8= + 1833-290519-3_145: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d10iAvjS3T8= + 1833-010719-2_231: + 1833-020719-3_45: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IfBDbZx2wD8= + 1833-020719-4_250: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GvqE38ZKxD8= + 1833-050619-1_25: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rAsLXUdLyD8= + 1833-050619-2_97: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /bsIcE0LzT8= + 1833-050619-3_123: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SRd32Hriyz8= + 1833-050619-4_80: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84833, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N94+dZh+yz8= + 1833-060619-1_144: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 3232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JrwT1PVC0D8= + 1833-060619-2_108: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tAS05e7yxz8= + 1833-120619-1_137: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 7804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ceRCwgRqxT8= + 1833-120619-2_81: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fnr0ljSexz8= + 1833-120619-3_100: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gCDh1AblzT8= + 1833-120619-4_119: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 460, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +hu3dR2gxT8= + 1833-200619-1_165: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HL7eSzZYyj8= + 1833-200619-2_254: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jDtLLEoGxz8= + 1833-200619-3_113: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +nefVwxZyT8= + 1833-290519-1_118: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /2wGJOzUyT8= + 1833-290519-2_114: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bzk8dbvGtz8= + 1833-290519-3_76: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sz78tdSCxz8= + 1833-290519-4_71: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lmaTpuf8yT8= + 1833-020719-3_45: + 1833-010719-2_231: *id002 + 1833-020719-4_250: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2BD7TCHZsT8= + 1833-120619-3_147: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LAC8cf/3xD8= + 1833-290519-1_80: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zsbv97cWwj8= + 1833-290519-2_114: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mKR8W7hsyT8= + 1833-290519-3_76: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 12wgo3Ja0j8= + 1833-290519-4_71: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gp7ZFlHywz8= + 1833-020719-3_94: + 1833-050619-2_97: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QNrjMtWxxj8= + 1833-050619-3_123: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gxAsnPxGxj8= + 1833-050619-4_80: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hw4P4zqoxT8= + 1833-060619-1_144: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EuUeDhbeyT8= + 1833-120619-2_81: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bXII7nskxT8= + 1833-120619-3_100: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 76jPonx2xz8= + 1833-200619-1_165: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jWeYn1oYyz8= + 1833-200619-2_254: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YScVoExZzD8= + 1833-200619-3_113: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /l4RhtcAxz8= + 1833-290519-1_118: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +ObmNCg0xj8= + 1833-290519-2_122: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t6Zj4WxDwT8= + 1833-290519-3_135: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VAuD6fD+2D8= + 1833-020719-3_95: + 1833-010719-2_223: *id003 + 1833-050619-1_25: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 6962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ca00JkVxxT8= + 1833-050619-2_137: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kF+S/fERxT8= + 1833-050619-3_145: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rJHiYDbjxT8= + 1833-050619-4_151: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xb3BieevxT8= + 1833-060619-1_172: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aEeOUwfiwz8= + 1833-060619-2_108: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dZ1/3ULEwz8= + 1833-120619-1_137: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8cp9eLGEwj8= + 1833-120619-2_170: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CbvjCeEUwj8= + 1833-120619-3_101: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + //7EFtcMyz8= + 1833-120619-4_119: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 2621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fLAMoJc+wj8= + 1833-200619-4_124: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g1dlGufD3D8= + 1833-290519-2_124: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GPoKVZHB0T8= + 1833-290519-3_145: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1N0MB8YB2j8= + 1833-020719-4_250: + 1833-010719-2_231: *id004 + 1833-020719-3_45: *id005 + 1833-050619-1_25: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 9291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HcDa21W8yD8= + 1833-050619-2_137: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 7444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vxIXpVOkxz8= + 1833-050619-3_145: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + voFDhLx/yD8= + 1833-050619-4_151: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f9YMQhYOyD8= + 1833-060619-1_172: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 7722, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EIjVbBSKxz8= + 1833-060619-2_108: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NwEpillexz8= + 1833-120619-1_137: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 12294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5h6QwmQ8xT8= + 1833-120619-2_170: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iSeSIFKixD8= + 1833-120619-3_147: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ki2QdGt6xT8= + 1833-120619-4_119: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IKhLgjU2xT8= + 1833-200619-1_165: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d//pPxRczj8= + 1833-200619-2_254: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dxn3n80E0j8= + 1833-200619-3_113: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bmKDYwJDyz8= + 1833-200619-4_124: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EmHX/Y4F4D8= + 1833-290519-1_80: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + inuLscPSwj8= + 1833-290519-2_122: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MTZdcblQwD8= + 1833-290519-3_76: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ncC0n6zf0z8= + 1833-290519-4_71: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rKDjJ3TRwD8= + 1833-050619-1_25: + 1833-010719-2_231: *id006 + 1833-020719-3_95: *id007 + 1833-020719-4_250: *id008 + 1833-050619-2_137: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tUGrQSMNnT8= + 1833-050619-3_145: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GEXD3J/Eqz8= + 1833-050619-4_151: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6368, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F0GkUToBsD8= + 1833-060619-1_172: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ipPZnyz7qz8= + 1833-060619-2_108: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zdZIZMpupj8= + 1833-120619-1_137: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KBEe0fgRqD8= + 1833-120619-2_170: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FKn2TJnRqD8= + 1833-120619-3_147: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hf/y7cyupj8= + 1833-120619-4_119: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wq+0VL8Ipz8= + 1833-200619-1_165: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85092, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KYxcLWRkvz8= + 1833-200619-2_254: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zjeFUMRUwj8= + 1833-200619-3_113: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pFT3700xvD8= + 1833-200619-4_124: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MEE11X8b3z8= + 1833-290519-1_118: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jq/7gBJNvD8= + 1833-290519-2_114: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cuyQIQ6eyT8= + 1833-290519-3_76: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3Qux2ibNyj8= + 1833-290519-4_71: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0bQ91CH6xj8= + 1833-050619-2_137: + 1833-010719-2_223: *id009 + 1833-020719-3_95: *id010 + 1833-020719-4_250: *id011 + 1833-050619-1_25: *id012 + 1833-050619-3_145: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OxUGop+aoz8= + 1833-050619-4_151: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zr5iqCrRqD8= + 1833-060619-1_172: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8cEvvUEDqz8= + 1833-060619-2_108: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xl82qQDnpj8= + 1833-120619-1_137: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Pi+d39bQqD8= + 1833-120619-2_170: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83935, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + scdVdKlIqD8= + 1833-120619-3_147: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BWjwVmgTpz8= + 1833-120619-4_119: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PebsQWqvpj8= + 1833-200619-1_165: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8ujH4A6zvD8= + 1833-290519-1_80: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZhowP2p6wz8= + 1833-290519-2_114: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fGSETadzyD8= + 1833-290519-3_135: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z1qpUAGSyz8= + 1833-290519-4_71: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6x2U2ZzTxT8= + 1833-050619-2_97: + 1833-010719-2_231: *id013 + 1833-020719-3_94: *id014 + 1833-050619-3_123: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x73yj+7Ykz8= + 1833-050619-4_80: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5vk+D/SEkT8= + 1833-060619-1_144: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P3VQzQ3bsz8= + 1833-120619-2_81: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83935, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ESakBz9jvT8= + 1833-120619-3_100: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ieLXxFj8rz8= + 1833-200619-2_254: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G/Vbn1Xevj8= + 1833-200619-3_113: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E1HlYvGDuT8= + 1833-200619-4_124: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iceBfNDV3j8= + 1833-290519-1_118: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pUUHOLa9uD8= + 1833-290519-2_122: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RM6cEJLazj8= + 1833-290519-3_76: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WSpM7CsJzT8= + 1833-050619-3_123: + 1833-010719-2_231: *id015 + 1833-020719-3_94: *id016 + 1833-050619-2_97: *id017 + 1833-050619-4_80: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LikRNr3giT8= + 1833-060619-1_144: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zVyh/B5ttD8= + 1833-120619-2_81: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rAr16JK2vT8= + 1833-120619-3_100: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CwaA02HhsT8= + 1833-200619-2_254: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iYUYdmRovj8= + 1833-200619-3_113: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g4g3jsFJuD8= + 1833-200619-4_124: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9C4Q/HvX3j8= + 1833-290519-1_118: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FKtGX+wSuD8= + 1833-290519-2_122: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h7kZGGNBzz8= + 1833-290519-3_76: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D4BYdFJlzD8= + 1833-050619-3_145: + 1833-010719-2_223: *id018 + 1833-020719-3_95: *id019 + 1833-020719-4_250: *id020 + 1833-050619-1_25: *id021 + 1833-050619-2_137: *id022 + 1833-050619-4_151: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ppa5e12blj8= + 1833-060619-1_172: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E947RaXEpz8= + 1833-060619-2_108: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dDvTt6eSrD8= + 1833-120619-1_137: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 78847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 92GglMEerT8= + 1833-120619-2_170: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yc8CQD0lqz8= + 1833-120619-3_147: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4UvKhhRorz8= + 1833-120619-4_119: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zz/wnhztrj8= + 1833-200619-1_165: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lqJvxr7tvT8= + 1833-290519-1_80: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hTQ+vrXLxD8= + 1833-290519-2_114: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0wzPlcWvyD8= + 1833-290519-3_135: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ed09Sb6/yz8= + 1833-290519-4_71: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PFU5KzjBxj8= + 1833-050619-4_151: + 1833-010719-2_223: *id023 + 1833-020719-3_95: *id024 + 1833-020719-4_250: *id025 + 1833-050619-1_25: *id026 + 1833-050619-2_137: *id027 + 1833-050619-3_145: *id028 + 1833-060619-1_172: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LNrAW/xvrD8= + 1833-060619-2_108: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZqEsIa3Rrz8= + 1833-120619-1_137: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 77029, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Lh26fXVasT8= + 1833-120619-2_170: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 79414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Avo3IZ/7rj8= + 1833-120619-3_147: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4BgPohwVsj8= + 1833-120619-4_119: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZoDW4abJsT8= + 1833-200619-1_165: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78724, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /m8UdWhRvj8= + 1833-290519-1_80: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HblC5SdoxD8= + 1833-290519-2_114: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6371, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2eS3V+UjyD8= + 1833-290519-3_135: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4e7ItohXyz8= + 1833-290519-4_71: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v5QHKFItxj8= + 1833-050619-4_80: + 1833-010719-2_231: *id029 + 1833-020719-3_94: *id030 + 1833-050619-2_97: *id031 + 1833-050619-3_123: *id032 + 1833-060619-1_144: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0FohT0wFtD8= + 1833-120619-2_81: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 79414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /hDKruQlvD8= + 1833-120619-3_100: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /86ULAaRsD8= + 1833-200619-2_254: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UAsBl/M2vj8= + 1833-200619-3_113: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Lf1UYQiuT8= + 1833-200619-4_124: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T9Esl4n13j8= + 1833-290519-1_118: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S8dxhuGNtj8= + 1833-290519-2_122: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6371, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /vheAO5jzj8= + 1833-290519-3_76: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z5U66cPmyz8= + 1833-060619-1_144: + 1833-010719-2_231: *id033 + 1833-020719-3_94: *id034 + 1833-050619-2_97: *id035 + 1833-050619-3_123: *id036 + 1833-050619-4_80: *id037 + 1833-120619-2_81: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vjFpZA7iuD8= + 1833-120619-3_100: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + duMsss/Iqz8= + 1833-290519-1_118: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CL4VMn86wT8= + 1833-290519-2_122: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1572, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kV/LArFqzz8= + 1833-290519-3_76: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4wCApaLLzD8= + 1833-060619-1_172: + 1833-010719-2_223: *id038 + 1833-020719-3_95: *id039 + 1833-020719-4_250: *id040 + 1833-050619-1_25: *id041 + 1833-050619-2_137: *id042 + 1833-050619-3_145: *id043 + 1833-050619-4_151: *id044 + 1833-060619-2_108: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hu61wRrUmj8= + 1833-120619-1_137: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81828, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hw3KEh+wnj8= + 1833-120619-2_170: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N8WV1JX+mj8= + 1833-120619-3_147: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GQXByNk+oj8= + 1833-120619-4_119: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QvOvCCPvoT8= + 1833-200619-1_165: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JsJ5X7nKwD8= + 1833-200619-2_254: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q/AETmLPwj8= + 1833-200619-3_113: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wcaaHT4Hvz8= + 1833-200619-4_124: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CeUvmw2v3j8= + 1833-290519-1_80: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BMeHVbxhxD8= + 1833-290519-2_114: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1572, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lamsDkHDyD8= + 1833-290519-3_135: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JnpGcve3yT8= + 1833-290519-4_71: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TPJweBI5xj8= + 1833-060619-2_108: + 1833-010719-2_231: *id045 + 1833-020719-3_95: *id046 + 1833-020719-4_250: *id047 + 1833-050619-1_25: *id048 + 1833-050619-2_137: *id049 + 1833-050619-3_145: *id050 + 1833-050619-4_151: *id051 + 1833-060619-1_172: *id052 + 1833-120619-1_137: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vVRDdpfqmj8= + 1833-120619-2_170: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81379, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CZKMQ6xImz8= + 1833-120619-3_147: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RM6khV7fmz8= + 1833-120619-4_119: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8exBUDEVmT8= + 1833-200619-1_165: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NZs5G0DPwD8= + 1833-200619-2_254: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /OJsKteTwj8= + 1833-200619-3_113: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GPeAj8Alvj8= + 1833-200619-4_124: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5v6kiDXf3j8= + 1833-290519-1_118: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YcdzggVwvj8= + 1833-290519-2_114: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SwnHAr0NyT8= + 1833-290519-3_76: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rTZA1TAryT8= + 1833-290519-4_71: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MC/eNbgBxj8= + 1833-120619-1_137: + 1833-010719-2_231: *id053 + 1833-020719-3_95: *id054 + 1833-020719-4_250: *id055 + 1833-050619-1_25: *id056 + 1833-050619-2_137: *id057 + 1833-050619-3_145: *id058 + 1833-050619-4_151: *id059 + 1833-060619-1_172: *id060 + 1833-060619-2_108: *id061 + 1833-120619-2_170: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2385, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j6jBUBsXiz8= + 1833-120619-3_147: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5u0MVya/kD8= + 1833-120619-4_119: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7344, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8zHxQFQYkD8= + 1833-200619-1_165: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k62gAVjjvj8= + 1833-200619-2_254: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YPeQyn1EwT8= + 1833-200619-3_113: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k+JYLN5AvD8= + 1833-200619-4_124: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gHol+r8p3z8= + 1833-290519-1_118: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9j23rCaevD8= + 1833-290519-2_114: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83400, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W0MtgfY6xj8= + 1833-290519-3_76: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rCplHILSxj8= + 1833-290519-4_71: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78526, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N9fsgDsyxD8= + 1833-120619-2_170: + 1833-010719-2_223: *id062 + 1833-020719-3_95: *id063 + 1833-020719-4_250: *id064 + 1833-050619-1_25: *id065 + 1833-050619-2_137: *id066 + 1833-050619-3_145: *id067 + 1833-050619-4_151: *id068 + 1833-060619-1_172: *id069 + 1833-060619-2_108: *id070 + 1833-120619-1_137: *id071 + 1833-120619-3_147: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HNJdFQoOlz8= + 1833-120619-4_119: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4959, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WvJG5P2Qkz8= + 1833-200619-1_165: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bZSIQv+Evj8= + 1833-200619-2_254: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TzFPFokRwT8= + 1833-200619-3_113: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +8scLYMsvD8= + 1833-200619-4_124: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7bl0Jdk43z8= + 1833-290519-1_80: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IRz1k2b2wT8= + 1833-290519-2_114: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1nYoDYahxT8= + 1833-290519-3_135: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SY/7HaPvxj8= + 1833-290519-4_71: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bFEvoVmWwz8= + 1833-120619-2_81: + 1833-010719-2_231: *id072 + 1833-020719-3_94: *id073 + 1833-050619-2_97: *id074 + 1833-050619-3_123: *id075 + 1833-050619-4_80: *id076 + 1833-060619-1_144: *id077 + 1833-120619-3_100: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K/6HKLaTtD8= + 1833-290519-1_118: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4SIyzhAPwD8= + 1833-290519-2_122: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BKAeJZUsyT8= + 1833-290519-3_76: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RsUcZ8VQyD8= + 1833-120619-3_100: + 1833-010719-2_231: *id078 + 1833-020719-3_94: *id079 + 1833-050619-2_97: *id080 + 1833-050619-3_123: *id081 + 1833-050619-4_80: *id082 + 1833-060619-1_144: *id083 + 1833-120619-2_81: *id084 + 1833-290519-1_118: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hf9iQ0u5vD8= + 1833-290519-2_122: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wx3jEYGKzT8= + 1833-290519-3_76: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FBvSl1f+yz8= + 1833-120619-3_101: + 1833-020719-3_95: *id085 + 1833-200619-4_124: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P218HvoO3T8= + 1833-290519-2_114: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6igmDqKH0z8= + 1833-290519-3_135: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RXVk1n3w0T8= + 1833-120619-3_147: + 1833-010719-2_223: *id086 + 1833-020719-3_45: *id087 + 1833-020719-4_250: *id088 + 1833-050619-1_25: *id089 + 1833-050619-2_137: *id090 + 1833-050619-3_145: *id091 + 1833-050619-4_151: *id092 + 1833-060619-1_172: *id093 + 1833-060619-2_108: *id094 + 1833-120619-1_137: *id095 + 1833-120619-2_170: *id096 + 1833-120619-4_119: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UMWOeBdOgz8= + 1833-200619-1_165: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LEPP7RKtvj8= + 1833-200619-2_254: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0X6b2LbhwD8= + 1833-200619-3_113: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6ngKJrXpuj8= + 1833-290519-1_80: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lFVwQqKZwj8= + 1833-290519-2_124: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jJlo2q8GyT8= + 1833-290519-3_145: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uGI8oP+4yz8= + 1833-290519-4_71: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2GKQbVNVxD8= + 1833-120619-4_119: + 1833-010719-2_231: *id097 + 1833-020719-3_95: *id098 + 1833-020719-4_250: *id099 + 1833-050619-1_25: *id100 + 1833-050619-2_137: *id101 + 1833-050619-3_145: *id102 + 1833-050619-4_151: *id103 + 1833-060619-1_172: *id104 + 1833-060619-2_108: *id105 + 1833-120619-1_137: *id106 + 1833-120619-2_170: *id107 + 1833-120619-3_147: *id108 + 1833-200619-1_165: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80751, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q+rwkq/wvj8= + 1833-200619-2_254: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R7ioCO38wD8= + 1833-200619-3_113: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2p+NMipWuz8= + 1833-200619-4_124: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nzZT/5nY3j8= + 1833-290519-1_118: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GkaxFnYfvD8= + 1833-290519-2_114: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4344, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2nv8jXqUxj8= + 1833-290519-3_76: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hDzSiW/3xj8= + 1833-290519-4_71: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GAyPL/McxD8= + 1833-200619-1_165: + 1833-010719-2_231: *id109 + 1833-020719-3_94: *id110 + 1833-020719-4_250: *id111 + 1833-050619-1_25: *id112 + 1833-050619-2_137: *id113 + 1833-050619-3_145: *id114 + 1833-050619-4_151: *id115 + 1833-060619-1_172: *id116 + 1833-060619-2_108: *id117 + 1833-120619-1_137: *id118 + 1833-120619-2_170: *id119 + 1833-120619-3_147: *id120 + 1833-120619-4_119: *id121 + 1833-200619-2_254: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eMnItbiZwD8= + 1833-200619-3_113: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jxUZofIYtj8= + 1833-200619-4_124: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4XKuCCZ93z8= + 1833-290519-1_118: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9LTu3Ifewz8= + 1833-290519-2_114: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IK2rU+9Wzz8= + 1833-290519-3_76: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5Y6pALyr0T8= + 1833-290519-4_71: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ur/A0UjYyz8= + 1833-200619-2_254: + 1833-010719-2_231: *id122 + 1833-020719-3_94: *id123 + 1833-020719-4_250: *id124 + 1833-050619-1_25: *id125 + 1833-050619-2_97: *id126 + 1833-050619-3_123: *id127 + 1833-050619-4_80: *id128 + 1833-060619-1_172: *id129 + 1833-060619-2_108: *id130 + 1833-120619-1_137: *id131 + 1833-120619-2_170: *id132 + 1833-120619-3_147: *id133 + 1833-120619-4_119: *id134 + 1833-200619-1_165: *id135 + 1833-200619-3_113: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 14l3R3ZMsz8= + 1833-200619-4_124: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YHR+0qA73z8= + 1833-290519-1_118: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vQmAOIvXwz8= + 1833-290519-2_122: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LSu+CUg+yz8= + 1833-290519-3_76: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zO1iFyeq0T8= + 1833-290519-4_71: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZgeZFqIZ0z8= + 1833-200619-3_113: + 1833-010719-2_231: *id136 + 1833-020719-3_94: *id137 + 1833-020719-4_250: *id138 + 1833-050619-1_25: *id139 + 1833-050619-2_97: *id140 + 1833-050619-3_123: *id141 + 1833-050619-4_80: *id142 + 1833-060619-1_172: *id143 + 1833-060619-2_108: *id144 + 1833-120619-1_137: *id145 + 1833-120619-2_170: *id146 + 1833-120619-3_147: *id147 + 1833-120619-4_119: *id148 + 1833-200619-1_165: *id149 + 1833-200619-2_254: *id150 + 1833-200619-4_124: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ppy7N8mD3j8= + 1833-290519-1_118: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZqBN4ZJJwD8= + 1833-290519-2_114: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + chdDPinhzT8= + 1833-290519-3_76: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9+imQC5Jzj8= + 1833-290519-4_71: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zaa5ZFbtyT8= + 1833-200619-4_124: + 1833-010719-2_223: *id151 + 1833-020719-3_95: *id152 + 1833-020719-4_250: *id153 + 1833-050619-1_25: *id154 + 1833-050619-2_97: *id155 + 1833-050619-3_123: *id156 + 1833-050619-4_80: *id157 + 1833-060619-1_172: *id158 + 1833-060619-2_108: *id159 + 1833-120619-1_137: *id160 + 1833-120619-2_170: *id161 + 1833-120619-3_101: *id162 + 1833-120619-4_119: *id163 + 1833-200619-1_165: *id164 + 1833-200619-2_254: *id165 + 1833-200619-3_113: *id166 + 1833-290519-1_80: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AHnzvVG83z8= + 1833-290519-2_122: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kpf0Rgpo4D8= + 1833-290519-3_145: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jh5VNXy24D8= + 1833-290519-4_71: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e5cm2BpG3z8= + 1833-290519-1_118: + 1833-010719-2_231: *id167 + 1833-020719-3_94: *id168 + 1833-050619-1_25: *id169 + 1833-050619-2_97: *id170 + 1833-050619-3_123: *id171 + 1833-050619-4_80: *id172 + 1833-060619-1_144: *id173 + 1833-060619-2_108: *id174 + 1833-120619-1_137: *id175 + 1833-120619-2_81: *id176 + 1833-120619-3_100: *id177 + 1833-120619-4_119: *id178 + 1833-200619-1_165: *id179 + 1833-200619-2_254: *id180 + 1833-200619-3_113: *id181 + 1833-290519-2_114: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PBZPZ8W/zT8= + 1833-290519-3_135: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KYn8+HK30T8= + 1833-290519-1_80: + 1833-010719-2_223: *id182 + 1833-020719-3_45: *id183 + 1833-020719-4_250: *id184 + 1833-050619-2_137: *id185 + 1833-050619-3_145: *id186 + 1833-050619-4_151: *id187 + 1833-060619-1_172: *id188 + 1833-120619-2_170: *id189 + 1833-120619-3_147: *id190 + 1833-200619-4_124: *id191 + 1833-290519-2_122: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xB8zLnfUxT8= + 1833-290519-3_76: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0h9fxRck0z8= + 1833-290519-4_71: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MfiGo1Zqtz8= + 1833-290519-2_114: + 1833-010719-2_231: *id192 + 1833-020719-3_45: *id193 + 1833-050619-1_25: *id194 + 1833-050619-2_137: *id195 + 1833-050619-3_145: *id196 + 1833-050619-4_151: *id197 + 1833-060619-1_172: *id198 + 1833-060619-2_108: *id199 + 1833-120619-1_137: *id200 + 1833-120619-2_170: *id201 + 1833-120619-3_101: *id202 + 1833-120619-4_119: *id203 + 1833-200619-1_165: *id204 + 1833-200619-3_113: *id205 + 1833-290519-1_118: *id206 + 1833-290519-3_76: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /iGMzO8XzD8= + 1833-290519-2_122: + 1833-010719-2_223: *id207 + 1833-020719-3_94: *id208 + 1833-020719-4_250: *id209 + 1833-050619-2_97: *id210 + 1833-050619-3_123: *id211 + 1833-050619-4_80: *id212 + 1833-060619-1_144: *id213 + 1833-120619-2_81: *id214 + 1833-120619-3_100: *id215 + 1833-200619-2_254: *id216 + 1833-200619-4_124: *id217 + 1833-290519-1_80: *id218 + 1833-290519-3_145: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ccU0a2jUzT8= + 1833-290519-4_71: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WmrmrpNJwz8= + 1833-290519-2_124: + 1833-020719-3_95: *id219 + 1833-120619-3_147: *id220 + 1833-290519-3_135: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FQH+zsKt0z8= + 1833-290519-3_135: + 1833-020719-3_94: *id221 + 1833-050619-2_137: *id222 + 1833-050619-3_145: *id223 + 1833-050619-4_151: *id224 + 1833-060619-1_172: *id225 + 1833-120619-2_170: *id226 + 1833-120619-3_101: *id227 + 1833-290519-1_118: *id228 + 1833-290519-2_124: *id229 + 1833-290519-3_145: + 1833-010719-2_223: *id230 + 1833-020719-3_95: *id231 + 1833-120619-3_147: *id232 + 1833-200619-4_124: *id233 + 1833-290519-2_122: *id234 + 1833-290519-3_76: + 1833-010719-2_231: *id235 + 1833-020719-3_45: *id236 + 1833-020719-4_250: *id237 + 1833-050619-1_25: *id238 + 1833-050619-2_97: *id239 + 1833-050619-3_123: *id240 + 1833-050619-4_80: *id241 + 1833-060619-1_144: *id242 + 1833-060619-2_108: *id243 + 1833-120619-1_137: *id244 + 1833-120619-2_81: *id245 + 1833-120619-3_100: *id246 + 1833-120619-4_119: *id247 + 1833-200619-1_165: *id248 + 1833-200619-2_254: *id249 + 1833-200619-3_113: *id250 + 1833-290519-1_80: *id251 + 1833-290519-2_114: *id252 + 1833-290519-4_71: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mbG/LOFW1z8= + 1833-290519-4_71: + 1833-010719-2_231: *id253 + 1833-020719-3_45: *id254 + 1833-020719-4_250: *id255 + 1833-050619-1_25: *id256 + 1833-050619-2_137: *id257 + 1833-050619-3_145: *id258 + 1833-050619-4_151: *id259 + 1833-060619-1_172: *id260 + 1833-060619-2_108: *id261 + 1833-120619-1_137: *id262 + 1833-120619-2_170: *id263 + 1833-120619-3_147: *id264 + 1833-120619-4_119: *id265 + 1833-200619-1_165: *id266 + 1833-200619-2_254: *id267 + 1833-200619-3_113: *id268 + 1833-200619-4_124: *id269 + 1833-290519-1_80: *id270 + 1833-290519-2_122: *id271 + 1833-290519-3_76: *id272 +_node: &id275 + 1833-010719-2_223: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id273 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + 3wAAAAAAAAA= + 1833-010719-2_231: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + 5wAAAAAAAAA= + 1833-020719-3_45: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + LQAAAAAAAAA= + 1833-020719-3_94: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + XgAAAAAAAAA= + 1833-020719-3_95: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + XwAAAAAAAAA= + 1833-020719-4_250: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + +gAAAAAAAAA= + 1833-050619-1_25: + action_id: 1833-050619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + GQAAAAAAAAA= + 1833-050619-2_137: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + iQAAAAAAAAA= + 1833-050619-2_97: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + YQAAAAAAAAA= + 1833-050619-3_123: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + ewAAAAAAAAA= + 1833-050619-3_145: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + kQAAAAAAAAA= + 1833-050619-4_151: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + lwAAAAAAAAA= + 1833-050619-4_80: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + UAAAAAAAAAA= + 1833-060619-1_144: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + kAAAAAAAAAA= + 1833-060619-1_172: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + rAAAAAAAAAA= + 1833-060619-2_108: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + bAAAAAAAAAA= + 1833-120619-1_137: + action_id: 1833-120619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + iQAAAAAAAAA= + 1833-120619-2_170: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + qgAAAAAAAAA= + 1833-120619-2_81: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + UQAAAAAAAAA= + 1833-120619-3_100: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + ZAAAAAAAAAA= + 1833-120619-3_101: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + ZQAAAAAAAAA= + 1833-120619-3_147: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + kwAAAAAAAAA= + 1833-120619-4_119: + action_id: 1833-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + dwAAAAAAAAA= + 1833-200619-1_165: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + pQAAAAAAAAA= + 1833-200619-2_254: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + /gAAAAAAAAA= + 1833-200619-3_113: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + cQAAAAAAAAA= + 1833-200619-4_124: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + fAAAAAAAAAA= + 1833-290519-1_118: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + dgAAAAAAAAA= + 1833-290519-1_80: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + UAAAAAAAAAA= + 1833-290519-2_114: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + cgAAAAAAAAA= + 1833-290519-2_122: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + egAAAAAAAAA= + 1833-290519-2_124: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + fAAAAAAAAAA= + 1833-290519-3_135: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + hwAAAAAAAAA= + 1833-290519-3_145: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + kQAAAAAAAAA= + 1833-290519-3_76: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + TAAAAAAAAAA= + 1833-290519-4_71: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id273 + - !!binary | + RwAAAAAAAAA= +adjlist_inner_dict_factory: &id274 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id274 +edge_attr_dict_factory: *id274 +graph: {} +node_dict_factory: *id274 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id275 diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-5.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-5.yaml new file mode 100644 index 000000000..62a27bc0b --- /dev/null +++ b/actions/identify-neurons/data/1833-graphs/graph-group-5.yaml @@ -0,0 +1,4613 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1833-010719-1_134: + 1833-010719-2_221: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + IdvgFBu1qj8= + 1833-020719-3_117: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fkzhPS9svD8= + 1833-060619-2_98: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hd6VLXDnxD8= + 1833-120619-2_123: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tfy5512Uuj8= + 1833-200619-3_59: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ODBEjDP2uD8= + 1833-260619-1_100: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D3YpczFOsz8= + 1833-260619-2_115: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zr1xHn7Wsj8= + 1833-260619-3_113: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MVs1YVqqtD8= + 1833-260619-4_162: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NgEMJ2TVxz8= + 1833-290519-1_158: &id382 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G2P6VYZKzD8= + 1833-290519-3_143: &id457 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LVbp5VMI1T8= + 1833-290519-4_121: &id504 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4MILSXZHyT8= + 1833-010719-1_144: + 1833-050619-4_82: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4XKxTzAzxz8= + 1833-060619-1_164: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 01Ed/ms+wz8= + 1833-120619-2_145: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iai42YNEyD8= + 1833-260619-3_109: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a5dNRNg8xj8= + 1833-260619-4_188: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8doBNSVmsj8= + 1833-290519-1_172: &id387 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zRSonG52wD8= + 1833-290519-3_109: &id428 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SVID0Hqw1j8= + 1833-010719-1_150: + 1833-020719-2_126: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p48zr3a1sz8= + 1833-020719-3_135: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KwdGprVJrj8= + 1833-020719-4_294: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z2FR28Vbrz8= + 1833-120619-2_133: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SZluxvJ7yD8= + 1833-260619-3_111: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8R6DnJLOwz8= + 1833-290519-1_94: &id395 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l1CGJGc4wD8= + 1833-290519-3_117: &id432 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +P5z5pF30z8= + 1833-290519-4_98: &id513 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IePOvvoBsz8= + 1833-010719-1_166: + 1833-010719-2_235: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RdUGMhEhkD8= + 1833-020719-1_109: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JoCQHe22tT8= + 1833-020719-2_103: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pneQZ2L1uT8= + 1833-020719-3_121: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1Mm7cNCQsD8= + 1833-020719-4_266: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FgpoKqEztD8= + 1833-050619-1_73: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 3013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kROb6VMxvj8= + 1833-050619-2_123: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yeeUzoqDvD8= + 1833-050619-3_127: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yzm0HEUnuj8= + 1833-050619-4_79: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 48DP5DhPvD8= + 1833-060619-1_156: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ofZQLnkCuj8= + 1833-060619-2_68: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cEtgt+02tj8= + 1833-120619-1_133: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 6016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XgR3We9AvD8= + 1833-120619-2_100: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9hkZl2/Xxj8= + 1833-120619-3_136: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 1019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N0opctYDwD8= + 1833-120619-4_122: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [18, 85072, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + haz/aUaLvz8= + 1833-200619-2_270: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2m3q6NIvvz8= + 1833-200619-3_122: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GsKno3rQvz8= + 1833-200619-4_94: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ljop/At9vT8= + 1833-260619-1_110: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n9fdQserqz8= + 1833-260619-2_154: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tBgSrDn/pz8= + 1833-260619-3_184: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XJ8zvdsSpz8= + 1833-260619-4_212: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aU3EiKszpj8= + 1833-290519-1_134: &id359 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bKYBu5URwT8= + 1833-290519-2_80: &id404 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Thg9yBBpwD8= + 1833-290519-3_139: &id451 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tqODMxdl0T8= + 1833-290519-4_115: &id478 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2Qx8acWxwD8= + 1833-010719-2_221: + 1833-010719-1_134: *id002 + 1833-020719-2_126: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MXW28DcHyT8= + 1833-020719-3_117: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + liccBRekvT8= + 1833-020719-4_294: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + psw7rTFXyD8= + 1833-050619-4_82: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84833, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9kb36LO3yD8= + 1833-060619-1_164: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 3232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 31xpD06Cwz8= + 1833-060619-2_98: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8gMr+ixZxD8= + 1833-120619-2_123: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sMFapT2yuz8= + 1833-200619-3_59: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5i7V4OxMvT8= + 1833-260619-1_100: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PNDPUTcksz8= + 1833-260619-2_115: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y7QpmkD8sD8= + 1833-260619-3_111: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + se2vjzwurz8= + 1833-260619-4_188: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aaxvwtDzsz8= + 1833-290519-1_172: &id388 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n2C5qR7TxD8= + 1833-290519-3_117: &id433 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BRxBbZfk0j8= + 1833-290519-4_98: &id514 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fwb9kUoGxz8= + 1833-010719-2_235: + 1833-010719-1_166: *id003 + 1833-020719-1_109: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zAI4OFxItD8= + 1833-020719-2_103: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K0aMKVt8uD8= + 1833-020719-3_121: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H7Y9BA/xrj8= + 1833-020719-4_266: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kii0CskNsz8= + 1833-050619-1_73: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QYPOnlOgvz8= + 1833-050619-2_123: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dpM++GrKvT8= + 1833-050619-3_127: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IhACo5eauz8= + 1833-050619-4_79: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84833, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NdTXFqvEvD8= + 1833-060619-1_156: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 3232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PwqASu08uz8= + 1833-060619-2_68: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lufYySqWtj8= + 1833-120619-1_133: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 7804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J6tjBB24vT8= + 1833-120619-2_133: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YNa7sAbCuj8= + 1833-120619-3_136: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yrJIwVzLwD8= + 1833-120619-4_122: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 460, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZD51rRScwD8= + 1833-200619-2_270: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cko/iNY9wD8= + 1833-200619-3_122: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NSMGB5GewD8= + 1833-200619-4_94: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qYWoypVJvz8= + 1833-260619-1_110: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rvP7zVZ6rj8= + 1833-260619-2_154: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uosznzwuqj8= + 1833-260619-3_184: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7JLQYU9uqT8= + 1833-260619-4_212: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qfZElvBpqD8= + 1833-290519-1_134: &id360 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OYeE90quwT8= + 1833-290519-2_80: &id405 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gzS1mDpbwD8= + 1833-290519-3_143: &id458 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VPBunUS5zz8= + 1833-290519-4_115: &id479 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + koDo61dewT8= + 1833-020719-1_109: + 1833-010719-1_166: *id004 + 1833-010719-2_235: *id005 + 1833-020719-2_103: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HXR88cXEtz8= + 1833-020719-3_121: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3fgLmXzpsD8= + 1833-020719-4_266: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DP6zadmqsD8= + 1833-050619-1_73: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CtFqmDaNvD8= + 1833-050619-2_123: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 545, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S53rkHLYuz8= + 1833-050619-3_127: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84242, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aFxLMEUUuz8= + 1833-050619-4_79: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 82424, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H/W+s2c4vT8= + 1833-060619-1_156: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qdH7OHt+vD8= + 1833-060619-2_68: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84389, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nc1uDP2FuT8= + 1833-120619-1_133: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q0xsHAg9wD8= + 1833-120619-2_133: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lqusMWzpuz8= + 1833-120619-3_136: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U7GMl4pBwT8= + 1833-120619-4_122: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 84451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hNQX1GWnwT8= + 1833-200619-2_270: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3PA+UOhYvj8= + 1833-200619-3_122: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 85985, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AOAFSdu1vj8= + 1833-200619-4_94: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fXBi5TCavj8= + 1833-260619-1_110: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n7uDIfPCuz8= + 1833-260619-2_154: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oJc/lpBIuj8= + 1833-260619-3_184: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9BvBhk7JuT8= + 1833-260619-4_212: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + et/+jXiWuT8= + 1833-290519-1_134: &id361 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y/0Pj3DTvj8= + 1833-290519-2_80: &id406 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + les/HdC0wT8= + 1833-290519-3_117: &id434 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y/jwB3AK0z8= + 1833-290519-4_115: &id480 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w71oBysLwD8= + 1833-020719-2_103: + 1833-010719-1_166: *id006 + 1833-010719-2_235: *id007 + 1833-020719-1_109: *id008 + 1833-020719-3_121: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jwLlH1sKsz8= + 1833-020719-4_266: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MKn9cgmxrj8= + 1833-050619-1_73: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EYGsqo9Awz8= + 1833-050619-2_123: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4e6/Gyt2wT8= + 1833-050619-3_127: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 86347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LO+3kEUzwD8= + 1833-050619-4_79: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IMEHZW/buD8= + 1833-060619-1_156: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2928, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nTYaY+xYvD8= + 1833-060619-2_68: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 94, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +8WXQ+ZBtT8= + 1833-120619-1_133: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jFDHbF6ZwT8= + 1833-120619-2_133: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8VuNXr6hwD8= + 1833-120619-3_136: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 2503, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jl9yY6tgxj8= + 1833-120619-4_122: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T6wauJikxj8= + 1833-200619-2_270: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3246, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ey+eIfxVxD8= + 1833-200619-3_122: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3HbB3YHpxD8= + 1833-200619-4_94: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BCMeIyZjxD8= + 1833-260619-1_110: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F52pm6g8wj8= + 1833-260619-2_154: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iQxBwSnKuz8= + 1833-260619-3_184: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9n2YOvnZvT8= + 1833-260619-4_212: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XXnc2ah0uj8= + 1833-290519-1_134: &id362 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8d4xRfUcxD8= + 1833-290519-2_80: &id407 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rg1XO5jrxD8= + 1833-290519-3_143: &id459 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +JY8kaZR0z8= + 1833-290519-4_115: &id481 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5tBvJoRqxj8= + 1833-020719-2_126: + 1833-010719-1_150: *id009 + 1833-010719-2_221: *id010 + 1833-020719-3_135: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WqPgfB7RqT8= + 1833-020719-4_294: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4GoZMyIasj8= + 1833-050619-4_82: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UWGA29JS0j8= + 1833-060619-1_164: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2928, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d5z8KGSfzT8= + 1833-060619-2_98: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 94, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j0+5TPEiyz8= + 1833-120619-2_123: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d98tkVifyj8= + 1833-200619-3_59: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lamrHsyYxT8= + 1833-260619-1_100: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ecYpKaj0xD8= + 1833-260619-2_115: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0ifRZH+mxj8= + 1833-260619-3_111: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FsxM+WUXxj8= + 1833-260619-4_162: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hVm2EOHwyz8= + 1833-290519-1_94: &id396 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VLZrfoD1vz8= + 1833-290519-3_117: &id435 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i9yN6+LE0D8= + 1833-290519-4_98: &id515 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + o3mhyGsOsT8= + 1833-020719-3_117: + 1833-010719-1_134: *id011 + 1833-010719-2_221: *id012 + 1833-050619-4_79: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wWCtRk+gxT8= + 1833-060619-1_164: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EBlrN8edwT8= + 1833-060619-2_98: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vztgOGGavz8= + 1833-120619-2_123: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HdZih32yvD8= + 1833-200619-3_59: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZjCshkb1vj8= + 1833-260619-1_100: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g3dAkOjYtj8= + 1833-260619-2_115: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8UCT8csGuT8= + 1833-260619-3_113: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aO4Jihbhsz8= + 1833-260619-4_188: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VU+0Mz0PvT8= + 1833-290519-1_172: &id389 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9rc+o0kdxT8= + 1833-290519-3_117: &id436 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RRG0YG0R1j8= + 1833-290519-4_121: &id505 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9pQKCYZGxD8= + 1833-020719-3_121: + 1833-010719-1_166: *id013 + 1833-010719-2_235: *id014 + 1833-020719-1_109: *id015 + 1833-020719-2_103: *id016 + 1833-020719-4_266: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JqNdHTqZpD8= + 1833-050619-1_73: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 6962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YxkbyRWnvj8= + 1833-050619-2_123: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ju920qYDvT8= + 1833-050619-3_127: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /YJz01c8vD8= + 1833-050619-4_82: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E2FP6x5uxD8= + 1833-060619-1_156: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eyZW56zhuz8= + 1833-060619-2_68: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j0LbD+yFuD8= + 1833-120619-1_133: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xnfkTtRqvz8= + 1833-120619-2_133: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z4ZUe9HWvD8= + 1833-120619-3_136: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fGG4qZtkwT8= + 1833-120619-4_122: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 2621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I0qP456MwT8= + 1833-200619-2_270: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bz1vom9Hvz8= + 1833-200619-3_122: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +/HKMz7pvz8= + 1833-200619-4_94: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q9wUcJ1cvz8= + 1833-260619-1_110: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mf0P5FXjtz8= + 1833-260619-2_154: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XWyRLGpvtT8= + 1833-260619-3_184: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QlcumoCutT8= + 1833-260619-4_212: &id341 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fSR3NMzutD8= + 1833-290519-1_134: &id363 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XeI3mA/8wD8= + 1833-290519-2_80: &id408 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PevdT024wj8= + 1833-290519-3_143: &id460 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DPHzc5rT0D8= + 1833-290519-4_115: &id482 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4eolS3izwD8= + 1833-020719-3_135: + 1833-010719-1_150: *id017 + 1833-020719-2_126: *id018 + 1833-020719-4_294: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7B0+/WVQoj8= + 1833-120619-2_145: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1VAD90hLzz8= + 1833-260619-3_111: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PRVtkjjhwz8= + 1833-260619-4_162: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S/oK/sd3yz8= + 1833-290519-1_94: &id397 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 96u5Y2s3vj8= + 1833-290519-3_139: &id452 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZF1fiw8Z1D8= + 1833-290519-4_98: &id516 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K3wLTIrBrT8= + 1833-020719-4_266: + 1833-010719-1_166: *id019 + 1833-010719-2_235: *id020 + 1833-020719-1_109: *id021 + 1833-020719-2_103: *id022 + 1833-020719-3_121: *id023 + 1833-050619-1_73: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 9291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7NMGtb/1vD8= + 1833-050619-2_123: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 7444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z66B5Orouj8= + 1833-050619-3_127: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9T5tF/QCuj8= + 1833-050619-4_79: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yeETjhvIuT8= + 1833-060619-1_156: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 7722, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i97gTkRpuD8= + 1833-060619-2_68: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mf7XNI1/tT8= + 1833-120619-1_133: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 12294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7PLJ4n9Avz8= + 1833-120619-2_133: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0K1GvjBMvD8= + 1833-120619-3_136: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cmI1vqbZwT8= + 1833-120619-4_122: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LJ1jFvAdwj8= + 1833-200619-2_270: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oEQ25Bjbvj8= + 1833-200619-3_122: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xiRs6Jptvz8= + 1833-200619-4_94: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eXEct3ZLvz8= + 1833-260619-1_110: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J5HGlT7Ouz8= + 1833-260619-2_154: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8zi6atwcuD8= + 1833-260619-3_184: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 89lXu7w9uT8= + 1833-260619-4_212: &id342 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uIB8g3FTtz8= + 1833-290519-1_134: &id364 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 49oKbklOvz8= + 1833-290519-2_80: &id409 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XoZmKhmGwz8= + 1833-290519-3_143: &id461 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Puf2GCTI0j8= + 1833-290519-4_115: &id483 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bcScSY+WwD8= + 1833-020719-4_294: + 1833-010719-1_150: *id024 + 1833-010719-2_221: *id025 + 1833-020719-2_126: *id026 + 1833-020719-3_135: *id027 + 1833-050619-4_82: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0PMOfFfzzj8= + 1833-060619-1_164: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 7722, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5/dWt/4fyz8= + 1833-060619-2_98: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fICD76YgyT8= + 1833-120619-2_123: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 42XCVDXLxz8= + 1833-200619-3_59: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mqTI5Dg1xD8= + 1833-260619-1_100: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WMk5/jTTwj8= + 1833-260619-2_115: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q7ad4AHNxT8= + 1833-260619-3_111: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b2Pw8UKZxD8= + 1833-260619-4_188: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nt24ABxHyj8= + 1833-290519-1_94: &id398 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9yB4+gQxvj8= + 1833-290519-3_117: &id437 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e9rE/Sg40j8= + 1833-290519-4_98: &id517 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8HKVpB44sD8= + 1833-050619-1_73: + 1833-010719-1_166: *id028 + 1833-010719-2_235: *id029 + 1833-020719-1_109: *id030 + 1833-020719-2_103: *id031 + 1833-020719-3_121: *id032 + 1833-020719-4_266: *id033 + 1833-050619-2_123: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cbkUDsKUkz8= + 1833-050619-3_127: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MWz875NdqT8= + 1833-050619-4_82: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6368, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L1+9GDePsD8= + 1833-060619-1_156: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vo5TbMIVtT8= + 1833-060619-2_68: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KSv9jbr1uz8= + 1833-120619-1_133: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LIWRdzm6sT8= + 1833-120619-2_133: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NcPglOT/rD8= + 1833-120619-3_136: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dnIaljQMrz8= + 1833-120619-4_122: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /PmxpuHwsD8= + 1833-200619-2_270: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dwCwsWRepj8= + 1833-200619-3_122: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xndGRWvGpT8= + 1833-200619-4_94: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0Y4XOZbkqD8= + 1833-260619-1_110: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MFmNJdonuT8= + 1833-260619-2_154: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d5dRYzLZuT8= + 1833-260619-3_109: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3272, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E9Rlj+uisD8= + 1833-260619-4_212: &id343 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2hpmNwhIuj8= + 1833-290519-1_134: &id365 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P8Pfp71Frj8= + 1833-290519-2_80: &id410 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LA1+8oiywD8= + 1833-290519-3_143: &id462 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NVqzaj/Byz8= + 1833-290519-4_115: &id484 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XkKtcVW/rj8= + 1833-050619-2_123: + 1833-010719-1_166: *id034 + 1833-010719-2_235: *id035 + 1833-020719-1_109: *id036 + 1833-020719-2_103: *id037 + 1833-020719-3_121: *id038 + 1833-020719-4_266: *id039 + 1833-050619-1_73: *id040 + 1833-050619-3_127: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ipLGTIvQoz8= + 1833-050619-4_82: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dZvmNgPBsz8= + 1833-060619-1_156: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ejBUcPjwsD8= + 1833-060619-2_68: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IKirs9YEuD8= + 1833-120619-1_133: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8uwX1yvesD8= + 1833-120619-2_133: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83935, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + apA92Ie6qT8= + 1833-120619-3_136: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KXzmWknJsj8= + 1833-120619-4_122: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E1Qt053Psz8= + 1833-200619-2_270: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Esbw+TQqz8= + 1833-200619-3_122: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nYeeEWrcqz8= + 1833-200619-4_94: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PfeckroHrD8= + 1833-260619-1_110: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CHRUYP1cuT8= + 1833-260619-2_154: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y8kzrlLcuD8= + 1833-260619-3_109: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z3jertoDsz8= + 1833-260619-4_212: &id344 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +FsZQpEruT8= + 1833-290519-1_134: &id366 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CZzeoAt6sD8= + 1833-290519-2_80: &id411 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3xXFE3OgwD8= + 1833-290519-3_143: &id463 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 43SnARhlzD8= + 1833-290519-4_115: &id485 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2JS9eYuksj8= + 1833-050619-3_127: + 1833-010719-1_166: *id041 + 1833-010719-2_235: *id042 + 1833-020719-1_109: *id043 + 1833-020719-2_103: *id044 + 1833-020719-3_121: *id045 + 1833-020719-4_266: *id046 + 1833-050619-1_73: *id047 + 1833-050619-2_123: *id048 + 1833-050619-4_79: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +MS6fod/sD8= + 1833-060619-1_156: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DUrEuuGMqT8= + 1833-060619-2_68: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dpgiGPRcsj8= + 1833-120619-1_133: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 78847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cYRlgYO4rj8= + 1833-120619-2_133: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nrPNp8yUpz8= + 1833-120619-3_136: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j7id6vqrtj8= + 1833-120619-4_122: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cv0a2ZTltj8= + 1833-200619-2_270: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GBJ7T+41tD8= + 1833-200619-3_122: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pnsblyFAtD8= + 1833-200619-4_94: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fo/zaHe/sT8= + 1833-260619-1_110: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z60dzo8Uuj8= + 1833-260619-2_154: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P6eFzGG9tj8= + 1833-260619-3_109: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rMbX8iEctz8= + 1833-260619-4_212: &id345 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aatoMB1Xtj8= + 1833-290519-1_134: &id367 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k0dmCUQssz8= + 1833-290519-2_80: &id412 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8i1K6SKEwD8= + 1833-290519-3_143: &id464 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M0iC0PQAzz8= + 1833-290519-4_115: &id486 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YqihMNKEtz8= + 1833-050619-4_79: + 1833-010719-1_166: *id049 + 1833-010719-2_235: *id050 + 1833-020719-1_109: *id051 + 1833-020719-2_103: *id052 + 1833-020719-3_117: *id053 + 1833-020719-4_266: *id054 + 1833-050619-3_127: *id055 + 1833-060619-1_156: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gjbfm/5drT8= + 1833-060619-2_68: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zqs0zbyupT8= + 1833-120619-1_133: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 77029, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j4eKfIPXtT8= + 1833-120619-2_133: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 79414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4QcsrT1Jsz8= + 1833-200619-3_59: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QPGi9bbZxz8= + 1833-260619-1_100: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c8GJ4mrRxz8= + 1833-260619-2_154: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iiHaJ2yztz8= + 1833-260619-3_184: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83304, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T46BVF0zuz8= + 1833-260619-4_212: &id346 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AUKs1aNztj8= + 1833-290519-1_172: &id390 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DLQepPYJwT8= + 1833-290519-2_80: &id413 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6371, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + da4y2OBwwz8= + 1833-290519-3_117: &id438 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GYNt5UeQ0j8= + 1833-290519-4_98: &id518 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ioo1vsReyT8= + 1833-050619-4_82: + 1833-010719-1_144: *id056 + 1833-010719-2_221: *id057 + 1833-020719-2_126: *id058 + 1833-020719-3_121: *id059 + 1833-020719-4_294: *id060 + 1833-050619-1_73: *id061 + 1833-050619-2_123: *id062 + 1833-060619-1_164: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EaPZ6Vr7zz8= + 1833-060619-2_98: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GsD3UqWy0T8= + 1833-120619-2_145: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 79414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hVqdv+Rxqz8= + 1833-120619-3_136: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yBpXDsnWqz8= + 1833-120619-4_122: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mOwoSAqyqD8= + 1833-200619-2_270: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V+4V6J2bsT8= + 1833-200619-3_122: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E080rQu2rz8= + 1833-200619-4_94: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ejCpNJHwsD8= + 1833-260619-1_110: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rrr8W9bBvz8= + 1833-260619-2_115: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pwhFrrdvyz8= + 1833-260619-3_109: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83304, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CDmv2gk9tD8= + 1833-260619-4_162: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lGMrpRyHwj8= + 1833-290519-1_134: &id368 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P1jpiSSfsT8= + 1833-290519-3_143: &id465 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s4oLS4bryT8= + 1833-290519-4_115: &id487 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pq4vHvxMqT8= + 1833-060619-1_156: + 1833-010719-1_166: *id063 + 1833-010719-2_235: *id064 + 1833-020719-1_109: *id065 + 1833-020719-2_103: *id066 + 1833-020719-3_121: *id067 + 1833-020719-4_266: *id068 + 1833-050619-1_73: *id069 + 1833-050619-2_123: *id070 + 1833-050619-3_127: *id071 + 1833-050619-4_79: *id072 + 1833-060619-2_68: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2YQownqQqz8= + 1833-120619-1_133: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81828, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1xO1t8A1sz8= + 1833-120619-2_133: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HqcKupCssT8= + 1833-120619-3_136: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q6ko/NfBvj8= + 1833-120619-4_122: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w9QJr/PFvj8= + 1833-200619-2_270: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oq4spG5Puj8= + 1833-200619-3_122: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UXrlxgP9uj8= + 1833-200619-4_94: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BkE1q+kruT8= + 1833-260619-1_110: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OJzpo+m0vD8= + 1833-260619-2_154: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1sbfViGWtj8= + 1833-260619-3_184: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 1703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kVD/711buj8= + 1833-260619-4_212: &id347 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jJZ45fG/tT8= + 1833-290519-1_134: &id369 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EJdc06Wbtz8= + 1833-290519-2_80: &id414 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1572, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OS+0Ed1Awj8= + 1833-290519-3_143: &id466 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q4gcUZXu0D8= + 1833-290519-4_115: &id488 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k5G+mw/uvz8= + 1833-060619-1_164: + 1833-010719-1_144: *id073 + 1833-010719-2_221: *id074 + 1833-020719-2_126: *id075 + 1833-020719-3_117: *id076 + 1833-020719-4_294: *id077 + 1833-050619-4_82: *id078 + 1833-060619-2_98: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jr2J2+1Usz8= + 1833-120619-2_123: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YHNZhZzHvj8= + 1833-200619-3_59: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PYW6O/W1wz8= + 1833-260619-1_100: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PygUK7sTxD8= + 1833-260619-2_115: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BfnDZRUEwz8= + 1833-260619-3_113: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 1703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UGb6B/7hwT8= + 1833-260619-4_188: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LJdfZNWvwD8= + 1833-290519-1_158: &id383 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MeHUu0lpwz8= + 1833-290519-3_117: &id439 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oYevhVtO0z8= + 1833-290519-4_121: &id506 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JnrAQuQYyD8= + 1833-060619-2_68: + 1833-010719-1_166: *id079 + 1833-010719-2_235: *id080 + 1833-020719-1_109: *id081 + 1833-020719-2_103: *id082 + 1833-020719-3_121: *id083 + 1833-020719-4_266: *id084 + 1833-050619-1_73: *id085 + 1833-050619-2_123: *id086 + 1833-050619-3_127: *id087 + 1833-050619-4_79: *id088 + 1833-060619-1_156: *id089 + 1833-120619-1_133: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T45ax6UwuD8= + 1833-120619-2_133: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81379, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MUwYCLhmtD8= + 1833-120619-3_136: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m7yWuQquwT8= + 1833-120619-4_122: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cL43S/fAwT8= + 1833-200619-2_270: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5LhtG4AFwD8= + 1833-200619-3_122: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fYFsbBN9wD8= + 1833-200619-4_94: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VXfxXYnjvT8= + 1833-260619-1_110: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HfXWYEszvj8= + 1833-260619-2_154: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eEQUiogDtT8= + 1833-260619-3_184: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gCj9WEPxtz8= + 1833-260619-4_212: &id348 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hiI0p/idsz8= + 1833-290519-1_134: &id370 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q6FQyPYHvj8= + 1833-290519-2_80: &id415 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HaUM6qsIxD8= + 1833-290519-3_143: &id467 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VloKBphT0z8= + 1833-290519-4_115: &id489 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZBr+ayb2wj8= + 1833-060619-2_98: + 1833-010719-1_134: *id090 + 1833-010719-2_221: *id091 + 1833-020719-2_126: *id092 + 1833-020719-3_117: *id093 + 1833-020719-4_294: *id094 + 1833-050619-4_82: *id095 + 1833-060619-1_164: *id096 + 1833-120619-2_123: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81379, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yYAMTXELwD8= + 1833-200619-3_59: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cx8Hhh3Gwz8= + 1833-260619-1_100: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aXlciaWewz8= + 1833-260619-2_115: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FC/L1Iz7wj8= + 1833-260619-3_113: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h8cWLPytwT8= + 1833-260619-4_188: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q//bJrrLwj8= + 1833-290519-1_158: &id384 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t+s8MDw9vT8= + 1833-290519-3_117: &id440 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZtVM+rYu1D8= + 1833-290519-4_121: &id507 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K3kJgoH8wj8= + 1833-120619-1_133: + 1833-010719-1_166: *id097 + 1833-010719-2_235: *id098 + 1833-020719-1_109: *id099 + 1833-020719-2_103: *id100 + 1833-020719-3_121: *id101 + 1833-020719-4_266: *id102 + 1833-050619-1_73: *id103 + 1833-050619-2_123: *id104 + 1833-050619-3_127: *id105 + 1833-050619-4_79: *id106 + 1833-060619-1_156: *id107 + 1833-060619-2_68: *id108 + 1833-120619-2_133: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2385, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CutsPKMUsD8= + 1833-120619-3_136: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LTiwhAposz8= + 1833-120619-4_122: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7344, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eOvCB1vysj8= + 1833-200619-2_270: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e3dvcMCVtD8= + 1833-200619-3_122: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UXVR23nhtD8= + 1833-200619-4_94: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oCnsiNERtD8= + 1833-260619-1_110: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HvU/PmxNuT8= + 1833-260619-2_154: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KfRXxs2IuD8= + 1833-260619-3_109: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 6275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YRCgxlYuuD8= + 1833-260619-4_212: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 8228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mQoyLzptuT8= + 1833-290519-1_134: &id371 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DIcNwIsBtj8= + 1833-290519-2_80: &id416 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83400, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uYA3C4qWwT8= + 1833-290519-3_143: &id468 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dwf6v4Wmyj8= + 1833-290519-4_115: &id490 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78526, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AeYWO8b+tz8= + 1833-120619-2_100: + 1833-010719-1_166: *id109 + 1833-260619-3_184: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IMv5AKnHwj8= + 1833-290519-1_172: &id391 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vzKVbO0SyT8= + 1833-290519-3_117: &id441 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X62KDTIAxz8= + 1833-120619-2_123: + 1833-010719-1_134: *id110 + 1833-010719-2_221: *id111 + 1833-020719-2_126: *id112 + 1833-020719-3_117: *id113 + 1833-020719-4_294: *id114 + 1833-060619-1_164: *id115 + 1833-060619-2_98: *id116 + 1833-200619-3_59: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h9Z3ZCaQtz8= + 1833-260619-1_100: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85413, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + btAcb2v0tj8= + 1833-260619-2_115: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mHVAV6iktj8= + 1833-260619-3_113: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hqvME+cVuT8= + 1833-260619-4_188: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aAdDhyNQwD8= + 1833-290519-1_158: &id385 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rC5flr9Wxz8= + 1833-290519-3_109: &id429 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ow2b7FX01D8= + 1833-290519-4_121: &id508 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F09kEIlExT8= + 1833-120619-2_133: + 1833-010719-1_150: *id117 + 1833-010719-2_235: *id118 + 1833-020719-1_109: *id119 + 1833-020719-2_103: *id120 + 1833-020719-3_121: *id121 + 1833-020719-4_266: *id122 + 1833-050619-1_73: *id123 + 1833-050619-2_123: *id124 + 1833-050619-3_127: *id125 + 1833-050619-4_79: *id126 + 1833-060619-1_156: *id127 + 1833-060619-2_68: *id128 + 1833-120619-1_133: *id129 + 1833-200619-2_270: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + o8JTw884sz8= + 1833-200619-4_94: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P0Sj2J7YsT8= + 1833-260619-1_110: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85413, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pTFFoNbdtj8= + 1833-260619-2_154: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W4IHiV6Vsz8= + 1833-260619-3_111: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CH5ajW6NxD8= + 1833-260619-4_212: &id350 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g1InDvdRtD8= + 1833-290519-1_94: &id399 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LJ0jZRmqzT8= + 1833-290519-2_80: &id417 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y3shaEKJwD8= + 1833-290519-3_139: &id453 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2kbma/zt0D8= + 1833-290519-4_98: &id519 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pjHI+dUyyz8= + 1833-120619-2_145: + 1833-010719-1_144: *id130 + 1833-020719-3_135: *id131 + 1833-050619-4_82: *id132 + 1833-120619-3_136: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YuaXUNbWpj8= + 1833-120619-4_122: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4959, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C+HxD7g5qD8= + 1833-200619-3_122: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uljMJgMzsj8= + 1833-260619-3_109: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LbSBu5Fxtz8= + 1833-260619-4_162: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sc7b9e61wj8= + 1833-290519-1_134: &id372 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zEXnxQUiuT8= + 1833-290519-3_143: &id469 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aX3PP4O+xT8= + 1833-290519-4_115: &id491 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IGUJdeJ8rT8= + 1833-120619-3_136: + 1833-010719-1_166: *id133 + 1833-010719-2_235: *id134 + 1833-020719-1_109: *id135 + 1833-020719-2_103: *id136 + 1833-020719-3_121: *id137 + 1833-020719-4_266: *id138 + 1833-050619-1_73: *id139 + 1833-050619-2_123: *id140 + 1833-050619-3_127: *id141 + 1833-050619-4_82: *id142 + 1833-060619-1_156: *id143 + 1833-060619-2_68: *id144 + 1833-120619-1_133: *id145 + 1833-120619-2_145: *id146 + 1833-120619-4_122: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UaW4xpZUlz8= + 1833-200619-2_270: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UmyNyG9AqD8= + 1833-200619-3_122: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qsYCqGFspj8= + 1833-200619-4_94: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qsIRR5qtpz8= + 1833-260619-1_110: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qxpC0pNRuD8= + 1833-260619-2_154: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 15VqpJWQvT8= + 1833-260619-3_109: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SD4GwLn9sj8= + 1833-260619-4_212: &id351 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SFAczLHYvT8= + 1833-290519-1_134: &id373 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mdEJoCiDtD8= + 1833-290519-2_80: &id418 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4A3ZwHRawz8= + 1833-290519-3_143: &id470 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UGPjcVwmyD8= + 1833-290519-4_115: &id492 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i0MYlSo/qz8= + 1833-120619-4_122: + 1833-010719-1_166: *id147 + 1833-010719-2_235: *id148 + 1833-020719-1_109: *id149 + 1833-020719-2_103: *id150 + 1833-020719-3_121: *id151 + 1833-020719-4_266: *id152 + 1833-050619-1_73: *id153 + 1833-050619-2_123: *id154 + 1833-050619-3_127: *id155 + 1833-050619-4_82: *id156 + 1833-060619-1_156: *id157 + 1833-060619-2_68: *id158 + 1833-120619-1_133: *id159 + 1833-120619-2_145: *id160 + 1833-120619-3_136: *id161 + 1833-200619-2_270: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eaOl3aDFrT8= + 1833-200619-3_122: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bfh6Q9G0qz8= + 1833-200619-4_94: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zu1IABPNqj8= + 1833-260619-1_110: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80454, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 82NvEo1etz8= + 1833-260619-2_154: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1BasHgvFvD8= + 1833-260619-3_109: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /+fG5uOhsj8= + 1833-260619-4_212: &id352 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q9+d6TIAvT8= + 1833-290519-1_134: &id374 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZHXglQDksz8= + 1833-290519-2_80: &id419 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4344, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DTfkj3Ddwz8= + 1833-290519-3_143: &id471 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JoUEk2s6yD8= + 1833-290519-4_115: &id493 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Ff87hucqz8= + 1833-200619-2_270: + 1833-010719-1_166: *id162 + 1833-010719-2_235: *id163 + 1833-020719-1_109: *id164 + 1833-020719-2_103: *id165 + 1833-020719-3_121: *id166 + 1833-020719-4_266: *id167 + 1833-050619-1_73: *id168 + 1833-050619-2_123: *id169 + 1833-050619-3_127: *id170 + 1833-050619-4_82: *id171 + 1833-060619-1_156: *id172 + 1833-060619-2_68: *id173 + 1833-120619-1_133: *id174 + 1833-120619-2_133: *id175 + 1833-120619-3_136: *id176 + 1833-120619-4_122: *id177 + 1833-200619-3_122: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8UwnT5tYiz8= + 1833-200619-4_94: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + leTyyHcjpT8= + 1833-260619-1_110: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ylF/KdaxuT8= + 1833-260619-2_154: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cs1XE6Tluz8= + 1833-260619-3_109: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + se/Js3HMsT8= + 1833-260619-4_212: &id353 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CW6gXSZ/vD8= + 1833-290519-1_134: &id375 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yyaJsITKrj8= + 1833-290519-2_80: &id420 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rg9xrKHIwj8= + 1833-290519-3_117: &id442 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + atXC5xVpyj8= + 1833-290519-4_115: &id494 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BTt8dxXVrD8= + 1833-200619-3_122: + 1833-010719-1_166: *id178 + 1833-010719-2_235: *id179 + 1833-020719-1_109: *id180 + 1833-020719-2_103: *id181 + 1833-020719-3_121: *id182 + 1833-020719-4_266: *id183 + 1833-050619-1_73: *id184 + 1833-050619-2_123: *id185 + 1833-050619-3_127: *id186 + 1833-050619-4_82: *id187 + 1833-060619-1_156: *id188 + 1833-060619-2_68: *id189 + 1833-120619-1_133: *id190 + 1833-120619-2_145: *id191 + 1833-120619-3_136: *id192 + 1833-120619-4_122: *id193 + 1833-200619-2_270: *id194 + 1833-200619-4_94: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qygI/890oz8= + 1833-260619-1_110: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rFBqEowxuj8= + 1833-260619-2_154: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JPThwee8vD8= + 1833-260619-3_109: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + juP7rxDdsT8= + 1833-260619-4_212: &id354 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + unvikIQivT8= + 1833-290519-1_134: &id376 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IKbTBwQ1rT8= + 1833-290519-2_80: &id421 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LWeRsnIawz8= + 1833-290519-3_143: &id472 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +pHMRxobyj8= + 1833-290519-4_115: &id495 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NtGlvBiNqT8= + 1833-200619-3_59: + 1833-010719-1_134: *id195 + 1833-010719-2_221: *id196 + 1833-020719-2_126: *id197 + 1833-020719-3_117: *id198 + 1833-020719-4_294: *id199 + 1833-050619-4_79: *id200 + 1833-060619-1_164: *id201 + 1833-060619-2_98: *id202 + 1833-120619-2_123: *id203 + 1833-260619-1_100: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D+VnVB8muj8= + 1833-260619-2_115: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WVu8obNduD8= + 1833-260619-3_111: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w/w7RMeStz8= + 1833-260619-4_188: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zQFaDxrdwD8= + 1833-290519-1_94: &id400 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XMZzr9Jwwj8= + 1833-290519-3_117: &id443 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZJUqDya31z8= + 1833-290519-4_98: &id520 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cnmL+8newz8= + 1833-200619-4_94: + 1833-010719-1_166: *id204 + 1833-010719-2_235: *id205 + 1833-020719-1_109: *id206 + 1833-020719-2_103: *id207 + 1833-020719-3_121: *id208 + 1833-020719-4_266: *id209 + 1833-050619-1_73: *id210 + 1833-050619-2_123: *id211 + 1833-050619-3_127: *id212 + 1833-050619-4_82: *id213 + 1833-060619-1_156: *id214 + 1833-060619-2_68: *id215 + 1833-120619-1_133: *id216 + 1833-120619-2_133: *id217 + 1833-120619-3_136: *id218 + 1833-120619-4_122: *id219 + 1833-200619-2_270: *id220 + 1833-200619-3_122: *id221 + 1833-260619-1_110: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OmZXA68YuT8= + 1833-260619-2_154: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dMk5lgRguj8= + 1833-260619-3_109: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bfWroKDCsT8= + 1833-260619-4_212: &id355 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D1rkB2Avuj8= + 1833-290519-1_134: &id377 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OShZeOEhsj8= + 1833-290519-2_80: &id422 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kKGDtalYwj8= + 1833-290519-3_117: &id444 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IATk65pcyz8= + 1833-290519-4_115: &id496 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9ja53vFHsT8= + 1833-260619-1_100: + 1833-010719-1_134: *id222 + 1833-010719-2_221: *id223 + 1833-020719-2_126: *id224 + 1833-020719-3_117: *id225 + 1833-020719-4_294: *id226 + 1833-050619-4_79: *id227 + 1833-060619-1_164: *id228 + 1833-060619-2_98: *id229 + 1833-120619-2_123: *id230 + 1833-200619-3_59: *id231 + 1833-260619-2_115: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + An+lQILRrj8= + 1833-260619-3_111: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TzPTL3YYrj8= + 1833-260619-4_188: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zJppW15ouj8= + 1833-290519-1_94: &id401 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZnX0fq2bwz8= + 1833-290519-3_117: &id445 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /5S9HFgv1D8= + 1833-290519-4_98: &id521 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HrcF/TJ+wj8= + 1833-260619-1_110: + 1833-010719-1_166: *id232 + 1833-010719-2_235: *id233 + 1833-020719-1_109: *id234 + 1833-020719-2_103: *id235 + 1833-020719-3_121: *id236 + 1833-020719-4_266: *id237 + 1833-050619-1_73: *id238 + 1833-050619-2_123: *id239 + 1833-050619-3_127: *id240 + 1833-050619-4_82: *id241 + 1833-060619-1_156: *id242 + 1833-060619-2_68: *id243 + 1833-120619-1_133: *id244 + 1833-120619-2_133: *id245 + 1833-120619-3_136: *id246 + 1833-120619-4_122: *id247 + 1833-200619-2_270: *id248 + 1833-200619-3_122: *id249 + 1833-200619-4_94: *id250 + 1833-260619-2_154: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5fZXpRpupT8= + 1833-260619-3_184: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2rYouwaaoT8= + 1833-260619-4_212: &id356 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lJkzw8J1qT8= + 1833-290519-1_134: &id378 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + neQomtq+vz8= + 1833-290519-2_80: &id423 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ux+XeQR7wD8= + 1833-290519-3_143: &id473 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fn10jaO8zT8= + 1833-290519-4_115: &id497 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rcRHGuLuuT8= + 1833-260619-2_115: + 1833-010719-1_134: *id251 + 1833-010719-2_221: *id252 + 1833-020719-2_126: *id253 + 1833-020719-3_117: *id254 + 1833-020719-4_294: *id255 + 1833-050619-4_82: *id256 + 1833-060619-1_164: *id257 + 1833-060619-2_98: *id258 + 1833-120619-2_123: *id259 + 1833-200619-3_59: *id260 + 1833-260619-1_100: *id261 + 1833-260619-3_111: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X+atOMAMqD8= + 1833-260619-4_188: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hl2YkUJ9uD8= + 1833-290519-1_172: &id392 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4LgLOL4Dxj8= + 1833-290519-3_117: &id446 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zVMmtcOz0z8= + 1833-290519-4_98: &id522 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0tmNrikpxT8= + 1833-260619-2_154: + 1833-010719-1_166: *id262 + 1833-010719-2_235: *id263 + 1833-020719-1_109: *id264 + 1833-020719-2_103: *id265 + 1833-020719-3_121: *id266 + 1833-020719-4_266: *id267 + 1833-050619-1_73: *id268 + 1833-050619-2_123: *id269 + 1833-050619-3_127: *id270 + 1833-050619-4_79: *id271 + 1833-060619-1_156: *id272 + 1833-060619-2_68: *id273 + 1833-120619-1_133: *id274 + 1833-120619-2_133: *id275 + 1833-120619-3_136: *id276 + 1833-120619-4_122: *id277 + 1833-200619-2_270: *id278 + 1833-200619-3_122: *id279 + 1833-200619-4_94: *id280 + 1833-260619-1_110: *id281 + 1833-260619-3_184: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z62DwhYQmD8= + 1833-260619-4_212: &id357 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + upmSyiZBkD8= + 1833-290519-1_134: &id379 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7ozsKNGNwD8= + 1833-290519-2_80: &id424 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oC5C3hj7vD8= + 1833-290519-3_143: &id474 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /hZDhxSEzD8= + 1833-290519-4_115: &id498 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uCH2MzjPvT8= + 1833-260619-3_109: + 1833-010719-1_144: *id282 + 1833-050619-1_73: *id283 + 1833-050619-2_123: *id284 + 1833-050619-3_127: *id285 + 1833-050619-4_82: *id286 + 1833-120619-1_133: *id287 + 1833-120619-2_145: *id288 + 1833-120619-3_136: *id289 + 1833-120619-4_122: *id290 + 1833-200619-2_270: *id291 + 1833-200619-3_122: *id292 + 1833-200619-4_94: *id293 + 1833-260619-4_162: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aohCWrj7vT8= + 1833-290519-1_134: &id380 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kKRhoU2utD8= + 1833-290519-3_143: &id475 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PxuvHE6Czj8= + 1833-290519-4_115: &id499 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j3c3W2J/sj8= + 1833-260619-3_111: + 1833-010719-1_150: *id294 + 1833-010719-2_221: *id295 + 1833-020719-2_126: *id296 + 1833-020719-3_135: *id297 + 1833-020719-4_294: *id298 + 1833-120619-2_133: *id299 + 1833-200619-3_59: *id300 + 1833-260619-1_100: *id301 + 1833-260619-2_115: *id302 + 1833-260619-4_188: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jTDg4eNIsz8= + 1833-290519-1_94: &id402 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c15vBlnLxD8= + 1833-290519-3_117: &id447 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fs1EqWEP1D8= + 1833-290519-4_98: &id523 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b/EP7DsFxD8= + 1833-260619-3_113: + 1833-010719-1_134: *id303 + 1833-020719-3_117: *id304 + 1833-060619-1_164: *id305 + 1833-060619-2_98: *id306 + 1833-120619-2_123: *id307 + 1833-290519-1_158: &id386 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X/IdogjCyT8= + 1833-290519-3_109: &id430 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 60P60HLy1j8= + 1833-290519-4_121: &id509 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 92mDJcrnxj8= + 1833-260619-3_184: + 1833-010719-1_166: *id308 + 1833-010719-2_235: *id309 + 1833-020719-1_109: *id310 + 1833-020719-2_103: *id311 + 1833-020719-3_121: *id312 + 1833-020719-4_266: *id313 + 1833-050619-4_79: *id314 + 1833-060619-1_156: *id315 + 1833-060619-2_68: *id316 + 1833-120619-2_100: *id317 + 1833-260619-1_110: *id318 + 1833-260619-2_154: *id319 + 1833-260619-4_212: &id358 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + adKcBPUVmj8= + 1833-290519-1_172: &id393 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ny09HeIUxz8= + 1833-290519-2_80: &id425 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v2E6Fn0RvD8= + 1833-290519-3_139: &id454 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CdZzfKJuzT8= + 1833-260619-4_162: + 1833-010719-1_134: *id320 + 1833-020719-2_126: *id321 + 1833-020719-3_135: *id322 + 1833-050619-4_82: *id323 + 1833-120619-2_145: *id324 + 1833-260619-3_109: *id325 + 1833-290519-1_134: &id381 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xtcKUVLBwT8= + 1833-290519-3_143: &id476 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qNBcJorE0j8= + 1833-290519-4_115: &id500 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xEu/fUA6wD8= + 1833-260619-4_188: + 1833-010719-1_144: *id326 + 1833-010719-2_221: *id327 + 1833-020719-3_117: *id328 + 1833-020719-4_294: *id329 + 1833-060619-1_164: *id330 + 1833-060619-2_98: *id331 + 1833-120619-2_123: *id332 + 1833-200619-3_59: *id333 + 1833-260619-1_100: *id334 + 1833-260619-2_115: *id335 + 1833-260619-3_111: *id336 + 1833-290519-1_172: &id394 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fBGjlWQiwT8= + 1833-290519-3_117: &id448 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +oCLkK4L0z8= + 1833-290519-4_121: &id510 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8zrKpUm7yT8= + 1833-260619-4_212: + 1833-010719-1_166: *id337 + 1833-010719-2_235: *id338 + 1833-020719-1_109: *id339 + 1833-020719-2_103: *id340 + 1833-020719-3_121: *id341 + 1833-020719-4_266: *id342 + 1833-050619-1_73: *id343 + 1833-050619-2_123: *id344 + 1833-050619-3_127: *id345 + 1833-050619-4_79: *id346 + 1833-060619-1_156: *id347 + 1833-060619-2_68: *id348 + 1833-120619-1_133: *id349 + 1833-120619-2_133: *id350 + 1833-120619-3_136: *id351 + 1833-120619-4_122: *id352 + 1833-200619-2_270: *id353 + 1833-200619-3_122: *id354 + 1833-200619-4_94: *id355 + 1833-260619-1_110: *id356 + 1833-260619-2_154: *id357 + 1833-260619-3_184: *id358 + 1833-290519-1_94: &id403 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PZT3tocZyj8= + 1833-290519-2_80: &id426 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lmEyz1KsvD8= + 1833-290519-3_139: &id455 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nWZgOuTYzT8= + 1833-290519-4_98: &id524 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z7bQzrNyxz8= + 1833-290519-1_134: + 1833-010719-1_166: *id359 + 1833-010719-2_235: *id360 + 1833-020719-1_109: *id361 + 1833-020719-2_103: *id362 + 1833-020719-3_121: *id363 + 1833-020719-4_266: *id364 + 1833-050619-1_73: *id365 + 1833-050619-2_123: *id366 + 1833-050619-3_127: *id367 + 1833-050619-4_82: *id368 + 1833-060619-1_156: *id369 + 1833-060619-2_68: *id370 + 1833-120619-1_133: *id371 + 1833-120619-2_145: *id372 + 1833-120619-3_136: *id373 + 1833-120619-4_122: *id374 + 1833-200619-2_270: *id375 + 1833-200619-3_122: *id376 + 1833-200619-4_94: *id377 + 1833-260619-1_110: *id378 + 1833-260619-2_154: *id379 + 1833-260619-3_109: *id380 + 1833-260619-4_162: *id381 + 1833-290519-2_80: &id427 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2KE5BKcixD8= + 1833-290519-3_143: &id477 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zT7i+hCLyz8= + 1833-290519-4_115: &id501 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tMlNEpYNsD8= + 1833-290519-1_158: + 1833-010719-1_134: *id382 + 1833-060619-1_164: *id383 + 1833-060619-2_98: *id384 + 1833-120619-2_123: *id385 + 1833-260619-3_113: *id386 + 1833-290519-3_109: &id431 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T+dhUa0e2D8= + 1833-290519-4_121: &id511 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vpJTPPLXtz8= + 1833-290519-1_172: + 1833-010719-1_144: *id387 + 1833-010719-2_221: *id388 + 1833-020719-3_117: *id389 + 1833-050619-4_79: *id390 + 1833-120619-2_100: *id391 + 1833-260619-2_115: *id392 + 1833-260619-3_184: *id393 + 1833-260619-4_188: *id394 + 1833-290519-3_139: &id456 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eaTDoDUG0D8= + 1833-290519-1_94: + 1833-010719-1_150: *id395 + 1833-020719-2_126: *id396 + 1833-020719-3_135: *id397 + 1833-020719-4_294: *id398 + 1833-120619-2_133: *id399 + 1833-200619-3_59: *id400 + 1833-260619-1_100: *id401 + 1833-260619-3_111: *id402 + 1833-260619-4_212: *id403 + 1833-290519-3_117: &id449 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VbHiGGRy1j8= + 1833-290519-4_98: &id525 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sf4/m7GRuT8= + 1833-290519-2_80: + 1833-010719-1_166: *id404 + 1833-010719-2_235: *id405 + 1833-020719-1_109: *id406 + 1833-020719-2_103: *id407 + 1833-020719-3_121: *id408 + 1833-020719-4_266: *id409 + 1833-050619-1_73: *id410 + 1833-050619-2_123: *id411 + 1833-050619-3_127: *id412 + 1833-050619-4_79: *id413 + 1833-060619-1_156: *id414 + 1833-060619-2_68: *id415 + 1833-120619-1_133: *id416 + 1833-120619-2_133: *id417 + 1833-120619-3_136: *id418 + 1833-120619-4_122: *id419 + 1833-200619-2_270: *id420 + 1833-200619-3_122: *id421 + 1833-200619-4_94: *id422 + 1833-260619-1_110: *id423 + 1833-260619-2_154: *id424 + 1833-260619-3_184: *id425 + 1833-260619-4_212: *id426 + 1833-290519-1_134: *id427 + 1833-290519-3_117: &id450 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yHiT0FJV0T8= + 1833-290519-4_115: &id502 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rK5BQD6Zwz8= + 1833-290519-3_109: + 1833-010719-1_144: *id428 + 1833-120619-2_123: *id429 + 1833-260619-3_113: *id430 + 1833-290519-1_158: *id431 + 1833-290519-3_117: + 1833-010719-1_150: *id432 + 1833-010719-2_221: *id433 + 1833-020719-1_109: *id434 + 1833-020719-2_126: *id435 + 1833-020719-3_117: *id436 + 1833-020719-4_294: *id437 + 1833-050619-4_79: *id438 + 1833-060619-1_164: *id439 + 1833-060619-2_98: *id440 + 1833-120619-2_100: *id441 + 1833-200619-2_270: *id442 + 1833-200619-3_59: *id443 + 1833-200619-4_94: *id444 + 1833-260619-1_100: *id445 + 1833-260619-2_115: *id446 + 1833-260619-3_111: *id447 + 1833-260619-4_188: *id448 + 1833-290519-1_94: *id449 + 1833-290519-2_80: *id450 + 1833-290519-4_98: &id526 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t948LAXgzz8= + 1833-290519-3_139: + 1833-010719-1_166: *id451 + 1833-020719-3_135: *id452 + 1833-120619-2_133: *id453 + 1833-260619-3_184: *id454 + 1833-260619-4_212: *id455 + 1833-290519-1_172: *id456 + 1833-290519-4_121: &id512 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vQ00zUbG1T8= + 1833-290519-3_143: + 1833-010719-1_134: *id457 + 1833-010719-2_235: *id458 + 1833-020719-2_103: *id459 + 1833-020719-3_121: *id460 + 1833-020719-4_266: *id461 + 1833-050619-1_73: *id462 + 1833-050619-2_123: *id463 + 1833-050619-3_127: *id464 + 1833-050619-4_82: *id465 + 1833-060619-1_156: *id466 + 1833-060619-2_68: *id467 + 1833-120619-1_133: *id468 + 1833-120619-2_145: *id469 + 1833-120619-3_136: *id470 + 1833-120619-4_122: *id471 + 1833-200619-3_122: *id472 + 1833-260619-1_110: *id473 + 1833-260619-2_154: *id474 + 1833-260619-3_109: *id475 + 1833-260619-4_162: *id476 + 1833-290519-1_134: *id477 + 1833-290519-4_115: &id503 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AExh0BkSyT8= + 1833-290519-4_115: + 1833-010719-1_166: *id478 + 1833-010719-2_235: *id479 + 1833-020719-1_109: *id480 + 1833-020719-2_103: *id481 + 1833-020719-3_121: *id482 + 1833-020719-4_266: *id483 + 1833-050619-1_73: *id484 + 1833-050619-2_123: *id485 + 1833-050619-3_127: *id486 + 1833-050619-4_82: *id487 + 1833-060619-1_156: *id488 + 1833-060619-2_68: *id489 + 1833-120619-1_133: *id490 + 1833-120619-2_145: *id491 + 1833-120619-3_136: *id492 + 1833-120619-4_122: *id493 + 1833-200619-2_270: *id494 + 1833-200619-3_122: *id495 + 1833-200619-4_94: *id496 + 1833-260619-1_110: *id497 + 1833-260619-2_154: *id498 + 1833-260619-3_109: *id499 + 1833-260619-4_162: *id500 + 1833-290519-1_134: *id501 + 1833-290519-2_80: *id502 + 1833-290519-3_143: *id503 + 1833-290519-4_121: + 1833-010719-1_134: *id504 + 1833-020719-3_117: *id505 + 1833-060619-1_164: *id506 + 1833-060619-2_98: *id507 + 1833-120619-2_123: *id508 + 1833-260619-3_113: *id509 + 1833-260619-4_188: *id510 + 1833-290519-1_158: *id511 + 1833-290519-3_139: *id512 + 1833-290519-4_98: + 1833-010719-1_150: *id513 + 1833-010719-2_221: *id514 + 1833-020719-2_126: *id515 + 1833-020719-3_135: *id516 + 1833-020719-4_294: *id517 + 1833-050619-4_79: *id518 + 1833-120619-2_133: *id519 + 1833-200619-3_59: *id520 + 1833-260619-1_100: *id521 + 1833-260619-2_115: *id522 + 1833-260619-3_111: *id523 + 1833-260619-4_212: *id524 + 1833-290519-1_94: *id525 + 1833-290519-3_117: *id526 +_node: &id529 + 1833-010719-1_134: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id527 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + hgAAAAAAAAA= + 1833-010719-1_144: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + kAAAAAAAAAA= + 1833-010719-1_150: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + lgAAAAAAAAA= + 1833-010719-1_166: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + pgAAAAAAAAA= + 1833-010719-2_221: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + 3QAAAAAAAAA= + 1833-010719-2_235: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + 6wAAAAAAAAA= + 1833-020719-1_109: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + bQAAAAAAAAA= + 1833-020719-2_103: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + ZwAAAAAAAAA= + 1833-020719-2_126: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + fgAAAAAAAAA= + 1833-020719-3_117: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + dQAAAAAAAAA= + 1833-020719-3_121: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + eQAAAAAAAAA= + 1833-020719-3_135: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + hwAAAAAAAAA= + 1833-020719-4_266: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + CgEAAAAAAAA= + 1833-020719-4_294: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + JgEAAAAAAAA= + 1833-050619-1_73: + action_id: 1833-050619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + SQAAAAAAAAA= + 1833-050619-2_123: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + ewAAAAAAAAA= + 1833-050619-3_127: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + fwAAAAAAAAA= + 1833-050619-4_79: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + TwAAAAAAAAA= + 1833-050619-4_82: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + UgAAAAAAAAA= + 1833-060619-1_156: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + nAAAAAAAAAA= + 1833-060619-1_164: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + pAAAAAAAAAA= + 1833-060619-2_68: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + RAAAAAAAAAA= + 1833-060619-2_98: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + YgAAAAAAAAA= + 1833-120619-1_133: + action_id: 1833-120619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + hQAAAAAAAAA= + 1833-120619-2_100: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + ZAAAAAAAAAA= + 1833-120619-2_123: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + ewAAAAAAAAA= + 1833-120619-2_133: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + hQAAAAAAAAA= + 1833-120619-2_145: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + kQAAAAAAAAA= + 1833-120619-3_136: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + iAAAAAAAAAA= + 1833-120619-4_122: + action_id: 1833-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + egAAAAAAAAA= + 1833-200619-2_270: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + DgEAAAAAAAA= + 1833-200619-3_122: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + egAAAAAAAAA= + 1833-200619-3_59: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + OwAAAAAAAAA= + 1833-200619-4_94: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + XgAAAAAAAAA= + 1833-260619-1_100: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + ZAAAAAAAAAA= + 1833-260619-1_110: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + bgAAAAAAAAA= + 1833-260619-2_115: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + cwAAAAAAAAA= + 1833-260619-2_154: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + mgAAAAAAAAA= + 1833-260619-3_109: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + bQAAAAAAAAA= + 1833-260619-3_111: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + bwAAAAAAAAA= + 1833-260619-3_113: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + cQAAAAAAAAA= + 1833-260619-3_184: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + uAAAAAAAAAA= + 1833-260619-4_162: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + ogAAAAAAAAA= + 1833-260619-4_188: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + vAAAAAAAAAA= + 1833-260619-4_212: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + 1AAAAAAAAAA= + 1833-290519-1_134: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + hgAAAAAAAAA= + 1833-290519-1_158: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + ngAAAAAAAAA= + 1833-290519-1_172: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + rAAAAAAAAAA= + 1833-290519-1_94: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + XgAAAAAAAAA= + 1833-290519-2_80: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + UAAAAAAAAAA= + 1833-290519-3_109: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + bQAAAAAAAAA= + 1833-290519-3_117: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + dQAAAAAAAAA= + 1833-290519-3_139: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + iwAAAAAAAAA= + 1833-290519-3_143: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + jwAAAAAAAAA= + 1833-290519-4_115: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + cwAAAAAAAAA= + 1833-290519-4_121: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + eQAAAAAAAAA= + 1833-290519-4_98: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id527 + - !!binary | + YgAAAAAAAAA= +adjlist_inner_dict_factory: &id528 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id528 +edge_attr_dict_factory: *id528 +graph: {} +node_dict_factory: *id528 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id529 diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-6.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-6.yaml new file mode 100644 index 000000000..935b9c5af --- /dev/null +++ b/actions/identify-neurons/data/1833-graphs/graph-group-6.yaml @@ -0,0 +1,10282 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1833-010719-1_152: + 1833-020719-4_254: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + QAEnAqXcxz8= + 1833-050619-1_91: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 3013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e2IwSOCtuz8= + 1833-050619-2_146: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lmGXC+YzwT8= + 1833-050619-3_109: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6LM/S6M2vz8= + 1833-050619-4_135: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oKmDZfpAwT8= + 1833-060619-1_160: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M1PIxY6itD8= + 1833-060619-2_74: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AxKOjYsovD8= + 1833-120619-1_129: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 6016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R9SMuLWYuD8= + 1833-120619-2_151: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6N82xb9XuD8= + 1833-120619-3_143: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 1019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H215wdY8uD8= + 1833-120619-4_120: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [18, 85072, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cxgYFUrctz8= + 1833-200619-1_171: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9DwIfp+RvD8= + 1833-200619-2_327: &id413 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rDo/6gP5wj8= + 1833-200619-3_75: &id479 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uZgc4NdctD8= + 1833-200619-4_80: &id534 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4X6a39MLxD8= + 1833-260619-1_106: &id576 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oj66af87tz8= + 1833-260619-2_160: &id688 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rTh2n/IEuz8= + 1833-260619-3_192: &id756 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VrshNXi0uD8= + 1833-260619-4_218: &id831 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FAbDZUNwvT8= + 1833-290519-1_150: &id916 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E4c5pG7Evj8= + 1833-290519-3_149: &id1041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G6gl8rfV0j8= + 1833-290519-4_90: &id1161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2WUTx0eVwz8= + 1833-010719-1_183: + 1833-020719-1_107: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RbOxzFQ0xj8= + 1833-020719-2_99: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y86M4YTXyD8= + 1833-020719-3_96: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZeypFnrfyD8= + 1833-020719-4_248: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cVffZ6Gwyj8= + 1833-050619-1_60: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 3013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1QJgGgpFwT8= + 1833-050619-2_119: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hM7btSA4wj8= + 1833-050619-3_117: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mjbgknRKwT8= + 1833-050619-4_133: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iy/RCOd0xD8= + 1833-060619-1_158: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z4BVooP5wD8= + 1833-060619-2_105: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 43uOnvyjwz8= + 1833-120619-2_169: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kqtaLbAhtT8= + 1833-120619-3_141: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 1019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zSZa55n1sj8= + 1833-120619-4_85: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [18, 85072, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BbJfCMxcwj8= + 1833-200619-1_206: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OrW58cSrrz8= + 1833-200619-2_287: &id382 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pjqUt2DtsD8= + 1833-200619-3_132: &id453 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JjLbB81Bsz8= + 1833-200619-4_89: &id546 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fWq1gg0osT8= + 1833-260619-1_102: &id562 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JMV6Eqjrtz8= + 1833-260619-2_144: &id651 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + muRnVYKDvT8= + 1833-260619-3_142: &id717 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DR1Q3qeBtT8= + 1833-260619-4_182: &id775 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YEJId4XQtz8= + 1833-290519-1_124: &id867 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LXO+WXFiuD8= + 1833-290519-3_125: &id990 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FtrEckzj0D8= + 1833-290519-4_65: &id1120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + flYl5lduyT8= + 1833-010719-1_200: + 1833-010719-2_225: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jJUGXAmquD8= + 1833-020719-3_64: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +oviKSy/xj8= + 1833-020719-4_310: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S8JTeRezxj8= + 1833-050619-1_64: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 3013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sVTjltKJsD8= + 1833-050619-2_125: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4p1oI+4ysz8= + 1833-050619-3_129: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + blCoz6odsz8= + 1833-050619-4_92: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SIuS9ueUtz8= + 1833-060619-1_162: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RJwLuTqNrz8= + 1833-060619-2_82: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P1EA5/SNsT8= + 1833-120619-1_127: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 6016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3rzkJYfRuD8= + 1833-120619-3_118: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 1019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +gVH+ECPsD8= + 1833-120619-4_80: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [18, 85072, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8BlIF+zrtj8= + 1833-200619-1_163: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Qbm6ovUEuz8= + 1833-200619-2_28: &id364 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dC5UyeY1rD8= + 1833-200619-3_120: &id427 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KotD6/hDuD8= + 1833-200619-4_121: &id518 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h/dcfBX0xD8= + 1833-260619-1_108: &id594 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gBORp7dfrT8= + 1833-260619-2_156: &id671 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SVN+KJWWtD8= + 1833-260619-3_168: &id736 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 79sRRcXTsT8= + 1833-260619-4_184: &id793 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mI1No7uqsT8= + 1833-290519-1_142: &id897 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KbHvZd8jrD8= + 1833-290519-2_76: &id965 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bm9+4E3bxT8= + 1833-290519-3_155: &id1071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vFCLmzJUzj8= + 1833-290519-4_108: &id1095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zX9gJipUtj8= + 1833-010719-1_227: + 1833-020719-3_63: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3949, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UBYQE/1oyj8= + 1833-050619-1_111: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 3013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aicpXWj4uz8= + 1833-050619-2_152: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8ZabXUc0uT8= + 1833-050619-3_149: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ONAdPB7Ltz8= + 1833-050619-4_157: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 83045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bGQBFX+6uD8= + 1833-060619-1_176: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7Bkjh0rKvT8= + 1833-060619-2_116: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9/KaBbzEuD8= + 1833-120619-3_145: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 1019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T91YVaSKxD8= + 1833-120619-4_124: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [18, 85072, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + r+ay4LKTsz8= + 1833-200619-1_240: &id352 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z3Oi+tpuxz8= + 1833-200619-2_308: &id396 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GirfZ9xOwj8= + 1833-200619-3_150: &id466 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2idO3341xj8= + 1833-200619-4_101: &id492 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sSy5OKpnxT8= + 1833-260619-1_112: &id610 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +RYk8dngxT8= + 1833-260619-2_140: &id637 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2325, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FG3JgvIVxT8= + 1833-260619-4_214: &id817 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WrZ9CQECwT8= + 1833-290519-1_154: &id935 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gjJC2BvWyD8= + 1833-290519-3_141: &id1010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ch/B3jhF0z8= + 1833-290519-4_79: &id1141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 660y9hmAyT8= + 1833-010719-2_225: + 1833-010719-1_200: *id002 + 1833-020719-1_107: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8YzNxojczz8= + 1833-020719-2_99: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MXOvDm6Q1T8= + 1833-020719-3_64: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2161, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JQQDGN9wz8= + 1833-020719-4_248: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fFB/GFODwz8= + 1833-050619-1_64: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cyHNCJKTuT8= + 1833-050619-2_125: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RR/A+KGKtz8= + 1833-050619-3_129: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L/314Km6tT8= + 1833-050619-4_92: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84833, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d8VRx9p8sz8= + 1833-060619-1_162: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 3232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0gMuueGRvD8= + 1833-060619-2_82: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + psDGd8QDvT8= + 1833-120619-1_127: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 7804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3/N9ADgTwz8= + 1833-120619-2_151: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kzbmkdfsyj8= + 1833-120619-3_118: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C1aBjB+FuD8= + 1833-120619-4_80: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 460, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Pc1kK0VowT8= + 1833-200619-1_240: &id353 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FJsg1bb8xj8= + 1833-200619-2_28: &id365 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +ewXZCO1vT8= + 1833-200619-3_120: &id428 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6eLRZIH5xT8= + 1833-200619-4_121: &id519 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7okXawd+yT8= + 1833-260619-1_108: &id595 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v3We7OxDtj8= + 1833-260619-2_156: &id672 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4113, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0mSw8wVywj8= + 1833-260619-3_168: &id737 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D2jT3mTGwj8= + 1833-260619-4_184: &id794 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VptZw04Qtj8= + 1833-290519-1_142: &id898 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yhaXHFSCwD8= + 1833-290519-2_76: &id966 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9otFtTrpxj8= + 1833-290519-3_155: &id1072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 45lv1qCIzD8= + 1833-290519-4_108: &id1096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /wxlEvlTtT8= + 1833-020719-1_107: + 1833-010719-1_183: *id003 + 1833-010719-2_225: *id004 + 1833-020719-2_99: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2105, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xDR6Edxrvz8= + 1833-020719-3_96: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HylvmffRxz8= + 1833-020719-4_254: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6899, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6XCioVVSwz8= + 1833-050619-1_60: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EAEp8vj8xD8= + 1833-050619-2_119: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 545, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8fEv1l0HyD8= + 1833-050619-3_109: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84242, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PkXr5JfMwj8= + 1833-050619-4_135: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 82424, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V2oB5/m+yD8= + 1833-060619-1_160: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nhXDKjprxT8= + 1833-060619-2_74: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84389, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NmX+EZy5wT8= + 1833-120619-1_129: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TD8zWtmbxj8= + 1833-120619-2_151: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0lzuIeVJxj8= + 1833-120619-3_143: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oPYtZCUexz8= + 1833-120619-4_80: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 84451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1Zm2SD0mxT8= + 1833-200619-1_163: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rWZkym2axj8= + 1833-200619-2_28: &id366 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w9ffkY9HyT8= + 1833-200619-3_75: &id480 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 85985, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WccbUgqDxT8= + 1833-200619-4_89: &id547 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 84245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gQv97JSyxT8= + 1833-260619-1_106: &id577 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UcBNd3CAxz8= + 1833-260619-2_144: &id652 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1704, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F+wNoyHMxj8= + 1833-260619-3_168: &id738 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85520, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1FP1q8Hvxj8= + 1833-260619-4_80: &id849 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LCkK88+GyT8= + 1833-290519-1_132: &id886 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 5908, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +BOyFtgzwz8= + 1833-290519-2_76: &id967 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N5QmIvu/zD8= + 1833-290519-3_149: &id1042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86077, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cy1w1sLe1T8= + 1833-290519-4_90: &id1162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 83921, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yuEXqwb5xj8= + 1833-020719-2_99: + 1833-010719-1_183: *id005 + 1833-010719-2_225: *id006 + 1833-020719-1_107: *id007 + 1833-020719-3_63: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SFuDeKjA0D8= + 1833-020719-4_310: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4794, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kzrboqFEzj8= + 1833-050619-1_91: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mplhMWSLyj8= + 1833-050619-2_81: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aL52YQDByT8= + 1833-050619-3_109: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 86347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DKXGuIJ3yz8= + 1833-050619-4_135: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 84529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hyqTV1veyj8= + 1833-060619-1_170: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2928, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yXMSMfadyT8= + 1833-060619-2_74: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 94, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T5Hl9IPMxD8= + 1833-120619-1_129: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G4oF7gpRyj8= + 1833-120619-2_169: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vd18+PPfyD8= + 1833-120619-3_141: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 2503, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OlAYl173yT8= + 1833-120619-4_85: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1d7Z7TNpxD8= + 1833-200619-1_206: &id341 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D4SSecrgyj8= + 1833-200619-2_327: &id414 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 3246, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WJxDalNzyj8= + 1833-200619-3_132: &id454 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 1690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DHbWkeQQyj8= + 1833-200619-4_80: &id535 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 86350, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qHq5yhQ9xz8= + 1833-260619-1_124: &id622 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +3kyaOCYzD8= + 1833-260619-2_144: &id653 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3809, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OTZhkzDEyj8= + 1833-260619-3_168: &id739 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZdYBqrNjzD8= + 1833-260619-4_80: &id850 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85672, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mwB8r7Htyz8= + 1833-290519-1_124: &id868 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 8013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6eNZTkLHyT8= + 1833-290519-2_76: &id968 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4500, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TZ2wsU6h1D8= + 1833-290519-3_149: &id1043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 1782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jKYDzQkm2D8= + 1833-290519-4_108: &id1097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 86026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uHwh5XPv0D8= + 1833-020719-3_63: + 1833-010719-1_227: *id008 + 1833-020719-2_99: *id009 + 1833-020719-4_310: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8ZoJ+Sm0xz8= + 1833-050619-1_64: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 6962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sLLMsdgSxj8= + 1833-050619-2_125: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lMk7J6FsxT8= + 1833-050619-3_143: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9hrNTQqXyD8= + 1833-050619-4_135: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DRQuRgljyD8= + 1833-060619-1_162: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R/MuMGOgxD8= + 1833-060619-2_82: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QCutzbfGxD8= + 1833-120619-1_127: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + r3pY1wS+xj8= + 1833-120619-3_145: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1gXhNPY+xj8= + 1833-120619-4_95: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 2621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fy55kE2Mxz8= + 1833-200619-1_240: &id354 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PxP0RnF6xT8= + 1833-200619-2_327: &id415 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sYN71L9xxj8= + 1833-200619-3_150: &id467 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rfbhm5rhxj8= + 1833-200619-4_101: &id493 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w/K1R7mJyz8= + 1833-260619-1_124: &id623 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WG1dNo73xT8= + 1833-260619-2_160: &id689 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g4s5xQC2yD8= + 1833-260619-3_192: &id757 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0iDcyIiJxz8= + 1833-260619-4_80: &id851 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0jRZV0Voxz8= + 1833-290519-1_154: &id936 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zz2xdsZfxD8= + 1833-290519-3_125: &id991 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QjE6mcZE0z8= + 1833-290519-4_108: &id1098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vR7BdjZ+yT8= + 1833-020719-3_64: + 1833-010719-1_200: *id010 + 1833-010719-2_225: *id011 + 1833-020719-4_248: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IVAepRcoqj8= + 1833-050619-1_91: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 6962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4aLJMAI0yz8= + 1833-050619-2_74: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x9jYZ8YxwD8= + 1833-050619-3_129: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ydD2R0eVxj8= + 1833-050619-4_92: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + znQ99LxWxj8= + 1833-060619-1_170: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z2Nz8IiEyj8= + 1833-060619-2_112: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XtLRgKjLzT8= + 1833-120619-2_151: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d3JZR+qVyz8= + 1833-120619-3_118: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z7CNIYXIxj8= + 1833-120619-4_80: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 2621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zziUCTWoyj8= + 1833-200619-1_206: &id342 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ty3flw1Ozj8= + 1833-200619-2_28: &id367 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cAjcGTcdyD8= + 1833-200619-3_132: &id455 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ovVr55L2zD8= + 1833-200619-4_121: &id520 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4DmRbZdrzT8= + 1833-260619-1_108: &id596 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + veA2AsPWxT8= + 1833-260619-2_156: &id673 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BJT6E/rTyj8= + 1833-260619-3_168: &id740 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZPt9E+zRyj8= + 1833-260619-4_184: &id795 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ziycdqs4xT8= + 1833-290519-1_142: &id899 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O32lr1ToyD8= + 1833-290519-2_76: &id969 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gwpWpJWWwD8= + 1833-290519-3_155: &id1073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RMFvmtCqzz8= + 1833-290519-4_79: &id1142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N6zSOzGwvT8= + 1833-020719-3_96: + 1833-010719-1_183: *id012 + 1833-020719-1_107: *id013 + 1833-020719-4_254: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2329, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lW5q8tRaqT8= + 1833-050619-1_60: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 6962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Pa3jL5XRxT8= + 1833-050619-2_119: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 5115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S6BA5oDkxT8= + 1833-050619-3_117: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2412, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z5jWrGt9xT8= + 1833-050619-4_133: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LdGh8uqrxT8= + 1833-060619-1_158: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 5393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b3liKdhGyD8= + 1833-060619-2_105: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3Gr81bAxyT8= + 1833-120619-1_129: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9965, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UonnLskZyT8= + 1833-120619-2_169: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z1HI5dwcyj8= + 1833-120619-3_143: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n2rfETI9yD8= + 1833-120619-4_120: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 2621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qw0XvljRyj8= + 1833-200619-1_171: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4VQYwMaWzD8= + 1833-200619-2_287: &id383 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 5711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jzv0QvnWyj8= + 1833-200619-3_75: &id481 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N/z6m4Fbyj8= + 1833-200619-4_89: &id548 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 2415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gRyt17G2yD8= + 1833-260619-1_106: &id578 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8567, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + exNlqCcUyD8= + 1833-260619-2_144: &id654 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6274, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OQBl1aByyj8= + 1833-260619-3_142: &id718 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3690, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DTtGOxZiyT8= + 1833-260619-4_182: &id776 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1737, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /gpHmzuUyD8= + 1833-290519-1_132: &id887 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 10478, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DjObe7xZwz8= + 1833-290519-3_149: &id1044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4247, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qWVa9oi3zj8= + 1833-290519-4_90: &id1163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 2091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fMhavdrMwT8= + 1833-020719-4_248: + 1833-010719-1_183: *id014 + 1833-010719-2_225: *id015 + 1833-020719-3_64: *id016 + 1833-050619-1_91: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 9291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ra9920Yfyz8= + 1833-050619-2_74: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 7444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GdJCgZkZwD8= + 1833-050619-3_109: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CvoJ0eI5yj8= + 1833-050619-4_157: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aBODktk7zD8= + 1833-060619-1_170: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 7722, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WBToYeZ0yj8= + 1833-060619-2_105: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fqHu/gJeyz8= + 1833-120619-2_169: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PUgaTtAfzD8= + 1833-120619-3_141: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VF+yTolPzD8= + 1833-120619-4_127: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /QrVqd3nzD8= + 1833-200619-1_240: &id355 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V9lvj+gtyz8= + 1833-200619-2_28: &id368 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1kQh673wxz8= + 1833-200619-3_150: &id468 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hWXBeotazD8= + 1833-200619-4_121: &id521 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SHyZbGo7zT8= + 1833-260619-1_102: &id563 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 12PItkNTyz8= + 1833-260619-2_160: &id690 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J4CYsFUhyj8= + 1833-260619-3_192: &id758 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P/IbAYs7zD8= + 1833-260619-4_214: &id818 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t08div+Nyj8= + 1833-290519-1_142: &id900 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t6rpvKT2yD8= + 1833-290519-2_76: &id970 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 9294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PL3xlBPIwT8= + 1833-290519-3_155: &id1074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fcfLqvLr0D8= + 1833-290519-4_79: &id1143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y0O9rQChvD8= + 1833-020719-4_254: + 1833-010719-1_152: *id017 + 1833-020719-1_107: *id018 + 1833-020719-3_96: *id019 + 1833-050619-1_60: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 9291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zra4aKCCwz8= + 1833-050619-2_119: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 7444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gj48G2ytxD8= + 1833-050619-3_117: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6SZHpe86xD8= + 1833-050619-4_133: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ycpurQEexT8= + 1833-060619-1_160: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 7722, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v7C/x2ryxT8= + 1833-060619-2_74: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z5YjtJjdyD8= + 1833-120619-1_129: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 12294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kIkTTGVlxz8= + 1833-120619-2_151: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 9909, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vmkC/3+Exz8= + 1833-120619-3_143: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 56W9NUKoxj8= + 1833-120619-4_120: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kQ/+aR2OyD8= + 1833-200619-1_171: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZgnA9Sl2yj8= + 1833-200619-2_287: &id384 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + egrFsymWyT8= + 1833-200619-3_75: &id482 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sZOw1IDcxj8= + 1833-200619-4_89: &id549 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6Rieq8ttxz8= + 1833-260619-1_106: &id579 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WEH8ctOExT8= + 1833-260619-2_144: &id655 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IhjdRnIRyD8= + 1833-260619-3_142: &id719 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ySKPvWhuxz8= + 1833-260619-4_182: &id777 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HQAKlr69yD8= + 1833-290519-1_132: &id888 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XdZ3I8a6wT8= + 1833-290519-3_149: &id1045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1Jryv78g0D8= + 1833-290519-4_90: &id1164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nAPZv3jRwD8= + 1833-020719-4_310: + 1833-010719-1_200: *id020 + 1833-020719-2_99: *id021 + 1833-020719-3_63: *id022 + 1833-050619-1_64: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 9291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + imKh5fajxT8= + 1833-050619-2_125: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 7444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J135VgiexD8= + 1833-050619-3_129: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 4741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fabqu6dFxD8= + 1833-050619-4_92: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 2923, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ssh3P440xD8= + 1833-060619-1_162: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 7722, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TV0yA5doxj8= + 1833-060619-2_82: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 4888, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b6Kir7ZSxj8= + 1833-120619-1_127: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 12294, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 06Qau7utyT8= + 1833-120619-3_118: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 7297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NB5kTq0XxT8= + 1833-120619-4_80: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 4950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CPIwo1Uexz8= + 1833-200619-1_163: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 10599, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gAv/ZDzbyj8= + 1833-200619-2_327: &id416 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 8040, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UMsBPvt9yz8= + 1833-200619-3_120: &id429 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 6484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qZdhyEzTyj8= + 1833-200619-4_101: &id494 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [12, 4744, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fX+uCgpZ0D8= + 1833-260619-1_108: &id597 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10896, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P03sd2quxT8= + 1833-260619-2_156: &id674 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IoUKrQZryz8= + 1833-260619-3_168: &id741 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fYVU2kJ7yT8= + 1833-260619-4_184: &id796 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FpINBmewxj8= + 1833-290519-1_150: &id917 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 12807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j9rePd6tyT8= + 1833-290519-3_125: &id992 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 6576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hZwe6/UPyj8= + 1833-290519-4_108: &id1099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [34, 4420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LD6S5HsXxD8= + 1833-050619-1_111: + 1833-010719-1_227: *id023 + 1833-050619-2_152: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R0rJ+9yhmj8= + 1833-050619-3_149: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V8KEugZtoD8= + 1833-050619-4_157: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6368, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bykh7Z6JoD8= + 1833-060619-1_176: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6DvgSOsfnj8= + 1833-060619-2_112: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZmLq5UnLpz8= + 1833-120619-3_145: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 96kfdCKawT8= + 1833-120619-4_124: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CU1M4gpNtj8= + 1833-200619-1_240: &id356 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85092, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + URIi+aqPxj8= + 1833-200619-2_308: &id397 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T9mbfuxQwj8= + 1833-200619-3_150: &id469 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FN03KtiLxT8= + 1833-200619-4_101: &id495 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xJZcxDDaxD8= + 1833-260619-1_112: &id611 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s2uy54YKxD8= + 1833-260619-2_156: &id675 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q2QW8fKawj8= + 1833-260619-4_214: &id819 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z9Sw3qCUwT8= + 1833-290519-1_142: &id901 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RP+TM9NQwz8= + 1833-290519-3_125: &id993 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d4D/6ES/zz8= + 1833-290519-4_79: &id1144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BEBfiTtlyT8= + 1833-050619-1_60: + 1833-010719-1_183: *id024 + 1833-020719-1_107: *id025 + 1833-020719-3_96: *id026 + 1833-020719-4_254: *id027 + 1833-050619-2_119: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vs3O0a69pz8= + 1833-050619-3_117: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FCfo1XN1pT8= + 1833-050619-4_133: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6368, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /Y3Jjqs6sj8= + 1833-060619-1_160: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JrzEW2nuqj8= + 1833-060619-2_74: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6CEYmJ1qwT8= + 1833-120619-2_169: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0QAjzadCwT8= + 1833-120619-3_143: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5fGVu4vfsT8= + 1833-120619-4_120: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kROBJ2xKtj8= + 1833-200619-1_171: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85092, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gaT8TwGhuD8= + 1833-200619-2_287: &id385 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3el3KouWwD8= + 1833-200619-3_75: &id483 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JemKXbKatT8= + 1833-200619-4_89: &id550 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9t4wizmwxD8= + 1833-260619-1_106: &id580 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z5aH2Am3pD8= + 1833-260619-2_144: &id656 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lD/W78FTtj8= + 1833-260619-3_142: &id720 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3272, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3u/E0VCMsz8= + 1833-260619-4_182: &id778 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L6h+qZBkwj8= + 1833-290519-1_124: &id869 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tUCwYvFLtz8= + 1833-290519-3_149: &id1046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jNkzoQqA0D8= + 1833-290519-4_65: &id1121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6qqeroBZwj8= + 1833-050619-1_64: + 1833-010719-1_200: *id028 + 1833-010719-2_225: *id029 + 1833-020719-3_63: *id030 + 1833-020719-4_310: *id031 + 1833-050619-2_125: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2nhACnWnoT8= + 1833-050619-3_129: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b7g4SQTHpj8= + 1833-050619-4_92: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6368, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zF5I9ITSsD8= + 1833-060619-1_162: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +edVELQgoD8= + 1833-060619-2_82: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bOP+MXhYnz8= + 1833-120619-1_127: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9VPDk4ZnsT8= + 1833-120619-3_118: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + o1qjp14boT8= + 1833-120619-4_80: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GqlmE8jprD8= + 1833-200619-1_163: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85092, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zxhB/ex/uz8= + 1833-200619-2_28: &id369 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ++w2BNIpsD8= + 1833-200619-3_120: &id430 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3YXVfxSwuT8= + 1833-200619-4_121: &id522 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yW2yfXZOxD8= + 1833-260619-1_108: &id598 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CWRM/wXksD8= + 1833-260619-2_160: &id691 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kh+MTEuQuD8= + 1833-260619-3_168: &id742 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3272, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c/dKOgKltz8= + 1833-260619-4_184: &id797 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7AkePm5RuT8= + 1833-290519-1_150: &id918 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 09CPsrDYsz8= + 1833-290519-2_76: &id971 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AQWWxD/jxz8= + 1833-290519-3_155: &id1075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kakWtsJRzj8= + 1833-290519-4_108: &id1100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mkEHi0WHrD8= + 1833-050619-1_91: + 1833-010719-1_152: *id032 + 1833-020719-2_99: *id033 + 1833-020719-3_64: *id034 + 1833-020719-4_248: *id035 + 1833-050619-2_146: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CwG+pdBHsD8= + 1833-050619-3_143: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D1xJMD14rT8= + 1833-050619-4_135: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6368, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V8fwdRE9rD8= + 1833-060619-1_170: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1569, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JnGgBUe/oD8= + 1833-060619-2_105: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x3SjZQnhoj8= + 1833-120619-1_129: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d4iUhvQnrT8= + 1833-120619-2_151: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85782, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t9epVawMqj8= + 1833-120619-3_94: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s3gNXqDTrT8= + 1833-120619-4_127: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7f2ap3Iesj8= + 1833-200619-1_206: &id343 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85092, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oHOOWimZwj8= + 1833-200619-2_327: &id417 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 1251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WijVox7bvT8= + 1833-200619-3_126: &id441 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hVUwNZfrtD8= + 1833-200619-4_109: &id506 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 4547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sjHjDWERwD8= + 1833-260619-1_124: &id624 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VFNSwgFUvz8= + 1833-260619-2_140: &id638 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2DoBFMyVwj8= + 1833-260619-3_192: &id759 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3272, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MuaI4I/9uj8= + 1833-260619-4_218: &id832 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iVqU8yDVtD8= + 1833-290519-1_166: &id949 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TUGb9bafwD8= + 1833-290519-3_141: &id1011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ighzzozuzz8= + 1833-290519-4_90: &id1165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ovNDJyPxxT8= + 1833-050619-2_119: + 1833-010719-1_183: *id036 + 1833-020719-1_107: *id037 + 1833-020719-3_96: *id038 + 1833-020719-4_254: *id039 + 1833-050619-1_60: *id040 + 1833-050619-3_117: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Haz1cESVlz8= + 1833-050619-4_133: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + evHAqh3koz8= + 1833-060619-1_158: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Yo+UHcswuz8= + 1833-120619-2_169: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83935, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UXAs2feMwT8= + 1833-120619-3_143: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0FVpq7R/sj8= + 1833-120619-4_120: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WvOu1iJQuD8= + 1833-200619-1_171: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2rkHxeQjvT8= + 1833-200619-2_287: &id386 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MhQWR97HwD8= + 1833-200619-3_126: &id442 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zuNbE182uz8= + 1833-200619-4_89: &id551 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YEfw5RgzxT8= + 1833-260619-1_106: &id581 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sAzzC4MyrT8= + 1833-260619-2_144: &id657 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ahuu60eNtz8= + 1833-260619-3_142: &id721 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8OTXYPEAtj8= + 1833-260619-4_182: &id779 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sZij+HoZwD8= + 1833-290519-1_124: &id870 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VTcqtqYnuz8= + 1833-290519-3_141: &id1012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6XFP7QNX0D8= + 1833-290519-4_65: &id1122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JnwPY5wKwT8= + 1833-050619-2_125: + 1833-010719-1_200: *id041 + 1833-010719-2_225: *id042 + 1833-020719-3_63: *id043 + 1833-020719-4_310: *id044 + 1833-050619-1_64: *id045 + 1833-050619-3_129: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2CxfYuTQkz8= + 1833-050619-4_92: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2/FNwn+7pD8= + 1833-060619-1_162: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LX5pg5TOpT8= + 1833-060619-2_82: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vHyrExLFpT8= + 1833-120619-1_127: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EaUq5r8rtj8= + 1833-120619-3_118: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k+v2/r3gqT8= + 1833-120619-4_80: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jxDyhOxrsz8= + 1833-200619-1_163: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SFU5SpA+wD8= + 1833-200619-2_28: &id370 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OWjwuAsusz8= + 1833-200619-3_75: &id484 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q0UJdIh8xD8= + 1833-200619-4_121: &id523 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w5A6cOXWxD8= + 1833-260619-1_124: &id625 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q52NScY2uz8= + 1833-260619-2_160: &id692 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IklF1YCQuT8= + 1833-260619-3_168: &id743 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ds279ln3vD8= + 1833-260619-4_80: &id852 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AztLVM1HwD8= + 1833-290519-1_150: &id919 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ot00eXeEtD8= + 1833-290519-3_155: &id1076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0CbizCBYzD8= + 1833-290519-4_108: &id1101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gOA7X1MgrT8= + 1833-050619-2_146: + 1833-010719-1_152: *id046 + 1833-050619-1_91: *id047 + 1833-050619-3_143: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D2U1nM1AoD8= + 1833-050619-4_135: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UGiR5/5OpT8= + 1833-060619-1_170: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aRcZz0GRsD8= + 1833-060619-2_105: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wJahUVPssz8= + 1833-120619-1_129: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +FovgVThuT8= + 1833-120619-2_151: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83935, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A/XSSo+ntz8= + 1833-120619-3_94: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TVBdcMKxoj8= + 1833-120619-4_127: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kUpBw0bgoj8= + 1833-200619-1_240: &id357 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KyfACYVltj8= + 1833-200619-2_327: &id418 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5rnggFGctT8= + 1833-200619-3_150: &id470 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U2Kzm5+ZtD8= + 1833-200619-4_109: &id507 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tEd7GJimwD8= + 1833-260619-1_102: &id564 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fRIcvm3qyT8= + 1833-260619-2_140: &id639 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NkwOzBgRxD8= + 1833-260619-3_192: &id760 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G6GZL/0lvD8= + 1833-260619-4_218: &id833 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eoTuQoEetT8= + 1833-290519-1_166: &id950 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A2HKJjLjwT8= + 1833-290519-3_147: &id1027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5maIhPbg0D8= + 1833-290519-4_90: &id1166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WekAy8Rtxz8= + 1833-050619-2_152: + 1833-010719-1_227: *id048 + 1833-050619-1_111: *id049 + 1833-050619-3_149: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 508hHz55mj8= + 1833-050619-4_157: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 36XL5EQclz8= + 1833-060619-1_176: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7FIWCbSroz8= + 1833-060619-2_112: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5FxmhEa/qT8= + 1833-120619-3_145: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8FqdlrwQwj8= + 1833-120619-4_124: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K9bnRBqDtD8= + 1833-200619-1_206: &id344 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FZWwVPDtyj8= + 1833-200619-2_321: &id406 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NYw3VHZWxD8= + 1833-200619-3_132: &id456 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oBNoU7TIyT8= + 1833-200619-4_101: &id496 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nyX/pkf4xD8= + 1833-260619-1_112: &id612 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DXqkyUTtwz8= + 1833-260619-2_170: &id706 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZFAVQZLxyD8= + 1833-260619-4_214: &id820 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1/tRrCN4wT8= + 1833-290519-1_154: &id937 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VgRnNIBCxz8= + 1833-290519-3_151: &id1065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7KVYTMpX1D8= + 1833-050619-2_74: + 1833-020719-3_64: *id050 + 1833-020719-4_248: *id051 + 1833-060619-2_116: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gppfO6EQyj8= + 1833-120619-3_141: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MAcC7p4kyz8= + 1833-120619-4_95: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bE4YpkL3yT8= + 1833-200619-2_308: &id398 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VE1r0bW9wj8= + 1833-260619-1_108: &id599 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 93bxhCp7uj8= + 1833-260619-2_156: &id676 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85241, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9voXu1DWwT8= + 1833-260619-4_184: &id798 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DdRxFiwntz8= + 1833-290519-1_142: &id902 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V3E0hZlOvz8= + 1833-290519-2_76: &id972 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KAvK/xJHwT8= + 1833-290519-3_125: &id994 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B6SJO4xp0D8= + 1833-290519-4_79: &id1145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g1wD5vZ1tz8= + 1833-050619-2_81: + 1833-020719-2_99: *id052 + 1833-050619-3_109: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 942Wo9Bpwj8= + 1833-050619-4_117: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4521, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0V1G9W68xj8= + 1833-060619-1_160: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qFLFdE0yyj8= + 1833-060619-2_74: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RNeZWpG/uz8= + 1833-120619-3_122: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7k2sreiryD8= + 1833-120619-4_85: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3jzlcbMJxD8= + 1833-200619-2_281: &id379 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + laPyWnCgwj8= + 1833-200619-3_120: &id431 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hZYLNPDKwT8= + 1833-200619-4_80: &id536 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +cMTzTTXvT8= + 1833-260619-4_200: &id807 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v+AKDFQ3vT8= + 1833-290519-1_132: &id889 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g8sBbFuxwj8= + 1833-290519-3_149: &id1047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UaRjdsKH1j8= + 1833-050619-3_109: + 1833-010719-1_152: *id053 + 1833-020719-1_107: *id054 + 1833-020719-2_99: *id055 + 1833-020719-4_248: *id056 + 1833-050619-2_81: *id057 + 1833-050619-4_117: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Am/xMrUgxz8= + 1833-060619-1_160: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T58eiB4exT8= + 1833-060619-2_74: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YPYeJXuVvj8= + 1833-120619-3_145: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qQ4H0tL/vz8= + 1833-120619-4_95: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8bzXi9ySwj8= + 1833-200619-1_163: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d06ip0/ytD8= + 1833-200619-2_308: &id399 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YD4FB7D7vT8= + 1833-200619-3_120: &id432 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7L1Sh2+2sT8= + 1833-200619-4_101: &id497 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IYMcjUEBwT8= + 1833-260619-1_124: &id626 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rpgOcIsSvz8= + 1833-260619-2_156: &id677 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UGoQd4PwwD8= + 1833-260619-3_168: &id744 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZjggTwZNsj8= + 1833-260619-4_80: &id853 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qmKwsFM6wD8= + 1833-290519-1_132: &id890 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fRjZjS5QuD8= + 1833-290519-3_149: &id1048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3q/TH87a0j8= + 1833-290519-4_90: &id1167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hij6SQHqwT8= + 1833-050619-3_117: + 1833-010719-1_183: *id058 + 1833-020719-3_96: *id059 + 1833-020719-4_254: *id060 + 1833-050619-1_60: *id061 + 1833-050619-2_119: *id062 + 1833-050619-4_133: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vR9Oz4PEpT8= + 1833-060619-1_158: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UhU4V1mLuz8= + 1833-060619-2_116: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jo/cbjDbzz8= + 1833-120619-2_169: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YL2w1YgywT8= + 1833-120619-3_143: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XvKsLTjSsD8= + 1833-120619-4_120: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EJhMdmdbuD8= + 1833-200619-1_171: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tjJ5CGguuz8= + 1833-200619-2_287: &id387 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A+4bEGwlwD8= + 1833-200619-3_126: &id443 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fRq4sJrGuj8= + 1833-200619-4_89: &id552 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cSkekRHJxD8= + 1833-260619-1_106: &id582 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + weLom2CJqT8= + 1833-260619-2_144: &id658 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dehEvcFhtz8= + 1833-260619-3_142: &id722 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MmIk1sMusz8= + 1833-260619-4_182: &id780 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fvAqJ6unvz8= + 1833-290519-1_124: &id871 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ePnpubm0uT8= + 1833-290519-3_125: &id995 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5WwaBqi8zz8= + 1833-290519-4_65: &id1123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PAjV9zmnwD8= + 1833-050619-3_129: + 1833-010719-1_200: *id063 + 1833-010719-2_225: *id064 + 1833-020719-3_64: *id065 + 1833-020719-4_310: *id066 + 1833-050619-1_64: *id067 + 1833-050619-2_125: *id068 + 1833-050619-4_92: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zj5fOHYwoD8= + 1833-060619-1_162: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + il+1YZaLqT8= + 1833-060619-2_82: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b8+DVNZ8rD8= + 1833-120619-1_127: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 78847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 071Pp24nuD8= + 1833-120619-3_118: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aropRHturj8= + 1833-120619-4_80: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fafPn2k5tz8= + 1833-200619-2_28: &id371 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FxE/3CaVtD8= + 1833-200619-3_75: &id485 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k2UL3C7PxT8= + 1833-200619-4_121: &id524 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OaLpB8Y9xT8= + 1833-260619-1_108: &id600 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LDkIrILdtD8= + 1833-260619-2_160: &id693 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ao9MYQxGuj8= + 1833-260619-4_184: &id799 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +ewzciw0uT8= + 1833-290519-1_150: &id920 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FBjlBGJFtj8= + 1833-290519-2_76: &id973 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NcbETwhoxz8= + 1833-290519-3_155: &id1077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + drF8aYe1yz8= + 1833-290519-4_108: &id1102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6kaSALzJqz8= + 1833-050619-3_143: + 1833-020719-3_63: *id069 + 1833-050619-1_91: *id070 + 1833-050619-2_146: *id071 + 1833-050619-4_135: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gHU9J80poz8= + 1833-060619-1_170: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + juSZuctNrD8= + 1833-060619-2_105: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YRmBPTZgtT8= + 1833-120619-1_129: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 78847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cdfNQYXquT8= + 1833-120619-2_151: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nyIrLTK/uD8= + 1833-120619-3_94: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FcC/k4Fpoz8= + 1833-120619-4_127: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D1KGuyJupj8= + 1833-200619-1_240: &id358 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IzRW9Z/ctz8= + 1833-200619-2_327: &id419 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VZC7DgR+uD8= + 1833-200619-3_150: &id471 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EqWr7qtytj8= + 1833-200619-4_109: &id508 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8TAiBbItwj8= + 1833-260619-1_102: &id565 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L7EWda6SyT8= + 1833-260619-2_140: &id640 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LAgJJldmxD8= + 1833-260619-3_192: &id761 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YEtVtCYhvT8= + 1833-260619-4_218: &id834 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k0f+EfA9tj8= + 1833-290519-1_154: &id938 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R+wehP8zwj8= + 1833-290519-3_141: &id1013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qHzm2B8p0D8= + 1833-050619-3_149: + 1833-010719-1_227: *id072 + 1833-050619-1_111: *id073 + 1833-050619-2_152: *id074 + 1833-050619-4_157: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1818, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sxXzSs7Ajj8= + 1833-060619-1_176: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lptRcSgXpD8= + 1833-060619-2_112: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N8g3osrzqD8= + 1833-120619-3_122: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f4eGGW0SyD8= + 1833-120619-4_124: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ch22m0/nsj8= + 1833-200619-1_206: &id345 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sEQ37kTgyz8= + 1833-200619-2_321: &id407 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fcmTACNExD8= + 1833-200619-3_132: &id457 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4GZKpi2Myj8= + 1833-200619-4_80: &id537 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PwIovyR8yz8= + 1833-260619-1_112: &id613 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xf4jZxqGwz8= + 1833-260619-2_170: &id707 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82538, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g54osv9OyT8= + 1833-260619-4_214: &id821 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7CskfKwBwT8= + 1833-290519-1_142: &id903 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CkRjnCo/wz8= + 1833-290519-3_147: &id1028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FOxROKMp0T8= + 1833-290519-4_79: &id1146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t+456NveyT8= + 1833-050619-4_117: + 1833-050619-2_81: *id075 + 1833-050619-3_109: *id076 + 1833-060619-1_160: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sek2XALkxj8= + 1833-060619-2_116: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jCcmielUzj8= + 1833-120619-3_122: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tw/LuXjbvT8= + 1833-120619-4_95: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t+xTEUpvwT8= + 1833-200619-1_240: &id359 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78724, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yX06TH+3rz8= + 1833-200619-2_327: &id420 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zZfySk3xsD8= + 1833-200619-3_150: &id472 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KwfmtriVsT8= + 1833-200619-4_121: &id525 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q1VkSVmJsT8= + 1833-260619-1_124: &id627 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5qdQuhiauj8= + 1833-260619-2_160: &id694 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p8ifyyPKvD8= + 1833-260619-3_192: &id762 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83304, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DbvHtiBiuT8= + 1833-260619-4_80: &id854 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lm91jGxlwD8= + 1833-290519-1_154: &id939 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QglvGaiowD8= + 1833-290519-3_141: &id1014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + slCA64mp0z8= + 1833-050619-4_133: + 1833-010719-1_183: *id077 + 1833-020719-3_96: *id078 + 1833-020719-4_254: *id079 + 1833-050619-1_60: *id080 + 1833-050619-2_119: *id081 + 1833-050619-3_117: *id082 + 1833-060619-1_158: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rMwH7jtytj8= + 1833-060619-2_74: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QCqJd9elxz8= + 1833-120619-2_169: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 79414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T8tSfR+Ewj8= + 1833-120619-3_143: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /kbauvQwtT8= + 1833-120619-4_120: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LP/Q125CvT8= + 1833-200619-1_171: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78724, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mf4z+4iAwD8= + 1833-200619-2_287: &id388 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b5LOEUtQwj8= + 1833-200619-3_75: &id486 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gHEhyMORwD8= + 1833-200619-4_89: &id553 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h4xNL58mxj8= + 1833-260619-1_102: &id566 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4CBv5aUfvj8= + 1833-260619-2_144: &id659 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sdcDq3AsvD8= + 1833-260619-3_142: &id723 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83304, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5Bf6LF/EuD8= + 1833-260619-4_182: &id781 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2acY2jX6vT8= + 1833-290519-1_89: &id963 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1UtlA5LwvT8= + 1833-290519-3_149: &id1049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J0cbx51nzD8= + 1833-290519-4_65: &id1124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KJeu9/D0wD8= + 1833-050619-4_135: + 1833-010719-1_152: *id083 + 1833-020719-1_107: *id084 + 1833-020719-2_99: *id085 + 1833-020719-3_63: *id086 + 1833-050619-1_91: *id087 + 1833-050619-2_146: *id088 + 1833-050619-3_143: *id089 + 1833-060619-1_170: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8aVpIyPOqT8= + 1833-060619-2_105: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rFCm/Utnsj8= + 1833-120619-1_129: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 77029, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iTXAdmFTuD8= + 1833-120619-2_151: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 79414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jRKFqqyntT8= + 1833-120619-3_94: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R3PpO4smoD8= + 1833-120619-4_127: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VmfWybCxoz8= + 1833-200619-1_206: &id346 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78724, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Do1iZ571xD8= + 1833-200619-2_308: &id400 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9sJrUjqWxj8= + 1833-200619-3_126: &id444 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E8NA8UHGvD8= + 1833-200619-4_109: &id509 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PBhAs8xowD8= + 1833-260619-1_106: &id583 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WmTFYCoZwz8= + 1833-260619-2_140: &id641 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MgxvqcK9xD8= + 1833-260619-4_218: &id835 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kMTpjUKbtj8= + 1833-290519-1_166: &id951 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CXRZ3SX7wT8= + 1833-290519-3_125: &id996 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A8RXajk00D8= + 1833-290519-4_90: &id1168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AZ51Qiavxz8= + 1833-050619-4_157: + 1833-010719-1_227: *id090 + 1833-020719-4_248: *id091 + 1833-050619-1_111: *id092 + 1833-050619-2_152: *id093 + 1833-050619-3_149: *id094 + 1833-060619-1_176: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S3uMftz1oz8= + 1833-060619-2_112: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gz7tQBQTpz8= + 1833-120619-3_145: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /cMEKah+wT8= + 1833-120619-4_124: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aVxzklf/sj8= + 1833-200619-2_321: &id408 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L+f2riI4xD8= + 1833-200619-3_132: &id458 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0JOAaAatyj8= + 1833-200619-4_80: &id538 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gBkHULjMyz8= + 1833-260619-1_112: &id614 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5thT4lrJwz8= + 1833-260619-2_170: &id708 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y7k4iOBOyT8= + 1833-260619-4_214: &id822 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pk/oS90wwT8= + 1833-290519-1_142: &id904 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3hdzNQlMwz8= + 1833-290519-3_147: &id1029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wy+viIcq0T8= + 1833-290519-4_79: &id1147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Owv+Zsv+yT8= + 1833-050619-4_92: + 1833-010719-1_200: *id095 + 1833-010719-2_225: *id096 + 1833-020719-3_64: *id097 + 1833-020719-4_310: *id098 + 1833-050619-1_64: *id099 + 1833-050619-2_125: *id100 + 1833-050619-3_129: *id101 + 1833-060619-1_162: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 81601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iln7Y+W5sj8= + 1833-060619-2_82: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LvqA86+Esz8= + 1833-120619-1_127: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 77029, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D/TQMI4FvT8= + 1833-120619-3_118: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 82026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t90PvbBrsz8= + 1833-120619-4_80: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HevGjBBzvT8= + 1833-200619-1_163: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78724, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eXLA9AFexT8= + 1833-200619-2_28: &id372 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81283, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TkPljsscuj8= + 1833-200619-3_120: &id433 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 82839, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T87yqR1ExD8= + 1833-200619-4_101: &id498 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R4wP2JI2yz8= + 1833-260619-1_108: &id601 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 78427, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l+AyjifDuD8= + 1833-260619-2_156: &id678 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80720, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RLuglD8+wj8= + 1833-260619-3_168: &id745 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83304, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pmFIhaE6wj8= + 1833-260619-4_184: &id800 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85257, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jywW6cSYuT8= + 1833-290519-1_150: &id921 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nau+CiIFuj8= + 1833-290519-2_76: &id974 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6371, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S6MPpTC7xj8= + 1833-290519-3_155: &id1078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3653, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GhTesnkyyz8= + 1833-290519-4_108: &id1103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iX7WiJt/qT8= + 1833-060619-1_158: + 1833-010719-1_183: *id102 + 1833-020719-3_96: *id103 + 1833-050619-2_119: *id104 + 1833-050619-3_117: *id105 + 1833-050619-4_133: *id106 + 1833-060619-2_116: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8ElZ5H7g0D8= + 1833-120619-2_169: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vL0NBsDUvT8= + 1833-120619-3_141: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZN0j86dVuj8= + 1833-120619-4_85: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FC0LgGKeyD8= + 1833-200619-1_206: &id347 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wwBycDN8wz8= + 1833-200619-2_287: &id389 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0JKD7Ar8vD8= + 1833-200619-3_132: &id459 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dZfa6soXwD8= + 1833-200619-4_89: &id554 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pxdAwd5sxj8= + 1833-260619-1_102: &id567 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TfbYqg8Uvj8= + 1833-260619-2_144: &id660 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T0bmM1pkuj8= + 1833-260619-4_182: &id782 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dsZYH+rTvD8= + 1833-290519-1_89: &id964 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x6icJq41xz8= + 1833-290519-3_155: &id1079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nf6f0SSE0D8= + 1833-060619-1_160: + 1833-010719-1_152: *id107 + 1833-020719-1_107: *id108 + 1833-020719-4_254: *id109 + 1833-050619-1_60: *id110 + 1833-050619-2_81: *id111 + 1833-050619-3_109: *id112 + 1833-050619-4_117: *id113 + 1833-060619-2_74: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HrAfdEYMwD8= + 1833-120619-3_143: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PU0bSWkSqD8= + 1833-120619-4_120: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bw+cI2gcqz8= + 1833-200619-1_171: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zpLMgQZ6tT8= + 1833-200619-2_308: &id401 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2v21q3w4yz8= + 1833-200619-3_75: &id487 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ymbwv4kUsD8= + 1833-200619-4_80: &id539 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q6cjQSl2wj8= + 1833-260619-1_106: &id584 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lClq3PgNqj8= + 1833-260619-2_160: &id695 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b/lydMmIwj8= + 1833-260619-3_142: &id724 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 1703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kFhz+b8Rtz8= + 1833-260619-4_80: &id855 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2R3gQ/1dxj8= + 1833-290519-1_124: &id872 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xgb1EON5tT8= + 1833-290519-3_125: &id997 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K/LPY9qc0T8= + 1833-290519-4_65: &id1125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fSnb9S7sxD8= + 1833-060619-1_162: + 1833-010719-1_200: *id114 + 1833-010719-2_225: *id115 + 1833-020719-3_63: *id116 + 1833-020719-4_310: *id117 + 1833-050619-1_64: *id118 + 1833-050619-2_125: *id119 + 1833-050619-3_129: *id120 + 1833-050619-4_92: *id121 + 1833-060619-2_82: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yURWdFGekT8= + 1833-120619-1_127: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81828, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /C5b3pqPqj8= + 1833-120619-3_118: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HVMkBMQUqD8= + 1833-120619-4_80: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CtOGOoZirD8= + 1833-200619-1_163: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PQTwVk9Htz8= + 1833-200619-2_28: &id373 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P4Jx3hIlrz8= + 1833-200619-3_120: &id434 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tfGBUh1Dtj8= + 1833-200619-4_121: &id526 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hka9VEWywj8= + 1833-260619-1_108: &id602 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JsGNxhWXsz8= + 1833-260619-2_156: &id679 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KUU8lvVevz8= + 1833-260619-3_168: &id746 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 1703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SaOHs0wbtD8= + 1833-260619-4_184: &id801 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1BdAKfW1uj8= + 1833-290519-1_150: &id922 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GsIkTi1urj8= + 1833-290519-2_76: &id975 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1572, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FdNhCSLqxz8= + 1833-290519-3_149: &id1050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s3SFEAcjzz8= + 1833-290519-4_108: &id1104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QThPv+nVsT8= + 1833-060619-1_170: + 1833-020719-2_99: *id122 + 1833-020719-3_64: *id123 + 1833-020719-4_248: *id124 + 1833-050619-1_91: *id125 + 1833-050619-2_146: *id126 + 1833-050619-3_143: *id127 + 1833-050619-4_135: *id128 + 1833-060619-2_105: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VS56gK5nqz8= + 1833-120619-1_129: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81828, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HVH0LH7isD8= + 1833-120619-2_151: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 181GbsgMsT8= + 1833-120619-3_94: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GST8HjOqqj8= + 1833-120619-4_127: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UpwnR/eArj8= + 1833-200619-1_240: &id360 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /npgKty7vz8= + 1833-200619-2_327: &id421 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WFi6skwZwD8= + 1833-200619-3_126: &id445 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lDxKoUqZtz8= + 1833-200619-4_109: &id510 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k9Mv4JGqvz8= + 1833-260619-1_124: &id628 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fdrUwDHlwD8= + 1833-260619-2_140: &id642 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + istCsiWZwj8= + 1833-260619-3_192: &id763 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 1703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4YF54CNlvj8= + 1833-260619-4_218: &id836 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + msY7cGFwuD8= + 1833-290519-1_166: &id952 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IIrxolZZuz8= + 1833-290519-3_141: &id1015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CU6nGnOSzj8= + 1833-290519-4_90: &id1169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sWeab/iCxj8= + 1833-060619-1_176: + 1833-010719-1_227: *id129 + 1833-050619-1_111: *id130 + 1833-050619-2_152: *id131 + 1833-050619-3_149: *id132 + 1833-050619-4_157: *id133 + 1833-060619-2_112: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VXxzzqvRpj8= + 1833-120619-3_145: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WQIaWsJEwj8= + 1833-120619-4_124: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DQU4Rq9ktj8= + 1833-200619-2_321: &id409 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 876vzS5CxD8= + 1833-200619-3_150: &id473 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 97TcSJdjxj8= + 1833-200619-4_101: &id499 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GofGYdwaxj8= + 1833-260619-1_112: &id615 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZCT1iTh0xT8= + 1833-260619-2_170: &id709 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85519, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qM9zekulyD8= + 1833-260619-4_214: &id823 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ehz6MXTewj8= + 1833-290519-1_142: &id905 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 54lB9dm8xD8= + 1833-290519-3_147: &id1030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jToWYr7O0T8= + 1833-290519-4_79: &id1148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7VnqY2zuyz8= + 1833-060619-2_105: + 1833-010719-1_183: *id134 + 1833-020719-3_96: *id135 + 1833-020719-4_248: *id136 + 1833-050619-1_91: *id137 + 1833-050619-2_146: *id138 + 1833-050619-3_143: *id139 + 1833-050619-4_135: *id140 + 1833-060619-1_170: *id141 + 1833-120619-1_129: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Lnt9FN+8pz8= + 1833-120619-2_151: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81379, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WX6k91Bfmj8= + 1833-120619-3_94: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hzLkqi3/sj8= + 1833-120619-4_120: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9W6/l8y4sT8= + 1833-200619-1_171: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4bkXlOY4tT8= + 1833-200619-2_287: &id390 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IdW/wflUwT8= + 1833-200619-3_126: &id446 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h21KYXlrsD8= + 1833-200619-4_109: &id511 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RPwt/ldgvD8= + 1833-260619-1_106: &id585 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lEPK9L9LvD8= + 1833-260619-2_144: &id661 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6jDkjm/guj8= + 1833-260619-3_142: &id725 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QzjpAgr4vj8= + 1833-260619-4_218: &id837 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A70HEkCVtj8= + 1833-290519-1_124: &id873 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d+9PzZcMuz8= + 1833-290519-3_141: &id1016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Lkyzy79Q0D8= + 1833-290519-4_65: &id1126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KeR4TiTGxj8= + 1833-060619-2_112: + 1833-020719-3_64: *id142 + 1833-050619-1_111: *id143 + 1833-050619-2_152: *id144 + 1833-050619-3_149: *id145 + 1833-050619-4_157: *id146 + 1833-060619-1_176: *id147 + 1833-120619-3_145: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CfjPp6NIwD8= + 1833-120619-4_95: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TaC5YwiWwz8= + 1833-200619-1_240: &id361 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L5Bbhc2Cxz8= + 1833-200619-2_321: &id410 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F/u5/u0lxT8= + 1833-200619-3_150: &id474 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H3d+QHhHxj8= + 1833-200619-4_101: &id500 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a8rY3JThxD8= + 1833-260619-1_112: &id616 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WMGLecO2wz8= + 1833-260619-2_170: &id710 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6JbNKXllyj8= + 1833-260619-4_214: &id824 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JAL9x3ffwD8= + 1833-290519-1_142: &id906 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IP272PG/wj8= + 1833-290519-3_147: &id1031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RdREtbH60T8= + 1833-290519-4_79: &id1149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G+8EmVRNyz8= + 1833-060619-2_116: + 1833-010719-1_227: *id148 + 1833-050619-2_74: *id149 + 1833-050619-3_117: *id150 + 1833-050619-4_117: *id151 + 1833-060619-1_158: *id152 + 1833-120619-3_122: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tyEKo8uazD8= + 1833-120619-4_124: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +3ZfHlF3vj8= + 1833-200619-2_308: &id402 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BK5Jz5Sexz8= + 1833-200619-3_132: &id460 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8j4luvqNzD8= + 1833-200619-4_89: &id555 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fvbQBbuAzT8= + 1833-260619-1_102: &id568 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YO4LZSiOzz8= + 1833-260619-2_156: &id680 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AlycxDTSxz8= + 1833-260619-4_80: &id856 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WMkkX79oyD8= + 1833-290519-1_154: &id940 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tzTG2vtGyz8= + 1833-290519-3_125: &id998 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bJwxj6Fs0T8= + 1833-060619-2_74: + 1833-010719-1_152: *id153 + 1833-020719-1_107: *id154 + 1833-020719-2_99: *id155 + 1833-020719-4_254: *id156 + 1833-050619-1_60: *id157 + 1833-050619-2_81: *id158 + 1833-050619-3_109: *id159 + 1833-050619-4_133: *id160 + 1833-060619-1_160: *id161 + 1833-120619-2_169: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81379, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bfDnR7WBxD8= + 1833-120619-3_143: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K0PlywVRwj8= + 1833-120619-4_85: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BRbdxh0ktz8= + 1833-200619-1_206: &id348 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zGaIEv8Mxz8= + 1833-200619-2_327: &id422 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YaS8RTP9wz8= + 1833-200619-3_75: &id488 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6oDK1jMzwD8= + 1833-200619-4_80: &id540 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DnNbgcSPuD8= + 1833-260619-1_124: &id629 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3iMUeroswz8= + 1833-260619-2_140: &id643 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ztTLZwKnxD8= + 1833-260619-3_192: &id764 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2weIxpdhwj8= + 1833-260619-4_200: &id808 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BYWzE/xwxD8= + 1833-290519-1_132: &id891 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tFfzOAbmwT8= + 1833-290519-3_149: &id1051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ikDNrdwX1D8= + 1833-290519-4_90: &id1170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ILejJhITyD8= + 1833-060619-2_82: + 1833-010719-1_200: *id162 + 1833-010719-2_225: *id163 + 1833-020719-3_63: *id164 + 1833-020719-4_310: *id165 + 1833-050619-1_64: *id166 + 1833-050619-2_125: *id167 + 1833-050619-3_129: *id168 + 1833-050619-4_92: *id169 + 1833-060619-1_162: *id170 + 1833-120619-1_127: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Io3FEt0+rD8= + 1833-120619-3_118: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RW4o4rz1qD8= + 1833-120619-4_80: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + egy84JKuqD8= + 1833-200619-1_163: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XUmmp0Yetj8= + 1833-200619-2_28: &id374 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tfJao7s4sT8= + 1833-200619-3_120: &id435 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Eh3puAR0tT8= + 1833-200619-4_121: &id527 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BIgw6cwfwz8= + 1833-260619-1_108: &id603 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZweKNetctD8= + 1833-260619-2_160: &id696 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 82685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JArMd7Yutz8= + 1833-260619-3_168: &id747 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cFEUCCU3tT8= + 1833-260619-4_184: &id802 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0EqmJCPkuz8= + 1833-290519-1_150: &id923 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A4HXeTg7sD8= + 1833-290519-2_76: &id976 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FPpuAnjGyD8= + 1833-290519-3_155: &id1080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xvX5niOJzj8= + 1833-290519-4_108: &id1105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +qKuOtZvsj8= + 1833-120619-1_127: + 1833-010719-1_200: *id171 + 1833-010719-2_225: *id172 + 1833-020719-3_63: *id173 + 1833-020719-4_310: *id174 + 1833-050619-1_64: *id175 + 1833-050619-2_125: *id176 + 1833-050619-3_129: *id177 + 1833-050619-4_92: *id178 + 1833-060619-1_162: *id179 + 1833-060619-2_82: *id180 + 1833-120619-2_151: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2385, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fisf6uE8wT8= + 1833-120619-3_118: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ByBD0y50tD8= + 1833-120619-4_80: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7344, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + skmZpK9EsT8= + 1833-200619-1_163: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gJB5cMGXsz8= + 1833-200619-2_28: &id375 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uuzzrvibtT8= + 1833-200619-3_120: &id436 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q5s7TjNasj8= + 1833-200619-4_121: &id528 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pEch/7gCwD8= + 1833-260619-1_124: &id630 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +8sk7QwDqj8= + 1833-260619-2_160: &id697 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DCPHLascrz8= + 1833-260619-3_192: &id765 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 6275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wb76CmnbqD8= + 1833-260619-4_80: &id857 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 8228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TJbo5BfvtD8= + 1833-290519-1_150: &id924 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DLFdhHslqj8= + 1833-290519-2_76: &id977 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83400, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dH+IlSbXyT8= + 1833-290519-3_149: &id1052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Qocwmjfp0D8= + 1833-290519-4_108: &id1106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78526, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WT/2NDR1uz8= + 1833-120619-1_129: + 1833-010719-1_152: *id181 + 1833-020719-1_107: *id182 + 1833-020719-2_99: *id183 + 1833-020719-3_96: *id184 + 1833-020719-4_254: *id185 + 1833-050619-1_91: *id186 + 1833-050619-2_146: *id187 + 1833-050619-3_143: *id188 + 1833-050619-4_135: *id189 + 1833-060619-1_170: *id190 + 1833-060619-2_105: *id191 + 1833-120619-2_169: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2385, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jowx6Vgsvj8= + 1833-120619-3_143: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B2VsgSbisT8= + 1833-120619-4_120: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7344, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 18C0Xnyisj8= + 1833-200619-1_171: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IFRk7+7yrT8= + 1833-200619-2_287: &id391 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + inHtiXEGvD8= + 1833-200619-3_126: &id447 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + scssNxhrsT8= + 1833-200619-4_109: &id512 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g21KbXDJwD8= + 1833-260619-1_106: &id586 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KmgjtBU2uT8= + 1833-260619-2_144: &id662 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jbtXDRXstj8= + 1833-260619-3_142: &id726 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 6275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KzglOpNVuT8= + 1833-260619-4_218: &id838 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 8228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CvbW6oMfvj8= + 1833-290519-1_124: &id874 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nrYXJq98tj8= + 1833-290519-3_155: &id1081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bBDThSagzz8= + 1833-290519-4_65: &id1127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78526, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zdJdDL66xj8= + 1833-120619-2_151: + 1833-010719-1_152: *id192 + 1833-010719-2_225: *id193 + 1833-020719-1_107: *id194 + 1833-020719-3_64: *id195 + 1833-020719-4_254: *id196 + 1833-050619-1_91: *id197 + 1833-050619-2_146: *id198 + 1833-050619-3_143: *id199 + 1833-050619-4_135: *id200 + 1833-060619-1_170: *id201 + 1833-060619-2_105: *id202 + 1833-120619-1_127: *id203 + 1833-120619-3_143: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7nhjHSv4sT8= + 1833-120619-4_120: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4959, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1OxFVGLKqz8= + 1833-200619-1_171: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z/+FTSBKtD8= + 1833-200619-2_327: &id423 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z0S6kQRKwD8= + 1833-200619-3_126: &id448 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vx5GIPn4qz8= + 1833-200619-4_109: &id513 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9wXMA8lsvj8= + 1833-260619-1_106: &id587 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85413, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4bWP/Z57uj8= + 1833-260619-2_160: &id698 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2gcmARp0wD8= + 1833-260619-3_192: &id766 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1e3ElkjpvT8= + 1833-260619-4_218: &id839 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KDrNc8R/uD8= + 1833-290519-1_124: &id875 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f21EXkypuT8= + 1833-290519-2_76: &id978 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jp6zvfg1yj8= + 1833-290519-3_155: &id1082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mwfKDLTFzj8= + 1833-290519-4_90: &id1171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LJ17HpFpxj8= + 1833-120619-2_169: + 1833-010719-1_183: *id204 + 1833-020719-2_99: *id205 + 1833-020719-3_96: *id206 + 1833-020719-4_248: *id207 + 1833-050619-1_60: *id208 + 1833-050619-2_119: *id209 + 1833-050619-3_117: *id210 + 1833-050619-4_133: *id211 + 1833-060619-1_158: *id212 + 1833-060619-2_74: *id213 + 1833-120619-1_129: *id214 + 1833-120619-3_141: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ltPprGegoT8= + 1833-120619-4_85: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4959, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rJoyuKQPvj8= + 1833-200619-1_206: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LM114saYsD8= + 1833-200619-2_287: &id392 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VYh4wZTNrj8= + 1833-200619-3_132: &id461 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7PrumQZzqD8= + 1833-200619-4_89: &id556 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U2GpuI8Suz8= + 1833-260619-1_102: &id569 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85413, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kBf6HtJZwD8= + 1833-260619-2_144: &id663 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d6gcg2BWtj8= + 1833-260619-3_142: &id727 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p4m826rZuD8= + 1833-260619-4_182: &id783 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Lo1kj0Ndvz8= + 1833-290519-1_166: &id953 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HwjwhRJKtj8= + 1833-290519-3_149: &id1053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + im1JcavD0D8= + 1833-290519-4_65: &id1128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z+jI464VyT8= + 1833-120619-3_118: + 1833-010719-1_200: *id215 + 1833-010719-2_225: *id216 + 1833-020719-3_64: *id217 + 1833-020719-4_310: *id218 + 1833-050619-1_64: *id219 + 1833-050619-2_125: *id220 + 1833-050619-3_129: *id221 + 1833-050619-4_92: *id222 + 1833-060619-1_162: *id223 + 1833-060619-2_82: *id224 + 1833-120619-1_127: *id225 + 1833-120619-4_80: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OHEQcQJjqj8= + 1833-200619-2_28: &id376 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DLLBu0YRrT8= + 1833-200619-3_75: &id489 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Fa24CzJwj8= + 1833-260619-1_108: &id604 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M5DK4SIArD8= + 1833-260619-2_160: &id699 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eUDp+Qxduj8= + 1833-260619-3_168: &id748 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AVH2BBnktT8= + 1833-260619-4_184: &id803 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j81KwSoytz8= + 1833-290519-1_132: &id892 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FLWWz+1quD8= + 1833-290519-2_76: &id979 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TRyTpO5yxj8= + 1833-290519-3_149: &id1054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lPIIGWnGzj8= + 1833-290519-4_108: &id1107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0YetCwYKqz8= + 1833-120619-3_122: + 1833-050619-2_81: *id226 + 1833-050619-3_149: *id227 + 1833-050619-4_117: *id228 + 1833-060619-2_116: *id229 + 1833-120619-4_95: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oTp7adtywz8= + 1833-200619-2_321: &id411 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T9SaXitfwz8= + 1833-200619-4_121: &id529 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iaertlcqtz8= + 1833-260619-2_170: &id711 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C266E+x8wj8= + 1833-260619-4_200: &id809 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1LE8hGaKxT8= + 1833-290519-1_150: &id925 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pqXGMd0syT8= + 1833-290519-3_151: &id1066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4srIQL6B2T8= + 1833-120619-3_141: + 1833-010719-1_183: *id230 + 1833-020719-2_99: *id231 + 1833-020719-4_248: *id232 + 1833-050619-2_74: *id233 + 1833-060619-1_158: *id234 + 1833-120619-2_169: *id235 + 1833-120619-4_85: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nxTG2AV7vT8= + 1833-200619-1_206: &id350 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3KjcAxFSsD8= + 1833-200619-2_287: &id393 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MffwvSvvpz8= + 1833-200619-3_132: &id462 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fSnChppcoz8= + 1833-200619-4_89: &id557 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a5OW5bh5uj8= + 1833-260619-1_102: &id570 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7xpQQig2vz8= + 1833-260619-2_140: &id644 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QMDs9RtLwj8= + 1833-260619-3_142: &id728 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lAs0ND4YtD8= + 1833-260619-4_182: &id784 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CXLt4WQqvj8= + 1833-290519-1_166: &id954 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +j1nmHQGuD8= + 1833-290519-3_125: &id999 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 72Leetid0T8= + 1833-290519-4_79: &id1150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q+BAlEb6yj8= + 1833-120619-3_143: + 1833-010719-1_152: *id236 + 1833-020719-1_107: *id237 + 1833-020719-3_96: *id238 + 1833-020719-4_254: *id239 + 1833-050619-1_60: *id240 + 1833-050619-2_119: *id241 + 1833-050619-3_117: *id242 + 1833-050619-4_133: *id243 + 1833-060619-1_160: *id244 + 1833-060619-2_74: *id245 + 1833-120619-1_129: *id246 + 1833-120619-2_151: *id247 + 1833-120619-4_120: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2gs0dXWKpz8= + 1833-200619-1_171: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vXui4rhqsj8= + 1833-200619-2_327: &id424 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T0D4rWoExT8= + 1833-200619-3_126: &id449 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wRsLK3t1rT8= + 1833-200619-4_80: &id541 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IBVgxdm7wz8= + 1833-260619-1_106: &id588 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hBih9grcsD8= + 1833-260619-2_144: &id664 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6pycEWkKtT8= + 1833-260619-4_80: &id858 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PiQnijwqyD8= + 1833-290519-1_124: &id876 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jt2Icf4ytD8= + 1833-290519-3_155: &id1083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zZKaSb/zzj8= + 1833-290519-4_65: &id1129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + daiwBkOKxD8= + 1833-120619-3_145: + 1833-010719-1_227: *id248 + 1833-020719-3_63: *id249 + 1833-050619-1_111: *id250 + 1833-050619-2_152: *id251 + 1833-050619-3_109: *id252 + 1833-050619-4_157: *id253 + 1833-060619-1_176: *id254 + 1833-060619-2_112: *id255 + 1833-120619-4_124: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sZ2d/L6Qvz8= + 1833-200619-1_163: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gwe2f/GItz8= + 1833-200619-2_308: &id403 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u5GFqaS5tD8= + 1833-200619-3_120: &id437 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uLrQ6OONtj8= + 1833-200619-4_101: &id501 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0yUdaFnetT8= + 1833-260619-1_124: &id631 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rEH8EhTqsj8= + 1833-260619-2_156: &id681 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85094, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GyvRUjfsuT8= + 1833-260619-3_192: &id767 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FON0E/bCuD8= + 1833-260619-4_214: &id825 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8fvCnig8uj8= + 1833-290519-1_142: &id907 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hLkcQNlrtz8= + 1833-290519-3_147: &id1032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YPrFVxly0j8= + 1833-290519-4_90: &id1172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + stbtRGvExj8= + 1833-120619-3_94: + 1833-050619-1_91: *id256 + 1833-050619-2_146: *id257 + 1833-050619-3_143: *id258 + 1833-050619-4_135: *id259 + 1833-060619-1_170: *id260 + 1833-060619-2_105: *id261 + 1833-120619-4_127: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P/0XWdv+lz8= + 1833-200619-1_240: &id362 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Yf+yxNSTtz8= + 1833-200619-2_281: &id380 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ikRltqvtyD8= + 1833-200619-3_150: &id475 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pS74ZLertj8= + 1833-200619-4_109: &id514 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xMC5LxvUvz8= + 1833-260619-1_112: &id617 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MHTwdVEuwj8= + 1833-260619-4_218: &id840 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tz965uvjtD8= + 1833-290519-1_154: &id941 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RcbgOueOwj8= + 1833-290519-3_141: &id1017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZjXwXE7E0D8= + 1833-120619-4_120: + 1833-010719-1_152: *id262 + 1833-020719-3_96: *id263 + 1833-020719-4_254: *id264 + 1833-050619-1_60: *id265 + 1833-050619-2_119: *id266 + 1833-050619-3_117: *id267 + 1833-050619-4_133: *id268 + 1833-060619-1_160: *id269 + 1833-060619-2_105: *id270 + 1833-120619-1_129: *id271 + 1833-120619-2_151: *id272 + 1833-120619-3_143: *id273 + 1833-200619-1_171: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80751, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cbZbdCTvsz8= + 1833-200619-2_287: &id394 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7AKPKxuHwj8= + 1833-200619-3_126: &id450 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VtIDQ1qxpz8= + 1833-200619-4_89: &id558 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /emtC+5NxT8= + 1833-260619-1_106: &id589 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80454, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kai4KcBQtT8= + 1833-260619-2_144: &id665 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fCwC8Qkytz8= + 1833-260619-3_142: &id729 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t9A3GslfvD8= + 1833-260619-4_182: &id785 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C8Gg90uWxj8= + 1833-290519-1_124: &id877 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ew1gm7p+tj8= + 1833-290519-3_141: &id1018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AJSBnjrJ0T8= + 1833-290519-4_65: &id1130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bQcA60rtxj8= + 1833-120619-4_124: + 1833-010719-1_227: *id274 + 1833-050619-1_111: *id275 + 1833-050619-2_152: *id276 + 1833-050619-3_149: *id277 + 1833-050619-4_157: *id278 + 1833-060619-1_176: *id279 + 1833-060619-2_116: *id280 + 1833-120619-3_145: *id281 + 1833-200619-2_308: &id404 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aoM3BO7yvj8= + 1833-260619-2_156: &id682 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ch7dsjZrvz8= + 1833-260619-4_214: &id826 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cpV1bMxKvD8= + 1833-290519-1_142: &id908 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CuHngBp6wD8= + 1833-290519-3_147: &id1033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4OvdCnSe0j8= + 1833-290519-4_79: &id1151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AgH8vDDHyT8= + 1833-120619-4_127: + 1833-020719-4_248: *id282 + 1833-050619-1_91: *id283 + 1833-050619-2_146: *id284 + 1833-050619-3_143: *id285 + 1833-050619-4_135: *id286 + 1833-060619-1_170: *id287 + 1833-120619-3_94: *id288 + 1833-200619-1_240: &id363 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80751, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yYQsNmMWuT8= + 1833-200619-2_327: &id425 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KTvZ+SzqtT8= + 1833-200619-3_150: &id476 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CRGp3xMHtz8= + 1833-200619-4_109: &id515 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B4dhfK0evz8= + 1833-260619-1_112: &id618 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80454, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HFc0HLY7wj8= + 1833-260619-2_140: &id645 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MZIYm/aAxD8= + 1833-260619-4_218: &id841 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0Q7+P8ujtj8= + 1833-290519-1_154: &id942 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UWKMOQoIwz8= + 1833-290519-3_151: &id1067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A5eeRKKk1D8= + 1833-290519-4_90: &id1173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P83jgguEyD8= + 1833-120619-4_80: + 1833-010719-1_200: *id289 + 1833-010719-2_225: *id290 + 1833-020719-1_107: *id291 + 1833-020719-3_64: *id292 + 1833-020719-4_310: *id293 + 1833-050619-1_64: *id294 + 1833-050619-2_125: *id295 + 1833-050619-3_129: *id296 + 1833-050619-4_92: *id297 + 1833-060619-1_162: *id298 + 1833-060619-2_82: *id299 + 1833-120619-1_127: *id300 + 1833-120619-3_118: *id301 + 1833-200619-1_163: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80751, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mgfP/tkesj8= + 1833-200619-2_28: &id377 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /x82ANnktD8= + 1833-200619-3_75: &id490 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sb7i/veEwD8= + 1833-200619-4_121: &id530 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8c4OQwlGwz8= + 1833-260619-1_108: &id605 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80454, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xvkayhVItj8= + 1833-260619-2_160: &id700 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DyjjKun6uj8= + 1833-260619-3_168: &id749 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jzekgDdJtj8= + 1833-260619-4_184: &id804 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mNpHTZYnwD8= + 1833-290519-1_132: &id893 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GZnI17t4tT8= + 1833-290519-2_76: &id980 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4344, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6HhIlH5zyj8= + 1833-290519-3_155: &id1084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N8u2V/mM0D8= + 1833-290519-4_108: &id1108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bOWEFIhstz8= + 1833-120619-4_85: + 1833-010719-1_183: *id302 + 1833-020719-2_99: *id303 + 1833-050619-2_81: *id304 + 1833-060619-1_158: *id305 + 1833-060619-2_74: *id306 + 1833-120619-2_169: *id307 + 1833-120619-3_141: *id308 + 1833-200619-1_206: &id351 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80751, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hHyNvsftwD8= + 1833-200619-2_281: &id381 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KfPXZUurzT8= + 1833-200619-3_132: &id463 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p47Gay1rvT8= + 1833-200619-4_80: &id542 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6aZyhUgCtz8= + 1833-260619-1_102: &id571 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80454, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4N06XY1oyT8= + 1833-260619-4_200: &id810 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MfUZEUv5xD8= + 1833-290519-1_166: &id955 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + irGvDJkmwT8= + 1833-290519-3_149: &id1055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MdPDJ4n71D8= + 1833-120619-4_95: + 1833-020719-3_63: *id309 + 1833-050619-2_74: *id310 + 1833-050619-3_109: *id311 + 1833-050619-4_117: *id312 + 1833-060619-2_112: *id313 + 1833-120619-3_122: *id314 + 1833-200619-2_321: &id412 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KaZfEwr9xD8= + 1833-200619-3_120: &id438 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +anz62E5uz8= + 1833-200619-4_101: &id502 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dt4CB4V6rz8= + 1833-260619-1_124: &id632 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80454, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AOjI1Y6wuD8= + 1833-260619-2_170: &id712 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 064UT2TIxz8= + 1833-260619-3_192: &id768 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QRR9J2mZvT8= + 1833-260619-4_80: &id859 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zGyWqHbYsT8= + 1833-290519-1_150: &id926 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G4DrcYO0vj8= + 1833-290519-3_125: &id1000 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ARQp5tDx0j8= + 1833-200619-1_163: + 1833-010719-1_200: *id315 + 1833-020719-1_107: *id316 + 1833-020719-4_310: *id317 + 1833-050619-1_64: *id318 + 1833-050619-2_125: *id319 + 1833-050619-3_109: *id320 + 1833-050619-4_92: *id321 + 1833-060619-1_162: *id322 + 1833-060619-2_82: *id323 + 1833-120619-1_127: *id324 + 1833-120619-3_145: *id325 + 1833-120619-4_80: *id326 + 1833-200619-2_308: &id405 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GnHYKrqluz8= + 1833-200619-3_120: &id439 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4PiqQ75coT8= + 1833-200619-4_101: &id503 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tX1RKswGtD8= + 1833-260619-1_108: &id606 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JylPQZp9vj8= + 1833-260619-2_156: &id683 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zfokFOjIwD8= + 1833-260619-3_168: &id750 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t1Rm0RpprD8= + 1833-260619-4_80: &id860 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KY90dMjEtj8= + 1833-290519-1_150: &id927 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cTapgTeIuz8= + 1833-290519-3_149: &id1056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3nFipi2c0z8= + 1833-290519-4_108: &id1109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bsKoRaNvwj8= + 1833-200619-1_171: + 1833-010719-1_152: *id327 + 1833-020719-3_96: *id328 + 1833-020719-4_254: *id329 + 1833-050619-1_60: *id330 + 1833-050619-2_119: *id331 + 1833-050619-3_117: *id332 + 1833-050619-4_133: *id333 + 1833-060619-1_160: *id334 + 1833-060619-2_105: *id335 + 1833-120619-1_129: *id336 + 1833-120619-2_151: *id337 + 1833-120619-3_143: *id338 + 1833-120619-4_120: *id339 + 1833-200619-2_28: &id378 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j3lwDmaVyT8= + 1833-200619-3_126: &id451 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IBbJH91JtD8= + 1833-200619-4_80: &id543 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bt2CZZf+wT8= + 1833-260619-1_106: &id590 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dw/CHMQtuT8= + 1833-260619-2_144: &id666 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rtnHsntnsD8= + 1833-260619-3_142: &id730 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g11iyJz9tD8= + 1833-260619-4_200: &id811 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZWLU4LvTzD8= + 1833-290519-1_124: &id878 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qcGhTD1pqz8= + 1833-290519-3_155: &id1085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + po2oXtzF0j8= + 1833-290519-4_65: &id1131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AxxLUcT0yT8= + 1833-200619-1_206: + 1833-010719-1_183: *id340 + 1833-020719-2_99: *id341 + 1833-020719-3_64: *id342 + 1833-050619-1_91: *id343 + 1833-050619-2_152: *id344 + 1833-050619-3_149: *id345 + 1833-050619-4_135: *id346 + 1833-060619-1_158: *id347 + 1833-060619-2_74: *id348 + 1833-120619-2_169: *id349 + 1833-120619-3_141: *id350 + 1833-120619-4_85: *id351 + 1833-200619-2_287: &id395 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d6sXcnk3rz8= + 1833-200619-3_132: &id464 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P5xm9V3uqz8= + 1833-200619-4_89: &id559 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fyKRRooFtz8= + 1833-260619-1_102: &id572 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7d/DP/yQvz8= + 1833-260619-2_140: &id646 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0oE4CfJixT8= + 1833-260619-4_182: &id786 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZvxEEjh9vz8= + 1833-290519-1_166: &id956 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hfcO9M3pvD8= + 1833-290519-3_125: &id1001 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gbHnSdSc0j8= + 1833-290519-4_79: &id1152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ikerbwB0zD8= + 1833-200619-1_240: + 1833-010719-1_227: *id352 + 1833-010719-2_225: *id353 + 1833-020719-3_63: *id354 + 1833-020719-4_248: *id355 + 1833-050619-1_111: *id356 + 1833-050619-2_146: *id357 + 1833-050619-3_143: *id358 + 1833-050619-4_117: *id359 + 1833-060619-1_170: *id360 + 1833-060619-2_112: *id361 + 1833-120619-3_94: *id362 + 1833-120619-4_127: *id363 + 1833-200619-2_327: &id426 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TX7DXaFJoT8= + 1833-200619-3_150: &id477 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TqylgnbioT8= + 1833-200619-4_121: &id531 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YcmX1kI3oz8= + 1833-260619-1_124: &id633 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3syLaB37tD8= + 1833-260619-2_160: &id701 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 488CPkpMtz8= + 1833-260619-3_192: &id769 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + scgbKF/etT8= + 1833-260619-4_218: &id842 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dgDhMsSusj8= + 1833-290519-1_154: &id943 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9i6bG8uhuj8= + 1833-290519-2_76: &id981 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kXKnOMf+yT8= + 1833-290519-3_141: &id1019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EUmhXbQQzz8= + 1833-290519-4_90: &id1174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ICPN64ipxT8= + 1833-200619-2_28: + 1833-010719-1_200: *id364 + 1833-010719-2_225: *id365 + 1833-020719-1_107: *id366 + 1833-020719-3_64: *id367 + 1833-020719-4_248: *id368 + 1833-050619-1_64: *id369 + 1833-050619-2_125: *id370 + 1833-050619-3_129: *id371 + 1833-050619-4_92: *id372 + 1833-060619-1_162: *id373 + 1833-060619-2_82: *id374 + 1833-120619-1_127: *id375 + 1833-120619-3_118: *id376 + 1833-120619-4_80: *id377 + 1833-200619-1_171: *id378 + 1833-200619-3_75: &id491 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pgVAKNZqxT8= + 1833-260619-1_108: &id607 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SciwisGWrj8= + 1833-260619-2_140: &id647 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + whUpAIxbwz8= + 1833-260619-3_168: &id751 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ffhWrMXYrz8= + 1833-260619-4_184: &id805 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cVspU3w5tD8= + 1833-290519-1_132: &id894 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yd53CB16wD8= + 1833-290519-2_76: &id982 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J28LZSOYxj8= + 1833-290519-3_155: &id1086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v9E7doLO0D8= + 1833-290519-4_108: &id1110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VyoyNoxAtj8= + 1833-200619-2_281: + 1833-050619-2_81: *id379 + 1833-120619-3_94: *id380 + 1833-120619-4_85: *id381 + 1833-200619-3_126: &id452 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XWjsWcmU0D8= + 1833-200619-4_80: &id544 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x5fMDkNSxz8= + 1833-260619-4_200: &id812 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /qtBsTl8vT8= + 1833-290519-1_166: &id957 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t07btKlV0D8= + 1833-290519-3_141: &id1020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N//dr5jg3j8= + 1833-200619-2_287: + 1833-010719-1_183: *id382 + 1833-020719-3_96: *id383 + 1833-020719-4_254: *id384 + 1833-050619-1_60: *id385 + 1833-050619-2_119: *id386 + 1833-050619-3_117: *id387 + 1833-050619-4_133: *id388 + 1833-060619-1_158: *id389 + 1833-060619-2_105: *id390 + 1833-120619-1_129: *id391 + 1833-120619-2_169: *id392 + 1833-120619-3_141: *id393 + 1833-120619-4_120: *id394 + 1833-200619-1_206: *id395 + 1833-200619-3_132: &id465 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rpk/wtRqqT8= + 1833-200619-4_89: &id560 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GILOBxq7tz8= + 1833-260619-1_102: &id573 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WlT058jDuz8= + 1833-260619-2_144: &id667 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P+rfJEJAtj8= + 1833-260619-3_142: &id731 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IK9s2G18sj8= + 1833-260619-4_182: &id787 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EE97ssJZuj8= + 1833-290519-1_124: &id879 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k7Fa48X4uD8= + 1833-290519-3_125: &id1002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ofhq07uZ0j8= + 1833-290519-4_65: &id1132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xSyqouKbyT8= + 1833-200619-2_308: + 1833-010719-1_227: *id396 + 1833-050619-1_111: *id397 + 1833-050619-2_74: *id398 + 1833-050619-3_109: *id399 + 1833-050619-4_135: *id400 + 1833-060619-1_160: *id401 + 1833-060619-2_116: *id402 + 1833-120619-3_145: *id403 + 1833-120619-4_124: *id404 + 1833-200619-1_163: *id405 + 1833-200619-3_120: &id440 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gxhou8Oftj8= + 1833-200619-4_101: &id504 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wx9oztA5vz8= + 1833-260619-1_124: &id634 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9FOhlyHguT8= + 1833-260619-2_156: &id684 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v7tcgR8qrj8= + 1833-260619-4_214: &id827 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QsnND/Kxqj8= + 1833-290519-1_142: &id909 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9YKTzyRzqj8= + 1833-290519-3_149: &id1057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aQwoS0OS0j8= + 1833-290519-4_79: &id1153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3dcc4HceyD8= + 1833-200619-2_321: + 1833-050619-2_152: *id406 + 1833-050619-3_149: *id407 + 1833-050619-4_157: *id408 + 1833-060619-1_176: *id409 + 1833-060619-2_112: *id410 + 1833-120619-3_122: *id411 + 1833-120619-4_95: *id412 + 1833-200619-4_109: &id516 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DFMDNeAVyz8= + 1833-260619-1_112: &id619 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EHquXLhhyj8= + 1833-260619-2_170: &id713 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9lLICPvPrz8= + 1833-260619-4_80: &id861 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VHSdIqWzyT8= + 1833-290519-1_150: &id928 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Grpn9nFZzz8= + 1833-290519-3_151: &id1068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IBZal0Iv2z8= + 1833-200619-2_327: + 1833-010719-1_152: *id413 + 1833-020719-2_99: *id414 + 1833-020719-3_63: *id415 + 1833-020719-4_310: *id416 + 1833-050619-1_91: *id417 + 1833-050619-2_146: *id418 + 1833-050619-3_143: *id419 + 1833-050619-4_117: *id420 + 1833-060619-1_170: *id421 + 1833-060619-2_74: *id422 + 1833-120619-2_151: *id423 + 1833-120619-3_143: *id424 + 1833-120619-4_127: *id425 + 1833-200619-1_240: *id426 + 1833-200619-3_150: &id478 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + my0ac2FGnj8= + 1833-200619-4_121: &id532 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5gaenCDgjT8= + 1833-260619-1_106: &id591 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VEWpVyZDxj8= + 1833-260619-2_160: &id702 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85837, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + POf4FW9guz8= + 1833-260619-3_192: &id770 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oKlasmbruT8= + 1833-260619-4_218: &id843 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VH+hMeMltT8= + 1833-290519-1_154: &id944 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3lj2jtCvvj8= + 1833-290519-3_147: &id1034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jF4EO1+t0D8= + 1833-290519-4_90: &id1175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0WOGzwiJxz8= + 1833-200619-3_120: + 1833-010719-1_200: *id427 + 1833-010719-2_225: *id428 + 1833-020719-4_310: *id429 + 1833-050619-1_64: *id430 + 1833-050619-2_81: *id431 + 1833-050619-3_109: *id432 + 1833-050619-4_92: *id433 + 1833-060619-1_162: *id434 + 1833-060619-2_82: *id435 + 1833-120619-1_127: *id436 + 1833-120619-3_145: *id437 + 1833-120619-4_95: *id438 + 1833-200619-1_163: *id439 + 1833-200619-2_308: *id440 + 1833-200619-4_101: &id505 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mGkF5q44tj8= + 1833-260619-1_108: &id608 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IFmSsB7puz8= + 1833-260619-2_156: &id685 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4arIxmkCvT8= + 1833-260619-3_168: &id752 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RRM7FPgApj8= + 1833-260619-4_214: &id828 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Tk0ZhvSvT8= + 1833-290519-1_142: &id910 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ycPsdgpKtz8= + 1833-290519-3_149: &id1058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0Ls9qx9i0z8= + 1833-290519-4_108: &id1111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q3MLJ0WKwT8= + 1833-200619-3_126: + 1833-050619-1_91: *id441 + 1833-050619-2_119: *id442 + 1833-050619-3_117: *id443 + 1833-050619-4_135: *id444 + 1833-060619-1_170: *id445 + 1833-060619-2_105: *id446 + 1833-120619-1_129: *id447 + 1833-120619-2_151: *id448 + 1833-120619-3_143: *id449 + 1833-120619-4_120: *id450 + 1833-200619-1_171: *id451 + 1833-200619-2_281: *id452 + 1833-200619-4_109: &id517 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2grsPG32wT8= + 1833-260619-1_124: &id635 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gRvyXFtHwj8= + 1833-260619-2_144: &id668 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kI45G87cuT8= + 1833-260619-4_218: &id844 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GkS5O54bvj8= + 1833-290519-1_124: &id880 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JNYyYSEZuj8= + 1833-290519-3_141: &id1021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zWGG3ecq0j8= + 1833-290519-4_65: &id1133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4DXoUYqTxz8= + 1833-200619-3_132: + 1833-010719-1_183: *id453 + 1833-020719-2_99: *id454 + 1833-020719-3_64: *id455 + 1833-050619-2_152: *id456 + 1833-050619-3_149: *id457 + 1833-050619-4_157: *id458 + 1833-060619-1_158: *id459 + 1833-060619-2_116: *id460 + 1833-120619-2_169: *id461 + 1833-120619-3_141: *id462 + 1833-120619-4_85: *id463 + 1833-200619-1_206: *id464 + 1833-200619-2_287: *id465 + 1833-200619-4_89: &id561 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hOW7rCEGuj8= + 1833-260619-1_102: &id574 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UCUHqN2UwD8= + 1833-260619-2_140: &id648 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LTeSlQqtwD8= + 1833-260619-3_142: &id732 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DdgJjO6Htj8= + 1833-260619-4_182: &id788 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dhvVxdU4wD8= + 1833-290519-1_166: &id958 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f+fSljP1tz8= + 1833-290519-3_125: &id1003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + huLm0woV0j8= + 1833-290519-4_79: &id1154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CYkCbDKzyj8= + 1833-200619-3_150: + 1833-010719-1_227: *id466 + 1833-020719-3_63: *id467 + 1833-020719-4_248: *id468 + 1833-050619-1_111: *id469 + 1833-050619-2_146: *id470 + 1833-050619-3_143: *id471 + 1833-050619-4_117: *id472 + 1833-060619-1_176: *id473 + 1833-060619-2_112: *id474 + 1833-120619-3_94: *id475 + 1833-120619-4_127: *id476 + 1833-200619-1_240: *id477 + 1833-200619-2_327: *id478 + 1833-200619-4_121: &id533 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EZ6tHeXfmj8= + 1833-260619-1_112: &id620 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uazFvtfJwT8= + 1833-260619-2_170: &id714 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OKOcT+X0xj8= + 1833-260619-3_192: &id771 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D9qkMaCouj8= + 1833-260619-4_200: &id813 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wmnt7VZ5xD8= + 1833-290519-1_150: &id929 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7TnRQxCLvz8= + 1833-290519-2_76: &id983 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aA9b6P/lyj8= + 1833-290519-3_147: &id1035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sh0pNqS30D8= + 1833-200619-3_75: + 1833-010719-1_152: *id479 + 1833-020719-1_107: *id480 + 1833-020719-3_96: *id481 + 1833-020719-4_254: *id482 + 1833-050619-1_60: *id483 + 1833-050619-2_125: *id484 + 1833-050619-3_129: *id485 + 1833-050619-4_133: *id486 + 1833-060619-1_160: *id487 + 1833-060619-2_74: *id488 + 1833-120619-3_118: *id489 + 1833-120619-4_80: *id490 + 1833-200619-2_28: *id491 + 1833-200619-4_80: &id545 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ocRKpSjvxD8= + 1833-260619-1_106: &id592 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pjE4Z9UNsz8= + 1833-260619-2_160: &id703 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9xdkK7JFwj8= + 1833-260619-4_80: &id862 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PYpYNn9IxT8= + 1833-290519-1_132: &id895 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /XlAcc+KwT8= + 1833-290519-3_155: &id1087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jAoTk+IM0z8= + 1833-290519-4_90: &id1176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6Xd/ftLXxD8= + 1833-200619-4_101: + 1833-010719-1_227: *id492 + 1833-020719-3_63: *id493 + 1833-020719-4_310: *id494 + 1833-050619-1_111: *id495 + 1833-050619-2_152: *id496 + 1833-050619-3_109: *id497 + 1833-050619-4_92: *id498 + 1833-060619-1_176: *id499 + 1833-060619-2_112: *id500 + 1833-120619-3_145: *id501 + 1833-120619-4_95: *id502 + 1833-200619-1_163: *id503 + 1833-200619-2_308: *id504 + 1833-200619-3_120: *id505 + 1833-260619-1_108: &id609 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HA7CroxVxT8= + 1833-260619-2_156: &id686 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 57CGG60BxD8= + 1833-260619-3_168: &id753 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q7p2TLs1uj8= + 1833-260619-4_214: &id829 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7GQ+PR0bwz8= + 1833-290519-1_142: &id911 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oYsAdPaFwT8= + 1833-290519-3_155: &id1088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bkfGPN101T8= + 1833-290519-4_108: &id1112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RXphWnBhyT8= + 1833-200619-4_109: + 1833-050619-1_91: *id506 + 1833-050619-2_146: *id507 + 1833-050619-3_143: *id508 + 1833-050619-4_135: *id509 + 1833-060619-1_170: *id510 + 1833-060619-2_105: *id511 + 1833-120619-1_129: *id512 + 1833-120619-2_151: *id513 + 1833-120619-3_94: *id514 + 1833-120619-4_127: *id515 + 1833-200619-2_321: *id516 + 1833-200619-3_126: *id517 + 1833-260619-1_112: &id621 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j3AX8YhuxD8= + 1833-260619-2_170: &id715 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D06Hzq1iyz8= + 1833-260619-4_200: &id814 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 42RNHISXvj8= + 1833-290519-1_166: &id959 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rAfz6ZctxD8= + 1833-290519-3_141: &id1022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q+/SPX2J1z8= + 1833-290519-4_65: &id1134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LJEWwhfo0T8= + 1833-200619-4_121: + 1833-010719-1_200: *id518 + 1833-010719-2_225: *id519 + 1833-020719-3_64: *id520 + 1833-020719-4_248: *id521 + 1833-050619-1_64: *id522 + 1833-050619-2_125: *id523 + 1833-050619-3_129: *id524 + 1833-050619-4_117: *id525 + 1833-060619-1_162: *id526 + 1833-060619-2_82: *id527 + 1833-120619-1_127: *id528 + 1833-120619-3_122: *id529 + 1833-120619-4_80: *id530 + 1833-200619-1_240: *id531 + 1833-200619-2_327: *id532 + 1833-200619-3_150: *id533 + 1833-260619-1_124: &id636 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NGJCy2ubuT8= + 1833-260619-2_160: &id704 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aASjitXtuz8= + 1833-260619-3_192: &id772 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6XNDolJ+uj8= + 1833-260619-4_218: &id845 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + McHKFZyHtT8= + 1833-290519-1_154: &id945 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7CxwT2O8vz8= + 1833-290519-2_76: &id984 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IPyktBv1yz8= + 1833-290519-3_147: &id1036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qTAbuLdH0T8= + 1833-290519-4_90: &id1177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IrznpgxEyD8= + 1833-200619-4_80: + 1833-010719-1_152: *id534 + 1833-020719-2_99: *id535 + 1833-050619-2_81: *id536 + 1833-050619-3_149: *id537 + 1833-050619-4_157: *id538 + 1833-060619-1_160: *id539 + 1833-060619-2_74: *id540 + 1833-120619-3_143: *id541 + 1833-120619-4_85: *id542 + 1833-200619-1_171: *id543 + 1833-200619-2_281: *id544 + 1833-200619-3_75: *id545 + 1833-260619-1_106: &id593 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zU8tMz5Fxz8= + 1833-260619-2_140: &id649 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w/2B7eFsyj8= + 1833-260619-4_80: &id863 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KXQ26Q30xT8= + 1833-290519-1_150: &id930 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 65wAzj78yD8= + 1833-290519-3_149: &id1059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VIesbjOK2D8= + 1833-200619-4_89: + 1833-010719-1_183: *id546 + 1833-020719-1_107: *id547 + 1833-020719-3_96: *id548 + 1833-020719-4_254: *id549 + 1833-050619-1_60: *id550 + 1833-050619-2_119: *id551 + 1833-050619-3_117: *id552 + 1833-050619-4_133: *id553 + 1833-060619-1_158: *id554 + 1833-060619-2_116: *id555 + 1833-120619-2_169: *id556 + 1833-120619-3_141: *id557 + 1833-120619-4_120: *id558 + 1833-200619-1_206: *id559 + 1833-200619-2_287: *id560 + 1833-200619-3_132: *id561 + 1833-260619-1_102: &id575 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0qjFTSO6tz8= + 1833-260619-2_144: &id669 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82541, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8tobqYbCvz8= + 1833-260619-3_142: &id733 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NbTZyXFhvD8= + 1833-260619-4_182: &id789 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /pGqlm5gtz8= + 1833-290519-1_124: &id881 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QRgI3XWSwD8= + 1833-290519-3_125: &id1004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 43CwC7P10D8= + 1833-290519-4_79: &id1155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W+21wm5/yD8= + 1833-260619-1_102: + 1833-010719-1_183: *id562 + 1833-020719-4_248: *id563 + 1833-050619-2_146: *id564 + 1833-050619-3_143: *id565 + 1833-050619-4_133: *id566 + 1833-060619-1_158: *id567 + 1833-060619-2_116: *id568 + 1833-120619-2_169: *id569 + 1833-120619-3_141: *id570 + 1833-120619-4_85: *id571 + 1833-200619-1_206: *id572 + 1833-200619-2_287: *id573 + 1833-200619-3_132: *id574 + 1833-200619-4_89: *id575 + 1833-260619-2_140: &id650 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vB8Od4tcyz8= + 1833-260619-4_182: &id790 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7FnsfNw7oD8= + 1833-290519-1_166: &id960 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mZQ4WEOjxj8= + 1833-290519-3_125: &id1005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 69jD4bI50T8= + 1833-290519-4_79: &id1156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8W176thHyz8= + 1833-260619-1_106: + 1833-010719-1_152: *id576 + 1833-020719-1_107: *id577 + 1833-020719-3_96: *id578 + 1833-020719-4_254: *id579 + 1833-050619-1_60: *id580 + 1833-050619-2_119: *id581 + 1833-050619-3_117: *id582 + 1833-050619-4_135: *id583 + 1833-060619-1_160: *id584 + 1833-060619-2_105: *id585 + 1833-120619-1_129: *id586 + 1833-120619-2_151: *id587 + 1833-120619-3_143: *id588 + 1833-120619-4_120: *id589 + 1833-200619-1_171: *id590 + 1833-200619-2_327: *id591 + 1833-200619-3_75: *id592 + 1833-200619-4_80: *id593 + 1833-260619-2_144: &id670 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + emltXSsotj8= + 1833-260619-3_142: &id734 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Two/QhVEtD8= + 1833-260619-4_218: &id846 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PitG59V0wz8= + 1833-290519-1_124: &id882 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OaCafP98uD8= + 1833-290519-3_141: &id1023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U6rrp0qx0j8= + 1833-290519-4_65: &id1135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + id+QTwLFwz8= + 1833-260619-1_108: + 1833-010719-1_200: *id594 + 1833-010719-2_225: *id595 + 1833-020719-3_64: *id596 + 1833-020719-4_310: *id597 + 1833-050619-1_64: *id598 + 1833-050619-2_74: *id599 + 1833-050619-3_129: *id600 + 1833-050619-4_92: *id601 + 1833-060619-1_162: *id602 + 1833-060619-2_82: *id603 + 1833-120619-3_118: *id604 + 1833-120619-4_80: *id605 + 1833-200619-1_163: *id606 + 1833-200619-2_28: *id607 + 1833-200619-3_120: *id608 + 1833-200619-4_101: *id609 + 1833-260619-2_156: &id687 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1ZINPAwivT8= + 1833-260619-3_168: &id754 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SmBtP7VEtT8= + 1833-260619-4_184: &id806 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y7GBStlErT8= + 1833-290519-1_142: &id912 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XiSizQXFtz8= + 1833-290519-2_76: &id985 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1G+iecVDxj8= + 1833-290519-3_155: &id1089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U0dYIsYp0D8= + 1833-290519-4_108: &id1113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vqwm6F04tT8= + 1833-260619-1_112: + 1833-010719-1_227: *id610 + 1833-050619-1_111: *id611 + 1833-050619-2_152: *id612 + 1833-050619-3_149: *id613 + 1833-050619-4_157: *id614 + 1833-060619-1_176: *id615 + 1833-060619-2_112: *id616 + 1833-120619-3_94: *id617 + 1833-120619-4_127: *id618 + 1833-200619-2_321: *id619 + 1833-200619-3_150: *id620 + 1833-200619-4_109: *id621 + 1833-260619-2_170: &id716 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HUhp/zQ2zD8= + 1833-260619-4_200: &id815 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AypTX+LevT8= + 1833-290519-1_154: &id946 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eCh1m9Cixj8= + 1833-290519-3_149: &id1060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G/R+CuPo1z8= + 1833-260619-1_124: + 1833-020719-2_99: *id622 + 1833-020719-3_63: *id623 + 1833-050619-1_91: *id624 + 1833-050619-2_125: *id625 + 1833-050619-3_109: *id626 + 1833-050619-4_117: *id627 + 1833-060619-1_170: *id628 + 1833-060619-2_74: *id629 + 1833-120619-1_127: *id630 + 1833-120619-3_145: *id631 + 1833-120619-4_95: *id632 + 1833-200619-1_240: *id633 + 1833-200619-2_308: *id634 + 1833-200619-3_126: *id635 + 1833-200619-4_121: *id636 + 1833-260619-2_160: &id705 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rKpKIb1qpT8= + 1833-260619-3_192: &id773 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VlN7u5sboT8= + 1833-260619-4_80: &id864 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1FQOjvhRrz8= + 1833-290519-1_150: &id931 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZiSarW9qqj8= + 1833-290519-3_147: &id1037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rAb5oETJ0T8= + 1833-290519-4_90: &id1178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CjmTuiGVwz8= + 1833-260619-2_140: + 1833-010719-1_227: *id637 + 1833-050619-1_91: *id638 + 1833-050619-2_146: *id639 + 1833-050619-3_143: *id640 + 1833-050619-4_135: *id641 + 1833-060619-1_170: *id642 + 1833-060619-2_74: *id643 + 1833-120619-3_141: *id644 + 1833-120619-4_127: *id645 + 1833-200619-1_206: *id646 + 1833-200619-2_28: *id647 + 1833-200619-3_132: *id648 + 1833-200619-4_80: *id649 + 1833-260619-1_102: *id650 + 1833-260619-4_80: &id865 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vR4S+/ajwT8= + 1833-290519-1_166: &id961 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yVv5nSGAwz8= + 1833-290519-3_155: &id1090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kKi8E+j/1D8= + 1833-290519-4_79: &id1157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vDxifF2hyj8= + 1833-260619-2_144: + 1833-010719-1_183: *id651 + 1833-020719-1_107: *id652 + 1833-020719-2_99: *id653 + 1833-020719-3_96: *id654 + 1833-020719-4_254: *id655 + 1833-050619-1_60: *id656 + 1833-050619-2_119: *id657 + 1833-050619-3_117: *id658 + 1833-050619-4_133: *id659 + 1833-060619-1_158: *id660 + 1833-060619-2_105: *id661 + 1833-120619-1_129: *id662 + 1833-120619-2_169: *id663 + 1833-120619-3_143: *id664 + 1833-120619-4_120: *id665 + 1833-200619-1_171: *id666 + 1833-200619-2_287: *id667 + 1833-200619-3_126: *id668 + 1833-200619-4_89: *id669 + 1833-260619-1_106: *id670 + 1833-260619-3_142: &id735 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + li7bP7vzqz8= + 1833-260619-4_182: &id791 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6MsZ1yfPwD8= + 1833-290519-1_124: &id883 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D7xkuBANrj8= + 1833-290519-3_125: &id1006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + moIP9Zew0j8= + 1833-290519-4_65: &id1136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R3FTkYOBxz8= + 1833-260619-2_156: + 1833-010719-1_200: *id671 + 1833-010719-2_225: *id672 + 1833-020719-3_64: *id673 + 1833-020719-4_310: *id674 + 1833-050619-1_111: *id675 + 1833-050619-2_74: *id676 + 1833-050619-3_109: *id677 + 1833-050619-4_92: *id678 + 1833-060619-1_162: *id679 + 1833-060619-2_116: *id680 + 1833-120619-3_145: *id681 + 1833-120619-4_124: *id682 + 1833-200619-1_163: *id683 + 1833-200619-2_308: *id684 + 1833-200619-3_120: *id685 + 1833-200619-4_101: *id686 + 1833-260619-1_108: *id687 + 1833-260619-3_168: &id755 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YI1/Peyttj8= + 1833-260619-4_214: &id830 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3FqlGSq6qT8= + 1833-290519-1_142: &id913 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jCkT7VxSqz8= + 1833-290519-2_76: &id986 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 691, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ezIpVrGXxz8= + 1833-290519-3_149: &id1061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aV2dTtH90T8= + 1833-290519-4_108: &id1114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z3Mjf9jswT8= + 1833-260619-2_160: + 1833-010719-1_152: *id688 + 1833-020719-3_63: *id689 + 1833-020719-4_248: *id690 + 1833-050619-1_64: *id691 + 1833-050619-2_125: *id692 + 1833-050619-3_129: *id693 + 1833-050619-4_117: *id694 + 1833-060619-1_160: *id695 + 1833-060619-2_82: *id696 + 1833-120619-1_127: *id697 + 1833-120619-2_151: *id698 + 1833-120619-3_118: *id699 + 1833-120619-4_80: *id700 + 1833-200619-1_240: *id701 + 1833-200619-2_327: *id702 + 1833-200619-3_75: *id703 + 1833-200619-4_121: *id704 + 1833-260619-1_124: *id705 + 1833-260619-3_192: &id774 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4y0D+iVooD8= + 1833-260619-4_218: &id847 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uWqTG2NIsj8= + 1833-290519-1_150: &id932 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xjcCMpzwrj8= + 1833-290519-3_141: &id1024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N+7pVVlA0D8= + 1833-290519-4_90: &id1179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82217, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AileZKBSwj8= + 1833-260619-2_170: + 1833-050619-2_152: *id706 + 1833-050619-3_149: *id707 + 1833-050619-4_157: *id708 + 1833-060619-1_176: *id709 + 1833-060619-2_112: *id710 + 1833-120619-3_122: *id711 + 1833-120619-4_95: *id712 + 1833-200619-2_321: *id713 + 1833-200619-3_150: *id714 + 1833-200619-4_109: *id715 + 1833-260619-1_112: *id716 + 1833-260619-4_200: &id816 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4537, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VifMBVGryT8= + 1833-290519-1_154: &id947 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0pfUDNhZ0D8= + 1833-290519-3_147: &id1038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9hn2Ewg22T8= + 1833-260619-3_142: + 1833-010719-1_183: *id717 + 1833-020719-3_96: *id718 + 1833-020719-4_254: *id719 + 1833-050619-1_60: *id720 + 1833-050619-2_119: *id721 + 1833-050619-3_117: *id722 + 1833-050619-4_133: *id723 + 1833-060619-1_160: *id724 + 1833-060619-2_105: *id725 + 1833-120619-1_129: *id726 + 1833-120619-2_169: *id727 + 1833-120619-3_141: *id728 + 1833-120619-4_120: *id729 + 1833-200619-1_171: *id730 + 1833-200619-2_287: *id731 + 1833-200619-3_132: *id732 + 1833-200619-4_89: *id733 + 1833-260619-1_106: *id734 + 1833-260619-2_144: *id735 + 1833-260619-4_182: &id792 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rDw6fyjzuz8= + 1833-290519-1_124: &id884 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dzly6jBvsT8= + 1833-290519-3_125: &id1007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q0ITgSNn0z8= + 1833-290519-4_65: &id1137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3Db8G3N8xz8= + 1833-260619-3_168: + 1833-010719-1_200: *id736 + 1833-010719-2_225: *id737 + 1833-020719-1_107: *id738 + 1833-020719-2_99: *id739 + 1833-020719-3_64: *id740 + 1833-020719-4_310: *id741 + 1833-050619-1_64: *id742 + 1833-050619-2_125: *id743 + 1833-050619-3_109: *id744 + 1833-050619-4_92: *id745 + 1833-060619-1_162: *id746 + 1833-060619-2_82: *id747 + 1833-120619-3_118: *id748 + 1833-120619-4_80: *id749 + 1833-200619-1_163: *id750 + 1833-200619-2_28: *id751 + 1833-200619-3_120: *id752 + 1833-200619-4_101: *id753 + 1833-260619-1_108: *id754 + 1833-260619-2_156: *id755 + 1833-260619-4_80: &id866 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LFNGfLTTtz8= + 1833-290519-1_142: &id914 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7IsvZdkdsT8= + 1833-290519-2_76: &id987 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wXJvq9JlyD8= + 1833-290519-3_149: &id1062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /R0mq7f40T8= + 1833-290519-4_108: &id1115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pJwPal/wvz8= + 1833-260619-3_192: + 1833-010719-1_152: *id756 + 1833-020719-3_63: *id757 + 1833-020719-4_248: *id758 + 1833-050619-1_91: *id759 + 1833-050619-2_146: *id760 + 1833-050619-3_143: *id761 + 1833-050619-4_117: *id762 + 1833-060619-1_170: *id763 + 1833-060619-2_74: *id764 + 1833-120619-1_127: *id765 + 1833-120619-2_151: *id766 + 1833-120619-3_145: *id767 + 1833-120619-4_95: *id768 + 1833-200619-1_240: *id769 + 1833-200619-2_327: *id770 + 1833-200619-3_150: *id771 + 1833-200619-4_121: *id772 + 1833-260619-1_124: *id773 + 1833-260619-2_160: *id774 + 1833-260619-4_218: &id848 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sKSKs14wrD8= + 1833-290519-1_150: &id933 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + orktaT7rrj8= + 1833-290519-3_155: &id1091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7LLkEl1y0D8= + 1833-290519-4_90: &id1180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VcW9/MdKwz8= + 1833-260619-4_182: + 1833-010719-1_183: *id775 + 1833-020719-3_96: *id776 + 1833-020719-4_254: *id777 + 1833-050619-1_60: *id778 + 1833-050619-2_119: *id779 + 1833-050619-3_117: *id780 + 1833-050619-4_133: *id781 + 1833-060619-1_158: *id782 + 1833-120619-2_169: *id783 + 1833-120619-3_141: *id784 + 1833-120619-4_120: *id785 + 1833-200619-1_206: *id786 + 1833-200619-2_287: *id787 + 1833-200619-3_132: *id788 + 1833-200619-4_89: *id789 + 1833-260619-1_102: *id790 + 1833-260619-2_144: *id791 + 1833-260619-3_142: *id792 + 1833-290519-1_124: &id885 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NDyxrFohwj8= + 1833-290519-3_125: &id1008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LNv5mZ3p0D8= + 1833-290519-4_65: &id1138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6ZvHulu5xz8= + 1833-260619-4_184: + 1833-010719-1_200: *id793 + 1833-010719-2_225: *id794 + 1833-020719-3_64: *id795 + 1833-020719-4_310: *id796 + 1833-050619-1_64: *id797 + 1833-050619-2_74: *id798 + 1833-050619-3_129: *id799 + 1833-050619-4_92: *id800 + 1833-060619-1_162: *id801 + 1833-060619-2_82: *id802 + 1833-120619-3_118: *id803 + 1833-120619-4_80: *id804 + 1833-200619-2_28: *id805 + 1833-260619-1_108: *id806 + 1833-290519-1_132: &id896 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W/3ZFpacwj8= + 1833-290519-2_76: &id988 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dx01FQS4wz8= + 1833-290519-3_155: &id1092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1HB8tslX0D8= + 1833-290519-4_108: &id1116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u8/kISYRtz8= + 1833-260619-4_200: + 1833-050619-2_81: *id807 + 1833-060619-2_74: *id808 + 1833-120619-3_122: *id809 + 1833-120619-4_85: *id810 + 1833-200619-1_171: *id811 + 1833-200619-2_281: *id812 + 1833-200619-3_150: *id813 + 1833-200619-4_109: *id814 + 1833-260619-1_112: *id815 + 1833-260619-2_170: *id816 + 1833-290519-1_166: &id962 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e8NTE/2syj8= + 1833-290519-3_149: &id1063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sxga14kG2j8= + 1833-260619-4_214: + 1833-010719-1_227: *id817 + 1833-020719-4_248: *id818 + 1833-050619-1_111: *id819 + 1833-050619-2_152: *id820 + 1833-050619-3_149: *id821 + 1833-050619-4_157: *id822 + 1833-060619-1_176: *id823 + 1833-060619-2_112: *id824 + 1833-120619-3_145: *id825 + 1833-120619-4_124: *id826 + 1833-200619-2_308: *id827 + 1833-200619-3_120: *id828 + 1833-200619-4_101: *id829 + 1833-260619-2_156: *id830 + 1833-290519-1_142: &id915 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BJmi5rSgsT8= + 1833-290519-3_147: &id1039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E1elfHm60z8= + 1833-290519-4_79: &id1158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6k/Hf+C3xj8= + 1833-260619-4_218: + 1833-010719-1_152: *id831 + 1833-050619-1_91: *id832 + 1833-050619-2_146: *id833 + 1833-050619-3_143: *id834 + 1833-050619-4_135: *id835 + 1833-060619-1_170: *id836 + 1833-060619-2_105: *id837 + 1833-120619-1_129: *id838 + 1833-120619-2_151: *id839 + 1833-120619-3_94: *id840 + 1833-120619-4_127: *id841 + 1833-200619-1_240: *id842 + 1833-200619-2_327: *id843 + 1833-200619-3_126: *id844 + 1833-200619-4_121: *id845 + 1833-260619-1_106: *id846 + 1833-260619-2_160: *id847 + 1833-260619-3_192: *id848 + 1833-290519-1_154: &id948 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CTGcjUG3uT8= + 1833-290519-3_141: &id1025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d2UOR2Y90j8= + 1833-290519-4_90: &id1181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S+UXaAqHxj8= + 1833-260619-4_80: + 1833-020719-1_107: *id849 + 1833-020719-2_99: *id850 + 1833-020719-3_63: *id851 + 1833-050619-2_125: *id852 + 1833-050619-3_109: *id853 + 1833-050619-4_117: *id854 + 1833-060619-1_160: *id855 + 1833-060619-2_116: *id856 + 1833-120619-1_127: *id857 + 1833-120619-3_143: *id858 + 1833-120619-4_95: *id859 + 1833-200619-1_163: *id860 + 1833-200619-2_321: *id861 + 1833-200619-3_75: *id862 + 1833-200619-4_80: *id863 + 1833-260619-1_124: *id864 + 1833-260619-2_140: *id865 + 1833-260619-3_168: *id866 + 1833-290519-1_150: &id934 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + urOed3iktj8= + 1833-290519-3_151: &id1069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Do5WHPlT2j8= + 1833-290519-1_124: + 1833-010719-1_183: *id867 + 1833-020719-2_99: *id868 + 1833-050619-1_60: *id869 + 1833-050619-2_119: *id870 + 1833-050619-3_117: *id871 + 1833-060619-1_160: *id872 + 1833-060619-2_105: *id873 + 1833-120619-1_129: *id874 + 1833-120619-2_151: *id875 + 1833-120619-3_143: *id876 + 1833-120619-4_120: *id877 + 1833-200619-1_171: *id878 + 1833-200619-2_287: *id879 + 1833-200619-3_126: *id880 + 1833-200619-4_89: *id881 + 1833-260619-1_106: *id882 + 1833-260619-2_144: *id883 + 1833-260619-3_142: *id884 + 1833-260619-4_182: *id885 + 1833-290519-1_132: + 1833-020719-1_107: *id886 + 1833-020719-3_96: *id887 + 1833-020719-4_254: *id888 + 1833-050619-2_81: *id889 + 1833-050619-3_109: *id890 + 1833-060619-2_74: *id891 + 1833-120619-3_118: *id892 + 1833-120619-4_80: *id893 + 1833-200619-2_28: *id894 + 1833-200619-3_75: *id895 + 1833-260619-4_184: *id896 + 1833-290519-3_149: &id1064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gDPMzGeJyz8= + 1833-290519-4_90: &id1182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5rlwP7hPrT8= + 1833-290519-1_142: + 1833-010719-1_200: *id897 + 1833-010719-2_225: *id898 + 1833-020719-3_64: *id899 + 1833-020719-4_248: *id900 + 1833-050619-1_111: *id901 + 1833-050619-2_74: *id902 + 1833-050619-3_149: *id903 + 1833-050619-4_157: *id904 + 1833-060619-1_176: *id905 + 1833-060619-2_112: *id906 + 1833-120619-3_145: *id907 + 1833-120619-4_124: *id908 + 1833-200619-2_308: *id909 + 1833-200619-3_120: *id910 + 1833-200619-4_101: *id911 + 1833-260619-1_108: *id912 + 1833-260619-2_156: *id913 + 1833-260619-3_168: *id914 + 1833-260619-4_214: *id915 + 1833-290519-2_76: &id989 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n/cDDTMIxj8= + 1833-290519-3_155: &id1093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JWxZbRpp0D8= + 1833-290519-4_79: &id1159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7whBS0vgxT8= + 1833-290519-1_150: + 1833-010719-1_152: *id916 + 1833-020719-4_310: *id917 + 1833-050619-1_64: *id918 + 1833-050619-2_125: *id919 + 1833-050619-3_129: *id920 + 1833-050619-4_92: *id921 + 1833-060619-1_162: *id922 + 1833-060619-2_82: *id923 + 1833-120619-1_127: *id924 + 1833-120619-3_122: *id925 + 1833-120619-4_95: *id926 + 1833-200619-1_163: *id927 + 1833-200619-2_321: *id928 + 1833-200619-3_150: *id929 + 1833-200619-4_80: *id930 + 1833-260619-1_124: *id931 + 1833-260619-2_160: *id932 + 1833-260619-3_192: *id933 + 1833-260619-4_80: *id934 + 1833-290519-3_147: &id1040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jo/FhUSt0T8= + 1833-290519-4_108: &id1117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uPKftPwZuz8= + 1833-290519-1_154: + 1833-010719-1_227: *id935 + 1833-020719-3_63: *id936 + 1833-050619-2_152: *id937 + 1833-050619-3_143: *id938 + 1833-050619-4_117: *id939 + 1833-060619-2_116: *id940 + 1833-120619-3_94: *id941 + 1833-120619-4_127: *id942 + 1833-200619-1_240: *id943 + 1833-200619-2_327: *id944 + 1833-200619-4_121: *id945 + 1833-260619-1_112: *id946 + 1833-260619-2_170: *id947 + 1833-260619-4_218: *id948 + 1833-290519-3_141: &id1026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tVVfL+W+0D8= + 1833-290519-1_166: + 1833-050619-1_91: *id949 + 1833-050619-2_146: *id950 + 1833-050619-4_135: *id951 + 1833-060619-1_170: *id952 + 1833-120619-2_169: *id953 + 1833-120619-3_141: *id954 + 1833-120619-4_85: *id955 + 1833-200619-1_206: *id956 + 1833-200619-2_281: *id957 + 1833-200619-3_132: *id958 + 1833-200619-4_109: *id959 + 1833-260619-1_102: *id960 + 1833-260619-2_140: *id961 + 1833-260619-4_200: *id962 + 1833-290519-3_151: &id1070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PSoxCFdq2j8= + 1833-290519-1_89: + 1833-050619-4_133: *id963 + 1833-060619-1_158: *id964 + 1833-290519-3_125: &id1009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ji8M+8ZSzz8= + 1833-290519-4_65: &id1139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nWdpxETqwz8= + 1833-290519-2_76: + 1833-010719-1_200: *id965 + 1833-010719-2_225: *id966 + 1833-020719-1_107: *id967 + 1833-020719-2_99: *id968 + 1833-020719-3_64: *id969 + 1833-020719-4_248: *id970 + 1833-050619-1_64: *id971 + 1833-050619-2_74: *id972 + 1833-050619-3_129: *id973 + 1833-050619-4_92: *id974 + 1833-060619-1_162: *id975 + 1833-060619-2_82: *id976 + 1833-120619-1_127: *id977 + 1833-120619-2_151: *id978 + 1833-120619-3_118: *id979 + 1833-120619-4_80: *id980 + 1833-200619-1_240: *id981 + 1833-200619-2_28: *id982 + 1833-200619-3_150: *id983 + 1833-200619-4_121: *id984 + 1833-260619-1_108: *id985 + 1833-260619-2_156: *id986 + 1833-260619-3_168: *id987 + 1833-260619-4_184: *id988 + 1833-290519-1_142: *id989 + 1833-290519-3_155: &id1094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rJURQ6pzzD8= + 1833-290519-4_108: &id1118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GVrZp8Iywz8= + 1833-290519-3_125: + 1833-010719-1_183: *id990 + 1833-020719-3_63: *id991 + 1833-020719-4_310: *id992 + 1833-050619-1_111: *id993 + 1833-050619-2_74: *id994 + 1833-050619-3_117: *id995 + 1833-050619-4_135: *id996 + 1833-060619-1_160: *id997 + 1833-060619-2_116: *id998 + 1833-120619-3_141: *id999 + 1833-120619-4_95: *id1000 + 1833-200619-1_206: *id1001 + 1833-200619-2_287: *id1002 + 1833-200619-3_132: *id1003 + 1833-200619-4_89: *id1004 + 1833-260619-1_102: *id1005 + 1833-260619-2_144: *id1006 + 1833-260619-3_142: *id1007 + 1833-260619-4_182: *id1008 + 1833-290519-1_89: *id1009 + 1833-290519-4_79: &id1160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z2LAd6fU0T8= + 1833-290519-3_141: + 1833-010719-1_227: *id1010 + 1833-050619-1_91: *id1011 + 1833-050619-2_119: *id1012 + 1833-050619-3_143: *id1013 + 1833-050619-4_117: *id1014 + 1833-060619-1_170: *id1015 + 1833-060619-2_105: *id1016 + 1833-120619-3_94: *id1017 + 1833-120619-4_120: *id1018 + 1833-200619-1_240: *id1019 + 1833-200619-2_281: *id1020 + 1833-200619-3_126: *id1021 + 1833-200619-4_109: *id1022 + 1833-260619-1_106: *id1023 + 1833-260619-2_160: *id1024 + 1833-260619-4_218: *id1025 + 1833-290519-1_154: *id1026 + 1833-290519-4_90: &id1183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J7pHyGxLzj8= + 1833-290519-3_147: + 1833-050619-2_146: *id1027 + 1833-050619-3_149: *id1028 + 1833-050619-4_157: *id1029 + 1833-060619-1_176: *id1030 + 1833-060619-2_112: *id1031 + 1833-120619-3_145: *id1032 + 1833-120619-4_124: *id1033 + 1833-200619-2_327: *id1034 + 1833-200619-3_150: *id1035 + 1833-200619-4_121: *id1036 + 1833-260619-1_124: *id1037 + 1833-260619-2_170: *id1038 + 1833-260619-4_214: *id1039 + 1833-290519-1_150: *id1040 + 1833-290519-3_149: + 1833-010719-1_152: *id1041 + 1833-020719-1_107: *id1042 + 1833-020719-2_99: *id1043 + 1833-020719-3_96: *id1044 + 1833-020719-4_254: *id1045 + 1833-050619-1_60: *id1046 + 1833-050619-2_81: *id1047 + 1833-050619-3_109: *id1048 + 1833-050619-4_133: *id1049 + 1833-060619-1_162: *id1050 + 1833-060619-2_74: *id1051 + 1833-120619-1_127: *id1052 + 1833-120619-2_169: *id1053 + 1833-120619-3_118: *id1054 + 1833-120619-4_85: *id1055 + 1833-200619-1_163: *id1056 + 1833-200619-2_308: *id1057 + 1833-200619-3_120: *id1058 + 1833-200619-4_80: *id1059 + 1833-260619-1_112: *id1060 + 1833-260619-2_156: *id1061 + 1833-260619-3_168: *id1062 + 1833-260619-4_200: *id1063 + 1833-290519-1_132: *id1064 + 1833-290519-4_65: &id1140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IQ+8qmIk0T8= + 1833-290519-3_151: + 1833-050619-2_152: *id1065 + 1833-120619-3_122: *id1066 + 1833-120619-4_127: *id1067 + 1833-200619-2_321: *id1068 + 1833-260619-4_80: *id1069 + 1833-290519-1_166: *id1070 + 1833-290519-3_155: + 1833-010719-1_200: *id1071 + 1833-010719-2_225: *id1072 + 1833-020719-3_64: *id1073 + 1833-020719-4_248: *id1074 + 1833-050619-1_64: *id1075 + 1833-050619-2_125: *id1076 + 1833-050619-3_129: *id1077 + 1833-050619-4_92: *id1078 + 1833-060619-1_158: *id1079 + 1833-060619-2_82: *id1080 + 1833-120619-1_129: *id1081 + 1833-120619-2_151: *id1082 + 1833-120619-3_143: *id1083 + 1833-120619-4_80: *id1084 + 1833-200619-1_171: *id1085 + 1833-200619-2_28: *id1086 + 1833-200619-3_75: *id1087 + 1833-200619-4_101: *id1088 + 1833-260619-1_108: *id1089 + 1833-260619-2_140: *id1090 + 1833-260619-3_192: *id1091 + 1833-260619-4_184: *id1092 + 1833-290519-1_142: *id1093 + 1833-290519-2_76: *id1094 + 1833-290519-4_108: &id1119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EomqvkatyT8= + 1833-290519-4_108: + 1833-010719-1_200: *id1095 + 1833-010719-2_225: *id1096 + 1833-020719-2_99: *id1097 + 1833-020719-3_63: *id1098 + 1833-020719-4_310: *id1099 + 1833-050619-1_64: *id1100 + 1833-050619-2_125: *id1101 + 1833-050619-3_129: *id1102 + 1833-050619-4_92: *id1103 + 1833-060619-1_162: *id1104 + 1833-060619-2_82: *id1105 + 1833-120619-1_127: *id1106 + 1833-120619-3_118: *id1107 + 1833-120619-4_80: *id1108 + 1833-200619-1_163: *id1109 + 1833-200619-2_28: *id1110 + 1833-200619-3_120: *id1111 + 1833-200619-4_101: *id1112 + 1833-260619-1_108: *id1113 + 1833-260619-2_156: *id1114 + 1833-260619-3_168: *id1115 + 1833-260619-4_184: *id1116 + 1833-290519-1_150: *id1117 + 1833-290519-2_76: *id1118 + 1833-290519-3_155: *id1119 + 1833-290519-4_65: + 1833-010719-1_183: *id1120 + 1833-050619-1_60: *id1121 + 1833-050619-2_119: *id1122 + 1833-050619-3_117: *id1123 + 1833-050619-4_133: *id1124 + 1833-060619-1_160: *id1125 + 1833-060619-2_105: *id1126 + 1833-120619-1_129: *id1127 + 1833-120619-2_169: *id1128 + 1833-120619-3_143: *id1129 + 1833-120619-4_120: *id1130 + 1833-200619-1_171: *id1131 + 1833-200619-2_287: *id1132 + 1833-200619-3_126: *id1133 + 1833-200619-4_109: *id1134 + 1833-260619-1_106: *id1135 + 1833-260619-2_144: *id1136 + 1833-260619-3_142: *id1137 + 1833-260619-4_182: *id1138 + 1833-290519-1_89: *id1139 + 1833-290519-3_149: *id1140 + 1833-290519-4_79: + 1833-010719-1_227: *id1141 + 1833-020719-3_64: *id1142 + 1833-020719-4_248: *id1143 + 1833-050619-1_111: *id1144 + 1833-050619-2_74: *id1145 + 1833-050619-3_149: *id1146 + 1833-050619-4_157: *id1147 + 1833-060619-1_176: *id1148 + 1833-060619-2_112: *id1149 + 1833-120619-3_141: *id1150 + 1833-120619-4_124: *id1151 + 1833-200619-1_206: *id1152 + 1833-200619-2_308: *id1153 + 1833-200619-3_132: *id1154 + 1833-200619-4_89: *id1155 + 1833-260619-1_102: *id1156 + 1833-260619-2_140: *id1157 + 1833-260619-4_214: *id1158 + 1833-290519-1_142: *id1159 + 1833-290519-3_125: *id1160 + 1833-290519-4_90: + 1833-010719-1_152: *id1161 + 1833-020719-1_107: *id1162 + 1833-020719-3_96: *id1163 + 1833-020719-4_254: *id1164 + 1833-050619-1_91: *id1165 + 1833-050619-2_146: *id1166 + 1833-050619-3_109: *id1167 + 1833-050619-4_135: *id1168 + 1833-060619-1_170: *id1169 + 1833-060619-2_74: *id1170 + 1833-120619-2_151: *id1171 + 1833-120619-3_145: *id1172 + 1833-120619-4_127: *id1173 + 1833-200619-1_240: *id1174 + 1833-200619-2_327: *id1175 + 1833-200619-3_75: *id1176 + 1833-200619-4_121: *id1177 + 1833-260619-1_124: *id1178 + 1833-260619-2_160: *id1179 + 1833-260619-3_192: *id1180 + 1833-260619-4_218: *id1181 + 1833-290519-1_132: *id1182 + 1833-290519-3_141: *id1183 +_node: &id1186 + 1833-010719-1_152: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id1184 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + mAAAAAAAAAA= + 1833-010719-1_183: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + twAAAAAAAAA= + 1833-010719-1_200: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + yAAAAAAAAAA= + 1833-010719-1_227: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + 4wAAAAAAAAA= + 1833-010719-2_225: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + 4QAAAAAAAAA= + 1833-020719-1_107: + action_id: 1833-020719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + awAAAAAAAAA= + 1833-020719-2_99: + action_id: 1833-020719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + YwAAAAAAAAA= + 1833-020719-3_63: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + PwAAAAAAAAA= + 1833-020719-3_64: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + QAAAAAAAAAA= + 1833-020719-3_96: + action_id: 1833-020719-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + YAAAAAAAAAA= + 1833-020719-4_248: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + +AAAAAAAAAA= + 1833-020719-4_254: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + /gAAAAAAAAA= + 1833-020719-4_310: + action_id: 1833-020719-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + NgEAAAAAAAA= + 1833-050619-1_111: + action_id: 1833-050619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + bwAAAAAAAAA= + 1833-050619-1_60: + action_id: 1833-050619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + PAAAAAAAAAA= + 1833-050619-1_64: + action_id: 1833-050619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + QAAAAAAAAAA= + 1833-050619-1_91: + action_id: 1833-050619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + WwAAAAAAAAA= + 1833-050619-2_119: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + dwAAAAAAAAA= + 1833-050619-2_125: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + fQAAAAAAAAA= + 1833-050619-2_146: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + kgAAAAAAAAA= + 1833-050619-2_152: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + mAAAAAAAAAA= + 1833-050619-2_74: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + SgAAAAAAAAA= + 1833-050619-2_81: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + UQAAAAAAAAA= + 1833-050619-3_109: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + bQAAAAAAAAA= + 1833-050619-3_117: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + dQAAAAAAAAA= + 1833-050619-3_129: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + gQAAAAAAAAA= + 1833-050619-3_143: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + jwAAAAAAAAA= + 1833-050619-3_149: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + lQAAAAAAAAA= + 1833-050619-4_117: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + dQAAAAAAAAA= + 1833-050619-4_133: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + hQAAAAAAAAA= + 1833-050619-4_135: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + hwAAAAAAAAA= + 1833-050619-4_157: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + nQAAAAAAAAA= + 1833-050619-4_92: + action_id: 1833-050619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + XAAAAAAAAAA= + 1833-060619-1_158: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + ngAAAAAAAAA= + 1833-060619-1_160: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + oAAAAAAAAAA= + 1833-060619-1_162: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + ogAAAAAAAAA= + 1833-060619-1_170: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + qgAAAAAAAAA= + 1833-060619-1_176: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + sAAAAAAAAAA= + 1833-060619-2_105: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + aQAAAAAAAAA= + 1833-060619-2_112: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + cAAAAAAAAAA= + 1833-060619-2_116: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + dAAAAAAAAAA= + 1833-060619-2_74: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + SgAAAAAAAAA= + 1833-060619-2_82: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + UgAAAAAAAAA= + 1833-120619-1_127: + action_id: 1833-120619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + fwAAAAAAAAA= + 1833-120619-1_129: + action_id: 1833-120619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + gQAAAAAAAAA= + 1833-120619-2_151: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + lwAAAAAAAAA= + 1833-120619-2_169: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + qQAAAAAAAAA= + 1833-120619-3_118: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + dgAAAAAAAAA= + 1833-120619-3_122: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + egAAAAAAAAA= + 1833-120619-3_141: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + jQAAAAAAAAA= + 1833-120619-3_143: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + jwAAAAAAAAA= + 1833-120619-3_145: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + kQAAAAAAAAA= + 1833-120619-3_94: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + XgAAAAAAAAA= + 1833-120619-4_120: + action_id: 1833-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + eAAAAAAAAAA= + 1833-120619-4_124: + action_id: 1833-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + fAAAAAAAAAA= + 1833-120619-4_127: + action_id: 1833-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + fwAAAAAAAAA= + 1833-120619-4_80: + action_id: 1833-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + UAAAAAAAAAA= + 1833-120619-4_85: + action_id: 1833-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + VQAAAAAAAAA= + 1833-120619-4_95: + action_id: 1833-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + XwAAAAAAAAA= + 1833-200619-1_163: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + owAAAAAAAAA= + 1833-200619-1_171: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + qwAAAAAAAAA= + 1833-200619-1_206: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + zgAAAAAAAAA= + 1833-200619-1_240: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + 8AAAAAAAAAA= + 1833-200619-2_28: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + HAAAAAAAAAA= + 1833-200619-2_281: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + GQEAAAAAAAA= + 1833-200619-2_287: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + HwEAAAAAAAA= + 1833-200619-2_308: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + NAEAAAAAAAA= + 1833-200619-2_321: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + QQEAAAAAAAA= + 1833-200619-2_327: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + RwEAAAAAAAA= + 1833-200619-3_120: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + eAAAAAAAAAA= + 1833-200619-3_126: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + fgAAAAAAAAA= + 1833-200619-3_132: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + hAAAAAAAAAA= + 1833-200619-3_150: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + lgAAAAAAAAA= + 1833-200619-3_75: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + SwAAAAAAAAA= + 1833-200619-4_101: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + ZQAAAAAAAAA= + 1833-200619-4_109: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + bQAAAAAAAAA= + 1833-200619-4_121: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + eQAAAAAAAAA= + 1833-200619-4_80: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + UAAAAAAAAAA= + 1833-200619-4_89: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + WQAAAAAAAAA= + 1833-260619-1_102: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + ZgAAAAAAAAA= + 1833-260619-1_106: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + agAAAAAAAAA= + 1833-260619-1_108: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + bAAAAAAAAAA= + 1833-260619-1_112: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + cAAAAAAAAAA= + 1833-260619-1_124: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + fAAAAAAAAAA= + 1833-260619-2_140: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + jAAAAAAAAAA= + 1833-260619-2_144: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + kAAAAAAAAAA= + 1833-260619-2_156: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + nAAAAAAAAAA= + 1833-260619-2_160: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + oAAAAAAAAAA= + 1833-260619-2_170: + action_id: 1833-260619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + qgAAAAAAAAA= + 1833-260619-3_142: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + jgAAAAAAAAA= + 1833-260619-3_168: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + qAAAAAAAAAA= + 1833-260619-3_192: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + wAAAAAAAAAA= + 1833-260619-4_182: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + tgAAAAAAAAA= + 1833-260619-4_184: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + uAAAAAAAAAA= + 1833-260619-4_200: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + yAAAAAAAAAA= + 1833-260619-4_214: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + 1gAAAAAAAAA= + 1833-260619-4_218: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + 2gAAAAAAAAA= + 1833-260619-4_80: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + UAAAAAAAAAA= + 1833-290519-1_124: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + fAAAAAAAAAA= + 1833-290519-1_132: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + hAAAAAAAAAA= + 1833-290519-1_142: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + jgAAAAAAAAA= + 1833-290519-1_150: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + lgAAAAAAAAA= + 1833-290519-1_154: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + mgAAAAAAAAA= + 1833-290519-1_166: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + pgAAAAAAAAA= + 1833-290519-1_89: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + WQAAAAAAAAA= + 1833-290519-2_76: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + TAAAAAAAAAA= + 1833-290519-3_125: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + fQAAAAAAAAA= + 1833-290519-3_141: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + jQAAAAAAAAA= + 1833-290519-3_147: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + kwAAAAAAAAA= + 1833-290519-3_149: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + lQAAAAAAAAA= + 1833-290519-3_151: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + lwAAAAAAAAA= + 1833-290519-3_155: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + mwAAAAAAAAA= + 1833-290519-4_108: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + bAAAAAAAAAA= + 1833-290519-4_65: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + QQAAAAAAAAA= + 1833-290519-4_79: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + TwAAAAAAAAA= + 1833-290519-4_90: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id1184 + - !!binary | + WgAAAAAAAAA= +adjlist_inner_dict_factory: &id1185 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id1185 +edge_attr_dict_factory: *id1185 +graph: {} +node_dict_factory: *id1185 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id1186 diff --git a/actions/identify-neurons/data/1833-graphs/graph-group-7.yaml b/actions/identify-neurons/data/1833-graphs/graph-group-7.yaml new file mode 100644 index 000000000..9fd3308b7 --- /dev/null +++ b/actions/identify-neurons/data/1833-graphs/graph-group-7.yaml @@ -0,0 +1,2332 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1833-010719-1_114: + 1833-010719-2_213: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + E6qMtSkovz8= + 1833-200619-1_143: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TZ/EFS0vvz8= + 1833-200619-2_261: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iQk22TvwwT8= + 1833-200619-3_65: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RrKiiexLvj8= + 1833-200619-4_68: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HVdxTO5PvT8= + 1833-290519-1_136: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0EHNQ8d5xD8= + 1833-290519-2_130: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RZGYfJ/m0D8= + 1833-290519-3_103: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uL0kT3/j2z8= + 1833-290519-4_94: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wAjgROXNxD8= + 1833-010719-1_132: + 1833-010719-2_217: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zz2hxFZmmz8= + 1833-050619-2_66: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 1166, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NTCtK6w8uT8= + 1833-050619-3_105: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 84863, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + azcs4wUruj8= + 1833-060619-1_139: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 1444, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JFmHOkLSuz8= + 1833-120619-2_85: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 3631, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /KwRUAZ9xD8= + 1833-120619-4_65: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [18, 85072, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y8vjtdSEyD8= + 1833-200619-2_203: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IFXIJ09k0z8= + 1833-260619-3_103: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bcFmqc0v0j8= + 1833-290519-1_116: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CRUOuLs1wD8= + 1833-290519-2_126: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vhnDV/46wj8= + 1833-290519-3_129: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J7R9IkYV3j8= + 1833-290519-4_77: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZllBRuo8vT8= + 1833-010719-1_54: + 1833-010719-2_211: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bKRTqlmasj8= + 1833-060619-2_58: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [24, 85010, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RnTjxFR3wD8= + 1833-120619-3_120: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 1019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bJDG1uDOwT8= + 1833-200619-2_204: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1762, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XWtgWXEz2j8= + 1833-200619-3_53: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZbWDsiWtsj8= + 1833-260619-1_98: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dzzMT5zKxz8= + 1833-260619-3_105: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 86141, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bQCgYFWVzj8= + 1833-260619-4_177: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84188, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FJu9ZcYhvz8= + 1833-290519-1_74: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 6529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cRDpEV0ltT8= + 1833-290519-2_97: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 3016, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F6Te/cb9xT8= + 1833-290519-3_82: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 298, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oq85mDtp3j8= + 1833-290519-4_67: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 84542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E4a2AFbgvD8= + 1833-010719-2_211: + 1833-010719-1_54: *id002 + 1833-060619-2_58: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2PadJw7owj8= + 1833-120619-3_120: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 2807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uF0e2t3qwj8= + 1833-200619-2_204: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZRLrguAB2j8= + 1833-200619-3_53: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HwIkKsG+vD8= + 1833-260619-1_98: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t1ZAjqbbxj8= + 1833-260619-3_103: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IKfbgHoizD8= + 1833-260619-4_177: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LodXItrAwT8= + 1833-290519-1_74: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dk4rWJzmtj8= + 1833-290519-2_98: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ec0/LMlvxz8= + 1833-290519-3_82: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OLNyRjt52z8= + 1833-290519-4_67: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0sHpnY5muj8= + 1833-010719-2_213: + 1833-010719-1_114: *id003 + 1833-120619-2_85: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 5419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yZ+Hjd1vwT8= + 1833-200619-1_143: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SkkJk+lRuT8= + 1833-200619-2_261: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eqGvBLt/uT8= + 1833-200619-3_65: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gW1opZqLtD8= + 1833-200619-4_68: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w3l1PX1GtD8= + 1833-260619-3_105: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mt9EmCwJ0z8= + 1833-290519-1_106: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zXS1v7POvT8= + 1833-290519-2_97: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oF7jOTAtyj8= + 1833-290519-3_103: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LiF4pP6r1j8= + 1833-290519-4_94: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GhQ/10K1vj8= + 1833-010719-2_217: + 1833-010719-1_132: *id004 + 1833-050619-2_66: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 2954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YBy1Vk1kuz8= + 1833-050619-3_105: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [26, 251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iSCfWboQvD8= + 1833-060619-1_139: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [25, 3232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7eChUrmmvT8= + 1833-120619-4_65: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 460, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 83f1I+oXyT8= + 1833-200619-2_203: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F5OWuwWx0j8= + 1833-290519-1_116: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 8317, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LjCp11o+wD8= + 1833-290519-2_126: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 4804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1Ef9ZCBywj8= + 1833-290519-3_129: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [33, 2086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AIK4dQKO3T8= + 1833-290519-4_77: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [32, 86330, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iZZAUVwAvT8= + 1833-050619-2_66: + 1833-010719-1_132: *id005 + 1833-010719-2_217: *id006 + 1833-050619-3_105: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lAhsNlKjmj8= + 1833-060619-1_139: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + orGQjMbFtT8= + 1833-060619-2_58: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +tqS0iqfwT8= + 1833-120619-2_85: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83935, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cUjM2lhSwz8= + 1833-120619-3_120: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 147, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BECKbWwBwj8= + 1833-120619-4_65: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1HJSbhekxz8= + 1833-200619-1_143: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JgSuV/Z8yT8= + 1833-200619-2_261: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 85804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8DBEvbroyT8= + 1833-200619-3_65: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 960, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0GRNh0r5xT8= + 1833-200619-4_68: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 2700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sChlwK0kxj8= + 1833-260619-1_98: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dMaOIUS6zz8= + 1833-260619-3_103: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T9giwT9p0j8= + 1833-260619-4_177: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vXPCnv4a0D8= + 1833-290519-1_116: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lEQxym2+tz8= + 1833-290519-2_126: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /XoWHo3qwj8= + 1833-290519-3_103: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 85532, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6JgwDw192T8= + 1833-290519-4_77: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lLrAnYoQtz8= + 1833-050619-3_105: + 1833-010719-1_132: *id007 + 1833-010719-2_217: *id008 + 1833-050619-2_66: *id009 + 1833-060619-1_139: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83419, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + skuTdk+btD8= + 1833-060619-2_58: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 86253, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + r8/766alwD8= + 1833-120619-2_85: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81232, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9H19UcgTwz8= + 1833-120619-3_120: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 83844, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VT7GDoHYwT8= + 1833-120619-4_65: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86191, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IJl7PTYPyT8= + 1833-200619-1_143: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GqtynfSUyD8= + 1833-200619-2_261: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 83101, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x9BHlZVeyT8= + 1833-200619-3_65: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s4Tahis4xT8= + 1833-200619-4_68: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 86397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hbcz6bdLxT8= + 1833-260619-1_98: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 80245, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YQh63xvrzz8= + 1833-260619-3_103: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oQ2PWtOo0j8= + 1833-260619-4_177: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 675, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Iif0mWz/zz8= + 1833-290519-1_116: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 8066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ytIftkx4tj8= + 1833-290519-2_126: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7uF2Gt77wj8= + 1833-290519-3_103: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1835, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FLsDF7TD2T8= + 1833-290519-4_77: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 86079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FJV0HB/Ptj8= + 1833-060619-1_139: + 1833-010719-1_132: *id010 + 1833-010719-2_217: *id011 + 1833-050619-2_66: *id012 + 1833-050619-3_105: *id013 + 1833-060619-2_58: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DVIxzNb+wT8= + 1833-120619-2_85: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MwFhUINpvD8= + 1833-120619-3_120: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ez+lKyddvz8= + 1833-120619-4_65: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2772, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UcLXzaaDwz8= + 1833-200619-1_143: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hGWk5SESxj8= + 1833-200619-2_261: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86082, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jibp/scgxj8= + 1833-200619-3_65: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1238, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BcsLtjfOwj8= + 1833-200619-4_68: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A0JDta5nwz8= + 1833-260619-1_98: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H0Tt88f60z8= + 1833-260619-3_105: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 1703, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hk5j0lrc1T8= + 1833-260619-4_177: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 3656, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dAFakM5c0z8= + 1833-290519-1_116: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5085, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JIEiBQ3Lvj8= + 1833-290519-2_126: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1572, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T12+ZPlExD8= + 1833-290519-3_103: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YHdYDCwC2z8= + 1833-290519-4_77: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E1QMN7srwT8= + 1833-060619-2_58: + 1833-010719-1_54: *id014 + 1833-010719-2_211: *id015 + 1833-050619-2_66: *id016 + 1833-050619-3_105: *id017 + 1833-060619-1_139: *id018 + 1833-120619-2_85: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81379, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nk4elRrowj8= + 1833-120619-3_120: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83991, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NC03fn8rtz8= + 1833-120619-4_65: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FKhNELqAzD8= + 1833-200619-1_143: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FdqcBrHjxz8= + 1833-200619-2_261: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gFfP5r3EyT8= + 1833-200619-3_53: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /a6CiNtxwD8= + 1833-200619-4_68: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ULLnbCKzwz8= + 1833-260619-1_98: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 80392, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VF4y6fPG0D8= + 1833-260619-3_105: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [19, 85269, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7VukDcXx0j8= + 1833-260619-4_177: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 822, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yLC2UmrTyj8= + 1833-290519-1_129: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7919, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FFNd4FIrvz8= + 1833-290519-2_126: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uxiJFAmfxD8= + 1833-290519-3_103: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1688, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QaDO2hFH3D8= + 1833-290519-4_94: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + udDkmqV9wz8= + 1833-120619-2_85: + 1833-010719-1_132: *id019 + 1833-010719-2_213: *id020 + 1833-050619-2_66: *id021 + 1833-050619-3_105: *id022 + 1833-060619-1_139: *id023 + 1833-060619-2_58: *id024 + 1833-120619-3_120: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bPAxfEeCtz8= + 1833-120619-4_65: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4959, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + apuTJyqywT8= + 1833-200619-1_143: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GERfkEPDvz8= + 1833-200619-2_261: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1869, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G0fhKj9UvD8= + 1833-200619-3_65: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 3425, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9VCS84/mtz8= + 1833-200619-4_68: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5165, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oA2uubyauT8= + 1833-260619-1_98: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85413, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J1V6m8QU0D8= + 1833-260619-3_103: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3890, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BvSpGLb30j8= + 1833-260619-4_177: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E1mlC4Gozz8= + 1833-290519-1_106: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MW60Y+Wetz8= + 1833-290519-2_126: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85785, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vTdjuXIGxj8= + 1833-290519-3_103: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83067, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aSPxyzmB0z8= + 1833-290519-4_94: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oz/tEj8puj8= + 1833-120619-3_120: + 1833-010719-1_54: *id025 + 1833-010719-2_211: *id026 + 1833-050619-2_66: *id027 + 1833-050619-3_105: *id028 + 1833-060619-1_139: *id029 + 1833-060619-2_58: *id030 + 1833-120619-2_85: *id031 + 1833-120619-4_65: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w/HrZz3/wj8= + 1833-200619-1_143: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83098, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t3DMREfuwD8= + 1833-200619-2_261: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /UdFfxopwj8= + 1833-200619-3_65: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 813, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5Qa3WQOyvT8= + 1833-200619-4_68: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 2553, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pltLkhhSvj8= + 1833-260619-1_98: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JAZT2bjkzT8= + 1833-260619-3_103: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VvJ+CSu50D8= + 1833-260619-4_177: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /X2YYunuyT8= + 1833-290519-1_129: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MdNdeQjjuT8= + 1833-290519-2_126: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1997, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6PDtnFRjyD8= + 1833-290519-3_103: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DMOLO3NG1D8= + 1833-290519-4_94: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UO7Ue1qsvz8= + 1833-120619-4_65: + 1833-010719-1_132: *id032 + 1833-010719-2_217: *id033 + 1833-050619-2_66: *id034 + 1833-050619-3_105: *id035 + 1833-060619-1_139: *id036 + 1833-060619-2_58: *id037 + 1833-120619-2_85: *id038 + 1833-120619-3_120: *id039 + 1833-200619-1_143: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80751, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l8mQ2NIeyz8= + 1833-200619-2_261: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83310, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JsWd4fBjyT8= + 1833-200619-3_65: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 84866, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zKiB+6QiyT8= + 1833-200619-4_68: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 206, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7SvbjVs4yz8= + 1833-260619-1_98: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80454, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KzdUI9OG2T8= + 1833-260619-3_105: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wn2K3wKy2T8= + 1833-260619-4_177: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 884, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pj8twBu12D8= + 1833-290519-1_129: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7857, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l1CudDg7xT8= + 1833-290519-2_126: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4344, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QyQzFJ4gxj8= + 1833-290519-3_82: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x4SmItsD2z8= + 1833-290519-4_94: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85870, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JMYT+KPhxj8= + 1833-200619-1_143: + 1833-010719-1_114: *id040 + 1833-010719-2_213: *id041 + 1833-050619-2_66: *id042 + 1833-050619-3_105: *id043 + 1833-060619-1_139: *id044 + 1833-060619-2_58: *id045 + 1833-120619-2_85: *id046 + 1833-120619-3_120: *id047 + 1833-120619-4_65: *id048 + 1833-200619-2_261: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BQrRLyHvpT8= + 1833-200619-3_65: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4115, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ufnQqGvxqD8= + 1833-200619-4_68: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5855, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A+OEiX2Ksj8= + 1833-260619-1_98: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xu6E7AQfzz8= + 1833-260619-3_103: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4580, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ggy5xIYg0z8= + 1833-260619-4_177: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y9Qz4RbIzj8= + 1833-290519-1_136: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YOsMLnKovz8= + 1833-290519-2_126: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q7rouX9Vyz8= + 1833-290519-3_103: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82377, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NXI/RKsG0z8= + 1833-290519-4_94: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80221, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fbfir3xtwj8= + 1833-200619-2_203: + 1833-010719-1_132: *id049 + 1833-010719-2_217: *id050 + 1833-260619-3_105: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9pQKGd9m2j8= + 1833-290519-1_136: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0OC/L96X0T8= + 1833-290519-2_98: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IE6Ovgms0D8= + 1833-290519-3_113: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + STac+VIA4D8= + 1833-290519-4_75: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BYc23vZqzz8= + 1833-200619-2_204: + 1833-010719-1_54: *id051 + 1833-010719-2_211: *id052 + 1833-200619-3_53: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + agdnA0p92j8= + 1833-290519-1_129: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + evNCOCQU2D8= + 1833-290519-2_130: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tMvvlgHo2D8= + 1833-290519-3_82: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DCeAGe5Z4D8= + 1833-290519-4_67: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jZVd2qt82j8= + 1833-200619-2_261: + 1833-010719-1_114: *id053 + 1833-010719-2_213: *id054 + 1833-050619-2_66: *id055 + 1833-050619-3_105: *id056 + 1833-060619-1_139: *id057 + 1833-060619-2_58: *id058 + 1833-120619-2_85: *id059 + 1833-120619-3_120: *id060 + 1833-120619-4_65: *id061 + 1833-200619-1_143: *id062 + 1833-200619-3_65: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1556, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MAY7ZEnprD8= + 1833-200619-4_68: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w3vMKkn0tD8= + 1833-260619-1_98: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83544, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9yI1YIVjzz8= + 1833-260619-3_103: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sF6UAcYw0z8= + 1833-260619-4_177: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RTvCbHoV0D8= + 1833-290519-1_106: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4767, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JtPiNLEavz8= + 1833-290519-2_126: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1254, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C+bfr9/myj8= + 1833-290519-3_103: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VvsMIjdF0T8= + 1833-290519-4_94: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jvv8QfeUwT8= + 1833-200619-3_53: + 1833-010719-1_54: *id063 + 1833-010719-2_211: *id064 + 1833-060619-2_58: *id065 + 1833-200619-2_204: *id066 + 1833-260619-1_98: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81988, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + odK1IdYgyj8= + 1833-260619-3_105: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ohnUbBkbzz8= + 1833-260619-4_177: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2418, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T2gLBsv2wT8= + 1833-290519-1_74: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SQN+4zD2uz8= + 1833-290519-2_97: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AswI1hU3xz8= + 1833-290519-3_103: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tXolc7NL3T8= + 1833-290519-4_67: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6ObZ1Nz+wT8= + 1833-200619-3_65: + 1833-010719-1_114: *id067 + 1833-010719-2_213: *id068 + 1833-050619-2_66: *id069 + 1833-050619-3_105: *id070 + 1833-060619-1_139: *id071 + 1833-120619-2_85: *id072 + 1833-120619-3_120: *id073 + 1833-120619-4_65: *id074 + 1833-200619-1_143: *id075 + 1833-200619-2_261: *id076 + 1833-200619-4_68: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1740, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qfOnvelUnz8= + 1833-260619-3_103: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WgFqwiM+0T8= + 1833-290519-1_106: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 6323, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yVAXPbMouT8= + 1833-290519-2_126: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 2810, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sb50snlnyT8= + 1833-290519-3_82: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 92, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A0f7qsOd0z8= + 1833-290519-4_94: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yAEL+VR/vD8= + 1833-200619-4_68: + 1833-010719-1_114: *id077 + 1833-010719-2_213: *id078 + 1833-050619-2_66: *id079 + 1833-050619-3_105: *id080 + 1833-060619-1_139: *id081 + 1833-060619-2_58: *id082 + 1833-120619-2_85: *id083 + 1833-120619-3_120: *id084 + 1833-120619-4_65: *id085 + 1833-200619-1_143: *id086 + 1833-200619-2_261: *id087 + 1833-200619-3_65: *id088 + 1833-260619-1_98: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80248, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IMsO+B0Vyz8= + 1833-260619-3_103: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85125, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9gBzofDc0D8= + 1833-260619-4_177: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5qOwZu8TyT8= + 1833-290519-1_106: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 8063, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NY01lptmuj8= + 1833-290519-2_126: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 4550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VLEdDZjhyD8= + 1833-290519-3_103: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1832, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2ubQ9QIO1D8= + 1833-290519-4_94: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 86076, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /b3q8Px3uj8= + 1833-260619-1_98: + 1833-010719-1_54: *id089 + 1833-010719-2_211: *id090 + 1833-050619-2_66: *id091 + 1833-050619-3_105: *id092 + 1833-060619-1_139: *id093 + 1833-060619-2_58: *id094 + 1833-120619-2_85: *id095 + 1833-120619-3_120: *id096 + 1833-120619-4_65: *id097 + 1833-200619-1_143: *id098 + 1833-200619-2_261: *id099 + 1833-200619-3_53: *id100 + 1833-200619-4_68: *id101 + 1833-260619-3_103: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4877, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b5BSdRBotz8= + 1833-260619-4_177: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6830, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G6b/gGycwD8= + 1833-290519-1_74: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 1911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g1yGrDYKyD8= + 1833-290519-2_126: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bDnoI3gayD8= + 1833-290519-3_103: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 82080, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j6Bd+0jZ2j8= + 1833-290519-4_67: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 79924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pfnCanjBwz8= + 1833-260619-3_103: + 1833-010719-1_132: *id102 + 1833-010719-2_211: *id103 + 1833-050619-2_66: *id104 + 1833-050619-3_105: *id105 + 1833-120619-2_85: *id106 + 1833-120619-3_120: *id107 + 1833-200619-1_143: *id108 + 1833-200619-2_261: *id109 + 1833-200619-3_65: *id110 + 1833-200619-4_68: *id111 + 1833-260619-1_98: *id112 + 1833-260619-4_177: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1953, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rx73+b9dwj8= + 1833-290519-1_82: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rMcUJaMlzj8= + 1833-290519-2_126: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rM3ojGDuyD8= + 1833-290519-3_103: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hb+6ZZnP2z8= + 1833-290519-4_94: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bHZYpES+zj8= + 1833-260619-3_105: + 1833-010719-1_54: *id113 + 1833-010719-2_213: *id114 + 1833-060619-1_139: *id115 + 1833-060619-2_58: *id116 + 1833-120619-4_65: *id117 + 1833-200619-2_203: *id118 + 1833-200619-3_53: *id119 + 1833-290519-1_74: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 6788, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wTLm05pizT8= + 1833-290519-2_97: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 3275, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XFr6bvdeyz8= + 1833-290519-3_82: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 557, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XKR0qThz2z8= + 1833-290519-4_67: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [27, 84801, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w6R1g6zTzz8= + 1833-260619-4_177: + 1833-010719-1_54: *id120 + 1833-010719-2_211: *id121 + 1833-050619-2_66: *id122 + 1833-050619-3_105: *id123 + 1833-060619-1_139: *id124 + 1833-060619-2_58: *id125 + 1833-120619-2_85: *id126 + 1833-120619-3_120: *id127 + 1833-120619-4_65: *id128 + 1833-200619-1_143: *id129 + 1833-200619-2_261: *id130 + 1833-200619-3_53: *id131 + 1833-200619-4_68: *id132 + 1833-260619-1_98: *id133 + 1833-260619-3_103: *id134 + 1833-290519-1_74: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g20X19B1wD8= + 1833-290519-2_97: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 5228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mKx1eiewxz8= + 1833-290519-3_103: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 2510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E4oUDu8L3T8= + 1833-290519-4_67: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [28, 354, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kpbLCRKbxD8= + 1833-290519-1_106: + 1833-010719-2_213: *id135 + 1833-120619-2_85: *id136 + 1833-200619-2_261: *id137 + 1833-200619-3_65: *id138 + 1833-200619-4_68: *id139 + 1833-290519-2_98: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D29v4/Uqxz8= + 1833-290519-3_103: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fk1yYJjj0j8= + 1833-290519-4_94: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QQDjC1EvrD8= + 1833-290519-1_116: + 1833-010719-1_132: *id140 + 1833-010719-2_217: *id141 + 1833-050619-2_66: *id142 + 1833-050619-3_105: *id143 + 1833-060619-1_139: *id144 + 1833-290519-2_130: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1QfEfiMnzT8= + 1833-290519-1_129: + 1833-060619-2_58: *id145 + 1833-120619-3_120: *id146 + 1833-120619-4_65: *id147 + 1833-200619-2_204: *id148 + 1833-290519-3_113: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + To4lvwB61z8= + 1833-290519-1_136: + 1833-010719-1_114: *id149 + 1833-200619-1_143: *id150 + 1833-200619-2_203: *id151 + 1833-290519-3_129: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jl22Ai1P2D8= + 1833-290519-4_75: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iYp0B5grxj8= + 1833-290519-1_74: + 1833-010719-1_54: *id152 + 1833-010719-2_211: *id153 + 1833-200619-3_53: *id154 + 1833-260619-1_98: *id155 + 1833-260619-3_105: *id156 + 1833-260619-4_177: *id157 + 1833-290519-2_97: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3o921T2gwz8= + 1833-290519-4_67: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wn5ygK5QvD8= + 1833-290519-1_82: + 1833-260619-3_103: *id158 + 1833-290519-2_126: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wU+vwjs5wD8= + 1833-290519-3_82: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bns5W89e1j8= + 1833-290519-4_77: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9B37TeaPsD8= + 1833-290519-2_126: + 1833-010719-1_132: *id159 + 1833-010719-2_217: *id160 + 1833-050619-2_66: *id161 + 1833-050619-3_105: *id162 + 1833-060619-1_139: *id163 + 1833-060619-2_58: *id164 + 1833-120619-2_85: *id165 + 1833-120619-3_120: *id166 + 1833-120619-4_65: *id167 + 1833-200619-1_143: *id168 + 1833-200619-2_261: *id169 + 1833-200619-3_65: *id170 + 1833-200619-4_68: *id171 + 1833-260619-1_98: *id172 + 1833-260619-3_103: *id173 + 1833-290519-1_82: *id174 + 1833-290519-3_129: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CXdPcfCd0j8= + 1833-290519-4_77: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YuOiehutwT8= + 1833-290519-2_130: + 1833-010719-1_114: *id175 + 1833-200619-2_204: *id176 + 1833-290519-1_116: *id177 + 1833-290519-3_113: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MjwCpDm42D8= + 1833-290519-4_75: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qyCnhmbN0T8= + 1833-290519-2_97: + 1833-010719-1_54: *id178 + 1833-010719-2_213: *id179 + 1833-200619-3_53: *id180 + 1833-260619-3_105: *id181 + 1833-260619-4_177: *id182 + 1833-290519-1_74: *id183 + 1833-290519-3_82: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rdERFSlz1D8= + 1833-290519-4_67: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AWFAi4xixj8= + 1833-290519-2_98: + 1833-010719-2_211: *id184 + 1833-200619-2_203: *id185 + 1833-290519-1_106: *id186 + 1833-290519-3_103: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2718, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u51c9GrF0z8= + 1833-290519-4_94: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4874, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TOgaNhF9xD8= + 1833-290519-3_103: + 1833-010719-1_114: *id187 + 1833-010719-2_213: *id188 + 1833-050619-2_66: *id189 + 1833-050619-3_105: *id190 + 1833-060619-1_139: *id191 + 1833-060619-2_58: *id192 + 1833-120619-2_85: *id193 + 1833-120619-3_120: *id194 + 1833-200619-1_143: *id195 + 1833-200619-2_261: *id196 + 1833-200619-3_53: *id197 + 1833-200619-4_68: *id198 + 1833-260619-1_98: *id199 + 1833-260619-3_103: *id200 + 1833-260619-4_177: *id201 + 1833-290519-1_106: *id202 + 1833-290519-2_98: *id203 + 1833-290519-4_75: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HEsXUla80D8= + 1833-290519-3_113: + 1833-200619-2_203: *id204 + 1833-290519-1_129: *id205 + 1833-290519-2_130: *id206 + 1833-290519-4_94: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6Nmq8BS/2j8= + 1833-290519-3_129: + 1833-010719-1_132: *id207 + 1833-010719-2_217: *id208 + 1833-290519-1_136: *id209 + 1833-290519-2_126: *id210 + 1833-290519-4_67: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tJbAIOF94D8= + 1833-290519-3_82: + 1833-010719-1_54: *id211 + 1833-010719-2_211: *id212 + 1833-120619-4_65: *id213 + 1833-200619-2_204: *id214 + 1833-200619-3_65: *id215 + 1833-260619-3_105: *id216 + 1833-290519-1_82: *id217 + 1833-290519-2_97: *id218 + 1833-290519-4_77: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8vYtLQx/1z8= + 1833-290519-4_67: + 1833-010719-1_54: *id219 + 1833-010719-2_211: *id220 + 1833-200619-2_204: *id221 + 1833-200619-3_53: *id222 + 1833-260619-1_98: *id223 + 1833-260619-3_105: *id224 + 1833-260619-4_177: *id225 + 1833-290519-1_74: *id226 + 1833-290519-2_97: *id227 + 1833-290519-3_129: *id228 + 1833-290519-4_75: + 1833-200619-2_203: *id229 + 1833-290519-1_136: *id230 + 1833-290519-2_130: *id231 + 1833-290519-3_103: *id232 + 1833-290519-4_77: + 1833-010719-1_132: *id233 + 1833-010719-2_217: *id234 + 1833-050619-2_66: *id235 + 1833-050619-3_105: *id236 + 1833-060619-1_139: *id237 + 1833-290519-1_82: *id238 + 1833-290519-2_126: *id239 + 1833-290519-3_82: *id240 + 1833-290519-4_94: + 1833-010719-1_114: *id241 + 1833-010719-2_213: *id242 + 1833-060619-2_58: *id243 + 1833-120619-2_85: *id244 + 1833-120619-3_120: *id245 + 1833-120619-4_65: *id246 + 1833-200619-1_143: *id247 + 1833-200619-2_261: *id248 + 1833-200619-3_65: *id249 + 1833-200619-4_68: *id250 + 1833-260619-3_103: *id251 + 1833-290519-1_106: *id252 + 1833-290519-2_98: *id253 + 1833-290519-3_113: *id254 +_node: &id257 + 1833-010719-1_114: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id255 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + cgAAAAAAAAA= + 1833-010719-1_132: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + hAAAAAAAAAA= + 1833-010719-1_54: + action_id: 1833-010719-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + NgAAAAAAAAA= + 1833-010719-2_211: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + 0wAAAAAAAAA= + 1833-010719-2_213: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + 1QAAAAAAAAA= + 1833-010719-2_217: + action_id: 1833-010719-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + 2QAAAAAAAAA= + 1833-050619-2_66: + action_id: 1833-050619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + QgAAAAAAAAA= + 1833-050619-3_105: + action_id: 1833-050619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + aQAAAAAAAAA= + 1833-060619-1_139: + action_id: 1833-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + iwAAAAAAAAA= + 1833-060619-2_58: + action_id: 1833-060619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + OgAAAAAAAAA= + 1833-120619-2_85: + action_id: 1833-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + VQAAAAAAAAA= + 1833-120619-3_120: + action_id: 1833-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + eAAAAAAAAAA= + 1833-120619-4_65: + action_id: 1833-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + QQAAAAAAAAA= + 1833-200619-1_143: + action_id: 1833-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + jwAAAAAAAAA= + 1833-200619-2_203: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + ywAAAAAAAAA= + 1833-200619-2_204: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + zAAAAAAAAAA= + 1833-200619-2_261: + action_id: 1833-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + BQEAAAAAAAA= + 1833-200619-3_53: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + NQAAAAAAAAA= + 1833-200619-3_65: + action_id: 1833-200619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + QQAAAAAAAAA= + 1833-200619-4_68: + action_id: 1833-200619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + RAAAAAAAAAA= + 1833-260619-1_98: + action_id: 1833-260619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + YgAAAAAAAAA= + 1833-260619-3_103: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + ZwAAAAAAAAA= + 1833-260619-3_105: + action_id: 1833-260619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + aQAAAAAAAAA= + 1833-260619-4_177: + action_id: 1833-260619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + sQAAAAAAAAA= + 1833-290519-1_106: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + agAAAAAAAAA= + 1833-290519-1_116: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + dAAAAAAAAAA= + 1833-290519-1_129: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + gQAAAAAAAAA= + 1833-290519-1_136: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + iAAAAAAAAAA= + 1833-290519-1_74: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + SgAAAAAAAAA= + 1833-290519-1_82: + action_id: 1833-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + UgAAAAAAAAA= + 1833-290519-2_126: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + fgAAAAAAAAA= + 1833-290519-2_130: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + ggAAAAAAAAA= + 1833-290519-2_97: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + YQAAAAAAAAA= + 1833-290519-2_98: + action_id: 1833-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + YgAAAAAAAAA= + 1833-290519-3_103: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + ZwAAAAAAAAA= + 1833-290519-3_113: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + cQAAAAAAAAA= + 1833-290519-3_129: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + gQAAAAAAAAA= + 1833-290519-3_82: + action_id: 1833-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + UgAAAAAAAAA= + 1833-290519-4_67: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + QwAAAAAAAAA= + 1833-290519-4_75: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + SwAAAAAAAAA= + 1833-290519-4_77: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + TQAAAAAAAAA= + 1833-290519-4_94: + action_id: 1833-290519-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id255 + - !!binary | + XgAAAAAAAAA= +adjlist_inner_dict_factory: &id256 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id256 +edge_attr_dict_factory: *id256 +graph: {} +node_dict_factory: *id256 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id257 diff --git a/actions/identify-neurons/data/1833-units.csv b/actions/identify-neurons/data/1833-units.csv new file mode 100644 index 000000000..cc9d35b68 --- /dev/null +++ b/actions/identify-neurons/data/1833-units.csv @@ -0,0 +1,514 @@ +action,channel_group,max_depth_delta,max_dissimilarity,unit_id,unit_name +1833-020719-4,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,302 +1833-020719-1,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,123 +1833-010719-1,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,127 +1833-020719-3,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,143 +1833-260619-1,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,120 +1833-010719-1,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,161 +1833-010719-2,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,239 +1833-260619-3,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,196 +1833-260619-4,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,202 +1833-010719-1,0,100,0.05,7e1588d9-1a79-4ed2-8b53-067d2720aaaa,191 +1833-010719-2,0,100,0.05,fec1202b-1434-48c9-b3a1-adb167ea6410,261 +1833-010719-1,0,100,0.05,fec1202b-1434-48c9-b3a1-adb167ea6410,223 +1833-010719-1,0,100,0.05,8c326156-1f80-4195-82a1-b401c2db5ad6,225 +1833-010719-2,0,100,0.05,8c326156-1f80-4195-82a1-b401c2db5ad6,267 +1833-010719-2,0,100,0.05,02d0ee49-9dc0-439e-9a1e-0fc77ff0dfc0,4 +1833-010719-1,0,100,0.05,02d0ee49-9dc0-439e-9a1e-0fc77ff0dfc0,235 +1833-010719-2,0,100,0.05,4ae30aee-ff04-4884-b1d4-4e48cc0880ce,254 +1833-010719-2,0,100,0.05,689fed74-131b-4886-a5f3-37dd15752d14,265 +1833-020719-1,0,100,0.05,202551c8-3fcc-452f-983d-b70565a7b775,119 +1833-020719-1,0,100,0.05,4d299216-6ff1-4aad-9a6f-3fff3445a726,121 +1833-020719-3,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,156 +1833-020719-2,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,142 +1833-020719-4,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,308 +1833-020719-1,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,145 +1833-020719-2,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,8 +1833-020719-3,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,162 +1833-020719-1,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,158 +1833-020719-4,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,320 +1833-020719-2,0,100,0.05,07b04948-20e9-4795-aec3-0337458fc7e6,105 +1833-020719-2,0,100,0.05,03b1f23f-a18f-496c-a440-9069bd0f4cf7,129 +1833-020719-4,0,100,0.05,03b1f23f-a18f-496c-a440-9069bd0f4cf7,306 +1833-020719-3,0,100,0.05,03b1f23f-a18f-496c-a440-9069bd0f4cf7,141 +1833-020719-3,0,100,0.05,369a3fff-a276-46d3-b03e-8da0e884418c,116 +1833-020719-2,0,100,0.05,369a3fff-a276-46d3-b03e-8da0e884418c,95 +1833-020719-3,0,100,0.05,eb8328bd-6c97-4c68-9e68-9aadd76a4ce0,104 +1833-020719-3,0,100,0.05,bcc59a37-9843-4014-8565-9b6e5f9ec8f9,105 +1833-020719-3,0,100,0.05,4c126cc1-e670-448d-a9ab-4959a01eb941,112 +1833-020719-3,0,100,0.05,ce50f334-97f7-456d-a99c-fad237eeb945,150 +1833-020719-4,0,100,0.05,674a447f-91e7-4283-b54a-6d0ed998cb76,258 +1833-060619-2,0,100,0.05,59986384-12a6-4559-b70f-e62c97ca6ff2,76 +1833-060619-2,0,100,0.05,97701855-c0cb-41ab-98c4-ccade07950ad,90 +1833-120619-1,0,100,0.05,d7b89d9b-c0e1-46fa-9e5e-6fcf725f5f34,139 +1833-120619-3,0,100,0.05,d7b89d9b-c0e1-46fa-9e5e-6fcf725f5f34,153 +1833-120619-2,0,100,0.05,d7b89d9b-c0e1-46fa-9e5e-6fcf725f5f34,175 +1833-120619-2,0,100,0.05,0c9928cc-c3e9-4e22-9654-6624fe221b4c,89 +1833-200619-1,0,100,0.05,82886983-4c61-4e36-80d2-f856dc5eb4e7,147 +1833-200619-2,0,100,0.05,018b9d2d-f76f-4804-ab2c-825f67d098a8,268 +1833-200619-3,0,100,0.05,884b233d-9f7f-444d-b9b2-b536d6557b82,0 +1833-200619-2,0,100,0.05,884b233d-9f7f-444d-b9b2-b536d6557b82,283 +1833-200619-4,0,100,0.05,884b233d-9f7f-444d-b9b2-b536d6557b82,1 +1833-200619-4,0,100,0.05,53953323-230e-470b-b76c-127344489492,90 +1833-200619-3,0,100,0.05,53953323-230e-470b-b76c-127344489492,91 +1833-200619-4,0,100,0.05,460e1206-848b-43b2-b7c5-850a13e43a89,92 +1833-200619-3,0,100,0.05,460e1206-848b-43b2-b7c5-850a13e43a89,93 +1833-200619-4,0,100,0.05,dd2e5d79-ee67-44e4-b3ec-a5d35e308c41,78 +1833-200619-4,0,100,0.05,6c5ba75a-5e66-4992-83f5-6ca382044292,96 +1833-260619-3,0,100,0.05,75abbf10-2eca-425c-93b4-bf01951b3fab,182 +1833-260619-1,0,100,0.05,75abbf10-2eca-425c-93b4-bf01951b3fab,118 +1833-260619-4,0,100,0.05,7409a35b-3fb4-4cb2-9458-9599aa53c263,115 +1833-260619-3,0,100,0.05,7409a35b-3fb4-4cb2-9458-9599aa53c263,141 +1833-260619-1,0,100,0.05,7409a35b-3fb4-4cb2-9458-9599aa53c263,130 +1833-260619-2,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,174 +1833-260619-1,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,132 +1833-260619-4,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,233 +1833-260619-3,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,209 +1833-260619-2,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,2 +1833-260619-1,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,2 +1833-260619-4,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,235 +1833-260619-3,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,1 +1833-260619-4,0,100,0.05,f1a0076b-b421-4ee2-a59d-e419ea60b6b6,208 +1833-260619-2,0,100,0.05,f1a0076b-b421-4ee2-a59d-e419ea60b6b6,152 +1833-260619-3,0,100,0.05,f1a0076b-b421-4ee2-a59d-e419ea60b6b6,180 +1833-260619-3,0,100,0.05,594d72fb-eeb2-42a5-a337-b9980cec7dd0,194 +1833-260619-2,0,100,0.05,594d72fb-eeb2-42a5-a337-b9980cec7dd0,164 +1833-260619-4,0,100,0.05,594d72fb-eeb2-42a5-a337-b9980cec7dd0,222 +1833-260619-3,0,100,0.05,4309c130-a353-4e38-beba-4d9350678e07,0 +1833-260619-3,0,100,0.05,61101fef-2583-4c30-8157-dbfc83a9611b,140 +1833-290519-1,0,100,0.05,e04fcb6f-004a-4e3a-8793-18e48a595cba,112 +1833-290519-1,0,100,0.05,d6360ea3-c460-4cfd-95ed-03489c5bbdda,120 +1833-290519-1,0,100,0.05,846d339e-b666-4fbc-af86-6727f45e500b,146 +1833-290519-2,0,100,0.05,b3216c92-197d-4642-be0e-bb28fdab0907,78 +1833-290519-2,0,100,0.05,82d976f8-1ffa-461b-b69a-b32a5b9ba894,82 +1833-290519-3,0,100,0.05,55ab237c-d434-4d10-98f5-9ebefa56639e,107 +1833-290519-3,0,100,0.05,c1d06f73-d01e-4088-b710-16c61711194f,137 +1833-290519-4,0,100,0.05,16689d25-454f-4bb8-ba02-a784b11996db,117 +1833-290519-4,0,100,0.05,1094cdee-8aa1-4043-8535-0514b66b9617,88 +1833-260619-2,1,100,0.05,60ac4b3a-5a3c-4396-a92c-bfa06ee87b10,123 +1833-260619-1,1,100,0.05,60ac4b3a-5a3c-4396-a92c-bfa06ee87b10,104 +1833-010719-1,1,100,0.05,60ac4b3a-5a3c-4396-a92c-bfa06ee87b10,146 +1833-010719-1,1,100,0.05,f17b2419-e7b8-484a-9a3f-0235b0f56e84,219 +1833-010719-1,1,100,0.05,23d99789-c3bd-4061-b3e9-400fa934c297,221 +1833-010719-1,1,100,0.05,020f3eb7-9cd9-476a-b402-dccdd5c85313,229 +1833-010719-2,1,100,0.05,020f3eb7-9cd9-476a-b402-dccdd5c85313,273 +1833-010719-1,1,100,0.05,288a1eb2-b910-4741-973f-b7eb943d578c,6 +1833-010719-1,1,100,0.05,e3b0028a-00aa-4651-b9be-d39f7220e756,8 +1833-020719-2,1,100,0.05,d210e396-aebb-495f-8060-d0a3b586541c,131 +1833-010719-2,1,100,0.05,d210e396-aebb-495f-8060-d0a3b586541c,135 +1833-200619-3,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,97 +1833-200619-4,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,76 +1833-200619-1,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,159 +1833-010719-2,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,18 +1833-020719-2,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,15 +1833-020719-2,1,100,0.05,1d08a41d-e610-4c27-b450-0dbb09e09f1e,14 +1833-010719-2,1,100,0.05,1d08a41d-e610-4c27-b450-0dbb09e09f1e,227 +1833-020719-3,1,100,0.05,1d08a41d-e610-4c27-b450-0dbb09e09f1e,123 +1833-010719-2,1,100,0.05,fe8aafe3-b466-40a0-9c83-a710844a4812,229 +1833-010719-2,1,100,0.05,0098c6a1-ff90-40cb-9548-df7201ebb0c6,233 +1833-010719-2,1,100,0.05,10b2d316-2498-4dfe-9bfe-5a31ad425dde,269 +1833-020719-1,1,100,0.05,4cd53be4-0731-4da7-87aa-838c831a166b,115 +1833-020719-3,1,100,0.05,97507bc1-b15b-4d54-a874-f63dc47ba240,154 +1833-020719-1,1,100,0.05,97507bc1-b15b-4d54-a874-f63dc47ba240,147 +1833-020719-3,1,100,0.05,7a1fb80c-4368-4ecf-873a-4a1b2da86bf1,166 +1833-020719-1,1,100,0.05,7a1fb80c-4368-4ecf-873a-4a1b2da86bf1,155 +1833-020719-2,1,100,0.05,7a1fb80c-4368-4ecf-873a-4a1b2da86bf1,87 +1833-020719-2,1,100,0.05,549df16a-fe87-41de-9a70-4b08fe799efd,152 +1833-020719-3,1,100,0.05,b222d608-82c0-4b57-ae73-9d5ed6dd21b4,139 +1833-020719-4,1,100,0.05,bbaea364-eb5b-40b4-b202-a0d4f264c205,256 +1833-020719-4,1,100,0.05,0e48da29-eac7-4941-9268-44e096a63d1c,278 +1833-020719-4,1,100,0.05,b4ee613f-7453-4f2d-ada8-81ae84a206b0,300 +1833-050619-1,1,100,0.05,fa14536b-2b32-4007-93e7-64f5f4fc32de,75 +1833-050619-2,1,100,0.05,b2252178-0f9e-47ab-b401-4b28ef78ee60,129 +1833-050619-3,1,100,0.05,b2252178-0f9e-47ab-b401-4b28ef78ee60,125 +1833-050619-4,1,100,0.05,4bc21424-b8fd-4e08-82f6-effa388cda03,68 +1833-050619-4,1,100,0.05,d150807a-e271-4ec7-9115-b43526bbe93b,84 +1833-050619-4,1,100,0.05,ed0fdcbe-7aa9-4a79-840d-67eca618c1aa,86 +1833-060619-1,1,100,0.05,c48dd287-ffc9-4ab6-8f6f-f081837cf784,137 +1833-060619-2,1,100,0.05,90c2de30-5695-4a91-b403-af76f2cdf61b,64 +1833-060619-2,1,100,0.05,1038a388-166d-422a-8c65-1ac1e6d9ad54,78 +1833-120619-1,1,100,0.05,6de199c5-36fb-411c-825a-8d1871a5c737,114 +1833-120619-2,1,100,0.05,5d01e49b-9ae7-45f5-9287-18ab13cd6136,104 +1833-200619-1,1,100,0.05,19a1525b-c2bf-49a8-8fb8-dbc76f93e02d,155 +1833-200619-2,1,100,0.05,498eef1b-8a69-490c-8685-b9d84bec1e05,278 +1833-200619-4,1,100,0.05,3cba268e-7bee-4ffc-831c-7f060b8abd3d,70 +1833-200619-3,1,100,0.05,3cba268e-7bee-4ffc-831c-7f060b8abd3d,89 +1833-260619-1,1,100,0.05,d5c0812a-92a3-4ef0-a9fa-66b40acb5dc5,10 +1833-260619-1,1,100,0.05,1f18345d-c22a-4e69-8412-895f8dc184e1,116 +1833-260619-1,1,100,0.05,1d244994-074c-49ad-a789-2c86feb6ed74,126 +1833-260619-2,1,100,0.05,1d244994-074c-49ad-a789-2c86feb6ed74,166 +1833-260619-2,1,100,0.05,eb701b37-e917-4d0f-9469-ee01b46d623e,130 +1833-260619-3,1,100,0.05,f29743b1-4d3e-4a17-8e11-3a2b9087662b,119 +1833-260619-4,1,100,0.05,ca960139-81eb-4c8c-b93a-55103ba52728,198 +1833-260619-3,1,100,0.05,ca960139-81eb-4c8c-b93a-55103ba52728,170 +1833-260619-3,1,100,0.05,e9e7a50d-3eb3-4e78-a5c1-5c04995f69a9,207 +1833-260619-4,1,100,0.05,234fcaba-1510-4c14-b5bb-114318ac6e83,178 +1833-260619-4,1,100,0.05,f1a20652-80aa-4984-a052-7102dd162994,204 +1833-260619-4,1,100,0.05,eea49e8a-8c74-49f1-9c90-5d0e353ac3da,226 +1833-290519-1,1,100,0.05,191b3d9d-611a-4a90-bd37-246adbd13fb5,138 +1833-290519-1,1,100,0.05,a84af5e8-cec8-4d8a-acef-27ee8a03c53f,92 +1833-290519-2,1,100,0.05,3009f1b5-041b-4676-95c2-4ffabb182ab1,102 +1833-290519-2,1,100,0.05,7d79acf2-1dc2-4390-a035-3c0bcdc8d7a9,104 +1833-290519-2,1,100,0.05,6dc5b1be-f79b-495c-90ed-7b6e89681ae5,116 +1833-290519-2,1,100,0.05,1d8987a6-7610-4c00-9bb0-81a3cc8fd9b7,120 +1833-290519-3,1,100,0.05,89f364f3-f5c5-4051-856b-1022b6ccc407,119 +1833-290519-3,1,100,0.05,5aa5469d-f80b-43df-a63e-632e39c9164f,72 +1833-290519-4,1,100,0.05,9d2e0623-35c2-419e-af51-93cf20a52ead,85 +1833-290519-4,1,100,0.05,0bb3d6b8-64f2-49bd-bf6c-b107666d92ef,96 +1833-010719-1,2,100,0.05,1202098d-b1e3-4b6d-891d-8507c0830f6d,202 +1833-020719-1,2,100,0.05,1202098d-b1e3-4b6d-891d-8507c0830f6d,143 +1833-010719-2,2,100,0.05,1202098d-b1e3-4b6d-891d-8507c0830f6d,249 +1833-010719-2,2,100,0.05,fe8950da-16eb-4810-97dc-3e103708d8bd,29 +1833-010719-1,2,100,0.05,fe8950da-16eb-4810-97dc-3e103708d8bd,231 +1833-010719-2,2,100,0.05,277503b6-e87a-4dd2-80cd-536a65cbc59a,271 +1833-020719-1,2,100,0.05,40e5d65a-3b34-4a85-80b1-8ab409bf659f,149 +1833-020719-2,2,100,0.05,d28a01dd-3d09-4482-90c0-0a46c727a30b,119 +1833-020719-2,2,100,0.05,cb36a2aa-c8a3-4d74-9248-7af22fe9e2af,120 +1833-020719-2,2,100,0.05,60146bd8-44fe-4704-8a3a-b4314b2d11e4,93 +1833-020719-3,2,100,0.05,5f8eeed0-7967-4b9d-882c-76807a0eecd2,147 +1833-020719-3,2,100,0.05,bee1eff1-59a4-49f9-b4b3-5c0d04c838d5,168 +1833-020719-4,2,100,0.05,a4861b4d-8f8d-408a-a626-c2388be50d62,260 +1833-060619-1,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,168 +1833-050619-1,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,99 +1833-050619-2,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,135 +1833-060619-2,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,106 +1833-050619-3,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,133 +1833-050619-2,2,100,0.05,0ad3c1a0-cb9c-4dcd-9715-598e6e4ac3f9,111 +1833-050619-3,2,100,0.05,633e1f45-88f2-48a8-a79d-44d25712ac41,111 +1833-050619-2,2,100,0.05,633e1f45-88f2-48a8-a79d-44d25712ac41,89 +1833-120619-3,2,100,0.05,bd4c4bab-45fa-4ee4-bd26-b79a779ab91c,104 +1833-120619-1,2,100,0.05,bd4c4bab-45fa-4ee4-bd26-b79a779ab91c,120 +1833-120619-2,2,100,0.05,bd4c4bab-45fa-4ee4-bd26-b79a779ab91c,142 +1833-120619-2,2,100,0.05,1f0800f6-0353-445b-a594-1a071ea0c8d5,118 +1833-200619-4,2,100,0.05,a954bf7f-0d42-47c2-907f-7faa6e4bfde5,115 +1833-200619-1,2,100,0.05,a954bf7f-0d42-47c2-907f-7faa6e4bfde5,228 +1833-200619-3,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,142 +1833-200619-1,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,239 +1833-200619-4,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,117 +1833-200619-2,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,325 +1833-260619-1,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,128 +1833-260619-4,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,216 +1833-260619-2,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,168 +1833-260619-3,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,198 +1833-260619-2,2,100,0.05,c06363fb-12f8-47d6-8a89-ef4821bd7f8c,148 +1833-290519-2,2,100,0.05,8cd50dd4-efb3-4f2c-910d-94594a1dfd17,100 +1833-290519-2,2,100,0.05,4d525d3d-ed38-4c46-90ec-d0833b6f46a7,112 +1833-290519-2,2,100,0.05,8477d63c-5861-4087-8724-02fd49219829,132 +1833-010719-1,3,100,0.05,453c4f77-cce3-477c-8537-78e4b361d1a1,171 +1833-010719-1,3,100,0.05,58bf4f43-955d-4084-98e4-49d2cf63bcb1,198 +1833-020719-1,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,151 +1833-010719-1,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,216 +1833-020719-2,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,136 +1833-010719-2,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,243 +1833-020719-3,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,17 +1833-010719-2,3,100,0.05,072e4f5b-2df4-4414-a409-f592f25a7a43,133 +1833-010719-1,3,100,0.05,072e4f5b-2df4-4414-a409-f592f25a7a43,240 +1833-010719-2,3,100,0.05,9aaf9893-5849-421c-9014-187b6f4ade94,157 +1833-010719-2,3,100,0.05,66f45b2c-5020-4d83-8fcb-0afed316c574,173 +1833-010719-2,3,100,0.05,e80f3819-5049-4986-bbed-a9e0ed42e5de,174 +1833-010719-2,3,100,0.05,268c7a27-f7f9-40c2-a2da-e7d4ce28ded0,187 +1833-010719-2,3,100,0.05,86410a4b-5196-4cc0-8672-17e2e8f100b5,188 +1833-010719-2,3,100,0.05,c08ccbbe-e52f-4166-9cfa-df5e587735ed,241 +1833-010719-2,3,100,0.05,19a93460-8f00-4af8-b993-a47e6fa9b97d,259 +1833-020719-1,3,100,0.05,91673fec-cd7a-492d-9124-6cf9a8ca9128,135 +1833-020719-2,3,100,0.05,432b4928-ca71-4955-acb6-f8b06b72010c,140 +1833-020719-1,3,100,0.05,432b4928-ca71-4955-acb6-f8b06b72010c,140 +1833-020719-3,3,100,0.05,432b4928-ca71-4955-acb6-f8b06b72010c,23 +1833-020719-1,3,100,0.05,29aa8dbf-2bd8-4691-97f3-df202c52a96d,153 +1833-020719-3,3,100,0.05,29aa8dbf-2bd8-4691-97f3-df202c52a96d,164 +1833-020719-1,3,100,0.05,56e178b7-f788-4c06-b625-af7a1ceec5c3,164 +1833-020719-3,3,100,0.05,56e178b7-f788-4c06-b625-af7a1ceec5c3,170 +1833-020719-2,3,100,0.05,1d2c7ebd-3d48-489f-aba7-f4dfd44edb4e,107 +1833-020719-2,3,100,0.05,c296df8e-e7cd-4e56-9484-34abbbb957b2,139 +1833-020719-2,3,100,0.05,9d06cb6f-baf1-4420-87c5-949e06f4f822,146 +1833-020719-3,3,100,0.05,d75eeafe-b067-4bc9-a4c9-74a11bb1466f,152 +1833-020719-4,3,100,0.05,4a75a257-1f81-421c-a4a9-c4121b559c34,289 +1833-020719-4,3,100,0.05,d0bb4f6b-bc6b-485d-88cf-afa1fb7f28fb,290 +1833-020719-4,3,100,0.05,3e90e233-d807-4a2b-8338-dd8a9b1a5376,298 +1833-020719-4,3,100,0.05,9fcb03a0-c55f-4319-8f97-a51c1bfd4c2d,318 +1833-050619-1,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,107 +1833-050619-2,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,143 +1833-050619-3,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,147 +1833-050619-4,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,148 +1833-060619-1,3,100,0.05,cf77fc85-610c-407b-8773-58e63c7fbf23,174 +1833-120619-2,3,100,0.05,2385a66c-be2e-443a-aad7-8c7b0f41f6be,143 +1833-120619-2,3,100,0.05,e0226db9-04e3-4b45-b5f8-8fac79b1cafa,69 +1833-200619-1,3,100,0.05,939b507b-6464-4fd7-a8d1-41297a26c4e7,151 +1833-200619-3,3,100,0.05,f62d458a-7acd-4a39-8319-6c8ded605cde,128 +1833-200619-1,3,100,0.05,f62d458a-7acd-4a39-8319-6c8ded605cde,184 +1833-200619-4,3,100,0.05,f62d458a-7acd-4a39-8319-6c8ded605cde,102 +1833-200619-2,3,100,0.05,24dc1793-ffdc-4198-ba73-ab1665ceefd9,257 +1833-200619-2,3,100,0.05,8de86bad-f183-44f6-9d04-44e93472df4c,264 +1833-200619-4,3,100,0.05,0e24b310-e0f7-431a-b4b1-ece804b0228f,74 +1833-200619-3,3,100,0.05,0e24b310-e0f7-431a-b4b1-ece804b0228f,82 +1833-260619-1,3,100,0.05,db78137d-99cf-48a6-baf9-9252426a3db8,114 +1833-260619-2,3,100,0.05,db78137d-99cf-48a6-baf9-9252426a3db8,146 +1833-260619-3,3,100,0.05,80d08bcc-be1f-484d-86d7-3af87cef5d0f,160 +1833-260619-4,3,100,0.05,7723d3af-a375-42b0-9d19-3c22107785e0,206 +1833-260619-3,3,100,0.05,7723d3af-a375-42b0-9d19-3c22107785e0,176 +1833-260619-4,3,100,0.05,e1aa87ab-1e5c-43b7-83c2-1d4fc57bd082,196 +1833-290519-1,3,100,0.05,5f647e04-cb09-4ff5-9328-ec5602b2303c,101 +1833-290519-1,3,100,0.05,81aa445a-3d2f-46ce-9e7b-6be0b260a1d0,102 +1833-290519-4,3,100,0.05,81aa445a-3d2f-46ce-9e7b-6be0b260a1d0,92 +1833-290519-1,3,100,0.05,67e49adb-e93d-42f9-a5f1-bcf9e27aced5,162 +1833-290519-4,3,100,0.05,36fb06f7-aca0-45c1-b674-14ddddc7069f,130 +1833-290519-1,3,100,0.05,36fb06f7-aca0-45c1-b674-14ddddc7069f,176 +1833-290519-2,3,100,0.05,7d3e0f3f-bd1f-4d65-9f8e-482d5ed961c9,108 +1833-290519-2,3,100,0.05,b2466e1a-e64d-40e7-a170-218093a0397e,72 +1833-290519-2,3,100,0.05,e1c6111b-1869-4ff5-8ef2-aea5f6f67d01,74 +1833-290519-3,3,100,0.05,26a21d49-d7b4-443e-9c32-ced22bc64042,102 +1833-290519-3,3,100,0.05,d4612cb4-0882-4dbd-bc19-b86322c59082,153 +1833-290519-3,3,100,0.05,43c4c6e8-153c-4276-8a63-5f7d29cf9ee8,68 +1833-290519-3,3,100,0.05,cbec3a74-927e-48a8-adaa-e51f89b4fd08,99 +1833-290519-4,3,100,0.05,b61b8b0d-e8d7-4923-925d-71f9d7abf9ce,129 +1833-010719-2,4,100,0.05,7425d62e-bab4-4d04-a3a0-cead89764b12,223 +1833-010719-2,4,100,0.05,98732e86-3445-43d9-a50e-78340d22dec1,231 +1833-020719-3,4,100,0.05,df8a86ea-ac4f-49d4-b421-9f536b722f07,45 +1833-020719-3,4,100,0.05,0987b826-6d91-4a05-98f9-484f5e51826b,94 +1833-020719-3,4,100,0.05,7c214d30-6511-4943-8ea0-b97c649d1e2e,95 +1833-020719-4,4,100,0.05,37857f27-7998-4cfe-8e25-fa5d534e3dc8,250 +1833-050619-1,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,25 +1833-050619-2,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,137 +1833-050619-3,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,145 +1833-050619-4,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,151 +1833-060619-1,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,172 +1833-120619-4,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,119 +1833-060619-2,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,108 +1833-120619-1,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,137 +1833-120619-3,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,147 +1833-120619-2,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,170 +1833-050619-2,4,100,0.05,a33b63da-a6a9-4980-be9f-a9982a81d2df,97 +1833-050619-3,4,100,0.05,a33b63da-a6a9-4980-be9f-a9982a81d2df,123 +1833-050619-4,4,100,0.05,a33b63da-a6a9-4980-be9f-a9982a81d2df,80 +1833-060619-1,4,100,0.05,109d6ed6-4405-4323-926f-62effd49df67,144 +1833-120619-2,4,100,0.05,1acaab2a-d0d0-45e0-a89c-da4634b4d09f,81 +1833-120619-3,4,100,0.05,84a5cec3-cd43-4600-a2eb-f55b2b4992b1,100 +1833-120619-3,4,100,0.05,67655ae0-e1a2-4e1d-ad33-3d223ab1d129,101 +1833-200619-1,4,100,0.05,881bb6ab-97fd-4d7f-928c-19b650988ec1,165 +1833-200619-2,4,100,0.05,8bb6b506-f0a7-4397-a9a9-91a667a55b6c,254 +1833-200619-3,4,100,0.05,0191e631-4293-4bec-9756-2a9b24052717,113 +1833-200619-4,4,100,0.05,47a87161-3ebc-4f4b-b73f-241b9cfdb9d4,124 +1833-290519-1,4,100,0.05,bbfad854-6959-4860-858d-f6bd256a069e,118 +1833-290519-1,4,100,0.05,68c780fd-1dc3-4b22-a0bb-66b882fb8933,80 +1833-290519-2,4,100,0.05,3a635e40-482a-475f-936f-99ba9f5fa787,114 +1833-290519-2,4,100,0.05,61095d50-52a2-46a3-9819-8f6596af71c5,122 +1833-290519-2,4,100,0.05,c35b9ee0-78ce-4b24-9fb2-1085fda8e422,124 +1833-290519-3,4,100,0.05,68283812-8cd3-4b52-9d62-63878e27cf3d,135 +1833-290519-3,4,100,0.05,a7140f1e-6d13-4757-bc0e-e7e1df634a88,145 +1833-290519-3,4,100,0.05,fa10acbf-1cb3-4590-bd8f-7abb782ad5df,76 +1833-290519-4,4,100,0.05,bd7de171-9f6d-4267-8d01-7691fefa2d36,71 +1833-010719-1,5,100,0.05,41b1434f-a3e3-45f5-a2c3-9044479e6a80,134 +1833-010719-1,5,100,0.05,755fb028-82f6-4264-847c-5508653873d8,144 +1833-010719-1,5,100,0.05,be674bb8-6374-4d5c-a10d-4ce6fa2fc031,150 +1833-260619-4,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,212 +1833-260619-2,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,154 +1833-010719-2,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,235 +1833-010719-1,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,166 +1833-260619-1,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,110 +1833-260619-3,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,184 +1833-010719-2,5,100,0.05,e4f2b711-e694-46c8-8a85-73f871046d2d,221 +1833-020719-1,5,100,0.05,7ad05a2f-fd4f-4cfd-bce4-69a50db190a0,109 +1833-020719-2,5,100,0.05,a5ef9291-41c2-449f-aab4-3af00c573726,103 +1833-020719-2,5,100,0.05,18b062a6-70a3-4d83-b208-470247ff0a0a,126 +1833-020719-3,5,100,0.05,3ede0ba0-45c2-43b5-b729-a8fd59966686,117 +1833-020719-3,5,100,0.05,7b237f5a-cea9-47b0-bc5d-b25d829cf355,121 +1833-020719-4,5,100,0.05,7b237f5a-cea9-47b0-bc5d-b25d829cf355,266 +1833-020719-3,5,100,0.05,5c74c150-9611-41f9-a960-c4e93038faa3,135 +1833-020719-4,5,100,0.05,5c74c150-9611-41f9-a960-c4e93038faa3,294 +1833-200619-2,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,270 +1833-290519-4,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,115 +1833-050619-1,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,73 +1833-120619-3,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,136 +1833-050619-2,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,123 +1833-050619-3,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,127 +1833-050619-4,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,82 +1833-200619-3,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,122 +1833-060619-1,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,156 +1833-120619-4,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,122 +1833-120619-2,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,145 +1833-200619-4,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,94 +1833-050619-4,5,100,0.05,8e750e81-5a90-409e-a646-dd1c815bffbb,79 +1833-060619-2,5,100,0.05,8e750e81-5a90-409e-a646-dd1c815bffbb,68 +1833-060619-1,5,100,0.05,d2f1b62a-2251-4ac2-80d4-95221c63e793,164 +1833-060619-2,5,100,0.05,54a030ed-cfed-41a4-9e5e-fe6d7ebfe5c2,98 +1833-120619-1,5,100,0.05,417e44ce-183a-4a4a-a081-6cc8b73bbd55,133 +1833-120619-2,5,100,0.05,d87389d5-f8d7-472c-8121-527e195930df,100 +1833-120619-2,5,100,0.05,6d4aa130-9258-4a71-a718-a9d77cfbfe49,123 +1833-120619-2,5,100,0.05,c57ce315-12e2-4e26-94e6-a6fc015ddb0f,133 +1833-200619-3,5,100,0.05,791b5b20-41c7-471e-881b-2293fab54e40,59 +1833-260619-1,5,100,0.05,0319b8ce-8b28-44ec-b90a-d5de9736d50b,100 +1833-260619-2,5,100,0.05,2948d4ad-337d-4b20-99b4-71c690bd483d,115 +1833-260619-3,5,100,0.05,2948d4ad-337d-4b20-99b4-71c690bd483d,111 +1833-260619-3,5,100,0.05,16289c5d-e679-43bb-8f20-b15bf6185391,109 +1833-260619-3,5,100,0.05,626a18ce-5a2a-4a8d-b129-904004595b7d,113 +1833-260619-4,5,100,0.05,b2a58b32-3717-4741-a24f-bc5e921f29a8,162 +1833-260619-4,5,100,0.05,fb2ae576-39bf-4fd6-9512-87ed0b0949da,188 +1833-290519-1,5,100,0.05,cf56171b-496c-4aae-8340-26adfcc8e0fe,134 +1833-290519-1,5,100,0.05,9c770226-006d-414c-b04d-e743df77c5e8,158 +1833-290519-1,5,100,0.05,3a3bd569-b249-446b-91c2-07993a1fc4de,172 +1833-290519-1,5,100,0.05,f0b2aa01-32d6-4830-872d-4e2578b0171e,94 +1833-290519-2,5,100,0.05,db0a4b07-759b-4e0f-bf2d-03353582f748,80 +1833-290519-3,5,100,0.05,5502f0db-4eea-4ef2-a934-808123e162e5,109 +1833-290519-3,5,100,0.05,ba65c205-b59d-42ad-826f-04aba95abc0f,117 +1833-290519-3,5,100,0.05,346f7d40-a879-44c5-b786-c67d7bed4694,139 +1833-290519-3,5,100,0.05,2de58598-a677-407f-aa09-5179fde482b7,143 +1833-290519-4,5,100,0.05,c0dff757-d66c-4c96-8b61-ab79eb569d6a,121 +1833-290519-4,5,100,0.05,8d762aa9-1ade-4255-a288-84225eacaab2,98 +1833-010719-1,6,100,0.05,f76a581e-8c2b-4314-9456-67579f4f7fd1,152 +1833-010719-1,6,100,0.05,a55723a7-2775-4001-941e-430855dece20,183 +1833-010719-1,6,100,0.05,730e466e-e879-4db3-9fda-5b227248c873,200 +1833-010719-1,6,100,0.05,5f56e3f9-f08e-4065-87ce-f6ff82b66eea,227 +1833-010719-2,6,100,0.05,c0e5171c-e874-482a-8b7b-34451d1093e4,225 +1833-020719-1,6,100,0.05,4161c5eb-2cb2-40e3-8c61-29a33f708789,107 +1833-020719-2,6,100,0.05,82b5bfef-1991-40d2-89dc-ca9ae378ce84,99 +1833-020719-3,6,100,0.05,69809b0c-ff29-4b0d-a861-3fa6cdbf2b02,63 +1833-020719-3,6,100,0.05,78595052-c80e-4686-a83a-4e8a4d0a696b,64 +1833-020719-4,6,100,0.05,1cfaaf89-1845-4f7b-ba77-6591a2711ca9,254 +1833-020719-3,6,100,0.05,1cfaaf89-1845-4f7b-ba77-6591a2711ca9,96 +1833-020719-4,6,100,0.05,6a5978cf-669c-4b46-a875-da7c23dc19db,248 +1833-020719-4,6,100,0.05,a52a0cac-1560-4fb0-bc9e-8a88f315954b,310 +1833-050619-4,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,157 +1833-050619-1,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,111 +1833-050619-3,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,149 +1833-060619-1,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,176 +1833-050619-2,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,152 +1833-060619-2,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,112 +1833-050619-4,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,133 +1833-050619-1,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,60 +1833-260619-1,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,106 +1833-050619-3,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,117 +1833-050619-2,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,119 +1833-120619-3,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,118 +1833-060619-1,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,162 +1833-290519-4,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,108 +1833-050619-2,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,125 +1833-050619-4,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,92 +1833-060619-2,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,82 +1833-050619-1,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,64 +1833-120619-4,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,80 +1833-050619-3,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,129 +1833-060619-1,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,170 +1833-060619-2,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,105 +1833-050619-1,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,91 +1833-120619-2,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,151 +1833-120619-1,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,129 +1833-050619-4,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,135 +1833-120619-4,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,127 +1833-050619-2,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,146 +1833-120619-3,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,94 +1833-050619-3,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,143 +1833-050619-2,6,100,0.05,42631620-f795-462c-addb-a6475a5b111c,74 +1833-050619-2,6,100,0.05,711a946f-69b3-47c5-82f4-f11cfd2d22ef,81 +1833-050619-3,6,100,0.05,00780e53-a0bf-4923-8fcc-7393dde0a2a8,109 +1833-050619-4,6,100,0.05,b0c2059e-dadd-4726-8fe1-d60b15456f97,117 +1833-060619-1,6,100,0.05,98445d76-55d4-4334-a354-d127b190cc23,158 +1833-120619-4,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,120 +1833-060619-1,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,160 +1833-120619-3,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,143 +1833-200619-3,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,126 +1833-060619-2,6,100,0.05,05fd1acb-78bb-4398-9611-ec4753de6719,116 +1833-060619-2,6,100,0.05,aaff5be0-15cd-4fad-bbde-627ed1803de2,74 +1833-260619-2,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,160 +1833-120619-1,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,127 +1833-260619-1,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,124 +1833-260619-3,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,192 +1833-120619-3,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,141 +1833-200619-3,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,132 +1833-120619-2,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,169 +1833-200619-2,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,287 +1833-120619-3,6,100,0.05,9a5865f3-b57a-4af5-a3b2-5f695378542d,122 +1833-120619-3,6,100,0.05,fe5bda32-a4df-4a42-b7e9-eee85f9ee727,145 +1833-120619-4,6,100,0.05,18140d38-b9a5-4841-9f5a-ffe3f374fd5b,124 +1833-120619-4,6,100,0.05,7b76ab64-6441-436e-9b31-a266818e8cf9,85 +1833-120619-4,6,100,0.05,b248e3eb-23e2-4e21-8bd9-ddcbce4ca1b2,95 +1833-200619-3,6,100,0.05,67b8ea60-20d3-4b6f-a679-350207690edb,120 +1833-260619-3,6,100,0.05,67b8ea60-20d3-4b6f-a679-350207690edb,168 +1833-200619-1,6,100,0.05,67b8ea60-20d3-4b6f-a679-350207690edb,163 +1833-200619-1,6,100,0.05,ba1187ef-dedb-4791-8716-a8f7befb6fd3,171 +1833-200619-1,6,100,0.05,67a4c883-8ed0-4207-8bf1-9846151486db,206 +1833-200619-1,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,240 +1833-200619-4,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,121 +1833-200619-2,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,327 +1833-200619-3,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,150 +1833-200619-2,6,100,0.05,010880bf-8f2f-4440-819d-f69a7aec1e8e,28 +1833-200619-2,6,100,0.05,7435f4c7-2f39-461c-bf55-881400546594,281 +1833-200619-2,6,100,0.05,1fbb1aab-3b27-49b7-b40c-5fc6f86e553d,308 +1833-200619-2,6,100,0.05,50c6122d-e7e1-4637-999b-2fb0654304d9,321 +1833-200619-3,6,100,0.05,e831cf28-05f9-4176-a427-f8803f497ad4,75 +1833-200619-4,6,100,0.05,403c2d3c-3dae-4af2-b36d-83cf8b91c0fb,101 +1833-200619-4,6,100,0.05,d5e9dda8-c5eb-448d-933c-b9ce23dd5902,109 +1833-200619-4,6,100,0.05,de4e5e22-d1d6-4a4d-8fec-ef3219c5d5fc,80 +1833-200619-4,6,100,0.05,c46da61e-5eb8-46dd-b399-cb27e195ec35,89 +1833-260619-4,6,100,0.05,b4ce78b7-d09c-4b35-86ba-c258a7fd6cf4,182 +1833-260619-1,6,100,0.05,b4ce78b7-d09c-4b35-86ba-c258a7fd6cf4,102 +1833-260619-1,6,100,0.05,43f4ddd2-5ccc-4afb-b43f-22b0cbab6279,108 +1833-260619-1,6,100,0.05,9c177eab-36b8-4288-b89d-9368b7b96e2a,112 +1833-260619-2,6,100,0.05,8aac20f0-160f-4cc0-921e-c3db97a7e8f1,140 +1833-260619-2,6,100,0.05,7b36f452-222f-4d0f-b3f3-3c984e0f6ec2,144 +1833-260619-2,6,100,0.05,21026732-ebf7-49b7-b3ce-b01ffddf603f,156 +1833-260619-2,6,100,0.05,97ecf9a9-8823-49e3-8d83-e7db1b2e915d,170 +1833-260619-3,6,100,0.05,5fb73ac3-40d4-4152-a506-de8c0d502ebe,142 +1833-260619-4,6,100,0.05,3739c7f8-39e6-45f6-aa9e-d46952816e2a,184 +1833-260619-4,6,100,0.05,70219b23-7421-40ef-acb0-99d612e35537,200 +1833-260619-4,6,100,0.05,48731479-d41f-4898-8c2f-aee6dbb8c983,214 +1833-260619-4,6,100,0.05,11253d04-3f93-41e8-9aa2-4502d631f34e,218 +1833-260619-4,6,100,0.05,98d95bae-0e6f-449c-9923-8753820c2b64,80 +1833-290519-1,6,100,0.05,3874d7bd-5e71-42fe-a32d-d5ec94774c26,124 +1833-290519-1,6,100,0.05,72b517bc-403c-44b7-a22b-ccce17a9f531,132 +1833-290519-1,6,100,0.05,1ba61dd3-4f40-4f65-8560-1b4988a179e8,142 +1833-290519-1,6,100,0.05,8706f2d2-2c53-40d7-8b24-b0e65e72bb1c,150 +1833-290519-1,6,100,0.05,36a75459-7464-4619-aaf7-31d752ee8e83,154 +1833-290519-1,6,100,0.05,174d10bc-8f12-42f9-a79e-1284d5055f97,166 +1833-290519-1,6,100,0.05,228a3e7e-5e13-4c9a-a9de-cbf8b12cf95a,89 +1833-290519-2,6,100,0.05,976ae92f-87d8-403e-abb6-97d9514db949,76 +1833-290519-3,6,100,0.05,7af41fe8-eb72-4629-8a79-481d1ff5e373,125 +1833-290519-3,6,100,0.05,d984d89c-250d-40af-a86f-8cfc6a6513b9,141 +1833-290519-3,6,100,0.05,de287c1f-fd48-4b18-b1d6-5dc4eb18c93c,147 +1833-290519-3,6,100,0.05,c003fb49-3b59-4dec-957f-b83249a6cbb6,149 +1833-290519-3,6,100,0.05,0f291093-c33b-4614-ad43-74f353c7662e,151 +1833-290519-3,6,100,0.05,9cabed8b-26ac-4dba-bf9f-620dee3a24f7,155 +1833-290519-4,6,100,0.05,2f7c00b2-2b59-49bb-ac3e-5776ef1fd628,65 +1833-290519-4,6,100,0.05,185f9a41-d718-479e-a9c1-1a336ce55980,79 +1833-290519-4,6,100,0.05,59b005fe-d706-40ec-b9ea-ba82dc553205,90 +1833-010719-1,7,100,0.05,1762e942-7c2d-4d03-9ef0-fe603c828788,114 +1833-010719-1,7,100,0.05,64f39f10-ee1a-434b-87e4-74c0f74394b9,132 +1833-010719-2,7,100,0.05,64f39f10-ee1a-434b-87e4-74c0f74394b9,217 +1833-010719-1,7,100,0.05,0ec4ca85-7869-437b-bf87-cbc8bf104682,54 +1833-010719-2,7,100,0.05,9b0c0a7d-a892-46e1-a8fb-3971e2a1612e,211 +1833-010719-2,7,100,0.05,71fe68ed-e519-48b0-847a-f2f8c1d629bf,213 +1833-050619-2,7,100,0.05,aa0b7db7-13b2-4b69-971c-b3aec0eea645,66 +1833-050619-3,7,100,0.05,aa0b7db7-13b2-4b69-971c-b3aec0eea645,105 +1833-060619-1,7,100,0.05,19d857bc-8636-4474-b1bc-3d0c41c4407c,139 +1833-060619-2,7,100,0.05,5088f6c5-7539-4aad-80b3-d40a35ae61f1,58 +1833-120619-2,7,100,0.05,b1d528f9-e0f6-41e1-b98b-d7a3ccfa0dbc,85 +1833-120619-3,7,100,0.05,d4263fed-5f10-4af5-bd35-b4e2847592e8,120 +1833-120619-4,7,100,0.05,e48f6f36-983f-4216-a1c7-a598a8ce561b,65 +1833-200619-3,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,65 +1833-200619-4,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,68 +1833-200619-1,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,143 +1833-200619-2,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,261 +1833-200619-2,7,100,0.05,74db72d7-a48b-4d98-b68d-890ea7ee3ffb,203 +1833-200619-2,7,100,0.05,e0dac4a4-1530-42c7-8da1-c176b6c55bfa,204 +1833-200619-3,7,100,0.05,bed1c8ae-1f7d-46db-a3dc-af3ce9fad396,53 +1833-260619-1,7,100,0.05,597a49e0-d445-4452-9af7-b9db0488f573,98 +1833-260619-3,7,100,0.05,f96a458c-0715-4732-b502-f08bbfe0f449,103 +1833-260619-3,7,100,0.05,9a1550ae-203e-4e74-8e82-f98ad50ccac3,105 +1833-260619-4,7,100,0.05,fed1a5c4-acd2-4dbc-9325-7c5ce42e0f29,177 +1833-290519-1,7,100,0.05,4f257d47-b65f-466b-a493-69e4902b3ec5,106 +1833-290519-1,7,100,0.05,e1a3376d-1280-4a83-8235-f5ab8f3cac22,116 +1833-290519-1,7,100,0.05,733aa07b-e73f-4a4a-a954-cd6493b21f9d,129 +1833-290519-1,7,100,0.05,f04a80d4-083a-4f7f-bf63-e3e078bcf730,136 +1833-290519-1,7,100,0.05,a2180cfb-24e6-4b67-97a0-c9585fecda97,74 +1833-290519-1,7,100,0.05,8187534a-aa00-4ff9-aabb-356434ada9bd,82 +1833-290519-2,7,100,0.05,d762e3e5-5c37-4036-89bb-b2ad773fdf68,126 +1833-290519-2,7,100,0.05,65e44135-6c47-42a3-a199-1d0e666bba23,130 +1833-290519-2,7,100,0.05,e100fec4-122b-4de5-b1c0-78e60117aa73,97 +1833-290519-2,7,100,0.05,cafa506a-136c-46db-a949-72f54a250200,98 +1833-290519-3,7,100,0.05,a606539a-0bae-443d-9e23-8f04f12f0766,103 +1833-290519-3,7,100,0.05,11166f49-8b3e-4120-b18a-e6db4cdc278d,113 +1833-290519-3,7,100,0.05,43cc73f9-d76b-4ba7-a3ee-88d70f26e366,129 +1833-290519-3,7,100,0.05,051e75ab-ce84-450e-8489-3faf7f4bcb32,82 +1833-290519-4,7,100,0.05,837b559d-1284-4f07-9dc0-20bee50697ef,67 +1833-290519-4,7,100,0.05,546e963b-d509-4790-8811-6c0c8a1d580c,75 +1833-290519-4,7,100,0.05,edcbf7bc-de11-4821-bd20-e6d614cce147,77 +1833-290519-4,7,100,0.05,082497ec-eb32-43f5-b32c-c76f57ec54b7,94 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-0.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-0.yaml new file mode 100644 index 000000000..5ea36469d --- /dev/null +++ b/actions/identify-neurons/data/1834-graphs/graph-group-0.yaml @@ -0,0 +1,2682 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1834-010319-1_2: + 1834-010319-3_12: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + su3to5xa0j8= + 1834-010319-4_7: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DBAg9taxzj8= + 1834-060319-1_7: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 499, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xDEusRiuyz8= + 1834-060319-3_4: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qW+lztCi0z8= + 1834-060319-4_3: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 11074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7OW3QnAqzD8= + 1834-110319-1_65: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T0spO4bzyT8= + 1834-110319-2_108: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0ZaLOwUDyD8= + 1834-110319-3_101: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4588, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6FAkyBU5yT8= + 1834-110319-5_98: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 7555, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QIy0K8yKyD8= + 1834-110319-6_10: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5ZLxA1plzz8= + 1834-120319-1_1: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z63pX+pCwD8= + 1834-120319-2_39: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cTlfkmOhwD8= + 1834-120319-3_36: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cLy4psVPxD8= + 1834-120319-4_85: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ddu6T4qPwT8= + 1834-150319-2_2: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w3roqjl+xz8= + 1834-150319-3_71: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s3fhIIrDwz8= + 1834-150319-4_0: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0+Ob+fNnxT8= + 1834-220319-1_81: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + My4aEXsovz8= + 1834-220319-2_1: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TJMNejcdwz8= + 1834-220319-3_1: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /vJ4pJHgxD8= + 1834-220319-4_0: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wM0/510axT8= + 1834-010319-1_39: + 1834-010319-3_1: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J8bAynZN0T8= + 1834-060319-1_79: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 499, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bzwPrZuIzz8= + 1834-110319-1_0: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4w219Scp2D8= + 1834-110319-2_11: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8aWHmcU/3z8= + 1834-110319-6_38: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VT3goIWwzj8= + 1834-150319-1_3: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yc72JWT+0T8= + 1834-150319-3_75: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2o75Jt2Hzz8= + 1834-220319-1_87: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N+79JDW10T8= + 1834-010319-3_1: + 1834-010319-1_39: *id002 + 1834-010319-4_7: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2zIlY7tuwD8= + 1834-060319-1_79: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3ORSD1D1sz8= + 1834-060319-3_4: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mnaTvw7Fwj8= + 1834-060319-4_3: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eSerA5lDvj8= + 1834-110319-1_0: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73845, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bn/OJYLyyD8= + 1834-110319-2_108: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /ZI4Tci2uj8= + 1834-110319-3_101: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82897, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SkxLRlKuuD8= + 1834-110319-5_98: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85864, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CQFhxbA+tT8= + 1834-110319-6_10: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ctHsskZgwz8= + 1834-120319-1_1: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZUQ1H4u/zz8= + 1834-120319-2_39: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k83g2KWyzz8= + 1834-120319-3_36: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /3KYvalX0D8= + 1834-120319-4_85: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dibqEyxkzz8= + 1834-150319-1_3: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kclpzgtr1D8= + 1834-150319-2_2: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1LMssm7R0D8= + 1834-150319-3_75: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pbN33WKi0T8= + 1834-150319-4_0: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BmI4PUqA0D8= + 1834-220319-1_87: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cheaDaH10z8= + 1834-220319-2_1: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TNDwZ8Zl0D8= + 1834-220319-3_1: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IMQbtVqq0D8= + 1834-220319-4_0: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tmvMoaaB0D8= + 1834-010319-3_12: + 1834-010319-1_2: *id003 + 1834-060319-1_7: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D+XWUkHowz8= + 1834-110319-1_65: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73845, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EQXe/HREwj8= + 1834-110319-2_11: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LTEk+4Zz1j8= + 1834-110319-6_38: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WgBlNlP30T8= + 1834-150319-3_71: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I/Vi1xH90z8= + 1834-220319-1_81: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Ch2KgNl0j8= + 1834-010319-3_72: + 1834-060319-1_70: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4CuVbeDR0T8= + 1834-110319-6_1: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w9y+tCqU0j8= + 1834-010319-4_7: + 1834-010319-1_2: *id004 + 1834-010319-3_1: *id005 + 1834-060319-1_7: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77295, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fIPBWtBapj8= + 1834-060319-3_4: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85770, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q3jIiNcyvT8= + 1834-060319-4_3: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZXeMf84epj8= + 1834-110319-1_65: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 72332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bDzOJQPurj8= + 1834-110319-2_108: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 75610, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H7Ku3GCNuT8= + 1834-110319-3_101: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81384, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9gD1jw9Grj8= + 1834-110319-5_98: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84351, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1+da4X+DsT8= + 1834-110319-6_10: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ni+uS5ONuj8= + 1834-120319-1_1: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Et2D/EhJyz8= + 1834-120319-2_39: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VAPpC3pcyz8= + 1834-120319-3_36: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /ve2pMCyyz8= + 1834-120319-4_85: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KJmXfFHmyj8= + 1834-150319-1_3: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LMomspEb0T8= + 1834-150319-2_2: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + asp7CIfRzD8= + 1834-150319-3_71: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q4abIFRqzT8= + 1834-150319-4_0: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JORnjQ+zD8= + 1834-220319-1_81: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4aAiA3ubyz8= + 1834-220319-2_1: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4CXxvWsVzD8= + 1834-220319-3_1: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jnhDIUaSzD8= + 1834-220319-4_0: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ojyAZDrWzD8= + 1834-060319-1_7: + 1834-010319-1_2: *id006 + 1834-010319-3_12: *id007 + 1834-010319-4_7: *id008 + 1834-060319-3_4: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8475, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QeCc0jTEvz8= + 1834-060319-4_3: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10575, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AsX45Up2lz8= + 1834-110319-1_65: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81437, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5GowuzryqD8= + 1834-110319-2_108: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8FZw9l3utj8= + 1834-110319-3_101: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dQNBAUM1pz8= + 1834-110319-5_98: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7056, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CbBJIeLXrT8= + 1834-110319-6_10: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mKE3KSzNuj8= + 1834-120319-1_1: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tadxyDl+yD8= + 1834-120319-2_39: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q3dylxSKyD8= + 1834-120319-3_36: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PWWPhec2yT8= + 1834-120319-4_85: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iDCpRER6yD8= + 1834-150319-1_3: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5tKnoonVzz8= + 1834-150319-2_2: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zzL7nXzFyj8= + 1834-150319-3_71: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IGGjxJBJyj8= + 1834-150319-4_0: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F1J3S2LOyT8= + 1834-220319-1_81: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x2xxdtstyD8= + 1834-220319-2_1: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 8299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NPN5KDmwyD8= + 1834-220319-3_1: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G7YUubxmyT8= + 1834-220319-4_0: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 13451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ny3h0x2PyT8= + 1834-060319-1_70: + 1834-010319-3_72: *id009 + 1834-110319-2_11: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MZyAdhD4zz8= + 1834-110319-6_32: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MU1QoUn6zT8= + 1834-150319-3_75: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lgov4Sst0D8= + 1834-220319-1_87: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bNxui+Af0D8= + 1834-060319-1_71: + 1834-110319-6_4: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MkDB0g+q1j8= + 1834-060319-1_72: + 1834-110319-6_7: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lP/AtqnxxT8= + 1834-060319-1_73: + 1834-110319-6_2: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yzo6541yoz8= + 1834-060319-1_74: + 1834-110319-6_8: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FbGt7Sf71D8= + 1834-060319-1_79: + 1834-010319-1_39: *id010 + 1834-010319-3_1: *id011 + 1834-110319-1_0: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81437, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DJVoFBoKyD8= + 1834-110319-6_38: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q1nwqSwe0T8= + 1834-060319-3_4: + 1834-010319-1_2: *id012 + 1834-010319-3_1: *id013 + 1834-010319-4_7: *id014 + 1834-060319-1_7: *id015 + 1834-060319-4_3: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IfA30aA+wD8= + 1834-110319-1_65: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 72962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 11QR24khvz8= + 1834-110319-2_108: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WH/cZOwswj8= + 1834-110319-3_101: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82014, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L6pvvuxLwD8= + 1834-110319-5_98: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84981, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QTeSKO5qvz8= + 1834-110319-6_10: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VnrY0+OCxD8= + 1834-120319-1_1: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NO5Kvf2T0T8= + 1834-120319-2_39: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h4tm7nF/0T8= + 1834-120319-3_36: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CiICfWer0T8= + 1834-120319-4_85: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DsY75wCU0T8= + 1834-150319-1_3: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QGYassd50z8= + 1834-150319-2_2: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + INq+TG8h0j8= + 1834-150319-3_71: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YHRFNt860j8= + 1834-150319-4_0: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mfTpN86k0T8= + 1834-220319-1_81: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uhPUgx8c0T8= + 1834-220319-2_1: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ClalXYfm0D8= + 1834-220319-3_1: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mGKEEmYX0T8= + 1834-220319-4_0: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l96Uozzy0D8= + 1834-060319-4_3: + 1834-010319-1_2: *id016 + 1834-010319-3_1: *id017 + 1834-010319-4_7: *id018 + 1834-060319-1_7: *id019 + 1834-060319-3_4: *id020 + 1834-110319-1_65: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 70862, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z4R3XSOOrD8= + 1834-110319-2_108: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tl1n/hlquT8= + 1834-110319-3_101: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79914, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b2M0EE7Pqz8= + 1834-110319-5_98: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0oUJE23CsD8= + 1834-110319-6_10: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2M34cm7uuT8= + 1834-120319-1_1: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IEXdZVusyD8= + 1834-120319-2_39: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d2ubOgCnyD8= + 1834-120319-3_36: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9xz5fNJXyT8= + 1834-120319-4_85: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JFWxHmgyD8= + 1834-150319-1_3: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cUowc58m0D8= + 1834-150319-2_2: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s+KddH/gyj8= + 1834-150319-3_71: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hcQmG7enyj8= + 1834-150319-4_0: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pFPaTYfxyT8= + 1834-220319-1_81: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cdye0nuUyD8= + 1834-220319-2_1: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gsu22qYXyT8= + 1834-220319-3_1: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uQ5MprrUyT8= + 1834-220319-4_0: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AsrQM/LOyT8= + 1834-110319-1_0: + 1834-010319-1_39: *id021 + 1834-010319-3_1: *id022 + 1834-060319-1_79: *id023 + 1834-110319-2_11: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5VIKKCp/0T8= + 1834-110319-6_38: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CNp0I1Rk0j8= + 1834-150319-3_75: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UsjYr81q1z8= + 1834-220319-1_87: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8lQKE0m11z8= + 1834-110319-1_65: + 1834-010319-1_2: *id024 + 1834-010319-3_12: *id025 + 1834-010319-4_7: *id026 + 1834-060319-1_7: *id027 + 1834-060319-3_4: *id028 + 1834-060319-4_3: *id029 + 1834-110319-2_108: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rD+S1cwYrT8= + 1834-110319-3_101: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9052, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JaTeGBoulD8= + 1834-110319-5_98: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TPbxYEMRoD8= + 1834-110319-6_10: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UqiqdwLZvj8= + 1834-120319-1_1: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12476, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9/+xvFMbyT8= + 1834-120319-2_39: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vrff0UNWyT8= + 1834-120319-3_36: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bQk9k0MZyj8= + 1834-120319-4_85: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SUSHrnomyT8= + 1834-150319-1_3: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +TBLik1i0D8= + 1834-150319-2_2: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y9R1f4eNyz8= + 1834-150319-3_71: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oRJ/daUJyz8= + 1834-150319-4_0: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fem4UFSqyj8= + 1834-220319-1_81: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R3wk6eSuyD8= + 1834-220319-2_1: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lHByfoCEyT8= + 1834-220319-3_1: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +AA4Vl4byj8= + 1834-220319-4_0: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rsux4F2cyj8= + 1834-110319-2_108: + 1834-010319-1_2: *id030 + 1834-010319-3_1: *id031 + 1834-010319-4_7: *id032 + 1834-060319-1_7: *id033 + 1834-060319-3_4: *id034 + 1834-060319-4_3: *id035 + 1834-110319-1_65: *id036 + 1834-110319-3_101: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5774, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2kfUgypRrD8= + 1834-110319-5_98: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yhoRl89ypz8= + 1834-110319-6_10: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ipWAOLO4wT8= + 1834-120319-1_1: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uG9nxCoEyT8= + 1834-120319-2_39: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NsZl/f47yT8= + 1834-120319-3_36: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A0fxjhcvyj8= + 1834-120319-4_85: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ua5yfyr2yD8= + 1834-150319-1_3: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 641MUxOY0D8= + 1834-150319-2_2: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bA8Kr5SNyz8= + 1834-150319-3_71: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5nqI+fzvyj8= + 1834-150319-4_0: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k9OQifHGyj8= + 1834-220319-1_81: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ef/GvdO2yD8= + 1834-220319-2_1: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ux3X/tzUyT8= + 1834-220319-3_1: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gj15vsSJyj8= + 1834-220319-4_0: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O8U7BcX3yj8= + 1834-110319-2_11: + 1834-010319-1_39: *id037 + 1834-010319-3_12: *id038 + 1834-060319-1_70: *id039 + 1834-110319-1_0: *id040 + 1834-110319-6_1: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v3sU3bMa0j8= + 1834-150319-3_75: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ycBkiEal2j8= + 1834-220319-1_87: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KPS+0UmK2T8= + 1834-110319-3_101: + 1834-010319-1_2: *id041 + 1834-010319-3_1: *id042 + 1834-010319-4_7: *id043 + 1834-060319-1_7: *id044 + 1834-060319-3_4: *id045 + 1834-060319-4_3: *id046 + 1834-110319-1_65: *id047 + 1834-110319-2_108: *id048 + 1834-110319-5_98: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y2M3sxZ6mD8= + 1834-110319-6_10: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tXnmyNXlvT8= + 1834-120319-1_1: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3424, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jn+XEyWHyD8= + 1834-120319-2_39: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LYwTS263yD8= + 1834-120319-3_36: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8jjFDI6RyT8= + 1834-120319-4_85: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B2c8fBx8yD8= + 1834-150319-1_3: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w2p/Jex40D8= + 1834-150319-2_2: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x+8BzsYLyz8= + 1834-150319-3_71: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eZbNS36Zyj8= + 1834-150319-4_0: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M/050tI0yj8= + 1834-220319-1_81: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uhK8zSFHyD8= + 1834-220319-2_1: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sSKstlUryT8= + 1834-220319-3_1: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cx5M7d3kyT8= + 1834-220319-4_0: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uIsN02c5yj8= + 1834-110319-5_98: + 1834-010319-1_2: *id049 + 1834-010319-3_1: *id050 + 1834-010319-4_7: *id051 + 1834-060319-1_7: *id052 + 1834-060319-3_4: *id053 + 1834-060319-4_3: *id054 + 1834-110319-1_65: *id055 + 1834-110319-2_108: *id056 + 1834-110319-3_101: *id057 + 1834-110319-6_10: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oiLqgTWavT8= + 1834-120319-1_1: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TkvpCEdEyD8= + 1834-120319-2_39: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sUyhXstmyD8= + 1834-120319-3_36: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 87ymZshIyT8= + 1834-120319-4_85: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V1p4M0wxyD8= + 1834-150319-1_3: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w74fC09B0D8= + 1834-150319-2_2: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Yxkjs1Kfyj8= + 1834-150319-3_71: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7vNgD8M6yj8= + 1834-150319-4_0: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + USU0eOvdyT8= + 1834-220319-1_81: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PUjsNA0UyD8= + 1834-220319-2_1: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dd755KriyD8= + 1834-220319-3_1: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mk3naO2cyT8= + 1834-220319-4_0: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tdxLKsPLyT8= + 1834-110319-6_0: {} + 1834-110319-6_1: + 1834-010319-3_72: *id058 + 1834-110319-2_11: *id059 + 1834-110319-6_10: + 1834-010319-1_2: *id060 + 1834-010319-3_1: *id061 + 1834-010319-4_7: *id062 + 1834-060319-1_7: *id063 + 1834-060319-3_4: *id064 + 1834-060319-4_3: *id065 + 1834-110319-1_65: *id066 + 1834-110319-2_108: *id067 + 1834-110319-3_101: *id068 + 1834-110319-5_98: *id069 + 1834-120319-1_1: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + op2vx/ESyz8= + 1834-120319-2_39: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FCeISSbwyj8= + 1834-120319-3_36: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nJn9KknByT8= + 1834-120319-4_85: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yE2mOsjGyT8= + 1834-150319-1_3: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZXYA8DKbzz8= + 1834-150319-2_2: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +N5j0+YLyj8= + 1834-150319-3_75: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IJDcTi02yz8= + 1834-150319-4_0: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sdUw+ikoyj8= + 1834-220319-1_81: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a+dB4pYiyj8= + 1834-220319-2_1: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rJxc1mrhyj8= + 1834-220319-3_1: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qxx9sKcOzD8= + 1834-220319-4_0: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3GCpCOyAzD8= + 1834-110319-6_13: {} + 1834-110319-6_15: {} + 1834-110319-6_2: + 1834-060319-1_73: *id070 + 1834-110319-6_3: {} + 1834-110319-6_32: + 1834-060319-1_70: *id071 + 1834-110319-6_33: {} + 1834-110319-6_34: {} + 1834-110319-6_38: + 1834-010319-1_39: *id072 + 1834-010319-3_12: *id073 + 1834-060319-1_79: *id074 + 1834-110319-1_0: *id075 + 1834-150319-3_71: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ew3HZIF/zz8= + 1834-220319-1_87: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D2TjboQ+0D8= + 1834-110319-6_4: + 1834-060319-1_71: *id076 + 1834-110319-6_5: {} + 1834-110319-6_6: {} + 1834-110319-6_7: + 1834-060319-1_72: *id077 + 1834-110319-6_8: + 1834-060319-1_74: *id078 + 1834-110319-6_9: {} + 1834-120319-1_1: + 1834-010319-1_2: *id079 + 1834-010319-3_1: *id080 + 1834-010319-4_7: *id081 + 1834-060319-1_7: *id082 + 1834-060319-3_4: *id083 + 1834-060319-4_3: *id084 + 1834-110319-1_65: *id085 + 1834-110319-2_108: *id086 + 1834-110319-3_101: *id087 + 1834-110319-5_98: *id088 + 1834-110319-6_10: *id089 + 1834-120319-2_39: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9h18cx0EkT8= + 1834-120319-3_36: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aIX5iPpAqD8= + 1834-120319-4_85: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xMIXGCxAnD8= + 1834-150319-1_3: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4e/Dvd5Dyz8= + 1834-150319-2_2: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CbhNgu1wtj8= + 1834-150319-3_71: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1oEdGKfCqT8= + 1834-150319-4_0: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ihm/9ZOZrT8= + 1834-220319-1_81: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PrxVS9Ujqz8= + 1834-220319-2_1: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rn+bXiLUrT8= + 1834-220319-3_1: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OgcleZfErj8= + 1834-220319-4_0: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZnFt+LA2sj8= + 1834-120319-2_39: + 1834-010319-1_2: *id090 + 1834-010319-3_1: *id091 + 1834-010319-4_7: *id092 + 1834-060319-1_7: *id093 + 1834-060319-3_4: *id094 + 1834-060319-4_3: *id095 + 1834-110319-1_65: *id096 + 1834-110319-2_108: *id097 + 1834-110319-3_101: *id098 + 1834-110319-5_98: *id099 + 1834-110319-6_10: *id100 + 1834-120319-1_1: *id101 + 1834-120319-3_36: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JPC9LTwJpz8= + 1834-120319-4_85: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bK0e1uSqmz8= + 1834-150319-1_3: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9qnnjt9Zyj8= + 1834-150319-2_2: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NuOXzh+AtT8= + 1834-150319-3_71: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2vPatr2uqD8= + 1834-150319-4_0: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LL/jwPL5qz8= + 1834-220319-1_81: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2mE96JgYqz8= + 1834-220319-2_1: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HTko5KXHqz8= + 1834-220319-3_1: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EQw+QYfErD8= + 1834-220319-4_0: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B363Uw8HsT8= + 1834-120319-3_36: + 1834-010319-1_2: *id102 + 1834-010319-3_1: *id103 + 1834-010319-4_7: *id104 + 1834-060319-1_7: *id105 + 1834-060319-3_4: *id106 + 1834-060319-4_3: *id107 + 1834-110319-1_65: *id108 + 1834-110319-2_108: *id109 + 1834-110319-3_101: *id110 + 1834-110319-5_98: *id111 + 1834-110319-6_10: *id112 + 1834-120319-1_1: *id113 + 1834-120319-2_39: *id114 + 1834-120319-4_85: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g5VqyShdoj8= + 1834-150319-1_3: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eA/2TTeRyD8= + 1834-150319-2_2: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d8Wt/0k+qj8= + 1834-150319-3_71: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kIWMbn4Hpz8= + 1834-150319-4_0: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sWSaQfm6lD8= + 1834-220319-1_81: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GNr6ne2NtT8= + 1834-220319-2_1: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fuV/ENsKsz8= + 1834-220319-3_1: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J4OU7+zQrz8= + 1834-220319-4_0: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hyo/5UtEtD8= + 1834-120319-4_85: + 1834-010319-1_2: *id115 + 1834-010319-3_1: *id116 + 1834-010319-4_7: *id117 + 1834-060319-1_7: *id118 + 1834-060319-3_4: *id119 + 1834-060319-4_3: *id120 + 1834-110319-1_65: *id121 + 1834-110319-2_108: *id122 + 1834-110319-3_101: *id123 + 1834-110319-5_98: *id124 + 1834-110319-6_10: *id125 + 1834-120319-1_1: *id126 + 1834-120319-2_39: *id127 + 1834-120319-3_36: *id128 + 1834-150319-1_3: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7r7GrJCCyj8= + 1834-150319-2_2: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + depix0FSsj8= + 1834-150319-3_71: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5bS7FfKMqz8= + 1834-150319-4_0: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kQplI+cJqT8= + 1834-220319-1_81: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2YdOeH1Ysj8= + 1834-220319-2_1: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W5PU5mCrsj8= + 1834-220319-3_1: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xR8ad5GvsT8= + 1834-220319-4_0: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xmm8qQLQtD8= + 1834-150319-1_3: + 1834-010319-1_39: *id129 + 1834-010319-3_1: *id130 + 1834-010319-4_7: *id131 + 1834-060319-1_7: *id132 + 1834-060319-3_4: *id133 + 1834-060319-4_3: *id134 + 1834-110319-1_65: *id135 + 1834-110319-2_108: *id136 + 1834-110319-3_101: *id137 + 1834-110319-5_98: *id138 + 1834-110319-6_10: *id139 + 1834-120319-1_1: *id140 + 1834-120319-2_39: *id141 + 1834-120319-3_36: *id142 + 1834-120319-4_85: *id143 + 1834-150319-2_2: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bE888sYByD8= + 1834-150319-3_75: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gTrnIx17xz8= + 1834-150319-4_0: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EVH8anw1yD8= + 1834-220319-1_87: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /UCGspJTxD8= + 1834-220319-2_1: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + prr45l7KyD8= + 1834-220319-3_1: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XJWDnrH6xz8= + 1834-220319-4_0: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x22W/YinyD8= + 1834-150319-2_2: + 1834-010319-1_2: *id144 + 1834-010319-3_1: *id145 + 1834-010319-4_7: *id146 + 1834-060319-1_7: *id147 + 1834-060319-3_4: *id148 + 1834-060319-4_3: *id149 + 1834-110319-1_65: *id150 + 1834-110319-2_108: *id151 + 1834-110319-3_101: *id152 + 1834-110319-5_98: *id153 + 1834-110319-6_10: *id154 + 1834-120319-1_1: *id155 + 1834-120319-2_39: *id156 + 1834-120319-3_36: *id157 + 1834-120319-4_85: *id158 + 1834-150319-1_3: *id159 + 1834-150319-3_75: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4wU+1aNGtD8= + 1834-150319-4_0: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VARSSQ9vpj8= + 1834-220319-1_81: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8oci6wk+vj8= + 1834-220319-2_1: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hM3SBbI1uz8= + 1834-220319-3_1: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FZ4HTkNbtz8= + 1834-220319-4_0: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fL49oPwAuz8= + 1834-150319-3_71: + 1834-010319-1_2: *id160 + 1834-010319-3_12: *id161 + 1834-010319-4_7: *id162 + 1834-060319-1_7: *id163 + 1834-060319-3_4: *id164 + 1834-060319-4_3: *id165 + 1834-110319-1_65: *id166 + 1834-110319-2_108: *id167 + 1834-110319-3_101: *id168 + 1834-110319-5_98: *id169 + 1834-110319-6_38: *id170 + 1834-120319-1_1: *id171 + 1834-120319-2_39: *id172 + 1834-120319-3_36: *id173 + 1834-120319-4_85: *id174 + 1834-150319-4_0: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /Vxq2MtOqj8= + 1834-220319-1_81: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7rEHC3hXsj8= + 1834-220319-2_1: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yAkO9FL+sD8= + 1834-220319-3_1: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0JCcOU/ZrT8= + 1834-220319-4_0: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u0rCgShjsz8= + 1834-150319-3_75: + 1834-010319-1_39: *id175 + 1834-010319-3_1: *id176 + 1834-060319-1_70: *id177 + 1834-110319-1_0: *id178 + 1834-110319-2_11: *id179 + 1834-110319-6_10: *id180 + 1834-150319-1_3: *id181 + 1834-150319-2_2: *id182 + 1834-220319-1_87: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rKxaRcNAxT8= + 1834-150319-4_0: + 1834-010319-1_2: *id183 + 1834-010319-3_1: *id184 + 1834-010319-4_7: *id185 + 1834-060319-1_7: *id186 + 1834-060319-3_4: *id187 + 1834-060319-4_3: *id188 + 1834-110319-1_65: *id189 + 1834-110319-2_108: *id190 + 1834-110319-3_101: *id191 + 1834-110319-5_98: *id192 + 1834-110319-6_10: *id193 + 1834-120319-1_1: *id194 + 1834-120319-2_39: *id195 + 1834-120319-3_36: *id196 + 1834-120319-4_85: *id197 + 1834-150319-1_3: *id198 + 1834-150319-2_2: *id199 + 1834-150319-3_71: *id200 + 1834-220319-1_81: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j1DetI+Rtj8= + 1834-220319-2_1: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JxCJjmpBsz8= + 1834-220319-3_1: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VFUgitqCrj8= + 1834-220319-4_0: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xY4sVk6Zsz8= + 1834-220319-1_81: + 1834-010319-1_2: *id201 + 1834-010319-3_12: *id202 + 1834-010319-4_7: *id203 + 1834-060319-1_7: *id204 + 1834-060319-3_4: *id205 + 1834-060319-4_3: *id206 + 1834-110319-1_65: *id207 + 1834-110319-2_108: *id208 + 1834-110319-3_101: *id209 + 1834-110319-5_98: *id210 + 1834-110319-6_10: *id211 + 1834-120319-1_1: *id212 + 1834-120319-2_39: *id213 + 1834-120319-3_36: *id214 + 1834-120319-4_85: *id215 + 1834-150319-2_2: *id216 + 1834-150319-3_71: *id217 + 1834-150319-4_0: *id218 + 1834-220319-2_1: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hQRPgSnpoz8= + 1834-220319-3_1: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1xioqK7Arj8= + 1834-220319-4_0: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YlCIbggfsD8= + 1834-220319-1_87: + 1834-010319-1_39: *id219 + 1834-010319-3_1: *id220 + 1834-060319-1_70: *id221 + 1834-110319-1_0: *id222 + 1834-110319-2_11: *id223 + 1834-110319-6_38: *id224 + 1834-150319-1_3: *id225 + 1834-150319-3_75: *id226 + 1834-220319-2_1: + 1834-010319-1_2: *id227 + 1834-010319-3_1: *id228 + 1834-010319-4_7: *id229 + 1834-060319-1_7: *id230 + 1834-060319-3_4: *id231 + 1834-060319-4_3: *id232 + 1834-110319-1_65: *id233 + 1834-110319-2_108: *id234 + 1834-110319-3_101: *id235 + 1834-110319-5_98: *id236 + 1834-110319-6_10: *id237 + 1834-120319-1_1: *id238 + 1834-120319-2_39: *id239 + 1834-120319-3_36: *id240 + 1834-120319-4_85: *id241 + 1834-150319-1_3: *id242 + 1834-150319-2_2: *id243 + 1834-150319-3_71: *id244 + 1834-150319-4_0: *id245 + 1834-220319-1_81: *id246 + 1834-220319-3_1: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VKZHecb+nz8= + 1834-220319-4_0: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D41XmZbrnz8= + 1834-220319-3_1: + 1834-010319-1_2: *id247 + 1834-010319-3_1: *id248 + 1834-010319-4_7: *id249 + 1834-060319-1_7: *id250 + 1834-060319-3_4: *id251 + 1834-060319-4_3: *id252 + 1834-110319-1_65: *id253 + 1834-110319-2_108: *id254 + 1834-110319-3_101: *id255 + 1834-110319-5_98: *id256 + 1834-110319-6_10: *id257 + 1834-120319-1_1: *id258 + 1834-120319-2_39: *id259 + 1834-120319-3_36: *id260 + 1834-120319-4_85: *id261 + 1834-150319-1_3: *id262 + 1834-150319-2_2: *id263 + 1834-150319-3_71: *id264 + 1834-150319-4_0: *id265 + 1834-220319-1_81: *id266 + 1834-220319-2_1: *id267 + 1834-220319-4_0: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h/qZtJXznj8= + 1834-220319-4_0: + 1834-010319-1_2: *id268 + 1834-010319-3_1: *id269 + 1834-010319-4_7: *id270 + 1834-060319-1_7: *id271 + 1834-060319-3_4: *id272 + 1834-060319-4_3: *id273 + 1834-110319-1_65: *id274 + 1834-110319-2_108: *id275 + 1834-110319-3_101: *id276 + 1834-110319-5_98: *id277 + 1834-110319-6_10: *id278 + 1834-120319-1_1: *id279 + 1834-120319-2_39: *id280 + 1834-120319-3_36: *id281 + 1834-120319-4_85: *id282 + 1834-150319-1_3: *id283 + 1834-150319-2_2: *id284 + 1834-150319-3_71: *id285 + 1834-150319-4_0: *id286 + 1834-220319-1_81: *id287 + 1834-220319-2_1: *id288 + 1834-220319-3_1: *id289 +_node: &id292 + 1834-010319-1_2: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id290 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + AgAAAAAAAAA= + 1834-010319-1_39: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + JwAAAAAAAAA= + 1834-010319-3_1: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AQAAAAAAAAA= + 1834-010319-3_12: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + DAAAAAAAAAA= + 1834-010319-3_72: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + SAAAAAAAAAA= + 1834-010319-4_7: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + BwAAAAAAAAA= + 1834-060319-1_7: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + BwAAAAAAAAA= + 1834-060319-1_70: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + RgAAAAAAAAA= + 1834-060319-1_71: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + RwAAAAAAAAA= + 1834-060319-1_72: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + SAAAAAAAAAA= + 1834-060319-1_73: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + SQAAAAAAAAA= + 1834-060319-1_74: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + SgAAAAAAAAA= + 1834-060319-1_79: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + TwAAAAAAAAA= + 1834-060319-3_4: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + BAAAAAAAAAA= + 1834-060319-4_3: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AwAAAAAAAAA= + 1834-110319-1_0: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AAAAAAAAAAA= + 1834-110319-1_65: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + QQAAAAAAAAA= + 1834-110319-2_108: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + bAAAAAAAAAA= + 1834-110319-2_11: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + CwAAAAAAAAA= + 1834-110319-3_101: + action_id: 1834-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + ZQAAAAAAAAA= + 1834-110319-5_98: + action_id: 1834-110319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + YgAAAAAAAAA= + 1834-110319-6_0: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AAAAAAAAAAA= + 1834-110319-6_1: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AQAAAAAAAAA= + 1834-110319-6_10: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + CgAAAAAAAAA= + 1834-110319-6_13: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + DQAAAAAAAAA= + 1834-110319-6_15: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + DwAAAAAAAAA= + 1834-110319-6_2: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AgAAAAAAAAA= + 1834-110319-6_3: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AwAAAAAAAAA= + 1834-110319-6_32: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + IAAAAAAAAAA= + 1834-110319-6_33: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + IQAAAAAAAAA= + 1834-110319-6_34: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + IgAAAAAAAAA= + 1834-110319-6_38: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + JgAAAAAAAAA= + 1834-110319-6_4: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + BAAAAAAAAAA= + 1834-110319-6_5: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + BQAAAAAAAAA= + 1834-110319-6_6: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + BgAAAAAAAAA= + 1834-110319-6_7: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + BwAAAAAAAAA= + 1834-110319-6_8: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + CAAAAAAAAAA= + 1834-110319-6_9: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + CQAAAAAAAAA= + 1834-120319-1_1: + action_id: 1834-120319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AQAAAAAAAAA= + 1834-120319-2_39: + action_id: 1834-120319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + JwAAAAAAAAA= + 1834-120319-3_36: + action_id: 1834-120319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + JAAAAAAAAAA= + 1834-120319-4_85: + action_id: 1834-120319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + VQAAAAAAAAA= + 1834-150319-1_3: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AwAAAAAAAAA= + 1834-150319-2_2: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AgAAAAAAAAA= + 1834-150319-3_71: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + RwAAAAAAAAA= + 1834-150319-3_75: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + SwAAAAAAAAA= + 1834-150319-4_0: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AAAAAAAAAAA= + 1834-220319-1_81: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + UQAAAAAAAAA= + 1834-220319-1_87: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + VwAAAAAAAAA= + 1834-220319-2_1: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AQAAAAAAAAA= + 1834-220319-3_1: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AQAAAAAAAAA= + 1834-220319-4_0: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id290 + - !!binary | + AAAAAAAAAAA= +adjlist_inner_dict_factory: &id291 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id291 +edge_attr_dict_factory: *id291 +graph: {} +node_dict_factory: *id291 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id292 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-1.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-1.yaml new file mode 100644 index 000000000..09995d119 --- /dev/null +++ b/actions/identify-neurons/data/1834-graphs/graph-group-1.yaml @@ -0,0 +1,438 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1834-010319-1_48: + 1834-010319-3_18: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + M3O14YMxuT8= + 1834-010319-4_10: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t2ODHKdz0T8= + 1834-060319-2_104: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g0quPTzuxj8= + 1834-110319-6_35: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kULFiWaO2T8= + 1834-120319-1_3: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZTGZgdcnzj8= + 1834-120319-2_41: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R9TWDKF/wT8= + 1834-120319-3_38: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j6kPfcoRwT8= + 1834-150319-1_50: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vYkXHPzR3D8= + 1834-010319-3_18: + 1834-010319-1_48: *id002 + 1834-010319-4_10: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nfh/5wPhzT8= + 1834-060319-2_104: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TeKmQg82xj8= + 1834-110319-6_35: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cY+A1pvc2T8= + 1834-120319-1_3: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sDHAP4+xzD8= + 1834-120319-2_41: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fpes9Bo6vT8= + 1834-120319-3_38: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SWM1CwuYvT8= + 1834-150319-1_4: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f/JPPieN1z8= + 1834-010319-4_10: + 1834-010319-1_48: *id003 + 1834-010319-3_18: *id004 + 1834-060319-2_104: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ju6vM+Pyzz8= + 1834-110319-6_35: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VzMlz1HI2j8= + 1834-120319-1_3: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l6cOcL0l0j8= + 1834-120319-2_41: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wu4xTvAwzD8= + 1834-120319-3_38: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4+Iz1EFnyz8= + 1834-150319-1_4: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d7HYqY0c1j8= + 1834-060319-2_104: + 1834-010319-1_48: *id005 + 1834-010319-3_18: *id006 + 1834-010319-4_10: *id007 + 1834-110319-6_35: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WhscScVJ2z8= + 1834-120319-1_3: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qUltU3/quz8= + 1834-120319-2_41: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YNBkQAyfwD8= + 1834-120319-3_38: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QFDu/0eLwD8= + 1834-150319-1_4: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oAESLzKLzz8= + 1834-110319-6_11: + 1834-150319-1_4: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AIgl+xBE3z8= + 1834-110319-6_12: + 1834-150319-1_7: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vhAigXC31j8= + 1834-110319-6_19: + 1834-150319-1_50: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kyZ/aJMq3T8= + 1834-110319-6_35: + 1834-010319-1_48: *id008 + 1834-010319-3_18: *id009 + 1834-010319-4_10: *id010 + 1834-060319-2_104: *id011 + 1834-120319-1_3: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wfqxv5Dw2z8= + 1834-120319-2_41: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CXNhvQfs2j8= + 1834-120319-3_38: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bMTUiCv52j8= + 1834-150319-1_46: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PUSGwnBO2D8= + 1834-110319-6_36: {} + 1834-120319-1_3: + 1834-010319-1_48: *id012 + 1834-010319-3_18: *id013 + 1834-010319-4_10: *id014 + 1834-060319-2_104: *id015 + 1834-110319-6_35: *id016 + 1834-120319-2_41: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xjX6OmUSxT8= + 1834-120319-3_38: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LsRAt+qFxT8= + 1834-150319-1_4: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +n83h/TEyj8= + 1834-120319-2_41: + 1834-010319-1_48: *id017 + 1834-010319-3_18: *id018 + 1834-010319-4_10: *id019 + 1834-060319-2_104: *id020 + 1834-110319-6_35: *id021 + 1834-120319-1_3: *id022 + 1834-120319-3_38: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vA9MMd6DlT8= + 1834-150319-1_4: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VB9w3K5I0j8= + 1834-120319-3_38: + 1834-010319-1_48: *id023 + 1834-010319-3_18: *id024 + 1834-010319-4_10: *id025 + 1834-060319-2_104: *id026 + 1834-110319-6_35: *id027 + 1834-120319-1_3: *id028 + 1834-120319-2_41: *id029 + 1834-150319-1_4: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bO4/LGbJ0T8= + 1834-150319-1_4: + 1834-010319-3_18: *id030 + 1834-010319-4_10: *id031 + 1834-060319-2_104: *id032 + 1834-110319-6_11: *id033 + 1834-120319-1_3: *id034 + 1834-120319-2_41: *id035 + 1834-120319-3_38: *id036 + 1834-150319-1_46: + 1834-110319-6_35: *id037 + 1834-150319-1_50: + 1834-010319-1_48: *id038 + 1834-110319-6_19: *id039 + 1834-150319-1_7: + 1834-110319-6_12: *id040 +_node: &id043 + 1834-010319-1_48: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id041 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + MAAAAAAAAAA= + 1834-010319-3_18: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + EgAAAAAAAAA= + 1834-010319-4_10: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + CgAAAAAAAAA= + 1834-060319-2_104: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + aAAAAAAAAAA= + 1834-110319-6_11: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + CwAAAAAAAAA= + 1834-110319-6_12: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + DAAAAAAAAAA= + 1834-110319-6_19: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + EwAAAAAAAAA= + 1834-110319-6_35: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + IwAAAAAAAAA= + 1834-110319-6_36: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + JAAAAAAAAAA= + 1834-120319-1_3: + action_id: 1834-120319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + AwAAAAAAAAA= + 1834-120319-2_41: + action_id: 1834-120319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + KQAAAAAAAAA= + 1834-120319-3_38: + action_id: 1834-120319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + JgAAAAAAAAA= + 1834-150319-1_4: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + BAAAAAAAAAA= + 1834-150319-1_46: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + LgAAAAAAAAA= + 1834-150319-1_50: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + MgAAAAAAAAA= + 1834-150319-1_7: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id041 + - !!binary | + BwAAAAAAAAA= +adjlist_inner_dict_factory: &id042 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id042 +edge_attr_dict_factory: *id042 +graph: {} +node_dict_factory: *id042 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id043 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-2.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-2.yaml new file mode 100644 index 000000000..2721d9ac8 --- /dev/null +++ b/actions/identify-neurons/data/1834-graphs/graph-group-2.yaml @@ -0,0 +1,653 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1834-060319-2_113: + 1834-110319-3_47: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + WLLStkPipD8= + 1834-110319-5_18: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GQ4AF88+pT8= + 1834-110319-6_16: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MhEHzbzNqj8= + 1834-120319-2_51: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hGMlXsaBtT8= + 1834-120319-3_70: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JK66Wkvpwj8= + 1834-120319-4_75: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 494yzld6sT8= + 1834-220319-1_83: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mqSDwWQNuj8= + 1834-220319-2_49: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5+2IbaVEuj8= + 1834-220319-3_46: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AGQVNgmGtz8= + 1834-220319-4_60: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Te+UYHWLxj8= + 1834-110319-3_47: + 1834-060319-2_113: *id002 + 1834-110319-5_18: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G5YPA2j8nD8= + 1834-110319-6_16: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UZsKCHlJoj8= + 1834-120319-2_51: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xeJAvnEOtD8= + 1834-120319-3_70: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dAisiaeJwz8= + 1834-120319-4_75: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + owPrI3l5sT8= + 1834-220319-1_83: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GVPXZmX/uD8= + 1834-220319-2_49: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uilDpyZvuT8= + 1834-220319-3_46: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pmDiTb37tj8= + 1834-220319-4_60: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + umCqyirNxj8= + 1834-110319-5_18: + 1834-060319-2_113: *id003 + 1834-110319-3_47: *id004 + 1834-110319-6_16: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C5NlREfIpj8= + 1834-120319-2_51: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a4CEHbRtsT8= + 1834-120319-3_70: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IYscv1gHwj8= + 1834-120319-4_75: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZgxGJe0hrT8= + 1834-220319-1_83: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CZEhOPvlsz8= + 1834-220319-2_49: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bCx29KVGtj8= + 1834-220319-3_46: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J+Jxrd3Dsz8= + 1834-220319-4_60: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EwBK0UdYxT8= + 1834-110319-6_16: + 1834-060319-2_113: *id005 + 1834-110319-3_47: *id006 + 1834-110319-5_18: *id007 + 1834-120319-2_43: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6kpfFIyCwT8= + 1834-120319-3_70: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KRJUWXx8xD8= + 1834-120319-4_75: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sw+9oRBprT8= + 1834-220319-1_83: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vdxf0bKLtj8= + 1834-220319-2_7: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MFhaYu0tyz8= + 1834-220319-3_29: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eWQa/otSyj8= + 1834-220319-4_60: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HWmQ+bOLxT8= + 1834-110319-6_17: + 1834-120319-2_51: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5b23W8lY5j8= + 1834-220319-1_79: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jzCDuBt66D8= + 1834-220319-2_49: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WMTJKUIc5z8= + 1834-220319-3_46: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O6OWdEb25j8= + 1834-120319-2_43: + 1834-110319-6_16: *id008 + 1834-220319-1_79: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dQ94zXzxsD8= + 1834-220319-2_7: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HWTTnN39wT8= + 1834-220319-3_29: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U8IMuFT/wD8= + 1834-220319-4_60: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tG1ZaqVWuD8= + 1834-120319-2_51: + 1834-060319-2_113: *id009 + 1834-110319-3_47: *id010 + 1834-110319-5_18: *id011 + 1834-110319-6_17: *id012 + 1834-120319-3_70: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RMcdeeS3uz8= + 1834-120319-4_75: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aWZ0ib+Ksz8= + 1834-220319-1_83: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + paPWtnf4tj8= + 1834-220319-2_49: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qqbivTJvuT8= + 1834-220319-3_46: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M6TAVt0ptz8= + 1834-120319-3_70: + 1834-060319-2_113: *id013 + 1834-110319-3_47: *id014 + 1834-110319-5_18: *id015 + 1834-110319-6_16: *id016 + 1834-120319-2_51: *id017 + 1834-120319-4_75: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sAfBiiS2wD8= + 1834-220319-1_83: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LPGYAFSxwj8= + 1834-220319-2_49: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MSQWfDAhwz8= + 1834-220319-3_46: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mEO5oHmgwj8= + 1834-220319-4_60: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cIRSNsmHxT8= + 1834-120319-4_75: + 1834-060319-2_113: *id018 + 1834-110319-3_47: *id019 + 1834-110319-5_18: *id020 + 1834-110319-6_16: *id021 + 1834-120319-2_51: *id022 + 1834-120319-3_70: *id023 + 1834-220319-1_83: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M0V8dD8gqz8= + 1834-220319-2_49: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9hJdtaQHqz8= + 1834-220319-3_46: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1ao69BHMpj8= + 1834-220319-4_60: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +F+9r73/wT8= + 1834-220319-1_73: + 1834-220319-2_7: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mIBKiFSbmz8= + 1834-220319-3_29: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rofTVsrknD8= + 1834-220319-1_79: + 1834-110319-6_17: *id024 + 1834-120319-2_43: *id025 + 1834-220319-4_60: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M8TOm13Luz8= + 1834-220319-1_83: + 1834-060319-2_113: *id026 + 1834-110319-3_47: *id027 + 1834-110319-5_18: *id028 + 1834-110319-6_16: *id029 + 1834-120319-2_51: *id030 + 1834-120319-3_70: *id031 + 1834-120319-4_75: *id032 + 1834-220319-2_49: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1YiLfisqoD8= + 1834-220319-3_46: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bics9PSFoD8= + 1834-220319-2_49: + 1834-060319-2_113: *id033 + 1834-110319-3_47: *id034 + 1834-110319-5_18: *id035 + 1834-110319-6_17: *id036 + 1834-120319-2_51: *id037 + 1834-120319-3_70: *id038 + 1834-120319-4_75: *id039 + 1834-220319-1_83: *id040 + 1834-220319-3_46: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jf82wZHzkz8= + 1834-220319-4_60: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WQfPLTL1vD8= + 1834-220319-2_7: + 1834-110319-6_16: *id041 + 1834-120319-2_43: *id042 + 1834-220319-1_73: *id043 + 1834-220319-3_29: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rSu9BJ7ZmT8= + 1834-220319-3_29: + 1834-110319-6_16: *id044 + 1834-120319-2_43: *id045 + 1834-220319-1_73: *id046 + 1834-220319-2_7: *id047 + 1834-220319-4_60: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /cwkwHc2uz8= + 1834-220319-3_46: + 1834-060319-2_113: *id048 + 1834-110319-3_47: *id049 + 1834-110319-5_18: *id050 + 1834-110319-6_17: *id051 + 1834-120319-2_51: *id052 + 1834-120319-3_70: *id053 + 1834-120319-4_75: *id054 + 1834-220319-1_83: *id055 + 1834-220319-2_49: *id056 + 1834-220319-4_60: + 1834-060319-2_113: *id057 + 1834-110319-3_47: *id058 + 1834-110319-5_18: *id059 + 1834-110319-6_16: *id060 + 1834-120319-2_43: *id061 + 1834-120319-3_70: *id062 + 1834-120319-4_75: *id063 + 1834-220319-1_79: *id064 + 1834-220319-2_49: *id065 + 1834-220319-3_29: *id066 +_node: &id069 + 1834-060319-2_113: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id067 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + cQAAAAAAAAA= + 1834-110319-3_47: + action_id: 1834-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + LwAAAAAAAAA= + 1834-110319-5_18: + action_id: 1834-110319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + EgAAAAAAAAA= + 1834-110319-6_16: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + EAAAAAAAAAA= + 1834-110319-6_17: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + EQAAAAAAAAA= + 1834-120319-2_43: + action_id: 1834-120319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + KwAAAAAAAAA= + 1834-120319-2_51: + action_id: 1834-120319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + MwAAAAAAAAA= + 1834-120319-3_70: + action_id: 1834-120319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + RgAAAAAAAAA= + 1834-120319-4_75: + action_id: 1834-120319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + SwAAAAAAAAA= + 1834-220319-1_73: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + SQAAAAAAAAA= + 1834-220319-1_79: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + TwAAAAAAAAA= + 1834-220319-1_83: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + UwAAAAAAAAA= + 1834-220319-2_49: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + MQAAAAAAAAA= + 1834-220319-2_7: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + BwAAAAAAAAA= + 1834-220319-3_29: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + HQAAAAAAAAA= + 1834-220319-3_46: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + LgAAAAAAAAA= + 1834-220319-4_60: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + PAAAAAAAAAA= +adjlist_inner_dict_factory: &id068 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id068 +edge_attr_dict_factory: *id068 +graph: {} +node_dict_factory: *id068 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id069 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-3.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-3.yaml new file mode 100644 index 000000000..737d09bae --- /dev/null +++ b/actions/identify-neurons/data/1834-graphs/graph-group-3.yaml @@ -0,0 +1,3157 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1834-010319-1_52: + 1834-010319-3_76: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + YPCDxsM1nz8= + 1834-010319-4_21: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BwDPV/Apsj8= + 1834-060319-1_85: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 499, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2QK6qzqwzj8= + 1834-060319-2_25: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gqnzi53hyj8= + 1834-060319-4_10: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 11074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T3dekCK9zj8= + 1834-110319-2_16: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GjqiBj+4wj8= + 1834-110319-6_20: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + USBVLHua0T8= + 1834-120319-1_8: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9vLoFDVVwT8= + 1834-120319-2_15: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d96HhBwwwD8= + 1834-120319-3_62: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hcz8XcRSwT8= + 1834-120319-4_59: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u6/4An3MwD8= + 1834-150319-1_2: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yxCQDUya0D8= + 1834-150319-2_46: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JvvRDWywj8= + 1834-150319-3_8: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wGc7TFhuxj8= + 1834-150319-4_5: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tr5fidXswD8= + 1834-220319-1_11: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K4kwjJFUwD8= + 1834-220319-2_8: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7YOzndo5wD8= + 1834-220319-3_10: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FEvN8JjtwD8= + 1834-220319-4_10: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GxrRzz4hwD8= + 1834-010319-1_7: + 1834-010319-5_11: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 11485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JZvnz0pAsz8= + 1834-060319-1_95: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 499, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fY+RSAV9xT8= + 1834-120319-2_6: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PFqeH99gzj8= + 1834-150319-1_13: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D3E6jf5awj8= + 1834-150319-2_13: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R8MIaf1nxj8= + 1834-150319-3_61: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OROPZll9xD8= + 1834-150319-4_6: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cbgnnEAJyT8= + 1834-010319-1_8: + 1834-010319-3_87: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dtu1FT73wD8= + 1834-010319-4_22: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ddDLCOkzwj8= + 1834-010319-5_28: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 11485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FhYATXAuuj8= + 1834-060319-1_33: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 499, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NZ7ksI2Jvz8= + 1834-060319-2_24: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sAKiYrxSvT8= + 1834-060319-3_13: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CijB6tAGvT8= + 1834-060319-4_8: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 11074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NzcQ2zmvwT8= + 1834-110319-3_41: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4588, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0XDxwmspuj8= + 1834-110319-5_24: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 7555, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Flx6OjFywD8= + 1834-110319-6_18: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y8wkyqGXxD8= + 1834-150319-1_14: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vDy94Q0I0j8= + 1834-010319-3_76: + 1834-010319-1_52: *id002 + 1834-010319-4_21: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ajIAOxPnsz8= + 1834-010319-5_11: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3394, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZjEoIXirxT8= + 1834-060319-1_33: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CwPbcX6yxz8= + 1834-060319-2_25: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eK7NSoa3yj8= + 1834-060319-4_10: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MEO9jiKjzz8= + 1834-110319-6_20: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SoK5mcZ20T8= + 1834-120319-2_15: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y8FST53SwD8= + 1834-120319-3_62: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5H+E7JXewT8= + 1834-120319-4_59: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2O+xDKtEwT8= + 1834-150319-1_14: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g02Z01SVyz8= + 1834-150319-2_46: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kZa+6gtpwz8= + 1834-150319-3_61: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + r/BCAXA2wz8= + 1834-150319-4_5: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q6MQAgq2wT8= + 1834-220319-1_11: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LlWIfMblwD8= + 1834-220319-2_8: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dy21zB7HwD8= + 1834-220319-3_10: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wIB+Vx2LwT8= + 1834-220319-4_10: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ndzhDJXUwD8= + 1834-010319-3_87: + 1834-010319-1_8: *id003 + 1834-010319-4_22: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ew/sPw8Kwz8= + 1834-010319-5_28: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3394, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 56W/UbhQuD8= + 1834-060319-1_95: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IpK6sYAKtj8= + 1834-060319-2_24: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZL/WSwvztj8= + 1834-060319-3_13: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lOdBmg6Quj8= + 1834-060319-4_8: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jrBW1oZSvz8= + 1834-110319-2_16: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zwsHSquwvT8= + 1834-110319-3_41: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82897, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PBbCkGMBsz8= + 1834-110319-5_24: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85864, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cq6o0KPAuD8= + 1834-110319-6_18: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4ZF7ajXXxj8= + 1834-120319-1_8: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6qkSms22wT8= + 1834-120319-2_6: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cn1XgphBzz8= + 1834-150319-1_13: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 13xnuYVTwj8= + 1834-150319-2_13: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hA3J0SRowD8= + 1834-150319-3_8: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 71E4Q3Mgvj8= + 1834-150319-4_6: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 92ex9sowwD8= + 1834-010319-4_21: + 1834-010319-1_52: *id004 + 1834-010319-3_76: *id005 + 1834-010319-5_11: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2qgujkXJxj8= + 1834-060319-1_95: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77295, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XGI1cVJ1xT8= + 1834-060319-2_25: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b4uFmuNUyz8= + 1834-060319-4_10: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HyeKf9yZzz8= + 1834-110319-2_16: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 75610, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iaV9wt2mxD8= + 1834-110319-6_20: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A22pJaq90T8= + 1834-120319-1_8: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9gO9KQQKxD8= + 1834-120319-2_15: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A9mAAQ0+wz8= + 1834-120319-3_62: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8rfiMccQxD8= + 1834-120319-4_59: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ogtsRydwwz8= + 1834-150319-1_14: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4THQDdAAzD8= + 1834-150319-2_13: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ybnJlvpFxz8= + 1834-150319-3_8: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i0H4h1cHyD8= + 1834-150319-4_5: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ds717EHwwj8= + 1834-220319-1_11: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0vT90zjjwj8= + 1834-220319-2_8: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LDnW0vnOwj8= + 1834-220319-3_10: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g3fO8ec2wz8= + 1834-220319-4_10: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BUMxsrLAwj8= + 1834-010319-4_22: + 1834-010319-1_8: *id006 + 1834-010319-3_87: *id007 + 1834-010319-5_28: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CDc7NvUcxT8= + 1834-060319-1_33: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77295, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CAh41yMfwz8= + 1834-060319-2_24: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EMtPeTAAxD8= + 1834-060319-3_13: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85770, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /dKVxwe3wj8= + 1834-060319-4_8: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cSZukYP5xD8= + 1834-110319-3_41: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81384, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ICEJbwfVwT8= + 1834-110319-5_24: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84351, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lRsccInzwj8= + 1834-110319-6_18: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3HdbhTWCxD8= + 1834-120319-2_6: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RJHZzpzRzT8= + 1834-150319-1_13: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xCXNCI0Uyz8= + 1834-150319-2_46: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wapg+Zwjyz8= + 1834-150319-3_61: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZVsOosGIzD8= + 1834-150319-4_6: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PSISGynCzz8= + 1834-010319-5_11: + 1834-010319-1_7: *id008 + 1834-010319-3_76: *id009 + 1834-010319-4_21: *id010 + 1834-060319-1_33: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iRcEQO06xz8= + 1834-060319-2_24: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S/IuOLNywj8= + 1834-060319-4_8: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85989, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t3ntsqRRwT8= + 1834-110319-2_16: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sZruk3awwT8= + 1834-110319-6_20: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SSxCeduB3T8= + 1834-120319-1_8: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 82927, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tU7W/Y99xD8= + 1834-120319-2_6: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fUQYnM9izj8= + 1834-120319-3_62: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OwxG5xClxD8= + 1834-120319-4_59: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gQsdCRguwj8= + 1834-150319-1_13: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cifcfBzHuz8= + 1834-150319-2_46: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ycBFUsBfvj8= + 1834-150319-3_61: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OCBLUYyRvz8= + 1834-150319-4_5: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sTy7+Ddhwj8= + 1834-220319-1_11: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GjiZall7zT8= + 1834-220319-2_8: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GOb6sn+GzT8= + 1834-220319-3_10: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MqN1r0YKyz8= + 1834-220319-4_10: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +xZLgesTzD8= + 1834-010319-5_28: + 1834-010319-1_8: *id011 + 1834-010319-3_87: *id012 + 1834-010319-4_22: *id013 + 1834-060319-1_95: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OOXkAX1wvD8= + 1834-060319-2_25: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jqeVwTSizz8= + 1834-060319-3_13: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83889, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XMZqWwlbvj8= + 1834-060319-4_10: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85989, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mlYMatVt0D8= + 1834-110319-3_41: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79503, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UXEj9afpuD8= + 1834-110319-5_24: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JBKy87r/vD8= + 1834-110319-6_18: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9pvTKSATxj8= + 1834-120319-2_15: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h8sWIgepyT8= + 1834-150319-1_14: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TZ/sz7qL0j8= + 1834-150319-2_13: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HXWrC1nYwz8= + 1834-150319-3_8: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ju4Iwq+mwD8= + 1834-150319-4_6: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BWbqXi8ZxD8= + 1834-060319-1_33: + 1834-010319-1_8: *id014 + 1834-010319-3_76: *id015 + 1834-010319-4_22: *id016 + 1834-010319-5_11: *id017 + 1834-060319-2_25: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LBb6F+N8yz8= + 1834-110319-6_18: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VjXLoLlgwD8= + 1834-120319-2_6: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8H/etaa20T8= + 1834-150319-1_14: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jBEnJdQ4zT8= + 1834-150319-2_46: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jZZ6mRCxxD8= + 1834-150319-3_61: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hMXwiE01xj8= + 1834-150319-4_5: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s2nz7UKNxz8= + 1834-060319-1_85: + 1834-010319-1_52: *id018 + 1834-060319-4_10: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10575, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ypTEL94LsT8= + 1834-150319-1_2: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FtsGpMr91j8= + 1834-060319-1_95: + 1834-010319-1_7: *id019 + 1834-010319-3_87: *id020 + 1834-010319-4_21: *id021 + 1834-010319-5_28: *id022 + 1834-060319-2_24: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QzBk5JCNnD8= + 1834-060319-3_13: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8475, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ovb7mtKvpT8= + 1834-060319-4_8: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10575, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8bjFI0o6rT8= + 1834-110319-2_16: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DaGolBEIwD8= + 1834-110319-3_41: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4t7PIN4coT8= + 1834-110319-5_24: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7056, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AFto98HNsT8= + 1834-110319-6_20: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8XIh/zIj2z8= + 1834-120319-1_8: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JfjwxgONwD8= + 1834-120319-2_15: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oW5Y6/Pnwz8= + 1834-120319-3_62: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u/11Zb5YwT8= + 1834-120319-4_59: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rjuppMGkvj8= + 1834-150319-1_13: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bbLS+jIHvz8= + 1834-150319-2_13: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + duT+iom2vz8= + 1834-150319-3_8: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + va5OAhyjwj8= + 1834-150319-4_6: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DwLYREKmwD8= + 1834-220319-1_11: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WsMO8xs3yj8= + 1834-220319-2_8: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 8299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QAJYLTr+yj8= + 1834-220319-3_10: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 77qTzCROyD8= + 1834-220319-4_10: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 13451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ic4oGoAMyj8= + 1834-060319-2_24: + 1834-010319-1_8: *id023 + 1834-010319-3_87: *id024 + 1834-010319-4_22: *id025 + 1834-010319-5_11: *id026 + 1834-060319-1_95: *id027 + 1834-060319-3_13: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vT7onojaoT8= + 1834-060319-4_8: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cbi+55rJqz8= + 1834-110319-2_16: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eSI1zdh0wD8= + 1834-110319-3_41: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EW4bMuj+oT8= + 1834-110319-5_24: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OGhMULr1sD8= + 1834-110319-6_20: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ig2R9lzB3D8= + 1834-120319-1_8: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OYTfESt6wT8= + 1834-120319-2_15: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y7mrmCiWxD8= + 1834-120319-3_62: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tos0x9ifwT8= + 1834-120319-4_59: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N32QCyXSvz8= + 1834-150319-1_13: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GCsl6+EAvj8= + 1834-150319-2_13: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8nr91PDavj8= + 1834-150319-3_8: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oGQhpZBrwj8= + 1834-150319-4_6: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jin9yIZ9wT8= + 1834-220319-1_11: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7XLZBK9tyj8= + 1834-220319-2_8: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + njNo39BIyz8= + 1834-220319-3_10: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ryPZECl5yD8= + 1834-220319-4_10: &id341 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Joc9o94vyj8= + 1834-060319-2_25: + 1834-010319-1_52: *id028 + 1834-010319-3_76: *id029 + 1834-010319-4_21: *id030 + 1834-010319-5_28: *id031 + 1834-060319-1_33: *id032 + 1834-060319-4_10: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CaBcY1gb0z8= + 1834-110319-6_18: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dRL0r2Mo1T8= + 1834-120319-2_6: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D+teOuwF2T8= + 1834-150319-1_14: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + guZclJeQ1T8= + 1834-150319-2_46: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aTHxqqd00T8= + 1834-150319-3_61: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AkqZQSJL0j8= + 1834-150319-4_5: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g2ov7NbL0T8= + 1834-060319-3_13: + 1834-010319-1_8: *id033 + 1834-010319-3_87: *id034 + 1834-010319-4_22: *id035 + 1834-010319-5_28: *id036 + 1834-060319-1_95: *id037 + 1834-060319-2_24: *id038 + 1834-060319-4_8: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MsNMH9Cqpj8= + 1834-110319-2_16: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0Y53dpGLwT8= + 1834-110319-3_41: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82014, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ibvKnWzkpj8= + 1834-110319-5_24: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84981, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5hcDq0R0sj8= + 1834-110319-6_18: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5qi+318Nwz8= + 1834-120319-1_8: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j5WG4KdCwj8= + 1834-120319-2_15: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KfESxieVxT8= + 1834-120319-3_62: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qGRGSanJwj8= + 1834-120319-4_59: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a9/nHW59wD8= + 1834-150319-1_13: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 75wxNMzfvD8= + 1834-150319-2_46: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1OIsHxPgvT8= + 1834-150319-3_61: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +3Cyz++Evz8= + 1834-150319-4_5: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fu6JgcolwT8= + 1834-220319-1_11: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gp1UvlcwzD8= + 1834-220319-2_8: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1WeFY7ixzD8= + 1834-220319-3_10: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /wzSw+vHyT8= + 1834-220319-4_10: &id342 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q54HOCuzyz8= + 1834-060319-4_10: + 1834-010319-1_52: *id039 + 1834-010319-3_76: *id040 + 1834-010319-4_21: *id041 + 1834-010319-5_28: *id042 + 1834-060319-1_85: *id043 + 1834-060319-2_25: *id044 + 1834-110319-6_20: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4I79d8eZ1z8= + 1834-120319-2_6: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MW6/nLb+0T8= + 1834-150319-1_14: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Uq5bQx1Hzz8= + 1834-150319-2_13: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GrRXWaEH0D8= + 1834-150319-3_8: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PDuOYyN50D8= + 1834-150319-4_6: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NgfCrfXV0D8= + 1834-060319-4_8: + 1834-010319-1_8: *id045 + 1834-010319-3_87: *id046 + 1834-010319-4_22: *id047 + 1834-010319-5_11: *id048 + 1834-060319-1_95: *id049 + 1834-060319-2_24: *id050 + 1834-060319-3_13: *id051 + 1834-110319-2_16: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7Gr4o8tBwj8= + 1834-110319-3_41: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79914, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bWXwGRAstD8= + 1834-110319-5_24: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iXHdrGTdtD8= + 1834-110319-6_18: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LFCEXeezwz8= + 1834-120319-1_8: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Z4EhjEdwT8= + 1834-120319-2_15: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J7Rk1690xD8= + 1834-120319-3_62: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JU1LMn9owT8= + 1834-120319-4_59: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DDMR3GGgvD8= + 1834-150319-1_13: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +ZweDsncuz8= + 1834-150319-2_46: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IEPQoUsYuT8= + 1834-150319-3_61: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + At/I6dOCuz8= + 1834-150319-4_5: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CWwcJ/FEvz8= + 1834-220319-1_11: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7I5cJm1uyz8= + 1834-220319-2_8: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JHjrO8h4yz8= + 1834-220319-3_10: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +rB3WwmuyD8= + 1834-220319-4_10: &id343 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lsmGhu+/yj8= + 1834-110319-2_16: + 1834-010319-1_52: *id052 + 1834-010319-3_87: *id053 + 1834-010319-4_21: *id054 + 1834-010319-5_11: *id055 + 1834-060319-1_95: *id056 + 1834-060319-2_24: *id057 + 1834-060319-3_13: *id058 + 1834-060319-4_8: *id059 + 1834-110319-3_41: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5774, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T2+NjRfGvz8= + 1834-110319-5_24: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MgJLWVFSwT8= + 1834-110319-6_18: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WRbCDZ71yz8= + 1834-120319-1_8: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IoSu6Ozdvz8= + 1834-120319-2_15: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1ZA0ulrlwT8= + 1834-120319-3_62: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7+LsHflpwT8= + 1834-120319-4_59: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vf5jWf1mwD8= + 1834-150319-1_13: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DK0HXrAjwz8= + 1834-150319-2_46: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WT0BgJAPwj8= + 1834-150319-3_61: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ouaUZpHUwT8= + 1834-150319-4_5: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MOV++3ZDwT8= + 1834-220319-1_11: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u1NgFzNvyT8= + 1834-220319-2_8: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RuDFp9OlyT8= + 1834-220319-3_10: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1zb8RFIFyD8= + 1834-220319-4_10: &id344 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kIt9EtHCxz8= + 1834-110319-3_41: + 1834-010319-1_8: *id060 + 1834-010319-3_87: *id061 + 1834-010319-4_22: *id062 + 1834-010319-5_28: *id063 + 1834-060319-1_95: *id064 + 1834-060319-2_24: *id065 + 1834-060319-3_13: *id066 + 1834-060319-4_8: *id067 + 1834-110319-2_16: *id068 + 1834-110319-5_24: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KdGAMHQSrz8= + 1834-110319-6_18: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I7l23PYvxD8= + 1834-120319-1_8: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3424, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bC9K8G1Swj8= + 1834-120319-2_15: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rZ/BCn5cxT8= + 1834-120319-3_62: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /YlXt2vgwj8= + 1834-120319-4_59: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8J9Bl8icwT8= + 1834-150319-1_13: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Utya9xVrwD8= + 1834-150319-2_13: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9yv6hcj4vz8= + 1834-150319-3_8: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ROw7Wg4kwj8= + 1834-150319-4_6: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +jaBQNqrwT8= + 1834-220319-1_11: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RG+JB5Pqyz8= + 1834-220319-2_8: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4BwVDavvzD8= + 1834-220319-3_10: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TLjVjIY3yj8= + 1834-220319-4_10: &id345 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UPqDSVi3yz8= + 1834-110319-5_24: + 1834-010319-1_8: *id069 + 1834-010319-3_87: *id070 + 1834-010319-4_22: *id071 + 1834-010319-5_28: *id072 + 1834-060319-1_95: *id073 + 1834-060319-2_24: *id074 + 1834-060319-3_13: *id075 + 1834-060319-4_8: *id076 + 1834-110319-2_16: *id077 + 1834-110319-3_41: *id078 + 1834-110319-6_18: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6/qiNZGJxD8= + 1834-120319-1_8: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c5FdxeyXwD8= + 1834-120319-2_15: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Elpl4X/awz8= + 1834-120319-3_62: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j9scsfe8wD8= + 1834-120319-4_59: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pAu9lAIewD8= + 1834-150319-1_13: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xVy52vHOwT8= + 1834-150319-2_13: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Imdd1a2cwT8= + 1834-150319-3_61: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Unj4qvQwj8= + 1834-150319-4_5: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OEczfrDYwz8= + 1834-220319-1_11: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e2Wp/anRzD8= + 1834-220319-2_8: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ds+w3KKizT8= + 1834-220319-3_10: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PGrXyW8Fyz8= + 1834-220319-4_10: &id346 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0qibmvZUzD8= + 1834-110319-6_18: + 1834-010319-1_8: *id079 + 1834-010319-3_87: *id080 + 1834-010319-4_22: *id081 + 1834-010319-5_28: *id082 + 1834-060319-1_33: *id083 + 1834-060319-2_25: *id084 + 1834-060319-3_13: *id085 + 1834-060319-4_8: *id086 + 1834-110319-2_16: *id087 + 1834-110319-3_41: *id088 + 1834-110319-5_24: *id089 + 1834-120319-1_8: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M0w20fTqzj8= + 1834-120319-2_6: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uhSMGq420T8= + 1834-120319-3_62: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N81S3nPszT8= + 1834-120319-4_59: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RuEwCJm7yz8= + 1834-150319-1_13: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g80lQXfWwj8= + 1834-150319-2_13: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d7tkNzGMxz8= + 1834-150319-3_8: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wXfBF4iGyz8= + 1834-150319-4_6: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dv1Edfdsyz8= + 1834-220319-1_11: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8wkPE7lD0j8= + 1834-220319-2_8: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uKGgtnqD0j8= + 1834-220319-3_10: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M0PYdvwV0T8= + 1834-220319-4_10: &id347 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4t122ukA0j8= + 1834-110319-6_20: + 1834-010319-1_52: *id090 + 1834-010319-3_76: *id091 + 1834-010319-4_21: *id092 + 1834-010319-5_11: *id093 + 1834-060319-1_95: *id094 + 1834-060319-2_24: *id095 + 1834-060319-4_10: *id096 + 1834-120319-2_15: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I7z0t40w4D8= + 1834-150319-1_2: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PXinQ5952j8= + 1834-150319-2_46: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OIO07M1W3D8= + 1834-150319-3_61: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0F4Drnjh3T8= + 1834-150319-4_5: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bZgDbrFJ3T8= + 1834-120319-1_8: + 1834-010319-1_52: *id097 + 1834-010319-3_87: *id098 + 1834-010319-4_21: *id099 + 1834-010319-5_11: *id100 + 1834-060319-1_95: *id101 + 1834-060319-2_24: *id102 + 1834-060319-3_13: *id103 + 1834-060319-4_8: *id104 + 1834-110319-2_16: *id105 + 1834-110319-3_41: *id106 + 1834-110319-5_24: *id107 + 1834-110319-6_18: *id108 + 1834-120319-2_15: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 855rP6ezpT8= + 1834-120319-3_62: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HfONOGFonT8= + 1834-120319-4_59: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PwgZ868ArD8= + 1834-150319-1_13: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jxfRf8QRxT8= + 1834-150319-2_46: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4LKqX3W1vz8= + 1834-150319-3_61: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UkvXAX/9vT8= + 1834-150319-4_5: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8AFA9nBiuT8= + 1834-220319-1_11: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6tJDe5RQwj8= + 1834-220319-2_8: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yYDsTpSUwj8= + 1834-220319-3_10: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fVQY1KFfwD8= + 1834-220319-4_10: &id348 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + miwQ3qQawT8= + 1834-120319-2_15: + 1834-010319-1_52: *id109 + 1834-010319-3_76: *id110 + 1834-010319-4_21: *id111 + 1834-010319-5_28: *id112 + 1834-060319-1_95: *id113 + 1834-060319-2_24: *id114 + 1834-060319-3_13: *id115 + 1834-060319-4_8: *id116 + 1834-110319-2_16: *id117 + 1834-110319-3_41: *id118 + 1834-110319-5_24: *id119 + 1834-110319-6_20: *id120 + 1834-120319-1_8: *id121 + 1834-120319-3_62: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tYUY4XGMpD8= + 1834-120319-4_59: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dGLhi8DKsT8= + 1834-150319-1_13: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5Qdz8m9vxz8= + 1834-150319-2_13: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Pm5y4od8xj8= + 1834-150319-3_61: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vk94dFOewT8= + 1834-150319-4_5: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3OtHklqavT8= + 1834-220319-1_11: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g1TN64ZSwD8= + 1834-220319-2_8: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SAmCKmChwD8= + 1834-220319-3_10: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TeCwu2mOvT8= + 1834-220319-4_10: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WsOkr/48vj8= + 1834-120319-2_6: + 1834-010319-1_7: *id122 + 1834-010319-3_87: *id123 + 1834-010319-4_22: *id124 + 1834-010319-5_11: *id125 + 1834-060319-1_33: *id126 + 1834-060319-2_25: *id127 + 1834-060319-4_10: *id128 + 1834-110319-6_18: *id129 + 1834-150319-1_14: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7tcuP6zl0D8= + 1834-150319-2_46: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A+KStLvN0D8= + 1834-150319-3_8: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + r+qTDtmD0z8= + 1834-150319-4_6: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H73uLy7g0T8= + 1834-120319-3_62: + 1834-010319-1_52: *id130 + 1834-010319-3_76: *id131 + 1834-010319-4_21: *id132 + 1834-010319-5_11: *id133 + 1834-060319-1_95: *id134 + 1834-060319-2_24: *id135 + 1834-060319-3_13: *id136 + 1834-060319-4_8: *id137 + 1834-110319-2_16: *id138 + 1834-110319-3_41: *id139 + 1834-110319-5_24: *id140 + 1834-110319-6_18: *id141 + 1834-120319-1_8: *id142 + 1834-120319-2_15: *id143 + 1834-120319-4_59: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f/omBb4Wqj8= + 1834-150319-1_13: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SLMZxL2fxD8= + 1834-150319-2_46: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wpEeNf98wD8= + 1834-150319-3_61: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jHdwD2Arvz8= + 1834-150319-4_5: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9RZMO/k5uj8= + 1834-220319-1_11: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q1GGH1TFwD8= + 1834-220319-2_8: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VHWjZ5s9wT8= + 1834-220319-3_10: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jClfJL5yvj8= + 1834-220319-4_10: &id350 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + baCUROievz8= + 1834-120319-4_59: + 1834-010319-1_52: *id144 + 1834-010319-3_76: *id145 + 1834-010319-4_21: *id146 + 1834-010319-5_11: *id147 + 1834-060319-1_95: *id148 + 1834-060319-2_24: *id149 + 1834-060319-3_13: *id150 + 1834-060319-4_8: *id151 + 1834-110319-2_16: *id152 + 1834-110319-3_41: *id153 + 1834-110319-5_24: *id154 + 1834-110319-6_18: *id155 + 1834-120319-1_8: *id156 + 1834-120319-2_15: *id157 + 1834-120319-3_62: *id158 + 1834-150319-1_13: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MyOspk/Zwj8= + 1834-150319-2_46: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yybQ6Vyruz8= + 1834-150319-3_61: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1F01pGnHuj8= + 1834-150319-4_5: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +FS26h37uD8= + 1834-220319-1_11: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UddkBr7Zwj8= + 1834-220319-2_8: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xzG0xz4Bwz8= + 1834-220319-3_10: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VBndyctxwD8= + 1834-220319-4_10: &id351 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nDxYeMsGwj8= + 1834-150319-1_13: + 1834-010319-1_7: *id159 + 1834-010319-3_87: *id160 + 1834-010319-4_22: *id161 + 1834-010319-5_11: *id162 + 1834-060319-1_95: *id163 + 1834-060319-2_24: *id164 + 1834-060319-3_13: *id165 + 1834-060319-4_8: *id166 + 1834-110319-2_16: *id167 + 1834-110319-3_41: *id168 + 1834-110319-5_24: *id169 + 1834-110319-6_18: *id170 + 1834-120319-1_8: *id171 + 1834-120319-2_15: *id172 + 1834-120319-3_62: *id173 + 1834-120319-4_59: *id174 + 1834-150319-2_13: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tkk5j5Zwsj8= + 1834-150319-3_8: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bHYuToKkwT8= + 1834-150319-4_6: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P2uHuO2Cvz8= + 1834-220319-1_11: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ap7N6wHJyD8= + 1834-220319-2_8: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /gjgvWn1yD8= + 1834-220319-3_10: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qdKCq6iGxT8= + 1834-220319-4_10: &id352 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6ABZZKP2xz8= + 1834-150319-1_14: + 1834-010319-1_8: *id175 + 1834-010319-3_76: *id176 + 1834-010319-4_21: *id177 + 1834-010319-5_28: *id178 + 1834-060319-1_33: *id179 + 1834-060319-2_25: *id180 + 1834-060319-4_10: *id181 + 1834-120319-2_6: *id182 + 1834-150319-2_46: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b7Vt/5bWzT8= + 1834-150319-3_61: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wx8YbKFRzz8= + 1834-150319-4_5: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0DoWpOAr0D8= + 1834-150319-1_2: + 1834-010319-1_52: *id183 + 1834-060319-1_85: *id184 + 1834-110319-6_20: *id185 + 1834-150319-1_6: {} + 1834-150319-2_13: + 1834-010319-1_7: *id186 + 1834-010319-3_87: *id187 + 1834-010319-4_21: *id188 + 1834-010319-5_28: *id189 + 1834-060319-1_95: *id190 + 1834-060319-2_24: *id191 + 1834-060319-4_10: *id192 + 1834-110319-3_41: *id193 + 1834-110319-5_24: *id194 + 1834-110319-6_18: *id195 + 1834-120319-2_15: *id196 + 1834-150319-1_13: *id197 + 1834-150319-3_8: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rtcZ1cyatj8= + 1834-150319-4_6: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vXmDvUKdsT8= + 1834-150319-2_46: + 1834-010319-1_52: *id198 + 1834-010319-3_76: *id199 + 1834-010319-4_22: *id200 + 1834-010319-5_11: *id201 + 1834-060319-1_33: *id202 + 1834-060319-2_25: *id203 + 1834-060319-3_13: *id204 + 1834-060319-4_8: *id205 + 1834-110319-2_16: *id206 + 1834-110319-6_20: *id207 + 1834-120319-1_8: *id208 + 1834-120319-2_6: *id209 + 1834-120319-3_62: *id210 + 1834-120319-4_59: *id211 + 1834-150319-1_14: *id212 + 1834-150319-3_61: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w9WZa45ylj8= + 1834-150319-4_5: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Au1UlUcqz8= + 1834-220319-1_11: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bFPv/CTBwz8= + 1834-220319-2_8: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yIJyEZZawz8= + 1834-220319-3_10: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PZHcNe/Avz8= + 1834-220319-4_10: &id353 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dYJjJ/6ewj8= + 1834-150319-3_61: + 1834-010319-1_7: *id213 + 1834-010319-3_76: *id214 + 1834-010319-4_22: *id215 + 1834-010319-5_11: *id216 + 1834-060319-1_33: *id217 + 1834-060319-2_25: *id218 + 1834-060319-3_13: *id219 + 1834-060319-4_8: *id220 + 1834-110319-2_16: *id221 + 1834-110319-5_24: *id222 + 1834-110319-6_20: *id223 + 1834-120319-1_8: *id224 + 1834-120319-2_15: *id225 + 1834-120319-3_62: *id226 + 1834-120319-4_59: *id227 + 1834-150319-1_14: *id228 + 1834-150319-2_46: *id229 + 1834-150319-4_5: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rd6abyDHpD8= + 1834-220319-1_11: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EIffALokwj8= + 1834-220319-2_8: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bdvnW1OfwT8= + 1834-220319-3_10: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dt0RwfB/vD8= + 1834-220319-4_10: &id354 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rfxdLSbswD8= + 1834-150319-3_8: + 1834-010319-1_52: *id230 + 1834-010319-3_87: *id231 + 1834-010319-4_21: *id232 + 1834-010319-5_28: *id233 + 1834-060319-1_95: *id234 + 1834-060319-2_24: *id235 + 1834-060319-4_10: *id236 + 1834-110319-3_41: *id237 + 1834-110319-6_18: *id238 + 1834-120319-2_6: *id239 + 1834-150319-1_13: *id240 + 1834-150319-2_13: *id241 + 1834-150319-4_6: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U+yOLPXLtz8= + 1834-150319-4_5: + 1834-010319-1_52: *id242 + 1834-010319-3_76: *id243 + 1834-010319-4_21: *id244 + 1834-010319-5_11: *id245 + 1834-060319-1_33: *id246 + 1834-060319-2_25: *id247 + 1834-060319-3_13: *id248 + 1834-060319-4_8: *id249 + 1834-110319-2_16: *id250 + 1834-110319-5_24: *id251 + 1834-110319-6_20: *id252 + 1834-120319-1_8: *id253 + 1834-120319-2_15: *id254 + 1834-120319-3_62: *id255 + 1834-120319-4_59: *id256 + 1834-150319-1_14: *id257 + 1834-150319-2_46: *id258 + 1834-150319-3_61: *id259 + 1834-220319-1_11: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gx8LGAqruz8= + 1834-220319-2_8: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vYhRiXPVuj8= + 1834-220319-3_10: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1eLEBZyksz8= + 1834-220319-4_10: &id355 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OE/8ffhcuT8= + 1834-150319-4_6: + 1834-010319-1_7: *id260 + 1834-010319-3_87: *id261 + 1834-010319-4_22: *id262 + 1834-010319-5_28: *id263 + 1834-060319-1_95: *id264 + 1834-060319-2_24: *id265 + 1834-060319-4_10: *id266 + 1834-110319-3_41: *id267 + 1834-110319-6_18: *id268 + 1834-120319-2_6: *id269 + 1834-150319-1_13: *id270 + 1834-150319-2_13: *id271 + 1834-150319-3_8: *id272 + 1834-220319-1_11: + 1834-010319-1_52: *id273 + 1834-010319-3_76: *id274 + 1834-010319-4_21: *id275 + 1834-010319-5_11: *id276 + 1834-060319-1_95: *id277 + 1834-060319-2_24: *id278 + 1834-060319-3_13: *id279 + 1834-060319-4_8: *id280 + 1834-110319-2_16: *id281 + 1834-110319-3_41: *id282 + 1834-110319-5_24: *id283 + 1834-110319-6_18: *id284 + 1834-120319-1_8: *id285 + 1834-120319-2_15: *id286 + 1834-120319-3_62: *id287 + 1834-120319-4_59: *id288 + 1834-150319-1_13: *id289 + 1834-150319-2_46: *id290 + 1834-150319-3_61: *id291 + 1834-150319-4_5: *id292 + 1834-220319-2_8: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bMSpERd2oz8= + 1834-220319-3_10: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2GO/harqpz8= + 1834-220319-4_10: &id356 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7Ne0+tPDnT8= + 1834-220319-2_8: + 1834-010319-1_52: *id293 + 1834-010319-3_76: *id294 + 1834-010319-4_21: *id295 + 1834-010319-5_11: *id296 + 1834-060319-1_95: *id297 + 1834-060319-2_24: *id298 + 1834-060319-3_13: *id299 + 1834-060319-4_8: *id300 + 1834-110319-2_16: *id301 + 1834-110319-3_41: *id302 + 1834-110319-5_24: *id303 + 1834-110319-6_18: *id304 + 1834-120319-1_8: *id305 + 1834-120319-2_15: *id306 + 1834-120319-3_62: *id307 + 1834-120319-4_59: *id308 + 1834-150319-1_13: *id309 + 1834-150319-2_46: *id310 + 1834-150319-3_61: *id311 + 1834-150319-4_5: *id312 + 1834-220319-1_11: *id313 + 1834-220319-3_10: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aEPYPulToj8= + 1834-220319-4_10: &id357 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ROCvcSPxnD8= + 1834-220319-3_10: + 1834-010319-1_52: *id314 + 1834-010319-3_76: *id315 + 1834-010319-4_21: *id316 + 1834-010319-5_11: *id317 + 1834-060319-1_95: *id318 + 1834-060319-2_24: *id319 + 1834-060319-3_13: *id320 + 1834-060319-4_8: *id321 + 1834-110319-2_16: *id322 + 1834-110319-3_41: *id323 + 1834-110319-5_24: *id324 + 1834-110319-6_18: *id325 + 1834-120319-1_8: *id326 + 1834-120319-2_15: *id327 + 1834-120319-3_62: *id328 + 1834-120319-4_59: *id329 + 1834-150319-1_13: *id330 + 1834-150319-2_46: *id331 + 1834-150319-3_61: *id332 + 1834-150319-4_5: *id333 + 1834-220319-1_11: *id334 + 1834-220319-2_8: *id335 + 1834-220319-4_10: &id358 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7K/p8M0joz8= + 1834-220319-4_10: + 1834-010319-1_52: *id336 + 1834-010319-3_76: *id337 + 1834-010319-4_21: *id338 + 1834-010319-5_11: *id339 + 1834-060319-1_95: *id340 + 1834-060319-2_24: *id341 + 1834-060319-3_13: *id342 + 1834-060319-4_8: *id343 + 1834-110319-2_16: *id344 + 1834-110319-3_41: *id345 + 1834-110319-5_24: *id346 + 1834-110319-6_18: *id347 + 1834-120319-1_8: *id348 + 1834-120319-2_15: *id349 + 1834-120319-3_62: *id350 + 1834-120319-4_59: *id351 + 1834-150319-1_13: *id352 + 1834-150319-2_46: *id353 + 1834-150319-3_61: *id354 + 1834-150319-4_5: *id355 + 1834-220319-1_11: *id356 + 1834-220319-2_8: *id357 + 1834-220319-3_10: *id358 +_node: &id361 + 1834-010319-1_52: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id359 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + NAAAAAAAAAA= + 1834-010319-1_7: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + BwAAAAAAAAA= + 1834-010319-1_8: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + CAAAAAAAAAA= + 1834-010319-3_76: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + TAAAAAAAAAA= + 1834-010319-3_87: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + VwAAAAAAAAA= + 1834-010319-4_21: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + FQAAAAAAAAA= + 1834-010319-4_22: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + FgAAAAAAAAA= + 1834-010319-5_11: + action_id: 1834-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + CwAAAAAAAAA= + 1834-010319-5_28: + action_id: 1834-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + HAAAAAAAAAA= + 1834-060319-1_33: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + IQAAAAAAAAA= + 1834-060319-1_85: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + VQAAAAAAAAA= + 1834-060319-1_95: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + XwAAAAAAAAA= + 1834-060319-2_24: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + GAAAAAAAAAA= + 1834-060319-2_25: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + GQAAAAAAAAA= + 1834-060319-3_13: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + DQAAAAAAAAA= + 1834-060319-4_10: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + CgAAAAAAAAA= + 1834-060319-4_8: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + CAAAAAAAAAA= + 1834-110319-2_16: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + EAAAAAAAAAA= + 1834-110319-3_41: + action_id: 1834-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + KQAAAAAAAAA= + 1834-110319-5_24: + action_id: 1834-110319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + GAAAAAAAAAA= + 1834-110319-6_18: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + EgAAAAAAAAA= + 1834-110319-6_20: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + FAAAAAAAAAA= + 1834-120319-1_8: + action_id: 1834-120319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + CAAAAAAAAAA= + 1834-120319-2_15: + action_id: 1834-120319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + DwAAAAAAAAA= + 1834-120319-2_6: + action_id: 1834-120319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + BgAAAAAAAAA= + 1834-120319-3_62: + action_id: 1834-120319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + PgAAAAAAAAA= + 1834-120319-4_59: + action_id: 1834-120319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + OwAAAAAAAAA= + 1834-150319-1_13: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + DQAAAAAAAAA= + 1834-150319-1_14: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + DgAAAAAAAAA= + 1834-150319-1_2: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + AgAAAAAAAAA= + 1834-150319-1_6: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + BgAAAAAAAAA= + 1834-150319-2_13: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + DQAAAAAAAAA= + 1834-150319-2_46: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + LgAAAAAAAAA= + 1834-150319-3_61: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + PQAAAAAAAAA= + 1834-150319-3_8: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + CAAAAAAAAAA= + 1834-150319-4_5: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + BQAAAAAAAAA= + 1834-150319-4_6: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + BgAAAAAAAAA= + 1834-220319-1_11: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + CwAAAAAAAAA= + 1834-220319-2_8: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + CAAAAAAAAAA= + 1834-220319-3_10: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + CgAAAAAAAAA= + 1834-220319-4_10: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id359 + - !!binary | + CgAAAAAAAAA= +adjlist_inner_dict_factory: &id360 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id360 +edge_attr_dict_factory: *id360 +graph: {} +node_dict_factory: *id360 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id361 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-4.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-4.yaml new file mode 100644 index 000000000..bfe348b35 --- /dev/null +++ b/actions/identify-neurons/data/1834-graphs/graph-group-4.yaml @@ -0,0 +1,1721 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1834-010319-1_13: + 1834-010319-3_90: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + q1dNb1pJwj8= + 1834-010319-4_35: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JH/dtCsQzD8= + 1834-110319-6_25: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E0RZmdhHzz8= + 1834-120319-3_95: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cJXIt3nRwz8= + 1834-150319-1_52: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /U8G/NYM1j8= + 1834-220319-2_34: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6sCn0jWfyz8= + 1834-220319-4_36: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lMfNjcO5wz8= + 1834-010319-1_62: + 1834-010319-3_66: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2XI49/Asvz8= + 1834-010319-4_29: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZGYwBfBswT8= + 1834-060319-2_115: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DDhTCPvNwD8= + 1834-060319-3_19: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A8Hj38wMwT8= + 1834-060319-4_13: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 11074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gl9NiFJxwT8= + 1834-110319-1_11: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FgmTttENvj8= + 1834-110319-2_19: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zpu6nJ/nuj8= + 1834-110319-5_76: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 7555, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZCnkwVC3yj8= + 1834-110319-6_22: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6Ffv7LVw0T8= + 1834-120319-3_40: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /OwPDEbZ0j8= + 1834-150319-1_5: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oZkGy6D00j8= + 1834-150319-2_54: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + REe4veTNxj8= + 1834-220319-1_65: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tCJ1NPl1uT8= + 1834-220319-2_47: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yZREvXe+vz8= + 1834-220319-3_15: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OOigTj8muz8= + 1834-220319-4_51: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oD13gayNtT8= + 1834-010319-3_34: + 1834-010319-4_53: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g2R/2Raisj8= + 1834-110319-1_11: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73845, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tv/Jw4+ywz8= + 1834-110319-6_22: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EjjKhB6D2j8= + 1834-120319-3_40: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SVifCBLB0j8= + 1834-150319-1_40: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OD4F2V+P2z8= + 1834-220319-2_47: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HsMQRL2+xj8= + 1834-220319-4_51: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4KHM/Cqkwz8= + 1834-010319-3_36: + 1834-110319-6_23: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E4D0mJ1S2j8= + 1834-150319-1_23: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2vTH93S01z8= + 1834-220319-4_36: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JpHqg0uT3T8= + 1834-010319-3_66: + 1834-010319-1_62: *id002 + 1834-010319-4_29: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8UwBHDbmqT8= + 1834-060319-2_115: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pknpj1GvyT8= + 1834-060319-3_19: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6Vt4KzwpyT8= + 1834-060319-4_13: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qAl9L3wFyj8= + 1834-110319-2_19: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ap7WYziiwD8= + 1834-110319-5_76: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85864, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e6WxmFlyzj8= + 1834-110319-6_21: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UFHCeyii1z8= + 1834-150319-1_5: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /qymV/ld1D8= + 1834-220319-1_65: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EyhUWdGpvT8= + 1834-220319-2_34: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mtwogh+Tvz8= + 1834-220319-3_15: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WgdKF+AUxD8= + 1834-220319-4_65: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 17rzrkfHyT8= + 1834-010319-3_90: + 1834-010319-1_13: *id003 + 1834-010319-4_35: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a0xKcoW8xz8= + 1834-110319-6_25: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ecP4R7n50j8= + 1834-120319-3_95: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jCSuS1RGyj8= + 1834-150319-1_52: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YJ5B73Iu2D8= + 1834-150319-2_54: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 75XQCxC8yD8= + 1834-220319-4_63: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TRbMLDyRwT8= + 1834-010319-4_29: + 1834-010319-1_62: *id004 + 1834-010319-3_66: *id005 + 1834-060319-2_115: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + et8aFn3TyT8= + 1834-060319-3_19: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85770, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VJ5n7MP+yj8= + 1834-060319-4_13: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ruLPYlhpyT8= + 1834-110319-2_19: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 75610, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v5adq/wUwT8= + 1834-110319-5_76: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84351, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vFycZ7IIzD8= + 1834-110319-6_22: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YJgb+SGF1T8= + 1834-150319-1_23: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + irNr1gRd1T8= + 1834-220319-1_65: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y04F6W32vj8= + 1834-220319-2_34: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cAZT6YEbwD8= + 1834-220319-3_15: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N997jeuCxj8= + 1834-220319-4_65: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fzVrVhEMyj8= + 1834-010319-4_35: + 1834-010319-1_13: *id006 + 1834-010319-3_90: *id007 + 1834-110319-6_25: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A54C/zrOzz8= + 1834-120319-3_95: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ovvg0DSPyj8= + 1834-150319-1_52: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J0FH+RWm1D8= + 1834-150319-2_54: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BtQLJLldyT8= + 1834-220319-4_63: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + glbJf8wqzD8= + 1834-010319-4_53: + 1834-010319-3_34: *id008 + 1834-110319-1_11: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 72332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZlPne35nxD8= + 1834-110319-6_23: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2glbSbMp2D8= + 1834-120319-3_40: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + txIqdzOE0j8= + 1834-150319-1_5: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2WYYKwwA2z8= + 1834-220319-2_47: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LoxyQOpgyD8= + 1834-220319-4_51: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3LCTljHNxD8= + 1834-060319-2_115: + 1834-010319-1_62: *id009 + 1834-010319-3_66: *id010 + 1834-010319-4_29: *id011 + 1834-060319-3_19: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m1uzSb7AwD8= + 1834-060319-4_13: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GvWNB51Wsz8= + 1834-110319-1_11: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y7S2HKqfvD8= + 1834-110319-2_19: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z3T0noPLvT8= + 1834-110319-5_76: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m6xo8d4d1D8= + 1834-110319-6_22: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3pkIDuon1z8= + 1834-120319-3_40: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A/PvqhPb0j8= + 1834-150319-1_40: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2CXAYfie2D8= + 1834-150319-2_54: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tQ2JDT4H0D8= + 1834-220319-1_65: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UAjCVtF6wj8= + 1834-220319-2_47: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZkY/N8qCuT8= + 1834-220319-3_15: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D7UHhABTwT8= + 1834-220319-4_51: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0xT6ZXQdwD8= + 1834-060319-3_19: + 1834-010319-1_62: *id012 + 1834-010319-3_66: *id013 + 1834-010319-4_29: *id014 + 1834-060319-2_115: *id015 + 1834-060319-4_13: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TWByIuQ4vj8= + 1834-110319-1_11: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 72962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w3A+Q+isvD8= + 1834-110319-2_19: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lgeRw1KRvD8= + 1834-110319-5_76: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84981, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EeMZpHcP0z8= + 1834-110319-6_22: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZrzO9gDG1z8= + 1834-120319-3_40: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cPJ9MeXl0j8= + 1834-150319-1_5: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ea5OQZCq1z8= + 1834-150319-2_54: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JkRFGwI8zj8= + 1834-220319-1_65: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kJkquvYawj8= + 1834-220319-2_47: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WrC6/jL2vj8= + 1834-220319-3_15: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + piGTU3W6vT8= + 1834-220319-4_51: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7MwCmW5Rvz8= + 1834-060319-4_13: + 1834-010319-1_62: *id016 + 1834-010319-3_66: *id017 + 1834-010319-4_29: *id018 + 1834-060319-2_115: *id019 + 1834-060319-3_19: *id020 + 1834-110319-1_11: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 70862, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XTYJt7jftz8= + 1834-110319-2_19: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SXOX8VoYuz8= + 1834-110319-5_76: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wIHpa+n70D8= + 1834-110319-6_22: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yfNpbqkl1T8= + 1834-120319-3_40: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FMEh7kWR0j8= + 1834-150319-1_40: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Er1UWu7A2D8= + 1834-150319-2_54: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bpsuu/5iyj8= + 1834-220319-1_65: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ypxncc32wT8= + 1834-220319-2_47: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kUyN8FRbuD8= + 1834-220319-3_15: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FJzxvUmnwT8= + 1834-220319-4_51: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8s3CTr/Mvz8= + 1834-110319-1_11: + 1834-010319-1_62: *id021 + 1834-010319-3_34: *id022 + 1834-010319-4_53: *id023 + 1834-060319-2_115: *id024 + 1834-060319-3_19: *id025 + 1834-060319-4_13: *id026 + 1834-110319-2_19: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SGQxmBdapj8= + 1834-110319-5_76: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uOlhvbBhyD8= + 1834-110319-6_22: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iczhR0EXzT8= + 1834-120319-3_95: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LBnwif7vzT8= + 1834-150319-1_5: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dbr4TwxV0D8= + 1834-150319-2_54: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XZvQW/YEwj8= + 1834-220319-1_65: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pjCaw6p7vD8= + 1834-220319-2_47: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IB08xIfDtT8= + 1834-220319-3_15: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TQuC/EbHuD8= + 1834-220319-4_51: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qEHo6UN4tj8= + 1834-110319-2_19: + 1834-010319-1_62: *id027 + 1834-010319-3_66: *id028 + 1834-010319-4_29: *id029 + 1834-060319-2_115: *id030 + 1834-060319-3_19: *id031 + 1834-060319-4_13: *id032 + 1834-110319-1_11: *id033 + 1834-110319-5_76: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2LdmYKbAxT8= + 1834-110319-6_22: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 95Gxzdq8yj8= + 1834-120319-3_95: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9yIWFlUsyj8= + 1834-150319-1_5: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JKujSVJ+zD8= + 1834-150319-2_54: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uC2zJ1o1wT8= + 1834-220319-1_65: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Uzk5a5nGtj8= + 1834-220319-2_47: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yAPqrgfltj8= + 1834-220319-3_15: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + znVa+e5Htj8= + 1834-220319-4_51: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8UGZTnA2sz8= + 1834-110319-5_76: + 1834-010319-1_62: *id034 + 1834-010319-3_66: *id035 + 1834-010319-4_29: *id036 + 1834-060319-2_115: *id037 + 1834-060319-3_19: *id038 + 1834-060319-4_13: *id039 + 1834-110319-1_11: *id040 + 1834-110319-2_19: *id041 + 1834-110319-6_25: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qM2F5wJZ1D8= + 1834-120319-3_95: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8VKUc1Kcyz8= + 1834-150319-1_40: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sUMH27ek2z8= + 1834-150319-2_54: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1HlmQMSH0j8= + 1834-220319-1_65: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bn4Siu4uxz8= + 1834-220319-2_34: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vdbHcroGxj8= + 1834-220319-3_15: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VRm0GzlRzD8= + 1834-220319-4_51: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H7aq8VEbyT8= + 1834-110319-6_14: {} + 1834-110319-6_21: + 1834-010319-3_66: *id042 + 1834-150319-1_0: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + onFLdBr63j8= + 1834-220319-4_51: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DDTX4YyX0z8= + 1834-110319-6_22: + 1834-010319-1_62: *id043 + 1834-010319-3_34: *id044 + 1834-010319-4_29: *id045 + 1834-060319-2_115: *id046 + 1834-060319-3_19: *id047 + 1834-060319-4_13: *id048 + 1834-110319-1_11: *id049 + 1834-110319-2_19: *id050 + 1834-150319-1_40: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DQvBRmka2j8= + 1834-220319-1_65: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8gPm3Dj6zD8= + 1834-220319-2_47: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /hbsOO1b0j8= + 1834-220319-3_15: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YWfuIg420j8= + 1834-220319-4_63: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e3rVGYHW1T8= + 1834-110319-6_23: + 1834-010319-3_36: *id051 + 1834-010319-4_53: *id052 + 1834-120319-3_40: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7saVKu7b0T8= + 1834-150319-1_23: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZBpjki7F0z8= + 1834-150319-2_54: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8WaeFiCY1z8= + 1834-220319-4_65: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ETytO7Oi2j8= + 1834-110319-6_25: + 1834-010319-1_13: *id053 + 1834-010319-3_90: *id054 + 1834-010319-4_35: *id055 + 1834-110319-5_76: *id056 + 1834-120319-3_95: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YaD88rmw1D8= + 1834-150319-1_52: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3eJvtlWj0j8= + 1834-220319-2_34: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AwbXbG4qzT8= + 1834-220319-4_36: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ekD1fzgt0z8= + 1834-110319-6_37: + 1834-150319-1_5: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0MMVZp7r4z8= + 1834-120319-3_40: + 1834-010319-1_62: *id057 + 1834-010319-3_34: *id058 + 1834-010319-4_53: *id059 + 1834-060319-2_115: *id060 + 1834-060319-3_19: *id061 + 1834-060319-4_13: *id062 + 1834-110319-6_23: *id063 + 1834-150319-1_52: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LXHbdQI90j8= + 1834-150319-2_54: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4DBeSAEd0j8= + 1834-220319-2_47: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CIHHvyKe0j8= + 1834-220319-4_65: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iQP8DR2M0j8= + 1834-120319-3_95: + 1834-010319-1_13: *id064 + 1834-010319-3_90: *id065 + 1834-010319-4_35: *id066 + 1834-110319-1_11: *id067 + 1834-110319-2_19: *id068 + 1834-110319-5_76: *id069 + 1834-110319-6_25: *id070 + 1834-150319-1_40: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hbzjWktL3D8= + 1834-220319-1_65: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q97FutAiyz8= + 1834-220319-2_34: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7142Be8jyT8= + 1834-220319-3_15: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q0U2lKNI0T8= + 1834-220319-4_36: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iyGp/maZyT8= + 1834-150319-1_0: + 1834-110319-6_21: *id071 + 1834-150319-1_23: + 1834-010319-3_36: *id072 + 1834-010319-4_29: *id073 + 1834-110319-6_23: *id074 + 1834-220319-2_34: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vWhxCHxwzj8= + 1834-220319-4_63: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9LEmTp073T8= + 1834-150319-1_40: + 1834-010319-3_34: *id075 + 1834-060319-2_115: *id076 + 1834-060319-4_13: *id077 + 1834-110319-5_76: *id078 + 1834-110319-6_22: *id079 + 1834-120319-3_95: *id080 + 1834-150319-2_54: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8IjQBRr81z8= + 1834-220319-4_65: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + neNVIBSU1z8= + 1834-150319-1_5: + 1834-010319-1_62: *id081 + 1834-010319-3_66: *id082 + 1834-010319-4_53: *id083 + 1834-060319-3_19: *id084 + 1834-110319-1_11: *id085 + 1834-110319-2_19: *id086 + 1834-110319-6_37: *id087 + 1834-220319-1_65: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qR53lzuYzT8= + 1834-220319-2_47: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sm59VNb01D8= + 1834-220319-3_15: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6atmbwpN0j8= + 1834-220319-4_51: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + de0HATJs0T8= + 1834-150319-1_52: + 1834-010319-1_13: *id088 + 1834-010319-3_90: *id089 + 1834-010319-4_35: *id090 + 1834-110319-6_25: *id091 + 1834-120319-3_40: *id092 + 1834-220319-4_36: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cqtOccCp1z8= + 1834-150319-2_54: + 1834-010319-1_62: *id093 + 1834-010319-3_90: *id094 + 1834-010319-4_35: *id095 + 1834-060319-2_115: *id096 + 1834-060319-3_19: *id097 + 1834-060319-4_13: *id098 + 1834-110319-1_11: *id099 + 1834-110319-2_19: *id100 + 1834-110319-5_76: *id101 + 1834-110319-6_23: *id102 + 1834-120319-3_40: *id103 + 1834-150319-1_40: *id104 + 1834-220319-1_65: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qpF+8gl9xD8= + 1834-220319-2_34: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6pBlxEEPxD8= + 1834-220319-3_15: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WFuQdXNCxT8= + 1834-220319-4_65: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6XSlT0FTwz8= + 1834-220319-1_65: + 1834-010319-1_62: *id105 + 1834-010319-3_66: *id106 + 1834-010319-4_29: *id107 + 1834-060319-2_115: *id108 + 1834-060319-3_19: *id109 + 1834-060319-4_13: *id110 + 1834-110319-1_11: *id111 + 1834-110319-2_19: *id112 + 1834-110319-5_76: *id113 + 1834-110319-6_22: *id114 + 1834-120319-3_95: *id115 + 1834-150319-1_5: *id116 + 1834-150319-2_54: *id117 + 1834-220319-2_34: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hUIMFMF8qT8= + 1834-220319-3_15: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + poMmlZzatj8= + 1834-220319-4_51: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5lrqSrHmsT8= + 1834-220319-2_34: + 1834-010319-1_13: *id118 + 1834-010319-3_66: *id119 + 1834-010319-4_29: *id120 + 1834-110319-5_76: *id121 + 1834-110319-6_25: *id122 + 1834-120319-3_95: *id123 + 1834-150319-1_23: *id124 + 1834-150319-2_54: *id125 + 1834-220319-1_65: *id126 + 1834-220319-4_51: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +AVpDzyFtz8= + 1834-220319-2_47: + 1834-010319-1_62: *id127 + 1834-010319-3_34: *id128 + 1834-010319-4_53: *id129 + 1834-060319-2_115: *id130 + 1834-060319-3_19: *id131 + 1834-060319-4_13: *id132 + 1834-110319-1_11: *id133 + 1834-110319-2_19: *id134 + 1834-110319-6_22: *id135 + 1834-120319-3_40: *id136 + 1834-150319-1_5: *id137 + 1834-220319-3_15: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GNfkkLJuuj8= + 1834-220319-4_65: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6PBknwKyvj8= + 1834-220319-3_15: + 1834-010319-1_62: *id138 + 1834-010319-3_66: *id139 + 1834-010319-4_29: *id140 + 1834-060319-2_115: *id141 + 1834-060319-3_19: *id142 + 1834-060319-4_13: *id143 + 1834-110319-1_11: *id144 + 1834-110319-2_19: *id145 + 1834-110319-5_76: *id146 + 1834-110319-6_22: *id147 + 1834-120319-3_95: *id148 + 1834-150319-1_5: *id149 + 1834-150319-2_54: *id150 + 1834-220319-1_65: *id151 + 1834-220319-2_47: *id152 + 1834-220319-4_51: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JaEairTFoz8= + 1834-220319-4_36: + 1834-010319-1_13: *id153 + 1834-010319-3_36: *id154 + 1834-110319-6_25: *id155 + 1834-120319-3_95: *id156 + 1834-150319-1_52: *id157 + 1834-220319-4_51: + 1834-010319-1_62: *id158 + 1834-010319-3_34: *id159 + 1834-010319-4_53: *id160 + 1834-060319-2_115: *id161 + 1834-060319-3_19: *id162 + 1834-060319-4_13: *id163 + 1834-110319-1_11: *id164 + 1834-110319-2_19: *id165 + 1834-110319-5_76: *id166 + 1834-110319-6_21: *id167 + 1834-150319-1_5: *id168 + 1834-220319-1_65: *id169 + 1834-220319-2_34: *id170 + 1834-220319-3_15: *id171 + 1834-220319-4_63: + 1834-010319-3_90: *id172 + 1834-010319-4_35: *id173 + 1834-110319-6_22: *id174 + 1834-150319-1_23: *id175 + 1834-220319-4_65: + 1834-010319-3_66: *id176 + 1834-010319-4_29: *id177 + 1834-110319-6_23: *id178 + 1834-120319-3_40: *id179 + 1834-150319-1_40: *id180 + 1834-150319-2_54: *id181 + 1834-220319-2_47: *id182 +_node: &id185 + 1834-010319-1_13: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id183 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + DQAAAAAAAAA= + 1834-010319-1_62: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + PgAAAAAAAAA= + 1834-010319-3_34: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + IgAAAAAAAAA= + 1834-010319-3_36: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + JAAAAAAAAAA= + 1834-010319-3_66: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + QgAAAAAAAAA= + 1834-010319-3_90: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + WgAAAAAAAAA= + 1834-010319-4_29: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + HQAAAAAAAAA= + 1834-010319-4_35: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + IwAAAAAAAAA= + 1834-010319-4_53: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + NQAAAAAAAAA= + 1834-060319-2_115: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + cwAAAAAAAAA= + 1834-060319-3_19: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + EwAAAAAAAAA= + 1834-060319-4_13: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + DQAAAAAAAAA= + 1834-110319-1_11: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + CwAAAAAAAAA= + 1834-110319-2_19: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + EwAAAAAAAAA= + 1834-110319-5_76: + action_id: 1834-110319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + TAAAAAAAAAA= + 1834-110319-6_14: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + DgAAAAAAAAA= + 1834-110319-6_21: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + FQAAAAAAAAA= + 1834-110319-6_22: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + FgAAAAAAAAA= + 1834-110319-6_23: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + FwAAAAAAAAA= + 1834-110319-6_25: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + GQAAAAAAAAA= + 1834-110319-6_37: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + JQAAAAAAAAA= + 1834-120319-3_40: + action_id: 1834-120319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + KAAAAAAAAAA= + 1834-120319-3_95: + action_id: 1834-120319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + XwAAAAAAAAA= + 1834-150319-1_0: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + AAAAAAAAAAA= + 1834-150319-1_23: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + FwAAAAAAAAA= + 1834-150319-1_40: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + KAAAAAAAAAA= + 1834-150319-1_5: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + BQAAAAAAAAA= + 1834-150319-1_52: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + NAAAAAAAAAA= + 1834-150319-2_54: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + NgAAAAAAAAA= + 1834-220319-1_65: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + QQAAAAAAAAA= + 1834-220319-2_34: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + IgAAAAAAAAA= + 1834-220319-2_47: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + LwAAAAAAAAA= + 1834-220319-3_15: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + DwAAAAAAAAA= + 1834-220319-4_36: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + JAAAAAAAAAA= + 1834-220319-4_51: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + MwAAAAAAAAA= + 1834-220319-4_63: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + PwAAAAAAAAA= + 1834-220319-4_65: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id183 + - !!binary | + QQAAAAAAAAA= +adjlist_inner_dict_factory: &id184 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id184 +edge_attr_dict_factory: *id184 +graph: {} +node_dict_factory: *id184 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id185 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-5.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-5.yaml new file mode 100644 index 000000000..26ca91a96 --- /dev/null +++ b/actions/identify-neurons/data/1834-graphs/graph-group-5.yaml @@ -0,0 +1,3069 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1834-010319-1_16: + 1834-010319-3_42: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + UVX0D0KjwD8= + 1834-010319-4_37: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gq/t72Efuz8= + 1834-010319-5_15: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 11485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + r7IJpUBPxj8= + 1834-060319-1_87: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 499, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eQ5YQqtstz8= + 1834-060319-2_35: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XM3jXGFSrT8= + 1834-060319-3_25: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8/RKbu8AsD8= + 1834-060319-4_16: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 11074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mQW7I5j5sD8= + 1834-110319-1_14: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d8D3Fohetz8= + 1834-110319-2_29: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KXKbG0Covz8= + 1834-110319-5_27: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 7555, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CbXSg5W7yD8= + 1834-110319-6_26: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TNVgG0ri1D8= + 1834-120319-1_11: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0jmVcyBhwT8= + 1834-120319-2_21: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oMrdaq/rwD8= + 1834-120319-3_23: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GP8cjk7lwT8= + 1834-120319-4_69: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zAqQdlRkwT8= + 1834-150319-1_51: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JYaOxSzhwz8= + 1834-150319-2_48: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WLS4b3FawD8= + 1834-150319-3_67: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D7+gppvjwT8= + 1834-150319-4_36: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5mKa1nkZuj8= + 1834-220319-1_77: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k5VjYIdPzD8= + 1834-010319-1_18: + 1834-010319-3_41: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ne+uWXgPwz8= + 1834-010319-4_36: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iUQ7go2cxz8= + 1834-010319-5_14: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 11485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EmbNB4x80T8= + 1834-060319-2_34: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nZdluPvVxT8= + 1834-060319-3_24: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6UfFglbGtj8= + 1834-060319-4_17: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 11074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bHAkzbUYvz8= + 1834-110319-1_16: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ff5Urun8wz8= + 1834-110319-2_31: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HUh2+BDGxD8= + 1834-110319-6_24: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lFajO6zb0D8= + 1834-120319-3_68: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8wFeLxatxz8= + 1834-120319-4_83: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hrpDEhSRxT8= + 1834-150319-1_24: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nf70i5XYxD8= + 1834-150319-3_47: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TbzIf9uWyD8= + 1834-150319-4_11: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Y1T+QSixz8= + 1834-010319-3_41: + 1834-010319-1_18: *id002 + 1834-010319-4_36: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +O8Km2Khtz8= + 1834-010319-5_14: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3394, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w896xVbcxT8= + 1834-060319-2_34: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cmqq43OWyz8= + 1834-060319-3_24: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YQ0qF0xoxj8= + 1834-060319-4_17: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4aJdrw01xj8= + 1834-110319-1_28: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73845, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ydew+2jYyD8= + 1834-110319-2_29: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qVqvloNPxz8= + 1834-110319-6_26: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dT6FLMAR2D8= + 1834-120319-3_68: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k/VNrp5Dzz8= + 1834-120319-4_83: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bxCNtwAWzj8= + 1834-150319-1_24: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XRXSoIpLyT8= + 1834-150319-3_47: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nqLryDg/yT8= + 1834-150319-4_13: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kIZ8hWy4yD8= + 1834-010319-3_42: + 1834-010319-1_16: *id003 + 1834-010319-4_37: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + muClBJ0vqD8= + 1834-010319-5_15: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3394, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FRTXGJUvsj8= + 1834-060319-1_87: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NVj8DsKXxz8= + 1834-060319-2_35: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Ipa15EWwj8= + 1834-060319-3_25: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 71bMHvaUvz8= + 1834-060319-4_16: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cq9e0xUtvT8= + 1834-110319-1_14: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73845, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vUc4ZGVwuz8= + 1834-110319-2_28: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0rcjwJPXwT8= + 1834-110319-5_27: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85864, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UNjTIaIDzj8= + 1834-110319-6_24: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4fnMNu++zz8= + 1834-120319-1_11: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mwMKm0HJxz8= + 1834-120319-2_21: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P7gj+BPjxz8= + 1834-120319-3_23: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FDIfDfpFyD8= + 1834-120319-4_69: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q5EJuLklyD8= + 1834-150319-1_51: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GySy+3+1xj8= + 1834-150319-2_48: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bdaV9UPiyD8= + 1834-150319-3_67: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n0mPWQHByj8= + 1834-150319-4_36: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vxHoCZA2xD8= + 1834-220319-1_77: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z8KB8Vr3xz8= + 1834-010319-4_36: + 1834-010319-1_18: *id004 + 1834-010319-3_41: *id005 + 1834-010319-5_14: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fOqI48D9xD8= + 1834-060319-2_34: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GmTq/WA80j8= + 1834-060319-3_24: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85770, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 15Y1aOfxzD8= + 1834-060319-4_15: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6uhAQUtHyT8= + 1834-110319-1_28: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 72332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SO+qG9XWyD8= + 1834-110319-2_29: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 75610, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pG8Bcyvtxz8= + 1834-110319-6_24: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VDD0S34+1j8= + 1834-120319-3_68: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0zh1f9pZ0z8= + 1834-120319-4_83: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jMd9wNch0j8= + 1834-150319-1_24: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CWT1zuL/yT8= + 1834-150319-3_47: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gu5dI5PAyT8= + 1834-150319-4_13: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i/6tj3hCyT8= + 1834-010319-4_37: + 1834-010319-1_16: *id006 + 1834-010319-3_42: *id007 + 1834-010319-5_15: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0+UDfShAtz8= + 1834-060319-1_87: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77295, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9z2X1DuJxT8= + 1834-060319-2_35: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6LBlouSnvD8= + 1834-060319-3_25: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85770, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ukVH24ifuD8= + 1834-060319-4_16: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hQz3arjOtT8= + 1834-110319-1_14: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 72332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PxZd3BN8tz8= + 1834-110319-2_28: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 75610, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6s+4nCAcwT8= + 1834-110319-5_27: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84351, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7InEIWUBzD8= + 1834-110319-6_26: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GPtMFwNv1j8= + 1834-120319-1_11: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sLQ46MiQxD8= + 1834-120319-2_21: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FUdHIC2oxD8= + 1834-120319-3_23: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cp7aayAdxT8= + 1834-120319-4_69: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6jLSV63bxD8= + 1834-150319-1_51: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZKdZRFAAxD8= + 1834-150319-2_48: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hX6q9taOxj8= + 1834-150319-3_67: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CyxhLSnRxz8= + 1834-150319-4_36: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v6k/az5hvz8= + 1834-220319-1_77: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rfgzeouJyD8= + 1834-010319-5_14: + 1834-010319-1_18: *id008 + 1834-010319-3_41: *id009 + 1834-010319-4_36: *id010 + 1834-060319-2_35: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jARxl2VC0j8= + 1834-060319-3_24: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83889, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Z4i7WVB0z8= + 1834-060319-4_15: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85989, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IOKuB1vzzD8= + 1834-110319-1_28: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 70451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1MEEw76+zD8= + 1834-110319-2_28: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CRQE2VYwzT8= + 1834-110319-6_24: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v8QOtGQt2z8= + 1834-120319-3_23: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2pbocXZt1T8= + 1834-120319-4_69: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GW43ZT391T8= + 1834-150319-1_24: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lNPvzTM/zz8= + 1834-150319-3_47: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PVMCwMx6zD8= + 1834-150319-4_13: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vfmZ2Gnkyz8= + 1834-010319-5_15: + 1834-010319-1_16: *id011 + 1834-010319-3_42: *id012 + 1834-010319-4_37: *id013 + 1834-060319-1_87: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N7ROW/bxzj8= + 1834-060319-2_34: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E3YoQ62ezj8= + 1834-060319-3_25: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83889, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cyaaEM3kwz8= + 1834-060319-4_16: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85989, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GsG211avwj8= + 1834-110319-1_14: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 70451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HXdI4sCrwT8= + 1834-110319-2_29: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MaLWa+XTwj8= + 1834-110319-5_27: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nl6iUGMX0j8= + 1834-110319-6_26: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AjG2YSMj2j8= + 1834-120319-1_11: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 82927, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XCuDk4c8zT8= + 1834-120319-2_21: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q/jYQzU2zT8= + 1834-120319-3_68: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /lokT5F+0D8= + 1834-120319-4_83: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZNrdPlE90D8= + 1834-150319-1_51: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YJh+OtlZyD8= + 1834-150319-2_48: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QSyzHAtEzz8= + 1834-150319-3_67: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + REJ7zaon0D8= + 1834-150319-4_36: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tsHlDpQixz8= + 1834-220319-1_77: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fqcdXg9vzj8= + 1834-060319-1_87: + 1834-010319-1_16: *id014 + 1834-010319-3_42: *id015 + 1834-010319-4_37: *id016 + 1834-010319-5_15: *id017 + 1834-060319-2_35: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uL3KphXAuz8= + 1834-060319-3_25: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8475, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t3pSGFcKvj8= + 1834-060319-4_15: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10575, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7E5ciFOPwD8= + 1834-110319-1_14: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81437, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aQrGWYr7wj8= + 1834-110319-2_29: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IKJb/lNmxT8= + 1834-110319-5_27: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7056, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N2l5ZZJXzj8= + 1834-110319-6_24: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zug2Df5Z0D8= + 1834-120319-1_11: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e0rbrJ03yD8= + 1834-120319-2_21: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oNRevXVkxz8= + 1834-120319-3_23: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vwE/jQfyxz8= + 1834-120319-4_69: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KS9LoV97xz8= + 1834-150319-1_51: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2eXwTbf6xz8= + 1834-150319-2_48: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ws1Qnwe2wz8= + 1834-150319-3_47: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dwGD7wOdxj8= + 1834-150319-4_36: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DlNZKCDrwj8= + 1834-220319-1_77: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + txDYnjKb0j8= + 1834-060319-2_34: + 1834-010319-1_18: *id018 + 1834-010319-3_41: *id019 + 1834-010319-4_36: *id020 + 1834-010319-5_15: *id021 + 1834-060319-3_26: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0OjJtETHtT8= + 1834-060319-4_17: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KG7HskSBwj8= + 1834-110319-1_28: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MoJsPzjHxz8= + 1834-110319-2_29: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jua2lYQaxD8= + 1834-110319-6_24: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BrrGbuqP0D8= + 1834-120319-3_68: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OBLj7jwHxT8= + 1834-120319-4_83: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rd6GzKc+xz8= + 1834-150319-1_24: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + egrVU4YXxj8= + 1834-150319-3_47: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O7597YppyD8= + 1834-150319-4_12: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DIl0Rwz3xT8= + 1834-060319-2_35: + 1834-010319-1_16: *id022 + 1834-010319-3_42: *id023 + 1834-010319-4_37: *id024 + 1834-010319-5_14: *id025 + 1834-060319-1_87: *id026 + 1834-060319-3_25: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IOvLGbfnpj8= + 1834-060319-4_16: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N1IJ/ndTsD8= + 1834-110319-1_14: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dBd8kLj/tj8= + 1834-110319-2_28: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JwrmYGP3wT8= + 1834-110319-5_27: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HPWzEZhQxT8= + 1834-110319-6_26: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gXQMX15R0z8= + 1834-120319-1_11: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IB1rX3gsvD8= + 1834-120319-2_21: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S8DxaEh5vD8= + 1834-120319-3_23: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dNCg+HQqvT8= + 1834-120319-4_69: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sfxpggovvD8= + 1834-150319-1_25: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sjZMoj0hwj8= + 1834-150319-2_48: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xoh2yljxvT8= + 1834-150319-3_67: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rgH0S3m7vj8= + 1834-150319-4_36: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /XEV9tsFsz8= + 1834-220319-1_77: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +fZHYHDCzD8= + 1834-060319-3_24: + 1834-010319-1_18: *id027 + 1834-010319-3_41: *id028 + 1834-010319-4_36: *id029 + 1834-010319-5_14: *id030 + 1834-060319-4_17: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FYns3vW+tT8= + 1834-110319-1_16: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 72962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +R+soaM0xj8= + 1834-110319-2_31: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kJaF4ZGexT8= + 1834-110319-6_24: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V7RmwxWCzj8= + 1834-120319-3_68: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N85kkG56wT8= + 1834-120319-4_73: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L9A1uxnexj8= + 1834-150319-1_24: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oo5dIgVEwT8= + 1834-150319-3_47: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Zlh4xM2xz8= + 1834-150319-4_11: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zOtFGY3Xwz8= + 1834-060319-3_25: + 1834-010319-1_16: *id031 + 1834-010319-3_42: *id032 + 1834-010319-4_37: *id033 + 1834-010319-5_15: *id034 + 1834-060319-1_87: *id035 + 1834-060319-2_35: *id036 + 1834-060319-4_15: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UnuJlALZoz8= + 1834-110319-1_14: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 72962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ACbrEzGqsT8= + 1834-110319-2_28: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lpnlRdXYvj8= + 1834-110319-5_27: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84981, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IFqcLEPexD8= + 1834-110319-6_26: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sReU9UhE0T8= + 1834-120319-1_11: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H3N1Bl3NvT8= + 1834-120319-2_21: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tc+o+tFdvj8= + 1834-120319-3_23: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + An/kIwZ5vj8= + 1834-120319-4_69: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TfQ4tKfUvT8= + 1834-150319-1_51: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VHMw993swD8= + 1834-150319-2_48: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dr8vY4GQuz8= + 1834-150319-3_67: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VBoDadexvT8= + 1834-150319-4_36: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z8SCl5Whsz8= + 1834-220319-1_77: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GCxhXcocyT8= + 1834-060319-3_26: + 1834-060319-2_34: *id037 + 1834-060319-4_16: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wal3QQn/wz8= + 1834-110319-1_28: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 72962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xlhBIFUcyD8= + 1834-110319-2_29: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u7xM0gAZxT8= + 1834-120319-4_83: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UZFZHonRxD8= + 1834-150319-1_25: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZmeotwzIxj8= + 1834-150319-4_12: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tOgutBXJwj8= + 1834-060319-4_15: + 1834-010319-4_36: *id038 + 1834-010319-5_14: *id039 + 1834-060319-1_87: *id040 + 1834-060319-3_25: *id041 + 1834-110319-1_28: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 70862, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P16UiiZrtj8= + 1834-110319-2_28: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tsrXupnmuD8= + 1834-110319-5_27: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +ftc0fVqxT8= + 1834-110319-6_26: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xdE75Tgy0D8= + 1834-120319-3_23: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wCcl4IdzwD8= + 1834-120319-4_73: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bLf24kfjxj8= + 1834-150319-1_51: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1JhzqvHRvD8= + 1834-150319-2_48: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cQbSAQj7vD8= + 1834-150319-3_47: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2jvWPhQ4wD8= + 1834-150319-4_16: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dMYYIL/CvD8= + 1834-220319-1_77: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PclVFg/dxj8= + 1834-060319-4_16: + 1834-010319-1_16: *id042 + 1834-010319-3_42: *id043 + 1834-010319-4_37: *id044 + 1834-010319-5_15: *id045 + 1834-060319-2_35: *id046 + 1834-060319-3_26: *id047 + 1834-110319-1_14: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 70862, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 47RaP3bgpj8= + 1834-110319-2_29: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Unk7gUaVtz8= + 1834-110319-6_24: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ou2sfOSpyT8= + 1834-120319-1_11: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n/5NIDqHvz8= + 1834-120319-2_21: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A2hxfKI8vz8= + 1834-120319-3_68: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gKIQ3fazwz8= + 1834-120319-4_69: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4cbI3ATcvz8= + 1834-150319-1_25: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fjWuQmjovT8= + 1834-150319-3_67: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GlUczkPfvj8= + 1834-150319-4_36: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sZv9LIYQtj8= + 1834-060319-4_17: + 1834-010319-1_18: *id048 + 1834-010319-3_41: *id049 + 1834-060319-2_34: *id050 + 1834-060319-3_24: *id051 + 1834-110319-1_16: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 70862, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QoYRtqzAwj8= + 1834-110319-2_31: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iU72G5FAwz8= + 1834-120319-4_83: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D6lESPXGxT8= + 1834-150319-1_24: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1BIis1r7wT8= + 1834-150319-4_12: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3ewAn14zwz8= + 1834-110319-1_14: + 1834-010319-1_16: *id052 + 1834-010319-3_42: *id053 + 1834-010319-4_37: *id054 + 1834-010319-5_15: *id055 + 1834-060319-1_87: *id056 + 1834-060319-2_35: *id057 + 1834-060319-3_25: *id058 + 1834-060319-4_16: *id059 + 1834-110319-2_29: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QorDBZIIsD8= + 1834-110319-5_27: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9UeNVJJyyD8= + 1834-110319-6_24: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iQ+7judbyj8= + 1834-120319-1_11: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12476, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7Twbr3kRwj8= + 1834-120319-2_21: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 69WCf2TiwT8= + 1834-120319-3_23: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DwKuQ1K4wj8= + 1834-120319-4_69: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OBlCMl9Lwj8= + 1834-150319-1_25: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UOom0gXdvz8= + 1834-150319-2_48: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XVfEdjKCwj8= + 1834-150319-3_67: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U4RhcocdwT8= + 1834-150319-4_36: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FvCiOrqeuj8= + 1834-110319-1_16: + 1834-010319-1_18: *id060 + 1834-060319-3_24: *id061 + 1834-060319-4_17: *id062 + 1834-110319-2_31: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pmTf+x6srz8= + 1834-120319-4_83: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5/EOLFseyz8= + 1834-150319-1_51: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qW85rxQRxz8= + 1834-150319-4_12: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jgJ8db2zyj8= + 1834-110319-1_28: + 1834-010319-3_41: *id063 + 1834-010319-4_36: *id064 + 1834-010319-5_14: *id065 + 1834-060319-2_34: *id066 + 1834-060319-3_26: *id067 + 1834-060319-4_15: *id068 + 1834-110319-2_28: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 17fse3JaoT8= + 1834-110319-6_26: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1Ef1ly8O0T8= + 1834-120319-3_68: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VPqXwEg9yD8= + 1834-120319-4_73: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sCG9LZbRyj8= + 1834-150319-1_58: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vz3B1wl6wD8= + 1834-150319-3_47: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xtb8s8/ftz8= + 1834-150319-4_13: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + caJZIeCltz8= + 1834-220319-1_77: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5iDiaXOexD8= + 1834-110319-2_28: + 1834-010319-3_42: *id069 + 1834-010319-4_37: *id070 + 1834-010319-5_14: *id071 + 1834-060319-2_35: *id072 + 1834-060319-3_25: *id073 + 1834-060319-4_15: *id074 + 1834-110319-1_28: *id075 + 1834-110319-6_26: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9q/wUgHK0D8= + 1834-120319-3_23: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cy/WGQm+xj8= + 1834-120319-4_73: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mpUvS2gOyz8= + 1834-150319-1_58: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g7kZ/WlZwD8= + 1834-150319-3_47: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sobrqoUGtz8= + 1834-150319-4_13: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 453GV8iFtj8= + 1834-110319-2_29: + 1834-010319-1_16: *id076 + 1834-010319-3_41: *id077 + 1834-010319-4_36: *id078 + 1834-010319-5_15: *id079 + 1834-060319-1_87: *id080 + 1834-060319-2_34: *id081 + 1834-060319-3_26: *id082 + 1834-060319-4_16: *id083 + 1834-110319-1_14: *id084 + 1834-110319-5_27: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j3I6HZCyyT8= + 1834-110319-6_24: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x+rKLqE0yz8= + 1834-120319-1_11: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2yyWFnUpxD8= + 1834-120319-2_21: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MlN9GtmRwz8= + 1834-120319-3_68: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MDgnGFAmxj8= + 1834-120319-4_69: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lkAeLyxoxD8= + 1834-150319-1_51: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MVNRUInwvj8= + 1834-150319-2_48: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DLBpbKO/xT8= + 1834-150319-3_67: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DqYSL039wj8= + 1834-150319-4_36: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nzCmKNojwT8= + 1834-220319-1_77: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HZU7fSdrwz8= + 1834-110319-2_31: + 1834-010319-1_18: *id085 + 1834-060319-3_24: *id086 + 1834-060319-4_17: *id087 + 1834-110319-1_16: *id088 + 1834-120319-4_83: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + muTAR809yT8= + 1834-150319-1_25: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kknxENnlyD8= + 1834-150319-4_16: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ec64dDTqyD8= + 1834-110319-5_27: + 1834-010319-1_16: *id089 + 1834-010319-3_42: *id090 + 1834-010319-4_37: *id091 + 1834-010319-5_15: *id092 + 1834-060319-1_87: *id093 + 1834-060319-2_35: *id094 + 1834-060319-3_25: *id095 + 1834-060319-4_15: *id096 + 1834-110319-1_14: *id097 + 1834-110319-2_29: *id098 + 1834-110319-6_24: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0Ahy2tuLrD8= + 1834-120319-1_11: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fatTYT26vz8= + 1834-120319-2_21: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NoaUCVFNxD8= + 1834-120319-3_23: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zZkPaD8tvz8= + 1834-120319-4_69: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oiGImk/nwD8= + 1834-150319-1_25: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rPt24HKeyD8= + 1834-150319-2_48: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zn3V9oSXvz8= + 1834-150319-3_67: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6pG9jlPHxj8= + 1834-150319-4_15: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GQxY0JsbwT8= + 1834-220319-1_77: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FNGiDxEO2D8= + 1834-110319-6_24: + 1834-010319-1_18: *id099 + 1834-010319-3_42: *id100 + 1834-010319-4_36: *id101 + 1834-010319-5_14: *id102 + 1834-060319-1_87: *id103 + 1834-060319-2_34: *id104 + 1834-060319-3_24: *id105 + 1834-060319-4_16: *id106 + 1834-110319-1_14: *id107 + 1834-110319-2_29: *id108 + 1834-110319-5_27: *id109 + 1834-120319-1_11: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0DsNzs3Iwj8= + 1834-120319-2_21: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JirprzsNxz8= + 1834-120319-3_68: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qDjlxG+gyT8= + 1834-120319-4_73: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w1uXthJhxj8= + 1834-150319-1_25: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SU0TFGieyj8= + 1834-150319-2_48: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lSj/w8ghwj8= + 1834-150319-3_67: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /lBawkt3yT8= + 1834-150319-4_36: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rR3ToPZwwz8= + 1834-220319-1_77: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h++K3hfO2D8= + 1834-110319-6_26: + 1834-010319-1_16: *id110 + 1834-010319-3_41: *id111 + 1834-010319-4_37: *id112 + 1834-010319-5_15: *id113 + 1834-060319-2_35: *id114 + 1834-060319-3_25: *id115 + 1834-060319-4_15: *id116 + 1834-110319-1_28: *id117 + 1834-110319-2_28: *id118 + 1834-120319-3_23: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9fv6Tw2Z1D8= + 1834-120319-4_69: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tQOUyhhO1T8= + 1834-150319-1_24: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g55/oxx30T8= + 1834-150319-3_47: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bCWWDwLZzj8= + 1834-150319-4_13: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M0sdtieLzj8= + 1834-120319-1_11: + 1834-010319-1_16: *id119 + 1834-010319-3_42: *id120 + 1834-010319-4_37: *id121 + 1834-010319-5_15: *id122 + 1834-060319-1_87: *id123 + 1834-060319-2_35: *id124 + 1834-060319-3_25: *id125 + 1834-060319-4_16: *id126 + 1834-110319-1_14: *id127 + 1834-110319-2_29: *id128 + 1834-110319-5_27: *id129 + 1834-110319-6_24: *id130 + 1834-120319-2_21: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t9HdDtWRpz8= + 1834-120319-3_23: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 05wcxsBUkz8= + 1834-120319-4_69: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A2VfsrUqlD8= + 1834-150319-1_25: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fo0cVW4HvT8= + 1834-150319-2_48: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mo+rAw4CwD8= + 1834-150319-3_67: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aLQDvXaguj8= + 1834-150319-4_36: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ifm02EBosz8= + 1834-220319-1_77: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3bZSgBdH0z8= + 1834-120319-2_21: + 1834-010319-1_16: *id131 + 1834-010319-3_42: *id132 + 1834-010319-4_37: *id133 + 1834-010319-5_15: *id134 + 1834-060319-1_87: *id135 + 1834-060319-2_35: *id136 + 1834-060319-3_25: *id137 + 1834-060319-4_16: *id138 + 1834-110319-1_14: *id139 + 1834-110319-2_29: *id140 + 1834-110319-5_27: *id141 + 1834-110319-6_24: *id142 + 1834-120319-1_11: *id143 + 1834-120319-3_23: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GABF1XEXrD8= + 1834-120319-4_69: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lj+/4OJspT8= + 1834-150319-1_25: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uAH8usabuj8= + 1834-150319-2_48: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mvTUIY+Xwz8= + 1834-150319-3_67: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +kzIqHE1uj8= + 1834-150319-4_36: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IFgIyVnXtj8= + 1834-220319-1_77: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QNIwAk6Q0T8= + 1834-120319-3_23: + 1834-010319-1_16: *id144 + 1834-010319-3_42: *id145 + 1834-010319-4_37: *id146 + 1834-010319-5_14: *id147 + 1834-060319-1_87: *id148 + 1834-060319-2_35: *id149 + 1834-060319-3_25: *id150 + 1834-060319-4_15: *id151 + 1834-110319-1_14: *id152 + 1834-110319-2_28: *id153 + 1834-110319-5_27: *id154 + 1834-110319-6_26: *id155 + 1834-120319-1_11: *id156 + 1834-120319-2_21: *id157 + 1834-120319-4_69: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4+8Br0jMkT8= + 1834-150319-1_25: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nbUWMVIEvT8= + 1834-150319-2_48: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dBNCPiCVvz8= + 1834-150319-3_47: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xNluBkxNxj8= + 1834-150319-4_36: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8cTl9XeNsz8= + 1834-120319-3_68: + 1834-010319-1_18: *id158 + 1834-010319-3_41: *id159 + 1834-010319-4_36: *id160 + 1834-010319-5_15: *id161 + 1834-060319-2_34: *id162 + 1834-060319-3_24: *id163 + 1834-060319-4_16: *id164 + 1834-110319-1_28: *id165 + 1834-110319-2_29: *id166 + 1834-110319-6_24: *id167 + 1834-120319-4_83: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8USTocl+sD8= + 1834-150319-1_24: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /+D7PPPzwj8= + 1834-150319-3_67: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sH3FRhYJuz8= + 1834-150319-4_12: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VXoC+jeEvj8= + 1834-220319-1_77: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HCgWB22Z0z8= + 1834-120319-4_69: + 1834-010319-1_16: *id168 + 1834-010319-3_42: *id169 + 1834-010319-4_37: *id170 + 1834-010319-5_14: *id171 + 1834-060319-1_87: *id172 + 1834-060319-2_35: *id173 + 1834-060319-3_25: *id174 + 1834-060319-4_16: *id175 + 1834-110319-1_14: *id176 + 1834-110319-2_29: *id177 + 1834-110319-5_27: *id178 + 1834-110319-6_26: *id179 + 1834-120319-1_11: *id180 + 1834-120319-2_21: *id181 + 1834-120319-3_23: *id182 + 1834-150319-1_25: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oryVi7W+uz8= + 1834-150319-2_48: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 37QdNHLLwD8= + 1834-150319-3_47: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0dujbowTxj8= + 1834-150319-4_36: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FBplbW6tsz8= + 1834-220319-1_77: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KJtaC+lb0z8= + 1834-120319-4_73: + 1834-060319-3_24: *id183 + 1834-060319-4_15: *id184 + 1834-110319-1_28: *id185 + 1834-110319-2_28: *id186 + 1834-110319-6_24: *id187 + 1834-150319-1_24: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HgjWjl5Mwz8= + 1834-150319-4_11: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tYxaIsGPwT8= + 1834-120319-4_83: + 1834-010319-1_18: *id188 + 1834-010319-3_41: *id189 + 1834-010319-4_36: *id190 + 1834-010319-5_15: *id191 + 1834-060319-2_34: *id192 + 1834-060319-3_26: *id193 + 1834-060319-4_17: *id194 + 1834-110319-1_16: *id195 + 1834-110319-2_31: *id196 + 1834-120319-3_68: *id197 + 1834-150319-1_51: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CCsF6V9/xj8= + 1834-150319-3_67: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ulGK+2IYvT8= + 1834-150319-4_12: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + waopS/fHvD8= + 1834-150319-1_24: + 1834-010319-1_18: *id198 + 1834-010319-3_41: *id199 + 1834-010319-4_36: *id200 + 1834-010319-5_14: *id201 + 1834-060319-2_34: *id202 + 1834-060319-3_24: *id203 + 1834-060319-4_17: *id204 + 1834-110319-6_26: *id205 + 1834-120319-3_68: *id206 + 1834-120319-4_73: *id207 + 1834-150319-4_11: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M60MYYabwj8= + 1834-150319-1_25: + 1834-060319-2_35: *id208 + 1834-060319-3_26: *id209 + 1834-060319-4_16: *id210 + 1834-110319-1_14: *id211 + 1834-110319-2_31: *id212 + 1834-110319-5_27: *id213 + 1834-110319-6_24: *id214 + 1834-120319-1_11: *id215 + 1834-120319-2_21: *id216 + 1834-120319-3_23: *id217 + 1834-120319-4_69: *id218 + 1834-150319-2_48: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6o9pGMwmxj8= + 1834-150319-3_67: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ay3UDyBdtz8= + 1834-150319-4_12: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3ExnPgXHuz8= + 1834-150319-1_28: + 1834-150319-4_36: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b5/91Krz1T8= + 1834-150319-1_51: + 1834-010319-1_16: *id219 + 1834-010319-3_42: *id220 + 1834-010319-4_37: *id221 + 1834-010319-5_15: *id222 + 1834-060319-1_87: *id223 + 1834-060319-3_25: *id224 + 1834-060319-4_15: *id225 + 1834-110319-1_16: *id226 + 1834-110319-2_29: *id227 + 1834-120319-4_83: *id228 + 1834-150319-4_16: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ur3taC6ZvT8= + 1834-220319-1_77: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y3ulVHpWyD8= + 1834-150319-1_58: + 1834-110319-1_28: *id229 + 1834-110319-2_28: *id230 + 1834-150319-3_47: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SGG0Y4OqsT8= + 1834-150319-4_13: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y7K0MuCprz8= + 1834-150319-1_60: + 1834-150319-4_15: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uHk2337Pzj8= + 1834-150319-2_48: + 1834-010319-1_16: *id231 + 1834-010319-3_42: *id232 + 1834-010319-4_37: *id233 + 1834-010319-5_15: *id234 + 1834-060319-1_87: *id235 + 1834-060319-2_35: *id236 + 1834-060319-3_25: *id237 + 1834-060319-4_15: *id238 + 1834-110319-1_14: *id239 + 1834-110319-2_29: *id240 + 1834-110319-5_27: *id241 + 1834-110319-6_24: *id242 + 1834-120319-1_11: *id243 + 1834-120319-2_21: *id244 + 1834-120319-3_23: *id245 + 1834-120319-4_69: *id246 + 1834-150319-1_25: *id247 + 1834-150319-3_67: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GcJOijxMwD8= + 1834-150319-4_36: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yuxbrZzVuD8= + 1834-220319-1_77: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KYU1Og0p1T8= + 1834-150319-3_47: + 1834-010319-1_18: *id248 + 1834-010319-3_41: *id249 + 1834-010319-4_36: *id250 + 1834-010319-5_14: *id251 + 1834-060319-1_87: *id252 + 1834-060319-2_34: *id253 + 1834-060319-3_24: *id254 + 1834-060319-4_15: *id255 + 1834-110319-1_28: *id256 + 1834-110319-2_28: *id257 + 1834-110319-6_26: *id258 + 1834-120319-3_23: *id259 + 1834-120319-4_69: *id260 + 1834-150319-1_58: *id261 + 1834-150319-4_13: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZmmcbXcDiz8= + 1834-220319-1_77: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LFjmNOqExj8= + 1834-150319-3_67: + 1834-010319-1_16: *id262 + 1834-010319-3_42: *id263 + 1834-010319-4_37: *id264 + 1834-010319-5_15: *id265 + 1834-060319-2_35: *id266 + 1834-060319-3_25: *id267 + 1834-060319-4_16: *id268 + 1834-110319-1_14: *id269 + 1834-110319-2_29: *id270 + 1834-110319-5_27: *id271 + 1834-110319-6_24: *id272 + 1834-120319-1_11: *id273 + 1834-120319-2_21: *id274 + 1834-120319-3_68: *id275 + 1834-120319-4_83: *id276 + 1834-150319-1_25: *id277 + 1834-150319-2_48: *id278 + 1834-150319-4_16: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SHUzJW3wrD8= + 1834-150319-4_11: + 1834-010319-1_18: *id279 + 1834-060319-3_24: *id280 + 1834-120319-4_73: *id281 + 1834-150319-1_24: *id282 + 1834-150319-4_12: + 1834-060319-2_34: *id283 + 1834-060319-3_26: *id284 + 1834-060319-4_17: *id285 + 1834-110319-1_16: *id286 + 1834-120319-3_68: *id287 + 1834-120319-4_83: *id288 + 1834-150319-1_25: *id289 + 1834-150319-4_13: + 1834-010319-3_41: *id290 + 1834-010319-4_36: *id291 + 1834-010319-5_14: *id292 + 1834-110319-1_28: *id293 + 1834-110319-2_28: *id294 + 1834-110319-6_26: *id295 + 1834-150319-1_58: *id296 + 1834-150319-3_47: *id297 + 1834-220319-1_77: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +70o4Yv8xT8= + 1834-150319-4_15: + 1834-110319-5_27: *id298 + 1834-150319-1_60: *id299 + 1834-150319-4_16: + 1834-060319-4_15: *id300 + 1834-110319-2_31: *id301 + 1834-150319-1_51: *id302 + 1834-150319-3_67: *id303 + 1834-150319-4_36: + 1834-010319-1_16: *id304 + 1834-010319-3_42: *id305 + 1834-010319-4_37: *id306 + 1834-010319-5_15: *id307 + 1834-060319-1_87: *id308 + 1834-060319-2_35: *id309 + 1834-060319-3_25: *id310 + 1834-060319-4_16: *id311 + 1834-110319-1_14: *id312 + 1834-110319-2_29: *id313 + 1834-110319-6_24: *id314 + 1834-120319-1_11: *id315 + 1834-120319-2_21: *id316 + 1834-120319-3_23: *id317 + 1834-120319-4_69: *id318 + 1834-150319-1_28: *id319 + 1834-150319-2_48: *id320 + 1834-220319-1_77: + 1834-010319-1_16: *id321 + 1834-010319-3_42: *id322 + 1834-010319-4_37: *id323 + 1834-010319-5_15: *id324 + 1834-060319-1_87: *id325 + 1834-060319-2_35: *id326 + 1834-060319-3_25: *id327 + 1834-060319-4_15: *id328 + 1834-110319-1_28: *id329 + 1834-110319-2_29: *id330 + 1834-110319-5_27: *id331 + 1834-110319-6_24: *id332 + 1834-120319-1_11: *id333 + 1834-120319-2_21: *id334 + 1834-120319-3_68: *id335 + 1834-120319-4_69: *id336 + 1834-150319-1_51: *id337 + 1834-150319-2_48: *id338 + 1834-150319-3_47: *id339 + 1834-150319-4_13: *id340 +_node: &id343 + 1834-010319-1_16: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id341 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + EAAAAAAAAAA= + 1834-010319-1_18: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + EgAAAAAAAAA= + 1834-010319-3_41: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + KQAAAAAAAAA= + 1834-010319-3_42: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + KgAAAAAAAAA= + 1834-010319-4_36: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + JAAAAAAAAAA= + 1834-010319-4_37: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + JQAAAAAAAAA= + 1834-010319-5_14: + action_id: 1834-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + DgAAAAAAAAA= + 1834-010319-5_15: + action_id: 1834-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + DwAAAAAAAAA= + 1834-060319-1_87: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + VwAAAAAAAAA= + 1834-060319-2_34: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + IgAAAAAAAAA= + 1834-060319-2_35: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + IwAAAAAAAAA= + 1834-060319-3_24: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + GAAAAAAAAAA= + 1834-060319-3_25: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + GQAAAAAAAAA= + 1834-060319-3_26: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + GgAAAAAAAAA= + 1834-060319-4_15: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + DwAAAAAAAAA= + 1834-060319-4_16: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + EAAAAAAAAAA= + 1834-060319-4_17: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + EQAAAAAAAAA= + 1834-110319-1_14: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + DgAAAAAAAAA= + 1834-110319-1_16: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + EAAAAAAAAAA= + 1834-110319-1_28: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + HAAAAAAAAAA= + 1834-110319-2_28: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + HAAAAAAAAAA= + 1834-110319-2_29: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + HQAAAAAAAAA= + 1834-110319-2_31: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + HwAAAAAAAAA= + 1834-110319-5_27: + action_id: 1834-110319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + GwAAAAAAAAA= + 1834-110319-6_24: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + GAAAAAAAAAA= + 1834-110319-6_26: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + GgAAAAAAAAA= + 1834-120319-1_11: + action_id: 1834-120319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + CwAAAAAAAAA= + 1834-120319-2_21: + action_id: 1834-120319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + FQAAAAAAAAA= + 1834-120319-3_23: + action_id: 1834-120319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + FwAAAAAAAAA= + 1834-120319-3_68: + action_id: 1834-120319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + RAAAAAAAAAA= + 1834-120319-4_69: + action_id: 1834-120319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + RQAAAAAAAAA= + 1834-120319-4_73: + action_id: 1834-120319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + SQAAAAAAAAA= + 1834-120319-4_83: + action_id: 1834-120319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + UwAAAAAAAAA= + 1834-150319-1_24: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + GAAAAAAAAAA= + 1834-150319-1_25: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + GQAAAAAAAAA= + 1834-150319-1_28: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + HAAAAAAAAAA= + 1834-150319-1_51: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + MwAAAAAAAAA= + 1834-150319-1_58: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + OgAAAAAAAAA= + 1834-150319-1_60: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + PAAAAAAAAAA= + 1834-150319-2_48: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + MAAAAAAAAAA= + 1834-150319-3_47: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + LwAAAAAAAAA= + 1834-150319-3_67: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + QwAAAAAAAAA= + 1834-150319-4_11: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + CwAAAAAAAAA= + 1834-150319-4_12: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + DAAAAAAAAAA= + 1834-150319-4_13: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + DQAAAAAAAAA= + 1834-150319-4_15: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + DwAAAAAAAAA= + 1834-150319-4_16: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + EAAAAAAAAAA= + 1834-150319-4_36: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + JAAAAAAAAAA= + 1834-220319-1_77: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id341 + - !!binary | + TQAAAAAAAAA= +adjlist_inner_dict_factory: &id342 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id342 +edge_attr_dict_factory: *id342 +graph: {} +node_dict_factory: *id342 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id343 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-6.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-6.yaml new file mode 100644 index 000000000..f8ac20ae7 --- /dev/null +++ b/actions/identify-neurons/data/1834-graphs/graph-group-6.yaml @@ -0,0 +1,6402 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1834-010319-1_21: + 1834-010319-3_53: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + 3cTY6jb1sj8= + 1834-010319-4_44: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YO4RmSMpxj8= + 1834-010319-5_35: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 11485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T1ju6PhNxT8= + 1834-060319-1_55: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 499, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MDD2qFXVpj8= + 1834-060319-2_40: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gd4rtFfZtj8= + 1834-060319-3_30: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TScEoAE1tD8= + 1834-060319-4_21: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 11074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AqHL8eK1sz8= + 1834-110319-1_20: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NVODssqMzz8= + 1834-110319-2_77: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KPXSfJHFtT8= + 1834-110319-3_70: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4588, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w6kWmtjKzT8= + 1834-110319-5_30: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 7555, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aJXELDCF0T8= + 1834-110319-6_27: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ps7vWxNQ1D8= + 1834-120319-1_31: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bi3uKRwdyD8= + 1834-120319-2_23: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YTaUwPjixz8= + 1834-120319-3_66: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n8yw/MhwyT8= + 1834-120319-4_71: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rPFysxubyD8= + 1834-150319-1_31: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p2Le03wSzT8= + 1834-150319-2_27: &id358 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SVftjqdHxz8= + 1834-150319-3_59: &id401 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OQnTZnNhuj8= + 1834-150319-4_20: &id438 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3hE9o952xz8= + 1834-220319-1_41: &id517 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GlvKaT/nwT8= + 1834-220319-2_18: &id554 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HZB9rBTmxz8= + 1834-220319-3_22: &id613 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rgEA+rrMyT8= + 1834-220319-4_39: &id715 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L3LnGZhvyj8= + 1834-010319-1_22: + 1834-010319-3_55: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ceiA3T4roz8= + 1834-010319-4_46: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q4tir3amwD8= + 1834-010319-5_20: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 11485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HiojoFJWwD8= + 1834-060319-1_58: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 499, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vw0gwKoQvD8= + 1834-060319-2_39: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kYdxOf4kuT8= + 1834-060319-3_32: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FYngKX1btT8= + 1834-060319-4_22: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 11074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U+/GMqSkwj8= + 1834-110319-1_44: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IHCjHSmhxj8= + 1834-110319-2_38: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D646iQUWsz8= + 1834-110319-3_83: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4588, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WnBr4t3Fyz8= + 1834-110319-5_31: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 7555, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SEw+ihVTyz8= + 1834-110319-6_29: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OkcB3id6zj8= + 1834-120319-1_33: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xvQuylP4zz8= + 1834-120319-2_55: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WpKvV0Hgzz8= + 1834-120319-3_56: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YztezvzCzz8= + 1834-120319-4_55: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m1DAymtnzz8= + 1834-150319-1_33: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ruxuJ+6YtD8= + 1834-150319-2_28: &id375 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ycf4mXgjwj8= + 1834-150319-3_63: &id410 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8mSTW8O5wD8= + 1834-150319-4_22: &id474 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dxFumYr6uj8= + 1834-220319-1_75: &id537 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VKcIfBiyqT8= + 1834-220319-2_45: &id601 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nOEHgy3/uT8= + 1834-220319-3_37: &id649 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DPKas6k2vT8= + 1834-220319-4_30: &id691 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WkyJ/bdnvz8= + 1834-010319-3_53: + 1834-010319-1_21: *id002 + 1834-010319-4_44: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g+851y6jyD8= + 1834-010319-5_35: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3394, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sGJL73Dwxz8= + 1834-060319-1_55: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m2KZLAhYqz8= + 1834-060319-2_122: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0lEnwxgRuz8= + 1834-060319-3_43: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hHpKTfQYwT8= + 1834-060319-4_21: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7B+Ptcwjuz8= + 1834-110319-1_20: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73845, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JgoBvEEh0T8= + 1834-110319-2_77: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vRfBhvcytT8= + 1834-110319-3_70: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82897, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C45sW/+W0D8= + 1834-110319-5_30: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85864, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /LlMA91C0z8= + 1834-110319-6_27: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q/SUD6440z8= + 1834-120319-1_31: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0ZSFL4ZKyz8= + 1834-120319-2_23: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AsXVo70ayz8= + 1834-120319-3_66: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6AFTz66lzD8= + 1834-120319-4_71: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hQXkIi8izD8= + 1834-150319-1_31: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jg9y7TcCzz8= + 1834-150319-2_27: &id359 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6InDkcZwzD8= + 1834-150319-3_59: &id402 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UG83T7DpwT8= + 1834-150319-4_21: &id458 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FOj4V/IH1D8= + 1834-220319-1_41: &id518 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y+Cknon9yD8= + 1834-220319-2_18: &id555 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MHterXLNyj8= + 1834-220319-3_22: &id614 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZUyhyNmXzj8= + 1834-220319-4_39: &id716 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KUKu0AQizz8= + 1834-010319-3_55: + 1834-010319-1_22: *id003 + 1834-010319-4_46: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vn5PGWTIwT8= + 1834-010319-5_20: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3394, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ckA+EVLlwD8= + 1834-060319-1_58: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + osT9ad/nvT8= + 1834-060319-2_39: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5+wsFJ73uj8= + 1834-060319-3_32: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0COX2Z16tz8= + 1834-060319-4_22: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WokeA3kbxD8= + 1834-110319-1_44: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73845, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rIpgRl4JyD8= + 1834-110319-2_38: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TIYmGmyItD8= + 1834-110319-3_83: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82897, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q3rv5U7Wzz8= + 1834-110319-5_31: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85864, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S3ckQxLmzT8= + 1834-110319-6_28: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sN270Stp5j8= + 1834-120319-1_33: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kZkr7OEd0D8= + 1834-120319-2_55: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pd9p/ZcF0D8= + 1834-120319-3_56: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sMSZeVsA0D8= + 1834-120319-4_55: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9vS84Hmqzz8= + 1834-150319-1_33: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + detNtTs3tT8= + 1834-150319-2_26: &id343 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qBFftMUh0j8= + 1834-150319-3_63: &id411 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DxQ4T+qbwj8= + 1834-150319-4_22: &id475 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IcPXAtXruT8= + 1834-220319-1_75: &id538 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yQLDcazOqj8= + 1834-220319-2_45: &id602 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yxrHrL5guz8= + 1834-220319-3_37: &id650 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /YyJ4BJsvj8= + 1834-220319-4_30: &id692 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z/WtzGt3wD8= + 1834-010319-3_91: + 1834-010319-5_33: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3394, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZOSjOeGE0D8= + 1834-060319-2_40: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + McGRtwoUwj8= + 1834-060319-3_28: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EtDjQCmYxD8= + 1834-060319-4_19: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2XdzCJJcyD8= + 1834-110319-2_87: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E7yukK6Cyj8= + 1834-110319-6_29: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PL+EwxgM1z8= + 1834-150319-1_34: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sIe49qyH0D8= + 1834-150319-2_28: &id376 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zkzUJc7fxz8= + 1834-150319-3_65: &id422 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S0Tw6zYuzj8= + 1834-150319-4_20: &id439 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H+Q2fmT3zj8= + 1834-220319-1_69: &id531 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + agaAvsVgyz8= + 1834-220319-2_43: &id584 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W4HDM6TC0D8= + 1834-220319-3_30: &id634 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BIp8y4Ml0j8= + 1834-220319-4_29: &id672 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1G9zlLLV0T8= + 1834-010319-4_44: + 1834-010319-1_21: *id004 + 1834-010319-3_53: *id005 + 1834-010319-5_35: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2w4NCyKamD8= + 1834-060319-1_55: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77295, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + swyXBOzTxT8= + 1834-060319-2_45: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xT45yUCXxD8= + 1834-060319-3_28: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85770, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mqw5fq/8wj8= + 1834-060319-4_21: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mLS/OuE1wj8= + 1834-110319-1_20: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 72332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tu8ybZ/F0D8= + 1834-110319-2_34: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 75610, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G6O0yvD5xD8= + 1834-110319-3_70: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81384, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NWiVCshGzT8= + 1834-110319-5_31: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84351, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h9Ah4pqFxD8= + 1834-110319-6_27: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GIzjojfk1D8= + 1834-120319-1_31: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /bT3tC0DtT8= + 1834-120319-2_23: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6Zk2X6YVtT8= + 1834-120319-3_66: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zVAlQyYgtz8= + 1834-120319-4_71: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S0sHJGcsuD8= + 1834-150319-1_31: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T7Y0QA2Mvj8= + 1834-150319-2_27: &id360 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VrbP7sTFwD8= + 1834-150319-3_65: &id423 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wC1ubb9gwT8= + 1834-150319-4_20: &id440 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OTRmBb5JwT8= + 1834-220319-1_41: &id519 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vytPXDqCwj8= + 1834-220319-2_18: &id556 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + INTRBC09rj8= + 1834-220319-3_22: &id615 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l8B8uiy+wT8= + 1834-220319-4_29: &id673 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YMsUUwFkwT8= + 1834-010319-4_46: + 1834-010319-1_22: *id006 + 1834-010319-3_55: *id007 + 1834-010319-5_20: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nT9bnm6xqD8= + 1834-060319-1_58: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77295, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nen6BZ1ivz8= + 1834-060319-2_39: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5eKpJPULuz8= + 1834-060319-3_32: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85770, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /Rkw0s4owD8= + 1834-060319-4_22: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lbCsrxl8wD8= + 1834-110319-1_44: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 72332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s0nZwotYyz8= + 1834-110319-2_38: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 75610, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yiCxCR+1xT8= + 1834-110319-3_83: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81384, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fsfTQ/YbzT8= + 1834-110319-5_30: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84351, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DOC8Df6lzT8= + 1834-110319-6_29: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UCHqpVGbzT8= + 1834-120319-1_33: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H5rUbAIkyz8= + 1834-120319-2_55: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BY4paoOAyj8= + 1834-120319-3_56: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nv9qmWC9yj8= + 1834-120319-4_55: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TkF2sWSQyj8= + 1834-150319-1_32: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y3IaBwZFwT8= + 1834-150319-2_28: &id377 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a6xGDyBHxz8= + 1834-150319-3_63: &id412 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EWi+d9xszj8= + 1834-150319-4_22: &id476 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cczef5z6wj8= + 1834-220319-1_26: &id498 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TVwF5hT8wj8= + 1834-220319-2_45: &id603 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D759qlAXqj8= + 1834-220319-3_37: &id651 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RXmWOIDatD8= + 1834-220319-4_30: &id693 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MD7D2gi+tz8= + 1834-010319-5_20: + 1834-010319-1_22: *id008 + 1834-010319-3_55: *id009 + 1834-010319-4_46: *id010 + 1834-060319-1_58: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q6VHhgLGvz8= + 1834-060319-2_39: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bHl5esTmuz8= + 1834-060319-3_32: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83889, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oiT1lnclvz8= + 1834-060319-4_22: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85989, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ym44BUbDwD8= + 1834-110319-1_44: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 70451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pFR4GgLLyz8= + 1834-110319-2_38: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ga1tUwOTxD8= + 1834-110319-3_83: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79503, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZZjov5Pozj8= + 1834-110319-6_28: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c/dnMKxI5D8= + 1834-150319-1_32: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GiASrnetwz8= + 1834-150319-2_28: &id378 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kPsD+R7+xD8= + 1834-150319-3_63: &id413 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UjfToBN7yz8= + 1834-150319-4_22: &id477 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1Sz79WMPvz8= + 1834-220319-1_75: &id539 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DcdPydMBwj8= + 1834-220319-2_45: &id604 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BVopeWlcrT8= + 1834-220319-3_37: &id652 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Oln/jOgJsT8= + 1834-220319-4_30: &id694 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kzg2X464sj8= + 1834-010319-5_33: + 1834-010319-3_91: *id011 + 1834-060319-2_40: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p4PqJJACyj8= + 1834-060319-3_28: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83889, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4DDgFCZCxj8= + 1834-060319-4_19: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85989, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ry//mwBIyz8= + 1834-110319-2_39: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pomjMuECxz8= + 1834-110319-5_31: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J/1WwRU2xD8= + 1834-110319-6_29: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FaeuMAZSyj8= + 1834-120319-1_33: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 82927, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j+fjyKprxz8= + 1834-120319-2_55: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n84hRoUcxz8= + 1834-120319-3_56: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FLiG36hzxz8= + 1834-120319-4_55: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YcXDtPIzxz8= + 1834-150319-1_29: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 34TycgLdyj8= + 1834-150319-2_26: &id344 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KOC/aeeZyD8= + 1834-150319-3_23: &id387 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aqIGiNwPzD8= + 1834-150319-4_21: &id459 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NMKKUMufyT8= + 1834-220319-1_26: &id499 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eKGaL4saxz8= + 1834-220319-2_19: &id574 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zPlFUnfzxD8= + 1834-220319-3_30: &id635 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VzLO46qyxD8= + 1834-220319-4_29: &id674 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bNQpmavCwz8= + 1834-010319-5_35: + 1834-010319-1_21: *id012 + 1834-010319-3_53: *id013 + 1834-010319-4_44: *id014 + 1834-060319-1_55: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bTk11bg4xT8= + 1834-060319-2_45: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rIPt4PmIwz8= + 1834-060319-3_30: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83889, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6GWSKKhdwz8= + 1834-060319-4_21: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85989, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dCNhWQ5awj8= + 1834-110319-1_20: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 70451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BdilzvZv0D8= + 1834-110319-2_34: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Vdswla/wz8= + 1834-110319-3_70: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79503, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S5m/4bkWzT8= + 1834-110319-5_30: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YanGNu1gyj8= + 1834-110319-6_27: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z1M4ykMt1D8= + 1834-120319-1_31: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 82927, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yHSlYTt+sj8= + 1834-120319-2_23: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mkt1E2M4sj8= + 1834-120319-3_66: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /0ztpUaptT8= + 1834-120319-4_71: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 39LfF400tj8= + 1834-150319-1_31: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v8S1hecCvT8= + 1834-150319-2_27: &id361 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vz64k9Qivz8= + 1834-150319-3_65: &id424 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d2Oeb2s6wD8= + 1834-150319-4_20: &id441 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5T24ne7Cvz8= + 1834-220319-1_41: &id520 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QQvDKJKFwT8= + 1834-220319-2_18: &id557 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P1KQNN6vsD8= + 1834-220319-3_22: &id616 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0D/aDMjlwD8= + 1834-220319-4_39: &id717 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ohiagxSDwT8= + 1834-060319-1_55: + 1834-010319-1_21: *id015 + 1834-010319-3_53: *id016 + 1834-010319-4_44: *id017 + 1834-010319-5_35: *id018 + 1834-060319-2_40: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J2ntyZ7otD8= + 1834-060319-3_30: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8475, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V8BJI7PwuT8= + 1834-060319-4_21: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10575, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LHol5qROsT8= + 1834-110319-1_20: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81437, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /432GsU50D8= + 1834-110319-2_77: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7gByyTuptz8= + 1834-110319-3_70: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BeEVlANOzj8= + 1834-110319-5_30: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7056, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5pOJPPef0T8= + 1834-110319-6_27: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hBxEmclP1D8= + 1834-120319-1_31: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 27Y9KYqwyD8= + 1834-120319-2_23: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mKxe4ed8yD8= + 1834-120319-3_66: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VAXXW8cDyj8= + 1834-120319-4_71: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bm0i6d1TyT8= + 1834-150319-1_33: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JkLBnSlexz8= + 1834-150319-2_28: &id379 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FPe4c9SFwz8= + 1834-150319-3_59: &id403 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 146iJrLHwD8= + 1834-150319-4_20: &id442 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yYwRWBW+yD8= + 1834-220319-1_41: &id521 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ve/KuhIdxT8= + 1834-220319-2_18: &id558 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 8299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hAFcaWanxz8= + 1834-220319-3_22: &id617 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EbnyqM67yj8= + 1834-220319-4_39: &id718 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 13451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RA3gJdg/yz8= + 1834-060319-1_58: + 1834-010319-1_22: *id019 + 1834-010319-3_55: *id020 + 1834-010319-4_46: *id021 + 1834-010319-5_20: *id022 + 1834-060319-2_39: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QeBWbIW2pD8= + 1834-060319-3_32: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8475, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JYzeKbBJqD8= + 1834-060319-4_22: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10575, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TejYLUGetT8= + 1834-110319-1_44: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81437, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VLN5k3VHxT8= + 1834-110319-2_38: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D79t4H0dvj8= + 1834-110319-3_83: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HwfyTdhiwD8= + 1834-110319-5_31: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7056, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YM/OTEFpwT8= + 1834-110319-6_29: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DwRfWCNCwj8= + 1834-120319-1_33: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mnUjNdQjwj8= + 1834-120319-2_55: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + twOrDbuAwT8= + 1834-120319-3_56: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Esn4VZcBwj8= + 1834-120319-4_55: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G14mNt8Xwj8= + 1834-150319-1_32: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VbPTNATvwj8= + 1834-150319-2_26: &id345 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l+x07l2zwT8= + 1834-150319-3_63: &id414 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fprs/VKwwD8= + 1834-150319-4_22: &id478 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vVk1RlMUvz8= + 1834-220319-1_26: &id500 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q/p54o0DuT8= + 1834-220319-2_45: &id605 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 8299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V4ztICV+vD8= + 1834-220319-3_37: &id653 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u2jlyrhXuj8= + 1834-220319-4_30: &id695 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 13451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gcu1yGiEuj8= + 1834-060319-2_122: + 1834-010319-3_53: *id023 + 1834-060319-3_43: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9nkgKlfZpz8= + 1834-110319-2_77: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ube1J6dFuD8= + 1834-110319-6_27: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9EVguzAw0j8= + 1834-150319-1_33: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lM7c1OtVyj8= + 1834-150319-3_59: &id404 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LyCcNBiowD8= + 1834-220319-1_69: &id532 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gwUMKNhlwz8= + 1834-220319-2_18: &id559 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YJMoOiSCzT8= + 1834-060319-2_39: + 1834-010319-1_22: *id024 + 1834-010319-3_55: *id025 + 1834-010319-4_46: *id026 + 1834-010319-5_20: *id027 + 1834-060319-1_58: *id028 + 1834-060319-3_32: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SzuRGq7Zpz8= + 1834-060319-4_22: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9H1vvwAOsT8= + 1834-110319-1_44: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 86nUmXB0xT8= + 1834-110319-2_39: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fPmDztKBwz8= + 1834-110319-3_83: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yB1KGZwJwj8= + 1834-110319-5_31: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WthL4bqiwT8= + 1834-110319-6_29: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MVRnVXpfwz8= + 1834-120319-1_33: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kigcTm/vxT8= + 1834-120319-2_55: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oNo8nKRvxT8= + 1834-120319-3_56: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gGg186WsxT8= + 1834-120319-4_55: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yDYBQ0l9xT8= + 1834-150319-1_32: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PoQ2K0Bgwj8= + 1834-150319-2_26: &id346 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3bZ+jcoixD8= + 1834-150319-3_23: &id388 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xQ8sx7H1xj8= + 1834-150319-4_21: &id460 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UctNJQfNxT8= + 1834-220319-1_26: &id501 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ybtyiwT6tT8= + 1834-220319-2_19: &id575 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O745XjvluD8= + 1834-220319-3_37: &id654 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XtRcFT3ttj8= + 1834-220319-4_30: &id696 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ep+mH2JYtz8= + 1834-060319-2_40: + 1834-010319-1_21: *id029 + 1834-010319-3_91: *id030 + 1834-010319-5_33: *id031 + 1834-060319-1_55: *id032 + 1834-060319-3_28: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + floBq4FfwT8= + 1834-060319-4_21: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tcgguvH7tj8= + 1834-110319-2_38: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uAfw8KN7uz8= + 1834-110319-3_70: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Yazf6G7CzD8= + 1834-110319-6_28: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xCHuccZ94z8= + 1834-150319-1_34: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D0OBn2eDyj8= + 1834-150319-2_28: &id380 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8vASqs3pwT8= + 1834-150319-3_63: &id415 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JiVOkKS6vD8= + 1834-150319-4_22: &id479 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T5d2aGQPxT8= + 1834-220319-1_75: &id540 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vfqy/ZfdwT8= + 1834-220319-2_45: &id606 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N32EFmr/yT8= + 1834-220319-3_30: &id636 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WS0Q9DuXzD8= + 1834-220319-4_29: &id675 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GE/X3LA8zD8= + 1834-060319-2_45: + 1834-010319-4_44: *id033 + 1834-010319-5_35: *id034 + 1834-060319-3_30: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XnptYHpLpD8= + 1834-060319-4_19: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wzXd4ykDpT8= + 1834-110319-1_20: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PXptHAz0zD8= + 1834-110319-2_34: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E7+cOrwLtj8= + 1834-110319-5_30: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bRM9XFd0zj8= + 1834-120319-1_31: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2R1JaXWfwz8= + 1834-120319-2_23: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HPa8C5FCwz8= + 1834-120319-3_66: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xr0ZwrrJxD8= + 1834-120319-4_71: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 15f2QXp3wz8= + 1834-150319-1_31: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WY8l9a6cyT8= + 1834-150319-2_27: &id362 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fbefHQjuvz8= + 1834-150319-3_65: &id425 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hc72Honguz8= + 1834-150319-4_20: &id443 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y/rBmi16wD8= + 1834-220319-1_41: &id522 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VCRf4KRhsz8= + 1834-220319-2_43: &id585 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8Vmy9tw8wT8= + 1834-220319-3_22: &id618 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f7cq9YYQwz8= + 1834-220319-4_39: &id719 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rFmBjqp9wz8= + 1834-060319-3_28: + 1834-010319-3_91: *id035 + 1834-010319-4_44: *id036 + 1834-010319-5_33: *id037 + 1834-060319-2_40: *id038 + 1834-060319-4_21: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hvGm1QIjwj8= + 1834-110319-2_38: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JfKU+5mqwD8= + 1834-120319-1_31: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 564BYESTwz8= + 1834-120319-2_23: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tEni1WxGwz8= + 1834-120319-3_66: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LpSwCXZPxT8= + 1834-120319-4_71: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dsTuKbIMxD8= + 1834-150319-1_31: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EN5YX/J2xz8= + 1834-150319-2_28: &id381 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fUwxpiw7vD8= + 1834-150319-3_63: &id416 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i7SWbKh7uD8= + 1834-150319-4_22: &id480 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PfcgRc56wT8= + 1834-220319-1_75: &id541 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q1ABnM+uwT8= + 1834-220319-2_18: &id560 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AH9D6MWLxT8= + 1834-220319-3_22: &id619 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LzG7BS8pxz8= + 1834-220319-4_29: &id676 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hXCoywtyyz8= + 1834-060319-3_30: + 1834-010319-1_21: *id039 + 1834-010319-5_35: *id040 + 1834-060319-1_55: *id041 + 1834-060319-2_45: *id042 + 1834-060319-4_19: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gD+Nr1OIsD8= + 1834-110319-1_20: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 72962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iQQrOFHqyz8= + 1834-110319-2_34: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Drw6wx/RtT8= + 1834-110319-3_70: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82014, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lgGPwUL2yj8= + 1834-110319-5_30: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84981, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m2yDnaq2zT8= + 1834-110319-6_29: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6BJ4zCEr0j8= + 1834-150319-1_34: &id341 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZWTjFqKnzj8= + 1834-150319-2_27: &id363 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FKOWsvSUwD8= + 1834-150319-3_65: &id426 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mMcg/RZpvT8= + 1834-150319-4_20: &id444 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q3Dtzt/bwD8= + 1834-220319-1_41: &id523 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wRK7IDxjtD8= + 1834-220319-2_43: &id586 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tqzJgkRswj8= + 1834-220319-3_30: &id637 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HI40hOx+xz8= + 1834-220319-4_39: &id720 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kfcdp1mbwz8= + 1834-060319-3_32: + 1834-010319-1_22: *id043 + 1834-010319-3_55: *id044 + 1834-010319-4_46: *id045 + 1834-010319-5_20: *id046 + 1834-060319-1_58: *id047 + 1834-060319-2_39: *id048 + 1834-060319-4_22: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZhLT4pXstz8= + 1834-110319-1_44: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 72962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dNdaeeP2wz8= + 1834-110319-2_39: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q7e87q51xD8= + 1834-110319-3_83: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82014, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XKPmCa0QxD8= + 1834-110319-5_31: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84981, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XhLXgLj2wz8= + 1834-110319-6_28: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eoogMe8z4z8= + 1834-120319-1_33: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Ymz3z3Dxj8= + 1834-120319-2_55: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j2/4jdMBxj8= + 1834-120319-3_56: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JM8Cx36nxj8= + 1834-120319-4_55: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 86TgTCrGxj8= + 1834-150319-1_32: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +UoVCv/CxD8= + 1834-150319-2_26: &id347 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dkUs7SbZxT8= + 1834-150319-3_23: &id389 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5ignzi1/xz8= + 1834-150319-4_21: &id461 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 921HPi70xj8= + 1834-220319-1_26: &id502 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JDWMMRpsD8= + 1834-220319-2_45: &id607 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S8XHvTyKuz8= + 1834-220319-3_37: &id655 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5lnZNvPYuD8= + 1834-220319-4_30: &id697 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dxl6gHQVuT8= + 1834-060319-3_43: + 1834-010319-3_53: *id049 + 1834-060319-2_122: *id050 + 1834-110319-2_77: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VpkLsJ9yuT8= + 1834-110319-6_27: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d3/Tfo+W0z8= + 1834-150319-1_33: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Xe1XU0xzT8= + 1834-150319-3_59: &id405 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tlc9DSQmwj8= + 1834-220319-1_69: &id533 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EsaBIqgOxz8= + 1834-220319-2_17: &id548 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VikF/h0k0j8= + 1834-060319-4_19: + 1834-010319-3_91: *id051 + 1834-010319-5_33: *id052 + 1834-060319-2_45: *id053 + 1834-060319-3_30: *id054 + 1834-110319-1_20: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 70862, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xDdK7PeWzD8= + 1834-110319-2_34: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BJa0yWBZuT8= + 1834-110319-5_30: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z2Pbe/gv0D8= + 1834-110319-6_27: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pPsId7Ag0j8= + 1834-120319-1_31: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + epN+TwfpxD8= + 1834-120319-2_23: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ATWZ0pSRxD8= + 1834-120319-3_66: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RIpTxZoqxj8= + 1834-120319-4_71: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WnTzaJvsxD8= + 1834-150319-1_31: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9T2yweV3yj8= + 1834-150319-2_27: &id364 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SfQDtrftwT8= + 1834-150319-3_59: &id406 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z6savOs2sj8= + 1834-150319-4_20: &id445 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1Kl8QzgAwj8= + 1834-220319-1_41: &id524 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 328ZmLdjtD8= + 1834-220319-2_43: &id587 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dZGTRmE2wj8= + 1834-220319-3_22: &id620 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tMAiGai1xD8= + 1834-220319-4_39: &id721 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5dvq7xcqxT8= + 1834-060319-4_21: + 1834-010319-1_21: *id055 + 1834-010319-3_53: *id056 + 1834-010319-4_44: *id057 + 1834-010319-5_35: *id058 + 1834-060319-1_55: *id059 + 1834-060319-2_40: *id060 + 1834-060319-3_28: *id061 + 1834-110319-2_77: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fVxTWsOyvT8= + 1834-110319-3_70: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79914, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FgV9ckm0yz8= + 1834-110319-6_28: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J9Ohvmur5j8= + 1834-150319-1_33: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ge+JNN2DxD8= + 1834-150319-2_28: &id382 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JigiSgrmwD8= + 1834-150319-3_63: &id417 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y9e559o5vD8= + 1834-150319-4_22: &id481 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9VG+hP+RxT8= + 1834-220319-1_75: &id542 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E/TX5RjQxT8= + 1834-220319-2_18: &id561 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CXfxRhT6wj8= + 1834-220319-3_30: &id638 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n0VWBxD1yj8= + 1834-220319-4_29: &id677 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ORpokZSSyj8= + 1834-060319-4_22: + 1834-010319-1_22: *id062 + 1834-010319-3_55: *id063 + 1834-010319-4_46: *id064 + 1834-010319-5_20: *id065 + 1834-060319-1_58: *id066 + 1834-060319-2_39: *id067 + 1834-060319-3_32: *id068 + 1834-110319-1_44: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 70862, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J40+YePNxj8= + 1834-110319-2_39: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C7Rt/8yywT8= + 1834-110319-3_83: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79914, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BPQx9Zj/wz8= + 1834-110319-5_31: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + clUQgMOUvT8= + 1834-110319-6_29: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + laviNd+MwD8= + 1834-120319-1_33: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + azofJ+oEwz8= + 1834-120319-2_55: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f+tw2PZAwj8= + 1834-120319-3_56: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8W3lS2q7wj8= + 1834-120319-4_55: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wT8j/iGrwj8= + 1834-150319-1_32: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eX2KRJffwz8= + 1834-150319-2_26: &id348 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fQImZrgKwz8= + 1834-150319-3_23: &id390 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q5L/5nUyxT8= + 1834-150319-4_21: &id462 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A6cVY5E4xD8= + 1834-220319-1_26: &id503 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VvlsJeNewD8= + 1834-220319-2_19: &id576 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Q3Vv/mqvD8= + 1834-220319-3_37: &id656 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7+sMpuBAvT8= + 1834-220319-4_30: &id698 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uA05oJHJuz8= + 1834-110319-1_20: + 1834-010319-1_21: *id069 + 1834-010319-3_53: *id070 + 1834-010319-4_44: *id071 + 1834-010319-5_35: *id072 + 1834-060319-1_55: *id073 + 1834-060319-2_45: *id074 + 1834-060319-3_30: *id075 + 1834-060319-4_19: *id076 + 1834-110319-2_34: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M5FnP17kyT8= + 1834-110319-3_70: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9052, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e3cndOFvxj8= + 1834-110319-5_30: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rLj3yBfX0j8= + 1834-110319-6_27: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7J/Ccr1g1D8= + 1834-120319-1_31: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12476, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pgT3OJ4Lzj8= + 1834-120319-2_23: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6sB9j7MLzj8= + 1834-120319-3_66: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J+XAyjpdzj8= + 1834-120319-4_71: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bdURY9M8zj8= + 1834-150319-1_31: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hhEg1UsC0T8= + 1834-150319-2_27: &id365 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ljctZl7izD8= + 1834-150319-3_65: &id427 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wns57J30yj8= + 1834-150319-4_20: &id446 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wk/zNMcCzT8= + 1834-220319-1_41: &id525 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RtCzpiaOxz8= + 1834-220319-2_43: &id588 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +r68IQ2Byj8= + 1834-220319-3_22: &id621 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OF6gjYb0zj8= + 1834-220319-4_39: &id722 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gl7PuO5Gzz8= + 1834-110319-1_44: + 1834-010319-1_22: *id077 + 1834-010319-3_55: *id078 + 1834-010319-4_46: *id079 + 1834-010319-5_20: *id080 + 1834-060319-1_58: *id081 + 1834-060319-2_39: *id082 + 1834-060319-3_32: *id083 + 1834-060319-4_22: *id084 + 1834-110319-2_38: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MYf9Z3j7xz8= + 1834-110319-3_83: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9052, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YYxiMgXewj8= + 1834-110319-5_31: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5/l1lmU4yz8= + 1834-110319-6_29: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A7vzjThtyz8= + 1834-120319-1_33: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12476, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aPB506duzD8= + 1834-120319-2_55: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GNrCnOABzD8= + 1834-120319-3_56: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d4q17U1uzD8= + 1834-120319-4_55: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YeK1x2d4zD8= + 1834-150319-1_33: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N6ik36oPyD8= + 1834-150319-2_28: &id383 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dwno6oxYyT8= + 1834-150319-3_63: &id418 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FPfcoVLoxj8= + 1834-150319-4_22: &id482 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M24VCFWvyD8= + 1834-220319-1_26: &id504 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VqYHKNQfxj8= + 1834-220319-2_45: &id608 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c9mYvOMXyj8= + 1834-220319-3_37: &id657 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GlIr4mwEyT8= + 1834-220319-4_30: &id699 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 095I06D1yD8= + 1834-110319-2_34: + 1834-010319-4_44: *id085 + 1834-010319-5_35: *id086 + 1834-060319-2_45: *id087 + 1834-060319-3_30: *id088 + 1834-060319-4_19: *id089 + 1834-110319-1_20: *id090 + 1834-110319-3_70: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5774, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FDTc9aOKxz8= + 1834-110319-5_30: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ECCD+hlsxz8= + 1834-120319-1_31: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wNjzQjEmwT8= + 1834-120319-2_23: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iCNRmFjIwD8= + 1834-120319-3_66: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ATHcdN+HwT8= + 1834-120319-4_71: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zD1pCX5XwD8= + 1834-150319-1_31: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s9Jjm6OZxz8= + 1834-150319-2_27: &id366 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GISm6u5etT8= + 1834-150319-3_65: &id428 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rasu7UiDsj8= + 1834-150319-4_20: &id447 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Img/lDBwtT8= + 1834-220319-1_24: &id488 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0JwvdCegrz8= + 1834-220319-2_43: &id589 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CrKEuFRLuj8= + 1834-220319-3_22: &id622 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n5YX7dlOuz8= + 1834-220319-4_39: &id723 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sMr+ewqauz8= + 1834-110319-2_38: + 1834-010319-1_22: *id091 + 1834-010319-3_55: *id092 + 1834-010319-4_46: *id093 + 1834-010319-5_20: *id094 + 1834-060319-1_58: *id095 + 1834-060319-2_40: *id096 + 1834-060319-3_28: *id097 + 1834-110319-1_44: *id098 + 1834-110319-6_29: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rDEwjr4h0D8= + 1834-150319-1_33: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NJJop2zKsj8= + 1834-150319-2_28: &id384 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MQNOe5UlwD8= + 1834-150319-3_63: &id419 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 91tM7xECuT8= + 1834-150319-4_22: &id483 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ip4K8Ap1vT8= + 1834-220319-1_75: &id543 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UjUx+YpPrT8= + 1834-220319-2_45: &id609 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fQuNThpQwj8= + 1834-220319-3_37: &id658 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0zjwkZL3wT8= + 1834-220319-4_30: &id700 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UEh6x6Ocwj8= + 1834-110319-2_39: + 1834-010319-5_33: *id099 + 1834-060319-2_39: *id100 + 1834-060319-3_32: *id101 + 1834-060319-4_22: *id102 + 1834-110319-3_83: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5774, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rRHTrRp2xT8= + 1834-110319-5_31: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I/WRlM6gwj8= + 1834-110319-6_28: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h5odNul84T8= + 1834-120319-1_33: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KU6oTb65rT8= + 1834-120319-2_55: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nzzE/vIWrj8= + 1834-120319-3_56: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NV5+H4pBrj8= + 1834-120319-4_55: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZpXP1e4Jrj8= + 1834-150319-1_29: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EX+7tY21pT8= + 1834-150319-2_26: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yqa6Fl4EtT8= + 1834-150319-3_23: &id391 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B6WEGyL3rD8= + 1834-150319-4_21: &id463 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y2V7IDDAsT8= + 1834-220319-1_26: &id505 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1I3Wsyk1xz8= + 1834-220319-2_19: &id577 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Lxn40J+zyD8= + 1834-220319-3_30: &id639 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2Ywm2hvvyj8= + 1834-220319-4_29: &id678 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fpIfJdu/yj8= + 1834-110319-2_77: + 1834-010319-1_21: *id103 + 1834-010319-3_53: *id104 + 1834-060319-1_55: *id105 + 1834-060319-2_122: *id106 + 1834-060319-3_43: *id107 + 1834-060319-4_21: *id108 + 1834-110319-6_27: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aaZjwERG0z8= + 1834-150319-1_32: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zDMujDtg0T8= + 1834-150319-3_59: &id407 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1HrLSW+ZvT8= + 1834-220319-1_41: &id526 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E5kx4cmExj8= + 1834-220319-2_18: &id562 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pnXcGys2yj8= + 1834-110319-2_87: + 1834-010319-3_91: *id109 + 1834-150319-1_34: &id342 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dBuDf4f71D8= + 1834-220319-1_69: &id534 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hPMHS97C0T8= + 1834-220319-2_17: &id549 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mPr1boBY1j8= + 1834-110319-3_70: + 1834-010319-1_21: *id110 + 1834-010319-3_53: *id111 + 1834-010319-4_44: *id112 + 1834-010319-5_35: *id113 + 1834-060319-1_55: *id114 + 1834-060319-2_40: *id115 + 1834-060319-3_30: *id116 + 1834-060319-4_21: *id117 + 1834-110319-1_20: *id118 + 1834-110319-2_34: *id119 + 1834-110319-5_30: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3p7NcSOAzD8= + 1834-110319-6_27: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nnLeYJLZ1z8= + 1834-120319-1_31: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3424, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HUHJ5/LDyj8= + 1834-120319-2_23: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wtYeMlz4yj8= + 1834-120319-3_66: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DGyM60Asyj8= + 1834-120319-4_71: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y33UUNfCyj8= + 1834-150319-1_32: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S91hpePXzT8= + 1834-150319-2_27: &id367 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0Yidygt8yj8= + 1834-150319-3_65: &id429 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T3hgL7yfyD8= + 1834-150319-4_20: &id448 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Orruq9J/yj8= + 1834-220319-1_41: &id527 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C8rTRMsdyD8= + 1834-220319-2_43: &id590 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1P303cP2yD8= + 1834-220319-3_22: &id623 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H40LJSLgyT8= + 1834-220319-4_29: &id679 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fO6gyW60yj8= + 1834-110319-3_83: + 1834-010319-1_22: *id120 + 1834-010319-3_55: *id121 + 1834-010319-4_46: *id122 + 1834-010319-5_20: *id123 + 1834-060319-1_58: *id124 + 1834-060319-2_39: *id125 + 1834-060319-3_32: *id126 + 1834-060319-4_22: *id127 + 1834-110319-1_44: *id128 + 1834-110319-2_39: *id129 + 1834-110319-5_31: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t5/uZCA+xT8= + 1834-110319-6_29: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Aykp3ugHxD8= + 1834-120319-1_33: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3424, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5aIUnyQMxz8= + 1834-120319-2_55: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GqIfURRsxj8= + 1834-120319-3_56: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y5TzzWqhxj8= + 1834-120319-4_55: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IEgQAE52xj8= + 1834-150319-1_29: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TeVshnLEyD8= + 1834-150319-2_26: &id350 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4B43ygZ9yD8= + 1834-150319-3_23: &id392 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pqwylSmHyD8= + 1834-150319-4_21: &id464 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GqRTWdCAyD8= + 1834-220319-1_26: &id506 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IHpW4F06zT8= + 1834-220319-2_19: &id578 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sAGNoV3yyj8= + 1834-220319-3_37: &id659 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6JeDn9z+yz8= + 1834-220319-4_30: &id701 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NRtW3qOUyz8= + 1834-110319-5_30: + 1834-010319-1_21: *id130 + 1834-010319-3_53: *id131 + 1834-010319-4_46: *id132 + 1834-010319-5_35: *id133 + 1834-060319-1_55: *id134 + 1834-060319-2_45: *id135 + 1834-060319-3_30: *id136 + 1834-060319-4_19: *id137 + 1834-110319-1_20: *id138 + 1834-110319-2_34: *id139 + 1834-110319-3_70: *id140 + 1834-110319-6_27: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + naii1aLi2D8= + 1834-120319-1_31: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QSGE7IElyj8= + 1834-120319-2_23: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /SlqgeT+yT8= + 1834-120319-3_66: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DvT2ciZLyD8= + 1834-120319-4_71: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FkKHa8lCyD8= + 1834-150319-1_33: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZJTJAEFr0T8= + 1834-150319-2_27: &id368 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nXG+M89twz8= + 1834-150319-3_65: &id430 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7WdTs4Slxz8= + 1834-150319-4_20: &id449 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /vZh8tabxD8= + 1834-220319-1_24: &id489 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SoaUKOnswz8= + 1834-220319-2_17: &id550 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zdgFxkkwuT8= + 1834-220319-3_30: &id640 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IhJKRkwFuj8= + 1834-220319-4_29: &id680 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q1KK0LNxvD8= + 1834-110319-5_31: + 1834-010319-1_22: *id141 + 1834-010319-3_55: *id142 + 1834-010319-4_44: *id143 + 1834-010319-5_33: *id144 + 1834-060319-1_58: *id145 + 1834-060319-2_39: *id146 + 1834-060319-3_32: *id147 + 1834-060319-4_22: *id148 + 1834-110319-1_44: *id149 + 1834-110319-2_39: *id150 + 1834-110319-3_83: *id151 + 1834-110319-6_29: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KysZWsmovD8= + 1834-120319-1_33: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tziqlR2jwj8= + 1834-120319-2_55: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2NhWgCKswT8= + 1834-120319-3_56: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /ysKUx9Pwj8= + 1834-120319-4_55: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 21Q+301Cwj8= + 1834-150319-1_29: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JEWKIzBHxT8= + 1834-150319-2_26: &id351 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s1uhZ8nqvz8= + 1834-150319-3_23: &id393 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xUsYYlYkxD8= + 1834-150319-4_21: &id465 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZLJID5k+wj8= + 1834-220319-1_26: &id507 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2LMQfTtqyT8= + 1834-220319-2_18: &id563 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZQwq+jIzwT8= + 1834-220319-3_37: &id660 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O3Ql3jMLxD8= + 1834-220319-4_30: &id702 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Klz4OvbTwj8= + 1834-110319-6_27: + 1834-010319-1_21: *id152 + 1834-010319-3_53: *id153 + 1834-010319-4_44: *id154 + 1834-010319-5_35: *id155 + 1834-060319-1_55: *id156 + 1834-060319-2_122: *id157 + 1834-060319-3_43: *id158 + 1834-060319-4_19: *id159 + 1834-110319-1_20: *id160 + 1834-110319-2_77: *id161 + 1834-110319-3_70: *id162 + 1834-110319-5_30: *id163 + 1834-120319-1_31: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KqzsLQ7k1D8= + 1834-120319-2_23: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T/WygE7E1D8= + 1834-120319-3_66: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w8Kc3wZZ1T8= + 1834-120319-4_71: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wjjiG6441T8= + 1834-150319-1_31: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fN9e1IKO1j8= + 1834-150319-2_28: &id385 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PV1Qrg5R1j8= + 1834-150319-3_59: &id408 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5EKYTJiZ0z8= + 1834-150319-4_20: &id450 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9ymfCfe01D8= + 1834-220319-1_41: &id528 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7m7CT+Ha0D8= + 1834-220319-2_43: &id591 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z4Ydo5Jj0j8= + 1834-220319-3_22: &id624 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ODxtiXCb0z8= + 1834-220319-4_39: &id724 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d039t/oi1D8= + 1834-110319-6_28: + 1834-010319-3_55: *id164 + 1834-010319-5_20: *id165 + 1834-060319-2_40: *id166 + 1834-060319-3_32: *id167 + 1834-060319-4_21: *id168 + 1834-110319-2_39: *id169 + 1834-150319-1_32: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VEtP7KAg4z8= + 1834-150319-2_27: &id369 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I3a4IpTU5j8= + 1834-150319-3_65: &id431 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iFjFM+ru5j8= + 1834-150319-4_22: &id484 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5zt1gXdX5j8= + 1834-220319-1_69: &id535 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ysb3qCwy5j8= + 1834-220319-2_19: &id579 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0uuAtnbr4z8= + 1834-220319-3_30: &id641 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7Bup0J1y5T8= + 1834-220319-4_29: &id681 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VKy13AJ45T8= + 1834-110319-6_29: + 1834-010319-1_22: *id170 + 1834-010319-3_91: *id171 + 1834-010319-4_46: *id172 + 1834-010319-5_33: *id173 + 1834-060319-1_58: *id174 + 1834-060319-2_39: *id175 + 1834-060319-3_30: *id176 + 1834-060319-4_22: *id177 + 1834-110319-1_44: *id178 + 1834-110319-2_38: *id179 + 1834-110319-3_83: *id180 + 1834-110319-5_31: *id181 + 1834-120319-1_33: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q98RckBSwD8= + 1834-120319-2_55: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sG73J0CXvj8= + 1834-120319-3_56: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rMsoo5PJvz8= + 1834-120319-4_55: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mKttftPQvz8= + 1834-150319-1_29: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w4CTqTnlwT8= + 1834-150319-2_26: &id352 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ItmxKiujuj8= + 1834-150319-3_23: &id394 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PzNu+BoOwD8= + 1834-150319-4_21: &id466 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mFTloq56vj8= + 1834-220319-1_26: &id508 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RCiy1flszT8= + 1834-220319-2_18: &id564 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Vb7/fdKyD8= + 1834-220319-3_37: &id661 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tt76oc0vyj8= + 1834-220319-4_30: &id703 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q7zN6p2TyT8= + 1834-120319-1_31: + 1834-010319-1_21: *id182 + 1834-010319-3_53: *id183 + 1834-010319-4_44: *id184 + 1834-010319-5_35: *id185 + 1834-060319-1_55: *id186 + 1834-060319-2_45: *id187 + 1834-060319-3_28: *id188 + 1834-060319-4_19: *id189 + 1834-110319-1_20: *id190 + 1834-110319-2_34: *id191 + 1834-110319-3_70: *id192 + 1834-110319-5_30: *id193 + 1834-110319-6_27: *id194 + 1834-120319-2_23: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UWDqXLLigT8= + 1834-120319-3_66: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mZhc/QPumj8= + 1834-120319-4_71: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SbB1d2cvmz8= + 1834-150319-1_31: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PV6sYWcquD8= + 1834-150319-2_27: &id370 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1sVYIb+ktD8= + 1834-150319-3_65: &id432 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mzXI3YXYtz8= + 1834-150319-4_20: &id451 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZmX/ygC+tT8= + 1834-220319-1_24: &id490 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tzqJ3GpTuz8= + 1834-220319-2_43: &id592 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a3rO+czMwD8= + 1834-220319-3_22: &id625 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YDIqshpluj8= + 1834-220319-4_39: &id725 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V3Xuy10Juj8= + 1834-120319-1_33: + 1834-010319-1_22: *id195 + 1834-010319-3_55: *id196 + 1834-010319-4_46: *id197 + 1834-010319-5_33: *id198 + 1834-060319-1_58: *id199 + 1834-060319-2_39: *id200 + 1834-060319-3_32: *id201 + 1834-060319-4_22: *id202 + 1834-110319-1_44: *id203 + 1834-110319-2_39: *id204 + 1834-110319-3_83: *id205 + 1834-110319-5_31: *id206 + 1834-110319-6_29: *id207 + 1834-120319-2_55: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7i97aU8qiz8= + 1834-120319-3_56: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B6o/LHR7fj8= + 1834-120319-4_55: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B2wD5b8Pez8= + 1834-150319-1_29: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5ngXCri+rD8= + 1834-150319-2_26: &id353 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZTEev2Ksrj8= + 1834-150319-3_23: &id395 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SG+dSFYLrz8= + 1834-150319-4_21: &id467 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4lEWAIGQpD8= + 1834-220319-1_26: &id509 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ee5WpXvXyT8= + 1834-220319-2_18: &id565 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MFfAcXt0xD8= + 1834-220319-3_37: &id662 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JsCk+OFByD8= + 1834-220319-4_30: &id704 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0vfDfQFHxz8= + 1834-120319-2_23: + 1834-010319-1_21: *id208 + 1834-010319-3_53: *id209 + 1834-010319-4_44: *id210 + 1834-010319-5_35: *id211 + 1834-060319-1_55: *id212 + 1834-060319-2_45: *id213 + 1834-060319-3_28: *id214 + 1834-060319-4_19: *id215 + 1834-110319-1_20: *id216 + 1834-110319-2_34: *id217 + 1834-110319-3_70: *id218 + 1834-110319-5_30: *id219 + 1834-110319-6_27: *id220 + 1834-120319-1_31: *id221 + 1834-120319-3_66: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XGkbLOk3nT8= + 1834-120319-4_71: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eZgmSiuCnD8= + 1834-150319-1_31: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jxUsCL1MuD8= + 1834-150319-2_27: &id371 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ssyaYRtJtD8= + 1834-150319-3_65: &id433 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zaKaRAxXtz8= + 1834-150319-4_20: &id452 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8s465l0NtT8= + 1834-220319-1_24: &id491 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c5WjuNaouj8= + 1834-220319-2_43: &id593 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oClb+0O8wD8= + 1834-220319-3_22: &id626 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8FMAOGUZuj8= + 1834-220319-4_39: &id726 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2XyFxcy9uT8= + 1834-120319-2_55: + 1834-010319-1_22: *id222 + 1834-010319-3_55: *id223 + 1834-010319-4_46: *id224 + 1834-010319-5_33: *id225 + 1834-060319-1_58: *id226 + 1834-060319-2_39: *id227 + 1834-060319-3_32: *id228 + 1834-060319-4_22: *id229 + 1834-110319-1_44: *id230 + 1834-110319-2_39: *id231 + 1834-110319-3_83: *id232 + 1834-110319-5_31: *id233 + 1834-110319-6_29: *id234 + 1834-120319-1_33: *id235 + 1834-120319-3_56: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DtqwQZ7Kgz8= + 1834-120319-4_55: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sVJTuBGqiD8= + 1834-150319-1_29: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 48pEghczrz8= + 1834-150319-2_26: &id354 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z0e/ay2cqT8= + 1834-150319-3_23: &id396 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FkHKom8mrj8= + 1834-150319-4_21: &id468 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T8ZyIc9voD8= + 1834-220319-1_26: &id510 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gry/dl2FyT8= + 1834-220319-2_18: &id566 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lVLw+ZoexD8= + 1834-220319-3_37: &id663 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N8wAZ7udxz8= + 1834-220319-4_30: &id705 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1FaM9U6dxj8= + 1834-120319-3_56: + 1834-010319-1_22: *id236 + 1834-010319-3_55: *id237 + 1834-010319-4_46: *id238 + 1834-010319-5_33: *id239 + 1834-060319-1_58: *id240 + 1834-060319-2_39: *id241 + 1834-060319-3_32: *id242 + 1834-060319-4_22: *id243 + 1834-110319-1_44: *id244 + 1834-110319-2_39: *id245 + 1834-110319-3_83: *id246 + 1834-110319-5_31: *id247 + 1834-110319-6_29: *id248 + 1834-120319-1_33: *id249 + 1834-120319-2_55: *id250 + 1834-120319-4_55: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hRBmfaDldD8= + 1834-150319-1_29: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gtJpym4IrT8= + 1834-150319-2_26: &id355 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gJDqpsK+rD8= + 1834-150319-3_23: &id397 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rNAykgeOrT8= + 1834-150319-4_21: &id469 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tBnxfx0Yoj8= + 1834-220319-1_26: &id511 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yQWWQlCyyT8= + 1834-220319-2_18: &id567 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8afKK5SMxD8= + 1834-220319-3_37: &id664 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O6bg7A72xz8= + 1834-220319-4_30: &id706 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FYIDZmkCxz8= + 1834-120319-3_66: + 1834-010319-1_21: *id251 + 1834-010319-3_53: *id252 + 1834-010319-4_44: *id253 + 1834-010319-5_35: *id254 + 1834-060319-1_55: *id255 + 1834-060319-2_45: *id256 + 1834-060319-3_28: *id257 + 1834-060319-4_19: *id258 + 1834-110319-1_20: *id259 + 1834-110319-2_34: *id260 + 1834-110319-3_70: *id261 + 1834-110319-5_30: *id262 + 1834-110319-6_27: *id263 + 1834-120319-1_31: *id264 + 1834-120319-2_23: *id265 + 1834-120319-4_71: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f/v9LboIlj8= + 1834-150319-1_31: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9yOjDDrDuD8= + 1834-150319-2_27: &id372 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tbkiWENAtD8= + 1834-150319-3_65: &id434 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GrXFqNksuD8= + 1834-150319-4_20: &id453 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TV3f3ItXtT8= + 1834-220319-1_24: &id492 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9IVYq90Auz8= + 1834-220319-2_43: &id594 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SQI1VgWKwD8= + 1834-220319-3_30: &id642 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vf6x7TIEtz8= + 1834-220319-4_29: &id682 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k7IFfjUktT8= + 1834-120319-4_55: + 1834-010319-1_22: *id266 + 1834-010319-3_55: *id267 + 1834-010319-4_46: *id268 + 1834-010319-5_33: *id269 + 1834-060319-1_58: *id270 + 1834-060319-2_39: *id271 + 1834-060319-3_32: *id272 + 1834-060319-4_22: *id273 + 1834-110319-1_44: *id274 + 1834-110319-2_39: *id275 + 1834-110319-3_83: *id276 + 1834-110319-5_31: *id277 + 1834-110319-6_29: *id278 + 1834-120319-1_33: *id279 + 1834-120319-2_55: *id280 + 1834-120319-3_56: *id281 + 1834-150319-1_29: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1ZbqAIB4rD8= + 1834-150319-2_26: &id356 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SY0R0Yd4rT8= + 1834-150319-3_23: &id398 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P7QN6emrrT8= + 1834-150319-4_21: &id470 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + thAkxeUooz8= + 1834-220319-1_26: &id512 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pBpZBTd5yT8= + 1834-220319-2_18: &id568 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + soT5zMxaxD8= + 1834-220319-3_37: &id665 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OgqkXwvTxz8= + 1834-220319-4_30: &id707 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 66FJyEjmxj8= + 1834-120319-4_71: + 1834-010319-1_21: *id282 + 1834-010319-3_53: *id283 + 1834-010319-4_44: *id284 + 1834-010319-5_35: *id285 + 1834-060319-1_55: *id286 + 1834-060319-2_45: *id287 + 1834-060319-3_28: *id288 + 1834-060319-4_19: *id289 + 1834-110319-1_20: *id290 + 1834-110319-2_34: *id291 + 1834-110319-3_70: *id292 + 1834-110319-5_30: *id293 + 1834-110319-6_27: *id294 + 1834-120319-1_31: *id295 + 1834-120319-2_23: *id296 + 1834-120319-3_66: *id297 + 1834-150319-1_31: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7QMP1QO5uT8= + 1834-150319-2_27: &id373 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + geyVfutesT8= + 1834-150319-3_65: &id435 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lod/YoA7tT8= + 1834-150319-4_20: &id454 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nuAHVm4Ksj8= + 1834-220319-1_24: &id493 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2JiJUzGbuD8= + 1834-220319-2_43: &id595 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sRBEWMJ0vz8= + 1834-220319-3_22: &id627 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + deQW7tGbtz8= + 1834-220319-4_29: &id683 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8FtL0JBytj8= + 1834-150319-1_29: + 1834-010319-5_33: *id298 + 1834-110319-2_39: *id299 + 1834-110319-3_83: *id300 + 1834-110319-5_31: *id301 + 1834-110319-6_29: *id302 + 1834-120319-1_33: *id303 + 1834-120319-2_55: *id304 + 1834-120319-3_56: *id305 + 1834-120319-4_55: *id306 + 1834-150319-2_26: &id357 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9C4Jk0GptT8= + 1834-150319-3_23: &id399 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jTz+zSCroj8= + 1834-150319-4_21: &id471 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n+Oqxtw0rz8= + 1834-220319-1_24: &id494 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bsafq0090D8= + 1834-220319-2_18: &id569 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rF0bDSm0xz8= + 1834-150319-1_31: + 1834-010319-1_21: *id307 + 1834-010319-3_53: *id308 + 1834-010319-4_44: *id309 + 1834-010319-5_35: *id310 + 1834-060319-2_45: *id311 + 1834-060319-3_28: *id312 + 1834-060319-4_19: *id313 + 1834-110319-1_20: *id314 + 1834-110319-2_34: *id315 + 1834-110319-6_27: *id316 + 1834-120319-1_31: *id317 + 1834-120319-2_23: *id318 + 1834-120319-3_66: *id319 + 1834-120319-4_71: *id320 + 1834-150319-2_27: &id374 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A7v1VZvdwT8= + 1834-150319-3_65: &id436 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5jswe6SXxD8= + 1834-150319-4_20: &id455 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2hZmmaKRwj8= + 1834-220319-1_41: &id529 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GJYAK8VZxj8= + 1834-220319-2_17: &id551 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x7Q5YRLixz8= + 1834-220319-3_22: &id628 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yS16kbXOwj8= + 1834-220319-4_39: &id727 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kqO1NOmUwj8= + 1834-150319-1_32: + 1834-010319-4_46: *id321 + 1834-010319-5_20: *id322 + 1834-060319-1_58: *id323 + 1834-060319-2_39: *id324 + 1834-060319-3_32: *id325 + 1834-060319-4_22: *id326 + 1834-110319-2_77: *id327 + 1834-110319-3_70: *id328 + 1834-110319-6_28: *id329 + 1834-220319-1_69: &id536 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6KYH8I1uzj8= + 1834-220319-2_19: &id580 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sJ6sb+pOwD8= + 1834-220319-3_30: &id643 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DJG/Yrk7zD8= + 1834-220319-4_30: &id708 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0twPUKIlwj8= + 1834-150319-1_33: + 1834-010319-1_22: *id330 + 1834-010319-3_55: *id331 + 1834-060319-1_55: *id332 + 1834-060319-2_122: *id333 + 1834-060319-3_43: *id334 + 1834-060319-4_21: *id335 + 1834-110319-1_44: *id336 + 1834-110319-2_38: *id337 + 1834-110319-5_30: *id338 + 1834-150319-2_28: &id386 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t28nf0BvvT8= + 1834-150319-3_63: &id420 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ToIFNQB8uj8= + 1834-150319-4_22: &id485 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m332NCKJuT8= + 1834-220319-1_75: &id544 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZRb/zgpjqj8= + 1834-220319-2_43: &id596 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bNroDpEbzD8= + 1834-220319-3_37: &id666 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l8dHKYG1wj8= + 1834-220319-4_29: &id684 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hWbt3rQxzT8= + 1834-150319-1_34: + 1834-010319-3_91: *id339 + 1834-060319-2_40: *id340 + 1834-060319-3_30: *id341 + 1834-110319-2_87: *id342 + 1834-150319-3_59: &id409 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gPpTLOpJ0j8= + 1834-220319-1_26: &id513 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vf3V0OPjxj8= + 1834-220319-2_45: &id610 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SZvQYUdxxD8= + 1834-150319-2_26: + 1834-010319-3_55: *id343 + 1834-010319-5_33: *id344 + 1834-060319-1_58: *id345 + 1834-060319-2_39: *id346 + 1834-060319-3_32: *id347 + 1834-060319-4_22: *id348 + 1834-110319-2_39: *id349 + 1834-110319-3_83: *id350 + 1834-110319-5_31: *id351 + 1834-110319-6_29: *id352 + 1834-120319-1_33: *id353 + 1834-120319-2_55: *id354 + 1834-120319-3_56: *id355 + 1834-120319-4_55: *id356 + 1834-150319-1_29: *id357 + 1834-150319-3_23: &id400 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a6RS9poysj8= + 1834-150319-4_21: &id472 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + opmpsTFjoj8= + 1834-220319-1_26: &id514 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dnU6eKaTzT8= + 1834-220319-2_19: &id581 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vYYp/HVPyj8= + 1834-220319-3_30: &id644 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DvFFjLYTzT8= + 1834-220319-4_29: &id685 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V2bdM7vDzD8= + 1834-150319-2_27: + 1834-010319-1_21: *id358 + 1834-010319-3_53: *id359 + 1834-010319-4_44: *id360 + 1834-010319-5_35: *id361 + 1834-060319-2_45: *id362 + 1834-060319-3_30: *id363 + 1834-060319-4_19: *id364 + 1834-110319-1_20: *id365 + 1834-110319-2_34: *id366 + 1834-110319-3_70: *id367 + 1834-110319-5_30: *id368 + 1834-110319-6_28: *id369 + 1834-120319-1_31: *id370 + 1834-120319-2_23: *id371 + 1834-120319-3_66: *id372 + 1834-120319-4_71: *id373 + 1834-150319-1_31: *id374 + 1834-150319-3_65: &id437 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kP4h8JkQpz8= + 1834-150319-4_20: &id456 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oeeCNHZbmT8= + 1834-220319-1_24: &id495 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VXLGLTbYrD8= + 1834-220319-2_43: &id597 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8v+IVT8rtj8= + 1834-220319-3_22: &id629 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2lTevUfLqz8= + 1834-220319-4_39: &id728 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XzcrDPZ/qj8= + 1834-150319-2_28: + 1834-010319-1_22: *id375 + 1834-010319-3_91: *id376 + 1834-010319-4_46: *id377 + 1834-010319-5_20: *id378 + 1834-060319-1_55: *id379 + 1834-060319-2_40: *id380 + 1834-060319-3_28: *id381 + 1834-060319-4_21: *id382 + 1834-110319-1_44: *id383 + 1834-110319-2_38: *id384 + 1834-110319-6_27: *id385 + 1834-150319-1_33: *id386 + 1834-150319-3_63: &id421 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x8Ef3UIhuT8= + 1834-150319-4_22: &id486 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bNcyj2aYtj8= + 1834-220319-1_75: &id545 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xnqunKBevz8= + 1834-220319-2_18: &id570 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1I7NyjBMvz8= + 1834-220319-3_37: &id667 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zZqb0sjEvz8= + 1834-220319-4_30: &id709 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uNwi8kqqvz8= + 1834-150319-3_23: + 1834-010319-5_33: *id387 + 1834-060319-2_39: *id388 + 1834-060319-3_32: *id389 + 1834-060319-4_22: *id390 + 1834-110319-2_39: *id391 + 1834-110319-3_83: *id392 + 1834-110319-5_31: *id393 + 1834-110319-6_29: *id394 + 1834-120319-1_33: *id395 + 1834-120319-2_55: *id396 + 1834-120319-3_56: *id397 + 1834-120319-4_55: *id398 + 1834-150319-1_29: *id399 + 1834-150319-2_26: *id400 + 1834-150319-4_21: &id473 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xQ74kvIfqT8= + 1834-220319-1_26: &id515 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QTRrpK0hzT8= + 1834-220319-2_19: &id582 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cWI6FDD3zD8= + 1834-150319-3_59: + 1834-010319-1_21: *id401 + 1834-010319-3_53: *id402 + 1834-060319-1_55: *id403 + 1834-060319-2_122: *id404 + 1834-060319-3_43: *id405 + 1834-060319-4_19: *id406 + 1834-110319-2_77: *id407 + 1834-110319-6_27: *id408 + 1834-150319-1_34: *id409 + 1834-220319-1_41: &id530 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e268HhKVvD8= + 1834-220319-2_43: &id598 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gz5GtAVXxT8= + 1834-220319-3_22: &id630 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EHvq1twMyD8= + 1834-220319-4_29: &id686 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kdLDmtTyyz8= + 1834-150319-3_63: + 1834-010319-1_22: *id410 + 1834-010319-3_55: *id411 + 1834-010319-4_46: *id412 + 1834-010319-5_20: *id413 + 1834-060319-1_58: *id414 + 1834-060319-2_40: *id415 + 1834-060319-3_28: *id416 + 1834-060319-4_21: *id417 + 1834-110319-1_44: *id418 + 1834-110319-2_38: *id419 + 1834-150319-1_33: *id420 + 1834-150319-2_28: *id421 + 1834-150319-4_22: &id487 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + diYIpCtRvz8= + 1834-220319-1_75: &id546 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5Aen6IUMuj8= + 1834-220319-2_18: &id571 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + agfOfb13xT8= + 1834-220319-3_37: &id668 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YPY+fcSfxj8= + 1834-220319-4_30: &id710 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5rIE3chnxj8= + 1834-150319-3_65: + 1834-010319-3_91: *id422 + 1834-010319-4_44: *id423 + 1834-010319-5_35: *id424 + 1834-060319-2_45: *id425 + 1834-060319-3_30: *id426 + 1834-110319-1_20: *id427 + 1834-110319-2_34: *id428 + 1834-110319-3_70: *id429 + 1834-110319-5_30: *id430 + 1834-110319-6_28: *id431 + 1834-120319-1_31: *id432 + 1834-120319-2_23: *id433 + 1834-120319-3_66: *id434 + 1834-120319-4_71: *id435 + 1834-150319-1_31: *id436 + 1834-150319-2_27: *id437 + 1834-150319-4_20: &id457 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + niwh2hl5pj8= + 1834-220319-1_24: &id496 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l2EupQPjqD8= + 1834-220319-2_17: &id552 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IDDdto8hwT8= + 1834-220319-3_30: &id645 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tSGEumIJvj8= + 1834-220319-4_39: &id729 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nS+vgT1itT8= + 1834-150319-4_20: + 1834-010319-1_21: *id438 + 1834-010319-3_91: *id439 + 1834-010319-4_44: *id440 + 1834-010319-5_35: *id441 + 1834-060319-1_55: *id442 + 1834-060319-2_45: *id443 + 1834-060319-3_30: *id444 + 1834-060319-4_19: *id445 + 1834-110319-1_20: *id446 + 1834-110319-2_34: *id447 + 1834-110319-3_70: *id448 + 1834-110319-5_30: *id449 + 1834-110319-6_27: *id450 + 1834-120319-1_31: *id451 + 1834-120319-2_23: *id452 + 1834-120319-3_66: *id453 + 1834-120319-4_71: *id454 + 1834-150319-1_31: *id455 + 1834-150319-2_27: *id456 + 1834-150319-3_65: *id457 + 1834-220319-1_24: &id497 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w1QMkJ9krT8= + 1834-220319-2_43: &id599 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ya9tmaYquD8= + 1834-220319-3_22: &id631 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q6csduLLsD8= + 1834-220319-4_39: &id730 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /tZJkEH5rz8= + 1834-150319-4_21: + 1834-010319-3_53: *id458 + 1834-010319-5_33: *id459 + 1834-060319-2_39: *id460 + 1834-060319-3_32: *id461 + 1834-060319-4_22: *id462 + 1834-110319-2_39: *id463 + 1834-110319-3_83: *id464 + 1834-110319-5_31: *id465 + 1834-110319-6_29: *id466 + 1834-120319-1_33: *id467 + 1834-120319-2_55: *id468 + 1834-120319-3_56: *id469 + 1834-120319-4_55: *id470 + 1834-150319-1_29: *id471 + 1834-150319-2_26: *id472 + 1834-150319-3_23: *id473 + 1834-220319-1_26: &id516 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yV1af8UUzT8= + 1834-220319-2_18: &id572 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MaQ+8fAZxz8= + 1834-220319-3_30: &id646 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vbTrZ9ahzT8= + 1834-220319-4_29: &id687 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jrqg4mtqzT8= + 1834-150319-4_22: + 1834-010319-1_22: *id474 + 1834-010319-3_55: *id475 + 1834-010319-4_46: *id476 + 1834-010319-5_20: *id477 + 1834-060319-1_58: *id478 + 1834-060319-2_40: *id479 + 1834-060319-3_28: *id480 + 1834-060319-4_21: *id481 + 1834-110319-1_44: *id482 + 1834-110319-2_38: *id483 + 1834-110319-6_28: *id484 + 1834-150319-1_33: *id485 + 1834-150319-2_28: *id486 + 1834-150319-3_63: *id487 + 1834-220319-1_75: &id547 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qYP9COjWtj8= + 1834-220319-2_45: &id611 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2Nh3HJEvuz8= + 1834-220319-3_37: &id669 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +pnGuvcMtD8= + 1834-220319-4_30: &id711 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wCARWy28tD8= + 1834-220319-1_24: + 1834-110319-2_34: *id488 + 1834-110319-5_30: *id489 + 1834-120319-1_31: *id490 + 1834-120319-2_23: *id491 + 1834-120319-3_66: *id492 + 1834-120319-4_71: *id493 + 1834-150319-1_29: *id494 + 1834-150319-2_27: *id495 + 1834-150319-3_65: *id496 + 1834-150319-4_20: *id497 + 1834-220319-2_17: &id553 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J88j1eJiuz8= + 1834-220319-3_30: &id647 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2876VWuOuD8= + 1834-220319-4_29: &id688 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sHhXOvLAuD8= + 1834-220319-1_26: + 1834-010319-4_46: *id498 + 1834-010319-5_33: *id499 + 1834-060319-1_58: *id500 + 1834-060319-2_39: *id501 + 1834-060319-3_32: *id502 + 1834-060319-4_22: *id503 + 1834-110319-1_44: *id504 + 1834-110319-2_39: *id505 + 1834-110319-3_83: *id506 + 1834-110319-5_31: *id507 + 1834-110319-6_29: *id508 + 1834-120319-1_33: *id509 + 1834-120319-2_55: *id510 + 1834-120319-3_56: *id511 + 1834-120319-4_55: *id512 + 1834-150319-1_34: *id513 + 1834-150319-2_26: *id514 + 1834-150319-3_23: *id515 + 1834-150319-4_21: *id516 + 1834-220319-2_19: &id583 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ex7fBUcOvz8= + 1834-220319-3_37: &id670 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uCeX4VRiuj8= + 1834-220319-4_30: &id712 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h9URe8s/uz8= + 1834-220319-1_41: + 1834-010319-1_21: *id517 + 1834-010319-3_53: *id518 + 1834-010319-4_44: *id519 + 1834-010319-5_35: *id520 + 1834-060319-1_55: *id521 + 1834-060319-2_45: *id522 + 1834-060319-3_30: *id523 + 1834-060319-4_19: *id524 + 1834-110319-1_20: *id525 + 1834-110319-2_77: *id526 + 1834-110319-3_70: *id527 + 1834-110319-6_27: *id528 + 1834-150319-1_31: *id529 + 1834-150319-3_59: *id530 + 1834-220319-2_43: &id600 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lXyf5MARtD8= + 1834-220319-3_22: &id632 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PRIB+2NOtj8= + 1834-220319-4_39: &id731 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + caCLIGvPtz8= + 1834-220319-1_69: + 1834-010319-3_91: *id531 + 1834-060319-2_122: *id532 + 1834-060319-3_43: *id533 + 1834-110319-2_87: *id534 + 1834-110319-6_28: *id535 + 1834-150319-1_32: *id536 + 1834-220319-2_18: &id573 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GRdMO/GrxD8= + 1834-220319-1_75: + 1834-010319-1_22: *id537 + 1834-010319-3_55: *id538 + 1834-010319-5_20: *id539 + 1834-060319-2_40: *id540 + 1834-060319-3_28: *id541 + 1834-060319-4_21: *id542 + 1834-110319-2_38: *id543 + 1834-150319-1_33: *id544 + 1834-150319-2_28: *id545 + 1834-150319-3_63: *id546 + 1834-150319-4_22: *id547 + 1834-220319-2_45: &id612 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ak3FAzj2vT8= + 1834-220319-2_17: + 1834-060319-3_43: *id548 + 1834-110319-2_87: *id549 + 1834-110319-5_30: *id550 + 1834-150319-1_31: *id551 + 1834-150319-3_65: *id552 + 1834-220319-1_24: *id553 + 1834-220319-3_30: &id648 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7Pvl+yJ5sT8= + 1834-220319-4_29: &id689 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z6y78tRCsz8= + 1834-220319-2_18: + 1834-010319-1_21: *id554 + 1834-010319-3_53: *id555 + 1834-010319-4_44: *id556 + 1834-010319-5_35: *id557 + 1834-060319-1_55: *id558 + 1834-060319-2_122: *id559 + 1834-060319-3_28: *id560 + 1834-060319-4_21: *id561 + 1834-110319-2_77: *id562 + 1834-110319-5_31: *id563 + 1834-110319-6_29: *id564 + 1834-120319-1_33: *id565 + 1834-120319-2_55: *id566 + 1834-120319-3_56: *id567 + 1834-120319-4_55: *id568 + 1834-150319-1_29: *id569 + 1834-150319-2_28: *id570 + 1834-150319-3_63: *id571 + 1834-150319-4_21: *id572 + 1834-220319-1_69: *id573 + 1834-220319-2_19: + 1834-010319-5_33: *id574 + 1834-060319-2_39: *id575 + 1834-060319-4_22: *id576 + 1834-110319-2_39: *id577 + 1834-110319-3_83: *id578 + 1834-110319-6_28: *id579 + 1834-150319-1_32: *id580 + 1834-150319-2_26: *id581 + 1834-150319-3_23: *id582 + 1834-220319-1_26: *id583 + 1834-220319-4_30: &id713 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Axn5RC3dsT8= + 1834-220319-2_43: + 1834-010319-3_91: *id584 + 1834-060319-2_45: *id585 + 1834-060319-3_30: *id586 + 1834-060319-4_19: *id587 + 1834-110319-1_20: *id588 + 1834-110319-2_34: *id589 + 1834-110319-3_70: *id590 + 1834-110319-6_27: *id591 + 1834-120319-1_31: *id592 + 1834-120319-2_23: *id593 + 1834-120319-3_66: *id594 + 1834-120319-4_71: *id595 + 1834-150319-1_33: *id596 + 1834-150319-2_27: *id597 + 1834-150319-3_59: *id598 + 1834-150319-4_20: *id599 + 1834-220319-1_41: *id600 + 1834-220319-3_22: &id633 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s4ruUjo1rT8= + 1834-220319-4_39: &id732 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jLhbhdGErz8= + 1834-220319-2_45: + 1834-010319-1_22: *id601 + 1834-010319-3_55: *id602 + 1834-010319-4_46: *id603 + 1834-010319-5_20: *id604 + 1834-060319-1_58: *id605 + 1834-060319-2_40: *id606 + 1834-060319-3_32: *id607 + 1834-110319-1_44: *id608 + 1834-110319-2_38: *id609 + 1834-150319-1_34: *id610 + 1834-150319-4_22: *id611 + 1834-220319-1_75: *id612 + 1834-220319-3_37: &id671 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9upgD5birz8= + 1834-220319-3_22: + 1834-010319-1_21: *id613 + 1834-010319-3_53: *id614 + 1834-010319-4_44: *id615 + 1834-010319-5_35: *id616 + 1834-060319-1_55: *id617 + 1834-060319-2_45: *id618 + 1834-060319-3_28: *id619 + 1834-060319-4_19: *id620 + 1834-110319-1_20: *id621 + 1834-110319-2_34: *id622 + 1834-110319-3_70: *id623 + 1834-110319-6_27: *id624 + 1834-120319-1_31: *id625 + 1834-120319-2_23: *id626 + 1834-120319-4_71: *id627 + 1834-150319-1_31: *id628 + 1834-150319-2_27: *id629 + 1834-150319-3_59: *id630 + 1834-150319-4_20: *id631 + 1834-220319-1_41: *id632 + 1834-220319-2_43: *id633 + 1834-220319-4_39: &id733 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7VS+gt/YjT8= + 1834-220319-3_30: + 1834-010319-3_91: *id634 + 1834-010319-5_33: *id635 + 1834-060319-2_40: *id636 + 1834-060319-3_30: *id637 + 1834-060319-4_21: *id638 + 1834-110319-2_39: *id639 + 1834-110319-5_30: *id640 + 1834-110319-6_28: *id641 + 1834-120319-3_66: *id642 + 1834-150319-1_32: *id643 + 1834-150319-2_26: *id644 + 1834-150319-3_65: *id645 + 1834-150319-4_21: *id646 + 1834-220319-1_24: *id647 + 1834-220319-2_17: *id648 + 1834-220319-4_29: &id690 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ihedn1Wmjj8= + 1834-220319-3_37: + 1834-010319-1_22: *id649 + 1834-010319-3_55: *id650 + 1834-010319-4_46: *id651 + 1834-010319-5_20: *id652 + 1834-060319-1_58: *id653 + 1834-060319-2_39: *id654 + 1834-060319-3_32: *id655 + 1834-060319-4_22: *id656 + 1834-110319-1_44: *id657 + 1834-110319-2_38: *id658 + 1834-110319-3_83: *id659 + 1834-110319-5_31: *id660 + 1834-110319-6_29: *id661 + 1834-120319-1_33: *id662 + 1834-120319-2_55: *id663 + 1834-120319-3_56: *id664 + 1834-120319-4_55: *id665 + 1834-150319-1_33: *id666 + 1834-150319-2_28: *id667 + 1834-150319-3_63: *id668 + 1834-150319-4_22: *id669 + 1834-220319-1_26: *id670 + 1834-220319-2_45: *id671 + 1834-220319-4_30: &id714 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p0lg7N1nlD8= + 1834-220319-4_29: + 1834-010319-3_91: *id672 + 1834-010319-4_44: *id673 + 1834-010319-5_33: *id674 + 1834-060319-2_40: *id675 + 1834-060319-3_28: *id676 + 1834-060319-4_21: *id677 + 1834-110319-2_39: *id678 + 1834-110319-3_70: *id679 + 1834-110319-5_30: *id680 + 1834-110319-6_28: *id681 + 1834-120319-3_66: *id682 + 1834-120319-4_71: *id683 + 1834-150319-1_33: *id684 + 1834-150319-2_26: *id685 + 1834-150319-3_59: *id686 + 1834-150319-4_21: *id687 + 1834-220319-1_24: *id688 + 1834-220319-2_17: *id689 + 1834-220319-3_30: *id690 + 1834-220319-4_30: + 1834-010319-1_22: *id691 + 1834-010319-3_55: *id692 + 1834-010319-4_46: *id693 + 1834-010319-5_20: *id694 + 1834-060319-1_58: *id695 + 1834-060319-2_39: *id696 + 1834-060319-3_32: *id697 + 1834-060319-4_22: *id698 + 1834-110319-1_44: *id699 + 1834-110319-2_38: *id700 + 1834-110319-3_83: *id701 + 1834-110319-5_31: *id702 + 1834-110319-6_29: *id703 + 1834-120319-1_33: *id704 + 1834-120319-2_55: *id705 + 1834-120319-3_56: *id706 + 1834-120319-4_55: *id707 + 1834-150319-1_32: *id708 + 1834-150319-2_28: *id709 + 1834-150319-3_63: *id710 + 1834-150319-4_22: *id711 + 1834-220319-1_26: *id712 + 1834-220319-2_19: *id713 + 1834-220319-3_37: *id714 + 1834-220319-4_39: + 1834-010319-1_21: *id715 + 1834-010319-3_53: *id716 + 1834-010319-5_35: *id717 + 1834-060319-1_55: *id718 + 1834-060319-2_45: *id719 + 1834-060319-3_30: *id720 + 1834-060319-4_19: *id721 + 1834-110319-1_20: *id722 + 1834-110319-2_34: *id723 + 1834-110319-6_27: *id724 + 1834-120319-1_31: *id725 + 1834-120319-2_23: *id726 + 1834-150319-1_31: *id727 + 1834-150319-2_27: *id728 + 1834-150319-3_65: *id729 + 1834-150319-4_20: *id730 + 1834-220319-1_41: *id731 + 1834-220319-2_43: *id732 + 1834-220319-3_22: *id733 +_node: &id736 + 1834-010319-1_21: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id734 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + FQAAAAAAAAA= + 1834-010319-1_22: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + FgAAAAAAAAA= + 1834-010319-3_53: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + NQAAAAAAAAA= + 1834-010319-3_55: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + NwAAAAAAAAA= + 1834-010319-3_91: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + WwAAAAAAAAA= + 1834-010319-4_44: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + LAAAAAAAAAA= + 1834-010319-4_46: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + LgAAAAAAAAA= + 1834-010319-5_20: + action_id: 1834-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + FAAAAAAAAAA= + 1834-010319-5_33: + action_id: 1834-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + IQAAAAAAAAA= + 1834-010319-5_35: + action_id: 1834-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + IwAAAAAAAAA= + 1834-060319-1_55: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + NwAAAAAAAAA= + 1834-060319-1_58: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + OgAAAAAAAAA= + 1834-060319-2_122: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + egAAAAAAAAA= + 1834-060319-2_39: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + JwAAAAAAAAA= + 1834-060319-2_40: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + KAAAAAAAAAA= + 1834-060319-2_45: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + LQAAAAAAAAA= + 1834-060319-3_28: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HAAAAAAAAAA= + 1834-060319-3_30: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HgAAAAAAAAA= + 1834-060319-3_32: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + IAAAAAAAAAA= + 1834-060319-3_43: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + KwAAAAAAAAA= + 1834-060319-4_19: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + EwAAAAAAAAA= + 1834-060319-4_21: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + FQAAAAAAAAA= + 1834-060319-4_22: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + FgAAAAAAAAA= + 1834-110319-1_20: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + FAAAAAAAAAA= + 1834-110319-1_44: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + LAAAAAAAAAA= + 1834-110319-2_34: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + IgAAAAAAAAA= + 1834-110319-2_38: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + JgAAAAAAAAA= + 1834-110319-2_39: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + JwAAAAAAAAA= + 1834-110319-2_77: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + TQAAAAAAAAA= + 1834-110319-2_87: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + VwAAAAAAAAA= + 1834-110319-3_70: + action_id: 1834-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + RgAAAAAAAAA= + 1834-110319-3_83: + action_id: 1834-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + UwAAAAAAAAA= + 1834-110319-5_30: + action_id: 1834-110319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HgAAAAAAAAA= + 1834-110319-5_31: + action_id: 1834-110319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HwAAAAAAAAA= + 1834-110319-6_27: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + GwAAAAAAAAA= + 1834-110319-6_28: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HAAAAAAAAAA= + 1834-110319-6_29: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HQAAAAAAAAA= + 1834-120319-1_31: + action_id: 1834-120319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HwAAAAAAAAA= + 1834-120319-1_33: + action_id: 1834-120319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + IQAAAAAAAAA= + 1834-120319-2_23: + action_id: 1834-120319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + FwAAAAAAAAA= + 1834-120319-2_55: + action_id: 1834-120319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + NwAAAAAAAAA= + 1834-120319-3_56: + action_id: 1834-120319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + OAAAAAAAAAA= + 1834-120319-3_66: + action_id: 1834-120319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + QgAAAAAAAAA= + 1834-120319-4_55: + action_id: 1834-120319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + NwAAAAAAAAA= + 1834-120319-4_71: + action_id: 1834-120319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + RwAAAAAAAAA= + 1834-150319-1_29: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HQAAAAAAAAA= + 1834-150319-1_31: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HwAAAAAAAAA= + 1834-150319-1_32: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + IAAAAAAAAAA= + 1834-150319-1_33: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + IQAAAAAAAAA= + 1834-150319-1_34: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + IgAAAAAAAAA= + 1834-150319-2_26: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + GgAAAAAAAAA= + 1834-150319-2_27: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + GwAAAAAAAAA= + 1834-150319-2_28: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HAAAAAAAAAA= + 1834-150319-3_23: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + FwAAAAAAAAA= + 1834-150319-3_59: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + OwAAAAAAAAA= + 1834-150319-3_63: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + PwAAAAAAAAA= + 1834-150319-3_65: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + QQAAAAAAAAA= + 1834-150319-4_20: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + FAAAAAAAAAA= + 1834-150319-4_21: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + FQAAAAAAAAA= + 1834-150319-4_22: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + FgAAAAAAAAA= + 1834-220319-1_24: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + GAAAAAAAAAA= + 1834-220319-1_26: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + GgAAAAAAAAA= + 1834-220319-1_41: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + KQAAAAAAAAA= + 1834-220319-1_69: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + RQAAAAAAAAA= + 1834-220319-1_75: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + SwAAAAAAAAA= + 1834-220319-2_17: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + EQAAAAAAAAA= + 1834-220319-2_18: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + EgAAAAAAAAA= + 1834-220319-2_19: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + EwAAAAAAAAA= + 1834-220319-2_43: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + KwAAAAAAAAA= + 1834-220319-2_45: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + LQAAAAAAAAA= + 1834-220319-3_22: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + FgAAAAAAAAA= + 1834-220319-3_30: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HgAAAAAAAAA= + 1834-220319-3_37: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + JQAAAAAAAAA= + 1834-220319-4_29: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HQAAAAAAAAA= + 1834-220319-4_30: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + HgAAAAAAAAA= + 1834-220319-4_39: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id734 + - !!binary | + JwAAAAAAAAA= +adjlist_inner_dict_factory: &id735 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id735 +edge_attr_dict_factory: *id735 +graph: {} +node_dict_factory: *id735 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id736 diff --git a/actions/identify-neurons/data/1834-graphs/graph-group-7.yaml b/actions/identify-neurons/data/1834-graphs/graph-group-7.yaml new file mode 100644 index 000000000..00452c63b --- /dev/null +++ b/actions/identify-neurons/data/1834-graphs/graph-group-7.yaml @@ -0,0 +1,8584 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1834-010319-1_24: + 1834-010319-3_60: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + LaHXFZOPuT8= + 1834-010319-4_49: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HvFEAPjFyT8= + 1834-010319-5_23: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 11485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fpa9txc3yD8= + 1834-060319-1_91: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 499, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J8FTIneOzz8= + 1834-060319-2_43: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rlcLkc0UvT8= + 1834-060319-3_35: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 718PX8VHvT8= + 1834-060319-4_24: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 11074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 07k6MsZ7uj8= + 1834-110319-1_25: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ocMtk6Wzsz8= + 1834-110319-2_45: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nUAQfprXtT8= + 1834-110319-3_30: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4588, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aJ2Ih03OxT8= + 1834-110319-5_90: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 7555, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5mUzgF3g0D8= + 1834-110319-6_31: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + exVFN28q0T8= + 1834-120319-1_16: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YxrCeN9Wyz8= + 1834-120319-2_26: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xjdlJamZzD8= + 1834-120319-3_28: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + efHGV2kazD8= + 1834-120319-4_22: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UvuJ9v8czD8= + 1834-150319-1_41: &id373 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SykS9qqTwz8= + 1834-150319-2_32: &id448 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7KNdmoj4xT8= + 1834-150319-3_30: &id515 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6rLQyBA3wD8= + 1834-150319-4_24: &id580 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7NKOE+scwz8= + 1834-220319-1_67: &id695 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + daiFlk1qwD8= + 1834-220319-2_41: &id780 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JSI0RYGFxT8= + 1834-220319-3_31: &id868 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UicewQtkwT8= + 1834-220319-4_46: &id959 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mrJ5R/pPxj8= + 1834-010319-1_25: + 1834-010319-3_57: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8091, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e4nDv5+zvD8= + 1834-010319-4_45: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z/SlHQloyj8= + 1834-010319-5_19: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 11485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cZdfxTnmyT8= + 1834-060319-1_59: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 499, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bKS0opq2yD8= + 1834-060319-2_44: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cD8Lc2bNsz8= + 1834-060319-3_37: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xQed3VjMtD8= + 1834-060319-4_26: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 11074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zlPRY9xMtj8= + 1834-110319-1_26: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M1aN9lk2wT8= + 1834-110319-2_40: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Qu/HPdjCwD8= + 1834-110319-3_27: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4588, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dNca4UFXwj8= + 1834-110319-5_78: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 7555, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OPFwMhy80T8= + 1834-110319-6_30: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 8466, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sPvg02OhzD8= + 1834-120319-1_17: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8012, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xCGsob9/zz8= + 1834-120319-2_61: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9255, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5EzRVnUnxz8= + 1834-120319-3_52: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7b2TGXKJyD8= + 1834-120319-4_52: &id346 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13078, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q63Rq+eHxj8= + 1834-150319-1_44: &id380 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7Myc1k/NxT8= + 1834-150319-2_31: &id438 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z8HAEC6tzD8= + 1834-150319-3_53: &id530 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7900, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CWW9oAikyj8= + 1834-150319-4_25: &id592 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 10970, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wvST/UPjyT8= + 1834-220319-1_29: &id635 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VmzYRCfGxT8= + 1834-220319-2_39: &id758 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8798, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lBJLcYYxyT8= + 1834-220319-3_23: &id796 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 11205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mVyaEg86yj8= + 1834-220319-4_32: &id906 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 13950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + glh61SbKyT8= + 1834-010319-3_57: + 1834-010319-1_25: *id002 + 1834-010319-5_21: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3394, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y3okmkt52z8= + 1834-060319-1_59: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IYr7OBYxwz8= + 1834-060319-2_46: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9+aVZytQtz8= + 1834-060319-3_41: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KDb3wO6jtj8= + 1834-060319-4_28: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BUr8SVm2uz8= + 1834-110319-1_26: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73845, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HzVDNQqXuD8= + 1834-110319-2_47: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SLrXXrCquz8= + 1834-110319-3_27: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82897, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FbBN9jVmxD8= + 1834-150319-1_41: &id374 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wja1fV+gxT8= + 1834-150319-2_31: &id439 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rKgcOPtXzD8= + 1834-150319-3_30: &id516 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pg/LqOxSvz8= + 1834-150319-4_26: &id606 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jasovUoE0D8= + 1834-220319-1_29: &id636 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3/REPo0xwj8= + 1834-220319-2_29: &id745 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TddcED0lzz8= + 1834-220319-3_23: &id797 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LL33JDP+zz8= + 1834-220319-4_46: &id960 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cfAH+jCJzT8= + 1834-010319-3_58: + 1834-010319-4_48: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zrYc5zM6wT8= + 1834-010319-5_39: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3394, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gh5FlFixtz8= + 1834-060319-1_91: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DQq8Gs5Lxz8= + 1834-060319-2_42: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + baSHzIn1vz8= + 1834-060319-3_40: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Hg3lrmxtj8= + 1834-060319-4_23: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tcTiQ7s8tz8= + 1834-110319-1_23: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73845, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ijfyDfeTvz8= + 1834-110319-2_96: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KUsBtxkzwj8= + 1834-110319-3_28: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82897, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y2Mks6KWxD8= + 1834-110319-5_78: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85864, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sCVogOzIzj8= + 1834-110319-6_31: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YQzaWaNVzT8= + 1834-120319-1_17: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 49moLwQAxj8= + 1834-120319-2_26: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1Mqj3zG1wj8= + 1834-120319-3_28: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gjYEk2i0wj8= + 1834-120319-4_22: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vMMxkkdIwj8= + 1834-150319-1_37: &id362 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U0AMv9ZCtj8= + 1834-150319-2_37: &id465 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1LLK+AnSwD8= + 1834-150319-3_27: &id487 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9c5ExYzPtT8= + 1834-150319-4_33: &id616 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bDdrW/UltT8= + 1834-220319-1_49: &id679 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3lNJjwE1zD8= + 1834-220319-2_39: &id759 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y33yRw2ctj8= + 1834-220319-3_26: &id833 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + obhwD9nguT8= + 1834-220319-4_33: &id928 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9sqqvR0oxD8= + 1834-010319-3_60: + 1834-010319-1_24: *id003 + 1834-060319-2_41: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bCJbAcBHyT8= + 1834-060319-3_33: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E+IHrK67zD8= + 1834-060319-4_29: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 94Ye1OE6wz8= + 1834-110319-1_30: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73845, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dAQ7FIyewz8= + 1834-110319-2_41: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HWAIV/iXyD8= + 1834-150319-1_47: &id390 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aBebDKW+wj8= + 1834-150319-2_42: &id480 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nRIOxsx4xT8= + 1834-150319-3_55: &id545 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UWm3rF39xD8= + 1834-150319-4_24: &id581 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WK3sD3FRwj8= + 1834-220319-1_37: &id667 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Oh+ot5szvz8= + 1834-220319-2_21: &id733 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OMWFrdNJyj8= + 1834-220319-3_28: &id855 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cd7FYrRixD8= + 1834-220319-4_45: &id944 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EfiBDe1XxD8= + 1834-010319-3_61: + 1834-010319-4_49: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jm6umJBWxT8= + 1834-010319-5_23: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3394, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m4XftZUpxD8= + 1834-060319-2_43: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S/b2RYN2tD8= + 1834-060319-3_35: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LDve61JDsz8= + 1834-060319-4_24: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oIIlEkr0sT8= + 1834-110319-1_25: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73845, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pmlZBADLtT8= + 1834-110319-2_45: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tv6rm5/xtT8= + 1834-110319-3_30: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82897, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a/bi7h4hwz8= + 1834-120319-1_16: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86321, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + haynr+v5xz8= + 1834-120319-2_61: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RkeP+gXVvT8= + 1834-120319-3_52: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t4nmKywswD8= + 1834-120319-4_52: &id347 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kelpS+69vj8= + 1834-150319-1_74: &id395 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sTUqt+gYwD8= + 1834-150319-2_32: &id449 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wuwNUUEFwz8= + 1834-150319-3_53: &id531 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cuVMwGfDvj8= + 1834-150319-4_25: &id593 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /Qd/4prGxj8= + 1834-220319-1_67: &id696 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + re7flTRYwD8= + 1834-220319-2_41: &id781 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u5SH/fJxwz8= + 1834-220319-3_31: &id869 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jn5MDmROvj8= + 1834-220319-4_32: &id907 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t5HSP6Ilwj8= + 1834-010319-3_63: + 1834-010319-4_45: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uZnklqSiyD8= + 1834-010319-5_19: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3394, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lmihPItIxz8= + 1834-060319-2_44: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B8NGmk8ovD8= + 1834-060319-3_37: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wlzh//sBvz8= + 1834-060319-4_26: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2983, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ke/hD8z/vz8= + 1834-110319-1_24: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73845, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FZqrYZhLwj8= + 1834-110319-2_40: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77123, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O8Y6RiaSwD8= + 1834-110319-3_29: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82897, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BwPXGPZJyj8= + 1834-110319-5_90: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85864, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yUV5EVAo0D8= + 1834-110319-6_30: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OFK1kqPHzT8= + 1834-120319-2_78: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1164, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rsFuuvcjzT8= + 1834-150319-1_44: &id381 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80318, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CKSiEQ4XwT8= + 1834-150319-2_29: &id422 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g41p710Jzj8= + 1834-150319-3_28: &id501 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 86209, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hb05JXFqzD8= + 1834-150319-4_23: &id562 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gm/HYTrPzj8= + 1834-220319-1_36: &id656 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DIb/0Pqr0D8= + 1834-220319-2_20: &id713 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FtXUGVkPyT8= + 1834-220319-3_25: &id813 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3114, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t4qp3AXdyj8= + 1834-220319-4_31: &id884 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5859, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T6kJF+PwyD8= + 1834-010319-4_45: + 1834-010319-1_25: *id004 + 1834-010319-3_63: *id005 + 1834-010319-5_19: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AAo5LSINoD8= + 1834-060319-2_44: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2n5gD/2syD8= + 1834-060319-3_37: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85770, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XurVQO7kyD8= + 1834-060319-4_26: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UMMW3QCCzD8= + 1834-110319-1_24: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 72332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8a96VAiayj8= + 1834-110319-2_40: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 75610, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I1s7b730yT8= + 1834-110319-3_29: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81384, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pRLDM4clxj8= + 1834-110319-5_90: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84351, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lNhJlFI3wD8= + 1834-110319-6_31: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XbWvVue/wD8= + 1834-120319-2_78: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nZaBJywivj8= + 1834-150319-1_74: &id396 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4BKX7r7Oyj8= + 1834-150319-2_30: &id431 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ge/hUGO3xT8= + 1834-150319-3_28: &id502 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IxafbwpZwT8= + 1834-150319-4_25: &id594 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sJykHeQ3zD8= + 1834-220319-1_29: &id637 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vkweDzhV0T8= + 1834-220319-2_20: &id714 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rQE82OXGqD8= + 1834-220319-3_25: &id814 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pWuzNl2NsT8= + 1834-220319-4_31: &id885 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 87Y/+M0Jqj8= + 1834-010319-4_48: + 1834-010319-3_58: *id006 + 1834-010319-5_39: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tpzzDHW1tD8= + 1834-060319-1_91: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77295, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sZjwCd+j0z8= + 1834-060319-2_42: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GC7VIb+gwj8= + 1834-060319-3_33: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85770, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uBn4l9PywT8= + 1834-060319-4_23: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZKoDnXk4xz8= + 1834-110319-1_23: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 72332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y7izc3Cqyz8= + 1834-110319-2_104: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 75610, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EZivnHFbyD8= + 1834-110319-3_28: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81384, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4i1zwLkgyj8= + 1834-110319-5_78: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84351, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4IxH1mBUxz8= + 1834-110319-6_30: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UiEzM5Qqyz8= + 1834-120319-1_17: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cX8rJ8/Otj8= + 1834-120319-2_26: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PlHmmxfttj8= + 1834-120319-3_52: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3C8jyzatuT8= + 1834-120319-4_52: &id348 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6OQbkK4uvj8= + 1834-150319-1_37: &id363 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sNZH+wTKyD8= + 1834-150319-2_37: &id466 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 12fr0xAmvD8= + 1834-150319-3_27: &id488 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eyfF592Lxj8= + 1834-150319-4_23: &id563 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XL67VB/0tj8= + 1834-220319-1_49: &id680 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cvx0qvOY0T8= + 1834-220319-2_39: &id760 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WUpyMbAEvD8= + 1834-220319-3_26: &id834 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ER3q523awD8= + 1834-220319-4_46: &id961 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gi2BuCJUyD8= + 1834-010319-4_49: + 1834-010319-1_24: *id007 + 1834-010319-3_61: *id008 + 1834-010319-5_23: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P/VuH0oHoD8= + 1834-060319-1_59: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77295, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9l3hOEfT0z8= + 1834-060319-2_43: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9/dBrU99yT8= + 1834-060319-3_35: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85770, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YchX8WaAyD8= + 1834-060319-4_24: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OAbHmDXLyj8= + 1834-110319-1_25: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 72332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IxKzdJYlyT8= + 1834-110319-2_45: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 75610, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ffxsCnGEyD8= + 1834-110319-3_30: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81384, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8EW+N2Mrwz8= + 1834-120319-1_16: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rUfrajTwtT8= + 1834-120319-2_61: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86051, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0uUOoDgHvz8= + 1834-120319-3_28: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1498, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TO08Nu2Btj8= + 1834-120319-4_22: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3474, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SsZmU1bztj8= + 1834-150319-1_76: &id410 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78805, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wPZ083C6wz8= + 1834-150319-2_32: &id450 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81390, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8eEIC38Muj8= + 1834-150319-3_57: &id551 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +NcmwwP2xj8= + 1834-150319-4_33: &id617 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1366, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n82aRjL8wT8= + 1834-220319-1_67: &id697 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 82992, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qR9fgycB0D8= + 1834-220319-2_41: &id782 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LAbct8tFxD8= + 1834-220319-3_23: &id798 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1601, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /OaRL0CowT8= + 1834-220319-4_32: &id908 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4346, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z3nw355iwD8= + 1834-010319-5_19: + 1834-010319-1_25: *id009 + 1834-010319-3_63: *id010 + 1834-010319-4_45: *id011 + 1834-060319-2_42: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TuEvacENwj8= + 1834-060319-3_33: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83889, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cKz7KZeEwj8= + 1834-060319-4_28: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85989, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VWmiHxr5zz8= + 1834-110319-1_24: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 70451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QG7dR4qJxz8= + 1834-110319-2_40: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SFIpsJUkyT8= + 1834-110319-3_29: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79503, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 99HMHujtxT8= + 1834-110319-5_78: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5Sf8EOIPxT8= + 1834-110319-6_31: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NcZlrf3Lwj8= + 1834-120319-1_17: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 82927, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JbbJUw1vD8= + 1834-120319-2_26: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LqXYEhjKuz8= + 1834-150319-1_74: &id397 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cajfB3Mcyj8= + 1834-150319-2_29: &id423 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kxyIDA1zyD8= + 1834-150319-3_28: &id503 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + purzYI8Fvz8= + 1834-150319-4_23: &id564 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /8mq0vmfwz8= + 1834-220319-1_29: &id638 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e7x8Gb3i0D8= + 1834-220319-2_20: &id715 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + owALBGJbqD8= + 1834-220319-3_25: &id815 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2L8J400EtT8= + 1834-220319-4_31: &id886 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dMx6LfZGrD8= + 1834-010319-5_21: + 1834-010319-3_57: *id012 + 1834-060319-2_44: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fbCHP/Qz2j8= + 1834-060319-3_37: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83889, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HigoD04T2j8= + 1834-060319-4_26: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85989, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3KUHxXf12j8= + 1834-110319-1_26: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 70451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dMIO6ynM3D8= + 1834-110319-2_104: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q5fAAduQ2j8= + 1834-110319-3_27: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79503, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9lf1nOWQ2T8= + 1834-150319-1_45: &id387 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Eenb2vO62z8= + 1834-150319-2_30: &id432 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /Uo3uzGz2T8= + 1834-150319-3_27: &id489 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YPkKq6wp3D8= + 1834-150319-4_26: &id607 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c8sWDrnu2j8= + 1834-220319-1_36: &id657 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SRJJ68LK4D8= + 1834-220319-2_21: &id734 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0IwKuhkq3j8= + 1834-220319-3_23: &id799 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xJNQnk1p2j8= + 1834-220319-4_32: &id909 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dPbyPKOI2z8= + 1834-010319-5_23: + 1834-010319-1_24: *id013 + 1834-010319-3_61: *id014 + 1834-010319-4_49: *id015 + 1834-060319-1_59: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XZm1t5xD0z8= + 1834-060319-2_43: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IPO/HbhnyD8= + 1834-060319-3_35: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83889, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WNSYmUGtxz8= + 1834-060319-4_24: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85989, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wBsbm7LgyT8= + 1834-110319-1_25: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 70451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fyp4dTk6yD8= + 1834-110319-2_45: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EsiQcS/axz8= + 1834-110319-3_30: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79503, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2PMgrNF/wT8= + 1834-110319-5_90: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ElPLH14Wxz8= + 1834-110319-6_30: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83381, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CgTi39ZszD8= + 1834-120319-1_16: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 82927, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RsI+iINHtz8= + 1834-120319-2_78: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e9pcdnOmuD8= + 1834-120319-3_28: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BkdjwkK6uD8= + 1834-120319-4_22: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cMu6BKspuT8= + 1834-150319-1_76: &id411 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nXOsFHatwz8= + 1834-150319-2_32: &id451 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6bKF1BB4tT8= + 1834-150319-3_57: &id552 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GyU+RCgfxj8= + 1834-150319-4_25: &id595 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JZB4ZHE2xj8= + 1834-220319-1_49: &id681 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J1FixMND0D8= + 1834-220319-2_41: &id783 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Evb242Zvwz8= + 1834-220319-3_31: &id870 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aNAJxuZMwz8= + 1834-220319-4_46: &id962 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DzbHh6P8xD8= + 1834-010319-5_39: + 1834-010319-3_58: *id016 + 1834-010319-4_48: *id017 + 1834-060319-1_91: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iSjZ+NXG0D8= + 1834-060319-2_41: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xl0XDQIKyj8= + 1834-060319-3_40: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83889, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jMRhF8eQxj8= + 1834-060319-4_23: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85989, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XjNHygg+xD8= + 1834-110319-1_23: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 70451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fSRpRY6gxz8= + 1834-110319-2_41: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 73729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d6PTIu9uyD8= + 1834-110319-3_28: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79503, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LBMe0e/kyT8= + 1834-120319-2_61: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K1iTzleHuD8= + 1834-120319-3_52: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 86017, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rPrQaUm7tD8= + 1834-120319-4_52: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nDmwTSDxtz8= + 1834-150319-1_37: &id364 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 76924, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6fasGj4LxD8= + 1834-150319-2_37: &id467 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 79509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 89Yjz8eWuT8= + 1834-150319-3_53: &id532 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82815, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zwL2+atGwj8= + 1834-150319-4_33: &id618 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZdLVVBhptj8= + 1834-220319-1_67: &id698 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 81111, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WswgueuTzj8= + 1834-220319-2_39: &id761 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 83713, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ybwH+y5Asz8= + 1834-220319-3_26: &id835 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 86120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5mouUFAvtj8= + 1834-220319-4_33: &id929 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 2465, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u2sXYnHvxD8= + 1834-060319-1_59: + 1834-010319-1_25: *id018 + 1834-010319-3_57: *id019 + 1834-010319-4_49: *id020 + 1834-010319-5_23: *id021 + 1834-060319-2_46: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E++pEFONuT8= + 1834-060319-3_41: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8475, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MJZ29Bjvuz8= + 1834-060319-4_29: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10575, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7pTMEy0BtD8= + 1834-110319-1_30: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81437, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DX5Luatgsj8= + 1834-110319-2_47: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LIZzzWw8sz8= + 1834-110319-3_27: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IAYQJPdeyj8= + 1834-110319-5_90: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7056, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jwdLzkLv1j8= + 1834-110319-6_30: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + smZZuCa91T8= + 1834-120319-1_16: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e5T7a5Cb0j8= + 1834-120319-2_26: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rb3oPaL00j8= + 1834-120319-3_28: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A0z1S93p0j8= + 1834-120319-4_22: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HRZ0nu/K0j8= + 1834-150319-1_47: &id391 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IJECEJZ1uT8= + 1834-150319-2_31: &id440 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SWug8SgVyT8= + 1834-150319-3_30: &id517 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0NpfiVF6uz8= + 1834-150319-4_25: &id596 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PS9thfM20D8= + 1834-220319-1_29: &id639 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yraERcRvuT8= + 1834-220319-2_29: &id746 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 8299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uKG/WIsFzT8= + 1834-220319-3_28: &id856 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G9N2GjV5yz8= + 1834-220319-4_45: &id945 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 13451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b64aG0Nqyz8= + 1834-060319-1_91: + 1834-010319-1_24: *id022 + 1834-010319-3_58: *id023 + 1834-010319-4_48: *id024 + 1834-010319-5_39: *id025 + 1834-060319-2_41: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LZiUSoGgxT8= + 1834-060319-3_40: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8475, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7HzQkOy9wz8= + 1834-060319-4_23: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10575, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5ieZKOYUxj8= + 1834-110319-1_23: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81437, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vc5/Pvcbxz8= + 1834-110319-2_86: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D8Vu9Xgjvj8= + 1834-110319-3_28: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 4089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9/XbQZjWzj8= + 1834-110319-5_78: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7056, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XPJFtTLG2j8= + 1834-110319-6_31: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 7967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P6f9ltje2D8= + 1834-120319-1_17: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 7513, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CQ8iqfTj1j8= + 1834-120319-2_61: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 8756, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CsamjN0zxz8= + 1834-120319-3_52: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 10603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UOtyKWnfyD8= + 1834-120319-4_52: &id350 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 12579, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5jHV6MBIxz8= + 1834-150319-1_74: &id398 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aIcKE9JNxj8= + 1834-150319-2_37: &id468 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4095, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HYh+0Dx3zj8= + 1834-150319-3_53: &id533 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7401, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6HREFLpYxT8= + 1834-150319-4_33: &id619 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 10471, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nbF+cFkoyj8= + 1834-220319-1_37: &id668 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5697, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bh95w8Ns0D8= + 1834-220319-2_39: &id762 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 8299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5EIRi9mEyj8= + 1834-220319-3_26: &id836 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RqEapuVSzz8= + 1834-220319-4_46: &id963 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 13451, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jDnWrN5h0D8= + 1834-060319-2_41: + 1834-010319-3_60: *id026 + 1834-010319-5_39: *id027 + 1834-060319-1_91: *id028 + 1834-060319-3_40: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + puERj9QetT8= + 1834-060319-4_29: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6JoyqHk7xT8= + 1834-110319-1_23: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KUS9PmQgwj8= + 1834-110319-2_96: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + se9xAglIvj8= + 1834-110319-3_28: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2tW/UeIAyT8= + 1834-120319-2_61: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WlnbF6wKwT8= + 1834-120319-3_52: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9VUCLV2swj8= + 1834-120319-4_52: &id351 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 63WGNOGZwD8= + 1834-150319-1_37: &id365 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 40n51OETvj8= + 1834-150319-2_29: &id424 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OqExByItzD8= + 1834-150319-3_53: &id534 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OWWHPklCuD8= + 1834-150319-4_33: &id620 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j5V43iQQwj8= + 1834-220319-1_37: &id669 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mt5lSYUEzj8= + 1834-220319-2_39: &id763 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hMuw4bUbxD8= + 1834-220319-3_26: &id837 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wyIkObtaxz8= + 1834-220319-4_33: &id930 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uNam7n8Jyj8= + 1834-060319-2_42: + 1834-010319-3_58: *id029 + 1834-010319-4_48: *id030 + 1834-010319-5_19: *id031 + 1834-060319-3_33: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fTYwrPcfoD8= + 1834-060319-4_23: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zzxe9zauuD8= + 1834-110319-1_24: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A4F/jMshxD8= + 1834-110319-2_104: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 18v0W/TMxj8= + 1834-110319-3_29: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O8grf/hfwT8= + 1834-110319-5_78: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aOsI0FgQzT8= + 1834-110319-6_31: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UZlmCLDbyD8= + 1834-120319-1_17: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xJIQl83QwT8= + 1834-120319-2_26: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8dqr+HnjwT8= + 1834-120319-3_28: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4501, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + br2OC34Lwz8= + 1834-120319-4_22: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 6477, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sfYD5U/Nwj8= + 1834-150319-1_74: &id399 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fgm99EvfxT8= + 1834-150319-2_37: &id469 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iqt4u8/FxD8= + 1834-150319-3_27: &id490 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WdhfVYT2vj8= + 1834-150319-4_23: &id565 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CTqZp7TTwT8= + 1834-220319-1_36: &id658 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EuDzkwD30T8= + 1834-220319-2_20: &id716 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UNkBB7vCwD8= + 1834-220319-3_25: &id816 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AgTmxbKDxD8= + 1834-220319-4_31: &id887 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iJxnPdSlwT8= + 1834-060319-2_43: + 1834-010319-1_24: *id032 + 1834-010319-3_61: *id033 + 1834-010319-4_49: *id034 + 1834-010319-5_23: *id035 + 1834-060319-3_35: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xxifjMQumj8= + 1834-060319-4_24: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Juih2yIZpD8= + 1834-110319-1_25: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q7GRtoeLsj8= + 1834-110319-2_45: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fOykTtbGsD8= + 1834-110319-3_30: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u9xZnozuwj8= + 1834-120319-1_16: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 1411, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nmfu+SgOyj8= + 1834-120319-2_78: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Am0lupAozT8= + 1834-150319-1_76: &id412 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vUEwuJhJxT8= + 1834-150319-2_32: &id452 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WgEykxXpxT8= + 1834-150319-3_57: &id553 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KDRkrrhByT8= + 1834-150319-4_24: &id582 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bpb8Du5FyD8= + 1834-220319-1_67: &id699 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6QHT354WwD8= + 1834-220319-2_41: &id784 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PY08ZHz6xj8= + 1834-220319-3_31: &id871 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sSNuRcrhwT8= + 1834-220319-4_32: &id910 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c7QCCQFcxD8= + 1834-060319-2_44: + 1834-010319-1_25: *id036 + 1834-010319-3_63: *id037 + 1834-010319-4_45: *id038 + 1834-010319-5_21: *id039 + 1834-060319-3_37: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +RXauxAenD8= + 1834-060319-4_26: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lBEV7rdXpz8= + 1834-110319-1_26: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SLcYLnFqvT8= + 1834-110319-2_40: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /dfwELFztT8= + 1834-110319-3_27: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84387, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GWefk5xpwD8= + 1834-110319-5_90: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 954, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fZLU3p5u0D8= + 1834-110319-6_30: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rOp8pOlKzD8= + 1834-150319-1_44: &id382 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7F2x8I0SxD8= + 1834-150319-2_31: &id441 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bwUJBXYPzD8= + 1834-150319-3_28: &id504 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /ViE0fKFzT8= + 1834-150319-4_25: &id597 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qdXYxp8MzD8= + 1834-220319-1_49: &id682 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GA9dMt2izz8= + 1834-220319-2_21: &id735 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y26Dfe6Hzj8= + 1834-220319-3_23: &id800 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KrZxqgyvyj8= + 1834-220319-4_46: &id964 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CnMFl/8/yz8= + 1834-060319-2_46: + 1834-010319-3_57: *id040 + 1834-060319-1_59: *id041 + 1834-060319-3_41: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2373, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E1Ixi66blj8= + 1834-060319-4_28: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CVA4QuUmpT8= + 1834-110319-1_30: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b9PtlRnOuz8= + 1834-110319-2_47: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 78613, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CZRPZTmwsT8= + 1834-150319-1_41: &id375 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81808, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Danyko8wD8= + 1834-150319-2_42: &id481 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZQAaLnmZyz8= + 1834-150319-3_30: &id518 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1299, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vb8jfQ3Usj8= + 1834-150319-4_26: &id608 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4369, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VSFwREstzT8= + 1834-220319-1_29: &id640 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 85995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eFP6vVzbuD8= + 1834-220319-2_29: &id747 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j3K25NDTyz8= + 1834-220319-3_28: &id857 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4604, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AE0wdPK0yj8= + 1834-220319-4_45: &id946 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7349, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RgRKwV8Jyj8= + 1834-060319-3_33: + 1834-010319-3_60: *id042 + 1834-010319-4_48: *id043 + 1834-010319-5_19: *id044 + 1834-060319-2_42: *id045 + 1834-060319-4_23: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ioJPSDYJuz8= + 1834-110319-1_24: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 72962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GF2HJl9Hxj8= + 1834-110319-2_104: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4UqVIyadxj8= + 1834-110319-3_29: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82014, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T3nH3Va6wj8= + 1834-110319-5_78: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84981, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ArcoRU8+zD8= + 1834-110319-6_31: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X8ldmyKPxz8= + 1834-120319-1_17: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s4abDviZwT8= + 1834-120319-2_26: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hic6zIhBwj8= + 1834-120319-3_28: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ewkgWACswz8= + 1834-120319-4_22: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 40WudSBpwz8= + 1834-150319-1_74: &id400 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IESaf+C5xj8= + 1834-150319-2_37: &id470 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K3FzIRoixT8= + 1834-150319-3_28: &id505 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /SNmq+07yT8= + 1834-150319-4_23: &id566 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YjIXdp0qwT8= + 1834-220319-1_36: &id659 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LM+lCPRR0j8= + 1834-220319-2_20: &id717 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6xHnlg0GwT8= + 1834-220319-3_25: &id817 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ycFIkW4rxD8= + 1834-220319-4_31: &id888 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TACyS1W+wT8= + 1834-060319-3_35: + 1834-010319-1_24: *id046 + 1834-010319-3_61: *id047 + 1834-010319-4_49: *id048 + 1834-010319-5_23: *id049 + 1834-060319-2_43: *id050 + 1834-060319-4_24: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aOF0ClVhpT8= + 1834-110319-1_25: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 72962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hwz+OVlisj8= + 1834-110319-2_45: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lPVLLccusD8= + 1834-110319-3_30: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82014, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xv7AxDD4wT8= + 1834-120319-2_78: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YOMtf2HczD8= + 1834-150319-1_76: &id413 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kWz3VCXOxD8= + 1834-150319-2_32: &id453 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ycCeFYJ2xT8= + 1834-150319-3_57: &id554 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0eHqqDmDyD8= + 1834-150319-4_24: &id583 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FNDe+h2Mxz8= + 1834-220319-1_67: &id700 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Suot/7u6wD8= + 1834-220319-2_41: &id785 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0F2+YE9kxT8= + 1834-220319-3_31: &id872 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xpcz880QwT8= + 1834-220319-4_32: &id911 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w715PVewwz8= + 1834-060319-3_37: + 1834-010319-1_25: *id051 + 1834-010319-3_63: *id052 + 1834-010319-4_45: *id053 + 1834-010319-5_21: *id054 + 1834-060319-2_44: *id055 + 1834-060319-4_26: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8hGqbS+bpD8= + 1834-110319-1_26: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 72962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GrsBwTS6vT8= + 1834-110319-2_40: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V8YpbZjUsz8= + 1834-110319-3_27: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82014, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nkudwoqZwT8= + 1834-110319-5_90: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84981, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rs5ZxXuC0D8= + 1834-110319-6_30: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IJd2VfQazD8= + 1834-150319-1_44: &id383 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 99kkc2pBxD8= + 1834-150319-2_31: &id442 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2n21fm0DzD8= + 1834-150319-3_53: &id535 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5OkAuivNxj8= + 1834-150319-4_25: &id598 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uHiHQyw2zD8= + 1834-220319-1_49: &id683 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rNbF7fDQzz8= + 1834-220319-2_21: &id736 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k4xb/A/Azj8= + 1834-220319-3_23: &id801 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xjSqoEG1yz8= + 1834-220319-4_46: &id965 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vxOqOuPZyj8= + 1834-060319-3_40: + 1834-010319-3_58: *id056 + 1834-010319-5_39: *id057 + 1834-060319-1_91: *id058 + 1834-060319-2_41: *id059 + 1834-060319-4_29: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Yr/r0EE0yT8= + 1834-110319-1_23: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 72962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2348ZZE0wj8= + 1834-110319-2_41: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bOspGPF7wj8= + 1834-110319-3_28: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82014, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wCNseFWQwT8= + 1834-120319-1_16: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85438, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ahVSa3LQyD8= + 1834-120319-2_61: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mwc/cyPHvj8= + 1834-120319-3_52: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jt9BT8Dcvj8= + 1834-120319-4_52: &id352 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 4104, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8Ss1nWVVvz8= + 1834-150319-1_37: &id366 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S3N5upN3vj8= + 1834-150319-2_29: &id425 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j4wKAF+Vxj8= + 1834-150319-3_27: &id491 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D2TwVi5RtD8= + 1834-150319-4_33: &id621 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PCqPEFw5wD8= + 1834-220319-1_37: &id670 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jMJwx5g8zj8= + 1834-220319-2_39: &id764 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5ItKE9pdwT8= + 1834-220319-3_26: &id838 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iP8gNYEQxT8= + 1834-220319-4_33: &id931 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9vAvVH3gyT8= + 1834-060319-3_41: + 1834-010319-3_57: *id060 + 1834-060319-1_59: *id061 + 1834-060319-2_46: *id062 + 1834-060319-4_28: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2100, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3vwXRZL9nj8= + 1834-110319-1_30: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 72962, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2lYGhqBzvT8= + 1834-110319-2_47: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 76240, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IqrexCjXsT8= + 1834-150319-1_41: &id376 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 28NTJeKJwT8= + 1834-150319-2_42: &id482 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 82020, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m6ItA2QJzD8= + 1834-150319-3_30: &id519 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tY2yF+eptT8= + 1834-150319-4_26: &id609 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sfCBQavvzT8= + 1834-220319-1_29: &id641 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83622, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nYlYG5R/vD8= + 1834-220319-2_29: &id748 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86224, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 94fLl5sOzD8= + 1834-220319-3_28: &id858 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2231, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rBBQtAf6yj8= + 1834-220319-4_45: &id947 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T6JJF5lLyj8= + 1834-060319-4_23: + 1834-010319-3_58: *id063 + 1834-010319-4_48: *id064 + 1834-010319-5_39: *id065 + 1834-060319-1_91: *id066 + 1834-060319-2_42: *id067 + 1834-060319-3_33: *id068 + 1834-110319-1_23: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 70862, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2sxjm1eYxD8= + 1834-110319-2_104: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hlDn3KBJwT8= + 1834-110319-3_28: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79914, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1b5spnwcvz8= + 1834-110319-5_78: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D3JlrKx70T8= + 1834-110319-6_31: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + juIwJtbgzj8= + 1834-120319-1_17: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +GU095rpxz8= + 1834-120319-2_26: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LIeMECEQxj8= + 1834-120319-3_28: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PWLkVZ+5xj8= + 1834-120319-4_22: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5n1ZsC1txj8= + 1834-150319-1_37: &id367 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ORRIpkw5wT8= + 1834-150319-2_37: &id471 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rEaQpBL2xD8= + 1834-150319-3_27: &id492 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j26t0KeEsj8= + 1834-150319-4_23: &id567 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hjXVCaZWxD8= + 1834-220319-1_36: &id660 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8qHCz2kS0T8= + 1834-220319-2_39: &id765 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dfmn9uCgwD8= + 1834-220319-3_23: &id802 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NIHpa/kgyD8= + 1834-220319-4_31: &id889 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pFqu512byT8= + 1834-060319-4_24: + 1834-010319-1_24: *id069 + 1834-010319-3_61: *id070 + 1834-010319-4_49: *id071 + 1834-010319-5_23: *id072 + 1834-060319-2_43: *id073 + 1834-060319-3_35: *id074 + 1834-110319-1_25: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 70862, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /QZ5xg9qrD8= + 1834-110319-2_45: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a1fdQiJOqz8= + 1834-110319-3_30: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79914, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H5PdriXTxT8= + 1834-120319-1_16: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83338, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HdUYLdhyyz8= + 1834-120319-2_61: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0MqxQgOowT8= + 1834-120319-3_52: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 28, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d3ffoipMwz8= + 1834-120319-4_52: &id353 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2004, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dXY5S+dfwT8= + 1834-150319-1_74: &id401 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5iPvEmsOwT8= + 1834-150319-2_32: &id454 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s0GOLPExxz8= + 1834-150319-3_53: &id536 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7GmEc/xSwD8= + 1834-150319-4_24: &id584 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S2nnsrCkxj8= + 1834-220319-1_67: &id701 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cWyLngIhuj8= + 1834-220319-2_41: &id786 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + msdh62G4xT8= + 1834-220319-3_31: &id873 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P07aR7qjwD8= + 1834-220319-4_46: &id966 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /bAJ2dgJxT8= + 1834-060319-4_26: + 1834-010319-1_25: *id075 + 1834-010319-3_63: *id076 + 1834-010319-4_45: *id077 + 1834-010319-5_21: *id078 + 1834-060319-2_44: *id079 + 1834-060319-3_37: *id080 + 1834-110319-1_24: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 70862, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8SPpfiKUvT8= + 1834-110319-2_40: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +R4Nvrjlrz8= + 1834-110319-3_29: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79914, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2bfqPpn8xz8= + 1834-110319-5_90: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82881, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5Jr5dToX0j8= + 1834-110319-6_30: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 83792, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K/O8uOjxzz8= + 1834-120319-2_78: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bRaqFUXazz8= + 1834-150319-1_44: &id384 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NyAcQlWSwj8= + 1834-150319-2_29: &id426 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YLRHHRu7zj8= + 1834-150319-3_57: &id555 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LikcT8IBzD8= + 1834-150319-4_33: &id622 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wjb0TGs6yD8= + 1834-220319-1_49: &id684 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T7dflSG4zj8= + 1834-220319-2_20: &id718 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jlRzsSOIyz8= + 1834-220319-3_25: &id818 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rYW3D+xX0D8= + 1834-220319-4_32: &id912 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JrGSIAooyj8= + 1834-060319-4_28: + 1834-010319-3_57: *id081 + 1834-010319-5_19: *id082 + 1834-060319-2_46: *id083 + 1834-060319-3_41: *id084 + 1834-110319-1_26: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 70862, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jPCHcSyRrz8= + 1834-110319-2_96: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jwAH9uVmxD8= + 1834-110319-3_27: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79914, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6gbubzTGxT8= + 1834-150319-1_41: &id377 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2k2Z1DCGwz8= + 1834-150319-2_42: &id483 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iaDvFTEBzD8= + 1834-150319-3_30: &id520 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vGLcU7icuj8= + 1834-150319-4_26: &id610 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WUxS7p91zz8= + 1834-220319-1_37: &id671 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y70JrtHEzD8= + 1834-220319-2_21: &id737 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VPGEYavS0D8= + 1834-220319-3_26: &id839 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LhU2LAH6yT8= + 1834-220319-4_33: &id932 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CG3TfW0Zyz8= + 1834-060319-4_29: + 1834-010319-3_60: *id085 + 1834-060319-1_59: *id086 + 1834-060319-2_41: *id087 + 1834-060319-3_40: *id088 + 1834-110319-1_30: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 70862, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JCcNG38UqT8= + 1834-110319-2_47: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 74140, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4p4zgGrYtT8= + 1834-150319-1_47: &id392 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3d/5R7xAsz8= + 1834-150319-2_31: &id443 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ls2NS77mxj8= + 1834-150319-3_55: &id546 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83226, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jlOFW0X6uT8= + 1834-150319-4_25: &id599 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 86296, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FP5wd5R2zj8= + 1834-220319-1_29: &id642 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R6ZdxDEjsz8= + 1834-220319-2_29: &id749 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84124, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GZgHwl+Tyj8= + 1834-220319-3_28: &id859 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lMaW4Bc7yT8= + 1834-220319-4_45: &id948 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2876, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lDuB1mUDyT8= + 1834-110319-1_23: + 1834-010319-3_58: *id089 + 1834-010319-4_48: *id090 + 1834-010319-5_39: *id091 + 1834-060319-1_91: *id092 + 1834-060319-2_41: *id093 + 1834-060319-3_40: *id094 + 1834-060319-4_23: *id095 + 1834-110319-2_41: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SxrL8UOTlD8= + 1834-110319-3_28: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9052, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MtL6m4Vtyj8= + 1834-110319-5_78: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p1QuZbyN0j8= + 1834-120319-1_17: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12476, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4TOTnyKlzj8= + 1834-120319-2_61: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mlZsaAblwT8= + 1834-120319-4_52: &id354 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rxQQLzMewD8= + 1834-150319-1_74: &id402 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IDSb0yg8rz8= + 1834-150319-2_37: &id472 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /fkHaAxNyT8= + 1834-150319-3_53: &id537 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2KKsBMU5tj8= + 1834-150319-4_33: &id623 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cz6yP7Fqwz8= + 1834-220319-1_37: &id672 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bQ1JFFx5xj8= + 1834-220319-2_21: &id738 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6PuZCLFGzT8= + 1834-220319-3_26: &id840 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9yJ1MbRUxj8= + 1834-220319-4_33: &id933 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qk+ZqcxoyD8= + 1834-110319-1_24: + 1834-010319-3_63: *id096 + 1834-010319-4_45: *id097 + 1834-010319-5_19: *id098 + 1834-060319-2_42: *id099 + 1834-060319-3_33: *id100 + 1834-060319-4_26: *id101 + 1834-110319-2_40: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H4o525mGuj8= + 1834-110319-3_29: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9052, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HXo5zNPbyT8= + 1834-110319-6_30: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5HXQaSmp0D8= + 1834-120319-1_16: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12476, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0BuQnuGayT8= + 1834-120319-2_26: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K/33FnLhyT8= + 1834-120319-3_52: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /101KQbmwT8= + 1834-120319-4_22: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 17542, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H2R4mcv7yT8= + 1834-150319-1_44: &id385 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C5odCYlixD8= + 1834-150319-2_29: &id427 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hc0eb9jnxz8= + 1834-150319-3_27: &id493 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fBEn9IUCwT8= + 1834-150319-4_23: &id568 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iq1TInGjyz8= + 1834-220319-1_49: &id685 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bf9TXOA9zj8= + 1834-220319-2_20: &id719 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /dzmCbFpxz8= + 1834-220319-3_25: &id819 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fg+uuW7SzD8= + 1834-220319-4_31: &id890 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dsNlZm1byD8= + 1834-110319-1_25: + 1834-010319-1_24: *id102 + 1834-010319-3_61: *id103 + 1834-010319-4_49: *id104 + 1834-010319-5_23: *id105 + 1834-060319-2_43: *id106 + 1834-060319-3_35: *id107 + 1834-060319-4_24: *id108 + 1834-110319-2_45: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 52v/eKoWlT8= + 1834-110319-3_30: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9052, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TO6rdMS0wz8= + 1834-110319-5_90: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12019, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wdCKINYg0T8= + 1834-110319-6_31: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 12930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8W9hDV/J0D8= + 1834-120319-2_78: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 13719, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + STrhK/uLzT8= + 1834-120319-3_28: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 15566, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yaz080jLyz8= + 1834-150319-1_41: &id378 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dt4hjhhYvz8= + 1834-150319-2_32: &id455 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aZ2GzVPxxj8= + 1834-150319-3_57: &id556 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bojJDApAyT8= + 1834-150319-4_24: &id585 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h+teb+A8xz8= + 1834-220319-1_67: &id702 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Uuzf95AouT8= + 1834-220319-2_41: &id787 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yyW6VPORxT8= + 1834-220319-3_23: &id803 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Qmc8C7iwxz8= + 1834-220319-4_32: &id913 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QP0uR+frxD8= + 1834-110319-1_26: + 1834-010319-1_25: *id109 + 1834-010319-3_57: *id110 + 1834-010319-5_21: *id111 + 1834-060319-2_44: *id112 + 1834-060319-3_37: *id113 + 1834-060319-4_28: *id114 + 1834-110319-2_96: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X2GCIFKTwz8= + 1834-110319-3_27: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9052, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8g/y9z5LxD8= + 1834-150319-1_37: &id368 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qYLjhPj8wz8= + 1834-150319-2_42: &id484 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WSUmgBhhzD8= + 1834-150319-3_30: &id521 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S+i92u2juT8= + 1834-150319-4_25: &id600 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xrmil7ZpzD8= + 1834-220319-1_29: &id643 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 26W9WAxVwD8= + 1834-220319-2_39: &id766 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YXdkbRhPxj8= + 1834-220319-3_31: &id874 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GaU9FGFAxj8= + 1834-220319-4_46: &id967 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TBTL9VYeyj8= + 1834-110319-1_30: + 1834-010319-3_60: *id115 + 1834-060319-1_59: *id116 + 1834-060319-2_46: *id117 + 1834-060319-3_41: *id118 + 1834-060319-4_29: *id119 + 1834-110319-2_47: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3278, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VapjeXwcsj8= + 1834-150319-1_47: &id393 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6473, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + o0kE3/lHtD8= + 1834-150319-2_31: &id444 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9058, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S9UbZzNNyD8= + 1834-150319-3_55: &id547 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12364, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WSnEi082uz8= + 1834-150319-4_26: &id611 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 15434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ylNNGYlK0D8= + 1834-220319-1_36: &id661 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10660, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c+XGKT4lyz8= + 1834-220319-2_29: &id750 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13262, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QbTRyXxGzD8= + 1834-220319-3_28: &id860 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15669, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v/sklmbKyj8= + 1834-220319-4_45: &id949 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 18414, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iufykTa+yj8= + 1834-110319-2_104: + 1834-010319-4_48: *id120 + 1834-010319-5_21: *id121 + 1834-060319-2_42: *id122 + 1834-060319-3_33: *id123 + 1834-060319-4_23: *id124 + 1834-110319-3_28: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5774, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xkSzZOZVxj8= + 1834-110319-5_78: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KdezG2IA0j8= + 1834-110319-6_31: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ahnQHfMW0D8= + 1834-120319-1_17: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q9J9O4L/yz8= + 1834-120319-3_52: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bxyy50uywj8= + 1834-150319-1_76: &id414 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LjaOXfIczD8= + 1834-150319-2_37: &id473 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O7K7g8sNyT8= + 1834-150319-3_27: &id494 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c/sJ4f4Uwj8= + 1834-150319-4_23: &id569 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N0d9P063yD8= + 1834-220319-2_20: &id720 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mq1l+p82yT8= + 1834-220319-3_25: &id820 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EzQLXEDzzT8= + 1834-220319-4_31: &id891 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5iQryDH/yT8= + 1834-110319-2_40: + 1834-010319-1_25: *id125 + 1834-010319-3_63: *id126 + 1834-010319-4_45: *id127 + 1834-010319-5_19: *id128 + 1834-060319-2_44: *id129 + 1834-060319-3_37: *id130 + 1834-060319-4_26: *id131 + 1834-110319-1_24: *id132 + 1834-110319-3_29: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5774, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CbMKbKOTxz8= + 1834-110319-6_30: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d+ThUEDLzj8= + 1834-120319-1_16: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 9198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cUBc32HoyD8= + 1834-120319-2_26: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H1j4Dp72yD8= + 1834-120319-3_28: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 12288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H+dWSZQEyT8= + 1834-120319-4_22: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w8nhX/P6yD8= + 1834-150319-1_44: &id386 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oJiMu0kLxD8= + 1834-150319-2_30: &id433 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FI2D6bzGzz8= + 1834-150319-3_28: &id506 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /QpQzDFezD8= + 1834-150319-4_26: &id612 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z+OcIDQGzT8= + 1834-220319-1_49: &id686 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S+TLw6kdzj8= + 1834-220319-2_39: &id767 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yj0DcqHLwT8= + 1834-220319-3_23: &id804 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z62X5+Q3yj8= + 1834-220319-4_32: &id914 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MoK04ix/yD8= + 1834-110319-2_41: + 1834-010319-3_60: *id133 + 1834-010319-5_39: *id134 + 1834-060319-3_40: *id135 + 1834-110319-1_23: *id136 + 1834-150319-1_74: &id403 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KALdb5CvsT8= + 1834-150319-2_42: &id485 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ql13bIPByT8= + 1834-150319-3_53: &id538 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FHk3dAVNtz8= + 1834-150319-4_24: &id586 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rL7UncDKyD8= + 1834-220319-1_37: &id673 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FTonMgEaxz8= + 1834-220319-2_21: &id739 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ag+hmTKzzT8= + 1834-220319-3_28: &id861 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jeJcdqrbxz8= + 1834-220319-4_45: &id950 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +OJP9WgcyD8= + 1834-110319-2_45: + 1834-010319-1_24: *id137 + 1834-010319-3_61: *id138 + 1834-010319-4_49: *id139 + 1834-010319-5_23: *id140 + 1834-060319-2_43: *id141 + 1834-060319-3_35: *id142 + 1834-060319-4_24: *id143 + 1834-110319-1_25: *id144 + 1834-110319-3_30: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5774, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JmXy1gAtwz8= + 1834-110319-5_90: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8741, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AipgBF++0D8= + 1834-120319-2_78: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nQ8+o6frzD8= + 1834-150319-1_45: &id388 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T8DvqYTbwD8= + 1834-150319-2_32: &id456 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lfSF9m2Kxj8= + 1834-150319-3_30: &id522 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2D65yFgmuT8= + 1834-150319-4_25: &id601 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aAvpnA6hxj8= + 1834-220319-1_67: &id703 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + inoA9XRluT8= + 1834-220319-2_41: &id788 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cC3XBl0exT8= + 1834-220319-3_31: &id875 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +lOj71fdwD8= + 1834-220319-4_46: &id968 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uJHbNUSuxD8= + 1834-110319-2_47: + 1834-010319-3_57: *id145 + 1834-060319-1_59: *id146 + 1834-060319-2_46: *id147 + 1834-060319-3_41: *id148 + 1834-060319-4_29: *id149 + 1834-110319-1_30: *id150 + 1834-110319-3_27: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5774, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ksKQc7V3xj8= + 1834-150319-1_41: &id379 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vv+V4AYfwT8= + 1834-150319-2_31: &id445 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cTx+XF1AyT8= + 1834-150319-3_55: &id548 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sQK+d+9wxD8= + 1834-220319-1_29: &id644 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0YSzzqGtuj8= + 1834-110319-2_86: + 1834-060319-1_91: *id151 + 1834-150319-1_47: &id394 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gY1Ft9QL0D8= + 1834-150319-2_29: &id428 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SjiepR5eyT8= + 1834-150319-3_44: &id525 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yaHCfQeB0D8= + 1834-110319-2_96: + 1834-010319-3_58: *id152 + 1834-060319-2_41: *id153 + 1834-060319-4_28: *id154 + 1834-110319-1_26: *id155 + 1834-120319-2_61: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 10441, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ap5FHPlBwT8= + 1834-120319-4_52: &id355 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 14264, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wKUO6d5TwD8= + 1834-150319-1_37: &id369 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3195, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WekkUy/wvT8= + 1834-150319-3_57: &id557 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9086, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VPc3PXW7yD8= + 1834-150319-4_33: &id624 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12156, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rG+xn0MkxD8= + 1834-220319-1_36: &id662 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 7382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rBIhR5ywzz8= + 1834-220319-2_29: &id751 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J1GLac29yT8= + 1834-220319-3_26: &id841 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 12391, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2hf4C6fHxT8= + 1834-220319-4_33: &id934 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15136, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rNTnY+OOxz8= + 1834-110319-3_27: + 1834-010319-1_25: *id156 + 1834-010319-3_57: *id157 + 1834-010319-5_21: *id158 + 1834-060319-1_59: *id159 + 1834-060319-2_44: *id160 + 1834-060319-3_37: *id161 + 1834-060319-4_28: *id162 + 1834-110319-1_26: *id163 + 1834-110319-2_47: *id164 + 1834-150319-1_74: &id404 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VmLnyO20yD8= + 1834-150319-2_29: &id429 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PeaurJvIzj8= + 1834-150319-3_30: &id523 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PZdqYlzzyT8= + 1834-150319-4_33: &id625 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 69wsSIkcyz8= + 1834-220319-1_29: &id645 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D9r36rfKyz8= + 1834-220319-2_29: &id752 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8vtKzgRu0D8= + 1834-220319-3_31: &id876 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IlMTN44gzT8= + 1834-220319-4_45: &id951 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lhNYD28szz8= + 1834-110319-3_28: + 1834-010319-3_58: *id165 + 1834-010319-4_48: *id166 + 1834-010319-5_39: *id167 + 1834-060319-1_91: *id168 + 1834-060319-2_41: *id169 + 1834-060319-3_40: *id170 + 1834-060319-4_23: *id171 + 1834-110319-1_23: *id172 + 1834-110319-2_104: *id173 + 1834-110319-5_78: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RE+CCNSs0T8= + 1834-110319-6_31: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IJ8KaG5QzD8= + 1834-120319-1_17: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3424, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PVxir90yyz8= + 1834-120319-2_61: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zV8609JTxD8= + 1834-120319-3_52: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wBG1dcA4wz8= + 1834-120319-4_52: &id356 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oHscZe7swz8= + 1834-150319-1_37: &id370 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6p9ksgkhyj8= + 1834-150319-2_37: &id474 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kfw/NAn9yT8= + 1834-150319-3_27: &id495 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U7OXHaoZxz8= + 1834-150319-4_23: &id570 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XL3yAe0ayj8= + 1834-220319-1_37: &id674 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oOWXHXPY0T8= + 1834-220319-2_39: &id768 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4poVU9oMxj8= + 1834-220319-3_26: &id842 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pZlb7c3pyj8= + 1834-220319-4_31: &id892 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z/gg+rLAxz8= + 1834-110319-3_29: + 1834-010319-3_63: *id174 + 1834-010319-4_45: *id175 + 1834-010319-5_19: *id176 + 1834-060319-2_42: *id177 + 1834-060319-3_33: *id178 + 1834-060319-4_26: *id179 + 1834-110319-1_24: *id180 + 1834-110319-2_40: *id181 + 1834-120319-2_26: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TaJ+Bof7yz8= + 1834-150319-1_45: &id389 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + szbZgKeeyj8= + 1834-150319-2_31: &id446 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zfjTK2Iazj8= + 1834-150319-3_53: &id539 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bdC/F6Bcyz8= + 1834-150319-4_25: &id602 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0mo3Xt+uzT8= + 1834-220319-1_49: &id687 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bJCk2VEh0T8= + 1834-220319-2_20: &id721 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VWCXjsBIxj8= + 1834-220319-3_25: &id821 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x//0UxYFyD8= + 1834-220319-4_46: &id969 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T7JzOigGzT8= + 1834-110319-3_30: + 1834-010319-1_24: *id182 + 1834-010319-3_61: *id183 + 1834-010319-4_49: *id184 + 1834-010319-5_23: *id185 + 1834-060319-2_43: *id186 + 1834-060319-3_35: *id187 + 1834-060319-4_24: *id188 + 1834-110319-1_25: *id189 + 1834-110319-2_45: *id190 + 1834-110319-5_90: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h5ZjbAYizD8= + 1834-110319-6_30: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3878, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8YgD4578yz8= + 1834-120319-1_16: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3424, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5OF97gy4yT8= + 1834-120319-2_78: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GcN3A1FByT8= + 1834-120319-3_28: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 6514, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PWVYH2aoyT8= + 1834-120319-4_22: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 8490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NEFy4/iNyT8= + 1834-150319-1_76: &id415 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83821, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N6SY01IqyT8= + 1834-150319-2_32: &id457 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jti8PiMmxT8= + 1834-150319-3_28: &id507 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3312, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ItmWznWMzD8= + 1834-150319-4_24: &id587 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dFZQYRF+yz8= + 1834-220319-1_67: &id704 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1608, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yCKam4mBzT8= + 1834-220319-2_41: &id789 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4210, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GdqLFRHixj8= + 1834-220319-3_23: &id805 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6617, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + exWS5oL6wD8= + 1834-220319-4_32: &id915 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 9362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YAHWLcKcwz8= + 1834-110319-5_78: + 1834-010319-1_25: *id191 + 1834-010319-3_58: *id192 + 1834-010319-4_48: *id193 + 1834-010319-5_19: *id194 + 1834-060319-1_91: *id195 + 1834-060319-2_42: *id196 + 1834-060319-3_33: *id197 + 1834-060319-4_23: *id198 + 1834-110319-1_23: *id199 + 1834-110319-2_104: *id200 + 1834-110319-3_28: *id201 + 1834-110319-6_31: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YB29mlJkzj8= + 1834-120319-1_17: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vvI49GPxxD8= + 1834-120319-2_61: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HWFD5vBLyD8= + 1834-120319-3_52: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fxSRZ2uJxj8= + 1834-120319-4_52: &id357 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tv2/iPMGxz8= + 1834-150319-1_74: &id405 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MQTJJu1K0D8= + 1834-150319-2_30: &id434 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SxamZ3CCzT8= + 1834-150319-3_53: &id540 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wuOLjhva0D8= + 1834-150319-4_33: &id626 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SQDwCtsxzD8= + 1834-220319-1_49: &id688 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CS2hXbwY1D8= + 1834-220319-2_39: &id769 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j0MjPAg5yT8= + 1834-220319-3_25: &id822 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gY/v8nf3wT8= + 1834-220319-4_31: &id893 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1jQbkkDwwj8= + 1834-110319-5_90: + 1834-010319-1_24: *id202 + 1834-010319-3_63: *id203 + 1834-010319-4_45: *id204 + 1834-010319-5_23: *id205 + 1834-060319-1_59: *id206 + 1834-060319-2_44: *id207 + 1834-060319-3_37: *id208 + 1834-060319-4_26: *id209 + 1834-110319-1_25: *id210 + 1834-110319-2_45: *id211 + 1834-110319-3_30: *id212 + 1834-110319-6_30: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WtVeKD67yj8= + 1834-120319-1_16: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 457, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WesnKtkfyT8= + 1834-120319-2_78: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 1700, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hf9KlCajxj8= + 1834-120319-3_28: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 3547, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xa8QVRSwxz8= + 1834-120319-4_22: &id341 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 5523, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qlox6NIXyD8= + 1834-150319-1_76: &id416 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 80854, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wxKH17EQzj8= + 1834-150319-2_32: &id458 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83439, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xK9eI/fdzD8= + 1834-150319-3_28: &id508 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 345, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vaKzziebzD8= + 1834-150319-4_23: &id571 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3415, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yV3ZmNebyD8= + 1834-220319-1_29: &id646 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dS5PrBbo0z8= + 1834-220319-2_20: &id722 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GxXZhIkfwT8= + 1834-220319-3_26: &id843 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3650, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JS0IycIRyz8= + 1834-220319-4_32: &id916 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6395, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KUoDmG3VzD8= + 1834-110319-6_30: + 1834-010319-1_25: *id213 + 1834-010319-3_63: *id214 + 1834-010319-4_48: *id215 + 1834-010319-5_23: *id216 + 1834-060319-1_59: *id217 + 1834-060319-2_44: *id218 + 1834-060319-3_37: *id219 + 1834-060319-4_26: *id220 + 1834-110319-1_24: *id221 + 1834-110319-2_40: *id222 + 1834-110319-3_30: *id223 + 1834-110319-5_90: *id224 + 1834-120319-1_16: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + clexH5Eozj8= + 1834-120319-2_61: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b6SzH/exyD8= + 1834-120319-3_28: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + llgyD0SwzD8= + 1834-120319-4_52: &id358 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jw9MxvR7xz8= + 1834-150319-1_74: &id406 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pJNhxEaazz8= + 1834-150319-2_32: &id459 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sWP1MJpN0D8= + 1834-150319-3_27: &id496 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LHLLTcUa0T8= + 1834-150319-4_33: &id627 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uDJeA04zzT8= + 1834-220319-1_29: &id647 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uwq72Lsm0z8= + 1834-220319-2_39: &id770 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OVlnLBbCyT8= + 1834-220319-3_26: &id844 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZhcbdI7OzT8= + 1834-220319-4_32: &id917 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + co1nrzbdzz8= + 1834-110319-6_31: + 1834-010319-1_24: *id225 + 1834-010319-3_58: *id226 + 1834-010319-4_45: *id227 + 1834-010319-5_19: *id228 + 1834-060319-1_91: *id229 + 1834-060319-2_42: *id230 + 1834-060319-3_33: *id231 + 1834-060319-4_23: *id232 + 1834-110319-1_25: *id233 + 1834-110319-2_104: *id234 + 1834-110319-3_28: *id235 + 1834-110319-5_78: *id236 + 1834-120319-1_17: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 85946, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hLVFOZA5xz8= + 1834-120319-2_26: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8oexVU6Jyj8= + 1834-120319-3_52: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 2636, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ml5qKbVvxj8= + 1834-120319-4_22: &id342 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [1, 4612, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DtVZhfv5yz8= + 1834-150319-1_76: &id417 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 79943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uuJxkN7Vzz8= + 1834-150319-2_37: &id475 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 82528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jl7hyQEo0D8= + 1834-150319-3_53: &id541 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85834, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nCvq5cUi0D8= + 1834-150319-4_23: &id572 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 2504, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JvzpEBtQyz8= + 1834-220319-1_49: &id689 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 84130, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cqp/BpZI0z8= + 1834-220319-2_20: &id723 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 332, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LcbtyXTWwT8= + 1834-220319-3_25: &id823 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 2739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cm2hFQZuwD8= + 1834-220319-4_31: &id894 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 5484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iBNDOZplwT8= + 1834-120319-1_16: + 1834-010319-1_24: *id237 + 1834-010319-3_61: *id238 + 1834-010319-4_49: *id239 + 1834-010319-5_23: *id240 + 1834-060319-1_59: *id241 + 1834-060319-2_43: *id242 + 1834-060319-3_40: *id243 + 1834-060319-4_24: *id244 + 1834-110319-1_24: *id245 + 1834-110319-2_40: *id246 + 1834-110319-3_30: *id247 + 1834-110319-5_90: *id248 + 1834-110319-6_30: *id249 + 1834-120319-2_26: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + byToHr+enD8= + 1834-120319-3_28: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LZEuIv5ckT8= + 1834-120319-4_22: &id343 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GBYYXR6qkD8= + 1834-150319-1_76: &id418 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uAdajvvZxD8= + 1834-150319-2_32: &id460 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1Bk0ogO0tz8= + 1834-150319-3_28: &id509 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jZ4IsEvrsj8= + 1834-150319-4_33: &id628 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IrZOpeB2vz8= + 1834-220319-1_67: &id705 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vZs+O8UR0D8= + 1834-220319-2_39: &id771 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n1gIoJVMuD8= + 1834-220319-3_26: &id845 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + avRVQUKmuj8= + 1834-220319-4_32: &id918 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6kTK0JYkvT8= + 1834-120319-1_17: + 1834-010319-1_25: *id250 + 1834-010319-3_58: *id251 + 1834-010319-4_48: *id252 + 1834-010319-5_19: *id253 + 1834-060319-1_91: *id254 + 1834-060319-2_42: *id255 + 1834-060319-3_33: *id256 + 1834-060319-4_23: *id257 + 1834-110319-1_23: *id258 + 1834-110319-2_104: *id259 + 1834-110319-3_28: *id260 + 1834-110319-5_78: *id261 + 1834-110319-6_31: *id262 + 1834-120319-2_78: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1243, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AJJ77fXwuj8= + 1834-120319-3_52: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3090, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PwtbU4rDvD8= + 1834-120319-4_52: &id359 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gvg99uiVwD8= + 1834-150319-1_74: &id407 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 80397, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A44qjAuwyT8= + 1834-150319-2_30: &id435 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 82982, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jw3Ho0I2vD8= + 1834-150319-3_27: &id497 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6lBLLnQcyT8= + 1834-150319-4_23: &id573 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 2958, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6Qvg7Jeptj8= + 1834-220319-1_29: &id648 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84584, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K8FccakT0j8= + 1834-220319-2_20: &id724 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 786, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + je9ascXytz8= + 1834-220319-3_25: &id824 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 3193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7V+tBuiJwD8= + 1834-220319-4_31: &id895 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 5938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w62UgFI6uT8= + 1834-120319-2_26: + 1834-010319-1_24: *id263 + 1834-010319-3_58: *id264 + 1834-010319-4_48: *id265 + 1834-010319-5_19: *id266 + 1834-060319-1_59: *id267 + 1834-060319-2_42: *id268 + 1834-060319-3_33: *id269 + 1834-060319-4_23: *id270 + 1834-110319-1_24: *id271 + 1834-110319-2_40: *id272 + 1834-110319-3_29: *id273 + 1834-110319-6_31: *id274 + 1834-120319-1_16: *id275 + 1834-120319-3_28: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8BOzDL9QkT8= + 1834-120319-4_22: &id344 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4LJ5ko/vjj8= + 1834-150319-1_74: &id408 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R4DEbHhAxz8= + 1834-150319-2_30: &id436 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ujEYOfybvD8= + 1834-150319-3_27: &id498 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + geYB3WMQxT8= + 1834-150319-4_23: &id574 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7yIPheLYtz8= + 1834-220319-1_29: &id649 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RXXkgQqa0D8= + 1834-220319-2_39: &id772 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C6gWgj6suD8= + 1834-220319-3_25: &id825 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pomsPAFXwj8= + 1834-220319-4_31: &id896 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KyA+VljLuT8= + 1834-120319-2_61: + 1834-010319-1_25: *id276 + 1834-010319-3_61: *id277 + 1834-010319-4_49: *id278 + 1834-010319-5_39: *id279 + 1834-060319-1_91: *id280 + 1834-060319-2_41: *id281 + 1834-060319-3_40: *id282 + 1834-060319-4_24: *id283 + 1834-110319-1_23: *id284 + 1834-110319-2_96: *id285 + 1834-110319-3_28: *id286 + 1834-110319-5_78: *id287 + 1834-110319-6_30: *id288 + 1834-120319-3_52: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1847, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5rxPrB9BpT8= + 1834-120319-4_52: &id360 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j1GH94RVoj8= + 1834-150319-1_37: &id371 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HJUyrKrxuT8= + 1834-150319-2_37: &id476 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NaNevMpCuT8= + 1834-150319-3_57: &id558 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + URKIqwTOtz8= + 1834-150319-4_24: &id588 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X140FFeVwT8= + 1834-220319-1_67: &id706 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + krAY/qYzwz8= + 1834-220319-2_41: &id790 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FB4CSx7svz8= + 1834-220319-3_26: &id846 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c4bzvC80sj8= + 1834-220319-4_33: &id935 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NQUB2HAjwD8= + 1834-120319-2_78: + 1834-010319-3_63: *id289 + 1834-010319-4_45: *id290 + 1834-010319-5_23: *id291 + 1834-060319-2_43: *id292 + 1834-060319-3_35: *id293 + 1834-060319-4_26: *id294 + 1834-110319-1_25: *id295 + 1834-110319-2_45: *id296 + 1834-110319-3_30: *id297 + 1834-110319-5_90: *id298 + 1834-120319-1_17: *id299 + 1834-150319-1_76: &id419 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Au5jQHBEyD8= + 1834-150319-2_32: &id461 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81739, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZdUblD3KwD8= + 1834-150319-3_28: &id510 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 85045, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JpepV+Lpsj8= + 1834-150319-4_33: &id629 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 1715, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V4L0E0R8xD8= + 1834-220319-1_49: &id690 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 83341, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oDVZzRbR0T8= + 1834-220319-2_20: &id725 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85943, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TVysEu/4vD8= + 1834-220319-3_23: &id806 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 1950, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8W3z0p9+xD8= + 1834-220319-4_32: &id919 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 4695, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PZ+vfg2qwT8= + 1834-120319-3_28: + 1834-010319-1_24: *id300 + 1834-010319-3_58: *id301 + 1834-010319-4_49: *id302 + 1834-010319-5_23: *id303 + 1834-060319-1_59: *id304 + 1834-060319-2_42: *id305 + 1834-060319-3_33: *id306 + 1834-060319-4_23: *id307 + 1834-110319-1_25: *id308 + 1834-110319-2_40: *id309 + 1834-110319-3_30: *id310 + 1834-110319-5_90: *id311 + 1834-110319-6_30: *id312 + 1834-120319-1_16: *id313 + 1834-120319-2_26: *id314 + 1834-120319-4_22: &id345 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wU1340fDhz8= + 1834-150319-1_76: &id420 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +NGXkORWxT8= + 1834-150319-2_32: &id462 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5ih17Wqcuj8= + 1834-150319-3_28: &id511 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mIR6Dz7bsj8= + 1834-150319-4_23: &id575 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gjNjm+rWuT8= + 1834-220319-1_29: &id650 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UJWXxMl+0D8= + 1834-220319-2_20: &id726 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KQ364Uu6uD8= + 1834-220319-3_25: &id826 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mmel5dnxwj8= + 1834-220319-4_31: &id897 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bMA5jYq9uj8= + 1834-120319-3_52: + 1834-010319-1_25: *id315 + 1834-010319-3_61: *id316 + 1834-010319-4_48: *id317 + 1834-010319-5_39: *id318 + 1834-060319-1_91: *id319 + 1834-060319-2_41: *id320 + 1834-060319-3_40: *id321 + 1834-060319-4_24: *id322 + 1834-110319-1_24: *id323 + 1834-110319-2_104: *id324 + 1834-110319-3_28: *id325 + 1834-110319-5_78: *id326 + 1834-110319-6_31: *id327 + 1834-120319-1_17: *id328 + 1834-120319-2_61: *id329 + 1834-120319-4_52: &id361 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1976, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 24fXAD7wqT8= + 1834-150319-1_37: &id372 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gnHG2/EEvj8= + 1834-150319-2_37: &id477 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 79892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zKD0jjZ/uD8= + 1834-150319-3_57: &id559 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 83198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TZAKAJRcvD8= + 1834-150319-4_33: &id630 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 86268, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AtLvhC2ksj8= + 1834-220319-1_67: &id707 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AG4CEK/1xj8= + 1834-220319-2_39: &id773 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84096, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0gQ+dI1Jrj8= + 1834-220319-3_26: &id847 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 103, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fKdo6ORHtD8= + 1834-220319-4_32: &id920 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 2848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OKE4derhvD8= + 1834-120319-4_22: + 1834-010319-1_24: *id330 + 1834-010319-3_58: *id331 + 1834-010319-4_49: *id332 + 1834-010319-5_23: *id333 + 1834-060319-1_59: *id334 + 1834-060319-2_42: *id335 + 1834-060319-3_33: *id336 + 1834-060319-4_23: *id337 + 1834-110319-1_24: *id338 + 1834-110319-2_40: *id339 + 1834-110319-3_30: *id340 + 1834-110319-5_90: *id341 + 1834-110319-6_31: *id342 + 1834-120319-1_16: *id343 + 1834-120319-2_26: *id344 + 1834-120319-3_28: *id345 + 1834-150319-1_76: &id421 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1KvC7m4DxT8= + 1834-150319-2_32: &id463 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rk4Wx5Bbuj8= + 1834-150319-3_28: &id512 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YR1ON7U2tD8= + 1834-150319-4_23: &id576 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uq88/S5SuT8= + 1834-220319-1_29: &id651 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ORY+thdz0D8= + 1834-220319-2_20: &id727 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bG2Caxm6uT8= + 1834-220319-3_26: &id848 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IBbxTcmQuj8= + 1834-220319-4_31: &id898 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UO31zHjOuz8= + 1834-120319-4_52: + 1834-010319-1_25: *id346 + 1834-010319-3_61: *id347 + 1834-010319-4_48: *id348 + 1834-010319-5_39: *id349 + 1834-060319-1_91: *id350 + 1834-060319-2_41: *id351 + 1834-060319-3_40: *id352 + 1834-060319-4_24: *id353 + 1834-110319-1_23: *id354 + 1834-110319-2_96: *id355 + 1834-110319-3_28: *id356 + 1834-110319-5_78: *id357 + 1834-110319-6_30: *id358 + 1834-120319-1_17: *id359 + 1834-120319-2_61: *id360 + 1834-120319-3_52: *id361 + 1834-150319-1_74: &id409 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 75331, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jyTKHrgjtz8= + 1834-150319-2_37: &id478 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 77916, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GiCMieJcuz8= + 1834-150319-3_53: &id542 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 81222, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kqx/Rimktz8= + 1834-150319-4_33: &id631 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [2, 84292, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dYKnGBHGsT8= + 1834-220319-1_67: &id708 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 79518, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mmn6BXeHwT8= + 1834-220319-2_39: &id774 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 82120, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SMQkpEjmsD8= + 1834-220319-3_31: &id877 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 84527, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t3ko514hvj8= + 1834-220319-4_33: &id936 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 872, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RCZyuoo7vD8= + 1834-150319-1_37: + 1834-010319-3_58: *id362 + 1834-010319-4_48: *id363 + 1834-010319-5_39: *id364 + 1834-060319-2_41: *id365 + 1834-060319-3_40: *id366 + 1834-060319-4_23: *id367 + 1834-110319-1_26: *id368 + 1834-110319-2_96: *id369 + 1834-110319-3_28: *id370 + 1834-120319-2_61: *id371 + 1834-120319-3_52: *id372 + 1834-150319-2_29: &id430 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zffBX3HLxj8= + 1834-150319-3_27: &id499 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9jtqbVI2vj8= + 1834-150319-4_33: &id632 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3lQKVR/avT8= + 1834-220319-2_39: &id775 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uqmPhgzsvz8= + 1834-220319-3_26: &id849 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zDIcCtfswD8= + 1834-220319-4_33: &id937 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FmsFtFnTwT8= + 1834-150319-1_41: + 1834-010319-1_24: *id373 + 1834-010319-3_57: *id374 + 1834-060319-2_46: *id375 + 1834-060319-3_41: *id376 + 1834-060319-4_28: *id377 + 1834-110319-1_25: *id378 + 1834-110319-2_47: *id379 + 1834-150319-2_31: &id447 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /er5JiajxD8= + 1834-150319-3_30: &id524 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ye/1dZHrsj8= + 1834-150319-4_26: &id613 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + svtpkUyq0T8= + 1834-220319-1_29: &id652 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1FaxXVDpsD8= + 1834-220319-4_45: &id952 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VoahCzXbxD8= + 1834-150319-1_44: + 1834-010319-1_25: *id380 + 1834-010319-3_63: *id381 + 1834-060319-2_44: *id382 + 1834-060319-3_37: *id383 + 1834-060319-4_26: *id384 + 1834-110319-1_24: *id385 + 1834-110319-2_40: *id386 + 1834-220319-2_21: &id740 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d+X4TD6lyz8= + 1834-220319-3_31: &id878 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L5VMf0ZPxj8= + 1834-150319-1_45: + 1834-010319-5_21: *id387 + 1834-110319-2_45: *id388 + 1834-110319-3_29: *id389 + 1834-150319-2_30: &id437 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ff80MOeQ0j8= + 1834-150319-3_28: &id513 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dRmri+kS0T8= + 1834-150319-4_25: &id603 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1ATxH2iOyj8= + 1834-220319-2_41: &id791 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p3tVZFXOwz8= + 1834-220319-3_23: &id807 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1HHkbvT7yj8= + 1834-220319-4_32: &id921 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xjTe1W+KyT8= + 1834-150319-1_47: + 1834-010319-3_60: *id390 + 1834-060319-1_59: *id391 + 1834-060319-4_29: *id392 + 1834-110319-1_30: *id393 + 1834-110319-2_86: *id394 + 1834-150319-2_42: &id486 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MQ2FRFHXyD8= + 1834-150319-3_55: &id549 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b0pIYNfIrT8= + 1834-220319-1_37: &id675 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RZg9Vfl4xD8= + 1834-150319-1_56: + 1834-150319-3_45: &id528 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ez0NtssgrT8= + 1834-150319-1_74: + 1834-010319-3_61: *id395 + 1834-010319-4_45: *id396 + 1834-010319-5_19: *id397 + 1834-060319-1_91: *id398 + 1834-060319-2_42: *id399 + 1834-060319-3_33: *id400 + 1834-060319-4_24: *id401 + 1834-110319-1_23: *id402 + 1834-110319-2_41: *id403 + 1834-110319-3_27: *id404 + 1834-110319-5_78: *id405 + 1834-110319-6_30: *id406 + 1834-120319-1_17: *id407 + 1834-120319-2_26: *id408 + 1834-120319-4_52: *id409 + 1834-150319-2_37: &id479 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yd2a2jeJxD8= + 1834-150319-3_53: &id543 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eGJotSz+pz8= + 1834-150319-4_23: &id577 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jnyi62L1xj8= + 1834-220319-1_67: &id709 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uNjJ0meFvT8= + 1834-220319-2_20: &id728 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gjiSWatRyj8= + 1834-220319-3_25: &id827 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dKTCPmlTzT8= + 1834-220319-4_31: &id899 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ipdAUhDPyj8= + 1834-150319-1_76: + 1834-010319-4_49: *id410 + 1834-010319-5_23: *id411 + 1834-060319-2_43: *id412 + 1834-060319-3_35: *id413 + 1834-110319-2_104: *id414 + 1834-110319-3_30: *id415 + 1834-110319-5_90: *id416 + 1834-110319-6_31: *id417 + 1834-120319-1_16: *id418 + 1834-120319-2_78: *id419 + 1834-120319-3_28: *id420 + 1834-120319-4_22: *id421 + 1834-150319-2_32: &id464 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2585, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I2QFRzKBwj8= + 1834-150319-3_57: &id560 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bbSSez38uj8= + 1834-150319-4_24: &id589 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8961, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2gSKx8DPwz8= + 1834-220319-2_29: &id753 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6789, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dyt6utqYvT8= + 1834-220319-3_28: &id862 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZvsPjl85vD8= + 1834-220319-4_46: &id970 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11941, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7PSdGErbqT8= + 1834-150319-1_77: + 1834-150319-3_49: &id529 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uX/250Y0wz8= + 1834-220319-1_49: &id691 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TCoceKhBuT8= + 1834-150319-1_92: + 1834-150319-3_44: &id526 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5891, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tXf0Jh67rz8= + 1834-220319-1_36: &id663 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4187, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lN6kBz7ItD8= + 1834-150319-2_29: + 1834-010319-3_63: *id422 + 1834-010319-5_19: *id423 + 1834-060319-2_41: *id424 + 1834-060319-3_40: *id425 + 1834-060319-4_26: *id426 + 1834-110319-1_24: *id427 + 1834-110319-2_86: *id428 + 1834-110319-3_27: *id429 + 1834-150319-1_37: *id430 + 1834-150319-3_53: &id544 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gsD495gSwz8= + 1834-150319-4_26: &id614 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SDB/kj/IxT8= + 1834-220319-1_29: &id653 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xrQ1+SdYzz8= + 1834-220319-3_31: &id879 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VCEF3bWMwj8= + 1834-220319-4_46: &id971 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6UrzV54NyD8= + 1834-150319-2_30: + 1834-010319-4_45: *id431 + 1834-010319-5_21: *id432 + 1834-110319-2_40: *id433 + 1834-110319-5_78: *id434 + 1834-120319-1_17: *id435 + 1834-120319-2_26: *id436 + 1834-150319-1_45: *id437 + 1834-150319-3_28: &id514 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j1/k7pP1wj8= + 1834-150319-4_23: &id578 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p9RCh7sIvj8= + 1834-220319-2_20: &id729 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8FHZ/6LHwT8= + 1834-220319-3_25: &id828 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cJ3hWPJ6xz8= + 1834-220319-4_31: &id900 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dy5GPMxKwz8= + 1834-150319-2_31: + 1834-010319-1_25: *id438 + 1834-010319-3_57: *id439 + 1834-060319-1_59: *id440 + 1834-060319-2_44: *id441 + 1834-060319-3_37: *id442 + 1834-060319-4_29: *id443 + 1834-110319-1_30: *id444 + 1834-110319-2_47: *id445 + 1834-110319-3_29: *id446 + 1834-150319-1_41: *id447 + 1834-150319-3_44: &id527 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KvRtxn3jxD8= + 1834-220319-1_49: &id692 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lEGxrD4avj8= + 1834-220319-2_29: &id754 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Slbkdl+AsD8= + 1834-220319-3_28: &id863 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1MHdnzRqqz8= + 1834-220319-4_45: &id953 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8ctMsJKRsT8= + 1834-150319-2_32: + 1834-010319-1_24: *id448 + 1834-010319-3_61: *id449 + 1834-010319-4_49: *id450 + 1834-010319-5_23: *id451 + 1834-060319-2_43: *id452 + 1834-060319-3_35: *id453 + 1834-060319-4_24: *id454 + 1834-110319-1_25: *id455 + 1834-110319-2_45: *id456 + 1834-110319-3_30: *id457 + 1834-110319-5_90: *id458 + 1834-110319-6_30: *id459 + 1834-120319-1_16: *id460 + 1834-120319-2_78: *id461 + 1834-120319-3_28: *id462 + 1834-120319-4_22: *id463 + 1834-150319-1_76: *id464 + 1834-150319-3_57: &id561 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sJKwDSpEwD8= + 1834-150319-4_25: &id604 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dKWswFUrwj8= + 1834-220319-1_67: &id710 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LhqldV7szD8= + 1834-220319-2_41: &id792 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cYk80c7/wD8= + 1834-220319-3_23: &id808 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MWQ4BqsZtj8= + 1834-220319-4_32: &id922 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rN2HIhR0rD8= + 1834-150319-2_37: + 1834-010319-3_58: *id465 + 1834-010319-4_48: *id466 + 1834-010319-5_39: *id467 + 1834-060319-1_91: *id468 + 1834-060319-2_42: *id469 + 1834-060319-3_33: *id470 + 1834-060319-4_23: *id471 + 1834-110319-1_23: *id472 + 1834-110319-2_104: *id473 + 1834-110319-3_28: *id474 + 1834-110319-6_31: *id475 + 1834-120319-2_61: *id476 + 1834-120319-3_52: *id477 + 1834-120319-4_52: *id478 + 1834-150319-1_74: *id479 + 1834-150319-3_27: &id500 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + obYiwaOfxD8= + 1834-150319-4_33: &id633 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yh5aD4qZtj8= + 1834-220319-1_36: &id664 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l+/6iMl00j8= + 1834-220319-2_39: &id776 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aK54CCIxuT8= + 1834-220319-3_26: &id850 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WoTWpVwywD8= + 1834-150319-2_42: + 1834-010319-3_60: *id480 + 1834-060319-2_46: *id481 + 1834-060319-3_41: *id482 + 1834-060319-4_28: *id483 + 1834-110319-1_26: *id484 + 1834-110319-2_41: *id485 + 1834-150319-1_47: *id486 + 1834-150319-3_55: &id550 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3306, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iLa23VzMyD8= + 1834-150319-4_24: &id590 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6376, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7EbfxX++wj8= + 1834-220319-1_37: &id676 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7o8C5TPAwj8= + 1834-220319-2_21: &id741 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4204, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q/AMc+3Vxj8= + 1834-220319-4_33: &id938 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9356, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qf7gnKJovj8= + 1834-150319-3_27: + 1834-010319-3_58: *id487 + 1834-010319-4_48: *id488 + 1834-010319-5_21: *id489 + 1834-060319-2_42: *id490 + 1834-060319-3_40: *id491 + 1834-060319-4_23: *id492 + 1834-110319-1_24: *id493 + 1834-110319-2_104: *id494 + 1834-110319-3_28: *id495 + 1834-110319-6_30: *id496 + 1834-120319-1_17: *id497 + 1834-120319-2_26: *id498 + 1834-150319-1_37: *id499 + 1834-150319-2_37: *id500 + 1834-150319-4_33: &id634 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zSLPkYZhvT8= + 1834-220319-2_39: &id777 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jPq1GlpIvj8= + 1834-220319-3_23: &id809 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mOvQZizNyD8= + 1834-220319-4_32: &id923 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + byyY1P9/xj8= + 1834-150319-3_28: + 1834-010319-3_63: *id501 + 1834-010319-4_45: *id502 + 1834-010319-5_19: *id503 + 1834-060319-2_44: *id504 + 1834-060319-3_33: *id505 + 1834-110319-2_40: *id506 + 1834-110319-3_30: *id507 + 1834-110319-5_90: *id508 + 1834-120319-1_16: *id509 + 1834-120319-2_78: *id510 + 1834-120319-3_28: *id511 + 1834-120319-4_22: *id512 + 1834-150319-1_45: *id513 + 1834-150319-2_30: *id514 + 1834-150319-4_23: &id579 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + njZ1GYbXwT8= + 1834-220319-2_20: &id730 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XJ25p79tvj8= + 1834-220319-3_25: &id829 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YYyPC65mxT8= + 1834-220319-4_31: &id901 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oJnMeHM+wD8= + 1834-150319-3_30: + 1834-010319-1_24: *id515 + 1834-010319-3_57: *id516 + 1834-060319-1_59: *id517 + 1834-060319-2_46: *id518 + 1834-060319-3_41: *id519 + 1834-060319-4_28: *id520 + 1834-110319-1_26: *id521 + 1834-110319-2_45: *id522 + 1834-110319-3_27: *id523 + 1834-150319-1_41: *id524 + 1834-150319-4_25: &id605 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ICK1AOoOyj8= + 1834-220319-1_29: &id654 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0GMV72NisD8= + 1834-220319-3_31: &id880 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /jLq7I55xT8= + 1834-220319-4_45: &id954 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Logl8CmExz8= + 1834-150319-3_44: + 1834-110319-2_86: *id525 + 1834-150319-1_92: *id526 + 1834-150319-2_31: *id527 + 1834-220319-1_37: &id677 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OFq7BbnpvD8= + 1834-220319-2_29: &id755 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SoHCxaM5yD8= + 1834-150319-3_45: + 1834-150319-1_56: *id528 + 1834-220319-1_36: &id665 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vZOLGiMOvT8= + 1834-150319-3_49: + 1834-150319-1_77: *id529 + 1834-220319-1_49: &id693 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P7A1OPUxwz8= + 1834-150319-3_53: + 1834-010319-1_25: *id530 + 1834-010319-3_61: *id531 + 1834-010319-5_39: *id532 + 1834-060319-1_91: *id533 + 1834-060319-2_41: *id534 + 1834-060319-3_37: *id535 + 1834-060319-4_24: *id536 + 1834-110319-1_23: *id537 + 1834-110319-2_41: *id538 + 1834-110319-3_29: *id539 + 1834-110319-5_78: *id540 + 1834-110319-6_31: *id541 + 1834-120319-4_52: *id542 + 1834-150319-1_74: *id543 + 1834-150319-2_29: *id544 + 1834-150319-4_26: &id615 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MprvaHhTyD8= + 1834-220319-1_67: &id711 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JETdiKtEwD8= + 1834-220319-2_21: &id742 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kU4lytoexz8= + 1834-220319-3_28: &id864 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DXybvsrjxD8= + 1834-220319-4_33: &id939 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P0f1fuOxwz8= + 1834-150319-3_55: + 1834-010319-3_60: *id545 + 1834-060319-4_29: *id546 + 1834-110319-1_30: *id547 + 1834-110319-2_47: *id548 + 1834-150319-1_47: *id549 + 1834-150319-2_42: *id550 + 1834-150319-3_57: + 1834-010319-4_49: *id551 + 1834-010319-5_23: *id552 + 1834-060319-2_43: *id553 + 1834-060319-3_35: *id554 + 1834-060319-4_26: *id555 + 1834-110319-1_25: *id556 + 1834-110319-2_96: *id557 + 1834-120319-2_61: *id558 + 1834-120319-3_52: *id559 + 1834-150319-1_76: *id560 + 1834-150319-2_32: *id561 + 1834-150319-4_24: &id591 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kIkBlAKFxT8= + 1834-220319-2_41: &id793 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 898, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + naP7BsJhwT8= + 1834-220319-3_26: &id851 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3305, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j1+CPCDrsT8= + 1834-220319-4_46: &id972 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6050, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cSxTOWHKvj8= + 1834-150319-4_23: + 1834-010319-3_63: *id562 + 1834-010319-4_48: *id563 + 1834-010319-5_19: *id564 + 1834-060319-2_42: *id565 + 1834-060319-3_33: *id566 + 1834-060319-4_23: *id567 + 1834-110319-1_24: *id568 + 1834-110319-2_104: *id569 + 1834-110319-3_28: *id570 + 1834-110319-5_90: *id571 + 1834-110319-6_31: *id572 + 1834-120319-1_17: *id573 + 1834-120319-2_26: *id574 + 1834-120319-3_28: *id575 + 1834-120319-4_22: *id576 + 1834-150319-1_74: *id577 + 1834-150319-2_30: *id578 + 1834-150319-3_28: *id579 + 1834-220319-1_36: &id666 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SELJEFSt0j8= + 1834-220319-2_20: &id731 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zO86ajO8wD8= + 1834-220319-3_25: &id830 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bwiu+OgMxj8= + 1834-220319-4_31: &id902 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aOzbuVWgwT8= + 1834-150319-4_24: + 1834-010319-1_24: *id580 + 1834-010319-3_60: *id581 + 1834-060319-2_43: *id582 + 1834-060319-3_35: *id583 + 1834-060319-4_24: *id584 + 1834-110319-1_25: *id585 + 1834-110319-2_41: *id586 + 1834-110319-3_30: *id587 + 1834-120319-2_61: *id588 + 1834-150319-1_76: *id589 + 1834-150319-2_42: *id590 + 1834-150319-3_57: *id591 + 1834-220319-1_37: &id678 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YKxJYFmcyD8= + 1834-220319-2_29: &id756 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 90DZ5IimxT8= + 1834-220319-3_31: &id881 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + o0dnKd8Iuz8= + 1834-220319-4_45: &id955 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eGqVKm48wz8= + 1834-150319-4_25: + 1834-010319-1_25: *id592 + 1834-010319-3_61: *id593 + 1834-010319-4_45: *id594 + 1834-010319-5_23: *id595 + 1834-060319-1_59: *id596 + 1834-060319-2_44: *id597 + 1834-060319-3_37: *id598 + 1834-060319-4_29: *id599 + 1834-110319-1_26: *id600 + 1834-110319-2_45: *id601 + 1834-110319-3_29: *id602 + 1834-150319-1_45: *id603 + 1834-150319-2_32: *id604 + 1834-150319-3_30: *id605 + 1834-220319-1_29: &id655 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8W3W7PD1yz8= + 1834-220319-2_41: &id794 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UKFYiwfswj8= + 1834-220319-3_23: &id810 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0Ak7ZIxwwD8= + 1834-220319-4_32: &id924 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M+n/xcdkwD8= + 1834-150319-4_26: + 1834-010319-3_57: *id606 + 1834-010319-5_21: *id607 + 1834-060319-2_46: *id608 + 1834-060319-3_41: *id609 + 1834-060319-4_28: *id610 + 1834-110319-1_30: *id611 + 1834-110319-2_40: *id612 + 1834-150319-1_41: *id613 + 1834-150319-2_29: *id614 + 1834-150319-3_53: *id615 + 1834-220319-1_49: &id694 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m4r5ketA0T8= + 1834-220319-2_21: &id743 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P0qS96Odzz8= + 1834-220319-3_28: &id865 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jnvc0eSWzT8= + 1834-220319-4_46: &id973 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1D3tDfyZzD8= + 1834-150319-4_33: + 1834-010319-3_58: *id616 + 1834-010319-4_49: *id617 + 1834-010319-5_39: *id618 + 1834-060319-1_91: *id619 + 1834-060319-2_41: *id620 + 1834-060319-3_40: *id621 + 1834-060319-4_26: *id622 + 1834-110319-1_23: *id623 + 1834-110319-2_96: *id624 + 1834-110319-3_27: *id625 + 1834-110319-5_78: *id626 + 1834-110319-6_30: *id627 + 1834-120319-1_16: *id628 + 1834-120319-2_78: *id629 + 1834-120319-3_52: *id630 + 1834-120319-4_52: *id631 + 1834-150319-1_37: *id632 + 1834-150319-2_37: *id633 + 1834-150319-3_27: *id634 + 1834-220319-1_67: &id712 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81626, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FvXKw+P4yT8= + 1834-220319-2_39: &id778 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84228, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qc5DLDI2sz8= + 1834-220319-3_26: &id852 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 235, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Se+MzDBWtT8= + 1834-220319-4_33: &id940 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 2980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aDT8oZw6wz8= + 1834-220319-1_29: + 1834-010319-1_25: *id635 + 1834-010319-3_57: *id636 + 1834-010319-4_45: *id637 + 1834-010319-5_19: *id638 + 1834-060319-1_59: *id639 + 1834-060319-2_46: *id640 + 1834-060319-3_41: *id641 + 1834-060319-4_29: *id642 + 1834-110319-1_26: *id643 + 1834-110319-2_47: *id644 + 1834-110319-3_27: *id645 + 1834-110319-5_90: *id646 + 1834-110319-6_30: *id647 + 1834-120319-1_17: *id648 + 1834-120319-2_26: *id649 + 1834-120319-3_28: *id650 + 1834-120319-4_22: *id651 + 1834-150319-1_41: *id652 + 1834-150319-2_29: *id653 + 1834-150319-3_30: *id654 + 1834-150319-4_25: *id655 + 1834-220319-2_41: &id795 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tanfcRgVyz8= + 1834-220319-3_31: &id882 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MVPcIlqrxj8= + 1834-220319-4_32: &id925 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vdvB44NHyz8= + 1834-220319-1_36: + 1834-010319-3_63: *id656 + 1834-010319-5_21: *id657 + 1834-060319-2_42: *id658 + 1834-060319-3_33: *id659 + 1834-060319-4_23: *id660 + 1834-110319-1_30: *id661 + 1834-110319-2_96: *id662 + 1834-150319-1_92: *id663 + 1834-150319-2_37: *id664 + 1834-150319-3_45: *id665 + 1834-150319-4_23: *id666 + 1834-220319-2_20: &id732 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OkH6xtMb0z8= + 1834-220319-3_25: &id831 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iJjDQHXX0z8= + 1834-220319-4_31: &id903 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TwoCM2Qy0z8= + 1834-220319-1_37: + 1834-010319-3_60: *id667 + 1834-060319-1_91: *id668 + 1834-060319-2_41: *id669 + 1834-060319-3_40: *id670 + 1834-060319-4_28: *id671 + 1834-110319-1_23: *id672 + 1834-110319-2_41: *id673 + 1834-110319-3_28: *id674 + 1834-150319-1_47: *id675 + 1834-150319-2_42: *id676 + 1834-150319-3_44: *id677 + 1834-150319-4_24: *id678 + 1834-220319-2_21: &id744 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5afcq+fLzj8= + 1834-220319-3_23: &id811 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FFsELJ+a0D8= + 1834-220319-4_33: &id941 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E4AR6hjgxj8= + 1834-220319-1_49: + 1834-010319-3_58: *id679 + 1834-010319-4_48: *id680 + 1834-010319-5_23: *id681 + 1834-060319-2_44: *id682 + 1834-060319-3_37: *id683 + 1834-060319-4_26: *id684 + 1834-110319-1_24: *id685 + 1834-110319-2_40: *id686 + 1834-110319-3_29: *id687 + 1834-110319-5_78: *id688 + 1834-110319-6_31: *id689 + 1834-120319-2_78: *id690 + 1834-150319-1_77: *id691 + 1834-150319-2_31: *id692 + 1834-150319-3_49: *id693 + 1834-150319-4_26: *id694 + 1834-220319-2_29: &id757 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 06I+uw94wj8= + 1834-220319-3_28: &id866 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XZ5fDRxNwT8= + 1834-220319-4_45: &id956 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fzdvf9+PwT8= + 1834-220319-1_67: + 1834-010319-1_24: *id695 + 1834-010319-3_61: *id696 + 1834-010319-4_49: *id697 + 1834-010319-5_39: *id698 + 1834-060319-2_43: *id699 + 1834-060319-3_35: *id700 + 1834-060319-4_24: *id701 + 1834-110319-1_25: *id702 + 1834-110319-2_45: *id703 + 1834-110319-3_30: *id704 + 1834-120319-1_16: *id705 + 1834-120319-2_61: *id706 + 1834-120319-3_52: *id707 + 1834-120319-4_52: *id708 + 1834-150319-1_74: *id709 + 1834-150319-2_32: *id710 + 1834-150319-3_53: *id711 + 1834-150319-4_33: *id712 + 1834-220319-2_39: &id779 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WKPdsPNexz8= + 1834-220319-3_26: &id853 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + srLE+cJvyT8= + 1834-220319-4_46: &id974 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7754, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LyDUk4L7wj8= + 1834-220319-2_20: + 1834-010319-3_63: *id713 + 1834-010319-4_45: *id714 + 1834-010319-5_19: *id715 + 1834-060319-2_42: *id716 + 1834-060319-3_33: *id717 + 1834-060319-4_26: *id718 + 1834-110319-1_24: *id719 + 1834-110319-2_104: *id720 + 1834-110319-3_29: *id721 + 1834-110319-5_90: *id722 + 1834-110319-6_31: *id723 + 1834-120319-1_17: *id724 + 1834-120319-2_78: *id725 + 1834-120319-3_28: *id726 + 1834-120319-4_22: *id727 + 1834-150319-1_74: *id728 + 1834-150319-2_30: *id729 + 1834-150319-3_28: *id730 + 1834-150319-4_23: *id731 + 1834-220319-1_36: *id732 + 1834-220319-3_25: &id832 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q4wfKPYlrT8= + 1834-220319-4_31: &id904 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CXBWmbQfmT8= + 1834-220319-2_21: + 1834-010319-3_60: *id733 + 1834-010319-5_21: *id734 + 1834-060319-2_44: *id735 + 1834-060319-3_37: *id736 + 1834-060319-4_28: *id737 + 1834-110319-1_23: *id738 + 1834-110319-2_41: *id739 + 1834-150319-1_44: *id740 + 1834-150319-2_42: *id741 + 1834-150319-3_53: *id742 + 1834-150319-4_26: *id743 + 1834-220319-1_37: *id744 + 1834-220319-3_23: &id812 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rNEVcPxbyT8= + 1834-220319-4_33: &id942 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + czuIrVnOxD8= + 1834-220319-2_29: + 1834-010319-3_57: *id745 + 1834-060319-1_59: *id746 + 1834-060319-2_46: *id747 + 1834-060319-3_41: *id748 + 1834-060319-4_29: *id749 + 1834-110319-1_30: *id750 + 1834-110319-2_96: *id751 + 1834-110319-3_27: *id752 + 1834-150319-1_76: *id753 + 1834-150319-2_31: *id754 + 1834-150319-3_44: *id755 + 1834-150319-4_24: *id756 + 1834-220319-1_49: *id757 + 1834-220319-3_28: &id867 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b8akvjcVnT8= + 1834-220319-4_45: &id957 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NUu/s8rOnj8= + 1834-220319-2_39: + 1834-010319-1_25: *id758 + 1834-010319-3_58: *id759 + 1834-010319-4_48: *id760 + 1834-010319-5_39: *id761 + 1834-060319-1_91: *id762 + 1834-060319-2_41: *id763 + 1834-060319-3_40: *id764 + 1834-060319-4_23: *id765 + 1834-110319-1_26: *id766 + 1834-110319-2_40: *id767 + 1834-110319-3_28: *id768 + 1834-110319-5_78: *id769 + 1834-110319-6_30: *id770 + 1834-120319-1_16: *id771 + 1834-120319-2_26: *id772 + 1834-120319-3_52: *id773 + 1834-120319-4_52: *id774 + 1834-150319-1_37: *id775 + 1834-150319-2_37: *id776 + 1834-150319-3_27: *id777 + 1834-150319-4_33: *id778 + 1834-220319-1_67: *id779 + 1834-220319-3_26: &id854 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2n7Gq0fzpT8= + 1834-220319-4_32: &id926 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lOy1QId/uj8= + 1834-220319-2_41: + 1834-010319-1_24: *id780 + 1834-010319-3_61: *id781 + 1834-010319-4_49: *id782 + 1834-010319-5_23: *id783 + 1834-060319-2_43: *id784 + 1834-060319-3_35: *id785 + 1834-060319-4_24: *id786 + 1834-110319-1_25: *id787 + 1834-110319-2_45: *id788 + 1834-110319-3_30: *id789 + 1834-120319-2_61: *id790 + 1834-150319-1_45: *id791 + 1834-150319-2_32: *id792 + 1834-150319-3_57: *id793 + 1834-150319-4_25: *id794 + 1834-220319-1_29: *id795 + 1834-220319-3_31: &id883 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2407, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TcJcrIxgrz8= + 1834-220319-4_46: &id975 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5152, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZKrpFu59wD8= + 1834-220319-3_23: + 1834-010319-1_25: *id796 + 1834-010319-3_57: *id797 + 1834-010319-4_49: *id798 + 1834-010319-5_21: *id799 + 1834-060319-2_44: *id800 + 1834-060319-3_37: *id801 + 1834-060319-4_23: *id802 + 1834-110319-1_25: *id803 + 1834-110319-2_40: *id804 + 1834-110319-3_30: *id805 + 1834-120319-2_78: *id806 + 1834-150319-1_45: *id807 + 1834-150319-2_32: *id808 + 1834-150319-3_27: *id809 + 1834-150319-4_25: *id810 + 1834-220319-1_37: *id811 + 1834-220319-2_21: *id812 + 1834-220319-4_32: &id927 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W6tiuMhjtD8= + 1834-220319-3_25: + 1834-010319-3_63: *id813 + 1834-010319-4_45: *id814 + 1834-010319-5_19: *id815 + 1834-060319-2_42: *id816 + 1834-060319-3_33: *id817 + 1834-060319-4_26: *id818 + 1834-110319-1_24: *id819 + 1834-110319-2_104: *id820 + 1834-110319-3_29: *id821 + 1834-110319-5_78: *id822 + 1834-110319-6_31: *id823 + 1834-120319-1_17: *id824 + 1834-120319-2_26: *id825 + 1834-120319-3_28: *id826 + 1834-150319-1_74: *id827 + 1834-150319-2_30: *id828 + 1834-150319-3_28: *id829 + 1834-150319-4_23: *id830 + 1834-220319-1_36: *id831 + 1834-220319-2_20: *id832 + 1834-220319-4_31: &id905 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eR2773RpqD8= + 1834-220319-3_26: + 1834-010319-3_58: *id833 + 1834-010319-4_48: *id834 + 1834-010319-5_39: *id835 + 1834-060319-1_91: *id836 + 1834-060319-2_41: *id837 + 1834-060319-3_40: *id838 + 1834-060319-4_28: *id839 + 1834-110319-1_23: *id840 + 1834-110319-2_96: *id841 + 1834-110319-3_28: *id842 + 1834-110319-5_90: *id843 + 1834-110319-6_30: *id844 + 1834-120319-1_16: *id845 + 1834-120319-2_61: *id846 + 1834-120319-3_52: *id847 + 1834-120319-4_22: *id848 + 1834-150319-1_37: *id849 + 1834-150319-2_37: *id850 + 1834-150319-3_57: *id851 + 1834-150319-4_33: *id852 + 1834-220319-1_67: *id853 + 1834-220319-2_39: *id854 + 1834-220319-4_33: &id943 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZZ6BTQbnvj8= + 1834-220319-3_28: + 1834-010319-3_60: *id855 + 1834-060319-1_59: *id856 + 1834-060319-2_46: *id857 + 1834-060319-3_41: *id858 + 1834-060319-4_29: *id859 + 1834-110319-1_30: *id860 + 1834-110319-2_41: *id861 + 1834-150319-1_76: *id862 + 1834-150319-2_31: *id863 + 1834-150319-3_53: *id864 + 1834-150319-4_26: *id865 + 1834-220319-1_49: *id866 + 1834-220319-2_29: *id867 + 1834-220319-4_45: &id958 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NwR1Riowlj8= + 1834-220319-3_31: + 1834-010319-1_24: *id868 + 1834-010319-3_61: *id869 + 1834-010319-5_23: *id870 + 1834-060319-2_43: *id871 + 1834-060319-3_35: *id872 + 1834-060319-4_24: *id873 + 1834-110319-1_26: *id874 + 1834-110319-2_45: *id875 + 1834-110319-3_27: *id876 + 1834-120319-4_52: *id877 + 1834-150319-1_44: *id878 + 1834-150319-2_29: *id879 + 1834-150319-3_30: *id880 + 1834-150319-4_24: *id881 + 1834-220319-1_29: *id882 + 1834-220319-2_41: *id883 + 1834-220319-4_46: &id976 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2745, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5uGFpzwWwD8= + 1834-220319-4_31: + 1834-010319-3_63: *id884 + 1834-010319-4_45: *id885 + 1834-010319-5_19: *id886 + 1834-060319-2_42: *id887 + 1834-060319-3_33: *id888 + 1834-060319-4_23: *id889 + 1834-110319-1_24: *id890 + 1834-110319-2_104: *id891 + 1834-110319-3_28: *id892 + 1834-110319-5_78: *id893 + 1834-110319-6_31: *id894 + 1834-120319-1_17: *id895 + 1834-120319-2_26: *id896 + 1834-120319-3_28: *id897 + 1834-120319-4_22: *id898 + 1834-150319-1_74: *id899 + 1834-150319-2_30: *id900 + 1834-150319-3_28: *id901 + 1834-150319-4_23: *id902 + 1834-220319-1_36: *id903 + 1834-220319-2_20: *id904 + 1834-220319-3_25: *id905 + 1834-220319-4_32: + 1834-010319-1_25: *id906 + 1834-010319-3_61: *id907 + 1834-010319-4_49: *id908 + 1834-010319-5_21: *id909 + 1834-060319-2_43: *id910 + 1834-060319-3_35: *id911 + 1834-060319-4_26: *id912 + 1834-110319-1_25: *id913 + 1834-110319-2_40: *id914 + 1834-110319-3_30: *id915 + 1834-110319-5_90: *id916 + 1834-110319-6_30: *id917 + 1834-120319-1_16: *id918 + 1834-120319-2_78: *id919 + 1834-120319-3_52: *id920 + 1834-150319-1_45: *id921 + 1834-150319-2_32: *id922 + 1834-150319-3_27: *id923 + 1834-150319-4_25: *id924 + 1834-220319-1_29: *id925 + 1834-220319-2_39: *id926 + 1834-220319-3_23: *id927 + 1834-220319-4_33: + 1834-010319-3_58: *id928 + 1834-010319-5_39: *id929 + 1834-060319-2_41: *id930 + 1834-060319-3_40: *id931 + 1834-060319-4_28: *id932 + 1834-110319-1_23: *id933 + 1834-110319-2_96: *id934 + 1834-120319-2_61: *id935 + 1834-120319-4_52: *id936 + 1834-150319-1_37: *id937 + 1834-150319-2_42: *id938 + 1834-150319-3_53: *id939 + 1834-150319-4_33: *id940 + 1834-220319-1_37: *id941 + 1834-220319-2_21: *id942 + 1834-220319-3_26: *id943 + 1834-220319-4_45: + 1834-010319-3_60: *id944 + 1834-060319-1_59: *id945 + 1834-060319-2_46: *id946 + 1834-060319-3_41: *id947 + 1834-060319-4_29: *id948 + 1834-110319-1_30: *id949 + 1834-110319-2_41: *id950 + 1834-110319-3_27: *id951 + 1834-150319-1_41: *id952 + 1834-150319-2_31: *id953 + 1834-150319-3_30: *id954 + 1834-150319-4_24: *id955 + 1834-220319-1_49: *id956 + 1834-220319-2_29: *id957 + 1834-220319-3_28: *id958 + 1834-220319-4_46: + 1834-010319-1_24: *id959 + 1834-010319-3_57: *id960 + 1834-010319-4_48: *id961 + 1834-010319-5_23: *id962 + 1834-060319-1_91: *id963 + 1834-060319-2_44: *id964 + 1834-060319-3_37: *id965 + 1834-060319-4_24: *id966 + 1834-110319-1_26: *id967 + 1834-110319-2_45: *id968 + 1834-110319-3_29: *id969 + 1834-150319-1_76: *id970 + 1834-150319-2_29: *id971 + 1834-150319-3_57: *id972 + 1834-150319-4_26: *id973 + 1834-220319-1_67: *id974 + 1834-220319-2_41: *id975 + 1834-220319-3_31: *id976 +_node: &id979 + 1834-010319-1_24: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id977 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + GAAAAAAAAAA= + 1834-010319-1_25: + action_id: 1834-010319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GQAAAAAAAAA= + 1834-010319-3_57: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + OQAAAAAAAAA= + 1834-010319-3_58: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + OgAAAAAAAAA= + 1834-010319-3_60: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + PAAAAAAAAAA= + 1834-010319-3_61: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + PQAAAAAAAAA= + 1834-010319-3_63: + action_id: 1834-010319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + PwAAAAAAAAA= + 1834-010319-4_45: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + LQAAAAAAAAA= + 1834-010319-4_48: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + MAAAAAAAAAA= + 1834-010319-4_49: + action_id: 1834-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + MQAAAAAAAAA= + 1834-010319-5_19: + action_id: 1834-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + EwAAAAAAAAA= + 1834-010319-5_21: + action_id: 1834-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + FQAAAAAAAAA= + 1834-010319-5_23: + action_id: 1834-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + FwAAAAAAAAA= + 1834-010319-5_39: + action_id: 1834-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + JwAAAAAAAAA= + 1834-060319-1_59: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + OwAAAAAAAAA= + 1834-060319-1_91: + action_id: 1834-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + WwAAAAAAAAA= + 1834-060319-2_41: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + KQAAAAAAAAA= + 1834-060319-2_42: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + KgAAAAAAAAA= + 1834-060319-2_43: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + KwAAAAAAAAA= + 1834-060319-2_44: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + LAAAAAAAAAA= + 1834-060319-2_46: + action_id: 1834-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + LgAAAAAAAAA= + 1834-060319-3_33: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + IQAAAAAAAAA= + 1834-060319-3_35: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + IwAAAAAAAAA= + 1834-060319-3_37: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + JQAAAAAAAAA= + 1834-060319-3_40: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + KAAAAAAAAAA= + 1834-060319-3_41: + action_id: 1834-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + KQAAAAAAAAA= + 1834-060319-4_23: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + FwAAAAAAAAA= + 1834-060319-4_24: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GAAAAAAAAAA= + 1834-060319-4_26: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GgAAAAAAAAA= + 1834-060319-4_28: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HAAAAAAAAAA= + 1834-060319-4_29: + action_id: 1834-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HQAAAAAAAAA= + 1834-110319-1_23: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + FwAAAAAAAAA= + 1834-110319-1_24: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GAAAAAAAAAA= + 1834-110319-1_25: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GQAAAAAAAAA= + 1834-110319-1_26: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GgAAAAAAAAA= + 1834-110319-1_30: + action_id: 1834-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HgAAAAAAAAA= + 1834-110319-2_104: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + aAAAAAAAAAA= + 1834-110319-2_40: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + KAAAAAAAAAA= + 1834-110319-2_41: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + KQAAAAAAAAA= + 1834-110319-2_45: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + LQAAAAAAAAA= + 1834-110319-2_47: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + LwAAAAAAAAA= + 1834-110319-2_86: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + VgAAAAAAAAA= + 1834-110319-2_96: + action_id: 1834-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + YAAAAAAAAAA= + 1834-110319-3_27: + action_id: 1834-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GwAAAAAAAAA= + 1834-110319-3_28: + action_id: 1834-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HAAAAAAAAAA= + 1834-110319-3_29: + action_id: 1834-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HQAAAAAAAAA= + 1834-110319-3_30: + action_id: 1834-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HgAAAAAAAAA= + 1834-110319-5_78: + action_id: 1834-110319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + TgAAAAAAAAA= + 1834-110319-5_90: + action_id: 1834-110319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + WgAAAAAAAAA= + 1834-110319-6_30: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HgAAAAAAAAA= + 1834-110319-6_31: + action_id: 1834-110319-6 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HwAAAAAAAAA= + 1834-120319-1_16: + action_id: 1834-120319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + EAAAAAAAAAA= + 1834-120319-1_17: + action_id: 1834-120319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + EQAAAAAAAAA= + 1834-120319-2_26: + action_id: 1834-120319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GgAAAAAAAAA= + 1834-120319-2_61: + action_id: 1834-120319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + PQAAAAAAAAA= + 1834-120319-2_78: + action_id: 1834-120319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + TgAAAAAAAAA= + 1834-120319-3_28: + action_id: 1834-120319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HAAAAAAAAAA= + 1834-120319-3_52: + action_id: 1834-120319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + NAAAAAAAAAA= + 1834-120319-4_22: + action_id: 1834-120319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + FgAAAAAAAAA= + 1834-120319-4_52: + action_id: 1834-120319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + NAAAAAAAAAA= + 1834-150319-1_37: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + JQAAAAAAAAA= + 1834-150319-1_41: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + KQAAAAAAAAA= + 1834-150319-1_44: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + LAAAAAAAAAA= + 1834-150319-1_45: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + LQAAAAAAAAA= + 1834-150319-1_47: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + LwAAAAAAAAA= + 1834-150319-1_56: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + OAAAAAAAAAA= + 1834-150319-1_74: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + SgAAAAAAAAA= + 1834-150319-1_76: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + TAAAAAAAAAA= + 1834-150319-1_77: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + TQAAAAAAAAA= + 1834-150319-1_92: + action_id: 1834-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + XAAAAAAAAAA= + 1834-150319-2_29: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HQAAAAAAAAA= + 1834-150319-2_30: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HgAAAAAAAAA= + 1834-150319-2_31: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HwAAAAAAAAA= + 1834-150319-2_32: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + IAAAAAAAAAA= + 1834-150319-2_37: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + JQAAAAAAAAA= + 1834-150319-2_42: + action_id: 1834-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + KgAAAAAAAAA= + 1834-150319-3_27: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GwAAAAAAAAA= + 1834-150319-3_28: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HAAAAAAAAAA= + 1834-150319-3_30: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HgAAAAAAAAA= + 1834-150319-3_44: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + LAAAAAAAAAA= + 1834-150319-3_45: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + LQAAAAAAAAA= + 1834-150319-3_49: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + MQAAAAAAAAA= + 1834-150319-3_53: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + NQAAAAAAAAA= + 1834-150319-3_55: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + NwAAAAAAAAA= + 1834-150319-3_57: + action_id: 1834-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + OQAAAAAAAAA= + 1834-150319-4_23: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + FwAAAAAAAAA= + 1834-150319-4_24: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GAAAAAAAAAA= + 1834-150319-4_25: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GQAAAAAAAAA= + 1834-150319-4_26: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GgAAAAAAAAA= + 1834-150319-4_33: + action_id: 1834-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + IQAAAAAAAAA= + 1834-220319-1_29: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HQAAAAAAAAA= + 1834-220319-1_36: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + JAAAAAAAAAA= + 1834-220319-1_37: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + JQAAAAAAAAA= + 1834-220319-1_49: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + MQAAAAAAAAA= + 1834-220319-1_67: + action_id: 1834-220319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + QwAAAAAAAAA= + 1834-220319-2_20: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + FAAAAAAAAAA= + 1834-220319-2_21: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + FQAAAAAAAAA= + 1834-220319-2_29: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HQAAAAAAAAA= + 1834-220319-2_39: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + JwAAAAAAAAA= + 1834-220319-2_41: + action_id: 1834-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + KQAAAAAAAAA= + 1834-220319-3_23: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + FwAAAAAAAAA= + 1834-220319-3_25: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GQAAAAAAAAA= + 1834-220319-3_26: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + GgAAAAAAAAA= + 1834-220319-3_28: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HAAAAAAAAAA= + 1834-220319-3_31: + action_id: 1834-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HwAAAAAAAAA= + 1834-220319-4_31: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + HwAAAAAAAAA= + 1834-220319-4_32: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + IAAAAAAAAAA= + 1834-220319-4_33: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + IQAAAAAAAAA= + 1834-220319-4_45: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + LQAAAAAAAAA= + 1834-220319-4_46: + action_id: 1834-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id977 + - !!binary | + LgAAAAAAAAA= +adjlist_inner_dict_factory: &id978 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id978 +edge_attr_dict_factory: *id978 +graph: {} +node_dict_factory: *id978 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id979 diff --git a/actions/identify-neurons/data/1834-units.csv b/actions/identify-neurons/data/1834-units.csv new file mode 100644 index 000000000..ceb040680 --- /dev/null +++ b/actions/identify-neurons/data/1834-units.csv @@ -0,0 +1,399 @@ +action,channel_group,max_depth_delta,max_dissimilarity,unit_id,unit_name +1834-010319-1,0,100,0.05,32afb72e-d27c-4990-b4ea-f9136a8226d1,2 +1834-010319-1,0,100,0.05,e3017dcb-7612-452b-b2fd-7cbaad5c7532,39 +1834-010319-3,0,100,0.05,603a3306-e906-4f95-971b-4d8164015554,1 +1834-010319-3,0,100,0.05,2896bab7-e9f6-4bbb-bfa2-ce85dc2dd93f,12 +1834-010319-3,0,100,0.05,cd46dcdd-1c31-4c1c-9e7a-ed174064f3f3,72 +1834-110319-1,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,65 +1834-110319-2,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,108 +1834-010319-4,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,7 +1834-060319-4,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,3 +1834-110319-3,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,101 +1834-110319-5,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,98 +1834-060319-1,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,7 +1834-060319-1,0,100,0.05,d4d044df-2487-4a43-8cd5-c3ff4ee38ee2,70 +1834-060319-1,0,100,0.05,f4d6e79f-1164-4134-80ca-9cb5942140d1,71 +1834-060319-1,0,100,0.05,a26e7b94-1d82-4f03-88ae-edf62c9ec266,72 +1834-110319-6,0,100,0.05,031623da-a207-4beb-ad22-edaf249e0dc9,2 +1834-060319-1,0,100,0.05,031623da-a207-4beb-ad22-edaf249e0dc9,73 +1834-060319-1,0,100,0.05,ce9b87a4-9414-475b-b057-1dc2cbf65ced,74 +1834-060319-1,0,100,0.05,54dd6650-5e36-4385-bdda-d337397e883c,79 +1834-060319-3,0,100,0.05,363f6f73-45dc-4da0-9ebf-f8299c7c3400,4 +1834-110319-1,0,100,0.05,cccf5646-1426-4217-b4f1-4d323f26ec1a,0 +1834-110319-2,0,100,0.05,468a74ac-ce3f-4c5d-a9a4-44da8b19dd13,11 +1834-110319-6,0,100,0.05,aefff1cf-c039-4223-8ad9-31d9919ef705,0 +1834-110319-6,0,100,0.05,4fa5d7dc-504f-47ee-b32e-0ec52c58c6c3,1 +1834-110319-6,0,100,0.05,ffd0fa52-30a3-46c3-a6b1-4038aed5b510,10 +1834-110319-6,0,100,0.05,a6f26265-030e-4c48-8d75-6f20031a9062,13 +1834-110319-6,0,100,0.05,55449278-6106-46cb-8f64-6d1093f8098a,15 +1834-110319-6,0,100,0.05,210d0bd2-29bb-4f15-b036-17ef0c128829,3 +1834-110319-6,0,100,0.05,0f45c421-4df8-430d-b662-ed509bf164f8,32 +1834-110319-6,0,100,0.05,cfa3c5b5-9338-4f9e-88dc-35c578919f10,33 +1834-110319-6,0,100,0.05,4a331395-c9f9-4c86-983f-72949d710136,34 +1834-110319-6,0,100,0.05,aa5c25a5-663f-44fc-a146-99b5d806f892,38 +1834-110319-6,0,100,0.05,1de48ce3-1aff-4bb8-8873-d83eae4e0e57,4 +1834-110319-6,0,100,0.05,0656b4d2-c0b6-4a06-ac3c-dee33807370b,5 +1834-110319-6,0,100,0.05,7b629bbe-09f3-4686-a0c9-1b98cb1e15c2,6 +1834-110319-6,0,100,0.05,d95b5271-6d54-4c27-9bbb-a4874f850d95,7 +1834-110319-6,0,100,0.05,89892043-0ccc-40a1-a47f-11e68b477d32,8 +1834-110319-6,0,100,0.05,88c41151-4186-42b8-81dc-46ae6d56ccff,9 +1834-150319-3,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,71 +1834-120319-2,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,39 +1834-120319-3,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,36 +1834-150319-2,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,2 +1834-120319-4,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,85 +1834-120319-1,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,1 +1834-150319-4,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,0 +1834-150319-1,0,100,0.05,7b0389cf-dd0d-4be6-9b00-36b6f09126fb,3 +1834-150319-3,0,100,0.05,0484dc42-c4ff-4ebb-9493-2e131afe43a4,75 +1834-220319-2,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,1 +1834-220319-3,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,1 +1834-220319-4,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,0 +1834-220319-1,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,81 +1834-220319-1,0,100,0.05,b12b6948-7b28-47b8-ac81-9f1b47c17361,87 +1834-010319-1,1,100,0.05,a0daca30-6616-4c60-b0b8-310fc21e2757,48 +1834-010319-3,1,100,0.05,9728e512-1fc6-4a84-b21c-6e5fa271c64f,18 +1834-010319-4,1,100,0.05,969edf06-9796-4bfa-b1cd-adc2a9217b12,10 +1834-060319-2,1,100,0.05,871cfead-7fb9-4ab3-8b35-a571b9312a40,104 +1834-110319-6,1,100,0.05,d4b94300-3ad7-4c4c-8173-c974cfe5f07f,11 +1834-110319-6,1,100,0.05,bda010db-d4b8-45ec-9d89-4d957777747e,12 +1834-110319-6,1,100,0.05,7cf1101d-b91c-4a3f-b663-4471a33b8500,19 +1834-110319-6,1,100,0.05,26797422-5fd5-45df-8952-fc592ef12e74,35 +1834-110319-6,1,100,0.05,10b9d84d-ca02-48fc-8b12-c0b368251cfc,36 +1834-120319-1,1,100,0.05,fbbcce03-64d3-42d1-bdcc-cf8bc669b646,3 +1834-120319-2,1,100,0.05,47181a39-cd46-4edc-bc41-f034762dac72,41 +1834-120319-3,1,100,0.05,47181a39-cd46-4edc-bc41-f034762dac72,38 +1834-150319-1,1,100,0.05,a7b074ef-3220-4969-9606-40d31a5638b8,4 +1834-150319-1,1,100,0.05,e1107f56-9c39-4c65-a933-1367273b4049,46 +1834-150319-1,1,100,0.05,43c89925-fafc-4ab1-8b91-ceeca45961d7,50 +1834-150319-1,1,100,0.05,1702dfd2-1bbe-4bf0-904e-0c95b24c6744,7 +1834-110319-3,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,47 +1834-060319-2,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,113 +1834-110319-6,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,16 +1834-110319-5,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,18 +1834-110319-6,2,100,0.05,3a237c11-5372-44ae-a25a-457085ff0894,17 +1834-120319-2,2,100,0.05,04e0b56f-2056-49e9-96cc-a845816b57d0,43 +1834-120319-2,2,100,0.05,c33d5c13-706a-4891-acf0-62e2e650563e,51 +1834-120319-3,2,100,0.05,c3a7d7a1-7c9a-4d12-b4ce-ddbdf12d2376,70 +1834-220319-3,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,46 +1834-220319-2,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,49 +1834-120319-4,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,75 +1834-220319-1,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,83 +1834-220319-1,2,100,0.05,d6cae970-6b0e-486f-987f-d1b2139f0dd1,73 +1834-220319-2,2,100,0.05,d6cae970-6b0e-486f-987f-d1b2139f0dd1,7 +1834-220319-3,2,100,0.05,d6cae970-6b0e-486f-987f-d1b2139f0dd1,29 +1834-220319-1,2,100,0.05,d81e5efc-876d-4003-9684-ad295c0ec604,79 +1834-220319-4,2,100,0.05,43640b2b-437b-4036-bdd5-a3cb8aa3ca16,60 +1834-010319-3,3,100,0.05,a77ab842-af8d-44f5-9531-a15ba2833af3,76 +1834-010319-1,3,100,0.05,a77ab842-af8d-44f5-9531-a15ba2833af3,52 +1834-010319-1,3,100,0.05,af5a91fa-89c1-474b-ad44-a7dc4f699589,7 +1834-010319-1,3,100,0.05,c8b52f08-bb22-4f6c-a3f9-ec6e21724d05,8 +1834-010319-3,3,100,0.05,ddf11da3-3d87-4aa7-8ae1-102f3b1fcdf0,87 +1834-010319-4,3,100,0.05,1c15df06-157e-4004-abc7-a27c8febb5d4,21 +1834-010319-4,3,100,0.05,ea0ae2d9-9e23-4d0e-a8bd-e676ccfb0365,22 +1834-010319-5,3,100,0.05,ba45e41f-ae2f-41fe-9a7e-618a97110ab7,11 +1834-010319-5,3,100,0.05,89b07752-06b1-4d22-b1eb-a4a16b242f18,28 +1834-060319-1,3,100,0.05,8fbf4571-c7c0-4637-b087-8077ddfb99d7,33 +1834-060319-1,3,100,0.05,fe55b314-f450-4190-9a50-f1cd12db7c1b,85 +1834-060319-4,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,8 +1834-110319-3,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,41 +1834-060319-3,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,13 +1834-060319-2,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,24 +1834-060319-1,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,95 +1834-060319-2,3,100,0.05,9b4c268b-64e5-45ce-acde-bc974c486791,25 +1834-060319-4,3,100,0.05,77da2151-d669-4297-bf35-f9b2f0869fb0,10 +1834-110319-2,3,100,0.05,1e520264-65d0-462c-ba8b-6d5fab6d2c13,16 +1834-110319-5,3,100,0.05,812686d3-16b4-486a-82ac-5b26727c2e92,24 +1834-110319-6,3,100,0.05,2fe3d399-7790-4e50-a3f2-59af2773c18c,18 +1834-110319-6,3,100,0.05,56566a1a-4b2a-4260-90f9-d2bf3e4c5a66,20 +1834-120319-2,3,100,0.05,9713b7fd-6452-40ab-bb18-e2d75ae0665b,15 +1834-120319-3,3,100,0.05,9713b7fd-6452-40ab-bb18-e2d75ae0665b,62 +1834-120319-1,3,100,0.05,9713b7fd-6452-40ab-bb18-e2d75ae0665b,8 +1834-120319-2,3,100,0.05,8b68722d-72b2-4b94-a020-b01202028c62,6 +1834-120319-4,3,100,0.05,6ca6dede-9564-4f2b-984d-b350ccdb50f6,59 +1834-150319-1,3,100,0.05,18803619-4068-4ebe-9fea-29afadf5a5ec,13 +1834-150319-1,3,100,0.05,b7160669-5452-4ac4-b1a7-96ddfdb8e203,14 +1834-150319-1,3,100,0.05,cf398e29-7b7b-413a-99ff-c43f6e306a52,2 +1834-150319-1,3,100,0.05,9239cd9f-1284-4662-af82-e6fb61527c1e,6 +1834-150319-2,3,100,0.05,6e8411b3-7ec5-4b53-84cd-6b1ace0f6631,13 +1834-150319-4,3,100,0.05,12145901-58af-45cb-ba86-f29def53c878,5 +1834-150319-2,3,100,0.05,12145901-58af-45cb-ba86-f29def53c878,46 +1834-150319-3,3,100,0.05,12145901-58af-45cb-ba86-f29def53c878,61 +1834-150319-3,3,100,0.05,5228baa7-e404-4379-9251-bd4930a59fb8,8 +1834-150319-4,3,100,0.05,5790eaee-1c8d-4034-8d5a-dc7f2b88cc29,6 +1834-220319-1,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,11 +1834-220319-2,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,8 +1834-220319-4,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,10 +1834-220319-3,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,10 +1834-010319-1,4,100,0.05,b7df3619-3152-4ab2-a2a8-6c4fbd330a0b,13 +1834-010319-1,4,100,0.05,9ad22849-722a-4d83-bfd0-0522aa049cee,62 +1834-010319-3,4,100,0.05,c7312978-36b6-4124-b0e8-71816d8ae7da,34 +1834-010319-3,4,100,0.05,408b2b89-3445-43f5-80af-5307238012e9,36 +1834-010319-3,4,100,0.05,7365e283-a88b-4981-b022-c17a9521329b,66 +1834-010319-3,4,100,0.05,856b03fd-4050-4ed9-aff6-881c50368f5a,90 +1834-010319-4,4,100,0.05,dd6aa058-9d07-45be-bcf6-b05bf590486a,29 +1834-010319-4,4,100,0.05,cdd1cb11-370c-46f6-899c-bc9f4aa7ac12,35 +1834-010319-4,4,100,0.05,4ca0ef20-31ea-48c5-bb74-bd8abb08f6d5,53 +1834-060319-2,4,100,0.05,d400b6d7-2db2-47b6-9859-ce6f72c1e3fc,115 +1834-060319-3,4,100,0.05,b757598d-2721-4634-a9b5-36b0ec038e2e,19 +1834-060319-4,4,100,0.05,1436fedf-6974-43f9-91e8-d80200e47cd3,13 +1834-110319-2,4,100,0.05,3d5052ee-3e70-49df-8ce0-6c6d14ab600b,19 +1834-110319-1,4,100,0.05,3d5052ee-3e70-49df-8ce0-6c6d14ab600b,11 +1834-110319-5,4,100,0.05,517b674c-84b9-4b3b-a88e-d7184024ad75,76 +1834-110319-6,4,100,0.05,4ff6b16b-8ebf-48be-877c-217d590c663e,14 +1834-110319-6,4,100,0.05,9f85632e-7ea3-4e16-bead-194e70ff3435,21 +1834-110319-6,4,100,0.05,3ef2f997-d1e1-48ec-b230-9b708d802257,22 +1834-110319-6,4,100,0.05,9a62a913-5dc4-47ce-9532-b0773a7e481e,23 +1834-110319-6,4,100,0.05,2957c978-526d-488e-becd-6a018c183d19,25 +1834-110319-6,4,100,0.05,2c6a4654-e733-4287-b591-8f7d31c77062,37 +1834-120319-3,4,100,0.05,09ffea69-40c1-4a30-9526-1a1428f0384c,40 +1834-120319-3,4,100,0.05,8a086389-8c74-46fa-a529-4ab8a419b621,95 +1834-150319-1,4,100,0.05,9dfb4584-8d3f-4fce-9048-ff09abdb209b,0 +1834-150319-1,4,100,0.05,aceda409-a236-476e-8b77-5a49246b07d7,23 +1834-150319-1,4,100,0.05,87c965de-8a82-4bb4-9463-f591626562de,40 +1834-150319-1,4,100,0.05,d7701cae-f3f6-451e-b61d-986baa60abd7,5 +1834-150319-1,4,100,0.05,a0f100e7-5978-4d82-aa8e-a3f3dfb5e2e8,52 +1834-150319-2,4,100,0.05,4b3d8406-ec60-4e37-834e-b10c07c11967,54 +1834-220319-2,4,100,0.05,969c81cf-b80f-4dc4-a526-c1c02fde8630,34 +1834-220319-1,4,100,0.05,969c81cf-b80f-4dc4-a526-c1c02fde8630,65 +1834-220319-2,4,100,0.05,3d9a98a2-df47-4162-a5bc-d65b2f06b643,47 +1834-220319-4,4,100,0.05,38695b4d-fc1a-4c56-bad2-44e1ead15d71,51 +1834-220319-3,4,100,0.05,38695b4d-fc1a-4c56-bad2-44e1ead15d71,15 +1834-220319-4,4,100,0.05,150b4106-361d-43a3-a501-f90a43072647,36 +1834-220319-4,4,100,0.05,e0ad6514-eed6-47b6-b115-709d7d9b82e4,63 +1834-220319-4,4,100,0.05,97084ab3-dc72-4c1b-8045-2f5caf65ddc1,65 +1834-010319-1,5,100,0.05,82d449c5-3427-46ca-8aed-aed8a12a7476,16 +1834-010319-1,5,100,0.05,4cfe6043-03c1-49ea-92c6-4eef79035381,18 +1834-010319-3,5,100,0.05,2f60791f-a7a6-44ff-9242-399e48b3a133,41 +1834-010319-4,5,100,0.05,8eebb60d-1d37-48b2-8e51-5c278a025fab,37 +1834-010319-3,5,100,0.05,8eebb60d-1d37-48b2-8e51-5c278a025fab,42 +1834-010319-4,5,100,0.05,4dccbb8a-c59e-4b1e-be55-eed0699413c3,36 +1834-010319-5,5,100,0.05,dad7f735-8e7c-416a-9b87-d6b5f0834160,14 +1834-010319-5,5,100,0.05,3eafe78a-fb22-4b24-9ec2-c7541f10671f,15 +1834-060319-1,5,100,0.05,be353be9-41e9-45e5-a82b-27307c4916f1,87 +1834-060319-2,5,100,0.05,faa79273-6832-4706-b88b-69db0e59873f,34 +1834-060319-4,5,100,0.05,091109ab-cbbe-467e-8a1e-24e709323799,15 +1834-060319-3,5,100,0.05,091109ab-cbbe-467e-8a1e-24e709323799,25 +1834-060319-2,5,100,0.05,091109ab-cbbe-467e-8a1e-24e709323799,35 +1834-060319-3,5,100,0.05,cd9b8f7f-55bc-48d0-99eb-2fd27b9e7800,24 +1834-060319-3,5,100,0.05,dfb1bfa0-cb65-4d85-9b5d-77a36704e9d1,26 +1834-060319-4,5,100,0.05,abc7a0d6-a424-4ee0-ba64-2b53c6c4f465,16 +1834-110319-1,5,100,0.05,abc7a0d6-a424-4ee0-ba64-2b53c6c4f465,14 +1834-060319-4,5,100,0.05,fa949f01-2919-4ecc-b577-33210f83f9e9,17 +1834-110319-1,5,100,0.05,4c4dcde6-7401-49b0-a6e1-ddc318b2f841,16 +1834-110319-2,5,100,0.05,cef1efe8-86d4-4f69-bb9e-b91c4568b982,28 +1834-110319-1,5,100,0.05,cef1efe8-86d4-4f69-bb9e-b91c4568b982,28 +1834-110319-2,5,100,0.05,51da778a-0dcc-4c47-8802-562e95852772,29 +1834-110319-2,5,100,0.05,1e04d4e6-f9fb-451f-b7b3-1da7e4e95b86,31 +1834-110319-5,5,100,0.05,9400b7ff-e3d8-49c1-9c38-06406ee558d0,27 +1834-110319-6,5,100,0.05,108fb12d-6d33-4da9-a576-a92ab20a285a,24 +1834-110319-6,5,100,0.05,d538d0f5-af4f-494c-aa15-3c58b81ec718,26 +1834-120319-1,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,11 +1834-120319-3,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,23 +1834-120319-2,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,21 +1834-120319-4,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,69 +1834-120319-3,5,100,0.05,53bc8cf7-58a2-4b25-88da-b90859dd3c21,68 +1834-120319-4,5,100,0.05,215b7bd2-9140-427e-8c0b-83816239273a,73 +1834-120319-4,5,100,0.05,7f917dc4-a420-4fd6-aabe-46eb61f0d3dc,83 +1834-150319-1,5,100,0.05,db2eb916-376f-4d5a-bef8-67dedde30881,24 +1834-150319-1,5,100,0.05,f9cba19c-ebdb-42ed-b9d0-43b2759a52ae,25 +1834-150319-1,5,100,0.05,01643e99-a8bc-40f1-8e60-4007e120ce90,28 +1834-150319-1,5,100,0.05,556b0998-272c-4129-b0a6-be66c894db18,51 +1834-150319-1,5,100,0.05,89cc1c82-38df-4a17-a323-78f00af076d6,58 +1834-150319-1,5,100,0.05,e4c2e126-8f49-4cdf-bf3f-4735afe9910a,60 +1834-150319-2,5,100,0.05,e0b35ef8-254a-4ed5-8ab0-90a8f243cb6f,48 +1834-150319-4,5,100,0.05,08cdb1f6-daf6-4c77-8e6a-28c62592b13b,13 +1834-150319-3,5,100,0.05,08cdb1f6-daf6-4c77-8e6a-28c62592b13b,47 +1834-150319-3,5,100,0.05,0199ee26-7405-4cd0-ac11-dbaa3c330356,67 +1834-150319-4,5,100,0.05,aacad4de-818a-4a74-b585-172e7eb1fa8b,11 +1834-150319-4,5,100,0.05,d8cb3830-9cbb-42de-9807-2d0545b43d1c,12 +1834-150319-4,5,100,0.05,499a6c0b-4f93-4fa8-a78c-fce18d305725,15 +1834-150319-4,5,100,0.05,9846e14e-08a4-431d-9bfc-403e83505036,16 +1834-150319-4,5,100,0.05,b68e9820-7f31-41f8-ad0f-7179c7413711,36 +1834-220319-1,5,100,0.05,50bea372-9a84-4167-934a-adb43d6fcde3,77 +1834-060319-1,6,100,0.05,021bf6f7-b1d7-458d-9fd5-81bbf34ad5dd,55 +1834-010319-1,6,100,0.05,021bf6f7-b1d7-458d-9fd5-81bbf34ad5dd,21 +1834-010319-3,6,100,0.05,838fdcc1-e031-4bc7-a818-caed33f36db7,55 +1834-010319-1,6,100,0.05,838fdcc1-e031-4bc7-a818-caed33f36db7,22 +1834-010319-3,6,100,0.05,1d7eb45e-8d2b-4ff1-b2a5-8c2304d8ed2f,53 +1834-010319-3,6,100,0.05,767954a1-c204-4e29-b3b9-6c5436a498dc,91 +1834-010319-4,6,100,0.05,62e17327-2136-4aff-96bd-4c3392119368,44 +1834-010319-5,6,100,0.05,62e17327-2136-4aff-96bd-4c3392119368,35 +1834-010319-5,6,100,0.05,c3d98537-a9d1-4bc1-9a84-314de43999fa,20 +1834-010319-4,6,100,0.05,c3d98537-a9d1-4bc1-9a84-314de43999fa,46 +1834-010319-5,6,100,0.05,a1067402-0b01-4f53-b684-b9c1d4946a31,33 +1834-060319-2,6,100,0.05,3ead599e-aa46-4be0-bc4a-4a9896535be5,39 +1834-060319-3,6,100,0.05,3ead599e-aa46-4be0-bc4a-4a9896535be5,32 +1834-060319-1,6,100,0.05,3ead599e-aa46-4be0-bc4a-4a9896535be5,58 +1834-060319-2,6,100,0.05,b214c130-7830-426d-90b4-145c7fe476b7,122 +1834-060319-3,6,100,0.05,b214c130-7830-426d-90b4-145c7fe476b7,43 +1834-060319-2,6,100,0.05,b5ed181b-4b74-49d1-980c-2b9651c0ded8,40 +1834-060319-3,6,100,0.05,24e942a8-4448-4ef0-b990-1cdb161f1beb,30 +1834-060319-2,6,100,0.05,24e942a8-4448-4ef0-b990-1cdb161f1beb,45 +1834-060319-4,6,100,0.05,24e942a8-4448-4ef0-b990-1cdb161f1beb,19 +1834-060319-3,6,100,0.05,754d05a2-f6a9-4155-9f64-69ade6f50a96,28 +1834-060319-4,6,100,0.05,61be488d-6c86-4386-af06-e054183543a3,21 +1834-060319-4,6,100,0.05,8081a3b7-da28-48a4-aa62-31307fd0f177,22 +1834-110319-1,6,100,0.05,0afb8188-2ed3-4123-af62-2181652d9456,20 +1834-110319-1,6,100,0.05,86033f51-0950-4277-aed5-300b64934a06,44 +1834-110319-2,6,100,0.05,28718409-6a9f-45f6-8bfe-56a8579fb4a4,34 +1834-110319-2,6,100,0.05,8ca774d4-c5bf-4884-8a44-2f1f7b904679,38 +1834-120319-1,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,33 +1834-150319-4,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,21 +1834-150319-1,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,29 +1834-120319-3,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,56 +1834-120319-4,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,55 +1834-110319-2,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,39 +1834-150319-3,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,23 +1834-150319-2,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,26 +1834-120319-2,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,55 +1834-110319-2,6,100,0.05,89589911-d40e-4b69-91ab-83f5dae753bc,77 +1834-110319-2,6,100,0.05,474a90b7-75e4-4d33-968d-6d3020e34212,87 +1834-110319-3,6,100,0.05,1b35e75d-b923-4953-afd6-5326f4d47471,70 +1834-110319-3,6,100,0.05,551a161a-5152-40df-8a1d-e209481e124c,83 +1834-110319-5,6,100,0.05,21061932-1d6c-40af-bd58-47e9342b17d7,30 +1834-110319-5,6,100,0.05,8c3907b2-eb1a-4d50-8ebd-129cdf52c293,31 +1834-110319-6,6,100,0.05,7dd9059f-0d20-4e37-ac09-bfc81528005b,27 +1834-110319-6,6,100,0.05,c4b7cc21-0497-4acb-8c24-077a25b19f67,28 +1834-110319-6,6,100,0.05,d97b4f66-8787-4efa-bae0-f1e27a267d86,29 +1834-120319-1,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,31 +1834-120319-4,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,71 +1834-120319-2,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,23 +1834-120319-3,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,66 +1834-150319-1,6,100,0.05,83e4829b-5a58-4c49-ba21-77b1fdde5dea,31 +1834-150319-1,6,100,0.05,d445d411-5107-4767-a42c-c1527223ec9b,32 +1834-150319-1,6,100,0.05,599358d7-607e-4579-a756-cd1aefe1b223,33 +1834-150319-1,6,100,0.05,3535728e-5721-4f9f-a542-7f4faa37e5ad,34 +1834-150319-4,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,20 +1834-220319-1,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,24 +1834-150319-2,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,27 +1834-150319-3,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,65 +1834-150319-2,6,100,0.05,ee96c439-09de-4606-958d-8ca116d96d39,28 +1834-150319-3,6,100,0.05,cacc775e-a02b-4f3c-b51a-9149f98fa3ab,59 +1834-150319-3,6,100,0.05,313cf53d-59c0-47bf-b7e8-058c82b4d435,63 +1834-150319-4,6,100,0.05,db6381cb-f62b-4c73-9c0e-ab3f436dde5f,22 +1834-220319-1,6,100,0.05,ce51195f-3741-408b-a555-ceb73ce07ad0,26 +1834-220319-1,6,100,0.05,baa0e90d-317c-46db-9b84-cdceb1eff30d,41 +1834-220319-1,6,100,0.05,a6aea939-51c7-4cb4-bdf3-767937c5d4b3,69 +1834-220319-1,6,100,0.05,66e4874c-f061-4c11-b46a-ede7e71156c2,75 +1834-220319-2,6,100,0.05,a15bd840-e664-4c30-aee3-5ca17af87394,17 +1834-220319-2,6,100,0.05,bfac0cce-de5e-4392-ac4e-7c49c05d44f1,18 +1834-220319-2,6,100,0.05,b6a9b95a-474d-4eda-a9c3-aa45354614e6,19 +1834-220319-2,6,100,0.05,eee313ff-1f62-4705-910d-42f6efd5fad0,43 +1834-220319-2,6,100,0.05,9f40f9f0-faff-4ef8-9ab8-5b658e9822ad,45 +1834-220319-4,6,100,0.05,de8e860b-0974-498f-b91a-cbee61e11f4c,39 +1834-220319-3,6,100,0.05,de8e860b-0974-498f-b91a-cbee61e11f4c,22 +1834-220319-3,6,100,0.05,f3f224f5-ac7b-4304-8a95-7667b3e3632d,30 +1834-220319-4,6,100,0.05,f3f224f5-ac7b-4304-8a95-7667b3e3632d,29 +1834-220319-4,6,100,0.05,1f84f053-ece0-4d40-bf65-fd0857ab5c92,30 +1834-220319-3,6,100,0.05,1f84f053-ece0-4d40-bf65-fd0857ab5c92,37 +1834-010319-1,7,100,0.05,67fe05bd-16af-4f37-80bf-3ad24dabe5dd,24 +1834-010319-1,7,100,0.05,b613cf34-c12f-4a75-b5c7-27adff4a18e8,25 +1834-010319-3,7,100,0.05,8d8cfbaa-fa24-4eb1-b877-3161afd472d9,57 +1834-010319-3,7,100,0.05,b9fa6092-df69-4022-bb78-a7fe31f7e23d,58 +1834-010319-3,7,100,0.05,76043e1c-f615-472e-b57c-4b61fe1cadb5,60 +1834-010319-3,7,100,0.05,c9fd8a58-c3c6-42f9-ab7e-2679596875e2,61 +1834-010319-3,7,100,0.05,38bba347-47df-4c57-a99b-633ed5c522dc,63 +1834-220319-2,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,20 +1834-220319-3,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,25 +1834-010319-5,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,19 +1834-220319-4,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,31 +1834-010319-4,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,45 +1834-010319-4,7,100,0.05,5b282cae-5b65-48d0-8519-301ee007effa,48 +1834-010319-5,7,100,0.05,d56c29ac-a301-431b-82f8-d20bc2b251cf,23 +1834-010319-4,7,100,0.05,d56c29ac-a301-431b-82f8-d20bc2b251cf,49 +1834-010319-5,7,100,0.05,851b0f89-f74a-4bf6-acf9-b10c392d51d8,21 +1834-010319-5,7,100,0.05,713d30a9-fe7f-400b-bdd3-273e1ad53232,39 +1834-060319-1,7,100,0.05,46b3613b-6e9c-44ad-ab57-4622c051eeee,59 +1834-060319-1,7,100,0.05,df527a21-e349-47a8-8b2f-d5e89d458bea,91 +1834-060319-2,7,100,0.05,ea4e69a3-143b-4bc0-994d-1a1ffdf756e4,41 +1834-060319-2,7,100,0.05,16fd6f7f-271d-49aa-bd88-dd111f031a52,42 +1834-060319-3,7,100,0.05,16fd6f7f-271d-49aa-bd88-dd111f031a52,33 +1834-060319-3,7,100,0.05,8921fdf4-0d5b-4cbb-84f6-a7f5a71d9e15,35 +1834-060319-2,7,100,0.05,8921fdf4-0d5b-4cbb-84f6-a7f5a71d9e15,43 +1834-060319-4,7,100,0.05,8921fdf4-0d5b-4cbb-84f6-a7f5a71d9e15,24 +1834-060319-2,7,100,0.05,2b6551c1-a67b-4642-a173-283e771f7fe4,44 +1834-060319-4,7,100,0.05,2b6551c1-a67b-4642-a173-283e771f7fe4,26 +1834-060319-3,7,100,0.05,2b6551c1-a67b-4642-a173-283e771f7fe4,37 +1834-060319-2,7,100,0.05,1e39f75a-2173-4433-82de-ef848e4954c3,46 +1834-060319-3,7,100,0.05,1e39f75a-2173-4433-82de-ef848e4954c3,41 +1834-060319-4,7,100,0.05,1e39f75a-2173-4433-82de-ef848e4954c3,28 +1834-060319-3,7,100,0.05,d4eb0f77-0a4a-4e6f-8365-d1be6ba62502,40 +1834-060319-4,7,100,0.05,ca1b3e99-853a-48c9-9d14-778e7a7269a9,23 +1834-060319-4,7,100,0.05,0f8c0d64-b4a5-4d2a-8f33-fad87723f5b4,29 +1834-110319-1,7,100,0.05,0f8c0d64-b4a5-4d2a-8f33-fad87723f5b4,30 +1834-110319-1,7,100,0.05,ab8c205a-b2c1-4084-a857-4377fcca0f06,23 +1834-110319-2,7,100,0.05,ab8c205a-b2c1-4084-a857-4377fcca0f06,41 +1834-110319-1,7,100,0.05,f4ea6e1d-5739-4cb0-a56f-cd0000756e42,24 +1834-110319-1,7,100,0.05,1627bbbd-e16c-43ab-b1a8-5f06969adc4c,25 +1834-110319-2,7,100,0.05,1627bbbd-e16c-43ab-b1a8-5f06969adc4c,45 +1834-110319-1,7,100,0.05,cdb89f6d-6f78-48d5-80cd-a4efe3ce60ef,26 +1834-110319-2,7,100,0.05,5a0d6354-2a6c-4c97-9411-fae7c2e40b5f,104 +1834-110319-2,7,100,0.05,e953fc20-f0d5-4b63-a839-83e1310b127a,40 +1834-110319-2,7,100,0.05,4a2c3fc9-4803-4728-ad19-e0cf147b76f0,47 +1834-110319-2,7,100,0.05,0487dc85-31d8-46dd-ac77-7ed48e3fc5ad,86 +1834-110319-2,7,100,0.05,698e435e-8b80-4b36-a50d-6daea3096071,96 +1834-110319-3,7,100,0.05,e1b066e0-f52c-4d5a-8947-a8f8da3dbe81,27 +1834-110319-3,7,100,0.05,83121451-85d0-4d5a-9e99-6fadce72bfa3,28 +1834-110319-3,7,100,0.05,08e8401f-7a5d-4ac0-ac7e-95f448b111ab,29 +1834-110319-3,7,100,0.05,e4827cd4-0f34-419f-9e60-ad6c2fbb2fcd,30 +1834-110319-5,7,100,0.05,61761d51-3273-454b-8707-555f265c9e6e,78 +1834-110319-5,7,100,0.05,5ee19cc7-585e-4469-bb15-2999b046e4dc,90 +1834-110319-6,7,100,0.05,d37b7899-7ae3-4263-823c-6af2f294d798,30 +1834-110319-6,7,100,0.05,280d5431-ee95-4173-a054-1f02124be41c,31 +1834-120319-2,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,26 +1834-120319-1,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,16 +1834-120319-3,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,28 +1834-120319-4,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,22 +1834-120319-1,7,100,0.05,194a642f-5f5c-496e-af0a-7474a3b2b84e,17 +1834-120319-3,7,100,0.05,1f16e8bd-4952-432f-8aec-a31876f651d7,52 +1834-120319-2,7,100,0.05,1f16e8bd-4952-432f-8aec-a31876f651d7,61 +1834-120319-4,7,100,0.05,1f16e8bd-4952-432f-8aec-a31876f651d7,52 +1834-120319-2,7,100,0.05,8ba033e2-b959-49d5-9a94-222dc23c8fc5,78 +1834-150319-1,7,100,0.05,f53ba045-bc25-4e1a-bc8c-2437af5d3af9,37 +1834-150319-1,7,100,0.05,7e0b064f-d850-459a-aebd-8905673e7a6b,41 +1834-150319-1,7,100,0.05,06b521be-fa9f-465e-9075-2e2d12a2ff1f,44 +1834-150319-1,7,100,0.05,11b7c89b-8431-475f-8471-25f5b3f3d2ba,45 +1834-150319-1,7,100,0.05,c0caf6f3-8280-4e5e-9e24-9ecc0a92645f,47 +1834-150319-1,7,100,0.05,e6f9d4cf-e263-4f6c-b2e6-e1be8b67f2e0,56 +1834-150319-3,7,100,0.05,76030eec-c9a1-4bba-bf4e-8ba12f487f4e,53 +1834-150319-1,7,100,0.05,76030eec-c9a1-4bba-bf4e-8ba12f487f4e,74 +1834-150319-1,7,100,0.05,a647bd81-c486-43da-92a7-e0da9a1c89d2,76 +1834-150319-1,7,100,0.05,2f4186af-7079-46ba-bda9-b77d70459b3e,77 +1834-150319-1,7,100,0.05,49ca57ca-8796-4d3e-88cd-7120eaaf6c92,92 +1834-150319-2,7,100,0.05,55ad4ae8-db2e-43b1-9517-049375f4f1dd,29 +1834-150319-2,7,100,0.05,fa2905f9-3070-4aec-ac2f-e7e55b945823,30 +1834-150319-2,7,100,0.05,bca39b92-9f54-4405-bfc1-d1104a8f4334,31 +1834-150319-2,7,100,0.05,04cc84c9-eea0-4848-ba22-e82992bb2264,32 +1834-150319-2,7,100,0.05,df25b7da-fc7b-4e2c-abf7-7dfd74a4da49,37 +1834-150319-2,7,100,0.05,f61cdff0-8458-4cee-b94b-6a54da35ae96,42 +1834-150319-3,7,100,0.05,638b2bbb-fe09-41a5-bb3c-00d964e0066b,27 +1834-150319-3,7,100,0.05,c5d4d53e-d074-4be7-af93-19fa6644e485,28 +1834-150319-3,7,100,0.05,5ca32a75-fb97-43a3-9688-89c76593c64e,30 +1834-150319-3,7,100,0.05,6786c504-a6f6-4ca2-88ef-740161529a1c,44 +1834-150319-3,7,100,0.05,84161ccd-4ea7-4fb3-bac3-65c092f1a328,45 +1834-150319-3,7,100,0.05,74ffdb38-658e-460e-a02d-5ce5098a8e06,49 +1834-150319-3,7,100,0.05,fb79170c-f42f-45d3-bfa2-1c655fb18176,55 +1834-150319-3,7,100,0.05,cda8e309-30b0-41ba-b48f-4080bd856ffd,57 +1834-150319-4,7,100,0.05,39241d89-d43c-4b4a-b636-77b7ef8b8979,23 +1834-150319-4,7,100,0.05,7bad7f0b-c55c-4139-9c4a-82fdb0253aa6,24 +1834-150319-4,7,100,0.05,80e6f4a4-ba9b-4dbe-81e0-ce8458e9895c,25 +1834-150319-4,7,100,0.05,5febb318-f33b-4b7e-98ff-0426c3ea70b5,26 +1834-150319-4,7,100,0.05,8fb53487-962a-40e4-bafa-5074102c7eca,33 +1834-220319-1,7,100,0.05,ed26b894-7548-45d1-b09b-da43a58730a5,29 +1834-220319-1,7,100,0.05,801f1c19-2b94-49b4-bfed-72359e22e795,36 +1834-220319-1,7,100,0.05,9033063c-9842-49a9-be92-7ab74c8540f3,37 +1834-220319-1,7,100,0.05,8de37e93-61b4-4fe8-ab49-5cfa18d02a71,49 +1834-220319-1,7,100,0.05,f4b1e9bf-90cc-4102-b814-dad7a85b7bfa,67 +1834-220319-2,7,100,0.05,4268ef94-0c73-4883-860c-2e6b3658bf1d,21 +1834-220319-4,7,100,0.05,197b54fc-3242-4a35-afbd-8db9d444f58c,45 +1834-220319-3,7,100,0.05,197b54fc-3242-4a35-afbd-8db9d444f58c,28 +1834-220319-2,7,100,0.05,197b54fc-3242-4a35-afbd-8db9d444f58c,29 +1834-220319-2,7,100,0.05,cf608811-7ad6-410e-93e2-efa1114d6ba7,39 +1834-220319-3,7,100,0.05,cf608811-7ad6-410e-93e2-efa1114d6ba7,26 +1834-220319-2,7,100,0.05,b4aea166-1104-4f07-b4c9-35c2582a3691,41 +1834-220319-3,7,100,0.05,61a4f383-08eb-44d8-b434-e6cb4f2a31c0,23 +1834-220319-3,7,100,0.05,aa3e4061-fa80-4101-ac7e-e3e896074240,31 +1834-220319-4,7,100,0.05,0bf35ce6-a932-4f1c-ae29-07bf6a81e1ef,32 +1834-220319-4,7,100,0.05,0c1b699a-4568-45b3-afc9-506e299042a0,33 +1834-220319-4,7,100,0.05,910fe900-f52a-41c1-aae2-b53259911cca,46 diff --git a/actions/identify-neurons/data/1839-graphs/graph-group-0.yaml b/actions/identify-neurons/data/1839-graphs/graph-group-0.yaml new file mode 100644 index 000000000..dd2eeda91 --- /dev/null +++ b/actions/identify-neurons/data/1839-graphs/graph-group-0.yaml @@ -0,0 +1,151 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1839-120619-2_76: + 1839-200619-2_104: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85645, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + cvb+BZxuzj8= + 1839-290519-1_120: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2692, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y5aCuvsjxj8= + 1839-290519-2_117: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85647, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8leElxjeyj8= + 1839-290519-3_111: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5ZxaSu8D0z8= + 1839-200619-2_104: + 1839-120619-2_76: *id002 + 1839-290519-1_120: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1937, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sYhlUVcezD8= + 1839-290519-2_117: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QybzvxFuyj8= + 1839-290519-3_111: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AC60wEiDzT8= + 1839-200619-2_98: + 1839-290519-2_107: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EWbcG/Cwyj8= + 1839-290519-1_120: + 1839-120619-2_76: *id003 + 1839-200619-2_104: *id004 + 1839-290519-2_117: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3445, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5ujNh52xwz8= + 1839-290519-3_111: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MUrytaS5yz8= + 1839-290519-2_107: + 1839-200619-2_98: *id005 + 1839-290519-3_111: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A7vy3+e5sz8= + 1839-290519-2_117: + 1839-120619-2_76: *id006 + 1839-200619-2_104: *id007 + 1839-290519-1_120: *id008 + 1839-290519-3_111: + 1839-120619-2_76: *id009 + 1839-200619-2_104: *id010 + 1839-290519-1_120: *id011 + 1839-290519-2_107: *id012 +_node: &id015 + 1839-120619-2_76: + action_id: 1839-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id013 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + TAAAAAAAAAA= + 1839-200619-2_104: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id013 + - !!binary | + aAAAAAAAAAA= + 1839-200619-2_98: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id013 + - !!binary | + YgAAAAAAAAA= + 1839-290519-1_120: + action_id: 1839-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id013 + - !!binary | + eAAAAAAAAAA= + 1839-290519-2_107: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id013 + - !!binary | + awAAAAAAAAA= + 1839-290519-2_117: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id013 + - !!binary | + dQAAAAAAAAA= + 1839-290519-3_111: + action_id: 1839-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id013 + - !!binary | + bwAAAAAAAAA= +adjlist_inner_dict_factory: &id014 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id014 +edge_attr_dict_factory: *id014 +graph: {} +node_dict_factory: *id014 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id015 diff --git a/actions/identify-neurons/data/1839-graphs/graph-group-1.yaml b/actions/identify-neurons/data/1839-graphs/graph-group-1.yaml new file mode 100644 index 000000000..984bf4283 --- /dev/null +++ b/actions/identify-neurons/data/1839-graphs/graph-group-1.yaml @@ -0,0 +1,104 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1839-120619-3_113: + 1839-120619-4_86: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + CXYbTHL9oT8= + 1839-200619-2_7: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83182, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HGWNFMJoxT8= + 1839-290519-1_110: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bt/sL+/70D8= + 1839-120619-4_104: {} + 1839-120619-4_84: {} + 1839-120619-4_86: + 1839-120619-3_113: *id002 + 1839-200619-2_7: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oogefWVdyD8= + 1839-290519-1_110: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uCXILPlM0T8= + 1839-200619-2_7: + 1839-120619-3_113: *id003 + 1839-120619-4_86: *id004 + 1839-290519-1_110: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1937, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1J1GQ4Y93z8= + 1839-290519-1_110: + 1839-120619-3_113: *id005 + 1839-120619-4_86: *id006 + 1839-200619-2_7: *id007 +_node: &id010 + 1839-120619-3_113: + action_id: 1839-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id008 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + cQAAAAAAAAA= + 1839-120619-4_104: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id008 + - !!binary | + aAAAAAAAAAA= + 1839-120619-4_84: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id008 + - !!binary | + VAAAAAAAAAA= + 1839-120619-4_86: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id008 + - !!binary | + VgAAAAAAAAA= + 1839-200619-2_7: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id008 + - !!binary | + BwAAAAAAAAA= + 1839-290519-1_110: + action_id: 1839-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id008 + - !!binary | + bgAAAAAAAAA= +adjlist_inner_dict_factory: &id009 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id009 +edge_attr_dict_factory: *id009 +graph: {} +node_dict_factory: *id009 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id010 diff --git a/actions/identify-neurons/data/1839-graphs/graph-group-2.yaml b/actions/identify-neurons/data/1839-graphs/graph-group-2.yaml new file mode 100644 index 000000000..ed9438a48 --- /dev/null +++ b/actions/identify-neurons/data/1839-graphs/graph-group-2.yaml @@ -0,0 +1,17 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1839-120619-3_129: {} +_node: + 1839-120619-3_129: + action_id: 1839-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + gQAAAAAAAAA= +adjlist_inner_dict_factory: &id001 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id001 +edge_attr_dict_factory: *id001 +graph: {} +node_dict_factory: *id001 diff --git a/actions/identify-neurons/data/1839-graphs/graph-group-3.yaml b/actions/identify-neurons/data/1839-graphs/graph-group-3.yaml new file mode 100644 index 000000000..d3c147be1 --- /dev/null +++ b/actions/identify-neurons/data/1839-graphs/graph-group-3.yaml @@ -0,0 +1,97 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1839-120619-3_137: + 1839-120619-4_29: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + BVG0luLo1z8= + 1839-200619-1_153: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80776, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yGeJn5Wj1z8= + 1839-200619-2_118: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83182, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a4O4pJSa4T8= + 1839-120619-4_112: {} + 1839-120619-4_29: + 1839-120619-3_137: *id002 + 1839-200619-1_153: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 78398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lI3IwQucyz8= + 1839-200619-2_118: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MZ9jA3cS0D8= + 1839-200619-1_153: + 1839-120619-3_137: *id003 + 1839-120619-4_29: *id004 + 1839-200619-2_118: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T0vN4gDN2T8= + 1839-200619-2_118: + 1839-120619-3_137: *id005 + 1839-120619-4_29: *id006 + 1839-200619-1_153: *id007 +_node: &id010 + 1839-120619-3_137: + action_id: 1839-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id008 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + iQAAAAAAAAA= + 1839-120619-4_112: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id008 + - !!binary | + cAAAAAAAAAA= + 1839-120619-4_29: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id008 + - !!binary | + HQAAAAAAAAA= + 1839-200619-1_153: + action_id: 1839-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id008 + - !!binary | + mQAAAAAAAAA= + 1839-200619-2_118: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id008 + - !!binary | + dgAAAAAAAAA= +adjlist_inner_dict_factory: &id009 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id009 +edge_attr_dict_factory: *id009 +graph: {} +node_dict_factory: *id009 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id010 diff --git a/actions/identify-neurons/data/1839-graphs/graph-group-4.yaml b/actions/identify-neurons/data/1839-graphs/graph-group-4.yaml new file mode 100644 index 000000000..eb156ed39 --- /dev/null +++ b/actions/identify-neurons/data/1839-graphs/graph-group-4.yaml @@ -0,0 +1,817 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1839-060619-1_240: + 1839-060619-3_101: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2868, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + uVYQ5Qk7yD8= + 1839-060619-4_230: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 92d5I1iJrj8= + 1839-060619-5_164: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7641, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kH3ERt5syD8= + 1839-120619-2_78: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84081, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wm1734JZxD8= + 1839-120619-3_115: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vYuWpoVqxD8= + 1839-120619-4_82: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CEwDxS4VxT8= + 1839-200619-1_141: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sh1NsjLhwz8= + 1839-200619-2_106: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a1ZcpzgbxT8= + 1839-290519-1_127: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cd2WM3j1tj8= + 1839-290519-2_39: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1566, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5UnWlgycvD8= + 1839-290519-3_117: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85437, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GsmPzMqEwj8= + 1839-060619-3_101: + 1839-060619-1_240: *id002 + 1839-060619-4_230: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2116, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gpLFGz0fyD8= + 1839-060619-5_164: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4773, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AlxjmN7vqz8= + 1839-120619-2_78: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mORXLeG0xj8= + 1839-120619-3_115: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83676, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RVFi2mxYxj8= + 1839-120619-4_110: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86054, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PYVZXoE3vT8= + 1839-200619-1_141: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78052, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YVnmdI4Hzj8= + 1839-200619-2_100: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80458, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + igoWGP1dvz8= + 1839-290519-1_127: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bEIRPs/NyD8= + 1839-290519-2_119: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LJ6/GS4JyT8= + 1839-290519-3_117: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1905, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iR+unaYgzD8= + 1839-060619-4_230: + 1839-060619-1_240: *id003 + 1839-060619-3_101: *id004 + 1839-060619-5_164: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JB6o3rDYxj8= + 1839-120619-2_78: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79097, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V1NIbZs9vz8= + 1839-120619-3_115: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81560, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6S0PS95awD8= + 1839-120619-4_82: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 61kx0kD6wj8= + 1839-200619-1_141: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 75936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pA/HQfoUwz8= + 1839-200619-2_108: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78342, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x5mYd0Q6wz8= + 1839-290519-1_127: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 9995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f02OtATosz8= + 1839-290519-2_39: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 6550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9UP7J4U5uT8= + 1839-290519-3_117: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /Ir1CcW/wT8= + 1839-060619-5_164: + 1839-060619-1_240: *id005 + 1839-060619-3_101: *id006 + 1839-060619-4_230: *id007 + 1839-120619-2_78: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 76440, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x2MF+lRTwz8= + 1839-120619-3_115: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4mDyMXqHwz8= + 1839-120619-4_110: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yJuL3s/9tj8= + 1839-200619-1_141: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 73279, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KbYKx1Q6zD8= + 1839-200619-2_100: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 75685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q26CD6HEuz8= + 1839-290519-1_127: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 12652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6N8NwGwkyD8= + 1839-290519-2_119: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 9207, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VLkHQHWIxj8= + 1839-290519-3_117: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 6678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vGkXLSO8yz8= + 1839-120619-2_78: + 1839-060619-1_240: *id008 + 1839-060619-3_101: *id009 + 1839-060619-4_230: *id010 + 1839-060619-5_164: *id011 + 1839-120619-3_115: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2463, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + grw5Zn7Gqz8= + 1839-120619-4_110: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4841, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XYZjn+CmtT8= + 1839-200619-1_141: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83239, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lBUkYyNEyj8= + 1839-200619-2_100: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85645, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pj+mbZOwwT8= + 1839-290519-1_127: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2692, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XcIepidpwT8= + 1839-290519-2_39: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85647, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GoltJonDwT8= + 1839-290519-3_117: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cWFckxk9xz8= + 1839-120619-3_115: + 1839-060619-1_240: *id012 + 1839-060619-3_101: *id013 + 1839-060619-4_230: *id014 + 1839-060619-5_164: *id015 + 1839-120619-2_78: *id016 + 1839-120619-4_110: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T686RScHuD8= + 1839-200619-2_100: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83182, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uU+qwegowz8= + 1839-290519-1_122: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + coIpXqS+zT8= + 1839-290519-2_39: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n7CV7cw1wT8= + 1839-290519-3_117: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R5jqwCUbxz8= + 1839-120619-3_121: + 1839-120619-4_82: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VBVpIjOavz8= + 1839-200619-1_141: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80776, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7Hf/HpGlxj8= + 1839-200619-2_108: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83182, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A9Ib87dswT8= + 1839-290519-1_127: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GN8kWjOFwD8= + 1839-290519-2_119: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WPboETuJxj8= + 1839-290519-3_72: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hpSFnNAv0D8= + 1839-120619-4_102: {} + 1839-120619-4_110: + 1839-060619-3_101: *id017 + 1839-060619-5_164: *id018 + 1839-120619-2_78: *id019 + 1839-120619-3_115: *id020 + 1839-200619-1_141: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 78398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dipj0LijyD8= + 1839-200619-2_100: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h7Mc5AA7tj8= + 1839-290519-2_119: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4088, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GCI9MG4dwD8= + 1839-120619-4_120: + 1839-200619-2_106: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5j8IV2jMwT8= + 1839-290519-1_122: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 973CvNB2xz8= + 1839-290519-3_72: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qYb/U9oQ0z8= + 1839-120619-4_82: + 1839-060619-1_240: *id021 + 1839-060619-4_230: *id022 + 1839-120619-3_121: *id023 + 1839-200619-2_108: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wKSYlPk6yD8= + 1839-290519-1_127: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZbxNGbx8wD8= + 1839-290519-2_39: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4088, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GdoHdtQ4wD8= + 1839-290519-3_117: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PPXhBIztxD8= + 1839-200619-1_141: + 1839-060619-1_240: *id024 + 1839-060619-3_101: *id025 + 1839-060619-4_230: *id026 + 1839-060619-5_164: *id027 + 1839-120619-2_78: *id028 + 1839-120619-3_121: *id029 + 1839-120619-4_110: *id030 + 1839-200619-2_108: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SYEv/511uj8= + 1839-290519-1_127: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85931, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6bb4bK0oxT8= + 1839-290519-2_119: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82486, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KKDETzNexT8= + 1839-290519-3_117: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 79957, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S+PAB8ZvxD8= + 1839-200619-2_100: + 1839-060619-3_101: *id031 + 1839-060619-5_164: *id032 + 1839-120619-2_78: *id033 + 1839-120619-3_115: *id034 + 1839-120619-4_110: *id035 + 1839-290519-1_122: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1937, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W24uFAV7yj8= + 1839-290519-2_119: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9g+prK/2vz8= + 1839-200619-2_106: + 1839-060619-1_240: *id036 + 1839-120619-4_120: *id037 + 1839-290519-1_127: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1937, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J+cS+IYWwz8= + 1839-290519-2_39: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FjqD1821xT8= + 1839-290519-3_72: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +LQ3Thg50D8= + 1839-200619-2_108: + 1839-060619-4_230: *id038 + 1839-120619-3_121: *id039 + 1839-120619-4_82: *id040 + 1839-200619-1_141: *id041 + 1839-290519-3_117: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FPdp4Ur+xD8= + 1839-290519-1_122: + 1839-120619-3_115: *id042 + 1839-120619-4_120: *id043 + 1839-200619-2_100: *id044 + 1839-290519-2_119: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3445, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MeXouN3Uyj8= + 1839-290519-3_72: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d0Nnxn371T8= + 1839-290519-1_127: + 1839-060619-1_240: *id045 + 1839-060619-3_101: *id046 + 1839-060619-4_230: *id047 + 1839-060619-5_164: *id048 + 1839-120619-2_78: *id049 + 1839-120619-3_121: *id050 + 1839-120619-4_82: *id051 + 1839-200619-1_141: *id052 + 1839-200619-2_106: *id053 + 1839-290519-2_39: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3445, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1KGhTHlbpT8= + 1839-290519-3_117: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iEKpwtZHwj8= + 1839-290519-2_119: + 1839-060619-3_101: *id054 + 1839-060619-5_164: *id055 + 1839-120619-3_121: *id056 + 1839-120619-4_110: *id057 + 1839-200619-1_141: *id058 + 1839-200619-2_100: *id059 + 1839-290519-1_122: *id060 + 1839-290519-3_72: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vc/DZiCO0T8= + 1839-290519-2_39: + 1839-060619-1_240: *id061 + 1839-060619-4_230: *id062 + 1839-120619-2_78: *id063 + 1839-120619-3_115: *id064 + 1839-120619-4_82: *id065 + 1839-200619-2_106: *id066 + 1839-290519-1_127: *id067 + 1839-290519-3_117: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VEhyVTTIwz8= + 1839-290519-3_117: + 1839-060619-1_240: *id068 + 1839-060619-3_101: *id069 + 1839-060619-4_230: *id070 + 1839-060619-5_164: *id071 + 1839-120619-2_78: *id072 + 1839-120619-3_115: *id073 + 1839-120619-4_82: *id074 + 1839-200619-1_141: *id075 + 1839-200619-2_108: *id076 + 1839-290519-1_127: *id077 + 1839-290519-2_39: *id078 + 1839-290519-3_72: + 1839-120619-3_121: *id079 + 1839-120619-4_120: *id080 + 1839-200619-2_106: *id081 + 1839-290519-1_122: *id082 + 1839-290519-2_119: *id083 +_node: &id086 + 1839-060619-1_240: + action_id: 1839-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id084 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + 8AAAAAAAAAA= + 1839-060619-3_101: + action_id: 1839-060619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + ZQAAAAAAAAA= + 1839-060619-4_230: + action_id: 1839-060619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + 5gAAAAAAAAA= + 1839-060619-5_164: + action_id: 1839-060619-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + pAAAAAAAAAA= + 1839-120619-2_78: + action_id: 1839-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + TgAAAAAAAAA= + 1839-120619-3_115: + action_id: 1839-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + cwAAAAAAAAA= + 1839-120619-3_121: + action_id: 1839-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + eQAAAAAAAAA= + 1839-120619-4_102: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + ZgAAAAAAAAA= + 1839-120619-4_110: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + bgAAAAAAAAA= + 1839-120619-4_120: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + eAAAAAAAAAA= + 1839-120619-4_82: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + UgAAAAAAAAA= + 1839-200619-1_141: + action_id: 1839-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + jQAAAAAAAAA= + 1839-200619-2_100: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + ZAAAAAAAAAA= + 1839-200619-2_106: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + agAAAAAAAAA= + 1839-200619-2_108: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + bAAAAAAAAAA= + 1839-290519-1_122: + action_id: 1839-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + egAAAAAAAAA= + 1839-290519-1_127: + action_id: 1839-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + fwAAAAAAAAA= + 1839-290519-2_119: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + dwAAAAAAAAA= + 1839-290519-2_39: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + JwAAAAAAAAA= + 1839-290519-3_117: + action_id: 1839-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + dQAAAAAAAAA= + 1839-290519-3_72: + action_id: 1839-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id084 + - !!binary | + SAAAAAAAAAA= +adjlist_inner_dict_factory: &id085 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id085 +edge_attr_dict_factory: *id085 +graph: {} +node_dict_factory: *id085 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id086 diff --git a/actions/identify-neurons/data/1839-graphs/graph-group-5.yaml b/actions/identify-neurons/data/1839-graphs/graph-group-5.yaml new file mode 100644 index 000000000..d78fa1fe6 --- /dev/null +++ b/actions/identify-neurons/data/1839-graphs/graph-group-5.yaml @@ -0,0 +1,660 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1839-060619-3_87: + 1839-060619-4_228: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2116, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + ht3jyaESuD8= + 1839-060619-5_138: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4773, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + INqlSRnwkz8= + 1839-120619-1_158: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A0P60yfsxj8= + 1839-120619-2_47: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qXWnB30mvj8= + 1839-120619-3_131: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83676, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fupk6pv+uz8= + 1839-200619-1_145: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78052, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dbdx/ePrxz8= + 1839-200619-2_96: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80458, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uOakgK6pwD8= + 1839-290519-1_133: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 18HUyVolsD8= + 1839-290519-2_95: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + r3MFEZydtj8= + 1839-290519-3_115: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1905, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d7uER8ZHwD8= + 1839-060619-4_228: + 1839-060619-3_87: *id002 + 1839-060619-5_138: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mnNJjF+Otj8= + 1839-120619-1_158: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 76486, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jx9mCXWYyD8= + 1839-120619-2_47: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79097, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A0+hcnIhxj8= + 1839-120619-3_131: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81560, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bl1DuRDgwj8= + 1839-200619-1_145: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 75936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BzHqVUqnwj8= + 1839-200619-2_96: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78342, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jj2bnw2dwT8= + 1839-290519-1_133: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 9995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z/u9cymesz8= + 1839-290519-2_95: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 6550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KysXZYM0wT8= + 1839-290519-3_115: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bRATUSMOuz8= + 1839-060619-5_138: + 1839-060619-3_87: *id003 + 1839-060619-4_228: *id004 + 1839-120619-1_158: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 73829, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Op5IMANSxz8= + 1839-120619-2_104: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 76440, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s6mZR5oFxT8= + 1839-120619-3_131: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zYXr2azWvT8= + 1839-200619-1_145: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 73279, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vbi8laI1xz8= + 1839-200619-2_96: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 75685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8WTgZ1SnwD8= + 1839-290519-1_133: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 12652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q83aKSkrrT8= + 1839-290519-2_95: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 9207, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dxANWCyatj8= + 1839-290519-3_115: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 6678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BZcVTlAGwD8= + 1839-060619-5_170: + 1839-120619-2_47: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 76440, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5lmj4fRjzz8= + 1839-290519-1_137: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 12652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z50i9m2ywj8= + 1839-290519-2_125: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 9207, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bF6jvH9cwz8= + 1839-290519-3_119: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 6678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MH3bQHbn0D8= + 1839-120619-1_158: + 1839-060619-3_87: *id005 + 1839-060619-4_228: *id006 + 1839-060619-5_138: *id007 + 1839-120619-2_47: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RxVj5px/xz8= + 1839-120619-3_131: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HUdhSMkpxT8= + 1839-200619-1_145: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jX7pMYRVwj8= + 1839-200619-2_96: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8+N6mhbDxT8= + 1839-290519-1_137: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kj+8EhddwT8= + 1839-290519-2_125: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83036, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zFmL/F3yuj8= + 1839-290519-3_115: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80507, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D9nmYa1jwD8= + 1839-120619-2_104: + 1839-060619-5_138: *id008 + 1839-290519-1_137: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2692, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vt6RSFQqyj8= + 1839-290519-2_125: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85647, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xZt4ZqdjyD8= + 1839-290519-3_119: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vZt/Y7VszT8= + 1839-120619-2_47: + 1839-060619-3_87: *id009 + 1839-060619-4_228: *id010 + 1839-060619-5_170: *id011 + 1839-120619-1_158: *id012 + 1839-120619-3_131: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2463, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rEB3XyiNtz8= + 1839-200619-1_145: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83239, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /TSYG1zmxz8= + 1839-200619-2_96: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85645, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hnoX8gYqxj8= + 1839-290519-1_133: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2692, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GoXTCoYowD8= + 1839-290519-2_95: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85647, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yQOIrvhUwT8= + 1839-290519-3_115: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v/3E3uDAxD8= + 1839-120619-3_131: + 1839-060619-3_87: *id013 + 1839-060619-4_228: *id014 + 1839-060619-5_138: *id015 + 1839-120619-1_158: *id016 + 1839-120619-2_47: *id017 + 1839-200619-1_145: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80776, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QwyKlqOVyT8= + 1839-200619-2_96: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83182, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yC8cw4KLwz8= + 1839-290519-1_133: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vMKH7eThvD8= + 1839-290519-2_95: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 34KuHk12wT8= + 1839-290519-3_115: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oN/e2QPDwj8= + 1839-200619-1_145: + 1839-060619-3_87: *id018 + 1839-060619-4_228: *id019 + 1839-060619-5_138: *id020 + 1839-120619-1_158: *id021 + 1839-120619-2_47: *id022 + 1839-120619-3_131: *id023 + 1839-200619-2_96: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qXU5lUgqvj8= + 1839-290519-1_137: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85931, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1AikcNhvwT8= + 1839-290519-2_125: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82486, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xp9sRDvOvj8= + 1839-290519-3_115: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 79957, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + av/5xDbYuz8= + 1839-200619-2_96: + 1839-060619-3_87: *id024 + 1839-060619-4_228: *id025 + 1839-060619-5_138: *id026 + 1839-120619-1_158: *id027 + 1839-120619-2_47: *id028 + 1839-120619-3_131: *id029 + 1839-200619-1_145: *id030 + 1839-290519-1_133: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1937, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4EpQIyOLwD8= + 1839-290519-2_125: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +xEUjZu0vj8= + 1839-290519-3_115: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CXs1fdXNuD8= + 1839-290519-1_133: + 1839-060619-3_87: *id031 + 1839-060619-4_228: *id032 + 1839-060619-5_138: *id033 + 1839-120619-2_47: *id034 + 1839-120619-3_131: *id035 + 1839-200619-2_96: *id036 + 1839-290519-2_95: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3445, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k5fWxpdesz8= + 1839-290519-3_119: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g6QmWYQuyT8= + 1839-290519-1_137: + 1839-060619-5_170: *id037 + 1839-120619-1_158: *id038 + 1839-120619-2_104: *id039 + 1839-200619-1_145: *id040 + 1839-290519-2_125: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3445, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nIHobC8+tD8= + 1839-290519-3_115: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5ZQqIomcuD8= + 1839-290519-2_125: + 1839-060619-5_170: *id041 + 1839-120619-1_158: *id042 + 1839-120619-2_104: *id043 + 1839-200619-1_145: *id044 + 1839-200619-2_96: *id045 + 1839-290519-1_137: *id046 + 1839-290519-3_115: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wLp+x5PbtD8= + 1839-290519-2_146: {} + 1839-290519-2_148: {} + 1839-290519-2_95: + 1839-060619-3_87: *id047 + 1839-060619-4_228: *id048 + 1839-060619-5_138: *id049 + 1839-120619-2_47: *id050 + 1839-120619-3_131: *id051 + 1839-290519-1_133: *id052 + 1839-290519-3_119: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jgcfq6T1yj8= + 1839-290519-3_115: + 1839-060619-3_87: *id053 + 1839-060619-4_228: *id054 + 1839-060619-5_138: *id055 + 1839-120619-1_158: *id056 + 1839-120619-2_47: *id057 + 1839-120619-3_131: *id058 + 1839-200619-1_145: *id059 + 1839-200619-2_96: *id060 + 1839-290519-1_137: *id061 + 1839-290519-2_125: *id062 + 1839-290519-3_119: + 1839-060619-5_170: *id063 + 1839-120619-2_104: *id064 + 1839-290519-1_133: *id065 + 1839-290519-2_95: *id066 +_node: &id069 + 1839-060619-3_87: + action_id: 1839-060619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id067 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + VwAAAAAAAAA= + 1839-060619-4_228: + action_id: 1839-060619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + 5AAAAAAAAAA= + 1839-060619-5_138: + action_id: 1839-060619-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + igAAAAAAAAA= + 1839-060619-5_170: + action_id: 1839-060619-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + qgAAAAAAAAA= + 1839-120619-1_158: + action_id: 1839-120619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + ngAAAAAAAAA= + 1839-120619-2_104: + action_id: 1839-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + aAAAAAAAAAA= + 1839-120619-2_47: + action_id: 1839-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + LwAAAAAAAAA= + 1839-120619-3_131: + action_id: 1839-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + gwAAAAAAAAA= + 1839-200619-1_145: + action_id: 1839-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + kQAAAAAAAAA= + 1839-200619-2_96: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + YAAAAAAAAAA= + 1839-290519-1_133: + action_id: 1839-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + hQAAAAAAAAA= + 1839-290519-1_137: + action_id: 1839-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + iQAAAAAAAAA= + 1839-290519-2_125: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + fQAAAAAAAAA= + 1839-290519-2_146: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + kgAAAAAAAAA= + 1839-290519-2_148: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + lAAAAAAAAAA= + 1839-290519-2_95: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + XwAAAAAAAAA= + 1839-290519-3_115: + action_id: 1839-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + cwAAAAAAAAA= + 1839-290519-3_119: + action_id: 1839-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id067 + - !!binary | + dwAAAAAAAAA= +adjlist_inner_dict_factory: &id068 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id068 +edge_attr_dict_factory: *id068 +graph: {} +node_dict_factory: *id068 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id069 diff --git a/actions/identify-neurons/data/1839-graphs/graph-group-6.yaml b/actions/identify-neurons/data/1839-graphs/graph-group-6.yaml new file mode 100644 index 000000000..23c7ced9d --- /dev/null +++ b/actions/identify-neurons/data/1839-graphs/graph-group-6.yaml @@ -0,0 +1,979 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1839-060619-3_91: + 1839-060619-5_142: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4773, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + os5jYUu8qz8= + 1839-120619-1_143: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UMN7v8IfuT8= + 1839-120619-2_86: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ipvbtSL/wz8= + 1839-120619-3_123: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83676, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kxa87YJvxT8= + 1839-120619-4_122: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86054, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SV/WYC+Kuz8= + 1839-200619-1_139: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78052, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZUhlTbIJvj8= + 1839-200619-2_54: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80458, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x7yhhKMYwD8= + 1839-290519-1_116: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PHux6jS+tT8= + 1839-290519-2_113: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NetdCD3Qtz8= + 1839-060619-5_142: + 1839-060619-3_91: *id002 + 1839-120619-1_143: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 73829, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + giSwD+DJuD8= + 1839-120619-2_86: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 76440, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pOx6aQFfxD8= + 1839-120619-3_71: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VHo1XMz4xz8= + 1839-120619-4_122: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZvdhZPHCwD8= + 1839-200619-1_139: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 73279, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yKnG/u80vD8= + 1839-200619-2_94: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 75685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0KkQQk2zwj8= + 1839-290519-1_116: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 12652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cQRY5KQXvj8= + 1839-290519-2_113: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 9207, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MCtLpOlHvj8= + 1839-060619-5_162: + 1839-120619-2_88: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 76440, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R+0HhTAB4T8= + 1839-120619-3_123: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VFvJpiFw3z8= + 1839-120619-4_132: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m1FQnFmJ1j8= + 1839-200619-2_54: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 75685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7z6LtmaU3T8= + 1839-060619-5_166: + 1839-120619-2_106: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 76440, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oX2ueVzz1D8= + 1839-120619-3_133: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 28kM4Y9z0z8= + 1839-120619-4_90: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RD5HhODtyD8= + 1839-200619-2_89: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 75685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vUIdoiUozz8= + 1839-290519-2_115: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 9207, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fYDyJHzj4T8= + 1839-060619-5_168: + 1839-120619-2_51: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 76440, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vA0GImPA3z8= + 1839-120619-3_125: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zl8O5sPF2j8= + 1839-120619-4_134: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FR1NNX6l0j8= + 1839-200619-2_48: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 75685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FDDMTMgc3z8= + 1839-290519-1_131: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 12652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uYKeU5w72T8= + 1839-120619-1_143: + 1839-060619-3_91: *id003 + 1839-060619-5_142: *id004 + 1839-120619-2_88: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6A9PCasBxj8= + 1839-120619-3_123: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oH4uVvuWxT8= + 1839-120619-4_122: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7452, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RbIPaXapwz8= + 1839-200619-1_139: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + opKB4zNFrj8= + 1839-200619-2_54: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CdeZbzIuwT8= + 1839-290519-1_116: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mIuz+D9pwz8= + 1839-290519-2_113: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83036, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dew5Rkr2wT8= + 1839-120619-2_106: + 1839-060619-5_166: *id005 + 1839-120619-3_133: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2463, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1YSAAVrrqz8= + 1839-120619-4_134: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4841, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z4ntZmOEqD8= + 1839-200619-2_112: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85645, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uvBr/G8BvT8= + 1839-290519-1_131: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2692, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C5scQgJ4sz8= + 1839-120619-2_51: + 1839-060619-5_168: *id006 + 1839-120619-3_125: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2463, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LaBB0iOCwj8= + 1839-120619-4_116: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4841, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lTr29tRKtD8= + 1839-200619-2_48: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85645, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9KEbjM5XwD8= + 1839-290519-2_115: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85647, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 74OIks0evj8= + 1839-120619-2_86: + 1839-060619-3_91: *id007 + 1839-060619-5_142: *id008 + 1839-120619-3_71: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2463, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3kds+MhOyz8= + 1839-120619-4_122: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4841, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3DjhCH9VwD8= + 1839-200619-2_94: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85645, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + axm/wC03xT8= + 1839-290519-1_116: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2692, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WqcvQzCzwD8= + 1839-120619-2_88: + 1839-060619-5_162: *id009 + 1839-120619-1_143: *id010 + 1839-120619-3_123: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2463, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IkFJ32Vesz8= + 1839-120619-4_124: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4841, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wmpaBnmNtz8= + 1839-200619-1_139: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83239, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3CMgmxkryT8= + 1839-200619-2_114: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85645, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KC1g/Xl+wz8= + 1839-290519-2_113: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85647, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z8ecv9pywj8= + 1839-120619-3_123: + 1839-060619-3_91: *id011 + 1839-060619-5_162: *id012 + 1839-120619-1_143: *id013 + 1839-120619-2_88: *id014 + 1839-120619-4_124: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vjRiEzryoz8= + 1839-200619-1_139: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80776, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mzsedfh/yD8= + 1839-200619-2_114: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83182, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ECTMVmd6xT8= + 1839-290519-2_113: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + De2v1x4cwz8= + 1839-120619-3_125: + 1839-060619-5_168: *id015 + 1839-120619-2_51: *id016 + 1839-120619-4_132: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iw4J8jI3wD8= + 1839-200619-2_48: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83182, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FZZENzXnyj8= + 1839-120619-3_133: + 1839-060619-5_166: *id017 + 1839-120619-2_106: *id018 + 1839-120619-4_134: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4tYoUaYIlT8= + 1839-200619-2_112: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83182, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RAL6HksBvT8= + 1839-290519-1_131: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m89boNJDtj8= + 1839-290519-2_115: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h2U71s0CwT8= + 1839-120619-3_71: + 1839-060619-5_142: *id019 + 1839-120619-2_86: *id020 + 1839-120619-4_122: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ESRmW5W9wT8= + 1839-200619-2_54: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83182, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rO3Sr1xCyT8= + 1839-290519-1_116: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yQy06Vr5xT8= + 1839-120619-4_106: + 1839-200619-2_114: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wenoGIIP0T8= + 1839-120619-4_116: + 1839-120619-2_51: *id021 + 1839-200619-2_48: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3zpZ1oG4wD8= + 1839-290519-1_131: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KWrsLp22tD8= + 1839-290519-2_115: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4088, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B9Gc9d6SuT8= + 1839-120619-4_122: + 1839-060619-3_91: *id022 + 1839-060619-5_142: *id023 + 1839-120619-1_143: *id024 + 1839-120619-2_86: *id025 + 1839-120619-3_71: *id026 + 1839-200619-1_139: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 78398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q1uN1Q5kxT8= + 1839-200619-2_94: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iVNI/q0dwj8= + 1839-290519-1_116: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FxsZ91d9tj8= + 1839-290519-2_113: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4088, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F/4PrhxTwT8= + 1839-120619-4_124: + 1839-120619-2_88: *id027 + 1839-120619-3_123: *id028 + 1839-200619-2_54: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PDvBhohXxT8= + 1839-120619-4_132: + 1839-060619-5_162: *id029 + 1839-120619-3_125: *id030 + 1839-200619-2_112: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6EF1vTfUwD8= + 1839-120619-4_134: + 1839-060619-5_168: *id031 + 1839-120619-2_106: *id032 + 1839-120619-3_133: *id033 + 1839-200619-2_78: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cQTPGiZi1D8= + 1839-120619-4_90: + 1839-060619-5_166: *id034 + 1839-200619-2_89: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ySQbIuABvT8= + 1839-120619-4_92: + 1839-200619-2_92: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1y7Md38Jxz8= + 1839-200619-1_139: + 1839-060619-3_91: *id035 + 1839-060619-5_142: *id036 + 1839-120619-1_143: *id037 + 1839-120619-2_88: *id038 + 1839-120619-3_123: *id039 + 1839-120619-4_122: *id040 + 1839-200619-2_54: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JkR83AGdwj8= + 1839-290519-1_116: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85931, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KhvCS3O1xT8= + 1839-290519-2_113: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82486, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hJxUk2gYwz8= + 1839-200619-2_112: + 1839-120619-2_106: *id041 + 1839-120619-3_133: *id042 + 1839-120619-4_132: *id043 + 1839-290519-2_115: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pdmcHSRjwz8= + 1839-200619-2_114: + 1839-120619-2_88: *id044 + 1839-120619-3_123: *id045 + 1839-120619-4_106: *id046 + 1839-290519-1_116: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1937, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iSnEo6OewT8= + 1839-290519-2_113: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JrgEYLf2wj8= + 1839-200619-2_48: + 1839-060619-5_168: *id047 + 1839-120619-2_51: *id048 + 1839-120619-3_125: *id049 + 1839-120619-4_116: *id050 + 1839-290519-1_131: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1937, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hUCNUhZlvD8= + 1839-200619-2_54: + 1839-060619-3_91: *id051 + 1839-060619-5_162: *id052 + 1839-120619-1_143: *id053 + 1839-120619-3_71: *id054 + 1839-120619-4_124: *id055 + 1839-200619-1_139: *id056 + 1839-200619-2_78: + 1839-120619-4_134: *id057 + 1839-200619-2_89: + 1839-060619-5_166: *id058 + 1839-120619-4_90: *id059 + 1839-200619-2_92: + 1839-120619-4_92: *id060 + 1839-200619-2_94: + 1839-060619-5_142: *id061 + 1839-120619-2_86: *id062 + 1839-120619-4_122: *id063 + 1839-290519-1_116: + 1839-060619-3_91: *id064 + 1839-060619-5_142: *id065 + 1839-120619-1_143: *id066 + 1839-120619-2_86: *id067 + 1839-120619-3_71: *id068 + 1839-120619-4_122: *id069 + 1839-200619-1_139: *id070 + 1839-200619-2_114: *id071 + 1839-290519-2_113: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3445, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KjLj6CIpuD8= + 1839-290519-1_131: + 1839-060619-5_168: *id072 + 1839-120619-2_106: *id073 + 1839-120619-3_133: *id074 + 1839-120619-4_116: *id075 + 1839-200619-2_48: *id076 + 1839-290519-2_115: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3445, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yQQL7Lm8uD8= + 1839-290519-2_113: + 1839-060619-3_91: *id077 + 1839-060619-5_142: *id078 + 1839-120619-1_143: *id079 + 1839-120619-2_88: *id080 + 1839-120619-3_123: *id081 + 1839-120619-4_122: *id082 + 1839-200619-1_139: *id083 + 1839-200619-2_114: *id084 + 1839-290519-1_116: *id085 + 1839-290519-2_115: + 1839-060619-5_166: *id086 + 1839-120619-2_51: *id087 + 1839-120619-3_133: *id088 + 1839-120619-4_116: *id089 + 1839-200619-2_112: *id090 + 1839-290519-1_131: *id091 +_node: &id094 + 1839-060619-3_91: + action_id: 1839-060619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id092 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + WwAAAAAAAAA= + 1839-060619-5_142: + action_id: 1839-060619-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + jgAAAAAAAAA= + 1839-060619-5_162: + action_id: 1839-060619-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + ogAAAAAAAAA= + 1839-060619-5_166: + action_id: 1839-060619-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + pgAAAAAAAAA= + 1839-060619-5_168: + action_id: 1839-060619-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + qAAAAAAAAAA= + 1839-120619-1_143: + action_id: 1839-120619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + jwAAAAAAAAA= + 1839-120619-2_106: + action_id: 1839-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + agAAAAAAAAA= + 1839-120619-2_51: + action_id: 1839-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + MwAAAAAAAAA= + 1839-120619-2_86: + action_id: 1839-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + VgAAAAAAAAA= + 1839-120619-2_88: + action_id: 1839-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + WAAAAAAAAAA= + 1839-120619-3_123: + action_id: 1839-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + ewAAAAAAAAA= + 1839-120619-3_125: + action_id: 1839-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + fQAAAAAAAAA= + 1839-120619-3_133: + action_id: 1839-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + hQAAAAAAAAA= + 1839-120619-3_71: + action_id: 1839-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + RwAAAAAAAAA= + 1839-120619-4_106: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + agAAAAAAAAA= + 1839-120619-4_116: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + dAAAAAAAAAA= + 1839-120619-4_122: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + egAAAAAAAAA= + 1839-120619-4_124: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + fAAAAAAAAAA= + 1839-120619-4_132: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + hAAAAAAAAAA= + 1839-120619-4_134: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + hgAAAAAAAAA= + 1839-120619-4_90: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + WgAAAAAAAAA= + 1839-120619-4_92: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + XAAAAAAAAAA= + 1839-200619-1_139: + action_id: 1839-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + iwAAAAAAAAA= + 1839-200619-2_112: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + cAAAAAAAAAA= + 1839-200619-2_114: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + cgAAAAAAAAA= + 1839-200619-2_48: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + MAAAAAAAAAA= + 1839-200619-2_54: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + NgAAAAAAAAA= + 1839-200619-2_78: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + TgAAAAAAAAA= + 1839-200619-2_89: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + WQAAAAAAAAA= + 1839-200619-2_92: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + XAAAAAAAAAA= + 1839-200619-2_94: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + XgAAAAAAAAA= + 1839-290519-1_116: + action_id: 1839-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + dAAAAAAAAAA= + 1839-290519-1_131: + action_id: 1839-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + gwAAAAAAAAA= + 1839-290519-2_113: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + cQAAAAAAAAA= + 1839-290519-2_115: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id092 + - !!binary | + cwAAAAAAAAA= +adjlist_inner_dict_factory: &id093 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id093 +edge_attr_dict_factory: *id093 +graph: {} +node_dict_factory: *id093 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id094 diff --git a/actions/identify-neurons/data/1839-graphs/graph-group-7.yaml b/actions/identify-neurons/data/1839-graphs/graph-group-7.yaml new file mode 100644 index 000000000..df11c0260 --- /dev/null +++ b/actions/identify-neurons/data/1839-graphs/graph-group-7.yaml @@ -0,0 +1,1114 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1839-060619-1_234: + 1839-060619-3_93: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2868, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + DR2fxDEOoj8= + 1839-060619-4_227: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jrv429oisz8= + 1839-060619-5_183: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7641, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N6u6MAJZqD8= + 1839-120619-1_152: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81470, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eaUWgZg+wz8= + 1839-120619-2_71: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84081, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 78soX0YMsj8= + 1839-120619-3_119: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 144, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KTsRuVY3qj8= + 1839-120619-4_108: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 2522, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ccmx2+BQoz8= + 1839-200619-1_135: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80920, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d0WL42zjwz8= + 1839-200619-2_116: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83326, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zi15sK6Ewz8= + 1839-290519-1_129: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 5011, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V7nSa2Boqz8= + 1839-290519-2_144: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1566, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FPr7yVvBsz8= + 1839-290519-3_113: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85437, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HTReEwedmz8= + 1839-060619-3_93: + 1839-060619-1_234: *id002 + 1839-060619-4_227: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2116, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Zuse8uUxsz8= + 1839-060619-5_183: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4773, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kxi/n7USnT8= + 1839-120619-1_152: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78602, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GlUA2kU5wz8= + 1839-120619-2_71: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81213, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oCPFz0eMsT8= + 1839-120619-3_119: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83676, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y7jDT0YHrT8= + 1839-120619-4_108: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 86054, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t/nWQg/qpz8= + 1839-200619-1_135: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78052, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s4W+kz78xD8= + 1839-200619-2_116: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80458, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8bULXGqMxT8= + 1839-290519-1_129: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 7879, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z3+z2t8gsT8= + 1839-290519-2_144: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4434, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eU6f0eFvtD8= + 1839-290519-3_113: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1905, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SMAeMZThoz8= + 1839-060619-4_200: + 1839-060619-5_136: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OiSV6A6goz8= + 1839-120619-1_152: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 76486, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D33s8aaGtj8= + 1839-120619-2_90: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79097, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3qBQ0mzYqj8= + 1839-120619-3_127: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81560, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x9IjUYkZuj8= + 1839-120619-4_128: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2mtSgJkhtz8= + 1839-200619-2_74: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78342, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ECeN0B2I0D8= + 1839-290519-1_139: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 9995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4B6HhjVJrj8= + 1839-290519-2_142: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 6550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OplwLCS1wD8= + 1839-060619-4_227: + 1839-060619-1_234: *id003 + 1839-060619-3_93: *id004 + 1839-060619-5_183: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2657, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2mC1GiBtsD8= + 1839-120619-2_71: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79097, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J4R5NLqvvj8= + 1839-120619-3_119: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81560, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6+EV6nTuuT8= + 1839-120619-4_108: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 83938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SGZ/B4KOuD8= + 1839-200619-1_135: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 75936, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z7xUd5CXyD8= + 1839-200619-2_116: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 78342, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g2Xtixt7xz8= + 1839-290519-1_129: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 9995, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 40zg/D+GtT8= + 1839-290519-2_144: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 6550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n5Ns1UXtnj8= + 1839-290519-3_113: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 4021, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tUHmUxV/sj8= + 1839-060619-5_136: + 1839-060619-4_200: *id005 + 1839-120619-1_152: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 73829, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g8PfZ3UGuz8= + 1839-120619-2_90: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 76440, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UovG0r3fqD8= + 1839-120619-3_127: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6sgrvHIovz8= + 1839-120619-4_136: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Qf5FPU5GtD8= + 1839-200619-2_74: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 75685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5s22EWqr0D8= + 1839-290519-1_139: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 12652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lGj3SYQ1sj8= + 1839-290519-2_135: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 9207, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CGVKKniHwj8= + 1839-060619-5_183: + 1839-060619-1_234: *id006 + 1839-060619-3_93: *id007 + 1839-060619-4_227: *id008 + 1839-120619-2_71: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 76440, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3svQ2JJatT8= + 1839-120619-3_119: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78903, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q80HP1zrsD8= + 1839-120619-4_108: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 81281, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xtr6CfGzrj8= + 1839-200619-1_135: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 73279, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xYGaTV96xj8= + 1839-200619-2_116: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 75685, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UqtEd45Jxj8= + 1839-290519-1_129: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 12652, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A5e+u88Psj8= + 1839-290519-2_144: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 9207, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /MgQiQdxsj8= + 1839-290519-3_113: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 6678, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nqLB5mSxoz8= + 1839-120619-1_152: + 1839-060619-1_234: *id009 + 1839-060619-3_93: *id010 + 1839-060619-4_200: *id011 + 1839-060619-5_136: *id012 + 1839-120619-2_90: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2611, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7CccBa0mtz8= + 1839-120619-3_127: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5074, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tYl84+nSrj8= + 1839-120619-4_128: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7452, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oAyKiKlfsT8= + 1839-200619-1_135: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85850, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6AiyyFIczj8= + 1839-200619-2_116: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 1856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RKmHJ0lvyj8= + 1839-290519-1_139: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ArZG0KsWvD8= + 1839-290519-2_144: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83036, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jxTZ+V4iuj8= + 1839-290519-3_113: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80507, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zhPqw8JIwz8= + 1839-120619-2_71: + 1839-060619-1_234: *id013 + 1839-060619-3_93: *id014 + 1839-060619-4_227: *id015 + 1839-060619-5_183: *id016 + 1839-120619-3_119: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2463, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BD7CAffdpT8= + 1839-120619-4_108: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4841, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yURsd8JZrT8= + 1839-200619-1_135: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83239, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SN6OSf8vwz8= + 1839-200619-2_116: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85645, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zxu/00a/xT8= + 1839-290519-1_129: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2692, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G28n7TC/uD8= + 1839-290519-2_144: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85647, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E19ZrbkuwD8= + 1839-290519-3_113: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iVIV/fg0tT8= + 1839-120619-2_90: + 1839-060619-4_200: *id017 + 1839-060619-5_136: *id018 + 1839-120619-1_152: *id019 + 1839-120619-3_127: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2463, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m+kjBvocvT8= + 1839-120619-4_136: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4841, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZZBGOQaHtD8= + 1839-200619-2_74: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 85645, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sRax0qxPzj8= + 1839-290519-1_139: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2692, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ztky3llXtT8= + 1839-290519-2_135: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85647, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UTy6xTSkwT8= + 1839-120619-3_119: + 1839-060619-1_234: *id020 + 1839-060619-3_93: *id021 + 1839-060619-4_227: *id022 + 1839-060619-5_183: *id023 + 1839-120619-2_71: *id024 + 1839-120619-4_108: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NszcOcYOpz8= + 1839-200619-1_135: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80776, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ymvNjZ8vxD8= + 1839-200619-2_74: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83182, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yC5Ax3Mpyj8= + 1839-290519-1_129: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4JJUjIo9tT8= + 1839-290519-2_144: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gp8lbIw0uz8= + 1839-290519-3_113: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85581, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yIlqe53rsD8= + 1839-120619-3_127: + 1839-060619-4_200: *id025 + 1839-060619-5_136: *id026 + 1839-120619-1_152: *id027 + 1839-120619-2_90: *id028 + 1839-120619-4_128: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2378, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SQqV7q7joT8= + 1839-200619-2_116: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 83182, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zzMV39I1zD8= + 1839-290519-1_139: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 5155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MJIAInhDwD8= + 1839-290519-2_142: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1710, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g4YPXPT5tT8= + 1839-120619-4_108: + 1839-060619-1_234: *id029 + 1839-060619-3_93: *id030 + 1839-060619-4_227: *id031 + 1839-060619-5_183: *id032 + 1839-120619-2_71: *id033 + 1839-120619-3_119: *id034 + 1839-200619-1_135: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 78398, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0IVPeVOZwT8= + 1839-200619-2_116: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iBJlfZDMwj8= + 1839-290519-1_129: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8SKPiXayrD8= + 1839-290519-2_144: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4088, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lWHCIO7kuT8= + 1839-290519-3_113: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1559, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m+nevYumqT8= + 1839-120619-4_128: + 1839-060619-4_200: *id035 + 1839-120619-1_152: *id036 + 1839-120619-3_127: *id037 + 1839-200619-2_74: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pxUiE0Ry0D8= + 1839-290519-1_87: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OVwN1laYxD8= + 1839-290519-2_142: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4088, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rEDBL+4qtD8= + 1839-120619-4_136: + 1839-060619-5_136: *id038 + 1839-120619-2_90: *id039 + 1839-200619-2_90: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 80804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tc5U4ZU/1j8= + 1839-290519-1_139: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7533, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kzG07RNQvT8= + 1839-290519-2_135: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4088, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zV814mcywz8= + 1839-200619-1_135: + 1839-060619-1_234: *id040 + 1839-060619-3_93: *id041 + 1839-060619-4_227: *id042 + 1839-060619-5_183: *id043 + 1839-120619-1_152: *id044 + 1839-120619-2_71: *id045 + 1839-120619-3_119: *id046 + 1839-120619-4_108: *id047 + 1839-200619-2_74: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2406, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LjhX658/vz8= + 1839-290519-1_129: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85931, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3dCfwPhBwj8= + 1839-290519-2_109: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82486, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w+Nn07SMwT8= + 1839-290519-3_113: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 79957, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iyWbWQyqxD8= + 1839-200619-2_116: + 1839-060619-1_234: *id048 + 1839-060619-3_93: *id049 + 1839-060619-4_227: *id050 + 1839-060619-5_183: *id051 + 1839-120619-1_152: *id052 + 1839-120619-2_71: *id053 + 1839-120619-3_127: *id054 + 1839-120619-4_108: *id055 + 1839-290519-1_129: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1937, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5hBpYt/3wT8= + 1839-290519-2_144: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tssEPVHuxz8= + 1839-290519-3_113: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X5YYar0CxD8= + 1839-200619-2_74: + 1839-060619-4_200: *id056 + 1839-060619-5_136: *id057 + 1839-120619-2_90: *id058 + 1839-120619-3_119: *id059 + 1839-120619-4_128: *id060 + 1839-200619-1_135: *id061 + 1839-290519-1_114: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1937, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xlvUUinoyz8= + 1839-290519-2_109: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YJUPP3qVyj8= + 1839-200619-2_90: + 1839-120619-4_136: *id062 + 1839-290519-1_139: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1937, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CY764EI+3T8= + 1839-290519-2_142: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 84892, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UnYokaRI3T8= + 1839-290519-1_114: + 1839-200619-2_74: *id063 + 1839-290519-2_109: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3445, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vKQ5NFAQrD8= + 1839-290519-1_129: + 1839-060619-1_234: *id064 + 1839-060619-3_93: *id065 + 1839-060619-4_227: *id066 + 1839-060619-5_183: *id067 + 1839-120619-2_71: *id068 + 1839-120619-3_119: *id069 + 1839-120619-4_108: *id070 + 1839-200619-1_135: *id071 + 1839-200619-2_116: *id072 + 1839-290519-2_144: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3445, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SvFi7lPXtj8= + 1839-290519-3_113: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mCxBRtvDqj8= + 1839-290519-1_139: + 1839-060619-4_200: *id073 + 1839-060619-5_136: *id074 + 1839-120619-1_152: *id075 + 1839-120619-2_90: *id076 + 1839-120619-3_127: *id077 + 1839-120619-4_136: *id078 + 1839-200619-2_90: *id079 + 1839-290519-2_135: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3445, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hZJ9170QvT8= + 1839-290519-1_87: + 1839-120619-4_128: *id080 + 1839-290519-2_111: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3445, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /U/0olDesT8= + 1839-290519-2_109: + 1839-200619-1_135: *id081 + 1839-200619-2_74: *id082 + 1839-290519-1_114: *id083 + 1839-290519-2_111: + 1839-290519-1_87: *id084 + 1839-290519-2_135: + 1839-060619-5_136: *id085 + 1839-120619-2_90: *id086 + 1839-120619-4_136: *id087 + 1839-290519-1_139: *id088 + 1839-290519-2_142: + 1839-060619-4_200: *id089 + 1839-120619-3_127: *id090 + 1839-120619-4_128: *id091 + 1839-200619-2_90: *id092 + 1839-290519-2_144: + 1839-060619-1_234: *id093 + 1839-060619-3_93: *id094 + 1839-060619-4_227: *id095 + 1839-060619-5_183: *id096 + 1839-120619-1_152: *id097 + 1839-120619-2_71: *id098 + 1839-120619-3_119: *id099 + 1839-120619-4_108: *id100 + 1839-200619-2_116: *id101 + 1839-290519-1_129: *id102 + 1839-290519-3_113: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2529, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gt9H/iBZsj8= + 1839-290519-3_113: + 1839-060619-1_234: *id103 + 1839-060619-3_93: *id104 + 1839-060619-4_227: *id105 + 1839-060619-5_183: *id106 + 1839-120619-1_152: *id107 + 1839-120619-2_71: *id108 + 1839-120619-3_119: *id109 + 1839-120619-4_108: *id110 + 1839-200619-1_135: *id111 + 1839-200619-2_116: *id112 + 1839-290519-1_129: *id113 + 1839-290519-2_144: *id114 +_node: &id117 + 1839-060619-1_234: + action_id: 1839-060619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id115 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + 6gAAAAAAAAA= + 1839-060619-3_93: + action_id: 1839-060619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + XQAAAAAAAAA= + 1839-060619-4_200: + action_id: 1839-060619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + yAAAAAAAAAA= + 1839-060619-4_227: + action_id: 1839-060619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + 4wAAAAAAAAA= + 1839-060619-5_136: + action_id: 1839-060619-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + iAAAAAAAAAA= + 1839-060619-5_183: + action_id: 1839-060619-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + twAAAAAAAAA= + 1839-120619-1_152: + action_id: 1839-120619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + mAAAAAAAAAA= + 1839-120619-2_71: + action_id: 1839-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + RwAAAAAAAAA= + 1839-120619-2_90: + action_id: 1839-120619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + WgAAAAAAAAA= + 1839-120619-3_119: + action_id: 1839-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + dwAAAAAAAAA= + 1839-120619-3_127: + action_id: 1839-120619-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + fwAAAAAAAAA= + 1839-120619-4_108: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + bAAAAAAAAAA= + 1839-120619-4_128: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + gAAAAAAAAAA= + 1839-120619-4_136: + action_id: 1839-120619-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + iAAAAAAAAAA= + 1839-200619-1_135: + action_id: 1839-200619-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + hwAAAAAAAAA= + 1839-200619-2_116: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + dAAAAAAAAAA= + 1839-200619-2_74: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + SgAAAAAAAAA= + 1839-200619-2_90: + action_id: 1839-200619-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + WgAAAAAAAAA= + 1839-290519-1_114: + action_id: 1839-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + cgAAAAAAAAA= + 1839-290519-1_129: + action_id: 1839-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + gQAAAAAAAAA= + 1839-290519-1_139: + action_id: 1839-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + iwAAAAAAAAA= + 1839-290519-1_87: + action_id: 1839-290519-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + VwAAAAAAAAA= + 1839-290519-2_109: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + bQAAAAAAAAA= + 1839-290519-2_111: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + bwAAAAAAAAA= + 1839-290519-2_135: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + hwAAAAAAAAA= + 1839-290519-2_142: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + jgAAAAAAAAA= + 1839-290519-2_144: + action_id: 1839-290519-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + kAAAAAAAAAA= + 1839-290519-3_113: + action_id: 1839-290519-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id115 + - !!binary | + cQAAAAAAAAA= +adjlist_inner_dict_factory: &id116 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id116 +edge_attr_dict_factory: *id116 +graph: {} +node_dict_factory: *id116 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id117 diff --git a/actions/identify-neurons/data/1839-units.csv b/actions/identify-neurons/data/1839-units.csv new file mode 100644 index 000000000..cbd78d0f0 --- /dev/null +++ b/actions/identify-neurons/data/1839-units.csv @@ -0,0 +1,122 @@ +action,channel_group,max_depth_delta,max_dissimilarity,unit_id,unit_name +1839-120619-2,0,100,0.05,f0775773-fbf5-420f-94a8-0da5bb8078b9,76 +1839-200619-2,0,100,0.05,3ff1c318-dcc2-4420-bf7c-7e6c0e41f1b0,104 +1839-200619-2,0,100,0.05,f00fc288-5a04-4fd3-8e02-a8b080f06016,98 +1839-290519-1,0,100,0.05,540ff964-f827-4636-9668-9316f9913036,120 +1839-290519-2,0,100,0.05,e80515fe-6afa-4111-b6a9-b0aa25ce9eab,107 +1839-290519-2,0,100,0.05,ffd28074-e64d-484b-957a-c54cdb3bc8ee,117 +1839-290519-3,0,100,0.05,48093105-79d7-4297-8eca-8b0f678dae6b,111 +1839-120619-3,1,100,0.05,7f83a7fa-acf8-41e5-87fb-1ceee625e055,113 +1839-120619-4,1,100,0.05,7f83a7fa-acf8-41e5-87fb-1ceee625e055,86 +1839-120619-4,1,100,0.05,d903e411-e604-4650-a832-41293e8d7c8b,104 +1839-120619-4,1,100,0.05,2d459081-0519-4c1f-996f-51bcc07db975,84 +1839-200619-2,1,100,0.05,ca51bbb5-f48b-48c8-a5d1-5453e9615aeb,7 +1839-290519-1,1,100,0.05,594d6d32-4f22-43bb-bb89-a9550c473de0,110 +1839-120619-3,2,100,0.05,8501cf01-86b6-4150-8184-bbb0a732b343,129 +1839-120619-3,3,100,0.05,60487709-d416-4994-8a05-69d01a8bc41b,137 +1839-120619-4,3,100,0.05,80d770cf-1635-4b8d-91d0-d676cdb14f08,112 +1839-120619-4,3,100,0.05,9a2182b2-814b-40da-9c30-5c320a7a87bd,29 +1839-200619-1,3,100,0.05,e7f5de5a-bcd9-493c-bc86-88fc8765d9b8,153 +1839-200619-2,3,100,0.05,42fd4cd3-ff7b-41d7-a045-3e63723912dc,118 +1839-060619-1,4,100,0.05,dcea3f10-31fd-4205-8f73-738bcb450ac7,240 +1839-060619-3,4,100,0.05,30ca722e-de14-420c-810f-68c00d0c1ecf,101 +1839-060619-4,4,100,0.05,c0f7d912-ef41-4e6f-9c7b-d10ac2de8945,230 +1839-060619-5,4,100,0.05,0d4be660-2ffa-4bcf-8ced-0e66c1abfb96,164 +1839-120619-2,4,100,0.05,9da942f8-ceff-48b6-b7b0-b4ddac27ccb1,78 +1839-120619-3,4,100,0.05,081300d5-ad12-4439-9430-bf8683f9a3e2,115 +1839-120619-3,4,100,0.05,a5ab1513-d07d-4c59-bd4d-e77c4dbc193c,121 +1839-120619-4,4,100,0.05,c20f5e63-4aca-4b1e-9e55-6f61f08052f0,102 +1839-120619-4,4,100,0.05,2f2a0765-d42f-4780-8ed9-7c814516932c,110 +1839-120619-4,4,100,0.05,6b5e6c13-8fd2-4650-aba9-58502f58c406,120 +1839-120619-4,4,100,0.05,00735893-cefe-4787-b4be-c3732fe38032,82 +1839-200619-1,4,100,0.05,d26ab521-2ec2-463c-98e5-318c6b28b783,141 +1839-200619-2,4,100,0.05,cb7125ac-b42c-48ea-b4d7-3574479657ae,100 +1839-200619-2,4,100,0.05,ceb026a7-c384-4393-82e0-14548dde9c80,106 +1839-200619-2,4,100,0.05,a3735e8d-afa3-41ea-b564-d217f27df0f1,108 +1839-290519-1,4,100,0.05,d7789a2a-bf46-4fb5-b6ff-a68fa2dd5982,122 +1839-290519-2,4,100,0.05,09748bcf-3f4b-4d12-b826-2ebc71b65063,39 +1839-290519-1,4,100,0.05,09748bcf-3f4b-4d12-b826-2ebc71b65063,127 +1839-290519-2,4,100,0.05,dfbebfa5-59a0-4396-80a1-561b7ff067e7,119 +1839-290519-3,4,100,0.05,4260fa93-6adf-47a2-973c-88573a246dfc,117 +1839-290519-3,4,100,0.05,afd91775-da1c-474b-9b04-d903223cbe98,72 +1839-060619-3,5,100,0.05,a3a75173-a74e-429b-ad9c-181d0a8ce485,87 +1839-060619-5,5,100,0.05,a3a75173-a74e-429b-ad9c-181d0a8ce485,138 +1839-060619-4,5,100,0.05,f5093eb0-00a1-4380-a969-88cc0884cf00,228 +1839-060619-5,5,100,0.05,5f7baf9f-f3c0-4db4-8fea-29b646391d75,170 +1839-120619-1,5,100,0.05,fd462693-5444-41f4-a33b-fbddb32ef860,158 +1839-120619-2,5,100,0.05,0b122e55-d128-483e-a87b-f8502138b448,104 +1839-120619-2,5,100,0.05,bcdaf715-a00d-417b-8ef6-2adead534845,47 +1839-120619-3,5,100,0.05,2050f360-b8d7-437d-ac29-687ce93fe798,131 +1839-200619-1,5,100,0.05,3424c2c8-6641-4c06-8ad8-4a21bb20a313,145 +1839-200619-2,5,100,0.05,a7fff0c6-dd66-49fd-9716-59cc8ea50bdf,96 +1839-290519-1,5,100,0.05,690e2bfb-5547-4a44-9ef6-c7afc77f1958,133 +1839-290519-1,5,100,0.05,7d4f6a7b-6bc6-4593-863d-b3539b4492bc,137 +1839-290519-2,5,100,0.05,a1d20299-ee5c-4229-be95-6409d8012603,125 +1839-290519-2,5,100,0.05,58f1fcec-b421-4c30-85e6-2d800ed035fc,146 +1839-290519-2,5,100,0.05,c3c01aaa-816b-4951-91d4-7e40df253479,148 +1839-290519-2,5,100,0.05,dea1d5fd-d209-49e9-b4fd-413157d8d405,95 +1839-290519-3,5,100,0.05,f23701a2-efd6-47ca-9f44-810f1d730f03,115 +1839-290519-3,5,100,0.05,27c7ccb0-fcf4-4dea-8c31-916ad511a818,119 +1839-060619-3,6,100,0.05,5c945fe0-f844-4dbb-83dc-48b2047af07f,91 +1839-060619-5,6,100,0.05,92b4016f-9dba-4b17-816f-76203357947c,142 +1839-060619-5,6,100,0.05,473755f1-37e1-48a3-b45f-12474e6253f3,162 +1839-060619-5,6,100,0.05,1bcb53fd-8430-44e0-94c9-bbf52cfaca5d,166 +1839-060619-5,6,100,0.05,9dd8608c-6497-42bf-acde-24ba333c31f7,168 +1839-120619-1,6,100,0.05,9e233b53-7361-4bd6-896c-883df42f4002,143 +1839-120619-3,6,100,0.05,9abb4219-328e-4695-9e7b-08dc6d5b53e0,133 +1839-120619-4,6,100,0.05,9abb4219-328e-4695-9e7b-08dc6d5b53e0,134 +1839-120619-2,6,100,0.05,9abb4219-328e-4695-9e7b-08dc6d5b53e0,106 +1839-120619-2,6,100,0.05,94066a2c-a39f-4df4-8bb1-d6055b5cb302,51 +1839-120619-2,6,100,0.05,10dfea94-74a5-4fca-8301-75d71901081a,86 +1839-120619-2,6,100,0.05,bc3b0ebf-00cc-47e1-8d3b-ab0650fb4e5a,88 +1839-120619-3,6,100,0.05,83ece9ee-03a3-47d4-80ff-72ebe53ce453,123 +1839-120619-4,6,100,0.05,83ece9ee-03a3-47d4-80ff-72ebe53ce453,124 +1839-120619-3,6,100,0.05,81f711e2-f2b8-42d4-9aaf-7b0b8a7f8a28,125 +1839-120619-3,6,100,0.05,d41b7af3-99be-4ed3-951d-c667d9d1815b,71 +1839-120619-4,6,100,0.05,f8f9ee57-c08a-42f1-882d-9e409ecd39ae,106 +1839-120619-4,6,100,0.05,b3cea08a-e187-407a-b564-aa9acac2c72d,116 +1839-120619-4,6,100,0.05,c1c7fc7d-0c81-4a9a-96a2-e13dce152e2c,122 +1839-120619-4,6,100,0.05,e1471060-f521-4b36-8259-ff0818ba0343,132 +1839-120619-4,6,100,0.05,fb55d16f-4d4a-4f24-992f-66d25cf7d453,90 +1839-120619-4,6,100,0.05,9f4596b2-4e64-4255-93f1-5b613a7d6da0,92 +1839-200619-1,6,100,0.05,49ab3c78-1290-4a08-ac14-c74aeba17d25,139 +1839-200619-2,6,100,0.05,c4864ae4-6017-45da-9b3e-119ef9e3f083,112 +1839-200619-2,6,100,0.05,3a29b37d-af36-4364-ad13-1b9b890c5f98,114 +1839-200619-2,6,100,0.05,76ef2569-d70c-42dd-98e5-01cb99271b5b,48 +1839-200619-2,6,100,0.05,1c0bee3e-925c-48d3-823c-e9cafae25e7e,54 +1839-200619-2,6,100,0.05,315c4f2d-92c7-426f-992c-c1d3d4956392,78 +1839-200619-2,6,100,0.05,f20d1f36-910a-4c39-9662-95129cb0d53c,89 +1839-200619-2,6,100,0.05,e410e2c1-94c9-4c14-9a97-075c4438cccc,92 +1839-200619-2,6,100,0.05,5f6018c8-60eb-43ba-9070-61d0d338a4bf,94 +1839-290519-1,6,100,0.05,b88c092f-2b36-46d5-bcef-72f7f4c6407b,116 +1839-290519-1,6,100,0.05,a4f52935-526b-4f93-9e4b-367427cbb4ad,131 +1839-290519-2,6,100,0.05,2bc2d97a-a4e2-4410-8218-ed9b9943d38c,113 +1839-290519-2,6,100,0.05,089951ba-9860-460d-b3d0-74a4c4b5dac1,115 +1839-060619-5,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,183 +1839-290519-3,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,113 +1839-120619-3,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,119 +1839-120619-2,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,71 +1839-120619-4,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,108 +1839-060619-3,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,93 +1839-060619-1,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,234 +1839-060619-4,7,100,0.05,e3e43dfd-7f22-4e19-9a53-2eab557136ea,200 +1839-120619-2,7,100,0.05,e3e43dfd-7f22-4e19-9a53-2eab557136ea,90 +1839-060619-5,7,100,0.05,e3e43dfd-7f22-4e19-9a53-2eab557136ea,136 +1839-290519-2,7,100,0.05,3a0d3478-8a69-4296-a163-0ec0758909ae,144 +1839-060619-4,7,100,0.05,3a0d3478-8a69-4296-a163-0ec0758909ae,227 +1839-120619-1,7,100,0.05,a4487f1c-edd5-4b58-b469-7f1773c1bdd4,152 +1839-120619-3,7,100,0.05,72e1eb07-e7f6-4dd8-8dbf-27d4521dabaf,127 +1839-120619-4,7,100,0.05,72e1eb07-e7f6-4dd8-8dbf-27d4521dabaf,128 +1839-120619-4,7,100,0.05,e1c1cda0-8997-473b-bdab-cde222202d74,136 +1839-200619-1,7,100,0.05,f86f8cda-78fd-4e8b-bcd5-952f53f70efc,135 +1839-200619-2,7,100,0.05,3fb9ef13-aeab-41e2-9e1a-94f3e2bf046f,116 +1839-200619-2,7,100,0.05,0e5d3c29-f507-45e0-8b48-ff04bfb14a98,74 +1839-200619-2,7,100,0.05,ed518405-8668-402d-8760-0f317d304254,90 +1839-290519-1,7,100,0.05,3a3dcd61-851a-4a06-97a0-15b1532d19a1,114 +1839-290519-1,7,100,0.05,7e23c896-0304-4f15-9384-c534058a9932,129 +1839-290519-1,7,100,0.05,9d9110a0-97ae-4030-9e7a-53a1ae4d99ce,139 +1839-290519-1,7,100,0.05,835a2ff9-9977-499d-8216-b7545e1a3408,87 +1839-290519-2,7,100,0.05,9f25a7a4-3465-40c5-9e51-0e8c6ece7516,109 +1839-290519-2,7,100,0.05,df12e673-14a3-4753-a004-35cb8c4afdb0,111 +1839-290519-2,7,100,0.05,2363a3b3-f346-4842-8d59-25dd551d7afb,135 +1839-290519-2,7,100,0.05,adf18369-e8e9-498b-8d7c-8bedd8d43a9b,142 diff --git a/actions/identify-neurons/data/1849-graphs/graph-group-0.yaml b/actions/identify-neurons/data/1849-graphs/graph-group-0.yaml new file mode 100644 index 000000000..f6f6e70f3 --- /dev/null +++ b/actions/identify-neurons/data/1849-graphs/graph-group-0.yaml @@ -0,0 +1,1255 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1849-010319-5_117: + 1849-060319-1_85: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + VAVLodTu0j8= + 1849-110319-1_52: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 76590, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0usAf2QGxj8= + 1849-110319-2_56: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jU+jFDTQtz8= + 1849-150319-1_39: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80301, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + moyGSPTKyz8= + 1849-150319-2_60: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82925, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qtNT6J8Ryj8= + 1849-150319-3_69: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 9, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MvH8jTuPyD8= + 1849-150319-4_76: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2705, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DFKeYSLgvz8= + 1849-220319-2_93: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84634, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bi8QcjMY0z8= + 1849-220319-3_0: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 811, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gAIc/aztzT8= + 1849-220319-4_100: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /AoQzAFK0j8= + 1849-220319-5_79: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5784, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vUgx6o8L0T8= + 1849-280219-1_90: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X7hDM1khxz8= + 1849-280219-2_88: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q/U2sAEO0j8= + 1849-280219-3_160: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sy2VW0ghxz8= + 1849-280219-4_64: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JjxvNb2ewz8= + 1849-060319-1_85: + 1849-010319-5_117: *id002 + 1849-110319-1_52: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v9d/uv0W0z8= + 1849-110319-2_56: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b7dNIly30j8= + 1849-150319-1_74: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84999, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g7sPz1WBzD8= + 1849-150319-2_40: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8b33wJQ7yj8= + 1849-150319-3_6: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + clf8uf+GzT8= + 1849-150319-4_70: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H0hanzC4zD8= + 1849-220319-2_93: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5nq0qJBSyD8= + 1849-220319-3_0: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4eNeNESrzT8= + 1849-220319-4_100: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7912, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IODbck3Vxz8= + 1849-220319-5_79: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10482, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2abcWcGdxz8= + 1849-280219-1_90: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IVdWvPX91D8= + 1849-280219-2_88: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xkVeZs7k4D8= + 1849-280219-3_160: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OPXShhuPzz8= + 1849-280219-4_64: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kyGEoQ1M0D8= + 1849-110319-1_52: + 1849-010319-5_117: *id003 + 1849-060319-1_85: *id004 + 1849-110319-2_56: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ps34cfZlvz8= + 1849-150319-1_39: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pJulWw7hyT8= + 1849-150319-2_60: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8SJSaEMqyD8= + 1849-150319-3_6: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9819, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hO5XIMU2yT8= + 1849-150319-4_85: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12515, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v0i3fia5xj8= + 1849-220319-2_93: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1N0COnfr0T8= + 1849-220319-3_0: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SMs2nG8LzT8= + 1849-220319-4_100: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13024, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t0MU8qUs0T8= + 1849-220319-5_79: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iZ4mSUl+0D8= + 1849-280219-1_90: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MmTJlMjr0T8= + 1849-280219-2_88: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69481, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z9wCFwWc3T8= + 1849-280219-3_160: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 67174, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MHXcKCISzz8= + 1849-280219-4_64: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 64799, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + umKSdpR+zj8= + 1849-110319-2_56: + 1849-010319-5_117: *id005 + 1849-060319-1_85: *id006 + 1849-110319-1_52: *id007 + 1849-150319-1_39: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bORAldzoyz8= + 1849-150319-2_60: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 1807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dpb1MmQsyj8= + 1849-150319-3_69: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mtp9N+XcyT8= + 1849-150319-4_76: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 7987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zOj8LZIsxj8= + 1849-220319-2_93: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ylayuqxl0j8= + 1849-220319-3_0: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B6DuyOjdzj8= + 1849-220319-4_100: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M7kiE52D0T8= + 1849-220319-5_79: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c+e5E4id0D8= + 1849-280219-1_90: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZLHz1AF1yj8= + 1849-280219-2_88: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uhZkL5ex1j8= + 1849-280219-3_160: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 71702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WHcjmFoJyT8= + 1849-280219-4_64: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69327, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lSzsWwdwyD8= + 1849-150319-1_39: + 1849-010319-5_117: *id008 + 1849-110319-1_52: *id009 + 1849-110319-2_56: *id010 + 1849-150319-2_60: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k5THQ701mj8= + 1849-150319-3_6: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AwkZ2JwToj8= + 1849-150319-4_85: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aFBIu7Awoj8= + 1849-220319-3_0: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b2esPX3euz8= + 1849-280219-1_90: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j9LGC9wgyz8= + 1849-280219-2_88: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KHaleKzD1D8= + 1849-280219-3_153: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WpRIoQJ44z8= + 1849-280219-4_62: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DwORLigd5D8= + 1849-150319-1_74: + 1849-060319-1_85: *id011 + 1849-150319-2_40: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oPNrWoLusz8= + 1849-150319-3_69: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ICQfxZM4sz8= + 1849-150319-4_70: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fYkpa3xXvz8= + 1849-220319-2_93: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4333, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hQyidmhDwT8= + 1849-220319-4_100: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VFWVtWq/vz8= + 1849-220319-5_79: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DopLo/ievT8= + 1849-280219-3_160: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w+arWGIQwz8= + 1849-280219-4_64: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xBcgy1snxT8= + 1849-150319-2_40: + 1849-060319-1_85: *id012 + 1849-150319-1_74: *id013 + 1849-150319-3_69: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CuWZ+ZLztD8= + 1849-150319-4_70: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t3g0pBc5tz8= + 1849-220319-2_93: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1709, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i8vRXDS3uj8= + 1849-220319-4_100: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FD/EP8m0tz8= + 1849-220319-5_79: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9259, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3Nkrsrl9tj8= + 1849-280219-3_160: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UQBYRmRTxD8= + 1849-280219-4_64: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 71134, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4fNttU3sxj8= + 1849-150319-2_60: + 1849-010319-5_117: *id014 + 1849-110319-1_52: *id015 + 1849-110319-2_56: *id016 + 1849-150319-1_39: *id017 + 1849-150319-3_6: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wSCGJUtfoj8= + 1849-150319-4_85: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +UC3huofoj8= + 1849-220319-3_0: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k//Jg7HpvD8= + 1849-280219-1_90: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80717, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BThw+XqhyT8= + 1849-280219-2_88: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TxX0ZMrg0z8= + 1849-280219-3_153: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CQD62r2g4j8= + 1849-280219-4_62: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 71134, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LD0CMcVP4z8= + 1849-150319-3_6: + 1849-060319-1_85: *id018 + 1849-110319-1_52: *id019 + 1849-150319-1_39: *id020 + 1849-150319-2_60: *id021 + 1849-150319-4_85: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i+vGnjrKoz8= + 1849-220319-3_0: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 802, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XvIDts6auT8= + 1849-280219-2_88: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79300, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bgzxajVs1T8= + 1849-280219-3_153: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 76993, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cOaSF6Xv5D8= + 1849-280219-4_62: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 74618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZSSWtday5T8= + 1849-150319-3_69: + 1849-010319-5_117: *id022 + 1849-110319-2_56: *id023 + 1849-150319-1_74: *id024 + 1849-150319-2_40: *id025 + 1849-150319-4_70: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FOlbXsmwvD8= + 1849-220319-2_93: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84625, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /kJrcToFwz8= + 1849-220319-4_100: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wi/e1GRXwT8= + 1849-220319-5_79: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5775, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 44+lQxFHvz8= + 1849-280219-1_90: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84201, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sBDOwnCbxz8= + 1849-280219-3_160: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 76993, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ohzx37agvj8= + 1849-280219-4_64: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 74618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ESAqRbJgwT8= + 1849-150319-4_70: + 1849-060319-1_85: *id026 + 1849-150319-1_74: *id027 + 1849-150319-2_40: *id028 + 1849-150319-3_69: *id029 + 1849-220319-2_93: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81929, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WtDRO/yxwT8= + 1849-220319-4_100: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 41+kl9LcwD8= + 1849-220319-5_79: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aiNkNGSrwT8= + 1849-150319-4_76: + 1849-010319-5_117: *id030 + 1849-110319-2_56: *id031 + 1849-280219-1_90: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WiiWRNrYvj8= + 1849-280219-2_88: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6E6MAzTXzj8= + 1849-280219-3_160: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g2fxQTjJtz8= + 1849-280219-4_64: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 77314, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 71CMY/EErj8= + 1849-150319-4_85: + 1849-110319-1_52: *id032 + 1849-150319-1_39: *id033 + 1849-150319-2_60: *id034 + 1849-150319-3_6: *id035 + 1849-220319-3_0: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84506, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2jbNFTfduz8= + 1849-280219-3_153: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZXYNUWEW4z8= + 1849-280219-4_62: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 77314, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f/19333T4z8= + 1849-220319-2_93: + 1849-010319-5_117: *id036 + 1849-060319-1_85: *id037 + 1849-110319-1_52: *id038 + 1849-110319-2_56: *id039 + 1849-150319-1_74: *id040 + 1849-150319-2_40: *id041 + 1849-150319-3_69: *id042 + 1849-150319-4_70: *id043 + 1849-220319-3_0: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2577, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WRq2bgprwD8= + 1849-220319-4_100: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dkL0p3ytmD8= + 1849-220319-5_79: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XACz90fcpj8= + 1849-280219-1_90: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82426, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e6wFdYur0T8= + 1849-280219-2_88: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GLEhBTcV2z8= + 1849-280219-3_160: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75218, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LHkB6q4Qyj8= + 1849-280219-4_64: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 72843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ooFcfZFHzD8= + 1849-220319-3_0: + 1849-010319-5_117: *id044 + 1849-060319-1_85: *id045 + 1849-110319-1_52: *id046 + 1849-110319-2_56: *id047 + 1849-150319-1_39: *id048 + 1849-150319-2_60: *id049 + 1849-150319-3_6: *id050 + 1849-150319-4_85: *id051 + 1849-220319-2_93: *id052 + 1849-220319-4_100: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MfrVgnVQvz8= + 1849-220319-5_79: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4973, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 97o8ehexvT8= + 1849-280219-1_90: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85003, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LLH9JEWRzD8= + 1849-280219-2_88: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rKIO6N6s1T8= + 1849-280219-3_160: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Se75W/yPxT8= + 1849-280219-4_64: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S59dy32+xT8= + 1849-220319-4_100: + 1849-010319-5_117: *id053 + 1849-060319-1_85: *id054 + 1849-110319-1_52: *id055 + 1849-110319-2_56: *id056 + 1849-150319-1_74: *id057 + 1849-150319-2_40: *id058 + 1849-150319-3_69: *id059 + 1849-150319-4_70: *id060 + 1849-220319-2_93: *id061 + 1849-220319-3_0: *id062 + 1849-220319-5_79: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V2hDbVySnD8= + 1849-280219-1_90: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1006, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jr59m0PV0D8= + 1849-280219-2_88: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pPmcyZVx2j8= + 1849-280219-3_160: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Egf+akcdyD8= + 1849-280219-4_64: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hUmhkIRByj8= + 1849-220319-5_79: + 1849-010319-5_117: *id063 + 1849-060319-1_85: *id064 + 1849-110319-1_52: *id065 + 1849-110319-2_56: *id066 + 1849-150319-1_74: *id067 + 1849-150319-2_40: *id068 + 1849-150319-3_69: *id069 + 1849-150319-4_70: *id070 + 1849-220319-2_93: *id071 + 1849-220319-3_0: *id072 + 1849-220319-4_100: *id073 + 1849-280219-1_90: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 3576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + txgmoE9vzz8= + 1849-280219-2_88: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85075, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UiSB85JS2T8= + 1849-280219-3_160: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82768, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FC1OZTrWxT8= + 1849-280219-4_64: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v091Hu1kxz8= + 1849-280219-1_90: + 1849-010319-5_117: *id074 + 1849-060319-1_85: *id075 + 1849-110319-1_52: *id076 + 1849-110319-2_56: *id077 + 1849-150319-1_39: *id078 + 1849-150319-2_60: *id079 + 1849-150319-3_69: *id080 + 1849-150319-4_76: *id081 + 1849-220319-2_93: *id082 + 1849-220319-3_0: *id083 + 1849-220319-4_100: *id084 + 1849-220319-5_79: *id085 + 1849-280219-2_88: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6PdY5f7C0T8= + 1849-280219-3_160: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mv26+XbovT8= + 1849-280219-4_64: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tagOIiv7uz8= + 1849-280219-2_88: + 1849-010319-5_117: *id086 + 1849-060319-1_85: *id087 + 1849-110319-1_52: *id088 + 1849-110319-2_56: *id089 + 1849-150319-1_39: *id090 + 1849-150319-2_60: *id091 + 1849-150319-3_6: *id092 + 1849-150319-4_76: *id093 + 1849-220319-2_93: *id094 + 1849-220319-3_0: *id095 + 1849-220319-4_100: *id096 + 1849-220319-5_79: *id097 + 1849-280219-1_90: *id098 + 1849-280219-3_160: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3Dk1yzJP0D8= + 1849-280219-4_64: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6LCtnXdVzz8= + 1849-280219-3_153: + 1849-150319-1_39: *id099 + 1849-150319-2_60: *id100 + 1849-150319-3_6: *id101 + 1849-150319-4_85: *id102 + 1849-280219-4_62: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cZ+DOkx0tj8= + 1849-280219-3_160: + 1849-010319-5_117: *id103 + 1849-060319-1_85: *id104 + 1849-110319-1_52: *id105 + 1849-110319-2_56: *id106 + 1849-150319-1_74: *id107 + 1849-150319-2_40: *id108 + 1849-150319-3_69: *id109 + 1849-150319-4_76: *id110 + 1849-220319-2_93: *id111 + 1849-220319-3_0: *id112 + 1849-220319-4_100: *id113 + 1849-220319-5_79: *id114 + 1849-280219-1_90: *id115 + 1849-280219-2_88: *id116 + 1849-280219-4_64: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SCiVBvEasD8= + 1849-280219-4_62: + 1849-150319-1_39: *id117 + 1849-150319-2_60: *id118 + 1849-150319-3_6: *id119 + 1849-150319-4_85: *id120 + 1849-280219-3_153: *id121 + 1849-280219-4_64: + 1849-010319-5_117: *id122 + 1849-060319-1_85: *id123 + 1849-110319-1_52: *id124 + 1849-110319-2_56: *id125 + 1849-150319-1_74: *id126 + 1849-150319-2_40: *id127 + 1849-150319-3_69: *id128 + 1849-150319-4_76: *id129 + 1849-220319-2_93: *id130 + 1849-220319-3_0: *id131 + 1849-220319-4_100: *id132 + 1849-220319-5_79: *id133 + 1849-280219-1_90: *id134 + 1849-280219-2_88: *id135 + 1849-280219-3_160: *id136 +_node: &id139 + 1849-010319-5_117: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id137 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + dQAAAAAAAAA= + 1849-060319-1_85: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + VQAAAAAAAAA= + 1849-110319-1_52: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + NAAAAAAAAAA= + 1849-110319-2_56: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + OAAAAAAAAAA= + 1849-150319-1_39: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + JwAAAAAAAAA= + 1849-150319-1_74: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + SgAAAAAAAAA= + 1849-150319-2_40: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + KAAAAAAAAAA= + 1849-150319-2_60: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + PAAAAAAAAAA= + 1849-150319-3_6: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + BgAAAAAAAAA= + 1849-150319-3_69: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + RQAAAAAAAAA= + 1849-150319-4_70: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + RgAAAAAAAAA= + 1849-150319-4_76: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + TAAAAAAAAAA= + 1849-150319-4_85: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + VQAAAAAAAAA= + 1849-220319-2_93: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + XQAAAAAAAAA= + 1849-220319-3_0: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + AAAAAAAAAAA= + 1849-220319-4_100: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + ZAAAAAAAAAA= + 1849-220319-5_79: + action_id: 1849-220319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + TwAAAAAAAAA= + 1849-280219-1_90: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + WgAAAAAAAAA= + 1849-280219-2_88: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + WAAAAAAAAAA= + 1849-280219-3_153: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + mQAAAAAAAAA= + 1849-280219-3_160: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + oAAAAAAAAAA= + 1849-280219-4_62: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + PgAAAAAAAAA= + 1849-280219-4_64: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id137 + - !!binary | + QAAAAAAAAAA= +adjlist_inner_dict_factory: &id138 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id138 +edge_attr_dict_factory: *id138 +graph: {} +node_dict_factory: *id138 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id139 diff --git a/actions/identify-neurons/data/1849-graphs/graph-group-1.yaml b/actions/identify-neurons/data/1849-graphs/graph-group-1.yaml new file mode 100644 index 000000000..be5628cf8 --- /dev/null +++ b/actions/identify-neurons/data/1849-graphs/graph-group-1.yaml @@ -0,0 +1,4338 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1849-010319-2_115: + 1849-010319-4_109: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4039, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + 3We/DMtdxD8= + 1849-010319-5_159: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bGMrvvS1xT8= + 1849-060319-1_73: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PWOA8idjwD8= + 1849-060319-3_98: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8033, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cZ4qTOsvuz8= + 1849-060319-4_76: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 10258, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p65m6Wiz2z8= + 1849-110319-1_60: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K9bB8rtOvj8= + 1849-110319-2_50: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 86013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /Xj2ymsZwD8= + 1849-110319-3_177: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 3926, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LHCsQzkXxT8= + 1849-150319-1_105: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eOmXM5iXtT8= + 1849-150319-2_48: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qjCpWupLuT8= + 1849-150319-3_8: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4904, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i2qn/nwcuD8= + 1849-150319-4_100: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7600, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Uv0nze3SxD8= + 1849-220319-2_99: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3129, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ayl5djWEyj8= + 1849-220319-3_63: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KAvAzKVJxj8= + 1849-220319-4_108: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /c9QP4EDvT8= + 1849-220319-5_117: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 10679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xqdAKnSpqD8= + 1849-280219-1_112: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3pdkUJ6BwT8= + 1849-280219-2_102: &id345 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RpIvBLFHxD8= + 1849-280219-3_180: &id389 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 72089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T13a5iJSxj8= + 1849-280219-4_84: &id470 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 69714, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + suI/5C9huj8= + 1849-010319-4_109: + 1849-010319-2_115: *id002 + 1849-060319-1_71: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82558, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jX+qjL3zxz8= + 1849-060319-3_85: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WjvBtHCd0D8= + 1849-060319-4_76: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6219, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wynxcT/d0D8= + 1849-110319-1_54: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77446, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7VAslu7Luz8= + 1849-110319-2_58: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gDQqGAsVuz8= + 1849-110319-3_177: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 86287, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Pbiy2ygcuD8= + 1849-150319-1_121: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81157, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lMJQb303uD8= + 1849-150319-2_64: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83781, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VGGAmMivuT8= + 1849-150319-3_98: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /H+2C5R3uD8= + 1849-150319-4_100: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3561, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A4wNEajrrD8= + 1849-220319-3_67: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mJSF5YvQyz8= + 1849-220319-4_90: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5jJU9mYwxz8= + 1849-220319-5_117: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6640, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7k1e+KcUxD8= + 1849-280219-1_114: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DmdPwcH/vD8= + 1849-280219-2_102: &id346 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s9JP/PMytD8= + 1849-280219-3_180: &id390 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ex9tzRQ5sz8= + 1849-280219-4_84: &id471 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tPcbif4xwD8= + 1849-010319-4_87: + 1849-010319-5_127: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YJI5M9P/rD8= + 1849-060319-1_73: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82558, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RFP33152yz8= + 1849-060319-3_94: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w0gckQ7zxD8= + 1849-110319-1_31: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77446, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ivgR2OTvuD8= + 1849-110319-2_50: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W8FsC3ptwT8= + 1849-150319-1_93: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81157, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 055GMUg3tz8= + 1849-150319-2_44: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83781, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ijw5ERn7uz8= + 1849-150319-3_7: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CRhmBbVruD8= + 1849-150319-4_78: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3561, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QY3CwiRosj8= + 1849-220319-2_99: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QfRqUFMBuD8= + 1849-220319-3_63: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0J+I03Gqsj8= + 1849-220319-4_118: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lX2KbR/n0D8= + 1849-280219-1_102: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DPbIRRSNvT8= + 1849-280219-4_105: &id434 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mkQozBqPwT8= + 1849-010319-4_97: + 1849-010319-5_137: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UiK+XMx1rz8= + 1849-060319-1_106: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82558, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AVx2y3mY1j8= + 1849-060319-3_98: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mNZ9CThgyz8= + 1849-110319-1_64: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77446, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h7PvjDc9tD8= + 1849-110319-2_66: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TvKKPA2fsj8= + 1849-150319-3_8: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ySMjaNjEzD8= + 1849-150319-4_99: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3561, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oErlVzuC4T8= + 1849-220319-3_59: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m2bAs3xArT8= + 1849-220319-4_117: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZW7ffFbJuj8= + 1849-280219-1_104: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SdxalLQ/xj8= + 1849-280219-2_78: &id375 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /UHk95CpwT8= + 1849-280219-4_32: &id451 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rIEshRoVwD8= + 1849-010319-4_99: + 1849-010319-5_159: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NUsNS7F1uz8= + 1849-060319-1_108: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82558, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EVVBNklq2z8= + 1849-060319-3_104: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jmFre9fDzj8= + 1849-110319-1_66: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77446, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tkZSx5eEtz8= + 1849-110319-2_68: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E8sTU+E+tz8= + 1849-150319-1_105: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81157, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hdJn3vhlyz8= + 1849-150319-2_48: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83781, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VOscnJCHzD8= + 1849-150319-3_11: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3gmlsr5A1z8= + 1849-220319-4_108: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FIWnEyrYxj8= + 1849-280219-1_112: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nly4ie8Hyz8= + 1849-280219-2_110: &id361 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bTV/9nd4yj8= + 1849-280219-3_182: &id408 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VJdvVTe7yj8= + 1849-280219-4_81: &id460 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u+orXsQUxT8= + 1849-010319-5_127: + 1849-010319-4_87: *id003 + 1849-060319-1_73: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dcaAZ0dlxz8= + 1849-060319-3_94: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3138, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IgzDmsIhwT8= + 1849-110319-1_54: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 76590, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HD46kb67sz8= + 1849-110319-2_58: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NkigUzRNuz8= + 1849-110319-3_177: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85431, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /YnYksp/vz8= + 1849-150319-1_93: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80301, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bW+Jl5B5sT8= + 1849-150319-2_44: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82925, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K58xQBY8tj8= + 1849-150319-3_7: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 9, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FyKYJ6z2sj8= + 1849-150319-4_78: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2705, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yHUODstpqj8= + 1849-220319-2_99: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84634, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nRhLd3nUsT8= + 1849-220319-3_63: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 811, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + liG79yqZrT8= + 1849-220319-4_90: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /5mfkOUkxz8= + 1849-280219-1_102: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kgI9QJzwuj8= + 1849-280219-2_102: &id347 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hz5qrmDjvT8= + 1849-280219-3_180: &id391 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UNkgCfvGwT8= + 1849-280219-4_105: &id435 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZaQDOaYAvD8= + 1849-010319-5_137: + 1849-010319-4_97: *id004 + 1849-060319-1_106: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ce4NbrkC1T8= + 1849-060319-3_104: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3138, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2chhHsYDzj8= + 1849-060319-4_76: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0PlptGnp0z8= + 1849-110319-1_64: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 76590, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zZ6zbmpLsj8= + 1849-110319-2_68: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 31Z5GjiJwD8= + 1849-150319-1_121: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80301, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pKIesXDmzT8= + 1849-150319-2_64: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82925, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G28UvdVfzz8= + 1849-150319-3_98: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 9, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dq8XR1ZDzj8= + 1849-150319-4_99: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2705, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ounjxFiS4T8= + 1849-220319-3_59: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 811, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j4tM1lJctj8= + 1849-220319-4_117: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1FvISx/tvj8= + 1849-280219-1_104: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DWF5U9cZxD8= + 1849-280219-2_110: &id362 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QbWjpYnBzj8= + 1849-280219-4_32: &id452 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /tz1i0yGwz8= + 1849-010319-5_159: + 1849-010319-2_115: *id005 + 1849-010319-4_99: *id006 + 1849-060319-1_71: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D2mYQ5gUyz8= + 1849-060319-3_98: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3138, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c7I4nrciyD8= + 1849-110319-1_60: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 76590, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XsozEO0Ouz8= + 1849-110319-2_66: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pwhGh+y/sj8= + 1849-150319-1_105: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80301, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EvifOw1byD8= + 1849-150319-2_48: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82925, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LDiidIVGyT8= + 1849-150319-3_8: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 9, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hUiQJ42wxj8= + 1849-150319-4_100: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2705, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vcSp3HEhyz8= + 1849-220319-3_67: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 811, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B0rCn+ooxT8= + 1849-220319-4_108: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0vsBS4bGvT8= + 1849-220319-5_117: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5784, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wls8GwNrwz8= + 1849-280219-1_112: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FbddtIUEyD8= + 1849-280219-2_78: &id376 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +8i1WXxOvD8= + 1849-280219-3_182: &id409 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EYd/IlBWzT8= + 1849-280219-4_81: &id461 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9AKFzBFEvT8= + 1849-060319-1_106: + 1849-010319-4_97: *id007 + 1849-010319-5_137: *id008 + 1849-060319-3_104: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7836, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + toIT+PLC0D8= + 1849-110319-1_64: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7YJY4a+n0j8= + 1849-110319-2_66: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sahXSLnK0z8= + 1849-150319-1_93: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84999, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q3a7NYNR3T8= + 1849-150319-2_44: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JyYhEIQE3j8= + 1849-150319-3_98: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8Zs0v60D2j8= + 1849-150319-4_99: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IF/01R945D8= + 1849-220319-3_59: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oG07mpW01z8= + 1849-220319-4_117: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7912, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1ED7YINS1z8= + 1849-280219-1_116: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CvKUtTFK1j8= + 1849-280219-2_78: &id377 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ffMGnhUT1j8= + 1849-280219-4_101: &id422 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4rgQiovi1D8= + 1849-060319-1_108: + 1849-010319-4_99: *id009 + 1849-060319-3_85: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7836, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a0lz0J0F4D8= + 1849-110319-1_59: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cds8PF/F3T8= + 1849-110319-2_50: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6Mj/qYPV3j8= + 1849-150319-3_11: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rCZwZfnA4D8= + 1849-220319-4_90: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7912, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gjBA0HEU4T8= + 1849-280219-1_104: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j7SpQMf82z8= + 1849-280219-4_81: &id462 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sUj1UUSG2j8= + 1849-060319-1_71: + 1849-010319-4_109: *id010 + 1849-010319-5_159: *id011 + 1849-060319-3_94: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7836, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B2htALJZ2D8= + 1849-060319-4_76: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10061, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UcR3++gN2D8= + 1849-110319-1_66: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e79MGciqxz8= + 1849-110319-2_68: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XYvbbg6+xz8= + 1849-150319-1_121: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84999, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rNMn9vI4yz8= + 1849-150319-2_64: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lFOD0UX6zD8= + 1849-150319-3_7: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8kcaw0UO0T8= + 1849-150319-4_100: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LLf8OG+Byz8= + 1849-220319-3_67: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CR/1pDTMzj8= + 1849-220319-4_118: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7912, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uv4MkCmDzj8= + 1849-280219-1_114: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kY0aOLLRzD8= + 1849-280219-2_110: &id363 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UuxxIKwzzz8= + 1849-280219-3_180: &id392 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4QZnXKs8zD8= + 1849-280219-4_105: &id436 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qcgu4mVUzT8= + 1849-060319-1_73: + 1849-010319-2_115: *id012 + 1849-010319-4_87: *id013 + 1849-010319-5_127: *id014 + 1849-060319-3_98: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7836, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BDeb5OzZsj8= + 1849-110319-1_60: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fdMDg29gyD8= + 1849-110319-2_62: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WHhx8OmtyT8= + 1849-110319-3_177: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nRm91TW5zD8= + 1849-150319-1_105: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84999, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1JbWi5dnwj8= + 1849-150319-2_48: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VQzEfSuuwj8= + 1849-150319-3_8: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0q+AUhMixD8= + 1849-150319-4_78: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sd+siC/+xz8= + 1849-220319-2_99: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PbIZ239Ixz8= + 1849-220319-3_63: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Lvncbz/jxj8= + 1849-220319-4_108: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7912, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RVUY1cvpxD8= + 1849-220319-5_117: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10482, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2DbBxwOcwT8= + 1849-280219-1_112: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ls6Y0fP2yD8= + 1849-280219-2_102: &id348 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FIdBQz3+xz8= + 1849-280219-3_182: &id410 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pDGgx3KszT8= + 1849-280219-4_84: &id472 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cTWBbcjnxT8= + 1849-060319-3_104: + 1849-010319-4_99: *id015 + 1849-010319-5_137: *id016 + 1849-060319-1_106: *id017 + 1849-110319-1_60: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 73452, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iQBryJas1T8= + 1849-110319-2_62: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a2W6I2Mr1j8= + 1849-150319-1_121: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77163, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gg+rcetq0D8= + 1849-150319-2_64: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79787, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3+eq5/sx0T8= + 1849-150319-3_98: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lXN1+VpW0D8= + 1849-220319-3_59: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84073, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8W727O/81j8= + 1849-220319-4_117: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 76, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JeQ+u9lS1D8= + 1849-280219-1_104: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jFYYngMr1T8= + 1849-280219-2_110: &id364 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6onx+1y6zz8= + 1849-280219-4_81: &id463 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g+RODknF0D8= + 1849-060319-3_108: + 1849-110319-1_64: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 73452, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OXv+eESx1T8= + 1849-110319-2_66: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ny8FTzUQ1z8= + 1849-150319-4_99: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i1aELkoD4T8= + 1849-220319-4_118: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 76, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bADzGT571z8= + 1849-280219-1_114: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qbKc15nN1T8= + 1849-280219-4_101: &id423 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WtkEA8yO1T8= + 1849-060319-3_85: + 1849-010319-4_109: *id018 + 1849-060319-1_108: *id019 + 1849-060319-4_76: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0UL3+j/gsj8= + 1849-110319-1_66: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 73452, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9pE6O3mJyz8= + 1849-110319-2_68: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tY3DTLQ0zT8= + 1849-150319-3_11: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + brYfTdwawz8= + 1849-280219-1_116: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F8ZdnQ2a0z8= + 1849-280219-4_105: &id437 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oLiLKAE91D8= + 1849-060319-3_94: + 1849-010319-4_87: *id020 + 1849-010319-5_127: *id021 + 1849-060319-1_71: *id022 + 1849-110319-1_54: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 73452, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z6uyyAUwwj8= + 1849-110319-2_58: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1YFXhgKdxD8= + 1849-110319-3_177: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gDM/RkusyD8= + 1849-150319-1_93: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77163, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zR3+8ZWdvz8= + 1849-150319-2_44: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79787, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rMNk0kV5vD8= + 1849-150319-3_7: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w0OPRzpgvT8= + 1849-150319-4_78: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VV6oskm7vz8= + 1849-220319-2_99: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Tzf2XZMwD8= + 1849-220319-3_63: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84073, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MUMiTlMywT8= + 1849-220319-4_90: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 76, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Na/dsm+Ezz8= + 1849-280219-1_102: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1nya6NYQyT8= + 1849-280219-2_102: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E93nDTt5wj8= + 1849-280219-3_180: &id393 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j2xO75iQxT8= + 1849-280219-4_84: &id473 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wDDoMiv/wz8= + 1849-060319-3_98: + 1849-010319-2_115: *id023 + 1849-010319-4_97: *id024 + 1849-010319-5_159: *id025 + 1849-060319-1_73: *id026 + 1849-110319-1_41: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 73452, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0J3MkB3nxj8= + 1849-110319-2_50: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pvKF641Exj8= + 1849-150319-1_105: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77163, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8Wo5jfQVwD8= + 1849-150319-2_48: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79787, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pmTzBdoTwT8= + 1849-150319-3_8: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /5itPUcMwj8= + 1849-150319-4_100: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C4Zj1Bs3xz8= + 1849-220319-3_67: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84073, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6E04/TUN0T8= + 1849-220319-4_108: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 76, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6bUJ3p1Jwj8= + 1849-220319-5_117: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2646, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1y+ZzGohvD8= + 1849-280219-1_112: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y10NE0VLxz8= + 1849-280219-2_78: &id378 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QUq/f3Vozj8= + 1849-280219-3_182: &id411 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yx4bj03hzD8= + 1849-280219-4_32: &id453 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +ZCl+V3mzT8= + 1849-060319-4_76: + 1849-010319-2_115: *id027 + 1849-010319-4_109: *id028 + 1849-010319-5_137: *id029 + 1849-060319-1_71: *id030 + 1849-060319-3_85: *id031 + 1849-110319-1_66: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 71227, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g6WPzA/VzD8= + 1849-110319-2_68: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xr00X8ddzj8= + 1849-110319-3_177: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 80068, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m2RZRREB3D8= + 1849-150319-1_121: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 74938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WszhqxnD0j8= + 1849-150319-2_64: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77562, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dzpZVf200z8= + 1849-150319-3_11: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81046, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 80E2VjK0yD8= + 1849-150319-4_100: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83742, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vM8KItph0j8= + 1849-220319-2_99: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 79271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w42QFksw2j8= + 1849-220319-3_59: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qiPcUm0X2z8= + 1849-220319-4_117: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oUy+D27/1z8= + 1849-220319-5_117: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 421, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mLuW/b3s2j8= + 1849-280219-1_114: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N5a279sD0z8= + 1849-280219-2_110: &id365 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9AizqJy70T8= + 1849-280219-3_180: &id394 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4G26MLID0j8= + 1849-280219-4_101: &id424 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79972, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eDoqwMzE0j8= + 1849-110319-1_31: + 1849-010319-4_87: *id032 + 1849-110319-2_58: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YFzXv0VxwT8= + 1849-150319-1_93: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Xrcepfq3vD8= + 1849-150319-2_44: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zZ1v6ZMnwD8= + 1849-150319-3_7: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9819, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XG8HPi+8vj8= + 1849-150319-4_99: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12515, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 33kcHeE34D8= + 1849-280219-1_102: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MElZs/iDwz8= + 1849-110319-1_41: + 1849-060319-3_98: *id033 + 1849-280219-1_116: &id341 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CWMimblXzT8= + 1849-280219-4_101: &id425 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 64799, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T23hLX4Iyz8= + 1849-110319-1_54: + 1849-010319-4_109: *id034 + 1849-010319-5_127: *id035 + 1849-060319-3_94: *id036 + 1849-110319-2_50: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GrnbQp7ctj8= + 1849-110319-3_177: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8841, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IOZqyb7QvT8= + 1849-150319-1_121: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M8aK0Us6vz8= + 1849-150319-2_64: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JLoVie9/wD8= + 1849-150319-3_98: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9819, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2lcVcYs5wD8= + 1849-150319-4_78: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12515, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wn5DLG8lqz8= + 1849-220319-2_99: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vwnVL3d6uz8= + 1849-220319-3_63: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zj+5wQcGsT8= + 1849-280219-1_114: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 14ufh+k4wz8= + 1849-280219-2_102: &id350 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69481, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uy1bUCpqwD8= + 1849-280219-3_180: &id395 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 67174, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HfMs9Aj2wj8= + 1849-280219-4_105: &id438 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 64799, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aMjzAUh/vz8= + 1849-110319-1_59: + 1849-060319-1_108: *id037 + 1849-220319-3_67: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pku1ItQHvz8= + 1849-220319-4_118: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13024, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DzeCSUiZvj8= + 1849-280219-4_32: &id454 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 64799, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aoxkfYiVwT8= + 1849-110319-1_60: + 1849-010319-2_115: *id038 + 1849-010319-5_159: *id039 + 1849-060319-1_73: *id040 + 1849-060319-3_104: *id041 + 1849-110319-2_62: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aqP4626qvT8= + 1849-150319-1_105: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aCQStkWmvz8= + 1849-150319-2_48: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JH0u6vMMwz8= + 1849-150319-3_8: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9819, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oK5/Vw1avj8= + 1849-150319-4_100: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12515, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kn37gbctxD8= + 1849-220319-4_108: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13024, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PVldSDZEuj8= + 1849-220319-5_117: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G3J7Vd+guj8= + 1849-280219-1_112: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1JVFYCX3wT8= + 1849-280219-2_110: &id366 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69481, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +BmVxtLwxz8= + 1849-280219-3_182: &id412 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 67174, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9HhSED5syT8= + 1849-280219-4_84: &id474 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 64799, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T7rKMm3Mvz8= + 1849-110319-1_64: + 1849-010319-4_97: *id042 + 1849-010319-5_137: *id043 + 1849-060319-1_106: *id044 + 1849-060319-3_108: *id045 + 1849-110319-2_66: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jh7sSf5OoT8= + 1849-220319-3_59: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MRlrE6Dquj8= + 1849-220319-4_117: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13024, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + POpds4MMuT8= + 1849-280219-1_104: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wd/nQzBtwT8= + 1849-280219-2_78: &id379 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69481, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SaECqzKavD8= + 1849-280219-4_81: &id464 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 64799, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + igbAw8WCuz8= + 1849-110319-1_66: + 1849-010319-4_99: *id046 + 1849-060319-1_71: *id047 + 1849-060319-3_85: *id048 + 1849-060319-4_76: *id049 + 1849-110319-2_68: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + msCwKEinmj8= + 1849-150319-3_11: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9819, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cRbL9wX0zD8= + 1849-220319-4_90: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13024, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h4/UiHnEzD8= + 1849-110319-2_50: + 1849-010319-2_115: *id050 + 1849-010319-4_87: *id051 + 1849-060319-1_108: *id052 + 1849-060319-3_98: *id053 + 1849-110319-1_54: *id054 + 1849-150319-1_93: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qVbzFXohwT8= + 1849-150319-2_44: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 1807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w+Bx8Vfrwz8= + 1849-150319-3_7: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zThN7ncTwj8= + 1849-150319-4_78: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 7987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yA1Wfo+/uj8= + 1849-220319-3_63: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2mpFJRYYuj8= + 1849-220319-4_108: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kuf/wKH4wj8= + 1849-220319-5_117: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m4IO4fyjvz8= + 1849-280219-1_112: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IqFBimOOxD8= + 1849-280219-4_101: &id426 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69327, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5lLeCda4yT8= + 1849-110319-2_58: + 1849-010319-4_109: *id055 + 1849-010319-5_127: *id056 + 1849-060319-3_94: *id057 + 1849-110319-1_31: *id058 + 1849-150319-1_121: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wNB6uj1YwD8= + 1849-150319-2_64: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 1807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HmG/O58gwT8= + 1849-150319-3_98: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nO0fIH65wD8= + 1849-150319-4_99: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 7987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pcb6Bdsh4D8= + 1849-220319-2_99: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZpD2jv6DwD8= + 1849-220319-4_90: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rH383mIiyz8= + 1849-280219-1_114: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ifvfn0iQwz8= + 1849-280219-2_102: &id351 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ErT8nQlTwD8= + 1849-280219-3_180: &id396 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 71702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YJ6DyBvnwT8= + 1849-280219-4_105: &id439 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69327, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uLsmAUk2wD8= + 1849-110319-2_62: + 1849-060319-1_73: *id059 + 1849-060319-3_104: *id060 + 1849-110319-1_60: *id061 + 1849-110319-3_177: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H/ZLqRBJqz8= + 1849-150319-1_105: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tkvcara3uD8= + 1849-150319-2_48: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 1807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u4eCYhDOuj8= + 1849-150319-3_8: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + od/dxA/YtT8= + 1849-150319-4_100: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 7987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7VQLrKexuj8= + 1849-280219-1_116: &id342 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n1k2wtmxxj8= + 1849-280219-2_110: &id367 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w6vB7Dn5xD8= + 1849-280219-3_182: &id413 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 71702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VI2Nf7XcxT8= + 1849-280219-4_84: &id475 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69327, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ecckHLk4tT8= + 1849-110319-2_66: + 1849-010319-4_97: *id062 + 1849-010319-5_159: *id063 + 1849-060319-1_106: *id064 + 1849-060319-3_108: *id065 + 1849-110319-1_64: *id066 + 1849-220319-3_59: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D4T0JBRkuT8= + 1849-220319-4_117: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NEs5jK+rtD8= + 1849-280219-1_104: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YDwbwJb3vj8= + 1849-280219-2_78: &id380 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OktPqZlDvD8= + 1849-280219-4_81: &id465 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69327, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2qe7weNJuz8= + 1849-110319-2_68: + 1849-010319-4_99: *id067 + 1849-010319-5_137: *id068 + 1849-060319-1_71: *id069 + 1849-060319-3_85: *id070 + 1849-060319-4_76: *id071 + 1849-110319-1_66: *id072 + 1849-150319-3_11: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tekNePotzz8= + 1849-220319-3_67: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +BUeUgiCyT8= + 1849-220319-4_118: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2ku0tW4Nyz8= + 1849-280219-1_102: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nTJBRgSvyT8= + 1849-280219-4_32: &id455 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69327, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vVxcZfkUxz8= + 1849-110319-3_177: + 1849-010319-2_115: *id073 + 1849-010319-4_109: *id074 + 1849-010319-5_127: *id075 + 1849-060319-1_73: *id076 + 1849-060319-3_94: *id077 + 1849-060319-4_76: *id078 + 1849-110319-1_54: *id079 + 1849-110319-2_62: *id080 + 1849-150319-1_121: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 81270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A/qasF5Tvj8= + 1849-150319-2_64: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83894, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ujibZkimvz8= + 1849-150319-3_8: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PHajzP0HvD8= + 1849-150319-4_100: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3674, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V4bE7sjfuD8= + 1849-220319-2_99: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MXIHOiZxxj8= + 1849-220319-3_63: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JlEa7+zrwT8= + 1849-220319-4_108: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4183, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z+l0vW2QyT8= + 1849-220319-5_117: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fsjb7DJsxT8= + 1849-280219-1_114: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 83223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XtHphVxCwD8= + 1849-280219-2_102: &id352 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78322, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IOKWPZZwuz8= + 1849-280219-3_180: &id397 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 76015, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AByIO2kdvj8= + 1849-280219-4_105: &id440 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 73640, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + boUb9NpDuz8= + 1849-150319-1_105: + 1849-010319-2_115: *id081 + 1849-010319-4_99: *id082 + 1849-010319-5_159: *id083 + 1849-060319-1_73: *id084 + 1849-060319-3_98: *id085 + 1849-110319-1_60: *id086 + 1849-110319-2_62: *id087 + 1849-150319-2_48: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7MZ6TXNypj8= + 1849-150319-3_8: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IGhOQlLdpD8= + 1849-150319-4_99: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NdGiYoPN4T8= + 1849-220319-3_59: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZAbSSL28yj8= + 1849-220319-4_108: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2o39cGGYwj8= + 1849-220319-5_117: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bKySE0hetT8= + 1849-280219-1_112: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WXqzPF9AvT8= + 1849-280219-2_78: &id381 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DeIWud/4xj8= + 1849-280219-3_182: &id414 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Aabgca4PyD8= + 1849-280219-4_84: &id476 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8doAI90tqD8= + 1849-150319-1_121: + 1849-010319-4_109: *id088 + 1849-010319-5_137: *id089 + 1849-060319-1_71: *id090 + 1849-060319-3_104: *id091 + 1849-060319-4_76: *id092 + 1849-110319-1_54: *id093 + 1849-110319-2_58: *id094 + 1849-110319-3_177: *id095 + 1849-150319-2_64: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gySfh8R2nz8= + 1849-150319-3_98: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4REIJlLJjz8= + 1849-150319-4_100: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ojncVkQAsz8= + 1849-220319-3_67: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IDRAfl95zD8= + 1849-220319-4_90: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hRbCs7HQwz8= + 1849-280219-1_114: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0mlM/2hCtT8= + 1849-280219-2_102: &id353 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W9tpEcVKsT8= + 1849-280219-3_180: &id398 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SP7hAnpduj8= + 1849-280219-4_105: &id441 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ApD/2kEHrT8= + 1849-150319-1_93: + 1849-010319-4_87: *id096 + 1849-010319-5_127: *id097 + 1849-060319-1_106: *id098 + 1849-060319-3_94: *id099 + 1849-110319-1_31: *id100 + 1849-110319-2_50: *id101 + 1849-150319-2_44: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PZ3KYdS6oz8= + 1849-150319-3_7: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MmkaaKH4mT8= + 1849-150319-4_78: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gara/1uytT8= + 1849-220319-2_99: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4333, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JmNjNcmjsj8= + 1849-220319-3_63: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P8sWIiwosz8= + 1849-220319-4_117: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OkYx27+r0D8= + 1849-280219-1_102: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hpZhwgeBwT8= + 1849-280219-2_110: &id368 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kyscKCUoyj8= + 1849-280219-4_101: &id427 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nqrFAS18yj8= + 1849-150319-2_44: + 1849-010319-4_87: *id102 + 1849-010319-5_127: *id103 + 1849-060319-1_106: *id104 + 1849-060319-3_94: *id105 + 1849-110319-1_31: *id106 + 1849-110319-2_50: *id107 + 1849-150319-1_93: *id108 + 1849-150319-3_7: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ik1Tbhmglz8= + 1849-150319-4_99: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m3CYS2jM3z8= + 1849-220319-2_99: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1709, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bhItYai/sD8= + 1849-220319-3_63: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VeYM4lT3tj8= + 1849-220319-4_90: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AdUlMFpexj8= + 1849-280219-1_102: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80717, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fsYtIUkJwz8= + 1849-280219-2_110: &id369 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bBVmhEZvyj8= + 1849-280219-4_101: &id428 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 71134, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Y3TZR/Tyj8= + 1849-150319-2_48: + 1849-010319-2_115: *id109 + 1849-010319-4_99: *id110 + 1849-010319-5_159: *id111 + 1849-060319-1_73: *id112 + 1849-060319-3_98: *id113 + 1849-110319-1_60: *id114 + 1849-110319-2_62: *id115 + 1849-150319-1_105: *id116 + 1849-150319-3_8: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MTCDBJ3IpT8= + 1849-150319-4_78: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sFmF6SkAwj8= + 1849-220319-3_59: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wZQX5wjezT8= + 1849-220319-4_108: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s1wFQ0xmxD8= + 1849-220319-5_117: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9259, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mosJ9Xrmuj8= + 1849-280219-1_112: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80717, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ++NAx7HmwT8= + 1849-280219-2_78: &id382 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d2qUevQkyz8= + 1849-280219-3_182: &id415 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /dHFHoePyD8= + 1849-280219-4_84: &id477 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 71134, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O2LykHXDsT8= + 1849-150319-2_64: + 1849-010319-4_109: *id117 + 1849-010319-5_137: *id118 + 1849-060319-1_71: *id119 + 1849-060319-3_104: *id120 + 1849-060319-4_76: *id121 + 1849-110319-1_54: *id122 + 1849-110319-2_58: *id123 + 1849-110319-3_177: *id124 + 1849-150319-1_121: *id125 + 1849-150319-3_98: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + adCNJlCrmD8= + 1849-150319-4_100: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b16/Zg+osz8= + 1849-220319-3_67: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1fI9YIY7zj8= + 1849-220319-4_118: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CcpcXioGzz8= + 1849-280219-1_114: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80717, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6alCwyRCtT8= + 1849-280219-2_102: &id354 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w4eJIg6wsD8= + 1849-280219-3_180: &id399 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8Y1KZziPuT8= + 1849-280219-4_105: &id442 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 71134, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P9K263zRqz8= + 1849-150319-3_11: + 1849-010319-4_99: *id126 + 1849-060319-1_108: *id127 + 1849-060319-3_85: *id128 + 1849-060319-4_76: *id129 + 1849-110319-1_66: *id130 + 1849-110319-2_68: *id131 + 1849-220319-4_117: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SL+G0i9I3D8= + 1849-280219-1_116: &id343 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84201, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0iKahda51D8= + 1849-280219-4_101: &id429 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 74618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XnzCwR+x0z8= + 1849-150319-3_7: + 1849-010319-4_87: *id132 + 1849-010319-5_127: *id133 + 1849-060319-1_71: *id134 + 1849-060319-3_94: *id135 + 1849-110319-1_31: *id136 + 1849-110319-2_50: *id137 + 1849-150319-1_93: *id138 + 1849-150319-2_44: *id139 + 1849-150319-4_78: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2mjfdeZStj8= + 1849-220319-2_99: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84625, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0UqaI+CjsD8= + 1849-220319-3_63: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 802, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TGBLVEA+tD8= + 1849-220319-4_90: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y4E9Kk+0xj8= + 1849-280219-1_102: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84201, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RT5nqHmkwj8= + 1849-280219-2_110: &id370 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79300, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UkifX2gIyj8= + 1849-280219-4_32: &id456 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 74618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TJs/h88c0D8= + 1849-150319-3_8: + 1849-010319-2_115: *id140 + 1849-010319-4_97: *id141 + 1849-010319-5_159: *id142 + 1849-060319-1_73: *id143 + 1849-060319-3_98: *id144 + 1849-110319-1_60: *id145 + 1849-110319-2_62: *id146 + 1849-110319-3_177: *id147 + 1849-150319-1_105: *id148 + 1849-150319-2_48: *id149 + 1849-150319-4_99: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VA8mwE2O4T8= + 1849-220319-3_59: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 802, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3kBrSqlbyz8= + 1849-220319-4_108: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9XJ9Qmazwj8= + 1849-220319-5_117: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5775, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UEOZjk4TuD8= + 1849-280219-1_112: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84201, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bCyAh6NawD8= + 1849-280219-2_78: &id383 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79300, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HypI/OYZyD8= + 1849-280219-3_182: &id416 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 76993, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xmlXd2Y0yD8= + 1849-280219-4_84: &id478 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 74618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2eCrh53Vqz8= + 1849-150319-3_98: + 1849-010319-4_109: *id150 + 1849-010319-5_137: *id151 + 1849-060319-1_106: *id152 + 1849-060319-3_104: *id153 + 1849-110319-1_54: *id154 + 1849-110319-2_58: *id155 + 1849-150319-1_121: *id156 + 1849-150319-2_64: *id157 + 1849-150319-4_100: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A1cJz62xsj8= + 1849-220319-3_67: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 802, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D13nf7QfzT8= + 1849-220319-4_118: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LMrQHMjyzT8= + 1849-280219-1_114: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84201, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1nSyRXoYtT8= + 1849-280219-2_102: &id355 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79300, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FDRxHx8esT8= + 1849-280219-3_180: &id400 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 76993, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c1ER1IHhuT8= + 1849-280219-4_105: &id443 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 74618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bOHcWOKYrT8= + 1849-150319-4_100: + 1849-010319-2_115: *id158 + 1849-010319-4_109: *id159 + 1849-010319-5_159: *id160 + 1849-060319-1_71: *id161 + 1849-060319-3_98: *id162 + 1849-060319-4_76: *id163 + 1849-110319-1_60: *id164 + 1849-110319-2_62: *id165 + 1849-110319-3_177: *id166 + 1849-150319-1_121: *id167 + 1849-150319-2_64: *id168 + 1849-150319-3_98: *id169 + 1849-220319-3_59: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84506, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XcoSrIcXyT8= + 1849-220319-4_108: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /mN37PESyD8= + 1849-220319-5_117: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mtfD+MQsxT8= + 1849-280219-1_114: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IbOxh/nysj8= + 1849-280219-2_78: &id384 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + koR4bKQsyD8= + 1849-280219-3_180: &id401 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WZGidPniqT8= + 1849-280219-4_105: &id444 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 77314, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Yayq8gl9qT8= + 1849-150319-4_78: + 1849-010319-4_87: *id170 + 1849-010319-5_127: *id171 + 1849-060319-1_73: *id172 + 1849-060319-3_94: *id173 + 1849-110319-1_54: *id174 + 1849-110319-2_50: *id175 + 1849-150319-1_93: *id176 + 1849-150319-2_48: *id177 + 1849-150319-3_7: *id178 + 1849-220319-2_99: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81929, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bwf0RsAYtT8= + 1849-220319-3_63: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84506, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mciIr9NFqj8= + 1849-220319-4_117: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zKhX2azx0D8= + 1849-280219-1_102: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cC64j1kCwT8= + 1849-280219-2_102: &id356 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wz+fPnuQvT8= + 1849-280219-3_182: &id417 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9g8BuVIByj8= + 1849-280219-4_84: &id479 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 77314, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kmDWMLf7wj8= + 1849-150319-4_99: + 1849-010319-4_97: *id179 + 1849-010319-5_137: *id180 + 1849-060319-1_106: *id181 + 1849-060319-3_108: *id182 + 1849-110319-1_31: *id183 + 1849-110319-2_58: *id184 + 1849-150319-1_105: *id185 + 1849-150319-2_44: *id186 + 1849-150319-3_8: *id187 + 1849-220319-3_67: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84506, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0K7cqQof4T8= + 1849-220319-4_90: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B0SG8KZa3D8= + 1849-280219-1_116: &id344 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K2arsVZR3j8= + 1849-280219-2_110: &id371 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7fCj+T7z2j8= + 1849-280219-4_101: &id430 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 77314, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LAh3HgOd3D8= + 1849-220319-2_99: + 1849-010319-2_115: *id188 + 1849-010319-4_87: *id189 + 1849-010319-5_127: *id190 + 1849-060319-1_73: *id191 + 1849-060319-3_94: *id192 + 1849-060319-4_76: *id193 + 1849-110319-1_54: *id194 + 1849-110319-2_58: *id195 + 1849-110319-3_177: *id196 + 1849-150319-1_93: *id197 + 1849-150319-2_44: *id198 + 1849-150319-3_7: *id199 + 1849-150319-4_78: *id200 + 1849-220319-3_63: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2577, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OymhB4qSsT8= + 1849-220319-4_90: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xy0TWc/Swz8= + 1849-220319-5_117: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HbginKY7yz8= + 1849-280219-1_102: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82426, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hxWLvGiKvj8= + 1849-280219-2_102: &id357 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RXADwLiOwD8= + 1849-280219-3_180: &id402 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75218, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3O2Sn5fAwz8= + 1849-280219-4_105: &id445 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 72843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wXYsbD5Jvj8= + 1849-220319-3_59: + 1849-010319-4_97: *id201 + 1849-010319-5_137: *id202 + 1849-060319-1_106: *id203 + 1849-060319-3_104: *id204 + 1849-060319-4_76: *id205 + 1849-110319-1_64: *id206 + 1849-110319-2_66: *id207 + 1849-150319-1_105: *id208 + 1849-150319-2_48: *id209 + 1849-150319-3_8: *id210 + 1849-150319-4_100: *id211 + 1849-220319-4_117: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v5xblSnFvT8= + 1849-280219-1_114: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85003, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cebhie9/yz8= + 1849-280219-2_78: &id385 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I8LDyGf5xj8= + 1849-280219-3_182: &id418 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + px4fgAdMzj8= + 1849-280219-4_81: &id466 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mrNWJ2Ylxj8= + 1849-220319-3_63: + 1849-010319-2_115: *id212 + 1849-010319-4_87: *id213 + 1849-010319-5_127: *id214 + 1849-060319-1_73: *id215 + 1849-060319-3_94: *id216 + 1849-110319-1_54: *id217 + 1849-110319-2_50: *id218 + 1849-110319-3_177: *id219 + 1849-150319-1_93: *id220 + 1849-150319-2_44: *id221 + 1849-150319-3_7: *id222 + 1849-150319-4_78: *id223 + 1849-220319-2_99: *id224 + 1849-220319-4_108: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aZGdmRwryj8= + 1849-220319-5_117: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4973, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8wZ/6Hcfxj8= + 1849-280219-1_102: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85003, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lB4Sjb+/vz8= + 1849-280219-2_102: &id358 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a3GsZYUBwT8= + 1849-280219-3_180: &id403 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0BUAZmG+wz8= + 1849-280219-4_105: &id446 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0Iqpsq7pvz8= + 1849-220319-3_67: + 1849-010319-4_109: *id225 + 1849-010319-5_159: *id226 + 1849-060319-1_71: *id227 + 1849-060319-3_98: *id228 + 1849-110319-1_59: *id229 + 1849-110319-2_68: *id230 + 1849-150319-1_121: *id231 + 1849-150319-2_64: *id232 + 1849-150319-3_98: *id233 + 1849-150319-4_99: *id234 + 1849-220319-4_118: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qCoz4rRRpT8= + 1849-280219-1_104: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85003, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k41xm3HTyz8= + 1849-280219-2_110: &id372 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CRjF5k5A0D8= + 1849-280219-4_32: &id457 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bCzAsfsTyj8= + 1849-220319-4_108: + 1849-010319-2_115: *id235 + 1849-010319-4_99: *id236 + 1849-010319-5_159: *id237 + 1849-060319-1_73: *id238 + 1849-060319-3_98: *id239 + 1849-110319-1_60: *id240 + 1849-110319-2_50: *id241 + 1849-110319-3_177: *id242 + 1849-150319-1_105: *id243 + 1849-150319-2_48: *id244 + 1849-150319-3_8: *id245 + 1849-150319-4_100: *id246 + 1849-220319-3_63: *id247 + 1849-220319-5_117: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CfQUPepBuj8= + 1849-280219-1_112: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1006, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CQVnBZ5Zxz8= + 1849-280219-2_110: &id373 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2u4XqmS2yj8= + 1849-280219-3_182: &id419 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dz5nnzunzD8= + 1849-280219-4_84: &id480 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eeRK7i5uxT8= + 1849-220319-4_117: + 1849-010319-4_97: *id248 + 1849-010319-5_137: *id249 + 1849-060319-1_106: *id250 + 1849-060319-3_104: *id251 + 1849-060319-4_76: *id252 + 1849-110319-1_64: *id253 + 1849-110319-2_66: *id254 + 1849-150319-1_93: *id255 + 1849-150319-3_11: *id256 + 1849-150319-4_78: *id257 + 1849-220319-3_59: *id258 + 1849-280219-1_104: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1006, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MK1Xjneivj8= + 1849-280219-2_78: &id386 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m/nwkLGBxT8= + 1849-280219-4_81: &id467 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1WF0y+C+xT8= + 1849-220319-4_118: + 1849-010319-4_87: *id259 + 1849-060319-1_71: *id260 + 1849-060319-3_108: *id261 + 1849-110319-1_59: *id262 + 1849-110319-2_68: *id263 + 1849-150319-2_64: *id264 + 1849-150319-3_98: *id265 + 1849-220319-3_67: *id266 + 1849-280219-1_114: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1006, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qgVWjqGa0D8= + 1849-280219-4_32: &id458 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wMSMGcVyxz8= + 1849-220319-4_90: + 1849-010319-4_109: *id267 + 1849-010319-5_127: *id268 + 1849-060319-1_108: *id269 + 1849-060319-3_94: *id270 + 1849-110319-1_66: *id271 + 1849-110319-2_58: *id272 + 1849-150319-1_121: *id273 + 1849-150319-2_44: *id274 + 1849-150319-3_7: *id275 + 1849-150319-4_99: *id276 + 1849-220319-2_99: *id277 + 1849-280219-1_102: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1006, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + To2ym0Ecyj8= + 1849-280219-2_102: &id359 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YM3H0uc9yT8= + 1849-280219-3_180: &id404 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8bXtQt7vyj8= + 1849-280219-4_105: &id447 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PQl9NFxEyD8= + 1849-220319-5_117: + 1849-010319-2_115: *id278 + 1849-010319-4_109: *id279 + 1849-010319-5_159: *id280 + 1849-060319-1_73: *id281 + 1849-060319-3_98: *id282 + 1849-060319-4_76: *id283 + 1849-110319-1_60: *id284 + 1849-110319-2_50: *id285 + 1849-110319-3_177: *id286 + 1849-150319-1_105: *id287 + 1849-150319-2_48: *id288 + 1849-150319-3_8: *id289 + 1849-150319-4_100: *id290 + 1849-220319-2_99: *id291 + 1849-220319-3_63: *id292 + 1849-220319-4_108: *id293 + 1849-280219-1_112: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 3576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7FWraV/DwD8= + 1849-280219-2_78: &id387 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85075, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FPWID9vYwj8= + 1849-280219-3_180: &id405 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82768, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5CR9ufGuxj8= + 1849-280219-4_84: &id481 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /AjkvldzuT8= + 1849-280219-1_102: + 1849-010319-4_87: *id294 + 1849-010319-5_127: *id295 + 1849-060319-3_94: *id296 + 1849-110319-1_31: *id297 + 1849-110319-2_68: *id298 + 1849-150319-1_93: *id299 + 1849-150319-2_44: *id300 + 1849-150319-3_7: *id301 + 1849-150319-4_78: *id302 + 1849-220319-2_99: *id303 + 1849-220319-3_63: *id304 + 1849-220319-4_90: *id305 + 1849-280219-4_32: &id459 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uwDnkUgN0T8= + 1849-280219-1_104: + 1849-010319-4_97: *id306 + 1849-010319-5_137: *id307 + 1849-060319-1_108: *id308 + 1849-060319-3_104: *id309 + 1849-110319-1_64: *id310 + 1849-110319-2_66: *id311 + 1849-220319-3_67: *id312 + 1849-220319-4_117: *id313 + 1849-280219-4_81: &id468 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5h2ciXsdyz8= + 1849-280219-1_112: + 1849-010319-2_115: *id314 + 1849-010319-4_99: *id315 + 1849-010319-5_159: *id316 + 1849-060319-1_73: *id317 + 1849-060319-3_98: *id318 + 1849-110319-1_60: *id319 + 1849-110319-2_50: *id320 + 1849-150319-1_105: *id321 + 1849-150319-2_48: *id322 + 1849-150319-3_8: *id323 + 1849-220319-4_108: *id324 + 1849-220319-5_117: *id325 + 1849-280219-2_78: &id388 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + StAOpl3FyD8= + 1849-280219-4_84: &id482 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LLNvJ/jUvT8= + 1849-280219-1_114: + 1849-010319-4_109: *id326 + 1849-060319-1_71: *id327 + 1849-060319-3_108: *id328 + 1849-060319-4_76: *id329 + 1849-110319-1_54: *id330 + 1849-110319-2_58: *id331 + 1849-110319-3_177: *id332 + 1849-150319-1_121: *id333 + 1849-150319-2_64: *id334 + 1849-150319-3_98: *id335 + 1849-150319-4_100: *id336 + 1849-220319-3_59: *id337 + 1849-220319-4_118: *id338 + 1849-280219-2_102: &id360 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 94XY5706sT8= + 1849-280219-3_180: &id406 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vYfRin0KtT8= + 1849-280219-4_105: &id448 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XfzFE9V/sT8= + 1849-280219-1_116: + 1849-060319-1_106: *id339 + 1849-060319-3_85: *id340 + 1849-110319-1_41: *id341 + 1849-110319-2_62: *id342 + 1849-150319-3_11: *id343 + 1849-150319-4_99: *id344 + 1849-280219-2_110: &id374 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mtt/lRjlrT8= + 1849-280219-3_182: &id420 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KYy4Sa5euz8= + 1849-280219-4_101: &id431 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QUTYJJuOrj8= + 1849-280219-2_102: + 1849-010319-2_115: *id345 + 1849-010319-4_109: *id346 + 1849-010319-5_127: *id347 + 1849-060319-1_73: *id348 + 1849-060319-3_94: *id349 + 1849-110319-1_54: *id350 + 1849-110319-2_58: *id351 + 1849-110319-3_177: *id352 + 1849-150319-1_121: *id353 + 1849-150319-2_64: *id354 + 1849-150319-3_98: *id355 + 1849-150319-4_78: *id356 + 1849-220319-2_99: *id357 + 1849-220319-3_63: *id358 + 1849-220319-4_90: *id359 + 1849-280219-1_114: *id360 + 1849-280219-3_180: &id407 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oJRkbTZXrj8= + 1849-280219-4_105: &id449 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IBh4m3+slj8= + 1849-280219-2_110: + 1849-010319-4_99: *id361 + 1849-010319-5_137: *id362 + 1849-060319-1_71: *id363 + 1849-060319-3_104: *id364 + 1849-060319-4_76: *id365 + 1849-110319-1_60: *id366 + 1849-110319-2_62: *id367 + 1849-150319-1_93: *id368 + 1849-150319-2_44: *id369 + 1849-150319-3_7: *id370 + 1849-150319-4_99: *id371 + 1849-220319-3_67: *id372 + 1849-220319-4_108: *id373 + 1849-280219-1_116: *id374 + 1849-280219-3_182: &id421 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LN2fnhEjuj8= + 1849-280219-4_101: &id432 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bUAackIypz8= + 1849-280219-2_78: + 1849-010319-4_97: *id375 + 1849-010319-5_159: *id376 + 1849-060319-1_106: *id377 + 1849-060319-3_98: *id378 + 1849-110319-1_64: *id379 + 1849-110319-2_66: *id380 + 1849-150319-1_105: *id381 + 1849-150319-2_48: *id382 + 1849-150319-3_8: *id383 + 1849-150319-4_100: *id384 + 1849-220319-3_59: *id385 + 1849-220319-4_117: *id386 + 1849-220319-5_117: *id387 + 1849-280219-1_112: *id388 + 1849-280219-4_81: &id469 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6tCd27Vgrz8= + 1849-280219-3_180: + 1849-010319-2_115: *id389 + 1849-010319-4_109: *id390 + 1849-010319-5_127: *id391 + 1849-060319-1_71: *id392 + 1849-060319-3_94: *id393 + 1849-060319-4_76: *id394 + 1849-110319-1_54: *id395 + 1849-110319-2_58: *id396 + 1849-110319-3_177: *id397 + 1849-150319-1_121: *id398 + 1849-150319-2_64: *id399 + 1849-150319-3_98: *id400 + 1849-150319-4_100: *id401 + 1849-220319-2_99: *id402 + 1849-220319-3_63: *id403 + 1849-220319-4_90: *id404 + 1849-220319-5_117: *id405 + 1849-280219-1_114: *id406 + 1849-280219-2_102: *id407 + 1849-280219-4_105: &id450 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WwQzO60osj8= + 1849-280219-3_182: + 1849-010319-4_99: *id408 + 1849-010319-5_159: *id409 + 1849-060319-1_73: *id410 + 1849-060319-3_98: *id411 + 1849-110319-1_60: *id412 + 1849-110319-2_62: *id413 + 1849-150319-1_105: *id414 + 1849-150319-2_48: *id415 + 1849-150319-3_8: *id416 + 1849-150319-4_78: *id417 + 1849-220319-3_59: *id418 + 1849-220319-4_108: *id419 + 1849-280219-1_116: *id420 + 1849-280219-2_110: *id421 + 1849-280219-4_101: &id433 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jblDG54PtT8= + 1849-280219-4_101: + 1849-060319-1_106: *id422 + 1849-060319-3_108: *id423 + 1849-060319-4_76: *id424 + 1849-110319-1_41: *id425 + 1849-110319-2_50: *id426 + 1849-150319-1_93: *id427 + 1849-150319-2_44: *id428 + 1849-150319-3_11: *id429 + 1849-150319-4_99: *id430 + 1849-280219-1_116: *id431 + 1849-280219-2_110: *id432 + 1849-280219-3_182: *id433 + 1849-280219-4_105: + 1849-010319-4_87: *id434 + 1849-010319-5_127: *id435 + 1849-060319-1_71: *id436 + 1849-060319-3_85: *id437 + 1849-110319-1_54: *id438 + 1849-110319-2_58: *id439 + 1849-110319-3_177: *id440 + 1849-150319-1_121: *id441 + 1849-150319-2_64: *id442 + 1849-150319-3_98: *id443 + 1849-150319-4_100: *id444 + 1849-220319-2_99: *id445 + 1849-220319-3_63: *id446 + 1849-220319-4_90: *id447 + 1849-280219-1_114: *id448 + 1849-280219-2_102: *id449 + 1849-280219-3_180: *id450 + 1849-280219-4_32: + 1849-010319-4_97: *id451 + 1849-010319-5_137: *id452 + 1849-060319-3_98: *id453 + 1849-110319-1_59: *id454 + 1849-110319-2_68: *id455 + 1849-150319-3_7: *id456 + 1849-220319-3_67: *id457 + 1849-220319-4_118: *id458 + 1849-280219-1_102: *id459 + 1849-280219-4_81: + 1849-010319-4_99: *id460 + 1849-010319-5_159: *id461 + 1849-060319-1_108: *id462 + 1849-060319-3_104: *id463 + 1849-110319-1_64: *id464 + 1849-110319-2_66: *id465 + 1849-220319-3_59: *id466 + 1849-220319-4_117: *id467 + 1849-280219-1_104: *id468 + 1849-280219-2_78: *id469 + 1849-280219-4_84: + 1849-010319-2_115: *id470 + 1849-010319-4_109: *id471 + 1849-060319-1_73: *id472 + 1849-060319-3_94: *id473 + 1849-110319-1_60: *id474 + 1849-110319-2_62: *id475 + 1849-150319-1_105: *id476 + 1849-150319-2_48: *id477 + 1849-150319-3_8: *id478 + 1849-150319-4_78: *id479 + 1849-220319-4_108: *id480 + 1849-220319-5_117: *id481 + 1849-280219-1_112: *id482 +_node: &id485 + 1849-010319-2_115: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id483 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + cwAAAAAAAAA= + 1849-010319-4_109: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + bQAAAAAAAAA= + 1849-010319-4_87: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + VwAAAAAAAAA= + 1849-010319-4_97: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + YQAAAAAAAAA= + 1849-010319-4_99: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + YwAAAAAAAAA= + 1849-010319-5_127: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + fwAAAAAAAAA= + 1849-010319-5_137: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + iQAAAAAAAAA= + 1849-010319-5_159: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + nwAAAAAAAAA= + 1849-060319-1_106: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + agAAAAAAAAA= + 1849-060319-1_108: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + bAAAAAAAAAA= + 1849-060319-1_71: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + RwAAAAAAAAA= + 1849-060319-1_73: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + SQAAAAAAAAA= + 1849-060319-3_104: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + aAAAAAAAAAA= + 1849-060319-3_108: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + bAAAAAAAAAA= + 1849-060319-3_85: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + VQAAAAAAAAA= + 1849-060319-3_94: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + XgAAAAAAAAA= + 1849-060319-3_98: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + YgAAAAAAAAA= + 1849-060319-4_76: + action_id: 1849-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + TAAAAAAAAAA= + 1849-110319-1_31: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + HwAAAAAAAAA= + 1849-110319-1_41: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + KQAAAAAAAAA= + 1849-110319-1_54: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + NgAAAAAAAAA= + 1849-110319-1_59: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + OwAAAAAAAAA= + 1849-110319-1_60: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + PAAAAAAAAAA= + 1849-110319-1_64: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + QAAAAAAAAAA= + 1849-110319-1_66: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + QgAAAAAAAAA= + 1849-110319-2_50: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + MgAAAAAAAAA= + 1849-110319-2_58: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + OgAAAAAAAAA= + 1849-110319-2_62: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + PgAAAAAAAAA= + 1849-110319-2_66: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + QgAAAAAAAAA= + 1849-110319-2_68: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + RAAAAAAAAAA= + 1849-110319-3_177: + action_id: 1849-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + sQAAAAAAAAA= + 1849-150319-1_105: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + aQAAAAAAAAA= + 1849-150319-1_121: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + eQAAAAAAAAA= + 1849-150319-1_93: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + XQAAAAAAAAA= + 1849-150319-2_44: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + LAAAAAAAAAA= + 1849-150319-2_48: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + MAAAAAAAAAA= + 1849-150319-2_64: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + QAAAAAAAAAA= + 1849-150319-3_11: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + CwAAAAAAAAA= + 1849-150319-3_7: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + BwAAAAAAAAA= + 1849-150319-3_8: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + CAAAAAAAAAA= + 1849-150319-3_98: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + YgAAAAAAAAA= + 1849-150319-4_100: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + ZAAAAAAAAAA= + 1849-150319-4_78: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + TgAAAAAAAAA= + 1849-150319-4_99: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + YwAAAAAAAAA= + 1849-220319-2_99: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + YwAAAAAAAAA= + 1849-220319-3_59: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + OwAAAAAAAAA= + 1849-220319-3_63: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + PwAAAAAAAAA= + 1849-220319-3_67: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + QwAAAAAAAAA= + 1849-220319-4_108: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + bAAAAAAAAAA= + 1849-220319-4_117: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + dQAAAAAAAAA= + 1849-220319-4_118: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + dgAAAAAAAAA= + 1849-220319-4_90: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + WgAAAAAAAAA= + 1849-220319-5_117: + action_id: 1849-220319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + dQAAAAAAAAA= + 1849-280219-1_102: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + ZgAAAAAAAAA= + 1849-280219-1_104: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + aAAAAAAAAAA= + 1849-280219-1_112: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + cAAAAAAAAAA= + 1849-280219-1_114: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + cgAAAAAAAAA= + 1849-280219-1_116: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + dAAAAAAAAAA= + 1849-280219-2_102: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + ZgAAAAAAAAA= + 1849-280219-2_110: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + bgAAAAAAAAA= + 1849-280219-2_78: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + TgAAAAAAAAA= + 1849-280219-3_180: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + tAAAAAAAAAA= + 1849-280219-3_182: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + tgAAAAAAAAA= + 1849-280219-4_101: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + ZQAAAAAAAAA= + 1849-280219-4_105: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + aQAAAAAAAAA= + 1849-280219-4_32: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + IAAAAAAAAAA= + 1849-280219-4_81: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + UQAAAAAAAAA= + 1849-280219-4_84: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id483 + - !!binary | + VAAAAAAAAAA= +adjlist_inner_dict_factory: &id484 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id484 +edge_attr_dict_factory: *id484 +graph: {} +node_dict_factory: *id484 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id485 diff --git a/actions/identify-neurons/data/1849-graphs/graph-group-2.yaml b/actions/identify-neurons/data/1849-graphs/graph-group-2.yaml new file mode 100644 index 000000000..4f1361cad --- /dev/null +++ b/actions/identify-neurons/data/1849-graphs/graph-group-2.yaml @@ -0,0 +1,3394 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1849-010319-2_103: + 1849-010319-4_67: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4039, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + d61yVD4Ruj8= + 1849-010319-5_93: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +/z7//ENvj8= + 1849-060319-2_81: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6065, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vdxxjq9nuz8= + 1849-060319-4_72: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 10258, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H0dFsKZvvD8= + 1849-110319-1_50: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9OJFmqZIsD8= + 1849-110319-2_60: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 86013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AFkHhl7JqT8= + 1849-150319-1_72: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cf4/nIXnvD8= + 1849-150319-2_9: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 638gc8xNtD8= + 1849-150319-3_76: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4904, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H/7fdqHrsD8= + 1849-150319-4_81: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7600, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YXk6+4AQtj8= + 1849-220319-2_95: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3129, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3Kf/zhafsz8= + 1849-220319-3_65: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bK7AvUgDrj8= + 1849-220319-4_99: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sjjH70xPtj8= + 1849-220319-5_104: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 10679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T7cbFxe/sj8= + 1849-280219-1_86: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kZ4lWr2ywz8= + 1849-280219-2_72: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IWdr9CVbsT8= + 1849-280219-4_70: &id344 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 69714, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gQ488sxxwD8= + 1849-010319-2_119: + 1849-010319-4_103: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4039, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ML0GsOhApT8= + 1849-010319-5_121: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ymM9Ru20uT8= + 1849-060319-3_130: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8033, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l7cCiAn9wD8= + 1849-060319-4_82: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 10258, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M85dJVGOvj8= + 1849-110319-1_62: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wcKwVX9lwT8= + 1849-110319-2_64: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 86013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d/U4+eTQwD8= + 1849-150319-1_91: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uBl8k/w6wD8= + 1849-150319-2_62: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7dBAiAWUtD8= + 1849-150319-3_21: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4904, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lGQbDt50tD8= + 1849-150319-4_90: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7600, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NV5204ojtT8= + 1849-220319-3_61: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g6rAbPMSwj8= + 1849-280219-1_100: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lDiH7kmcuz8= + 1849-280219-3_141: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 72089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dO4ylESZxD8= + 1849-010319-2_83: + 1849-010319-4_61: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4039, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gLbbqenFrj8= + 1849-010319-5_103: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kAPSvZZOsD8= + 1849-060319-3_114: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8033, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JBJPc1pvj8= + 1849-110319-1_46: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ABlUV2GatT8= + 1849-110319-2_52: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 86013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bthD6g/VuT8= + 1849-150319-1_62: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sSoIxvMUwT8= + 1849-150319-2_34: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XKIH3yijwT8= + 1849-150319-3_25: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4904, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TGlP05WbwT8= + 1849-150319-4_62: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7600, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C6JIszAtwj8= + 1849-220319-2_91: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3129, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BbHlUCNsxj8= + 1849-220319-5_83: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 10679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GkD7ENUexj8= + 1849-280219-1_16: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ft+qCVU5yz8= + 1849-280219-2_70: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + diad0cvkuj8= + 1849-280219-4_74: &id361 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 69714, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ACy4fuM4vz8= + 1849-010319-4_103: + 1849-010319-2_119: *id002 + 1849-010319-5_121: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QiwPHqXrtT8= + 1849-060319-3_130: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E4j5a+I2wT8= + 1849-060319-4_82: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6219, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VSAYqsn2vj8= + 1849-110319-1_62: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77446, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h2hNEZQ8wD8= + 1849-110319-2_64: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q3i1CPEUwD8= + 1849-150319-1_91: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81157, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4c3lLXvhvD8= + 1849-150319-2_62: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83781, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2thqI1h7rj8= + 1849-150319-3_21: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7Ji5JZlTsj8= + 1849-150319-4_90: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3561, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 57waE4wDsT8= + 1849-220319-2_95: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gPa7mwfhvj8= + 1849-220319-3_65: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gDyAgExJvT8= + 1849-220319-5_104: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6640, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qWY8KW1hvT8= + 1849-280219-1_100: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mAQQK4PEuj8= + 1849-280219-3_141: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bo2VHE6QxD8= + 1849-010319-4_61: + 1849-010319-2_83: *id003 + 1849-010319-5_103: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E2yqzO7Gmz8= + 1849-060319-2_81: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TwSrXujmwT8= + 1849-060319-4_72: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6219, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OJBUt8TWvj8= + 1849-110319-1_46: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77446, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gswoK00tsD8= + 1849-110319-2_52: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f/X/WjkYsz8= + 1849-150319-1_62: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81157, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JDVueZJ5uz8= + 1849-150319-2_34: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83781, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zmn6N8n/uT8= + 1849-150319-3_25: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VSrkB1HsvD8= + 1849-150319-4_87: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3561, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + siwTrgYhxz8= + 1849-280219-1_86: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fdP/NVKe0T8= + 1849-280219-2_70: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e0URiBuwuT8= + 1849-280219-4_74: &id362 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8eDt7VsCuz8= + 1849-010319-4_67: + 1849-010319-2_103: *id004 + 1849-010319-5_93: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1rfKlQwwoD8= + 1849-060319-3_114: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +/H1FWcZuz8= + 1849-110319-1_50: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77446, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i+2rzRU5uT8= + 1849-110319-2_60: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /uX2EczHvD8= + 1849-150319-1_72: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81157, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RLEtkAR3sz8= + 1849-150319-2_36: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83781, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /+t6GojVtj8= + 1849-150319-3_76: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L1iuqjsdwD8= + 1849-150319-4_62: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3561, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Pff2ymVPtD8= + 1849-220319-2_91: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zu6mMcIYtj8= + 1849-220319-3_61: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZY/ILB5Yuz8= + 1849-220319-4_99: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2ul22cIBuT8= + 1849-220319-5_83: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6640, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jow8ZJZdtD8= + 1849-280219-1_16: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +vrnz200uT8= + 1849-280219-2_72: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6Eo6fAHAuj8= + 1849-280219-4_70: &id345 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ba2OGV94sT8= + 1849-010319-5_103: + 1849-010319-2_83: *id005 + 1849-010319-4_61: *id006 + 1849-060319-4_72: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xZ5uyz6/wD8= + 1849-110319-1_46: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 76590, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z4RQ6bivtD8= + 1849-110319-2_52: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Lk+FEOM4tz8= + 1849-150319-1_62: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80301, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XBG9Imjsvj8= + 1849-150319-2_34: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82925, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /To6yvelvT8= + 1849-150319-3_21: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 9, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gKgXGTt5yT8= + 1849-150319-4_87: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2705, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SC2UFohayD8= + 1849-280219-1_86: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0HrS5h4x0j8= + 1849-280219-2_70: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zex8+S0Ztz8= + 1849-280219-4_74: &id363 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jxt9lCzsuj8= + 1849-010319-5_121: + 1849-010319-2_119: *id007 + 1849-010319-4_103: *id008 + 1849-060319-2_81: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cv7pK9OMvj8= + 1849-060319-3_130: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3138, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7O3NetvLwT8= + 1849-060319-4_82: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bFijVmaivz8= + 1849-110319-1_50: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 76590, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eD7emhWutD8= + 1849-110319-2_60: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oIs5YASqrD8= + 1849-150319-1_91: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80301, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QfFPC1aCrT8= + 1849-150319-2_9: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82925, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A+9jQ4/lsD8= + 1849-150319-3_76: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 9, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eNcTU1x8qT8= + 1849-150319-4_81: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2705, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9+xp8iT1sD8= + 1849-220319-2_95: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84634, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zB5a5RdjsT8= + 1849-220319-3_65: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 811, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + foTmgmgTrz8= + 1849-220319-4_99: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8W13E13psz8= + 1849-220319-5_104: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5784, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A9A3BqIcsT8= + 1849-280219-1_100: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mxyTP3d1vD8= + 1849-280219-2_72: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zcd4rX+Usz8= + 1849-280219-3_141: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ye7RExHbxT8= + 1849-010319-5_78: + 1849-110319-2_64: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Yt96yi2Pwj8= + 1849-150319-2_62: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82925, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3EAJ04hsyj8= + 1849-150319-4_90: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2705, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + quhGEForyj8= + 1849-280219-1_84: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /yFB8GSb1j8= + 1849-010319-5_93: + 1849-010319-2_103: *id009 + 1849-010319-4_67: *id010 + 1849-060319-3_114: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3138, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hf+7Saequj8= + 1849-110319-1_62: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 76590, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cUY5iN8EwT8= + 1849-150319-1_72: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80301, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jhhHrpbrsD8= + 1849-150319-2_36: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82925, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WFReBIDxtD8= + 1849-150319-3_25: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 9, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vaxlJhSysD8= + 1849-150319-4_62: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2705, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9ehCNfmKsj8= + 1849-220319-2_91: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84634, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wM0Wzp7rsj8= + 1849-220319-3_61: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 811, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V+zCbGDKvj8= + 1849-220319-5_83: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5784, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L0JioMNxsT8= + 1849-280219-1_16: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NT9GNiBXuj8= + 1849-280219-4_70: &id346 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LBL1AlGisj8= + 1849-060319-2_81: + 1849-010319-2_103: *id011 + 1849-010319-4_61: *id012 + 1849-010319-5_121: *id013 + 1849-060319-3_114: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mxMgbEHBtD8= + 1849-060319-4_72: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aEidQ4yYoD8= + 1849-110319-1_50: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CYx88XYLtz8= + 1849-110319-2_52: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k7Wj2Sm3tj8= + 1849-150319-1_62: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VnHTzk1JuT8= + 1849-150319-2_34: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jtdc5WbIuT8= + 1849-150319-3_25: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85239, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9/wcI5/Ruj8= + 1849-150319-4_62: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1535, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + a9Wl/CvMtT8= + 1849-220319-2_95: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83464, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hjHoFWqhwD8= + 1849-220319-3_65: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jtx6/RZTvT8= + 1849-220319-4_99: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wg3imtyawD8= + 1849-220319-5_104: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4614, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LRXn+iIHwT8= + 1849-280219-1_100: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fS+La5iFxD8= + 1849-280219-2_72: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p29Ty/gGuD8= + 1849-280219-3_141: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bBFnEkOhyT8= + 1849-280219-4_74: &id364 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 75779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kmKJM+HptT8= + 1849-060319-3_114: + 1849-010319-2_83: *id014 + 1849-010319-4_67: *id015 + 1849-010319-5_93: *id016 + 1849-060319-2_81: *id017 + 1849-060319-4_72: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UJv5Wn02sT8= + 1849-110319-1_46: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 73452, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OyydWzT8tj8= + 1849-110319-2_52: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PRF0g0sotD8= + 1849-150319-1_72: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77163, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8iqvPY1Stz8= + 1849-150319-2_36: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79787, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W7PJ9jDKuT8= + 1849-150319-3_25: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zcPejD58sz8= + 1849-150319-4_62: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1v1OiRUasz8= + 1849-220319-2_91: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bWEQJvCTuz8= + 1849-220319-3_65: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84073, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vWA/xEFfwT8= + 1849-220319-5_83: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2646, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vF9tY4iZvD8= + 1849-280219-1_16: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OD7McfTuwj8= + 1849-280219-2_72: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EIutz4jNtz8= + 1849-280219-4_70: &id347 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LJ2iv2kYtD8= + 1849-060319-3_130: + 1849-010319-2_119: *id018 + 1849-010319-4_103: *id019 + 1849-010319-5_121: *id020 + 1849-060319-4_82: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HZyqnoPjsj8= + 1849-110319-1_62: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 73452, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Iqg3iOnluz8= + 1849-110319-2_64: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5xHu02dBuD8= + 1849-150319-1_62: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77163, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dc/OQmqCwj8= + 1849-150319-2_34: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79787, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PWUjY0DCwT8= + 1849-150319-3_76: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wSl95RsHwj8= + 1849-150319-4_87: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + saKSjVlnuz8= + 1849-220319-2_95: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rCKayEEQwz8= + 1849-220319-3_61: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84073, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JxReeV88wz8= + 1849-220319-4_99: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 76, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zOBKg2V9wz8= + 1849-220319-5_104: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2646, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4XBz6jl+wj8= + 1849-280219-1_100: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rt+XuXTevT8= + 1849-280219-2_70: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0qDob2BVwj8= + 1849-280219-3_141: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SC9fvKrDwT8= + 1849-280219-4_74: &id365 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FPgxq3Djuj8= + 1849-060319-4_72: + 1849-010319-2_103: *id021 + 1849-010319-4_61: *id022 + 1849-010319-5_103: *id023 + 1849-060319-2_81: *id024 + 1849-060319-3_114: *id025 + 1849-110319-1_50: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 71227, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T7ZkzuXdtj8= + 1849-110319-2_52: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j9U8xyxktT8= + 1849-150319-1_62: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 74938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BY7G14sKtz8= + 1849-150319-2_34: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77562, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LMKC71smtj8= + 1849-150319-3_25: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81046, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y5oL8Qx9uD8= + 1849-150319-4_62: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83742, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OXLDk5oetD8= + 1849-220319-2_91: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 79271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KfO0FK+0wT8= + 1849-220319-3_61: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jAP2ZTrVwD8= + 1849-220319-4_99: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KhsDH+AIwT8= + 1849-220319-5_83: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 421, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZQ1+lZazwz8= + 1849-280219-1_86: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mgmN/lfrxT8= + 1849-280219-2_72: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VWCSJHT1tD8= + 1849-280219-4_70: &id348 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79972, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3HtYteIBwD8= + 1849-060319-4_82: + 1849-010319-2_119: *id026 + 1849-010319-4_103: *id027 + 1849-010319-5_121: *id028 + 1849-060319-3_130: *id029 + 1849-110319-1_62: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 71227, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lEuxFRxFuD8= + 1849-110319-2_64: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HQ5mY4YHtT8= + 1849-150319-1_91: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 74938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nmrNsf8/wT8= + 1849-150319-2_9: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77562, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3I4ydDQnvz8= + 1849-150319-3_76: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81046, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A1EL/4Wivj8= + 1849-150319-4_87: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83742, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + udHrvrfesT8= + 1849-220319-2_95: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 79271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z+ChW+FAwT8= + 1849-220319-3_65: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9BA8Sn9OvT8= + 1849-220319-5_104: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 421, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6rChGpQtwD8= + 1849-280219-1_100: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + asynq+autT8= + 1849-280219-2_70: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LXQVZEMZxj8= + 1849-280219-3_141: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + o9psDKYswT8= + 1849-280219-4_74: &id366 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79972, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w8qUqwd7vT8= + 1849-110319-1_46: + 1849-010319-2_83: *id030 + 1849-010319-4_61: *id031 + 1849-010319-5_103: *id032 + 1849-060319-3_114: *id033 + 1849-110319-2_52: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zVhM6Kaxnj8= + 1849-150319-1_62: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gtL6+2T6sT8= + 1849-150319-2_34: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iLdgdsQQtT8= + 1849-150319-3_25: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9819, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TCeEKwGHuD8= + 1849-150319-4_62: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12515, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0YS0EqJFtj8= + 1849-220319-2_91: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /W2qdxCAwT8= + 1849-220319-5_83: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hT+tKD0Ywj8= + 1849-280219-1_16: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + axH5jC8Sxz8= + 1849-280219-2_70: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69481, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jln13aEYwT8= + 1849-110319-1_50: + 1849-010319-2_103: *id034 + 1849-010319-4_67: *id035 + 1849-010319-5_121: *id036 + 1849-060319-2_81: *id037 + 1849-060319-4_72: *id038 + 1849-110319-2_60: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y8CoIeeMqD8= + 1849-150319-1_91: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + quIGSZxksz8= + 1849-150319-2_9: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2em/B7iXtT8= + 1849-150319-3_76: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9819, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Vu2pSrdStD8= + 1849-150319-4_81: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12515, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SblHOLEGuj8= + 1849-220319-2_95: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uXZ93Hg9sT8= + 1849-220319-3_61: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fggs2S3UsD8= + 1849-220319-4_99: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13024, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rmmCbX1RsD8= + 1849-220319-5_104: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vTnijZrzsj8= + 1849-280219-1_86: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ov8B2oe7xT8= + 1849-280219-2_72: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69481, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mt37v7fqsj8= + 1849-280219-4_70: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 64799, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S89ZLZJpvj8= + 1849-110319-1_62: + 1849-010319-2_119: *id039 + 1849-010319-4_103: *id040 + 1849-010319-5_93: *id041 + 1849-060319-3_130: *id042 + 1849-060319-4_82: *id043 + 1849-110319-2_64: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NwPonKSSoT8= + 1849-150319-1_72: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yY+wkjT7vT8= + 1849-150319-2_36: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5KV0ifQnwD8= + 1849-150319-3_21: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9819, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gbpkFG1+wz8= + 1849-150319-4_87: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12515, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V511yNI3tj8= + 1849-220319-3_65: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D2wtdmNnvD8= + 1849-280219-1_100: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HDCQti/FwD8= + 1849-280219-3_141: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 67174, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tAlI2fjVxD8= + 1849-280219-4_74: &id367 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 64799, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QMdvX57ytz8= + 1849-110319-2_52: + 1849-010319-2_83: *id044 + 1849-010319-4_61: *id045 + 1849-010319-5_103: *id046 + 1849-060319-2_81: *id047 + 1849-060319-3_114: *id048 + 1849-060319-4_72: *id049 + 1849-110319-1_46: *id050 + 1849-150319-1_62: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DeW789EhsD8= + 1849-150319-2_34: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 1807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W12w6GKCsz8= + 1849-150319-3_25: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PY9MRXDDtD8= + 1849-150319-4_62: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 7987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wxXvvcsUsj8= + 1849-220319-2_91: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ETdgAnPBvz8= + 1849-220319-5_83: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J/iN3H7IwD8= + 1849-280219-1_16: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CThSQ6Zhxj8= + 1849-280219-2_70: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kYTw94t5wT8= + 1849-280219-4_70: &id350 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69327, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yDJx2oOrvj8= + 1849-110319-2_60: + 1849-010319-2_103: *id051 + 1849-010319-4_67: *id052 + 1849-010319-5_121: *id053 + 1849-110319-1_50: *id054 + 1849-150319-1_91: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BH7doqPnpT8= + 1849-150319-2_9: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 1807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pj0ItbNGqT8= + 1849-150319-3_76: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eHiZSpzgpT8= + 1849-150319-4_81: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 7987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q4/PJSFwsT8= + 1849-220319-2_95: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + stAtV7t+pD8= + 1849-220319-3_61: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UURzkuW5qD8= + 1849-220319-4_99: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DBV/CYiaqj8= + 1849-220319-5_104: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4fIKe8Tzpj8= + 1849-280219-1_86: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LPi1Iq/Wwj8= + 1849-280219-2_72: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nKkfzchxsT8= + 1849-110319-2_64: + 1849-010319-2_119: *id055 + 1849-010319-4_103: *id056 + 1849-010319-5_78: *id057 + 1849-060319-3_130: *id058 + 1849-060319-4_82: *id059 + 1849-110319-1_62: *id060 + 1849-150319-1_72: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pOMt42XxwD8= + 1849-150319-2_36: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 1807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aCytywzrwT8= + 1849-150319-3_21: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T4GDZNLCwz8= + 1849-150319-4_87: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 7987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yfOLnAnItj8= + 1849-220319-3_65: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h6qR3ZRzvj8= + 1849-280219-1_100: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + glH/YnVRvj8= + 1849-280219-3_141: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 71702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5CzHy+O7wz8= + 1849-280219-4_74: &id368 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69327, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nsOMVurGtT8= + 1849-150319-1_62: + 1849-010319-2_83: *id061 + 1849-010319-4_61: *id062 + 1849-010319-5_103: *id063 + 1849-060319-2_81: *id064 + 1849-060319-3_130: *id065 + 1849-060319-4_72: *id066 + 1849-110319-1_46: *id067 + 1849-110319-2_52: *id068 + 1849-150319-2_34: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bJNbeR/Ppj8= + 1849-150319-3_21: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v07DUopQxT8= + 1849-150319-4_87: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c8+TOF6Owj8= + 1849-280219-1_100: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tNGE6u/DyD8= + 1849-280219-2_70: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fvDS+aDBwz8= + 1849-280219-4_74: &id369 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S/HRM5mSvD8= + 1849-150319-1_72: + 1849-010319-2_103: *id069 + 1849-010319-4_67: *id070 + 1849-010319-5_93: *id071 + 1849-060319-3_114: *id072 + 1849-110319-1_62: *id073 + 1849-110319-2_64: *id074 + 1849-150319-2_36: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D8PBd91wpT8= + 1849-150319-3_25: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +fG6tgliqj8= + 1849-150319-4_62: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7PNJ11LcqD8= + 1849-220319-2_91: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4333, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lXLWIHEotj8= + 1849-220319-3_65: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hydiVDn0vz8= + 1849-220319-5_83: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S2opbrCTtz8= + 1849-280219-1_16: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NfEdFeIZwj8= + 1849-280219-4_70: &id351 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hqIvcmXDtj8= + 1849-150319-1_91: + 1849-010319-2_119: *id075 + 1849-010319-4_103: *id076 + 1849-010319-5_121: *id077 + 1849-060319-4_82: *id078 + 1849-110319-1_50: *id079 + 1849-110319-2_60: *id080 + 1849-150319-2_9: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LGVj9ye/oT8= + 1849-150319-3_76: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 908V9KB6nT8= + 1849-150319-4_81: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gNttiDZUrD8= + 1849-220319-2_95: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4333, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8UxU+e1HoT8= + 1849-220319-3_61: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S41bEwweoz8= + 1849-220319-4_99: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PDSSwe8npz8= + 1849-220319-5_104: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dT7A7Im0pT8= + 1849-280219-1_86: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nPkLilDOwj8= + 1849-280219-2_72: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qo+X1X7utT8= + 1849-280219-3_141: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZGDCBIHsxj8= + 1849-150319-2_34: + 1849-010319-2_83: *id081 + 1849-010319-4_61: *id082 + 1849-010319-5_103: *id083 + 1849-060319-2_81: *id084 + 1849-060319-3_130: *id085 + 1849-060319-4_72: *id086 + 1849-110319-1_46: *id087 + 1849-110319-2_52: *id088 + 1849-150319-1_62: *id089 + 1849-150319-4_87: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kl+j1CiWwj8= + 1849-280219-1_84: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80717, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bdLM/LWo1j8= + 1849-280219-2_70: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rfAw7HH8wT8= + 1849-280219-4_74: &id370 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 71134, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8cZhNypRuD8= + 1849-150319-2_36: + 1849-010319-4_67: *id090 + 1849-010319-5_93: *id091 + 1849-060319-3_114: *id092 + 1849-110319-1_62: *id093 + 1849-110319-2_64: *id094 + 1849-150319-1_72: *id095 + 1849-150319-3_25: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dHKxIqp4qz8= + 1849-150319-4_62: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A4wkrO2drT8= + 1849-220319-2_91: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1709, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AftLghRJtz8= + 1849-220319-5_83: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9259, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rw7lsBa8uD8= + 1849-280219-1_16: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80717, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WXRDZmZhwz8= + 1849-280219-4_70: &id352 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 71134, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NnJyJzVNuT8= + 1849-150319-2_62: + 1849-010319-2_119: *id096 + 1849-010319-4_103: *id097 + 1849-010319-5_78: *id098 + 1849-150319-3_21: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dBtm3k3lpj8= + 1849-150319-4_90: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sps45rGFlT8= + 1849-220319-3_65: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SErX6bRZuz8= + 1849-280219-1_100: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80717, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gpnwUn7ouz8= + 1849-280219-3_141: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2NbY1mMqxD8= + 1849-150319-2_9: + 1849-010319-2_103: *id099 + 1849-010319-5_121: *id100 + 1849-060319-4_82: *id101 + 1849-110319-1_50: *id102 + 1849-110319-2_60: *id103 + 1849-150319-1_91: *id104 + 1849-150319-3_76: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZEKuc0CDlT8= + 1849-150319-4_81: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WondDLSxnz8= + 1849-220319-2_95: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1709, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + COzH20qboz8= + 1849-220319-3_61: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b5mxihvdqD8= + 1849-220319-4_99: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gNPpbHberz8= + 1849-220319-5_104: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9259, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GmN/7hqQoT8= + 1849-280219-1_86: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80717, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hDVzSTlAwT8= + 1849-280219-2_72: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /UcKzhzTtz8= + 1849-150319-3_21: + 1849-010319-2_119: *id105 + 1849-010319-4_103: *id106 + 1849-010319-5_103: *id107 + 1849-110319-1_62: *id108 + 1849-110319-2_64: *id109 + 1849-150319-1_62: *id110 + 1849-150319-2_62: *id111 + 1849-150319-4_90: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x+muUr5OoT8= + 1849-220319-3_65: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 802, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LAfG42wqwD8= + 1849-280219-1_86: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84201, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oL7cKDPYwj8= + 1849-280219-3_141: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 76993, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Eu0VD/3PxD8= + 1849-150319-3_25: + 1849-010319-2_83: *id112 + 1849-010319-4_61: *id113 + 1849-010319-5_93: *id114 + 1849-060319-2_81: *id115 + 1849-060319-3_114: *id116 + 1849-060319-4_72: *id117 + 1849-110319-1_46: *id118 + 1849-110319-2_52: *id119 + 1849-150319-1_72: *id120 + 1849-150319-2_36: *id121 + 1849-150319-4_62: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2jLx9WfEmD8= + 1849-220319-2_91: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84625, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Px9EbGS/sj8= + 1849-220319-5_83: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5775, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t4RZsdRhtD8= + 1849-280219-1_16: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84201, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WsO3/k+cwT8= + 1849-280219-2_70: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79300, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /BGuQr7Hxj8= + 1849-280219-4_70: &id353 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 74618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tGhQxCD/tT8= + 1849-150319-3_76: + 1849-010319-2_103: *id122 + 1849-010319-4_67: *id123 + 1849-010319-5_121: *id124 + 1849-060319-3_130: *id125 + 1849-060319-4_82: *id126 + 1849-110319-1_50: *id127 + 1849-110319-2_60: *id128 + 1849-150319-1_91: *id129 + 1849-150319-2_9: *id130 + 1849-150319-4_81: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j4LGlR4hoD8= + 1849-220319-2_95: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84625, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7GVcrcGToz8= + 1849-220319-3_61: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 802, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rl9/ZlVkqT8= + 1849-220319-4_99: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zdh5JGp/rj8= + 1849-220319-5_104: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5775, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5sxC27tooj8= + 1849-280219-1_100: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84201, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sMK3jljuuz8= + 1849-280219-2_72: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79300, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7KoPX67qtT8= + 1849-280219-4_74: &id371 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 74618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HKFvNBipxD8= + 1849-150319-4_62: + 1849-010319-2_83: *id131 + 1849-010319-4_67: *id132 + 1849-010319-5_93: *id133 + 1849-060319-2_81: *id134 + 1849-060319-3_114: *id135 + 1849-060319-4_72: *id136 + 1849-110319-1_46: *id137 + 1849-110319-2_52: *id138 + 1849-150319-1_72: *id139 + 1849-150319-2_36: *id140 + 1849-150319-3_25: *id141 + 1849-220319-2_91: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81929, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M+BNwo3BtT8= + 1849-220319-5_83: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Qw37xiYkuD8= + 1849-280219-1_16: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yVGVFSXMwj8= + 1849-280219-2_70: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LbvXKaDDxT8= + 1849-280219-4_70: &id354 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 77314, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SL1OyNAktz8= + 1849-150319-4_81: + 1849-010319-2_103: *id142 + 1849-010319-5_121: *id143 + 1849-110319-1_50: *id144 + 1849-110319-2_60: *id145 + 1849-150319-1_91: *id146 + 1849-150319-2_9: *id147 + 1849-150319-3_76: *id148 + 1849-220319-2_95: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81929, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d6Zqmr3prj8= + 1849-220319-3_61: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84506, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J0t8XHI4sj8= + 1849-220319-4_99: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EEj0Oms3tT8= + 1849-220319-5_104: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 48GS4uV0qj8= + 1849-280219-1_86: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iq32VcI2wT8= + 1849-150319-4_87: + 1849-010319-4_61: *id149 + 1849-010319-5_103: *id150 + 1849-060319-3_130: *id151 + 1849-060319-4_82: *id152 + 1849-110319-1_62: *id153 + 1849-110319-2_64: *id154 + 1849-150319-1_62: *id155 + 1849-150319-2_34: *id156 + 1849-220319-3_65: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84506, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GosmlFbWtT8= + 1849-280219-1_100: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dSs1+nNVtT8= + 1849-280219-2_72: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 48XNDeGcuT8= + 1849-280219-3_141: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lRfMHREGwz8= + 1849-280219-4_74: &id372 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 77314, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uysLqpBAwj8= + 1849-150319-4_90: + 1849-010319-2_119: *id157 + 1849-010319-4_103: *id158 + 1849-010319-5_78: *id159 + 1849-150319-2_62: *id160 + 1849-150319-3_21: *id161 + 1849-280219-1_18: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JArZZyeK0j8= + 1849-220319-2_91: + 1849-010319-2_83: *id162 + 1849-010319-4_67: *id163 + 1849-010319-5_93: *id164 + 1849-060319-3_114: *id165 + 1849-060319-4_72: *id166 + 1849-110319-1_46: *id167 + 1849-110319-2_52: *id168 + 1849-150319-1_72: *id169 + 1849-150319-2_36: *id170 + 1849-150319-3_25: *id171 + 1849-150319-4_62: *id172 + 1849-220319-3_65: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2577, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P1OTJfffxD8= + 1849-220319-5_83: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nBb11kh6oD8= + 1849-280219-1_16: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82426, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GowpSpQxuT8= + 1849-280219-2_70: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A/oET6Peyj8= + 1849-280219-4_70: &id355 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 72843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 26EFwmyftD8= + 1849-220319-2_95: + 1849-010319-2_103: *id173 + 1849-010319-4_103: *id174 + 1849-010319-5_121: *id175 + 1849-060319-2_81: *id176 + 1849-060319-3_130: *id177 + 1849-060319-4_82: *id178 + 1849-110319-1_50: *id179 + 1849-110319-2_60: *id180 + 1849-150319-1_91: *id181 + 1849-150319-2_9: *id182 + 1849-150319-3_76: *id183 + 1849-150319-4_81: *id184 + 1849-220319-3_61: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2577, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jEUM+JmWmD8= + 1849-220319-4_99: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gpYzGzTZnz8= + 1849-220319-5_104: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XpKmcDfHnT8= + 1849-280219-1_100: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82426, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DsSkquBcwT8= + 1849-280219-2_72: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PR6+tAZftz8= + 1849-280219-3_141: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75218, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + W/TJ53sHyD8= + 1849-280219-4_74: &id373 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 72843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7SyhAWuVxD8= + 1849-220319-3_61: + 1849-010319-2_119: *id185 + 1849-010319-4_67: *id186 + 1849-010319-5_93: *id187 + 1849-060319-3_130: *id188 + 1849-060319-4_72: *id189 + 1849-110319-1_50: *id190 + 1849-110319-2_60: *id191 + 1849-150319-1_91: *id192 + 1849-150319-2_9: *id193 + 1849-150319-3_76: *id194 + 1849-150319-4_81: *id195 + 1849-220319-2_95: *id196 + 1849-220319-4_99: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kuJx0zO1kj8= + 1849-220319-5_104: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4973, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0TLJS2vypT8= + 1849-280219-1_86: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85003, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ht6my/7Lwj8= + 1849-280219-2_70: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G5ip7eXeyz8= + 1849-280219-4_74: &id374 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JspVrQSnwz8= + 1849-220319-3_65: + 1849-010319-2_103: *id197 + 1849-010319-4_103: *id198 + 1849-010319-5_121: *id199 + 1849-060319-2_81: *id200 + 1849-060319-3_114: *id201 + 1849-060319-4_82: *id202 + 1849-110319-1_62: *id203 + 1849-110319-2_64: *id204 + 1849-150319-1_72: *id205 + 1849-150319-2_62: *id206 + 1849-150319-3_21: *id207 + 1849-150319-4_87: *id208 + 1849-220319-2_91: *id209 + 1849-220319-5_83: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4973, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WmGNyS8QxT8= + 1849-280219-1_100: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85003, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ULuyyXcIwD8= + 1849-280219-2_72: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nug2qRL9sT8= + 1849-280219-3_141: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + epU3kXiwyD8= + 1849-280219-4_70: &id356 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WFDFTE3iwD8= + 1849-220319-4_99: + 1849-010319-2_103: *id210 + 1849-010319-4_67: *id211 + 1849-010319-5_121: *id212 + 1849-060319-2_81: *id213 + 1849-060319-3_130: *id214 + 1849-060319-4_72: *id215 + 1849-110319-1_50: *id216 + 1849-110319-2_60: *id217 + 1849-150319-1_91: *id218 + 1849-150319-2_9: *id219 + 1849-150319-3_76: *id220 + 1849-150319-4_81: *id221 + 1849-220319-2_95: *id222 + 1849-220319-3_61: *id223 + 1849-220319-5_104: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yUKCppZUqj8= + 1849-280219-1_86: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1006, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2+m+nrp+wz8= + 1849-280219-2_72: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wdPmzRoLuD8= + 1849-280219-3_141: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EUHPwQ5jyj8= + 1849-280219-4_70: &id357 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BEYHIp9owj8= + 1849-220319-5_104: + 1849-010319-2_103: *id224 + 1849-010319-4_103: *id225 + 1849-010319-5_121: *id226 + 1849-060319-2_81: *id227 + 1849-060319-3_130: *id228 + 1849-060319-4_82: *id229 + 1849-110319-1_50: *id230 + 1849-110319-2_60: *id231 + 1849-150319-1_91: *id232 + 1849-150319-2_9: *id233 + 1849-150319-3_76: *id234 + 1849-150319-4_81: *id235 + 1849-220319-2_95: *id236 + 1849-220319-3_61: *id237 + 1849-220319-4_99: *id238 + 1849-280219-1_100: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 3576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Pca6N+1Kvz8= + 1849-280219-2_72: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85075, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eo812YSBuT8= + 1849-280219-3_141: &id341 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82768, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lV4cfQGxxj8= + 1849-280219-4_74: &id375 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GqGRoOjIxD8= + 1849-220319-5_83: + 1849-010319-2_83: *id239 + 1849-010319-4_67: *id240 + 1849-010319-5_93: *id241 + 1849-060319-3_114: *id242 + 1849-060319-4_72: *id243 + 1849-110319-1_46: *id244 + 1849-110319-2_52: *id245 + 1849-150319-1_72: *id246 + 1849-150319-2_36: *id247 + 1849-150319-3_25: *id248 + 1849-150319-4_62: *id249 + 1849-220319-2_91: *id250 + 1849-220319-3_65: *id251 + 1849-280219-1_16: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 3576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9lsmSH5JtT8= + 1849-280219-2_70: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85075, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XO2mM06Eyz8= + 1849-280219-4_70: &id358 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + suCazreOsj8= + 1849-280219-1_100: + 1849-010319-2_119: *id252 + 1849-010319-4_103: *id253 + 1849-010319-5_121: *id254 + 1849-060319-2_81: *id255 + 1849-060319-3_130: *id256 + 1849-060319-4_82: *id257 + 1849-110319-1_62: *id258 + 1849-110319-2_64: *id259 + 1849-150319-1_62: *id260 + 1849-150319-2_62: *id261 + 1849-150319-3_76: *id262 + 1849-150319-4_87: *id263 + 1849-220319-2_95: *id264 + 1849-220319-3_65: *id265 + 1849-220319-5_104: *id266 + 1849-280219-2_72: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +gIqcIVxwj8= + 1849-280219-3_141: &id342 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Uizk3ICuxD8= + 1849-280219-1_16: + 1849-010319-2_83: *id267 + 1849-010319-4_67: *id268 + 1849-010319-5_93: *id269 + 1849-060319-3_114: *id270 + 1849-110319-1_46: *id271 + 1849-110319-2_52: *id272 + 1849-150319-1_72: *id273 + 1849-150319-2_36: *id274 + 1849-150319-3_25: *id275 + 1849-150319-4_62: *id276 + 1849-220319-2_91: *id277 + 1849-220319-5_83: *id278 + 1849-280219-2_70: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PCAEwXCYzz8= + 1849-280219-4_70: &id359 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hAO2J0JBtz8= + 1849-280219-1_18: + 1849-150319-4_90: *id279 + 1849-280219-1_84: + 1849-010319-5_78: *id280 + 1849-150319-2_34: *id281 + 1849-280219-1_86: + 1849-010319-2_103: *id282 + 1849-010319-4_61: *id283 + 1849-010319-5_103: *id284 + 1849-060319-4_72: *id285 + 1849-110319-1_50: *id286 + 1849-110319-2_60: *id287 + 1849-150319-1_91: *id288 + 1849-150319-2_9: *id289 + 1849-150319-3_21: *id290 + 1849-150319-4_81: *id291 + 1849-220319-3_61: *id292 + 1849-220319-4_99: *id293 + 1849-280219-4_74: &id376 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CxAjDAw4xT8= + 1849-280219-2_70: + 1849-010319-2_83: *id294 + 1849-010319-4_61: *id295 + 1849-010319-5_103: *id296 + 1849-060319-3_130: *id297 + 1849-060319-4_82: *id298 + 1849-110319-1_46: *id299 + 1849-110319-2_52: *id300 + 1849-150319-1_62: *id301 + 1849-150319-2_34: *id302 + 1849-150319-3_25: *id303 + 1849-150319-4_62: *id304 + 1849-220319-2_91: *id305 + 1849-220319-3_61: *id306 + 1849-220319-5_83: *id307 + 1849-280219-1_16: *id308 + 1849-280219-4_74: &id377 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2iu++tJotz8= + 1849-280219-2_72: + 1849-010319-2_103: *id309 + 1849-010319-4_67: *id310 + 1849-010319-5_121: *id311 + 1849-060319-2_81: *id312 + 1849-060319-3_114: *id313 + 1849-060319-4_72: *id314 + 1849-110319-1_50: *id315 + 1849-110319-2_60: *id316 + 1849-150319-1_91: *id317 + 1849-150319-2_9: *id318 + 1849-150319-3_76: *id319 + 1849-150319-4_87: *id320 + 1849-220319-2_95: *id321 + 1849-220319-3_65: *id322 + 1849-220319-4_99: *id323 + 1849-220319-5_104: *id324 + 1849-280219-1_100: *id325 + 1849-280219-3_141: &id343 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BT6PG6XoyT8= + 1849-280219-4_70: &id360 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GrC/Oq8tuj8= + 1849-280219-3_141: + 1849-010319-2_119: *id326 + 1849-010319-4_103: *id327 + 1849-010319-5_121: *id328 + 1849-060319-2_81: *id329 + 1849-060319-3_130: *id330 + 1849-060319-4_82: *id331 + 1849-110319-1_62: *id332 + 1849-110319-2_64: *id333 + 1849-150319-1_91: *id334 + 1849-150319-2_62: *id335 + 1849-150319-3_21: *id336 + 1849-150319-4_87: *id337 + 1849-220319-2_95: *id338 + 1849-220319-3_65: *id339 + 1849-220319-4_99: *id340 + 1849-220319-5_104: *id341 + 1849-280219-1_100: *id342 + 1849-280219-2_72: *id343 + 1849-280219-4_74: &id378 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7HYofLpPxj8= + 1849-280219-4_70: + 1849-010319-2_103: *id344 + 1849-010319-4_67: *id345 + 1849-010319-5_93: *id346 + 1849-060319-3_114: *id347 + 1849-060319-4_72: *id348 + 1849-110319-1_50: *id349 + 1849-110319-2_52: *id350 + 1849-150319-1_72: *id351 + 1849-150319-2_36: *id352 + 1849-150319-3_25: *id353 + 1849-150319-4_62: *id354 + 1849-220319-2_91: *id355 + 1849-220319-3_65: *id356 + 1849-220319-4_99: *id357 + 1849-220319-5_83: *id358 + 1849-280219-1_16: *id359 + 1849-280219-2_72: *id360 + 1849-280219-4_74: + 1849-010319-2_83: *id361 + 1849-010319-4_61: *id362 + 1849-010319-5_103: *id363 + 1849-060319-2_81: *id364 + 1849-060319-3_130: *id365 + 1849-060319-4_82: *id366 + 1849-110319-1_62: *id367 + 1849-110319-2_64: *id368 + 1849-150319-1_62: *id369 + 1849-150319-2_34: *id370 + 1849-150319-3_76: *id371 + 1849-150319-4_87: *id372 + 1849-220319-2_95: *id373 + 1849-220319-3_61: *id374 + 1849-220319-5_104: *id375 + 1849-280219-1_86: *id376 + 1849-280219-2_70: *id377 + 1849-280219-3_141: *id378 +_node: &id381 + 1849-010319-2_103: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id379 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + ZwAAAAAAAAA= + 1849-010319-2_119: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + dwAAAAAAAAA= + 1849-010319-2_83: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + UwAAAAAAAAA= + 1849-010319-4_103: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + ZwAAAAAAAAA= + 1849-010319-4_61: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + PQAAAAAAAAA= + 1849-010319-4_67: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + QwAAAAAAAAA= + 1849-010319-5_103: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + ZwAAAAAAAAA= + 1849-010319-5_121: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + eQAAAAAAAAA= + 1849-010319-5_78: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + TgAAAAAAAAA= + 1849-010319-5_93: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + XQAAAAAAAAA= + 1849-060319-2_81: + action_id: 1849-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + UQAAAAAAAAA= + 1849-060319-3_114: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + cgAAAAAAAAA= + 1849-060319-3_130: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + ggAAAAAAAAA= + 1849-060319-4_72: + action_id: 1849-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + SAAAAAAAAAA= + 1849-060319-4_82: + action_id: 1849-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + UgAAAAAAAAA= + 1849-110319-1_46: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + LgAAAAAAAAA= + 1849-110319-1_50: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + MgAAAAAAAAA= + 1849-110319-1_62: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + PgAAAAAAAAA= + 1849-110319-2_52: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + NAAAAAAAAAA= + 1849-110319-2_60: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + PAAAAAAAAAA= + 1849-110319-2_64: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + QAAAAAAAAAA= + 1849-150319-1_62: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + PgAAAAAAAAA= + 1849-150319-1_72: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + SAAAAAAAAAA= + 1849-150319-1_91: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + WwAAAAAAAAA= + 1849-150319-2_34: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + IgAAAAAAAAA= + 1849-150319-2_36: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + JAAAAAAAAAA= + 1849-150319-2_62: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + PgAAAAAAAAA= + 1849-150319-2_9: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + CQAAAAAAAAA= + 1849-150319-3_21: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + FQAAAAAAAAA= + 1849-150319-3_25: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + GQAAAAAAAAA= + 1849-150319-3_76: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + TAAAAAAAAAA= + 1849-150319-4_62: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + PgAAAAAAAAA= + 1849-150319-4_81: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + UQAAAAAAAAA= + 1849-150319-4_87: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + VwAAAAAAAAA= + 1849-150319-4_90: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + WgAAAAAAAAA= + 1849-220319-2_91: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + WwAAAAAAAAA= + 1849-220319-2_95: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + XwAAAAAAAAA= + 1849-220319-3_61: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + PQAAAAAAAAA= + 1849-220319-3_65: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + QQAAAAAAAAA= + 1849-220319-4_99: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + YwAAAAAAAAA= + 1849-220319-5_104: + action_id: 1849-220319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + aAAAAAAAAAA= + 1849-220319-5_83: + action_id: 1849-220319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + UwAAAAAAAAA= + 1849-280219-1_100: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + ZAAAAAAAAAA= + 1849-280219-1_16: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + EAAAAAAAAAA= + 1849-280219-1_18: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + EgAAAAAAAAA= + 1849-280219-1_84: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + VAAAAAAAAAA= + 1849-280219-1_86: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + VgAAAAAAAAA= + 1849-280219-2_70: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + RgAAAAAAAAA= + 1849-280219-2_72: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + SAAAAAAAAAA= + 1849-280219-3_141: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + jQAAAAAAAAA= + 1849-280219-4_70: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + RgAAAAAAAAA= + 1849-280219-4_74: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id379 + - !!binary | + SgAAAAAAAAA= +adjlist_inner_dict_factory: &id380 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id380 +edge_attr_dict_factory: *id380 +graph: {} +node_dict_factory: *id380 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id381 diff --git a/actions/identify-neurons/data/1849-graphs/graph-group-3.yaml b/actions/identify-neurons/data/1849-graphs/graph-group-3.yaml new file mode 100644 index 000000000..b75be9e69 --- /dev/null +++ b/actions/identify-neurons/data/1849-graphs/graph-group-3.yaml @@ -0,0 +1,3680 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1849-010319-2_107: + 1849-010319-4_115: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4039, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + yupZONK1xj8= + 1849-010319-5_148: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rrnShyxXxz8= + 1849-060319-1_77: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Qdc/s1FS0j8= + 1849-060319-2_67: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6065, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gjFvZYWszD8= + 1849-220319-2_59: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3129, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7IZbsd2j1T8= + 1849-220319-4_122: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xijRumTgxj8= + 1849-220319-5_71: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 10679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZnJse0Vi0z8= + 1849-280219-1_64: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PHvlOo7z2D8= + 1849-280219-2_98: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /9qOrgCYwT8= + 1849-280219-4_125: &id371 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 69714, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NtixbFuXwT8= + 1849-010319-2_111: + 1849-010319-4_65: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4039, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SGzBH4XWwz8= + 1849-010319-5_99: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1sTkN9t2wT8= + 1849-060319-1_102: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SHNYFEShwD8= + 1849-060319-2_94: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6065, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mjGnMeD6wT8= + 1849-060319-3_100: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8033, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w+QJlbYjwj8= + 1849-060319-4_68: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 10258, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e40D46uMwj8= + 1849-150319-1_64: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A1vkTFBjxz8= + 1849-150319-2_38: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XzHgV9I7xj8= + 1849-150319-3_60: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4904, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lcP5t4Qpyj8= + 1849-150319-4_58: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7600, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4ZvKuq3yxT8= + 1849-220319-2_86: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3129, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + N93nNwrJyj8= + 1849-220319-3_53: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /dcfQuIkyj8= + 1849-220319-4_79: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SeweDQizyj8= + 1849-220319-5_98: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 10679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KEAdTnUYyT8= + 1849-280219-1_27: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pGcTp3/qyT8= + 1849-280219-2_96: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x1kWL6m4sj8= + 1849-280219-3_170: &id346 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 72089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rEfHowwFuz8= + 1849-280219-4_121: &id363 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 69714, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mJy+Z7CHuj8= + 1849-010319-2_40: + 1849-010319-4_73: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4039, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w9+fxjfLvz8= + 1849-010319-5_113: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BvC8dBo+uj8= + 1849-060319-1_98: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t5RPXRpIuz8= + 1849-060319-2_99: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6065, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dKWYvH7Cuz8= + 1849-060319-3_110: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8033, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m5Ddix0Zvj8= + 1849-060319-4_74: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 10258, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rg4uREVOuj8= + 1849-110319-1_35: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fQkDv9fryD8= + 1849-110319-2_40: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 86013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CXBfIjVyyz8= + 1849-150319-1_58: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n2LH435QzD8= + 1849-150319-2_32: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KCuG76i4yj8= + 1849-220319-2_68: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3129, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uleexqXhxj8= + 1849-220319-3_55: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p6elTOuoyz8= + 1849-220319-4_87: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qsFyIuCwyj8= + 1849-220319-5_27: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 10679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DGni9nmOxz8= + 1849-280219-1_28: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Lgc1iB6BwD8= + 1849-280219-2_51: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AsDjR8oxvT8= + 1849-280219-3_166: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 72089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2RrGbVVquz8= + 1849-280219-4_72: &id395 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 69714, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PtBxwnuSuj8= + 1849-010319-4_115: + 1849-010319-2_107: *id002 + 1849-010319-5_148: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DX7vKlu9oz8= + 1849-060319-1_102: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82558, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y8OoxFcI0D8= + 1849-060319-2_67: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jiZt8+SWzT8= + 1849-220319-2_59: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LiqB2VrI0z8= + 1849-220319-4_122: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Whjii29yzD8= + 1849-220319-5_71: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6640, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + X4+qHK100j8= + 1849-280219-1_110: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + crXhkT4G1j8= + 1849-280219-2_96: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NysKHG4Wyj8= + 1849-280219-4_121: &id364 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IMTrbKKOxz8= + 1849-010319-4_65: + 1849-010319-2_111: *id003 + 1849-010319-5_99: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + atZM0Qn6oj8= + 1849-060319-1_77: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82558, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3sBwWTj4uj8= + 1849-060319-2_94: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hRCchN/+uz8= + 1849-060319-3_100: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MesnM7MbtD8= + 1849-060319-4_68: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6219, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nl++wlJjuD8= + 1849-150319-1_64: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81157, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1WX5H+z4uj8= + 1849-150319-2_38: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83781, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SxqhQ9FMvT8= + 1849-150319-3_60: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + r2lglXHVxD8= + 1849-150319-4_58: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3561, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SEEJstP2wT8= + 1849-220319-2_86: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6ylzRUw2xD8= + 1849-220319-3_53: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1GH9D3Orxj8= + 1849-220319-4_79: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3O+zKaKUyD8= + 1849-220319-5_98: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6640, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lMfdDLwzxD8= + 1849-280219-1_27: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + u0lcdsQ+wj8= + 1849-280219-2_76: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DOjKrlHavz8= + 1849-280219-3_170: &id347 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KbHg9qEuvz8= + 1849-280219-4_60: &id378 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /ZReQAUttj8= + 1849-010319-4_73: + 1849-010319-2_40: *id004 + 1849-010319-5_113: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DudYolAGoD8= + 1849-060319-1_98: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82558, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AyDkzReitD8= + 1849-060319-2_99: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SaJNR3DduT8= + 1849-060319-3_110: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + koa2D92OtT8= + 1849-060319-4_74: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6219, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EUrIkn40vz8= + 1849-110319-1_35: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77446, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oGStZDR1vj8= + 1849-110319-2_40: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 62UTnsQ6wz8= + 1849-150319-1_58: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81157, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dMfpDiSaxD8= + 1849-150319-2_32: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83781, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s4UgWnRZxT8= + 1849-220319-2_68: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oNXYtnY+vT8= + 1849-220319-3_55: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KqB9KBXFwD8= + 1849-220319-4_87: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 14J26dOivj8= + 1849-220319-5_27: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6640, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T719Qgl6vD8= + 1849-280219-1_28: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wHHSJ84LuD8= + 1849-280219-2_51: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hBZ/3wkwsz8= + 1849-280219-3_166: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RxsCRZK1wT8= + 1849-280219-4_72: &id396 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JrpHmAGMtz8= + 1849-010319-5_113: + 1849-010319-2_40: *id005 + 1849-010319-4_73: *id006 + 1849-060319-1_98: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZOzSCoiCsz8= + 1849-060319-2_99: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q90IU54LuD8= + 1849-060319-3_110: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3138, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ySRrvTJmtD8= + 1849-060319-4_74: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9F/2xMeauz8= + 1849-110319-1_35: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 76590, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q+uzZ/KYwD8= + 1849-110319-2_40: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ub1XwJlwxD8= + 1849-150319-1_58: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80301, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iypKXMGcxT8= + 1849-150319-2_32: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82925, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3eoioSKYxT8= + 1849-220319-2_68: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84634, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mtR7vJYzwD8= + 1849-220319-3_55: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 811, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qJRenWN4wj8= + 1849-220319-4_87: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1Dib8LK5wD8= + 1849-220319-5_27: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5784, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nzZRBH9jvD8= + 1849-280219-1_28: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j68P2RrftT8= + 1849-280219-2_51: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iVFF0kgYsT8= + 1849-280219-3_166: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ++V1BsLNvj8= + 1849-280219-4_72: &id397 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dKMG0WQUtD8= + 1849-010319-5_148: + 1849-010319-2_107: *id007 + 1849-010319-4_115: *id008 + 1849-060319-1_102: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ngPFVVge0D8= + 1849-060319-2_67: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lLcwRR5ezj8= + 1849-220319-2_59: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84634, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NjX2oCjs0z8= + 1849-220319-4_122: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q448br0ozD8= + 1849-220319-5_71: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5784, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WK9q0haL0j8= + 1849-280219-1_110: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pDKHspUG1j8= + 1849-280219-2_96: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xy0Fgescyj8= + 1849-280219-4_121: &id365 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + estbvD2Cxz8= + 1849-010319-5_99: + 1849-010319-2_111: *id009 + 1849-010319-4_65: *id010 + 1849-060319-1_77: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JiL5xwRjvD8= + 1849-060319-2_94: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pps/YXAbuj8= + 1849-060319-3_100: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3138, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TyI4nP7Nsj8= + 1849-060319-4_68: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FLRqkeV5tz8= + 1849-150319-1_64: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80301, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BWNkf5DsvT8= + 1849-150319-2_38: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82925, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FoXkxsLdvz8= + 1849-150319-3_60: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 9, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TI5v/ENSxT8= + 1849-150319-4_58: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2705, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fXICJCcUwT8= + 1849-220319-2_86: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84634, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0I+G9d4VxT8= + 1849-220319-3_53: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 811, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kjooZe8ixj8= + 1849-220319-4_79: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZDKPSHuexz8= + 1849-220319-5_98: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5784, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oJWPNZh+xD8= + 1849-280219-1_27: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dp6yBU4Fwz8= + 1849-280219-2_76: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PxMGPtF7wD8= + 1849-280219-3_170: &id348 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ugYdBLz7vD8= + 1849-280219-4_60: &id379 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + niI99ziKtD8= + 1849-060319-1_102: + 1849-010319-2_111: *id011 + 1849-010319-4_115: *id012 + 1849-010319-5_148: *id013 + 1849-060319-2_67: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5868, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p1YwCggZuD8= + 1849-060319-3_100: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7836, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s5lbLgdBsT8= + 1849-060319-4_68: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10061, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ayKtAGR7sD8= + 1849-150319-2_32: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5hbvr/xEwz8= + 1849-150319-4_58: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9mDXSfixvD8= + 1849-220319-2_57: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x/tXXHNp0D8= + 1849-220319-3_53: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P4unughvxT8= + 1849-220319-4_79: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7912, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HLIi8Jyjxz8= + 1849-220319-5_71: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10482, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vflcp2Iczj8= + 1849-280219-1_110: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eY+bTNmH1D8= + 1849-280219-2_96: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8suhgHCwvD8= + 1849-280219-3_170: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vfwNNS1ttj8= + 1849-280219-4_121: &id366 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tTxlXucGwD8= + 1849-060319-1_77: + 1849-010319-2_107: *id014 + 1849-010319-4_65: *id015 + 1849-010319-5_99: *id016 + 1849-060319-2_94: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5868, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4ZjvSinBtj8= + 1849-150319-1_64: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84999, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3LArBxnRsz8= + 1849-150319-3_60: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Pa47obqywT8= + 1849-220319-2_86: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4u03lDrfwj8= + 1849-280219-1_27: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rw87Xhr5uj8= + 1849-280219-2_76: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O7TERmuSuj8= + 1849-280219-4_60: &id380 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xwmEu5qVsz8= + 1849-060319-1_83: + 1849-150319-1_58: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84999, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BNUjcglhwz8= + 1849-150319-2_38: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HKg4yl0Utj8= + 1849-220319-2_59: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XwapBDrIwT8= + 1849-220319-4_122: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7912, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9RQqpOulyj8= + 1849-220319-5_98: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10482, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O4LqtUSbwD8= + 1849-280219-1_64: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h++Y5ZCUzT8= + 1849-280219-2_98: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JJZAfvZjzT8= + 1849-280219-4_125: &id372 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p7YshtOkzj8= + 1849-060319-1_98: + 1849-010319-2_40: *id017 + 1849-010319-4_73: *id018 + 1849-010319-5_113: *id019 + 1849-060319-2_99: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5868, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dl760h3Coj8= + 1849-060319-3_110: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7836, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 078De8t2lz8= + 1849-060319-4_74: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10061, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IDDbQl7FsD8= + 1849-110319-1_35: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lP7yDDK4wT8= + 1849-110319-2_40: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iuZOZmCywj8= + 1849-220319-2_68: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d5EOwTW1vT8= + 1849-220319-3_55: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 36UiDrKGxT8= + 1849-220319-4_87: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7912, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vU0PeZGIxT8= + 1849-220319-5_27: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10482, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B0isBSbnwj8= + 1849-280219-1_28: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I9YP2DRUuT8= + 1849-280219-2_51: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DFhZTE8/tz8= + 1849-280219-3_166: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9Xc7kDmuwD8= + 1849-280219-4_72: &id398 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z5qs3Am9uT8= + 1849-060319-2_67: + 1849-010319-2_107: *id020 + 1849-010319-4_115: *id021 + 1849-010319-5_148: *id022 + 1849-060319-1_102: *id023 + 1849-220319-2_59: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83464, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VWkItmzTzD8= + 1849-220319-4_87: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fzysj7Ok0D8= + 1849-220319-5_71: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4614, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rcyj4ZKw0D8= + 1849-280219-1_64: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pFz/Dk/Q0T8= + 1849-280219-2_96: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q7J6z+cdvz8= + 1849-280219-4_121: &id367 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 75779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M6bmBqkXvj8= + 1849-060319-2_94: + 1849-010319-2_111: *id024 + 1849-010319-4_65: *id025 + 1849-010319-5_99: *id026 + 1849-060319-1_77: *id027 + 1849-060319-3_100: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vlSahvcGpz8= + 1849-060319-4_68: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cgwpduu9pz8= + 1849-150319-1_64: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qq90OOWQuT8= + 1849-150319-2_38: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ziTgEbITtz8= + 1849-150319-3_60: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85239, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qzEmYzvMwT8= + 1849-150319-4_58: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1535, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CQ7INA2juT8= + 1849-220319-2_86: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83464, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZaTWhJjDwT8= + 1849-220319-3_53: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KQqiY24fxT8= + 1849-220319-4_79: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EntzqFK/xz8= + 1849-220319-5_98: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4614, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fQyj6q+Ewj8= + 1849-280219-1_27: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n63JCMaSwT8= + 1849-280219-2_76: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oPGqeMmwwT8= + 1849-280219-3_170: &id350 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 58Uz7uReuT8= + 1849-280219-4_60: &id381 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 75779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WthUHOuGuD8= + 1849-060319-2_99: + 1849-010319-2_40: *id028 + 1849-010319-4_73: *id029 + 1849-010319-5_113: *id030 + 1849-060319-1_98: *id031 + 1849-060319-3_110: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qHaX6lvloz8= + 1849-060319-4_74: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l4SQ+Eskpj8= + 1849-110319-1_35: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NAoKgEs1xD8= + 1849-110319-2_40: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fUQawjgqxD8= + 1849-150319-1_58: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 05irAIcTxz8= + 1849-150319-2_32: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t/TShTjuxT8= + 1849-220319-2_68: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83464, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ry24sKCrwT8= + 1849-220319-3_55: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MMpzzvjZxz8= + 1849-220319-4_122: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2Ir/t9zwwz8= + 1849-220319-5_27: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4614, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SerXI95PxT8= + 1849-280219-1_28: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sN1Stj4suj8= + 1849-280219-2_51: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + npYAya4Zuj8= + 1849-280219-3_166: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3XPuBvwawD8= + 1849-280219-4_72: &id399 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 75779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5b7JFxZiuz8= + 1849-060319-3_100: + 1849-010319-2_111: *id032 + 1849-010319-4_65: *id033 + 1849-010319-5_99: *id034 + 1849-060319-1_102: *id035 + 1849-060319-2_94: *id036 + 1849-060319-4_68: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TTeakdjdoj8= + 1849-150319-1_64: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77163, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Pc5s0AqttT8= + 1849-150319-2_38: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79787, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1dzdBL9vtT8= + 1849-150319-3_60: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n6r//MOWwT8= + 1849-150319-4_58: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ptdsS3QnuT8= + 1849-220319-2_86: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +6qtJqqHwj8= + 1849-220319-3_53: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84073, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + foKsGckWxD8= + 1849-220319-4_79: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 76, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1R/a7IDSxj8= + 1849-220319-5_98: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2646, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oDfW4tZZwj8= + 1849-280219-1_27: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8k44WOzdvz8= + 1849-280219-2_76: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Oh1my8ugvz8= + 1849-280219-3_170: &id351 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GD68MzpfuT8= + 1849-280219-4_60: &id382 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nkz/DRzAsT8= + 1849-060319-3_110: + 1849-010319-2_40: *id037 + 1849-010319-4_73: *id038 + 1849-010319-5_113: *id039 + 1849-060319-1_98: *id040 + 1849-060319-2_99: *id041 + 1849-060319-4_74: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NTE+vVUDsj8= + 1849-110319-1_35: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 73452, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /JMqcc0swT8= + 1849-110319-2_40: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZuZbpcrDwT8= + 1849-150319-1_58: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77163, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eSGVyq9bxD8= + 1849-150319-2_32: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79787, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D8E0+tqJwz8= + 1849-220319-2_68: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YW22rb6xvD8= + 1849-220319-3_55: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84073, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rOsUf/N7xT8= + 1849-220319-4_122: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 76, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iKz6lzCIwz8= + 1849-220319-5_27: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2646, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KCalqdMxwz8= + 1849-280219-1_28: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XYAlgoEfuj8= + 1849-280219-2_51: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GPDmKkkBtz8= + 1849-280219-3_166: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bZifOcbTwD8= + 1849-280219-4_72: &id400 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I/YQdsNruj8= + 1849-060319-4_68: + 1849-010319-2_111: *id042 + 1849-010319-4_65: *id043 + 1849-010319-5_99: *id044 + 1849-060319-1_102: *id045 + 1849-060319-2_94: *id046 + 1849-060319-3_100: *id047 + 1849-110319-2_40: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rgHOI7nOxT8= + 1849-150319-1_64: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 74938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Msyn48Bttj8= + 1849-150319-2_38: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77562, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0YpiIVIbtT8= + 1849-150319-3_60: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81046, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xFEBUqWCwT8= + 1849-150319-4_58: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83742, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jIrNPFctuT8= + 1849-220319-2_86: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 79271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + k1q6Ks9HwT8= + 1849-220319-3_53: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v0Oyf473wz8= + 1849-220319-4_79: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 60zrUaOOxj8= + 1849-220319-5_98: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 421, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bPXrNIrfwT8= + 1849-280219-1_27: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E1tc5vpjvj8= + 1849-280219-2_76: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jn7RB6ahvj8= + 1849-280219-3_170: &id352 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6FHX9LkcuD8= + 1849-280219-4_60: &id383 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79972, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H+AspR5EsT8= + 1849-060319-4_74: + 1849-010319-2_40: *id048 + 1849-010319-4_73: *id049 + 1849-010319-5_113: *id050 + 1849-060319-1_98: *id051 + 1849-060319-2_99: *id052 + 1849-060319-3_110: *id053 + 1849-110319-1_35: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 71227, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SC8ngk07xj8= + 1849-150319-1_58: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 74938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pjR8EYpdyT8= + 1849-150319-2_32: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77562, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /ZYuio0syD8= + 1849-220319-2_68: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 79271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YY/dEyKwxT8= + 1849-220319-3_55: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7zFd09Mcyj8= + 1849-220319-4_122: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t2U4na1ewz8= + 1849-220319-5_27: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 421, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LZbw9iRBxj8= + 1849-280219-1_28: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m2pJbGqktz8= + 1849-280219-2_51: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4+cdCgP3uj8= + 1849-280219-3_166: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0FURXzXUuj8= + 1849-280219-4_72: &id401 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79972, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ToeUKzK7uT8= + 1849-110319-1_35: + 1849-010319-2_40: *id054 + 1849-010319-4_73: *id055 + 1849-010319-5_113: *id056 + 1849-060319-1_98: *id057 + 1849-060319-2_99: *id058 + 1849-060319-3_110: *id059 + 1849-060319-4_74: *id060 + 1849-110319-2_40: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vfkB+6LOuT8= + 1849-150319-1_58: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Hxc8BY+UvD8= + 1849-150319-2_32: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fs8YJ7grwT8= + 1849-150319-3_60: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9819, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d7X28otPxD8= + 1849-150319-4_58: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12515, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pqS/dmecxT8= + 1849-220319-2_68: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uoqRzuvgwD8= + 1849-220319-3_53: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AchsTQdKsz8= + 1849-220319-4_79: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13024, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + or7VZJaCtD8= + 1849-220319-5_27: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nU6xHpbUvz8= + 1849-280219-1_28: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Oe7Gep6mwT8= + 1849-280219-2_51: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69481, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PbmjlNfnvz8= + 1849-280219-3_166: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 67174, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w2uYq7Gcxj8= + 1849-280219-4_72: &id402 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 64799, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NdlR0EchwT8= + 1849-110319-2_40: + 1849-010319-2_40: *id061 + 1849-010319-4_73: *id062 + 1849-010319-5_113: *id063 + 1849-060319-1_98: *id064 + 1849-060319-2_99: *id065 + 1849-060319-3_110: *id066 + 1849-060319-4_68: *id067 + 1849-110319-1_35: *id068 + 1849-150319-1_58: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + odiZgcQDuz8= + 1849-150319-2_32: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 1807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +g7pi92AwD8= + 1849-150319-3_60: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jBKQY5H2uz8= + 1849-150319-4_58: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 7987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XqHYeJrjvz8= + 1849-220319-2_68: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MtV3s8/rwT8= + 1849-220319-3_53: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NZb1Hub+tj8= + 1849-220319-4_79: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NZ8ZQ5kRvD8= + 1849-220319-5_27: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZjF8/SUpxT8= + 1849-280219-1_28: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p/XSoWtGxT8= + 1849-280219-2_51: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g6DRtDFBxD8= + 1849-280219-3_166: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 71702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hjtwyWUhyT8= + 1849-280219-4_72: &id403 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69327, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GgtyKfapxT8= + 1849-150319-1_58: + 1849-010319-2_40: *id069 + 1849-010319-4_73: *id070 + 1849-010319-5_113: *id071 + 1849-060319-1_83: *id072 + 1849-060319-2_99: *id073 + 1849-060319-3_110: *id074 + 1849-060319-4_74: *id075 + 1849-110319-1_35: *id076 + 1849-110319-2_40: *id077 + 1849-150319-2_32: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bLYoqkXIsj8= + 1849-220319-2_68: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4333, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T55dc0N3wj8= + 1849-220319-3_53: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C4+2utAotT8= + 1849-220319-4_79: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kaUru35CuD8= + 1849-220319-5_71: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + an1ytxLMwz8= + 1849-280219-1_28: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t8Thm7p2xz8= + 1849-280219-2_51: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R8PmD+rJxT8= + 1849-280219-3_166: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oHrbrcwpyj8= + 1849-280219-4_72: &id404 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lA6c1IgCxz8= + 1849-150319-1_64: + 1849-010319-2_111: *id078 + 1849-010319-4_65: *id079 + 1849-010319-5_99: *id080 + 1849-060319-1_77: *id081 + 1849-060319-2_94: *id082 + 1849-060319-3_100: *id083 + 1849-060319-4_68: *id084 + 1849-150319-2_38: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rBzH+XTFsT8= + 1849-150319-3_60: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OxFsu7DiuT8= + 1849-150319-4_58: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U9O0U59GtD8= + 1849-220319-2_86: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4333, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gb1x6p7YwD8= + 1849-220319-3_55: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +8cBhsdqzD8= + 1849-220319-4_122: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HfejJjsEyj8= + 1849-220319-5_98: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rS80fNwKwD8= + 1849-280219-1_27: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WZry7TYxvz8= + 1849-280219-2_76: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GABjVwQBvT8= + 1849-280219-3_170: &id353 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hg3fC8RQwj8= + 1849-280219-4_60: &id384 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HiCrxr0Ltz8= + 1849-150319-2_32: + 1849-010319-2_40: *id085 + 1849-010319-4_73: *id086 + 1849-010319-5_113: *id087 + 1849-060319-1_102: *id088 + 1849-060319-2_99: *id089 + 1849-060319-3_110: *id090 + 1849-060319-4_74: *id091 + 1849-110319-1_35: *id092 + 1849-110319-2_40: *id093 + 1849-150319-1_58: *id094 + 1849-150319-3_60: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 96fv4ygkwD8= + 1849-150319-4_58: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jvk/IxS3vj8= + 1849-220319-2_68: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1709, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QfwseOxcxD8= + 1849-220319-3_53: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Sc7oOUd3vD8= + 1849-220319-4_79: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vbYgN9urvT8= + 1849-220319-5_27: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9259, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E0MlITstxz8= + 1849-280219-1_28: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80717, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WCaSM1I1yD8= + 1849-280219-2_51: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AylPNbO0xT8= + 1849-280219-3_166: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + potUK9PpyD8= + 1849-280219-4_72: &id405 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 71134, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lXoYgjCNxj8= + 1849-150319-2_38: + 1849-010319-2_111: *id095 + 1849-010319-4_65: *id096 + 1849-010319-5_99: *id097 + 1849-060319-1_83: *id098 + 1849-060319-2_94: *id099 + 1849-060319-3_100: *id100 + 1849-060319-4_68: *id101 + 1849-150319-1_64: *id102 + 1849-220319-2_86: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1709, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RujmCxSyvT8= + 1849-220319-3_55: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zCrBPAYq0D8= + 1849-220319-4_122: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + drJXLuzOyz8= + 1849-220319-5_98: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9259, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + punI8jkVwD8= + 1849-280219-1_27: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80717, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +y0KuMUVvz8= + 1849-280219-2_76: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S25Q9sqAvz8= + 1849-280219-3_170: &id354 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YcxMhgkLvz8= + 1849-280219-4_60: &id385 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 71134, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d5qlEv7Ztz8= + 1849-150319-3_60: + 1849-010319-2_111: *id103 + 1849-010319-4_65: *id104 + 1849-010319-5_99: *id105 + 1849-060319-1_77: *id106 + 1849-060319-2_94: *id107 + 1849-060319-3_100: *id108 + 1849-060319-4_68: *id109 + 1849-110319-1_35: *id110 + 1849-110319-2_40: *id111 + 1849-150319-1_64: *id112 + 1849-150319-2_32: *id113 + 1849-150319-4_58: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zMrEAY5esz8= + 1849-220319-2_68: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84625, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + p+zaxqgLxD8= + 1849-220319-3_53: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 802, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cS2FK8wOwT8= + 1849-220319-4_79: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + R0YmuWzJwz8= + 1849-220319-5_98: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5775, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zuSB6pbPwz8= + 1849-280219-1_27: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84201, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4N/0AA6Oxj8= + 1849-280219-2_76: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79300, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vI3Mkl/nxD8= + 1849-280219-3_170: &id355 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 76993, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SJFrNg0Mxz8= + 1849-280219-4_60: &id386 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 74618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MI2XkLdkwj8= + 1849-150319-4_58: + 1849-010319-2_111: *id114 + 1849-010319-4_65: *id115 + 1849-010319-5_99: *id116 + 1849-060319-1_102: *id117 + 1849-060319-2_94: *id118 + 1849-060319-3_100: *id119 + 1849-060319-4_68: *id120 + 1849-110319-1_35: *id121 + 1849-110319-2_40: *id122 + 1849-150319-1_64: *id123 + 1849-150319-2_32: *id124 + 1849-150319-3_60: *id125 + 1849-220319-2_86: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81929, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mT+bxk87wz8= + 1849-220319-3_53: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84506, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kh+Brv3awD8= + 1849-220319-4_79: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cS+ew4KnxD8= + 1849-220319-5_98: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ruKYoV9JwT8= + 1849-280219-1_27: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eK4Z5T+VxT8= + 1849-280219-2_96: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vq//u4w2wz8= + 1849-280219-3_170: &id356 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3QvEIBQMwz8= + 1849-280219-4_60: &id387 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 77314, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aFfKnWjLvD8= + 1849-220319-2_57: + 1849-060319-1_102: *id126 + 1849-280219-1_64: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82426, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CUXMtEV60T8= + 1849-280219-2_98: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sRu6JBjVzD8= + 1849-280219-4_125: &id373 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 72843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ydIvhHQ2zz8= + 1849-220319-2_59: + 1849-010319-2_107: *id127 + 1849-010319-4_115: *id128 + 1849-010319-5_148: *id129 + 1849-060319-1_83: *id130 + 1849-060319-2_67: *id131 + 1849-220319-4_122: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EXpDjnq1zD8= + 1849-220319-5_98: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PIwrkxv1wz8= + 1849-280219-1_27: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82426, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9yxutxfnyD8= + 1849-280219-2_76: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rMv3DXSTwD8= + 1849-280219-4_121: &id368 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 72843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DiANE8tFzD8= + 1849-220319-2_68: + 1849-010319-2_40: *id132 + 1849-010319-4_73: *id133 + 1849-010319-5_113: *id134 + 1849-060319-1_98: *id135 + 1849-060319-2_99: *id136 + 1849-060319-3_110: *id137 + 1849-060319-4_74: *id138 + 1849-110319-1_35: *id139 + 1849-110319-2_40: *id140 + 1849-150319-1_58: *id141 + 1849-150319-2_32: *id142 + 1849-150319-3_60: *id143 + 1849-220319-3_53: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2577, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vGs+pwg4vT8= + 1849-220319-4_79: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + igPOjW84wD8= + 1849-220319-5_27: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KjKE//slxj8= + 1849-280219-1_28: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82426, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + umnzNgbPxD8= + 1849-280219-2_51: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w/2gx8P0wD8= + 1849-280219-3_166: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75218, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xfw1LEB+yT8= + 1849-280219-4_72: &id406 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 72843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oDFDk8aqxD8= + 1849-220319-2_86: + 1849-010319-2_111: *id144 + 1849-010319-4_65: *id145 + 1849-010319-5_99: *id146 + 1849-060319-1_77: *id147 + 1849-060319-2_94: *id148 + 1849-060319-3_100: *id149 + 1849-060319-4_68: *id150 + 1849-150319-1_64: *id151 + 1849-150319-2_38: *id152 + 1849-150319-4_58: *id153 + 1849-220319-3_55: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2577, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wM6XW4zRyj8= + 1849-220319-4_87: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fXh3LiRzyz8= + 1849-220319-5_71: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oRY0P0dNyj8= + 1849-280219-1_110: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82426, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V2navjUK0T8= + 1849-280219-2_96: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pCfqKwruxj8= + 1849-280219-3_170: &id357 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75218, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uxDmVYaNxT8= + 1849-280219-4_60: &id388 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 72843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + swLeVugawj8= + 1849-220319-3_53: + 1849-010319-2_111: *id154 + 1849-010319-4_65: *id155 + 1849-010319-5_99: *id156 + 1849-060319-1_102: *id157 + 1849-060319-2_94: *id158 + 1849-060319-3_100: *id159 + 1849-060319-4_68: *id160 + 1849-110319-1_35: *id161 + 1849-110319-2_40: *id162 + 1849-150319-1_58: *id163 + 1849-150319-2_32: *id164 + 1849-150319-3_60: *id165 + 1849-150319-4_58: *id166 + 1849-220319-2_68: *id167 + 1849-220319-4_79: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z+rI5myLqj8= + 1849-220319-5_71: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4973, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w3SEYNmSwT8= + 1849-280219-1_27: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85003, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rP3rRez1yz8= + 1849-280219-2_76: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qxTG+1l7xT8= + 1849-280219-3_170: &id358 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JmYj69Llxz8= + 1849-280219-4_60: &id389 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eFulmB2ewz8= + 1849-220319-3_55: + 1849-010319-2_40: *id168 + 1849-010319-4_73: *id169 + 1849-010319-5_113: *id170 + 1849-060319-1_98: *id171 + 1849-060319-2_99: *id172 + 1849-060319-3_110: *id173 + 1849-060319-4_74: *id174 + 1849-150319-1_64: *id175 + 1849-150319-2_38: *id176 + 1849-220319-2_86: *id177 + 1849-220319-4_87: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ihkgcb3ttT8= + 1849-220319-5_27: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4973, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GCJY4fJGwT8= + 1849-280219-1_28: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85003, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XSe6UQGxwz8= + 1849-280219-2_51: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kh7AVOK9wj8= + 1849-280219-3_166: &id341 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iNbvnpTGyD8= + 1849-280219-4_72: &id407 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kzmeBcF9wz8= + 1849-220319-4_122: + 1849-010319-2_107: *id178 + 1849-010319-4_115: *id179 + 1849-010319-5_148: *id180 + 1849-060319-1_83: *id181 + 1849-060319-2_99: *id182 + 1849-060319-3_110: *id183 + 1849-060319-4_74: *id184 + 1849-150319-1_64: *id185 + 1849-150319-2_38: *id186 + 1849-220319-2_59: *id187 + 1849-220319-5_98: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GREzQT9lyj8= + 1849-280219-1_27: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1006, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JEpWS8tqzD8= + 1849-280219-2_98: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /VU2cEx9wD8= + 1849-280219-3_166: &id342 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qXPoly0bwD8= + 1849-280219-4_125: &id374 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5POA9r99wT8= + 1849-220319-4_79: + 1849-010319-2_111: *id188 + 1849-010319-4_65: *id189 + 1849-010319-5_99: *id190 + 1849-060319-1_102: *id191 + 1849-060319-2_94: *id192 + 1849-060319-3_100: *id193 + 1849-060319-4_68: *id194 + 1849-110319-1_35: *id195 + 1849-110319-2_40: *id196 + 1849-150319-1_58: *id197 + 1849-150319-2_32: *id198 + 1849-150319-3_60: *id199 + 1849-150319-4_58: *id200 + 1849-220319-2_68: *id201 + 1849-220319-3_53: *id202 + 1849-220319-5_71: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NBMzPcwDuD8= + 1849-280219-1_28: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1006, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FNWRSxp9wz8= + 1849-280219-2_96: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZZ0qNBSrxz8= + 1849-280219-3_170: &id359 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YIqVMFwWyT8= + 1849-280219-4_60: &id390 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lTjDGV0hxj8= + 1849-220319-4_87: + 1849-010319-2_40: *id203 + 1849-010319-4_73: *id204 + 1849-010319-5_113: *id205 + 1849-060319-1_98: *id206 + 1849-060319-2_67: *id207 + 1849-220319-2_86: *id208 + 1849-220319-3_55: *id209 + 1849-220319-5_27: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YoPU+bX0tj8= + 1849-280219-1_64: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1006, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZOJfBhQN0D8= + 1849-280219-2_51: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AL4C+mqKwT8= + 1849-280219-4_72: &id408 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WHNYTZ5Swz8= + 1849-220319-5_27: + 1849-010319-2_40: *id210 + 1849-010319-4_73: *id211 + 1849-010319-5_113: *id212 + 1849-060319-1_98: *id213 + 1849-060319-2_99: *id214 + 1849-060319-3_110: *id215 + 1849-060319-4_74: *id216 + 1849-110319-1_35: *id217 + 1849-110319-2_40: *id218 + 1849-150319-2_32: *id219 + 1849-220319-2_68: *id220 + 1849-220319-3_55: *id221 + 1849-220319-4_87: *id222 + 1849-280219-1_28: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 3576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uHtX3RfJvT8= + 1849-280219-2_51: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85075, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + alloMLG6vT8= + 1849-280219-3_166: &id343 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82768, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G4V8L3RVxD8= + 1849-280219-4_72: &id409 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VsXeMWevwD8= + 1849-220319-5_71: + 1849-010319-2_107: *id223 + 1849-010319-4_115: *id224 + 1849-010319-5_148: *id225 + 1849-060319-1_102: *id226 + 1849-060319-2_67: *id227 + 1849-150319-1_58: *id228 + 1849-220319-2_86: *id229 + 1849-220319-3_53: *id230 + 1849-220319-4_79: *id231 + 1849-280219-1_64: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 3576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SKxE50t31D8= + 1849-280219-2_98: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85075, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QSbqvu4gyD8= + 1849-280219-4_125: &id375 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rtiqndm1yT8= + 1849-220319-5_98: + 1849-010319-2_111: *id232 + 1849-010319-4_65: *id233 + 1849-010319-5_99: *id234 + 1849-060319-1_83: *id235 + 1849-060319-2_94: *id236 + 1849-060319-3_100: *id237 + 1849-060319-4_68: *id238 + 1849-150319-1_64: *id239 + 1849-150319-2_38: *id240 + 1849-150319-3_60: *id241 + 1849-150319-4_58: *id242 + 1849-220319-2_59: *id243 + 1849-220319-4_122: *id244 + 1849-280219-1_27: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 3576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O7nzXASFxD8= + 1849-280219-2_96: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85075, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CYAgBcVLxD8= + 1849-280219-3_170: &id360 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82768, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +RoZr21RxD8= + 1849-280219-4_60: &id391 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v+IEfct6wz8= + 1849-280219-1_110: + 1849-010319-4_115: *id245 + 1849-010319-5_148: *id246 + 1849-060319-1_102: *id247 + 1849-220319-2_86: *id248 + 1849-280219-2_96: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hUwR8iMm0T8= + 1849-280219-4_121: &id369 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sVkhfB2N0T8= + 1849-280219-1_27: + 1849-010319-2_111: *id249 + 1849-010319-4_65: *id250 + 1849-010319-5_99: *id251 + 1849-060319-1_77: *id252 + 1849-060319-2_94: *id253 + 1849-060319-3_100: *id254 + 1849-060319-4_68: *id255 + 1849-150319-1_64: *id256 + 1849-150319-2_38: *id257 + 1849-150319-3_60: *id258 + 1849-150319-4_58: *id259 + 1849-220319-2_59: *id260 + 1849-220319-3_53: *id261 + 1849-220319-4_122: *id262 + 1849-220319-5_98: *id263 + 1849-280219-2_76: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GgTIBPmYwD8= + 1849-280219-3_170: &id361 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4xs8MhAWwz8= + 1849-280219-4_60: &id392 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sWOhtkIjvD8= + 1849-280219-1_28: + 1849-010319-2_40: *id264 + 1849-010319-4_73: *id265 + 1849-010319-5_113: *id266 + 1849-060319-1_98: *id267 + 1849-060319-2_99: *id268 + 1849-060319-3_110: *id269 + 1849-060319-4_74: *id270 + 1849-110319-1_35: *id271 + 1849-110319-2_40: *id272 + 1849-150319-1_58: *id273 + 1849-150319-2_32: *id274 + 1849-220319-2_68: *id275 + 1849-220319-3_55: *id276 + 1849-220319-4_79: *id277 + 1849-220319-5_27: *id278 + 1849-280219-2_51: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DXIQXqRDsT8= + 1849-280219-3_166: &id344 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DPoWvrqMuT8= + 1849-280219-4_72: &id410 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j9feM2khsD8= + 1849-280219-1_64: + 1849-010319-2_107: *id279 + 1849-060319-1_83: *id280 + 1849-060319-2_67: *id281 + 1849-220319-2_57: *id282 + 1849-220319-4_87: *id283 + 1849-220319-5_71: *id284 + 1849-280219-2_98: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hCcj1RIi0D8= + 1849-280219-4_125: &id376 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ydNLKmLH0D8= + 1849-280219-2_51: + 1849-010319-2_40: *id285 + 1849-010319-4_73: *id286 + 1849-010319-5_113: *id287 + 1849-060319-1_98: *id288 + 1849-060319-2_99: *id289 + 1849-060319-3_110: *id290 + 1849-060319-4_74: *id291 + 1849-110319-1_35: *id292 + 1849-110319-2_40: *id293 + 1849-150319-1_58: *id294 + 1849-150319-2_32: *id295 + 1849-220319-2_68: *id296 + 1849-220319-3_55: *id297 + 1849-220319-4_87: *id298 + 1849-220319-5_27: *id299 + 1849-280219-1_28: *id300 + 1849-280219-4_72: &id411 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + imvHu0qCqj8= + 1849-280219-2_76: + 1849-010319-4_65: *id301 + 1849-010319-5_99: *id302 + 1849-060319-1_77: *id303 + 1849-060319-2_94: *id304 + 1849-060319-3_100: *id305 + 1849-060319-4_68: *id306 + 1849-150319-1_64: *id307 + 1849-150319-2_38: *id308 + 1849-150319-3_60: *id309 + 1849-220319-2_59: *id310 + 1849-220319-3_53: *id311 + 1849-280219-1_27: *id312 + 1849-280219-4_60: &id393 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Y2WGhAa9sz8= + 1849-280219-2_96: + 1849-010319-2_111: *id313 + 1849-010319-4_115: *id314 + 1849-010319-5_148: *id315 + 1849-060319-1_102: *id316 + 1849-060319-2_67: *id317 + 1849-150319-4_58: *id318 + 1849-220319-2_86: *id319 + 1849-220319-4_79: *id320 + 1849-220319-5_98: *id321 + 1849-280219-1_110: *id322 + 1849-280219-3_170: &id362 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pHA1/RGAuT8= + 1849-280219-4_121: &id370 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hUSs4IshsT8= + 1849-280219-2_98: + 1849-010319-2_107: *id323 + 1849-060319-1_83: *id324 + 1849-220319-2_57: *id325 + 1849-220319-4_122: *id326 + 1849-220319-5_71: *id327 + 1849-280219-1_64: *id328 + 1849-280219-3_166: &id345 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LZGeWwU5uT8= + 1849-280219-4_125: &id377 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xQsyECFRpz8= + 1849-280219-3_166: + 1849-010319-2_40: *id329 + 1849-010319-4_73: *id330 + 1849-010319-5_113: *id331 + 1849-060319-1_98: *id332 + 1849-060319-2_99: *id333 + 1849-060319-3_110: *id334 + 1849-060319-4_74: *id335 + 1849-110319-1_35: *id336 + 1849-110319-2_40: *id337 + 1849-150319-1_58: *id338 + 1849-150319-2_32: *id339 + 1849-220319-2_68: *id340 + 1849-220319-3_55: *id341 + 1849-220319-4_122: *id342 + 1849-220319-5_27: *id343 + 1849-280219-1_28: *id344 + 1849-280219-2_98: *id345 + 1849-280219-4_72: &id412 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GvaRBcSFtD8= + 1849-280219-3_170: + 1849-010319-2_111: *id346 + 1849-010319-4_65: *id347 + 1849-010319-5_99: *id348 + 1849-060319-1_102: *id349 + 1849-060319-2_94: *id350 + 1849-060319-3_100: *id351 + 1849-060319-4_68: *id352 + 1849-150319-1_64: *id353 + 1849-150319-2_38: *id354 + 1849-150319-3_60: *id355 + 1849-150319-4_58: *id356 + 1849-220319-2_86: *id357 + 1849-220319-3_53: *id358 + 1849-220319-4_79: *id359 + 1849-220319-5_98: *id360 + 1849-280219-1_27: *id361 + 1849-280219-2_96: *id362 + 1849-280219-4_60: &id394 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dj5TbNAUvT8= + 1849-280219-4_121: + 1849-010319-2_111: *id363 + 1849-010319-4_115: *id364 + 1849-010319-5_148: *id365 + 1849-060319-1_102: *id366 + 1849-060319-2_67: *id367 + 1849-220319-2_59: *id368 + 1849-280219-1_110: *id369 + 1849-280219-2_96: *id370 + 1849-280219-4_125: + 1849-010319-2_107: *id371 + 1849-060319-1_83: *id372 + 1849-220319-2_57: *id373 + 1849-220319-4_122: *id374 + 1849-220319-5_71: *id375 + 1849-280219-1_64: *id376 + 1849-280219-2_98: *id377 + 1849-280219-4_60: + 1849-010319-4_65: *id378 + 1849-010319-5_99: *id379 + 1849-060319-1_77: *id380 + 1849-060319-2_94: *id381 + 1849-060319-3_100: *id382 + 1849-060319-4_68: *id383 + 1849-150319-1_64: *id384 + 1849-150319-2_38: *id385 + 1849-150319-3_60: *id386 + 1849-150319-4_58: *id387 + 1849-220319-2_86: *id388 + 1849-220319-3_53: *id389 + 1849-220319-4_79: *id390 + 1849-220319-5_98: *id391 + 1849-280219-1_27: *id392 + 1849-280219-2_76: *id393 + 1849-280219-3_170: *id394 + 1849-280219-4_72: + 1849-010319-2_40: *id395 + 1849-010319-4_73: *id396 + 1849-010319-5_113: *id397 + 1849-060319-1_98: *id398 + 1849-060319-2_99: *id399 + 1849-060319-3_110: *id400 + 1849-060319-4_74: *id401 + 1849-110319-1_35: *id402 + 1849-110319-2_40: *id403 + 1849-150319-1_58: *id404 + 1849-150319-2_32: *id405 + 1849-220319-2_68: *id406 + 1849-220319-3_55: *id407 + 1849-220319-4_87: *id408 + 1849-220319-5_27: *id409 + 1849-280219-1_28: *id410 + 1849-280219-2_51: *id411 + 1849-280219-3_166: *id412 +_node: &id415 + 1849-010319-2_107: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id413 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + awAAAAAAAAA= + 1849-010319-2_111: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + bwAAAAAAAAA= + 1849-010319-2_40: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + KAAAAAAAAAA= + 1849-010319-4_115: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + cwAAAAAAAAA= + 1849-010319-4_65: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + QQAAAAAAAAA= + 1849-010319-4_73: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + SQAAAAAAAAA= + 1849-010319-5_113: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + cQAAAAAAAAA= + 1849-010319-5_148: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + lAAAAAAAAAA= + 1849-010319-5_99: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + YwAAAAAAAAA= + 1849-060319-1_102: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + ZgAAAAAAAAA= + 1849-060319-1_77: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + TQAAAAAAAAA= + 1849-060319-1_83: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + UwAAAAAAAAA= + 1849-060319-1_98: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + YgAAAAAAAAA= + 1849-060319-2_67: + action_id: 1849-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + QwAAAAAAAAA= + 1849-060319-2_94: + action_id: 1849-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + XgAAAAAAAAA= + 1849-060319-2_99: + action_id: 1849-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + YwAAAAAAAAA= + 1849-060319-3_100: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + ZAAAAAAAAAA= + 1849-060319-3_110: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + bgAAAAAAAAA= + 1849-060319-4_68: + action_id: 1849-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + RAAAAAAAAAA= + 1849-060319-4_74: + action_id: 1849-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + SgAAAAAAAAA= + 1849-110319-1_35: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + IwAAAAAAAAA= + 1849-110319-2_40: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + KAAAAAAAAAA= + 1849-150319-1_58: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + OgAAAAAAAAA= + 1849-150319-1_64: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + QAAAAAAAAAA= + 1849-150319-2_32: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + IAAAAAAAAAA= + 1849-150319-2_38: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + JgAAAAAAAAA= + 1849-150319-3_60: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + PAAAAAAAAAA= + 1849-150319-4_58: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + OgAAAAAAAAA= + 1849-220319-2_57: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + OQAAAAAAAAA= + 1849-220319-2_59: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + OwAAAAAAAAA= + 1849-220319-2_68: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + RAAAAAAAAAA= + 1849-220319-2_86: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + VgAAAAAAAAA= + 1849-220319-3_53: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + NQAAAAAAAAA= + 1849-220319-3_55: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + NwAAAAAAAAA= + 1849-220319-4_122: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + egAAAAAAAAA= + 1849-220319-4_79: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + TwAAAAAAAAA= + 1849-220319-4_87: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + VwAAAAAAAAA= + 1849-220319-5_27: + action_id: 1849-220319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + GwAAAAAAAAA= + 1849-220319-5_71: + action_id: 1849-220319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + RwAAAAAAAAA= + 1849-220319-5_98: + action_id: 1849-220319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + YgAAAAAAAAA= + 1849-280219-1_110: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + bgAAAAAAAAA= + 1849-280219-1_27: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + GwAAAAAAAAA= + 1849-280219-1_28: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + HAAAAAAAAAA= + 1849-280219-1_64: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + QAAAAAAAAAA= + 1849-280219-2_51: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + MwAAAAAAAAA= + 1849-280219-2_76: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + TAAAAAAAAAA= + 1849-280219-2_96: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + YAAAAAAAAAA= + 1849-280219-2_98: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + YgAAAAAAAAA= + 1849-280219-3_166: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + pgAAAAAAAAA= + 1849-280219-3_170: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + qgAAAAAAAAA= + 1849-280219-4_121: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + eQAAAAAAAAA= + 1849-280219-4_125: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + fQAAAAAAAAA= + 1849-280219-4_60: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + PAAAAAAAAAA= + 1849-280219-4_72: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id413 + - !!binary | + SAAAAAAAAAA= +adjlist_inner_dict_factory: &id414 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id414 +edge_attr_dict_factory: *id414 +graph: {} +node_dict_factory: *id414 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id415 diff --git a/actions/identify-neurons/data/1849-graphs/graph-group-4.yaml b/actions/identify-neurons/data/1849-graphs/graph-group-4.yaml new file mode 100644 index 000000000..d8a5340f6 --- /dev/null +++ b/actions/identify-neurons/data/1849-graphs/graph-group-4.yaml @@ -0,0 +1,2005 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1849-060319-1_104: + 1849-060319-2_122: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5868, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + v3AL/i9HxT8= + 1849-060319-3_120: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7836, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TF0qSAP6tj8= + 1849-060319-4_80: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10061, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jmW7KesJmj8= + 1849-110319-3_104: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LB1uZZvEyj8= + 1849-150319-1_89: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84999, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aJgjsQlwwT8= + 1849-150319-2_17: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LDaH8zlUxj8= + 1849-150319-3_97: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SYxCAJXL4D8= + 1849-150319-4_34: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VgOt+QpKwD8= + 1849-220319-2_101: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UxeUB0Gewz8= + 1849-220319-3_71: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fZiFABLcwz8= + 1849-280219-2_86: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + s92/S3NYyD8= + 1849-280219-3_151: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + efktPhJjvT8= + 1849-280219-4_55: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xh5altflvz8= + 1849-060319-1_88: + 1849-060319-2_95: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5868, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jFFkdZDDyj8= + 1849-060319-4_64: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10061, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y0tTPpCNuD8= + 1849-110319-2_23: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + db3pmSgixD8= + 1849-110319-3_163: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GnI8uhaPxj8= + 1849-150319-1_79: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84999, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M/zz0avEvj8= + 1849-150319-2_46: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZiPFKc0SxT8= + 1849-150319-3_74: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /wwTEmGsuj8= + 1849-150319-4_60: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dKL6pBXazj8= + 1849-220319-2_43: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 019ytEVOxD8= + 1849-220319-3_69: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FF+08hO6vz8= + 1849-220319-4_112: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7912, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yeDOkOo+wT8= + 1849-220319-5_112: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10482, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f7IAay2Rwj8= + 1849-280219-1_66: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CUVSpucc0T8= + 1849-280219-2_80: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + o/fd+jXAwD8= + 1849-280219-3_133: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uY6hkpWp0D8= + 1849-060319-2_122: + 1849-060319-1_104: *id002 + 1849-060319-3_120: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xrLmizKFwD8= + 1849-060319-4_80: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1B5Do0sjxT8= + 1849-110319-2_23: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lbNJpfcfxD8= + 1849-110319-3_104: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84261, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8ePL/JseyT8= + 1849-150319-1_89: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QDLh45GWxT8= + 1849-150319-2_17: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TfWdBZr1wT8= + 1849-150319-3_74: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85239, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OokMbjH1wT8= + 1849-150319-4_60: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1535, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ya22n6xVyD8= + 1849-220319-2_43: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83464, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GDEUheJpwj8= + 1849-220319-3_71: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D8mhbSm2wT8= + 1849-220319-4_112: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jyLxdz+LwT8= + 1849-220319-5_112: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4614, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1IbwXooGwz8= + 1849-280219-1_66: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3aJwdBGdyj8= + 1849-280219-2_86: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + i7nWBX39yT8= + 1849-280219-3_151: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SELbK6yjxD8= + 1849-280219-4_55: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 75779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iEHyHWKWxT8= + 1849-060319-2_95: + 1849-060319-1_88: *id003 + 1849-060319-4_64: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KNtS3EBsxT8= + 1849-110319-3_163: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84261, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vTR58+vY0j8= + 1849-150319-1_79: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8tCIXDxzzD8= + 1849-150319-2_46: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wWNIwyRFwj8= + 1849-150319-3_97: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85239, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HSU1b8eB4D8= + 1849-150319-4_34: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1535, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P5wC2Zsgyz8= + 1849-220319-2_107: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83464, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GuEDtCIcwT8= + 1849-220319-3_69: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RD1CC6duwz8= + 1849-280219-2_80: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b694Ie7oyD8= + 1849-280219-3_133: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yhtHvpaZ1T8= + 1849-060319-3_120: + 1849-060319-1_104: *id004 + 1849-060319-2_122: *id005 + 1849-060319-4_80: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w08zeo/msz8= + 1849-110319-2_23: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4OLoVBJEyT8= + 1849-110319-3_163: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dkj2sYFRxT8= + 1849-150319-1_89: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77163, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cZjZI5ADwz8= + 1849-150319-2_17: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79787, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RHiYPOd+wj8= + 1849-150319-3_74: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 997hU5F5xT8= + 1849-150319-4_34: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mnIDE0Oztj8= + 1849-220319-2_101: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8twvwzXxvz8= + 1849-220319-3_71: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84073, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WtUqennGvz8= + 1849-220319-4_112: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 76, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZszFmQq4vD8= + 1849-220319-5_112: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2646, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ToYxaoXKwD8= + 1849-280219-1_66: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9+Fur4G1zz8= + 1849-280219-2_80: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sSIcdetwwT8= + 1849-280219-3_151: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uB6+OWNWvz8= + 1849-280219-4_55: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lKIjWhiUwT8= + 1849-060319-4_64: + 1849-060319-1_88: *id006 + 1849-060319-2_95: *id007 + 1849-110319-2_23: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Y14nz0Kwz8= + 1849-110319-3_163: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 80068, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Rz8EbS0yz8= + 1849-150319-1_79: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 74938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 56q3wCpSxj8= + 1849-150319-2_46: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77562, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wwUrGgJmwT8= + 1849-150319-3_74: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81046, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DL49cGXMwT8= + 1849-150319-4_60: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83742, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kuip28ZP0T8= + 1849-220319-2_43: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 79271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kgWchIkBxD8= + 1849-220319-3_69: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +fAZALzNvz8= + 1849-280219-2_80: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v/AwhZd6xT8= + 1849-280219-3_133: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DO49qLXczz8= + 1849-060319-4_80: + 1849-060319-1_104: *id008 + 1849-060319-2_122: *id009 + 1849-060319-3_120: *id010 + 1849-110319-3_104: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 80068, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A7ZmCMk7yz8= + 1849-150319-1_89: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 74938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5sAYpQWJwT8= + 1849-150319-2_17: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77562, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xH+TwXw9xj8= + 1849-150319-3_97: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81046, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cJ47eOC/4D8= + 1849-150319-4_34: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83742, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ah0ZFtNRvj8= + 1849-220319-2_101: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 79271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5pzYZuerwj8= + 1849-220319-3_71: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ISqWb74Xwz8= + 1849-220319-4_112: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MqCen2T5wj8= + 1849-220319-5_112: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 421, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2ob5jB9bxD8= + 1849-280219-1_66: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2DZOPiMT0T8= + 1849-280219-2_86: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M4f+9T+KyD8= + 1849-280219-3_151: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OEYkjpSavT8= + 1849-280219-4_55: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79972, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + poNq5q5ewD8= + 1849-110319-2_23: + 1849-060319-1_88: *id011 + 1849-060319-2_122: *id012 + 1849-060319-3_120: *id013 + 1849-060319-4_64: *id014 + 1849-110319-3_163: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V9PfKWOAwz8= + 1849-150319-1_89: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NU1E4e11yD8= + 1849-150319-2_17: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 1807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JNOt/HrAxD8= + 1849-150319-3_74: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nc4O0zpmwz8= + 1849-150319-4_34: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 7987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nofo37oMwj8= + 1849-220319-2_101: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + INJYWvNVxT8= + 1849-220319-3_71: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + poXRAifZwT8= + 1849-220319-4_112: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BnvNmSAIwT8= + 1849-220319-5_112: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XU05Ww3lwj8= + 1849-280219-1_66: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rxcSgD690D8= + 1849-280219-2_80: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fkKS/yoAvz8= + 1849-280219-3_151: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 71702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mk/lsVBpxD8= + 1849-280219-4_55: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69327, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8+A/q6oZyD8= + 1849-110319-3_104: + 1849-060319-1_104: *id015 + 1849-060319-2_122: *id016 + 1849-060319-4_80: *id017 + 1849-150319-1_79: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 81270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VBRsSwIo0D8= + 1849-150319-2_46: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83894, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AdrhBHmO0T8= + 1849-150319-3_97: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5vvYD+FM4D8= + 1849-150319-4_60: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3674, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T1p1yM8jwj8= + 1849-220319-2_43: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gAVJeFK50T8= + 1849-220319-3_69: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CSrvUO45zz8= + 1849-280219-2_80: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78322, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dloB7Q2BxD8= + 1849-280219-3_133: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 76015, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xMvaOKsk1j8= + 1849-110319-3_163: + 1849-060319-1_88: *id018 + 1849-060319-2_95: *id019 + 1849-060319-3_120: *id020 + 1849-060319-4_64: *id021 + 1849-110319-2_23: *id022 + 1849-150319-1_89: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 81270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RL7zWHCBwD8= + 1849-150319-2_17: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83894, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YCeiDdrowD8= + 1849-150319-3_74: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6QgJa3Eiwj8= + 1849-150319-4_34: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3674, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fvVxe4lEvD8= + 1849-220319-2_101: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yyQkv3sfwD8= + 1849-220319-3_71: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YPeW2tGuwT8= + 1849-220319-4_112: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4183, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zcCSYIIMvj8= + 1849-220319-5_112: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8updB/h9vj8= + 1849-280219-1_66: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 83223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z1iIgtq30T8= + 1849-280219-2_86: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78322, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + InPLP7IAxj8= + 1849-280219-3_151: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 76015, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5p9Ok7dyuz8= + 1849-280219-4_55: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 73640, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TDX7+q0Ewz8= + 1849-150319-1_79: + 1849-060319-1_88: *id023 + 1849-060319-2_95: *id024 + 1849-060319-4_64: *id025 + 1849-110319-3_104: *id026 + 1849-150319-2_46: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZL6R3J1Wxj8= + 1849-150319-3_74: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G8VzkLAovj8= + 1849-150319-4_60: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Dz8LC09j0D8= + 1849-220319-2_43: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4333, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wr9y1QoAwT8= + 1849-220319-3_69: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ilvr0yhpwD8= + 1849-280219-2_80: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RWMpvN82wz8= + 1849-280219-3_133: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C2rC/shc1D8= + 1849-150319-1_85: + 1849-150319-3_97: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6wfaErK81z8= + 1849-220319-2_109: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4333, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XjnQuY903D8= + 1849-150319-1_89: + 1849-060319-1_104: *id027 + 1849-060319-2_122: *id028 + 1849-060319-3_120: *id029 + 1849-060319-4_80: *id030 + 1849-110319-2_23: *id031 + 1849-110319-3_163: *id032 + 1849-150319-2_17: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T0FhYmzwuD8= + 1849-150319-4_34: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EQRWEbPtuz8= + 1849-220319-2_101: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4333, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SXSbEzCltz8= + 1849-220319-3_71: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kwfh10vOvT8= + 1849-220319-4_112: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BWuQk+vwvj8= + 1849-220319-5_112: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lvKEvURlvj8= + 1849-280219-1_66: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RKddS2sbzj8= + 1849-280219-2_86: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qJQ8d9Hdxj8= + 1849-280219-3_151: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fS1r5JolwD8= + 1849-280219-4_55: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZgsicgmwwT8= + 1849-150319-2_17: + 1849-060319-1_104: *id033 + 1849-060319-2_122: *id034 + 1849-060319-3_120: *id035 + 1849-060319-4_80: *id036 + 1849-110319-2_23: *id037 + 1849-110319-3_163: *id038 + 1849-150319-1_89: *id039 + 1849-150319-3_74: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Yvl1bmxpz8= + 1849-150319-4_34: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /+5SCzFCuT8= + 1849-220319-2_101: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1709, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bMG4wl4Gsz8= + 1849-220319-3_71: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + svzRiCMqtz8= + 1849-220319-4_112: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P8dw49PtuD8= + 1849-220319-5_112: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9259, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gBTlbRMnvD8= + 1849-280219-1_66: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80717, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VRVGqB7Kzj8= + 1849-280219-2_86: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9zwLm0jZyD8= + 1849-280219-3_151: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mh+R6Rdpwj8= + 1849-280219-4_55: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 71134, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JA77/pt1xT8= + 1849-150319-2_46: + 1849-060319-1_88: *id040 + 1849-060319-2_95: *id041 + 1849-060319-4_64: *id042 + 1849-110319-3_104: *id043 + 1849-150319-1_79: *id044 + 1849-150319-3_97: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7iciTntk4j8= + 1849-150319-4_60: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5by7TmXR0T8= + 1849-220319-2_43: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1709, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ODzkpTYnwD8= + 1849-220319-3_69: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XnGRWrQnxT8= + 1849-280219-2_80: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZUCkFcfiyj8= + 1849-280219-3_133: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3zlPOAKx0D8= + 1849-150319-3_74: + 1849-060319-1_88: *id045 + 1849-060319-2_122: *id046 + 1849-060319-3_120: *id047 + 1849-060319-4_64: *id048 + 1849-110319-2_23: *id049 + 1849-110319-3_163: *id050 + 1849-150319-1_79: *id051 + 1849-150319-2_17: *id052 + 1849-150319-4_34: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mwn72YTjvz8= + 1849-220319-2_101: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84625, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nQsKJq0Zuj8= + 1849-220319-3_71: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 802, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MCdyuWswuz8= + 1849-220319-4_112: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2nIqzcTKvz8= + 1849-220319-5_112: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5775, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qvRnZZpMwT8= + 1849-280219-1_66: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84201, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GkJ3ISA2zj8= + 1849-280219-2_80: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79300, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FSEY2YTpwj8= + 1849-280219-3_151: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 76993, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oLCkBv0txT8= + 1849-280219-4_55: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 74618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jK5RUadYxz8= + 1849-150319-3_97: + 1849-060319-1_104: *id053 + 1849-060319-2_95: *id054 + 1849-060319-4_80: *id055 + 1849-110319-3_104: *id056 + 1849-150319-1_85: *id057 + 1849-150319-2_46: *id058 + 1849-150319-4_60: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IoE3BGwV4D8= + 1849-220319-2_43: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84625, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tmo10HZ34T8= + 1849-220319-3_69: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 802, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qoFB+mob4T8= + 1849-280219-2_86: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79300, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1sybQ6K94T8= + 1849-280219-3_133: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 76993, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + csspOwOt4T8= + 1849-150319-4_34: + 1849-060319-1_104: *id059 + 1849-060319-2_95: *id060 + 1849-060319-3_120: *id061 + 1849-060319-4_80: *id062 + 1849-110319-2_23: *id063 + 1849-110319-3_163: *id064 + 1849-150319-1_89: *id065 + 1849-150319-2_17: *id066 + 1849-150319-3_74: *id067 + 1849-220319-2_101: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81929, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /UrFMn9msj8= + 1849-220319-3_71: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84506, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4/KC7MhdtD8= + 1849-220319-4_112: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JJLaqmSqT8= + 1849-220319-5_112: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q6D11fNurz8= + 1849-280219-1_66: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9iGpZV7LxT8= + 1849-280219-2_86: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZvzJhWnXwj8= + 1849-280219-3_133: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vyAiZqW+yj8= + 1849-280219-4_55: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 77314, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +T2GOi0/vj8= + 1849-150319-4_60: + 1849-060319-1_88: *id068 + 1849-060319-2_122: *id069 + 1849-060319-4_64: *id070 + 1849-110319-3_104: *id071 + 1849-150319-1_79: *id072 + 1849-150319-2_46: *id073 + 1849-150319-3_97: *id074 + 1849-220319-2_43: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81929, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iHYawcNc0T8= + 1849-220319-3_69: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84506, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GPTC4MiCzD8= + 1849-280219-2_80: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IdfcYU4wxT8= + 1849-280219-3_151: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VZiB3FzHyT8= + 1849-220319-2_101: + 1849-060319-1_104: *id075 + 1849-060319-3_120: *id076 + 1849-060319-4_80: *id077 + 1849-110319-2_23: *id078 + 1849-110319-3_163: *id079 + 1849-150319-1_89: *id080 + 1849-150319-2_17: *id081 + 1849-150319-3_74: *id082 + 1849-150319-4_34: *id083 + 1849-220319-3_71: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2577, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ya/Z2SIWqj8= + 1849-220319-4_112: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SmphJxCxsT8= + 1849-220319-5_112: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 49qv3nzXsj8= + 1849-280219-1_66: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82426, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bFokd8H0yT8= + 1849-280219-2_86: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vAjUkI01xj8= + 1849-280219-3_151: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75218, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E9a9Ebewvz8= + 1849-280219-4_55: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 72843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tCeEa0gixD8= + 1849-220319-2_107: + 1849-060319-2_95: *id084 + 1849-220319-2_109: + 1849-150319-1_85: *id085 + 1849-220319-2_43: + 1849-060319-1_88: *id086 + 1849-060319-2_122: *id087 + 1849-060319-4_64: *id088 + 1849-110319-3_104: *id089 + 1849-150319-1_79: *id090 + 1849-150319-2_46: *id091 + 1849-150319-3_97: *id092 + 1849-150319-4_60: *id093 + 1849-220319-3_69: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2577, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yfudZqY3uj8= + 1849-280219-2_80: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EC7/cqrJyD8= + 1849-280219-3_133: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75218, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iFf1Ecdz0j8= + 1849-220319-3_69: + 1849-060319-1_88: *id094 + 1849-060319-2_95: *id095 + 1849-060319-4_64: *id096 + 1849-110319-3_104: *id097 + 1849-150319-1_79: *id098 + 1849-150319-2_46: *id099 + 1849-150319-3_97: *id100 + 1849-150319-4_60: *id101 + 1849-220319-2_43: *id102 + 1849-280219-2_80: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + B8JLxs/Kwz8= + 1849-280219-3_133: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vH4YGNguzD8= + 1849-220319-3_71: + 1849-060319-1_104: *id103 + 1849-060319-2_122: *id104 + 1849-060319-3_120: *id105 + 1849-060319-4_80: *id106 + 1849-110319-2_23: *id107 + 1849-110319-3_163: *id108 + 1849-150319-1_89: *id109 + 1849-150319-2_17: *id110 + 1849-150319-3_74: *id111 + 1849-150319-4_34: *id112 + 1849-220319-2_101: *id113 + 1849-220319-4_112: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3AeIX4Qvrz8= + 1849-220319-5_112: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4973, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8q/iWLpJsD8= + 1849-280219-1_66: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85003, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G8NC/HpOyD8= + 1849-280219-2_86: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D2j6PD5Mxz8= + 1849-280219-3_151: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LIdONHQcwT8= + 1849-280219-4_55: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + D2mxYiPxxD8= + 1849-220319-4_112: + 1849-060319-1_88: *id114 + 1849-060319-2_122: *id115 + 1849-060319-3_120: *id116 + 1849-060319-4_80: *id117 + 1849-110319-2_23: *id118 + 1849-110319-3_163: *id119 + 1849-150319-1_89: *id120 + 1849-150319-2_17: *id121 + 1849-150319-3_74: *id122 + 1849-150319-4_34: *id123 + 1849-220319-2_101: *id124 + 1849-220319-3_71: *id125 + 1849-220319-5_112: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XHUChS+LpD8= + 1849-280219-1_66: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1006, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sFihzzt4xz8= + 1849-280219-2_80: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dpVLVpqdvD8= + 1849-280219-3_151: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jPb0MyPSuz8= + 1849-280219-4_55: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dTGrGMMLwj8= + 1849-220319-5_112: + 1849-060319-1_88: *id126 + 1849-060319-2_122: *id127 + 1849-060319-3_120: *id128 + 1849-060319-4_80: *id129 + 1849-110319-2_23: *id130 + 1849-110319-3_163: *id131 + 1849-150319-1_89: *id132 + 1849-150319-2_17: *id133 + 1849-150319-3_74: *id134 + 1849-150319-4_34: *id135 + 1849-220319-2_101: *id136 + 1849-220319-3_71: *id137 + 1849-220319-4_112: *id138 + 1849-280219-1_66: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 3576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NwLbokzCxz8= + 1849-280219-2_80: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85075, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nSITB3lGwD8= + 1849-280219-3_151: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82768, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j3LMf+p5vj8= + 1849-280219-4_55: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OdZpmfsNwz8= + 1849-280219-1_66: + 1849-060319-1_88: *id139 + 1849-060319-2_122: *id140 + 1849-060319-3_120: *id141 + 1849-060319-4_80: *id142 + 1849-110319-2_23: *id143 + 1849-110319-3_163: *id144 + 1849-150319-1_89: *id145 + 1849-150319-2_17: *id146 + 1849-150319-3_74: *id147 + 1849-150319-4_34: *id148 + 1849-220319-2_101: *id149 + 1849-220319-3_71: *id150 + 1849-220319-4_112: *id151 + 1849-220319-5_112: *id152 + 1849-280219-2_80: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PjAWcYGjyj8= + 1849-280219-3_151: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fYdzoHC2zD8= + 1849-280219-4_55: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2X/82Z4B0j8= + 1849-280219-2_80: + 1849-060319-1_88: *id153 + 1849-060319-2_95: *id154 + 1849-060319-3_120: *id155 + 1849-060319-4_64: *id156 + 1849-110319-2_23: *id157 + 1849-110319-3_104: *id158 + 1849-150319-1_79: *id159 + 1849-150319-2_46: *id160 + 1849-150319-3_74: *id161 + 1849-150319-4_60: *id162 + 1849-220319-2_43: *id163 + 1849-220319-3_69: *id164 + 1849-220319-4_112: *id165 + 1849-220319-5_112: *id166 + 1849-280219-1_66: *id167 + 1849-280219-3_133: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A9Vu7ssKyj8= + 1849-280219-4_55: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iZH0rYMLwD8= + 1849-280219-2_86: + 1849-060319-1_104: *id168 + 1849-060319-2_122: *id169 + 1849-060319-4_80: *id170 + 1849-110319-3_163: *id171 + 1849-150319-1_89: *id172 + 1849-150319-2_17: *id173 + 1849-150319-3_97: *id174 + 1849-150319-4_34: *id175 + 1849-220319-2_101: *id176 + 1849-220319-3_71: *id177 + 1849-280219-3_151: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9DoMLp4fwD8= + 1849-280219-3_133: + 1849-060319-1_88: *id178 + 1849-060319-2_95: *id179 + 1849-060319-4_64: *id180 + 1849-110319-3_104: *id181 + 1849-150319-1_79: *id182 + 1849-150319-2_46: *id183 + 1849-150319-3_97: *id184 + 1849-150319-4_34: *id185 + 1849-220319-2_43: *id186 + 1849-220319-3_69: *id187 + 1849-280219-2_80: *id188 + 1849-280219-3_151: + 1849-060319-1_104: *id189 + 1849-060319-2_122: *id190 + 1849-060319-3_120: *id191 + 1849-060319-4_80: *id192 + 1849-110319-2_23: *id193 + 1849-110319-3_163: *id194 + 1849-150319-1_89: *id195 + 1849-150319-2_17: *id196 + 1849-150319-3_74: *id197 + 1849-150319-4_60: *id198 + 1849-220319-2_101: *id199 + 1849-220319-3_71: *id200 + 1849-220319-4_112: *id201 + 1849-220319-5_112: *id202 + 1849-280219-1_66: *id203 + 1849-280219-2_86: *id204 + 1849-280219-4_55: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TVPeVtsKrz8= + 1849-280219-4_55: + 1849-060319-1_104: *id205 + 1849-060319-2_122: *id206 + 1849-060319-3_120: *id207 + 1849-060319-4_80: *id208 + 1849-110319-2_23: *id209 + 1849-110319-3_163: *id210 + 1849-150319-1_89: *id211 + 1849-150319-2_17: *id212 + 1849-150319-3_74: *id213 + 1849-150319-4_34: *id214 + 1849-220319-2_101: *id215 + 1849-220319-3_71: *id216 + 1849-220319-4_112: *id217 + 1849-220319-5_112: *id218 + 1849-280219-1_66: *id219 + 1849-280219-2_80: *id220 + 1849-280219-3_151: *id221 +_node: &id224 + 1849-060319-1_104: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id222 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + aAAAAAAAAAA= + 1849-060319-1_88: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + WAAAAAAAAAA= + 1849-060319-2_122: + action_id: 1849-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + egAAAAAAAAA= + 1849-060319-2_95: + action_id: 1849-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + XwAAAAAAAAA= + 1849-060319-3_120: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + eAAAAAAAAAA= + 1849-060319-4_64: + action_id: 1849-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + QAAAAAAAAAA= + 1849-060319-4_80: + action_id: 1849-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + UAAAAAAAAAA= + 1849-110319-2_23: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + FwAAAAAAAAA= + 1849-110319-3_104: + action_id: 1849-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + aAAAAAAAAAA= + 1849-110319-3_163: + action_id: 1849-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + owAAAAAAAAA= + 1849-150319-1_79: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + TwAAAAAAAAA= + 1849-150319-1_85: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + VQAAAAAAAAA= + 1849-150319-1_89: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + WQAAAAAAAAA= + 1849-150319-2_17: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + EQAAAAAAAAA= + 1849-150319-2_46: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + LgAAAAAAAAA= + 1849-150319-3_74: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + SgAAAAAAAAA= + 1849-150319-3_97: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + YQAAAAAAAAA= + 1849-150319-4_34: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + IgAAAAAAAAA= + 1849-150319-4_60: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + PAAAAAAAAAA= + 1849-220319-2_101: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + ZQAAAAAAAAA= + 1849-220319-2_107: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + awAAAAAAAAA= + 1849-220319-2_109: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + bQAAAAAAAAA= + 1849-220319-2_43: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + KwAAAAAAAAA= + 1849-220319-3_69: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + RQAAAAAAAAA= + 1849-220319-3_71: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + RwAAAAAAAAA= + 1849-220319-4_112: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + cAAAAAAAAAA= + 1849-220319-5_112: + action_id: 1849-220319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + cAAAAAAAAAA= + 1849-280219-1_66: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + QgAAAAAAAAA= + 1849-280219-2_80: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + UAAAAAAAAAA= + 1849-280219-2_86: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + VgAAAAAAAAA= + 1849-280219-3_133: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + hQAAAAAAAAA= + 1849-280219-3_151: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + lwAAAAAAAAA= + 1849-280219-4_55: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id222 + - !!binary | + NwAAAAAAAAA= +adjlist_inner_dict_factory: &id223 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id223 +edge_attr_dict_factory: *id223 +graph: {} +node_dict_factory: *id223 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id224 diff --git a/actions/identify-neurons/data/1849-graphs/graph-group-5.yaml b/actions/identify-neurons/data/1849-graphs/graph-group-5.yaml new file mode 100644 index 000000000..414bac5bb --- /dev/null +++ b/actions/identify-neurons/data/1849-graphs/graph-group-5.yaml @@ -0,0 +1,3238 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1849-010319-2_91: + 1849-060319-1_100: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + 5nVBZxcsyD8= + 1849-060319-2_118: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6065, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +1CxkWBAzz8= + 1849-110319-1_17: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XujNng7gzj8= + 1849-110319-2_24: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 86013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zV9BgAezyz8= + 1849-150319-1_95: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z56jAgqTyD8= + 1849-150319-2_22: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NcU9Q6ljyT8= + 1849-150319-3_64: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4904, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lvFYtR0b0j8= + 1849-150319-4_37: &id119 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7600, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8iX2mrpizj8= + 1849-220319-2_32: &id140 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3129, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MSLq8yEXyT8= + 1849-220319-3_73: &id178 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K88F7n6iyD8= + 1849-220319-4_110: &id207 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uULl4NrtyT8= + 1849-220319-5_38: &id252 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 10679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /jVYz5M+yz8= + 1849-280219-3_137: &id329 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 72089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FpUOiPskzT8= + 1849-010319-2_93: + 1849-010319-4_58: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4039, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ngmGIJKAxD8= + 1849-010319-5_87: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QypbsmcPxz8= + 1849-060319-1_92: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AlpIpzfSxD8= + 1849-060319-2_114: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6065, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bCJ6458Wwj8= + 1849-060319-3_112: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8033, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bdd2mZ2PwD8= + 1849-060319-4_78: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 10258, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 92nppx6mwj8= + 1849-110319-1_29: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81485, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + r1X6Oa4y0D8= + 1849-110319-2_48: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 86013, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + erolEcWoyj8= + 1849-110319-3_165: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 3926, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7wNZ+Vexzj8= + 1849-150319-1_80: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZBNN5TO+xD8= + 1849-150319-2_18: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 1420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CIUf2oNUwz8= + 1849-150319-3_38: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 4904, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eZDm7lGkwj8= + 1849-150319-4_64: &id129 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 7600, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cWHBn30PxD8= + 1849-220319-2_45: &id149 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3129, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EJS6pywTxT8= + 1849-220319-3_28: &id168 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5706, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w6OvkmY+xT8= + 1849-220319-4_84: &id222 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 8109, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yYVNMJdqyT8= + 1849-220319-5_35: &id243 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 10679, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ziPE1JWMwz8= + 1849-280219-1_40: &id272 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lB01LS1Wyj8= + 1849-280219-2_64: &id290 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tDuXnIbbyD8= + 1849-280219-3_129: &id309 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 72089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J/SL22ecyz8= + 1849-280219-4_44: &id342 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 69714, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hU6bk5MWzj8= + 1849-010319-4_58: + 1849-010319-2_93: *id002 + 1849-010319-5_87: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hTIbQ7I9qT8= + 1849-060319-1_100: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82558, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pgiAXzI9wT8= + 1849-060319-2_114: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z5BwEWhTwj8= + 1849-060319-3_112: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7G5Ysrc9xD8= + 1849-060319-4_78: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6219, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GkcAoYEPyD8= + 1849-110319-1_17: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 77446, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dB0lIQyFwz8= + 1849-110319-2_24: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81974, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q8IShYkEtj8= + 1849-110319-3_165: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 86287, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U8GTuTt3xD8= + 1849-150319-1_95: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81157, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q2CfDyZUwz8= + 1849-150319-2_22: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 83781, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jpqt/qZgxT8= + 1849-150319-3_38: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 865, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6TjecVfpwj8= + 1849-150319-4_64: &id130 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 3561, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yzHWfm2ExD8= + 1849-220319-2_46: &id158 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 85490, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oEhubyGBxT8= + 1849-220319-3_73: &id179 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 1667, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ldwRo7QUxj8= + 1849-220319-4_110: &id208 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 4070, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /1+9hkA2wj8= + 1849-220319-5_38: &id253 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 6640, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3MNXKieRwD8= + 1849-280219-1_40: &id273 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q8Fu9c/ywD8= + 1849-280219-2_64: &id291 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G5EDbyWDuT8= + 1849-280219-3_129: &id310 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fNvnKkVNwT8= + 1849-280219-4_44: &id343 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ctkIjLkvvj8= + 1849-010319-5_87: + 1849-010319-2_93: *id003 + 1849-010319-4_58: *id004 + 1849-060319-1_100: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wlYbOD2QwT8= + 1849-060319-2_114: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZRpG7qrIxD8= + 1849-060319-3_112: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3138, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + O7Dq/Tsdxz8= + 1849-060319-4_78: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HQj5H553yz8= + 1849-110319-1_17: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 76590, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I8IKaJJBwD8= + 1849-110319-2_24: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 81118, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JlkTS27Uuj8= + 1849-110319-3_165: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 85431, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qufJhg36wj8= + 1849-150319-1_95: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80301, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XgrlNVZExj8= + 1849-150319-2_19: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 82925, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 01JGks1GyD8= + 1849-150319-3_38: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 9, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GIKC0YytxD8= + 1849-150319-4_64: &id131 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 2705, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4xdWNI+mxj8= + 1849-220319-2_45: &id150 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [20, 84634, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5SAUt/9axj8= + 1849-220319-3_73: &id180 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 811, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 69CTASi4xz8= + 1849-220319-4_110: &id209 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 3214, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uNDFrMbHwz8= + 1849-220319-5_38: &id254 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 5784, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iizU0pkYwj8= + 1849-280219-1_40: &id274 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nzWGBjIUwT8= + 1849-280219-2_64: &id292 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OFr6cZ6YuD8= + 1849-280219-3_129: &id311 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aHBgbybgvT8= + 1849-280219-4_44: &id344 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jxxPcnoWtz8= + 1849-060319-1_100: + 1849-010319-2_91: *id005 + 1849-010319-4_58: *id006 + 1849-010319-5_87: *id007 + 1849-060319-2_114: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5868, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4D8P122Bsz8= + 1849-060319-3_112: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7836, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U6OeHaUDuz8= + 1849-060319-4_78: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10061, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3XTFQh4dxD8= + 1849-110319-1_29: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oD1WVJGRxz8= + 1849-110319-2_48: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lntLpvlqvT8= + 1849-110319-3_165: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3729, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7QTige5oyD8= + 1849-150319-1_60: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84999, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jfx4j82Xyj8= + 1849-150319-2_22: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 831d9Sl/wj8= + 1849-150319-3_38: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fXU20Xnuxz8= + 1849-150319-4_37: &id120 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xN7eJVWQzD8= + 1849-220319-2_32: &id141 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XrQNCZtMuj8= + 1849-220319-3_73: &id181 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vEdB31WBuz8= + 1849-220319-4_110: &id210 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7912, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5gNlSg27sj8= + 1849-220319-5_38: &id255 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10482, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oJgtbf3ztD8= + 1849-280219-1_40: &id275 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fcd+1ccmvz8= + 1849-280219-2_64: &id293 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FI1qbpfUwD8= + 1849-280219-3_129: &id312 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + h1fzYY2quj8= + 1849-280219-4_44: &id345 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Tzre0q19wj8= + 1849-060319-1_75: + 1849-110319-1_17: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SQEUe+oSyT8= + 1849-150319-1_95: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84999, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vDqBnA7wxT8= + 1849-150319-2_18: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bTODColFzj8= + 1849-150319-3_78: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g+Jb9Jni0j8= + 1849-220319-2_46: &id159 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3ApOoP3IyD8= + 1849-220319-3_75: &id192 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kRBAOucd2j8= + 1849-220319-4_102: &id199 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7912, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yu64filq0j8= + 1849-220319-5_35: &id244 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10482, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lsa//l9KzD8= + 1849-060319-1_92: + 1849-010319-2_93: *id008 + 1849-060319-2_118: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5868, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + twEgF9/vzj8= + 1849-110319-1_16: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81288, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Iu+UgDHHyz8= + 1849-110319-2_24: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 85816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sUvtg37MyT8= + 1849-150319-1_80: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84999, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NU4NRqcVvD8= + 1849-150319-2_19: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +8aq2g7jwz8= + 1849-150319-3_64: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 4707, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GTOJn0L5uj8= + 1849-150319-4_64: &id132 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 7403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tAvKLBLZwz8= + 1849-220319-2_45: &id151 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2932, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WXaNz1I0vT8= + 1849-220319-3_28: &id169 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 5509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + avwRybrVwD8= + 1849-220319-4_84: &id223 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 7912, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lTlyny7awD8= + 1849-220319-5_34: &id233 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 10482, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YPi0D5fpuT8= + 1849-280219-3_137: &id330 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LVh96UaO0T8= + 1849-060319-2_114: + 1849-010319-2_93: *id009 + 1849-010319-4_58: *id010 + 1849-010319-5_87: *id011 + 1849-060319-1_100: *id012 + 1849-060319-3_112: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YJrEXsN8pz8= + 1849-060319-4_78: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AdLWDryStj8= + 1849-110319-1_17: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KEMUz3xvxj8= + 1849-110319-2_48: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zcw1NjNyvj8= + 1849-110319-3_165: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 84261, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Kldsqz7Fyj8= + 1849-150319-1_95: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1/U6X6D1rj8= + 1849-150319-2_22: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + crrR13cxuD8= + 1849-150319-3_38: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85239, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fkxYl6fPxj8= + 1849-150319-4_64: &id133 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1535, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z/eeisAUxz8= + 1849-220319-2_32: &id142 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83464, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A6cu5CNBvT8= + 1849-220319-3_73: &id182 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PP+3AvrAsz8= + 1849-220319-4_110: &id211 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z9l9oq8Nsj8= + 1849-220319-5_38: &id256 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4614, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NxiT9DqJuz8= + 1849-280219-1_40: &id276 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 54pOho5uwj8= + 1849-280219-2_64: &id294 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + srEElziCwz8= + 1849-280219-3_129: &id313 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cw/KSIn9wz8= + 1849-280219-4_44: &id346 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 75779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8mayW/ptxj8= + 1849-060319-2_118: + 1849-010319-2_91: *id013 + 1849-060319-1_92: *id014 + 1849-110319-1_16: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2LNxDHjy0j8= + 1849-110319-2_24: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 79948, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ysjPlbU50D8= + 1849-150319-1_107: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y93pRSRawT8= + 1849-150319-2_18: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 68toOVUAyT8= + 1849-150319-3_78: &id114 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85239, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wVHUEciavj8= + 1849-150319-4_37: &id121 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [9, 1535, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ql1owj6Cwj8= + 1849-220319-2_46: &id160 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 83464, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q5ZoV2odwz8= + 1849-220319-3_75: &id193 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 86041, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PApMlYnbxT8= + 1849-220319-4_102: &id200 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A5A6HZRLyD8= + 1849-220319-5_39: &id265 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 4614, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g92k7WWExD8= + 1849-280219-3_137: &id331 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cd4PECd60z8= + 1849-060319-3_112: + 1849-010319-2_93: *id015 + 1849-010319-4_58: *id016 + 1849-010319-5_87: *id017 + 1849-060319-1_100: *id018 + 1849-060319-2_114: *id019 + 1849-060319-4_78: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5qggdA73tT8= + 1849-110319-1_17: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 73452, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + UNVCSUe1yT8= + 1849-110319-2_48: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 77980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M1ycFnz2wT8= + 1849-110319-3_165: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82293, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4BJdMK6RzT8= + 1849-150319-1_95: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77163, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8srUe+YDqj8= + 1849-150319-2_22: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79787, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CxMaHStVuT8= + 1849-150319-3_38: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8kLX/Y4SyD8= + 1849-150319-4_37: &id122 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 85967, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + m9auYt+0xD8= + 1849-220319-2_32: &id143 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4/MCmT2Ivj8= + 1849-220319-3_73: &id183 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84073, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E+bcv+CytD8= + 1849-220319-4_110: &id212 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 76, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OU4OlUuOtT8= + 1849-220319-5_38: &id257 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 2646, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ak9813zcvz8= + 1849-280219-1_40: &id277 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KvOeukyYxD8= + 1849-280219-2_64: &id295 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zBW63JxuxT8= + 1849-280219-3_129: &id314 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + T7m7zKNJxz8= + 1849-280219-4_44: &id347 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +W8gueA4yT8= + 1849-060319-4_78: + 1849-010319-2_93: *id020 + 1849-010319-4_58: *id021 + 1849-010319-5_87: *id022 + 1849-060319-1_100: *id023 + 1849-060319-2_114: *id024 + 1849-060319-3_112: *id025 + 1849-110319-1_17: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 71227, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GH+L2L86zz8= + 1849-110319-2_48: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 75755, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WcZDWYKExT8= + 1849-110319-3_165: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 80068, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kjdrOrXn0D8= + 1849-150319-1_95: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 74938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Eiy+QTwmsj8= + 1849-150319-2_22: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77562, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aKG3U10asz8= + 1849-150319-3_78: &id115 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 81046, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ReosN4m8wj8= + 1849-150319-4_37: &id123 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 83742, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tzysnXffuz8= + 1849-220319-2_46: &id161 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 79271, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7e0bNC4cvD8= + 1849-220319-3_73: &id184 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 81848, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bG9lwf7WvD8= + 1849-220319-4_110: &id213 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 84251, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d/x13xSKwT8= + 1849-220319-5_35: &id245 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [16, 421, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 08/sVrapxT8= + 1849-280219-1_40: &id278 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /l2erZ5yyD8= + 1849-280219-2_64: &id296 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MZSovHTDyT8= + 1849-280219-3_129: &id315 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uIydru4JzD8= + 1849-280219-4_44: &id348 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79972, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4eyQkUdXzj8= + 1849-110319-1_16: + 1849-060319-1_92: *id026 + 1849-060319-2_118: *id027 + 1849-150319-1_95: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ru4q7w8X0j8= + 1849-150319-2_18: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + afH2edGm1T8= + 1849-150319-3_78: &id116 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9819, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jzUpzzKN1z8= + 1849-220319-2_46: &id162 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fWyxKkK40T8= + 1849-220319-3_75: &id194 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +8fmbmui3D8= + 1849-220319-4_102: &id201 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13024, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aKrOzs570z8= + 1849-220319-5_35: &id246 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + A+wW6g9h0z8= + 1849-110319-1_17: + 1849-010319-2_91: *id028 + 1849-010319-4_58: *id029 + 1849-010319-5_87: *id030 + 1849-060319-1_75: *id031 + 1849-060319-2_114: *id032 + 1849-060319-3_112: *id033 + 1849-060319-4_78: *id034 + 1849-110319-2_48: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DyvMVuaawD8= + 1849-150319-1_60: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JN3e5MR60z8= + 1849-150319-2_22: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4CEwPY1ryz8= + 1849-150319-3_64: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9819, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5XDDbye5zz8= + 1849-150319-4_37: &id124 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12515, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vVU3j9I70j8= + 1849-220319-2_32: &id144 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CC0J3R3CxT8= + 1849-220319-3_73: &id185 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dypTdSe+xz8= + 1849-220319-4_110: &id214 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13024, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zRUIuAVawj8= + 1849-220319-5_38: &id258 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PbJs1dqsvD8= + 1849-280219-1_40: &id279 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74382, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /qtmnxIrxD8= + 1849-280219-2_64: &id297 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69481, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4Wu9edvtwD8= + 1849-280219-3_129: &id316 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 67174, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wjh6Ilubuj8= + 1849-280219-4_44: &id349 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 64799, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q62BNKr9uj8= + 1849-110319-1_29: + 1849-010319-2_93: *id035 + 1849-060319-1_100: *id036 + 1849-110319-2_24: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4528, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zTbnWOjwxz8= + 1849-110319-3_165: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8841, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + v9VQi24esT8= + 1849-150319-1_80: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3711, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fXqyroYHzD8= + 1849-150319-2_19: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 6335, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JQrSRVQ7yD8= + 1849-150319-3_38: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 9819, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CGIGFADXxT8= + 1849-150319-4_64: &id134 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 12515, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8CtBu5QOxz8= + 1849-220319-2_45: &id152 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8044, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5RMTj1NDxz8= + 1849-220319-3_28: &id170 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 10621, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q8tVOUPnzD8= + 1849-220319-4_84: &id224 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 13024, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bBRT9/96wT8= + 1849-220319-5_34: &id234 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 15594, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4MDyzn7rxj8= + 1849-280219-3_137: &id332 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 67174, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tsH2TsAIyz8= + 1849-110319-2_24: + 1849-010319-2_91: *id037 + 1849-010319-4_58: *id038 + 1849-010319-5_87: *id039 + 1849-060319-1_92: *id040 + 1849-060319-2_118: *id041 + 1849-110319-1_29: *id042 + 1849-110319-3_165: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2YBhv9lnxT8= + 1849-150319-1_60: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YhVosa5fxz8= + 1849-150319-2_18: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 1807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2EoYrw2mxj8= + 1849-150319-3_38: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + C/xC76wTxT8= + 1849-150319-4_64: &id135 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 7987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +eaBlMHgxj8= + 1849-220319-2_46: &id163 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OAuY7yjixD8= + 1849-220319-3_28: &id171 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + HI4pBplExz8= + 1849-220319-4_84: &id225 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zFZ6K9y6yT8= + 1849-220319-5_35: &id247 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qicFTtV6xz8= + 1849-280219-2_64: &id298 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 74009, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E2Xz63Kkvj8= + 1849-280219-3_137: &id333 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 71702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MSNl7HCDyz8= + 1849-280219-4_44: &id350 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 69327, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rbSgZIAiwj8= + 1849-110319-2_48: + 1849-010319-2_93: *id043 + 1849-060319-1_100: *id044 + 1849-060319-2_114: *id045 + 1849-060319-3_112: *id046 + 1849-060319-4_78: *id047 + 1849-110319-1_17: *id048 + 1849-150319-1_95: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 85583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DpANovYZwT8= + 1849-150319-2_22: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 1807, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SLBOR9/TwT8= + 1849-150319-3_64: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 5291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZFfHbUup0D8= + 1849-150319-4_37: &id125 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 7987, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mmfCYgx7yj8= + 1849-220319-2_32: &id145 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 3516, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 67fDcW+nwz8= + 1849-220319-3_73: &id186 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GvYgdegswj8= + 1849-220319-4_110: &id215 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 8496, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M4vpW94htz8= + 1849-220319-5_38: &id259 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 11066, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RTe9qO/muD8= + 1849-280219-1_40: &id280 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iVvM1EcGwT8= + 1849-280219-3_129: &id317 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 71702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SmMrESQzwT8= + 1849-110319-3_165: + 1849-010319-2_93: *id049 + 1849-010319-4_58: *id050 + 1849-010319-5_87: *id051 + 1849-060319-1_100: *id052 + 1849-060319-2_114: *id053 + 1849-060319-3_112: *id054 + 1849-060319-4_78: *id055 + 1849-110319-1_29: *id056 + 1849-110319-2_24: *id057 + 1849-150319-1_80: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 81270, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cf+yxGqXyj8= + 1849-150319-2_19: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [3, 83894, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pyVZMbKmxT8= + 1849-150319-3_38: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 978, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mMX0ZdYAxD8= + 1849-150319-4_64: &id136 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 3674, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M/GdtwMdxT8= + 1849-220319-2_45: &id153 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 85603, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + PWYYsVnNxT8= + 1849-220319-3_28: &id172 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 1780, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QK/yn8Kzyj8= + 1849-220319-4_84: &id226 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 4183, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JpT5qBpXwT8= + 1849-220319-5_34: &id235 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [11, 6753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xErNfpFrxD8= + 1849-280219-1_40: &id281 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 83223, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IByQnLRYzD8= + 1849-280219-2_64: &id299 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 78322, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BgMB9Cn4yD8= + 1849-280219-3_129: &id318 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 76015, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WffMtBAEyD8= + 1849-280219-4_44: &id351 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [10, 73640, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XYoXeZsrxD8= + 1849-150319-1_107: + 1849-060319-2_118: *id058 + 1849-150319-2_67: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yhXsdLXS1D8= + 1849-150319-3_78: &id117 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LG2uftgOtj8= + 1849-220319-3_75: &id195 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uKk91baXvD8= + 1849-220319-4_102: &id202 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Cmsav+Ap0D8= + 1849-220319-5_39: &id266 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FPp7UZQKuT8= + 1849-150319-1_60: + 1849-060319-1_100: *id059 + 1849-110319-1_17: *id060 + 1849-110319-2_24: *id061 + 1849-150319-2_18: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qrrhlK43yD8= + 1849-220319-2_46: &id164 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4333, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mGA+62+Dwz8= + 1849-220319-5_35: &id248 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iQfDEJ9VxT8= + 1849-150319-1_80: + 1849-010319-2_93: *id062 + 1849-060319-1_92: *id063 + 1849-110319-1_29: *id064 + 1849-110319-3_165: *id065 + 1849-150319-2_19: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cLjXGazzuj8= + 1849-150319-3_64: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1rBidG4duT8= + 1849-150319-4_64: &id137 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uGTQGegiuj8= + 1849-220319-2_45: &id154 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4333, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FBh+IDhysj8= + 1849-220319-3_28: &id173 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JIwBlI6huz8= + 1849-220319-4_84: &id227 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mCgvFhP9uz8= + 1849-220319-5_34: &id236 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + lVUgEtDatj8= + 1849-280219-3_129: &id319 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Q1p+th7dzz8= + 1849-150319-1_95: + 1849-010319-2_91: *id066 + 1849-010319-4_58: *id067 + 1849-010319-5_87: *id068 + 1849-060319-1_75: *id069 + 1849-060319-2_114: *id070 + 1849-060319-3_112: *id071 + 1849-060319-4_78: *id072 + 1849-110319-1_16: *id073 + 1849-110319-2_48: *id074 + 1849-150319-2_22: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2624, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d38+spdOsj8= + 1849-150319-3_38: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6108, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OvLs+60YyD8= + 1849-150319-4_37: &id126 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 8804, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3vhHbigkwj8= + 1849-220319-2_32: &id146 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4333, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GUS/tBMjwD8= + 1849-220319-3_73: &id187 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6910, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +DwJCkvgsz8= + 1849-220319-4_110: &id216 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9313, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nNBBiI/quD8= + 1849-220319-5_38: &id260 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 11883, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZNNOz6TCwD8= + 1849-280219-1_40: &id282 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Pg05MS9KxD8= + 1849-280219-2_64: &id300 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hNSm8iJcxT8= + 1849-280219-3_137: &id334 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + De6JoKc00D8= + 1849-280219-4_44: &id352 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mmQ6dmfxyD8= + 1849-150319-2_18: + 1849-010319-2_93: *id075 + 1849-060319-1_75: *id076 + 1849-060319-2_118: *id077 + 1849-110319-1_16: *id078 + 1849-110319-2_24: *id079 + 1849-150319-1_60: *id080 + 1849-150319-3_64: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sRne4qR7yT8= + 1849-220319-2_32: &id147 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1709, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jVMRF2/Pxz8= + 1849-220319-3_28: &id174 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Z2EWXRuCtj8= + 1849-220319-4_102: &id203 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6tVt3XRZzz8= + 1849-220319-5_35: &id249 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9259, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WzdUfE+iwz8= + 1849-150319-2_19: + 1849-010319-5_87: *id081 + 1849-060319-1_92: *id082 + 1849-110319-1_29: *id083 + 1849-110319-3_165: *id084 + 1849-150319-1_80: *id085 + 1849-150319-3_38: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FpUyO5lQpT8= + 1849-150319-4_64: &id138 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EuKsig/poj8= + 1849-220319-2_45: &id155 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1709, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AhxksS8qvD8= + 1849-220319-4_84: &id228 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TmRm+pdbwD8= + 1849-220319-5_34: &id237 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9259, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Rh35YS81vj8= + 1849-280219-3_137: &id335 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w5ZF5pQ20j8= + 1849-150319-2_22: + 1849-010319-2_91: *id086 + 1849-010319-4_58: *id087 + 1849-060319-1_100: *id088 + 1849-060319-2_114: *id089 + 1849-060319-3_112: *id090 + 1849-060319-4_78: *id091 + 1849-110319-1_17: *id092 + 1849-110319-2_48: *id093 + 1849-150319-1_95: *id094 + 1849-150319-3_78: &id118 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 3484, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kaqScD5ExD8= + 1849-150319-4_37: &id127 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 6180, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + n5CfnDcrtz8= + 1849-220319-2_46: &id165 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 1709, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QdQ/jzMZtD8= + 1849-220319-3_73: &id188 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q4GdFfiRuj8= + 1849-220319-4_110: &id217 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 6689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RpG+wojWvT8= + 1849-220319-5_38: &id261 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9259, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9Uck2/KVwz8= + 1849-280219-1_40: &id283 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 80717, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + L6fMp5sAxj8= + 1849-280219-2_64: &id301 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 75816, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + KRru7LF5xz8= + 1849-280219-3_129: &id320 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JXdQ+6PwyD8= + 1849-280219-4_44: &id353 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 71134, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0Zbl/1vKyj8= + 1849-150319-2_67: + 1849-150319-1_107: *id095 + 1849-220319-3_75: &id196 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 4286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + r6b9ptRg0D8= + 1849-220319-5_39: &id267 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 9259, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kCEEeamO1T8= + 1849-150319-3_38: + 1849-010319-2_93: *id096 + 1849-010319-4_58: *id097 + 1849-010319-5_87: *id098 + 1849-060319-1_100: *id099 + 1849-060319-2_114: *id100 + 1849-060319-3_112: *id101 + 1849-110319-1_29: *id102 + 1849-110319-2_24: *id103 + 1849-110319-3_165: *id104 + 1849-150319-1_95: *id105 + 1849-150319-2_19: *id106 + 1849-150319-4_64: &id139 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /Tcz22aKmD8= + 1849-220319-2_32: &id148 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84625, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hCNu6GX4xj8= + 1849-220319-3_28: &id175 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 802, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zDj3JpjNwD8= + 1849-220319-4_110: &id218 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oXh/DeHKxj8= + 1849-220319-5_35: &id250 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5775, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j1QAn7X6wT8= + 1849-280219-1_40: &id284 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 84201, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sUExjsx4yj8= + 1849-280219-2_64: &id302 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79300, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + muiMhaLWxT8= + 1849-280219-3_137: &id336 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 76993, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DFKf3kBT0D8= + 1849-280219-4_44: &id354 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 74618, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 6u4MbzRPyT8= + 1849-150319-3_64: + 1849-010319-2_91: *id107 + 1849-060319-1_92: *id108 + 1849-110319-1_17: *id109 + 1849-110319-2_48: *id110 + 1849-150319-1_80: *id111 + 1849-150319-2_18: *id112 + 1849-220319-2_45: &id156 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84625, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uYDpGmOctz8= + 1849-220319-3_73: &id189 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 802, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jpHB2PPeyD8= + 1849-220319-4_84: &id229 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0g7Z9ecsvT8= + 1849-220319-5_34: &id238 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5775, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CWFh7JsTuz8= + 1849-280219-3_129: &id321 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 76993, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RBirFx0Pzz8= + 1849-150319-3_78: + 1849-060319-1_75: *id113 + 1849-060319-2_118: *id114 + 1849-060319-4_78: *id115 + 1849-110319-1_16: *id116 + 1849-150319-1_107: *id117 + 1849-150319-2_22: *id118 + 1849-150319-4_37: &id128 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2696, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jcSJy6zTuj8= + 1849-220319-2_46: &id166 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84625, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 7SfM3jGbvj8= + 1849-220319-3_75: &id197 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 802, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + V2PiGHwVxj8= + 1849-220319-4_102: &id204 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3205, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NwpNoSVmyj8= + 1849-220319-5_39: &id268 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 5775, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3h7k/vOPvj8= + 1849-150319-4_37: + 1849-010319-2_91: *id119 + 1849-060319-1_100: *id120 + 1849-060319-2_118: *id121 + 1849-060319-3_112: *id122 + 1849-060319-4_78: *id123 + 1849-110319-1_17: *id124 + 1849-110319-2_48: *id125 + 1849-150319-1_95: *id126 + 1849-150319-2_22: *id127 + 1849-150319-3_78: *id128 + 1849-220319-2_46: &id167 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81929, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NqzwY0Crsz8= + 1849-220319-3_73: &id190 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84506, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gtQCprAPxj8= + 1849-220319-4_110: &id219 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rHXKkFLjyD8= + 1849-220319-5_39: &id269 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MeWs4jhexD8= + 1849-280219-3_137: &id337 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fNAf9w9o1D8= + 1849-150319-4_64: + 1849-010319-2_93: *id129 + 1849-010319-4_58: *id130 + 1849-010319-5_87: *id131 + 1849-060319-1_92: *id132 + 1849-060319-2_114: *id133 + 1849-110319-1_29: *id134 + 1849-110319-2_24: *id135 + 1849-110319-3_165: *id136 + 1849-150319-1_80: *id137 + 1849-150319-2_19: *id138 + 1849-150319-3_38: *id139 + 1849-220319-2_45: &id157 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 81929, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jgf515ocuj8= + 1849-220319-3_28: &id176 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 84506, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iWMtKECKwD8= + 1849-220319-4_84: &id230 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 509, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GteZHi3GvT8= + 1849-220319-5_34: &id239 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [7, 3079, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1SThxwKsvj8= + 1849-280219-1_40: &id285 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [15, 497, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qQaK5NQmzD8= + 1849-280219-2_64: &id303 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 81996, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1UmheGRrxz8= + 1849-280219-3_129: &id322 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 79689, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ur6ymHIUyz8= + 1849-280219-4_44: &id355 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 77314, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FU0NQWkvyz8= + 1849-220319-2_32: + 1849-010319-2_91: *id140 + 1849-060319-1_100: *id141 + 1849-060319-2_114: *id142 + 1849-060319-3_112: *id143 + 1849-110319-1_17: *id144 + 1849-110319-2_48: *id145 + 1849-150319-1_95: *id146 + 1849-150319-2_18: *id147 + 1849-150319-3_38: *id148 + 1849-220319-3_73: &id191 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2577, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4wqUGIDjsj8= + 1849-220319-4_110: &id220 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eU+t2yYktj8= + 1849-220319-5_38: &id262 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 76qU49JCvT8= + 1849-280219-1_40: &id286 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82426, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9FETzjS+xT8= + 1849-280219-2_64: &id304 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77525, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hY+OmoHKxj8= + 1849-280219-3_129: &id323 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75218, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + t8bZZoTxxD8= + 1849-280219-4_44: &id356 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 72843, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ovud7ez7yD8= + 1849-220319-2_45: + 1849-010319-2_93: *id149 + 1849-010319-5_87: *id150 + 1849-060319-1_92: *id151 + 1849-110319-1_29: *id152 + 1849-110319-3_165: *id153 + 1849-150319-1_80: *id154 + 1849-150319-2_19: *id155 + 1849-150319-3_64: *id156 + 1849-150319-4_64: *id157 + 1849-220319-3_28: &id177 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2577, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5ATN0myKtT8= + 1849-220319-4_84: &id231 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + bDJJskMXtT8= + 1849-220319-5_34: &id240 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 93LbClJ7sz8= + 1849-220319-2_46: + 1849-010319-4_58: *id158 + 1849-060319-1_75: *id159 + 1849-060319-2_118: *id160 + 1849-060319-4_78: *id161 + 1849-110319-1_16: *id162 + 1849-110319-2_24: *id163 + 1849-150319-1_60: *id164 + 1849-150319-2_22: *id165 + 1849-150319-3_78: *id166 + 1849-150319-4_37: *id167 + 1849-220319-3_75: &id198 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2577, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iSTb9mnH0D8= + 1849-220319-4_102: &id205 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4980, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4CuWYD6LyD8= + 1849-220319-5_39: &id270 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7550, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + AcJokUCkxj8= + 1849-280219-3_137: &id338 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75218, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EUPuTHvJzj8= + 1849-220319-3_28: + 1849-010319-2_93: *id168 + 1849-060319-1_92: *id169 + 1849-110319-1_29: *id170 + 1849-110319-2_24: *id171 + 1849-110319-3_165: *id172 + 1849-150319-1_80: *id173 + 1849-150319-2_18: *id174 + 1849-150319-3_38: *id175 + 1849-150319-4_64: *id176 + 1849-220319-2_45: *id177 + 1849-220319-4_84: &id232 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + z3NXsehFwD8= + 1849-220319-5_34: &id241 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4973, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FL0v6rmLtz8= + 1849-280219-3_129: &id324 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8ekhn0Vdzj8= + 1849-220319-3_73: + 1849-010319-2_91: *id178 + 1849-010319-4_58: *id179 + 1849-010319-5_87: *id180 + 1849-060319-1_100: *id181 + 1849-060319-2_114: *id182 + 1849-060319-3_112: *id183 + 1849-060319-4_78: *id184 + 1849-110319-1_17: *id185 + 1849-110319-2_48: *id186 + 1849-150319-1_95: *id187 + 1849-150319-2_22: *id188 + 1849-150319-3_64: *id189 + 1849-150319-4_37: *id190 + 1849-220319-2_32: *id191 + 1849-220319-4_110: &id221 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vo7huJgetD8= + 1849-220319-5_38: &id263 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4973, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QyMU2K7Hvj8= + 1849-280219-1_40: &id287 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85003, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gpFv9/51xT8= + 1849-280219-2_64: &id305 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80102, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /ktPSEwYxz8= + 1849-280219-3_137: &id339 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77795, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ip+3RKfzzj8= + 1849-280219-4_44: &id357 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 75420, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Oudc/eLkyD8= + 1849-220319-3_75: + 1849-060319-1_75: *id192 + 1849-060319-2_118: *id193 + 1849-110319-1_16: *id194 + 1849-150319-1_107: *id195 + 1849-150319-2_67: *id196 + 1849-150319-3_78: *id197 + 1849-220319-2_46: *id198 + 1849-220319-4_102: &id206 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2403, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w6jXJJWl0j8= + 1849-220319-5_39: &id271 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4973, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + cpt7ROeVwT8= + 1849-220319-4_102: + 1849-060319-1_75: *id199 + 1849-060319-2_118: *id200 + 1849-110319-1_16: *id201 + 1849-150319-1_107: *id202 + 1849-150319-2_18: *id203 + 1849-150319-3_78: *id204 + 1849-220319-2_46: *id205 + 1849-220319-3_75: *id206 + 1849-220319-5_35: &id251 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yCbZoxxP0D8= + 1849-220319-4_110: + 1849-010319-2_91: *id207 + 1849-010319-4_58: *id208 + 1849-010319-5_87: *id209 + 1849-060319-1_100: *id210 + 1849-060319-2_114: *id211 + 1849-060319-3_112: *id212 + 1849-060319-4_78: *id213 + 1849-110319-1_17: *id214 + 1849-110319-2_48: *id215 + 1849-150319-1_95: *id216 + 1849-150319-2_22: *id217 + 1849-150319-3_38: *id218 + 1849-150319-4_37: *id219 + 1849-220319-2_32: *id220 + 1849-220319-3_73: *id221 + 1849-220319-5_38: &id264 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LR0U13vbsT8= + 1849-280219-1_40: &id288 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 1006, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Fl8Fwn1CwT8= + 1849-280219-2_64: &id306 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82505, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + E1IZkVKdwj8= + 1849-280219-3_129: &id325 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + U29J1s7mwT8= + 1849-280219-4_44: &id358 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 77823, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uULZdjuZxD8= + 1849-220319-4_84: + 1849-010319-2_93: *id222 + 1849-060319-1_92: *id223 + 1849-110319-1_29: *id224 + 1849-110319-2_24: *id225 + 1849-110319-3_165: *id226 + 1849-150319-1_80: *id227 + 1849-150319-2_19: *id228 + 1849-150319-3_64: *id229 + 1849-150319-4_64: *id230 + 1849-220319-2_45: *id231 + 1849-220319-3_28: *id232 + 1849-220319-5_34: &id242 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2570, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LdUsO2GosT8= + 1849-280219-3_137: &id340 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80198, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 91h03X720D8= + 1849-220319-5_34: + 1849-060319-1_92: *id233 + 1849-110319-1_29: *id234 + 1849-110319-3_165: *id235 + 1849-150319-1_80: *id236 + 1849-150319-2_19: *id237 + 1849-150319-3_64: *id238 + 1849-150319-4_64: *id239 + 1849-220319-2_45: *id240 + 1849-220319-3_28: *id241 + 1849-220319-4_84: *id242 + 1849-280219-3_129: &id326 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82768, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MOQFpWhSyz8= + 1849-220319-5_35: + 1849-010319-2_93: *id243 + 1849-060319-1_75: *id244 + 1849-060319-4_78: *id245 + 1849-110319-1_16: *id246 + 1849-110319-2_24: *id247 + 1849-150319-1_60: *id248 + 1849-150319-2_18: *id249 + 1849-150319-3_38: *id250 + 1849-220319-4_102: *id251 + 1849-220319-5_38: + 1849-010319-2_91: *id252 + 1849-010319-4_58: *id253 + 1849-010319-5_87: *id254 + 1849-060319-1_100: *id255 + 1849-060319-2_114: *id256 + 1849-060319-3_112: *id257 + 1849-110319-1_17: *id258 + 1849-110319-2_48: *id259 + 1849-150319-1_95: *id260 + 1849-150319-2_22: *id261 + 1849-220319-2_32: *id262 + 1849-220319-3_73: *id263 + 1849-220319-4_110: *id264 + 1849-280219-1_40: &id289 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [22, 3576, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CEuxxeGhwj8= + 1849-280219-2_64: &id307 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 85075, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8MagTpPjwD8= + 1849-280219-3_137: &id341 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 82768, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NsEzRiQ9yT8= + 1849-280219-4_44: &id359 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [21, 80393, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zWjjr5aJwj8= + 1849-220319-5_39: + 1849-060319-2_118: *id265 + 1849-150319-1_107: *id266 + 1849-150319-2_67: *id267 + 1849-150319-3_78: *id268 + 1849-150319-4_37: *id269 + 1849-220319-2_46: *id270 + 1849-220319-3_75: *id271 + 1849-280219-1_40: + 1849-010319-2_93: *id272 + 1849-010319-4_58: *id273 + 1849-010319-5_87: *id274 + 1849-060319-1_100: *id275 + 1849-060319-2_114: *id276 + 1849-060319-3_112: *id277 + 1849-060319-4_78: *id278 + 1849-110319-1_17: *id279 + 1849-110319-2_48: *id280 + 1849-110319-3_165: *id281 + 1849-150319-1_95: *id282 + 1849-150319-2_22: *id283 + 1849-150319-3_38: *id284 + 1849-150319-4_64: *id285 + 1849-220319-2_32: *id286 + 1849-220319-3_73: *id287 + 1849-220319-4_110: *id288 + 1849-220319-5_38: *id289 + 1849-280219-2_64: &id308 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CeXCdz3UuD8= + 1849-280219-3_129: &id327 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gBEdep6owD8= + 1849-280219-4_44: &id360 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fUIlt6hDwz8= + 1849-280219-2_64: + 1849-010319-2_93: *id290 + 1849-010319-4_58: *id291 + 1849-010319-5_87: *id292 + 1849-060319-1_100: *id293 + 1849-060319-2_114: *id294 + 1849-060319-3_112: *id295 + 1849-060319-4_78: *id296 + 1849-110319-1_17: *id297 + 1849-110319-2_24: *id298 + 1849-110319-3_165: *id299 + 1849-150319-1_95: *id300 + 1849-150319-2_22: *id301 + 1849-150319-3_38: *id302 + 1849-150319-4_64: *id303 + 1849-220319-2_32: *id304 + 1849-220319-3_73: *id305 + 1849-220319-4_110: *id306 + 1849-220319-5_38: *id307 + 1849-280219-1_40: *id308 + 1849-280219-3_129: &id328 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dg2tH60hvD8= + 1849-280219-4_44: &id361 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4SC9s9B5vz8= + 1849-280219-3_129: + 1849-010319-2_93: *id309 + 1849-010319-4_58: *id310 + 1849-010319-5_87: *id311 + 1849-060319-1_100: *id312 + 1849-060319-2_114: *id313 + 1849-060319-3_112: *id314 + 1849-060319-4_78: *id315 + 1849-110319-1_17: *id316 + 1849-110319-2_48: *id317 + 1849-110319-3_165: *id318 + 1849-150319-1_80: *id319 + 1849-150319-2_22: *id320 + 1849-150319-3_64: *id321 + 1849-150319-4_64: *id322 + 1849-220319-2_32: *id323 + 1849-220319-3_28: *id324 + 1849-220319-4_110: *id325 + 1849-220319-5_34: *id326 + 1849-280219-1_40: *id327 + 1849-280219-2_64: *id328 + 1849-280219-4_44: &id362 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zR+YpUNFwj8= + 1849-280219-3_137: + 1849-010319-2_91: *id329 + 1849-060319-1_92: *id330 + 1849-060319-2_118: *id331 + 1849-110319-1_29: *id332 + 1849-110319-2_24: *id333 + 1849-150319-1_95: *id334 + 1849-150319-2_19: *id335 + 1849-150319-3_38: *id336 + 1849-150319-4_37: *id337 + 1849-220319-2_46: *id338 + 1849-220319-3_73: *id339 + 1849-220319-4_84: *id340 + 1849-220319-5_38: *id341 + 1849-280219-4_44: + 1849-010319-2_93: *id342 + 1849-010319-4_58: *id343 + 1849-010319-5_87: *id344 + 1849-060319-1_100: *id345 + 1849-060319-2_114: *id346 + 1849-060319-3_112: *id347 + 1849-060319-4_78: *id348 + 1849-110319-1_17: *id349 + 1849-110319-2_24: *id350 + 1849-110319-3_165: *id351 + 1849-150319-1_95: *id352 + 1849-150319-2_22: *id353 + 1849-150319-3_38: *id354 + 1849-150319-4_64: *id355 + 1849-220319-2_32: *id356 + 1849-220319-3_73: *id357 + 1849-220319-4_110: *id358 + 1849-220319-5_38: *id359 + 1849-280219-1_40: *id360 + 1849-280219-2_64: *id361 + 1849-280219-3_129: *id362 +_node: &id365 + 1849-010319-2_91: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id363 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + WwAAAAAAAAA= + 1849-010319-2_93: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + XQAAAAAAAAA= + 1849-010319-4_58: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + OgAAAAAAAAA= + 1849-010319-5_87: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + VwAAAAAAAAA= + 1849-060319-1_100: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + ZAAAAAAAAAA= + 1849-060319-1_75: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + SwAAAAAAAAA= + 1849-060319-1_92: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + XAAAAAAAAAA= + 1849-060319-2_114: + action_id: 1849-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + cgAAAAAAAAA= + 1849-060319-2_118: + action_id: 1849-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + dgAAAAAAAAA= + 1849-060319-3_112: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + cAAAAAAAAAA= + 1849-060319-4_78: + action_id: 1849-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + TgAAAAAAAAA= + 1849-110319-1_16: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + EAAAAAAAAAA= + 1849-110319-1_17: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + EQAAAAAAAAA= + 1849-110319-1_29: + action_id: 1849-110319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + HQAAAAAAAAA= + 1849-110319-2_24: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + GAAAAAAAAAA= + 1849-110319-2_48: + action_id: 1849-110319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + MAAAAAAAAAA= + 1849-110319-3_165: + action_id: 1849-110319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + pQAAAAAAAAA= + 1849-150319-1_107: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + awAAAAAAAAA= + 1849-150319-1_60: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + PAAAAAAAAAA= + 1849-150319-1_80: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + UAAAAAAAAAA= + 1849-150319-1_95: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + XwAAAAAAAAA= + 1849-150319-2_18: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + EgAAAAAAAAA= + 1849-150319-2_19: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + EwAAAAAAAAA= + 1849-150319-2_22: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + FgAAAAAAAAA= + 1849-150319-2_67: + action_id: 1849-150319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + QwAAAAAAAAA= + 1849-150319-3_38: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + JgAAAAAAAAA= + 1849-150319-3_64: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + QAAAAAAAAAA= + 1849-150319-3_78: + action_id: 1849-150319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + TgAAAAAAAAA= + 1849-150319-4_37: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + JQAAAAAAAAA= + 1849-150319-4_64: + action_id: 1849-150319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + QAAAAAAAAAA= + 1849-220319-2_32: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + IAAAAAAAAAA= + 1849-220319-2_45: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + LQAAAAAAAAA= + 1849-220319-2_46: + action_id: 1849-220319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + LgAAAAAAAAA= + 1849-220319-3_28: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + HAAAAAAAAAA= + 1849-220319-3_73: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + SQAAAAAAAAA= + 1849-220319-3_75: + action_id: 1849-220319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + SwAAAAAAAAA= + 1849-220319-4_102: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + ZgAAAAAAAAA= + 1849-220319-4_110: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + bgAAAAAAAAA= + 1849-220319-4_84: + action_id: 1849-220319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + VAAAAAAAAAA= + 1849-220319-5_34: + action_id: 1849-220319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + IgAAAAAAAAA= + 1849-220319-5_35: + action_id: 1849-220319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + IwAAAAAAAAA= + 1849-220319-5_38: + action_id: 1849-220319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + JgAAAAAAAAA= + 1849-220319-5_39: + action_id: 1849-220319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + JwAAAAAAAAA= + 1849-280219-1_40: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + KAAAAAAAAAA= + 1849-280219-2_64: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + QAAAAAAAAAA= + 1849-280219-3_129: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + gQAAAAAAAAA= + 1849-280219-3_137: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + iQAAAAAAAAA= + 1849-280219-4_44: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id363 + - !!binary | + LAAAAAAAAAA= +adjlist_inner_dict_factory: &id364 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id364 +edge_attr_dict_factory: *id364 +graph: {} +node_dict_factory: *id364 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id365 diff --git a/actions/identify-neurons/data/1849-graphs/graph-group-6.yaml b/actions/identify-neurons/data/1849-graphs/graph-group-6.yaml new file mode 100644 index 000000000..ad0d0608e --- /dev/null +++ b/actions/identify-neurons/data/1849-graphs/graph-group-6.yaml @@ -0,0 +1,796 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1849-010319-2_85: + 1849-010319-5_105: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + iWVbEz62yj8= + 1849-280219-1_106: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5fd5csq2vj8= + 1849-280219-2_94: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0CnQfLqouj8= + 1849-280219-3_127: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 72089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gPOUB7qp0D8= + 1849-280219-4_66: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 69714, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nZ41fBT8vz8= + 1849-010319-2_97: + 1849-010319-5_107: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bv144Xqhsj8= + 1849-060319-1_44: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e1rBEhVnvz8= + 1849-060319-4_66: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 10258, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /mG3zYOUxj8= + 1849-280219-1_98: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VZxek5bLxD8= + 1849-280219-2_90: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wEF7LZEAwz8= + 1849-280219-3_135: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 72089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ybTd0jmZvD8= + 1849-010319-2_99: + 1849-010319-4_79: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4039, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FsPsK4lmvz8= + 1849-010319-5_109: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VDvr5CAwsT8= + 1849-060319-1_81: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M7q7HjDY1D8= + 1849-060319-4_62: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 10258, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oDBc6ANowj8= + 1849-280219-1_44: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nS2LFPZBvT8= + 1849-280219-2_38: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wYbZLthdtz8= + 1849-280219-3_139: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 72089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MUcmaJG0vT8= + 1849-280219-4_68: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 69714, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j9xWENBcvj8= + 1849-010319-4_79: + 1849-010319-2_99: *id002 + 1849-010319-5_109: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FgBIa9rxsT8= + 1849-060319-1_44: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82558, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sZQ9iLw9wT8= + 1849-060319-4_62: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6219, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XuhK4bRmvj8= + 1849-280219-1_98: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4uHKPOy/xD8= + 1849-280219-2_90: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + wmICvBRwuD8= + 1849-280219-3_139: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EIY1R5Gqsz8= + 1849-280219-4_66: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + K3tN/uHDwT8= + 1849-010319-5_105: + 1849-010319-2_85: *id003 + 1849-280219-1_106: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + I4yjw8Khyj8= + 1849-280219-2_94: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oITc5lUFxz8= + 1849-280219-3_135: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + P3JT4kG0xT8= + 1849-010319-5_107: + 1849-010319-2_97: *id004 + 1849-060319-1_44: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ck6fXE+quT8= + 1849-060319-4_62: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dNBZrKX5tz8= + 1849-280219-1_98: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rBkZGmIJwz8= + 1849-280219-2_90: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Nz0CYTWBwD8= + 1849-280219-3_127: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pJOhjcVw0D8= + 1849-280219-4_66: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8f5Qi2avxD8= + 1849-010319-5_109: + 1849-010319-2_99: *id005 + 1849-010319-4_79: *id006 + 1849-060319-1_81: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QddcVF6S1D8= + 1849-060319-4_66: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + om70mbcRyD8= + 1849-280219-1_44: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JYU3XiMkwz8= + 1849-280219-2_38: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 18orhtkYvT8= + 1849-280219-3_139: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4ITZwo9Rtj8= + 1849-280219-4_68: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J8+XfoacxT8= + 1849-060319-1_44: + 1849-010319-2_97: *id007 + 1849-010319-4_79: *id008 + 1849-010319-5_107: *id009 + 1849-060319-4_62: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10061, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + w1ffqLYvuD8= + 1849-280219-1_98: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + yQ4w5bGYxD8= + 1849-280219-2_90: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DhRvW+vAwj8= + 1849-280219-3_139: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + grnXWsCZvD8= + 1849-280219-4_66: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g11mOb+pxj8= + 1849-060319-1_81: + 1849-010319-2_99: *id010 + 1849-010319-5_109: *id011 + 1849-060319-4_66: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10061, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jtIOAYWm1j8= + 1849-280219-1_106: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9V1iE26Q0D8= + 1849-280219-2_94: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + c+y76q1m0D8= + 1849-280219-3_135: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SZ5Jo1GC2D8= + 1849-280219-4_68: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + f53Oio5n1j8= + 1849-060319-4_62: + 1849-010319-2_99: *id012 + 1849-010319-4_79: *id013 + 1849-010319-5_107: *id014 + 1849-060319-1_44: *id015 + 1849-280219-1_98: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 8DkLx6O3xT8= + 1849-280219-2_90: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0zyOhn08wD8= + 1849-280219-3_139: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WjnHd4bgsz8= + 1849-280219-4_68: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79972, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + zIyzlWihyT8= + 1849-060319-4_66: + 1849-010319-2_97: *id016 + 1849-010319-5_109: *id017 + 1849-060319-1_81: *id018 + 1849-280219-1_44: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VZ+XgkLqzT8= + 1849-280219-2_38: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NzacOOK1zD8= + 1849-280219-3_135: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + vsBmX0RuyT8= + 1849-280219-4_66: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79972, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + WvJvMKt6zD8= + 1849-280219-1_106: + 1849-010319-2_85: *id019 + 1849-010319-5_105: *id020 + 1849-060319-1_81: *id021 + 1849-280219-2_94: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Gtz+KmpTsz8= + 1849-280219-3_131: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xkzqdBM63D8= + 1849-280219-4_66: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Mn+0jW3hwT8= + 1849-280219-1_108: {} + 1849-280219-1_44: + 1849-010319-2_99: *id022 + 1849-010319-5_109: *id023 + 1849-060319-4_66: *id024 + 1849-280219-2_38: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3LWk1/xVuz8= + 1849-280219-3_139: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CXGJPQKpxj8= + 1849-280219-4_68: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tsICFf6DwD8= + 1849-280219-1_45: + 1849-280219-3_127: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + kA09/9pT0T8= + 1849-280219-1_96: {} + 1849-280219-1_98: + 1849-010319-2_97: *id025 + 1849-010319-4_79: *id026 + 1849-010319-5_107: *id027 + 1849-060319-1_44: *id028 + 1849-060319-4_62: *id029 + 1849-280219-2_90: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JlBEao4XwD8= + 1849-280219-3_135: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GKm+YseWyz8= + 1849-280219-2_38: + 1849-010319-2_99: *id030 + 1849-010319-5_109: *id031 + 1849-060319-4_66: *id032 + 1849-280219-1_44: *id033 + 1849-280219-3_139: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4iwRVd9ixD8= + 1849-280219-4_68: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jF2Eu6FQwD8= + 1849-280219-2_90: + 1849-010319-2_97: *id034 + 1849-010319-4_79: *id035 + 1849-010319-5_107: *id036 + 1849-060319-1_44: *id037 + 1849-060319-4_62: *id038 + 1849-280219-1_98: *id039 + 1849-280219-3_135: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ao7TyDJ/yj8= + 1849-280219-2_94: + 1849-010319-2_85: *id040 + 1849-010319-5_105: *id041 + 1849-060319-1_81: *id042 + 1849-280219-1_106: *id043 + 1849-280219-3_127: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VFmnlLIhyz8= + 1849-280219-4_66: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OngS3JB0vj8= + 1849-280219-3_127: + 1849-010319-2_85: *id044 + 1849-010319-5_107: *id045 + 1849-280219-1_45: *id046 + 1849-280219-2_94: *id047 + 1849-280219-3_131: + 1849-280219-1_106: *id048 + 1849-280219-3_135: + 1849-010319-2_97: *id049 + 1849-010319-5_105: *id050 + 1849-060319-1_81: *id051 + 1849-060319-4_66: *id052 + 1849-280219-1_98: *id053 + 1849-280219-2_90: *id054 + 1849-280219-4_66: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fexs/L8Tyj8= + 1849-280219-3_139: + 1849-010319-2_99: *id055 + 1849-010319-4_79: *id056 + 1849-010319-5_109: *id057 + 1849-060319-1_44: *id058 + 1849-060319-4_62: *id059 + 1849-280219-1_44: *id060 + 1849-280219-2_38: *id061 + 1849-280219-4_68: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1JxoV1Tvxj8= + 1849-280219-4_66: + 1849-010319-2_85: *id062 + 1849-010319-4_79: *id063 + 1849-010319-5_107: *id064 + 1849-060319-1_44: *id065 + 1849-060319-4_66: *id066 + 1849-280219-1_106: *id067 + 1849-280219-2_94: *id068 + 1849-280219-3_135: *id069 + 1849-280219-4_68: + 1849-010319-2_99: *id070 + 1849-010319-5_109: *id071 + 1849-060319-1_81: *id072 + 1849-060319-4_62: *id073 + 1849-280219-1_44: *id074 + 1849-280219-2_38: *id075 + 1849-280219-3_139: *id076 +_node: &id079 + 1849-010319-2_85: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id077 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + VQAAAAAAAAA= + 1849-010319-2_97: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + YQAAAAAAAAA= + 1849-010319-2_99: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + YwAAAAAAAAA= + 1849-010319-4_79: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + TwAAAAAAAAA= + 1849-010319-5_105: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + aQAAAAAAAAA= + 1849-010319-5_107: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + awAAAAAAAAA= + 1849-010319-5_109: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + bQAAAAAAAAA= + 1849-060319-1_44: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + LAAAAAAAAAA= + 1849-060319-1_81: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + UQAAAAAAAAA= + 1849-060319-4_62: + action_id: 1849-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + PgAAAAAAAAA= + 1849-060319-4_66: + action_id: 1849-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + QgAAAAAAAAA= + 1849-280219-1_106: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + agAAAAAAAAA= + 1849-280219-1_108: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + bAAAAAAAAAA= + 1849-280219-1_44: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + LAAAAAAAAAA= + 1849-280219-1_45: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + LQAAAAAAAAA= + 1849-280219-1_96: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + YAAAAAAAAAA= + 1849-280219-1_98: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + YgAAAAAAAAA= + 1849-280219-2_38: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + JgAAAAAAAAA= + 1849-280219-2_90: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + WgAAAAAAAAA= + 1849-280219-2_94: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + XgAAAAAAAAA= + 1849-280219-3_127: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + fwAAAAAAAAA= + 1849-280219-3_131: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + gwAAAAAAAAA= + 1849-280219-3_135: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + hwAAAAAAAAA= + 1849-280219-3_139: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + iwAAAAAAAAA= + 1849-280219-4_66: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + QgAAAAAAAAA= + 1849-280219-4_68: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id077 + - !!binary | + RAAAAAAAAAA= +adjlist_inner_dict_factory: &id078 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id078 +edge_attr_dict_factory: *id078 +graph: {} +node_dict_factory: *id078 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id079 diff --git a/actions/identify-neurons/data/1849-graphs/graph-group-7.yaml b/actions/identify-neurons/data/1849-graphs/graph-group-7.yaml new file mode 100644 index 000000000..a81ca1eae --- /dev/null +++ b/actions/identify-neurons/data/1849-graphs/graph-group-7.yaml @@ -0,0 +1,1106 @@ +!!python/object:networkx.classes.graph.Graph +_adj: + 1849-010319-2_101: + 1849-010319-4_59: &id002 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4039, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - &id001 !!python/object/apply:numpy.dtype + args: [f8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + yjR7Aa1Nsz8= + 1849-010319-5_57: &id004 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GXcUpOBgtT8= + 1849-060319-1_49: &id006 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1UZt9yR6xT8= + 1849-060319-2_92: &id015 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6065, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + mMDUbjWQvT8= + 1849-060319-3_92: &id022 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8033, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +Agx+CdBwT8= + 1849-150319-1_56: &id033 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 85196, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b1/+TsKKzD8= + 1849-280219-1_62: &id049 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + FgPfYm58vD8= + 1849-280219-2_43: &id061 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + /UaqMNfluj8= + 1849-280219-3_164: &id084 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 72089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hNypN10Qtj8= + 1849-280219-4_58: &id099 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 69714, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +6mUO0U8oT8= + 1849-010319-2_70: + 1849-010319-5_54: &id003 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4895, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + G1J1OI73tT8= + 1849-060319-1_90: &id008 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 197, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + otVuXAjPsz8= + 1849-060319-2_71: &id013 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6065, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JLWVJeQewz8= + 1849-060319-3_118: &id018 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 8033, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 5s80ZhPpxz8= + 1849-060319-4_60: &id027 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 10258, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + QTo8jVs4wT8= + 1849-280219-1_52: &id040 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79297, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uKW+IUSvuz8= + 1849-280219-2_42: &id054 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74396, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + nXLPRBSUrD8= + 1849-280219-3_158: &id077 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 72089, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 53mM/TcmoT8= + 1849-280219-4_56: &id091 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 69714, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + q1vqjSD5oT8= + 1849-010319-4_59: + 1849-010319-2_101: *id002 + 1849-010319-5_57: &id005 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 856, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + XcPz7rWFqD8= + 1849-060319-1_90: &id009 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 82558, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + y9I59nL8wj8= + 1849-060319-2_92: &id016 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 2026, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Bdyh5AO2vj8= + 1849-060319-3_92: &id023 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3994, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CPnIZ0K9uD8= + 1849-060319-4_60: &id028 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 6219, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + dwlNnolZuz8= + 1849-150319-1_56: &id034 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 81157, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sPO75wASzz8= + 1849-280219-1_62: &id050 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 83336, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tmBC77B8wD8= + 1849-280219-2_43: &id062 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 78435, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DPLYc5l4vz8= + 1849-280219-3_164: &id085 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76128, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZPR9dupFuD8= + 1849-280219-4_58: &id100 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 73753, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LkYlW1Ogrj8= + 1849-010319-5_54: + 1849-010319-2_70: *id003 + 1849-060319-1_90: &id010 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ALcaVl5FuD8= + 1849-060319-2_50: &id011 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + b559mAgbvT8= + 1849-060319-3_118: &id019 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3138, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + j1Dkzlr8wz8= + 1849-280219-1_52: &id041 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + JuD5wGURxD8= + 1849-280219-2_42: &id055 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + pFJ7U/S6uz8= + 1849-280219-3_158: &id078 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0Jp8R+BKtT8= + 1849-280219-4_56: &id092 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + YKCG/WyxtD8= + 1849-010319-5_57: + 1849-010319-2_101: *id004 + 1849-010319-4_59: *id005 + 1849-060319-1_49: &id007 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [4, 81702, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jz8rBKjJxD8= + 1849-060319-2_92: &id017 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 1170, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ib/okB9JwT8= + 1849-060319-3_92: &id024 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 3138, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F7l2WKMluT8= + 1849-060319-4_60: &id029 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 5363, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 10Tay52vvj8= + 1849-150319-1_56: &id035 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [13, 80301, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MH8/jVMx0D8= + 1849-280219-1_62: &id051 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 84192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4b1lKBsIuj8= + 1849-280219-2_43: &id063 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 79291, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3Hp2DOrQwT8= + 1849-280219-3_164: &id086 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 76984, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tRyOEqFfsz8= + 1849-280219-4_58: &id101 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 74609, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + M7ilZ17ysD8= + 1849-060319-1_49: + 1849-010319-2_101: *id006 + 1849-010319-5_57: *id007 + 1849-060319-2_71: &id014 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5868, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + MP6dlo5TuD8= + 1849-060319-3_92: &id025 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7836, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + l2Cal6OPwD8= + 1849-060319-4_60: &id030 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 10061, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + d0UvPfI2tD8= + 1849-150319-1_56: &id036 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 84999, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + gvBXjsyRzz8= + 1849-280219-1_53: &id046 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + g+1lpGN7xj8= + 1849-280219-2_43: &id064 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + rXyZgqA5xj8= + 1849-280219-3_149: &id071 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + hLp5FhYywT8= + 1849-280219-4_58: &id102 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9pSJjHmzwz8= + 1849-060319-1_90: + 1849-010319-2_70: *id008 + 1849-010319-4_59: *id009 + 1849-010319-5_54: *id010 + 1849-060319-2_50: &id012 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 5868, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RdJbkH2ExD8= + 1849-060319-3_118: &id020 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7836, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3w5MWHZvxj8= + 1849-280219-1_52: &id042 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79494, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + +LMpVphXwj8= + 1849-280219-2_42: &id056 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 74593, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + BV28jMoluD8= + 1849-280219-3_158: &id079 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 72286, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 9A0Mxv1atT8= + 1849-280219-4_56: &id093 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 69911, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + GqHK3xc1uD8= + 1849-060319-2_50: + 1849-010319-5_54: *id011 + 1849-060319-1_90: *id012 + 1849-060319-3_118: &id021 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 1P0Q2lr7yD8= + 1849-280219-1_52: &id043 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 0B6lBHguzD8= + 1849-280219-2_42: &id057 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + xujHH6Q7xj8= + 1849-280219-3_158: &id080 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Ag9nNvNpxD8= + 1849-280219-4_56: &id094 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 75779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NJlLYmOAwz8= + 1849-060319-2_71: + 1849-010319-2_70: *id013 + 1849-060319-1_49: *id014 + 1849-060319-4_60: &id031 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4193, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + TVIaeXXQsz8= + 1849-280219-1_62: &id052 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 55bFfQIKyD8= + 1849-280219-2_92: &id068 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Uy+iTXGjyD8= + 1849-280219-3_164: &id087 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + DoB02+Arwz8= + 1849-280219-4_58: &id103 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 75779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + e7PPvjzswz8= + 1849-060319-2_92: + 1849-010319-2_101: *id015 + 1849-010319-4_59: *id016 + 1849-010319-5_57: *id017 + 1849-060319-3_92: &id026 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 1968, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + S9/4yghKvT8= + 1849-150319-1_56: &id037 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 79131, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + LnUW4xm7zz8= + 1849-280219-1_53: &id047 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 85362, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + jqjNq4adwT8= + 1849-280219-2_43: &id065 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80461, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + NZSr+gsTvT8= + 1849-280219-3_149: &id072 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 78154, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + F034bvzZtz8= + 1849-280219-4_86: &id110 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 75779, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VXP5OLuIvz8= + 1849-060319-3_118: + 1849-010319-2_70: *id018 + 1849-010319-5_54: *id019 + 1849-060319-1_90: *id020 + 1849-060319-2_50: *id021 + 1849-280219-1_62: &id053 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Jl/rq9Qz0D8= + 1849-280219-2_42: &id058 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 95AZxlHIxj8= + 1849-280219-3_158: &id081 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + OGRB6uCGxj8= + 1849-280219-4_56: &id095 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uN0eBJe0yD8= + 1849-060319-3_92: + 1849-010319-2_101: *id022 + 1849-010319-4_59: *id023 + 1849-010319-5_57: *id024 + 1849-060319-1_49: *id025 + 1849-060319-2_92: *id026 + 1849-060319-4_60: &id032 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2225, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VJnRY46Rsj8= + 1849-150319-1_56: &id038 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 77163, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + CNGXbA3j0j8= + 1849-280219-1_52: &id044 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 930, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3x27s4iHwz8= + 1849-280219-2_43: &id066 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82429, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 4MvdZs3sxD8= + 1849-280219-3_164: &id088 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 80122, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fjL46uULwD8= + 1849-280219-4_58: &id104 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 77747, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + RrfOkmYMwD8= + 1849-060319-4_60: + 1849-010319-2_70: *id027 + 1849-010319-4_59: *id028 + 1849-010319-5_57: *id029 + 1849-060319-1_49: *id030 + 1849-060319-2_71: *id031 + 1849-060319-3_92: *id032 + 1849-150319-1_56: &id039 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [8, 74938, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 46ABXTK30D8= + 1849-280219-1_52: &id045 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [6, 3155, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2r7T7GkHxT8= + 1849-280219-2_42: &id059 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 84654, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ZGtia5ofwj8= + 1849-280219-3_149: &id073 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 82347, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + oPOPIC01wD8= + 1849-280219-4_58: &id105 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [5, 79972, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uYPufwhkwD8= + 1849-150319-1_56: + 1849-010319-2_101: *id033 + 1849-010319-4_59: *id034 + 1849-010319-5_57: *id035 + 1849-060319-1_49: *id036 + 1849-060319-2_92: *id037 + 1849-060319-3_92: *id038 + 1849-060319-4_60: *id039 + 1849-280219-1_53: &id048 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 78093, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aXPikUcd0D8= + 1849-280219-2_92: &id069 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 73192, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + EHjUWIcQyz8= + 1849-280219-3_149: &id074 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 70885, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + sLjvDS18yz8= + 1849-280219-4_58: &id106 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [14, 68510, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + fXXc5k8FzT8= + 1849-280219-1_52: + 1849-010319-2_70: *id040 + 1849-010319-5_54: *id041 + 1849-060319-1_90: *id042 + 1849-060319-2_50: *id043 + 1849-060319-3_92: *id044 + 1849-060319-4_60: *id045 + 1849-280219-2_42: &id060 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + x+Ku+wmEtj8= + 1849-280219-3_158: &id082 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + IC9nNvSQuz8= + 1849-280219-4_56: &id096 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + iVpiVPhiuz8= + 1849-280219-1_53: + 1849-060319-1_49: *id046 + 1849-060319-2_92: *id047 + 1849-150319-1_56: *id048 + 1849-280219-2_92: &id070 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + tacp/JPcuj8= + 1849-280219-3_149: &id075 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qcGp/Bx4wD8= + 1849-280219-4_86: &id111 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + SpE/Q1wauD8= + 1849-280219-1_62: + 1849-010319-2_101: *id049 + 1849-010319-4_59: *id050 + 1849-010319-5_57: *id051 + 1849-060319-2_71: *id052 + 1849-060319-3_118: *id053 + 1849-280219-2_43: &id067 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4901, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qGLhEQusxT8= + 1849-280219-3_164: &id089 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 7208, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + uNe5ebIruT8= + 1849-280219-4_58: &id107 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 9583, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + ogq8otfZuj8= + 1849-280219-2_42: + 1849-010319-2_70: *id054 + 1849-010319-5_54: *id055 + 1849-060319-1_90: *id056 + 1849-060319-2_50: *id057 + 1849-060319-3_118: *id058 + 1849-060319-4_60: *id059 + 1849-280219-1_52: *id060 + 1849-280219-3_158: &id083 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + H6lzfM1IqT8= + 1849-280219-4_56: &id097 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + aRLa494xsD8= + 1849-280219-2_43: + 1849-010319-2_101: *id061 + 1849-010319-4_59: *id062 + 1849-010319-5_57: *id063 + 1849-060319-1_49: *id064 + 1849-060319-2_92: *id065 + 1849-060319-3_92: *id066 + 1849-280219-1_62: *id067 + 1849-280219-3_149: &id076 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + eTOhIkwDsz8= + 1849-280219-4_58: &id108 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + VE1ikEWpuj8= + 1849-280219-2_61: {} + 1849-280219-2_66: {} + 1849-280219-2_92: + 1849-060319-2_71: *id068 + 1849-150319-1_56: *id069 + 1849-280219-1_53: *id070 + 1849-280219-3_164: &id090 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2307, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + qoLZtDtxwz8= + 1849-280219-4_86: &id112 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 4682, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 3JwKH9eysj8= + 1849-280219-3_149: + 1849-060319-1_49: *id071 + 1849-060319-2_92: *id072 + 1849-060319-4_60: *id073 + 1849-150319-1_56: *id074 + 1849-280219-1_53: *id075 + 1849-280219-2_43: *id076 + 1849-280219-4_58: &id109 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + Wqrzlsnbsz8= + 1849-280219-3_158: + 1849-010319-2_70: *id077 + 1849-010319-5_54: *id078 + 1849-060319-1_90: *id079 + 1849-060319-2_50: *id080 + 1849-060319-3_118: *id081 + 1849-280219-1_52: *id082 + 1849-280219-2_42: *id083 + 1849-280219-4_56: &id098 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + 2/FC+H/qoT8= + 1849-280219-3_164: + 1849-010319-2_101: *id084 + 1849-010319-4_59: *id085 + 1849-010319-5_57: *id086 + 1849-060319-2_71: *id087 + 1849-060319-3_92: *id088 + 1849-280219-1_62: *id089 + 1849-280219-2_92: *id090 + 1849-280219-4_86: &id113 + depth_delta: 0.0 + time_delta: !!python/object/apply:datetime.timedelta [0, 2375, 0] + weight: !!python/object/apply:numpy.core.multiarray.scalar + - *id001 + - !!binary | + J+Y/owpTuz8= + 1849-280219-4_56: + 1849-010319-2_70: *id091 + 1849-010319-5_54: *id092 + 1849-060319-1_90: *id093 + 1849-060319-2_50: *id094 + 1849-060319-3_118: *id095 + 1849-280219-1_52: *id096 + 1849-280219-2_42: *id097 + 1849-280219-3_158: *id098 + 1849-280219-4_58: + 1849-010319-2_101: *id099 + 1849-010319-4_59: *id100 + 1849-010319-5_57: *id101 + 1849-060319-1_49: *id102 + 1849-060319-2_71: *id103 + 1849-060319-3_92: *id104 + 1849-060319-4_60: *id105 + 1849-150319-1_56: *id106 + 1849-280219-1_62: *id107 + 1849-280219-2_43: *id108 + 1849-280219-3_149: *id109 + 1849-280219-4_86: + 1849-060319-2_92: *id110 + 1849-280219-1_53: *id111 + 1849-280219-2_92: *id112 + 1849-280219-3_164: *id113 +_node: &id116 + 1849-010319-2_101: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - &id114 !!python/object/apply:numpy.dtype + args: [i8, 0, 1] + state: !!python/tuple [3, <, null, null, null, -1, -1, 0] + - !!binary | + ZQAAAAAAAAA= + 1849-010319-2_70: + action_id: 1849-010319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + RgAAAAAAAAA= + 1849-010319-4_59: + action_id: 1849-010319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + OwAAAAAAAAA= + 1849-010319-5_54: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + NgAAAAAAAAA= + 1849-010319-5_57: + action_id: 1849-010319-5 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + OQAAAAAAAAA= + 1849-060319-1_49: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + MQAAAAAAAAA= + 1849-060319-1_90: + action_id: 1849-060319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + WgAAAAAAAAA= + 1849-060319-2_50: + action_id: 1849-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + MgAAAAAAAAA= + 1849-060319-2_71: + action_id: 1849-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + RwAAAAAAAAA= + 1849-060319-2_92: + action_id: 1849-060319-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + XAAAAAAAAAA= + 1849-060319-3_118: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + dgAAAAAAAAA= + 1849-060319-3_92: + action_id: 1849-060319-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + XAAAAAAAAAA= + 1849-060319-4_60: + action_id: 1849-060319-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + PAAAAAAAAAA= + 1849-150319-1_56: + action_id: 1849-150319-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + OAAAAAAAAAA= + 1849-280219-1_52: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + NAAAAAAAAAA= + 1849-280219-1_53: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + NQAAAAAAAAA= + 1849-280219-1_62: + action_id: 1849-280219-1 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + PgAAAAAAAAA= + 1849-280219-2_42: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + KgAAAAAAAAA= + 1849-280219-2_43: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + KwAAAAAAAAA= + 1849-280219-2_61: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + PQAAAAAAAAA= + 1849-280219-2_66: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + QgAAAAAAAAA= + 1849-280219-2_92: + action_id: 1849-280219-2 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + XAAAAAAAAAA= + 1849-280219-3_149: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + lQAAAAAAAAA= + 1849-280219-3_158: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + ngAAAAAAAAA= + 1849-280219-3_164: + action_id: 1849-280219-3 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + pAAAAAAAAAA= + 1849-280219-4_56: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + OAAAAAAAAAA= + 1849-280219-4_58: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + OgAAAAAAAAA= + 1849-280219-4_86: + action_id: 1849-280219-4 + unit_id: !!python/object/apply:numpy.core.multiarray.scalar + - *id114 + - !!binary | + VgAAAAAAAAA= +adjlist_inner_dict_factory: &id115 !!python/name:builtins.dict '' +adjlist_outer_dict_factory: *id115 +edge_attr_dict_factory: *id115 +graph: {} +node_dict_factory: *id115 +nodes: !!python/object:networkx.classes.reportviews.NodeView + _nodes: *id116 diff --git a/actions/identify-neurons/data/1849-units.csv b/actions/identify-neurons/data/1849-units.csv new file mode 100644 index 000000000..bec161070 --- /dev/null +++ b/actions/identify-neurons/data/1849-units.csv @@ -0,0 +1,333 @@ +action,channel_group,max_depth_delta,max_dissimilarity,unit_id,unit_name +1849-010319-5,0,100,0.05,901070db-103b-49b1-a6d7-bc5bfeb2d945,117 +1849-060319-1,0,100,0.05,4227ab70-a38d-46b5-9964-fdafdd8fe99d,85 +1849-110319-1,0,100,0.05,1767497c-2bd5-4974-8b03-89313f79789e,52 +1849-110319-2,0,100,0.05,ae0a01af-98ea-4e9a-a2f0-7e8245f2e4a5,56 +1849-150319-2,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,60 +1849-150319-1,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,39 +1849-150319-4,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,85 +1849-150319-3,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,6 +1849-150319-1,0,100,0.05,224c8606-eb2b-4001-b497-dfdc3b402e60,74 +1849-150319-2,0,100,0.05,99183ea7-75e3-4d86-a1be-e165ddb88cc8,40 +1849-150319-3,0,100,0.05,c3fdad70-6df8-45f4-b08a-fa13a8027322,69 +1849-150319-4,0,100,0.05,158bb647-0934-40f2-aef1-ac555194ded3,70 +1849-150319-4,0,100,0.05,9c98907f-625c-4310-bca1-bb3b567b31e3,76 +1849-220319-4,0,100,0.05,b5d91a8d-52fc-4df9-92ca-90c8eca2ce4f,100 +1849-220319-5,0,100,0.05,b5d91a8d-52fc-4df9-92ca-90c8eca2ce4f,79 +1849-220319-2,0,100,0.05,b5d91a8d-52fc-4df9-92ca-90c8eca2ce4f,93 +1849-220319-3,0,100,0.05,ce7262a6-5c97-4427-aa92-783305886a88,0 +1849-280219-1,0,100,0.05,f8470422-542e-4fc7-b713-356737d1d5b0,90 +1849-280219-2,0,100,0.05,7ebbcece-a580-4ddc-898c-07d047e6f187,88 +1849-280219-3,0,100,0.05,c2987b1a-b966-49b6-93e7-23985cedb72e,153 +1849-280219-3,0,100,0.05,05c4b0ff-00bd-4dac-9773-7c5be41b4b5b,160 +1849-280219-4,0,100,0.05,a2e8973c-6160-4165-b26e-0d3bc5881dea,62 +1849-280219-4,0,100,0.05,aba6002f-1ed8-4f21-a399-83b6e91b0872,64 +1849-010319-2,1,100,0.05,f945dfc5-baed-4824-82f5-54d7c345f207,115 +1849-220319-5,1,100,0.05,f945dfc5-baed-4824-82f5-54d7c345f207,117 +1849-010319-4,1,100,0.05,5ac96bb6-8342-44d2-a3d5-e43459b3c845,109 +1849-010319-4,1,100,0.05,48d315a1-e369-49b2-8b3d-397f602eced5,87 +1849-010319-4,1,100,0.05,988d4c67-9183-42f7-b025-77c0803e77c3,97 +1849-010319-4,1,100,0.05,2324f9e9-f406-4315-a3fa-dde6a219a9d7,99 +1849-010319-5,1,100,0.05,fc482c48-79e9-437b-896a-fe85436c185c,127 +1849-010319-5,1,100,0.05,4e72665f-0530-4d81-bf09-4755eeb9623b,137 +1849-010319-5,1,100,0.05,42ebd006-564c-402c-8c34-9259ceae25fa,159 +1849-060319-1,1,100,0.05,61057ea0-2a1d-484f-962d-793f8a6964bd,106 +1849-060319-1,1,100,0.05,4b90f61c-aefb-472b-9fea-af7bd4c0362c,108 +1849-060319-1,1,100,0.05,12a55f1b-7847-47a8-aec2-7ba2517d73c5,71 +1849-060319-1,1,100,0.05,0208d654-111a-4139-876f-3ee6adaeca98,73 +1849-060319-3,1,100,0.05,44dedaa3-5378-43f9-b5b9-8eb78e88122e,104 +1849-060319-3,1,100,0.05,4804082d-033f-4a19-a528-ca0794678c43,108 +1849-060319-3,1,100,0.05,29e545c2-8a47-4184-b5ae-f28c4da53816,85 +1849-060319-3,1,100,0.05,0eb3cb3d-1a75-4829-bccb-aa4b5176e644,94 +1849-060319-3,1,100,0.05,3643cdcb-3ec9-4ec9-9980-df109c8e94be,98 +1849-060319-4,1,100,0.05,a4d8f10a-d912-4532-9f9f-548b706b2b00,76 +1849-110319-1,1,100,0.05,bf474d8d-038e-4cef-850d-65257e269184,31 +1849-110319-1,1,100,0.05,f6ea37fb-f1be-48dd-87f2-71e298a9a826,41 +1849-110319-1,1,100,0.05,0bc28031-b4b5-494d-b7b1-5516d0ce82ad,54 +1849-110319-1,1,100,0.05,e3ecbdeb-518b-47bc-9185-056c12b8e7d0,59 +1849-110319-1,1,100,0.05,3f01af4b-bdc3-4b56-9895-33a06976012a,60 +1849-110319-1,1,100,0.05,03ad2dfa-c3b0-4a2d-9578-4042d90cbd87,64 +1849-110319-2,1,100,0.05,03ad2dfa-c3b0-4a2d-9578-4042d90cbd87,66 +1849-110319-2,1,100,0.05,d94dcb9d-be41-4d2a-845e-909b9d0d786a,68 +1849-110319-1,1,100,0.05,d94dcb9d-be41-4d2a-845e-909b9d0d786a,66 +1849-110319-2,1,100,0.05,4a6d682f-3503-4169-86ac-226afaddbba4,50 +1849-110319-2,1,100,0.05,3083d778-eec3-4500-b624-f7183423b5f3,58 +1849-110319-2,1,100,0.05,be495cb2-bad3-488a-9e13-8d1e29a793b0,62 +1849-110319-3,1,100,0.05,99e26db1-d407-46da-9898-44875dc3fc97,177 +1849-150319-2,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,48 +1849-150319-1,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,105 +1849-280219-4,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,84 +1849-150319-3,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,8 +1849-150319-3,1,100,0.05,4e6c0785-68d0-421b-8eeb-6bc16df6a92e,98 +1849-150319-2,1,100,0.05,4e6c0785-68d0-421b-8eeb-6bc16df6a92e,64 +1849-150319-1,1,100,0.05,4e6c0785-68d0-421b-8eeb-6bc16df6a92e,121 +1849-150319-1,1,100,0.05,066c9e16-04ad-427b-a6e2-37acc5750efe,93 +1849-150319-3,1,100,0.05,066c9e16-04ad-427b-a6e2-37acc5750efe,7 +1849-150319-2,1,100,0.05,066c9e16-04ad-427b-a6e2-37acc5750efe,44 +1849-150319-3,1,100,0.05,c184a29f-4b8a-4bee-be31-c00b26d8ed78,11 +1849-280219-4,1,100,0.05,1d52ed1e-d207-430f-aa3f-2e244b3dcf9c,105 +1849-150319-4,1,100,0.05,1d52ed1e-d207-430f-aa3f-2e244b3dcf9c,100 +1849-280219-2,1,100,0.05,1d52ed1e-d207-430f-aa3f-2e244b3dcf9c,102 +1849-150319-4,1,100,0.05,029892c2-6897-44f3-857a-cf9cc67eb8cf,78 +1849-150319-4,1,100,0.05,4faa3964-3974-489d-a3ad-81ccb6d6c23d,99 +1849-220319-2,1,100,0.05,ff9e75a0-7ea5-44c7-a5c4-fa2c8d8320c4,99 +1849-220319-3,1,100,0.05,eb0c4c1b-f0ab-4af2-9f32-cd2cbc2d1e97,59 +1849-220319-3,1,100,0.05,0b2c621e-1cc0-46b3-898c-dcb8165b7faa,63 +1849-220319-3,1,100,0.05,fe9ce1fa-2209-42db-8b70-49c90879b680,67 +1849-220319-4,1,100,0.05,fe9ce1fa-2209-42db-8b70-49c90879b680,118 +1849-220319-4,1,100,0.05,6117881b-a2f1-4d1f-9a62-7ff7d1a7c506,108 +1849-220319-4,1,100,0.05,9520ecaf-391e-44e1-af0f-cb36a66597b8,117 +1849-220319-4,1,100,0.05,e9d35fae-dc22-43db-a4fc-79355b2ce744,90 +1849-280219-1,1,100,0.05,c5f628f0-34cf-4e3b-bb24-69ac34496e25,102 +1849-280219-1,1,100,0.05,fec96997-dc62-4818-9a2e-ac8f4e87ca12,104 +1849-280219-1,1,100,0.05,dcfa74fa-4b40-4b2b-adf4-dc7ad3848e37,112 +1849-280219-1,1,100,0.05,b84b5fa3-5445-4c68-9604-dab99ca0d392,114 +1849-280219-1,1,100,0.05,545ff8f9-7ed6-4c31-9152-d1669013cfbe,116 +1849-280219-4,1,100,0.05,d3abe753-b5b1-419e-bd2e-0e5676eb12c7,101 +1849-280219-2,1,100,0.05,d3abe753-b5b1-419e-bd2e-0e5676eb12c7,110 +1849-280219-2,1,100,0.05,59074938-007f-4546-9201-94f1edc93b49,78 +1849-280219-3,1,100,0.05,85bade90-21d8-4d76-82f4-57da6daf89bc,180 +1849-280219-3,1,100,0.05,2f483a25-5dca-47cc-b979-6c67959c1854,182 +1849-280219-4,1,100,0.05,15670c68-c11e-417f-b8a1-3c819ea6c64c,32 +1849-280219-4,1,100,0.05,c67dc573-0394-4857-9bd7-9ce3913f355c,81 +1849-010319-2,2,100,0.05,995deed1-c12b-4f1e-9c42-8fce9e5126af,103 +1849-010319-4,2,100,0.05,5fced8d5-40a4-4c50-afbf-5a9989cd7816,103 +1849-010319-2,2,100,0.05,5fced8d5-40a4-4c50-afbf-5a9989cd7816,119 +1849-010319-2,2,100,0.05,6ccc70c7-139c-4673-9bb1-1caf4cbfb5d8,83 +1849-010319-5,2,100,0.05,91b3a06e-5488-47d9-96c5-776f0fc3984e,103 +1849-010319-4,2,100,0.05,91b3a06e-5488-47d9-96c5-776f0fc3984e,61 +1849-010319-4,2,100,0.05,20e7773e-deca-478a-a8c9-a6b010526c46,67 +1849-010319-5,2,100,0.05,20e7773e-deca-478a-a8c9-a6b010526c46,93 +1849-110319-2,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,60 +1849-010319-5,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,121 +1849-150319-3,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,76 +1849-150319-2,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,9 +1849-150319-1,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,91 +1849-220319-4,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,99 +1849-220319-5,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,104 +1849-150319-4,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,81 +1849-110319-1,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,50 +1849-220319-3,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,61 +1849-220319-2,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,95 +1849-010319-5,2,100,0.05,774ac625-07a9-4fb9-b29a-5de8b70a5bca,78 +1849-060319-4,2,100,0.05,66e3674a-43ac-4d74-a682-78001f83fc72,72 +1849-060319-2,2,100,0.05,66e3674a-43ac-4d74-a682-78001f83fc72,81 +1849-060319-3,2,100,0.05,55d851a6-4c6c-4a72-945b-5214f913be00,114 +1849-060319-3,2,100,0.05,85b8afcd-66e3-4ca7-9a78-f964d94bac54,130 +1849-060319-4,2,100,0.05,786ccaf7-c202-4eeb-a6fc-752a86731c34,82 +1849-110319-2,2,100,0.05,7ab4673c-044b-43a4-a031-03938b83cabb,52 +1849-110319-1,2,100,0.05,7ab4673c-044b-43a4-a031-03938b83cabb,46 +1849-110319-2,2,100,0.05,dc68fd0a-728d-4899-b746-3d94cd128d30,64 +1849-110319-1,2,100,0.05,dc68fd0a-728d-4899-b746-3d94cd128d30,62 +1849-150319-2,2,100,0.05,e3e3fe41-fb34-4d5e-88bb-688b8484c0b6,34 +1849-150319-1,2,100,0.05,e3e3fe41-fb34-4d5e-88bb-688b8484c0b6,62 +1849-150319-1,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,72 +1849-150319-3,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,25 +1849-150319-4,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,62 +1849-150319-2,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,36 +1849-150319-4,2,100,0.05,192df09d-8b67-4226-9013-58ccb785f785,90 +1849-150319-3,2,100,0.05,192df09d-8b67-4226-9013-58ccb785f785,21 +1849-150319-2,2,100,0.05,192df09d-8b67-4226-9013-58ccb785f785,62 +1849-150319-4,2,100,0.05,22aed85a-0141-4486-a7b0-902573fd115f,87 +1849-220319-2,2,100,0.05,14486b20-6ff3-4c03-ae15-3bcdfbbeb0e4,91 +1849-220319-5,2,100,0.05,14486b20-6ff3-4c03-ae15-3bcdfbbeb0e4,83 +1849-220319-3,2,100,0.05,ab05f922-bb18-4f22-9354-ea37c2489eb1,65 +1849-280219-1,2,100,0.05,812e8a51-28f8-4a74-96f7-f3cabe48d4af,100 +1849-280219-1,2,100,0.05,81573fb8-5117-48cc-bc2c-bcc4d248ff62,16 +1849-280219-1,2,100,0.05,f558c6be-f286-4e04-8751-fbac1ea5eca8,18 +1849-280219-1,2,100,0.05,db24a924-bb76-4629-8a92-6587b69670ff,84 +1849-280219-1,2,100,0.05,767068ea-a19c-484e-9647-1c4139ed390c,86 +1849-280219-2,2,100,0.05,e129d7e8-72f9-4295-9fc3-5de34a924b48,70 +1849-280219-2,2,100,0.05,f533ec65-508a-47aa-a49e-0e3621d3b010,72 +1849-280219-3,2,100,0.05,a3245cb9-a93e-4ae0-9e3c-e275c6dc0c47,141 +1849-280219-4,2,100,0.05,7f63e82c-cb77-4e6b-a2b1-4336eacb52d5,70 +1849-280219-4,2,100,0.05,0e310b30-e767-4601-9cce-40154eec1ba6,74 +1849-010319-2,3,100,0.05,c6df4551-4969-47ee-81be-ea88fe45e77e,107 +1849-010319-2,3,100,0.05,63278a1b-4bea-4054-ad94-fcc62c3fe34d,111 +1849-010319-2,3,100,0.05,9b438d0d-615d-4648-8df6-4b308963e9e9,40 +1849-010319-4,3,100,0.05,bb383829-1612-45cb-8504-bfb00c6e7897,115 +1849-010319-5,3,100,0.05,bb383829-1612-45cb-8504-bfb00c6e7897,148 +1849-010319-5,3,100,0.05,3e88c624-cb3d-456e-a904-baa1e99ebd9f,99 +1849-010319-4,3,100,0.05,3e88c624-cb3d-456e-a904-baa1e99ebd9f,65 +1849-010319-4,3,100,0.05,1a6ddca9-31a6-453a-afc8-d889320746ef,73 +1849-010319-5,3,100,0.05,1a6ddca9-31a6-453a-afc8-d889320746ef,113 +1849-060319-1,3,100,0.05,421c32ac-f805-403c-9532-c142579eb0a9,102 +1849-060319-1,3,100,0.05,fe007121-4442-49c5-a6b4-60e2446e43cc,77 +1849-060319-1,3,100,0.05,459ad287-b0f9-4dc7-95b8-f56e1a50f8e3,83 +1849-060319-4,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,74 +1849-060319-2,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,99 +1849-060319-3,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,110 +1849-060319-1,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,98 +1849-060319-2,3,100,0.05,17e94d15-5124-4bd2-baa8-edafc5c9b57a,67 +1849-060319-4,3,100,0.05,96b3ae0f-8605-4c63-b587-249e4e4bf460,68 +1849-060319-3,3,100,0.05,96b3ae0f-8605-4c63-b587-249e4e4bf460,100 +1849-060319-2,3,100,0.05,96b3ae0f-8605-4c63-b587-249e4e4bf460,94 +1849-110319-1,3,100,0.05,75306d23-086b-41b1-9603-75dd646b279b,35 +1849-110319-2,3,100,0.05,df1a1a45-5a6c-42f4-bba2-6e8a28636093,40 +1849-150319-1,3,100,0.05,b72da5fe-e0f3-4f39-a1e6-a964c32daa2b,58 +1849-150319-1,3,100,0.05,7b57f633-a87d-42a3-9b8f-a38570d6362d,64 +1849-150319-2,3,100,0.05,0a68341c-9b60-45bd-a520-1db4eefd5527,32 +1849-150319-2,3,100,0.05,a8d410f4-d232-4fd4-86cf-3c4818798ae2,38 +1849-150319-3,3,100,0.05,74a750e4-ac7d-4772-8b7a-5bc5bf9f0a5d,60 +1849-150319-4,3,100,0.05,c2a108cf-b5d1-4f53-a944-f7080c4bf792,58 +1849-220319-2,3,100,0.05,829373a4-573b-4dbd-839c-3b32bb4bbcdc,57 +1849-220319-2,3,100,0.05,d14a6cb4-b30b-41c5-955e-5e9508f31118,59 +1849-220319-2,3,100,0.05,f4190499-2f52-408b-9bc5-78898513a1ca,68 +1849-220319-2,3,100,0.05,6d65ccfb-cd8f-4b9c-8e0b-dc509d333b3c,86 +1849-220319-3,3,100,0.05,19072f12-538b-4bc9-bfd2-5302f85484f4,53 +1849-220319-3,3,100,0.05,b17f8393-c08b-4bf8-bc6a-94c4dc75e890,55 +1849-220319-4,3,100,0.05,5b6c8660-a2e7-4dbb-b6db-b5e52b698016,122 +1849-220319-4,3,100,0.05,e9be012d-3f6e-41e3-a3cd-400f942292ed,79 +1849-220319-4,3,100,0.05,4616134e-8862-47b3-919b-8520ad887297,87 +1849-220319-5,3,100,0.05,21d4a54b-514b-44d9-81f6-7347c1d6ca4f,27 +1849-220319-5,3,100,0.05,ef87c70d-806a-4e0b-8d2f-9d3934a665b0,71 +1849-220319-5,3,100,0.05,195b6f4e-e166-4ede-bf0e-752b773edff5,98 +1849-280219-1,3,100,0.05,81fee3d1-dd2d-44fd-bd84-f396f9ab348b,110 +1849-280219-1,3,100,0.05,c2d44b46-548e-40f5-ad24-8d74a0e411f3,27 +1849-280219-1,3,100,0.05,055c8d4d-667f-4748-9d14-3904b1b0fcf3,28 +1849-280219-1,3,100,0.05,d3219bc6-106f-46ee-8c0b-ab10d5be9569,64 +1849-280219-2,3,100,0.05,e8e8ad81-4260-4f38-8a35-760592f77f8c,51 +1849-280219-2,3,100,0.05,2416f99e-8a20-47c7-9b8a-49d834895536,76 +1849-280219-2,3,100,0.05,a37e302a-ec76-4159-99c5-3eaf890f2f3c,96 +1849-280219-2,3,100,0.05,dc4ded50-3c34-44ba-8dce-fff940d7267e,98 +1849-280219-4,3,100,0.05,dc4ded50-3c34-44ba-8dce-fff940d7267e,125 +1849-280219-3,3,100,0.05,3e99529d-7844-43c7-8e7e-3eee619d499d,166 +1849-280219-3,3,100,0.05,1efe3fb6-7a0c-423a-937f-3aff3895567b,170 +1849-280219-4,3,100,0.05,791f4f4f-057f-471e-b881-a027e71986cf,121 +1849-280219-4,3,100,0.05,190ed37f-6437-4a07-81f8-9c95e39da61c,60 +1849-280219-4,3,100,0.05,e6ca2b59-ad19-48ac-ba17-671c770e95a8,72 +1849-060319-1,4,100,0.05,86c409f3-5503-456d-9b17-37f9d27b3613,104 +1849-060319-4,4,100,0.05,86c409f3-5503-456d-9b17-37f9d27b3613,80 +1849-060319-1,4,100,0.05,9b11a6fc-abae-4b0f-8b91-9883c1111177,88 +1849-060319-2,4,100,0.05,24a0e459-d94f-43ed-8c22-3bdb9a8b27d2,122 +1849-060319-2,4,100,0.05,13e77440-b0be-4253-9151-6d0ca37860e0,95 +1849-060319-3,4,100,0.05,e440f346-ef7e-45e5-82e8-ad22aa25f0df,120 +1849-060319-4,4,100,0.05,d0af3ffc-fe31-4aad-b1cc-fb0e88bc18fb,64 +1849-110319-2,4,100,0.05,c379705d-aa0c-4ecd-831d-8ba21e18dfad,23 +1849-110319-3,4,100,0.05,afdc3efc-52de-4f36-810c-d16a1289bc16,104 +1849-110319-3,4,100,0.05,2195288a-7de9-4486-9f97-402dba50e9c1,163 +1849-150319-1,4,100,0.05,3e1cc8ab-74e5-434f-bd5a-6ef998ad120f,79 +1849-150319-1,4,100,0.05,d8e82b4b-b389-4c4b-940b-3cf223bdee15,85 +1849-150319-1,4,100,0.05,bc0ded9b-eea8-4bf0-83b9-134422a6e9fb,89 +1849-150319-2,4,100,0.05,1b48ab42-285c-4ace-8fc9-380d82422330,17 +1849-150319-3,4,100,0.05,1b48ab42-285c-4ace-8fc9-380d82422330,74 +1849-150319-2,4,100,0.05,6db857e7-e265-4375-9a47-942f86bd06e7,46 +1849-150319-3,4,100,0.05,1098c4ac-8d80-4698-a76f-64eac601bec5,97 +1849-220319-4,4,100,0.05,b25fa152-6f02-446f-a9ee-cf39973428af,112 +1849-220319-5,4,100,0.05,b25fa152-6f02-446f-a9ee-cf39973428af,112 +1849-150319-4,4,100,0.05,b25fa152-6f02-446f-a9ee-cf39973428af,34 +1849-150319-4,4,100,0.05,bb99ad2c-115d-44d1-9f55-2e8ce2a05c59,60 +1849-220319-2,4,100,0.05,80aa98c0-0689-4f27-a9b8-67cd162fc530,101 +1849-220319-2,4,100,0.05,51c43cff-ce8f-4862-b16b-32cd07202a85,107 +1849-220319-2,4,100,0.05,8ba1d7d4-f404-4e2e-ae65-152879a9c650,109 +1849-220319-2,4,100,0.05,44392d0e-e8d8-4774-ad6b-8b6b49a8350b,43 +1849-220319-3,4,100,0.05,6fcb2249-c536-4aa3-b2ba-675ea6ebcee9,69 +1849-220319-3,4,100,0.05,27c2658b-2a4e-4c00-94e1-eb021accec90,71 +1849-280219-1,4,100,0.05,6ad7883e-d45c-4dce-bfcc-90163ef1eadb,66 +1849-280219-2,4,100,0.05,ee588341-3383-4da1-b71c-4f5524144a7f,80 +1849-280219-2,4,100,0.05,34e5491b-16e9-4560-90fe-7616171970f1,86 +1849-280219-3,4,100,0.05,1b359a5d-70e9-4bcc-9ed3-4c835cd0d268,133 +1849-280219-3,4,100,0.05,acec4683-4357-49a0-bd28-89b389607fb4,151 +1849-280219-4,4,100,0.05,55bb8927-0e57-49a6-9d5b-c574f555cb6f,55 +1849-010319-2,5,100,0.05,c2a5482b-e4da-440d-9c4c-d07bf2deb791,91 +1849-010319-2,5,100,0.05,e1c0b0b8-2237-42b1-9013-9404bb1fefab,93 +1849-010319-5,5,100,0.05,b61218f1-0326-46d7-96f1-53489925bef7,87 +1849-010319-4,5,100,0.05,b61218f1-0326-46d7-96f1-53489925bef7,58 +1849-060319-1,5,100,0.05,e096e19e-bed2-4f25-ab5c-ace464256a25,100 +1849-060319-1,5,100,0.05,9cd870c2-a14a-47b1-b6f5-baf26053486a,75 +1849-060319-1,5,100,0.05,f62c2002-0403-43a1-9e70-1a1274c6d0ad,92 +1849-060319-2,5,100,0.05,a2cf723a-8fb8-4e7a-95d8-f9fb9c037532,114 +1849-060319-3,5,100,0.05,a2cf723a-8fb8-4e7a-95d8-f9fb9c037532,112 +1849-060319-2,5,100,0.05,58e0e4f3-6658-4029-a438-18c340919f62,118 +1849-060319-4,5,100,0.05,d4c28ae1-3811-481b-b4b1-aefbc96800bb,78 +1849-110319-1,5,100,0.05,891576de-b4a6-4d7a-a587-2106a882c92f,16 +1849-110319-1,5,100,0.05,eaae5ed3-f001-4938-b11b-a7523337fe2e,17 +1849-110319-1,5,100,0.05,d2bf439a-eda1-4730-91f9-6daa406e07f5,29 +1849-110319-2,5,100,0.05,456858f8-0984-4256-ab05-18c4b241442e,24 +1849-110319-2,5,100,0.05,3dbf3064-1371-41c9-9007-47fa20120840,48 +1849-110319-3,5,100,0.05,d5caa155-4bb8-4ba9-97c1-6810c4603407,165 +1849-150319-1,5,100,0.05,6e77b600-c0b0-4c5c-adcc-8d64de01a365,107 +1849-150319-1,5,100,0.05,d876a92f-79da-4981-8731-af5bfca0041d,60 +1849-150319-1,5,100,0.05,eae35328-c2ee-4e46-bcf9-adebb519ac34,80 +1849-150319-1,5,100,0.05,bdbb00ff-747e-4233-bdcf-0a4b73506472,95 +1849-150319-2,5,100,0.05,dcde8219-5008-48c7-a54e-3ff7dd110798,18 +1849-150319-4,5,100,0.05,a642e683-14d6-477b-a939-1cffbc503874,64 +1849-150319-2,5,100,0.05,a642e683-14d6-477b-a939-1cffbc503874,19 +1849-150319-3,5,100,0.05,a642e683-14d6-477b-a939-1cffbc503874,38 +1849-150319-2,5,100,0.05,6ebfa10d-e096-4293-b09b-2b9c2c78ff56,22 +1849-150319-2,5,100,0.05,6c2679a7-a038-4f81-ab25-16ba343f8821,67 +1849-150319-3,5,100,0.05,c24246c2-07d3-4b76-a37e-f7fe719a5df2,64 +1849-150319-3,5,100,0.05,7e5600ab-e034-47f1-905d-744be2bd1f92,78 +1849-150319-4,5,100,0.05,428ae809-71d4-4682-bbff-39fc1c0bed56,37 +1849-220319-2,5,100,0.05,ac8b26cb-6423-4b70-a2d7-e846c3410f42,32 +1849-220319-2,5,100,0.05,3ee8dab4-5041-46d8-a3e0-f320164e1bd7,45 +1849-220319-2,5,100,0.05,103838e1-a72b-4984-8ff0-c809d8938722,46 +1849-220319-3,5,100,0.05,74743f08-27a9-411d-be99-47f4da5822a8,28 +1849-220319-3,5,100,0.05,dbe25484-cf52-421c-ac3f-c26859186134,73 +1849-220319-3,5,100,0.05,1f07493c-a93a-409f-9a87-8cc5fea712af,75 +1849-220319-4,5,100,0.05,8e21806d-9915-40b4-b1be-4c434c862e8a,102 +1849-220319-4,5,100,0.05,948594d3-ddcf-4954-a04c-b5586bff6995,110 +1849-220319-4,5,100,0.05,10e77237-3825-45ec-8b58-7cf61b7dd428,84 +1849-220319-5,5,100,0.05,fdc089d8-1c49-4258-b9a8-ff7a23f70c01,34 +1849-220319-5,5,100,0.05,fb5caec8-6eaa-4983-b698-3a1070bd6827,35 +1849-220319-5,5,100,0.05,9d6b7eb6-f5de-41e3-a205-1584d57d7f2b,38 +1849-220319-5,5,100,0.05,10997df0-e0bd-4699-9d3b-f95c6b4d9dcf,39 +1849-280219-1,5,100,0.05,39c74c6d-ec64-4962-847e-07eb35e35713,40 +1849-280219-2,5,100,0.05,3239a2ef-5b3e-4643-8ec8-1644821c9a65,64 +1849-280219-3,5,100,0.05,7d4053a4-7caf-41fa-9bb0-dfaf9faaaa82,129 +1849-280219-3,5,100,0.05,19b3d94d-b637-4ada-9caf-7290649ea5cc,137 +1849-280219-4,5,100,0.05,60503a00-13b9-4315-8b44-8ab191913b53,44 +1849-010319-2,6,100,0.05,0fe53439-3ae2-4d3b-b6c1-48869823d892,85 +1849-010319-2,6,100,0.05,838728e2-ec8b-459b-baae-da9f8ef138b9,97 +1849-010319-2,6,100,0.05,bdb7c6e1-4de4-4845-86f9-43393976f357,99 +1849-010319-4,6,100,0.05,ec7620a7-64cf-4c59-b1f5-7a05d703b20d,79 +1849-010319-5,6,100,0.05,6ca97a27-6af1-447f-afc9-0a1cea35e320,105 +1849-010319-5,6,100,0.05,2cb7277b-1d4f-4be0-8ab6-3dfd71c6807c,107 +1849-010319-5,6,100,0.05,41ed1439-2627-46bc-82d6-08583a65a583,109 +1849-060319-1,6,100,0.05,3a120b27-58ad-438d-b3e7-1b2a6fbe5b9e,44 +1849-060319-1,6,100,0.05,e023f131-df43-413c-907a-dc0d8dda1daa,81 +1849-060319-4,6,100,0.05,8da6ec29-00bd-478e-8b0d-6e98378377f0,62 +1849-060319-4,6,100,0.05,4f397d6b-671c-487e-9c4f-da7960ee4cf6,66 +1849-280219-1,6,100,0.05,970d5ca8-a143-4ba8-a862-31327a470ec1,106 +1849-280219-1,6,100,0.05,3e1d3408-86d0-40f5-8768-aa9abe42dfa2,108 +1849-280219-1,6,100,0.05,c5ff3103-ea11-4867-a1f7-9c2f0d415cad,44 +1849-280219-1,6,100,0.05,1bc9b538-04e3-4cf3-ac2b-a7d118987439,45 +1849-280219-1,6,100,0.05,36618e0c-9dc1-472c-a794-ed36c50c3d2f,96 +1849-280219-1,6,100,0.05,23b8e6c1-f4ac-4702-ad70-bb5645513a0e,98 +1849-280219-2,6,100,0.05,dcaa3d76-433b-40c5-bc66-54b4a3affaf2,38 +1849-280219-2,6,100,0.05,e729a175-0be6-4150-bcf5-8cdf16c3b6cf,90 +1849-280219-2,6,100,0.05,f0365b87-f1dd-4ec2-9231-601fe78a9dba,94 +1849-280219-3,6,100,0.05,348eb05e-1d40-47f7-83d7-e78e5ac6a05a,127 +1849-280219-3,6,100,0.05,f96586a6-b9cf-476e-b37c-84ce7c74995e,131 +1849-280219-3,6,100,0.05,100ab2e5-742b-4cd9-873f-04336aefa76f,135 +1849-280219-3,6,100,0.05,cdceb0f3-ae50-402b-970d-263b988f15e5,139 +1849-280219-4,6,100,0.05,e6fc3b7f-eb2e-4446-bea7-51ca9b051c15,66 +1849-280219-4,6,100,0.05,ff5340cb-3904-4f93-b690-493ebf8d65e2,68 +1849-280219-4,7,100,0.05,15f3d73d-90b9-40a8-94f1-75763e3647f1,58 +1849-010319-2,7,100,0.05,15f3d73d-90b9-40a8-94f1-75763e3647f1,101 +1849-280219-2,7,100,0.05,326620da-da95-4232-9314-309575f89963,42 +1849-280219-3,7,100,0.05,326620da-da95-4232-9314-309575f89963,158 +1849-010319-2,7,100,0.05,326620da-da95-4232-9314-309575f89963,70 +1849-280219-4,7,100,0.05,326620da-da95-4232-9314-309575f89963,56 +1849-010319-4,7,100,0.05,87670e0f-1783-462f-b522-0bdd850cddea,59 +1849-010319-5,7,100,0.05,87670e0f-1783-462f-b522-0bdd850cddea,57 +1849-010319-5,7,100,0.05,75421a7a-4265-42ea-9997-24cea4ed02ac,54 +1849-060319-1,7,100,0.05,0778701f-e685-446b-a291-4163a8346fce,49 +1849-060319-1,7,100,0.05,3af3e489-e70b-41f4-93fd-8604d80f1d3e,90 +1849-060319-2,7,100,0.05,6338c3d5-cdfc-41ac-a7e1-afc4363470b7,50 +1849-060319-2,7,100,0.05,d6cb1145-8c8c-4193-a66d-1f54416703b6,71 +1849-060319-2,7,100,0.05,64b621dc-f53c-4d37-9b37-dc63839be641,92 +1849-060319-3,7,100,0.05,f2bc9b83-a96d-4128-8cd1-7bb6a1ffb415,118 +1849-060319-3,7,100,0.05,35843308-4317-4714-9914-9e36623cb1ce,92 +1849-060319-4,7,100,0.05,70bf3009-8a81-4319-b588-fd3fe4d70a1c,60 +1849-150319-1,7,100,0.05,d0c6dbd6-081a-4e1f-8a3c-6a9f17d34763,56 +1849-280219-1,7,100,0.05,f018946b-21db-4a52-a5ba-bffac84887b4,52 +1849-280219-1,7,100,0.05,1414e14e-00a2-451a-aaf2-fa7c8624c6bc,53 +1849-280219-1,7,100,0.05,2336b444-1562-455d-b1d4-a7e49b83fc78,62 +1849-280219-2,7,100,0.05,64fbb0ba-8cf4-4e40-ab66-8c56c262d938,43 +1849-280219-2,7,100,0.05,2a91a55f-011d-46c8-9531-844871317c8b,61 +1849-280219-2,7,100,0.05,a4a4c813-9e64-47c3-9c8f-6984e88b2384,66 +1849-280219-2,7,100,0.05,12bda732-cd13-41a9-9dc8-c9a22720607b,92 +1849-280219-3,7,100,0.05,2e6568a6-509d-4e86-9d41-56e889bcc0ee,149 +1849-280219-3,7,100,0.05,e972ab3f-bbe6-4b5b-b34c-e56aa51a2f5f,164 +1849-280219-4,7,100,0.05,67788bb5-ebf0-4c1a-a686-75a658c75d08,86 diff --git a/actions/identify-neurons/data/units.csv b/actions/identify-neurons/data/units.csv index 24cb90742..025ba8861 100644 --- a/actions/identify-neurons/data/units.csv +++ b/actions/identify-neurons/data/units.csv @@ -1,1282 +1,2909 @@ -action,channel_group,unit_name -1834-150319-3,0,71 -1834-150319-3,0,75 -1834-120319-4,0,85 -1834-120319-1,0,1 -1834-120319-2,0,39 -1834-220319-2,0,1 -1834-220319-3,0,1 -1834-220319-4,0,0 -1834-150319-4,0,0 -1834-120319-3,0,36 -1834-150319-1,0,3 -1834-110319-5,0,98 -1834-110319-1,0,65 -1834-110319-3,0,101 -1834-150319-2,0,2 -1834-110319-1,0,0 -1834-010319-1,0,2 -1834-010319-1,0,39 -1834-060319-3,0,4 -1834-010319-3,0,1 -1834-010319-3,0,12 -1834-010319-3,0,72 -1834-060319-4,0,3 -1834-060319-1,0,7 -1834-220319-1,0,81 -1834-220319-1,0,87 -1834-060319-1,0,70 -1834-060319-1,0,71 -1834-060319-1,0,72 -1834-060319-1,0,73 -1834-060319-1,0,74 -1834-060319-1,0,79 -1834-110319-2,0,108 -1834-110319-2,0,11 -1834-010319-4,0,7 -1834-120319-3,1,38 -1834-120319-2,1,41 -1834-150319-1,1,4 -1834-150319-1,1,46 -1834-150319-1,1,50 -1834-150319-1,1,7 -1834-010319-1,1,48 -1834-010319-3,1,18 -1834-060319-2,1,104 -1834-120319-1,1,3 -1834-010319-4,1,10 -1834-120319-4,2,75 -1834-220319-2,2,49 -1834-220319-1,2,83 -1834-220319-3,2,46 -1834-220319-2,2,7 -1834-220319-1,2,73 -1834-220319-3,2,29 -1834-120319-2,2,43 -1834-120319-2,2,51 -1834-220319-4,2,60 -1834-110319-3,2,47 -1834-110319-5,2,18 -1834-060319-2,2,113 -1834-220319-1,2,79 -1834-120319-3,2,70 -1834-150319-2,3,46 -1834-150319-3,3,61 -1834-150319-3,3,8 -1834-120319-4,3,59 -1834-220319-4,3,10 -1834-220319-1,3,11 -1834-220319-2,3,8 -1834-120319-2,3,15 -1834-120319-2,3,6 -1834-150319-4,3,5 -1834-150319-4,3,6 -1834-150319-1,3,13 -1834-150319-1,3,14 -1834-150319-1,3,2 -1834-150319-1,3,6 -1834-060319-3,3,13 -1834-060319-1,3,95 -1834-110319-3,3,41 -1834-060319-2,3,24 -1834-150319-2,3,13 -1834-010319-5,3,11 -1834-010319-5,3,28 -1834-010319-3,3,76 -1834-010319-1,3,52 -1834-010319-1,3,7 -1834-010319-1,3,8 -1834-010319-3,3,87 -1834-060319-4,3,10 -1834-060319-4,3,8 -1834-060319-2,3,25 -1834-120319-1,3,8 -1834-120319-3,3,62 -1834-220319-3,3,10 -1834-060319-1,3,33 -1834-060319-1,3,85 -1834-110319-2,3,16 -1834-010319-4,3,21 -1834-010319-4,3,22 -1834-110319-5,3,24 -1834-220319-2,4,34 -1834-220319-2,4,47 -1834-220319-4,4,36 -1834-220319-4,4,51 -1834-220319-4,4,63 -1834-220319-4,4,65 -1834-150319-1,4,0 -1834-150319-1,4,23 -1834-150319-1,4,40 -1834-150319-1,4,5 -1834-150319-1,4,52 -1834-150319-2,4,54 -1834-110319-1,4,11 -1834-010319-1,4,13 -1834-010319-1,4,62 -1834-060319-3,4,19 -1834-010319-3,4,34 -1834-010319-3,4,36 -1834-010319-3,4,66 -1834-010319-3,4,90 -1834-060319-4,4,13 -1834-060319-2,4,115 -1834-220319-1,4,65 -1834-120319-3,4,40 -1834-120319-3,4,95 -1834-220319-3,4,15 -1834-110319-2,4,19 -1834-010319-4,4,29 -1834-010319-4,4,35 -1834-010319-4,4,53 -1834-110319-5,4,76 -1834-150319-4,5,13 -1834-150319-3,5,47 -1834-150319-3,5,67 -1834-120319-3,5,23 -1834-120319-4,5,69 -1834-120319-1,5,11 -1834-120319-4,5,73 -1834-120319-4,5,83 -1834-120319-2,5,21 -1834-150319-4,5,11 -1834-150319-4,5,12 -1834-150319-4,5,15 -1834-150319-4,5,16 -1834-150319-4,5,36 -1834-150319-1,5,24 -1834-150319-1,5,25 -1834-150319-1,5,28 -1834-150319-1,5,51 -1834-150319-1,5,58 -1834-150319-1,5,60 -1834-150319-2,5,48 -1834-010319-5,5,14 -1834-010319-5,5,15 -1834-110319-1,5,14 -1834-110319-1,5,16 -1834-110319-1,5,28 -1834-110319-2,5,28 -1834-010319-1,5,16 -1834-010319-1,5,18 -1834-060319-3,5,24 -1834-060319-3,5,25 -1834-060319-3,5,26 -1834-010319-3,5,41 -1834-010319-3,5,42 -1834-060319-4,5,15 -1834-060319-4,5,16 -1834-060319-4,5,17 -1834-060319-2,5,34 -1834-060319-2,5,35 -1834-220319-1,5,77 -1834-120319-3,5,68 -1834-060319-1,5,87 -1834-110319-2,5,29 -1834-110319-2,5,31 -1834-010319-4,5,36 -1834-010319-4,5,37 -1834-110319-5,5,27 -1834-150319-3,6,23 -1834-150319-3,6,59 -1834-150319-3,6,63 -1834-150319-3,6,65 -1834-120319-4,6,55 -1834-120319-2,6,55 -1834-120319-1,6,33 -1834-120319-3,6,56 -1834-150319-4,6,21 -1834-120319-1,6,31 -1834-120319-2,6,23 -1834-120319-3,6,66 -1834-120319-4,6,71 -1834-220319-2,6,17 -1834-220319-2,6,18 -1834-220319-2,6,19 -1834-220319-2,6,43 -1834-220319-2,6,45 -1834-150319-2,6,27 -1834-150319-4,6,20 -1834-150319-4,6,22 -1834-220319-3,6,30 -1834-220319-4,6,29 -1834-220319-3,6,37 -1834-220319-4,6,30 -1834-220319-4,6,39 -1834-220319-3,6,22 -1834-150319-1,6,29 -1834-150319-1,6,31 -1834-150319-1,6,32 -1834-150319-1,6,33 -1834-150319-1,6,34 -1834-110319-3,6,70 -1834-110319-3,6,83 -1834-150319-2,6,26 -1834-150319-2,6,28 -1834-010319-5,6,20 -1834-010319-5,6,33 -1834-010319-5,6,35 -1834-010319-4,6,44 -1834-110319-1,6,20 -1834-110319-1,6,44 -1834-010319-1,6,21 -1834-010319-1,6,22 -1834-060319-3,6,28 -1834-060319-3,6,30 -1834-060319-3,6,32 -1834-060319-3,6,43 -1834-010319-3,6,53 -1834-010319-3,6,55 -1834-010319-3,6,91 -1834-060319-4,6,19 -1834-060319-4,6,21 -1834-060319-4,6,22 -1834-060319-2,6,122 -1834-060319-2,6,39 -1834-060319-2,6,40 -1834-060319-2,6,45 -1834-220319-1,6,24 -1834-220319-1,6,26 -1834-220319-1,6,41 -1834-220319-1,6,69 -1834-220319-1,6,75 -1834-060319-1,6,55 -1834-060319-1,6,58 -1834-110319-2,6,34 -1834-110319-2,6,38 -1834-110319-2,6,39 -1834-110319-2,6,77 -1834-110319-2,6,87 -1834-010319-4,6,46 -1834-110319-5,6,30 -1834-110319-5,6,31 -1834-150319-3,7,27 -1834-150319-3,7,28 -1834-150319-3,7,30 -1834-150319-3,7,44 -1834-150319-3,7,45 -1834-150319-3,7,49 -1834-150319-3,7,53 -1834-150319-3,7,55 -1834-150319-3,7,57 -1834-120319-4,7,22 -1834-120319-2,7,26 -1834-120319-1,7,16 -1834-120319-3,7,28 -1834-120319-4,7,52 -1834-220319-4,7,31 -1834-220319-2,7,20 -1834-220319-2,7,21 -1834-220319-2,7,29 -1834-220319-4,7,45 -1834-220319-3,7,28 -1834-220319-2,7,39 -1834-220319-2,7,41 -1834-120319-2,7,61 -1834-120319-2,7,78 -1834-150319-4,7,23 -1834-150319-4,7,24 -1834-150319-4,7,25 -1834-150319-4,7,26 -1834-150319-4,7,33 -1834-220319-4,7,32 -1834-220319-4,7,33 -1834-220319-4,7,46 -1834-150319-1,7,37 -1834-150319-1,7,41 -1834-150319-1,7,44 -1834-150319-1,7,45 -1834-150319-1,7,47 -1834-150319-1,7,56 -1834-150319-1,7,74 -1834-150319-1,7,76 -1834-150319-1,7,77 -1834-150319-1,7,92 -1834-110319-3,7,27 -1834-110319-3,7,28 -1834-110319-3,7,29 -1834-110319-3,7,30 -1834-150319-2,7,29 -1834-150319-2,7,30 -1834-150319-2,7,31 -1834-150319-2,7,32 -1834-150319-2,7,37 -1834-150319-2,7,42 -1834-010319-4,7,45 -1834-010319-5,7,19 -1834-010319-5,7,21 -1834-010319-5,7,23 -1834-010319-4,7,49 -1834-010319-5,7,39 -1834-110319-2,7,41 -1834-110319-1,7,23 -1834-110319-1,7,24 -1834-110319-1,7,25 -1834-110319-2,7,45 -1834-110319-1,7,26 -1834-110319-1,7,30 -1834-010319-1,7,24 -1834-010319-1,7,25 -1834-060319-2,7,42 -1834-060319-3,7,33 -1834-060319-2,7,43 -1834-060319-3,7,35 -1834-060319-2,7,44 -1834-060319-3,7,37 -1834-060319-3,7,40 -1834-060319-4,7,28 -1834-060319-3,7,41 -1834-060319-2,7,46 -1834-010319-3,7,57 -1834-010319-3,7,58 -1834-010319-3,7,60 -1834-010319-3,7,61 -1834-010319-3,7,63 -1834-060319-4,7,23 -1834-060319-4,7,24 -1834-060319-4,7,26 -1834-060319-4,7,29 -1834-060319-2,7,41 -1834-220319-1,7,29 -1834-220319-1,7,36 -1834-220319-1,7,37 -1834-220319-1,7,49 -1834-220319-1,7,67 -1834-120319-3,7,52 -1834-220319-3,7,23 -1834-220319-3,7,25 -1834-220319-3,7,26 -1834-220319-3,7,31 -1834-060319-1,7,59 -1834-060319-1,7,91 -1834-110319-2,7,104 -1834-110319-2,7,40 -1834-110319-2,7,47 -1834-110319-2,7,86 -1834-110319-2,7,96 -1834-120319-1,7,17 -1834-010319-4,7,48 -1834-110319-5,7,78 -1834-110319-5,7,90 -1849-280219-4,0,62 -1849-280219-4,0,64 -1849-110319-2,0,56 -1849-220319-5,0,79 -1849-220319-2,0,93 -1849-220319-4,0,100 -1849-280219-3,0,153 -1849-280219-3,0,160 -1849-220319-3,0,0 -1849-150319-3,0,6 -1849-150319-3,0,69 -1849-150319-2,0,40 -1849-150319-1,0,39 -1849-150319-2,0,60 -1849-280219-2,0,88 -1849-150319-4,0,70 -1849-150319-4,0,76 -1849-150319-4,0,85 -1849-060319-1,0,85 -1849-150319-1,0,74 -1849-110319-1,0,52 -1849-280219-1,0,90 -1849-060319-3,1,104 -1849-060319-3,1,108 -1849-060319-3,1,85 -1849-060319-3,1,94 -1849-060319-3,1,98 -1849-280219-4,1,101 -1849-280219-4,1,105 -1849-280219-2,1,102 -1849-280219-4,1,32 -1849-280219-4,1,81 -1849-280219-4,1,84 -1849-110319-2,1,50 -1849-110319-2,1,58 -1849-110319-2,1,62 -1849-110319-2,1,66 -1849-110319-1,1,64 -1849-110319-1,1,66 -1849-110319-2,1,68 -1849-220319-2,1,99 -1849-280219-3,1,180 -1849-280219-3,1,182 -1849-220319-3,1,59 -1849-220319-3,1,63 -1849-220319-3,1,67 -1849-110319-3,1,177 -1849-150319-3,1,11 -1849-150319-1,1,93 -1849-150319-3,1,7 -1849-150319-2,1,44 -1849-150319-3,1,8 -1849-150319-1,1,121 -1849-150319-2,1,64 -1849-150319-3,1,98 -1849-150319-2,1,48 -1849-280219-2,1,110 -1849-280219-2,1,78 -1849-060319-4,1,76 -1849-150319-4,1,100 -1849-150319-4,1,78 -1849-150319-4,1,99 -1849-060319-1,1,106 -1849-060319-1,1,108 -1849-060319-1,1,71 -1849-060319-1,1,73 -1849-150319-1,1,105 -1849-110319-1,1,31 -1849-110319-1,1,41 -1849-110319-1,1,54 -1849-110319-1,1,59 -1849-110319-1,1,60 -1849-220319-4,1,108 -1849-220319-4,1,117 -1849-220319-4,1,118 -1849-220319-4,1,90 -1849-220319-5,1,117 -1849-280219-1,1,102 -1849-280219-1,1,104 -1849-280219-1,1,112 -1849-280219-1,1,114 -1849-280219-1,1,116 -1849-060319-3,2,114 -1849-060319-3,2,130 -1849-280219-4,2,70 -1849-280219-4,2,74 -1849-110319-2,2,52 -1849-110319-1,2,46 -1849-110319-2,2,60 -1849-110319-1,2,62 -1849-110319-2,2,64 -1849-220319-2,2,91 -1849-220319-5,2,83 -1849-220319-3,2,61 -1849-220319-5,2,104 -1849-150319-2,2,9 -1849-150319-3,2,76 -1849-220319-2,2,95 -1849-220319-4,2,99 -1849-150319-1,2,91 -1849-150319-4,2,81 -1849-280219-3,2,141 -1849-220319-3,2,65 -1849-150319-4,2,90 -1849-150319-2,2,62 -1849-150319-3,2,21 -1849-150319-4,2,62 -1849-150319-3,2,25 -1849-150319-2,2,34 -1849-150319-2,2,36 -1849-280219-2,2,70 -1849-280219-2,2,72 -1849-060319-4,2,72 -1849-060319-2,2,81 -1849-060319-4,2,82 -1849-150319-4,2,87 -1849-150319-1,2,62 -1849-150319-1,2,72 -1849-110319-1,2,50 -1849-280219-1,2,100 -1849-280219-1,2,16 -1849-280219-1,2,18 -1849-280219-1,2,84 -1849-280219-1,2,86 -1849-060319-3,3,100 -1849-060319-3,3,110 -1849-060319-1,3,98 -1849-280219-4,3,121 -1849-280219-4,3,125 -1849-280219-4,3,60 -1849-280219-1,3,27 -1849-280219-1,3,28 -1849-280219-4,3,72 -1849-110319-2,3,40 -1849-220319-2,3,57 -1849-220319-2,3,59 -1849-220319-2,3,68 -1849-220319-2,3,86 -1849-280219-3,3,166 -1849-280219-3,3,170 -1849-220319-3,3,53 -1849-220319-3,3,55 -1849-150319-3,3,60 -1849-150319-2,3,32 -1849-150319-2,3,38 -1849-280219-2,3,51 -1849-280219-2,3,76 -1849-280219-2,3,96 -1849-280219-2,3,98 -1849-060319-4,3,68 -1849-060319-4,3,74 -1849-150319-4,3,58 -1849-060319-1,3,102 -1849-060319-1,3,77 -1849-060319-1,3,83 -1849-060319-2,3,67 -1849-060319-2,3,94 -1849-060319-2,3,99 -1849-150319-1,3,58 -1849-150319-1,3,64 -1849-110319-1,3,35 -1849-220319-4,3,122 -1849-220319-4,3,79 -1849-220319-4,3,87 -1849-220319-5,3,27 -1849-220319-5,3,71 -1849-220319-5,3,98 -1849-280219-1,3,110 -1849-280219-1,3,64 -1849-060319-3,4,120 -1849-280219-4,4,55 -1849-110319-2,4,23 -1849-220319-2,4,101 -1849-220319-2,4,107 -1849-220319-2,4,109 -1849-220319-2,4,43 -1849-280219-3,4,133 -1849-280219-3,4,151 -1849-220319-3,4,69 -1849-220319-3,4,71 -1849-110319-3,4,104 -1849-110319-3,4,163 -1849-150319-3,4,74 -1849-150319-3,4,97 -1849-150319-2,4,17 -1849-150319-2,4,46 -1849-280219-2,4,80 -1849-280219-2,4,86 -1849-060319-4,4,64 -1849-060319-4,4,80 -1849-060319-1,4,104 -1849-150319-4,4,34 -1849-150319-4,4,60 -1849-060319-1,4,88 -1849-060319-2,4,122 -1849-060319-2,4,95 -1849-150319-1,4,79 -1849-150319-1,4,85 -1849-150319-1,4,89 -1849-220319-4,4,112 -1849-220319-5,4,112 -1849-280219-1,4,66 -1849-060319-3,5,112 -1849-280219-4,5,44 -1849-110319-2,5,24 -1849-110319-2,5,48 -1849-220319-2,5,32 -1849-220319-2,5,45 -1849-220319-2,5,46 -1849-280219-3,5,129 -1849-280219-3,5,137 -1849-220319-3,5,28 -1849-220319-3,5,73 -1849-220319-3,5,75 -1849-110319-3,5,165 -1849-150319-4,5,64 -1849-150319-3,5,38 -1849-150319-3,5,64 -1849-150319-3,5,78 -1849-150319-2,5,18 -1849-150319-2,5,19 -1849-150319-2,5,22 -1849-150319-2,5,67 -1849-280219-2,5,64 -1849-060319-4,5,78 -1849-150319-4,5,37 -1849-060319-1,5,100 -1849-060319-1,5,75 -1849-060319-1,5,92 -1849-060319-2,5,114 -1849-060319-2,5,118 -1849-150319-1,5,107 -1849-150319-1,5,60 -1849-150319-1,5,80 -1849-150319-1,5,95 -1849-110319-1,5,16 -1849-110319-1,5,17 -1849-110319-1,5,29 -1849-220319-4,5,102 -1849-220319-4,5,110 -1849-220319-4,5,84 -1849-220319-5,5,34 -1849-220319-5,5,35 -1849-220319-5,5,38 -1849-220319-5,5,39 -1849-280219-1,5,40 -1849-280219-4,6,66 -1849-280219-4,6,68 -1849-280219-3,6,127 -1849-280219-3,6,131 -1849-280219-3,6,135 -1849-280219-3,6,139 -1849-280219-2,6,38 -1849-280219-2,6,90 -1849-280219-1,6,106 -1849-280219-2,6,94 -1849-060319-4,6,62 -1849-060319-4,6,66 -1849-060319-1,6,44 -1849-060319-1,6,81 -1849-280219-1,6,108 -1849-280219-1,6,44 -1849-280219-1,6,45 -1849-280219-1,6,96 -1849-280219-1,6,98 -1849-060319-3,7,118 -1849-060319-3,7,92 -1849-280219-4,7,56 -1849-280219-3,7,158 -1849-280219-4,7,58 -1849-280219-4,7,86 -1849-280219-3,7,149 -1849-280219-3,7,164 -1849-280219-2,7,42 -1849-280219-1,7,52 -1849-280219-2,7,43 -1849-280219-2,7,61 -1849-280219-2,7,66 -1849-280219-2,7,92 -1849-060319-4,7,60 -1849-060319-1,7,49 -1849-060319-1,7,90 -1849-060319-2,7,50 -1849-060319-2,7,71 -1849-060319-2,7,92 -1849-150319-1,7,56 -1849-280219-1,7,53 -1849-280219-1,7,62 -1833-260619-1,0,118 -1833-260619-1,0,120 -1833-260619-3,0,196 -1833-260619-1,0,130 -1833-260619-1,0,132 -1833-260619-3,0,209 -1833-260619-4,0,233 -1833-260619-2,0,174 -1833-260619-1,0,2 -1833-260619-2,0,2 -1833-260619-3,0,1 -1833-260619-4,0,235 -1833-010719-1,0,127 -1833-010719-2,0,239 -1833-260619-3,0,0 -1833-010719-1,0,161 -1833-010719-1,0,191 -1833-010719-1,0,223 -1833-010719-2,0,261 -1833-010719-1,0,225 -1833-010719-2,0,4 -1833-010719-1,0,235 -1833-020719-4,0,258 -1833-020719-3,0,143 -1833-020719-4,0,302 -1833-020719-1,0,123 -1833-020719-3,0,141 -1833-020719-2,0,129 -1833-020719-4,0,306 -1833-020719-2,0,142 -1833-020719-4,0,308 -1833-020719-1,0,145 -1833-020719-3,0,156 -1833-020719-4,0,320 -1833-020719-3,0,162 -1833-020719-2,0,8 -1833-020719-1,0,158 -1833-260619-2,0,152 -1833-260619-2,0,164 -1833-200619-2,0,283 -1833-200619-3,0,0 -1833-200619-4,0,1 -1833-200619-4,0,78 -1833-200619-4,0,90 -1833-200619-4,0,92 -1833-200619-4,0,96 -1833-290519-4,0,88 -1833-290519-3,0,107 -1833-290519-1,0,134 -1833-290519-3,0,137 -1833-290519-4,0,117 -1833-290519-1,0,114 -1833-290519-1,0,116 -1833-290519-1,0,132 -1833-120619-1,0,139 -1833-120619-2,0,175 -1833-120619-3,0,153 -1833-020719-3,0,104 -1833-020719-3,0,105 -1833-020719-3,0,112 -1833-020719-3,0,116 -1833-020719-3,0,150 -1833-120619-2,0,89 -1833-020719-2,0,105 -1833-020719-2,0,95 -1833-260619-4,0,115 -1833-260619-3,0,141 -1833-260619-4,0,202 -1833-260619-3,0,180 -1833-260619-4,0,208 -1833-260619-3,0,194 -1833-260619-4,0,222 -1833-200619-2,0,268 -1833-020719-1,0,119 -1833-020719-1,0,121 -1833-290519-2,0,101 -1833-290519-2,0,89 -1833-060619-2,0,76 -1833-060619-2,0,90 -1833-200619-1,0,147 -1833-260619-3,0,140 -1833-260619-3,0,182 -1833-200619-3,0,91 -1833-200619-3,0,93 -1833-010719-2,0,254 -1833-010719-2,0,265 -1833-010719-2,0,267 -1833-260619-1,1,10 -1833-260619-1,1,104 -1833-260619-1,1,116 -1833-260619-1,1,126 -1833-010719-1,1,146 -1833-010719-1,1,219 -1833-010719-1,1,221 -1833-010719-1,1,229 -1833-010719-1,1,6 -1833-010719-1,1,8 -1833-020719-4,1,256 -1833-020719-4,1,278 -1833-020719-4,1,300 -1833-050619-1,1,75 -1833-060619-1,1,137 -1833-260619-2,1,123 -1833-260619-2,1,130 -1833-260619-2,1,166 -1833-200619-3,1,89 -1833-200619-4,1,70 -1833-200619-4,1,76 -1833-200619-3,1,97 -1833-290519-3,1,119 -1833-290519-3,1,72 -1833-050619-3,1,125 -1833-290519-1,1,124 -1833-290519-1,1,136 -1833-290519-1,1,95 -1833-120619-1,1,114 -1833-050619-2,1,129 -1833-020719-3,1,123 -1833-020719-2,1,14 -1833-020719-3,1,139 -1833-020719-3,1,154 -1833-020719-3,1,166 -1833-120619-2,1,104 -1833-020719-2,1,131 -1833-020719-2,1,15 -1833-020719-2,1,152 -1833-020719-2,1,87 -1833-050619-4,1,68 -1833-050619-4,1,84 -1833-050619-4,1,86 -1833-260619-4,1,178 -1833-260619-3,1,170 -1833-260619-4,1,198 -1833-260619-4,1,204 -1833-260619-4,1,226 -1833-200619-2,1,278 -1833-290519-4,1,85 -1833-290519-4,1,96 -1833-020719-1,1,115 -1833-020719-1,1,147 -1833-020719-1,1,155 -1833-290519-2,1,117 -1833-290519-2,1,119 -1833-290519-2,1,129 -1833-290519-2,1,135 -1833-060619-2,1,64 -1833-060619-2,1,78 -1833-200619-1,1,155 -1833-200619-1,1,159 -1833-260619-3,1,119 -1833-260619-3,1,207 -1833-010719-2,1,135 -1833-010719-2,1,18 -1833-010719-2,1,227 -1833-010719-2,1,229 -1833-010719-2,1,233 -1833-010719-2,1,269 -1833-010719-2,1,273 -1833-260619-3,2,198 -1833-260619-1,2,128 -1833-260619-2,2,168 -1833-010719-1,2,202 -1833-010719-1,2,231 -1833-020719-4,2,260 -1833-050619-3,2,133 -1833-050619-1,2,99 -1833-050619-2,2,135 -1833-060619-1,2,168 -1833-060619-2,2,106 -1833-260619-2,2,148 -1833-200619-4,2,115 -1833-200619-1,2,228 -1833-200619-4,2,117 -1833-200619-3,2,142 -1833-200619-1,2,239 -1833-200619-2,2,325 -1833-050619-2,2,89 -1833-050619-3,2,111 -1833-120619-3,2,104 -1833-120619-1,2,120 -1833-050619-2,2,111 -1833-020719-3,2,147 -1833-020719-3,2,168 -1833-120619-2,2,118 -1833-120619-2,2,142 -1833-020719-2,2,119 -1833-020719-2,2,120 -1833-020719-2,2,93 -1833-260619-4,2,216 -1833-010719-2,2,249 -1833-020719-1,2,143 -1833-020719-1,2,149 -1833-290519-2,2,115 -1833-290519-2,2,123 -1833-290519-2,2,147 -1833-010719-2,2,271 -1833-010719-2,2,29 -1833-260619-1,3,114 -1833-010719-1,3,171 -1833-010719-1,3,198 -1833-010719-2,3,243 -1833-020719-3,3,17 -1833-020719-1,3,151 -1833-020719-2,3,136 -1833-010719-1,3,216 -1833-010719-2,3,133 -1833-010719-1,3,240 -1833-020719-4,3,289 -1833-020719-4,3,290 -1833-020719-4,3,298 -1833-020719-4,3,318 -1833-050619-2,3,143 -1833-050619-4,3,148 -1833-050619-3,3,147 -1833-050619-1,3,107 -1833-060619-1,3,174 -1833-260619-2,3,146 -1833-200619-1,3,184 -1833-200619-4,3,102 -1833-200619-3,3,128 -1833-200619-3,3,82 -1833-200619-4,3,74 -1833-290519-3,3,102 -1833-290519-4,3,92 -1833-290519-3,3,153 -1833-290519-3,3,68 -1833-290519-4,3,130 -1833-290519-3,3,99 -1833-290519-1,3,101 -1833-290519-1,3,156 -1833-020719-3,3,152 -1833-020719-3,3,164 -1833-020719-3,3,170 -1833-020719-1,3,164 -1833-020719-3,3,23 -1833-020719-1,3,140 -1833-020719-2,3,140 -1833-120619-2,3,143 -1833-120619-2,3,69 -1833-020719-2,3,107 -1833-020719-2,3,139 -1833-020719-2,3,146 -1833-260619-4,3,196 -1833-260619-4,3,206 -1833-200619-2,3,257 -1833-200619-2,3,264 -1833-290519-4,3,129 -1833-020719-1,3,135 -1833-020719-1,3,153 -1833-290519-2,3,121 -1833-290519-2,3,73 -1833-290519-2,3,77 -1833-200619-1,3,151 -1833-260619-3,3,160 -1833-260619-3,3,176 -1833-010719-2,3,157 -1833-010719-2,3,173 -1833-010719-2,3,174 -1833-010719-2,3,187 -1833-010719-2,3,188 -1833-010719-2,3,241 -1833-010719-2,3,259 -1833-020719-4,4,250 -1833-050619-2,4,137 -1833-050619-1,4,25 -1833-060619-1,4,144 -1833-060619-1,4,172 -1833-120619-4,4,119 -1833-120619-1,4,137 -1833-060619-2,4,108 -1833-120619-3,4,147 -1833-120619-2,4,170 -1833-200619-4,4,124 -1833-290519-3,4,135 -1833-290519-3,4,145 -1833-290519-3,4,76 -1833-050619-4,4,80 -1833-050619-2,4,97 -1833-050619-3,4,123 -1833-050619-3,4,145 -1833-050619-4,4,151 -1833-290519-1,4,109 -1833-290519-1,4,112 -1833-290519-1,4,86 -1833-290519-1,4,90 -1833-120619-3,4,100 -1833-120619-3,4,101 -1833-020719-3,4,45 -1833-020719-3,4,94 -1833-020719-3,4,95 -1833-120619-2,4,81 -1833-200619-2,4,254 -1833-290519-4,4,71 -1833-290519-2,4,110 -1833-290519-2,4,125 -1833-290519-2,4,133 -1833-200619-1,4,165 -1833-200619-3,4,113 -1833-010719-2,4,223 -1833-010719-2,4,231 -1833-260619-1,5,100 -1833-260619-2,5,154 -1833-260619-4,5,212 -1833-260619-1,5,110 -1833-260619-3,5,184 -1833-010719-1,5,134 -1833-010719-1,5,144 -1833-010719-1,5,150 -1833-010719-1,5,166 -1833-010719-2,5,235 -1833-020719-4,5,266 -1833-020719-4,5,294 -1833-050619-2,5,123 -1833-050619-1,5,73 -1833-060619-1,5,156 -1833-060619-1,5,164 -1833-260619-2,5,115 -1833-200619-4,5,94 -1833-290519-3,5,109 -1833-290519-3,5,117 -1833-290519-3,5,139 -1833-290519-3,5,143 -1833-050619-3,5,127 -1833-290519-1,5,104 -1833-290519-1,5,120 -1833-290519-1,5,126 -1833-290519-1,5,148 -1833-290519-1,5,152 -1833-120619-3,5,136 -1833-120619-4,5,122 -1833-120619-1,5,133 -1833-020719-3,5,117 -1833-020719-3,5,121 -1833-020719-3,5,135 -1833-120619-2,5,100 -1833-120619-2,5,123 -1833-120619-2,5,133 -1833-120619-2,5,145 -1833-020719-2,5,103 -1833-020719-2,5,126 -1833-050619-4,5,79 -1833-050619-4,5,82 -1833-260619-4,5,162 -1833-260619-4,5,188 -1833-200619-3,5,122 -1833-200619-2,5,270 -1833-290519-4,5,115 -1833-290519-4,5,121 -1833-290519-4,5,98 -1833-020719-1,5,109 -1833-290519-2,5,81 -1833-060619-2,5,68 -1833-060619-2,5,98 -1833-260619-3,5,109 -1833-260619-3,5,111 -1833-260619-3,5,113 -1833-200619-3,5,59 -1833-010719-2,5,221 -1833-260619-1,6,102 -1833-260619-4,6,182 -1833-260619-1,6,106 -1833-260619-1,6,108 -1833-260619-1,6,112 -1833-260619-3,6,192 -1833-260619-2,6,160 -1833-260619-1,6,124 -1833-010719-1,6,152 -1833-010719-1,6,183 -1833-010719-1,6,200 -1833-010719-1,6,227 -1833-020719-4,6,248 -1833-020719-4,6,254 -1833-020719-4,6,310 -1833-060619-1,6,176 -1833-050619-2,6,152 -1833-050619-3,6,149 -1833-050619-4,6,157 -1833-050619-1,6,111 -1833-050619-1,6,60 -1833-050619-4,6,92 -1833-120619-3,6,118 -1833-060619-2,6,82 -1833-050619-2,6,125 -1833-050619-1,6,64 -1833-050619-3,6,129 -1833-060619-1,6,162 -1833-060619-1,6,170 -1833-050619-1,6,91 -1833-060619-1,6,158 -1833-060619-1,6,160 -1833-260619-2,6,140 -1833-260619-2,6,144 -1833-260619-2,6,156 -1833-260619-2,6,170 -1833-200619-4,6,101 -1833-200619-4,6,109 -1833-200619-4,6,121 -1833-200619-1,6,240 -1833-200619-2,6,327 -1833-200619-3,6,150 -1833-200619-4,6,80 -1833-200619-4,6,89 -1833-290519-3,6,125 -1833-290519-3,6,141 -1833-290519-3,6,147 -1833-290519-3,6,149 -1833-290519-3,6,151 -1833-290519-3,6,155 -1833-050619-3,6,109 -1833-050619-3,6,117 -1833-050619-2,6,119 -1833-050619-2,6,146 -1833-050619-3,6,143 -1833-290519-1,6,102 -1833-290519-1,6,128 -1833-290519-1,6,138 -1833-290519-1,6,142 -1833-120619-3,6,122 -1833-120619-3,6,141 -1833-120619-2,6,169 -1833-120619-3,6,143 -1833-120619-3,6,145 -1833-120619-4,6,127 -1833-050619-4,6,135 -1833-120619-3,6,94 -1833-120619-1,6,127 -1833-120619-1,6,129 -1833-050619-2,6,74 -1833-050619-2,6,81 -1833-020719-3,6,63 -1833-020719-3,6,64 -1833-020719-3,6,96 -1833-120619-2,6,151 -1833-060619-2,6,105 -1833-020719-2,6,99 -1833-050619-4,6,117 -1833-050619-4,6,133 -1833-260619-4,6,184 -1833-260619-4,6,200 -1833-260619-4,6,214 -1833-260619-4,6,218 -1833-260619-4,6,80 -1833-200619-2,6,28 -1833-200619-2,6,281 -1833-200619-2,6,287 -1833-200619-2,6,308 -1833-200619-2,6,321 -1833-120619-4,6,120 -1833-120619-4,6,124 -1833-120619-4,6,80 -1833-120619-4,6,85 -1833-120619-4,6,95 -1833-290519-4,6,108 -1833-290519-4,6,65 -1833-290519-4,6,79 -1833-290519-4,6,90 -1833-020719-1,6,107 -1833-290519-2,6,83 -1833-290519-2,6,85 -1833-290519-2,6,97 -1833-060619-2,6,112 -1833-060619-2,6,116 -1833-060619-2,6,74 -1833-200619-1,6,163 -1833-200619-3,6,120 -1833-200619-1,6,171 -1833-200619-1,6,206 -1833-260619-3,6,142 -1833-260619-3,6,168 -1833-200619-3,6,126 -1833-200619-3,6,132 -1833-200619-3,6,75 -1833-010719-2,6,225 -1833-260619-1,7,98 -1833-010719-1,7,114 -1833-010719-1,7,132 -1833-010719-2,7,217 -1833-010719-1,7,54 -1833-060619-1,7,139 -1833-200619-3,7,65 -1833-200619-4,7,68 -1833-290519-3,7,103 -1833-290519-3,7,113 -1833-290519-3,7,129 -1833-290519-1,7,94 -1833-290519-3,7,82 -1833-050619-3,7,105 -1833-050619-2,7,66 -1833-290519-1,7,110 -1833-290519-1,7,122 -1833-290519-1,7,88 -1833-120619-3,7,120 -1833-120619-2,7,85 -1833-260619-4,7,177 -1833-200619-2,7,203 -1833-200619-2,7,204 -1833-200619-2,7,261 -1833-120619-4,7,65 -1833-290519-4,7,67 -1833-290519-4,7,75 -1833-290519-4,7,77 -1833-290519-4,7,94 -1833-290519-2,7,111 -1833-290519-2,7,113 -1833-290519-2,7,137 -1833-290519-2,7,141 -1833-060619-2,7,58 -1833-200619-1,7,143 -1833-260619-3,7,103 -1833-260619-3,7,105 -1833-200619-3,7,53 -1833-010719-2,7,211 -1833-010719-2,7,213 -1839-290519-1,0,120 -1839-290519-2,0,107 -1839-290519-2,0,117 -1839-290519-3,0,111 -1839-120619-2,0,76 -1839-200619-2,0,104 -1839-200619-2,0,98 -1839-120619-4,1,104 -1839-120619-4,1,84 -1839-120619-4,1,86 -1839-290519-1,1,110 -1839-120619-3,1,113 -1839-200619-2,1,7 -1839-120619-3,2,129 -1839-120619-4,3,112 -1839-120619-4,3,29 -1839-200619-1,3,153 -1839-120619-3,3,137 -1839-200619-2,3,118 -1839-120619-4,4,102 -1839-120619-4,4,110 -1839-120619-4,4,120 -1839-120619-4,4,82 -1839-060619-3,4,101 -1839-290519-1,4,122 -1839-290519-1,4,127 -1839-290519-2,4,119 -1839-290519-2,4,39 -1839-060619-4,4,230 -1839-200619-1,4,141 -1839-290519-3,4,117 -1839-290519-3,4,72 -1839-060619-1,4,240 -1839-060619-5,4,164 -1839-120619-2,4,78 -1839-120619-3,4,115 -1839-120619-3,4,121 -1839-200619-2,4,100 -1839-200619-2,4,106 -1839-200619-2,4,108 -1839-060619-5,5,138 -1839-060619-3,5,87 -1839-120619-1,5,158 -1839-290519-1,5,133 -1839-290519-1,5,137 -1839-290519-2,5,125 -1839-290519-2,5,146 -1839-290519-2,5,148 -1839-290519-2,5,95 -1839-060619-4,5,228 -1839-200619-1,5,145 -1839-290519-3,5,115 -1839-290519-3,5,119 -1839-060619-5,5,170 -1839-120619-2,5,104 -1839-120619-2,5,47 -1839-120619-3,5,131 -1839-200619-2,5,96 -1839-120619-4,6,106 -1839-120619-4,6,116 -1839-120619-4,6,122 -1839-120619-4,6,124 -1839-120619-4,6,132 -1839-120619-4,6,134 -1839-120619-3,6,133 -1839-120619-4,6,90 -1839-120619-4,6,92 -1839-060619-3,6,91 -1839-120619-1,6,143 -1839-290519-1,6,116 -1839-290519-1,6,131 -1839-290519-2,6,113 -1839-290519-2,6,115 -1839-200619-1,6,139 -1839-060619-5,6,142 -1839-060619-5,6,162 -1839-060619-5,6,166 -1839-060619-5,6,168 -1839-120619-2,6,106 -1839-120619-2,6,51 -1839-120619-2,6,86 -1839-120619-2,6,88 -1839-120619-3,6,123 -1839-120619-3,6,125 -1839-120619-3,6,71 -1839-200619-2,6,112 -1839-200619-2,6,114 -1839-200619-2,6,48 -1839-200619-2,6,54 -1839-200619-2,6,78 -1839-200619-2,6,89 -1839-200619-2,6,92 -1839-200619-2,6,94 -1839-120619-4,7,108 -1839-120619-3,7,127 -1839-120619-4,7,128 -1839-120619-4,7,136 -1839-060619-3,7,93 -1839-060619-5,7,183 -1839-120619-1,7,152 -1839-290519-1,7,114 -1839-290519-1,7,129 -1839-290519-1,7,139 -1839-290519-1,7,87 -1839-290519-2,7,109 -1839-290519-2,7,111 -1839-290519-2,7,135 -1839-290519-2,7,142 -1839-060619-4,7,227 -1839-290519-2,7,144 -1839-060619-4,7,200 -1839-200619-1,7,135 -1839-060619-1,7,234 -1839-290519-3,7,113 -1839-060619-5,7,136 -1839-120619-2,7,71 -1839-120619-2,7,90 -1839-120619-3,7,119 -1839-200619-2,7,116 -1839-200619-2,7,74 -1839-200619-2,7,90 +action,action_id,channel_group,max_depth_delta,max_dissimilarity,unit_id,unit_name +1834-010319-1,,0,100,0.05,32afb72e-d27c-4990-b4ea-f9136a8226d1,2 +1834-010319-1,,0,100,0.05,e3017dcb-7612-452b-b2fd-7cbaad5c7532,39 +1834-010319-3,,0,100,0.05,603a3306-e906-4f95-971b-4d8164015554,1 +1834-010319-3,,0,100,0.05,2896bab7-e9f6-4bbb-bfa2-ce85dc2dd93f,12 +1834-010319-3,,0,100,0.05,cd46dcdd-1c31-4c1c-9e7a-ed174064f3f3,72 +1834-110319-1,,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,65 +1834-110319-2,,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,108 +1834-010319-4,,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,7 +1834-060319-4,,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,3 +1834-110319-3,,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,101 +1834-110319-5,,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,98 +1834-060319-1,,0,100,0.05,1f3323c3-48f9-4154-8a8d-8cf54893ced7,7 +1834-060319-1,,0,100,0.05,d4d044df-2487-4a43-8cd5-c3ff4ee38ee2,70 +1834-060319-1,,0,100,0.05,f4d6e79f-1164-4134-80ca-9cb5942140d1,71 +1834-060319-1,,0,100,0.05,a26e7b94-1d82-4f03-88ae-edf62c9ec266,72 +1834-110319-6,,0,100,0.05,031623da-a207-4beb-ad22-edaf249e0dc9,2 +1834-060319-1,,0,100,0.05,031623da-a207-4beb-ad22-edaf249e0dc9,73 +1834-060319-1,,0,100,0.05,ce9b87a4-9414-475b-b057-1dc2cbf65ced,74 +1834-060319-1,,0,100,0.05,54dd6650-5e36-4385-bdda-d337397e883c,79 +1834-060319-3,,0,100,0.05,363f6f73-45dc-4da0-9ebf-f8299c7c3400,4 +1834-110319-1,,0,100,0.05,cccf5646-1426-4217-b4f1-4d323f26ec1a,0 +1834-110319-2,,0,100,0.05,468a74ac-ce3f-4c5d-a9a4-44da8b19dd13,11 +1834-110319-6,,0,100,0.05,aefff1cf-c039-4223-8ad9-31d9919ef705,0 +1834-110319-6,,0,100,0.05,4fa5d7dc-504f-47ee-b32e-0ec52c58c6c3,1 +1834-110319-6,,0,100,0.05,ffd0fa52-30a3-46c3-a6b1-4038aed5b510,10 +1834-110319-6,,0,100,0.05,a6f26265-030e-4c48-8d75-6f20031a9062,13 +1834-110319-6,,0,100,0.05,55449278-6106-46cb-8f64-6d1093f8098a,15 +1834-110319-6,,0,100,0.05,210d0bd2-29bb-4f15-b036-17ef0c128829,3 +1834-110319-6,,0,100,0.05,0f45c421-4df8-430d-b662-ed509bf164f8,32 +1834-110319-6,,0,100,0.05,cfa3c5b5-9338-4f9e-88dc-35c578919f10,33 +1834-110319-6,,0,100,0.05,4a331395-c9f9-4c86-983f-72949d710136,34 +1834-110319-6,,0,100,0.05,aa5c25a5-663f-44fc-a146-99b5d806f892,38 +1834-110319-6,,0,100,0.05,1de48ce3-1aff-4bb8-8873-d83eae4e0e57,4 +1834-110319-6,,0,100,0.05,0656b4d2-c0b6-4a06-ac3c-dee33807370b,5 +1834-110319-6,,0,100,0.05,7b629bbe-09f3-4686-a0c9-1b98cb1e15c2,6 +1834-110319-6,,0,100,0.05,d95b5271-6d54-4c27-9bbb-a4874f850d95,7 +1834-110319-6,,0,100,0.05,89892043-0ccc-40a1-a47f-11e68b477d32,8 +1834-110319-6,,0,100,0.05,88c41151-4186-42b8-81dc-46ae6d56ccff,9 +1834-150319-3,,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,71 +1834-120319-2,,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,39 +1834-120319-3,,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,36 +1834-150319-2,,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,2 +1834-120319-4,,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,85 +1834-120319-1,,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,1 +1834-150319-4,,0,100,0.05,ea6da936-8549-4f5f-ba93-c7fe046ff269,0 +1834-150319-1,,0,100,0.05,7b0389cf-dd0d-4be6-9b00-36b6f09126fb,3 +1834-150319-3,,0,100,0.05,0484dc42-c4ff-4ebb-9493-2e131afe43a4,75 +1834-220319-2,,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,1 +1834-220319-3,,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,1 +1834-220319-4,,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,0 +1834-220319-1,,0,100,0.05,eb9aa90a-bcce-4750-bb9a-ee9f51e181d7,81 +1834-220319-1,,0,100,0.05,b12b6948-7b28-47b8-ac81-9f1b47c17361,87 +1834-010319-1,,1,100,0.05,a0daca30-6616-4c60-b0b8-310fc21e2757,48 +1834-010319-3,,1,100,0.05,9728e512-1fc6-4a84-b21c-6e5fa271c64f,18 +1834-010319-4,,1,100,0.05,969edf06-9796-4bfa-b1cd-adc2a9217b12,10 +1834-060319-2,,1,100,0.05,871cfead-7fb9-4ab3-8b35-a571b9312a40,104 +1834-110319-6,,1,100,0.05,d4b94300-3ad7-4c4c-8173-c974cfe5f07f,11 +1834-110319-6,,1,100,0.05,bda010db-d4b8-45ec-9d89-4d957777747e,12 +1834-110319-6,,1,100,0.05,7cf1101d-b91c-4a3f-b663-4471a33b8500,19 +1834-110319-6,,1,100,0.05,26797422-5fd5-45df-8952-fc592ef12e74,35 +1834-110319-6,,1,100,0.05,10b9d84d-ca02-48fc-8b12-c0b368251cfc,36 +1834-120319-1,,1,100,0.05,fbbcce03-64d3-42d1-bdcc-cf8bc669b646,3 +1834-120319-2,,1,100,0.05,47181a39-cd46-4edc-bc41-f034762dac72,41 +1834-120319-3,,1,100,0.05,47181a39-cd46-4edc-bc41-f034762dac72,38 +1834-150319-1,,1,100,0.05,a7b074ef-3220-4969-9606-40d31a5638b8,4 +1834-150319-1,,1,100,0.05,e1107f56-9c39-4c65-a933-1367273b4049,46 +1834-150319-1,,1,100,0.05,43c89925-fafc-4ab1-8b91-ceeca45961d7,50 +1834-150319-1,,1,100,0.05,1702dfd2-1bbe-4bf0-904e-0c95b24c6744,7 +1834-110319-3,,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,47 +1834-060319-2,,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,113 +1834-110319-6,,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,16 +1834-110319-5,,2,100,0.05,6e3b6fd0-a2d5-49b5-ba79-44f326f79867,18 +1834-110319-6,,2,100,0.05,3a237c11-5372-44ae-a25a-457085ff0894,17 +1834-120319-2,,2,100,0.05,04e0b56f-2056-49e9-96cc-a845816b57d0,43 +1834-120319-2,,2,100,0.05,c33d5c13-706a-4891-acf0-62e2e650563e,51 +1834-120319-3,,2,100,0.05,c3a7d7a1-7c9a-4d12-b4ce-ddbdf12d2376,70 +1834-220319-3,,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,46 +1834-220319-2,,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,49 +1834-120319-4,,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,75 +1834-220319-1,,2,100,0.05,98d0c932-c050-4a3c-875a-e7afe72d0b10,83 +1834-220319-1,,2,100,0.05,d6cae970-6b0e-486f-987f-d1b2139f0dd1,73 +1834-220319-2,,2,100,0.05,d6cae970-6b0e-486f-987f-d1b2139f0dd1,7 +1834-220319-3,,2,100,0.05,d6cae970-6b0e-486f-987f-d1b2139f0dd1,29 +1834-220319-1,,2,100,0.05,d81e5efc-876d-4003-9684-ad295c0ec604,79 +1834-220319-4,,2,100,0.05,43640b2b-437b-4036-bdd5-a3cb8aa3ca16,60 +1834-010319-3,,3,100,0.05,a77ab842-af8d-44f5-9531-a15ba2833af3,76 +1834-010319-1,,3,100,0.05,a77ab842-af8d-44f5-9531-a15ba2833af3,52 +1834-010319-1,,3,100,0.05,af5a91fa-89c1-474b-ad44-a7dc4f699589,7 +1834-010319-1,,3,100,0.05,c8b52f08-bb22-4f6c-a3f9-ec6e21724d05,8 +1834-010319-3,,3,100,0.05,ddf11da3-3d87-4aa7-8ae1-102f3b1fcdf0,87 +1834-010319-4,,3,100,0.05,1c15df06-157e-4004-abc7-a27c8febb5d4,21 +1834-010319-4,,3,100,0.05,ea0ae2d9-9e23-4d0e-a8bd-e676ccfb0365,22 +1834-010319-5,,3,100,0.05,ba45e41f-ae2f-41fe-9a7e-618a97110ab7,11 +1834-010319-5,,3,100,0.05,89b07752-06b1-4d22-b1eb-a4a16b242f18,28 +1834-060319-1,,3,100,0.05,8fbf4571-c7c0-4637-b087-8077ddfb99d7,33 +1834-060319-1,,3,100,0.05,fe55b314-f450-4190-9a50-f1cd12db7c1b,85 +1834-060319-4,,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,8 +1834-110319-3,,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,41 +1834-060319-3,,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,13 +1834-060319-2,,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,24 +1834-060319-1,,3,100,0.05,904f9c7c-db4d-4ec6-886f-622b41ae133a,95 +1834-060319-2,,3,100,0.05,9b4c268b-64e5-45ce-acde-bc974c486791,25 +1834-060319-4,,3,100,0.05,77da2151-d669-4297-bf35-f9b2f0869fb0,10 +1834-110319-2,,3,100,0.05,1e520264-65d0-462c-ba8b-6d5fab6d2c13,16 +1834-110319-5,,3,100,0.05,812686d3-16b4-486a-82ac-5b26727c2e92,24 +1834-110319-6,,3,100,0.05,2fe3d399-7790-4e50-a3f2-59af2773c18c,18 +1834-110319-6,,3,100,0.05,56566a1a-4b2a-4260-90f9-d2bf3e4c5a66,20 +1834-120319-2,,3,100,0.05,9713b7fd-6452-40ab-bb18-e2d75ae0665b,15 +1834-120319-3,,3,100,0.05,9713b7fd-6452-40ab-bb18-e2d75ae0665b,62 +1834-120319-1,,3,100,0.05,9713b7fd-6452-40ab-bb18-e2d75ae0665b,8 +1834-120319-2,,3,100,0.05,8b68722d-72b2-4b94-a020-b01202028c62,6 +1834-120319-4,,3,100,0.05,6ca6dede-9564-4f2b-984d-b350ccdb50f6,59 +1834-150319-1,,3,100,0.05,18803619-4068-4ebe-9fea-29afadf5a5ec,13 +1834-150319-1,,3,100,0.05,b7160669-5452-4ac4-b1a7-96ddfdb8e203,14 +1834-150319-1,,3,100,0.05,cf398e29-7b7b-413a-99ff-c43f6e306a52,2 +1834-150319-1,,3,100,0.05,9239cd9f-1284-4662-af82-e6fb61527c1e,6 +1834-150319-2,,3,100,0.05,6e8411b3-7ec5-4b53-84cd-6b1ace0f6631,13 +1834-150319-4,,3,100,0.05,12145901-58af-45cb-ba86-f29def53c878,5 +1834-150319-2,,3,100,0.05,12145901-58af-45cb-ba86-f29def53c878,46 +1834-150319-3,,3,100,0.05,12145901-58af-45cb-ba86-f29def53c878,61 +1834-150319-3,,3,100,0.05,5228baa7-e404-4379-9251-bd4930a59fb8,8 +1834-150319-4,,3,100,0.05,5790eaee-1c8d-4034-8d5a-dc7f2b88cc29,6 +1834-220319-1,,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,11 +1834-220319-2,,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,8 +1834-220319-4,,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,10 +1834-220319-3,,3,100,0.05,96b0daef-3879-40fb-9ab1-c387b5569129,10 +1834-010319-1,,4,100,0.05,b7df3619-3152-4ab2-a2a8-6c4fbd330a0b,13 +1834-010319-1,,4,100,0.05,9ad22849-722a-4d83-bfd0-0522aa049cee,62 +1834-010319-3,,4,100,0.05,c7312978-36b6-4124-b0e8-71816d8ae7da,34 +1834-010319-3,,4,100,0.05,408b2b89-3445-43f5-80af-5307238012e9,36 +1834-010319-3,,4,100,0.05,7365e283-a88b-4981-b022-c17a9521329b,66 +1834-010319-3,,4,100,0.05,856b03fd-4050-4ed9-aff6-881c50368f5a,90 +1834-010319-4,,4,100,0.05,dd6aa058-9d07-45be-bcf6-b05bf590486a,29 +1834-010319-4,,4,100,0.05,cdd1cb11-370c-46f6-899c-bc9f4aa7ac12,35 +1834-010319-4,,4,100,0.05,4ca0ef20-31ea-48c5-bb74-bd8abb08f6d5,53 +1834-060319-2,,4,100,0.05,d400b6d7-2db2-47b6-9859-ce6f72c1e3fc,115 +1834-060319-3,,4,100,0.05,b757598d-2721-4634-a9b5-36b0ec038e2e,19 +1834-060319-4,,4,100,0.05,1436fedf-6974-43f9-91e8-d80200e47cd3,13 +1834-110319-2,,4,100,0.05,3d5052ee-3e70-49df-8ce0-6c6d14ab600b,19 +1834-110319-1,,4,100,0.05,3d5052ee-3e70-49df-8ce0-6c6d14ab600b,11 +1834-110319-5,,4,100,0.05,517b674c-84b9-4b3b-a88e-d7184024ad75,76 +1834-110319-6,,4,100,0.05,4ff6b16b-8ebf-48be-877c-217d590c663e,14 +1834-110319-6,,4,100,0.05,9f85632e-7ea3-4e16-bead-194e70ff3435,21 +1834-110319-6,,4,100,0.05,3ef2f997-d1e1-48ec-b230-9b708d802257,22 +1834-110319-6,,4,100,0.05,9a62a913-5dc4-47ce-9532-b0773a7e481e,23 +1834-110319-6,,4,100,0.05,2957c978-526d-488e-becd-6a018c183d19,25 +1834-110319-6,,4,100,0.05,2c6a4654-e733-4287-b591-8f7d31c77062,37 +1834-120319-3,,4,100,0.05,09ffea69-40c1-4a30-9526-1a1428f0384c,40 +1834-120319-3,,4,100,0.05,8a086389-8c74-46fa-a529-4ab8a419b621,95 +1834-150319-1,,4,100,0.05,9dfb4584-8d3f-4fce-9048-ff09abdb209b,0 +1834-150319-1,,4,100,0.05,aceda409-a236-476e-8b77-5a49246b07d7,23 +1834-150319-1,,4,100,0.05,87c965de-8a82-4bb4-9463-f591626562de,40 +1834-150319-1,,4,100,0.05,d7701cae-f3f6-451e-b61d-986baa60abd7,5 +1834-150319-1,,4,100,0.05,a0f100e7-5978-4d82-aa8e-a3f3dfb5e2e8,52 +1834-150319-2,,4,100,0.05,4b3d8406-ec60-4e37-834e-b10c07c11967,54 +1834-220319-2,,4,100,0.05,969c81cf-b80f-4dc4-a526-c1c02fde8630,34 +1834-220319-1,,4,100,0.05,969c81cf-b80f-4dc4-a526-c1c02fde8630,65 +1834-220319-2,,4,100,0.05,3d9a98a2-df47-4162-a5bc-d65b2f06b643,47 +1834-220319-4,,4,100,0.05,38695b4d-fc1a-4c56-bad2-44e1ead15d71,51 +1834-220319-3,,4,100,0.05,38695b4d-fc1a-4c56-bad2-44e1ead15d71,15 +1834-220319-4,,4,100,0.05,150b4106-361d-43a3-a501-f90a43072647,36 +1834-220319-4,,4,100,0.05,e0ad6514-eed6-47b6-b115-709d7d9b82e4,63 +1834-220319-4,,4,100,0.05,97084ab3-dc72-4c1b-8045-2f5caf65ddc1,65 +1834-010319-1,,5,100,0.05,82d449c5-3427-46ca-8aed-aed8a12a7476,16 +1834-010319-1,,5,100,0.05,4cfe6043-03c1-49ea-92c6-4eef79035381,18 +1834-010319-3,,5,100,0.05,2f60791f-a7a6-44ff-9242-399e48b3a133,41 +1834-010319-4,,5,100,0.05,8eebb60d-1d37-48b2-8e51-5c278a025fab,37 +1834-010319-3,,5,100,0.05,8eebb60d-1d37-48b2-8e51-5c278a025fab,42 +1834-010319-4,,5,100,0.05,4dccbb8a-c59e-4b1e-be55-eed0699413c3,36 +1834-010319-5,,5,100,0.05,dad7f735-8e7c-416a-9b87-d6b5f0834160,14 +1834-010319-5,,5,100,0.05,3eafe78a-fb22-4b24-9ec2-c7541f10671f,15 +1834-060319-1,,5,100,0.05,be353be9-41e9-45e5-a82b-27307c4916f1,87 +1834-060319-2,,5,100,0.05,faa79273-6832-4706-b88b-69db0e59873f,34 +1834-060319-4,,5,100,0.05,091109ab-cbbe-467e-8a1e-24e709323799,15 +1834-060319-3,,5,100,0.05,091109ab-cbbe-467e-8a1e-24e709323799,25 +1834-060319-2,,5,100,0.05,091109ab-cbbe-467e-8a1e-24e709323799,35 +1834-060319-3,,5,100,0.05,cd9b8f7f-55bc-48d0-99eb-2fd27b9e7800,24 +1834-060319-3,,5,100,0.05,dfb1bfa0-cb65-4d85-9b5d-77a36704e9d1,26 +1834-060319-4,,5,100,0.05,abc7a0d6-a424-4ee0-ba64-2b53c6c4f465,16 +1834-110319-1,,5,100,0.05,abc7a0d6-a424-4ee0-ba64-2b53c6c4f465,14 +1834-060319-4,,5,100,0.05,fa949f01-2919-4ecc-b577-33210f83f9e9,17 +1834-110319-1,,5,100,0.05,4c4dcde6-7401-49b0-a6e1-ddc318b2f841,16 +1834-110319-2,,5,100,0.05,cef1efe8-86d4-4f69-bb9e-b91c4568b982,28 +1834-110319-1,,5,100,0.05,cef1efe8-86d4-4f69-bb9e-b91c4568b982,28 +1834-110319-2,,5,100,0.05,51da778a-0dcc-4c47-8802-562e95852772,29 +1834-110319-2,,5,100,0.05,1e04d4e6-f9fb-451f-b7b3-1da7e4e95b86,31 +1834-110319-5,,5,100,0.05,9400b7ff-e3d8-49c1-9c38-06406ee558d0,27 +1834-110319-6,,5,100,0.05,108fb12d-6d33-4da9-a576-a92ab20a285a,24 +1834-110319-6,,5,100,0.05,d538d0f5-af4f-494c-aa15-3c58b81ec718,26 +1834-120319-1,,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,11 +1834-120319-3,,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,23 +1834-120319-2,,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,21 +1834-120319-4,,5,100,0.05,e5c14392-f66e-403d-994b-05f26a666fb4,69 +1834-120319-3,,5,100,0.05,53bc8cf7-58a2-4b25-88da-b90859dd3c21,68 +1834-120319-4,,5,100,0.05,215b7bd2-9140-427e-8c0b-83816239273a,73 +1834-120319-4,,5,100,0.05,7f917dc4-a420-4fd6-aabe-46eb61f0d3dc,83 +1834-150319-1,,5,100,0.05,db2eb916-376f-4d5a-bef8-67dedde30881,24 +1834-150319-1,,5,100,0.05,f9cba19c-ebdb-42ed-b9d0-43b2759a52ae,25 +1834-150319-1,,5,100,0.05,01643e99-a8bc-40f1-8e60-4007e120ce90,28 +1834-150319-1,,5,100,0.05,556b0998-272c-4129-b0a6-be66c894db18,51 +1834-150319-1,,5,100,0.05,89cc1c82-38df-4a17-a323-78f00af076d6,58 +1834-150319-1,,5,100,0.05,e4c2e126-8f49-4cdf-bf3f-4735afe9910a,60 +1834-150319-2,,5,100,0.05,e0b35ef8-254a-4ed5-8ab0-90a8f243cb6f,48 +1834-150319-4,,5,100,0.05,08cdb1f6-daf6-4c77-8e6a-28c62592b13b,13 +1834-150319-3,,5,100,0.05,08cdb1f6-daf6-4c77-8e6a-28c62592b13b,47 +1834-150319-3,,5,100,0.05,0199ee26-7405-4cd0-ac11-dbaa3c330356,67 +1834-150319-4,,5,100,0.05,aacad4de-818a-4a74-b585-172e7eb1fa8b,11 +1834-150319-4,,5,100,0.05,d8cb3830-9cbb-42de-9807-2d0545b43d1c,12 +1834-150319-4,,5,100,0.05,499a6c0b-4f93-4fa8-a78c-fce18d305725,15 +1834-150319-4,,5,100,0.05,9846e14e-08a4-431d-9bfc-403e83505036,16 +1834-150319-4,,5,100,0.05,b68e9820-7f31-41f8-ad0f-7179c7413711,36 +1834-220319-1,,5,100,0.05,50bea372-9a84-4167-934a-adb43d6fcde3,77 +1834-060319-1,,6,100,0.05,021bf6f7-b1d7-458d-9fd5-81bbf34ad5dd,55 +1834-010319-1,,6,100,0.05,021bf6f7-b1d7-458d-9fd5-81bbf34ad5dd,21 +1834-010319-3,,6,100,0.05,838fdcc1-e031-4bc7-a818-caed33f36db7,55 +1834-010319-1,,6,100,0.05,838fdcc1-e031-4bc7-a818-caed33f36db7,22 +1834-010319-3,,6,100,0.05,1d7eb45e-8d2b-4ff1-b2a5-8c2304d8ed2f,53 +1834-010319-3,,6,100,0.05,767954a1-c204-4e29-b3b9-6c5436a498dc,91 +1834-010319-4,,6,100,0.05,62e17327-2136-4aff-96bd-4c3392119368,44 +1834-010319-5,,6,100,0.05,62e17327-2136-4aff-96bd-4c3392119368,35 +1834-010319-5,,6,100,0.05,c3d98537-a9d1-4bc1-9a84-314de43999fa,20 +1834-010319-4,,6,100,0.05,c3d98537-a9d1-4bc1-9a84-314de43999fa,46 +1834-010319-5,,6,100,0.05,a1067402-0b01-4f53-b684-b9c1d4946a31,33 +1834-060319-2,,6,100,0.05,3ead599e-aa46-4be0-bc4a-4a9896535be5,39 +1834-060319-3,,6,100,0.05,3ead599e-aa46-4be0-bc4a-4a9896535be5,32 +1834-060319-1,,6,100,0.05,3ead599e-aa46-4be0-bc4a-4a9896535be5,58 +1834-060319-2,,6,100,0.05,b214c130-7830-426d-90b4-145c7fe476b7,122 +1834-060319-3,,6,100,0.05,b214c130-7830-426d-90b4-145c7fe476b7,43 +1834-060319-2,,6,100,0.05,b5ed181b-4b74-49d1-980c-2b9651c0ded8,40 +1834-060319-3,,6,100,0.05,24e942a8-4448-4ef0-b990-1cdb161f1beb,30 +1834-060319-2,,6,100,0.05,24e942a8-4448-4ef0-b990-1cdb161f1beb,45 +1834-060319-4,,6,100,0.05,24e942a8-4448-4ef0-b990-1cdb161f1beb,19 +1834-060319-3,,6,100,0.05,754d05a2-f6a9-4155-9f64-69ade6f50a96,28 +1834-060319-4,,6,100,0.05,61be488d-6c86-4386-af06-e054183543a3,21 +1834-060319-4,,6,100,0.05,8081a3b7-da28-48a4-aa62-31307fd0f177,22 +1834-110319-1,,6,100,0.05,0afb8188-2ed3-4123-af62-2181652d9456,20 +1834-110319-1,,6,100,0.05,86033f51-0950-4277-aed5-300b64934a06,44 +1834-110319-2,,6,100,0.05,28718409-6a9f-45f6-8bfe-56a8579fb4a4,34 +1834-110319-2,,6,100,0.05,8ca774d4-c5bf-4884-8a44-2f1f7b904679,38 +1834-120319-1,,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,33 +1834-150319-4,,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,21 +1834-150319-1,,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,29 +1834-120319-3,,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,56 +1834-120319-4,,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,55 +1834-110319-2,,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,39 +1834-150319-3,,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,23 +1834-150319-2,,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,26 +1834-120319-2,,6,100,0.05,6ca33b2e-ffb0-4618-a083-cfe85d4fa58f,55 +1834-110319-2,,6,100,0.05,89589911-d40e-4b69-91ab-83f5dae753bc,77 +1834-110319-2,,6,100,0.05,474a90b7-75e4-4d33-968d-6d3020e34212,87 +1834-110319-3,,6,100,0.05,1b35e75d-b923-4953-afd6-5326f4d47471,70 +1834-110319-3,,6,100,0.05,551a161a-5152-40df-8a1d-e209481e124c,83 +1834-110319-5,,6,100,0.05,21061932-1d6c-40af-bd58-47e9342b17d7,30 +1834-110319-5,,6,100,0.05,8c3907b2-eb1a-4d50-8ebd-129cdf52c293,31 +1834-110319-6,,6,100,0.05,7dd9059f-0d20-4e37-ac09-bfc81528005b,27 +1834-110319-6,,6,100,0.05,c4b7cc21-0497-4acb-8c24-077a25b19f67,28 +1834-110319-6,,6,100,0.05,d97b4f66-8787-4efa-bae0-f1e27a267d86,29 +1834-120319-1,,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,31 +1834-120319-4,,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,71 +1834-120319-2,,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,23 +1834-120319-3,,6,100,0.05,bdc08faa-0ca9-4e46-ae99-d99e8c397e3d,66 +1834-150319-1,,6,100,0.05,83e4829b-5a58-4c49-ba21-77b1fdde5dea,31 +1834-150319-1,,6,100,0.05,d445d411-5107-4767-a42c-c1527223ec9b,32 +1834-150319-1,,6,100,0.05,599358d7-607e-4579-a756-cd1aefe1b223,33 +1834-150319-1,,6,100,0.05,3535728e-5721-4f9f-a542-7f4faa37e5ad,34 +1834-150319-4,,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,20 +1834-220319-1,,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,24 +1834-150319-2,,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,27 +1834-150319-3,,6,100,0.05,3646ed8f-88a9-4451-9292-ff635c420b76,65 +1834-150319-2,,6,100,0.05,ee96c439-09de-4606-958d-8ca116d96d39,28 +1834-150319-3,,6,100,0.05,cacc775e-a02b-4f3c-b51a-9149f98fa3ab,59 +1834-150319-3,,6,100,0.05,313cf53d-59c0-47bf-b7e8-058c82b4d435,63 +1834-150319-4,,6,100,0.05,db6381cb-f62b-4c73-9c0e-ab3f436dde5f,22 +1834-220319-1,,6,100,0.05,ce51195f-3741-408b-a555-ceb73ce07ad0,26 +1834-220319-1,,6,100,0.05,baa0e90d-317c-46db-9b84-cdceb1eff30d,41 +1834-220319-1,,6,100,0.05,a6aea939-51c7-4cb4-bdf3-767937c5d4b3,69 +1834-220319-1,,6,100,0.05,66e4874c-f061-4c11-b46a-ede7e71156c2,75 +1834-220319-2,,6,100,0.05,a15bd840-e664-4c30-aee3-5ca17af87394,17 +1834-220319-2,,6,100,0.05,bfac0cce-de5e-4392-ac4e-7c49c05d44f1,18 +1834-220319-2,,6,100,0.05,b6a9b95a-474d-4eda-a9c3-aa45354614e6,19 +1834-220319-2,,6,100,0.05,eee313ff-1f62-4705-910d-42f6efd5fad0,43 +1834-220319-2,,6,100,0.05,9f40f9f0-faff-4ef8-9ab8-5b658e9822ad,45 +1834-220319-4,,6,100,0.05,de8e860b-0974-498f-b91a-cbee61e11f4c,39 +1834-220319-3,,6,100,0.05,de8e860b-0974-498f-b91a-cbee61e11f4c,22 +1834-220319-3,,6,100,0.05,f3f224f5-ac7b-4304-8a95-7667b3e3632d,30 +1834-220319-4,,6,100,0.05,f3f224f5-ac7b-4304-8a95-7667b3e3632d,29 +1834-220319-4,,6,100,0.05,1f84f053-ece0-4d40-bf65-fd0857ab5c92,30 +1834-220319-3,,6,100,0.05,1f84f053-ece0-4d40-bf65-fd0857ab5c92,37 +1834-010319-1,,7,100,0.05,67fe05bd-16af-4f37-80bf-3ad24dabe5dd,24 +1834-010319-1,,7,100,0.05,b613cf34-c12f-4a75-b5c7-27adff4a18e8,25 +1834-010319-3,,7,100,0.05,8d8cfbaa-fa24-4eb1-b877-3161afd472d9,57 +1834-010319-3,,7,100,0.05,b9fa6092-df69-4022-bb78-a7fe31f7e23d,58 +1834-010319-3,,7,100,0.05,76043e1c-f615-472e-b57c-4b61fe1cadb5,60 +1834-010319-3,,7,100,0.05,c9fd8a58-c3c6-42f9-ab7e-2679596875e2,61 +1834-010319-3,,7,100,0.05,38bba347-47df-4c57-a99b-633ed5c522dc,63 +1834-220319-2,,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,20 +1834-220319-3,,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,25 +1834-010319-5,,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,19 +1834-220319-4,,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,31 +1834-010319-4,,7,100,0.05,e144a3f0-db42-4cae-9463-b06ae41f7e67,45 +1834-010319-4,,7,100,0.05,5b282cae-5b65-48d0-8519-301ee007effa,48 +1834-010319-5,,7,100,0.05,d56c29ac-a301-431b-82f8-d20bc2b251cf,23 +1834-010319-4,,7,100,0.05,d56c29ac-a301-431b-82f8-d20bc2b251cf,49 +1834-010319-5,,7,100,0.05,851b0f89-f74a-4bf6-acf9-b10c392d51d8,21 +1834-010319-5,,7,100,0.05,713d30a9-fe7f-400b-bdd3-273e1ad53232,39 +1834-060319-1,,7,100,0.05,46b3613b-6e9c-44ad-ab57-4622c051eeee,59 +1834-060319-1,,7,100,0.05,df527a21-e349-47a8-8b2f-d5e89d458bea,91 +1834-060319-2,,7,100,0.05,ea4e69a3-143b-4bc0-994d-1a1ffdf756e4,41 +1834-060319-2,,7,100,0.05,16fd6f7f-271d-49aa-bd88-dd111f031a52,42 +1834-060319-3,,7,100,0.05,16fd6f7f-271d-49aa-bd88-dd111f031a52,33 +1834-060319-3,,7,100,0.05,8921fdf4-0d5b-4cbb-84f6-a7f5a71d9e15,35 +1834-060319-2,,7,100,0.05,8921fdf4-0d5b-4cbb-84f6-a7f5a71d9e15,43 +1834-060319-4,,7,100,0.05,8921fdf4-0d5b-4cbb-84f6-a7f5a71d9e15,24 +1834-060319-2,,7,100,0.05,2b6551c1-a67b-4642-a173-283e771f7fe4,44 +1834-060319-4,,7,100,0.05,2b6551c1-a67b-4642-a173-283e771f7fe4,26 +1834-060319-3,,7,100,0.05,2b6551c1-a67b-4642-a173-283e771f7fe4,37 +1834-060319-2,,7,100,0.05,1e39f75a-2173-4433-82de-ef848e4954c3,46 +1834-060319-3,,7,100,0.05,1e39f75a-2173-4433-82de-ef848e4954c3,41 +1834-060319-4,,7,100,0.05,1e39f75a-2173-4433-82de-ef848e4954c3,28 +1834-060319-3,,7,100,0.05,d4eb0f77-0a4a-4e6f-8365-d1be6ba62502,40 +1834-060319-4,,7,100,0.05,ca1b3e99-853a-48c9-9d14-778e7a7269a9,23 +1834-060319-4,,7,100,0.05,0f8c0d64-b4a5-4d2a-8f33-fad87723f5b4,29 +1834-110319-1,,7,100,0.05,0f8c0d64-b4a5-4d2a-8f33-fad87723f5b4,30 +1834-110319-1,,7,100,0.05,ab8c205a-b2c1-4084-a857-4377fcca0f06,23 +1834-110319-2,,7,100,0.05,ab8c205a-b2c1-4084-a857-4377fcca0f06,41 +1834-110319-1,,7,100,0.05,f4ea6e1d-5739-4cb0-a56f-cd0000756e42,24 +1834-110319-1,,7,100,0.05,1627bbbd-e16c-43ab-b1a8-5f06969adc4c,25 +1834-110319-2,,7,100,0.05,1627bbbd-e16c-43ab-b1a8-5f06969adc4c,45 +1834-110319-1,,7,100,0.05,cdb89f6d-6f78-48d5-80cd-a4efe3ce60ef,26 +1834-110319-2,,7,100,0.05,5a0d6354-2a6c-4c97-9411-fae7c2e40b5f,104 +1834-110319-2,,7,100,0.05,e953fc20-f0d5-4b63-a839-83e1310b127a,40 +1834-110319-2,,7,100,0.05,4a2c3fc9-4803-4728-ad19-e0cf147b76f0,47 +1834-110319-2,,7,100,0.05,0487dc85-31d8-46dd-ac77-7ed48e3fc5ad,86 +1834-110319-2,,7,100,0.05,698e435e-8b80-4b36-a50d-6daea3096071,96 +1834-110319-3,,7,100,0.05,e1b066e0-f52c-4d5a-8947-a8f8da3dbe81,27 +1834-110319-3,,7,100,0.05,83121451-85d0-4d5a-9e99-6fadce72bfa3,28 +1834-110319-3,,7,100,0.05,08e8401f-7a5d-4ac0-ac7e-95f448b111ab,29 +1834-110319-3,,7,100,0.05,e4827cd4-0f34-419f-9e60-ad6c2fbb2fcd,30 +1834-110319-5,,7,100,0.05,61761d51-3273-454b-8707-555f265c9e6e,78 +1834-110319-5,,7,100,0.05,5ee19cc7-585e-4469-bb15-2999b046e4dc,90 +1834-110319-6,,7,100,0.05,d37b7899-7ae3-4263-823c-6af2f294d798,30 +1834-110319-6,,7,100,0.05,280d5431-ee95-4173-a054-1f02124be41c,31 +1834-120319-2,,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,26 +1834-120319-1,,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,16 +1834-120319-3,,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,28 +1834-120319-4,,7,100,0.05,e7d756a2-edb2-4496-9e49-374790d38043,22 +1834-120319-1,,7,100,0.05,194a642f-5f5c-496e-af0a-7474a3b2b84e,17 +1834-120319-3,,7,100,0.05,1f16e8bd-4952-432f-8aec-a31876f651d7,52 +1834-120319-2,,7,100,0.05,1f16e8bd-4952-432f-8aec-a31876f651d7,61 +1834-120319-4,,7,100,0.05,1f16e8bd-4952-432f-8aec-a31876f651d7,52 +1834-120319-2,,7,100,0.05,8ba033e2-b959-49d5-9a94-222dc23c8fc5,78 +1834-150319-1,,7,100,0.05,f53ba045-bc25-4e1a-bc8c-2437af5d3af9,37 +1834-150319-1,,7,100,0.05,7e0b064f-d850-459a-aebd-8905673e7a6b,41 +1834-150319-1,,7,100,0.05,06b521be-fa9f-465e-9075-2e2d12a2ff1f,44 +1834-150319-1,,7,100,0.05,11b7c89b-8431-475f-8471-25f5b3f3d2ba,45 +1834-150319-1,,7,100,0.05,c0caf6f3-8280-4e5e-9e24-9ecc0a92645f,47 +1834-150319-1,,7,100,0.05,e6f9d4cf-e263-4f6c-b2e6-e1be8b67f2e0,56 +1834-150319-3,,7,100,0.05,76030eec-c9a1-4bba-bf4e-8ba12f487f4e,53 +1834-150319-1,,7,100,0.05,76030eec-c9a1-4bba-bf4e-8ba12f487f4e,74 +1834-150319-1,,7,100,0.05,a647bd81-c486-43da-92a7-e0da9a1c89d2,76 +1834-150319-1,,7,100,0.05,2f4186af-7079-46ba-bda9-b77d70459b3e,77 +1834-150319-1,,7,100,0.05,49ca57ca-8796-4d3e-88cd-7120eaaf6c92,92 +1834-150319-2,,7,100,0.05,55ad4ae8-db2e-43b1-9517-049375f4f1dd,29 +1834-150319-2,,7,100,0.05,fa2905f9-3070-4aec-ac2f-e7e55b945823,30 +1834-150319-2,,7,100,0.05,bca39b92-9f54-4405-bfc1-d1104a8f4334,31 +1834-150319-2,,7,100,0.05,04cc84c9-eea0-4848-ba22-e82992bb2264,32 +1834-150319-2,,7,100,0.05,df25b7da-fc7b-4e2c-abf7-7dfd74a4da49,37 +1834-150319-2,,7,100,0.05,f61cdff0-8458-4cee-b94b-6a54da35ae96,42 +1834-150319-3,,7,100,0.05,638b2bbb-fe09-41a5-bb3c-00d964e0066b,27 +1834-150319-3,,7,100,0.05,c5d4d53e-d074-4be7-af93-19fa6644e485,28 +1834-150319-3,,7,100,0.05,5ca32a75-fb97-43a3-9688-89c76593c64e,30 +1834-150319-3,,7,100,0.05,6786c504-a6f6-4ca2-88ef-740161529a1c,44 +1834-150319-3,,7,100,0.05,84161ccd-4ea7-4fb3-bac3-65c092f1a328,45 +1834-150319-3,,7,100,0.05,74ffdb38-658e-460e-a02d-5ce5098a8e06,49 +1834-150319-3,,7,100,0.05,fb79170c-f42f-45d3-bfa2-1c655fb18176,55 +1834-150319-3,,7,100,0.05,cda8e309-30b0-41ba-b48f-4080bd856ffd,57 +1834-150319-4,,7,100,0.05,39241d89-d43c-4b4a-b636-77b7ef8b8979,23 +1834-150319-4,,7,100,0.05,7bad7f0b-c55c-4139-9c4a-82fdb0253aa6,24 +1834-150319-4,,7,100,0.05,80e6f4a4-ba9b-4dbe-81e0-ce8458e9895c,25 +1834-150319-4,,7,100,0.05,5febb318-f33b-4b7e-98ff-0426c3ea70b5,26 +1834-150319-4,,7,100,0.05,8fb53487-962a-40e4-bafa-5074102c7eca,33 +1834-220319-1,,7,100,0.05,ed26b894-7548-45d1-b09b-da43a58730a5,29 +1834-220319-1,,7,100,0.05,801f1c19-2b94-49b4-bfed-72359e22e795,36 +1834-220319-1,,7,100,0.05,9033063c-9842-49a9-be92-7ab74c8540f3,37 +1834-220319-1,,7,100,0.05,8de37e93-61b4-4fe8-ab49-5cfa18d02a71,49 +1834-220319-1,,7,100,0.05,f4b1e9bf-90cc-4102-b814-dad7a85b7bfa,67 +1834-220319-2,,7,100,0.05,4268ef94-0c73-4883-860c-2e6b3658bf1d,21 +1834-220319-4,,7,100,0.05,197b54fc-3242-4a35-afbd-8db9d444f58c,45 +1834-220319-3,,7,100,0.05,197b54fc-3242-4a35-afbd-8db9d444f58c,28 +1834-220319-2,,7,100,0.05,197b54fc-3242-4a35-afbd-8db9d444f58c,29 +1834-220319-2,,7,100,0.05,cf608811-7ad6-410e-93e2-efa1114d6ba7,39 +1834-220319-3,,7,100,0.05,cf608811-7ad6-410e-93e2-efa1114d6ba7,26 +1834-220319-2,,7,100,0.05,b4aea166-1104-4f07-b4c9-35c2582a3691,41 +1834-220319-3,,7,100,0.05,61a4f383-08eb-44d8-b434-e6cb4f2a31c0,23 +1834-220319-3,,7,100,0.05,aa3e4061-fa80-4101-ac7e-e3e896074240,31 +1834-220319-4,,7,100,0.05,0bf35ce6-a932-4f1c-ae29-07bf6a81e1ef,32 +1834-220319-4,,7,100,0.05,0c1b699a-4568-45b3-afc9-506e299042a0,33 +1834-220319-4,,7,100,0.05,910fe900-f52a-41c1-aae2-b53259911cca,46 +1849-010319-5,,0,100,0.05,901070db-103b-49b1-a6d7-bc5bfeb2d945,117 +1849-060319-1,,0,100,0.05,4227ab70-a38d-46b5-9964-fdafdd8fe99d,85 +1849-110319-1,,0,100,0.05,1767497c-2bd5-4974-8b03-89313f79789e,52 +1849-110319-2,,0,100,0.05,ae0a01af-98ea-4e9a-a2f0-7e8245f2e4a5,56 +1849-150319-2,,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,60 +1849-150319-1,,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,39 +1849-150319-4,,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,85 +1849-150319-3,,0,100,0.05,5e9cd289-b364-45a6-a927-f8c117c3faf0,6 +1849-150319-1,,0,100,0.05,224c8606-eb2b-4001-b497-dfdc3b402e60,74 +1849-150319-2,,0,100,0.05,99183ea7-75e3-4d86-a1be-e165ddb88cc8,40 +1849-150319-3,,0,100,0.05,c3fdad70-6df8-45f4-b08a-fa13a8027322,69 +1849-150319-4,,0,100,0.05,158bb647-0934-40f2-aef1-ac555194ded3,70 +1849-150319-4,,0,100,0.05,9c98907f-625c-4310-bca1-bb3b567b31e3,76 +1849-220319-4,,0,100,0.05,b5d91a8d-52fc-4df9-92ca-90c8eca2ce4f,100 +1849-220319-5,,0,100,0.05,b5d91a8d-52fc-4df9-92ca-90c8eca2ce4f,79 +1849-220319-2,,0,100,0.05,b5d91a8d-52fc-4df9-92ca-90c8eca2ce4f,93 +1849-220319-3,,0,100,0.05,ce7262a6-5c97-4427-aa92-783305886a88,0 +1849-280219-1,,0,100,0.05,f8470422-542e-4fc7-b713-356737d1d5b0,90 +1849-280219-2,,0,100,0.05,7ebbcece-a580-4ddc-898c-07d047e6f187,88 +1849-280219-3,,0,100,0.05,c2987b1a-b966-49b6-93e7-23985cedb72e,153 +1849-280219-3,,0,100,0.05,05c4b0ff-00bd-4dac-9773-7c5be41b4b5b,160 +1849-280219-4,,0,100,0.05,a2e8973c-6160-4165-b26e-0d3bc5881dea,62 +1849-280219-4,,0,100,0.05,aba6002f-1ed8-4f21-a399-83b6e91b0872,64 +1849-010319-2,,1,100,0.05,f945dfc5-baed-4824-82f5-54d7c345f207,115 +1849-220319-5,,1,100,0.05,f945dfc5-baed-4824-82f5-54d7c345f207,117 +1849-010319-4,,1,100,0.05,5ac96bb6-8342-44d2-a3d5-e43459b3c845,109 +1849-010319-4,,1,100,0.05,48d315a1-e369-49b2-8b3d-397f602eced5,87 +1849-010319-4,,1,100,0.05,988d4c67-9183-42f7-b025-77c0803e77c3,97 +1849-010319-4,,1,100,0.05,2324f9e9-f406-4315-a3fa-dde6a219a9d7,99 +1849-010319-5,,1,100,0.05,fc482c48-79e9-437b-896a-fe85436c185c,127 +1849-010319-5,,1,100,0.05,4e72665f-0530-4d81-bf09-4755eeb9623b,137 +1849-010319-5,,1,100,0.05,42ebd006-564c-402c-8c34-9259ceae25fa,159 +1849-060319-1,,1,100,0.05,61057ea0-2a1d-484f-962d-793f8a6964bd,106 +1849-060319-1,,1,100,0.05,4b90f61c-aefb-472b-9fea-af7bd4c0362c,108 +1849-060319-1,,1,100,0.05,12a55f1b-7847-47a8-aec2-7ba2517d73c5,71 +1849-060319-1,,1,100,0.05,0208d654-111a-4139-876f-3ee6adaeca98,73 +1849-060319-3,,1,100,0.05,44dedaa3-5378-43f9-b5b9-8eb78e88122e,104 +1849-060319-3,,1,100,0.05,4804082d-033f-4a19-a528-ca0794678c43,108 +1849-060319-3,,1,100,0.05,29e545c2-8a47-4184-b5ae-f28c4da53816,85 +1849-060319-3,,1,100,0.05,0eb3cb3d-1a75-4829-bccb-aa4b5176e644,94 +1849-060319-3,,1,100,0.05,3643cdcb-3ec9-4ec9-9980-df109c8e94be,98 +1849-060319-4,,1,100,0.05,a4d8f10a-d912-4532-9f9f-548b706b2b00,76 +1849-110319-1,,1,100,0.05,bf474d8d-038e-4cef-850d-65257e269184,31 +1849-110319-1,,1,100,0.05,f6ea37fb-f1be-48dd-87f2-71e298a9a826,41 +1849-110319-1,,1,100,0.05,0bc28031-b4b5-494d-b7b1-5516d0ce82ad,54 +1849-110319-1,,1,100,0.05,e3ecbdeb-518b-47bc-9185-056c12b8e7d0,59 +1849-110319-1,,1,100,0.05,3f01af4b-bdc3-4b56-9895-33a06976012a,60 +1849-110319-1,,1,100,0.05,03ad2dfa-c3b0-4a2d-9578-4042d90cbd87,64 +1849-110319-2,,1,100,0.05,03ad2dfa-c3b0-4a2d-9578-4042d90cbd87,66 +1849-110319-2,,1,100,0.05,d94dcb9d-be41-4d2a-845e-909b9d0d786a,68 +1849-110319-1,,1,100,0.05,d94dcb9d-be41-4d2a-845e-909b9d0d786a,66 +1849-110319-2,,1,100,0.05,4a6d682f-3503-4169-86ac-226afaddbba4,50 +1849-110319-2,,1,100,0.05,3083d778-eec3-4500-b624-f7183423b5f3,58 +1849-110319-2,,1,100,0.05,be495cb2-bad3-488a-9e13-8d1e29a793b0,62 +1849-110319-3,,1,100,0.05,99e26db1-d407-46da-9898-44875dc3fc97,177 +1849-150319-2,,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,48 +1849-150319-1,,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,105 +1849-280219-4,,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,84 +1849-150319-3,,1,100,0.05,4dec096f-ce71-4e97-bf16-0e5f503e564e,8 +1849-150319-3,,1,100,0.05,4e6c0785-68d0-421b-8eeb-6bc16df6a92e,98 +1849-150319-2,,1,100,0.05,4e6c0785-68d0-421b-8eeb-6bc16df6a92e,64 +1849-150319-1,,1,100,0.05,4e6c0785-68d0-421b-8eeb-6bc16df6a92e,121 +1849-150319-1,,1,100,0.05,066c9e16-04ad-427b-a6e2-37acc5750efe,93 +1849-150319-3,,1,100,0.05,066c9e16-04ad-427b-a6e2-37acc5750efe,7 +1849-150319-2,,1,100,0.05,066c9e16-04ad-427b-a6e2-37acc5750efe,44 +1849-150319-3,,1,100,0.05,c184a29f-4b8a-4bee-be31-c00b26d8ed78,11 +1849-280219-4,,1,100,0.05,1d52ed1e-d207-430f-aa3f-2e244b3dcf9c,105 +1849-150319-4,,1,100,0.05,1d52ed1e-d207-430f-aa3f-2e244b3dcf9c,100 +1849-280219-2,,1,100,0.05,1d52ed1e-d207-430f-aa3f-2e244b3dcf9c,102 +1849-150319-4,,1,100,0.05,029892c2-6897-44f3-857a-cf9cc67eb8cf,78 +1849-150319-4,,1,100,0.05,4faa3964-3974-489d-a3ad-81ccb6d6c23d,99 +1849-220319-2,,1,100,0.05,ff9e75a0-7ea5-44c7-a5c4-fa2c8d8320c4,99 +1849-220319-3,,1,100,0.05,eb0c4c1b-f0ab-4af2-9f32-cd2cbc2d1e97,59 +1849-220319-3,,1,100,0.05,0b2c621e-1cc0-46b3-898c-dcb8165b7faa,63 +1849-220319-3,,1,100,0.05,fe9ce1fa-2209-42db-8b70-49c90879b680,67 +1849-220319-4,,1,100,0.05,fe9ce1fa-2209-42db-8b70-49c90879b680,118 +1849-220319-4,,1,100,0.05,6117881b-a2f1-4d1f-9a62-7ff7d1a7c506,108 +1849-220319-4,,1,100,0.05,9520ecaf-391e-44e1-af0f-cb36a66597b8,117 +1849-220319-4,,1,100,0.05,e9d35fae-dc22-43db-a4fc-79355b2ce744,90 +1849-280219-1,,1,100,0.05,c5f628f0-34cf-4e3b-bb24-69ac34496e25,102 +1849-280219-1,,1,100,0.05,fec96997-dc62-4818-9a2e-ac8f4e87ca12,104 +1849-280219-1,,1,100,0.05,dcfa74fa-4b40-4b2b-adf4-dc7ad3848e37,112 +1849-280219-1,,1,100,0.05,b84b5fa3-5445-4c68-9604-dab99ca0d392,114 +1849-280219-1,,1,100,0.05,545ff8f9-7ed6-4c31-9152-d1669013cfbe,116 +1849-280219-4,,1,100,0.05,d3abe753-b5b1-419e-bd2e-0e5676eb12c7,101 +1849-280219-2,,1,100,0.05,d3abe753-b5b1-419e-bd2e-0e5676eb12c7,110 +1849-280219-2,,1,100,0.05,59074938-007f-4546-9201-94f1edc93b49,78 +1849-280219-3,,1,100,0.05,85bade90-21d8-4d76-82f4-57da6daf89bc,180 +1849-280219-3,,1,100,0.05,2f483a25-5dca-47cc-b979-6c67959c1854,182 +1849-280219-4,,1,100,0.05,15670c68-c11e-417f-b8a1-3c819ea6c64c,32 +1849-280219-4,,1,100,0.05,c67dc573-0394-4857-9bd7-9ce3913f355c,81 +1849-010319-2,,2,100,0.05,995deed1-c12b-4f1e-9c42-8fce9e5126af,103 +1849-010319-4,,2,100,0.05,5fced8d5-40a4-4c50-afbf-5a9989cd7816,103 +1849-010319-2,,2,100,0.05,5fced8d5-40a4-4c50-afbf-5a9989cd7816,119 +1849-010319-2,,2,100,0.05,6ccc70c7-139c-4673-9bb1-1caf4cbfb5d8,83 +1849-010319-5,,2,100,0.05,91b3a06e-5488-47d9-96c5-776f0fc3984e,103 +1849-010319-4,,2,100,0.05,91b3a06e-5488-47d9-96c5-776f0fc3984e,61 +1849-010319-4,,2,100,0.05,20e7773e-deca-478a-a8c9-a6b010526c46,67 +1849-010319-5,,2,100,0.05,20e7773e-deca-478a-a8c9-a6b010526c46,93 +1849-110319-2,,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,60 +1849-010319-5,,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,121 +1849-150319-3,,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,76 +1849-150319-2,,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,9 +1849-150319-1,,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,91 +1849-220319-4,,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,99 +1849-220319-5,,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,104 +1849-150319-4,,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,81 +1849-110319-1,,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,50 +1849-220319-3,,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,61 +1849-220319-2,,2,100,0.05,2d0e5a51-6abb-42dc-86a7-b8659eeb52ce,95 +1849-010319-5,,2,100,0.05,774ac625-07a9-4fb9-b29a-5de8b70a5bca,78 +1849-060319-4,,2,100,0.05,66e3674a-43ac-4d74-a682-78001f83fc72,72 +1849-060319-2,,2,100,0.05,66e3674a-43ac-4d74-a682-78001f83fc72,81 +1849-060319-3,,2,100,0.05,55d851a6-4c6c-4a72-945b-5214f913be00,114 +1849-060319-3,,2,100,0.05,85b8afcd-66e3-4ca7-9a78-f964d94bac54,130 +1849-060319-4,,2,100,0.05,786ccaf7-c202-4eeb-a6fc-752a86731c34,82 +1849-110319-2,,2,100,0.05,7ab4673c-044b-43a4-a031-03938b83cabb,52 +1849-110319-1,,2,100,0.05,7ab4673c-044b-43a4-a031-03938b83cabb,46 +1849-110319-2,,2,100,0.05,dc68fd0a-728d-4899-b746-3d94cd128d30,64 +1849-110319-1,,2,100,0.05,dc68fd0a-728d-4899-b746-3d94cd128d30,62 +1849-150319-2,,2,100,0.05,e3e3fe41-fb34-4d5e-88bb-688b8484c0b6,34 +1849-150319-1,,2,100,0.05,e3e3fe41-fb34-4d5e-88bb-688b8484c0b6,62 +1849-150319-1,,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,72 +1849-150319-3,,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,25 +1849-150319-4,,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,62 +1849-150319-2,,2,100,0.05,08ce99ea-3dc5-494a-b914-79bee5a8d225,36 +1849-150319-4,,2,100,0.05,192df09d-8b67-4226-9013-58ccb785f785,90 +1849-150319-3,,2,100,0.05,192df09d-8b67-4226-9013-58ccb785f785,21 +1849-150319-2,,2,100,0.05,192df09d-8b67-4226-9013-58ccb785f785,62 +1849-150319-4,,2,100,0.05,22aed85a-0141-4486-a7b0-902573fd115f,87 +1849-220319-2,,2,100,0.05,14486b20-6ff3-4c03-ae15-3bcdfbbeb0e4,91 +1849-220319-5,,2,100,0.05,14486b20-6ff3-4c03-ae15-3bcdfbbeb0e4,83 +1849-220319-3,,2,100,0.05,ab05f922-bb18-4f22-9354-ea37c2489eb1,65 +1849-280219-1,,2,100,0.05,812e8a51-28f8-4a74-96f7-f3cabe48d4af,100 +1849-280219-1,,2,100,0.05,81573fb8-5117-48cc-bc2c-bcc4d248ff62,16 +1849-280219-1,,2,100,0.05,f558c6be-f286-4e04-8751-fbac1ea5eca8,18 +1849-280219-1,,2,100,0.05,db24a924-bb76-4629-8a92-6587b69670ff,84 +1849-280219-1,,2,100,0.05,767068ea-a19c-484e-9647-1c4139ed390c,86 +1849-280219-2,,2,100,0.05,e129d7e8-72f9-4295-9fc3-5de34a924b48,70 +1849-280219-2,,2,100,0.05,f533ec65-508a-47aa-a49e-0e3621d3b010,72 +1849-280219-3,,2,100,0.05,a3245cb9-a93e-4ae0-9e3c-e275c6dc0c47,141 +1849-280219-4,,2,100,0.05,7f63e82c-cb77-4e6b-a2b1-4336eacb52d5,70 +1849-280219-4,,2,100,0.05,0e310b30-e767-4601-9cce-40154eec1ba6,74 +1849-010319-2,,3,100,0.05,c6df4551-4969-47ee-81be-ea88fe45e77e,107 +1849-010319-2,,3,100,0.05,63278a1b-4bea-4054-ad94-fcc62c3fe34d,111 +1849-010319-2,,3,100,0.05,9b438d0d-615d-4648-8df6-4b308963e9e9,40 +1849-010319-4,,3,100,0.05,bb383829-1612-45cb-8504-bfb00c6e7897,115 +1849-010319-5,,3,100,0.05,bb383829-1612-45cb-8504-bfb00c6e7897,148 +1849-010319-5,,3,100,0.05,3e88c624-cb3d-456e-a904-baa1e99ebd9f,99 +1849-010319-4,,3,100,0.05,3e88c624-cb3d-456e-a904-baa1e99ebd9f,65 +1849-010319-4,,3,100,0.05,1a6ddca9-31a6-453a-afc8-d889320746ef,73 +1849-010319-5,,3,100,0.05,1a6ddca9-31a6-453a-afc8-d889320746ef,113 +1849-060319-1,,3,100,0.05,421c32ac-f805-403c-9532-c142579eb0a9,102 +1849-060319-1,,3,100,0.05,fe007121-4442-49c5-a6b4-60e2446e43cc,77 +1849-060319-1,,3,100,0.05,459ad287-b0f9-4dc7-95b8-f56e1a50f8e3,83 +1849-060319-4,,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,74 +1849-060319-2,,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,99 +1849-060319-3,,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,110 +1849-060319-1,,3,100,0.05,61520174-8de3-4518-a4e4-c6fd0bb43972,98 +1849-060319-2,,3,100,0.05,17e94d15-5124-4bd2-baa8-edafc5c9b57a,67 +1849-060319-4,,3,100,0.05,96b3ae0f-8605-4c63-b587-249e4e4bf460,68 +1849-060319-3,,3,100,0.05,96b3ae0f-8605-4c63-b587-249e4e4bf460,100 +1849-060319-2,,3,100,0.05,96b3ae0f-8605-4c63-b587-249e4e4bf460,94 +1849-110319-1,,3,100,0.05,75306d23-086b-41b1-9603-75dd646b279b,35 +1849-110319-2,,3,100,0.05,df1a1a45-5a6c-42f4-bba2-6e8a28636093,40 +1849-150319-1,,3,100,0.05,b72da5fe-e0f3-4f39-a1e6-a964c32daa2b,58 +1849-150319-1,,3,100,0.05,7b57f633-a87d-42a3-9b8f-a38570d6362d,64 +1849-150319-2,,3,100,0.05,0a68341c-9b60-45bd-a520-1db4eefd5527,32 +1849-150319-2,,3,100,0.05,a8d410f4-d232-4fd4-86cf-3c4818798ae2,38 +1849-150319-3,,3,100,0.05,74a750e4-ac7d-4772-8b7a-5bc5bf9f0a5d,60 +1849-150319-4,,3,100,0.05,c2a108cf-b5d1-4f53-a944-f7080c4bf792,58 +1849-220319-2,,3,100,0.05,829373a4-573b-4dbd-839c-3b32bb4bbcdc,57 +1849-220319-2,,3,100,0.05,d14a6cb4-b30b-41c5-955e-5e9508f31118,59 +1849-220319-2,,3,100,0.05,f4190499-2f52-408b-9bc5-78898513a1ca,68 +1849-220319-2,,3,100,0.05,6d65ccfb-cd8f-4b9c-8e0b-dc509d333b3c,86 +1849-220319-3,,3,100,0.05,19072f12-538b-4bc9-bfd2-5302f85484f4,53 +1849-220319-3,,3,100,0.05,b17f8393-c08b-4bf8-bc6a-94c4dc75e890,55 +1849-220319-4,,3,100,0.05,5b6c8660-a2e7-4dbb-b6db-b5e52b698016,122 +1849-220319-4,,3,100,0.05,e9be012d-3f6e-41e3-a3cd-400f942292ed,79 +1849-220319-4,,3,100,0.05,4616134e-8862-47b3-919b-8520ad887297,87 +1849-220319-5,,3,100,0.05,21d4a54b-514b-44d9-81f6-7347c1d6ca4f,27 +1849-220319-5,,3,100,0.05,ef87c70d-806a-4e0b-8d2f-9d3934a665b0,71 +1849-220319-5,,3,100,0.05,195b6f4e-e166-4ede-bf0e-752b773edff5,98 +1849-280219-1,,3,100,0.05,81fee3d1-dd2d-44fd-bd84-f396f9ab348b,110 +1849-280219-1,,3,100,0.05,c2d44b46-548e-40f5-ad24-8d74a0e411f3,27 +1849-280219-1,,3,100,0.05,055c8d4d-667f-4748-9d14-3904b1b0fcf3,28 +1849-280219-1,,3,100,0.05,d3219bc6-106f-46ee-8c0b-ab10d5be9569,64 +1849-280219-2,,3,100,0.05,e8e8ad81-4260-4f38-8a35-760592f77f8c,51 +1849-280219-2,,3,100,0.05,2416f99e-8a20-47c7-9b8a-49d834895536,76 +1849-280219-2,,3,100,0.05,a37e302a-ec76-4159-99c5-3eaf890f2f3c,96 +1849-280219-2,,3,100,0.05,dc4ded50-3c34-44ba-8dce-fff940d7267e,98 +1849-280219-4,,3,100,0.05,dc4ded50-3c34-44ba-8dce-fff940d7267e,125 +1849-280219-3,,3,100,0.05,3e99529d-7844-43c7-8e7e-3eee619d499d,166 +1849-280219-3,,3,100,0.05,1efe3fb6-7a0c-423a-937f-3aff3895567b,170 +1849-280219-4,,3,100,0.05,791f4f4f-057f-471e-b881-a027e71986cf,121 +1849-280219-4,,3,100,0.05,190ed37f-6437-4a07-81f8-9c95e39da61c,60 +1849-280219-4,,3,100,0.05,e6ca2b59-ad19-48ac-ba17-671c770e95a8,72 +1849-060319-1,,4,100,0.05,86c409f3-5503-456d-9b17-37f9d27b3613,104 +1849-060319-4,,4,100,0.05,86c409f3-5503-456d-9b17-37f9d27b3613,80 +1849-060319-1,,4,100,0.05,9b11a6fc-abae-4b0f-8b91-9883c1111177,88 +1849-060319-2,,4,100,0.05,24a0e459-d94f-43ed-8c22-3bdb9a8b27d2,122 +1849-060319-2,,4,100,0.05,13e77440-b0be-4253-9151-6d0ca37860e0,95 +1849-060319-3,,4,100,0.05,e440f346-ef7e-45e5-82e8-ad22aa25f0df,120 +1849-060319-4,,4,100,0.05,d0af3ffc-fe31-4aad-b1cc-fb0e88bc18fb,64 +1849-110319-2,,4,100,0.05,c379705d-aa0c-4ecd-831d-8ba21e18dfad,23 +1849-110319-3,,4,100,0.05,afdc3efc-52de-4f36-810c-d16a1289bc16,104 +1849-110319-3,,4,100,0.05,2195288a-7de9-4486-9f97-402dba50e9c1,163 +1849-150319-1,,4,100,0.05,3e1cc8ab-74e5-434f-bd5a-6ef998ad120f,79 +1849-150319-1,,4,100,0.05,d8e82b4b-b389-4c4b-940b-3cf223bdee15,85 +1849-150319-1,,4,100,0.05,bc0ded9b-eea8-4bf0-83b9-134422a6e9fb,89 +1849-150319-2,,4,100,0.05,1b48ab42-285c-4ace-8fc9-380d82422330,17 +1849-150319-3,,4,100,0.05,1b48ab42-285c-4ace-8fc9-380d82422330,74 +1849-150319-2,,4,100,0.05,6db857e7-e265-4375-9a47-942f86bd06e7,46 +1849-150319-3,,4,100,0.05,1098c4ac-8d80-4698-a76f-64eac601bec5,97 +1849-220319-4,,4,100,0.05,b25fa152-6f02-446f-a9ee-cf39973428af,112 +1849-220319-5,,4,100,0.05,b25fa152-6f02-446f-a9ee-cf39973428af,112 +1849-150319-4,,4,100,0.05,b25fa152-6f02-446f-a9ee-cf39973428af,34 +1849-150319-4,,4,100,0.05,bb99ad2c-115d-44d1-9f55-2e8ce2a05c59,60 +1849-220319-2,,4,100,0.05,80aa98c0-0689-4f27-a9b8-67cd162fc530,101 +1849-220319-2,,4,100,0.05,51c43cff-ce8f-4862-b16b-32cd07202a85,107 +1849-220319-2,,4,100,0.05,8ba1d7d4-f404-4e2e-ae65-152879a9c650,109 +1849-220319-2,,4,100,0.05,44392d0e-e8d8-4774-ad6b-8b6b49a8350b,43 +1849-220319-3,,4,100,0.05,6fcb2249-c536-4aa3-b2ba-675ea6ebcee9,69 +1849-220319-3,,4,100,0.05,27c2658b-2a4e-4c00-94e1-eb021accec90,71 +1849-280219-1,,4,100,0.05,6ad7883e-d45c-4dce-bfcc-90163ef1eadb,66 +1849-280219-2,,4,100,0.05,ee588341-3383-4da1-b71c-4f5524144a7f,80 +1849-280219-2,,4,100,0.05,34e5491b-16e9-4560-90fe-7616171970f1,86 +1849-280219-3,,4,100,0.05,1b359a5d-70e9-4bcc-9ed3-4c835cd0d268,133 +1849-280219-3,,4,100,0.05,acec4683-4357-49a0-bd28-89b389607fb4,151 +1849-280219-4,,4,100,0.05,55bb8927-0e57-49a6-9d5b-c574f555cb6f,55 +1849-010319-2,,5,100,0.05,c2a5482b-e4da-440d-9c4c-d07bf2deb791,91 +1849-010319-2,,5,100,0.05,e1c0b0b8-2237-42b1-9013-9404bb1fefab,93 +1849-010319-5,,5,100,0.05,b61218f1-0326-46d7-96f1-53489925bef7,87 +1849-010319-4,,5,100,0.05,b61218f1-0326-46d7-96f1-53489925bef7,58 +1849-060319-1,,5,100,0.05,e096e19e-bed2-4f25-ab5c-ace464256a25,100 +1849-060319-1,,5,100,0.05,9cd870c2-a14a-47b1-b6f5-baf26053486a,75 +1849-060319-1,,5,100,0.05,f62c2002-0403-43a1-9e70-1a1274c6d0ad,92 +1849-060319-2,,5,100,0.05,a2cf723a-8fb8-4e7a-95d8-f9fb9c037532,114 +1849-060319-3,,5,100,0.05,a2cf723a-8fb8-4e7a-95d8-f9fb9c037532,112 +1849-060319-2,,5,100,0.05,58e0e4f3-6658-4029-a438-18c340919f62,118 +1849-060319-4,,5,100,0.05,d4c28ae1-3811-481b-b4b1-aefbc96800bb,78 +1849-110319-1,,5,100,0.05,891576de-b4a6-4d7a-a587-2106a882c92f,16 +1849-110319-1,,5,100,0.05,eaae5ed3-f001-4938-b11b-a7523337fe2e,17 +1849-110319-1,,5,100,0.05,d2bf439a-eda1-4730-91f9-6daa406e07f5,29 +1849-110319-2,,5,100,0.05,456858f8-0984-4256-ab05-18c4b241442e,24 +1849-110319-2,,5,100,0.05,3dbf3064-1371-41c9-9007-47fa20120840,48 +1849-110319-3,,5,100,0.05,d5caa155-4bb8-4ba9-97c1-6810c4603407,165 +1849-150319-1,,5,100,0.05,6e77b600-c0b0-4c5c-adcc-8d64de01a365,107 +1849-150319-1,,5,100,0.05,d876a92f-79da-4981-8731-af5bfca0041d,60 +1849-150319-1,,5,100,0.05,eae35328-c2ee-4e46-bcf9-adebb519ac34,80 +1849-150319-1,,5,100,0.05,bdbb00ff-747e-4233-bdcf-0a4b73506472,95 +1849-150319-2,,5,100,0.05,dcde8219-5008-48c7-a54e-3ff7dd110798,18 +1849-150319-4,,5,100,0.05,a642e683-14d6-477b-a939-1cffbc503874,64 +1849-150319-2,,5,100,0.05,a642e683-14d6-477b-a939-1cffbc503874,19 +1849-150319-3,,5,100,0.05,a642e683-14d6-477b-a939-1cffbc503874,38 +1849-150319-2,,5,100,0.05,6ebfa10d-e096-4293-b09b-2b9c2c78ff56,22 +1849-150319-2,,5,100,0.05,6c2679a7-a038-4f81-ab25-16ba343f8821,67 +1849-150319-3,,5,100,0.05,c24246c2-07d3-4b76-a37e-f7fe719a5df2,64 +1849-150319-3,,5,100,0.05,7e5600ab-e034-47f1-905d-744be2bd1f92,78 +1849-150319-4,,5,100,0.05,428ae809-71d4-4682-bbff-39fc1c0bed56,37 +1849-220319-2,,5,100,0.05,ac8b26cb-6423-4b70-a2d7-e846c3410f42,32 +1849-220319-2,,5,100,0.05,3ee8dab4-5041-46d8-a3e0-f320164e1bd7,45 +1849-220319-2,,5,100,0.05,103838e1-a72b-4984-8ff0-c809d8938722,46 +1849-220319-3,,5,100,0.05,74743f08-27a9-411d-be99-47f4da5822a8,28 +1849-220319-3,,5,100,0.05,dbe25484-cf52-421c-ac3f-c26859186134,73 +1849-220319-3,,5,100,0.05,1f07493c-a93a-409f-9a87-8cc5fea712af,75 +1849-220319-4,,5,100,0.05,8e21806d-9915-40b4-b1be-4c434c862e8a,102 +1849-220319-4,,5,100,0.05,948594d3-ddcf-4954-a04c-b5586bff6995,110 +1849-220319-4,,5,100,0.05,10e77237-3825-45ec-8b58-7cf61b7dd428,84 +1849-220319-5,,5,100,0.05,fdc089d8-1c49-4258-b9a8-ff7a23f70c01,34 +1849-220319-5,,5,100,0.05,fb5caec8-6eaa-4983-b698-3a1070bd6827,35 +1849-220319-5,,5,100,0.05,9d6b7eb6-f5de-41e3-a205-1584d57d7f2b,38 +1849-220319-5,,5,100,0.05,10997df0-e0bd-4699-9d3b-f95c6b4d9dcf,39 +1849-280219-1,,5,100,0.05,39c74c6d-ec64-4962-847e-07eb35e35713,40 +1849-280219-2,,5,100,0.05,3239a2ef-5b3e-4643-8ec8-1644821c9a65,64 +1849-280219-3,,5,100,0.05,7d4053a4-7caf-41fa-9bb0-dfaf9faaaa82,129 +1849-280219-3,,5,100,0.05,19b3d94d-b637-4ada-9caf-7290649ea5cc,137 +1849-280219-4,,5,100,0.05,60503a00-13b9-4315-8b44-8ab191913b53,44 +1849-010319-2,,6,100,0.05,0fe53439-3ae2-4d3b-b6c1-48869823d892,85 +1849-010319-2,,6,100,0.05,838728e2-ec8b-459b-baae-da9f8ef138b9,97 +1849-010319-2,,6,100,0.05,bdb7c6e1-4de4-4845-86f9-43393976f357,99 +1849-010319-4,,6,100,0.05,ec7620a7-64cf-4c59-b1f5-7a05d703b20d,79 +1849-010319-5,,6,100,0.05,6ca97a27-6af1-447f-afc9-0a1cea35e320,105 +1849-010319-5,,6,100,0.05,2cb7277b-1d4f-4be0-8ab6-3dfd71c6807c,107 +1849-010319-5,,6,100,0.05,41ed1439-2627-46bc-82d6-08583a65a583,109 +1849-060319-1,,6,100,0.05,3a120b27-58ad-438d-b3e7-1b2a6fbe5b9e,44 +1849-060319-1,,6,100,0.05,e023f131-df43-413c-907a-dc0d8dda1daa,81 +1849-060319-4,,6,100,0.05,8da6ec29-00bd-478e-8b0d-6e98378377f0,62 +1849-060319-4,,6,100,0.05,4f397d6b-671c-487e-9c4f-da7960ee4cf6,66 +1849-280219-1,,6,100,0.05,970d5ca8-a143-4ba8-a862-31327a470ec1,106 +1849-280219-1,,6,100,0.05,3e1d3408-86d0-40f5-8768-aa9abe42dfa2,108 +1849-280219-1,,6,100,0.05,c5ff3103-ea11-4867-a1f7-9c2f0d415cad,44 +1849-280219-1,,6,100,0.05,1bc9b538-04e3-4cf3-ac2b-a7d118987439,45 +1849-280219-1,,6,100,0.05,36618e0c-9dc1-472c-a794-ed36c50c3d2f,96 +1849-280219-1,,6,100,0.05,23b8e6c1-f4ac-4702-ad70-bb5645513a0e,98 +1849-280219-2,,6,100,0.05,dcaa3d76-433b-40c5-bc66-54b4a3affaf2,38 +1849-280219-2,,6,100,0.05,e729a175-0be6-4150-bcf5-8cdf16c3b6cf,90 +1849-280219-2,,6,100,0.05,f0365b87-f1dd-4ec2-9231-601fe78a9dba,94 +1849-280219-3,,6,100,0.05,348eb05e-1d40-47f7-83d7-e78e5ac6a05a,127 +1849-280219-3,,6,100,0.05,f96586a6-b9cf-476e-b37c-84ce7c74995e,131 +1849-280219-3,,6,100,0.05,100ab2e5-742b-4cd9-873f-04336aefa76f,135 +1849-280219-3,,6,100,0.05,cdceb0f3-ae50-402b-970d-263b988f15e5,139 +1849-280219-4,,6,100,0.05,e6fc3b7f-eb2e-4446-bea7-51ca9b051c15,66 +1849-280219-4,,6,100,0.05,ff5340cb-3904-4f93-b690-493ebf8d65e2,68 +1849-280219-4,,7,100,0.05,15f3d73d-90b9-40a8-94f1-75763e3647f1,58 +1849-010319-2,,7,100,0.05,15f3d73d-90b9-40a8-94f1-75763e3647f1,101 +1849-280219-2,,7,100,0.05,326620da-da95-4232-9314-309575f89963,42 +1849-280219-3,,7,100,0.05,326620da-da95-4232-9314-309575f89963,158 +1849-010319-2,,7,100,0.05,326620da-da95-4232-9314-309575f89963,70 +1849-280219-4,,7,100,0.05,326620da-da95-4232-9314-309575f89963,56 +1849-010319-4,,7,100,0.05,87670e0f-1783-462f-b522-0bdd850cddea,59 +1849-010319-5,,7,100,0.05,87670e0f-1783-462f-b522-0bdd850cddea,57 +1849-010319-5,,7,100,0.05,75421a7a-4265-42ea-9997-24cea4ed02ac,54 +1849-060319-1,,7,100,0.05,0778701f-e685-446b-a291-4163a8346fce,49 +1849-060319-1,,7,100,0.05,3af3e489-e70b-41f4-93fd-8604d80f1d3e,90 +1849-060319-2,,7,100,0.05,6338c3d5-cdfc-41ac-a7e1-afc4363470b7,50 +1849-060319-2,,7,100,0.05,d6cb1145-8c8c-4193-a66d-1f54416703b6,71 +1849-060319-2,,7,100,0.05,64b621dc-f53c-4d37-9b37-dc63839be641,92 +1849-060319-3,,7,100,0.05,f2bc9b83-a96d-4128-8cd1-7bb6a1ffb415,118 +1849-060319-3,,7,100,0.05,35843308-4317-4714-9914-9e36623cb1ce,92 +1849-060319-4,,7,100,0.05,70bf3009-8a81-4319-b588-fd3fe4d70a1c,60 +1849-150319-1,,7,100,0.05,d0c6dbd6-081a-4e1f-8a3c-6a9f17d34763,56 +1849-280219-1,,7,100,0.05,f018946b-21db-4a52-a5ba-bffac84887b4,52 +1849-280219-1,,7,100,0.05,1414e14e-00a2-451a-aaf2-fa7c8624c6bc,53 +1849-280219-1,,7,100,0.05,2336b444-1562-455d-b1d4-a7e49b83fc78,62 +1849-280219-2,,7,100,0.05,64fbb0ba-8cf4-4e40-ab66-8c56c262d938,43 +1849-280219-2,,7,100,0.05,2a91a55f-011d-46c8-9531-844871317c8b,61 +1849-280219-2,,7,100,0.05,a4a4c813-9e64-47c3-9c8f-6984e88b2384,66 +1849-280219-2,,7,100,0.05,12bda732-cd13-41a9-9dc8-c9a22720607b,92 +1849-280219-3,,7,100,0.05,2e6568a6-509d-4e86-9d41-56e889bcc0ee,149 +1849-280219-3,,7,100,0.05,e972ab3f-bbe6-4b5b-b34c-e56aa51a2f5f,164 +1849-280219-4,,7,100,0.05,67788bb5-ebf0-4c1a-a686-75a658c75d08,86 +1833-020719-4,,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,302 +1833-020719-1,,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,123 +1833-010719-1,,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,127 +1833-020719-3,,0,100,0.05,1e1b4ba9-6130-460b-a0be-2054bd94e50a,143 +1833-260619-1,,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,120 +1833-010719-1,,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,161 +1833-010719-2,,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,239 +1833-260619-3,,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,196 +1833-260619-4,,0,100,0.05,8f078f5a-288c-45cb-94ec-b6a9efd711af,202 +1833-010719-1,,0,100,0.05,7e1588d9-1a79-4ed2-8b53-067d2720aaaa,191 +1833-010719-2,,0,100,0.05,fec1202b-1434-48c9-b3a1-adb167ea6410,261 +1833-010719-1,,0,100,0.05,fec1202b-1434-48c9-b3a1-adb167ea6410,223 +1833-010719-1,,0,100,0.05,8c326156-1f80-4195-82a1-b401c2db5ad6,225 +1833-010719-2,,0,100,0.05,8c326156-1f80-4195-82a1-b401c2db5ad6,267 +1833-010719-2,,0,100,0.05,02d0ee49-9dc0-439e-9a1e-0fc77ff0dfc0,4 +1833-010719-1,,0,100,0.05,02d0ee49-9dc0-439e-9a1e-0fc77ff0dfc0,235 +1833-010719-2,,0,100,0.05,4ae30aee-ff04-4884-b1d4-4e48cc0880ce,254 +1833-010719-2,,0,100,0.05,689fed74-131b-4886-a5f3-37dd15752d14,265 +1833-020719-1,,0,100,0.05,202551c8-3fcc-452f-983d-b70565a7b775,119 +1833-020719-1,,0,100,0.05,4d299216-6ff1-4aad-9a6f-3fff3445a726,121 +1833-020719-3,,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,156 +1833-020719-2,,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,142 +1833-020719-4,,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,308 +1833-020719-1,,0,100,0.05,db35c505-602c-4b4b-bbf7-0da497c7f74a,145 +1833-020719-2,,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,8 +1833-020719-3,,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,162 +1833-020719-1,,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,158 +1833-020719-4,,0,100,0.05,d1613cbb-da62-420f-9537-b9928453772e,320 +1833-020719-2,,0,100,0.05,07b04948-20e9-4795-aec3-0337458fc7e6,105 +1833-020719-2,,0,100,0.05,03b1f23f-a18f-496c-a440-9069bd0f4cf7,129 +1833-020719-4,,0,100,0.05,03b1f23f-a18f-496c-a440-9069bd0f4cf7,306 +1833-020719-3,,0,100,0.05,03b1f23f-a18f-496c-a440-9069bd0f4cf7,141 +1833-020719-3,,0,100,0.05,369a3fff-a276-46d3-b03e-8da0e884418c,116 +1833-020719-2,,0,100,0.05,369a3fff-a276-46d3-b03e-8da0e884418c,95 +1833-020719-3,,0,100,0.05,eb8328bd-6c97-4c68-9e68-9aadd76a4ce0,104 +1833-020719-3,,0,100,0.05,bcc59a37-9843-4014-8565-9b6e5f9ec8f9,105 +1833-020719-3,,0,100,0.05,4c126cc1-e670-448d-a9ab-4959a01eb941,112 +1833-020719-3,,0,100,0.05,ce50f334-97f7-456d-a99c-fad237eeb945,150 +1833-020719-4,,0,100,0.05,674a447f-91e7-4283-b54a-6d0ed998cb76,258 +1833-060619-2,,0,100,0.05,59986384-12a6-4559-b70f-e62c97ca6ff2,76 +1833-060619-2,,0,100,0.05,97701855-c0cb-41ab-98c4-ccade07950ad,90 +1833-120619-1,,0,100,0.05,d7b89d9b-c0e1-46fa-9e5e-6fcf725f5f34,139 +1833-120619-3,,0,100,0.05,d7b89d9b-c0e1-46fa-9e5e-6fcf725f5f34,153 +1833-120619-2,,0,100,0.05,d7b89d9b-c0e1-46fa-9e5e-6fcf725f5f34,175 +1833-120619-2,,0,100,0.05,0c9928cc-c3e9-4e22-9654-6624fe221b4c,89 +1833-200619-1,,0,100,0.05,82886983-4c61-4e36-80d2-f856dc5eb4e7,147 +1833-200619-2,,0,100,0.05,018b9d2d-f76f-4804-ab2c-825f67d098a8,268 +1833-200619-3,,0,100,0.05,884b233d-9f7f-444d-b9b2-b536d6557b82,0 +1833-200619-2,,0,100,0.05,884b233d-9f7f-444d-b9b2-b536d6557b82,283 +1833-200619-4,,0,100,0.05,884b233d-9f7f-444d-b9b2-b536d6557b82,1 +1833-200619-4,,0,100,0.05,53953323-230e-470b-b76c-127344489492,90 +1833-200619-3,,0,100,0.05,53953323-230e-470b-b76c-127344489492,91 +1833-200619-4,,0,100,0.05,460e1206-848b-43b2-b7c5-850a13e43a89,92 +1833-200619-3,,0,100,0.05,460e1206-848b-43b2-b7c5-850a13e43a89,93 +1833-200619-4,,0,100,0.05,dd2e5d79-ee67-44e4-b3ec-a5d35e308c41,78 +1833-200619-4,,0,100,0.05,6c5ba75a-5e66-4992-83f5-6ca382044292,96 +1833-260619-3,,0,100,0.05,75abbf10-2eca-425c-93b4-bf01951b3fab,182 +1833-260619-1,,0,100,0.05,75abbf10-2eca-425c-93b4-bf01951b3fab,118 +1833-260619-4,,0,100,0.05,7409a35b-3fb4-4cb2-9458-9599aa53c263,115 +1833-260619-3,,0,100,0.05,7409a35b-3fb4-4cb2-9458-9599aa53c263,141 +1833-260619-1,,0,100,0.05,7409a35b-3fb4-4cb2-9458-9599aa53c263,130 +1833-260619-2,,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,174 +1833-260619-1,,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,132 +1833-260619-4,,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,233 +1833-260619-3,,0,100,0.05,5ad2623e-c334-4a95-a312-ca36d827fbae,209 +1833-260619-2,,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,2 +1833-260619-1,,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,2 +1833-260619-4,,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,235 +1833-260619-3,,0,100,0.05,fc38f04c-f317-4a13-a222-d005f4d3fdc8,1 +1833-260619-4,,0,100,0.05,f1a0076b-b421-4ee2-a59d-e419ea60b6b6,208 +1833-260619-2,,0,100,0.05,f1a0076b-b421-4ee2-a59d-e419ea60b6b6,152 +1833-260619-3,,0,100,0.05,f1a0076b-b421-4ee2-a59d-e419ea60b6b6,180 +1833-260619-3,,0,100,0.05,594d72fb-eeb2-42a5-a337-b9980cec7dd0,194 +1833-260619-2,,0,100,0.05,594d72fb-eeb2-42a5-a337-b9980cec7dd0,164 +1833-260619-4,,0,100,0.05,594d72fb-eeb2-42a5-a337-b9980cec7dd0,222 +1833-260619-3,,0,100,0.05,4309c130-a353-4e38-beba-4d9350678e07,0 +1833-260619-3,,0,100,0.05,61101fef-2583-4c30-8157-dbfc83a9611b,140 +1833-290519-1,,0,100,0.05,e04fcb6f-004a-4e3a-8793-18e48a595cba,112 +1833-290519-1,,0,100,0.05,d6360ea3-c460-4cfd-95ed-03489c5bbdda,120 +1833-290519-1,,0,100,0.05,846d339e-b666-4fbc-af86-6727f45e500b,146 +1833-290519-2,,0,100,0.05,b3216c92-197d-4642-be0e-bb28fdab0907,78 +1833-290519-2,,0,100,0.05,82d976f8-1ffa-461b-b69a-b32a5b9ba894,82 +1833-290519-3,,0,100,0.05,55ab237c-d434-4d10-98f5-9ebefa56639e,107 +1833-290519-3,,0,100,0.05,c1d06f73-d01e-4088-b710-16c61711194f,137 +1833-290519-4,,0,100,0.05,16689d25-454f-4bb8-ba02-a784b11996db,117 +1833-290519-4,,0,100,0.05,1094cdee-8aa1-4043-8535-0514b66b9617,88 +1833-260619-2,,1,100,0.05,60ac4b3a-5a3c-4396-a92c-bfa06ee87b10,123 +1833-260619-1,,1,100,0.05,60ac4b3a-5a3c-4396-a92c-bfa06ee87b10,104 +1833-010719-1,,1,100,0.05,60ac4b3a-5a3c-4396-a92c-bfa06ee87b10,146 +1833-010719-1,,1,100,0.05,f17b2419-e7b8-484a-9a3f-0235b0f56e84,219 +1833-010719-1,,1,100,0.05,23d99789-c3bd-4061-b3e9-400fa934c297,221 +1833-010719-1,,1,100,0.05,020f3eb7-9cd9-476a-b402-dccdd5c85313,229 +1833-010719-2,,1,100,0.05,020f3eb7-9cd9-476a-b402-dccdd5c85313,273 +1833-010719-1,,1,100,0.05,288a1eb2-b910-4741-973f-b7eb943d578c,6 +1833-010719-1,,1,100,0.05,e3b0028a-00aa-4651-b9be-d39f7220e756,8 +1833-020719-2,,1,100,0.05,d210e396-aebb-495f-8060-d0a3b586541c,131 +1833-010719-2,,1,100,0.05,d210e396-aebb-495f-8060-d0a3b586541c,135 +1833-200619-3,,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,97 +1833-200619-4,,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,76 +1833-200619-1,,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,159 +1833-010719-2,,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,18 +1833-020719-2,,1,100,0.05,4ece45c0-f74e-4c3f-bfbe-87d206cf013a,15 +1833-020719-2,,1,100,0.05,1d08a41d-e610-4c27-b450-0dbb09e09f1e,14 +1833-010719-2,,1,100,0.05,1d08a41d-e610-4c27-b450-0dbb09e09f1e,227 +1833-020719-3,,1,100,0.05,1d08a41d-e610-4c27-b450-0dbb09e09f1e,123 +1833-010719-2,,1,100,0.05,fe8aafe3-b466-40a0-9c83-a710844a4812,229 +1833-010719-2,,1,100,0.05,0098c6a1-ff90-40cb-9548-df7201ebb0c6,233 +1833-010719-2,,1,100,0.05,10b2d316-2498-4dfe-9bfe-5a31ad425dde,269 +1833-020719-1,,1,100,0.05,4cd53be4-0731-4da7-87aa-838c831a166b,115 +1833-020719-3,,1,100,0.05,97507bc1-b15b-4d54-a874-f63dc47ba240,154 +1833-020719-1,,1,100,0.05,97507bc1-b15b-4d54-a874-f63dc47ba240,147 +1833-020719-3,,1,100,0.05,7a1fb80c-4368-4ecf-873a-4a1b2da86bf1,166 +1833-020719-1,,1,100,0.05,7a1fb80c-4368-4ecf-873a-4a1b2da86bf1,155 +1833-020719-2,,1,100,0.05,7a1fb80c-4368-4ecf-873a-4a1b2da86bf1,87 +1833-020719-2,,1,100,0.05,549df16a-fe87-41de-9a70-4b08fe799efd,152 +1833-020719-3,,1,100,0.05,b222d608-82c0-4b57-ae73-9d5ed6dd21b4,139 +1833-020719-4,,1,100,0.05,bbaea364-eb5b-40b4-b202-a0d4f264c205,256 +1833-020719-4,,1,100,0.05,0e48da29-eac7-4941-9268-44e096a63d1c,278 +1833-020719-4,,1,100,0.05,b4ee613f-7453-4f2d-ada8-81ae84a206b0,300 +1833-050619-1,,1,100,0.05,fa14536b-2b32-4007-93e7-64f5f4fc32de,75 +1833-050619-2,,1,100,0.05,b2252178-0f9e-47ab-b401-4b28ef78ee60,129 +1833-050619-3,,1,100,0.05,b2252178-0f9e-47ab-b401-4b28ef78ee60,125 +1833-050619-4,,1,100,0.05,4bc21424-b8fd-4e08-82f6-effa388cda03,68 +1833-050619-4,,1,100,0.05,d150807a-e271-4ec7-9115-b43526bbe93b,84 +1833-050619-4,,1,100,0.05,ed0fdcbe-7aa9-4a79-840d-67eca618c1aa,86 +1833-060619-1,,1,100,0.05,c48dd287-ffc9-4ab6-8f6f-f081837cf784,137 +1833-060619-2,,1,100,0.05,90c2de30-5695-4a91-b403-af76f2cdf61b,64 +1833-060619-2,,1,100,0.05,1038a388-166d-422a-8c65-1ac1e6d9ad54,78 +1833-120619-1,,1,100,0.05,6de199c5-36fb-411c-825a-8d1871a5c737,114 +1833-120619-2,,1,100,0.05,5d01e49b-9ae7-45f5-9287-18ab13cd6136,104 +1833-200619-1,,1,100,0.05,19a1525b-c2bf-49a8-8fb8-dbc76f93e02d,155 +1833-200619-2,,1,100,0.05,498eef1b-8a69-490c-8685-b9d84bec1e05,278 +1833-200619-4,,1,100,0.05,3cba268e-7bee-4ffc-831c-7f060b8abd3d,70 +1833-200619-3,,1,100,0.05,3cba268e-7bee-4ffc-831c-7f060b8abd3d,89 +1833-260619-1,,1,100,0.05,d5c0812a-92a3-4ef0-a9fa-66b40acb5dc5,10 +1833-260619-1,,1,100,0.05,1f18345d-c22a-4e69-8412-895f8dc184e1,116 +1833-260619-1,,1,100,0.05,1d244994-074c-49ad-a789-2c86feb6ed74,126 +1833-260619-2,,1,100,0.05,1d244994-074c-49ad-a789-2c86feb6ed74,166 +1833-260619-2,,1,100,0.05,eb701b37-e917-4d0f-9469-ee01b46d623e,130 +1833-260619-3,,1,100,0.05,f29743b1-4d3e-4a17-8e11-3a2b9087662b,119 +1833-260619-4,,1,100,0.05,ca960139-81eb-4c8c-b93a-55103ba52728,198 +1833-260619-3,,1,100,0.05,ca960139-81eb-4c8c-b93a-55103ba52728,170 +1833-260619-3,,1,100,0.05,e9e7a50d-3eb3-4e78-a5c1-5c04995f69a9,207 +1833-260619-4,,1,100,0.05,234fcaba-1510-4c14-b5bb-114318ac6e83,178 +1833-260619-4,,1,100,0.05,f1a20652-80aa-4984-a052-7102dd162994,204 +1833-260619-4,,1,100,0.05,eea49e8a-8c74-49f1-9c90-5d0e353ac3da,226 +1833-290519-1,,1,100,0.05,191b3d9d-611a-4a90-bd37-246adbd13fb5,138 +1833-290519-1,,1,100,0.05,a84af5e8-cec8-4d8a-acef-27ee8a03c53f,92 +1833-290519-2,,1,100,0.05,3009f1b5-041b-4676-95c2-4ffabb182ab1,102 +1833-290519-2,,1,100,0.05,7d79acf2-1dc2-4390-a035-3c0bcdc8d7a9,104 +1833-290519-2,,1,100,0.05,6dc5b1be-f79b-495c-90ed-7b6e89681ae5,116 +1833-290519-2,,1,100,0.05,1d8987a6-7610-4c00-9bb0-81a3cc8fd9b7,120 +1833-290519-3,,1,100,0.05,89f364f3-f5c5-4051-856b-1022b6ccc407,119 +1833-290519-3,,1,100,0.05,5aa5469d-f80b-43df-a63e-632e39c9164f,72 +1833-290519-4,,1,100,0.05,9d2e0623-35c2-419e-af51-93cf20a52ead,85 +1833-290519-4,,1,100,0.05,0bb3d6b8-64f2-49bd-bf6c-b107666d92ef,96 +1833-010719-1,,2,100,0.05,1202098d-b1e3-4b6d-891d-8507c0830f6d,202 +1833-020719-1,,2,100,0.05,1202098d-b1e3-4b6d-891d-8507c0830f6d,143 +1833-010719-2,,2,100,0.05,1202098d-b1e3-4b6d-891d-8507c0830f6d,249 +1833-010719-2,,2,100,0.05,fe8950da-16eb-4810-97dc-3e103708d8bd,29 +1833-010719-1,,2,100,0.05,fe8950da-16eb-4810-97dc-3e103708d8bd,231 +1833-010719-2,,2,100,0.05,277503b6-e87a-4dd2-80cd-536a65cbc59a,271 +1833-020719-1,,2,100,0.05,40e5d65a-3b34-4a85-80b1-8ab409bf659f,149 +1833-020719-2,,2,100,0.05,d28a01dd-3d09-4482-90c0-0a46c727a30b,119 +1833-020719-2,,2,100,0.05,cb36a2aa-c8a3-4d74-9248-7af22fe9e2af,120 +1833-020719-2,,2,100,0.05,60146bd8-44fe-4704-8a3a-b4314b2d11e4,93 +1833-020719-3,,2,100,0.05,5f8eeed0-7967-4b9d-882c-76807a0eecd2,147 +1833-020719-3,,2,100,0.05,bee1eff1-59a4-49f9-b4b3-5c0d04c838d5,168 +1833-020719-4,,2,100,0.05,a4861b4d-8f8d-408a-a626-c2388be50d62,260 +1833-060619-1,,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,168 +1833-050619-1,,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,99 +1833-050619-2,,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,135 +1833-060619-2,,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,106 +1833-050619-3,,2,100,0.05,d16b9e57-721b-4790-8bf2-c886264354e0,133 +1833-050619-2,,2,100,0.05,0ad3c1a0-cb9c-4dcd-9715-598e6e4ac3f9,111 +1833-050619-3,,2,100,0.05,633e1f45-88f2-48a8-a79d-44d25712ac41,111 +1833-050619-2,,2,100,0.05,633e1f45-88f2-48a8-a79d-44d25712ac41,89 +1833-120619-3,,2,100,0.05,bd4c4bab-45fa-4ee4-bd26-b79a779ab91c,104 +1833-120619-1,,2,100,0.05,bd4c4bab-45fa-4ee4-bd26-b79a779ab91c,120 +1833-120619-2,,2,100,0.05,bd4c4bab-45fa-4ee4-bd26-b79a779ab91c,142 +1833-120619-2,,2,100,0.05,1f0800f6-0353-445b-a594-1a071ea0c8d5,118 +1833-200619-4,,2,100,0.05,a954bf7f-0d42-47c2-907f-7faa6e4bfde5,115 +1833-200619-1,,2,100,0.05,a954bf7f-0d42-47c2-907f-7faa6e4bfde5,228 +1833-200619-3,,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,142 +1833-200619-1,,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,239 +1833-200619-4,,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,117 +1833-200619-2,,2,100,0.05,afc56579-fd00-4686-aaf2-7d10c7d06ebb,325 +1833-260619-1,,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,128 +1833-260619-4,,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,216 +1833-260619-2,,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,168 +1833-260619-3,,2,100,0.05,d69bd89c-042e-48a6-a2f4-04173a4ecd78,198 +1833-260619-2,,2,100,0.05,c06363fb-12f8-47d6-8a89-ef4821bd7f8c,148 +1833-290519-2,,2,100,0.05,8cd50dd4-efb3-4f2c-910d-94594a1dfd17,100 +1833-290519-2,,2,100,0.05,4d525d3d-ed38-4c46-90ec-d0833b6f46a7,112 +1833-290519-2,,2,100,0.05,8477d63c-5861-4087-8724-02fd49219829,132 +1833-010719-1,,3,100,0.05,453c4f77-cce3-477c-8537-78e4b361d1a1,171 +1833-010719-1,,3,100,0.05,58bf4f43-955d-4084-98e4-49d2cf63bcb1,198 +1833-020719-1,,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,151 +1833-010719-1,,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,216 +1833-020719-2,,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,136 +1833-010719-2,,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,243 +1833-020719-3,,3,100,0.05,10e95c17-15ab-4d2f-939f-d98d25e0b7d1,17 +1833-010719-2,,3,100,0.05,072e4f5b-2df4-4414-a409-f592f25a7a43,133 +1833-010719-1,,3,100,0.05,072e4f5b-2df4-4414-a409-f592f25a7a43,240 +1833-010719-2,,3,100,0.05,9aaf9893-5849-421c-9014-187b6f4ade94,157 +1833-010719-2,,3,100,0.05,66f45b2c-5020-4d83-8fcb-0afed316c574,173 +1833-010719-2,,3,100,0.05,e80f3819-5049-4986-bbed-a9e0ed42e5de,174 +1833-010719-2,,3,100,0.05,268c7a27-f7f9-40c2-a2da-e7d4ce28ded0,187 +1833-010719-2,,3,100,0.05,86410a4b-5196-4cc0-8672-17e2e8f100b5,188 +1833-010719-2,,3,100,0.05,c08ccbbe-e52f-4166-9cfa-df5e587735ed,241 +1833-010719-2,,3,100,0.05,19a93460-8f00-4af8-b993-a47e6fa9b97d,259 +1833-020719-1,,3,100,0.05,91673fec-cd7a-492d-9124-6cf9a8ca9128,135 +1833-020719-2,,3,100,0.05,432b4928-ca71-4955-acb6-f8b06b72010c,140 +1833-020719-1,,3,100,0.05,432b4928-ca71-4955-acb6-f8b06b72010c,140 +1833-020719-3,,3,100,0.05,432b4928-ca71-4955-acb6-f8b06b72010c,23 +1833-020719-1,,3,100,0.05,29aa8dbf-2bd8-4691-97f3-df202c52a96d,153 +1833-020719-3,,3,100,0.05,29aa8dbf-2bd8-4691-97f3-df202c52a96d,164 +1833-020719-1,,3,100,0.05,56e178b7-f788-4c06-b625-af7a1ceec5c3,164 +1833-020719-3,,3,100,0.05,56e178b7-f788-4c06-b625-af7a1ceec5c3,170 +1833-020719-2,,3,100,0.05,1d2c7ebd-3d48-489f-aba7-f4dfd44edb4e,107 +1833-020719-2,,3,100,0.05,c296df8e-e7cd-4e56-9484-34abbbb957b2,139 +1833-020719-2,,3,100,0.05,9d06cb6f-baf1-4420-87c5-949e06f4f822,146 +1833-020719-3,,3,100,0.05,d75eeafe-b067-4bc9-a4c9-74a11bb1466f,152 +1833-020719-4,,3,100,0.05,4a75a257-1f81-421c-a4a9-c4121b559c34,289 +1833-020719-4,,3,100,0.05,d0bb4f6b-bc6b-485d-88cf-afa1fb7f28fb,290 +1833-020719-4,,3,100,0.05,3e90e233-d807-4a2b-8338-dd8a9b1a5376,298 +1833-020719-4,,3,100,0.05,9fcb03a0-c55f-4319-8f97-a51c1bfd4c2d,318 +1833-050619-1,,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,107 +1833-050619-2,,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,143 +1833-050619-3,,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,147 +1833-050619-4,,3,100,0.05,ef6dd62e-e84f-4b94-813d-64d86fb7c08f,148 +1833-060619-1,,3,100,0.05,cf77fc85-610c-407b-8773-58e63c7fbf23,174 +1833-120619-2,,3,100,0.05,2385a66c-be2e-443a-aad7-8c7b0f41f6be,143 +1833-120619-2,,3,100,0.05,e0226db9-04e3-4b45-b5f8-8fac79b1cafa,69 +1833-200619-1,,3,100,0.05,939b507b-6464-4fd7-a8d1-41297a26c4e7,151 +1833-200619-3,,3,100,0.05,f62d458a-7acd-4a39-8319-6c8ded605cde,128 +1833-200619-1,,3,100,0.05,f62d458a-7acd-4a39-8319-6c8ded605cde,184 +1833-200619-4,,3,100,0.05,f62d458a-7acd-4a39-8319-6c8ded605cde,102 +1833-200619-2,,3,100,0.05,24dc1793-ffdc-4198-ba73-ab1665ceefd9,257 +1833-200619-2,,3,100,0.05,8de86bad-f183-44f6-9d04-44e93472df4c,264 +1833-200619-4,,3,100,0.05,0e24b310-e0f7-431a-b4b1-ece804b0228f,74 +1833-200619-3,,3,100,0.05,0e24b310-e0f7-431a-b4b1-ece804b0228f,82 +1833-260619-1,,3,100,0.05,db78137d-99cf-48a6-baf9-9252426a3db8,114 +1833-260619-2,,3,100,0.05,db78137d-99cf-48a6-baf9-9252426a3db8,146 +1833-260619-3,,3,100,0.05,80d08bcc-be1f-484d-86d7-3af87cef5d0f,160 +1833-260619-4,,3,100,0.05,7723d3af-a375-42b0-9d19-3c22107785e0,206 +1833-260619-3,,3,100,0.05,7723d3af-a375-42b0-9d19-3c22107785e0,176 +1833-260619-4,,3,100,0.05,e1aa87ab-1e5c-43b7-83c2-1d4fc57bd082,196 +1833-290519-1,,3,100,0.05,5f647e04-cb09-4ff5-9328-ec5602b2303c,101 +1833-290519-1,,3,100,0.05,81aa445a-3d2f-46ce-9e7b-6be0b260a1d0,102 +1833-290519-4,,3,100,0.05,81aa445a-3d2f-46ce-9e7b-6be0b260a1d0,92 +1833-290519-1,,3,100,0.05,67e49adb-e93d-42f9-a5f1-bcf9e27aced5,162 +1833-290519-4,,3,100,0.05,36fb06f7-aca0-45c1-b674-14ddddc7069f,130 +1833-290519-1,,3,100,0.05,36fb06f7-aca0-45c1-b674-14ddddc7069f,176 +1833-290519-2,,3,100,0.05,7d3e0f3f-bd1f-4d65-9f8e-482d5ed961c9,108 +1833-290519-2,,3,100,0.05,b2466e1a-e64d-40e7-a170-218093a0397e,72 +1833-290519-2,,3,100,0.05,e1c6111b-1869-4ff5-8ef2-aea5f6f67d01,74 +1833-290519-3,,3,100,0.05,26a21d49-d7b4-443e-9c32-ced22bc64042,102 +1833-290519-3,,3,100,0.05,d4612cb4-0882-4dbd-bc19-b86322c59082,153 +1833-290519-3,,3,100,0.05,43c4c6e8-153c-4276-8a63-5f7d29cf9ee8,68 +1833-290519-3,,3,100,0.05,cbec3a74-927e-48a8-adaa-e51f89b4fd08,99 +1833-290519-4,,3,100,0.05,b61b8b0d-e8d7-4923-925d-71f9d7abf9ce,129 +1833-010719-2,,4,100,0.05,7425d62e-bab4-4d04-a3a0-cead89764b12,223 +1833-010719-2,,4,100,0.05,98732e86-3445-43d9-a50e-78340d22dec1,231 +1833-020719-3,,4,100,0.05,df8a86ea-ac4f-49d4-b421-9f536b722f07,45 +1833-020719-3,,4,100,0.05,0987b826-6d91-4a05-98f9-484f5e51826b,94 +1833-020719-3,,4,100,0.05,7c214d30-6511-4943-8ea0-b97c649d1e2e,95 +1833-020719-4,,4,100,0.05,37857f27-7998-4cfe-8e25-fa5d534e3dc8,250 +1833-050619-1,,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,25 +1833-050619-2,,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,137 +1833-050619-3,,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,145 +1833-050619-4,,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,151 +1833-060619-1,,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,172 +1833-120619-4,,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,119 +1833-060619-2,,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,108 +1833-120619-1,,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,137 +1833-120619-3,,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,147 +1833-120619-2,,4,100,0.05,1562980d-3f9f-4874-924a-2c8bf686799c,170 +1833-050619-2,,4,100,0.05,a33b63da-a6a9-4980-be9f-a9982a81d2df,97 +1833-050619-3,,4,100,0.05,a33b63da-a6a9-4980-be9f-a9982a81d2df,123 +1833-050619-4,,4,100,0.05,a33b63da-a6a9-4980-be9f-a9982a81d2df,80 +1833-060619-1,,4,100,0.05,109d6ed6-4405-4323-926f-62effd49df67,144 +1833-120619-2,,4,100,0.05,1acaab2a-d0d0-45e0-a89c-da4634b4d09f,81 +1833-120619-3,,4,100,0.05,84a5cec3-cd43-4600-a2eb-f55b2b4992b1,100 +1833-120619-3,,4,100,0.05,67655ae0-e1a2-4e1d-ad33-3d223ab1d129,101 +1833-200619-1,,4,100,0.05,881bb6ab-97fd-4d7f-928c-19b650988ec1,165 +1833-200619-2,,4,100,0.05,8bb6b506-f0a7-4397-a9a9-91a667a55b6c,254 +1833-200619-3,,4,100,0.05,0191e631-4293-4bec-9756-2a9b24052717,113 +1833-200619-4,,4,100,0.05,47a87161-3ebc-4f4b-b73f-241b9cfdb9d4,124 +1833-290519-1,,4,100,0.05,bbfad854-6959-4860-858d-f6bd256a069e,118 +1833-290519-1,,4,100,0.05,68c780fd-1dc3-4b22-a0bb-66b882fb8933,80 +1833-290519-2,,4,100,0.05,3a635e40-482a-475f-936f-99ba9f5fa787,114 +1833-290519-2,,4,100,0.05,61095d50-52a2-46a3-9819-8f6596af71c5,122 +1833-290519-2,,4,100,0.05,c35b9ee0-78ce-4b24-9fb2-1085fda8e422,124 +1833-290519-3,,4,100,0.05,68283812-8cd3-4b52-9d62-63878e27cf3d,135 +1833-290519-3,,4,100,0.05,a7140f1e-6d13-4757-bc0e-e7e1df634a88,145 +1833-290519-3,,4,100,0.05,fa10acbf-1cb3-4590-bd8f-7abb782ad5df,76 +1833-290519-4,,4,100,0.05,bd7de171-9f6d-4267-8d01-7691fefa2d36,71 +1833-010719-1,,5,100,0.05,41b1434f-a3e3-45f5-a2c3-9044479e6a80,134 +1833-010719-1,,5,100,0.05,755fb028-82f6-4264-847c-5508653873d8,144 +1833-010719-1,,5,100,0.05,be674bb8-6374-4d5c-a10d-4ce6fa2fc031,150 +1833-260619-4,,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,212 +1833-260619-2,,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,154 +1833-010719-2,,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,235 +1833-010719-1,,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,166 +1833-260619-1,,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,110 +1833-260619-3,,5,100,0.05,d6a0cf82-d0ae-4ac9-9d03-3bbef19488f9,184 +1833-010719-2,,5,100,0.05,e4f2b711-e694-46c8-8a85-73f871046d2d,221 +1833-020719-1,,5,100,0.05,7ad05a2f-fd4f-4cfd-bce4-69a50db190a0,109 +1833-020719-2,,5,100,0.05,a5ef9291-41c2-449f-aab4-3af00c573726,103 +1833-020719-2,,5,100,0.05,18b062a6-70a3-4d83-b208-470247ff0a0a,126 +1833-020719-3,,5,100,0.05,3ede0ba0-45c2-43b5-b729-a8fd59966686,117 +1833-020719-3,,5,100,0.05,7b237f5a-cea9-47b0-bc5d-b25d829cf355,121 +1833-020719-4,,5,100,0.05,7b237f5a-cea9-47b0-bc5d-b25d829cf355,266 +1833-020719-3,,5,100,0.05,5c74c150-9611-41f9-a960-c4e93038faa3,135 +1833-020719-4,,5,100,0.05,5c74c150-9611-41f9-a960-c4e93038faa3,294 +1833-200619-2,,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,270 +1833-290519-4,,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,115 +1833-050619-1,,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,73 +1833-120619-3,,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,136 +1833-050619-2,,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,123 +1833-050619-3,,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,127 +1833-050619-4,,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,82 +1833-200619-3,,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,122 +1833-060619-1,,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,156 +1833-120619-4,,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,122 +1833-120619-2,,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,145 +1833-200619-4,,5,100,0.05,a6b9fe96-2419-4db7-9018-442189c83282,94 +1833-050619-4,,5,100,0.05,8e750e81-5a90-409e-a646-dd1c815bffbb,79 +1833-060619-2,,5,100,0.05,8e750e81-5a90-409e-a646-dd1c815bffbb,68 +1833-060619-1,,5,100,0.05,d2f1b62a-2251-4ac2-80d4-95221c63e793,164 +1833-060619-2,,5,100,0.05,54a030ed-cfed-41a4-9e5e-fe6d7ebfe5c2,98 +1833-120619-1,,5,100,0.05,417e44ce-183a-4a4a-a081-6cc8b73bbd55,133 +1833-120619-2,,5,100,0.05,d87389d5-f8d7-472c-8121-527e195930df,100 +1833-120619-2,,5,100,0.05,6d4aa130-9258-4a71-a718-a9d77cfbfe49,123 +1833-120619-2,,5,100,0.05,c57ce315-12e2-4e26-94e6-a6fc015ddb0f,133 +1833-200619-3,,5,100,0.05,791b5b20-41c7-471e-881b-2293fab54e40,59 +1833-260619-1,,5,100,0.05,0319b8ce-8b28-44ec-b90a-d5de9736d50b,100 +1833-260619-2,,5,100,0.05,2948d4ad-337d-4b20-99b4-71c690bd483d,115 +1833-260619-3,,5,100,0.05,2948d4ad-337d-4b20-99b4-71c690bd483d,111 +1833-260619-3,,5,100,0.05,16289c5d-e679-43bb-8f20-b15bf6185391,109 +1833-260619-3,,5,100,0.05,626a18ce-5a2a-4a8d-b129-904004595b7d,113 +1833-260619-4,,5,100,0.05,b2a58b32-3717-4741-a24f-bc5e921f29a8,162 +1833-260619-4,,5,100,0.05,fb2ae576-39bf-4fd6-9512-87ed0b0949da,188 +1833-290519-1,,5,100,0.05,cf56171b-496c-4aae-8340-26adfcc8e0fe,134 +1833-290519-1,,5,100,0.05,9c770226-006d-414c-b04d-e743df77c5e8,158 +1833-290519-1,,5,100,0.05,3a3bd569-b249-446b-91c2-07993a1fc4de,172 +1833-290519-1,,5,100,0.05,f0b2aa01-32d6-4830-872d-4e2578b0171e,94 +1833-290519-2,,5,100,0.05,db0a4b07-759b-4e0f-bf2d-03353582f748,80 +1833-290519-3,,5,100,0.05,5502f0db-4eea-4ef2-a934-808123e162e5,109 +1833-290519-3,,5,100,0.05,ba65c205-b59d-42ad-826f-04aba95abc0f,117 +1833-290519-3,,5,100,0.05,346f7d40-a879-44c5-b786-c67d7bed4694,139 +1833-290519-3,,5,100,0.05,2de58598-a677-407f-aa09-5179fde482b7,143 +1833-290519-4,,5,100,0.05,c0dff757-d66c-4c96-8b61-ab79eb569d6a,121 +1833-290519-4,,5,100,0.05,8d762aa9-1ade-4255-a288-84225eacaab2,98 +1833-010719-1,,6,100,0.05,f76a581e-8c2b-4314-9456-67579f4f7fd1,152 +1833-010719-1,,6,100,0.05,a55723a7-2775-4001-941e-430855dece20,183 +1833-010719-1,,6,100,0.05,730e466e-e879-4db3-9fda-5b227248c873,200 +1833-010719-1,,6,100,0.05,5f56e3f9-f08e-4065-87ce-f6ff82b66eea,227 +1833-010719-2,,6,100,0.05,c0e5171c-e874-482a-8b7b-34451d1093e4,225 +1833-020719-1,,6,100,0.05,4161c5eb-2cb2-40e3-8c61-29a33f708789,107 +1833-020719-2,,6,100,0.05,82b5bfef-1991-40d2-89dc-ca9ae378ce84,99 +1833-020719-3,,6,100,0.05,69809b0c-ff29-4b0d-a861-3fa6cdbf2b02,63 +1833-020719-3,,6,100,0.05,78595052-c80e-4686-a83a-4e8a4d0a696b,64 +1833-020719-4,,6,100,0.05,1cfaaf89-1845-4f7b-ba77-6591a2711ca9,254 +1833-020719-3,,6,100,0.05,1cfaaf89-1845-4f7b-ba77-6591a2711ca9,96 +1833-020719-4,,6,100,0.05,6a5978cf-669c-4b46-a875-da7c23dc19db,248 +1833-020719-4,,6,100,0.05,a52a0cac-1560-4fb0-bc9e-8a88f315954b,310 +1833-050619-4,,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,157 +1833-050619-1,,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,111 +1833-050619-3,,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,149 +1833-060619-1,,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,176 +1833-050619-2,,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,152 +1833-060619-2,,6,100,0.05,9030031c-d2ea-40d4-b169-f9de8aff935f,112 +1833-050619-4,,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,133 +1833-050619-1,,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,60 +1833-260619-1,,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,106 +1833-050619-3,,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,117 +1833-050619-2,,6,100,0.05,9d5116e7-557d-4886-888c-d8c5aad43d66,119 +1833-120619-3,,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,118 +1833-060619-1,,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,162 +1833-290519-4,,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,108 +1833-050619-2,,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,125 +1833-050619-4,,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,92 +1833-060619-2,,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,82 +1833-050619-1,,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,64 +1833-120619-4,,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,80 +1833-050619-3,,6,100,0.05,dbc7cb1e-ab98-4973-8d5f-679d00848ec0,129 +1833-060619-1,,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,170 +1833-060619-2,,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,105 +1833-050619-1,,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,91 +1833-120619-2,,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,151 +1833-120619-1,,6,100,0.05,8676e0d5-9d9b-428b-8041-0c55ade124c8,129 +1833-050619-4,,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,135 +1833-120619-4,,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,127 +1833-050619-2,,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,146 +1833-120619-3,,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,94 +1833-050619-3,,6,100,0.05,f4925e1f-368f-4a88-9637-b363d11323e4,143 +1833-050619-2,,6,100,0.05,42631620-f795-462c-addb-a6475a5b111c,74 +1833-050619-2,,6,100,0.05,711a946f-69b3-47c5-82f4-f11cfd2d22ef,81 +1833-050619-3,,6,100,0.05,00780e53-a0bf-4923-8fcc-7393dde0a2a8,109 +1833-050619-4,,6,100,0.05,b0c2059e-dadd-4726-8fe1-d60b15456f97,117 +1833-060619-1,,6,100,0.05,98445d76-55d4-4334-a354-d127b190cc23,158 +1833-120619-4,,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,120 +1833-060619-1,,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,160 +1833-120619-3,,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,143 +1833-200619-3,,6,100,0.05,a4100f8f-e62f-402d-a266-6b08fdbf8ff9,126 +1833-060619-2,,6,100,0.05,05fd1acb-78bb-4398-9611-ec4753de6719,116 +1833-060619-2,,6,100,0.05,aaff5be0-15cd-4fad-bbde-627ed1803de2,74 +1833-260619-2,,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,160 +1833-120619-1,,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,127 +1833-260619-1,,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,124 +1833-260619-3,,6,100,0.05,e5edef1a-3e32-4b3b-a466-c567bfa3665c,192 +1833-120619-3,,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,141 +1833-200619-3,,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,132 +1833-120619-2,,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,169 +1833-200619-2,,6,100,0.05,a3502f29-9322-4b55-ae5b-7a34fbdf5f6e,287 +1833-120619-3,,6,100,0.05,9a5865f3-b57a-4af5-a3b2-5f695378542d,122 +1833-120619-3,,6,100,0.05,fe5bda32-a4df-4a42-b7e9-eee85f9ee727,145 +1833-120619-4,,6,100,0.05,18140d38-b9a5-4841-9f5a-ffe3f374fd5b,124 +1833-120619-4,,6,100,0.05,7b76ab64-6441-436e-9b31-a266818e8cf9,85 +1833-120619-4,,6,100,0.05,b248e3eb-23e2-4e21-8bd9-ddcbce4ca1b2,95 +1833-200619-3,,6,100,0.05,67b8ea60-20d3-4b6f-a679-350207690edb,120 +1833-260619-3,,6,100,0.05,67b8ea60-20d3-4b6f-a679-350207690edb,168 +1833-200619-1,,6,100,0.05,67b8ea60-20d3-4b6f-a679-350207690edb,163 +1833-200619-1,,6,100,0.05,ba1187ef-dedb-4791-8716-a8f7befb6fd3,171 +1833-200619-1,,6,100,0.05,67a4c883-8ed0-4207-8bf1-9846151486db,206 +1833-200619-1,,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,240 +1833-200619-4,,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,121 +1833-200619-2,,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,327 +1833-200619-3,,6,100,0.05,4a594ae3-db2b-4cb5-8c7e-bbccc4173825,150 +1833-200619-2,,6,100,0.05,010880bf-8f2f-4440-819d-f69a7aec1e8e,28 +1833-200619-2,,6,100,0.05,7435f4c7-2f39-461c-bf55-881400546594,281 +1833-200619-2,,6,100,0.05,1fbb1aab-3b27-49b7-b40c-5fc6f86e553d,308 +1833-200619-2,,6,100,0.05,50c6122d-e7e1-4637-999b-2fb0654304d9,321 +1833-200619-3,,6,100,0.05,e831cf28-05f9-4176-a427-f8803f497ad4,75 +1833-200619-4,,6,100,0.05,403c2d3c-3dae-4af2-b36d-83cf8b91c0fb,101 +1833-200619-4,,6,100,0.05,d5e9dda8-c5eb-448d-933c-b9ce23dd5902,109 +1833-200619-4,,6,100,0.05,de4e5e22-d1d6-4a4d-8fec-ef3219c5d5fc,80 +1833-200619-4,,6,100,0.05,c46da61e-5eb8-46dd-b399-cb27e195ec35,89 +1833-260619-4,,6,100,0.05,b4ce78b7-d09c-4b35-86ba-c258a7fd6cf4,182 +1833-260619-1,,6,100,0.05,b4ce78b7-d09c-4b35-86ba-c258a7fd6cf4,102 +1833-260619-1,,6,100,0.05,43f4ddd2-5ccc-4afb-b43f-22b0cbab6279,108 +1833-260619-1,,6,100,0.05,9c177eab-36b8-4288-b89d-9368b7b96e2a,112 +1833-260619-2,,6,100,0.05,8aac20f0-160f-4cc0-921e-c3db97a7e8f1,140 +1833-260619-2,,6,100,0.05,7b36f452-222f-4d0f-b3f3-3c984e0f6ec2,144 +1833-260619-2,,6,100,0.05,21026732-ebf7-49b7-b3ce-b01ffddf603f,156 +1833-260619-2,,6,100,0.05,97ecf9a9-8823-49e3-8d83-e7db1b2e915d,170 +1833-260619-3,,6,100,0.05,5fb73ac3-40d4-4152-a506-de8c0d502ebe,142 +1833-260619-4,,6,100,0.05,3739c7f8-39e6-45f6-aa9e-d46952816e2a,184 +1833-260619-4,,6,100,0.05,70219b23-7421-40ef-acb0-99d612e35537,200 +1833-260619-4,,6,100,0.05,48731479-d41f-4898-8c2f-aee6dbb8c983,214 +1833-260619-4,,6,100,0.05,11253d04-3f93-41e8-9aa2-4502d631f34e,218 +1833-260619-4,,6,100,0.05,98d95bae-0e6f-449c-9923-8753820c2b64,80 +1833-290519-1,,6,100,0.05,3874d7bd-5e71-42fe-a32d-d5ec94774c26,124 +1833-290519-1,,6,100,0.05,72b517bc-403c-44b7-a22b-ccce17a9f531,132 +1833-290519-1,,6,100,0.05,1ba61dd3-4f40-4f65-8560-1b4988a179e8,142 +1833-290519-1,,6,100,0.05,8706f2d2-2c53-40d7-8b24-b0e65e72bb1c,150 +1833-290519-1,,6,100,0.05,36a75459-7464-4619-aaf7-31d752ee8e83,154 +1833-290519-1,,6,100,0.05,174d10bc-8f12-42f9-a79e-1284d5055f97,166 +1833-290519-1,,6,100,0.05,228a3e7e-5e13-4c9a-a9de-cbf8b12cf95a,89 +1833-290519-2,,6,100,0.05,976ae92f-87d8-403e-abb6-97d9514db949,76 +1833-290519-3,,6,100,0.05,7af41fe8-eb72-4629-8a79-481d1ff5e373,125 +1833-290519-3,,6,100,0.05,d984d89c-250d-40af-a86f-8cfc6a6513b9,141 +1833-290519-3,,6,100,0.05,de287c1f-fd48-4b18-b1d6-5dc4eb18c93c,147 +1833-290519-3,,6,100,0.05,c003fb49-3b59-4dec-957f-b83249a6cbb6,149 +1833-290519-3,,6,100,0.05,0f291093-c33b-4614-ad43-74f353c7662e,151 +1833-290519-3,,6,100,0.05,9cabed8b-26ac-4dba-bf9f-620dee3a24f7,155 +1833-290519-4,,6,100,0.05,2f7c00b2-2b59-49bb-ac3e-5776ef1fd628,65 +1833-290519-4,,6,100,0.05,185f9a41-d718-479e-a9c1-1a336ce55980,79 +1833-290519-4,,6,100,0.05,59b005fe-d706-40ec-b9ea-ba82dc553205,90 +1833-010719-1,,7,100,0.05,1762e942-7c2d-4d03-9ef0-fe603c828788,114 +1833-010719-1,,7,100,0.05,64f39f10-ee1a-434b-87e4-74c0f74394b9,132 +1833-010719-2,,7,100,0.05,64f39f10-ee1a-434b-87e4-74c0f74394b9,217 +1833-010719-1,,7,100,0.05,0ec4ca85-7869-437b-bf87-cbc8bf104682,54 +1833-010719-2,,7,100,0.05,9b0c0a7d-a892-46e1-a8fb-3971e2a1612e,211 +1833-010719-2,,7,100,0.05,71fe68ed-e519-48b0-847a-f2f8c1d629bf,213 +1833-050619-2,,7,100,0.05,aa0b7db7-13b2-4b69-971c-b3aec0eea645,66 +1833-050619-3,,7,100,0.05,aa0b7db7-13b2-4b69-971c-b3aec0eea645,105 +1833-060619-1,,7,100,0.05,19d857bc-8636-4474-b1bc-3d0c41c4407c,139 +1833-060619-2,,7,100,0.05,5088f6c5-7539-4aad-80b3-d40a35ae61f1,58 +1833-120619-2,,7,100,0.05,b1d528f9-e0f6-41e1-b98b-d7a3ccfa0dbc,85 +1833-120619-3,,7,100,0.05,d4263fed-5f10-4af5-bd35-b4e2847592e8,120 +1833-120619-4,,7,100,0.05,e48f6f36-983f-4216-a1c7-a598a8ce561b,65 +1833-200619-3,,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,65 +1833-200619-4,,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,68 +1833-200619-1,,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,143 +1833-200619-2,,7,100,0.05,bd97cd36-3f0a-488a-afe4-f603287da32c,261 +1833-200619-2,,7,100,0.05,74db72d7-a48b-4d98-b68d-890ea7ee3ffb,203 +1833-200619-2,,7,100,0.05,e0dac4a4-1530-42c7-8da1-c176b6c55bfa,204 +1833-200619-3,,7,100,0.05,bed1c8ae-1f7d-46db-a3dc-af3ce9fad396,53 +1833-260619-1,,7,100,0.05,597a49e0-d445-4452-9af7-b9db0488f573,98 +1833-260619-3,,7,100,0.05,f96a458c-0715-4732-b502-f08bbfe0f449,103 +1833-260619-3,,7,100,0.05,9a1550ae-203e-4e74-8e82-f98ad50ccac3,105 +1833-260619-4,,7,100,0.05,fed1a5c4-acd2-4dbc-9325-7c5ce42e0f29,177 +1833-290519-1,,7,100,0.05,4f257d47-b65f-466b-a493-69e4902b3ec5,106 +1833-290519-1,,7,100,0.05,e1a3376d-1280-4a83-8235-f5ab8f3cac22,116 +1833-290519-1,,7,100,0.05,733aa07b-e73f-4a4a-a954-cd6493b21f9d,129 +1833-290519-1,,7,100,0.05,f04a80d4-083a-4f7f-bf63-e3e078bcf730,136 +1833-290519-1,,7,100,0.05,a2180cfb-24e6-4b67-97a0-c9585fecda97,74 +1833-290519-1,,7,100,0.05,8187534a-aa00-4ff9-aabb-356434ada9bd,82 +1833-290519-2,,7,100,0.05,d762e3e5-5c37-4036-89bb-b2ad773fdf68,126 +1833-290519-2,,7,100,0.05,65e44135-6c47-42a3-a199-1d0e666bba23,130 +1833-290519-2,,7,100,0.05,e100fec4-122b-4de5-b1c0-78e60117aa73,97 +1833-290519-2,,7,100,0.05,cafa506a-136c-46db-a949-72f54a250200,98 +1833-290519-3,,7,100,0.05,a606539a-0bae-443d-9e23-8f04f12f0766,103 +1833-290519-3,,7,100,0.05,11166f49-8b3e-4120-b18a-e6db4cdc278d,113 +1833-290519-3,,7,100,0.05,43cc73f9-d76b-4ba7-a3ee-88d70f26e366,129 +1833-290519-3,,7,100,0.05,051e75ab-ce84-450e-8489-3faf7f4bcb32,82 +1833-290519-4,,7,100,0.05,837b559d-1284-4f07-9dc0-20bee50697ef,67 +1833-290519-4,,7,100,0.05,546e963b-d509-4790-8811-6c0c8a1d580c,75 +1833-290519-4,,7,100,0.05,edcbf7bc-de11-4821-bd20-e6d614cce147,77 +1833-290519-4,,7,100,0.05,082497ec-eb32-43f5-b32c-c76f57ec54b7,94 +,1834-010319-1,0,100,0.05,8d8cecbe-e2e5-4020-9c94-9573ca55cdfc,2 +,1834-010319-1,0,100,0.05,5b7fc3e8-b76d-4eed-a876-9ba184e508ac,39 +,1834-010319-3,0,100,0.05,1b42831d-5d71-4cb1-ba85-b5019b56ca2e,1 +,1834-010319-3,0,100,0.05,270fb3b3-3a7d-4060-bc1a-bc68d2ecab1a,12 +,1834-010319-3,0,100,0.05,6da7e1db-2d4f-4bd7-b45c-a1855aaa2fec,72 +,1834-110319-5,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,98 +,1834-110319-2,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,108 +,1834-110319-1,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,65 +,1834-060319-1,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,7 +,1834-010319-4,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,7 +,1834-060319-4,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,3 +,1834-110319-3,0,100,0.05,0e799c2e-0493-43d8-ab7c-2cc5bc95ba98,101 +,1834-060319-1,0,100,0.05,2f1ea23c-f3cb-4ae5-b49b-bc701b76a4d2,70 +,1834-060319-1,0,100,0.05,e10985d6-b9db-4588-a874-b24042b4fd86,71 +,1834-060319-1,0,100,0.05,4b6d17c4-e9f1-4fa7-8cda-f9858463976f,72 +,1834-110319-6,0,100,0.05,7981bfb8-c5f3-4ebc-a77c-ca8f3e994baa,2 +,1834-060319-1,0,100,0.05,7981bfb8-c5f3-4ebc-a77c-ca8f3e994baa,73 +,1834-060319-1,0,100,0.05,46f9e835-eaad-483a-8ead-894b5b707412,74 +,1834-060319-1,0,100,0.05,a0e8d73d-1a5e-4197-a007-320965f34b36,79 +,1834-060319-3,0,100,0.05,b1e762c4-48d9-4068-898d-86974b0087a9,4 +,1834-110319-1,0,100,0.05,ebea63c6-c99d-4bea-aaae-e1e27c578394,0 +,1834-110319-2,0,100,0.05,846c2733-3d6b-4c4e-9e1c-0b81effd8afa,11 +,1834-110319-6,0,100,0.05,6de5fbce-681b-4984-a217-eedb007e186d,0 +,1834-110319-6,0,100,0.05,47585fef-ccec-4f98-a41d-87acb4d40e9a,1 +,1834-110319-6,0,100,0.05,0b288ce6-3a2e-4d6b-ab4c-5a93a7e60482,10 +,1834-110319-6,0,100,0.05,2ab88543-2f0a-416f-955e-28acbc3e3c01,13 +,1834-110319-6,0,100,0.05,3ab1852f-441b-4df7-910a-10b11e0ff9e0,15 +,1834-110319-6,0,100,0.05,4cfb9722-0610-49fc-8e53-55466c031484,3 +,1834-110319-6,0,100,0.05,9fee9f21-928b-4dfe-98ba-25a6e7b337ca,32 +,1834-110319-6,0,100,0.05,3bc0c979-0826-4380-9453-c914068c90b3,33 +,1834-110319-6,0,100,0.05,9ccfd173-ed14-4285-bd7e-352a5bcbc87b,34 +,1834-110319-6,0,100,0.05,c08e4484-e2c0-49d8-a8da-58f06ad2b246,38 +,1834-110319-6,0,100,0.05,b8de7f7d-f528-410d-8474-7ad25d5ab5d0,4 +,1834-110319-6,0,100,0.05,a0815321-446d-4b33-9ac1-cf67e37ceb34,5 +,1834-110319-6,0,100,0.05,19bdbb74-b915-4512-9c09-9502aafeb60e,6 +,1834-110319-6,0,100,0.05,f3e87902-fcd1-4495-961a-bb5ddbab0a79,7 +,1834-110319-6,0,100,0.05,32819f71-1c5b-430e-b54b-8781d23545c9,8 +,1834-110319-6,0,100,0.05,2ba7d0e5-271c-4b3a-9a0d-db998e1a8b93,9 +,1834-120319-4,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,85 +,1834-120319-2,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,39 +,1834-120319-3,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,36 +,1834-150319-3,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,71 +,1834-150319-2,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,2 +,1834-120319-1,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,1 +,1834-150319-4,0,100,0.05,b23d7fd6-a91a-4038-85d2-b4f75e3db20c,0 +,1834-150319-1,0,100,0.05,6127b4e7-d305-47a2-9918-41c78332e473,3 +,1834-150319-3,0,100,0.05,b01c341d-27d6-4998-8f86-798adaeb1235,75 +,1834-220319-4,0,100,0.05,1dd2beaf-6024-4729-831f-5a0a603750c2,0 +,1834-220319-1,0,100,0.05,1dd2beaf-6024-4729-831f-5a0a603750c2,81 +,1834-220319-3,0,100,0.05,1dd2beaf-6024-4729-831f-5a0a603750c2,1 +,1834-220319-2,0,100,0.05,1dd2beaf-6024-4729-831f-5a0a603750c2,1 +,1834-220319-1,0,100,0.05,61b40d6d-5c2e-44f2-8158-e7263ed06316,87 +,1834-010319-1,1,100,0.05,21803ca3-72ba-424b-aaaf-deb12a45d78e,48 +,1834-010319-3,1,100,0.05,b2584c67-7454-42da-a3d2-f904642c4eca,18 +,1834-010319-4,1,100,0.05,f274686c-a787-49cb-adfc-52aab715a2a0,10 +,1834-060319-2,1,100,0.05,62aa3646-a09f-4b96-9474-87ef0270e4dc,104 +,1834-110319-6,1,100,0.05,6ea22814-3e2f-4406-a5d8-9506182ac3bf,11 +,1834-110319-6,1,100,0.05,5decd312-b1b0-4a64-b050-3e6dfdef0985,12 +,1834-110319-6,1,100,0.05,d7d3e18c-64dd-4d4e-8e62-60ae90c3eb68,19 +,1834-110319-6,1,100,0.05,649eb14c-d406-4a2c-8656-ffb41f750a44,35 +,1834-110319-6,1,100,0.05,9a0555df-7558-47b7-8e96-8dcf4bd18d6e,36 +,1834-120319-1,1,100,0.05,2ad8f0f5-6014-4290-b626-423f0e10b302,3 +,1834-120319-2,1,100,0.05,56260407-e50d-4c97-a804-6e7baa9c61a5,41 +,1834-120319-3,1,100,0.05,56260407-e50d-4c97-a804-6e7baa9c61a5,38 +,1834-150319-1,1,100,0.05,28cbfc7c-6d74-4f28-8fd1-461936de2358,4 +,1834-150319-1,1,100,0.05,c42c66ef-f2a6-457b-828b-aadb694c0bbf,46 +,1834-150319-1,1,100,0.05,8938cfa5-a56f-4b88-831f-54a5750f3753,50 +,1834-150319-1,1,100,0.05,57b45bb9-bf68-46b1-883c-7d8e2824465a,7 +,1834-110319-5,2,100,0.05,b0ddfc21-eac7-4d23-94c8-74205c283074,18 +,1834-110319-3,2,100,0.05,b0ddfc21-eac7-4d23-94c8-74205c283074,47 +,1834-060319-2,2,100,0.05,b0ddfc21-eac7-4d23-94c8-74205c283074,113 +,1834-110319-6,2,100,0.05,b0ddfc21-eac7-4d23-94c8-74205c283074,16 +,1834-110319-6,2,100,0.05,e79f23b4-36cc-4332-a1d2-2d92916574d3,17 +,1834-120319-2,2,100,0.05,47f0ff5d-19fd-4d3f-b08a-a53b951091dd,43 +,1834-120319-2,2,100,0.05,6b812817-7de4-4c43-9071-87a6e0eb16e9,51 +,1834-120319-3,2,100,0.05,176f0847-e8ff-48de-b00c-7041fe6ccf7a,70 +,1834-220319-3,2,100,0.05,49062e70-cd84-41e7-884f-fc39bf606a61,46 +,1834-220319-2,2,100,0.05,49062e70-cd84-41e7-884f-fc39bf606a61,49 +,1834-120319-4,2,100,0.05,49062e70-cd84-41e7-884f-fc39bf606a61,75 +,1834-220319-1,2,100,0.05,49062e70-cd84-41e7-884f-fc39bf606a61,83 +,1834-220319-2,2,100,0.05,53facde3-31aa-4b3c-ae1d-8ba05102aeba,7 +,1834-220319-1,2,100,0.05,53facde3-31aa-4b3c-ae1d-8ba05102aeba,73 +,1834-220319-3,2,100,0.05,53facde3-31aa-4b3c-ae1d-8ba05102aeba,29 +,1834-220319-1,2,100,0.05,30731c3c-fc81-476b-a5ed-e45e384ad271,79 +,1834-220319-4,2,100,0.05,1f9a6593-5dc9-49ec-bea3-96d9d179e512,60 +,1834-010319-3,3,100,0.05,fe6b98b7-b08f-46c3-b197-717d7ac6f245,76 +,1834-010319-1,3,100,0.05,fe6b98b7-b08f-46c3-b197-717d7ac6f245,52 +,1834-010319-1,3,100,0.05,3ba001ec-8393-4e60-a70a-6f23689cc7c6,7 +,1834-010319-1,3,100,0.05,a40cd8fa-85e2-4eaf-873b-de36a556df05,8 +,1834-010319-3,3,100,0.05,db2d7bda-c1ce-4809-ba2b-df286218a836,87 +,1834-010319-4,3,100,0.05,94f0e2a5-b6b9-42fa-bf40-a85f496c047b,21 +,1834-010319-4,3,100,0.05,223784a7-1e7a-4a2c-97be-a79f659b1dea,22 +,1834-010319-5,3,100,0.05,7f0a94ca-8426-4010-a5ef-981eda071851,11 +,1834-010319-5,3,100,0.05,eb7513a2-6f64-4338-8caa-68080aef7e5b,28 +,1834-060319-1,3,100,0.05,2511b026-4c2b-45bb-8166-3eaa612051c2,33 +,1834-060319-1,3,100,0.05,b70b3da6-1125-40dd-82dd-ec3fa3db417d,85 +,1834-060319-3,3,100,0.05,4499523b-d92c-473e-93d1-324f805f7b08,13 +,1834-060319-1,3,100,0.05,4499523b-d92c-473e-93d1-324f805f7b08,95 +,1834-060319-4,3,100,0.05,4499523b-d92c-473e-93d1-324f805f7b08,8 +,1834-110319-3,3,100,0.05,4499523b-d92c-473e-93d1-324f805f7b08,41 +,1834-060319-2,3,100,0.05,4499523b-d92c-473e-93d1-324f805f7b08,24 +,1834-060319-2,3,100,0.05,6998c3fc-df7f-411c-8ac8-94a60572d264,25 +,1834-060319-4,3,100,0.05,f3bfae78-b5a5-4828-8f53-c4767ce7fdca,10 +,1834-110319-2,3,100,0.05,f6c82c9e-cb12-4f2c-894a-35723b3749af,16 +,1834-110319-5,3,100,0.05,6a7ce2c1-0666-475b-8070-eedbd63a61a4,24 +,1834-110319-6,3,100,0.05,ef950b3e-ea88-40b0-bc63-10dd7aacbda4,18 +,1834-110319-6,3,100,0.05,ce41ad74-51d1-48da-a5eb-6792b85b875d,20 +,1834-120319-2,3,100,0.05,2a18ec75-3fa9-4a88-b7e5-c71bb62ca664,15 +,1834-120319-1,3,100,0.05,2a18ec75-3fa9-4a88-b7e5-c71bb62ca664,8 +,1834-120319-3,3,100,0.05,2a18ec75-3fa9-4a88-b7e5-c71bb62ca664,62 +,1834-120319-2,3,100,0.05,4de967b3-d33b-4fb9-b252-db44516daae7,6 +,1834-120319-4,3,100,0.05,5b143707-4cca-4f8f-bd1e-5814f4a28844,59 +,1834-150319-1,3,100,0.05,dd4c2fd0-e0c2-415e-bfe4-9d54206beeea,13 +,1834-150319-1,3,100,0.05,0ba98218-f2ec-43ab-847f-267e3ee8afde,14 +,1834-150319-1,3,100,0.05,dd6224b5-4778-4783-bdc0-8f597f735da0,2 +,1834-150319-1,3,100,0.05,ef0a9a01-2d2c-44c4-8f14-37afa5e63647,6 +,1834-150319-2,3,100,0.05,9153df66-9e1b-43c6-8acd-e7085a1ac2a5,13 +,1834-150319-3,3,100,0.05,4a0295a2-7d5c-42b3-b9aa-b0c93365df3f,61 +,1834-150319-4,3,100,0.05,4a0295a2-7d5c-42b3-b9aa-b0c93365df3f,5 +,1834-150319-2,3,100,0.05,4a0295a2-7d5c-42b3-b9aa-b0c93365df3f,46 +,1834-150319-3,3,100,0.05,5ff23f28-4a5d-4134-81e1-fed44609a759,8 +,1834-150319-4,3,100,0.05,559a6570-9569-4558-bcdb-448b1348d7f7,6 +,1834-220319-4,3,100,0.05,19cf14a4-2ceb-4136-95ff-3b1438215b7c,10 +,1834-220319-1,3,100,0.05,19cf14a4-2ceb-4136-95ff-3b1438215b7c,11 +,1834-220319-2,3,100,0.05,19cf14a4-2ceb-4136-95ff-3b1438215b7c,8 +,1834-220319-3,3,100,0.05,19cf14a4-2ceb-4136-95ff-3b1438215b7c,10 +,1834-010319-1,4,100,0.05,d39540f9-4027-4b06-9fa1-b5e968e1a5b8,13 +,1834-010319-1,4,100,0.05,5b81c62a-a955-4676-821a-62ce6d61ce02,62 +,1834-010319-3,4,100,0.05,b411df58-a646-4e67-86dd-460ae708cf8f,34 +,1834-010319-3,4,100,0.05,490cf9ad-16ad-42ce-8a04-6c3d8a708df4,36 +,1834-010319-3,4,100,0.05,9156f9be-93dd-47f5-85da-6e2c8c2d9893,66 +,1834-010319-3,4,100,0.05,3fff0d92-7f50-4e58-bc30-228e3b0602d4,90 +,1834-010319-4,4,100,0.05,577bcaed-8c9f-49cb-8213-ccc5cc1640e5,29 +,1834-010319-4,4,100,0.05,ef8234ff-bbc9-45cf-9740-f5fa58c024c3,35 +,1834-010319-4,4,100,0.05,547bb552-e70e-4a7b-b99e-170c15a51086,53 +,1834-060319-2,4,100,0.05,91cd5995-d7e2-4375-9e42-c9b23b42ea8a,115 +,1834-060319-3,4,100,0.05,3f7b9a2a-6344-4866-9bef-1769dafe85d8,19 +,1834-060319-4,4,100,0.05,f1f3c059-f278-473e-aad3-65ea1170547a,13 +,1834-110319-1,4,100,0.05,439a91a0-9aab-4923-998e-08640301faf8,11 +,1834-110319-2,4,100,0.05,439a91a0-9aab-4923-998e-08640301faf8,19 +,1834-110319-5,4,100,0.05,86de97fd-7764-43ee-a8bf-22cdd4485495,76 +,1834-110319-6,4,100,0.05,2e5f1562-1a2d-498b-9d3c-1b58c2f717ef,14 +,1834-110319-6,4,100,0.05,bcc067ce-6acd-4008-a640-14a2db8a5e9b,21 +,1834-110319-6,4,100,0.05,5e63df13-1179-4aa9-a2fd-dfcf1e34c1fe,22 +,1834-110319-6,4,100,0.05,7ec25768-1914-4f77-a512-b03db7df23bc,23 +,1834-110319-6,4,100,0.05,a14e41bd-f7a3-4fbe-bb49-9b3ee4076c0e,25 +,1834-110319-6,4,100,0.05,77f80209-b291-4117-9d28-281f5f121cc2,37 +,1834-120319-3,4,100,0.05,253602e5-3601-47d7-a93b-efa594626cfc,40 +,1834-120319-3,4,100,0.05,cd82ec27-a62d-4cec-a175-536f3e3eb679,95 +,1834-150319-1,4,100,0.05,5f23447f-3696-4b23-af28-2654817c53e4,0 +,1834-150319-1,4,100,0.05,8e3ae26f-b7a2-4380-a076-25955a694981,23 +,1834-150319-1,4,100,0.05,86738cdc-03db-4ba9-b0e6-31ce0774ae7c,40 +,1834-150319-1,4,100,0.05,b0974a77-48ad-430a-b784-7161ebae40a6,5 +,1834-150319-1,4,100,0.05,3ba94f01-0b4b-4064-9a07-4a76426c85ff,52 +,1834-150319-2,4,100,0.05,aa901574-de25-4cc7-a731-2f08f0552340,54 +,1834-220319-1,4,100,0.05,c7a2d252-be0f-4d05-9a73-72e1f906217e,65 +,1834-220319-2,4,100,0.05,c7a2d252-be0f-4d05-9a73-72e1f906217e,34 +,1834-220319-2,4,100,0.05,1811346b-fc57-49d9-8cb9-0b8e4c8a87ba,47 +,1834-220319-4,4,100,0.05,95ca94b3-cc12-44cc-8373-7d7a72978bb0,51 +,1834-220319-3,4,100,0.05,95ca94b3-cc12-44cc-8373-7d7a72978bb0,15 +,1834-220319-4,4,100,0.05,e381690f-d8c2-43a1-b165-6999a0ce71a3,36 +,1834-220319-4,4,100,0.05,d72055ec-3d6c-4f51-9532-9ecc003a579c,63 +,1834-220319-4,4,100,0.05,69fac4f7-c7a7-4b61-ae2b-8a563091df30,65 +,1834-010319-1,5,100,0.05,522704b2-09a6-45fb-bb8c-030f4882209b,16 +,1834-010319-1,5,100,0.05,ff16cfb6-2ce1-4e27-bc65-e3944af6a9ae,18 +,1834-010319-3,5,100,0.05,2f7ae3da-6432-4c50-b8a3-e201d9106a0f,41 +,1834-010319-4,5,100,0.05,c6bed0ab-cfaa-4224-88ae-ddbe99ef3f71,37 +,1834-010319-3,5,100,0.05,c6bed0ab-cfaa-4224-88ae-ddbe99ef3f71,42 +,1834-010319-4,5,100,0.05,87d3fa39-7cfa-4269-9dfd-df9aea14adf9,36 +,1834-010319-5,5,100,0.05,dfe22f82-7b12-4b31-ba8d-55a1884af901,14 +,1834-010319-5,5,100,0.05,cf2875a5-4494-4981-8e69-8b31f9fd7323,15 +,1834-060319-1,5,100,0.05,da79e2f5-8c8d-41ee-b625-f8791ceeda86,87 +,1834-060319-2,5,100,0.05,543d8609-1db7-4280-9968-24183bfd2906,34 +,1834-060319-4,5,100,0.05,407035f4-e46d-4c01-b946-799585b8856b,15 +,1834-060319-3,5,100,0.05,407035f4-e46d-4c01-b946-799585b8856b,25 +,1834-060319-2,5,100,0.05,407035f4-e46d-4c01-b946-799585b8856b,35 +,1834-060319-3,5,100,0.05,4151eadf-f305-4e87-b46a-698643dd8e6f,24 +,1834-060319-3,5,100,0.05,216d6ace-2937-48b4-8dd8-0913e7faa6bd,26 +,1834-110319-1,5,100,0.05,75010fbf-bc00-4d61-8aa0-e710e452cf05,14 +,1834-060319-4,5,100,0.05,75010fbf-bc00-4d61-8aa0-e710e452cf05,16 +,1834-060319-4,5,100,0.05,1760b858-a580-49d0-97f6-561b74cf2396,17 +,1834-110319-1,5,100,0.05,571d5c7c-a0b4-49a8-a36f-6abd876228a1,16 +,1834-110319-2,5,100,0.05,76f1123e-66e5-4fd4-b5d9-c3907d6b648d,28 +,1834-110319-1,5,100,0.05,76f1123e-66e5-4fd4-b5d9-c3907d6b648d,28 +,1834-110319-2,5,100,0.05,fe490f11-e3b4-45d9-ace9-ecfad9f9c724,29 +,1834-110319-2,5,100,0.05,b8692464-8523-4aaa-a874-41bd1de2cfc8,31 +,1834-110319-5,5,100,0.05,ae77d32d-0215-4bb1-adfd-f689a7e5f1fb,27 +,1834-110319-6,5,100,0.05,86aa2ce4-1ee7-47ee-a56e-93ad5d46cc48,24 +,1834-110319-6,5,100,0.05,f33d3afa-7bd5-48f6-8125-3f394bf0b9e4,26 +,1834-120319-4,5,100,0.05,c8d27f7e-636a-4286-9582-0e9646097103,69 +,1834-120319-2,5,100,0.05,c8d27f7e-636a-4286-9582-0e9646097103,21 +,1834-120319-3,5,100,0.05,c8d27f7e-636a-4286-9582-0e9646097103,23 +,1834-120319-1,5,100,0.05,c8d27f7e-636a-4286-9582-0e9646097103,11 +,1834-120319-3,5,100,0.05,3b4a4c86-4ba1-4d6e-948f-971c4edba71a,68 +,1834-120319-4,5,100,0.05,7446accc-cff0-4677-95e2-0137216a8440,73 +,1834-120319-4,5,100,0.05,08dff0b6-ee9d-4dd4-8ee1-50eb91cec0b1,83 +,1834-150319-1,5,100,0.05,ed3aa6f5-66f9-4250-90b2-204444b10d7b,24 +,1834-150319-1,5,100,0.05,c61b9d65-b0c2-4523-99b8-02b4eca00bb8,25 +,1834-150319-1,5,100,0.05,ef7cab07-403a-4107-b54c-20c785056ee1,28 +,1834-150319-1,5,100,0.05,78cba31b-aafe-4047-a9d6-b73e269ad5da,51 +,1834-150319-1,5,100,0.05,34f2fa3b-e9f7-4da5-a7d1-b70baa06aeb1,58 +,1834-150319-1,5,100,0.05,7cf9c71d-774e-406a-b5b9-72510f6795cf,60 +,1834-150319-2,5,100,0.05,f3286a38-4547-4bf4-badb-16cd331330df,48 +,1834-150319-4,5,100,0.05,b0dbfb9b-453c-4e07-b959-d3c441df475f,13 +,1834-150319-3,5,100,0.05,b0dbfb9b-453c-4e07-b959-d3c441df475f,47 +,1834-150319-3,5,100,0.05,905b5fd1-15e0-49ba-9f3e-f7b9e283666a,67 +,1834-150319-4,5,100,0.05,e44b5dcf-1cd0-4a7d-8460-e60628ddd759,11 +,1834-150319-4,5,100,0.05,7cec5ff3-e357-4407-bf60-c3446835e83b,12 +,1834-150319-4,5,100,0.05,d98c413a-f6b7-4849-9173-164300b4c4d6,15 +,1834-150319-4,5,100,0.05,26c0d69c-e38e-4116-8a82-a3d51f776a65,16 +,1834-150319-4,5,100,0.05,78f5d701-e84d-4601-9cfb-64a1ee4b5e40,36 +,1834-220319-1,5,100,0.05,75172998-5a05-4cc4-9d31-e9447ea46109,77 +,1834-060319-1,6,100,0.05,c3c94665-f545-4787-8d08-b87ddfe9ae6a,55 +,1834-010319-1,6,100,0.05,c3c94665-f545-4787-8d08-b87ddfe9ae6a,21 +,1834-010319-1,6,100,0.05,2c8f6dd9-c082-4a48-9753-5915e8b91462,22 +,1834-010319-3,6,100,0.05,2c8f6dd9-c082-4a48-9753-5915e8b91462,55 +,1834-010319-3,6,100,0.05,896eb6e1-ded3-4a36-8e9c-eff8355dd3ae,53 +,1834-010319-3,6,100,0.05,ae038ebf-a9b8-47eb-b7dc-db92e04ad58e,91 +,1834-010319-4,6,100,0.05,cbb22f3a-4bee-4444-b4e2-799442e2440e,44 +,1834-010319-5,6,100,0.05,cbb22f3a-4bee-4444-b4e2-799442e2440e,35 +,1834-010319-4,6,100,0.05,9b13e925-1dbe-4ecd-b9fa-c81e88545124,46 +,1834-010319-5,6,100,0.05,9b13e925-1dbe-4ecd-b9fa-c81e88545124,20 +,1834-010319-5,6,100,0.05,618e327b-02a1-4ee5-9f8d-8946ebd7dbb9,33 +,1834-060319-3,6,100,0.05,ff3bdb13-a958-4747-aec0-0e7b5015d167,32 +,1834-060319-1,6,100,0.05,ff3bdb13-a958-4747-aec0-0e7b5015d167,58 +,1834-060319-2,6,100,0.05,ff3bdb13-a958-4747-aec0-0e7b5015d167,39 +,1834-060319-2,6,100,0.05,88ee3e9c-094a-4dbb-94d4-4d920fbedeaf,122 +,1834-060319-3,6,100,0.05,88ee3e9c-094a-4dbb-94d4-4d920fbedeaf,43 +,1834-060319-2,6,100,0.05,b9a9735d-ac74-409f-b57e-96cd3f6c23db,40 +,1834-060319-4,6,100,0.05,348f5741-0723-496a-b70d-4974dde437bb,19 +,1834-060319-3,6,100,0.05,348f5741-0723-496a-b70d-4974dde437bb,30 +,1834-060319-2,6,100,0.05,348f5741-0723-496a-b70d-4974dde437bb,45 +,1834-060319-3,6,100,0.05,cdce8614-b617-469b-83ac-5cd96d1f5dcc,28 +,1834-060319-4,6,100,0.05,029abb33-3e58-4e28-aa93-171d5a527358,21 +,1834-060319-4,6,100,0.05,2409a8ee-38fc-449c-a859-ac2cdd93373e,22 +,1834-110319-1,6,100,0.05,700a38c7-8a53-4b02-ac3c-7d167f01f767,20 +,1834-110319-1,6,100,0.05,94adf144-718a-44d3-8833-cb3352d1375e,44 +,1834-110319-2,6,100,0.05,482f3fab-9f17-4973-bb4d-e73d74a1f0c9,34 +,1834-110319-2,6,100,0.05,58050493-b5c9-4e28-92c8-4d35fbbe7cad,38 +,1834-120319-2,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,55 +,1834-120319-1,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,33 +,1834-120319-3,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,56 +,1834-150319-4,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,21 +,1834-150319-3,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,23 +,1834-120319-4,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,55 +,1834-150319-2,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,26 +,1834-150319-1,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,29 +,1834-110319-2,6,100,0.05,ebfe127c-1206-46b8-a9f7-51d4fe4027db,39 +,1834-110319-2,6,100,0.05,e044724f-898b-4a4e-b827-bd0a7c550558,77 +,1834-110319-2,6,100,0.05,e6c8fbc1-d313-43c6-9874-ca1cbbb53034,87 +,1834-110319-3,6,100,0.05,54393b15-29dc-4090-bd33-33a4e58d30b3,70 +,1834-110319-3,6,100,0.05,c46a271d-e179-49de-804a-a5e6b1ed005d,83 +,1834-110319-5,6,100,0.05,fc8fce58-b610-4a7e-9155-a036fcb65f20,30 +,1834-110319-5,6,100,0.05,e7ade0ce-eba8-4264-908d-fd98e075b45c,31 +,1834-110319-6,6,100,0.05,8edcf618-65c3-4c29-bc68-bbf33ba61b28,27 +,1834-110319-6,6,100,0.05,220f77b1-bd02-44d4-b77d-70c2dd5cf76e,28 +,1834-110319-6,6,100,0.05,4a8ff338-874e-4df9-ab6f-66f9ff8802e7,29 +,1834-120319-3,6,100,0.05,b75d4e80-934d-4397-b84f-726428c39452,66 +,1834-120319-2,6,100,0.05,b75d4e80-934d-4397-b84f-726428c39452,23 +,1834-120319-1,6,100,0.05,b75d4e80-934d-4397-b84f-726428c39452,31 +,1834-120319-4,6,100,0.05,b75d4e80-934d-4397-b84f-726428c39452,71 +,1834-150319-1,6,100,0.05,07c6d593-bc4d-4c03-a225-914994307c93,31 +,1834-150319-1,6,100,0.05,4560db66-6ee4-4fdf-9ec4-13056b4c901d,32 +,1834-150319-1,6,100,0.05,74c719a4-9fec-470a-b109-3f18b8b6daf0,33 +,1834-150319-1,6,100,0.05,0394bb61-bc1a-441f-941a-b953b1bed519,34 +,1834-150319-3,6,100,0.05,6ddd9f4e-73cc-423a-92ef-17da522124d4,65 +,1834-220319-1,6,100,0.05,6ddd9f4e-73cc-423a-92ef-17da522124d4,24 +,1834-150319-4,6,100,0.05,6ddd9f4e-73cc-423a-92ef-17da522124d4,20 +,1834-150319-2,6,100,0.05,6ddd9f4e-73cc-423a-92ef-17da522124d4,27 +,1834-150319-2,6,100,0.05,a45ca2f9-1297-484c-b339-79aac024ee52,28 +,1834-150319-3,6,100,0.05,396cdcd8-9762-4df0-b3de-4987686f3289,59 +,1834-150319-3,6,100,0.05,1baa7585-a9d3-408e-8ac9-f693847aff0e,63 +,1834-150319-4,6,100,0.05,23c8a0fc-3166-4ac9-a595-e7821ec480bc,22 +,1834-220319-1,6,100,0.05,5e249ee3-ad31-4c74-9548-a8c3e2fff820,26 +,1834-220319-1,6,100,0.05,c49d1950-738d-4811-a058-b20f88a193de,41 +,1834-220319-1,6,100,0.05,cdca162e-30ed-4666-b61c-2efd2a4340eb,69 +,1834-220319-1,6,100,0.05,3a82e937-9e66-4127-89a1-0b01b23db625,75 +,1834-220319-2,6,100,0.05,4bd6fe3c-a6b2-4bb0-9633-33cdcd9ba705,17 +,1834-220319-2,6,100,0.05,740822e8-e0b2-46a6-9758-c3a0b70c5b05,18 +,1834-220319-2,6,100,0.05,c429d0a9-9be0-45df-a1f4-41268b4fc4e9,19 +,1834-220319-2,6,100,0.05,62584f57-ca55-4e28-8573-3f51dffb8451,43 +,1834-220319-2,6,100,0.05,6baff7ec-f845-423b-ad61-d966565787c2,45 +,1834-220319-4,6,100,0.05,a4dc49d9-f0ff-419d-b97a-42f68b77c53f,39 +,1834-220319-3,6,100,0.05,a4dc49d9-f0ff-419d-b97a-42f68b77c53f,22 +,1834-220319-4,6,100,0.05,5d3d9ce1-47e6-4ed9-a559-155642d92940,29 +,1834-220319-3,6,100,0.05,5d3d9ce1-47e6-4ed9-a559-155642d92940,30 +,1834-220319-3,6,100,0.05,6c9bdd92-e414-4dab-acc0-e610d8786e3a,37 +,1834-220319-4,6,100,0.05,6c9bdd92-e414-4dab-acc0-e610d8786e3a,30 +,1834-010319-1,7,100,0.05,9f64ab71-d4af-4faf-af97-9b7f0013081a,24 +,1834-010319-1,7,100,0.05,a557ca37-7395-4ecf-bb62-a475a84fb1ad,25 +,1834-010319-3,7,100,0.05,0e42cb05-a37f-4814-a8c6-3ab5aca9221b,57 +,1834-010319-3,7,100,0.05,c1a50673-2c38-4b07-8e47-86ea8513c8d8,58 +,1834-010319-3,7,100,0.05,85c5586d-e570-4b7e-a8f7-1ff49cb447e6,60 +,1834-010319-3,7,100,0.05,65de03b0-4eca-458e-b5eb-1e17f9ba8e02,61 +,1834-010319-3,7,100,0.05,f7ce0f84-fd1f-49b8-bf52-49d56821edeb,63 +,1834-010319-5,7,100,0.05,773ad202-240d-44d8-9bf3-2198f228f712,19 +,1834-220319-4,7,100,0.05,773ad202-240d-44d8-9bf3-2198f228f712,31 +,1834-220319-3,7,100,0.05,773ad202-240d-44d8-9bf3-2198f228f712,25 +,1834-010319-4,7,100,0.05,773ad202-240d-44d8-9bf3-2198f228f712,45 +,1834-220319-2,7,100,0.05,773ad202-240d-44d8-9bf3-2198f228f712,20 +,1834-010319-4,7,100,0.05,58c881af-4e62-4fed-9876-c5ac1115cb5d,48 +,1834-010319-5,7,100,0.05,4af822fd-143c-4fe2-b56f-eabf75169042,23 +,1834-010319-4,7,100,0.05,4af822fd-143c-4fe2-b56f-eabf75169042,49 +,1834-010319-5,7,100,0.05,94067ab5-3b52-4a4d-bb18-ae8848ee2615,21 +,1834-010319-5,7,100,0.05,e6122f99-975f-4c91-8b5c-aa06fe89f01e,39 +,1834-060319-1,7,100,0.05,aed73f4e-6508-409a-8d60-6798cbd0b518,59 +,1834-060319-1,7,100,0.05,6f084d87-69c4-45b1-aee9-ef1a9d5c72bb,91 +,1834-060319-2,7,100,0.05,76b4f02c-0431-40c1-9d73-12c1e9928836,41 +,1834-060319-3,7,100,0.05,83eb3ff5-34c5-4c52-a0a0-f9fcf416a63d,33 +,1834-060319-2,7,100,0.05,83eb3ff5-34c5-4c52-a0a0-f9fcf416a63d,42 +,1834-060319-3,7,100,0.05,954b6d61-0ab4-4ed2-960f-052e6d16c1cf,35 +,1834-060319-4,7,100,0.05,954b6d61-0ab4-4ed2-960f-052e6d16c1cf,24 +,1834-060319-2,7,100,0.05,954b6d61-0ab4-4ed2-960f-052e6d16c1cf,43 +,1834-060319-3,7,100,0.05,7b67dc81-ff4e-4770-a2c3-bd3728838718,37 +,1834-060319-4,7,100,0.05,7b67dc81-ff4e-4770-a2c3-bd3728838718,26 +,1834-060319-2,7,100,0.05,7b67dc81-ff4e-4770-a2c3-bd3728838718,44 +,1834-060319-2,7,100,0.05,17df4954-66a0-41c2-b93b-6a212a15dcbf,46 +,1834-060319-4,7,100,0.05,17df4954-66a0-41c2-b93b-6a212a15dcbf,28 +,1834-060319-3,7,100,0.05,17df4954-66a0-41c2-b93b-6a212a15dcbf,41 +,1834-060319-3,7,100,0.05,910e4cb8-770f-40c1-8b92-061b06a9e61e,40 +,1834-060319-4,7,100,0.05,2b6af1a6-53b5-44a4-b16b-5ce0ab32dbeb,23 +,1834-110319-1,7,100,0.05,eddfa77e-265e-47b0-90c4-998827c1de59,30 +,1834-060319-4,7,100,0.05,eddfa77e-265e-47b0-90c4-998827c1de59,29 +,1834-110319-1,7,100,0.05,7aadcaab-1811-4119-ba97-72582aacc3d5,23 +,1834-110319-2,7,100,0.05,7aadcaab-1811-4119-ba97-72582aacc3d5,41 +,1834-110319-1,7,100,0.05,dc81331b-866b-4ef5-9622-5a0e4d66a3cd,24 +,1834-110319-1,7,100,0.05,301f928d-9bff-41d3-b59a-4eea8b8aff3b,25 +,1834-110319-2,7,100,0.05,301f928d-9bff-41d3-b59a-4eea8b8aff3b,45 +,1834-110319-1,7,100,0.05,8710b843-b231-45c7-bc13-ec4f2dba8446,26 +,1834-110319-2,7,100,0.05,433b2231-ad50-478e-8164-679421cf0ccc,104 +,1834-110319-2,7,100,0.05,daabcdfd-a96e-43cc-ac43-1a0866844169,40 +,1834-110319-2,7,100,0.05,197a14e8-de60-4d5a-8095-4cdea65fd953,47 +,1834-110319-2,7,100,0.05,98d21c26-6788-47ee-b87a-49f3a99869ef,86 +,1834-110319-2,7,100,0.05,8f7090c1-cbd6-4015-b84b-9b88ffad06d4,96 +,1834-110319-3,7,100,0.05,b679f1c0-d67c-4fad-8192-70e7f4f023b7,27 +,1834-110319-3,7,100,0.05,e9956c37-85a8-4b03-8299-a22f5ef8f8fb,28 +,1834-110319-3,7,100,0.05,80ef6b02-8c15-4169-9653-682c8ddd9d2a,29 +,1834-110319-3,7,100,0.05,d7859fa5-4842-4aea-ab94-97b682dfec57,30 +,1834-110319-5,7,100,0.05,1784266c-4501-4ca6-8aa6-556ce33be57c,78 +,1834-110319-5,7,100,0.05,556a17a1-034a-4488-9fe3-ec12bec9bf79,90 +,1834-110319-6,7,100,0.05,b7019d04-22a1-4590-b647-196f5eca78e4,30 +,1834-110319-6,7,100,0.05,f9acb26a-2be6-4cf9-b70f-93576eb4aa96,31 +,1834-120319-2,7,100,0.05,6774f9bd-ab2b-422f-8782-a86406a0784d,26 +,1834-120319-4,7,100,0.05,6774f9bd-ab2b-422f-8782-a86406a0784d,22 +,1834-120319-3,7,100,0.05,6774f9bd-ab2b-422f-8782-a86406a0784d,28 +,1834-120319-1,7,100,0.05,6774f9bd-ab2b-422f-8782-a86406a0784d,16 +,1834-120319-1,7,100,0.05,1e409cd8-6a24-484e-82bd-f983d55d586e,17 +,1834-120319-4,7,100,0.05,df59aeb2-3522-48f9-82a6-a99c57ad2c43,52 +,1834-120319-2,7,100,0.05,df59aeb2-3522-48f9-82a6-a99c57ad2c43,61 +,1834-120319-3,7,100,0.05,df59aeb2-3522-48f9-82a6-a99c57ad2c43,52 +,1834-120319-2,7,100,0.05,f7d20998-98e8-441d-9f09-fc913783929a,78 +,1834-150319-1,7,100,0.05,e0bad997-7e0a-42aa-be31-a9f8e3965047,37 +,1834-150319-1,7,100,0.05,f73b436d-7446-44fb-bafa-840813dc1950,41 +,1834-150319-1,7,100,0.05,307387cc-eec8-4845-bbcd-d8ca220fc421,44 +,1834-150319-1,7,100,0.05,8ffdf1a6-9f30-41a2-8b58-581fb3494c10,45 +,1834-150319-1,7,100,0.05,54842ca6-4b36-4923-ac70-7ab37022ab3d,47 +,1834-150319-1,7,100,0.05,61897b3d-7ed6-4b66-9b94-bba15a124e30,56 +,1834-150319-1,7,100,0.05,7cd8dd2a-bb72-47c9-a8e1-d2488684f465,74 +,1834-150319-3,7,100,0.05,7cd8dd2a-bb72-47c9-a8e1-d2488684f465,53 +,1834-150319-1,7,100,0.05,0bee56aa-9d70-489c-8d87-3c9f10cd2d2e,76 +,1834-150319-1,7,100,0.05,e04fcc0d-11df-49ef-b374-5ab83413055c,77 +,1834-150319-1,7,100,0.05,f85018f4-703d-4902-acf6-717c8208e005,92 +,1834-150319-2,7,100,0.05,50a854a2-2266-4c02-afed-50092cfcefe9,29 +,1834-150319-2,7,100,0.05,bcd6cbf3-e42b-458c-a882-23f79b1c7df8,30 +,1834-150319-2,7,100,0.05,d6076bb2-8320-47da-9bb6-6955541786b7,31 +,1834-150319-2,7,100,0.05,78d21bff-d64c-42e8-9046-15c5c8677aec,32 +,1834-150319-2,7,100,0.05,e5aace54-ddde-41c4-9c7a-9f428106035f,37 +,1834-150319-2,7,100,0.05,e9098508-4732-43d8-8268-99b700722cfe,42 +,1834-150319-3,7,100,0.05,6cc226f4-d45c-4a59-a239-479f241c5cf0,27 +,1834-150319-3,7,100,0.05,98500a03-0954-4e2e-bc44-9f550171fdec,28 +,1834-150319-3,7,100,0.05,e9ac1f93-7d71-4531-ad4f-1d6563fe7dd2,30 +,1834-150319-3,7,100,0.05,a6e69ffb-c68f-4d5f-bf4d-4a94a38ed140,44 +,1834-150319-3,7,100,0.05,18821597-78aa-4979-aea2-d2d26938a73b,45 +,1834-150319-3,7,100,0.05,a38ff8db-b100-440b-9745-4da1c9573af6,49 +,1834-150319-3,7,100,0.05,34394be7-37a3-4c7c-a7b1-1064e79d5219,55 +,1834-150319-3,7,100,0.05,314e50b8-5d76-4ba6-ae5f-1edec655371c,57 +,1834-150319-4,7,100,0.05,0ff707ca-23fe-45e1-987c-7fd3de96e56f,23 +,1834-150319-4,7,100,0.05,77b614f1-dc69-420d-9e05-2b4e39bf2211,24 +,1834-150319-4,7,100,0.05,1d3ff647-80b3-459a-89f2-a664459e3684,25 +,1834-150319-4,7,100,0.05,c00b331a-1753-4ac5-8c85-6febd08bc8d0,26 +,1834-150319-4,7,100,0.05,08de5758-2392-474b-8095-e5dd028290d2,33 +,1834-220319-1,7,100,0.05,4fa9178f-3b86-4178-9c89-4d34ccf13691,29 +,1834-220319-1,7,100,0.05,ecf2d8f3-6358-4d50-a115-78d74d2a815d,36 +,1834-220319-1,7,100,0.05,90d1cd31-3730-48eb-a64d-f7a8591c7bff,37 +,1834-220319-1,7,100,0.05,87858304-07f0-4543-bf3e-257f63901d42,49 +,1834-220319-1,7,100,0.05,50ed2a7e-b43d-4ae8-b942-e4cbc8158205,67 +,1834-220319-2,7,100,0.05,921e0cbb-a0d0-4442-ab1c-d475cc4403f7,21 +,1834-220319-3,7,100,0.05,ee399476-729b-4de1-8cb4-d6c661ad7cad,28 +,1834-220319-4,7,100,0.05,ee399476-729b-4de1-8cb4-d6c661ad7cad,45 +,1834-220319-2,7,100,0.05,ee399476-729b-4de1-8cb4-d6c661ad7cad,29 +,1834-220319-2,7,100,0.05,44203fb1-90cb-4476-a216-6bb92d030cf8,39 +,1834-220319-3,7,100,0.05,44203fb1-90cb-4476-a216-6bb92d030cf8,26 +,1834-220319-2,7,100,0.05,e1f4dea9-9836-439a-b134-de2b02243c7e,41 +,1834-220319-3,7,100,0.05,07345aca-60f5-47a4-ac5b-38ee0a5c7e63,23 +,1834-220319-3,7,100,0.05,d0f56f8f-63c7-4b7a-8786-5bd0925cde91,31 +,1834-220319-4,7,100,0.05,892ed8ac-f8f8-4af5-8602-8afd250ab696,32 +,1834-220319-4,7,100,0.05,666e41f3-afee-4b98-b9e4-3afcce41d3a8,33 +,1834-220319-4,7,100,0.05,41b235fc-d8b2-452f-8db6-b34f450a3da5,46 +,1849-010319-2,0,100,0.05,93cae7ae-2a39-4a6b-b951-8a36063bca88,0 +,1849-010319-2,0,100,0.05,a46f515d-4854-4f0d-92da-aaf103d043db,1 +,1849-010319-2,0,100,0.05,94e006e7-4775-47cd-a061-cf0cd2e8cbf6,10 +,1849-010319-2,0,100,0.05,aee2de23-b34b-407f-9b4e-4b13342390cb,30 +,1849-010319-2,0,100,0.05,9d7aa0b6-6799-4697-9863-bd262ba52ea6,31 +,1849-010319-2,0,100,0.05,e414ec14-7488-49b9-ba83-ac6e18530acd,32 +,1849-010319-2,0,100,0.05,b382ebc7-439a-47ab-ae12-a58e55b01dd5,35 +,1849-010319-2,0,100,0.05,0443998a-76de-4c16-8db1-5c206043ff87,39 +,1849-010319-2,0,100,0.05,e669d305-7038-471a-b450-0b11c392d211,44 +,1849-010319-2,0,100,0.05,e62ad420-9105-4423-a3bc-dc2244fcfff6,49 +,1849-010319-2,0,100,0.05,b3a3111c-5f66-4a78-93f6-9fc29c2eaadb,5 +,1849-010319-2,0,100,0.05,868df009-0539-4211-9a7d-389f8d88a8ad,6 +,1849-010319-2,0,100,0.05,b38380f7-509d-4005-8b8e-3b0a4fe16703,7 +,1849-010319-2,0,100,0.05,f38272ad-826b-44ae-8f96-a0c13e952091,8 +,1849-010319-2,0,100,0.05,640c0dd0-2f15-4c63-8257-0a20a03ccaed,9 +,1849-010319-4,0,100,0.05,75857f4d-56ea-4d08-84f2-66652ccc2c6d,0 +,1849-010319-4,0,100,0.05,61798ea7-14d1-413f-a061-8b3dfa876e1d,1 +,1849-010319-4,0,100,0.05,981e6e85-1e61-4ecb-a568-d7cae0ff764e,10 +,1849-010319-4,0,100,0.05,891cab83-7f20-43be-9960-e8919cc15622,11 +,1849-010319-4,0,100,0.05,104374dd-5f2e-422a-8491-689219356f1d,12 +,1849-010319-4,0,100,0.05,dd92b052-d82b-4a65-b172-a5804750f22e,13 +,1849-010319-4,0,100,0.05,6c8f4e99-b66c-4951-bc0f-8d43b1b8e76f,19 +,1849-010319-4,0,100,0.05,984cc682-66f3-48b3-afc8-6af6c32845f8,2 +,1849-010319-4,0,100,0.05,9739040c-f2c4-48ce-a2f5-c10f8e15e099,20 +,1849-010319-4,0,100,0.05,08d91224-4033-4aab-a8f9-5feda321a39b,27 +,1849-010319-4,0,100,0.05,205415bf-32a6-4064-a6b7-fd963d22b96a,29 +,1849-010319-4,0,100,0.05,8d2599d5-4bab-43b2-8a7b-dba2e37695cf,3 +,1849-010319-4,0,100,0.05,039d1fca-d079-4dff-b6e5-44ddb1c496ce,34 +,1849-010319-4,0,100,0.05,e7ee612d-4c03-4825-bb0f-0300ff5efda6,35 +,1849-010319-4,0,100,0.05,13fa50bc-0a93-401a-88f9-4a40f201340e,42 +,1849-010319-4,0,100,0.05,716abc38-2fd9-4548-b707-b148e5771f8f,43 +,1849-010319-4,0,100,0.05,f297b99f-f20c-485a-a784-400ff8158035,44 +,1849-010319-4,0,100,0.05,f820df61-6879-4c57-bf2c-8bf507da8242,47 +,1849-010319-4,0,100,0.05,c8c7c82d-79f9-4a29-96f0-4ed7c5a573a7,5 +,1849-010319-4,0,100,0.05,7df53fc0-eff1-42f5-a175-fbd4449c1b45,51 +,1849-010319-4,0,100,0.05,d21bdc5b-4552-487e-908a-ea923efa6735,6 +,1849-010319-4,0,100,0.05,a516a477-e432-429b-ad77-d3540dc3b429,7 +,1849-010319-4,0,100,0.05,bcc76ae4-efc1-4246-ac0d-969c30fbb3a2,8 +,1849-010319-4,0,100,0.05,ed1f9704-ae2e-41d1-bc65-831bc34a5752,9 +,1849-010319-5,0,100,0.05,613d8fe3-eb9b-4f92-89e0-a83b587addab,0 +,1849-010319-5,0,100,0.05,ea618c0a-084a-4f85-b8d3-04f2e6020f78,1 +,1849-010319-5,0,100,0.05,af5eaff1-1a6c-43e7-a8a8-fbcd227efcaf,11 +,1849-010319-5,0,100,0.05,dcddcf57-ccb1-4629-85f1-a2a6eab3e2a0,2 +,1849-010319-5,0,100,0.05,6e69a27f-ce60-49ac-8b1d-d4b580e6c230,20 +,1849-010319-5,0,100,0.05,c8956abe-e9e3-4970-8184-c08e35d7471a,3 +,1849-010319-5,0,100,0.05,2533a8ac-73ca-40d6-9d3a-85e054514f87,34 +,1849-010319-5,0,100,0.05,dd5ba889-e594-4068-8419-3500ffa52a9e,35 +,1849-010319-5,0,100,0.05,30feb34b-248f-4d63-9f1e-3ca5f0f91a73,37 +,1849-010319-5,0,100,0.05,a599d9ea-6847-4a35-b7d6-cb101885be95,38 +,1849-010319-5,0,100,0.05,91c4daf2-31dd-445a-8774-074a00016875,4 +,1849-010319-5,0,100,0.05,279550c0-816d-439f-84b2-ecb56fe6999b,42 +,1849-010319-5,0,100,0.05,d8e14e08-0c22-4a43-ab90-09b509e60f3a,45 +,1849-010319-5,0,100,0.05,f618741d-5fe0-4bc0-a57b-b99106c2fc88,5 +,1849-010319-5,0,100,0.05,a9a4de1d-41f0-4148-828b-f2344186973e,50 +,1849-010319-5,0,100,0.05,ce37e0d2-eeb0-4428-8a9a-8e9c89fecf6b,52 +,1849-010319-5,0,100,0.05,98a57c8e-ef20-428f-8892-84e3ed03b938,53 +,1849-010319-5,0,100,0.05,0e8b89f9-88b4-4c51-a715-d12aeb3df941,56 +,1849-010319-5,0,100,0.05,6c8a06a0-9d45-4a4c-8738-8c4393acbe61,58 +,1849-010319-5,0,100,0.05,ab1294e6-0781-46b0-870d-0d4dce26e0da,6 +,1849-010319-5,0,100,0.05,b0f85902-c95c-4817-bf67-4fdb9d4bd38e,61 +,1849-010319-5,0,100,0.05,33d3e814-08d9-49dc-92ec-784c08d2ac62,62 +,1849-010319-5,0,100,0.05,378a8009-cefa-43e6-b7be-8bc5a75ff858,63 +,1849-010319-5,0,100,0.05,2a36cd4f-e225-4a8f-b328-7c03f5b1fe74,64 +,1849-010319-5,0,100,0.05,8f1ff760-5eac-4554-9685-b88897972050,65 +,1849-010319-5,0,100,0.05,c5a98cdd-be87-49fa-94ec-e1395f833773,66 +,1849-010319-5,0,100,0.05,2810e678-2294-40cb-a6c8-f2da4b84c6f7,67 +,1849-010319-5,0,100,0.05,31696113-422a-4132-8c58-3b026048cc5a,7 +,1849-010319-5,0,100,0.05,6f56f026-1287-47eb-bcaf-238cfcc2ef0e,8 +,1849-010319-5,0,100,0.05,1db090b4-0e09-4e98-94ec-d96e690d7e9d,86 +,1849-010319-5,0,100,0.05,b731b9ef-eb60-4ca4-8905-1783aa8b35c0,9 +,1849-060319-1,0,100,0.05,4fd71e3a-71c6-4cf1-a4b5-19e62b2904b3,85 +,1849-110319-1,0,100,0.05,2e4dbe53-aed4-4e94-ac77-dd50d3505d2c,52 +,1849-110319-2,0,100,0.05,2eb17c78-64e1-4cef-bb1c-0350ed9b2473,56 +,1849-150319-2,0,100,0.05,7260a67a-5073-4195-8383-8d7fb45e2324,60 +,1849-150319-1,0,100,0.05,7260a67a-5073-4195-8383-8d7fb45e2324,39 +,1849-150319-4,0,100,0.05,7260a67a-5073-4195-8383-8d7fb45e2324,85 +,1849-150319-3,0,100,0.05,7260a67a-5073-4195-8383-8d7fb45e2324,6 +,1849-150319-1,0,100,0.05,91e5725f-224f-4d20-9ef2-0eb79fb7c585,74 +,1849-150319-2,0,100,0.05,b5461838-d5e7-43ae-b560-8973062bbede,40 +,1849-150319-3,0,100,0.05,28c20311-6fd5-456f-82fd-cd368ce36f2c,69 +,1849-150319-4,0,100,0.05,bc0caf25-7afc-412b-b3f0-72b6272faebe,70 +,1849-150319-4,0,100,0.05,db801d73-9bfc-4005-9632-8cfe418f8db6,76 +,1849-220319-2,0,100,0.05,86f9d756-4a06-4106-a1a4-9e7d4f42bc9f,93 +,1849-220319-5,0,100,0.05,86f9d756-4a06-4106-a1a4-9e7d4f42bc9f,79 +,1849-220319-4,0,100,0.05,86f9d756-4a06-4106-a1a4-9e7d4f42bc9f,100 +,1849-220319-3,0,100,0.05,580dde57-c926-46db-a8a7-a790eb0c1dc5,0 +,1849-280219-1,0,100,0.05,e84dd8a4-dac5-43af-9cf7-cfb0dbb65c64,90 +,1849-280219-2,0,100,0.05,b2fd41ce-e847-482d-8579-b58d4cced199,88 +,1849-280219-3,0,100,0.05,f4580c58-cef5-4d17-87d0-c014b9852f6a,153 +,1849-280219-3,0,100,0.05,dec859aa-5757-4457-a8ac-1aa4484e4d35,160 +,1849-280219-4,0,100,0.05,85bfb9f7-ea6b-441f-bb6c-b3e50bd956cb,62 +,1849-280219-4,0,100,0.05,1564f910-d4f2-45b7-a9dc-78a7494723aa,64 +,1849-010319-2,1,100,0.05,b636d739-c2c5-40e0-99d5-6cfb3ce39400,11 +,1849-010319-2,1,100,0.05,d8e9945d-f4d6-4cc5-96de-a4a5ec52f77b,12 +,1849-010319-2,1,100,0.05,19574ae6-df6b-4087-8fda-ee18b78e0a54,13 +,1849-010319-2,1,100,0.05,96d88e38-caa7-4993-9fa9-fdb0261920f5,14 +,1849-010319-2,1,100,0.05,6034b1ab-c338-4b21-928b-29e7a301364d,15 +,1849-010319-2,1,100,0.05,f1cb7b64-ac3c-49df-958a-b3d0f3b3a782,16 +,1849-010319-2,1,100,0.05,57e30530-1f2d-485f-82f6-ecc90445cdce,17 +,1849-010319-2,1,100,0.05,f9f07332-503c-4085-8fbe-a7c8435e6e15,18 +,1849-010319-2,1,100,0.05,2c672ca1-d614-45cf-a519-c64326de2341,19 +,1849-010319-2,1,100,0.05,12359a50-0a9c-457d-86c6-77eabec4b4c1,2 +,1849-010319-2,1,100,0.05,0dfb0ad7-1b91-47e4-a6ce-ed5896ba3fe6,20 +,1849-010319-2,1,100,0.05,5f5755b7-849d-4a3e-8197-358b54a0fc51,21 +,1849-010319-2,1,100,0.05,3e4c6213-ba55-41f1-9285-7b76d238ea84,22 +,1849-010319-2,1,100,0.05,a41a963c-8e01-4bd4-8a07-fd32545261cb,23 +,1849-010319-2,1,100,0.05,987aad42-9e5c-4335-83c8-c86fe817a317,24 +,1849-010319-2,1,100,0.05,1ef2d755-6c58-48e7-ab02-71d2bb1739ac,25 +,1849-010319-2,1,100,0.05,8d58f177-4d25-4d55-9893-be9fa0886a76,26 +,1849-010319-2,1,100,0.05,2cf573f4-441c-4c0a-9bec-72c4d5bf1732,27 +,1849-010319-2,1,100,0.05,e656fd05-db6d-42f1-9f07-552285a2eaec,3 +,1849-010319-2,1,100,0.05,334147c8-e2ef-4e4b-9df3-e41454ce987a,34 +,1849-010319-2,1,100,0.05,1418e6c8-b580-4b7b-9097-7f77f940d139,4 +,1849-010319-2,1,100,0.05,7644ef36-9ca7-4aac-af83-ad57a67df750,41 +,1849-010319-2,1,100,0.05,cc98fd56-6b99-4b9a-a7c7-371c5af6f0af,42 +,1849-010319-2,1,100,0.05,1a1cfa9f-ff26-4d88-8049-a2d7065608f5,43 +,1849-010319-2,1,100,0.05,59a69847-7e71-46f2-ad5a-47a5465f21af,45 +,1849-010319-2,1,100,0.05,f99df93b-159f-4e9a-a415-42be1001c9de,47 +,1849-010319-2,1,100,0.05,aa36f7cf-18c8-417a-a773-81adf57d7bbb,51 +,1849-010319-2,1,100,0.05,1ea0d82f-c046-41f9-b855-1ac7fc830ed6,52 +,1849-010319-2,1,100,0.05,d1ecba13-3070-494b-a112-871c8e431dc5,55 +,1849-010319-2,1,100,0.05,e4140987-51c7-4293-81d9-b335b4efb8d3,57 +,1849-010319-2,1,100,0.05,9666d73a-591c-4033-ad74-f7bf64ee21b7,58 +,1849-010319-2,1,100,0.05,0a38b97a-6360-4ce0-b047-be87deac5fb2,61 +,1849-010319-2,1,100,0.05,5df59742-3dfe-44f7-9b4e-37c3ea133f8e,62 +,1849-010319-2,1,100,0.05,3304189c-9aed-4168-8fd6-f40edc51e966,69 +,1849-010319-2,1,100,0.05,1e55af82-db7c-4638-8d34-c6e4e2ed8caf,71 +,1849-010319-2,1,100,0.05,7266a7f3-6bf9-4f82-a566-b7e6007feca6,72 +,1849-010319-2,1,100,0.05,c22a607c-b52e-48cf-a804-d635083a502b,73 +,1849-010319-2,1,100,0.05,c2e48940-74fb-46d2-bd0a-990481b94ebe,75 +,1849-010319-2,1,100,0.05,973b4423-4405-4caf-8ba9-42a0ef71ab85,76 +,1849-010319-2,1,100,0.05,7c5486ec-5f7f-42af-b325-7b9164db73ba,77 +,1849-010319-2,1,100,0.05,4f24e393-8df4-4987-84ee-afe57ac0b4e6,78 +,1849-010319-4,1,100,0.05,4775d6b9-d837-4006-bbdb-1f3aafa3783f,14 +,1849-010319-4,1,100,0.05,867afee5-546e-4364-b1f9-c0dbe3d26e25,15 +,1849-010319-4,1,100,0.05,94c058b7-b92a-403b-b2bb-9c683134bcc5,16 +,1849-010319-4,1,100,0.05,64b752f6-a9a7-4d83-84e4-65fd28fa8642,22 +,1849-010319-4,1,100,0.05,ec44d94c-06c0-40b7-ba78-c3ee364e7e6e,45 +,1849-010319-4,1,100,0.05,b9beda9d-3508-4c73-bea2-01f2caf19c85,46 +,1849-010319-4,1,100,0.05,37340c7f-5a56-49c3-8f31-b0e49946fcb7,49 +,1849-010319-4,1,100,0.05,f25509a8-041a-414e-909c-f08d0b62aa16,50 +,1849-010319-4,1,100,0.05,fc0460bd-9c54-4b9c-9732-e696de613b65,52 +,1849-010319-4,1,100,0.05,ad59b019-e23d-4326-b42d-fc27db57dd67,53 +,1849-010319-4,1,100,0.05,c17ec775-e442-4817-95c7-aedcdfe473dc,54 +,1849-010319-4,1,100,0.05,ed922ef4-2d51-4dd6-bd0f-25490a677778,55 +,1849-010319-5,1,100,0.05,c8e3dd1b-ef25-4e61-802b-c09bbb9755b5,10 +,1849-010319-5,1,100,0.05,27c34348-53ad-401f-9c40-fe2e11dcf643,12 +,1849-010319-5,1,100,0.05,86e1a213-c9db-4517-88cd-a56e607429ef,13 +,1849-010319-5,1,100,0.05,23e2ffd9-45d7-4b6f-8f55-b3f6503b1153,14 +,1849-010319-5,1,100,0.05,9b335120-9a73-46ff-992f-b894e28724c0,16 +,1849-010319-5,1,100,0.05,e5ca1e39-6e6e-4df9-bab6-ae399c1820dd,17 +,1849-010319-5,1,100,0.05,dfcd6460-efc5-4a5a-941e-5bcf3fa99166,18 +,1849-010319-5,1,100,0.05,eaf8487c-d0b5-49a1-b19f-a8e39cf1ccf0,21 +,1849-010319-5,1,100,0.05,3f7bb081-e8f7-4526-b366-676e3d10d419,22 +,1849-010319-5,1,100,0.05,b3418cf0-b81c-4a8c-87e2-8dc9fc807b55,26 +,1849-010319-5,1,100,0.05,4afa29e7-c94a-4477-ab2c-3e86d2ef41c0,55 +,1849-010319-5,1,100,0.05,ebca2c31-b8f2-4c00-a277-b155716477b3,68 +,1849-010319-5,1,100,0.05,7e010c81-de6f-4870-965b-1b7f8406fe93,69 +,1849-010319-5,1,100,0.05,dd0b6a94-322e-4bf7-8717-b88dbc722d5f,70 +,1849-010319-5,1,100,0.05,6d9248d3-1a2b-4470-b17b-054fa36461e6,71 +,1849-010319-5,1,100,0.05,2722d44e-b76e-421f-bb31-6cde14c8d070,72 +,1849-010319-5,1,100,0.05,543aa939-cde4-4f0f-b59b-6de774a81412,75 +,1849-010319-5,1,100,0.05,b16ac9c3-aede-4c14-af1c-790da4b4e2f5,76 +,1849-010319-5,1,100,0.05,ee12e03c-06b9-4113-b80e-621fecd050bf,80 +,1849-010319-5,1,100,0.05,d02fdf2a-9739-45fb-8f58-c89ffd8a0922,81 +,1849-010319-5,1,100,0.05,49d09e98-5257-4bbe-9a2f-0ed8f5a8dab2,82 +,1849-010319-5,1,100,0.05,b02b7d14-215b-4526-8332-453a3c3d3bd6,83 +,1849-010319-5,1,100,0.05,ef27b871-ce22-487e-8c3b-45707362d251,84 +,1849-060319-1,1,100,0.05,4d8f219e-f4ee-4255-aa6a-41fcab033b46,106 +,1849-060319-1,1,100,0.05,1d0af68b-5d78-4424-aa76-9b6bcc8fb209,108 +,1849-060319-1,1,100,0.05,775ac17f-cecd-4e6f-ad48-33da7d1a015d,71 +,1849-060319-1,1,100,0.05,3f04a3fc-ad3e-4c1b-841c-27fba13cff7a,73 +,1849-060319-3,1,100,0.05,9fa4e5ff-c6a8-4996-8e7a-ae0793d57dd6,104 +,1849-060319-3,1,100,0.05,ca68a08d-f837-496e-9796-719dea135f65,108 +,1849-060319-3,1,100,0.05,9b7a54ca-fdc8-4807-bf6d-6caac692c02c,85 +,1849-060319-3,1,100,0.05,eb1c77ee-7e5f-46f0-b75e-6968d44a9a60,94 +,1849-060319-3,1,100,0.05,0d70e256-47fc-444e-b936-deaa92e5c68a,98 +,1849-060319-4,1,100,0.05,9abb647c-b1b0-4211-ad45-e658016123f5,76 +,1849-110319-1,1,100,0.05,5a0a790c-dff8-4b17-9057-b2ae2dcc91e0,31 +,1849-110319-1,1,100,0.05,064d134e-aeb7-4570-a4a2-0f27f3299304,41 +,1849-110319-1,1,100,0.05,af3cb364-8963-48a7-8893-c5f07ba6addb,54 +,1849-110319-1,1,100,0.05,4c6e670e-f34d-479c-a76a-cb3b746699db,59 +,1849-110319-1,1,100,0.05,9923a7e7-8378-4452-840c-c080aeab1d90,60 +,1849-110319-2,1,100,0.05,a22f42e4-029c-48ca-8e8a-cdbef79892b5,66 +,1849-110319-1,1,100,0.05,a22f42e4-029c-48ca-8e8a-cdbef79892b5,64 +,1849-110319-1,1,100,0.05,343114a9-dc62-4a74-a48f-6d1b98344223,66 +,1849-110319-2,1,100,0.05,343114a9-dc62-4a74-a48f-6d1b98344223,68 +,1849-110319-2,1,100,0.05,78bcd405-76c2-4b84-87cb-e197ff766803,50 +,1849-110319-2,1,100,0.05,361b71f1-91b4-4108-ba81-2c9f53ee2403,58 +,1849-110319-2,1,100,0.05,be46b3dc-bbd9-4d85-9b9f-72caea648b1b,62 +,1849-110319-3,1,100,0.05,49a060fc-a471-4dd7-8ffd-517f47ef7176,177 +,1849-150319-2,1,100,0.05,1d63420f-1401-47ca-9784-84ef8297e809,48 +,1849-280219-4,1,100,0.05,1d63420f-1401-47ca-9784-84ef8297e809,84 +,1849-150319-3,1,100,0.05,1d63420f-1401-47ca-9784-84ef8297e809,8 +,1849-150319-1,1,100,0.05,1d63420f-1401-47ca-9784-84ef8297e809,105 +,1849-150319-2,1,100,0.05,3eae1a02-93f1-45ed-bfcc-834f66c7ee2c,64 +,1849-150319-1,1,100,0.05,3eae1a02-93f1-45ed-bfcc-834f66c7ee2c,121 +,1849-150319-3,1,100,0.05,3eae1a02-93f1-45ed-bfcc-834f66c7ee2c,98 +,1849-150319-2,1,100,0.05,a514cdf1-3288-4a16-8caa-ecf5f6c1d59e,44 +,1849-150319-1,1,100,0.05,a514cdf1-3288-4a16-8caa-ecf5f6c1d59e,93 +,1849-150319-3,1,100,0.05,a514cdf1-3288-4a16-8caa-ecf5f6c1d59e,7 +,1849-150319-3,1,100,0.05,d3db7c32-d81f-46fc-9219-aace2567b084,11 +,1849-150319-4,1,100,0.05,8f6ac7bb-a6a0-4365-a9bf-d42c9337510e,100 +,1849-280219-4,1,100,0.05,8f6ac7bb-a6a0-4365-a9bf-d42c9337510e,105 +,1849-280219-2,1,100,0.05,8f6ac7bb-a6a0-4365-a9bf-d42c9337510e,102 +,1849-150319-4,1,100,0.05,c2e3dd81-e6ff-4144-954f-1a56d6f6ed5b,78 +,1849-150319-4,1,100,0.05,b48b1744-8edc-4f7d-964e-5a1cee4573f1,99 +,1849-220319-2,1,100,0.05,0d2d7e3f-0196-472e-9659-09a7b797b05d,99 +,1849-220319-3,1,100,0.05,01612c1c-df3b-4114-92bc-ff2a69085850,59 +,1849-220319-3,1,100,0.05,040bfeee-9295-47e8-8739-1a37171f225e,63 +,1849-220319-3,1,100,0.05,4be4ef6c-9056-4785-b32e-ce0a54484f14,67 +,1849-220319-4,1,100,0.05,4be4ef6c-9056-4785-b32e-ce0a54484f14,118 +,1849-220319-4,1,100,0.05,82725ae2-d7fb-4719-bb6c-0b5a8366c261,108 +,1849-220319-4,1,100,0.05,e3732aa8-1fb7-4750-942d-0f9636eeece1,117 +,1849-220319-4,1,100,0.05,c5fc116a-db7a-4303-8a07-9504bf4de47f,90 +,1849-220319-5,1,100,0.05,b6be12f7-e687-4354-beb4-62f75c7d7c40,117 +,1849-280219-1,1,100,0.05,68be1dc3-7e43-43d9-94f0-51a6f17268e8,102 +,1849-280219-1,1,100,0.05,cd7a19da-6bf9-4deb-96b9-09621a11b647,104 +,1849-280219-1,1,100,0.05,6aa07228-c177-48e5-a6c5-f5520fff0a24,112 +,1849-280219-1,1,100,0.05,0a82e6fa-c7a2-4394-9dc6-b918fd4db7b2,114 +,1849-280219-1,1,100,0.05,78007a94-d35c-4097-ad94-b88fe0f0e682,116 +,1849-280219-2,1,100,0.05,8e8850f1-4418-472b-adbd-0f5e73371fb4,110 +,1849-280219-4,1,100,0.05,8e8850f1-4418-472b-adbd-0f5e73371fb4,101 +,1849-280219-2,1,100,0.05,28d46e64-e4a4-4311-8566-d20ded616551,78 +,1849-280219-3,1,100,0.05,0a32d890-fa61-43d6-b4ac-76fcb988d57a,180 +,1849-280219-3,1,100,0.05,33d29061-38ef-4e4a-8a76-0315ace63e1f,182 +,1849-280219-4,1,100,0.05,eefb81ff-642c-4eab-9803-e87c20a2bc98,32 +,1849-280219-4,1,100,0.05,6f6af93b-559b-41af-ad37-837052ca0ae4,81 +,1849-010319-2,2,100,0.05,d5fe4870-8acc-475e-86bf-61282fee39e4,28 +,1849-010319-5,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,74 +,1849-220319-3,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,61 +,1849-150319-2,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,9 +,1849-150319-3,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,76 +,1849-110319-2,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,60 +,1849-150319-1,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,91 +,1849-220319-4,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,99 +,1849-220319-2,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,95 +,1849-010319-2,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,29 +,1849-220319-5,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,104 +,1849-150319-4,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,81 +,1849-110319-1,2,100,0.05,ef734e17-54e0-43fd-87a6-05fee1232933,50 +,1849-010319-2,2,100,0.05,7151933e-883d-4c51-aab6-955d2a26f1ee,33 +,1849-010319-5,2,100,0.05,41628393-86b2-4a2b-b3d3-daf14953ce2c,73 +,1849-010319-4,2,100,0.05,41628393-86b2-4a2b-b3d3-daf14953ce2c,17 +,1849-010319-4,2,100,0.05,1c889c58-177e-4722-bba3-b45dd579c9b9,18 +,1849-010319-4,2,100,0.05,e8c5ef0f-41fe-4b07-86ba-45c53bd4f6ce,21 +,1849-010319-4,2,100,0.05,a8c57285-c69b-49e6-9b49-c7be6b770e86,23 +,1849-010319-5,2,100,0.05,bf20902e-07a1-452e-94da-d896dbde4655,77 +,1849-010319-4,2,100,0.05,bf20902e-07a1-452e-94da-d896dbde4655,48 +,1849-010319-5,2,100,0.05,1a161e99-0a21-4da3-9a17-0c0d5239d4cb,15 +,1849-010319-5,2,100,0.05,6f12ed45-128d-4991-90d4-f130c1e96b67,19 +,1849-010319-5,2,100,0.05,7b042f1b-2af3-4592-93c1-44e5893b0bfc,23 +,1849-010319-5,2,100,0.05,7ec4d4a2-4bb0-46c4-b974-06fe00540a94,24 +,1849-010319-5,2,100,0.05,ef035409-5eed-43b0-9f7c-919fec7ad0d7,78 +,1849-060319-2,2,100,0.05,0f0ea8b2-8e8c-4035-b5bc-987e5bac6e11,81 +,1849-060319-4,2,100,0.05,0f0ea8b2-8e8c-4035-b5bc-987e5bac6e11,72 +,1849-060319-3,2,100,0.05,276eba79-49ad-4c91-a8f9-5b86fe89be09,114 +,1849-060319-3,2,100,0.05,0e672982-7edb-4c0e-989a-2ebb8dbe33e9,130 +,1849-060319-4,2,100,0.05,756ea423-26b6-4f99-8244-bfa7e38c8bae,82 +,1849-110319-2,2,100,0.05,ce8fa007-c96e-4830-bf38-aa5b7e36edff,52 +,1849-110319-1,2,100,0.05,ce8fa007-c96e-4830-bf38-aa5b7e36edff,46 +,1849-110319-2,2,100,0.05,79b76d14-9985-4e8a-96ac-01990eabbc74,64 +,1849-110319-1,2,100,0.05,79b76d14-9985-4e8a-96ac-01990eabbc74,62 +,1849-150319-1,2,100,0.05,f27e74c8-007f-488d-bbf2-419ebeb0fc67,62 +,1849-150319-2,2,100,0.05,f27e74c8-007f-488d-bbf2-419ebeb0fc67,34 +,1849-150319-4,2,100,0.05,653f1dd6-5959-4f31-b3aa-85c11bee4bb5,62 +,1849-150319-2,2,100,0.05,653f1dd6-5959-4f31-b3aa-85c11bee4bb5,36 +,1849-150319-3,2,100,0.05,653f1dd6-5959-4f31-b3aa-85c11bee4bb5,25 +,1849-150319-1,2,100,0.05,653f1dd6-5959-4f31-b3aa-85c11bee4bb5,72 +,1849-150319-3,2,100,0.05,7338009d-9067-42e4-9530-95fae7bca6b1,21 +,1849-150319-2,2,100,0.05,7338009d-9067-42e4-9530-95fae7bca6b1,62 +,1849-150319-4,2,100,0.05,7338009d-9067-42e4-9530-95fae7bca6b1,90 +,1849-150319-4,2,100,0.05,d4ba4c1a-6ddd-4942-a3ce-22634482635d,87 +,1849-220319-2,2,100,0.05,3fffea44-59b1-4c55-b6d9-3106a34a6ce1,91 +,1849-220319-5,2,100,0.05,3fffea44-59b1-4c55-b6d9-3106a34a6ce1,83 +,1849-220319-3,2,100,0.05,8af7c55c-3e95-45aa-bbad-2cd0d4f64a2f,65 +,1849-280219-1,2,100,0.05,b3e18e97-1aa4-47d8-a114-ec5e92dec5df,100 +,1849-280219-1,2,100,0.05,e3d473ba-4376-403d-b0dd-cbcc363a3ad6,16 +,1849-280219-1,2,100,0.05,2da2cc41-ecc1-4db8-ab08-069e1931a1a1,18 +,1849-280219-1,2,100,0.05,c80ee36b-60bf-4ecb-85cb-8c61b84d402b,84 +,1849-280219-1,2,100,0.05,3cfdb2d3-9c3d-4c9b-80ce-9011cca98aa2,86 +,1849-280219-2,2,100,0.05,42bb9e49-c871-4c60-ac13-d2d20582f48c,70 +,1849-280219-2,2,100,0.05,1851968e-6681-4ea2-84dc-48a61f711958,72 +,1849-280219-3,2,100,0.05,4aa8d453-83b7-4d81-8b83-9481bb7563c5,141 +,1849-280219-4,2,100,0.05,b0350b90-26b9-48f9-8f16-c714c706c6cc,70 +,1849-280219-4,2,100,0.05,08a2d06b-ec50-414d-94cf-ec9d7046f54d,74 +,1849-010319-2,3,100,0.05,86382731-7667-4b2e-9139-2a9109a9ffde,36 +,1849-010319-2,3,100,0.05,16be6b61-af30-4ac9-8e25-fed03116f876,37 +,1849-010319-2,3,100,0.05,e815ee33-09f7-49bd-9d8d-2b64bae77d27,38 +,1849-010319-2,3,100,0.05,b8a7e1ee-8d21-4e44-9566-c8d911449831,40 +,1849-010319-4,3,100,0.05,a3dd6d26-b832-4368-805a-ba802d70e98c,24 +,1849-010319-5,3,100,0.05,c0b6e8cf-ef25-4f2c-8df2-d25c6e55fe1e,30 +,1849-010319-4,3,100,0.05,c0b6e8cf-ef25-4f2c-8df2-d25c6e55fe1e,25 +,1849-010319-4,3,100,0.05,51ef7c20-02e2-42e7-a4a9-1ecf397f99f3,26 +,1849-010319-4,3,100,0.05,51737b7d-cd1b-428c-80d5-29e45aaf1cf2,28 +,1849-010319-5,3,100,0.05,3563b78d-f9f0-4c90-8e8f-fe362a861f7b,25 +,1849-010319-5,3,100,0.05,0c296dc4-a9e3-4aa8-b106-0877b7b04a68,27 +,1849-010319-5,3,100,0.05,27e44e96-cf67-4c7f-a288-b043eb5de2d5,28 +,1849-010319-5,3,100,0.05,061a4293-c4b1-447a-90fb-1c8dfa758e09,29 +,1849-010319-5,3,100,0.05,5b034dff-2a33-4114-9f4c-4a086704a6d3,59 +,1849-010319-5,3,100,0.05,aa6b2531-c76a-4608-bca3-0f61edd6810e,79 +,1849-060319-1,3,100,0.05,8bbfc8c9-6196-4c5d-a5c0-8556616c3a33,102 +,1849-060319-1,3,100,0.05,09c63470-1747-4d1e-8a28-8f9c7e1bd9fd,77 +,1849-060319-1,3,100,0.05,7714749a-6edc-404c-afdc-58d9a9b0b112,83 +,1849-060319-1,3,100,0.05,9ffb7397-3a40-4afa-a974-75b1820f09eb,98 +,1849-060319-2,3,100,0.05,9ffb7397-3a40-4afa-a974-75b1820f09eb,99 +,1849-060319-3,3,100,0.05,9ffb7397-3a40-4afa-a974-75b1820f09eb,110 +,1849-060319-4,3,100,0.05,9ffb7397-3a40-4afa-a974-75b1820f09eb,74 +,1849-060319-2,3,100,0.05,3c1c607b-12bf-4c24-8e0e-ae68bc4cc5f3,67 +,1849-060319-2,3,100,0.05,88844f8d-74b3-4bcc-909d-b83f98e56408,94 +,1849-060319-3,3,100,0.05,88844f8d-74b3-4bcc-909d-b83f98e56408,100 +,1849-060319-4,3,100,0.05,88844f8d-74b3-4bcc-909d-b83f98e56408,68 +,1849-110319-1,3,100,0.05,a92c460b-abd6-4051-ba8d-d14d5d2211c9,35 +,1849-110319-2,3,100,0.05,384a910f-c873-4fe1-806e-23a06679adbd,40 +,1849-150319-1,3,100,0.05,3dad75f6-7fa3-4875-8e0a-2aef2a2544e4,58 +,1849-150319-1,3,100,0.05,5875a4e9-3ac7-4372-8dda-5848655546c2,64 +,1849-150319-2,3,100,0.05,cff065a4-5689-4f83-90d7-ab678c1a425c,32 +,1849-150319-2,3,100,0.05,65b5b2ff-e4b2-4635-bc45-37494752df0a,38 +,1849-150319-3,3,100,0.05,18a79c67-ed9e-42d6-bc38-dce9aac3bb25,60 +,1849-150319-4,3,100,0.05,172193aa-a51f-4eef-8a21-968c6bd0adf6,58 +,1849-220319-2,3,100,0.05,86b3dcd9-6547-4448-a1df-f02598f14cad,57 +,1849-220319-2,3,100,0.05,0921bf6d-5c15-4603-9599-ebcaee582dea,59 +,1849-220319-2,3,100,0.05,33b921f0-b590-4c54-8171-7888d928e469,68 +,1849-220319-2,3,100,0.05,9afcfb83-a6d2-422e-b6ce-6bbdbde59bce,86 +,1849-220319-3,3,100,0.05,ff669f45-36fc-4b65-bdf5-fa3d263ef890,53 +,1849-220319-3,3,100,0.05,c4182e34-cf6d-40eb-a9af-a14e9fee1554,55 +,1849-220319-4,3,100,0.05,ca6a358f-abe4-49f0-afc3-ced871876870,122 +,1849-220319-4,3,100,0.05,54c84a43-ce91-4609-b646-bafe2d3d3bdd,79 +,1849-220319-4,3,100,0.05,625294c5-8e8e-4bdc-9567-fd5c744e9ca4,87 +,1849-220319-5,3,100,0.05,5957eaf3-1c66-4367-a656-a777c3872aa7,27 +,1849-220319-5,3,100,0.05,901ab17e-5265-4e3e-a77c-99bef74c78bd,71 +,1849-220319-5,3,100,0.05,160bf7a7-1fe3-40f7-ad3f-31810b344e1c,98 +,1849-280219-1,3,100,0.05,7b3f86c9-8f6e-4755-8a0e-75df97d49135,110 +,1849-280219-1,3,100,0.05,3c7ef747-b714-4011-8f75-efe9453dfb74,27 +,1849-280219-1,3,100,0.05,f9b4d0ce-a72b-4184-9348-4bdc92b33b21,28 +,1849-280219-1,3,100,0.05,06f73680-fdff-4dfa-ab21-ecb6b09da907,64 +,1849-280219-2,3,100,0.05,80a981bc-6175-492c-8f4c-293b0298cb0b,51 +,1849-280219-2,3,100,0.05,ea1270fa-f80f-4ec7-ac4b-662fb3834ca2,76 +,1849-280219-2,3,100,0.05,713a86ee-a1a2-47aa-b649-858d61039ed2,96 +,1849-280219-4,3,100,0.05,8804768c-f765-498b-9ebe-a966efa6fe3a,125 +,1849-280219-2,3,100,0.05,8804768c-f765-498b-9ebe-a966efa6fe3a,98 +,1849-280219-3,3,100,0.05,bb715956-001b-486f-8ca3-746bcc9f676d,166 +,1849-280219-3,3,100,0.05,6b55bc78-d04d-4d0c-9107-87885adadb83,170 +,1849-280219-4,3,100,0.05,f25907ec-ba42-4de0-81ae-1ad365649f56,121 +,1849-280219-4,3,100,0.05,5eead8bb-c5ef-457c-ad7d-749c89c6f9e7,60 +,1849-280219-4,3,100,0.05,8bc3604a-78d9-4743-a944-77fadc4887d9,72 +,1849-010319-2,4,100,0.05,337a1e87-6013-493e-a273-ddf6413c3283,48 +,1849-010319-4,4,100,0.05,d1ad7ecb-9593-44ad-94bd-83a82b1fc229,30 +,1849-010319-4,4,100,0.05,9e58eddf-2615-4e66-96e0-80979e972056,32 +,1849-010319-4,4,100,0.05,d0dbbc2f-13df-4982-a9fa-eccf4494c169,33 +,1849-010319-4,4,100,0.05,5068274b-dd26-4715-87d7-2b85e8ee148b,4 +,1849-010319-5,4,100,0.05,08abeabf-ca36-4b08-98f1-4eeef36585a3,31 +,1849-010319-5,4,100,0.05,98a2c707-f0b7-4ec2-be65-00d54b56f70e,32 +,1849-010319-5,4,100,0.05,b8018a1d-bf3b-41f2-bbae-f453f63e73f8,36 +,1849-010319-5,4,100,0.05,406f34df-9f77-4a98-8edc-a12806643766,39 +,1849-010319-5,4,100,0.05,93fe43be-a84f-40f9-943b-d351fcac2ea0,40 +,1849-010319-5,4,100,0.05,9300887a-153a-4d72-9e91-be104749044a,43 +,1849-010319-5,4,100,0.05,f478ff35-c2f3-4415-98fc-e70c8d0b0f16,44 +,1849-010319-5,4,100,0.05,f28a47d7-5f33-4639-ace2-b1cea3728f68,46 +,1849-010319-5,4,100,0.05,902251b6-7ca7-47ec-980a-960844e93e2b,60 +,1849-010319-5,4,100,0.05,88550d1d-93c7-4605-ae62-1f8763d06c8f,85 +,1849-060319-4,4,100,0.05,c4801661-7934-4c8c-b165-5fdbc6cde786,80 +,1849-060319-1,4,100,0.05,c4801661-7934-4c8c-b165-5fdbc6cde786,104 +,1849-060319-1,4,100,0.05,ae0ade00-93d2-472f-9eb3-74a07cd3634e,88 +,1849-060319-2,4,100,0.05,0c25d0d2-cdce-4f76-917e-d9c4fe8b6086,122 +,1849-060319-2,4,100,0.05,9c560cf1-2e50-4fa6-9fd7-4c70f8644fdd,95 +,1849-060319-3,4,100,0.05,2c449439-c7c4-41b5-8506-984c801cb937,120 +,1849-060319-4,4,100,0.05,cc415c95-278e-4d67-b031-c7f20c298f7e,64 +,1849-110319-2,4,100,0.05,2c56a04e-8616-466c-a3ed-ea88f79d31fb,23 +,1849-110319-3,4,100,0.05,eb71dc1f-21e1-4785-a09d-a2e1d475b97d,104 +,1849-110319-3,4,100,0.05,7856ef46-4c08-4630-a70d-f5c20c258e3c,163 +,1849-150319-1,4,100,0.05,7b19070a-6308-4aa1-b7dc-250059e50ad7,79 +,1849-150319-1,4,100,0.05,472b6f08-f4dc-4476-9388-695fa4eeef8b,85 +,1849-150319-1,4,100,0.05,1f2f4cc8-4899-4eaf-b589-a95d3f86c920,89 +,1849-150319-3,4,100,0.05,46d864d0-1e55-4c91-8b7c-f72ed861baf7,74 +,1849-150319-2,4,100,0.05,46d864d0-1e55-4c91-8b7c-f72ed861baf7,17 +,1849-150319-2,4,100,0.05,51be77c1-36bb-4118-a7fe-87533cffcbb6,46 +,1849-150319-3,4,100,0.05,98da8d18-f68e-4a84-adc3-eb0ca8d248ad,97 +,1849-150319-4,4,100,0.05,b9c8c686-4639-45e3-b2f7-dcb88e720728,34 +,1849-220319-4,4,100,0.05,b9c8c686-4639-45e3-b2f7-dcb88e720728,112 +,1849-220319-5,4,100,0.05,b9c8c686-4639-45e3-b2f7-dcb88e720728,112 +,1849-150319-4,4,100,0.05,826ef880-1a7a-44ab-ab86-c5a62aead66f,60 +,1849-220319-2,4,100,0.05,e40261da-c0b8-4502-9156-49de0073ec3f,101 +,1849-220319-2,4,100,0.05,362dc910-6e65-416b-bc28-3e4972598465,107 +,1849-220319-2,4,100,0.05,8e1fa64f-4a34-4128-8b87-63d0b543a1c8,109 +,1849-220319-2,4,100,0.05,12c453f6-0336-4772-9266-16a0ae92a54c,43 +,1849-220319-3,4,100,0.05,fde3cdec-9d4c-40df-8b46-70a752b1ace2,69 +,1849-220319-3,4,100,0.05,3a0142dc-2b8c-42dc-8d9e-ae6350d75b9f,71 +,1849-280219-1,4,100,0.05,99ef5432-6bfc-4ea3-aab2-64dc1d521554,66 +,1849-280219-2,4,100,0.05,89405110-a1ae-4a5b-a44c-663b7ec7b842,80 +,1849-280219-2,4,100,0.05,7adb4026-22dd-4000-a1c3-28e8b28817dc,86 +,1849-280219-3,4,100,0.05,7c5f96df-c4f6-49f9-aa19-bb1ea3a85f12,133 +,1849-280219-3,4,100,0.05,70c561d7-98e0-4bf5-a66d-c36f3fbcbc43,151 +,1849-280219-4,4,100,0.05,14bae571-26fb-43b0-8ea2-d37e907a2b2c,55 +,1849-010319-2,5,100,0.05,5a455939-2498-466b-93ad-044ae68fc959,46 +,1849-010319-2,5,100,0.05,800bb0e2-00d6-4218-bfd7-67ef2915f0fb,50 +,1849-010319-2,5,100,0.05,5f8f817d-15c7-4b17-b5c6-ac07aba0f5e7,53 +,1849-010319-2,5,100,0.05,16a8818c-1b2b-4ee0-a158-09c69da03157,54 +,1849-010319-2,5,100,0.05,ebf75de2-0dfa-4d02-84c7-9613159917f3,56 +,1849-010319-2,5,100,0.05,e0421ed0-32a8-4fc5-9298-e76ce75e8e65,59 +,1849-010319-2,5,100,0.05,b83c4ad8-7a2f-4980-b8b0-2d40cd55a391,60 +,1849-010319-2,5,100,0.05,817cbcc5-dd82-4b6c-a015-a7e18749ee32,74 +,1849-010319-2,5,100,0.05,cb85413b-755a-4bf6-b979-da0e8cfa394f,79 +,1849-010319-2,5,100,0.05,611d9282-6049-4a3b-9e0a-43ebff6d2b17,80 +,1849-010319-5,5,100,0.05,b237282a-fe4b-423f-b7fa-386f160c4b06,41 +,1849-010319-4,5,100,0.05,b237282a-fe4b-423f-b7fa-386f160c4b06,31 +,1849-060319-1,5,100,0.05,6a6d6552-8538-4710-b0b7-840f3f7ab2cd,100 +,1849-060319-1,5,100,0.05,a08629d3-5b0a-471c-a241-85a41567f961,75 +,1849-060319-1,5,100,0.05,6ec5854a-8d6e-46ea-81f7-911b43a5eb5e,92 +,1849-060319-3,5,100,0.05,2aa7a45c-1b17-49ab-8ae8-61b8a52e0f7c,112 +,1849-060319-2,5,100,0.05,2aa7a45c-1b17-49ab-8ae8-61b8a52e0f7c,114 +,1849-060319-2,5,100,0.05,f3cab6b6-a20b-4d6a-b84e-0f1696346ff0,118 +,1849-060319-4,5,100,0.05,7f3dcc9c-a33f-42dc-99f3-8bee5eff9c5f,78 +,1849-110319-1,5,100,0.05,cd5d0271-f8e7-4548-b7b9-3c3fb537d6e1,16 +,1849-110319-1,5,100,0.05,0e63eeb4-e6dc-41f8-b424-90b7a8985c1c,17 +,1849-110319-1,5,100,0.05,deb6463b-04e6-472d-b4ae-ff084235d300,29 +,1849-110319-2,5,100,0.05,41bf8868-be15-49e9-a0fa-6cf99558bc61,24 +,1849-110319-2,5,100,0.05,fad375f7-e533-4ee2-857a-6e15e3e9a5bc,48 +,1849-110319-3,5,100,0.05,ddc66744-467f-4ee0-b93d-6581d1c71293,165 +,1849-150319-1,5,100,0.05,42107876-4cdc-425e-bc73-e6d8b94bdc01,107 +,1849-150319-1,5,100,0.05,61daa5e0-aa64-4ad5-bd7e-722491a20263,60 +,1849-150319-1,5,100,0.05,6661e694-abfe-4b31-a8e1-4d6b63bba0de,80 +,1849-150319-1,5,100,0.05,a7456e3a-2f0d-4939-ac21-a9db8142b2e3,95 +,1849-150319-2,5,100,0.05,f80b3cc3-38e9-4fb5-b207-fdaea508390d,18 +,1849-150319-2,5,100,0.05,50a82c1d-cb2c-49d5-8db2-9f93655ad040,19 +,1849-150319-3,5,100,0.05,50a82c1d-cb2c-49d5-8db2-9f93655ad040,38 +,1849-150319-4,5,100,0.05,50a82c1d-cb2c-49d5-8db2-9f93655ad040,64 +,1849-150319-2,5,100,0.05,c758e016-9f26-47bd-b7c1-bed26cf969ce,22 +,1849-150319-2,5,100,0.05,aa8319aa-0096-459c-8f57-33015802e5a7,67 +,1849-150319-3,5,100,0.05,c094ed4f-8c1e-478e-ac36-78dbd93af50e,64 +,1849-150319-3,5,100,0.05,7707909f-e1af-4115-8a8f-22f647a94b85,78 +,1849-150319-4,5,100,0.05,fe9eb063-9b76-4498-82d4-036c914f2fc6,37 +,1849-220319-2,5,100,0.05,0ed639ea-5af3-463a-b979-b9d5c4254798,32 +,1849-220319-2,5,100,0.05,007b4342-cd89-4c7e-a3ba-11f06ba2453a,45 +,1849-220319-2,5,100,0.05,0e89975d-33c8-4e92-87c7-13c2397aaeab,46 +,1849-220319-3,5,100,0.05,357a9214-8554-40b8-8179-7eebcc9cc5d1,28 +,1849-220319-3,5,100,0.05,59993a9b-a03f-4779-bd96-76841778478b,73 +,1849-220319-3,5,100,0.05,24d88d9b-a044-41ec-b92c-866014f97cce,75 +,1849-220319-4,5,100,0.05,29b43539-e945-4505-a5d1-78a61e3860e6,102 +,1849-220319-4,5,100,0.05,ad01f579-c475-46c0-96d1-89943c76f9b3,110 +,1849-220319-4,5,100,0.05,716c9436-1ff7-48ed-acb7-31375212e551,84 +,1849-220319-5,5,100,0.05,5a0a9417-b6e1-4258-b28b-652ae616c53d,34 +,1849-220319-5,5,100,0.05,0bccdd44-1d16-4822-ae3b-c3eac8b31180,35 +,1849-220319-5,5,100,0.05,83455f62-e99d-4f02-a284-2cf9d1cf22a2,38 +,1849-220319-5,5,100,0.05,55ee09a2-8940-435f-8032-66800f75358f,39 +,1849-280219-1,5,100,0.05,13f5a9cb-75e2-454c-b4dd-ce059c65feaf,40 +,1849-280219-2,5,100,0.05,4d81a6f7-fc81-4ebc-9103-63363f62a050,64 +,1849-280219-3,5,100,0.05,8014d693-8aba-4b93-9b2a-48beaca294f4,129 +,1849-280219-3,5,100,0.05,87580bf8-4eff-401f-a4cd-f75dfc6e9177,137 +,1849-280219-4,5,100,0.05,50e6e04d-657b-4b9a-9533-5db1d6c7caf7,44 +,1849-010319-2,6,100,0.05,c55aecd9-e338-4a12-bf60-bcafbb494a52,63 +,1849-010319-2,6,100,0.05,a5d831b9-18e2-4f4e-b55a-a0f524e1a79d,64 +,1849-010319-2,6,100,0.05,3f6b3228-ae52-4e84-8d7e-8eaecc946bc6,65 +,1849-010319-2,6,100,0.05,53c275a6-a4ca-464a-8df2-9a1bd02c0e5d,66 +,1849-010319-4,6,100,0.05,76de2021-8b63-4253-b1f2-2cf8daa6a98d,36 +,1849-010319-4,6,100,0.05,030f9898-a18e-460c-b734-0b57f9951821,37 +,1849-010319-5,6,100,0.05,7c99e8f7-93de-4fe6-b1da-141f297d5eaa,33 +,1849-010319-5,6,100,0.05,2800f35d-bbf8-45f9-80f5-7166858c0e15,47 +,1849-010319-5,6,100,0.05,068e05e9-e154-4a27-a613-d667f669cb63,48 +,1849-010319-5,6,100,0.05,139d799f-b85e-4771-946f-537638c6793a,49 +,1849-060319-1,6,100,0.05,97387fd3-e4a8-4457-be9f-3586413e7cc3,44 +,1849-060319-1,6,100,0.05,844564b0-1b6c-4a68-a287-f118245d2471,81 +,1849-060319-4,6,100,0.05,2293ff61-e13b-40e4-b738-ed65f60661ee,62 +,1849-060319-4,6,100,0.05,3d3102aa-e423-4744-bf1d-1bfbd2ae8c56,66 +,1849-280219-1,6,100,0.05,dcc0fd1e-2f48-4aa3-8ce7-9952d9e9b844,106 +,1849-280219-1,6,100,0.05,2fc54f79-f855-4039-9937-13e13cccf93d,108 +,1849-280219-1,6,100,0.05,4982026e-438b-4432-bfb1-b81566622682,44 +,1849-280219-1,6,100,0.05,70346dd2-e8b7-4d05-995c-41ef6de42489,45 +,1849-280219-1,6,100,0.05,e8da8280-5171-4c31-9ded-b69fdd005a62,96 +,1849-280219-1,6,100,0.05,dfb88585-c4e0-4fb7-9d9b-f6cfe55c509c,98 +,1849-280219-2,6,100,0.05,2fa742e1-fd6c-4461-ba3f-a8cafcbe5d36,38 +,1849-280219-2,6,100,0.05,38d03c90-38d4-4d6a-aeae-b9cb67b65d8c,90 +,1849-280219-2,6,100,0.05,01da7c1c-213a-4d86-874a-795113a80133,94 +,1849-280219-3,6,100,0.05,43a2df67-89e6-426b-826d-0d11b81b51e1,127 +,1849-280219-3,6,100,0.05,b5b081e5-fbb0-4951-8dad-e9c83fdbc45a,131 +,1849-280219-3,6,100,0.05,ae6ce252-72ce-4193-aa44-10e035f4280e,135 +,1849-280219-3,6,100,0.05,25a3039f-db92-42f6-b9a5-d52ba006174c,139 +,1849-280219-4,6,100,0.05,2355ab9c-a355-4100-bd9e-5239f3ef9221,66 +,1849-280219-4,6,100,0.05,92a1ab59-7693-4d59-9059-ba13230b4fa4,68 +,1849-010319-2,7,100,0.05,2d9cdb86-6502-43bc-a86e-93a11929c2f9,67 +,1849-280219-4,7,100,0.05,2d9cdb86-6502-43bc-a86e-93a11929c2f9,58 +,1849-010319-2,7,100,0.05,473416fe-858d-4b6a-84fd-e9eb34066076,68 +,1849-280219-4,7,100,0.05,b584b4cc-fc27-4553-9550-22e7b6e5dec4,56 +,1849-280219-2,7,100,0.05,b584b4cc-fc27-4553-9550-22e7b6e5dec4,42 +,1849-280219-3,7,100,0.05,b584b4cc-fc27-4553-9550-22e7b6e5dec4,158 +,1849-010319-2,7,100,0.05,b584b4cc-fc27-4553-9550-22e7b6e5dec4,70 +,1849-010319-4,7,100,0.05,5ffce4f5-b838-4709-9d63-642e747f7f3f,38 +,1849-010319-5,7,100,0.05,ec44d4da-d0f0-4da1-9a9b-f696a87acc51,57 +,1849-010319-4,7,100,0.05,ec44d4da-d0f0-4da1-9a9b-f696a87acc51,39 +,1849-010319-4,7,100,0.05,d194d293-0304-4056-989f-714c8d3f131a,40 +,1849-010319-4,7,100,0.05,bbaa9e6e-78b6-43ce-84d5-366debf8a7ca,41 +,1849-010319-5,7,100,0.05,ef16d09c-0d57-419d-b4bd-0ae4943338ef,51 +,1849-010319-5,7,100,0.05,9729773c-9659-4d91-a8e6-ed155318dbc3,54 +,1849-060319-1,7,100,0.05,e5a0af3a-af81-4a49-97bb-fcbbf64bae1b,49 +,1849-060319-1,7,100,0.05,f25da898-1084-403e-9964-cae315280399,90 +,1849-060319-2,7,100,0.05,f1bfa678-4401-40ce-bd0d-42c0f1a0739d,50 +,1849-060319-2,7,100,0.05,4987ee0e-55c8-454e-a2b9-9b25f461fb83,71 +,1849-060319-2,7,100,0.05,15a2b5fa-2bea-4db2-bdcd-afe36997a499,92 +,1849-060319-3,7,100,0.05,d8c804e8-5ad8-4cb5-9345-4c44fd546ae9,118 +,1849-060319-3,7,100,0.05,d4148f8f-d1fa-4ead-86e2-9bb4802482d5,92 +,1849-060319-4,7,100,0.05,d917413c-3895-4dd9-98ee-02d7e06efcd9,60 +,1849-150319-1,7,100,0.05,4ac7bd1c-40fe-46db-95e0-22256b718dc2,56 +,1849-280219-1,7,100,0.05,6bbd2297-20b0-41e2-a070-809624a8ed89,52 +,1849-280219-1,7,100,0.05,9a8b203b-75a8-47fb-ad4a-47c840a44d53,53 +,1849-280219-1,7,100,0.05,78e2e7a1-8239-407f-ab35-c57181c7672b,62 +,1849-280219-2,7,100,0.05,f25164cc-caa2-4cdf-a04f-ffe841664685,43 +,1849-280219-2,7,100,0.05,cc935957-67f1-448a-930d-cc3e30d2a420,61 +,1849-280219-2,7,100,0.05,45885efb-8adc-438c-8563-dcff91391915,66 +,1849-280219-2,7,100,0.05,6d7df974-715e-43a8-abd0-5aa13c04ac6b,92 +,1849-280219-3,7,100,0.05,c960cd69-9834-4a0c-b5c3-e74b2f3f5d71,149 +,1849-280219-3,7,100,0.05,0ed53f0e-6e5c-4771-8b05-aac4023b5a4a,164 +,1849-280219-4,7,100,0.05,b1e6c75f-c7dd-4432-bd89-872d957ef7dc,86 +,1833-020719-3,0,100,0.05,ba4e252f-1ed8-4a25-8954-85f12eb4c723,143 +,1833-020719-4,0,100,0.05,ba4e252f-1ed8-4a25-8954-85f12eb4c723,302 +,1833-020719-1,0,100,0.05,ba4e252f-1ed8-4a25-8954-85f12eb4c723,123 +,1833-010719-1,0,100,0.05,ba4e252f-1ed8-4a25-8954-85f12eb4c723,127 +,1833-260619-4,0,100,0.05,67525c8a-fd84-431e-9c99-9e2746fbdb3b,202 +,1833-010719-1,0,100,0.05,67525c8a-fd84-431e-9c99-9e2746fbdb3b,161 +,1833-260619-3,0,100,0.05,67525c8a-fd84-431e-9c99-9e2746fbdb3b,196 +,1833-260619-1,0,100,0.05,67525c8a-fd84-431e-9c99-9e2746fbdb3b,120 +,1833-010719-2,0,100,0.05,67525c8a-fd84-431e-9c99-9e2746fbdb3b,239 +,1833-010719-1,0,100,0.05,ebe9064b-ecdd-4ee8-b8c9-4a48e71764b9,191 +,1833-010719-1,0,100,0.05,898df8ee-543c-4e61-81b0-d4054dff1561,223 +,1833-010719-2,0,100,0.05,898df8ee-543c-4e61-81b0-d4054dff1561,261 +,1833-010719-1,0,100,0.05,b98ac340-6205-4429-adee-270f767ad486,225 +,1833-010719-2,0,100,0.05,b98ac340-6205-4429-adee-270f767ad486,267 +,1833-010719-1,0,100,0.05,7eb726d3-73df-4a64-add2-f59a70133700,235 +,1833-010719-2,0,100,0.05,7eb726d3-73df-4a64-add2-f59a70133700,4 +,1833-010719-2,0,100,0.05,1db228ea-9618-4fa6-90b2-5cc2ad5cfbed,254 +,1833-010719-2,0,100,0.05,5a252573-4d76-45b0-8717-07908c6882e8,265 +,1833-020719-1,0,100,0.05,eeece253-7ee8-4165-b7f7-0c8f76a36761,119 +,1833-020719-1,0,100,0.05,6190734f-2d77-4ba4-a0f1-e5612e242a10,121 +,1833-020719-4,0,100,0.05,b1e63404-52d5-4970-8b93-33513da717a4,308 +,1833-020719-2,0,100,0.05,b1e63404-52d5-4970-8b93-33513da717a4,142 +,1833-020719-1,0,100,0.05,b1e63404-52d5-4970-8b93-33513da717a4,145 +,1833-020719-3,0,100,0.05,b1e63404-52d5-4970-8b93-33513da717a4,156 +,1833-020719-4,0,100,0.05,1d7387a7-c7fb-48b8-929e-6b64a78c808c,320 +,1833-020719-1,0,100,0.05,1d7387a7-c7fb-48b8-929e-6b64a78c808c,158 +,1833-020719-3,0,100,0.05,1d7387a7-c7fb-48b8-929e-6b64a78c808c,162 +,1833-020719-2,0,100,0.05,1d7387a7-c7fb-48b8-929e-6b64a78c808c,8 +,1833-020719-2,0,100,0.05,e3be68e5-2a14-4709-b753-a8a2a2ad5bcf,105 +,1833-020719-3,0,100,0.05,9e6cc2cb-f2d8-4d77-b707-8cebc2a20de7,141 +,1833-020719-4,0,100,0.05,9e6cc2cb-f2d8-4d77-b707-8cebc2a20de7,306 +,1833-020719-2,0,100,0.05,9e6cc2cb-f2d8-4d77-b707-8cebc2a20de7,129 +,1833-020719-2,0,100,0.05,ce7fe149-8724-44ff-b98b-1532910f5830,95 +,1833-020719-3,0,100,0.05,ce7fe149-8724-44ff-b98b-1532910f5830,116 +,1833-020719-3,0,100,0.05,4ac7c4cc-656b-4670-857c-84a1af8974de,104 +,1833-020719-3,0,100,0.05,5d0cdb56-c832-432f-960d-6500f55ccab9,105 +,1833-020719-3,0,100,0.05,936a100e-5346-44a4-a55c-f3df64f0275c,112 +,1833-020719-3,0,100,0.05,bfcaa1c0-6726-4bb7-a281-c0e585633e96,150 +,1833-020719-4,0,100,0.05,542a6469-48fe-448c-9f8d-6406977a5cc6,258 +,1833-060619-2,0,100,0.05,68eeca3a-f6c6-4c2e-a00f-6506b3fa64d3,76 +,1833-060619-2,0,100,0.05,cd289bee-5024-460e-be9f-a2b4a4075b4a,90 +,1833-120619-1,0,100,0.05,7ce98e4c-5e4d-4e7f-9a48-ccc014e806f1,139 +,1833-120619-2,0,100,0.05,7ce98e4c-5e4d-4e7f-9a48-ccc014e806f1,175 +,1833-120619-3,0,100,0.05,7ce98e4c-5e4d-4e7f-9a48-ccc014e806f1,153 +,1833-120619-2,0,100,0.05,ad2d65a5-f318-4fac-aec3-0ce3d079a39b,89 +,1833-200619-1,0,100,0.05,72f52a84-56e5-4e77-9b17-43a218ed4bf5,147 +,1833-200619-2,0,100,0.05,00ae4fcb-d602-4404-a413-58d8979d11d0,268 +,1833-200619-3,0,100,0.05,7f5b87d4-3ac6-4f0e-bc85-e26874d9bb15,0 +,1833-200619-4,0,100,0.05,7f5b87d4-3ac6-4f0e-bc85-e26874d9bb15,1 +,1833-200619-2,0,100,0.05,7f5b87d4-3ac6-4f0e-bc85-e26874d9bb15,283 +,1833-200619-4,0,100,0.05,5edace4e-5305-406c-954b-ebe81c7ceac7,90 +,1833-200619-3,0,100,0.05,5edace4e-5305-406c-954b-ebe81c7ceac7,91 +,1833-200619-4,0,100,0.05,a1631c76-74d8-4d29-9ff9-22106858eb50,92 +,1833-200619-3,0,100,0.05,a1631c76-74d8-4d29-9ff9-22106858eb50,93 +,1833-200619-4,0,100,0.05,50140f4e-5c10-4b2a-92d9-1bcbd1a19f69,78 +,1833-200619-4,0,100,0.05,af14ac5d-547d-4165-b573-127e8159470f,96 +,1833-260619-3,0,100,0.05,e6f1a3ab-5f03-4040-95a8-011377383bd8,182 +,1833-260619-1,0,100,0.05,e6f1a3ab-5f03-4040-95a8-011377383bd8,118 +,1833-260619-3,0,100,0.05,33c70b65-fa05-409e-a4fc-4bb8e376f040,141 +,1833-260619-4,0,100,0.05,33c70b65-fa05-409e-a4fc-4bb8e376f040,115 +,1833-260619-1,0,100,0.05,33c70b65-fa05-409e-a4fc-4bb8e376f040,130 +,1833-260619-2,0,100,0.05,2ee4470e-a5f5-43df-81b6-1031273bb616,174 +,1833-260619-4,0,100,0.05,2ee4470e-a5f5-43df-81b6-1031273bb616,233 +,1833-260619-1,0,100,0.05,2ee4470e-a5f5-43df-81b6-1031273bb616,132 +,1833-260619-3,0,100,0.05,2ee4470e-a5f5-43df-81b6-1031273bb616,209 +,1833-260619-3,0,100,0.05,57cbdea0-536a-4c8c-955f-ec475a563051,1 +,1833-260619-4,0,100,0.05,57cbdea0-536a-4c8c-955f-ec475a563051,235 +,1833-260619-2,0,100,0.05,57cbdea0-536a-4c8c-955f-ec475a563051,2 +,1833-260619-1,0,100,0.05,57cbdea0-536a-4c8c-955f-ec475a563051,2 +,1833-260619-3,0,100,0.05,2a5d347a-c7bb-416e-8025-486433ddbda5,180 +,1833-260619-4,0,100,0.05,2a5d347a-c7bb-416e-8025-486433ddbda5,208 +,1833-260619-2,0,100,0.05,2a5d347a-c7bb-416e-8025-486433ddbda5,152 +,1833-260619-4,0,100,0.05,6bde3ee2-5cd9-44df-9601-389fee3d8500,222 +,1833-260619-2,0,100,0.05,6bde3ee2-5cd9-44df-9601-389fee3d8500,164 +,1833-260619-3,0,100,0.05,6bde3ee2-5cd9-44df-9601-389fee3d8500,194 +,1833-260619-3,0,100,0.05,e1a5b13b-2c85-4054-ab9a-8b9f37265fbe,0 +,1833-260619-3,0,100,0.05,09b7b4a7-e168-44ea-9a2a-54ff1835aacf,140 +,1833-290519-1,0,100,0.05,6fb25ed1-ea29-4878-bc81-27927f7f73a0,112 +,1833-290519-1,0,100,0.05,34a862c6-e89d-4dc2-a685-915bfcbbda8c,120 +,1833-290519-1,0,100,0.05,db14da8f-776c-41c2-b51c-1da6876c0532,146 +,1833-290519-2,0,100,0.05,d7974416-6132-4ee0-9f16-b093cce4c902,78 +,1833-290519-2,0,100,0.05,6a41dc74-b1ba-4703-82df-3a7f1e7c18d5,82 +,1833-290519-3,0,100,0.05,558500a6-7ba2-4580-a578-8ef97f6cc3e9,107 +,1833-290519-3,0,100,0.05,b168bc20-b133-4699-a23a-3df93410f3c7,137 +,1833-290519-4,0,100,0.05,a3127d30-b71f-4bd4-9b13-9a1813e8166e,117 +,1833-290519-4,0,100,0.05,4507bae7-c644-4bb8-8903-8953a5959e2b,88 +,1833-260619-1,1,100,0.05,fb914cf8-e51a-4bde-9548-fc88837196f7,104 +,1833-010719-1,1,100,0.05,fb914cf8-e51a-4bde-9548-fc88837196f7,146 +,1833-260619-2,1,100,0.05,fb914cf8-e51a-4bde-9548-fc88837196f7,123 +,1833-010719-1,1,100,0.05,ec359714-7abd-4aff-84a2-ae56976cd3d1,219 +,1833-010719-1,1,100,0.05,fbb86cc8-a3f5-4b1e-822e-069b20698f61,221 +,1833-010719-2,1,100,0.05,27de8536-f3c1-40d9-9945-3d67e817e91f,273 +,1833-010719-1,1,100,0.05,27de8536-f3c1-40d9-9945-3d67e817e91f,229 +,1833-010719-1,1,100,0.05,fee0eade-67c4-4a3f-acce-a285a0339c31,6 +,1833-010719-1,1,100,0.05,c8b0ba69-6061-4bf4-bc9e-6f6852322720,8 +,1833-010719-2,1,100,0.05,1b507849-b4d8-485a-95a2-c451712e3db3,135 +,1833-020719-2,1,100,0.05,1b507849-b4d8-485a-95a2-c451712e3db3,131 +,1833-020719-2,1,100,0.05,6dff265d-0d63-4e9c-9315-50309853718a,15 +,1833-200619-1,1,100,0.05,6dff265d-0d63-4e9c-9315-50309853718a,159 +,1833-010719-2,1,100,0.05,6dff265d-0d63-4e9c-9315-50309853718a,18 +,1833-200619-3,1,100,0.05,6dff265d-0d63-4e9c-9315-50309853718a,97 +,1833-200619-4,1,100,0.05,6dff265d-0d63-4e9c-9315-50309853718a,76 +,1833-010719-2,1,100,0.05,d1d6a4e1-3306-4fd3-a186-6eaefcfd0999,227 +,1833-020719-2,1,100,0.05,d1d6a4e1-3306-4fd3-a186-6eaefcfd0999,14 +,1833-020719-3,1,100,0.05,d1d6a4e1-3306-4fd3-a186-6eaefcfd0999,123 +,1833-010719-2,1,100,0.05,1d7953e8-e2f7-46d5-8eb6-dd1148a4823d,229 +,1833-010719-2,1,100,0.05,341d5c1e-8bf2-4c6b-a9bc-436cd729eda4,233 +,1833-010719-2,1,100,0.05,6a7b9e3a-c45e-4f75-9d3b-08690246e8a9,269 +,1833-020719-1,1,100,0.05,9920c275-9d0a-45f6-9d8e-084d9aa3c342,115 +,1833-020719-3,1,100,0.05,84a160f2-a560-4368-9174-7d5bdf8b8247,154 +,1833-020719-1,1,100,0.05,84a160f2-a560-4368-9174-7d5bdf8b8247,147 +,1833-020719-1,1,100,0.05,bbdde041-a751-4a7e-a44b-15974a171de0,155 +,1833-020719-3,1,100,0.05,bbdde041-a751-4a7e-a44b-15974a171de0,166 +,1833-020719-2,1,100,0.05,bbdde041-a751-4a7e-a44b-15974a171de0,87 +,1833-020719-2,1,100,0.05,8b1f640b-b234-4133-a5bd-667ac105fa59,152 +,1833-020719-3,1,100,0.05,0ffe2dc9-ffe1-4dd5-9bcc-03a2a246e7e4,139 +,1833-020719-4,1,100,0.05,30abc9d9-0a39-4497-8d3c-1d6866982249,256 +,1833-020719-4,1,100,0.05,5bb6cb1b-d452-48c2-aea4-d6fe0471e2aa,278 +,1833-020719-4,1,100,0.05,6e42a957-3b54-4316-a2c8-b057897b09e9,300 +,1833-050619-1,1,100,0.05,985959f0-f728-4c9f-93ae-e13ad7a02c74,75 +,1833-050619-2,1,100,0.05,bc21bc4b-6c3e-478a-8e14-99669645d06d,129 +,1833-050619-3,1,100,0.05,bc21bc4b-6c3e-478a-8e14-99669645d06d,125 +,1833-050619-4,1,100,0.05,129c45d8-9158-4a43-94fd-dee516a2e1c9,68 +,1833-050619-4,1,100,0.05,a6e87c39-eb26-4ed0-bf32-3aa44cd4f0af,84 +,1833-050619-4,1,100,0.05,a55daf30-aefa-43ab-9a95-e5d9bd06e823,86 +,1833-060619-1,1,100,0.05,7ae12999-7d35-4a8f-898c-bdc390c8c4a9,137 +,1833-060619-2,1,100,0.05,fe0084d9-dd50-4488-8ee7-d98155ed1990,64 +,1833-060619-2,1,100,0.05,9664c9b0-a86b-4d71-81fb-b12c65d86393,78 +,1833-120619-1,1,100,0.05,3f0fa5ed-6d31-488a-a457-195737d2a086,114 +,1833-120619-2,1,100,0.05,f27d9c98-8e2e-4072-adc6-017c89645659,104 +,1833-200619-1,1,100,0.05,14b6d7fa-262b-49ac-ac5b-33e1add41874,155 +,1833-200619-2,1,100,0.05,17d861e8-3a37-40eb-8318-6ec985459858,278 +,1833-200619-3,1,100,0.05,e33305f4-99cf-4977-a5a3-618f44b71b70,89 +,1833-200619-4,1,100,0.05,e33305f4-99cf-4977-a5a3-618f44b71b70,70 +,1833-260619-1,1,100,0.05,2243bc1a-9c0d-48e4-875d-7224a66f0c88,10 +,1833-260619-1,1,100,0.05,ec3817dd-1675-4f2b-8858-d4a1500d87c0,116 +,1833-260619-1,1,100,0.05,7e70f8da-d97a-4fcd-8858-401c6260c47a,126 +,1833-260619-2,1,100,0.05,7e70f8da-d97a-4fcd-8858-401c6260c47a,166 +,1833-260619-2,1,100,0.05,4c452acd-e9f2-4b0f-b82d-0fe1ccdc33c3,130 +,1833-260619-3,1,100,0.05,7678a9ed-257d-4f53-a717-e0ad0d85e25c,119 +,1833-260619-4,1,100,0.05,0b537e87-e582-4c91-8874-1de2ce803d7d,198 +,1833-260619-3,1,100,0.05,0b537e87-e582-4c91-8874-1de2ce803d7d,170 +,1833-260619-3,1,100,0.05,9bdddedc-261e-4ac0-93c7-d5cd19d91185,207 +,1833-260619-4,1,100,0.05,8627d7aa-866b-400f-94d3-a99a4d07259e,178 +,1833-260619-4,1,100,0.05,442d143b-4391-4c9a-a46e-2a7349dd3286,204 +,1833-260619-4,1,100,0.05,84a1b5ee-dfdf-4abf-8813-da8865de6965,226 +,1833-290519-1,1,100,0.05,cace33a4-5c22-438c-9cf9-dcdaa29bf69a,138 +,1833-290519-1,1,100,0.05,46d2d86d-9797-4cf9-89a5-6a703ccaa558,92 +,1833-290519-2,1,100,0.05,bd08c0d8-98d7-4191-9637-3e926596ef62,102 +,1833-290519-2,1,100,0.05,abe72ea0-c01d-4efb-be32-78edabdd5678,104 +,1833-290519-2,1,100,0.05,671487d3-e127-45ec-a8bd-ed9357a7467c,116 +,1833-290519-2,1,100,0.05,606d3d11-836e-439e-b92b-2347a7aaee16,120 +,1833-290519-3,1,100,0.05,76fc320f-ba62-44ad-b3c3-bdf2b485b10f,119 +,1833-290519-3,1,100,0.05,d9ebc2e4-f37f-489b-bca5-29fc0ba6bf8c,72 +,1833-290519-4,1,100,0.05,3de35167-5d99-4aaa-a56d-934cad6031db,85 +,1833-290519-4,1,100,0.05,2ebc9e09-dcde-4f22-9843-ba659532e735,96 +,1833-010719-2,2,100,0.05,7f2bf469-88e5-4f74-a055-1e81842fa3ab,249 +,1833-010719-1,2,100,0.05,7f2bf469-88e5-4f74-a055-1e81842fa3ab,202 +,1833-020719-1,2,100,0.05,7f2bf469-88e5-4f74-a055-1e81842fa3ab,143 +,1833-010719-1,2,100,0.05,c8c679c1-7f99-4dbc-824b-74ab7bb0432f,231 +,1833-010719-2,2,100,0.05,c8c679c1-7f99-4dbc-824b-74ab7bb0432f,29 +,1833-010719-2,2,100,0.05,6f17b6f2-a62f-4178-aade-eff09d7bdc0e,271 +,1833-020719-1,2,100,0.05,49227bb5-82c2-4b2b-9a2b-34129b562b16,149 +,1833-020719-2,2,100,0.05,0677e33d-8b76-48b5-b250-85514835ed05,119 +,1833-020719-2,2,100,0.05,975d43cb-d8e8-4f50-9c17-465a869c07c9,120 +,1833-020719-2,2,100,0.05,fc67c9f2-a89e-4328-b609-a73139780335,93 +,1833-020719-3,2,100,0.05,3ab9b371-8e69-46e7-b6a8-17958d5384a3,147 +,1833-020719-3,2,100,0.05,f818556d-1db6-4222-a7b8-f77923007102,168 +,1833-020719-4,2,100,0.05,234d31aa-cb9b-481a-9370-f6fcbfba5933,260 +,1833-060619-1,2,100,0.05,c8f18e9f-d09c-4027-94f3-35df67fbffda,168 +,1833-050619-1,2,100,0.05,c8f18e9f-d09c-4027-94f3-35df67fbffda,99 +,1833-050619-2,2,100,0.05,c8f18e9f-d09c-4027-94f3-35df67fbffda,135 +,1833-050619-3,2,100,0.05,c8f18e9f-d09c-4027-94f3-35df67fbffda,133 +,1833-060619-2,2,100,0.05,c8f18e9f-d09c-4027-94f3-35df67fbffda,106 +,1833-050619-2,2,100,0.05,03e38f64-e61c-40d2-aa07-c4945b2d75f2,111 +,1833-050619-3,2,100,0.05,e303077b-825b-4c41-b684-ee2d9b3acc2d,111 +,1833-050619-2,2,100,0.05,e303077b-825b-4c41-b684-ee2d9b3acc2d,89 +,1833-120619-1,2,100,0.05,481f74e6-b1ba-458e-aa81-1585dd051e92,120 +,1833-120619-2,2,100,0.05,481f74e6-b1ba-458e-aa81-1585dd051e92,142 +,1833-120619-3,2,100,0.05,481f74e6-b1ba-458e-aa81-1585dd051e92,104 +,1833-120619-2,2,100,0.05,14b4abd8-4a15-471e-89a2-35f7ad285cd7,118 +,1833-200619-4,2,100,0.05,584ac75f-ede2-41a8-a4f9-c14b46d7e4f2,115 +,1833-200619-1,2,100,0.05,584ac75f-ede2-41a8-a4f9-c14b46d7e4f2,228 +,1833-200619-3,2,100,0.05,7670f7b8-b500-4f38-b178-d94fbd3ec6bb,142 +,1833-200619-4,2,100,0.05,7670f7b8-b500-4f38-b178-d94fbd3ec6bb,117 +,1833-200619-1,2,100,0.05,7670f7b8-b500-4f38-b178-d94fbd3ec6bb,239 +,1833-200619-2,2,100,0.05,7670f7b8-b500-4f38-b178-d94fbd3ec6bb,325 +,1833-260619-4,2,100,0.05,98b53e63-7269-46be-89f5-f1490ae2e6d9,216 +,1833-260619-2,2,100,0.05,98b53e63-7269-46be-89f5-f1490ae2e6d9,168 +,1833-260619-3,2,100,0.05,98b53e63-7269-46be-89f5-f1490ae2e6d9,198 +,1833-260619-1,2,100,0.05,98b53e63-7269-46be-89f5-f1490ae2e6d9,128 +,1833-260619-2,2,100,0.05,33d22c65-5b53-4f4f-8566-34b520b6c5b4,148 +,1833-290519-2,2,100,0.05,ca6cc9c9-586f-4d54-b743-5119b11761e8,100 +,1833-290519-2,2,100,0.05,ec8fe95d-3f52-4100-a292-f9c8ec7183e9,112 +,1833-290519-2,2,100,0.05,0e323e78-df63-48c4-b3b3-a9f71949b74f,132 +,1833-010719-1,3,100,0.05,df15fe2f-0a8e-43d5-b477-91d779574d70,171 +,1833-010719-1,3,100,0.05,e147fd2f-c645-4ff6-bc2e-f7a06f49d066,198 +,1833-010719-1,3,100,0.05,1e88fe7e-686a-4149-b838-4983f32186b3,216 +,1833-020719-1,3,100,0.05,1e88fe7e-686a-4149-b838-4983f32186b3,151 +,1833-010719-2,3,100,0.05,1e88fe7e-686a-4149-b838-4983f32186b3,243 +,1833-020719-2,3,100,0.05,1e88fe7e-686a-4149-b838-4983f32186b3,136 +,1833-020719-3,3,100,0.05,1e88fe7e-686a-4149-b838-4983f32186b3,17 +,1833-010719-2,3,100,0.05,7c87262c-745c-4487-869d-b6cc7e683171,133 +,1833-010719-1,3,100,0.05,7c87262c-745c-4487-869d-b6cc7e683171,240 +,1833-010719-2,3,100,0.05,6bdd1031-84e1-4546-8b1f-a749e77912ca,157 +,1833-010719-2,3,100,0.05,0ae09502-ac16-4b67-936c-4d5453a43692,173 +,1833-010719-2,3,100,0.05,4189362e-74af-4574-bc81-1a8a4d1fb88d,174 +,1833-010719-2,3,100,0.05,f3ff370e-e0e9-4b9c-9a8c-6b6b2a5dc0dd,187 +,1833-010719-2,3,100,0.05,4dc2ac0f-74f6-4129-879b-24e991349882,188 +,1833-010719-2,3,100,0.05,ac2af137-4806-405c-86c4-ab2dc5a5547a,241 +,1833-010719-2,3,100,0.05,5ce98f13-1520-436a-96ef-3d36ec768b53,259 +,1833-020719-1,3,100,0.05,25e001bb-3686-48b6-8f17-323b2047ca41,135 +,1833-020719-1,3,100,0.05,38521459-c85a-4e89-9ec1-b981a040b9aa,140 +,1833-020719-2,3,100,0.05,38521459-c85a-4e89-9ec1-b981a040b9aa,140 +,1833-020719-3,3,100,0.05,38521459-c85a-4e89-9ec1-b981a040b9aa,23 +,1833-020719-1,3,100,0.05,36fc2255-4ab4-474f-9af0-a3f0e562d85d,153 +,1833-020719-3,3,100,0.05,36fc2255-4ab4-474f-9af0-a3f0e562d85d,164 +,1833-020719-3,3,100,0.05,50e83d44-0a53-4aef-8613-69eb76ecf07b,170 +,1833-020719-1,3,100,0.05,50e83d44-0a53-4aef-8613-69eb76ecf07b,164 +,1833-020719-2,3,100,0.05,7881596e-9ce1-4bda-bcdf-cda78024e746,107 +,1833-020719-2,3,100,0.05,3c8df1c3-1c38-4c1d-9483-15d8d0bd0f20,139 +,1833-020719-2,3,100,0.05,b13b7c7c-5c7d-4791-b737-f66630604049,146 +,1833-020719-3,3,100,0.05,c52544da-4ac6-416b-a53e-a29d43132edf,152 +,1833-020719-4,3,100,0.05,bf250897-99a1-455a-9413-e3cbc7b75a6b,289 +,1833-020719-4,3,100,0.05,06851ad9-2e5d-48de-88f1-7d7e91a0193d,290 +,1833-020719-4,3,100,0.05,95817cdb-2bb3-4bbd-b2fd-6cd973fe11db,298 +,1833-020719-4,3,100,0.05,4ad9c2b9-4495-4eab-8b7c-3bf0fcd760a1,318 +,1833-050619-4,3,100,0.05,fa02e41b-5ef1-412f-b055-fd73199bc338,148 +,1833-050619-3,3,100,0.05,fa02e41b-5ef1-412f-b055-fd73199bc338,147 +,1833-050619-2,3,100,0.05,fa02e41b-5ef1-412f-b055-fd73199bc338,143 +,1833-050619-1,3,100,0.05,fa02e41b-5ef1-412f-b055-fd73199bc338,107 +,1833-060619-1,3,100,0.05,1e512e65-896f-4923-a3ee-98278cdf2cae,174 +,1833-120619-2,3,100,0.05,8bf54ec3-1743-41ed-baf5-fa72bcfdceef,143 +,1833-120619-2,3,100,0.05,c3b79b01-0195-47cd-a579-b2f5e33c4965,69 +,1833-200619-1,3,100,0.05,1e2be93e-8259-4891-a0cc-dd4db5825242,151 +,1833-200619-3,3,100,0.05,b11f3592-9751-4869-b614-b12c5f6bc102,128 +,1833-200619-4,3,100,0.05,b11f3592-9751-4869-b614-b12c5f6bc102,102 +,1833-200619-1,3,100,0.05,b11f3592-9751-4869-b614-b12c5f6bc102,184 +,1833-200619-2,3,100,0.05,1d61ed03-2384-49f0-b821-e75277ad8dce,257 +,1833-200619-2,3,100,0.05,402ed1c6-a672-4d1f-a102-5a80e420e3b9,264 +,1833-200619-3,3,100,0.05,71248abf-b0b0-4c5c-be83-98292ab20b75,82 +,1833-200619-4,3,100,0.05,71248abf-b0b0-4c5c-be83-98292ab20b75,74 +,1833-260619-1,3,100,0.05,cba25692-bed2-4a56-8a06-9c02e35b07bb,114 +,1833-260619-2,3,100,0.05,cba25692-bed2-4a56-8a06-9c02e35b07bb,146 +,1833-260619-3,3,100,0.05,34d0f1bb-661c-41d9-aa7c-74b0c0397bd0,160 +,1833-260619-3,3,100,0.05,984a4441-c5a3-4295-9a86-e3fb730e3607,176 +,1833-260619-4,3,100,0.05,984a4441-c5a3-4295-9a86-e3fb730e3607,206 +,1833-260619-4,3,100,0.05,0b4bbf88-554e-4643-bce1-7a59d2c94fe8,196 +,1833-290519-1,3,100,0.05,6fdfd9f7-ebf5-41a9-95be-436bac6d351d,101 +,1833-290519-1,3,100,0.05,c9155b1b-91e1-46df-8754-9b10ec59805e,102 +,1833-290519-4,3,100,0.05,c9155b1b-91e1-46df-8754-9b10ec59805e,92 +,1833-290519-1,3,100,0.05,8d86c33a-8213-4e38-8821-024a39a10aae,162 +,1833-290519-1,3,100,0.05,fc8e55f0-4726-43f7-81c6-8dd00ea482ab,176 +,1833-290519-4,3,100,0.05,fc8e55f0-4726-43f7-81c6-8dd00ea482ab,130 +,1833-290519-2,3,100,0.05,146fac0b-b657-41c8-aff2-8c117ab211fd,108 +,1833-290519-2,3,100,0.05,59b01abe-0296-4850-9b3e-9dceda2147b8,72 +,1833-290519-2,3,100,0.05,286b7743-0973-4c58-bd75-b8cc9cfc7058,74 +,1833-290519-3,3,100,0.05,8ff98a1f-5a34-49f9-84a4-f3846bc4b018,102 +,1833-290519-3,3,100,0.05,2177af70-9d3f-4cd0-9548-b403f073a33b,153 +,1833-290519-3,3,100,0.05,0c0c3ac1-393d-4769-921f-3ef7da530ff1,68 +,1833-290519-3,3,100,0.05,7aa32a78-6e0e-4ce5-9a89-5e93e74d857c,99 +,1833-290519-4,3,100,0.05,ca22e646-70ab-4002-a94a-437b9a9e225e,129 +,1833-010719-2,4,100,0.05,cc641056-b416-4754-a6d6-835d06bd5ecb,223 +,1833-010719-2,4,100,0.05,cbbf2f90-61b1-4a68-ad95-4d370c348e20,231 +,1833-020719-3,4,100,0.05,ce2429c9-0229-4524-b23b-04004c618c54,45 +,1833-020719-3,4,100,0.05,93bcf188-5263-418b-83c2-6e10247113bf,94 +,1833-020719-3,4,100,0.05,a820a57b-756a-4c96-a574-a36a94b5db75,95 +,1833-020719-4,4,100,0.05,df07e67f-1c94-43b8-baca-f7e6da64572c,250 +,1833-050619-1,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,25 +,1833-060619-1,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,172 +,1833-120619-4,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,119 +,1833-050619-4,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,151 +,1833-120619-2,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,170 +,1833-050619-3,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,145 +,1833-060619-2,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,108 +,1833-120619-1,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,137 +,1833-050619-2,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,137 +,1833-120619-3,4,100,0.05,9fc9512b-a78a-46d7-8eb7-6292d17f4563,147 +,1833-050619-3,4,100,0.05,c1e4160a-3097-4d3e-ad5a-461630a25b16,123 +,1833-050619-4,4,100,0.05,c1e4160a-3097-4d3e-ad5a-461630a25b16,80 +,1833-050619-2,4,100,0.05,c1e4160a-3097-4d3e-ad5a-461630a25b16,97 +,1833-060619-1,4,100,0.05,55f2cc54-a46f-4c6f-b176-ed3f710af168,144 +,1833-120619-2,4,100,0.05,0b3a5541-2aae-4572-9168-7ff6595d33a7,81 +,1833-120619-3,4,100,0.05,7b9d90ee-5556-414d-9b33-d11b417ab788,100 +,1833-120619-3,4,100,0.05,4926b1bb-cf02-414d-94d8-2855acd88cf6,101 +,1833-200619-1,4,100,0.05,aaa9648f-6d27-48e5-acc7-f653af763d29,165 +,1833-200619-2,4,100,0.05,6e4ad009-e0c8-4d8d-8053-60b7bf5488b8,254 +,1833-200619-3,4,100,0.05,313a0026-1c60-43c8-8632-a83c6eea3ecf,113 +,1833-200619-4,4,100,0.05,a780a428-c84f-4663-9377-cd3b2111bcbb,124 +,1833-290519-1,4,100,0.05,affb462c-1d16-4d6d-a8f1-d4ec4dcbd5e2,118 +,1833-290519-1,4,100,0.05,12f18a6f-1fa7-4dad-9be0-c3424d16adb0,80 +,1833-290519-2,4,100,0.05,f82d6e04-d5b4-43c8-8da0-014d9f0c57fd,114 +,1833-290519-2,4,100,0.05,17eb4990-ae4a-40f4-aee5-5b09cc855af3,122 +,1833-290519-2,4,100,0.05,016abb40-3e1d-44ab-9458-770b4c64cf7f,124 +,1833-290519-3,4,100,0.05,badb172c-4817-4c6d-a739-72ca808f21d6,135 +,1833-290519-3,4,100,0.05,0962d6e7-19cf-4d0b-aed3-8ca418c18ea5,145 +,1833-290519-3,4,100,0.05,2c5b9980-b277-4f98-a21f-c9e589f5d736,76 +,1833-290519-4,4,100,0.05,4d9b7a4f-3111-4f9b-a7dc-8da8155d52a7,71 +,1833-010719-1,5,100,0.05,6e8494b4-e361-4d7a-b878-0cf61c3d2ef3,134 +,1833-010719-1,5,100,0.05,b5733944-def2-436d-96ec-8c53604451eb,144 +,1833-010719-1,5,100,0.05,df8bc9c9-9229-478b-8a80-ab968ec8058e,150 +,1833-260619-1,5,100,0.05,4214e6fe-1545-4e54-adc1-af00765ef1a4,110 +,1833-260619-3,5,100,0.05,4214e6fe-1545-4e54-adc1-af00765ef1a4,184 +,1833-010719-1,5,100,0.05,4214e6fe-1545-4e54-adc1-af00765ef1a4,166 +,1833-260619-4,5,100,0.05,4214e6fe-1545-4e54-adc1-af00765ef1a4,212 +,1833-260619-2,5,100,0.05,4214e6fe-1545-4e54-adc1-af00765ef1a4,154 +,1833-010719-2,5,100,0.05,4214e6fe-1545-4e54-adc1-af00765ef1a4,235 +,1833-010719-2,5,100,0.05,4bf38c9c-c804-4e3d-be19-b90ec7ce4a2c,221 +,1833-020719-1,5,100,0.05,ada83a2f-0f77-4772-86f3-c2cf580f7838,109 +,1833-020719-2,5,100,0.05,8353c05a-50df-4d89-8204-256c43afcde4,103 +,1833-020719-2,5,100,0.05,dc42cc94-b6b4-48bd-ab99-c14125e686cf,126 +,1833-020719-3,5,100,0.05,e064ae87-8947-40b4-adcc-91fa8e5f3d88,117 +,1833-020719-4,5,100,0.05,24917243-77bb-4ed2-80b5-74651911e6fe,266 +,1833-020719-3,5,100,0.05,24917243-77bb-4ed2-80b5-74651911e6fe,121 +,1833-020719-4,5,100,0.05,35480fbb-38b5-4230-a18c-22659442c3df,294 +,1833-020719-3,5,100,0.05,35480fbb-38b5-4230-a18c-22659442c3df,135 +,1833-050619-2,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,123 +,1833-120619-3,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,136 +,1833-200619-2,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,270 +,1833-200619-3,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,122 +,1833-060619-1,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,156 +,1833-050619-1,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,73 +,1833-050619-3,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,127 +,1833-050619-4,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,82 +,1833-120619-4,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,122 +,1833-120619-2,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,145 +,1833-200619-4,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,94 +,1833-290519-4,5,100,0.05,fc957f2e-d82f-4a6b-9d9e-13f691df3adb,115 +,1833-050619-4,5,100,0.05,1e16a183-14cb-403d-b821-6769e75c695e,79 +,1833-060619-2,5,100,0.05,1e16a183-14cb-403d-b821-6769e75c695e,68 +,1833-060619-1,5,100,0.05,c641a12e-f3a1-4194-a83b-75dadba5243e,164 +,1833-060619-2,5,100,0.05,a8167b56-b495-47f7-b20f-8cd25798a6bc,98 +,1833-120619-1,5,100,0.05,27a317d0-c936-4b6d-8255-31d2a2ac5daf,133 +,1833-120619-2,5,100,0.05,d8dca668-df35-467b-9af9-f051ad15b9cd,100 +,1833-120619-2,5,100,0.05,d323a411-4071-4cc1-bd2c-11105848a8e9,123 +,1833-120619-2,5,100,0.05,677157db-937a-4962-a34c-9f55ba63b6c1,133 +,1833-200619-3,5,100,0.05,b66b884d-fb1e-447e-ada8-054ebddf246f,59 +,1833-260619-1,5,100,0.05,197ffa18-b012-4e9b-8a85-c92547d8f220,100 +,1833-260619-3,5,100,0.05,88b2a908-c6a6-4617-aae1-ba06a6e4b793,111 +,1833-260619-2,5,100,0.05,88b2a908-c6a6-4617-aae1-ba06a6e4b793,115 +,1833-260619-3,5,100,0.05,7468e539-40fb-4246-8ff8-3e315e63e862,109 +,1833-260619-3,5,100,0.05,4c169434-fbfd-4cb4-b663-36cead3f7550,113 +,1833-260619-4,5,100,0.05,a33e2e17-a551-4cd4-8dc4-a6c9f4a622e0,162 +,1833-260619-4,5,100,0.05,7042cb9d-66d6-4c93-8bae-df0774c244dd,188 +,1833-290519-1,5,100,0.05,af3173d9-f5d8-4b73-9440-921e888cffe3,134 +,1833-290519-1,5,100,0.05,3ee00ef3-4fae-4760-a2df-5154fa616399,158 +,1833-290519-1,5,100,0.05,6e050211-f716-4959-9766-dcb3982cf740,172 +,1833-290519-1,5,100,0.05,03cbcd90-a522-4ff5-acb8-f06d806a82c2,94 +,1833-290519-2,5,100,0.05,0f0c093f-b972-4e02-ab16-bd3d191f8986,80 +,1833-290519-3,5,100,0.05,21fccefb-a783-4bdd-a908-89f8dc200167,109 +,1833-290519-3,5,100,0.05,1d818e90-f813-4c85-aa8e-e58e9b96fb56,117 +,1833-290519-3,5,100,0.05,521d1ddc-c2f0-4f19-b771-af9d6f807456,139 +,1833-290519-3,5,100,0.05,f7a0b28c-611b-4577-b384-72e39c4f3bef,143 +,1833-290519-4,5,100,0.05,34ac6b8d-dc99-42a8-ac25-44c14846bf41,121 +,1833-290519-4,5,100,0.05,d5001e10-7d17-4c9a-8009-614fa31e9632,98 +,1833-010719-1,6,100,0.05,4796f455-b2c3-427c-b232-56675634264e,152 +,1833-010719-1,6,100,0.05,ec47a81a-3792-4f1f-8d0b-6e450bef9ff0,183 +,1833-010719-1,6,100,0.05,6a372aca-2c7d-43eb-ba8a-c953da5f6e14,200 +,1833-010719-1,6,100,0.05,f0c022ff-8af3-447d-8e97-48276988c01c,227 +,1833-010719-2,6,100,0.05,fb18025c-4f7f-458f-a6dc-aa7bddf0be89,225 +,1833-020719-1,6,100,0.05,63f26584-d3e6-4bb6-b75d-a38b3e89df2d,107 +,1833-020719-2,6,100,0.05,7c0a0726-be53-4013-a90b-44dde50e0a13,99 +,1833-020719-3,6,100,0.05,90ed8580-c9e6-40c3-abb1-fd2b73482139,63 +,1833-020719-3,6,100,0.05,d0bcba62-84ee-4d7a-81d2-74e4e2895cd9,64 +,1833-020719-4,6,100,0.05,26e116f7-e848-4d92-bee2-9c0e2b580b2f,254 +,1833-020719-3,6,100,0.05,26e116f7-e848-4d92-bee2-9c0e2b580b2f,96 +,1833-020719-4,6,100,0.05,7a44c1ee-4974-440c-99da-424f3425d12d,248 +,1833-020719-4,6,100,0.05,db02336e-a03b-42ec-a9ad-4869511d51a7,310 +,1833-050619-3,6,100,0.05,54117a16-9331-49c9-9373-feb39bc8fbfe,149 +,1833-060619-1,6,100,0.05,54117a16-9331-49c9-9373-feb39bc8fbfe,176 +,1833-050619-1,6,100,0.05,54117a16-9331-49c9-9373-feb39bc8fbfe,111 +,1833-050619-4,6,100,0.05,54117a16-9331-49c9-9373-feb39bc8fbfe,157 +,1833-050619-2,6,100,0.05,54117a16-9331-49c9-9373-feb39bc8fbfe,152 +,1833-060619-2,6,100,0.05,54117a16-9331-49c9-9373-feb39bc8fbfe,112 +,1833-050619-3,6,100,0.05,c33914e4-51a6-4267-96c3-70b4ab3cbc3b,117 +,1833-050619-4,6,100,0.05,c33914e4-51a6-4267-96c3-70b4ab3cbc3b,133 +,1833-050619-1,6,100,0.05,c33914e4-51a6-4267-96c3-70b4ab3cbc3b,60 +,1833-050619-2,6,100,0.05,c33914e4-51a6-4267-96c3-70b4ab3cbc3b,119 +,1833-260619-1,6,100,0.05,c33914e4-51a6-4267-96c3-70b4ab3cbc3b,106 +,1833-290519-4,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,108 +,1833-060619-1,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,162 +,1833-050619-2,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,125 +,1833-050619-3,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,129 +,1833-060619-2,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,82 +,1833-120619-3,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,118 +,1833-120619-4,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,80 +,1833-050619-4,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,92 +,1833-050619-1,6,100,0.05,8ef4dee2-852c-46c0-9b6f-b95e0684945d,64 +,1833-060619-1,6,100,0.05,f0a33953-cadd-4ce5-a182-f2e05bf95c7d,170 +,1833-050619-1,6,100,0.05,f0a33953-cadd-4ce5-a182-f2e05bf95c7d,91 +,1833-120619-2,6,100,0.05,f0a33953-cadd-4ce5-a182-f2e05bf95c7d,151 +,1833-060619-2,6,100,0.05,f0a33953-cadd-4ce5-a182-f2e05bf95c7d,105 +,1833-120619-1,6,100,0.05,f0a33953-cadd-4ce5-a182-f2e05bf95c7d,129 +,1833-120619-4,6,100,0.05,89589bc3-205b-4b09-adc6-dfdd4d4efcdd,127 +,1833-050619-4,6,100,0.05,89589bc3-205b-4b09-adc6-dfdd4d4efcdd,135 +,1833-120619-3,6,100,0.05,89589bc3-205b-4b09-adc6-dfdd4d4efcdd,94 +,1833-050619-2,6,100,0.05,89589bc3-205b-4b09-adc6-dfdd4d4efcdd,146 +,1833-050619-3,6,100,0.05,89589bc3-205b-4b09-adc6-dfdd4d4efcdd,143 +,1833-050619-2,6,100,0.05,3f4f9675-e972-48b4-866f-026a4a941d0c,74 +,1833-050619-2,6,100,0.05,fd3bf86f-4506-41da-8959-e4793e633f2e,81 +,1833-050619-3,6,100,0.05,b72a75f2-0b4f-49c7-940d-c39776671014,109 +,1833-050619-4,6,100,0.05,d24d5c14-6cde-4ee4-90e0-e974749f1864,117 +,1833-060619-1,6,100,0.05,e62a583c-c959-4081-9e4b-7e9ce8c113ae,158 +,1833-060619-1,6,100,0.05,204521ee-91aa-46b4-9318-5ea87c025168,160 +,1833-120619-4,6,100,0.05,204521ee-91aa-46b4-9318-5ea87c025168,120 +,1833-200619-3,6,100,0.05,204521ee-91aa-46b4-9318-5ea87c025168,126 +,1833-120619-3,6,100,0.05,204521ee-91aa-46b4-9318-5ea87c025168,143 +,1833-060619-2,6,100,0.05,b5300d6c-3695-4033-bc59-151e3636a19b,116 +,1833-060619-2,6,100,0.05,093b0500-a48c-4a6c-b8cf-6837b69d892d,74 +,1833-260619-1,6,100,0.05,1c46735e-f33b-4267-b057-d9900ed5bb27,124 +,1833-260619-3,6,100,0.05,1c46735e-f33b-4267-b057-d9900ed5bb27,192 +,1833-260619-2,6,100,0.05,1c46735e-f33b-4267-b057-d9900ed5bb27,160 +,1833-120619-1,6,100,0.05,1c46735e-f33b-4267-b057-d9900ed5bb27,127 +,1833-120619-2,6,100,0.05,d05ec771-3825-4082-a385-fbf0317a34c6,169 +,1833-120619-3,6,100,0.05,d05ec771-3825-4082-a385-fbf0317a34c6,141 +,1833-200619-2,6,100,0.05,d05ec771-3825-4082-a385-fbf0317a34c6,287 +,1833-200619-3,6,100,0.05,d05ec771-3825-4082-a385-fbf0317a34c6,132 +,1833-120619-3,6,100,0.05,407c6c46-b05d-4640-a854-ef8255fbe233,122 +,1833-120619-3,6,100,0.05,734e08cc-5f68-4092-82e1-8746ca5634a6,145 +,1833-120619-4,6,100,0.05,d0d93262-fbbf-4209-802e-ae687841af94,124 +,1833-120619-4,6,100,0.05,5a40fcc3-a1ad-4e1e-bf0a-86b3476b3020,85 +,1833-120619-4,6,100,0.05,905c6d81-c060-42ed-9377-8709bab18f32,95 +,1833-200619-1,6,100,0.05,fb4f3c27-2693-4bf7-b294-8d5697d5773a,163 +,1833-200619-3,6,100,0.05,fb4f3c27-2693-4bf7-b294-8d5697d5773a,120 +,1833-260619-3,6,100,0.05,fb4f3c27-2693-4bf7-b294-8d5697d5773a,168 +,1833-200619-1,6,100,0.05,b8c5017c-c310-4df4-899c-d8ba56a68355,171 +,1833-200619-1,6,100,0.05,aa57a07e-f18b-4818-b97b-96edec65aba5,206 +,1833-200619-4,6,100,0.05,e666bedd-4dda-4454-b6a7-27358d81c1cf,121 +,1833-200619-2,6,100,0.05,e666bedd-4dda-4454-b6a7-27358d81c1cf,327 +,1833-200619-3,6,100,0.05,e666bedd-4dda-4454-b6a7-27358d81c1cf,150 +,1833-200619-1,6,100,0.05,e666bedd-4dda-4454-b6a7-27358d81c1cf,240 +,1833-200619-2,6,100,0.05,78984d84-3a93-4163-8026-252fb4e2a314,28 +,1833-200619-2,6,100,0.05,7084624c-6e95-4d1a-bc65-b806f34dcf42,281 +,1833-200619-2,6,100,0.05,6bbbd255-976f-4db8-8ef9-18373c171937,308 +,1833-200619-2,6,100,0.05,e5d4488b-e71b-4925-93cb-e735d7e6dc52,321 +,1833-200619-3,6,100,0.05,f42736be-08da-4de5-94fc-85fe594ebffd,75 +,1833-200619-4,6,100,0.05,f209d8dd-b801-492f-b42c-b49d45a56522,101 +,1833-200619-4,6,100,0.05,1052e0ae-ded3-4693-b04a-a24c146efa8f,109 +,1833-200619-4,6,100,0.05,16366a61-bde0-406f-bddb-e8347694a236,80 +,1833-200619-4,6,100,0.05,d6c7720b-5850-45bb-8583-4fe508433790,89 +,1833-260619-1,6,100,0.05,4cec2afb-2d1b-4efc-85e3-afcc69edc927,102 +,1833-260619-4,6,100,0.05,4cec2afb-2d1b-4efc-85e3-afcc69edc927,182 +,1833-260619-1,6,100,0.05,fc8c8883-ae60-4af5-9b66-c638c9d83d15,108 +,1833-260619-1,6,100,0.05,69dc99fd-5141-4aed-a3eb-1f0c7da3e637,112 +,1833-260619-2,6,100,0.05,c00d2884-4dc0-49ae-9dfb-3b5f78dc2240,140 +,1833-260619-2,6,100,0.05,4de52b7f-4a1b-4b89-99b5-8f4120bd16f9,144 +,1833-260619-2,6,100,0.05,a6ec54c7-15de-4f41-a1e6-151bd24b304e,156 +,1833-260619-2,6,100,0.05,19dd0838-7025-48b0-b857-6b095285982d,170 +,1833-260619-3,6,100,0.05,6ccf758e-486b-4c2e-8974-ebf954bb3b18,142 +,1833-260619-4,6,100,0.05,de0677ac-57a0-4601-930c-938443317e84,184 +,1833-260619-4,6,100,0.05,2d8a57b8-ef21-4f49-b68a-203128f97c66,200 +,1833-260619-4,6,100,0.05,af87cd83-1b4a-4182-8a83-7e21c8046788,214 +,1833-260619-4,6,100,0.05,9acc0174-90e0-4b71-890f-0fa0fb093332,218 +,1833-260619-4,6,100,0.05,c14413dd-5587-4593-a1cf-4becb1e947fb,80 +,1833-290519-1,6,100,0.05,79a8cb9c-01b5-4c69-9352-d0b5f51a6ea7,124 +,1833-290519-1,6,100,0.05,69694279-7253-4202-a834-3f9f19faa5d2,132 +,1833-290519-1,6,100,0.05,e990ecc5-4490-4648-b8ad-dded232e72a8,142 +,1833-290519-1,6,100,0.05,7619b262-581e-4633-a1b1-b375918e7b01,150 +,1833-290519-1,6,100,0.05,23290c6a-8c9d-4c3b-af94-60f1565a710d,154 +,1833-290519-1,6,100,0.05,b5c3b194-f762-4a1c-bf3e-10965e07b4c5,166 +,1833-290519-1,6,100,0.05,82ff02ac-b216-4b66-941f-388a06318b8a,89 +,1833-290519-2,6,100,0.05,9e7c34f5-fd98-4f54-9616-c6ed378af242,76 +,1833-290519-3,6,100,0.05,cb4203f8-dc5a-4c7e-9ca2-04e0153ee2b7,125 +,1833-290519-3,6,100,0.05,c36a9ee7-28d4-41b1-8fed-ce6c86042f06,141 +,1833-290519-3,6,100,0.05,6e1b2e7f-311d-460e-a726-ebc90a04e6e7,147 +,1833-290519-3,6,100,0.05,ca9dbc51-b595-4322-a993-503677fb7ab4,149 +,1833-290519-3,6,100,0.05,88fc1432-38dc-4d4e-84cc-7e2fe61ad335,151 +,1833-290519-3,6,100,0.05,8e646e16-f70b-43da-a47e-4ff14c7a92c1,155 +,1833-290519-4,6,100,0.05,38777978-9f50-4d31-9a8d-4bfb3287d7a8,65 +,1833-290519-4,6,100,0.05,bb0161d1-c2fe-4221-89b2-0d600ddd94db,79 +,1833-290519-4,6,100,0.05,de7f5f70-c1a6-41bd-94bc-2779abbca748,90 +,1833-010719-1,7,100,0.05,0476bb10-f5ae-4eb2-a484-ca279b2c2a57,114 +,1833-010719-2,7,100,0.05,c2a69763-6ace-4bb0-8bb1-1f4ffc0a23d1,217 +,1833-010719-1,7,100,0.05,c2a69763-6ace-4bb0-8bb1-1f4ffc0a23d1,132 +,1833-010719-1,7,100,0.05,68d8010a-f280-49e0-b623-46b97fabb30c,54 +,1833-010719-2,7,100,0.05,4ffcb2d4-d9a8-4457-87fa-82267fcd6841,211 +,1833-010719-2,7,100,0.05,d013c07c-1537-4627-9678-5d1be34f6b04,213 +,1833-050619-3,7,100,0.05,ede02add-ed9d-4d3b-b1ec-341270e4e0a7,105 +,1833-050619-2,7,100,0.05,ede02add-ed9d-4d3b-b1ec-341270e4e0a7,66 +,1833-060619-1,7,100,0.05,a4a80037-5a22-4b5a-ac21-df132492c9fd,139 +,1833-060619-2,7,100,0.05,dd5f58c2-cc21-4b3f-afd6-93910c2cfde6,58 +,1833-120619-2,7,100,0.05,7960b208-108a-40cc-8597-c20f747b00fd,85 +,1833-120619-3,7,100,0.05,93aabc8f-5733-4ac9-9326-d3271ac58b98,120 +,1833-120619-4,7,100,0.05,9da5462f-3ba6-436e-81cc-e4330c0b033b,65 +,1833-200619-4,7,100,0.05,4ce1f839-e1d4-433e-98a0-83f9164199d4,68 +,1833-200619-3,7,100,0.05,4ce1f839-e1d4-433e-98a0-83f9164199d4,65 +,1833-200619-2,7,100,0.05,4ce1f839-e1d4-433e-98a0-83f9164199d4,261 +,1833-200619-1,7,100,0.05,4ce1f839-e1d4-433e-98a0-83f9164199d4,143 +,1833-200619-2,7,100,0.05,195c565c-1f98-4f51-94b7-a2f02d1993dd,203 +,1833-200619-2,7,100,0.05,e9431e1c-501e-4291-a168-1fd4a87d9d94,204 +,1833-200619-3,7,100,0.05,72567251-80e7-4fab-a61c-2c1b0c1b5295,53 +,1833-260619-1,7,100,0.05,18fb1cf2-bc1d-44c6-af27-99d72fe48877,98 +,1833-260619-3,7,100,0.05,bebac6c1-7393-47c5-8545-882d774841e8,103 +,1833-260619-3,7,100,0.05,e90b655d-61d3-402e-9fc0-e42d233b7282,105 +,1833-260619-4,7,100,0.05,819f7d23-eb77-4ab1-a2a2-171ff3c37971,177 +,1833-290519-1,7,100,0.05,816db01b-0ac0-4f5a-9809-0812a584a7b7,106 +,1833-290519-1,7,100,0.05,29429cf9-b1da-4d98-be7d-97c6b5f106f8,116 +,1833-290519-1,7,100,0.05,befc337f-188f-475d-9425-1fad0f223849,129 +,1833-290519-1,7,100,0.05,76f91093-e8b1-4315-8a8b-416c172c72bd,136 +,1833-290519-1,7,100,0.05,29d1d633-bc7b-4e8c-a00c-002576ac64da,74 +,1833-290519-1,7,100,0.05,e5cd8c70-2c68-4079-bfd2-e89cc019ec3c,82 +,1833-290519-2,7,100,0.05,548879c2-b827-4ddb-b83e-951bdbe5e253,126 +,1833-290519-2,7,100,0.05,a41f05c9-b2a2-4346-9982-bf43e9e446f3,130 +,1833-290519-2,7,100,0.05,d88ba846-02ac-4e4e-9189-87b22f954c25,97 +,1833-290519-2,7,100,0.05,120f7272-ff80-46dc-b6d5-d4db87d33023,98 +,1833-290519-3,7,100,0.05,9a48afac-5155-4d02-b417-26bd8812a051,103 +,1833-290519-3,7,100,0.05,34593582-2928-4472-b251-a1ecfc373385,113 +,1833-290519-3,7,100,0.05,19021ff4-8d84-467b-a0e1-748abfcb7ad8,129 +,1833-290519-3,7,100,0.05,b6118568-6f12-4511-b971-6b4006b1cb9c,82 +,1833-290519-4,7,100,0.05,77d6148b-3c8a-4aa3-b565-06a0cb5bd08d,67 +,1833-290519-4,7,100,0.05,d9b3d1c2-5c5d-4cba-82af-ed142fd736ff,75 +,1833-290519-4,7,100,0.05,36b43716-ac2c-44f3-a48a-a7f41dce1b68,77 +,1833-290519-4,7,100,0.05,a4dcaa5a-1775-45c9-8d8e-e19fb16a0cbe,94 +,1839-120619-2,0,100,0.05,3ed189a4-f4ab-4317-8b6d-b97fb7ff2fd4,76 +,1839-200619-2,0,100,0.05,f52fad42-6558-406b-b2db-68e05d28ea54,104 +,1839-200619-2,0,100,0.05,96d2a048-2558-48b6-b869-f3919f2a0b02,98 +,1839-290519-1,0,100,0.05,798a693a-7c5e-41ad-ac5a-aadf0ec583fc,120 +,1839-290519-2,0,100,0.05,273eca19-8034-485d-8a33-7cd2f4a23670,107 +,1839-290519-2,0,100,0.05,d0e464ce-25f5-435a-b286-0f62cadf25e0,117 +,1839-290519-3,0,100,0.05,6ef95244-0fc4-4e33-bca7-25a56724a57e,111 +,1839-120619-3,1,100,0.05,7989fd20-2d01-4f83-8527-6cb378d66fdc,113 +,1839-120619-4,1,100,0.05,7989fd20-2d01-4f83-8527-6cb378d66fdc,86 +,1839-120619-4,1,100,0.05,af047564-1bfa-47b9-9dc8-19ffec9f540f,104 +,1839-120619-4,1,100,0.05,e6737a3f-9f0e-4ae5-9404-47dcb53a485f,84 +,1839-200619-2,1,100,0.05,25bd51c3-24f1-45b4-b172-e6f00a47a23f,7 +,1839-290519-1,1,100,0.05,99bc98a9-72d0-44fd-920c-bb7043e28801,110 +,1839-120619-3,2,100,0.05,94aa9b70-eba7-45b7-b93e-23f6b6a6c463,129 +,1839-120619-3,3,100,0.05,32536cb4-1afa-4837-8b77-945cc590ab25,137 +,1839-120619-4,3,100,0.05,3d581e6a-48ef-482e-9374-1db607341aff,112 +,1839-120619-4,3,100,0.05,d8899e81-2b69-403f-bd9f-9feb4df17fa5,29 +,1839-200619-1,3,100,0.05,0b247fdb-2cb6-4b9c-901f-5910a418318b,153 +,1839-200619-2,3,100,0.05,e1566e62-051c-4c0c-adb9-a06b3ffd0688,118 +,1839-060619-1,4,100,0.05,464c0bec-01dd-4872-9e6f-c995537122e0,240 +,1839-060619-3,4,100,0.05,c51f5200-396b-457a-a693-be19842fdc25,101 +,1839-060619-4,4,100,0.05,c4264c91-cb48-4601-a144-1a9cf1647a44,230 +,1839-060619-5,4,100,0.05,b84b72c6-5517-4331-9007-b2f16b1c1a1f,164 +,1839-120619-2,4,100,0.05,84f0f7fb-5946-4f1b-8561-fe54d30950b0,78 +,1839-120619-3,4,100,0.05,75fc45a2-2204-42bf-a2e6-f875d98af2c8,115 +,1839-120619-3,4,100,0.05,da18898b-8884-4ee5-8b55-87c9fec8b66f,121 +,1839-120619-4,4,100,0.05,ed2d9b1a-bac3-4cb1-ac3f-6eb1047054d7,102 +,1839-120619-4,4,100,0.05,83ce1f60-86bd-4939-bf7d-9b1431ef4d6a,110 +,1839-120619-4,4,100,0.05,ca8cb6a2-6e9d-44a8-b8d1-85de406b06f3,120 +,1839-120619-4,4,100,0.05,a9404a21-6f14-4a7b-875d-ef76ddb10f84,82 +,1839-200619-1,4,100,0.05,e1ca58de-3334-416b-8103-ea5176152348,141 +,1839-200619-2,4,100,0.05,0aa1dbcc-d422-4263-a1b7-c823884c3fa0,100 +,1839-200619-2,4,100,0.05,8fa7a3f3-15ca-4549-a5c8-9a0807df844b,106 +,1839-200619-2,4,100,0.05,b5111fdd-8f5f-4ca3-aa64-2f446a5b10a7,108 +,1839-290519-1,4,100,0.05,5cb1ca63-9eef-4ffb-a688-4e0265cf1726,122 +,1839-290519-2,4,100,0.05,b3959b16-e39e-4f46-bbcb-b9d7e512f0c6,39 +,1839-290519-1,4,100,0.05,b3959b16-e39e-4f46-bbcb-b9d7e512f0c6,127 +,1839-290519-2,4,100,0.05,8d1a9d1e-cfb0-4fd3-8247-2fb279e22393,119 +,1839-290519-3,4,100,0.05,4c15d14a-1e16-40ec-9e23-84f0d722827c,117 +,1839-290519-3,4,100,0.05,d863020e-5667-42e0-bdea-3e2704f80569,72 +,1839-060619-5,5,100,0.05,c8ad4fce-363c-4a35-85db-cfeb0e7f27c0,138 +,1839-060619-3,5,100,0.05,c8ad4fce-363c-4a35-85db-cfeb0e7f27c0,87 +,1839-060619-4,5,100,0.05,ed87d6a4-a3f0-4bf6-a1c0-f6d4e7a19f7a,228 +,1839-060619-5,5,100,0.05,5643712c-0eac-40e7-b095-35366c741bae,170 +,1839-120619-1,5,100,0.05,7ef3b094-d777-470f-b564-26929b0d31c5,158 +,1839-120619-2,5,100,0.05,6ec628e1-1ca6-49b1-957c-daa9943fbfe4,104 +,1839-120619-2,5,100,0.05,f15d9abe-cba9-48f7-8f09-5f715d58744d,47 +,1839-120619-3,5,100,0.05,7929d9eb-8f20-4c21-aed4-29eb07fc36b8,131 +,1839-200619-1,5,100,0.05,5ddf2d81-965f-4570-91dc-de2b6ac8e505,145 +,1839-200619-2,5,100,0.05,e154cfcf-dcbf-4f66-b4c8-d33223a18720,96 +,1839-290519-1,5,100,0.05,f3a0876d-9af2-475d-bbf2-e001fcab72c7,133 +,1839-290519-1,5,100,0.05,1755eae5-6f1f-495c-a9da-f536361d5cd8,137 +,1839-290519-2,5,100,0.05,5822f6e4-5945-4014-b2fe-fcd41a692a9e,125 +,1839-290519-2,5,100,0.05,82b2a5da-ab6e-427b-9613-1462a24fa340,146 +,1839-290519-2,5,100,0.05,b2bde4dd-b9f0-4fa8-9c30-7842ec65ada0,148 +,1839-290519-2,5,100,0.05,f4db2a87-e70a-44d3-9a93-c9ae10d266e9,95 +,1839-290519-3,5,100,0.05,816797aa-90af-4264-bb20-6dd8eca9b519,115 +,1839-290519-3,5,100,0.05,c780c31a-cbd7-4f21-b3ae-20b07cdebd76,119 +,1839-060619-3,6,100,0.05,b1d863ea-9efd-4adb-91f2-4d8e3c71fef0,91 +,1839-060619-5,6,100,0.05,27fdb994-3d24-4bdf-b4dd-30e24eb28f08,142 +,1839-060619-5,6,100,0.05,6a1df4f7-4421-4a81-980a-60d8d994951c,162 +,1839-060619-5,6,100,0.05,d8fb6d00-a6ec-47b0-9c44-7d5059b004ca,166 +,1839-060619-5,6,100,0.05,9db08385-9f23-4dc3-ba13-1e9fe4867bf9,168 +,1839-120619-1,6,100,0.05,d7e4e3c6-c367-4cf0-bfa9-ede67c3dbc2f,143 +,1839-120619-2,6,100,0.05,e7d843c1-99b2-48d4-a6f0-4a18b9646163,106 +,1839-120619-3,6,100,0.05,e7d843c1-99b2-48d4-a6f0-4a18b9646163,133 +,1839-120619-4,6,100,0.05,e7d843c1-99b2-48d4-a6f0-4a18b9646163,134 +,1839-120619-2,6,100,0.05,81818d68-7725-47ae-bff6-a4d413fc99d0,51 +,1839-120619-2,6,100,0.05,d8ca3985-eed9-4b81-882f-ac50fc6188ba,86 +,1839-120619-2,6,100,0.05,57b4c793-bffd-4af9-8dec-76bfbcd3b7cb,88 +,1839-120619-3,6,100,0.05,4f0c6a09-ea30-46ad-b83f-a02ea750f68b,123 +,1839-120619-4,6,100,0.05,4f0c6a09-ea30-46ad-b83f-a02ea750f68b,124 +,1839-120619-3,6,100,0.05,81759d16-2f63-4fe0-bc47-b4778f7bf912,125 +,1839-120619-3,6,100,0.05,e0041e30-edfc-45ac-9d2a-ce61e16152be,71 +,1839-120619-4,6,100,0.05,a6d64932-71e9-41b6-8498-83f638e36da2,106 +,1839-120619-4,6,100,0.05,c3332569-8fa7-401b-9b8f-d923d39ea14e,116 +,1839-120619-4,6,100,0.05,fe390dc3-ab1a-455c-8cb1-dab845bdccd9,122 +,1839-120619-4,6,100,0.05,000a6e8e-f298-4a85-8dc7-17a294c0fefc,132 +,1839-120619-4,6,100,0.05,4e010a5b-d393-4ba3-8676-df7f919b7e2b,90 +,1839-120619-4,6,100,0.05,cf153905-0778-4700-96d3-b6edb69dfbaf,92 +,1839-200619-1,6,100,0.05,cd5d5380-0725-4a6c-bf73-1be12a5cdc61,139 +,1839-200619-2,6,100,0.05,45b44692-615e-4d49-8939-5d162e49c548,112 +,1839-200619-2,6,100,0.05,eed2a954-f68c-4eb5-816f-1f5437f168be,114 +,1839-200619-2,6,100,0.05,8750dc25-0aa7-4544-9121-6112efad1c00,48 +,1839-200619-2,6,100,0.05,1f2c3155-472f-402b-97db-7519c60a8c2b,54 +,1839-200619-2,6,100,0.05,5898817d-b6ab-482e-b871-d0d38eb936b9,78 +,1839-200619-2,6,100,0.05,153ce269-c73a-41cf-a1a6-182936c42668,89 +,1839-200619-2,6,100,0.05,d3d2b4df-bea5-49fa-b5f8-87f387513cdd,92 +,1839-200619-2,6,100,0.05,ce07a84c-e5b5-405f-b623-26db38fad082,94 +,1839-290519-1,6,100,0.05,20bc60e6-411f-444e-b348-b38ab556e97a,116 +,1839-290519-1,6,100,0.05,6f887b6f-8b3b-45bd-87ac-4e2b72b8ddea,131 +,1839-290519-2,6,100,0.05,7e0e430d-a028-4184-b4c7-4d3ed5e1c3e6,113 +,1839-290519-2,6,100,0.05,ba7b8852-e8cf-48f2-83e5-46aad068ca17,115 +,1839-060619-5,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,183 +,1839-060619-1,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,234 +,1839-060619-3,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,93 +,1839-120619-2,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,71 +,1839-120619-3,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,119 +,1839-120619-4,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,108 +,1839-290519-3,7,100,0.05,80972e61-6c64-477a-b918-4f2f279296c0,113 +,1839-120619-2,7,100,0.05,9d8d0151-6884-4f31-b02f-49d6acad9fcd,90 +,1839-060619-4,7,100,0.05,9d8d0151-6884-4f31-b02f-49d6acad9fcd,200 +,1839-060619-5,7,100,0.05,9d8d0151-6884-4f31-b02f-49d6acad9fcd,136 +,1839-290519-2,7,100,0.05,b4065c76-2216-44bb-9ab5-aa65c12e32a3,144 +,1839-060619-4,7,100,0.05,b4065c76-2216-44bb-9ab5-aa65c12e32a3,227 +,1839-120619-1,7,100,0.05,8fef611c-3cc7-4da6-aa94-c9cc0a0337ea,152 +,1839-120619-3,7,100,0.05,df41e14a-0559-4d3b-9ae7-e0fe7552333d,127 +,1839-120619-4,7,100,0.05,df41e14a-0559-4d3b-9ae7-e0fe7552333d,128 +,1839-120619-4,7,100,0.05,9bec52c4-16a8-461c-9f8e-0e470e93bd82,136 +,1839-200619-1,7,100,0.05,dee1dd8f-21f0-452b-ae0b-5f2bece563a8,135 +,1839-200619-2,7,100,0.05,116a7346-affc-4b2f-81cb-996e5c1c8589,116 +,1839-200619-2,7,100,0.05,dc0bede5-3b5e-4a05-8fd2-d50f117c9252,74 +,1839-200619-2,7,100,0.05,2dec1520-dbed-435e-82c1-ad7c191776f9,90 +,1839-290519-1,7,100,0.05,a706435e-d8d9-451a-8cf2-04ffd10dd625,114 +,1839-290519-1,7,100,0.05,131f4a62-88d6-4359-9222-6796f178a916,129 +,1839-290519-1,7,100,0.05,5e444321-772e-4685-80fb-e2d51d97b307,139 +,1839-290519-1,7,100,0.05,ea7023d4-9b10-46b8-a9c7-ec7f0b60870f,87 +,1839-290519-2,7,100,0.05,82a6162a-ac4e-4204-ac9d-8684d6c16898,109 +,1839-290519-2,7,100,0.05,c870ca31-9b7d-4f18-9c4c-ce6abc69801d,111 +,1839-290519-2,7,100,0.05,9c430052-ae2c-4b4e-a48e-5f1c23e5127d,135 +,1839-290519-2,7,100,0.05,8dd0dcbc-ff29-499c-aa7f-7642b692d682,142 +1839-120619-2,,0,100,0.05,f0775773-fbf5-420f-94a8-0da5bb8078b9,76 +1839-200619-2,,0,100,0.05,3ff1c318-dcc2-4420-bf7c-7e6c0e41f1b0,104 +1839-200619-2,,0,100,0.05,f00fc288-5a04-4fd3-8e02-a8b080f06016,98 +1839-290519-1,,0,100,0.05,540ff964-f827-4636-9668-9316f9913036,120 +1839-290519-2,,0,100,0.05,e80515fe-6afa-4111-b6a9-b0aa25ce9eab,107 +1839-290519-2,,0,100,0.05,ffd28074-e64d-484b-957a-c54cdb3bc8ee,117 +1839-290519-3,,0,100,0.05,48093105-79d7-4297-8eca-8b0f678dae6b,111 +1839-120619-3,,1,100,0.05,7f83a7fa-acf8-41e5-87fb-1ceee625e055,113 +1839-120619-4,,1,100,0.05,7f83a7fa-acf8-41e5-87fb-1ceee625e055,86 +1839-120619-4,,1,100,0.05,d903e411-e604-4650-a832-41293e8d7c8b,104 +1839-120619-4,,1,100,0.05,2d459081-0519-4c1f-996f-51bcc07db975,84 +1839-200619-2,,1,100,0.05,ca51bbb5-f48b-48c8-a5d1-5453e9615aeb,7 +1839-290519-1,,1,100,0.05,594d6d32-4f22-43bb-bb89-a9550c473de0,110 +1839-120619-3,,2,100,0.05,8501cf01-86b6-4150-8184-bbb0a732b343,129 +1839-120619-3,,3,100,0.05,60487709-d416-4994-8a05-69d01a8bc41b,137 +1839-120619-4,,3,100,0.05,80d770cf-1635-4b8d-91d0-d676cdb14f08,112 +1839-120619-4,,3,100,0.05,9a2182b2-814b-40da-9c30-5c320a7a87bd,29 +1839-200619-1,,3,100,0.05,e7f5de5a-bcd9-493c-bc86-88fc8765d9b8,153 +1839-200619-2,,3,100,0.05,42fd4cd3-ff7b-41d7-a045-3e63723912dc,118 +1839-060619-1,,4,100,0.05,dcea3f10-31fd-4205-8f73-738bcb450ac7,240 +1839-060619-3,,4,100,0.05,30ca722e-de14-420c-810f-68c00d0c1ecf,101 +1839-060619-4,,4,100,0.05,c0f7d912-ef41-4e6f-9c7b-d10ac2de8945,230 +1839-060619-5,,4,100,0.05,0d4be660-2ffa-4bcf-8ced-0e66c1abfb96,164 +1839-120619-2,,4,100,0.05,9da942f8-ceff-48b6-b7b0-b4ddac27ccb1,78 +1839-120619-3,,4,100,0.05,081300d5-ad12-4439-9430-bf8683f9a3e2,115 +1839-120619-3,,4,100,0.05,a5ab1513-d07d-4c59-bd4d-e77c4dbc193c,121 +1839-120619-4,,4,100,0.05,c20f5e63-4aca-4b1e-9e55-6f61f08052f0,102 +1839-120619-4,,4,100,0.05,2f2a0765-d42f-4780-8ed9-7c814516932c,110 +1839-120619-4,,4,100,0.05,6b5e6c13-8fd2-4650-aba9-58502f58c406,120 +1839-120619-4,,4,100,0.05,00735893-cefe-4787-b4be-c3732fe38032,82 +1839-200619-1,,4,100,0.05,d26ab521-2ec2-463c-98e5-318c6b28b783,141 +1839-200619-2,,4,100,0.05,cb7125ac-b42c-48ea-b4d7-3574479657ae,100 +1839-200619-2,,4,100,0.05,ceb026a7-c384-4393-82e0-14548dde9c80,106 +1839-200619-2,,4,100,0.05,a3735e8d-afa3-41ea-b564-d217f27df0f1,108 +1839-290519-1,,4,100,0.05,d7789a2a-bf46-4fb5-b6ff-a68fa2dd5982,122 +1839-290519-2,,4,100,0.05,09748bcf-3f4b-4d12-b826-2ebc71b65063,39 +1839-290519-1,,4,100,0.05,09748bcf-3f4b-4d12-b826-2ebc71b65063,127 +1839-290519-2,,4,100,0.05,dfbebfa5-59a0-4396-80a1-561b7ff067e7,119 +1839-290519-3,,4,100,0.05,4260fa93-6adf-47a2-973c-88573a246dfc,117 +1839-290519-3,,4,100,0.05,afd91775-da1c-474b-9b04-d903223cbe98,72 +1839-060619-3,,5,100,0.05,a3a75173-a74e-429b-ad9c-181d0a8ce485,87 +1839-060619-5,,5,100,0.05,a3a75173-a74e-429b-ad9c-181d0a8ce485,138 +1839-060619-4,,5,100,0.05,f5093eb0-00a1-4380-a969-88cc0884cf00,228 +1839-060619-5,,5,100,0.05,5f7baf9f-f3c0-4db4-8fea-29b646391d75,170 +1839-120619-1,,5,100,0.05,fd462693-5444-41f4-a33b-fbddb32ef860,158 +1839-120619-2,,5,100,0.05,0b122e55-d128-483e-a87b-f8502138b448,104 +1839-120619-2,,5,100,0.05,bcdaf715-a00d-417b-8ef6-2adead534845,47 +1839-120619-3,,5,100,0.05,2050f360-b8d7-437d-ac29-687ce93fe798,131 +1839-200619-1,,5,100,0.05,3424c2c8-6641-4c06-8ad8-4a21bb20a313,145 +1839-200619-2,,5,100,0.05,a7fff0c6-dd66-49fd-9716-59cc8ea50bdf,96 +1839-290519-1,,5,100,0.05,690e2bfb-5547-4a44-9ef6-c7afc77f1958,133 +1839-290519-1,,5,100,0.05,7d4f6a7b-6bc6-4593-863d-b3539b4492bc,137 +1839-290519-2,,5,100,0.05,a1d20299-ee5c-4229-be95-6409d8012603,125 +1839-290519-2,,5,100,0.05,58f1fcec-b421-4c30-85e6-2d800ed035fc,146 +1839-290519-2,,5,100,0.05,c3c01aaa-816b-4951-91d4-7e40df253479,148 +1839-290519-2,,5,100,0.05,dea1d5fd-d209-49e9-b4fd-413157d8d405,95 +1839-290519-3,,5,100,0.05,f23701a2-efd6-47ca-9f44-810f1d730f03,115 +1839-290519-3,,5,100,0.05,27c7ccb0-fcf4-4dea-8c31-916ad511a818,119 +1839-060619-3,,6,100,0.05,5c945fe0-f844-4dbb-83dc-48b2047af07f,91 +1839-060619-5,,6,100,0.05,92b4016f-9dba-4b17-816f-76203357947c,142 +1839-060619-5,,6,100,0.05,473755f1-37e1-48a3-b45f-12474e6253f3,162 +1839-060619-5,,6,100,0.05,1bcb53fd-8430-44e0-94c9-bbf52cfaca5d,166 +1839-060619-5,,6,100,0.05,9dd8608c-6497-42bf-acde-24ba333c31f7,168 +1839-120619-1,,6,100,0.05,9e233b53-7361-4bd6-896c-883df42f4002,143 +1839-120619-3,,6,100,0.05,9abb4219-328e-4695-9e7b-08dc6d5b53e0,133 +1839-120619-4,,6,100,0.05,9abb4219-328e-4695-9e7b-08dc6d5b53e0,134 +1839-120619-2,,6,100,0.05,9abb4219-328e-4695-9e7b-08dc6d5b53e0,106 +1839-120619-2,,6,100,0.05,94066a2c-a39f-4df4-8bb1-d6055b5cb302,51 +1839-120619-2,,6,100,0.05,10dfea94-74a5-4fca-8301-75d71901081a,86 +1839-120619-2,,6,100,0.05,bc3b0ebf-00cc-47e1-8d3b-ab0650fb4e5a,88 +1839-120619-3,,6,100,0.05,83ece9ee-03a3-47d4-80ff-72ebe53ce453,123 +1839-120619-4,,6,100,0.05,83ece9ee-03a3-47d4-80ff-72ebe53ce453,124 +1839-120619-3,,6,100,0.05,81f711e2-f2b8-42d4-9aaf-7b0b8a7f8a28,125 +1839-120619-3,,6,100,0.05,d41b7af3-99be-4ed3-951d-c667d9d1815b,71 +1839-120619-4,,6,100,0.05,f8f9ee57-c08a-42f1-882d-9e409ecd39ae,106 +1839-120619-4,,6,100,0.05,b3cea08a-e187-407a-b564-aa9acac2c72d,116 +1839-120619-4,,6,100,0.05,c1c7fc7d-0c81-4a9a-96a2-e13dce152e2c,122 +1839-120619-4,,6,100,0.05,e1471060-f521-4b36-8259-ff0818ba0343,132 +1839-120619-4,,6,100,0.05,fb55d16f-4d4a-4f24-992f-66d25cf7d453,90 +1839-120619-4,,6,100,0.05,9f4596b2-4e64-4255-93f1-5b613a7d6da0,92 +1839-200619-1,,6,100,0.05,49ab3c78-1290-4a08-ac14-c74aeba17d25,139 +1839-200619-2,,6,100,0.05,c4864ae4-6017-45da-9b3e-119ef9e3f083,112 +1839-200619-2,,6,100,0.05,3a29b37d-af36-4364-ad13-1b9b890c5f98,114 +1839-200619-2,,6,100,0.05,76ef2569-d70c-42dd-98e5-01cb99271b5b,48 +1839-200619-2,,6,100,0.05,1c0bee3e-925c-48d3-823c-e9cafae25e7e,54 +1839-200619-2,,6,100,0.05,315c4f2d-92c7-426f-992c-c1d3d4956392,78 +1839-200619-2,,6,100,0.05,f20d1f36-910a-4c39-9662-95129cb0d53c,89 +1839-200619-2,,6,100,0.05,e410e2c1-94c9-4c14-9a97-075c4438cccc,92 +1839-200619-2,,6,100,0.05,5f6018c8-60eb-43ba-9070-61d0d338a4bf,94 +1839-290519-1,,6,100,0.05,b88c092f-2b36-46d5-bcef-72f7f4c6407b,116 +1839-290519-1,,6,100,0.05,a4f52935-526b-4f93-9e4b-367427cbb4ad,131 +1839-290519-2,,6,100,0.05,2bc2d97a-a4e2-4410-8218-ed9b9943d38c,113 +1839-290519-2,,6,100,0.05,089951ba-9860-460d-b3d0-74a4c4b5dac1,115 +1839-060619-5,,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,183 +1839-290519-3,,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,113 +1839-120619-3,,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,119 +1839-120619-2,,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,71 +1839-120619-4,,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,108 +1839-060619-3,,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,93 +1839-060619-1,,7,100,0.05,624bc813-72c8-4b86-9522-2e892a0446d7,234 +1839-060619-4,,7,100,0.05,e3e43dfd-7f22-4e19-9a53-2eab557136ea,200 +1839-120619-2,,7,100,0.05,e3e43dfd-7f22-4e19-9a53-2eab557136ea,90 +1839-060619-5,,7,100,0.05,e3e43dfd-7f22-4e19-9a53-2eab557136ea,136 +1839-290519-2,,7,100,0.05,3a0d3478-8a69-4296-a163-0ec0758909ae,144 +1839-060619-4,,7,100,0.05,3a0d3478-8a69-4296-a163-0ec0758909ae,227 +1839-120619-1,,7,100,0.05,a4487f1c-edd5-4b58-b469-7f1773c1bdd4,152 +1839-120619-3,,7,100,0.05,72e1eb07-e7f6-4dd8-8dbf-27d4521dabaf,127 +1839-120619-4,,7,100,0.05,72e1eb07-e7f6-4dd8-8dbf-27d4521dabaf,128 +1839-120619-4,,7,100,0.05,e1c1cda0-8997-473b-bdab-cde222202d74,136 +1839-200619-1,,7,100,0.05,f86f8cda-78fd-4e8b-bcd5-952f53f70efc,135 +1839-200619-2,,7,100,0.05,3fb9ef13-aeab-41e2-9e1a-94f3e2bf046f,116 +1839-200619-2,,7,100,0.05,0e5d3c29-f507-45e0-8b48-ff04bfb14a98,74 +1839-200619-2,,7,100,0.05,ed518405-8668-402d-8760-0f317d304254,90 +1839-290519-1,,7,100,0.05,3a3dcd61-851a-4a06-97a0-15b1532d19a1,114 +1839-290519-1,,7,100,0.05,7e23c896-0304-4f15-9384-c534058a9932,129 +1839-290519-1,,7,100,0.05,9d9110a0-97ae-4030-9e7a-53a1ae4d99ce,139 +1839-290519-1,,7,100,0.05,835a2ff9-9977-499d-8216-b7545e1a3408,87 +1839-290519-2,,7,100,0.05,9f25a7a4-3465-40c5-9e51-0e8c6ece7516,109 +1839-290519-2,,7,100,0.05,df12e673-14a3-4753-a004-35cb8c4afdb0,111 +1839-290519-2,,7,100,0.05,2363a3b3-f346-4842-8d59-25dd551d7afb,135 +1839-290519-2,,7,100,0.05,adf18369-e8e9-498b-8d7c-8bedd8d43a9b,142